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Chapter I 2

Viral Gene Therapy: Chances and Risks 
 
Since the discovery of DNA as universal blueprint for living organisms, the idea of curing 

genetic diseases at their origin has evolved. In the past two decades considerable advances in 

molecular biology and medicine have given rise to a wide variety of gene therapy-based pre-

clinical and clinical trials targeting both inherited and acquired diseases (Fig. 1A). In this 

context, several classes of viral and non-viral vectors are being used as transfer shuttles to 

deliver therapeutical genetic information into cells (Fig 1B). Since the first successful clinical 

trial in 1990 (Cluver et al., 1991), 1145 clinical trials in the field of gene therapy have been 

approved world wide (Fig. 1C) and the number of approved trials has doubled since 2001. 

More than 70 % of these experiments employ viral vectors.  

Viral vectors have the potential for high transduction efficiency and stable long-term 

expression of the therapeutic gene. Nevertheless, the complex viral biology is largely 

unknown, hampering the success of this approach.  

In 1999, Jesse Gelsinger, an 18 years old patient, which suffered from a non-fatal Ornithine 

Transcarbamylase (OTC) deficiency, died after treatment with an adenoviral vector 

containing a functional copy of the OTC gene. The following investigation revealed a fatal 

multiple organ failure caused by a severe immune reaction to the administered vector. 

Accordingly, the host immune response to vector and transgene has become a major concern 

in gene therapy (Somia and Verma, 2000). In a similar way, the initially very successful 

clinical trial for fatal X-linked Severe Combined Immunodeficiency (SCID) showed both, 

blessing and risks of gene therapy. Administration of a retroviral vector containing the γ-chain 

for the cytokine receptors IL-2R, 4R, 7R, 9R and 15R resulted in a sustained restoration of the 

immune system in 15 patients (Cavazzana-Calvo et al., 2005), which life expectancy was 

inferior to one year before treatment. However, 3 of the patients later developed T-cell 

leukaemia due to unspecific insertion of viral DNA in the chromosomes, which led to the 

death of one child until now. Almost five years after the treatment in 2001 the remaining 14 

children are able to lead a life unaffected by SCID, although two are still fighting leukaemia. 

These examples demonstrate on one hand the enormous potential of gene therapy, while on 

the other hand remind the scientific community of associated risks and remark the need to 

develop a new generation of efficient and safe vectors. 
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Adeno-Associated Viruses 
 
Initially, addeno-associated virus (AAV) was discovered as contaminant of adeno viral 

preparations, hence its name (Atchison et al., 1965; Hoggan et al., 1966). Due to its very 

small diameter of approx. 25 nm, it is classed to the family of parvoviridae (lat. parvo: small). 

This family groups viruses with a linear, single-stranded DNA genome of roughly 5 kb with a 

non-enveloped capsid of 18-30 nm in diameter (Siegel et al., 1985). Parvoviridae are divided 

in two subfamilies: Parvovirinae, which infect vertebrates and Densovirinae, which infect 

insects. Parvovirinae consist of the genera of Parvoviruses, Erythroviruses and 

Dependoviruses, and AAV belongs to the latter. Except for the human Erythrovirus B19, 

which causes erythema infectiousum, hydrops fetalis and abortion (Brown, 2000), all other 

parvovirinae are non-pathogenic for humans (Vafaie and Schwartz, 2004; Berns and Linden, 

1995). In addition, AAV has shown to convey cytotoxic influence on malignant cells (Raj et 

al., 2001), as well as protective effects against bovine papilomavirus and against cellular 

transformation by adenovirus (Mayor et al., 1973; de la Maza and Carter, 1981; Hermonat, 

1989). 

In contrast to other members of the parvovirus family (e.g. canine parvovirus and porcine 

parvovirus), AAV is not capable of autonomous replication, but instead requires exogenous 

factors for its replication. These factors can be provided by co-infection with unrelated helper 

Figure 1. Clinical trials worldwide. 
(A) Addressed indications; (B) Vectors 
used in gene therapy clinical trials. (C) 
Overall number of approved gene 
therapy clinical trials world wide 
Source: 
http://82.182.180.141/trials/index.html 

A C 

B 
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viruses, such as adenoviruses (Ad), herpesviruses (e.g. herpes simplex virus, Epstein-barr 

virus, varicella-zoster virus), human cytomegalovirus (HCMV), papillomavirus or general 

cellular stress factors, like UV- or γ-radiation, heat shock or carcinogenic compounds (Berns, 

1990; McPherson et al., 1985, Sanlioglu et al., 1999; Schlehofer et al.,1986; Thompson et al., 

1994; Walz et al., 1997; Yakinoglu et al., 1988; Yakobson et al., 1987; Thompson et al., 

1991). In the absence of helper factors during infection, a latent infection is initialized by 

stable integration of viral DNA into the genome of the host cell (Berns and Linden, 1995). 

Following limited expression of viral regulatory proteins (Rep proteins) a site-specific 

insertion into the q-arm of chromosome 19 at the AAVS1 locus takes place (Kotin et al., 

1990; Kotin et al., 1991; Samulski et al., 1991; Weitzman et al., 1994; Linden et al., 1996a; 

Linden et al., 1996b; Ponnazhagan et al., 1997a;). When stress response genes are activated 

due to presence of helper factors, the lytic cycle is initiated and integrated AAV genomes are 

excised, leading to a productive infection (Berns et al., 1975; Cheung et al., 1980; 

McLaughlin et al., 1988). 

Since initial discovery of AAV, 11 serotypes sharing different levels of DNA sequence 

homology between 55 and 84 % have been found (Gao et al., 2002; Gao et al., 2004; Mori et 

al., 2004). Differences in capsid composition between these serotypes result in different 

tropisms in vitro and in vivo (Lukashov and Goudsmit, 2001; Grimm and Kay, 2003). The 

first human adeno-associated virus discovered in 1966 has taken the name of adeno-

associated virus of type 2 (AAV-2) and remains the best characterized serotype. However, 

other serotypes are receiving increasing attention due to peculiar advantages for certain gene 

therapy applications. Accordingly, a wide variety of therapeutically important tissues can be 

targeted using different AAV serotypes, including CNS, lung, liver, muscle and retina 

(Acland et al., 2001; Huges et al., 2002; Chao et al., 2000; Halbert et al., 2001; Xiao et al., 

1999). 

 

 

Genome organisation of AAV Type 2 
 
The genome of AAV-2 consists of single-stranded DNA with a length of 4679 nucleotides 

and can be divided in three functional regions (Fig. 2). Two open reading frames (ORF), rep 

and cap, are flanked by inverted terminal repeats (ITR) (Carter and Samulski, 2000).The 

ITRs consist of 145 nucleotides and form two T-shaped structures on either side of the 

genome. Within these regions, a Rep binding site (RBS) and a specific cleavage site for bound 
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Rep protein (terminal resolution site, TRS) are located (Im and Muzcyczka, 1990; McCarty et 

al., 1994; Snyder et al., 1990; Snyder et al., 1993). These double stranded regions allow them 

to serve as origin of replications (ori) by priming DNA synthesis. In addition, they play a key 

role in the regulation of gene expression, site-specific integration of the genome during the 

latent phase, as well as in the subsequent rescue of viral DNA from the integrated state 

(Labow and Berns, 1988; McLaughlin et al., 1988; Samulski et al., 1987).  

The 5’-located rep open reading frame encodes four multifunctional, non-structural proteins 

with regulatory roles. These genes are transcribed via two promoters, p5 and p19. p5 regulates 

the production of a 4.2 kb mRNA (that will give origin to a protein called Rep78) and its 

splicing variant, a 3.9 kb mRNA (protein Rep68). Promoter p19 regulates the production of a 

3.6 kb mRNA and its splicing variant (3.3 kb) that will generate the proteins Rep52 and 

Rep40 respectively (Lusby and Berns, 1982; Marcus et al., 1981). Biochemical activities of 

Rep79 and Rep68 include DNA binding, DNA ligase, ATPase, DNA helicase, as well as 

strand- and site-specific endonuclease activity. They are involved in AAV DNA replication, 

transcriptional control and integration. Rep 52 and 40 possess ATPase and helicase activities 

and play a role in accumulation and encapsidation of AAV genomes into preformed capsids 

(Chejanovsky and Carter, 1989; Dubielzig et al., 1999; King et al., 2001; Smith and Kotin, 

1998). Finally, Rep proteins can act as repressors of AAV transcription in absence of helper 

virus by repressing p5 and p19 transcription (Kyostio et al., 1994). 
 

ITR 10 20

polyA

40 50 60 70 80 90 ITR
p19 p40p5

30

Rep78

Rep68

Rep52

Rep40

VP1

VP2

VP3  
 
Figure 2. Organisation of the AAV genome and gene products. The AAV genome contains 4680 nucleotides, 
divided into 100 map units (46.8 nucleotides per unit). Shown are the inverted terminal repeats (ITRs), the three 
viral promoters positioned at units 5, 19 and 40 (p5, p19, p40) and the polyadenylation signal at unit position 96 
(poly A). Open reading frames are shown as cylinders, untranslated regions as solid lines and introns as kinks. 
Promotors p5 and p19 regulate the four Rep proteins which exist as spliced and unspliced isoformes. The p40 
promotor controls the three different capsid subunits VP1, VP2 and VP3 on the cap gene. 
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The 3’-ORF cap codes for the three structural proteins VP1, VP2 and VP3, which are 

transcribed from the p40 promotor and expressed at a 1:1:8 ratio (Kronenberg et al., 2001). 

Since all three capsid proteins use a common stop codon, VP2 and VP3 are N-terminally 

shortened variants of VP1. The different translation efficiencies are a consequence of the 

alternative splicing of the VP1-coding intron and the existence of an unusual initiation codon 

(ACG) for VP2 translation. Accordingly, the VP3 initiation codon AUG results in a 10-fold 

higher translation frequency (Laughlin et al., 1979; Becerrra et al., 1985; Becerra et al., 

1988). 

 

 

Infection Biology of AAV-2 
 
Despite continuous progress, details about the infectious process of AAV-2 remain largely 

unknown. For successful infection, AAV has to attach to the cell surface via receptor binding 

followed by internalisation of the virion, intracellular trafficking and transport to the nucleus, 

where the genome is replicated and packaged in newly synthesised caspsids (Fig. 3). Binding 

of AAV to the widely expressed proteoglycane HSPG functioning as primary receptor has 

been proposed, thus explaining the broad tropism of the virus (Summerford and Samulski, 

1998). Internalisation of bound AAV seems then to be mediated by three co-receptors, αvβ5 

integrin, human fibroblast growth factor receptor 1 (hFGFR1) and hepatocyte growth factor 

receptor (HGFR) (Qing et al., 1999; Summerford et al., 1999; Kashiwakura, 2005). While the 

cell attachment is supposedly enhanced by FGFR-binding, αvβ5 integrin seems to be involved 

in the predominant but not exclusive receptor mediated endocytosis via clathrin coated pits. In 

rare cases, AAV-5 was found to be endocytosed in noncoated vesicles, presumably caveolae 

(Bantel-Schaal et al., 2002). Clustering of αvβ5 has been proposed facilitate localization of 

viral particles to clathrin coated pits. The function of HGFR remains unknown, yet. The 

virions are then internalized in a dynamin dependent manner involving a cytosolic GTPase 

(Bartlett et al., 2000, Wang et al., 1998; Duan et al., 1999) by formation of a dynamin ring 

responsible for the pinching of coated pits from the cell membrane (Sever et al., 2000; 

Hinshaw and Schmid, 1995; Hinshaw, 2000). In addition, like many integrins αvβ5 is involved 

in signal transduction. By attachment to AAV the small GTP binding protein Rac1 is 

activated leading to a stimulation of phosphoinositol-3 kinase (PI3K) and the subsequent 

rearrangement of microfilaments and microtubule which is necessary for efficient trafficking 

to the nucleus (Sangioglu et al., 2000). 
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Figure 3. Model of AAV-2 infection on the cervix carcinoma cell line HeLa (adapted from Büning et al., 
2003). Following repetitive touches, AAV binding to its negatively charged primary receptor heparin sulphate 
proteoglycane (HSPG) on the cell membrane is mediated by a cluster of five basic amino acids (aas). The 
attachment is enhanced via fibroblast growth factor receptor 1 (FGFR1) binding. Subsequent binding to αvβ5 
integrins leads to endocytosis by clathrin coated pits. Integrin binding is assumed to activate the small GTP 
binding protein Rac1, which stimulates the phosphatidylinositol-3-kinase (PIK3) pathway. The resulting 
rearrangement of the cytoskeleton allows a trafficking of AAV containing endosomes. Acidification of the 
endosomal milieu may lead to the release of AAV-2, possibly mediated by conformational changes of the AAV 
capsid. After transport of the AAV genome into the nucleus, probably via nuclear pore complex (NPC), the 
genome is replicated or integrated into the host cell. Whether AAV-2 virions or only the genome are translocated 
into the nucleus is unclear. 
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The exit of AAV-2 from endosomal compartments is controversial. Current hypotheses 

propose release from early endosome or late endosome, or even an accumulation in the golgi 

compartment (Xiao et al., 2002; Douar et al., 2001; Hansen et al., 2001; Bantel-Schaal et al., 

2002; Pajusola et al., 2002). However, acidification of the endosomal milieu is crucial for 

priming AAV for nuclear entry. Low pH could trigger conformational changes of the viral 

capsid and lead to exposure of previously hidden domains which mediate the escape. Similar 

conformational changes following acidification of the endosome have been observed with 

other viruses and recent studies of AAV have reported the exposure of the hidden N-terminus 

of VP1 after heat shock (Root et al., 2000; Zadori et al., 2001; Kronenberg et al., 2005). 

Interestingly, this N-terminal region contains a phospholipase A2 (PLA2) motif, which is 

conserved among parvoviruses (Girod et al., 2002; Zadori et al., 2001). Accordingly, the 

PLA2 domain might play a role in the endosomal escape, although no experimental data 

support this hypothesis, yet. 

Little is also known about the mechanism of nuclear import and viral uncoating. Due to their 

small diameter, intact capsids could enter the nucleus through nuclear pore complexes (NPC) 

but controversial data have been presented. While an interaction of the AAV capsid with the 

nuclear shuttle protein nucleolin has been reported (Qiu et al., 1999), Hansen et al. (2001) 

suggested an NPC independent pathway. VP2 contains a nuclear localisation sequence 

essential for viral assembly (Hoque et al., 1999), but further functions are unknown. 

Regarding uncoating, evidence of viral capsids in the nucleus (Bartlett et al., 2000; Sanlioglu 

et al., 2000) is in marked contrast with other reports (Lux et al., 2005). 

 
 
Structural and Functional Properties of AAV-2 and other Serotypes 
 
During the past decade, several atomic structures of autonomous parvoviruses, including 

human parvovirus B19, feline panleukopenia virus (FPV), canine parvovirus (CPV), Aleutian 

mink disease virus (ADV) and minute virus of mice (MVM) have been solved (Agbandje et 

al., 1994; Agbandje-McKenna et al., 1998; Chang et al., 1992; Chapman and Rossmann, 

1993; Chipman et al., 1996; McKenna et al., 1999; Strassheim et al., 1994; Tsao et al., 1991). 

However, it took until 2002, about 40 years after its discovery, to solve the first crystal 

structure of an AAV serotype. Xie et al. determined the structure of AAV-2 to a resolution of 

3 Ǻ by X-ray crystallography (Xie et al., 2002) (Fig. 4A). Since then, lower resolution 

structures of other serotypes, such as AAV-4 and AAV-5 have been mapped by a 

combination of cryo-electron mircroscopy (cryo-EM) and pseudo-atomic model building 
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(Walters et al., 2004; Padron et al., 2005). Described structures contain only a 13 aa N-

terminally shortened VP3, while VP1, VP2 and the N-terminus of VP3 could not be 

determined because of the low electron density of this regions. However, cryo-electron 

microscopy provides some evidence, that globular structures at the inner surface of the capsid 

at the twofold symmetry axis can be attributed to these N-terminal extensions (Kronenberg et 

al., 2001). 

The increasing number of available atomic models of different serotypes reveals a variety of 

similarities and differences in comparison to AAV-2. In all cases, the viral capsid exhibits a 

T=1 icosahedral symmetry and is composed of 60 copies of the three related structural 

proteins, VP1-3, at a ratio of 1:1:8 (Xie et al., 2002; Kronenberg et al., 2001). The core of 

each subunit contains an eight-stranded anti-parallel β-barrel motif, which is highly conserved 

among parvoviruses (Agbandje et al., 1994; Chapman and Rossmann, 1993) (Fig. 4B). The 

majority of the variable surface structure consists of large loops inserted between the strands 

of the β-barrel. These loops comprising approx. two-thirds of the capsid structure constitute 

the capsid features, which mediate interaction with antibodies and cellular receptors. These 

structural features on the surface of the virus include a depression at the twofold axis (dimple) 

and a hollow cylinder formed by symmetry-related β-ribbons surrounded by a circular 

depression (canyon) at the fivefold axis. The most prominent features are three mound-like 

protrusions surrounding the threefold axis, which derive from the interaction of two 

neighbouring subunits. These peaks are formed by the longest loop insertion, a loop of 220 

amino acids connecting β-sheets G and H (GH loop). Similar interactions of adjacent subunits 

are observed at the fivefold cylinder which is composed by interacting residues of the HI, BC 

and EF loops. The highest variablility between parvoviruses is observed in the loops that form 

the surface of the viral capsid. The resulting variations convey host-specific interactions, such 

as tissue tropism, pathogenicity, receptor attachment and antigenicity (Agbandje et al., 1994; 

Hueffer et al., 2003a; Hueffer et al., 2003b). In this context, superimposition of the crystal 

structure of AAV-2 and the pseudoatomic models of AAV-4 and AAV-5 show the 

localisation of a majority of the most variable regions on or close to the threefold protrusions 

(Padron et al., 2005). The canyons between the protrusions in AAV-2 correspond to basic 

patches (Fig. 5C,D), which have been proposed as binding site for the negatively charged 

primary receptor heparan sulphate proteoglycane (HSPG) (Opie et al., 2003; Wu et al., 2000). 

In particular, basic clusters containing amino acids R484, R487, K 532, R585 and R588 (VP1 

numbering) seem to play an important role for this interaction (Opie et al., 2003; Grifman et 

al., 2001; Wu et al., 2000; Xie et al., 2002). 



Chapter I 10

 
Figure 4. Structural properties of the AAV capsid. (A) Surface topology of AAV-2. For contrast the protruding 
spikes at the 3-fold axis are coloured red. The view is down the 5-fold axis. The 587 position located the 
shoulder of each 3-fold peak is marked by circles. (B) Ribbon drawing of a VP3 protein. The positions of the 2-, 
3- and 5-fold axis are indicated, as well as the 587 position. The β-barrel core at the inner surface of the capsid 
is composed of two anti-parallel β-sheets (strands A to I) (Xie et al., 2002). (C) Top view on a 3-fold axis 
composed of three subunits. The surface is coloured according to electrostatic potential. (blue = positive, red = 
negative). White arrows indicate the peaks around the 3-fold axis (white triangle). The positively charged HSPG 
binding region is marked by white ellipses, the suggested secondary receptor binding region (negatively 
charged) by yellow ellipses. (D) Corresponding side view on the 3-fold peak region. 
 

Interestingly, the distance between neighbouring clusters was measured to 20 Å, which is 

compatible with the binding of adjacent disacharids (Margalit et al., 1993), whereas different 

threefold axes are separated by approx. 70 Å, which matches the spacing of highly sulfonated 

regions of HSPG (Fry et al., 1999). Alignments of AAV-2, AAV-4 and AAV-5 showed the 

lack of the positive cluster for AAV-4 and -5. Accordingly, heparin inhibition assays revealed 

HSPG-independent infection pathways for these serotypes, for which sialic acids have been 

proposed as primary receptors, even if no binding regions could be determined until now 

(Walters et al., 2001; Walters et al., 2002; Kaludov et al., 2001). Mapping of binding sites of 
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AAV-2-neutralizing monoclonal antibodies (e.g. A20 or C37b) also showed the importance of 

the threefold axis as antigenic region (Wobus et al., 2000). While the epitope recognized by 

C37b is situated on the shoulder of the peak facing the threefold axis, A20 was mapped to the 

valley between threefold peaks. Negative charged clusters are mainly observed at the sides of 

the twofold dimple and on top of the fivefold cylinder, but no special functions could be 

attributed as of today. However, a negatively charged and highly conserved cluster adjacent to 

the heparin binding site has been proposed as binding region for secondary receptors (Lochrie 

et al., 2006) (Fig. 4C, D). 

 

 

Production of Recombinant AAV Vectors 
 
For the generation of recombinant AAV vectors (rAAV), rep and cap genes can be replaced 

by a gene of interest of up to 4.5 kb (Fig. 5) (Tal, 2000). The flanking ITR sequences will 

serve as packaging signals. Rep and cap, which are needed for AAV replication and capsid 

formation, can be provided in trans on an exogenous plasmid devoid of ITRs (Lauglin et al., 

1983; Samulski et al., 1982). The two plasmids carrying transgene and rep/cap are co-

transfected into 293 cells with a third plasmid encoding adenoviral helper genes necessary to 

provide the helper function required for AAV genome replication (Collaco et al., 1999). In 

contrast to co-infection with adeno virus, no contamination with adeno particles takes place in 

this case. 48 h post transfection, viral progeny can be harvested from the lysate of transfected 

cells and purified to high titers of up to 1014 particles/ml by one of several described protocols 

(Anderson et al., 2000; Collaco et al., 1999; Allen et al., 2000; Gao et al., 2000; Grimm and 

Kleinschmidt, 1999; Monanhan and Samulski, 2000a; Monanhan and Samulski, 2000b; 

Tamayose et al, 1996; Zolotukhin et al., 1999; Rolling and Samulski, 1995; Vincent et al., 

1997; Xiao et al., 1998; Inoue and Russell, 1998; Auricchio et al., 2001). 

 

 



Chapter I 12

 
 
Figure 5. Packaging of rAAV. Three plasmid constructs are required for packaging of rAAV. The vector 
plasmid containing all viral genes without ITRs is needed to provide Rep and Cap proteins. The transgene is 
flanked by ITRs to allow transgene packaging in empty particles. The adenoviral helper plasmid provides helper 
functions required for AAV replication. In a triple transfection the plasmids are introduced into 293 cells. 48 hrs 
post transfection the viral progeny is harvested by lysis and purified by subsequent ultra centrifugation. 
 

 

AAV as a Vector for Gene Therapy 
 
During the last 20 years, gene transfer vectors based on AAV-2 have been developed, 

evaluated in pre-clinical studies and are currently being tested in clinical trials (Kay et al., 

2000; Wendtner et al., 2002; Griesenbach et al., 2002; Crystal et al., 2004; Mandel and 

Burger, 2004; Flotte, 2005). So far, these studies have provided evidence that AAV-2 vectors 

feature a variety of attractive properties for therapeutic gene delivery to humans. In this 

context, an important factor is the apparent lack of pathogenicity of AAV vectors (Berns and 

Linden, 1995; Blacklow, 1988; Blacklow et al., 1968; Blacklow et al., 1971). Moreover, due 

to lack of activation of cytotoxic T-lymphocytes (CTL), no inflammatory immune response 

has been observed after vector injection. This has been attributed to the inability of AAV to 

efficiently infect dendritic cells, as well as the absence of viral genes in rAAV vectors. In 

general, only a humoral immune response is initiated. Questions that still need to be addressed 

are the potential of rAAV ITRs to activate cellular genes after unspecific integration of the 

viral DNA in the host genome (Kotin, 1994; Blacklow et al., 1971) and the discussed ability 
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of AAV to transduce germinal cell lines (Rohde et al., 1999; Burguete et al., 1999). However, 

site-specific integration of AAV taking place in the presence of Rep proteins is advantageous 

for long term expression and does not seem to influence host cell biology (Monahan and 

Samulski, 2000a; Monahan and Samulski, 2000b; Samulski et al., 1991; Hallek and 

Wendtner, 1996). Although the rep gene is absent in rAAV, it can be provided in trans (Kotin 

et al., 1990; Young et al., 2000a; Young et al., 2000b; Young and Samulski, 2001; Owens, 

2002; Philpott et al., 2002; Huttner et al., 2003). Even without stable integration, AAV 

persistence in episomal form has been shown to convey long term gene expression of more 

than one year (Fisher et al., 1997). Due to the limited packaging capacity of approx. 4.9 kb 

(Dong et al., 1996) several therapeutically interesting transgenes or large promoters cannot be 

inserted in rAAV vectors. For that matter, so called “splicing vectors” have been developed 

that contain only parts of the transgene, which can be reassembled as head-to-tail concatamers 

by employing appropriate splicing signals present in both vectors (Nakai et al., 2000; Sun et 

al., 2000; Yan et al., 2000).  

