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Zusammenfassung vii

Zusammenfassung
Im Verlauf dieser Arbeit wurde ein System entworfen und gebaut, welches einen Femtosekunden-
Frequenzkammlaser durch nichtlineare Konversion in den vakuumultravioletten (VUV) Spek-
tralbereich (120-30 nm) überträgt.

Der optische Frequenzkamm, für den im Jahr 2005 der Nobelpreis an John Hall und Theo-
dor W. Hänsch verliehen wurde, ist ein unverzichtbares Werkzeug der Präzisionsspektroskopie
geworden. Mit der Hilfe eines modengekoppelten Femtosekundenlasers ist es dabei möglich, die
Radiofrequenzdomäne, in der die heutzutage genauesten Uhren arbeiten, und den Frequenzbe-
reich des sichtbaren Lichtes miteinander zu verbinden. Damit wurde es erstmals möglich, belie-
bige optische Frequenzen direkt mit einer Cäsiumatomuhr, unserem primären Zeitstandard, zu
vergleichen, sodass optische Frequenzen auf 15 Dezimalstellen genau bestimmt werden konn-
ten. Unter anderem konnte mit dieser Methode einer der genauesten Tests der Quantenelektro-
dynamik (QED) im Rahmen der Bestimmung der 1S-2S Frequenz von atomarem Wasserstoff in
einem unserer Labors durchgeführt werden. Aber auch neuartige Experimente in der Ultrakurz-
zeitphysik, welche eine präzise Kontrolle der optischen Wellenform benötigen, stützen sich auf
die Frequenzkammtechnik.

Die Frequenzkammtechnologie in neue Spektralbereiche auszudehnen bietet viele interes-
sante Möglichkeiten. Insbesondere ist es nützlich, die einzigartige Kombination aus hoher Spit-
zenleistung im Megawattbereich und großer spektraler Güte der einzelnen Kammlinien (Grö-
ßenordnung 1014) eines Femtosekundenfrequenzkammes auszunutzen. Zu diesem Zweck wird,
bei der in der vorliegenden Arbeit vorgestellten Methode, der Femtosekundenpulszug in einen
optischen Resonator hoher Güte eingekoppelt. Durch diesen Trick erhält man innerhalb der Re-
sonatoranordnung Feldstärken, welche die des treibenden Lasers um ein Vielfaches übertreffen
und deshalb einen nichtlinearen Prozess hoher Ordnung innerhalb eines Mediums aus Xenona-
tomen besonders effizient treiben können. Dadurch werden Harmonische des treibenden Fre-
quenzkammes bis zur fünfzehnten Ordnung erzeugt. Das generierte Licht reicht damit bis weit
in den VUV-Spektralbereich und enthält Photonen mit Energien von mehr als 20 eV. Dies ist ein
Frequenzbereich der herkömmlichen kontinuierlichen Laser nicht oder nur schwer zugänglich
ist, sodass mit der vorgestellten Quelle direkte Frequenzmessungen bei hohen Photonenergien
erstmals in den Bereich des Möglichen rücken.

Insbesondere soll eine weiterentwickelte Variante der in dieser Arbeit demonstrierten VUV
Frequenzkammquelle dazu verwendet werden, das traditionsreiche Projekt unserer Arbeitsgrup-
pe, die 1S-2S Spektroskopie an atomarem Wasserstoff, in eine neue Runde zu führen. Der er-
zeugte Frequenzkamm in der Nähe von 60 nm soll zur direkten 1S-2S Spektroskopie an einfach
geladenem Helium, einem wasserstoffähnlichen System mit erhöhter Kernladung, verwendet
werden. Von einer solchen Messung erwartet man eine, im Vergleich mit Wasserstoff, erhöh-
te Empfindlichkeit auf relativistische Korrekturen aus der QED, da das System generell höhere
Energien aufweist. Damit könnte ein Test erhöhter Empfindlichkeit für die Theorie der QED
realisiert werden.

Weitere Anwendungen der kompakten und relativ einfachen kohärenten Quelle für VUV
Strahlung könnten in der hochauflösenden Mikroskopie, VUV Holographie aber auch in der
Ultrakurzzeitspektroskopie liegen.
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Abstract
In the course of this work, a system was designed and developed to nonlinearily convert a fem-
tosecond frequency comb laser into the extreme ultraviolet (XUV) spectral range (120-30 nm).

The optical frequency comb, for which the nobel prize 2005 was awarded to John Hall and
Theodor W. Hänsch, has become an indispensable tool for high precision spectroscopy. With
the aid of a mode locked femtosecond laser it is possible to directly and phase coherently link
the radio frequency domain and the frequency range of visible light. Today’s most accurate time
standard, the cesium atomic clock operates in the former and therefore it became possible for the
first time to compare arbitrary optical frequencies with our primary time standard and measure
them with 15 digits of accuracy. Among other things, this method allowed one of the most
accurate test of quantum electrodynamics (QED) today in the course of the determination of the
1S-2S transition frequency of atomic hydrogen that is carried out in one of our labs. But also
experiments in the field of ultrafast physics rely on the frequency comb technique to generate
precisely controlled optical waveforms.

An especially intriguing possibility is to exploit the unique combination of high peak power
in the megawatt range and the high spectral quality (on the order of 1014) of single comb modes
of a femtosecond frequency comb. To this end, in the method presented in this thesis, the fem-
tosecond pulse train is coupled to an optical resonator of high finesse. With this trick, the field
strength inside the resonator exceeds the driving lasers field by almost an order of magnitude.
Enough to efficiently drive a nonlinear process of high order inside a medium of xenon atoms.
As a result harmonics of the driving frequency comb up to 15th order are generated. The ob-
tained field contains photons with energies exceeding 20 eV, a spectral region which is not or
only hard to access by conventional continuous laser source. Therefore the presented XUV fre-
quency comb source brings direct frequency measurements at such high photon energies into the
realm of possibility for the first time.

In particular, an improved version of the demonstrated source will be used to take the next
step in an experiment with a long tradition in our group, the 1S-2S spectroscopy of atomic hydro-
gen. The generated frequency comb in the vicinity of 60 nm wave length will be used to probe
the 1S-2S transition in singly charged helium, a hydrogen like system with larger nuclear charge.
From such a measurement it can be expected that, compared to hydrogen, relativistic corrections
from the QED theory become more important as the system has higher energies in general. For
this reason this could lead to a test of QED with increased sensitivity.

Other applications of such a compact and relatively simple coherent source of XUV radiation
could be high resolution spectroscopy, XUV holography, but could also lie in the research area
of ultrafast physics.



Chapter 1

Introduction

At all times, attempts to construct abstract and simple theories that explain phenomena observed
in nature within a general context have led to new insight into the fabric of reality as well as it has
enabled the invention of new techniques and tools that changed everyday life. As an example, the
discovery of atomic line spectra and the photoelectric effect has led to the development of quan-
tum mechanics, which is the basis for understanding the structure of solid matter1 and has lead
to the development of electronics enabling such nice gadgets like televisions, microwave ovens
and desktop computers. Conversely, the attempt to unify theories that describe separate fields
of natural phenomena has triggered the discovery of the new phenomena. The opposition of
Galilean invariance of Newtonian mechanics and Lorenz symmetry of the theory of electromag-
netic fields lead to the discovery of the theory of special relativity with its real life implications
like the constancy of the speed of light, which was tested in the historic work of Michelson and
Morley (1887) and time dilation (Rossi and Hall 1941), to name only a few. This interplay be-
tween theoretical insight and empirical studies of reality is the basis for all natural sciences and
is crucial in the most fundamental of all these disciplines, physics2.

Existing theories therefore require constant revision and verification in different contexts, as
a theory, good as it may be for certain problems, can as well completely fail to predict essential
features within others. Especially looking at extreme conditions within the physical parameter
space has proven to be a very efficient way to discover new physics beyond the existing theories.
For example high energy physics, which involves acceleration of the smallest constituents of
matter to highest achievable energies and studies their interactions, was an inexhaustible source
of new discoveries that eventually lead to the standard model of elementary particle physics.
However it is not always feasible to test nature at its extremes, as for instance the energies where
the standard model can be expected to become a bad approximation to reality lie more than 15
orders of magnitude above what is achievable in state of the art accelerators3. On the other hand,

1Before the discovery of quantum mechanics (but after the discovery of atoms), it was a mystery why solids
exist.

2fundamental in view of the belief that all phenomena in nature can be deduced from the the basic theories of
particles and their interactions

3Current accelerators achieve energies of a few TeV (per particle), while the energy scale where the fundamental
forces are expected to unify and grand unified theories (GUTs) or even string theories might become the relevant
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if it is assumed that the effects of such new physics that become apparent at the extremes of the
energy scale decrease continuously with the energy of the system under investigation, a possibly
small signature should still be observable even at much lower energies.

At this point, precision measurements take over. If theorists can predict a measurable quantity
with sufficiently high accuracy using current theory, and an experiment can also provide similar
accuracy, then a comparison of these predictions and the experiment may reveal a discrepancy.
Of course the required accuracy level to find discrepancies can not be predicted, as it is unknown
if the theory under consideration is already correct or what a correct theory would predict for the
same quantity. Cases, where precision measurements were used to identify shortcomings of old
theories and helped to identify the correct one are the determination of the advance of perihelion
of Mercury and the gyromagnetic factor of the electron. The advance of the Mercury perihelion
was determined by astronomical observations with an accuracy better than 10−3 and showed
a value that could not be explained using Newtonian mechanics. General relativity predicts
a value that lies within the accuracy limit of the measurement, which was taken as a hint for
its correctness by Einstein (1916) himself. The discrepancy of the gyromagnetic factor of the
electron from the value of 2, according to the Dirac theory, that was predicted by quantum electro
dynamics (QED) was found by Van Dyck Jr. et al. (1987) to agree with these predictions within
one part in 109. These kinds of experiments help to find (or extend) the limits of validity of the
known theories without going to the extreme scales (in time, space and energy).

When comparing the accuracy that can be reached in experiments for determining differ-
ent physical quantities, it turns out that time and frequency can be measured with the highest
precision. The methods to determine other quantities like length, mass or charge are far more
imprecise. A frequency is the number of periods of a periodic phenomenon per unit time. There-
fore a frequency is as accurate as the realization of the time unit if no error is made in counting.
This essentially means that determining a frequency and measuring time is fully equivalent. In
fact every clock is a stable oscillator4 that produces a periodic phenomenon and a counter that
counts the periods. Nowadays clocks based on a cesium hyperfine radio frequency transition as
the oscillator are commercially available and routinely provide an accuracy of 10−12. National
standard institutes all over the world run Cs-atomic clocks that have an accuracy around 10−15

and this figure is expected to improve soon as new optical standards5 become available (like in
Diddams et al. 2001).

Because clocks can currently be built with accuracies exceeding one part in 1015 and frequen-
cies can in principle be determined with the same accuracy, it is attempted to put other physical
units down to a frequency measurement. The most simple example of such an ascription is the
redefinition of the meter using the speed of light in the year 1983. At that time the speed of light
in vacuum was defined to be c = 299 792 458 m/s so that henceforth the length of an electro-
magnetic wave λ with angular frequency ω was determined via the equation λ = 2πc/ω. With
this trick, the accuracy of the determination of the wavelength is only given by the uncertainty in
the determination of the frequency of the wave as the speed of light is no longer a quantity with

theories lie at the Planck scale, 1× 1028 eV
4like a pendulum, a quartz crystal, or an atomic transition, etc.
5that use oscillators with optical frequencies in the PHz range
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an error but a defined number. For this approach to be useful it is however necessary to provide
a fine ruler of length markers, and therefore an electromagnetic wave with short wavelength is
desirable. Nowadays, narrow bandwidth lasers operating in the visible spectrum are routinely
available. However, the frequency associated with a visible electromagnetic wave is several hun-
dred THz so that it is impossible to count the oscillations directly using electronic equipment.
This is the reason why it took until 1983, when techniques became available that made a di-
rect phase coherent counting of such high frequencies possible, to undertake the redefining of
the meter. At that time heroic efforts were necessary to link optical frequencies to the radio
frequency reference clocks using a chain of frequency multipliers, intermediate oscillators and
phase-locked loops, each step using different techniques, equipment filling several laboratories
and tens of hard working physicists to keep it running. Yet for each optical frequency that had
to be measured a different chain of equipment was necessary. But this did not prevent physicists
from using these new techniques and the associated potential accuracy of experiments that could
be done with it. In our group, in collaboration with groups at Braunschweig and Novosibirsk,
Russia such a frequency chain was operated to determine some transition frequencies in hydro-
gen and deuterium (Udem et al. 1997) that provided a novel accurate value of the ground state 1S
lamb shift and a new value for the Rydberg constant. A measurement of the isotopic shift of the
deuterium (Huber et al. 1998) 1S-2S transition, also performed in our labs, was able to determine
the nuclear charge radius of the deuteron with a higher accuracy than scattering experiments at
large accelerator facilities could provide.

Sixteen years later, in 1999 after a long period of heavy development and an unexpected
convergence between ultrafast laser techniques and the ultranarrow continuous wave laser spec-
troscopy, a new type of universal frequency chain was created in our laboratories by Udem et al.
(1999b), Reichert et al. (1999) that could directly link an optical frequency to a radio frequency
using only 5 different lasers where one was a so-called optical frequency comb generator based
on a mode-locked titanium sapphire laser emitting a periodic pulse train with pulses of less than
100 fs duration. This universal tool was subsequently refined and improved by Reichert et al.
(2000), Diddams et al. (2000) and Holzwarth et al. (2000) and received the name "optical fre-
quency synthesizer"to express its universality for optical frequency metrology. This induced a
revolution in optical frequency metrology as it then was possible to cover essentially the entire
visible spectrum with such a device and even small laboratories could now reach accuracies of
10−12 or better by simply using such a synthesizer together with a commercial rf primary fre-
quency standard, a system that a single person could run and operate. Not only were many
optical atomic transitions measured with this tool with previously unequaled accuracy (see for
example in Niering et al. 2000, Udem et al. 2001, von Zanthier et al. 2000), but it also paved the
way to reliable operation of atomic clocks using optical transitions (like in Diddams et al. 2001).
These new optical atomic clocks hold the promise to improve frequency standards to even higher
accuracies. Frequently it is predicted that they could reach a level of 10−18.

If it is for the moment naively assumed that the effects of GUTs or string theories scale linear
with energy and become strong (order of unity) when the Planck scale is approached, then the
conclusion is that a measurement of accuracy 10−18 can detect such effects in an experiment
at an energy of only a few GeV, energies which are accessible at many accelerator facilities all
around the world. Of course this assumption is very birdbrained and the dream of applying the
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mentioned high accuracy techniques to accelerator experiments is further away than a dream
as frequency metrology can now reach frequencies corresponding to a few eV only. Moreover,
state of the are theories are far from being able to predict the dynamics of quarks in a proton (for
example) with an accuracy that comes close to 10−18. Yet, the attempt to make higher frequencies
and energies accessible to precision metrology holds the promise to obtain more stringent test of
fundamental theories, and the work at hand tries to take first basic steps into this direction.

A more realistic goal for the present considerations is to continue the long and glorious his-
tory of hydrogen spectroscopy associated with our laboratories, but taking one step to higher
energies. Singly positively charged helium ions are electronically identical to neutral hydrogen
but due to the doubled nuclear charge, the energy level gross structure (i.e. the major quantum
number energies) are a factor 22 = 4 times higher than in hydrogen. This means that for exciting
the 1S-2S transition, photons with an energy of 20 eV or 60 nm wavelength are required. Si-
multaneously, supporting the silly argument from the previous paragraph, the corrections of the
Bohr(Schrödinger)-levels due to Dirac theory and QED scale more strongly. The Lamb shift of
the ground state scales as Z4 if Z is the nuclear charge and higher order QED corrections to the
energy levels that have not (yet6) been verified in an experiment, scale as Z6 and therefore both
become relatively stronger compared to the transition frequency itself. Therefore it can be hoped
that a precision measurement on He+ can yield a more stringent limit on the validity of QED or
maybe even a deviation from QED calculations.

The problem with the proposed spectroscopy on the 1S-2S transition of He+ is that there
was essentially no narrow bandwidth source at the required photon energy available, the reason
being that 20 eV lies above the ionization threshold of any neutral atoms and molecules, not far
but only just, so that the absorption cross sections are rather high and there is no discrete level
structure7 that can support lasing. However, it is known that nonlinear up conversion of lower
frequency fields can produce UV light with similar coherence properties as the fundamental
wave. To be able to reach the XUV range between 10 and 100 eV, extreme nonlinear processes
of high order (high order harmonic generation, HHG) are necessary, which in turn require an
extremely strong driving field. It has to be so strong that the nonlinear medium disintegrates
within a few (ten) laser cycles, which means that the generation process itself will cease after
that time, and it is required that the power to be converted is concentrated into a bunch of similar
length, a few ten femtoseconds. This means, the generation can only take place in pulsed opera-
tion, which at first sight contradicts the spectroscopic requirement of a narrow bandwidth source
(1/10 fs∼ 100 THz). On the other hand, it is known that a periodic train of ultrashort pulses
produces a frequency comb spectrum that is quasi-cw in the sense that the broadband power is
concentrated into a equidistant array of isolated single frequency components, each of them es-
sentially a continuous harmonic source. This thesis documents an attempt to design and build
an XUV source based on HHG with sufficiently high repetition rate that the frequency comb,
which is expected to survive the process of HHG, can be used for high resolution spectroscopy
in a wavelength range previously inaccessible to frequency metrology.

6Once the proton charge radius is determined by a group at PSI (Switzerland) working on muonic hydrogen,
these corrections can be verified with the results already obtained with the hydrogen experiment in our group. A
description of the experiment that is being prepared at PSI was presented by Kottmann et al. (2001).

7because the upper level lies in the continuum



Chapter 2

Frequency comb generators

Just after the invention of the laser it was quickly realized that the interference between beams
of two different lasers exhibited a beat note1 whose frequency fbeat is the difference between the
two laser frequencies fi

fbeat = f1 − f2. (2.1)

These beat frequencies could be simply observed by placing a photodiode into the interference
between the two lasers. However, the frequency difference between such laser could not be
larger than a few 100 GHz as electronic equipment is not fast enough to detect or count higher
frequencies. But as visible frequencies are about 104 times higher, the intervals that could be
measured using this technique are relatively small compared to the optical frequencies.

2.1 Combs - Bridging large frequency gaps
A method to increase the gap that can be measured, is to place a laser in between the two whose
frequency difference should be determined and determine both beat frequencies of the two lasers
to be measured against the intermediate laser. By doing this the detectable beat frequencies are
only about half the total frequency difference. Still, the total gap is given by the sum of the two
beats. This method could of course be extended to larger and larger gaps if a sufficient number
of intermediate oscillators is added to the system. Realistically this route can not be taken as, for
1 nm in wavelength (in the visible domain) to be bridged, 10 lasers would already be necessary
and the system becomes really cumbersome.

It is well known that a periodically modulated single frequency signal acquires sidebands
that are spaced integer multiples of the modulation frequency apart from the original (carrier)
frequency. This can also very quickly be seen mathematically. Let E0(t) be a single frequency
carrier2 at ω0

E0(t) = E0e
iω0t (2.2)

1just as in acoustics where a beat is heard if two violin strings are simultaneously played that have a slightly
different tuning.

2For convenience only the positive frequency components are written down. To obtain a real physical quantity
always add the complex conjugate.
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Figure 2.1: Determining the the frequency gap between a carrier with frequency ω0 and a second
signal at ω1. The dashed lines depict the sidebands, which arise from periodically modulating
the carrier at ω0 with a period T = 2π/ωr. An interference between the modulated carrier and
the signal at ω1 will now exhibit beat signals with all of these sidebands, the smallest being ωb.
The gap is then given by (2.5).

and A(t) a complex modulation amplitude that is periodic with period T , i.e. A(t + T ) = A(t)
so that it can be rewritten using its discrete Fourier transform Ân

A(t) =
∞∑

n=−∞

Âne
inωrt (2.3)

which contains only Fourier components with integer multiples of the modulation frequency
ωr = 2π/T . The resulting signal takes the form

E(t) = A(t)E0(t) = E0

∞∑
n=−∞

Âne
i(nωr+ω0)t. (2.4)

This tells that new single frequency components are added to the carrier, which have frequencies
which are exactly integer multiples of ωr larger or smaller than the carrier frequency. These
new components can act as the intermediate oscillators for measuring large frequency gaps with
one big advantage: As the spacing between all these additional components is determined by the
modulation frequency only, it is sufficient to control (or measure) only one single radio frequency
ωr. Now the task of determining the gap between a oscillator at ω1 and the carrier ω0 boils down
to determining the modulation frequency ωr and the beat frequency between ω1 and the nearest
modulation component3 ωb which is smaller than half the modulation frequency, as shown in
figure 2.1, so that the total frequency gap is

ω1 − ω0 = nωr ± ωb (2.5)

and the frequency gap can be expressed by two radio frequencies, that are accessible to electronic
control or counting equipment. Of course for this measurement to be complete, the mode number
n as well as the sign of the beat signal needs to be determined, too. If there is a priori knowledge
of the frequency gap with an accuracy better than ωr/2 this can be accomplished algebraically.

3i.e. which produces the smallest beat frequency.
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Otherwise there are also other tricks like changing the modulation frequency and tracking the
beat frequency as a function of it. There is no uncertainty associated with determining the mode
number if it is done sufficiently careful as both mode number and sign are discrete quantities and
a failure to determining them cause a finite error in the determined frequency that can be detected.
In this way, frequency gaps much larger than the modulation frequency can be determined, the
limit being given by the sideband farthest away from the carrier (having useable power).

Extremely broadband frequency comb generators based on harmonic phase modulation have
been constructed by Kourogi et al. (1995). For such a modulator, the modulation function takes
the form

A(t) = eim sin(ωrt) (2.6)

for which the Fourier coefficients are

Ân = Jn(m), (2.7)

where Jn is the nth order Bessel function of the first kind. These quickly drop to zero as n
becomes larger than m, which means that the larges possible modulation index m is desirable.
The most distant sideband is then mωr away from the carrier. For achieving the highest m
while keeping the modulation frequency high too, Kourogi et al. placed their electrooptic phase
modulator inside a high finesse optical resonator, whose free spectral range was matched to the
modulation frequency, so that for the stored light the modulation added up in phase round trip
after round trip in the resonator and comb widths of more than 10 THz could be achieved, finally
limited by dispersion in the resonator. The achieved modulation index in these devices was on
the order of one, but the useable bandwidth in this work was not defined by a 3dB criterion as
in the above considerations but by the requirement that the generated sideband had a prescribed
signal to noise ratio sufficient for beat detection.

2.2 Femtosecond lasers as comb generators
Another type of comb generator that can provide in excess of 50 THz of bandwidth directly from
a laser oscillator without the need for active modulation are so-called mode-locked lasers. In a
mode-locked laser, a pulse of very short duration is circulating in the laser resonator. Each time
this pulse hits the output coupler mirror a copy of it is released from the laser resonator. In steady
state operation (i.e. some time after the laser has been started and all the "turn on"transients have
decayed), the emitted pulse train will have a perfectly periodic amplitude envelope A(t) as in
(2.4) with a period determined by the laser resonator round trip time T . The Fourier components
Ân will have non-negligible magnitude up to frequencies corresponding to the inverse pulse
duration, which for modern Ti:Sapphire based laser systems can reach down to 5 fs, so that the
corresponding frequency comb may have a bandwidth of around 200 THz. The carrier frequency
(or center frequency4) of such lasers is around 375 THz. The spectrum of such a frequency comb

4As there is no unique definition of the carrier frequency for such combs because they don’t start with a single
frequency source and the spectrum is so broad and may be asymmetric that it is impossible to define a carrier
frequency in a sensible way.
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Figure 2.2: Frequency comb emitted from a mode-locked laser and the corresponding time do-
main picture. The frequency comb has a center mode at ω0. Extending the comb to zero yields
ωCE . The phase shift of the carrier wave with respect to the envelope from one pulse to the next
is given by TωCE = ∆φ.

contains frequencies, according to (2.4)

ωn = nωr + ω0 = n′ωr + ωCE (2.8)

where the second equality is obtained by absorbing integer multiples of repetition frequency ωr
contained in ω0 into the frist term and an appropriate renumbering (see figure 2.2). It is easy to
see that TωCE = ∆φCE is the phase shift of the carrier wave with respect to the pulse envelope
from one pulse to the next.

