Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians Universität München

Structural and functional analysis of the Ca_v1.4 L-type calcium channel from mouse retina

Ludwig Baumann aus

Eichendorf

2006

Erklärung

Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 von Prof. Dr. Martin Biel betreut.

Ehrenwörtliche Versicherung

Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet.

München, den 25.04.2006

München, den 25.04.2006

Ludwig Baumann

Dissertation eingereicht am27.04.20061. Gutachter:Prof. Dr. M. Biel2. Gutachter:Prof. Dr. A. PfeiferMündliche Prüfung am18.05.2006

CONTENTS

1 IN	NTRODUCTION	8
1.1 I	Nomenclature and structure of voltage-gated calcium channels	8
1.2	L-type calcium channels	. 10
1.3 \$	Structure and regulation of the $\alpha 1$ subunit	. 11
1.3.1	Pharmacological regulation of L-type calcium channels	. 12
1.3.2	Regulation by voltage and Ca ²⁺ ions	. 12
1.4]	Physiological impact of Ca _v 1.4α1	. 14
1.5	Purpose of the study	. 16
2 M	IATERIALS AND METHODS	. 17
2.1	Calcium channel constructs	. 17
2.1.1	Constructs for electrophysiology	. 17
2.1.1.	1 Construction of $Ca_v 1.4\alpha l$ mutants	. 17
2.1.1.	2 Construction of $Ca_v I.2b\alpha I / Ca_v I.4\alpha I$ chimeric channels	. 18
2.1.2	Constructs for GST pull-down	, 18
2.1.3	Constructs for coimmunoprecipitation	. 19
2.2	Amplification and purification of DNA	. 20
2.2.1	Transformation of competent E. coli	. 20
2.2.2	Mini-Prep DNA isolation from E. coli	. 21
2.2.3	Maxi-Prep DNA isolation from E. coli	. 21
2.3	Cell culture	. 21

2.3.1	Culture of HEK 293 cells	
2.3.2	Transient transfection of HEK 293 cells for coimmunoprecipitation	
2.3.3	Transient transfection of HEK 293 cells for electrophysiology	22
2.4 A	nalysis of proteins	
2.4.1	GST pull-down assay	
2.4.1.1	Purification of GST fusion proteins expressed in E. coli	
2.4.1.2	Expression of 6xHis/Flag tagged ICDI peptide in E. coli	
2.4.1.3	Measurement of GST fusion protein concentration	
2.4.1.4	Measurement of overall protein concentration	
2.4.1.5	Interaction with calmodulin	
2.4.1.6	5 Interaction with ICDI	
2.4.2	Coimmunoprecipitation	
2.4.2.1	Purification of proteins expressed in HEK 293 cells	
2.4.2.2	Quantification of proteins	
2.4.2.3	Coimmunoprecipitation of proteins	
2.4.3	Western blot analysis	
2.4.3.1	SDS-polyacrylamid gel electrophoresis (SDS-PAGE)	
2.4.3.2	Immunological detection of proteins	
2.5 E	lectrophysiology	
2.5.1	Performance	
2.5.2	Protocols	
2.5.3	Data Analysis	
3 RF	ESULTS	
3.1 F	unctional characterization of $Ca_v 1.4 \alpha 1$	
3.1.1	Electrophysiological properties of wild type Cav1.4 α 1	
3.1.2	Pharmacological properties of wild type $Ca_v 1.4 \alpha 1$	

3.2 The lack of calcium dependent inactivation (CDI)	
3.2.1 Calmodulin binding of $Ca_v 1.4 \alpha 1$	40
3.2.2 Identification of an inhibitory channel domain	
3.2.3 Interaction of ICDI and $Ca_v 1.4 \alpha 1$	
3.2.4 Abolishing CDI in Ca _v 1.2 channels	45
4 DISCUSSION	
4.1 Functional characterization of Ca _v 1.4α1	
4.1.1 Electrophysiological properties of $Ca_v 1.4 \alpha 1$	
4.1.2 Pharmacological profile of $Ca_v 1.4 \alpha 1$	
4.2 Proposed mechanism for block of CDI in Cav1.4 channels	50
4.3 Physiological function of Ca _v 1.4 calcium channels	53
5 SUMMARY	55
6 APPENDIX	
6.1 Sequence of Ca _v 1.4α1 cloned from mouse retinal cDNA	
6.2 Alignment	64
6.3 Primers	65
7 REFERENCES	
8 PUBLICATIONS	72

9	ACKNOWLEDGEMENTS	. 73
10	CURRICULUM VITAE	. 74

ABBREVIATIONS

ANOVA:	Analysis of variance
CDI:	Calcium dependent inactivation
CNG:	Cyclic-nucleotide-gated
cDNA:	Cyclic desoxyribonucleic acid
CSNB:	Congenital stationary nightblindness
DMEM:	Dulbecco's modified eagle medium
DHP:	Dihydropyridine
DNA:	Desoxyribonucleic acid
DTT:	1,4-Dithiothreitol
E. coli:	Escherichia coli
EDTA:	Ethylenediaminetetraacetic acid
EGFP	Enhanced green fluorescent protein
EGTA	Ethylene glycol bis(β-aminoethylether) tetraacetic acid
FBS:	Fetal bovine serum
GST:	Glutathione-S-transferase
HEK:	Human embryonal kidney
HEPES:	2-[4-(2-Hydroxyethyl)-1-piperazinyl]-ethanesulfonic acid
HVA:	High voltage-activated
ICDI:	Inhibitor of calcium dependent inactivation
LB:	Luria-Bertani
LTCC:	L-type calcium channel
LVA:	Low voltage-activated
PAGE:	Polyacrylamide gel electrophoresis
PBS:	Phosphate buffered saline
PO:	Pore occluder
PVDF:	Polyvinylidene difluoride
SDS:	Sodium dodecyl sulfate
SEM:	Standard error of the mean
TEA:	Tetraethylammonium chloride
TEMED:	N,N,N',N'-Tetramethylethylenediamine
TBS:	Tris bufferd saline
Tris:	Tris(hydroxymethyl)aminomethane
VDI:	Voltage dependent inactivation

1 INTRODUCTION

Voltage-gated calcium channels are members of a gene superfamily of transmembrane ion channel proteins which also includes voltage-gated natrium and potassium channels. They mediate Ca^{2+} influx into the cell along an electrochemical gradient in response to changes in the membrane potential. Owing to this property voltage-gated calcium channels couple electrical signaling with numerous physiological events like muscle contraction, secretion, gene expression, cell division or neurotransmission^{1,2}.

1.1 Nomenclature and structure of voltage-gated calcium channels

The calcium channels are protein complexes consisting of four to five subunits (Figure 1-1). The largest peptide of the complex is the $\alpha 1$ subunit with about 190-250kDa. This protein contains the channel pore, the voltage sensor and the gating machinery. The β subunit is localized at the intracellular face of the channel complex. The transmembrane δ subunit and the extracellular $\alpha 2$ subunit are linked by disulfid-bonds forming the $\alpha 2\delta$ subunit complex¹. The voltage-gated calcium channel of skeletal muscle contains an additional γ subunit³, which is also a transmembrane protein.

The principal pharmacological and electrophysiological properties of voltage-gated calcium channels are determined by the respective $\alpha 1$ subunits. By contrast, β , $\alpha 2\delta$ and γ subunits are modulatory proteins which fine-tune the basic properties of the channel complex⁴.

 α 1 subunits are divided into two groups, the high voltage-activated (HVA) and the low voltage-activated (LVA) channels, according to their activation threshold (Figure 1-2). With respect to their pharmacological properties the HVA calcium channels can be distinguished further on into subclasses⁵. The first class, the so-called L-type calcium channels (LTCCs) (Ca_v1.1-Ca_v1.4), produces a long lasting ("L") current which is sensitive to organic LTCC blockers including dihydropyridines, phenylalkylamines and benzothiazepines. P/Q-type, N-type and R-type channels (Ca_v2.1-Ca_v2.3) are also high voltage-activated but they are only weakly affected by the L-type channel blockers. These channels typically can be blocked by specific polypeptide toxins from snail and spider venoms¹.

The LVA calcium channels, which need only weak depolarizations for activation, produce the so-called T-type current ($Ca_v 3.1-Ca_v 3.3$). It is a transient current ("T"), resistant to subtype-specific channel blockers the other calcium channels are sensitive to.

Figure 1-2 Phylogenetic representation of the primary sequences of the $\alpha 1$ subunits of voltagegated calcium channels. L-type calcium channels: Ca_v1.1-Ca_v1.4, P/Q-type: Ca_v2.1, N-type: Ca_v2.2, R-type: Ca_v2.3, T-type: Ca_v3.3.

1.2 L-type calcium channels

LTCCs are one of the best characterized calcium channels today. They are distributed over a wide range of tissues and different isoforms are often expressed together in single cells or tissues (Table 1-1).

name	splice variants	primary tissues	physiological function	Mutations and pathophysiology
Ca _v 1.1		skeletal muscle ¹	excitation-contraction coupling, Ca ²⁺ homeostasis ¹	Malignant hyperthermia ²
	Ca _v 1.2a	heart ¹	action potential propagation ¹	Timothy syndrome ³ ;
Ca _v 1.2	Ca _v 1.2b	smooth muscle ¹	excitation-contraction coupling ¹	1.2 deficient mice show multiple
	Ca _v 1.2c	neurons ¹	synaptic plasticity ¹	phenotypes ^{1,4} , ⁵
Ca _v 1.3		brain, pancreas, kidney, heart ¹	hormone release, regulation of transcription, synaptic integration ¹	KO mice are deaf and show sinoatrial node dysfunction ⁶
Ca _v 1.4		retina ^{1,7}	neurotransmitter release ^{1,8,9}	CSNB2 ^{1,8,9}

Table 1-1 Channel distribution and physiological function of LTCCs.

References:

¹Catterall, W. A., Perez-Reyes, E., Snutch, T. P. & Striessnig, J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. *Pharmacol Rev* **57**, 411-25 (2005)

(2005) ²Striessnig, J. et al. L-type Ca2+ channels in Ca2+ channelopathies. *Biochem Biophys Res Commun* **322**, 1341-6 (2004)

³Liao, P., Yong, T. F., Liang, M. C., Yue, D. T. & Soong, T. W. Splicing for alternative structures of Cav1.2 Ca2+ channels in cardiac and smooth muscles. *Cardiovasc Res* **68**, 197-203 (2005)

⁴ Seisenberger, C. et al. Functional embryonic cardiomyocytes after disruption of the L-type alpha1C (Cav1.2) calcium channel gene in the mouse. *J Biol Chem* **275**, 39 193-9 (2000)

⁵Schulla, V. et al. Impaired insulin secretion and glucose tolerance in beta cell-selective Ca(v)1.2 Ca2+ channel null mice. *Embo J* 22, 3844-54 (2003)

⁶ Platzer, J. et al. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. *Cell* **102**, 89-97 (2000)

⁷Firth, S. I., Morgan, I. G., Boelen, M. K. & Morgans, C. W. Localization of voltage-sensitive L-type calcium channels in the chicken retina. *Clin Experiment Ophthalmol* **29**, 183-7 (2001)

⁸ Bech-Hansen, N. T. et al. Loss-of-function mutations in a calcium-channel alpha1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. *Nat Genet* **19**, 264-7 (1998)

⁹Mansergh, F. et al. Mutation of the calcium channel gene Cacna1f disrupts calcium signaling, synaptic transmission and cellular organization in mouse retina. *Hum Mol Genet* **14**, 3035-46 (2005)

In summary, the criteria for their identification are the sensitivity to dihydropyridines, the relative slow activation kinetics, activation by strong depolarization, a large single channel conductance and the presence of calcium dependent inactivation (CDI) with little voltage dependent inactivation (VDI)⁵. Nevertheless, there are functional differences between LTCCs. $Ca_v 1.3$ channels e.g., unlike $Ca_v 1.2$ channels, have a low activation threshold, they only need weak depolarizations for activation⁶⁻¹⁰ and not all LTCCs show the same sensitivity to dihydropyridines (DHPs). $Ca_v 1.3$ channels are significantly less sensitive to DHPs compared to $Ca_v 1.2$ channels^{6,10}. The properties of $Ca_v 1.4$ are not very well known at the moment.

