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THEORETICAL PART 

 

1. Overview 

 

Carbon-carbon bond formation reactions are one of the most important processes in chemistry 

as they represent the key step for building more complex molecules from simple precursors. 

The addition of organometallic reagents to electrophiles, such as aldehydes or ketones, is a 

versatile method for the carbon-carbon bond formation (eq. 1, Scheme 1). In this area, main 

group organometallics, such as lithium, magnesium, boron and aluminum reagents have 

played a major role since the Grignard reagents were first used more than one hundred years 

ago.1 In addition, in the past 30 years, a wide variety of cross-coupling methodologies using 

organometallic reagents have been developed and these cross-coupling reactions have 

emerged among the most powerful and useful synthetic tools for the C-C bond formation (eq. 

2, Scheme 1).2 Therefore developing methods to prepare the functionalized organometallic 

reagents, such as Grignard and organozinc reagents, becomes more important. 

X

R2 R3

R2X

X

R3 R2
R1

R1-R2

R1MX +

X = O, N

R1MX +
Pd, Fe, Co, Ni, etc.

R1, R2 = alkyl, aryl, benzyl, allyl

 X = Cl, Br, I, OTf, OPO(OEt)2, OTs, etc.

eq.1

eq. 2

 

Scheme 1. Carbon-carbon formation from organometallic reagents. 

 

1.1 C-H bond activation 3 

Recently, reactions that can substitute one preactivated species, such as halides, with a simple 

arene have appeared. These processes have been described as C-H bond activations, C-H 

bond functionalization or direct arylation.4 

                                                 
1a) Handbook of Functionalized Organometallics, Ed.: P. Knochel, Wiley-VCH, Weinheim, 2005; b) Main Group Metals in 
Organic Synthesis, Ed.: H. Yamamoto and K. Oshima, Wiley-VCH, Weinheim, 2004; c) G. S. Silverman, P. E. Eds Rakita, 
Handbook of Grignard Reagents; Marcel Dekker: 1996; d) Richey, Jr. H. G., Ed. Grignard Reagents: New developments; 
Wiley, New York: 1999; e) P. Knochel, W. Dohle, N. Gommermann, F. F. Kneisel, F. Kopp, T. Korn, I. Sapountzis, V. A. 
Vu, Angew. Chem. 2003, 115, 4438; Angew. Chem. Int. Ed. 2003, 42, 4302; f) Organolithiums: Selectivity for Synthesis, Ed.: 
J. Clayden, Elsevier Science/Pergamon, Amsterdam, 2003. 
2 For reviews on this topic, see a) Metal-catalyzed Cross-coupling Reactions; F. Diederich, P. J. Stang, Eds. Wiley-VCH: 
New York, 1998; b) J. Hassa, M. Sevignon, C. Gozzi, E. Schulz, M. Lemaire, Chem. Rev. 2002, 102, 1359; c) Metal-
Catalyzed Cross-Coupling Reactions, 2nd ed. (Eds: A. de Meijere, F. Diederich), wiley-VCH, Weinheim, 2004; d) Palladium 
Reagents and Catalysts, Ed.: J. Tsuji, John Wiley & Sons, Ltd, 2004. 
3 Handbook of C-H Transformations: Application in Organic Synthesis, Vol. 1 and Vol 2 (Ed.: G. Dyker), Willey-VCH, 
Weinheim, 2005. 
4 L-C. Campeau, K. Fagnou, Chem. Comm. 2006, 1253. 



 
 

 
 

2 

1.1.1 Intermolecular arylation reaction 

 

Transition metal-catalyzed cross-coupling reactions are well recognized to be one of the most 

powerful methods for carbon-carbon bond formation. The palladium-catalyzed coupling of 

aryl halides or their synthetic equivalents (such as triflates, tosylates) with arylmetals is very 

often employed in the synthesis of biaryl molecules. The prevalence of these reactions is 

illustrated by the many processes involving palladium that bear the names of those who 

discovered them, including the Kumada-Corriu, Mirozoki-Heck, Stille, Suzuki-Miyaura, 

Sonogashira, Hiyama and Negishi reactions.2 Recently, the direct arylation of electron-rich 

heteroaromatic rings has begun to replace these more traditional techniques in specific cases. 

In the direct arylation reactions, one of the preactivated arenes is substituted with a simple 

arene, whereas in traditional cross coupling reactions, dual preactivated arenes are necessary 

(Scheme 2). 

HX

H

R1

R-Pd-X

R2

R1

RX

R2
X

Met
R1

R2

R1 +

Pd, Fe, Co,
Ni, Cu, etc.

Met = ZnX, B(OR)2,
MgX, SnR3, 
Si (OR)3 etc.

X = Cl, Br, I
OSO2R, etc.

catalyst

Traditional Cross-Coupling Reactions Catalytic C-H Activation

the organometallic partner is 
replaced  with a simple arene

insertion, exchange, 
transmetalation etc.

Met = H

Pd (0)

R-Pd-R'

R-R'

reductive 
elimination

Catalytic Cycle

transmetalation

Met-R'

oxidative
 addition

R-Pd-R'

R-R'

Catalytic Cycle

electrophilic substitution
or concerted insertion

Traditional Cross-Coupling Reactions Catalytic C-H Activation

reductive 
elimination

Met-X

 

Scheme 2. Cross-coupling methods for preparation of biaryl molecules. 

 

Appropriately functionalized aromatic substrates such as phenols and aromatic carbonyl 

compounds have been found to undergo a regioselectively intermolecular arylation upon 



 
 

 
 

3 

treatment with aryl halides in the presence of transition metal catalysts such as Pd, Rh and Ru 

salts recently.5 A general catalytic sequence with a palladium catalyst is outlined in Scheme 3. 

The coordination of a given functional group to a metal centre is determinant for an effective 

coupling by C-H bond cleavage. Obviously the reaction has a significant advantage since the 

stoichiometric metalation of aromatic substrates is not required. 

ArPdX

ArX

-HX

Pd
Ar Ar

Pd(0)

LLH

- Pd(0)

LH

 

Scheme 3. Pd-catalyzed and coordination assisted intermolecular aryl-aryl coupling via C-H 

cleavage. 

 

Arylation of 2-phenylphenols 1 with aryl iodides is one of the first examples to proceed 

according to the sequence given in Scheme 4.6 Oxidative addition of Pd(0) to iodobenzene 

results in PhPdI, which coordinates with the phenolic oxygen forming the intermediate 2. 

Through C-H activation, the diarylpalladium intermediate 3 is formed and it affords the 

product 4 after a reductive elimination. The use of a relatively strong inorganic base, such as 

Cs2CO3, is important for a smooth coupling. 

I

R

OPdPh

R

OH
Pd(OAc)2

R

OH

PdAr

R

OH

+
Cs2CO3, DMF

100 oC

R = Me: 22 h, 69 %
R = OMe: 7 h, 85 %
R = NO2, 44h, 73 %

1

2 3

4

 

Scheme 4. Pd-catalyzed regioselective arylation of 2-phenylphenols. 

 

                                                 
5 a) J. Hassan, M. Sévignon, C. Gozzi, E. Schulz, M. Lemaire, Chem. Rev. 2002, 102, 1359; b) M. Miura, M. Nomura, Top. 
Curr. Chem. 2002, 219, 211. 
6 a) T. Satoh, Y. Kawamura, M. Miura, M. Nomura, Angew. Chem. Int. Ed. Engl. 1997, 36, 1740; b) T. Satoh, J. Inoh, Y. 
Kawamura, M. Miura, M. Nomura, Bull. Chem. Soc. Jpn. 1998, 71, 1567. 
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Benzylidene anilines, formed from benzaldehydes and anilines, have been found to undergo 

ortho arylation effectively when a ruthenium catalyst such as [RuCl2(η
6-C6H6)]2 is used in the 

presence of K2CO3 as base.7 A polar solvent such as NMP is necessary. In this reaction, the 

substrates have no acidic hydrogens and thus ortho-metalation seems to occur via 

coordination of the neutral nitrogen to the metal centre (Scheme 5). 

Br

N

OMe

K2CO3 / NMP
N

OMe

+

[Ru], PPh3

120 oC, 20 h

92 %
 

Scheme 5. Ru-catalyzed arylation of benzylidene anilines. 

 

Arylation of pyridines through C-H bond activation using aryl chlorides is achieved by using 

the air-stable, electron-rich phosphine oxides as preligands in the presence of ruthenium. The 

catalytic system derived from a sterically-hindered adamantyl-substituted phosphine oxide has 

proved to be highly efficient, tolerating a number of important functional groups (Scheme 6).8 

N +

Cl
[RuCl2 (p-cymene)]2  (2.5 mol %)

(1-Ad)2PHO (10 mol %)

K2CO3, NMP

81-95 %

N

 

Scheme 6. Ru-catalyzed arylation of pyridines through C-H bond activation. 

 

1.1.2 Intramolecular C-C bond formation via C-H activation 

 

Palladium catalyzed C-H activation is a powerful tool for the syntheses of biaryls from 

tethered aryl halide and triflate substrates of type 5a (Scheme 7). From a mechanistic point of 

view, the cyclization proceeds through the oxidative addition of Pd(0) to the aryl halides or 

triflates to give σ-arylpalladium intermediate like 5b. Electrophilic attack on the aromatic or 

heteroaromatic ring leads to diarylpalladium species 5c, which after reductive elimination of 
                                                 
7 S. Qi, Y. Ogino, S. Fukita, Y. Inoue, Org. Lett. 2002, 4, 1783. 
8 a) L. Ackermann, J. Spatz, C. J. Gschrei, R. Born, A. Althammer, Angew. Chem. Int. Ed. 2006, 45, 2619-2622; b) L. 
Ackermann, Org. Lett. 2005, 7, 3123. 
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Pd(0), afford heterocycles 5d (Scheme 7). This technique has proved to be useful in the 

synthesis of six-membered heterocycles such as 5e9, 5f10 and 5g11. 

R1

L

X R2

O

OOMe
MeO

O

O

R1

L

PdX R2

R1

OMe

O

O

Me Me

Me

Me
MeO

Me Me

Me

L

R2

R1

L

Pd
Ln

R2

N

O
Me

5a

5b

Pd(0)

5c

5d

5e 5f 5g

 

Scheme 7. Intramolecular biaryl bond formation and its application in the total synthesis of 

nature products. 

 

Combining this coupling method with an asymmetric reduction reaction, the enantiomerically 

pure axially chiral biaryl alcohol 6 can be easily prepared (Scheme 8). 12 

Br

O

OMe

Me

O

O

Me

Me

O

O

Me

Me
N B

O

PhPh

Me

H

BH3 ·THF

OH

Me

HO Me

Pd(OAc)2, PPh3

NaOAc, DMA

65 %

98 %, 92 % ee (after workup)
82 %, 99 % ee (after one crystallyzation)

6

Scheme 8. Preparation of chiral biaryl alcohol. 

 

                                                 
9 T. Harayama, H. Yasuda, Heterocycles 1997, 46, 61. 
10 T. Harayama, T. Akiyama, H. Akamatsu, K. Kawano, H. Abe, Y. Takeuchi, Synthesis 2001, 444. 
11 G. Bringmann, T. Pabst, P. Henschel, J. Kraus, K. Peters, E.-M. Peters, D. S. Rycroft, J. Connolly, J. Am. Chem. Soc. 
2000, 122, 9127. 
12 a) G. Bringmann, M. Breuning, P. Henschel, J. Hinrichs, Organic Synthesis, 2003, 79, 72; b) G. Bringmann, J. Hinrichs; J. 
Kraus, A. Wuzik, T. Schulz, J. Org. Chem. 2000, 65, 2517. 
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Five-membered rings are also readily synthesized using this coupling method, enabling the 

production of dibenzo[b,d]fused heterocycles such as dibenzofurans 7a 13 and 7b14, carbazoles 

7c15 and 7d16 (Scheme 7, L = O, NR respectively) and related compounds. 

N
H

O

N

7a

O

7b

H
NN

N

7c 7d

Me

Me

S

Me

Me

 

Scheme 9. Some important structures of dibenzofurans and carbazoles. 

 

Using this type of intramolecular palladium-catalyzed C-H functionalization, substituted 

oxindoles can be prepared from α-chloroacetanilides in 78-97% yield (Scheme 10).17  

N

O
Cl

R2

R1

N
O

R2

R1

PtBu2

1-3 mol% Pd(OAc)2

1.5 equiv NEt3
toluene, 80 oC

2.5-6 h

2-6 mol % Ligand

Ligand  

Scheme 10. Preparation of oxindoles via C-H activation. 

 

Formation of seven-membered rings via direct arylation is a more challenging task due to the 

ring strain.18 Recently, Fagnou reported an approach to synthesize allocolchicine with the 

direct intramolecular coupling of an aryl chloride as the key step in the construction of the 

biphenyl derivative 8 (Scheme 11).19 

 

                                                 
13 W. S. Yue, J. J. Li, Org. Lett. 2002, 4, 2201. 
14 J.-Q. Wang, R. G. Harvey, Tetrahedron 2002, 58, 5927. 
15 T. H. M. Jonckers, B. U. W. Maes, G. L. F. Lemiere, G. Rombouts, L. Pieters, A. Haemers, R. A. Dommisse, Synlett 2003, 
615. 
16 I. C. F. R. Ferreira, M.-J. R. P. Queiroz, G. Kirsch, Tetrahedron 2003, 59, 3737. 
17 E. J. Hennessy, S. L. Buchward, J. Am. Chem. Soc. 2003, 125, 12084. 
18 a) L. –C. Campeau, M. Parisien, M. Leblanc, K. Fagnou, J. Am. Chem. Soc. 2004, 126, 9186; b) M. Lafrance, N. 
Blaquiere, K. Fagnou, Chem. Commun. 2004, 24, 2874 ; c) for examples with heterocyclic arene coupling partners, see : C. 
C. Hhughes, D. Trauner, Anger. Chem., Int. Ed. 2002, 41, 1569 and C. C. Hhughes, D. Trauner, Tetrahedron 2004, 60, 9675. 
19 M. Leblanc, K. Fagnou, Org. Lett. 2005, 7, 2849. 
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O

OMe

Cl

OMOM

OMe
MeO

MeO

PR2

N
Me

Me
MeO

O

MeO

MeO
OMOM

OMe

MeO

O

MeO

MeO
OMe

NHAc

Pd(OAc)2 (10 mol %)

Ligand, K2CO3, DMA

allocolchicineR = Ph or Cy

Ligand

8

 

Scheme 11. Fagnou’s approach to allocolchicine by C-H activation reaction. 

 

Using Fagnou’s method, Trauner 20developed a highly efficient synthesis of rhazinilam 

featuring the formation of a strained nine-membered ring 9 through intramolecular coupling 

of an unactivated pyrrole (Scheme 12).  

N

Et

N

O

MeO2C

MOM

I

N

PCy2

Me

Me

N

Et

MeO2C

N
OMOM

N

Et

N
H O

Pd(OAc)2 (10 mol %)

10 mol %

rhazinilam9: 47 %  

Scheme 12. Trauner’s approach to strained nine-membered ring. 

 

1.2. Preparation of organozinc and organomagnesium reagents 

 

1.2.1. Direct insertion of zinc or magnesium into organic halides 

 

The direct insertion of zinc dust into organic halides is the most general method for the 

preparation of functionalized organozinc halides. Functional groups such as an ester, ether, 

acetate, ketone, cyano, halide, primary and second amino, amide, sulfoxide, sulfide, sulfone 

and boronic acid can be present during the formation of the alkylzinc halides.21 However, the 

preparation of arylzinc iodides in THF from aryl iodides can only be achieved by using highly 

activated zinc powder (Rieke Zn)22 or requiring the presence of electron-withdrawing groups 

in the ortho- position of the aryl iodides, as well as by elevated temperatures (Scheme 13).23 

                                                 
20 A. L. Bowie, Jr., C. C. Hughes, D. Trauner, Org. Lett. 2005, 7, 5207. 
21 Handbook of Functionalized Organometallics: Applications in Synthesis, Ed.: P. Knochel, Wiley-VCH, Weinheim, 2005. 
22 a) Organozinc Reagents, Editors: P. Knochel, P. Jones, Oxford University press, New York, 1999; b) R. D. Rieke, P. T. Li, 
T. P. Burns, S. T. Uhm, J. Org. Chem. 1981, 46, 4323; c) R. T. Arnold, S. T. Kulenovic, Synth. Commun. 1977, 7, 223. 
23 R. Ikegami, A. Koresawa, T. Shibata, K. Takagi, J. Org. Chem. 2003, 68, 2195. 
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Zn
THF

FGR-X +
5-45 oC

FGR-ZnX

X = I, Br;

FG = CO2R, CN, halide, (RCO)2N, (TMS)2N, RCONH, (RO)3Si, RSO, RSO2

R = alkyl, aryl, benzyl, allyl  

Scheme 13. Preparation of functionalized organozinc reagents by zinc insertion. 

 

Recently, P. Knochel and co-workers have reported a new protocol for the preparation of 

functionalized aryl- and alkyl-zinc compounds using commercially available Zn powder and 

LiCl (1:1) in THF under very mild conditions (Scheme 14).24 

I
CF3

I

Zn

Zn

THF

ZnI·LiCl
CF3

ZnI·LiCl

S
S

S

NMe
Me S

N
Me

Me

I

EtO2C

Zn

THF

ZnI·LiCl

EtO2C

THF

CuCN·2LiCl

O

t-Bu

S N
CF3

S

Me

Me

EtO2C

by using Zn (2 equiv.) at 70 °C, 24 h : < 5%
by using Zn·LiCl (1.4 equiv.)  at  25 °C, 24 h : 98%

allyl bromide
(1.1 equiv.)

by using Zn (3 equiv.) at 50 °C, 24 h : 5%
by using Zn·LiCl (1.5 equiv.)  at  50 °C, 24 h : 97%

2. t-BuCOCl (1.1 equiv.)

1. CuCN·2LiCl
(20 mol%)

10c: 90 %

10f: 91 %

by using Zn (2 equiv.) at 70 °C, 24 h : 70%
by using Zn·LiCl (1.4 equiv.)  at  25 °C, 18 h : 96%

(1.1 equiv.)

10b10a

10d 10e

10i: 94 %10g 10h
(0.4 mol %)

 

Scheme 14. Insertion of Zn into aryl iodides with and without LiCl.  

 

A broad range of functionalized arylzinc iodides 11a-11f (Scheme 15) bearing an active 

functional group such as aldehyde, ester, nitrile or amide have been easily obtained with 

excellent yields (92-95%). Furthermore, in the case of activated aryl and heteroaryl 

compounds, the insertion of Zn into C-Br bond is also possible (11g, 11h). Interestingly, the 

                                                 
24 A. Krasovskiy, V. Malakhov, A. Gavryushin, P. Knochel, Angew. Chem., Int. Ed. 2006, 45, 6040. 



 
 

 
 

9 

unactivated primary alkyl bromides can also be converted to the corresponding alkylzinc 

reagents in the presence of Zn·LiCl (11i-11l, Scheme 15).25 

ZnI·LiCl

OMe

ZnI·LiCl
EtO2C

ZnI·LiCl

NC

ZnI·LiCl

CN

MeO

MeO CHO

ZnI·LiCl

OOHC ZnI·LiCl

Cl(CH2)5ZnBr·LiCl
ZnBr·LiCl

EtO2C(CH2)3ZnBr·LiCl
ZnBr·LiCl

ZnBr·LiCl
CO2Et

EtO2C
OEtO2C ZnBr·LiCl

11a: 93% 11b: 92 % 11c: 95 % 11d: 93 %

11e: 82 % 11f: 83 % 11g: 91 % 11h: 92 %

11i: 95 % 11j: 83 % 11k: 93 % 11l: 86 %  

Scheme 15. Preparation of functionalized organozinc halides using Zn·LiCl. 

 

However, for organomagnesium reagents, only simple Grignard reagents can be prepared via 

the direct insertion reaction due to the high reductive reactivity of magnesium towards many 

functional groups. Using highly active magnesium (such as Rieke Magnesium), the direct 

insertion of Mg into aryl bromide substrates containing a nitrile, ester or chloride group has 

been successfully achieved at very low temperature (Scheme 16).26  

Br

CN

Br

CO2
tBu

CN

O

CO2
tBu

OH

1) Mg*, THF, -78 oC

2) PhCHO, 86 %

1) Mg*, THF, -78 oC

2) PhCOCl, 62 %
 

Scheme 16. Preparation of functionalized Grignard reagents using Rieke Magnesium. 

 

1.2.2 Halogen/zinc or halogen/magnesium exchange reaction 

 

                                                 
25 A. Krasovskiy, V. Malakhov, A. Gavryushin, P. Knochel, Angew. Chem., Int. Ed. 2006, 45, 6040. 
26  a) R. D. Rieke, Science 1989, 246, 1260; b) T. P. Burns, R. D. Rieke, J. Org. Chem. 1987, 52, 3674; c) J. Lee, R. Velarde-
Ortiz, A. Guijarro, J. R. Wurst, R. D. Rieke, J. Org. Chem. 2000, 65, 5428; d) R. D. Rieke, T. –J. Li, T. P. Burns, S. T. Uhm, 
J. Org. Chem. 1981, 54, 4323; e) R. D. Rieke, M. S. Sell, T. Chen, J. D. Brown, M. V. Hansan, in Active Metals, A. 
Fuerstner, Ed., Wiley-VCH, Weinheim, 1995. 
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On the other hand, the halogen-metal exchange reaction has been found to be the best way to 

prepare highly functionalized reagents of considerable synthetic utility. The iodine-zinc 

exchange reaction is a practical way for preparing polyfunctional diorganozincs (scheme 17). 

This method provides the general access to functionalized dialkylzincs27 such as 12a-c, but 

failed in the case of aromatic iodides.28 

Et2Zn

O
B

O
CH2 Zn  Zn

FG N   Zn
Tf

FG-RCH2I + (FG-RCH2)2Zn

1) CuX (0.3 mol %)
neat, 25-50 oC

2) 50 oC, 0.1 mm Hg

2 2 2

12a 12b 12c  

Scheme 17. Preparation of polyfunctional dialkylzincs using halogen-metal exchange 

reaction. 

 

In 2004, P. Knochel and co-workers found that Li(acac) can accelerate the exchange reaction 

dramatically. The mild reaction conditions allow its compatibility with a range of sensitive 

functionalities such as an aldehyde, ketone and isothiocyanate (Scheme 18).29 

MeO2C

Zn CO2Et

Zn MeO2C

OMe

Zn MeO2C

N
C

S

Zn

Zn

O

S
Me

O
Zn

OAc
OMe

O

H

Zn

OAc
I

O

H
Zn

2

2 2 2

2
2 2 2  

Scheme 18. Preparation of polyfunctional diarylzinc reagents in the presence of Li(acac). 

 

P. Knochel and co-workers have also shown that highly functionalized aryl- and heteroaryl- 

magnesium halides can be readily prepared by using an iodine-magnesium exchange 

                                                 
27 L. Micouin, P. Knochel, Synlett 1997, 327. 
28 For a cobalt-catalyzed synthesis of organozinc reagents with zinc metal, see: H. Fillon, C. Gosmini, J. Perichon, J. Am. 
Chem. Soc. 2003, 125, 3867. 
29 F. F. Kneisel, M. Dochnahl, P. Knochel, Angew. Chem. Int. Ed. 2004, 43, 1017. 
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reaction.30 i-PrMgX (X = Cl, Br) was found to be the most convenient exchange reagent. 

Recently, a super exchange reagent i-PrMgCl·LiCl has been developed for preparing 

organomagnesium reagents under milder conditions.31 With this new reagent, the preparation 

of the organomagnesium reagents obtained via the bromine-magnesium exchange reaction 

became also possible (Scheme 19). 

F

Br

i-PrMgX

N BrBr

i-PrMgX

N MgRBr

F

MgR

PhCHO

PhCHO

N
OH

Br

F

OHX = i-Pr or Cl·LiCl

by using i-Pr2Mg: 50%
by using i-PrMgCl·LiCl: 85%

X = Cl or Cl·LiCl
by using i-PrMgCl (2 equiv.): 42%
by using i-PrMgCl·LiCl (1.1 equiv.): 89% 

Scheme 19. Br/Mg exchange reactions in the presence of LiCl. 

 

Various aryl bromides with fluoro-, chloro-, methoxy and tert-butyl ester group were readily 

converted into the corresponding magnesium reagents at room temperature using i-

PrMgCl·LiCl (Scheme 20). 

F

F

MgX
Cl

MgX

Cl
N MgXBr N

MgXBr

MgX
NC MgXMeO

Cl

Br
MgX

MgX

t-BuO O

X = Cl·LiCl  

Scheme 20. Preparation of Grignard reagents via Br/Mg exchange reaction using i-

PrMgCl·LiCl. 

 

                                                 
30 a) L. Boymond, M. Rottländer, G. Cahiez, P. Knochel, Angew. Chem. 1998, 110, 1801; Angew. Chem. Int. Ed. 1998, 37, 
1701; b) G. Varchi, A. E. Jensen, W. D.ohle, A. Ricci, P. Knochel, Synlett 2001, 477; c)  
31 A. Krasovskiy, P. Knochel, Angew. Chem. Int. Ed. 2004, 43, 3333. 
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Although the mechanism of the process is not elucidated, it is believed that the role of lithium 

chloride is to activate i-PrMgCl by increasing the nucleophilic character of the isopropyl 

group through the formation of magnesiate species of type 13, leading to the ate-intermediate 

of type 14 and finally to the organomagnesium species PhMgCl·LiCl 15 (Scheme 21). 

14

Br Mg
Cl

Cl
Li

Br

Li Mg

Cl Cl

Mg
Cl

Li
Cl

15

- i-PrBr

13  

Scheme 21. Lithium chloride activates i-PrMgCl via the complex 13. 
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2. Objectives 

 

Due to the utility of complex polycyclic heterocycles as potential pharmaceuticals, the first 

project involved the development of new methods to construct polycyclic heterocycles using 

C-H activation reactions. The objectives for this work are: 

☺: The development of a catalytic system for the construction of polycyclic heterocycles; 

☺: The extension of this catalytic system to domino reactions.  

 

NMe

BrR1
N

R3

R2

R3 = alkyl

R1 = H
R1

N

R3

R3 = Ph

R2

R1 = Br

R2  

Scheme 22. Proposed synthesis of polycyclic heterocycles via C-H activation. 

 

Due to the expanded applications of organomagnesium reagents in organic synthesis, the 

second objective involves: 

☺: Access to stereoselectively prepared functionalized alkenyl organomagnesium reagents 

via I/Mg exchange reaction using i-PrMgCl·LiCl,  

☺ Access to regioselectively prepared polyfunctional pyridylmagnesium reagents via a 

Br/Mg exchange reaction using i-PrMgCl·LiCl.  

N

Br
OTs

BrBr N

E1

OTs

E2E3

N OTs

BrBr

N OTs

E2

N

E2

R1

O

N
H

N

R1

I
R

MgX
R E

R
E+

R = ester, Cl, I, CN,

exchange

 

Scheme 23. Development of new methods to prepare alkenylmagnesium and 

pyridylmagnesium reagents via I/Mg or Br/Mg exchange. 
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As previously mentioned, numerous organozinc reagents, such as aryl and alkylzinc halides, 

bearing active functional groups can all be prepared using a zinc insertion or a I/zinc 

exchange. However there are not too many effective methods to prepare allylic zinc reagents 

due to the special properties of the allylic system. Hence the third objective of this work is: 

☺: To access the preparation of cycloallylic zinc reagents from readily available allylic 

substrates; 

☺: The synthesis of complex compounds using these types of allylic zinc reagents. 

 

Cl

R

ZnCl

R

O
N3

Zn·LiCl

R

N
N
N

R
HO

n n

n
+ +

n

n = 1, 2
R = H, CH3

 

Scheme 24. Development of new methods to prepare allylic zinc reagents and their 

applications in organic synthesis. 
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3. Preparation of Condensed N-Heterocycles by Chemoselective Benzylic C-H 

Activations  

 

3.1. Introduction: a catalytic approach for the functionalization of sp3 C-H bond 

 

The development of methodologies for the direct functionalization of relatively unreactive C-

H bonds has now become a major research topic.32 C-H bond functionalization represents a 

chemical process of broad synthetic potential, since such methodology facilitates the direct 

formation of C-C and C-Z bonds (Z = O, N, B, Si, etc.) without utilizing prefunctionalized C-

X bonds (X = halogens, OTf, etc.). Although pioneering studies on the activation of C-H 

bonds by stoichiometric amounts of transition-metal complexes occurred in the early 1960s, it 

was not until 20 years later that catalytic reactions involving the cleavage of C-H bonds were 

achieved.32a 

The high-energy barrier of C-H bond cleavage is lowered when preceeded via 

cyclometalation, which is initiated by precoordination of the metal complex to a carbon or 

heteroatom in the molecule. This precoordination directs the metal centre to the vicinity of the 

C-H bond to be broken. Among the transition metals, it was shown that palladium(0) is 

particularly suitable for this process, since the precoordination step can arise from the 

oxidative insertion into carbon-halogen bond, for instance also observed in the cross coupling 

reactions. A sequence of oxidative addition and cyclopalladation is a straightforward way for 

assembling palladacycyles. The starting materials for this purpose have to fulfil two structural 

requirements: 1) a carbon-halogen bond (or alternatively a carbon-triflate bond) at a position, 

where a β-hydrogen elimination is prohibited in the subsequent step after oxidative addition 

(that is of course true for aryl halides) and 2) a carbon-hydrogen bond (either sp3- or sp2-

centered) has to be in an appreciable distance from the halide. Thus, 7-membered, 6-

membered and 5-membered palladacycles are regularly generated as reactive intermediates as 

outlined in Scheme 25.33 

                                                 
32 Recent reviews: a) F. Fakjuchi, N. Chatani, Adv. Synth. Catal. 2003, 345, 1077; b) V. Ritleng, C. Sirlin, M. Pfeffer, Chem. 
Rev. 2002, 102, 1731; c) S. Ma, Z. Gu, Angew. Chem. Int. Ed. 2005, 44, 7512; d) M. Tobisu, N. Chatani, Angew. Chem. Int. 
Ed. 2006, 45, 1683. 
33 Handbook of C-H Transformations: Application in Organic Synthesis, Vol. 1 and Vol 2 (Ed.: G. Dyker), Willey-VCH, 
Weinheim, 2005. 
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H

X

H
X

H

Pd
X

H
Pd
X

-HX

-HX
Pd

Pd
Pd(0) -Pd (0)

Pd(0)

-Pd (0)

domino processes

n n n
n

n = 1, 2

 

Scheme 25. Palladacycles and their ring-size-dependent reactivity (general pictogram). 

 

7-Membered and 6-membered palladacycles readily undergo reductive elimination to give 6-

membered and 5-membered rings as final products, whereas the similar process to give 4-

membered carbocycles from 5-membered palladacycles is less feasible, although not 

completed ruled out, and restricted to special cases. 

A number of intramolecular arylations that proceed by catalytic C-H activation of arenes have 

been described (See the overview).34 However, fewer cases have been reported regarding 

catalytic activation of sp3 C-H bonds through cyclometalation.  

Among those few cases, Dyker35 reported the preparation of polycycles through a methoxy C-

H activation. The homo-coupling of three equivalents of 2-iodoanisole 16 generated the 

terphenyl 17 in an excellent yield (Scheme 26). The reaction proceeded through the 

palladacyclic intermediate 18 formed by direct C-H activation of the methoxyl group, 

followed by addition of a second equivalent of 16 and reductive elimination to form the 

intermediate 19. A second cyclometallation led to paladacycle 20, which reacted with the 

third equivalent 16 to give intermediate 21. After another cyclometallation step (formation of 

the intermediate 22) the domino process was completed by reductive elimination, which 

simultaneously freed the active catalyst. 

                                                 
34 a) M. Catellani, E. Motti, S. Ghelli, Chem. Commun. 2000, 2003; b) L-C. Campeau, M. Parisien, M. Leblanc, K. Fagnou, 
J. Am. Chem. Soc. 2004, 126, 9186; c) L. –C. Campeau, M. Parisien, A. Jean, K. Fagnou, J. Am. Chem. Soc. 2006, 128, 581; 
d) M. Parisien, D. Valette, K. Fagnou, J. Org. Chem. 2005, 70, 7578; e) L-C. Campeau, P. Thansandote, K. Fagnou, Org. 
Lett. 2005, 127, 1857; 
35 a) G. Dyker, Angew. Chem. 1992, 104, 1079; Angew. Chem. Int. Ed. 1992, 31, 1023; b) G. Dyker, Chem. Ber. 1994, 127, 
739. 
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Scheme 26. Dyker’s C-H activation at methoxy groups. 

 

Dyker also reported a similar C-H activation of the ortho-methoxy group of intermediate 23 

to form a palladacyclic intermediate 24. 36  The intermediate 24 may then react with 

vinylbromide 25 to afford the palladium(IV) intermediate 26, which would form the 

palladium intermediate 27 after reductive elimination. The following intramolecular 

carbopalladation followed by β-hydride elimination would provide the product 28a, which, 

upon isomerisation, produced 28b (Scheme 27). 

                                                 
36 G. Dyker, J. Org. Chem. 1993, 58, 6426; 
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O
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Scheme 27. Dyker’s C-H transformation at methoxy groups. 

 

This type of C-H transformation is also feasible at the notoriously unreactive t-butyl group, as 

outlined in Scheme 28, to prepare benzocyclobutane.37 The reaction might proceed by the 

direct C-H activation of intermediate 31, forming a palladacyclic intermediate 32, which may 

undergo oxidative addition with iodobene 29 to afford intermediate 33. Subsequent reductive 

elimination would lead to 34, which would undergo another C-H insertion and HI elimination 

to afford 35. Product 30 may be formed by reductive elimination of 35. The formation of 

compound 32a by reductive elimination of 32 was not observed probably because the 

formation of the four-membered ring is slower than the oxidative addition to another 

iodobenzene 29 (Scheme 28). 

                                                 
37 G. Dyker, Angew. Chem. 1994, 106, 117; Angew. Chem. Int. Ed. 1994, 33, 103. 
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I

t-Bu

I
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t-Bu
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-Pd(0)
29 30: 75 %

31 32

32a

35 34 3330  

Scheme 28. C-H transformation at unreactive t-butyl group. 

 

Recently, Baudoin reported a Pd-catalyzed C-H activation of gem-dialkyl groups on bromo- 

and iodobenzene to give olefins or benzylcyclobutenes as are shown in Scheme 29.38 

 

                                                 
38 O. Baudoin, A. Herrbach, F. Guéritte, Angew. Chem. Int. Ed. 2003 42, 5736. 
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Scheme 29. Pd-catalyzed formation of olefins and benzocyclobutenes. 

 

Q. Hu has also developed a new type of Pd-catalyzed annulative tandem reaction of 1, 2-

dibromobenenes with hindered Grignard reagents 36 based on a Pd-catalyzed cross-coupling 

reaction and sp3 C-H bond activation strategy (Scheme 30).39  

Br

Br

H3C

BrMg

H3C

CH3

H3C

CH3

+

36: 2.5 equiv

1.5 % Pd2(dba)3 / 6 % t-Bu3P

THF, rt, 20 h

Br
CH3

H3C CH3

C-H activation

R
R

R

99 %
 

Scheme 30. Pd-catalyzed annulative tandem reaction of dibromobenzenes with Grignard 

reagents. 
                                                 
39 C. Dong, Q. Hu, Angew. Chem. Int. Ed. 2006, 45, 2289. 
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3.2. Design of the starting materials for the preparation of polycyclic heterocycles via C-

H activation 

 

Polycyclic heterocycles of type 37 are found in various alkaloids such as mytomicine C and (-

)-(S)-tylophorine. The mytomicine family is a group of metabolites isolated from 

Streptomices that has attracted much attention due to their potent antitumoral and antibacterial 

activity (Figure 1).40 (-)-(S)-Tylophorine and its analogs are phenanthroindolizidine alkaloids, 

many of which have been isolated from plants of the family asclepiadaceae, including 

members of the genus Tylophora that are found in India and Southeast Asia.41 These 

compounds have been the targets of synthesis, modification, and antitumor evaluation in 

many research groups.42 

O

O

N NH

OCONH2

H2N

Me

OMe

N

H

OCH3

H3CO

OCH3

H3CO
Mitomycine C

(-)-Tylophorine

N
n

37: n = 0, 1

FG

 

Figure 1. Structures of mitomycine C and (-)-tylophorine. 

 

The preparation of complex polycyclic heterocycles (such as mitomycine C and (-)-

tylophorine) is an important synthetic goal due to the application of these molecules as 

potential pharmaceuticals.43 One of the most efficient approaches for preparing polycyclic 

molecules is to use domino- reactions.44 Especially attractive are such reaction sequences 

which involve C-H activation reactions45  since such reactions tolerate the presence of 

                                                 
40 W. A. Remers, R. T. In. Dorr, Alkaloides: Chemical and Biological Perspective; S. W. Pelletier, Ed.; John Wiley & Sons: 
New York, 1998; Vol. 6, pp. 1-74. 
41 A.N. Ratnagiriswaran, K. Venkatachalam, Indian J. Me. Res. 1935, 22, 433. 
42 a) K. N. Rao, R. K. Bhattacharya, S. R. Venkatachalam, Cancer Lett. 1998, 128, 183; b) E. Gellert, R. Rudzats, J. Med. 
Chem. 1964, 7, 361; c) W. Gao, W. Lam, S. Zhong, C. Kaczmarek, D. C. Baker, Y.-C. Cheng, Cancer Research 2004, 64, 
678. 
43 a) T.L. Gilchrist, Heterocyclic Chemistry, Longman, 1998; b) T. Eicher, S. Hauptmann, The Chemistry of Heterocycles 
Wiley-VCH, 2003. 
44 a) L. F. Tietze, N. Rackelmann, Pure Appl. Chem. 2004, 76, 1967; b) A. de Meijere, P. von Zezschwitz, S. Bräse, Acc. 
Chem. Res. 2005, 38, 413; c) A. Padwa, Pure Appl. Chem. 2003, 75, 47; d) B. Breit, Chem. Eur. J. 2000, 6, 1519; e) S. Ikeda, 
Acc. Chem. Res. 2000, 33, 511. 
45 a) F. Kakiuchi, S. Murai, Activation of C-H bonds: catalytic reactions Top. Organomet. Chem. 1999, 3, 47; b) G. Dyker, 
Angew. Chem. Int. Ed. 1999, 38, 1699; c) A. E. Shilov, G. B. Shul’pin, Chem. Rev. 1997, 97, 2879; d) V. Ritleng, C. Sirlin, 
M. Pfeffer, Chem. Rev. 2002, 102, 1731; e) C. Jia, T. Kitamura, Y. Fujiwara, Acc. Chem. Res. 2001, 34, 633; f) C.-J. Li, Acc. 
Chem. Res. 2002, 35, 533; g) S. Ma, Z. Gu, Angew. Chem. Int. Ed. 2005, 44, 7512. 
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additional functionalities in the substrate. A range of Ru-46 Rh-47 Pt-48 and Pd-49 catalyzed C-

H activations for heterocycle synthesis has recently been described.  

We envisioned that the polycyclic system 37 could be assembled through a palladium 

catalyzed intramolecular C-H activation reaction. From the retrosynthetic analysis of 37, we 

propose that a C-H activation of N-arylpyrrole 39 and 40 would afford heterocycles of type of 

41 and 42 respectively. N-arylpyrrole derivatives of type of 41 are readily available from 2-

halogen-anilines 39 and 1,4-diketones 38 (Scheme 31). 
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Scheme 31. The retrosynthetic analysis for the formation of polycyclic molecules 37. 

 

 

 

 
                                                 
46 a) C. S. Yi, S. Y. Yun, I. A. Guzei, J. Am. Chem. Soc. 2005, 127, 5782; b) C. S. Yi, S. Y. Yun, J. Am. Chem. Soc. 2005, 
127, 17000; c) N. Chatani, T. Asaumi, S. Yorimitsu, T. Ikeda, F. Kakiuchi, S. Murai, J. Am. Chem. Soc. 2001, 123, 10935; d) 
F. Kakiuchi, S. Murai, Acc. Chem. Res. 2002, 35, 826; e) L. Ackermann, Org. Lett. 2005, 7, 3123 
47 a) B. DeBoef, S. J. Pastine, D. Sames, J. Am. Chem. Soc. 2004, 126, 6556; b) R. K. Thalji, J. A. Ellman, R. G. Bergman, J. 
Am. Chem. Soc. 2004, 126, 7192; c) K. L. Tan, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc. 2001, 123, 2685; d) K. L. 
Tan, A. Vasudevan, R. G. Bergman, J. A. Ellman, A. J. Souers, Org. Lett. 2003, 5, 2131; e) K. L. Tan, S. Park, J. A. Ellman, 
R. G. Bergman, J. Org. Chem. 2004, 69, 7329; f) H. M. L. Davies, Q. Jin, P. Ren, A. Y. Kovalevsky, J. Org. Chem. 2002, 67, 
4165; g) R. K. Thalji, K. A. Ahrendt, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc. 2001, 123, 9692. 
48 a) J. A. Johnson, N. Li, D. Sames, J. Am. Chem. Soc. 2002, 124, 6900; b) J. A. Johnson, D. Sames, J. Am. Chem. Soc. 
2000, 122, 6321. 
49 a) B. Sezen, R. Franz, D. Sames, J. Am. Chem. Soc. 2002, 124, 13372; b) B. D. Dangel, K. Godula, S. W. Youn, B. Sezen, 
D. Sames, J. Am. Chem. Soc. 2002, 124, 11856; c) J. L. Portscheller, H. C. Malinakova, Org. Lett. 2002, 4, 3679; d) Q. 
Huang, A. Fazio, G. Dai, M. A. Campo, R. C. Larock, J. Am. Chem. Soc. 2004, 126, 7460; e) E. J. Hennessy, S. L. 
Buchwald, J. Am. Chem. Soc. 2003, 125, 12084; f) D. Shabashov, O. Daugulis, Org. Lett. 2005, 7, 3657; g) A. R. Dick, K. L. 
Hull, M. S. Sanford, J. Am. Chem. Soc. 2004, 126, 2300; h) V. G. Zaitsev, O. Daugulis, J. Am. Chem. Soc. 2005, 127, 4156; 
i) O. Daugulis, V. G. Zaitsev, Angew. Chem. Int. Ed. 2005, 44, 4046; j) M. D. K. Boele, G. P. F. van Strijdonck, A. H. M. de 
Vries, P. C. J. Kamer, J. G. de Vries, P. W. N. M. van Leeuwen, J. Am. Chem. Soc. 2002, 124, 1586; k) D. Kalyani, N. R. 
Deprez, L. V. Desai, M. S. Sanford, J. Am. Chem. Soc. 2005, 127, 7330; l) M. A. Campo, Q. Huang, T. Yao, Q. Tian, R. C. 
Larock, J. Am. Chem. Soc. 2003, 125, 11506; m) C. Bour, J. Suffert, Org. Lett. 2005, 7, 653; n) L. -C. Campeau, M. Parisien, 
M. Leblanc, K. Fagnou, J. Am. Chem. Soc. 2004, 126, 9186; o) L. –C. Campeau, M. Parisien, A. Jean, K. Fagnou, J. Am. 
Chem. Soc. 2005, 127, J. Am. Chem. Soc. 2006, 128, 581; p) T. Okazawa, T. Satoh, M. Miura, M. Nomura, J. Am. Chem. 
Soc. 2002, 124, 5286. 
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3.3 Optimization of the reaction conditions 

 

The first experiments were performed with N-(2-bromophenyl)-2,5-dimethylpyrrole 39a with 

Pd(OAc)2 (5 mol%) and various ligands in toluene in the presence of a base for scavenging 

resulting HBr was performed (100 oC, 20 h, Table 1). Preliminary experiments showed that 

polar solvents such as DMF led to complex reaction mixtures, whereas apolar solvents such as 

toluene gave much better results. Strongly chelating ligands such as dppe or dppp did not lead 

to the formation of 9H-pyrrolo[1,2-a]indole 41a, however PPh3 (10 mol%) led to 41a with 

45% conversion after 20 h at 100 oC (see entries 1-3 of Table 1). By replacing K2CO3 by 

Cs2CO3 (1.2 equiv), the conversion increased to 73% (entry 4). Sterically hindered ligands 

such as o-Tol3P or o-Furyl3P led to mediocre conversions (entries 5 and 6), but m-Tol3P 

afforded 27% conversion in the presence of K2CO3 and 100% conversion by using Cs2CO3. 

The best result was obtained with p-Tol3P in the presence of Cs2CO3, giving 100% conversion 

at 110 oC within 12 h (compare entries 7, 8, 9 and 10). Interestingly, a conversion of 67% was 

observed by using the hindered phosphine 2-dicyclohexylphosphino-2’-(N,N-dimethylamino) 

biphenyl50 (entry 11). 

 

Table 1. Pd-catalyzed cyclization of the pyrrole derivative 39a leading to the tricyclic 

heterocycle 41a. 

Br

N

Me

Me

Pd(OAc)2 (5 mol %)

ligand (10 mol %)

base, 100 oC, 20 h

N

Me

39a 41a  

Entry Ligand Base Conversion (%)a 

1 dppe Cs2CO3 0 

2 dppp Cs2CO3 0 

3 PPh3 K2CO3 45 

4 PPh3 Cs2CO3 73 

5 o-Tol3P Cs2CO3 0 

6 o-Furyl3P Cs2CO3 8 

                                                 
50 D. W. Old, J. P. Wolfe, S. L. Buchwald, J. Am. Chem. Soc. 1998, 120, 9722. 
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Table 1 (continued) 

7 m-Tol3P K2CO3 27 

8 m-Tol3P Cs2CO3 100 

9 p-Tol3P K2CO3 15 

10 p-Tol3P Cs2CO3 100b 

11 PCy2

Me2N  

Cs2CO3 67 

 
a The conversion was determined by GC analysis of hydrolyzed reaction aliquots; b 

Conversion after 12 h at 110 oC. 

 

3.4 Preparation of the bromo or iodo-N-arylpyrrole derivatives 

 

The starting materials, bromo or iodo-N-arylpyrrole derivatives, were prepared by the reaction 

of bromo- or iodo-anilines with 1,4-dicarbonyl compounds (Paal-Knorr Synthesis) in the 

presence of catalytic amount of TsOH·H2O.51 Bromo or iodo-anilines were prepared from the 

corresponding anilines, which reacted with NBS52 (1.0 equiv) or iodine (1.0 equiv in the 

presence of 1.0 equiv of Ag2SO4),
53 affording the monobromo or iodo-anilines 39 in 90% to 

100% yields (Scheme 32). Treatment of 4-amino-benzoic acid ethyl ester or 4-amino-

benzonitrile with Br2 (2.1 equiv) resulted in the dibromoaniline 43a and 43b, which were 

obtained in 95-96% yield (Scheme 32). 

                                                 
51 L. Knorr, Chem. Ber., 1884, 17, 1635. 
52 T. Yoshito, U. Naoto, K. Kazuya, N. Atsushi, A. Kiyomi, A. Shunji, S. Motohiro, H. Keiji, N. Koichiro, J. Am. Chem. Soc. 
2002, 124, 5350. 
53 C. Liu, P. Knochel, Org. Lett. 2005, 7, 2543. 
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NH2

R

NH2

R

K2CO3, CH2Cl2

NH2

R

BrBr

NH2

R

XNBS (1.0 equiv.)

or, I2 (1.0 equiv.), Ag2SO4

R = COOEt, CN, NO2, CF3

Br2 (2.1 equiv.)

43a: R = CO2Et, 95 %
43b: R = CN, 96 %

X = Br, I
36: 90-100 %

 

Scheme 32. Preparation of monobromo, iodo and dibromoanilines. 

 

Only few 1,4-dicarbonyl compounds are commercially available, such as hexane-2,5-dione 

38a and 1-phenylpentane-1,4-dione 38b. Further 1,4-dicarbonyl compounds were prepared 

through various methods according to the literatures as shown in Scheme 33. Thus, 

benzylation of the methylfuran anion derived from methylfuran with n-BuLi, followed by 

acidic hydrolysis of the furan function, provided phenyl-hexane-2,5-dione 38c in 80%.54 The 

dione 38d was prepared from ethyl 3-oxopentanoate and 1-chloropropan-2-one in the 

presence of NaI in 65% yield.55 The palladium(II)-catalyzed oxidation (Wacker Oxidation) of 

the 2-allylcyclohexanone and 2-allylcyclopentanone resulted in the formation of diones 38e 

and 38f in 56-59% yield.56 

 

                                                 
54 M. Mondal, N. P. Argade, Tetrahedron Lett. 2004, 5695. 
55 P. Chiu, M. P. Sannes, Tetrahedron 1990, 46, 3439. 
56 T. Mitsudome, T. Umerani, N. Nosaka, K. Mori, T. Mizugaki, K. Ebitani, K. Kaneda, Angew. Chem. Int. Ed. 2006, 45, 
481. 
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O Me

O

O

O

O
Me

Me

O

Me
Cl

O BnMe

O
Me

O

O

O

O
Me

Me

O

Me

O

Me
O

1) n-BuLi, - 78 oC to rt, 1 h

2) BnBr, -78 oC to rt

HOAc/H2O
H2SO4 (cat.)

100 oC, 5 h

n

NaI (cat.), K2CO3

acetone, reflux

38c: 80 %

38d: 65 %

38e: n= 0; 56 %
38f:  n =1; 59 %

n

Wacker oxidation

PdCl2 (10 mol %)
Cu(OAc)2 (20 mol %)

 

Scheme 33: Preparation of 1,4-dicarbonyl compounds. 

 

With these anilines and 1,4-dicarbonyl compounds, various functionalized N-substituted 

pyrroles were smoothy obtained in good to excellent yields by the use of the Paal-Knorr 

reaction (Table 2). From table 2, we can see that the bromoanilines always give good yields 

but iodoanilines give meager yields. This may be due to the fact that the iodopyrrole 

derivatives are less stable than the bromo ones. 

 

Table 2. Preparation of the monobromo or monoiodo-N-arylpyrrole derivatives 39 and 44. 

R

NH2

X
O

O

R1 R2

X=I or Br

R

N
X

R1 R2

TsOH (cat)

39: X = Br, I

36

38 NMe

R3

R4

or

44

Br

 

entry aniline dione pyrrolea (%) entry aniline dione pyrrolea (%) 

 

CO2Et

I

NH2

 

O
Me

Me
O

 

N

CO2Et

I

MeMe

 

 

CO2Et

Br
NH2

 

 
N

CO2Et

Br

MeMe

 

1 36a 38a 39b: 40 2 36b 38a 39c: 87 
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Table 2 (continued) 

 

CN

I
NH2

 

 
N

CN

I

MeMe

 

 

CN

Br
NH2

 

 
N

CN

Br

MeMe

 

3 36c 38a 39d: 48 4 36d 38a 39e: 94 

 

CF3

I
NH2

 

 
N

CF3

I

MeMe

 

 

CF3

Br

NH2

 

 
N

Br

MeMe

F3C

 

5 36e 38a 39f: 50 6 36f 38a 39g: 82 

 

NO2

I
NH2

 

 
N

NO2

I

MeMe

 

  
O

Me

Et
O

 

N

CO2Et

Br

MeEt

 

7 36g 38a 39l: 45 8 36b 38c 39n: 80 

  
O

Me

Et
O

CO2Et

 
Br

MeEt N

CO2Et

EtO2C

 

   

N

CN

Br

MeEt

EtO2C

 

9 36b 38d 39o: 83 10 36d 38d 39p: 80 

  
O

Me

O
 

N

CO2Et

Br

Me

 

  
O

Me

O  

N

CO2Et

Br

Me

 

11 36b 38e 39q: 72 12 36b 38f 39r: 70 

  
O

Me

O

Ph  

N

COOEt

Br

Me

Ph

 

  
O

Me

Me
O

CO2Et

 

N

CO2Et

Br

MeMe

CO2Et

 

13 36b 38g 39s: 75 14 36b 38h 39t: 81 
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Table 2 (continued) 

 NH2

Br

 

O
Me

O

 

N

Br

MePh

 

   
N

CO2Et

Br

MePh

 

15 36h 38b 44a: 95 16 36b 38b 44b: 89 

 NH2

Br

CF3  

 
N

Br

MePh

CF3  

 
Br

NH2

OMe

 

 
N

Br

MePh

OMe  

17 36f 38b 44c: 81 18 36i 38b 44d: 75 

  
O

Me

O

EtO2C

 

N

Br

MePh

CO2Et

 

   

N

Br

MePh

CO2Et

CF3  

19 36h 38i 44e: 90 20 36f 38i 44f: 82 

   

N

Br

MePh

CO2Et

CO2Et  

   

N

Br

MePh

CO2Et

OMe  

21 36b 38i 44g: 72 22 36i 38i 44h: 85 

 NH2

Br

Br  

 

N

Br

MePh

CO2Et

Br  

  O
Me

O

EtO2C

Br

 

N

Br

Me

CO2Et

Br

 

23 36j 38i 44j: 83 24 36h 38j 44k: 81 
a: Isolated yield of analytically pure product. 

 

Dibromo-N-arylpyrrole derivatives can also be prepared from dibromo-anilines with a 1,4-

dicarbonyl compound using the same procedure, but they cost much more time and require an 

excess of 1,4-dicarbonyl compounds due to the hinderance of the products and increased 

formation of the byproduct of furans, which come from the 1,4-dicarbonyl compounds. Thus, 

treatment of dibromoaniline 43a and p-iodo-dibromoaniline 43b with hexane-2,5-dione 38c in 



 
 

 
 

29 

the presence of TsOH·H2O (2 mol %) provided the dibromoarylpyrrole 46a respectively in 

45% yield and 46b in 52% yield (Scheme 34). The 2,5-symmetrically substituted 

dibromoarylpyrrole 46c can also be obtained in 50% yield from the dibromoaniline 43c.  

NH2

R

BrBr

O

Me
O

NH2

CN

Br Br
O

Me
Me

O

N

CN

Br Br

MeMe

N

R

Br

Me

Br

TsOH (cat.)

TsOH (cat.)

46c: 50 %

46a: R = CO2Et, 50 %

43c

43a: R =CO2Et

43b: R = I 46b: R = I, 52 %

 

Scheme 34. Preparation of 2,5-symmetrical and unsymmetrical dibromoarylpyrroles. 

 

Functionalized mono- or dibromo-N-arylpyrrole derivatives also can be prepared from the 

corresponding iodo compound using an I/Mg exchange. Thus, by treating the iodo-N-

arylpyrrole 39aa with i-PrMg·LiCl at -30 oC for 2 h, the corresponding Grignard reagent 39ab 

was obtained. After transmetalation with CuCN·2LiCl, the Grignard reagent 39ab reacted 

with various acid chlorides providing ketones. The ketones of 39h-j were obtained in 80-82% 

yields according to this method. Furthermore, the Grignard 39ab can also be directly trapped 

with dry DMF, providing the aldehyde 39k in 76% yield. Similarly, a selective I/Mg 

exchange of iodo-dibromo-N-arylpyrrole 46b leads to the Grignard 46c. After transmetalation 

with CuCN·2LiCl and reaction with benzoyl chloride, resulted in the formation of dibromo-N-

arylpyrrole 46d in 80% yield (Scheme 35). 
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NH2

I

NBS
NH2

I

Br

O

Me
Me

O

N

I

Br

MeMe

i-PrMg·LiCl

Br Br
N

I

Me
1) i-PrMgCl·LiCl

Br
N

Br

Me

O Ph

N
Br

Me Me

O Ph

N
Br

Me Me

O t-Bu

N
Br

Me Me

O Cy

N
Br

Me Me

O H

N

MgCl·LiCl

Br

MeMe

39aa: 92 %

46b 46d: 80 %

2) CuCN·2LiCl

3) PhCOCl

Paal-Knorr 
reaction

39h: 82 % 39k: 76 %39i: 80 % 39j: 81 %

- 30 oC, 2 h

HOAc/CH2Cl2

76 %

39ab

 

Scheme 35. Preparation of functionalized mono- or dibromo-N-arylpyrrole derivatives via 

I/Mg exchange. 

 

3.5 Scope of the C-H activation reaction and preparation of functionalized 9H-

pyrrolo[1,2-a]indoles 

 

A broad range of 9H-pyrrolo[1,2-a]indoles of type 41 can be prepared from the corresponding 

iodo or bromo-N-arylpyrrole derivatives under optimized reaction conditions (Table 3). The 

2-iodo- and 2-bromo-N-arylpyrrole derivatives 39b and 39c undergo smoothly the ring 

closure, providing the tricyclic product 41b respectively in 81% and 83% yield, showing that 

the use of aryl iodides or bromides leads to similar results (entries 1 and 2 of Table 2). The 

ester function is well tolerated in this ring closure. The cyano-substituted iodide 39d and 

bromide 39e also furnished the expected product 41c in respectively 70% and 60% yield 

(entries 3 and 4) under the standard conditions. Trifluoromethyl-substituted substrates, which, 

may be of interest for the preparation of pharmaceutically relevant heterocycles, react readily 

and lead to the tricyclic products 41d (77%) and 41e (65%) (entries 5 and 6). Ketone and 
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aldehyde functions are also well tolerated. For example, the ketone derivatives 39h-j are 

readily converted to the tricyclic products 41f-h in 55-61% yield (entries 7-9). Even an 

aldehyde function is tolerated in this ring closure process. Hence, heating the aldehyde 39k in 

the presence of Pd(OAc)2 afforded the tricyclic compound 41i in 55% yield. Only a nitro-

substituent was complicated the reaction and furnished the 9H-pyrrolo[1,2-a]indole 41j in 

only 33% yield (entry 11). With a strong electron donor such as NH2 as substituent, no ring 

closure was observed (entry 12). 

Table 3. Preparation of 9H-pyrrolo[1,2-a]indoles of type 41 from an N-arylpyrroles of type 39 

R
N

X Me

Me

R N

MePd(OAc)2 (5 mol %)

p-Tol3P (10 mol %)

Cs2CO3 (1.2 equiv)

110 oC, 12 h
39

41: 33-86%
 

Entry Pyrrole of type 39 Product of type 41 Yield [%]a 

 

N

X Me

Me

EtO2C

 

EtO2C N

Me

 

 

1 39b: X = I 41b 86 

2 39c: X = Br  83 

 

N

X Me

Me

NC

 

NC N

Me

 

 

3 39d: X = I 41c 70 

4 39e: X = Br  60 

 

N

I Me

Me

F3C

 

F3C N

Me

 

 

5 39f 41d 77 

 

N

Me

MeF3C

Br  

N

Me
F3C

 

 

6 39g 41e 65 
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Table 3 (continued) 

 

N

Me

Me

O
Br  

N

Me

O
 

 

7 39h 41f 61 

 

N

Me

Me

O

t-Bu

Br  

N

Me

O

t-Bu

 

 

8 39i 41g 66 

 

N

Me

Me

O

c-Hex

Br  

N

Me

O

c-Hex

 

 

9 39j 41h 69 

 

N

Me

Me

OHC

Br  

N

Me

OHC

 

 

10 39k 41i 55 

 

N

I Me

Me

O2N

 

N

Me

O2N

 

 

11 39l 41j 33 

 

N

Me

Me

H2N

Br  

  

12 39m  0 
a Isolated yield of analytically pure products. 

 

Regioselective C-H activations have only been scarcely studied.57 Remarkably, when a 2,5-

unsymmetrical substrates like 2-ethyl-5-methyl-arylpyrrole 39n was treated with Pd(OAc)2, 

                                                 
57 a) Kalyani, D.; Sanford, M. S. Org. Lett. 2005, 7, 653; b) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. J. Am. 
Chem. Soc. 2005, 127, 7330; c) Desai, L. V.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 9542; d) Dick, A. R.; 
Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300.e) Buchwald, S. L.; Henneessy, E. J. J. Am. Chem. Soc. 2003, 
125, 12084. 
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only the activation on the methyl group was observed and the tricyclic compound 41a was 

obtained in 75% yield (entry 1 of Table 4). Muti-substituted pyrroles also led to excellent 

selectivities. With an ester-substituted pyrrole ring, the selective C-H activation provided the 

polyfunctionalized tricyclic compounds 41l and 41m in 80-81% yield (entries 2 and 3). 

Tetracyclic compounds can also be prepared using this C-H activation method. Thus, 2-

methyl-4,5,6,7-tetrahydro-1H-indole derivate 39q and 2-methyl-1,4,5,6-tetrahydro-

cyclopenta[b]pyrrole derivate 39r undergo a selective C-H activation, providing the 

tetracyclic compounds 41n (64% yield) and 41o (60% yield) under the standard conditions 

(entries 4 and 5). Even for the substrate 39s, which has much more active hydrogen in the 

structure, the selective C-H activation of the methyl group resulted in the formation of the 

product 41p in 57% yield (entry 6). The substitution on N-arylpyrrole also affects the 

regioselectivity of the ring closure. For example, a ratio of 41q:41r of 2:1 was obtained from 

the reaction of 2,5-dimethyl-3-ethoxycarbonyl phenylpyrrole derivative 39t (entry 7). This 

may result from an activation (acidification) of the proximity methyl group by the ester group. 

The structure of 41q was determined by H-H NOESY NMR analysis (See experimental part).  

 

Table 4. Chemoselective preparation of 9H-pyrrolo[1, 2-a]indoles of type 41 from pyrroles of 

type 39. 

R1

N

X Me

R2

R1
N

R2

Pd(OAc)2 (5 mol %)

p-Tol3P (10 mol %)

Cs2CO3 (1.2 equiv)

110 oC, 12 h

39
41: 57-81%

 

entry Pyrrole of type 39 Product of type 41 Yield [%]a 

 

N

Me

EtO2C

Br
 

N

Me

EtO2C

 

 

1 39a 

N

Me

Me

EtO2C

CO2Et
Br

 

41a 

NEtO2C
CO2Et

Me  

75 

2 39b 41b 80 
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Table 4 (continued) 

    

 

N

Me

Me

NC

CO2Et
Br

 

NNC
CO2Et

Me  

 

3 39c 41c 81 

 

N

Me

EtO2C

Br
 

NEtO2C

 

 

4 39d 41d 64 

 

N

Me

EtO2C

Br  

NEtO2C
 

 

5 39e 41e 60 

 

N

Me

EtO2C

Ph

Br

 

NEtO2C

Ph  

 

6 39f 41f 57 

 

N MeMe

Br

CO2Et

CO2Et

 

N

MeEtO2C

H

CO2Et

N

Me

CO2Et

CO2Et

+

 

 

7 39g 41q : 41r = 2 :1 80 

a Isolated yield of analytically pure product. 

 

In the case of 2-phenyl-5-methyl-arylpyrrole derivates, the activation of the phenyl group was 

found to be much faster than that of the methyl group and leads to the pyrrolo[1,2-

f]phenanthridine ring system. Thus, the N-arylpyrrole derivative 44a preferentially undergoes 

a chemoselective activation of the phenyl ring over the methyl substituent, leading to the 
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pyrrolo[1,2-f]phenanthridine derivative 45a in 93% yield (entry 1 of Table 5). The ester 

function is well tolerated in this ring closure. The ester substituent on both the arene and 

pyrrole groups gives good yields (83-86%; entries 2, 5, 6 and 7). Moreover, the 

trifluoromethyl-substituted bromides 44c and 44f furnished the expected products 45c and 45f 

in 85-86% yield (entries 3 and 6). Even a ketone is tolerated and ketones 44d and 44g lead to 

the products 45d and 45g in 46-61% yield (entries 4 and 8). The pyrrole 45i, bearing a 

hydroxyl group in the benzylic position, also gave the desired product 45i in 53% yield (entry 

9).  

Table 5. Preparation of pyrrolo[1,2-f]phenanthridines of type 45 from pyrroles of type 44 

R2

N
Me

Br

R1 R1

R2

N
MePd(OAc)2 (5 mol %)

p-Tol3P (10 mol %)

Cs2CO3 (1.2 equiv)

110 oC, 12 h

44
45: 46-93%

 

entry Aniline Product Yield 

 

N
Me

Br

 

N
Me

 

 

1 44a 45a 93 

 

N
Me

Br

CO2Et  

N
Me

CO2Et  

 

2 44b 45b 85 

 

N
Me

Br

CF3  

N
Me

CF3  

 

3 44c 45c 85 
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Table 5 (continued) 

 

N
Me

Br

Me O  

N
Me

Me O  

 

4 44d 45d 61 

 

N
Me

Br

EtO2C

 

N
Me

EtO2C

 

 

5 44e 45e 83 

 

N
Me

Br

CF3

EtO2C

 

N
Me

CF3

EtO2C

 

 

6 44f 45f 86 

 

N
Me

Br

EtO2C

CO2Et  

N
Me

EtO2C

CO2Et  

 

7 44g 45g 84 

 

N
Me

Br

EtO2C

OMe  

N
Me

EtO2C

OMe  

 

8 44h 45h 46 
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Table 5 (continued) 

 

N
Me

Br

Me OH  

N
Me

Me OH  

 

9 44i 45i 53 

a: Isolated yield of analytically pure product. 

 

In the case of the 2,5-unsymmetrically substituted dibromo derivatives 46, an interesting 

stepwise cyclization is observed. Only the benzylic substituent is activated leading to the 7-

membered ring (47, 62%). Forcing reaction conditions (110 oC, 24 h) lead to a second 

cyclization with the formation of the pentacyclic compound 48a in 61% yield (Scheme 36). 

Under the same conditions, the pentaheterocyclic compounds 48b and 48c are obtained from 

the corresponding dibromo compounds 46c and 46d in 50-56% yield. These condensed 

heterocyclic compounds are difficult to obtain via conventional cross-coupling methods. 
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Scheme 36. Preparation condensed heterocyclic compounds via domino C-H activation 

reactions. 

 

3.6 Mechanistic investigations 

 

Several mechanisms have been proposed for direct arylation reactions, including an 

electrophilic palladation pathway,58 a carbopalladation (Heck-type) pathway 59or a direct C-H 

activation pathway.60 All of these processes involve the formation of palladacycles. In our 

case, the two rings (the aryl ring and pyrrole) are not coplanar; a rotation has to take place 

leading to an increased repulsion between the substituents R1 and R2. Hence the formation of 

palladacycle 49 is greatly affected by the nature of the groups R1 and R2 (Scheme 37).  
                                                 
58 a) B. S. Lane, M. A. Brown, D. Sames, J. Am. Chem. Soc. 2005, 127, 8050. b) D. Trauner, C. C. Hughes, Angew. Chem., 
Int. Ed. 2002, 41, 1569. c) R. S. Shue, J. Am. Chem. Soc. 1971, 93, 7116. d) E. J. Hennessy, S. L. Buchwald, J. Am. Chem. 
Soc. 2003, 125, 12084. 
59 M. Toyata, A. Ilangovan, R. Okamoto, T. Masaki, M. Arakawa, M. Ihara, Org. Lett. 2002, 4, 4293. 
60 a) E. J. Hennessy, S. L. Buchwald, J. Am. Chem. Soc. 2003, 125, 12084; b) J. Cámpora, E. Gutiérrez-Puebla, J. A. López, 
A. Monge, P. Palma, D. del Río, E. Carmona, Angew. Chem., Int. Ed. 2001, 40, 3641. c) J. Cámpora, J. A. López, P. Palma, 
E. Spillner, E. Carmona, Angew. Chem., Int. Ed. 1999, 38, 147. 
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Scheme 37. Formation of palladacycles affected by the substituents R1 and R2. 

