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1. INTRODUCTION AND OBJECTIVES 
 
 Cells exchange growth and differentiation signals through a repertoire of 

several diffusible polypeptides known generically as growth factors. Peptide growth 

factors are omnipresent molecules that coordinate every conceivable aspect of 

mammalian development, growth, physiology, and pathology. Peptide growth factors 

regulate critical cellular functions including stimulatory or inhibitory effects but also 

immune response or tumor growth. These molecules can regulate the cell function by 

autocrine, paracrine, juxtacrine or endocrine mechanisms (Sporn & Roberts 1988).  

Many peptide growth factors have been isolated and characterized, including:  

Nerve Growth Factor (NGF), Insulin-Like Growth Factors (IGF-I and II), Platelet-

Derived Growth Factors (PDGFs), Fibroblast Growth Factor (FGF), Interleukins (ILs), 

Hepatocyte Growth Factor (HGF), Transforming Growth Factor-β (TGF-β) and 

Epidermal Growth Factor (EGF) (James & Bradshaw 1984).  

The epidermal growth factor (EGF)-like peptides are emerging as major 

players in regulating different aspects of animal and human physiology and 

pathology. The EGF family includes Epidermal Growth Factor (EGF) itself, 

Transforming Growth Factor–α (TGFA), Heparin-binding Epidermal Growth Factor 

(HBEGF), Amphiregulin (AREG), Betacellulin (BTC), Epiregulin, (EREG) and Epigen 

(EPGN) (COHEN 1962; Derynck et al. 1984; Higashiyama et al. 1991; Shoyab et al. 

1988; Shing et al. 1993; Toyoda et al. 1995; Strachan et al. 2001). The members of 

the EGF family bind and activate extracellular domains of a family of receptor called 

transmembrane receptor tyrosine kinase (RTKs) (Ullrich et al. 1984; Yamamoto et al. 

1986; Kraus et al. 1989; Plowman et al. 1993; Massague & Pandiella 1993; van der 

et al. 1994). RTKs play a fundamental role in the regulation and differentiation of cell 

growth, and one of the most researched RTK’s family comprises the four receptors 

called ErbB1 (EGFR), ErbB2, ErbB3 and ErbB4 (Schlessinger & Ullrich 1992; Yarden 

& Sliwkowski 2001; Holbro & Hynes 2004). 

The EGFR and its ligands elicit essential actions in reproduction. For instance, 

different Egfr ligands have been shown to be involved in oocyte maturation and 

ovulation (Park et al. 2004; Ashkenazi et al. 2005; Shimada et al. 2006; Yoshino et 

al. 2006), preimplantational embryonic development (Hardy & Spanos 2002), and 

implantation (Das et al. 1995; Raab et al. 1996; Das et al. 1997a; Das et al. 1997b; 

Das et al. 1997c; Paria et al. 1999). 
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Btc, a rather poorly characterized Egfr ligand, was initially isolated from the 

conditioned medium of a mouse pancreatic β-cell carcinoma cell line (Shing et al. 

1993). Although, in many aspects, Btc reproduces the actions of other Egfr ligands, it 

has some unique structural and functional properties (reviewed in (Dunbar & 

Goddard 2000). Concerning reproduction, Btc was identified as one of the Egfr 

ligands expressed in the mouse uterus exclusively at the sites of blastocyst 

apposition at the time of attachment reaction (day 4) and through the early phase of 

implantation (day 5) (Das et al. 1997a). In addition, it was identified as a mediator of 

luteinizing hormone (LH) (Park et al. 2004; Ashkenazi et al. 2005; Hernandez-

Gonzalez et al. 2006) and prostaglandins (PGs) and progesterone receptor PGR) 

(Shimada et al. 2006) actions in the ovulatory follicle. Finally, Btc was recently 

identified as a possible ovarian mediator of bone morphogenetic protein 15 (BMP-15) 

actions, an oocyte-specific growth factor that plays a major role in determining 

ovulation quota in mammals (Yoshino et al. 2006). 

Although mice lacking Btc expression show no overt phenotype and appear to 

reproduce normally (Jackson et al. 2003), transgenic mice overexpressing the growth 

factor show a whole array of phenotypical alterations (Schneider et al. 2005). During 

the routine breeding of these mice in our animal facility we observed that Btc 

transgenic female and male mice, as compared with wild-type littermates, appeared 

to produce fewer pups per litter and had often non-productive matings. This 

observation led us to investigate the different stages of the reproductive process.  

 In the present investigation, we systematically studied different aspects of Btc 

transgenic female’s and male’s reproduction, including puberty initiation, ovulation, in 

vivo and in vitro oocyte maturation, sperm parameters, ovulation, in vivo and in vitro 

fertilization, and implantation in order to uncover the reason for their reduced fertility.  
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2. REVIEW OF THE LITERATURE 
 
2.1 Growth Factors 
 

Peptides with potent stimulatory or strong inhibitory effects on cell proliferation 

have been historically termed growth factors. Moreover, peptide growth factors 

regulate many other critical cellular functions that have little to do with growth itself, 

such as signal transduction, cell survival, differentiation, cell adhesion, cell migration, 

immune response, hematopoiesis, inflammation, tissue repair, atherosclerosis and 

cancer. Peptide growth factors provide an essential way for a cell to communicate 

with its immediate environment and to ensure that there is a proper local homeostatic 

balance between the numerous cells that comprise a tissue. The mechanism of local 

cellular regulation by classical endocrine molecules involves their interface with 

autocrine and paracrine mechanisms of action of peptide growth factors (Sporn & 

Roberts 1988).  

Many peptide growth factor have been isolated and characterized, including:  

Nerve Growth Factor (NGF), Insulin-Like Growth Factors (IGF-I and II), Platelet-

Derived Growth Factor (PDGF), Fibroblast Growth Factor (FGF), Interleukins (ILs),  

Hepatocyte Growth Factor (HGF), Transforming Growth Factor-β (TGF-β) and 

Epidermal Growth Factor (EGF) (James & Bradshaw 1984).  

Many growth factors derive from soluble precursors that mature through 

proteolytic cleavage within the cell. Another class of growth factors is called 

membrane-anchored growth factors and the biological effects of these growth factors 

are exerted on the cell surface by interacting with the extracellular domains of 

transmembrane receptor tyrosine kinase (RTKs) (Massague & Pandiella 1993; van 

der et al. 1994). RTKs play a fundamental role in the regulation of cell growth and 

differentiation. Ligand binding induces dimerization, activation of the intracellular 

kinase domain, and autophosphorylation by an intermolecular mechanism (COHEN 

1962; Derynck et al. 1984; Holmes et al. 1992; Shing et al. 1993; Shoyab et al. 1988; 

Toyoda et al. 1995; Schlessinger & Ullrich 1992). 

Peptide growth factor effects also depend on the stage of development or 

differentiation of its target cells. For example, the growth of fibroblasts from very early 

human embryos is stimulated by TGF-β, while the growth of fibroblasts from older 

embryos is inhibited by this peptide (Hill et al. 1986). Furthermore, it is clear that the 
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same growth factors that play a key role in the malignant process in cancer cells are 

expressed physiologically by cells that mediate inflammation and repair, namely 

platelets, macrophages, and lymphocytes (Sporn & Roberts 1986).  

  
2.1.1 The Epidermal Growth Factor Receptor and its Ligands 
 

In 1962, Cohen reported the isolation of a polypeptide from the submaxillary 

gland of male mice that accelerated eyelid opening and incisor eruption in the 

newborn animal. This polypeptide, EGF, was subsequently isolated from extracts of 

this tissue as a high molecular weight form. Its effects on the cell include 

mitogenesis, nutrient transport, glycolysis and morphological changes (COHEN 1962; 

Taylor et al. 1970). 

EGF turned out to be the founding member of a family of seven Epidermal 

Growth Factor Receptor (EGFR) ligands (Harris et al. 2003). The common structural 

domain shared by these family members is a 40–60 amino acid domain 

characterized by six cysteine residues forming three disulphide bonds (Savage, Jr. et 

al. 1973). EGF family members are transmembrane proteins that undergo proteolytic 

cleavage to release their mature form into extracellular space. Major sheddases are 

members of the ADAM (a disintegrin and metalloprotease) family (Sahin et al. 2004). 

The epidermal growth factor family includes Epidermal Growth Factor (EGF), 

Transforming Growth Factor–α (TGFA), Heparin-binding Epidermal Growth Factor 

(HBEGF), Amphiregulin (AREG), Betacellulin (BTC), Epiregulin, (EREG) and Epigen 

(EPGN) (COHEN 1962; Derynck et al. 1984; Holmes et al. 1992; Shing et al. 1993; 

Shoyab et al. 1988; Toyoda et al. 1995).  

In addition to the EGFR, these growth factors also bind and activate the 

related tyrosine kinase receptors ErbB2 (neu), ErbB3 and ErbB4 (Ullrich et al. 1984; 

Yamamoto et al. 1986; Kraus et al. 1989; Plowman et al. 1993), (Figure 2.1).  As 

typical RTKs, the ErbBs consist of an extracellular domain where ligand binding takes 

place, a short transmembrane domain and a cytoplasmic region containing the 

catalytic protein tyrosine kinase (Schlessinger 2000). Ligand binding and subsequent 

dimerization stimulates the receptor enzymatic activity, resulting in phosphorylation of 

cytoplasmatic domains. These phosphorylated residues serve as docking sites for a 

variety of signaling molecules whose recruitment initiate a cascade of intracellular 
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signaling. Subsequently, the ligand-receptor complex is internalized and degraded 

within lysosomes (Yarden & Sliwkowski 2001). 

TGFA 
(1) 

EREG
(1,4) 

AREG 
(1) 

EGF 
(1) 

BTC 
(1,4) 

HB-EGF
(1,4) 

EPGN
(1) 

1    2 1    1  2   2  4   2  1   4  3   2  4   4  3   4  3   3 1    3 

 

Figure 2.1 EGFR ligands and the ErbB network. Ligands and the ten dimeric receptor 

combinations comprise the input layer. Numbers in each ligand block indicate the 

respective high-affinity ErbB receptors. For simplicity, specificities of receptor binding 

are shown only for BTC that possess the apparently unique property of activating the 

ErbB2/3 combination. ErbB2 binds no ligand with high affinity, and ErbB3 

homodimers are catalytically inactive. 

 
2.1.2 Betacellulin 
 

Btc was initially described, purified and cloned from a mouse insulinoma cell 

line (Shing et al. 1993).  In the same year, the human BTC cDNA was identified and 

characterized (Sasada et al. 1993). Subsequently it was characterized in the bovine 

species and in the rat (Dunbar et al. 1999; Tada et al. 2000). 

The human BTC precursor (pro-BTC, Figure 2.2) encodes a 178 amino acid 

primary translation product and consists of: 

- aa 13-26, presumptive signal peptide; 

- aa 27-31, short propeptide; 

- aa 32-111, mature BTC containing the EFG motif; 

- aa 112-124, short juxtamembrane domain; 

- aa 125-138, hydrophobic transmembrane domain; 

- aa 139-178, Cytoplasmic tail domain. 
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The single copy gene for mouse Btc maps to chromosome 5 and for human 

BTC to chromosome 4q13-q21 (Harris et al. 2003; Dunbar & Goddard 2000; Pathak 

et al. 1995). The structure of genes encoding Btc and others members of EGF family 

(Tgfa, Areg, and Hbegf) are highly conserved: 

- exon 1, encodes the 5´UTR and signal peptide; 

- exon 2, encodes the N-terminal precursor; 

- exon 3, comprises the mature EGF, including the first two disulfide loops of 

the EGF motif; 

- exon 4, comprises the third loop of the EGF-like motif and the 

transmembrane domain; 

- exon 5, comprises the cytoplasmic region; 

- exon 6, encodes the 3´UTR. 
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Figure 2.2 The domain structure of the pro-Btc. 