 

 

Retargeting of AAV Vectors 
 
AAV has the ability to infect both dividing and non-dividing cells including tissues such as 

central nervous system (CNS), retina, muscle, liver, lung and hematopoietic system (Fisher-

Adams et al., 1996; Flannery et al., 1997; Flotte et al., 1993; Fisher et al., 1997; Kaplitt et al., 

1994; Snyder et al., 1997). This broad host range allows theoretical application of AAV 

vectors for a variety of diseases but is a drawback in terms of safety because tissues or organs 

different from the target could be transduced. To generate tissue specific vectors, viral 

particles have to be engineered and provided with selective receptor binding domain, which 

enables a stringent interaction with a receptor specific for the targeted cell type (vector re-

targeting). 

In the past, several attempts have been made to develop universal retargeting strategies for 

AAV by binding of antibodies to the capsid (Bartlett et al., 1999; Ried et al., 2002) (Fig. 6). 

However, the low transduction efficiency and the unstable capsid-antibody complex were 

insufficient for gene therapy purposes. In addition, antibody binding might interfere with 

post-internalization processing. Another approach is to redirect AAV tropism by genetic 

engineering of the viral capsid (Baranowski et al., 2001; Girod et al., 1999; Grifman et al., 

2001; Nicklin et al., 2001; Wu et al., 2000; Perabo et al., 2003; Büning et al., 2003a). 
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Figure 6. Targeting strategies for AAV. Targeting to new cellular receptors can be achieved by providing the 
capsid with an appropriate receptor binding motif, either by genetic engineering of the capsid (e.g. insertion of 
peptides) or via bispecific antibodies carrying specific binding motifs for AAV on one side and for the cellular  
receptor on the other side. 
 

In this case, the DNA encoding the structural proteins is manipulated by point mutations or by 

insertion at specific capsid locations of DNA sequences coding for ligand peptides 

(insertional mutagenesis). For example, the insertion of an Arg-Gly-Asp (RGD) integrin 

binding motif at amino acid position 587 (VP1 numbering) allowed efficient transduction of 

formerly AAV non-permissive cells (Girod et al., 1999). However, engineering by rational 

design often leads to unpredictable results. Modifications of the capsid may interfere with the 

stability of the capsid or with the infectious process. For example, point mutations at crucial 

arginins allowed the disruption of AAV binding to its primary receptor HSPG (Opie et al., 

2003), which is mainly responsible for the broad host range. However, those mutants showed 

a severely reduced infectivity. Likewise, the insertion of targeting sequences could disrupt 

capsid domains that exert fundamental functions in the infection process, or the inserted 

peptides might be expressed in a non-functional three-dimensional structure when inserted in 

the capsid context. Last but not least, the insertion of a particular sequence requires the 

knowledge of receptor-specific binding peptides, which are unknown for a large number of 
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clinically interesting tissues. An elegant solution to these problems is the use of combinatorial 

engineering of the capsid and high-throughput selection protocols to screen mutants with 

desired phenotype. Using a AAV library of capsids carrying a random insertion at amino acid 

position 587, an efficient retargeting to various cell types in vitro and in vivo could be 

achieved (Perabo et al., 2003; Muller et al., 2003). Moreover, it was observed that the degree 

of HSPG affinity was influenced by the different selected peptide insertions (Perabo et al., 

2003). Due to the role of HSPG as primary receptor and the importance of HSPG-independent 

vectors for efficient in vivo re-targeting, we investigated the molecular mechanisms 

responsible for this phenotypes (Perabo et al., in revision). Interestingly, insertions carrying 

negatively charged amino acids are likely to ablate HSPG binding and allow detargeting from 

HSPG-rich tissues such as liver and spleen. 

 

 
Humoral Immune Response against AAV 
 
A major issue in the development of viral vectors for gene therapy concerns the immune 

response of the host. Immune reactions upon vector injection may limit long term transgene 

expression or a potential readministration and could unleash severe side-effects for the 

patient. While recombinant AAV shows a relatively low immunogenicity generally lacking 

cellular response due to the absence of viral genes, viral infection triggers the production of 

antibodies against the capsid (humoral immune response). Depending on age and ethnic 

group, 30 to 96 % of humans are positive for AAV specific antibodies. Of these, 18 to 67.5 % 

exhibit neutralizing antibodies (Moskalenko et al., 2000; Blacklow et al., 1968b; Chirmule et 

al., 1999; Erles et al., 1999). In pre-clinical studies, the presence of neutralizing antibodies 

has been shown to eliminate or greatly reduce the levels of gene expression after vector 

readministration (Xiao et al., 1996; Fisher et al., 1997; Xiao et al., 2000; Chirmule et al., 

2000). The observed humoral response via B-cell dependent T-cell activation seems to be 

exclusively directed against the vector, but not the transgene (Hernandez et al., 1999; 

Chirmule et al., 2000). Possible solutions might be a transient immunosupression during the 

first administration by anti-CD40-ligand Ab, anti-CD4 Ab or a CTLA4-immunoglobulin 

fusion protein (CTLA4Ig) (Halbert et al., 1998; Manning et al., 1998), thus preventing Ab 

formation. An alternative solution is the engineering of the virus (Fig. 7). Insertion of peptides 

in surface exposed regions was shown to lead to reduced neutralization by human antibodies 

(Huttner et al., 2003). However, insertion of peptides is likely to result in modified tropism 
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and/or biological properties of the capsid. In addition, only few capsid regions are known to 

tolerate insertions. Other natural AAV serotypes that are not recognized by AAV-2 antibodies 

could be employed to evade neutralization. However, each serotype has a unique tropism that 

might no be appropriate for the targeted tissue. In addition, the number of administrations 

would be limited by the number of existing serotypes. In another study, Lochrie et al. (2006) 

addressed the problem by generating and testing over 120 mutants (generated by site directed 

mutagenesis to introduce point mutations in different capsid sites) for their ability to evade 

Ab-mediated neutralisation. This approach however is extremely labor intensive. In addition, 

obtained mutants were mostly non-infectious. 

 

 

 
Figure 7. Immune escape by genetic engineering of immunogenic AAV epitopes. While the wt is efficiently 
neutralized by serum antibodies the introduction of point mutations or peptide insertions at antigenic sites 
prevents antibody-mediated neutralization thus allowing efficient infection of cells. 
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We therefore developed a directed evolution approach that allows the identification of 

mutants that were less efficiently neutralized by human Ab, from a large combinatorial 

library. This method does not require any knowledge about AAV infection biology or 

immunogenic epitopes and can be applied to screen mutants with a variety of desired 

phenotypes. The same technology is likely to be applicable for several classes of viruses. 
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Despite promising advance in the development of viral vectors based on AAV for human 

gene therapy, several major hurdles for a more general use remain. Among these, efficient in 

vivo applications are limited by the high prevalence of neutralizing antibodies in the human 

population, which can reduce or eliminate transgene expression. 

A successful prevention of antibody-mediated vector neutralisation requires the modification 

of specific epitopes of the viral capsid responsible for Ab binding. The aim of this work was 

to demonstrate that immune-escaping capsid variants can be generated through genetic 

modifications of the virus by taking advantage of combinatorial engineering and directed 

evolution protocols.  

A library of 107 AAV mutants carrying random point mutations scattered throughout the 

capsid gene of AAV was created by error prone PCR and screened for clones that were able 

to avoid neutralization by AAV-neutralizing human sera. Three mutants carrying the 

mutations R459G, R459K and N551D respectively and a double mutant with a combined 

R459K/N551D mutation were strongly enriched after the selection procedure. 

Characterisation of these clones showed an immune-escaping phenotype for all mutants. 

However, the combination mutant proved to be superior in both evasion of neutralization and 

infectivity, leading to the assumption that multiple mutations convey enhanced effects. 

Therefore, the remaining pool was subjected to DNA shuffling and additional error prone 

PCR, yielding a second-generation library, which was screened for further improved 

phenotypes. In this context, a method which we called evolution monitoring was devised 

allowing optimization of several experimental conditions that are typically critical for 

successful outcome of library panning. These refinements yielded novel variants with further 

enhanced immune-escape abilities and infectivity in comparison to previously selected 

mutants. Finally, obtained data suggests an enormous potential for using the here developed 

tools to study infection biology of viruses by reverse genetics. 

This work showed for the first time that error prone PCR and DNA shuffling can be 

successfully applied for genetic engineering of a virus by a directed evolution approach. In 

principle, using appropriate selection protocols these techniques should be adaptable for 

addressing a wide variety of challenges concerning AAV in particular and virology in general. 
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Abstract 

 

Background: Viruses are being exploited as vectors to deliver therapeutic genetic information into 

target cells. The success of this approach will depend on the ability to overcome current limitations, 

especially in terms of safety and efficiency, through molecular engineering of the viral particles.  

Methods: Here we show that in vitro directed evolution can be successfully performed to randomize 

the viral capsid by error prone PCR and to obtain mutants with improved phenotype.  

Results: To demonstrate the potential of this technology we selected several adeno-associated virus 

(AAV) capsid variants that are less efficiently neutralized by human antibodies. These mutations can 

be used to generate novel vectors for the treatment of patients with preexisting immunity to AAV.  

Conclusions: Our results demonstrate that combinatorial engineering overcomes the limitations of 

rational design approaches posed by incomplete understanding of the infectious process and at the 

same time offers a powerful tool to dissect basic viral biology by reverse genetics. 

 
 

Introduction 
 

The viral families (e.g adeno-, retro-, herpes- and adeno-associated viruses) used as gene 

transfer vectors for human gene therapy (Pfeifer and Verma, 2001) all have limitations that 

need to be addressed. Common concerns are safety, viral tropism (target specificity), 

immunogenicity, ability to elicit strong and stable transgene expression and the possibility to 

produce the vector at high titers (Kay et al., 2001; Thomas et al., 2003). Recently, the adeno-

associated virus of type 2 (AAV-2) has received increasing attention as a vector (Monahan 

and Samulski, 2000). AAV-2 is non-pathogenic in humans, does not induce a strong immune 

response and can transduce both dividing and quiescent cells. Viral particles are stable and 

can be produced at high titers. Current efforts to improve AAV vectors aim to control the 

tropism of the vector and to overcome barriers to infection such as neutralization by human 

antibodies (Huttner et al., 2003; Girod et al., 1999; Grifman et al., 2001; Shi, Arnold et al., 

2001; Wu et al., 2000; Nicklin et al., 2001). Although unveiling of the atomic structure of 

AAV-2 (Xie et al., 2002) boosted these efforts, the manipulation of the virions by rational 

design remains a difficult task due to our still incomplete knowledge of the capsid biology. 

Therefore, the goal of engineering tailored viral vectors could be achieved more easily if one 
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could take advantage of combinatorial techniques that have been extensively used to optimize 

protein function in the past decade (Neylon, 2004; Christians et al., 1999; Crameri, Raillard et 

al., 1998; Kolkman and Thomas, 2001; Zhang et al., 1997; Crameri et al., 1996a; Crameri et 

al., 1996b; Stemmer, 1994).  

Recently, two reports demonstrated that AAV peptide-display libraries can be generated by 

insertion of randomized peptides at a specific capsid location (Perabo et al., 2003; Muller et 

al., 2003). These viral libraries could be screened for the selection of receptor specific clones 

that infected wild type (wt) AAV-2 resistant cell types. However, ultimate optimization of 

gene therapy vectors will require manipulation of the whole capsid to be able to control 

different features of viral biology. In other studies, different strains of murine leukemia virus 

(MLV) were bred by DNA shuffling of their envelope genes to modify their tropism and 

stability (Soong et al, 2000; Powell et al., 2000). Here we describe a novel directed evolution 

approach based on randomization of the viral capsid by error prone PCR. To demonstrate the 

potential of this technology we applied it for the selection of AAV vectors that escape 

neutralization by human antibodies.  

 

 

Materials and methods 
 
Generation of a randomized AAV library and rAAV mutants 

Error prone PCR was performed (primers: 5’-AAT GAT TAA CCC GCC ATG CT-3’and 5’-

GGT ACG ACG ACG ATT GCC-3’) on the fragment of the cap gene of AAV-2 coding for 

amino acids 353 to 767 (VP1 numbering). 150 ng target DNA were amplified in a 50 μl-PCR 

using 0.2 mM dNTPs, 0.4 mM primers, 1 unit of Mutazyme II and 5 μl reaction buffer 

(GeneMorph II, Stratagene). The reaction was conducted as follows: 95°C/2 min.; 35 cycles x 

(95°C/30 sec., 48.5°C/30 sec., 72°C/100 sec.); 72°C/10 min. The amplified DNA was 

digested with BsiWI and SnaBI restriction enzymes and cloned in an AAV-2 genome-

containing plasmid (pUC-AAV2 [6]) to replace the corresponding wild type sequence. A 

DNA library of approx. 2.5x107 clones was obtained by electroporation into XL1-Blue 

MRF`E. coli. The entire mutagenized region of 96 clones was sequenced to determine the 

average rate of mutations (5.7 mutations/clone) and to verify the random distribution of amino 

acid substitutions. Viral library and rAAV mutants were produced and titrated as previously 

described (Perabo et al., 2003; Grimm et al., 1999). Empty particles were generated by 
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transfecting 293 cells with a 1:2 molar ratio of pXX6 (helper plasmid) and a Rep-Cap 

containing plasmid which is devoid of AAV packaging signals (ITRs). 

 

Selection protocol 
2x106 HeLa cells were seeded on 150 mm Petri-dishes 24 hrs before infection. 29 human sera 

were obtained with informed consent from the Klinikum Großhadern in Munich, Germany, 

and tested for their ability to neutralize AAV-2 infection (Huttner et al., 2003). 10 μl of a 

strongly neutralizing serum (Huttner et al., 2003) and 2x1010 genomic particles of the viral 

library were incubated in 10 ml of Dulbecco’s Modified Eagle Medium (DMEM) containing 

10% FCS for 2 hrs at 4°C. The amount of viral particles used corresponded to an MOI of 50 

and allowed us to apply approximately up to 1000 copies of each viral clone increasing the 

possibility that efficient clones could really infect at least one cell, whilst keeping the risk 

fairly low of generating chimeric viruses with no correspondence between genotype and 

phenotype. The solution was diluted in 10 additional ml of DMEM/10% FCS and used to 

incubate the cells in the presence of adenovirus (700 pfu/cell). 48 hrs post infection cells were 

collected by centrifugation and resuspended in lysis buffer (150 mM NaCl, 50 mM Tris-Cl, 

pH 8.5). Cells were lysed by 3 freeze/thaw rounds and debris was removed by centrifugation. 

Adenovirus was heat inactivated (60°C, 30 min) and the viral progeny-containing supernatant 

was used for further selection rounds. After each round, viral DNA was extracted from 200 μl 

of the lysate and sequenced. 

 

Sequence analysis 

Sequencing was performed (Agowa GmbH, Berlin) after DNA extraction and PCR 

amplification from cultured bacteria (DNA library) or from viral preparations (viral library 

and viral pool after selections). Single viral genomes were obtained by cloning amplified 

DNA into pUC-AAV2 and electroporation into E coli (XL1-Blue MRF`). For each analysis 

>70 clones were sequenced. 

 

Infection assays 

2x104 HeLa cells were seeded in 48 well plates 24 hrs before infection. Identical numbers of 

transducing (MOI of 5) and total particles (6.5x108, adding wt AAV-2 empty particles when 

needed) were incubated with serial dilutions (1:40 to 1:2560 in PBS) of human sera for 2 hrs 

at 4°C in a total volume of 40 μl. Before addition to the cells, 240 μl of DMEM/10 % FCS 

were added to each sample. At least 5000 cells were analyzed by FACS (Beckman Coulter 
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XL/MCL) 48 hrs post infection to determine the amount of GFP expressing cells. For 

determination of the decoy effect of wt and double mutant capsids, 2x104 HeLa cells were 

seeded in 48 well plates 24 hrs before infection. No empty particles, or 3.9x108 of either 

empty wt or double mutant particles were added to identical amounts of double mutant total 

particles (1.7x107). Incubation, infection and FACS analysis were performed as described 

above. 

 

Heparin inhibition assay 
24 hrs prior to infection 2x104 HeLa cells were seeded per well in 48 well plates. Equal 

amounts of infectious particles (MOI of 5) were incubated in a total volume of 200 μl of 

DMEM/10% FCS in the presence or absence of soluble heparin (85 U/ml) at 37°C for 30 min. 

This solution was then used to infect cells. 48 hrs p.i. the percentage of transduced cells was 

determined by FACS analysis. 

 

 

Results 

 

Production of a library of AAV-2 particles with random capsid mutations 

A library of 2.5x107 capsid variants with scattered point mutations throughout the capsid 

protein gene (cap) of AAV-2 was obtained by error prone PCR (Fig. 1). The PCR primers 

allowed us to target 82% of the amino acids expressed on the viral surface, minimizing at the 

same time mutagenesis of the structural core of the capsid subunit (Xie et al., 2002) in order 

to reduce loss of biodiversity after packaging. Sequence analysis confirmed that after PCR the 

mutations were evenly distributed along the cap gene. As expected, after packaging of the 

DNA pool into viral particles, a major amount of biodiversity was lost and the average 

number of amino acid mutations per clone dropped from 5.7 to 0.9, suggesting that clones 

with impaired assembly were eliminated. In addition a preferential localization of the 

mutations on surface epitopes was observed (data not shown). This can be explained by a 

greater tolerance of the surface structure, mainly composed of flexible loops (Xie et al., 

2002), to structural modifications. 
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Selection of capsid variants that escape human serum neutralization 

Depending on age and ethnic group, between 50 and 96% of the human population is 

seropositive for AAV-2, and 18-67.5% of these individuals have neutralizing antibodies 

(Moskalenko et al., 2000; Chirmule et al., 1999; Erles et al., 1999). Animal experiments have 

shown that neutralizing antibodies may reduce or even prevent AAV-2 transduction in vivo 

(Xiao et al., 2000; Fisher et al., 1997). For this reason it is likely that application of AAV-2 

vectors to patients with preexisting immunity would require higher viral doses. Although 

other AAV serotypes could prove useful to escape neutralization by anti-AAV-2 antibodies, 

different AAV serotypes often have different tropism, restricting this possibility. Moreover, 

since it is likely that even immune-escaping mutants will trigger the production of 

neutralizing antibodies, it is desirable to increase the number of capsid alternatives at our 

disposal for repeated applications of the vector. 

Therefore, we designed a biopanning protocol for the selection of viral mutants that are less 

efficiently neutralized by human antibodies (Fig. 1). The randomized library was pre-

incubated with an AAV-2 neutralizing human serum and applied to a cell line (HeLa) that 

supports AAV-2 replication. In a control experiment we pre-incubated the library with an 

AAV-2 seropositive but non-neutralizing human serum. In both cases, to support AAV 

replication cells were coinfected with the maximum amount of Ad that allowed infection of 

cells without inducing cytotoxic effects after 48 hrs, therefore maximizing the probability that 

the helper effect is provided to all AAV infected cells. Viral progenies were harvested 48 

hours p.i. and applied to new cells for further selection rounds. Thus the amplification of the 

clones carrying successful mutations occurs during the virus infection cycle obviating the 

need to introduce artificial re-amplification steps. These experimental conditions apply a 

selective pressure to the initial viral population and the pool is progressively enriched with 

mutants that are better able to infect the cells despite the presence of neutralizing antibodies. 

It is important to note that in this way viruses are not only selected for their ability to escape 

antibody binding, but also for their overall biological fitness (e.g. efficiency of infection and 

progeny production).  
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Figure 1: Production of a library of viral particles by error prone PCR of the AAV-2 capsid gene (cap) and 
biopanning protocol. ITRs (Inverted Terminal Repeats) are the packaging signals of the AAV genome. The rep 
gene codes for 4 proteins involved in viral replication. 

 

Characterization of neutralization escaping mutants 

After each selection round the viral progeny DNA was extracted from cell lysates and single 

viral clones were analyzed by sequencing. After 3 selection rounds, 3 point mutations 

occurring at 2 different amino acid positions were strongly selected (Fig. 2A): an arginine to 

glycine mutation (R459G according to VP1 numbering) was found in 9 of 94 sequenced 

clones, an arginine to lysine mutation (R459K) was found in 3 clones, and an asparagine to 

aspartate mutation (N551D) was found in 17 clones. Two clones carried the double mutation 

R459K-N551D. Mutations of 22 other residues occurred only once. Of the 31 clones carrying 

a mutation in either of the two frequently mutated sites, 25 did not carry any additional amino 

acid substitution at other sites. Strikingly, although these two residues are separated by 92 

amino acids in the primary sequence of the protein, they are located very closely in the three-

dimensional structure of the viral particle (Fig.2B). Moreover these residues are located on 

the capsid surface and are therefore accessible to antibody binding, suggesting their 

importance as immunogenic residues. Although N551 has lower surface exposure than R459 

(Xie et al., 2002), it has been previously reported that even amino acids that are buried in the 

inner VP3 protein structure can nonetheless influence the surface topology and biology of the 

virus (Wu et al., 2000; Rabinowitz et al., 1999). Moreover, once the N is exchanged with a D 

this latter residue could find its way through the structure and become more exposed on the 

surface, where it could impair the binding of a pre-existing antibody. 

 Remarkably, mapping all the other (less frequently occurring) selected sites on the 

three-dimensional structure shows that 73% of all the recovered mutation sites clustered in the 

same capsid region and are expressed on the capsid surface (Fig. 2B). A previous epitope-

scanning study failed to identify this region as immunogenic (Wobus et al., 2000). Another 
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study described an immunogenic epitope that only partially co-localizes with this region and 

does not include N551 (Moskalenko et al., 2000). The residues identified by our approach are 

part of a quaternary structure that is composed of protein loops contributed by different capsid 

subunits. This structure cannot be mimicked by a single peptide fragment, suggesting why 

previous studies could have failed to identify it.  

 Eight of nine mutations in this cluster involved electrostatically charged amino acids 

where substitutions resulted in loss of the charge. The only exceptions were the three R459K 

mutations, which conserved the positive charge. Interestingly however, in two cases the 

R459K mutation was combined with the N551D mutation, a combination which showed a 

clearly increased fitness in comparison to the single mutants (see below). After the first round 

of selection, the R459G mutation appeared in 9 of 96 examined sequences. One clone carried 

a R459W mutation that could not be recovered after 3 selection rounds. The N551D mutation 

appeared only in 3 clones. Two of these latter clones carried an R459G mutation at the same 

time. This double mutant was not recovered after the 3rd selection round. Although no 

experiment was conducted to investigate the reason for this, we can speculate that when 

expressed in conjunction with the N551D mutation, the R459G mutation is not as well 

tolerated by the capsid as the R459K mutation, which could represent a milder structural 

rearrangement. Understanding these properties of the viral particle and fine tuning capsid 

mutations to optimize the phenotype by rational design would have required huge 

experimental efforts. 