 

In order to probe the mechanism, various substituted 2-bromo-N-arylpyrrole derivatives were 

investigated under the standard conditions and the results were summarized in Scheme 38. 

These results showed that the nature of the groups R1 and R2 greatly affect the reaction. 

Interestingly, when substrate 39w was involved in this reaction, a complex heterocycle 50 was 

obtained in 85% but failed of substrate 39u. 

 

entry  R1 R2 R3 R4 Result 
1 39u Me H H H a 
2 39c Me Me H CO2Et b 
3 39n Me Et H CO2Et b 
4 39v Et Et H CO2Et a 
5 39w Me H Me CO2Et c 
6 39x Me Me Me CO2Et a 
7 46c Me Me Br CO2Et a 

                       a: No desired product; b: C-H activation reaction is observed; 
                       c: Provides a complex compound (50). 
 
Scheme 38. Summary of the results with different R1 and R2 groups. 

 

Two plausible mechanisms can be envisioned for the formation of 50. Once the intermediate 

39ab is formed through oxidative addition, there are two possible pathways in which the 

reaction can further proceed. In the first pathway, the intermediate 39ab reacts with another 

molecule of 2-bromo-N-arylpyrrole derivative 39 to form the intermediate 39a1 in a Heck-

like type reaction. 39a1 would give the product 50 after an intramolecular arylation in the 

presence of Pd(0) (pathway A). Alternatively, the reaction may proceed via the direct C-H 

activation of intermediate 39ab, forming a palladacyclic intermediate 39b161, which may 

undergo oxidative addition with 39 to afford the intermediate 39b262. Subsequent reductive 

                                                 
61 a). M. A.Campo, R. C. Larock, J. Am. Chem. Soc. 2002, 124, 14326. b) Q. Huang, M. A. Campo, T. Yao, Q. Tian, R. C. 
Larock, J. Org. Chem. 2004, 69, 8251. c) G. Karig, , M.-T. Moon, N. Thasana, T. Gallagher, Org. Lett. 2002, 4, 3115. d) Q. 
Tian, R. C. Larock, Org. Lett. 2000, 2, 3329. e) R. C.Larock, Q. Tian, J. Org. Chem. 2001, 66, 7372. 
62 Ref. for palladium (IV) complex: a) A. J. Canty, J. Patel, T. Rodemann, J. H. Ryan, B. W. Skelton, A. H. White, 
Oranometallics 2004, 33, 3466. b) M. Lautens, J.-F. Paquin, S. Piguel, M. Dahlmann, J. Org. Chem. 2001, 66, 8127. c) M. 
Lautens, S. Piguel, Angew. Chem., Int. Ed. 2000, 39, 1045. d) M. Lautens, J.-F. Paquin, S. Piguel, M. Dahlmann, J. Org. 
Chem. 2002, 67, 3972. e) M. Catellani, F. Frignani, A. Rangoni, Angew. Chem., Int. Ed. 1997, 69, 119. 
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elimination would lead to 39b3, which will give the product 50 after an intramolecular 

arylation (pathway B) (Scheme 39).  
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Scheme 39. The plausible mechanisms for the formation of 50. 

 

Our results show that the activation of a methyl substituent is not an easy process and that the 

reaction is hampered by steric hindrance. These considerations led us to propose the following 

tentative mechanism for the cyclization reaction. The N-(2-haloaryl)pyrrole derivative 51a 

first undergoes an oxidative addition of Pd(0) generated in situ, leading to the Pd(II) species 

51b (Scheme 40). Concomitant C-H activation and HX elimination provides the palladacycle 

51c, which, after reductive elimination, yields the 9H-pyrrolo [1,2-a] indole 51d. 

N
X
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PdX

Me Me
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Scheme 40. Tentative mechanistic pathway for the ring closure. 

 

On this basis, we suggest a plausible reaction mechanism for the domino C-H activation 

preparation of pentacyclic compounds 48a-c. The process is most likely initiated by an 

oxidative addition of Pd(0) to the dibromoarylpyrrole 46a, resulting in the Pd(II)-species 52a. 

The formation of the carbon-carbon bond may proceed via an electrophilic aromatic 

substitution to give 8-membered palladacycle 52c, which then undergoes a reductive 

elimination affording the product 47 and regenerates the Pd(0)-species. The Pd(0)-insertion 
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into the C-Br bond of the aryl bromide 47 results in the formation of the Pd(II)-species 52d. 

Concomitant C-H activation and HX elimination provides the palladacycle 52e, which leads 

to the pentacyclic compound 48a after reductive elimination (Scheme 41). 
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Scheme 41. A plausible reaction mechanism for the preparation of pentacyclic compounds via 

domino C-H activation. 
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3.7 Extending the C-H activation reaction  

 

We have then focused our attention on the formation of 6-membered ring synthesis. Initially, 

we focused on the compound 54a, since it can be easily prepared from the (2-bromophenyl) 

methanamine 53a. Once we had the starting material 54a in hand, we tried the reaction using 

the standard conditions. Unfortunately, the product 55 could not be observed. Interestingly, 

when heating the compound 40a under the standard conditions, the ring closure product 42a 

smoothly formed in 75% yield (Scheme 42). 
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Scheme 42. Formation of 6-membered ring through a Pd-catalyzed C-H activation. 

 

In order to investigate the scope of this type of reaction, several N-acyl-2,5-pyrrole derivatives 

40b-d were prepared from the corresponding methyl ester and the lithium amide of 2,5-

dimethyl-1H-pyrrole. Thus, treatment of 2-bromo-5-methoxybenzoic acid methyl ester 56a63 

and 2-bromo-3,4,5-trimethoxy-benzoic acid methyl ester 56b with lithium amide of 2,5-

dimethyl-1H-pyrrole (which was generated from 2,5-dimethyl-1H-pyrrole and n-BuLi), a 

substitution reaction occurred and provided the N-acylpyrroles 40b and 40c in 81-84% yield. 

The cycloalkenyl derivative 40d was obtained by this method starting from 1-bromo-3,4-2H-

naphthalene-2-carboxylic acid methyl 56c64, which was obtained from α-tetralone in 3 steps 

(Scheme 43). 

                                                 
63 S. Ozaki, M. Adachi, S. Sekiya, R. Kamikawa, J. Org. Chem. 2003, 68, 4586. 
64 T. L. Gilchrist, M. A. M. Healy, Tetrahedron 1993, 49, 2543. 
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Scheme 43. Preparation of N-acyl-2,5-pyrrole derivatives. 

 

Remarkably, under the standard conditions, the readily available amides 40b and 40c were 

both converted into the pyrrolo[1,2-b]isoquinolines 42b-c in 75-81% yield. For the substrate 

40d, milder conditions can be used. Thus, the amide 40d was heated in the presence of 

Pd(OAc)2 (5 mmol%) at 80 oC for 5 h affording heterocycle 42d in 79% yield. The oxidized 

naphthyl derivative 57 was also present in the crude reaction mixture (less than 5% as shown 

by 1H-NMR analysis; Scheme 44). 
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Scheme 44. Preparation of pyrrolo[1,2-b]isoquinolines. 
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Cycloalkenyl N-acylpyrroles undergo also the desired ring closure. The starting materials 

were prepared as shown in Scheme 45 from cyclic ketones 58a-c. Thus, the 2-bromo-

cyclohex-1-enecarboxylic acid amide 59b was obtained in 4 steps according to the literature. 

65  Treatment of 2-bromocyclohex-1-enecarboxamide 59b with hexane-2,5-dione in the 

presence of TsOH·H2O (2 mol %) provided the N-acylpyrrolamide 60b in 79% yield. The N-

acylpyrrolamide 60a and 60c were prepared from the same procedure in 40-81% yields 

(Scheme 45).  
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Scheme 45. Preparation of non-aromatic N-acylpyrroles 60a-c. 

 

The N-acylpyrrolamides 60a-c were all converted to the tricyclic compounds 61a-c under the 

usual conditions in 74-85% yield (Scheme 46).  
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Scheme 46. Preparation of tricyclic heterocycles starting from non-aromatic N-acylpyrroles. 

 

3.8 Tandem reactions involving a Suzuki cross-coupling and a C-H activation  

 

We have also investigated the performance of C-H activation reactions in conjunction with 

Suzuki cross-couplings. The dibromoaryl pyrrole 44j when treated with Pd(OAc)2 in toluene 

did not give the desired C-H activation product 62. However when dibromoarylpyrrole 44j 

was treated with phenylboronic acid (1.1 equiv) in the presence of Pd(OAc)2 (10 mol%) and 
                                                 
65 K. Ohe, K. Miki, T. Yokoi, F. Nishino, S. Uemura, Organometallics, 2000, 19, 5525. 
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p-Tol3P (20 mol%), the domino Suzuki cross-coupling and C-H activation product 63a was 

obtained in 65% yield (after recrystallization). The amount of phenylboronic acid used in this 

reaction is important. If an excess of phenylboronic acid (2.0 equiv) was used, the double 

Suzuki cross-coupling product was formed instead of 63a. If 0.9 equiv was used, the mono-

Suzuki cross-coupling compound and starting material 44j was obtained without any trace of 

63a. When 3-methyloxyl benzeneboronic acid was used, the cross-coupling and C-H 

activation compound 63b was obtained in 89% yield. Interestingly, when the dibromo 

substrate 44k was treated with 3-methyloxyl benzeneboronic acid under these conditions, it 

also afforded the desired product 63c in 59% yield (Scheme 47). 
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Scheme 47. Domino-reactions involving a Suzuki cross-coupling and a C-H activation. 
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3.9 Conclusion 

 

In conclusion, we have established a new type of C-H activation reaction catalyzed by 

Pd(OAc)2 and p-Tol3P for the construction of complex condensed N-heterocycles. The key 

step of this ring closure is a chemoselective intramolecular C-H activation of a methyl group 

at position 2 of a pyrrole ring. We also expended this reaction to domino reactions to prepare 

complex N-heterocycles in one pot.  
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4. Preparation of Functionalized Alkenylmagnesium Reagents and Polysubstituted 

Pyridylmagnesium Reagents Using i-PrMgCl•LiCl 

 

4.1 Introduction 

 

Organomagnesium reagents are key organometallic intermediates for organic synthesis.66,67 

The stereoselective preparation of functionalized alkenylmagnesium reagents is an important 

synthestic task, since these reagents are frequently used in organic chemistry. Due to the 

expanded applications of alkenylmagnesium reagents in organic synthesis, numerious 

methods were developed for their preparation. 

A standard preparation of magnesium reagents is the direct insertion of magnesium into an 

organic halide.66,68 However, this method is not suitable for the preparation of functionalized 

organomagnesium compounds due to competitive reduction of several important functional 

groups.69  Furthermore, the Mg-insertion into alkenyl iodides or bromides is not 

stereoselective and provides an E/Z-mixture of alkenylmagnesium reagents (eq. 1, Scheme 

48).70 An important and highly useful synthetic reaction for the preparation of vinylmetals is a 

metal-halogen exchange since the corresponding alkenyl lhalides are convenient and easily 

available synthons (eq. 2, Scheme 48).71 

X

X

Li (MgX)

Li (MgX)

Li, Mg

RLi, RMgX

(1)

(2)

 

Scheme 48. The methods for the preparation of vinylmetals. 

 

The alkenyl organiomagnesium reagents have become a type of valuable reagents in total 

synthesis because of their unique properties. Recently, Professor Shair and his group at 

                                                 
66 (a) G. S. Silverman,. P. E. Eds Rakita, Handbook of Grignard Reagents; Marcel Dekker: 1996. (b) Richey, Jr. H. G., Ed. 
Grignard Reagents: New developments; Wiley, New York: 1999. (c) P. Knochel, W. Dohle, N. Gommermann, F. F. Kneisel, 
F. Kopp, T. Korn, I. Sapountzis, V. A. Vu, Angew. Chem. 2003, 115, 4438; Angew. Chem. Int. Ed. 2003, 42, 4302. 
67 For recent application see: (a) A. Klos, G. R. Heintzelman, S. M. Weinreb, J. Org. Chem. 1997, 62, 3758. (b) D. F. Taber, 
J. H. Green, J. M. Geremia, J. Org. Chem. 1997, 62, 9342. (c) Y. Hayashi, H. Shinokubo, K. Oshima, Tetrahedron Lett. 
1998, 39, 63. (d) A. Inoue, K. Kitagawa, H. Shinokubo, K. Oshima, J. Org. Chem. 2001, 66, 4333. (e) N. M. Heron, J. A 
Adams, A. H. Hoveyda, J. Am. Chem. Soc. 1997, 119, 6205. (f) A. F. Houri, Z. Xa, D. A Cogan, A. H. Hoveyda, J. Am. 
Chem. Soc. 1995, 117, 2943. (g) F. F. Fleming, V Gudipati, O. W. Steward,. Org.Lett. 2002, 4, 659. (h) F. F. Fleming, Z. 
Zhang, Q. Wang, O. W. Steward, Org.Lett. 2002, 4, 2493. 
68 The use of activated magnesium (Rieke-magnesium) has an especially broad reaction scope: (a) R. D. Rieke, H. Xiong, J. 
Org. Chem. 1991, 56, 3109. (b) R. D. Rieke, Science 1989, 246, 1260. 
69 (a) T. P. Burns, R. D. Rieke, J. Org. Chem. 1987, 52, 3674. (b) I. Sapountzis, P. Knochel, Angew. Chem. Int. Ed. Engl. 
2002, 41, 1610. 
70 P.;Knochel, J. F. Normant, Tetrahedron Lett. 1986, 27, 4431. 
71 C. E. Tucker, T. N. Majid, P. Knochel, , J. Am. Chem. Soc. 1992, 114, 3983. 
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Harvard University completed the the synthesis of (+)-CP263114 72using a clever cascade 

sequence initiated by the addition of vinyl Grignard 65 to the ketone 66. The vinyl Grignard 

65 was synthesized by Br/Li exchange on the vinylbromide 64 followed by transmetalation 

with MgBr2. With this event proceeding 67, the stage was set for a subsequent anion-

accelerated oxy-Cope rearrangement via a chair-like transition state to generate an eight-

membered ring in the formation of 68, which gave rise to the complete [4.3.1]bicycle of the 

CP-molecule 69 in a terminating Dickmann condensation (Scheme 49). 
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Scheme 49. Shair’s route to CP molecule using an alkenyl magnesium reagent. 

 

Alkenyl iodides react with i-PrMgBr, i-PrMgCl, i-Pr2Mg or n-Bu3MgLi, leading to the 

corresponding alkenylmagnesium halides after an I/Mg exchange. This exchange reaction is 

slower than similar one using aryl iodides, which implies that either the use of more reactive 

reagents or the presence of chelating groups would be advantageous. A lot of functionalized 

alkenylmagnesium reagents have been prepared from the corresponding alkenyl iodides using 

an I/Mg exchange, such as the alkenylmagnesium bromide 70a (i-PrMgBr, THF, -70 oC, 12 

                                                 
72 a) C. Chem, M. E. Layton, S. M. Sheehan, M. D. Shair, J. Am. Chem. Soc. 2000, 122, 7424; (b) C. Chem, M. E. Layton, 
M. D. Shair, J. Am. Chem. Soc. 1998, 120, 10784. 
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h), 70b (i-PrMgBr, THF, -20 oC, 30 min)73, 70c (i-PrMgBr, THF, -20 oC, 30 min)74, 70d (i-

PrMgBr, THF, -30 oC, 15 min)75, 70e (i-PrMgCl, THF, -30 oC, 30 min),76 70f (i-PrnBu2MgLi, 

0 oC, 1 h)77 and 70g (i-PrMgCl, ether, -50 oC, 15 min)78(Scheme 50). 
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Scheme 50: The functctionalized alkenylmagnesium reagents generated from an I/Mg 

exchange. 

 

For substrates without any chelating or electron-withdrawing groups, such as (E)-1-iodo-oct-

1-ene 71a, more reactive reagents are needed. Recently, our group have shown that an I/Mg-

exchange using i-Pr2Mg leads stereoselectively to alkenylmagnesium reagents 72a (Scheme 

51).79 Unfortunately, the relatively high temperature for performing this reaction (25 °C) 

precludes the presence of functional groups. Only substrates bearing a chelating oxygen atom 

at the appropriate position undergo the I/Mg-exchange at low temperature. 

C6H13
nI

i-Pr2Mg

C6H13
nMg

TsCN

C6H13
nNC

THF, rt, 18 h
71a 72a 73a  

Scheme 51. E-iodooctene undergoes the exchange reaction at room temperature. 

 

Recently, our group have found that the complex i-PrMgCl·LiCl (74a) exhibits a dramatically 

increased reactivity compared to i-PrMgCl or i-Pr2Mg for performing halogen-magnesium 

exchange reactions.80 This may be explained by the structure 74b of this reagent, which 

                                                 
73 I. Sapountzis, W. Dohle, P. Knochel, Chem. Commun. 2001, 2068. 
74 J. Thibonnet, A. Duchene, J.-L. Parrain, M. Abarbri, J. Org. Chem. 2004, 69, 4262. 
75 Dissertation, Matthias Lotz LMU, Munich (Germany), 2002. 
76 V. A. Vu, L. Bérillon, P. Knochel, Tetrahedron Lett. 2001, 42, 6847. 
77 A. Inoue, K. Kitagawa, H. Shinokubo, K. Oshima, J. Org. Chem. 2001, 66, 4333. 
78 V. A. Vu, I. Marek, P. Knochel, Synthesis, 2003, 1797. 
79 M. Rottländer, L Boymond, G. Cahiez, P. Knochel, J. Org. Chem. 1999, 64, 1080. 
80 A. Krasovskiy, P. Knochel, Angew. Chem., Int. Ed. Engl. 2004, 43, 3333. 
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displays an extra negative charge at the magnesium center enhancing the nucleophilic 

properties of the i-Pr group (Scheme 52). The generation of ortho-bromophenylmagnesium 

reagents 76 can be achieved conveniently with this type of reagent. Thus, the reaction of 1,2-

dibromobenzene 75 with i-PrMgCl·LiCl was completed within 2 h at -15 oC, leading to the 

Grignard reagent 76. The Grignard reagent 76 was transmetalated with CuCN·2LiCl and 

further reacted with PhCOCl and 3-iodo-2-cyclohexen-1-one, providing the products 77a and 

77b in 84% and 86% yield respectively (Scheme 52)76. 

 
Mg

Cl
Li

Cl
i-Pr Mg

Cl

Cl
i-Pr Li

74a 74b

1) CuCN·2LiCl

Br

Br

Br

MgCl·LiCl

2) PhCOCl

1) CuCN·2LiCl

O

I

i-PrMgCl·LiCl

Br

O

Br

O

-15 oC, 2 h

2)

77a: 84 %

77b: 86 %

75 76

 
Scheme 52. Novel exchange reagent: i-PrMgCl·LiCl. 

 
4.2 Extension of the usage of i-PrMgCl•LiCl in the preparation of alkenylmagnesium 
reagents and synthetic applications 
 
4.2.1 Stereoselective preparation of acyclic vinyl iodides 

 

Alkenyl iodides, which are important starting materials in organic synthesis, are usually 

prepared by sequential reactions on alkynes, i.e., hydrometalations of alkynes with various 

metal hydrides, followed by iodolysis. 1-Iodo-1-alkenes can be prepared conveniently via 

hydrometalations of alkynes in an anti-Markovnikov fashion. Thus, the E isomers of 79a and 

79c were obtained in good yields (95% and 81% respectively) and excellent stereoselectivity 

(E/Z > 99/1) from their corresponding alkynes using DIBAL. 81 The Z isomers of 79b and 79d 

                                                 
81 B. M. Trost, M. T. Rudd, Org.Lett. 2003, 5, 4599. 
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can be prepared from the alkynes using Brown’s method82 (Scheme 53) respectively in yields 

of 67% and 77%.  

R

R

1) HBBr2·SMe2

R

Al

R

B OH
HO

I2

I2

I

R

I

R

DIBAL

79a, R = Et, 95 %, E/Z > 99/1 
79c, R = Cl, 81 %, E/Z > 99/1

79b, R = Et, 67 %, Z/E > 98/2 
79d, R = Cl, 77 %, Z/E > 97/3

78

78

2) H2O

 

 

Scheme 53. Steroselective preparation of terminal vinyl iodides. 

 

Interestingly, treatment of 6-chloro-1-iodo-hex-1-ene 79c with NaI resulted in 6-iodo-1-iodo-

hex-1-ene 79e, which can then be converted to some other functionalized alkenyl iodides 

through reaction with nucleophilic carbons. Thus the exposure of iodide 79e to lithium 

isobutyronitrile (formed by deprotonation of isobutyronitrile with LDA) led to the desired 

carbon-carbon bond formation. This reaction took place smoothly and gave rise to 

functionalized alkenyl iodide 79f in 69% yield. The alkenyl iodide 79g was obtained via the 

same procedure in 81% yield (Scheme 54). 

I

Cl

I

I

H CN

H COOMe

I

CN

I

COOMe

NaI / acetone LDA

LDA79c 79e

79f, 69%, E/Z > 99/1

79g, 81 %, E/Z > 99/1

90 %

 

Scheme 54. Preparation of functionalized terminal vinyl iodides. 

 

                                                 
82 H. C. Brown, C. Subrahmanyam, T. Hamaoka, N. Ravindran, D. H. Bowman, S. Misumi, M. K. Unni, V. Somayaji, N. G. 
Bhat, J. Org. Chem. 1989, 54, 6068. 
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Internal alkenyl iodides, such as 79h and 79i, can be prepared from toluene-4-sulfonic acid 2-

iodo-allyl ester 8083, obtained from prop-2-yn-1-ol in two steps. Treatment of the iodide 80 

with the zinc reagent 81 in the presence of catalytic amounts of CuCN·2LiCl afforded the 

alkenyl 79h in 63% yield. Exposure of the iodide 80 to lithium isobutyronitrile, which was 

formed by deprotonation of isobutyronitrile with LDA, provided the functionalized alkenyl 

iodide 79i in 57% yield (Scheme 55). 

NC ZnBr

I
TsO

HO

CNH I

NC

I
NC

1) TMSCl, NaI

2) TsCl, Et3N

CuCN·2LiCl (cat.) 79h, 63 %

LDA
79i, 57 %

80

81

 

Scheme 55. Preparation of functionalized internal vinyl iodides. 

 

4.2.2 Stereoselective Preparation of Functionalized Acyclic Alkenylmagnesium Reagents 

Using i-PrMgCl•LiCl 

 

With the reagent i-PrMgCl·LiCl 74a, the I/Mg-exchange of alkenyl iodide 79a proceeded 

at -25 °C or lower. This considerably enhances the functional group compatibility and allows 

conversion of a variety of functionalized alkenyl iodides of type 79 to the corresponding 

Grignard species 82 with retention of the double bond configuration. The reaction with 

various electrophiles provides polyfunctional alkenes of type 83 with good yields and 

excellent stereoselectivity (table 7). Thus, the reaction of (E)-1-iodo-oct-1-ene (79a; E: Z = 

99:1) with i-PrMgCl·LiCl (1.1 equiv) at –40 °C gives the corresponding alkenylmagnesium 

reagent 82a which reacts with various electrophiles (aldehyde, DMF or PhSSPh) providing 

the expected products 83a-c with an excellent stereoselectivity (E: Z = 99:1, entries 1-3 of 

Table 7). Similarly, (Z)-1-iodo-oct-1-ene 79b (E:Z = 2:98) furnishes the corresponding Z-

alkenylmagnesium chloride 82b, which after reaction with an aldehyde or a disulfide, leads to 

the cis-products 83d and 83e in 69-70% yields (entries 4 and 5). The mild reaction conditions 

required for the I/Mg-exchange allow the preparation of functionalized alkenylmagnesium 

compounds bearing a chloride (82c and 82d; entries 6 and 7), an iodide (82e, entry 8), a 

                                                 
83 I. Shinji; K. Takao; I. Yasutaka; O. Masaya. Synthesis 1988, 366. 
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cyanide (entries 9, 13 and 14) or an ester (entries 10-12). The expected products 83f-n were 

all obtained in satisfactory to good yields. 

Table 6. Products of type 83 obtained by the reaction of polyfunctional alkenylmagnesium 

reagents with i-PrMgCl·LiCl. 

I
R

i-PrMgCl·LiCl

MgX
R

E
R

E+

79 82 83

-40 oC, 5-20 h

 

entry Grignard reagenta electrophile Product of type 83 Isolated yield 

(%)b (E/Z) 

1c MgX
Hex

 

82a 

EtCHO Hex

OH  

83a 

82 (99:1) 

2c 82a DMF CHO
Hex

 

83b 

71 (99:1) 

3c 82a PhSSPh SPh
Hex

 

83c 

70 (99:1) 

4d 
Hex MgX  

82b 

PhSSPh 
Hex SPh  

83d 

69 (2:98) 

5d 82b EtCHO 
Hex

HO  

83e 

70 (2:98) 

6c 

MgX

Cl

 

82c 

PhSSPh 

SPh

Cl

 

83f 

75 (99:1) 

7d 
MgX

Cl  

82d 

PhSSPh 
SPh

Cl  

83g 

81 (3:97) 

8c 

MgX

I

 

82e 

EtCHO 
I

HO
Et

 

83h 

84 (99:1) 
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9c 

MgX

CN

 

82f 

EtCHO 

Et
HO

CN

 

83i 

77 (99:1) 

10e 

MgX

COOMe

 

82g 

Allyl bromide 
COOMe

 

83j 

71 (98:2) 

11e 82g EtCHO 
COOMe

Et
HO  

83k 

82 (99:1) 

12e 82g TsCN 

CN

COOMe

 

83l 

75 (99:1) 

13f NC
MgX

 

82h 

I

CHO  

 

NC HO

I

 

83m 

91 

14c MgX CN

 

82i 

EtCHO CN
Et OH

 

83n 

70 

 
a X = Cl·LiCl. b Isolated yield of analytically pure product. c The exchange was performed at -
40 oC for 7 h. d The exchange was performed at -40 oC for 40 h. e The exchange was 
performed at -40 oC for 12 h. f The exchange was performed at -40 oC for 5 h. 
 

Interestingly, the Grignard reagent 82j was obtained in excellent yield with retention of the 

double bond configuration when (1-iodo-2-phenyl-vinyl)-trimethyl-silane 79j 84was treated 

with i-PrMgCl·LiCl at -30 oC. This type of Grignard reagent can be converted to its 

corresponding copper reagent, which, if trapped with PhCOCl, provided the ketone 83o in 

                                                 
84 E. Negishi, T. Takahashi, J. Am. Chem. Soc. 1986, 108, 3402. 
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81% yield. In addition, this type of Grignard can be directly trapped with electrophiles, such 

as TsCN, to furnish the nitrile compound 83p in 77% yield (Scheme 56).  

TMS

MgCl

TMS

I
TMSCN

i-PrMgCl·LiCl

TMS

CN

TMS

O

79j 82j

1) CuCN·2LiCl

2) PhCOCl

83o: 81 %

83p: 77 %

- 30 oC, 2 h

 
Scheme 56. Preparation of Grignard reagent 82j via an I/Mg exchange. 

 
Although a ketone group is usually85  not compatible with the presence of a carbon-

magnesium bond, we have found that the corresponding silylated cyanohydrin derivative 85 

of 1-iodo-oct-1-en-3-one 8486 can be readily converted into its corresponding magnesium 

species 86. After transmetalation with CuCN·2LiCl, it reacted with 3-iodocyclohexane or 

benzoyl chloride leading to the unsaturated diketones 87a and 87b in 77% and 74% yields 

after deprotection of the intermediate cyanohydrin derivatives with Bu4NF and HCl (2 M in 

H2O) (Scheme 57).  

IPent

O

OI

TMSCN
MgCl·LiClPent

CNTMSO
IPent

CNTMSO

O

Pent
O

O

Pent
O

i-PrMgCl·LiCl

- 40 °C, 2 h

1. CuCN·2LiCl

2.

3. Bu4NF
87a: 77 %
E:Z = 99:1

1. CuCN·2LiCl

2. PhCOCl
3. Bu4NF

87b: 74 %
E:Z = 99:1

4. 2 N HCl

4. 2 N HCl

CsF(cat.)

85: quant.84: E:Z = 99:1

86

86

MgCl·LiClPent

CNTMSO

 
Scheme 57. Synthesis of unsaturated diketones 87a and 87b. 
                                                 
85 For exceptions, see: F.F. Kneisel, P. Knochel, Synlett  2002, 1799. 
86 The silylated cyanohydrin 85 was in situ prepared from 1-iodo-oct-1-en-3-one 84 by addition TMSCN in the presence of 
catalytical amounts of CsF in dry CH3CN. Ref: S. S Kim, G. Rajagopal, D. H. Song, J. Organomet. Chem. 2004, 689, 1734. 
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This method can be extended to the preparation of functionalized dienic Grignard reagents. 

The diene iodide 90, which was easily prepared from 3-phenyl-prop-2-yn-1-ol 88 in 4 steps, 

was treated with i-PrMgCl·LiCl (1.1 eq) and the exchange reaction took place, providing its 

corresponding dienic magnesium reagent 91. The exchange was very fast and it was 

completed at -78 oC within 10 min! The dienic magnesium reagent 91 could be trapped with 

different electrophiles. Treatment of the Grignard reagent 91 with allyl bromide in the 

presence of CuCN·2LiCl (1 mol %) afforded the diene compound 92a in 92% yield. The 

diene species can be converted to the unsaturated ketone 92b in 88% yield via transmetalation 

with CuCN·2LiCl and subsequent reaction with benzoyl chloride (Scheme 58). 

i-PrMgCl·LiCl

OH

MgCl

Me

CO2Et

I

Me

OH

O

OEt
P
O

EtO
EtO

Me

CO2Et

O

Me

CO2Et

I

Me

CO2Et
1) MeMgCl, CuI

3) Swern 
Oxidation

4)

allyl bromide

1) CuCN·2LiCl

2) PhCOCl

88 89 90: 74% from 89

91

92a: 92 %

92b: 88 %

2) I2

- 78 °C, 10 min

 

Scheme 58. Preparation of the functionalized dienic Grignard reagent 91. 

 

4.2.3 Preparation of Cyclic Alkenylmagnesium Reagents via an Iodine/Magnesium 
Exchange 
 
Our group has demonstrated that chiral 2-iodocycloalkenyl alcohol derivatives of type 93 

readily undergo substitution reactions with zinc-copper reagents (when OR is a leaving group), 

giving chiral cycloalkene derivatives with good to excellent ee.87 Now we have found that i-

PrMgCl·LiCl reagents react at low temperature with 93a (-25 °C, 5 h) and 93b (-40 °C, 12 h) 

to give the corresponding alkenylmagnesium species 94a and 94b. Reaction with various 

                                                 
87 a) M. I. Calaza, X. Yang, D.Soorukram, P. Knochel, Org. Lett. 2004, 6, 529. b) M. I Calaza, E. Hupe, P. Knochel, Org. 
Lett. 2003, 5, 1059; c) G. Varchi, C. Kofink, D. M. Lindsay, A. Ricci, P. Knochel, Chem. Commun. 2003, 396; d) F. Kneisel, 
P. Knochel, Synlett, 2002, 1799. 
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electrophiles (E+) provides the corresponding chiral products 95a-i in good to excellent yields 

(see Table 8 and Scheme 59). 

I

OR
i-PrMgCl·LiCl

MgCl

OR

E

OR

93a: n = 1, -25 oC, 5 h( )
n

93b, n = 2, -40 oC, 12 h
( )

n
93a : n = 1

93b : n = 2
R = EtOCH2 (EOM)

E+

( )
n

94a : n = 1
94b : n = 2 95  

Scheme 59. Preparation of cyclic alkenylmagnesium reagents via an I/Mg exchange. 
 

Thus, the allylation of 94a with allyl bromide proceeds readily in the presence of copper 

additives, leading to the protected cyclopentanol 95a in 91% yield (entry 1 of Table 8). 

Similarly, the reaction of the cyclohexenol derivative 94b with allyl bromide furnishes the 

allylated product 95g in 81% yield (entry 7). All reactions proceed with complete retention of 

chirality (proved for allyl cyclohexenol derivative 95j). Diphenyl disulfide reacts with 94a 

and 94b, providing the thioethers 95b and 95h in 81-82% yields (entries 2 and 8). After 

transmetalation with CuCN·2LiCl, an addition-elimination reaction with 3-iodo-2-

cyclohexen-1-one leads to the dienone 95c in 61% yield (entry 3). Aldehydes like 

benzaldehyde lead to 1, 3-diol derivatives such as 95d (89%) and 95i (84%) as a mixture of 

diastereomers (for 95d: dr = 66: 34; for 95i: dr = 80: 20). The acylation of the copper 

derivative of 94a proceeds in moderate yields, affording the unsaturated enone 95e in 53% 

yield (entry 5). The opening of N-tosylaziridine88 provides the amino-alcohol derivative 95f in 

63% yield (entry 6). 

 

Table 7: 2-Magnesium cycloalkenol derivatives and their reaction with electrophiles. 

I

OR
i-PrMgCl·LiCl

MgCl

OR

E

OR

93a: n = 1, -25 oC, 5 h( )
n

93b, n = 2, -40 oC, 12 h
( )

n

93a : n = 1

93b : n = 2
R = EtOCH2 (MOE)

E+

( )
n

94a : n = 1
94b : n = 2 95  

Entry Grignard reagent Electrophile Product of type 95 Yield (%)a 

1 O

MgCl·LiCl

EtO

 

94a 

Allyl bromide OEtO

 

95a 

91 

                                                 
88 (a) D. Enders, C. F. Janeck, J. Runsink, Synlett, 2000, 641. (b) A. N. Vedernikov, K. G. Caulton, Org. Lett. 2003, 5, 2591. 
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Table 7 (continued) 

2 94a PhSSPh O

SPh

EtO

 

95b 

82 

3 94a 

I

O

 

O

O

EtO

 

95c 

61 

4 94a PhCHO O

Ph

OHEtO

 

95d 

89 

5 94a PhCOCl O

Ph

OEtO

 

95e 

53 

6 94a NTs  
O

NHTs

EtO

 

95f 

63 

7 O
MgCl·LiCl

EtO

 

94b 

Allyl bromide OEtO

 

95g 

81 

8 94b PhSSPh O
SPh

EtO

 

95h 

80 

9 94b PhCHO OEtO OH

 

95i 

84 
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Table 7 (continued) 

10 O
MgCl·LiCl

EtO

 

94c 

Allyl bromide OEtO

 

95j 

82 

a: isolated yields of analytically pure products. 

 

Interestingly, this approach can be extended to the cyclic exo-methylene dienes 96 and 99.89 

The iododiene 96 is converted smoothly to the corresponding magnesium derivative 97 (-40 

°C, 4 h) in high yield. Its reaction with propionaldehyde furnishes the dienic alcohol 98a in 

91% yield. Its addition to N-tosylbenzaldimine gives the diene sulfonamide 98b in 85% yield. 

After transmetalation with ZnBr2, a Negishi cross-coupling reaction with methyl 4-

iodobenzoate or 3-bromocyclohexenone in the presence of Pd(dba)2 (5 mol%) and tri(2-

furyl)phosphine (tfp, 10 mol% ) provides the aryl-substituted diene 98c in 90% yield and the 

conjugated trienone 98d in 70% yield respectively (Scheme 60). 

 

CH2

I

i-PrMgCl·LiCl

EtCHO

CH2

OH

CH2

MgCl·LiCl

I CO2Me

NTs

Ph

CH2

Ph

NHTs

OBr

CH2

O

CH2

CO2Me

-40 oC, 4 h

98a: 91 %

1) ZnBr2

2) Pd(dba)2, tfp cat.

1) ZnBr2

2) Pd(dba)2, tfp cat.

98d: 70 %

98c: 90 %

98b: 85 %

96 97

 

Scheme 60: The reaction of dienic Grignard reagent 97 with different electrophiles. 

                                                 
89 These dienes are readily obtained by the Wittig-olefination of 3-iodo- and 2-iodo-cyclohexenone with CH2=PPh3 (rt, 12 h) 
respectively in variable yields (84% for 96 and 10% for 99). 
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A similar behaviour is observed from the diene 99. Its reaction with i-PrMgCl·LiCl (- 40 °C , 

4 h) provides the corresponding dienic Grignard reagent 100, which undergoes a Pd-catalyzed 

cross-coupling with methyl 4-iodobenzoate after transmetalation with ZnBr2, leading to the 

expected product 101 in 90% yield (Scheme 61). 

 

CH2

I
i-PrMgCl·LiCl

CH2

MgCl

I CO2Me

CH2
CO2Me

-40 oC, 2 h

1) ZnBr2

2) Pd(dba)2, ftp (cat.)

99 100 101: 90 %
 

Scheme 61. Negishi cross-coupling reaction of dienic Grignard reagents 100. 

 

Because of the mild reaction conditions, this exchange strategy can also be employed in 

generating β-acylvinyl anion equivalents. The reaction of silylated cyanohydrin 102 with i-

PrMgCl·LiCl (-40 oC, 2 h) provides the intermediate alkenylmagnesium reagent 103, which, 

after transmetalation with CuCN·2 LiCl, allows a smooth acylation with benzoyl chloride or 

cross-coupling with 3-iodo-cyclohex-2-enone, leading to the dione 104a in 71% yield and 

dione 104b in 76% yield after removal of the protecting group (Scheme 62).  

 

O

I

TMSCN

I

TMSO CN
i-PrMgCl·LiCl

MgCl

TMSO CN

O

O

O

O

CsF (cat.) -40 oC, 2 h

1) CuCN·2LiCl

2) PhCOCl

3) TBAF, 
    2 M HCl

1) CuCN·2LiCl

2)

3) TBAF, 
    2 M HCl

104a: 71 %

104b: 76 %

O

102 103

O I

 

Scheme 62. Generate β-acylvinyl anion equivalents via an I/Mg exchange. 
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4.3 Regioselective Functionalization of Dibromo and Tribromo Pyridines via a Br/Mg 

Exchange 
 

The functionalization of heterocycles using organolithium or organomagnesium intermediates 

has attracted a lot of attention in recent years.90 Direct metalation91and halogen-magnesium 

exchange92 reactions have been used in the preparation of mono- and di-substituted pyridines. 

Herein, we wish to report a selective stepwise magnesiation of 3, 5-dibromo-2-

tosyloxypyridine allowing the preparation of polyfunctional trisubstituted pyridines via a 

regioselective bromine-magnesium exchange reaction.93  In the course of preliminary 

experiments we have noticed that 2-bromo-3-tosyloxypyridine 10594 undergoes a very fast 

bromine-magnesium exchange due to the inductive effect of the tosyloxy group. Thus, the 

bromopyridine 105 reacts with i-PrMgCl⋅LiCl at -30 oC within 7 h, providing the 

corresponding pyridylmagnesium reagent 106 in more than 95% yield. The Grignard reagent 

106 reacts with various electrophiles like DMF or propionaldehyde, leading to the expected 

products 107a (88%) and 107b (85%) (Scheme 63). 

 

                                                 
90 (a) J. Clayden, Organolithiums: Selectivity for Synthesis. Tetrahedron Organic Chemistry Series, Pergamon, 2002, Vol 23. 
(b) T. L. Gilchrist, Heterocyclic Chemistry, Longman, 1998. (c) T Eicher; S. Hauptmann, The Chemistry of Heterocycles, 
Wiley-VCH, 2003. 
91 (a) G. Karig, J. A. Spencer and T. Gallagher, Org. Lett. 2001, 3, 835; (b) E. Arzel, P. Rocca, F. Marsais, A. Godard and G. 
Quéguiner, Heterocycles, 1999, 50, 215; (c) K. C. Nicolaou, Y. He, F. Roschangar, N. P. King, D. Vourloumis and T. Li., 
Angew. Chem., Int. Ed. Engl., 1998, 37, 84; (d) F. Mongin, F. Trécourt and G. Quéguiner, Tetrahedron Lett., 1999, 40, 5483; 
(e) F. Mongin, A. –S. Rebstock, F. Trécourt, G. Quéguiner and F. Marsais, J. Org. Chem., 2004, 69, 6766; (f) H. Awad, F. 
Mongin, F. Trécourt, G. Quéguiner and F. Marsais, Tetrahedron Lett., 2004, 45, 7873 
92 (a) L. Bérillon, A. Leprêtre, A. Turck, N. Plé, G. Quéguiner, G. Cahiez and P. Knochel, Synlett, 1998, 1359; (b) F. 
Trécourt, G. Breton, V. Bonnet, F. Mongin, F. Marsais and G. Quéguiner, Tetrahedron Lett., 1999, 40, 4339; (c) F. Trécourt, 
G. Breton, V. Bonnet, F. Mongin, F. Marsais and G. Quéguiner, Tetrahedron, 2000, 56, 1349; (d) V. Bonnet, F. Mongin, F. 
Trécourt, G. Breton, F. Marsais, P. Knochel and G. Quéguiner, Synlett, 2002, 1008; (e) J. J. Song, N. K. Yee, Z. Tan, J. Xu, 
S. R. Kapadia and C. H. Senanayake, Org. Lett., 2004, 6, 4905; (f) Á. Meana, J. F. Rodríguez, M. A. Sanz-Tejedor and J. L. 
García-Ruano, Synlett 2003, 1678. 
93 For the regioselective functionalization of heterocycles using organometallics, see: (a) C. Stock, F. Höfer and T. Bach, 
Synlett, 2005, 511; (b) S. Schröter, C. Stock and T. Bach, Tetrahedron, 2005, 61, 2245; (c) A. Spiess, G. Heckmann and T. 
Bach, . Synlett, 2004, 131; (d) L. Green, B. Chauder and V. Snieckus, J. Heterocyclic Chem., 1999, 36, 1453; (f) A. C. 
Kinsman and V. Snieckus, Tetrahedron Lett., 1999, 40, 2453. 
94 2-Bromo-3-tosyloxypyridine (105) and 3,5-bromo-2-tosyloxypyri- dine (108) were prepared according to the literature: J. 
Mathieu and A. Marsura, Synth. Commun., 2003, 33, 409. 
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N Br

OTs i-PrMgCl·LiCl

N MgCl

OTs

DMF

EtCHO

N CHO

OTs

N

OTs

OH

-30 oC, 7 h

-30 oC to rt

-30 oC to rt

107a: 88 %

107b: 85 %

105 106

 
Scheme 63. Preparation of pyridylmagnesium reagent 106 via Br/Mg exchange. 
 
The exceptional activity of i-PrMgCl·LiCl for performing a Br/Mg-exchange, combined with 

the strong electron-withdrawing effect of the OTs-group, is responsible for this fast exchange 

reaction. We have extended this exchange reaction to 3,5-dibromo-2-tosyloxypyridine 108 

and have found that the bromine substituent in position 3 undergoes a Br/Mg-exchange with 

99:1 regioselectivity, showing the strong influence of the tosyloxy group. In this case, the 

exchange is even faster due to the inductive effect of the bromine atom in position 5 leading 

to the corresponding magnesium reagent 109 at -30 oC within 2 h. The reaction of the 

pyridylmagnesium reagent 109 with various electrophiles leads to polyfunctional 

trisubstituted pyridines of type 110 with high yields (Scheme 64 and Table 9). 

N OTs

BrBr i-PrMgCl·LiCl

N OTs

MgClBr

N OTs

EBr

-30 oC, 2 h

E+

108 109 110  

 

Scheme 64. Exchange reaction on 3,5-dibromo-2-tosyloxypyridine. 

 

Thus, the trapping of Grignard reagent 109 with DMF affords the pyridylaldehyde 110a in 

88% yield (entry 1 of table 9). The addition of propionaldehyde to 109 leads to the pyridyl 

alcohol 110b in 87% yield (entry 2). The reaction of 109 with acid chlorides proceeds well if 

the Grignard reagent has been transmetalated to the corresponding copper derivative through 

a reaction with CuCN·2LiCl. Under these conditions, the ketones 110c (89%), 110d (83%) 

and 110e (75%) are obtained (entries 3-5). In the presence of catalytic amounts of 

CuCN·2LiCl (2 mol%) the allylation of 109 proceeds smoothly, affording the allylated 

product 110f in 93% yield (entry 6). A CuCN⋅2LiCl mediated cross-coupling with 3-iodo-2-

cyclohexenone, which occurs via an addition-elimination mechanism, provides the pyridyl 
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enone 110g in 84% yield (entry 7). Finally, the direct reaction of 109 with tosyl cyanide gives 

the cyano derivate 110h in 71% yield (entry 8).  

 

Table 8. Products of type 110 obtained by the reaction of the Grignard reagent 109 with 
various electrophiles. 
 

N OTs

BrBr i-PrMgCl·LiCl

N OTs

MgClBr

N OTs

EBr

-30 oC, 2 h

E+

108 109 110  
 

Entry Electrophile Product of type 110 Isolated yield (%)a 

1 DMF 

N

Br

OTs

CHO

 

110a 

88 

2 EtCHO 

N

Br

OTs

OH

 

110b 

87 

3b PhCOCl 

N

Br

OTs

Ph

O

 

110c 

89 

4b 2-FurylCOCl 

N

Br O

OTs

O

 

110d 

83 

5b 

NCl

COCl

 
N

Br
O

N

OTs Cl  

110e 

75 

6c Allyl bromide 

N

Br

OTs  

110f 

93 
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Table 8 (continued) 
7b O

I  N

Br

OTs

O

 

110g 

84 

8 TsCN 

N

Br CN

OTs  

110h 

71 

a Yield of analytically pure products. b The Grignard reagent has been transmetalated to the 
corresponding copper reagent with CuCN⋅2LiCl. c The reaction is performed in the presence 
of 2 mol% of CuCN⋅2LiCl. 
 
Products, such as 110f, react again with i-PrMgCl·LiCl, providing the corresponding 

pyridylmagnesium specie 111 at -30 oC within 7 h. Addition of an electrophile such as 2-

furylcarbonyl chloride or propionaldehyde furnishes the product 112a (75%) and 112b (80%) 

(Scheme 65). 

N OTs

Br i-PrMgCl·LiCl

N OTs

ClMg

EtCHO

1) CuCN·2LiCl

O Cl

O

N OTs

OH

N OTs

O

O

-30 oC, 7 h

2)

-30 oC to rt

110f
111

112a: 75 %

112b: 80 %  

Scheme 65. Further Br/Mg exchange on compound 110f. 

 

Interestingly, the products of type 110 react well in Suzuki-Miyaura cross-coupling 

reactions.95 The treatment of 110c with 3-methoxyphenylboronic acid 113 in the presence of 

Pd(dba)2 (5 mol%), tri-o-furylphosphine (tfp, 10 mol% ), tetrabutylammonium bromide (10 

mol%) and K2CO3 (2.0 equiv, 2.0 M in water) refluxed in THF for 12 h, leading to the 

arylated pyridine 114 in 90% yield (Scheme 66). Products of type 110 can be readily 

converted into pyrazolo [3, 4-b] pyridines by heating with NH2NH2·H2O in toluene (80 oC, 4 

h). These heterocycles are potential anti-cancer therapeutic agents since members of this class 

                                                 
95 (a) N. Miyaura, A. Suzuki, Chem. Rev., 1995, 95, 2457; (b) G. A. Molander and B. Biolatto, J. Org. Chem., 2003, 68, 
4302; (c) W. Yang, Y. Wang and J. R. Corte, Org. Lett., 2003, 5, 3131; (d) J. Witherington, V. Bordas, S. L. Garland, D. M. 
B. Hickey, R. J. Ife, J. Liddle, M. Saunders, D. G. Smith and R. W. Ward, Bioorg. Med. Chem. Lett., 2003, 13, 1577. 
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of heterocycles are kinase inhibitors.96 Thus, the treatment of 110c with NH2NH2·H2O in 

toluene at 80 oC for 4 h produces the heterocycle 115a in 88% yield. The Suzuki-Miyaura 

cross-coupling and cyclization step can be combined in a one-pot procedure as shown, 

starting with the bromopyridine 110d, which is then submitted to a Pd-catalyzed cross-

coupling with the arylboronic acid 113 and subsequently to the reaction with NH2NH2·H2O, 

leading to pyrazolo [3, 4-b] pyridine 115b in 77% overall yield (Scheme 66). 

 

N

Br
O

OTs

N

Br
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OTs
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Br
O

OTs

OCH3
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NH2NH2·H2O
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N N
H

N
Br

N

O

OTs

OCH3

N N
H

N

OCH3

+
Pd(dba)2, tfp (cat.)

TBAB, K2CO3

THF, 12 h

toluene, 80 oC, 4 h

113, Pd(dba)2, tfp (cat.)

TBAB, K2CO3
THF, 12 h toluene, 80 oC, 4 h

110c

110c

113 114: 90 %

115a: 88 %

115b: 77 %

O
O

 

Scheme 66. Preparation of [3,4-b]pyridine via one pot reaction. 

 

This type of successive exchange can be extended to tribromopyridine 116, which was easily 

prepared from 3-hydroxy-pyridine via bromination with N-bromosuccinimide (Scheme 67).  

N

OH NBS

N

Br
OH

BrBr CH2Cl2
N

Br
OTs

BrBr
85 %

TsCl, NEt3

116

78 %

 

Scheme 67. Preparation of tribromopyridine 116. 

                                                 
96 R. N. Misra, H. Xiao, D. B. Rawlins, W. Shan, K. A. Kellar, J. G. Mulheron, J. S. Sack, J. S. Tokarski, S. D. Kimball and 
K. R. Webster, Bioorg. Med. Chem. Lett., 2003, 13, 2405. 
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When treating 2,4,6-tribromo-3-tosyloxypyridine 116 with i-PrMgCl⋅LiCl at -78 oC, a very 

fast and regioselective exchange was found. In the presence of catalytic amounts of 

CuCN·2LiCl (2 mol %), the allylation of the Grignard 117 proceeds smoothly, affording the 

allylated product 118a in 93% yield. Direct trapping of the Grignard 117 with methyl 

chloroformate provides the compound 118b in 72% yield. After transmetalation with 

CuCN·2LiCl, the Grignard 117 reacted with furan-2-carbonyl chloride leading to the 4-

substitued dibromopyridine 118c in 72% yield (Scheme 68). 

N

Br
OTs

BrBr

i-PrMgCl·LiCl

N

OTs

BrBr N

CO2Me
OTs

BrBr

N

MgCl
OTs

BrBr

N

OTs

BrBr

O
O

N

E

BrBr

OTs

-78 oC, 40 min

E+

118a: 90 % 118b: 72 % 118c: 72 %

116
117 118

 

Scheme 68. Regioselectively functionalized polybromopyridine via Br/Mg exchange. 

 

The product of mono-addition such as 118a reacted again with i-PrMgCl·LiCl, providing the 

corresponding pyridylmagnesium species 119 at -40 oC within 1 h. Addition of an electrophile 

such as allyl bromide or propionaldehyde furnished the product 120a (90%) and 120b (63%) 

(Scheme 69). After transmetalation with ZnBr2, a Negishi cross-coupling reaction with methyl 

4-iodobenzoate took place in the presence of Pd(dba)2 (5 mol%) and tri(2-furyl)phosphine (tfp, 

10 mol % ), providing the 2-aryl-substituted pyridine 120c in 60% yield (Scheme 69). 
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OTs

MgClBr
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OTs

BrBr N

OTs

MgClBr

I CO2Me
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OTs

Br

CO2Me

N

OTs
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CuCN (cat.)
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2. Pd (0)
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Scheme 69. Further Br/Mg exchange on compound 118a. 

 

4.4 Conclusion 

 

In summary, we have developed a stereoselective synthesis of polyfunctional 

alkenylmagnesium compounds bearing various functional groups using the new reagent 

i-PrMgCl·LiCl. We have also shown that the Br/Mg-exchange on a tosyloxy-substituted 3, 5-

dibromopyridine is highly regioselective due to the inductive effect of the tosyloxy group. 

The resulting polyfunctional trisubstituted pyridines may be useful for the preparation of 

pharmacologically relevant heterocycles. 
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5. Preparation of Allylic Zinc Reagents and their Applications  

 

5.1 Introduction 

 

Methods that involve C-C bond formation with the establishment of two or more new 

stereogenic centers are of considerable interest in organic synthesis. The reaction of allyl 

metal reagents and carbonyl compounds has proven very useful in this regard.97 Additional 

synthetic versatility is that the homoallylic alcohol products are easily manipulated to other 

useful synthetic intermediates by transformation of the double bond (Scheme 70). 

MetR1

O

R2 H

O

R2 H
R2

OH

R1

R2

OH

R1

O3

O3

R2

OH
O

R1

R2

OH

R1

O

3,4-syn diastereomer

3,4-anti diastereomer

2,3-syn aldol

2,3-anti aldol

M = Zn, B, Si, Sn
      Ti, Al, etc.

 

Scheme 70. The reaction of allyl metal reagents and carbonyl compounds. 

 

5.2 Preparation of acyclic and cyclic zinc reagents 

 

5.2.1 Direct insertion of zinc to allylic bromides 

 

Normally, allylic zinc reagents are prepared by the insertion of the zinc dust into the 

corresponding allylic halides. Allyl bromide can be converted to allylzinc bromide in almost 

quantitative yield (zinc, THF, 10 oC, 3 h).98 But when treating substituted allylic bromides 

such as 2-(bromomethyl)hexene with zinc dust under the same conditions, appreciate amounts 

of Wurtz-homocoupling products were formed. At lower temperature, the 2-cyclohexenylzinc 

bromide 121 can be obtained from 3-bromo-cyclohexene in 65 % yield.99  

                                                 
97 a) W. R. Roush, in Comprehensive Organic Synthesis, ed. B. M. Trost, I. Fleming and C. H. Heathcock, 
Pergamon, Oxford, 1991, vol. 2, pp. 1-53; b) P. Knochel, in Comprehensive Organic Synthesis, ed. B. M. Trost, 
I. Fleming and C. H. Heathcock, Pergamon, Oxford, 1991, vol. 1, pp. 211. 
98 M. Gaudemar, Bull. Soc. Chim. Fr. 1962, 974. 
99 M. Bellassoued, Y. Frangin, M. Gaudemar, Synthesis, 1977, 205. 
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Br

Br

ZnBr

ZnBr

THF, 10 oC, 3 h

THF, -10 oC, 3-4 h

121: 65 %

90 %

Zn

Zn

 

Scheme 71. Preparation of allylic zinc reagents via direct insertion. 

 

5.2.2 Masked allylic zinc reagents from a fragmentation reaction 

 

In order to avoid the formation of Wurtz-homocoupling products, P. Knochel developed a new 

fragmentation reaction of sterically hindered tertiary homoallylic alcohols to form allylic zinc 

reagents in situ (Scheme 72).100 This methodology has also revealed an excellent stereocontrol 

in the subsequent reaction with an aldehyde.101 

OH

R1

R2
BrZn

OH1) n-BuLi

2) ZnBr2

3) PhCHO

R1 = R2 = i-Pr THF, r.t.                  0 %

THF, 70 oC,            70 %

THF-HMPA, 70 oC, 98 %
R1 = R2 = t-Bu THF, r.t .               89 %  

Scheme 72. Formation of masked allylic zinc reagents in situ. 

 

This method has been applied in a stereoselective zinc-ene cyclization to prepare a new kind 

of spirobicyclic zinc reagents.102 Thus, the ketone 122 is converted to an allylic zinc 

alcoholate by the addition of n-BuLi followed by zinc chloride in the presence of an aldehyde, 

leading to the homoallylic alcohol 123 in 76 % yield as one diastereoisomer (syn: anti < 

2:98). The generation of highly substituted allylic zinc reagents has also been exploited in 

intramolecular ene reactions to form the spirobicyclic compound 125 in 60 % yield (Scheme 

73). 

                                                 
100 P. Jones, N. Millot, P. Knochel, Chem. Commum. 1998, 2405. 
101 P. Jones, P. Knochel, Chem. Commum. 1998, 2407. 
102 N. Millot, P. Knochel, Tetrahedron lett. 1999, 40, 7779. 
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H
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1) n-BuLi, THF, 0 oC, 5 min

2) C6H11CHO, ZnCl2,

    -78 oC to rt, 2 h
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3) CuCN·2LiCl , 0 oC
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 syn : anti  > 98 : 2
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Scheme 73: Stereoselective zinc-ene cyclization. 

 

5.2.3 Preparation of allylic zinc reagents from the corresponding Tin reagents 

 

Recently, E. J. Corey and coworkers developed a Sn/Li exchange to prepare 2-

cyclohexenylzinc chloride in their total synthesis of Salinosporamide A. 2-Cyclohexenyl-tri-

n-butyltin 126, which was obtained from Pd(0) catalyzed 1,4-addition of tributyltin hydride to 

1,3-cyclohexadiene,103 was sequentially transmetalated by treatment with 1 equiv of n-BuLi 

and 1 equiv of zinc chloride to form 2-cyclohexenylzinc chloride 127 in THF solution. 

HSn(n-Bu)3

Pd(PPh3)4

Sn(n-Bu)3
ZnCl

1) n-BuLi

2) ZnCl2

126 127  

Scheme 74. Preparation of allylic zinc reagents via Sn/Li exchange. 

 

5.3 Applications of 2-cyclohexenylzinc chloride 

 

                                                 
103 H. Miyake, K. Yamamura, Chem. Lett. 1992, 507. 
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Salinosporamide A which bears a cyclohexene ring was recently discovered by Fenical and 

his group as bioactive products of a marine microorganism that is wide distributed in ocean 

sediments.104 The challenge in the synthesis of this molecule is not closing the β–lactone, but 

rather the stereocontrolled assembly of stereochemistry at carbon 5 and 6. E. J. Corey 

established a cyclohexenylzinc addition to control both of these stereogenic centers 105and 

also worked well in S. J. Danishefsky’s synthesis.106 

H
N

O

O

Cl

O

H

OH

N

O

O

OBn

BMP

CO2But
CHO ZnCl

N

O

BMP

O

OBn

CO2But
OH

H

NO

BMP

CO2Me
CHO

Si
O

H

ZnCl N
BMP

O
CO2Me

OH

H

Si
O

H

Salinosporamide A

-78 oC,
dr: 20:1
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5
6

 

Scheme 75. The key step to Salinosporamide A using cyclohexenylzinc addition. 

 

5.4 Preparation of the starting allylic chlorides 

 

Allylic chloride can be easily prepared from the corresponding allylic alcohol using 

chlorination reagents, such as thionyl chloride and chlorophosphonium ions107 which was 

generated in situ by reaction of triphenylphosphine and carbon tetrachloride.  

Thus, the treatment of (-)-myrtenol with triphenylphosphine in carbon tetrachloride provided 

the corresponding allylic chloride 128a in 73%. This method also suited for the preparation of 

3-chloro-1-methyl-1-cyclohexene 128d (the ratio of 128d : 128d’ = 90 : 10) whereas the bad 

result was obtained using thionyl chloride (the ratio of 128d : 128d’ = 70 : 30).108 3-Chloro-

                                                 
104 R. H. Feling, G. O. Buchanan, T. J. Mincer, C. A. Kauffman, P. R. Jensen, W. Fenical, Angew. Chem., Int. 
Ed. 2003, 42, 355. 
105 L. R. Reddy, P. Saravanan, E. J. Corey, J. Am. Chem. Soc. 2004, 126, 6230. 
106 A. Endo, S. J. Danishefsky, J. Am. Chem. Soc. 2005, 127, 8298. 
107 R. Appel, Angew. Chem., Int. Ed.1975, 14, 801. 
108 T. Carrillo-Marquez, L. Caggiano, R. F. W. Jackson, U. Grabowska, A. Rae, M. J. Tozer, Org. Biomol. 
Chem., 2005, 3, 4117. 
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cyclohexene 128b was prepared from cyclohex-2-enol using thionyl chloride in 77 % yield 

and 3-chloro-cyclopentene 128c was obtained according to the literature from cyclopenta-1,3-

diene in 80 % yield (Scheme 76).109 
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Me
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Me

OH Cl
SOCl2

Cl

Me

Me

Me

Cl

Cl

Cl
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CCl4, PPh3
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CCl4, PPh3

reflux

HCl (g)

128a: 73 %

128d 128d'

128b: 77 % 128c: 80 %

 

Scheme 76. Preparation of allylic chlorides. 

 

5.5 Preparation of allylic zinc reagents using zinc·LiCl insertion  

 

Initially, we treated the allylic chloride 128a with zinc dust and it gave the corresponding 

allylic zinc reagent 129a as well as the Wurtz homo-coupling products (20% from GC 

analysis). But when the reaction was carried out in the presence of LiCl (1.2 equiv), the Wurtz 

homo-coupling products were decreased to less than 5%. This result showed us that the LiCl 

can active the zinc dust which has been proved by the preliminary results in our group 110and 

hindered the Wurtz homo-coupling reaction. This procedure can be successfully extended to 

previously cyclohexenylzinc chloride 129a (84% yield) and unknown allylic zinc reagents 

such as cyclopentenylzinc chloride (129c: 58% yield), and the trisubstituted 3-methyl-

cyclohexenylzinc chloride (129d: 55% yield) (Scheme 77).  

                                                 
109 J. J. Tufariello, A. C. Bayer, J. J. Spadaro Jr. J. Am. Chem. Soc. 1979, 101, 3309. 
110 A. Krasovskiy, V. Malakhov, A. Gavryushin, P. Knochel, Angew. Chem., Int. Ed. 2006, 45, 6040. 
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ClMe
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ZnClZnCl ZnCl

Me

Me

Me

ZnCl

Zn (2.5 equiv)

THF, rt , 30 h

Without LiCl:       20 % homo-coupling 
with LiCl:            less than 5 % homo-coupling

129a
128a

129b: 84% 129c: 58% 129d: 55%  

Scheme 77. Preparation of organozinc reagents 129a-d. 

 

5.6 Highly  diastereoselective synthesis of homoallylic alcohols bearing adjacent 

quaternary centers using trisubstituted allylic zinc reagents 

 

The availability of these highly reactive allylic organometallics allows us to study their 

diastereoselective reaction with various aldehydes and ketones. Preliminary results showed 

that the reaction of 3-chloro-cyclohexene 128b with benzaldehyde under Barbier reaction111 

conditions provided poor diastereoselectivity (dr = 73:27). To our delight, when the reaction 

was carried out using the allylic zinc reagent 129b, a good diastereoselectivity (dr = 90 : 10) 

was observed (Scheme 78). When 1-methyl-1-cyclohexenyl zinc chloride 129d was used, the 

diastereoselectivity was increased (dr = 97: 3).  
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Scheme 78. Poor diastereoselectivity vs good diastereoselectivity. 
                                                 
111 a) G. W. Breton, J. H. Shugart, C. A. Hughey, B. P. Conrad, S. M. Perala, Molecules, 2001, 6, 655. 
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As shown in table 9, the reaction proceeds under exceedingly mild conditions and high yields 

as well as excellent diastereoselectivities and complete regioselectivity. Treatment of allylic 

zinc reagent 129b with paraformaldehyde provides cyclohex-2-enylmethanol 130c in 94% 

yield (entry 1 of Table 9). An amino function is well tolerated and does not require a 

protection. Thus, 2-amino-5-chlorobenzaldehyde 131b was directly converted to homoallylic 

alcohol 130d without protecting the amino group in 94% yield with an excellent 

diastereoselectivity (dr > 99 : 1, entry 2). The poor diastereoselectivity observed with 

pivalaldehyde showed that an aromatic substituent is important in these addition reactions 

(entry 3). Remarkablely, acetophenone and related ketones always give excellent 

diastereoselectivities and high yields (entries 4-10). Regardless of the aryl substitution (entries 

4, 5 and 7), the use of heterocyclic ketone (entry 6), of a ferrocenyl ketone (entry 7), of a 

cyclic aryl ketone such as 6-methoxyl-1-tetralone (entry 9) or a branched aryl ketone such as 

2-methyl-1-phenylpropan-1-one (entry 10) high diastereoselectivities are obtained. With 

cyclic allylic zinc reagent 129c, when reacted with ketones also give high 

diastereoselectivities (entries 11-13). Treatment of indole aldehyde with 3-

methylcyclohexenylzinc chloride 129d, the heterocyclic allylic alcohol 130p was obtained in 

87% yield (entry 14). Interestingly, when the zinc reagent 129d reacts with ketones, two 

quaternary centers was generated in high diastereoselectivity. Thus, exposure of 2-

acetonaphthone (131k) and p-bromo-acetophenone (131e) to 129d, the allylic compounds 

130q and 130r were obtained in 99 % yield as well as excellent diastereoselectivities (entries 

15-16, dr > 98 :2). 
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Table 9: Diastereoselective preparation of homoallylic alcohol using allylic zinc reagents 

R1

O
R2

R3

ZnCl
+

n

-78 oC, 1 h OH

R3

R2

R1

n

129 131 130: yield: 87-99%  

Entry Allylic zinc 

reagent 

Aldehyde or 

ketone 131 

Product of type 130 dra Yieldb 

(%)a 

 ZnCl

 

(CH2O)n 

 

OH

 

  

1 129b 131a 130c  94 

  
OHC

NH2

Cl  

OH

H

NH2

Cl  

  

2 129b 131b 130d >99:1 94 

  O

t-BuH  t-Bu

OH

H  

  

3 129b 131c 130e 68:32 96 

  O

Me

Br  

OHH3C

H
Br  

  

4 129b 131d 130f >99:1 96 

  O

Me

CN 

OHH3C

H
NC  

  

5 129b 131e 130g >99:1 97 

  
OI

Et

O

 

OHEt

H

O
I

 

  

6 129b 131f 130h 97:3 95 
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Table 9 (continued) 

  
ArO2SO

OSO2Ar

Me

O

 

H

OHH3C
ArO2SO

OSO2Ar  

  

7 129b 131g: Ar = 2,5-

Cl2C6H3 

130i: Ar = 2,5-Cl2C6H3 99:1 95 

  

Fe

O

Me

 

Fe H

OHH3C

 

  

8 129b 131h 130j >98:2 95 

  O

MeO  
H3CO

H

OH

 

  

9 129b 131i 130k 96:4 97 

  

i-Pr

O

 

OHi-Pr

H
 

  

10 129b 131j 130l >99:1 96 

 ZnCl

 

 

H

OHH3C

Br  

  

11 129c 131e 130m >99:1 99 

      

  

Me

O

 
H

OHH3C

 

  

12 129c 131k 130n >99:1 97 
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Table 9 (continued) 

  

Et

O

 
H

OHEt

 

  

13 129c 131l 130o >99:1 98 

 

CH3

ZnCl

 N

O
H

Ts  

Me

OH

N
Ts  

  

14 129d 131m 130p 95:5 87 

   

H3C

OHH3C

 

  

15 129d 131k 130q >98:2 99 

   

H3C

OHH3C

Br  

  

16 129d 131e 130r >98:2 99 

a dr was determined by NMR analysis. b Isolated yield of analytically pure products. 
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The structures of homoallylic alcohol 130i and 130j were determined by X-ray 

crystallography (Scheme 79).  

 

 

 

 

Scheme 79. Homoallylic alcohols 130i and 130jwith ORTEP plot. 

 

In order to confirm the structure of 130r, we prepared the other isomer 132r’ using the 

reaction of MeMgCl on the ketone 132 (Scheme 80). The structure of 130r was proved by 1H-

NMR and NOESY NMR analysis. 
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Scheme 80: Preparation of another isomer 130r’. 

 

When two active groups were involved, this type of reaction also shows an excellent 

chemoselectivity. When the allylic zinc chloride (129b or 129c) reacted with 1-(4-ccetyl-

phenyl)-2,2-dimethyl-propan-1-one (131n) and 4-acetyl-benzoic acid methyl ester (131o), 

only single products 130s and 130t were obtained in 95-96% yields. Interestingly, by the 
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treatment of 2-acetyl-benzoic acid methyl ester with allylic zinc chloride (129b), the lactone 

130u was obtained in 97% yield as well as an excellent diastereoselectivity (Scheme 81). 