1.3 Structure and regulation of the α1 subunit

The $\alpha 1$ subunit of the LTCC complex confers the basic pharmacological and electrophysiological properties of the calcium current. The subunit consists of four homologous domains (I-IV), each containing six transmembrane segments (S1-S6, Figure 1-3). The S4 segment acts as the voltage sensor of the channel and the pore loop located between the S5 and the S6 segment determines the ion conductance and selectivity¹.

Figure 1-3 Schematic representation of an α 1 L-type calcium channel subunit. It comprises four domains, each consisting of six transmembrane segments. The N- and the C-terminus are located at the cytosolic side of the membrane.

1.3.1 Pharmacological regulation of L-type calcium channels

Most of the known sites for channel regulation by toxins and drugs are also located in the $\alpha 1$ subunit. Phenylalkylamines block the pore of the channel from the intracellular side. Their binding site is formed by amino acids in the IIIS6 and IVS6 segment¹¹⁻¹³ (Figure 1-4). Unlike phenylalkylamines dihydropyridines (DHPs) do not block the channel pore, they rather allosterically shift the channel to the open or inactivated state. Thus, DHPs can be inhibitors as well as activators of LTCCs. Their receptor site is formed by amino acids in the IIIS5, the IIIS6 and the IVS6 segment. The amino acid residues important for the binding of phenylalkylamines and dihydropyridines are overlapping (Figure 1-4). The binding site for benzothiazepines also overlaps with the binding site for phenylalkylamines¹³.

Figure 1-4 Alignment of amino acid residues of $Ca_v 1.1-Ca_v 1.4$ that participate in the formation of the dihydropyridine (*d*), phenylalkylamine (*p*) and benzothiazepine (*b*) binding sites. Important amino acid residues are highlighted red. Further benzothiazepine binding sites are supposed to be located in the IIIS6 segment but this remains to be confirmed on the single amino acid level¹³. Lower case letters indicate the contribution of the residue to the respective binding site.

1.3.2 Regulation by voltage and Ca^{2+} ions

The opening of ion channels and, hence, the flux of ions into or out of the cell is limited by a process designated as inactivation. In voltage-regulated ion channels inactivation is primarily conferred by depolarization (voltage dependent inactivation, VDI). Voltage-regulated calcium channels exhibit an additional inactivation mechanism, called calcium dependent inactivation (CDI). The term CDI describes the property of Ca^{2+} ions to limit its own influx by a feedback inhibition. In most cell types this autoinhibition is essential to prevent excessive and potentially toxic Ca^{2+} levels.

The mechanism of inactivation is not fully understood at the moment. The current view on LTCCs is mainly based on experiments with Ca_v1.2. In this channel VDI and CDI are highly interlinked with each other on a molecular level. One structural requirement for inactivation seems to be the cytoplasmatic linker between domain I and II. This linker is supposed to form a blocking particle (pore occluder, Figure 1-5, grey ball) that closes the pore when the channel inactivates¹⁴⁻¹⁶. Another structural determinant crucial for inactivation is the cytosolic proximal C-terminus comprising an EF-hand motif, an IQ motif and the Pre-IQ motif, which corresponds to the sequence stretch between the EF-hand and the IQ motif¹⁷. This proximal C-terminus is highly conserved among all HVA calcium channels¹⁷⁻²⁹. In the resting state the pore occluder (PO) is tonically inhibited by the EF-hand motif residing in the proximal C-terminus (Figure 1-5, left)³⁰. Maintained membrane depolarization results in a slow conformational change that breaks the tonic inhibition of the PO by the EF-hand. Thus, the PO closes the pore of the channel (VDI).

The sequences conferring CDI are the EF-hand motif, the Pre-IQ and the IQ motif (Figure 1-5)¹⁷⁻²⁹. In the absence of Ca²⁺ ions, Ca²⁺-free calmodulin (apocalmodulin) is prebound to the proximal C-terminus, more exactly to the area of the IQ and the Pre-IQ motif (Figure 1-5, left)^{21,25}. Apocalmodulin is a calcium sensor comprising four EF-hands grouped in the N-lobe with low affinity and the C-lobe with high affinity for Ca²⁺ ions³¹. When Ca²⁺ influx starts, the Ca²⁺ concentration at the intracellular side of the pore increases and, for LTCCs, Ca²⁺ binds to the C-lobe of calmodulin¹⁸. Subsequently Ca²⁺-calmodulin translocates to its effector site near the apocalmodulin binding region and thereby induces a fast conformational change of the proximal C-terminus. Thus the EF-hand accelerates the movement of the PO actively and the channel inactivates much faster^{23,30}. As Figure 1-5 shows, the sequences conferring CDI in Ca_v1.2 are highly conserved in Ca_v1.4.

Figure 1-5 Left: So far established structural determinants of inactivation in Cav1.2. The pore occluder is shown as grey ball. The bars indicate the tonic inhibition by the EF-hand. Calmodulin (light grey) is prebound to the C-terminus. The distal part of the C-terminus is not shown. **Right:** Alignment of the C-termini of $Ca_v 1.4\alpha 1$ and $Ca_v 1.2b\alpha 1$ from the end of the IVS6 segment to the end of the IQ motif. The sequences conferring CDI (EF hand, Pre-IQ and IQ motif) are highly conserved. Bars on top of the alignment indicate the borders of EF-hand motif and IQ-motif. The sequence stretch between this two motifs is the Pre-IQ area. Differences in the primary sequence are indicated as red letters.

1.4 Physiological impact of Ca_v1.4α1

Photoreceptor cells contain specialized synaptic terminals, so-called ribbon synapses, that confer the release of gluamate. In the dark, when the membrane potential is rather depolarized (-40mV), glutamate is tonically released at these synapses. Light induces a hyperpolarization and, hence, switches off neurotransmission. Voltage-gated calcium channels are known to play a key role in synaptic transmission. They couple depolarization of the membrane potential with an influx of Ca²⁺ ions into the cell which is the trigger for exocytosis. At the ribbon synapses several types of LTCCs have been detected, namely Ca_v1.2, Ca_v1.3 and Ca_v1.4^{32,33}. As the only one of the three channels Ca_v1.4 seems to be specifically expressed in the retina^{34,35}. L-type calcium currents measured from retinal photoreceptor or bipolar cell differ from other L-type calcium currents in lacking CDI³⁶⁻⁴¹ (Figure 1-6).

Figure 1-6 Calcium currents measured from a rod bipolar cell (left, Berntson et al. (2003) J Neurosci Res **19**, 260) and a tracheal myocyte (right, Fleischmann et al. (1994) *Proc. Natl. Acad. Sci. USA* **91**, 11914-11918). Retinal LTCC currents show no inactivation in the presence of Ca^{2+} ions.

This property is required in the dark to ensure a permanent glutamate release at depolarized voltages. Ca_v1.2 and Ca_v1.3 channels display CDI, thus, it is likely that the lack of CDI in native L-type calcium currents from retinal cells is due to Ca_v1.4 or to other factors that modify channel function. The importance of Ca_v1.4 is corroborated by genetic studies. While mice lacking Ca_v1.2 or Ca_v1.3 show no visual impairment, the loss of Ca_v1.4 leads to severe disorder, called incomplete X-linked congenital stationary night blindness type 2 (CSNB2)⁴². CSNB2 is characterized by symptoms like myopia, nystagmus, night blindness and low visual acuity. This phenotype is consistent with a defect in neurotransmission in the retina^{32,34,35,43,44}. Also in humans mutations in the gene coding for Ca_v1.4 α 1 are known that lead to CSNB2^{43,44}. The molecular mechanism by which this loss of function mutations of Ca_v1.4 lead to CSNB2 is not fully understood at the moment. However, these data indicate that Ca_v1.4 plays a key role in vision.

The tissue distribution and the physiological properties of the auxiliary LTCC subunits are only moderately known. Only the $\beta 2$ subunit, which increases expression levels and modulates the gating properties of the channel complex, is exactly known to be localized in the retina. The expression of this subunit is required for normal retinal synaptic transmission just as well as the Ca_v1.4 α 1 subunit⁴⁵.

1.5 Purpose of the study

As stated above it was unclear whether the properties of the retinal L-type calcium currents are conferred by $Ca_v 1.4$ or are rather due to other regulatory mechanisms. To clarify this question, the $Ca_v 1.4\alpha 1$ L-type calcium channel subunit shall be cloned from mouse retina and heterologously expressed in HEK cells. Afterwards, the basic biophysical and pharmacological properties have to be determined in electrophysiological experiments in order to be compared with native LTCC currents from retina.

Based on the previous analysis the mechanism of CDI is addressed in the second part of this study. As mentioned, there was preliminary evidence that $Ca_v 1.4$ channels may lack CDI despite its high homology to other LTCCs. The purpose of this study is to identify structural determinants that prevent CDI in $Ca_v 1.4$ in order to explain this phenomenon.

2 MATERIALS AND METHODS

All chemicals used meet the standard "pro analysi" (p.a.). For generation of all solutions desalted high purity water (Easypure UV/UF, Barnstead) was used. Solutions for highly sensitive applications (e.g. PCR, cell culture) or solutions designed for long term use were autoclaved.

2.1 Calcium channel constructs

All constructs mentioned in the text were tested for integrity by enzymatic restriction analyses and DNA sequencing. Sequencing was performed by MWG-Biotech. All restriction endonucleases used are products of New England Biolabs, Inc. All primers used are products of MWG-Biotech (Table 6-1).

2.1.1 Constructs for electrophysiology

For expression of murine $Ca_v 1.4\alpha 1$ LTCC subunit (GenBank accession number AJ579852) in eukaryotic cells the bicistronic pIRES2-EGFP expression vector (Clontech) was used⁴⁶. It contains the internal ribosome entry site (IRES) of the encephalomyocarditis virus between the multiple cloning site (MCS) and the enhanced green fluorescent protein (EGFP) coding region. As a result, both, $Ca_v 1.4\alpha 1$ and EGFP are expressed as separate proteins. Such transfected cells could easily be identified by fluorescence.

The pcDNA3 expression vector (Invitrogen) was used for expression of the $Ca_v 1.2b\alpha 1$ subunit from rabbit $lung^{47}$ in eukaryotic cells and for expression of a negativ dominant calmodulin mutant $(CaM_{1234})^{48}$, the $\beta 2a^{49}$, the $\beta 3^{49}$ and the $\alpha 2\delta 1$ subunit⁵⁰. $Ca_v 1.2b\alpha 1$, $\beta 2a$, $\beta 3$ and $\alpha 2\delta 1$ expression vectors were a gift of N. Klugbauer.

