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Abstract

In this thesis we investigate two di�erent aspects of string theory compacti�cations.

The �rst part deals with the issue of the huge amount of possible string vacua, known
as the landscape. Concretely we investigate a speci�c well de�ned subset of type II
orientifold compacti�cations. We develop the necessary tools to construct a very large
set of consistent models and investigate their gauge sector on a statistical basis. In
particular we analyse the frequency distributions of gauge groups and the possible
amount of chiral matter for compacti�cations to six and four dimensions. In the phe-
nomenologically relevant case of four-dimensional compacti�cations, special attention
is paid to solutions with gauge groups that include those of the standard model, as
well as Pati-Salam, SU(5) and �ipped SU(5) models. Additionally we investigate the
frequency distribution of coupling constants and correlations between the observables
in the gauge sector. These results are compared with a recent study of Gepner mod-
els. Moreover, we elaborate on questions concerning the �niteness of the number of
solutions and the computational complexity of the algorithm.

In the second part of this thesis we consider a new mathematical framework, called
generalised geometry, to describe the six-manifolds used in string theory compacti�ca-
tions. In particular, the formulation of T-duality and mirror symmetry for nonlinear
topological sigma models is investigated. Therefore we provide a reformulation and ex-
tension of the known topological A- and B-models to the generalised framework. The
action of mirror symmetry on topological D-branes in this setup is presented and the
transformation of the boundary conditions is analysed. To extend the considerations
to D-branes in type II string theory, we introduce the notion of generalised calibra-
tions. We show that the known calibration conditions of supersymmetric branes in
type IIA and IIB can be obtained as special cases. Finally we investigate the action
of T-duality on the generalised calibrations.
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Zusammenfassung

In dieser Arbeit werden zwei unterschiedliche Aspekte von Kompakti�zierungen in
der Stringtheorie untersucht.

Der erste Teil beschäftigt sich mit dem unter dem Namen �Landscape� bekannten
Phänomen, das die sehr groÿe Zahl von Vakuumlösungen in der Stringtheorie thema-
tisiert. Konkret beschäftigen wir uns mit einer speziellen wohlde�nierten Untermenge
von Orientifold-Kompakti�zierungen in Stringtheorie vom Typ II. Wir entwickeln die
notwendigen Methoden, um eine groÿe Anzahl von konsistenten Modellen zu berech-
nen und deren Eichsektoren einer statistischen Analyse zu unterziehen. Diese bein-
haltet eine Untersuchung der Häu�gkeitsverteilungen einzelner Eichgruppen, sowie
der Verteilung chiraler Materie in Kompakti�zierungen von zehn sowohl auf sechs, als
auch auf vier Dimensionen. Der vierdimensionale Fall ist unter phänomenologischen
Gesichtspunkten interessanter, und wir vertiefen daher unsere Analyse des Eichsektors
in diesem Fall durch das Betrachten von Lösungen, die spezielle Eichgruppen, wie die
des Standardmodells, von Pati-Salam, SU(5) und �ipped SU(5) Modellen, aufweisen.
Darüber hinaus untersuchen wir die Häu�gkeitsverteilung von Kopplungskonstanten
und Korrelationen zwischen den Observablen im Eichsektor der Modelle. Diese Ergeb-
nisse werden mit einer Untersuchung von Gepner-Modellen verglichen. Wir beschäfti-
gen uns ferner mit der Endlichkeit der Lösungen im Raum der von uns betrachteten
Orientifold-Modelle, sowie der Komplexität der verwendeten Algorithmen.

Im zweiten Teil dieser Arbeit wird untersucht, wie ein neues Konzept der Mathe-
matik, die sogenannte generalisierte Geometrie, zur Beschreibung der kompakten,
sechsdimensionalen Mannigfaltigkeiten, welche in Kompakti�zierungen von Stringth-
eorie Verwendung �nden, genutzt werden kann. Die Formulierung von T-Dualität
und Mirror-Symmetrie für topologische Sigma-Modelle wird thematisiert und eine
neue Formulierung und Erweiterung der bekannten topologischen A- und B-Modelle
wird entwickelt. Wir untersuchen die Wirkung von Mirror-Symmetrie auf topologische
D-Branen und die Transformation der Randbedingungen dieser Branen. Um die Anal-
yse auf D-Branen in Stringtheorie vom Typ II zu erweitern, führen wir das Konzept
generalisierter Kalibrierungen ein und zeigen, dass diese die bekannten Kalibrierungs-
bedingungen von D-Branen in Stringtheorie vom Typ IIA und IIB als Spezialfälle
enthalten. Abschlieÿend wird die Wirkung von T-Dualität auf die generalisierten
Kalibrierungen untersucht.
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Chapter 1

Introduction

Our current understanding of the fundamental forces of the universe is governed by
two of the most successful theories in the history of science. On the one hand, the
standard model of particle physics, formulated in the framework of quantum �eld
theory, provides a description of the strong and electroweak interactions. On the
other hand, general relativity explains the gravitational force in a beautiful geometric
manner. The predictions of both theories are experimentally con�rmed to a very high
accuracy. Nevertheless, there are several issues concerning both, the mathematical
structure as well as the impossibility to describe important phenomena, which con-
vince us that the standard model and general relativity can only be low energy limits
of a more fundamental theory, that would provide us with a uni�ed description of all
forces of nature.

Within the framework of the standard model, we are not able to describe the rea-
son why there exist exactly three families of quarks and leptons, why the coupling
constants of the electroweak and the strong interactions show the tendency to unify
at high energies, why there is such a large hierarchy between the electroweak and
the Planck scale and why the cosmological constant has such a small positive value.
Concerning the structure of the standard model, the large number of free parame-
ters, including such important quantities as the masses of fundamental particles, is
not very appealing. Furthermore, general relativity, being a classical theory, cannot
be formulated within the framework of quantum �eld theory. It looses its predictive
power at the order of the Planck scale, where quantum e�ects would dominate. A
quantum theory of gravity is therefore absolutely necessary to describe phenomena at
high curvature, as in the case of black holes.

The best candidate for a fundamental theory that includes quantum gravity is string
theory (for standard textbooks see [101, 102, 135, 145, 146, 172]). It is based on the
idea that the fundamental constituents of matter are not described by point particles,
but by one-dimensional objects. What might look like a minor change at �rst glance
implies major changes in the mathematical description, as well as in the possible
formulation of consistent theories. It turns out that the quantisation of string theory
leads to �ve di�erent theories, which are connected by dualities. In this way they

1



2 CHAPTER 1. INTRODUCTION

can be seen as special limits of one and the same underlying theory, which has been
dubbed M-theory. The low energy limit of this still unknown fundamental theory
is the maximal, eleven-dimensional supergravity [141, 53]. A consistent quantisation
of string theory leads, besides others, to two fundamental predictions. The �rst one
is that the dimension of the target space manifold has to be ten, the second one is
supersymmetry. The latter is actually good news, since for phenomenological reasons
we expect supersymmetry to be realised in nature, although it is broken at low energy.
Since we do not observe a ten-dimensional space-time, we are necessarily led to the
conclusion that six dimensions have to be invisible at low energies, which can be
accommodated for by a compacti�cation. The geometry of the compact manifold
determines many properties of the low energy e�ective theory, in particular the amount
of observed supersymmetry.

The �rst attempts to obtain consistent e�ective low energy theories that resemble
the standard model have been made in heterotic string theory (see for example [37,
113, 112]). These methods have been re�ned over the years and are used presently to
obtain the most realistic constructions of the standard model available (recent work
includes [32, 29, 27]). With the advent of D-branes [143] many new possibilities for
string model building have been discovered. In particular the notion of intersecting
D-branes [18] proved to be very fruitful to construct models with realistic properties
(see e.g. [134, 21] and references therein).

There are several open questions concerning compacti�cations in string theory and in
this thesis we elaborate on two of them. Therefore this work is divided into two parts.
In the �rst part we discuss aspects of the so-called landscape problem, which concerns
the overwhelming abundance of possibilities to construct consistent low energy the-
ories. In the second part we switch to a less phenomenological topic and investigate
how a new mathematical structure, called generalised complex geometry, can deepen
our understanding of the possible compacti�cation spaces and the connection of string
theories via dualities.

1.1 The Landscape

Starting from early observations of Lerche, Lüst and Schellekens [130], it has become
clear over the years that string theory does provide us not only with one consistent
low energy e�ective theory, but with a multitude of solutions. This phenomenon has
been given the name �the landscape� [150, 155] (for a recent essay on the subject see
also [76]).

It was known from the very �rst approaches to compacti�cation of string theory
to four dimensions that there exist many families of solutions due to the so-called
moduli. These scalar �elds parametrise the geometric properties of di�erent possible
compacti�cation manifolds and their values are generically not �xed. It was believed
for a long time that some stabilisation mechanism for these moduli would �nally
lead to only one consistent solution. Even though it is way too early to completely
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abandon this idea, recent developments suggest that even after moduli stabilisation
there exist a very large number of consistent vacuum solutions. Especially the studies
of compacti�cations with �uxes (see e.g. [95] and references therein) clari�ed the
situation. The e�ective potential induced by these background �uxes, together with
non-perturbative e�ects, allow to �x the values of some or even all of the moduli at
a supersymmetric minimum. What is surprising is the number of possible minima,
which has been estimated [30]1 to be of the order of 10500. So it seems very likely that
there exists a very large number of stable vacua in string theory that give rise to low
energy theories which meet all our criteria on physical observables.

After the initial work of Douglas [75], who pointed out that facing these huge numbers
the search for the vacuum is no longer feasible, recent research has started to focus
on the statistical distributions of string vacua. This approach relies on the conjecture
that, given such a huge number of possible vacua, our world can be realized in many
di�erent ways and only a statistical analysis might be possible. Treating physical
theories on a statistical basis is a provocative statement and it has given rise to
a sometimes very emotional debate. Basic criticism is expressed in [12, 11], where
the authors emphasise the point that, as long as we do not have a non-perturbative
description of string theory, such reasoning seems to be premature. Moreover such an
approach immediately rises philosophical questions. How can we talk seriously about
the idea to abandon unambiguous predictions of reality and replace it with statistical
reasoning? One is reminded to similar questions concerning quantum mechanics, but
there is a major di�erence to this problem. In the case of quantum mechanics there
is a clean de�nition of observer and measurement. Most importantly, measurements
can be repeated and therefore we can make sense out of a statistical statement. In
the case of our universe we have just one measurement and there is no hope to repeat
the experiment.

At the moment there are two roads visible that might lead to a solution of these
problems. One of them is based on anthropic arguments [155], which have already
been used outside string theory to explain the observed value of the cosmological
constant [159]. Combined with the landscape picture this gives rise to the idea of a
multiverse, where all possible solutions for a string vacuum are actually realised [119]
(for a recent essay on the cosmological constant problem and the string landscape
see also [147]). Anthropic reasoning is not very satisfactory, especially within the
framework of a theory that is believed to be unique. Another possible way to deal with
the landscape might therefore be the assignment of an entropy to the di�erent vacuum
solutions and their interpretation in terms of a Hartle-Hawking wave function [142, 39].
A principle of extremisation of the entropy could then be used to determine the correct
vacuum.

We do not dwell into philosophical aspects of the landscape problem in this thesis,
but rather take a very pragmatic point of view, following Feynman's �shut up and
calculate� attitude. In this endeavour a lot of work has been done to analyse the

1Note that in this estimate not all e�ects from the process of moduli stabilisation have been taken
into account.
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properties and de�ne a suitable statistical measure in the closed string sector of string
theory [8, 61, 64, 90, 73, 140, 50, 62, 66, 69, 72, 1, 74, 77, 125]. In this work we are
focusing on the statistics of the open string sector [23, 126, 127, 7, 157, 92, 91, 93, 128,
67, 68]. We are not trying to take the most general point of view and analyse a generic
statistical distribution, but focus instead on a very speci�c class of models. In this
small region of the landscape we are going to compute almost all possible solutions
and give an estimate for those solutions we were not able to take into account.

There are several interesting questions one can ask, given a large set of possible models.
One of them concerns the frequency distribution of properties, like the total rank of the
gauge group or the occurrence of certain gauge factors. Another question concerns the
correlation of observables in these models. This question is particularly interesting,
since a non-trivial correlation of properties could lead to the exclusion of certain
regions of the landscape or give hints where to look for realistic models. It should be
stressed that in our analysis of realistic four-dimensional compacti�cations we are not
dealing with an abstract statistical measure, but with explicit constructions.

1.2 Generalised Geometry

From a mathematical point of view, the problem of compacti�cations in string the-
ory can be regarded as the task to classify six-manifolds with special properties. In
particular, demanding supersymmetry in the four-dimensional space-time leads to
the requirement of a covariantly constant spinor to exist on the target space mani-
fold [162]. For special cases and minimal supersymmetry in four dimensions, this
reasoning leads to spaces with SU(3) holonomy, so called Calabi-Yau manifolds [37].
However, Calabi-Yau spaces are not the most general possible target space manifolds.
As has been realised in [153], one can treat non-trivial NS-NS background �elds as
torsion of the internal manifold. The search for possible solutions for internal �elds
(�uxes) that preserve a certain amount of supersymmetry can be performed using the
mathematical tool of G-structures [85, 38]. Considering G-structures with G = SU(3)
contains Calabi-Yaus as a special case, when all background �elds except the metric
are set to zero. The method of G-structures cannot only be applied to string theory
compacti�cations, but also to eleven-dimensional supergravity. In the simplest case
the structure group of the seven-dimensional compact space is G2.

More recently, the development of generalised complex geometry by Hitchin [109] and
his students [103, 41, 161] turned out to be very suitable to describe the target space
manifolds of string theory. The basic idea of generalised geometry is to replace the
tangent bundle of the manifold under consideration with the sum of the tangent and
cotangent bundle. The G-structure of a manifold is thereby replaced with a G × G-
structure, that contains the classical case as a special limit. The formulation of string
theory problems using generalised geometry is useful for several reasons. First of
all the antisymmetric two-form, the B-�eld can be incorporated in a very natural
way. Secondly, as has been shown in [116], it is possible to include the R-R �elds
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in the classi�cation of target spaces as well. This is an important step towards a
sensible description of R-R �uxes in string theory compacti�cations. Speci�cally in
compacti�cations of type II string theories the new mathematical tools have already
found many applications [97, 98, 115, 99, 100, 96].

Another important aspect of generalised geometry is a natural description of T-duality
and mirror symmetry [154]. Under the action of mirror symmetry the complex struc-
ture of one manifold gets exchanged with the symplectic structure of the dual manifold.
The notion of a generalised complex structure uni�es both, complex and symplectic
structures, and provides therefore a good framework to describe mirror symmetry.
In the context of nonlinear sigma models an important insight was gained in [103],
where it has been proven that the most general target space structure for N = (2, 2)
theories, which has been found to be a bi-hermitian geometry in [84], is equivalent to
a generalised Kähler structure. This was the motivation for the authors of [120, 122]
to introduce a generalised topological B-model. In [49] this has been extended to
the A-model case and the action of T-duality on these generalised models has been
investigated. As a non-trivial test of the new ideas it can be shown that the classical
topological A- and B-models [164] are recovered in special limits of the generalised
models. Related work on nonlinear sigma models in the context of generalised geom-
etry includes [131, 132, 169, 167, 133, 170, 171, 33].

With respect to the theory of D-branes, generalised geometry provides new insights
as well. In [166] boundary conditions for branes in nonlinear sigma models with
generalised target spaces have been formulated. As has been shown in [49], these
conditions for generalised topological A- and B-branes get interchanged by mirror
symmetry. Turning from the topological branes to D-branes in type II string theory,
the well-known conditions for D-branes on Calabi-Yau manifolds to preserve a certain
amount of supersymmetry [137], namely to wrap special Lagrangian cycles in type IIA
and holomorphic cycles in type IIB, can be combined and extended in the framework
of generalised complex geometry [124, 139, 138, 94]. The classical conditions can be
formulated mathematically using the notion of calibrated submanifolds [107]. Includ-
ing non-trivial background �uxes changes these calibrations and has led the authors
of [123] to discover a new type of A-branes, the so-called coisotropic branes, which
obey a modi�ed calibration condition [121]. Together with all known classical calibra-
tions these can be uni�ed in the notion of a generalised calibration, which contains
the di�erent cases as special limits.

1.3 Outline

Corresponding to the two topics addressed in this thesis, the text is divided into two
parts. In part one we deal with some aspects of the landscape problem and in part
two we occupy ourselves with generalised geometry.

Part one is structured as follows. In chapter 2 we prepare the stage, introducing the
special class of type II orientifold models that are our objects of interest. Moreover
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we explain the two methods we use to analyse these models. On the one hand,
the saddle point approximation and on the other hand a brute force algorithm for
explicit calculations. Concerning this algorithm, we comment on its computational
complexity, which touches a more general issue about computations in the landscape.
In the last section we discuss another fundamental problem of the statistical analysis,
namely the �niteness of vacua. An analytic proof of �niteness seems to be out of
reach, but we give several numerical arguments that support the conjecture that the
total number of solutions is indeed �nite.

In chapter 3 we apply the described methods to type II orientifold models. We begin
with general questions about the frequency distributions of properties of the gauge
sector in compacti�cations to six and four dimensions. After that we pick several
subsets of models for a more detailed analysis. We choose those subsets that could
provide us with a phenomenologically interesting low energy gauge group. This in-
cludes �rst of all the standard model, but in addition constructions of Pati-Salam,
SU(5) and �ipped SU(5) models. In the case of standard model-like constructions we
investigate the relations and frequency distributions of the gauge coupling constants
and compare the results with a recent analysis of Gepner models. In the last section
of this chapter the question of correlations of gauge sector observables is explored.

With chapter 4 we begin the second part of this thesis. We give a brief introduction
to the mathematical concepts of generalised geometry, focusing on the topics we need
for applications to string theory. In particular we explain the notions of generalised
complex and Kähler structures and their classical limits. The extension of classical
G-structures to the new setting is presented as well.

In chapter 5 we focus on two aspects of string theory where generalised complex
geometry has useful applications. In the �rst section we demonstrate the natural
description of T-duality and mirror symmetry in this context. The results established
in this section are then applied to topological nonlinear sigma models. We de�ne the
generalisation of the classical A- and B-models and show their mutual relation under
mirror symmetry. Turning to D-branes, we show that the boundary conditions of
topological A- and B-branes get interchanged by the action of mirror symmetry. In
the last section of this chapter we turn to D-branes in type II string theory and de�ne
the analog of the classical calibration condition in the generalised framework. After
showing that the well-known calibrations for branes in type IIA and type IIB can
be found as classical limits, we investigate the action of T-duality on the generalised
calibration condition.

In appendix A we summarise some useful formulae for the di�erent orientifold models.
Appendix B contains details about the implementation of the computer algorithm,
used to construct the models we analysed in part I.
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D-brane statistics
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Chapter 2

Models and methods

As explained in the introduction, our program to classify a subset of the landscape of
string vacua is performed on a very speci�c set of models. In this chapter, we want to
set the stage for the analysis, explain the construction and the constraints on possible
solutions. Moreover, we have to develop the necessary tools of analysis.

In the �rst part of this chapter we give a general introduction to the orientifolds
we are planning to analyse. We focus on the consistency conditions that have to
be met by any stable solution. In particular these are the tadpole conditions for
the R-R �elds, the supersymmetry conditions on the three-cycles wrapped by D-
branes and orientifold planes and restrictions coming from the requirement of anomaly
cancellation.

In the second part we develop the tools for a statistical analysis and test them on a
very simple compacti�cation to eight dimensions. There are two methods that we use
for six- and four-dimensional models in the next chapter, namely an approximative
method and a direct, brute force analysis. The �rst method relies on the saddle point
approximation, which we explain in detail and compare it with known results from
number theory. For the second method we describe an algorithm that can be used for a
large scale search performed on several computer clusters. To estimate the amount of
time needed to generate a suitable amount of solutions, we analyse the computational
complexity of this algorithm.

In the last part of this chapter we investigate the problem of �niteness of the number of
solutions, an issue that is important to judge the validity of the statistical statements.

2.1 Orientifold models

Let us give a brief introduction to the orientifold models we use in the following
to do a statistical analysis. We will not try to give a complete introduction to the
subject, for readers with interest in more background material, we refer to the available
textbooks [145, 146, 117] and reviews [148, 144, 81] for a general introduction and the

9
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recent review [21] for an account of orientifold models and their phenomenological
aspects.

Our analysis is based on the study of supersymmetric toroidal type II orientifold mod-
els with intersecting D-branes [18, 6, 10, 151]. These models are, of course, far from
being the most general compacti�cations, but they have the great advantage of being
very well understood. In particular, the basic constraints for model building, namely
the tadpole cancellation conditions, the supersymmetry and K-theory constraints, are
well known. It is therefore possible to classify almost all possible solutions for these
constructions.

The orientifold models we consider can be described in type IIB string theory using
space-�lling D9-branes with background gauge �elds on their worldvolume. An equiv-
alent description can be given in the T-dual type IIA picture, where the D9-branes
are replaced by D6-branes, which intersect at non-trivial angles. This point of view is
geometrically appealing and goes under the name of intersecting D6-branes. We use
this description in the following.

The orientifold projection is given by Ωσ̄(−1)FL , where Ω : (σ, τ)→ (−σ, τ) de�nes the
world-sheet parity transformation and σ̄ is an isometric anti-holomorphic involution,
which we choose to be simply complex conjugation in local coordinates: σ̄ : z → z̄.
FL denotes the left-moving space-time fermion number. This projection introduces
topological defects in the geometry, the so-called orientifold O6-planes. These are
non-dynamical objects, localised at the �xed point locus of σ̄, which carry tension
and charge under the R-R seven-form, opposite to those of the D6-branes1.

Both, the O6-planes and D6-branes wrap three-cycles π ∈ H3(M,Z) in the internal
Calabi-Yau manifold M , which, in order to preserve half of the supersymmetry, have
to be special Lagrangian. In mathematical terms this is a calibration condition, which
we will meet again as a special case of generalised calibrations in chapter 5. Since
the charge of the orientifolds is �xed and we are dealing with a compact manifold,
the induced R-R and NS-NS tadpoles have to be cancelled by a choice of D6-branes.
These two conditions, preserving supersymmetry and cancelling the tadpoles, are the
basic model building constraints we have to take into account.

The homology group H3(M,Z) of three-cycles in the compact manifoldM splits under
the action of Ωσ̄ into an even and an odd part, such that the only non-vanishing
intersections are between odd and even cycles. We can therefore choose a symplectic
basis (αI , βI) and expand πa and π′a as

πa =

b3/2∑
I=1

(
XI

aαI + Y I
a βI

)
,

π′a =

b3/2∑
I=1

(
XI

aαI − Y I
a βI

)
, (2.1)

1It is also possible to introduce orientifold planes with di�erent charges, but we consider only
those with negative tension and charge in this thesis.
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and πO6 as

πO6 =
1

2

b3/2∑
I=1

LIαI , (2.2)

where b3 is the third Betti-Number of M , counting the number of three-cycles.

2.1.1 Chiral matter

Chiral matter arises at the intersection of branes wrapping di�erent three-cycles.
Generically we get bifundamental representations (Na,Nb) and (Na,Nb) of U(Na)×
U(Nb) for two stacks with Na and Nb branes. The former arise at the intersection of
brane a and brane b, the latter at the intersection of brane a and the orientifold image
of brane b, denoted by b′. An example is shown in �gure 2.1.

N

=3N

=2

a

b

= (3 ,2 )( NN ,a )b

Figure 2.1: We �nd chiral matter at the intersection of two stacks of branes. The represen-

tation is given in terms of the number of branes of each stack.

In addition we get matter transforming in symmetric or antisymmetric representations
of the gauge group for each individual stack. The multiplicities of these representations
are given by the intersection numbers of the three-cycles,

Iab := πa ◦ πb =

b3/2∑
I=1

(
XI

aY
I
b −XI

b Y
I
a

)
. (2.3)

The possible representations are summarized in table 2.1, where Syma and Antia are
the symmetric and antisymmetric representations of U(Na).

2.1.2 Tadpole cancellation conditions

The D6-branes in our models are charged under a R-R seven-form [143]. Since the
internal manifold is compact, as a simple consequence of the Gauss law, all R-R
charges have to add up to zero. These so-called tadpole cancellation conditions can
be obtained considering the part of the supergravity Lagrangian that contains the
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representations multiplicity

(Na,Nb) πa ◦ πb = Iab

(Na,Nb) π′a ◦ πb = Iab′

Syma
1
2
(πa ◦ π′a − πa ◦ πO6) = 1

2
(Iaa′ − IaO6)

Antia
1
2
(πa ◦ π′a + πa ◦ πO6) = 1

2
(Iaa′ + IaO6)

Table 2.1: Multiplicities of the chiral spectrum.

corresponding contributions. In particular we do not only get contributions from k
stacks of branes, wrapping cycles πa, but in addition terms from the orientifold mirrors
of these branes, wrapping cycles π′a, and the O6-planes.

S = − 1

4κ2

∫
X×M

dC7 ∧ ?dC7 + µ6

k∑
a=1

Na

 ∫
X×πa

C7 +

∫
X×π′a

C7

− 4µ6

∫
X×πO6

C7, (2.4)

where the ten dimensional gravitational coupling is given by κ2 = 1
2
(2π)7(α′)4, the

R-R charge is denoted by µ6 = (α′)−
7
2 (2π)−6 and X denotes the uncompacti�ed space-

time.