 

The mature soluble form of mouse Btc consists of 80 amino acid residues and 

its molecular mass is 32 kDa. Btc is synthesized as a transmembrane precursor and 

its ectodomain is located in the extracellular domain. Due to this location, it is subject 

to proteolytic cleavage to produce a soluble mature growth factor (Figure 2.3). 

Reports suggest the role of metalloproteinases, MAP kinases and disintegrin in the 

processing of the ectodomain (Peschon et al. 1998; Izumi et al. 1998; Fan & Derynck 

1999; Gechtman et al. 1999). Members of the ADAM family of enzymes have been 

identified as the main EGFR ligand sheddases (Sahin et al. 2004);  (Tousseyn et al. 
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2006). Especially ADAM10 and ADAM17 are involved in the shedding of Egfr ligands. 

ADAM17 emerged as a constitutive sheddase of Tgfa, Areg, Hbegf, and Ereg, which 

is consistent with the essential role for ADAM17 in activation of the EGFR during 

development (Holbro & Hynes 2004). ADAM10 was found to be the major sheddase 

for Btc and Egf (Sahin et al. 2004). 

Interestingly, BTC is a pan-ErbB ligand, capable of binding to ErbB1 and 

ErbB4 homodimers and all heterodimeric combinations including ErbB2/3 (Yarden & 

Sliwkowski 2001). 

 

 
Figure 2.3 Schematic illustration of the structure of mature Btc (Dunbar & 

Goddard 2000). 

 

Btc is expressed in a wide range of tissues in the mouse, with particularly high 

levels in the liver, kidney, pancreas, small intestine and uterus (Shing et al. 1993; 

Seno et al. 1996; Kojima et al. 2003). Btc has also been shown to be expressed in 

heart, lung, colon, testis and ovary (Seno et al. 1996). Btc expression in the gastric 

surface, jejunum and colon suggests an important role also in the gastrointestinal 

tract (Kallincos et al. 2000). 

Btc is believed to play a major role in the physiology of the endocrine 

pancreas. For instance, Btc could convert pancreatic tumor cells into insulin-secreting 

cells and is required for the induction of insulin and glucokinase gene expression in 

glucagonoma cells (Mashima et al. 1996; Watada et al. 1996; Li et al. 2005). 
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Furthermore, Btc has been localized in primitive duct cells in fetal pancreas and 

some islet cell populations demonstrating a close association with insulin production 

(Tada et al. 1999). Evidence linking Btc and pancreas development was revealed by 

the administration of recombinant Btc resulting in improved glucose tolerance in mice 

with diabetes (Yamamoto et al. 2000). These findings can be associated with β-cell 

differentiation and regeneration from ductal or acinal cells. 

Reflecting its wide expression in vivo, BTC expression has been detected in a 

variety of cultured cell lines. In many cases the addition of BTC causes altered cell 

proliferation, differentiation, survival and migration. Table 2.1 provides an overview of 

the reports describing these actions. 

Btc was identified as one of the Egfr ligands expressed in the mouse uterus 

exclusively at the time of implantation (Das et al. 1997a). In addition, it was identified 

as a mediator of luteinizing hormone (LH) (Park et al. 2004; Ashkenazi et al. 2005; 

Hernandez-Gonzalez et al. 2006) prostaglandins (PGs) and progesterone receptor 

(PGR) (Shimada et al. 2006) actions in the ovulatory follicle and as a possible 

oocyte-specific growth factor (Yoshino et al. 2006). 

Mice lacking Btc are viable, fertile and show no overt phenotype (Jackson et 

al. 2003). This is believed to be a consequence of functional redundancy within the 

family of Egfr ligands. 

Transgenic mice overexpressing Btc ubiquitously exhibit a whole range of 

phenotypical alterations including high early postnatal mortality, impaired growth and 

reduced adult body weight, bone alterations, cataract and retinal problems, and 

pulmonary pathology (Schneider et al. 2005). 
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Table 2.1 Expression and effects of BTC on different cells culture lines. 

in vitro Culture BTC expression and effects Reference 

Retinal pigment 
epithelial, canine kidney 
epithelial, and vascular 

smooth muscle cells 

Stimulation of the cell proliferation Shing et al. 1993 

BALB/c 3T3 fibroblasts Stimulation of the cell proliferation Watanabe et al. 1994* 

Keratinocytes 
Transcriptionally up-regulated BTC, indicating a 
further role in the development of the neoplastic 

phenotype. 
Dlugosz et al. 1995 

Pancreatic AR42J cells Conversion of the amylase-secreting cells to 
insulin-secreting cells Mashima et al. 1996* 

Breast tumor cell lines 
Tyrosine phosphorylation of erB1 and erbB4; 
Growth stimulation of the mammary epithelial 

cells, 3 fold. 
Beerli &Hynes 1996 

PDX(+)αTC1.6 Induction of insulin gene expression Watada et al. 1996 

Pharyngeal carcinoma 
cells 

Up-regulation of MMP-9 and increased tumor 
cell invasion. O-Charoenrat et al. 2000a 

Pharyngeal carcinoma 
cells Expression of mRNAs and protein production O-Charoenrat et al. 2000b 

Pharyngeal carcinoma 
cells 

Up-regulation of VEGF-A and VEGF-C 
transcript levels; 

Down-regulation of VEGF-D m RNA. 
O-Charoenrat et al. 2000c 

Human aortic vascular 
smooth muscle cells Mitogenic activity Tamura et al. 2001* 

Sertoli cells Increase DNA synthesis by the Sertoli cells. Petersen et al. 2001 

Middle ear epithelium Hyperplasia of the middle ear mucosal 
epithelium Palacios et al. 2001 

Keratinocytes 
Involvement in epidermal morphogenesis 
and/or in maintenance of the differentiated 

phenotype of psoriatic epidermis. 
Piepkorn et al. 2003 

Seminiferous tubule Dose-dependent stimulatory effects on DNA 
synthesis. Wahab-Wahlgren et al. 2003

Pharyngeal carcinoma 
cells 

Induction of MMP-9 production and invasion 
primarily through activation of EGFR, MAPK 

and PI3K/Akt. 
O-Charoenrat et al. 2004 

Cumulus-oocyte 
complexes Cumulus expansion and maturation Park et al. 2004 

Cumulus-oocyte 
complexes 

Partial stimulation of the resumption of meiosis, 
activation of genes involved in cumulus 
expansion, and follicle rupture in vitro 

Ashkenazi et al. 2005 

Pancreatic ducts cells 
Proliferation (spreading and monolayer 

formation) and phosphorylation of MEK1/2 and 
ERK1/2. 

Rescan et al. 2005 

Pancreatic β-cells Differentiation and conversion of the β-cells to 
insulin-producing cells Ogata et al. 2005** 

Transdifferentiated β-
cells Increase insulin mRNA expression Li et al. 2005 

*Recombinant human BTC, **BTC-δ4: splice isoform of BTC lacking a transmembrane domain 
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2.2 Female Reproduction 
 

EGFR ligands have been shown to play a significant role in female 

reproductive functions in humans and animals, such as puberty onset, ovulation and 

implantation processes (Leach et al. 1999; Chobotova et al. 2002; Dey et al. 2004); 

(Hourvitz et al. 2006). Interestingly, they have also been implied in the development 

of cervical and endometrial cancer (Pfeiffer et al. 1997; Srinivasan et al. 1999).  

Female sexual maturation requires the coordinated and timely activation of 

luteinizing hormone-releasing hormone (LHRH) neurons. LHRH binds to specific 

receptors to stimulate the secretion of the gonadotropins LH and FSH and these 

hormones promote gonadal development and support reproductive physiology. One 

of these pathways uses the EGFR ligands and receptors. The functional integrity of 

both Egfr and erbB-4 signaling is critical for the time of puberty, while the suppression 

of Egfr activity during sexual differentiation in mice changes the time of puberty 

initiation (Apostolakis et al. 2000; Ojeda et al. 2003; Prevot et al. 2005).  

Oocyte maturation and ovulation require several sequential events involving a 

timed secretion of hormones that can induce expression of EGF-like growth factors. 

Areg, Ereg, and Btc can also recapitulate the oocyte maturation in vitro (Richards 

1994; Richards et al. 1995; Richards et al. 2002; Park et al. 2004). 

In humans, due to the interest in infertility studies, the expression of growth 

factors in human endometrium has been extensively investigated. EGF, TGFA, 

AREG, BTC and the ErbBs were found to be expressed with a variation during the 

menstrual cycle, with maximal levels in the late secretory phase, when the 

endometrium becomes receptive, demonstrating an association with the implantation 

process (Imai et al. 1995; Srinivasan et al. 1999; Ejskjaer et al. 2005). In mice, 

multiple EGFR ligands are expressed around the time of blastocyst implantation, 

revealing a mechanism to assure implantation (Carson et al. 2000; Das et al. 1994b; 

Das et al. 1995; Das et al. 1997a; Lim et al. 1998). 

The Table 2.2 gives an overview of the expression and actions of EGFR 

ligands in the female reproductive organs. 
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Table 2.2 Expression and actions of the EGFR-ligands in the female reproductive 
tract.  
 

EGFR-ligand Expression Effects References 

Hypothalamus Stimulation of the release of LHRH; 
Onset of puberty 

(Plata-Salaman 1991; Kaser et 
al. 1992; Apostolakis et al. 

2000) 

Endometrial epithelium Growth differentiation (Nelson et al. 1991) 

Trophoblast Implantation (Hofmann et al. 1992) 

Endometrial epithelium Endometrial proliferation, regulated 
by E2

(Huet-Hudson et al. 1990; Imai 
et al. 1995) 

EGF 

Endometrium Regulation of angiogenesis (Moller et al. 2001) 

Luminal Epithelium Uterine receptivity; 
Implantation (*) 

(Das et al. 1994b; Birdsall et 
al. 1996; Raab et al. 1996; 

Paria et al. 1999; Paria et al. 
2001; Lessey et al. 2002;  

Hamatani et al. 2004; Klonisch 
et al. 2001) 

Stroma und glandular 
epithelium cells 

Proliferation of stromal cells; 
Decidualization 

(Chobotova et al. 2002; 
Chobotova et al. 2005) 

Deciduum and extravillous 
trophoblast Implantation and trophoblast invasion (Leach et al. 1999) 

HBEGF 

Ovary Mitogen for granulosa cells; 
maturation of the follicles (Pan et al. 2004) 

Hypothalamus Onset of puberty (Ma et al. 1994) 

Luminal epithelium and 
peripheral stromal cells Implantation (Das et al. 1997b) 

Luminal, glandular and 
stromal cells 

embryonic development, preparation 
of the uterus for implantation, and 

decidualization 
(Tamada et al. 1991) 

Epithelial lining in human 
endometrium Growth of endometrium (Ejskjaer et al. 2005) 

TGFA 

Endometrial epithelium Endometrial proliferation, regulated 
by E2

(Imai et al. 1995) 

Preovulatory follicles Meiosis and Cumulus expansion (Park et al. 2004) 

Luminal epithelium Uterine receptivity, regulated by P4 (Das et al. 1995; Das et al. 
1997b) 

AREG 

Leucocytes and stromal 
cells in human 
endometrium 

Growth of endometrium (Ejskjaer et al. 2005) 
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Preovulatory follicles Meiosis and Cumulus expansion (Park et al. 2004) 

Luminal epithelium and 
underlying stroma Implantation (*) (Das et al. 1997a; Paria et al. 