CH3

O

CO2Me

MeO2C

CH3

O

CH3

O

t-Bu

O
ZnCl

ClZn

ZnCl

H

OHH3C

MeO2C

OHH3C

Ht-Bu

O

H

O
O CH3

+
-78 oC, 1 h

+
-78 oC, 1 h

+ -78 oC, 1 h

130s: 96%

130t: 95%

130u: 97%

129b

129b

129c

131n

131o

131p
 

Scheme 81: Chemo- and diastereoselective addition allylic zinc reagents to ketones. 

 

Interestingly, α-substituted acetophenone also give excellent diastereoselectivities. Thus, 

exposure of 2-chloro-1-phenyl-ethanone 131r to the allylic zinc reagent 129b provided the 

chloride substituted homoallylic alcohol 130v in 97% yield and excellent 

diastereoselectivities (dr > 98:2). Even 2-azido-1-phenyl-ethanone 131s also gives azides 

130w in excellent result (93% yield and dr = 99:1). The compound of 130w is a very 

interesting structure since organoazides were engaged in “click chemistry”.112 The 1,2,3-

triazoles of 133a and 133b can be obtained in 85-90% yields with excellent regioselective and 

diastereoselectivities in the presence of CuCN·2LiCl (5 mol%) in one pot (Scheme 82). The 

structure of 133b was determined by X-ray crystallography. 

                                                 
112 H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem., Int. Ed. 2001, 40, 2004. 
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O
R

O
N3

X

ZnCl

ZnCl

OH

H

R

OH

H

NN
N

X

1) -78 oC, 1 h

2) CuCN·2LiCl  (5 mol %)
    CH3CN, rt, overnight

133a: X=H, Yield : 90%; dr > 99 : 1
133b: X=Br, Yield : 85%; dr > 95 : 5

-78 oC, 1 h

+

131r: R = Cl
131s: R = N3

130v: R = Cl
130w:  R =N3

129b

+ +

129b131s: X = H
131t: X = Br

 

 

 

Scheme 82. Preparation of 1,2,3-triazoles of 133a-b from allylic zinc reagents and α-

substituted acetophenones and X-ray crystallography of 133b. 

The excellent diastereoselectivity can be explained by the translation state of 134. 

O
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+
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131: R1 = Aryl, alkyl

       R2 = H, Me

129b: n =1; R3 = H

129c: n = 0, R3 = H

129d: n = 1, R3 = Me

131a-w

134  

Scheme 83. Diastereoselective and regioselective reaction of cycloalkenylzinc chloride with 

carbonyl compounds. 

When treating the allylic zinc reagent 129a with pivaldehyde, the allylic alcohol 135a was 

obtained in 96% yield as well as excellent regioselectivity and diastereoselectivity (dr > 98:2). 
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To our surprise, when pivalonitrile was involved in this reaction, the regioselectivity was 

converted (Scheme 84), providing the ketone 135b in 92% yield after hydrolysis with HCl 

(1.0M in water).  

Me
Me

HO

H

CH2

t-Bu

O

H t-BuZnCl
Me

Me

NC t-Bu

Me
Me

O

t-Bu

135a: yield: 96 %; 
         dr > 98:2

135b: yield: 92 %

-78 oC, 1hrt, 4h then HCl (1.0 M)

129a

 

Scheme 84. The reaction of 129a with pivaldehyde and pivalonitrile. 

 

The structure of 135a was conformed by by X-ray crystallography of its derivative 136. 

 

Scheme 85. X-ray crystallography of 136. 

 

5.7 Conclusion 

 

In conclusion, we have described a convenient method to prepare substituted allylic zinc 

chloride using LiCl-mediated zinc dust insertion to the corresponding allylic chloride. This 

approach avoids the formation of large amount of homocoupling products. These new allylic 

zinc reagents undergo highly diastereoselective addition to aldehydes or ketones leading to 

homoallylic alcohols bearing adjacent quaternary centers in high regioselectivity and 

diastereoselectivity. Extensions of this work are currently underway in our laboratories. 
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6. Summary and Outlook 

 

This work has been focused on the formation of complex polycyclic heterocycles using sp3 C-

H bond activation reaction. Furthermore, novel methods for preparation of alkenylmagnesium 

and allylic zinc reagents were developed as well as their applications in organic synthesis. 

 

6.1 Chemoselective Benzylic C-H Activations for the Preparation of Condensed N-

Heterocycles 

In the first project, the preparation of condensed N-heterocycles using sp3 C-H bond 

activation reaction was achieved in the presence of Pd(OAc)2 (5 mol %), p-Tol3P (10 mol %) 

and Cs2CO3 (1.2 equiv). Remarkably, the chemoselective sp3 C-H bond activation was 

observed in the case of 2,5-unsymmetrically substituted monobromo derivatives. 

Furthermore, the formation of pentaheterocyclic compounds using domino reaction was also 

described. 

R1

N

X Me
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N

Me

EtO2C NEtO2C
CO2Et
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Me

CO2Et

CO2Et

N
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O Me

F3C N

Me
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N
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NEtO2C

N

O Ph

N

Me
F3C

Pd(OAc)2 (5 mol %)

p-Tol3P (10 mol %)

Cs2CO3 (1.2 equiv)

110 oC, 12 h

61 % 56 % 50 %
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75 % 80 % 60 %
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Scheme 86. Preparation of condensed N-heterocycles via benzylic C-H activations. 
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As an extension, the application to several interesting target molecules could be investigated 

such as (+)-(S)-tylophorine and its analogs. 
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Tylophorine analogs

O

 

Scheme 87: Retrosynthetic analysis of Tyloporine analogs. 

 

6.2 Preparation of Functionalized Alkenylmagnesium Reagents and Polysubstituted 

Pyridylmagnesium Reagents Using i-PrMgCl•LiCl 

 

With the reagent i-PrMgCl·LiCl (11a), the I/Mg-exchange of alkenyliodides proceeded at 

lower temperature. A variety of functionalized alkenyl iodides can be converted to the 

corresponding Grignard species with retention of the double bond configuration. The reaction 

with various electrophiles provides polyfunctional alkenes with good yields and excellent 

stereoselectivity. 
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Scheme 88. Preparation of functionalized alkenyl organomagnesium reagents. 
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Furthermore, the functionalized polysubstituted pyridylmagnesium reagents also can be 

obtained from Br/Mg exchange using i-PrMgCl•LiCl. And a new method to prepare pyrazolo 

[3, 4-b] pyridine was developed. 
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Scheme 89. Preparation of the functionalized polysubstituted pyridylmagnesium reagents 

using Br/Mg exchange. 

 

6.3 Preparation of Polysubstituted Allylic Zinc Reagents and their Applications. 

 

A variety of allylic zinc reagents were prepared using direct Zn•LiCl insertion. And excellent 

regioselective and diastereoselectivities were obtained when the allylic zinc reagents reacted 

with aldehyde and ketones  
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Scheme 90. Preparation of polysubstituted allylic zinc reagents and their applications. 
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EXPERIMENTAL PART 

7. General Conditions 

All reactions were carried out with magnetic stirring and, if air or moisture sensitive, in flame-

dried glassware under nitrogen. Syringes were used to transfer reagents, and solvents were 

purged with nitrogen prior to use.  

Solvents 

Solvents were dried according to standard methods by distillation from drying agents as stated 

below and were stored under nitrogen. 

CH2Cl2, toluene and Dimethylformamide (DMF)  were predried over CaCl2(s) and distilled 

from CaH2(s).  

Diethyl ether, 1, 2-dimethoxyethane (DME) and THF  were continueously refluxed and 

freshly distilled from sodium benzophenone ketyl under nitrogen. 

Ethanol and Methanol were treated with Phthalic anhydride (25g/L) and sodium, heated to 

reflux for 6 h and distilled. 

Pyridine and triethylamine were dried over KOH(s) and distilled from KOH(s).  

Reagents 

Reagents of >98% purity were used as obtained from Aldrich, Acros and Lancaster.  

n-Butyllithium was used as a 1.5 M solution in hexane purchased by Chemetall. 

CuCN·2LiCl solution (1.0 M/THF) was prepared by drying CuCN (869 mg, 10 mmol) and 

LiCl (848 mg, 20 mmol) in a Schlenk flask under vacuum for 5 h at 140 °C. After cooling to 

room temperature, dry THF (10 mL) was added and stirred continuously until the salts were 

dissolved. 

i-PrMgCl: A dry three-necked flask equipped with a nitrogen inlet, a dropping funnel and a 

thermometer was charged with magnesium turnings (110 mmol). A small amount of THF was 

added to cover the magnesium, and a solution of isopropyl chloride (100 mmol) in THF (50 
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mL) was added dropwise, keeping the temperature of the mixture below 30 °C (water bath). 

After the addition was complete, the reaction mixture was stirred for 12 h at room 

temperature. The grey solution of i-PrMgCl was cannulated to another flask under nitrogen 

and removed in this way from excess of magnesium. A yield of ca. 85-90% of i-PrMgCl was 

obtained and the i-PrMgCl solution was titrated prior to use according to reported literature.113 

i-PrMgCl·LiCl:  A dry three-necked flask equipped with an nitrogen inlet, a dropping funnel 

and a thermometer was charged with magnesium turnings (110 mmol) and anhydrous LiCl 

(100 mmol). A small amount of THF was added to cover the magnesium, and a solution of 

isopropyl chloride (100 mmol) in THF (50 mL) was added dropwise, keeping the temperature 

of the mixture below 30 °C (water bath). After the addition was complete, the reaction 

mixture was stirred for 12 h at room temperature. The grey solution of i-PrMgCl·LiCl was 

cannulated to another flask under argon and removed in this way from excess of magnesium. 

A yield of ca. 85-90% of i-PrMgCl·LiCl was obtained and the i-PrMgCl·LiCl solution was 

titrated prior to use according to reported literature. 

ZnBr 2 solution (1.0 M/THF) was prepared by drying ZnBr2 (33.78 g, 150 mmol) under 

vacuum for 5 h at 120 °C. After cooling to room temperature, dry THF (150 mmol) was 

added and stirred continuously until the salts were dissolved. 

Chromatography 

Thin layer chromatography (TLC) was performed using aluminium plates coated with SiO2 

(Merck 60, F-254). The spots were visualized by UV light and/or by staining of the TLC plate 

with the solution bellow followed by heating with a heat gun: 

• KMnO4 (0.3 g), K2CO3 (20 g), KOH (0.3 g) in water (300 mL) 

Flash column chromatography was performed using SiO2 60 (0.04-0.063 mm, 230-400 mesh 

ASTM) from Merck. The diameters of the columns and the amount of silicagel were 

calculated according to the recommendation of W. C. Still.114 

                                                 
113 (a) H. S. Lin, L. Paquette, Synth. Commun. 1994, 24, 2503; (b) A. Krasoskiy, P. Knochel, Synthesis 2006, 5, 
890. 
114 W. C. Still, M. Khan, A. Mitra, J. Org. Chem. 1978, 43, 2923. 
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Analysis 

Analytical data collection was done as follows: 

• Melting points were uncorrected and measured on a Büchi B-540 apparatus. 

• NMR spectra were recorded on a Bruker ARX 200, AC 300, WH 400, or AMX 

600 instruments. Chemical shifts were given relative to CDCl3 (7.24 ppm for 1H 

NMR, 77.0 ppm for 13C NMR), DMSO-d6 (2.50 ppm for 1H NMR, 39.4 ppm for 
13C NMR), acetone-d6 (2.04 ppm for 1H NMR, 29.3 ppm for 13C NMR). For the 

characterization of the observed signal multiplicities the following abbreviations 

were applied: s (single), d (doublet), dd (double doublet), dt (double triplet), t 

(triplet), td (triple doublet), q (quartet), quint (quintet), m (multiplet) as well as br 

(broad). 

• IR  spectra were recorded from 4000-400 cm-1 on a Nicolet 510 FT-IR, a Perkin-

Elmer 281 IR spectrometer, or a Perkin Elmer Spectrometer BX FT-IR-System 

with a Smith Dura sampl IR II ATR-unit. Samples were measured either as neat 

materials (neat) or as a film between potassium bromide plates (film) or as 

potassium bromide tablets (KBr). The absorption bands are reported in wave 

numbers (cm-1). For the band characterization the following abbreviations were 

applied: br (broad), s (strong), m (medium), vs (very strong), w (weak). 

• Gas chromatography (GC) was perfomed using a Hewlett-Packard 5890 Series II 

(Column A: 2.5% phenylmethylpolysiloxane (HP Ultra 2) 12 m × 0.2 mm × 0.33 

µm). The compounds were detected with a flame ionization detector. 

• Mass spectroscopy: Mass spectra were recorded on a Varian MAT CH 7A for 

electron impact ionization (EI) and high resolution mass spectra (HRMS) on a 

Varian MAT 711 spectrometers. Fast atom bombardment (FAB) samples were 

recorded in either a 2-nitrobenzyl alcohol- or glycerine-matrix. Additionally, for 

the combination of gas chromatography with mass spectroscopic detection, a 

GC/MS from Hewlett-Packard HP 6890/MSD 5973 was used (Column B: 5% 

phenylmethylpolysiloxane (HP 5) 30 m × 0.25 mm × 0.25 µm; Column C: 5% 

phenylmethylpolysiloxane (HP 5) 15 m × 0.25 mm × 0.25 µm). 

• Elemental analysis was carried out on a Heraeus CHN-Rapid-Elementanalyzer in 

the microanalytical laboratories of the Department Chemie und Biochemie, 

Ludwig-Maximilians Universität, Munich. 
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8. Typical Procedure (TP) 

 
 
8.1 Typical procedure for preparation of bromo or iodo-N-arylpyrrole derivatives 
 
      Typical Procedure 1 (TP1): via Paal-Knorr reaction 

 

R

NH2

X
O

O

R1
R2

X=I or Br

R

N
X

R1 R2

TsOH· H2O  (cat.)

39, X = Br, I

36

38

 

The mixture of bromoaniline 36, 1, 4-dione 38 and catalytic amounts of TsOH·H2O (1.0 or 

2.0 mol %) in toluene was heated in a flask equipped with a Dean-Stark apparatus for 2-5 h. 

After cooling, the dark brown reaction mixture was concentrated in vacuo. Purification by 

flash chromatography provided the desired products 39. 

 

      Typical Procedure 2 (TP2): via I/Mg exchange 

N

I

Br

MeMe

i-PrMg·LiCl Br

MeMe N

MgCl·LiCl

39aa

- 30 oC

39ab

E+

Br

MeMe N

E

39  

To a solution of 1-(2-bromo-4-iodo-phenyl)-2, 5-dimethyl-1H-pyrrole (1.880 g, 5.0 mmol) in 

THF (10.0 mL) was slowly added i-PrMgCl·LiCl (5.50 mmol, 3.5 mL, 1.55 M in THF) at –30 

°C. After 2 h, THF (5.0 mL) and CuCN·2LiCl (5.0 mmol, 5.0 mL, 1.0 M in THF) was added 

at this temperature and stirred for 15 min. Acid chloride (7.5 mmol) was added and the 

reaction mixture was stirred at –30 °C for 1 h, then warmed to rt and stirred for 1 h. Aq. NH3 

(5 ml) and water (10 mL) were added and the aqueous phase was extracted with diethyl ether 

(3×25 mL). The organic fractions were washed with brine (10 mL), dried over Na2SO4 and 

concentrated in vacuo. Purification by flash chromatography provided the desired products 39. 

 

8.2 Typical procedure for preparation of polycyclic heterocycles via C-H activation 

reaction 
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R1

N

X Me

R2

R1
N

R2

Pd(OAc)2 (5 mol %)

p-Tol3P (10 mol %)

Cs2CO3 (1.2 equiv)

110 oC, 12 h

39 41  

Typical Procedure 3 (TP3): The reaction was performed in a sealed tuber with a mixture of 

bromo or iodo-N-arylpyrrole derivatives 39 (1.0 mmol), Pd (OAc)2 (11 mg, 5 mol%), tri(p-

tolyl)phosphine (30 mg, 10 mol%) and Cs2CO3 (391 mg, 1.2 mmol) at 110 °C using toluene 

(5.0 mL) as solvent for 12 h. After cooling to room temperature, water (10 mL) was added in. 

The mixture was extracted with ether (3 x 30 mL). The combined extracts were washed with 

brine, dried over Na2SO4 and concentrated in vacuo. Purification by flash chromatography 

provided the desired products 41. 

 
8.3 Typical procedure for preparation of functionalized acyclic alkenyl compounds 

I
R

i-PrMgCl·LiCl

MgX
R E

R
E+

79 82 83  

Typical Procedure 4 (TP4): To a solution of alkenyl iodides 79 (0.5 mmol) in THF (0.2 mL) 

was slowly added i-PrMgCl·LiCl (0.28 mL, 0.55 mmol, 2.00 M in THF) at –40 °C. After 7 h, 

a complete conversion to the Grignard reagent 82 was observed by GC-analysis of hydrolyzed 

reaction aliquots. The solution of electrophile (0.55 mmol in 0.5 mL of THF) was added in 

directly or added after the Grignard reagent was transmetalated to copper reagent with 

CuCN·2LiCl. The reaction mixture was warmed to 25 °C and quenched as usual. The aqueous 

phase was extracted with diethyl ether (3 × 10 mL). The organic fractions were washed with 

brine (10 mL), dried over Na2SO4 and concentrated in vacuo. Purification by flash 

chromatography afforded the pure product. 

 

8.4 Typical procedure for preparation of functionalized cyclic alkenyl compounds 
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Typical Procedure 5 (TP5): To a solution of 5-ethoxymethoxy-1-iodo-cyclopentene 93a (1.0 

mmol) or 6-ethoxymethoxy-1-iodo-cyclohexene 93b (1.0 mmol) in THF (0.3 mL) was slowly 

added i-PrMgCl·LiCl (0.51 mL, 1.1 mmol, 2.16 M in THF) at low temperature (93a: -25 °C 

and 93b: -40 °C). A complete conversion to the Grignard reagent 94a or 94b was observed by 

GC-analysis of hydrolyzed reaction aliquots after 5 h (the exchange for 93a) or 12 h (the 

exchange for 93b). The solution of electrophile (0.55 mmol in 0.5 mL of THF) was added in 

directly or added after the Grignard reagent was transmetalated to copper reagent with 

CuCN·2LiCl. The reaction mixture was warmed to 25 °C and quenched as usual. The aqueous 

phase was extracted with diethyl ether (3 × 10 mL). The organic fractions were washed with 

brine (10 mL), dried over Na2SO4 and concentrated in vacuo. Purification by flash 

chromatography afforded the pure product. 

 

8.5 Typical procedure for the performance of punctionalized pyridines: 

 

N OTs

BrBr i-PrMgCl·LiCl

N OTs

MgClBr

N OTs

EBr

-30 oC, 2 h

E+

108 109 110  

 

Typical Procedure 6 (TP6): The solution of i-PrMgCl·LiCl (1.55 M in THF, 0.55 mmol) was 

slowly added to a solution of 3, 5-dibromo-2-pyridyl 4-methylbenzenesulfonate 108 (204 mg, 

0.5 mmol) in dry THF (1.5 mL) and the resulting mixture was stirred at this temperature for 2 

h to form the Grignard 109 completely. The solution of electrophile (0.55 mmol in 0.5 mL of 

THF) was added in directly or added after the Grignard reagent was transmetalated to copper 

reagent with CuCN·2LiCl.  The reaction mixture was warmed to 25 °C and quenched as 

usual. The aqueous phase was extracted with diethyl ether (3 × 10 mL). The organic fractions 

were washed with brine (10 mL), dried over Na2SO4 and concentrated in vacuo. Purification 

by flash chromatography afforded the pure product 110.  

 

8.6 Typical procedure for the preparation of homoallylic alcohol:  
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ZnCl
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Typical Procedure 7 (TP7): The allyliczinc chloride (1.2 mmol) was added to the solution of 

aldehyde or ketone (1.0 mmol) in THF (2.0 mL) at -78 oC and the resulting mixture was 

stirred at this temperature for 1 h. After quenching with water (10 mL), the reaction mixture 

was extracted with ether (3 x 30 mL). The combined extracts were washed with brine, dried 

over Na2SO4 and concentrated in vacuo. Purification by flash chromatography (The silica gel 

was buffered with 1% Et3N in pentane) provided the pure compound.  
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9. Preparation of Condensed N-Heterocycles by sp3 C-H Bond Activation Reactions 

 

Synthesis of 1-(2-bromo-phenyl)-2,5-dimethyl-1H-pyrrole  (39a) 

Br

N

Me

Me RHJ165F 
It was prepared from 2-bromoaniline (3.440 g, 20.0 mmol), 2, 5-hexanedione (2.740 g, 24.0 

mmol) and TsOH·H2O (38 mg, 1.0 mol %) according to TP1. Reaction time: 2 h. Purification 

by flash chromatography (eluent: pentane: ether = 100: 1) provided 39a (4.251 g, 85%) as a 

colourless oil. 
1H NMR  (CDCl3, 300 MHz): 7.72 (d, J = 8.0 Hz, 1 H), 7.40-7.46 (m, 1 H), 7.28-7.34 (m, 2 

H), 5.94 (s, 2 H), 1.97 (s, 6 H); 
13C NMR (CDCl3, 75 MHz): 138.5, 133.3, 130.5, 129.8, 128.4, 128.1, 124.1, 105.6, 12.5; 

IR  (neat): 2918 (s), 1588 (m), 1524 (s), 1485 (vs), 1436 (vs) cm-1; 

MS (EI, 70 ev): 251 (M+ (81Br), 91%), 250 (M+ (81Br)-H, 100%), 249 (M+ (79Br), 91%), 248 

(M+ (79Br)-H, 100%), 168 (25%), 154 (69%), 83 (26%); 

HRMS (EI): calcd. for C12H12BrN (M+, 79Br): 249.0153, found: 249.0134 (M+, 79Br). 

 

Synthesis of 4-(2,5-dimethyl-pyrrol-1-yl)-3-iodo-benzoic acid ethyl ester (39b) 

I

N

Me

Me

EtO2C

RHJ054G 

It was prepared from 4-amino-3-iodo-benzoic acid ethyl ester115 (2.911 g, 10.0 mmol), 2, 5-

hexanedione (1.372 g, 12.0 mmol) and TsOH·H2O (19 mg, 1.0 mol %) according to TP1. 

Reaction time: 4 h. Purification by flash chromatography (eluent: pentane: ether = 15: 1) 

provided 39b (1.480 g, 40%) as a brown solid, mp.: 80.2-80.6 °C. 
1H NMR  (CDCl3, 300 MHz): 8.59 (d, J = 1.8 Hz, 1 H), 8.13 (dd, J1 = 8.0 Hz, J2 = 1.8 Hz, 1 

H), 7.32 (d, J = 8.0 Hz, 1 H), 5.93 (s, 2 H), 4.41 (q, J = 7.1 Hz, 2 H), 1.93 (s, 6 H), 1.41 (t, J = 

7.1 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 164.4, 146.2, 140.6, 131.9, 130.3, 129.5, 127.8, 106.3, 100.3, 

61.6, 14.3, 12.8; 

                                                 
115 Y: Tobe, N. Utsumi, K. Kawabata, A. Nagano, K. Adachi, S. Araki, M. Sonoda, K. Hirose, K. Naemura, J. Am. Chem. 
Soc. 2002, 124, 5350. 
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IR  (neat): 2915 (w), 1723 (s), 1590 (w), 1483 (s), 1395 (s) cm-1; 

MS (EI, 70 ev): 369 (100%), 340 (15%), 324 (5%), 296 (5%), 168 (19%), 154 (11%); 

HRMS (EI): calcd. for C15H16INO2: 369.0226 (M+), found: 369.0219 (M+). 

 

Synthesis of 3-bromo-4-(2,5-dimethyl-pyrrol-1-yl)-benzoic acid ethyl ester (39c) 

EtO2C Br

N

Me

Me  RHJ092G 
It was prepared from 4-amino-3-bromo-benzoic acid ethyl ester (2.44 g, 10.0 mmol), 2, 5-

hexanedione (1.37 g, 12.0 mmol) and TsOH·H2O (19 mg, 1.0 mol %) according to TP1. 

Reaction time: 2 h. Purification by flash chromatography (eluent: pentane: ether = 10: 1) 

provided 39c (2.810 g, 87%) as a brown solid, mp.: 56.1-56.9 oC. 
1H NMR  (CDCl3, 300 MHz): 8.37 (d, J = 1.8 Hz, 1 H), 8.80 (dd, J1 = 8.0 Hz, J2 = 1.8 Hz, 1 

H), 7.35 (d, J = 8.0 Hz, 1 H), 5.93 (s, 2 H), 4.41 (q, J = 7.1 Hz, 2 H), 1.94 (s, 6 H), 1.41 (t, J = 

7.1 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 164.6, 142.6, 134.4, 132.1, 130.5, 129.3, 128.3, 124.5, 106.2, 

61.6, 14.3, 12.5; 

IR  (neat): 2979 (w), 1724 (vs), 1402 (s), 1283 (vs) cm-1; 

MS (EI, 70 ev): 323 (M+ (81Br), 100%), 321(M+ (79Br), 100%), 294 (M+ (81Br), 70%), 292 

(M+ (79Br), 70%), 198 (25%), 168 (62%), 154 (49%); 

HRMS (EI): calcd. for C15H16BrNO2 (M
+, 79Br): 321.0364, found: 321.0369 (M+, 79Br). 

 

Synthesis of 4-(2,5-dimethyl-pyrrol-1-yl)-3-iodo-benzonitrile  (39d) 

NC I

N

Me

Me  RHJ059G 

It was prepared from 4-amino-3-iodo-benzonitrile116 (2.440 g, 10.0 mmol), 2, 5-hexanedione 

(1.370 g, 20.0 mmol) and TsOH·H2O (19 mg, 1.0 mol %) according to TP1. Reaction time: 5 

h. Purification by flash chromatography (eluent: pentane: ether = 10: 1) provided 39d (1.541 

g, 48%) as a brown solid, mp.: 102.3-102.8 oC. 
1H NMR  (CDCl3, 300 MHz): 8.23 (d, J = 1.8 Hz, 1 H), 7.76 (dd, J1 = 8.1 Hz, J2 = 1.8 Hz, 1 

H), 7.37 (d, J = 8.1 Hz, 1 H), 5.94 (s, 2 H), 1.93 (s, 6 H); 

                                                 
116 C. Koradin, W. Dohle, A. L. Rodriguez, B. Schmid; P. Knochel, Tetrahedron, 2003, 59, 1571. 
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13C NMR (CDCl3, 75 MHz): 146.7, 142.7, 132.7, 130.2, 127.7, 116.3, 113.9, 106.8, 101.0, 

12.7; 

IR  (neat): 2915 (w), 2231 (w), 1481 (s), 1397 (s) cm-1; 

MS (EI, 70 ev): 322 (100%), 321 (81%), 307 (3%), 193 (8%), 179 (12%), 127 (11%); 

HRMS (EI): calcd. for C13H11IN2 (M
+): 321.9967, found: 321.9977 (M+). 

 

Synthesis of 3-bromo-4-(2,5-dimethyl-pyrrol-1-yl)-benzonitrile (39e) 

NC Br

N

Me

Me  RHJ098G 
It was prepared from 4-amino-3-bromo-benzonitrile117  (1.970 g, 10.0 mmol), 2, 5-

hexanedione (1.370 g, 12.0 mmol) and TsOH·H2O (19 mg, 1.0 mol %) according to TP1. 

Reaction time: 2 h. Purification by flash chromatography (eluent: pentane: ether = 10: 1) 

provided 39e (2.598 g, 94%) as a brown solid, mp.: 94.7-95.2 oC. 
1H NMR  (CDCl3, 300 MHz): 8.00 (d, J = 1.8 Hz, 1 H), 7.72 (dd, J1 = 8.0 Hz, J2 = 1.8 Hz, 1 

H), 7.39 (d, J = 8.0 Hz, 1 H), 5.94 (s, 2 H), 1.94 (s, 6 H); 
13C NMR (CDCl3, 75 MHz): 143.2, 136.7, 131.9, 131.4, 128.2, 125.5, 116.6, 114.0, 106.7, 

12.5; 

IR  (Neat): 2915 (w), 2232 (m), 1487 (vs), 1400 (vs), 1380 (s) cm-1; 

MS (EI, 70 ev): 276 (M+ (81Br), 72%), 275(M+ (81Br)-H, 100%), 274 (M+ (79Br), 75%), 

273(M+ (79Br)-H, 100%), 261 (5%), 193 (11%), 179 (55%); 

HRMS (EI): calcd. for C13H11BrN2 (M
+, 79Br): 274.0106, found: 274.0080 (M+, 79Br). 

 

Synthesis of 1-(2-iodo-4-trifluoromethyl-phenyl)-2,5-dimethyl-1H-pyrrole  (39f) 

I
N

Me

Me

F3C

 RHJ087G 

It was prepared from 2-iodo-4-trifluoromethyl-phenylamine (2.870 g, 10.0 mmol), 2,5-

hexanedione (1.370 g, 12.0 mmol) and TsOH·H2O (19 mg, 1.0 mol %) according to TP1. 

Reaction time: 5 h. Purification by flash chromatography (eluent: pentane: ether = 100: 1) 

provided 39f (1.825 g, 50%) as a brown solid, mp.: 80.6-81.2 oC. 

                                                 
117 Y. Tobe, N. Utsumi, K. Kawabata, A. Nagano, K. Adachi, S. Araki, M. Sonoda, K. Hirose, K. Naemura, J. Am. Chem. 
Soc. 2002, 124, 5350. 
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1H NMR  (CDCl3, 300 MHz): 8.20 (s, 1 H), 7.75 (d, J = 8.1 Hz, 1 H), 7.38 (d, J = 8.1 Hz, 1 

H), 5.94 (s, 2 H), 1.94 (s, 6 H); 
13C NMR (CDCl3, 75 MHz): 145.7, 136.5 (q, JC-F = 3.5 Hz), 131.9 (q, JC-F = 33.5 Hz), 130.0, 

127.9, 126.2 (q, JC-F = 3.5 Hz), 122.6 (q, JC-F = 273.0 Hz), 106.5, 100.7, 12.8; 

IR  (neat): 2921 (m), 1599 (m), 1523 (w), 1491 (m), 1322 (s), 1312 (s) cm-1; 

MS (EI, 70 ev): 365 (M+, 100%), 236 (14%), 222 (16%), 168 (6%); 

HRMS (EI): calcd. for C13H11BrF3NI (M+): 364.9888, found: 364.9887 (M+). 

 

Synthesis of 1-(2-bromo-5-trifluoromethyl-phenyl)-2,5-dimethyl-1H-pyrrole  (39g) 

CF3

Br
N

Me

Me  RHJ149G 
It was prepared from 2-bromo-4-trifluoromethyl-phenylamine (1.501 g, 6.3 mmol), 2,5-

hexanedione (0.860 g, 7.5 mmol) and TsOH·H2O (12 mg, 1.0 mol %) according to TP1. 

Reaction time: 2 h. Purification by flash chromatography (eluent: pentane: ether = 100: 1) 

provided 39g (1.631 g, 82%) as a brown solid, mp.: 74.5-75.3 °C. 
1H NMR  (CDCl3, 300 MHz): 7.86 (d, J = 8.8 Hz, 1 H), 7.50-7.60 (m, 2 H), 5.94 (s, 2 H), 1.95 

(s, 6 H); 
13C NMR (CDCl3, 75 MHz): 139.5, 134.1, 131.0 (q, JC-F = 33.3 Hz), 128.8, 128.4, 127.5 (q, 

JC-F = 3.5 Hz), 126.5 (q, JC-F = 3.5 Hz), 123.2 (q, JC-F = 273.2 Hz), 106.4, 12.5; 

IR  (neat): 2920 (w), 1483 (s), 1433 (vs), 1338 (vs), 1174 (vs) cm-1; 

MS (EI, 70 ev): 319 (M+ (81Br), 82%), 318 (M+ (81Br)-H, 100%), 317 (M+ (79Br), 80%), 316 

(M+ (79Br)-H, 95%), 236 (9%), 222 (23%), 168 (15%); 

HRMS (EI): calcd. for C13H11BrF3N (M+, 79Br): 317.0027, found: 317.0005 (M+, 79Br). 

 

Synthesis of 1-(2-bromo-4-iodo-phenyl)-2,5-dimethyl-1H-pyrrole (39aa) 

Br
N

Me

Me

I

RHJ039K 

It was prepared from 2-bromo-4-iodo-phenylamine (1.790 g, 6.0 mmol), 2,5-hexanedione 

(0.820 g, 7.2 mmol) and TsOH·H2O (12 mg, 1.0 mol %) according to TP1. Reaction time: 2 

h. Purification by flash chromatography (eluent: pentane: ether = 100: 1) provided 39aa 

(1.831 g, 81%) as a yellow oil. 
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1H NMR  (CDCl3, 300 MHz): 8.06 (d, J = 1.8 Hz, 1 H), 7.74 (dd, J1 = 7.9 Hz, J2 = 1.8 Hz, 1 

H), 7.01 (d, J = 7.9 Hz, 1 H), 5.92 (s, 2 H), 1.95 (s, 6 H); 
13C NMR (CDCl3, 75 MHz): 141.4, 138.4, 137.5, 131.9, 128.3, 125.5, 106.0, 94.0, 12.6; 

IR  (neat): 2915 (w), 1483 (vs), 1499 (s), 1399(m), 993 (m) cm-1; 

MS (EI, 70 ev): 377 (M+ (81Br), 100%), 375(M+ (79Br), 100%), 249 (20%), 167 (45%), 154 

(39%), 83 (23%); 

HRMS (EI): calcd. for C12H11BrIN (M+, 79Br): 374.9120, found: 374.9075 (M+, 79Br). 

 

Synthesis of [3-bromo-4-(2,5-dimethyl-pyrrol-1-yl)-phenyl]-phenyl-methanone (39h) 

O

Br
N

Me

Me  RHJ052I 
It was prepared from 1-(2-bromo-4-iodo-phenyl)-2, 5-dimethyl-1H-pyrrole 39aa (1.880 g, 5.0 

mmol), i-PrMgCl·LiCl (3.8 mL, 1.55 M in THF) and benzoyl chloride (7.5 mmol) according 

to TP2. Purification by flash chromatography (eluent: pentane: ether =10: 1) provided the 

pure product 39h (1.451 g, 82%) as a yellow oil. 
1H NMR  (CDCl3, 300 MHz): 8.17 (d, J = 1.9 Hz, 1 H), 7.81-7.88 (m, 3 H), 7.61-7.68 (m, 1 

H), 7.51-7.56 (m, 2 H), 7.41 (d, J = 1.9 Hz, 1 H), 5.96 (s, 2 H), 2.01 (s, 6 H); 
13C NMR (CDCl3, 75.0 MHz): 194.1, 142.0, 138.8, 136.4, 134.5, 132.9, 130.3, 129.8, 129.6, 

128.4, 128.2, 124.6, 106.1, 12.5; 

IR  (neat): 2918 (w), 1698 (m), 1661 (s), 1594 (m), 1489 (m), 1401 (m), 1282 (vs) cm-1; 

MS (EI, 70 ev): 355 (M+ (81Br), 100%), 353 (M+ (79Br), 98%), 258 (10%), 168 (25%), 105 

(51%); 

HRMS (EI): calcd. for C19H16BrNO (M+, 79Br): 353.0415, found: 353.0403 (M+, 79Br). 

 

Synthesis of 6-(1-tert-butyl-vinyl)-3-methyl-8H-3a-aza-cyclopenta[a]indene (39i). 

O

Br
N

Me

Me RHJ060J 

It was prepared from 1-(2-bromo-4-iodo-phenyl)-2, 5-dimethyl-1H-pyrrole 39aa (1.880 g, 5.0 

mmol), i-PrMgCl·LiCl (3.8 mL, 1.55 M in THF) and 2, 2-dimethyl-propionyl chloride (7.5 
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mmol) according to TP2. Purification by flash chromatography (eluent: pentane: ether=10: 1) 

provided the pure product 39i (1.336 g, 82%) as a white solid, mp.: 125.1-126.2 °C. 
1H NMR  (CDCl3, 300 MHz): 7.99 (d, J = 1.8 Hz, 1 H), 7.72 (dd, J1 = 7.9 Hz, J2 = 1.8 Hz, 1 

H), 7.31 (d, J = 7.9 Hz, 1 H), 5.92 (s, 2 H), 1.95 (s, 6 H), 1.37 (s, 9 H); 
13C NMR (CDCl3, 75 MHz): 207.0, 140.7, 139.8, 132.8, 130.1, 128.4, 127.5, 124.5, 106.1, 

44.4, 27.9, 12.6; 

IR  (neat): 2963 (w), 1669 (s), 1592 (vs), 1494 (m), 1473 (vs), 1396 (s), 1179 (s) cm-1; 

MS (EI, 70 ev): 335 (M+ (81Br), 75%), 333 (M+ (79Br), 74%), 276 (24%), 248 (100%), 167 

(47%), 154 (35%); 

HRMS (EI): calcd. for C17H20BrNO (M+,79Br): 333.0728, found: 333.0715 (M+, 79Br). 

 

Synthesis of cyclohexyl-(3-methyl-8H-3a-aza-cyclopenta[a]inden-6-yl)-methanone (39j) 

O

Br
N

Me

Me  RHJ062J 

It was prepared from 1-(2-bromo-4-iodo-phenyl)-2, 5-dimethyl-1H-pyrrole 39aa (1.880 g, 5.0 

mmol), i-PrMgCl·LiCl (3.8 mL, 1.55 M in THF) and cyclohexanecarbonyl chloride (7.5 

mmol) according to TP2. Purification by flash chromatography (eluent: pentane: ether = 10:1) 

provided the pure product 39j (1.458 g, 81%) as a white solid, mp.: 133.6-134.7 °C. 
1H NMR  (CDCl3, 300 MHz):8.24 (d, J = 1.8 Hz, 1 H), 7.95 (dd, J1 = 7.9 Hz, J2 = 1.8 Hz, 1 

H), 7.37 (d, J = 7.9 Hz, 1 H), 5.93 (s, 2 H), 3.10-3.30 (m, 1 H), 1.95 (s, 6 H), 1.20-1.93 (m, 10 

H); 
13C NMR (CDCl3, 75 MHz): 201.6, 142.4, 137.6, 133.2, 130.7, 128.3, 127.9, 125.1, 106.2, 

45.8, 29.3, 25.8, 25.7, 12.6; 

IR  (neat): 2932 (m), 1676 (s), 1592 (m), 1492 (m), 1394 (s), 1200 (m) cm-1; 

MS (EI, 70 ev): 361 (M+ (81Br), 100%), 359 (M+ (79Br), 100%), 248 (34%), 167 (20%), 154 

(10%); 

HRMS (EI): calcd. for C19H22BrNO (M+, 79Br): 359.0885, found: 359.0853 (M+, 79Br). 

 
Synthesis of 3-bromo-4-(2,5-dimethyl-pyrrol-1-yl)-benzaldehyde (39k) 

OHC

Br
N

Me

Me

 RHJ053I 
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It was prepared from 1-(2-bromo-4-iodo-phenyl)-2, 5-dimethyl-1H-pyrrole 39aa (1.880 g, 5.0 

mmol), i-PrMgCl·LiCl (3.8 mL, 1.55 M in THF) and DMF (1.0 mL) according to TP2. 

Purification by flash chromatography (eluent: pentane: ether =10: 1) yielded the pure product 

39k (1.084 g, 78%) as a yellow oil. 
1H NMR  (CDCl3, 300 MHz):10.03 (s, 1 H), 8.22 (d, J = 1.9 Hz, 1 H), 7.94 (d, J1 = 7.9 Hz, J2 

= 1.7 Hz, 1 H), 7.46 (d, J = 7.9 Hz, 1 H), 5.94 (s, 2 H), 1.96 (s, 6 H); 
13C NMR (CDCl3, 75.0 MHz): 189.6, 143.8, 137.2, 134.1, 131.3, 129.1, 128.1, 125.5, 106.4, 

12.5; 

IR  (neat): 2918 (w), 1697 (vs), 1594 (m), 1492 (s), 1397 (s), 1187 (s) cm-1; 

MS (EI, 70 ev): 279 (M+ (81Br), 100%), 277 (M+ (79Br), 98%), 182 ( 10%), 168 (40%), 154 

(25%), 128 (8%); 

HRMS (EI): calcd. for C13H12BrNO (M+, 79Br): 277.0102, found: 277.0082 (M+, 79Br). 

 

Synthesis of 1-(2-iodo-4-nitro-phenyl)-2,5-dimethyl-1H-pyrrole  (39l) 

O2N I

N

Me

Me  RHJ058G 

It was prepared from 2-iodo-4-nitro-phenylamine (5.280 g, 20.0 mmol), 2, 5-hexanedione 

(2.740 g, 24.0 mmol) and TsOH·H2O (38 mg, 1.0 mol %) according to TP1. Reaction time: 5 

h. Purification by flash chromatography (eluent: pentane: ether =10: 1) provided 39l (3.080 g, 

45.0%) as a brown solid, mp.: 114.8-115.2 °C. 
1H NMR  (CDCl3, 300 MHz): 8.78 (d, J = 2.5 Hz, 1 H), 8.32 (dd, J1 = 8.5 Hz, J2 = 2.5 Hz, 1 

H), 7.43 (d, J = 8.5 Hz, 1 H), 5.95 (s, 2 H), 1.95 (s, 6 H); 
13C NMR (CDCl3, 75 MHz): 148.3, 147.5, 134.5, 130.1, 127.7, 124.1, 106.9, 100.6, 12.8; 

IR (neat): 2913 (w), 1594 (m), 1574 (w), 1518 (vs), 1476 (s), 1341 (vs) cm-1; 

MS (EI, 70 ev): 342 (100%), 341 (46%), 296 (17%), 168 (29%), 154 (19%); 

HRMS (EI): calcd. for C12H11IN2O2 (M
+): 341.9865, found: 341.9877 (M+). 

 

Synthesis of 3-bromo-4-(2,5-dimethyl-pyrrol-1-yl)-phenylamine (39m) 

H2N

Br
N

Me

Me

RHJ030K 
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A mixture of 1-(2-bromo-4-nitro-phenyl)-2, 5-dimethyl-1H-pyrrole (1.520 g, 5 mmol), 

activated carbon (0.240 g, 20 mmol) and FeCl3·7H2O (144mg, 0. 5 mmol) in MeOH (20 mL) 

was heated to reflux under nitrogen for 10 min. Hydrazine monohydrate (0.6 mL, 20 mmol) 

was slowly added and the mixture heated to reflux for 6 h. The cooled solution was diluted 

with DCM (50 mL) and water (10 mL), and then filtered through celite. The organic layer was 

separated, dried over Na2SO4 and the solvent was removed under reduced pressure. The 

residue was purified by column chromatography to give 39m (1.056 g, 80%) as a white solid, 

mp.: 109.5-110.9 oC. 
1H NMR  (CDCl3, 300 MHz): 7.02 (d, J = 8.8 Hz, 1 H), 6.98 (d, J = 2.6 Hz, 1 H), 6.64 (dd, J1 

= 7.9 Hz, J2 = 2.6 Hz, 1 H), 5.89 (s, 2 H), 3.84 (bs, 2 H), 1.96 (s, 6 H); 
13C NMR (CDCl3, 75 MHz): 147.4, 130.6, 128.9, 128.5, 124.7, 118.5, 114.2, 105.0, 12.6; 

IR (neat): 3480 (w), 3429 (w), 3382 (w), 3357 (w), 3342 (w), 2916(w), 1617 (m), 1601 (m), 

1503 (s), 1404 (m), 1243 (m) cm-1; 

MS (EI, 70 ev): 266 (M+(81Br), 100%), 264 (M+(79Br), 100%), 249 (17%), 183 (29%), 169 

(39%), 144 (34%), 91 (34%); 

HRMS (EI): calcd. for C12H13BrN2 (M
+, 79Br): 264.0262, found: 264.0271 (M+, 79Br). 

 

Synthesis of 3-bromo-4-(2-ethyl-5-methyl-pyrrol-1-yl)-benzoic acid ethyl ester (39n) 

N Me

Br

Me

CO2Et  RHJ153H 
It was prepared from 4-amino-3-bromo-benzoic acid ethyl ester (1.220 g, 5.0 mmol), heptane-

2, 5-dione (768 mg, 6.0 mmol) and TsOH·H2O (5 mg, 1.0 mol %) according to TP1. Reaction 

time: 4 h. Purification by flash chromatography (eluent: pentane: ether = 10: 1) provided 39n 

(1.341 g, 80.0%) as a colourless oil. 
1H NMR  (CDCl3, 300 MHz): 8.37 (d, J = 1.8 Hz, 1 H), 8.08 (d, J1 = 8.2 Hz, J2 = 1.8 Hz, 1 H), 

7.36 (d, J = 8.2 Hz, 1 H), 6.00 (s, 2 H), 4.42 (t, J = 7.1 Hz, 2 H), 2.13-2.40 (m, 2 H), 1.94 (s, 3 

H), 1.42 (t, J = 7.1 Hz, 3 H), 1.09 (t, J = 7.6 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 164.6, 142.6, 134.8, 134.4, 132.0, 130.6, 129.3, 128.2, 124.6, 

106.1, 104.4, 61.6, 20.1, 14.2, 13.0, 12.4; 

IR (neat): 2971 (m), 1721 (vs), 1598 (m), 1495 (m), 1408 (m), 1210 (vs) cm-1; 

MS (EI, 70 ev): 337 (M+ (81Br), 56%), 335 (M+ (79Br), 56%), 322 (100%), 292 (43%), 226 

(8%), 198 (11%), 168 (54%); 
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HRMS (EI): calcd. for C16H18BrNO2 (M
+, 79Br): 335.0521, found: 335.0511 (M+, 79Br). 

 

Synthesis of 1-(2-bromo-4-ethoxycarbonyl-phenyl)-2-ethyl-5-methyl-1H-pyrrole-3-

carboxylic acid ethyl ester (39o) 

NMe

CO2Et

O

O

Me

Br

 RHJ180H 
It was prepared from 4-amino-3-bromo-benzoic acid ethyl ester (0.976 g, 4.0 mmol), 3-oxo-2-

(2-oxo-propyl)-pentanoic acid ethyl ester (0.960 g, 4.8 mmol) and TsOH·H2O (5 mg, 1.0 mol 

%) according to TP1. Reaction time: 2 h. Purification by flash chromatography (eluent: 

pentane: ether = 6: 1) provided 39o (1.355 g, 83%) as a colourless oil. 
1H NMR  (CDCl3, 600 MHz): 8.38 (d, J = 1.9 Hz, 1 H), 8.10 (dd, J1 = 8.1 Hz,  J 2= 1.9 Hz, 1 

H), 7.34 (d, J = 8.1 Hz, 1 H), 6.39 (s, 1 H), 4.41 (q, J = 7.2 Hz, 2 H), 4.25 (q, J = 7.2 Hz, 2 H), 

2.72-2.78 (m, 1 H), 2.44-2.50 (m, 1 H), 1.87 (s, 3 H), 1.40 (t, J = 7.2 Hz, 3 H), 1.32 (t, J = 7.2 

Hz, 3 H), 0.96 (t, J = 7.6 Hz, 3 H); 
13C NMR (CDCl3, 150 MHz): 165.1, 164.4, 141.6, 141.1, 134.6, 132.7, 130.5, 129.4, 128.1, 

124.2, 111.6, 108.2, 61.8, 59.3, 19.4, 14.4, 14.24, 14.22, 12.1; 

IR  (neat): 2978 (w), 1723 (s), 1698 (vs), 1532 (m), 1494 (m), 1273 (vs) cm-1; 

MS (EI, 70 ev): 409 (M+ (81Br), 73%), 407 (M+ (79Br), 72%), 394 ( 60%), 392 (58%), 380 

(100%), 378 (100%), 212 (36%), 167 (33%); 

HRMS (EI): calcd. for C19H22BrNO4 (M
+, 79Br): 407.0732, found: 407.0721 (M+, 79Br). 

 

Synthesis of 1-(2-bromo-4-cyano-phenyl)-2-ethyl-5-methyl-1H-pyrrole-3-carboxylic acid 

ethyl ester (39p) 

NMe

CN

O

O

Me

Br

 RHJ182H 
It was prepared from 4-amino-3-bromo-benzonitrile (0.788 g, 4.0 mmol), 3-oxo-2-(2-oxo-

propyl)-pentanoic acid ethyl ester (0.960 g, 4.8 mmol) and TsOH·H2O (5 mg, 1.0 mol %) 
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according to TP1. Reaction time: 2 h. Purification by flash chromatography (eluent: pentane: 

ether = 3: 1) provided 39p (1.155 g, 80%) as a colourless oil. 
1H NMR  (CDCl3, 600 MHz): 8.03 (d, J = 1.9 Hz, 1 H), 7.75 (dd, J1 = 8.1 Hz,  J 2= 1.9 Hz, 1 

H), 7.40 (d, J = 8.1 Hz, 1 H), 6.39 (s, 1 H), 4.24 (q, J = 7.2 Hz, 2 H), 2.70-2.77 (m, 1 H), 2.41-

2.48 (m, 1 H), 1.87 (s, 3 H), 1.31 (t, J = 7.2 Hz, 3 H), 0.95 (t, J = 7.2 Hz, 3 H); 
13C NMR (CDCl3, 150 MHz): 164.9, 141.7, 141.4, 136.9, 131.9, 131.4, 127.9, 125.2, 116.3, 

114.7, 112.0, 108.6, 59.4, 19.3, 14.4, 14.2, 12.1; 

IR  (neat): 2977 (w), 2235 (m), 1694 (vs), 1532 (m), 1490 (m), 1192 (vs) cm-1; 

MS (EI, 70 ev): 362 (M+ (81Br), 62%), 360 (M+ (79Br), 61%), 347 ( 40%), 345 (41%), 333 

(99%), 331 (100%), 207 (36%), 193 (71%); 

HRMS (EI): calcd. for C17H17BrN2O2 (M
+, 79Br): 360.0473, found: 360.0470 (M+, 79Br). 

 

Synthesis of 3-bromo-4-(2-methyl-4,5,6,7-tetrahydro-indol-1-yl)-benzoic acid ethyl ester 

(39q) 

NMe

Br

CO2Et  RHJ004I 
It was prepared from 4-amino-3-bromo-benzoic acid ethyl ester (0.976 g, 4.0 mmol), 2-(2-

oxo-propyl)-cyclohexanone (0.739 g, 4.8 mmol) and TsOH·H2O (15 mg, 2.0 mol %) 

according to TP1. Reaction time: 2 h. Purification by flash chromatography (eluent: pentane: 

ether = 10: 1) provided 39q (1.042 g, 72%) as a colourless oil. 
1H NMR  (CDCl3, 600 MHz): 8.35 (d, J = 1.9 Hz, 1 H), 8.06 (dd, J1 = 8.1 Hz,  J 2= 1.9 Hz, 1 

H), 7.34 (d, J = 8.1 Hz, 1 H), 5.83 (s, 1 H), 4.41 (q, J = 7.2 Hz, 2 H), 2.44-2.58 (m, 2 H), 2.08-

2.23 (m, 2 H), 1.96 (s, 3 H), 1.66-1.79 (m, 4 H), 1.41 (t, J = 7.2 Hz, 3 H); 
13C NMR (CDCl3, 150 MHz):164.6, 142.5, 134.3, 131.8, 130.5, 129.2, 127.8, 127.5, 124.3, 

117.2, 106.0, 61.6, 23.7, 23.3, 22.9, 22.3, 14.3, 12.1; 

IR  (neat): 2925 (m), 1721 (vs), 1598 (m), 1495 (m), 1244 (vs) cm-1; 

MS (EI, 70 ev): 363 (M+ (81Br), 97%), 361 (M+ (79Br), 100%), 335 ( 60%), 333 (62%), 254 

(12%), 208 (11%), 181 (41%); 

HRMS (EI): calcd. for C18H20BrNO2 (M
+, 79Br): 361.0677, found: 361.0675 (M+, 79Br). 

 
Synthesis of 3-bromo-4-(2-methyl-5,6-dihydro-4H-cyclopenta[b]pyrrol-1-yl)-benzoic 
acid ethyl ester (39r) 
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NMe

Br

CO2Et  RHJ014I 
It was prepared from 4-amino-3-bromo-benzoic acid ethyl ester (0.976 g, 4.0 mmol), 2-(2-

oxo-propyl)-cyclopentanone (0.672 g, 4.8 mmol), and TsOH·H2O (15 mg, 2.0 mol %) 

according to TP1. Reaction time: 2 h. Purification by flash chromatography (eluent: pentane: 

ether = 10: 1) provided 39r (0.970 g, 70%) as a colourless oil. 
1H NMR  (CDCl3, 300 MHz):8.36 (d, J = 1.9 Hz, 1 H), 8.05 (dd, J1 = 8.1 Hz,  J 2= 1.9 Hz, 1 

H), 7.34 (d, J = 8.1 Hz, 1 H), 5.86 (s, 1 H), 4.41 (q, J = 7.2 Hz, 2 H), 2.30-2.71 (m, 6 H), 2.01 

(s, 3 H), 1.41 (t, J = 7.2 Hz, 3 H); 
13C NMR (CDCl3, 75.0 MHz):164.6, 143.0, 137.7, 134.4, 132.1, 131.5, 129.7, 129.1, 125.8, 

123.1, 102.9, 61.5, 28.5, 25.7, 25.1, 14.2, 12.8; 

IR  (neat): 2854 (w), 1718 (vs), 1597 (m), 1498 (m), 1227 (vs) cm-1; 

MS (EI, 70 ev): 349 (M+ (81Br), 100%), 347 (M+ (79Br), 98%), 321 ( 10%), 319 (10%), 268 

(25%), 240 (23%), 194 (16%); 

HRMS (EI): calcd. for C17H18BrNO2 (M
+, 79Br): 347.0521, found: 347.0522 (M+, 79Br). 

 

Synthesis of 3-bromo-4-(2-methyl-5-phenethyl-pyrrol-1-yl)-benzoic acid ethyl ester (39s) 

N

CO2Et

Br

Me

 RHJ041I 

It was prepared from 4-amino-3-bromo-benzoic acid ethyl ester (0.976 g, 4.0 mmol) 7-

phenyl-heptane-2,5-dione (0.979 g, 4.8 mmol) and TsOH·H2O (15 mg, 2.0 mol %) according 

to TP1. Reaction time: 2 h. Purification by flash chromatography (eluent: pentane: ether =10: 

1) provided 39s (1.236 g, 75%) as a colourless oil. 
1H NMR  (CDCl3, 300 MHz): 8.38 (d, J = 1.9 Hz, 1 H), 8.06 (dd, J1 = 8.1 Hz, J2 = 1.9 Hz, 1 

H), 7.11-7.30 (m, 4 H), 7.00-7.08 (m, 2 H), 5.98-6.05 (m, 2 H), 4.43 (q, J = 7.2 Hz, 2 H), 

2.77-2.88 (m, 2 H), 2.41-2.65 (m, 2 H), 1.96 (s, 3 H), 1.42 (t, J = 7.2 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 164.5, 142.4, 141.5, 134.4, 132.5, 132.1, 130.7, 129.3, 128.4, 

128.3, 125.9, 124.6, 106.3, 105.5, 61.7, 35.4, 29.0, 14.3, 12.4; 
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IR  (neat): 2898 (w), 1698 (vs), 1619 (s), 1284 (vs) cm-1; 

MS (EI, 70 ev): 413 (M+ (81Br), 10%), 411 (M+ (79Br), 10%), 322 (100%), 320 (100%), 292 

(8%), 168 (11%); 

HRMS (EI): calcd. for C22H22BrNO2 (M
+, 79Br): 411.0834, found: 411.0848 (M+, 79Br). 

 

Synthesis of 1-(2-bromo-4-ethoxycarbonyl-phenyl)-2,5-dimethyl-1H-pyrrole-3-

carboxylic acid ethyl ester (39t) 

N MeMe

Br

CO2Et

O

O

 RHJ164H 
It was prepared from 4-amino-3-bromo-benzoic acid ethyl ester (1.220 g, 5.0 mmol), 2-acetyl-

4-oxo-pentanoic acid ethyl ester (1.120 g, 6.0 mmol) and TsOH·H2O (15 mg, 2.0 mol %) 

according to TP1. Reaction time: 2 h. Purification by flash chromatography (eluent: pentane: 

ether =3: 1) provided 39t (1.596 g, 81%) as a colourless oil. 
1H NMR  (CDCl3, 300 MHz):8.37 (d, J = 1.9 Hz, 1 H), 8.09 (dd, J1 = 8.1 Hz, J2 = 1.9 Hz, 1 

H), 7.30 (d, J = 8.1 Hz, 1 H), 6.38 (s, 1 H), 4.39 (q, J = 7.2 Hz, 2 H), 4.24 (q, J = 7.2 Hz, 2 H), 

2.19 (s, 3 H), 1.88 (s, 3 H), 1.39 (t, J = 7.2 Hz, 3 H), 1.31 (t, J = 7.2 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz):165.4, 164.3, 141.1, 135.6, 134.6, 132.7, 130.3, 129.5, 128.0, 

124.0, 112.2, 107.9, 61.8, 59.3, 14.5, 14.2, 12.2, 11.9; 

IR  (KBr): 2979 (m), 1722 (s), 1697 (vs), 1538 (m), 1495 (m), 1410 (m), 1254 (vs) cm-1; 

MS (EI, 70 ev): 395 (M+ (81Br), 92%), 393 (M+ (79Br), 92%), 366 ( 100%), 364 (100%), 350 

(31%), 348 (31%), 240 (29%), 168 (25%); 

HRMS (EI): calcd. for C18H20BrNO4 (M
+, 79Br): 393.0576, found: 393.0552 (M+, 79Br). 

 

Synthesis of 1-(2-bromo-phenyl)-2-methyl-1H-pyrrole (39u) 

N Me

Br

 RHJ023G 
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It was prepared from 2-bromoaniline (3.44 g, 20.0 mmol), 4-oxo-pentanal118 (2.400 g, 24.0 

mmol) and TsOH·H2O (38 mg, 1.0 mol %) according to TP1. Reaction time: 2 h. Purification 

by flash chromatography (eluent: pentane) provided 39u (4.012 g, 85%) as a colourless oil. 
1H NMR  (CDCl3, 300 MHz):7.69 (dd, J1= 7.9 Hz, J2 = 1.8 Hz, 1 H), 7.20-7.44 (m, 3 H), 

6.60-6.64 (m, 1 H), 6.22 (t, J = 3.5 Hz, 1 H), 6.00-6.07 (m, 1 H), 2.04 (s, 3 H); 
13C NMR (CDCl3, 75 MHz):139.6, 133.3, 129.8, 129.6, 128.0, 123.1, 121.1, 108.0, 106.9, 

12.1; 

IR  (neat): 2914 (w), 1653 (w), 1540 (w), 1489 (s), 1437 (m), 1330 (m) cm-1; 

MS (EI, 70 ev): 237 (M+ (81Br), 95%), 235 (M+ (79Br), 100%), 154 (65%), 128 (10%), 115 

(29%), 77(41%); 

HRMS (EI): calcd. for C11H10BrN (M+, 79Br): 234.9997, found: 235.0001 (M+, 79Br). 

 

Synthesis of 3-bromo-4-(2,5-diethyl-pyrrol-1-yl)-benzoic acid ethyl ester (39v) 

N
Br

CO2Et

Me Me

 RHJ137H 

It was prepared from 4-amino-3-bromo-benzoic acid ethyl ester (1.220 g, 5.0 mmol), octane-

3, 6-dione (0.852 g, 6.0 mmol) and TsOH·H2O (19 mg, 2.0 mol %) according to TP1. 

Reaction time: 3 h. Purification by flash chromatography (eluent: pentane: ether = 15: 1) 

provided 39v (1.575 g, 90%) as a colourless oil.  
1H NMR  (CDCl3, 300 MHz): 8.37 (d, J = 1.8 Hz, 1 H), 8.08 (dd, J1 = 8.2 Hz, J2 = 1.8 Hz, 1 

H), 7.37 (d, J = 8.2 Hz, 1 H), 5.98 (s, 2 H), 4.41 (q, J = 7.2 Hz, 2 H), 2.12-2.32 (m, 4 H), 1.41 

(t, J = 7.2 Hz, 3 H), 1.09 (t, J = 7.2 Hz, 6 H); 
13C NMR (CDCl3, 75 MHz): 164.5, 142.6, 134.7, 134.4, 132.0, 130.7, 129.2, 124.7, 104.4, 

61.6, 19.9, 14.2, 13.0; 

IR  (neat): 2968 (m), 1721 (vs), 1598 (m), 1495 (m), 1416 (m), 1220 (vs) cm-1; 

MS (EI, 70 ev): 351 (M+ (81Br), 30%), 349 (M+ (79Br), 30%), 334 (100%), 306 (16%), 167 

(12%); 

HRMS (EI): calcd. for C17H20BrNO2 (M
+, 79Br): 349.0677, found: 349.0656 (M+, 79Br). 

 

                                                 
118 T. K. Hutton, K. W. Muir, D. J. Procter, Org. Lett. 2003, 5, 4811. 
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Synthesis of 3-bromo-5-methyl-4-(2-methyl-pyrrol-1-yl)-benzoic acid ethyl ester (39w) 

N Me

Br

CO2Et

Me

 RHJ050J 

It was prepared from 4-amino-3-bromo-5-methyl-benzoic acid ethyl ester (893 mg, 3.5 mmol), 

4-oxo-pentanal (525 mg, 5.25 mmol), and TsOH·H2O (8 mg, 1.0 mol %) according to TP1. 

Reaction time: 3 h. Purification by flash chromatography (eluent: pentane: ether = 10: 1) 

provided 39w (789 mg, 70%) as white solid, mp.: 56.9-57.7 oC. 
1H NMR  (CDCl3, 300 MHz): 8.17 (s, 1 H), 7.92 (s, 1 H), 6.47 (s, 1 H), 6.26 (s, 1 H), 6.06 (s, 

1 H), 4.40 (q, J = 7.0 Hz, 2 H), 2.06 (s, 3 H), 1.94 (s, 3 H), 1.41 (t, J = 7.0 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 164.8, 142.4, 139.6, 131.58, 131.55, 130.6, 128.6, 124.2, 119.2, 

108.9, 107.3, 61.6, 18.0, 14.3, 11.8; 

IR  (neat): 2903 (w), 1718 (vs), 1653 (m), 1559 (m), 1280 (s) cm-1; 

MS (EI, 70 ev): 323 (M+ (81Br), 100%), 321 (M+ (79Br), 100%), 308 (86%), 306 (76%), 199 

(39%), 168 (75%), 154 (97%); 

HRMS (EI): calcd. for C15H16BrNO2 (M
+, 79Br): 321.0364, found: 321.0346 (M+, 79Br). 

 

Synthesis of 3-bromo-4-(2,5-dimethyl-pyrrol-1-yl)-5-methyl-benzoic acid ethyl ester 

(39x) 

N MeMe

Br

CO2Et

Me

 RHJ010I 

It was prepared from 4-amino-3-bromo-5-methyl-benzoic acid ethyl ester (1.032 g, 4.0 

mmol), 2, 5-hexanedione (0.547 g, 6.0 mmol) and TsOH·H2O (8 mg, 1.0 mol %) according to 

TP1. Reaction time: 2 h. Purification by flash chromatography (eluent: pentane: ether = 10: 1) 

provided 39x (1.280 g, 95%) as a brown solid, mp.: 80.0-80.8 °C. 
1H NMR  (CDCl3, 300 MHz): 8.20 (d, J = 1.7 Hz, 1 H), 7.94 (s, 1 H), 5.95 (s, 2 H), 4.40 (q, J 

= 7.2 Hz, 2 H), 2.02 (s, 3 H), 1.88 (s, 6 H), 1.41 (t, J = 7.2 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 164.9, 141.4, 140.0, 131.7, 130.6, 126.9, 125.0, 106.3, 61,6, 

18.1, 14.3, 12.2; 
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IR  (neat): 2918 (w), 1716 (vs), 1473 (m), 1392 (s), 1284 (vs) cm-1; 

MS (EI, 70 ev): 337 (M+ (81Br), 100%), 335 (M+ (79Br), 100%), 320 (16%), 306 (36%), 212 

(19%), 168 (45%); 

HRMS (EI): calcd. for C16H18BrNO2 (M
+, 79Br): 335.0521, found: 335.0513 (M+, 79Br). 

 

Synthesis of 1-(2-bromo-4-ethoxycarbonyl-phenyl)-5-tert-butyl-2-methyl- 1H-pyrrole-3-

carboxylic acid ethyl ester (39y) 

N Me

Br

CO2Et

O

O

t-Bu

 RHJ172H 

It was prepared from 4-amino-3-bromo-benzoic acid ethyl ester (1.220 g, 5.0 mmol), 2-acetyl-

5, 5-dimethyl-4-oxo-hexanoic acid ethyl ester (1.370 g, 6.0 mmol) and TsOH·H2O (19 mg, 

2.0 mol %) according to TP1. Reaction time: 2 h. Purification by flash chromatography 

(eluent: pentane: ether = 8: 1) provided 39y (1.918 g, 88%) as a white solid, mp.: 105.0-106.5 

°C. 
1H NMR  (CDCl3, 600 MHz): 8.34 (d, J = 1.9 Hz, 1 H), 8.08 (dd, J1 = 8.1 Hz, J2= 1.9 Hz, 1 

H), 7.45 ((d, J = 8.1 Hz, 1 H), 6.46 (s, 1 H), 4.40 (q, J = 7.2 Hz, 2 H), 4.25 (q, J = 7.2 Hz, 2 

H), 2.08 (s, 3 H), 1.40 (t, J = 7.2 Hz, 3 H), 1.32 (t, J = 7.2 Hz, 3 H), 1.09 (s, 9 H); 
13C NMR (CDCl3, 150 MHz): 165.5, 164.3, 143.2, 141.6, 137.3, 134.5, 132.6, 131.7, 128.9, 

125.8, 111.5, 106.9, 61.8, 59.4, 32.5, 30.7, 14.5, 14.2, 11.6; 

IR  (neat): 2979 (w), 1720 (s), 1699 (vs), 1574 (m), 1240 (vs) cm-1; 

MS (EI, 70 ev): 437 (M+ (81Br), 14%), 435 (M+ (79Br), 14%), 422 (100%), 392 (14%), 225 

(4%); 

HRMS (EI): calcd. for C21H26BrNO4 (M
+, 79Br): 435.1045, found: 435.1029 (M+, 79Br). 

 

Synthesis of 1-(2-bromo-phenyl)-2-methyl-5-phenyl-1H-pyrrole (44a). 

N
Me

Br

RHJ011K 
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It was prepared from 2-bromo-phenylamine (344 mg, 2.0 mmol), 1-phenyl-pentane-1, 4-dione 

(394 mg, 2.2 mmol) and TsOH·H2O (8 mg, 2.0 mol %) according to TP1. Reaction time: 2 h. 