From this we can derive the equations of motion for the R-R �eld strength G8 = dC7

to be

d ? G8 = κ2µ6

(
k∑

a=1

Na (δ(πa) + δ(π′a))− 4δ(πO6)

)
. (2.5)

In this equation δ(π) denotes the Poincaré dual three form of a cycle π. Noticing that
the left hand side of (2.5) is exact, we can rewrite this as a condition in homology as

k∑
a=1

Na(πa + π′a) = 4πO6 (2.6)

We do not have to worry about the NS-NS tadpoles, as long as we are considering
supersymmetric models, since the supersymmetry conditions together with R-R tad-
pole cancellation ensure that there are no NS-NS tadpoles. In this thesis we consider
supersymmetric models only.

2.1.3 Supersymmetry conditions

Since we want to analyse supersymmetric models, it is crucial that the D-branes and
O-planes preserve half of the target-space supersymmetry. It can be shown [137] that
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this requirement is equivalent to a calibration condition on the cycles,

=(Ω3)|πa = 0,

<(Ω3)|πa > 0. (2.7)

where Ω3 is the holomorphic 3-form. The second equation in (2.7) excludes anti-branes
from the spectrum.

Written in the symplectic basis (2.1), these equations read

b3/2∑
I=1

Y I
a fI = 0,

b3/2∑
I=1

XI
auI > 0, (2.8)

where we de�ned

fI :=

∫
βI

Ω3, uI :=

∫
αI

Ω3.

2.1.4 Anomalies and K-theory constraints

If the tadpole cancellation conditions (2.6) are satis�ed, there are no cubic anoma-
lies of SU(N) gauge groups in our models. What we do have to worry about are
mixed anomalies, containing abelian factors. The mixed anomaly for branes stretch-
ing between two stacks a and b with Na = 1 and Nb > 1 branes per stack, looks
like

AU(1)a−SU(N)b
' Na(Iab + Iab′)c2(Nb)

= −2Na
~Ya
~Xbc2(Nb), (2.9)

where c2(Nb) denotes the value of the quadratic Casimir operator for the fundamental
representation of SU(Nb).

The cubic anomaly consisting of three abelian factors is cancelled by the Green-
Schwarz mechanism. This makes these U(1)s massive and projects them out of the
low energy spectrum. But in some cases, for example in the case of a standard model-
like gauge group or for �ipped SU(5) models, we want to get a massless U(1) factor.
A su�cient condition to get such a massless U(1) in one of our models is that the
anomaly (2.9) vanishes.

This can be archived, if the U(1), de�ned in general by a combination of several U(1)
factors as

U(1) =
k∑

a=1

xaU(1)a, (2.10)
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ful�lls the following relations,
k∑

a=1

xaNa
~Ya = 0. (2.11)

Inserting this into (2.9) shows that A vanishes.

Besides these local gauge anomalies, there is also the potential danger of getting a
global gauge anomaly, which would make the whole model inconsistent. This anomaly
arises if a Z2-valued K-theory charge is not conserved [156]. In our case this anomaly
can be derived by introducing Sp(2) probe branes on top of the orientifold planes
and compute their intersection numbers with all branes in the model. This inter-
section number has to be even, otherwise we would get an odd number of fermions,
transforming in the fundamental representation of Sp(2) [163].

2.2 Methods of D-brane statistics

To analyse a large class of models in the orientifold setting described in the last sec-
tion, we have to develop some tools that allow us to generate as many solutions to
the supersymmetry, tadpole and K-theory conditions as possible. It turns out that
the most di�cult part of this problem can be reduced to a purely number theoretical
question, namely the problem of counting partitions of natural numbers. This insight
allows us to use an approximative method, the saddle point approximation that we
introduce in section 2.2.1 and apply to a simple toy-model in 2.2.2. Unfortunately it
turns out that this method is not very well suited to study the most interesting com-
pacti�cations, namely those down to four dimensions. Therefore we have to change
the method of analysis in that case to a more direct one, using a brute force, exact
computer analysis. The algorithm used to do so is described in section 2.2.3.

2.2.1 Introduction to the saddle point approximation

As an approximative method to analyse the gauge sector of type II orientifolds, the
saddle point approximation has been introduced in [23]. In the following we begin
with a very simple, eight-dimensional model, in order to explain the method.

Let us recall the basic constraints on type IIA orientifold models, the tadpole and
supersymmetry conditions from section 2.1.22,

k∑
a=1

NaX
I
a = LI ,

b3/2∑
I=1

Y I
a fI = 0,

b3/2∑
I=1

XI
auI > 0. (2.12)

In the most simple case, a compacti�cation to eight dimensions on T 2, the susy condi-
tions reduce to Ya = 0 and Xa > 0 and the tadpole cancellation conditions are given

2For the moment we are going to ignore the constraints from K-theory, we come back to this
point later, since they are of signi�cance in the four-dimensional compacti�cations.
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by
k∑

a=1

NaXa = 16, (2.13)

as shown in appendix A.1.

The task to count the number of solutions to this equation for an arbitrary number
of stacks k is a combination of a partitioning and factorisation problem. Let us
take things slowly and start with a pure partitioning problem, namely to count the
unordered solutions of

k∑
a=1

Na = L. (2.14)

This is nothing else but the number of unordered partitions of L. Since we are not
interested in an exact solution, but rather an approximative result, suitable for a
statistical analysis and further generalisation to the more ambitious task of solving
the tadpole equation, let us attack this by means of the saddle point approximation [4,
165].

Counting partitions

As a �rst step to solve (2.14), let's consider

∞∑
k=1

k nk = L, (2.15)

where we do not have to worry about the ordering problem. We can rewrite this as

N (L) =
∑
all

δP
k knk−L,0

=
1

2πi

∮
dq

1

qL+1

∞∑
nk=0

q
P

k knk

=
1

2πi

∮
dq

1

qL+1

∞∏
k=1

(
1

1− qk

)
. (2.16)

To evaluate integrals of this type in an asymptotic expansion, the saddle point method
is a commonly used tool. In the following we describe its application in detail. The
last line of (2.16) can be written as

N (L) =
1

2πi

∮
dq exp(f(q)),

with f(q) = −
∞∑

k=1

log(1− qk)− (L+ 1) log q. (2.17)
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Now we are going to assume that the main contributions to this integral come from
saddle points qi, determined by df/dq|qi

= 0. In the following we work with only one
saddle point at q = q0, the generalisation to many points is always straightforward.
Using the decomposition q = ρ exp(iϕ) we get

N (L) =
1

2π

π∫
−π

dϕ q exp(f(q)). (2.18)

Performing a Taylor expansion in ϕ

f(ρ0, ϕ) = f(q0) +
1

2

∂2f

∂ϕ2

∣∣∣∣
q0

ϕ2 + . . . , (2.19)

we can compute (2.18) to arbitrary order by inserting the corresponding terms from (2.19).

The leading order term is simply given by

N (0)(L) = exp(f(q0)), (2.20)

and the �rst correction at next-to-leading order by

N (2)
corr(L) =

1

2π

q0π∫
−q0π

dx exp

(
−1

2

∂2f

∂q2

∣∣∣∣
q0

x2

)
, (2.21)

where we de�ned x := q0ϕ and used that (∂2f/∂ϕ2)q0 = −q2 (∂2f/∂q2)q0 . For ∂
2f/∂q2

large enough we �nally obtain the result for the saddle point approximation including
next-to-leading order corrections

N (2)(L) =
1

2π
exp(f(q0))

(
∂2f

∂q2

∣∣∣∣
q0

)−1/2

. (2.22)

The same procedure can also be performed for functions of several variables. The
integral to approximate this situation looks like

N (~L) =
1

2πi

∮ n∏
I=1

d~q exp(f(~q)), (2.23)

with f being of the form

f(~q) = g(~q)−
N∑

I=1

(LI + 1) log qI . (2.24)

We can perform the saddle point approximation around ∇f(~q)|~q0 = 0 in the same way
as above and obtain the following result at next-to-leading order

N (2)(~L) = (2π)−n/2 exp(f(~q0))
(

det Hessf(~q)|~q0

)−1/2

. (2.25)
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10 20 30 40 50
L

2.5

5

7.5

10

12.5

15

Ln( N(L))

Figure 2.2: Comparison of the number of partitions obtained by an exact calculation (solid

line) and a saddle point approximation to leading (upper dotted line) and next-to-leading

order (lower dotted line).

Comparison with the Hardy-Ramanujan formula and the exact result

In the simple case discussed so far, contrary to the more complicated cases we en-
counter later, an analytic evaluation of the leading order contribution is possible. For
large L the integrand of (2.16) quickly approaches in�nity for q < 1 and q ' 1. One
expects a sharp minimum close to 1, which would be the saddle point we are looking
for.

Close to q ' 1 we can write the �rst term in (2.17) as

−
∞∑

k=1

log(1− qk) =
∑

k,m>0

1

m
qkm

' 1

1− q
∑
m>0

1

m2
=
π2

6

1

1− q
, (2.26)

such that we can approximate f(q) by

f(q) ' π2

6

1

1− q
− (L+ 1) log q. (2.27)

For large values of L, the minimum of this function is approximately at q0 ' 1−
√

π2

6L

which leads to f(q0) ' π
√

2L/3. Inserting this into (2.20) gives a �rst estimate of
the growth of the partitions for large L to be

N (L) ' exp
(
π
√

2L/3
)
. (2.28)

This is precisely the leading term in the Hardy-Ramanujan formula [106] for the
asymptotic growth of the number of partitions

N (L)(HR) ' 1

4L
√

3
exp

(
π
√

2L/3
)
. (2.29)



18 CHAPTER 2. MODELS AND METHODS

In �gure 2.2 the results of an exact calculation, using the partition algorithm described
in appendix B, and the saddle point approximation in leading and next-to-leading
order are shown.

2.2.2 A �rst application of the saddle point approximation

After this introduction to the saddle point method let us come back to our original
problem. To solve equation (2.13), we �rst have to transfer our approximation method
to (2.14) and then include the factorisation in the computation. This last step turns
out not to be too di�cult, but in order to use the technique developed above, we have
to be a bit careful about the ordering of solutions.

Solving the tadpole equation for eight-dimensional compacti�cations

In the example we presented to introduce the method, we did not have to worry about
the ordering, since it was solved implicitly by the de�nition of the partition function.
This is not the case for (2.14), such that by simply copying from above the result is
too large. We should divide the result by the product of the number of possibilities
to order each partition. Obtaining this factor precisely is very di�cult and since we
are only interested in an approximative result anyway, we should try to estimate the
term. Such an estimate can be made dividing by k!, where k is the total number
of stacks. This restricts the number of solutions more than necessary, because the
factor is too high for partitions that contain the same element more than once. Let
us nevertheless calculate the result with this rough estimate and see what comes out.

Repeating the steps from above, we can rewrite (2.14) to obtain

Ñ (L) ' 1

2πi

∮
dq

1

qL+1

∞∑
k=1

1

k!

k∏
i=1

(
∞∑

Ni=1

q
P

a Na

)

=
1

2πi

∮
dq

1

qL+1

∞∑
k=1

1

k!

(
∞∑

N=1

qN

)k

=
1

2πi

∮
dq

1

qL+1

∞∑
k=1

1

k!

(
q

1− q

)k

=
1

2πi

∮
dq

1

qL+1
exp

(
q

1− q

)
. (2.30)

Applying the saddle point approximation as explained above for the function

f̃(q) =
q

1− q
− (L+ 1) log q, (2.31)

we get for the number of solutions of (2.14) the estimate

Ñ (L) ' exp(2
√
L). (2.32)



2.2. METHODS OF D-BRANE STATISTICS 19

Comparing this result with (2.28) shows that we get the correct exponential growth,
but the coe�cient is too small by a factor

logN
log Ñ

=
π√
6
' 1.28. (2.33)

100 200 300 400 500
L

10

20

30

40

50
Ln( N(L))

Figure 2.3: Comparing the results for the number of partitions of L. The solid line is the

exact result, the dotted line is the saddle point approximation to leading order. The stars

and triangles show the next-to-leading order result, without and including the additional

analytic factor 1.28, respectively.

In �gure 2.3 we compare the results for the leading and next-to-leading order results
of the computation above with the exact result. As already expected, the value for
the second order approximation is too small, since our suppression factor k! is too
big. Nevertheless, qualitatively the results are correct. Since we are not aiming at
exact results, but rather at an approximative method to get an idea of the frequency
distributions of properties of the models under consideration, this is not a big problem.

Let us �nally come back to the full tadpole equation (2.13). It can be treated in the
same way as the pure partition problem and analogous to (2.30) we can write

N (L) ' 1

2πi

∮
dq

1

qL+1

∞∑
k=1

1

k!

k∏
i=1

(
∞∑

Ni=1

L∑
Xi=1

q
P

a NaXa

)
(2.34)

=
1

2πi

∮
dq

1

qL+1

∞∑
k=1

1

k!

(
L∑

X=1

qX

1− qX

)k

, (2.35)

such that we obtain for f

f(q) =
L∑

X=1

qX

1− qX
− (L+ 1) log q. (2.36)



20 CHAPTER 2. MODELS AND METHODS

Close to q ' 1 we can approximate this to

f(q) ' 1

1− q

L∑
X=1

1

X
− L log q ' logL

1− q
− L log q. (2.37)

The minimum can then be found at q0 ' 1 −
√

log L
L

, which gives for the number of

solutions
N (L) ' exp(2

√
L logL). (2.38)

The additional factor of logL in the scaling behaviour compared to (2.32) can be
explained by a result from number theory. It is known that the function σ0(n),
counting number of divisors of an integer n, has the property

1

L

L∑
n=1

σ0(n) ' logL+ (2γE − 1), (2.39)

where γE is the Euler-Mascheroni constant.

5 10 15 20 25
L

1

2

3

4

5
N(L)

Figure 2.4: Logarithmic plot of the number of solutions to the supersymmetry and tadpole

equations for compacti�cations on T 2. The dotted line shows the exact results, the solid line

is the result of a next-to-leading order saddle point approximation.

Let us compare the result (2.38) with the exact number of solutions, obtained with
a brute force computer analysis. This is shown in �gure 2.4. As expected from the
discussion above, the estimate using the saddle point approximation is too small, but
it has the correct scaling behaviour and should therefore be suitable to qualitatively
analyse the properties of the solutions.

Analysing properties of the gauge sector

We can use the saddle point approximation method introduced above to analyse
several properties of the gauge sector of the models. To show how this works, we
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present two examples in the simple eight-dimensional case, before applying these
methods in section 3.1 to models on T 4/Z2.

One interesting observable is the probability to �nd an SU(M) gauge factor in the
total set of models. Using the same reasoning as in the computation of the number
of models this is given by

P (M,L) ' 1

2πiN (L)

∮
dq

1

qL+1

∞∑
k=1

1

(k − 1)!

(
L∑

X=1

qX

1− qX

)k−1 L∑
X=1

∞∑
N=1

qNXδN,M

=
1

2πiN (L)

∮
dq

1

qL+1
exp

(
L∑

X=1

qX

1− qX

)
qM 1− qML

1− qM
. (2.40)

The saddle point function is therefore given by

f(q) =
L∑

X=1

qX

1− qX
+ log

(
qM 1− qML

1− qM

)
− (L+ 1) log q. (2.41)

A comparison between exact computer results and the saddle point approximation to
second order is shown in �gure 2.5(a).
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Figure 2.5: Distributions for compacti�cations on T 2. The solid lines are the exact result,

the dotted lines represent the second order saddle point approximation. (a) Probability to

�nd at least one SU(M) gauge factor. (b) Frequency distribution of the total rank.

Another observable we are interested in is the distribution of the total rank of the
gauge group in our models. This amounts to including a constraint

∞∑
a=1

Na = r, (2.42)

that �xes the total rank to a speci�c value r. This constraint can be accounted for by
adding an additional delta-function, represented by an additional contour integral to
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our formula. We obtain

P (r, L) ' 1

2πiN (L)

∮
dq

1

qL+1

∮
dz

1

zr+1

∞∑
k=1

1

k!

k∏
i=1

(
∞∑

Ni=1

L∑
Xi=1

q
P

a NaXaz
P

a Na

)

=
1

2πiN (L)

∮
dq

1

qL+1

∮
dz

1

zr+1
exp

(
L∑

X=1

zqX

1− zqX

)
, (2.43)

with saddle point function

f(q, z) =
L∑

X=1

zqX

1− zqX
− (L+ 1) log q − (r + 1) log z. (2.44)

As we can see in �gure 2.5(b), where we also show the exact computer result, we get
a Gaussian distribution.

2.2.3 Exact computations

Instead of using an approximative method, it is also possible to directly calculate
possible solutions to the constraining equations. At least for models on T 2 or T 4/Z2,
this is much more time-consuming than the saddle point approximation, and, what
is even more important, cannot be done completely for models on T 6/Z2 × Z2. The
reason why a complete classi�cation is not possible has to do with the fact that the
problem to �nd solutions to the supersymmetry and tadpole equations belongs to the
class of NP-complete problems, an issue that we elaborate on in section 2.3. Despite
these di�culties, it turns out to be necessary to use an explicit calculation for four-
dimensional compacti�cations, the ones we are most interested in, since the saddle
point method does not lead to reliable results in that case.

Compacti�cations to six and eight dimensions

In the eight-dimensional case the algorithmic solution to the tadpole equation∑
a

NaXa = L, (2.45)

can be formulated as a two-step algorithm. First calculate all possible unordered
partitions of L, then �nd all possible factorisations to obtain solutions for X and
N . The task of partitioning is solved by the algorithm explained in appendix B,
the factorisation can only be handled by brute force. In this way we are not able
to calculate solutions up to very high values for L, but for our purposes, namely to
check the validity of the saddle point approximation (see section 2.2.2), the method
is su�cient.

In the case of compacti�cations to six dimensions we can still use the same method,
although we now have to take care of two additional constraints. First of all we exclude



2.2. METHODS OF D-BRANE STATISTICS 23

multiple wrapping, which gives an additional constraint on the wrapping numbers
X1, X2, Y1 and Y2, de�ned in appendix A.3. This constraint can be formulated in
terms of the greatest common divisors of the wrapping numbers � we will come back
to this issue in section 3.1. Another di�erence compared to the eight dimensional case
is that we have to take di�erent values for the complex structure parameters U1 and
U2 (see appendix A.3 for a de�nition) into account. As it is shown in section 2.3,
these are bounded from above and we have to sum over all possible values, making
sure that we are not double counting solutions with wrapping numbers which allow
for di�erent values of the complex structures.

An algorithm for four-dimensional models

In (A.14) the wrapping numbers ~X and ~Y are de�ned as integer valued quantities in
order to implement the supersymmetry (A.18) and tadpole (A.17) conditions in a fast
computer algorithm. From the equations we can derive the following inequalities

0 <
3∑

I=0

XI UI ≤
3∑

I=0

LI UI . (2.46)

The algorithm to �nd solutions to these equations and the additional K-theory con-
straints (A.20) consists of four steps.

1. First we choose a set of complex structure variables UI . This is done system-
atically and leads to a loop over all possible values. Furthermore, we have to
check for redundancies, which might exist because of trivial symmetries under
the exchange of two of the three two-tori.

2. In a second step we determine all possible values for the wrapping numbers
XI and Y I , using (2.46) for the given set of complex structures, thereby ob-
taining all possible supersymmetric branes. In this step we also take care of
the multiple wrapping constraint, which can be formulated, analogously to the
six dimensional case, in terms of the greatest common divisors of the wrapping
numbers.

3. In the third and most time-consuming part, we use the tadpole equations (A.17),
which after a summation can be written as

k∑
a=0

Sa = Λ with Sa :=
3∑

I=0

NaUIX
I
a and Λ :=

∑
I

LIUI . (2.47)

To solve this equation, we note that all Sa and Λ are positive de�nite integers,
which allows us to use the partition algorithm to obtain all possible combina-
tions. The algorithm is improved by using only those values for the elements of
the partition which are in the list of values we computed in the second step. For
a detailed description of the explicit algorithm we used, see appendix B. Having
obtained the possible Sa, we have to factorise them into values for Na and XI

a .
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4. Since (2.47) is only a necessary but no su�cient condition, we have to check in
the fourth and last step, if the obtained results indeed satisfy all constraints,
especially the individual tadpole cancellation conditions and the restrictions
from K-theory, which up to this point have not been accounted for at all.

The described algorithm has been implemented in C and was put on several high-
performance computer clusters, using a total CPU-time of about 4× 105 hours. The
solutions obtained in this way have been saved in a database for later analysis.

Complexity

The main problem of the algorithm described in the last section lies in the fact that
its complexity scales exponentially with the complex structure parameters. Therefore
we are not able to compute up to arbitrarily high values for the UI . Although we
tried our best, it may of course be possible to improve the algorithm in many ways,
but unfortunately the exponential behaviour cannot be cured unless we might have
access to a quantum computer. This is due to the fact that the problem of �nding
solutions to the Diophantine equations we are considering falls into the class of NP
complete problems [83], which means that they cannot be reduced to problems which
are solvable in polynomial time.

In fact, this is quite a severe issue since the Diophantine structure of the tadpole
equations encountered here is not at all exceptional, but very generic for the topolog-
ical constraints also in other types of string constructions. The problem seems indeed
to appear generically in computations of landscape statistics, see [63] for a general
account on this issue.

As we outlined in the previous section, the computational e�ort to generate the solu-
tions to be analysed in the next chapter took a signi�cant amount of time, although
we used several high-end computer clusters. To estimate how many models could be
computed in principle, using a computer grid equipped with contemporary technology
in a reasonable amount of time, the exponential behaviour of the problem has to be
taken into account. Let us be optimistic and imagine that we would have a total
number of 105 processors at our disposal which are twice as fast as the ones we have
been using. Expanding our analysis to cover a range of complex structures which is
twice as large as the one we considered would, in a very rough estimate, still take us
of the order of 500 years.

Note that in principle there can be a big di�erence in the estimated computing time for
the two computational problems of �nding all string vacua in a certain class on the one
hand, and of looking for con�gurations with special properties, that lead to additional
constraints, on the other hand. As we explore in section 3.5.3 the computing time can
be signi�cantly reduced if we restrict ourselves to a maximum number of stacks in
the hidden sector and take only con�gurations of a speci�c visible sector into account
(in the example we consider we look for grand uni�ed models with an SU(5) gauge
group). Nevertheless, although a much larger range of complex structures can be
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covered, the scaling of the algorithm remains unchanged. This means in particular
that a cuto� on the UI , even though it might be at higher values, has to be imposed.

2.3 Finiteness of solutions

It is an important question whether or not the number of solutions is in�nite. Making
statistical statements about an in�nite set of models is much more di�cult than to
deal with a �nite sample, because we would have to rely on properties that reoccur at
certain intervals, in order to be able to make any valuable statements at all. If instead
the number of solutions is �nite, and we can be sure that the solutions we found form
a representative sample, it is possible to draw conclusions by analysing the frequency
distributions of properties without worrying about their pattern of occurrence within
the space of solutions.

In the case of compacti�cations to eight dimensions, the results are clearly �nite, as
can be seen directly from the fact that the variables X and N have to be positive
and L has a �xed value. Note however, although such an eight-dimensional model is
clearly not realistic, that the complex structures are unconstrained. This means that
if we do not invoke additional methods to �x their values, each solution to the tadpole
equation represents in fact an in�nite family of solutions.

2.3.1 The six-dimensional case

In the six dimensional case, the �niteness of the number of solutions is not so obvious,
but it can be rigorously proven. In order to do so, we have to show that possible
values for the complex structure parameters U1 and U2 are bounded from above. If
this were not be the case, we could immediately deduce from equations (A.18) that
in�nitely many brane con�gurations would be possible.

In contrast to the eight-dimensional toy-model that we explored in section 2.2.2, in
this case, and also for the four-dimensional compacti�cations, we do not want to allow
branes that wrap the torus several times. To exclude this, we can derive the following
condition on the wrapping numbers (for details see appendix A.2.1),

gcd(X1, Y 2) gcd(X2, Y 2) = Y 2. (2.48)

This condition implies that all ~X and ~Y are non-vanishing. Additional branes, which
wrap the same cycles as the orientifold planes, are given by ~X ∈ {(1, 0), (0, 1)}, whith
~Y = ~0 in both cases.

From (A.18) we conclude that all non-trivial solutions have to obey U1/U2 ∈ Q.
Therefore we can restrict ourselves to coprime values

(u1, u2) with ui :=
Ui

gcd(U1, U2)
. (2.49)
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With these variables we �nd from the supersymmetry conditions that Y 1 = u2 α, for
some α ∈ Z. Now we can use the relation (A.5) to get

X1X2 = u1 u2 α
2. (2.50)

In total we get two classes of possible branes, those where X1 and X2 are both positive
and those where one of them is 0. The latter are those where the branes lie on top of
the orientifold planes.

For �xed values of u1 and u2 the tadpole cancellation conditions (A.7) admit only
a �nite set of solutions. Since all quantities in these equations are positive, we can
furthermore deduce from (2.50) that solutions which contain at least one brane with
X1, X2 > 0 are only possible if the complex structures satisfy the bound

u1u2 ≤ L1L2. (2.51)

In �gure 2.6 we show the allowed values for u1 and u2 that satisfy equation (2.51).
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Figure 2.6: Allowed values for the complex structure parameters u1 and u2 for compacti�-

cations to six dimensions.

In the case that only branes with one of the X i vanishing are present in our model, the
complex structures are not bounded from above, but since there exist only two such
branes in the case of coprime wrapping numbers, all solutions of this type are already
contained in the set of solutions which satisfy (2.51). Therefore we can conclude
that the overall number of solutions to the constraining equations in the case of
compacti�cations to six dimensions is �nite3.