The bandwidth of such a comb approaches the center frequency in magnitude. Therefore it is
possible to count the gap between a frequency ω and its second harmonic 2ω using such a comb
generator. But because

ω = 2ω − ω (2.9)

the frequency itself can be counted. Therefore with the trick depicted in figure 2.3, where the
second harmonic of a comb mode on the low frequency end of the comb is compared to the
nearest comb mode on the high frequency end results in a radio frequency, which together with
the repetition frequency is sufficient to completely determine every (optical!) mode frequency
of the comb (up to an integer and a sign) via (2.8). The unknown sign of the carrier envelope
frequency ωCE may be found by varying the repetition rate only and determining the sign of the
change of ωCE

A prerequisite for this trick to work obviously is that there actually is a mode of sufficient
power close to the doubled mode frequency. As may be recalled from music, the interval between
a tone at a certain frequency and its double frequency is called an octave. Therefore a frequency
comb fulfilling the prerequisite for the above trick was termed an octave spanning frequency
comb. Nowadays mode-locked laser sources are available that provide octave spanning spectra
right out of the box (Fuji et al. 2005, Fortier et al. 2003), but if this is not the case a conceptually
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Figure 2.3: Self-referencing technique. A mode from the low frequency side of the comb is
frequency doubled and compared to a mode from the high frequency end. Like this the absolute
frequency of the low frequency mode, and therefore all modes can be determined via two radio
frequencies ωr and ωCE and a large integer n.

simple yet powerful trick can be applied to achieve an octave of bandwidth. As was explained in
the previous section, periodic modulation of a signal adds sidebands to the existing spectrum at
a spacing equal to the modulation frequency. The optical Kerr effect is a nonlinear effect where
the refractive index of a dielectric medium depends on the intensity of the light in the medium
so that

n = n0 + n2I(t), (2.10)

where n0 is the linear refractive index, I(t) the intensity of the electromagnetic wave and n2 is
the Kerr coefficient. Now the intensity of the pulse train changes periodically with the repetition
frequency ωr of the pulse train and therefore, if it is travelling in a Kerr medium, it will phase
modulate itself, extending the frequency comb without changing the structure (2.8). If the pulse
train travels a large distance with high peak intensity (e.g. small mode diameter) and large
intensity contrast (short pulse) in such a Kerr medium, this can add so many sidebands that the
resulting comb spans an entire octave. The invention of special microstructured fibers enabled
such a continuum generation even for mode-locked lasers that run at a gigahertz repetition rate.
These fibers have a core diameter that is smaller than in standard single mode fibers, which is
achieved by essentially using air as the cladding material, and thereby reaching a very large
index contrast. As a result the area of the guided optical mode is much smaller than in a standard
single mode fiber. Additionally, these fibers can be designed such that the dispersion for pulses
propagating in the fibers is nearly zero so that the highes peak power can be maintained for a
relatively long propagation length. Figure 2.4 shows the effect of such a fiber on the spectrum
of a mode-locked fs-laser frequency comb with a repetition rate of 800 MHz with an initial
bandwidth of about 50 THz being broadened to over 500 THz, spanning the octave between
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Figure 2.4: Spectrum of a Ti:Sapphire fs-laser before and after broadening it using the self phase
modulation effect in a special microstructure fiber. The modes of the frequency comb are not
resolved. The band width of the spectrum increases by about a factor of 10. The resulting
spectrum spans the octave between 532 nm and 1064 nm. dBm := 10log10(P/1mW), P power
per mode.

532 nm and 1064 nm.
A schematic of a real frequency comb setup is shown in figure 2.5. Instead of selecting a

single mode to do the selfreferencing, a (relatively) narrow band section can be selected by the
frequency doubling crystal phase-matching conditions. In this way all the phase-matched modes
are mixed in a sum frequency process instead of doubling only one mode. The generated modes
still have twice the carrier envelope frequency, and an interference with the blue modes of the
comb still exhibits the carrier envelope frequency ωCE . Care has to be taken however that all
these beat notes add up in phase, i.e. that the frequency doubled pulse arrives simultaneously
on the beamsplitter with the blue part of the original pulse. Therefore an adjustable delay line is
used for the blue part of the original comb.

Now that every comb mode can be assigned an exact frequency5, any unknown laser fre-
quency ωl within the spectral range of the comb can be counted directly by only counting the
(radio frequency) beat signal ωb, between the laser and the nearest by mode of the comb. When
the mode number n and the sign of the beat signal is determined, the laser frequency may be
calculated via

ωl = nωr + ωCE ± ωb, (2.11)

making optical frequency measurements an (almost) trivial task. No limit of the achievable
accuracy of this optical counting technique has been found so far. Upper limits on the error of
a frequency measurement using frequency comb technique have been determined to be smaller

5in terms of the radio frequencies, ωr and ωCE ., which may be counted or controlled electronically.
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Figure 2.5: f-2f interferometer setup. The microstructure fiber broadens the comb to an optical
octave. The output is split into a red frequency part and a blue part at a dichroic beam splitter
(DBS). The red part is frequency doubled (SHG) while the blue part is delayed such that when
the doubled part and the original blue part are superimposed on the next beam splitter, both
pulses arrive simultaneously. In this way, all the beat signals from the different components of
the combs leading to the same beat frequency interfere constructively. Filtering away the modes
that don’t contribute to a beat signal with a grating and a slit improves signal to noise ratio. λ/2:
half wave plate, PBS: Polarizing beamsplitter, SHG: second harmonic generation
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Figure 2.6: Linear (single photon) spectroscopy with a comb. Panel a) shows the response
of the atom to a single frequency (solid) and the comb spectrum (dashed) that can be shifted
by tuning the offset frequency. Panel b) gives the atomic response as a function of the carrier
envelope frequency. For a linear response of the atom this spectrum is just the convolution of
atom response and comb spectrum.

than 10−15 (Holzwarth et al. 2000, Diddams et al. 2002) and some properties of the comb have
been tested by Zimmermann et al. (2004) to be more accurate than one part in 1020.

2.3 Spectroscopy with frequency combs
Frequency combs not only provide a method to directly count optical frequencies and provide
and optical clockwork for all optical clocks that can be expected to outperform radio frequency
primary time standards in the very near future. They also in some sense combine the best of
ultrafast physics and precise narrow band spectroscopy. The modes of a frequency comb can
be made similarly narrow as the single mode of a stabilized single frequency laser source using
essentially the same techniques (Jones and Diels 2001) so that in principle each mode of the
comb can be used for high resolution spectroscopy. But the comb provides up to 106 of those
simultaneously so that one can dream of taking survey spectra across the entire optical domain
with a resolution and simultaneous accuracy on the order of 10−15 in the twinkling of an eye.
This section discusses some of the possibilities.

2.3.1 Single mode

The most obvious spectroscopic application of a frequency comb is to use a single mode of
it to excite a narrow band atomic transition as was done by Gerginov et al. (2005). The idea
is very simple: place an atomic absorber into the beam of a mode-locked laser and record the
spectroscopic signal (like fluorescence or absorption) as a function of carrier envelope frequency
ωCE while keeping the repetition rate ωr fixed. As shown in figure 2.6 the observable atomic
response is just the convolution of the comb spectrum and the atomic response. This already
shows some restrictions of the method:

1. If the width of the atomic response is on the order of or larger than the spacing between
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the comb modes, the resulting signal will have little or no structure and no frequency can
be determined.

2. The position of the resonance ωa has to be know beforehand to better than half a comb
spacing. Otherwise the mode number has to be determined by measuring at different rep-
etition rates also.

3. If there are many resonances within the frequency comb spectral range, it may become
hard to identify each of them as all of them will appear in every ωr copy of the signal and
a deconvolution may become impossible as the driving field (the Fourier transform of the
spectrum) is zero most of the time.

Another point that has to be kept in mind, is that the total output power of the frequency comb
is distributed among up to 106 individual modes and at most one single mode can drive the
resonance of the atom so that it may become hard to detect a signal due to low transition rates.
However, if the atom numbers in the sample is sufficiently high and good detection techniques
are employed this method still works, as demonstrated by Gerginov et al. (2005). In that work,
as opposed to scanning the carrier envelope frequency, the repetition rate was scanned, while
keeping the former fixed. This makes the tuning mechanism easier to implement and avoids
some problems associated with the carrier envelope frequency becoming zero or ωr/2.

2.3.2 Two-photon spectroscopy
If two-photon transitions are probed with a frequency comb some of the prerequisites for fre-
quency comb spectroscopy can be more easily fulfilled. First, if a transition is two-photon al-
lowed, parity and angular momentum conservation immediately forbid a direct single photon
decay to the ground state. Therefore, if there are no other decay channels, the excited state is
typically very long lived and the transition has a small natural linewidth. Additionally, if the
transition is excited with two counter-propagating photons of the same frequency, the first-order
Doppler shift is due to the motion of the atom is cancelled, and therefore the observed linewidth
can be close to the natural one, avoiding the problem of smearing the atomic response across
several comb modes.

It was also quickly realized that (for an atom at rest) if a pair of modes from the frequency
comb was resonant with the atomic two photon resonance at frequency ωa, i.e.

ωa = (nωr + ωCE) + (mωr + ωCE) = (n+m)ωr + 2ωCE, (2.12)

the same holds true for a pair of modes, one k modes to the left and the other k modes to the right
of the original modes

ωa = ((n+ k)ωr + ωCE) + ((m− k)ωr + ωCE). (2.13)

Hence, the entire frequency comb power contributes (see figure 2.7) to driving the two-photon
transition if the resonance condition (2.12) is fulfilled. It was Baklanov and Chebotayev (1977)
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Figure 2.7: Pairs of comb modes can add to the same transition frequency ωb of a two-photon
transition. Due to the perfect periodicity of the comb, its entire spectrum contributes to driving a
narrowband two-photon transition.

who pointed out that if the relative phases of all these modes are chosen right so that the contribu-
tions from different mode pairs add up in phase6, the transition rate for the two-photon transition
is equal to the transition rate obtained with a single frequency laser with the same average power.
Depending on n+m being even or odd ωCE + (n+m)ωr/2 is one of the comb modes (even) or
just in the middle between two comb modes (odd). Therefore the resonance condition reappears
after a scan of the frequency comb by ωr/2 only, in contrast to the situation in 2.3.1 where spectra
repeated after a scan twice as large.

Experimentally, such two-photon comb spectroscopy has been demonstrated by Eckstein in
1978 already using an actively mode-locked dye laser. In that work the 3s-4d and the 3s-5s two-
photon transitions in sodium were investigated in a vapor cell. Of course at that time no octave
spanning frequency combs were available, and absolute frequency measurements could not be
performed like this. But the about 1 THz wide, mode-locked dye lasers available at that time
still enabled the determination of frequency differences as large as hundreds of GHz. A main
limitation for these experiments was the relatively high temperature of the sample. The Doppler
effect can not be completely cancelled in this frequency comb two-photon spectroscopy, even
if a standing wave arrangement is used, as the photons in the frequency comb do not all have
the same frequency. Therefore the first order Doppler shift for counter-propagating two-photon
absorbtion is

∆ωDoppler =
v

c
(ω1 − ω2) = v∆ω (2.14)

with v being the projection of the atoms velocity onto the beam axis and ωi being the frequencies
of the two photons. Therefore, in a worst case estimate, the Doppler width of the signal is given
by

∆ωDoppler =

√
< v2 >

c
∆ω. (2.15)

Here ∆ω is the bandwidth of the comb and it was assumed that only modes from the wings of
6which in the simplest case holds true if the phases are all zero (at some time), i.e. the pulses in the pulse train

are Fourier limited.
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the comb spectrum contribute. Compared to the width of the signal in a collinear (not Doppler
free) arrangement the width in (2.15) is reduced by the relative bandwidth of the comb ∆ω/ω

There are essentially two ways to fix this. One is to cool the sample, reducing the full Doppler
width, the other is to reduce the comb bandwidth. An experiment that uses the first option
was performed by Snadden et al. (1996), which investigated the 5s-5d and 5s-7s transitions in
atomic rubidium vapor that was cooled in a magnetooptical trap and excited by a mode-locked
Ti:Sapphire femtosecond laser. In this experiment the sample was cold enough to observe nearly
natural linewidths of the transitions under investigation. First results on absolute optical fre-
quency measurements using the same technique were obtained by Marian et al. (2004) also on
laser cooled rubidium.

Also (almost7) absolute frequency determination was performed by and Witte et al. (2005),
who first demonstrated a big advantage of frequency comb spectroscopy: because the frequency
comb is simultaneously a train of ultrashort pulses, extremely high electric fields are available
for short periods of time. This fact facilitates the nonlinear conversion of the frequency comb
spectrum to higher order harmonics (4th order in this case).

2.3.3 Fourier transform spectrometry
It is a well know fact that the Fourier transform of the first order-autocorrelation of any electric
field yields the electric field’s spectrum. This fact is widely used in Fourier transform spectrom-
eters. These devices (which work in principle in any spectral domain) are essentially Michelson
interferometers that are lit by the (broadband) radiation whose spectrum is to be determined. An
interference pattern is recorded at the output port of the interferometer as a function of length
difference between the two interferometer arms. The Fourier transform of the resulting function
yields the spectrum of the radiation. One of the problems with these kind of devices that lim-
its the accuracy, is the determination of the arm length difference, which is typically measured
interferometrically using an auxilliary laser, essentially performing a wavelength measurement.

Of course in reading the introduction of this work, the reader has learned his lesson: Why
measure a length were a frequency could be measured. To demonstrate this we (Keilmann et al.
2004) have performed a pioneering experiment in our laboratories, where a new time domain
Fourier transform spectrometer in the mid infrared spectral region was demonstrated. The basic
idea is really simple: Two frequency combs having identical carrier envelope frequency ωCE but
different repetition rates ωr1 and ωr2 respectively, are made to interfere and the interference is
recorded with a photo detector. If the difference between the two repetition rates is sufficiently
small, e.g. ∣∣∣∣2(ωr1 − ωr2)

ωr1 + ωr2

∣∣∣∣� 1

n0

, (2.16)

n0 being the typical (center) mode number of the comb, the beat signals that appear at frequencies
below half the repetition rate are beats between modes of the two combs with identical mode
number, i.e.

ωbeat,n = nωr1 + ωCE − nωr2 − ωCE = n∆ωr, (2.17)

7they failed to determine the modenumber without doubt
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Figure 2.8: Two mode locked femtosecond lasers are focused into two GaSe crystals where
optical rectification generates two offset free frequency combs in the mid infrared region around
1000 cm−1. These two beams are combined on a beamsplitter and the resulting timedomain
interferogram is recorded on a HgCdTe photo detector.

with ∆ωr = ωr1 − ωr2 and the amplitude of that signal being proportional to the product of the
amplitudes of the two corresponding optical frequencies. This means that in this arrangement
there is a close correspondence between the optical spectrum and the radiofrequency spectrum
via

Iopt(ω) 7→ Irf

(
2∆ωr

(ωr1 + ωr2)
(ω − ωCE)

)
. (2.18)

Here we assigned the average of the two optical frequencies to their beat frequency.
In the experiment described in more detail in the article (Keilmann et al. 2004), two offset

free mid-infrared frequency combs were generated by rectification (i.e. difference frequency
generation) of the output of two near infrared Ti:Sapphire mode locked femtosecond lasers in
two GaSe-crystals as shown in figure 2.8. The two driving lasers had a repetition rate of 87 MHz
with a difference of nominal ∆ωr = 2 Hz. The resulting mid infrared beams were colimated and
superimposed on a ZnSe beamcombiner. The resulting interferogram was recorded on a HgCdTe
photo detector.

A fourier transformation of the time domain interferogram yields the detected mid infrared
spectrum, which is checked by placing molecular trichlorethylene gas with a strong absorbtion
band at 940 cm−1 into the mid infrared beam. The resulting spectrum clearly exhibits a pro-
nounced dip at that frequency. Figure 2.9 summarizes the result.
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Figure 2.9: (a) time domain photocurrent recorded by a sampling oscilloscope. (b) power spec-
trum obtained by taking the fourier transform of such a trace. (c) infrared spectrum obtained
from such a power spectrum using (2.18) and (d) spectrum obtained, when placing trichlorethy-
lene into the beam path. The strong absorbtion band near 930 cm−1 is clearly observed.
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Chapter 3

Theoretical aspects of extreme ultraviolet
frequency comb generation

Extreme ultraviolet (XUV) lasers at the time of writing are in a similar situation as visible lasers
in the 1960’s. They are of little use for high resolution spectroscopy because of relatively broad-
band emission. In the visible, it was not until 1972 that the first widely tuneable single mode laser
appeared. In this chapter I present our approach to creating a quasi-continuous XUV source that
is in principle suitable for high resolution spectroscopy.

There is hardly any gain medium available that supports the lasing in the XUV spectral range
and it is almost impossible to create strong feedback on such a gain medium due to the lack
of high reflectance mirrors in that wavelength range. Still, very impressive performance can
be achieved using so-called free electron lasers (FEL). In these devices a relativistic electron
beam is passed through a periodic alternating magnetic field array (a so-called undulator). The
electrons are accelerated perpendicular to the propagation direction due to the Lorenz force and
emit broadband synchrotron radiation into a narrow cone around the forward direction due to
their relativistic velocities. If the deflection angle in the undulator is on the order of the cone
angle, so that the emitted radiation overlaps at any time with the electron beam, a phase-matching
condition for constructive interference of the generated light is established by the requirement
that the generated (faster) electric field has traveled an integer number of cycles with respect
to the electron’s center of mass motion during one undulator period of the electron. Therefore
the emission wavelength of an FEL can be tuned by changing the undulator period and/or the
electron velocity. If the emitted radiation power is high enough, back action of the generated
field onto the generating electron bunch will become important. This back action tends to divide
the electron bunch into smaller pieces (so-called microbunches with wavelength separation) so
that more and more electrons will radiate in phase with the local electric field, amplifying the
existing field exponentially. This process will stop, as all the electrons are collected into the
microbunches and the gain curve saturates. If there is no additional feedback mechanism, every
electron bunch follows this process starting out from zero field. This mode of operation is called
"self amplified spontaneous emission"(SASE). The transversal mode profile of such a SASE FEL
is nearly transform (diffraction) limited but the temporal/spectral properties are less favorable
when considering high-resolution spectroscopy. As every electron bunch starts out from vacuum



20 3. Theoretical aspects of extreme ultraviolet frequency comb generation

fluctuations (synchrotron radiation) the phase of the first photon generated by the bunch has
a random phase. Additionally, the saturation length of such a system is typically too short to
establish phase coherence across the whole bunch, which is why the spectrum of a single pulse
is far from being transform limited1.

Another possibility to create laser-like radiation in the XUV and soft X-ray spectral region is
to convert available highly coherent visible and near infrared (NIR) laser sources using nonlinear
conversion processes. There, the nonlinear response of dielectric media is utilized, to create
harmonics and/or sum and difference frequencies of the laser’s frequency (frequencies). In the
low field limit, assuming purely elastic photon scattering, the atomic polarization in a dielectric
medium can be expanded in a Taylor series in E(t)2

P (t) =

∫ t

−∞
χ1(t− τ)E(τ)dτ +

∫ t

−∞

∫ t

−∞
χ2(t− τ, t− τ ′)E(τ)E(τ ′)dτdτ ′ + ..., (3.1)

where the (nonlinear) susceptibilities χn(t) are assumed to be zero for times t < 0 as required
by causality. The fourier transform of (3.1) can be written as

P̂ (ω) = χ̂1(ω)Ê(ω)dω +

∫
χ̂2(ω

′, ω − ω′)Ê(ω′)Ê(ω − ω′)dω′ + ..., (3.2)

where Ê(ω),P̂ (ω) and χ̂n(ω) are the Fourier transforms of the electric field, the polarization and
the nonlinear susceptibilities respectively. From this it can immediately be seen that the spectrum
of the polarization contains all possible sums and differences of frequencies of the driving field.
Specifically, if the driving field only contains a single frequency, integer multiples of this driv-
ing frequency are created. Obviously these new frequency components in the polarization are
radiated away so that these new frequeny components are available in the electromagnetic field
too. As Boyd (2003) points out, the magnitude of the nonlinear suceptebility χn for nonresonant
drive can be estimated by

χn ≈
χ1

En
a

, (3.3)

withEa being the electric field seen by the participating electrons in the ground state of the atom.
For electric fields much smaller than Ea, the magnitude of nonlinear polarization at n times the
driving frequency will then be dominated by the lowest order contribution to this nth harmonic3

and the harmonic yield will decrease exponentially with harmonic order as

P̂ (nω0) ∝

(
Ê(ω0)

Ea

)n

(3.4)

For a driving field amplitude approaching Ea, this lowest order approximation no longer
holds, and for E(ω0) > Ea the Taylor series fails to converge completely. In that case a pertur-
bative ansatz to calculate the nonlinear response and the generated radiation will be no longer
valid, and different methods are required.

1for an overview see Materlik and Tschentscher (2001).
2see for example in Boyd (2003).
3The (n+ 2k)th order susceptibilities can contribute to the same frequency as ωn = nω0 = (n+ k)ω0 − kω0 is

contained in the n+ 2kth order polarization spectrum.
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From the experimental point of view, first observations of a deviation from the exponential
falloff of laser harmonics of high order were reported by McPherson et al. (1987) and Ferray et al.
(1988). They observed that, when focusing intense laser pulses into a dilute noble gas target,
after a steep exponential falloff of power with harmonic order, an extended region (plateau) of
essentially constant intensity per harmonic is generated up to a maximum energy, at which the
efficiency sharply cuts off. This observation triggered many experiments looking at spectral
spatial and temporal characteristics of such a source, as it promised to be a relatively small
"tabletop"source for highly coherent high energy photons.

It is important to notice, that if the nonlinear properties of the generating medium are time
independent4, that is, there are no external degrees of freedom coupling to the system (like spon-
taneous photons from excited states of the medium, ionization or scattering with phonons) then
the coherence (i.e. phase and amplitude stability) of the polarization depends on the coherence
properties of the driving field only, so that it is expected that the coherence of the driving field will
be transferred to the coherence of the generated field. From this point of view, high harmonic
generation can provide a way to generate (quasi)continuous radiation in the XUV, provided a
source of sufficiently high repetition rate can be built.

This chapter presents a method for generating XUV radiation from a mode-locked laser
source with a repetition rate three orders of magnitude higher than any other known (Lindner
et al. 2003) tabletop ultrafast laser based XUV source at the time of writing. It is organized as
follows.

In section 3.1 the theory of high order harmonic generation will be reviewed, to get an
overview of what properties of the driving field are necessary to obtain XUV and/or soft X-ray
photons with a high efficiency.

Section 3.2 will present theoretical considerations, regarding high finesse optical resonators
suitable for ultrafast lasers. Such a resonator, in the presented method for generating XUV
radiation with high repetition rate, is crucial for maintaining a sufficiently high laser intensity to
efficiently generate XUV photons.

3.1 High harmonic generation

If a dielectric medium is driven by extremely high intensities, so that the driving electric field is
comparable to the atomic electric field seen by its valence electrons, the spectrum of generated
harmonic radiation does not exhibit the usual exponential falloff of generated power vs. har-
monic order as expected from lowest-order perturbation theory. Instead, an extended region of
harmonics of equal power is observed (plateau), that quickly cuts off at a certain photon energy.
This behavior was first observed by Ferray et al. (1988) and McPherson et al. (1987). In noble
gases, the required intensity to observe such a phenomenon lies above 1013 W/cm2.

As mentioned in the previous section, this behavior can not be explained within a perturbative
approach to nonlinear frequency conversion, as the Taylor expansion (around zero driving field)
of the nonlinear response fails to converge at these high intensities. To overcome this difficulty,

4as assumed in eq. (3.1), which depends on the driving field only and not explicitly on time
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Figure 3.1: Three step model of HHG. The atomic potential plus the potential of the driving field
make a tunnel barrier. Once the electron has tunneled through this barrier in the first step, it is
accelerated, in a second step, in the alternating driving field and may return to the parent ion with
a kinetic energy Ekin. If it recombines, in the last step, into the ground state, it emits a photon of
energy ~ω = Ekin + Ui, −Ui being the binding energy of the electron.

a different approach to understand the nonlinear response of a medium under these conditions
is required. In this section a brief overview of the theoretical model describing the high field
nonlinear response of dielectric media will be given.

3.1.1 The simple man’s model
The "three step"- or "simple man’s model"of high order harmonic generation which will be dis-
cussed now was put forward by Corkum (1993) and Kulander et al. (1993). It provides a simple
and intuitive approach to the phenomenon of high order harmonic generation and some of its
properties. Later this model was justified by the quantum mechanical considerations of Lewen-
stein et al. (1994) which are outlined in appendix A. According to this three step model the
electron participating in the process first tunnels from the atomic ground state through the barrier
formed by the Coulomb potential and the laser field (see figure 3.1).

After this step, where the electron appears in the continuum at the position of the parent ion
(x ≈ 0, ẋ = 0) and is accelerated by the laser field. This motion can essentially be treated
classically and is (for sufficiently high field amplitude) dominated by the alternating field of
the laser which will induce an oscillating motion of the electron. Under certain conditions the
electron may return to the vicinity of the parent ion and, in the third step, recombine to the
ground state. If it does so with a kinetic energy Ekin, a photon of energy Ekin + UI , where UI is
the ionization potential of the atom, is emitted. It is quite straightforward to see that it can only
return to the parent ion and recombine if the driving laser field is linearly polarized. Therefore,
from now on the laser field will be assumed to be linearily polarized along the x-direction

E(t) = exE0 cos(ωt), (3.5)

where ex is the unit vector in x-direction.
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First step: Ionization

The ionization rate (neglecting ground state depletion) for an atom in a static electric field may
be calculated analytically. In the classic book of Landau and Lifschitz (1966) this rate may be
found to be

Γ ∝ E0

U
5/2
I

exp

(
−4
√

2mU
3/2
I

3e~E0

)
. (3.6)

This can be generalized to varying fields, which has been done by Keldysh (1965). Another result
was given by Ammosov, Delone and Krainov (1986) and is known as the ADK rate. Both these
approaches, in the high field limit, give results similar to (3.6), only with different prefactors
(which depend weakly on E) to the exponential. The quasistatic approximation used in both of
these calculations assumes that the tunneling time of the electron through the Coulomb barrier
are short compared to an optical cycle, which is fulfilled if the so-called Keldysh parameter

γ =

√
UI
2Up

(3.7)

is smaller than one. Here Up is the ponderomotive energy, the average kinetic energy, of an
electron in a harmonic electric field, which is given by

Up =
e2E2

0

4ω2me

. (3.8)

The electric field amplitude E0 is related to the intensity of the laser beam by

I =
cε0
2
E2

0 . (3.9)

For a Keldysh parameter γ much larger than one, the field ionization rate is dominated by multi-
photon absorbtion, which has a different power scaling and is also given in the work of Keldysh
(1965). Experimentally one typically deals with an intermediate regime of γ, as for example the
intensity where γ is about one is found for most noble gases to be around 1014 W/cm2. For this
regime an expression was derived recently by Yudin and Ivanov (2001). In the high field/low
frequency limit γ < 1 this result reproduced the quasistatic limit, while in the multiphoton limit,
the ionization probability is no longer zero even at zero electric field. For extremely high electric
fields the Coulomb barrier will be lower than the ground state energy. Threshold intensities for
Ne, Ar and Kr for example are approximately 1015 W/cm2, 4× 1014 W/cm2 and 3× 1014 W/cm2

respectively. Obviously at higher intensities any model involving tunnel ionization must fail as
there is no longer a barrier to overcome. For such intensities different approaches to the problem
are required (for example Bauer and Mulser 1999, and references therein).