Purification by flash chromatography (eluent: pentane) provided 44a (445 mg, 71%) as a 

white solid, mp.: 96.9-98.5 °C. 
1H NMR  (CDCl3, 300 MHz): 7.67 (d, J = 7.9 Hz, 1 H), 7.23-7.38 (m, 3 H), 7.07-7.20 (m, 5 

H), 6.41 (d, J = 3.5 Hz, 1 H), 6.15 (d, J = 3.5 Hz, 1 H), 2.08 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 139.0, 134.3, 133.31, 133.28, 131.6, 131.1, 129.6, 128.1, 128.0, 

127.4, 125.9, 124.4, 108.4, 107.4, 12.7; 

IR  (neat): 2913 (w), 1646 (w), 1602 (w), 1516 (m), 1482 (s), 1395 (m), 1022 (m) cm-1; 

MS (EI, 70 ev): 313 (M+ (81Br), 100%), 311 (M+ (79Br), 100%), 230 (82%), 217 (85%), 154 

(12%), 115 (29%); 

HRMS (EI): calcd. for C17H14BrN (M+, 79Br): 311.0310, found: 311.0319 (M+, 79Br). 

 

Synthesis of 3-bromo-4-(2-methyl-5-phenyl-pyrrol-1-yl)-benzoic acid ethyl ester (44b) 

NMe

Br

CO2Et  RHJ190G 

It was prepared from 4-amino-3-bromo-benzoic acid ethyl ester (1.220 g, 5.0 mmol), 1-

phenyl-pentane-1, 4-dione (0.968 g, 5.5 mmol) and TsOH·H2O (10 mg, 1.0 mol %) according 

to TP1. Reaction time: 4 h. Purification by flash chromatography (eluent: pentane: ether = 20: 

1) provided 44b (1.709 g, 89%) as a brown solid, mp.: 92.3-93.6 °C. 
1H NMR  (CDCl3, 300 MHz): 8.32 (d, J = 1.8 Hz, 1 H), 7.98 (dd, J1 = 8.2 Hz, J2 = 1.8 Hz, 1 

H), 7.29 (d, J = 8.2 Hz, 1 H), 7.05-7.17 (m, 5 H), 6.38 (d, J = 3.4 Hz, 1 H), 6.13 (dd, J1 = 3.4 

Hz, J2 = 0.8 Hz, 1 H ), 4.39 (q, J = 7.1 Hz, 2 H), 2.05 (d, J = 0.8 Hz, 3 H), 1.40 (t, J = 7.1 Hz, 

3 H); 
13C NMR (CDCl3, 75 MHz): 164.6, 143.1, 134.5, 134.4, 133.0, 131.8, 131.4, 131.0, 129.2, 

128.1, 127.5, 126.1, 124.4, 108.9, 108.0, 61.6, 14.2, 12.7; 

IR  (neat): 2903 (w), 1716 (vs), 1598 (m), 1496 (m), 1395 (s), 1240 (vs) cm-1; 

MS (EI, 70 ev):385 (M+ (81Br), 100%), 383 (M+ (79Br), 100%), 276 (40%), 261 (36%), 230 

(63%), 115 (21%); 

HRMS (EI): calcd. for C20H18BrNO2 (M
+, 79Br): 383.0521, found: 383.0499 (M+, 79Br). 
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Synthesis of 1-(2-bromo-4-trifluoromethyl-phenyl)-2-methyl-5-phenyl-1H-pyrrole (44c). 

N

CF3

Me

Br

RHJ024K 

It was prepared from 2-bromo-4-trifluoromethyl-phenylamine (720 mg, 3.0 mmol), 1-phenyl-

pentane-1, 4-dione (630 mg, 3.6 mmol) and TsOH·H2O (6 mg, 1.0 mol %) according to TP1. 

Reaction time: 4 h. Purification by flash chromatography (eluent: pentane: ether = 10: 1) 

provided 44c (920 mg, 81%) as a white solid, mp.: 90.6-91.9 °C. 
1H NMR  (CDCl3, 300 MHz): 7.93 (s, 1 H), 7.58 (dd, J1 = 7.9 Hz, J2 = 1.8 Hz, 1 H), 7.36 (d, J 

= 7.9 Hz, 1 H), 7.03-7.20 (m, 5 H), 6.39 (d, J = 3.5 Hz, 1 H), 6.15 (d, J = 3.5 Hz, 1 H), 2.06 

(s, 3 H); 
13C NMR (CDCl3, 75.0 MHz): 142.5, 134.5, 132.9, 131.7 (q, J C-F = 33.2 Hz), 131.5, 131.4, 

130.5 (q, J C-F = 3.3 Hz), 128.2, 127.5, 126.3, 125.1 (q, J C-F = 3.3 Hz), 124.9, 122.8, 109.1, 

108.2, 12.7; 

IR  (neat): 2914 (w), 1605 (w), 1519 (w), 1500 (m), 1389 (m), 1325 (s), 1316 (s), 1128 (vs) 

cm-1; 

MS (EI, 70 ev): 381 (M+ (81Br), 100%), 379 (M+ (79Br), 100%), 298 (54%), 285 (63%), 230 

(10%), 115 (10%); 

HRMS (EI): calcd. for C18H13BrF3N (M+, 79Br): 379.0183, found: 379.0193 (M+, 79Br). 

 

Synthesis of 1-[3-bromo-4-(2-methyl-5-phenyl-pyrrol-1-yl)-phenyl]-ethanone (44d) 

N Me

OMe

Br

 RHJ071J 

It was prepared from 1-(4-amino-3-bromo-phenyl)-ethanone (1.070 g, 5.0 mmol), 1-phenyl-

pentane-1, 4-dione (1.056g, 6.0 mmol) and TsOH·H2O (19 mg, 2.0 mol %) according to TP1. 

Reaction time: 3 h. Purification by flash chromatography (eluent: pentane: ether = 5: 1) 

provided 44d (1.327 g, 75%) as a yellow oil. 



 
 

 
 

109 

1H NMR  (CDCl3, 300 MHz): 8.22 (d, J = 1.8 Hz, 1 H), 7.88 (dd, J1 = 7.9 Hz, J2 = 1.8 Hz, 1 

H), 7.32 (d, J = 7.9 Hz, 1 H), 7.05-7.20 (m, 5 H), 6.38 (d, J = 3.5 Hz, 1 H), 6.14 (d, J = 3.5 

Hz, 1 H), 2.60 (s, 3 H), 2.05 (s, 3 H); 
13C NMR (CDCl3, 75.0 MHz): 195.7, 143.2, 137.8, 134.4, 133.3, 132.9, 131.4, 131.2, 128.1, 

127.8, 127.4, 126.1, 124.9, 109.0, 108.0, 26.6, 12.7; 

IR  (neat): 2917 (w), 1687 (vs), 1593 (m), 1490 (m), 1388 (s), 1231 (s) cm-1; 

MS (EI, 70 ev): 355 (M+ (81Br), 100%), 353 (M+ (79Br), 100%), 274(34%), 259 (43%), 230 

(95%), 115 (30%); 

HRMS (ESI): calcd. for C19H17BrNO (M++H, 79Br): 354.0494, found: 354.0483 (M++H, 
79Br). 

Synthesis of 1-(2-bromo-phenyl)-2-methyl-5-phenyl-1H-pyrrole-3-carboxylic acid ethyl 

ester (44e). 

N

O
O

Me

Br

 RHJ015K 

It was prepared from 2-bromo-phenylamine (0.860 g, 5.0 mml), 3-oxo-2-(2-oxo-2-phenyl-

ethyl)-butyric acid ethyl ester (1.490 g, 6.0 mmol) and TsOH·H2O (10 mg, 1.0 mol %) 

according to TP1. Reaction time: 3 h. Purification by flash chromatography (eluent: pentane: 

ether = 10: 1) provided 44e (1.721 g, 89%) as a colourless oil. 
1H NMR  (CDCl3, 300 MHz):7.68 (d, J = 7.9 Hz, 1 H), 7.07-7.40 (m, 8 H), 6.84 (s, 1 H), 4.34 

(q, J = 7.1 Hz, 2 H), 2.35 (s, 3 H), 1.40 (t, J = 7.1 Hz, 3 H); 
13C NMR (CDCl3, 75.0 MHz):165.4, 138.0, 137.7, 133.8, 133.5, 132.1, 130.8, 130.3, 128.3, 

128.0, 127.9, 126.7, 124.0, 113.0, 109.8, 59.5, 14.5, 12.0; 

IR  (neat): 2978 (w), 1717 (vs), 1700 (m), 1559 (m), 1493 (s), 1250 (vs) cm-1; 

MS (EI, 70 ev): 385 (M+ (81Br), 51%), 383 (M+ (79Br), 51%), 354 (49%), 274 (9%), 230 

(100%), 216 (11%), 128 (11%); 

HRMS (EI): calcd. for C20H18BrNO2 (M
+, 79Br): 383.0521, found: 383.0485 (M+, 79Br). 

 

Synthesis of 1-(2-bromo-4-trifluoromethyl-phenyl)-2-methyl-5-phenyl-1H-pyrrole-3-

carboxylic acid ethyl ester (44f) 
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N

EtO2C

Me

CF3

Br

RHJ021K 

It was prepared from 2-bromo-4-trifluoromethyl-phenylamine (1.200 g, 5.0 mmol), 3-oxo-2-

(2-oxo-2-phenyl-ethyl)-butyric acid ethyl ester (1.490 g, 6.0 mmol) and TsOH·H2O (10 mg, 

1.0 mol %) according to TP1. Reaction time: 3 h. Purification by flash chromatography 

(eluent: pentane: ether = 8: 1) provided 44f (1.853 g, 82%) as a white solid, mp.: 81.3-82.7 

°C. 
1H NMR  (CDCl3, 300 MHz):7.92 (d, J = 1.8 Hz, 1 H), 7.59 (dd, J1 = 7.9 Hz, J2 = 1.8 Hz, 1 

H), 7.32 (d, J = 8.8 Hz, 1 H), 7.11-7.20 (m, 3 H), 7.01-7.10 (m, 2 H), 6.81 (s, 1 H), .4.32 (q, J 

= 7.1 Hz, 2 H), 2.32 (s, 3 H), 1.37 (t, J = 7.1 Hz, 3 H); 
13C NMR (CDCl3, 75.0 MHz): 165.3, 141.1, 137.7, 133.9, 132.4 (JC-F = 33.2 Hz), 131.7, 

131.4, 130.7 (JC-F = 3.3 Hz), 128.3, 128.0, 127.1, 125.3 (JC-F = 3.3 Hz), 124.7, 122.6 (JC-F = 

273.1 Hz), 113.7, 110.4, 59.7, 14.5, 12.1; 

IR  (neat): 2986 (w), 1694 (vs), 1606 (m), 1379 (m), 1318 (s), 1223 (s), 1318 (s), 1072 (vs) 

cm-1; 

MS (EI, 70 ev): 453 (M+ (81Br), 36%), 451 (M+ (79Br), 36%), 424 (40%), 342 (13%), 298 

(100%), 228 (35%), 128 (37%); 

HRMS (EI): calcd. for C21H17BrF3NO2 (M
+, 79Br): 451.0395, found: 451.0357 (M+, 79Br). 

 

Synthesis of 1-(2-bromo-4-ethoxycarbonyl-phenyl)-2-methyl-5-phenyl-1H-pyrrole-3-

carboxylic acid ethyl ester (44g) 

N

EtO2C

Me

CO2Et

Br

 RHJ017K 

It was prepared from 4-amino-3-bromo-benzoic acid ethyl ester (452 mg, 1.8 mmol), 3-oxo-2-

(2-oxo-2-phenyl-ethyl)-butyric acid ethyl ester (546 mg, 2.2 mmol) and TsOH·H2O (7 mg, 2.0 

mol %) according to TP1. Reaction time: 3 h. Purification by flash chromatography (eluent: 

pentane: ether = 2: 1) provided 44g (591 mg, 72%) as a yellow oil. 
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1H NMR  (CDCl3, 300 MHz):8.36 (s, 1 H), 8.03 (dd, J1 = 7.9 Hz, J2 = 1.8 Hz, 1 H), 7.31 (d, J 

= 7.9 Hz, 1 H), 7.00-7.25 (m, 5 H), 6.85 (s, 1 H), 4.42 (q, J = 7.1 Hz, 2 H), 4.35 (q, J = 7.1 

Hz, 2 H), 2.36 (s, 3 H), 1.36-1.46 (m, 6 H); 
13C NMR (CDCl3, 75.0 MHz): 165.2, 164.2, 141.5, 137.6, 134.5, 133.8, 132.3, 131.8, 130.8, 

129.2, 128.1, 127.9, 126.9, 124.1, 113.4, 110.1, 61.7, 59.5, 14.4, 14.2, 12.0; 

IR  (neat): 2933 (w), 1721 (s), 1700 (s), 1492 (m), 1449 (m), 1388 (m), 1274 (s), 1230 (vs) 

cm-1; 

MS (EI, 70 ev): 457 (M+ (81Br), 100%), 455 (M+ (79Br), 100%), 428 (84%), 302 (43%), 274 

(97%), 228 (95%), 128 (33%); 

HRMS (EI): calcd. for C23H22BrNO4 (M
+, 79Br): 455.0732, found: 455.0741 (M+, 79Br). 

 

Synthesis of 1-(4-acetyl-2-bromo-phenyl)-2-methyl-5-phenyl-1H-pyrrole-3-carboxylic 

acid ethyl ester (44h) 

N

EtO2C

Me

Br

OMe  RHJ070J 

It was prepared from 1-(4-amino-3-bromo-phenyl)-ethanone (642 mg, 3.0 mmol), 3-oxo-2-(2-

oxo-2-phenyl-ethyl)-butyric acid ethyl ester (893 mg, 3.6 mmol) and TsOH·H2O (11 mg, 2.0 

mol %) according to TP1. Reaction time: 3 h. Purification by flash chromatography (eluent: 

pentane: ether = 2: 1) provided 44h (891 mg, 69%) as a yellow solid, mp.: 163.5-164.7 oC. 
1H NMR  (CDCl3, 300 MHz):8.21 (d, J = 1.8 Hz, 1 H), 7.87 (dd, J1 = 7.9 Hz, J2 = 1.8 Hz, 1 

H), 7.28 (d, J = 7.9 Hz, 1 H), 7.03-7.20 (m, 5 H), 6.80(s, 1 H), 4.30 (q, J = 7.1 Hz, 2 H), 2.59 

(s, 3 H), 2.31 (s, 3 H), 1.36 (m, 3 H); 
13C NMR (CDCl3, 75.0 MHz): 195.5, 165.3, 141.8, 138.4, 137.7, 133.8, 133.4, 131.8, 131.2, 

128.2, 127.99, 127.96, 127.0, 124.7, 113.6, 110.3, 59.6, 26.6, 14.5, 12.1; 

IR  (neat): 2982 (w), 1682 (vs), 1558 (m), 1411 (m), 1250 (vs) cm-1; 

MS (EI, 70 ev): 427 (M+ (81Br), 100%), 425 (M+ (79Br), 100%), 396 (84%), 382 (33%), 272 

(60%), 230 (75%); 

HRMS (EI): calcd. for C22H20BrNO3 (M
+, 79Br): 425.0627, found: 425.0598 (M+, 79Br). 

 

Synthesis of 1-[3-bromo-4-(2-methyl-5-phenyl-pyrrol-1-yl)-phenyl]-ethanol (44i) 
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N Me

OHMe

Br

 RHJ042K 

The NaBH4 (98 mg, 2.6 mmol) was added to the solution of 1-[3-bromo-4-(2-methyl-5-

phenyl-pyrrol-1-yl)-phenyl]-ethanone 44d (789 mg, 2.2 mmol) in CH3OH (25 mL) at 0 oC. 

After the mixture was stirred for 2 h at this temperature, water (1.0 mL) was added and the 

CH3OH was removed in vacuo. Purification by flash chromatography (eluent: pentane: ether 

=3: 1) provided 44i (705 mg, 90%) as a yellow solid, mp.: 93.7-94.8 oC. 
1H NMR  (CDCl3, 300 MHz):7.72 (dd, J1 = 11.5 Hz, J2 = 1.8 Hz, 1 H), 7.21-7.40 (m, 2 H), 

7.07-7.21 (m, 5 H), 6.43 (d, J = 3.5 Hz, 1 H), 6.17 (d, J = 3.5 Hz, 1 H), 4.92 (q, J = 7.1 Hz, 1 

H), 2.16 (bs, 1 H), 2.10 (s, 3 H), 1.54 (d, J = 7.1 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 147.7, 137.8, 134.3, 133.3, 131.7, (130.9, 130.8), (130.15, 

130.10), 128.0, 127.4, 125.9, (125.1, 125.0), (124.4, 124.3), 108.4, 107.4, 69.1, 25.2, 12.7; 

All the carbons of (130.9, 130.8), (130.15, 130.10), (125.1, 125.0), (124.4, 124.3) bearing 

double pearks indicate that two diastereoisomers were involved. 

IR  (neat): 3266 (m), 2919 (w), 1600 (w), 1515 (m), 1494 (m), 1393 (m) cm-1; 

MS (EI, 70 ev): 357 (M+ (81Br), 100%), 355 (M+ (79Br), 100%), 276 (24%), 260 (23%), 232 

(60%), 217 (65%), 115 (22%); 

HRMS (EI): calcd. for C19H18BrNO (M+, 79Br): 355.0572, found: 355.0572 (M+, 79Br). 

 

Synthesis of 1-(2,4-dibromo-phenyl)-2-methyl-5-phenyl-1H-pyrrole-3-carboxylic acid 

ethyl ester (44j) 

N

Br

Br

Me

CO2Et

RHJ019K 

It was prepared from 2, 4-dibromo-phenylamine (1.250 g, 5.0 mmol), 3-oxo-2-(2-oxo-2-

phenyl-ethyl)-butyric acid ethyl ester (1.490 g, 6.0 mmol) and TsOH·H2O (10 mg, 1.0 mol %) 

according to TP1. Reaction time: 3 h. Purification by flash chromatography (eluent: pentane: 

ether = 4: 1) provided 44j (1.921 g, 83%) as a white solid, mp.: 103.5-105.2 °C. 
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1H NMR  (CDCl3, 300 MHz): 7.80 (d, J = 2.6 Hz, 1 H), 7.45 (dd, J1 = 8.8 Hz, J2 = 1.8 Hz, 1 

H), 7.13-7.20 (m, 3 H), 7.02-7.11 (m, 3 H), 6.79 (s, 1 H), 4.31 (q, J = 7.1 Hz, 2 H), 2.31 (s, 3 

H), 1.36 (t, J = 7.1 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 165.3, 137.8, 136.9, 135.9, 133.8, 131.85, 131.80, 131.5, 128.2, 

128.0, 127.0, 124.9, 123.2, 113.3, 110.1, 59.6, 14.5, 12.0; 

IR  (neat): 2974 (w), 1694 (s), 1474 (s), 1420 (s), 1217 (s), 1072 (vs) cm-1; 

MS (EI, 70 ev): 465 (M+ (81Br81Br), 45%), 463 (M+ (79Br81Br), 90%), 461 (M+ (79Br79Br), 

45%), 434 (85%), 418 (33%), 310 (65%), 274 (33%), 228 (100%), 129 (34%); 

HRMS (EI): calcd. for C20H17Br2NO2 (M+, 79Br79Br): 460.9626; found: 460.9620 (M+, 
79Br79Br). 

 

Synthesis of 5-(4-bromo-phenyl)-1-(2-bromo-phenyl)-2-methyl-1H-pyrrole-3-carboxylic 

acid ethyl ester (44k) 

N
Br

Me

CO2Et

Br

RHJ031K 

It was prepared from 2-bromo-phenylamine (0.860 g, 5.0 mmol), 3-oxo-2-(2-oxo-2-phenyl-

ethyl)-butyric acid ethyl ester (1.490 g, 6.0 mmol) and TsOH·H2O (10 mg, 1.0 mol %) 

according to TP1. Reaction time: 3 h. Purification by flash chromatography (eluent: pentane: 

ether = 5: 1) provided 44k (1.995 g, 86%) as a white solid, mp.: 95.8-96.7 °C. 
1H NMR  (CDCl3, 300 MHz): 7.66 (d, J = 7.9 Hz, 1 H), 7.17-7.39 (m, 5 H), 6.95 (d, J = 8.8 

Hz, 2 H), 6.82 (s, 1 H), 4.32 (q, J = 7.1 Hz, 2 H), 2.32 (s, 3 H), 1.37 (t, J = 7.1 Hz, 3 H); 
13C NMR (CDCl3, 75.0 MHz): 165.2, 138.4, 137.4, 133.6, 132.6, 131.2, 131.0, 130.7, 130.5, 

129.3, 128.4, 123.9, 120.8, 113.2, 110.2, 59.6, 14.5, 12.0; 

IR  (neat): 2974 (w), 1692 (s), 1566 (m), 1558 (m), 1479 (m), 1417 (m), 1226 (s) cm-1; 

MS (EI, 70 ev): 465 (M+ (81Br81Br), 50%), 463 (M+ (79Br81Br), 99%), 461 (M+ (79Br79Br), 

50%), 434 (85%), 418 (33%), 308 (99%), 274 (33%), 228 (100%), 129 (34%); 

HRMS (EI): calcd. for C20H18Br2NO2 (M
++H, 79Br79Br): 461.9704; found: 461.9697 (M++H, 

79Br79Br). 

 

Synthesis of 3-methyl-8H-3a-aza-cyclopenta[a]indene (41a) 
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N

Me

 RHJ167F 

It was prepared from 1-(2-bromo-phenyl)-2,5-dimethyl-1H-pyrrole 39a according to TP3. 

Purification by flash chromatography (eluent: hexane) provided 41a (144 mg, 85%) as a white 

solid, mp.: 61.0-61.5 °C. 
1H NMR  (CDCl3, 300 MHz): 7.34-7.44 (m, 2 H), 7.27 (t, J = 7.7 Hz, 1 H), 7.06 (t, J = 7.7 Hz, 

1 H), 6.00-6.05 (m, 1 H), 5.94-5.99 (m, 1 H), 3.80 (s, 2 H), 2.58 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 142.0, 135.3, 134.5, 127.2, 125.9, 122.5 (2 C), 111.2, 110.4, 

100.5, 28.8, 13.2; 

IR  (KBr): 2918 (w), 1614 (m), 1597 (m), 1489 (s), 1455 (vs) cm-1; 

MS (EI, 70 ev): 169 (M+, 86%), 154 (100%), 139 (5%), 83 (27%); 

HRMS (EI): calcd. for C12H11N (M+): 169.0891, found: 169.0884 (M+). 

 

Synthesis of 3-methyl-8H-3a-aza-cyclopenta[a]indene-6-carboxylic acid ethyl ester (41b) 

N

Me

EtO2C  RHJ057G 
It was prepared from 4-(2,5-dimethyl-pyrrol-1-yl)-3-iodo-benzoic acid ethyl ester 39b 

according to TP3. Purification by flash chromatography (eluent: hexane: ether = 20: 1) 

afforded 41b (195 mg, 81%) as a white solid, mp.: 77.9-78.9 °C. The yield is 83% from 39c. 
1H NMR  (CDCl3, 300 MHz): 7.96-8.05 (m, 2 H), 7.35 (d, J = 8.0 Hz, 1 H), 6.03-6.05 (m, 1 

H), 5.95-5.99 (m, 1 H), 4.37 (q, J = 7.1 Hz, 2 H), 3.79 (s, 2 H), 2.56 (d, J = 0.9 Hz, 3 H), 1.40 

(t, J =7.1 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 166.4, 145.4, 135.3, 135.2, 130.0, 127.0, 124.6, 122.8, 112.5, 

109.6, 101.4, 60.8, 28.4, 14.3, 13.1; 

IR  (neat): 2984 (w), 1704 (s), 1612 (m), 1600 (m), 1408 (s), 1271 (s) cm-1; 

MS (EI, 70 ev): 241 (M+, 86%), 226 (33%), 212 (31%), 198 (32%), 168 (100%), 90 (6%); 

HRMS (EI): calcd. for C15H15NO2 (M
+): 241.1103, found: 241.1113 (M+). 

 

Synthesis of 3-methyl-8H-3a-aza-cyclopenta[a]indene-6-carbonitrile (41c) 
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N

Me

NC  RHJ062G 
It was prepared from 4-(2,5-dimethyl-pyrrol-1-yl)-3-iodo-benzonitrile 39d according to TP3. 

Purification by flash chromatography (eluent: pentane: ether = 10: 1) afforded 41c (136 mg, 

70%) as a white solid, mp.: 171.3-171.9 °C. The yield is 60% from 39e. 
1H NMR  (CDCl3, 300 MHz): 7.60 (s, 1 H), 7.56 (d, J = 8.0 Hz, 1 H), 7.36 (d, J = 8.0 Hz, 1 

H), 6.03-6.07 (m, 1 H), 5.97-6.00 (m, 1 H), 3.77 (s, 2 H), 2.53 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 145.0, 136.2, 134.6, 132.6, 129.0, 122.9, 119.2, 113.2, 110.4, 

105.4, 101.9, 28.3, 13.0; 

IR  (KBr): 2898 (m), 2220 (m), 1614 (s), 1565 (m), 1492 (s), 1411 (s) cm-1; 

MS (EI, 70 ev): 194 (M+, 76%), 179 (100%), 164 (6%), 140 (5%); 

HRMS (EI): calcd. for C13H10N2 (M
+): 194.0844, found: 194.0837 (M+). 

 
Synthesis of 3-methyl-6-trifluoromethyl-8H-3a-aza-cyclopenta[a]indene (41d) 

N

Me

F3C  RHJ089G 
It was prepared from 1-(2-iodo-4-trifluoromethyl-phenyl)-2,5-dimethyl-1H-pyrrole 39f 

according to PT3. Purification by flash chromatography (eluent: pentane) afforded 41d (182 

mg, 77%) as a white solid, mp.: 63.0-63.8 oC. 
1H NMR  (CDCl3, 300 MHz): 7.60 (s, 1 H), 7.55 (d, J = 8.0 Hz, 1 H), 7.40 (d, J = 8.0 Hz, 1 

H), 6.04-6.06 (m, 1 H), 5.98-6.01 (m, 1 H), 3.81 (s, 2 H), 2.56 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 144.5, 136.0, 134.8, 125.2 (q, JC-F = 3.9 Hz), 124.5 (q, JC-F = 

271.2 Hz), 124.6 (q, JC-F = 32.3 Hz), 122.9 (2 x C), 112.5, 109.9, 101.5, 28.6, 13.1; 

IR  (KBr): 2918 (w), 1623 (m), 1573 (w), 1497 (s), 1410 (s), 1320 (vs), 1282 (vs) cm-1; 

MS (EI, 70 ev): 237 (M+, 67%), 222 (100%), 168 (26%); 

HRMS (EI): calcd. for C13H10F3N (M+): 237.0765, found: 237.0773 (M+). 

 

Synthesis of 3-methyl-5-trifluoromethyl-8H-3a-aza-cyclopenta[a]indene (41e) 

N

Me

F3C

 RHJ150G 
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It was prepared from 1-(2-bromo-5-trifluoromethyl-phenyl)-2,5-dimethyl-1H-pyrrole 39g 

according to TP3. Purification by flash chromatography (eluent: pentane) afforded 41e (153 

mg, 65%) as a white solid, mp.: 51.7-52.5 oC. 
1H NMR  (CDCl3, 300 MHz): 7.54 (s, 1 H), 7.45 (d, J = 7.7 Hz, 1 H), 7.33 (d, J = 7.7 Hz, 1 

H), 6.01-6.08 (m, 1 H), 5.95-6.00 (m, 1 H), 3.83 (s, 2 H), 2.58 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 142.3, 139.4, 134.4, 130.0 (q, JC-F = 32.3 Hz), 125.9, 122.8, 

124.2 (q, JC-F = 272.2 Hz), 119.5 (q, JC-F = 3.9 Hz), 112.2, 106.9 (q, JC-F = 3.8 Hz), 101.3, 

28.7, 13.1; 

IR  (KBr): 2976 (w), 1629 (m), 1599 (m), 1500 (s), 1474 (vs), 1338 (vs) cm-1; 

MS (EI, 70 ev): 237 (M+, 77%), 235 (72%), 222 (100%), 168 (26%); 

HRMS (EI): calcd. for C13H10F3N (M+): 237.0765, found: 237.0772 (M+). 

 
Synthesis of (3-methyl-8H-3a-aza-cyclopenta[a]inden-6-yl)-phenyl-methanone (41f) 

N

Me

O

Ph  RHJ055I 
It was prepared from [3-bromo-4-(2,5-dimethyl-pyrrol-1-yl)-phenyl]-phenyl-methanone 39h 

according to TP3. Purification by flash chromatography (eluent: pentane: ether = 4: 1) 

afforded 41f (167 mg, 61%) as a white solid, mp.: 105.4-106.0 oC. 
1H NMR  (CDCl3, 300 MHz):7.89 (s, 1 H), 7.73-7.82 (m, 3 H), 7.54-7.60 (m, 1 H), 7.44-7.51 

(m, 2 H), 7.41 (d, J = 8.3 Hz, 1 H), 6.03-6.09 (m, 1 H), 5.97-6.02 (m, 1 H), 3.84 (s, 2 H), 2.57 

(d, J = 1.0 Hz, 3 H); 
13C NMR (CDCl3, 75.0 MHz):195.7, 145.4, 138.2, 135.6, 135.3, 132.0, 131.8, 131.4, 129.7, 

128.2, 127.8, 123.0, 112.7, 109.5, 101.7, 28.6, 13.2; 

IR  (KBr): 3066 (w), 1645 (m), 1607 (s), 1595 (s), 1489 (m), 1444 (m), 1408 (s) cm-1; 

MS (EI, 70 ev): 273 (M+, 100%), 258 (50%), 196 (10%), 168 (86%), 105 (23%); 

HRMS (EI): calcd. for C19H15NO (M+): 273.1154, found: 273.1163 (M+). 

 

Synthesis of 6-(1-tert-butyl-vinyl)-3-methyl-8H-3a-aza-cyclopenta[a]indene (41g). 

N

Me

O

t-Bu  RHJ061J 

It was prepared from 6-(1-tert-butyl-vinyl)-3-methyl-8H-3a-aza-cyclopenta[a]indene 39i 

according to TP3. Purification by flash chromatography (eluent: pentane: ether = 15: 1) 

afforded 41g (167 mg, 66%) as a white solid, mp.: 142.4-143.8 oC. 
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1H NMR  (C6D6, 400 MHz): 7.74 (s, 1 H), 7.71 (d, J = 8.2 Hz, 1 H), 6.87 (d, J = 8.2 Hz, 1 H), 

6.07-6.13 (m, 1 H), 5.97-6.03 (m, 1 H), 3.31 (s, 2 H), 2.23 (s, 3 H), 1.31 (s, 9 H); 
13C NMR (C6D6, 100.0 MHz): 205.0, 144.3, 135.4, 135.1, 132.2, 129.2, 126.9, 122.5, 113.0, 

109.3, 102.0, 43.9, 28.51, 28.49, 13.0; 

IR  (neat): 2952 (w), 1649 (s), 1609 (vs), 1569 (m), 1409 (vs), 1194 (vs) cm-1; 

MS (EI, 70 ev): 253 (M+, 32%), 196 (100%), 167 (30%), 153 (8%); 

HRMS (EI): calcd. for C17H19NO (M+): 253.1467, found: 253.1459 (M+). 

 

Synthesis of cyclohexyl-(3-methyl-8H-3a-aza-cyclopenta[a]inden-6-yl)-methanone (41h). 

N

Me

O

 RHJ063J 

It was prepared from cyclohexyl-(3-methyl-8H-3a-aza-cyclopenta[a]inden-6-yl)-methanone 

39j according to TP3. Purification by flash chromatography (eluent: pentane: ether = 10: 1) 

afforded 41h (192 mg, 69%) as a white solid, mp.: 134.0-134.6 oC. 
1H NMR  (C6D6, 400 MHz): 7.87 (s, 1 H), 7.82 (d, J = 8.2 Hz, 1 H), 6.94 (d, J = 8.2 Hz, 1 H), 

6.07-6.13 (m, 1 H), 5.97-6.03 (m, 1 H), 3.33 (s, 2 H), 3.00-3.10 (m, 1 H), 2.22 (s, 3 H), 1.82-

1.96 (m, 2 H), 1.50-1.80 (m, 5 H), 1.10-1.32 (m, 3 H); 
13C NMR (C6D6, 100.0 MHz): 201.0, 145.4, 136.0, 135.3, 131.3, 129.2, 126.3, 122.7, 113.3, 

109.8, 102.2, 45.6, 30.0, 28.5, 26.4, 26.2, 13.1; 

IR  (neat): 2917 (w), 1668 (s), 1610 (w), 1593 (m), 1495 (m), 1180 (m) cm-1; 

MS (EI, 70 ev): 279 (M+, 26%), 264 (1%), 224 (4%), 211 (3%), 196 (100%), 168 (25%); 

HRMS (EI): calcd. for C19H21NO (M+): 279.1623, found: 279.1609 (M+). 

 

Synthesis of 3-methyl-8H-3a-aza-cyclopenta[a]indene-6-carbaldehyde (41i) 

N

Me

CHO

 RHJ056I 

It was prepared from 3-bromo-4-(2,5-dimethyl-pyrrol-1-yl)-benzaldehyde 39k according to 

TP3. Purification by flash chromatography (eluent: pentane: ether = 10: 1) afforded 41i (108 

mg, 55%) as a white solid, mp.: 111.1-111.8.0 oC 
1H NMR  (CDCl3, 300 MHz): 9.92 (s, 1 H), 7.88 (s, 1 H), 7.79 (d, J = 8.1 Hz, 1 H), 7.45 (d, J 

= 8.1 Hz, 1 H), 6.04-6.10 (m, 1 H), 5.95-6.03 (m, 1 H), 3.83 (s, 2 H), 2.57 (s, 3 H); 
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13C NMR (CDCl3, 75.0 MHz): 190.9, 146.7, 136.3, 135.4, 131.9, 131.4, 126.2, 123.1, 113.2, 

110.1, 101.9, 28.4, 13.2; 

IR  (neat): 2892 (w), 1683 (s), 1607 (s), 1567 (m), 1493 (s), 1207 (s) cm-1; 

MS (EI, 70 ev): 197 (M+, 100%), 182 (90%), 168 (91%), 154 (16%), 139 (8%); 

HRMS (EI): calcd. for C13H11NO (M+): 197.0841, found: 197.0841 (M+). 

 

Synthesis of 3-methyl-6-nitro-8H-3a-aza-cyclopenta[a]indene (41j) 

N

Me

O2N  RHJ063G 
It was prepared from 1-(2-iodo-4-nitro-phenyl)-2,5-dimethyl-1H-pyrrole 39l according to 

TP3. Purification by flash chromatography (eluent: pentane: ether = 6: 1) afforded 41j (70 

mg, 33%) as golden crystals, mp.: 142.0-142.5 oC. 
1H NMR  (CDCl3, 300 MHz): 8.19-8.25 (m, 2 H), 7.37 (d, J = 7.1 Hz, 1 H), 6.06-6.09 (m, 1 

H), 6.00-6.02 (m, 1 H), 3.83 (s, 2 H), 2.55 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 146.6, 143.0, 136.4, 135.3, 124.8, 123.2, 121.5, 113.7, 109.4, 

102.5, 28.5, 13.0; 

IR  (KBr): 2906 (w), 1620 (m), 1601 (m), 1574 (m), 1508 (s), 1486 (s) cm-1; 

MS (EI, 70 ev): 214 (M+, 100%), 199 (76%), 167 (89%), 153 (35%); 

HRMS (EI): calcd. for C12H10N2O2 (M
+): 214.0742, found: 214.0753 (M+). 

 

Synthesis of 3-ethyl-8H-3a-aza-cyclopenta[a]indene-6-carboxylic acid ethyl ester (41k) 

N

Et

EtO2C RHJ154H 

It was prepared from 3-bromo-4-(2-ethyl-5-methyl-pyrrol-1-yl)-benzoic acid ethyl ester 39n 

according to TP3. Purification by flash chromatography (eluent: pentane: ether = 15:1) 

afforded 41k (179 mg, 70%) as a white solid, mp.: 66.5-67.5 oC 
1H NMR  (CDCl3, 300 MHz): 8.03 (s, 1 H), 8.01 (d, J = 8.8 Hz, 1 H), 7.34 (d, J = 8.8 Hz, 1 

H), 6.05-6.10 (m, 1 H), 5.98-6.03 (m, 1 H), 4.37 (q, J = 7.0 Hz, 2 H), 3.82 (s, 2 H), 2.95 (q, J 

= 7.6 Hz, 2 H), 1.40 (t, J = 7.0 Hz, 3 H), 1.35 (t, J = 7.6 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 166.4, 145.3, 135.4, 135.3, 130.1, 129.6, 127.0, 124.6, 110.5, 

110.0, 101.4, 60.8, 28.5, 20.6, 14.4, 13.0; 
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IR  (KBr): 2982 (m), 1710 (vs), 1602 (m), 1614 (m), 1489 (s) cm-1; 

MS (EI, 70 ev): 255 (M+, 100%), 240 (44%), 226 (100%), 198 (23%), 167 (60%); 

HRMS (EI): calcd. for C16H17NO2 (M
+): 255.1259; found: 255.1252 (M+). 

 

Synthesis of 3-ethyl-8H-3a-aza-cyclopenta[a]indene-2,6-dicarboxylic acid diethyl ester 

(41l) 

N

Et

EtO2C

CO2Et

RHJ181H 

It was prepared from 1-(2-bromo-4-ethoxycarbonyl-phenyl)-2-ethyl-5-methyl-1H-pyrrole-3-

carboxylic acid ethyl ester 39o according to TP3. Purification by flash chromatography 

(eluent: pentane: ether = 3: 1) afforded 41l (262 mg, 80%) as a white solid, mp.: 115.0-116.0 
oC 
1H NMR  (CDCl3, 600 MHz): 8.04-8.08 (m, 2 H), 7.45 (d, J = 9.0 Hz, 1 H), 6.46 (t, J = 1.6 

Hz, 1 H), 4.37 (q, J = 7.2 Hz, 2 H), 4.27 (q, J = 7.2 Hz, 2 H), 3.83 (s, 2 H), 3.34 (q, J = 7.6 

Hz, 2 H), 1.39 (t, J = 7.2 Hz, 3 H), 1.34 (t, J = 7.2 Hz, 3 H), 1.30 (t, J = 7.6 Hz, 3 H); 
13C NMR (CDCl3, 150 MHz): 166.1, 165.3, 144.3, 135.9, 135.8, 134.1, 130.3, 127.2, 126.2, 

116.6, 111.3, 103.4, 61.0, 59.5, 28.3, 19.0, 14.4, 14.3, 13.8; 

IR  (neat): 2971 (m), 1712 (vs), 1701 (vs), 1616 (m), 1490 (s), 1263 (s) cm-1; 

MS (EI, 70 ev): 327 (M+, 74%), 312 (34%), 298 (53%), 282 (28%), 254 (100%), 211 (20%), 

180 (30%); 

HRMS (EI): calcd. for C19H21NO4 (M
+): 327.1471; found: 327.1477 (M+). 

 

Synthesis of 6-cyano-3-ethyl-8H-3a-aza-cyclopenta[a]indene-2-carboxylic acid ethyl 

ester (41m) 

N

Et

NC

CO2Et

RHJ183H 

It was prepared from 1-(2-bromo-4-cyano-phenyl)-2-ethyl-5-methyl-1H-pyrrole-3-carboxylic 

acid ethyl ester 39p according to TP3. Purification by flash chromatography (eluent: pentane: 

ether = 3: 1) afforded 41m (227 mg, 81%) as a white solid, mp.: 174.1-175.4 oC 
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1H NMR  (CDCl3, 600 MHz): 7.66 (s, 1 H), 7.65 (d, J = 8.6 Hz, 1 H), 7.49 (d, J = 8.6 Hz, 1 

H), 6.48 (t, J = 1.6 Hz, 1 H), 4.28 (q, J = 7.2 Hz, 2 H), 3.85 (s, 2 H), 3.32 (q, J = 7.6 Hz, 2 H), 

1.34 (t, J = 7.2 Hz, 3 H), 1.29 (t, J = 7.6 Hz, 3 H); 
13C NMR (CDCl3, 150 MHz): 165.0, 144.1, 136.8, 136.0, 133.5, 132.9, 129.4, 118.8, 117.3, 

112.2, 107.3, 103.8, 59.7, 28.3, 18.9, 14.4, 13.7; 

IR  (neat): 2979 (m), 2218 (s), 1694 (vs), 1612 (m), 1485 (s) cm-1; 

MS (EI, 70 ev): 280 (M+, 84%), 265 (34%), 251 (73%), 235 (48%), 207 (100%), 192(55%); 

HRMS (EI): calcd. for C17H16N2O2 (M
+): 280.1212, found: 280.1226 (M+). 

 

Synthesis of 6, 8, 9, 11-tetrahydro-7H-indolo[1,2-a]indole-2-carboxylic acid ethyl ester 

(41n) 

N

EtO2C  RHJ005I 
It was prepared from 3-bromo-4-(2-methyl-4,5,6,7-tetrahydro-indol-1-yl)-benzoic acid ethyl 

ester 39q according to TP3. Purification by flash chromatography (eluent: pentane: ether = 

10: 1) afforded 41n (180 mg, 64%) as a white solid, mp.: 127.0-127.5 oC 
1H NMR  (CDCl3, 300 MHz):8.05 (s, 1 H), 8.04 (d, J = 8.1 Hz, 1 H), 7.28 (d, J = 8.1 Hz, 1 

H), 5.94 (s, 1 H), 4.42 (q, J = 7.1 Hz, 2 H), 3.84 (s, 2 H), 2.98 (t, J = 5.6 Hz, 2 H), 2.62 (t, J = 

5.6 Hz, 2 H), 1.89-2.04 (m, 2 H), 1.77-1.89 (m, 2 H), 1.45 (t, J = 7.1 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 166.5, 145.3, 134.8, 134.3, 130.2, 126.9, 124.1, 123.9, 121.8, 

109.2, 101.5, 60.7, 28.5, 23.7, 23.3, 23.2, 22.7, 14.4; 

IR  (neat): 2920 (w), 1706 (s), 1617 (m), 1498 (m), 1444 (m), 1278 (s) cm-1; 

MS (EI, 70 ev): 281 (M, 100%), 253 (M+, 62%), 236 (10%), 208 (58%), 180 (53%); 

HRMS (EI): calcd. for C18H19NO2 (M
+): 281.1416, found: 281.1396 (M+). 

 

Synthesis of tetracyclic heterocycle 41o 

N

EtO2C RHJ016I 
It was prepared from 3-bromo-4-(2-methyl-5,6-dihydro-4H-cyclopenta[b]pyrrol-1-yl)-benzoic 

acid ethyl ester 39r according to TP3. Purification by flash chromatography (eluent: pentane: 

ether = 10: 1) afforded 41o (159 mg, 60%) as a white solid, mp.:108.3-109.0 oC. 
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1H NMR  (CDCl3, 300 MHz): 7.97-8.02 (m, 2 H), 7.12 (d, J1 = 7.4 Hz, J2 = 1.2 Hz, 1 H), 5.92 

(t, J = 1.7 Hz, 1 H), 4.36 (q, J = 7.2 Hz, 2 H), 3.81 (s, 2 H), 2.91-3.00 (m, 2 H), 2.62-2.74 (m, 

2 H), 2.43-2.54 (m, 2 H), 1.39 (t, J = 7.2 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 166.5, 144.4, 139.1, 134.3, 133.2, 130.2, 128.9, 127.0, 124.3, 

108.6, 98.6, 60.7, 29.1, 29.0, 25.6, 24.6, 14.4; 

IR (neat): 2852 (m), 1712 (s), 1614 (m), 1503 (s), 1269 (vs), 1254 (s) cm-1; 

MS (EI, 70 ev): 267 (M+, 70%), 239 (100%), 222 (10%), 211 (18%), 194 (63%); 

HRMS (EI): calcd. for C17H17NO2 (M
+): 267.1259, found: 267.1245 (M+). 

 

Synthesis of 3-phenethyl-8H-3a-aza-cyclopenta[a]indene-6-carboxylic acid ethyl ester 

(41p) 

N

EtO2C  RHJ044I 

It was prepared from 3-bromo-4-(2-methyl-5-phenethyl-pyrrol-1-yl)-benzoic acid ethyl ester 

39s according to TP3. Purification by flash chromatography (eluent: pentane: ether = 10: 1) 

afforded 41p (188 mg, 57%) as a yellow solid, mp.:69.0-70.1oC 
1H NMR  (CDCl3, 600 MHz):8.08 (s, 1 H), 8.05 (d, J = 8.1 Hz, 1 H), 7.34-7.40 (m, 3 H), 

7.25-7.33 (m, 3 H), 6.16 (d, J = 2.9 Hz, 1 H), 6.05-6.09 (m, 1 H), 4.41 (q, J = 7.2 Hz, 2 H), 

3.86 (s, 2 H), 3.26 (t, J = 8.1 Hz, 2 H), 3.08 (t, J = 8.1 Hz, 2 H), 1.44 (t, J = 7.2 Hz, 3 H); 
13C NMR (CDCl3, 150 MHz): 166.3, 145.2, 141.2, 135.4, 130.1, 128.5, 128.3, 127.2, 127.0, 

126.1, 124.7, 111.6, 109.9, 101.5, 60.8, 35.2, 29.3, 28.4, 14.3; 

IR (KBr): 2986 (w), 1698 (vs), 1619 (s), 1492 (vs), 1285 (vs) cm-1; 

MS (EI, 70 ev): 331 (M+, 11%), 286 (4%), 240 (100%), 167 (63%); 

HRMS (EI): calcd. for C22H21NO2 (M
+): 331.1572, found: 331.1569 (M+). 

 

Synthesis of 3-methyl-8H-3a-aza-cyclopenta[a]indene-1,6-dicarboxylic acid diethyl ester 

(41q) and 3-methyl-8H-3a-aza-cyclopenta[a]indene-2,6-dicarboxylic acid diethyl ester 

(41r) 
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N

EtO2C

Me

COOEt

N

EtO2C

Me
CO2Et

+

41q 41r

H

NOESY

RHJ265H 

It was prepared from 1-(2-bromo-4-ethoxycarbonyl-phenyl)-2,5-dimethyl-1H-pyrrole-3-

carboxylic acid ethyl ester 39t according to TP3. Short flash chromatography (eluent: 

pentane: ether = 1: 1) afforded the mixture of 41q and 41r (251 mg, 80%, 41q: 41r = 2: 1) as 

a white solid. Repeated purification by flash chromatography (eluent: pentane: ether = 3: 1) 

provided the more polar pure compound 41q as a white solid, mp.: 132.5-133.0 oC 

The data for more polar compound 41q (The structureof 41q was determined by H-H 

NOESY): 
1H NMR  (CDCl3, 300 MHz): 8.10 (s, 1 H), 8.05 (d, J = 8.3 Hz, 1 H), 7.42 (d, J = 8.3 Hz, 1 

H), 6.43 (q, J = 1.0 Hz, 1 H), 4.37 (q, J = 7.2 Hz, 2 H), 4.28 (q, J = 7.2 Hz, 2 H), 4.00 (s, 2 H), 

2.54 (s, 3 H), 1.39 (t, J = 7.2 Hz, 3 H), 1.35 (t, J = 7.2 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 166.1, 164.6, 144.7, 141.6, 135.2, 130.1, 127.2, 125.9, 124.0, 

112.6, 110.6, 109.2, 61.0, 59.7, 30.4, 14.5, 14.3, 13.1; 

IR (neat): 2975 (w), 1712 (vs), 1677 (vs), 1607 (m), 1580 (s), 1083 (vs) cm-1; 

MS (EI, 70 ev): 313 (M+, 52%), 284 (100%), 268 (21%), 240 (88%), 212 (24%), 167 (32%); 

HRMS (EI): calcd. for C18H19NO4 (M
+): 313.1314, found: 313.1291 (M+). 

 

Synthesis of 3-methyl-pyrrolo[1,2-f]phenanthridine (45a). 

N
Me

RHJ014K 

It was prepared from 1-(2-bromo-phenyl)-2-methyl-5-phenyl-1H-pyrrole 44a according to 

TP3. Purification by flash chromatography (eluent: pentane) afforded 45a (215 mg, 93%) as a 

white solid, mp.: 97.8-99.6 ºC. 
1H NMR  (CDCl3, 300 MHz): 8.35 (dd, J1 = 7.9 Hz, J2 = 1.8 Hz, 1 H), 8.27 (d, J = 8.8 Hz, 1 

H), 8.20 (, J = 7.9 Hz, 1 H), 7.97 (dd, J1 = 7.9 Hz, J2 = 1.8 Hz, 1 H), 7.40-7.50 (m, 2 H), 7.30-

7.39 (m, 2 H), 6.91 (d, J = 3.5 Hz, 1 H), 6.45 (d, J = 3.5 Hz, 1 H), 2.93 (s, 3 H); 
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13C NMR (CDCl3, 75 MHz):135.6, 130.1, 128.0, 127.6, 127.2, 126.8, 125.4, 124.4, 123.8, 

123.3, 122.9, 122.24, 122.21, 116.7, 113.7, 100.8, 18.9; 

IR  (neat): 1517 (m), 1438 (m), 1337 (m), 733 (vs) cm-1; 

MS (EI, 70 ev): 231 (M+, 96%), 230 (100%), 215 (2%), 202 (8%), 114 (15%); 

HRMS (EI): calcd. for C17H13N (M+): 231.1048, found: 231.1058 (M+). 

 

Synthesis of 3-methyl-pyrrolo[1,2-f]phenanthridine-7-carboxylic acid ethyl ester (45b) 

N
Me

CO2Et  RHJ003H 

It was prepared from 3-bromo-4-(2-methyl-5-phenyl-pyrrol-1-yl)-benzoic acid ethyl ester 44b 

according to TP3. Purification by flash chromatography (eluent: pentane: ether = 15: 1) 

afforded 45b (258 mg, 85%) as a white solid, mp.: 118.0-119.0 oC. 
1H NMR  (CDCl3, 300 MHz): 8.99 (d, J = 2.0 Hz, 1 H), 8.18-8.29 (m, 2 H), 8.06 (dd, J1 = 9.0 

Hz, J2 = 2.0 Hz, 1 H), 7.90-7.95 (m, 1 H), 7.33-7.47 (m, 2 H), 6.88 (d, J = 3.8 Hz, 1 H), 6.45 

(dd, J1 = 3.8 Hz, J2 = 0.8 Hz, 1 H), 4.44 (q, J = 7.1 Hz, 2 H), 2.89 (s, 3 H), 1.45 (t, J = 7.1 Hz, 

3 H); 
13C NMR (CDCl3, 75 MHz): 166.2, 138.4, 130.4, 128.53, 128.46, 127.6, 126.7, 125.7 (2 C), 

125.0, 123.9, 122.7, 122.5, 122.2, 116.3, 114.6, 101.5, 61.1, 18.9, 14.4; 

IR  (KBr): 2976 (w), 1709 (vs), 1616 (m), 1519 (m), 1451 (m), 1287 (s), 1261 (s) cm-1; 

MS (EI, 70 ev): 303 (M+, 100%), 274 (74%), 228 (51%), 129 (10%), 114 (13%); 

HRMS (EI): calcd. for C20H17NO2 (M
+): 303.1259, found: 303.1234 (M+). 

Synthesis of 3-methyl-7-trifluoromethyl-pyrrolo[1,2-f]phenanthridine (45c). 

N
Me

CF3 RHJ025K 

It was prepared from 1-(2-bromo-4-trifluoromethyl-phenyl)-2-methyl-5-phenyl-1H-pyrrole 

44c according to TP3. Purification by flash chromatography (eluent: pentane: ether = 15:1) 

afforded 45c (258 mg, 85%) as a white solid: mp.: 152.7-153.6 oC. 
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1H NMR  (CDCl3, 300 MHz): 8.46 (s, 1 H), 8.21 (d, J = 8.8 Hz, 1 H), 8.08 (d, J = 7.9 Hz, 1 

H), 7.87 (d, J = 7.9 Hz, 1 H), 7.60 (dd, J1 = 8.0 Hz, J2 = 2.6 Hz, 1 H), 7.42 (t, J = 7.9 Hz, 1 

H), 7.32 (t, J = 8.8 Hz, 1 H), 6.84 (d, J = 3.5 Hz, 1 H), 6.42 (d, J = 3.5 Hz, 1 H), 2.84 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 137.3, 130.1, 128.8, 127.5, 126.8, 125.6, 125.0 (q, J C-F = 33.0 

Hz), 124.3 (q, J C-F = 272.0 Hz), 123.9 (q, J C-F = 3.3 Hz), 123.3, 123.0, 122.22, 122.18, 120.9 

(q, J C-F = 3.3 Hz), 116.8, 114.5, 101.5, 18.8; 

IR  (neat): 1611 (w), 1599 (w), 1518 (m), 1450 (m), 1344 (s), 1311 (s), 1108 (vs) cm-1; 

MS (EI, 70 ev): 299 (M+, 100%), 298 (100%), 280 (5%), 228 (33%), 139 (10%), 114 (10%); 

HRMS (EI): calcd. for C18H12F3N (M+): 299.0922, found: 299.0900 (M+). 

 

Synthesis of 1-(3-methyl-pyrrolo[1,2-f]phenanthridin-7-yl)-ethanone (45d) 

N
Me

OMe RHJ037K 

It was prepared from 1-[3-bromo-4-(2-methyl-5-phenyl-pyrrol-1-yl)-phenyl]-ethanone 44d 

according to TP3. Purification by flash chromatography (eluent: pentane: ether = 2: 1 

afforded 45d (167 mg, 61%) as a brown solid, mp.: 180.0-181.0 oC. 
1H NMR  (CDCl3, 300 MHz): 8.81 (d, J = 2.6 Hz, 1 H), 8.15 (t, J = 8.8 Hz, 2 H), 7.89 (d, J = 

8.8 Hz, 2 H), 7.42 (t, J = 7.9 Hz, 1 H), 7.33 (t, J = 7.9 Hz, 1 H), 6.85 (d, J = 3.5 Hz, 1 H), 6.42 

(d, J = 3.5 Hz, 1 H), 2.84 (s, 3 H), 2.64 (s, 3 H); 
13C NMR (CDCl3, 75.0 MHz): 196.8, 138.4, 131.6, 130.4, 128.6, 127.6, 127.4, 126.7, 125.7, 

124.2, 123.8, 122.6, 122.3, 122.2, 116.3, 114.7, 101.6, 26.4, 18.9; 

IR  (neat): 2961 (w), 1681 (s), 1605 (s), 1517 (m), 1380 (m), 1356 (m) cm-1; 

MS (EI, 70 ev): 273 (M+, 100%), 228 (50%), 215 (5%), 129 (10%), 114 (11%); 

HRMS (EI): calcd. for C19H15NO (M+): 273.1154, found: 273.1131 (M+). 

 

Synthesis of 3-methyl-pyrrolo[1,2-f]phenanthridine-2-carboxylic acid ethyl ester (45e). 

N
Me

EtO2C

RHJ016K 
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It was prepared from 1-(2-bromo-phenyl)-2-methyl-5-phenyl-1H-pyrrole-3-carboxylic acid 

ethyl ester 44e according to TP3. Purification by flash chromatography (eluent: pentane: ether 

= 15: 1) afforded 45e (251 mg, 83%) as a white solid, mp.: 148.8-150.0 oC. 
1H NMR  (CDCl3, 300 MHz): 8.32 (t, J = 8.8 Hz, 2 H), 8.18 (d, J = 7.9 Hz, 1 H), 7.98 (d, J = 

7.1 Hz, 1 H), 7.38-7.51 (m, 4 H), 7.35 (s, 1 H), 4.36 (q, J = 7.5 Hz, 2 H), 3.22 (s, 3 H), 1.41 (t, 

J = 7.5 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 165.6, 134.6, 133.3, 133.0, 128.9, 128.2, 127.5, 126.13, 126.09, 

124.7, 124.4, 123.8, 122.4, 122.1, 117.8, 116.2, 103.0, 59.8, 16.5, 14.5; 

IR  (neat): 2954 (w), 1689 (s), 1528 (m), 1412 (m), 1214 (vs) cm-1; 

MS (EI, 70 ev): 303 (M+, 91%), 274 (100%), 258 (10%), 228 (78%), 114 (12%); 

HRMS (EI): calcd. for C20H17NO2 (M
+): 303.1259, found: 303.1271 (M+). 

 

Synthesis of 3-methyl-7-trifluoromethyl-pyrrolo[1,2-f]phenanthridine-2-carboxylic acid 

ethyl ester (45f). 

N
Me

CF3

EtO2C

RHJ023K 

It was prepared from 1-(2-bromo-4-trifluoromethyl-phenyl)-2-methyl-5-phenyl-1H-pyrrole-3-

carboxylic acid ethyl ester 44f according to TP3. Purification by flash chromatography 

(eluent: pentane: ether = 3:1 afforded 45f (319 mg, 86%) as a white solid, mp.: 154.2-156.1 
oC. 
1H NMR  (CDCl3, 300 MHz): 8.11 (s, 1 H), 7.89 (d, J = 8.8 Hz, 1 H), 7.72 (d, J = 7.9 Hz, 1 

H), 7.51 (dd, J1 = 7.9 Hz, J2 = 1.8 Hz, 1 H), 7.39 (dd, J1 = 8.8 Hz, J2 = 1.8 Hz, 1 H), 7.10-7.23 

(m, 2 H), 6.90 (s, 1 H), 4.30 (q, J = 7.1 Hz, 2 H), 2.84 (s, 3 H), 1.39 (t, J = 7.1 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 165.1, 136.1, 132.9, 128.8, 128.4, 126.2, 125.9 (q, J C-F = 33.2 

Hz), 125.8, 123.9 (q, J C-F = 272.0 Hz), 123.6 (q, J C-F = 3.3 Hz), 123.55, 123.2, 122.1, 121.8, 

120.6 (q, J C-F = 3.3 Hz), 117.6, 116.7, 103.3, 59.9, 16.2, 14.4; 

IR  (neat): 1605 (w), 1519 (w), 1389 (m), 1325 (s), 1316 (s), 1128 (vs) cm-1; 

MS (EI, 70 ev): 371 (76%), 342 (100%), 326 (11%), 298 (33%), 228 (49%); 

HRMS (EI): calcd. for C21H16F3NO2 (M
+): 371.1133, found: 371.1141 (M+). 
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Synthesis of 3-methyl-pyrrolo[1,2-f]phenanthridine-2, 7-dicarboxylic acid diethyl ester 

(45g). 

N
Me

EtO2C

CO2Et RHJ018K 

It was prepared from 1-(2-bromo-4-ethoxycarbonyl-phenyl)-2-methyl-5-phenyl-1H-pyrrole-3-

carboxylic acid ethyl ester 44g according to TP3. Purification by flash chromatography 

(eluent: pentane: ether = 3:1) afforded 45g (315 mg, 84%) as a white solid, mp.: 187.3-189.1 
oC. 
1H NMR  (CDCl3, 300 MHz):8.78 (d, J = 1.8 Hz, 1 H), 8.02-8.12 (m, 2 H), 7.94 (dd, J1 = 8.8 

Hz, J2 = 1.8 Hz, 1 H), 7.79 (dd, J1 = 8.8 Hz, J2 = 1.8 Hz, 1 H), 7.26-7.41 (m, 2 H), 7.17 (s, 1 

H), 4.42 (q, J = 7.1 Hz, 2 H), 4.34 (q, J = 7.1 Hz, 2 H), 3.06 (s, 3 H), 1.44 (t, J = 7.1 Hz, 3 H), 

1.41 (t, J = 7.1 Hz, 3 H); 
13C NMR (CDCl3, 75.0 MHz): 165.8, 165.3, 137.3, 133.3, 132.2, 130.4, 129.1, 128.7, 128.2, 

126.4, 126.0, 125.4, 124.1, 123.5, 122.3, 117.4, 116.9, 103.4, 61.1, 60.0, 16.5, 14.45, 14.37; 

IR  (neat): 2928 (w), 1716 (vs), 1703 (vs), 1526 (m), 1246 (m), 1210 (vs) cm-1; 

MS (EI, 70 ev): 375 (100%), 346 (83%), 330 (11%), 318 (13%), 273 (12%), 228 (80%); 

HRMS (EI): calcd. for C23H21NO4 (M
+): 375.1471, found: 375.1453 (M+). 

 

Synthesis of 7-acetyl-3-methyl-pyrrolo[1,2-f]phenanthridine-2-carboxylic acid ethyl 

ester (45h) 

N
Me

OMe

EtO2C

RHJ044K 

It was prepared from 1-(4-acetyl-2-bromo-phenyl)-2-methyl-5-phenyl-1H-pyrrole-3-

carboxylic acid ethyl ester 44h according to TP3. Purification by flash chromatography 

(eluent: pentane: ether = 2:1) afforded 45h (159 mg, 46%) as a white solid, mp.: 187.7-189.9 
oC. 
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1H NMR  (CDCl3, 300 MHz):8.65 (d, J = 2.6 Hz, 1 H), 7.98-8.06 (m, 2 H), 7.74-7.82 (m, 2 

H), 7.25-7.40 (m, 2 H), 7.16 (s, 1 H), 4.34 (q, J = 7.1 Hz, 2 H), 3.01 (s, 3 H), 2.61 (s, 3 H), 

1.41 (t, J = 7.1 Hz, 3 H); 
13C NMR (CDCl3, 75.0 MHz): 196.5, 165.2, 137.4, 133.3, 132.4, 129.0, 128.8, 127.2, 126.5, 

126.0, 124.1, 124.0, 123.6, 122.4, 122.2, 117.4, 117.0, 103.5, 60.0, 26.4, 16.5, 14.5; 

IR  (neat): 2984 (w), 1700 (vs), 1678 (vs), 1604 (m), 1531 (m), 1217 (vs) cm-1; 

MS (EI, 70 ev): 345 (100%), 316 (99%), 300 (10%), 273 (16%), 228 (80%); 

HRMS (EI): calcd. for C22H19NO3 (M
+): 345.1365, found: 345.1378 (M+). 

 

Synthesis of 1-(3-methyl-pyrrolo[1,2-f]phenanthridin-7-yl)-ethanol (45i) 

N
Me

Me OH RHJ045K 

It was prepared from 1-[3-bromo-4-(2-methyl-5-phenyl-pyrrol-1-yl)-phenyl]-ethanol 44i 

according to TP3. Purification by flash chromatography (eluent: pentane: ether = 2: 1) 

afforded 45i (146 mg, 53%) as a white solid, mp.: 144.8-145.9 oC. 
1H NMR  (CDCl3, 300 MHz):8.25 (d, J = 2.2 Hz, 1 H), 8.16 (d, J = 7.9 Hz, 1 H), 8.14 (d, J = 

8.8 Hz, 1 H), 7.94 (dd, J1 = 7.9 Hz, J2 = 1.8 Hz, 1 H), 7.25-7.45 (m, 3 H), 6.88 (d, J = 4.4 Hz, 

1 H), 6.42 (d, J = 4.4 Hz, 1 H), 4.98 (q, J = 6.2 Hz, 1 H), 2.87 (s, 3 H), 2.00 (bs, 1 H), 1.55 (d, 

J = 6.2 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 140.6, 134.7, 130.1, 128.1, 127.1, 126.8, 125.3, 124.7, 124.3, 

122.8, 122.26, 122.21, 120.4, 116.7, 113.6, 100.7, 70.1, 25.3, 18.8; 

IR  (neat): 3308 (m), 2967 (w), 1518 (m), 1449 (m), 1526 (m), 774 (s) cm-1; 

MS (EI, 70 ev): 257 (M+-H2O, 100%), 241 (6%), 228 (10%), 127 (13%); 

HRMS (EI): calcd. for C19H17NO (M+): 275.1310, found: 275.1287 (M+). 

 

Synthesis of 4-(2-benzyl-5-methyl-pyrrol-1-yl)-3,5-dibromo-benzoic acid ethyl ester (46a) 
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NMe

Br Br

CO2Et  RHJ012H 
It was prepared according to TP1. 4-Amino-3,5-dibromo-benzoic acid ethyl ester (1.615 g, 

5.0 mmol), 1-phenyl-hexane-2,5-dione (1.14 g, 6.0 mmol) and TsOH·H2O (20 mg, 2.0 mol %) 

were dissolved in toluene (20 mL) and heated in a flask equipped with a Dean-Stark apparatus 

for 3 h. After cooling, another part of 1-phenyl-hexane-2, 5-dione (1.140 g, 6.0 mmol) was 

added to the mixture and refluxed for 3 h. After cooling, the dark brown reaction mixture was 

concentrated in vacuo. Purification by flash chromatography (eluent: pentane: ether = 30: 1) 

provided 46a (1.322g, 55%) as a yellow oil. 
1H NMR  (CDCl3, 300 MHz): 8.30 (s, 2 H), 7.15-7.21 (m, 3 H), 7.01-7.06 (m, 2 H), 6.01-6.05 

(m, 1 H), 5.93 (d, J = 3.1 Hz, 1 H), 4.46 (q, J = 7.1 Hz, 2 H), 3.61 (s, 2 H), 1.97 (s, 3 H), 1.46 

(t, J = 7.1 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 163.3, 141.3, 138.5, 133.0, 132.8, 131.0, 128.9, 128.0, 127.8, 

126.1, 126.0, 107.6, 106.7, 61.9, 33.6, 14.1, 12.0; 

IR  (KBr): 2981 (m), 1726 (vs), 1543 (m), 1399 (s), 1265 (vs) cm-1; 

MS (EI, 70 ev): 479 (M+ (81Br81Br), 57%), 477 (M+ (81Br79Br), 100%), 475 (M+ (79Br79Br), 

57%), 400 (71%), 372 (31%), 167 (30%); 

HRMS (EI): calcd. for C21H19Br2NO2 (M+,79Br79Br): 474.9783, found: 474.9766 (M+, 
79Br79Br). 

 

Synthesis of 2-benzyl-1-(2,6-dibromo-4-iodo-phenyl)-5-methyl-1H-pyrrole (46b) 

NMe

Br Br

I  RHJ058I 

It was prepared according to TP1. 2, 6-Dibromo-4-iodo-phenylamine119 (1.885 g, 5.0 mmol), 

1-phenyl-hexane-2,5-dione (1.141 g, 6.0 mmol) and TsOH·H2O (10 mg, 1.0 mol %) were 

dissolved in toluene (20 mL) and heated in a flask equipped with a Dean-Stark apparatus for 3 

                                                 
119 J. Chae, S. L. Buchwald, J. Org. Chem. 2004, 69, 3336. 
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h. After cooling, another part of 1-phenyl-hexane-2, 5-dione (1.140 g, 6.0 mmol) was added 

to the mixture and refluxed for 3 h. After cooling, the dark brown reaction mixture was 

concentrated in vacuo. Purification by flash chromatography (eluent: pentane: ether = 30: 1) 

provided 46b (1.460 g, 55%) as a yellow oil. 
1H NMR  (CDCl3, 300 MHz): 7.94 (s, 2 H), 7.12-7.21 (m, 3 H), 6.98-7.05 (m, 2 H), 5.97 (d, J 

= 3.5 Hz, 1 H), 5.87 (d, J = 3.5 Hz, 1 H), 3.57 (s, 2 H), 1.94 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 140.5, 140.4, 138.7, 137.5, 131.2, 129.1, 128.1, 126.8, 126.1, 

107.5, 106.6, 94.1, 33.7, 12.1; 

IR (neat): 2907 (w), 1528 (m), 1450 (vs) cm-1; 

MS (EI, 70 ev): 531 (M+ (81Br79Br), 100%), 454 (78%), 404 (10%), 327 (12%), 241 (11%); 

HRMS (EI): calcd. for C18H13Br2IN (M+-H, 79Br79Br): 527.8459, found: 527.8437 (M+-H, 
79Br79Br). 