3Note however, that in the case where all branes lie on top of the orientifold planes, we are
in an analogous situation for the eight-dimensional compacti�cations. Unless we invoke additional
methods of moduli stabilisation, the complex structure moduli represent �at directions and we get
in�nite families of solutions.
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2.3.2 Compacti�cations to four dimensions

The four dimensional case is very similar to the six-dimensional one discussed above,
but some new phenomena appear. In particular, we see that the wrapping numbers
can have negative values, which is the crucial point that prevents us from proving the
�niteness of solutions. Although we were not able to obtain an analytic proof, we
present some arguments and numerical results, which provide evidence and make it
very plausible that the number of solutions is indeed �nite.

Conditions on the wrapping numbers

As in the T 4/Z2 case, we can derive a condition on the (rescaled) wrapping numbers
~X and ~Y , de�ned by (A.24), to exclude multiple wrapping. The derivation is given
in appendix A.3.1 and the result is4

3∏
i=1

gcd(Ỹ 0, X̃ i) = (Ỹ 0)2. (2.52)

From the relations (A.15), it follows that either one, two or all four XI can be non-
vanishing. The case with only one of them vanishing is excluded. Let us consider
the three possibilities in turn and see what we can say about the number of possible
solutions in each case.

1. In the case that only one of the XI 6= 0, the corresponding brane lies on top
of one of the orientifold planes on all three T 2. This situation is equivalent to
the eight-dimensional case and can be included in the discussion of the next
possibility.

2. If two XI 6= 0, we are in the situation discussed for the compacti�cation to six
dimensions. The two XI have to be positive by means of the supersymmetry
condition and one of the complex structures is �xed at a rational number. To-
gether with the eight-dimensional branes, the same proof of �niteness we have
given for the T 4/Z2-case can be applied.

3. A new situation arises for those branes where all XI 6= 0. Let us discuss this a
bit more in detail.

From the relations (A.15) we deduce that an odd number of them has to be negative.
In the case that three would be negative and one positive � let us without loss of
generality choose X0 > 0 � we can write the supersymmetry condition (A.18) as

3∑
I=0

Y I 1

UI

=
Y 0

U0

(
1 +

3∑
i=1

X0 U0

X i Ui

)
= 0, (2.53)

4We have to use rescaled wrapping numbers, as de�ned by (A.24), to write the solution in this
simple form.
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which implies X i Ui < −X0 U0 ∀ i ∈ {1, 2, 3}. This contradicts the second supersym-
metry condition,

X0 U0

(
1 +

3∑
i=1

X i Ui

X0 U0

)
> 0. (2.54)

Therefore, we conclude that the only remaining possibility is to have one of theXI < 0.
Again we choose X0 without loss of generality. We can now use (2.53) to express X0

in terms of the other three wrapping numbers as

X0 = −

(∑
i

U0

UiX i

)−1

. (2.55)

Furthermore, we can use the inequality (2.46) and derive an upper bound

3∑
I=0

LI UI ≥ X0 U0 +
3∑

i=1

X i Ui > Xj Uj > 0, ∀ j ∈ {1, 2, 3}. (2.56)

As in the six-dimensional case, we can use the argument that the complex structures
are �xed at rational values, as long as we take a su�cient number of branes. So we can
write them, in analogy to (2.49) as uI,2/uI,1. Using this de�nition, we can write (2.56)
as

1 ≤ Xi ≤
∑3

P=0 uP,2uQ,1uR,1uS,1LP

ui,2uJ,1uK,1uL,1

, (2.57)

for P 6= Q 6= R 6= S 6= P and i 6= J 6= K 6= L 6= i.

From this we conclude that as long as the complex structures are �xed, we have only
a �nite number of possible brane con�gurations, i.e. only a �nite number of solutions.
This is unfortunately not enough to conclude that we have only a �nite number of
solutions in general. We would have to show, as in the six-dimensional case, that
there exists an upper bound on the complex structures. Since we were not able to
�nd an analytic proof that such a bound exists, we have to rely on some numerical
hints that it is in fact the case. We present some of these hints in the following.

Numerical analysis

Figure 2.7 shows how the total number of mutually di�erent brane con�gurations for
L = 2 increases and saturates, as we include more and more combinations of values
for the complex structures UI into the set for which we construct solutions. For this
small value of L our algorithm actually admits pushing the computations up to those
complex structures where obviously no additional brane solutions exist.

For the physically relevant case of L = 8 the total number of models compared
to the absolute value |U | of the complex structure variables scales as displayed in
�gure 2.8. The plot shows all complex structures we have actually been able to
analyse systematically. We �nd that the number of solutions falls logarithmically for
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Figure 2.7: The number of unique solutions for compacti�cations on T 6/Z2 × Z2, taking

LI = 2 ∀I ∈ {0, . . . , 3}. The horizontal axis shows combinations of the UI , ordered by

their absolute value |U |. For each of these values we plotted the cumulative set of solutions

obtained up to this point.
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Figure 2.8: Logarithmic plot of the absolute number of solutions for compacti�cations on

T 6/Z2 × Z2 using the physical values LI = 8 ∀I ∈ {0, . . . , 3} against the absolute value |U |.
The cuto� is set at |U | = 12. In this plot, as in all other plots of this thesis, we use a decadic

logarithm.

increasing values of |U |. In order to interpret this result, we observe that the complex
structure moduli UI are only de�ned up to an overall rescaling by the volume modulus
of the compact space. We have chosen all radii and thereby also all UI to be integer
valued, which means that large |U | correspond to large coprime values of R

(i)
1 and R

(i)
2 .

This comprises on the one hand decompacti�cation limits which have to be discarded
in any case for phenomenological reasons, but on the other hand also tori which are
slightly distorted, e.g. almost square tori with R

(i)
2 /R

(i)
1 = 0.99.

Combining the results of the two numerical tests, we have reason to hope that we can
indeed make a convincing statistical statement using the analysed data. Nevertheless,
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at this point it should be mentioned that we cannot fully exclude that a large number
of new solutions appears at those values for the complex structures which we have not
analysed. A hint that this problem should not occur is given in section 3.5.3, where
we performed a restricted analysis of SU(5) models up to values of |U | ≈ 250.



Chapter 3

Statistical analysis of orientifold

models

After preparing the stage in the last chapter, introducing the models and methods of
analysis, we are now going to analyse some speci�c constructions of phenomenological
interest. At the end of this chapter we want to arrive at a point where we can make
some meaningful statistical statements about the probability to �nd realisations of
the standard model or GUT models in the speci�c set of models we are considering.

However, it is important to mention, that our results cannot be regarded to be com-
plete. First of all we neglect the impact of �uxes, which does not change the distri-
butions completely, but de�nitely has some in�uence. Secondly, we are considering
only very speci�c geometries. Since the construction of the orientifolds, especially the
choice of the orbifold group which in our case is always Z2, has a strong impact on the
constraining equations, it is very probable that the results change signi�cantly once
we use a di�erent compacti�cation space. Nevertheless we think that these results are
one step towards a deeper understanding of open string statistics.

In the �rst part of this chapter we discuss some general aspects of compacti�cations
to six and four dimensions. We analyse the properties of the gauge groups, including
the occurrence of speci�c individual gauge factors and the total rank. With respect
to the chiral matter content, we establish the notion of a mean chirality and discuss
their frequency distribution.

In a second part we perform a search for models with the properties of a supersym-
metric standard model. Besides the frequency distributions in the gauge sector we
analyse the values of the gauge couplings and compare our results to those of a recent
statistical analysis of Gepner models [70, 71]. In addition to standard model gauge
groups we look also for models with a Pati-Salam, SU(5) and �ipped SU(5) structure.

In the last part we consider di�erent aspects of the question of correlations of observ-
ables in the gauge sector and give an estimate how likely it is to �nd a three generation
standard model in our setup.

31
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3.1 Statistics of six-dimensional models

Before considering the statistics of realistic four-dimensional models, let us start with
a simpler construction to test the methods of analysis developed in chapter 2. We
will use a compacti�cation to six dimensions on a T 4/Z2 orientifold, de�ned in ap-
pendix A.2. The important question about the �niteness of solutions has been settled
in section 2.3, so we can be con�dent that the results we obtain will be meaningful.
To use the saddle point approximation in this context, we have to generalise from
the eight-dimensional example in 2.2.2 to an approximation in several variables, as
described by equations (2.23) and (2.24). In our case we will have to deal with two

variables ~q = (q1, q2), corresponding to the two wrapping numbers ~X = (X1, X2).
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Figure 3.1: Logarithmic plot of the number of solutions for compacti�cations on T 4/Z2 for

L2 = 8 and di�erent values of L ≡ L1. The complex structures are �xed to u1 = u2 = 1.
The dotted line shows the result with multiple wrapping, the stared line gives the result with

coprime wrapping numbers.

Let us brie�y consider the question of multiple wrapping. As shown in appendix A.2.1,
we can derive a constraint on the wrapping numbers ~X and ~Y , such that multiply
wrapping branes are excluded. To �gure out what impact this additional constraint
has on the distributions, let us compare the number of solutions for di�erent values of
L1 and L2, with and without multiple wrapping. The result is shown in �gure 3.1. As
could have been expected, the number of solutions with coprime wrapping numbers
grows less fast then the one where multiple wrapping is allowed.

3.1.1 Distributions of gauge group observables

Using the saddle point method, introduced in section 2.2.1, we can evaluate the dis-
tributions for individual gauge group factors and total rank of the gauge group in
analogy to the simple eight-dimensional example we pursued in section 2.2.2. There-
fore we will �x the orientifold charges to their physical values, ~L = (L1, L2) = (8, 8).
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The probability to �nd one U(M) gauge factor can be written similar to (2.40) as

P (M, ~L) ' 1

N (~L)(2πi)2

∮
d~q exp

[ ∑
~X∈SU

qX1
1 qX2

2

1− qX1
1 qX2

2

+ log

∑
~X∈SU

qMX1
1 qMX2

2

− (L1+1) log q1 − (L2+1) log q2

]
, (3.1)

where we denoted with SU the set of all values for ~X that are compatible with the
supersymmetry conditions and the constraints on multiple wrapping. The number of
solution N (~L) is given by

N (~L) ' q

(2πi)2

∮
d~q exp

[ ∑
~X∈SU

qX1
1 qX2

2

1− qX1
1 qX2

2

− (L1+1) log q1 − (L2+1) log q2

]
. (3.2)

The resulting distribution for the probability of an U(M) factor, compared to the
results of an exact computer search, is shown in �gure 3.2(a).
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Figure 3.2: Distributions in the gauge sector of a compacti�cation on T 4/Z2. The complex

structures are �xed to u1 = u2 = 1. The dotted line is the result of an exact computation,

the solid line shows the saddle point approximation to second order. (a) Probability to �nd

an (U(M) gauge factor, (b) Distribution of the total rank of the gauge group.

As in the eight-dimensional example we can evaluate the distribution of the total
rank (2.42). As a generalisation of (2.43) we obtain the following formula

P (r, ~L) ' 1

N (~L)(2πi)3

∮
d~qdz exp

[ ∑
~X∈SU

zqX1
1 qX2

2

1− zqX1
1 qX2

2

−(L1+1) log q1 − (L2+1) log q2 − (r+1) log z

]
. (3.3)
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Figure 3.2(b) shows the resulting distribution of the total rank, compared to the exact
result. As one can see, the results of the saddle point analysis are much smoother
then the exact results, which show a more jumping behaviour, resulting from number
theoretical e�ects. These are strong at low L, which is also the reason that our saddle
point approximation is not very accurate. In the present six-dimensional case the
deviations are not too strong, but in the four-dimensional case their impact is so big
that the result cannot be trusted anymore. These problems can be traced back to the
small values of L we are working with, but since these are the physical values for the
orientifold charge, we cannot do much about it.

3.1.2 Chirality

Since we are ultimately interested in calculating distributions for models with gauge
groups and matter content close to the standard model, it would be interesting to
have a measure for the mean chirality of the matter content in our models.

A good quantity to consider for this purpose would be the distribution of intersection
numbers Iab between di�erent stacks of branes. This is precisely the quantity we
choose later in the four-dimensional compacti�cations. In the present case we use a
simpler de�nition for chirality, given by

χ := X1X2. (3.4)

This quantity counts the net number of chiral fermions in the antisymmetric and
symmetric representations.

Using the saddle point method, we can compute the distribution of values for χ, using

P (χ, ~L) =
1

N (~L)(2πi)2

∮
d~q exp

[ ∑
~X∈SU

qX1
1 qX2

2

1− qX1
1 qX2

2

− log

∑
~X∈SU

qX1
1 qX2

2

1− qX1
1 qX2

2

+ log

 ∑
~X∈SU,χ

qX1
1 qX2

2

1− qX1
1 qX2

2


−(L1+1) log q1 − (L2+1) log q2

]
, (3.5)

where SU,χ ⊂ SU is the set of wrapping numbers that ful�lls (3.4).

The resulting distribution is shown in �gure 3.3. For the used values of u1, u2 =
1, χ has to be a square, which can be directly deduced from the supersymmetry
conditions (A.8). The scaling turns out to be roughly P (χ) ' exp(−c√χ). From this
result we can conclude that non-chiral models are exponentially more frequent than
chiral ones. This turns out to be a general property of the orientifold models that
also holds in the four-dimensional case.
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Figure 3.3: Distribution of the mean chirality for T 4/Z2, L1 = L2 = 8, u1 = u2 = 1.

3.1.3 Correlations

In this section we would like to address the question of correlations between observ-
ables for the �rst time. We come back to this issue in section 3.6. The existence
of such correlations can be seen in �gure 3.4, where we plotted the distributions of
models with speci�c total rank and chirality. The connection between both variables
is given by the tadpole cancellation conditions, which involve the Na used for the
de�nition of the total rank in (2.42) and the wrapping numbers ~Xa, which appear in
the de�nition of the mean chirality χ in (3.4). The distribution can be obtained from

P (χ, r, ~L) ' 1

N (~L)(2πi)3

∮
d~qdz exp

[ ∑
~X∈SU

zqX1
1 qX2

2

1− zqX1
1 qX2

2

− log

∑
~X∈SU

zqX1
1 qX2

2

1− zqX1
1 qX2

2

+ log

 ∑
~X∈SU,χ

zqX1
1 qX2

2

1− zqX1
1 qX2

2


−(L1+1) log q1 − (L2+1) log q2 − (r+1) log z

]
, (3.6)

which is a straightforward combination of (3.3) and (3.5).

In �gure 3.4(a) one can see that the maximum of the rank distribution is shifted to
smaller values for larger values of χ. This could have been expected, since larger
values of χ imply larger values for the wrapping numbers ~X, which in turn require
lower values for the number of branes per stack Na, in order to ful�ll the tadpole
conditions. The shift of the maximum depending of χ, can be seen more directly in
�gure 3.4(b).
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Figure 3.4: Correlation between total rank and chirality for L1 = L2 = 8 and u1 = u2 = 1
for a compacti�cation on T 4/Z2. (b) shows the maximum of the total rank distribution

depending on χ.

3.2 Statistics of four-dimensional models

Having tried our methods in compacti�cations down to six dimensions, let us now
switch to the phenomenologically more interesting case of four-dimensional models.
Unfortunately we can no longer use the saddle point approximation, since it turns
out that in this more complicated case the approximation is no longer reliable. The
results deviate signi�cantly from what we see in exact computations. Furthermore
the computer power needed to obtain the integrals numerically in the approximation
becomes comparable to the e�ort needed to compute the solutions explicitly.

3.2.1 Properties of the gauge sector

Using several computer clusters and the speci�cally adapted algorithm described
in section 2.2.3 for a period of several months, we produced explicit constructions
of ≈ 1.6× 108 consistent compacti�cations on T 6/Z2 × Z2. The results presented in
the following have been published in [92, 91], see also the analysis in [127] and more
recent results using brane recombination methods in [128].

Using this data we can proceed to analyse the observables of these models. The
distribution of the total rank r of the gauge group is shown in �gure 3.5(a). An
interesting phenomenon is the suppression of odd values for the total rank. This
can be explained by the K-theory constraints and the observation that the generic
value for Y I is 0 or 1. Branes with these values belong to the �rst class of branes
in the classi�cation of section 2.3.2 and are those which lie on top of the orientifold
planes. Therefore equation (A.20) suppresses solutions with an odd value for r. This
suppression from the K-theory constraints is quite strong, the total number of solutions
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is reduced by a factor of six compared to the situation where these constraints are not
enforced.
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Figure 3.5: Frequency distributions of total rank and U(M) gauge groups of all models.

Another quantity of interest is the distribution of U(M) gauge groups, shown in
�gure 3.5(b). We �nd that most models carry at least one U(1) gauge group, corre-
sponding to a single brane, and stacks with a higher number of branes become more
and more unlikely. This could have been expected because small numbers occur with
a much higher frequency in the partition and factorisation of natural numbers.

3.2.2 Chirality

As in the six-dimensional case we want to de�ne a quantity that counts chiral matter
in the models under consideration. In contrast to the very rough estimate we used in
section 3.1.2, this time we are going to count all chiral matter states, such that our
de�nition of mean chirality is now

χ :=
2

k(k + 1)

k∑
a,b=0,a<b

Ia′b − Iab =
4

k(k + 1)

k∑
a,b=0,a<b

~Ya
~Xb. (3.7)

In this formula the states from the intersection of two branes a and b are counted with
a positive sign, while the states from the intersection of the orientifold image of brane
a, denoted by a′, and brane b are counted negatively. As we explained in section 2.1.1
and summarised in table 2.1, Iab gives the number of bifundamental representations
(Na,Nb), while Ia′b counts (Na,Nb). Therefore we compute the net number of chiral
representations with this de�nition of χ. By summing over all possible intersections
and normalising the result we obtain a quantity that is independent of the number of
stacks and can be used for a statistical analysis.

A computation of the value of χ according to (3.7) for all models leads to a frequency
distribution of the mean chirality as shown in �gure 3.6. This distribution is basically
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Figure 3.6: Distribution of the mean chirality χ in compacti�cation to four dimensions.

identical to the one we obtained in section 3.1.2, shown in �gure 3.3. In particular
we also �nd that models with a mean chirality of 0 dominate the spectrum and are
exponentially more frequent then chiral ones.

From the similarity with the distribution of models on T 4/Z2 we can also conjecture
that there is a correlation between the mean chirality and the total rank, as we found
it to be the case for the six-dimensional models in section 3.1.3. Let us postpone this
question to section 3.6, where we give a more detailed account of several questions
concerning the correlation of observables.

3.3 Standard model constructions

An important subset of the models considered in the previous section are of course
those which could provide a standard model gauge group at low energies. More
precisely, since we are dealing with supersymmetric models only, we are looking for
models which might resemble the particle spectrum of the MSSM.

To realise the gauge group of the standard model we need generically four stacks of
branes (denoted by a,b,c,d) with two possible choices for the gauge groups:

U(3)a × U(2)b × U(1)c × U(1)d,

U(3)a × Sp(2)b × U(1)c × U(1)d. (3.8)

To exclude exotic chiral matter from the �rst two factors we have to impose the
constraint that #Syma/b = 0, i.e. the number of symmetric representations of stacks
a and b has to be zero. Models with only three stacks of branes can also be realised,
but they su�er generically from having non-standard Yukawa couplings. Since we are
not treating our models in so much detail and are more interested in their generic
distributions, we include these three-stack constructions in our analysis.
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Another important ingredient for standard model-like con�gurations is the existence
of a massless U(1)Y hypercharge. This is in general a combination

U(1)Y =
k∑

a=1

xaU(1)a, (3.9)

including contributions of several U(1)s. Since we would like to construct the matter
content of the standard model, we are very constrained about the combination of U(1)
factors. In order to obtain the right hypercharges for the standard model particles,
there are three di�erent combinations of the U(1)s used to construct the quarks and
leptons possible,

U(1)
(1)
Y =

1

6
U(1)a +

1

2
U(1)c +

1

2
U(1)d,

U(1)
(2)
Y = −1

3
U(1)a −

1

2
U(1)b,

U(1)
(3)
Y = −1

3
U(1)a −

1

2
U(1)b + U(1)d, (3.10)

where choices 2 and 3 are only available for the �rst choice of gauge groups. As
explained in section 2.1.4, we can construct a massless combination of U(1) factors,

if (2.11) is satis�ed. This gives an additional constraint on the wrapping numbers ~Y .

L
e R

Q uL R

SU(2) U(1)

U(1)

SU(3)

Figure 3.7: Assignment of brane intersections and chiral matter content for the �rst of the

possible realisations of the standard model using intersecting branes.

For the di�erent possibilities to construct the hypercharge this constraint looks dif-
ferent. In the case of U(1)

(1)
Y the condition can be formulated as

~Ya + ~Yc + ~Yd = 0. (3.11)

For Q
(2)
Y , where the right-handed up-type quarks are realised as antisymmetric repre-

sentations of U(3) [5, 24], we obtain

~Ya + ~Yb = 0, (3.12)
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and for Q
(3)
Y , where we also need antisymmetric representations of U(3) to realise the

right-handed up-quarks, we get

~Ya + ~Yb − ~Yd = 0. (3.13)

In total we have found four ways to realise the standard model with massless hy-
percharge, summarised with the explicit realisation of the fundamental particles in
tables 3.1 and 3.2. The chiral matter content arises at the intersection of the four
stacks of branes. This is shown schematically for one of the four possibilities in �g-
ure 3.7.

particle representation mult.

U(3)a × Sp(2)b × U(1)c × U(1)d with Q
(1)
Y

QL (3,2)0,0 Iab

uR (3,1)−1,0 + (3,1)0,−1 Ia′c + Ia′d

dR (3,1)1,0 + (3,1)0,1 Ia′c′ + Ia′d′

dR (3A,1)0,0
1
2
(Iaa′ + IaO6)

L (1,2)−1,0 + (1,2)0,−1 Ibc + Ibd

eR (1,1)2,0
1
2
(Icc′ − IcO6)

eR (1,1)0,2
1
2
(Idd′ − IdO6)

eR (1,1)1,1 Icd′

U(3)a × U(2)b × U(1)c × U(1)d with Q
(1)
Y

QL (3,2)0,0 Iab

QL (3,2)0,0 Iab′

uR (3,1)−1,0 + (3,1)0,−1 Ia′c + Ia′d

dR (3,1)1,0 + (3,1)0,1 Ia′c′ + Ia′d′

dR (3A,1)0,0
1
2
(Iaa′ + IaO6)

L (1,2)−1,0 + (1,2)0,−1 Ibc + Ibd

L (1,2)−1,0 + (1,2)0,−1 Ib′c + Ib′d

eR (1,1)2,0
1
2
(Icc′ − IcO6)

eR (1,1)0,2
1
2
(Idd′ − IdO6)

eR (1,1)1,1 Icd′

Table 3.1: Realisation of quarks and leptons for the two di�erent choices of gauge groups

(3.8) and hypercharge (1) in (3.10).
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particle representation mult.

U(3)a × U(2)b × U(1)c × U(1)d with Q
(2)
Y

QL (3,2)0,0 Iab

uR (3A,1)0,0
1
2
(Iaa′ + IaO6)

dR (3,1)−1,0 + (3, 1)0,−1 Ia′c + Ia′d

dR (3,1)1,0 + (3, 1)0,1 Ia′c′ + Ia′d′

L (1,2)−1,0 + (1,2)0,−1 Ibc + Ibd

L (1,2)1,0 + (1,2)0,1 Ibc′ + Ibd′

eR (1,1A)0,0 −1
2
(Ibb′ + IbO6)

U(3)a × U(2)b × U(1)c × U(1)d with Q
(3)
Y

QL (3,2)0,0 Iab

uR (3A,1)0,0
1
2
(Iaa′ + IaO6)

dR (3,1)−1,0 Ia′c

dR (3,1)1,0 Ia′c′

L (1,2)0,−1 Ib′d

eR (1,1A)0,0 −1
2
(Ibb′ + IbO6)

eR (1,1)1,1 Icd′

eR (1,1)−1,1 Ic′d′

Table 3.2: Realisation of quarks and leptons for hypercharges (2) and (3) of (3.10), which

can only be realised for the �rst choice of gauge groups in (3.8).

3.3.1 Number of generations

The �rst question one would like to ask, after having de�ned what a �standard model�
is in our setup, concerns the frequency of such con�gurations in the space of all so-
lutions. Put di�erently: How many standard models with three generations of quarks
and leptons do we �nd? The answer to this question is zero, even if we relax our
constraints and allow for a massive hypercharge (which is rather �shy from a phe-
nomenological point of view). The result of the analysis can be seen in �gure 3.8.

To analyse this result more closely, we relaxed our constraints further and allowed for
di�erent numbers of generations for the quark and lepton sector. This is of course
phenomenologically no longer relevant, but it helps to understand the structure of
the solutions. The three-dimensional plot of this analysis is shown in �gure 3.9.
Actually there exist solutions with three generations of either quarks or leptons, where
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Figure 3.8: Number of quark and lepton generations with (red bars on the left) and without

(blue bars on the right) enforcing a massless U(1).

models with only one generation of quarks clearly dominate. The suppression of three
generation models can therefore be pinned down to the construction of models with
three generations of quarks, which arise at the intersection of the U(3) with the
SU(2)/Sp(2) branes and the U(1) branes respectively. models with three generations
of either quarks or leptons are shown in table 3.3.

# of quark gen. # of lepton gen. # of models

1 3 183081

2 3 8

3 4 136

4 3 48

Table 3.3: Number of models found with either three quark or three lepton generations.

This result is rather strange, since we know that models with three families of quarks
and leptons have been constructed in our setup (e.g. in [26, 40, 136, 55]). A detailed
analysis of the models in the literature shows that all models which are known use
(in our conventions) large values for the complex structure variables UI and therefore
did not appear in our analysis (see section 2.2.3). On the other hand we know that
the number of models decreases exponentially with higher values for the complex
structures. Therefore we conclude that standard models with three generations are
highly suppressed in this speci�c setup.