Second step: Free evolution

It is well known that the canonical momentum of an electron in an electric radiation field

p̃ = p− eA(t) (3.10)
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is a conserved quantity (in coulomb gauge). Therefore the momentum of the electron at time t
that appeared in the continuum at time t0 with velocity v(t0) = 0 is simply given by

p(t) = e(A(t)−A(t0)), (3.11)

and the electron trajectory takes the form

x(t) =
e

me

(∫ t

t0

A(t′)dt′ −A(t0)(t− t0)

)
+ x0. (3.12)

This can be conveniently split into two terms: A linear drift motion that depends only on the
vector potential A(t0) at the time of ionization

xdr(t) = − e

me

A(t0)(t− t0) + x0 (3.13)

and the driven oscillatory motion

xosc(t) =
e

me

∫ t

t0

dt′A(t′) (3.14)

Third step: Recombination

The electron can only recombine (or in general interact) with the parent ion, if it returns to it.
Specifically, if it is required that the electron returns to the position, were it started its journey5

x(trec) = x(t0) this results in the condition∫ trec

t0

dt′A(t′) = (trec − t0)A(t0). (3.15)

The solution to this equation, in most circumstances, can not be given in closed form6. But a
simple graphical method exists to determine the recombination time trec for the case of linearly
polarized driving field. As shown in figure 3.2, when the oscillatory motion xosc is plotted
versus time, the drift motion at time t0 has the same slope as the oscillatory motion because
ẋosc(t) = e

me
A(t0) = vdr. With an appropriate offset to the drift motion, it can be made a

tangent to the oscillatory motion. Then solutions to (3.15) are found at each intersection of the
drift with the oscillatory motion. From these considerations it can be immediately seen that, in
the case of a harmonic field, there is recombination only if the ionization takes place between a
peak of the field and the following zero crossing. For later ionization times (until the next peak
of opposite sign) the electron does not return to the parent ion. It can also be seen in figure 3.2
that for some trajectories the electron can return more than once. If it is not absorbed by the
parent ion at the first possible instant, it may also recombine later.

Particularly important for HHG is the kinetic energy of the recombining electron as this
determines the emitted photon energy via Eν = Ekin(trec) + UI . Figure 3.3 shows the kinetic

5This condition is justified by (A.13) from the quantum mechanical derivation in appendix A.
6even if the field is harmonic and linearly polarized
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Figure 3.2: Graphical determination of the recombination time and return velocity of the electron.
x(t) with solid and e

me
A(t) with a dashed line. See text for an explanation.
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Figure 3.3: Kinetic energy of the returning electron as a function of the travel time τ . The
absolute maximum of this function is found to be 3.17Up.
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Figure 3.4: Kinetic energy of the returning electron as a function of return time for trajectories
shorter than an optical cycle (solid), between one and two (dashed), and between two and three
optical cycles (dash-dotted). This shows the instantaneous spectral distribution of the gener-
ated field (for a finite time window). The strongest contribution comes from the the trajectories
shorter than an optical cycle. The dotted line is proportional to the electric field at the time of
recombination.

energy of the recombining electron as a function of travel time τ = trec − t0 for the case of
a harmonic driving field. This parameter was chosen, as it uniquely (modulo half an optical
period) identifies the possible trajectories that return to the parent ion. The absolute maximum of
this function is found to be 3.17Up which determines the highest frequency found in the atomic
polarization. This is the well known cutoff frequency that is given by

~ωcutoff = 3.17Up + UI . (3.16)

It is also very instructive to look at the kinetic energy of the returning electron as a function
of return time trec. This is shown in figure 3.4. This gives a hint of how the instantaneous spectral
distribution7 of the dipole moment looks. It will have maxima at ~ω = Ekin(trec) + UI for each
of these trajectories. Note however that the contribution of trajectories longer than one optical
cycle are strongly suppressed8.

It is important to note that there is always more than one trajectory of the electron that returns
with the same kinetic energy, contributing to the polarization component of the same frequency.
To determine the polarization amplitude at this frequency it is therefore necessary to know, in

7i.e. The Fourier transform of the dipole moment with a moving time window centered at trec of a length shorter
than an optical half cycle.

8This is due to the fact that the size saddle points in the quantum mechanical description of HHG (appendix A)
are much smaller for longer trajectories, i.e. small Gn(ω) in (A.16).
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Figure 3.5: The hierarchy of the emitted harmonic specturm. The spectrum emitted during a half
cycle of the driving field is characterized by a plateau of constant intensity up to a maximum
energy, the cutoff energy. Interference between emission from each half cycle of one pulse leads
to a peak structure with maxima at odd multiples of the driving frequency. Interference between
the pulses in the frequency comb pulse train lead to a frequency comb structure according to
(A.22).

addition to the amplitudes of the contributing trajectories, the relative phase of these different
contributions. Both of these quantities can not be calculated from the simple model presented
here. The quantum mechanical model in appendix A.3, however allows the calculation of the
phase. There it is also show that the phase of the generated radiation depends on the drive inten-
sity, which provides a amplitude to phase coupling that has to be taken care of, when producing
a coherent frequency comb in the XUV.

Putting everything together, the spectrum of the atomic polarization, with a frequency comb
as the driving field, shows the characteristics depicted in figure 3.5. The spectrum emitted within
one half cycle of the electric field contains all frequencies from zero up to the cutoff frequency
~ωmax = UI + 3.17Up and the power of all these frequency components is approximately the
same (modulo interference between contributions from different classical trajectories). This is
the so called plateau of HHG. For photon energies on the order of the ionization potential and
below, the presented model is not valid, as the kinetic and/or potential energy of the electron is too
low and neglecting the atomic potential is not a good approximation. Therefore the real spectrum
has a quickly dropping shoulder for these low frequencies. Because the dipole emission repeats
itself with every half cycle (with alternating sign) of the driving field this broad emission has a
substructure with twice the period of the driving frequency, corresponding to the odd harmonics.
These are still relatively broad due to the finite duration of the driving pulses. Finally, as is argued
in appendix A.2, because the driving pulse train is a frequency comb, so is each of the resulting
odd laser harmonics. The comb equation for the 2j + 1 harmonic is

ωn(2j + 1) = nωr + (2j + 1)ωCE. (3.17)

as in (A.22). Each of these comb modes should in principle be infinitely narrow, if the modes in
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the driving comb are.

3.1.2 Macroscopic response
After the discussion of the atomic response to a driving field, the next step to get the emission
characteristics from a macroscopic sample, is to integrate the emission from the atoms across the
generating volume with the appropriate phases due to generation and propagation and including
reabsorption of the XUV light by core level electrons. This integral will again give large con-
tributions only if the phase has a saddle point across a non-negligible volume. This condition is
often referred to as the phase-matching condition.

There are three main contributions to the (spatial) phase of the generated light.

• the atomic phase (A.24) depends on intensity and is therefore a function of space and time.

• the geometrical phase (the phase shift of a Gaussian beam with respect to a plane wave)

φgeom(r, z) = − arctan

(
z

zR

)
+

πr2

λR(z)
, (3.18)

where r and z are the radial and longitudinal coordinates, respectively, of a Gaussian beam
with a focus at z = 0, zR = 1/2× kw0 is the Rayleigh length of the focus with radius w0,
k is the wave vector and R(z) is the wavefront radius of curvature.

• dispersion due to neutral atoms, ions and electrons. As the driving field will (in the in-
tensity regime necessary for HHG) strongly ionize the generating medium, the strongest
contribution to the refractive index will come from the free electrons and results in a phase
shift (with respect to vacuum plane waves) of

dφplasma(r, z) =
e2λ2

8π2ε0mec2
Nel(r, z, t)dz (3.19)

with ε0 being the vacuum polarizability and Nel(r, z, t) the electron density that depends
on the laser intensity and therefore on space and time.

Under certain circumstances (involving the target density, size and position of the medium with
respect to the focus and other things) phase-matching can be achieved (see for example (Balcou
et al. 1997) and references therein). Depending on the precise conditions, this can lead to more
or less complex spatial beam profiles and temporal pulse shapes.

3.1.3 Noise sources and upconversion
As the main interest in this work is to provide a frequency comb suitable for high resolution
spectroscopy in a wavelength range previously inaccessible to ultranarrowband lasers, one main
question that arises is, weather the frequency comb will survive the nonlinear conversion or not.
As was already stated earlier, if the nonlinear conversion is elastic that is if the effective photonic
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equation of motion9 is time-independent, energy conservation requires that the generated photons
are sums of integer numbers of photons from the driving field. If that driving field is an ideal
frequency comb with frequencies (2.8) the output of the nth harmonic has to contain frequencies

ω
(2n+1)
j = jωr + (2n+ 1)ωCE (3.20)

and no other components.
However, a real frequency comb suffers from noise both in phase and amplitude due to fun-

damental limits (like shot noise) and technical noise sources (like acoustic vibrations modulating
the repetition rate of the laser, air currents, thermal fluctuations and the like). Any of these will
add other spectral components that may be broadband (like shot noise, which has a white fre-
quency spectrum). Also the time independence of the conversion dynamics has to be checked
critically. The theoretical derivation presented in appendix A completely neglects other channels
than recombination back to the ground state. One major other channel is ionization, which does
not contribute to the generated radiation but changes ground state population and the dispersion
relation for propagation of the electric field inside the medium. This section tries to discuss the
impact of all these noise sources on the expected frequency structure of the generated radiation.

A simple, purely classical analysis of the process of nonlinear upconversion of a harmonic
signal shows that the phase noise power in the signal will be amplified in the upconverted signal
with respect to its carrier by a factor n2 with n being the harmonic order of the upconverted
signal. In brief, the argument is as follows. Let’s assume an input signal

V (t) = V0 exp(i(ω0t+ φ(t)) + c.c., (3.21)

where φ(t) is the phase noise term. If the phase noise is sufficiently small 〈φ2(t) − 〈φ2〉〉 � 1
the power spectrum of this signal is given by Rutman (1978)

|V̂ (ω)|2 =
V 2

0

4
(δ(ω − ω0) + |φ̂(ω − ω0)|2). (3.22)

Under the assumption that the nonlinear conversion coefficient is determined by the carrier only,
the nth harmonic of that signal will take the form

Vn(t) = Vn(V0, ω0) exp(i(nω0t+ nφ(t))) (3.23)

and the power spectrum of the upconverted signal becomes

|V̂n(ω)|2 =
V 2
n (V0, ω0)

4
(δ(ω − nω0) + n2|φ̂(ω − ω0)|2). (3.24)

If the harmonic order becomes too high, the noise background will eventually become larger than
the carrier signal at ω0 (within some bandwidth) so that the carrier can no more be identified. This
phenomenon is customarily referred to as carrier collapse in harmonic upconversion. Based on
this argument, Telle (1996) have predicted that a phase cohenrent radio frequency to optical link
would not be possible with frequency combs.

9i.e. after taking the trace over the atomic degrees of freedom.
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Amplitude noise in the driving signal will produce amplitude changes in the upconverted
signal that may be very large as the conversion efficiency depends highly nonlinearly on the
driving field strength. The driving amplitude is also coupled to the phase of the generated field
via (A.24). For example, for a driving field with an intensity high enough that the ponderomotive
energy is 10 times the photon energy of the fundamental field, an amplitude change of 10% could
already cause a nonlinear phase change of 2π for the long trajectory.

Another effect that affects the phase of the generated light (as well as the fundamental radi-
ation field) is the linear refractive index of the generating medium. As for high order harmonic
generation the driving field is so strong that many atoms are ionized, the dispersion inside the
medium is dominated by the plasma refractive index which in turn is dominated by the contribu-
tion from the electrons. The electron plasma dispersion relation is given by

k(ω) =
ω

c

√
1− ω2

el

ω2
, (3.25)

where ωel is the plasma frequency

ωel =

√
Nele

ε0me

, (3.26)

and Nel is the electron density. Fluctuations in the plasma density lead to phase fluctuations in
both the driving wave and the generated field. Such fluctuations may come from density fluctua-
tions of the generating medium but they are also induced by fluctuations in the driving intensity.
This is an additional mechanisms that couples amplitude and phase of the generated XUV radia-
tion. The plasma dispersion relation approaches the vacuum dispersion relation quadratically as
the frequency ω increases. Therefore the plasma density has the largest effect on the fundamental
wave propagation. For the 11th harmonic the effect is a factor of 121 weaker.

Other sources of noise in the HHG radiation include spontaneous emission from the plasma
recombination and decay from excited states. These spontaneous emission processes are however
typically nondirectional, so that the power gets distributed across the entire solid angle 4π and
only a small amount is emitted into the well-collimated Gaussian beam of HHG. There may also
be other bound states than the ground state, to which the atom can recombine, resulting in an
emission of photons with a different energy. However such processes are rather improbable and
additionally, as the atom can carry away momentum, this results in an emission that will go into
a large solid angle, so that it will have only small power inside the well collimated beam of HHG
radiation.

The experiments by Zerne et al. (1997), Bellini et al. (1998) and citetLynga1999 clearly show
that the noise contributions from fluctuations of the gas density and other external factors to the
phase and amplitude of the generated radiation are not large. However, these experiments only
test such external noise sources as two identical replica of one laser pulse are used to generate
XUV radiation in two different media and observing the interference between the two XUV
beams. By doing that, any fluctuations in the driving field are rejected as they affect both XUV
beams in the same way. Therefore it remains to be proven that the temporal coherence of the
driving frequency comb actually survives the high harmonic process.
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Gain medium λ [nm] Pav [W] fr[MHz] τ [fs] Pp [MW] Reference
Ti:Sapphire 790 2 11 30 6 Fernandez et al. (2004)
Yb:Fibre 1060 76 75 400 2.5 Limpert et al. (2003)
Yb:Fibre 1060 10 75 80 1.7 Limpert et al. (2002)
Yb:YAG Disk 1030 60 34.3 810 2.1 Innerhofer et al. (2003)
Yb:KY(WO4)2 1028 22 24.6 240 3.7 Brunner et al. (2002)
Yb:YAG + fiber 1030 18 34 33 12 Innerhofer et al. (2004)
Ti:Sa RegAmp 800 0.7 0.1 35 200 Lindner et al. (2003)

Table 3.1: Currently available ultrafast high power laser oscillators and their parameters. λ:
Wavelength, Pav: average power, fr: repetition frequency, τ : pulse duration, Pp: peak power

3.2 Enhancement resonators for frequency combs

To simultaneously meet the requirements for high resolution spectroscopy with frequency combs
(Chapter 2.3) and high harmonic generation (Chapter 3.1), to reach the XUV wavelength range,
a laser source is required that provides GW peak powers while maintaining a repetition rate of
several 10-100 MHz.

The peak power of a mode-locked laser is approximately given by the product of the average
power Pav and the duty factor 2π(ωrτ)

−1, where ωr is the repetition frequency of the laser and τ
is the pulse duration. A selection of available sources that provide high peak powers at repetition
rates in the MHz range is given in table 3.1. It can be seen there, that highest average output pow-
ers can be achieved using Ytterbium (Yb) doped thin disk lasers. However, the gain bandwidth
of these laser materials is relatively small, resulting in pulse durations in the several 100 fs to ps
range. Fiber lasers with Yb as gain medium show similar properties. In contrast, Ti:Sapphire
based laser systems can produce 10 fs pulse durations and with longer pulse durations give the
ability to tune the center wavelength over a wide range. These lasers are typically limited to
around 1 W average output power due to the available pump sources and constraints from the
mode locking mechanism. All of the given laser systems provide a few MW peak power with
the exception of the last entry in the table. This system is a commercially available regenerative
amplifier system working at a considerably lower repetition rate than the others. It is the only
system in the list, for which high order harmonic generation with relatively high repetition rates
and conventional methods has been reported. None of the other listed systems seems to provide
sufficient peak power, and other ways of obtaining the required field strength, while keeping the
repetition rate high, have to be sought.

A common technique to enhance the nonlinear conversion efficiency of a continuous laser
source is to place the nonlinear medium inside a optical resonator arrangement. If certain reso-
nance conditions are met, the light wave stored inside the resonator interferes constructively with
the wave driving the resonator, and orders of magnitude higher circulating power compared to
the incident power can be achieved inside such an arrangement. This has two effects:

• The high power can drive the nonlinear medium more strongly, resulting in stronger non-
linear response and higher single pass conversion efficiency.
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• The power that is not converted after a single pass through the medium remains cycling in
the resonator and can contribute to subsequent passes.

For mode-locked laser sources that emit a periodic pulse train, this technique is also applicable
and and has been proven in several applications to enhance nonlinear conversions (Persaud et al.
1990, Watanabe et al. 1994, Yanovsky and Wise 1994, McConnell et al. 2001). Additionally
resonant cavities for mode-locked lasers have also been proposed by Jones and Ye (2002) and
later used (Vidne et al. 2003, Jones and Ye 2004) for "coherent amplification". In that scheme a
resonator was driven with the laser output until it reached steady state and a pulse with enhanced
power was circulating in the resonator. That pulse was then ejected from the resonator using an
acoustooptic modulator. If this sequence is periodically repeated, it results in an amplified pulse
train but with a lower repetition rate.

The resonance condition for a mode-locked source is somewhat more complicated than for a
continuous source as it demands that the incoming and stored light stay in phase round trip after
round trip not only for a single frequency but for an entire comb of frequencies as given by (2.8).
Expressed in time domain language, the resonance is achieved, if

• the stored pulse envelope has not changed its shape after one round trip through the res-
onator,

• the stored pulse envelope after one round trip is synchronised to the next incoming pulse
and

• the electric fields inside the envelopes of the stored pulse and the incoming pulse stays in
phase.

The first statement says that the dispersion inside the resonator has to be zero (after each round-
trip). The other two statements (which to be meaningful, require the first) say that the resonator
repetition rate and offset frequency have to match those of the driving laser.

In the following sections a brief overview on optical resonators and their steady state response
to monochromatic light fields will be given. A formalism is derived to extend that to mode-locked
laser sources. Then, methods for dispersion control and characterization will be described. This
is a crucial point in designing and building a resonator for mode-locked lasers. Also a method
to determine the reflectivity of the low loss mirrors used for the cavity that was built during this
work will be presented. Finally some ideas on how introducing a small nonlinearity into such a
resonator might help improving its properties will be given.

3.2.1 Passive optical resonators
In general, to find the eigenmodes of an optical resonator involves solving the boundary value
problem of the wave equation for the electromagnetic field10. For laser beams, in most circum-
stances it is sufficient to use the so-called paraxial approximation in conjunction with spherical
boundary conditions (spherical mirrors) which leads to eigenmode solutions called Gaussian

10see for example Jackson (1962).
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Figure 3.6: Sketch of a typical optical resonator. The incident electric field Ei is coupled to the
resonator through a input coupler M1 with complex transmission amplitude t1(ω) and reflection
amplitude r1(ω). Circulating field Ec, reflected field Er and transmitted field result from the
driving incident field.

beams as introduced by Kogelnik and Li (1966). Then the problem separates into solving for a
transversal mode pattern and finding the eigenfrequencies for each of these transversal modes.
Optical resonators typically look similar to the sketch given in figure 3.6.

For sake of simplicity, let’s assume the incident field has a transversal mode distribution
that perfectly overlaps with one of the transversal modes of the resonator. Let’s also assume a
monocromatic wave of frequency ω and denote the incident complex field amplitude on the beam
axis just before the input-coupling mirror Ei so that the electric field on the beam axis in front of
the input coupler can be written as11

Ei(t) =
1

2
(Eie

iωt + c.c.). (3.27)

Likewise we define the reflected field amplitude Er on the same side of mirror M1, the circu-
lating amplitude Ei just behind the input coupling mirror and the transmitted amplitude Et just
behind the second mirror M2 in the cavity. The circulating field amplitude is given by the part of
the incident field transmitted through the mirror M1 plus the field that was already present at this
point one round trip earlier and has passed through all the elements in the cavity including reflec-
tion off mirror M1. The steady state response of such a system is determined by the requirement
that circulating amplitude does not change from round trip to round trip so that

Ec = t1Ei + G(ω)Ec. (3.28)

The quantity G is a matrix12 often called net round trip gain. Solving equation (3.28) yields

Ec = (1−G(ω))−1t1Ei (3.29)
11Throughout this work, bold face characters denote vector quantities. Hats will denote fourier transforms of

quantities without hats, except in appendix A where they will also be used for quantum mechanical operators
12In general, it is a linear map operating on the electric field. In this special case, were the resonator is assumed
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Figure 3.7: Enhancement factor (solid) and phase shift (dashed) with respect to the driving field
in a resonator with r = 0.9, t1 =

√
0.9 (according to eqs. (3.31) and (3.32))

.

In the simplest case if the medium inside the resonator is vacuum and the mirrors have polariza-
tion independent reflectivity, G is a scalar with an explicit value of

G(ω) = ei
ωL
c r2(ω)r3(ω)r1(ω)rm(ω) = r(ω)ei(

ω
c
L+φ(ω)) (3.30)

with L being the geometrical round trip length of the resonator, rm corresponding to a transversal
mode dependent round trip phase shift and diffraction loss and r1r2r3rm = r(ω)eiφ(ω) with r real.

The power of the circulating field compared to the driving power is obtained by taking the
square modulus of (3.29) using the form (3.30) for G to give

P (ω) =
|Ec|2

|Ei|2
=

|t1(ω)|2

1 + r2(ω)− 2r(ω) cos(ω
c
L+ φ(ω))

. (3.31)

The phase shift of Ec is given by

ψ(ω) = arctan

(
r(ω) sin

(
ω
c
L+ φ(ω)

)
1− r(ω) cos

(
ω
c
L+ φ(ω)

))+ arg t1(ω) (3.32)

If r, φ and t1 are for now assumed to be constant (or at least slowly varying in the sense of
what follows), the enhancement factor (3.31) has a maximum if the argument of the cosine in

time independent, this map is diagonal in fourier space so that it is a multiplicative function of frequency. In section
3.2.5 an example will be given, were it is a (slightly) more complex map.
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(3.31) is an integer multiple of 2π, which minimizes the denominator. On resonance the power
enhancement is

P =
|t1|2

(1− r)2
. (3.33)

For a passive resonator r is always smaller than unity and for a given coupling T1 = |t1|2, as
r <

√
1− T1 has to be true, the highest enhancement achievable is P = 2/T1 (for T1 � 1). The

spacing between two such resonances is ωFSR = 2πc/L and is frequently called the free spectral
range (FSR). The full width half maximum (FWHM) width of these is (assuming 1− r � 1)

∆ωFWHM =
1− r

π
√
r
ωFSR =: ωFSR/F. (3.34)

This width sets the scale for a "slowly varying"G(ω). The quantity F is customarily called the
cavity finesse.

Frequently the problem of maximal enhancement is posed differently: For a given resonator
with certain intrinsic loss (determined by the mirror quality or other optical elements in the
resonator), what is the best coupling mirror to maximize the enhancement inside the resonator?
For that purpose it is convenient to split the round trip gain into the contribution from the coupling
r1 and the rest of the cavity rr so that G = r1rr exp(i(Lω/c + φ)). If a lossless input coupler is
assumed

G =
√

1− |t1|2rrei(
Lω
c

+φ), (3.35)

the on-resonance enhancement factor becomes

P =
|t1|2

(1−
√

1− |t1|2rr)2
(3.36)

which has limits P = 1 for |t1| = 1 and P = 0 for t1 = 0. For

Tmax := |t1|2 = 1− r2
r (3.37)

it has a maximum. The transmission Tmax is often referred to impedance matched coupling. The
enhancement as a function of the input coupler transmission T1 is plotted in figure 3.8. The value
of P at the maximum is

Pmax =
1− r2

r

(1− r2
r)

2
= 1/Tmax ≈ F/π. (3.38)

3.2.2 Femtosecond pulses in dispersive resonators
Because the response of the resonator described in section 3.2.1 is linear, its response to an arbi-
trary electric field Ei(t) (skipping polarization effects for the moment) may be readily calculated
via the Fourier transform

Ei(t) =
1√
2π

∫ ∞

−∞
Êi(ω)eiωtdω (3.39)

Êi(ω) =
1√
2π

∫ ∞

−∞
Ei(t)e

−iωtdt. (3.40)
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Figure 3.8: Enhancement factor in a resonator with a loss of 10% per round trip, i.e. a value of
r2
r = 0.9.

