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 Leukemia is the neoplastic transformation of hematopoietic cells and is amongst the 

most common forms of cancer in humans. Despite advances in the understanding of the 

mechanisms involved and therapeutic approaches, most leukemia-affected individuals 

succumb to the disease (Appelbaum et al., 2001). A vast majority of myeloid leukemias are 

associated with chromosomal rearrangements. It has been demonstrated in several cases that a 

number of these translocations lead to the formation of fusion genes which can contribute 

significantly to the transformation event, underlining the need to understand the mechanisms 

involved in fusion-gene mediated transformation. Recent studies have offered new insights 

into the evolution of the disease, emphasizing the relevance of the leukemic stem cell for the 

pathogenesis of the disease and its implications for future therapeutic developments. The first 

part of the introduction deals with the complex processes of normal hematopoiesis and factors 

that trigger the development of leukemia with particular emphasis on the most recent 

literature on the cancer stem cell model. In the second part, the role of chromosomal 

translocations and mouse models used for the studies of leukemogenesis are described, 

focusing in detail on the t(10;11)(p13;q14) translocation and the resultant CALM/AF10 fusion 

gene, the oncogenic potential of  which we sought to characterize in this study. Also 

discussed in detail are the promiscuous or biphenotypic leukemias for which the current study 

offers valuable insights. 
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1.1  Hematopoiesis 
 

1.1.1 Normal hematopoiesis 
 

 
  1.1.1.1  General overview: Hematopoiesis is a an orderly process of 

alternate expression of specific transcriptional regulators, growth factors, and growth factor 

receptors, the combination of which determines lineage commitment and maturation of blood 

cells. The blood consists of various types of cells, broadly classified into myeloid and the 

lymphoid cells. The myelo-erythroid lineage includes erythrocytes that transport respiratory 

gases, platelets that play an important role in coagulation and monocytes and granulocytes 

that can migrate from blood vessels into other tissues and are involved in inflammation and 

phagocytosis. The lymphoid cells include the B lymphocytes, which provide immunity by the 

production of highly specific soluble antibodies, and the T lymphocytes, which are 

responsible for a variety of immune functions including the elimination of cells with foreign 

molecules on the surface. There is a notable difference in the function as well as morphology 

of these cells. Despite the diversity, a lot of evidence points to the fact that all these cells 

derive from a common precursor, the rare hematopoietic stem cell. The other hematopoietic 

cell types arising from this cell but found outside the blood are the dendritic cells and mast 

cells. 

 

 1.1.1.2 The hematopoietic hierarchy: Hematopoietic cells of all lineages 

derive originally from a relatively small number of committed hematopoietic progenitors, 

which arise from even fewer hematopoietic stem cells (Weissman, 2000). Hematopoietic stem 

cells (HSCs) are self-renewing clonogenic multipotent progenitors that can produce all mature 

blood types. These highly self-renewing HSCs which are also termed long-term repopulating 

HSCs (LT-HSCs) for their ability to confer long-term engraftment on lethally irradiated mice, 

generate the short-term repopulating HSCs (ST-HSCs) with limited self renewal and 

increased proliferation. ST-HSCs subsequently give rise to multipotent progenitors (MPPs) 

that generate committed progenitors of different lineages, the common myeloid progenitor 

(CMP) for the myelo-erythroid lineage and the common lymphoid progenitor (CLP) for the 

lymphoid lineage.  The CMP in turn gives rise to the granulocyte-macrophage progenitor 

(GMP) and the megakaryocyte-erythrocyte progenitors (MEP) that are restricted to churning 

out mature granulocytes, macrophages or mast cells and megakaryocytes or erythrocytes 
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respectively. The CLP generates all mature lymphoid cell types including B and T lineage 

cells, platelets and NK cells. Dendritic cells can be generated from both CLPs as well as 

CMPs. Thus the hematopoietic hierarchy is composed of the stem cells, the committed 

progenitors and their progeny, the mature blood cells of all lineages. 

 

 

CLP
MPP

HSCs 

CMP

Fig. 1.1.1.2 The hematopoietic hierarchy: The hematopoietic hierarchy consists of the hematopoietic stem 

cells (HSC), the multipotent progenitors (MPPs) and the more downstream progenitors, the common myeloid 

and the common lymphoid progenitor (CMP and CLP) respectively. Collectively, these give rise to all the 

mature cells of the hematopoietic lineage. (With permission from Larry Rohrschneider, Fred Hutchinson Cancer 

Research Centre) 

 

1.1.2 Leukemic hematopoiesis 
 
Leukemias arise from the deregulated pathways of normal hematopoiesis. Although 

leukemias are heterogeneous in terms of phenotypes, there are general mechanisms 

underlying leukemic transformation such as block in differentiation, increased proliferation 

capacity, prolongation of cell survival by inhibition of apoptotic signals, increased telomere 

maintenance and the retention or reacquisition of enhanced self-renewal capacity (Warner et 

al., 2004; Weissman, 2000). The development of leukemias, like cancers in general, is a 

stepwise process in which somatic mutations are acquired leading to an increasingly 

transformed clonal population of blast cells. It is therefore believed that mutations disrupting 

more than one of these processes are necessary for neoplastic transformation, (Hanahan and 

Weinberg, 2000) though it is important to note that one mutation can simultaneously disrupt 

more than one of these processes. In acute myeloid leukemia (AML), for example, the 
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PML/RAR α fusion gene, which has been shown to block differentiation, can also protect 

hematopoietic progenitors from apoptosis (Grignani et al., 2000). The involvement and 

significance of each of these mechanisms in AML is explained in some detail in this chapter 

with examples. 

 

1.1.2.1  Differentiation arrest: AMLs are a heterogeneous group of diseases 

with blasts in varying degrees of maturation arrest. In fact the most commonly followed 

classification of AML, the French-American-British (FAB) classification divides leukemias 

into eight major subtypes (M0 to M7) based on the degree of differentiation along the 

myeloid lineage (Bennett et al., 1985). The FAB classification was recently updated in the 

WHO classification, taking morphology, immunophenotype and cytogenetics into account 

and defining acute leukemia to have more than 20% blasts in bone marrow (Brunning, 2003). 

As is discussed in the chapter on normal hematopoiesis, differentiation from primitive 

progenitors to mature cells in the hematopoietic system is governed by lineage specific 

transcription factors, the pathways for which have been elaborately defined (reviewed (Zhu 

and Emerson, 2002)). It was postulated that several of these pathways would be disrupted in 

leukemias and recent studies have confirmed this hypothesis (Tenen, 2003). One 

transcriptional factor complex that has been very frequently targeted by AML is the core 

binding factor (CBF) consisting of the AML1 gene and the CBFβ gene. 12 different 

translocations have been found to target this complex accounting for 25% of all leukemias 

(Speck and Gilliland, 2002). It is interesting to note that in the vast majority of fusion proteins 

resulting from a leukemogenic event, one of the partners is a transcription factor. Moreover, 

AML-associated fusion proteins have been shown to affect hematopoietic differentiation in a 

variety of experimental models, and the specific stage of myeloid maturation arrest appears to 

depend on the nature of the fusion protein expressed (Huntly et al., 2004). It is becoming 

increasingly apparent that the abnormal network of transcriptional regulation induced by 

leukemia associated genes leads to a block in differentiation. However, as shown in several 

studies, a block of differentiation is not solely sufficient to induce transformation and must be 

associated with an increase in proliferation.  

 

1.1.2.2 Increased proliferation: The dominance of a malignant clone over 

normal cells necessitates increased proliferation for the acquisition of a significant growth 

advantage over normal cells.  The leukemia specific fusion genes PLM/RARα and AML1/ETO 
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have previously been shown to disrupt normal hematopoietic differentiation without causing 

leukemia in mice (de Guzman et al., 2002; Grisolano et al., 1997; Pollock et al., 1999). It has 

been demonstrated in experimental models that mutations in the receptor tyrosine kinase 

FLT3 inducing constitutive activation could provide proliferative advantage in collaboration 

with PML/RARα (Kelly et al., 2002) and as shown recently in our laboratory, with 

AML1/ETO (Schessl C, 2005). Clinical data showing the frequent presence of activating 

mutations in the mitogenic FLT3 and KIT receptor tyrosine kinases in AML (Reilly, 2003) 

supports the hypothesis that proliferative advantage could be provided to leukemic cells by 

activating mutations in tyrosine kinase receptors.  

 

1.1.2.3 Inhibition of programmed cell death/apoptosis: Since the acquisition 

of mutations is a stepwise process, cells that have already undergone mutations, termed 

preleukemic cells, must inhibit apoptotic events and survive for a longer time period to 

acquire more mutations ultimately leading to an increasingly transformed cell type. It should 

be noted that a high level of apoptosis in myelodysplastic syndromes (MDS) distinguishes 

them from AML and that the progression from MDS to AML reflects an increase in the 

expression of anti-apoptotic versus pro-apoptotic members of the BCL2 gene family (Davis 

and Greenberg, 1998). BCL2 upregulation in leukemias has been shown to correlate with poor 

response to therapy (Campos et al., 1993) and it has been proposed as a potential target for 

future therapy regimens (Konopleva et al., 2000). Recent studies have demonstrated that the 

prevention of cell death is one of the key events in myeloid transformation that probably sets 

the stage for acquiring new mutations.  

 

1.1.2.4 Telomere maintenance: The ‘Hayflick limit’ (Hayflick, 1997), the 

upper limit on the number of times a cell can divide, imposed on a cell by shortening 

telomeres, has to be overcome in cancer as the tumor cell divides infinitely to propagate the 

tumor. Enhanced telomere maintenance is therefore a prerequisite to the limitless propagation 

of the leukemia stem cell in AML. Indeed, increased levels of telomerase activity have been 

reported in 70% of all AML cases (Ohyashiki et al., 2002). 

 
1.1.2.5 Enhanced self-renewal:  The incessant propagation of transformed 

cells requires the presence of a self-sustaining population of transformed stem cells that 

would continuously feed the pool of the bulk cancerous population. Neoplastic transformation 
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would then require the acquisition of stem cell characteristics by a targeted cell or 

alternatively, the direct targeting of a self-renewing stem cell to form a cancer stem cell. The 

aspect of stem cell properties in normal and cancerous cells is elaborated upon in the 

following chapter.  

 
 
1.2 Stem cells and cancer 
 

1.2.1  Stem cells and ‘stemness’:  Stem cells can be classified into two main 

categories, embryonic stem cells and adult stem cells. Stem cells are clonogenic cells capable 

of both self-renewal and multilineage differentiation. Some adult tissues like blood, skin, gut 

etc. need a constant turnover of cells for tissue renewal. Tissue stem cells, which are adult 

stem cells, respond to this need as they consist of multipotent progenitors. Between birth and 

death, humans produce approximately 1016 blood cells of different types. These specialized 

cells are continuously produced from precursor cells, which in turn must be replaced by cells 

further up the blood hierarchy. Ultimately, the entire blood system is fed by a pool of rare 

hematopoietic stem cells (HSCs)(Dick, 2003). Several decades after the observation that 

cellular recovery can be attained following lethal irradiation by transplanting bone marrow, it 

was identified that the ability of such transplants to reconstitute hematopoiesis can be 

attributed to a few extremely rare stem cells found predominantly in the bone marrow but 

capable of mobilization into peripheral tissues via the blood vascular system. Since then, 

HSCs have been the best characterized stem cells at the phenotypic and functional level and 

the hematopoietic system has been the proving ground for most of the experimental 

procedures and conceptual paradigms for stem cell biology in general. HSCs and indeed most 

stem cells can be defined by certain unique properties, sometimes referred to as ‘stemness’, 

the most prominent of which are self-renewal, multipotency and quiescence. Since a 

discussion on stem cells in general is beyond the scope of this thesis, this part of the chapter 

will deal exclusively with hematopoietic stem cells. 

 

 1.2.1.1 Self-renewal: Self-renewal is the property of a stem cell to generate 

progeny with exact stem cell properties of the parent cell. A stem cell divides symmetrically 

to give rise to two daughter stem cells, each possessing stem cell properties, or alternatively, 

asymmetrically, wherein one daughter cell is a stem cell and the other is a rapidly cycling 
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downstream progenitor with a reduced capacity of self-renewal (Warner et al., 2004)(Fig. 

1.2.1.1).  The downstream progenitor has a relatively enhanced proliferative capacity and it is 

necessary for clonal expansion and production of large numbers of committed progenitors and 

more differentiated hematopoietic cells. HSCs can be functionally separated into long-term 

repopulating stem cells, capable of indefinite self-renewal and short-term repopulating stem 

cells that self-renew for a defined interval (≈ 8 weeks in mice) (Passegue et al., 2003). The 

short-term repopulating stem cell then gives rise to the non self-renewing oligolineage 

progenitors which in turn give rise to progeny that are more restricted in their differentiation 

potential, and finally to functionally mature cells.  
 

 

Figure 1.2.1.1 Symmetrical and asymmetrical division of hematopoietic stem cells: The symmetrical process 

yields two daughter HSCs from the parent HSC whereas the asymmetrical process yields one daughter HSC and 

one downstream progenitor. 

 

In steady state bone marrow, hematopoietic stem cells divide rarely but mostly 

asymmetrically to retain their numbers as well as to produce the entire complement of cells 

necessary for normal hematopoiesis. Normal hematopoiesis therefore is a delicate balance 

between self-renewal and differentiation. This property of self-renewal, as is discussed later in 

this chapter, is a property shared by stem cells and cancer stem cells and acquisition of this 

characteristic is now believed to be a crucial turning point in the transformation process.  

At the molecular level, pathways governing the process of self-renewal are poorly 

understood; there is a growing amount of evidence linking several gene families to the 

process. These include the genes belonging to the Hox gene family (Antonchuk et al., 2002; 
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Buske et al., 2002; Thorsteinsdottir et al., 2002), the Wnt family (Reya et al., 2003) (Willert 

et al., 2003) and to the Polycomb group (Kajiume et al., 2004; Lessard and Sauvageau, 

2003a). There is also evidence suggesting a role of Notch (Karanu et al., 2000) and Sonic 

Hedgehog (Shh) (Bhardwaj et al., 2001) in HSC self-renewal though clear pathways 

elucidating the self-renewal process are yet to be demonstrated. 

 

1.2.1.2 Multipotency: The major difference between embryonic and adult 

stem cells is that while the former is totipotent, i.e. it can give rise to all the cells of every 

tissue of the organism, the latter can be described as multipotent, i.e. they can give rise to all 

cells of a given tissue. The hematopoietic stem cell (HSC) can be operationally defined as a 

long-term repopulating cell with both lymphoid (T and B) and myeloid potential (Orlic and 

Bodine, 1994). HSCs normally function to generate all of the lineages of mature blood cell 

types necessary for maintaining proper hematopoietic function (Kondo et al., 2003). The 

ability of a single HSC to give rise to hematopoietic cells of all the different lineages 

(multipotency) is one of the hallmark properties of a HSC. The HSC gives rise to committed 

progenitors that can proliferate extensively to produce the billions of differentiated cells that 

enter the peripheral blood per day. Prospectively isolated hematopoietic progenitors have 

increasingly limited differentiation potential as they branch out from the HSC. The 

multipotency of HSCs is thought to be disrupted in leukemias due to blocks in differentiation 

and/or the dysregulation of certain lineage specific transcription factors. 

 
1.2.1.3 Quiescence: Quiescence, or the relatively slow cycling of HSCs, in 

marked contrast to the rapidly proliferating progenitors is necessary to protect the stem cell 

compartment from toxic and oxidative stress and to prevent consumption of the regenerative 

cell pool, an occurrence known as stem cell exhaustion (Cheng et al., 2000). HSCs are 

relatively rare (1 in 10000 to 100000 cells in peripheral blood) and they reside in relatively 

larger numbers in the bone marrow of adult mice and humans where they are normally 

inactive (Bonnet, 2002). It was demonstrated by 5-bromo2’-deoxy-uridine (BrdU) 

incorporation studies (for the measurement of cell proliferation) in mice, that approximately 

75% of long-term repopulating HSCs (LT-HSCs) were in the G0 phase at any given time in 

steady state bone marrow (i.e. quiescent) (Cheshier et al., 1999). Long-term repopulating 

stem cells are the earliest stem cells that divide very rarely to give rise to the more 

proliferative short-term HSCs which in turn give rise to the non self-renewing lineage 
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committed progenitors that produce mature hematopoietic cells in large numbers. HSCs can 

however, proliferate rapidly symmetrically in response to myelosuppressive chemotherapy or 

irradiation followed by bone marrow transplantation to give rise to committed progenitors as 

well as copies of more HSCs, which then return to the quiescent state (Dixon and Rosendaal, 

1981). The control over quiescence is therefore especially crucial in conditions of stress, such 

as myelotoxic injury, to prevent hematopoietic death. There is little information about the 

molecular events that promote this process, though the bone marrow microenvironment or the 

‘stem cell niche’ is believed to play an important role.  Evidence that the local 

microenvironment is critical for controlling basic mechanisms of self-renewal and 

differentiation exists for normal stem cells (Lemischka, 1997; Schofield, 1983). Based on 

these studies, it seems likely that the tumor microenvironment is also critical for self-renewal 

of leukemia propagating cells with stem cells like properties or leukemic stem cells (LSCs). 

Thus, a major challenge for stem cell targeted therapy is to identify apoptotic stimuli that 

effectively target the tumor stem cell population while simultaneously sparing normal stem 

cells; and to do so in the context of a largely uncharacterized in vivo microenvironment. To 

meet this challenge, development and analysis of sophisticated LSC experimental systems is 

essential. As will be discussed below, recent findings indicate that leukemia stem cells retain 

several properties of stem cells, providing poor targets for therapeutic agents targeting rapidly 

proliferating cells (Hope et al., 2004). 

 

 

1.2.2 The cancer stem cell model  
 
A marked functional heterogeneity is observed among tumor cells with regards to 

proliferative potential and tumorigenicity.  It has been consistently demonstrated that only a 

small subset of cells within the bulk cancerous population in solid tumors had tumor initiating 

ability (as assessed by in vitro and in vivo assays) (Buick and Pollak, 1984; Mackillop et al., 

1983) as well as substantial proliferative potential (Mendelsohn, 1962; Wantzin and 

Killmann, 1977). This heterogeneity can be explained by two theories, one theory suggested 

that every cell within a blast cell population possesses an equal but low probability of being 

able to initiate the tumor by entering the cell cycle (Till et al., 1964). This model, called the 

stochastic model, assumes that a cell capable of extensive proliferation necessary to initiate 

and sustain tumor growth ultimately undergoes many more divisions than a cell lacking this 

ability. Therefore, the majority of cells are unable to regrow the tumor because the cumulative 
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probability of undergoing the required number of cell divisions is very low (Reya et al., 

2001). The alternate hypothesis proposed by many investigators is a model in which every 

tumor contains a rare functionally distinct population of cells termed cancer stem cells 

(CSCs). The cancer stem cell is a cell that has tumor initiating function and can maintain the 

bulk tumor population as its clonal progeny. The cancer stem cell (CSC) hypothesis therefore 

suggests that neoplastic clones are maintained exclusively by this rare fraction of cells with 

stem cell properties. 

The hematopoietic system provides for an excellent proving ground for testing these 

hypotheses. This is facilitated by the development of techniques over the last few decades, 

that allow the flow cytometric isolation of highly purified hematopoietic populations, (Akashi 

et al., 2000; Kondo et al., 1997), the development of techniques to efficiently transduce early 

hematopoietic progenitor cells (Dick et al., 1985) and of various in vitro and in vivo assays 

(Morrison et al., 1995)(including the use of xenograft models) (Dick et al., 1991) and finally 

automated array systems to directly derive and compare large scale analyses of gene 

expression profiles of normal and leukemic purified or bulk populations (Ivanova et al., 2002; 

Ramalho-Santos et al., 2002; Venezia et al., 2004). Emerging data utilizing the 

aforementioned techniques point to a regulated self-renewal process of both normal and 

leukemic stem cell hierarchies (Passegue et al., 2003).  The recent finding that the Polycomb 

group gene Bmi-1 regulates the self-renewal of both normal and leukemia stem cells (Dick, 

2003; Lessard and Sauvageau, 2003b) strongly supports this theory. Recent studies have 

demonstrated that many pathways associated with cancer also regulate normal stem cell 

development, supporting the cancer stem cell theory. The HOX and WNT gene families have 

been demonstrated to be involved in the process of self-renewal both in normal and leukemic 

hematopoiesis (Buske et al., 2002; Reya et al., 2003) and leukemia (Buske and Humphries, 

2000; Muller-Tidow et al., 2004). The biology of stem cells and their intrinsic properties are 

now recognized as integral to tumor pathogenesis in several types of cancer. Cancer stem 

cells, the minor self-renewing fraction of cells within the tumor that can regrow the tumor, 

reflect the normal stem cells of the corresponding tissue in several aspects and among others, 

have been isolated for the hematopoietic system (Lapidot et al., 1994) (Bonnet and Dick, 

1997) breast cancer, (Al-Hajj et al., 2003) and more recently, brain tumor (Singh et al., 2004). 

Using a variety of sophisticated experimental approaches, investigators have identified, 

isolated and begun to characterize malignant stem cells from multiple types of cancer. Given 
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the newly appreciated role of stem cells in many normal organ systems, it seems likely that 

cancer stem cells will be described in other tumor types in the near future. 

1.2.3 The need for identification of the leukemic stem cell:  

 

 As is discussed at considerable length in the previous parts of the thesis, it has 

been established that one of the important events necessary for leukemic transformation is the 

abnormal retention or reacquisition of stem cell characteristics by a transformed cell. The 

striking similarity of LSCs with their normal counterparts has hampered the development of 

therapeutic strategies selectively targeting the LSCs but sparing normal stem cells or early 

myeloid committed progenitors for patients with AML. The quiescent nature of leukemia 

stem cells in CML has been clearly demonstrated (Holyoake et al., 1999). This observation is 

important because though the treatment of CML patients with the tyrosine kinase inhibitor 

imantib mesylate effectively induces remission, it cannot eradicate the disease (Bhatia et al., 

2003; Holtz and Bhatia, 2004). The analysis of CML stem cells treated with imatinib mesylate 

showed that the quiescent stem cell population is resistant to the drug in vitro (Graham et al., 

2002). Therapeutic approaches to leukemia have focussed mostly on elimination of rapidly 

proliferating cell, however, with the advancing knowledge about the relatively quiescent 

leukemia stem cell (LSC), the limitations of this approach have come to the fore. The 

identification of the LSCs in the bulk leukemic population that resist therapy and sustain the 

leukemia has therefore assumed great significance (Jamieson et al., 2004). Functional studies 

have shown that the more primitive CD34+/CD38- subset of multiple human AMLs are the 

minor fraction that can sustain the leukemia in xenograft studies in the non obese diabetic / 

severe combine immunodeficient (NOD/SCID) mouse model (which is employed for 

transplantation studies of human bone marrow cells) and that this population retains several 

attributes of the stem cell (Bonnet and Dick, 1997; George et al., 2001), though it has also 

been demonstrated that the LSC compartment could also exist in the more downstream CD34- 

compartment (Terpstra et al., 1996). This apparent paradox reflects the case that leukemia 

results mostly from mutations occurring in a self-renewing primitive HSC or alternatively, 

from the rare aberrant acquisition of stem-cell properties by downstream progenitors. In mice, 

the identification of the leukemia propagating cell is made easier by the use of modern 

purification and retroviral transduction techniques. This was elegantly demonstrated in a 

couple of studies which showed that a) the transduction of highly purified HSCs, CMPs as 

well as GMPs with the MLL/ENL fusion gene leads to myeloid transformation in vitro and in 
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vivo with maturation arrest at the same myelomonocytic stage regardless of the cell type used 

for transformation (Cozzio et al., 2003) and b) in the case of MLL/GAS7, the retroviral 

transduction of HSCs or their immediate downstream progeny, the MPPs result in leukemias 

of lymphoid, biphenotypic, and myeloid  characteristics (So et al., 2003). It was also 

demonstrated that transgenic mice conditionally expressing the BCR-ABL and BCL2 genes in 

myeloid progenitors and their myelomonocytic progeny, but not in HSCs could still propagate 

AML (Jaiswal et al., 2003). More recently, the leukemia derived fusion gene MOZ/TIF2 has 

been shown to confer self-renewal properties to normally non self-renewing GMPs in a 

mouse model of myeloid leukemia (Huntly et al., 2004). These results indicate that leukemias 

can be originated in committed progenitors that acquire stem cell characteristics.  

The identification and characterization of leukemia stem cells and more importantly, 

markers expressed differentially on leukemia and normal stem cells will therefore lead to the 

design of novel therapeutic approaches in leukemia. We sought to identify the leukemic stem 

cell in a mouse model of CALM/AF10 positive acute myeloid leukemia. Generally, two 

approaches that have been used to identify cancer stem cells, one approach that has been used 

for human CSC identification, wherein, the different sub-populations in a cancer have each 

been analysed for transplantability of the tumor (Bonnet and Dick, 1997; Singh et al., 2004) 

and the other approach, in which cells of a distinct differentiation stage are prospectively 

isolated, engineered to express the cancer specific mutation and tested for their ability to 

develop characteristics of a CSC under expression of the genetic alteration (Huntly et al., 

2004; So et al., 2003); of these, we have used the former approach. 

 

 

1.2 Translocations in leukemia 
 

 
Leukemias, like all cancers are known to arise from acquired genetic changes. 

Generally, chromosomal aberrations contribute to a vast majority of cancers and the link 

between the occurrence of chromosomal aberrations and cancer has been very well 

established due to current advances in cytogenetics and molecular biology. Analyses of 

recurring chromosomal aberrations have led to the identification of numerous proto-

oncogenes (Rabbitts, 1994). As regards AML, more than 80% of these leukemias are 

associated with at least one chromosomal rearrangement (Pandolfi, 2001) and over 100 

different chromosomal translocations have been cloned (Gilliland and Tallman, 2002). 

 12 



                                                   C   h   a   p   t   e   r     I   -  I   n   t   r   o   d   u   c   t   i   o   n  

Frequently, these translocations involve genes encoding transcription factors that have been 

shown to play an important role in hematopoietic lineage development.  It has been 

demonstrated that the chimeric fusion gene products or in some cases, putative proto-

oncogene activation by the translocation event per se is responsible for the transformation 

(Rabbitts and Boehm, 1991). The cloning of breakpoints and the subsequent employment of 

techniques that allow testing them for the oncogenic potential (mouse bone marrow 

transplantation model) will allow the identification of new proto-oncogenes and shed light on 

intrinsic mechanisms of leukemic transformation. 

 

1.3.1  The t(10;11)(p13;q14) translocation in leukemia 

Chromosomal rearrangements involving the long arm of chromosome 11 and the short 

arm of chromosome 10 have been found in a variety of leukemias. The t(10;11)(p12-13;q23) 

translocation fuses the trithorax group gene MLL to the putative transcription factor AF10 and 

it was reported that the t(10;11)(p13;q14) translocation fuses the AF10 gene to the novel 

clathrin assembly lymphoid myeloid leukemia gene CALM (Dreyling et al., 1996). 