This brings up a natural question, namely: How big is this suppression factor? We
postpone this question to section 3.6.2, where we analyse this issue more closely and
�nally give an estimate for the probability to �nd a three generation standard model
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in our setup. For now let us just notice that this probability has to be smaller than
the inverse of the total number of models we analysed, i.e. < 10−8.
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Figure 3.9: Logarithmic plot of the number of models with di�erent numbers of generations

of quarks and leptons. QL denotes the number of quark families, L is the number of lepton

generations.

3.3.2 Hidden sector

Besides the so called �visible sector� of the model, containing the standard model
gauge group and particles, we have generically additional chiral matter, transforming
under di�erent gauge groups. This sector is usually called the �hidden sector� of the
theory, assuming that the masses of the additional particles are lifted and therefore
unobservable at low energies.

In �gure 3.10(a) we show the frequency distributions of the total rank of gauge groups
in the hidden sector. In 3.10(b) we show the frequency distribution of individual
gauge group factors. Comparing these results with the distributions of the full set
of models in �gure 3.5, we observe that at a qualitative level the restriction to the
standard model gauge group in the visible sector did not change the distribution of
gauge group observables. The number of constructions in the standard model case is
of course much lower, but the frequency distributions of the hidden sector properties
behave pretty much like those we obtained for the complete set of models.

As we argue in section 3.6, this is not a coincidence, but a generic feature of the class
of models we analysed. Many of the properties of our models can be regarded to be
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Figure 3.10: Frequency distributions of (a) total rank and (b) single gauge group factors in

the hidden sector of MSSM-models (red bars on the left) and MSSM models with massive

U(1) (blue bars on the right).

independent of each other, which means that the statistical analysis of the hidden
sector of any model with speci�c visible gauge group leads to very similar results.

3.3.3 Gauge couplings

The gauge sector considered so far belongs to the topological sector of the theory, in
the sense that its observables are de�ned by the wrapping numbers of the branes and
independent of the geometric moduli. This does not apply to the gauge couplings,
which explicitly do depend on the complex structures, following the derivation in [25],
which in our conventions reads

1

αa

=
MPlanck

2
√

2Msκa

1

c

√∏3
i=1R

(i)
1 R

(i)
2

3∑
I=0

XIUI , (3.14)

where κa = 1 or 2 for an U(N) or Sp(2N) stack respectively.

If one wants to perform an honest analysis of the coupling constants, one would have
to compute their values at low energies using the renormalization group equations.
We are not going to do this, but look instead at the distribution of αs/αw at the
string scale. A value of one at the string scale does of course not necessarily mean
uni�cation at lower energies, but it could be taken as a hint in this direction.

To calculate the coupling αY we have to include contributions from all branes used
for the de�nition of U(1)Y . Therefore we need to distinguish the di�erent possible
constructions de�ned in (3.10). In general we have

1

αY

=
k∑

a=1

2Nax
2
a

1

αa

, (3.15)
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which for the three di�erent possibilities reads explicitly

1

α
(1)
Y

=
1

6

1

αa

+
1

2

1

αc

+
1

2

1

αd

,

1

α
(2)
Y

=
2

3

1

αa

+
1

αb

,

1

α
(3)
Y

=
2

3

1

αa

+
1

αb

+ 2
1

αd

. (3.16)

The result is shown in �gure 3.11(a) and it turns out that only 2.75% of all models
actually do show gauge uni�cation at the string scale.
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Figure 3.11: (a) Frequency distribution of αs/αw in standard model-like con�gurations. (b)

Values of sin2θ depending on αs/αw. Each dot represents a class of models with these values.

Furthermore we analyse the distribution of values for the Weinberg angle

sin2 θ =
αY

αY + αw

, (3.17)

which depends on the ratio αs/αw. We want to check the following relation between
the three couplings, which was proposed in [25] and is supposed to hold for a large
class of intersecting brane models

1

αY

=
2

3

1

αs

+
1

αw

. (3.18)

From this equation we can derive a relation for the weak mixing angle

sin2 θ =
3

2

1

αw/αs + 3
. (3.19)

The result is shown in �gure 3.11(b), where we included a red line that represents the
relation (3.18). The fact that actually 88% of all models obey this relation is a bit
obscured by the plot, because each dot represents a class of models and small values
for αs/αw are highly preferred, as can be seen from �gure 3.11(a).
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3.3.4 Comparison with the statistics of Gepner models

In this paragraph we would like to compare our results with the analysis of [70, 71],
where a search for standard model-like features in Gepner model constructions [88,
87, 34, 28] has been performed.

To do so, we have to take only a subset of the data analysed in the previous sections,
since the authors of [70, 71] restricted their analysis to a special subset of constructions.
Due to the complexity of the problem they restricted their analysis to models with a
maximum of three branes in the hidden sector and focussed on three-generation models
only. Since the number of generations does not modify the frequency distributions
and we obtained no explicit results for three generation models, we include models
of an arbitrary number of generations in the analysis. To match the �rst constraint
we �lter our results and include only those models with a maximum of three hidden
branes. But, as we will see, this does also not change the qualitative behaviour of the
frequency distributions.
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Figure 3.12: Frequency distribution of the dimension of the hidden sector gauge group.

Figure (a) is the full set of models, �gure (b) shows the subset of solutions with a maximum

of three branes in the hidden sector.

In �gure 3.12 we show the frequency distribution of the dimension of the hidden sector
gauge group before (a) and after (b) the truncation to a maximum of three hidden
branes. Obviously the number of models drops signi�cantly, but the qualitative shape
of the distribution remains the same. Figure 3.12(b) can be compared directly with
�gure 5 of [71].From a qualitative point of view both distributions are very similar,
which could have been expected since the Gepner model construction is from a pure
topological point of view quite similar to intersecting D-branes. A major di�erence
can be observed in the absolute values of models analysed. In the Gepner case the
authors of [71] found a signi�cantly larger amount of candidates for a standard model.

Besides the frequency distribution of gauge groups we can also compare the analysis
of the distribution of gauge couplings. In particular, the distribution of values for for
sin2 θ depending on the ratio αw/αs, �gure 3.11(b), can be compared with �gure 6
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of [71]. We �nd, in contrast to the case of hidden sector gauge groups, very di�erent
distributions. While almost all of our models are distributed along one curve, in
the Gepner case a much larger variety of values is possible. The fraction of models
obeying (3.18) was found to be only about 10% in the Gepner model case, which can
be identi�ed as a very thin line in �gure 6 of [71]. This discrepancy might be traced
back to the observation that in contrast to the topological data of gauge groups we
are dealing with geometrical aspects here.

As explained in the last paragraph, the gauge couplings do depend explicitly on the
geometric moduli. A major di�erence between the Gepner construction and our in-
tersecting D-brane models lies in the di�erent regimes of internal radius that can be
assumed. In our approach we rely on the fact that we are in a perturbative regime,
i.e. the compacti�cation radius is much larger than the string length and the string
coupling is small.

3.4 Pati-Salam models

As in the case of a SU(3)×SU(2)×U(1) gauge group, we can try to construct models
with a gauge group of Pati-Salam type

SU(4)× SU(2)L × SU(2)R. (3.20)

Analogous to the case of a standard model-like gauge group, we analysed the statis-
tical data for Pati-Salam constructions, realised via the intersection of three stacks of
branes. One brane with Na = 4 and two stacks with Nb/c = 2, such that the chiral
matter of the model can be realised as

QL = (4,2,1), QR = (4,1,2). (3.21)

One possibility to obtain the standard model gauge group in this setup is given by
breaking the SU(4) into SU(3)×U(1) and one of the SU(2) groups into U(1)×U(1).
This can be achieved by separating the four branes of stack a into two stacks consisting
of three and one branes, respectively, and the two branes of stack b or c into two
stacks consisting of one brane each. The separation corresponds to giving a vacuum
expectation value to the �elds in the adjoint representation of the gauge groups U(Na)
and U(N)b/c, respectively.

Models of this type have been constructed explicitly in the literature, see e.g [59, 58,
56, 54, 55, 45]. However, one has to be careful comparing these models with our results,
since our constraints are stronger compared to those usually imposed. In particular,
we do not allow for symmetric or antisymmetric representations of SU(4), a constraint
that is not always ful�lled for the models that can be found in the references above.

A restriction on the possible models, similar to the standard model case, is provided
by the constraint that there should be no additional antisymmetric matter and the
number of chiral fermions transforming under SU(2)L and SU(2)R should be equal.
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Figure 3.13: Logarithmic plot of the number of Pati-Salam models found, depending on the

number of generations. The solutions have been restricted to an equal number of left- and

right-handed fermions, i.e. gen. = QL
!= QR

As can be seen in �gure 3.13, we found models with up to eight generations, but no
three-generation models. The conclusion is the same as in section 3.3 � the suppression
of three generation models is extremely large and explicit models show up only at
very large values of the complex structure parameters. The distribution di�ers from
the standard model case in the domination of two-generation models. This is an
interesting phenomenon, which can be traced back to the speci�c construction of the
models using two N = 2 stacks of branes. This example shows that the number of
generations, in contrast to the distribution of gauge groups in the hidden sector (see
also section 3.6), does depend on the speci�c visible sector gauge group we chose.

3.5 SU(5) models

From a phenomenological point of view a very interesting class of low-energy models
consist of those with a grand uni�ed gauge group1, providing a framework for the
uni�cation of the strong and electro-weak forces.

The minimal simple Lie group that could be used to achieve this is SU(5) [86] or
also the so-called �ipped SU(5) [13, 65], consisting of the gauge group SU(5) ×
U(1)X . They represent the two possibilities how to embed an SU(5) gauge group into
SO(10). The �ipped construction is more interesting phenomenologically, because
models based on this gauge group might survive the experimental limits on proton
decay. Several explicit constructions of supersymmetric SU(5) models in the context
of intersecting D-brane models are present in the literature [57, 9, 43, 42, 46, 44], as
well as some non-supersymmetric ones [24, 80].

In the remainder of this section we present some results on the distribution of the

1For an introduction see e.g. [149] or the corresponding chapters in [47, 79].
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gauge group properties of SU(5) and �ipped SU(5) models, using the same T 6/Z2×Z2

orientifold setting as in the previous sections. This part is based on [93].

3.5.1 Construction

In the original SU(5) construction, the standard model particles are embedded in a
5̄ and a 10 representation of the uni�ed gauge group as follows

SU(5) → SU(3)× SU(2)× U(1)Y ,

5̄ → (3̄,1)2/3 + (1,2)−1,

10 → (3̄,1)−4/3 + (3,2)1/3 + (1,1)2, (3.22)

where the hypercharge is generated by the SU(3)× SU(2)-invariant generator

Z = diag(−1/3,−1/3,−1/3, 1/2, 1/2). (3.23)

In the �ipped SU(5) construction, the embedding is given by

SU(5)× U(1)X → SU(3)× SU(2)× U(1)Y ,

5̄−3 → (3̄,1)−4/3 + (1,2)−1,

101 → (3̄,1)2/3 + (3,2)1/3 + (1,1)0,

15 → (1,1)2, (3.24)

including a right-handed neutrino (1,1)0. The hypercharge is in this case given by
the combination Y = −2

5
Z + 2

5
X.

We would like to realise models of both type within our orientifold setup. The SU(5)
case is simpler, since in principle it requires only two branes, a U(5) brane a and a U(1)
brane b, which intersect such that we get the 5̄ representation at the intersection. The
10 is realised as the antisymmetric representation of the U(5) brane. To get reasonable
models, we have to require that the number of antisymmetric representations is equal
to the number of 5̄ representations,

Iab = −#Antia. (3.25)

In a pure SU(5) model one should also include a restriction to con�gurations with
#Syma = 0 to exclude 15 representations from the beginning. Since it has been
proven in [57] that in this case no three generation models can be constructed and
symmetric representations might also be interesting from a phenomenological point
of view, we include these in our discussion2.

The �ipped SU(5) case is a bit more involved since in addition to the constraints of
the SU(5) case one has to make sure that the U(1)X stays massless and the 5̄ and 10

2We are grateful to Paul Langacker for discussions about this point.
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have the right charges, summarised in (3.24). To achieve this, at least one additional
brane c is needed. Generically, the U(1)X can be constructed as a combination of all
U(1)s present in the model

U(1)X =
k∑

a=1

xaU(1)a. (3.26)

The simplest way to construct a combination which gives the right charges would be

U(1)X =
1

2
U(1)a −

5

2
U(1)b +

5

2
U(1)c, (3.27)

but a deeper analysis shows [152], that this is in almost all cases not enough to ensure
that the hypercharge remains massless. The condition for this can be formulated as

k∑
a=1

xaNa
~Ya = 0, (3.28)

with the coe�cients xa from (3.27). To ful�ll this requirement we need generically
one or more additional U(1) factors.
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Figure 3.14: Logarithmic plot of the number of solutions with an SU(5) factor depending

on the absolute value of the parameters U . We give the results with (blue bars to the left)

and without (red bars to the right) symmetric representations of SU(5).

3.5.2 General results

Having speci�ed the additional constraints, we use the techniques described in sec-
tion 2.2.3 to generate as many solutions to the tadpole, supersymmetry and K-theory
conditions as possible. The requirement of a speci�c set of branes to generate the
SU(5) or �ipped SU(5) simpli�es the computation and gives us the possibility to
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explore a larger part of the moduli space as compared to the more general analysis
we described above.

Before doing an analysis of the gauge sector properties of the models under consid-
eration, we would like to check if the number of solutions decreases exponentially for
large values of the UI , as we observed in section 3.2.1 for the general solutions. In
�gure 3.14 the number of solutions with and without symmetric representations are
shown. The scaling holds in our present case as well, although the result is a bit
obscured by the much smaller statistics. In total we found 2590 solutions without re-
strictions on the number of generations and the presence of symmetric representations.
Excluding these representations reduces the number of solutions to 914. Looking at
the �ipped SU(5) models, we found 2600 with and 448 without symmetric represen-
tations. Demanding the absence of symmetric representations is obviously a much
severer constraint in the �ipped case.
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Figure 3.15: Plots of the number of solutions for di�erent numbers of generations for (a)

SU(5) and (b) �ipped SU(5) models with (blue bars to the left) and without (red bars to

the right) symmetric representations of SU(5).

The correct number of generations turned out to be the strongest constraint on the
statistics in our previous work on standard model constructions. The SU(5) case
is not di�erent in this aspect. In �gure 3.15 we show the number of solutions for
di�erent numbers of generations. We did not �nd any solutions with three 5̄ and
10 representations. This situation is very similar to the one we encountered in our
previous analysis of models with a standard model gauge group in section 3.3. An
analysis of the models which have been explicitly constructed showed that they exist
only for very large values of the complex structure parameters. The same is true in
the present case. Because the number of models decreases rapidly for higher values of
the parameters, we can draw the conclusion that these models are statistically heavily
suppressed.

Comparing the standard and the �ipped SU(5) construction the result for models with
one generation might be surprising, since there are more one generation models in the
�ipped than in the standard case. This is due to the fact that there are generically
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di�erent possibilities to realise the additional U(1)X factor for one geometrical setup,
which we counted as distinct models.
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Figure 3.16: Logarithmic plots of the number of solutions with a speci�c rank M gauge

factor in the hidden sector in (a) SU(5) and (b) �ipped SU(5) models with (blue bars to

the left) and without (red bars to the right) symmetric representations of SU(5).

Regarding the hidden sector, we found in total only four SU(5) models which did not
have a hidden sector at all - one with 4, two with 8 and one with 16 generations. For
the �ipped SU(5) case such a model cannot exist, because it is not possible to solve
the condition for a massless U(1)X without hidden sector gauge �elds.

The frequency distribution of properties of the hidden sector gauge group, the prob-
ability to �nd a gauge group of speci�c rank M and the distribution of the total
rank, are shown in �gures 3.16 and 3.17. The distribution for individual gauge factors
is qualitatively very similar to the one obtained for all possible solutions above (see
�gures 3.5). One remarkable di�erence between standard and �ipped SU(5) models
is the lower probability for higher rank gauge groups. This is due to the above men-
tioned necessity to have a su�cient number of hidden branes for the construction of
a massless U(1)X .

The total rank distribution for both, the standard and the �ipped version, di�ers in
one aspect from the one obtained in 3.2.1, namely in the large fraction of hidden
sector groups with a total rank of 10 or 9, respectively. This can be explained by just
one speci�c construction which is possible for various values of the complex structure
parameters. In this setup the hidden sector branes are all except one on top the
orientifold planes on all three tori. If we exclude this speci�c feature of the SU(5)
construction, the remaining distribution shows the behaviour estimated from the prior
results.

Note that while comparing the distributions one has to take into account that the total
rank of the hidden sector gauge group in the SU(5) case is lowered by the contribution
from the visible sector branes to the tadpole cancellation conditions. In the �ipped
case, the additional U(1)-brane contributes as well.
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Figure 3.17: Plots of the number of solutions for given values of the total rank of the hidden

sector gauge group in (a) SU(5) and (b) �ipped SU(5) models with (blue bars to the left)

and without (red bars to the right) symmetric representations of SU(5).

3.5.3 Restriction to three branes in the hidden sector

In order to compare our results for the statistics of constructions with a standard
model-like gauge group with Gepner models in section 3.3.4, we truncated the full
set of models to those with only three stacks of branes in the hidden sector. In the
following we also perform a restriction to a maximum of three branes in the hidden
sector in the SU(5) case, but with a di�erent motivation and in a di�erent way. We do
not truncate our original results, but instead impose the constraint to a maximum of
three branes from the very beginning in the computational process. It turns out that
such a restriction can greatly improve the performance of the partition algorithm and
allows us therefore to analyse a much bigger range of complex structures. This is highly
desirable, since it opens up the possibility to check some claims about the growths of
solutions that we made in section 2.3. The method has also some drawbacks. Since
we do not compute the full distribution of models, but with an arti�cial cuto�, we
can not be sure that the frequency distributions of properties in the gauge sector are
the same as in the full set of models. As we will see in the following, there are indeed
some deviations.

In �gure 3.18 we plotted the total number of models with a maximum of three stacks
of branes in the hidden sector. As in our analysis above we show the models without
symmetric representations separately. This plot should be compared with �gure 3.14,
the number of solutions for SU(5) models without restrictions. In the restricted case
we were able to compute up to much higher values of the complex structures and
con�rm the assertion of 2.3, that the number of solution drops exponentially with
|U |. This provides another hint that the total number of solutions is indeed �nite.
In total we found 3275 solutions, which is more then in the case without restrictions,
but in contrast to a range of complex structures which is 25 times bigger, the amount
of additional solutions is comparably small.
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Figure 3.18: Logarithmic plot of the number of solutions with an SU(5) factor depending on
the absolute value of the parameters U . The number of brane stacks in the hidden sector is

restricted to three and the results are shown for models with (blue spikes) and without (red

spikes) symmetric representations of SU(5).
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Figure 3.19: Logarithmic plots of the frequency distributions in the hidden sector of SU(5)
models with a maximum of three hidden branes. (a) Speci�c rank M gauge factors, (b)

Total rank of the hidden sector gauge group.

Comparing the distributions for individual gauge factors (�gure 3.19(a)) and the total
rank in the hidden sector (�gure 3.19(b)), we see some interesting di�erences to �g-
ures 3.16(a) and 3.17(a). The distribution of individual gauge factors is just extended
to higher factors in the restricted case. This was to be expected, since larger values
for the complex structure parameters allow for larger gauge factors to occur, since
they provide us with very long branes with negative wrapping numbers X that can
compensate these large numbers in the tadpole cancellation conditions. The general
shape of the distribution remains unchanged. In the case of the total rank the situ-
ation is di�erent. The distribution also shows larger values for the total rank, which
is directly correlated to the larger individual ranks of the factors, but moreover the
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maximum of the distribution is shifted from around seven in the unrestricted case to
about four. This can be explained by the fact that the restriction to a maximum of
three branes in the hidden sector also restricts the possible contributions from mod-
els with many gauge factors of small rank, especially the contribution of U(1) gauge
factors.

What about models with a �ipped SU(5) gauge group? Repeating the analysis for
these models in the case of a restriction in the hidden sector can of course be done,
be the results might not be very predictive. For a consistent �ipped SU(5) model, we
need a massless U(1)X , which also depends on a combination of U(1) factors from the
hidden sector. After choosing an additional U(1) brane for the visible sector of �ipped
SU(5) there remain only two hidden sector branes. This restriction is too drastic to
give meaningful results, since it turned out in the analysis of �ipped SU(5) models
that we need more than two hidden sector branes to solve the equations for the U(1)X

to be massless.

3.5.4 Comments

The analysis in this section showed that three generation models with a minimal grand
uni�ed gauge group are heavily suppressed in this speci�c orientifold setup. This result
was expected, since we know that the explicit construction of three generation SU(5)
models using the Z2 × Z2 orbifold has turned out to be di�cult.

The analysis of the hidden sector showed that the frequency distributions of the total
rank of the gauge group and of single gauge group factors are quite similar to the
results for generic models in section 3.2.1. Di�erences in the qualitative picture result
from speci�c e�ects in the SU(5) construction.

Comparing the results for the standard and �ipped SU(5) models, we �nd no sig-
ni�cant di�erences. If we allow for symmetric representations, there is basically no
additional suppression factor. If we restrict ourselves to models without these repre-
sentations, �ipped constructions are three times less likely then the standard ones.

3.6 Correlations

An interesting question that we raised in the introduction concerns the correlation of
observables. If di�erent properties of our models were correlated, independently of
the speci�c visible gauge group, this would provide us with some information about
the generic behaviour of this class of models. In the following discussion we would
like to clarify this point, emphasizing a crucial di�erence between correlations of
phenomenologically interesting observables in the gauge sector of our models on the
one hand, and correlations between basic properties used as constraints to characterize
a speci�c visible sector on the other hand. Finally we use the observations on the
second class of correlations to estimate the number of models with a standard model
gauge group and three generations of quarks and leptons for the T 6/Z2×Z2 orientifold.
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3.6.1 Rank and chirality

To give an example of correlations between gauge group observables let us consider
the mean chirality χ, de�ned by (3.7), and the total rank of the gauge group. As
we already saw using the saddle point approximation on T 4 in section 3.1.3, these
two quantities should be correlated. To con�rm this in the four-dimensional case,
we use our explicit results and compute the frequency distributions for the di�erent
visible sectors considered above, standard model-like constructions with and without
a massless hypercharge and Pati-Salam models. The result is shown in �gure 3.20.
Please note that we have normalised the distributions in order to make the results
better comparable.
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Figure 3.20: Logarithmic plots of the relative frequency distributions of models with speci�c

total rank of the gauge group and mean chirality. Plot (a) shows the analysis for the full

gauge group of all models, �gures (b), (c) and (d) give the results for the hidden sector gauge

groups of standard model-like constructions with and without a massive hypercharge and

Pati-Salam models, respectively.

We �nd two striking results here, which illustrate the two points we made in the in-
troduction to this section. Firstly the two observables are clearly correlated, a large
value for the mean chirality is much more likely to �nd if the total rank is small.



3.6. CORRELATIONS 57

Secondly the results for the full set of models, �gure 3.20(a), and the di�erent visible
sectors, �gures 3.20(b), (c) and (d), show qualitatively very similar results. This last
observation is intriguing, since we might use this to conjecture that the speci�c prop-
erties used to de�ne an individual visible sector do not in�uence the distributions. Put
di�erently, we might speculate that these properties could be regarded independent
of each other. If this would be indeed the case, it could simplify some speci�c analysis
dramatically. Instead of constructing solutions for one speci�c setup with some set
of properties it would be enough to know the probabilities for each property. Since
they would be independent of each other we could just multiply the results and get
an answer to our more di�cult question.

3.6.2 Estimates

We would like to test this conjecture using the properties of a standard model con-
struction. These include several constraints on the models, in particular the existence
of speci�c U(N) gauge factors, the vanishing of antisymmetric representations, a mass-
less hypercharge and three generations of chiral matter. How can we check whether
two of these properties A and B, are independent? A good measure for this would
be to calculate the correlation between the probabilities P (A) and P (B) to �nd these
properties. This can be expressed as

PAB =
P (A)P (B)− P (A ∧B)

P (A)P (B) + P (A ∧B)
, (3.29)

where P (A ∧B) is the probability to �nd both properties realised at the same time.
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Figure 3.21: Correlations between properties of standard model-like con�gurations. (a)

Correlation between the existence of an SU(3) and an SU(2) or Sp(2) gauge group. (b)

Correlation between the existence of an SU(3) gauge group and the absence of symmetric

representations.

For concreteness let us take the following properties as examples: The existence of
a U(3) gauge group, existence of a U(2) or Sp(2) gauge group and the vanishing of
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antisymmetric representations. In �gure 3.21 we plotted the value of PAB in the set
of all models for di�erent values of the number of stacks. As can be derived from
these plots the two properties are not really independent, but values of about 0.1 and
0.2, respectively, which are also the order of magnitude for other possible correlations,
suggest that one could give it a try and treat these properties as independent in an
estimate3.

Restriction Factor

gauge factor U(3) 0.0816

gauge factor U(2)/Sp(2) 0.992

No symmetric representations 0.839

Massless U(1)Y 0.423

Three generations of quarks 2.92× 10−5

Three generations of leptons 1.62× 10−3

Total 1.3× 10−9

Table 3.4: Suppression factors for various constraints of standard model properties.