 

Synthesis of 3,5-dibromo-4-(2,5-dimethyl-pyrrol-1-yl)-benzonitrile (46c) 

N
Br Br

CN

MeMe

 RHJ110G 

It was prepared from 4-amino-3,5-dibromo-benzonitrile (5.520 g, 20.0 mmol), hexane-2,5-

dione (4.790 g, 42.0 mmol) and TsOH·H2O (38 mg, 2.0 mol %) according to TP1. Reaction 

time: 10 h. Purification by flash chromatography (eluent: pentane: ether = 5: 1) provided 46c 

(3.186 g, 45%) as a white solid, mp.: 132.0 oC decompose. 
1H NMR  (CDCl3, 300 MHz):7.96 (s, 2 H), 5.97 (s, 2 H), 1.93 (s, 6 H); 
13C NMR (CDCl3, 75 MHz):142.7, 135.4, 127.1, 126.9, 115.3, 115.1, 107.1, 12.2; 

IR (KBr): 2911 (w), 2238 (m), 1532 (s), 1471 (vs) cm-1; 

MS (EI, 70 ev): 354 (M+ (81Br79Br), 100%), 259 (7%), 192 (16%), 179 (22%); 

HRMS (EI): calcd. for C13H10Br2N2 (M+, 79Br79Br): 351.9211, found: 351.9191 (M+, 
79Br79Br). 

 

Synthesis of [4-(2-benzyl-5-methyl-pyrrol-1-yl)-3,5-dibromo-phenyl]-phenyl-methanone 

(46d) 
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NMe

Br Br

O

 RHJ062I 

It was prepared from 2-benzyl-1-(2,6-dibromo-4-iodo-phenyl)-5-methyl-1H-pyrrole (1.062 g, 

2.0 mmol), i-PrMgCl·LiCl (1.5 mL, 1.5 M in THF) and benzoyl chloride (3.5 mmol) 

according to TP2. Purification by flash chromatography (eluent: pentane: ether = 10:1) 

provided the pure product 46d (0.825 g, 81%) as a white solid, mp.: 155.0-155.9 oC. 
1H NMR  (CDCl3, 300 MHz): 7.99 (s, 2 H), 7.83 (d, J = 7.4 Hz, 2 H), 7.68 (t, J = 7.4 Hz, 1 

H), 7.56 (t, J = 7.4 Hz, 2 H), 7.13-7.22 (m, 3 H), 7.00-7.09 (m, 2 H), 6.00-6.05 (m, 1 H), 5.94 

(d, J = 3.3 Hz, 1 H), 3.65 (s, 2 H), 2.00 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 192.8, 140.9, 139.7, 138.6, 135.9, 133.4, 133.2, 131.1, 130.0, 

129.0, 128.7, 128.1, 128.0, 126.2, 126.1, 107.8, 106.7, 33.8, 12.2; 

IR (neat): 2912 (w), 1663 (s), 1597 (m), 1261 (s) cm-1; 

MS (EI, 70 ev): 509 (M+ (81Br79Br), 100%), 432 (38%), 430 (18%), 105 (32%); 

HRMS (EI): calcd. for C25H19Br2NO (M+, 79Br79Br): 506.9833, found: 506.9844 (M+, 
79Br79Br). 

 

Synthesis of 3, 5-dibromo-4-[2-methyl-5-(4-methyl-benzyl)-pyrrol-1-yl]-benzoic acid 

ethyl ester (46e) 

NMe

Br Br

CO2Et

Me

 RHJ070H 
It was prepared from 4-amino-3,5-dibromo-benzoic acid ethyl ester (1.615 g, 5.0 mmol), 1-p-

tolyl-hexane-2,5-dione (3.061 g, 15.0 mmol) and TsOH·H2O (10 mg, 1.0 mol %) according to 

TP1. Reaction time: 6 h. Purification by flash chromatography (eluent: pentane: ether = 20: 1) 

provided 46e (1.490 g, 61%) as a yellow oil. 
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1H NMR  (CDCl3, 300 MHz): 8.27 (s, 2 H), 6.98 (d, J = 8.0 Hz, 2 H), 6.91 (d, J = 8.0 Hz, 2 

H), 5.97-6.03 (m, 1 H), 5.87 (d, J = 3.3 Hz, 1 H), 4.44 (q, J = 7.1 Hz, 2 H), 3.53 (s, 2 H), 2.29 

(s, 3 H), 1.94 (s, 3 H), 1.44 (t, J = 7.1 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 163.5, 141.5, 135.52, 135.49, 133.1, 132.8, 131.4, 128.9, 128.7, 

127.8, 126.2, 107.5, 106.7, 62.1, 33.2, 21.0, 14.2, 12.1; 

IR  (neat): 2915 (w), 1723 (s), 1542 (m), 1514 (m), 1240 (vs) cm-1; 

MS (EI, 70 ev): 493 (M+ (81Br81Br), 51%), 491 (M+ (81Br79Br), 100%), 489 (M+ (79Br79Br), 

52%), 400 (36%), 372 (31%), 167 (30%); 

HRMS (EI): calcd. for C22H21Br2NO2 (M+, 79Br79Br): 488.9939, found: 488.9925 (M+, 
79Br79Br). 

 

Synthesis of 4-bromo-5-methyl-8H-4b-aza-dibenzo[e,g]azulene-2-carboxylic acid ethyl 

ester (47) 

CO2Et

N
Me
Br

 RHJ018H 

It was prepared from 4-(2-benzyl-5-methyl-pyrrol-1-yl)-3,5-dibromo-benzoic acid ethyl ester 

46a according to TP3. Reaction time: 12 h. Purification by flash chromatography (eluent: 

hexane: ether = 20: 1) provided 47 (245 mg, 62%) as a white solid, mp.: 112.0-113.1 oC. 
1H NMR  (CDCl3, 300 MHz): 8.33 (d, J = 1.9 Hz, 1 H), 8.20 (d, J = 1.9 Hz, 1 H), 7.55-7.60 

(m, 1 H), 7.28-7.34 (m, 2 H), 7.19-7.23 (m, 1 H), 5.89-5.95 (m, 2 H), 4.43 (qd, J1 = 7.1 Hz, J2 

= 1.7 Hz, 2 H), 3.71 (d, J = 14.4 Hz, 1 H), 3.51 (d, J = 14.4 Hz, 1 H), 2.15 (s, 3 H), 1.42 (t, J 

= 7.1 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 165.2, 142.0, 140.1, 139.2, 137.2, 136.0, 133.9, 131.5, 131.2, 

130.4, 129.8, 129.2, 127.5, 127.3, 121.8, 109.3, 104.1, 62.0, 33.5, 14.8, 14.2; 

IR (KBr): 2978 (w), 1721 (vs), 1469 (m), 1229 (s) cm-1; 

MS (EI, 70 ev): 397 (M+(81Br), 99%), 395 (M+(79Br), 100%), 380 (17%), 286 (11%), 241 

(89%), 228 (29%), 120 (47%); 

HRMS (EI): calcd. for C21H18BrNO2 (M
+,79Br): 395.0521, found: 395.0514 (M+, 79Br). 

 

Synthesis of pentacyclic heterocycle (48a) 
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CO2Et

N

 RHJ020H 

It was prepared from 4-(2-benzyl-5-methyl-pyrrol-1-yl)-3,5-dibromo-benzoic acid ethyl ester 

46a (477 mg, 1.0 mmol), Pd (OAc)2 (11 mg, 5 mol%), tri(p-tolyl)phosphine (30 mg, 10 

mol%) and Cs2CO3 (717 mg, 2.2 mmol) according to TP3. Reaction time: 24 h. Purification 

by flash chromatography (eluent: hexane: ether = 30:1) afforded 48a (193 mg, 61%) as a 

white solid, mp.: 114.8-115.7 oC. 
1H NMR  (CDCl3, 300 MHz): 8.51 (s, 1 H), 8.00 (s, 1 H), 7.70 (d, J = 8.0 Hz, 1 H), 7.26-7.40 

(m, 3 H), 6.06-6.12 (m, 2 H), 4.42 (q, J = 7.1 Hz, 2 H), 4.12 (s, 2 H), 3.90 (s, 2 H), 1.43 (t, J = 

7.1 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 166.6, 141.3, 136.2, 135.8, 134.9, 133.9, 131.2, 130.3, 128.4 (2 

x C), 127.4, 125.7, 125.6, 125.3, 123.0, 109.7, 103.4, 61.0, 34.5, 29.4, 14.3; 

IR  (KBr): 2977 (w), 1709 (vs), 1606 (m), 1500 (vs), 1269 (s) cm-1; 

MS (EI, 70 ev): 315 (M+, 100%), 286 (21%), 242 (77%), 135(10%), 120 (33%); 

HRMS (EI): calcd. for C21H17NO2 (M
+): 315.1259, found: 315.1272 (M+). 

 

Synthesis of pentacyclic heterocycle (48b) 

CO2Et

N

Me

 RHJ072H 
It was prepared from 3, 5-dibromo-4-[2-methyl-5-(4-methyl-benzyl)-pyrrol-1-yl]-benzoic acid 

ethyl ester 46e (295 mg, 0.6 mmol), Pd (OAc)2 (7 mg, 5 mol%), tri(p-tolyl)phosphine (18 mg, 

10 mol%) and Cs2CO3 (411 mg, 2.2 mmol) according to TP3. Reaction time: 24 h. 

Purification by flash chromatography (eluent: pentane: ether = 20: 1) afforded 48b (110 mg, 

56%) as a white solid, mp.: 155.0-157.0 oC. 
1H NMR  (CDCl3, 300 MHz): 8.44 (s, 1 H), 7.92 (d, J = 1.1 Hz, 1 H), 7.42 (s, 1 H), 7.15 (d, J 

= 8.1 Hz, 1 H), 7.03 (d, J = 8.1 Hz, 1 H), 5.97-6.04 (m, 2 H), 4.36 (q, J = 7.1 Hz, 2 H), 4.00 

(s, 2 H), 3.81 (s, 2 H), 2.31 (s, 3 H), 1.37 (t, J = 7.1 Hz, 3 H) 
13C NMR (CDCl3, 75 MHz): 166.7, 141.4, 136.9, 135.8, 134.6, 133.8, 133.3, 131.1, 130.9, 

129.1, 128.4, 125.66, 125.60, 125.4, 123.2, 109.5, 103.3, 61.0, 34.0, 29.4, 21.0, 14.4; 
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IR  (neat): 2979 (w), 1716 (vs), 1608 (m), 1499 (s), 1287 (vs) cm-1; 

MS (EI, 70 ev): 329 (M+, 100%), 314 (15%), 300 (15%), 256 (46%), 241 (13%); 

HRMS (EI): calcd. for C22H19NO2 (M
+): 329.1416, found: 329.1430 (M+). 

 
Synthesis of pentacyclic heterocycle (48c) 

N

O Ph  RHJ059I 
It was prepared from [4-(2-benzyl-5-methyl-pyrrol-1-yl)-3,5-dibromo-phenyl]-phenyl-

methanone 46d (509 mg, 1.0 mmol), Pd (OAc)2 (11 mg, 5 mol%), tri(p-tolyl)phosphine (30 

mg, 10 mol%) and Cs2CO3 (717 mg, 2.2 mmol) according to TP3. Reaction time: 24 h. 

Purification by flash chromatography (eluent: hexane: ether = 15: 1) afforded 48c (174 mg, 

50%) as a white solid, mp.: 162.0-163.0 oC. 
1H NMR  (CDCl3, 300 MHz): 8.24 (s, 1 H), 7.80-7.89 (m, 3 H), 7.45-7.65 (m, 4 H), 7.26-7.40 

(m, 3 H), 6.12-6.16 (m, 1 H), 6.06-6.12 (m, 1 H), 4.15 (s, 2 H), 3.93 (s, 2 H); 
13C NMR (CDCl3, 75 MHz): 195.9, 141.2, 138.3, 136.3, 135.9, 134.8, 133.9, 133.0, 132.1, 

131.2, 130.3, 129.8, 129.6, 128.5, 128.3, 127.4, 126.4, 125.3, 122.8, 109.9, 103.5, 34.5, 29.5; 

IR  (neat): 2924 (m), 1697 (s), 1657 (vs), 1593 (s), 1577 (m), 1302 (vs) cm-1; 

MS (EI, 70 ev): 345 (M+-H2, 100%), 315 (9%), 268 (9%), 240 (66%), 119 (8%); 

HRMS (EI): calcd. for C25H17NO (M+): 347.1310, found: 347.1286 (M+). 

 

Synthesis of 3, 5, 11-trimethyl-12-(2-methyl-pyrrol-1-yl)-pyrrolo[1,2-f]phenanthridine-

7,9-dicarboxylic acid diethyl ester (50) 

N

N
Me

Me

Me

Me

O O
CO2Et  RHJ051J 

The reaction was performed in a sealed tuber with a mixture of 3-bromo-5-methyl-4-(2-

methyl-pyrrol-1-yl)-benzoic acid ethyl ester 39w (322 mg, 1.0 mmol), Pd (OAc)2 (11 mg, 5 

mol%), tri(p-tolyl)phosphine (30 mg, 10 mol%) and Cs2CO3 (391 mg, 1.2 mmol) at 110 °C 

using toluene (5.0 mL) as solvent for 12 h. After cooling to room temperature, water (10 mL) 
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was added in. The mixture was extracted with ether (3 x 30 mL). The combined extracts were 

washed with brine, dried over Na2SO4 and concentrated in vacuo. Purification by flash 

chromatography (eluent: pentane: ether = 3: 1) provided 50 (206 mg, 85%) as a yellow solid, 

mp.: 73.0-75.0 oC. 
1H NMR  (CDCl3, 600 MHz): 8.32 (s, 1 H), 7.96 (s, 1  H), 7.52 (s, 1 H), 6.49-6.52 (m, 1 H ), 

6.33 (t, J = 3.1 Hz, 1 H), 6.25 (dd, J1 = 4.0 Hz, J2 = 0.9 Hz, 1 H), 6.15-6.19 (m, 1 H), 5.08 (d, 

J = 4.0 Hz, 1 H), 4.49 (q, J = 7.1 Hz, 2 H), 4.40 (q, J = 7.1 Hz, 2 H), 2.43 (s, 3 H), 2.42 (s, 3 

H), 2.12 (s, 3 H), 1.89 (s, 3 H), 1.42 (t, J = 7.1 Hz, 3 H), 1.37 (t, J = 7.1 Hz, 3 H); 
13C NMR (CDCl3, 150 MHz): 170.3, 160.0, 137.2, 135.6, 133.6, 132.6, 131.7, 129.7, 129.2, 

128.3, 128.2, 127.7, 127.4, 127.0, 126.0, 125.7, 124.4, 118.8, 114.3, 109.4, 108.1, 107.2, 62.1, 

61.1, 20.2, 17.4, 15.2, 14.4, 14.0, 11.9; 

IR  (neat): 2978 (w), 1717 (vs), 1700 (vs), 1558 (s), 1216 (vs) cm-1; 

MS (EI, 70 ev): 482 (M+, 100%), 467 (19%), 453 (2%), 411 (8%), 241 (12%), 204 (9%); 

HRMS (EI): calcd. for C30H31N2O4 (M
++ H): 483.2284, found: 483.2270 (M++ H). 

 

Synthesis of 1-(2-bromo-benzyl)-2,5-dimethyl-1H-pyrrole (54a) 

N

Br

Me

Me

 RHJ176F 

It was prepared from 2-bromo-benzylamine (2.790 g, 15.0 mmol), 2,5-hexanedione (1.881 g, 

16.5 mmol) and TsOH·H2O (28 mg, 1.0 mol %) according to TP1. Reaction time: 3 h. 

Purification by flash chromatography (eluent: pentane: ether = 100: 1) provided 54a (3.500 g, 

90%) as a white solid, mp.: 85.4-86.2 oC. 
1H NMR  (CDCl3, 300 MHz):7.56 (d, J = 7.9 Hz, 1 H), 7.06-7.21 (m, 2 H), 6.22 (d, J = 7.9 

Hz, 1 H), 5.89 (s, 2 H), 4.99 (s, 2 H), 2.11 (s, 6 H); 
13C NMR (CDCl3, 75MHz):137.6, 132.3, 128.6, 128.0, 127.9, 126.9, 121.4, 105.7, 47.2, 12.2; 

IR  (neat): 2928 (w), 1462 (w), 1436 (m), 1408 (s), 1027 (w) cm-1; 

MS (EI, 70 ev): 265 (M+ (81Br), 48%), 263 (M+ (79Br), 48%), 184 (100%), 169 (56%), 90 

(34%); 

HRMS (EI): calcd. for C13H14BrN (M+, 79Br): 263.0310, found: 263.0327 (M+, 79Br). 

 

Synthesis of (2-bromo-phenyl)-(2,5-dimethyl-pyrrol-1-yl)-methanone (40a) 
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N

O Me

Me

Br  RHJ121G 
It was prepared from 2-bromo-benzamide (2.000 g, 10.0 mmol), 2,5-hexanedione (1.370 g, 

12.0 mmol) and TsOH·H2O (19 mg, 1.0 mol %) according to TP1. Reaction time: 5 h. 

Purification by flash chromatography (eluent: pentane: ether = 4: 1) provided 40a (1.200 g, 

43%) as a brown solid, mp.: 58.0-59.0 oC. 
1H NMR  (CDCl3, 300 MHz): 7.61 (dd, J1 = 7.1 Hz, J2 = 1.3 Hz, 1 H), 7.31-7.43 (m, 3 H), 

5.84 (s, 2 H), 2.03 (s, 6 H); 
13C NMR (CDCl3, 75 MHz): 168.7, 138.3, 133.5, 132.1, 130.9, 129.9, 127.5, 120.6, 111.7, 

15.4; 

IR  (KBr): 2919 (w), 1690 (vs), 1588 (m), 1542 (m), 1355 (vs), 1226 (vs) cm-1; 

MS (EI, 70 ev): 279 (M+ (81Br), 17%), 277(M+ (79Br), 19%), 198 (9%), 185 (M+ (81Br), 

100%), 183 (M+ (79Br), 100%); 

HRMS (EI): calcd. for C13H12BrNO (M+, 79Br): 277.0102, found: 277.0106 (M+, 79Br). 

 

Synthesis of (2-bromo-5-methoxy-phenyl)-(2,5-dimethyl-pyrrol-1-yl)-methanone (40b) 

N

OBr

OCH3

Br

OCH3

O

O

N Li

 RHJ025H 
To the solution of 2,5-dimethyl-1H-pyrrole (0.57 g, 6.0 mmol) in THF (10.0 mL) was 

dropwise added n-BuLi (2.0 M, 3.0 mL) at -78 oC under nitrogen. The resulting mixture was 

allowed to stir at -78oC for 30 min. The solution of 2-bromo-5-methoxy-benzoic acid methyl 

ester (1.225 g, 5.0 mmol) in THF (5.0 mL) was added in and the resulting mixture was stirred 

at -78 oC for 1 h. The reaction mixture was allowed to warm to room temperature and stirred 

for 2 h before it was quenched with aq NH3. The reaction mixture was diluted with water and 

extracted with ether (3 x 30 mL). The combined organic phase were washed with brine, dried 

over Na2SO4, filtered, and evaporated. Purification by flash chromatography (eluent: pentane: 

ether = 8: 1) afforded 40b (1.301 g, 84%) as a yellow oil. 
1H NMR  (CDCl3, 300 MHz): 7.47 (d, J = 8.4 Hz, 1 H), 6.93 (d, J = 3.1 Hz, 1 H), 6.89 (dd, J1 

= 8.4 Hz, J2 = 3.1 Hz, 1 H), 5.84 (s, 2 H), 3.78 (s, 3 H), 2.06 (s, 6 H); 
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13C NMR (CDCl3, 75 MHz): 168.5, 159.0, 138.9, 134.2, 131.0, 118.3, 115.0, 111.8, 110.9, 

55.7, 15.4; 

IR  (KBr): 2960 (m), 2924 (m), 1695 (vs), 1593 (m), 1570 (m), 1471 (vs) cm-1; 

MS (EI, 70 ev): 309 (M+ (81Br), 7%), 307(M+ (79Br), 7%), 228 (44%), 215 (M+ (81Br), 99%), 

213 (M+ (79Br), 100%), 185 (10%); 

HRMS (EI): calcd. for C14H14BrNO2 (M
+, 79Br): 307.0208, found: 307.0218 (M+, 79Br). 

 

Synthesis of (2-bromo-3,4,5-trimethoxy-phenyl)-(2,5-dimethyl-pyrrol-1-yl)-methanone 

(40c) 

Br

OCH3

O

O

N Li

N

OBr

OCH3

H3CO

H3COH3CO

H3CO

 RHJ044H 
To the solution of 2,5-dimethyl-1H-pyrrole (0.57 g, 6.0 mmol) in THF (10.0 mL) was 

dropwise added n-BuLi (2.0 M, 3.0 mL) at -78 oC under nitrogen. The resulting mixture was 

allowed to stir at -78oC for 30 min. The solution of 2-bromo-3, 4, 5-trimethoxy-benzoic acid 

methyl ester (1.525 g, 5.0 mmol) in THF (5.0 mL) was added in and the resulting mixture was 

stirred at -78 oC for 1h. The reaction mixture was allowed to warm to room temperature and 

stirred for 3 h before it was quenched with aq. NH3. The reaction mixture was diluted with 

water and extracted with ether (3 x 30 mL). The combined organic phase were washed with 

brine, dried over Na2SO4, filtered, and evaporated. Purification by flash chromatography 

(eluent: pentane: ether = 3: 1) afforded 40c (1.331 g, 72%) as a yellow oil. 
1H NMR  (CDCl3, 300 MHz): 6.76 (s, 1 H), 5.83 (s, 2 H), 3.91 (s, 3 H), 3.87 (s, 3 H), 3.83 (s, 

3 H), 2.05 (s, 6 H); 
13C NMR (CDCl3, 75 MHz): 168.4, 153.2, 151.4, 145.4, 133.4, 130.9, 111.7, 108.6, 108.1, 

61.3, 61.1, 56.4, 15.3; 

IR  (KBr): 2938 (m), 1694 (vs), 1564 (m), 1349 (vs), 1289 (vs) cm-1; 

MS (EI, 70 ev): 369 (M+ (81Br), 5%), 367 (M+ (79Br), 5%), 275 (81Br, 100%), 273 (79Br, 

100%), 230 (10%), 93 (5%); 

HRMS (EI): calcd. for C16H18BrNO4 (M
+, 79Br): 367.0419, found: 367.0421 (M+, 79Br). 

 

Synthesis of 1-bromo-3,4-dihydro-naphthalene-2-carboxylic acid methyl ester (56c) 
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Br
CO2CH31) NaClO2, H2O2

2) CH3I, K2CO3

56c

Br O

 RHJ128H 

Bromo-3, 4-dihydro-naphthalene-2-carboxylic acid 

A solution of NaClO2 (80% purity, 3.2 g, 28 mmol) in water (30 mL) was added dropwise to a 

stirred mixture of 1-bromo-3, 4-dihydro-naphthalene-2-carbaldehyde120 (4.740 g, 20 mmol) in 

CH3CN (20 mL), NaH2PO4 (0.64 g) in water (10 mL) and 30% aqueous H2O2 (2.4 mL) in 2 h 

at 0 oC. The resulting mixture was stirred for 2 h at 10 oC. The mixture was poured into 

saturated Na2CO3 aqueous solution (50 mL), and washed with ether (30 mL). The ether phase 

was discarded. The aqueous phase was poured into 1 N HCl solution (200 mL), and extracted 

with ether (50 mL x 3).The extract was dried over Na2SO4. The combined organic phase was 

concentrated in vacuo to afford 2-bromo-1-cyclopentenecarboxylic acid (3.542 g, 70%) as a 

white solid; mp.: 122.7-123.8 oC.  
1H NMR  (CDCl3, 400 MHz):10.81-11.82 (bs, 1 H), 7.82-7.88 (m, 1 H), 7.25-7.32 (m, 2 H), 

7.12-7.17 (m, 1 H), 2.80-2.91 (m, 2 H), 2.68-2.78 (m, 2 H); 
13C NMR (CDCl3, 100 MHz):172.7, 137.3, 133.3, 130.1, 129.4, 129.3, 128.5, 127.1, 127.0, 

27.5, 27.3; 

IR  (neat): 2829 (vs), 1654 (s), 1554 (s), 1283 (s) cm-1; 

MS (EI, 70 ev): 254 (M+ (81Br), 25%), 252 (M+ (79Br), 25%), 155 (25%), 128 (100%); 

HRMS (EI): calcd. for C11H9BrO2 (M
+, 79Br): 251.9786, found: 251.9765 (M+, 79Br). 

 

Bromo-3, 4-dihydro-naphthalene-2-carboxylic acid methyl ester (56c) 

The mixture of bromo-3,4-dihydro-naphthalene-2-carboxylic acid (1.265 g, 5.0 mmol), CH3I 

(1.420 g, 10.0 mmol) and K2CO3 (828 mg, 6.0 mmol) in DMF (15 mL) was stirred overnight. 

The reaction mixture was diluted with ether (50 mL) and washed with water (20 mL x 3). The 

organic phase was dried over Na2SO4, filtered, and evaporated. Purification by flash 

chromatography (eluent: pentane: ether = 6: 1) afforded 56c (1.135 g, 85%) as a yellow oil. 
1H NMR  (CDCl3, 300 MHz):7.60-7.79 (m, 1 H), 7.14-7.26 (m, 2 H), 7.00-7.08 (m, 1 H), 3.77 

(s, 3 H), 2.74-2.81 (m, 2 H), 2.54-2.61 (m, 2 H); 
13C NMR (CDCl3, 75 MHz):167.9, 136.8, 133.1, 130.8, 129.6, 128.7, 127.1, 126.9, 125.2, 

52.0, 27.5, 27.4; 

IR  (KBr): 2949 (w), 1719 (s), 1694 (s), 1596 (s), 1444 (m), 1433 (m) cm-1; 

                                                 
120 N. Miyaura, T. Ishiyama, H. Sasaki, M. Ishikawa, M. Satoh, A. Suzuki, J. Am. Chem. Soc. 1989, 111, 314. 
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MS (EI, 70 ev): 268 (M+ (81Br), 35%), 266 (M+ (79Br), 35%), 235 (25%), 187 (20%), 155 

(21%), 128 (100%); 

HRMS (EI): calcd. for C12H11BrO2 (M
+, 79Br): 265.9942, found: 265.9939 (M+, 79Br). 

 

Synthesis of (1-bromo-3,4-dihydro-naphthalen-2-yl)-(2,5-dimethyl-pyrrol-1-yl)-

methanone (40d) 

Br
CO2CH3

N MeMe

Br

N

O Me

Me
40d56c

Li

 RHJ131H 

To the solution of 2,5-dimethyl-1H-pyrrole (0.57 g, 6.0 mmol) in THF (10.0 mL) was 

dropwise added n-BuLi (2.0 M, 3.0 mL) at -78 oC under nitrogen. The resulting mixture was 

allowed to stir at -78oC for 30 min. The solution of bromo-3, 4-dihydro-naphthalene-2-

carboxylic acid methyl ester 56c (1.335 g, 5.0 mmol) in THF (5.0 mL) was added in and the 

resulting mixture was stirred at -78 oC for 1h. The reaction mixture was allowed to warm to 

room temperature and stirred for 3 h before it was quenched with aq. NH3. The reaction 

mixture was diluted with water and extracted with ether (3 x 30 mL). The combined organic 

phase were washed with brine, dried over Na2SO4, filtered, and evaporated. Purification by 

flash chromatography (eluent: pentane: ether = 10: 1) afforded 40d (1.039 g, 63%) as a 

yellow oil. 
1H NMR  (CDCl3, 300 MHz): 7.65-7.72 (m, 1 H), 7.23-7.31 (m, 2 H), 7.11-7.17 (m, 1 H), 

5.86 (s, 2 H), 2.98 (t, J = 8.3 Hz, 2 H), 2.73 (t, J = 8.3 Hz, 2 H), 2.34 (s, 6 H); 
13C NMR (CDCl3, 75 MHz): 170.1, 136.1, 134.9, 132.3, 130.3, 129.8, 128.0, 127.3, 127.1, 

123.5, 111.6, 28.1, 27.4, 15.4; 

IR  (neat): 2921 (w), 1680 (s), 1543 (m), 1450 (w), 1361 (vs) cm-1; 

MS (EI, 70 ev): 331 (M+ (81Br), 5%), 329 (M+ (79Br), 5%), 235 (100%), 128 (80%); 

HRMS (EI): calcd. for C17H16BrNO (M+, 79Br): 329.0415, found: 329.0382 (M+, 79Br). 

 

Synthesis of 3-methyl-10H-pyrrolo[1,2-b]isoquinolin-5-one (42a) 

N

MeO

 RHJ120G 
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It was prepared from (2-bromo-phenyl)-(2,5-dimethyl-pyrrol-1-yl)-methanone (40a, 278 mg, 

1.0 mmol), Pd (OAc)2 (11 mg, 5 mol%), tri(p-tolyl)phosphine (30 mg, 10 mol%) and Cs2CO3 

(391 mg, 1.2 mmol) according to TP3. Purification by flash chromatography (eluent: hexane: 

ether = 20:1) afforded 42a (148 mg, 75%) as a white solid, mp.: 83.8-84.3 oC. 
1H NMR  (CDCl3, 300 MHz): 7.79 (d, J = 7.5 Hz, 1 H), 7.51-7.57 (m, 1 H), 7.38-7.44 (m, 2 

H), 6.30-6.35 (m, 1 H), 6.07 (d, J = 5.6 Hz, 1 H), 5.30-5.35 (m, 1 H), 4.76 (s, 1 H), 1.57 (s, 3 

H); 
13C NMR (CDCl3, 75 MHz): 171.2, 150.9, 146.0, 136.1, 133.0, 131.9, 129.6, 128.6, 125.1, 

121.6, 96.3, 77.1, 28.3; 

IR  (KBr): 2976 (w), 1703 (vs), 1633 (s), 1610 (m), 1467 (m), 1317 (vs) cm-1; 

MS (EI, 70 ev): 197 (M+, 10%), 182 (100%), 153 (4 5), 127 (12%); 

HRMS (EI): calcd. for C13H11NO (M+): 197.0841, found: 197.0821 (M+). 

 

Synthesis of 7-methoxy-3-methyl-10H-pyrrolo[1,2-b]isoquinolin-5-one (42b) 

N

MeO

H3CO

 RHJ026H 
It was prepared from (2-bromo-5-methoxy-phenyl)-(2,5-dimethyl-pyrrol-1-yl)-methanone 

(40b, 308 mg, 1.0 mmol), Pd (OAc)2 (11 mg, 5 mol%), tri(p-tolyl)phosphine (30 mg, 10 

mol%) and Cs2CO3 (391 mg, 1.2 mmol) according to TP3. Purification by flash 

chromatography (eluent: hexane: ether = 3: 1) afforded 42b (181 mg, 80%) as a white solid, 

mp.: 147.7-149.9 oC. 
1H NMR  (CDCl3, 300 MHz): 7.23 (d, J = 8.6 Hz, 1 H), 7.20 (d, J = 2.2 Hz, 1 H), 7.04 (dd, J1 

= 8.6 Hz, J2 = 2.2 Hz, 1 H), 6.24-6.27 (m, 1 H), 5.99 (d, J = 5.8 Hz, 1 H), 5.25-5.27 (m, 1 H), 

4.69 (s, 1 H), 3.75 (s, 3 H), 1.49 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 171.2, 160.3, 146.0, 143.3, 136.5, 133.2, 129.3, 122.4, 121.3, 

107.4, 96.1, 76.7, 55.6, 28.2; 

IR  (KBr): 2972 (m), 1709 (vs), 1637 (m), 1615 (m), 1495 (s), 1334 (vs), 1319 (vs) cm-1; 

MS (EI, 70 ev): 227 (M+, 13%), 212 (100%), 197 (12%), 169 (6%); 

HRMS (EI): calcd. for C14H13NO2 (M
+): 227.0946, found: 227.0960 (M+). 

 
Synthesis of 7,8,9-trimethoxy-3-methyl-10H-pyrrolo[1,2-b]isoquinolin-5-one (42c) 
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N

MeO

H3CO

OCH3

H3CO

 RHJ045H 
It was prepared from (2-bromo-3,4,5-trimethoxy-phenyl)-(2,5-dimethyl-pyrrol-1-yl)-

methanone (40c, 368 mg, 1.0 mmol), Pd (OAc)2 (11 mg, 5 mol%), tri(p-tolyl)phosphine (30 

mg, 10 mol%) and Cs2CO3 (391 mg, 1.2 mmol) according to TP3. Purification by flash 

chromatography (eluent: pentane: ether = 3: 1) afforded 42c (232 mg, 81%) as a white solid, 

mp.: 75.5-78.6 oC. 
1H NMR  (CDCl3, 300 MHz): 7.06 (s, 1 H), 6.34-6.45 (m, 1 H), 6.04 (d, J = 5.9 Hz, 1 H), 

5.21-5.31 (m, 1 H), 4.70 (s, 1 H), 3.99 (s, 3 H), 3.89 (s, 3 H), 3.87 (s, 3 H), 1.59 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 171.0, 155.3, 147.9, 146.1, 145.9, 136.39, 136.36, 129.1, 127.3, 

102.6, 95.5, 76.2, 60.97, 60.92, 56.3, 26.9; 

IR  (KBr): 2939 (w), 1715 (vs), 1634 (m), 1609 (m), 1479 (s), 1346 (vs) cm-1; 

MS (EI, 70 ev): 287 (M+, 19%), 272 (100%), 256 (6%), 242 (15%); 

HRMS (EI): calcd. for C16H17NO4 (M
+): 287.1158, found: 287.1142 (M+). 

 

Synthesis of 9-methyl-6,12-dihydro-5H-benzo[f]pyrrolo[1,2-b]isoquinolin-7-one (42d) 

N

O

Me

 RHJ133H 

It was prepared from (1-bromo-3,4-dihydro-naphthalen-2-yl)-(2,5-dimethyl-pyrrol-1-yl)-

methanone 40d (330 mg, 1.0 mmol), Pd (OAc)2 (11 mg, 5 mol%), tri(p-tolyl)phosphine (30 

mg, 10 mol%) and Cs2CO3 (391 mg, 1.2 mmol) according to TP3. Reaction temperature: 80 
oC. Purification by flash chromatography (eluent: pentane: ether =1: 1) afforded 42d (184 mg, 

74%) as a yellow oil. 
1H NMR  (CDCl3, 300 MHz): 7.07-7.36 (m, 4 H), 6.36-6.44 (m, 1 H), 6.05 (d, J = 5.8 Hz, 1 

H), 5.14-5.22 (m, 1 H), 4.64 (s, 1 H), 2.78-3.00 (m, 2 H), 2.50-2.62 (m, 1 H), 2.30-2.47 (m, 1 

H), 1.57 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 173.9, 157.5, 145.5, 138.4, 135.4, 130.9, 130.4, 130.0, 128.83, 

128.82, 126.8, 124.4, 95.2, 77.8, 28.1, 27.2, 18.1; 

IR  (neat): 2927 (w), 1698 (vs), 1633 (m), 1566 (m), 1449 (m, 1386 (s), 1320 (vs) cm-1; 

MS (EI, 70 ev): 249 (M+, 59%), 234 (100%), 220 (6%), 206 (25%), 102 (5%); 

HRMS (EI): calcd. for C17H15NO (M+): 249.1154, found: 249.1158 (M+). 
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Synthesis of (2-bromo-cyclopent-1-enyl)-(2,5-dimethyl-pyrrol-1-yl)-methanone (60a) 

Br

O

Br

O

NH2

O

O

Br

O

N MeMe
1) NaClO2, H2O2

2) (COCl)2

3) HN(TMS)2

TsOH (cat.)

59a 60a RHJ092H 
2-Bromo-1-cyclopentenecarboxylic acid: A solution of NaClO2 (80% purity, 3.2 g, 28 

mmol) in water (30 mL) was added dropwise to a stirred mixture of 2-bromocyclopent-1-

enecarbaldehyde121 (3.50 g, 20 mmol) in CH3CN (20 mL), NaH2PO4 (0.64 g) in water (10 

mL) and 30% aqueous H2O2 (2.4 mL) in 2 h at 0 oC. The resulting mixture was stirred for 2 h 

at 10 oC. The mixture was poured into saturated Na2CO3 aqueous solution (50 mL), and 

washed with ether (30 mL). The ether phase was discarded. The aqueous phase was poured 

into 1 N HCl solution (200 mL), and extracted with ether (50 mL x 3).The extract was dried 

over Na2SO4. The combined organic phase was concentrated in vacuo to afford 2-bromo-1-

cyclopentenecarboxylic acid (3.418 g, 89%) as a white solid; mp.: 122.7-123.8 oC.  
1H NMR  (CDCl3, 300 MHz):11.44 (bs, 1 H, COOH), 2.83 (tt, J1 = 7.7 Hz, J2 = 2.5 Hz, 2 H), 

2.65 (tt, J1 = 7.7 Hz, J2 = 2.5 Hz, 2 H), 1.96 (pent, J = 7.7 Hz, 2 H); 
13C NMR (CDCl3, 75 MHz):169.5, 135.7, 131.4, 43.5, 32.8, 21.5; 

IR  (neat): 2488-3045 (bs), 1665 (vs), 1613 (vs), 1281 (vs) cm-1; 

MS (EI, 70 ev): 192 (M+ (81Br), 89%), 190 (M+ (79Br), 89%), 145 (34%), 11 (100%), 83 

(40%). 

Spectral datas match with those reported in the literature122 

2-Bromo-1-cyclopentenecarboxylic amide (59a): Oxalyl dichloride (9.810 g, 30.0 mmol) 

was added to the solution of 2-bromo-1-cyclopentenecarboxylic acid (1.910 g, 10.0 mmol) in 

CH2Cl2 (40 mL) at 0 oC , 2-3 drops of dry DMF was added and the resulting mixture was 

stirred for 4 h at this temperature. 1,1,1,3,3,3-Hexamethyl-disilazane (12.1 g, 75 mmol) was 

dropwise added at 0 oC and the mixture was stirred at room temperature overnight. Cooled to 

0 oC, methanol (15.0 mL) was added to the mixture and it was stirred for 3 h at room 

temperature. Usual workup and purification by flash chromatography (eluent: ether) afforded 

61b (1.337 g, 70%) as a white solid, mp.: 146.0-147.0 oC. 

                                                 
121 T. Bekele, S. R. Brunette, M. A. Lipton, J. Org. Chem. 2003, 68, 8471. 
122 K. Ohe, K. Miki, T. Yokoi, F. Nishino, S. Uemura, Organometallics 2000, 19, 5525. 
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1H NMR  (CDCl3, 300 MHz):6.06-6.74 (m, 2 H, NH2), 2.82 (tt, J1 = 7.7 Hz, J2 = 2.5 Hz, 2 H), 

2.67 (tt, J1 = 7.7 Hz, J2 = 2.5 Hz, 2 H), 1.92 (pent, J = 7.7 Hz, 2 H); 
13C NMR (CDCl3, 75 MHz):166.0, 135.2, 125.1, 43.1, 33.5, 21.1; 

IR  (neat): 3330 (s), 3156 (s), 1657 (s), 1613 (vs), 1398 (vs) cm-1; 

MS (EI, 70 ev): 191 (M+ (81Br), 52%), 189 (M+ (79Br), 51%), 175 (23%), 147 (9%), 110 

(100%), 67 (88%);  

HRMS (EI): calcd. for C6H8BrNO (M+, 79Br): 188.9789, found: 188.9767 (M+, 79Br). 

(2-Bromo-cyclopent-1-enyl)-(2,5-dimethyl-pyrrol-1-yl)-methanone (60a) 2-Bromo-1-

cyclopentenecarboxylic amide 59a (570 mg, 3.0 mmol), 2,5-hexanedione (684 mg, 6.0 

mmol), and TsOH·H2O (6 mg, 1.0 mol%) were dissolved in toluene (20 mL) and heated in a 

flask equipped with a Dean-Stark apparatus for 6 h. After cooling, the dark brown reaction 

mixture was concentrated in vacuo. Purification by flash chromatography (eluent: pentane = 

10: 1) to provide 60a (322 mg, 40%) as crystals: mp.: 54.4-55.4 oC. 
1H NMR  (CDCl3, 300 MHz):5.82 (s, 2 H), 2.70-2.85 (m, 4 H), 2.24 (s, 6 H), 2.01-2.12 (m, 2 

H); 
13C NMR (CDCl3, 75 MHz):167.6, 137.6, 129.7, 128.1, 111.0, 42.0, 34.0, 22.2, 14.7; 

IR  (neat): 2914 (w), 1677 (vs), 1615 (m), 1542 (m), 1361 (vs) cm-1; 

MS (EI, 70 ev): 269 (M+ (81Br), 18%), 267 (M+ (79Br), 18%), 188 (6%), 175 ((81Br), 99%), 

173 ((79Br), 100%), 95 (28%); 

HRMS (EI): calcd. for C12H14BrNO (M+, 79Br): 267.0259, found: 267.0252 (M+, 79Br). 

 

Synthesis of (2-bromo-cyclohex-1-enyl)-(2,5-dimethyl-pyrrol-1-yl)-methanone (60b): 

Br

O

Br

O

NH2

O

O

Br

O

N MeMe
1) NaClO2, H2O2

2) (COCl)2, DMF (cat.)
3) HN(TMS)2

TsOH·H2O  (cat.)

60b59b RHJ083H 
2-Bromo-1-cyclohexenecarboxylic acid: A solution of NaClO2 (80% purity, 3.2 g, 28 mmol) 

in water (30 mL) was added dropwise to a stirred mixture of 2-bromocyclohex-1-

enecarbaldehyde123 (3.78 g, 20 mmol) in CH3CN (20 mL), NaH2PO4 (0.64 g) in water (10 

mL) and 30% aqueous H2O2 (2.4 mL) in 2 h at 0 oC. The resulting mixture was stirred for 2 h 

at 10 oC. The mixture was poured into saturated Na2CO3 aqueous solution (50 mL), and 

washed with ether (30 mL). The ether phase was discarded. The aqueous phase was poured 

                                                 
123 J.-J. Lian, A. Odedra, C.-J. Wu, R.-S. Liu, J. Am. Chem. Soc. 2005, 127, 4186. 
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into 1 N HCl solution (200 mL), and extracted with ether (3 x 50 mL). The combined organic 

phase was dried over Na2SO4 and concentrated in vacuo to afford 2-bromo-1-

cyclohexenecarboxylic acid (3.501 g, 85%) as a white solid; mp 102.0-103.0 oC. 
1H NMR  (CDCl3, 300 MHz):11.14 (bs, 1 H, COOH), 2.56-2.67 (m, 2 H), 2.36-2.46 (m, 2 H), 

1.62-1.75 (m, 4 H);  
13C NMR (CDCl3, 75 MHz):172.9, 129.6, 129.4, 38.0, 28.6, 23.9, 21.3; 

IR  (KBr): 2488-3055 (bs), 1687 (vs), 1672 (vs), 1248 (vs) cm-1;  

MS (EI, 70 ev): 206 (M+ (81Br), 33%), 204 (M+, 33%), 125 (34%), 97 (35%), 79 (100%). 

Spectral datas match with those reported in the literature124 

2-Bromo-1-cyclohexenecarboxylic amide (59b): Oxalyl dichloride (1.91 g, 15.0 mmol) was 

added to the solution of 2-bromo-1-cyclohexenecarboxylic acid (1.025 g, 5.0 mmol) in 

CH2Cl2 (20 mL) at 0 oC , 2-3 drops of dry DMF was added and the resulting mixture was 

stirred for 4 h at this temperature. 1,1,1,3,3,3-Hexamethyl-disilazane (4.83 g, 30 mmol) was 

dropwise added at 0 oC and the mixture was stirred at room temperature overnight. Cooled to 

0 oC, methanol (10.0 mL) was added to the mixture and it was stirred for 3 h at room 

temperature. Usual workup and purification by flash chromatography (eluent: ether) afforded 

59b (0.816 g, 80%) as a white solid, mp.: 163.0-164.0 oC. 
1H NMR  (CDCl3, 300 MHz):5.67-6.39 (m, 2 H, NH2), 2.48-2.61 (m, 2 H), 2.27-2.41 (m, 2 

H), 1.59-1.78 (m, 4 H); 
13C NMR (CDCl3, 75 MHz):171.1, 134.3, 121.3, 36.4, 29.2, 24.1, 21.4; 

IR  (KBr): 3362 (m), 3171 (m), 2929 (m), 1638 (vs), 1620 (vs), 1392 (s) cm-1; 

MS (EI, 70 ev): 205 (M+ (81Br), 44%), 203 (M+ (79Br), 43%), 124 (86%), 81 (100%); 

HRMS (EI): calcd. for C7H10BrNO (M+, 79Br): 202.9946, found: 202.9926 (M+, 79Br). 

(2-Bromo-cyclohex-1-enyl)-(2,5-dimethyl-pyrrol-1-yl)-methanone (60b): 2-Bromo-1-

cyclohexenecarboxylic amide 59b (612 mg, 3.0 mmol), 2,5-hexanedione (684 mg, 6.0 mmol), 

and TsOH·H2O (6 mg, 1.0 mol%) were dissolved in toluene (20 mL) and heated in a flask 

equipped with a Dean-Stark apparatus for 4 h. After cooling, the dark brown reaction mixture 

was concentrated in vacuo. Purification by flash chromatography (eluent: pentane = 10: 1) 

provided 60b (668 mg, 79%) as crystals: mp.: 38.7-39.6 oC. 
1H NMR  (CDCl3, 300 MHz):5.82 (s, 2 H), 2.50-2.58 (m, 2 H), 2.38-2.44 (m, 2 H), 2.31 (s, 6 

H), 1.72-1.79 (m, 4 H); 
13C NMR (CDCl3, 75 MHz):170.1, 134.9, 130.5, 124.5, 111.6, 36.2, 29.3, 23.8, 21.3, 15.4; 

                                                 
124 W. R. Baker, R. M. Coates, J. Org. Chem. 1979, 44, 1022. 
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IR (neat): 2927 (m), 1684 (vs), 1543 (m), 1362 (vs) cm-1; 

MS (EI, 70 ev): 283 (M+ (81Br), 15%), 281 (M+ (79Br), 16%), 189 ((81Br), 99%), 187 ((79Br), 

100%), 95 (34%), 79 (35%); 

HRMS (EI): calcd. for C13H16BrNO (M+, 79Br): 281.0415, found: 281.0419 (M+, 79Br). 

 

Synthesis of (2-bromo-cyclohept-1-enyl)-(2,5-dimethyl-pyrrol-1-yl)-methanone (60c) 

Br

O

Br

O

NH2

O

O

Br

O

N MeMe
1) NaClO2, H2O2

2) (COCl)2, DMF (cat.)

3) HN(TMS)2
59c 60c RHJ094H 

2-Bromo-cyclohept-1-enecarboxylic acid: A solution of NaClO2 (80% purity, 3.2 g, 28 

mmol) in water (32 mL) was added dropwise to a stirred mixture of 2-bromo-cyclohept-1-

enecarbaldehyde (3.78 g, 20 mmol) in CH3CN (20 mL), NaH2PO4 (0.64 g) in water (10 mL) 

and 30% aqueous H2O2 (2.4 mL) in 2 h at 0 oC. The resulting mixture was stirred for 2h at 10 
oC. The mixture was poured into saturated Na2CO3 aqueous solution (50 mL), and washed 

with ether (30 mL). The ether phase was discarded. The aqueous phase was poured into 1 N 

HCl solution (200 mL), and extracted with ether (50 mL x 3). The combined organic phase 

was dried over Na2SO4 and concentrated in vacuo to afford 2-bromo-cyclohept-1-

enecarboxylic acid (3.635 g, 83%) as a white solid; mp.: 104.4-105.5 oC. 
1H NMR  (CDCl3, 300 MHz):11.40 (bs, 1 H, COOH), 2.80-2.93 (m, 2 H), 2.40-2.56 (m, 2 H), 

1.70-1.81 (m, 2 H), 1.53-1.68 (m, 4 H);  
13C NMR (CDCl3, 75 MHz):174.0, 135.2, 132.1, 42.9, 31.1, 31.0, 25.5, 24.6; 

IR  (KBr): 2678-3055 (bs, s), 1687 (vs), 1626 (s), 1289 (vs) cm-1; 

MS (EI, 70 ev): 220 (M+ (81Br), 25%), 218 (M+ (79Br), 25%), 139 (34%), 11 (30%), 93 

(100%);  

HRMS (EI): calcd. for C8H11BrO2 (M
+, 79Br): 217.9942, found: 217.9926 (M+, 79Br). 

2-Bromo-cyclohept-1-enecarboxylic acid amide (59c): Oxalyl dichloride (1.91 g, 15.0 

mmol) was added to the solution of 2-bromo-cyclohept-1-enecarboxylic acid (1.095 g, 5.0 

mmol) in CH2Cl2 (20 mL) at 0 oC , 2-3 drops of dry DMF was added and the resulting mixture 

was stirred for 4 h at this temperature. 1,1,1,3,3,3-Hexamethyl-disilazane (4.83 g, 30 mmol) 

was dropwise added at 0 oC and the mixture was stirred at room temperature overnight. 

Cooled to 0 oC, methanol (10.0 mL) was added to the mixture and it was stirred for 3 h at 
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room temperature. Usual workup and purification by flash chromatography (eluent: ether) 

afforded 59c (0.926 g, 85%) as a white solid, mp.: 144.3-145.0 oC. 
1H NMR  (CDCl3, 300 MHz):6.03 (bs, 1 H), 5.70 (bs, 1 H), 2.69-2.86 (m, 2 H), 2.32-2.49 (m, 

2 H), 1.68-1.81 (m, 2 H), 1.53-1.67 (m, 4 H); 
13C NMR (CDCl3, 75 MHz):172.3, 139.4, 124.7, 41.8, 31.9, 31.0, 26.1, 25.0; 

IR  (KBr): 3378 (m), 3160 (m), 1638 (vs), 1613 (vs), 1409 (s) cm-1; 

MS (EI, 70 ev): 219 (M+ (81Br), 25%), 217 (M+ (79Br), 25%), 138 (100%), 110 (95%), 95 

(74%); 

HRMS (EI): calcd. for C8H12BrNO (M+, 79Br): 217.0102, found: 217.0079 (M+, 79Br). 

(2-Bromo-cyclohept-1-enyl)-(2,5-dimethyl-pyrrol-1-yl)-methanone (60c): 2-Bromo-

cyclohept-1-enecarboxylic acid amide (1.090 g, 5.0 mmol), 2, 5-hexanedione (1.140 g, 10.0 

mmol), and TsOH·H2O (10 mg, 1.0 mol%) were dissolved in toluene (20 mL) and heated in a 

flask equipped with a Dean-Stark apparatus for 4 h. After cooling, the dark brown reaction 

mixture was concentrated in vacuo. Purification by flash chromatography (eluent: pentane = 

10: 1) provided 60c (1.201 g, 81%) as a yellow oil. 
1H NMR  (CDCl3, 300 MHz):5.81 (s, 2 H), 2.76-2.87 (m, 2 H), 2.39-2.51 (m, 2 H), 2.30 (s, 6 

H), 1.60-1.85 (m, 6 H); 
13C NMR (CDCl3, 75 MHz):171.5, 139.8, 130.9, 128.5, 111.9, 42.5, 32.8, 31.3, 26.5, 25.1, 

16.0; 

IR (KBr): 2923 (m), 1684 (vs), 1627 (m), 1541 (m), 1364 (vs) cm-1; 

MS (EI, 70 ev): 297 (M+ (81Br), 11%), 295 (M+ (79Br), 11%), 216 (45%), 200 (100%), 122 

(40%), 93 (51%); 

HRMS (EI): calcd. for C14H18BrNO (M+, 79Br): 295.0572, found: 295.0570 (M+, 79Br). 

 
Synthesis of 5,6,7,8,9,10-hexahydro-pyrrolo[1,2-b]isoquinoline (61a) 

N

O Me

 RHJ086H 
It was prepared from (2-bromo-cyclohex-1-enyl)-(2, 5-dimethyl-pyrrol-1-yl)-methanone 60a 

(282 mg, 1.0 mmol), Pd (OAc)2 (11 mg, 5 mol%), tri(p-tolyl)phosphine (30 mg, 10 mol%) 

and Cs2CO3 (391 mg, 1.2 mmol) according to TPIII . Purification by flash chromatography 

(eluent: hexane: ether = 3: 1) afforded 61a (171 mg, 85%) as a white solid, mp.: 108.2-109.0 
oC. 
1H NMR  (CDCl3, 300 MHz): 6.08-6.12 (m, 1 H), 6.00 (d, J = 5.8 Hz, 1 H), 5.13 (s, 1 H), 4.62 

(s, 1 H), 2.11-2.29 (m, 4 H), 1.58-1.77 (m, 4 H), 1.37 (s, 3 H); 
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13C NMR (CDCl3, 75 MHz): 175.5, 162.6, 146.4, 135.1, 131.0, 129.8, 95.0, 79.1, 25.2, 22.8, 

21.9, 21.6, 20.1; 

IR  (KBr): 2926 (w), 1690 (vs), 1658 (m), 1632 (m), 1310 (vs) cm-1; 

MS (EI, 70 ev): 201 (M+, 25%), 186 (100%), 158 (13%), 130 (9%); 

HRMS (EI): calcd. for C13H15NO (M+): 201.1154, found: 201.1151 (M+). 

 
Synthesis of 3-methyl-5,6,7,8-tetrahydro-3a-aza-s-indacen-4-one (61b) 

N

O Me

 RHJ095H 
It was prepared from (2-bromo-cyclopent-1-enyl)-(2, 5-dimethyl-pyrrol-1-yl)-methanone 60b 

(268 mg, 1.0 mmol), Pd (OAc)2 (11 mg, 5 mol%), tri(p-tolyl)phosphine (30 mg, 10 mol%) 

and Cs2CO3 (391 mg, 1.2 mmol) according to TP3. Purification by flash chromatography 

(eluent: hexane: ether = 3:1) afforded 61b (149 mg, 80%) as a white solid, mp.: 90.0-91.0 oC. 
1H NMR  (CDCl3, 300 MHz): 6.07 (d, J = 5.8 Hz, 1 H), 6.01 (d, J = 5.8 Hz, 1 H), 5.08 (s, 1 

H), 4.58 (s, 1 H), 2.23-2.57 (m, 6 H), 1.40 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 174.6, 171.5, 146.4, 141.4, 134.6, 130.2, 94.5, 76.4, 27.9, 27.6, 

25.4, 25.1; 

IR  (KBr): 2926 (w), 1692 (vs), 1632 (s), 1316 (vs), 1295 (vs) cm-1; 

MS (EI, 70 ev): 187 (M+, 35%), 172 (100%), 158 (13%), 144 (42%); 

HRMS (EI): calcd. for C12H13NO (M+): 187.0997, found: 187.0973 (M+). 

 

Synthesis of 3-methyl-5,6,7,8,9,10-hexahydro-3a-aza-cyclohepta[f]inden-4-one (61c) 

N

O Me

 RHJ096H 

It was prepared from (2-bromo-cyclohept-1-enyl)-(2,5-dimethyl-pyrrol-1-yl)-methanone 60c 

(296 mg, 1.0 mmol), Pd (OAc)2 (11 mg, 5 mol%), tri(p-tolyl)phosphine (30 mg, 10 mol%) 

and Cs2CO3 (391 mg, 1.2 mmol) according to TP3. Purification by flash chromatography 

(eluent: hexane: ether = 3:1) afforded 61c (160 mg, 74%) as a white solid, mp.: 99.0-100.0 oC. 
1H NMR  (CDCl3, 300 MHz): 6.09-6.13 (m, 1 H), 5.99 (d, J = 5.8 Hz, 1 H), 5.10-5.14 (m, 1 

H), 4.58-4.64 (m, 1 H), 2.22-2.46 (m, 4 H), 1.42-1.90 (m, 6 H), 1.38 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 175.8, 164.8, 146.7, 135.3, 134.3, 129.8, 94.9, 79.1, 30.9, 28.4, 

26.9, 26.7, 25.0, 24.4; 

IR  (KBr): 2918 (w), 1686 (s), 1656 (m), 1631 (m), 1309 (s) cm-1; 
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MS (EI, 70 ev): 215 (M+, 21%), 200 (100%), 186 (2%), 172 (5%), 158 (2%), 130 (4%); 

HRMS (EI): calcd. for C14H17NO (M+): 215.1310, found: 215.1306 (M+). 

 

Synthesis of 3-methyl-7-phenyl-pyrrolo[1,2-f]phenanthridine-2-carboxylic acid ethyl 

ester (63a) 

N
Me

EtO2C

RHJ073J 

The reaction was performed in a sealed tuber with a mixture of 1-(2,4-dibromo-phenyl)-2-

methyl-5-phenyl-1H-pyrrole-3-carboxylic acid ethyl ester 44j (463 mg, 1.0 mmol), 

benzeneboronic acid (146 mg, 1.2 mmol), Pd (OAc)2 (22 mg, 10 mol%), tri(p-tolyl)phosphine 

(60 mg, 20 mol%) and Cs2CO3 (717 mg, 2.2 mmol) at 110 °C using toluene (10.0 mL) as 

solvent for 12 h. After cooling to room temperature, water (10 mL) was added in. The mixture 

was extracted with ether (3 x 30 mL). The combined extracts were washed with brine, dried 

over Na2SO4 and concentrated in vacuo. Purification by flash chromatography (eluent: 

pentane: ether = 3: 1) provided the mixture of desired product 63a and double Suzuki 

coupling compound. The pure compound 63a was obtained (246 mg, 65%) after 

recrystallization using ether and pentane as a white solid, mp.: 155.0-156.2 oC. 
1H NMR  (CDCl3, 600 MHz): 8.32 (s, 1 H), 8.10 (d, J = 8.8 Hz, 1 H), 8.06 (d, J = 7.9 Hz, 1 

H), 7.82 (d, J = 7.5 Hz, 1 H), 7.62 (d, J = 7.1 Hz, 2 H), 7.53 (d, J = 8.4 Hz, 1 H), 7.48 (t, J = 

7.1 Hz, 2 H), 7.39 (t, J = 7.5 Hz, 1 H), 7.35 (t, J = 7.1 Hz, 1 H), 7.28 (t, J = 7.5 Hz, 1 H), 7.21 

(s, 1 H), 4.36 (q, J = 7.1 Hz, 2 H), 3.08 (s, 3 H), 1.43 (t, J = 7.1 Hz, 3 H); 
13C NMR (CDCl3, 150 MHz): 165.5, 139.9, 136.8, 133.7, 132.9, 128.8, 128.7, 128.2, 127.4, 

126.9, 126.12, 126.06, 126.0, 124.6, 123.9, 122.4, 122.0, 121.9, 118.0, 116.1, 103.0, 59.8, 

16.4, 14.5; 

IR  (neat): 2983 (w), 1687 (s), 1526 (m), 1442 (m), 1218 (s), 1063 (m) cm-1; 

MS (EI, 70 ev): 379 (100%), 350 (95%), 334 (8%), 304 (53%), 228 (20%), 152 (15%); 

HRMS (ESI): calcd. for C26H22NO2 (M
++ H): 380.1651, found: 380.1655 (M++ H). 

 



 
 

 
 

148 

Synthesis of 7-(3-methoxy-phenyl)-3-methyl-pyrrolo[1,2-f]phenanthridine-2-carboxylic 

acid ethyl ester (63b) 

N
Me

EtO2C

O RHJ082J 

The reaction was performed according to the procedure for preparation of 63a from 1-(2,4-

dibromo-phenyl)-2-methyl-5-phenyl-1H-pyrrole-3-carboxylic acid ethyl ester 44j (232 mg, 

0.5 mmol), 3-methoxylbenzeneboronic acid (91 mg, 0.6 mmol), Pd (OAc)2 (11 mg, 10 

mol%), tri(p-tolyl)phosphine (30 mg, 20 mol%) and Cs2CO3 (359 mg, 1.1 mmol). Reaction 

conditions: 110 °C, 20 h. Purification by flash chromatography (eluent: pentane: ether = 3: 1) 

provided the desired product 63b (182 mg, 89%) as a white solid, mp.: 132.1-133.2 oC. 
1H NMR  (CDCl3, 300 MHz): 8.43 (s, 1 H), 8.24 (d, J = 7.9 Hz, 1 H), 8.17 (d, J = 7.9 Hz, 1 

H), 7.92 (d, J = 7.9 Hz, 1 H), 7.62 (d, J = 8.8 Hz, 1 H), 7.17-7.50 (m, 6 H), 6.94 (d, J = 7.9 

Hz, 1 H), 4.36 (q, J = 7.1 Hz, 2 H), 3.89 (s, 3 H), 3.18 (s, 3 H), 1.43 (t, J = 7.1 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 165.6, 160.1, 141.6, 136.98, 136.95, 134.0, 133.1, 129.9, 128.9, 

128.4, 126.33, 126.26, 124.8, 124.2, 122.5, 122.3, 122.2, 119.5, 118.2, 116.3, 113.0, 112.7, 

103.2, 59.9, 55.4, 16.5, 14.5; 

IR  (neat): 2976 (w), 1691 (s), 1606 (m), 1580 (m), 1439 (m), 1120 (s) cm-1; 

MS (EI, 70 ev): 409 (M+, 100%), 380 (86%), 337 (19%), 292 (23%), 190 (10%); 

HRMS (EI): calcd. for C27H23NO3 (M
+): 409.1678, found: 409.1661 (M+). 

 

Synthesis of 10-(3-methoxy-phenyl)-3-methyl-pyrrolo[1,2-f]phenanthridine-2-carboxylic 

acid ethyl ester (63c) 

N
Me

EtO2C

O
Me

RHJ048K 

The reaction was performed according to the procedure for preparation of 63a from 5-(4-

bromo-phenyl)-1-(2-bromo-phenyl)-2-methyl-1H-pyrrole-3-carboxylic acid ethyl ester 44k 

(232 mg, 0.5 mmol), 3-methoxylbenzeneboronic acid (91 mg, 0.6 mmol), Pd (OAc)2 (11 mg, 
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10 mol%), tri(p-tolyl)phosphine (30 mg, 20 mol%) and Cs2CO3 (359 mg, 1.1 mmol). Reaction 

conditions: 110 °C, 12 h. Purification by flash chromatography (eluent: pentane: ether =4: 1) 

provided the desired product 63c (121 mg, 59%) as a white solid, mp.: 157.9-158.5 oC. 
1H NMR  (CDCl3, 300 MHz): 8.40 (d, J = 7.1 Hz, 1 H), 8.35 (s, 1 H), 8.30 (d, J = 7.9 Hz, 1 

H), 8.01 (dd, J1 = 7.9 Hz, J2 = 3.5 Hz, 1 H), 7.69 (d, J = 7.9 Hz, 1 H), 7.19-7.58 (m, 6 H), 6.97 

(dd, J1 = 7.9 Hz, J2 = 2.6 Hz, 1 H), 4.42 (q, J = 7.1 Hz, 2 H), 3.94 (s, 3 H), 3.24 (s, 3 H), 1.47 

(t, J = 7.1 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 165.6, 160.1, 142.4, 138.8, 134.9, 133.3, 129.9, 128.8, 127.8, 

127.5, 125.4, 125.1, 124.6, 124.0, 123.9, 123.0, 120.8, 119.6, 118.0, 116.5, 113.0, 112.6, 

103.2, 59.9, 55.4, 16.6, 14.5; 

IR  (neat): 2972 (w), 1696 (s), 1604 (w), 1580 (m), 1559 (m), 1414 (s), 1214 (vs) cm-1; 

MS (EI, 70 ev): 409 (100%), 380 (85%), 337 (14%), 292 (13%), 207 (30%), 145 (15%); 

HRMS (EI): calcd. for C27H23NO3 (M
+): 409.1678, found: 409.1697 (M+). 
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10. Preparation of Functionalized Alkenyl Organomagnesium Reagents and 

Polysubstituted Pyridylmagnesium Reagents Using i-PrMgCl•LiCl 

 

Synthesis of (E)-1-iodo-1-octene (79a) 
I

n-C6H13 RHJ139B 

To a solution of 1-octyne (2.75 g, 25 mmol, in 50 mL of dry hexane) was slowly added neat 

DIBAL (2.85 g, 25 mmol ) and the temperature was kept below 40 oC. The reaction was 

heated at 50 oC for 4 h, then cooled to rt and hexane was removed under vacuum. THF (20 

mL) was added and the solution was cooled to –50 oC, and iodine (6.35 g, 25 mmol) in THF 

(20 mL) was slowly added. The mixture was then warmed to rt change colour from brownish-

red to almost colorless. The reaction mixture was then quenched by dropwise addition of 20% 

sulfuric acid and was poured in a mixture of ice and 20% sulfuric acid. The mixture was then 

extracted with pentane, and the organic extracts were washed with sodium thiosulfate, sodium 

bicarbonate solutions, dried (MgSO4), and the solvents were removed in vacuo. Purification 

by flash chromatography (pentane) afforded the pure product 79a (5.68 g, 95%) as a colorless 

oil. GC and 1H NMR analysis indicated 99% isomeric purity (E: Z = 99:1). 
1H NMR  (CDCl3, 300 MHz): 6.49 (dt, J1 = 14.4 Hz, J2 = 7.2 Hz, 1 H), 5.95 (dt, J1 = 14.4 Hz, 

J2 = 1.5 Hz, 1 H), 2.03 (dq, J1 = 8.4 Hz, J2 = 1.5 Hz, 2 H), 1.18-1.44 (m, 8 H), 0.86 (t, J = 6.9 

Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 146.8, 74.2, 36.0, 31.5, 28.6, 28.3, 22.5, 14.0; 

IR (film): 2926 (vs), 1606 (w), 1465 (m), 943 (m) cm-1; 

MS (EI, 70 ev), m/z (%): 238 (M+, 50%), 167 (35%), 154 (34%), 69 (100%). 

Spectral data match those reported in the literature.125 

 

Synthesis of (Z)-1-iodo-1-octene (79b) 

n-C6H13 I  RHJ155B 

To a solution of 1-octyne (550 mg, 5 mmol) in anhydrous CH2Cl2 was slowly added 

HBBr2·SMe2 (5 mL, 1.0 M in CH2Cl2) and the mixture was stirred for 10 h. Water (0.9 mL) 

and ether (2.5 mL) was added to the reaction mixture at 0 oC. The reaction mixture was stirred 

for about 20 min after the addition and more ether (25 mL) was added. The organic layer was 

washed with cold water, brine and dried (MgSO4). After evaporation of the solvent under 

                                                 
125 J. K. Stille, J. H. Simpson, J. Am. Chem . Soc. 1987, 109, 2138. 
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reduced pressure, the boronic acid was obtained in satisfactory purity. The boronic acid was 

then dissolved in the mixture solvent of ether and tetrahydrofuran (5 mL, 1:1) in a 25-mL 

flask and cooled to 0 oC. Elemental iodine (13 mmol) was added and the mixture was stirred 

for 8 h at 0 oC. Aqueous sodium thiosulfate was added until iodine colour disappeared; the 

mixture was extracted with pentane, washed with brine and dried over MgSO4. Purification by 

flash chromatography (pentane) afforded the pure product 79b (800 mg, 67%) as a colorless 

oil. GC and 1H NMR analysis indicated 98% isomeric purity (E: Z = 2:98). 
1H NMR  (CDCl3, 300 MHz): 6.11-6.19 (m, 2 H), 2.07-2.16 (m, 2 H), 1.18-1.50 (m, 8 H), 

0.87 (t, J = 6.9 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 141.5, 82.1, 34.7, 31.6, 28.8, 27.9, 22.6, 14.0; 

IR  (film): 2926 (vs), 1610 (w), 1465 (w), 1285 (w) cm-1; 

MS (EI, 70 ev), m/z (%): 238 (M+, 52%), 167 (25%), 154 (30%), 69 (100%). 