Interestingly both the translocations have a poor prognosis and low survival rate (Dreyling et 

al., 1998; So et al., 2003). The latter is a rare but recurring translocation and leads to the 

expression of the CALM/AF10 and in some cases the reciprocal AF10/CALM chimeric fusion 

transcripts. 

t(10;11)(p13;q14)

AF10

CALM

CALM/ 
AF10

AF10/
CALM

10 11 der(10) der(11)

 

 

 
Fig. 1.3.1: A schematic representation of the t(10;11)(p13;q14) translocation: The t(10;11)(p13;q14) 

translocation fuses the CALM gene on chromosome 11 to the AF10 gene on chromosome 10 to generate an in-
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frame CALM/AF10 fusion gene on the derivative chromosome 10 [der(10)] and a reciprocal AF10/CALM fusion 

gene on the derivative chromosome 11 [der(11)] (Figure courtesy S. Bohlander) 
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Fig. 1.3.2.a Schematic representation of CALM and AF10:  

i) The CALM protein is a 652 amino acid protein with a proximal Epsin N terminal homology domain 

(ENTH domain) that bears a high homology with the N-terminal portion of the Epsin protein. Amino acids 221-

294 of the CALM protein bind to CATS, a novel protein expressed strongly in the thymus and spleen.  

ii) The AF10 protein is a 1027 amino acid protein with five N terminal plant homeodomain like (PHD) 

zinc fingers, an AT hook and a highly conserved octapeptide motif-leucine zipper domain. At the C terminal 

end, there is a glutamine rich domain.  (Figure courtesy S. Bohlander) 

   

 

1.3.2 CALM, AF10, and the CALM/AF10 fusion: 
 

The CALM (PICALM) gene was identified as a fusion partner of AF10 in the human 

monocytic cell line U937 harboring the t(10;11)(p13;q14) translocation. This gene is located 

on chromosome 11q14 and encodes a 652 amino acid protein that is ubiquitously expressed 

and shares a high homology with the neuronal specific protein AP180 (Fig.1.3.2a i)(Tebar et 

al., 1999). Studies on clathrin mediated vesicle formation, a critical step in endocytosis point 

to a potential role of CALM in the regulation of clathrin recruitment to the membrane and/or 

formation of the coated pit (Tebar et al., 1999). This is thought to be mediated by the binding 

of CALM to the clathrin heavy chain through its C-terminal region and with 

phosphoinositides through its Epsin N-terminal homology (ENTH) domain. This CALM-
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clathrin interaction has been shown to promote the assembly of clathrin triskelia into clathrin 

cages in vitro (Ford et al., 2002; Ford et al., 2001). Mutations in the AP180/CALM gene 

homologs in Drosophila (lap) (Nonet et al., 1999) and Caenorhabditis elegans (unc11) 

(Zhang et al., 1998) have suggested a role of these proteins in regulation of endocytic vesicle 

size during the clathrin assembly process. N-ethyl-N-nitrosourea (ENU) induced point 

mutagenesis in the murine Picalm gene resulted in disrupted hematopoiesis and reduced iron 

metabolism and retarded development in mice (Klebig et al., 2003). Interestingly, in a screen 

for identifying CALM interacting proteins using the yeast two hybrid system, Archangelo et 

al., identified a novel protein, termed CATS for CALM interacting protein expressed in 

thymus and spleen. CATS expression is limited to lymphoid organs and the CATS protein 

interacts with CALM in vitro and in vivo (Archangelo, 2005).The fact that the CALM gene is 

involved in two distinct translocations (CALM/AF10 and MLL/CALM) as well as the 

identification of several leukemia-associated fusion proteins in endocytosis points to a role of 

clathrin-mediated endocytosis (CME) in leukemia.   

 

There is little known about the human AF10 gene except for the fact that it is found as 

a fusion partner of both CALM as well as MLL and is involved in different types of leukemias 

and lymphomas. The human AF10 gene is a homolog of the Drosophila dAF10, which is 

reported to play a role in the heterochromatin dependent genomic silencing of position effect 

variegation, ‘’a phenomenon associated with chromosomal rearrangements that cause mosaic 

expression of euchromatic genes when relocated next to heterochromatin’’ (Linder et al., 

2001). The AF10 gene, located on chromosome 10 band 12p, encodes a 1,027 amino acid 

protein (Fig.1.3.2a ii). The leucine zipper-octapeptide motif domain and the plant 

homeodomain like zinc finger domains are both highly conserved between AF10 and its 

homologs AF17 and BR140. The leucine zipper of the Drosophila homolog of AF10 

(Alhambra) has also been implicated in the inhibition of Polycomb group responsive element 

(PRE) mediated repression (Perrin et al., 2003). Interestingly, this leucine zipper domain of 

AF10, together with the octapeptide motif, has also been shown to be the minimal portion 

necessary for transformation when fused to MLL a mouse model of the MLL/AF10 

translocation (DiMartino et al., 2002). This region is conserved between human, Drosophila 

and Cenorhabditis elegans homologs and possesses transcriptional activation potential 

(DiMartino et al., 2002) and also binds to a glioma amplified sequence gene GAS41 that has 

been shown to interact with the SWI/SNF complex (Debernardi et al., 2002).  
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Fig. 1.3.2b The various CALM/AF10 breakpoints: Different CALM/AF10 breakpoints in patients with 

leukemia (right panel) show no correlation with the phenotype of the leukemia (left panel). All fusions generate 

in-frame fusion products of CALM/AF10 and in some cases, the reciprocal AF10/CALM. The octapeptide motif 

is retained in all the CALM/AF10 fusions, whereas none of the fusions retain the entire intact zinc finger domain.  
  

Most t(10;11)(p13;q14) fusions generate CALM/AF10 as well as the reciprocal 

AF10/CALM transcripts, however AF10/CALM transcripts could not be detected in all 

leukemia samples (Carlson et al., 2000)indicating that it is probably the CALM/AF10 fusion 

transcript that directs the transformation process. Analysis of the breakpoint region in various 

t(10;11)(p13;q14) leukemias has shown three different breakpoints for CALM and four 

breakpoints for AF10 (Fig. 1.3.2b) with no noticeable correlation with the phenotype or 

outcome of disease (Bohlander et al., 2000). While the CALM gene is more or less completely 

retained, all breakpoints in AF10 lead to the partial or complete loss of the plant 

homeodomain (PHD) like zinc finger domain but retain the C-terminal octapeptide motif and 

the leucine zipper domains (Fig. 1.3.2b) and in all the different translocations, the open 

reading frames both of CALM and of AF10 are maintained (Kumon et al., 1999). Moreover, 

the CATS binding portion of CALM is retained in both CALM/AF10 as well as MLL/CALM 

fusions (Archangelo, 2005).  

The t(10;11)(p13;q14) translocation has been reported in a variety of acute myeloid 

(as well as megakaryocytic and eosinophilic) leukemias, (Dreyling et al., 1996; Jones et al., 

2001; Salmon-Nguyen et al., 2000) lymphoid leukemias and lymphomas (Bohlander et al., 
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2000) Moreover, the CALM/AF10 fusion event, like many translocations involving the MLL 

proto-oncogene, has been found to be the sole genetic abnormality in acute undifferentiated or 

biphenotypic leukemias (Kumon et al., 1999) which will be described in some detail in the 

following chapter. 

 

 

1.4 Acute biphenotypic leukemias 
 

Leukemias are characterized as myeloid or lymphoid based on the expression on the 

surface of the blast cells, of lineage specific antigens. There is however, a small subset of rare 

leukemias, termed mixed lineage leukemias, acute undifferentiated leukemias or acute 

biphenotypic leukemias (ABLs) that present blasts with antigens specific to both lineages. 

(Altman, 1990; Bernier et al., 1995) 

 

1.4.1 ABLs in humans: ABLs in human patients are typically associated with a 

poor prognosis, reduced survival rate and a high incidence of relapse (Sulak et al., 1990) 

These leukemias account for 3-7 % of all acute leukemias and 10-25% of pediatric acute 

leukemias (Altman, 1990; Sulak et al., 1990) Most of the acute biphenotypic leukemia blasts 

coexpress surface markers of B-myeloid characteristics and less often a T-myeloid phenotype 

(Matutes et al., 1997). It is widely suspected that the incidence of promiscuous leukemias is 

much higher than is currently reported due to the lack of a consistent approach of defining 

promiscuity, the classification of leukemias on the basis of a limited set of diagnostic criteria 

as well as the inherent heterogeneity amongst this unique entity of leukemias. The presence of 

lymphoid specific genomic rearrangements in myeloid leukemias (Schmidt et al., 1995; 

Williams and Moscinski, 1993; Yen et al., 1999) might represent previously undetected 

promiscuity (Grimwade et al., 2002). 

 

 

1.4.2 ABL models in mice:  To our knowledge there are few murine models that 

present blasts with biphenotypic features, the prominent example being a murine model of the 

MLL proto-oncogene. Chi Wai So et al., demonstrated in 2003 that the MLL/GAS7 fusion 

gene transforms primitive hematopoietic cells and causes acute biphenotypic leukemias in 

mice with blasts that coexpress B and myeloid antigens (So et al., 2003). More recently, 
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Gurevich et al. reported the appearance of the B cell specific antigen B220 on the cell surface 

of myeloid blasts in a subset of terminally ill mice transplanted with the NUP98/TOPOII 

fusion gene (Gurevich et al., 2004). 

 

 

1.4.3  Theories explaining biphenotypic character in ABL:  Two 

alternative explanations have been proposed for the presence of biphenotypic cells and there 

has been considerable debate as to which is the valid explanation for the coexpression of dual 

markers in these leukemias, though most investigators agree that these two mechanisms might 

both be possible and furthermore, need not be mutually exclusive. The mechanisms are 

termed lineage infidelity and lineage promiscuity.  

 

1.4.3.1 Lineage infidelity: This theory proposes that the coexpression of 

myeloid and lymphoid markers is a spurious result of malignancy as transformed cells from 

one lineage express cell surface markers of another lineage aberrantly due to the 

transformation event (McCulloch, 1987) 

 

1.4.3.2 Lineage promiscuity: This theory states that a normal myelo-

lymphoid cell or a cell with bilineage potential is the target in biphenotypic leukemias and the 

biphenotypic character of the blasts reflect differentiation block at this normal biphenotypic 

stage. (McCulloch, 1987)  

 

The relatively low survival rate as well as the high incidence of relapse in patients 

with biphenotypic leukemia argues for a more primitive target cell for the disease, 

strengthening the lineage promiscuity theory. Indeed, Chi Wai So and colleagues 

demonstrated that the transformation of a normal biphenotypic multipotent progenitor but not 

lineage committed progenitors could give rise to an acute biphenotypic leukemia in mice (So 

et al., 2003).  As is mentioned in the discussion section however, our results indicate that 

there could be an alternative explanation for the appearance of cells with biphenotypic 

characteristics. 
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1.4 Mouse models of leukemia 
 

 
Several mouse model systems have emerged that are likely to provide powerful means for the 

analysis of leukemias. These include ubiquitous or conditional knock-ins, targeted and 

random in vivo gene disruption and retrovirally transduced bone marrow transplantation into 

irradiated recipients. The murine bone marrow transplantation model employs ex vivo 

retroviral gene transfer of primary hematopoietic cells followed by transplantation into 

lethally irradiated syngenic mouse recipients. Studies including those in our laboratory have 

demonstrated that proto-oncogenes (Rawat et al., 2004) and proto-oncogene combinations  

(Kelly et al., 2002; Schessl C, 2005) can induce acute leukemias in mice using this model and 

importantly, the characteristics of disease in such models appear to recapitulate human 

leukemia.  For example, infection of bone marrow cells with a retroviral vector expressing the 

AML1/ETO proto-oncogene or FLT3-ITD alone fails to induce leukemic transformation in 

vivo. When expressed together however, these two genes collaborate to cause full blown 

leukemia in mice, reflecting the need for a secondary mutation in leukemias involving these 

factors in human patients as well as their likely collaboration in human leukemia (Schessl C, 

2005). Importantly, in these models disease initiates from a relatively rare subset of cells, 

which undergo varying degrees of differentiation and/or inappropriate growth. These models 

have provided valuable means for analyzing the molecular and cellular characteristics of 

leukemia. Their recent use, as mentioned before, in identifying the target cell of leukemias is 

particularly interesting as it offers new insights into the characterization of the LSC of several 

leukemias including biphenotypic leukemias as we have previously described. We used the 

murine bone marrow transplantation model for the generation of leukemia models 

recapitulating the CALM/AF10 positive leukemia. 
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1.6 Aim of the study   
 
 

Most therapies for AML target the bulk leukemic population and spare the leukemic 

stem cell. It is therefore critical to determine and characterize the leukemic stem cell in the 

various types of AML for the development of novel therapeutic targets. Since AML patients 

harboring the t(10;11)(p13;q14) translocation have a poor prognosis the characterization of 

leukemic stem cells in this subset of AML is clinically relevant and would lead to the 

understanding of disease progression. The purpose of the study was to employ the murine 

bone marrow transplantation marrow model in order to directly assess the oncogenic potential 

of the CALM/AF10 fusion gene, the product of the t(10;11)(p13;q14) translocation and the 

characterisation of the LSCs in this disease. The mechanism of CALM/AF10 mediated 

transformation is an interesting aspect to study and the bone marrow transplantation model 

provides an excellent tool for the structure-function analysis of various domains critical in the 

transformation process. We also sought to characterise the domains responsible for the 

hematopoietic activity of the CALM/AF10 fusion gene, providing an insight into the 

mechanism of transformation. 
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2.1 Mice and related reagents and equipment: 
 

Avertin solution: Stock solution was prepared by adding 15.5 ml tert-amyl alcohol to 25 

grams Avertin (2-2-2 Tribromoethanol), both procured from (Sigma-Aldrich, St. Louis, MO) 

and dissolved overnight. For working solution, 0.5 ml stock solution was added to 39.5 ml of 

cell culture grade phosphate buffered saline (PBS) and dissolved with a magnetic stirrer.  

 

5-Fluorouracil: 50 mg/ml stock solution Medac, Hamburg, Germany. Working solution was 

6 ml of the above solution mixed with 4 ml of phosphate buffered saline. 
 
Formalin: 10% solution of formaldehyde (Sigma-Aldrich, St. Louis, MO) in water. 

 

Sterile Syringes: BD Plastipak 1 ml syringe (BD Biosciences, Palo Alto, CA) for injection of 

cells in mice and Kendall Monoject 3 ml syringes (Tyco Healthcare, UK) for bone marrow 

flushing and plating of CFCs. The stubs of 3 ml syringes were used to macerate the spleens of 

mice. 

 

Sterile needles:  0.5 x 25 mm for injection of cell in mice i.v. and 0.55 x 25 mm (BD 

Microlance, Drogheda, Ireland) for bone marrow aspiration from living mice and flushing of 

bone marrow from extracted bones. 16 x 1.5 inch needles for dispensing and plating 

Methocult (CFC) media (Stem Cell Technologies, Vancouver, Canada) 

 

Erythrocyte lysis buffer:  0.8% NH4Cl with 0.1 mM EDTA (Stem Cell Technologies, 

Vancouver, Canada) 

 

Heparinized capillaries:  (Microvette CB 300) plastic capillaries for collection of blood, 15 

I.E Lithium heparin per ml of blood (Sarstedt, Numbrecht, Germany) 

 

Telleyesnickzky’s solution: 450 ml absolute ethanol + 25 ml glacial acetic acid + 25 ml 

formaldehyde  
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2.2  Mammalian cell lines: 
 

GP+E86:  Mouse fibroblast cell line 

 

293T:   Human embryonic kidney cell line 

 

NIH-3T3:  Mouse fibroblast cell line 

 

All cell lines were procured from the American Type Culture Collection (ATCC), Manassas, 

U.S.A 
 

 

2.3  Oligonucleotides: 
 

All nucleotides were synthesized by Metabion AG, Martinsried, Germany.  

 

Primers for transcriptional profile analysis 

Oligonucleotide Sequence 5´ to 3´ 
Pax5_fw AGGATAGTGGAACTTGCCCA 
Pax5_rev TGATGGAGTATGAGGAGCCC 
MPO_fw ACTGGCCTCAACTGCGAGAC 
MPO_rev GTGTATTGACAGCCAGCAGC 
Gata2_fw GACTATGGCAGCAGTCTCTTCC 
Gata2_rev GGTGGTTGTCGTCTGACAATT 
Gata3_fw TCGGCCATTCGTACATGGAA 
Gata3_rev GAGAGCCGTGGTGGATGGAC 
EBF_fw GCCCGTGGAGATTGAGAGGAC 
EBF_rev GTGCTTGGAGTTATTGTGGAC 
c-fms_fw (MCSF-R) GAGTCAGAAGCCCTTCGACAAA 
c-fms_rev (MCSF-R) TGCCCAGACCAAAGGCTGTAGC 
Pu.1_fw TGGAGGTGTCTGATGCAGAAG 
Pu.1_rev CCGCTGAACTGGTAGGTGA 
GCSF-R_fw TACCAGCCACAGCTCAAAGG 
GCSF-R_rev ACGTGTCCAGTCTGATGGTG 
Aiolos_fw ATCGAAGCAGTGCCGCTT 
Aiolos_fw GTGTGCGGGTTATCCTGCATTAGC 
HPRT_fw GGGGGCTATAAGTTCTTTGC 
HPRT_rev TCCAACACTTCGAGAGGTCC 
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CALM/AF10 sequencing primers 

Oligonucleotide Sequence 5´ to 3´ 
CALM/AF10_seq_1f CTCGAGGTCGACGGTATCG 
CALM/AF10_seq_ 2f AACACGTTGTTTAACTTAAGCAA 
CALM/AF10_seq_ 3f CTTGACATCTATAAGAAGTTCC 
CALM/AF10_seq_ 4f CCTCATACCTCTTTAACAACTG 
CALM/AF10_seq_ 5f CATTTCTTCAGATGTATCTACTT 
CALM/AF10_seq_ 6f GAAATGGAACCACTAAGAATGATG 
CALM/AF10_seq_ 7f CCCCATAAGGATGGAGCTTTAA 
CALM/AF10_seq_ 8f CC GATAATGTCCAATACTGTG 
CALM/AF10_seq_ 9f TCAGCTCACAGCTCAGGTC 
CALM/AF10_seq_ 10f GTACCTTAATTGGCCTCCCT 
CALM/AF10_seq_ 11f TTTACAGAGCCTCAGTGTTG 
CALM/AF10 _seq_12f CTCTCAGTCAGGCACCATC 
CALM/AF10_seq_ 13f AAAACCGAAGATTAGAGGAAC 
CALM/AF10_seq_ 14f GTCAATGGCGTGACAGTGGG 
CALM/AF10_seq_ 15f ACTTCAGCAGCTGCAGATCC 
CALM/AF10_jn_fw ACCCCCTGTAATGGCCTATC 
CALM/AF10_jn_rev AGTGGCTGCTTTGCTTTCTC 

 

Cloning primers for CALM/AF10 mutants  

Oligonucleotide Sequence 5´ to 3´ 
Leuziptagrev_framec GCCCTCGAGCACTGAAAGCTGTGCATTCAA 
Oct+leu_neu_fw CCGCTCGAGCCTCCAGTAGCAGCCAGC 
AF10_por2_rev_tag CGCTCGAGGATGTTTCTCAGGTGTAAACTT 
CA_dellzip_neu_fw CGGATCGATCCTTTTCCAACAATAAC 
Calm_only_nonstop_rev CCGCTCGAGCTGTGCTCCTGATACAGGGC 
Calm_only_rev CCGCTCGAGCTACTGTGCTCCTGATACAGGGC 
CA_por1_rev CGCTCGAGCCATCGATGCTGGATGCTACTGGAG 

 

Primers for V-DJH and DJH recombination  

Oligonucleotide Sequence 5´ to 3´ 
VH 7183 CGGTACCAAGAASAMCCTGTWCCTGCAAATGASC 
VH 558 CGAGCTCTCCARCACAGCCTWCATGCARCTCARC 
VH Q52 CGGTACCAGACTGARCATCASCAAGGACAAYTCC 
JH 3 GTCTAGATTCTCACAAGAGTCCGATAGACCCTGG 
C-mu-5’ TGGCCATGGGCTGCCTAGCCCGGGACTT 
C-mu-3’ GCCTGACTGAGCTCACACAAGGAGGA 
B rec chk fw1 ACGTCGACTTTTGTSAAGGGATCTACTACTGT 
B rec chk fw2 ACGTCGACGCGGASSACCACAGTGCAACTG 
B rec chk rev GGGTCTAGACTCTCAGCCGGCTCCCTCAGGG 
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2.4 Plasmids: 
 
MSCV-IRES-GFP: A modified form of the MSCV vector, it contains a bicistronic GFP 

expression cassette with an internal ribosomal entry site.  

 
Ecopac: A packaging vector coding for the gag, pol, and env viral proteins. (Clontech, Palo 

Alto, CA) 

 

pCDNA6/V5-His A vector: Mammalian expression vector used for tagging proteins at the 

carboxyterminal end with the polyhistidine epitope tag (Invitrogen, Carlsbad, CA) 
 

pEYFP-C1: Mammalian expression vector used for tagging genes with fluorescent reporter 

(Invitrogen, Carlsbad, CA) 

 

 

2.5  Antibodies: 

 

Name Company Label Dilutions used 
Gr-1 BD Pharmingen, Heidelberg PE/APC 1:500 

CD11b (Mac1) BD Pharmingen, Heidelberg PE/APC 1:800 

Sca-1 BD Pharmingen, Heidelberg PE 1:150 

Ter119 BD Pharmingen, Heidelberg PE 1:150 

B220 BD Pharmingen, Heidelberg PE/APC 1:200 

CD4 BD Pharmingen, Heidelberg PE 1:150 

CD19 BD Pharmingen, Heidelberg PE 1:200 

CD23 BD Pharmingen, Heidelberg PE 1:200 

CD24 BD Pharmingen, Heidelberg PE 1:200 

CD43 BD Pharmingen, Heidelberg PE 1:200 

sIgM BD Pharmingen, Heidelberg PE 1:200 

F4/80 Caltag Laboratories, CA PE 1:200 

 24 



                                                                        C  h  a  p  t  e  r    I I     -      M  a  t  e  r  i  a  l  s 
 

CD117 (c-kit) BD Pharmingen, Heidelberg APC 1:500 

CD8 BD Pharmingen, Heidelberg APC 1:150 

CALM/AF10S19 Santa Cruz Biotech. Inc., CA - 1:1000 

CALM/AF10G17 Santa Cruz Biotech. Inc., CA - 1:1000 

CALM/AF10C18 Santa Cruz Biotech. Inc., CA - 1:1000 

GFP Molecular Probes Inc., OR - 1:5000 

Anti-His Invitrogen, Carlsbad, CA HRP 1:3000 

Goat Anti-Mouse  Invitrogen, Carlsbad, CA HRP 1:2000 

 

 

2.6  Reagents, media and apparatus: 
 

2.6.1: Molecular biology: 
 

Agarose: Molecular biology tested (Sigma-Aldrich, St. Louis, MO) 
 

Protamine sulfate: (Salamine) from Salmon, cell culture tested (Sigma-Aldrich, St. Louis, 

MO) 5 mg/ml stock solution  

 

DNeasy mini kit: Genomic DNA extraction kit for small cell numbers (Qiagen GmbH, 

Hilden, Germany) 
 

Small-scale plasmid preparation: GFX miniprep kit for isolation of plasmid DNA from 

bacteria (Amersham Biosciences GmbH, Freiburg, Germany) 

 

Gel Elution of DNA and PCR or DNA cleanup: GFX gel elution and PCR purification kit 

for DNA elution from gels and clean up of PCRs (Amersham Biosciences GmbH, Freiburg, 

Germany) 

 

Southern blot: Microspin S-300 HR columns and Megaprime DNA labeling system 

(Amersham Biosciences GmbH, Freiburg, Germany) 
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Pre-hybridisation solution: 0.2 g skimmed milk and 2.0 g dextran sulphate were dissolved 

in 17 ml water and 6ml 20 X SSC, 2 ml formamide, 1 ml 20% SDS and 80 µl 500 mM EDTA 

were added to the mixture. (All chemicals were individually obtained from Sigma-Aldrich, St. 

Louis, MO)    
Denaturation solution: A solution of 1.5 M NaCl, 0.5 N NaOH in water. 

20 X SSC: 175.3 g sodium chloride and 88.2 g sodium citrate were dissolved in 800 ml 

deionised water and pH adjusted to 7.0 and the final volume to one litre. 

DNA Crosslinking: GS Gene linker UV chamber (BIO-RAD Laboratories, Hercules, CA) 

 

Western blot: ECL Western blotting analysis system (Amersham Biosciences GmbH, 

Freiburg, Germany) 
 
Total RNA and genomic DNA isolation: Total RNA isolation reagent (TRIZOL) and 

Genomic DNA isolation reagent DNAZOL (Invitrogen, Carlsbad, CA) 

 
Molecular weight markers: Nucleic acid size standards, 1 kb ladder, 1 kb plus ladder and 

100 bp ladder (Invitrogen, Carlsbad, CA) 

 

Enzymes: Ligase, Calf intestine phosphatase, Xho I, Cla I, Eco RV, Eco RI, Hpa I, and Pme I 

all from New England Biolabs (NEB, Beverly, MA) 

 

RT and PCR: Platinum Taq DNA polymerase kit, ThermoScript kit, RT-PCR kit and 

DNaseI DNA inactivating enzyme kit (all from Invitrogen, Carlsbad, CA) PCR soft tubes (0.2 

ml) (Biozym Scientific GmBH, Hess.Oldendorf, Germany) 

 

Real time PCR kit: LightCycler FastStart DNA Master SYBR green I kit (Roche 

Diagnostics, Mannheim, Germany) LightCycler Carousel and carousel centrifuge (Roche 

Diagnostics, Mannheim, Germany) 

 
dNTP mix: 10 mM each of dATP, dTTP, dCTP and dGTP (Invitrogen, Carlsbad, CA) 
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2.6.2:  Cell and tissue culture: 

 
Methylcellulose media: Methocult 3434 for the culture of myeloid CFC assays and 

Methocult 3630 for the pre-B CFC assays (Stem Cell Technologies, Vancouver, Canada). 

 

Filtration units: Millex syringe driven filter units 0.22 μm and 0.45 μm filters (Millipore, 

Billerica, MA) 

 

Cell strainer: BD Falcon 40 μm Nylon strainer for macerating the spleen and filtering the 

tissue (BD Biosciences, Palo Alto, CA) 

 

Cell Scrapers: 25 cm sterile cell scrapers (Sarstedt, Newton, NC) 

 

Cell culture pipettes (2, 5, 10 and 25 ml): Sterile disposable pipettes (Corning Inc., Corning, 

NY) 

 

Cell culture plates and dishes: Sterile 96 well, 24 well, 6 well plates (Sarstedt, Numbrecht, 

Germany) 100 mm x 20 mm dishes for adherent cells (Corning Inc., Corning, NY), and Petri 

dishes for suspension cells (Becton Dickinson Labware, Franklin Lakes, NJ) 150 mm x 20 

mm dishes for adherent cells (Greiner Bione, Frickenhausen, Germany) 

 

Calcium Chloride solution for transfection: 2.5 M CaCl2 (Sigma-Aldrich, St. Louis, MO) 

solution in water. 