2000) 

Placenta Placental growth 
(Maruo et al. 1995; Birdsall et 

al. 1996; Watanabe et al. 
1994) 

Epithelial lining in human 
endometrium Growth of endometrium (Ejskjaer et al. 2005) 

 
BTC 

Ovary Involvement in ovulatory process 
(Hourvitz et al. 2006; Yoshino 
et al. 2006; Woods & Johnson 

2006) 

Preovulatory follicles Meiosis and cumulus expansion (Park et al. 2004) 

Luminal epithelium and 
Stroma Implantation (*) (Das et al. 1997a) 

Stromal cells in human 
endometrium Growth of endometrium (Ejskjaer et al. 2005) 

Placenta Maintenance/development of normal 
cell growth (Toyoda et al. 1997) 

EREG 

Ovary Involvement in ovulatory process (Hourvitz et al. 2006) 

 
(*) proposed 
 
 

 

2.2.1 Sexual maturity 
 

The initiation of mammalian puberty requires the activation of hypothalamic 

neurons secreting the neuropeptide LHRH. LHRH stimulates the secretion of pituitary 

gonadotropins. Astrocytes affect LHRH neuronal function via cell-cell signaling 

mechanisms involving several growth factors acting via receptors with tyrosine kinase 

activity (Ojeda et al. 2000). Egf and Tgfa and their receptors are key players in the 

glial-neuronal interactive process that regulates LHRH secretion. Tgfa and 

Neuregulin (NRG) are produced in hypothalamic astrocytes and stimulate LHRH 

release indirectly via activation of their respective receptors, located on astrocytes. 

Activation of Egfr by Tgfa, and/or the erbB2/erbB4 receptor complex by Nrg, leads to 

E2, which then acts directly on LHRH neurons to stimulate LHRH release. A central 

blockade of Tgfa or Nrg action delays puberty, and focal overexpression of Tgfa 

advances it (Ojeda & Ma 1998). 

The increase in pulsatile release of gonadotropin releasing hormone (GnRH) 

is very important in the puberty. Glial cells facilitate GnRH secretion via cell-cell 
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signaling loops mainly initiated by members of the EGF family. The control of these 

mechanism may involve the transcriptional regulation of subordinate genes that, by 

contributing to neuroendocrine maturation, are required for the initiation of the 

pubertal process (Ojeda et al. 2003). 

Transgenic mice expressing a dominant-negative erbB4 receptor (DN–erbB4) 

were created to evaluate the function of the astrocytic ErbB receptors in the timely 

advent of puberty. The transgenic mice exhibit delayed sexual maturation and a 

diminished reproductive capacity in early adulthood. These abnormalities are related 

to a deficiency in pituitary gonadotropin hormone secretion, caused by impaired 

release of LHRH. Mice carrying both the Wa-2 mutation (a defective Egfr) and a DN-

erbB-4 mutant receptor exhibit a more pronounced delay in the onset of puberty and 

a dramatically impaired adult reproductive function in comparison to single-mutant 

mice and wild-type animals. These defects appear to be caused by loss of ErbB 

receptor-mediated astrocyte-to-neuron communication (Prevot et al. 2003; Prevot et 

al. 2005). 

Tgfa is widely distributed in the nervous system, both glial and neuronal cells 

contributing to its synthesis, and have a neuronal participation in the control of female 

puberty. Tgfa contributes to the acceleration of puberty induced by anterior 

hypothalamic lesions. They also indicate that activation of Tgfa gene expression in 

glial cells is a component of the hypothalamic response to injury (Junier et al. 1991; 

Junier 2000). 

Increased circulating levels of growth factors precede intracerebral 

aromatization of androgens to estrogen (E) during sexual differentiation and 

development (MacLusky & Naftolin 1981) and changes in E at the time of initiation of 

puberty (Ma et al. 1992). Indeed, the initiation of the puberty in females is dependent, 

in part, on activation of hypothalamic membrane-bound growth factor receptors (Ma 

et al. 1994). The absence of Egfr activity in mice delays the initiation of puberty and 

estrus cyclicity and the synchronization of mating behavior and estrous is disrupted. 

These findings demonstrate a greater role for growth factors in the adult brain. Rats 

and mice in the absence of E exhibit reproductive behavior 1 h after 

intracerebroventricular (icv) injection of Egf, Areg and Tgfa, demonstrating that 

growth factors can signal through the classical estrogen receptor (ERα) to alter in 

vivo function in rodent reproduction (Apostolakis et al. 2000). 
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In summary, while a central role for Egfr, ErbB4, Tgfa and Egf in the onset of 

female puberty and sexual maturity has been clearly demonstrated, no information is 

available about the role of Btc in this process. 

 
2.2.2. Oocyte maturation and ovulation 
 

Ovulation, initiated by the proestrus LH surge consists of several sequential 

follicular events involving enlargement of the antrum, expansion of the follicle and 

ovarian wall at the apex of the mature follicles and release of the fertilizable oocyte. 

This process involves a highly synchronized and exquisitely timed cascade of gene 

expression (Richards 1994, Richards et al. 1995, Richards et al. 2002). The LH 

analog hCG induces the transient and sequential expression of the EGF family 

members Areg, Ereg and Btc. An ovulatory dose of LH was shown to induce a rapid 

and transient expression of Btc mRNAs 1-3 h after the injection (Ashkenazi et al. 

2005). The presence of EGF-like activity in follicular fluid (Hsu et al. 1987) supports 

this concept. Incubation of follicles with Areg, Ereg, and Btc recapitulates the 

morphological and biochemical events triggered by LH, including cumulus expansion 

and oocyte maturation (Park et al. 2004). Thus, these EGF-related growth factors are 

paracrine mediators that propagate the LH signal throughout the follicle. 

A recently proposed model suggests that EGF family ligands, produced in a 

paracrine (Tgfa) or autocrine (Btc) fashion, bind with ErbB1 and/or ErbB4 receptors 

to activate Erk signaling that promotes enhanced expression of FSHR to initiate the 

process of granulosa cell differentiation subsequent to preovulatory follicle selection 

(Woods & Johnson 2006).  

Btc and Ereg were shown to be expressed in an ovulation-dependent manner 

after an analysis of mouse preovulatory and postovulatory ovarian cDNA. (Hourvitz et 

al. 2006). In this interesting study, 43 of 98 cDNA clones showed a true ovulation-

selective/specific expression pattern. Btc was also recently identified as a possible 

ovarian mediator of bone morphogenetic protein 15 (BMP-15) actions, an oocyte-

specific growth factor that plays a major role in determining ovulation quota in 

mammals (Yoshino et al. 2006). 
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2.2.3 Implantation  
 

In the mouse, the process of implantation can be classified into three stages: 

apposition, adhesion, and penetration. Apposition is the stage when embryonic 

trophectoderm cells become closely apposed to the uterine luminal epithelium. This 

is followed by the adhesion stage in which the association of the trophectoderm and 

the luminal epithelium is sufficiently intimate as to resist dislocation of the blastocyst 

by flushing the uterine lumen. The stage of penetration involves the invasion of the 

luminal epithelium by the trophectoderm. Stromal cell differentiation into decidual 

cells (decidualization) is more extensive, and the loss of the luminal epithelium is 

evident at this stage. These three stages of implantation form a continuum (Enders & 

Schlafke 1969; Schlafke & Enders 1975; Enders & Lopata 1999). 

The attachment reaction coincides with a localized increase in stromal 

vascular permeability at the site of the blastocyst. This can be demonstrated by 

intravenous injection of a macromolecular blue dye resulting in discrete blue bands 

along the uterus (uterine blue reaction). Molecular signals coordinate the uterus 

receptivity and the interactions between the embryo and the uterus to initiate the 

process of implantation (Psychoyos 1973; Paria et al. 1993b; Lee & DeMayo 2004). 

In mammals, the uterus differentiates into an altered state when blastocysts 

are capable of effective two-way communication to initiate the process of 

implantation. This state is termed uterine receptivity for implantation and lasts for a 

limited period, called window of implantation. At this stage, the uterine environment is 

able to support blastocyst growth, attachment, and the subsequent events of 

implantation (Paria et al. 1993b). The establishment of the receptive uterus to support 

embryo development and implantation is primarily coordinated by ovarian hormones, 

which modulate uterine events in a spatiotemporal manner. Estrogen and 

progesterone prime the uterus for implantation (Cross et al. 1994). In the mouse the 

attachment reaction occurs in the evening (22:00-24:00) of day 4 of pregnancy (Das 

et al. 1994b).  

The expression of several growth factors, cytokines, and their receptors in the 

uterus in a temporal and cell-specific manner during the peri-implantation period 

suggests that these factors are important for implantation and that some of the 

effects of ovarian steroids in the implantation process are mediated by 

paracrine/juxtacrine effects of these growth factors (Paria et al. 1993b; Das et al. 
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1994b; Das et al. 1995; Carson et al. 2000; Paria et al. 2002; Lim et al. 2002; Norwitz 

et al. 2001). 

The blastocyst and uterus generate various factors during implantation, but it 

is likely that the molecular "cross-talk" between them involves many more yet 

unknown factors. Indeed, it is more realistic to view the process of implantation as a 

condition of equilibrium in the up-regulation and down-regulation of a diverse set of 

genes. Identification of other essential regulatory steps is necessary to further 

understand the biologic basis for the establishment of pregnancy or the underlying 

causes of pregnancy failures. Many genes that are known to be associated with the 

implantation process fall into categories similar to the genes detected with increased 

expression at the implantation site, including growth factors/cytokines and their 

receptors, transcription factors, genes encoding structural proteins, or genes 

associated with cell proliferation. Genes with increased expression at the 

interimplantation site may act to guide the blastocyst to specific sites for implantation 

or be important for embryo spacing. 81 genes were reported with differential 

expression at the implantation site during both natural and induced implantation, 

suggesting their importance for implantation and some were members of the EGF 

family of growth factors that becomes intensely localized to the uterine luminal 

epithelium surrounding the blastocyst at the onset of implantation (Reese et al. 2001).  

 

2.2.3.1 Role of EGFR family members in implantation 
 

The expression of epidermal growth factor EGF-related ligands in the mouse 

uterus (Huet-Hudson et al. 1990; Tamada et al. 1991; Das et al. 1994b; Das et al. 

1997a; Lim et al. 1998) and the Egfr and Erb-4 in the embryo (Paria & Dey 1990; 

Paria et al. 1993a; Wiley et al. 1992; Paria et al. 1999) suggests roles for these 

growth factors in embryo-uterine interactions during implantation. The expression of 

multiple receptors and ligands of the EGF family might be a protective mechanism to 

ensure the embryo development and implantation (Paria et al. 2000).  

Hbegf gene is expressed in the mouse uterine luminal epithelium surrounding 

the blastocyst 6-7 hours before the attachment reaction that occurs at 22:00-23:00 

hours on day 4 of pregnancy. In vitro studies showed that Hbegf induced blastocyst 

Egfr autophosphorylation, and promoted blastocyst growth, zona-hatching and 

trophoblast outgrowth. These results suggest possible interactions between the 
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uterine Hbegf and blastocyst Egfr very early in the process of implantation, earlier 

than any other embryo-uterine interactions defined to date at the molecular level (Das 

et al. 1994b). 

Areg mRNA levels display a transient surge throughout the uterine epithelium 

on day 4 of pregnancy. With the onset of blastocyst attachment late on day 4, Areg 

mRNA accumulated in the luminal epithelium exclusively at the sites of blastocysts 

(Das et al. 1995).  