Spectral data match those reported in the literature.126 

 

Synthesis of (E)-6-chloro-1-iodo-hex-1-ene (79c) 

Cl

I

RHJ148B 

The reaction was carried out according to the procedure for preparation of (E)-1-iodo-1-

octene 79a. 6-Chloro-1-hexyne (2.33 g, 20 mmol), neat DIBAL (2.28 g, 20 mmol) and I2 

(5.08 g, 20 mmol) afforded the product (E)-6-chloro-1-iodo-hex-1-ene 79c (3.98 g, 81%) as a 

colorless oil. GC and 1H NMR analysis indicated 99% isomeric purity (E: Z = 99:1). 
1H NMR  (CDCl3, 300 MHz): 6.48 (dt, J1 = 14.7 Hz, J2 = 7.2 Hz, 1 H), 6.01 (dt, J1 = 14.7 Hz, 

J2 = 1.8 Hz, 1 H), 3.51 (t, J = 6.6 Hz, 2 H), 2.07 (qd, J1 = 7.5 Hz, J2 = 1.2 Hz, 1 H, 2 H), 1.75 

(m, 2 H), 1.54 (m, 2 H); 
13C NMR (CDCl3, 75 MHz): 145.7, 75.1, 44.6, 35.2, 31.7, 25.5; 

IR (film): 2937 (vs), 1606 (m), 1454 (m), 1230 (m), 947 (vs) cm-1; 

MS (EI, 70 ev): 246 (M+,37Cl, 33%), 244 (M+, 35 Cl, 100%), 180 (9%), 167 (59%), 154 

(32%), 127 (14%), 81 (52%); 

HRMS (EI): calcd. for C6H10ClI (M+, 35Cl): 243.9516, found: 243.9512 (M+, 35Cl). 

 

                                                 
126 H. C. Brown, C. Subrahmanyam, T. Hamaoka,; N. Ravindran, D. H. Bowman,; S. Misumi, M. K. Unni, V. Somayaji, N. 
G. Bhat, J. Org. Chem. 1989, 54, 6068. 
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Synthesis of (Z)-6-chloro-1-iodo-hex-1-ene (79d) 

Cl

I

RHJ163B 

The reaction was carried out according to the procedure for preparation of (Z)-1-iodo-1-

octene. 6-chloro-1-hexyne 79b (291 mg, 2.5 mmol), HBBr2·SMe2 (2.5 mL, 1.0 M in CH2Cl2) 

and I2 (1.7 g, 6.75 mmol) afforded the product (Z)-6-chloro-1-iodo-hex-1-ene 79d (469 mg, 

77%) as a colorless oil. GC and 1H NMR analysis indicated 97% isomeric purity (E: Z = 3: 

97). 
1H NMR  (CDCl3, 300 MHz): 6.11- 6.23 (m, 2 H), 3.53 (t, J = 6.3 Hz, 2 H), 2.16 (q, J = 7.2 

Hz, 2 H), 1.80 (m, 2 H), 1.57 (m, 2 H); 
13C NMR (CDCl3, 75 MHz): 140.5, 83.0, 44.7, 33.8, 31.8, 25.1; 

IR  (film): 2939 (vs), 1610 (m), 1454 (m), 1297 (s), 1284 (s), 690 (s) cm-1; 

MS (EI, 70 ev): 246 (M+, 37Cl, 16%), 244 (M+, 35Cl, 49%), 167 (35%), 154 (28%), 117 

(13%), 81 (100%); 

HRMS (EI): calcd. for C6H10ClI (M+, 35Cl): 243.9516, found: 243.9521 (M+, 35Cl). 

 

Synthesis of (E)-1,6-diiodo-hex-1-ene (79e) 

I

I

RHJ153B 

A mixture of (E)-6-chloro-1-iodo-hex-1-ene 79c (732 mg, 3.0 mmol), NaI (900 mg, 6.0 

mmol) and acetone (5 mL) was stirred at 70 °C overnight. After cooling to room temperature, 

water (10 mL) was added. The aqueous phase was extracted with diethyl ether (3 × 10 mL). 

The organic fractions were washed with brine (10 mL), dried over Na2SO4 and concentrated 

in vacuo. Purification by flash chromatography (pentane: ether = 100:1) yielded the product 

79e (912 mg, 90%) as a colorless oil. GC and 1H NMR analysis indicated 99% isomeric 

purity (E:Z = 99:1). 
1H NMR  (CDCl3, 300 MHz): 6.47 (dt, J1 = 14.6 Hz, J2 = 6.6 Hz, 1 H), 6.00 (d, J = 14.6 Hz, 1 

H), 3.15 (t, J = 6.3 Hz, 2 H), 2.01-2.10 (m, 2 H), 1.70-1.85 (m, 2 H), 1.49 (m, 2 H); 
13C NMR (CDCl3, 75 MHz): 145.6, 75.3, 34.8, 32.5, 29.1, 6.3; 

IR  (film): 2928 (s), 1605 (m), 1450 (m), 1219 (m), 1187 (m), 943 (m) cm-1; 

MS (EI, 70 ev): 336 (20%), 209 (79%), 167 (94%), 81 (100%); 

HRMS (EI): calcd. for C6H10I2 (M
+): 335.8872, found: 335.8894 (M+). 
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Synthesis of (E)-8-iodo-2,2-dimethyl-oct-7-enenitrile (79f) 

I

NC
RHJ190B 

To a solution of isobutyronitrile (104 mg, 1.5 mmol) in THF (3 mL) was added LDA (1.5 

mmol in 3 mL THF, It was prepared from n-BuLi and HN(i-Pr)2) at –78 oC and the mixture 

was stirred for 1 h. Then, the solution of 79f (336 mg, 1.0 mmol, in 1 mL THF) was added 

and stirred at this temperature for 2 h. The reaction mixture was warmed to room temperature 

and stirred for 1 h, then quenched with NH4Cl (aq). The aqueous phase was extracted with 

diethyl ether (3 × 10 mL). The organic fractions were washed with brine (10 mL), dried over 

Na2SO4 and concentrated in vacuo. Purification by flash chromatography (pentane: ether = 

50:1) yielded the pure product 79f (191 mg, 69%) as a colorless oil. GC and 1H NMR analysis 

indicated 99% isomeric purity (E: Z = 99:1). 
1H NMR  (CDCl3, 300 MHz): 6.47 (dt, J1 = 14.1 Hz, J2 = 7.2 Hz, 1 H), 5.98 (dt, J1 = 14.1 Hz, 

J2 = 1.2 Hz, 1 H), 2.02-2.10 (m, 2 H), 1.36-1.51 (m, 6 H), 1.30 (s, 6 H); 
13C NMR (CDCl3, 75 MHz): 145.9, 125.0, 74.8, 40.7, 35.7, 32.2, 28.2, 26.6, 24.5; 

IR  (film): 2938 (vs), 2234 (m), 1606 (w), 1462 (m), 1207 (m), 949 (s) cm-1; 

MS (EI, 70 ev): 277 (11%), 180 (26%), 167 (58%), 150 (100%), 123 (17%); 

HRMS (EI): calcd. for C10H16IN (M+): 277.0327, found: 277.0359 (M+). 

 

Synthesis of (E)-8-iodo-2,2-dimethyl-oct-7-enoic acid methyl ester (79g) 

I

MeOOC
RHJ185B 

To a solution of methyl isobutyrate (174 mg, 1.5 mmol) in THF (3 mL) was added LDA (1.5 

mmol, in 3 mL THF, It was prepared from n-BuLi and HN(i-Pr)2) at –78 oC and the mixture 

was stirred for 1 h. Then, the solution of 79e (336 mg, 1.0 mmol in 1 mL THF) was added and 

the mixture was stirred for 2 h at this temperature. The reaction mixture was warmed to room 

temperature and stirred for 1 h, then quenched with NH4Cl (aq). The aqueous phase was 

extracted with diethyl ether (3 × 10 mL). The organic fractions were washed with brine (10 

mL), dried over Na2SO4 and concentrated in vacuo. Purification by flash chromatography 
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(pentane:ether = 25:1) yielded the pure product 15g (224 mg, 81%) as a colorless oil. GC and 
1H NMR analysis indicated 99% isomeric purity (E: Z = 99:1). 
1H NMR  (CDCl3, 300 MHz): 6.46 (dt, J1 = 14.1 Hz, J2 = 6.9 Hz, 1 H), 5.95 (dt, J1 = 14.1 Hz, 

J2 = 1.5 Hz, 1 H), 3.63 (s, 3 H), 1.98-2.06 (m, 2 H), 1.40-1.50 (m, 2 H), 1.26-1.40 (m, 2 H), 

1.13-1.23 (m, 2 H), 1.13 (s, 6 H); 
13C NMR (CDCl3, 75 MHz): 178.4, 146.4, 74.5, 51.7, 42.2, 40.4, 35.8, 28.7, 25.1, 24.2; 

IR  (film): 2938 (s), 1732 (vs), 1606 (w), 1473 (m), 1193 (s), 1156 (s), 948 (s) cm-1; 

MS (EI, 70 ev): 311 (M++1, 0.7%), 251 (0.8%), 195 (3.3%), 183 (33.9%), 123 (100%), 102 

(77%); 

HRMS (EI): calcd. for C11H20IO2 (M
++H): 311.0508, found: 311.0488 (M++H). 

 

Synthesis of 4-(2-iodo-allyl)-benzonitrile (79h) 

OH

NC Br

I

OH

I

OTs

TsCl

NC

I

I

OTsNaI, TMSCl

1. i-PrMgCl·LiCl

2. ZnBr2, CuCN·LiCl (cat)

3.

80

80
RHJ190C

 

2-Iodo-prop-2-en-1-ol was obtained according to a literature procedure.127 The mixture of 2-

iodo-prop-2-en-1-ol (2.13 g, 11.6 mmol), TsCl (2.43 g, 12.8 mmol) and Et3N (1.74 g, 17.4 

mmol) in CH2Cl2 (25 mL) were stirred at 0 oC for 7 h. Then, the mixture was washed with 

brine and dried (MgSO4). The crude product was purified on silica gel, yielding the 2-

iodoallyl tosylate (3.33 g, 85%) as a colorless oil.  

To a solution of 4-bromobenzonitrile (1.82 g, 10 mmol) in THF (10 mL) was added the i-

PrMgCl·LiCl (5.5 mL, 2.0 M in THF, 11.0 mmol) at –10 oC and stirred for 4 h. ZnBr2 (11.0 

mL, 1.0 M in THF) was added and the reaction mixture was stirred at this temperature for 30 

min. Then the solution of 2-iodoallyl tosylate (3.38 g, 10 mmol) in THF (5 mL), CuCN·2LiCl 

(2.0 mL, 1.0 M in THF) and NMP (4 mL) were added subsequently to the reaction mixture. 

The reaction mixture was stirred at room temperature overnight then quenched with NH4Cl 

(aq) (5 mL). The aqueous phase was extracted with diethyl ether (3 × 10 mL). The organic 

fractions were washed with brine (10 mL), dried over Na2SO4 and concentrated in vacuo. 

                                                 
127 S. Irifune, T. Kibayashi, Y. Ishii, M. Ogawa, Synthesis 1988, 367. 
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Purification by flash chromatography (pentane: ether = 15: 1) yielded the pure product 79h 

(1.690 g, 63%) as a colorless oil. 
1H NMR  (CDCl3, 300 MHz): 7.60 (d, J = 8.1 Hz, 2 H), 7.31 (d, J = 8.1 Hz, 2 H), 6.09-6.10 

(m, 1 H), 5.84 (s, 1 H), 3.81 (s, 2 H); 
13C NMR (CDCl3, 75 MHz): 143.2, 132.3, 129.7, 128.1, 118.7, 110.9, 107.2, 51.4; 

IR  (film): 2976 (w), 2228 (s), 1607 (m), 1504 (w), 1188 (m) cm-1;  

MS (EI, 70 ev): 269 (M+, 78%), 142 (100%), 115 (81%); 

HRMS (EI): calcd. for C10H8IN (M+): 268.9701, found: 268.9726 (M+). 

 

Synthesis of 4-iodo-2,2-dimethyl-pent-4-enenitrile (79i) 

I

CN
RHJ077C 

To a solution of isobutyronitrile (104 mg, 1.5 mmol) in THF (3 mL) was added LDA (1.5 

mmol in 3 mL THF, prepared from n-BuLi and HN(i-Pr)2) at –78 oC and stirred for 1 h. Then, 

the solution of 2-iodoallyl tosylate (338 mg, 1.0 mmol) in THF (1 mL) was added and the 

mixture was stirred for 2 h at this temperature then quenched with NH4Cl (aq). The aqueous 

phase was extracted with diethyl ether (3 × 10 mL). The organic fractions were washed with 

brine (10 mL), dried over Na2SO4 and concentrated in vacuo. Purification by flash 

chromatography (pentane: ether = 25:1) yielded the pure product 79i (134 mg, 57%) as a 

solid; mp.: 36.9-37.5 oC. 
1H NMR  (CDCl3, 300 MHz): 6.25-6.28 (m, 1 H), 6.03 (d, J = 1.8 Hz, 1 H), 2.73 (d, J = 1.3 

Hz, 2 H), 1.44 (s, 6 H); 
13C NMR (CDCl3, 75 MHz): 131.7, 124.1, 99.5, 53.9, 33.1, 26.8; 

IR  (KBr): 2977 (m), 2234 (m), 1611 (s), 1184 (s), 909 (vs) cm-1;  

MS (EI, 70 ev): 235 (M+, 100%), 167 (21%), 127 (10%), 108 (11%), 81 (32%); 

HRMS (EI): calcd. for C7H10IN (M+): 234.9858, found: 234.9844 (M+). 

 

Synthesis of (1-iodo-2-phenyl-vinyl)-trimethyl-silane (79j) 

TMS

I RHJ006D 

To a solution of trimethyl-phenylethynyl-silane (1.540 g, 8.9 mmol) in dry hexane (20 mL) 

was slowly added neat DIBAL (1.001 g, 8.9 mmol) and the temperature was kept below 40 
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oC. The reaction was then heated at 50 oC for 4 hr, and then cooled to rt and hexane was 

removed under vacuum. THF (20 mL) was added and the solution was cooled to –50 oC, and 

iodine (6.35 g, 25 mmol) in THF (20 mL) was slowly added. The mixture was then warmed to 

rt change color from brownish-red to almost colorless. The reaction mixture was then 

quenched by dropwise addition of 20% sulfuric acid and poured into a mixture of ice and 20% 

sulfuric acid. The mixture was then extracted with pentane, and the organic extracts were 

washed with sodium thiosulfate, sodium bicarbonate solutions, and dried (MgSO4), and the 

solvents were removed in vacuo. Purification by flash chromatography (pentane) afforded the 

pure product 79j (2.192 g, 82%) as a colorless oil. GC and 1H NMR analysis indicated 95% 

isomeric purity (E: Z = 95: 5). 
1H NMR  (CDCl3, 300 MHz): 7.19-7.52 (m, 6 H), 0.22 (s, 9 H); 
13C NMR (CDCl3, 75 MHz): 144.2, 139.1, 128.4, 128.2, 127.9, 111.8, -1.3; 

IR  (KBr): 2957 (m), 1592 (m), 1488 (m), 1444 (m), 1247 (vs) cm-1;  

MS (EI, 70 ev): 302 (M+, 100%), 287 (9%), 185 (90%), 175 (21%), 73 (89%); 

Spectral data match those reported in the literature. 128 

 

Synthesis of (E)-undec-4-en-3-ol (83a) 

OH

RHJ147B 

According to TP4, the reaction was carried out with (E)-1-iodo-1-octene 79a (119 mg, 0.5 

mmol), i-PrMgCl·LiCl (0.28 mL, 0.55 mmol, 2.00 M in THF) and propionaldehyde (0.55 

mmol in 0.5 mL THF). Exchange conditions: -40 oC, 7 h. Purification by flash 

chromatography (pentane: ether = 3:1) afforded the pure product 83a (70 mg, 82% yield) as a 

colorless oil. 1H NMR analysis indicated 99% isomeric purity (E: Z = 99: 1). 
1H NMR  (CDCl3, 300 MHz): 5.61 (ddt, J1 = 15.5 Hz, J 2 = 6.6 Hz, J3 = 0.9 Hz, 1 H), 5.41 

(ddt, J1 = 15.5 Hz, J2 = 6.6 Hz, J3 = 1.3 Hz, 1 H), 3.94 (q, J = 6.6 Hz, 1 H), 1.97-2.03 (m, 2 

H), 1.17-1.60 (m, 7 H), 0.81-0.90 (m, 6 H); 
13C NMR (CDCl3, 75 MHz): 132.7, 132.4, 74.5, 32.2, 31.7, 30.1, 29.2, 28.8, 22.6, 14.0, 9.7; 

IR  (film): 3350 (vs), 2960 (vs), 1670 (w), 1464 (m), 966 (s) cm-1; 

MS (EI, 70 ev): 170 (M+, 0.4%), 152 (11%), 141 (54%), 123 (26%), 85 (83%), 57 (100%). 

Spectral data match those reported in the literature. 129 

 

                                                 
128 E. Negishi, T. Takahashi, , J. Am. Chem . Soc. 1986, 108, 3402. 
129 W. Oppolzer, , R. N. Radinov, Helv. Chim. Acta 1992, 75, 170-3. 
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Synthesis of (E)-non-2-enal (83b) 

O

H RHJ197B 

According to TP4, the reaction was carried out with (E)-1-iodo-1-octene 79a (119 mg, 0.5 

mmol), i-PrMgCl·LiCl (0.28 mL, 0.55 mmol, 2.00 M in THF) and DMF (0.75 mmol in 0.5 ml 

THF). Exchange conditions: -40 oC, 7 h. Purification by flash chromatography (pentane: ether 

= 30:1) afforded the pure product 83b (50 mg, 71% yield) as a colorless oil. 1H NMR analysis 

indicated 99% isomeric purity (E: Z = 99:1).  
1H NMR  (CDCl3, 300 MHz): 9.46 (d, J = 7.9 Hz, 1 H), 6.81 (dt, J1 = 15.5 Hz, J2 = 6.6 Hz, 1 

H), 6.08 (ddt, J1 = 15.9 Hz, J2 = 7.9 Hz, J3 = 1.3 Hz, 1 H), 2.25-2.34 (m, 2 H), 1.20-1.52 (m, 8 

H), 0.85 (t, J = 6.6 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 194.1, 159.0, 132.9, 32.7, 31.5, 28.7, 27.7, 22.5, 14.0; 

IR  (film): 2928 (vs), 1697 (vs), 1421 (vs), 1308 (vs), 977 (s) cm-1; 

MS (EI, 70 ev): 139 (M+-H, 0.6%), 122 (6%), 111 (13%), 96 (35%), 70 (100%). 

Spectral data match those reported in the literature. 130 

 

Synthesis of (E)-oct-1-enylsulfanyl-benzene (83f) 

S

RHJ145B 

According to TP4, the reaction was carried out with (E)-1-iodo-1-octene 79a (119 mg, 0.5 

mmol), i-PrMgCl·LiCl and diphenyl disulfide (120 mg, 0.55 mmol, 1.1 equiv.). Exchange 

conditions: -40 oC, 7 h. Quenched as usual and extracted with ether (3 x 30 ml). The organic 

fractions were washed with 2 N NaOH (10 ml) thoroughly and brine (10 mL), dried over 

Na2SO4 and concentrated in vacuo. Purification by flash chromatography (pentane) afforded 

the pure product 83f (86 mg, 78%) as a colorless oil. 1H NMR analysis indicated 99% 

isomeric purity (E: Z = 99:1).  
1H NMR  (CDCl3, 300 MHz): 7.16-7.36 (m, 5 H), 6.16 (dt, J1 = 14.8 Hz, J2 = 0.9 Hz, 1 H), 

6.03 (dt, J1 = 14.8 Hz, J2 = 6.6 Hz, 1 H), 2.19 (m, 2 H), 1.24-1.50 (m, 8 H), 0.93 (t, J = 6.6 

Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 137.8, 136.7, 128.9, 128.4, 126.0, 120.6, 33.1, 31.6, 29.0, 28.8, 

22.6, 14.1; 

IR  (film): 2926 (vs), 1738 (w), 1584 (m), 1439 (m), 738 (s); 

                                                 
130 D. Ma, X. Lu, Chem. Comm. 1989, 14, 890-1. 
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MS (EI, 70 ev): 220 (M+, 83%), 149 (100%), 134 (31%), 116 (84%). 

Spectral data match those reported in the literature. 131 

 

Synthesis of (Z)-oct-1-enylsulfanyl-benzene (83d) 

S
RHJ160B 

According TP4, the reaction was carried out with (Z)-1-iodo-1-octene 79b (119 mg, 0.5 

mmol), i-PrMgCl·LiCl (0.28 mL, 0.55 mmol, 2.00 M in THF) and diphenyl disulfide (120 

mg, 0.55 mmol, 1.1 equiv.). Exchange conditions: -40 oC, 20 h. Quenched as usual and 

extracted with ether (3 x 30 ml). The organic fractions were washed with 2 N NaOH (10 ml) 

thoroughly and brine (10 mL), dried over Na2SO4 and concentrated in vacuo. Purification by 

flash chromatography (pentane) afforded the pure product 83d (76 mg, 69% yield) as a 

colorless oil. 1H NMR analysis indicated 98% isomeric purity (E: Z = 2:98).  
1H NMR  (CDCl3, 300 MHz): 7.08-7.29 (m, 5 H), 6.11 (dt, J1 = 8.8 Hz, J2 = 1.3 Hz, 1 H), 

5.75 (dt, J1 = 8.8 Hz, J2 = 7.5 Hz, 1 H), 2.13-2.22 (m, 2 H), 1.17-1.14 (m, 8 H), 0.82 (t, J = 6.6 

Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 136.6, 133.8, 128.9, 128.7, 126.1, 122.5, 31.7, 29.1, 29.0, 28.9, 

22.6, 14.1; 

IR (film): 2926 (vs), 1609 (w), 1585 (m), 1479 (s), 736 (s) cm-1; 

MS (EI, 70 ev): 220 (M+, 60%), 149 (100%), 134 (25%), 116 (67%), 110 (51%), 91 (12%), 

69 (56%); 

HRMS (EI): calcd. for C14H20S (M+): 220.1286; found: 220.1302 (M+). 

 

Synthesis of (Z)-undec-4-en-3-ol (83e) 

OH

 

According to TP4, the reaction was carried out with (Z)-1-iodo-1-octene 79b (119 mg, 0.5 

mmol), i-PrMgCl·LiCl (0.28 mL, 0.55 mmol, 2.00 M in THF) and propionaldehyde (0.55 

mmol in 0.5 mL THF). Exchange conditions: -40 oC, 20 h. Purification by flash 

chromatography (pentane: ether = 3:1) afforded the pure product 83e (59 mg, 70%) as a 

colorless oil. 1H NMR analysis indicated 98% isomeric purity (E: Z = 2:98).  

                                                 
131 X. Huang, X. Xu, W. Zheng, Synth. Commun. 1999, 29, 2399. 
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1H NMR  (CDCl3, 300 MHz): 5.48 (ddt, J1 = 11.1 Hz, J2 = 7.5 Hz, J3 = 0.9 Hz, 1 H), 5.33 (m, 

1 H), 4.33 (m, 1 H), 1.97-2.13 (m, 2 H), 1.12-1.67 (m, 10 H), 0.87 (m, 6 H); 
13C NMR (CDCl3, 75 MHz): 132.7, 132.2, 69.1, 31.7, 30.4, 29.7, 28.9, 27.7, 22.6, 14.1, 9.7; 

IR (film): 3339 (vs), 2959 (w), 1658 (w), 1464 (m), 1007 (m) cm-1; 

MS (EI, 70 ev): 170 (M+, 0.4%), 152 (13%), 141 (51%), 123 (36%), 85 (87%), 81 (95%), 57 

(100%); 

HRMS (EI): calcd. for C11H22O (M+), 170.1671; found: 170.1621 (M+). 

 

Synthesis of (E)-(6-chloro-hex-1-enylsulfanyl)-benzene (83f) 

S

Cl

RHJ152B 

According to TP4, the reaction was carried out with (E)-6-chloro-1-iodo-hex-1-ene 79c (122 

mg, 0.5 mmol), i-PrMgCl·LiCl (0.28 mL, 0.55 mmol, 2.00 M in THF), diphenyl disulfide 

(120 mg, 0.55 mmol, 1.1 equiv.). Exchange conditions: -40 oC, 7 h. Quenched as usual and 

extracted with diethyl ether (3 × 10 mL). The organic fractions were washed with 2 M NaOH 

(10 mL) thoroughly and brine (10 mL), dried over Na2SO4 and concentrated in vacuo. 

Purification by flash chromatography (pentane: ether = 100: 1) afforded the pure product 83f 

(85 mg, 75%) as a colorless oil. 1H NMR analysis indicated 99% isomeric purity (E: Z = 

99:1).  
1H NMR  (CDCl3, 300 MHz): 7.08-7.27 (m, 5 H), 6.09 (dt, J1 = 15.0 Hz, J2 = 1.3 Hz, 1 H), 

5.86 (dt, J1 = 15.0 Hz, J2 = 6.6 Hz, 1 H ), 3.47 (t, J = 6.6 Hz, 2 H), 2.08-2.16 (m, 2 H), 1.68-

1.79 (m, 2 H), 1.44-1.56 (m, 2 H); 
13C NMR (CDCl3, 75 MHz): 136.2, 135.8, 128.9, 128.7, 126.2, 121.9, 44.7, 32.2, 31.9, 26.2; 

IR (film): 2936 (m), 1731 (w), 1583 (m), 1479 (s), 1439 (s), 951 (m), 739 (vs) cm-1; 

MS (EI, 70 ev): 228 (M+, 37Cl, 10%), 226 (M+, 35Cl, 39%), 149 (100%), 134 (19%), 116 

(58%), 59 (88%); 

HRMS (EI): calcd. for C12H15ClS (M+, 35Cl), 226.0583; found: 226.0582 (M+, 35Cl). 

 

Synthesis of (Z)-(6-chloro-hex-1-enylsulfanyl)-benzene (83g) 

Cl

S
RHJ148B 
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According to TP4, the reaction was carried out with (Z)-6-chloro-1-iodo-hex-1-ene 79d (122 

mg, 0.5 mmol), i-PrMgCl·LiCl (0.28 mL, 0.55 mmol, 2.00 M in THF) and diphenyl disulfide 

(120 mg, 0.55 mmol, 1.1 equiv.). Exchange conditions: -40 oC, 20 h. Quenched as usual and 

extracted with diethyl ether (3 × 10 mL). The organic fractions were washed with 2 M NaOH 

(10 mL) thoroughly and brine (10 mL), dried over Na2SO4 and concentrated in vacuo. 

Purification by flash chromatography (pentane:ether = 100:1) afforded the pure product 83g 

(92 mg, 81%) as a colorless oil. 1H NMR analysis indicated 97% isomeric purity (E:Z = 3:97).  
1H NMR  (CDCl3, 300 MHz): 7.10-7.28 (m, 5 H), 6.16 (dt, J1 = 9.0 Hz, J2 = 1.3 Hz, 1 H), 

5.72 (dt, J1 = 9.3 Hz, J2 = 7.5 Hz, 1 H), 3.49 (t, J = 6.6 Hz, 2 H), 2.17-2.26 (m, 2 H), 1.70-

1.81 (m, 2 H), 1.48-1.58 (m, 2 H); 
13C NMR (CDCl3, 75 MHz): 136.2, 132.3, 129.0, 128.8, 126.3, 123.7, 44.8, 32.0, 28.2, 26.2; 

IR  (film): 2934 (m), 1731 (w), 1584 (m), 1479 (s), 1439 (s) cm-1; 

MS (EI, 70 ev): 228 (M+, 37Cl, 15%), 226 (M+, 35Cl, 44%), 149 (100%), 116 (45%), 110 

(63%), 91 (37%); 

HRMS (EI): calcd. for C12H15ClS (M+, 35Cl), 226.0583; found: 226.0585 (M+, 35Cl). 

 

Synthesis of (E)-9-iodo-non-4-en-3-ol (83h) 

I

OH RHJ161B 

According to TP4, the reaction was carried out with (E)-1, 6-diiodo-hex-1-ene 79e (168 mg, 

0.5 mmol), i-PrMgCl·LiCl (0.28 mL, 0.55 mmol, 2.00 M in THF) and propionaldehyde (0.55 

mmol in 0.5 mL THF). Exchange conditions: -40 oC, 7 h. Purification by flash 

chromatography (pentane: ether = 4:1) afforded the pure product 83h (112 mg, 84%) as a 

colorless oil. 1H NMR analysis indicated 99% isomeric purity (E:Z = 99:1).  
1H NMR  (CDCl3, 300 MHz): 5.59 (dt, J1 = 15.0 Hz, J2 = 6.6 Hz, 1 H), 5.44 (ddt, J1 = 15.0 

Hz, J2 = 6.6 Hz, J3 = 1.3 Hz, 1 H), 3.95 (m, 1 H), 3.16 (t, J = 7.2 Hz, 2 H), 2.04 (q, J = 7.2 Hz, 

2 H), 1.74-1.86 (m, 2 H), 1.40-1.58 (m, 4 H), 0.87 (t, J = 7.5 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 133.5, 131.1, 74.3, 32.9, 31.0, 30.1, 29.9, 9.7, 6.7; 

IR  (film): 3368 (vs), 2930 (vs), 1669 (w), 1455 (m), 966 (s) cm-1; 

MS (EI, 70 ev): 267 (M+-H, 0.4%), 250 (30%), 239 (50%), 155 (14%), 81 (54%), 57 (100%); 

HRMS (EI): calcd. for C9H16IO: 267.0246 (M+-H); found: 267.0242 (M+-H). 
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Synthesis of (E)-9-hydroxy-2, 2-dimethyl-undec-7-enenitrile (83i) 

OH
CN

RHJ193B 

According to TP4, the reaction was carried out with (E)-8-iodo-2, 2-dimethyl-oct-7-enenitrile 

79f (139 mg, 0.5 mmol), i-PrMgCl·LiCl (0.28 mL, 0.55 mmol, 2.00 M in THF) and 

propionaldehyde (0.55 mmol in 0.5 mL THF). Exchange conditions: -40 oC, 7 h. Purification 

by flash chromatography (pentane: ether = 2:1) afforded the pure product 83i (80 mg, 77%) as 

a colorless oil. 1H NMR analysis indicated 99% isomeric purity (E: Z = 99:1).  
1H NMR  (CDCl3, 300 MHz): 5.59 (dt, J1 = 15.6 Hz, J2 = 6.6 Hz, 1 H), 5.43 (ddt, J1 = 15.6 

Hz, J2 = 6.6 Hz, J3 = 1.3 Hz, 1H), 3.92-3.96 (m, 1 H), 2.04 (q, J = 6.6 Hz, 2 H), 1.35-1.66 (m, 

8 H), 1.30 (s, 6 H), 0.87 (t, J = 7.5 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 133.3, 131.4, 125.1, 74.3, 40.8, 32.3, 31.8, 30.1, 28.9, 26.63, 

26.58, 24.6, 9.7; 

IR (film): 3436 (vs), 2974 (vs), 2235 (m), 1730 (w), 1669 (w), 1463 (m), 968 (m) cm-1; 

MS (EI, 70 ev): 208 (M+-H, 0.1%), 192 (2%), 180 (100%), 162 (29%), 135 (32%), 85 (96%); 

HRMS (EI): calcd. for C13H22NO: 208.1701 (M+-H); found: 208.1681 (M+-H). 

 

Synthesis of (E)-2,2-dimethyl-undeca-7,10-dienoic acid methyl ester (83j) 

COOMe

RHJ188B 

According to TP4, the reaction was carried out with (E)-8-iodo-2, 2-dimethyl-oct-7-enoic 

acid methyl ester 79g (155 mg, 0.5 mmol), i-PrMgCl·LiCl (0.28 mL, 0.55 mmol, 2.00 M in 

THF) and allyl bromide (0.55 mmol in 0.5 mL THF). Exchange conditions: -40 oC, 12 h. 

Purification by flash chromatography (pentane: ether = 25:1) afforded the pure product 83j 

(80 mg, 71%) as a colorless oil. GC and 1H NMR analysis indicated 99% isomeric purity (E:Z 

= 99:1).  
1H NMR  (CDCl3, 300 MHz): 5.73-5.86 (m, 1 H), 5.34-5.43 (m, 2 H), 4.90-5.04 (m, 2 H), 

3.63 (s, 3 H), 2.64-2.79 (m, 2 H), 1.90-2.01 (m, 2 H), 1.16-1.51 (m, 6 H), 1.13 (s, 6 H); 
13C NMR (CDCl3, 75 MHz): 178.5, 137.4, 131.4, 127.7, 114.7, 51.6, 42.3, 40.6, 36.7, 32.3, 

29.8, 25.1, 24.4; 

IR (film): 2935 (s), 1734 (vs), 1639 (w), 1154 (m), 969 (m), 912 (m) cm-1 

MS (EI, 70 ev): 224 (M+, 0.1%), 192 (10%), 123 (11%), 102 (100%), 81 (48%); 

HRMS (EI): calcd. for C14H24O2 (M
+): 224.1776; found: 224.1775 (M+). 
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Synthesis of (E)-9-hydroxy-2,2-dimethyl-undec-7-enoic acid methyl ester (83k) 

COOMe
OH

RHJ017D 

According to TP4, the reaction was carried out with (E)-8-iodo-2, 2-dimethyl-oct-7-enoic 

acid methyl ester 79g (155 mg, 0.5 mmol), i-PrMgCl·LiCl (0.28 mL, 0.55 mmol, 2.00 M in 

THF) and propionaldehyde (0.55 mmol in 0.5 mL THF). Exchange conditions: -40 oC, 12 h. 

Purification by flash chromatography (pentane: ether = 2:1) afforded the pure product 83k (99 

mg, 82%) as a colorless oil. 1H NMR analysis indicated 99% isomeric purity (E:Z = 99:1).  
1H NMR  (CDCl3, 300 MHz): 5.58 (dt, J1 = 15.6 Hz, J2 = 6.6 Hz, 1 H), 5.40 (ddt, J1 = 15.6 

Hz, J2= 6.6 Hz, J3 = 1.3 Hz, 1 H), 3.93 (q, J = 6.6 Hz, 1 H), 3.62 (s, 3 H), 1.99 (q, J = 7.2 Hz, 

2 H), 1.12-1.59 (m, 6 H), 1.12 (s, 8 H), 0.86 (t, J = 7.2 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 178.5, 132.9, 131.9, 74.4, 51.6, 42.2, 40.5, 31.9, 30.1, 29.5, 

25.2, 25.1, 24.3, 9.7; 

IR  (film): 3498 (vs), 2970 (s), 1733 (s), 1194 (m), 1148 (s) cm-1 

MS (EI, 70 ev): 224 (M+-H2O, 1%), 213 (15%), 192 (64%), 153 (76%), 102 (100%); 

HRMS (EI): calcd. for C14H24O2 (M
+-H2O): 224.1776; found: 224.1728 (M+-H2O). 

 

Synthesis of 8-cyano-2,2-dimethyl-oct-7-enoic acid methyl ester (83l) 

COOMeNC

RHJ016D 

According to TP4, the reaction was carried out with (E)-8-iodo-2, 2-dimethyl-oct-7-enoic 

acid methyl ester 79g (155 mg, 0.5 mmol), i-PrMgCl·LiCl (0.28 mL, 0.55 mmol, 2.00 M in 

THF) and TsCN (0.55 mmol in 0.5 mL THF). Exchange conditions: -40 oC, 12 h. Purification 

by flash chromatography (pentane: ether = 4:1) afforded the pure product 83l (78 mg, 75%) as 

a colorless oil. GC and 1H NMR analysis indicated 99% isomeric purity (E: Z = 99:1). 
1H NMR  (CDCl3, 300 MHz): 6.67 (dt, J1 = 16.3 Hz, J2 = 6.9 Hz, 1 H), 5.29 (dt, J1 = 16.3 Hz, 

J2 = 1.8 Hz, 1 H), 3.63 (s, 3 H), 2.15-2.22 (m, 2 H), 1.16-1.51 (m, 6 H), 1.13 (s, 6 H); 
13C NMR (CDCl3, 75 MHz): 178.2, 155.7, 117.4, 99.8, 51.7, 42.1, 40.2, 33.0, 27.9, 25.1, 

24.3; 

IR  (film): 2975 (m), 2223 (m), 1729 (s), 1633 (m), 1474 (m), 971 (m) cm-1; 

MS (EI, 70 ev): 210 (M++H, 1%), 194 (1%), 150 (52%), 134 (23%), 102 (100%); 

HRMS (EI): calcd. for C12H20NO2 (M
+ +H): 210.1494; found: 210.1464 (M ++H). 

 

Synthesis of 4-{2-[hydroxy-(2-iodo-phenyl)-methyl]-allyl}-benzonitrile (83m) 
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OH

NC

I RHJ003D 

According to TP4, the reaction was carried out with 4-(2-iodo-allyl)-benzonitrile 79h (135 

mg, 0.5 mmol, i-PrMgCl·LiCl (0.28 mL, 0.55 mmol, 2.00 M in THF) and 2-iodobenzaldehyde 

(0.55 mmol in 0.5 mL THF). Exchange conditions: -40 oC, 5 h. Purification by flash 

chromatography (pentane: ether = 1:1) afforded the pure product 83m (170 mg, 91%) as a 

colorless oil. 
1H NMR  (CDCl3, 300 MHz): 7.72 (d, J = 8.0 Hz, 1 H), 7.45 (d, J = 8.1 Hz, 2 H), 7.38 (d, J = 

7.8 Hz, 1 H), 7.27 (t, J = 7.1 Hz, 1H), 7.17 (d, J = 8.1 Hz, 2 H), 6.91 (t, J = 7.5 Hz, 1 H), 5.22 

(s, 1 H), 5.28 (s, 1 H), 4.88 (s, 1 H), 3.40 (d, J = 15.6 Hz, 1 H ), 3.24 (d, J = 15.6 Hz, 1 H), 

2.16 (bs, 1 H); 
13C NMR (CDCl3, 75 MHz): 147.7, 144.6, 143.3, 139.5, 132.0, 130.0, 129.7, 128.6, 128.2, 

119.0, 115.1, 110.0, 99.4, 79.1, 39.6; 

IR  (film): 3430 (vs), 2228 (s), 1647 (m), 1607 (m), 1434 (m), 1009 (s) cm-1; 

MS (EI, 70 ev): 375 (M+, 10%), 357 (10%), 259 (67%), 231 (34%), 132 (100%); 

HRMS (EI): calcd. for C17H14INO (M+): 375.0120; found: 375.0144 (M+). 

 

Synthesis of 4-(1-hydroxy-propyl)-2,2-dimethyl-pent-4-enenitrile (83n) 

HO

CN
RHJ084C 

According to TP4, the reaction was carried out with 4-iodo-2, 2-dimethyl-pent-4-enenitrile 

79i (118 mg, 0.5 mmol, i-PrMgCl·LiCl (0.28 mL, 0.55 mmol, 2.00 M in THF) and 

propionaldehyde (0.55 mmol in 0.5 mL THF). Exchange conditions: -40 oC, 7 h. Purification 

by flash chromatography (pentane: ether = 2:1) afforded the pure product 83n (59 mg, 70%) 

as a colorless oil.  
1H NMR  (CDCl3, 300 MHz): 5.29 (t, J = 1.2 Hz, 1 H ), 5.15 (s, 1 H), 4.10 (m, 1 H), 2.34 (d, J 

= 14.6 Hz, 1 H), 2.18 (d, J = 14.6 Hz, 1 H), 1.83 (bs, 1 H), 1.43-1.70 (m, 2 H), 1.37 (s, 3 H), 

1.36 (s, 3 H), 0.91 (t, J = 7.5 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 146.5, 125.3, 114.6, 75.7, 42.5, 31.8, 28.6, 27.4, 26.9, 9.8; 

IR  (film): 3436 (vs), 2975 (vs), 2235 (m), 1646 (w), 1456 (s), 982 (w), 913 (s) cm-1; 

MS (EI, 70 ev): 167 (M+, 1%), 152 (12%), 138 (62%), 111 (100%), 93 (65%); 

HRMS (EI): calcd. for C10H17NO (M+): 167.1310; found: 167.1324 (M+). 
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Synthesis of 1,3-diphenyl-2-trimethylsilanyl-propenone (83o) 

TMS

O  RHJ011D 

According to TP4, the reaction was carried out with (1-iodo-2-phenyl-vinyl)-trimethyl-silane 

79j (151 mg, 0.5 mmol), i-PrMgCl·LiCl (0.28 mL, 0.55 mmol, 2.00 M in THF) at –40°C for 4 

h. After transmetalation with CuCN·2LiCl (0.55 mmol, 0.55 mL, 1.0 M in THF), benzoyl 

chloride (0.7 mmol in 0.5 mL of THF) was added. The reaction mixture was stirred at –40 oC 

for 1 h then warmed to rt and stirred for 1 h before quenching with water. The aqueous phase 

was extracted with diethyl ether (3 × 10 mL). The organic fractions were washed with brine 

(10 mL), dried over Na2SO4 and concentrated in vacuo. Purification by flash chromatography 

(pentane: ether = 6:1) afforded the pure product 83o (113 mg, 81%) as a colorless oil.  
1H NMR  (CDCl3, 300 MHz): 7.66-7.71 (m, 2 H), 6.78-7.25 (m, 9 H), 0.01 (s, 9 H) 
13C NMR (CDCl3, 75 MHz): 202.3, 147.3, 139.4, 136.5, 136.3, 133.0, 129.1, 128.7, 128.4, 

128.2, -1.4; 

IR  (film): 2958 (m), 1646 (vs), 1597 (m), 1446 (m), 1225 (vs) cm-1; 

MS (EI, 70 ev): 280 (M+, 100%), 265(92%), 203(32%), 191 (90%); 

HRMS (EI): calcd. for C18H20OSi (M+): 280.1283; found: 280.1280 (M+). 

 

Synthesis of 3-phenyl-2-trimethylsilanyl-acrylonitrile (83p) 

TMS

CN RHJ010D 

According to TP4, the reaction was carried out with (1-iodo-2-phenyl-vinyl)-trimethyl-silane 

79j (151 mg, 0.5 mmol), i-PrMgCl·LiCl (0.28 mL, 0.55 mmol, 2.00 M in THF) and TsCN 

(100 mg, 0.55 mmol). Exchange conditions: -40 oC, 4 h. Purification by flash chromatography 

(pentane: ether = 6:1) afforded the pure product 83p (77 mg, 77%) as a colorless oil. 
1H NMR  (CDCl3, 300 MHz): 7.83-7.87 (m, 2 H), 7.41-7.63 (m, 3 H), 7.17 (s, 1 H), 0.32 (s, 9 

H); 
13C NMR (CDCl3, 75 MHz): 154.2, 135.3, 130.7, 128.9, 128.7, 119.3, 111.5, -2.1; 

IR  (film): 2958 (w), 2188 (m), 1590 (m), 1568 (m), 1251 (s) cm-1; 

MS (EI, 70 ev): 201 (M+, 55%), 186(100%), 170(42%), 73 (43%); 

HRMS (EI): calcd. for C12H15NSi (M+): 201.0974; found: 201.0973 (M+). 
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Synthesis of 1-iodo-oct-1-en-3-one (84) 

I

n-C5H11
O RHJ033D 

A mixture of oct-1-yn-3-one (496 mg, 4.0 mmol), LiI (643 mg, 4.8 mmol) and HOAc (4 mL) 

was stirred at room temperature for 3 h. Water (10 mL) was added and the aqueous phase was 

extracted with diethyl ether (3 × 10 mL). The organic fractions were washed with saturated 

aqueous NaHCO3, brine (10 mL), dried over Na2SO4 and concentrated in vacuo. Purification 

by flash chromatography (pentane: ether = 15:1) afforded the product 84 (927 mg, 92%) as a 

white solid; mp.: 37.7-38.4 oC (lit. 36-37 oC ). GC and 1H NMR analysis indicated 99% 

isomeric purity (E: Z = 99:1). 
1H NMR  (CDCl3, 300 MHz): 7.78 (d, J = 15.0 Hz, 1 H), 7.13 (d, J = 15.0 Hz, 1 H), 2.47 (t, J 

= 7.3 Hz, 2 H), 1.50-1.65 (m, 2 H), 1.18-1.35 (m, 4 H), 0.86 (t, J = 6.9 Hz, 3 H) 
13C NMR (CDCl3, 75 MHz): 197.5, 144.6, 98.6, 40.4, 31.3, 23.4, 22.4, 13.9; 

IR  (KBr): 2955 (m), 1695 (m), 1675 (m), 1572 (m), 1466 (m), 955 (m) cm-1; 

MS (EI, 70 ev): 253 (M+ + 1, 0.4%), 196 (95%), 181 (100%), 153 (19%), 125 (46%). 

Spectral data match those reported in the literature. 132 

 

Synthesis of 3-(3-oxo-oct-1-enyl)-cyclohex-2-enone (87a) 

O
O

RHJ036D 

TMSCN (75 mg, 0.75 mmol) was added dropwise to a solution of 1-iodo-oct-1-en-3-one 84 

(126 mg, 0.5 mmol) and CsF (11 mg, 0.07 mmol) in dry CH3CN (0.5 mL). The resulting 

mixture was stirred continuously and the reaction conversion was monitored by TLC. Water 

(5 mL) was added after 1 h and the aqueous phase was extracted with diethyl ether (3 × 10 

mL). The organic fractions were washed with brine (10 mL), dried over Na2SO4 and 

concentrated in vacuo. GC and 1H NMR analysis indicated a high purity of the product. 

i-PrMgCl·LiCl (0.28 mL, 0.55 mmol, 2.00 M in THF) was slowly added to a solution of the 

corresponding silylated cyanhydrine derivative 85 in THF (0.2 mL) at –40 °C. After 2 h, a 

complete conversion to the Grignard reagent 86 was observed by GC-analysis of hydrolyzed 

reaction aliquots. THF (1.0 mL) and CuCN·2LiCl (0.55 mmol, 0.55 mL, 1.0 M in THF) was 

added at this temperature and stirred for 15 min. 3-Iodo-cyclohex-2-enone (0.55 mmol in 0.5 

                                                 
132 S. Ma, X. Lu, J. Org. Chem. 1992, 57, 709. 
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mL of THF) was added and the reaction mixture was stirred continuously 4 h at –30 oC. The 

reaction minxture was warmed to 25 °C, TBAF (0.5 mL, 0.5 mmol, 1.0 M in THF) and HCl 

(1.0 mL, 2 M in H2O) were added. The mixture was stirred for another 2 h before the addition 

of aq. NH3 (2 ml). The aqueous phase was extracted with diethyl ether (3 × 10 mL). The 

organic fractions were washed with brine (10 mL), dried over Na2SO4 and concentrated in 

vacuo. Purification by flash chromatography (pentane: ether = 2:1) afforded the pure product 

87a (85 mg, 77%) as a pale yellow solid; mp.: 52.9-53.4 oC. GC and 1H NMR analysis 

indicated 99% isomeric purity (E: Z = 99: 1). 
1H NMR  (CDCl3, 300 MHz): 7.17 (d, J = 16.2 Hz, 1 H), 6.47 (d, J = 16.2 Hz, 1 H), 6.16 (s, 1 

H), 2.59 (t, J = 7.2 Hz, 2 H), 2.41-2.50 (m, 4 H), 2.01-2.10 (m, 2 H), 1.56-1.67 (m, 2 H), 1.22-

1.36 (m, 4 H), 0.87 (t, J = 6.9 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 200.0, 199.5, 154.2, 141.7, 132.9, 131.1, 41.0, 37.6, 31.3, 24.8, 

23.7, 22.4, 22.0, 13.9; 

IR  (KBr): 2954 (m), 1691 (s), 1661 (s), 1605 (m), 1581 (m), 1467 (m) cm-1; 

MS (EI, 70 ev): 220 (M+, 11%), 191 (9%), 164 (95%), 149 (100%), 136 (43%), 121 (51%); 

HRMS (EI): calcd. for C14H20O2 (M
+): 220.1463; found: 260.1451 (M+). 

 

Synthesis of 1-phenyl-non-2-ene-1,4-dione (87b) 

O

O RHJ035D 

According to the procedure for preparation of 87a, the reaction was carried out with silylated 

cyanhydrine derivative 85 (0.5 mmol) in THF (0.2 ml), i-PrMgCl·LiCl (0.28 mL, 0.55 mmol, 

2.00 M in THF) and benzoyl chloride (0.7 mmol in 0.5 mL of THF). Purification by flash 

chromatography (pentane: ether = 3:1) afforded the pure product 87b (85 mg, 74%) as a pale 

yellow oil. GC and 1H NMR analysis indicated 99% isomeric purity (E: Z = 99:1). 
1H NMR  (CDCl3, 300 MHz): 7.90-8.00 (m, 2 H), 7.71 (d, J = 15.9 Hz, 1 H), 7.55-7.63 (m, 1 

H), 7.44-7.52 (m, 2 H), 7.10 (d, J = 15.9 Hz, 1 H), 2.66 (t, J = 7.5 Hz, 2 H), 1.61-1.71 (m, 2 

H), 1.22-1.39 (m, 4 H), 0.88 (t, J = 6.9 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 200.2, 190.3, 137.8, 136.8, 133.8, 133.1, 128.83, 127.78, 42.4, 

31.3, 23.4, 22.4, 13.8; 

IR  (film): 2957 (m), 1701 (m), 1666 (s), 1597 (m), 1580 (m), 1287 (m) cm-1; 

MS (EI, 70 ev): 230 (M+, 9%), 201 (14%), 174 (20%), 159 (51%), 131 (100%), 105 (89%); 

HRMS (EI): calcd. for C15H18O2 (M
+): 230.1307; found: 230.1339 (M+). 
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Synthesis of (E,E)-5-iodo-4-methyl-5-phenyl-penta-2,4-dienoic acid ethyl ester (90) 
I

Me

OH

O

OEt
P
O

EtO
EtO

I

Me

COOEt
2) Swern 
Oxidation

3)

88 90
RHJ083F 

To a solution of oxalyl chloride (1.78 g, 14 mmol) in CH2Cl2 (20 mL) at -78 oC under 

nitrogen was added dry DMSO (2.0 mL) and the resulting mixture was stirred for 5 min. The 

solution of alcohol 88 (2.74 g, 10 mmol) in CH2Cl2 (5.0 mL) was added and the mixture was 

stirred for 20 min at -78 oC. Triethylamine (20 mmol) was added and the thick white mixture 

was warmed to 0 oC and poured into water. The organic layer was washed with water and the 

aqueous layers were extracted with CH2Cl2. The combined organic layers were washed with 

water and dried over anhydrous Na2SO4. After removal of the solvent, the pale yellow oil 

(2.791 g, 100%) was left. It was used without further purification. 

NaH (60% in oil, 560 mg) was added to the solution of diethoxy-phosphoryl-acetic acid ethyl 

ester (3.36 g, 15 mmol) in THF (20 mL) at 0 oC and the resulting mixture was stirred for 30 

min. The solution of the crude aldehyde in THF (20 mL) was added to the mixture and the 

resulting mixture was stirred overnight at room temperature. Quenched with NH4Cl (aq.) (10 

mL) and the aqueous phase was extracted with diethyl ether (3 × 20 mL). The organic 

fractions were washed with brine (10 mL), dried over Na2SO4 and concentrated in vacuo. 

Purification by flash chromatography (pentane: ether = 10:1) afforded the pure product 90 

(2.531 g, 74%) as a yellow solid, mp.: 37.9-38.6 oC.  
1H NMR  (CDCl3, 300 MHz): 7.82 (d, J = 15.5 Hz, 1 H), 7.22-7.31 (m, 2 H), 7.10-7.22 (m, 3 

H), 5.98 (d, J = 15.5 Hz, 1 H), 4.19 (q, J = 7.1 Hz, 2 H), 1.74 (s, 3 H), 1.26 (t, J = 7.1, 3 H); 
13C NMR (CDCl3, 75 MHz): 166.6, 150.0, 144.5, 137.1, 128.23, 128.19, 122.51, 122.50, 

109.0, 60.5, 16.4, 14.3; 

IR  (film): 2980 (w), 1711 (vs), 1621 (s), 1442 (m), 1366 (m), 1291 (vs), 1180 (vs) cm-1; 

MS (EI, 70 ev): 342 (M+, 13%), 297 (11%), 268 (14%), 215 (100%), 187 (97%), 141 (67%), 

115 (70%); 

HRMS (EI): calcd. for C14H15IO2 (M
+): 342.0117, found: 342.0116 (M+). 

 
Synthesis of (E, E)-4-methyl-5-phenyl-octa-2,4,7-trienoic acid ethyl ester (92a) 
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CO2Et

 RHJ086F 
To a solution of (E,E)-5-iodo-4-methyl-5-phenyl-penta-2, 4-dienoic acid ethyl ester 90 (171 

mg, 0.5 mmol) in THF (1.5 mL) was slowly added i-PrMgCl·LiCl (0.28 mL, 0.55 mmol, 2.00 

M in THF) at –78°C. After 10 min, a complete conversion to the Grignard reagent 91 was 

observed by GC-analysis of hydrolyzed reaction aliquots. Allyl bromide (0.55 mmol in 0.5 

mL of THF) and CuCN·2LiCl (1 drop) was added and the reaction mixture was warmed to 25 

°C and quenched as usual. The aqueous phase was extracted with diethyl ether (3 × 10 mL). 

The organic fractions were washed with brine (10 mL), dried over Na2SO4 and concentrated 

in vacuo. Purification by flash chromatography (pentane: ether = 25: 1) afforded the pure 

product 92a (117 mg, 92%) as a colorless oil. 
1H NMR  (CDCl3, 300 MHz): 7.88 (d, J = 15.5 Hz, 1 H), 7.14-7.32 (m, 2 H), 7.00-7.06 (m, 3 

H), 5.91 (d, J = 15.5 Hz, 1 H), 5.59-5.73 (m, 1 H), 4.82-4.97 (m, 2 H), 4.16 (q, J = 7.1 Hz, 2 

H), 3.31 (d, J = 6.2 Hz, 2 H), 1.65 (s, 3 H), 1.24 (t, J = 7.1 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 167.5, 146.0, 142.8, 142.7, 135.0, 128.8, 128.2, 128.0, 127.0, 

118.6, 116.2, 60.2, 38.9, 16.1, 14.3; 

IR (film): 2980 (m), 1711 (vs), 1617 (vs), 1443 (m), 1366 (m), 1297 (vs), 1176 (vs) cm-1; 

MS (EI, 70 ev): 256 (M+, 27%), 228 (11%), 215 (84%), 183 (100%), 167 (97%), 141 (67%), 

115 (70%), 91 (65%); 

HRMS (EI): calcd. for C17H20O2 (M
+): 256.1463, found: 256.1488 (M+). 

 

Synthesis of 4-methyl-6-oxo-5,6-diphenyl-hexa-2,4-dienoic acid ethyl ester (92b) 

Me

CO2Et
O

RHJ087F 
According to the procedure for preparation of 92a, the reaction was carried out with (E,E)-5-

iodo-4-methyl-5-phenyl-penta-2,4-dienoic acid ethyl ester 90 (171 mg, 0.5 mmol), i-

PrMgCl·LiCl (0.28 mL, 0.55 mmol, 2.00 M in THF) at –78 °C for 10 min. THF (1.0 mL) and 

CuCN·2LiCl (0.55 mmol, 0.55 mL,1.0 M in THF) was added at this temperature and stirred 

for 15 min. Benzoyl chloride (0.7 mmol in 0.5 mL of THF) was added and the reaction 

mixture was stirred at –40 oC for 1 h, then warmed to rt and stirred for 1 h. Aq. NH3 (2 ml) 
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and water (5 mL) were added and the aqueous phase was extracted with diethyl ether (3 × 10 

mL). The organic fractions were washed with brine (10 mL), dried over Na2SO4 and 

concentrated in vacuo. Purification by flash chromatography (pentane: ether = 4:1) afforded 

the pure product 92b (140 mg, 88%) as a yellow solid, mp.: 104.0-105.0 oC. 
1H NMR  (CDCl3, 300 MHz): 7.82-7.90 (m, 2 H), 7.40-7.48 (m, 1 H), 7.17-7.37 (m, 8 H), 

6.00 (d, J = 15.5 Hz, 1 H), 4.05 (d, J = 7.1 Hz, 2 H), 1.97 (s, 3 H), 1.13 (t, J = 7.1 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 197.2, 166.5, 147.0, 142.9, 136.3, 135.6, 133.7, 132.6, 129.9, 

129.0, 128.7, 128.6, 128.3, 120.9, 60.4, 15.1, 14.1; 

IR  (film): 2956 (w), 1712 (vs), 1664 (vs), 1627 (vs), 1450 (m), 1443 (m), 1380 (m), 1366 

(m), 1305 (vs), 1208 (m), 1188 (vs) cm-1; 

MS (EI, 70 ev): 320 (M+, 7%), 291 (11%), 215 (84%), 183 (100%), 167 (97%), 141 (67%), 

115 (70%), 91 (65%); 

HRMS (EI): calcd. for C21H20O3 (M
+): 320.1412, found: 320.1416 (M+). 

 

Synthesis of 5-ethoxymethoxy-1-iodo-cyclopentene (93a) 

O

I

O

RHJ079B 

Chloromethoxy-ethane (228 mg, 2.41 mmol) was slowly added to a solution of 2-iodo-

cyclopent-2-enol (390 mg, 1.86 mmol) and (i-Pr)2NEt (311 mg, 2.41 mmol) in CH2Cl2 (4.0 

mL) at - 20 °C and the reaction mixture was stirred for 1 h at this temperature and then 

warmed to rt for 2 h. CH2Cl2 (10 mL) was added and the organic phase was washed with 

brine (10 mL), dried over Na2SO4 and concentrated in vacuo. Purification by flash 

chromatography afforded the pure product 93a (430 mg, 86%) as a colorless oil. 
1H NMR  (CDCl3, 300 MHz): 6.30-6.35 (m, 1 H), 4.76 (s, 2 H), 4.58-4.64 (m, 1 H), 3.55-3.81 

(m, 2 H), 2.40-2.55 (m, 1 H), 2.18-2.34 (m, 2 H), 1.84-1.95 (m, 1 H), 1.21 (t, J = 7.1 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 143.6, 96.4, 94.2, 86.6, 63.4, 32.8, 29.9, 15.0; 

IR  (film): 2931 (m), 1606 (w), 1391 (w), 1098 (s), 1036 (vs), 1012 (vs); 

MS (IE, 70 ev): 268 (M+, 0.3%), 238 (9%), 222 (35%), 192 (100%), 111 (47%). 

 

Synthesis of 6-ethoxymethoxy-1-iodo-cyclohexene (93b) 

O O
I

RHJ092B 
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According to the procedure for preparation of 93a, the reaction was carried out with 2-iodo-

cyclohex-2-enol (1.630 g, 7.3 mmol) and (i-Pr)2NEt (1.410 g, 11 mmol). Purification by flash 

chromatography afforded the pure product 93b (1.910 g, 93%) as a colorless oil. 
1H NMR  (CDCl3, 300 MHz): 6.52 (t, J = 4.0 Hz, 1 H), 4.77 (d, J = 7.1 Hz, 1 H ), 4.73 (d, J = 

7.1 Hz, 1 H), 4.09 (t, J = 4.2 Hz, 1 H), 3.74-3.84 (m, 1 H), 3.58-3.68 (m, 1 H), 1.55-2.17 (m, 6 

H), 1.20 (t, J = 7.1 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 142.0, 99.0, 94.2, 77.1, 63.7, 30.0, 29.3, 17.0, 14.9; 

IR  (film): 2936 (s), 1629 (w), 1440 (w), 1391 (m), 1028 (vs) cm-1; 

MS (EI, 70 ev): 282 (M+, 0.5%), 252 (4%), 236 (33%), 206 (99%), 125 (100%), 79 (98%). 

 

Synthesis of 1-allyl-5-ethoxymethoxy-cyclopentene (95a) 

O O

RHJ100B 

According to TP5, the reaction was carried out with 5-ethoxymethoxy-1-iodo-cyclopentene 

93a (268 mg, 1.0 mmol), i-PrMgCl·LiCl (0.51 mL, 1.1 mmol, 2.16 M in THF) and allyl 

bromide (1.5 mmol in 1.0 mL THF). Exchange conditions: -25 °C, 5 h. Purification by flash 

chromatography afforded the pure product 95a (166 mg, 91%) as a colorless oil. 
1H NMR  (CDCl3, 400 MHz): 5.79-5.90 (m, 1 H), 5.57-5.60 (m, 1 H), 4.99-5.07 (m, 2 H), 

4.74 (d, J = 6.9 Hz, 1 H), 4.68 (d, J = 6.9 Hz, 1 H), 4.56-4.59 (m, 1 H), 3.54-3.67 (m, 2 H), 

2.75-2.96 (m, 2 H), 2.34-2.47 (m, 1 H), 2.11-2.28 (m, 2 H), 1.75-1.85 (m, 1 H), 1.20 (t, J = 

7.1 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 142.8, 135.9, 128.9, 115.7, 94.2, 83.6, 63.2, 32.9, 30.9, 30.0, 

15.1; 

IR (film): 2976 (m), 1738 (w), 1640 (m), 1391 (m), 1364 (m), 1099 (m), 1039 (vs) cm-1; 

MS (EI, 70 ev):  181 (M+-H, 0.2%), 141 (21%), 106 (95%), 91 (53%), 79 (62%); 

HRMS (EI): calcd. for C11H17O2 (M
+-H): 181.1229, found: 181.1243 (M+-H). 

 

Synthesis of (5-ethoxymethoxy-cyclopent-1-enylsulfanyl)-benzene (95b) 

O O

SPh

RHJ106B 

According to TP5, the reaction was carried out with 5-ethoxymethoxy-1-iodo-cyclopentene 

93a (268 mg, 1.0 mmol), i-PrMgCl·LiCl (0.51 mL, 1.1 mmol, 2.16 M in THF) and diphenyl 
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disulfide (240 mg, 1.10 mmol, 1.1 equiv.). Exchange conditions: -25 °C, 5 h. Purification by 

flash chromatography afforded the pure product 95b (205 mg, 82%) as a colorless oil. 
1H NMR  (CDCl3, 300 MHz): 7.32-7.40 (m, 2 H), 7.14-7.26 (m, 3 H), 5.69-5.75 (m, 1 H), 

4.63 (d, J = 7.0 Hz, 1 H), 4.56-4.61 (m, 1 H), 4.55 (d, J = 7.0 Hz, 1 H), 3.43-3.57 (m, 2 H), 

2.36-2.51 (m, 1 H), 2.13-2.31 (m, 2 H), 1.83-1.95 (m, 1 H), 1.07 (t, J = 7.1 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 137.8, 134.1, 133.7, 131.7, 129.0, 127.2, 94.1, 82.0, 63.1, 31.2, 

30.6, 14.9; 

IR  (film): 2974 (m), 1738 (w), 1584 (m), 1477 (m), 1440 (m), 1098 (s), 1042 (vs) cm-1;  

MS (EI, 70 ev), m/z (%): 250 (M+, 13%), 174 (100%), 147 (15%), 110 (14%); 

HRMS (EI): calcd. for C14H18O2S (M+): 250.1028, found: 250.1031 (M+). 

 

Synthesis of 3-(5-ethoxymethoxy-cyclopent-1-enyl)-cyclohex-2-enone (95c) 

OO
O

RHJ103B 

According to TP5, the reaction was carried out with 5-ethoxymethoxy-1-iodo-cyclopentene 

93a (268 mg, 1.0 mmol), i-PrMgCl·LiCl (0.51 mL, 1.1 mmol, 2.16 M in THF), CuCN·2LiCl 

(1.1 mL, 1.1 mmol, 1.0 M in THF) and 3-iodo-cyclohex-2-enone (244 mg, 1.1 mmol). 

Exchange conditions: -25 °C, 5 h. Purification by flash chromatography afforded the pure 

product 95c (144 mg, 61%) as a yellow oil. 
1H NMR  (CDCl3, 300 MHz): 6.47 (t, J = 2.7 Hz, 1 H), 6.08 (s, 1 H), 4.90 (dt, J1 = 6.6 Hz, J2 

= 2.2 Hz, 1 H), 4.75 (d, J = 7.1 Hz, 1 H), 4.68 (d, J = 7.1 Hz, 1 H), 3.49-3.67 (m, 2 H), 2.32-

2.70 (m, 6 H), 1.95-2.18 (m, 4 H), 1.20 (t, J = 7.1 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 200.3, 152.9, 143.1, 140.1, 124.9, 94.4, 81.0, 64.0, 37.4, 31.3, 

30.7, 26.6, 22.4, 14.9; 

IR  (film): 2972 (s), 1659 (vs), 1613 (vs), 1584 (m), 1448 (m), 1101 (s), 1030 (vs) cm-1;  

MS (EI, 70 ev), m/z (%): 236 (M+, 0.1%), 206 (2%), 192 (2%), 160 (100%), 147 (11%), 133 

(19%), 91 (51%); 

HRMS (EI): calcd. for C14H20O3 (M
+): 236.1413, found: 236.1435 (M+). 

 

Synthesis of (5-ethoxymethoxy-cyclopent-1-enyl)-phenyl-methanol (95d) 
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OO OH

RHJ102B 

According to TP5, the reaction was carried out with 5-ethoxymethoxy-1-iodo-cyclopentene 

93a (268 mg, 1.0 mmol), i-PrMgCl·LiCl (0.51 mL, 1.1 mmol, 2.16 M in THF) and 

benzaldehyde (117 mg, 1.10 mmol, 1.1 equiv.). Exchange conditions: -25 °C, 5 h. Purification 

by flash chromatography afforded the pure product 95b (221 mg, 89%) as a colorless oil. dr = 

66:34 (determined by HPLC). 
1H NMR  (CDCl3, 300 MHz): 7.08-7.32 (m, 5 H), 5.62 (s, 1 H), 5.34 (s, 1 H), 4.58 (d, J = 7.0 

Hz, 1 H), 4.49 (d, J = 7.0 Hz, 1 H), 3.42 (q, J = 7.1 Hz, 2 H), 2.25-2.40 (m, 1 H), 2.03-2.16 

(m, 2 H), 1.67-1.79 (m, 1 H), 1.03 (t, J = 7.1 Hz, 3 H). The following signals are discernible 

for the minor isomer: 5.58 (s, 1 H), 5.23 (s, 1 H), 4.60-4.62 (m, 1 H), 4.51-4.52 (m, 1 H), 3.45 

(q, J = 7.1 Hz, 2 H); 
13C NMR (CDCl3, 75 MHz): 145.1, 142.7, 132.8, 128.0, 126.9, 125.8, 94.2, 82.7, 71.9, 63.6, 

31.2, 29.9, 14.8. 