 

Hepes Buffered Saline: (HBS) (Invitrogen, Carlsbad, CA) 
 
Media: Dulbecco’s Modified Eagle’s Medium (DMEM) 4,5 g/l glucose, l-glutamine, sodium 

pyruvate and 3,7 g/l NaHCO3 (PAN biotech GmbH, Aidenbach, Germany) 

 

Fetal Bovine Serum (FBS): 0,2 μm-filtered mycoplasma screened (PAN biotech GmbH, 

Aidenbach, Germany) 
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Dulbecco’s phosphate buffered saline (DPBS): without magnesium and calcium, sterile 

filtered (PAN biotech GmbH, Aidenbach, Germany) 

 

Trypsin – EDTA: 1 X in HBS without calcium and magnesium with EDTA (Invitrogen, 

Carlsbad, CA) 
  
Penicillin/Streptomycin: Antibiotic solution with 10,000 u/ml Pen G sodium and 10,000 

μg/ml Streptomycin sulfate in 0,85% saline. Used 5 ml per 500 ml medium bottle (Invitrogen, 

Carlsbad, CA) 

 
Murine cytokines: mIL3, mIL6, mSCF, mG-CSF, mM-CS and mGM-CSF (lyophilized) 

(Tebu-bio, Offenbach, Germany) 

 

Ciprofloxacin: Ciprofloxacin 400 solution, (Bayer AG, Leverkusen, Germany) 

 

 

2.6.4:  Miscellaneous: 
 

Giemsa: Giemsa’s Azure Eosin Methyleneblue solution modified. (Merck KGaA, Darmstadt, 

Germany) 

 

May-Gruenwald: May-Gruenwald’s Eosin Methyleneblue solution for microscopy (Merck 

KGaA, Darmstadt, Germany) 

 

Cytospin apparatus: Cytospin 2 Shandon Apparatus (Thermo Electron corporation, U.S.A) 

 

Cytospin slides: Marienfield pre-cleaned twin frosted slides for fixing single cell suspensions 

and blood smears (Marienfield, Lauda-Königshofen, Germany) 

 

Cytospin filter cards: ThermoShandon thick white 5991022 filter cards for cytospins 

(Histocom AG, Zug, Switzerland) 
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Flow cytometry: BD FACS Calibur System (BD Biosciences, Palo Alto, CA) 

 

Fluorescence Activated Cell Sorting: BD FACSVantage SE System (BD Biosciences, Palo 

Alto, CA) 

 

Sequencing mix and apparatus: BigDye Terminator v1.1 Cycle Sequencing Kit and the 

ABI Prism 310 Genetic Analyzer (Applied Biosystems, Foster City, CA) 

 

Microscope: Leitz Diavert Inverted Microscope (Ernst Leitz Wetzlar GmBH, Wetzlar, 

Germany) 

 

 

2.6.5  Software:  

 

The software used for Flow cytometry and FACS sorting was the CellQuest 

Version 3.1(f) (BD Biosciences, Palo Alto, CA). Calculations of survival curve were 

performed using Sigma Plot 2001 Version 7 (SPSS Inc. Chicago, IL) and those for the 

frequency of the leukemia propagating cell using the L-Calc Limiting dilution analysis 

software Version 1.1 (StemSoft Inc., Vancouver, Canada). The Roche LightCycler software 

Version3 (Roche Diagnostics, Mannheim, Germany) was used for real time PCR runs and 

data analysis. The ABI Prism 310 sequencing software (Applied Biosystems, Foster City, 

CA) was used for sequencing and analysis of sequences. The Openlab software 3.0.8 

(Improvision Deutschland, Tuebingen, Germany) was used for visualizing and photographic 

documentation of cell morphology. Primers were designed using the Primer3 program, 

Whitehead Institute, Massachusetts Institute for Technology, MA (http://frodo.wi.mit.edu/cgi-

bin/primer3/primer3_www.cgi). 
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3.1  Cloning of constructs:  
 

The 5.2 kb full length CALM/AF10 fusion gene initially cloned from the U937 

monocytic cell line was sub-cloned by blunt end ligation into the Hpa I site in the multiple 

cloning site (MCS) of the modified murine stem cell virus (MSCV) 2.1 vector upstream of the 

internal ribosomal entry site (IRES) and the enhanced GFP fluorescent protein gene. The 

CALMΔ3’ mutant was cloned by ligating a PCR amplified (primers: Calm_only_fw and 

Calm_only_nonstop_rev) 2 kb fragment of the truncated CALM gene in frame to the 

polyhistidine epitope of the pCDNA6/V5-His A plasmid. For the CALM/OM-LZ mutant, a 

PCR amplified 200 bp fragment (primers: Oct+leu_neu_fw and Leuziptagrev_framec) 

encoding the AF10 octapeptide motif (OM) and the leucine zipper (LZ) was cloned in frame 

into the Xho I site at the 3’ end of the CALM Δ3’ construct, also in frame to the polyhistidine 

tag. The CALM/AF10 ΔOM-LZ mutant was constructed in two steps; first by ligating a 

portion of PCR amplified DNA (primers: Calm_only_fw and CA_por1_rev) from the start of 

CALM/AF10 till the octapeptide motif of the AF10 gene by an Eco RV-Xho I digestion into 

the pCDNA6/V5-His A vector. A Cla I site was introduced in frame with the cDNA just 

before the 3’ end of the reverse primer before the XhoI site.  In the second step a PCR 

amplified Cla I-Xho I fragment of the remaining portion of AF10 after the leucine zipper 

(primers: CA_dellzip_neu_fw and AF10_por2_rev_tag) was inserted into the Cla I-Xho I 

digested first clone. Cla I and Xho I were inserted into the 5’ and 3’ regions of the primers 

respectively for this second fragment; the primers were designed to remove the stop codon 

and maintain the frame with the polyhistidine tag. All these mutants were then sub-cloned 

into the modified MSCV vector for retroviral transduction experiments. All clones were 

sequenced with the CALM/AF10 sequencing primers. 
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3.2 Preparation of high titre stable virus producing cell lines:  
 

1.5x 106 293T cells were plated in a 15 cm dish and on the following day used 

for transient transfection. Medium was changed 4 hours prior to the transfection and 30 μg 

plasmid DNA each of the gene of interest and of the retroviral packaging construct Ecopac 

were added to sterile water and a sterile solution of 100 μl 2.5M CaCl2 was added drop wise 

to the water-DNA mixture. The volume of water added initially was calculated so as to make 

the total volume 1 ml. This was added slowly to a tube containing 1 ml sterile Hepes buffered 

saline solution (pH 7.2). After gentle mixing and incubating at room temperature for 3-4 

minutes, this mixture was added drop wise to the medium covering the whole plate and 

without agitating the cells. The medium was changed the next day and supernatant was 

collected from the cells every 12 hours (thrice totally) and fresh medium added. This 

supernatant was filtered with a 0.45 mm Millipore filter and stored as VCM at –80° for later 

use or used directly to transduce GP+E86 fibroblasts or murine bone marrow. 

5x 104 GP+E86 fibroblasts were plated into 6 well plates one day prior to 

transduction. The next day, medium was withdrawn from these cells and 500 μl or 1 ml of 

fresh or frozen VCM was layered on top of the cells with the addition of a final concentration 

of 10 μg/ml protamine sulfate. Fresh medium was added after 4 hours and the transduction 

procedure was repeated every 12 hours for three-four times. The cells were expanded and two 

days were allowed for GFP expression. Green fluorescent cells were sorted using the 

fluorescence activated cell sorter (FACS) sorter, propagated and used as stable virus 

producing cell lines to transduce murine bone marrow. Using these protocols, 

CALM/AF10/GFP, only GFP, ΔCALM/GFP, CALM+LZ/GFP, or ΔLZ/GFP GP+E86 cell 

lines were constructed and used for experiments. 

 In some cases where viral titres of bulk cell lines were low, single cells were 

sorted into 96 well plates and after expansion their viral titres determined on NIH-3T3 cells. 

Clones producing highest titres were expanded, frozen and used for experiments.  

Titration was performed by plating 2 x 105 NIH3T3 cells per well in 6 well plates and 

layering them with 500 μl VCM the next day with the addition of a final concentration of 10 

μg/ml protamine sulfate. Fresh medium was added after 3-4 hours to stop transduction. This 

was performed every 12 hours (thrice totally). Two days following transduction with VCM, 

cells were analysed for GFP expression at the FACS calibur. 
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3.3 Retroviral transduction of primary bone marrow:   

Bone Marrow Transplantation Model

Injection

Ex Vivo Assays

2nd Tx

BM -Aspirations

FACS /ex vivo Assays

Harvest

5-FU BM Transduction Sort

GFP CFU - S Assay

 
Fig. 3.3a Experimental design of bone marrow transplantation of CALM/AF10 and 

control mice 

 

Parental strain mice were bred and maintained at the GSF animal facility. The 

mice were fed with autoclaved chow and supplied with drinking water containing 

ciprofloxacin and acetic acid and housed in individually vented cage systems. Donors of 

primary BM cells were > 8-wk-old (C57BL/6Ly-Pep3b x C3H/HeJ) F1 (PepC3) mice. 150 

milligrams of 5-Fluorouracil (5-FU) was injected per kg of mouse body weight to eliminate 

cycling cells and to enrich for hematopoietic progenitor cells.  On the fifth day following 5-

FU injection, these mice were sacrificed and their femurs and tibia flushed with serum-

supplemented medium to obtain bone marrow cells. This bone marrow was prestimulated by 

culturing for 2 days in a cytokine cocktail (10 ng/ml mIL-6, 6 ng/ml mIL-3 and 100 ng/ml 

murine stem cell factor) in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented 

with 15% FBS. On day 3, transduction was performed by layering the bone marrow cells on 

top of adhered GP+E86 cell lines (coculture). Cell lines were irradiated for 40cGy plated on 

adherent 150 mm x 20 mm dishes one day prior to the transduction. 10 μg/ml protamine 

sulfate was always added to the medium during viral transduction. On day 5, following 

 32 



                                                                C   h   a   p   t   e   r     I  I  I    -   M   e   t   h   o   d   s 

transduction for two days, bone marrow was removed gently but completely without 

disturbing the adhered monolayer of the GP+E86 cell line. Bone marrow was cultured in 

DMEM 15% FBS and 2 more days were allowed for GFP expression. On day 7, GFP positive 

cells were sorted by FACSVantage and used for bone marrow transplantation or for in vitro 

culture.  Bone marrow was always cultured in DMEM 15% FBS medium supplemented with 

10 ng/ml mIL-6, 6 ng/ml mIL-3 and 100 ng/ml murine stem cell factor. 

 

 

3.4 Bone marrow transplantation and assessment of mice:  
 

BM cells

Gene transfer

GFP

CALM/AF10

GFP
N=6

Sort

Experimental Design

CALM/AF10
N=13

 
Fig. 3.4 a Experimental design of bone marrow transplantation of CALM/AF10 and 

control mice  

This is a representation of the experimental set of mice from the CALM/AF10 and the MSCV-IRES-

GFP arms. A total of 13 mice were injected with bone marrow cells transduced with CALM/AF10 and 

six mice with the bone marrow cells transduced with the empty vector. 

 

Recipients were > 8- to 12-wk-old (C57BL/6J x C3H/HeJ) F1 (B6C3) mice. 

These mice were lethally irradiated (0.80 cGy) a few hours prior to receiving bone marrow 

transplants. Transduced bone marrow or bone marrow from leukemic mice was injected with 

or without addition of mock transduced or non-transduced bone marrow cells intravenously 

into the tail vein of mice using a sterile 0.5 x 25 mm needle.  Mice were assessed periodically 
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for signs of leukemic symptoms by blood withdrawal from the tail vein using sterile scalpels 

and bone marrow aspiration from the tibia of anaesthetised animals or by the observance of 

symptoms that included crouching, frizzled body hair, paleness in the feet, heavy breathing 

and disturbed gait. Mice were considered moribund when one of these symptoms was starkly 

visible.  

 

Expt. no Gene Transduced cells 

 

Mock cells 

3493b CALM/AF10 200000 200000 

3493b CALM/AF10 200000 200000 

3493b CALM/AF10 200000 200000 

3493b CALM/AF10 400000 0 

3493b CALM/AF10 400000 0 

3515 CALM/AF10 200000 200000 

3515 CALM/AF10 200000 200000 

3515 CALM/AF10 200000 200000 

3521 CALM/AF10 100000 300000 

3724 CALM/AF10 100000 250000 

3724 CALM/AF10 100000 250000 

3724 CALM/AF10 100000 250000 

3746 CALM/AF10 50000 100000 

3493a GFP 400000 0 

3493a GFP 400000 0 

3493a GFP 400000 0 

 

 

Fig. 3.4 b Injection of transduced and mock transduced bone marrow in CALM/AF10 

and MSCV-IRES-GFP mice  

This is a schematic representation of the number of cells injected and the respective amount of 

mock transduced added for transplantation into each mouse. Mock transduced cells were cells sorted 

from the same sample but negative for GFP expression. For secondary and tertiary mice, 1x 106 bone 

marrow cells from a leukemic primary or secondary mouse respectively were injected with the 
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addition, to each mouse, of 1x 106 bone marrow cells from a syngenic wild type mouse (non-

transduced mock cells). 

 

Moribund mice were sacrificed by CO2 asphyxiation and bone marrow was 

aspirated as described before. Spleens were dissected and macerated to produce single cell 

suspensions and peripheral blood was drawn with a sterile 0.5 x 25 mm needle by puncturing 

the heart immediately after sacrificing the mice. Red blood cell (RBC) lysis for peripheral 

blood, bone marrow and spleen cells was performed by incubating the cells in ammonium 

chloride buffer for 10 minutes at room temperature. 

 

 

3.5 FACS analysis of murine cells:  
 

Single cell suspensions of cells were immunostained with various 

fluorescence-conjugated antibodies. Staining was performed in PBS with the fluorescence-

conjugated antibodies using a 1: 200 dilution for each antibody. Samples were incubated at 

4°C for 20 minutes and subsequently washed with PBS to remove excess antibody. Cells were 

centrifuges and after decanting the supernatant, resuspended in FACS buffer (2% fetal bovine 

serum and 2 μg/ml propidium iodide in phosphate-buffered-saline). Antibodies used for 

FACS were labelled with phycoerythrin for Gr-1, CD11b (Mac1), Sca-1, Ter119, CD4, 

CD19, CD23, CD24, CD43, sIgM, F4/80 and allophycocyanin conjugated CD11b (Mac-1), 

CD117 (c-kit), B220, and CD8. Fluorescence was detected using a FACSCalibur flow 

cytometer and analyzed using the CellQuest software. Dead cells were gated out by high PI 

staining and forward light scatter. 

 

 

3.6 Ex Vivo proliferation and CFC Assays:  
 

Cell proliferation was assessed in DMEM supplemented with 15% FBS 10 

ng/ml mIL-6, 6 ng/ml mIL-3 and 100 ng/ml murine stem cell factor (standard medium). 

Differentiation of clonogenic progenitors was analysed by plating cells in methylcellulose 
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supplemented with cytokines (Methocult M3434) or pre-B cell assays (Methocult M3630). 

Replating was performed every week in appropriate dilutions. 

 IL-3-dependent cell populations expressing CALM/AF10 were established in 

vitro directly after sorting in DMEM 15% FBS with IL-3 alone (6 ng/ml). Single cell lines 

were generated by sorting these cells into 96 well plates using the BD FACS Vantage in 200 

μl DMEM 50% FBS and 6 ng/ml IL3. After 2 weeks individual wells were assessed for 

growth and growing cells expanded as single cell clones.  

The differentiation capacity of cultured cells was tested in DMEM 15% FBS 

supplemented with granulocyte colony-stimulating (G-CSF) factor 100 ng/ml or macrophage 

colony-stimulating factor (M-CSF) 10 ng/ml. After 5 days, the morphology was determined 

by Wright–Giemsa stained cytospin preparations. 

 

 

3.7 Cytospin preparations and Wright Giemsa staining:   
 

Cytospins of single cell suspensions were performed by resuspending cells in 

PBS at a concentration of 2-6x 105 cells per 200 μl and this volume was introduced into the 

cytospin apparatus. The cells were permanently fixed on glass slides by centrifugation at 500 

rpm for 10 minutes and subsequently air-dried.  Modified Wright Giemsa staining was 

performed by immersing the slides in an undiluted solution of May-Grunwald stain for 5 

minutes. This was followed by immersing the slides in 1:50 diluted Giemsa stain for 1 hour. 

Slides were dipped in water to remove excess stain between the two staining steps and after 

the staining procedure and air-dried for observance under the inverted light microscope.  

For histological analysis, the peritoneum of sacrificed leukemic mice was 

dissected so as to expose all organs and most of the blood drained by cutting the peritoneal 

artery and absorbing the blood with a tissue paper. The mice were fixed in an aqueous 

solution of formaldehyde (10% v/v) and sections of selected organs were prepared and 

hematoxylin-eosin stained using standard protocols.  
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3.8 Colony-Forming Unit–Spleen (CFU-S) Assay:  
 

 

 

 

 

 

12 days Spleen  
colonies 

5 FU - BM Injection 

 

Fig. 3.8a   Schematic representation of the Colony Forming Units in Spleen Assay (CFU-

S) 

Primary BM cells from F1 (PepC3) donor mice that had been primed 5 days 

previously with an i.v. injection of 150 mg/kg 5-fluorouracil were retrovirally transduced (as 

described in 3.3 and 3.4) with the different viruses and cells were highly purified based on 

expression of GFP by using a FACSVantage. Transduced cells were injected directly after 

sorting into lethally irradiated F1 (B6C3) recipient mice. The recovery of CFU-S cells was 

quantified by determining the number of macroscopic colonies on the spleen at day 12 post-

injection after immersion in Telleyesnickzky's solution. 

 

 

3.9 Quantification of the Leukemia propagating cell 

frequency: 
 

B220APC+/Mac1PE- (B population), B220APC+/Mac1PE+ (BM population) 

and B220APC-/Mac1PE+ (M population), cells were sorted from the flushed bone marrow of 

a sacrificed primary CALM/AF10 mouse.  The sort purity of these cells was checked with the 

FACSCalibur and determined to be over 95%. Tenfold serial dilutions of these cells were 

injected intravenously (max. 5x 105, min. 50 cells) into lethally irradiated secondary recipient 

mice as previously described (Section 3.4). 1x 106 cells from a syngenic disease free mouse 

bone marrow were added to each sample for radioprotection. Mice were assessed for signs of 

leukemia as described previously and sacrificed when moribund. The day of sacrifice/death 

was noted and immunostaining of cells from various organs was done as described (Section 
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3.3). The frequency of leukemia propagating cells was calculated using the L-Calc limiting 

dilution analysis software. 

 

 

3.10 RNA and genomic DNA isolation and cDNA preparation:   
 

The Trizol method for RNA isolation described by the manufacturer was used 

to extract RNA with the addition of 1 ml of Trizol solution per million cells. Equal amounts 

of RNA as quantified by a spectrophotometer were added to each reaction (in a set) used for 

cDNA preparation for the semi-quantitative PCRs. Each sample was treated with DNaseI for 

prevention of genomic DNA contamination in cDNA samples. This was performed for each 

sample prior to cDNA preparation according to the manufacturer’s instructions. 

Genomic DNA was isolated from a minimum of 1x 107 cells for Southern 

blotting from various murine organ cells using the DNAZOL reagent and the protocol for the 

same according to the manufacturer. Genomic DNA for the V-DJ and D-J PCRs was isolated 

using the DNeasy mini kit using supplied methods. Genomic DNA was resuspended in sterile 

water and quantified using a spectrophotometer after proper dissolution. 

 cDNA was prepared from DNaseI treated RNA. First-strand cDNA synthesis 

was done with ThermoScript kit. In a 20 μl reaction volume, 1 μg RNA and 1 μg of oligo (dT) 

were mixed to a final volume of 11 μl and incubated 10 minutes at 70°C. Then, 4 μl of 5 X 

first-strand buffer, 2 μl of DTT 0.1 mol/L, 1 μl of 10 mmol/L deoxynucleoside triphosphate 

mix, and 2 μl of ThermoScript reverse transcriptase were added. The sample was incubated 1 

hour at 42°C and used for PCRs. 

 

 

3.11 Southern and Western (immuno) blotting:  
 

3.11.1  Southern blot analysis:  
Southern blot analysis to assess proviral integration was performed by isolating 

DNA from bone marrow, spleen and peripheral blood of leukemic mice using DNAZOL 

reagent as recommended by manufacturer. Southern blot was performed using standard 

protocols. DNA was digested with Eco RI, which cuts the proviral DNA once, to release a 
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fragment specific to the proviral integration site. To check the full-length integration, DNA 

was digested with Nhe I, which cuts in the long terminal repeats (LTRs) to release the proviral 

genome. After digestion DNA was loaded on a 0.7% agarose gel with 0.5 ug/ml ethidium 

bromide. After electrophresis, the DNA was depurinated by soaking the gel in 0.2 N HCL for 

8 minutes, and subsequently for 45 minutes in denaturation buffer. After denaturation, the 

DNA was transferred on zeta-Probe GT membrane by capillary action in a 10X transfer 

buffer.  Cross-linking of the DNA with membrane was done by incubating the membrane at 

150 mjoule in a UV gene linker. The probe used was a 700 bp GFP fragment, which was 

digested out from the pEGFP-C1 plasmid and labelled with α-32P dCTP using Megaprime 

DNA labelling system. Probe was purified using Microspin S-300 HR columns. Hybridization 

was done with α-32P GFP labelled overnight at 620C. After two rounds of washing the 

membrane was dried, covered with a plastic film and put in a cassette for exposure of the 

film. The film was put on the membrane in a dark room and the exposure was done at variable 

exposing times between 48 hours and one week, depending on the visualization signal 

observed.  

 

 

3.11.2  Western Blotting (Immunoblotting): 
 

Sample preparation and cell lysis (total cell extract): 

Proof of protein expression was performed using the 4D6 E86 CALM/AF10 

cell line. The cells were lysed using 150 µl RIPA buffer with fresh added protease inhibitors 

and detached using a cell culture scraper. The cells with RIPA buffer were transferred to an 

Eppendorf microcentrifuge tube and mixed by inversion for 30 minutes at 4°C. After the 

homogenization, the sample was centrifuged at 14000 rpm for 30 minutes at initialized. After 

centrifugation, the supernatant was transferred to a new Eppendorf tube and either frozen at -

80°C, or kept on ice for determination of protein concentration. As a control, 293T cells from 

an 80% confluent 15 mm cell culture dish (between 5 and 10x 107 cells) were transiently 

transfected with 10 µg of pEYFP-CALM/AF10 DNA. Lysates were prepared using the 

method described above. 
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Determination of Protein Concentration: 

The method used for measuring the protein concentration was the Bradford 

method. The assay is based on the observation that the absorbance maximum for an acidic 

solution of Coomassie Brilliant Blue G-250 shifts from 465 nm to 595 nm when binding to 

protein occurs. Both hydrophobic and ionic interactions stabilize the anionic form of the dye, 

causing a visible color change. The assay is useful since the extinction coefficient of a dye-

albumin complex solution is constant over a 10-fold concentration range. Within the linear 

range of the assay (5-25 µg/ml), the more protein present, the more Coomassie binds. The 

protein concentration of the sample was determined by comparison to values obtained for the 

measure of the known range of protein standards. The protein standard used was Bovine 

Serum Albumin (BSA). Six different albumin concentrations (2.5 µg, 5 µg, 10 µg, 15µg, 

20µg and 25µg) were diluted in distilled water to a final volume of 800 µl. One microliter of 

cell lysate was diluted in distilled water for the measure. 200 µl of Protein Assay solution was 

added to the tubes. The tubes were incubated at RT for 15 minutes and the content was further 

transferred to polystyrol cuvettes. A determination of the standard curve of the 

spectrophotometer with distilled water and the protein standards was done using the specific 

program for protein in the spectrophotometer. The sample was measured following the 

standard curve determination. 

 

SDS PAGE of Cell Extracts: 

Total cell extract (TCE) proteins were separated on a denaturing gel consisting 

of 8% Tris-glycine gel was used and a 5% stacking gel. The concentration of the separation 

gel was chosen considering the sizes of wt CALM protein (70kDa) and CALM/AF10 (about 

145 kDa) as indicated in molecular protocols (Sambrook et al., 1989). The sample was 

homogenized and diluted 1:1 with 2x loading buffer and heated in a boiling water bath for 10 

minutes. 80 µg protein was loaded on each gel lane. The electrophoresis was performed under 

100 v for 1hour and 30 minutes in the cold room at 4oC. 

 

Protein Blotting: 

After the electrophoresis, the gel was taken from the cassette and washed once 

with TBS. For the blotting, the wet system was used. To permit a better transfer of large 
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molecular weight proteins as CALM/AF10, which has a predicted size of about 170 kDa, a 

PVDF membrane was chosen. The membrane was wetted in methanol for 30 seconds, rinsed 

in distilled water and equilibrated in transfer buffer for 10 minutes. The system was 

assembled putting a sponge on the bottom of the sandwich (in contact to the negative pole), a 

0.8 mm filter paper in contact to the sponge, and the gel over the paper. A 10 ml pipette was 

used to eliminate the eventually formed air bubbles. On the membrane, another filter paper 

was put, a second sponge and the chamber was closed. The PVDF membrane was oriented to 

the positive pole to permit the protein (negatively charged) to migrate from the gel to the 

membrane (on the positive pole). The transfer system was submitted to constant amperage of 

250 milliamp for 4 hours at 4°C with agitation. The observation of the high molecular weight 

proteins of the pre-stained protein standard on the membrane was an indicator of successful 

transfer. 

 

Protein detection on the blotting membrane with HRP-marked antibodies:  

The antibody-detection of protein was performed following the instructions of 

the antibody’s supplier. After the transfer, the membrane was blocked to prevent non-specific 

binding of antibodies to the membrane by incubating with BlottoA buffer for one hour at 

room temperature or overnight at 4°C in constant shaking. The membrane was further washed 

once with TBS for five minutes and incubated with the primary antibody at 1:1000 dilution in 

BlottoA overnight. The concentration used for the antibodies was adjusted according to the 

intensity and background. After incubation with the primary antibody, the membrane was 

washed three times with TBS with 0.05% Tween-20 (TBST). The secondary antibody 

conjugated with Horse Radish Peroxidase (HRP) was diluted 1:2000 in BlottoA and put on 

the membrane for 45 to 90 minutes incubation at room temperature. The membrane was 

rinsed with distilled water, washed again tree times with TBST and once with TBS for 5 

minutes under agitation. To detect the antibodies on the membrane a commercial 

chemiluminescence kit was used according to the manufacturer’s instructions. After washing, 

the ECL detection solution was put on the membrane for 90 seconds. The membrane was 

dried, covered with a plastic film and put in a cassette for exposure of the film. The film was 

put on the membrane in a dark room and the exposure was done at variable exposing times 

between 15 seconds and 10 minutes, depending on the visualization signal observed. 
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3.12 PCRs:  
 

3.12.1 PCR for transcriptional profile analysis:  
PCRs were performed to check the expression of various lineage specific 

transcripts in highly purified B220+, B220+/Mac+ and Mac+ cells. These cells were sorted 

from a cell line obtained after the propagation of a single B220+/Mac1- cell. Sort purity of 

cells was analysed and determined to be over 95% in each case. PCR was performed for 

Aiolos, MCSF-R, GSCF-R, EBF, MPO, Pax5, Pu.1, Gata2, and Gata3 using primers 

described in the methods section. The housekeeping gene HPRT was used to normalize input 

cDNA. Initially a test PCR with all cDNAs employing 20, 25 and 30 cycles for HPRT was 

performed to determine and avoid saturation related pseudo-normalization. If the intensity of 

one sample in the lowest cycle PCR was different from the other, cDNAs were recalibrated 

till a PCR at that cycle number with bands of equal intensity for each cycle was observed. 