The cell-specific “window” of expression of Btc and Ereg in the peri-

implantation mouse uterus was also examined and it was demonstrated that both 

growth factors are expressed in the uterus exclusively at the sites of blastocyst 

apposition at the time of attachment reaction and during the initial phase of 

implantation. The distribution of Btc mRNAs in the peri-implantation uterus was 

examined by in situ hybridization on days 1-8 of pregnancy. Btc is present in the 

luminal epithelium and underlying the stroma at the site of blastocyst apposition at 

23:00 on day 4 and on the morning of day 5 distinct autoradiographic signals was 

observed in an increased number of luminal epithelial and stromal cells. The 

expression of the Ereg gene was mostly similar to that of Btc, and both Btc and Ereg 

expression was not detected in implanting blastocysts (Das et al. 1997a). 
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Figure 2.4 A schematic diagram showing the expression of EGFR ligands in the periimplantation 
mouse uterus (days 1-8 pregnancy; M = morning; A = afternoon; N= night). Adapted from Das et 
al. (Dev. Biol. 190, 178-190, 1997). 

 

 Interestingly, the inappropriate expression of a transgenic human TGFA in the 

uterus delays the initiation of the implantation process, which was associated with 
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downregulation of the TGF-β receptor subtypes and deferral of uterine AREG 

expression (Das et al. 1997b). 

The implantation depends not only on maternal events, but also on the 

blastocyst itself. Transgenic mice with null allele Egfr did not cause a blockage in the 

blastocyst formation, although the inner cell mass were degenerated in the peri-

implantation period causing an embryonic death (Threadgill et al. 1995). This effect 

however, depends on the genetic background of the mouse strain. 

The Egfr (erbB1) has been examined in several aspects during the peri-

implantation period. ErbB1 was detected in the stroma, deciduum, and myometrium, 

but not in the luminal or glandular epithelium. These observations are supportive of 

the concept of paracrine or juxtacrine interactions between EGF-related growth factor 

ligands of luminal epithelial origin and blastocyst Egfr in the process of implantation 

(Das et al. 1994a). 

A model has been established that shows cooperative interaction among 

preimplantation embryos and the role of growth factors on their development and 

growth. The embryos cultured with the addition of Egf or Tgfa have their development 

improved. Detection of Egf receptors on the embryonic cell surface at eight-

cell/morula and blastocyst stages suggests beneficial effects of Egf on 

preimplantation embryo development and blastocyst functions. In the blastocyst, the 

binding was limited to trophectoderm. This study presents clear evidence that specific 

growth factors of embryonic and/or reproductive tract origin participate in 

preimplantation embryo development and blastocyst functions in an 

autocrine/paracrine manner. The mechanisms by which mitogenic and differentiating 

effects of EGF on preimplantation embryos are mediated are still unclear (Paria & 

Dey 1990). 

The spatiotemporal uteroplacental expression pattern of the four ErbB 

receptors and their ligands was studied in the rabbit. The results provide evidence for 

the functional involvement of the Egf ligand-receptor system in embryo/feto-maternal 

cross-talk during the peri-implantation. Differential expression of Egfr-ErbB4 was 

observed in the trophoblast during implantation. Marked expression of ErbB1 mRNA 

and protein were observed in the cytotrophoblast of the embryonic trophectoderm, 

with the syncytiotrophoblast layer displaying weaker staining (Klonisch et al. 2001). 
In vitro studies with human endometrial stromal cells had demonstrated that 

HBEGF has a function in endometrial maturation in mediating decidualization and 
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attenuating TNFA and TGF-β-induced apoptosis of endometrial stromal cells 

(Chobotova et al. 2005). 

Placental growth is regulated by endocrine and local growth factors (Maruo et 

al. 1991) but little information is available regarding the expression of BTC in the 

placenta and uterus (Shing et al. 1993; Watanabe et al. 1994) and (Birdsall et al. 

1996). A study was conducted to clarify the expression of Btc and its receptors, ErbB-

1 and ErbB-4, in the trophoblasts in the human placenta over the course of 

pregnancy (4th to 5th, 6th to 12th, 18th to 21st, and 38th to 40th week 

placentas(Maruo et al. 1995). BTC from very early placentas until mid placentas was 

immunolocalized in syncytiotrophoblasts, and was most abundant in early placentas. 

The levels of BTC mRNA expression in early and mid placentas were significantly 

higher than those in term placentas. The levels of erbB-1 mRNA in the early and mid 

placentas were significantly higher than those in term placentas, whereas the levels 

of erbB-4 mRNA in early placentas were significantly lower than those in mid and 

term placentas, that shows evidence for changes in expression and cytological 

localization of BTC and its receptors in the trophoblasts in human placenta over the 

course of pregnancy. BTC may play a pivotal role as a local growth factor in 

promoting the differentiated villous trophoblastic function via ErbB-1 in early 

placentas and in contributing to placental growth through the maintenance of extra-

villous trophoblast cell function via ErbB-4 in term placentas (Maruo et al. 1995).  

 
 

2.3 Male reproduction  
 

In sharp contrast to the abundant data supporting an important role for the 

EGFR ligands in the female reproductive tract, only little information is available 

about their function in the male reproductive organs. 

EGF was measured in the seminal plasma of human patients attending an 

infertility clinic. No correlation was found between EGF concentration (~ 40 ng/ml) 

and age of donor, sperm count, sperm motility, sperm morphology or period of sexual 

abstinence before sample collection. There was no significant variation in mean EGF 

levels between fertile and infertile men, suggesting that this peptide plays no role in 

the density or motility of sperm associated with fertility (Elson et al. 1984; Hirata et al. 

1987; Richards et al. 1988).  
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The circulating Egf appears to play a role in mouse spermatogenesis since the 

removal of the submandibular glands decreased the amount of circulating Egf to an 

undetectable level and caused a marked decrease in the number of mature sperm 

and spermatids (55 and 50%, respectively) and the number of spermatocytes 

increased 20%. Replacement of Egf to sialoadenectomized mice reversed completely 

both the sperm content of the epididymis and the number of spermatids in the testis 

to normal showing that Egf may play a role in the meiotic phase of spermatogenesis 

and may cause some cases of infertility like unexplained oligospermia (Tsutsumi et 

al. 1986). Interestingly, infertile men had mean blood plasma EGF concentrations 

lower than that of the fertile group. There were also statistically significant differences 

between the fertile and infertile men in sperm count, sperm viability, mean forward 

progression, testosterone, LH and FSH (Adekunle et al. 2000).  

Transgenic male mice overexpressing Egf show only few post-meiosis II 

gametes, are sterile and have reduced serum testosterone (Wong et al. 2000). This 

is in contrast to transgenic mice overexpressing Tgfa in the testis. These transgenic 

animals had no abnormal testicular morphology or alterations in spermatogenesis 

(Mullaney & Skinner 1992). Observations demonstrate that gene expression of Tgfa 

and its receptor is high during early pubertal stages when somatic cell growth is 

predominant and low at late pubertal stages when somatic cell proliferation is 

reduced. Tgfa can act as an autocrine/paracrine mitogen for the mesenchymal-

derived peritubular cell, while actions on the Sertoli cell population are not evident 

(Mullaney & Skinner 1992). Although Egf seems to be the major physiological ligand 

in germ cell development, mice with either single or triple null mutations in Egf, Tgfa, 

and Areg did not display reduced fertility (Luetteke et al. 1999). DNA synthesis in rat 

testis seminiferous tubules in vitro was stimulated with the addition of Egf, Tgfa and 

Btc. RT-PCR analysis revealed that EGFR, erbB2, erbB3 and erbB4 were all 

expressed at every stage of the spermatogenic wave, whereas differential expression 

was found in isolated Leydig, Sertoli and peritubular cells. These results show that 

EGFR-ligands are spermatogonial growth factors in vitro, suggesting a paracrine 

control of spermatogenesis in vivo (Yan et al. 1998; Wahab-Wahlgren et al. 2003).  

Expression of the EGF-like ligands EGF, TGFA, AREG, BTC, HBEGF and all 

four ErbB receptors was detected in the human and mouse prostate showing an 

evidence that ErbB signaling contributes to mouse prostate function (Adam et al. 

1999; Zhu & Jones 2004). Finally, aberrant ErbB family signaling contributes to the 
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development and metastatic progression of human prostate cancer (Klapper et al. 

2000). 
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3 ANIMALS, MATERIALS AND METHODS 
 

 

3.1 Animal Breeding  
 

All animals were maintained under non-barrier conditions in the facilities of the 

Gene Center at 22°C, 65% humidity, and a 12 h light cycle and received standard 

food and water ad libitum. Mice used in expression studies and for phenotype 

analysis were weaned at an age of three weeks, marked by ear piercing and housed 

in cages separated by sex. At the time of weaning, tail tips were clipped and frozen 

on dry ice and stored at -80°C for genotype analysis. The generation of the 

transgenic mice used in this study was described previously (Schneider et al. 2005). 

 

 

3.2 Mouse genotyping 
 

 

Proteinase K digests of mouse tail tips 
 

Reagents: 
 

EDTA Ethylene diamine tetraacetic acid, 0.5 M, ph 8.0 

Proteinase K Solution 20 mg/ml dissolved in bidistilled H2O 

Isopropanol 100% 

Ethanol 70% 

 

 

Wizard ® Genomic DNA Purification Kit (Promega) containing: 

Nuclei Lysis Solution 

RNase Solution 

Protein Precipitation Solution 

DNA Rehydration Solution 
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Assay: 
 

Each tail tip was incubated in a 1.5 ml tube with 600 µl of a solution containing 

120 ml EDTA, 500 µl Nuclei Lysis Solution and 17.5 µl Proteinase K stock solution 

overnight at 56° C and with shaking.  The next step was the addition of 3 µl of RNase 

Solution. The samples were mixed by inverting 25 times and incubated for 20 min at 

37°C. After cooling down to room temperature, 200 µl of Protein Precipitation 

Solution was added to each sample. The samples were vortexed at high speed for 20 

seconds, chilled on ice for 5 minutes and then centrifuged at 13,000 g x for 4 min. 

The supernatant was transferred into a clean tube containing 600 µl isopropanol. The 

DNA became visible as a small white pellet by gentle shaking and was centrifuged at 

13,000 x g for 2 min. After removing the supernatant, 600 µl of 70% ethanol were 

added to wash the DNA and the tubes were inverted several times. A last 

centrifugation was made under the same conditions as above, the ethanol was 

removed and the pellet was air-dried for 10 min. 50 µl of Rehydration Solution were 

added and the DNA were rehydrated by incubating at 65°C  for one hour. 