 

 

 A B 
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Figure 2: (A) Selection of neutralization-escaping viral mutants. The sequence of 30 representative clones is 
presented to show the biodiversity of the viral library and of the viral pools after selection in the presence of a 
neutralizing human serum.  (B) Mapping of the selected amino acid mutations on the capsid structure. Red: 
frequently occurring mutations (positions 459 and 551). Yellow: other selected mutations mapping in the same 
region; these appeared only once out of 94 sequenced clones and represent 73% of the overall number of 
identified mutations. The three peaks are symmetrical and coloured to facilitate the visualization of the capsid 
structure. The yellow box on the complete viral particle (adapted from Xie et al., PNAS 200211, Copyright 2002 
National Academy of Sciences, U.S.A. ) depicts the magnified region. 

 

A control selection performed with the library in presence of a non-neutralizing human 

serum yielded wt AAV-2 clones in 68 of 79 cases (data not shown). Each of the 11 mutants 

carried a single point mutation. The 11 mutations were scattered throughout the capsid 

sequence and occurred only once; only 3 of them involved a charge shift. These results 

suggest that the wild type capsid (that has already been subject to natural selection pressure) 

is the structure that is most fitted to the task of performing a productive infection on HeLa 

cells in the presence of an AAV-2 non-neutralizing human serum. This control also 

demonstrates that the selection of mutants in the presence of neutralizing antibodies is not due 

to other factors (e.g. the presence of adenovirus). To exclude that viral immune escaping 

mutants can be generated through spontaneously occurring mutations (in the absence of 

capsid modification by error prone PCR), wt AAV-2 was applied to HeLa cells in the 

presence of neutralizing antibodies and three selection rounds were performed (same 

experimental conditions as for the real selection). None of 30 sequenced viral clones was 

found to carry a single point mutation. 

 

 

Table 1: Viral titers per μl of GFP expressing rAAV-2 and selected mutants. 

 Genomic titer Infectious titer Particle titer Heparin 
inhibition 

wt 1.2x10(8) 5.9x10(5) 1.49x10(9) 99.2% 

R459G 3.45x10(8) 4.9x10(5) 1.65x10(9) 98.7% 

N551D 4.18x10(8) 8.8x10(5) 2.2x10(9) 99.4% 

double mut 2.36x10(8) 1.8x10(6) 1.36x10(9) 99.4% 

AAV2 
Empty particles - - - - - - 1.25x10(9) n.d. 

Double mut 
Empty particles - - - - - - 1.58x10(9) n.d. 

 

Titers in this table refer to the viral preparations used for the infection experiments shown in figures 3 and 4. All 
mutants have been packaged at least twice resulting in titers consistant with those provided here. 
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To confirm that immune escaping viral mutants had been selected, recombinant GFP 

expressing AAV particles carrying the mutations R459G, N551D or the R459K-N551D 

double mutation were produced. Genomic and particle titers of the mutants showed no 

significant difference to wt vector titers (Tab. 1). This was expected because the selection 

process should yield clones with good packaging efficiency since mutations interfering with 

efficient packaging are assumed to be negatively selected when the viral progeny is generated. 

However, to demonstrate that this kind of selection really applies, evaluation of titers obtained 

from a larger repertoire of mutants would be required. Infectious titers showed a better 

infectivity of the double mutant in comparison to wt and single-mutation clones (Tab.1). This 

could reflect the selective pressure applied to the pool during the selection procedure. An 

increase in the infection efficiency (e.g. ability to bind to cellular receptors or to perform post-

entry steps) would contribute to the amplification of a mutant additionally to its ability to 

escape neutralization. The selected mutations could not only allow escape from antibody 

neutralization, but at the same time improve the generic efficiency of the infection process. 

However, further investigations are required to confirm this observation and this hypothesis. 

Equal infectious titers were used to infect HeLa cells in the presence of serial dilutions 

of the same neutralizing human serum that was used for the selection (Fig. 3). In addition, 

amounts of total viral particles were normalized by addition of AAV-2 empty capsids in order 

to exclude the influence of particle titers on antibody sequestration. The amount of serum 

needed to halve the number of transduced cells was defined as N50. N50 values for wt virus 

and mutants were determined using figure 3. The values obtained for R459G, N551D and 

R459K-N551D were respectively 4.1-, 3.3- and 5.5-fold higher than the corresponding N50 

obtained for wt, demonstrating that the selected mutations improved the ability of the virus to 

escape neutralization. Similar results were obtained after preincubation with AAV-2 

neutralizing sera obtained from 7 different donors: all tested sera showed a weaker 

neutralization of the double mutant in comparison to wt (single mutants were not tested). N50 

values of R459K-N551D were 1.3- to 5.3-fold higher than for wt AAV-2 (data not shown), 

demonstrating that the ability to escape neutralization was not limited to the particular serum 

used for the selection. 
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Figure 3: Transduction of HeLa cells in the presence of an AAV-2 neutralizing serum. Cells were infected 
with same infectious titers of GFP expressing rAAV virions. Particle titers were adjusted by the addition of wt 
AAV-2 empty capsids. Black: wild type rAAV-2; blue: R459G mutant; green: N551D; red: double mutant 
(R459K+N551D). Results are expressed as mean and standard error of triplicate values. Serum concentrations 
are expressed in the x-axis as dilution factor (below) or as percentage to facilitate calculation of N50 values 
(above). 

 

Additionally, to further prove that the selected mutations diminish antibody 

recognition of the viral capsids, the ability of wt and mutant empty particles to act as decoys 

for human neutralizing antibodies was tested by infecting HeLa cells with the R459K-N551D 

mutant in the absence or presence of wt or R459K-N551D empty particles (Fig.4). When 

empty particles carrying the double mutation were added, the N50 value was only slightly 

increased (+35%). However, N50 was substantially increased (+190%) if the same amount of 

empty wt particles was added, showing that wt capsids were better at sequestering the 

neutralizing antibodies which hindered transduction. The ratio between these values 

calculates to a 5.4-fold higher increase after addition of wt empty particles compared to the 

addition of double mutant empty particles. This is in good agreement with the 5.5-fold value 

obtained from figure 3. 
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Figure 4: Decoy activity of wt and mutated empty capsids. HeLa cells were infected with R459K-N551D in the 
presence of neutralizing serum without addition of empty particles (black line) or after addition of double mutant 
empty particles (blue line) or wt empty capsids (red line). Serum concentrations are expressed in the x-axis as 
the dilution factor (below) or as percentage (above). 

 

No differences in infectivity were detectable in the infections performed with additional 

empty capsids without serum, showing that the differences observed using wt and mutant 

empty particles were not due to a different level of cellular receptor competition for the viral 

attachment or any other infection step. 

In conclusion, these experiments demonstrate that the mutations reduce the affinity of 

neutralizing antibodies for the viral capsids. 

Finally, we investigated if the selected capsid mutations had an influence on the viral 

tropism. We used soluble heparin, an analogue of the AAV-2 primary receptor heparin sulfate 

proteoglycan (HSPG), to show that cell transduction could be blocked in a similar manner and 

to a similar level to wt AAV-2 (Table 1). Moreover, tropism of the immune-escaping clones 

was unchanged in comparison to wt AAV-2 when tested on HeLa (Table 1), a very 

permissive cell line for wt AAV-2 and on M-07e (data not shown), a wt AAV-2 resistant cell 

line (Perabo et al., 2003). 
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Discussion 

These results demonstrate that randomized mutagenesis of the viral capsid can be successfully 

applied for the generation of improved viral vectors for gene therapy. 

 The described protocol for the production of a viral library is based on transfection of 

cells with a pool of viral genomes. Since it is possible that some cells are transduced by more 

than one AAV genome, this procedure yields a certain amount of chimeric viral particles 

where the genotype is not coupled to phenotype, as demonstrated by the presence of viral 

DNA sequences carrying stop codons, an event that can be explained only by genotype-

phenotype uncoupling. Although this could initially lead to a loss of biodiversity of the viral 

library in comparison to the DNA library, after the first selection round no stop codons could 

be detected in the viral pool demonstrating that, as expected, the selection process eliminates 

such chimeric particles. The initial loss of biodiversity could be avoided by initially infecting 

permissive cells with AAV hybrid (wt and mutant) virions at low MOI (Muller et al., 2003). 

Although it was not necessary to perform this step for the experiments presented here, this 

solution could be recommended for screenings where the biodiversity could represent a 

limiting factor for the success of the procedure. 

The mutants described here carry amino acid substitutions that involve changes in 

charged amino acids and might therefore alter regional surface electron potential, local pKa, 

or even local quaternary structure, and might affect a significantly larger region of the AAV 

capsid surface. Based on this, it is currently unclear whether the strongly selected amino acid 

mutations correspond to immunogenic sites or if their substitution exerts influence on nearby 

capsid regions, maximizing phenotypic change per single genotypic change. However, the 

clustering of the selected mutations suggests an immunogenic site to be located on the 

external side of the 3-fold symmetry peak. 

Despite increased ability to escape neutralization, the mutants generated can still be 

inactivated by relatively high sera dilutions and further optimization will be required for 

clinical application. However, the double mutant was more efficient than single mutants 

suggesting that better variants could be generated by combining several additional mutations 

on one capsid at the same time. This is also suggested by the observation that polyclonal 

antibodies contained in human serum are probably able to interact with different epitopes on 

the viral capsid. Complete escaping of neutralization will require engineering of all these 

distinct epitopes. Given the limited size of the library described here and considering the low 

average number of mutations per clone, combinations of multiple mutations are unlikely to be 
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selected. Application of increasing selective pressure or performing further selection rounds 

could have led to the identification of some of these mutants. However, these will be more 

easily isolated by screening libraries obtained by consecutive rounds of mutagenesis and 

selection or by gene shuffling of previously mutants used as parental strains (Crameri, 

Raillard et al., 1998; Stemmer, 1994). High-throughput breeding of different retrovirus strains 

yielded viral vectors with increased stability and with modified tropism in previously reported 

experiments (Soong, Namura et al., 2000; Powell, Kaloss et al., 2000). This interesting 

approach could be also applied to AAV. It is noteworthy that this procedure usually yields 

complex chimera derived from several parental strains, from which it is difficult to understand 

how the selected mutations contribute to the phenotype. It should be also noted that despite a 

clear selection for the two described mutations, the number of recovered wt clones after the 

3rd selection round was still high. Additionally, the same experimental setup allowed us to 

recover viral clones after three rounds of selection applied to wt AAV-2. This was possible 

because the selective pressure was kept low by the high serum dilution used in these 

experiments. Moreover, the ability of the selected mutants to escape neutralization could be 

proven for all the 7 tested AAV-2 neutralizing human sera but ranged quantitatively, 

suggesting that the pool of neutralizing antibody differs from one individual to the other. 

Taken together, these observations suggest that introduction of the refinements proposed here 

to the library, in parallel with application of a stronger selective pressure (increasing serum 

concentration and/or pooling of different sera), should result in the selection of capsid variants 

with greater ability to escape antibody neutralization. In addition, due to the statistical nature 

of the process, it is likely that other important immune-escaping mutations could be identified 

simply by repeating the selection experiment described here. These speculations are also 

supported by the observation that we only identified a maximum of two alternative amino 

acids for every selected mutation site while it is reasonable that other amino acid substitutions 

could generate clones with similar or even improved phenotype. Moreover, the identified 

amino acid substitutions originated in all cases from the same codon types (no alternative 

codons for the same amino acid were found). These observations are in agreement with 

statistical expectations from a library of 107 clones that cannot represent all the possible 

combinations of 400 positions and 20 amino acids and once more underline the importance of 

upgrading the selection protocols with repeated mutagenesis and DNA shuffling. 

Heparin binding phenotypes and the infection experiment performed on a cell line (M-

07e) that is not permissive to wt AAV-2 infection suggest that the mutations described here 
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do not influence the tropism of the mutants. However, it cannot be excluded that tropism 

alterations could be detected on other cell types or induced by different immune-escaping 

mutations that could be identified with error prone PCR technology. In this case, protocols 

should be applied to specifically select mutations that do not interfere with the desired viral 

tropism. This can be achieved by alternating infections in the presence of neutralizing 

antibodies and infections on target cells.  

It remains to be elucidated whether these novel mutants would generate neutralizing 

human antibodies after their first application. However, even in this case, one or more 

immune-escaping clones could provide patients with preexisting immunity with the chance to 

receive at least one or a few successful vector applications. The pool of capsid mutations 

required for this goal could be generated by combined efforts that employ different 

mutagenesis techniques. Finally, successful escape from neutralization in vivo will require the 

resolution of a number of additional factors. Some of these complications can be addressed by 

the further development of capsid randomization technology and by setup of selection 

procedures that more closely mimic the in vivo environment. However, the production of ideal 

vectors is likely to be achieved by designing procedures that exploit combinations of several 

different engineering approaches including educated guess-work.  

We anticipate that further development of this technology could yield virus variants with 

modified tropism, increased genome size capacity and reduced toxicity. Finally, the study of 

viral biology will benefit from the use of such combinatorial techniques as reverse genetics. 
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Introduction 
 
As described in chapter III, we have screened a library of AAV-2 particles carrying random 

point mutations to isolate mutants exhibiting immune-escaping properties. Clones carrying 

mutations R459G, N551D or the double mutation R459K/N551D were strongly selected, 

while several other mutations appeared with lower frequency in other mutants. The finding 

that the double mutant showed the best phenotype in terms of infectivity and ability to escape 

neutralization suggested that more efficient immune escaping mutants could be obtained by 

introducing more mutations in the same clone (also see Discussion in chapter III). This can be 

achieved by applying DNA shuffling protocols to the previously selected pool in order to 

generate a viral library consisting of clones carrying different combinations of previously 

selected mutations. At the same time, additional randomization of the target region can be 

performed by error prone PCR in order to introduce new point mutations in the pool. 

This chapter describes the setup of a DNA shuffling protocol for AAV libraries and its 

application for the screening of AAV mutants with improved immune-escaping phenotype. 

Moreover, to improve efficiency of the selection procedure and reduce experimental costs, a 

new method was devised to monitor evolution of the pool at each selection round through 

light cycler PCR (evolution monitoring).  

These refinements yielded the first proof of principle that DNA shuffling can be applied to 

error prone PCR viral libraries. Several novel mutants with interesting potential for human 

gene therapy were identified. In addition, analysis of the results provided interesting insights 

on viral capsid function, suggesting the potential of this technology as reverse genetic tool for 

the study of infection biology.  

 

 

Material and Methods 
 
DNA shuffling of selected viral clones 
 
PCR was performed (primers 5’-TAC CAG CTC CCG TAC GTC CTC GGC-3’ and 5’-CGC 

CAT GCT ACT TAT CTA CG-3’) on a fragment of the cap gene of AAV-2 coding for the 

amino acids 333 to 763 (VP1 numbering) of two AAV-2 capsid mutants (double mutant 

T410A/R459G and triple mutant R459K/N551D/E555G) and wtAAV-2. Target DNA (100 

ng) was amplified in a 50 µl reaction using 0.2 mM dNTPs, 0.4 µM primers, 2x reaction 
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buffer, 2x enhancer solution and 2.5 U of pfx platinium polymerase (Invitrogen). The reaction 

was conducted as follows: 95 °C/3 min; 35 cycles (95 °C/40 s, 55 °C/30 s, 68°C /2 min); 68 

°C/10 min. 3 µg of each plasmid were mixed and digested in a 50 µl reaction using 1 U of 

DNase I for 5 min at 15 °C. The digestion was stopped adding 5 µl 0.5 M EDTA followed by 

heat inactivation for 10 min at 95 °C. The digestion was loaded on a 1.5 % agarose gel and 

fragments of size between 50 and 100 bp were purified using QIAEX II Gel Extraction Kit 

(Qiagen). 300 ng of DNA fragments were reassembled in a 50 µl reassembly reaction without 

primers using the reagents described above. The reaction was conducted as follows: 95 °C/3 

min; 40 cycles (95 °C/45 s, 55 °C/30 s, 68 °C /1 min + 2 s per additional cycle); 68 °C/10 

min. For replication of correctly assembled fragments a regular PCR as described above was 

performed using 1 µl of the reassembly reaction. The amplified DNA was sequenced as 

previously described (see Chapter III). 

 

 

Generation of a second-generation library by DNA shuffling and error prone 
PCR 
 
Viral genomes were obtained from the third selection cycle of a previous selection, in which a 

randomized AAV-2 library was screened on a neutralizing human serum (see Chapter III). 

DNA shuffling of viral DNA was performed as described above. Since plasmids proved to be 

more reliable templates for error prone PCR than PCR fragments, the shuffled DNA was 

cloned into an AAV-2 genome containing plasmid (pUC AAV-2, see Chapter III) yielding a 

preliminary library of approx. 107 clones. A second-generation library of approx. 4 x 107 

clones was created by further randomization of the preliminary library by error prone PCR 

and cloning into XL1-Blue MRF’ E. coli (see Chapter III). The second generation library was 

packaged and analysed as described in chapter III. 

 

 

Selection protocols 
 
Selections were performed as described in chapter III with the following modifications: for 

the selections two new neutralizing human sera, serum A and B, and a mixed serum 

composed of equal volumes of four different human sera (S2, S3, S4, S5) were used. 

Selection pressures were diversified by changing the effective serum concentration through 

variation of the total incubation volume using lysis buffer and adding equal volumes of 
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Dulbecco’s Modified Eagle Medium (DMEM) with 10 % fetal calf serum (FCS). With each 

serum two selections were performed applying a high or a low selection pressure. Selections 

parameters are summarized in Table 1. The viral progeny was monitored as described below 

(see paragraph Evolution monitoring during selections) and a maximum of 5 x 109 genomic 

particles corresponding to a multiplicity of infection (MOI) of below 1 after serum incubation 

was used during the selection cycles to maintain a constant selection pressure and a 

permanent genotype-phenotype coupling. 

In addition, each of these selections was repeated with identical parameters but without 

limitation of genomic particles. Accordingly, the whole viral progeny harvested after the 

infection step was applied to the next round. In this case, and 5 cycles (instead of 3) were 

performed. Initial serum concentrations of all performed selection were kept low in order to 

minimize the risk of losing chimeric capsids with potentially beneficial genotypes during the 

first cycle. As discussed in chapter III (see Discussion) the presence of chimeric capsids in the 

library is a direct consequence of the packaging protocol. In addition, a low stringency during 

the first cycle prevents accidental loss of the initially rare library mutants with the desired 

phenotype. After enrichment of enhanced mutants due to amplification stringency can be 

increased to insure selection of the fittest variants. 

 
Table 1. Selection parameters. 

selection serum volume serum dilution 1. 
cycle 

serum dilution 2. 
cycle 

serum dilution 3. 
cycle 

serum A low pressure 10 µl 1:100 1:50 1:50 

serum A high pressure 30 µl 1:50 1:25 1:25 

serum B low pressure 5 µl 1:500 1:250 1:250 

serum B high pressure 5 µl 1:250 1:125 1:125 

mixed serum low pressure 10 µl each 1:200 each 1:100 each 1:100 each 

mixed serum high pressure 30 µl each 1:100 each 1:50 each 1:50 each 

 

 

Evolution monitoring during selections 
 
After DNA extraction with a DNeasy Kit (Qiagen) the total number of produced viral 

genomes after each selection cycle was monitored by light cycler-PCR (LC-PCR) by using 

the primers 5’-ATG TCC GTC CGT GTG TGG-3’ and 5’-GGT ACG ACG ACG ATT GCC-

3’. Target DNA was amplified in a light cycler (Roche Diagnostics) in a 20 µl-reaction using 

the light cycler kit LC-FastStart DNA Master SYBR Green I (Roche Diagnostics) and the 

following protocol: 0.5 µM primers, 5 mM MgCl2, 1 x LC-FastStart DNA Master SYBR 
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Green I. The reaction was conducted as follows: denaturation: 95 °C/10 min; amplification: 

35 cycles (95 °C/10 s, 60 °C/10 s, 72 °C /35 s); melting: 95 °C/0 s, 68 °C/10 s, 95 °C /0 s; 

cooling 40 °C/30 s. 

 

 

Infection assays 
 
2 x 104 HeLa cells were seeded in 48-well plates 24 h prior to infection. Identical numbers of 

genomic particles (1.5 x 107) and total particles (1.3 x 109, adding wtAAV-2 empty capsids, 

when needed) were incubated with serial dilutions of different human sera in phosphate-

buffered saline (PBS) for 2 h at 4 °C in a total volume of 40 µl (see Table 2) and subsequently 

added to the HeLa cells. 48 h p.i. the cells were analysed by FACS analysis. 

 
Table 2. Dilutions of sera for infection assays. 

serum dilutions 

S1 no serum, 1:20 to 1:2560 

S2 no serum, 1:20 to 1:1280 

S3 no serum, 1:20 to 1:1280 

mixed serum (S2 ,S3, S4, S5) no serum, each serum 1:80 to 1:2560 

Sera of healthy patients were obtained from the Klinikum Großhadern. 

 

 

Results 
 

DNA shuffling of selected clones 
 
DNA shuffling can be used to generate clones that carry random combinations of mutations, 

which are present in an initial pool. DNA fragments to be shuffled are amplified by PCR from 

the initial pool. The product is briefly digested with DNase I yielding randomly-cut DNA 

fragments, which average length depends on digestion time and concentration of DNase I. 

Fragments of a desired size are purified from agarose gel and full-length DNA is reassembled 

by PCR performed in absence of primers: overlapping regions of different short fragments 

can anneal after denaturation followed by a fill-in by the polymerase (Fig. 1).  
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Figure 1. Principle of DNA shuffling. A single crossover event is shown. Two short homologous double 
stranded (ds) DNA fragments each carrying a point mutation at different positions are digested with DNase I 
yielding randomly cut DNA fragments.  In a polymerase chain reaction (PCR) without primers (reassembly 
reaction) the fragments first aneal at the homologous regions (crossover) followed by a fill-in reaction. 
 

To empirically set up appropriate reaction conditions, a pilot experiment was conducted by 

shuffling a 1273-base pair (bp) PCR fragment of the cap gene of AAV-2 of three selected 

clones, a T410A/R459G double mutant, a R459K/N551D/E555G triple mutant and wtAAV-2 

(Fig. 2). DNA fragments were mixed and briefly digested with an amount of DNase that 

maximized the amount of fragments ranging in size between 50 and 100 base pairs that were 

purified from an agarose gel and reassembled as described above. Full-length molecules were 

then amplified by PCR. For statistical analysis of the generated recombination mutants the 

DNA amplified from the reassembly reaction was cloned back into a pUC-AAV-2 plasmid 

and single clones were sequenced.  

As seen in Fig. 2c, the product of the reassembly is highly heterogeneous consisting of a large 

variety of single and double stranded fragments in different states of reassembly. Due to the 

high homology of the initial fragments the amount of correctly assembled fragments is not so 

much influenced by the stringency of the annealing process but rather by the size of the 

digestion fragments, their concentration during the reassembly and the number of reassembly 

cycles. 

 

 
Figure 2. DNA shuffling of three AAV-2 cap gene clones. (a) A 1.273 bp DNA fragment of three AAV-2 cap 
gene mutants was amplified by PCR. After mixing and DNase I digestion, fragments of 50-100 bases were 
purified (b). Purified fragments were reassembled by a PCR performed in the absence of primers and full-length 
molecules are reconstituted (c). The heterogeneous appearance of the product is largely due to incompletely 
assembled fragments and the partial single-stranded nature of the product.  The full-length product is then 
amplified by PCR with primers (d).  
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In general, reassembly of smaller digestion fragments requires more cycles and higher DNA 

concentration. The size of the digestion fragments is an important parameter for the quality of 

the shuffling result. The smaller the fragments, the more crossover events are necessary to 

reassemble the full-sized PCR fragment. The number of crossover events (crossover rate) 

determines the probability for shuffling two point mutations which are separated by a given 

distance. However, with decreasing fragment size the probability of obtaining the correctly 

reassembled full-length fragments is also decreasing. This explains the need for a pilot 

experiment: sub-optimal reaction conditions would result in the generation of a shuffled pool 

that is too similar to the original pool, or in the loss of the pool biodiversity (size of the 

library). 