In table 3.4 we summarised the properties of a three-generation standard model,
including the suppression factor calculated using the probability to �nd this property
in the set of all models and their total number, 1.66×108. The two U(1) gauge groups
required for a standard model setup are not included in this, since the probability to
�nd a U(1) in one of the constructions is essentially one. Multiplying all these factors,
we get a probability of ≈ 1.3 × 10−9, i.e. one in a billion, to �nd a three-generation
standard model in the T 6/Z2 × Z2 setup.

# generations # of models found estimated # suppression factor

2 162921 188908 ≈ 10−3

3 0 0.2 ≈ 10−9

4 3898 3310 ≈ 2× 10−5

Table 3.5: Comparison between the estimated number of solutions and the actual number

of solutions found for models with two, three and four generations.

3Note that the independence of di�erent properties have been an assumption that was used in
the original work on vacuum statistics [75].
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How reliable is this estimate?

This is of course an important question, since we concluded from the analysis above
that the basic properties are only approximately independent and we can not really
make a quantitative statement about the possible error in our estimate. So let us
compare the result we obtain with this method for models with standard model gauge
group and two or four generations of quarks and leptons with the actual numerical
results we have obtained in these cases.

The result is shown in table 3.5. As can be read of this table, the estimate for
the two- and four-generation case deviates by around 20% from the correct value.
Keeping this in mind and further noting that we are making an estimate only at an
order-of-magnitude level, a suppression factor of ≈ 10−9 seems to be a reliable value.
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Part II

Generalised geometry
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Chapter 4

Concepts

In this chapter we give an introduction to generalised complex geometry. We set up
the notation and concepts used in the next chapter for applications relevant to string
theory. For more background information the reader might also want to consider the
theses [103, 161] or the recent lectures [168] for a pedagogical introduction.

The main idea of generalised geometry is to unify complex and symplectic geometry
by considering the action of the corresponding structures not on the tangent bundle
of the n-dimensional manifold M , but on the sum of the tangent and the cotangent
bundle. The basic properties of this space T ⊕ T ∗ are introduced in section 4.1. An
important aspect of generalised geometry is the natural identi�cation of forms and
spinors, which we describe, together with a general introduction to spinors on T ⊕T ∗
in section 4.2.

An important question in the context of di�erential geometry is about integrability.
How this notion can be formulated in the context of generalised geometry is the subject
of section 4.3.

In the last three sections, we introduce additional structure. First of all generalised
complex structures in 4.4, which we show to contain complex and symplectic structures
as special cases. In section 4.5 we deal with generalised metrics, which we combine
with generalised complex structures into the notion of generalised Kähler structures
and introduce the concept of generalised G-structures.

4.1 The space T⊕T∗

Let us establish some facts about the space T ⊕ T ∗ of dimension 2n with elements

(X + ξ) ∈ T ⊕ T ∗, (4.1)

where ξ ∈ T ∗ is an n-form. This space has a natural inner product of signature (n, n),
de�ned through the inner product of vectors and forms by

〈X + ξ, Y + η〉 =
1

2
(ξ(Y ) + η(X)). (4.2)

63
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The symmetry group that preserves this inner product is the non-compact group
O(n, n). We can de�ne a canonical orientation on this space, using the decomposition
of the highest exterior power

Λ2n(T ⊕ T ∗) = ΛnT ⊗ ΛnT ∗, (4.3)

and the natural pairing between elements of v ∈ ΛnT and ω ∈ ΛnT ∗ given by (ω, v) =
det(ω(v)). This gives us the identi�cation Λ2n ∼= R and by choosing ±1 ∈ R we can �x
an orientation. This reduces the symmetry group further to SO(T ⊕ T ∗) = SO(n, n).

A generic element A of the Lie algebra so(T ⊕ T ∗) = so(n, n) can be written in a
T ⊕ T ∗-basis as

A =

α β

b −α∗

 , (4.4)

where α is an element of End(T ), b : T → T ∗ and β : T ∗ → T . b and β are skew-
symmetric, which means that we can take b ∈ Λ2T ∗ and β ∈ Λ2T . In the end we get
a decomposition

so(T ⊕ T ∗) ∼= End(V )⊕ Λ2T ∗ ⊕ Λ2T. (4.5)

The two-form b can be identi�ed with the well-known NS-NS b-�eld in string theory
compacti�cations. We do not deal with β transformations in this thesis, but let us
mention that they have been connected in [120] to Poisson structures, responsible for
the notion of non-commutativity, and used in [48] to de�ne isotropic A-branes, in
analogy to the coisotropic A-branes of [123].

4.2 Spinors and forms

To de�ne spinors on T ⊕ T ∗, we note �rst that we have GL(n) 6 SO(n, n). This
inclusion can be lifted to Spin(n, n), which leads to the conclusion that an SO(n, n)
structure is always spinnable.

To construct the associated spin representation S, we consider the following action of
an element (X + ξ) of T ⊕ T ∗ on forms ρ ∈ ∧•T , de�ned as

(X + ξ) • ρ = −Xxρ+ ξ ∧ ρ. (4.6)

For unit vectors this action squares to minus the identity and extends therefore to an
algebra isomorphism

Cli� (T ⊕ T ∗) ∼= End(Λ•T ∗). (4.7)

Under the action of Spin(n, n) we obtain an invariant decomposition into chiral spinors
represented by

S± = Λev,odT ∗, (4.8)

In practice, we work with orientable manifolds and associate the spin representation
with the principal GL+(n) bundle via the canonic lift of GL+(n) to Spin+(n, n),
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where the notation G+ always refers to the identity component of a Lie group G. In
particular, we obtain a canonic spin structure. Restricted to GL+(n), we have

S± = Λev,odT ∗ ⊗ (ΛnT )1/2. (4.9)

We can de�ne a bilinear form

〈·, ·〉 : S ⊗ S → detT ∗, (4.10)

which acts on elements ρ, τ as

〈ρ, τ〉 = [ρ ∧ τ̂ ]n ∈ ΛnT ∗ ⊗
(
(ΛnT )1/2

)2
= R. (4.11)

In this de�nition [ · ]n indicates a projection on the top degree component and β̂
denotes the anti-automorphism de�ned on p-forms by

ρ̂p = (−1)p(p+1)/2ρp, (4.12)

followed by complex conjugation if the form is complex.

Using this we obtain

〈(X + ξ) • ρ, τ〉 = (−1)n〈ρ, (X + ξ) • τ〉 (4.13)

and, in particular, this form is Spin+(n, n)-invariant. It is symmetric for n ≡ 0, 3
mod 4 and skew for n ≡ 1, 2 mod 4, i.e.

〈ρ, τ〉 = (−1)n(n+1)/2〈τ, ρ〉. (4.14)

Moreover, S+ and S− are non-degenerate and orthogonal if n is even and totally
isotropic if n is odd. Because of orientability, we can always choose an isomorphism
between spinors and exterior forms induced by a nowhere vanishing volume form.
Since this is unique up to a scale, any property of S± makes also sense for forms.

To put it simply, we can summarise this by saying forms are spinors.

4.2.1 The action of 2-forms on spinors

The action of a two-form b ∈ Λ2(T ⊕ T ∗) can be naturally lifted to an action on any
Spin(n, n)-representation space by exponentiation, as we can inject b =

∑
bklx

k ∧ xl

into spin(n, n) = Λ2(T ⊕ T ∗) ⊂ Cli� (T ⊕ T ∗) via b 7→
∑

kl bklx
k • xl. On spinors, this

action is induced by wedging with the exponential

eb • ρ = (1 + b+
1

2
b ∧ b+ . . .) ∧ ρ = (1 + b+

1

2
b • b+ . . .) ∧ ρ = eb ∧ ρ. (4.15)

Note that if π0 : Spin(n, n) → SO(n, n) denotes the usual covering map and π0∗ its
di�erential, then

π0(e
b
Spin(n,n)) = e

π0∗(b)
SO(n,n) = e2b

SO(n,n). (4.16)
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As an element of Λ2(T ⊕ T ∗), b becomes a skew-symmetric linear operator T → T ∗

under the identi�cation ζ ∧ ξ(X) = (ζ,X)ξ− (ξ,X)ζ = Xx(ζ ∧ ξ)/2 and therefore we
have

π0(e
b)(X + ξ) =

 1 0

b 1

 ·
 X

ξ

 (4.17)

on T ⊕ T ∗, where b(X) = Xxb.

4.2.2 Pure spinors and maximally isotropic subspaces

For a �xed spinor ρ, we can de�ne the space Wρ, consisting of all X + ξ ∈ T ⊕ T ∗
which satisfy the property

(X + ξ) • ρ = 0. (4.18)

The space Wρ transforms equivariantly under the action of an element g ∈ Spin(n, n)
on ρ,

Wgρ = ρ(g) •Wρ, ∀g ∈ Spin(n, n). (4.19)

We note that Wρ is isotropic, since we have

〈X + ξ, Y + η〉 • ρ =
1

2
((X + ξ)(Y + η) + (Y + η)(X + ξ)) • ρ, (4.20)

which gives ∀(X + ξ), (Y + η) ∈ Wρ that 〈X + ξ, Y + η〉 = 0. The space Wρ is called
maximally isotropic, i�

dimC(Wρ) = dimCT = n. (4.21)

If equation (4.21) holds, the associated spinor ρ is called pure.

Any maximally isotropic subspace W 6 T ⊕ T ∗ has a unique representation as

W = WU,F = {X +XxF + η |X ∈ U, η ∈ N∗U} = e2F (U ⊕N∗U) (4.22)

for some p-dimensional subspace U with normal bundle N and a 2-form F ∈ Λ2U∗.
For a given isotropic space W , de�ne U to be the image of the projection of W to T ,
so w = X + η with X ∈ U for any w ∈ W . The projection of η to U∗ is unique and
we can de�ne F ∈ Λ2U∗ by

F (projU(w), y) = yxprojU∗(w). (4.23)

This de�nes indeed a 2-form since W is isotropic. If αp is a p-form on U , then ?αp is
annihilated by WU = U ⊕N∗U and because of equivariance, so is eF ∧ ?αp by WU,F .

An orientation for WU,F will be the choice of one of the two spinor half-lines spanned
by ±eF ∧ ?αp. If U is oriented, we have the oriented Riemannian volume form volU
on U and take eF ∧ ?̂volU as an orientation for W . Conversely, an orientation for W

in the sense above induces an orientation for U by requiring eF ∧ ?̂volU to be oriented.



4.3. THE COURANT BRACKET AND INTEGRABILITY 67

To render the choice of the pure spinor associated with W unique, we normalise by
its norm ‖ · ‖g̃ with respect to Qg̃ and introduce the notation

ρU,F =
eF ∧ ?̂volU

‖Qg̃(eF ∧ ?̂volU)‖g̃
. (4.24)

If we act on ρU,F by eb, then any leg of b along U⊥ does not contribute, so b acts on
(U, F ) by (U, F + j∗b).

4.3 The Courant bracket and integrability

In the context of di�erential geometry integrability is de�ned by the closure of the
action of the Lie bracket on smooth sections of the tangent bundle. By replacing the
tangent bundle with T ⊕ T ∗, we have to use a di�erent notion of integrability, which
can be de�ned in this context using the Courant bracket [51, 52].

The skew-symmetric operation of the Courant bracket on smooth sections of T ⊕ T ∗
is de�ned by

[X + ξ, Y + η] = [X, Y ]L + LXη − LY ξ −
1

2
d (η(X)− ξ(Y )) , (4.25)

where LX = iXd + diX is the Lie derivative. Acting on vector �elds, the Courant
bracket reduces to the ordinary Lie bracket [·, ·]L. This can be expressed using the
natural projection π : T ⊕ T ∗ → T as

π([A,B]) = [π(A), π(B)]L. (4.26)

Besides the invariance under di�eomorphisms, the Courant bracket has another sym-
metry. It is invariant under the b-�eld transformation (4.17) i� b is closed, i.e.
db = 0 [109].

Isotropic subbundles, as de�ned in section 4.2.2, that are closed under the Courant
bracket are called involutive. The action of (X + ξ) on a spinor (4.6) maps Λev/od to
Λod/ev. Considering this action for the exterior derivative d gives a correspondence
between the notion of involutive isotropic subbundles Wρ and smooth sections of the
spin bundle. We have that Wρ is involutive, i� ∃(X + ξ) ∈ C∞(T ⊕ T ∗) such that
(X + ξ) • ρ = dρ. This setup can be extended by twisting the Courant bracket with a
gerbe [110], such that the exterior derivative d gets replaced by dH = d+H∧, where
H ∈ Λ3T ∗.

4.4 Generalised complex structures

In analogy to the de�nition of ordinary complex and symplectic structures, we de�ne
a generalised complex structure to be an endomorphism J of T ⊕ T ∗, satisfying two



68 CHAPTER 4. CONCEPTS

conditions,
J 2 = −1 and J ∗ = −J . (4.27)

The demand that a generalised complex structure ful�lls both conditions, that of
an ordinary complex structure J : T → T with J2 = −1, as well as the one for
a symplectic structure ω : T → T ∗ with ω∗ = ω, shows that generalised complex
structures comprise both notions in one algebraic structure.

To show this explicitly, we note that a complex structure J can be embedded in a
generalised complex one in the following way

JJ =

−J 0

0 J∗

 , (4.28)

where we use the matrix notation for T ⊕ T ∗. Similarly we can embed a symplectic
structure ω as

Jω =

0 −ω−1

ω 0

 . (4.29)

symplecticKählercomplex

generalised complex

Figure 4.1: Generalised complex spaces include complex and symplectic spaces as special

cases.

4.5 Generalised metrics

Each additional structure we de�ne on a manifold reduces its structure group. In
this section we consider reductions of the principal SO(n, n)-�bre bundle. The main
ingredient to do so is the de�nition of a generalised metric G. We have seen in
section 4.1, that T ⊕T ∗ carries a natural inner product and metric of signature (n, n).
If we choose a subgroup G of SO(n, n), which is isomorphic to SO(n)× SO(n), this
induces a metric splitting, a decomposition

T ⊕ T ∗ = V+ ⊕ V−. (4.30)
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The oriented spaces V+ and V− carry a positive or negative de�nite metric g+ and g−,
respectively. Since V± intersect the isotropic spaces T and T ∗ trivially, we can write
them as the graph of an isomorphism

P± : T → T ∗. (4.31)

A dualisation of P± gives an element in T ∗ ⊗ T ∗ with a symmetric part ±g and an
antisymmetric part b. We can also obtain (V±, g±) from (g, b) in a two step procedure.
Firstly we de�ne

D± = {X ± g(X)|X ∈ T} , (4.32)

where we considered g as a map g : T → R. In a second step we apply the b-�eld
transformation, such that we obtain

V± = ebD±. (4.33)

The data (g, b) de�nes a reduction from SO(n, n) to (SO(n) × SO(n). This data
can be recast into a generalised metric G, which acts as an involution on V± with
GV± = ±V±. G preserves the natural inner product on T ⊕ T ∗ and, if n is even, it
also preserves the orientation. Using matrices in T ⊕ T ∗ we can write

G = eb

0 g−1

g 0

 e−b =

1 0

b 1

0 g−1

g 0

 1 0

−b 1


=

 −g−1b g−1

g − bg−1b bg−1

 . (4.34)

Conversely, every operator that squares to the identity and is compatible with the
inner product, in the sense that its eigenspaces are maximal subspaces of T ⊕T ∗, can
be decomposed in the same way.

We can also let the generalised metric act on spinors, by lifting it to Pin(n, n), which

we denote by G̃. Let us consider �rst the case where G is induced by a metric diagonal
D± with oriented orthonormal basis d±k = ek ⊕ ±g(ek). Then G is the composi-

tion of re�ections Rd−k
along d−k , i.e. G = Rd−1

◦ . . . ◦ Rd−n
. Therefore, G̃ acts via

Cli�ord multiplication as the Riemannian volume form volD− = d−1 ∧ . . . ∧ d−n of
D−. Next let J denote the isomorphism between Cli� (T ) and Λ∗T ∗. Recall that
for any X ∈ T and a ∈ Cli� (T ), we have that J(X · a) = −XxJ(a) + X ∧ J(a),
J(a · X) = (−1)deg(a) (XxJ(a) +X ∧ J(a)) and ?J(a) = J(â · volg), where volg de-
notes the Riemannian volume form on T . As a result we obtain for ρ ∈ Λp ⊂ S
that

volD− • ρp = (−1)n(n+1)/2+pnJ
(
J−1(ρp) · volg

)
= (−1)n(p+1) ? ρ̂p. (4.35)

For a non-trivial b-�eld, G gets conjugated by exp(2b) and thus G̃ by exp(b), which
leads to volV− •ρp = eb•volD− •e−b•ρp, where we used that the lift g̃ of G to Pin(n, n)
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acts on S± = Λev,od via

g̃ • ρev = (−1)neb ∧ ?(e−b ∧ ρev)∧ (4.36)

g̃ • ρod = eb ∧ ?(e−b ∧ ρod)∧. (4.37)

Up to an exchange of sign, we note that g̃ coincides with the 2-operator in [160].
Furthermore we see that g̃2 = (−1)n(n−1)/2, since ?̂ρp = (−1)p(n−p)+n(n+1)/2 ? ρ̂p and in

particular, G̃ de�nes a complex structure on S if n ≡ 2, 3 mod 4. Moreover we �nd
that

〈g̃ • ρ, τ〉 = (−1)n(n+1)/2〈ρ, g̃ • τ〉 (4.38)

and obtain the inner product

Qg̃(ρ
ev,od, τ ev,od) = ±(−1)n(n−1)/2〈ρ, G̃ • τ〉 = g(e−b ∧ ρ, e−b ∧ τ), (4.39)

which is invariant under the cover

Spin(V+)× Spin(V−) → Spin+(T ⊕ T ∗)
of SO(V+)× SO(V−) ↪→ SO+(T ⊕ T ∗). (4.40)

The operator g̃ acts as an isometry for Qg̃.

The presence of a generalised metric also implies a very useful description of the com-
plexi�cation SC of S as a Spin(V+) × Spin(V−)-module if the manifold is spinnable.
The orthogonal decomposition of T ⊕ T ∗ into V+ ⊕ V− makes Cli� (T ⊕ T ∗) isomor-
phic with the twisted tensor product Cli� (V+)⊗̂Cli� (V−). Furthermore we have that
(V±, g±) is isometric to (T,±g) via the isometries

πb+ = e2b ◦ π+, π+ : x ∈ T 7→ x⊕ g(x) ∈ D+,

πb− = e2b ◦ π−, π− : x ∈ T 7→ x⊕−g(x) ∈ D−.
(4.41)

We obtain an isomorphism by extending

ιb : x⊗̂y ∈ TC⊗̂TC ⊂ Cli� C(T, g)⊗̂Cli� C(T,−g) 7→ ιb(x⊗̂y) = πb+(x) • πb−(y).
(4.42)

The complexi�cation Cli� C(T,±g) ∼= Cli� (T ⊗C, gC) is isomorphic to End(∆) if the
dimension n is odd and to End(∆)⊕End(∆) if n is even. The module ∆ is the space
of spinors and in the latter case it can be decomposed into the irreducible Spin(2m)-
representations ∆±. Moreover, it carries a Spin(n)-invariant hermitian inner product
for which Cli�ord multiplication is skew. By convention, we take the �rst argument to
be conjugate-linear. In all dimensions, there exists a conjugate-linear endomorphism
A of ∆ such that

A(x ·Ψ) = (−1)n(n−1)/2x · A(Ψ), (4.43)

and in particular, it is Spin(n)-equivariant. Moreover, A reverses the chirality for
n = 2m, m odd [158]. We can inject ∆ ⊗ ∆ into Λ∗ in an Spin(n)-equivariant way
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by associating with the product of two spinors ΨL ⊗ ΨR, where ΨL/R ∈ Spin(n), the
form

[ΨL ⊗ΨR](X1, . . . , Xn) = (A(ΨL), (X1 ∧ . . . ∧Xn) ·ΨR) . (4.44)

This is an isomorphism for n even. In the odd case, we obtain an isomorphism
by concatenating [· , ·] with projection on the even or odd forms, which we write as
[· , ·]ev,od. The b-�eld can be accounted for by de�ning

[· , ·]b := eb ∧ [· , ·]. (4.45)

Let ∼ be the involution de�ned by ±id on Λev,od. Then we have the following relations

[x ·ΨL ⊗ΨR]b = (−1)n(n−1)/2ιb(x⊗̂1) • [ΨL ⊗ΨR]b ,

[ΨL ⊗ y ·ΨR]b = ιb(1⊗̂y) • ˜[ΨL ⊗ΨR]b. (4.46)

This statement can be proven along the lines of [160]. Let us �x an orthonormal basis
e1, . . . , en of (T, g). By de�nition and the usual rules for Cli�ord algebras, we get

[ek ·ΨL ⊗ΨR] =
∑

I

(A(ek ·ΨL), eI ·ΨR) eI

= (−1)n(n−1)/2+1
∑

I

(A(ΨL), ek · eI ·ΨR) eI

= (−1)n(n−1)/2+1
∑

I

(A(ΨL), (−ekxeI + ek ∧ eI) ·ΨR) eI

= (−1)n(n−1)/2

(∑
k∈I

(A(ΨL), ekxeI ·ΨR) ek ∧ (ekxeI)−

∑
k 6∈I

(A(ΨL), ek ∧ eI ·ΨR) ekx(ek ∧ eI)

)
= (−1)n(n−1)/2π+(ek) • [ΨL ⊗ΨR]. (4.47)

The proof for the second equation is completely analogous.

4.5.1 Generalised Kähler structures

Before considering reductions of structure groups in general in the next section, we
would like to give one important example, that we use later for the description of
mirror symmetry for topological sigma models.

Let us take a manifold which carries a generalised complex structure J1 that commutes
with a generalised metric G. We can de�ne a second generalised complex structure by

J2 := GJ1. (4.48)

One can easily check that this indeed ful�lls the conditions for a generalised complex
structure. Since G2 = 1 and J 2

1 = −1, we have J 2
2 = −1 and J ∗

2 = J ∗G∗ = −J2.
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Conversely, a pair (J1,J2) of commuting generalised complex structures de�nes a
generalised metric via

G = −J1J2. (4.49)

By de�nition a generalised Kähler structure consists of two commuting generalised
complex structures and a generalised metric, that ful�ll (4.49). The structure group
SO(n, n) is thereby reduced to U(n/2)× U(n/2).

The relation to an ordinary Kähler structure can be shown as follows. An ordinary
Kähler structure consists of a metric g, a Kähler form ω and a complex structure J ,
satisfying

ω = gJ. (4.50)

By embedding J and ω into generalised complex structures, according to (4.28)
and (4.29) as

J1 =

−J 0

0 J∗

 , J2 =

0 −ω−1

ω 0

 , (4.51)

we obtain using (4.50),

G = −J1J2 =

0 g−1

g 0

 , (4.52)

which we recognise from (4.34) as a simple example of a generalised metric.

4.5.2 Generalised G-structures

In the last sections we have already discussed a reduction of the structure group of
T ⊕ T ∗. Let us consider general reductions to a group GL × GR, where we already
implied that a metric splitting is possible, such that we have a generalised metric
G=̂(g, b). Furthermore we want to assume that we have two chiral spinors ΨL and
ΨR, which reduces the structure group from Spin(n) to GL and GR, respectively. We
assume that GL,R acts irreducibly on Rn via the induced vector representation.

There are two di�erent possibilities to de�ne a GL×GR structure, which by de�nition
is a reduction from the Spin+(n, n)-�bre bundle to a GL × GR-�bre bundle. We can
choose a reduction to GL ×GR by GL ×GR invariant spinors S±, or by a generalised
metric and two T -spinors ΨL,R.

It is a remarkable fact that we can represent any GL × GR-invariant spinor as a
decomposable bispinor: Assume that we are given a GL×GR-invariant pair of spinors.
This induces a reduction from Spin+(n, n) to GL × GR. Projecting the inclusion
GL × GR ⊂ Spin(n) × Spin(n) down to SO+(n, n) gives rise to a metric splitting
V+ ⊕ V− where V+,− carries in addition a GL,R-structure. Pulling this structure back
to T via the isometries πb± (4.41) gives rise to a GL,R-structure inside the SO(n)-�bre
bundle associated with the induced metric. Moreover, the inclusions GL,R ⊂ SO(n)
can be lifted to Spin(n) so that we obtain a spin structure which admits reductions
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to GL and GR. As a result there are, on top of the generalised metric (g, b), the
invariant spinors associated with GL and GR. By invariance, the T ⊕ T ∗-spinors
([ΨL⊗ΨR]b, [A(ΨL)⊗ΨR]b) must coincide with the GL×GR-invariant pair of spinors
(up to a universal scalar). Interestingly, these T ⊕ T ∗-spinors are all self-dual for g̃ in
the following sense. A Riemannian volume form acts on chiral spinors by

volg ·Ψ± = ±(−1)m(m+1)/2(−i)mΨ±, (4.53)

for Ψ± ∈ ∆±, n = 2m and by

volg ·Ψ = (−i)m+1Ψ, (4.54)

for n = 2m+ 1. Therefore,

g̃ • [ΨL ⊗ΨR]b = [ΨL ⊗ volg ·ΨR]b = (−1)m(m+1)/2(−i)m[ΨL ⊗ΨR]b (4.55)

for n = 2m and

g̃ • [ΨL ⊗ΨR]b = [ΨL ⊗ volg ·ΨR] = (−i)m+1[ΨL ⊗ΨR]b (4.56)

for n = 2m+ 1.