2.1.1.1 Construction of $Ca_v 1.4\alpha l$ mutants

Truncated Ca_v1.4 channels (G1458Stop, R1610Stop, Y1668Stop, R1796Stop, C1884Stop, Q1930Stop, Q1953Stop) were constructed by ligating BamH I/Xho I cut DNA fragments generated via PCR and corresponding to the required C-terminal part of Ca_v1.4 α 1 and a EcoR I/BamH I cut fragment corresponding to the proximal 3945bp of the plasmid encoding for wild type Ca_v1.4 α 1 into the EcoR I/Sal I cut pIRES2-EGFP expression vector. The BamH I/Xho I cut fragments carried the required Stop codon and a Xho I restriction site immediately after the stop codon introduced by 3'-primers.

The Ca_v1.4 Δ C channel was cloned by deleting amino acids R1610-C1884 of Ca_v1.4 α 1 using overlap PCR. Again, a Xho I restriction site was introduced by a 3'-primer and the PCR product was cut BamH I/Xho I. Ligation was performed as mentioned above. For construction of the Ca_v1.4 Δ EF channel amino acids P1459-I1491 were deleted in the

For construction of the $Ca_v I.4\Delta EF$ channel amino acids P1459-11491 were deleted in the same way.

The nucleotide sequence corresponding to the ICDI peptide (inhibitor of calcium dependent inactivation, amino acids L1885-L1984 of $Ca_v 1.4\alpha 1$) was amplified by PCR. A BamH I restriction site, an optimized sequence for initiation of translation (Kozak sequence, GCC GCC ACC)⁵¹ and a start codon were introduced by the 5`-primer and a Xho I restriction site was introduced by the 3`-primer immediately after the stop codon. The BamH I/Xho I cut PCR product was ligated into the BamH I/Xho I cut pcDNA3 expression vector.

2.1.1.2 Construction of $Ca_v 1.2b\alpha l / Ca_v 1.4\alpha l$ chimeric channels

In chimera 1.2-CT1.4 amino acids D1502-L2166 of $Ca_v 1.2b\alpha 1$ were replaced by D1445-L1984 of $Ca_v 1.4\alpha 1$ by several overlapping PCR steps. The PCR fragment was cut EcoR V/Apa I and ligated into the Hind III/Apa I cut pcDNA3 expression vector together with proximal, Hind III/EcoR V cut part of Cav1.2b\alpha 1.

In 1.2-ICDI1.4 G2018-L2166 of $Ca_v1.2b\alpha1$ were replaced by L1885-L1984 of $Ca_v1.4\alpha1$, in chimera 1.2 Δ C-ICDI1.4 K1667-L2166 of $Ca_v1.2b\alpha1$ were replaced by L1885-L1984 of $Ca_v1.4\alpha1$, in 1.2-C+ICDI1.4 K1667-L2166 of $Ca_v1.2b\alpha1$ were replaced by R1610-L1984 of $Ca_v1.4\alpha1$ and in 1.2-A+ICDI1.4 K1667-L2166 of $Ca_v1.2b\alpha1$ were replaced by R1610-L1984 of $Ca_v1.4\alpha1$ with a deletion of I1742-C1884. All exchanges again were done via overlap PCR. The PCR fragments were cut BstE II/Xho I and ligated into the BstE II/Xho I cut $Ca_v1.2b\alpha1$ expression vector.

In chimera 1.2-A1.4 amino acids K1667-L2166 of $Ca_v 1.2b\alpha 1$ were replaced by amino acids R1610-S1741 via PCR. A stop codon and a BamH I restriction site immediately after the stop codon were introduced by the 3'primer. Following the BstE II/BamH I cut PCR fragment was ligated into the BstE II/BamH I cut $Ca_v 1.2b\alpha 1$ expression vector.

2.1.2 Constructs for GST pull-down

For generation of glutathione-S-transferase (GST) fusion proteins the DNA fragments coding for the required peptides were amplified by PCR and cloned into the pET41a(+) expression

vector (Novagen), in frame with a upstream coding region for GST. This vector is designed for expression of GST fusion proteins in bacterial systems.

The nucleotide sequences corresponding to the C-terminal fragments of $Ca_v 1.4\alpha 1$ or $Ca_v 1.2b\alpha 1$, CT1.4 (amino acids D1445-L1984 of $Ca_v 1.4\alpha 1$), CT1.4-1610Stop (amino acids D1445-G1609 of $Ca_v 1.4\alpha 1$), CT1.4 1610-1984(amino acids R1610-L1984 of $Ca_v 1.4\alpha 1$), CT1.2 (amino acids D1502-L2166 of $Ca_v 1.2b\alpha 1$), CT1.2-1667Stop (amino acids D1502-G1666 of $Ca_v 1.2b\alpha 1$) and CT1.2 1667-2166 (amino acids K1667-L2166 of $Ca_v 1.2b\alpha 1$), were amplified via PCR, introducing a BamH I restriction site by the 5'-primer, an appropriate stop codon if required and a Xho I restriction site immediately after the stop codon by the 3'-primer. These BamH I/Xho I cut PCR fragments were ligated into the BamH I/Xho I cut pET41a(+) vector.

Cloning of peptide A (amino acids R1610-S1741 of $Ca_v 1.4\alpha 1$) was performed in the same way, but the C-terminal restriction site was a BamH I and not a Xho I site. It was digested with BamH I and ligated into the BamH I cut pET41a(+) vector.

For ΔEF (amino acids D1445-G1609 of Ca_v1.4 α 1 with amino acids P1459-I1491 deleted) PCR was performed with the cDNA encoding for Ca_v1.4 ΔEF (2.1.1) as a template. The same primers as for CT1.4-1610Stop were used and the BamH I/Xho I cut PCR fragment was ligated into a BamH I/Xho I cut pET41a(+) vector.

Generation of 6xHis/Flag tagged ICDI was perfomed as follows:

the DNA fragment encoding for the ICDI peptide (see 2.1.1) was amplified by PCR. A BamH I restriction site and a N-terminal Flag tag (amino acid sequence: D-Y-K-D-D-D-K) were introduced by the 5'-primer and a Xho I restriction site immediately after the stop codon was introduced by the 3'-primer. This BamH I/Xho I cut PCR fragment was ligated into the BamH I/Sal I cut pQE-30 vector (Quiagen) in frame with the upstream 6xHis tag. The pQE-30 expression vector is also designed for expression of peptides and proteins in bacterial systems.

2.1.3 Constructs for coimmunoprecipitation

For generation of the myc tagged C-terminal fragments CT1.4-1610Stop (amino acids see 2.1.2) and Δ EF (amino acids see 2.1.2), the encoding cDNA fragments were amplified by PCR. A BamH I restriction site, a Kozak sequence (see 2.1.1), a start codon and a N-terminal myc tag (amino acid sequence: E-Q-K-L-I-S-E-E-D-L) were introduced by the 5`-primer and an appropriate stop codon and a Xho I restriction site immediately after the stop codon by the 3`-primer. Generation of peptide A (amino acids see 2.2) and peptide C (amino acids R1610-C1884 of Ca_v1.4 α 1) was performed the same way, but the N-terminal restriction site

introduced was EcoR I. After digestion with the appropriate restriction enzymes the PCR fragments were cloned into the BamH I/Xho I and EcoR I/Xho I cut pcDNA3 vector, respectively.

The triple flag tagged ICDI peptide was constructed in the same manner using a 5`-primer containing a BamH I restriction site and the triple flag tag (amino acid sequence: D-Y-K-D-H-D-G-D-Y-K-D-H-D-I-D-Y-K-D-D-D-K) instead of the myc tag.

2.2 Amplification and purification of DNA

2.2.1 Transformation of competent E. coli

An aliquot of 100µl of competent Escherichia coli (E. coli; BL21(DE3) competent cells (Novagen) or XL1-blue competent cells (Stratagene)) was thawed on ice. 15µl of ligated DNA was added to the cells, mixed gently and kept on ice for further 30min. Afterwards the cells were exposed to a heat shock by placing the tube into a water bath at 42°C for 45sec and then left on ice for two minutes. 900µl autoclaved Luria-Bertani medium containing glucose (LB+ medium) was added and the tube was placed on a shaking incubator for 1h at 37°C and 225rpm. After centrifugation at 3000rpm for 5min the pellet was resuspended in 100µl LB+ medium and plated on LB+ agar plates containing the appropriate antibiotic (Ampicillin 50μ g/ml, Roth; Kanamycin 30μ g/ml, Roth). The agar plates were incubated for 16-20h at 37° C.

LB+ medium

<u>LB+ agar</u>

Peptone (Roth)	10g
Yeast extract (Roth)	5g
NaCl (Roth)	5g
Glucose (Roth)	1g
H_2O	ad 1000ml
рН 7.2-7.5	

Agar (Roth)	15g
LB+ medium	ad 1000ml

2.2.2 Mini-Prep DNA isolation from E. coli

To check if the isolated single colonies contained the correct plasmid, Mini-Prep DNA isolation was performed. Single colonies from the agar plate were cultured in 7ml LB+ medium containing Ampicillin 100µg/ml and Kanamycin 30µg/ml, respectively, and placed on a shaking incubator for 12-16h at 37°C and 225rpm. After harvesting the bacterial cells by centrifugation (2000g, 10min) alkaline lysis⁵² was performed for isolation of the plasmid DNA.

After isolation enzymatic restriction analysis was performed.

2.2.3 Maxi-Prep DNA isolation from E. coli

To recover larger amounts of high-purity DNA the PureYieldTM Plasmid Midiprep System (Promega) was used. It is based on the method of alkaline lysis⁵² in combination with purification by a silica membrane column.

Before, bacteria containing the correct plasmid were cultured in 200ml LB+ medium containing the appropriate antibiotic for 12-16h under the conditions mentioned above (2.2.2). Cells were centrifuged at 5000g for 10min after incubation and DNA was isolated.

Enzymatic restriction analysis and DNA sequencing (MWG-Biotech) were performed to confirm integrity of the plasmids.

2.3 Cell culture

All procedures described were carried out under sterile conditions under a laminar air flow.

2.3.1 Culture of HEK 293 cells

The HEK 293 cell line is established from human primary embryonal kidney transformed by adenovirus type 5^{53} . The cells were cultured in Dulbecco's modified eagle medium (DMEM, Gibco) containing 1000mg glucose supported with 10% fetal bovine serum (FBS, Biochrom), 100U/ml Penicillin G (Biochrom) and 100µg/ml Streptomycin (Biochrom) in a 75cm² culture flask (Sarstedt) at 10% CO₂ and 37°C. Cells were splitted every 2-3 days when they had reached about 80% confluence. When splitted, cells were washed with phosphate buffered saline (PBS) and disaggregated by using a solution of 0.05% trypsin containing 0.02% ethylenediamine tetraacetic acid (EDTA). After inactivation of trypsin by the addition of DMEM cells were resuspended and again disaggregated by mechanic influence. 10% of the cells were seeded out in a new 75cm² culture flask.

Every 3 weeks a new stock of cells was thawed from -196°C.

<u>PBS, pH 7.4</u>

NaCl (Roth)	40.0g
KCl (Roth)	1.0g
Na ₂ HPO ₄ *12H ₂ O (Roth)	14.5g
KH ₂ PO ₄ (Roth)	1.2g
H ₂ O	ad 5000ml

0.05% trypsin/0.02% EDTA

Stock solution (0.5% trypsin/0.2% EDTA, Biochrom)	10ml
PBS	ad 100ml

2.3.2 Transient transfection of HEK 293 cells for coimmunoprecipitation

Cells were grown in a 10cm culture dish containing 10ml medium. When they had reached about 80% confluence, cells were transfected using the calcium phosphate method⁵⁴ with a modified buffer⁵⁵.