The Fourier transform of the circulating field in the resonator is then given by (using eq. (3.29)

Êc(ω) =
t1(ω)Êi(ω)

1−G(ω)
, (3.41)

from which the circulating field Ec(t) may be calculated.
Let us first consider an incoming radiation with a broadband spectrum and no frequency

comb structure. If the incident light has little structure on the scale of one free spectral range of
the resonator, say between ω′n and ω′n+1 in (3.44), we may approximate the total power Wi,n of
the incident field in that frequency bin by assuming constant power density across the bin:

Wi,n ∝
∫ ωn+1

ωn

|Êi(ω)|2dω ≈ |Êi(ωn)|2(ωn+1 − ωn) (3.42)

The power of the circulating field within the nth bin Wc,n is then

Wc,n ∝
∫ ωn+1

ωn

|Êc(ω)|2dω ≈ ωn+1 − ωn
2π

|Êi(ωn)t1(ωn)|2
∫ 2π

0

|1− r(ωn)e
iφ|−2dφ =

= |Êi(ωn)|2
|t1(ωn)|2

1− r2(ωn)
(ωn+1 − ωn) ≤ |Êi(ωn)|2(ωn+1 − ωn) = Wi,n (3.43)

where t and r were also assumed to be slowly varying. This is always less than or equal to the
incident power per bin, where equality occurs for lossless coupling (|t|2 = 1 − r2). Therefore a
resonator is of no use for enhancing broadband radiation although it might be useful for filtering
it.
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For a the (broadband) output of a mode-locked laser whose spectral power is concentrated in
the modes of a frequency comb with frequencies (2.8) however, the situation may be completely
different. If the resonator is constructed such that each mode of the comb sits precisely on one
resonance, each of the comb modes is enhanced like a harmonic wave so that the entire spectrum
gets enhanced. The resonance condition of the resonator

2nπ =
Lω′n
c

+ φ(ω′n)

↔ ω′n = n
2πc

L
− cφ(ω′n)

L
(3.44)

does not explicitly give the resonance frequencies ω′n, because φ(ω′n) has first to be solved for ω′n.
Yet it already looks like a frequency comb as in (2.8), except that the "offset frequency"cφ(ω′n)/L
is not independent of n. To make the expression (3.44) a real frequency comb with a regular mode
spacing, φ(ω) has to be of the form13

φ(ω) = −φ′CE + τ ′ω (3.45)

at least within the spectral region of interest, in which case

ω′n =
n2π + φ′CE
L/c+ τ ′

=: nω′r + ω′CE (3.46)

with an effective repetition rate ω′r = 2π/(L/c + τ ′) and offset frequency ω′CE = φ′CE/(L/c +
τ ′) for the resonator14. Given that condition, the output of a mode-locked laser can be tuned
into resonance with the resonator by adjusting the repetition rate ωr and carrier envelope offset
frequency ωCE to match ω′r and ω′CE respectively.

As any element, including dielectric mirrors and even air, inside an optical resonator will in
general have a round trip phase contribution that differs from (3.45), it is important to understand,
what impact a different round trip phase will have on the stored broadband frequency comb and
how accurately the round trip phase will have to be controlled to achieve good performance of
the resonator. The following discussion is similar to the treatment by Petersen and Luiten (2003).

If the resonator is driven by an electric field as in (2.4), with frequencies (2.8), the Fourier
components of the circulating field (again using (3.29)) are then

Êc,n =
t(ωn)Ân

1−G(ωn)
=

t(ωn)Ân

1− r(ωn)e
i(L

c
ωn+φ(ωn))

, (3.47)

while components with other Fourier frequencies vanish. The An here have been appropriately
renumbered, so that the second from of (2.8) with ωn=0 = ωCE is used. The round trip phase

13Other really pathological forms are possible where φ does ugly things between the resonances. But let’s better
not think about something like this. If the comb of resonances is required to be equidistant for any length L, the
given form is the only possible one.

14with this, the names for the two coefficients φ′CE and τ ′ find their natural explanation as the resonator’s round
trip to round trip carrier envelope phase slip and additional round trip time.
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φ(ω) may be expanded into a taylor series around an arbitrary center frequency15 ωc

φ(ω) = −φ′CE(ωc) + τ ′(ωc)ω + ψ(ω) (3.48)

with appropriate coefficients φ′CE and τ ′ so that the error term ψ(ωc + ∆ω) = O(∆ω2) is of
second order around ωc. By that, it is ensured that ψ(ω) is slowly16 varying in the vicinity of ωc.
In analogy to (3.46), we define

ω′r(ωc) =
2π

L
c

+ τ ′(ωc)

ω′CE(ωc) =
ψ′CE(ωc)
L
c

+ τ ′(ωc)
. (3.49)

With the definitions (3.49) the exponent in (3.47) takes the form

L

c
ωn + φ(ωn) =

2π

ω′r(ωc)
(nωr + ωCE − ω′CE(ωc)) + ψ(ωn). (3.50)

If the repetition rate of the driving laser is close to an integer multiple k of the effective repeti-
tion rate of the resonator at ωc, it is sensible to exploit the periodicity of the exponential in the
resonator response (3.47) and rewrite it using the definitions

δωr =
ωr

ω′r(ωc)
− k

δωCE =
ωCE − ω′CE(ωc)

ω′r(ωc)
, (3.51)

so that it reads

exp

(
i2π

[
n(k + δωr) + δωCE +

ψ(ωn)

2π

])
=

exp (i [2π (nδωr + δωCE) + ψ(ωn)]) = exp(iψ̃(ωn)) (3.52)

introducing the effective round trip phase

ψ̃(ω) = 2π

(
ω − ωCE

ωr
δωr + δωCE

)
+ ψ(ω) = (3.53)

= 2π

[
ω

(
1

ω′r(ωc)
− k

1

ωr

)
+ k

ωCE
ωr

− ω′CE(ωc)

ω′r(ωc)

]
+ ψ(ω) = (3.54)

= ω(T ′(ωc)− kT ) + kφCE − φ′CE(ωc) + ψ(ω). (3.55)

The form (3.54) resubstitutes (3.51) while form (3.55) uses the (effective) periods T = 2π/ωr,
T ′(ωc) = 2π/ω′r(ωc) and the (effective) pulse to pulse CE phase shifts φCE = 2πωCE/ωr and
φ′CE(ωc) = 2πω′CE(ωc)/ω

′
r(ωc). The effective resonator response is then

Êc,n =
t(ωn)Ân

1− r(ωn)eiψ̃(ωn)
. (3.56)

15not necessarily equal to one or the ωn in (2.8)
16at most quadratically
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The incident frequency comb will be close to resonance for spectral regions for which the
effective round trip phase is sufficiently close to integer multiples of 2π, i.e., in the high finesse
limit17

ψ̃(ω)− n2π � π

F
. (3.57)

For δωr = δωCE = 0 the effective round trip phase is of second order around ωc so that it may
be written as

ψ̃(ω) = ψ(ωc + ∆ω) =
1

2
ψ2∆ω

2 +O(∆ω3). (3.58)

Then the modes of the driving field in the vicinity of ωc will be to first order precisely on res-
onance and tune out of resonance to second order in ∆ω. As the lowest repetition rate ωr for
which this condition may be fulfilled18 is k = 1, this once again justifies the names for ω′r(ωc) and
ω′CE(ωc). If higher than second order contributions to ψ̃ can be neglected in the frequency range
of interest, the enhancement of the modes of the incident frequency comb will have dropped to
1/2 of the maximum value once

ψ̃(ωc + ∆ω) ≈ 1

2
ψ2∆ω

2 =
π

F

↔ 2∆ω = 2

√
2π

ψ2F
=: ∆ωFWHM , (3.59)

where (3.34) was used. This can be significantly larger than one FSR of the cavity. For instance, a
cavity in air of 3 m round trip length (FSR about 100 MHz) and no other dispersive elements has
a ψ2 of about 30 fs2. With a finesse F = 100π it will have a FWHM bandwidth of19 51/2π THz=
8.2 THz.

The quantity ψ2 = (d2ψ̃/dω2)(ωc) = (d2φ/dω2)(ωc) is often referred to as the group delay
dispersion (GDD) of an optical path (in this case the resonator round trip) at ωc. This and higher
order terms in the Taylor expansion of φ(ω) cause a wave packet to change its shape while passing
through the optical path. In the ultrafast community, it is customary to specify d2φ(ω)/dω2

instead of φ(ω) or the Taylor coefficients. Of course the two quantities are related via

φ(ω) =

∫ ∫
d2φ(ω)

dω2
(dω)2 + C0 + C1ω. (3.60)

d2φ(ω)/dω2 is a convenient quantity20 as the integration constants C0 and C1 are usually hard
to measure, for many purposes not very important (as in this case where those may be set to

17Note that in (3.56) in fact only the values ψ̃(ωn) are relevant. ψ̃ could mathematically do anything between these
points without affecting the result. Luckily, in reality, it usually doesn’t unless there is a nearby narrow resonance
in some material in the cavity, which is not desirable for a low loss (high finesse) resonator. This means ψ̃ can be
assumed to be slowly varying on the scale of ωr. Therefore demanding ψ̃(ωn) to be small is equivalent to requiring
it to be small everywhere.

18 k = 0 is usually not practical (L ≈ 0!) if no special tricks like electromagnetically induced transparency (EIT)
are utilized as in the work of Wicht et al. (1997) where the light is stopped inside the resonator

19take care, not to confuse angular frequency, usually denoted by ω and cycles per second ν = ω/2π.
20Note that d2φ(ω)/dω2 is universal in the sense that the second derivative of ψ̃(ω) yields the same function.
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arbitrary values by tuning the laser) and depend on the choice of lower integration bounds (in
our case for example ωc for both integrations). On the other hand, starting from d2φ/dω2, if this
function is complicated (or from a noisy measurement, i.e. looks complicated) it is hard to tell if
ψ̃(ω) will be sufficiently linear over the region of interest and condition (3.57) can be fulfilled.

Another interesting "resonance condition"for a frequency comb in a cavity exists if the rep-
etition rate of the laser is tuned to small rational fractions of the resonator repetition rate so that
ωr/ω

′
r(ωc) = k/l, k and l again integer. Then by inspecting (3.52) it can be easily seen that

every lth mode of the incident frequency comb will be resonant with the cavity if ωCE is tuned
appropriately. This means that about the lth fraction of the total incident power can be made res-
onant. In the high finesse limit, the circulating power of the nonresonant modes can be neglected.
Therefore one may define an (now approximate) effective round trip phase as in (3.53) with only
k replaced by k/l. The circulating power is l times reduced compared to the case l = 1. As
the spacing of the resonant modes of the incident comb is now l times larger, at the same time
the repetition rate of the circulating pulse train is also l times higher than the incident repetition
rate. This can of course be understood in the time domain, as under these conditions the round
trip time of the resonator is such that each of the pulses circulating in the resonator meets again
a pulse from the laser after l round trips. The high finesse limit (and therefore the modified ψ̃) is
valid in this case, as long as all the intermediate modes are sufficiently suppressed with respect
to the resonant modes, i.e. that the adjacent mode of a resonant mode of the incident frequency
comb is sufficiently far off resonance that it can be neglected. This means that l� F. For higher
values of l, the distances of the driving modes to their next resonance become so dense, that
the resonator response can not separate them anymore and the situation will be similar to that
described in (3.43) and the total power that is circulating approaches |t|2/(1 − r2) independent
of δωr and δωCE .

The last step in describing the resonator response to a mode-locked laser pulse train is to
reconstruct the electric field as a function of time, circulating inside the resonator. For that we
only have to perform the inverse Fourier transformation

Ec(t) =
∞∑

n=−∞

Êc,ne
i(nωr+ω0)t + c.c.. (3.61)

As the phase distortion21 (3.32) of the Fourier components is bounded by ±π/2, the resulting
pulse will not acquire a strong chirp, even if the round trip phase varies severely. That means that
if the driving pulse train is Fourier limited, the circulating pulse train will be essentially Fourier
limited (neglecting again the input coupler). The amplitudes, however, can change by many
orders of magnitude as modes move from resonance to off resonance, changing the shape of the
intracavity spectrum significantly. This in turn will increase the Fourier limited pulse duration of
the stored pulse, as (compared to resonant modes) the intensity of nonresonant modes is always
reduced, which narrows the spectrum.

Depending on the shape of the input field Ei and optimization criteria, setting δωr = δωCE =
0 is not the only sensible choice. For example it might be of interest to maximize the total power

21excluding the input coupler transmission
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Figure 3.9: Enhancement (solid) of a tuned comb in a resonator with r = 0.9, effective round
trip phase shift (dashed) and enhancement for a slightly shifted phase (dash-dotted) so that the
enhanced range is broader. This illustrates that setting δωr = δωCE = 0 may be not the only
sensible choice.

stored in the resonator, the Fourier limited peak power of the stored pulse and so on. Figure 3.9
tries to illustrate that by showing that the FWHM bandwidth of the resonator may be increased
by setting a slightly different offset frequency at the laser, shifting ψ̃ to slightly more negative
values. Solving such an optimization problem generally depends on the input light field and
the resonator parameters and has to be solved numerically or experimentally. An approximation
to maximizing the average intracavity power is to minimize the quadratic distance of ψ̃ to 0,
as the power enhancement also decreases quadratically (to lowest order) with that distance. As
enhancing spectral regions with no incident power will not increase the circulating power, it
seems to be sensible to weight the quadratic distance of ψ̃ with the value of the incident power.
Therefore let’s try to minimize the figure of merit

F =

∫
|Êi(ω)|2ψ̃2(ω)dω. (3.62)

As ψ̃ depends linearly on the parameters to optimize (δωr and δωCE) in (3.53), this has an analytic
solution that can be easily calculated. Figure 3.10 shows an example for such a calculation.

3.2.3 Dispersion control
As was seen in the previous section, dispersion control is most critical for achieving the highest
resonant bandwidth for a high finesse resonator, i.e. for achieving the highest peak power inside
such a resonator. Therefore methods are required for diagnosing and controlling the dispersion
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Figure 3.10: Steps in a response calculation for a resonator of F = 100π: a) d2φ/dω2 input data,
b) d2φ/dω2 integrated twice to yield ψ plotted in units of resonance width, integration constants
determined using minimization of equation (3.62) , c) Fourier limited input pulse envelope (solid)
and intracavity envelope (dashed), d) Input power spectrum (solid line), normalized steady state
circulating power (dashed) and phase shift (dash-dotted)

inside it. Many fancy methods have been developed in the ultrafast and coherent control com-
munities, among which a few shall be described here. But first let’s look at a formal definition
of dispersion, how it affects pulse propagation and how it relates to other material characteristics
like refractive index.

When solving the electromagnetic wave equation (and many other wave equations) one fre-
quently ends up with solutions of the form

E(t,x) = A(x, y)ei(ωt−k(ω)z) + c.c., (3.63)

where the function k(ω) is determined by the wave equation, the boundary conditions and the
polarization response of the medium in which the wave is to travel (here we assume homoge-
neous conditions along propagation direction z, so that k does not depend on z). k is called the
wave vector and the function k(ω) is often referred to as the dispersion relation. The dispersion
relation may be determined by many different factors. First, the most fundamental factor is the
vacuum wave equation22. The interaction with other particles or fields changes the dispersion
relation, which in the case of the electromagnetic fields in dielectric media leads to the refractive
index n(ω) = k(ω)c/ω. Boundary conditions (like in optical fibers) may also also change the
dispersion relation. For ultrafast optics in general and, as was seen in the previous section, en-
hancement resonators for short pulses in particular it is important to have techniques available to

22k = ω/c for the electromagnetic field and other massless fields
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control the function k(ω) to a high degree of accuracy in order to achieve highest possible peak
power (or other specific pulse shapes).

For a given optical path it is customary to integrate the propagation through the medium
(which may be heterogenous) and specify the phase shift of the wavefront from input (z = 0) to
output (z = z0) of the optical path along the optical axis

φ(ω) =

∫ z0

0

k(ω, z)dz. (3.64)

The effect of a dispersive medium on a pulse may be estimated in the following way: Let’s
assume a pulse with a Gaussian amplitude profile

E(t) = e−
t2

2δ2
+iω0t + c.c. (3.65)

where δ is half the 1/e intensity duration of the pulse, then the Fourier transform of the pulse
before the dispersive path is

Ê(ω + ω0) = δe−
1
2
δ2ω2

. (3.66)

If φ(ω) can be approximated by a Taylor expansion of second order around ω0 in the range of
non-negligible power of the incident light, then after passage through the optical path the Fourier
components will be Ê ′(ω+ω0) = exp(i(φ0 +φ1ω+φ2ω

2/2)Ê(ω+ω0) so that the pulse electric
field is

E ′(t) =
1√
2π

∫
Ê ′(ω)eiωtdω =

δ√
δ2 − iφ2

e
− (φ1+t)2

2(δ2−iφ2) ei(φ0+ω0t) + c.c. . (3.67)

One can see immediately that φ0 = φ(ω0) is a global phase shift, called phase delay, φ1 =
dφ/dω(ω0) is a time delay of the pulse envelope peak and is therefore called group delay. As
the change in group delay as a function of frequency is given by d2φ

dω2 (ω0), it is called group delay
dispersion (GDD) at the frequency ω0. Higher order terms in the Taylor expansion of φ are
frequently called higher order dispersion (e.g. φ3: third order dispersion (TOD), φ4 fourth order
dispersion (FOD)). The duration of the distorted pulse is

δ′ = 2
√
δ2 + φ2

2/δ
2, (3.68)

as can be read off the real part of the exponent in (3.67) and starts to change considerably as soon
as δ2 ∼ φ2. For very large φ2 the pulse duration grows as φ2/δ. The so-called instantaneous
frequency in the pulse is the time derivative of the imaginary part of the exponent in (3.67). It
turns out to be

ωinst = ω0 + φ2t/2(δ4 + φ2
2) (3.69)

and varies linearly with time, which is why such a pulse is called linearly chirped (see Figure
3.11). As the global phase φ0 and the time delay of the pulse φ1 do not affect the pulse intensity
shape, and the latter can be easily adjusted using an appropriate delay line in most circumstances,
they are of minor interest. If φ(ω) is a complicated function, it is usually not very convenient to
use a Taylor expansion as there are many terms required and the overall shape is hard to read out
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GDD [fs2/mm]
Material 800nm 1024nm 1500nm reference
Fused Silica 36 16 -22 Ghosh (1999)
BK7 Glass 45 22 -19 Schott (1984)
Sapphire 58 29 -25 Malitson (1962)
Air (20◦,105Pa) 0.21 0.16 0.11 Bonsch and Potulski (1998)

TOD [fs3/mm]
Fused Silica 27 44 133
BK7 Glass 32 49 138
Sapphire 42 65 176
Air (20◦,105Pa) 0.10 0.09 0.09

Table 3.2: Some GDD (in [fs2/mm]) and TOD (in [fs3/mm]) values for typical dielectric media
used in optics for typical ultrafast laser wavelengths.
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of the Taylor coefficients. For these two reasons, it is customary to give the second derivative
φ′′(ω) instead of specifying φ(ω) itself. In this way using a specific reference frequency ω0 as
necessary in the Taylor expansion, is also avoided. φ′′(ω) is related to the refractive index of bulk
media via

φ′′(ω) =
d2

dω2
k(ω)l =

d2

dω2

ωn(ω)l

c
l =

2n′(ω) + ωn′′

c
. (3.70)

The refractive index as a function of frequency may frequently be obtained from empirical for-
mulas (at least in the case of transparent media)23, so that the GDD function may be calculated.
In Table 3.2 are listed GDD values for some typical dielectric media.

The simplest form of dispersion control is to use a material of appropriate dispersion proper-
ties and thickness adjusted to the required amount of dispersion in the beam path. The advantage
of this method is that it is very simple and inexpensive and it can provide huge dispersion values.
The disadvantage is that there is only a limited choice of optically transparent media available to

23So-called Sellmeier formulas as can be found in the work of Ghosh (1999) or other types as in the catalogue of
Schott (1984).
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choose from, and the only continuous parameter that can be varied is the length of the material.
These two facts limit the freedom of choice for a specific dispersion function. Moreover, for
Ti:Sapphire laser wavelengths around 800 nm, there is no transparent dielectric medium that has
negative GDD. To compensate for the dispersion of glass and other media in an optical path,
other techniques resulting in negative GDD are therefore necessary.

Another class of techniques for dispersion control rely on spatially dispersing the frequency
components in the optical path and putting different phase delays on each of these components.
The simplest versions of this class of dispersive arrangements is shown in figure 3.12. It consists
of a system of 4 identical prisms (or gratings). The first prism (or grating) angularly disperses the
incoming (broadband) radiation. The second makes the different colors propagate collinearly.
The other two prisms (or gratings) reverse the spatial dispersion but as different colors have
traveled different paths, the light will remain temporally dispersed. It was shown by McMullen
(1979) that such an arrangement with gratings can produce large amounts of negative GDD. Later
Fork et al. (1984) realized that a prism arrangement of this type can provide negative GDD with
high transmission (which is not possible with gratings), if Brewster-cut prisms are used. Both of
these simple arrangements have two continuous parameters to adjust: (i) the distance between
the two prisms (gratings) in both halves of the setup and (ii) the distance of the beam from the
prism apex or the grating line density. This fact allows one to independently adjust two scalar
parameters of the resulting dispersion relation (e.g. GDD and TOD at some center wavelength).
Frequently the arrangement shown in figure 3.12a) is folded up by using a mirror at the location
of the dashed line, saving two prisms (or gratings) and lots of space.

To gain even more control over the precise functional dependence of φ′′(ω) one can introduce
a programmable phase mask (e.g. a liquid crystal array (Weiner et al. 1992) or a deformable
mirror (Heritage et al. 1991)) in the plane marked by the dashed line in figure 3.12a) and arrange
imaging optics around it to produce a focus in that plane too, to provide a Fourier plane at the
phase mask. Another programmable dispersion control technique introduced by Tournois (1997)
uses an acoustooptic modulator with an appropriate (programmable) acoustic waveform from
which the light is being scattered in the forward direction. This method has the advantage over
the other programmable techniques in that it does not introduce a spatial chirp that has to be
canceled and therefore is robust against misalignment of the system. The disadvantage of all of
these techniques is that the insertion loss is relatively high and in the percent range.

Last but not least we would like to mention that there is also the method of so-called chirped
mirrors proposed and demonstrated by Szipocs et al. (1994), the idea of which is depicted in
figure 3.12b). The dielectric coating of such mirrors is designed such that different frequencies
have different penetration depths into the layer stack. As the number of layers in such a layer
stack can be on the order of 50, the freedom of designing specific dispersion properties is similar
to that of a programmable pulse shaper. While dielectric mirrors can have extremely low inser-
tion loss (≈ 10−4) and are intrinsically immune against misalignment, they lack the flexibility
to adjust the dispersion properties in the experiment and state-of-the-art coating systems have
limited precision in control of the layer thickness, so that considerable errors in dispersion may
occur on the scale relevant for high finesse resonators as described earlier in this chapter.

Because of the low insertion loss, chirped mirrors are the only sensible choice for dispersion
control in high finesse optical resonators (apart from minimizing contributions from dispersive
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a) b)

Figure 3.12: a) Simple example of a dispersive beam path using spatially differnt paths for
different frequency components. The dashed line shows a symmetry plane at which a mirror may
be placed to fold the system and reduce the number of prisms needed. See text for explanation.
b) basic idea of a chirped mirror: The dielectric coating structure permits different penetration
depths for different colors so that they acquire different group delays.

media). But because of the limited production accuracy of chirped dielectric mirrors and the
high accuracy level required for such resonators, it is necessary to be able to characterize the
dispersion inside such a system with high accuracy. The following section will describe a method
that was developed during this work and which surpasses other common techniques like white
light interferometry in accuracy and robustness.

3.2.4 Precise dispersion characterization

The most common methods for determining dispersion properties of dielectric mirrors and other
resonant structures, which have a complicated spectral phase evolution, rely on a Michelson
interferometer (Michelson 1891). Such a device produces a well known interference signal

I(x, k) =
1

4
(Ii(k) + T (k)Ii(k) + 2Ii(k)

√
T (k) cos(kx+ φ(k)) (3.71)

where I(k, x) is the transmitted intensity as a function of wave vector k and delay x, Ii(k) is the
incident power from the light source and φ(k) and T (k) are the phase and absorbtion24 coeffi-
cients of the test sample placed in one arm of the interferometer. There are several ways to extract
the quantities of interest T (k) and φ(k) from equation (3.71). One possibility is to take the inte-
grated output over all frequencies (by simply putting a photodiode at the output port) and record
it as a function of the delay x. Taking the Fourier transform of this trace reveals Ii(k)

√
T (k) and

φ(k). As it is hard to determine x in absolute terms (using interferometric methods), φ(k) and
d1φ/dω1(k) are ambiguous but d2φ/dω2(k) is not. As already said, this is usually not a problem
because the ambiguous quantities can be easily adjusted in an experiment. It is also possible to
detect I(x, k) at a fixed delay using a spectrometer at the output of the interferometer (see for
example in Sáinz et al. 1994), a method frequently called spectral interferometry, or do both to
measure the entire function I(x, k) (Kovács et al. 1995). Any of these is sufficient (under certain
conditions) to extract the samples dispersion data.

24more general: loss



3.2 Enhancement resonators for frequency combs 47

x

x

PD

BS

L

M

S M S

CCD

G

k

Figure 3.13: Two possible Michelson interferometer setups to make a spectral phasemeter.
a) Scanning the length of one arm of the Michelson and observing the interference pattern (as
seen by a broadband detector) as a function of the end mirror position. Fourier Transformation
yields amplitude and relative spectral phase information. b) With fixed geometry and a spectrally
resolving detector at the output. At finite relative delay between the arms a spectral interference
pattern is observed that contains the relative spectral phase information.