IR  (film): 3437 (s), 2932 (s), 1603 (w), 1493 (m), 1452 (m), 1106 (s), 1029 (vs) cm-1;  

MS (EI, 70 ev), m/z (%): 247 (M+-H, 0.1%), 230 (0.2%), 172 (100%), 143 (10%), 105 (79%). 

 

Synthesis of (5-ethoxymethoxy-cyclopent-1-enyl)-phenyl-methanone (95e) 

OOO

RHJ119B 

According to TP5, the reaction was carried out with 5-ethoxymethoxy-1-iodo-cyclopentene 

93a (268 mg, 1.0 mmol), i-PrMgCl·LiCl (0.51 mL, 1.1 mmol, 2.16 M in THF), CuCN·2LiCl 

(1.1 mL, 1.1 mmol, 1.0 M in THF) and benzoyl chloride (211 mg, 1.5 mmol). Exchange 

conditions: -25 °C, 5 h. Purification by flash chromatography afforded the pure product 95e 

(144 mg, 61%) as a yellow oil. 
1H NMR  (CDCl3, 300 MHz): 7.75-7.80 (m, 2 H), 7.47-7.54 (m, 1 H), 7.37-7.44 (m, 2 H), 

6.61 (t, J = 2.2 Hz, 1 H), 5.20-5.26 (m, 1 H), 4.83 (d, J = 7.1 Hz, 1 H), 4.72 (d, J = 7.1 Hz, 1 

H), 3.58 (q, J = 7.1 Hz, 2 H), 2.70-2.84 (m, 1 H), 2.39-2.52 (m, 1 H), 2.23-2.36 (m, 1 H), 

1.93-2.05 (m, 1 H), 1.16 (t, J = 7.1 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 193.0, 148.0, 144.6, 138.6, 132.1, 129.0, 128.2, 94.7, 81.0, 

63.2, 31.9, 30.7, 15.0; 
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IR (film): 2974 (m), 1738 (w), 1651 (vs), 1447 (m), 1107 (m), 1037 (s) cm-1;  

MS (EI, 70 ev), m/z (%): 201 (M+- OC2H5, 1%), 187 (8%), 172 (100%), 157 (7%), 144 (9%), 

105 (89%); 

HRMS (EI): calcd. for C13H13O2 (M
+-OC2H5): 201.0916, found: 201.0907 (M+-OC2H5). 

 

Synthesis of N-[2-(5-ethoxymethoxy-cyclopent-1-enyl)-ethyl]-4-methyl-

benzenesulfonamide (95f) 

O O

NHTs RHJ131B 

According to TP5, the reaction was carried out with 5-ethoxymethoxy-1-iodo-cyclopentene 

93a (268 mg, 1.0 mmol), i-PrMgCl·LiCl (0.51 mL, 1.1 mmol, 2.16 M in THF) and 1-(toluene-

4-sulfonyl)-aziridine (217 mg, 1.1 mmol). Exchange conditions: -25 °C, 5 h. Purification by 

flash chromatography (pentane: ether = 1:2) afforded the pure product 95f (214 mg, 63%) as a 

colorless oil. 
1H NMR  (CDCl3, 300 MHz): 7.70, (d, J =  8.2 Hz, 2 H), 7.26 (d, J = 8.2 Hz, 2 H), 5.50-5.54 

(m, 1 H), 5.00-5.10 (m, 1 H), 4.66 (d, J =  7.1 Hz, 1 H), 4.60 (d, J =  7.1 Hz, 1 H), 4.40-4.48 

(m, 1 H), 3.48-3.58 (m, 2 H), 2.93-3.17 (m, 2 H), 2.39 (s, 3 H), 2.05-2.39 (m, 5 H), 1.65-1.81 

(m, 1 H), 1.16 (t, J = 7.1 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 143.1, 140.3, 137.0, 131.9, 129.5, 127.1, 94.1, 83.8, 63.5, 41.9, 

30.7, 30.1, 28.4, 21.4, 15.0; 

IR  (film): 3279 (s), 2930(s), 1598 (m), 1495 (m), 1435 (m), 1328 (s), 1160 (s) cm-1; 

MS (EI, 70 ev), m/z (%): 280 (M+-CH2OCH2CH3, 8%), 263 (9%), 184 (60%), 155 (100%), 

138 (12%), 108 (12%). 

HRMS (EI): calcd. for C13H13O2 (M
+-C2H6): 309.1035, found: 309.0982 (M+-C2H6). 

 

Synthesis of 1-allyl-6-ethoxymethoxy-cyclohexene (95g) 

O O

 

According to TP5, the reaction was carried out with 6-ethoxymethoxy-1-iodo-cyclohexene 

93b (282 mg, 1.0 mmol), i-PrMgCl·LiCl (0.51 mL, 1.1 mmol, 2.16 M in THF) and allyl 

bromide (1.10 mmol, 1.1 equiv.). Exchange conditions: -40 °C, 12 h. Purification by flash 

chromatography afforded the pure product 95g (159 mg, 81%) as a colorless oil. 
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1H NMR (CDCl3, 300 MHz): 5.70-5.86 (m,1 H), 5.56-5.65 (m, 1 H), 4.96-5.05 (m, 1 H), 4.98 

(t, J = 1.3 Hz, 1 H), 4.77 (d, J = 7.1 Hz, 1 H), 4.66 (d, J = 7.1 Hz, 1 H), 3.94 (s, 1 H), 3.54-

3.73 (m, 2 H), 2.77-2.82 (m, 2 H), 1.82-2.09 (m, 3 H), 1.47-1.73 (m, 3 H), 1.20 (t, J = 7.1 Hz, 

3 H);  
13C NMR (CDCl3, 75 MHz): 136.7, 136.1, 127.0, 115.8, 94.0, 72.0, 63.3, 38.6, 28.5, 25.3, 

17.8, 15.0;  

IR (film): 2975 (m), 1738 (w), 1639 (w), 1440 (m), 1391 (m), 1099 (m), 1033 (vs) cm-1; 

MS (EI, 70 ev), m/z (%): 195 (M+-H, 0.1%), 166 (1%), 155 (10%), 120 (100%), 105 (21%), 

79 (80%);  

HRMS (EI): calcd. for C12H19O2 (M
+-H): 195.1385, found: 195.1390 (M+-H). 

 

Synthesis of (6-ethoxymethoxy-cyclohex-1-enylsulfanyl)-benzene (95h) 

S
O O

RHJ109B 

According to TP5, the reaction was carried out with 6-ethoxymethoxy-1-iodo-cyclohexene 

93b (282 mg, 1.0 mmol), i-PrMgCl·LiCl (0.51 mL, 1.1 mmol, 2.16 M in THF) and diphenyl 

disulfide (240 mg, 1.10 mmol, 1.1 equiv.). Exchange conditions: -40 °C, 12 h. Purification by 

flash chromatography afforded the pure product 95h (214 mg, 81%) as a colorless oil. 
1H NMR  (CDCl3, 300 MHz): 7.08-7.30 (m, 5 H), 6.07 (t, J = 4.0 Hz, 1 H), 4.66 (d, J = 7.1 

Hz, 1 H), 4.58 (d, J = 7.1 Hz, 1 H), 3.98 (s, 1 H), 3.46-3.68 (m, 2 H), 1.50-2.19 (m, 6 H), 1.07 

(t, J = 7.1 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 136.9, 135.3, 132.8, 130.3, 128.9, 126.4, 94.2, 71.4, 63.2, 29.3, 

27.0, 16.9, 14.9;  

IR  (film): 2933 (m), 1582 (m), 1478 (m), 1440 (m), 1106 (m), 1032 (vs) cm-1; 

MS (EI, 70 ev), m/z (%): 264 (M+, 11%), 188 (100%), 173 (8%), 147 (12%), 110 (14%);  

HRMS (EI): calcd. for C12H20O2S (M+): 264.1184, found: 264.1190 (M+). 

 

Synthesis of (6-ethoxymethoxy-cyclohex-1-enyl)-phenyl-methanol (95i) 

OO OH

RHJ111B 

According to TP5, the reaction was carried out with 6-ethoxymethoxy-1-iodo-cyclohexene 

93b (282 mg, 1.0 mmol), i-PrMgCl·LiCl (0.51 mL, 1.1 mmol, 2.16 M in THF) and and 
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benzaldehyde (117 mg, 1.10 mmol, 1.1 equiv.). Exchange conditions: -40 °C, 12 h. 

Purification by flash chromatography afforded the pure product 95i (212 mg, 81%) as a 

colorless oil. dr = 80:20 (determined by GC). The two isomers can be separated by repeated 

flash chromatography on silica gel. 

Less polar isomer:  
1H NMR (CDCl3, 300 MHz): 7.18-7.38 (m, 5 H), 5.87 (t, J = 3.5 Hz, 1 H), 5.23 (d, J = 6.6 

Hz, 1 H ), 4.68 (d, J = 6.6 Hz, 1 H), 4.49 (d, J = 6.6 Hz, 1 H), 4.06-4.09 (m, 1 H), 3.67 (d, J = 

7.1 Hz, 1 H), 3.43-3.58 (m, 2 H), 1.49-2.24 (m, 6 H), 1.13 (t, J = 7.1 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 143.0, 138.8, 131.3, 128.0, 126.7, 125.8, 94.2, 77.8, 72.0, 63.8, 

28.6, 25.2, 18.2, 14.9; 

IR  (film): 3450 (s), 2932 (m), 1602 (w), 1492 (m), 1450 (m), 1104 (m), 1031 (s) cm-1; 

MS (EI, 70 ev), m/z (%): 262 (M+, 0.1%), 203 (3%), 186 (100%), 168 (11%), 157 (22%), 129 

(21%), 105 (48%). 

HRMS (EI): calcd. for C13H15O(M+-C3H7O2): 187.1123, found: 187.1100 (M+-C3H7O2). 

 

Synthesis of 1-iodo-3-methylene-cyclohexene (96) 

CH2

I  RHJ099C 

To a solution of methyltriphenylphosphonium bromide (1.181 g, 3.3 mmol) in THF (15 mL) 

was slowly added n-BuLi (2.2 mL, 3.3 mmol, 1.50 M in Hexane) at -78°C, then warmed to 0 
oC and stirred for 1 h. The reaction mixture was cooled to - 78°C and slowly transfered to a 

solution of 3-iodo-cyclohex-2-enone (666 mg, 3.0 mmol) in THF (20 mL) and stirred 

overnight at room temperature. Quenched with NH4Cl (aq) and the aqueous phase were 

extracted with diethyl ether (3 × 200 mL). The organic fractions were washed with brine (20 

mL), dried over Na2SO4 and concentrated in vacuo. Purification by flash chromatography 

(pentane) afforded the pure product 96 (554 mg, 84%) as a colorless oil. 
1H NMR  (CDCl3, 300 MHz): 6.79 (s, 1 H), 4.72 (s, 1 H), 4.65 (s, 1 H), 2.60 (t, J = 6.2 Hz, 2 

H), 2.29-2.35 (m, 2 H), 1.70-1.79 (m, 2 H); 
13C NMR (CDCl3, 75 MHz): 143.2, 139.9, 111.6, 100.8, 39.6, 29.0, 24.9; 

IR  (film): 2937 (vs), 1676 (w), 1624 (s), 1589 (m), 1426 (m), 1335 (s), 892 (s) cm-1; 

MS (EI, 70 ev), m/z (%): 220 (M+, 100%), 192 (0.2%), 127 (1%), 91 (15%), 77 (16%); 

HRMS (EI): calcd. for C7H9I (M
+): 219.9747, found: 219.9771 (M+). 
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Synthesis of 1-(3-methylene-cyclohex-1-enyl)-propan-1-ol (98a) 

CH2

OH RHJ103C 

To a solution of 1-iodo-3-methylene-cyclohexene 96 (110 mg, 0.5 mmol) in THF (0.2 mL) 

was slowly added i-PrMgCl·LiCl (0.26 mL, 0.55 mmol, 2.16 M in THF) at - 40 °C. After 4 h, 

a complete conversion to the Grignard reagent 97 was observed by GC-analysis of hydrolyzed 

reaction aliquots. The solution of propionaldehyde (32 mg, 0.55 mmol) in THF (0.5 mL) was 

added and the reaction mixture was warmed to 25 °C and quenched as usual. The aqueous 

phase was extracted with diethyl ether (3 × 10 mL). The organic fractions were washed with 

brine (10 mL), dried over Na2SO4 and concentrated in vacuo. Purification by flash 

chromatography (pentane: ether = 1: 3) afforded the pure product 98a (69 mg, 91%) as a 

colorless oil. 
1H NMR  (CDCl3, 300 MHz): 6.09 (s, 1 H), 4.76(s, 1 H), 4.75 (s, 1 H), 3.96 (t, J = 6.6 Hz, 1 

H), 2.25-2.35 (m, 2 H), 2.06-2.19 (m, 1 H), 1.92-2.03 (m, 1 H), 1.50-1.76 (m, 4 H), 0.87 (t, J 

= 7.5 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 143.6, 143.2, 125.2, 110.6, 77.3, 30.8, 27.8, 24.1, 23.0, 9.9; 

IR  (film): 3391 (vs), 2960 (vs), 1662 (s), 1607 (m), 1455 (m) cm-1; 

MS (EI, 70 ev), m/z (%): 152 (M+, 11%), 134 (4%), 123 (100%), 95 (55%), 77 (20%); 

HRMS (EI): calcd. for C10H16O (M+): 152.1201, found: 152.1203 (M+). 

 

Synthesis of 4-methyl-N-[(3-methylene-cyclohex-1-enyl)-phenyl-methyl]-

benzenesulfonamide (98b) 

CH2

NHTs RHJ107C 

The solution of N-benzylidene-4-methyl-benzenesulfonamide (142 mg, 0.55 mmol) in THF 

(0.5 mL) was added to the Grignard 97. The reaction mixture was warmed to 25 °C and 

quenched as usual. The aqueous phase was extracted with diethyl ether (3 × 10 mL). The 

organic fractions were washed with brine (10 mL), dried over Na2SO4 and concentrated in 

vacuo. Purification by flash chromatography (pentane: ether = 1:2) afforded the pure product 

98b (150 mg, 85%) as a white solid, mp: 127.1-127.7 oC. 
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1H NMR  (CDCl3, 300 MHz): 7.61 (d, J = 8.4 Hz, 2 H), 7.03-7.22 (m, 7 H), 5.99 (s, 1 H), 5.02 

(d, J = 7.7 Hz, 1 H), 4.90 (d, J = 7.7 Hz, 1 H), 4.73 (s, 1 H), 4.68 (s, 1 H), 2.36 (s, 3 H), 1.40-

2.30 (m, 6 H); 
13C NMR (CDCl3, 75 MHz): 143.2, 142.5, 138.9, 138.8, 137.5, 129.3, 128.5, 127.7, 127.6, 

127.3, 126.9, 111.7, 62.8, 30.2, 25.6, 22.5, 21.4; 

IR (KBr): 3436 (s), 3290 (m), 1643 (w), 1599 (w), 1494 (m), 1455 (m), 1435 (m), 1320 (m), 

1160 (vs) cm-1; 

MS (EI, 70 ev), m/z (%): 353 (M+, 2%), 260 (3%), 198 (100%), 182 (19%), 167 (22%), 91 

(43%); 

HRMS (EI): calcd. for C21H23NO2S (M+): 353.1449, found: 353.1463 (M+). 

 

Synthesis of 4-(3-methylene-cyclohex-1-enyl)-benzoic acid methyl ester (98c) 

CH2

CO2Me  RHJ109C 

The solution of ZnBr2 (0.55 mL, 0.55 mmol, 1.0 M in THF) was added to the Grignard 97 at -

40 °C and warmed to 0 oC and stirred for 20 min. The solution of methyl 4-iodobenzoate (144 

mg, 0.55 mmol) in THF (0.5 mL), Pd(dba)2 (14.4 mg, 5 mol %) and tri(2-furyl)phosphine (12 

mg, 10 mol%) were added in. The reaction mixture was stirred overnight at room temperature 

then quenched as usual. The aqueous phase was extracted with diethyl ether (3 × 10 mL). The 

organic fractions were washed with brine (10 mL), dried over Na2SO4 and concentrated in 

vacuo. Purification by flash chromatography (pentane: ether = 1:2) afforded the pure product 

97c (107 mg, 94%) as a white solid, mp: 59.3 - 60.7 oC. 
1H NMR  (CDCl3, 300 MHz): 7.97 (d, J = 8.4 Hz, 2 H), 7.50 (d, J = 8.4 Hz, 2 H), 6.67 (s, 1 

H), 4.97 (s, 1 H), 4.92 (s, 1 H), 3.89 (s, 3 H), 2.51 (t, J = 5.7 Hz, 2 H), 2.36-2.42 (m, 2 H), 

1.81-1.89 (m, 2 H); 
13C NMR (CDCl3, 75 MHz): 166.9, 145.8, 143.5, 138.1, 129.6, 128.6, 128.4, 125.0, 113.0, 

52.0, 30.1, 27.3, 23.0; 

IR  (KBr): 2948 (s), 1718 (vs), 1601 (m), 1434 (m), 1289 (m), 1111 (s) cm-1; 

MS (EI, 70 ev), m/z (%): 228 (M+, 100%), 213 (7%), 197 (19%), 169 (22%), 154 (18%), 141 

(23%); 

HRMS (EI): calcd. for C15H16O2 (M
+): 228.1150, found: 228.1132 (M+). 
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Synthesis of 3-(3-methylene-cyclohex-1-enyl)-but-2-enal (98d) 

H2C
O

RHJ131C 

The solution of ZnBr2 (0.55 mL, 0.55 mmol, 1.0 M in THF) was added to the Grignard 97 at -

40 °C and warmed to 0 oC and stirred for 20 min. The solution 3-bromo-cyclohex-2-enone (88 

mg, 0.5 mmol) in THF (0.5 mL), Pd(dba)2 (14.4 mg, 5 mol %) and tri(2-furyl)phosphine (12 

mg, 10 mol%) were added in. The reaction mixture was stirred overnight at room temperature 

then quenched as usual. The aqueous phase was extracted with diethyl ether (3 × 10 mL). The 

organic fractions were washed with brine (10 mL), dried over Na2SO4 and concentrated in 

vacuo. Purification by flash chromatography (pentane: ether = 2:1) afforded the pure product 

98d (66 mg, 70%) as a yellow oil. 
1H NMR  (CDCl3, 300 MHz): 6.63 (s, 1 H), 6.10 (s, 1 H), 5.00-5.04 (m, 2 H), 2.54 (t, J = 6.0 

Hz, 2 H), 2.23-2.41 (m, 6 H), 1.97-2.06 (m, 2 H), 1.71-1.79 (m, 2 H); 
13C NMR (CDCl3, 75 MHz): 200.4, 158.5, 143.4, 137.8, 131.9, 123.9, 115.8, 37.5, 29.9, 25.7, 

25.3, 22.54, 22.51; 

IR  (film): 2927 (m), 1706 (m), 1662 (s), 1187 (m) cm-1; 

MS (EI, 70 ev), m/z (%): 188 (M+, 100%), 173 (11%), 160 (32%), 145 (31%), 117 (53%); 

HRMS (EI): calcd. for C13H16O (M+): 188.1201, found: 188.1189 (M+). 

 

Synthesis of 4-(6-methylene-cyclohex-1-enyl)-benzoic acid methyl ester (101) 

CO2Me
CH2

 RHJ113C 

1-Iodo-6-methylene-cyclohexene 99 was prepared according to the procedure for preparation 

of 1-iodo-3-methylene-cyclohexene 96 from methyltriphenylphosphonium bromide (1.18 g, 

3.3 mmol) and 2-iodo-cyclohex-2-enone (666 mg, 3.0 mmol). The product of 1-iodo-6-

methylene-cyclohexene 99 was obtained in 10% yield as a colorless oil. Due to its unstable, 

the dienic iodide 99 was used for the next exchange reaction immediately. 

To a solution of 1-iodo-6-methylene-cyclohexene 99 (60 mg, 0.27 mmol) in THF (0.1 mL) 

was slowly added i-PrMgCl·LiCl (0.15 mL, 0.30 mmol, 2.0 M in THF) at - 40 °C. After 4 h, a 

complete conversion to the Grignard reagent 100 was observed by GC-analysis of hydrolyzed 

reaction aliquots. The solution of ZnBr2 (0.3 mL, 0.3 mmol, 1.0 M in THF) was added at -40 
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°C and warmed to 0 oC and stirred for 20 min. The solution of methyl 4-iodobenzoate (78 mg, 

0.3 mmol) in THF (0.3 mL), Pd(dba)2 (8 mg, 5 mol%) and tri (2-furyl) phosphine (6 mg, 10 

mol%) were added and the reaction mixture was stirred overnight at room temperature then 

quenched as usual. The aqueous phase was extracted with diethyl ether (3 × 10 mL). The 

organic fractions were washed with brine (10 mL), dried over Na2SO4 and concentrated in 

vacuo. Purification by flash chromatography (pentane: ether = 1:5) afforded the pure product 

101 (55 mg, 90%) as a yellow oil.  
1H NMR  (CDCl3, 300 MHz): 7.96 (d, J = 8.4 Hz, 2 H), 7.30 (d, J = 8.4 Hz, 2 H), 5.78-5.82 

(m, 1 H), 4.88 (s, 1 H), 4.64 (s, 1 H), 3.89 (s, 3 H), 2.47 (t, J = 6.2 Hz, 2 H), 2.26-2.33 (m, 2 

H), 1.75-1.84 (m, 2 H); 
13C NMR (CDCl3, 75 MHz): 167.1, 146.6, 143.3, 139.8, 131.0, 129.2, 129.0, 128.5, 111.9, 

52.0, 32.6, 26.6, 23.1; 

IR  (film): 2936 (m), 1724 (vs), 1608 (m), 1435 (m), 1277 (s), 1112 (s) cm-1; 

MS (EI, 70 ev), m/z (%): 228 (M+, 82%), 213 (11%), 197 (12%), 169 (100%), 153 (13%), 

141 (63%); 

HRMS (EI): calcd. for C15H16O2 (M
+): 228.1150, found: 228.1133 (M+). 

 

Synthesis of 3-iodo-1-trimethylsilanyloxy-cyclohex-2-enecarbonitrile (102) 

TMSO CN

I  RHJ013D 

To a stirred solution of 3-iodo-cyclohex-2-enone (222 mg, 1.0 mmol) and CsF (23 mg, 0.15 

mmol) in dry CH3CN (1 ml) was added dropwise TMSCN (149 mg, 1.5 mmol). The resulting 

solution was stirred continuously and progress of the reaction was followed by TLC. After 

purification by flash chromatography (pentane) the pure product 102 (282 mg, 88%) was 

obtained as a colorless oil. 
1H NMR  (CDCl3, 300 MHz): 6.39 (t, J = 2.0 Hz, 1 H), 2.54 (dt, J1 = 6.2 Hz, J2 = 2.0, 2 H), 

2.11-2.19 (m, 1 H), 1.75-1.98 (m, 3 H), 0.22 (s, 9 H); 
13C NMR (CDCl3, 75 MHz): 136.3, 120.5, 104.4, 68.3, 38.6, 35.7, 20.8, 1.3; 

IR  (film): 2958 (m), 2231 (w), 1629 (m), 1254 (m) cm-1; 

MS (EI, 70 ev): 321 (M+, 21%), 306 (30%), 279 (100%), 231 (19%), 194 (86%); 

HRMS (EI): calcd. for C10H16INOSi (M+): 321.0046; found: 321.0021 (M+). 

 

Synthesis of 3-benzoyl-cyclohex-2-enone (104a) 
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O

O RHJ019D 

To a solution of 3-iodo-1-trimethylsilanyloxy-cyclohex-2-enecarbonitrile 102 (161 mg, 0.5 

mmol) in THF (0.2 ml) was slowly added i-PrMgCl·LiCl (0.55 mmol, 2.00 M in THF) at –

40°C. After 2 h, a complete conversion to the Grignard reagent 103 was observed by GC-

analysis of hydrolyzed reaction aliquots. THF (1.0 ml) and CuCN·2LiCl (0.55 ml, 1.0 M in 

THF) was added at this temperature and the mixture was stirred for 15 min. Benzoyl chloride 

(0.7 mmol in 0.5 ml of THF) was added and the reaction mixture was stirred at –40oC for 1 h, 

Then it was warmed to rt and stirred for another 1 h. TBAF (0.5 ml, 1.0 M in THF) was added 

and the mixture was stirred for 30 min, then HCl (1.0 ml, 2 M in H2O) was added and the 

stirring continued for another 2 h before the addition of aq. NH3 (2 ml). The aqueous phase 

was extracted with diethyl ether (3 × 10 mL). The organic fractions were washed with brine 

(10 mL), dried over Na2SO4 and concentrated in vacuo. Purification by flash chromatography 

(ether) afforded the pure product 104a (71 mg, 74%) as a yellow oil. 
1H NMR (CDCl3, 300 MHz): 7.70-7.77 (m, 2 H), 7.53-7.60 (m, 1 H), 7.40-7.47 (m, 2 H), 

6.22 (t, J = 1.8 Hz, 1 H), 2.66 (dt, J1 = 6.2 Hz, J2 = 1.8 Hz, 2 H), 2.51 (t, J = 6.6 Hz, 2 H), 

2.07-2.18 (m, 2 H); 
13C NMR (CDCl3, 75 MHz): 200.0, 197.0, 155.8, 135.5, 133.4, 132.3, 129.5, 128.6, 37.8, 

25.5, 22.2; 

IR (film): 2951 (m), 1680 (vs), 1658 (vs), 1448 (m), 1255 (m) cm-1; 

MS (EI, 70 ev): 200 (M+, 40%), 183 (15%), 171 (8%), 144 (10%), 105 (100%). 

Spectral data match those reported in the literature.133 

 

Synthesis of bicyclohexyl-1,1'-diene-3,3'-dione (104b) 

O

O RHJ021D 

The solution of CuCN·2LiCl (0.55 ml, 1.0 M in THF) was added to the Grignard 103 at -40 
oC and stirred for 15 min. 3-Iodo-cyclohex-2-enone (0.55 mmol in 0.5 ml of THF) was added 

and the reaction mixture was stirred at –30 oC for 4 h at this temperature. The reaction 

                                                 
133 Z. Jin, P. L. Fuchs, J. Am. Chem. Soc. 1994, 116, 5995. 
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mixture was warmed to 25 °C and TBAF (0.5 ml, 1.0 M in THF) was added. After 30 min, 

HCl (0.5 ml, 2 M in H2O) was added and the mixture was stirred for another 2 h before the 

addition of aq. NH3 (2 ml). The aqueous phase was extracted with diethyl ether (3 × 10 mL). 

The organic fractions were washed with brine (10 mL), dried over Na2SO4 and concentrated 

in vacuo. Purification by flash chromatography (ether) afforded the pure product 104b (71 

mg, 74%) as a white solid, mp: 100.5-101.0 oC. 
1H NMR  (CDCl3, 300 MHz): 6.27 (s, 1 H), 2.50 (dt, J1 = 6.2 Hz, J2 = 1.3 Hz, 2 H), 2.42 (t, J 

= 6.2 Hz, 2 H), 2.01-2.10 (m, 2 H); 
13C NMR (CDCl3, 75 MHz): 199.6, 156.5, 128.0, 37.4, 25.8, 22.2; 

IR  (KBr): 2951 (w), 1663 (s), 1576 (w), 1263 (m) cm-1; 

MS (EI, 70 ev): 190 (M+, 95%), 162 (45%), 134 (100%), 119 (45%), 106 (49%). 

Spectral data match those reported in the literature.134 

 

Synthesis of toluene-4-sulfonic acid 2-bromo-pyridin-3-yl ester (105) 

N

OTs

Br  

A solution of 2-bromo-3-hydroxypyridine (3.480 g, 20 mmol), TsCl (4.19 g, 22 mmol), NEt3 

(2.420 g, 24 mmol) and DMAP (10 mol %) in CH2Cl2 (60 mL) was stirred at room 

temperature for 5 h. The reaction mixture was subsequently washed with water, 1 N 

hydrochloric acid, and saturated sodium bicarbonate solution. The organic layer was dried 

over anhydrous magnesium sulfate, filtered, and concentrated. The residue was 

chromatographed on silica gel (eluent: pentane: ether = 3: 1), providing 105 (5.58 g, 85%) as 

a white solid; mp.: 64.5-65.0 oC. 
1H NMR  (CDCl3, 300 MHz): 8.19 (dd, J1 = 4.9 Hz, J2 = 1.8 Hz, 1 H), 7.69 (d, J = 8.4 Hz, 2 

H), 7.65 (dd, J1 = 8.0 Hz, J2 = 1.8 Hz, 1 H), 7.26 (d, J = 8.4 Hz, 2 H), 7.19-7.24 (m, 1 H), 2.37 

(s, 3 H); 
13C NMR (CDCl3, 75 MHz): 147.7, 146.3, 144.3, 136.5, 132.0, 131.8, 129.9, 128.6, 123.5, 

21.7; 

IR  (KBr): 3072 (m), 1597 (s), 1570 (m), 1556 (vs), 1496 (vs), 1373 (vs), 1411 (vs), 1203 (vs), 

859 (vs) cm-1; 

MS (EI, 70 ev): 329 (81Br, 6%), 327 (79Br, 6%), 155 (94%), 91 (100%); 

HRMS (EI): calcd. for C12H10BrNO3S (M+, 79Br): 326.9525, found: 326.9574 (M+, 79Br). 

                                                 
134 C. J. Rao, P. Knochel, J. Org. Chem. 1991, 56, 4593. 
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Synthesis of 3,5-dibromo-2-pyridyl-4-methylbenzenesulfonate (108) 

N

Br Br

OTs  RHJ128D 
A solution of 3, 5-dibromo-2-hydroxypyridine (5.060 g, 20 mmol), TsCl (4.190 g, 22 mmol), 

NEt3 (2.420 g, 24 mmol) and DMAP (10 mol%) in CH2Cl2 (60 mL) was stirred at 0 oC 

overnight. The reaction mixture was subsequently washed with water, 1 N hydrochloric acid, 

and saturated sodium bicarbonate solution. The organic layer was dried over anhydrous 

magnesium sulfate, filtered, and concentrated. The residue was chromatographed on silica gel 

(eluent: pentane: ether = 3: 1), providing 108 (6.51 g, 80%) as a white solid; m. p.: 97.4-97.9 
oC. 
1H NMR  (CDCl3, 300 MHz): 8.22 (d, J = 2.2 Hz, 1 H), 8.06 (d, J = 2.2 Hz, 1 H), 7.94 (d, J = 

8.4 Hz, 2 H), 7.35 (d, J = 8.4 Hz, 2 H), 2.44 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 153.2, 147.2, 145.7, 145.2, 133.7, 129.7, 128.8, 117.9, 112.0, 

21.7; 

IR (KBr): 3064 (w), 1598 (m), 1557 (m), 1418 (vs), 1375 (vs), 770 (vs) cm-1; 

MS (EI, 70 ev): 343 (M+- C5H4 (
81Br79Br), 40%), , 155 (50%), 91 (100%); 

Anal. Calcd for C12H9Br2NO3S: C, 35.41; H, 2.23; N, 3.44;  

Found:                                          C, 35.28; H, 2.01; N, 3.39. 

 

Synthesis of toluene-4-sulfonic acid 2-formyl-pyridin-3-yl ester (107a) 

N

OTs

O RHJ132D 

i-PrMgCl·LiCl (1.55 M in THF, 0.55 mmol) was slowly added to the solution of toluene-4-

sulfonic acid 2-bromo-pyridin-3-yl ester 105 (164 mg, 0.5 mmol) in dry THF (1.5 mL) at -30 
oC and the resulting mixture was stirred at this temperature for 7 h to form the Grignard 106 

completely. DMF (1.0 mmol in 0.5 mL of THF) was added and the reaction mixture was 

warmed to 25 °C. After 1 h, saturated aqueous NH4Cl was added and the aqueous phase was 

extracted with diethyl ether (3 × 20 mL). The combined organic fractions were washed with 

brine (10 mL), dried over Na2SO4 and concentrated in vacuo. Purification by flash 

chromatography (eluent: pentane: ether = 1:1) afforded the product 107a (122 mg, 88%) as a 

white solid; mp.: 104.5-105.0 oC.  
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1H NMR  (CDCl3, 300 MHz): 9.89 (s, 1 H), 8.67 (dd, J1 = 4.4 Hz, J2 = 1.3 Hz, 1 H), 7.68-7.75 

(m, 1 H), 7.71 (d, J = 8.4 Hz, 2 H), 7.52 (dd, J1 = 8.4 Hz, J2 = 4.4 Hz, 1 H), 7.30 (d, J = 8.4 

Hz, 2 H), 2.41 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 187.9, 148.5, 146.8, 146.5, 144.8, 132.5, 131.2, 130.0, 128.5, 

128.4, 21.7; 

IR  (KBr): 2847 (m), 1718 (vs), 1596 (m), 1578 (m), 1352 (vs), 1164 (vs), 889 (vs) cm-1; 

MS (EI, 70 ev): 248 (M+-CHO, 0.04%), 155 (51%), 139 (13%), 122 (57%), 91 (100%); 

Anal. Calcd. for C13H11NO4S: C, 56.31; H, 4.00; N, 5.05;  

Found:                                      C, 56.34; H, 4.06; N, 5.03. 

 
Synthesis of toluene-4-sulfonic acid 2-(1-hydroxy-propyl)-pyridin-3-yl ester (107b) 

N

OTs

OH  RHJ127D 
The solution of propionaldehyde (0.60 mmol) in THF (0.5 mL) was added to the Grignard 

106 at -30 oC and the reaction mixture was warmed to 25 °C. After 1 h the reaction mixture 

was quenched with saturated aqueous NH4Cl. The aqueous phase was extracted with diethyl 

ether (3 × 20 mL). The combined organic fractions were washed with brine (10 mL), dried 

over Na2SO4 and concentrated in vacuo. Purification by flash chromatography (eluent: 

pentane: ether = 1:2) afforded the product 107b (130 mg, 85%) as a colorless oil. 

1H NMR (CDCl3, 300 MHz): 8.38 (d, J = 4.9 Hz, 1 H), 7.70 (d, J = 8.4 Hz, 2 H), 7.54 (d, J = 

8.0 Hz, 1 H), 7.29 (d, J = 8.4 Hz, 2 H), 7.15-7.20 (m, 1 H), 4.46-4.50 (m, 1 H), 3.86 (bs, 1 H), 

2.39 (s, 3 H), 1.41-1.68 (m, 2 H), 0.75 (t, J = 7.5 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 155.1, 146.3, 146.2, 143.3, 132.4, 130.2, 130.1, 128.1, 123.2, 

69.3, 29.9, 21.7, 9.4; 

IR  (film): 3345 (vs), 2927 (s), 1598 (s), 1418 (vs), 1377 (vs) cm-1; 

MS (EI, 70 ev): 306 (M+- H, 0.08%), 290 (7%), 278 (100%), 263 (9%), 155 (92%), 124 

(53%), 91 (99%); 

HRMS (EI): calcd. for C15H16NO4S (M+-H): 306.0800, found: 306.0807 (M+-H). 

 

Synthesis of toluene-4-sulfonic acid 5-bromo-3-formyl-pyridin-2-yl ester (110a) 

N

Br
H

O

OTs  RHJ133D 
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According to TP6, the reaction was carried out with 3, 5-dibromo-2-pyridyl 4-

methylbenzenesulfonate 108 (204 mg, 0.5 mmol), i-PrMgCl·LiCl (1.55 M in THF, 0.55 

mmol) and DMF (1.0 mmol in 0.5 mL of THF). Purification by flash chromatography (eluent: 

pentane: ether = 3:1) afforded the product 110a (158 mg, 88%) as a white solid; mp.: 86.7-

87.3 oC.  

1H NMR  (CDCl3, 300 MHz): 10.18 (s, 1 H), 8.46 (d, J = 2.7 Hz, 1 H), 8.32 (d, J = 2.7 Hz, 1 

H), 7.91 (d, J = 8.4 Hz, 1 H), 7.37 (d, J = 8.4 Hz, 1 H), 2.45 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 185.9, 156.3, 153.6, 146.2, 140.8, 133.0, 129.9, 128.8, 123.4, 

119.1, 21.8; 

IR  (KBr): 3062 (m), 1697 (vs), 1596 (m), 1578 (s), 1430 (vs), 1178 (vs), 724 (vs) cm-1; 

MS (EI, 70 ev): 293 (M+ (81Br)-C5H4, 0.5%), 291 (M+ (79Br)-C5H4, 0.5%), 265 (51%), 263 

(52%), 155 (41%), 91 (100%); 

Anal. Calcd for C13H10BrNO4S: C, 43.84; H, 2.83; N, 3.93;  

Found:                                         C, 43.76; H, 2.76; N, 3.87. 

 

Synthesis of toluene-4-sulfonic acid 5-bromo-3-(1-hydroxy-propyl)-pyridin-2-yl ester  (2-

45b) 

N OTs

Br
OH

RHJ129D 

According to TP6, the reaction was carried out with 3, 5-dibromo-2-pyridyl 4-

methylbenzenesulfonate 108 (204 mg, 0.5 mmol), i-PrMgCl·LiCl (1.55 M in THF, 0.55 

mmol) and propionaldehyde (0.60 mmol in 0.5 mL of THF). Purification by flash 

chromatography (eluent: pentane: ether = 1:2) afforded the product 110b (168 mg, 87%) as a 

white solid; mp.: 110.3-111.0 oC.  

1H NMR  (CDCl3, 300 MHz): 8.12 (d, J = 2.7 Hz, 1 H), 8.02 (d, J = 2.7 Hz, 1 H), 7.91 (d, J = 

8.2 Hz, 2 H), 7.34 (d, J = 8.2 Hz, 2 H), 4.87-4.91 (m, 1 H), 2.44 (s, 3 H), 2.26 (bs, 1 H), 1.64-

1.82 (m, 2 H), 0.93 (t, J = 7.5 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 152.8, 147.2, 145.5, 140.3, 133.9, 133.5, 129.7, 128.7, 118.9, 

68.9, 30.3, 21.7, 9.8; 

IR  (KBr): 3566 (vs), 3053 (m), 1595 (m), 1558 (m), 1372 (vs), 1207 (vs), 669 (vs) cm-1; 

MS (EI, 70 ev): 386 (M+, 0.01%), 358 (Br81, 6%), 356 (Br79, 6%), 294 (Br81, 87%), 292 (Br79, 

87%), 155 (89%), 91 (100%); 

HRMS (EI): calcd. for C15H15BrNO4S (M+-H): 383.9905, found: 383.9868 (M+-H). 
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Synthesis of toluene-4-sulfonic acid 3-benzoyl-5-bromo-pyridin-2-yl ester (110c) 

N

Br
O

OTs  RHJ138D 

According to TP6, the reaction was carried out with 3, 5-dibromo-2-pyridyl 4-

methylbenzenesulfonate 108 (204 mg, 0.5 mmol), i-PrMgCl·LiCl (1.55 M in THF, 0.55 

mmol), CuCN·2LiCl (0.55 mmol, 0.55 mL, 1.0 M in THF) and benzoyl chloride (0.75 mmol 

in 0.5 mL of THF). Purification by flash chromatography (eluent: pentane: ether = 1:1) 

afforded the product 110c (192 mg, 89%) as a white solid; mp.: 102.5-103.1 oC.  

1H NMR (CDCl3, 300 MHz): 8.43 (d, J = 2.7 Hz, 1 H), 7.94 (d, J = 2.7 Hz, 1 H), 7.54-7.71 

(m, 5 H), 7.43 (d, J = 8.0 Hz, 2 H), 7.20 (d, J = 8.0 Hz, 2 H), 2.35 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 190.5, 152.4, 150.5, 145.4, 142.2, 135.6, 134.0, 133.1, 129.7, 

129.4, 128.5, 128.3, 127.5, 117.9, 21.5; 

IR (KBr): 3060 (m), 1659 (vs), 1598 (s), 1572 (s), 1382 (vs), 1173 (vs), 689 (vs) cm-1; 

MS (EI, 70 ev): 369 (M+ (81Br)-C5H4, 13%), 367 (M+ (79Br)-C5H4, 13%), 340 (14%), 

288(31%), 155 (22%), 91 (100%); 

Anal. Calcd for C19H14BrNO4S: C, 52.79; H, 3.26; N, 3.24; 

Found:                                         C, 52.61; H, 2.90; N, 3.17. 

 

Synthesis of toluene-4-sulfonic acid 5-bromo-3-(furan-2-carbonyl)-pyridin-2-yl ester 

(110d) 

N

Br

OTs

O

O

 RHJ163D 

According to TP6, the reaction was carried out with 3, 5-dibromo-2-pyridyl 4-

methylbenzenesulfonate 108 (204 mg, 0.5 mmol), i-PrMgCl·LiCl (1.55 M in THF, 0.55 

mmol), CuCN·2LiCl (0.55 mmol, 0.55 mL, 1.0 M in THF) and 2-furoyl chloride (0.75 mmol 

in 0.5 mL of THF). Purification by flash chromatography (eluent: pentane: ether = 1:1) 

afforded the product 110d (176 mg, 83%) as a white solid; mp.: 133.0-134.0 oC. 
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1H NMR (CDCl3, 300 MHz): 8.42 (d, J = 2.2 Hz, 1 H), 8.01 (d, J = 2.2 Hz, 1 H), 7.80 (d, J = 

8.4 Hz, 2 H), 7.65-7.66 (m, 1 H), 7.27 (d, J = 8.4 Hz, 2 H), 7.20 (d, J = 4.0 Hz, 1 H), 6.58 (dd, 

J1 = 4.0 Hz, J2 = 1.8 Hz, 1 H), 2.40 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 177.1, 152.6, 151.3, 150.8, 148.2, 145.6, 142.2, 133.5, 129.6, 

128.6, 126.7, 121.4, 117.8, 112.9, 21.7; 

IR (KBr): 3079 (w), 1659 (vs), 1564 (w), 1584 (w), 1375 (vs), 1176 (s), 752 (vs) cm-1; 

MS (EI, 70 ev): 359 (M+ (81Br)-C5H4, 3%), 357 (M+ (79Br)-C5H4, 3%), 331 (M+ (81Br)-C7H8, 

43%), 329 (M+ (79Br)-C7H8, 43%), 274 (5%), 155 (17%), 91 (100%); 

Anal. Calcd for C17H12BrNO5S: C, 48.36; H, 2.86; N, 3.32;  

Found:                                         C, 48.14; H, 2.86; N, 3.26. 

 

Synthesis of toluene-4-sulfonic acid 5-bromo-3-(6-chloro-pyridine-3-carbonyl)-pyridin-

2-yl ester (110e) 

N

Br

OTs

O

N

Cl

 RHJ010E 

According to TP6, the reaction was carried out with 3, 5-dibromo-2-pyridyl 4-

methylbenzenesulfonate 108 (408 mg, 1.0 mmol), i-PrMgCl·LiCl (1.55 M in THF, 1.1 mmol), 

CuCN·2LiCl (1.10 mmol, 1.10 mL, 1.0 M in THF) and 6-chloronicotinoyl chloride (1.50 

mmol in 1.0 mL of THF). Purification by flash chromatography afforded the product 110e 

(351 mg, 75%) as a white solid; mp.: 171.7-172.2 oC. 

1H NMR  (CDCl3, 300 MHz): 8.61 (d, J = 2.2 Hz, 1 H), 8.50 (d, J = 2.2 Hz, 1 H), 8.07 (d, J = 

2.7 Hz, 1 H), 7.95 (dd, J1 = 8.4 Hz, J2 = 2.2 Hz, 1 H), 7.67 (d, J = 8.4 Hz, 2 H), 7.38 (d, J = 

8.4 Hz, 1 H), 7.27 (d, J = 8.4 Hz, 2 H), 2.42 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 188.5, 156.2, 152.5, 152.0, 151.0, 146.0, 142.9, 139.1, 132.9, 

130.5, 129.7, 128.4, 126.1, 124.4, 118.5, 21.7; 

IR (KBr): 3058 (w), 1680 (vs), 1582 (vs), 1560 (w), 1421 (s), 1377 (vs), 1175 (vs) cm-1; 

MS (EI, 70 ev): 406 (M+ (81Br37Cl)-C5H4, 3%), 404 (M+ (79Br37Cl and 81Br35Cl)-C5H4, 4%), 

402 (M+ (79Br35Cl)-C5H4, 1%), 376 (12%), 323 (30%), 155 (29%), 91 (100%); 

Anal. Calcd for C18H12BrClN2O4S: C, 46.22; H, 2.59; N, 5.99;  

Found:                                              C, 45.93; H, 2.30; N, 5.85. 
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Synthesis of toluene-4-sulfonic acid 3-allyl-5-bromo-pyridin-2-yl ester (110f) 

N

Br

OTs RHJ178D 

According to TP6, the reaction was carried out with 3, 5-dibromo-2-pyridyl 4-

methylbenzenesulfonate 108 (204 mg, 0.5 mmol), i-PrMgCl·LiCl (1.55 M in THF, 0.55 

mmol), allyl bromide (0.60 mmol in 0.5 mL of THF) and CuCN·2LiCl (2 mol%, 10 µL, 1.0 M 

in THF). Purification by flash chromatography (eluent: pentane: ether = 5:1) afforded the 

product 110f (171 mg, 93%) as a colorless oil. 

1H NMR (CDCl3, 300 MHz): 8.11 (d, J = 2.7 Hz, 1 H), 7.92 (d, J = 8.4 Hz, 2 H), 7.69 (d, J = 

2.7 Hz, 1 H), 7.33 (d, J = 8.4 Hz, 2 H), 5.78-5.91 (m, 1 H), 5.07-5.20 (m, 2 H), 3.38 (d, J = 

6.6 Hz, 2 H), 2.43 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 154.4, 146.4, 145.3, 142.4, 134.1, 133.4, 129.6, 129.2, 128.6, 

118.4, 118.3, 33.5, 21.7; 

IR (film): 2922 (m), 1640 (w), 1596 (w), 1557 (w), 1426 (s), 1376 (s), 1176 (vs), 1090 (s), 

833 (s) cm-1; 

MS (EI, 70 ev): 368 (M+, 0.1%), 305 (M+ (81Br)-C5H4, 30%), 303 (M+ (79Br)-C5H4, 30%), 

288 (50%), 155 (11%), 91 (100%); 

HRMS (EI): calcd. for C15H15BrNO3S (M++H, 79Br): 367.9956, found: 367.9991 (M++H, 
79Br). 

 

Synthesis of toluene-4-sulfonic acid 5-bromo-3-(3-oxo-cyclohex-1-enyl)-pyridin-2-yl ester 

(110g) 

N

Br

OTs

O

RHJ139D 

According to TP6, the reaction was carried out with 3, 5-dibromo-2-pyridyl 4-

methylbenzenesulfonate 108 (204 mg, 0.5 mmol), i-PrMgCl·LiCl (1.55 M in THF, 0.55 

mmol), CuCN·2LiCl (0.55 mmol, 0.55 mL, 1.0 M in THF) and 3-iodo-cyclohex-2-enone 

(0.60 mmol in 1.0 mL of THF). Purification by flash chromatography (eluent: pentane: ether 

= 1:1) afforded the product 110g (177 mg, 84%) as a white solid; mp.: 108.5-109.3 oC. 
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1H NMR (CDCl3, 300 MHz): 8.24 (d, J = 2.2 Hz, 1 H), 7.84 (d, J = 8.4 Hz, 2 H), 7.73 (d, J = 

2.2 Hz, 1 H), 7.31 (d, J = 8.4 Hz, 2 H), 6.01 (t, J = 1.3 Hz, 1 H), 2.64 (t, J = 6.0 Hz, 2 H), 2.41 

(t, J = 6.6 Hz, 2 H), 2.41 (s, 3 H), 2.00-2.10 (m, 2 H); 
13C NMR (CDCl3, 75 MHz): 198.3, 154.8, 152.2, 148.7, 145.7, 140.9, 133.7, 130.4, 129.7, 

129.5, 128.6, 118.2, 37.1, 29.2, 22.9, 21.6; 

IR (KBr): 2952 (w), 1671 (vs), 1596 (m), 1419 (s), 1375 (s), 1172 (vs) cm-1; 

MS (EI, 70 ev): 359 (M+ (81Br)-C5H4, 2%), 357 (M+ (79Br)-C5H6, 2%), 331 (M+ (81Br)-C7H8, 

7%), 329 (M+ (81Br)-C7H8, 7%), 266 (21%), 155 (17%), 91 (100%); 

Anal. Calcd for C18H16BrNO4S: C, 51.19; H, 3.82; N, 3.32;  

Found:                                         C, 51.22; H, 3.92; N, 3.22. 

 

Synthesis of toluene-4-sulfonic acid 5-bromo-3-cyano-pyridin-2-yl ester (110h) 

N

CNBr

OTs  RHJ137D 

According to TP6, the reaction was carried out with 3, 5-dibromo-2-pyridyl 4-

methylbenzenesulfonate 108 (204 mg, 0.5 mmol), i-PrMgCl·LiCl (1.55 M in THF, 0.55 

mmol) and TsCN (0.60 mmol in 1.0 mL of THF). Purification by flash chromatography 

(eluent: pentane: ether = 1:1) afforded the product 110h (125 mg, 71%) as a white solid; mp.: 

105.0-105.6 oC. 

1H NMR  (CDCl3, 300 MHz): 8.50 (d, J = 2.4 Hz, 1 H), 8.10 (d, J = 2.4 Hz, 1 H), 7.95 (d, J = 

8.4 Hz, 2 H), 7.37 (d, J = 8.4 Hz, 2 H), 2.45 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 156.0, 152.8, 146.4, 145.4, 132.8, 129.9, 128.9, 117.3, 112.0, 

103.1, 21.8; 

IR (KBr): 3078 (w), 2243 (m), 1595 (m), 1550 (m), 1429 (vs), 1386 (vs), 1192 (vs), 823 (vs) 

cm-1; 

MS (EI, 70 ev): 290 (M+ (81Br)-C5H4, 10%), 288 (M+ (79Br)-C5H4, 10%), 155 (52%), 91 

(100%); 

Anal. Calcd for C13H9BrN2O3S: C, 44.21; H, 2.57; N, 7.93;  

Found:                                         C, 44.26; H, 2.56; N, 7.88. 

 

Synthesis of toluene-4-sulfonic acid 3-allyl-5-(furan-2-carbonyl)-pyridin-2-yl ester (112a) 

N OTs

O

O

 RHJ182D 
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According to TP6, the reaction was carried out with 3-allyl-5-bromo-2-pyridyl 4-

methylbenzenesulfonate 110f (184 mg, 0.5 mmol) and i-PrMgCl·LiCl (1.55 M in THF, 0.55 

mmol) at -30 oC for 7 h to form the Grignard 111 completely. THF (1.0 mL) and the solution 

of CuCN·2LiCl (0.55 mmol, 0.55 mL, 1.0 M in THF) were added at this temperature and 

stirred for 15 min. 2-Furoyl chloride (0.75 mmol in 0.5 mL of THF) was added and the 

reaction mixture was stirred at –30 oC for 1 h, then warmed to rt and stirred  for 1 h before 

quenched with aq. ammonia (2 mL). The aqueous phase was extracted with diethyl ether (3 × 

20 mL). The combined combined organic fractions were washed with brine (10 mL), dried 

over Na2SO4 and concentrated in vacuo. Purification by flash chromatography (eluent: 

pentane: ether = 2:1) afforded the product 112a (144 mg, 75%) as a colorless oil.  

1H NMR  (CDCl3, 300 MHz): 8.71 (d, J = 2.2 Hz, 1 H), 8.14 (d, J = 2.2 Hz, 1 H), 7.96 (d, J = 

8.4 Hz, 2 H), 7.66 (d, J = 1.8 Hz, 1 H), 7.33 (d, J = 8.4 Hz, 2 H), 7.26 (d, J = 3.5 Hz, 1 H), 

6.58 (dd, J1 = 3.5 Hz, J2 = 1.8 Hz, 1 H), 5.81-5.94 (m, 1 H), 5.04-5.15 (m, 2 H), 3.42 (d, J = 

6.6 Hz, 2 H), 2.41 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 178.9, 157.8, 151.8, 147.5, 146.8, 145.4, 140.8, 134.0, 133.5, 

131.4, 129.5, 128.7, 126.5, 120.7, 118.1, 112.6, 33.5, 21.6; 

IR (film): 2923 (w), 1647 (m), 1596 (m), 1566 (m), 1377 (s), 1189 (vs), 816 (s) cm-1; 

MS (EI, 70 ev): 383 (M+, 0.01%), 319 (80%), 304 (93%), 290 (9%), 155 (9%), 91 (100%); 

HRMS (EI): calcd. for C20H18NO5S (M++H): 384,0906, found: 384.0908 (M++H). 

 

Synthesis of toluene-4-sulfonic acid 3-allyl-5-(1-hydroxy-propyl)-pyridin-2-yl ester  

(112b) 

N OTs

OH

RHJ132F 

The solution of propionaldehyde (0.60 mmol in 0.5 mL of THF) was added to the Grignard 

111 and the reaction mixture was warmed to 25 °C and quenched with saturated aqueous 

NH4Cl. The aqueous phase was extracted with diethyl ether (3 × 20 mL). The combined 

organic fractions were washed with brine (10 mL), dried over Na2SO4 and concentrated in 

vacuo. Purification by flash chromatography (eluent: pentane: ether = 1:1) afforded the 

product 112b (139 mg, 80%) as a colorless oil.  
1H NMR  (CDCl3, 300 MHz): 7.99 (d, J = 2.2 Hz, 1 H), 7.92 (d, J = 8.4 Hz, 2 H), 7.57 (d, J = 

2.2 Hz, 1 H), 7.32 (d, J = 8.4 Hz, 2 H), 5.78-5.94 (m, 1 H), 5.02-5.13 (m, 2 H), 4.50-4.61 (m, 
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1 H), 3.38 (d, J = 6.6 Hz, 2 H), 2.42 (s, 3 H), 2.25 (bs, 1 H), 1.61-1.79 (m, 2 H), 0.87 (t, J = 

7.3 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 154.9, 145.0, 143.5, 139.0, 137.9, 134.4, 134.2, 129.5, 128.6, 

126.7, 117.6, 72.8, 33.8, 31.8, 21.6, 9.8; 

IR  (film): 3411 (vs), 1714 (m), 1640 (m), 1597 (s), 1584 (s), 1416 (vs), 1307 (m) cm-1; 

MS (EI, 70 ev): 347 (M+, 0.01%), 330 (0.1%), 283 (49%), 268 (39%), 254 (100%), 155 

(15%), 91 (82%); 

HRMS (EI): calcd. for C18H22NO4S (M++H): 348.1270, found: 348.1259 (M++H). 

 

Synthesis of toluene-4-sulfonic acid 3-benzoyl-5-(3-methoxy-phenyl)-pyridin-2-yl ester 

(114) 

N OTs

O

OCH3

 RHJ172D 

A mixture of toluene-4-sulfonic acid 3-benzoyl-5-bromo-pyridin-2-yl ester 110c: (216 mg, 

0.5 mmol), 3-methoxylbenzeneboronic acid (152 mg, 1.0 mmol), TBAB (16 mg, 10 mol%), 

Pd(dba)2 (14 mg, 5 mol%), tri (2-furyl) phosphine (12 mg, 10 mol%) in THF (2.0 mL) and 

water (0.5 mL) was refluxed under nitrogen for 12 h. Water (5.0 mL) was added and the 

aqueous phase was extracted with diethyl ether (3 × 20 mL). The combined organic fractions 

were washed with brine (10 mL), dried over Na2SO4 and concentrated in vacuo. Purification 

by flash chromatography (eluent: pentane: ether = 1:1) afforded the product 114 (206 mg, 

90%) as a white solid; mp.: 144.0-144.5 oC. 
1H NMR  (CDCl3, 300 MHz): 8.57 (d, J = 2.7 Hz, 1 H), 7.97 (d, J = 2.7 Hz, 1 H), 7.71 (d, J = 

7.1 Hz, 2 H), 7.65 (d, J = 8.4 Hz, 2 H), 7.55 (t, J = 7.5 Hz, 1 H), 7.40 (t, J = 7.5 Hz, 2 H), 7.31 

(t, J = 8.0 Hz, 1 H), 7.17 (d, J = 8.4 Hz, 2 H), 7.05 (d, J = 8.0 Hz, 1 H), 7.0 (t, J = 2.2 Hz, 1 

H), 6.89 (dd, J1 = 8.0 Hz, J2 = 2.6 Hz, 1 H), 3.77 (s, 3 H), 2.34 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 192.3, 160.2, 153.1, 148.0, 145.3, 138.6, 137.1, 136.3, 135.6, 

133.8, 133.7, 130.4, 129.9, 129.5, 128.6, 128.5, 126.2, 119.5, 114.1, 112.9, 55.4, 21.7; 

IR (KBr): 2968 (w), 1668 (vs), 1596 (vs), 1379 (s), 1428 (vs), 1180 (vs), 864 (s) cm-1; 

HRMS calcd for C26H21NNaO5S (M++Na): 482.1038, found: 482.1029 (M++Na); 

Anal. calcd for C26H21NO5S: C, 67.96; H, 4.61; N, 3.05;  

Found:                                   C, 67.86; H, 4.49; N, 2.95. 
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Synthesis of 5-bromo-3-phenyl-1H-pyrazolo[3,4-b]pyridine (115a) 

 

N N
H

N
Br

 RHJ155D 

The mixture of toluene-4-sulfonic acid 3-benzoyl-5-bromo-pyridin-2-yl ester 110c (108 mg, 

0.25 mmol) and hydrazine hydrate (0.1 mL) in toluene (1.0 mL) was stirred at 80 oC for 4 h. 

Water (5.0 mL) was added and the aqueous phase was extracted with diethyl ether (3 × 20 

mL). The combined organic fractions were washed with brine (10 mL), dried over Na2SO4 

and concentrated in vacuo. Purification by flash chromatography (eluent: pentane: ether = 

3:1) afforded the product 115a (60 mg, 88%) as a white solid; mp.: 205.5-206.0 oC. 
1H NMR  (DMSO-d6, 300 MHz): 8.78 (d, J = 1.8 Hz, 1 H), 8.62 (d, J = 1.8 Hz, 1 H), 8.01 (d, 

J = 7.5 Hz, 2 H), 7.38-7.54 (m, 3 H); 
13C NMR (DMSO-d6, 75 MHz): 151.4, 149.5, 142.6, 132.7, 132.5, 129.3, 128.6, 126.9, 

113.8, 112.5; 

IR (KBr): 3430 (vs), 3195 (vs), 1596 (m), 1481 (m), 1371 (m), 1256 (s), 926 (s), 758 (s) cm-1; 

MS (EI, 70 ev): 275 (M+ (81Br), 100%), 273 (M+ (79Br), 100%), 246 (7%), 193 (7%), 164 

(6%); 

HRMS (EI): calcd. for C12H8BrN3 (M
+, 79Br): 272.9902, found: 272.9903 (M+, 79Br). 

 

Synthesis of 3-furan-2-yl-5-(3-methoxy-phenyl)-1H-pyrazolo[3,4-b]pyridine (115b) 

N
H

N
N

O
OCH3

 RHJ176D 

A mixture of toluene-4-sulfonic acid 5-bromo-3-(furan-2-carbonyl)-pyridin-2-yl ester 110d 

(211 mg, 0.5 mmol), 3-methoxylbenzeneboronic acid (152 mg, 1.0 mmol), TBAB (16 mg, 10 

mol%), Pd(dba)2 (14 mg, 5 mol%), tri (2-furyl) phosphine (12 mg, 10 mol%) in THF (2.0 mL) 

and water (0.5 mL) was refluxed under nitrogen for 12 h. Hydrazine hydrate (0.5 mL) was 

added after the reaction mixture was cooled to room temperature and then it was refluxed for 

6 h. Water (5.0 mL) was added and the aqueous phase was extracted with diethyl ether (3 × 

20 mL). The combined organic fractions were washed with brine (10 mL), dried over Na2SO4 
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and concentrated in vacuo. Purification by flash chromatography (eluent: pentane: ether = 2: 

1) afforded the product 115b (112 mg, 77%) as a white solid; mp.: 198.0-198.5 oC. 
1H NMR  (DMSO-d6, 300 MHz): 8.89 (d, J = 1.3 Hz, 1 H), 8.65 (d, J = 1.3 Hz, 1 H), 7.87 (s, 

1 H), 7.30-7.46 (m, 3 H), 7.21 (d, J = 3.1 Hz, 1 H), 6.98 (d, J = 7.9 Hz, 1 H), 6.70 (s, 1H), 

3.86 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 160.2, 152.2, 149.2, 148.2, 143.5, 139.6, 136.2, 130.5, 130.4, 

127.9, 120.0, 113.5, 113.2, 112.1, 111.8, 108.1, 55.6; 

IR (KBr): 3430 (s), 3132 (s), 1602 (s), 1509 (m), 1490 (m), 1476 (m), 1260 (s), 1219 (s) cm-1; 

MS (EI, 70 ev): 291 (M+, 100%), 262 (7%), 248 (11%), 219 (7%), 145 (12%); 

HRMS (EI): calcd. for C17H13N3O2 (M
+): 291.1008, found: 291.1005 (M+). 

 

Synthesis of 2,4,6-tribromo-3-pyridyl-4-methylbenzenesulfonate (116) 

N BrBr

Br
OTs

 RHJ124F 
 
A solution of 2, 4, 6-tribromo-pyridin-3-ol (5.500 g, 16.6 mmol), TsCl (3.810 g, 20 mmol), 

NEt3 (2.180 g, 22 mmol) and DMAP (10 mol %) in CH2Cl2 (60 mL) was stirred at 0 oC 

overnight. The reaction mixture was subsequently washed with water, 1 N hydrochloric acid, 

and saturated sodium bicarbonate solution. The organic layer was dried over anhydrous 

magnesium sulfate, filtered, and concentrated. The residue was chromatographed on silica gel 

(eluent: pentane: ether = 3:1), providing 116 (6.254 g, 78%) as a white solid; m. p.: 103.0-

103.6 oC. 
1H NMR  (CDCl3, 300 MHz): 7.87 (d, J = 8.2 Hz, 2 H), 7.67 (s, 1 H), 7.36 (d, J = 8.2 Hz, 2 

H), 2.46 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 146.4, 143.9, 137.3, 137.1, 133.9, 131.9, 130.8, 130.0, 128.7, 

21.8; 

IR (KBr): 3090 (w), 1595(m), 1537(s), 1521(s), 1385(vs), 1312(vs), 1190(vs) cm-1; 

MS (EI, 70 ev): 483 (M+ (79Br79Br79Br), 1%), 302 (2%), 197 (6%), 155 (100%), 91 (62%). 

Anal. Calcd for C12H8Br3NO3S: C, 29.66; H, 1.66; N, 2.88 

Found:                                         C, 29.78; H, 1.78; N, 2.88. 

 

Synthesis of toluene-4-sulfonic acid 4-allyl-2, 6-dibromo-pyridin-3-yl ester (118a) 
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N BrBr

OTs

 RHJ129F 

The solution of i-PrMgCl·LiCl (1.55 M in THF, 1.1 mmol) was slowly added to a solution of 

2, 4, 6-tribromo-3-pyridyl-4-methylbenzenesulfonate 116 (486 mg, 1.0 mmol) in dry THF 

(3.0 mL) at -78 oC and the resulting mixture was stirred at this temperature for 40 min to 

complete the formation of the Grignard 117. Allyl bromide (1.5 mmol in 1.0 mL of THF) and 

the solution of CuCN·2LiCl (1 mol%) were added in and the reaction mixture was stirred for 

1 h then warmed to 25 °C. After 1 h the reaction mixuture was quenched with saturated 

aqueous NH4Cl. The aqueous phase was extracted with diethyl ether (3 × 20 mL). The 

combined organic fractions were washed with brine (10 mL), dried over Na2SO4 and 

concentrated in vacuo. Purification by flash chromatography (eluent: pentane: ether = 5:1) 

afforded the product 118a (402 mg, 90%) as a white solid; mp.: 82.0-83.0 oC.  

1H NMR  (CDCl3, 300 MHz): 7.87 (d, J = 8.2 Hz, 2 H), 7.37 (d, J = 8.2 Hz, 2 H), 7.34 (s, 1 

H), 5.70-5.90 (m, 1 H), 5.10-5.30 (m, 2 H), 3.53 (d, J = 7.1 Hz, 2 H), 2.46 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 149.1, 146.3, 143.3, 137.4, 136.4, 133.3, 132.6, 130.0, 128.8, 

128.7, 119.6, 34.8, 21.8; 

IR  (KBr): 1595(m), 1566(m), 1528(m), 1407(s), 1375(s), 1179(s), 1153(vs) cm-1; 

MS (EI, 70 ev): 447 (M+ (81Br79Br), 1.5%), 292 (11%), 155 (100%), 91 (87%); 

HRMS (EI): calcd. for C15H13Br2NO3S (M+, 79Br79Br): 444.8983; Found: 444.8988 (M+, 
79Br79Br). 

 

Synthesis of 2,6-dibromo-3-(toluene-4-sulfonyloxy)-isonicotinic acid methyl ester (118b) 

N BrBr

COOMe
OTs

 RHJ133F 

Methyl chloroformate (0.75 mmol) was added directly to the Grignard reagent 117 and 

warmed to room temperature. After 1 h the reaction mixture was quenched with saturated 

aqueous NH4Cl. The aqueous phase was extracted with diethyl ether (3 × 20 mL). The 

combined organic fractions were washed with brine (10 mL), dried over Na2SO4 and 

concentrated in vacuo. Purification by flash chromatography (eluent: pentane: ether = 5:1) 

afforded the product 118b (167 mg, 72%) as a white solid; mp.: 110.0-111.0 oC.  
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1H NMR  (CDCl3, 300 MHz): 7.82 (s, 1 H), 7.72 (d, J = 8.2 Hz, 2 H), 7.34 (d, J = 8.2 Hz, 2 

H), 3.94 (s, 3 H), 2.45 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 162.6, 146.6, 141.5, 137.7, 137.5, 132.6, 130.2, 128.7, 128.5, 

53.5, 21.8; 

IR  (KBr): 1727(vs), 1596(m), 1529(m), 1431(m), 1389(vs), 1350(vs), 1268(s) cm-1; 

MS (EI, 70 ev): 465 (M+ (81Br79Br), 2%), 279 (3%), 155 (100%), 91 (87%); 

HRMS (EI): calcd. for C14H11Br2NO5S (M+, 79Br79Br): 462.8725; Found: 462.8733 (M+, 
79Br79Br). 

 

Synthesis of toluene-4-sulfonic acid 2,6-dibromo-4-(furan-2-carbonyl)-pyridin-3-yl ester 

(118c) 

N BrBr

OTs

O
O

RHJ142F 

The solution of CuCN·2LiCl (0.55 mmol, 0.55 mL, 1.0 M in THF) was added to the Grignard 

reagent 117 at -78 oC and stirred for 15 min. 2-Furoyl chloride (0.75 mmol in 0.5 mL of THF) 

was added in and the reaction mixture was stirred at –30 oC for 1 h then warmed to rt and 

stirred for 1 h before it was quenched with aq. ammonia (2 mL). The aqueous phase was 

extracted with diethyl ether (3 × 20 mL). The combined organic fractions were washed with 

brine (10 mL), dried over Na2SO4 and concentrated in vacuo. Purification by flash 

chromatography (eluent: pentane: ether = 5:1) afforded the product 118c (180 mg, 72%) as a 

white solid; mp.: 153.5-154.0 oC.  