2.3.3 Transient transfection of HEK 293 cells for electrophysiology

About 3 x 10^5 cells were seeded into each well of a 6-well culture plate containing 2ml of culture medium. 4-6h after seeding the cells they were transfected using Fugene 6 Transfection Reagent (Roche). The ratio of DNA (µg) and Fugene 6 (µl) was 1:3. The total reaction volume for complexation was ten times the volume of Fugene 6. Besides transfection was done following the manufacturer's instructions.

2.4 Analysis of proteins

2.4.1 GST pull-down assay

For all steps described below protease inhibitors (PI; Complete, EDTA free; Roche) were added to the solutions according to the manufacturer's instructions. All steps were performed at 4°C.

2.4.1.1 Purification of GST fusion proteins expressed in E. coli

GST fusion proteins were expressed in the protease deficient BL21 (DE3) strain of E. coli. (Novagen). Transformation was performed as described above (2.2.1), except that the bacteria were diluted in 50ml LB- medium (LB+ medium without glucose) containing the appropriate antibiotic after incubation at 37°C for 1h on a shaking incubator. The bacterias were grown over night at the same conditions. Next morning they were diluted in 500ml LB- medium containing antibiotics. Bacteria were grown until they reached an OD_{600} of about 0.6-0.8. Then expression of fusion proteins was induced by adding isopropyl-β-Dthiogalactopyranoside (IPTG, Roth) to a final concentration of 1mM. The culture was incubated again at 37°C on a shaking incubator. After 4h bacteria were pelleted by centrifugation (10min, 4°C, 5000g), resuspended in 20ml ST buffer (50mM a,a,a-Tris-(hydroxymethyl)-methylamin (Tris), pH 8, VWR; 150mM NaCl, VWR) supplemented with 100µg/ml lysozyme (Roth). After incubation on ice for 15min dithiothreitol (DTT; Sigma) was added to a final concentration of 5 mM and the suspension was incubated on ice for further 10 min. N-lauroylsarcosine (Sigma) was added to a final concentration of 1%. After 30 min incubation on ice the mixture was sonicated on ice (Bandelin Sonopulse HD2200 with a MS-73 tip) by 6 pulses of 40s duration at 50% power separated by 30s cooling periods. Triton X-100 (Sigma) was added to a final concentration of 1.5%, and after 30 min on ice the lysate was clarified by centrifugation at $12,000 \times g$ for 20 min at 4°C. The pellet was discarded and the supernatant was split in 1ml aliquots and frozen at -80°C.

2.4.1.2 Expression of 6xHis/Flag tagged ICDI peptide in E. coli

For expression of the 6xHis/Flag tagged ICDI peptide XL1-blue competent cells (Stratagene) were used. The rest of the procedure was done as described in 2.4.1.1.

2.4.1.3 Measurement of GST fusion protein concentration

An aliquot of the lysate containing the required GST fusion protein was thawed on ice and the concentration of the fusion protein was estimated enzymatically by measuring the activity of GST using the GST TagTM Assay Kit (Novagen).

2.4.1.4 Measurement of overall protein concentration

The overall protein concentration in lysates was measured by Bradford assay⁵⁶.

2.4.1.5 Interaction with calmodulin

Glutathione sepharose beads (Glutathion Sepharose 4B, Amersham Biosciences) were washed three times in 10 bed volumes ST buffer. After each wash the beads were centrifuged (2min, 500g, 4°C) and after the last wash they were resuspended in 1 bed volume ST buffer. 50µl of the suspension were added to a portion of crude protein extract corresponding to 300pmol of the required GST fusion protein. The resulting mixture was rotated over night at 4°C. Next morning the beads were centrifuged (2min, 500g, 4°C), kept on ice for 1min and the supernatant was discarded. Afterwards the beads were washed as mentioned above in 20 bed volumes ST buffer and resuspended in 1ml ST buffer in the presence of 1mM CaCl₂ (Merck) respectively 5mM EGTA (Sigma). 1µg calmodulin (bovine brain, Calbiochem) was added. The mixture was rotated for 2h at 4°C. After centrifugation (2min, 500g, 4°C) the beads were washed three times as mentioned in 20 bed volumes of the same buffer they were incubated containing 0.05% Tween-20 (Roth). After washing, the beads were resuspended in 25µl ST buffer.

2.4.1.6 Interaction with ICDI

Glutathion sepharose beads were prepared as above. 300 pmol of the required GST fusion protein were mixed with 50µl beads suspension and a portion of crude protein extract containing the 6xHis/Flag tagged ICDI peptide matching 250µg overall protein. ST buffer was added to a final volume of 1ml. This mixture was rotated overnight at 4°C. The next day beads were centrifuged (2min, 500g, 4°C), kept on ice for 1min and the supernatant was discarded. Afterwards the beads were washed four times in 20 bed volumes ST buffer containing 0.05% Tween-20. After washing beads were resuspended in 25µl ST buffer.

2.4.2 Coimmunoprecipitation

For all steps described below protease inhibitors (PI; Complete, EDTA free; Roche) were added to the solutions, according to the manufacturer's instructions. All steps were performed at 4°C.

2.4.2.1 Purification of proteins expressed in HEK 293 cells

Tansfection of HEK 293 cells was performed as described in 2.3.2. 16-20h after transfection the medium was exchanged and 3d after transfection the cells were washed with 10ml PBS and lysed with 500µl lysis buffer (50mM TRIS-HCl, pH 7.4, Roth; 150mM NaCl, VWR; 1mM EDTA, Roth and 1% Triton X-100, Sigma). The culture dishes were placed on an orbital shaker for 30min at 4°C and 100rpm. The lysed cells then were scraped off the dish, transferred into a reaction tube and centrifuged (15min, 12000g, 4°C). The pellet was discarded and the supernatant was frozen at –80°C for further use.

2.4.2.2 Quantification of proteins

Overall protein concentration was measured as described in 2.4.1.4

2.4.2.3 Coimmunoprecipitation of proteins

Protein A sepharose beads (Amersham biosciences) were washed three times in 10 bed volumes AM0 buffer (20 mM TRIS-HCl pH7.9, Roth; 5 mM MgCl₂, Merck; 0.5 mM DTT, Sigma; 20% glycerol, Roth) and resuspended in 1 bed volume AM0 buffer. After each wash the beads were centrifuged (2min, 500g, 4°C). Protein extracts containing the required myc tagged C-terminal fragment of $Ca_v 1.4\alpha 1$ and the triple flag tagged ICDI peptide were mixed (500µg overall protein, each) and 40µl of beads suspension and AM0 buffer were added to a final volume of 500µl. For immunoprecipitation 5µg of anti-myc antibody (mouse monoclonal IgG, Cell signalling) or 5µg of anti-ras antibody (control antibody, mouse monoclonal IgG, Santa Cruz Biotechnology) were used. This mixture was rotated over night at 4°C. The next day, beads were pelleted by centrifugation (2min, 500g, 4°C) and washed four times as described with AM100 buffer (AM0 buffer supplemented with 100mM KCl, Roth). After centrifugation the beads were resuspended in 25µl AM0 buffer.

2.4.3 Western blot analysis

2.4.3.1 SDS-polyacrylamid gel electrophoresis (SDS-PAGE)

Proteins were separated by SDS-PAGE using the method described by Laemmli⁵⁷. After adding 6xLaemmli sample buffer to the samples, they were boiled 5min at 98°C. For electrophoresis the Mini-PROTEAN 3 electrophoresis system (Biorad) was used. Thickness of the gels was 1.5mm. The concentration of acrylamid/bisacrylamid solution (Rotiphorese Gel 30, 37.5:1, Roth) in the resolving gel depended on the protein to be analyzed. Electrophoresis was done at 100V. As protein standards the Precision Plus ProteinTM KaleidoscopeTM Standards (Biorad) were used.

The following solutions were used:

4xTris-HCl/SDS pH6.8

(0.5M Tris, 0.4% SDS)

Tris (VWR)	6.0g	
SDS ultra pure (Roth)	0.4g	
H ₂ O	ad 100ml	
pH 6.8 adjustet with HCl (VWR)		

6xLaemmli sample buffer

4xTris-HCl/SDS pH6.8	7ml
Glycerol (Roth)	3ml
SDS ultra pure (Roth)	1.0g
Bromphenol blue (Merck)	0.004%
DTT (Sigma)	0.9g
H_2O	ad 10ml

4xTris-HCl/SDS pH8.8

(1.5M Tris, 0.4% SDS)

Tris (VWR)	18.2g
SDS ultra pure (Roth)	0.4g
H ₂ O	ad 100ml
pH 8.8 adjustet with HCl	

Stacking gel

Rotiphorese Gel 30 (Roth)	0.65ml
4xTris-HCl/SDS pH6.8	1.25ml
H ₂ O	3.05ml
TEMED (Sigma)	5µl
Ammonium peroxodisulphate	25µl
(Roth, 20% solution in H ₂ O)	

10xElectrophoresis buffer

Resolving gel (7%-15%)

Tris (VWR)	30.2g	Rotiphorese Gel 30 (Roth) 3.50	0-7.50ml
Glycine (Roth)	144.0g	4xTris-HCl/SDS pH8.8	3.75ml
SDS ultra pure (Roth)	10.0g	H ₂ O 7.73	5-3.75ml
H ₂ O	ad 1000ml	TEMED (Sigma)	10µl
		Ammonium peroxodisulphate	30µl
		(20% solution in H ₂ O)	

2.4.3.2 Immunological detection of proteins

For immunological detection the proteins separated by SDS-PAGE were electroblotted to a Immun-Blot PVDF (polyvinylidene difluoride) Membrane (Biorad) with a pore size of 0.2µm or 0.45µm depending on the molecular weight of the respective protein.

For blotting of calmodulin CaM transfer buffer was used. The resolving gel was equilibrated in CaM transfer buffer for 10min before blotting. Calmodulin was transferred at 100mA for 35min. After blotting, the PVDF membrane was dried for 1h at 37°C and then it was wet with methanol (Roth) and blocked with tris buffered saline (TBS) containing 3% milk powder (Fluka) for 15min at room temperature. Incubation with anit-calmodulin antibody (mouse monoclonal IgG, Upstate) as primary antibody was done over night at 4°C. The antibody concentration was 1µg/ml and it was diluted in TBS containing 3% milk powder and 0.05% sodium azide (Roth). After washing the membrane three times for 5min in TBS it was incubated with anti-mouse IgG antibody conjugated with horseradish peroxidase (Amersham biosciences) for 1h at room temperature. The secondary antibody was diluted 1:5000 in TBS containing 3% milk powder. The membrane was washed as described above and the protein was detected by enhanced chemiluminescence using the ECLTM Western Blotting Analysis System (Amersham Biosciences). The Blot was exposed to a light sensitive film (Hyperfilm ECLTM, Amersham Biosciences).

For blotting of ICDI peptide ICDI transfer buffer was used and the peptides were transferred at 200mA for 35min. An anti-flag antibody (mouse monoclonal IgG, Sigma) at a concentration of 2.5µg/ml was used as primary antibody. Incubation was performed at room temperature for 1h. The rest of the procedure was done as mentioned above.

Blotting of GST and myc fusion proteins was performed with normal transfer buffer at 300mA for 1h. An anti-GST antibody (mouse monoclonal IgG, Novagen) and an anti-myc antibody (mouse monoclonal IgG, Cell signaling), respectively, were used as primary antibodies. Immunological detection was performed according to the manufacturer's instructions.