Because the phase φ(k) is encoded in the cos part of equation (3.71), which has a slope < 1
everywhere, high signal to noise ratio (SNR) is required to extract the phase with small error. Ad-
ditionally, the arms of the Michelson have to be accurately balanced (in terms of dispersion), so
that small beam path changes do not lead to unstable measurement results. On the other hand it is
well known and we have seen in chapter 3.2.1, that optical cavities can provide extremely narrow
resonances with signal slopes � 100 which relaxes the requirement regarding SNR, and it has
been shown, that a mode-locked laser can provide a completely dispersion free reference signal
(i.e. perfectly equidistant comb (Udem et al. 1999a)). Therefore it seems to be a good idea to
try to use an optical resonator together with a mode-locked laser for dispersion characterization.
In this section a method, developed during this work will be explained, that tries to exploit these
advantages for characterizing GDD properties of entire resonators and single optical elements
using such resonators. In section 4.1.7 data obtained with this method will be presented

Let’s look at the transmission through one of the mirrors (transmission t1(ω)) of the res-
onator (not the input coupler) using a spectrometer. The signal that can be observed there is the
circulating field (3.56) that is transmitted through the mirror

It,n ∝ |t1(ωn)Ec,n|2 =

∣∣∣∣∣ t(ωn)t1(ωn)Ân1− r(ωn)eiψ̃(ωn)

∣∣∣∣∣
2

. (3.72)

We would like to determine the function ψ(ω) as in equation (3.48) from this transmission signal.
This signal is strongly peaked at ψ̃(ω) = 2jπ, j integer, and has little structure in between
these resonances. Therefore it seems to be advantageous to find the position of these peaks
for each optical frequency ω as a function of repetition rate ωr = 2π/T and offset frequency
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ωCE = φCEωr/2π (which can be easily measured) and to extract ψ(ω) from that. For such a
peak, the condition

ψ̃(ω, T, T ′, φCE) = ω(T ′ − kT ) + kφCE − φ′CE + ψ(ω) = 2jπ (3.73)

holds true, where (3.55) was used. In order to solve for ψ(ω), T ′, φ′CE and the integers k and j
need either to be determined or eliminated. The integer k can easily be found by comparing the
length of the resonator to the laser’s repetition rate25. The integer j as well as φ′CE do not play an
important role as they only add a constant offset to ψ(ω). But resonator round trip time at T ′ is an
unknown in (3.73) and cannot be measured easily with high accuracy. Moreover small changes
in T ′ usually lead to an enormous change in ψ̃(ω). For example with a 100MHz cavity for near
infrared Ti:Sapphire radiation at 375 THz the product ωT ′ is on the order of 107 so that changes
in Tr on the order of 10−7 exhibit a huge effect on the solution of (3.73). To remedy this situation
additional constraints on ψ̃(ω) can be introduced. For example, one may simultaneously require
that

ψ̃(ωfix) = 2lπ (3.74)

for a fixed frequency ωfix. Then by plugging this condition into (3.73) the term T ′ − kT may be
eliminated and (3.73) can be solved for ψ(ω)

ψ(ω)− 2jπ =
ω − ωfix
ωfix

(kφCE − φ′CE − 2lπ + ψ(ωfix)) + ψ(ωfix). (3.75)

The second derivative of this is

d2ψ

dω2
= k

[
2

ωfix

dφCE
dω

+

(
ω

ωfix
− 1

)
d2φCE
dω2

]
, (3.76)

which depends on derivatives of φCE(ω) only. Here φCE(ω) is the solution of (3.73) under the
constraint (3.74). Figure 3.14 tries to illustrate equation (3.75).

A simplified schematic of a possible implementation of such a measurement is shown in
figure 3.15. Using an electronic feedback loop on the laser resonator length, the comb is kept
on resonance with the cavity at frequency ωfix. By tuning the laser offset frequency ωCE , the
transmission signal is modified according to (3.72) under the constraint imposed by the lock.
The circulating spectrum and laser repetition rate are recorded for different offset frequencies.
The result I(ω, φCE) should look as in figure 3.16. Each slice of this function at fixed ω looks
as in figure 3.7 with the frequency axis replaces by (ω − ωfix)φCE/ωfix and ωFSR replaced by
2π. It is then easy to find φCE(ω) for which the slice at ω has a maximum (which is not unique).
Once φCE(ω) is determined for all slices by choosing maxima in each slice so that φCE(ω) has
no jumps (at least locally), equation (3.76) may be evaluated to give the desired GDD function
d2ψ/dω2. If the resonator length is tuned appropriately, the lock is placed on an appropriate
resonance and the dispersion function ψ(ω) does not vary too wildly, the spectrometer does not
need to have high resolution as ψ̃(ω) can be made very slowly varying. Especially a resolution

25and, especially important for very high finesse resonators, make sure that no "rational"resonance with ωr/ω
′
r =

k/l is present. This can e.g. be done by checking the coupling efficiency.
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Figure 3.14: Illustration of the meaning of equation (3.75). On the positive vertical axis the left
hand side (i.e. ψ(ω) − 2jπ) of (3.75) is plotted in black and the right hand side is shown for
different values of the intercept δφ = kφCE − φ′CE is shown in grey, dotted and dash-dotted
respectively. On the negative vertical axis a sketch of the corresponding relative transmission T
of the resonator is shown with corresponding line styles. Maxima in T are observed where the
right and left hand side coincide.
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Figure 3.15: Intracavity dispersion characterization setup. The frequency comb from a mode-
locked laser is sent to a resonator. The reflected beam from the input coupler (IC) is filtered
around ωfix using a grating (G) and a slit and an error signal is generated to electronically feed-
back onto the laser repetition rate and keep the resonator on resonance in that range. Offset
frequency ωCE is tuned, and ωr, ωCE and It(ω) are recorded by a computer. S indicate places
were sample mirrors may be placed.
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Figure 3.16: Transmission of a lossless (i.e. T = 1−R) resonator of finesse F = 10π, driven by a
mode-locked laser whose repetition frequency is constrained by (3.74) that maintains resonance
condition at ωfix, as a function of optical frequency ω and offset frequency φCE = 2πωCE/ωr.
In each slice of this function at fixed ω sharp peaks are observed for certain values of φCE(ω).

of ωr is absolutely unnecessary. As long as the observed transmission patterns (at fixed φCE)
are broader than the spectral resolution, the instrument’s point spread function essentially has no
influence on the result. As the resonance condition at ωfix is forced by the electronic feedback
loop, the transmitted intensity at this point will not change as the offset frequency is tuned.
Indeed the round trip phase change as a function of pulse to pulse phase shift φCE is

dψ̃

dφCE
=
ωfix − ω

ωfix
, (3.77)

so that it is convenient to locate the anchor point ωfix as far away from the spectral region of
interest as possible to reduce the required scanning range.

3.2.5 Mirror reflectance measurement
Another important aspect, apart from dispersion, of optics for broadband optical resonators for
mode-locked lasers are losses. It was shown earlier that the maximum power enhancement inside
a resonator is equal to the inverse of the net round trip loss in the resonator. When aiming for
enhancement factors of 1000 and more as in this work, this means that every intracavity element’s
loss has to be on the order of 10−4 in order not to make the loss larger than 10−3 per round trip.
Mirror reflectivities so close to unity are usually hard to measure directly by, e.g. shining light
onto the mirror and measure how much is reflected.

A common and well know technique to determine small absorbtion (scatter, transmission)
losses with high accuracy is cavity ring down spectroscopy (O’Keefe and Deacon 1988). The
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basic idea of this method is to place the object under study into the mode of an optical resonator
of high finesse. If the round trip loss due to the object is comparable to or larger than the
round trip loss of the resonator, a significant reduction in resonator finesse may be observed.
So if it is possible to determine the finesse of the resonator with and without the sample the
(small) absorbtion of the sample may be determined. If the round trip loss of a resonator is
on the order of 10−4 or even smaller, it becomes hard to determine the resonator finesse by
measuring the resonance width compared to the free spectral range, as suggested by (3.34),
because of the steady state condition for which (3.34) is valid. Steady state here means that
the spectral bandwidth of the driving field is much smaller than the width of one resonance,
i.e. ∆ω � ∆ωFWHM and that the resonator is sufficiently stable in effective length. All the
calculations for passive resonators performed so far in this work assumed a time independent
round trip gain G, but as G depends on the resonator length, it is coupled to acoustic and thermal
fluctuations of the environment. Therefore we need to find a criterion under which conditions
a time dependent G is sufficiently slowly varying as to fulfill the steady state condition that is
assumed for all statements in section 3.2.1.

If we assume that there is a circulating electric field Ec(t) inside the resonator whose spectral
content (i.e. Fourier transform) is narrow enough that dispersion may be neglected (i.e. δω �
2
√
π/φ2F as in (3.59)) and centered at ωc, the electric field inside the resonator after one (group)

round trip time of the resonator Tr will be given by

E(t+ Tr) = rE(t)eiψ0 (3.78)

with ψ0 as in (3.48) and r = r(ωc) assumed to be constant across the spectrum of the field.
If there is no driving field coupled to the resonator, the circulating power after n round trips is
obtained by iterating (3.78) and taking the square modulus of the result

I(t+ nTr) ∝ |E(t+ nTr)|2 = r2n|E(t)|2 := |E(t)|2e−(nTr)/τ (3.79)

and an exponential decay of the circulating field may be observed. The decay constant τ is
related to the round trip reflectance via

R := r2 = e−
Tr
τ ≈ 1− Tr

τ
, (3.80)

with the last approximation valid in the low loss, high finesse limit. This decay constant sets the
time scale on which the resonator system can respond to changed conditions, i.e. for example a
length change of the resonator so that it moves out of resonance or into resonance and still show
steady state response, i.e.

dL

dt
� λ

Fτ
≈ λ2π

F2Tr
, (3.81)

with λ being the driving field wavelength and the high finesse limit being used for the second
form. For a Fabry-Perot resonator with a free spectral range ωFSR = 2π × 3 GHz (i.e. 5 cm
length) and a finesse of F = 104π, the decay constant is about 3 µs and for the steady state con-
dition to hold true, the laser has to be narrower than 300 kHz and the length of the resonator may
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not change faster than L̇ � 30 µm/s, parameters which already require some effort concerning
acoustic and thermal isolation.

On the other hand, the quantity of interest here (i.e. the round trip reflectance R of the
cavity) is already contained in (3.80). So if this decay constant can be measured, the cavity
loss can be determined too, without the necessity to determine the steady state resonance width
of the resonator. No resonance conditions have been employed to derive (3.79) and therefore
the requirements on the stability of the resonator length are only determined by the requirement
that a change in length does not significantly change Tr in (3.80). Therefore the method for
determining the finesse of a low loss resonator usually follows the procedure: the resonator is
driven by a (relatively, compared to the expected scale on which R changes) narrow band source,
centered at ωc. Once a certain threshold of circulating power in the resonator is achieved (high
enough to observe a clear decay signal leaking through one of the mirrors of the resonator), the
driving field is quickly (faster than the decay time τ ) shut off and the resonator decay ("ring
down"hence the name of the method) is recorded to determine τ(ω0). The only requirements
that have to be fulfilled to make the method usable are a sufficiently strong transmission signal to
observe the decay and the ability to switch off the source quickly. The first requirement usually
means that the driving source is not too broadband (compared to the cavity resonance width, it
doesn’t have to be narrower though) and sufficiently mode matched. A grating stabilized diode
laser (Ricci et al. 1995, and references therein) can provide a relatively clean mode with MHz
bandwidth without too much hassle, so this is relatively simple to achieve. The second condition
means typically, a switch working on the ns time scale is required. This can be achieved using
Pockels cells though it is a little bit demanding. Therefore a method was developed during this
work26 to avoid the use of a fast switch and still determine the decay constant of a resonator,
which will be described in the following.

The steady state response of a high finesse resonator (i.e. circulating or transmitted intensity)
varies rapidly with resonator length as may be seen from the fact that the intensity ratio of the
steady state circulating field on resonance and out of resonance (just between two resonances)
is about 4F2. Therefore already a relatively slow length change may trigger a non-steady state-
transition of the resonator. This should exhibit the decay constant τ . Therefore, the idea is to
sweep the resonator length across a resonance sufficiently fast so that such a transient may be
seen and the resonator decay constant can be extracted. However, because the driving field is
still on during the transition, the signal leaving the resonator (circulating power multiplied by
mirror transmittance) does not have the simple form as in (3.79) but exhibits some oscillation
due to interference between the stored and the driving field. Therefore it is necessary to model
the scanning resonator driven by a constant frequency field to see how to extract the resonator
lifetime from such a signal.

Let’s consider a resonator, consisting of two mirrors as depicted in figure 3.17, where the
input mirror M1 with complex transmission and reflectance amplitudes t1(ω), r1(ω) respectively
at the fixed position x = 0 and mirror M2 moving at constant velocity x2(t) = vt and having
(rest frame) amplitudes t2(ω), r2(ω). Between the mirrors shall be vacuum, so that the complex

26Later it was found, that there exists a publication by An et al. (1995) that treats the same problem in a similar
way.
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Figure 3.17: Simplified scheme of a scanning Fabry-Perot cavity with incident wave Ei, that
gets transmitted through mirror M1 with transmission t1 and reflection r1, circulating wave Ec
that bounces back and forth between the mirrors and gets transmitted through mirror M2, which
moves at velocity v. Et: transmitted wave.

field amplitude of the forward travelling wave Ec(t, x) may be expressed in terms of its Fourier
components

Ec(t, x) =
1√
2π

∫
Êc(ω)ei(ωt−kx)dω (3.82)

and k = ω/c obeys the vacuum dispersion relation. The associated reflected wave from mirror
M2, has to be calculated in the mirrors rest frame. To do that, let’s perform a Lorentz boost

ct′ = γ(ct− βx) (3.83)
x′ = γ(−βct+ x), (3.84)

where β = v/c and γ = (1 − β2)−1/2. Upon this boost, each plane wave transforms into the
boosted version

ei(ωt−kx) 7→ eiu(ωt
′−kx′), (3.85)

where u = (1− β)γ is the Doppler shift. As the moving mirror is at rest in the boosted frame at
x′ = 0 the reflected plane wave in this frame is

ei(ωt
′−kx′) 7→ r2(uω)eiu(ωt

′+kx′), (3.86)

and has acquired the phase and amplitude of the mirror. An inverse boost yields the laboratory
frame reflected wave

r2(uω)eiu(ωt
′+kx′) 7→ r2(uω)eiu

2(ωt+kx). (3.87)

which is then transformed by mirror M1 into a forward direction plane wave. Therefore the
electric field after one round trip through the resonator is given by

Ẽc(t, x) =
1√
2π

∫
r1(u

2ω)r2(uω)Êc(ω)eiu
2(ωt−kx)dω = (3.88)

=:
1√
2π

∫ ˜̂
Ec(ω)ei(ωt−kx)dω. (3.89)
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From this one can see immediately that the spectrum is transformed by one cavity roundtrip,
using again vacuum dispersion relation

Êc(ω) 7→ ˜̂
Ec(ω) =

1

u2
r1(ω)r2

(ω
u

)
Êc

( ω
u2

)
+ t1(ω)Êi(ω), (3.90)

where we added the transmitted portion of the Fourier transform of the incident field Êi(ω). The
factor 1/u2 is the result of the transformation of the spectral density Êc(ω)dω by the variable
substitution u2ω 7→ ω.

As the Fourier transform uniquely determines the field for all times, the notion "before or
after one round trip"has no meaning for this function, whatsoever. Therefore the only sensible
choice for the circulating spectrum is such that "before"and "after"is identical. Similar to (3.28)
the condition

Êc(ω) = t1(ω)Êi(ω) +
1

u2
r1(ω)r2

(ω
u

)
Êc

( ω
u2

)
, (3.91)

has to be imposed. The solution to this equation can simply be found by iterating (3.91). If
r1(ω)r2(ω/u) = r = const, t1(ω) = t1 = const is assumed, the solution takes the form

Êc(ω) = t1

∞∑
n=0

Ei

( ω

u2n

)( r
u2

)n
. (3.92)

In the simplest case, where the driving field is a monochromatic wave Êi(ω) = Ei0δ(ω−ω0)
with frequency ω0, δ(ω) being the Dirac delta distribution, the circulating spectrum is

Êc(ω) = t1Ei0

∞∑
n=0

δ(ω − u2nω0)r
n, (3.93)

where the identity δ(ax) = (1/a)δ(x) was used. The inverse Fourier transformation of this
spectrum yields the forward travelling complex field amplitude Ec(t, x). For sake of simplicity,
from now on the spatial coordinate will be set to zero, so that all fields are evaluated at mirror
M1. Then the circulating field amplitude becomes

Ec(t) =
1√
2π
t1Ei0

∞∑
n=0

rneiω0u2nt. (3.94)

Depending on the parameters r and u, this may have a very complex shape as a function of time.
However, we shall now be interested in the case where the velocity of the mirror is small and
therefore u is close to unity. Let us therefore expand u2n into a Taylor series in β

u2n = 1− 2nβ +
1

2
(2nβ)2 − 2

3
n(1 + 2n2)β3 +O(β4). (3.95)

For very small velocities (to be specified later) it is sufficient to keep only the first two terms in
(3.95) and then Ec(t) may be directly summed to yield

Ec(t) ≈ t1E0(t)
∞∑
n=0

rne−i2nβω0t =
1√
2π

t1Ei0e
iω0t

1− rei2βω0t
, (3.96)
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with E0(t) = 1√
2π
t1Ei0e

iω0t. This looks identical to (3.29) with ωL/c replaced by 2βω0t. This
means that one may observe peaks in the circulating field power, identical in shape to those
shown in figure 3.7 (only as a function of time instead of frequency) with positions tn = nπ/ω0β
(assuming now r to be real, otherwise there will be a time offset t0 that may be subtracted), that
is when the separation of the mirrors is xn = x(tn) = vtn = nλ/2 as expected for a resonator
that operates close to steady state.

If we now take the next higher order contribution to u2n into account, and offset time to the
time where the mth quasistatic resonance would appear t = tm + t′, then the exponent in (3.94)
takes the form

ω0u
2nt ≈

(
−2nβ +

1

2
(2nβ)2

)
ω0t = −2nmπ+ 2(nβ)2ω0tm + (−2nβ+ 2(nβ)2)ω0t

′. (3.97)

If we now additionally assume that |t′| � tm, if we look for example around the 10000th longi-
tudinal resonance, then the term 2(nβ)2ω0t

′ can be neglected27 compared to 2(nβ)2ω0tm and the
electric field amplitude at tm + t′ can be approximated by

Ec(tm + t′) ≈ E0(tm + t′)
∞∑
n=0

rnei(2πn
2mβ−2nβω0t′). (3.98)

As the amplitudes of the contributing components in the sum drop exponentially as rn, the sum
converges after N = −1/ ln r steps. this shows, that the steady state approximation (3.96)
is valid as long as N2mβ � 1. With the realization that F = −π/ ln r in the high finesse
limit, the steady state condition becomes v � π2λ/F2Tr, which is consistent with (3.81) (up
to some factors of π). If we now further assume that 2Nβm � 1 and |2βω0t

′| � 2π (no
rephaseing), so that the phase changes only little between adjacent terms in the sum in (3.98), we
may approximate the sum by an integral28

Ec(tm + t′) ≈ E0(tm + t′)

∫ ∞

0

dω

2βω0

r
ω

2βω0 e
i
�

ω2tm
2ω0

−ωt′
�
, (3.99)

with the substitution ω = 2nβω0, which can be evaluated to yield

Ec(tm + t′) ≈ E0(tm + t′)

√
i

8βm
eg

2(t′) (1 + erf(g(t′))) (3.100)

g(t′) =

√
−i

8πβm

(
2π
ω0βt

′

π
+ i ln r

)
. (3.101)

27strictly speaking, because the phase of an oscillatory function is approximated, it is also required, that
2(nβ)2ω0t

′ � 2π for all relevant terms in the fourier sum. Indeed it turns out, that this is the case for the va-
lidity range of the second order Taylor expansion in (3.95).

28The continuum approximation will not exhibit the quasiperiodic structure that appears when the scan is extended
over many resonances. The "no rephaseing"condition means that we stay so close to one resonance that the adjacent
resonances do not lie in the interval.
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The square modulus of Ec(tm + t′), corresponding to the circulating intensity in the resonator,
is shown in figure 3.18. It can be split into two factors. The first is the square modulus of the
exponential term in (3.100) which is explicitly given by

exp

(
ω0 ln(r)t′

2πm

)
= exp

(
2 ln(r)t′

Tr

)
= exp

(
−t

′

τ

)
= exp

(
− πt′

FTr

)
(3.102)

which exhibits the decay29 time introduced in (3.79). The last form, which contains the finesse,
is valid in the high finesse limit only. The second factor in (3.100) contains the complex error
function erf defined as

erf(z) =
2√
π

∫ z

0

e−z
′2
dz′. (3.103)

The argument of it in (3.100) as a function of t′ describes a straight line close to the
√
−i diagonal

of the complex plane, offset by the non vanishing contribution of
√
i ln r. For vanishing ln r, this

term is a Cornu spiral (also termed Fresnel integral) and its square modulus is plotted for this
case in figure 3.19. It has an asymptote for

√
β/πmω0t

′ � 1 given by (using an appropriately
normalized time)

|1 + erf(
√
−it)|2 ≈ 4 +

1

2t2
+

2

t
sin
(
t2 − π

4

)
. (3.104)

The small contribution of ln r to g(t) adds an exponentially growing oscillatory term to the square
modulus. However this additional term has zero average and can be neglected in amplitude as

long as t′ � −2mβ
ln r

ln
√

mβ
2π

. Therefore the exponential decay time may be extracted from such a
transmission by averaging over the oscillatory part of the pulse and fitting an exponential function
to the tail of the pulse starting after say the second oscillation or so.

If we now require, that the signal has not dropped by more than 1/e at the second fringe of
the oscillating envelope, in order to be able to get a good estimate of the decay constant, then the
minimum scan speed is determined by

− ln r√
8βmπ

= 1. (3.105)

The circulating intensity can be observed behind the mirror M2. If the reflected intensity is
accessible, this may also be used for measuring the photon lifetime of the cavity: The reflected
intensity is given by the square modulus of the reflected incident wave plus the circulating wave
transmitted through the mirror M1, i.e.

Ir(tm + t′) = | − r1Ei(tm + t′) + t1Ec(tm + t′)|2 =

=

(
I0R1 + T1Ic(tm + t′) + I02Re

(
r1t

2
1

√
i

8βm
eg

2(t′)(1 + erfg(t′))

))
≈

≈ I0

(
1 + 4Re

(
r1t

2
1

√
i

8βm
eg

2(t′)

))
,

√
β

πm
ω0t

′ � 1 (3.106)

29note that lnr is negative.
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Figure 3.18: Square modulus of the circulating field (i.e. power) versus time normalized to the
cavity lifetime τ (solid). t′ = 0 is where the steady state fringe is expected. β is chosen such that
the first oscillation lies within one decay time. An exponential decay as exp(−t′/τ) is shown as
a dashed line.
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Figure 3.20: a) Reflected non steady state intensity (solid) normalized to ingoing intensity as a
function of time normalized to decay time. The dashed line shows an exponential according to
1 + exp(−t′/2τ). Note that the decay time is twice as large as the resonator decay time τ . b)
same plot as in 3.18 on linear scale for comparison. t′ = 0 is the time where the steady state
maximum is expected.

where I(ω0) ∝ |Ei(ω0)|2 is the incoming intensity, R1 and T1 the reflectance and transmittance
of the mirror M1 respectively and Ic(tm + t′) is the square modulus of Ec(tm + t′). For writing
down the approximated version for large times in the second line of (3.106), the approximations
1+erf(g(t′)) ≈ 2 and R1I0 +T1Ic(tm+ t′) ≈ I0 (energy conservation) which should be fulfilled
on average30, were made. With

exp
(
g2(t′)

)
= exp

(
ln r

Tr
t′ + i

ln2 r

8βnπ
− i

(
ω2

0βt
′2

2πn

))
(3.107)

one can quickly see (figure 3.20) that for large t′, Ir(t′) will perform damped oscillations with
a damping constant twice as large as in the transmitted case and a linearly increasing frequency.
The resonator damping constant can be extracted from this by taking half the damping constant
of the oscillation.

Summarizing this section, the decay constant of a resonator may be measured not only by
driving the resonator and then quickly switching off the drive, but is also observable when scan-
ning the resonator across a resonance with a velocity much larger than in (3.81). Then in trans-
mission after a peak, an exponential decay with a superimposed oscillation is observed. The
decay time is the resonator decay time τ defined in (3.79) which relates to the round trip re-
flectance via (3.80) from which in turn the resonator finesse can be calculated via (3.34). The
scan speed is high enough if the oscillations are clearly offset from zero (i.e. don’t go down
to zero), otherwise the drive completely cancels the stored oscillation, driving it up again after-
wards, which increases the effective decay time. If the observations are made in reflection, an
exponentially decaying oscillation around the off-resonant reflected intensity can be seen, stem-
ming from interference between the Doppler-shifted stored light and the driving field. The decay
constant is twice the resonator decay time τ (as the interference intensity is proportional to the
stored field instead of the intensity). Looking at the reflection has the advantage that the decay

30This is of course not true at any instant of time, as the resonator can store Energy for a certain amount of time
and moreover will transmit half of the energy inside the resonator through mirror M2.
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time is longer and therefore the decay is observable with smaller scanning speeds. The transmit-
ted intensity function has the advantage, that the decay is not only in the oscillating signal but in
an offset as well. Therefore it will still be visible even if the driving radiation is broader in band-
width then the steady state resonance. This is not true for the reflected signal, as the phase of the
oscillation will be different for each driving component (because resonance occurs at different
times), and therefore the signal will be washed out by a broadband driving field.

3.2.6 Resonators as noise filters

As explained in the section 3.1.3, there are quite a few mechanisms that convert amplitude and
phase noise of the fundamental frequency comb into phase noise in the upconverted frequency
comb in the XUV. For this reason, special measures have to be taken to provide a low noise
fundamental frequency comb for the conversion so that the XUV frequency comb is not buried
in broad band noise. In this section it will be shown that the use of a (sufficently stable) enhance-
ment resonator may improve the noise properties of the driving frequency comb.

In an impedance matched resonator of finesse F, the input coupler has a transmission of π/F,
while on resonance in steady state the circulating field power is F/π stronger than the driving
field. Therefore, if the driving amplitude or phase changes from one round trip to the next (in
the mode-locked case, possibly from one pulse to the next), as illustrated in figure 3.21 , the
amplitude of the circulating field can at most change by a factor 2π/F (phase jump of π), and
the phase (in a high finesse limit) may change by π/F (phase jump of π/2). Pure intensity noise
can change the circulating amplitude (again round trip to round trip) by at most by a factor π/F
if amplitude change from one pulse to the next is restricted to 100%, i.e. dropping to zero or
doubling from the average value. In intensity (amplitude squared) the change is even smaller, on
the order of (π/F)2. Of course, fluctuations that happen on a slower time scale, have a larger
impact on the circulating field. That is in the other extreme, where the phase and amplitude
changes are on a time scale long compared to the photon decay time (3.80), the stored field
follows all changes adiabatically.