The clones for the pilot experiment were chosen in order to meet several requirements. The 

overall number of mutations (5) was kept small to allow adequate statistical analysis without 

requiring extensive (expensive) sequencing. The distances between the chosen point 

mutations, ranging from 4 amino acids (12 bp) to 91 amino acids (273 bp), were ideal to 

determine if crossover rate and PCR conditions were suitable to generate combinations of 

mutations that were close or far from each other. Since fragments used for the reassembly 

reaction have a maximum length of 100 bp (33 aa), all mutations, which are separated by 

more than 33 aa can be treated as statistically independent (crossover probability of 1). This 

condition is fulfilled for all the mutations of the chosen clones, except for the mutations at 

position 551 and 555, which are located on the same clone. Their distance of 12 bp is much 

smaller than the length of the digestion fragments (50-100bp). Therefore, the probability of a 

crossover event is strongly reduced and mutants that can be generated by a crossover between 

those positions are unlikely to occur. Accordingly, these two positions can be treated as 

statistically dependent (coupled). To calculate the probability of generating a certain mutant, 

the two mutations are regarded for simplicity as a single independent mutation. Therefore, the 

probability for all mutants, that carry either both or none of these mutations, is calculated as 

though only three mutated positions (410, 459, 551/555) instead of four were existing. The 

probability PP for a clone to carry a given mutation of one clone from a certain position is 

determined by the number of clones used for the shuffling. If N clones are used the 

probability is 

NPP
1= . 
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The probability PX for generating a mutant X carrying a particular combination of independent 

mutations at M positions equals the product of the probabilities of observing each mutation at 

the given position. 

∏
=

=
M

P
PX PP

1

 

Due to the simplification of having only three independent mutated positions, M equals N. 

Therefore, it can be written as 

( )NX NP 1≈ . 

Since three independent positions are assumed the expected frequency of observing a certain 

clone is approximately 1 out of 27 (
3
1

3
1

3
1

×× ). The probability for observing a clone showing 

either of the two dependent mutations is here described as ‹‹1/27 for simplicity and because a 

more sophisticated analysis would provide a result that would require extensive sequencing to 

be statistically verified. Clones with a probability higher than 1/27 result from the fact that 

they can be theoretically assembled from fragments originating from two instead of one initial 

clone. This is the case for all newly generated clones, which carry wt amino acids in position 

1 or 3, or both, since two of the initial clones encode wt at these positions. Accordingly, the 

probability to obtain the wt aa at these positions would be 2/3 instead of 1/3. 

After shuffling, the observed frequency of each clone was found to be in good agreement 

statistical expectations (Table 3). Variations between expected and observed frequency of 

single clones are likely due to the relatively small number of sequenced clones (43). However, 

the different groups of mutants with equal probabilities showed a good correlation. The six 

mutants with an expected frequency of 2/27 were observed a total of 11.8 times out of 27 

instead of the expected 12, while the three mutants with a probability of 4/27 were found 11.3 

times instead of 12. Mutants with a probability of 1/27 were observed 2 times instead of 3. 

Interestingly, even two of the highly unlikely mutants carrying either of the two dependent 

mutations were found (mutant 13 and 14). Even if no statistical test was performed, which 

would have required extensive and money consuming sequencing, these results suggest that 

the applied DNA shuffling protocol is suitable to generate recombination mutants. 

Furthermore, experimental conditions allow shuffling of mutations that are located as close to 

each other as a 4 aa distance. Due to its simplicity and rapidity, this approach seems to be a 

better alternative to site-directed mutagenesis for the generation of large numbers of capsid 

variants with combined mutations. 
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Table 3. Expected and observed frequency of all possible mutants generated by DNA shuffling. 

Mutant 

 

 

aa position 

410 

 

aa position 

459 

 

aa position 

551 

 

aa position 

555 

 

observed 

frequency in 

43 sequences 

expected 

frequency in 

27 sequences 

approx. 

probability 

Papprox. 

1 - - - - 4 2.5 4/27 

2 - R459K - - 7 4.4 4/27 

3 - R459G - - 7 4.4 4/27 

4 T410A - - - 6 3.8 2/27 

5 T410A R459G - - 1 0.6 2/27 

6 T410A R459K - - 4 2.5 2/27 

7 - - N551D E555G 2 1.2 2/27 

8 - R459K N551D E555G 1 0.6 2/27 

9 - R459G N551D E555G 5 3.1 2/27 

10 T410A - N551D E555G 1 0.6 1/27 

11 T410A R459K N551D E555G - - 1/27 

12 T410A R459G N551D E555G 2 1.2 1/27 

13 - R459K - E555G 2 1.2 ‹‹1/27 

14 - R459G N551D - 1 0.6 ‹‹1/27 

15 - - N551D - - - ‹‹1/27 

16 - - - E555G - - ‹‹1/27 

17 - R459K N551D - - - ‹‹1/27 

18 T410A R459K - E555G - - ‹‹1/27 

19 T410A R459K N551D - - - ‹‹1/27 

20 T410A R459G - E555G - - ‹‹1/27 

21 T410A R459G N551D - - - ‹‹1/27 

22 T410A - - E555G - - ‹‹1/27 

23 T410A - N551D - - - ‹‹1/27 

24 - R459G - E555G - - ‹‹1/27 

 

Three DNA fragments of the cap gene (wt, T410A/R459G double mutant and R459K/N551D/E555G triple 
mutant) were shuffled. After cloning of shuffled fragments into pUC-AAV-2, 43 mutants were sequenced. As an 
approximation for statistical analysis, the crossover probability between distant point mutations (≥100 bp/33 aa) 
was assumed to be 1, allowing a simplified statistical analysis as independent mutations. Accordingly, the 
probability to incorporate a mutation at a given position by shuffling of three clones is PMutation = 1/3. The 
crossover probability of the two closely located mutations (N551D/E555G) was assumed to be ‹‹1, requiring 
statistical treatment as dependent (coupled) mutations (Pcoupled=1/3, Pindividual = «1/3). Therefore, mutants 
separating these mutations are rarely observed.The probability to carry wt at positions 1 or 3 is Pwt=2/3 each, 
since two of the initial clones encode wt aa at these positions. Amino acid (aa) positions are according to VP1 
numbering. 
 
 
Production of a second-generation library of AAV-2 particles carrying shuffled 
mutations from previous selections combined with new randomization 
 

Viral DNA collected after the third round of a previous selection (see chapter III) was 

subjected to DNA shuffling following the above described protocol. Further randomization by 

error prone PCR was also performed to introduce novel point mutations in the obtained pool 

(see Materials and Methods). This yielded a library of approx. 4 x 107 clones. Sequence 

analysis after packaging showed an average number of 1.7 aa mutations per clone. Since the 
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pool used for production of the second-generation library contained besides the three strongly 

selected mutations (R459G, R459K, N551D) only an average number of 0.2 mutations per 

clone, at least 1.5 mutations per clone had to be newly generated. Including the shuffled 

mutations (0.5 per clone) the error rate averaged 2.2 mutations per clone. As expected all 

combinations of the three previously selected mutations were found after sequencing (data not 

shown). Moreover, the newly generated mutations were randomly distributed throughout the 

cap gene. 
 
 

Real time evolution monitoring: improving selection efficacy 
 

Crucial factors for the success of library-panning experiment are choice and maintenance of 

an appropriate selective pressure. In order to be able to test in parallel several selection 

conditions by a money- and time-saving procedure, we set up a method to monitor the 

evolution of the pool by light cycler PCR technology (evolution monitoring). This strategy is 

based on the reasoning that appropriate selection conditions would result in a decrease of viral 

titer in the first selection rounds due to elimination of strongly neutralized or infection 

deficient mutants followed by titer recovery during later rounds corresponding to a 

progressive amplification of the best escaping variants (selection of the fittest virions). 

2 x 109 genomic particles of the second generation library (MOI=5) were incubated with 

different concentrations of a neutralizing serum (serum B, see Materials and Methods) and 

viral particles numbers (see below) in three parallel settings (Fig. 3). After each round of 

selection viral DNA was extracted from a small aliquot of the harvested progeny and the 

genomic titer was determined. A fourth setting (low selection pressure w/o particle 

regulation) is not shown, since results were similar to the setting ‘high pressure w/o particle 

regulation’. In the first two settings (blue and red in Fig. 3), a high and a low serum 

concentration of a serum were applied for three selection rounds. After the first selection 

cycle, only a maximum number of 5 x 109 genomic particles was incubated with a new 

aliquot of serum and used for the next infection (regulation of genomic particle numbers). In 

“high pressure” conditions with regulation of genomic particles, titers showed a constant 

decrease during the experiment. Although the previously described N551D mutant and the 

R459K/N551D double mutant were enriched and only marginal amounts of wtAAV were 

detected, no triple or higher mutants were detected. These results suggest that a too strong 

selective pressure promptly eliminating most of the virions easily neutralized by antibodies, 

which compose the biggest proportion of the library. However, it also hampered an efficient 
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amplification of the fitter molecules in the pool. A selection to some extend took place, since 

the easily neutralized virions were lost more rapidly than the ones with an enhanced immune 

escape ability, but due to the lack of an amplification effect the procedure failed to identify 

new interesting variants.  

In presence of a low selection pressure combined with the regulation of particle numbers after 

the first selection cycle, the viral titer showed an initial drop followed by a robust increase 

after the 3rd round, suggesting an enrichment of mutants with improved phenotype. 

Sequencing of single clones showed a strong selection for a S458P/R459K/N551D triple 

mutant. Several new strongly selected single mutations (R447S, N449S, P458S, Y500F, 

A664T) were observed, as well as three other quadruple mutants (S458P/Y500F/N551D/ 

A664T, N551D/E563K/Q575P/A591V and S458P/R459K/H509Q/N551D) and a quintuple 

mutant (R459K/Y500F/G512D/N551D/A664T).  

In another setup, virions were incubated with a “high” serum concentration but without 

limiting the applied number of genomic particles at every round. In these conditions, a stable 

and high titer was observed after a slight decrease during cycle 2 and 3. Nevertheless, after 

five cycles no distinct selection of mutants was observed and wtAAV was enriched in 

comparison to the initial pool. This failed selection could be a result of an insufficient 

selection pressure due to high amounts of virirons or a lack of genotype-phenotype coupling 

(see Discussion).  

Analogous results were obtained with a different human serum (serum A, or in presence of a 

mix of four different sera (S2, S3, S4 and S5)) (data not shown). In case of serum A, when the 

amount of virions during the selections was not regulated, the outcome of the selection was 

unsuccessful for both high and low selection pressure. A selection profile similar to the one 

described above (high pressure w/o particle regulation) was observed (no distinct selection of 

mutations; enrichment of wt). However, as in the case described above, particle regulation 

resulted in a successful selection. In the second case (mixed sera), a progressive loss of viral 

progeny was observed independently from the level of serum concentration (high or low) or 

particle regulation, suggesting that the mixture of sera applied too stringent conditions to the 

selection process. Sequencing confirmed the unsuccessful outcome of the selection.  

In summary, isolation of novel mutations and multiple-site mutants always correlated with a 

clear rescue of titer. These findings validate this method as convenient solution to test 

different experimental conditions. Restricting sequencing to selections that result in good 

titer-evolution patterns allows more different experimental settings to be tried for a given 

budget. 
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Figure 3. Evolution monitoring of different selection setups. (A) A second generation AAV-2 capsid library 
was screened for several selection cycles in presence of a high (blue line and dotted green line) and a low serum 
concentration (red line). Titers of the viral progeny during the selection were monitored by light cycle PCR. In 
two cases (red and blue line) no more than 5 x 109 genomic particles were used to infect cells at each selection 
round, while in another experiment (dotted green line) the entire progeny harvested from the previous rounds 
was used. (B) Sequencing profile of single clones obtained after each selection. Only when applying regulation 
of particle numbers and low selective pressure conditions new mutants were strongly selected.  
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General characterisation of enhanced capsid mutants 
 
As described in the previous paragraph, we performed a total of twelve selections. Clones 

were selected from pools that showed a rescue of titer after the 3rd selection cycle (serum A, 

high pressure w particle regulation; serum B, low pressure w particle regulation). The mutants 

were packaged as GFP-expressing rAAV particles (Table 4) and tested for packaging ability, 

infectivity and ability to evade neutralisation. Since strongly selected mutations were likely to 

convey the best immune-escaping effect, only clones were chosen that combined as many of 

the strongly selected mutations in one mutant as possible. Mutations were considered to be 

strongly selected, when they were observed in at least 10 % of the clones of a selection. 

According to the assumption that multiple efficient mutations on one clone should result in a 

superior phenotype compared to the corresponding single mutants no mutants with less than 

three strongly selected mutations were tested. Two of the quadruple mutants (N551D/E563K/ 

Q575P/A591V and S458P/R459K/H509Q/N551D) and the quintuple mutant were not 

pursued since they carried mainly mutations that were weakly selected as single mutations in 

other clones, thus suggesting a neutral or negative influence. Accordingly, after preliminary 

tests showed a reduced transduction efficiency for these latter mutants, these clones were not 

further characterised. New mutations occurring frequently in single mutation clones (e.g 

R447S and N449S) were not further characterized because of time constraints but could 

represent interesting alternatives for the generation of immune-escaping clones.  

All tested mutants contained the N551D mutation. C1 and C2 were based on the previously 

selected R459K/N551D double mutant (see Chapter III), which had exhibited the best 

immune-escape ability and an infectivity superior to wtAAV-2. As expected the occurrence of 

these two mutations was strongly increased in all successful selections, although slight 

variations in frequency of occurrence were observed when comparing results obtained with 

the two sera. In the initial second generation library about 50 % of the sequences contained 

the N551D mutation, while the R459K mutation was present in only 10 % of all sequences. 

 
Table 4. Mutants obtained after three rounds of selection in presence of different neutralizing sera 

Clone Number of mutations Mutations

C1 3 S458P, R459K, N551D 

C2 3 R459K, A493T, N551D 
C3 3 R447S, S458P, N551D 
C4 3 N449S, S458P, N551D 
C5 4 S458P, Y500F, N551D, A664T 
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The double mutation R459K/N551D was found in 5 % of the sequenced clones. After the new 

selection rounds, the occurrence of the N551D mutation increased approx. 2 fold to 90-95 %, 

while the proportion of double mutants was elevated 7-14 fold to 35-70 %, confirming the 

efficacy of these mutations in conferring immune-escaping ability to the viral capsid. Though 

not as frequent as the R459K and N551D mutations, the new mutations carried by tested 

mutants appeared in 10-60 % of the clones in the selection, in which they appeared most 

frequently (Table 5). It should be noted that clones that contained either a R447S or a N449S 

mutation in combination with a N551D mutation are likely to be a product of the shuffling 

procedure since both these new mutations had already been observed in the previous 

selection, thus demonstrating that successful combination mutants are generated by DNA 

shuffling.  

 
Table 5. Observed frequency of strongly selected mutations in the two most successful selections in %. 

 R447S N449S S458P R459K A493T Y500F N551D A664T 

serum A, high pressure 3 % 3 % - 33 % 15 % 5 % 95 % - 

serum B, low pressure 10 % 12 % 57 % 75 % - 12 % 91 % 10 % 

Both selections were performed with reduction of particle numbers. At least 40 single clones were sequenced. 
 

As discussed in chapter III, enhancement of infection efficiency mediated by improved 

receptor binding ability or post-entry processing is an expected consequence of the screening 

procedure, because it would confer, independently from the ability to escape neutralization, an 

additional selection advantage by favouring amplification of such clones. Accordingly, 

genomic titers of all tested mutants were comparable to wtAAV-2 (Table 6). The infectious 

titers of the mutants C1, C2, C4 and C5 were higher than of wtAAV-2. However, while the 

ratio between infectious and genomic particles (which for simplicity we define here as 

“infectivity”) of C3 and C4 was slightly reduced or equal in comparison to wt AAV-2, the 

ratio was increased approx. 3-fold for C1 and C5, while C2 mutant was about 1.3 fold more 

infectious. The previously studied R459K/N551D double mutant also exhibited a 1.7-fold 

increased infectivity in comparison to wt. This calculates to a 1.8-fold increase of C1 and C5 

in comparison to the double mutant. In case of C1 (S458P/R459K/N551D) the mutation 

responsible is the S458P mutation, while the C5 quadruple mutant (S458P/Y500F/N551D/ 

A664T) has three new mutations (S458P, Y500F and A664T) compared to the double mutant, 

thus allowing no distinction between single or cumulative effects. The C2 mutant differs from 

the double mutant in one additional mutation (A493T), accordingly being responsible for the 

slight drop of infectivity from 1.7-fold to 1.3-fold. 
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Table 6. Viral titers per µl of GFP-expressing rAAV-2 selected mutants 

Clone 
 

Genomic titer 
 

Infectious 
titer 

Particle 
titer 

Ratio genomic to 
infectious titer 

n-fold infectivity 
compared to wt 

wt 1.2 x 108 5.9 x 105 1.5 x 109 203 1 
Double mutant 2.3 x 108 1.9 x 106 1.4 x 109 121 1.7 

C1 1.6 x 108 2.4 x 106 1.5 x 109 67 3.0 
C2 2.2 x 108 1.4 x 106 1.45 x 108 156 1.3 
C3 2.1 x 108 5.1 x 105 n.d. 408 0.5 
C4 2.1 x 108 1.1 x 106 n.d. 198 1 
C5 1 x 108 1.5 x 106 n.d. 67 3.0 

AAV-2 empty particles – – 1.25 x 109 – – 

 
 
In the mutant C3 the R447S seems to be responsible for the slight decrease in infectivity, 

while the N449S mutation does not influence infectivity. Since C2 was strongly selected 

despite the drop in infectivity this disadvantage should be compensated by better immune-

evading properties which was in fact the case (see below). 

Interestingly, only one of the newly identified mutations conveys a remarkable change in 

local pKa on the capsid surface. In the R477S mutation a large and highly basic arginine 

(positively charged) is replaced by a polar serine (neutral) with a 50 % reduced van der Waals 

volume. As in case of the R459K and N551D mutations, this would correspond to a loss of 

positive charge at the side of the threefold peak. All other mutations cause no local charge 

shifts. However, the S458P and A493T mutations lead to an increase of van der Waals 

volume of approx. 25 % and 40 % respectively. The Y500F mutation does not modify the 

volume, but like all mutations mentioned above it induces a local change in hydrophilicity 

which could result in a rearrangement of aa in this area. The hydrophilic S459 and Y500 are 

exchanged for a hydrophobic P and F respectively, while A493 (hydrophobic) is changed to T 

(hydrophilic). The N479S mutation results in a slight loss of hydrophilicity and van der Waals 

volume (20 %). Besides a local influence on the contact area involved in the interaction with 

receptors or antibodies, these changes could lead to more general structural rearrangements of 

the capsid and therefore to modification of antibody binding sites located elsewhere. 

Moreover, an amino acid with unique characteristics as proline could influence secondary, 

tertiary and quarternary structure by introducing kinks in the protein structure.  

As already observed in chapter III strongly selected mutations are located at the surface of the 

capsid. This was expected since surface exposed amino acids are more likely to tolerate 

mutations and are directly responsible for any kind of interactions with their environment like 

receptors or antibodies. As seen in Figure 4A and B, mapping of the mutated amino acids on 

tested mutants showed a clustering of the strongly selected new mutations (R447S, N449S, 

S458P, A493T, Y500F) at the base of the large peaks of the three-fold symmetry axis. 
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Figure 4. Mapping of mutations found after the selections on the 3D structural model of the viral capsid. (A) 
Mapping of strongly selected mutations on a 3D structural model of the AAV capsid. Mutations observed in 
more than 10 % of the clones are depicted in orange. The previously selected R459K and N551D mutations are 
coloured in red. To facilitate visualization, the protruding spikes are coloured in pink. (B) The pictures show a 
magnified view of the three-fold symmetry axis composed of three viral capsid subunits. In addition to strongly 
selected mutations (orange and red) mutations that appeared in less than 10 % of the clones were depicted in 
yellow. (C) Mapping of strongly selected second- (orange) and first-generation mutations (red) on the amino 
acid sequence. Numbering is according to VP1. 
 
 
As sole exception, the strongly selected A664T mutation was not located at the peak of the 

three-fold axis but instead close to the five-fold axis. Looking towards the three-fold axis, the 

newly selected S458P and A493T mutations are located close to each other at the right side of 

the peaks (looking towards the threefold axis), while the R447S and N449S mutations are 

found adjacent to each other on the left side. In contrast to the second-generation mutations, 

previously selected mutations R459K and N551D locate at the back of the peak, facing away 

from the three-fold axis. Strikingly, the distance of the mutations on the protein sequence is 

not necessarily mirrored by their position on the 3D-structure. Although being separated in 

the primary structure by a distance of 34 and 104 amino acids respectively (Figure 4C), the 

mapping of S458 and A493 as well as R447 and N551 on the three dimensional structure 

reveal a proximity of approx. 5 and 4 Ångström (Å) respectively between functional groups. 

Similarly, despite the distance of 91 amino acids in the primary structure between the 

previously studied R459 and N551 functional groups are approximately 7 Å apart. Finally, the 

distance between neighbouring side chains of S458 and the R459 as well as R447 and N449 

are of approximately 2.5 Å. This clustering around the base of the peaks strengthens the 

hypothesis, discussed in chapter III, of this being a highly immunogenic region. 

 

 

Characterisation of immune-evading abilities of enhanced mutants 
 
To evaluate antibody-evading abilities of the selected mutants, equal genomic titers were used 

to infect HeLa cells in the presence of serial dilutions of different neutralizing human sera. 

The mutants were tested on sera different from those used during the selection procedure in 

order to test if immune-escaping ability was rather a serum-specific (patient-specific) or a 

universal characteristic. In order to exclude the influence of particle titers on the effective 

antibody concentration, the total number of viral particles was normalized by addition of 

AAV-2 empty capsids. A preliminary test of all packaged mutants was conducted using the 

previously described mixed serum in order to select the best mutants for further evaluation 

(data not shown).  
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As indicated by the genomic-to-infectious titer ratio, differences in infectivity were observed 

in the neutralisation assays, when equal genomic particles were applied. To allow 

quantification of immune-evading ability independently from differences in infectivity of 

tested mutants, the amount of serum needed to half the number of transduced cells was 

defined as N50. Values were determined using Figure 5.The best results were obtained by 

mutants C1 and C2, which were therefore used for additional testing on three single test sera 

(S1-S3) in parallel with the R459K/N551D double mutant to estimate the improvement of 

newly selected mutants to the first-generation mutant. N50 values of the new mutants, the 

R459K/N551D double mutant and wt were determined using Figure 6. To allow 

quantification of the immune-evading properties of the mutants the ratio of mutant to wt N50 

was calculated (Fig. 6A). Compared to wt, the mutant C1 (S458P/R459K/N551D) in presence 

of S1, S2 and S3 required a 3.7-, 3- and 2.3-fold respectively higher serum concentration to 

halve the number of transduced cells. The C2 mutant (R459K/A493T/N551D) showed an 

Figure 5. Immune-escaping ability of selected 
mutants. (A, B and C): results for three different 
human sera. Cells were infected with same number 
of genomic particles of GFP-expressing rAAV 
virions. Total article numbers were adjusted by 
addition of wt AAV-2 empty capsids. In all sera 
mutant and wt N50 values were determined, being 
defined as the amount of serum needed to half the 
number of transduced cells. To allow an estimation 
of the improvement from first- to second-generation 
mutants, N50 values were also determined for the 
most efficient first-generation mutant 
(R459K/N551D, red line).On the x-axis, the serum 
concentration is expressed as percentage.  
 