Solutions used:

<u>CaM transfer buffer</u>		<u>transfer buffer</u>	
(CaCl ₂ 2mM, methanol	35%)	(methanol 20%)	
Tris (VWR)	3.02g	10xElectrophoresis buffer	100ml
Glycine (Roth)	14.4g	(see 2.4.3.1)	
CaCl ₂ (Merck)	0.29g	Methanol (Roth)	200ml
Methanol (Roth)	350ml	H ₂ O	ad 1000ml
H ₂ O	ad 1000ml		

	ICDI	transfer	buffer
--	------	----------	--------

(methanol 35%)

10xElectrophoresis buffer	100ml
(see 2.4.3.1)	
Methanol (Roth)	350ml
H ₂ O	ad 1000ml

<u>10xTBS pH8</u>

Tris (VWR)	12.1g	
NaCl (Merck)	80.2g	
H ₂ O	ad 1000ml	
pH 8.0 was adjusted with HCl		

2.5 Electrophysiology

2.5.1 Performance

Unless otherwise noted, HEK293 cells were transiently transfected with expression vectors encoding for $Ca_v 1.4\alpha 1$ or $Ca_v 1.2b\alpha 1$, together with equimolar amounts of vectors encoding for $\beta 2a$ or $\beta 3$ and $\alpha 2\delta 1$ as described (2.3.3).

Currents were measured at room temperature 2-4d after transfection using the whole-cell patch-clamp technique. Data were acquired using an Axopatch 200B amplifier (Axon Instruments) and Clampex 8.2 software (Axon Instruments). Data were analyzed using Clampfit 8.2 (Axon Instruments) and Origin 6.1 (Originlab Corporation) software.

Patch pipettes were pulled from borosilicate glass capillaries with an outer diameter of 1.5mm and an inner diameter of 1.17mm (Harvard Apparatus). The pipette resistance varied from 1.5 to 2.5M Ω . Cell sizes ranged between 15 and 60pF and the access resistances were between 3.0 and 7.0M Ω and were compensated up to 70%. I_{Ca} and I_{Ba} were measured from the same cell.

Following solutions were used for current measurements:

<u>Pipette solution</u>		Bath solution
		(30mM BaCl ₂)
CsCl (Sigma)	112.0mM	NaCl (Merck)
MgCl ₂ (Merck)	3.0mM	BaCl ₂ (Sigma)
MgATP (Sigma)	3.0mM	CsCl (Sigma)
EGTA (Sigma)	10.0mM	MgCl ₂ (Merck)
HEPES (Sigma)	5.0mM	TEA (Sigma)
pH7.4 adjusted with Cs	OH (Aldrich)	HEPES (Sigma)

NaCl (Merck)	82.0mM	
BaCl ₂ (Sigma)	30.0mM	
CsCl (Sigma)	5.4mM	
MgCl ₂ (Merck)	1.0mM	
TEA (Sigma)	20.0mM	
HEPES (Sigma)	5.0mM	
Glucose (Merck)	10.0mM	
pH 7.4 was adjusted with NaOH (Merck)		

For experiments with 10mM BaCl₂ or 10mM CaCl₂ in the bath solution the NaCl concentration was increased to 102mM. Bath solutions were exchanged and drugs were applied by a local solution exchanger and reached the cell membrane within less than 100ms. Drugs applied were: racemic verapamil hydrochloride (Sigma), D-(+)-cis-diltiazem hydrochloride (Sigma), L-(-)-cis-diltiazem hydrochloride (Biomol Research Laboratories Inc.), racemic isradipine (Novartis) and S-(-)-Bay K8644 (Sigma).

Stock solutions of the drugs were prepared in H₂O or ethanol (isradipine). For experiments stock solutions were diluted in the required bath solution.

2.5.2 Protocols

I-V curves were measured by applying 150 or 350ms voltage pulses to potentials between -80 and 70mV in 10mV increments from a holding potential of -80mV at 0.2Hz.

Steady state inactivation curves were measured from a holding potential of -80mV. A conditioning prepuls varying between -100 and 50mV in 10mV or 20mV increments was followed by a 20ms return to the holding potential and a 300ms test pulse to the maximum activation voltage (V_{max}). For Ca_v1.2ba1 the prepuls duration was 5s, for Ca_v1.4a1 it was 5, 10, 20 or 30s to achieve a steady state. Pulse frequency was adapted to the prepuls duration and varied between 0.1 and 0.025Hz.

The effects of agonists and antagonists on $Ca_v 1.4\alpha 1$ were tested by applying 40ms voltage pulses to V_{max} from a holding potential of -80mV or -50mV. Pulse frequency was 0.2Hz. Drug effects were measured after steady state block was attained, 2-3min after application.

2.5.3 Data Analysis

All values are given as mean \pm SEM, n is the number of experiments. An unpaired t test was performed for the comparison of two groups. Significance was tested by ANOVA followed by a Dunett test if multiple comparisons were made. Values of P<0.05 were considered significant.

To obtain current densities, the maximum current amplitude at maximum activation voltage (V_{max}) was normalized to the cell membrane capacitance (C_m) .

Activation threshold, determined from I-V curves, is defined as the potential at which 5% of the maximum current were activated.

To determine the half maximum activation voltage ($V_{0.5, act}$) I-V curves were measured and the chord conductance (G) was calculated by dividing the peak current amplitude (I_{max}) by its

driving force at the respective test potential. The driving force is determined as the difference between the test potential (V_m) and the reversal potential (V_{rev}), the potential at which the I-V curve intersects with the x-axis. G = I_{max} / (V_m - V_{rev}). The chord conductance then was fitted by the Boltzmann equation G = G_{max} / (1 + exp(V_{0.5, act} - V_m) / k_{act}), where G_{max} is the maximum conductance, V_m is the test potential and k_{act} is the slope factor of the activation curve.

To determine the half maximum inactivation voltage ($V_{0.5, inact}$) steady state inactivation curves were measured. Tail currents at maximum activation voltage (V_{max}) were normalized to the maximum current and plotted as a function of the preceeding membrane potential of the conditioning pulse. Data points were fitted using the following Boltzmann function: I = 1 / (1 + exp($V_m - V_{0.5, inact}$) / k_{inact}).

The time course of $Ca_v 1.2b\alpha 1$ current activation was fitted by the monoexponential function: $I_t = A_0 * exp(-t / \tau) + C$, where I_t is the current at time t after a voltage pulse to V_{max} , A_0 is the steady state current amplitude with the respective time constant of activation τ , and C is the remaining steady state current.

 $Ca_v 1.4\alpha 1$ current activation was fitted by the biexponential function: $I_t = A_{fast} * exp(-t / \tau_{fast}) + A_{slow} * exp(-t / \tau_{slow}) + C$, where τ_{slow} and τ_{fast} represent slow and fast time constants of activation, respectively. A_{slow} and A_{fast} are the amplitudes of the current components.

The time course of current inactivation was fitted by the biexponential function: $I_t = A_{fast} * exp(-t / \tau_{fast}) + A_{slow} * exp(-t / \tau_{slow}) + C. \tau_{slow}$ and τ_{fast} represent slow and fast time constants of inactivation, respectively. A_{slow} and A_{fast} are the amplitudes of the current components. A_{fast} (%) was calculated as $A_{fast} / (A_{fast} + A_{slow}) * 100$. I_{Ba} of $Ca_v 1.2b\alpha 1$, 1.2-ICDI1.4 and 1.2 Δ C-ICDI1.4 were fitted by the monoexponential function $I_t = A_0 * exp(-t / \tau) + C$, where A_0 is the steady state current amplitude with the respective time constant of inactivation τ , and C the remaining steady state current. For $Ca_v 1.4\alpha 1$, C1884Stop + ICDI, C1884Stop + CaM₁₂₃₄ and I_{Ba} of C1884Stop time course of inactivation was linear and therefore not fitted.

CDI was quantified by determining the *f* value. *f* is defined as the difference $r_{300, Ba} - r_{300, Ca}$, where r_{300} is the normalized current remaining after 300ms depolarization to the respective test potential (V_m) in the presence of Ba²⁺ and Ca²⁺, respectively^{21,58}. *f* can vary between 0 (no CDI) and 1 (complete CDI). It was determined for test potentials between -40mV and 40mV in 10mV increments. For comparison of different channels the maximum f value was taken.

For generation of concentration-inhibition curves I $_{drug}$ / I $_{control}$ was determined, where I $_{drug}$ is the steady state current amplitude at V_{max} in the present and I $_{control}$ in the absence of the required substances (see 2.5.1). The drugs were tested at 4-5 different concentrations. Data

points were fitted to the Hill equation. $1 / [1 + (IC_{50} / c)]^{n_H}$, c is the drug concentration, n_H is the Hill coefficient and IC_{50} is the drug concentration needed for half maximum block of $I_{control}$.

3 RESULTS

3.1 Functional characterization of Ca_v1.4α1

The Ca_v1.4 α 1 subunit was cloned from murine retinal cDNA. For these purposes specific primer pairs based on the previously published sequence of this channel⁵⁹ were designed (see appendix 6.3) and RT-PCR with retinal cDNA from mouse strain C57Bl6 was performed. The full-length cDNA of Ca_v1.4 α 1 was determined to be 6111 bp with an open reading frame encoding a protein of 1984 amino acid residues (sequence see appendix 6.1, GenBank accession number: AJ579852). In the context of this work detailed electrophysiological experiments were performed to characterize Ca_v1.4 channels biophysically and pharmacologically.

3.1.1 Electrophysiological properties of wild type Cav1.4α1

HEK 293 cells were transfected with $Ca_v 1.4\alpha 1$ without any auxiliary subunits or the empty pIRES2-EGFP expression vector for measurement of endogenous HEK cell currents as control. In both cases only endogenous HEK cell currents⁶⁰ were observed.

Figure 3-1 HEK 293 cells were transfected with empty pIRES2-EGFP expression vector or Ca_v1.4 α 1. Currents were measured in bath solution containing 30mM Ba²⁺. There was no difference between endogenous current and Ca_v1.4 α 1 current. **A, top)** Pulse protocol: 150ms voltage pulses were applied from a holding potential of -80mV to potentials between -80 and 70mV in 10mV increments. **A, bottom)** Whole cell current recorded from a representative cell. **B)** I-V relationship for cells transfected with Ca_v1.4 α 1 (\circ , n = 12) and pIRES2-EGFP (\bullet , n = 7). Current densities at V_{max} were -1.2 ± 0.2pA/pF for Ca_v1.4 α 1 and -1.3 ± 0.3 pA/pF for pIRES2-EGFP.

There was no difference either in current densitiy or in the I-V relationship (Figure 3-1) suggesting that $Ca_v 1.4\alpha 1$ is not able to form functional LTCCs alone. Perhaps other calcium channel subunits are needed for formation of functional LTCCs. Indeed, when coexpressed with $\alpha 2\delta$ and either $\beta 2a$ or $\beta 3$ subunits Ba^{2+} currents completely different from endogenous backround currents were evoked by depolarizations (Figure 3-2). The I-V relationship was shifted 20mV to more positive potentials and current densities consistently exceeded those of endogenous currents. Furthermore, no significant inactivation was seen during the 150ms voltage step (Figure 3-2).