 

 

Principle of the Polymerase Chain Reaction (PCR) 
 

PCR is an in vitro method that allows up to a billion folds amplification of a 

selected DNA sequence. The reaction uses two oligonucleotide primers that 

hybridize two opposite strands and flank the target DNA sequence that is to be 

amplified. In the presence of deoxyribonucleoside triphosphates (dNTPs), a heat-

stable DNA polymerase catalyzes the elongation of the primers. A repetitive series of 

cycles involving template denaturation, primer annealing, and extension of annealed 

primers by the polymerase results In exponential accumulation of the specific DNA 

fragment. Because the primer extension product synthesized in a given cycle can 

serve as a template in the next cycle, the number of target DNA copies increases 

exponentially corresponding to each cycle. 
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PCR protocol for detecting the BTC transgen sequence 
 

 Reagents: 
 
Taq DNA polymerase Kit (Qiagen) containing: 

PCR Buffer, 10x trisCl, KCl, (NH4)2SO4, 15mM MgCl2, pH 8.7 (20°C) 

Q-Solution 5x concentrated 

MgCl2 25Mm 

Taq Polymerase 5U/µl, recombinant 94-kDa DNA polymerase, isolated 

from Thermus aquaticus, cloned in E. coli 

dNTPs Set 100 Mm aqueous solutions of dATP, dCTP, dGTP and 

dTTP, each in a separated vial 

 

Ethidium Bromide 0,1% solution in bidistilled H2O 

50x TAE running buffer 242 g Tris 

 57,1 ml Glacial Acetic Acid 

 100 ml EDTA, 0.5 M, ph 8.0 

 Ad 1 l bidistilled H2O 

6x Loading Dye 30% Glycerol 

 Bromophenol Blue 

 

To confirm the integrity of the DNA, a sequence of the β-actin gene was 

amplified using the following primers: 

 

β-actin sense 5’-GGC ATC GTC ATG GAC TCC -3’ 

β-actin  antisense 5’-GTC GGA AGG TGG ACA GGG -3’ 

 

For detection of the construct integration, following primers were use: 

 

pTORUseq  5’-CTA CAG CTC CTG GGC AAC GTG-3’ 

globpA  5’- AGA TCT CAG TGG TAT TTG TGA GCC 3’ 
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Assay procedure: 

 

The 20 µl reaction was prepared in 100 µl PCR tubes on ice, containing:  

DNA template (about 50 ng/µl) 2 µl 

Sense primer (2 µM) 1 µl 

Antisense primer (2 µM) 1 µl 

dNTPs Mix (1 mM) 2 µl 

PCR Buffer, 10x 2 µl 

Q-Solution 4 µl 

MgCl2 (25Mm) 1.25 µl 

Taq Polymerase, 5U/µl 0.1 µl 

Bidistilled H2O 6.65µl 

  

 The amplification took place in a Biometra Uno Thermocycler and was 

performed as follows: 

  

1st step: denaturation 94°C for 4 min 

2nd step: denaturation 94°C for 1 min 

3rd step: annealing 60°C for 1 min 

4th step: extension 72°C for 2 min 

5th step: extension 72°C for 10 min 

6th step: cooling 4°C 

 

Steps 2 to 4 were repeated 35 times before progression to steps 5 and 6 (36 

cycles). PCR products were mixed with 6x loading buffer, separated in 2% agarose 

TAE gels with ethidium bromide and visualized under UV light. 

 
3.3 Analysis of Body and Organ Weights 
 

Body, ovary and uterus weight of control and transgenic females at the age of 

2 months were recorded with a scale (BP221S, Sartorius, Germany). Body weight 

was measured to the nearest 0.1 g and ovary and uterus to the nearest mg.  
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3.4 Fertility Analyses 
 

Most of the routine mouse breeding for expanding the Btc transgenic lines 

involved mating of transgenic males to control females. A retrospective analysis 

shows that the number of successful matings (77/157, 49%) and pups per litter 

(8.2±0.2) was significantly reduced as compared to non-transgenic age-matched 

males (11/11, 100% successful matings and 9.9±0.4 pups per litter). A few matings 

involving transgenic females paired to control males were performed sporadically and 

these matings also revealed a clear impairment in the reproductive performance of 

transgenic females: the number of successful matings (8/13, 61.5%) and pups per 

litter (5.7±0.8) was significantly reduced. Thus, we decided to initiate extensive 

experiments to systematically analyze the reproductive fitness of transgenic females. 

In order to analyze their breeding performance, Btc transgenic mice (lines 2 

and 4) and control mice were paired with wild-type mice of the opposite sex. The 

mating pairs were: 

- WT ♀ x WT♂, n=3 

- Line 2 BTC ♀ x WT ♂, n=5 

- Line 4 BTC ♀ x WT ♂, n=5 

- WT ♀ x Line 2 BTC ♂, n=4 

- WT ♀ x Line 4 BTC ♂, n=5 

All animals were 2 months old at the beginning of the experiment. Each mating 

pair was housed together exactly three months and the litters were removed at the 

age of 4 weeks. The litter size of each mating pair was averaged. The interval to the 

first litter and litter size development were recorded.  

 

3.5 Evaluation of female puberty onset and estrous cycle tracking 
 

Wild-type (n=3) and Btc transgenic (n=4) mice were observed daily from the 

time of weaning at 21 days for the appearance of a vaginal opening (the loss of the 

vaginal closure membrane at puberty). Once this occurred, daily histological analysis 

of vaginal smears was made. Estrous cycles were monitored during three 

consecutives cycles. The cycle’s length was defined as the interval between 

proestrus smears and the onset of estrous cyclicity was defined as the first day of the 

first cycle less than or equal to 6 days in length (Nelson et al. 1990).  
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3.6 Embryo Implantation Studies 
 

Wild-type (n=6) and Btc transgenic (n=11) mice were mated with fertile males 

and used to examine the attachment reaction and progression of the implantation 

process. By the end of the day 4 or day 5 of pregnancy they were injected 

intravenously (200 µl/mouse) with a solution of Evans Blue dye (1% in PBS). Mice 

were killed 5 min after injection and blue bands along the uterus indicated the sites of 

blastocyst apposition (Das et al. 1994b). After the observation of the implantation 

sites the uterus were flushed to recover embryos that did not implant.  

 

 
3.7 Ovulation and Fertilization Analysis 
 

Female mice at 2 to 6 months of age were used for these experiments. 

Ovulation assays were performed with wild-type (n=15) and Btc transgenic (n=8) 

mice. Female were mated with wild-type vasectomized males. The females were 

examined every morning and evening for the presence of a copulatory plug 

(positive=day 0). The oviducts and ovaries were excised from mice and were placed 

into dishes containing medium (M2 supplemented with BSA). The cumulus-oocyte 

complexes (CCOs) were recovered by dissection of both ampullas on day 0.5. The 

number of ovulated oocytes was determined after enzymatic disassociation with 0.3 

% hyluronidase from the surrounding cumulus. Fertilization assays were performed 

with wild-type (n=12) and Btc transgenic (n=7) female mice which were 2 to 6 months 

old. The females were mated with wild-type males with proved fertility. The 

methodology to detect copulatory plugs and the COCs collection was the same as 

described for determination of the ovulation rate. The fertilized oocytes (zygotes) 

were counted. 

 
3.8 Cumulus-Oocyte Complex Isolation and Culture 
 

Female mice, 2 to 6 months old, were induced to superovulate with pregnant 

mare serum gonadotropin (PMSG, Intergonan) and sacrificed 48 h later to obtain the 

immature oocytes. The ovaries were removed and stored in Opti-MEM medium 
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(Gibco, Grand Island, NY) with 10% fetal calf serum (FCS; Biochrom AG). Large 

antral follicles were punctured with 28 in. × 0.5 in. 18G syringe needles to release 

COCs. Only COCs that consisted of an oocyte surrounded by at least three complete 

layers of cumulus cells were selected for further culture. COCs were taken through 

three washes of Opti-MEM medium plus 10 IU/ml PMSG and 10% FCS before being 

cultured in groups of 20 in 80µl drops of preequilibrated medium and overlaid with 

silicone oil (Sigma) in an atmosphere of 5% CO2 in air at 37°C. These oocytes were 

cultured for 16 h. At the end of the culture period, COCs were removed from the drop 

and the oocyte denuded of cumulus cells by repeated gentle pipetting in medium 

containing 0.1% hyaluronidase (Sigma). Morphological changes of the cultured 

oocytes were evaluated and classified. Immature oocytes were classified as GV 

when the germinal vesicle (GV) was present, as metaphase I (MI) when GV was 

broken down, as metaphase II (MII) when the first polar body was extruded, and as 

degenerated when oocytes were dark, granulated, or fragmented. The degree of 

cumulus expansion was assessed according to a subjective scoring system, a scale 

of 0 (no expansion) to +4 (maximal expansion) (Yoshino et al. 2006). 

 
3.9 Sperm isolation and in vitro fertilization 
 
Sperm were collected from the cauda epididymis and vasa deferentia of fertile 

mice in IVF medium (Vitrolife). The percentages of motile and progressive 

spermatozoa and the sperm concentration were recorded. The oocytes were washed 

three times in the fertilization medium (IVF, Vitrolife) and placed in fertilization drops, 

where the spermatozoa were added with a concentration of 1 x 106/ml. Six hours 

after fertilization, oocytes were denuded from the remaining cumulus cells by 

repeated gentle pipetting. We evaluated and classified the morphological changes of 

the zygotes, as appearance of two pronuclei and after 24 hours the cleavage. 

 

3.10 Sperm Analysis  
 

Sperm analyses were performed with wild-type (n=7) and Btc transgenic 

(n=11) males mice ranging from 3 to 5 months of age. After retro-orbital puncture for 

blood collection under ether anesthesia, the animals were killed by cervical 

dislocation. The two caudae epididymides and vasa deferentia were dissected and 
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placed into 0.9% NaCl in a 4-well dish (on ice). Under a microscope all remaining fat 

and visible blood vessels were removed with scissor. The epididymis was cut several 

times and the spermatozoa were left to swim out for 3-5 minutes at 37°C. The 

suspension was shacked carefully until the solution was homogenous. The sperm 

quality is checked using a computerized semen analysis system (IVOS, v 12.2, 

Hamilton Thorn Research, Beverly, MA). The percentage of motile and progressive 

sperm and concentration of sperm were recorded. We thank Dr. Auke Boersma 

(GSF) for the sperm analysis. 

 
3.11 Histological and Immunohistochemical studies 
 

Excised ovarian and uterus tissues were fixed in 4% paraformaldehyde, 

routinely processed for paraffin embedding, and serially sectioned at a thickness of 5 

µm. The sections were stained with hematoxylin and eosin and examined by light 

microscopy. Sections were deparaffinized and hydrated in PBS for 20 min. Blocking 

of endogenous peroxidase activity was achieved by incubation in 3% H2O2 in PBS for 

10 min at 37°C. The sections were incubated with the primary antibody, a goat anti-

mouse Btc antibody (R & D Systems, Wiesbaden, Germany), for 1 h at 37°C. Then, 

the sections were rewashed in TBS (Tris-buffered saline) two times for 5 min and 

incubated with the secondary antibody, a biotinylated rabbit anti-goat Ig (Dako, 

Denmark). After immunostaining, sections were stained lightly with diaminobenzidine 

(DAB), mounted, and examined under a brightfield microscope. Red deposits 

indicated the sites of immunoreactive protein. IHC was kindly performed by Maik 

Dahlhoff and evaluated by Prof. Dr. Sinowatz (Institute of Veterinary Anatomy). 

 

3.12 Statistical analysis 
 

Data are expressed as the mean ± SEM. Statistical analysis was performed 

using paired or unpaired Student’s t tests to detect significant differences between 

transgenic and control mice. Values of p<0.05 were considered significant. 
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4 RESULTS 
 
 
4.1 Analysis of Body and Organs Weight 
 

 

 

To detect a possible effect of the Btc overexpression on the weight of uterus 

and ovaries, the weight of these organs in females at 2 months of age was recorded. 

Table 4.1 shows that in comparison with wild-type females, Btc transgenic females 

exhibited a lower body weight. The absolute weight of ovary and uterus did not differ 

significantly between the two genotypes. While the same was true for the relative 

weight of the uterus, an increase in the relative weight of the ovary in transgenic 

females was detected. 

 

Table 4.1 Body weight and absolute and relative weights of the ovary and uterus of 

non-transgenic (wt) and Btc-transgenic (tg) females at the age of 2 months. The table 

shows the calculated mean values (standard deviation values are shown in brackets). 

A t-test was used to show the absence (-) or presence (*: P<0.05) of a statistically 

significant difference (∆) between groups. 