Chapter IV 53

improvement of 3.4-, 2.8- and 2.6-fold. In contrast, the double mutant yielded slightly lower 

values of 2.7-, 2.4- and 2-fold of wt-N50. In S1 and S2 the C1 mutant was the most successful, 

while C2 showed the highest value in S3. As expected, the immune-escaping abilities varied 

in the different sera. All mutants showed the strongest phenotype in S1 and the weakest in S3. 

A direct comparison of the immune escape abilities of the new second-generation mutants 

compared to the first-generation double mutant revealed an enhanced phenotype in all tested 

sera, although the increase varied between 15 and 37 %.(Fig. 6B). This was expected, since 

antibodies composition of different sera is likely to differ for ability to recognize the different 

capsid epitopes. 

In summary, this data demonstrate that generation of viral mutants with immune-escaping 

properties can be achieved by successive re-iteration of a directed evolution procedure based 

on error prone PCR, DNA shuffling and evolution monitoring. 

 

 

 
 R459K/N551D C1 C2  C1 C2 

S1 2.7 3.7 3.4  37 % 26 % 

S2 2.4 3 2.8  25 % 17 % 

S3 2 2.3 2.6  15 % 30 % 

 

Figure 6. Immune-escaping properties of newly selected mutants and the R459K/N551D double mutant. (A) 
Immune-evading abilities of the mutants in the three test sera were quantified by comparison of mutant and wt 
N50 values obtained from Fig. 5. (B) Improvement of the immune-escaping properties of newly selected mutants 
compared to the R459K/N551D double mutant in %. Shown results are summarized in the table below. 
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Discussion 
 
As described in chapter III, a directed evolution approach could be successfully applied to the 

problem of antibody-mediated neutralization of AAV vectors. Obtained results suggested the 

possibility to obtain further enhanced mutants by additional directed evolution. The resulting 

accumulation of multiple effective mutations on the capsid should confer a better ability to 

evade neutralizing antibodies. Accordingly, we introduced DNA shuffling for the creation of 

a large second-generation library (~ 4 x 107 clones).  

A pilot experiment allowed setup of a DNA shuffling procedure for error prone PCR-

generated AAV libraries. In this setup, three single clones carrying a total of 5 mutations were 

shuffled, which should have resulted in 24 combination mutants of the 5 point mutations. 

Considering that for more complex pools carrying a higher number of mutations, the number 

of possible combinations is accordingly higher, it becomes clear that DNA shuffling is an 

elegant alternative to labour intensive site directed mutagenesis.  

Although DNA shuffling can be used to generate new point mutations during recombination, 

a high fidelity protocol was used in order to allow a methodical separation between 

recombination and randomization (Stemmer, 1994; Zhao and Arnold, 1997). After limited 

sequence analysis of obtained mutants, 13 of the possible 24 clones were found. Even the 

clones with a statistical expectation of only 1/27 were found with one single exception which 

is likely due to the low number of sequenced clones (43). All other missing clones had a 

statistically expected frequency of significantly less than 1 in 27 clones due to the close 

proximity (only 4 aa) between mutations N551D and E555G which reduces the probability of 

a crossover event to occur between the two sites. Interestingly, two of these clones were 

actually observed, suggesting that missing clones could indeed have been generated although 

not all found. The observation that all groups of clones with an equal expected frequency 

showed a good correlation between expected and observed occurrence is also a good 

indication for successful shuffling, while the weak correlation found for individual mutants is 

likely to be a consequence of the small number of sequenced clones.  

After establishment, DNA shuffling was applied to the entire pool of virions generated after 3 

rounds of a previous selection using a neutralizing human serum (see chapter III), although 

only three mutations R459G, R459K and N551D had been strongly selected. This is based on 

the rational that combinations of weakly selected mutations alone or together with strongly 

selected mutations might also confer a positive effect. As expected all combinations of the 

three frequent mutations were observed in the second-generation library. In general, libraries 
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with a mutational rate between one and two mutations per clone have been shown to yield 

best selection results (Moore et al., 1997). However, since the shuffled pool contained only an 

average of 0.5 mutations per clone, new mutations were introduced by error prone PCR. The 

obtained rate of 1.7 new aa exchanges per clone found in the resulting library of 4 x 107 

clones were well within the desired range.  

Evolution monitoring has been introduced as an efficient tool to improve the efficacy of 

selections. Success of a selection is strongly dependent on the choice of an appropriate 

selective pressure. This is in turn dictated by the complex requirements that a mutant has to 

meet  in order to be successfully selected against other variants (in our case ability to escape 

neutralization, infectivity, efficient replication and packaging).  

The fact that only selections with regulation of particle numbers were successful showed that 

the effective selection pressure was dependent not only on the amount of serum but on the 

number of free virions, as well. Since the amount of serum was held constant, it can be 

speculated that variations in the ratio between virions and antibodies mediates a direct effect 

on the selection pressure because high numbers of virions reduce the selective pressure by 

sequestering binding antibodies. In addition, higher numbers of virions would result in 

multiple infections of single cells by different mutants. Subsequent capsid assembly and DNA 

packaging would generate chimeric virions, in which no correspondence between genotype 

and phenotype is given (uncoupling). In this case no efficient selection could take place in the 

next round. The sequencing profile after the reduction of total genomic particles to 5 x 109 

during the selection did not show stop codons. This suggests a MOI after incubation with 

neutralizing sera of below 1 (less than one mutant genome per cell) since only in this case an 

efficient genotype-phenotype coupling takes place. As a result each mutant genome is 

packaged in the capsid, which it encodes. Accordingly, mutants carrying stop codons could 

not be packaged due to their inability to allow production of complete capsid proteins. On the 

countrary, a high frequency of stop codons as found without reduction of particle numbers 

(data not shown) is a good indicator for a lack of genotype-phenotype coupling caused by a 

MOI of significantly above 1.  

Therefore, the selective pressure is the result of a complex mixture of experimental conditions 

and the optimal setup for any given goal has to be determined by trial-and-error experiments 

followed by sequencing of high numbers of clones. This problem was addressed by evolution 

monitoring. During the whole panning procedure, reliable indication about the progress of the 

selection can be obtained by tittering of the viral pool after each screening round and selection 

pressure and/or particle numbers can be adjusted accordingly. Selections for which a strong 
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rescue of titer is observed have been shown to correlate with a successful outcome. 

Restricting sequencing to experiments where viral titer is rescued after an initial drop allowed 

to test a larger number of experimental conditions, reducing experimental times and costs at 

the same time. 

Screening of the second-generation AAV library for efficient gene delivery in the presence of 

two different neutralizing human sera allowed the selection of several successful variants, the 

majority of which were based on the previously studied R459K/N551D double mutant. An 

alignment of different AAV serotypes disclosed a preferential location of the strongly selected 

mutations in capsid regions that are either highly variable (S458, R459, A493) or at least only 

moderately conserved between serotypes (N449, Y500, N551) (Fig. 7). The R447S mutation 

could be considered an exception, since the R is conserved in 7 out of 9 shown serotypes. 

However, an S is found in the other two serotypes, which could explain the tolerance and the 

relatively moderate drop of infectivity to 50 % of wt. 

 

 

 
Figure 7. Alignment of different AAV serotypes. In the shown part all positions mentioned in the text are 
marked by triangles (orange). To simplify comparison with the text, the numbering is according to VP1 in AAV-2 
(upper row). 

600 679610 620 630 640 650 660(600)
GNRQAATADVNTQGVLPGMVWQDRDVYLQGPIWAKIPHTDGHFHPSPLMGGFGLKHPPPQILIKNTPVPANPSTTFSAAKAAV-2 Cap2(586)
SNTAPTTRTVNDQGALPGMVWQDRDVYLQGPIWAKIPHTDGHFHPSPLMGGFGLKHPPPQIMIKNTPVPANPPTTFSPAKAAV-3b Cap(587)
QNTAPQIGTVNSQGALPGMVWQNRDVYLQGPIWAKIPHTDGNFHPSPLMGGFGLKHPPPQILIKNTPVPADPPTTFNQSKAAV-8 Cap(589)
ANTGPIVGNVNSQGALPGMVWQNRDVYLQGPIWAKIPHTDGNFHPSPLMGGFGLKHPPPQILIKNTPVPADPPTTFSQAKAAV-10 Cap(589)
ANTAAQTQVVNNQGALPGMVWQNRDVYLQGPIWAKIPHTDGNFHPSPLMGGFGLKHPPPQILIKNTPVPANPPEVFTPAKAAV-7 Cap(588)
SSTDPATGDVHAMGALPGMVWQDRDVYLQGPIWAKIPHTDGHFHPSPLMGGFGLKNPPPQILIKNTPVPANPPAEFSATKAAV-1 Cap(587)
SSTDPATGDVHVMGALPGMVWQDRDVYLQGPIWAKIPHTDGHFHPSPLMGGFGLKHPPPQILIKNTPVPANPPAEFSATKAAV-6 Cap(587)
ATTAPITGNVTAMGVLPGMVWQNRDIYYQGPIWAKIPHADGHFHPSPLIGGFGLKHPPPQIFIKNTPVPANPATTFTAARAAV-11 Cap(584)
STTAPATGTYNLQEIVPGSVWMERDVYLQGPIWAKIPETGAHFHPSPAMGGFGLKHPPPMMLIKNTPVPGN-ITSFSDVPAAV-5 Cap(576)
GNRQAATADVNTQGVLPGMVWQDRDVYLQGPIWAKIPHTDGHFHPSPLMGGFGLKHPPPQILIKNTPVPANPSTTFSAAKConsensus(600)

520 599530 540 550 560 570 580(520)
HLNGRDSLVNPGPAMASHKDDEEKFFPQSGVLIFGKQGS---EKTNVDIEKVMITDEEEIRTTNPVATEQYGSVSTNLQRAAV-2 Cap2(509)
HLNGRDSLVNPGPAMASHKDDEEKFFPMHGNLIFGKEGT---TASNAELDNVMITDEEEIRTTNPVATEQYGTVANNLQSAAV-3b Cap(510)
HLNGRNSLANPGIAMATHKDDEERFFPSNGILIFGKQNA---ARDNADYSDVMLTSEEEIKTTNPVATEEYGIVADNLQQAAV-8 Cap(512)
HLNGRDSLVNPGVAMATHKDDEERFFPSSGVLMFGKQGA---GRDNVDYSSVMLTSEEEIKTTNPVATEQYGVVADNLQQAAV-10 Cap(512)
HLNGRNSLVNPGVAMATHKDDEDRFFPSSGVLIFGKTG----ATNKTTLENVLMTNEEEIRPTNPVATEEYGIVSSNLQAAAV-7 Cap(512)
NLNGRESIINPGTAMASHKDDEDKFFPMSGVMIFGKESA---GASNTALDNVMITDEEEIKATNPVATERFGTVAVNFQSAAV-1 Cap(510)
NLNGRESIINPGTAMASHKDDKDKFFPMSGVMIFGKESA---GASNTALDNVMITDEEEIKATNPVATERFGTVAVNLQSAAV-6 Cap(510)
TLNNRWSNIAPGPPMATAGPSDGDFS-NAQLIFPGPSVT---GNTTTSANNLLFTSEEEIAATNPRDTDMFGQIADNNQNAAV-11 Cap(508)
ELEGASYQVPPQPNGMTNNLQGSNTYALENTMIFNSQPANPGTTATYLEGNMLITSESETQPVNRVAYNVGGQMATNNQSAAV-5 Cap(496)
HLNGRDSLVNPGPAMASHKDDEEKFFPQSGVLIFGKQGS  EKTNVDIEKVMITDEEEIRTTNPVATEQYGSVSTNLQRConsensus(520)

440 519450 460 470 480 490 500(440)
NPLIDQYLYYLSRTN-TPSGTTTQSRLQFSQAGASDIRDQSRNWLPGPCYRQQRVSKTSADN-----NNSEYSWTGATKYAAV-2 Cap2(435)
NPLIDQYLYYLNRTQGTTSGTTNQSRLLFSQAGPQSMSLQARNWLPGPCYRQQRLSKTANDN-----NNSNFPWTAASKYAAV-3b Cap(435)
NPLIDQYLYYLSRTQ-TTGGTANTQTLGFSQGGPNTMANQAKNWLPGPCYRQQRVSTTTGQN-----NNSNFAWTAGTKYAAV-8 Cap(438)
NPLIDQYLYYLSRTQ-STGGTQGTQQLLFSQAGPANMSAQAKNWLPGPCYRQQRVSTTLSQN-----NNSNFAWTGATKYAAV-10 Cap(438)
NPLIDQYLYYLARTQSNPGGTAGNRELQFYQGGPSTMAEQAKNWLPGPCFRQQRVSKTLDQN-----NNSNFAWTGATKYAAV-7 Cap(437)
NPLIDQYLYYLNRTQ-NQSGSAQNKDLLFSRGSPAGMSVQPKNWLPGPCYRQQRVSKTKTDN-----NNSNFTWTGASKYAAV-1 Cap(436)
NPLIDQYLYYLNRTQ-NQSGSAQNKDLLFSRGSPAGMSVQPKNWLPGPCYRQQRVSKTKTDN-----NNSNFTWTGASKYAAV-6 Cap(436)
NPLLDQYLWHLQSTTSGETLNQGNAATTFGKIRSGDFAFYRKNWLPGPCVKQQRFSKTASQNYKIPASGGNALLKYDTHYAAV-11 Cap(428)
NPLVDQYLYRFVSTN-------NTGGVQFNKNLAGRYANTYKNWFPGPMGRTQGWNLGSGVN-----RASVSAFATTNRMAAV-5 Cap(428)
NPLIDQYLYYLSRTN TPSGTTTQSRLQFSQAGASDIRDQSRNWLPGPCYRQQRVSKTSADN     NNSEYSWTGATKYConsensus(440)

440 450 460 470 480 490 500 

580510 520 530 540 550 560 570 

590 600 610 620 630 640 650 660
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Interestingly, with exception of the Y500F mutation, which is located on the peak facing 

towards the axis, all strongly selected mutations are positioned outside of the threefold crater. 

This might be due to a preferential location of immunogenic epitopes on the outside of the 3-

fold crater because of a higher accessability. Another possible reason could be due to the 

importance of the crater for the infectious process (Kern et al., 2003, Opie et al.,2003). 

Mutations in this area are therefore more likely to negatively influence the infectivity. The 

observed exception could result from the fact that the newly generated F is conserved in six of 

the nine serotypes in the alignment (AAV-3, AAV-1, AAV-6, AAV-7, AAV-8 and AAV-10), 

while the Y is unique for AAV-2, which might explain the tolerance for this aa. Accordingly, 

the Y500F mutation could correspond to a local reversion of the evolutionary diversification 

of AAV-2 from other serotypes. An analogous example of a reversion, although observed 

only once, is provided by a R475K mutation. The R is only found in serotypes 2 and 3, while 

all other serotypes in the alignment show a K at this position. The new amino acids P 

(S458P), K (R459K) and D (N551D) were not observed in other serotypes, but it should be 

noted that a number of new AAV serotypes have been recently discovered, suggesting that 

more might exist. Strikingly, the new amino acids of half of the strongly selected mutations 

(R447S, A493T, Y500F, A664T) are found in other serotypes. When using a directed 

evolution approach the selected aa should constitute the best compromise regarding tolerance 

and immune-escaping effect. Since a significantly large proportion of strongly selected aa are 

found in other serotypes, this suggests that AAV might have evolved in a variety of serotypes 

to circumvent the host immune system. In this regard it is conceivable that beside the 

generation of useful gene therapy vectors, error prone PCR libraries could help scientists to 

backtrack natural evolution of viral families. 

Two of the tested mutants carried additionally an S458P mutation (clone C1) and an A493T 

mutation (clone C2) and showed enhanced immune-evading abilities in comparison to the 

double mutant. This strengthens the hypothesis that improved phenotypes can be generated by 

accumulation of multiple beneficial mutations on one clone. Clones were tested on three 

human sera that had not been used during the selections in order to assess if immune-escaping 

phenotype was serum specific or rather an universal characteristic. Our results partially 

suggest the second hypothesis, since a certain degree of immune escape could be observed for 

all mutants in the tested sera. However, the effect of a given mutant varied quantitatively for 

each serum, probably because of recognition of different epitopes by antibodies contained in 

different sera. These differences could also explain the selection of new mutations which did 

not yield particularly strong immune-escaping properties when tested on sera different from 
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those used for the selections (e.g. R447S and N449S). Accordingly it is possible that, 

although tests on three sera showed a better effect for clones C1 and C2, clones carrying the 

other four strongly selected mutations R447S, N449S, Y500F and A664T might be more 

effective on other sera. Interestingly in this respect, all mutations carried by clones C1 and C2 

except for the A493T mutation are not found in any analyzed AAV serotype (1, 2, 3, 5, 6, 7, 

8, 10 and 11), while three of the four mutations present in the less successful clones (R447S, 

N449S, Y500F and A664T) appear in other serotypes with N449S as sole exception. Since 

patients might not only be seropositive for AAV-2 but also for other serotypes in parallel, it 

can be speculated that the widest immune-escape phenotype might be conveyed by mutations 

that are not present in other common serotypes. However, demonstration of this hypothesis 

requires further investigation.  

In addition to immune escape, selected mutations affected other biological characteristics of 

the virions. The double mutant, C1 and C2 showed a better infectivity than wtAAV (1.7-fold, 

1.3-fold and 3-fold respectively). These data suggests that this directed evolution approach 

may also be used to optimize vectors in respect to infectivity. Improvement of infectivity of 

the double mutant has also been observed in preliminary in vivo experiments conducted by 

our collaborators at the University College of London, UK (A. Nathwani, personal 

communication). The double mutant was able to express significantly enhanced levels of 

factor IX after systemic injection in mice (n = 3) in comparison to wt AAV-2. Similarly, other 

groups have also observed significant improvement of infectivity mediated by single point 

mutations (Lochrie et al., 2006; Opie et al., 2003, Maheshri et al., 2006), although in vitro 

and in vivo data did not always correlate (Lochrie et al., 2006). 

In a rational design approach, Lochrie and coworkers (Lochrie et al., 2006) generated over 

120 point mutants at different surface exposed positions and tested them for infectivity and 

immune-escaping abilities. Interestingly, more than 60 % of the mutants lead to a severely 

reduced transduction efficiency, showing that introduction of new mutations in the capsid 

structure is likely to negatively interfere with biological function. In addition, not only the 

mutated position but also the nature of the substituted amino acid is crucial for the phenotype. 

Accordingly, Lochrie et al. observed a 50-fold drop in infectivity in case of a A493R 

mutation generated by site directed mutatgenesis, while the here reported A493T mutation 

shows only a reduction by 25 %. These issues complicate the process of capsid optimization 

by site directed mutagenesis. Evolutionary approaches circumvent this obstacle because 

deleterious mutations are automatically sorted out from the pool, while the best suited amino 

acids are selected.  
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In addition, combinatorial technology can be exploited to gain information about structural or 

biologically important regions of the capsid. A mapping of all mutations found after the 

selection did not show the random distribution featured by the library but rather a distinct 

pattern in which some areas were devoid of mutations (Fig 8A). Two explanations might 

account for that finding. First, it is possible that the mapping reflects the location of 

immunogenic regions. However, this is more likely to be the case for the strongly selected 

mutations, while a weak selection could just reflect tolerance to a neutral amino acid change 

in a specific position. Some areas, on the other hand, are functionally crucial for structure or 

infection biology and are therefore less likely to tolerate mutations. In this case, mapping all 

observed mutations should allow an indirect identification of those important regions. This 

hypothesis is supported by comparison of the mapping of all selected mutations with the 

location of transduction-abolishing mutations found by Opie et al. (2003) and Lochrie et al. 

(2006) (Fig. 8B). Transduction-abolishing mutations found by Opie et al. and Lochrie et al. 

are shown in red and constitute an area of the capsid which Lochrie and collegues defined as 

the “dead zone”: mutations of these residues led in their study to dramatic loss in infectivity. 

Strikingly, nearly all 30 surface-exposed mutations found after selections in our approach 

(depicted in yellow) mapped in an area surrounded by the dead zone, while only two of these 

(depicted in orange) overlapped with “dead zone” residues. 

 

 
Figure 8. Mapping of tolerated and transduction-abolishing mutations. (A) Mapping of all surface-exposed 
mutations (yellow) found after the selections in the area of the 3-fold axis. (B) Additional co-mapping of 
transduction-abolishing point mutations found by Opie et al. (2003) and Lochrie et al. (2006) (depicted in red). 
The mutated positions include the binding motif for AAV’s primary receptor HSPG and the area proposed to be 
involved in secondary receptor interaction. In the positions depicted in orange mutations were observed after the 
selection, although positions were reported to be intolerant of mutations. 
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This observation suggests the potential of combinatorial technology as tool to investigate 

capsid function. In addition, it should be noted that in the case of the overlapping positions, 

the amino acid introduced by mutagenesis was different in this case than in the study by 

Lochrie and coworkers, demonstrating once more the importance of the amino acid nature for 

the phenotype and suggesting that a combinatorial approach is a more powerful tool for the 

study of capsid biology by reverse genetics. These data suggest a yet unknown biological 

importance for the amino-acids located directly in the 3-fold crater around the symmetry axis, 

where no mutations were found after the selection procedure. 

Like the mutations of the double mutant, both new mutations are located at the base of the 

threefold peak. The preferred localisation of all strongly selected mutations around the sides 

of the threefold peak supports previous findings identifying it as immunogenic region 

(Moskalenko et al., 2000; Huttner et al., 2003; Lochrie et al., 2006). Although all mutants 

were less efficiently neutralized by test sera than the wt, stronger influences of point 

mutations on immune evasion have been reported (Lochrie et al., 2006 and Maheshri et al., 

2006). However, the differences could be due to the different experimental settings applied to 

characterize the mutants. First of all in both studies different cell lines were used to test 

immune-evasion. In addition, Lochrie and coworkers used a β-Galactosidase readout system 

to quantify the immune-escaping effect by visual determination of positive cells in small areas 

of the sample and also applied transduction-enhancing agents such as ectoposide or 

adenovirus co-infection. In this regard the use of FACS analysis should allow a more 

unbiased evaluation. Moreover, the influence of transduction-enhancing agents is difficult to 

asses. Maheshri and coworkers, on the other hand, did not use human sera but instead serum 

obtained from an AAV-2 immunized rabbit. It is possible that human sera contained 

antibodies against several AAV serotypes that conferred resistance against a wider spectrum 

of capsid variants. For example, mutations that were selected in our experiments like R447S, 

A493T, Y500F and A664T are present in other serotypes and might not be effective in a 

serum containing Ab against these serotypes. In this case more or different mutations might 

be needed to achieve a stronger immune-escaping phenotype. These aspects are currently 

under investigation and further selection protocols are being performed to identify more 

beneficial mutations.  

A library of 107 clones and an average mutation rate of only 1.7 aa per clone is unlikely to 

contain mutants with multiple effective mutations at the needed positions. Therefore, further 

evolved libraries would be needed to achieve better results on pooled sera. As starting point 

efficient mutations on various epitopes could be selected by screening a first-generation 
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library on a larger number of different sera in parallel. After shuffling, a second-generation 

library could be selected on pooled human sera. This step-by-step process should lead to the 

generation of a pool of mutants, which allow efficient gene therapy for a major proportion of 

patients with pre-existing immunity.  