Figure 3-2 HEK 293 cells were transfected with $Ca_v 1.4\alpha 1$, $\alpha 2\delta 1$ and $\beta 3$ or $\beta 2a$ subunit or with $Ca_v 1.4\alpha 1$ alone. Currents were measured in bath solution containing 30mM Ba^{2+} . Same pulse protocol was used as in Figure 1. **A**) Current amplitudes recorded with $\beta 2a$ subunits were bigger than with $\beta 3$ subunits at comparable cell capacity. **B**) The I-V relationship was shifted about 20mV to more positive potentials for heterologously expressed currents compared with endogenous HEK cell currents. V_{max} was -6.7 ± 1.4 for $Ca_v 1.4\alpha 1$ alone (\circ , n = 12), 11.0 ± 1.8 mV for $\beta 3$ subunit (\bullet , n = 10) and 13.8 ± 0.9 mV for $\beta 2a$ subunit (\bullet , n = 30). Current densities were -1.2 ± 0.2 pA/pF for endogenous currents (\circ , n = 12), -4.4 ± 0.8 pA/pF for $\beta 3$ subunit (\bullet , n = 10) and -9.5 ± 1.1 pA/pF for $\beta 2a$ (\bullet , n = 30). See also table 3-1.

Two different β subunits for heterologous expression of Ca_v1.4 were tested, the β 2a and the β 3 subunit. The properties of the currents obtained from both experiments were very similar (Table 3-1). As the only difference the current density recorded with the β 2a subunit coexpressed was two times the current density recorded with the β 3 subunit (Figure 3-2).

Based on these findings, the β_{2a} subunit was used for heterologous expression of Ca_v1.4 and Ca_v1.2 calcium channels for all further experiments. To describe the biophysical properties of $Ca_v 1.4$ more exactly it was compared with $Ca_v 1.2b$, the smooth muscle isoform of LTCCs, which is well characterized. Ba^{2+} currents of $Ca_v 1.4$ apparently activated faster than Ba^{2+} currents of Ca_v1.2 (Figure 3-3A, Table 3-1). Consistent with the properties of an LTCC, Ca_v1.4 activated at relatively positive membrane potentials. In experiments performed with 30 mM Ba²⁺ as the charge carrier, the mean I–V relationships of Ca_v1.4 and Ca_v1.2 were almost identical (Figure 3-3B, Table 3-1). Only the inactivation kinetics of Ca_v1.4 were completely different from those of Ca_v1.2. During a 150ms voltage pulse applied (Figure 3-3A) no inactivation could be observed at all. For comparison of voltage dependent activation and inactivation (VDI), activation and steady state inactivation curves of Ba²⁺ currents were determined. Activation curves were almost identical for Cav1.2 and Cav1.4. In contrast, at a conditioning pulse duration of 5s (2.5.2) the steady state inactivation curve of $Ca_v 1.4$ was shifted to approximately 20mV more positive membrane potentials compared to Cav1.2 (Figure 3-3C). At V_{max} it took more than 30s for complete inactivation of $Ca_v 1.4 Ba^{2+}$ currents (Figure 3-4).

Figure 3-3 Ca_v1.4 induces L-type Ba²⁺ currents in HEK293 cells. For all experiments Ca_v1.4 α 1 or Ca_v1.2 α 1 were coexpressed with α 2 δ 1 and β 2a. Currents were measured in bath solution containing 30 mM Ba²⁺ as the charge carrier. Pulse protocol as given in Figure 1. Biophysical parameters are given in table 3-1. A) Whole-cell current recorded from representative cells expressing either Ca_v1.4 (*left*) or Ca_v1.2 (*right*). B) I–V relationship for Ca_v1.4 channels (•, n = 30) and Ca_v1.2 channels (•, n = 9). Individual I–V curves were normalized to the respective maximum current amplitude and then averaged. C) Conductance-voltage relationships for Ca_v1.4 (•, n = 28) and Ca_v1.2 (•, n = 9) and steady state inactivation curves for Ca_v1.4 (•, n = 9) and Ca_v1.2 (□, n = 9) were determined. Individual curves were normalized to maximum current amplitude and then averaged. Solid lines: datafit to the Boltzmann equation.

Figure 3-4 Representative Ba^{2+} current of a cell expressing heterologous Cav1.4 channels. More than 30s depolarization to V_{max} are needed for full inactivation. Pulse protocol see above.
Because of the extreme slow inactivation time course of $Ca_v 1.4 Ba^{2+}$ currents, the duration of the conditioning pulse for measurement of VDI was modified. It was set 5, 10, 20 and 30s. The inactivation curves were shifted to more hyperpolarized voltages and the slope of the inactivation curve decreased with increasing prepuls duration (Figure 3-5). There was no significant difference between the inactivation curves left for 20 and 30s prepuls duration, indicating the achievement of a steady state after a 20s conditioning pulse.

Figure 3-5 Dependence of voltage dependent inactivation of $Ca_v 1.4$ on prepuls duration. Bath solution containing 30mM Ba^{2+} was used for measurements. **A)** Pulse protocol for measurement of inactivation curves. From a holding potential of -80mV a conditioning prepulse of variable length to potentials between -100 and 50mV was applied. After a 20ms return to the holding potential the cells were clamped to 10mV (V_{max}) for 300ms. **B)** Parameters obtained from inactivation curves:

5s prepulse:	$\begin{split} V_{0.5,\text{inact}} &= 0.64 \pm 2.6 \text{mV}, \\ k_{\text{inact}} &= 17.5 \pm 0.8 \text{mV}, \\ n &= 9; \end{split}$
10s prepulse:	$\begin{split} V_{0.5,inact} &= -20.1 \pm 1.6 mV, \\ k_{inact} &= 14.5 \pm 1.0 mV, \\ n &= 8; \end{split}$
20s prepulse:	$V_{0.5,inact} = -21.4 \pm 2.1 \text{mV}, \\ k_{inact} = 10.1 \pm 1.0 \text{mV}, \\ n = 7;$
30s prepulse:	$\begin{split} V_{0.5,inact} &= -25.7 \pm 1.9 mV, \\ k_{inact} &= 8.1 mV \pm 0.6, \\ n &= 6. \end{split}$

In vivo, the permeating ion of LTCCs is Ca^{2+} , not Ba^{2+} . Ca^{2+} plays a major key role in their inactivation. This is of great importance for the normal physiological function of LTCCs. Ca^{2+} characteristically accelerates the time course of current inactivation. Surprisingly, current traces of $Ca_v 1.4$ with 10mM Ba^{2+} and 10mM Ca^{2+} , respectively, show identical kinetics. Thus, unlike in $Ca_v 1.2$ channels, Ca^{2+} does not accelerate inactivation in $Ca_v 1.4$ channels⁶¹. Only current density was reduced by $30.1 \pm 0.03\%$ (n = 9) in comparison to the Ba^{2+} current and the I-V relationship was shifted approximately 10mV to more positive membrane potentials without affecting the slope of activation and inactivation curves (Figure 3-6).

Figure 3-6 HEK 293 cells were transfected with $Ca_v 1.4\alpha 1$, $\beta 2a$ and $\alpha 2\delta$ subunits. Currents were recorded with either 10mM Ca^{2+} (I_{Ca}) or Ba^{2+} (I_{Ba}) as charge carrier. From a holding potential of -80mV a test pulse to 10mV was applied for 150ms at 0.2 Hz. I_{Ca} and I_{Ba} were measured from the same cell. A) Current traces from a representative cell. No inactivation was observed in both cases. B) Normalized I-V relationship for I_{Ca} (\circ , n = 9) and I_{Ba} (\bullet , n = 16). Data see table 3-1.

Subunits coexpressed with α2δ1	Charge carrier (mM)	V _{0.5,act} (mV)	k _{act} (mV)	V _{max} (mV)	Activation threshold (mV)	V _{0.5,inact} (mV)	k _{inact} (mV)
$Ca_v 1.2b\alpha 1 + \beta 2a$	30 Ba ²⁺	-0.1 ± 1.2 n=9	$5.6 \pm 0.4*$ n=9	13.3 ± 1.7 n=9	-23.4 ± 1.9 n=9	$-24.3 \pm 1.5*$ n=9	$6.8 \pm 0.7*$ n=9
$Ca_v 1.4\alpha 1 + \beta 2a$	30 Ba ²⁺	1.12 ± 1.0 n=28	7.92 ± 0.22 n=28	13.8 ± 0.9 n=30	-28.0 ± 1.2 n=30	0.64 ± 2.6 n=9	17.5 ± 0.8 n=9
$Ca_v 1.4\alpha 1 + \beta 2a$	30 Ba ²⁺ + 1µM BayK 8644	$-7.8 \pm 7.2*$ n=5	$4.66 \pm 0.8*$ n=5	$-4 \pm 4*$ n=5	-32.7 ± 1.8 n=5	n.d.	n.d.
$Ca_v 1.4\alpha 1 + \beta 2a$	10 Ba ²⁺	$-12.0 \pm 0.8*$ n=16	$6.32 \pm 0.1*$ n=16	$-0.9 \pm 0.7*$ n=16	$-37.8 \pm 1.1*$ n=16	-27.1 ± 2.6* n=8	15.1 ± 0.8 n=8
$Ca_v 1.4\alpha 1 + \beta 2a$	10 Ca ²⁺	$-1.1 \pm 1.8^{\#}$ n=9	$8.1 \pm 0.4^{\#}$ n=9	$11.1 \pm 1.1^{\#}$ n=9	$-29.7 \pm 1.0^{\#}$ n=9	$-15.4 \pm 1.7^{\#}$ n=8	17.0 ± 1.5 n=8
$Ca_v 1.4\alpha 1 + \beta 3$	30 Ba ²⁺	0.74 ± 2.5 n=10	$10.4 \pm 1.0*$ n=10	11.0 ± 1.8 (n=10)	$-37.2 \pm 2.4*$ n=10	n.d.	n.d.

Table 3-1 Biophysical properties of I_{Ba} and I_{Ca} from heterologously expressed $Ca_v 1.4$ and $Ca_v 1.2$ channels

n.d.: not determined. Statistical differences for $V_{0.5,act}$, k_{act} , V_{max} , activation threshold, $V_{0.5,inact}$ and k_{inact} are given in comparison to $Ca_v 1.4\alpha 1$ and $\beta 2$ with 30mM Ba²⁺ (*, P<0.05) or 10mM Ba²⁺ ([#], P<0.05) as the charge carrier.

3.1.2 Pharmacological properties of wild type $Ca_v 1.4\alpha 1$

To study the pharmacological profile of heterologous expressed Ca_v1.4 channels the blocking effect of different calcium channel antagonists was tested. The dihydropyridine (DHP) isradipine blocked I_{Ba} at a holding potential of -80mV with a IC₅₀ of 200 ± 50 nM (n = 5-9, Figure 3-7). At a holding potential of -80mV 100nM isradipine blocked $41.9 \pm 0.03\%$ (n = 7) of I_{Ba} . Changing the holding potential to -50mV significantly increased the block to 88.3 \pm 0.01% (n = 9) of I_{Ba}, indicating a strong voltage-dependence of the observed block (Figure 3-7). $Ca_v 1.4$ was only weakly sensitive to verapamil. At a holding potential of -80mV 100 μ M verapamil blocked 69.1 \pm 0.13% (n = 5) of I_{Ba}. Also the two enantiomers of Diltiazem were tested under identical conditions. Surprisingly, their concentration-response relationships were not significantly different from each other (Figure 3-7). L-cis-diltiazem blocked I_{Ba} with an IC₅₀ of 74.8 \pm 8.3µM (n = 4–6), and D-cis-diltiazem blocked I_{Ba} with an IC₅₀ of 91.6 \pm $9.4\mu M$ (n = 4–6). Normally, for typical LTCCs the affinity of L-cis-diltiazem is several orders of magnitude lower than that of D-cis-diltiazem⁶². Finally, a DHP receptor agonist, S-(-)-Bay K8644, was tested on Ca_v1.4 channels. At a concentration of 1 µM it increased the current density of I_{Ba} approximately sixfold. As in other LTCCs, BayK 8644 shifted the I-V relationship approximately 8-10mV to more hyperpolarized potentials (Figure 3-7, table 3-1).