Then, the PCRs were performed for each gene with 30 cycles at different conditions. 

 

 

3.12.2 PCR for V-D-J recombination status:  
D-JH rearrangements in the Ig locus were detected by a PCR strategy 

employing two upstream degenerate primers binding 50 of the DFL/DSP element or the 

DQ52 element. The reverse primer was complementary to a binding site downstream of the 

JH4 segment. All three primers were used in a single PCR reaction in a multiplex PCR and 

the following reaction used in germline configuration, the DQ52 and JH4A primers will 

amplify the 2.15-kb germline fragment. D-JH1, D-JH2, D-JH3, and D-JH4 rearrangements 

involving either DFL, DSP, or DQ52 elements will be detected by the emergence of bands of 

~1.46, ~1.15, ~0.73, and ~0.20 kb, respectively. The amplification protocol was an initial 

denaturation at 94°C for 1 minute followed by 35 cycles of 1 minute at 94°C, 1 minute at 

60°C, and 1 minute 45 seconds at 72°C.  Final extension was carried out at 72°C for 10 

minutes. The concentration of genomic DNA taken was always between 20-300 ng/μl. 

The PCR assay for V to D-J rearrangement employs three degenerate primers 

oligonucleotides (each in separate reactions) homologous to the conserved framework region 

3 (FR3) sequences of the three VH gene families (VH 7183, VH558 and  VH Q52) and the J H 

reverse primer. This results in amplified VDJ rearrangements of ~1,058, ~741, or ~333 

 42 



                                                                C   h   a   p   t   e   r     I  I  I    -   M   e   t   h   o   d   s 

nucleotides. Wild-type murine spleen genomic DNA was used as a positive control and 

genomic DNA from the myeloid cell line 32D as a rearrangement negative control. PCR was 

carried out after an initial denaturation step of 94°C for 4 min for 35 cycles with 94°C for 1 

minute, 60°C for 1 minute and 72°C for 1 minute 45 seconds. Final extension was carried out 

for 7 minutes at 72°C. All PCR products were evaluated on a 1.5% agarose gel by gel 

electrophoresis.  

 

 

3.13  Statistical Analysis:  
Data were evaluated by using the t test for dependent or independent samples 

(Microsoft EXCEL). Differences with P values < 0.05 were considered statistically 

significant.  For calculations of frequency of leukemia propagating cells, the L-Calc software 

was used. Cell numbers were entered as doses, the number of mice per cohort as test and the 

number of mice dead as the response for the frequency calculation.   
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4.1  Cloning and expression of CALM/AF10: We sought to determine the effect of 

constitutive expression of CALM/AF10 in hematopoietic stem and progenitor cells upon 

hematopoietic reconstitution of lethally irradiated mice. For this purpose, a full length 

CALM/AF10 cDNA from the monocytic cell line U937 was sub-cloned in a MSCV vector 

with an IRES driven GFP co-expressing cassette to track transduced cells. This vector has 

been shown to efficiently transduce hematopoietic stem cells and the GFP co-expression 

enables tracking and purification of transduced cells (Rawat et al., 2004). In each experiment, 

GFP expressing empty vector control transduced cells were used as controls. A PmeI-PmeI 

CALM/AF10 fragment from a pcDNA6 V5 His-A CALM/AF10 clone was sub-cloned in 

MSCV-IRES-GFP vector linearized with HpaI with a blunt end ligation. This construct was 

used to produce a stable virus producing GP+E86 cell line. Western blots were performed 

with this GP+E86 cell line for proof of protein expression. 

LTR LTRGFPIRESCALM/AF10

LTR LTRGFPIRESa) 
 
 
b) 

  
Fig. 4.1.a A cartoon representation of the vectors used for bone marrow transplantation experiments: a) 

empty vector control and b) full length CALM/AF10 cDNA flanked by long terminal repeat (LTR) sequences. 

The internal ribosomal entry site (IRES) facilitates co-expression of the GFP. 

 293-T  
Untransfected GP+E86 CA 293-T CA 

CALM/AF10 145 kDA

 

CALM  
(internal loading control) 

70 kDA

Fig. 4.1.b Protein expression of CALM/AF10: Protein expression of CALM/AF10 was observed by 

immunoblotting of the whole protein lysate from the CALM/AF10 GP+E86 (GP+E86 CA) cell line used for 

transduction of murine bone marrow. As a positive control, a cell line transduced with the CALM/AF10 fusion 

gene (293-T CA) was used; the untransfected 293T cells were used as the negative control. The two alternatively 

spliced forms of CALM were visible in all samples and acted as internal loading controls. 
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In order to directly assess the in vivo effects of CALM/AF10 transduced bone 

marrow cells in syngenic mice we performed bone marrow transplantation experiments on 

lethally irradiated murine recipients. Bone marrow cells enriched for stem and progenitor 

cells by 5-fluorouracil treatment of donor mice were retrovirally transduced with CALM/AF10 

or the empty vector and injected into syngenic recipient mice. Lethally irradiated recipients 

normally die of bone marrow failure if injected cells fail to engraft the marrow. Following 

injection of bone marrow cells; it is therefore possible to assess the effects on stem cell 

activity as well as leukemogenic ability of genes retrovirally targeted into these cells.  
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4.2 CALM/AF10 expression enhances the short-term engraftment potential of 

bone marrow progenitors: Stem and progenitor cells injected into lethally irradiated mice 

provide short and long-term engraftment, which can be measured at 4 and 8 weeks 

respectively. Analysis of peripheral blood samples of syngenic mice that had received 

CALM/AF10 transduced bone marrow revealed high levels of short-term engraftment as 

assessed by the percentage of transduced versus non-transduced cells at 4 weeks post 

injection. GFP was used as a marker of transduction.  
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Fig. 4.2.  Percentage engraftment of CALM/AF10 mice at 4 weeks post transplantation: The percentage of 

transduced cells in the CALM/AF10 mice were detected by flow cytometric analysis. The percentages of 

transduced cells injected at day 0 are shown in light coloured bars and the percentage engraftment at 4 weeks in 

dark coloured bars. CALM/AF10 mice (labelled CALM/AF10#1 through 9) showed an average of 82 (±10) % 

engraftment in the peripheral blood with transduced bone marrow cells. In comparison, cells transduced with the 

GFP vector control, (labelled GFP#1, 2 and 3) injected with 100 % transduced bone marrow cells each, showed 

an average of 58 (±49) % of engraftment after 4 weeks. 

 

The high engraftment of mice with CALM/AF10 transduced cells was despite the injection of 

an average of 57 (±26) % transduced cells at the day of injection (day 0) and the addition of a 

remainder of mock-transduced cells, indicating that CALM/AF10 cells had a competitive 

growth advantage in vivo over non-transduced cells (For the exact numbers of transduced 

versus non-transduced cells injected in each mouse, see Fig. 3.4b (page 34).  
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4.3 CALM/AF10 causes an aggressive acute leukemia in mice: Mice injected with 

CALM/AF10 and GFP transduced bone marrow were monitored for symptoms of leukemia 

that included frizzled body hair, paleness in the feet and lethargy. Moribund mice were 

sacrificed and analysed for leukemia. The examination of leukemic symptoms includes the 

measurement of leukocyte and erythrocyte numbers in the peripheral blood from sacrificed 

leukemic mice (Fig. 4.4) and the measurement of spleen weight (Fig. 4.5). Various organs of 

leukemic mice were fixed in formalin for histopathological examination (Fig. 4.6).  
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Fig. 4.3. Kaplan-Meyer plot of lethally irradiated mice injected with CALM/AF10 transduced bone 

marrow:  Mice injected with CALM/AF10 transduced bone marrow cells (n=13) rapidly succumbed to an acute 

leukemia with a median survival time of 125 days (range 46 to 366 days) (P < 0.0005 compared to control mice). 

Secondary mice (mice injected with leukemic cells from the bone marrow of a primary leukemic mouse) and 

tertiary transplanted mice (injected from the bone marrow of sacrificed leukemic secondary recipients) (n=22 

and 4, respectively) also succumbed to an acute leukemia with a median latency of 17 days post transplantation 

(P < 0.0005 compared to control mice).  

 

This data shows that in the bone marrow transplantation model CALM/AF10 induces a 

transplantable acute leukemia with a short latency time. 
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4.4 Leukemic CALM/AF10 mice exhibit hyperleukocytosis and anemia: One of 

the hallmarks of the leukemia was a manifold expansion of white blood cells 

(hyperleukocytosis) in the hematopoietic organs and the relative and absolute reduction in red 

blood cell numbers (anemia) in CALM/AF10 mice as compared to the control mice. 

 
Mouse no. 

 
Retroviral construct 

 
Peripheral blood 

 
Peripheral blood 

 

  RBC per ml X 10E9 WBC per ml X 10E6

 

3493b # 2 CALM/AF10 0.75 50 

 

3493b # 4 CALM/AF10 0.75 50 

 

3493b # 5 CALM/AF10 0.6 85 

 

3515 # 3 CALM/AF10 0.82 52 

 

3724 # 1 CALM/AF10 0.6 48 

 

3724 # 2 CALM/AF10 1.25 32 

 
GFP 1 6 4.5 

 

3493a # 1 GFP 2 4.8 3.2 

 

3493a # 3 GFP 3 5 3.6 

 
 

Fig. 4.4. RBC and WBC counts in the peripheral blood, bone marrow and spleen of CALM/AF10 and 

control mice: Paleness in the feet was one of the first visible signs of leukemia, which resulted from a severe 

anemia in mice. Leukemic CALM/AF10 mice showed a marked decrease in RBC counts in peripheral blood (4.2 

fold, P < 0.005) and an elevated circulating WBC count (13.3 fold P = 0.044) as compared to vector control 

mice with up to 50 x 10 6 circulating WBCs per ml of peripheral blood. 
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4.5 Spleens of leukemic CALM/AF10 mice are typically enlarged: Enlargement of 

the spleen of CALM/AF10 mice was a typical feature with the presence of visible white spots 

on the surface indicating infiltration with blast colony forming cells. 

 
A) B) 

 

 

 

 

CALM/AF10 GFP
 

Mouse no. Retroviral construct Spleen weight (mg) 

3493b # 2 CALM/AF10 700 

3493b # 4 CALM/AF10 400 

3493b # 5 CALM/AF10 250 

3515b # 3 CALM/AF10 300 

3724 # 1 CALM/AF10 200 

3725 # 2 CALM/AF10 400 

3515a# 1 GFP control 1  150 

3493a # 1 GFP control 2 200 

3493a # 3 GFP control 3 200 
 

 
Fig. 4.5. Splenomegaly in CALM/AF10 mice: The spleens of diseased CALM/AF10 mice (A) were typically 

larger compared to GFP control mice (B). Diseased CALM/AF10 mice showed an average spleen weight of 370 

mg as compared to an average of 183 mg in GFP mice.  
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4.6 Leukemic blasts infiltrate multiple organs of CALM/AF10 mice: Leukemia 

progression is marked by the infiltration of blasts in various organs and therefore we assessed 

sacrificed moribund mice for these signs by making histopathological sections of fixed organs 

and immunostaining followed by microscopy. 

a b c 

100 x 100 x 100 x Intestine Kidney Brain 

f d e 

650 x 

100 x 100 x 100 x 

Lung Spleen Liver 

 
Fig. 4.6: Immunohistopathology of diseased CALM/AF10 mice: A study of the  histological sections 

demonstrated infiltration of myeloid blasts in multiple organs, including non-hematopoietic tissues. Of note, the 

blast population crossed the blood-brain barrier resulting in perivascular infiltration in the brain of leukemic 

mice. The cerebellum of the leukemic mouse brain showed extensive perivascular infiltration with hemorrhage 

and necrosis (a). The intestine also showed infiltration of blast cells and the kidneys showed glomerular and 

tubular infiltration (b&c). There was extensive sinusoidal and portal infiltration in the liver (d). The spleen was 

diffusely infiltrated with no residual lymphoid cells (e). The lungs were also diffusely infiltrated (f).  

 

The infiltration of leukemic blasts to the non-hematopoietic organs in general and to the brain 

in particular was striking, highlighting the aggressive nature of the disease. 
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4.7 Leukemic blasts in CALM/AF10 mice stain for myeloid markers: The type and 

maturity of the cells involved in leukemia can be identified by analysing cells under a 

microscope after staining with histochemical and immunohistochemical stains distinguishing 

between various cell types. The myeloperoxidase stain distinguishes between immature cells 

in acute myeloid leukemia  (cells stain positive) and acute lymphoid leukemia (cells stain 

negative) (Fischbach, 1996). Lymphoid blasts are characteristically negative for 

myeloperoxidase and chloracetate esterase. Immunochemical stains against B220 and CD3 

aid in the detection of B and T lymphoid blasts respectively. In order to determine the nature 

of the blasts and to confirm the myeloid nature of the disease, we performed various stainings 

of the organs from primary leukemic mice.  
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Fig. 4.7: Histochemical and immunohistochemical staining of leukemic blasts: Immunohistochemistry on 

histological slide preparations of leukemic mice with different stainings showed the blast like nature of the cells 

by hematoxylin-eosin staining (d), negativity of the blasts for B220 (a and b) and CD3 (c and g) and positivity 

for chloracetate esterase (e) and myeloperoxidase (f). 

 

These stainings revealed the myeloid nature of the bulk population confirming the diagnosis 

of acute myeloid leukemia.  
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4.8 Cells from hematopoietic organs of leukemic CALM/AF10 mice are 

predominantly myeloid in appearance with a high number of infiltrating blast like cells: 

Cytological slide preparations were made and assessed by the observation of morphology of 

the leukemic samples fixed on slides and stained with the Wright-Giemsa protocol. 

Fig. 4.8.a: Blast like cells from CALM/AF10 Mouse organs: Wright-Giemsa stained cytospins of single cell 

suspensions from organs of CALM/AF10 mice or blood smears revealed differentiated myeloid cells (dashed 

arrows) and a number of large cells (dark arrows) with a high nucleus to cytoplasm ratio and two to three 

nucleoli confirming their blast like nature. 

 

Mouse no. 

 

% Blast like 

cells BM 

% Blast  

like cells PB 

% Blast like 

cells Spleen 

% 

myeloid 

PB 

% 

lymphoid  

PB 

Lymphoid/

Myeloid 

ratio (PB) 
 CALM/AF10 # 1 30 27 32 89  3  0.03: 1 
CALM/AF10 # 2 40 33 30 91  9  0.09:1 
 CALM/AF10 # 3 65 61 60 94   6  0.06:1 
CALM/AF10 # 4 38 31 38 96 4  0.04:1 
CALM/AF10 # 5 78 40 n.d n.d n.d n.d 
CALM/AF10 # 6 n.d 42 32 96 4 0.04:1 

GFP # 1 0 0 0 20 80 4:1 
GFP # 2 0 0 0 32 68 2:1 
GFP # 3 0 0 0 35 65 2:1 

 
Fig. 4.8.b: Percentage of blast like cells from CALM/AF10 Mouse organs 

 100 cell differential counts from organs sacrificed leukemic mice showed a very high percentage of monocytoid 

blast like cells. Panoptic staining of PB smears and cytospin preparations of BM and spleen cells revealed an 

accumulation of myeloid blasts with a median of 32, 40 and 39 %, respectively in all organs.  
 

The reversal in the lymphoid to myeloid ratio in leukemic mouse peripheral blood indicated 

massive myeloid proliferation and/or inhibited lymphoid growth in this compartment.  
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4.9 A subset of leukemic blasts from CALM/AF10 mouse bone marrow co-express 

lymphoid and myeloid markers: We analysed various organs of leukemic mice by flow 

cytometric analysis of cell suspensions of the organs after staining with various lineage 

specific antibodies. We could consistently detect the expression on a subset of leukemic bone 

marrow cells of the B cell surface marker B220. Since most cells expressed the myeloid 

markers Mac-1 and/or Gr-1, it could be inferred that some cells would co-express the 

lymphoid B220 and the myeloid Mac-1 and/or Gr-1 markers. To confirm this, we performed a 

co-staining of bone marrow cells from a leukemic mouse for B220 and Mac-1 or Gr-1.  
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Fig. 4.9: Immunostaining analysis of bone marrow cells from CALM/AF10 mice: A majority of bone 

marrow cells from leukemic mice stain for the myeloid markers Mac-1 (a) and Gr-1 (b). CALM/AF10 positive 

cells are tracked by the analysis of GFP (X axis). Typical co-staining of bone marrow cells from a representative 

CALM/AF10 leukemic mouse with the B220 and Mac-1 markers shows a minor population of cells that are co-

express Mac-1 and B220  (B/M population) and a smaller population of Mac-1 negative B220 marker positive 

cells (B population) (c).  

 

In the bone marrow of diseased mice on an average 6.74 % of the cells were positive 

for B220 and negative for myeloid markers compared to 9.39 % in the GFP control mice. 

Furthermore, an average of 26.04 % (± 17.18) co-expressed B220 and Mac1 in the leukemic 

mice versus 2.06 % in control mice, while 32.53 % (± 26.32) of the cells co-expressed B220 

and Gr1 in leukemic mice compared to 1.28 % in the controls. An average of 57.08 % cells in 

the bone marrow of diseased mice were B220-/Mac1+ and 60.79 % were B220-/Gr-1+ 

compared to 85.81 % and 84.79  % respectively in the controls.  
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4.10 The CALM/AF10 induced leukemia is derived from several transformed 

clones:  In order to check the clonality of the disease, we performed Southern blots with the 

genomic DNA extracted from the cells of leukemic mice. For this purpose, we digested 

purified genomic DNA from leukemic mice with EcoR1, which cuts once in the vector. The 

other EcoR1 site would be at a random distance in the genome, distinct in every clone in 

which the retroviral construct is integrated. Each clone therefore would generate a fragment of 

a distinct size, which can be probed by Southern blotting using a PCR amplified probe in the 

GFP region. Bands of different sizes and in addition varying intensities would therefore 

indicate the presence of different clones in the leukemic samples. 
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Fig. 4.10: Evidence of oligoclonality of leukemia in diseased CALM/AF10 mice 

A) Southern blot analysis of EcoRI digested genomic DNA from the bone marrow (BM), peripheral 

blood (PB), and spleen (SP) of a representative primary leukemic CALM/AF10 mouse (mouse no.3983 # 3). 

Signals with different intensity, marked by arrows, indicate the presence of different leukemic clones proving the 

oligoclonal nature of the disease.  

B) Analyses of samples from a primary leukemic mouse (mouse no.3746) bone marrow (BM) and 

spleen (SP) (lane 1 and 2) and that of a secondary mouse (mouse no.3833 # 1) (lane 3 and 4) derived from 

primary mouse (mouse no.3746) shows the presence of various bands of different intensities (marked by arrows) 

indicating different clones and the clonal propagation of these individual clones in the secondary disease. 

 

The presence of bands of varying sizes and intensity demonstrated the oligoclonal 

nature of the CALM/AF10 induced leukemia indicating that probably few additional 

mutations are required for CALM/AF10 mediated transformation. 
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4.11 Identification of the leukemia propagating sub-fraction in the leukemic bone 

marrow population: As shown in Fig. 4.9, the leukemic bulk population consistently showed 

three sub-populations, the B220+/myeloid marker- population or the B population, the B220 

+/myeloid marker + or the B/M population and the B220-/myeloid marker + M population.  

For the sake of consistency and to avoid confusion, only the italicised terms B, 

B/M and M populations will be used throughout the thesis to denote the B220+/myeloid 

marker-, B220+/myeloid marker+ and the B220-/myeloid marker+ fractions respectively.  

The consistent detection of cells with lymphoid markers in an acute myeloid leukemia 

was interesting to study. For this purpose, we examined the three populations for their 

morphology (Fig. 4.11), differentiation capability (Fig. 4.12) and the frequency of leukemia 

propagating cells (Fig. 4.13).  

 
B population B/M population M population 

a) b) c) 

 

        B220+/Mac1- sorted cells     B220+/Mac1+ sorted cells    B220-/Mac1+ sorted cells 

 
Fig. 4.11: Cytospin preparations of the three different cell populations from a leukemic CALM/AF10 

mouse (no. 3746) : B population cells (a) appear as monocytoid blasts with a high nucleus to cytoplasm ratio 

with multiple nucleoli and moderate vacuolation, B/M population cells (b) are also blast like, with an indented 

nucleus with relatively more cytoplasm and vacuolation. M population (c) cells have a distinctly differentiated 

appearance with a segmented or circular nucleus and a comparatively smaller size.  
 

Since the morphology of the cells positive for the B220 marker was more undifferentiated as 

compared to the B220 negative population, it indicated that the leukemic blasts resided in the 

B220 marker positive compartment and not in the bulk B220 negative compartment.  
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4.12 B population cells have a higher proliferative potential at the single cell level 

compared to the B/M and the M population: We plated the cells from the three different 

sub-populations as single cells in 96 well plates to assess the proliferative capacity of each 

sub-population as well as the clonal differentiation ability at the single cell level. 
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Fig. 4.12: Single cell seeding efficiency of the different populations: Of the three populations in the leukemic 

bulk cell population propagated in IL3, only the B population displayed efficient clonal proliferative potential at 

the single cell level with a seeding efficiency of 26 % after single cell sorting compared to 1 % in the other two 

populations.  

 

This data proved that the B population cells in the rapidly proliferating IL3 dependent 

leukemic cell population had the highest seeding efficiency in comparison to the other two 

populations. 
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4.13 The frequency of leukemia propagating cell is the highest in the B population 

as compared to the B/M population and the M population: Since the B, B/M and M sub-

populations were present in each leukemic mouse and since the B population (or cells with 

the B220 marker) were the cells with the blast like morphology and not the bulk myeloid 

population, it was critical to determine the population where the frequency of the leukemia 

propagating cell (LPC) was the highest.  In order to determine the frequency of the leukemia 

propagating cell in each sub-population and to determine the compartment in which the 

leukemic stem cells reside, limiting–dilution secondary transplantation assays were performed 

by highly purifying the three different populations from leukemic primary recipients and 

injecting them at different cell dosages into cohorts of animals and observing for signs of 

leukemic engraftment.  

M: 1 in 13906

B/M: 1 in 437

B: 1 in 36

Mac1

Frequency of leukem
ia propagating cells

B B/M

M

         
 Fig. 4.13: Limiting dilution analysis for determining LPC frequency: The frequency of the LPC was more 

than 380 fold higher in the B population (1 in 36 cells) than in the M population (1 in 13906 cells) and more than 

12 fold increased compared to the B/M population (1 in 437 cells). 

 

This demonstrates that the B220+/myeloid marker negative population in the leukemic mice 

contains the highest frequency of cells that are able to propagate leukemia in transplanted 

mice supporting the argument that these are the stem cell candidates in this model of myeloid 

leukemia. 
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4.14 Transformed CALM/AF10 B population blasts can differentiate into B/M and 

functionally myeloid M population cells in vitro: Single sorted B population cells seeded 

with a high efficiency and could be propagated indefinitely in culture medium supplemented 

with IL3. We analysed the differentiation capability of the cells at the single cell level. For 

this purpose, we did the flow cytometric analysis of cells derived from single B population 

cells cultured in IL3 supplemented medium for 2 weeks. Cells were co-stained with the B220 

and Mac-1 or B220 and Gr-1 markers.  To determine if the M population cells were indeed 

functionally myeloid, they were incubated with heat inactivated S. cerevisiae and stained with 

Wright Giemsa stain after fixing on slides.  

 a) b) c)

Single Cell Sorting
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Fig. 4.14: In vitro myeloid differentiation of single sorted B population cells: Representative example of a 

highly purified cell of the B population from bulk leukemic cells cultured in IL3 (a) gave rise to the B/M and the 

M populations in vitro (b). The M population cells, apart from expressing the myeloid markers Mac-1 and/or Gr-

1 (data not shown), were determined to be functionally myeloid as is seen by the active phagocytosis of 

S.cerevisiae by these cells in vitro (c).  
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4.15 Clonal D-JH rearrangements can be detected in all sub-populations derived 

from B population cells: Since functionally myeloid B220 marker negative cells could be 

derived from highly purified single cell sorted B220 positive myeloid marker negative cells, 

this proved that the B population cells in the in vitro cultured leukemic blast population could 

differentiate spontaneously under the given culture conditions into the B/M population and the 

M population.  We sought to determine if the B220 positive cells showed any other lymphoid 

cell characteristics and to analyse whether these characteristics were also present in the cells 

derived from the B population cells. Genomic rearrangements that join the diversity (D) and 

junction (J) regions of the immunoglobulin locus are signatures of lymphoid cells. We 

assessed D-J rearrangements of the heavy chain of the immunoglobulin locus in all the three 

populations propagated from a single B population cell using a multiplex PCR strategy. This 

strategy detects the most common D-JH rearrangements. Cells of the B population showed D-

JH rearrangements. To confirm that the B/M and M populations indeed arose from a pure 

single-cell sorted B population cell, we checked for D-JH rearrangements in both the derived 

populations.   
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Fig. 4.15:  B/M as well as M populations derived from a single B population cell show clonal D-J 

rearrangements:  Single cell sorted B population cells were analysed for D-J rearrangements. In this 

representative case, B/M (lane2) and M (lane3) population cells generated from a single B population cell 

exhibited the same D-J rearrangements (D-JH3/D-JH4) as the parent B population clone (lane1). Lane4 and lane5 

are the positive (wild type mouse splenic cells) and negative controls (32D murine myeloid cell line) for D-JH 

recombination respectively.  
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This confirmed the data from 4.14 that the B/M and M populations generated in vitro from 

cultured purified B population cells were indeed derived from the B population cell riling out 

the possibility of contamination from other sources or improper sorting procedures. 