It is important to observe that mutants with improved infectivity were selected, demonstrating 

the potential of this approach for the generation of capsid variants with enhanced transduction 

efficiency of problematic cells, such as stem cells resistant to all tested AAV serotypes 

(Smith-Arica et al., 2003; Hughes et al., 2002).  

In summary, these data demonstrate that directed evolution methods employing error prone 

PCR, DNA shuffling, evolution monitoring are applicable to AAV for the generation of 

engineered capsid variants with tailored phenotype. In addition we could show the potential of 

this technology as reverse-genetics tool to investigate capsid biology. We speculate that 

similar techniques can be applied to viral systems different than AAV. 
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Abstract 
AAV-2 targeting vectors have been generated by insertion of ligand peptides into the viral 

capsid at amino acid position 587. This procedure ablates binding of heparan sulphate 

proteoglycan (HSPG), AAV-2s’ primary receptor, in some, but not all mutants. Using an 

AAV-2 Display library, we investigated molecular mechanisms responsible for this 

phenotype, demonstrating that peptides containing a net negative charge are prone to confer a 

HSPG non-binding phenotype. Interestingly, in vivo studies correlated the inability to bind to 

HSPG with liver and spleen detargeting in mice after systemic application, suggesting several 

strategies to improve efficiency of AAV-2 re-targeting to alternative tissues. 

 

 

Results and Discussion 
 
AAV-2 is gaining increasing attention as gene therapy vector. However, the wide distribution 

of its primary receptor, HSPG (Summerford and Samulski, 1998), hampers selective 

transduction of target tissue. Vectors aiming to re-direct AAV-2s` tropism have been 

generated by insertion of ligands at position 587/588 of the capsid (Büning et al., 2003a; 

Büning et al., 2003b). This is likely to interfere with the HSPG binding of at least two (R585 

and R588) of the five positively charged amino acids of the recently identified HSPG binding 

motif (Kern et al., 2003; Opie et al., 2003), explaining the ablation of HSPG binding of some 

targeting vectors (Girod et al., 1999; Grifman et al., 2001; Nicklin et al., 2001; Perabo et al., 

2003; Ried et al., 2002). In some cases, however, binding was only partially affected (White 

et al., 2004), or even restored (Grifman et al., 2001; Perabo et al., 2003; Work et al., 2004). 

To investigate molecular mechanisms responsible for these differences, we applied a 

previously described library of AAV capsids carrying insertions of 7 randomized amino acids 

at position 587 (Perabo et al., 2003) to a heparin affinity column (Work et al., in press) to 

separate binding from non-binding mutants. We sequenced and statistically analyzed (Table 

1) at least 80 clones from: 1) the original DNA-library, 2) the viral AAV-Display-library, 3) 

the flow-through fraction (non-binders = NB-AAV-pool) and 4) the 1M NaCl eluted fraction 

(binders = B-AAV-pool).  

 The DNA-library showed a higher than expected presence of alanines which originates 

from the oligonucleotides synthesis procedure. Occurrence of every other amino acid met 

statistical expectations for an unselected library.  
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 The AAV-Display-library showed an excess of the amino acids P, G and A and a 

defect of C, L, F, W and Y (Table 1B). Since P, G and A are three of the four smallest amino 

acids, whereas F, Y and W are three of the four biggest, this bias suggests that the packaging 

process selects against bulky inserts which would introduce dramatic structural 

rearrangements and have a deleterious effect on capsid structure. In addition, prolines could 

favour spatial accommodation of the peptide by introducing kinks and reducing its bulkiness. 

The B-AAV-pool showed a significant increase of arginine residues (Figure 1B). Strikingly, 

arginines were particularly frequent at the 7th position of the peptide (30%). In contrast, in the 

AAV-Display-library and the NB-AAV-pool, the frequency of arginine at this position (15% 

and 9% respectively) was equal or lower than the expectation for a randomized distribution 

among the seven amino acid positions (14.3%).  
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Table 1: A) Representative example of 20 peptides detected in B-AAV and NB-AAV pool. Net charge of the 
insertions is provided. Parentheses indicate a weak charge considering the low pKa of histidine B) Statistical 
analysis of the occurrence of amino acids. Based on the χ2-test, the colours indicate a higher (red), lower (blue) 
or expected (black) occurrence of each amino acid in the analyzed populations (P=0,0001). For each population 
>80 clones were sequenced. *These amino acids were found at clearly lower frequencies than expected but 
statistical assessment of the significance was not possible without sequencing a higher number of clones. 
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Interestingly, B-AAV-pool insertions carrying no positive amino acids displayed an 

exceptionally high amount of A, G and S (data not shown), the three smallest amino acids, 

suggesting a reduced impact on the wild-type capsid structure, which is less likely to interfere 

with binding of heparin.  

The NB-AAV-pool showed clearly a higher presence of negative charged amino acids (D and 

E) (Table 1A, B). Moreover, although the number of negative residues observed in the B-

AAV-pool matched statistical expectations, only 2% of the clones carried a net negative 

charge in its insertion, while 76% carried a positive and 21.5% a neutral charge. In clear 

contrast, the NB-AAV-pool consisted of 53% negative, 8% positive and 39% neutral net 

charged inserts. This bias becomes even clearer if histidine is considered neutral due to its low 

pKa: B-AAV-pool insertions would then be 2% negative, 64% positive and 34% neutral while 

NB-AAV-pool consisted of 64% negative, 2% positive and 34% neutral. These observations 

strongly suggest that the presence of negative charges is deleterious for functional binding of 

AAV-2 vectors to negatively charged heparin/HSPG. 
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Figure 1: Proposed model for the influence of several peptide classes on capsid stability and on binding to 
heparin. A) Three dimensional atomic structure of the 587 region. The side chains of R585 and R588 are 
pointed by the yellow arrow. B) The two arginines are part of the binding motif. C) A bulky peptide disrupts the 
heparin binding motif taking the arginines apart. D) A bulky peptide obstructs the HSPG binding motif. E) Small 
peptides could preserve the original structure of the loop and heparin binding motif. F) and G) The presence of 
one or more arginines in the inserted peptide restores the heparin binding ability. H) Due to its proximity to 
R588, an arginine in the last amino acid position of the insertion is prone to restore heparin binding. In all 
panels, a functional heparin binding site is indicated by a red pattern. A loop conformation that confers capsid 
stability is indicated by the blue arrow. 
 

 

Taken together, these data suggest a model in which peptide insertions at 587 can either 

disrupt or conserve the capsid ability to bind heparin by different mechanisms. Insertion of a 

peptide between R585 and R588 (Figure 1A, B) could cause their spatial separation or 

sterically block the heparin binding ability. In either case, bulky amino acids are prone to lead 

to one or both of these results (Figure 1C, D). If the peptide consists of small residues, the 

insertion could be less invasive and the structure of the HSPG binding motif maintained 

functional (Figure 1E). Insertion of positively charged peptides could lead to a HSPG binding 

phenotype by reconstituting a binding motif in combination with one of the original arginines 

(Figure 1F) or independently from them (Figure 1G). The proximity of R588 to the last 

position of the inserted peptide could facilitate reconstitution of a functional motif if an 

arginine is present at this latter position (Figure 1H). It should be noted that this behaviour 

could be due to the particular sequence of the construct we used, where the 7th position of the 

randomized peptide and R588 are separated by two residues resembling the wild-type 

situation. 

We previously described an AAV targeting vector, rAAV-MTP, that allowed systemic 

vascular targeting (White et al., 2004). Simultaneous detargeting of this vector from liver and 

spleen was observed. This vector showed a reduced ability to bind to heparin (White et al., 

2004). Here, we analysed whether the inability of AAV insertion mutants to bind heparin 

directly correlates with detargeting from liver and spleen. Therefore, binding and non-binding 

pools were produced as beta-galactosidase expressing recombinant AAV vectors (rAAV) as 

previously described (Perabo, Endell et al., 2006). rAAV with wild-type capsid (rAAV-RC) 

was used as a control. First, the ability to infect the hepatocellular carcinoma cell line HepG2 

was determined (Figure 2). All three viral preparations were able to transduce HepG2. rAAV-

RC and B-rAAV-pool showed a comparable transduction efficiency. Since the addition of 

heparin completely abolished rAAV-RC mediated transduction (data not shown), it can be 

assumed that AAV-2 infection of this cell line depends on HSPG binding. 
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Figure 2: Transduction efficiency of rAAV-RC, B-rAAV-pool and NB-rAAV-pool on HepG2. HepG2 were 
infected in the presence of adenovirus (1 pfu/cell) with 1000 genomic particles per cell of rAAV-RC, B-rAAV-
pool or NB-rAAV-pool and analysed 48 h p.i. Cells were lysed in Galactolight Plus beta galactosidase lysis 
buffer (Tropix, USA) and beta-galactosidase expression was determined by Galactolight Plus beta galactosidase 
assay according to manufacturer instructions. Detection was performed using a Wallac 1420 (Victor2) 
multilabel counter with beta-galactosidase as standard. Gene expression was normalized for total protein using 
BCA (Perbio, UK) and expressed as RLU/ mg protein. 

 

The mutants within the NB-rAAV-pool are unable to bind to HSPG. This suggests that the 

observed HepG2 transduction is mediated by some but not all inserts displayed within the 

pool, explaining the 1 log reduction in infectivity and pointing towards new and specific 

ligand-receptor interactions. 

Thereafter, 4 x 109 genomic particles were injected intravenously into C57/B6 mice (n=4) and 

biodistribution studies were performed as described (White et al., 2004). Animals injected 

with rAAV-RC and B-rAAV-pool showed a comparable biodistribution with the highest 

vector DNA level in spleen and liver (Figure 3). In contrast, the NB-rAAV-pool showed a 

102- and 31.8-fold reduction in vector DNA level in the spleen in comparison to rAAV-RC 

and B-rAAV-pool, respectively, whereas in the liver an 8.8- and 6.7-fold reduction was 

detected. 
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Figure 3: Bioistribution of rAAV-RC, B-rAAV-pool and NB-rAAV-pool in C57/B6 mice 4.2x10e9 genomic 
particles of the different vector preparations were injected into the tail vein of 12 week old C57/B6 mice. 24 h 
p.i. mice were sacrificed. DNA was extracted from blood and tissues. Vector genomes per tissue were quantified 
by PCR (Taqman).  

 

In addition, elevated levels of viral DNA in the blood were measured for the NB-rAAV-pool 

consistently with the level of liver and spleen detargeting. This suggests an unspecific HSPG-

dependent retention of rAAV-2 and HSPG-binding rAAV-targeting vectors in liver and 

spleen and an HSPG-independent, receptor-specific infection of cells in the liver mediated by 

some peptide insertions of the NB-rAAV-pool. This hypothesis is in agreement with results 

previously obtained for a HSPG-knock-out mutant (Kern et al., 2003) and explains the liver 

and spleen detargeting observed for rAAV-MTP (White et al., 2004).  

These results are a clear rational to use the NB-AAV-pool for AAV Display selections of 

cell/tissue type specific AAV targeting vectors to avoid unspecific HSPG-dependent retention 

in liver and spleen and increasing thereby the in-vivo-targeting-ability of the respective 

vectors. Furthermore, our studies revealed different ways by which an inserted peptide is able 

to confer HSPG-binding abilities to AAV targeting vectors and may help to fine tune the 

peptide insertion in order to ablate HSPG binding and to obtain tissue specific vectors. This 

knowledge could also improve targeting mutants where R585 and/or R588 are substituted by 

other amino acids, since even in this case, some peptides (Figure 2G) would restore HSPG 

binding.  
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Abstract  

In order to allow the direct visualization of viral trafficking, we genetically incorporated 

enhanced green fluorescent protein (GFP) into the AAV capsid by substitution of wild-type 

VP2 with GFP-VP2 fusion proteins. High titer viral progeny was obtained and used to 

elucidate the process of nuclear entry. In the absence of Adenovirus 5 (Ad5) nuclear 

translocation of AAV capsids was a slow and inefficient process: At 2 hours (h) and 4 h post 

infection (p.i.), GFP-VP2-AAV particles were found in the perinuclear area and in nuclar 

invaginations but not within the nucleus. In Ad5 coinfected cells, isolated GFP-VP2-AAV 

particles were already detectable in the nucleus at 2 h p.i., suggesting that Ad5 enhanced the 

nuclear translocation of AAV capsids. The number of cells displaying viral capsids within the 

nucleus increased independently of helpervirus slightly with time, but the majority of the 

AAV capsids remained in the perinuclear area in all conditions analyzed. In contrast, 

independently of helpervirus and with 10x less virions per cell already 2 h p.i. viral genomes 

were visible within the nucleus. Under these conditions even with prolonged incubation times 

(up to 11 p.i.) no intact viral capsids were detectable within the nucleus.  

In summary, the results show that GFP-tagged AAV particles can be used to study the cellular 

trafficking and nuclear entry of AAV. Moreover, our findings argue against an efficient 

nuclear entry mechanism of intact AAV capsids and favour the occurrence of viral uncoating 

before or during nuclear entry.  

 

Introduction 

Adeno-Associated Virus serotype 2 (AAV) was discovered as a coinfecting agent during an 

adenovirus outbreak, without any apparent pathogenicity contributed by AAV (Blacklow , 

1988). Recombinant AAV (rAAV) vectors based on AAV type 2 or one of the other known 

serotypes hold attractive potential for the development of efficient and safe gene therapy 

vectors. Clinical trials are ongoing for the treatment of cystic fibrosis and haemophilia B 

(High et al., 2004; Wagner et al., 2002). Elucidating the molecular mechanisms of viral 

infection and cellular processing of AAV is critical for the success of these approaches.  

Besides conventional biochemical studies, microscopic techniques are emerging as powerful 

tools for the study of viral infection. A promising development for the investigation of AAV 

was the finding that viral particles can be labelled by cyanine dyes generating a stable NHS 
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ester with amino groups at the capsid surface (Bartlett, Wilcher and Samulski, 2000). 

However, this labelling method is labor intensive and hampered by the low efficiency of the 

labelling reaction (on average one dye per capsid) (Seisenberger et al., 2001). High particle 

numbers need to be used for fluorescence microscopy studies to overcome this problem. This 

limitation was conquered by a new technique, Single Virus Tracing (SVT), recently described 

by our group (Seisenberger et al., 2001). This method is based on the detection of single 

molecules using an epifluorescent microscope and a laser beam as a light source, allowing the 

real time observation of single virus particles inside living cells. Although it is possible to 

merge the transmitted-light picture of the cell with the virus-tracking movie by the SVT 

method, a direct co-localization of virions and cellular organelles remains difficult. 

Additionally, highly pure viral preparations have to be used to avoid labelling of 

contaminating proteins. This can not be achieved easily for many AAV retargeting vectors, 

since many mutants lose the ability to bind heparan sulphate proteoglycans preventing the use 

of heparin affinity chromatography for purification.  

Therefore, we aimed to develop an alternative strategy for the labelling of the AAV capsid by 

using the enhanced green fluorescent protein (GFP). GFP has been extensively used as a 

fusion protein to study intracellular trafficking and localization of proteins. It has an effective 

chromophore, which absorbs UV or blue light and emits green fluorescence. No further gene 

products or substrates are needed. Moreover, GFP does not seem to interfere with cell growth 

and function. GFP fusion proteins thus provide an attractive tool for biological studies 

including viral tracking (Desai and Person, 1998; Elliott and O'Hare, 1999; Glotzer et al., 

2001; McDonals et al., 2002; Sampaio et al., 2005; Suomalainen et al., 1999; Ward, 2004; 

Warrington et al., 2004). 

Different strategies have been previously used to incorporate peptides into the AAV capsid. 

The capsid is a tightly packaged icosahedron of 25 nm and is composed of three different 

viral proteins, VP1 (90 kDa), VP2 (72 kDa) and VP3 (60 kDa). These proteins are encoded in 

the same open reading frame (ORF) and share a common stop codon. They differ in their N-

terminus due to alternative splicing and different initiation codons, resulting in three 

progressively shorter proteins. Ligand peptides of up to 34 amino acids have been inserted 

into amino acid (aa) position 587 of VP1 to generate targeting vectors (Girod et al., 1999; 

Ried et al., 2002). Peptides were also inserted into the VP1 unique region at aa position 34 

(Wu et al., 2000) and one or two residues downstream from the N-terminal methionine of the 

VP2 start codon (aa position 138: (Loiler et al., 2003; Warrington et al., 2004; Wu et al., 
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2000; Yang et al., 1998) and 139: (Shi et al., 2001)). Since VP1 is an N-terminal extension of 

VP2, insertions at 138/139 are displayed within VP1 and VP2. The most abundant capsid 

protein VP3 remains unmodified. Insertions as large as 32 amino acids were tolerated with 

only marginally lower packaging efficiencies (Loiler et al., 2003). Larger insertions, for 

example the rat fractalkine chemokine domain (76 aa) or the human hormone leptin (146 aa) 

inserted at aa position 138 resulted in a decrease in VP3 expression which prevented capsid 

assembly (Warrington et al., 2004). Providing additional VP3 in trans (by a VP3 encoding 

plasmid) restored capsid assembly with a remaining 5 log decrease in infectivity (Warrington 

et al., 2004).  

However, Yang and colleagues could previously show that large insertions at the N-terminus 

of the VP proteins interfere with capsid assembly (Yang et al., 1998). In their study a 29.4 

kDa single chain antibody (sFv) was incorporated into the AAV capsid fusing the sFv gene to 

the N-terminus of VP1, VP2 and VP3. The fusion proteins were expressed, but neither use of 

all three sFv-VP fusion proteins nor combination of one sFv-VP with two other unmodified 

VPs resulted in detectable rAAV particles. However, when the sFv-VP2 fusion protein was 

included in the packaging process in the presence of all three unmodified VP proteins, intact 

rAAV chimeric vector particles containing sFv-VP2 fusion protein were generated. This 

significantly increased the transduction of target cells expressing a cellular receptor 

recognized by the inserted antibody.  

Based on these previous results, we decided to insert the 30 kDa GFP protein as a GFP-VP2 

fusion protein into the AAV capsid. Incorporation of GFP-VP2 into the AAV capsid did not 

interfere with viral assembly or viral genome packaging. The GFP-tagged virions produced in 

this study retained infectivity in marked contrast to results published by Warrington et al. 

(Warrington et al., 2004). When used to visualize the process of nuclear entry in more detail, 

we detected virions in the nuclear area shortly after infection. In agreement to Xiao et al. 

(Xiao et al., 1998) we observed that Ad5 augmented the efficiency of the nuclear entry of 

AAV capsids. In cells infected with GFP-VP2-AAV a colocalization of viral capsids with 

nuclear invaginations was observed. With prolonged incubation times the amount of cells 

displaying AAV capsids within the nucleus increased independent of Ad5 coinfection. 

However, still the majority (more than 90%) of the capsids remained detectable outside the 

nucleus during the whole observation period. In contrast, viral genomes were detectable by 

FISH hybridization within the nucleus of cells already 2 h p.i. irrespective of Ad5 coinfection 

although 10x less virions per cell were used. Compared to 2 p.i. an increase in the amount of 
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viral genomes was observed at 11 h p.i. Moreover, under these conditions (105 instead of 106 

virions per cell) no intact viral capsids were detected within the nucleus even after prolonged 

incubation times. 

Our studies demonstrate that GFP-VP2 tagged virions are a promising alternative to the 

chemical labelling of AAV to study the infectious biology of AAV and derived vectors. 

 

Material and Methods 

Cell culture. The human cervix epitheloid cell line HeLa (ATCC CCL 2; American Type 

Culture Collection, Rockville, Maryland), the HeLa-DsRed2Nuc cell line (produced by stable 

transfection of HeLa with pDsRed2-Nuc), and the human embryonic kidney cell line 293 

were maintained as monolayer culture at 37°C and 5% CO2 in Dulbecco´s modified Eagle´s 

medium (DMEM), supplemented with 10% fetal calf serum (FCS), 100 U/ml penicillin 100 

mg/ml streptomycin and 2 mM L-glutamine. 

Plasmids. pUC-AV2 (11), pSUB201+ (26), pXX6 (38) and pGFP (15) were described 

before. The plasmid pUC-AV2-VP2k.o. was obtained by PCR amplification combined with 

site directed mutagenesis of pUC-AV2, changing the ACG start codon into ACC using 

overlapping PCR fragments (VP2ko_for: 5´-GTTAAGACCGCTCCGGG-3´ and 4066: 5´-

ATGTCCGTCCGTGTGTGG-3´; VP2ko_back: 5´-CCCGGAGCGGTCTTAAC-3´ and 3201: 

5´-GGTACGACGACGATTGCC-3´) and ligation of the fragments in a second PCR step 

using the primers 3201 and 4066. The resulting fragment was digested with BsiWI and EcoNI 

and sticking end ligated into pUC-AV2. To obtain the plasmid pGFP-VP2 the sequence 

coding for VP2 was amplified from pSUB201+ by PCR using the primer pair VP2-N 5´- 

CTCCGGGAAAAAAGAGG-3´ and VP2-C: 5´-TTACAGATTACGAGTCAGGTAT-3´, 

thereby deleting the VP2 start codon and ligated into pEGFP-C3 (Clontech), which was 

digested with Bgl II and filled in by Klenow polymerase. The plasmid pDsRed2Nuc was 

generated by deletion of the EGFP encoding region from pEGFP-Nuc (Clontech) and 

insertion of the DsRed2 gene, which was amplified by PCR (Primers: 5’-CGG AGT ACA 

TCA ATG G-3’ and 5’-AGA TCC GGT GGA TCC TAC CT-3’) from pDsRed2-N1 

(Clontech) and cut with AgeI. 

Viral production and purification. AAV particles were produced in HEK293 cells by the 

adenovirus free production method using pXX6 (38) to supplement the adenoviral helper 

functions. Briefly, HEK293 cells were seeded at 80% confluence and cotransfected by 
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calcium phosphate with a total of 37.5 µg plasmid of pUC-AV2 and pXX6 in a 1:1 molar 

ratio for the production of wild-type AAV. For the production of chimeric virions cells were 

transfected with pXX6, pUC-AV2 and pGFP-VP2, substituting 30% or 60% of pUC-AV2 

with pGFP-VP2. For the production of the VP2 k.o.-AAV HEK293 cells were transfected 

with pUC-AV2-VP2k.o. and pXX6 in a 1:1 molar ratio. For the production of the 100%-GFP-

VP2-AAV pUC-AV2-VP2k.o., pGFP-VP2 and pXX6 were transfected in 1:1:1 molar ratio. 

48 h post transfection cells were harvested and pelleted by low-speed centrifugation. Cells 

were resuspended in 150 mM NaCl, 50 mM Tris-HCl (pH 8.5), freeze-thawed several times, 

and treated with Benzonase for 30 minutes at 37°C. To purify the viral preparation by 

iodixanol gradient centrifugation, the cell debris was spun down at 3700g for 20 minutes at 

4°C and supernatant was loaded onto an iodixanol gradient as described (41).  

Determination of AAV titers. Particle titer of vector stocks was determined by 

quantitative PCR (30). Therefore, viral DNA was isolated from vector stocks according to the 

DNeasy kit protocol (Qiagen, Hilden, Germany). Capsid titer of vector stocks was determined 

by A20-ELISA as previously described (11). Infectious titer was obtained by infecting HeLa 

cells as monolayers on cover slips with serial dilutions of viral preparations in the presence of 

adenovirus type 5 (MOI 5). 72 h post infection Rep protein expression was determined by 

immunofluorescence staining (34). Briefly, cells were fixed in methanol and acetone for 5 

min, respectively. After washing with PBS, unspecific reactions were blocked by incubation 

with 0.2% gelatine in PBS for 10 min. The cover slips were incubated for 1 h at room 

temperature with the anti-Rep antibody 76/3 (kindly provided by Dr. Jürgen Kleinschmidt, 

DKFZ Heidelberg, Germany), cover slips were washed and blocked again and incubated for 1 

h with a secondary antibody (FITC conjugated goat anti-mouse; 1:100 in PBS; Dianova). 