From these considerations, one can learn that the resonator effectively acts as a low pass fil-
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ter on phase and amplitude fluctuations in the driving field (that don’t have the same period as
the resonator). In the frequency domain this fact can be seen immediately by looking at the re-
sponse spectrum of the resonator (see 3.7): If the driving comb is tuned on resonance, that is, the
comb modes are centered on resonance peaks, noise frequency components between these comb
modes are suppressed. Pulse to pulse changes in amplitude or phase correspond to frequency
components just in the middle between two comb teeth. These components are suppressed by
1/(2F)2 in intensity, which is consistent with the considerations from the preceding paragraph.
For slower fluctuations, the corresponding Fourier components lie closer to the comb teeth and
the suppression is reduced until the noise component frequency is much smaller than ωFSR/F
where the full component is resonant and the circulating field follows adiabatically. The cutoff
frequency of the lowpass is therefore ωFSR/F and stopband suppression is 1/(2F)2. Moreover,
a servo that locks the driving laser to the resonator can significantly suppress noise components
that are within the servo bandwidth, so that the low frequency components that are not suppressed
passively by the resonator may be strongly reduced by an appropriate feedback loop.

Of course the given analysis only considers a time-independent resonator without dispersion.
A real resonator will have moving mirrors due to acoustic vibrations and thermal expansion.
These will even add phase noise to the pulse train (at the target). So, special attention is required
to minimize acoustic and thermal fluctuations of the resonator.

3.2.7 "Solitonic"resonators
During the implementation of a enhancement resonator for fs laser pulses, it was found that
one of the biggest difficulties was to have a resonator that was well compensated in terms of
dispersion. On the other hand, mode-locked lasers, to a very high accuracy (Udem et al. 1999a),
emit a periodic pulse train, so that the spectrum of that pulse train forms a frequency comb. This
means that the pulse circulating in the laser resonator has the same shape, round trip after round
trip and the effective dispersion in the resonator has to be exactly zero. The existence of such
steady state operation is due to a complicated interplay between resonator dispersion and several
nonlinearities in the resonator. In Kerr-lens mode-locked lasers, the dominant nonlinearities are
the gain of the laser medium, the self amplitude modulation provided by self focusing and the
self phase modulation, both occurring in the laser medium. The latter effect is well known from
nonlinear fiber propagation to provide a soliton wave equation, which has a solution that does
not change its shape during propagation and is stable against perturbations.

From that observation, the idea arose that introducing an appropriate nonlinearity in an en-
hancement resonator for fs pulses, could provide a similar mechanism, so that it becomes possible
to achieve an increased bandwidth of the cavity and thereby higher circulating peak powers com-
pared to a resonator with the same dispersion and no nonlinearity. As there is no gain medium
in the resonator, and as it is known (Chen et al. 1999) that the most important nonlinear effect
for sub-50 fs mode-locked lasers pulse shaping is self phase modulation (SPM), a resonator was
modeled (and simulated numerically), that in addition to dispersion included self phase modula-
tion. This work was published by Kalashnikov et al. (2005).

In detail the model used was a distributed model where the dispersion and SPM nonlinearity
was distributed uniformly across the entire length of the resonator. It leads to a driven nonlinear
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Schrödinger equation
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− iγA(x, t) + isech(t)1+iρ, (3.108)

which describes the propagation of an ultra short pulse (with complex field envelope A(x, t))
within a resonator with effective round trip phase

ψ̃ = ∆φCE + ∆T (ω − ω0) +
1

2
φ2(ω − ω0)

2 +
1

6
φ3(ω − ω0)

3 +
1

24
φ4(ω − ω0)

4. (3.109)

with ∆φCE,∆T, φ2, φ3 and φ4 being the pulse to pulse carrier phase change difference, the round
trip delay mismatch, GDD, third and fourth order dispersion respectively. The round trip loss is
modeled by the factor γ, the driving pulse was modeled to be a sech function with chirp ρ. The
strength of the Kerr nonlinearity is given by δNL. In writing down equation (3.108), the time
t was implicitly normalized to the pulse duration, x to the resonator round trip length and the
intensity to the driving pulse power. All parameters have to be normalized accordingly.

For a numerical study of such a resonator, the damping parameter was chosen in agreement
with the existing setup (see section 4.1) round trip damping to be 1%, i.e. γ = − ln(1 − 0.01).
Now for different values of the dispersion parameters φ3 and φ4, a global optimization of the
remaining free parameters of the model ∆φCE,∆T, φ2, and δNL with respect to peak power was
performed. To compare the results to the case without nonlinearity the same optimization was
performed while fixing δNL to zero, effectively switching off the nonlinearity during that run.
This optimization corresponds quite well to an experimental scenario where ∆φCE and ∆T are
controlled optimally using electronic feedback. φ2 can be controlled using either atmospheric
pressure in the resonator, or the thickness of the Brewster plate, that is inserted into the resonator
to control the SPM coefficient δNL. δNL may then be controlled by moving the plate with respect
to a focus, thereby changing the beam cross section in the plate.

The resulting optimized peak powers are shown in figure 3.22. In these plots it is clearly
observable that the parameter range for which an enhancement of more than 95 may be achieved
is much larger in the nonlinear case than in the linear one. A remarkable fact is that in the non-
linear case the maximum achievable peak power enhancement is higher than for the impedance
matched linear case. This is due to the fact that the SPM broadens the circulating spectrum,
which is then compressed by the dispersion. In that way the circulating power is concentrated
in a shorter pulse than the driving pulse, resulting in higher peak power. Of course the spectral
overlap between the driving pulse and the circulating pulse becomes worse in that case, so that
arbitrarily short pulses can not be created.
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Figure 3.22: Optimized peak powers for the a) nonlinear and b) the linear case. The area in-
cluding an peak power enhancement factor of 95 or larger , is clearly larger in the nonlinear
(dash-dotted contour) than in the linear case (long dashes). Also remarkable is the fact that in
the nonlinear case the circulating peak power can be higher than in the linear case.



Chapter 4

Experimental realization of an XUV
frequency comb

4.1 Implementation of a fs-enhancement resonator
Section 3.2 discussed the prerequisites for enhancement resonators for broadband frequency
comb light. To implement such a resonator in the real world, some technical issues have to
be addressed and design decisions have to be made to build a system that satisfies the experimen-
tal requirements. In the following sections, a system designed for generating a frequency comb
source in the extreme ultraviolet, that can be used for high resolution spectroscopy, including all
the necessary components, will be described. An overview of the setup is given in figure 4.1.

The first sections will describe the laser system that was used to drive the resonator. Then
it will be explained how the resonator is constructed so that the resonator mode profile enables
maximal intensity at a focus in the mode and how the driving laser’s mode profile is matched to
that resonator mode to maximize the coupling efficiency. The follows a description of the mecha-
nism controlling the temporal shape of the driving electric field as to minimize the pulse duration
of the stored (enhanced) pulse inside the focus of the resonator mode in order to maximize the
peak power of the pulse. To make the resonator work (in the intended way) it is also necessary to
maintain the resonance condition between driving field and resonator. The electronic feedback
loop that takes care of that will be explained. Finally an overview over the employed diagnostic
methods will be given and operational parameters of the complete system will be shown.

4.1.1 The laser system
The laser system employed in this work is a commercial Kerr-lens mode-locked Ti:Sapphire
laser1 (Femtolasers FS20). It consists of a Ti:Sapphire crystal as a gain medium, pumped by a
frequency doubled Nd:YVO4 laser (Coherent Verdi) that delivers an output power of 5.5 W. The
pump radiation is focused into the gain medium to produce inversion there. A schematic of the
laser resonator that is built around the gain medium is shown in figure 4.2. It is a linear resonator

1see for example in the work of Kasper (1997) for an overview on these type of lasers.
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Figure 4.2: Schematic of the laser system. Nd:YVO4: frequency doubled pump laser 5.5 W at
532 nm, Ti:Sapphire: laser gain medium, F: focusing mirrors 25 mm focal length, CM: chriped
plane mirrors, OC: output coupler, PZT: piezoelectric transducer for controlling resonator length,
W: fused silica wedges to control the carrier envelope offset frequency.
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Figure 4.3: a) Typical output spectrum of the laser system with a FWHM width of 30 nm centered
at 795nm. b) Measured interferometric autocorrelation trace corresponding to a pulse duration
of about 20 fs.

that has two 25 mm focal length spherical mirrors that create a tight focus in the resonator mode
inside the Ti:Sapphire crystal to make the mode overlap with the pump laser mode, to maximize
gain. There are two "collimated"arms in the resonator with unequal length. The length of these
arms as well as the folding angle between the focused arm and the two collimated arms is deter-
mined in order to enable and optimize Kerr-lens mode locking. These arms also contain plane
folding mirrors with specially designed coatings to provide the negative dispersion necessary for
the mode locking of the laser and one end mirror in each arm. The end mirror of one arm is par-
tially transmitting to couple the laser radiation out of the laser resonator. In the other collimated
arm one of the folding mirrors is mounted on a piezo electric transducer for electronic control of
the resonator length and thereby the repetition rate. Additionally this arm contains a pair of thin
wedges made from fused silica that allow fine adjustment of the dispersion inside the resonator
that enables control of the carrier envelope offset frequency of the laser.

The laser produces about 850 mW average output power with a mode locked repetition rate
of 114 MHz, a center wavelength of 793 nm and a pulse duration of 20 fs. A typical spectrum
and autocorrelation trace of the laser output is shown in figure 4.3.
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Figure 4.4: Sketch of the bowtie resonator design. A ring resonator with a long "collimated"arm
of length L (starting from the left focusing mirror f through mirror M and IC to the right focusing
mirror) and a "focused"arm of length d between the two focusing mirrors with focal length f .
The folding angle between the focused and collimated arm is ϑ. IC is the input coupler through
which the driving field is coupled to the resonator. M is a piezo (PZT) mounted mirror to control
the resonator length electronically. Note that there is also a reflected beam R from IC in addition
to the driving beam I , which is used to create an error signal for the electronic feedback. The
target is placed in the focused arm. Frequently this is a nonlinear medium for second or third
harmonic generation. In our case it is a vacuum chamber that contains the nonlinear medium and
is sealed by Brewster windows.

4.1.2 Resonator mode and mode matching
A common design for enhancement resonators in nonlinear optics is the so-called bowtie res-
onator, which is sketched in figure 4.4. A ring resonator is used as this simplifies the separation
of the beam reflected from IC from the incoming beam, which is useful for generating an error
signal for electronic feedback on cavity length (or laser repetition rate) and laser offset frequency.
The bowtie resonator design makes it possible to produce a very tight focus between the focus-
ing mirrors and still have a large round trip length (long round trip time) to match up with the
laser repetition rate, which is necessary as discussed in section 3.2.2. The focused arm con-
tains the nonlinear medium. In our case this is a noble gas jet placed inside a vacuum chamber
that is sealed with Brewster-angled windows made from sapphire. Brewster-angled windows are
chosen as this provides a simple means of minimizing reflection losses on the windows while
maintaining a large optical bandwidth.

To appropriately choose the focal length f of the focusing mirrors, the folding angle ϑ and
the distance between the focusing mirrors, the resonator mode has to be calculated and the pa-
rameters have to be adjusted to meet the requirements. This was done using the "ABCD"matrix
formalism for Gaussian beams, that may be found in the work of Kogelnik and Li (1966). This
formalism is capable of treating diffractive optics (in the paraxial approximation) using a simple
2 × 2 matrix formalism. Such a resonator has a stable mode only if the separation between the
focusing mirrors d is within certain limits, that will be called the stability range. For a bowtie res-
onator this is a single interval in the mirror separation with upper and lower stability limits. The
above mentioned paper only considers the cylindrically symmetric case, whereas in our case this
symmetry is broken by the focusing mirrors that are used at an angle and the Brewster windows.
However, as long as the planes of incidence for both are parallel, the problem boils down to two
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Figure 4.5: a) Focused arm focus size for f = 50 mm, L = 2.53 m and window thickness
d00 = 1 mm (two windows). The upper stability limits of sagittal and tangential plane coincide
for a folding angle ϑ = 10.34◦. b) Collimated arm focus size for the same parameters (solid
lines: sagittal plane, dashed: tangential plane). For symmetry reasons these foci lie in the center
of the respective arms.

decoupled mode equations for the beam in the plane of incidence (tangential plane) and the plane
that contains the mode axis and is perpendicular to the plane of incidence (sagittal plane). The
effective focal length of the focusing mirrors is given by

fs = f/ cosϑ

ft = f cosϑ (4.1)

in the sagittal and tangential planes respectively. The effective optical path through the Brewster
windows with refractive index n is given by

d0s = d0/n

d0t = d0/n
3, (4.2)

where d0 is the geometrical path through the window of thickness d00 given by

d0 = d00

√
(1 + n2)/n2. (4.3)

By choosing the folding angle of the resonator appropriately, the upper (or lower) stability limits
of the sagittal and tangential plane can be made to coincide. Then the resonator mode remains
essentially circular when approaching the upper (lower) stability limit so that the achievable
focal size is only limited by the aperture size of the focusing mirrors. Figure 4.5 shows the
focus sizes (1/e amplitude radius w0) in the focused and collimated arm as a function of focusing
mirror separation for a resonator with the parameters f = 50 mm, L = 2.53 m to match the
repetition rate of the laser, d00 = 1 mm and a folding angle ϑ = 10.34◦. It can be seen, that at
the chosen folding angle, the upper stability limit for sagittal and tangential plane coincide so
that when approaching this limit from below, the focus size in the focused arm shrinks without
bound. Of course in this calculation, finite aperture sizes have been neglected and at some point
the beam diameter at the focusing mirrors will exceed the size of the mirrors, so that effectively
the minimal focus size is limited by the numerical aperture of the focusing mirrors.
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Now that the resonator mode is known, in order to maximize the coupling efficiency, the
laser mode has to be matched to the resonator mode. For this purpose, we have to transform
the laser beam (using lenses) to have the same focus size and position as the resonator mode.
For this purpose a telescope consisting of a focusing lens (f = 150 mm) and a defocusing lens
(f = −50 mm) were used and the position and separation of these were optimized, using ABCD
matrix formalism, to image the focus of the laser mode at the output coupler onto the focus of
the resonator mode in the middle of the resonator’s collimated arm.

4.1.3 Dispersion control and losses
The vacuum windows, the air as well as the dielectric mirrors produce non-negligible dispersion
in the resonator. This dispersion has to be compensated for, as discussed in section 3.2.2. The
method of choice for this purpose is dispersive dielectric mirrors. These can provide tailored
dispersion across the entire laser spectrum while keeping the loss low. The drawback of this
type of dispersion control is that the dispersion is not continously adjustable as in the case of
prism- or grating-based systems. Such systems however exhibit a relatively large intrinsic loss,
which is intolerable in the context of enhancement resonators, where the maximum achievable
enhancement factor is the inverse of the round trip loss.

The net dispersion of the resonator, excluding mirrors, is given by the dispersion of air
(10.64 fs2/m at 793 nm) inside the resonator and the sapphire vacuum windows (58.99 fs2/mm
at 793 nm). Therefore the total GDD due to these contributions is 164 fs2 per round trip. It is
not possible to compensate such a dispersion with a single dispersive mirror, as the dispersion
achievable with a single mirror with sufficient bandwidth is around −40 fs2. Therefore, it is
necessary to have several (4-5) reflections off dispersive mirrors per round trip. For this reason
the collimated arm of the resonator is folded six times. This gives a total of 8 reflections per
round trip, which in turn allows a few mirrors not to be dispersive, so that they can be optimized
by other means. For example the mirror IC has a spectrally flat transmission, which is usually
not the case for dispersive mirrors, to achieve a spectrally homogeneous impedance-matched
coupling.

Production tolerances of the mirror coating layer thicknesses lead to dispersion properties
deviating from the design goal; therefore several different coatings have been produced and used
in the resonator. Each of these have been characterized in terms of their dispersion properties
using either of two white light interferometers developed in the work of Nebel (Tobias 2005)
or one developed by Takao Fuji at our Institute, which works similar to what was published by
Knox et al. (1988). The results are summarized in figure 4.6. The mirror "LA17"is included in
this figure as to show that quite some improvement in reflectivity has been achieved in the col-
laboration with the coating company, by using super-polished substrates. When the contributions
of air, the windows and all the mirrors are summed up, where empirical formulas for the sap-
phire (Malitson 1962) and air (Bonsch and Potulski 1998) refractive index where used, the total
dispersion is close to zero. Figure 4.7 shows dispersion data of the cavity using a zero dispersion
input coupler with coupling of 1% similar to LA3, two mirrors of type LA5, two mirrors of type
LA11 (one of them on a 1/4"substrate mounted on the piezoelectric transducer) and three LA10
mirrors.
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Figure 4.6: Dispersion and transmission (T ) data for some of the mirrors used in the enhance-
ment resonator. Solid curves correspond to design curves (where available), dashed are measured
dispersion (using the white light interferometer described in the work of Nebel (Tobias 2005))
and transmission respectively. Diamonds show 1 − R where R is the measured reflectance ob-
tained using the method described in section 3.2.5. Exceptions to these are figure 4.6(c) where
the reflectance was determined by measuring the finesse (i.e. steady state resonance width) and
figure 4.6(e) where the dispersion was measured using a scanning white light interferometer de-
signed by Takao Fuji. The difference between T and 1−R are additional losses due to absorbtion
and scattering.
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Figure 4.7: Round trip a) GDD and b) phase for the resonator (2.671 m air, 2.3 mm sapphire, one
LA3, two LA5, three LA10 and two LA11) that was built during this work. Solid lines show the
sum of the design curves and dashed is the sum of measured dispersion properties. The finesse
assumed for scaling the phase is F = 100π.

The sum of mirror losses excluding the input coupler is much smaller than 1%. Still it turns
out that the resonator is nearly impedance-matched, from which it can be concluded that other
losses dominate. A very probable candidate for these losses are reflection and scattering losses
from the Brewster windows. Reflection losses come from the Brewster windows being in a
strongly focused beam, so that Brewster’s condition is only satisfied for one spot in the spherical
wavefront. Therefore with optimized alignment, where that spot is in the center of the beam,
an annular reflected beam can be observed, that is estimated to contain about 5 × 10−4 of the
circulating power per surface, resulting in a total loss (four surfaces) of about 0.2%, a broad band
loss that dominates all the other losses. Therefore, as the input coupler has a flat reflectance and
the rest of the round trip losses are dominated by a flat loss from the Brewster windows, the
resonator finesse is essentially flat across the wavelength range of interest and estimated to be
100π.

4.1.4 Temporal pulse shaping

To maximize peak power in the interaction region (in the focus of the resonator mode inside the
vacuum chamber), a pulse compressor based on fused silica prisms was employed (see figure
3.12a). A double pass arrangement was used with a mirror at the symmetry plane. The distance
between the Prism apexes was about 1.8 m. This was chosen such that GDD of the total beam
path, including laser output coupler substrate, mode matching telescope, retarder plate and res-
onator input coupler substrate was compensated. The amount of prism material inserted into the
beam was then optimized to first shorten the autocorrelator trace (see section 4.1.6) and later to
maximize the XUV output.

4.1.5 Electronic feedback loop

The resonance conditions discussed in the sections 3.2.1 and 3.2.2 have to be fulfilled for the
resonator to work as it should. As said in section 3.2.2, the effective round trip phase ψ̃ as in
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(3.53) should be zero2 for the entire spectral range of the driving laser, i.e. from 750 nm to
850 nm. Dispersion can not be easily controlled inside the resonator (if no programmable pulse
shaper is inserted, which would have intolerably high losses). Therefore the only controllable
parameters in ψ̃ are δωr and δωCE defined in (3.51), which may be controlled by changing laser
cavity or enhancement resonator length (using the piezo-mounted mirrors) and laser dispersion
(using the wedges inside the laser) respectively. Because ω0T

′ is a very large number (in our
case 2π × 375× 1012/114× 106 ≈ 20× 106) and a change in δψ0 of the order of 2π/F = 0.02
causes a change from "on resonance"to "off resonance", the length of the resonator has to be
controlled on the 10−9 level (i.e. a few nanometers in our case), which is not easily achieved in
a passive manner3. Therefore an electronic feedback loop is employed to actively stabilize the
resonator length. This electronic feedback is based on the polarization technique introduced by
Hänsch and Couillaud (1980). This method uses the phase shift of the circulating field compared
to the incident field (see figure 3.7) to create an error signal. The phase shift has a very high
slope as a function of detuning, with a "zero"on resonance; therefore it can be used for making
an offset-free feedback loop.

In more detail, the incident beam is slightly rotated in polarization using a half-wave plate,
to contain a small amount of s-polarization (with respect to the Brewster window’s plane of inci-
dence). Then the part of this component reflected from the input coupler effectively experiences
no phase shift due to the resonator because of low finesse and poor impedance matching of the
resonator for s-polarization, whereas the reflected p-polarization component will be phase shifted
by

θ = arg (r1Ei + t1Ec) . (4.4)

This phase shifted p-component adds to the unshifted s-component to give a circular component
proportional to the phase shift. A circular polarization analyzer is used to extract the phase in-
formation and create an electronic signal accordingly. This signal is then fed into a proportional-
integrator (PI) loop filter, whose output is amplified to drive a piezoelectric transducer to control
the resonator length. In the setup described here the entire spectrum was polarization analyzed,
so that the error signal was zero if the resonance condition was fulfilled on average (weighted
by the power in the spectral components). This should maximize the total circulating power as a
function of resonator length.

The other degree of freedom was not fed back electronically but optimized manually using
the wedges in the laser resonator. It was stable enough to run the system for an hour or so without
readjustment.

In a final version of the setup it would be desirable to electronically feedback both degrees of
freedom. For that purpose, it is possible to use two different spectral components of the reflected
beam to create two error signals, pass them through an orthogonalization matrix and feed those
signals to wedges and resonator length. In such a setup, the best position of the two spectral
components to lock on is determined by the dispersion of the resonator. For zero dispersion any
pair will do the same job.

2or an integer multiple of 2π of course
3Thermal expansion coefficients are typically on the order of 10−6/K, so that thermal isolation on the mK level

would be required, not to mention acoustic isolation.
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Figure 4.8: Polarization analyzer
and electronic feedback for main-
taining resonance condition. Cir-
cular polarization is detected with
a quarter wave plate (λ/4), a po-
larizing beam splitter (PBS) and a
balanced photo receiver (BPR). PI
loop filter, high voltage (HV) am-
plifier and piezo (PZT) control-
ling the length of the resonator,
close the loop.
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Figure 4.9: Caroon of the photodiode signal that may be observed once coarse alignment is
performed. The groups of resonances (vertical lines) correspond to δωCE = 0 and different
resonances in that group (designated by 1,2 and 3) to different transversal modes. The envelope
(dashed) over the groups has a maximum at δωr = 0. The width of the envelope gives a hint on
the resonant bandwidth and resonator finesse.

4.1.6 Diagnostics

To determine the operating parameters of the resonator, several different diagnostic tools were
attached to the resonator. For the coarse alignment of the resonator, the spectrally integrated
transmission through it was monitored using a photodiode while scanning the resonator length.
A cartoon version of what signal can be observed on the photodiode vs. piezo voltage is shown
in figure 4.9. This signal can be used to get information on mode matching, offset frequency
matching and some first indication of the dispersion/finesse.

In this spectrally integrated signal, a peak is observed, whenever ψ̃ is close to an integer
multiple of 2π across a major fraction of the incident spectrum. Changing the resonator length
by one wavelength at the (center) frequency ωc will change ψ̃(ωc) by 2π and the resonance pattern
repeats itself. Because changing the resonator length also changes δωr, the slope of ψ̃ will vary.
As a result, the size of the spectral region that can simultaneously resonant will also change. By
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inspection of (3.53) it is quickly seen that it is largest, if δωr is close to zero. This means, that
the periodic resonance structure acquires an envelope, which has a maximum at δωr = 0. A
resonance can be observe at this maximum only if δωCE also vanishes. For zero dispersion, it
can easily be estimated that the envelope is approximately

l = ωc/2π∆ωF (4.5)

resonance fringes wide. Here ∆ω is the width of the laser spectrum. The shape of the envelope is
of course dependent on the detected spectrum. If the dispersion is not zero, the envelope will be
broadened. This broadening will be relevant once dispersion induces significant spectral filtering
even for the condition δωr = δωCE = 0. For the case, where only GDD plays a role a criterion
for that is that ∆ωFWHM as in (3.59) is comparable or smaller than the laser bandwidth ∆ω.

To get more information about the circulating spectrum and power, a simple commercial
grating spectrograph (Ocean Optics S2000) was used to observe the transmitted spectrum be-
hind one of the resonator mirrors (type LA5). The transmittance of that mirror was determined
accurately so that the observed spectra could be normalized to yield the circulating spectrum.
In conjunction with a pyroelectric power meter (Ophir model "2A-5H") behind the same mir-
ror, the circulating power could be determined by first normalizing the observed spectrum to the
transmitted total power and dividing it by the transmission curve of the mirror afterwards. The
transmitted spectrum as a function of φCE was also used to determine the resonator dispersion,
using the method discussed in 3.2.4.

To get some idea about the circulating pulse duration, autocorrelation measurements were
performed using a simple autocorrelator (APE model "Micro"). As input for this device, the
residual reflection from the first of the Brewster windows was used. There are two reflection,
one from the outer (first) surface and one from the inner (second). To get as close as possible
to the target (in terms of chirp), the inner reflection was used, collimated by a focusing chirped
mirror which simultaneously compensated for the second passage through the window.