Note that in low dimensions the group Spin(n) acts transitively on the sphere of
its spin representation. As a result, there is only one orbit of the form Spin(n)/G
and therefore any GL ×GR-structure is actually a G×G-structure or generalised G-
structure, following the language of [115, 160, 161]. For instance, we �nd generalised
SU(3)- an G2-structures in dimension 6 and 7 and generalised Spin(7)-structures in
dimension 8 and 9, the highest dimension for which the spin group acts transitively.
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Chapter 5

Applications

Having described the basic concepts of generalised geometry in the last chapter, we
are now going to give two applications of this concept to string theory. Very soon
after its mathematical formulation it has become clear, that generalised geometry can
be used to deepen our understanding of the spaces used to compactify string theory
to four dimensions beyond the realm of manifolds with SU(3) structure. This is based
on two basic observations. First of all the B-�eld, elementary ingredient of the zero
mode spectrum in the NS-NS sector of type II string theory, is embedded in a very
natural way. Secondly, generalised Kähler structures, introduced in section 4.5.1, have
been proven to be equivalent to a bi-hermitian geometry. This geometry is important
for the analysis of nonlinear sigma models, since it has been found that it is the
most general geometry of a target space manifold for a nonlinear sigma model with
N = (2, 2) world-sheet supersymmetry.

In the �rst section we introduce a description of T-duality in the framework of gener-
alised geometry. We formulate the transformation laws as the action of a mapM in
the T ⊕ T ∗ basis and show how it acts on pure spinors. In section 5.2 we apply this
reasoning to generalised Kähler structures. We derive the mirror symmetry transfor-
mation of the two generalised complex structures in the T ⊕ T ∗ picture and give an
alternative description in terms of the spinors associated to the four maximal isotropic
subbundles.

In section 5.3, we de�ne generalised topological sigma models with target spaces that
carry a generalised Kähler structure. We show that the well-known topological A- and
B-models can be found as special cases in the generalised theory. Using the results of
section 5.1, we explore the action of mirror symmetry on the generalised topological
sigma models. We verify explicitly that the generalised complex structures of the
A- and B-model get exchanged by this action. Section 5.4 deals with topological D-
branes and we verify that the boundary conditions for topological A- and B-branes
are interchanged under the action of mirror symmetry.

Section 5.5 deals with an analysis of the calibration conditions for cycles wrapped by
D-branes in generalised complex spaces. We make use of the generalised G-structures
introduced in the last chapter and analyse the supersymmetry conditions for D-branes
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in the generalised framework. This leads us to the notion of generalised calibrations,
which are a natural generalisation of the known calibrations for D-branes in type II
string theory. In the last part of this section we investigate the action of T-duality on
the generalised calibration conditions.

The content of this chapter is based on [49] and [94].

5.1 T-duality and mirror symmetry

Following the reasoning of [154], we would like to describe mirror symmetry as a
combination of three T-dualities in a T 3-�brated manifold. The formulation of T-
duality and mirror symmetry along these lines in the framework of generalised complex
geometry has been studied in [114, 14, 94]. We apply the results of this section in the
following to topological sigma models and generalised calibrations.

Let us start with a generalised metric G=̂(g, b) on the vector space T ⊕ T ∗ and pick a
non-trivial one-form θ. Let X be the vertical vector �eld (i.e. the projection of X to
the kernel of θ is trivial) such that θ(X) = 1. We can then extend (X, θ) to a basis
x1, . . . , xn = X of T with dual basis x1, . . . , xn = θ. Consequently, x ⊕ θ is of unit
norm and thus M̃θ = X ⊕ θ is an element of Pin(n, n). Its projection to O(n, n)
yields the re�ectionMθ along the hyperplane orthogonal to X ⊕ θ. With respect to
the coordinates (xi, x

j) the matrix ofMθ is given by

Mθ =

 A B

C D

 =


idn−1 0

0 −1

0 idn−1

−1 0

 . (5.1)

Conjugation of G by Mθ yields another generalised metric GT induced by (gT , bT ).
Calculating these quantities in the �xed basis above yields the well-known Buscher
rules [35, 36] (see also [108, 118]).

Let us show this in detail. With respect to the basis xi, x
j, the data (gT , bT ) are given

by

gT
kl = gkl − 1

gnn
(gkngnl + bknbnl), gT

kn = − 1
gnn
bkn, gT

nn = − 1
gnn

bTkl = bkl − 1
gnn

(gknbnl + bkngnl), bTkn = − 1
gnn
gkn.

(5.2)

In particular, we have gT = M∗g where

M =

 id 1
q
(u− v)

0 1
q

 . (5.3)
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This can be proven as follows. By de�nition, we have

GT =

 −g−1T bT g−1T

gT − bTg−1T bT bTg−1T

 =Mθ

 −g−1b g−1

g − bg−1b bg−1

Mθ (5.4)

and therefore

g−1T = Ag−1D − Ag−1bB +B(g − bg−1b)B +Bbg−1D. (5.5)

With respect to the splitting 〈x1, . . . , xn−1〉⊕Rθ, the tensors g, g−1 and b are schemat-
ically given by

g =

 g v

vtr q

 , g−1 =

 h w

wtr p

 , b =

 b u

−utr 0

 . (5.6)

We have to show that

gT =

 g − 1
q
(vvtr − uutr) 1

q
u

1
q
utr 1

q

 , bT =

 b− 1
q
(uvtr − vutr) 1

q
v

−1
q
vtr 0

 . (5.7)

From (5.5) we gain

g−1T =

 h −hu
−utrh q + utrhu

 (5.8)

which is the inverse of gT as given in (5.2). For instance, the upper left hand block is

gh− 1

q
vvtrh+

1

q
uutrh− 1

q
uutrh = id− vwtr + vwtr = id, (5.9)

where we used the relations gh+vwtr = id and vtrh+qwtr = 0 coming from gg−1 = id.

To derive the matrix expression for bT we consider

bTg−1T = −Cg−1bB + Cg−1D +D(g − bg−1b)B +Dbg−1D

=

 bh+ uwtr v − bhu− uwtru

wtr −wtru

 . (5.10)

Multiplying from the right by gt we �nd precisely bt. Again, we prove this for the
upper left hand block. It is given by

bh(g − 1

q
vvtr +

1

q
uutr − 1

q
uutr) + uwtr(g − 1

q
vvtr +

1

q
uutr − 1

q
uutr) +

1

q
vutr

= b− bwvtr + bwvtr − puvtr − 1

q
u(1− qp)vtr +

1

q
vutr

= b− 1

q
uvtr +

1

q
vutr

= b− 1

q
(uvtr − vutr), (5.11)

using the relations wtrg+pvtr = 0 and hv+qw = 0, which can be deduced again from
gg−1 = id.
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5.1.1 T-duality action on spinors

Let us consider the action of M̃θ on spinors. The T-dual of a spinor ρ can be obtained
from

ρT = M̃θ • ρ. (5.12)

Note that M̃θ preserves the Spin(n, n)-orbit structure and de�nes an isometry be-
tween (Λev,od,Qg̃) and (Λod,ev,Qg̃T ). For instance, consider the case of a GL × GR-
invariant spinor

ρ = e−φ[ΨL ⊗ΨR]b ⊗
√
volg. (5.13)

Since we deal with two di�erent metrics, it is essential to keep track of the volume
form de�ning the identi�cation between spinors and forms. Its T-dual is also GL×GR-
invariant, but now the stabiliser gives rise to the generalised metric (gT , bT ). Therefore
we can write the T-dual of (5.13) as

ρT = e−φT

[ΨT
L ⊗ΨT

R]bT ⊗
√
volgT . (5.14)

From the de�nition of the T-dual, we obtain (−Xx+θ∧)[ΨL⊗ΨR]b =‖X‖ [ΨT
L⊗ΨT

R]bT

since ‖X‖
√
volg =

√
volgT .

Since T-duality interchanges the chirality of the T ⊕ T ∗�spinor, a decomposable
bispinor of spinors of equal (opposite) chirality maps to a bispinor of opposite (equal)
chirality if n is even, re�ecting the fact that T-duality interchanges type IIB and type
IIA string theory.

5.1.2 Geometric aspects of T-duality

Let us have a look at a geometrical description of T-duality. We consider a special
class of integral three-forms (called �T-dualisable�), following [31].

We assume that Mn is the total space of a principal S1-�bre bundle p : Mn →
Nn−1, endowed with a gauge form θ. Moreover, M comes along with an S1-invariant
generalised structure (g, b) and a calibration ρ which is also invariant under the S1-
action. Take X to be the vertical vector �eld of θ such that Xxθ = 1 and consider
the curvature two-form ω which we regard as a two-form on N , i.e. dθ = ω (we do
not write the pull-back p∗ explicitly in the following). Let H be a closed, S1-invariant
three-form representing a cohomology class in H3(M,Z) such that ωT = −XxH is
also integral. Integrality of ωT ensures the existence of another principal S1-bundle
MT over N , the T-dual of M de�ned by the choice of a connection form θT with
dθT = ωT . Writing H = θ ∧ ωT −H for some three-form H ∈ Ω3(M), we de�ne the
T -dual of H by

HT = θT ∧ ω −H. (5.15)

T-duality consists then in applying the mapMθ or M̃θ, followed by the substitution
θ → θT . For instance, decomposing

ρ = ρ0 + θ ∧ ρ1, (5.16)
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we have ρT = −ρ1 + θT ∧ ρ0. To indicate the coordinate-change, we also use the
notation ρT ∼= M̃θ, meaning that the left hand side coincides with the right hand side
upon substituting θ by θT . Explicitly, we obtain for the T-dual of (5.16)

ρT = [ρT ]gT ⊗
√
volgT

∼= (−Xx[ρ]g + θ ∧ [ρ]g)⊗
√
volg, (5.17)

such that ‖X‖ [ρT ]gT
∼= −Xx[ρ]g + θ ∧ [ρ]g.

For later application in section 5.5.6, we establish the following relation

XxdHC − θ ∧ dHC ∼= dHT (−XxC + θT ∧ C), (5.18)

where C = C0 + θ ∧ C1 is a di�erential form of mixed degree that is S1 invariant. To
obtain this relation, we note that the S1-invariance of C yields dC = dC0 + ω ∧C1 −
θ ∧ dC1 with dC0 + ω ∧ C1 ∈ Ω∗(N).

As a particular case, we �nd for an S1-invariant spinor ρ that

XxdH [ρ]g − θ ∧ dH [ρ]g ∼= dHT ‖X‖ [ρT ]gT . (5.19)

5.2 The mirror map for generalised Kähler struc-

tures

Generically, the two generalised complex structures of a generalised Kähler structure
(see section 4.5.1) are given in the T ⊕ T ∗ basis by

J1/2 =
1

2

J+ ± J− −(ω−1
+ ∓ ω−1

− )

ω+ ∓ ω− −(JT
+ ± JT

−)

 , (5.20)

where the complex structures J+ and J− are independent sections (∀p ∈ M6) in the
twistor space ZM6. Note that we always assume integrability for the two complex
structures. We can also de�ne a generalised metric by G = −J1J2.

Suppose that we take a trivial �bre bundle M6 = T 6 with �bre F = T 3 over the base
space B = T 3, thus M6 = T 3 ⊕ T 3. Therefore we have the following splitting of the
generalised tangent space:

T ⊕ T ∗ = TB ⊕ TF ⊕ T ∗B ⊕ T ∗F . (5.21)

This choice is for computational convenience, but one can consider a more generalM6

as a nontrivial T 3 torus �bration over a general three dimensional base space without
changing the essence of our argument [154]. Furthermore, we want to consider only
generalised complex structures which are adapted in the sense of [14], i.e.

J1/2 : TF ⊕ T ∗F → TB ⊕ T ∗B. (5.22)
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Respecting additionally the algebraic properties of the generalised complex structures
we take

J+ ± J− =

 0 −(J̃+ ± J̃−)

J̃+ ± J̃− 0

 , (5.23)

ω+ ∓ ω− =

 0 −(ω̃+ ∓ ω̃−)

ω̃+ ∓ ω̃− 0

 . (5.24)

Note that J̃+, J̃− and ω̃+, ω̃− are not complex structures and Kähler forms, respec-
tively. Note also that to satisfy the properties I2

± = −1 and ωT
± = −ωT

± one has to

require Ĩ2
± = 1 and ω̃T

± = ω̃±.

Let us write the speci�c generalised complex structures explicitly as

J1/2 =
1

2


0 −(J̃+ ± J̃−) 0 −(ω̃−1

+ ∓ ω̃−1
− )

J̃+ ± J̃− 0 ω̃−1
+ ∓ ω̃−1

− 0

0 −(ω̃+ ∓ ω̃−) 0 −(J̃T
+ ± J̃T

−)

ω̃+ ∓ ω̃− 0 J̃T
+ ± J̃T

− 0

 . (5.25)

By adopting the idea of [154] we describe mirror symmetry as three T-dualities along
the T 3-�bre over a three-dimensional base space. Therefore we formulate mirror map
M as a map which acts on the generalised tangent bundle T ⊕ T ∗ as a bundle iso-
morphism [14, 114]. Moreover, this isomorphism should have the property of an
involution, M2 = 1. The mirror map in the generalised tangent space induces nat-
urally a map for the generalised Kähler structure, consisting of mirror transformed
generalised complex structures Ĵ1/2 and a mirror transformed generalised metric Ĝ.

Let us de�ne the mirror map such that it acts as an identity on TB, T
∗
B and �ips TF

and T ∗F :

M : TB ⊕ TF ⊕ T ∗B ⊕ T ∗F → TB ⊕ T ∗F ⊕ T ∗B ⊕ TF , (5.26)

explicitly

M =


id3

−1

−1

−1

 . (5.27)

We recognise this as the combination of three T-dualities de�ned according to (5.1)
in the direction of the �bres TF .

We get a conjugated generalised complex structure in the following way,

Ĵ1/2 =M◦J1/2 ◦M−1 : TB ⊕ T ∗F ⊕ T ∗B ⊕ TF → TB ⊕ T ∗F ⊕ T ∗B ⊕ TF . (5.28)
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Applying this construction explicitly we get

Ĵ1/2 =
1

2


0 −(ω̃−1

+ ∓ ω̃−1
− ) 0 −(J̃+ ± J̃−)

ω̃+ ∓ ω̃− 0 J̃T
+ ± J̃T

− 0

0 −(J̃T
+ ± J̃T

−) 0 −(ω̃+ ∓ ω̃−)

J̃+ ± J̃− 0 ω̃−1
+ ∓ ω̃−1

− 0

 . (5.29)

To compare Ĵ1/2 with J1/2 we reinterpret Ĵ1/2 as a map TB ⊕ TF ⊕ T ∗B ⊕ T ∗F →
TB ⊕ TF ⊕ T ∗B ⊕ T ∗F instead of (5.28). We then use the �ber metric gF and its inverse
and we write them back into Ĵ1/2. By using the identity ω = gI, we get �nally

Ĵ1/2 =
1

2


0 −(J̃+ ∓ J̃−) 0 −(ω̃−1

+ ± ω̃−1
− )

J̃+ ∓ J̃− 0 ω̃−1
+ ± ω̃−1

− 0

0 −(ω̃+ ± ω̃−) 0 −(J̃T
+ ∓ J̃T

−)

ω̃+ ± ω̃− 0 J̃T
+ ∓ J̃T

− 0

 , (5.30)

where now Ĵ1/2 are again maps

Ĵ1/2 : TB ⊕ TF ⊕ T ∗B ⊕ T ∗F → TB ⊕ TF ⊕ T ∗B ⊕ T ∗F . (5.31)

This is the mirror transformed complex structure. We see immediately that mirror
symmetry interchanges the two generalised complex structures,

J1/2 ←→ Ĵ1/2 = J2/1

(J+, J−) ←→ (Ĵ+, Ĵ−) = (J+,−J−) .
(5.32)

WhenM6 is a nontrivial torus �bration, using the same remark above, also the mirror
manifold M̂6 is a nontrivial torus �bration.

This result can be equivalently described in terms of pure spinors and their associated
maximally isotropic subbundles. This will be the topic of the following section.

5.2.1 Description in terms of pure spinors

Let us assume we have a generic generalised Kähler structure, as de�ned in sec-
tion 4.5.1, on a 6-manifold M6. With the two commuting integrable generalised
complex structures, J1/2, we get a decomposition of (T ⊕T ∗) into a direct sum of four
subbundles. As we have seen in section 4.5, the choice of a generalised metric leads
to a decomposition

T ⊕ T ∗ = V+ ⊕ V−. (5.33)

In the following we are in fact dealing only with the metric part of these spaces,
denoted by D± in section 4.5. As explained there, the introduction of a non-trivial
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b-�eld can be simply accounted for by an application of the b-�eld transformation.
Since this transformation does not change the formalism, we set b = 0, but keep the
notation V±, to indicate that everything holds in the general case. The elements of
V± = D± can be written as

V+ = {X + g(X)|X ∈ T}
V− = {X − g(X)|X ∈ T}. (5.34)

In this case the generalised metric G is purely Riemannian,

G =

0 g−1

g 0

 . (5.35)

On the other hand, since the generalised complex structures commute with G, we can
also decompose the generalised tangent bundle with respect to J1/2,

J1 = π|−1
V+
J+ π P+ + π|−1

V−
J− π P− ,

J2 = π|−1
V+
J+ π P+ − π|−1

V−
J− π P− ,

(5.36)

where π : V± → T is a projection.

We denote the i eigenbundle of J1/2, or equivalently the graphs of the maps −iJ1/2,
by W1/2, respectively,

W1 = {X + gX|X ∈ T 1,0
+ } ⊕ {X − gX|X ∈ T

1,0
− } ,

W2 = {X + gX|X ∈ T 1,0
+ } ⊕ {X − gX|X ∈ T

0,1
− } . (5.37)

The generalised tangent bundle decomposes therefore in

T ⊕ T ∗ = W1 ⊕W1 = W2 ⊕W2. (5.38)

Since the two generalised complex structures commute we can decomposeW1/2 further
by J2/1. With the indices± we indicate the eigenvalues±i corresponding to the second
splitting,

W1 ⊕W1 = W+
1 ⊕W−

1 ⊕W+
1 ⊕W−

1 , (5.39)

where

W+
1 = {X + gX|X ∈ T 1,0

+ } ,
W−

1 = {X − gX|X ∈ T 1,0
− } ,

W+
2 = {X + gX|X ∈ T 1,0

+ } ,
W−

2 = {X − gX|X ∈ T 0,1
− } . (5.40)

We see that W2 = W+
1 ⊕W−

1 and

V± = W±
1/2 ⊕W

±
1/2 . (5.41)
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These observations show that by changing J− → −J− we do not a�ect the C+-bundle
and, moreover, only interchange holomorphic with antiholomorphic objects with re-
spect to J− in the C−-bundle. We �nally obtain the result that mirror symmetry

interchanges the subbundles W−
1 ↔ W−

1 .

Since our subbundles W±
1/2 are maximally isotropic we can generate them by pure

spinor lines. In the following we show that the mapping W±
1/2 is equivalent to a

mapping of the associated pure spinors.

It can be proven that W+
1 ,W

−
1 can be described by the following four pure spinor

lines ρi, i ∈ {1, . . . , 4}

0 = W+
1 • ρ1 = W+

1 • Ω
(3,0)
+ ,

0 = W−
1 • ρ2 = W−

1 • Ω
(3,0)
− ,

0 = W+
1 • ρ3 = W+

1 • ei ω+ ,

0 = W−
1 • ρ4 = W−

1 • e−i ω− ,

(5.42)

where Ω
(3,0)
± ∈ Λod are holomorphic top degree forms with respect to J+, J− and

ω± ∈ Λev are the Kähler forms.

We choose an appropriate local trivialisation for the forms in terms of local complex
coordinates with respect to either J+ or J−. We split them into an imaginary part
yi, i ∈ {1, 2, 3}, and a real part xα, α ∈ {1, 2, 3}, which are the coordinates in the
base and the �bre, respectively.

ei ω+ = 1 + i dxidyi + dx12dy12 + dx23dy23 + dx13dy13 + i dx123dy123 , (5.43)

Ω
(3,0)
+ = (dx1 + i dy1) ∧ (dx2 + i dy2) ∧ (dx3 + i dy3) . (5.44)

The action of the mirror map acting on the pure spinor lines is given explicitly by

M̃ : Λev/od → Λod/ev (5.45)

ρ→ (∂X3 + dx3) • (∂X2 + dx2) • (∂X1 + dx1) • ρ , (5.46)

where TF = span{∂Xα}, T ∗F = span{dxα} and ρ ∈ Λ•.

Using the property that ∂Xαxdxβ = δα
β, we apply the mirror map to the pure spinors

ρi to get

ρ̂1 = M̃ • Ω
(3,0)
+ = ei ω+ ,

ρ̂2 = M̃ • Ω
(3,0)
− = ei ω− ,

ρ̂3 = M̃ • ei ω+ = −Ω
(3,0)
+ ,

ρ̂4 = M̃ • e−i ω− = −Ω
(3,0)
− .

(5.47)

Looking at the maximally isotropic bundles that are associated to the mirror trans-
formed pure spinors ρ̂i, i ∈ {1, . . . , 4}, we �nd that W+

1 is left unchanged by the map

M, but in the V−-bundle W
−
1 is exchanged with W−

1 . This is exactly the same result
we obtained in section 5.1.
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5.3 Topological sigma models

Topological sigma models [164], considerably simpler to analyse then the full nonlinear
sigma model, have been widely used to study aspects of mirror symmetry. Starting
from an N = (2, 2) supersymmetric theory on the world-sheet, they are obtained
by the so-called twisting. This twist consists of mixing the spin of the world-sheet
fermions with the U(1)-current, such that they get an integer spin. The motivation
to do this comes from the fact that global supersymmetry on the world-sheet cannot
be de�ned on a curved Riemann surface. This global supersymmetry is necessary to
make use of the localisation principle, that ensures that amplitudes can be calculated
relatively easy by considering only holomorphic or constant maps in the A- and B-
model case, respectively. There exist two di�erent models, the A- and the B-model,
because there are two di�erent ways to twist the underlying theory, using either the
vector or the axial part of the U(1)-current.

In the classical studies of N = (2, 2) theories it is implicitly assumed that the left- and
right-moving world-sheet fermions transform according to the same complex structure
J and the target space manifold is Kähler. As has been discovered in [84], this is not
the most general case, but one can use two di�erent complex structures for the left-
and right-moving fermions. This leads to a bi-hermitian geometry described in terms
of a metric g, the two complex structures J+ and J−, and a three-form H. It has been
shown in [103] that this is equivalent to one generalised Kähler structure, de�ned in
section 4.5.1, that is twisted by H. The twist of the N = (2, 2) sigma model in the
more general case of J+ 6= J− was performed in [120, 122] yielding a generalised notion
of topological sigma models.

5.3.1 De�nition of generalised topological sigma models

Let us give a brief formulation of the topological sigma models in the generalised
formalism. We start with the two-dimensional nonlinear sigma model in theN = (1, 1)
super�eld formalism. Using bosonic coordinates σ and fermionic coordinates θ and a
chiral super�eld Φ, we can write this as

S =
1

2

∫
d2σ d2θ (g +B)(D+Φ, D−Φ), (5.48)

where the derivatives D± are given by

D± =
∂

∂θ±
+ iθ±∂±, (5.49)

using the partial derivatives ∂±, which are de�ned as

∂± := ∂0 ± ∂1 . (5.50)

The N = (1, 1) SUSY transformations are generated by Q±, which read

Q
(1)
± :=

∂

∂θ±
− iθ±∂± . (5.51)
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We can expand the chiral super�eld Φ in components as

Φ = φ+ θ+ψ+ + θ−ψ− + θ−θ+F. (5.52)

Since we want to obtain a theory with N = (2, 2) supersymmetry on the world-sheet,
we have to de�ne an additional supersymmetry. This can be done introducing two
complex structures J± and the generators

Q
(2)
± := J±D±. (5.53)

This is a well de�ned additional (1, 1) supersymmetry, if the J± are a pair of integrable
almost complex structures and the metric g is hermitian with respect to both, J+ and
J−. Furthermore the almost complex structures have to be covariantly constant with
respect to the covariant derivatives with connection

Γa
±bc := Γa

bc ± gadHdbc, (5.54)

where Γ is the Levi-Civita connection. A non-trivial H-�eld modi�es this connection
di�erently for ψ+ and ψ−. We get the following relation between the two connections

Γa
+ bcψ

b
+ψ

c
− = −Γa

− bcψ
b
−ψ

c
+. (5.55)

Acting with the two supersymmetries on the super�eld (5.52) we can write the vari-
ations in components as

δ
(1)
+ φ = ψ+ , δ

(1)
− φ = ψ− ,

δ
(1)
+ ψ+ = −i∂+φ , δ

(1)
− ψ+ = F ,

δ
(1)
+ ψ− = −F , δ

(1)
− ψ− = −i∂−φ ,

δ
(2)
+ φ = J+ψ+ , δ

(2)
− φ = J−ψ− ,

δ
(2)
+ ψ+ = iJ+∂+φ , δ

(2)
− ψ+ = J−F ,

δ
(2)
+ ψ− = −J+F , δ

(2)
− ψ− = iJ−∂−φ .

(5.56)

The auxiliary �eld F can be integrated out, using it's equations of motion,

F a = Γa
+bcψ

b
+ψ

c
−. (5.57)

We de�ne the following combinations of the supersymmetry generators1.

Q+ = 1
2
(Q

(1)
+ − iQ

(2)
+ ) , Q+ = 1

2
(Q

(1)
+ + iQ

(2)
+ ) ,

Q− = 1
2
(Q

(1)
− − iQ

(2)
− ), Q− = 1

2
(Q

(1)
− + iQ

(2)
− ) .