Titers were calculated from the last limiting dilution of viral stocks that led to fluorescence 

positive cells. 

Functional testing of GFP-VP2 fusion protein by transient transfection. HeLa 

cells (grown on cover slips) were transfected by calcium phosphate precipitation (11) at 80% 

confluence with the plasmid pGFP-VP2. As control, HeLa cells were transfected in parallel 

with pGFP (15). 48 h post transfection cells were fixed for 30 minutes in 4% 

paraformaldehyde (PFA). The nuclear lamina was stained as described below using anti-lamin 

B antibody.  

Western Blot. For the detection of viral capsid proteins 1010 capsids were separated on a 

SDS-polyacrylamide gel (10%) and blotted onto a nitrocellulose membrane. The membrane 
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was then blocked with 0.2% I-Block (Sigma) in Tris buffered saline supplemented with 

Tween 20 (TBS-T) over night at 4°C. After incubation with B1-antibody (kindly provided by 

Dr. Jürgen Kleinschmidt (DKFZ Heidelberg, Germany); 1:10 in 0.2% I-Block) and three 

washing steps in TBS-T, the membrane was incubated for 1 h with a peroxidase conjugated 

anti-mouse IgG antibody (1:5000 in 0.2% I-Block, Sigma). The membrane was washed again, 

subsequently incubated for 5 min with SuperSignal West Pico Chemiluminescent Substrate 

(Pierce) and then exposed to Biomax Light Film (Kodak).  

Viral infection. 4x104 HeLa cells per well were seeded onto 12 mm cover slips inside 24 

well plates. 24 h later HeLa cells were infected with or without 425 units heparin/ml medium 

with 1-5x106 capsids/cell. When indicated, cells were coinfected with adenovirus type 5 (MOI 

5). The infection was carried out for 0.5 h on ice. Cells were then shifted to 37°C and 

incubated at 37°C and 5% CO2 for the indicated time period. Cells were washed with PBS 

and fixed for 0.5 h with 3% PFA in PBS at room temperature, washed again with PBS and the 

reminding PFA was quenched for 10 min with 50 mM NH4Cl in PBS. Nuclear staining was 

obtained by Dapi (1 µg/ml in PBS) for 5 min or by anti-lamin B antibody staining. For 

antibody staining cells were permeabilized with 0.2% Triton X 100 in PBS for 10 min, 

blocked for 10 min with 0.2% gelatine in PBS and then incubated for 1 h at room temperature 

with first antibodies as indicated. As first antibodies polyclonal goat anti-lamin B IgG 

antibody (1:50 in PBS, Santa Cruz Biotechnology), monoclonal A20 or B1 hybridoma 

supernatant derived from mice (kindly provided by Dr. Jürgen Kleinschmidt, DKFZ 

Heidelberg, Germany) were used. After washing and blocking, the cells were incubated for 1 

h with secondary antibodies. As secondary antibodies we used Texas Red or Cy5 conjugated 

donkey anti-goat-antibody (Dianova, diluted 1:50 or 1:100 in PBS, 0.2% gelatine) and 

Rhodamine Red-X (RRX) conjugated donkey anti-mouse (Dianova, diluted 1:200 in PBS, 

0.2% gelatine). The cover slips were washed in PBS again, embedded in Vectashield 

mounting medium (Alexis) and examined. 

Fluorescence in situ hybridisation (FISH) Plasmid pRC (15) which encodes Rep and 

Cap of AAV2 was linearized and labelled with 5-(3-aminoallyl)dUTPs by nick translation. 

Incorporated dUTPs were labelled with amino reactive Oregon Green 488 by ARES DNA 

labelling kit (Molecular Probes) according to manufacturers manual. To detect the AAV 

genome inside cells, HeLa cells were prepared as described above. Cells were infected with 

wild-type AAV2 (105 capsids/cell), fixed with 3% PFA after indicated time points, quenched 

and permeabilized as described before. Nuclear lamina and viral capsids were stained by 

polyclonal goat anti-lamin B IgG antibody and monoclonal A20 hybridoma supernatant 
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derived from mice (kindly provided by Dr. Jürgen Kleinschmidt, DKFZ Heidelberg, 

Germany). Cy5 conjugated donkey anti-goat antibody (Dianova) and Rhodamine Red-X 

conjugated donkey anti-mouse antibody (Dianova) were used as secondary antibodies. After 

antibody staining cells were washed with PBS. A hybridization-mix containing 1 ng/µl 

labelled DNA probe, 50% formamide, 7.3% dextran sulphate, 15 ng/µl salmon sperm DNA 

and 0.74x SSC was denaturated for 3 min at 95°C and shock cooled on ice. Cover slips were 

inverted onto the denaturated hybridization-mix (only the DNA probe was denaturated since 

the AAV genome is single stranded). Cover slips were sealed with rubber cement and 

hybridization occurred at 37°C over night. Rubber cement was removed and cover slips were 

washed 3x in 2x SSC at 37°C, 3x in 0.1x SSC at 60°C and 2x in PBS. Cells were embedded 

in Vectashield mounting medium (Alexis).  

Wide field fluorescence microscopy. Images were acquired with an 

immunofluorescence microscope (Zeiss, Axioskop) equipped with filters specific for GFP and 

Dapi using a 40x (NA1.3) objective. Images were obtained with a CCD camera (Visicam, 

Visitron Systems) with MetaMorph Imaging System version 3.0.  

Confocal microscopy. To localize the GFP-VP2 signal within the cell more precisely, 

images were obtained by confocal laser scanning microscopy using a Leica DM IRE2 

microscope with a Leica TCS SP2 laser system or a Zeiss Axiovert 200M microscope with a 

Zeiss LSM 510 Laser Module, using a 63x (NA 1.4) objective and filter settings optimized for 

respective dyes. For each sample a series of 0.2 to 0.25 µm horizontal sections were made. 

The pinhole was adjusted to 1 airy unit. Images were processed by Leica confocal software or 

LSM 510 Meta software and Adobe Photoshop version 7.0. 

Live cell imaging (Time-laps microscopy). For live cell images 2x105 HeLa-

DsRed2Nuc cells were seeded onto the glass bottom of microwell dishes (35 mm; Mat Tek). 

24 h later cells were infected with or without 425 units heparin/ml media with approx. 106 

capsids per cell. Cells were incubated for 20 min at 37°C and then analyzed by live cell 

microscopy under physiological conditions. Live cell movies were obtained with an inverse 

Zeiss Axiovert 200M microscope with a 63x (NA1.4) objective using Zeiss filter sets (FS)10 

for GFP and DsRed. Images were taken with a Zeiss Axiocam HRm using the Axiovision 3 

software with a time laps of 30 seconds.  

Fluorescence activated cell sorting (FACS) analyses. 4x104 HeLa cells were seeded 

per well in a 24 well plate. 24 h later cells were infected with or without 425 units of 
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heparin/ml medium with 8x107 capsids/cell. The virus binding was carried out for 30 min. on 

ice. Thereafter, cells were shifted to 37°C for 1 h. Cells were harvested, resolved in 0.5 ml 

PBS and analyzed with a Coulter Epics XL-MCL (Beckman Coulter). A minimum of 5000 

cells were analyzed for each sample. The percentage of positive cells is defined as the fraction 

beyond the region of 99% of the control of untransfected cells. Data were analyzed with the 

use of WinMDI 2.8 FACS software. 

 

Results  

GFP fusion does not interfere with nuclear translocation of VP2 

The enhanced green fluorescent protein (GFP) has been widely used as a fusion protein to 

monitor the cellular localizations of proteins (Chalfie et al., 1994). However, it is a relatively 

large protein for being inserted into a compact structure such as the AAV capsid. Based on 

the observation that large insertions are tolerated at the N-terminus of VP2 (Yang et al., 

1998), we decided to generate a GFP-VP2 fusion protein to incorporate a fluorescent marker 

into the AAV capsid. For this purpose, the VP2 ORF was amplified by PCR and fused to the 

C-terminus of the GFP open reading frame (Figure 1), with the human cytomegalovirus 

(CMV) promoter controlling transcription. To avoid translation from the natural VP2 start 

codon, the translation start codon was deleted. To test the biological properties of this GFP-

VP2 fusion protein, transient transfections of HeLa cells with pGFP-VP2 were carried out. 

 

 
 
 
Figure 1: Schematic representation of the plasmids. 
(A) The plasmid pGFP-VP2 encodes the GFP-VP2 
fusion protein. VP2 was amplified by PCR from pUC-
AV2 and cloned into the multiple cloning site of 
pEGFP-C3 (Clontech). During this step, the VP2 start 
codon was deleted. (B) To produce wild-type AAV the 
plasmid pUC-AV2 was used (upper panel). A G-to-C 
substitution within the wobble position of the VP2 
start codon (T138) was introduced, resulting in the 
plasmid pUC-AV2-VP2k.o. (lower panel). Due to the 
substitution, VP2 expression was abolished without 
altering the amino acid sequence of VP1.  
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As a control, HeLa cells were transfected with a GFP expressing plasmid lacking any known 

organelle homing signals (Ried et al., 2002). 48 h post transfection, cells were fixed and the 

nuclear lamina stained with an anti-lamin B antibody. Since VP2 contained a nuclear 

localization sequence (Hoque et al., 1999), GFP-VP2 was expected to be detectable in the 

nucleus, whereas the GFP lacking homing signals should be distributed throughout the whole 

cell. Figure 2 shows that this was indeed the case, allowing to conclude that the GFP fusion 

does not hamper the nuclear localization VP2. 

 

Figure 2: Transient 
transfection of HeLa 
cells with GFP-VP2 and 
GFP expressing 
plasmids. Cells were 
transfected at 80% 
confluence with pGFP-
VP2 (A) or pGFP (B) 
and fixed 48 h post 
transfection. The nuclear 
lamina was stained with 
Texas Red conjugated 
anti-lamin B antibody.  

 

 

Substitution of VP2 by GFP-VP2 fusion protein results in infectious virions 

In a prior study, scFv-VP2 fusion proteins used to generate viral particles resulted in viral 

progeny only when all three wild-type AAV capsid proteins were provided during the 

packaging process (Yang et al., 1998). Since the GFP insertion was of similar size as scFv, 

we assumed that all three unmodified wild-type capsid proteins had to be provided during the 

packaging process to obtain infectious GFP-tagged viral particles. The first step was therefore 

to determine the amount of VP2 which could be substituted by GFP-VP2 without interfering 

with the production of infectious AAV particles. We tested a 30% and 60% substitution of 

pUC-AV2 (coding for the AAV genome) by pGFP-VP2 during packaging. The viral 

preparations generated were named 30%-GFP-VP2-AAV and 60%-GFP-VP2-AAV, 

respectively. Wild-type AAV was used as control. 48 h post transfection virus producing cells 

were harvested and cell lysates were purified by iodixanol step gradients. The 25% and the 

40% phase of the gradient were harvested and genomic and capsid titers were determined. 

DNA containing viral particles with comparable titers were detected for the different viral 

preparations (25%-phase of the gradient: 2-5x1010/ml; 40%-phase of the gradient: 0.5-
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1x1011/ml). The amount of intact capsids was determined by ELISA using the anti-capsid 

antibody A20 (Wobus et al., 2000). As expected, a higher amount of empty capsids was 

obtained in the 25%-phase of the gradient. However, all the capsid titers showed comparable 

values (25%-phase of the gradient: 5-8x1013/ml; 40%-phase of the gradient: 0.4-1x1013/ml). 

Thus, neither capsid assembly nor DNA packaging was affected in the 30%- and the 60%-

GFP-VP2-AAV preparations in comparison to the wild-type control.  

To investigate, if the GFP-VP2 fusion proteins were inserted into the AAV capsid and if the 

GFP-tagged virions retained infectivity, HeLa cells were incubated with the 30%- and 60%-

GFP-VP2-AAV preparations, respectively. 2 h p.i. cells were washed intensively, detached 

from the plate by trypsin treatment and analyzed by flow cytometry. Treatment with trypsin 

removes all the proteins bound at the cell surface (Awedikian et al., 2005; Mizukami et al., 

1996), thus only intracellular GFP signals should be detected. GFP positive cells were 

obtained in samples infected with both preparations. The highest amount of GFP positive cells 

(19.5%) was obtained with 60%-GFP-VP2-AAV, whereas 13.5% GFP positive cells were 

detected using the same amount of capsids of 30%-GFP-VP2-AAV. In contrast, no green 

cells were detected when wild-type AAV was used. To exclude pseudo-transduction, heparin 

inhibition controls were included. Heparin, a soluble analogue of the primary AAV receptor 

heparan sulphate proteoglycan (HSPG), blocks wild-type AAV infection by binding to the 

viral capsid. Since the HSPG binding region of AAV is located in the VP3 region of the 

capsid proteins (Wu et al., 2000), the ability to bind to these molecules should be retained by 

the GFP-tagged virions. Incubation of both viral preparations with heparin inhibited cell 

transduction indicating that a viral infection and not pseudo-transduction was responsible for 

the GFP signal measured in the GFP-VP2-AAV infected cells.  

These results demonstrate that GFP fusion proteins were incorporated into the AAV capsid of 

infectious virions and that the GFP signal provided by GFP-tagged virions was detectable by 

flow cytometry. 

 

Production of GFP tagged AAV virions in the absence of wild-type VP2  

Since comparable titers were obtained for the 30%-GFP-VP2-AAV and the 60%-GFP-VP2-

AAV preparations, we investigated the possibility to package a 100%-GFP-VP2-AAV 

preparation. A wild-type AAV encoding plasmid containing a VP2 start codon mutation was 

generated (pUC-AV-VP2k.o.; Figure 1) and used to package 100%-GFP-VP2-AAV. 
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Figure 3: Western blot analysis of iodixanol gradient 
purified AAV capsids. After iodixanol gradient 
centrifugation same amount of viral capsids (1010) of wild-
type AAV (lane 1; 40% phase of iodixanol gradient), VP2 
k.o.-AAV (lane 2: 40% phase of iodixanol gradient; lane 3: 
25% phase of iodixanol gradient), 100%-GFP-VP2-AAV 
(lane 4: 40% phase of iodixanol gradient; lane 5: 25% 
phase of iodixanol gradient) and 60%-GFP-VP2-AAV 
(lane 7; 40% phase of iodixanol gradient) were separated 
by SDS-10% polyacrylamide gel electrophoresis and 
analyzed by Western blot using the B1 antibody. 
 

 

In addition “VP1/VP3 only particles” (VP2 k.o.-AAV), 60%-GFP-VP2-AAV and wild-type 

AAV were produced and purified by density gradient centrifugation. First, a Western blot 

analysis of our different preparations was performed (Figure 3). Although only virions 

isolated from the 40% phase of the iodixanol gradient were used for the following studies, 

also the 25% phase of the gradient was analyzed by Western blot. For wild-type AAV we 

obtained three signals corresponding to VP1, VP2 and VP3 (Figure 3, lane 1) in a ratio of 

approximately 1:1:20. As expected, VP2 k.o.-AAV contained only VP1 and VP3 proteins 

(lane 2 and 3), whereas in the 100%-GFP-VP2-AAV preparation the GFP-VP2 fusion protein, 

VP1 and VP3 were detected (lane 4). The 60%-GFP-VP2-AAV was packaged in the presence 

of all three unmodified AAV capsid proteins, four protein bands, GFP-VP2, VP1, VP2 and 

VP3, were visible (lane 6).  

Further, we performed a detailed titer analysis. Therefore each virus mutant was packaged at 

least a second time. The capsid, genomic and infectious titers of these preparations were 

determined and empty-to-full and genomic particle-to-infectivity ratios were calculated to 

directly compare the different preparations for packaging efficiency and infectivity (Tab.1). 

No significant difference between mutants (including wild-type) was observed for genomic 

nor capsid titers which ranged between 1.3x1011 and 1.5x1012, and 7.35x1012 and 1.36x1013 

per ml, respectively. The ratios of empty-to-full capsids varied to nearly the same extent for 

different preparations of the same virus mutant (including wild-type) as between the different 

mutants. This reveals that the deletion of VP2 or the substitution by GFP-VP2 does not 

interfere with capsid formation or viral genome packaging. The genomic particle-to-

infectivity ratios were slightly increased for VP2 k.o.- and the 100%-GFP-VP2-AAV-

preparations, but remained within the variation described for wild-type AAV preparations 

Girod et al., 1999; Grimm et al., 1999; Ried et al., 2002). The results revealed that GFP-

tagged virions with a 100 % substitution of VP2 by GFP-VP2 can be generated with high 

titers (2x109 infectious particles/ml). 
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Table1. Characterization of the different viral preparations. Titers were determined by quantitative PCR, A20 

ELISA and infectious titer assay, respectively (*per ml; a, b, c: independently packaged). 

 

preparation 

 

genomic 

particle* 

 

physical 

particle* 

 

infectious 

particle* 

 

empty/full 

 

 

 genomic/ 

infectivity 

 

wild-type AAV a 

 

2.49 x1011 1,25 x1013 8.38 x109 50.2 29 

wild-type AAVb 1.04 x1012 1,19 x1013 1.67 x1010 11.4 62 

VP2 k.o.-AAVa 

 

1.30 x1011 9.39 x1012 1.31 x108 72.2 991 

VP2 k.o.-AAVb 

 

1.17 x1012 1.41 x1013 4.19 x109 12.1 278 

60%-GFP-VP2-

AAVa 

7.01 x1011 1.04 x1013 8.38 x109 14.8 84 

60%-GFP-VP2-

AAVb 

2.15 x1011 1.25 x1013 2.10 x109 58.1 102 

60%-GFP-VP2-

AAVc 

4.10 x1011 7.35 x1012 2.10 x109 17.9 195 

100%-GFP-VP2-

AAVa 

3.00 x1011 1.36 x1013 1,31 x108 45.3 2288 

100%-GFP-VP2-

AAVb 

4.39 x1011 9.71 x1012 2,10 x109 22.2 208 

100%-GFP-VP2-

AAVc 

1.5 x1012 1.09x1013 1.05 x109 7.2 1431 
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Visualization of viral infection by GFP-VP2 tagged AAV particles 

To determine, if GFP-tagged virions were suited for intracellular visualization, viral 

infections of HeLa cells followed by wide field fluorescent microscopic analysis 2 p.i. were 

performed. GFP signals seemed to localize partly in the nucleus or perinuclear area in cells 

infected with the 60%- and 100%-GFP-VP2-AAV preparations (Figure 4A and Figure 4B). 

The fluorescent microscopy images obtained thus resembled published results with unlabeled 

or chemically labelled virions (Bartlett et al., 2000; Seisenberger et al., 2001). No signal was 

detected inside the cell when soluble heparin was used, demonstrating that the GFP signal 

was not due to pseudo-transduction (Figure 4C). 

 

 

Figure 4: GFP-tagged virions analyzed by wide field fluorescent microscopy. Cells were infected with 5x106 
capsids per cell of 100%-GFP-VP2-AAV (A) and 60%-GFP-VP2-AAV (B and C) in the absence (A and B) or 
presence of heparin (C). Cells were fixed and nuclei were stained with Dapi.  
 

A promising development in the field of fluorescent microscopy is live cell imaging. Infection 

of live HeLa cells with GFP-tagged AAV virions followed by live cell imaging microscopy 

allowed the visualization of virions undergoing cell membrane contact (Figure 5 as movie in 

supplement). Some of these virions touched the cell membrane multiple times similar to the 

observations, made previously by SVT (Seisenberger et al., 2001). As observed in fluorescent 

microscopy, most of the virions stacked to the membrane, again confirming previous SVT 

observations, which showed that less than half of the virions enter the cell (Seisenberger et 

al., 2001). Furthermore, GFP-tagged virions seem to move inside the cytoplasm of infected 

cells and in the perinuclear area (Figure 5 as movie in supplement), suggesting the potential of 

this technology for real-time imaging studies.  
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Figure 5: Live cell imaging of 
GFP-tagged virions. HeLa-
DsRed2Nuc cells were infected 
with 60%-GFP-VP2-AAV (106 
capsids per cell). Cells were 
incubated for 20 min at 37°C 
and 5% CO2. Then live cell 
movies were obtained under 
physiological conditions. Still 
image obtained from the movie 
supplied in supplement (left 
panel). Heparin control (right). 

 

 

GFP-tagged virions within the cell are recognized by A20 

To assess if the GFP signals within the cell are emitted from intact viral particles, cells were 

infected with 100%-GFP-AAV and fixed at 2, 4, 11 and 24 h p.i. Intact viral capsid were 

stained by A20 (A20 recognizes whole but not dissociated AAV capsids (Blecker et al., 

2005)) whereas an anti-lamin B antibody was used to visualize the nuclear membrane. Figure 

6 shows one example obtained by confocal microscopy. GFP-tagged AAV particles 

recognized by A20 were detected within the cell and above the nuclear membrane. An almost 

100% colocalization of the GFP-signals (upper left panel) with A20 reactive AAV capsids 

(upper right panel) was observed (merge: lower right panel). The few detectable non-

colocalized signals were due to a very faint A20 signal which became visible after enhancing 

its excitation energy. Thus GFP signals visible within the cells emanate from intact virions. 

 

 

 

Figure 6: Intact 100%-GFP-VP2-AAV particles within the cell. HeLa cells were infected with 100%-GFP-VP2-AAV (106 
capsids per cell). 4 h p.i., cells were fixed and stained with A20 (recognizes intact AAV capsids; RRX conjugated secondary 
antibody) and anti-lamin B antibody (nuclear membrane; Cy5 conjugated secondary antibody). (upper left panel: GFP 
staining; upper right panel: A20 staining; lower left panel: anti-lamin B; lower right panel: merge). Analysis was performed 
by confocal microscopy. 
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Viral capsids do not enter the nucleus efficiently  

In order to analyze the time course of nuclear entry of AAV in more detail, HeLa cells were 

infected with 100%-GFP-VP2-AAV for 2, 4, 11 and 24 h with or without adenovirus type 5 

coinfection (MOI 5), and confocal laser scanning images were obtained. For each image, a 

series of horizontal sections of 0.2 µm was prepared (z-stack) and superimposed with the 

Leica confocal software. Figure 7B shows a typical image obtained 4 p.i. without adenovirus 

coinfection. Many GFP signals were visible in the nucleus of the infected cells (nuclear 

lamina stained in red by anti-lamin B antibody. This image leads to the assumption that GFP-

tagged virions were efficiently transported into the nucleus within less than 4 hours, 

consistent with published results (Bartlett et al., 2000). However, the Leica confocal software 

enables the vertical sectioning of the superimposed pictures and allows to visualize a certain 

image plane within this stack. The investigator can determine if a certain signal emanates 

within, above or below the image plane and this enables the investigator to localize the object 

if interest more precisely. Using this technique, we could determine that in the absence of 

helpervirus and up to 4 h p.i., the GFP signals (from the GFP-tagged virions) were localized 

above but not within the nucleus (upper row in Figure 7C). This is in contrast to results 

derived from the superimposed picture (Figure 7B) indicating its limitations. At 24 h p.i. 

isolated signals were visible inside the nucleus (arrows in upper row of Figure 7C).  

Moreover, in the superimposed picture of cells coinfected with adenovirus many GFP signals 

were observed in the nucleus 2 h p.i. Applying the new vertical sectioning method uncovered 

that most of the signals are localized above the nucleus (lower row in Figure 7C). With 

prolonged incubation time, the amount of coinfected cells showing a GFP signal inside the 

nucleus slightly increased (e.g. 4 h p.i.), but still the majority of signals were found outside 

the nucleus. Even after prolonged incubation (up to 11 h, data not shown) more than 90% of 

the GFP signals remained outside the nucleus. 