 

 Weight  % Body weight  

 wt tg ∆ wt tg ∆ 

Body (g) 22.86 (2.9) 19.67 (2.6) *    

Uterus (mg) 78.1 (34) 81.6 (21) - 0.35 (17) 0.42 (0.11) - 

Ovary (mg) 10.1 (3.9) 11.5 (2.8) - 0.04 (0.01) 0,06 (0.01) * 

n 10 11     
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4.2 Fertility measurements 
 
 
4.2.1 Males 
 

To study systematically the consequences of transgene expression on male 

and female fertility, Btc transgenic mice from Lines 2 and 4 were mated with wild-type 

animals.  

In average, control litters consisted of 9.9 ± 0.3 pups, while L2 Btc and L4 Btc 

transgenic males produced an average litter size of 7.9 ± 0.8; and 8.0 ± 0.8 pups, 

respectively (p<0.05). The interval to the first litter was not significantly different 

between groups (Table 4.2). 

 

Table 4.2 Mean values (± SEM) and statistical analysis of the results of the fertility 

measurements of BTC transgenic male’s mice. 

Parameter Control L2 L4 
 (n=3) (n=4) (n=5) 

Number of successful matings 3 (100%) 3 (80%) 5 (100%) 

Number of litters/animal 4.3 ± 0.3 3.6 ± 0.3 2.6 ± 0.5 

Interval to the first litter (days) 21.3 ± 0.6 21.0 ± 0.3 31.0 ± 3.6 

Litter size 9.9 ± 0.3 7.9 ± 0.8a 8.0 ± 0.8a

a P < 0.05 
 

 

4.2.2 Females 
 

Successive matings of Btc transgenic female mice with wild-type male mice 

revealed a decrease in litter size compared with litters produced by control mating. 

Control litters had an average size of 9.9 ± 0.3 pups, L2 Btc transgenic females gave 

birth to an average of 5.3 ± 0.7 pups/litter, and L4 Btc transgenic females had an 

average of 4.8 ± 0.5 pups/litter (p<0.001). The interval to the first litter was not 

significantly different between groups (Table 4.3). 
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Table 4.3 Mean values (± SEM) and statistical analysis of the results of the female’s 

fertility study. 

Parameter Control L2 L4 

 (n=3) (n=5) (n=5) 

Number of successful matings 3 (100%) 5 (100%) 4 (80%) 

Number of litters/animal 4.3 ± 0.3 2.8 ± 0.6 2.6 ± 0.5a

Interval to the first litter (days) 21.3 ± 0.6 23.0 ± 1.0 23.4 ± 2.3 

Litter size 9.9 ± 0.3 5.3 ± 0.7 *** 4.8 ± 0.5*** 
a P = 0.0533  
*** P < 0.001  

 

Litter size development showed a significant difference between Btc 

transgenic females and controls females (Figure 4.1).  
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Figure 4.1 Litter size development. A reduction in the mean number of pups per litter in the second 
and third litters as compared to the first litter was observed in Btc transgenic females but not in control 
females (***P < 0.05).  

 
4.3 Evaluation of female puberty onset and estrous cycle tracking 
 

Vaginal opening, the first observable consequence of the rise in circulating E 

that accompanies the onset of puberty in rodents, occurred essentially at the same 

age in transgenic and non-transgenic females (days 24 to 26, data not shown). 

Similarly, the interval between vaginal opening and the first estrus was 
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undistinguishable between both genotypes (data not shown). The interval between 

vaginal opening and the onset of estrous cyclicity, which takes several days in normal 

mice, was slightly increased in the transgenic females, but the difference did not 

reach statistical significance (Figure 4.2A). Figure 4.2B shows the duration of the first 

3 cycles, demonstrating that, although the first cycle was significantly longer in the 

transgenic group, this difference disappeared after the second cycle.  
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Figure 4.2 Evaluation of the onset of estrous cyclicity and cycle length in non-transgenic (wt, n= 3) and 
transgenic animals (tg, n = 4). A) The interval between vaginal opening (VO) and estrous cyclicity 
(defined as the first day of the cycle with duration of 6 or less days) is not different between the 
groups. B) The first estrous cycle has a longer duration in transgenic females. Cyclicity is attained at 
the third cycle in both groups.  
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4.4 Embryo Implantation 
 

In order to evaluate the kinetics of blastocyst attachment, plugged females 

were injected intravenously with a blue dye solution to make the implantation site 

visible (Figure 4.3).  

 
 
Figure 4.3 The attachment reaction. The left uterus is from a wild-type animal at 24:00 h on day 4 with 
the blue bands indicating the implantation sites. The right uterus with no visible blue sites is from a 
BTC transgenic female at the same time after copulation. 

 

The attachment reaction was observed in all of the wild-type mice at 24:00h on 

day 4 of pregnancy and only 13 blastocysts were recovered. In contrast, none of the 

pregnant transgenic mice exhibited blue reaction at this time and many zona-

enclosed and hatched blastocysts were recovered. At 9:00h on day 5 of pregnancy, 

100% of the transgenic females showed attachment reaction and only a few embryos 

were recovered (Table 4.4).  

 

Table 4.4 Initiation of blastocyst attachment reaction in transgenic and age-matched 

wild-type females. Mice without blue sites or blastocysts were not included. 

day genotype  
mice with implantation  

sites (%) 
implantation  

sites (n) 
embryos 

recovered 

4 wt (n=6) 6 (100) 51 13 

4 tg (n=11) 0 (0) 0 53 

5 tg (n=5) 5 (100) 22 8 
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Interestingly, the mean number of total embryos either attached to or 

recovered from the uterus of transgenic females at day 4 (53:11= 4.8) or day 5 (30:5= 

6) was markedly reduced when compared to the number of embryos present in the 

uterus of control females at day 4 (64:6= 10.7). This finding is particularly informative 

since these values correspond quite well to the observed litter sizes in both groups. 

This observation strongly suggests that, although implantation delay is certainly a 

feature of Btc transgenic mice, it does not explain the reduction in the number of 

pups produced. The reason for this reduction must be found in processes taking 

place before implantation (ovulation or fertilization).    

 
4.5 Ovulation and Fertilization analysis 
 

To evaluate whether ovulation or fertilization rates were reduced in transgenic 

animals and could be responsible for the reduction in litter size, we mated transgenic 

and non-transgenic females with vasectomized non-transgenic males. As shown in 

Figure 4.4A, the number of ovulated oocytes obtained did not differ between the two 

genotypes. Next, to evaluate whether fertilization was impaired, we mated females 

from both genotypes to fertile, non-transgenic males and recorded the number of 

fertilized oocytes. While the mean number of ovulated oocytes was again similar in 

both groups, confirming our previous observation (data not shown), we observed a 

statistically significant (P=0.01) reduction in the percentage of fertilized oocytes in 

transgenic (54.7 ± 8.9 %) as compared to control (81.7 ± 5.3 %) females (Figure 

4.4B). The mean number of fertilized oocytes observed in transgenic (41:7 = 5.8 ± 

0.9) and control (119:12 = 9.9 ± 0.5) females is again extremely informative because 

it reflects quite closely the mean litter size observed in these groups. Thus, since no 

significant further embryonic losses will occur after this stage, we have identified 

impaired fertilization as the mechanism responsible for the reduction in the litter size. 
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 and fertilization rates. A) The mean number of ovulated oocytes is not different 
 15) and transgenic (n = 8) animals. B) The proportion of fertilized oocytes is 

 in transgenic females (n = 7) as compared to non-transgenic females (n = 12). 

 maturation 

dy, oocytes were isolated from control (n=11) and Btc transgenic 

and matured in vitro. After in vitro maturation, oocytes were 

 a light microscope, as germinal vesicle (GV, Figure 4.5A), 

Figure 4.5B), or metaphase II (MII, Figure 4.5C).  

ntage of oocytes matured to MII was significantly lower in the 

 as compared to control animals. Conversely, oocytes from 

s showed a higher rate of oocytes at MI, indicating a blockage or 

ration process (Table 4.5).  
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Figure 4.5 Light micrographs of mouse oocytes at the germinal vesicle (A), metaphase I (B), and 

metaphase II (C) stages of nuclear maturation. 

 
 

 

Table 4.5 Analysis of IVM oocytes from Btc transgenic (n=15) and control (n=11) 

mice. Values are the mean ± SEM. Nuclear maturation and the degree of cumulus 

expansion were assessed after 16 hours of culture.  

 
IVM Oocytes 

employed Metaphase I Metaphase II CE Genotype 

n n (%) n (%) (1 to 4) 

control 146 16 (9.8 ± 3) 129 (89.7 ± 3.1) 4 

transgenic 187 36 (19.4 ± 2.8) 150 (80.2 ± 2.6) 4 

P   0.0327 0.0308  

The transgenic and wild-type animals had 1 degenerated oocyte each after IVM. CE 
= cumulus expansion; Metaphase I = neither GV nor polar body; Metaphase II = 1st 
polar body present. 

 
 

4.7  In vitro fertilization 
 

Our analysis of the in vitro fertilization rate, shown as the appearance of two 

pronuclei after 6 h of fertilization, revealed a reduction in the percentage of fertilized 

oocytes of the transgenic animals as compared with control animals. The cleavage 
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rate, evaluated 24 h after the fertilization, was also reduced in oocytes from 

transgenic mice (Table 4.6). Interestingly, in the transgenic group, the number of 

cleaved oocytes was higher than that of oocytes with 2 PN after IVF (82 vs. 75, see 

Table 4.6). This finding supports the idea of delayed oocyte maturation. 

 

Table 4.6 Analysis of IVF of oocytes from Btc transgenic (n=11) and control (n=7) 

mice. Values are the mean ± SEM. The observation of two pronuclei and the 

cleavage to a 2-cell stage were considered an indicative of successful fertilization 

and evaluated 6 and 24 hours after the IVF, respectively. 

 
 

IVF Oocytes 
employed 2 PN Cleavage Genotype 

n n (%) n (%) 

control 87 73 (87.4 ± 4.6) 71 (84.6 ± 5.6) 

transgenic 150 75 (50.6 ± 3.8) 82 (57.5 ± 5.1)  

P   0.0001 0.0034 

2PN = 2 pronuclei present. 
 

4.8 Sperm analysis  
 

Although the fertility of Btc transgenic males appears to be impaired, these 

animals do not display evident alterations in sperm production. Analysis of sperm 

parameters in Btc transgenic males showed no difference compared with non-

transgenic males (Table 4.7).  

 

Table 4.7 Analysis of sperm parameters of Btc transgenic and control mice. 