(5.58)

1These de�nitions correspond to those in [111].
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qV qA s sA sB

P+ψ+ −1 −1 −1
2
−1 −1

P+ψ+ +1 +1 −1
2

0 0

P−ψ− −1 +1 +1
2

0 +1

P−ψ− +1 −1 +1
2

+1 0

Table 5.1: Charges of the fermionic �elds before and after the twist. qV/A denote the vector

and axial charges, respectively. s is the spin before the twist and sA/B are the spins after

performing an A or B twist. The projection operators P are de�ned in (5.60).

Up to this point we are dealing with an ordinary nonlinear sigma model. To obtain a
topological theory, we have to twist the spins of the world-sheet fermions. Depending
on whether we use the vector or axial part of the U(1) current to perform the twist,
we obtain the topological A- or B-model [164]. The charges of the �elds before and
after the twist are listed in table 5.1, where the fermionic spins after performing an A
or B twist are given by

sA/B = s+
1

2
qV/A. (5.59)

In the table we also used projectors on the holomorphic and antiholomorphic parts of
the �elds with respect to the two complex structures J±. These are de�ned as

P± = 1
2
(1− iJ±), P± = 1

2
(1 + iJ±). (5.60)

5.3.2 BRST operators

After the twist we obtain fermionic �elds with spin 0 and spin 1. We can use the spin
0 �elds to construct a BRST operator. As BRST operators for the generalised A- and
B-model we take therefore2

QA := Q+ +Q−, QB := Q+ +Q−, (5.61)

which act on the scalar �elds of the twisted models like

δAφ = P+ψ+ + P−ψ− , δBφ = P+ψ+ + P−ψ− ,

δAP+ψ+ = Γ+P+ψ+P−ψ−, δBP+ψ+ = Γ+P+ψ+P−ψ−,
δAP−ψ− = Γ−P−ψ−P+ψ+, δBP−ψ− = Γ−P−ψ−P+ψ+.

(5.62)

We can rewrite the BRST operator (5.61) in the T ⊕ T ∗ picture. To do so we de�ne

2Note that in [164] a di�erent de�nition for the world sheet fermions is used, which leads to a
di�erent BRST operator for the A-model, QA = Q+ + Q−.
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a fermionic basis

ψ := (ψ+ + ψ−) ∈ T, ρ := g(ψ+ − ψ−) ∈ T ∗, Ψ :=

 ψ

ρ

 . (5.63)

Using this notation we can write the BRST operators of the generalised A- and B-
model as

QA =

〈 ∂1φ

g∂0φ

 , (1 + iJ2)Ψ

〉
,

QB =

〈 ∂1φ

g∂0φ

 , (1 + iJ1)Ψ

〉
, (5.64)

where 〈·, ·〉 is the natural product on T ⊕ T ∗, as de�ned in (4.2).

In this language the relevant BRST variations (5.62), namely those that vanish be-
cause of (5.55), take the simple form

δA
1
2
(1 + iJ1)Ψ = 0, δB

1
2
(1 + iJ2)Ψ = 0. (5.65)

The classical U(1)A/V symmetry can be broken by quantum e�ects. This anomaly is
given in terms of the �rst Chern class of the L1/2 bundle for the B/A model [122]. The
cancellation of this anomaly constraints the target space geometry via c1(L1/2) = 0.

5.3.3 The action of mirror symmetry

It is well known that mirror symmetry exchanges the topological A-model on one
Calabi-Yau with the B-model on the mirror Calabi-Yau, characterised by the exchange
of complex and symplectic moduli. We want to apply the mirror map as de�ned in
sections 5.1 and 5.2.1 to the generalised B-model with target spaceM6 and show that
it is mapped to the generalised A-model with the mirror target space M̂6.

In section 5.2 we found thatM : J1 → J2, such thatM : QB → QA. We also know
that the complex structures (J+, J−) are mapped to (J+,−J−) under the mirror map
and equation (5.40) tells us that M : L1 → L2. Therefore, M : c1(L1) → c1(L2)
and the anomaly cancellation of the generalised B-model gets mapped to that of the
generalised A-model.

The next step is to show that the observables of the generalised B- and A-model are
mirrors of each other. We show this for the local observables of the closed topological
sector, but �rst let us remember how they were constructed in [120]. Following [164],
one has to construct scalar BRST invariant �eld con�gurations. Writing the BRST
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variations in the T ⊕ T ∗ bundle, we get3

δB/AΦ = Ψ1/2 :=
1

2
(1 + iJ1/2)Ψ ∈ L1/2 , Φ :=

 φ

gφ

 . (5.66)

The nilpotency properties δ2
B/A = 0 of the BRST variations then yield δB/AΨ1/2 = 0,

which was also obtained in (5.65). Thus, Ψ1/2 are the con�gurations we are looking
for in the generalised B/A-model. The space of observables is then given by

(Of )B/A = fa1···an(φ)Ψa1

1/2 · · ·Ψ
an

1/2 , (5.67)

which can be mapped to the exterior algebra bundle ΛkL
∗
1/2 ' ΛkL1/2 since f is skew

symmetric in the indices a. Performing the BRST variation of (Of )B/A, one realizes
that the map is actually an isomorphism,

{QB/A, (Of )B/A} = (OdL1/2
f )B/A , (5.68)

where dL1/2
= ∂+

L1/2
+ ∂−

L1/2
is the Lie algebroid derivative such that

dL1/2
: C∞(ΛkL1/2)→ C∞(Λk+1L1/2). (5.69)

SinceM : L1 → L2, the cohomologies of the di�erential complexes for the generalised
A- and B-models are mirror pairs.

We want to do the same for the generalised instantons [120]. The instantons are the
�xed points of the BRST transformations. Performing the Wick rotation ∂0φ→ i∂2φ
on the Riemann surface, one gets the instanton equations

δB/AΨ = (1− iJ1/2)

i∂2φ

g∂1φ

 = 0, (5.70)

from which we conclude that the instantons of the generalised B model are mapped
to those of the generalised A model under the mirror map.

5.4 Topological branes

Branes in the topological A- or B-model (A- or B-branes) can be de�ned by a gluing
matrix R : T → T , which encodes information about the mapping of left- and right-
moving fermions at the boundary ∂Σ of the worldsheet [2, 3]. The gluing conditions
read

ψ− = Rψ+. (5.71)

3Here Φ is an element of T ⊕ T ∗ and should not be confused with the chiral super�eld de�ned
in (5.48).
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In the generalised picture this translates to [166]

R : T ⊕ T ∗ → T ⊕ T ∗, RΨ = Ψ, (5.72)

where Ψ is de�ned in (5.63). R respects the natural metric 〈·, ·〉 on T ⊕ T ∗, squares
to one, i.e. R2 = 1, and anticommutes with G, i.e. G R+RG = 0.

In the physical framework the operator R contains the information about Dirichlet
and Neumann boundary conditions. It de�nes a smooth distribution D ⊂ T which
has rank equal to the dimension of the brane. In case of an integrable distribution we
even have a maximal integral submanifold D.
From a di�erent point of view, the above properties of R serve to consider the projec-
tion operator 1

2
(1 + R) to de�ne a special almost Dirac structure τ 0

D (a real, maximal
isotropic sub-bundle),

τ 0
D = TD ⊕ Ann(TD) ⊂ T ⊕ T ∗ , (5.73)

which is Courant integrable i� D is integrable.

The extension of R by a closed two-form F ∈ Ω2(D), dF = 0, on the submanifold D
corresponds to

τF
D = { 1

2
(1 +R)(X + ξ) = (X + ξ) : (X + ξ) ∈ TD⊕T ∗M |D , ξ|D = XxF } (5.74)

and is equivalent to the de�nition of a generalised tangent bundle given in [103]. This
gluing matrix is given by

R =

1

F 1

r
−rt

 1

−F 1

 =

 r

F r + rt F −rt

 , (5.75)

where r is an operator which carries the gluing information for the fermions (see [2, 3]).

Let us focus on the A/B branes in the corresponding A/B-model. This means that
the U(1) currents j± = ω±(ψ±, ψ±), ψ± ∈ T , have to ful�ll the matching conditions

0 = j+ ± j− =
1

2

〈
Ψ ,J2/1Ψ

〉
(5.76)

for the A- or B-model, respectively.

Moreover, combining this with the gluing conditions for the fermions, we obtain a
stability condition for R, or equivalently, a stability condition for τF

D . Using also
{G,R} = 0, one gets:

A branes: RJ1 = −J1R and RJ2 = J2R
B branes: RJ1 = J1R and RJ2 = −J2R.

(5.77)

We will call the (anti)commuting constraints ∓-stability with respect to a certain
generalised complex structure. Thus, the A/B-model is J −

1/2 stable and additionally
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J +
2/1 stable. This re�ects the fact that the generalized tangent bundle τF

D in the A/B
model splits into ±i eigenbundles of J2/1 or, in other words, it becomes a stable
subbundle of L2/1 ⊕ L2/1, respectively:

A/B-model: τF
D = τF +

D ⊕ τF −
D , w.r.t. L2/1 ⊕ L2/1. (5.78)

5.4.1 Transformation under mirror symmetry

Let us apply the mirror mapM, in the same way as for the topological models, on the
topological branes. The gluing operator R gets mapped to R̂ = MRM−1 and one
can show that the properties for R̂ are the same as forR. Again we takeM6 with a T 3

�bration, such that mirror symmetry interchanges Neumann with Dirichlet boundary
conditions in the �bre, being nothing else then three applications of T-duality.

The conditions on the U(1) currents get naturally exchanged, since we found in sec-
tion 5.2 that the generalised complex structures J1 and J2 get exchanged. It is
important to note however, that the stability conditions on the mirror symmetric side
have to be formulated in terms of the transformed gluing matrix R̂.

5.5 Generalised Calibrations

In this section we de�ne a special class of submanifolds that generalises the well-known
notion of a calibrated submanifold. This is a direct extension of the last section on
generalised topological D-branes, putting the notion of stability for generalised branes
in a mathematical context.

5.5.1 De�nition

Before we discuss the global notion, we �rst deal with the algebraic aspects of the
theory and assume to work over a real, n-dimensional space T ∼= Rn. Let us start
with the classical notion of calibrations and calibrated subplanes [107]. The data are
a Riemannian metric g on T ∼= Rn and a p-form ρp. Restricted to an oriented p-plane
j : Up ↪→ T , ρp becomes a volume form which can be compared in an obvious sense
with the Riemannian volume volU . One says that ρ

p de�nes a calibration i�

j∗ρp ≤ volU (5.79)

and the bound is met for at least one p-plane, which is said to be calibrated. Equiva-
lently, we can require g(ρ, volU) ≤ 1.

We immediately conclude from the de�nition that if ρ de�nes a calibration, so does
?gρ. If U is a calibrated plane with respect to ρ, then so is U⊥ with respect to
?gρ. Moreover, the calibration condition is GL(n)-equivariant in the sense that if
A ∈ GL(n) and ρ de�nes a calibration, then so does A∗ρ with respect to A∗g. If U is
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calibrated for ρ, then so is A(U) for A∗ρ. In particular, if ρ is G-invariant, then so is
the calibration condition. Therefore, the calibrated subplanes live in special G-orbits
of the Grassmannian Grp(T ).

Let us introduce an analogous concept for generalised metrics. The role of p-forms
is now assured by even or odd forms which we view as spinors for Spin(n, n). The
orbits of interest to us are given by the maximally isotropic subplanes. These can
be equivariantly identi�ed with lines of pure spinors, as explained in section 4.2.2.
For a generalised structure (g, b) a spinor ρev,od of even or odd parity is de�ned to
be a calibration, i� for any spinor ρU,F , induced by the pair (U, F ), consisting of an
oriented subspace U and a two-form F ∈ Λ2T ∗U , the inequality

〈ρ, ρU,F 〉 ≤ e−φ (5.80)

holds and there exists at least one pair for which the bound is met. This pair is said
to be calibrated by ρev,od.

The condition (5.80) is clearly Spin+(n, n)-equivariant, since if ρU,F is of unit norm
for Qg̃, then so is A•ρU,F for A• g̃•A−1. Hence ρ de�nes a calibration if and only A•ρ
does and a pair (U, F ) is calibrated for ρ if and only if the pair (UA, FA) associated
with A • ρU,F and its induced orientation is for A • ρ. Furthermore, g̃ is an isometry
for QG, so ρ de�nes a calibration if and only g̃ • ρ does; if (U, F ) is calibrated for ρ,
then the pair (Ug̃, Fg̃) associated with (−1)n(n−1)/2g̃ • ρU,F is calibrated for g̃ • ρ.

Let us show that this generalised calibration condition is the formal analogue of (5.79)
and make the appearance of the data (g, b) explicit. A spinor ρ ∈ Λev,od de�nes a
calibration if and only if for any pair (U, F ) with j∗ : U ↪→ T a p-dimensional oriented
subspace, the inequality

[e−F ∧ j∗ρ]p ≤ e−φ
√

det (j∗(g + b)− F )volU (5.81)

holds and is met for at least one pair (U, F ) which is then calibrated. The right hand
side of 5.81 can be recognised as the Dirac-Born-Infeld energy for D-branes.

To show that (5.81) holds, let us contract it with volU , which gives

g([e−F ∧ j∗ρ]p, volU) = ?[e−F ∧ ρ ∧ ?volU ]n

= 〈ρ, eF • ?̂volU〉
≤ e−φ

√
det (j∗(g + b)− F ). (5.82)

Furthermore, note that for j : U ↪→ T an oriented subspace and b ∈ Λ2T ∗ we have

g(eb ∧ ?volU , eb ∧ ?volU) = det (j∗(g + b)) = det (j∗(g − b)) . (5.83)

In particular, we have

Qg̃(e
F ∧ ?̂volU) = det(j∗g + F) = det(j∗g −F), (5.84)

where F = F − j∗b.
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As the determinant of a bilinear form is invariant under orthogonal transformations,
it is su�cient to show (5.83) for a special choice of an oriented orthonormal basis
e1, . . . , en. Since any leg of b inside U⊥ does not survive the wedging, b ∧ ?volU =
j∗b ∧ ?volU and we choose an orthonormal basis on U in such a way that j∗b =∑[p/2]

k=1 bke2k−1 ∧ e2k. Then

det (j∗(g − b)) = det (j∗(g + b))

=

[p/2]∏
k=1

(1 + b2k)

= 1 +

[p/2]∑
k=1

b2k +
∑

k1<k2

b2k1
· b2k2

+ . . .+ b21 · . . . · b2[p/2]. (5.85)

On the other hand

1

k!
j∗bk =

∑
l1<...<lk

bl1 · . . . · blke2l1−1 ∧ e2l1 ∧ . . . ∧ e2lk−1 ∧ e2lk , (5.86)

so that

g(
1

k!
j∗bk ∧ ?volU ,

1

k!
j∗bk ∧ ?volU) =

∑
l1<...<lk

b2l1 . . . b
2
lk
, 2k ≤ p. (5.87)

Summing yields precisely (5.85) and thus (5.83). (5.84) follows from (4.39).

In particular, the generalised notion of a calibration encapsulates the classical case.
Let ρq be a classical calibration for a Euclidean vector space (T, g) and U a calibrated
subspace. Then (U, 0) is calibrated with respect to ρ = ρq and the generalised metric
(g, b = 0).

5.5.2 Connection with G-structures

As for the classical case, calibrations can be de�ned from special geometric structures.
In order to make contact with the GL×GR-structures from section 4.5.2, we rephrase
the calibration condition in terms of T -spinors. For this, some preliminary work is
needed. To start, assume F = b = 0 and represent the isotropic subspace WU as the
graph of an isometry PU : D+ → D−, using the metric splitting T ⊕ T ∗ = D+ ⊕D−
(WU intersects the de�nite spaces D± trivially). If we choose an adapted orthonormal
basis e1, . . . , ep ∈ U , ep+1, . . . en ∈ U⊥, then the matrix of PU associated with the basis
d±k = π±(ek) = ek ⊕±g(ek) of D± is

PU =

 idp 0

0 −idn−p

 . (5.88)

Pulling this back via the isometries π± to T gives rise to the isometry

RU = π−1
− ◦ PU ◦ π+ : (T, g)→ (T,−g), (5.89)
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which we call the gluing matrix of U , since it encapsulates exactly the same informa-
tion as (5.71).

Its matrix representation with respect to an orthonormal basis adapted to U is (5.88).
Next we allow for a non-trivial b- and F -�eld and consider the isotropic space WU,F

which annihilates ρU,F . Here, we consider the graph P
b
U,F as a map V+ → V− which is

indicated by the superscript b. The associated gluing matrix Rb
U,F is then de�ned as

Rb
U,F = π−1

b− ◦ P
b
U,F ◦ πb+. (5.90)

Note that if we let F = F − j∗b, then e2bWU,F = {v ⊕ e2bPU,Fe
−2bv | v ∈ V+}, hence

P b
U,F = e2bPU,Fe

−2b and thus Rb
U,F = RU,F . With respect to an adapted basis for U , the

matrix of RU,F can be computed as follows. Changing, if necessary, the orthonormal

basis on U such that F =
∑[p/2]

k=1 fke2k−1 ∧ e2k.

e1 ⊕ f1e
2, e2 ⊕−f1e

1, . . . , ep+1, . . . , en. (5.91)

is a basis of WU,F by (4.22). Decomposing the �rst p basis vectors into the D±-basis
d±k = π±(ek) yields

2(e2k−1 ⊕ fke
2k) = d+

2k−1 + fkd
+
2k ⊕ d

−
2k−1 − fkd

−
2k

2(e2k ⊕−fke
2k−1) = −fkd

+
2k−1 + d+

2k ⊕ fkd
−
2k−1 + d−2k, (5.92)

while 2ek = d+
k ⊕−d

−
k for k = p+ 1, . . . , n. Written in the D±-basis we have

w+
2k−1 = d+

2k−1 + fkd
+
2k,

w+
2k = −fkd

+
2k−1 + d+

2k, k ≤ p,

w+
k = d+

k , k > p,

and w−
2k−1 = d−2k−1 − fkd

−
2k,

w−
2k = fkd

−
2k−1 + d−2k, k ≤ p,

w−
k = d−k , k > p.

(5.93)

The matrix RU,F is just (5.88). The change of base matrix for d+
k → w+

k is given
by the block matrix A = (A1, . . . , Ap, idn−p), where for (d+

2k−1, d
+
2k) → (w+

2k−1, w
+
2k),

k ≤ p,

Ak =

 1 fk

−fk 1

 . (5.94)

For w−
k → d−k it is given by the block matrix B = (B1, . . . , Bp, idn−p), where for

(d−2k−1, d
−
2k)→ (w−

2k−1, w
−
2k), k ≤ p,

Bk =

 1 −fk

fk 1

 . (5.95)
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Computing B ◦ (idp, idn−p) ◦ A−1 and pulling back to T via π± we �nally �nd

RU,F =

 (j∗g + F)(j∗g −F)−1 0

0 −idn−p

 (5.96)

with respect to some orthonormal basis adapted to U .

Using this insight, we can make the following statement: The element J−1(e−b • ρU,F )
lies in Spin(T, g). Moreover, its projection to SO(T, g) equals RU,F . This can be
shown as follows. Again let e1, . . . , en be an adapted orthonormal basis so that F =∑[p/2]

k=1 fke2k−1 ∧ e2k. Applying a trick from [16], we de�ne

arctan F̃ =
∑

k

arctan(fk)e2k−1 · e2k

=
1

2i

∑
k

ln
1 + ifk

1− ifk

e2k−1 · e2k ∈ spin(n) ⊂ Cli� (T ), (5.97)

and show that
J(exp(arctan F̃) · ?̂volU) = e−b • ρU,F ∈ Λ∗, (5.98)

where the exponential takes values in Spin(T ). Since the elements e2k−1 ·e2k, e2l−1 ·e2l

commute, exponentiation yields

earctan
eF

=
∏

k

earctan(fk)e2k−1·e2k

=
∏

k

(cos (arctan(fk)) + sin (arctan(fk)) e2k−1 · e2k)

=
∏

k

(
1√

1 + f 2
k

+
fk√

1 + f 2
k

e2k−1 · e2k

)

=
1∏

k(
√

1 + f 2
k )

(
1 +

∑
l

fle2l−1 · e2l +
∑
l<m

fl · fme2l−1 · e2l · e2m−1 · e2m + . . .

)

=
1√

det(j∗g −F)
J−1(1 + F +

1

2
F ∧ F + . . .), (5.99)

using the classical identities cos arctanx = 1/
√

1 + x2 and sin arctanx = x/
√

1 + x2.
Applying (5.83), we �nally get

J(earctan
eF · ?̂volU) = J(earctan

eF) ∧ J(?̂volU) = eb ∧ ρU,F . (5.100)

The projection down to SO(T ) via π0 gives indeed the induced gluing matrix. Indeed,
we have

π0

(
exp(arctan F̃ ) · ?̂volU

)
= e

π0∗(arctan eF )
SO(T ) ◦ π0(?̂volU). (5.101)
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Now we �nd

eπ0∗(arctan(fk)e2k−1·e2k)

= e2 arctan(fk)e2k−1∧e2k

= cos (2 arctan(fk)) + sin (2 arctan(fk)) e2k−1 ∧ e2k

=
1− f 2

k

1 + f 2
k

+
2fk

1 + f 2
k

e2k−1 ∧ e2k

=
1

1 + f 2
k

 1− f 2
k 0

0 1− f 2
k

+

 0 −2fk

2fk 0

 , (5.102)

which yields the matrix (j∗g + F)(j∗g − F)−1 while −idn−p in the gluing matrix is
accounted for by the projection of the volume form.

The fact that e−b • ρU,F can be identi�ed as an element of Spin(T ) enables us to
show a generalisation of [60] to the case of GL × GR-structures. Let ΨL,ΨR be
two chiral unit spinors of the Spin(T )-representation ∆. The real T ⊕ T ∗-spinor
ρev,od = e−φ<[ΨL ⊗ ΨR]ev,od

b satis�es |〈ρ, ρU,F 〉| ≤ e−φ. Moreover, a pair (Up, F ) is
calibrated if and only if

A(ΨL) = ±(−1)m(m+1)/2+p(−i)me−b • ρU,F ·ΨR. (5.103)

for n = 2m and ΨR ∈ ∆± and

A(ΨL) = (−i)m+1e−b • ρU,F ·ΨR. (5.104)

for n = 2m+ 1.

This can be proven as follows. Since eF ∧ ?̂volU = (?eFxvolU)∧, we have

〈<[ΨL ⊗ΨR]ev,od
b , ρU,F 〉 =

1√
det(j∗g −F)

〈<[ΨL ⊗ΨR]ev,od
b , eF ∧ ?̂volU〉

=
1√

det(j∗g −F)
g(<[ΨL ⊗ΨR]ev,od, eFxvolU)

=
1√

det(j∗g −F)

∑
<(A(ΨL), eI ·ΨR)g(eI , e

FxvolU)

=
1√

det(j∗g −F)
<(A(ΨL), eFxvolU ·ΨR)

≤ 1√
det(j∗g −F)

‖A(ΨL)‖p‖eFxvolU ·ΨR‖p, (5.105)

On the other hand

eFxvolU ·ΨR = (−1)p(n−p)(eFx? ? volU) ·ΨR

= (−1)p(n−p) ? (e−F ∧ ?volU) ·Ψ2

= (−1)p(n−p)eF ∧ ?̂volU · Volg ·ΨR

= (−1)p(n−p)
√

det(j∗g −F)(e−b • ρU,F ) · volg ·ΨR. (5.106)
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Recall from above that a Riemannian volume form acts on chiral spinors by volg ·Ψ± =
±(−1)m(m+1)/2(−i)mΨ± for Ψ± ∈ ∆±, n = 2m and by volg · Ψ = (−i)m+1Ψ for
n = 2m+ 1. Since e−b ∧ ρU,F ∈ Spin(T ), we have

‖eFxvolU ·ΨR‖p=
√

det(j∗g −F) ‖e−b • ρU,F ‖g‖ΨR‖p=
√

det(j∗g −F). (5.107)

and consequently, (5.105) is less than or equal to 1 by the Cauchy-Schwarz inequality.
Moreover, equality holds precisely if A(ΨL) = (−1)p(n−p)(e−b • ρU,F ) · volg · ΨR. As
there always exists a subspace U such that A(ΨR) = volU ·ΨL, we can choose (U, j∗Ub)
as a calibrated pair and choose the spinor

ρev,od = e−φ<[ΨL ⊗ΨR]ev,od
b (5.108)

to de�ne a calibration.

5.5.3 Examples

Let us give some examples of the generalised calibrations de�ned above, in particular
how we obtain the well-known examples for branes in type IIA and type IIB string
theory and the examples for G2- and Spin(7)-structures of [160].

Generalised SU(3)-structures

In the case of n = 6 and Ψl = Ψr =: Ψ we are dealing with a classical SU(3) structure.
In this case ρev = eiω where ω is the Kähler form and ρod = Ω, the holomorphic (3, 0)
form. We can distinguish two cases, depending on the choice of the calibration form.
If we choose ρ = ρev as calibration form we are dealing with B-branes and get4[

e−F ∧ j∗eiω
]p

= i(n−p)(n−p+1)eiα
√

det(j∗g + F )Volp. (5.109)

We �nd that the dimension of the branes has to be even p =: 2k and �nd

1

k!
(ij∗ω + F )k = i−keiα

√
det(j∗g + F )Volp, (5.110)

which also agrees with the results of [121, 137].

Calibrating with respect to ρ = ρod we are treating A-branes and �nd[
e−F ∧ j∗Ω

]p
= i(n−p)(n−p+1)eiα

√
det(j∗g + F )Volp. (5.111)

In this case p has to be odd, in fact it has to be equal to 3 or 5. For p = 3 we get

j∗Ω = eiαVol3, (5.112)

4We set b = 0 in the following. Including a nonvanishing b-�eld is straightforward as can be seen
from (5.81).
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which is nothing else but the condition for a special Lagrangian cycle that we used in
the �rst part of this thesis to obtain supersymmetric D6-branes.