 

4.16 IgH D-J rearrangements can be detected in myeloid populations of cells from 

leukemic CALM/AF10 mice: The presence of genomic D-JH rearrangements in the myeloid 

cells derived in vitro from the B population cells implied that the M population cells in the 

leukemia would also show genomic D-JH rearrangements if they were derived similarly form 

B population cells in vivo. In order to determine whether the bulk myeloid leukemic 

population was derived from transformed D-JH rearranged progenitors, we analysed the 

various sorted sub-populations of bulk leukemic samples for D-JH rearrangements in the 

spleen of diseased mice. 
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Fig. 4.16: PCR analysis of IgH D-J rearrangements: This is a representative example of the analysis of 

genomic rearrangements at the IgH loci from a leukemic mouse. All the populations isolated from leukemic mice 

displayed DNA bands corresponding to all recombination positive D-JH rearrangements (D-JH1, D-JH2, D-JH3 

and D-JH4), which are detectable by the used multiplex PCR. Lane 1-6: B220+/Mac1-, B220+/Mac1+, B220-

/Mac1+, B220+/Gr-1-, B220+/Gr-1+ and B220-/Gr-1+ cells purified from a leukemic mouse spleen. Lane 8: 32D 

monocytic cell line, myeloid germline control.  
 

The presence of D-JH rearrangements in all the populations suggested that these populations, 

including those expressing only myeloid markers, arose from D-JH recombined progenitors. 

This data strongly supported the argument that the B220 positive D-JH rearranged progenitor 

propagated the myeloid leukemia in mice. 
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Results from the above experiments clearly demonstrated that the leukemic stem cell 

candidate in the myeloid leukemia seen in mice transplanted with the CALM/AF10 transduced 

bone marrow in this murine model was a D-JH rearranged B220 positive myeloid marker 

negative cell. Under normal circumstances, murine B220 positive D-JH rearranged cells do 

not possess myeloid differentiation capacity. Studies from Busslinger et al. (Heavey et al., 

2003) (Rolink et al., 2000) however have demonstrated that B220+ D-JH rearranged B 

lymphoid progenitors from Pax5 -/- mice can differentiate into the myeloid lineage. These 

cells also show promiscuous expression of certain myeloid transcription factors such as 

myeloperoxidase (MPO). We therefore analysed the three populations generated from the 

single sorted B population cell for the expression of various transcription factors by 

semiquantitative PCR. 
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4.17 B population cells are Pax5 negative but express the early B cell factor gene 

EBF:  The genes analysed for transcriptional profiling were lineage specifying genes or those 

expressed by hematopoietic stem cells and various T and B cell progenitors. 
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Fig. 4.17: An analysis of various transcripts specific to the hematopoietic lineage in the three sub-

populations: We employed a semiquantitative PCR to analyse the transcriptome pattern of the three 

subpopulations in a cell line derived from a single B population cell. The B population cells (lane 1) expressed 

the B cell specific transcription factor EBF but lacked Pax5 expression. They also expressed the myeloid marker 

(myeloperoxidase) but failed to express other transcription factors expressed in stem and other progenitor cells 

indicating a unique transcriptional profile.  The expression of the myeloid colony stimulating factor (M-CSF) 

receptor was progressively higher with differentiation from the B population (in which it was undetectable) to 

the M population cell (lane 3) through the B/M population intermediate (lane 2). The controls used were B220 

positive cells sorted from a normal wild type mouse spleen (lane 4), Mac-1 sorted cells from a wild type mouse 

bone marrow (lane 5) and whole bone marrow (lane 6) as a positive control for all polymerase chain reactions.  
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The expression of the early B cell factor EBF in the B population cells, taken together with 

the expression of B220 and D-JH rearrangements indicate that these cells resemble early B 

lineage cells. In addition, the absence of Pax5 expression could explain the block in B cell 

differentiation and promiscuous myeloid differentiation capability B population progenitors.  

 

4.18 The B population cells express various early B lineage markers: Since the B 

population cells resembled early B lineage cells, we tested them for the presence of various 

early surface B lineage markers to determine the stage of B lymphoid differentiation and to 

ascertain their identity as lymphoid progenitors. 
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Fig. 4.18: Immunophenotypic characterization of the B population cells: Flow cytometric analysis of bone 

marrow cells from the leukemic bulk population propagated in IL3 supplemented medium and stained with 

various markers characterized the B population cells as being CD43+/AA4.1+/HSAlow-pos/FLT3R+/IL-7Rlow-neg 

and negative for CD19, c-kit, Sca1 and CD4. (data not shown).  

 

This immunophenotypic analysis, taken together with the transcription profile analysis 

indicates that the B population cell is a Pax-5 negative pro B or pre BI like cell according to 

the Basel nomenclature of B cell development (Li et al., 1996)  
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4.19 The expression of CALM/AF10 in bone marrow progenitors enhances the 

recovery of day 12 CFU-S: The number of short-term hematopoietic stem cells in a cell 

population can be assayed by the Colony Forming Units in spleen (CFU-S) assay that 

quantifies the frequency of these cells by the formation of visible spleen colonies 12 days 

after injection. To investigate the effect of CALM/AF10 on primitive hematopoietic cells, 

using this assay, cells transduced with the different viruses were injected into lethally 

irradiated mice, and spleen colony formation was quantified 12 days later. (Fig. 4.19A) 

Colonies can be visualized after immersion of the spleen of sacrificed mice in 

Telleyesnickzky’s solution (representative example Fig. 4.19B). 
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Fig. 4.19:  Effect of CALM/AF10 expression on short-term hematopoietic stem cells: An average of 75(±23) 

day12 CFU-S colonies per input 105 cells could be recovered from bone marrow cells expressing the 

CALM/AF10 fusion gene as compared to 2 (±3) colonies with cells expressing the empty GFP vector. (Fig. 

4.19C)  
 

Therefore, the expression of CALM/AF10 in hematopoietic progenitors and their subsequent 

injection into mice leads to a more than 45 fold increase (P < 0.0005) in the number of short-

term repopulating progenitors as assessed by the day-12 CFU-S assay content (number of 

colonies on the spleen 12 days post injection).  
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4.20 The leucine zipper-octapeptide motif domain is critical for the hematopoietic 

activity of CALM/AF10:  We used the CFU-S assay to perform structure function analysis 

of the hematopoietic activity of CALM/AF10. Retroviral transduction of bone marrow 

progenitors with various mutants of CALM/AF10 was performed to test their effect in the 

CFU-S assay in which the expression of the wild type CALM/AF10 fusion gene shows an 

enhancement in day 12 CFU-S numbers as compared to the empty vector.  
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Fig. 4.20: Structure function analysis of the hematopoietic activity of CALM/AF10: The average number of 

CFU-S recovered 12 days after injection with cells expressing the CALM gene truncated to the breakpoint of 

CALM/AF10 (CALM∆3’) or the CALM/AF10 fusion gene with a deleted octapeptide motif - leucine zipper 

domain (CALM/OM-LZ) were 10 (±11) and 12 (±11) respectively per input 105 bone marrow cells. In contrast, 

the number of day 12 CFU-S recovered from cells expressing the truncated CALM fused to the octapeptide 

motif–leucine zipper domain was 68 per input 105 cells. This shows that the deletion of the AF10 portion or the 

octapeptide-motif-leucine zipper domain from the CALM/AF10 fusion gene causes a loss in enhancement of ST-

HSC numbers seen with the CALM/AF10 fusion gene. In contrast, the expression of a construct fusing the 

octapeptide motif-leucine zipper domain of AF10 3’ of the truncated CALM construct (CALM/OM-LZ) caused a 

40 fold expansion in the number of day 12 CFU-S (P=0.0006) compared to the vector control (GFP), 

demonstrating that the octapeptide motif leucine-zipper domain of AF10 is highly relevant for the hematopoietic 

activity of the CALM/AF10 fusion gene. 

 

This data implicated the octapeptide-leucine zipper domain of AF10 in the enhancement of 

CFU-S recovery in hematopoietic progenitors by CALM/AF10 and indicated that it might be 

playing a role in CALM /AF10 mediated transformation. 
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The t(10;11)(p13;q14) translocation is a rare but recurring translocation in several 

different leukemias and lymphomas (Bohlander et al., 2000). Using the murine bone marrow 

transplantation model, we assessed the oncogenic potential of the human leukemia specific 

CALM/AF10 fusion gene cloned from the U937 monocytic cell line. The failure of 

CALM/AF10 to induce transformation of hematopoietic progenitors in vitro (data not shown) 

possibly reflects a requirement of specific growth factor/s for the proliferation of the leukemia 

initiating cell or alternatively, the specific targeting, by CALM/AF10, of a unique progenitor 

cell incapable of in vitro proliferation in the conditions provided. We report that the ectopic 

expression of the CALM/AF10 fusion transcript in 5-FU mobilized bone marrow causes an 

aggressive acute leukemia in vivo. The injection of CALM/AF10 transduced bone marrow 

cells into lethally irradiated mice led to a rapid engraftment with transduced progenitors 

indicating that CALM/AF10 confers engraftment capability on bone marrow progenitors.  All 

the mice transplanted with CALM/AF10 transduced bone marrow succumbed to an aggressive 

acute leukemia with relatively short latency indicating that probably few additional mutations 

are required for CALM/AF10 mediated leukemogenesis. Massive infiltration in non-

hematopoietic organs of leukemic CALM/AF10 mice highlights the aggressive character of 

the leukemia. Infiltration of the central nervous system, which we observed in CALM/AF10 

mice, is a feature more common to acute lymphoblastic leukemias probably supporting the 

lymphoid origin of this predominantly myeloid leukemia; though the alternative explanation 

that this only reflects the more aggressive nature of the disease cannot be ruled out.  

The myeloid nature of the leukemia was confirmed by immunohistology and staining 

for specific myeloid and lymphoid markers. The bulk leukemic population in all the leukemic 

mice was predominantly myeloid as analysed by morphology and immunophenotype (B220-

/myeloid marker+ +). There was however, a biphenotypic population of cells (B220 and 

Mac1+with or without Gr1) and an even smaller cell population that displayed only lymphoid 

markers (B220+/Mac1-/Gr1-).  

Leukemias that present blasts with characteristics of two different lineages (acute 

biphenotypic leukemias) are a unique identifiable subset of leukemias and have been linked to 

poor prognosis (Sulak et al., 1990). The target cell of these leukemias has been widely 

postulated to be a primitive hematopoietic progenitor. As is discussed in the introduction, the 

presence of biphenotypic cells in leukemias has been attributed either to the transformation of 

a normally occurring biphenotypic cell (lineage promiscuity) or to the transformation of a 

lineage committed cell acquiring markers of the other lineage as a result of malignancy 
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(lineage infidelity) (McCulloch, 1987). Earlier observations that the biphenotypic cells in a 

mouse model of MLL-GAS7 leukemia appear due to the malignant transformation of normal 

IgH locus naïve biphenotypic multipotent progenitors lends credence to the promiscuity 

theory (So et al., 2003). However, we observed genomic DJ rearrangements at the IgH loci in 

all three cell fractions and also demonstrated that the frequency of in-vivo leukemia 

propagating cells as assessed by the transplantibility of leukemia (leukemia stem cells) is 

significantly higher in the B220+/Mac1-/Gr1- fraction as compared to the other two fractions 

(B220+/myeloid marker+ and the B220- +/ myeloid marker ). Furthermore, we demonstrate that 

the two fractions B220+/myeloid marker+ and the B220-/ myeloid marker+ can be clonally 

generated in vitro from single cell sorted DJ rearranged B220+/Mac1-/Gr1- leukemic cells. 

Furthermore, the B220+/Mac1-/Gr1- cells are also the only cells in the three fractions that can 

seed efficiently when plated at the single cell level. Moreover, immunophenotypic 

characterization of the B220+/Mac1-/Gr1- fraction revealed the expression, on these cells, of 

markers specific to early B cell progenitors specifically AA4.1, CD43 and Heat Stable 

Antigen (HSA). B220+ +/CD43 /AA4.1+/HSA positive cells have been characterized as B 

lineage precursors. Refined analysis of the cell surface phenotype of the B220+ cells 

characterized them as CD43+ +/AA4.1 /HSAlo-pos -/CD19 /FLT3R+/IL-7Rlow-neg c-kitlow-neg, and 

negative for Sca1 and CD4. Transcriptional profiling demonstrated positivity for the B-

lymphoid transcription factor EBF, but negativity for Pax5. Importantly, the cells expressed 

myeloperoxidase (MPO) but not the myeloid factors G-CSF R, M-CSF R, or Gata-2. With 

regard to T-cell associated factors there was no detectable transcription of Gata-3, or Aiolos. 

Taken together, these data indicate that in this mouse model of myeloid leukemia, the 

leukemic stem cell candidate propagating the leukemia resides in the minor lymphoid like 

B220+/CD43+ +/AA4.1 /HSA+ - /CD19 progenitor cell compartment. Even though this progenitor 

resembled cells of the early B lineage, the classification of this CALM/AF10 leukemia 

propagating cell according to the different B cell classification systems remains difficult 

because of its leukemogenic characteristics and the potential impact of the fusion gene on its 

cell surface phenotype and transcriptional network. However, the B220+ - /CD19 cell surface 

phenotype resembles the phenotype described for the pro-B/pre-B-I differentiation stage of 

the Basel nomenclature, the pre-pro B of the Philadelphia nomenclature and the fraction 

A /A1 2 of B-cell precursors according to Hardy et al. (Busslinger et al., 2000; Martin et al., 

2003; Osmond et al., 1998). This cell surface phenotype discriminates them on the one hand 

from the B220+ +/CD19  cell stage, which is associated with entire commitment to the B cell 
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lineage (Hardy, 2003)and on the other hand from the earliest lymphoid progenitors, the 

common lymphoid progenitors (CLPs), which lack expression of lineage markers such as 

B220 (Kondo et al., 1997). 

 This is a significant observation as we demonstrate, for the first time that leukemia 

with predominant characteristics of one lineage could arise from progenitor cells bearing 

characteristics of another lineage. It is difficult to determine whether this reflects the 

transformation of a normal lymphoid like progenitor with transdifferentiation capabilities or 

the active reprogramming of normal lymphoid progenitors by the expression of CALM/AF10. 

This however, raises the interesting possibility that the leukemic stem cells or leukemia 

propagating cells of some biphenotypic leukemias or even leukemias diagnosed as myeloid 

could be transformed lymphoid precursors.  

Earlier, Robert Slany and co-workers have demonstrated that hematopoietic 

progenitors transformed with the MLL-ENL fusion gene and cultivated in lymphoid 

conditions could generate an indefinitely propagating B220+ -/CD19  cell population that was 

blocked in differentiation, could cause leukemia in mice and could give rise to a B220+/Mac1+ 

biphenotypic population (Zeisig et al., 2003). The biphenotypic cells might recapitulate a 

situation where B lymphoid differentiation in the B220+/Mac1- target cell is blocked and the 

cells are driven to myeloid differentiation possibly directed by the fusion gene. We propose 

that biphenotypic cells would then be preserved as relics of this transdifferentiation. The 

differentiation of transformed human lymphoid cell lines to myeloid or lympho-myeloid cells 

in vitro is well documented (Matsuo and Drexler, 1998) as is the observation of lymphoid cell 

specific genomic rearrangements or configurations in human myeloid leukemias (Schmidt et 

al., 1995; Yen et al., 1999). It is interesting to note that patients with CALM/AF10 positive 

AML have been shown to display rearrangements at the TCR locus (Asnafi et al., 2003), a 

phenomenon that has been observed in patient samples from other non-lymphoid leukemias 

(Schmidt et al., 1995; Yen et al., 1999). The role of hematopoietic transcription factors in the 

control of hematopoietic cell fate decisions is well documented. Ectopic expression studies of 

transcription factors (CEBPα) (Xie et al., 2004), cytokine receptors (IL2R and GM-CSFR) 

(Kondo et al., 2000) or oncogenes (c-myc, v-raf) (Klinken et al., 1988) in murine lymphoid 

progenitors or cell lines have been shown to drive the differentiation of these cells into the 

myeloid lineage while blocking their lymphoid development. This is thought to be either by 

their active reprogramming, or by the induction of alternative choices that are still available to 

the progenitors. Moreover, transcription factor dysregulation has been shown to be a key 
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leukemogenic event. Taken together, reprogramming of progenitors by the dysregulation of 

transcription factors, cytokine receptors or the activation of oncogenes could give rise to the 

promiscuity observed in some leukemias. Studies from Busslinger et.al. have demonstrated 

that B220+ -/CD19  pro B cells, deficient in the B cell specific transcription factor Pax5 are 

blocked in B cell development but gain unprecedented plasticity and can differentiate into 

myeloid cells (Rolink et al., 2002a; Rolink et al., 2002b). This scenario is recapitulated by the 

CALM/AF10 transformed progenitors bearing lymphoid characteristics. This indicates that 

reprogramming of early B progenitors or more likely, the release of suppression of available 

alternative lineage choices could be a potential mechanism of CALM/AF10 induced 

transformation in this model. It is relevant to note here that we failed to detect Pax5 

expression in the B220+/myeloid marker- cells.  

Patients harbouring the t(10;11) translocation have been reported to have a poor 

survival rate and prognosis with higher relapse rates (Dreyling et al., 1998). These leukemias 

include those involving the MLL fusion gene and leukemias involving CALM, both fused to 

AF10 on chromosome 10. CALM/AF10 leukemias share some similarities with MLL 

leukemias such as promiscuity (Kumon et al., 1999; Mitterbauer-Hohendanner and 

Mannhalter, 2004) and the aberrant dysregulation of HOX genes (Armstrong et al., 2002) and 

(Krause A et.al and Delabesse E, et.al., unpublished data). Interestingly, cell lines from a 

human MLL lymphoma have been shown to bear B lymphoid markers and monocytoid 

appearance as well as macrophage differentiation capabilities (Bertrand et al., 2003).   

The dysregulation of Hox genes was also found in patients with AML and was 

recently reported in patients harbouring the t(10;11)(p12;q13) translocation. The leucine 

zipper of AF10 could play a role in this dysregulation as the octapeptide motif-leucine zipper 

domain of Alhambra; the Drosophila homolog of AF10 has been shown to positively regulate 

Hox genes. In support of these findings, our structure function analyses pinpoint the 

octapeptide motif-leucine zipper domain to be the minimal portion of AF10, which is 

necessary for the increased hematopoietic activity of to the fusion gene. This domain has been 

shown previously to be essential and sufficient to transform hematopoietic cells when fused to 

the MLL oncogene (DiMartino et al., 2002) indicating a wider role for this motif in 

leukemogenesis especially in leukemias in which the expression of Hox genes is deregulated. 
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Finally, the observations in this model that myeloid leukaemia can arise from a B 

lymphoid progenitor might have clinical implications. In this leukemia model the expression 

of the B220 antigen would discriminate this cell from the normal hematopoietic stem cell 

phenotype in the murine CALM/AF10 leukaemia model. In particular differences in the 

expression of cell surface antigens between the leukemic stem cell and the normal 

hematopoietic stem cell would facilitate the development of treatment strategies that eradicate 

the leukemic but spare the normal stem cell (Buske et al., 2002). The expression of B cell 

antigen on the leukemic stem cell candidate in AML would open the intriguing possibility to 

target the leukemic stem cell in myeloid leukaemia by B-cell specific antibodies, which is a 

well established elements of multimodal treatment strategies for patients with aggressive and 

indolent lymphoma (Buske et al., 2004; Coiffier, 2004). 
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In conclusion, we have demonstrated, for the first time, that an acute leukemia with 

predominantly myeloid characteristics can be propagated by a lymphoid progenitor in a 

mouse model of the t(10;11) (p13;q14) translocation. Mice transplanted with bone marrow 

retrovirally engineered to express the leukemia specific CALM/AF10 fusion gene consistently 

developed an acute leukemia with a short latency. The leukemia showed characteristic 

myeloid features such as the presence of myeloid marker positive cells infiltrating multiple 

hematopoietic and non-hematopoietic organs, the positivity of blasts for myeloid specific 

histochemical stainings and the depletion of the lymphoid compartment in lymphoid organs. 

Apart from the major population of cells expressing myeloid but not lymphoid markers (M 

population), a smaller population of cells expressing myeloid markers as well as the lymphoid 

marker B220 (B/M population) and a smaller population expressing only the B220 marker (B 

population) could be detected in all mice.  

We determined that the frequency of leukemia propagating cells was the highest in the 

B population and that this population could give rise to the other two populations of cells, 

namely the B/M and the M populations. This indicated that the leukemic stem cell candidate 

for the myeloid leukemia in this model of CALM/AF10 induced transformation is a B220+ 

cell. Further characterization of these candidate LSCs revealed the presence of D-JH 

rearrangements and the absence of Pax5 transcription. These cells were characterised as being 

CD43+/AA4.1+/HSAlow-pos/CD19-/FLT3R+/IL-7Rlow-neg c-kitlow-neg and expressing the early B 

cell factor (EBF) transcripts as well as transcripts for the myeloperoxidase (MPO) gene, 

bearing a resemblance to Pax5 knockout preBI cells.  

These findings indicate that the leukemia-propagating cell in a subset of acute myeloid 

leukemias could be a cell with lymphoid characteristics. The fact that this progenitor cell 

expressed markers different from those expressed by the bulk leukemic population but could 

still propagate the leukemia raises the interesting possibility of selectively targeting these cells 

using novel therapeutic strategies that aim to eliminate these LSCs. 
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Erstmalig wurde in dieser Arbeit gezeigt, dass eine Akute Leukämie mit 

vorherrschend myeloischen Merkmalen durch einen lymphoiden Vorläufer in einem 

Mausmodell der Translokation t(10;11) (p13;q14) verursacht werden kann. Mäuse, deren 

transplantiertes Knochenmark durch retrovirale Transduktion das leukämiespezifische 

Fusionsgen CALM/AF10 exprimiert, entwickeln innerhalb kurzer Zeit eine Akute Leukämie. 

Diese Leukämie zeigt charakteristische myeloische Merkmale, wie hämatopoetische und 

nichthämatopoetische Organe infiltrierende Zellen, welche für myeloische Marker positiv 

sind, Blasten, die in für das myeloische System spezifischen histopathologischen Färbungen 

positiv sind und eine Verarmung der lymphoiden Kompartimente in den lymphoiden 

Organen. Neben der nur myeloische Marker exprimierenden Hauptpopulation (M population) 

und einer kleineren, die die myeloischen und den lymphoiden Marker B220 zusammen 

exprimiert (B/M population), konnte in allen Mäusen eine noch kleinere Population detektiert 

werden, die nur den lymphoiden Marker B220 exprimiert (B population). 

Wir konnten feststellen, dass die Häufigkeit von Leukämie hervorrufenden Zellen in 

der B Population am höchsten war und dass aus dieser Population die beiden anderen, die 

B/M- und die M Population, entstehen können. Dies ließ folgern, dass der Kandidat der 

leukämischen Stammzelle (LSC) in diesem Modell einer CALM/AF10 induzierten 

Transformation eine B220 exprimierende Zelle ist. Die weitere Charakterisierung offenbarte 

das Vorhandensein des D-JH Rearrangements und den Verlust der Pax5 Transkription. Diese 

Zellen sind des weiteren CD43+/AA4.1+/HSAlow-pos/CD19-/FLT3R+/IL-7Rlow-neg c-kitlow-neg
 . 

exprimieren den Frühen B-Zell Faktor (EBF), sowie die Transkripte der Myeloperoxidase 

(MPO) und haben somit Ähnlichkeit zu Pax5 knockout preBI Zellen. 

Diese Ergebnisse weisen darauf hin, dass die die Leukämie verursachende Zelle in 

einer Untergruppe Akuter Myeloischer Leukämien lymphoide Charakteristika zeigen kann. 

Die Tatsache, dass diese Vorläuferzelle andere Marker als die eigentliche leukämische 

Hauptpopulation exprimiert und trotzdem die Leukämie verursachen kann, weißt auf die 

interessante Möglichkeit hin, mit neuen therapeutischen Strategien diese leukämische 

Stammzellen gezielt zu eliminieren. 
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Creation of fusion genes by balanced chromosomal translocations is
one of the hallmarks of acute myeloid leukemia (AML) and is consid-
ered one of the key leukemogenic events in this disease. In
t(12;13)(p13;q12) AML, ectopic expression of the homeobox gene
CDX2 was detected in addition to expression of the ETV6-CDX2 fusion
gene, generated by the chromosomal translocation. Here we show in
a murine model of t(12;13)(p13;q12) AML that myeloid leukemogen-
esis is induced by the ectopic expression of CDX2 and not by the
ETV6-CDX2 chimeric gene. Mice transplanted with bone marrow cells
retrovirally engineered to express Cdx2 rapidly succumbed to fatal
and transplantable AML. The transforming capacity of Cdx2 de-
pended on an intact homeodomain and the N-terminal transactiva-
tion domain. Transplantation of bone marrow cells expressing ETV6-
CDX2 failed to induce leukemia. Furthermore, coexpression of ETV6-
CDX2 and Cdx2 in bone marrow cells did not accelerate the course of
disease in transplanted mice compared to Cdx2 alone. These data
demonstrate that activation of a protooncogene by a balanced
chromosomal translocation can be the pivotal leukemogenic event in
AML, characterized by the expression of a leukemia-specific fusion
gene. Furthermore, these findings link protooncogene activation to
myeloid leukemogenesis, an oncogenic mechanism so far associated
mainly with lymphoid leukemias and lymphomas.

The molecular dissection of balanced chromosomal translo-
cations in patients with acute leukemia has greatly advanced

our knowledge of the pathogenesis of this disease, demonstrating
that chromosomal translocations often affect genes that regulate
hematopoiesis. Chromosomal translocations involve mainly two
mechanisms that lead to malignant transformation: deregulation
of the expression of a protooncogene by juxtaposition of a potent
enhancer or promoter elements or creation of a fusion gene
(1–3). Although both mechanisms are found in lymphoid leu-
kemia or lymphoma, formation of a fusion gene predominates in
acute myeloid leukemia (AML). In fact, to date, there are no
experimentally confirmed instances in which the transcriptional
deregulation of a protooncogene is the key leukemogenic event
in a fusion gene-positive AML.

The oncogenic potential of fusion genes has been well docu-
mented experimentally. However, emerging data, mostly from
murine in vivo models, have demonstrated that many of these fusion
genes are not able to induce leukemia on their own. This observa-
tion suggests an important role for other genetic alterations that
cooperate with fusion genes in patients with AML (4–6). The
intriguing differences in the oncogenic potential of fusion genes are
well documented for the large family of chimeric genes involving the
ets transcription factor ETV6, located at 12p13. ETV6 is one of the
genes most frequently involved in chromosomal translocations.
Chromosomal translocations affecting the ETV6 locus have been
reported with �40 different partners (7). Fusion partners of ETV6
can be phosphotyrosine kinases (PTK) or transcription factors and
genes of unknown function, dividing ETV6 fusion genes into two
distinct groups. Fusions of ETV6 with PTKs such as PDGFRB,

JAK2, ABL1, ABL2, or NTRK3 create highly leukemogenic proteins
in murine experimental models (8–12). In the group of ETV6-
transcription factor fusions, the N-terminal portion of ETV6 is fused
to the partner gene in most cases, retaining (e.g., ETV6-AML1) or
losing the pointed domain (e.g., ETV6-CDX2, ETV6-MDS1�EVII)
(13–15). Although data about the leukemogenic potential of this
group of fusion genes are still limited, extensive analyses of the most
frequent ETV6 chimeric transcription factor, ETV6-AML1, failed to
show any major transforming activity in a transgenic or bone
marrow (BM) transplantation mouse model (16, 17). Based on
these data, expression of an ETV6-transcription factor fusion might
not be sufficient to induce disease. Indeed, recent evidence cor-
roborates that ETV6 acts as a tumor suppressor gene and that, in
almost all cases of ETV6�AML1-positive acute lymphoblastic leu-
kemias, there is a deletion or loss of expression of the nonrear-
ranged ETV6 allele (18, 19). Furthermore, several chromosomal
translocations involving the ETV6 locus associated with myeloid
malignancies such as t(4;12), t(5;12), or t(12;17) do not form any
functional fusion gene at all, pointing to a key variant oncogenic
mechanism in these cases (20, 21). In this regard, the
t(12;13)(p13;q12) associated with the ETV6-CDX2 fusion gene in
human AML is of notable interest. The translocation breakpoint
leaves the CDX2 gene intact, and expression of both the fusion gene
and full-length CDX2, normally restricted to intestinal epithelial
cells, was observed in leukemic cells, thus raising the possibility that
ectopic expression of CDX2 is the key pathogenic event (14).