1H NMR  (CDCl3, 300 MHz): 7.67 (dd, J1 = 1.8 Hz, J2 = 0.9 Hz, 1 H), 7.63 (d, J = 8.2 Hz, 2 

H), 7.57 (s, 1 H), 7.27 (d, J = 8.2 Hz, 2 H), 7.19 (d, J = 3.1 Hz, 2 H), 6.60 (dd, J1 = 3.1 Hz, J2 

= 1.8 Hz, 1 H), 2.42 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 175.7, 150.6, 148.4, 146.5, 143.4, 140.6, 138.3, 137.8, 131.9, 

130.0, 128.6, 127.4, 121.8, 113.1, 21.8; 

IR (KBr): 1666(vs), 1560(m), 1522(m), 1460(s), 1391(vs), 1195(s) cm-1; 

MS (EI, 70 ev): 501 (M+ (81Br79Br), 0.2%), 346 (3%), 155 (88%), 91 (100%); 

HRMS (EI): calcd. for C17H11Br2NO5S: 498.8725 (M+, 79Br79Br); Found: 498.8736 (M+, 
79Br79Br). 

 

Synthesis of toluene-4-sulfonic acid 2,4-diallyl-6-bromo-pyridin-3-yl ester (120a) 
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NBr

OTs

 RHJ162F 

The solution of i-PrMgCl·LiCl (1.55 M in THF, 0.55 mmol) was slowly added to a solution of 

toluene-4-sulfonic acid 4-allyl-2, 6-dibromo-pyridin-3-yl ester 118a (224 mg, 0.5 mmol) in 

dry THF (2.0 mL) at -40 oC and the resulting mixture was stirred at this temperature for 1 h to 

complete the formation of the Grignard reagent 119. Allyl bromide (0.8 mmol ) and the 

solution of CuCN·2LiCl (1 drop) were added at this temperature and stirred for 1 h, then 

warmed to rt and stirred for 1 h before it was quenched with aq. ammonia (2 mL). The 

aqueous phase was extracted with diethyl ether (3 × 20 mL). The combined organic fractions 

were washed with brine (10 mL), dried over Na2SO4 and concentrated in vacuo. Purification 

by flash chromatography (eluent: pentane: ether = 10:1) afforded the product 120a (190 mg, 

93%) as a white solid; mp.: 83.8-85.2 oC.  

1H NMR  (CDCl3, 300 MHz): 7.83 (d, J = 8.2 Hz, 2 H), 7.38 (d, J = 8.2 Hz, 2 H), 7.21 (s, 1 

H), 5.67-5.93 (m, 2 H), 4.85-5.20 (m, 2 H), 3.25-3.38 (m, 4 H), 2.47 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 155.6, 147.0, 146.2, 142.8, 138.8, 133.7, 133.11, 133.09, 130.2, 

128.1, 127.4, 119.0, 117.1, 37.1, 34.1, 21.7; 

IR  (KBr): 2978 (w), 1638 (m), 1597 (m), 1583 (m), 1542 (m), 1409 (s), 1422 (s), 1179 (s) 

cm-1; 

MS (EI, 70 ev): 407 (M+ (79Br), 30%), 252 (100%), 155 (54%), 91 (100%); 

HRMS (EI): calcd. for C18H18BrNO3S (M+, 79Br): 407.0191; Found: 407.0189 (M+, 79Br). 

 

Synthesis of toluene-4-sulfonic acid 4-allyl-6-bromo-2-(1-hydroxy-propyl)-pyridin-3-yl 

ester (112b) 

NBr

OTs

OH  RHJ130F 

The solution of propionaldehyde (0.60 mmol in 0.5 mL of THF) was added to the Grignard 

119 and the reaction mixture was warmed to 25 °C and quenched with saturated aqueous 

NH4Cl. The aqueous phase was extracted with diethyl ether (3 × 20 mL). The combined 

organic fractions were washed with brine (10 mL), dried over Na2SO4 and concentrated in 

vacuo. Purification by flash chromatography (eluent: pentane: ether = 1:1) afforded the 

product 112b (134 mg, 63%) as a colorless oil.  
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1H NMR  (CDCl3, 300 MHz): 7.83 (d, J = 8.2 Hz, 2 H), 7.39 (d, J = 8.2 Hz, 2 H), 7.28 (s, 1 

H), 5.65-5.84 (m, 1 H), 5.00-5.21 (m, 2 H), 4.40-4.53 (m, 1 H), 3.23-3.47 (m, 3 H), 2.46 (s, 

3), 1.43-1.71 (m, 1 H), 0.75 (t, J = 7.3 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 157.6, 147.6, 146.3, 141.3, 138.7, 133.0, 132.8, 130.2, 128.4, 

127.9, 119.1, 69.7, 34.0, 30.0, 21.7, 9.6; 

IR  (KBr): 3457 (vs), 2934 (s), 1641 (m), 1596 (s), 1584 (s), 1544 (s), 1166 (m) cm-1; 

MS (EI, 70 ev): 426(M+ (79Br), 0.5%), 398 (50%), 370 (9%), 240 (42%), 155 (100%), 91 

(93%); 

HRMS (EI): calcd. for C18H21BrNO4S (M++H): 426.0375; Found: 426.0350 (M++H). 

 

Synthesis of 4-[4-allyl-6-bromo-3-(toluene-4-sulfonyloxy)-pyridin-2-yl]-benzoic acid 

methyl ester (120c) 

NBr

OTs

COOMe  RHJ136F 

The solution of ZnBr2 (0.55 mL, 0.55 mmol, 1.0 M in THF) was added to Grignard reagent 

119 at -40 °C and warmed to 0 oC and stirred for 20 min. The solution of methyl 4-

iodobenzoate (144 mg, 0.55 mmol) in THF (0.5 mL), Pd(dba)2 (14.4 mg, 5 mol%) and tri (2-

furyl) phosphine (12 mg, 10 mol%) were added in and the reaction mixture was stirred 

overnight at room temperature then quenched as usual. The aqueous phase was extracted with 

diethyl ether (3 × 10 mL). The organic fractions were washed with brine (10 mL), dried over 

Na2SO4 and concentrated in vacuo. Purification by flash chromatography (pentane: ether = 

3:1) afforded the pure product 120c (151 mg, 60%) as a white solid, mp: 138.0-138.5 oC. 
1H NMR (CDCl3, 300 MHz): 7.70 (d, J = 8.2 Hz, 2 H), 7.41 (d, J = 8.2 Hz, 2 H), 7.17 (d, J = 

8.0 Hz, 2 H), 6.87 (d, J = 8.0 Hz, 2 H), 5.00-5.60 (m, 1 H), 5.11-5.30 (m, 2 H), 3.88 (s, 3 H), 

3.61 (d, J = 6.6 Hz, 2 H), 2.25 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 166.5, 152.3, 149.0, 145.6, 142.9, 139.8, 139.1, 133.1, 132.3, 

130.1, 129.5, 129.3, 129.0, 128.8, 127.9, 119.4, 52.2, 34.5, 21.5; 

IR (KBr): 3437 (vs), 1720 (vs), 1578 (m), 1540 (m), 1386 (s), 1282 (vs), 1176 (vs) cm-1; 

MS (EI, 70 ev): 503(M+ (81Br), 48%), 501 (47%), 348 (97%), 316 (75%), 208 (100%), 91 

(50%); 

HRMS (EI): calcd. for C23H20BrNO5S (M+, 79Br): 501.0246; Found: 501.0246 (M+, 79Br). 
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11. Highly Diastereoselective Synthesis of Homoallylic Alcohols Bearing Adjacent 

Quaternary Centers Using Trisubstituted Allylic Zinc Reagents 

 

Synthesis of 2-chloromethyl-6,6-dimethyl-bicyclo[3.1.1]hept-2-ene (128a) 

OH

CCl4, PPh3

reflux Cl  

Triphenylphosphine (36.680 g, 140.0 mmol) was slowly added to a solution of 3(-) myrtenol 

(15.200 g, 100.0 mmol) in carbon tetrachloride (140.0 mL) and the resulting mixture was 

refluxed for 5 h. After the mixture was cooled, the pentane (250.0 mL) was added in. The 

suspension was filtered off and washed with pentane (100.0 mL). The solvent was removed 

under vacuum. Distillation (40 oC/2.0 mmHg) of the oil provided the compound 128a (12.444 

g, 73%) as a colourless oil. [α]D
20 = -40 (c = 0.8, CH2Cl2). 

1 H NMR  (CDCl3, 600 MHz): 5.60 (s, 1 H), 3.94-4.01 (m, 2 H), 2.41 (dt, J1 = 8.8 Hz, J2 = 5.5 

Hz, 1 H), 2.20-2.32 (m, 3 H), 2.06-2.11 (m, 1 H), 1.29 (s, 3 H), 1.16 (d, J = 8.8 Hz, 1 H), 0.82 

(s, 3 H); 
13C NMR (CDCl3, 150 MHz): 144.1, 122.4, 48.6, 44.2, 40.4, 38.0, 31.5, 31.2, 26.0, 21.1; 

IR  (neat): 2919 (m), 1650 (w), 1469 (m), 1429 (m), 1366 (m), 1256 (s) cm-1; 

MS (EI, 70 ev): 172 (M+, 1%), 170 (3%), 126 (13%), 91 (100%), 79 (15%); 

HRMS (EI): calcd. for C10H15Cl (35Cl): 170.0862; found: 170.0849 (35Cl). 

 

Synthesis of 3-chloro-1-methyl-cyclohexene (128d + 128d’) 

OH
CCl4, PPh3

reflux

Cl

+
Cl

 

Triphenylphosphine (14.700 g, 56.0 mmol) was slowly added to a solution of 3-methyl-

cyclohex-2-enol (4.500 g, 40.0 mmol) in carbon tetrachloride (50.0 mL) and the resulting 

mixture was refluxed for 5 h. After the mixture was cooled, pentane (150.0 mL) was added in. 

The suspension was filtered off and washed with pentane (50.0 mL). The solvent was 

removed under vacuum. Distillation (40 oC/3.0 mmHg) of the oil provided the compound 

128d (3.130 g, 60%) as a colourless oil, as a ratio of 90: 10 mixture with 128d’. The mixture 

was used in the subsequent step without further purification. 
1H NMR  (CDCl3, 300 MHz): 5.50-5.60 (m, 1 H), 4.60-4.70 (m, 1 H), 1.80-2.10 (m, 6 H), 

1.68 (s, 3 H); 
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13C NMR (CDCl3, 75 MHz): 139.8, 122.6, 57.1, 32.0, 29.8, 23.7, 18.5; 

IR  (neat): 2934 (m), 1665 (m), 1444 (s), 1436 (w), 1222 (s) cm-1; 

MS (EI, 70 ev): 132 (M+ (37Cl), 9%), 130 (3%), 95 (100%), 79 (29%), 67 (28%). 

The spectral date is in accordance with that reported in the literature.135 

 

Preparation of 2-cyclohexenylzinc chloride (129b) 

Cl ZnClZn (5.0 equiv), LiCl (1.2 equiv)

THF, 0oC, 36 h, 84 %
 

Zinc dust 136(3.20 g, 50.0 mmol) and dry LiCl (500 mg, 12.0 mmol) were covered with dry 

THF (5.0 mL) and activated by addition of a few drops of 1,2-dibromoethane and TMSCl. A 

solution of 3-chloro-cyclohexene (1.17 g, 10.0 mmol) in THF (10.0 mL) was added in with 

syringe pump at 0 oC within 2 h. The resulting mixture was stirred under nitrogen at 0 oC for 

36 h. The zinc suspension was to be settled using centrifuge machine. The concentration and 

the yield were determined as follows:  

Element iodine (254 mg, 1.0 mmol) was placed into a dry 10 mL round-bottomed flask 

equipped with a magnetic stirrer bar and septum under nitrogen. Dry THF (5.0 mL) was 

added with syringe. The allylic zinc solution was added dropwise with syringe until the red 

colour disappeared. The volume of allylic zinc required can be noted and the following 

equation used to determine the molarity of the solution. 

Molarity of allylic zinc reagent = 1/volume of allylic zinc reagent 

The concentration of allylic zinc reagent: 0.60 mol/l; volume = 14.0 mL; yield: 84%. 

 

Preparation of 2-cyclopentylzinc chloride (129c) 

Cl ZnClZn (5.0 equiv), LiCl (1.2 equiv)

THF, -10 oC, 40 h, 58 %  

Zinc dust (3.20 g, 50.0 mmol) and dry LiCl (500 mg, 12.0 mmol) were covered with dry THF 

(5.0 mL) and activated by addition of a few drops of 1, 2-dibromoethane and TMSCl. A 

solution of 3-chloro-cyclopentene (1.03 g, 10.0 mmol) in THF (10.0 mL) was added in with 

syringe pump at -10 oC within 2 h. The resulting mixture was stirred under nitrogen at -10 oC 

                                                 
135 T. Carrillo-Marquez, L. Caggiano, R. F. W. Jackson, U. Grabowska, A. Rae, M. J. Tozer, Org. Biomol. 
Chem., 2005, 3, 4117. 
136 From Aldrich. 
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for 40 h. The zinc suspension was to be settled using centrifuge machine. The concentration 

and the yield were determined as the method shown above.  

The concentration of allylic zinc reagent: 0.40 mol/l; volume = 14.5 mL; yield: 58%. 

Preparation of 1-methyl-1-cyclohexenylzinc chloride (129d) 

Cl
ZnClZn (5.0 equiv), LiCl (1.2 equiv)

THF, -10 oC, 12 h, 55 %
Me

MeCl
Me

+

 

Zinc dust (3.20 g, 50.0 mmol) and dry LiCl (500 mg, 12.0 mmol) were covered with dry THF 

(5.0 mL) and activated by addition of a few drops of 1,2-dibromoethane and TMSCl. A 

solution of 3-chloro-1-methyl-cyclohexene (mixture of 3-chloro-1-methyl-cyclohexeneand 3-

chloro-3-methyl-cyclohexene, 1.30 g, 10.0 mmol) in THF (10.0 mL) was added in with 

syringe pump at -10 oC within 2 h. The resulting mixture was stirred under nitrogen at -10 oC 

for 12 h. The zinc suspension was to be settled using centrifuge machine. The concentration 

and the yield were determined as the method shown above.  

The concentration of allylic zinc reagent: 0.38 mol/l; volume = 14.5 mL; yield: 55%. 

 

Preparation of 2-methyl-6,6-dimethyl-bicyclo[3.1.1]hept-2-enylzinc chloride (129a) 

Me

Me

Cl Me

Me

ZnCl

Zn (2.5 equiv), LiCl (1.2 equiv)

THF, rt , 30 h, 80%  

Zinc dust (1.600 g, 25.0 mmol) and dry LiCl (500 mg, 12.0 mmol) were covered with dry 

THF (5.0 mL) and activated by addition of a few drops of 1, 2-dibromoethane and TMSCl. A 

solution of 2-chloromethyl-6, 6-dimethyl-bicyclo[3.1.1]hept-2-ene (1.710 g, 10.0 mmol) in 

THF (10.0 mL) was added in with syringe pump at room temperature within 2 h. The 

resulting mixture was stirred under nitrogen at room temperature for 40 h. The zinc 

suspension was to be settled using centrifuge machine. The concentration and the yield were 

determined as the method shown above.  

 

Synthesis of cyclohex-2-enyl-phenyl-methanol (130a) 

OH

H
RHJ142I 

It was prepared from benzaldehyde (106 mg, 1.0 mmol) and 2-cyclohexenylzinc chloride 

129b (1.2 mmol) according to TP7. Purification by flash chromatography (eluent: pentane: 
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ether = 10: 1) provided the pure compound 130a (179 mg, 95%) as a colourless oil. dr = 

90:10. 
1H NMR  (CDCl3, 300 MHz): 7.20-7.40 (m, 5 H), 5.71-5.87 (m, 1 H), 5.29-5.42 (m, 1 H), 

4.54 (d, J = 6.2 Hz, 1 H), 2.40-2.56 (m, 1 H), 2.04 (s, 1 H), 1.91-2.04 (m, 2 H), 1.64-1.80 (m, 

2 H), 1.41-1.60 (m, 2 H); 
13C NMR (CDCl3, 75 MHz): 143.2, 130.5, 128.4, 128.3, 127.6, 126.8, 77.6, 43.2, 25.5, 24.2, 

21.4; 

IR  (neat): 3372 (s), 2925 (m), 1493 (m), 1451 (m), 1015 (m) cm-1; 

MS (EI, 70 ev): 188 (M+, 1%), 107 (100%), 79 (43%); 

HRMS (EI): calcd. for C13H15O (M+-H): 187.1123; found: 187.1144 (M+-H). 

 

Synthesis of (1-methyl-cyclohex-2-enyl)-phenyl-methanol (130b) 

OH

H3C
 RHJ154I 

It was prepared from benzaldehyde (106 mg, 1.0 mmol) and 1-methyl-1-cyclohexenylzinc 

chloride (1.2 mmol) according to TP7. Purification by flash chromatography (eluent: pentane: 

ether = 4: 1) provided the pure compound 130b (198 mg, 98%) as a colourless oil. dr > 97:3. 
1H NMR  (CDCl3, 300 MHz): 7.25-7.36 (m, 5 H), 5.86 (dt, J1 = 10.2 Hz, J2 = 3.7 Hz, 1 H), 

5.49 (d, J = 10.2 Hz, 1 H), 4.48 (d, J = 2.2 Hz, 1 H), 1.99 (d, J = 2.2 Hz, 1 H), 1.91-1.98 (m, 2 

H), 1.81-1.91 (m, 1 H), 1.47-1.76 (m, 2 H), 1.17-1.27 (m, 1 H), 0.93 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 140.6, 133.7, 129.4, 127.9, 127.4, 127.2, 80.8, 40.4, 29.7, 25.1, 

23.7, 18.8; 

IR  (neat): 3439 (w), 2930 (m), 1493 (w), 1452 (m), 1186 (m), 1022 (s) cm-1; 

MS (EI, 70 ev): 184 (M+-H2O, 0.5%), 107 (100%), 96 (85%), 79 (59%), 67 (13%); 

HRMS (EI): calcd. for C14H17 (M
+-OH): 185.1330; found: 185.1345 (M+-OH). 

 

Synthesis of cyclohex-2-enyl-methanol (130c) 

OH

 

It was prepared from formaldehyde (30 mg, 1.0 mmol) and cyclohexenylzinc chloride (1.2 

mmol) according to TP7. Purification by flash chromatography (eluent: pentane: ether = 4: 1) 

provided the pure compound 130c (100 mg, 89%) as a colourless oil 
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1H NMR  (CDCl3, 300 MHz) 5.75-5.81 (m, 1 H), 5.53-5.59 (m, 1 H), 3.49 (dd, J1 = 6.3 Hz, J2 

= 1.2 Hz, 2 H), 2.22-2.31 (m, 1 H), 1.92-2.00 (m, 2 H), 1.66-1.79 (m, 3 H), 1.46-1.58 (m, 1 

H), 1.32-1.41 (m, 1 H); 
13C NMR (CDCl3, 75 MHz): 129.5, 127.7, 67.0, 38.2, 25.5, 25.2, 20.9; 

IR (neat): 3310 (bs), 2922 (s), 1447 (w), 1434 (w) cm-1; 

MS (EI, 70 ev): 112 (M+, 2%), 94 (43%), 81 (100%), 77 (8%); 

HRMS (EI): calcd. for C7H12O: 112.0888; found: 112.0894. 

 

Synthesis of (2-amino-5-chloro-phenyl)-cyclohex-2-enyl-methanol (130d) 

OH

H

NH2

Cl  RHJ042J 

It was from 2-amino-5-chloro-benzaldehyde (156 mg, 1.0 mmol) and 2-cyclohexenylzinc 

chloride (1.2 mmol) according to TP7. Purification by flash chromatography (eluent: pentane: 

ether = 1: 1) provided the pure compound 130d (213 mg, 90%) as a white solid, mp.: 112.0-

112.5 oC. dr > 99:1 (determined by 1H NMR). 
1H NMR  (CDCl3, 300 MHz): 6.97-7.08 (m, 2 H), 6.55 (d, J = 8.8 Hz, 1 H), 5.72-5.83 (m, 1 

H), 5.17-5.29 (m, 1 H), 4.43 (d, J = 7.9 Hz, 1 H), 3.00-4.31 (bs, 2 H), 2.61-2.74 (m, 1 H), 

1.94-2.05 (m, 2 H), 1.69-1.93 (m, 2 H), 1.45-1.65 (m, 2 H); 
13C NMR (CDCl3, 75 MHz): 143.2, 130.4, 128.2, 128.00, 127.97, 127.5, 122.8, 117.9, 76.7, 

39.6, 25.2, 24.9, 20.7; 

IR  (neat): 3384 (m), 3357 (m), 3162 (m), 1487 (s), 1420 (m), 1200 (m) cm-1; 

MS (EI, 70 ev): 219 (M+-H2O, 100%), 191 (91%), 164 (48%), 140 (79%), 77 (29%); 

HRMS (EI): calcd. for C13H15ClNO (M+-H): 236.0842; found: 236.0852 (M+-H). 

 

Synthesis of 2,2-Dimethyl-1-(1-methyl-cyclohex-2-enyl)-propan-1-ol (130e) 

t-Bu

OH

H RHJ147I 

It was prepared from pivaldehyde (86 mg, 1.0 mmol) and 2-cyclohexenylzinc chloride (1.2 

mmol) according TP7. Purification by flash chromatography (eluent: pentane: ether = 10: 1) 

provided the pure compound 130e (270 mg, 96%) as a colourless oil. dr = 78 : 32. 
1H NMR  (CDCl3, 300 MHz): 5.84-5.94 (m, 1 H), 5.60-5.70 (m, 1 H), 3.06 (dd, J1 = 6.2 Hz, J2 

= 1.8 Hz, 1 H), 2.41-2.60 (m, 1 H), 1.31-2.07 (m, 7 H), 0.91 (s, 9 H). The following signals 
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are discernible for the minor isomer: 5.79-5.89 (m, 1 H), 5.37-5.50 (m, 1 H), 3.25 (t, J = 3.1 

Hz, 1 H), 2.40-2.55 (m, 1 H), 1.31-2.07 (m, 7 H), 0.94 (s, 9 H). 
13C NMR (CDCl3, 75 MHz): 132.1, 162.4, 82.9, 36.3, 36.0, 30.4, 26.4, 25.0, 21.2. The 

following signals are discernible for the minor isomer: 131.6, 130.3, 82.0, 38.6, 35.3, 27.1, 

24.7, 22.9, 21.9. 

IR  (neat): 3479 (m), 2952 (s), 2931 (s), 1479 (m), 1362 (m), 1090 (m) cm-1; 

MS (EI, 70 ev): 168 (M, < 1%), 150 (< 1%), 111 (28%), 87 (100%), 67 (79%); 

HRMS (EI): calcd. for C11H19 (M
+-OH): 151.1487; found: 151.1492 (M+-OH). 

 

Synthesis of 1-(4-bromo-phenyl)-1-cyclohex-2-enyl-ethanol (130f) 

OHH3C

H
Br  RHJ138I 

It was prepared from 4-bromoacetophenone (199 mg, 1.0 mmol) and 2-cyclohexenylzinc 

chloride (1.2 mmol) according TP7. Purification by flash chromatography (eluent: pentane: 

ether = 6: 1) provided the pure compound 130f (270 mg, 96%) as a colourless oil. dr > 99:1. 
1H NMR  (CDCl3, 400 MHz): 7.42 (d, J = 8.4 Hz, 2 H), 7.28 (d, J = 8.4 Hz, 2 H), 5.85-5.97 

(m, 1 H), 5.74 (d, J = 10.2 Hz, 1 H), 2.43-2.54 (m, 1 H), 1.87-2.00 (m, 2 H), 1.82 (s, 1 H), 

1.63-1.76 (m, 1 H), 1.55 (s, 3 H), 1.33-1.45 (m, 2 H), 1.14-1.28 (m, 1 H); 
13C NMR (CDCl3, 100 MHz): 146.1, 132.0, 130.9, 127.1, 125.9, 120.2, 75.7, 46.4, 27.9, 25.1, 

24.2, 21.8; 

IR (neat): 3440 (m), 2929 (m), 1589 (w), 1485 (m), 1394 (m), 1076 (s) cm-1; 

MS (EI, 70 ev): 280 (M+ (79Br), 0.05%), 201(100%), 199 (100%), 183 (7%); 

HRMS (EI): calcd. for C14H16Br (M+(79Br)-OH): 263.0435; found: 263.0438 (M+(79Br)-OH). 

 

Synthesis of 4-(1-cyclohex-2-enyl-1-hydroxy-ethyl)-benzonitrile (130g) 

OHH3C

H
NC  RHJ152I 

It was prepared from 4-acetylbenzonitrile (145 mg, 1.0 mmol) and 2-cyclohexenylzinc 

chloride (1.2 mmol) according to TP7. Purification by flash chromatography (eluent: pentane: 

ether = 2: 1) provided the pure compound 130g (220 mg, 97%) as a colourless oil. dr > 99:1. 
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1H NMR  (CDCl3, 300 MHz): 7.55 (d, J = 8.3 Hz, 2 H), 7.49 (d, J = 8.3 Hz, 2 H), 5.86-5.94 

(m, 1 H), 5.72 (d, J = 10.5 Hz, 1 H), 2.43-2.53 (m, 1 H), 2.08 (s, 1 H), 1.84-1.94 (m, 2 H), 

1.59-1.69 (m, 1 H), 1.54 (s, 3 H), 1.05-1.44 (m, 3 H); 
13C NMR (CDCl3, 75 MHz): 152.5, 132.3, 131.6, 126.0, 125.2, 118.8, 109.9, 75.7, 46.1, 27.8, 

24.9, 24.1, 21.5; 

IR  (neat): 3481 (m), 2931 (m), 2227 (m), 1606 (m), 1372 (m) cm-1; 

MS (EI, 70 ev): 227 (0.5%), 146 (100%), 130 (8%), 102 (7%); 

HRMS (EI): calcd. for C15H18NO (M++H): 228.1388; found: 228.1388 (M++H). 

 

Synthesis of 1-cyclohex-2-enyl-1-(5-iodo-furan-2-yl)-propan-1-ol (130h) 

OHH2C

H

O
I

CH3

 RHJ183I 

It was prepared from 1-(5-iodo-furan-2-yl)-propan-1-one (250 mg, 1.0 mmol) and 2-

cyclohexenylzinc chloride (1.2 mmol) according to TP7. Purification by flash 

chromatography (eluent: pentane: ether = 5: 1) provided the pure compound 130h (316 mg, 

95%) as a colourless oil. dr > 99:1. 
1H NMR  (CDCl3, 600 MHz): 6.43 (d, J = 3.4 Hz, 1 H), 6.14 (d, J = 3.4 Hz, 1 H), 5.80-5.86 

(m, 1 H), 5.69-5.75 (m, 1 H), 2.54-2.60 (m, 1 H), 1.89-1.96 (m, 2 H), 1.86 (q, J = 7.5 Hz, 2 

H), 1.84 (s, 1 H), 1.68-1.74 (m, 1 H), 1.40-1.52 (m, 2 H), 1.25-1.32 (m, 1 H), 0.79 (t, J = 7.5 

Hz, 3 H); 
13C NMR (CDCl3, 150 MHz): 163.4, 130.9, 125.8, 120.6, 109.6, 85.3, 77.1, 44.3, 30.4, 25.0, 

24.1, 21.9, 7.8; 

IR  (neat): 3464 (m), 2932 (m), 1486 (m), 1456 (m), 1095 (s) cm-1; 

MS (EI, 70 ev): 314 (M+-H2O, 2%), 251 (100%), 221 (6%), 81 (9%); 

HRMS (ESI): calcd. for C14H18IO4 ([M+FA-H] -): 377.0250; found: 377.0269 ([M+FA-H]-); 

                        calcd. for C15H20IO4 ([M+FA-H] -): 391.0406; found: 391.0429 ([M+FA-H]-). 

 

Synthesis of allylic alcohol 130i 
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H

HO CH3
O

O
S

O

O

Cl

Cl

S
OO

Cl

Cl

RHJ078J 

It was prepared from 3,5-bis(2,4-dichloro-benzenesulfonate)-acetophenone137 (570 mg, 1.0 

mmol) and 2-cyclohexenylzinc chloride (1.2 mmol) according to TP7. Purification by flash 

chromatography (eluent: pentane: ether = 6: 1) provided the pure compound 130i (600 mg, 

92%) as a white solid, mp.: 149.6-150.8 oC. dr > 99:1. 
1H NMR  (CDCl3, 300 MHz): 7.78 (d, J = 2.6 Hz, 2 H), 7.53 (s, 4 H), 7.03 (d, J = 2.6 Hz, 2 

H), 6.85 (t, J = 2.6 Hz, 1 H), 5.85-5.96 (m, 1 H), 5.59 (d, J = 10.6 Hz, 1 H), 2.14-2.29 (m, 1 

H), 1.50-2.00 (m, 4 H), 1.41 (s, 3 H), 1.19-1.36 (m, 1 H), 0.73-0.97 (m, 2 H); 
13C NMR (CDCl3, 75 MHz): 151.2, 149.0, 135.2, 134.1, 133.4, 133.3, 133.0, 132.1, 131.5, 

124.7, 118.3, 114.5, 75.3, 46.2, 27.9, 25.0, 24.0, 21.7; 

IR (neat): 3559 (m), 2930 (s), 1612 (w), 1588 (s), 1452 (s), 1434, 1394, 1384 cm-1; 

MS (EI, 70 ev): 634 (M+-H2O, 0.5%), 571 (100%), 360 (20%), 145 (30%); 

Anal. Calcd for C26H22Cl4O7S2: C, 47.87; H, 3.40; 

Found:                                        C, 47.76; H, 3.46. 

 

Synthesis of ferrocene allylic alcohol 130j 

Fe H

OHH3C

RHJ151I 

It was prepared from acetylferrocene (228 mg, 1.0 mmol) and 2-cyclohexenylzinc chloride 

(1.2 mmol) according TP7. Purification by flash chromatography (eluent: pentane: ether = 10: 

1) provided the pure compound 130j (288 mg, 93%) as a red solid, mp.: 83.1-84.4 oC. dr > 

99:1. 

                                                 
137 Prepared from 3,5-dihydroxyacetophenone and 2,5-dichlorobenzenesulfonylchloride as usual. 
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1H NMR (C6D6, 400 MHz): 5.81-5.88 (m, 1 H), 5.67-5.75 (m, 1 H), 4.24-4.29 (m, 1 H), 3.99 

(s, 5 H), 3.89-3.92 (m, 2 H), 3.86-3.88 (m, 1 H), 2.46-2.56 (m, 1 H), 2.09 (s, 1 H), 1.94-2.03 

(m, 1 H), 1.76-1.85 (m, 2 H), 1.60-1.70 (m, 1 H), 1.49 (s, 3 H), 1.32-1.52 (m, 2 H); 
13C NMR (C6D6, 100 MHz): 128.7, 128.6, 68.6, 68.5, 68.1, 67.6, 66.1, 47.8, 25.9, 25.5, 25.2, 

22.6; 

IR (film): 3545 (m), 2926 (m), 1446 (m), 1369 (m), 1318 (s) cm-1; 

MS (EI, 70 ev): 292 (M+-H2O, 100%), 275 (10%), 225 (11%), 166 (9%), 121 (12%); 

HRMS (EI): calcd. for C18H20Fe (M+-H2O): 292.0914; found: 292.0906 (M+-H2O). 

 

Synthesis of 1-cyclohex-2-enyl-6-methoxy-1,2,3,4-tetrahydro-naphthalen-1-ol (130k) 

H3CO

H

OH

 RHJ139I 

It was prepared from 6-methoxy-3, 4-dihydro-2H-naphthalen-1-one (176 mg, 1.0 mmol) and 

2-cyclohexenylzinc chloride (1.2 mmol) according to TP7. Purification by flash 

chromatography (eluent: pentane: ether = 3: 1) provided the pure compound 130k (250 mg, 

97%) as a colourless oil. dr > 97:3. 
1H NMR  (CDCl3, 400 MHz): 7.45 (d, J = 8.6 Hz, 1 H), 6.76 (dd, J1 = 8.6 Hz, J2 = 2.7 Hz, 1 

H), 6.59 (d, J = 2.7 Hz, 1 H), 5.57-5.67 (m, 1 H), 4.97-5.06 (m, 1 H), 3.76 (s, 3 H), 2.84-2.93 

(m, 1 H), 2.55-2.75 (m, 2 H), 1.65-2.08 (m, 9 H), 1.44-1.62 (m, 2 H); 
13C NMR (CDCl3, 100 MHz): 158.2, 139.7, 133.4, 128.9, 128.4, 127.8, 113.0, 112.7, 73.7, 

55.0, 46.4, 33.1, 30.7, 25.3, 23.4, 22.3, 19.3; 

IR  (neat): 3446 (m), 2928 (s), 1607 (s), 1498 (s), 1253 (s) cm-1; 

MS (EI, 70 ev): 240 (M+-H2O, 100%), 225 (9%), 211 (22%), 199 (33%), 159 (24%); 

HRMS (EI): calcd. for C17H20O (M+-H2O): 240,1514; found: 240.1520 (M+-H2O). 

 

Synthesis of 1-cyclohex-2-enyl-2-methyl-1-phenyl-propan-1-ol (130l) 

OH

H
 RHJ041J 

It was prepared from 2-methyl-1-phenyl-propan-1-one (148 mg, 1.0 mmol) and 2-

cyclohexenylzinc chloride (1.2 mmol) according to TP7. This reaction was carried out at -30 
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oC for 12 h. Purification by flash chromatography (eluent: pentane: ether = 100: 1) provided 

the pure compound 130l (216 mg, 94%) as a colourless oil. dr > 99:1. 
1H NMR  (CDCl3, 300 MHz): 7.22-7.47 (m, 5 H), 5.86-6.00 (m, 2 H), 2.85-3.05 (m, 1 H), 

2.27-2.42 (m, 1 H), 1.83-2.03 (m, 2 H), 1.69-1.80 (m, 1 H), 1.63 (s, 1 H), 1.42-1.60 (m, 2 H), 

1.17-1.33 (m, 1 H), 0.91 (d, J = 7.0 Hz, 3 H), 0.83 (d, J = 7.0 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 142.2, 131.3, 127.2, 126.6, 126.4, 126.1, 80.4, 41.6, 34.7, 25.2, 

24.4, 22.2, 17.6, 16.8; 

IR  (neat): 3568 (w), 2933 (m), 1494 (w), 1468 (m), 1445 (m) cm-1; 

MS (EI, 70 ev): 213 (M+-OH, 1%), 187 (8%), 149 (100%), 105 (79%); 

HRMS (EI): calcd. for C16H20 (M
+-H2O): 212.1565; found: 212.1574 (M+-H2O). 

 

Synthesis of 1-(4-bromo-phenyl)-1-cyclopent-2-enyl-ethanol (130m) 

H

OHH3C

Br   RHJ165I 

It was prepared from 4-bromoacetophenone (199 mg, 1.0 mmol) and 2-cyclopentylzinc 

chloride (1.2 mmol) according to TP7. Purification by flash chromatography (eluent: pentane: 

ether = 10: 1) provided the pure compound 130m (260 mg, 97%) as a colourless oil. dr > 

99:1. 
1 H NMR  (CDCl3, 300 MHz): 7.43 (d, J = 7.9 Hz, 2 H), 7.31 (d, J = 7.9 Hz, 2 H), 5.95-6.00 

(m, 1 H), 5.71-5.76 (m, 1 H), 3.12-3.21 (m, 1 H), 2.14-2.35 (m, 2 H), 1.74 (s, 1 H), 1.44-1.69 

(m, 5 H); 
13C NMR (CDCl3, 75 MHz): 146.5, 135.8, 130.9, 129.4, 127.0, 120.2, 75.5, 57.2, 32.3, 29.1, 

24.7; 

IR  (neat): 3458 (m), 2971 (m), 1611 (m), 1486 (s), 1075 (vs) cm-1; 

MS (EI, 70 ev): 251 (M+ (81Br)-OH, 1%), 249 (M+ (79Br)-OH, 1%), 201 (100%), 183 (9%); 

HRMS (EI): calcd. for C13H14Br (M+(79Br)-OH): 249.0279; found: 249.0282 (M+(79Br)-OH). 

 

Synthesis of 1-cyclopent-2-enyl-1-naphthalen-2-yl-ethanol (130n) 

H

OHH3C

 RHJ163I 
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It was prepared from 1-naphthalen-2-yl-ethanone (170 mg, 1.0 mmol) and 2-cyclopentylzinc 

chloride (1.2 mmol) according to TP7. Purification by flash chromatography (eluent: pentane: 

ether = 6: 1) provided the pure compound 130n (236 mg, 99%) as a colourless oil. dr > 99:1. 
1 H NMR  (CDCl3, 300 MHz): 7.96 (s, 1 H), 7.80-7.87 (m, 3 H), 7.55 (dd, J1 = 8.8 Hz, J2 = 

1.8 Hz, 1 H), 7.42-7.50 (m, 2 H), 5.99-6.03 (m, 1 H), 5.80-5.85 (m, 1 H), 3.32-3.41 (m, 1 H), 

2.17-2.40 (m, 2 H), 1.90 (s, 1 H), 1.65 (s, 3 H), 1.58-1.68 (m, 2 H); 
13C NMR (CDCl3, 75 MHz): 144.9, 135.5, 133.1, 132.1, 129.7, 128.1, 127.6, 127.4, 125.9, 

125.5, 123.8, 123.5, 75.9, 57.1, 32.3, 29.1, 24.8; 

IR  (neat): 3456 (m), 2969 (m), 1600 (w), 1505 (m), 1125 (m), 817 (s) cm-1; 

MS (EI, 70 ev): 238 (M+, 1%), 220 (23%), 205 (10%), 171 (100%), 155 (25%); 

HRMS (EI): calcd. for C17H18O: 238.1358; found: 238.1322. 

 

Synthesis of 1-cyclopent-2-enyl-1-phenyl-propan-1-ol (130o) 

H

OHH3C

 RHJ169I 

It was prepared from 1-phenyl-propan-1-one (134 mg, 1.0 mmol) and 2-cyclopentylzinc 

chloride (1.2 mmol) according to TP7. Purification by flash chromatography (eluent: pentane: 

ether = 10: 1) provided the pure compound 130o (200 mg, 99%) as a colourless oil. dr > 99:1. 
1 H NMR  (CDCl3, 300 MHz): 7.36-7.41 (m, 2 H), 7.28-7.34 (m, 2 H), 7.17-7.23 (m, 1 H), 

5.97-6.02 (m, 1 H), 5.80-5.86 (m, 1 H), 3.20-3.35 (m, 1 H), 2.10-2.38 (m, 2 H), 1.80-2.00 (m, 

2 H), 1.44-1.66 (m, 2 H), 1.54 (s, 1 H), 0.68 (t, J = 7.5 Hz, 3 H); 
13C NMR (CDCl3, 75 MHz): 144.9, 135.8, 129.5, 127.7, 126.0, 125.8, 78.5, 56.6, 34.2, 32.1, 

24.8, 7.9; 

IR  (neat): 3569 (m), 2934 (m), 1494 (m), 1446 (m), 1169 (m), 964 (m), 751 (s) cm-1; 

MS (EI, 70 ev): 184 (M+, < 1%), 135 (100%), 105 (12%), 77 (9%), 57 (33%); 

HRMS (EI): calcd. for C14H17 (M
+-OH): 185.1330; found: 185.1305 (M+-OH). 

 

Synthesis of (1-methyl-cyclohex-2-enyl)-[1-(toluene-4-sulfonyl)-1H-indol-3-yl]-methanol 

(130p) 

Me

OH
Ts
N

RHJ186I 
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It was prepared from 1-(toluene-4-sulfonyl)-1H-indole-3-carbaldehyde (299 mg, 1.0 mmol) 

and 1-methyl-1-cyclohexenylzinc chloride (1.2 mmol) according to TP7. Purification by flash 

chromatography (eluent: pentane: ether = 2: 1) provided the pure compound 130p (345 mg, 

87%) as a white solid, mp.: 117.5-119.0 oC. dr = 95:5. 
1H NMR  (CDCl3, 600 MHz): 7.95 (d, J = 8.4 Hz, 1 H), 7.72 (d, J = 8.4 Hz, 2 H), 7.58 (d, J = 

7.9 Hz, 1 H), 7.53 (s, 1 H), 7.26 (dt, J1 = 7.7 Hz, J2 = 1.3 Hz, 1 H), 7.15-7.21 (m, 3 H), 5.82-

5.87 (m, 1 H), 5.40 (d, J = 10.1 Hz, 1 H), 4.76 (d, J = 1.8 Hz, 1 H), 2.31 (s, 3 H), 1.88-2.00 

(m, 3 H), 1.79-1.87 (m, 1 H), 1.63-1.71 (m, 1 H), 1.50-1.58 (m, 2 H), 1.25-1.32 (m, 1 H), 0.96 

(s, 3 H); 
13C NMR (CDCl3, 150 MHz): 144.8, 135.2, 134.8, 133.2, 130.5, 129.9, 129.8, 126.8, 124.5, 

124.4, 123.0, 122.9, 121.1, 113.5, 74.4, 40.9, 30.2, 25.1, 23.8, 21.5, 19.0; 

IR  (neat): 3562 (w), 2930 (w), 1598 (w), 1446 (m), 1363 (m), 1166 (s) cm-1; 

MS (EI, 70 ev): 395 (M+, <1%), 300 (100%), 155 (28%), 91 (39%); 

HRMS (ESI): calcd. for C24H26NO5S ([M+FA-H]-): 440.1532; found: 440.1541 ([M+FA-H]-

). 

 

Synthesis of 1-(1-methyl-cyclohex-2-enyl)-1-naphthalen-2-yl-ethanol (130q) 

H3C

OHH3C

 RHJ167I 

It was prepared from 1-naphthalen-2-yl-ethanone (170 mg, 1.0 mmol) and 1-methyl-1-

cyclohexenylzinc chloride (1.2 mmol) according to TP7. Purification by flash 

chromatography (eluent: pentane: ether = 8: 1) provided the pure compound 130q (263 mg, 

99%) as a colourless oil. dr > 99:1. 
1 H NMR  (CDCl3, 300 MHz): 7.96 (s, 1 H), 7.77-7.89 (m, 3 H), 7.68 (dd, , J1 = 8.8 Hz, J2 = 

1.8 Hz, 1 H), 7.43-7.51 (m, 2 H), 5.81-5.94 (m, 2 H), 2.07 (s, 1 H), 1.85-1.98 (m, 3 H), 1.75 

(s, 3 H), 1.42-1.72 (m, 2 H), 1.11 (s, 3 H), 1.02-1.11 (m, 1 H); 
13C NMR (CDCl3, 75 MHz): 142.8, 132.6, 132.1, 131.9, 130.0, 128.2, 127.2, 126.2, 125.9, 

125.8, 125.6, 125.5, 78.4, 43.0, 30.8, 25.3, 24.9, 23.4, 19.5; 

IR (neat): 3470 (w), 2936 (m), 1599 (w), 1374 (m), 1125 (m), 819 (s) cm-1; 

MS (EI, 70 ev): 248 (M+-H2O, 1%), 171 (100%), 155 (15%), 177 (23%); 

HRMS (EI): calcd. for C19H21 (M
+-OH): 249.1643; found: 249.1639 (M+-OH). 

 

Synthesis of 1-(4-bromo-phenyl)-1-(1-methyl-cyclohex-2-enyl)-ethanol (130r) 
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H3C

OHH3C

Br  RHJ155I 

It was prepared from 4-bromoacetophenone (199 mg, 1.0 mmol) and 1-methyl-1-

cyclohexenylzinc chloride (1.2 mmol) according to TP7. Purification by flash 

chromatography (eluent: pentane: ether = 10: 1) provided the pure compound 130r (292 mg, 

99%) as a colourless oil. dr > 98:2. 
1 H NMR  (CDCl3, 300 MHz): 7.40 (d, J = 8.8 Hz, 2 H), 7.31 (d, J = 8.8 Hz, 2 H), 5.81-5.87 

(m, 1 H), 5.67-5.72 (m, 1 H), 1.93 (s, 1 H), 1.78-1.93 (m, 2 H), 1.59-1.77 (m, 2 H), 1.56 (s, 3 

H), 1.36-1.53 (m, 1 H), 0.98 (s, 3 H), 0.93-1.92 (m, 1 H); 
13C NMR (CDCl3, 75 MHz): 144.2, 131.5, 130.3, 130.1, 129.0, 120.5, 78.0, 42.7, 30.6, 25.0, 

24.9, 23.2, 19.4; 

IR  (neat): 3476 (m), 2937 (m), 1589 (w), 1486 (s), 1368 (m), 1076 (s) cm-1; 

MS (EI, 70 ev): 276 (M+-H2O, 0.5%), 201 (81Br, 100%), 199 (79Br, 100%), 185 (9%), 95 

(21%); 

HRMS (EI): calcd. for C15H18Br (M+ (79Br)-OH): 277.0592; found: 277.0589 (M+ (79Br)-

OH). 

 

1-(4-Bromo-phenyl)-1-(1-methyl-cyclohex-2-enyl)-ethanol (130r’) 

H3C

MeHO

Br RHJ086J 

The solution of CH3MgCl (0.44 mL, 2.5 M in THF) was added to the solution of ketone 132 

(200 mg, 1.0 mmol) in THF (2.0 mL) at -20 oC and the resulting mixture was stirred overnight 

at this temperature. Quenched as usual and purification by flash chromatography (eluent: 

pentane: ether = 10: 1) provided the starting material ketone 132 (60 mg) and pure desired 

compound 130r’ (184 mg, 90%) as a colourless oil. dr = 80:20. 
1 H NMR  (CDCl3, 400 MHz): 7.40 (d, J = 8.6 Hz, 2 H), 7.28 (d, J = 8.8 Hz, 2 H), 5.75-5.82 

(m, 1 H), 5.47-5.53 (m, 1 H), 1.42-2.00 (m, 6 H) 1.52 (s, 3 H),1.29-1.36 (m, 1 H), 0.93 (s, 3 

H). The following signals are discernible for the minor isomer: 5.81-5.87 (m, 1 H), 5.67-5.72 

(m, 1 H), 1.56 (s, 3 H), 0.98 (s, 3 H). 
13C NMR (CDCl3, 100 MHz): 144.9, 131.8, 130.8, 130.0, 129.2, 128.95, 120.4, 78.2, 42.7, 

24.8, 24.6, 22.8, 19.3. The following signals are discernible for the minor isomer: 144.2, 

131.5, 130.3, 130.1, 129.0, 120.5, 78.0, 42.7, 30.6, 25.0, 24.9, 23.2, 19.4. 
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IR  (neat): 3471 (m), 2914 (s), 1729 (s), 1486 (m), 1471 (m), 1392 (m) cm-1; 

MS (EI, 70 ev): 276 (M+-H2O, 0.5%), 201 (81Br, 100%), 199 (79Br, 100%), 185 (9%), 95 

(21%); 

HRMS (EI): calcd. for C15H17Br (M+ (79Br)-H2O): 276.0514; found: 276.0519 (M+ (79Br)-

H2O). 

 

Synthesis of 1-[4-(1-cyclohex-2-enyl-1-hydroxy-ethyl)-phenyl]-2,2-dimethyl-propan-1-

one (130s) 

OHH3C

H

O  RHJ048J 

It was prepared from 1-(4-acetyl-phenyl)-2, 2-dimethyl-propan-1-one (204 mg, 1.0 mmol) and 

2-cyclohexenylzinc chloride (1.2 mmol) according to TP7. Purification by flash 

chromatography (eluent: pentane: ether = 6: 1) provided the pure compound 130s (260 mg, 

91%) as a colourless oil. dr > 99:1. 
1H NMR  (CDCl3, 300 MHz): 7.68 (d, J = 8.5 Hz, 2 H), 7.43 (d, J = 8.5 Hz, 2 H), 5.87-5.96 

(m, 1 H), 5.71-5.81 (m, 1 H), 2.45-2.58 (m, 1 H), 1.86-2.00 (m, 2 H), 1.80 (s, 1 H), 1.59-1.74 

(m, 1 H), 1.58 (s, 3 H), 1.12-1.47 (m, 3 H), 1.34 (s, 9 H); 
13C NMR (CDCl3, 75 MHz): 208.6, 150.2, 136.3, 132.2, 127.9, 125.8, 124.9, 76.0, 46.3, 44.1, 

28.1, 28.0, 25.1, 24.2, 21.8; 

IR  (neat): 3486 (bs, m), 2930 (s), 1668 (vs), 1604 (s), 1276 (s) cm-1; 

MS (EI, 70 ev): 287 (M++H, 0.5%), 269 (0.5%), 229 (8%), 205 (100%), 148 (19%); 

HRMS (EI): calcd. for C19H24O (M+-H2O): 268.1827; found: 268.1845 (M+-H2O). 

 

Synthesis of 4-(1-cyclopent-2-enyl-1-hydroxy-ethyl)-benzoic acid methyl ester (130t) 

H

OHH3C

MeO2C  RHJ162I 

It was prepared from 4-acetyl-benzoic acid methyl ester (178 mg, 1.0 mmol) and 2-

cyclopentylzinc chloride (1.2 mmol) according to TP7. This reaction was carried out in THF 

(5.0 mL). Purification by flash chromatography (eluent: pentane: ether = 3: 1) provided the 

pure compound 130t (236 mg, 96%) a colourless oil. dr > 99:1. 
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1H NMR  (CDCl3, 300 MHz): 7.96 (d, J = 8.5 Hz, 2 H), 7.49 (d, J = 8.5 Hz, 2 H), 5.95-6.00 

(m, 1 H), 5.72-5.77 (m, 1 H), 3.87 (s, 3 H), 3.17-3.25 (m, 1 H), 2.10-2.33 (m, 2 H), 1.87 (s, 1 

H), 1.46-1.65 (m, 2 H), 1.53 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 167.0, 152.7, 135.9, 129.3 (2 X C), 128.1, 125.2, 75.8, 57.1, 

51.9, 32.2, 29.0, 24.6; 

IR  (neat): 3499 (m), 2951 (m), 1705 (s), 1609 (m), 1436 (m), 1406 (m), 1276 (vs) cm-1; 

MS (EI, 70 ev): 228 (M+-H2O, 1%), 179 (100%), 163 (8%), 137 (9%), 77 (9%); 

HRMS (EI): calcd. for C15H19O3 (M
++H): 247.1334; found: 247.1349 (M++H). 

 

Synthesis of 3-cyclohex-2-enyl-3-methyl-3H-isobenzofuran-1-one (130u) 

H

O
O CH3

 RHJ015J 

It was prepared from 2-acetyl-benzoic acid methyl ester (178 mg, 1.0 mmol) and 2-

cyclohexenylzinc chloride (1.2 mmol) according to TP7. This reaction was carried out at -78 
oC for 1 h then warmed to room temperature for 1 h before quenching with water. Purification 

by flash chromatography (eluent: pentane: ether = 10: 1) provided the pure compound 130u 

(221 mg, 97%) as a colourless oil. dr > 99:1. 
1H NMR  (CDCl3, 300 MHz): 7.82 (d, J = 8.0 Hz, 1 H), 7.60 (t, J = 8.0 Hz, 1 H), 7.45 (t, J = 

8.0 Hz, 1 H), 7.37 (d, J = 8.0 Hz, 1 H), 5.68-5.77 (m, 1 H), 5.60 (d, J = 9.7 Hz, 1 H), 2.60-

2.72 (m, 1 H), 1.82-1.94 (m, 2 H), 1.67-1.79 (m, 1 H), 1.64 (s, 3 H), 1.36-1.62 (m, 2 H), 1.18-

1.32 (m, 1 H); 
13C NMR (CDCl3, 75 MHz): 170.0, 153.2, 133.8, 130.4, 128.8, 126.3, 125.6, 124.6, 121.5, 

89.2, 43.7, 24.7, 24.3, 23.8, 21.8; 

IR  (neat): 2933 (m), 1750 (vs), 1597 (w), 1613 (w), 1466 (m), 1449 (m), 1116 (s) cm-1; 

MS (EI, 70 ev): 229 (M++H, 0.5%), 147 (100%), 91 (35%); 

HRMS (EI): calcd. for C15H17O2 (M
++H): 229.1229; found: 229.1241 (M++H). 

 

Synthesis of 2-chloro-1-cyclohex-2-enyl-1-phenyl-ethanol (130v) 

OH

H

Cl

 RHJ003J 

It was prepared from 2-chloro-1-phenyl-ethanone (161 mg, 1.0 mmol) and 2-

cyclohexenylzinc chloride (1.2 mmol) according to TP7. Purification by flash 



 
 

 
 

212 

chromatography (eluent: pentane: ether = 5: 1) provided the pure compound 130v (230 mg, 

97%) as a colourless oil. dr > 99:1. 
1H NMR  (CDCl3, 300 MHz): 7.28-7.51 (m, 5 H), 5.85-5.93 (m, 1 H), 5.70-5.85 (m, 1 H), 

3.99-4.20 (m, 2 H), 2.70-2.82 (m, 1 H), 2.58 (s, 1 H), 1.84-2.10 (m, 2 H), 1.69-1.80 (m, 1 H), 

1.29-1.66 (m, 3 H); 
13C NMR (CDCl3, 75 MHz): 141.9, 131.1, 127.9, 127.1, 126.0, 125.4, 77.9, 52.4, 44.3, 24.9, 

24.3, 21.8; 

IR  (neat): 3550 (m), 1495 (m), 1446 (s), 1433 (m), 1054 (m) cm-1; 

MS (EI, 70 ev): 219 (M+-H2O, 0.1%), 155 (100%), 105 (8%), 91 (9%), 77 (32%); 

HRMS (EI): calcd. for C14H16Cl (M+-OH): 219.0941; found: 219.0924 (M+-OH). 

 

Synthesis of 2-azido-1-cyclohex-2-enyl-1-phenyl-ethanol (130w) 

OH

H

N3

 RHJ009J 

It was prepared from 2-azido-1-phenyl-ethanone (161 mg, 1.0 mmol) and 2-cyclohexenylzinc 

chloride (1.2 mmol) according to TP7. Purification by flash chromatography (eluent: pentane: 

ether = 5: 1) provided the pure compound 130w (226 mg, 93%) as a colourless oil. dr > 99:1. 
1 H NMR  (CDCl3, 300 MHz): 7.20-7.50 (m, 5 H), 5.84-5.96 (m, 1 H), 5.70-5.80 (m, 1 H), 

3.74 (s, 2 H), 2.57-2.71 (m, 1 H), 2.33 (bs, 1 H), 1.83-2.00 (m, 2 H), 1.62-1.75 (m, 1 H), 1.34-

1.49 (m, 2 H), 1.17-1.31 (m, 1 H); 
13C NMR (CDCl3, 75 MHz): 142.4, 132.1, 128.1, 127.1, 125.6, 125.2, 78.3, 59.2, 43.7, 24.9, 

24.0, 21.6; 

IR  (neat): 3547 (w), 2130 (vs), 1495 (w), 1446 (m) cm-1; 

MS (EI, 70 ev): 197 (M+-H2O-N2, 95%), 169 (100%), 115 (8%); 

HRMS (ESI):calcd. for C15H18N3O3 ([M+FA-H] -): 288.1348; found: 288.1375 ([M+FA-H]-); 

                     calcd. for C16H20N3O3 ([M+AA-H] -): 302.1505; found: 302.1535 ([M+AA-H]-). 

 

Synthesis of 1-cyclohex-2-enyl-1-phenyl-2-(4-phenyl-[1,2,3]triazol-1-yl)-ethanol (133a) 

OH

H

NN
N

 RHJ014J 
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The 2-cyclohexenylzinc chloride 129b (2.0 mL, 1.2 mmol, 0.6 M in THF) was added to the 

solution of 2-azido-1-phenyl-ethanone (161 mg, 1.0 mmol) and ethynyl-benzene (153 mg, 1.5 

mmol) in THF (2.0 mL) at -78 oC and the resulting mixture was stirred for 1 h at this 

temperature. The solution of CuCN·2LiCl (0.05 mL, 1.0 M in THF) was added and the 

reaction mixture was stirred overnight at room temperature. After quenching with water (10 

mL), the reaction mixture was extracted with CH2Cl2 (3 x 30 mL). The combined extracts 

were washed with brine and dried over Na2SO4 and concentrated in vacuo. Purification by 

flash chromatography (eluent: pentane: ether = 10: 1 then ether: CH2Cl2 = 1: 1) provided the 

pure compound 133a (325 mg, 94%) as a white solid, mp.: 161.0-162.5 oC.  
1H NMR  (CDCl3, 300 MHz): 7.69 (t, J = 1.76 Hz, 1 H), 7.67 (s, 1 H), 7.20-7.42 (m, 9 H), 

6.00-6.12 (m, 1 H), 5.91 (d, J = 11.5 Hz, 1 H), 4.96 (d, J = 14.1 Hz, 1 H), 4.80 (d, J = 14.1 

Hz, 1 H), 3.09 (s, 1 H), 2.74-2.87 (m, 1 H), 1.95-2.08 (m, 2 H), 1.68-1.82 (m, 1 H), 1.27-1.55 

(m, 3 H); 
13C NMR (CDCl3, 75 MHz): 147.0, 141.2, 133.3, 130.5, 128.7, 128.2, 127.9, 127.3, 125.64, 

125.58, 124.7, 121.1, 78.1, 58.6, 43.7, 25.0, 24.2, 21.6; 

IR  (neat): 3345 (m), 2932 (m), 1469 (m), 1446 (m), 1084 (m) cm-1; 

MS (EI, 70 ev): 345 (M+, 1%), 264 (34%), 218 (10%), 182 (12%), 159 (83%), 105 (100%); 

HRMS (EI): calcd. for C22H23N3O (M+): 345.1841; found: 345.1847 (M+). 

 

Synthesis of 1-(4-bromo-phenyl)-1-cyclohex-2-enyl-2-(4-phenyl-[1,2,3]triazol-1-yl)-

ethanol (133b) 

OH

H

NN
N

Br RHJ019J 

The 2-cyclohexenylzinc chloride 129b (2.0 mL, 1.2 mmol, 0.6 M in THF) was added to the 

solution of 2-azido-1-(4-bromo-phenyl)-ethanone (240 mg, 1.0 mmol) and ethynyl-benzene 

(153 mg, 1.5 mmol) in THF (2.0 mL) at -78 oC and the resulting mixture was stirred for 1 h at 

this temperature. The solution of CuCN·2LiCl (0.05 mL, 5 mol%, 1.0 M in THF) was added 

and the reaction mixture was stirred overnight at room temperature. After quenching with 

water (10 mL), the reaction mixture was extracted with CH2Cl2 (3 x 30 mL). The combined 

extracts were washed with brine and dried over Na2SO4 and concentrated in vacuo. 
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Purification by flash chromatography (eluent: pentane: ether = 10: 1 then ether: CH2Cl2 = 1: 

1) provided the pure compound 133b (400 mg, 94%) as a white solid, mp.: 157.0-158.5 oC.  
1H NMR  (CDCl3, 600 MHz): 7.66 (d, J = 7.6 Hz, 2 H), 7.51 (s, 1 H), 7.32-7.41 (m, 4 H), 7.28 

(t, J = 7.5 Hz, 1 H), 7.19 (d, J = 7.6 Hz, 2 H), 5.99-6.05 (m, 1 H), 5.81 (d, J = 10.1 Hz, 1 H), 

4.84 (d, J = 14.1 Hz, 1 H), 4.77 (d, J = 14.1 Hz, 1 H), 3.19 (s, 1 H), 2.68-2.76 (m, 1 H), 1.87-

2.02 (m, 2 H), 1.64-1.75 (m, 1 H), 1.36-1.48 (m, 2 H), 1.18-1.30 (m, 1 H), ; 
13C NMR (CDCl3, 150 MHz): 147.2, 140.2, 133.8, 131.3, 130.3, 128.8, 128.1, 127.5, 125.6, 

124.2, 121.4, 121.0, 77.9, 58.2, 43.8, 25.0, 24.1, 21.4; 

IR  (neat): 3327 (m), 2939 (m), 1609 (m), 1590 (m), 1487 (m), 1466 (m), 1005 (s) cm-1; 

MS (EI, 70 ev): 425 (M+ (81Br), 1%), 423 (M+ (79Br), 1%), 342 (18%), 296 (6%), 183 (88%), 

159 (100%), 130 (42%); 

HRMS (EI): calcd. for C22H22BrN3O (M+, 79Br): 423.0946; found: 423.0926 (M+, 79Br). 

 

Synthesis of 1-(6,6-dimethyl-2-methylene-bicyclo[3.1.1]hept-3-yl)-2,2-dimethyl-propan-

1-ol (135a) 

Me
Me

HO

H

CH2

t-Bu  RHJ106I, RHJ097I 

It was prepared from 2, 2-dimethyl-propionaldehyde (86 mg, 1.0 mmol) and ((6, 6-

dimethylbicyclo[3.1.1]hept-2-en-2-yl)methyl)zinc chloride (1.2 mmol) according to TP7. 

Purification by flash chromatography (eluent: pentane: ether = 3: 1) provided the pure 

compound 135a (200 mg, 90%) a colourless oil. dr > 99:1. [α]D
20 = -+8.4 (c = 0.5, CH2Cl2). 

1H NMR  (CDCl3, 600 MHz): 4.94 (s, 1 H), 4.62 (s, 1 H), 3.08 (t, J = 5.4 Hz, 1 H), 2.57 (t, J = 

7.5 Hz, 1 H), 2.47 (d, J = 5.3 Hz, 1 H), 2.33 (d, J = 5.0 Hz, 1 H), 2.22-2.29 (m, 1 H), 2.06-

2.14 (m, 1 H), 1.95 (q, J = 5.5 Hz, 1 H), 1.63 (dd, J1 = 13.8 Hz, J2 = 4.4 Hz, 1 H), 1.35 (d, J = 

10.2 Hz, 1 H), 1.23 (s, 3 H), 0.91 (s, 9 H), 0.72 (s, 3 H); 
13C NMR (CDCl3, 150 MHz): 153.7, 111.9, 83.6, 51.7, 41.4, 40.5, 37.3, 36.4, 33.5, 25.77, 

25.75, 25.6, 21.6; 

IR  (neat): 3532 (m), 2920 (s), 2948 (s), 1630 (m), 1479 (m), 1458 (m), 1364 (s), 1076 (s) cm-

1; 

MS (EI, 70 ev): 222 (M+, 1%), 189 (5%), 165 (8%), 147 (9%), 136 (39%), 121 (30%), 93 

(100%), 69 (23%); 
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HRMS (EI): calcd. for C15H27O (M++H): 223.2062; found: 223.2077 (M++H). 

 

Synthesis of 3,5-dinitro-benzoic acid 1-(6,6-dimethyl-2-methylene-bicyclo[3.1.1]hept-3-

yl)-2,2-dimethyl-propyl ester (136) 

Me
Me

O

H

CH2

O

O2N

NO2

t-Bu

RHJ107I 

A solution of 1-(6, 6-dimethyl-2-methylene-bicyclo[3.1.1]hept-3-yl)-2,2-dimethyl-propan-1-

ol 135a (44 mg, 0.2 mmol), 3,5-dinitro-benzoyl chloride (69 mg, 0.3 mmol), NEt3 (61 mg, 0.6 

mmol) and DMAP (10 mol %) in CH2Cl2 (10 mL) was stirred at room temperature for 12 h. 

The reaction mixture was diluted with ether (30 mL) and then washed with water. The organic 

layer was dried over anhydrous Na2SO4, filtered, and concentrated. The residue was 

chromatographed on silica gel (eluent: pentane: ether = 8: 1), providing 136 (71 mg, 85%) as 

a white solid; mp.: 171.5-172.8 oC. [α]D
20 = -59.2 (c = 0.5, CH2Cl2). 

1H NMR  (CDCl3, 300 MHz): 9.17 (t, J = 2.0 Hz, 1 H), 9.11 (d, J = 2.0 Hz, 2 H), 4.93 (d, J = 

8.8 Hz, 1 H), 4.62-4.70 (m, 2 H), 2.92 (t, J = 8.5 Hz, 1 H), 2.06-2.34 (m, 3 H), 1.91-2.02 (m, 1 

H), 1.69-1.82 (m, 1 H), 1.54 (d, J = 9.7 Hz, 1 H), 1.19 (s, 3 H), 1.07 (s, 9 H), 0.70 (s, 3 H); 
13C NMR (CDCl3, 75 MHz): 161.6, 150.5, 148.6, 134.7, 129.4, 122.0, 112.7, 87.5, 51.9, 40.9, 

40.5, 36.2, 35.4, 32.9, 26.5, 26.1, 25.5, 21.8; 

IR  (neat): 2912 (m), 1719 (s), 1628 (w), 1542 (vs), 1482(w), 1460 (w), 1339 (vs), 1279 (s) 

cm-1; 

MS (EI, 70 ev): 401 (M+-CH3, 0.5%), 330 (25%), 194 (80%), 105 (90%), 91 (100%); 

Anal. Calcd for C22H28N2O6: C, 63.45; H, 6.78; N, 6.73;  

Found:                                    C, 63.24; H, 6.56, N, 6.70. 

 

Synthesis of 1-(6,6-dimethyl-bicyclo[3.1.1]hept-2-en-2-yl)-3,3-dimethyl-butan-2-one 

(135b) 
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Me
Me

O

t-Bu

RHJ127I 

The ((6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)methyl)zinc chloride (2.0 mL, 1.2 mmol, 0.6 

M in THF) was added to the solution of 2,2-dimethyl-propionitrile (83 mg, 1.0 mmol) in THF 

(2.0 mL) at 0 oC and the resulting mixture was stirred for 0.5 h at 0 oC then stirred for 4 h at 

room temperature. The solution of HCl (2.0 mL, 1.0 M in water) was added and the resulting 

mixture was stirred for 1 h at room temperature. The reaction mixture was diluted with water 

(10 mL) and extracted with ether (3 x 30 mL). The combined extracts were washed with brine 

and dried over Na2SO4 and concentrated in vacuo. Purification by flash chromatography 

(eluent: pentane: ether = 100: 1) provided the pure compound 135b (200 mg, 91%) as a 

colourless oil. [α]D
20 = -31.8 (c = 0.9, CH2Cl2). 

1H NMR  (CDCl3, 600 MHz): 5.25 (s, 1 H), 3.20 (d, J = 16.8 Hz, 1 H), 3.14 (d, J = 16.8 Hz, 1 

H), 2.36 (dt, J1 = 8.8 Hz, J2 = 5.7 Hz, 1 H), 2.13-2.30 (m, 2 H), 2.01-2.08 (m, 1 H), 1.96 (t, J 

= 5.7 Hz, 1 H), 1.19-1.27 (m, 1 H), 1.24 (s, 3 H), 1.12 (s, 9 H), 0.83 (s, 3 H); 
13C NMR (CDCl3, 150 MHz): 213.7, 142.3, 120.4, 46.2, 44.7, 44.3, 40.5, 38.0, 31.8, 31.4, 

26.5, 26.3, 21.0; 

IR  (neat): 2913 (s), 1710 (vs), 1603 (w), 1477 (m), 1364 (s), 1060 (s) cm-1; 

MS (EI, 70 ev): 220 (5%), 177 (5%), 163 (10%), 135 (25%), 91 (22%), 57 (100%); 

HRMS (EI): calcd. for C15H24O (M+): 220.1827; found: 220.1818 (M+). 
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