In the case p = 5 we notice that we need a non-vanishing �eld strength F and obtain

j∗Ω ∧ F = eiα
√

det(j∗g + F )Vol5, (5.113)

which is the condition for a coisotropic A-brane, also found in [121].

If we are weakening our assumptions and go to the more general case of a SU(3) ×
SU(3) structure ρod can also contain a one- and �ve-form part. For a related discussion
on this aspect see also section 4 of [15].

Generalised G2-structures

In dimension 7, the spinor ρ = e−φ[ΨL ⊗ΨR]b gives rise to a G2 ×G2- or generalised
G2-structure. Since the Spin(7)-module ∆ carries a real structure, ρev,od is real and
therefore de�nes a calibration. If the spinors ΨL and ΨR are linearly independent,
their stabilisers intersect in SU(3).

Besides a one-form α ∈ Λ1, SU(3) also �xes a symplectic two-form ω and the real and
imaginary parts of a holomorphic volume form on the orthogonal complement of the
dual of α. Letting c = cos (^(ΨL,ΨR)) and s = sin (^(ΨL,ΨR)), we can write

[ΨL ⊗ΨR]ev = c+ sω + c(α ∧ ψ− −
1

2
ω2)− sα ∧ ψ+ −

1

6
sω3

[Ψ+ ⊗Ψ−]od = sα− c(ψ+ + α ∧ ω)− sψ− −
1

2
sα ∧ ω2 + cvolg. (5.114)

Note that the forms α, ω and ψ± have no global meaning on a manifold. It follows

[Ψ⊗Ψ]ev = 1− ?ϕ, [Ψ⊗Ψ]od = −ϕ+ volg, (5.115)

for the straight case, where ϕ is the stable three-form associated with G2. In the even
case, the calibration condition reads

e−F ∧ j∗(1− ?ϕ) ≤
√

det(j∗g − F )volU . (5.116)

A co-assocative four-plane (i.e. j∗?ϕ = volU) is calibrated for F = 0. For a non-trivial
gauge �eld we �nd

g(F ∧ F/2− ?ϕ, volU4) =
√

det(j∗g − F ). (5.117)

We have F ∧F/2 = Pf(F )volU and det(j∗g−F ) = 1−Tr(F 2)/2+det(F ), so squaring
yields the condition 2Pf(F) = Tr(F 2)/2 which holds if F is anti-self-dual (see [137]).
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Generalised Spin(7)-structures

In dimension 7, the spinor ρ = e−φ[ΨL ⊗ ΨR]b gives rise to a Spin(7) × Spin(7)- or
generalised Spin(7)-structure. Here we consider the even case where both spinors
are of equal chirality. In particular, ρ is even and therefore de�nes a calibration as
the Spin(8)-space ∆ carries a real structure. If the spinors ΨL and ΨR are linearly
independent, their stabilisers intersect in SU(4). Written in the SU(4)-invariants ω
and ψ± we �nd similarly to the G2-case that

[ΨL ⊗ΨR] = c+ sω + c(ψ+ −
1

2
ω2)− sψ−

s

6
ω3 + cvolg. (5.118)

In the straight case we obtain [Ψ⊗Ψ] = 1−Ω+ volg, where Ω is the self-dual 4-form.
Again, Cayley four-planes (i.e. j∗Ω = volU4) are calibrated with F = 0 and, as above,
Cayley planes are still calibrated if they carry an anti-self-dual two-form.

5.5.4 Calibrations over manifolds

Let (Mn, g, b) be an oriented generalised Riemannian manifold. An even or odd spinor
ρev,od ∈ S± is called a calibration if for any a pair (U, F ) consisting of an oriented
submanifold U and a two-form F ∈ Ω2(U), the associated spinor

ρU,F =
eF ∧ ?̂volU ⊗

√
volg√

det(j∗Ug −F)
, (5.119)

with F = F − j∗Ub satis�es the inequality 〈ρ, ρU,F 〉 ≤ 1 over U and there exists at least
one spinor ρU,F for which the bound is met. Such pairs (U, F ) or spinors ρU,F are said
to be calibrated by ρev,od.

All results obtained in section 5.5.1 can be carried over to the global case, espe-
cially (5.81), (5.103) and (5.104). It follows that in particular, special Lagrangian,
associative, co-associative or Caley submanifolds for classical SU(3)-, G2- or Spin(7)-
structures are calibrated in the sense above with respect the induced generalised struc-
ture.

For GL × GR-structures, (5.103) and (5.104) assert that the GL- and GR-invariant
spinors are related over a calibrated submanifold U by a section in the associated
�bre bundle with �bre Spin(n). This is the mathematical formulation of the notion
that D-branes break part of the supersymmetry. In our context of GL×GR-structures,
calibrated pairs provide a natural notion of structured manifolds.

The key aspect of classical calibrated submanifolds is that they are volume minimising
in their homology class if the calibration form is closed [107]. In presence of a non-
trivial B- and F -�eld, closure of the calibration � now considered as a form � induces
the calibrated submanifold (U, F ) to maximise the quantity

Iφ(U, F ) =

∫
U

e−φ
√

det(j∗g −F), (5.120)
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where we introduced an additional scalar �eld � the dilaton. Iφ can be identi�ed as
the DBI action for D-branes. Including the R-R potentials C, we get an additional
term, namely

IC(U, F ) = −
∫

U

e−F ∧ C. (5.121)

With C we are referring to even or odd di�erential forms.

5.5.5 Adding R-R �elds

As observed in [105], the additional term (5.121) can be accounted for by non-closed
calibration forms. This idea gave rise to minimising theorems of various �avours
(see [104]). We can adopt The following theorem is a straightforward generalisation
of these ideas (see also [138], [139]).

Let dH = d + H∧ be the twisted di�erential induced by a closed three-form H,
introduced in section 4.3, and (Mn, g, b) an oriented generalised Riemannian manifold,
φ ∈ C∞(M) and C ∈ Ωev,od(M). If ρ is a calibration such that

dHe
−φρ = dH(eb ∧ C), (5.122)

then any calibrated pair (U, F ) with j∗UH = dj∗Ub is locally energy-minimising for
I = Iφ + IC in the following sense. For given open discs D ⊂ U , D′ ⊂ M with
∂D = ∂D′ and j∗D,D′H = dj∗D,D′b, together with two-forms F, F ′ such that F∂D = F ′

∂D′ ,
we have I(D,F ) ≤ I(D′, F ′).

To show this we note the following. From the calibration condition we deduce

[e−F ∧ j∗Ue−φρ]p ≤ e−φ
√

det(j∗Ug −F), (5.123)

while the integrability condition implies

e−φρ− eb ∧ C = dHA (5.124)

for some di�erential form A. By Stokes' theorem we obtain

I(D,F ) =

∫
D

e−F ∧ j∗De−φρ−
∫
D

e−F ∧ j∗D(eb ∧ C•)

=

∫
D

e−F ∧ j∗DdA

=

∫
∂D

e−F ∧ j∗DA, (5.125)

since (D,F ) is calibrated and e−F ∧ j∗dHA = d(e−F ∧ j∗DA) for j∗DH = dj∗Db. On the
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other hand, we have

I(D′, F ′) ≥
∫
D′

e−F ′ ∧ j∗D′e−φρ−
∫
D′

e−F ′ ∧ j∗D′(eb ∧ C•)

= −
∫

∂D′

e−F
′ ∧ j∗D′A = I(D,F ). (5.126)

For calibrations of the form ρ = [ΨL ⊗ΨR]b, condition (5.122) is equivalent to

dHe
−φ[ΨL ⊗ΨR] = FRR, (5.127)

where FRR = dHC are the R-R �elds associated with the potential C. In [116], this
type of equation was shown to be equivalent to the compacti�cation to six or seven
dimensions of the spinor �eld equations as given by the democratic formulation of
supergravity in [17].

5.5.6 T-duality transformation of calibrations

Using the results of section 5.1, we can investigate how a generalised calibration
transforms under T-duality. Let ρ de�ne a calibration for a generalised metric (g, b)
and θ ∈ T ∗. According to section 5.5.1, we have for submanifolds ρU,F that

〈ρ, ρU,F 〉 ≤ 1. (5.128)

Applying T-duality and denoting the T-dual calibration with ρT , as de�ned in (5.12),
we get

(−1)n+1
〈
ρT ,M̃θ • ρU,F

〉
≤ 1. (5.129)

Since T-duality is orbit and norm preserving, we have that (−1)n+1ρT
U,F is pure and

of unit norm, so it equals ρUT ,F T for some suitably oriented pair (UT , F T ).

Including the R-R �elds, we can use our considerations from section 5.1.2 and extend
the T-duality transformation to include non-trivial R-R potentials C. Let (g, b, φ) be
an S1-invariant generalised metric, φ a scalar dilaton and ρ an S1-invariant calibration
that satis�es

dHe
−φ[ρ]g = dH(eb ∧ C. (5.130)

If (U, F ) is a calibrated cycle that locally minimises the energy-functional, including
IC as de�ned in (5.121). We de�ne the T-dual forms by

CT = e−bT ∧ (−Xx+θ∧)eb ∧ C (5.131)

and have that the T-dualised submanifold (UT , F T ) minimises the T-dualised energy-
functional ICT .
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This can be seen by the following reasoning. Using (5.129) we have

〈ρT , ρUT ,F T 〉 ≤ 1, (5.132)

and therefore

e−F T ∧ j∗UT e
−φ+ln‖X‖ρT ≤ e−φ+ln‖X‖

√
det(j∗

UT gT −FT ). (5.133)

Applying (5.19), we calculate

dHT e−φT

[ρT ]gT = dHT ‖X‖ e−φ[ρT ]gT

∼= (Xx−θ∧) dHe
−φ[ρ]g

= (Xx−θ∧)dH(eb ∧ C)
∼= dHT (−Xx+θ∧)eb ∧ C
= dHT (ebT ∧ CT ). (5.134)

This shows that the T-dualised spinor ρT indeed minimises the T-dualised energy
functional.
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Appendix A

Orientifold models

In this chapter we summarise the concrete examples of orientifold models that are
used in the statistical analysis in chapters 2 and 3. We �x the notation and translate
the conditions explained in general in section 2.1 into variables that suit the speci�c
cases and simplify the computations.

A.1 T2

For compacti�cation on T 2, a special Lagrangian submanifold is speci�ed by two
wrapping numbers (na,ma) around the fundamental one-cycles. In this case these
numbers are precisely identical to the numbers (Xa, Ya) used in section 2.1.

The tadpole cancellation condition (2.6) reads∑
a

NaXa = L, (A.1)

where the physical value is L = 16.

The �rst supersymmetry condition of (2.7) reads just

Ya = 0, (A.2)

and is independent of the complex structure U = R2/R1 on the rectangular torus.
This implies that all supersymmetric branes must lie along the x-axis, i.e. on top of
the orientifold plane. The second supersymmetry condition in (2.7) becomes

Xa > 0. (A.3)

From these conditions we can immediately deduce that if one does not allow for
multiple wrapping, as it is usually done in this framework, there would only exist one
supersymmetric brane, namely the one with (X, Y ) = (1, 0).

103



104 APPENDIX A. ORIENTIFOLD MODELS

A.2 T4/Z2

In this case a class of special Lagrangian branes is given by so-called factorisable
branes, which can be de�ned by two pairs of wrapping numbers (ni,mi) on two T 2s.
The wrapping numbers (X i, Y i) with i = 1, 2 for the Z2 invariant two-dimensional
cycles are then given by

X1 = n1 n2, X2 = m1m2,

Y 1 = n1m2, Y 2 = m1 n2. (A.4)

To simplify matters we sometimes use a vector notation ~X = (X1, X2)T and ~Y =
(X1, X2)T .

Note that these branes do not wrap the most general homological class, for the 2-cycle
wrapping numbers satisfy the relation

X1X2 = Y 1 Y 2. (A.5)

However, for a more general class we do not know how the special Lagrangians look
like. Via brane recombination it is known that there exist �at directions in the D-
brane moduli space, corresponding to branes wrapping non-�at special Lagrangians.
Avoiding these complications, we use the well understood branes introduced above
only.

The untwisted tadpole cancellation conditions read∑
a

NaX
1
a = L1,∑

a

NaX
2
a = −L2, (A.6)

with the physical values L1 = L2 = 8. In order to put these equations on the same
footing, we change the sign of X2 to get∑

a

NaX
1
a = L1,∑

a

NaX
2
a = L2. (A.7)

Note that in contrast to models discussed for example in [89], we are only considering
bulk branes without any twisted sector contribution for simplicity1. De�ning the two
form Ω2 = (dx1 + iU1dy1)(dx2 + iU2dy2), the supersymmetry conditions become

U1 Y
1 + U2 Y

2 = 0,

X1 + U1 U2X
2 > 0. (A.8)

The intersection number between two bulk branes has an extra factor of two

Iab = −2
(
X1

a X
2
b +Xa

2 X
1
b + Y 1

a Y
2
b + Y 2

a Y
1
b

)
. (A.9)

1For a treatment of fractional branes in this framework see e.g. [19, 20].
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A.2.1 Multiple wrapping

In the case of T 2 it made no sense to restrict the analysis of supersymmetric branes
to those which are not multiply wrapped around the torus, because there would have
been just one possible construction. In the case of T 4/Z2 the situation is di�erent and

we would like to derive the constraints on the wrapping numbers ~X and ~Y .

For the original wrapping numbers ni,mi the constraint to forbid multiple wrapping
is gcd(ni,mi) = 1 ∀ i = 1, 2. Without losing information we can multiply these two
to get

gcd(n1,m1) gcd(n2,m2) = 1. (A.10)

Using the de�nitions (A.4) of ~X and ~Y , we can rewrite this as

gcd(X1, Y 2) gcd(X2, Y 2) = Y2, (A.11)

which is invariant under an exchange of X and Y .

A.3 T6/Z2 × Z2

In the case of compacti�cations on this six-dimensional orientifold, which has been
studied by many authors (see e.g. [82, 59, 58, 129, 78, 22]) the situation is very similar
to the four-dimensional case above. We can describe factorisable branes by their
wrapping numbers (ni,mi) along the basic one-cycles π2i−1, π2i of the three two-tori
T 6 = Π3

i=1T
2
i . To preserve the symmetry generated by the orientifold projection

Ωσ̄, only two di�erent shapes of tori are possible, which can be parametrised by
bi ∈ {0, 1/2} and transform as

Ωσ̄ :

 π2i−1 → π2i−1 − 2biπ2i

π2i → −π2i

. (A.12)

For convenience we work with the combination π̃2i−1 = π2i−1 − biπ2i and modi�ed
wrapping numbers m̃i = mi + bini. Furthermore we introduce a rescaling factor

c :=

(
3∏

i=1

(1− bi)

)−1

(A.13)

to get integer-valued coe�cients. These are explicitly given by (i, j, k ∈ {1, 2, 3}
cyclic)

X0 = cn1n2n3, X i = −cnim̃jm̃k,

Y 0 = cm̃1m̃2m̃3, Y i = −cm̃injnk. (A.14)
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The wrapping numbers ~X and ~Y are not independent, but satisfy the following rela-
tions:

XI YI = XJ YJ ,

XI XJ = YK YL,

XL (YL)2 = XI XJ XK ,

YL (XL)2 = YI YJ YK , (A.15)

for all I, J,K, L ∈ {0, . . . 3} cyclic.

Using these conventions the intersection numbers can be written as

Iab =
1

c2

(
~Xa
~Yb − ~Xb

~Ya

)
. (A.16)

The tadpole cancellation conditions read

k∑
a=1

Na
~Xa = ~L, ~L =

 8c

{8/(1− bi)}

 , (A.17)

where we used that the value of the physical orientifold charge is 8 in our conventions.

The supersymmetry conditions can be written as

3∑
I=0

Y I

UI

= 0,

3∑
I=0

XIUI > 0, (A.18)

where we used that the complex structure moduli UI can be de�ned in terms of the
radii (R

(1)
i , R

(2)
I ) of the three tori as

U0 = R
(1)
1 R

(2)
1 R

(3)
1 ,

Ui = R
(i)
1 R

(j)
2 R

(k)
2 , i, j, k ∈ {1, 2, 3} cyclic. (A.19)

Finally the K-theory constraints can be expressed as

k∑
a=1

NaY
0
a ∈ 2Z,

1− bi
c

k∑
a=1

NaY
i
a ∈ 2Z, i ∈ {1, 2, 3}. (A.20)

A.3.1 Multiple wrapping

We can de�ne the condition to exclude multiple wrapping in a way similar to the T 4-
case. A complication that arises is the possibility to have tilted tori. In the de�nition
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of ~X and ~Y in (A.14) we used the wrapping numbers m̃i, which have been de�ned to
include the possible tilt. To analyse coprime wrapping numbers, however, we have to
deal with the original wrapping numbers mi, such that

3∏
i=1

gcd(ni,mi) = 1. (A.21)

We can express this condition in terms of the variables ~̃X and ~̃Y , de�ned as

X̃0 = n1n2n3, Ỹ 0 = m1m2m3,

X̃ i = ninjnk, Ỹ i = minjnk, (A.22)

where i, j, k ∈ {1, 2, 3} cyclic, analogous to section A.2.1

3∏
i=1

gcd(Ỹ 0, X̃ i) = (Ỹ 0)2. (A.23)

The ~̃X and ~̃Y can be expressed in terms of the ~X and ~Y of (A.14), using their
de�nition (A.21) and the rescaling factor (A.13), as

X̃0 = c−1X0,

X̃ i = c−1
(
−X i + bjY

k + bkY
j + bjbkX

0
)
,

Ỹ 0 = c−1

(
Y 0 +

3∑
i=1

biX
i −

3∑
i=1

bjbkY
i − b1b2b3X0

)
,

Ỹ i = c−1
(
−Y i − biX0

)
. (A.24)
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Appendix B

Partition algorithm

In this part of the appendix we brie�y outline the partition algorithm used in the
computer analysis of vacua1. It is designed to calculate the unordered partition of a
natural number n, restricted to a maximal number of m factors, using only a subset
F ⊂ N of allowed factors to appear in the partition.

To describe the main idea, let us drop the additional constraints on the length and
factors of the partition. They can be added easily to the algorithm, for details see the
comments in listing B.2. The result is stored in a list {ai}, which is initialized with
ai = nδ1,i. An internal pointer q is set to the �rst element at the beginning and after
each call of the main routine the list a contains the next partition. The length of this
partition is stored in a variable m, which is set to m = 0, after the last partition has
been generated.

The main routine contains the following steps. It checks if the element aq is equal to
1 � if yes, it sets q = q − 1. This is repeated until aq > 1 or q = 0 � in this case no
new partitions exist, m is set to 0 and the algorithm terminates. In the second step
the routine sets aq = aq− 1, aq+1 = aq+1 + 1 and q = q+ 1. But this operation is only
performed if aq+1 < aq and aq > 1, otherwise the counter q is reduced by one and the
algorithm starts over.

Let us give an example to illustrate this procedure. Consider the unordered partitions
of 5:

{ {5}, {4, 1}, {3, 2}, {3, 1, 1}, {2, 2, 1}, {2, 1, 1, 1}, {1, 1, 1, 1, 1} } . (B.1)

Starting with 5 itself, the �rst time we call the algorithm, it decreases a1 to a1 = 4,
increases a2 to a2 = 1, which generates the partition {4, 1}. The pointer q is increased
to q = 2. The next time we call the routine, the element aq = a2 is equal to 1, which
leads to q = 1. Now the condition aq > 1 is satis�ed and the result of aq = aq − 1,
aq+1 = aq+1 +1 gives the partition {3, 2}. Continuing in this way, four more partitions
of 5 are generated, until we reach {1, 1, 1, 1, 1}. We have ai = 1 for all i = 1, . . . , 5,
which leads to the termination of the algorithm in the �rst step.

1The complete program used to generate the solutions, which is written in C, can be obtained
from the author upon request.
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B.1 Implementation

The algorithm uses a data structure partition to collect the necessary parameters
and internal variables:

typede f s t r u c t _part i t i on { long n ,m, q ,∗ fac ,∗ a , min ; } p a r t i t i o n ;

Here n∈ N is the number to be partitioned and m holds the length of the partition
list a. The array fac contains the set F of allowed values of partition factors. min

and q are internal variables to be explained below. Besides these internal variables, a
global variable maxp is used, which contains the maximal length of the partition.

The algorithm itself is split into two parts. The function apartitions_first is
called once at the beginning of the program loop that runs through all partitions. It
initializes the internal variables n and fac and calculates the minimum possible value
for a partition factor from the list fac. Finally it checks if n itself is contained in fac

and calls the main routine apartitions_next if this is not the case.

void a p a r t i t i o n s_ f i r s t ( long n , long ∗ f , p a r t i t i o n ∗p) {
long i ;

/∗ check i f we ' re supposed to do any th ing ∗/
i f ( ( n>0)&&(maxp==0)) {
p−>m=0;
return ;

}
/∗ f i n d minimum and check c on s i s t e n c y ∗/

p−>min=n+1;
i =1;
whi le ( i<=n) {

i f ( f [ i ]>0) {
p−>min=i ;
i=n+1;

} e l s e {
i++;

}
}
i f (p−>min>n) {
p−>m=0;
return ;

}
/∗ i n i t data s t r u c t u r e ∗/

p−>n=n ;
p−>fac=f ;
p−>a=malloc ( ( n+1)∗ s i z e o f ( long ) ) ;
p−>a [0]=p−>n ;
p−>m=1;
p−>a [1]=p−>n ;
p−>q=1;

/∗ gene ra t e f i r s t p a r t i t i o n ( check i f n i s a l l owed . . . ) ∗/
i f ( f [ n]<=0) {

apar t i t i ons_next (p ) ;
}

}

Listing B.1: Partition algorithm, initial routine

The main routine can be called subsequently as long as the length m of the partition
list a is positive. Each call will produce a new partition of n. Special care has to be
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taken if elements of the partition are not contained in fac � see the comments in the
source code for these subtleties.

void apar t i t i ons_next ( p a r t i t i o n ∗p) {
/∗ s e t t h e number n what we have to d i s t r i b u t e to 0 . ∗/

p−>n=0;
/∗ go back u n t i l t h e r e i s a va l u e b i g g e r then the minimum min to d i s t r i b u t e
and the p a r t i t i o n doesn ' t g e t too l ong . ∗/

whi le ( ( p−>q>=maxp ) | | ( ( p−>q>0)&&(p−>a [ p−>q]==p−>min ) ) ) {
p−>n=p−>n+p−>a [ p−>q ] ;
p−>q=p−>q−1;

}
/∗ l oop through the d i s t r i b u t i o n proce s s as l ong as we ' re not back a t t he
b e g inn ing o f t he f a c t o r l i s t . ∗/

whi le (p−>q>0) {
/∗ l ower the a c t u a l v a l u e a t q we ' re t r y i n g to d i s t r i b u t e by 1 and add 1 to
the d i s t r i b u t i o n account . then i n c r e a s e the l i s t − l e n g t h m by one . ∗/

p−>a [ p−>q]=p−>a [ p−>q]−1;
p−>n=p−>n+1;
p−>m=p−>q+1;

/∗ as l ong as the new f a c t o r i s > then the one b e f o r e or i t i s not in
fac , s u b t r a c t 1 from i t ( and add 1 to n ) . do t h i s as l ong as i t i s >
then the minimum . ∗/

whi le ( ( ( p−>a [ p−>q]>p−>a [ p−>q− 1 ] ) | | ( p−>fac [ p−>a [ p−>q]] <=0))
&&(p−>a [ p−>q]>=p−>min ) ) {

p−>a [ p−>q]=p−>a [ p−>q]−1;
p−>n=p−>n+1;

}
/∗ check i f t h e new f a c t o r i s l ower or e qua l then the one b e f o r e and i t ' s
in f a c ( t he l oop above might have t e rmina ted on the minimum cond i t i on ) .
i f yes , add the d i s t r i b u t i o n sum to the new f a c t o r a t q+1. i f not , add the
whole f a c t o r a t q to n and go one s t e p back in the l i s t . ∗/

i f ( ( p−>a [ p−>q]<=p−>a [ p−>q−1])&&(p−>fac [ p−>a [ p−>q ] ] >0)) {
p−>q=p−>q+1;
p−>a [ p−>q]=p−>n ;

/∗ i f t h e new f a c t o r i s < then the one b e f o r e and in our l i s t r e tu rn . ∗/
i f ( ( p−>a [ p−>q]<=p−>a [ p−>q−1])&&(p−>fac [ p−>a [ p−>q ] ] >0)) {

return ;
} e l s e {

/∗ so the new f a c t o r i s not sma l l e r or in our l i s t − means we have to
r e d i s t r i b u t e some o f i t t o a new f a c t o r . bu t i f we are a l r e ady a t t he
maximum l e n g t h o f t he p a r t i t i o n we have to go one s t e p back ! ∗/

i f (p−>q < maxhidden ) {
p−>n=0;

} e l s e {
p−>q=p−>q−1;

}
}

} e l s e {
p−>n=p−>n+p−>a [ p−>q ] ;
p−>q=p−>q−1;

}
}

/∗ i f t h e p o i n t e r i s q i s 0 t h e r e i s no th ing l e f t t o do − f r e e memory and
re tu rn 0 f o r the l e n g t h o f t he p a r t i t i o n ∗/

i f (p−>q <= 0) {
f r e e (p−>a ) ; p−>m=0;

}
}

Listing B.2: Partition algorithm, main routine
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