Interestingly, 24 h p.i. many coinfected cells showed a diffused GFP distribution within the 

nucleus. This phenomenon was not observed in the absence of helpervirus coinfection even 

after prolonged observation times (48 h, data not shown). Since this image resembles the 

image obtained after transfection with pGFP-VP2 (Figure 7D), we analyzed the viral 

preparations used to infect the cells and the respective viral infected cells by PCR. These 

analyses revealed that GFP sequences were packaged into the viral capsid, although the 

plasmid used to express GFP-VP2 during the packaging process contained no AAV ITRs. It 

remains to be elucidated whether this is attributed to recombination or other events. 
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Figure 7: Time course of AAV infection visualized by GFP-tagged AAV virions. HeLa cells were infected with 
106 capsids per cell of 100%-GFP-VP2-AAV with or without adenovirus type 5 (MOI 5) coinfection. In addition 
a heparin control was included (A). 2, 4 and 24 h p.i. cells were fixed and the nuclear lamina was stained with 
TexasRed conjugated anti-lamin B antibody. A series of horizontal sections of 0.2 µm were obtained for each 
image. With Leica confocal software all images of a series were superimposed. (B) Superimposed image of a 
series of sections 4 h p.i. in the absence of adenoviral coinfection. (C) Time course of infection with and without 
adenovirus (Ad5) coinfection. The square image shows one horizontal section of the stack. The vertical sections 
of the stack are depicted on the right and bottom of each panel. Arrows show GFP signals detected within the 
nucleus. (D) Comparison of images obtained 24 h p.i. in the presence of adenovirus (left panel) and after 
transfection of pGFP-VP2 (right panel). 
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To exclude that the observed results are due to inefficient nuclear transport of the GFP-tagged 

virions, the same experiments were performed with wild-type AAV in Ad5 coinfected cells. 

For detection of viral capsids and viral capsid proteins A20- and B1- antibodies were used, 

respectively. A20 recognizes intact but not dissociated AAV capsids whereas B1 binds to 

amino acid 726-733 at the C-terminus of all 3 capsid proteins (Blecker et al., 2005). At 2, 4 

and 11 h p.i. almost no B1 staining was detectable, in marked contrast to A20 staining (data 

not shown). At 4 and 11 h p.i., no difference was observed when comparing GFP-tagged with 

wild-type virions (Figure 9B shows one example 11 h p.i.). At these time points only isolated 

intact capsids (recognized by A20) were found within the nucleus and the majority (over 

90%) of the virions were visible outside the nucleus (Figure 9B). At 24 h p.i. both antibodies 

were able to recognize their targets and resulted mainly in a nuclear staining (data not shown). 

This suggests that at this time point, new viral capsid proteins have been synthesized in the 

Ad5 coinfected cells and new capsids have been formed. 

 

 

 Figure 9: AAV with nuclear invaginations. (A) HeLa 
cells were infected with 106 capsids per cell of 100%-
GFP-VP2-AAV. 11 h p.i. cells were fixed and the 
nuclear lamina was stained with TexasRed conjugated 
anti-lamin B antibody. Analysis was performed by 
confocal microscopy. A series of horizontal sections of 
0.2 µm were obtained for each image. The square 
image shows one horizontal section of the stack. The 
vertical sections of the stack are depicted on the right 
and bottom of each panel. (white arrows: capsid in 
nuclear invaginations; blue arrows: capsid in 
perinuclear area). (B) HeLa cells were infected with 
10 6 capsid per cell of wild-type AAV and adenovirus 
type 5 (MOI 5). 11 h p.i. cells were fixed. Capsid and 
nuclear membrane were stained using using A20 (red; 
RRX conjugated secondary antibody) and anti-Lamin 
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B antibody (blue: Cy5 conjugated secondary antibody), respectively. Microscopical analyses were performed as 
described in (A). Under these conditions isolated signals of intact capsid were detectable inside the nucleus 
(blue arrow). In addition, viral capsid within nuclear invaginations have been observed (white arrow). (C) HeLa 
cells were infected with 106 capsid per cell of 100%-GFP-VP2-AAV and coinfected with adenovirus type 5 (MOI 
5). 2 h p.i. cells were fixed. Capsids and nuclear membrane were stained using using A20 (red; RRX conjugated 
secondary antibody) and anti-Lamin B antibody (blue: Cy5 conjugated secondary antibody), respectively. 
Microscopical analyses were performed as described in (A). GFP-tagged virions in nuclear invaginations were 
recognized by A20 (white arrow). 
 

From this we propose that an adenoviral function augments the nuclear translocation of viral 

capsids. However, the low level of GFP or A20 signals detected within the nucleus suggests a 

very inefficient nuclear translocation. Thus, uncoating seems to occur before or during 

nuclear entry. 

 

To further investigate this hypothesis, HeLa cells were infected by wild-type AAV using 10x 

less virions per cell. Infections were performed with and without helpervirus. Since viral 

replication in adenovirus coinfected cells is reported to start between 8 and 12 h p.i. (Mouw 

and Pintel, 2000; Xiao et al., 2002), infections were stopped at 2, 4, and 11 h p.i. To visualize 

viral genomes FISH hybridization was performed. In addition, viral capsids and the nuclear 

lamina were stained by antibodies (Fig. 8A and 8B). Viral genomes were detectable outside 

and within the nucleus at 11 p.i. (Figure 8A and arrows in Figure 8B). No colocalization of 

viral genomes and intact viral capsids was observed within the nucleus, whereas 

colocalizations were detectable in the perinuclear area and within the cytoplasm (A20: red 

signals in the upper right panel of Figure 8A and merge). In addition empty capsids (no 

colocalization) were visible in the perinuclear area. Some of the FISH signals in the 

perinuclear area showed no colocalization with A20 and therefore with intact capsids. It has 

yet to be investigated if these signals emanate from free viral genomes or if they colocalize 

with one of the three VP proteins. The same image was obtained using a comparable amount 

of viral genomes in the absence of helpervirus, revealing that the observed viral genomes 

originate from incoming virions and are not the result of viral replication. Furthermore, it 

allows the assumption that a nearly comparable nuclear transport of viral genomes occurs 

with or without helpervirus. Interestingly, viral genomes within the nucleus are already 

detectable at earlier time points (2 and 4 h p.i.) both in the presence and absence of Ad5 

although 10x less virions per cell were used than for the capsid studies (Figure 6, 7 and 9). 

Under these conditions (105 instead of 106 capsids per cell) viral capsids are detected within 

the cell, but none of these localize within the nucleus as shown as an example in Figure 8B.  
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All these observations strongly support the hypothesis that uncoating of AAV occurs during 

or before nuclear entry. However, at the current state it can not be excluded that viral 

genomes within the nucleus are associated with one of the three viral capsid proteins. 

 

 
Figure 8: Visualization of viral genomes by FISH hybridization. (A) HeLa cells were infected with wild-type 
AAV (105 capsids per cell = 8700 genomic particles per cell) and adenovirus type 5 (MOI 5). Cells were fixed 11 
h p.i. FISH hybridization (green, Oregon green labelled DNA probe) was performed to visualize viral genomes, 
whereas intact capsids and nuclear membrane were stained using A20 (red; RRX conjugated secondary 
antibody) and anti-Lamin B antibody (blue: Cy5 conjugated secondary antibody), respectively. Analyses were 
performed by confocol microscopy and one image plane out of a z-stack is shown (upper left panel: FISH 
hybridization; upper right panel: A20; lower left panel: anti-Lamin B; lower right panel: merge). (B) 
Enlargement and vertical sectioning of merge shown in (A). The arrows show one example of a viral genome 
localized within the nucleus.  
(viral genome: green, Oregon green labelled DNA probe; intact capsid: red, A20 recognized by RRX conjugated 
secondary antibody, nuclear membrane: blue: anti-Lamin B recognized by Cy5 conjugated secondary antibody) 

 

 

AAV is found in nuclear invaginations 

Single particles have been shown to reach the nuclear area within seconds (Seisenberger et 

al., 2001) and a perinuclear accumulation of AAV was described to occur within 1-2 h p.i. 

(Bartlett et al., 2000; Xiao et al., 2002). Interestingly, we observed in addition AAV particles 

within tubular channels, which extend deeply into the nucleoplasm (Figure 9). This could first 

be assumed from SVT analysis. Within our SVT studies we had observed that AAV moved 

very quickly on certain “pathways” through the nuclear area and we hypothesized that these 

“pathways” might be nuclear invaginations, which are tubular structures derived from the 
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nuclear envelope. The enclosed core is continuous with the cytoplasm and may function to 

bring larger proportions of the nucleoplasm close to a nuclear pore (Fricker et al., 1997). In 

addition, a function of these nuclear channels in transport processes has been proposed 

(Dupuy-Coin et al., 1986). Within our current analysis, we observed AAV particles within 

nuclear invaginations (visualized by nuclear lamina staining), which verify our former 

assumptions (Seisenberger et al., 2001). These pictures were obtained for both, the GFP-

tagged virions (Figure 9A and 9C) and wild-type AAV (Figure 9B). The capsids were 

recognized in both cases by A20 revealing that intact viral capsids were detected within the 

nuclear invaginations. Although the significance of this colocalization has to be clarified, it 

explains the directed motion along defined pathways through the nuclear area observed by 

SVT. 

 

Discussion 

To track the intracellular trafficking of AAV and derived vectors in infected cells, we have 

tagged virions by incorporation of GFP-VP2 into the viral capsid. In a first step chimeric 

virions containing VP1, VP2, GFP-VP2 and VP3 were produced. GFP-tagged AAV particles 

could also be generated without the addition of wild-type VP2. This observation is in contrast 

to Yang et al. (1998), who showed that the AAV capsid is not able to tolerate large insertions 

at the N-terminus of VP2 without the simultaneous addition of wild-type VP2. This 

discrepancy might be due to differences in the production and purification method: Yang et 

al. expressed the different VP proteins from three different plasmids controlled by the CMV 

promoter, and used a CsCl density gradient for purification. In addition, remaining 

helpervirus was inactivated by heat. Using the natural AAV viral promoters and a helpervirus-

free production method allowed to efficiently generate particles with N-terminal VP2-fusions 

of different size (Loiler et al., 2003; Shi et al., 2001; Warrington et al., 2004; Wu et al., 

2000). The largest insertion described so far is the 30 kDa GFP protein used by Warrington et 

al. and in our study. Interestingly, although Warrington and colleagues used the same amino 

acid position (aa 138) for the VP2 fusion, the genomic particle-to-infectivity ratio reported by 

Warrington et al. was remarkably higher (up to 130 fold less infectious) than ratios obtained 

for our GFP-tagged virions (Warrington et al., 2004). In addition an up to 30 fold higher 

amount of empty capsids was detected within their study. We observed a genomic particle-to-

infectivity ratio between 84 and 195 for 60%-GFP-VP2-AAV, and between 208 and 2288 for 
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the 100%-GFP-VP2-AAV, which is higher than ratios obtained for the wild-type AAV within 

our study (29 and 62), but still in the range described for wild-type preparations (Ried et al., 

2002). Furthermore, no increase in the amount of empty capsids was detected. Since we used 

the same amino acid position for the fusion (aa 138), the differences observed must have been 

caused by other factors. One main difference could be the choice of the promoter responsible 

for the transcription of VP2. Warrington et al. used the natural p40 promoter, and translation 

was initiated from a modified and therefore stronger start codon (ATG instead of ACG), 

which resulted in a more efficient VP2 and in the inhibition of VP3 initiation from this 

template. In our case, the viral CMV promoter was used to control the transcription of the 

fusion protein and the VP2 translation start codon was deleted. Warrington and colleagues 

performed a Western blot of their GFP-tagged virions. When comparing their Western blot 

results with the results obtained for our GFP-tagged virions packaged in the presence of 

pGFP-VP2 (Figure 3) the most obvious difference was the amount of VP1 detected in the 

GFP-tagged virion preparations. While the preparations of Warrington and colleagues showed 

a clear reduction for the VP1 signal, the amount of VP1 in our preparations was comparable 

to wild-type AAV. It is known that VP1 - possibly because of its phospholipase activity - is 

essential for AAV infectivity (Blecker et al., 2005; Girod et al., 2002; Warrington et al., 

2004; Wu et al., 2000). Therefore the reduced amount of VP1 within the preparations of 

Warrington et al. might be a reasonable explanation for the lower infectivity of the vectors 

produced by Warrington and colleagues and the discrepancy to our results. It remains 

unknown if the modification of the VP2 translation start codon as carried out by Warrington 

and colleagues or other factors are responsible for the VP1 reduction. However, our 

preparations yielded an up to 130 fold increased viral infectivity in comparison to Warrington 

et al. with an infectious titer of 109 per ml. These GFP-tagged virions were comparable to 

wild-type AAV. This assumption is based on our direct comparison with wild-type AAV and 

on antibody colocalization studies (Figure 6, 9).  

According to the current model of AAV infection, AAV enters host cells by receptor-

mediated endocytosis, which is a very fast process that occurs in approximately 60 ms 

(Seisenberger et al., 2001). Within the first 10 minutes, two-thirds of membrane bound virus 

particles are internalized (Bartlett et al., 2000). The endocytotic process and the subsequent 

trafficking steps are still poorly understood and may differ substantially in different, and in 

some cases even in the same cell types (Duan et al., 2000; Hansen, Qing and Srivastava, 

2001). The release of AAV from the endosomes is believed to take place at the late 
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endosomal stage and requires a low endosomal pH (Bartlett et al., 2000). Thereafter, the 

destiny of AAV remains unclear. Some studies have observed perinuclear accumulation 

within 1-2 h p.i., which persisted in the absence of adenovirus coinfection for at least 16 h 

(Warrington et al., 2004, Xiao et al., 2002). In contrast, using laser scanning confocal 

microscopy, Bartlett observed AAV particles within the nucleus of infected cells already 2 h 

p.i. despite the absence of helpervirus (Bartlett et al., 2000).  

In this study, we observed that intracellular trafficking of GFP-tagged virions occurs quickly 

at least in HeLa cells. This is in agreement with results obtained with SVT. This sensitive 

method allows the observation of single particles in a living cell. Due to this high sensitivity it 

was possible for us to detect at least one AAV particle in the nuclear area of 50% of the cells 

15 minutes p.i. In some cases AAV reached the nuclear area within seconds (Seisenberger et 

al., 2001). In contrasts to this, the nuclear entry of intact AAV capsids is comparably slow. 

Although many virions were already accumulated in the perinuclear area before 2 h p.i. we 

observed in the absence of helpervirus coinfection only isolated GFP signals from the GFP-

VP2-AAV particles within the nucleus of cells at 11 and 24 h p.i. (no signal at 2 or 4 h p.i.). 

This result clearly contradicts results described by Bartlett et al., who observed in the absence 

of helpervirus AAV particles inside the nucleus 2 h p.i. (Bartlett et al., 2000). This can be 

explained by the limited microscopic possibilities available at that time.  

In adenovirus coinfected cells, already 2 h p.i. (earliest time point observed) GFP signals were 

observed within the nucleus, revealing that adenovirus is able to augment nuclear entry of 

AAV capsids. These results confirm previous observations that described intact viral particles 

within the nucleus of coinfected cells in less than 1 h p.i. (Warrington et al., 2004, Xiao et al., 

2002). However, the amount of AAV capsids we observed by applying the new vertical 

sectioning method for data analysis was much lower than described by e.g. Xiao et al. (Xiao 

et al., 2002). In all conditions and at all time points analyzed during this study, only very few 

GFP signals provided by the GFP-VP2-AAV particles could be detected within the nucleus. 

This was not due to the GFP-VP2-AAV virions used to analyze this step of the infectious 

biology, since the same image was obtained with wild-type AAV visualized by A20 (Figure 

9).  

We assume that the transport of intact viral capsids into the nucleus of infected cells is a very 

inefficient process, and that viral uncoating takes place before or during nuclear entry 

independent of helpervirus coinfection. The very low amount of intact particles observed in 

the nucleus of cells infected with 106 viral capsids per cell could be due to unspecific events 
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and is likely to be not necessary for viral replication. This model is suggested by the 

comparison of the amount of viral genomes with the amount of capsids detected within the 

nucleus at different time points of the infection in the presence and absence of helpervirus: 

Neither in the presence nor in the absence of helpervirus intact viral capsids were detected 

within the nucleus of cells infected with 105 instead of 106 viral capsids per cell. In contrast, 

under the same condition already 2 h p.i. viral genomes were detected within the nucleus with 

a slight increase in signals with prolonged observation times. This argues for an uncoating of 

AAV before or during nuclear entry independent of helpervirus coinfection. 
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Refinement of procedures for the generation of neutralization resistant virions will contribute 

to the success of AAV as vector for human gene therapy.  

Immune-evading variants of a successful vector have to meet two requirements. On one hand 

the antibody-mediated neutralization should be significantly reduced, while on the other the 

targeting ability should not be affected. As of yet, the generated mutants are still neutralized 

by serum concentrations inferior to the situation found in vivo. However, the successful 

selection of enhanced second-generation mutants and the established technologies such as 

error prone PCR, DNA shuffling and evolution monitoring suggest the potential for further 

improvement of the immune-evading phenotype by additional directed evolution. It has been 

shown that different epitopes are recognized by individual sera (Huttner et al., 2003). 

Accordingly, clones containing an accumulation of mutations, which affect the most relevant 

immunogenic epitopes should reduce the observed serum-dependent variations of the 

immune-escaping effectivity. Selections using a large number of different sera and DNA 

shuffling of thereof derived successful mutants should yield novel vectors which retain 

infectivity in presence of most human sera. It is further planned to test the mutants in pre-

immunized animals to allow an evaluation under in vivo conditions. 

In addition to the problem of vector neutralization by serum antibodies, directed evolution 

holds the potential to address other challenges in gene therapy. However, the best results will 

likely be achieved by a combination of different successful approaches. One of the major 

problems for safe and efficient AAV-based gene therapy is the lack of tissue-specific 

targeting vectors. Although effective targeting to AAV non-permissive cells has been 

achieved by insertion of appropriated ligands in the wt capsid or direct selection from 

insertional targeting libraries (Girod et al., 1999; Perabo et al., 2003; Muller et al., 2003), 

these method mostly generated vectors with extended tropism that, however, lacked 

selectivity (Perabo et al., 2003). This was due to targeting of widely expressed receptors and 

because of the existence of important receptor binding domains on the capsid, which remain 

functional despite the insertions. The generation of efficient and specific vectors will therefore 

require a combination of retargeting to specific receptors and detargeting from the natural 

tropism. For this purpose a targeting library with a randomized peptide insertion at position 

587 (VP1 numbering) has been subjected to error prone PCR creating a combined library 

(Fig. 1). 
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Figure 1. Generation of a combined library. Insertional mutagenesis is combined with random point mutations 
scattered throughout the viral capsid. For this goal, a region of the cap gene of an AAV library carrying a 7 aa 
long random insertion at the 587 position is further randomized by error prone PCR thus yielding a combined 
library. 

 
This library can be screened by alternating rounds of positive selection steps on target cells 

and negative selections on non-target cells (noise cells) (Fig. 2A). 48 hrs post infection the 

replicated virions can be harvested from the target cells and incubated on noise cells. Mutants 

with reduced ability to bind noise cells can be harvested with the supernatant and used for a 

subsequent selection cycle. This process should result in the identification of clones with 

targeting efficiency provided by the selected insertion and selectivity provided by natural 

tropism-abolishing mutations. 

Similar results can be achieved by the establishment of in vivo selection protocols (Fig 2B). 

The library can be administrated intravenously to an animal and specific variants can be 

isolated from target tissue, e.g. a specific organ, tissue or previously introduced tumoral cells. 

As before, re-iteration should yield virions, which exhibit a high infectivity for the tissue of 

interest but a reduced ability to infect other cell types.  

 

 
Figure 2. Example of protocols for selection of efficient and specific mutants using a combined library. A) 
Target cells are infected with the library. 48 hrs p.i. the harvest is briefly incubated on non-target cells to 
eliminate unspecific virions by infection. The supernatant is collected and used for additional cycles. B) in vivo 
biopanning protocol. After intravenous injection viral progeny is collected from the target tissue (e.g.induced  
tumor). Re-iteration after amplification of virions leads to selection of tissue-specific vectors. 
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Moreover, previously described targeting mutants could be optimized applying error prone 

PCR, DNA shuffling and selection protocols. 

We anticipate that error prone PCR-based libraries, DNA shuffling and evolution monitoring 

could also be applied to engineer viral vector families other than AAV to obtain clones with 

improved phenotypes. 
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Abreviations 
 

 
aa amino acid 

AAV adeno-associated virus, specifically 

AAV-2 adeno-associated virus type 2 

AAVS1 AAV integration site 1  

 (located in human chromosome 19) 

Ab antibody 

Ad adenovirus 

 

Amino acids: 

A (Ala) alanine 

C (Cys) cysteine 

D (Asp) aspartate 

E (Glu) glutamate 

F (Phe) phenylalanine 

G (Gly) glycine 

H (His) histidine 

I (Ile) isoleucine 

K (Lys) lysine 

L (Leu) leucine 

M (Met) methionine 

N (Asn) asparagine 

P (Pro) proline 

Q (Gln) glutamine 

R (Arg) arginine 

S (Ser) serine 

T (Thr) threonine 

V (Val) valine 

W (Trp) tryptophan 

Y (Tyr) tyrosine 

 

 

Bases:  

A adenin 

C cytosin 

G guanin 

T thymin 

ADV Aleutian mink disease virus 

B-AAV-pool Heparin binders 

B19 B19 human parvovirus 

bp base pair  

BSA bovine serum albumin 

Cap capsid protein  

cDNA complementary DNA 

ch chromosome 

CMV cytomegalovirus 

CNS central nervous system 

CPV canine parvovirus 

Cryo-EM cryo-electron microscopy 

CTL cytotoxic T-lymphocyte 

Cy3, Cy5 indocarbocyanine dyes 

Da Dalton 

DMEM Dulbecco's Modified Eagle 

Medium 

EGFP enhanced GFP 

e.g. for example (Lat.: exempli gratia) 

ELISA enzyme-linked immunosorbent 

assay 

EP-PCR error prone PCR 

FACS fluorescence-activated cell sorting  

FCS fetal calf serum 

FGFR fibroblast growth factor receptor 1 

Fig.  figure 

FISH fluorescence in situ hybridization 

FITC fluorescein isothiocyanate 

FPV feline panleukopenia virus 

GFP green fluorescence protein 

Gy Gray 

h hour 

HA hemagglutinin 

HSPG heparan sulfate proteoglycan 

i.e. that is (Lat.: id est) 

i.m. intra muscular 
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ITR inverted terminal repeat 

kb kilobases 

Kd dissociation constant 

LC-PCR light cycler PCR 

mAb monoclonal antibody 

MHC major histocompatibility complex 

min minute 

MOI multiplicity of infection 

MT microtubule 

MVM minute virus of mice 

NB-AAV-pool Heparin non-binders 

NLS nuclear localisation sequence 

NPC nuclear pore complex 

nt nucleotide 

ori origin of replication  

ORF open reading frame 

PFA paraform aldehyde 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p.i. post infection 

PIK-3 phosphatidylinositol-3-kinase 

PLA2 phospholipase A2 

PNRE perinuclear recycling endosome 

rAAV recombinant AAV 

RBS Rep binding site 

Rep viral regulatory protein 

rpm rounds per minute  

RT room temperature  

SDS sodium dodecyl sulfate  

sFv single chain antibody 

Stav streptavidin 

SVT single virus tracing 

TRS terminal resolution site 

U units 

VP viral protein (AAV capsid protein) 

wtAAV wild-type AAV 
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