4.1.7 Results and discussion
In the following results obtained with the described setup will be shown. These results (includ-
ing high order harmonic generation using the setup) have been described in an article that was
published during this work in Nature (Gohle et al. 2005). Similar work has also been performed
by Jones and Ye (2004), who switched the pulses out of the resonator using an acoustooptic
modulator, after reaching steady state. In this way they obtained amplified pulses without using
an amplifier.

When the feedback loop is turned on to lock the resonator to the highest resonance observed
(the highest peak in figure 4.9) and the wedges in the laser are adjusted appropriately to move that
resonance to the center of the envelope, so that the circulating power is maximized, a circulating
spectrum as shown in figure 4.10a can be observed. After adjusting the prism compressor to
minimize the autocorrelation signal duration, we observe an autocorrelation trace as shown in
4.10b. The total circulating power was determined to be 38 W on average, with 700 mW power
just before the input coupler. This is an average power enhancement of 54, which compares
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Figure 4.10: a: Locked resonator spectrum (solid) and driving laser spectrum (dashed),b: mea-
sured intracavity second-order autocorrelation shows a nearly Fourier limited pulse correspond-
ing to 28 fs pulse duration if a sech pulse shape is assumed.

well to the impedance matched enhancement factor, which is 100 given the 1% coupling. The
circulating pulse energy is then E0 = 38 W/114 MHz= 333 nJ.

The missing factor of two in the power enhancement can be almost completely attributed
to spectral filtering due to residual dispersion. If we normalize the circulating power by the
incident power (figure 4.11), a double peak structure is obtained. Because these two maxima
are approximately of the same height and it is almost certain that the resonator finesse does
not change much in the relevant spectral region, it is now sensible to assume that these two
maxima correspond to points of zero effective round trip phase ψ̃. Then by attributing a power
enhancement factor of 100 to these points in the spectrum and calculating the integral, we would
arrive at about 48 W circulating total power with the given spectral filtering. The observed
value is about 79% of the expected enhancement. If we now assume that this 79% is due to
impedance and mode mismatch, the enhancement factor could be 79 for the same resonator
without dispersion.

Due to spectral filtering, the observed autocorrelation trace has changed its shape compared
to the laser pulse autocorrelation. It exhibits side lobes (stemming from the almost rectangular
circulating spectrum) and a longer FWHM duration. If a sech pulse shape is assumed (which is
obviously a not very good approximation), a FWHM pulse duration of 28 fs can be estimated
from this autocorrelation trace, compared to 20 fs for the laser pulse. This increase in pulse
duration leads to a reduction in power enhancement, if it is calculated as the circulating peak
power compared to the driving peak power, instead of the average power. Then the peak power
enhancement factor is about 38, i.e. a factor of 2 smaller than it could be without dispersion. The
absolute peak power (assuming a Gaussian pulse with the given FWHM duration) is 11.2 MW.

The resonator was operated quite close to the outer stability limit and therefore the size of the
focus inside the vacuum chamber was rather small. It was estimated by measuring the spot size
of the (mode matched) driving laser beam on one of the focusing mirrors inside the resonator.
It was determined to be w = 2.4, where w is the 1/e amplitude radius of the Gaussian mode
at this spot, with a focal length of 50 mm and an almost collimated beam coming in (the other
focus is more than 1 m away), the waist size is w0 = 5.3 µm. In the focus, the peak intensity can
therefore be estimated to be 2.5× 1013 W/cm2.

As mentioned earlier in this section, spectral filtering is a dominant effect in the reduction
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Figure 4.11: Circulating spectrum normalized to incident spectrum (solid) and an averaged ver-
sion using Hanning low pass Fourier filter at 1/30 of the data point resolution (dashed).

of the power enhancement of the demonstrated resonator. It especially prevents going to higher
finesse resonators, as the dispersion will become more important then and the higher finesse will
not lead to a higher peak power enhancement. To correct that, the dispersion inside the resonator
has to be characterized accurately and an improved mirror design has to be employed. For
this, the method described in 3.2.4 was employed. Figure 4.12 shows the transmitted spectrum
normalized to the spectrum of the driving laser4 as a function of the lasers pulse to pulse phase
slip φCE = ωCE/ωr. During the acquisition of this data set, the resonator length was stabilized
such that the driving laser was always resonant at 839.15 nm. This was achieved by filtering the
light reflected from the resonator using a grating and a slit before it was fed to the polarization
analysis of the feedback loop. For each column in the data matrix displayed in figure 4.12,
corresponding to a fixed optical frequency ω, the position of the transmission maximum φCE(ω)
was determined. To do that, an Airy function (3.31) was fit to that column where the phase in
the cosine function in the denominator of that expression was replaced by (ω/ωfix− 1)(kφCE −
φCE(ω)). The fit model therefore reads

T (ω)

T0(ω)
=

A(ω)(1− r(ω))2

1 + r2(ω) + 2r(ω) cos
(
ω−ωf ix

ωfix
(kφCE − φCE(ω))

) . (4.6)

Here k has to be taken to be one5 and the fit parameters are A(ω), r(ω) and φCE(ω). As an
example the data of one column at 770 nm and the resulting fit is shown in figure 4.13. The
result of these fits is summarized in figure 4.14. From φCE(ω) the round trip phase ψ(ω) and

4Actually the transmission through the resonator while blocking the resonator mode right after the transmitting
mirror was used. In this way the transmission functions of the input and output coupler were readily taken care of.

5as the resonator has approximately the same length as the laser resonator.
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Figure 4.12: Spectrally resolved transmission of the resonator through one of the high reflecting
mirrors as a function of the driving lasers pulse to pulse phase shift φCE . The transmission data
was normalized by the driving laser spectrum to improve the visual display. This normalization
is not necessary for analysis.
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Figure 4.13: Transmission of the resonator at 770 nm. Measured points (diamonds) and fit model
(solid line) agree quite well.
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Figure 4.14: Results from fitting the transmission data with model (4.6). (a) The center of the
fringe φCE(ω), (b) The resonator finesse (divided by π) as calculated from the fitted round trip
gain r using (3.34), (c) The effective round trip phase ψ(ω) from expression (3.75), where the
unknown constants φ′CE and ψ(ωfix) where chosen such that the spectrum in figure 4.10 would
be the result. (d) Second derivative of ψ(ω) obtained like this. To get a nice plot the data phase
data was low pass filtered with a cutoff frequency of about 1.5 THz, corresponding to a resolution
of about 3 nm. (e) The phase rejects of the smoothing low pass filter. As this is small compared
to the relevant scale for this resonator, no important information is removed by the filter. (f)
square sum of the residuals of the fit normalized to the fitted model integral. The fit become less
accurate in the wings of the spectral range covered.
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hence the resonator dispersion may be calculated using (3.75) and (3.76). In addition to that,
the resonator finesse as a function of wavelength can be determined from the width of the Airy
fringes r(ω), provided the resonator lock that ensures (3.74) is tight enough so that the observed
fringe is not broadened by lock fluctuations. In the present case, these fluctuations were on the
order of 30% of the resonance width so that the observed finesse is slightly reduced compared
to the real value. The impedance matched enhancement factor calculated from the measured
r values is around 90 within the spectral range of the driving light. For calculating the GDD
function from the measured round trip phase data, a low pass filter was applied to the result
in order to make it readable. This is because calculating the GDD involved taking the second
derivative of the round trip phase. This differentiation amplifies fast fluctuations in the measured
phase with a factor proportional to the square of the fluctuation frequency. Hence these fast
components would dominate the GDD function, obsuring the relevant slow changes. To check
that the low pass filter has not removed important information about the round trip phase, the
filter rejects (i.e. the difference between the filtered and the unfiltered phase data) was analyzed
and is show in figure 4.13e. In this case the low pass filter was chosen to be a Gaussian filter
with a bandwidth of about 3 nm. The resulting filter rejects are on the order of a few percent of
the resonator linewidth, so that no important information is lost. The resulting GDD function has
two zero points at about 785 nm and 810 nm, so that the driving spectrum is neatly centered with
respect to these zero crossings. However the magnitude of the GDD in between is with about
10 fs2 on average, relatively large compared to separation of the zero points and the resonator
finesse6. Hence the observed strong spectral filtering, which leaves room for optimizing the
resonator dispersion.

4.2 High harmonics in a resonator
Now that it has been shown that the peak power of an ultrafast oscillator can be enhanced by a
considerable amount using a suitable resonator, in the following sections some results on high or-
der harmonic generation inside such an resonator will be given, as they were published in Nature
(Gohle et al. 2005). A very similar result was published almost simultaneously by Jones and Ye
(2005b). The achieved peak intensity inside the resonator of about 2.5×1013 W/cm2 is sufficient
to get considerable nonlinear response, at least from the noble gas with the lowest ionization
potential: xenon7. To avoid reabsorption of the generated XUV radiation, the xenon target was
injected into the interaction region (one Rayleigh length8 around the focus position) with a small
glass capillary with about 50 µm placed right above the focus in the vacuum chamber.

As the main interest in this investigation lies in coherently upconverted radiation, due to
the tight phase link between fundamental, this high order harmonic radiation will be emitted
collinearly with the fundamental beam. To analyze the radiation and make it accessible for other

6i.e. the spectral separation of the zeros and ∆ωFWHM from (3.59) are comparable.
7Of course there is also radon, which has an even lower ionization potential but as it is radioactive, it was not

chosen for this experiment.
8The Rayleigh length b of the focus of a Gaussian beam of radiation with wavelength λ and focus radius w0 is

given by b = 2πw2
0/λ.
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Figure 4.15: Schematic for hole coupling in a resonator. A small aperture at the center of one
cavity mirror transmits the narrow XUV beam while most of the wider fundamental is reflected.

experiments, a way has to be found to get the radiation out of the resonator. The XUV wavelength
range is especially problematic in that context, as there is essentially no solid state material that is
not strongly absorbing. Therefore, the technique conventionally used with nonlinear conversion
resonators, using a mirror that is highly reflecting for the fundamental and highly transmissive
for the converted light, is not an option. The mirror substrate and the dielectric coating would
absorb the generated light. The following section discusses some solutions to that problem,
including the one employed during this work. After that the observed harmonic spectrum and
the experiments performed to show the coherence of the generated light will be described. Finally
some discussion of these results will be given.

4.2.1 Coupling
The probably tightest restriction in the search for possible coupling mechanisms of the generated
light is, that it has to have the lowest possible loss for the light circulating inside the resonator, in
order not to spoil the finesse of the resonator and keep the circulating power high. One method to
separate fundamental and high order harmonics from each other, that is well known in the HHG
community, uses the fact that the high harmonics exhibit a much smaller divergence angle than
the fundamental beam. Then by aperturing the emerging beam (in the far field) using a hole of
appropriate size, most of the generated XUV is transmitted, while almost the entire fundamental
is blocked and only the central part will be transmitted (see figure 4.15). If the fundamental beam
is annular in shape, even the entire fundamental can be blocked.

For a Gaussian beam with a 1/e field radius in the focus of w0, the divergence angle θ (i.e.
the angle between the 1/e radius as a function of distance and the propagation axis) of the beam
in the far field (i.e. many Rayleigh lengths away from the focus) is given by

θ =
λ

πw0

. (4.7)

Neglecting phase-matching for the moment, the focus size of the generated harmonics in the
plateau can be estimated by the following argument. If a power law is assumed for generated
intensity Ih as a function of fundamental If : Ih ∝ Iah

f , then the profile of the focus of the
harmonic beam will be a Gaussian function, with a radius that is

√
ah times smaller than the
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fundamental radius. Therefore the ratio between the divergence of the harmonic of order n
(having an n times shorter wavelength than the fundamental) and the fundamental divergence is

θh
θf

=
λ
√
ahπw0

nπw0λ
=

√
ah
n

. (4.8)

In the perturbative regime, where ah is equal to the harmonic order, the beam divergence of
the generated harmonic decreases as 1/

√
n. For high order harmonics, the power law has to be

independent of the harmonic order (otherwise there would be no plateau) and therefore the beam
divergence decreases as 1/n. Therefore the ratio between the beam diameter of the fundamental
and the plateau harmonics in the far field increases as n, and an aperture with two beam radii for
the harmonic will transmit 98% of the harmonic, while transmitting 1 − exp(−(2

√
ah/n)2) of

the fundamental. This is 1% for n/
√
ah ≈ 20 and 10−3 for n/

√
ah ≈ 60. If the aperture is a

mirror with a hole in the center, where the harmonics are transmitted, while the fundamental is
reflected around the hole, this means, that to keep the losses below a percent for the fundamental
and still transmit most of the generated harmonic, relatively high order harmonics (n > 40 or so)
have to be used.

The numbers above assume fundamental Gaussian modes. While these modes are the res-
onator eigenmodes that provide the highest peak intensity inside a focus (and therefore the most
efficient harmonic generation), in the context of coupling harmonics through a hole, they are bad
as they have their intensity maximum on the axis, where the hole in the mirror is located. To
get around that it was proposed by Jones and Ye (2005a) to use a higher order Gaussian mode
instead. For example the TEM01 mode has a intensity minimum in the center of the beam. This
could make the coupling through a hole available for lower order harmonics as well.

An alternative to transmissively coupling the XUV radiation out of the cavity, is to reflect
it out at an interface where the fundamental is transmitted. Such a place could be a Brewster
window that has very low reflection loss for the fundamental. Here it comes handy, that the
absorbtion of the XUV radiation is high in most materials. If the absorbtion resonance lies on
the red side of the incident radiation, the refractive index for that radiation can be much smaller
than one and the Fresnel reflection from such an interface can be rather high. As an example
in figure 4.16, the Fresnel reflectance of sapphire (Al2O3) is shown in the XUV wavelength
range for p-polarized light incident on a Brewster surface for radiation at 800 nm (incidence
angel 60.4◦) and using refractive index data taken from Palik (1991). Many materials show a
similar behavior with relative high reflectance just below 100nm. In table 4.1, a summary of
reflectance values at 60 nm is given for several materials for p-polarized light at an incidence
angle corresponding to Brewsters angle for 800 nm radiation. The most interesting materials in
the table given are diamond and silicon carbide (SiC). Diamond however has the problem that it
is quite expensive and hard to get in optical quality especially as mono crystalline diamond of
appropriate size and purity is only available from natural sources and frequently exhibits stress
induced birefringence. Quick experiments performed with chemical vapor deposition (CVD)
produced diamond showed that the XUV reflectance at normal incidence, where it should be
above 40% at 60 nm according to the tabulated refractive index data showed a reflectance of
strength equal to gold (10%). This is probably due to the fact that the samples used by Palik
(1991) had quite some nitrogen impurities. Moreover CVD diamond is not well qualified as an
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Figure 4.16: Fresnel reflectance of sap-
phire for p-polarized radiation at an in-
cidence angle of 60.4◦ (Brewster’s angle
for 800nm), determined using tabulated
refractive index data from Palik (1991).

Material n(800 nm) a [mm−1] n(60 nm) R(60 nm)
SiO2 (crys.) 1.54− < 10−4i < 0.8 0.79− 0.65i 12%
fused silica 1.46− < 10−6i < 10−2 0.86− 0.5i 7%
ZnS 2.31− 3× 10−6i 2× 10−2 0.78− 0.28i 24%
MgO 1.73− < 10−7i < 10−3 0.68− 0.71i 21%
C (diamond) 2.39− < 10−6i < 10−2 0.50− 1.3i 48%
SiC 2.60− < 10−4i < 1 0.347− 0.53i 63%
Al2O3 1.76 0.805− 0.725i 15%

Table 4.1: Complex refractive index at 800 nm and 60 nm wavelength for various materials. a is
the absorbtion length at 800 nm and R the Fresnel reflectance at 60 nm for p-polarized radiation
at an incidence angle of arctan(Re(n(800 nm))) (Brewsters angle at 800 nm). Refractive index
data taken from Palik (1991)
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Figure 4.17: Scheme for output coupling
the generated XUV radiation. The funda-
mental laser mode is transmitted through
the brewster plate with small losses while
the XUV is reflected due to the material
having a refractive index smaller than one,
resulting in total external reflection. Al2O3-windows 1 mm 
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Figure 4.18: Monochromator geometry. S: XUV source, I: input slit (2◦ incidence angle), G:
Grating (1 m focal length), O: output slit moveable on a rowland, C: channeltron detector. The
distance from source to entrance slit is marked as l. circle (dashed line)

optical material in the visible and near infrared because of its large grain size9. Silicon carbide
on the other hand should be a really good candidate, as it should be available with low absorbtion
and scatter. This material is also interesting for beam steering applications and normal incidence
(focusing) mirrors as the normal incidence reflectivity should be larger than 34%. However, no
SiC sample was available during our experiments and we had to resort to sapphire as an output
coupler.

Figure 4.17 shows the arragement used in the setup. The Brewster windows that seal the
interaction vaccuum chamber are made from sapphire and simultaneously used as the XUV beam
splitter. The XUV output port may be connected to an experimental vacuum chamber.

4.2.2 Harmonic spectrum and coherence
The generated XUV output was analyzed using a grazing incidence monochromator (McPherson
Model 248/310G) whose geometry is shown in figure 4.18, that was attached to the output port.
The monochromator was equipped with a channeltron detector (BURLE CEM4751G). This de-
tector has the nice property that it is sensitive below 160 nm only. Therefore no special measures
had to be taken to remove the strong (10 mW average) fundamental from the extracted beam to
avoid detector saturation.

The monochromator was first set to zero order, where the entire spectrum was transmitted.
After putting the resonator into lock, so that the circulating field had the characteristics described

9Very recently, mono crystalline CVD diamond became available in relevant sizes, so maybe this is worth a test.
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Figure 4.19: Typical harmonic spectrum observed. In solid is the signal observed, when looking
directly into the output beam, while the dashed curve is taken with a 1000 Å thick aluminum
foil with an absorbtion edge just below 90 nm in the beam path. This filters away the strongest
components in order to reduce the stray light that would otherwise bury the weaker peaks. The
dashed signal has been rescaled to have the same magnitude at the 11th harmonic. The harmonics
are labeled Hx, and the ionization limit is marked by a point labelled Xe∞.

in 4.1.7, and xenon was fed to the nozzle with one bar of pressure before the nozzle10, a clear
photocurrent was seen on the channeltron. This photocurrent was maximized by readjusting the
nozzle position with respect to the focus, resonator alignment, the driving pulse chirp and the
laser offset frequency.

Then the monochromator was scanned and the channeltron signal was recorded using a gated
pulse counting device (Stanford Research SR400 photon counter) with a threshold set such that
the electrical noise on the signal was mostly rejected. It has to be mentioned, that the channeltron
that was used, is not a saturated gain device suitable to generating a signal for photon counting
but is merely a proportional mode device. For this reason, the count rates observed are only
proportional to the photon count rate, with an unknown proportionality constant depending on
the counter threshold and channeltron gain. A typical spectrum recorded like this, is shown in
figure 4.19. Harmonics up to 15th order are clearly observed. The cutoff energy11 is at 17 eV,
which explains the exponential drop of the harmonic power starting at H11. In addition to the
laser harmonics a spectral feature at 103 nm is observed, which lies just below the ionization
energy of xenon and corresponds to no integer harmonic of the fundamental laser frequency.
This feature has not been observed in previous experiments on high harmonic generation. Its

10The pressure in the focus is hard to determine in this geometry, as the nozzle is not very well characterized in
shape.

11The ponderomontive energy at 2.5× 1013 W/cm2 is 1.5 eV. The ionization potential of xenon is 12.13 eV.
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Feature Pout [pW] Pgen [nW] Efficiency
H7 480 9.6 1× 10−8

Xe∞ 290 4.5 6× 10−9

H9 820 9.8 1× 10−8

H11 90 0.8 1× 10−9

H13 10 0.07 1× 10−10

Table 4.2: Estimated power in different spectral components. Pout is the power reflected out by
the sapphire, Pgen is the estimate of the generated power using the calculated reflectance of the
sapphire window. The last column shows the conversion efficiency from driving laser average
power to generated XUV power.

possible origin will be discussed in section 4.2.3.
To get an estimate of the power in each of the harmonics, the monochromator was removed

from the beam path (as its transmission was unknown) and the channeltron was placed directly
into the XUV beam. The total photo current at a channeltron bias of 1.36 kV was measured
using a 1 MΩ load resistor and a voltmeter. A total photo current of about 1 µA was measured
like this, which according to the manufacturer’s specification converts into 0.85 × 109 photons
per second. From the measured spectrum (assuming constant transmission), it is known that the
major contribution to the signal comes from the three spikes at between 80 and 120 nm and each
of these peaks is approximately of the same height. Therefore the total power can be estimated
using an average photon wavelength of 100 nm or 12 eV energy. Then the total power leaving
the setup is about 1.6 nW. If again a constant quantum efficiency of the detector and constant
spectral transmission of the monochromator is assumed, the measured spectrum can be used
to assign powers to each spectral feature by normalizing the spectrum to 1.6 nW. The result is
shown in table 4.2. The total conversion efficiency, i.e. the ratio between generated and incident
fundamental power is estimated to be on the order of 10−8.

The dependence of different spectral features generated powers as a function of peak intensity
is shown in figure 4.20. Both the H9 and H11 line show high exponents (close to the values from
perturbation theory) for intensities below 1.5× 1013 W/cm2 and a slight decrease for intensities
above that intensity to an exponent of about 7. This indicates that the intensities are approaching
the strong field limit, where simple lowest order perturbation theory does not produce valid
results anymore. No saturation is seen for the odd harmonics up to the investigated intensity.
The line just below the xenon ionization limit on the other hand exhibits an extremely high
exponent of 11.5 for lower power, while a quick saturation is observed around 1.8× 1013 W/cm2

after which the yield even decreases.
Spatial coherence has been investigated with a very simple method. The entire monochro-

mator assembly was shifted transverse to the beam axis. This allowed the entrance slit (300 µm
width) to sample different positions in the beam, 260 mm away from the source and the transmit-
ted power was recorded as a function of the transverse translation. The Xe∞ feature was found
to have an almost constant intensity if the monochromator was rotated about the source point,
indicating a relatively large beam divergence. When shifting the monochromator, the limited
viewing angle of the device introduced a varying aperture that could be quantified by recording
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Figure 4.20: Power scalings of different features in the spectrum. Diamonds indicate values for
H9, circles correspond to H11 and crosses to Xe∞. Lines are power law fits to H9 (solid) data
with exponents 9.5 and 7, H11 (dashed) with exponents 8.7 and 6.3, and to Xe∞ (dash dot) with
exponent 11.5. Saturation of the Xe∞ feature is observed for high intensities.

the Xe∞ intensity. By normalizing beam profiles of the other features with the Xe∞ data, this
effect was eliminated. The results are shown in figure 4.21. The diameters obtained by fitting a
Gaussian profile to the taken data shows a ratio between fundamental and harmonic divergence
angle θf/θh of 4.5, 6 and 6.4 for H7, H9 and H11, respectively. Table 4.3 compares the measured
values to expected ones.

The most important property of the generated radiation is the temporal coherence, i.e. that
the frequency comb of the fundamental is actually transferred into the generated harmonic radi-
ation. The typical way to proceed in this context, is to generate a beat signal between a single
frequency or frequency comb source and the light under investigation. As during this work there
was no second XUV frequency comb available, as a first test a beat experiment was performed
that involved H3 from the described setup. The wavelength of H3 is at 265 nm, which is still
accessible by conventional lasers and solid state harmonic generation. Figure 4.22 shows the
optical setup. The third harmonic from the enhancement resonator (at 265 nm) is overlapped
with the fourth harmonic of a mode-locked Nd:YVO4 laser running at 1064 nm with repetition
rate fr = 76 MHz. The two lasers are synchronized using a phase locked loop feeding back on
the Nd:YVO4 laser repetition rate and using the second harmonic of repetition rate of the HHG
system and the third harmonic of the repetition rate of the Nd:YVO4 laser as inputs. Like this,
if the phase between the two is adjusted appropriately, every second pulse from the Nd:YVO4

laser coincides with every third pulse from the HHG output, so that the beat signals between
different comb modes can add up in phase and result in a measurable electronic signal on the
photo multiplier tube.
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Figure 4.21: Beam profiles for different spectral features. Symbols show the measured profiles
(normalized by the data taken at the Xe∞ feature to eliminate the effect of changing apertures due
to the limited viewing angle of the device). The fits give the following diameters H7: 2.75 mm,
H9: 2.08 mm and H11: 1.94 mm, 260 mm away from the generating focus.

Feature θf/θh n/
√
ameas n/7 ∗ 4.5

H7 4.5 4.5
H9 6 3.4 5.8
H11 6.4 4.4 7.1

Table 4.3: Comparison of the measured beam divergences θf/θh with the result (4.8) using
the measured exponents ameas for high intensities and with an expected scaling for the plateau
region (assuming constant a), where the ratio should be proportional to the harmonic order n.
The observed divergences are smaller than (i.e. bigger ratio) than expected form the measured
exponents. This may be due to phase-matching and/or saturation on the beam axis, leading to
a larger focus. The scaling of the ratios with harmonic order is rather compatible with plateau
harmonics.
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Figure 4.22: The setup for the beat experiment. a) Optical schematic, the H3 component of
the HHG setup is overlapped with the fourth harmonic of a mode-locked Nd:YVO4 laser with
repetition rate fr = 76 MHz. The two lasers are synchronized with a phase locked loop with
and adjustable phase delay. b) Grating image of the overlapped beams. The broad faint line is
the H3 spectrum while the small bright spot is the fourth harmonic of the Nd:YVO4 laser. SHG:
second harmonic generation, PBS: polarizing beam splitter, λ/2: half wave plate for polarization
rotation, PMT: photomultiplier tube. φ phase shifter.