To clarify this particular issue and to gain insight into alter-
native mechanisms of transformation in patients with AML and
ETV6 rearrangements, we established a mouse model for
t(12;13)(p13;q12) human AML. We demonstrate that ectopic
expression of Cdx2 is the key transforming event that induces
fatal AML in transplanted mice. In contrast, expression of the
ETV6-CDX2 fusion protein is unable to induce leukemia.
Furthermore, we show that the transforming potential of Cdx2
depends on the integrity of its DNA-binding domain and the
N-terminal domain of Cdx2. Our data point to a previously
uncharacterized mechanism of leukemogenesis in patients with
AML, in which a balanced chromosomal translocation contrib-
utes to malignant transformation by activating the expression of
a protooncogene, a mechanism so far associated mainly with
lymphoid leukemias or lymphomas (3).

Materials and Methods
cDNA Constructs and Retroviral Vectors. cDNAs of ETV6-CDX2 and
Cdx2 (93% overall and 98% identity in the homeodomain between

This paper was submitted directly (Track II) to the PNAS office.

Abbreviations: AML, acute myeloid leukemia; BM, bone marrow; YFP, yellow fluorescent
protein; CFU-S, colony-forming unit–spleen; PB, peripheral blood.
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the human and murine proteins) were kindly provided by D. G.
Gilliland (Division of Hematology�Oncology, Harvard Medical
School, Boston) and N. Cross (Department of Haematology,
Hammersmith Hospital, London). A histidine-tagged version of
ETV6-CDX2 was constructed by ligating a PCR product of the
fusion gene in frame to the 3� end of the histidine epitope of the
pCDNA6�V5-His A plasmid (Invitrogen), Cdx2 mutants were
created that were previously shown to inactivate a putative PBX1
interacting motif (W167A-Cdx2) (22) or to inactivate the DNA-
binding homeodomain (N51S-Cdx2) (23) by using the QuikChange
XL Site-Directed Mutagenesis Kit (Stratagene). The Cdx2 mutant
lacking the first 179 N-terminal amino acids, which are deleted in
the ETV6-CDX2 fusion, was generated and histidine tagged by PCR
following standard procedures (�N-Cdx2) (4). For retroviral gene
transfer into primary BM cells, the different constructs were
subcloned into the multiple cloning site of the modified murine
stem cell virus (MSCV) 2.1 vector (4) upstream of the internal
ribosomal entry site (IRES) and the enhanced GFP or yellow
fluorescent protein (YFP) gene. As a control, the MSCV vector
carrying only the IRES-enhanced GFP cassette was used.

Production of high-titer helper-free retrovirus was carried out
following standard procedures by using the ecotropic packaging cell
line GP�E86 (4). The number of provirus integrants was deter-
mined by EcoRI digestion and full length integration by NheI
digestion, followed by Southern blot analysis using standard tech-
niques (24). Protein expression of the ETV6-CDX2, Cdx2, and Cdx2
mutant plasmids was documented by Western blotting using stan-
dard procedures. Membranes were probed with an antihistidine
monoclonal antibody (Sigma) for ETV6-CDX2 and the �N-Cdx2
mutant or with an anti-CDX2 monoclonal antibody (kindly pro-
vided by DCS Innovative, Hamburg, Germany) for expression of
the Cdx2, W167A-Cdx2, and N51S-Cdx2 mutants (25) (Fig. 1).

In Vitro Assays. Cell proliferation was assessed in DMEM supple-
mented with 15% FBS�10 ng/ml mIL-6�6 ng/ml mIL-3�100 ng/ml
murine stem cell factor (standard medium) (Tebu-bio, Offenbach,
Germany). Differentiation of clonogenic progenitors was analyzed

by plating cells in methylcellulose supplemented with cytokines
(Methocult M3434, StemCell Technologies, Vancouver). IL-3-
dependent cell populations expressing Cdx2 or coexpressing ETV6-
CDX2 and Cdx2 were established in vitro directly after sorting in
DMEM�15% FBS with IL-3 alone (6 ng/ml). The differentiation
capacity of cultured cells was tested in DMEM�15% FBS supple-
mented with granulocyte colony-stimulating factor 100 ng/ml or
macrophage colony-stimulating factor 10 ng/ml (R & D Systems)
and all-trans retinoic acid at 1 �M final concentration. After 5 days,
the morphology was determined by Wright–Giemsa-stained cyto-
spin preparations (4, 25).

Mice and Retroviral Infection of Primary BMC. Parental strain mice
were bred and maintained at the GSF animal facility. Donors of
primary BM cells were �12-wk-old (C57BL�6Ly-Pep3b � C3H�
HeJ) F1 (PepC3) mice, and recipients were �8- to 12-wk-old
(C57BL�6J � C3H�HeJ) F1(B6C3) mice. Primary mouse BM cells
were transduced as described (4). For transduction, cells were
cocultured with irradiated (40 Gy) ETV6-CDX2�GFP or Cdx2�
YFP GP�E86 producers or with a mixture of 40–50% Cdx2�YFP
and 50–60% ETV6-CDX2�GFP producers in cotransduction
experiments.

Colony-Forming Unit–Spleen (CFU-S) Assay. Primary BM cells from
F1(PepC3) donor mice treated 4 days previously with 5-fluorouracil
were transfected with the different viruses, and retrovirally trans-
duced cells were highly purified based on expression of GFP or YFP
by using a FACSVantage (Becton Dickinson). Transduced cells
were cultured 7 days in standard medium. The day 0 equivalent of
2.5–3 � 104 cells was injected into lethally irradiated F1(B6C3)
recipient mice. The recovery of CFU-S cells was quantified by
determining the number of macroscopic colonies on the spleen at
day 12 postinjection after fixation in Telleyesnickzky’s solution.

BM Transplantation and Assessment of Mice. Recipient F1(B6C3)
mice (8–10 wk old) were irradiated with 850 cGy from a 137Cs
�-radiation source. FACS-purified transduced BM cells, or a de-
fined ratio of transduced and untransduced cells was injected into
the tail vein of irradiated recipient mice. Peripheral blood (PB) or
BM cell progeny of transduced cells were tracked by using the GFP
or YFP fluorescence (26). The lineage distribution was determined
by FACS analysis as described (4): phycoerythrin-labeled Gr-1,
ScaI, Ter-119, CD4, and allophycocyanin-labeled Mac1, cKit, B220,
or CD8 antibodies were used for analysis (all PharMingen). For
histological analyses, sections of selected organs were prepared and
hematoxylin�eosin-stained by using standard protocols.

RT-PCR. Expression of Hoxa9 and Meis1 was assayed by RT-PCR in
Sca-1–Lin� cells sorted from a mouse repopulated with Cdx2
expressing BM cells or a control animal. Total RNA was isolated
by using Trizol reagent (GIBCO�BRL) and treated with DNase I
(amp grade) to remove contaminating genomic DNA. First-strand
cDNA was synthesized from 1 �g of total RNA by using the
thermoScript RT-PCR system (all reagents from Invitrogen).
Equal amounts of cDNA originating from 50 ng of starting RNA
were loaded to assess transcription levels. Intron-spanning primer
pairs were selected to avoid amplification of contaminating
genomic DNA. The annealing temperatures were 58°C and 60°C for
Meis1 and Hoxa9, respectively. The number of PCR cycles for each
gene was chosen to stop the reaction in the linear phase of
amplification (25 cycles for m�-2 microglobulin, 35 cycles for Meis1
and Hoxa9).

Statistical Analysis. Data were evaluated by using the t test for
dependent or independent samples (Microsoft EXCEL). Differences
with P values � 0.05 were considered statistically significant.

Fig. 1. (a) Retroviral vectors used to express ETV6-CDX2, Cdx2, and the different
Cdx2 mutants in murine BM. IRES, internal ribosomal entry site. (b) Western blot
analysisofcellularextracts fromNIH3T3orE86cells transfectedwiththedifferent
constructs. The molecular mass is indicated.
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Results
Ectopic Expression of Cdx2 Causes AML in Transplanted Mice. To
analyze whether expression of the t(12;13)-associated ETV6-CDX2
fusion gene and�or the ectopic expression of the homeobox gene
Cdx2 is able to transform early murine hematopoietic progenitors
in vivo, we generated MSCV-based retroviral constructs and doc-
umented full-length protein expression by Western blotting (Fig. 1).
Murine hematopoietic progenitors constitutively expressing ETV6-
CDX2 or Cdx2 were highly purified by FACS based on GFP� or
YFP� expression, respectively, and injected into lethally irradiated
recipient mice directly after sorting (3–3.5 � 105 and 2–3.6 � 105

cells per mouse for Cdx2 and ETV6-CDX2, respectively).
Mice transplanted with BM cells expressing Cdx2 became mor-

ibund after a median of 90 days posttransplantation (n � 18) (Fig.
2). Diseased mice were characterized by cachexia, shortness of
breath, and lethargy when they were killed for further analysis. In

striking contrast, mice transplanted with ETV6-CDX2-expressing
cells did not succumb to terminal disease (n � 9) (Fig. 2). Diseased
Cdx2 mice were characterized by elevated peripheral white blood
count (WBC) (3.8-fold) with up to 48 � 106 circulating WBC per
milliliter. Furthermore, moribund mice were anemic, with a 5-fold
decrease in peripheral erythrocyte count (P � 0.001) (Table 1). All
Cdx2 mice analyzed (n � 7) suffered from splenomegaly, with an
average spleen weight of 0.6 g (range 0.4–0.9; P � 0.01 compared
to control animals) (Table 1). More detailed hematological analyses
demonstrated that animals suffered from AML with a high per-
centage of blasts in the BM (42% � 6), PB (14% � 3), and spleen
(35% � 5) (n � 8; P � 0.01 compared to the control animal) (Table
1). Furthermore, leukemic mice showed multiple organ infiltration
with blast cells. Thirty percent of the blasts expressed CD34 but
were negative for N-acetyl-chloroacetate esterase, periodic acid�
Schiff reagent, and terminal deoxynucleotidyltransferase, as shown
by immunohistochemistry, consistent with an undifferentiated my-
eloblastic phenotype of the disease (Fig. 3). Immunophenotypic

Fig. 2. Survival curve of mice transplanted with BM cells expressing Cdx2 (n �
18), ETV6-CDX2 (n � 9), or coexpressing Cdx2 and the fusion gene (n � 13). The
control group was injected with BM infected with the GFP empty retrovirus (n �
7). The survival time of secondary recipient mice, transplanted with BM from
diseased primary Cdx2 or ETV6-CDX2 and Cdx2 recipients, is indicated.

Table 1. Hematological parameters of experimental mice

Mouse no.
Retroviral
construct

Day of
death

RBC per ml
�109

WBC per ml
�106

Spleen weight,
mg

BM
% blasts

Spleen
% blasts

PB %
blasts

Lymphoid�myeloid
ratio in PB

1 GFP 90 6 4.5 150 0 0 0 5:1
2 GFP 90 4.8 3.2 200 0 0 0 2:1
3 GFP 90 5.0 3.6 200 0 0 0 2:1
1* Cdx2 128 1.0 3.2 400 28 21 8 0.5:1
2* Cdx2 79 2.0 37 650 40 35 12 0.4:1
3* Cdx2 52 0.7 9 600 38 30 15 0.2:1
4* Cdx2 116 0.4 48 nd ND 60 14 0.4:1
5* Cdx2 37 0.6 5 400 25 22 5 0.3:1
6* Cdx2 171 0.8 24 900 71 48 18 0.3:1
7* Cdx2 192 1.1 10 800 60 41 30 0.5:1
8* Cdx2 84 0.4 28 400 32 24 8 0.8:1
1* �� 168 1.0 3.2 400 25 18 3 0.6:1
2* �� 230 1.1 8 500 45 30 10 0.1:1
3* �� 151 0.2 8 600 58 37 16 0.4:1
4* �� 237 1.5 24 300 25 18 5 0.6:1
5* �� 187 0.5 25 900 50 43 8 0.3:1
1 ETV6-CDX2 375 6.5 2.4 160 10 8 0 0.3:1
2 ETV6-CDX2 375 5 3.2 200 25 15 0 0.4:1
3 ETV6-CDX2 375 5.2 6 180 15 9 0 2:1

*, diseased; ��, ETV6-CDX2 and Cdx2; RBC, red blood cell count; WBC, white blood cell count; ND, not determined.

Fig. 3. Histological analysis of diseased Cdx2 mice. (a) BM [hematoxylin�eosin
(H&E)]. Immunohistochemistry of the BM (�200) for N-acetyl-chloroacetate es-
terase (�400) (b) and CD34 expression (�640) (c). Histology of the spleen H&E
(�25) (d) and Giemsa staining (�640) (e) and liver with perivascular infiltration
(�200) (f ). Cytospin preparations from PB (g), BM (h), and spleen (i) (all �1,000).
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characterization of PB, BM, and spleen in diseased mice confirmed
the predominance of myeloid Mac1� and Gr-1� cells (84% � 10
and 73% � 15 in the PB, 65% � 14 and 53% � 14 in the spleen,
respectively; n � 4) compared to the GFP control mice (Mac1� and
Gr-1� cells 47% � 5 and 25% � 3 in the PB, 14% � 9 and 10%
� 1 in the spleen, respectively; n � 4). Furthermore, diseased mice
were characterized by a greatly reduced normal B220� lymphoid
population in the spleen and PB compared to controls (1.8% � 1
vs. 35% � 8 and 1.3% � 0.5 vs. 46% � 21 in the PB and in the
spleen, respectively; n � 4) (Fig. 4a). Mice transplanted with
Cdx2-expressing BM cells were characterized by a 19-fold increased
frequency of clonogenic cells in the PB and a �100-fold increase in
the spleen compared to the control as quantified by ex vivo CFC
assays (248 vs. 13 clonogenic cells per 1 � 106 cells�ml in the PB and
1,400 clonogenic cells vs. 13 per 1 � 106 cells�ml in the spleen,
respectively) (n � 3). Twenty-eight percent (�3) of these clono-
genic progenitors were not able to terminally differentiate and
formed blast colonies in methylcellulose with high serial replating
capacity (data not shown).

The Cdx2-induced AML was transplantable and all lethally
irradiated mice (n � 11) injected with BM cells of diseased Cdx2
animals died within 24 days posttransplantation (Fig. 2). Analysis of
the clonality of the disease by Southern blot analysis demonstrated
different intensities and patterns of proviral signals in the different
hematopoietic organs consistent with an oligoclonal nature of the
disease (Fig. 4b).

To analyze whether the ETV6-CDX2 fusion caused subtle per-
turbations in hematopoietic development, healthy animals (n � 3)
were killed 44 wk after transplantation with ETV6-CDX2-
expressing BM cells. Interestingly, two of three animals showed an
expansion of the mature neutrophil compartment in the PB with an
inversion of the lymphoid�myeloid ratio (Table 1) and 87% and
68% Mac1��Gr1� cells in the GFP-positive compartment. Fur-
thermore, spleens from all mice were infiltrated with terminally
differentiated myeloid cells (86% � 0.9 Gr1��Mac1� cells). How-

ever, none of the animals suffered from anemia, splenomegaly, or
the emergence of a blast population in the PB (Table 1). Thus,
ETV6-CDX2 was able to induce a myeloproliferation without
causing disease but failed to induce leukemic transformation.

In addition, 13 mice were transplanted with a mixture of ETV6-
CDX2, Cdx2, and Cdx2 and ETV6-CDX2 coexpressing cells, con-
taining between 1.9–4.5 � 104 Cdx2 and ETV6-CDX2 cells and
�4,000 Cdx2 cells per mouse. The addition of Cdx2 and ETV6-
CDX2 coexpressing cells did not accelerate the course or change the
phenotype of the disease compared to only Cdx2-expressing cells.
All animals succumbed to AML, and the leukemic population
consisted of Cdx2- and ETV6-CDX2-coexpressing or Cdx2-
expressing cells in all mice analyzed (n � 4) (Fig. 2). These data
indicate that aberrant expression of the wild-type Cdx2 gene is
crucial for malignant transformation in this model.

The Transforming Potential of Cdx2 Depends on the N-Terminal
Transactivation Domain and the Intact Homeodomain. In an effort to
characterize the contribution of different motifs of Cdx2 to the
transforming capacity of the gene, three different mutants were
designed: a mutant inactivating the homeodomain (N51S-Cdx2), a
Cdx2 mutant with an inactivating mutation in the putative PBX1-
interacting motif (W167A-Cdx2), and a mutant lacking the N-
terminal portion of Cdx2, which is not present in the ETV6-CDX2
fusion (�N-Cdx2). Protein expression of the mutants was con-
firmed by Western blot analysis (Fig. 1b). Expression of wild-type
Cdx2 and W167A-Cdx2 in primary bone marrow cells rapidly
induced the outgrowth of IL-3-dependent cell populations in liquid
cultures. The cells showed blast morphology, were Gr��Mac1�-
positive, and had lost their differentiation capacity when incubated
with macrophage colony-stimulating factor, granulocyte colony-
stimulating factor, or all-trans retinoic acid (data not shown).
Furthermore, mice transplanted with 1 � 106 of these cells devel-
oped leukemia 8 wk posttransplant in contrast to mice injected with
nontransduced or GFP-expressing control cells. Cells expressing

Fig. 4. (a) Flow cytometry from a representa-
tive leukemic Cdx2 mouse from PB, BM, and
spleen in comparison to a GFP control animal.
Cells were stained for the myeloid markers Gr1
and Mac1 and the lymphoid marker B220. The
proportion of positive cells within the GFP� com-
partment is indicated. (b) Southern blot analyses
of genomic DNA from BM, PB, and spleens of
representative leukemic Cdx2 mice. Genomic
DNA was digested with EcoRI, which cuts once in
the provirus, to determine the number of provi-
rus integrants. Signals with different intensity,
indicating the presence of different leukemic
clones, are indicated. Full-length provirus inte-
gration was documented by digestion with NheI,
which cuts only in the LTRs of the provirus.
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ETV6-CDX2, the �N-Cdx2, or the N51S mutant as well as the
control cells were not able to form blast cell populations in vitro.
When colony formation was tested, Cdx2-positive cells generated a
higher number of primary CFC in methylcellulose compared to
GFP (76 � 22 vs. 41 � 20 per 500 initially plated cells, respectively;
n � 5; P � 0.02). Furthermore, Cdx2-positive colonies contained
	10 times more cells per colony than the controls (33 � 103 vs.
3.9 � 103 per colony, respectively; n � 5; P � 0.004). The expression
of the other constructs did not change the size or number of
colonies compared to the control. To investigate the effect of the
different mutants on primitive hematopoietic cells, cells infected
with the different viruses were injected into lethally irradiated mice
after 7 days of in vitro culture, and spleen colony formation was
quantified 12 days after injection in killed mice (CFU-S assay).
Cdx2 expression as well as expression of the W167A-Cdx2 mutant
induced a significant �10-fold increase in the yield of day 12 CFU-S
compared to the GFP control (n � 8; P � 0.0001). In contrast,
deletion of the N-terminal portion of Cdx2 (n � 5) or inactivation
of the homeodomain (n � 5) resulted in complete loss of the Cdx2
activity in these assays. ETV6-CDX2 (n � 6) did not show any
increase in CFU-S compared to the GFP control (Fig. 5a).

The Expression of Hoxa9 and Meis1 Is Not Increased by Ectopic
Expression of Cdx2. Given the role of Cdx2 as an upstream regulator
of Hox gene expression, we asked whether Cdx2 would perturb
expression of leukemogenic homeobox genes such as Hoxa9 or
Meis1. First, expression of Hoxa9 and Meis1 was determined by
RT–PCR in the 32D cell line transduced with the Cdx2, the
ETV6-CDX2, or the GFP virus. Compared to the control, Cdx2 did
not increase expression of Hoxa9 or Meis1 (data not shown). In
addition, Sca
lin�-differentiated cells were recovered and highly
purified from a mouse transplanted with Cdx2-expressing BM cells
and a control animal, a cell population with normally no detectable
expression of Hoxa9 and Meis1 (27): specific amplification products
were not detectable by RT-PCR after 25 cycles in both experimen-
tal arms. Amplification products could be detected after 35 cycle
but without considerable differences in the intensity between

Cdx2-transduced and control cells (Fig. 5b). Thus, ectopic expres-
sion of Cdx2 was not associated with up-regulation of Meis1 or
Hoxa9 in this model system.

Discussion
The formation of fusion genes with oncogenic properties by
balanced chromosomal rearrangements is considered one of the
crucial steps for leukemic transformation in patients with AML.
By using the murine BM transplantation model, we now provide
direct evidence that the ectopic expression of the protooncogene
Cdx2 and not the expression of the fusion gene ETV6-CDX2 is
the key transforming event in t(12;13)(p13;q12)-positive AML.
Activation of protooncogenes by balanced chromosomal trans-
locations is a well-known oncogenic mechanism in lymphoid
leukemias or lymphomas but has, to our knowledge, not been
functionally demonstrated for AML and translocations involving
ETV6 (3). In addition, these data present evidence that the
homeobox gene and Hox gene upstream regulator Cdx2, which
so far has been linked to intestinal metaplasia and colon cancer
(28), is highly leukemogenic when aberrantly expressed in he-
matopoietic progenitor cells.

Cdx2 belongs to the large group of homeobox genes, which were
originally described as master regulators of embryonic body devel-
opment. The Cdx genes and their homologues caudal in Drosophila
and Xcad in Xenopus belong to the ParaHox cluster, which is
considered an ancient paralog of the Hox gene cluster (29).
Although the Cdx genes show similarities to the 5�-located
Abdominal-B like genes of the Hox gene cluster, they possess a Pbx
recognition motif, a characteristic of 3�-located Hox genes (30). Cdx
genes play a key role in the homeobox regulatory network, acting
as upstream regulators of several Hox genes (30, 31). Thus, per-
turbation of Cdx2 might be linked to critical alterations in down-
stream Hox genes that are central regulators of normal early
hematopoietic development in the adult with a distinct expression
profile in human and murine early progenitor cells (27, 32, 33).
Gene expression profiling of acute leukemias using DNA microar-
ray technology linked aberrant expression of Hox genes such as
HOXA9, HOXA10, and of the nonclustered homeobox gene MEIS1
to leukemogenesis (34–37). Retrovirally enforced expression of
these genes induced severe perturbations of normal hematopoietic
development in human and murine experimental models (24, 38).
Altered expression of several Hox genes might be one of the reasons
for the strong oncogenic potential of Cdx2 (30, 39–42). However,
RT–PCR analyses in the 32D cell line model and in Sca
�lin� BM
population of a Cdx2 repopulated mouse did not indicate gross
up-regulation of Meis1 and Hoxa9 by Cdx2. However, this does not
exclude that perturbation of other Hox genes might play a role in
the transformation process initiated by ectopic Cdx2 expression.

Of note, perturbed expression of Hox genes such as HOXA9 or
HOXA10 in hematopoietic progenitor cells is not able to induce
frank AML in transplanted mice after a short latency time but
requires collaboration with the Hox co-factor MEIS1. In striking
contrast, constitutive expression of Cdx2 rapidly caused leukemia in
recipient mice. The underlying cause for the difference in the
leukemogenic activity between Cdx2 and HOXA9 or HOXA10 is
not known. But, in contrast to HOXA9 and HOXA10, which are
normally expressed at high levels in progenitor cells, CDX2 is not
expressed in hematopoietic cells (14). Thus, ectopic expression of
CDX2 in leukemia patients might result in the activation of de novo
downstream pathways, which are normally silent in early blood
development.

Despite the differences in the oncogenic potential, many of the
in vitro and in vivo hematopoietic effects induced by Cdx2 are highly
reminiscent of the effects of retrovirally overexpressed hematopoi-
etic HOX genes as well as leukemia-specific fusion genes such as
NUP98-HOXD13 with regard to the impact on short-term repop-
ulating CFU-S or clonogenic progenitors (4, 38, 43). The striking
similarities of the phenotypes induced by the over-expression of

Fig. 5. (a) Total number of d12 CFU-S colonies derived per culture initiated with
1 � 105 cells transduced with the different viruses after 1 wk in liquid culture. The
median is indicated. (b) Expression of Meis1 and Hoxa9 analyzed by RT-PCR in
Sca
lin� BM cells isolated from a Cdx2 mouse or a control mouse. The number of
PCR cycles for each gene was chosen to stop the reaction in the linear phase of the
amplification (25 cycles for m�-2 microglobulin, 35 cycles for Meis1 and Hoxa9).
C, control; Cdx, Cdx2.
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homeobox genes of the Hox cluster and of Cdx2 as a member of the
ParaHox complex (29) point to a high level of functional redun-
dancy among homeobox proteins in hematopoiesis.