Figure 3-7 Sensitivity of $Ca_v 1.4$ channels for LTCC blockers and S-(-)-Bay K8644. For all experiments $Ca_v 1.4\alpha 1$ was coexpressed with $\alpha 2\delta 1$ and $\beta 2a$. Currents were measured in bath solution containing 30mM Ba²⁺ as the charge carrier. A) Concentration-response curves for inhibition of $Ca_v 1.4$ by D-cis-diltiazem (∇ , n = 5–6), L-cis-diltiazem (∇ , n = 5–6), and isradipine (\bullet , n = 5–9). Pronounced voltage dependence of isradipine block was observed when the holding potential was changed from -80mV to -50mV (\circ , n = 9). B) I–V relationship for $Ca_v 1.4$ in the absence (\bullet , n = 30) and presence of 1µM S-(-)-Bay K8644 (\circ ; n = 5).

3.2 The lack of calcium dependent inactivation (CDI)

A typical LTCC showing CDI is $Ca_v 1.2b$, the smooth muscle isoform. In the presence of Ba^{2+} as charge carrier inactivation is relatively slow and solely affected by membrane potential (VDI). When Ca^{2+} is the permeating ion $Ca_v 1.2$ inactivates much faster as a result of CDI (Figure 3-8A). This effect is quantified by calculating the *f* value, which is the difference of normalized I_{Ba} and I_{Ca} remaining after 300ms depolarization. Characteristically, the *f* value shows a U-shaped dependence on the membrane potential²¹. Our experiments reveal a maximum *f* value (f_{max}) of about 0.3 for $Ca_v 1.2$ and this U-shaped dependence of *f* (Figure 3-8B). For $Ca_v 1.4$ the normalized current traces for I_{Ba} and I_{Ca} are congruent, there is no difference in terms of kinetics (Figure 3-8C). f_{max} is not significantly different from zero over the whole voltage range (Figure 3-8D).

Figure 3-8 Ca_v1.4 channels completely lack CDI. All current traces were measured at V_m = 10mV from a holding potential of -80mV and normalized to maximum current amplitude. Pulse duration was 300ms. Kinetic parameters for wild type channels are given in table 3-2. **A,C)** Representative traces of I_{Ba} (black) and I_{Ca} (red) for Ca_v1.2 (A) and Ca_v1.4 (C), respectively. **B,D)** Voltage dependence of *f* for Ca_v1.2 (B) and Ca_v1.4 (D). *f*_{max} is the maximum *f* value, n is the number of cells.

3.2.1 Calmodulin binding of $Ca_v 1.4 \alpha 1$

An explanation why $Ca_v 1.4$ is lacking CDI could be that it cannot bind calmodulin. The alignment of $Ca_v 1.4\alpha 1$ and $Ca_v 1.2b\alpha 1$ shows that the region coding for the whole calcium sensing apparatus is principally conserved. However, there are some amino acid exchanges in the Pre-IQ region that could affect the affinity of calmodulin (Figure 1-5). To test for this option GST pull-down assays were performed with GST fusion proteins containing the whole C-terminus or the proximal or the distal part of the C-terminus of $Ca_v 1.4\alpha 1$ and $Ca_v 1.2b\alpha 1$, respectively. Calmodulin binding was observed to the full length C-terminus of $Ca_v 1.2b\alpha 1$ (CT1.2) and of $Ca_v 1.4\alpha 1$ (CT1.4) in the presence, but not in the absence of calcium

(Figure 3-9B). For control of expression and molecular weight, 25pmol of each GST fusion protein were blotted and detected with an anti-GST antibody (Figure 3-9C).

Calmodulin is known to bind to the proximal part of the C-terminus of $Ca_v 1.2b\alpha 1^{17,21-28}$. Due to this fact it was tested if it binds to the corresponding region in $Ca_v 1.4\alpha 1$. CT1.2-1667Stop and CT1.4-1610Stop displayed calmodulin binding in a calcium dependent manner (Figure 3-9D, lanes 1-4). No binding of calmodulin was observed to the distal part of the C-termini of $Ca_v 1.2$ (CT1.2 1667-2166) and $Ca_v 1.4$ (CT1.4 1610-1984) (Figure 3-9D, lanes 5-8). Expression of the fusion proteins was again tested by western blot (Figure 3-9E).

Figure 3-9 Calmodulin binding of $Ca_v 1.4\alpha 1$. Each experiment was repeated at least three times. **A**) Scheme of $Ca_v 1.4\alpha 1$ (left) and $Ca_v 1.2b\alpha 1$ cytosolic C-termini (right). **B**) GST pull-down with the full length C-termini (CT1.2, 105kDa and CT1.4, 95kDa) and calmodulin in the presence (+) and in the absence (-) of Ca^{2+} . Ca^{2+} dependent binding of calmodulin (17kDa) was observed for $Ca_v 1.4\alpha 1$ and $Ca_v 1.2b\alpha 1$. 1µg calmodulin was blotted as control (last lane). For detection an anti-calmodulin antibody was used. **C**) Western blot for control of expression of the GST fusion proteins comprising the whole C-terminus. For detection an anti-GST antibody was used. 25pmol of each protein were blotted. **D**) Same GST pull-down assay was performed as in 9B, using fusion proteins containing fragments corresponding to the proximal (CT1.2-1667Stop, 51kDa) and the distal parts (CT1.2 1667-2166, 85kDa and CT1.4 1610-1984, 73kDa) of the C-termini of $Ca_v 1.2b\alpha 1$ and $Ca_v 1.4\alpha 1$, respectively. As a negative control GST was used. **E**) Control of expression of the fusion proteins by Western blot. Performance see panel C.

3.2.2 Identification of an inhibitory channel domain

Considering these results the lack of CDI cannot be caused by the inability of calmodulin to bind to the channel. These findings rather suggest that Ca_v1.4 harbors an inhibitory domain that is able to mask CDI and this domain should reside downstream of the IQ motif in the distal C-terminus. To check these assumptions several mutant Ca_v1.4 α 1 subunits were constructed with the distal C-terminus truncated at different positions (2.1.1.1, Figure 3-10A). In every mutant the whole Ca²⁺ sensing machinery was left functional. Mutant C1884Stop showed fast inactivation in the presence of Ca²⁺ in electrophysiological experiments. CDI was fully recovered with an f_{max} of about 0.3 like in Ca_v1.2 channels and the typically U-shaped voltage dependence of f. (Figure 3-10B, C, F, table 3-2). Also mutants R1610Stop, Y1668Stop and R1796Stop showed CDI to the same extent as Ca_v1.2 channels (Figure 3-10F,table 3-2). The kinetic parameters for all these truncation mutants showing CDI were in the same range as for Ca_v1.2 wild type channels.

The next step was the coexpression of the C1884Stop mutant with a negative dominant calmodulin mutant (CaM₁₂₃₄) that can bind to the C-terminus but is deficient for Ca²⁺ binding and thus cannot mediate CDI⁴⁸. In these experiments no CDI was observed (Figure 3-10D, F, table 3-2). Furthermore, C1884Stop was coexpressed with the peptide corresponding to amino acids 1885-1984 of Ca_v1.4 α 1 (inhibitor of CDI, ICDI). Again no CDI was present at all (Figure 3-10E, F, table 3-2). For the Δ C mutant in which the ICDI domain was directly attached to the IQ motif no CDI was seen either (Figure 3-10F, table 3-2). To narrow down the sequence important to prevent CDI two other mutants were constructed. Q1930Stop showed full CDI like the other truncation mutants whereas Q1953Stop behaved like wild type Ca_v1.4 (Figure 3-10F, table 3-2).

Figure 3-10 An inhibitory domain prevents CDI in Ca_v1.4 channels. Currents were measured as mentioned in Figure 8. Kinetic parameters for all constructs are given in table 3-2. A) Schematic representation of constructed Ca_v1.4 α 1 mutants. Deletions are marked by dotted lines. B) Representative traces of I_{Ba} (black) and I_{Ca} (red) for mutant C1884Stop. C) Voltage dependence of *f* for C1884Stop. *f*_{max} is the maximum f value, n is the number of cells. D,E) Representative current traces for C1884Stop coexpressed with CaM₁₂₃₄ and ICDI, respectively. No CDI was observed in both cases. F) *f*_{max} values for wild type channels, mutant channels and coexpression experiments. Number of cells is indicated at the right side.

3.2.3 Interaction of ICDI and $Ca_v 1.4\alpha 1$

The next question was how ICDI interacts with $Ca_v 1.4\alpha 1$. To clarify this issue coimmunoprecipitations were performed. To this end different C-terminal fragments of $Ca_v 1.4\alpha 1$ were fused with a N-terminal myc tag and the ICDI domain was equipped with a N-terminal triple flag tag (Figure 3-11A). ICDI bound to the proximal C-terminus of $Ca_v 1.4\alpha 1$ (CT1.4-1610Stop, Figure 3-11B, lane 4, upper panel) as supposed. Binding was no longer observed when the EF-hand was deleted in the proximal C-terminus (ΔEF , 3-Figure 11B, lane 5, upper panel). No binding was observed either between ICDI and peptide C or peptide A (Figure 3-11C, lane 4 and 5, lower panel). Expression of all fusion proteins was again tested by western blot (Figure 3-11C).

Figure 3-11 Interaction of ICDI domain and the C-terminus of $Ca_v 1.4\alpha 1$. **A)** Schematic representation of the C-terminus of $Ca_v 1.4\alpha 1$ starting after the IVS6 segment. The amino acid numbers are the borders of peptide A, peptide C and ICDI.

B) Upper panel: Coimmunoprecipitation of HEK 293 cells coexpressing flag tagged ICDI and CT1.4-1610Stop or Δ EF. For control of expression of ICDI pure lysates of transfected and untransfected cells were blotted (lane 1-3). Precipitation was done with anti-myc antibody (lane 4 and 5) and with anti-ras antibody as a control (lane 6 and 7). Also untransfected cells were probed (lane 8).

Lower panel: Coimmunoprecipitation of HEK 293 cells coexpressing flag tagged ICDI and peptide C or peptide A. Conditions as mentioned in the upper panel. **3-11C**) Expression of myc tagged constructs in HEK 293 cells (CT1.4-1610Stop: 20kDa, Δ EF: 16kDa, peptide A: 16kDa, peptide C: 31kDa). β -Actin is shown as loading control

These findings were corroborated by a series of GST pull-down assays performed with GST fusion proteins comprising the same parts of the C-terminus of $Ca_v 1.4\alpha 1$ as the proteins for the coimmunoprecipitations. As the only difference the ICDI peptide was provided with a single flag tag. The results were the same as for the coimmunoprecipitations. ICDI binds to the proximal C-terminus of $Ca_v 1.4\alpha 1$, but not to the proximal C-terminus lacking the EF-hand motif. Binding to peptide A was not observed either (Figure 3-12A). Expression of the fusion proteins was confirmed by western blot (Figure 3-12B).

Figure 3-12 Interaction between ICDI domain and the C-terminus of Ca_v1.4 α 1. **A**) GST pull-down with a fusion protein containing the proximal C-terminus of Ca_v1.4 α 1 (CT1.4.1610Stop, lane 1), the same protein lacking the EF motif (Δ EF, lane 2) and a fusion protein containing peptide A (A, lane 3). As a negative control GST was used (GST, lane 4). The GST fusion proteins and GST were incubated with bacterial lysates containing flag tagged ICDI. In the last lane pure bacterial lysate containing ICDI was blotted. Binding was only observed to CT1.4-1610Stop. **B**) Expression of GST fusion proteins in bacteria. 25pmol were blotted (Δ EF: 47kDa, A: 46kDa). Expression of CT1.4-1610Stop see Figure 8E.