Genotype Motility (%) Progressivity (%) Concentration (Mio./ml) 

Wt mice 78.3±2.1 (7) 37.1±2.6 (7) 120.3±18.2 (7) 

BTC tg mice 82.0±1.6 (11) 41.0±3.0 (11) 148.3±19.2 (11) 
Values are the mean ± SD, with the number of mice in parentheses. 
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4.9 Immunohistochemical analysis 
 

Using Western blot analyses, we have previously detected increased levels of 

Btc expression in the ovary and uterus of transgenic females as compared to non-

transgenic littermates (data not shown). Since our studies uncovered impaired 

fertilization as the reason behind the reduced litter size, we decided to study the 

expression pattern at the cellular level by employing immunohistochemistry. The 

results confirmed the Western blot analyses, showing increased levels of Btc 

expression in the uterus and ovary (Figure 4.6). Particularly interesting is the high Btc 

expression in granulosa and cumulus cells of the follicles of transgenic females 

(Figure 4.6f). 
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Figure 4.6 Immunohistochemistry of Btc mouse reproductive tract on day 0.5. Note the 
distribution of Btc in uterus and ovary from transgenic mouse (b, f). No
immunostaining was noted when similar sections from wild-typ mice were used (a, c, 
e) 
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5 DISCUSSION 
 

Gene targeting by homologous recombination in embryonic stem cells 

represents a powerful tool for evaluating gene function in whole organisms. Not 

infrequently, the targeted gene encodes a protein belonging to a family of molecules 

sharing structural and functional properties. In this case, gene deletion may be rather 

uninformative because the related proteins can compensate for the loss of the 

targeted proteins (a process called functional compensation). In this case, the 

opposite strategy, that means, increasing the expression levels of the gene of interest 

by means of overexpression may be a much more appropriate approach. This has 

been shown to be true for many families of peptides including the IGF binding 

proteins (Schneider et al. 2000; Wolf et al. 2005). Betacellulin, a member of a family 

of seven Egfr ligands is a further example. Mice lacking Btc develop normally, are 

fertile and display no overt phenotype (Jackson et al. 2003).  Recently, transgenic 

mice overexpressing Btc were generated (Schneider et al. 2005). In addition to 

growth retardation, a variety of pathological alterations including cataract and 

abnormally shaped retinal layers, bone alterations and severe lung alterations, were 

observed. Thus, this model uncovers multiple consequences of Btc overexpression in 

vivo and provides a useful model for examining the effects of Btc excess on different 

organs. In the present study, Btc transgenic mice were employed to study the effects 

of increased growth factor levels in female and male reproduction. The observation of 

relatively ineffective matings involving transgenic females (non-productive matings 

and reduced litter size) during routine breeding led us to functionally evaluate the 

different stages of the reproductive process.  

 
5.1 MALES 
 

Retrospective analysis revealed that matings involving transgenic males were 

often unsuccessful. Systematic fertility measurements revealed that, although the 

mean number of litters produced and the interval to the first litter was unaltered, a 

significant reduction in the number of pups per litter was observed for transgenic 

males as compared to non-transgenic animals. Analyses of sperm parameters 

(concentration, motility, and progressive motility) failed to reveal any difference 
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between transgenic and control age-matched males. Although an impairment of the 

fertilization rate is a probable explanation, an impairment of the early embryonic 

development or blastocyst attachment by increased levels of Btc in the seminal 

plasma of transgenic males cannot be excluded. Thus, the exact cause of the 

reproductive deficit of transgenic males remains to be determined. 

Growth factors of different families have been shown to play a role in male 

reproduction (Bartke et al. 1999; Burns & Matzuk 2002; Cho et al. 2001; Camp et al. 

2005). Particularly interesting are studies showing the effects of depleting circulating 

Egf by sialoadenectomy. After the sialoadenectomy a reduced spermatid count was 

observed and returned to normal with Egf treatment, suggesting a relationship 

between EGF and spermatogenesis (Tsutsumi et al. 1986; Liu et al. 1994). Increased 

testicular Egf concentrations have been shown in synchronized rat testes that were 

closed to the meiotic stages (Bartlett et al. 1990).   

Egf seems to have a physiological role in germ cell development, as 

demonstrated by in vitro stimulation by Egf of spermatogonial proliferation in 

seminiferous tubules of adult rats (Yan et al. 1998; Wahab-Wahlgren et al. 2003). 

The first in vivo evidence that Egf overexpression can adversely affect 

spermatogenesis (hypospermatogenesis) was demonstrated by Wong and 

colleagues (Wong et al. 2000). This report demonstrated that the transgenic male 

mice overexpressing Egf had few post-meiosis II gametes, the animals were sterile 

and had reduced serum testosterone levels. Mice with either single or triple null 

mutations in Egf, Tgfa, and Areg did not show reduced fertility, raising the possibility 

of functional redundancy with Hbegf, Btc, and Ereg (Luetteke et al. 1999).  

This study provides evidence that Btc overexpression does not negatively 

affect spermatogenesis, sperm motility, progression and concentration values.  This 

observation is in agreement with a previous report that mice overexpressing Tgfa did 

not show abnormal testis morphology or spermatogenesis (Mullaney & Skinner 

1992), suggesting that the growth factors may have different roles in 

spermatogenesis. 
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5.2 FEMALES 

 
5.2.1 Fertility Analyses  
 

Despite the extensive research and a lot of information obtained from in vitro 

and in vivo experiments, the precise roles of the Egfr ligands for female and male 

fertility remain largely undefined. As a first step, systematic fertility experiments were 

carried out and confirmed under controlled conditions that the litter size is 

significantly reduced when a transgenic female or male were paired with a control 

animal. Similarly to the effect observed in males, the major reproductive deficit of 

females was the litter size. The interval to the first litter was not altered. Interestingly, 

the litter size development was altered: the size of the second and the third litters 

was reduced as compared with the first litter.  

An effect on litter size has not been reported so far for Btc or other Egfr 

ligands, while this is not an uncommon observation in other growth factor families. 

For instance, female transgenic mice overexpressing IGFBP-6 showed severe 

reproductive defects (Bienvenu et al. 2004). 5–20% of the IGFBP-6 transgenic 

females were sterile and the litter size of fertile transgenic females was small. Litters 

sired by transgenic males were in the normal range. The cause of the reproductive 

deficiency appeared to be an alteration of ovulation and a dramatic decrease in 

plasma LH concentrations, suggesting some hypothalamo-pituitary disorder resulting 

from hIGFBP-6 overexpression in the brain (Bienvenu et al. 2004). 

 

5.2.2 Female Puberty Onset and Estrous Cycle Tracking 
 

 In mammals, puberty begins with a pulsatile release of GnRH, activation of 

hypothalamic neurons secreting LHRH and activation of hypothalamic membrane-

bound growth factor receptors (Ma et al. 1994). An overexpression of Tgfa or a 

central blockade can delay puberty or advance it (Ojeda & Ma 1998; Ojeda et al. 

2003; Junier 2000). Apostolakis and colleagues (Apostolakis et al. 2000) 

demonstrated that Egf, Areg and Tgfa can signal through the ERα and alter rodent 

reproduction. The absence of erbB4 in transgenic mice also delayed sexual 

maturation and a diminished reproductive capacity, related to impaired release of 
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LHRH (Prevot et al. 2003; Prevot et al. 2005).  

Our studies revealed that onset of puberty, evaluated by vaginal opening, was 

not different between Btc transgenic and non-transgenic animals. Furthermore, with 

the exception of a longer first estrous cycle, the transgenic females behaved quite 

similar to control females during the first weeks of puberty. Importantly, starting with 

the third cycle, the mean cycle length in both groups was shorter than 6 days in 

duration, the maximal cycle length considered normal for in different mouse strains 

(Nelson et al. 1990). Since body weight plays (at least partially) a role in triggering 

puberty, the longer first estrous cycles may be related to the fact that transgenic 

females have a lower body weight at the time of puberty as compared to control 

animals (Schneider et al. 2005). Collectively, these results indicate that, with the 

exception of a longer first estrous cycle, onset of puberty is, in essence, not affected 

in transgenic females. 

 

5.2.3 Embryo Implantation 
 

Attachment of the blastocyst to the uterine epithelium initiates the implantation 

process and is followed by locally increased vascular permeability which can be 

visualized in the mouse uterus as distinct blue bands after an intravenous injection of 

a blue dye solution (Reese et al. 2001). Several evidences strongly suggest an 

important role for Egfr in blastocyst attachment. Thus, Tgfa (Tamada et al. 1991); 

(Paria et al. 1994), Hbegf (Das et al. 1994b), Areg (Das et al. 1995) and Ereg and Btc 

(Das et al. 1997a) genes are expressed in the mouse uterus only at sites and time-

points relevant to the implantation process. Interestingly, the Egfr and ErbB4 are 

expressed in blastocysts (Paria et al. 1993a; Paria et al. 1999; Lim et al. 1998). Even 

more convincingly is the report of delayed blastocyst-attachment reaction in 

transgenic mice with timely inappropriate expression of Tgfa in the uterus (Das et al. 

1997b). In this study, delayed implantation was associated with deferred expression 

of Areg, which is probably the most relevant Egfr ligand associated with blastocyst 

implantation. However Tgfa null mice are viable and fertile, showing that a possible 

compensatory mechanism by others Egfr ligands exists. In vitro experiments showing 

that Hbegf can stimulate embryo development and zona hatching provide further 

evidence for a role of this growth factor in the implantation process (Raab et al. 1996; 

Martin et al. 1998). Btc is present in the luminal epithelium and stroma of the mouse 
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uterus (Das et al. 1997a). However, its significance in implantation has not been 

studied so far. 

The reduced fertility of Btc transgenic females could be attributed to one or 

more reproductive dysfunctions, such as a decreased ovulation, fertilization or 

implantation. In light of the abundant experimental data indicating an important role 

for Egfr ligands in this process, we evaluated whether the process of implantation 

was perturbed in these animals. Our studies revealed that delayed blastocyst 

implantation is certainly present in Btc transgenic mice. However, since the total 

number of embryos either attached (visualized as a blue band) or recovered from the 

uterus of transgenic females at day 4 or 5 is almost identical to the observed litter 

size, the reduction in the number of viable embryos did already take place at this 

stage. Consequently, the explanation for the reduced litter size must be disturbed 

ovulation or fertilization rates. Thus, we next evaluated whether these processes 

were negatively affected in transgenic females.  

 

5.2.4 Ovulation and Fertilization Rates in vivo 
 

The implantation process of the Btc transgenic mice was delayed, but this was 

not the explanation for the litter size reduction. For this reason, we decided to 

evaluate the processes taking place before the implantation that is ovulation and 

fertilization. 

Recent studies have implicated selected Egfr ligands (including Btc) as 

paracrine mediators of LH actions in the ovulatory follicle (Hsieh et al. 2005; Conti et 

al. 2006). Specifically, LH stimulated the expression of Areg, Ereg and Btc in mouse 

preovulatory follicles, and these growth factors triggered meiosis and cumulus 

expansion (and the expression of genes associated with this process) in cultured 

follicles in a Egfr-dependent manner (Park et al. 2004; Ashkenazi et al. 2005). 

Recently, prostaglandin synthase 2 and progesterone receptor were identified as key 

molecules involved in this process (Shimada et al. 2006). These findings may help to 

explain the puzzling observation that, in spite of complex actions on the oocyte, 

granulosa and cumulus cells, LH receptor expression is restricted to mural granulosa 

cells (Peng et al. 1991). Importantly, at least for Ereg, the release of the soluble form 

into the follicular fluid by protease-dependent shedding appears to be essential for 

this effect (Ashkenazi et al. 2005). Tgfa and Btc can activate the Erk signaling 
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pathway, which promotes the initialization of the differentiation of granulosa cells 

subsequent to preovulatory follicle selection (Woods & Johnson 2006). Recently, 

Yoshino and colleagues showed that Btc expression is increased by treatment of 

cumulus cells with bone morphogenetic protein 15 (BMP-15), an oocyte-specific 

growth factor that plays a major role in determining ovulation quota in mammals 

(Yoshino et al. 2006). This is an interesting finding because female mice lacking 

BMP-15, although exhibiting no obvious defects in folliculogenesis, produce oocytes 

with a reduced ability to develop into viable embryos (Yan et al. 2001).  

We have evaluated the number of ovulated oocytes and observed that this 

rate did not differ between the transgenic and wild-type animals. However when 

fertilized oocytes were collected, a statistically significant reduction in the percentage 

of fertilized oocytes in transgenic as compared to control females was observed. 

Thus we have identified an impaired fertilization as the reason for the reduction in the 

litter size. 