The hematopoietic activity of Cdx2 strictly depended on its intact
homeodomain, implicating that DNA binding of Cdx2 is essential
for its transforming activity. Furthermore, deletion of the Cdx2
N-terminal portion resulted in a complete loss of activity in our
assays. Of note, it was demonstrated that the N-terminal part of
Cdx2 is necessary for transcriptional activation of Hox genes,
supporting the concept that activation of downstream Hox genes is
a potential key mechanism of Cdx2-induced transformation (44).
Furthermore, it was demonstrated that the transcriptional activity
of CDX proteins depends on the interaction of the p38 mitogen-
activated protein kinase and the N-terminal transactivation domain
of Cdx2 (45). As a consequence, N-terminal deletion would dimin-
ish the transactivation capacity of CDX2. Importantly, the ETV6-
CDX2 fusion gene lacks the N-terminal portion of CDX2, presum-
ably hampering its capability to transactivate target genes. This
would explain the obvious discrepancy in the oncogenic potential
between Cdx2 and the ETV6-CDX2 fusion gene; this is supported
by our data, which demonstrate a complete loss of activity when this
N-terminal portion of Cdx2, which is not present in the ETV6-CDX2
fusion gene, is deleted in the �N-Cdx2 mutant. Notably, mice
transplanted with BM cells expressing the chimeric gene developed
myeloproliferation after a long latency time but without any clinical
symptoms. These data indicate that, despite the loss of the N-
terminal portion, the fusion gene is able to perturb hematopoietic
development, although to a significantly lesser extent than full-
length Cdx2. However, it cannot be excluded from our experiments
that the first 54 amino acids of ETV6, which are fused to CDX2, are
responsible for or at least contribute to the observed disturbances
of hematopoiesis. Taken together, our data propose a model in

which the chromosomal translocation t(12;13)(p13;q12) causes
AML by inducing the ectopic expression of CDX2. The mechanism
of transcriptional induction is not precisely known, but it was
demonstrated that the chromosome 13 breakpoint lies upstream of
the CDX2 gene. Therefore, one possible explanation for the ectopic
expression of CDX2 could be that the translocated protooncogene
might now be under the control of one of the two alternative ETV6
enhancer�promoters, located between exons 2 and 3 of ETV6 (14).
Intriguingly, it was recently shown that the homeobox gene GSH2
and IL-3 are ectopically expressed in patients with AML and the
translocations t(4;12)(q11–12;p13) and t(5;12)(q31;p13), respec-
tively. Both translocations involve ETV6 but do not create any
functional fusion genes (20). This observation suggests that activa-
tion of protooncogenes is a more common phenomenon in ETV6-
associated leukemias than previously thought. Taking into consid-
eration that several AML-associated fusion genes are not
leukemogenic on their own, it is tempting to speculate that activa-
tion of protooncogenes by chromosomal rearrangements might be
quite a widespread mechanism in myeloid leukemogenesis. This
hypothesis is supported by observations in AML cases not affecting
ETV6, in which expression of the putative protooncogene EVI1 is
activated by juxtaposition to the enhancer sequences of the ribo-
phorin-I gene in patients with AML and 3q21 alterations (46). Our
data provide compelling evidence that myeloid leukemogenesis can
be initiated by this mechanism and emphasize the relevance of
protooncogene activation for the development of AML.
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The molecular characterization of leukemia has demonstrated that genetic alterations in the leukemic clone 
frequently fall into 2 classes, those affecting transcription factors (e.g., AML1-ETO) and mutations affecting 
genes involved in signal transduction (e.g., activating mutations of FLT3 and KIT). This finding has favored 
a model of leukemogenesis in which the collaboration of these 2 classes of genetic alterations is necessary for 
the malignant transformation of hematopoietic progenitor cells. The model is supported by experimental 
data indicating that AML1-ETO and FLT3 length mutation (FLT3-LM), 2 of the most frequent genetic altera-
tions in AML, are both insufficient on their own to cause leukemia in animal models. Here we report that 
AML1-ETO collaborates with FLT3-LM in inducing acute leukemia in a murine BM transplantation model. 
Moreover, in a series of 135 patients with AML1-ETO–positive AML, the most frequently identified class of 
additional mutations affected genes involved in signal transduction pathways including FLT3-LM or muta-
tions of KIT and NRAS. These data support the concept of oncogenic cooperation between AML1-ETO and a 
class of activating mutations, recurrently found in patients with t(8;21), and provide a rationale for therapies 
targeting signal transduction pathways in AML1-ETO–positive leukemias.

Introduction
The cloning of recurring chromosomal translocations and, increas-
ingly, the molecular characterization of point mutations in patients 
with acute leukemia have substantially contributed to the under-
standing of the pathogenesis of this disease. In acute myeloid leu-
kemia (AML), chromosomal translocations most frequently target 
transcription factors involved in the regulation of normal hema-
topoietic differentiation, whereas point mutations often affect 
genes involved in signal transduction pathways associated with cell 
proliferation (1–3). The systematic analyses of genetic alterations 
in patients with AML have demonstrated that genetic lesions of 
more than 1 transcriptional regulator, such as AML1-ETO (RUNX1-
MTG8), HOX fusion genes, or PML-RARA, rarely occur in the leuke-
mic clone. Similarly, patients with concurrent mutations of FLT3, 
KIT, or NRAS are rare. However, there are numerous examples in 
which fusion genes are identified together with activating muta-
tions of receptor tyrosine kinases, exemplified by PML-RARA and 
the FLT3 length mutation (FLT3-LM), which occur together in up 
to 35% of all patients with t(15;17)–positive AML (4).

These observations have favored a model of pathogenesis of acute 
leukemia in which the 2 groups of genetic alterations, 1 affecting 
transcriptional regulation and hematopoietic differentiation, the 
other altering signal transduction cascades associated with cell pro-
liferation, collaborate in inducing acute leukemia (5). This concept 
is supported by experimental data demonstrating that AML1-ETO, 
one of the most frequent fusion genes in AML, is not able, on its 
own, to induce leukemia in experimental in vivo models but requires 
additional mutations in yet unknown genes for induction of hema-
tological disease. In a conditional AML1-ETO murine model, for 
example, only mice treated additionally with N-ethylnitrosourea 
(ENU) developed AML as well as T cell lymphoblastic lymphoma, 
whereas untreated AML1-ETO mice showed only minimal hemato-
poietic abnormalities (6). Similar observations were reported from 
an hMRP8–AML1-ETO transgenic mouse model, which developed 
AML as well as T–acute lymphoblastic leukemia/lymphoma (T-ALL/
lymphoma) only after ENU mutagenesis (7), and from a murine BM 
transplantation model inducing constitutive expression of AML1-
ETO in hematopoietic progenitor cells by retroviral gene transfer 
(8). In a recent report, mice targeted to express AML1-ETO in the 
HSC compartment developed a nonlethal long-latency myeloprolif-
erative syndrome but failed to develop acute leukemia (9).

To test the hypothesis of oncogenic cooperation between differ-
ent classes of mutations, we analyzed a series of 135 patients with 
AML1-ETO–positive AML for the occurrence of activating muta-
tions involving signal transduction pathways (FLT3-LM, FLT3D835, 
KITD816, NRAS codon 12/13/61). Because almost one-third of all 
AML1-ETO–positive patients had such activating mutations, we 
asked whether AML1-ETO would be able to collaborate with 1 of 
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these alterations to induce leukemia. Here we demonstrated that 
retrovirally engineered coexpression of AML1-ETO and FLT3-LM 
potently synergizes to trigger the development of aggressive leu-
kemia in a murine transplantation model.

This model will allow valuable insights into the pathogenesis 
of core-binding factor (CBF) leukemias and demonstrates, for 
the first time to our knowledge, the functional collaboration of 
AML1-ETO with a class of activating mutations frequently found 
in patients with t(8;21)–positive leukemia.

Results
AML1-ETO occurs frequently together with activating mutations involving 
signal transduction pathways in patients with AML. In order to charac-
terize genetic alterations that occur together with the AML1-ETO 
fusion gene in AML, 135 patients with AML1-ETO (93 male, 42 
female; median age 50.9, range 15.8–89.1) were screened for activat-
ing mutations in the receptor tyrosine kinases FLT3 and KIT as well 
as in NRAS (KITD816, NRAS codon 12/13/61). Patients included 118 
with newly diagnosed AML, 4 in first relapse, and 13 classified as 
having therapy-related AML. Activating mutations were detected in 
38 patients (28.1%) and included mutations in the receptor tyrosine 
kinase FLT3 or KIT (25 patients in total) or in NRAS (13 patients). In 
contrast, no MLL-PTD (partial tandem duplication) mutations were 
detected in 87 samples subjected to this analysis (Table 1). These 
data demonstrate that genetic alterations occurring with the AML1-
ETO fusion gene frequently affect signal transduction pathways.

AML1-ETO cooperates with FLT3-LM in inducing acute leukemia in trans-
planted mice. To test the functional significance of the association of 
AML1-ETO with mutations involving critical signal transduction 
cascades, we used the murine BM transplantation model. Murine 
stem cell virus–based (MSCV-based) retroviral constructs carrying 
the AML1-ETO cDNA upstream of an internal ribosomal entry site–
green fluorescent protein (IRES-GFP) cassette or the FLT3-LM cDNA 
upstream of an IRES–yellow fluorescent protein (IRES-YFP) cassette 
were generated to transduce and track hematopoietic cells expressing 
AML1-ETO (GFP+), FLT3-LM (YFP+), or both AML1-ETO and FLT3-
LM (GFP+/YFP+) in vitro and in vivo (Figure 1). In order to investigate 
the impact of expression of AML1-ETO or FLT3-LM individually on 
primary primitive hematopoietic progenitor cells, we performed the 
colony-forming spleen assay (CFU-S). BM cells transduced with the 
AML1-ETO/GFP or FLT3-LM/YFP vector or both vectors were highly 
purified 96 hours after the start of infection by FACS. Their ability 
to form spleen colonies (day 0 equivalent) was measured by trans-
plantation of transduced cells after purification into lethally irradi-
ated recipient mice and quantification of spleen colony formation 
12 days after injection. Constitutive expression of FLT3-LM did not 

increase the CFU-S content compared with the GFP control. In con-
trast, AML1-ETO increased the CFU-S content 3.1-fold compared 
with the control (P < 0.002). Strikingly, coexpression of FLT3-LM 
together with AML1-ETO increased CFU-S numbers a further 2.1-
fold for a net increase of 6.5-fold CFU-S compared with the control 
(P < 0.013), thus demonstrating functional collaboration of these 2 
genetic alterations in enhancing the CFU-S frequency (Figure 2A). In 
an effort to characterize the domains responsible for the collabora-
tion of the 2 aberrations, an FLT3-LM and an AML1-ETO mutant 
were generated: the FLT3-LM mutant with loss of its kinase activ-
ity (kinase dead [KD]) (FLT3-LM-KD) and the AML1-ETO mutant 
with an L148D point mutation in the Runx1 domain of AML1-ETO 
(AML1-ETO-L148D), previously reported to lack DNA-binding 
activity. Expression of the constructs was tested by Western blot and 
FACS analysis, and FLT3-LM-KD was also tested for autophosphory-
lation as a surrogate marker for kinase activity and for its capacity 
to induce IL-3–independent growth in Ba/F3 cells (Figure 1, B, D, F, 
and G). Of note, AML1-ETO-L148D was not able to collaborate with 
FLT3-LM. Furthermore, the collaboration between AML1-ETO and 
FLT3-LM was dependent on the kinase activity of FLT3, as FLT3-
LM-KD did not collaborate with the fusion gene (Figure 2A). Inhibi-
tion of the kinase activity of FLT3-LM by the protein tyrosine kinase 
(PTK) inhibitor PKC412 was tested in a ∆CFU-S assay after 48 hours 
of incubation with the inhibitor. The compound induced a 62% 
reduction of the day 0 equivalent of the CFU-S frequency (42 versus 
16 per 1 × 105 initiating BM cells) of cells cotransfected with FLT3-LM 
and AML1-ETO compared with the untreated control, whereas the 
CFU-S frequency of cells infected with the GFP control vector was 
unchanged by the inhibitor (Figure 2B).

To further assess the potential collaboration of AML1-ETO with 
FLT3-LM, we carried out long-term BM transplantation stud-
ies using BM transduced with AML1-ETO or FLT3-LM alone or 
with both together. Over an observation period extending to 20.6 
months, no disease developed in recipients of BM singly transduced 
with AML1-ETO (3 × 105 to 4 × 105 highly purified GFP+ cells; n = 9) 
or FLT3-LM (7 × 104 to 2 × 105 highly purified YFP+ cells together 
with 3 × 105 to 1 × 106 nontransduced helper cells; n = 9). To obtain 
mice engrafted with AML1-ETO/FLT3-LM–coexpressing BM cells, 
mice were injected with a mixture of GFP+/YFP+ cells (range 1 × 103  
to 5.5 × 104 cells) and nontransduced normal BM cells (range  
2.3 × 105 to 1.9 × 106). All recipients of doubly transduced BM (n = 11  
from 5 independent experiments) succumbed to an aggressive acute 
leukemia after a median latency time of 233 days post-transplan-
tation (Figure 3). These mice were engrafted with GFP/YFP–coex-
pressing cells that were positive for AML1-ETO and FLT3-LM tran-
scripts in the RT-PCR analysis (Figure 1C). At diagnosis the mice 
were moribund, cachectic, and short of breath and suffered from 
splenomegaly (median spleen weight 441 mg) (Table 2). Peripheral 
blood and BM contained a high proportion of blasts, and peripheral 
blood wbc counts were highly elevated in 5 of 11 animals (range  
2 × 106 to 430 × 106 cells/ml) compared with the GFP control (range 
3.5 × 106 to 9 × 106) (Table 2), consistent with a diagnosis of acute 
leukemia. Additionally, mice were anemic, with a 45% reduction in 
erythrocyte counts compared with the mean count in the control.

Coexpression of AML1-ETO and FLT3-LM causes both acute myeloblas-
tic and lymphoblastic leukemia. In 7 animals the morphology of the 
blasts was myeloblastic (Figure 4A), whereas 4 animals were char-
acterized by a lymphoblastic cell population (Figure 4, B and C,  
and Table 2). In 2 of the 7 animals with AML (mice nos. 16 and 24) 
the blast population was accompanied by a dominant mast cell 

Table 1
Genetic alterations in patients with AML1-ETO rearrangement

	 No. of patients	 No. of patients 	
	 analyzed	 with mutation 	
	 	 detected
FLT3-LM	 135	 11 (8.1%)
FLT3D835	 135	 3 (2.2%)
KITD816	 135	 11 (8.1%)
NRAS codon 12/13/61	 135	 13 (9.6%)
FLT3, KIT, or NRAS mutation	 135	 38 (28.1%)
MLL-PTD	 87	 0
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population with fine metachromatic granulation in the panop-
tic staining (Figure 4A). The BM and spleen were infiltrated with 
up to 80% and 80% blasts, respectively, in the mice with AML and 
up to 85% and 95%, respectively, in the mice suffering from ALL 
(Table 2 and Figures 4 and 5).

In order to determine more precisely the immunophenotype of the 
leukemic population, flow cytometric analyses from BM cells were 
performed. Seven animals suffered from AML with a Gr-1/Mac-1– 
positive cell population in the transduced compartment, which 
coexpressed Sca-1 (45.2%, range 19–73%). Of note, in 4 of the 7 ani-
mals with AML, coexpression of CD4 was detected in 21%, 27%, 31%, 
and 32% of BM cells (animals nos. 15, 16, 22, and 23, respectively; 
Table 2). Three mice suffered from B-lymphoblastic leukemia, with 

90.4% of the transduced cells expressing B220 (range 85–97%) and 
lacking expression of myeloid antigens (Gr-1–positive 1.5%, range 
0.4–2.3%; Mac-1–positive 1.7%, range 1.4–1.9%). One animal devel-
oped T cell leukemia, with coexpression of CD4 and CD8 (99% 
CD8+, 86% CD4+ in the transduced compartment) and expression 
of Sca-1 in 76% of all cells (Figure 4C). Histological tissue sections 
and immunohistochemistry were performed in 2 diseased mice with 
AML, including 1 of the animals with an increase in mast cells in 
the peripheral blood (mouse no. 16). Both animals showed multiple-
organ infiltration into hematopoietic and nonhematopoietic organs 
with effacement of the normal follicular architecture of the spleen 
(Figure 5, D and E [right side]) and an infiltration with leukemic blasts 
in the liver and spleen (Figure 5, A–D and F). Immunohistochemistry 

Figure 1
Schematic diagram and analysis of expression of different constructs. (A) Retroviral constructs for expression of AML1-ETO and of the AML1-ETO-
L148D (31, 47), FLT3-LM, and FLT3-LM-KD mutant proteins. The GFP vector served as a control. AE, AML1-ETO; LTR, long-terminal repeat; RHD, 
runt homology domain; TAF110, TATA-binding protein–associated factor 110; HHR, hydrophobic heptad repeat; ZNF, zinkfinger; TM, transmem-
brane; JM, juxtamembrane; PTK, protein tyrosine kinase; KI, kinase insert. (B, C, and E) Western blot analysis of cellular extracts from GP+ E86 
and NIH 3T3 cells transfected with the different constructs (the molecular mass is indicated). Kasumi cells served as a positive control. (D) a-pTyr 
plot demonstrating phosphorylation of FLT3-LM and FLT3-WT but not of FLT3-LM-KD. (F) FACS analysis of Ba/F3 cells transduced with the FLT3 
constructs. (G) Growth of IL-3–dependent Ba/F3 cells infected with the different constructs. (H and I) Flow cytometry and RT-PCR analysis of cells 
coexpressing FLT3-LM/YFP and AML1-ETO/GFP, isolated from a representative leukemic mouse. FL, FLT3 ligand; PB, peripheral blood.
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confirmed the diagnosis of AML: blasts were positive for myeloper-
oxidase but showed differentiation into more mature myeloid cells 
with positivity for chloracetatesterase (mouse no. 14; Table 2 and 
Figure 5, B, C, and F). In the second mouse with AML, infiltration of 
organs with cells expressing mast cell–specific tryptase and CD117 
could be confirmed in the primarily and secondarily transplanted 
mouse, indicating the presence of a malignant infiltrating mast cell 
population in this animal (mouse no. 16).

The leukemias were readily transplantable and had the same his-
tomorphology within 106 days after transplantation (median sur-
vival 68 days, range 57–106 days; n = 5) (Figure 3 and Figure 5, G–O). 
Southern blot analyses of BM from leukemic mice revealed modest 
numbers of proviral integrations, consistent with double infection 
and monoclonal or, at most, oligoclonal disease (Figure 6A). Mono-
clonal or oligoclonal disease is consistent with the relatively small 
transplant doses used but could also reflect a possible contribution 
of retroviral insertional mutagenesis to the transformation process. 
To further explore this latter possibility, 10 retroviral integration 
sites were subcloned and sequenced from 4 leukemic mice; all 10 sites 
were unique, and thus there was no indication of a common integra-
tion site associated with the leukemic transformation. Moreover, 5 
sites were intergenic or not linked to known genes. The remaining 
sites were in introns in a 5′ to 3′ orientation most likely to lead to 
gene knock down rather than activation (Figure 6B and Table 3).

Since we observed coexpression of CD4 in leukemic cells of the 
majority of mice who developed AML in our model, we analyzed 
expression of CD4 and cytoplasmic (cy) CD3 in patients with 
AML1-ETO–positive AML; 17 of 52 patients analyzed (32.7%) and 
39 of 50 patients analyzed (78%) were positive for CD4 or cyCD3, 

respectively. Furthermore, 31 of 52 patients (59.6%) expressed the B 
cell antigen CD19, 27 of 52 patients cyCD22 (51.9%), and 38 of 39 
patients cyCD79a (97.4%) (Figure 7). There was no difference in the 
extent of coexpression of lymphoid antigens in AML1-ETO–posi-
tive AML with additional activating mutations of FLT3, KIT, and 
NRAS (n = 14) versus cases without this class of mutations (n = 38)  
(data not shown). This indicates that coexpression of lymphoid 
and myeloid antigens in myeloblastic leukemia, which is detected 
in the murine model, is a common characteristic in patients with 
AML1-ETO–positive AML.

Discussion
The translocation t(8;21)(q22;q22), which generates the AML1-ETO 
fusion gene, is one of the most frequent chromosomal translocations, 
detected in 12% of all AML patients and in up to 40% of FAB-M2  
AML patients (10, 11). The translocation targets AML1 (RUNX1), a 
member of the RUNX family characterized by a DNA-binding Runt 
domain at the amino terminus that is retained in the fusion gene 
(12). This domain is necessary for DNA binding and heterodimer-
ization of AML1 with CBFB, the non–DNA-binding subunit of the 
complex. As predicted by the discovery that the AML1 gene is rear-
ranged in human hematopoietic disease, the AML1/CBFB complex 
was shown to be a key regulator of definitive hematopoiesis, and loss 
of either of these genes resulted in embryonic lethality with complete 
lack of definitive HSCs (13). In addition, it was recently reported that 
AML1+/– adult mice suffer from a 50% reduction of long-term repopu-
lating stem cells (14). Although it is yet not fully understood how the 

Figure 2
Analyses of CFU-S frequencies. (A) Primary BM cells retrovirally trans-
duced with GFP, AML1-ETO, AML1-ETO-L148D, FLT3-LM, or FLT3-
LM-KD vectors or with combinations of the different vectors were isolated 
by FACS 48 hours after infection and injected into lethally irradiated mice 
to assess initial (day 0) CFU-S numbers. CFU-S frequency per 1 × 105  
initiating BM cells was determined in 3 independent experiments. The 
number of analyzed mice and the P value compared with the GFP con-
trol are indicated. (B) CFU-S frequency of primary BM cells infected 
with GFP or with both AML1-ETO and FLT3-LM and treated with the 
inhibitor PKC412 for 48 hours compared with untreated controls.

Figure 3
Survival of transplanted mice. Survival curve of mice transplanted with 
BM cells expressing AML1-ETO (n = 9), FLT3-LM (n = 9), or GFP (n = 12),  
of mice transplanted with marrow cells coexpressing AML1-ETO and 
FLT3-LM (n = 11), and of secondarily transplanted mice (n = 5).
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AML1-ETO fusion gene contributes to leukemogenesis, it is thought 
that 1 key mechanism is the suppression of AML1- and C/EBPα-
dependent activation of genes responsible for myeloid development 
(15, 16). Perturbation of hematopoiesis by expression of AML1-ETO 
results in an increase in the replating capacity of murine clonogenic 
progenitors and in the growth of primitive human progenitor cells in 
vitro (6, 17). Furthermore, in vivo and ex vivo analyses demonstrated 
alterations in the differentiation pattern and proliferative capacity of 
murine hematopoietic cells expressing the fusion gene (8, 9, 18, 19).  
However, numerous murine in vivo models documented that AML1-
ETO on its own is not able to induce leukemia (6, 7, 9, 18, 19). The 
observation that AML1-ETO as a single factor is nonleukemogenic 
is further supported by findings that nonleukemic AML1-ETO–
expressing progenitor cells can be isolated from healthy individuals 
as well as AML patients in remission, which suggests that additional 
mutations in these AML1-ETO–positive progenitors are necessary 
for the transformation into leukemia-initiating cells (20–22). The 
importance of collaborating genetic events in the pathogenesis of 
AML1-ETO–positive leukemias has indeed been shown in different 
murine models, such as a conditional AML1-ETO murine model as 
well as an hMRP8–AML1-ETO transgenic mouse model. Only mice 
treated additionally with ENU developed AML or T cell lymphoma 
(6, 7). Furthermore, retrovirally expressed AML1-ETO induced myelo-
blastic transformation in vivo only in a background deficient in the 
IFN-regulatory factor IFN consensus sequence-binding protein (18). 
These data strongly suggest that genetic alterations cooperating with 
AML1-ETO play a role in inducing leukemia. 

In order to characterize genetic alterations that potentially col-
laborate with AML1-ETO, we screened 135 patients with AML for 

activating mutations of signal transduction pathways or mutations 
affecting the MLL gene. Whereas MLL-PTD mutations, which exem-
plify genetic alterations involved in transcriptional regulation, were 
not found at all, 28% of the patients were positive for activating 
mutations such as FLT3-LM, FLT3D835, KITD816, or NRAS. The 
frequent coexistence of such mutations with AML1-ETO fits well 
in the model of leukemogenesis in which the collaboration of 2 
classes of genetic alterations, 1 affecting transcription factors asso-
ciated with hematopoietic differentiation, the other affecting signal 
transduction pathways associated with cell proliferation, is neces-
sary for the malignant transformation of hematopoietic progenitor 
cells (3). Using the murine BM transplantation model, we obtained 
direct evidence for a functional collaboration of AML1-ETO with 
FLT3-LM in inducing leukemia, supporting the aforementioned 
model of leukemogenesis. Furthermore, these data demonstrate 
the collaboration of the 2 most frequent genetic alterations in AML, 
providing an important model for the understanding of both the 
AML1-ETO–positive and the FLT3-LM–positive leukemias.

Of note, 4 of 7 AML mice reported here expressed the T cell anti-
gen CD4. Although the mechanisms underlying the coexpression 
of myeloid and lymphoid antigens in AML1-ETO–positive myeloid 
leukemia are not clear, one possibility is that in this AML subtype 
an early progenitor cell with a lineage-overlapping mixed phenotype 
is the target of leukemogenic transformation, as recently proposed 
for hematological malignancies (23). Of note, it was recently demon-
strated that, in AML1-ETO–positive leukemia, evidence of lineage 
overlap is not restricted to the expression of cytoplasmic or surface 
antigens but extends to the transcriptional apparatus, since PAX5 
is selectively expressed in one-third of patients with t(8;21) AML in 

Table 2
Hematological parameters of analyzed experimental mice

Mouse 	 Retroviral 	 Day of 	 rbc/ml	 wbc/ml 	 Spleen size 	 Spleen weight 	 BM 	 Spleen 	 PB 	
no.	 construct	 sacrifice	  × 109	 × 106	 (mm)	 (mg)	 % blasts	 % blasts	 % blasts
1	 GFP 	 ND	 4.8	 7.6	 ND	 ND	 1	 0	 0
2	 GFP 	 ND	 6.4	 8.1	 ND	 ND	 0	 0	 0
3	 GFP 	 90	 7	 5	 14 × 4	 51	 2	 0	 0
4	 GFP 	 ND	 5.4	 9	 ND	 ND	 0	 0	 0
5	 GFP 	 689	 5.6	 4.5	 15 × 4	 78	 0	 0	 0
6	 GFP 	 721	 7.25	 3.5	 ND	 ND	 3	 0	 0
7	 AE	 444	 6	 13	 13 × 3.5	 63	 8	 0	 0
8	 AE	 479	 3.1	 15	 14 × 4	 60	 11	 0	 0
9	 AE	 493	 5.7	 6.9	 14 × 4	 82	 2	 0	 0
10	 AE	 615	 5	 7.6	 16 × 5	 117	 14	 0	 0
11	 FLT3-LM	 88	 4.5	 10	 15 × 4	 95	 4	 ND	 0
12	 FLT3-LM 	 ND	 4.5	 13	 ND	 ND	 2	 ND	 0
13	 FLT3-LM 	 ND	 5.6	 8.3	 ND	 ND	 1	 ND	 0
14A	 AE/FLT3-LM	 233	 ND	 23	 27 × 7	 600	 80	 52	 20
15A	 AE/FLT3-LM	 100	 0.85	 26.5	 19 × 6	 166	 48	 80	 75
16A	 AE/FLT3-LM	 612	 1.7	 12.5	 14 × 4	 118	 20	 50	 25
17B	 AE/FLT3-LM	 84	 ND	 430	 24 × 9	 572	 80	 22	 60
18B	 AE/FLT3-LM	 84	 4.4	 3.3	 21 × 7	 270	 85	 43	 62
19B	 AE/FLT3-LM	 94	 7.7	 7.2	 12 × 4	 ND	 85	 20	 95
20B	 AE/FLT3-LM	 96	 3.8	 60	 21 × 6	 310	 40	 95	 60
21A	 AE/FLT3-LM	 269	 4	 2	 28 × 9	 650	 38	 62	 30
22A	 AE/FLT3-LM	 303	 2.6	 10	 15 × 3	 200	 24	 76	 38
23A	 AE/FLT3-LM	 304	 2.6	 2.5	 29 × 10	 1,400	 27	 55	 78
24A	 AE/FLT3-LM	 359	 2.5	 35	 28 × 9	 760	 39	 77	 64

AAML; BALL. PB, peripheral blood; ND, not determined; AE, AML1-ETO.
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contrast to all other cytogenetically defined AML subtypes (24). Fur-
thermore, both myeloblastic and lymphoblastic leukemias of B and 
T cell type developed in this model of AML1-ETO and FLT3-LM coop-
eration. This observation was also reported in other murine models: 
in a conditional AML1-ETO murine model, mice treated additionally 
with ENU developed AML as well as T cell lymphoblastic lymphoma, 
although most of the T cell neoplasms did not express the fusion 
gene (6). Similar observations were reported from an hMRP8–AML1-
ETO transgenic mouse model, which developed AML as well as  
T-ALL/lymphoma after ENU treatment (7). In addition, expression 
of AML1-ETO might contribute to the lymphoid phenotype of the 
leukemias in our model, as it was reported that FLT3-LM is able to 
induce a long-latency T cell lymphoma–like disease in the C57BL/
C3H background (25). However, the association of FLT3-LM with a 
lymphoid disease seems to depend on the genetic background of the 
mouse strain, as FLT3-LM induced a myeloproliferative syndrome in 
BALB/c mice (26). In our model, also using the C57BL/C3H back-
ground, constitutive expression of FLT3-LM alone did not induce any 
perturbation of the hematopoietic development in vivo; this result 
was also recently reported in a mouse model of collaboration of 
FLT3-LM with MLL-SEPT6 using the C57BL/6 strain (27).