With 1.6 µW of H3 and 0.5 µW of fourth harmonic of the Nd:YVO4 going onto the detector,
a beat signal as shown in figure 4.23 could be observed. This signal was recorded for 100 µs
using a digital oscilloscope in conjunction with a FFT algorithm. The resolution of the Fourier
transform is 100 kHz and the beat signal is Fourier limited as illustrated in 4.24. The signal to
noise ratio (SNR) of the beat is determined from this data to be 16 dB in 100 kHz bandwidth.
The spectral bandwidth of the Nd:YVO4 laser is about 200 times smaller than the H3 output.
Therefore, only 1/200th of the H3 power contributes to the beat signal. The shot noise limited
beat signal should be 35 dB in 100 kHz bandwidth from these considerations. The missing 20 dB
in the observed signal is most probably due to poor mode matching and excess noise from the
photo multiplier.

4.2.3 Discussion
In this chapter it was shown that high order harmonics can be generated from a mode-locked
laser directly with an extremely high repetition rate exceeding 100 MHz, if a suitably designed
enhancement resonator is used. The generated radiation contained photons up to the 15th har-
monic of the fundamental. The cutoff energy for high order harmonic generation lies at 17 eV, at
the estimated peak intensities in the focus. This is consistent with the exponential roll off of the
harmonic power starting at H11. It was shown that the beam profile exhibited a nice Gaussian
shape with very small divergence angles, indicating a well-behaved wavefront, suitable for tightly
focussing the generated light into a small area, although the test results are quite preliminary in
that respect.

Power scaling of the generated light was investigated, yielding high exponents for both har-
monics that were under consideration. This shows that the process is not very close to saturation
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Figure 4.23: RF spectrum of the signal from the photomultiplier tube. fr1 marks the repetition
rate of the Nd:YVO4 laser (76 MHz), fr2 the repetition rate of the HHG system (114 MHz) and
arrows mark the beat signals between the two frequency combs with respective repetition rates.

Figure 4.24: The beat signal at 34 MHz
(solid) and the point spread function of the
Fourier transfrom (dashed, with center fre-
quency and amplitude fit to the data). This
shows that the beat is Fourier limited.
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up to the peak intensities that were available in the setup, so that scaling up the peak intensity
by using a stronger pump laser and/or going to a higher finesse resonator can be expected to
tremendously increase the output power of the system. Saturation due to ionization is expected
to occur in xenon at the pulse duration used once the intensity approaches 1014 W/cm2. There-
fore if an exponent of 6 is assumed for the plateau harmonics, then increasing the peak intensity
by a factor of 4 should increase the XUV output by more than three orders of magnitude. This
should already yield several µW output power for H9. The higher peak intensity would also
push the cutoff energy to 30 eV. As H13, which is the main target for future experiments in our
laboratory, was very close to the cutoff in the described experiments an even stronger scaling can
be expected for that harmonic.

It was shown that the H3 component of the generated radiation exhibited a frequency comb
structure that showed Fourier limited linewidth at 100 kHz resolution. In the paper by Jones
et al. (2005) it was demonstrated that the beat signal between the third harmonic generate in a
gas jet (similar to our experiment) and the third harmonic generated with a standard solid state
conversion shows Hertz level linewidth, which demonstrates again that the excess phase noise
from the gas jet is small. As the interesting wavelength range is below (or at) 120 nm of course
it still remains to be shown that the components H7 and above actually exhibit a frequency comb
that can be utilized for high resolution spectroscopy. Yet this first test suggests that this is indeed
the case, especially if a highly stable high finesse resonator is employed that has the ability to
remove noise from the driving laser as elaborated in section 3.2.6. Indeed some of the excess
noise contributions discussed in section 3.1.3 can be estimated. The phase modulation amplitude
due to plasma density fluctuations at the fundamental laser frequency has to be smaller than a
resonator linewidth for modulation frequencies that lie outside the bandwidth of the feedback
loop (a few tens of kHz) as otherwise the circulating power would have to be strongly modu-
lated, which is not observed. The resonator linewidth is about 10 mrad (finesse of 100π) and the
plasma phase shift fluctuations have to be smaller than that for frequencies higher than the servo
bandwidth. As the plasma phase shift is quadratically dependent on the optical frequency, the
rms phase shift on the 11th harmonic is 121 times smaller and therefore in the 0.1 mrad range.
Intensity fluctuations of the fundamental field are smaller than 5% in the demonstrated exper-
iment. As the nonlinear phase shift for the long trajectory (worst case) is given by (A.26) for
plateau harmonics and in our case Up ≈ ~ω0, the total nonlinear phase shift is on the order of
unity. Therefore the nonlinear phase fluctuations should be less than 100 mrad. The phase noise
of the fundamental comb was not analyzed, therefore the upconverted phase noise can not be
evaluated here. However, the driving laser may be stabilized to a high finesse reference cavity
so that Hertz level linewidth may be achieved, effectively eliminating the problem for the lower
harmonics, say up to twentieth order or so.

To clarify if the additional Xe∞ feature at 103 nm is a plasma fluorescence or not, the chan-
neltron detector was placed at the other vacuum port of the generation chamber, which uses the
entrance window as a XUV mirror and looks into the HHG source in the propagation direction
of the fundamental beam. If the emission at 103 nm were fluorescence with no phase relation to
the driving beam, the emission pattern should be symmetric around the polarization direction of
the driving radiation and light should be observable in the reverse direction. As nothing was ob-
served at this port, the conclusion is that the observed line has to have a certain amount of phase
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coherence with respect to the driving field, so that the emission is directed in the propagation
direction of the fundamental beam. The information from this quick experiment is too limited to
construct a complete physical picture of the origin of the observed feature. It is however remark-
able, that no previous experiment on HHG observed such a thing. It is therefore interesting to
discuss the possible cause of it.

At first, it is remarkable that the emission frequency is very close to the ionization limit of
xenon. This indicates that Rydberg states of high principal quantum number n are involved in
the process. A first question is therefore, why should Rydberg states become populated? Two
possibilities are direct multiphoton excitation of the states and recombination of free electrons
with ions in the plasma. Recombination from the plasma requires a third particle, that carries
away the momentum of the electron and typically leads to states with high angular momentum,
so that a radiative decay of the Rydberg state is not possible due to selection rules. The third
particle would also carry away some fraction of the phase information of the driving field, so that
it can not be assumed that the emission is directed, even if the recombined electrons were able to
decay to the ground state directly. Direct photonic excitation seems to be ruled out by the fact,
that the driving radiation is far detuned from any subharmonic of the transition frequencies in
question. But, as the intensity in the driving field is very high, the atomic level structure will be
strongly perturbed by the driving field. For the high n states, which are almost like free electrons,
the AC Stark shift is essentially the same as for free electrons, whose energy is increased by Up
with respect to the field free case. With a peak ponderomotive potential of 1.3 eV, the Rydberg
states are shifted into eightphoton resonance with the driving field and some population can
accumulate during the passage of the pulse. It is also very unlikely that these states are directly
field ionized by one pulse (if n is high enough), as the ionization time is on the order of one
Kepler period (orbit time).

Now that there is (coherent) population, it can radiate in phase with the driving field until
coherence is lost. If that time is much longer than the duration of the pulse, most of the time
during emission there will be no perturbing field and the emission will be at the frequency of the
unperturbed transition frequency, leading to the observed line. This process is depicted in figure
4.25.

This explanation is very qualitative and needs to be investigated more closely. In particular,
it does not explain where the missing energy between the absorbed photons and the emitted
photon goes. It was proposed that it might induce a blue shift of the driving field. Another
thing that remains unexplained is the fact that this spectral feature was not observed in other
experiments. The biggest difference between the presented experiment and other HHG results is
that the duration between adjacent pulses hitting the target is reduced by more than three orders
of magnitude. For that reason the gas target is not entirely replaced from one pulse to the next
and the atoms see about three pulses before leaving the focus (assuming thermal velocities at
300 K). Additionally the peak intensity is relatively low compared to other experiments with
similar short pulses. This could lead to a lower plasma density. At high plasma density on the
other hand the Rydberg states could be destabilized by the stray electric fields of the ions and
electrons, which could make the effect disappear. The reduction in generated power in the Xe∞

feature at high intensities that is observed in the presented results also points in this direction.
Another feature in the observed XUV spectrum 4.19 requiring explanation, is the double
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Figure 4.25: Process leading to the Xe∞ feature at 103 nm. The high-lying Rydberg states are
resonantly excited during the pulse (dashed peak) by a multi photon (3 photons in this sketch, in
xenon this would be 8 in our case) process that is shifted into resonance by the AC-Stark effect.
The excited dipole radiates for a long time so that most of the emission is at the unperturbed
frequency.

peak structure of the H7. This can be attributed to nearby resonances in xenon, that modify the
nonlinear response.
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Chapter 5

Outlook

With coherent quasi continuous extreme ultraviolet sources being a reality now, new exciting
applications immediately come to mind. The relatively simple spatially coherent source could
enable high spatial resolution microscopy or holography applications.

The XUV pulse train of unprecedented high repetition rate might enable new investigations
in attosecond physics. For example in experiments where space charge is a critical parameter, it
would become possible to work in an intensity regime, where the charge created per XUV pulse
is much smaller than one electron, while maintaining an event rate in the MHz range. This results
in an increase of the quantum limited signal to noise ratio by at least two orders1 of magnitude
compared to conventional kHz amplifier sources.

The major application however can be foreseen to lie in the field of high accuracy spec-
troscopy. The anticipated temporal coherence of the XUV pulse train will make the accuracy of
state of the art time standards available in a spectral region or energy range that was previously
inaccessible to high precision physics. In a specific ambitious project, we plan to apply fre-
quency combs in the XUV directly to precision spectroscopy of sharp resonances in laser-cooled
trapped ions. The hydrogen-like helium ion with a 1S-2S two-photon transition near 60 nm is a
particularly interesting candidate, since this simple atom permits unique confrontations between
quantum electrodynamic theory and experiment.

This type of frequency comb spectroscopy can be understood as a multi pulse Ramsey-type
quantum interference spectroscopy and has been demonstrated for a few pulses by Witte et al.
(2005) in the deep UV on a two photon transition in krypton and more recently in xenon at
125 nm photon wavelength (Zinkstok et al. 2006). While demonstrating that there is still suffi-
cient phase coherence between the pulses in the pulse sequence, the transient methods employed
to generate the finite length pulse trains2 introduce time dependent nonlinear phase shifts which
in turn break the frequency comb structure. The ability to characterize these phase shifts will
most probably limit the achievable accuracy for this type of experiments. In contrast, the XUV
source demonstrated here operates continuously, so that the nonlinear phase shifts exhibit the

1as the repetition rate is about five orders of magnitude higher
2In the mentioned experiments, an amplifier was charged with a finite amount of energy that was distributed

amongst a few pulses from a near infrared frequency comb laser which were subsequently converted nonlinearly
into the VUV.



94 5. Outlook

same periodicity as the original frequency comb. As a result the frequency comb structure can
be expected to be mapped faithfully into the up converted pulse train.

For many of the mentioned applications the output power of the demonstrated coherent XUV
frequency comb source was still too low for a real spectroscopy application. Yet the dependence
of the generated power as a function of driving power that was observed indicates that a moderate
increase of the circulating power inside the enhancement resonator can lead to orders of magni-
tude higher output power in the XUV. Such an increase of the circulating power can be achieved
by increasing the resonator finesse while keeping the circulating pulse duration constant as well
as by increasing the power of the driving laser.

During the time of writing a new high power Ti:Sapphire laser system is being developed
that is based on the chirped pulse oscillator scheme demonstrated Fernandez et al. (2004) but
with a higher repetition rate and stronger pump source. The system will be running at 80 MHz
repetition rate and will most probably provide more than 4 Watt average output power with pulse
durations on the order of 30 fs. This means that at least a 4 fold increase of the peak power
compared to the current laser system can be expected. If saturation effects are not important
and a power scaling of the 11th harmonic as given in figure 4.20 in section 4.2.2 is assumed, an
output power approaching the µW range can be expected with the current enhancement resonator
already.

The resonator finesse can be increased by placing the entire enhancement resonator into a
vacuum chamber. Like this, the brewster windows maintaining the vacuum in the current setup
can be removed and one of them can be replaced by a thinner plate that only serves as an output
coupler for the generated radiation. As a result the losses inside the resonator, stemming from
absorbtion and scatter in air as well as the surfaces and bulk material of the windows is drasti-
cally reduced. In addition the amount of dispersion that needs to be compensated becomes much
smaller so that it is possible to reduce the number of (inherently more lossy) chirped mirrors
inside the resonator. When increasing the resonator finesse, however controlling the resonator
dispersion accurately becomes more critical. But with the new method described in section 3.2.4
the precise requirement for a dispersion compensating mirror can be determined and an appro-
priate coating can be designed3. In this way, enhancement resonators with a finesse exceeding
500 and tailored dispersion for supporting 30 fs pulses can be expected so that one may expect to
even reach tens of µJ circulating pulse energy, which is already comparable to the pulse energies
used by Witte et al. (2005) but with a continuous source.

With an expected output power in the µW range for XUV photons, in addition to the ex-
citing applications mentioned above one may as well think of a variation of fourier transform
spectroscopy: Instead of building a Michelson interferometer for the XUV light itself, which
is technically difficult it is possible to build a Michelson interferometer for the fundamental in-
frared radiation and feed the output of that into the enhancement resonator for XUV generation.
Such a system can be interesting for spectroscopy applications where the coherence time of the
system under study is shorter than the time between two pulses from the frequency comb, so that

3As a side effect, this method for dispersion characterization of a resonator can also be used as a high sensitivity
spectroscopy tool. A sample placed inside will cause absorbtion and refractive index changes. The sensitivity of our
method to absorbtion is comparable to classical ring down spectroscopy, while our method also yields the real part
of the refractive index.
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the comb will not be visible to the system.
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Appendix A

Quantum mechanical description of the
atomic polarization

The Schrödinger equation of an electron in an atomic potential V (x) and exposed to an arbitrary
laser field E(t) is1

i~
∂ |ψ(t)〉
∂t

=

(
− p̂2

2me

+ V (x̂) + ex̂ · E(t)

)
|ψ(t)〉 . (A.1)

It was assumed here, that the intensity in the field is sufficiently low, so that the magnetic field
component can be neglected. After solving this equation the atomic dipole moment

d(t) = e 〈ψ(t)| x̂ |ψ(t)〉 (A.2)

can be calculated, which serves as a source of a classical electromagnetic wave. The spectrum
of the dipole emission is determined by the Fourier transform of the dipole moment

d̂(ω) =
1√
2π

∫
d(t)e−iωtdt. (A.3)

A.1 Solution in the strong field limit
The solution to (A.1) was found by Lewenstein et al. (1994). The presented description follows
their arguments closely. The so-called strong field approximation (SFA) used to solve (A.1)
involved the basic assumptions

1. No bound states of the system contribute to the evolution except the ground state |0〉.

2. The depletion of the ground state can be neglected.

1In this context, hats on symbols denote quantum mechanical operators not fourier transforms. This is true only
if the symbol is multiplied into a bra or ket state vector.
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3. In the continuum, the electron can be treated as a free particle moving in the external field
and V (x) can be neglected.

Due to assumption 1 the electron’s wave function may be expanded in terms of the atomic ground
state and the continuum states only

|ψ(t)〉 = ei
UI
~ t

(
a(t) |0〉+

∫
d3p′b(p′, t) |p′〉

)
, (A.4)

UI being the ionization potential (i.e. the negative ground state energy) and |p′〉 the eigenstates
of the free electron Hamiltonian with momentum2 p′. Plugging this into (A.1), multiplying with
〈p| and using a(t) = 1 (assumption 2) and 〈p|V (t) |p′〉 = 0 (assumption 3) yields a Schrödinger
equation for the continuum amplitudes

i~
∂b(p, t)

∂t
=

(
p2

2m
+ UI

)
b(p, t) + e

∑
i

Ei(t)

(
〈p|xi |0〉+ i~

∂b(p, t)

∂pi

)
, (A.5)

where Ei, xi, pi denote the (cartesian) components of the vectors E,x,p respectively and i =
1 . . . 3. With the variable transformation

p̃ = p− eA(t), (A.6)

where A(t) is the vector potential of the electric field with an appropriate gauge such that Ȧ(t) =
E(t), the time derivative of the transformed continuum amplitude is

i~
∂b̃(p, t)

∂t
:= i~

∂b(p− eA(t), t)

∂t
= −ie~∂A(t)

∂t
· ∇p̃b(p̃, t) + i~

∂b(p̃, t)

∂t
=

=

(
(p− eA(t))2

2m
+ UI

)
b̃(p, t) + e

∑
i

Ei(t) 〈p− eA(t)|xi |0〉 , (A.7)

where in the last step (A.5) was used. This is of the form f ′(x) = g(x) + h(x)f(x), which
has solutions of the form f(x) =

∫ x
0

dx′g(x′) exp(
∫ x
x′

dx′′h(x′′)), so that the solution to (A.7) is
given by

b̃(p, t) = − i

~

∫ t

0

dt0e
∑
i

Ei(t0) 〈p− eA(t0)|xi |0〉 exp

(
− i

~
S(p, t0, t)

)
, (A.8)

where

S(p, t0, t) =

∫ t

t0

dt′
(

(p− eA(t′))2

2m
+ UI

)
. (A.9)

is the classical action (plus a constant) of the electron moving in the laser field with canonical
momentum p. At first glance, the influence of the atomic potential has completely disappeared
from (A.8). But the atomic structure still plays some role as the integrand in S is shifted up

2i.e. p̂ |p〉 = p |p〉
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by the binding energy UI and the ground state |0〉 determines the tunnel amplitude 〈p̃|xi |0〉t0 .
The induced atomic dipole moment can be evaluated by plugging (A.4) and (A.8) into (A.2).
If the continuum-continuum matrix elements are neglected (〈p̃′|x |p̃〉 = 0) the resulting dipole
moment is

d(t) =

∫ t

0

dt0

∫
d3p

i

~
e
∑
i

Ei(t0) 〈p−A(t0)|xi |0〉 〈0|x |p−A(t)〉 e−
i
~S(p,t0,t). (A.10)

This expression has a very nice physical interpretation. It is the integral of probability amplitudes
corresponding to the following process: The first term in the integrand

e
∑
i

Ei(t0) 〈p−A(t0)|xi |0〉 (A.11)

is the (dipole) amplitude to make a transition from the ground state to the continuum with a
(canonical) momentum p at time t0. Then that momentum state evolves freely only influenced
by the laser field and acquires a phase factor exp(−iS(p, t0, t)/~) until it recombines at time
t with the parent ion into the ground state with the amplitude 〈0|x |p−A(t)〉. The emitted
spectrum of such a dipole is readily obtained from the Fourier transform of (A.10)

d̂(ω) = e
i

~

∫
dtdt0d

3p
∑
i

Ei(t0) 〈p−A(t0)|xi |0〉 〈0|x |p−A(t)〉 e−
i
~S(p,t0,t)−iωt. (A.12)

To evaluate the integral (A.12) it can be argued, that the dipole matrix elements change much
more slowly as a function of p and t than the classical action S, as long as the time interval t− t0
is short enough (a few optical cycles). Because the classical action provides the phase for an
oscillatory term, the major contributions to the integral come from the regions in the integration
volume where the exponent in (A.12) has a saddle point

∇p(S(p, t0, t) + ~ωt) = x(t)− x(t0) = 0 (A.13)

−∂(S(p, t0, t) + ~ωt)
∂t0

=
(p− eA(t0))

2

2m
+ UI = 0 (A.14)

∂(S(p, t0, t) + ~ωt)
∂t

=
(p− eA(t))2

2m
+ UI + ~ω = 0. (A.15)

Equation (A.13) uses the well known identity from classical mechanics ∇pH = ẋ where H is
the classical hamiltonian of the free electron and the fact that S =

∫
(H +UI). The integral may

then be approximated, using such a saddle point method, by a weighted sum of the values of the
integrand at these saddle points

d̂(ω) =
∑
n

Gn(ω) exp

(
− i

~
S(pn(ω), t0n(ω), tn(ω))− iωtn(ω)

)
, (A.16)

where weights Gn(ω) contain the dipole transition amplitudes (bound-continuum) and a factor
that takes the size of the saddle point into account, while the values of {pn(ω), t0n(ω), tn(ω)}
are determined by solving (A.13-A.15).
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From the saddle point conditions, quite some physical insight can be gained. It is known from
classical Lagrangian mechanics, that the classical trajectories lie at saddle points of the classical
action3 S. Therefore the major contributions to the (quantum mechanical) dipole moment (A.12)
come from the classical trajectories of the free electron in the laser field, that start at t0n, with
a momentum pn and end at the time tn. The saddle point conditions above tell us about some
properties of these trajectories. The momentum saddle point condition (A.13) tells us that the
classical trajectories in the continuum start and end at the same point. As obviously the ground
state to continuum dipole matrix elements vanish for electron positions outside the ground state
wave function4, the quasi-free trajectories contributing to the start in the vicinity of the parent ion
and also end there. The start time condition (A.14) says that the kinetic momentum p− eA(t0)
at the start time has to be imaginary and is approximately zero for the limit of very strong fields
UI � Up. Here Up is the average kinetic energy of the free electron in the driving field as given in
(3.8)This is an indication that a tunneling mechanism is responsible for the bound-free transition.
Finally (A.15) shows that the energy of the emitted photon is equal to the kinetic energy at the
end of the free trajectory plus the binding energy UI .

A.2 Dipole spectrum for harmonic and frequency comb drive
It is interesting to look at the frequency content of the spectrum generated by the HHG process.
For a harmonic driving field,

E(t) = E0 cosω0t, (A.17)

the Fourier spectrum of the field as well as the vector potential only have a single component at
ω0

Â(ω) = Â0δ(ω − ω0). (A.18)

Because S is quadratic in p−A(t) and A(t+nt̃/2) = (−1)nA(t), where t̃ = 2π/ω0, the action
is periodic with half the driving period

S(p, t0 + n
t̃

2
, t+ n

t̃

2
) = S((−1)np, t0, t), (A.19)

and due to the symmetry properties of the ground state |0〉 it can easily be seen, that the dipole
moment has the property

d(t+ n
t̃

2
) = (−1)nd(t). (A.20)

Therefore, it can be written using its Fourier transform, which contains only odd multiples of the
fundamental frequency ω0

d(t) =
∑
n

d̂ne
i(2n+1)ω0t. (A.21)

3Actually, the classical equations of motion are obtained from the classical action by looking for a saddle point
of the action with respect to a variation of p(t), not a constant p as it appears in (A.9). However for this particular
action, those saddle points have constant p, therefore condition (A.13) actually selects the classical trajectory.

4because the ground state wave function |0〉 is localized around the atom and falls off quickly.
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As a result, only odd harmonics of the driving frequency can be generated.
This is a consequence of energy conservation, i.e. the energy of generated photons may only

be the sum or difference of an (odd) number of photons from the driving field. The statement may
be extended to driving field of any spectral content and specifically for the case of a frequency
comb, the spectrum of the 2j + 1 harmonic is the sum of 2j + 1 photons5 of the driving field
(with frequencies as in (2.8)) resulting in a spectrum with frequencies

ωn(2j + 1) = nωr + (2j + 1)ωCE. (A.22)

A.3 Phase of the generated radiation
By looking at equation (A.16) it is immediately seen that the phase of each trajectory leading to
an emission at the frequency ω0 is given by its classical action via

φn(ω0) =
1

~
(S(pn(ω0), t0n(ω0), tn(ω0))− ω0tn) (A.23)

where pn(ω0), t0n(ω0), tn(ω0) are the canonical momentum, birth and recombination time of the
nth such trajectory as determined by the equations (A.13–A.15). For the case of a harmonic
driving field this becomes

φn = −Up
~

2

∫ tn

t0n

(sin(ωt0n − sin(ωt′))2dt′ +
UI
~
t0n + 3.17

Upω0

~
tn (A.24)

where the cutoff intensity6 Upω0 = (~ω0 − UI)/3.17 of the frequency ω0 was introduced as a
reference scale. Because the trajectories longer than one optical cycle are strongly suppressed,
as mentioned in the last paragraph, it is usually sufficient to restrict the analysis to trajectories
shorter than that. Then there are only two such trajectories for each dipole frequency, which
are customarily called the short and long trajectories, according to their travel time τ (see figure
3.3 for τ < 1). The phase variation of these two trajectories (at fixed output frequency ω0)
as a function of drive intensity will now be discussed. For drive intensities below the cutoff
intensity Upω0 the frequency ω0 will not be generated. Above the threshold the duration of the
short trajectory tends to zero, as Up/Upω0 increases. So does the classical action. A numerical
analysis7 yields for the phase of the short trajectory

φshort(Up, ω0) ≈
2πUp
~ω0

(
0.88

Up
Upω0

)−1.25

+ C,
Up
Upω0

� 1, (A.25)

where the remaining terms outside the integral in (A.24) are essentially constant and replaced by
C. The long trajectory has a duration that is close to one cycle with a start time close to zero and

5or sum of (2j+1)+m photons minus m photons
6actually the cutoff ponderomontive energy, that is linked to the cutoff intensity for radiation at ω0 via eq. (3.8).
7It has to be kept in mind, that the saddle points (pn, t0n, tn) depend on the ratio between drive and cutoff

intensity, Up/Upω0 and can not be given in closed form even for harmonic drive. Therefore a numerical analysis is
necessary.
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Figure A.1: Phase of the generated radiation for the short (solid) and long (dashed) trajectory
from (A.24) and asymptotes (A.25) and (A.26) (dotted) for parameters Upω0 = UI = ~ω

stop time at the next cycle. Therefore the integral in (A.24) is about 1/2 and the remaining terms
are about constant. Therefore the phase shift becomes

φlong(Up) ≈
Up
~ω0

+ C,
Up
Upω0

� 1. (A.26)

It is roughly linear in Up with a slope of 2π/~ω. Figure A.1 illustrates this.
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