 

5.2.5 In vitro Maturation and Fertilization 
 

To verify if the fertilization problem was due to an oocyte development 

competence we decided to determine the in vitro maturation rate of the Btc 

transgenic oocytes. Previous investigations showed that Areg, Epi, Hbegf and Btc, 

when added in the culture medium can also recapitulate the oocyte maturation in 

vitro (Richards 1994; Richards et al. 1995; Richards et al. 2002; Park et al. 2004; Pan 

et al. 2004). 

Our studies revealed that the rate of oocytes showing germinal vesicle 

breakdown and reaching metaphase II after in vitro maturation was significantly 

reduced in Btc transgenic females as compared to control littermates. This 

observation can be attributed to a direct or indirect effect of a high expression of Btc 

in the transgenic cumulus cells (as demonstrated by immunohistochemistry). Thus, 

the reduced fertilization observed in Btc transgenic mice could be attributed to a 

maturation defect. Therefore, in vitro fertilization was employed to confirm the 

fertilization ability on the mature oocytes in vitro. 

Our analysis of in vitro fertilization revealed a reduction in the percentage of 

fertilized oocytes of the transgenic animals as compared with control animals. This 
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result makes a negative influence of the oviduct during the fertilization process 

unlikely, uncovering a problem in the cumulus-oocyte complex itself.  

The fact that the maturation of oocytes from transgenic animals is affected to a 

relatively low degree (about 10% less oocytes at MII) makes an impaired maturation 

an improbable explanation for the reduction in litter size (a decrease of about 50%). 

Thus, an impaired fertilization of the mature oocyte is the most likely explanation for 

the fertility defect of Btc transgenic females. 



 48

 

6 SUMMARY 
 

Impaired fertility in transgenic mice overexpressing Betacellulin 
 

Peptide growth factors regulate many cellular functions by autocrine, 

paracrine, juxtacrine or endocrine mechanisms. The epidermal growth factor (EGF)-

like peptides are emerging as major players in regulating different aspects of animal 

and human physiology and pathology. The EGF family elicits essential actions in 

reproduction. For instance, different Egfr ligands have been shown to be involved in 

oocyte maturation and ovulation, preimplantational embryonic development, and 

implantation.  

Btc, a member of the Egf family, was initially isolated from a mouse insulinoma 

cell line, and it is expressed in a wide range of tissues in the mouse, with particularly 

high levels in the heart, lung, liver, kidney, pancreas, small intestine, colon, testis, 

ovary and uterus. Btc was identified as one of the Egfr ligands expressed in the 

mouse uterus exclusively at the time of implantation and can also participate as a 

mediator of luteinizing hormone (LH), prostaglandins (PGs) and progesterone 

receptor (PGR).  

Mice lacking Btc are viable, fertile and show no overt phenotype, but 

transgenic mice overexpressing Btc exhibit a whole array of phenotypical alterations. 
In the present study, Btc transgenic mice were employed to study the effects 

of increased growth factor levels in female and male reproduction. The observation of 

relatively ineffective matings involving transgenic females (non-productive matings 

and reduced litter size) during routine breeding led us to functionally evaluate the 

different stages of the reproductive process.  

The reduced fertility of Btc transgenic females could be attributed to one or 

more reproductive dysfunctions, such as a decreased ovulation, fertilization or 

implantation. Therefore, we have studied different aspects of Btc transgenic female’s 

and male’s reproduction, including puberty initiation, ovulation, in vivo and in vitro 

oocyte maturation, sperm parameters, in vivo and in vitro fertilization, and  

implantation in order to uncover the reason for their reduced fertility. 

Successive matings of Btc transgenic males and females mice with wild-type 

mice revealed a decrease in litter size as compared with litters produced by control 

matings. However, the interval to the first litter was not significantly different between 
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groups. Litter size development showed a significant difference between Btc 

transgenic females and controls females. The onset of puberty occurred essentially 

at the same age in transgenic and non-transgenic females. The implantation of the 

Btc transgenic mice was delayed, but this was not the reason for the litter size 

reduction, because the mean number of total embryos either attached or recovered 

from the uterus of transgenic females was already markedly reduced when compared 

to the number of embryos present in the uterus of control females. For this reason, 

the explanation must be found in processes taking place before implantation 

(ovulation or fertilization). We evaluated the number of ovulated oocytes and 

observed that this parameter did not differ between the two genotypes, however, we 

observed a statistically significant reduction in the percentage of fertilized oocytes in 

transgenic as compared to control females, identifying the reason for the reduction in 

the litter size. Next, we carried out in vitro maturation of oocytes. The timing of 

nuclear maturation differed between transgenic and control oocytes. Therefore, we 

decided to evaluate the in vitro fertilization rate, which turned out to be impaired in 

the transgenic group. The expression pattern at the cellular level, studied by 

immunohistochemistry, revealed a high expression of Btc in the transgenic cumulus 

cells, which could be an explanation for the altered in vivo and in vitro fertilization. 

Although the fertility of Btc transgenic males appears to be impaired, these 

animals do not display evident alterations in sperm production. This study provides 

evidence that Btc overexpression does not negatively affect spermatogenesis, sperm 

motility, progression and concentration values. 

Future studies are needed to clarify whether the altered fertilization is in fact 

caused by the high expression of Btc in the transgenic cumulus cells. Furthermore, 

experiments involving the overexpression of a non-sheddable form of Btc are 

underway and will help to clarify the actions of precursor (membrane-bound) versus 

mature Egfr ligands during oocyte maturation and fertilization. 
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7 ZUSAMMENFASSUNG 
 

Fruchtbarkeitsstörungen bei transgenen Mäusen, die Betacellulin 
überexprimieren 

 
 Wachstumsfaktoren regulieren viele zelluläre Funktionen durch 

autokrine, parakrine, juxtakrine oder endokrine Mechanismen. Bei Mensch und Tier 

spielen die EGF- (epidermale Wachstumsfaktoren) ähnliche Peptide eine 

übergeordnete Rolle, weil sie in den unterschiedlichsten Bereichen von Physiologie 

und Pathologie Einfluss nehmen können. In der Fortpflanzung werden durch die 

EGF-Familie essentielle Mechanismen ausgelöst. Es konnte zum Beispiel gezeigt 

werden, dass unterschiedliche Egfr Liganden für die Oozytenentwicklung, deren 

Ovulation, in die präimplantative embryonale Entwicklung, und in die Implantation 

von Bedeutung sind.  

Btc, ein Mitglied der Egf Familie, wurde erstmals bei einer 

Mäuseinsulinomzelllinie beschrieben. Eine Btc-Expression kann in vielen Geweben 

der Maus nachgewiesen werden und weist ein besonders hohes Niveau im Herzen, 

in der Lunge, in der Leber, in der Niere, im Pankreas, im Dünndarm, im Dickdarm, im 

Hoden, im Eierstock und in der Gebärmutter auf. Es wurde festgestellt, dass Btc 

einer der Egfr Liganden ist, die in der Gebärmutter der Maus ausschließlich zur Zeit 

der Implantation exprimiert werden. Außerdem kann es als Mediatoren des 

luteinisierenden Hormons (LH), der Prostaglandine (PGs) und des Progesteron 

Rezeptors (PGR) fungieren. 

 Btc-knock-out Mäuse sind lebensfähig, fruchtbar und zeigen keinen 

offensichtlichen Phänotyp. Transgene Mäuse, die Btc überexprimieren, haben jedoch 

eine Reihe von phänotypischen Veränderungen. 

In der vorliegenden Untersuchung wurden Btc-transgene Mäuse eingesetzt, 

um die Effekte eines erhöhten Spiegels dieses Wachstumfaktors in der weiblichen 

und männlichen Fortpflanzung zu studieren. Die Beobachtung, dass die Anpaarung 

von transgenen Weibchen im Rahmen der Routinezucht oft erfolglos (keine 

Trächtigkeiten oder verringerte Wurfgröße) war, veranlasste uns dazu die 

unterschiedlichen Stadien der Fortpflanzung funktionell auszuwerten. 

Die verringerte Fruchtbarkeit der Btc-transgenen Weibchen kann mit einer 

oder mehreren reproduktiven Funktionsstörungen wie einer verringerten Ovulation, 
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Befruchtung und/oder Implantation zusammenhängen. Deswegen haben wir die 

unterschiedlichen Phasen in der weiblichen und männlichen Fortpflanzung der Btc-

Mäuse untersucht. Um den Grund für ihre verringerte Fruchtbarkeit aufzudecken, 

wurde der Anfang der Pubertät, die Ovulation, die in vivo und in vitro Oozytenreifung, 

Spermienzellenparameter, die in vivo und in vitro Befruchtung und die Implantation 

untersucht. 

Im Rahmen von aufeinanderfolgenden Anpaarungen (Daueranpaarungen) von 

Btc-transgenen Männchen und Weibchen mit Wildtyp-Mäusen konnte eine 

Reduzierung der Wurfgröße im Vergleich zu Würfen von Wildtyp-Anpaarungen 

errechnet werden. Die Intervalle zwischen Anpaarung und erstem Wurf unterschiede 

sich in den Gruppen nur unerheblich. Die Wurfgrößenentwicklungen im Laufe der 

Daueranpaarung von Btc-transgenen Weibchen zeigten jedoch erhebliche 

Unterschiede im Vergleich zu der von Wildtyp-Weibchen auf. Der Anfang der 

Pubertät trat im Wesentlichen im gleichen Alter bei transgenen und Wildtyp-

Weibchen auf. Die Implantation in Btc-transgenen Mäusen war verzögert, das war 

allerdings nicht der Grund für die kleineren Wurfgrößen, da die Anzahl der 

implantierten oder aus der Gebärmutter gespülten Embryonen von transgenen 

Weibchen im Vergleich mit der Zahl der Embryonen aus wild-typ Weibchen bereits 

deutlich reduziert war. Somit musste die Erklärung für die verringerte Fruchtbarkeit in 

der Zeit vor der Implantation (Ovulation oder Befruchtung) gesucht werden. Wir 

werteten die Anzahl der ovulierten Oozyten (Ovulationsrate) aus und konnten hierbei 

keinen Unterschied zwischen den Genotypen feststellen. Da wir jedoch eine 

statistisch signifikante Reduktion des Anteils an befruchtetet Oozyten in transgenen, 

verglichen mit wild-typen Mäusen, beobachteten konnten, war damit eine mögliche 

Erklärung für die geringere Fruchtbarkeit und die verminderte Wurfgröße gefunden. 

Mittels in vitro Maturation konnte gezeigt werden, dass der Anteil an Oozyten im 

Meiose II Stadium in der transgenen Gruppe signifikant reduziert war. Die 

Auswertung der Befruchtungsrate nach in vitro Fertilization zeigte, dass auch dieser 

Parameter bei den transgenen Weibchen signifikant reduziert war. Das 

Expressionsmuster auf zellulärer Ebene, untersucht mittels Immunhistochemie, 

ergab eine hohe Expression von Btc in den transgenen Cumuluszellen. Dies könnte 

eine Erklärung für die gestörte in vivo und in vitro Befruchtung sein. 

Diese Studie zeigt, dass eine Btc-Überexpression die Spermatogenese, 

Spermienzellenmotilität, progressive Motilität und die Konzentration der Spermien 
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nicht negativ beeinflusst.  

Zukünftige Studien müssen mögliche Zusammenhänge zwischen der hohen 

Expression von Btc in transgenen Cumuluszellen und der veränderten 

Befruchtungsfähigkeit abklären. Außerdem sind Experimente, die die Überexpression 

einer „non-sheddable“ (nicht abspaltbar) Form von Btc berücksichtigen in Planung. 

Diese werden helfen, die Wirkung des membrangebundenen Precursorproteins im 

Vergleich zu reifen Egfr Liganden während der Oozytenreifung und der Befruchtung 

zu erklären. 
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