Of note, overexpression of FLT3 and activating FLT3 mutations 
are associated with ALL in humans, in particular in cases of ALL 
with hyperdiploidy or MLL rearrangement, characterized by a primi-

tive B cell or a mixed lymphoid-myeloid phenotype (28–30). The 
observations that ETV6-PDGFBR, which already by itself causes 
a lethal myeloproliferative syndrome in transplanted mice, induc-
es exclusively a myeloblastic leukemia when coexpressed with 
AML1-ETO might point to the importance of the collaborating 
partner for the phenotype of the induced leukemia (31). Another 
possible explanation for the development of lymphoid malignan-
cies in our model is that, in individual mice, lymphoid-commit-
ted stages of differentiation were hit by the retrovirus, resulting 
in lymphoblastic leukemia in these animals. This would poten-
tially be a key difference from the human situation, in which 
both AML1-ETO and FLT3-LM are already present in the HSC 
pool (21, 32). An important question is whether the results were 
influenced by retroviral insertional mutagenesis. Most of the leu-
kemic animals were transplanted with a low transplant dose and 
then suffered from monoclonal or oligoclonal disease. Although 
the number of retroviral integration events was low in the mice, 
insertional mutagenesis might have contributed to the leukemo-
genesis. However, analyses of the retroviral integration sites in the 
diseased animals showed integration into intergenic regions or 
introns of genes, more likely resulting in their knock down than 
in their activation. These data suggest that retroviral insertional 
mutagenesis might not play the key part in disease development, 
an issue that might be more accurately addressed in mouse mod-
els expressing AML1-ETO from an endogenous promoter. The 
long latency of the leukemias, even of secondary disease, however, 
strongly argues that additional secondary in vivo genetic events 
in the animals contributed to disease development.

To our knowledge, this is the first functional evidence of a leu-
kemogenic collaboration of AML1-ETO with a complementary 
class of mutation, recurrently found in patients with t(8;21). It 
facilitates our understanding of acute leukemias associated with 
2 of the most frequent genetic alterations in this disease. Further-
more, our experimental data support recent reports that show 
the functional relevance of activating mutations in patients with 
CBF leukemias [AML1-ETO or CBFB-MYH11] by demonstrating 

a significantly shortened overall and event-free survival for AML1-
ETO–positive leukemias harboring activating mutations of FLT3 
or KIT compared with those without these mutations. In contrast, 
RAS mutations did not affect the treatment outcome (S. Schnittger, 
unpublished observations) (33, 34). In line with these findings, it 
was recently shown that in patients with AML1-ETO–positive leuke-
mia, most leukemic cells at diagnosis additionally harbored muta-
tions in KIT, whereas in 3 patients analyzed in complete remission, 
only the fusion gene, but not the KIT mutation, could be detected 
by PCR; this strongly supports the concept of a stepwise develop-
ment of disease involving 2 collaborating genetic aberrations (35). 
These observations encourage the systematic screening of activating 
mutations in patients with CBF leukemias in prospective clinical 
trials to evaluate more precisely their prognostic impact, and they 
form a rationale to consider treatment strategies targeting the signal 
transduction apparatus in this AML subtype.

Methods
Patient samples. BM samples from 135 adult patients with newly diagnosed 
AML — de novo AML (n = 118), secondary AML after treatment of a previ-
ous malignancy (n = 13), and AML at relapse (n = 4) — were analyzed. The 
diagnosis of AML was performed according to the French-American-Brit-
ish criteria and the WHO classification (36, 37). Cytomorphology, cyto-
chemistry, cytogenetics, and molecular genetics were applied in all cases 

Figure 4
Immunophenotype and morphology of hematopoietic cells recovered from 
leukemic mice. The plots show representative FACS profiles from BM cells 
in comparison with cells from GFP control animals, with indication of the 
proportion of positive cells within the GFP+/YFP+ compartment. The pho-
tographs show cytospin preparations (H&E; magnification, ×630) from 
peripheral blood (A, right image; B and C) and from BM (A, left image). 
(A) AML with a dominant mast cell population (marked by arrows) (mouse 
no. 16). (B) B-ALL (mouse no. 17). (C) T-ALL (mouse no. 20).
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as described below. Both animal and human studies were approved by the 
Ethics Committee of Ludwig Maximilians University and abided by the 
tenets of the revised World Medical Association Declaration of Helsinki 
(http://www.wma.net/e/policy/b3.htm).

Cytogenetic and FISH analysis. Cytogenetic analyses were performed using 
standard techniques. For FISH, a commercially available AML1-ETO probe 
was used according to the manufacturer’s instructions (Vysis Inc.) (38).

PCR. Molecular genetic analysis for AML1-ETO (38), MLL-PTD (39), FLT3-
LM (4), NRAS mutations, FLT3D835, and KITD816 (40) in patient samples was 
performed as has been described previously (41). In leukemic mice, expression 
of AML1-ETO and FLT3-LM was assessed by RT-PCR in animals transplanted 
with BM cells coexpressing AML1-ETO/GFP and FLT3-LM/YFP. Preparation 
of cDNA was performed as previously described (41). For AML1-ETO the prim-
er forward 5′-ATGACCTCAGGTTTGTCGGTCG-3′ and the primer reverse 

5′-TGAACTGGTTCTTGGAGCCTCCT-3′ (corre-
sponding to positions nucleotide 395 and nucleo-
tide 633 of GenBank accession number D13979, 
respectively) were used; for FLT3-LM the primer 
forward 5′-GCAATTTAGGTATGAAAGCCAGC-
3′ and the primer reverse 5′-CTTTCAGCATTTT-
GACGGCAACC-3′ (corresponding to positions 
nucleotide 1,704 and nucleotide 1,920 of GenBank 
accession number NM_004119, respectively) were 
used. The annealing temperature was 57°C. The 
number of PCR cycles for each gene was chosen 
to stop the reaction in the linear phase of ampli-
fication (35 cycles for AML-ETO and FLT3-LM).  
The integrity of the RNA in all samples was con-
firmed by mβ-2 microglobulin RT-PCR.

For the linker-mediated PCR (LM-PCR), inte-
grated long-terminal repeats (LTRs) and flank-
ing genomic sequences were amplified and then 
isolated using a modification of the bubble 
LM-PCR strategy (42, 43). Aliquots of the cell 
lysates from leukemic mice were digested with 
PstI or Ase (New England Biolabs Inc.), and the 
fragments were ligated overnight at room tem-
perature to a double-stranded bubble linker 
(5′-CTCTCCCTTCTCGAATCGTAACCGTTCG-
TACGAGAATCGCTGTCCTCTCCTTG-3′ and 5′-
ANTCAAGGAGAGGACGCTGTCTGTCGAAGG-
TAAGGAACGGACGAGAGAAGGGAGAG-3′). 
Next, a first PCR (PCR-A) was performed on 10 µl 
(one-tenth) of the ligation product using a linker-
specific Vectorette primer (5′-CGAATCGTAACC-
GTTCGTACGAGAATCGCT-3′) (Invitrogen Corp.) 
and an LTR-specific primer (LTR-A: 5′-CAACACA-
CACATTGAAGCACTCAAGGCAAG-3′) under the 
following conditions: 1 cycle of 94°C for 2 min-
utes, 20 cycles of 94°C for 30 seconds and 65°C 
for 1 minute, and 1 cycle of 72°C for 2 minutes. 
The bubble linker contains a 30-nucleotide nonho-
mologous sequence in the middle region that pre-
vents binding of the linker primer in the absence 
of the minus strand generated by the LTR-specific 
primer. A 1-µl aliquot of the PCR-A reaction (one-
fifteenth) was then used as a template for a second 
nested PCR (PCR-B) using an internal LTR-specific 
primer (LTR-B: 5′-GAGAGCTCCCAGGCTCA-
GATCTGGTCTAAC-3′) and the same linker-spe-

cific Vectorette primer as was used in PCR-A, with the following conditions: 
1 cycle of 94°C for 2 minutes, 30 cycles of 94°C for 60 seconds and 72°C for 
1 minute, and 1 cycle of 72°C for 2 minutes. Ten microliters (one-half) of 
the final PCR-B product was electrophoresed using 2% agarose tris-acetate-
EDTA gel. Individual bands were excised and purified using the QIAEX 
II Gel Extraction Kit (QIAGEN) and then cloned into PCR2.1 (Invitrogen 
Corp.) before sequencing of the integration site of the retrovirus.

Multiparameter flow cytometry. Immunophenotypic analyses were per-
formed as previously described (44). The following combinations of anti-
bodies were used: CD34/CD2/CD33, CD7/CD33/CD34, CD34/CD56/
CD33, CD11b/CD117/CD34, CD64/CD4/CD45, CD34/CD13/CD19, 
CD65/CD87/CD34, CD15/CD34/CD33, HLA-DR/CD33/CD34, CD4/
CD13/CD14, CD34/CD135/CD117, CD34/CD116/CD33, CD90/CD117/
CD34, CD34/NG2(7.1)/CD33, CD38/CD133/CD34, CD61/CD14/CD45, 

Figure 5
Histological analyses of leukemic mice. (A–F) Histological analyses of AML (mouse no. 14). 
Original magnifications: A–C, ×200; inset in C, ×1,000; D and right side of E, ×250; inset in D, 
×650; left side of E, ×400; F, ×400. (G–O) Histological analyses of AML with a dominant mast 
cell population (mouse no. 16). (G–L) Primary recipient. (M–O) Secondary recipient. Original 
magnifications: G and M, ×100; H, J, and N, ×200; I, K, and O, ×400; L, ×600. Mast cells with 
metachromatic granulation in the Giemsa stain are indicated by an arrow. MPO, myeloperoxi-
dase; CAE, N-acetyl-chloroacetate esterase.
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CD36/CD235a/CD45, CD15/CD13/CD33, CD9/CD34/CD33, CD38/
CD34/CD90, CD34/CD79a/CD19, TdT/cyCD33/cyCD45, myeloper-
oxidase/lactoferrin/cyCD15, TdT/cyCD79a/cyCD3, and TdT/cyCD22/
cyCD3. All antibodies were purchased from Beckman Coulter Inc., except 
for CD64 and CD15 (Medarex Inc.), CD133 (Miltenyi Biotec), and myelo-
peroxidase and lactoferrin (CALTAG Laboratories). For the analysis of 
cytoplasmic antigens, cells were fixed and permeabilized before staining 
with FIX & PERM (CALTAG Laboratories). Multiparameter flow cytom-
etry analysis was performed with a FACSCalibur flow cytometer (BD).

The purity of all samples was 80–100%. Furthermore, immunophenotyp-
ing was performed with triple staining in all cases as indicated above, test-
ing simultaneous expression of myeloid and lymphoid antigens to exclude 
contaminating normal lymphoid cells.

In mice, immunophenotypic analysis of single-
cell suspensions from BM, spleen, and peripheral 
blood was performed by flow cytometry (FACS-
Calibur cytometer; BD) using PE-labeled Sca-1, 
Gr-1, Ter-119, and CD4 antibodies and allophy-
cocyanin-labeled Mac-1, Kit, B220, and CD8 anti-
bodies (all from BD Biosciences — Pharmingen), 
as previously described (45). The surface expres-
sion of the FLT3-LM construct and the FLT3-
LM-KD mutant of Ba/F3 cells was confirmed 
by FACS analysis (Figure 2B) using anti–human 
CD135–PE mAb (BD) and an isotype-matched 
IgG1-PE control (Beckman Coulter Inc.).

cDNA constructs and retroviral vectors. For retro-
viral gene transfer into primary BM cells, AML1-
ETO cDNA was subcloned into the multiple clon-
ing site of the modified murine stem cell virus 
(MSCV) 2.1 vector (41) upstream of the enhanced 
GFP (EGFP) gene and the internal ribosomal entry 
site (IRES). The FLT3-LM cDNA was subcloned 
into the identical MSCV vector construct carrying 
the enhanced YFP (Figure 1A). The MSCV vector 
carrying only the IRES-EGFP cassette was used as 

a control. The cDNA of FLT3-LM was kindly provid-
ed by D.G. Gilliland (Harvard Medical School, Bos-
ton, Massachusetts, USA) and contained a 28–amino 
acid duplicated sequence (CSSDNEYFYVDFREYEY-
DLKWEFPRENL) inserted between amino acids 610 
and 611. The AML1-ETO cDNA was provided by S.W. 
Hiebert (Vanderbilt University School of Medicine, 
Nashville, Tennessee, USA).

The FLT3-LM-KD mutation K672R (a point 
mutation of Lys644 to Arg that disrupts an ion pair 
with Glu661 that is critical for nucleotide binding 
in FLT3-WT; ref. 46), and the L148D AML1-ETO 
point mutation (31, 47) to prevent AML1-ETO DNA 
binding, were generated from the full-length human 
FLT3-LM cDNA and the AML1-ETO cDNA, respec-
tively, using the QuikChange Site-Directed Muta-
genesis Kit (Stratagene) according to the manufac-
turer’s instructions. The correct sequences of the 
constructs were confirmed by complete nucleotide 
sequencing, and expression was proved by Western 
blot and FACS analysis (Figure 1).

Cell culture. Gag-pol and envelope (GP+ E86) packag-
ing cells, NIH 3T3 cells, and 293T cells were grown in 
DMEM with 10% FBS and 1% penicillin/streptomy-

cin in a humidified incubator at 37°C and 5% CO2. Primary murine BM cells 
were plated in transplant medium consisting of DMEM supplemented with 
15% FBS, 1% penicillin/streptomycin, 6 ng/ml IL-3, 10 ng/ml IL-6, and 100 
ng/ml SCF (tebu-bio GmbH). IL-3–dependent Ba/F3 cells stably expressing 
the empty vector alone, FLT3-WT, FLT3-LM, and FLT3-LM-KD were seeded 
at a concentration of 0.05 × 106 per milliliter in the presence or absence of IL-3  
and FLT3 ligand, as described previously (48). At 72 hours, viable cells were 
counted in a standard hemacytometer after staining with trypan blue.

Retrovirus production. High-titer helper-free retrovirus was produced with 
the constructs above by individual cotransfection of each construct with 
Ecopac (Cell Genesys Inc.) into 293T cells using calcium chloride precipita-
tion. The retrovirus was subsequently collected in the conditioned medium.  

Figure 6 
Analysis of proviral integrations. (A) Southern blot analysis of genomic DNA from differ-
ent primary mice and a secondary recipient to detect clonal proviral integrations. DNA was 
digested with EcoRI, which cuts once in the proviral sequence, and blots were hybridized to 
a GFP/YFP probe. The mouse numbers are indicated (corresponding to those in Table 2). 
S, spleen; PB, peripheral blood; sec. of 21, second mouse of 1° mouse no. 21. (B) Bubble 
PCR analyses of retroviral integration sites in diseased mice. The bands (A–I) were isolated, 
subcloned, and sequenced. A description of the PCR products is given in Table 3. Asterisk 
indicates resolution as 2 unique bands after subcloning and sequencing of integration sites.

Table 3
Identity of retroviral integration sites in diseased mice

LaneA	 PCR 	 Gene	 Protein 	 Chromosome	 Mouse 	
	 productA	 	 family	 	 no.
2	 A 1	 Intergenic		  17qE3	 15
	 A 2	 Intron 1 of Rnf8 alias AIP37	 Ring finger 	 17qA3 
		  and 5 kbp 3′ of Pim1	 protein 8

3	 B 	 Intergenic		  15qE2	 16
	 C	 Intron 1 of Ptp4a3	 Protein tyrosine 	 15qD3 
			   phosphatase 4a3

4	 D	 Hypothetical gene		  10qC2	 12
	 E	 Intron 3 of GATA	 Transcription 	 6qD1	  
			   factor

5	 F	 Intergenic		  18qD3	
	 G	 Intron 4 of SF3b	 Splicing factor 	 8qE1
			   subunit b3

6	 H	 Intergenic in intron 		  3qF1	 18
		  of hypothetical gene
	 I	 Intergenic in intron 		  16qA1	  
		  of hypothetical gene

ALanes and PCR products according to Figure 6B.
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To optimize transduction efficiency, the virus-containing medium (VCM) 
of different constructs was used to transfect GP+ E86 cells to establish sta-
ble packaging cell lines, or to directly infect 5-FU–mobilized BM cells in the 
case of FLT3-LM. Ba/F3 cells were transfected with the different constructs 
as previously described (48, 49).

Mice and retroviral infection of primary BM cells. Parental-strain mice were 
bred and maintained at the GSF animal facility. Donors of primary BM 
cells [(C57BL/6Ly-Pep3b × C3H/HeJ) F1 (PepC3) mice] and recipient 
mice [(C57BL/6J × C3H/HeJ) F1 (B6C3)] were more than 8 weeks old. Pri-
mary mouse BM cells were transduced as previously described (41). For 
transduction of AML1-ETO, cells were cocultured in transplant medi-
um with AML1-ETO/GFP producer cells irradiated with 40 Gy of 137Cs  
γ-radiation. For infection with the FLT3-LM virus, BM cells were cultured 
in FLT3-LM/VCM, supplemented with cytokines (IL-3, IL-6, and SCF), to 
achieve optimal transduction efficacy. For coinfection with the FLT3-LM 
and AML1-ETO retroviruses, BM cells were cultured on a mixture of 30–50%  
AML1-ETO/GFP and 50–70% FLT3-LM/YFP producer cells in transplant 
medium or FLT3-LM/VCM supplemented with IL-3, IL-6, and SCF. Retro-
viral transfection of primary BM cells with the AML1-ETO mutant L148D 
and the FLT3-LM-KD mutant was performed as described for FLT3-LM, 
by cultivation of the BM in VCM supplemented with IL-3, IL-6, and SCF. 
All transductions were performed with the addition of 5 µg/ml protamine 
sulfate. Infected cells were highly purified (FACSVantage; BD) based on 
expression of GFP (for AML1-ETO alone), expression of YFP (for FLT3-
LM alone), or coexpression of GFP and YFP (for AML1-ETO/FLT3-LM 
cotransduction) before transplantation.

BM transplantation and assessment of mice. FACS-purified transduced BM 
cells or ratios of transduced and nontransduced cells (if less than 3 × 105 
transduced cells per recipient were available) were injected into the tail vein 
of 8- to 10-week-old irradiated recipient F1 (B6C3) mice (800 cGy from a 
137Cs γ-radiation source). Peripheral blood or BM cell progeny of transduced 
cells were tracked using the GFP and/or YFP fluorescence in vivo (41). For 
transplantation of secondary mice, 1 × 106 to 2 × 106 cells of diseased pri-
mary animals were injected into the recipients after 800 cGy irradiation.

CFU-S and ∆CFU-S assay. 5-FU–mobilized primary BM cells from F1 
(PepC3) donor mice were retrovirally transduced with AML1-ETO; AML1-
ETO-L148D; FLT3-LM; FLT3-LM-KD; both AML1-ETO and FLT3-LM; 

both AML1-ETO and FLT3-LM-KD; or both AML1-ETO-L148D and 
FLT3-LM. Cells transfected with the empty GFP vector served as control. 
Successfully transduced cells were isolated 48 hours after termination of 
infection by FACS (FACSVantage; BD). To assess initial (day 0) CFU-S 
numbers, purified cell populations were injected into lethally irradiated 
F1 (B6C3) recipient mice 96 hours after the start of infection (45). To 
study the effect of the selective protein tyrosine kinase inhibitor PKC412 
on double-positive cells, freshly sorted cells were cultured in transplant 
medium with 0 and 100 nM PKC412. After 48 hours, the cells were injected 
into lethally irradiated mice as described above, and the day 0 equivalent of 
the CFU-S frequency was calculated for both experimental groups. In this 
∆CFU-S assay the base-line frequency of CFU-S is lower than in the CFU-S 
assay. The recovery of CFU-S cells was quantified by determination of the 
number of macroscopic colonies on the spleen at day 12 postinjection after 
fixation in Telleyesniczky’s solution.

Southern blot. Genomic DNA was isolated from BM, spleen, and peripheral 
blood of diseased mice with DNAzol as recommended by the manufacturer 
(Invitrogen Corp.). Southern blot analysis was performed as previously 
described (45). DNA was digested with EcoRI and probed with a 32P-labeled 
GFP/YFP DNA. Hybridizing bands were visualized by autoradiography.

Western blot. Protein expression of AML1-ETO, AML1-ETO-L148D, FLT3-
LM, and FLT3-LM-KD was demonstrated by Western blotting using stan-
dard procedures (41). Membranes were probed with an anti-ETO polyclonal 
goat antibody and an anti-FLT3 polyclonal rabbit antibody (Santa Cruz 
Biotechnology Inc.). Protein expression of FLT3-LM showed 2 bands, as 
previously reported: in detail, the FLT3 receptor occurs in 2 different forms 
due to glycosylation that can be resolved in SDS-PAGE gradient gels — a 
158- to 160-kDa membrane-bound protein that is glycosylated at N-linked 
glycosylation sites in the extracellular domain and an unglycosylated 130- 
to 143-kDa protein that is not membrane bound (50–52). Phosphorylation 
of FLT3 was tested by Western blot using 293T cells that were starved for 12 
hours at 37°C, 5% CO2. After cell harvesting and lysis, 300 µg of the lysates 
was immunoprecipitated with polyclonal rabbit anti-FLT3 antibody (s-18; 
Santa Cruz Biotechnology Inc.). Immunoprecipitates were analyzed by 
SDS-PAGE with mouse monoclonal anti-phosphotyrosine antibody (PY-99;  
Santa Cruz Biotechnology Inc.) and reprobed with anti-FLT3 antibody.

Histology. For histological analyses, sections of selected organs were pre-
pared and stained at the Academic Pathology Laboratory, GSF (Munich, 
Germany), using standard protocols, as previously described (41). The mast 
cell–specific tryptase and the CD117 antibody were purchased from Dako-
Cytomation. All the tumors were histopathologically classified according 
to the Bethesda proposals for classification on nonlymphoid and lymphoid 
hematopoietic neoplasms in mice (53, 54).

Statistical analysis. Data were evaluated using the 2-tailed Student’s 
t test for dependent or independent samples (Microsoft Excel 2002, 
Microsoft Corp.). Differences with P values less than 0.05 were consid-
ered statistically significant.
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Figure 7
Expression of lymphoid antigens on 52 samples of patients with AML1-
ETO–positive AML, determined by immunophenotyping. Samples 
were defined as negative for expression of cytoplasmic antigens when 
less than 10% of the cells stained with the antibody, and as negative 
for expression of surface antigens when less than 20% of the cells 
stained with the antibody (shaded areas).
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Abstract  

The identification of cancer stem cells is a major step towards the understanding of the 

pathogenesis of solid and hematological neoplasias and might have direct implications for the 

development of innovative therapeutic strategies aiming at the eradication of the tumor 

propagating cell. Here we describe that acute myeloid leukemia (AML), induced by the 

CALM/AF10 fusion gene, is propagated by a transformed lymphoid progenitor in a murine 

bone marrow (BM) transplantation model of t(10;11)(p13;q14) positive AML. When mice 

were transplanted with BM cells retrovirally engineered to express the C/A fusion, all animals 

(n=13) died from AML showing DJ rearrangement of the heavy chain of the IgH locus after a 

median of 110 days post transplantation. Diseased mice showed an accumulation of myeloid 

Gr1+/Mac1+ cells in the peripheral blood and spleen and a multi-organ infiltration by 

myeloperoxidase and chloracetate esterase positive cells in immunohistochemical sections. In 

the leukemic mice only a minor population counting for 6.7 % (± 2.1) cells in the BM 

displayed the B220 lymphoid antigen and lacked myeloid markers (on average 9.4 % ± 3). 

The majority of cells expressed myeloid markers (on average 82.9 % (± 8.6) Mac1+ cells, 86.4 

% (± 3.7) Gr-1+ cells). Additionally, in the leukemic mice an average of 26.0 % (± 8.6) and 

32.5 % (± 13.2) of these cells co-expressed B220 and Mac1 or B220 and Gr1, respectively, 

compared to 2.1 % (± 0.7) and 1.3 % (± 0.3), respectively, in GFP controls. Importantly, in 

vitro only the B220+/Mac– cell population had growth potential at the single cell level (seeding 

http://www.hematology.org/meeting/abstracts_rights02.cfm


efficiency 29 %) compared to the B220+/Mac+ (1%) and B220–/Mac+ cells (1%). When the 

frequency of leukemia propagating cells (LPC) of the three different populations isolated from 

primary leukemic mice was determined by limiting dilution transplantation and Poisson 

statistics the frequency of the LPC was more than 380 fold higher in the ‘B220+/Mac1–’ 

population (1 in 36 cells) than in the ‘Mac1+/B220–’ bulk population (1 in 13906 cells) and 

more than 12fold increased compared to the B220+/Mac+ cells (1 in 437 cells). In vitro a 

single B220+/Mac1– cell isolated from a leukemic mouse was able to give rise to the 

B220+/Mac1+ as well as the Mac1+/ B220– population, both populations showing the identical 

genomic DJ rearrangement at the IgH locus as the initial B220+/Mac1– cell, demonstrating its 

capacity to differentiate into the myeloid lineage at the single cell level. The B220+/Mac1– 

population displayed a CD43+/AA4.1+/HSA+/CD19–/IL-7R– phenotype, was promiscuous in 

its transcription profile with positivity for EBF, but also MPO and lacked Pax5. Taken 

together, this murine leukemia model indicates that AML can be propagated from an early 

transformed lymphoid progenitor cell. The transformation of an early lymphoid cell, which is 

re-directed into the myeloid lineage by appropriate oncogenes, could explain recurrent 

observations of immunoglobulin rearrangements in patients with AML and provide a rationale 

for therapies, aiming at the elimination of the leukemia propagating cell with lymphoid 

characteristics, but sparing normal HSCs. 
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