3.2.4 Abolishing CDI in Ca_v1.2 channels

To figure out whether the C-terminus of $Ca_v 1.4\alpha 1$ can abolish CDI in $Ca_v 1.2$ channels, the whole C-terminus or parts of the C-terminus of $Ca_v 1.2b\alpha 1$ were replaced with the corresponding parts of $Ca_v 1.4\alpha 1$. A series of chimeric $\alpha 1$ subunits was constructed (Figure 3-13A). Replacement of the whole cytosolic C-terminus of $Ca_v 1.2b\alpha 1$ with the C-terminus of $Ca_v 1.4\alpha 1$ (1.2-CT1.4) completely blocked CDI. Kinetics of I_{Ba} and I_{Ca} were not significantly different from each other and in the same range as for I_{Ca} of $Ca_v 1.2$ wild type channels (Figure 3-13F, table 3-2). But no effect was seen when only the ICDI domain of $Ca_v 1.4\alpha 1$ was introduced in $Ca_v 1.2b\alpha 1$, replacing the last 149 amino acids (1.2-ICDI1.4). CDI was observed to the same extent as in $Ca_v 1.2$ wild type channels with a f_{max} of about 0.3 and kinetic parameters not different from wild type channels (Figure 3-13F, table 3-2). As expected, CDI was completely blocked when the whole sequence downstream the IQ motif of $Ca_v 1.2b\alpha 1$ was exchanged with the corresponding sequence of $Ca_v 1.4\alpha 1$ (1.2-C+ICDI1.4). Normalized traces for I_{Ba} and I_{Ca} were completely congruent and kinetic parameters were again in the same range as for $Ca_v 1.2$ (Figure 3-13B, table 3-2). The f value was not significantly different from zero over the whole voltage range with an f_{max} of 0.04 ± 0.03 (Figure 3-13C, F).

Figure 3-13 Abolishing CDI in chimeric $Ca_v 1.4/Ca_v 1.2$ channels. Currents were measured as mentioned in Figure 8. Kinetic parameters for all channels are given in table 3-2. A) Schematic representation of the C-terminus of $Ca_v 1.4\alpha 1$ (black) and $Ca_v 1.2\beta\alpha 1$ (red) and the constructed chimeras. B) Representative traces of I_{Ba} (black) and I_{Ca} (red) for chimera 1.2-C+ICDI1.4. C) Voltage dependence of *f* for 1.2-C+ICDI1.4. *f*_{max} is the maximum *f* value, n is the number of cells. No CDI was observed. D) Traces of I_{Ba} and I_{Ca} for 1.2-C+ICDI1.4. There is no difference to $Ca_v 1.2$ wild type channels E) Traces of I_{Ba} and I_{Ca} for 1.2-A+ICDI1.4. CDI is completely blocked in this chimera. F) f_{max} values for the chimeric channels shown in A. Number of cells is indicated at the right side. Data for wild type channels see Figure 10.

Surprisingly, unlike in Ca_v1.4 channels the ICDI domain of Ca_v1.4 α 1 was not able to block CDI in Ca_v1.2 channels when directly attached to the IQ motif of Ca_v1.2 α 1 (1.2 α C-ICDI1.4). There was no difference to Ca_v1.2 wild type channels in both the *f* value and the kinetic parameters (Figure 3-13 D, F, table 3-2). To abolish CDI it was necessary to introduce at least peptide A and the ICDI domain of Ca_v1.4 α 1 into the Ca_v1.2 α 1 subunit (1.2-A+ICDI1.4). For this chimera there was again no difference in I_{Ba} and I_{Ca} traces and kinetic parameters were in the range of those observed for I_{Ca} of wild type Ca_v1.2 channels. The *f_{max}* value was not significantly different from zero (Figure 3-13E, F, table 3-2). However, in the absence of ICDI peptide A alone was not able to block CDI in $Ca_v 1.2$ channels (1.2-A1.4). All parameters for this chimera were in the same range as for $Ca_v 1.2$ wild type channels (Figure 3-13F, table 3-2). Unlike in $Ca_v 1.4$ channels ICDI alone is not sufficient to block ICDI, it needs assistance of peptide A.

Table 3-2	Parameters	for	inactivation	kinetics	and f_{\max}	values	of	wild	type	and	mutant
channels											

α₁ subunit coexpressed with β2 and α2δ1	charge carrier (mM)	$\tau_{fast}\left(ms\right)$	τ _{slow} (ms)	A _{fast} (%)	n	f _{max}	n
	10 Ca ²⁺	n.i.			10		
Ca _v 1.4	10 Ba ²⁺	n.i.			10	0.01 ± 0.02	11
	10 Ca ²⁺	42.6 ± 5.3	239.1 ± 28.4	61.3 ± 5.1	16	0.00 . 0.05**	
Ca _v 1.20	10 Ba ²⁺	238.4 ± 16.4			12	$0.32 \pm 0.05^{\circ}$	11
0400404	10 Ca ²⁺	33.1 ± 5.9	168.7 ± 20.8	60.7 ± 6.1	13	0.00 + 0.00**	
C1884Stop	10 Ba ²⁺	n.i.			13	$0.30 \pm 0.03^{**}$	14
0100404	10 Ca ²⁺	n.i.			8	0.00 + 0.00	0
C1884Stop+CaM ₁₂₃₄	10 Ba ²⁺	n.i.			8	0.03 ± 0.02	8
C1994Step UCD	10 Ca ²⁺	n.i.			5	0.02 + 0.02	F
C1884Stop+ICDI	10 Ba ²⁺	n.i.			5	0.03 ± 0.03	Э
	10 Ca ²⁺	20.5 ± 3.5	100.7 ± 16.1	73.5 ± 6.3	4	0.04 + 0.02	0
1.2-011.4	10 Ba ²⁺	26.9 ± 2.6	121.6 ± 12.1*	63.1 ± 6.7	4	0.04 ± 0.02	8
	10 Ca ²⁺	40.1 ± 5.6	164.9 ± 28.5	57.5 ± 9.8	5	0.04 + 0.02	0
1.2-C+ICDI1.4	10 Ba ²⁺	43.4 ± 1.8	180.8 ± 20.1	51.0 ± 8.4	4	0.04 ± 0.03	8
	10 Ca ²⁺	39.5 ± 5.9	145.1 ± 11.0	62.5 ± 4.3	6	0.00 + 0.00**	0
1.2-ICDI1.4	10 Ba ²⁺	182.8 ± 26.9			6	0.38 ± 0.06	8
	10 Ca ²⁺	49.2 ± 4.2	216.8 ± 23.3	50.0 ± 5.4	7	0.04 + 0.07**	0
1.2 <u>A</u> C-ICDI1.4	10 Ba ²⁺	239.5 ± 31.0			7	0.34 ± 0.07**	8
	10 Ca ²⁺	29.9 ± 1.8	128.6 ± 25.0	58.7 ± 12.7	5	0.04 + 0.04	0
1.2-A+ICDI1.4	10 Ba ²⁺	25.3 ± 3.9	159.2 ± 35.2	47.3 ± 11.2	5	0.04 ± 0.01	8

Inactivation parameters τ_1 , τ_2 and A_{fast} (%) for α_1 -subunits are indicated. Time course of inactivation of I_{Ba} of $Ca_v 1.2$, 1.2-ICDI1.4 and 1.2 Δ C-ICDI1.4 was fitted by a monoexponential function. For all other channels it was fitted with a biexponential function. n.i.: no inactivation as gauged by $r_{300} > 0.95$. r300 is the fraction of current remaining after 300ms depolarization. Statistical significance of kinetic parameters for I_{Ba} or I_{Ca} is given in comparison to those of I_{Ca} of $Ca_v 1.2$. Statistical significance of f_{max} is given in comparison to Ca_v1.4 wild type. Data are given as means \pm SEM. Statistical differences were calculated by one-way ANOVA followed by Dunett test (*p<0.05, **p<0.01).

4 **DISCUSSION**

4.1 Functional characterization of Ca_v1.4α1

The Ca_v1.4 α 1 LTCC subunit is not able to form functional calcium channels on its own. The coexpression of β and $\alpha 2\delta$ subunits is required to generate LTCC currents. This finding supports the notion that Ca_v1.4 calcium channels are heteromeric multisubunit complexes. As seen in our experiments Ca_v1.4 α 1 can form LTCCs with different β subunits, but the current amplitudes were consistently bigger when coexpressed with β 2a subunit. One reason for this observation may be that Ca_v1.4 α 1 binds to the β 2 subunit with higher affinity than to the β 3 subunit. This assumption is supported by studies showing that elimination of the β 3⁶³ and β 4⁶⁴ subunit in the mouse retina does not affect vision, whereas deletion of the β 2 subunit results in a phenotype similar to CSNB2 in humans⁴⁵. Thus, in vitro and in vivo studies suggest that β 2 is the native β subunit of Ca_v1.4 channels.

4.1.1 Electrophysiological properties of Ca_v1.4α1

The electrophysiological profile of $Ca_v 1.4\alpha 1$ is unique among all LTCCs^{46,65,66}. Ba²⁺ currents passing $Ca_v 1.4$ calcium channels activate with very fast kinetics, have a relatively low activation threshold compared to $Ca_v 1.2$ channels and show an extreme slow inactivation time course. VDI of $Ca_v 1.4$, which is an intrinsic property of the channel core^{14,15} and only depends on the membrane potential, is very slow. Up to 30s depolarization at V_{max} are needed for full inactivation of I_{Ba} . Due to this properties a so-called conductance window exists where the channel cycles between open and closed state without inactivating (Figure 4-1 and Figure 3-3 C). This conductance window is marked by the expanded overlapping region of activation and steady state inactivation curves of $Ca_v 1.4$ channels (Figure 4-1, red). This feature enables the channel to provide a steady state inward current.

Conductance-voltage Figure 4-1 relationships for $Ca_v 1.4$ (•, n = 28) and $Ca_v 1.2$ (\circ , n = 9) and steady state inactivation curves for $Ca_v 1.4$ (\blacksquare , n = 9) and $Ca_v 1.2$ (\Box , n = 9). Individual curves were normalized to maximum current amplitude and then averaged. Solid lines: datafit to the Boltzmann equation (See Figure 3-3C). Red: conductance window for $Ca_v 1.4\alpha 1$. overlapping Yellow: area for $Ca_v 1.2b\alpha 1.$

4.1.2 Pharmacological profile of $Ca_v 1.4\alpha 1$

The pharmacological properties of $Ca_v 1.4\alpha 1$ are also different from the other LTCCs. Despite the fact that 12 of 13 amino acids required for high DHP sensitivity in Ca_v1.2ba1 are conserved in the primary sequence of $Ca_v 1.4\alpha 1$ (Figure 1-4) the DHP sensitivity at -80mV is about 20-fold lower than for $Ca_v 1.2b\alpha 1^{67}$. The difference is a phenylalanine at position 1414 instead of a tyrosine at the corresponding position in $Ca_v 1.2b\alpha 1$. However, this small difference cannot be responsible for the low sensitivity. Cav1.3a1 also exhibits low DHP sensitivity⁶⁸ but contains a tyrosine at the equivalent position, like $Ca_v 1.2b\alpha 1$ (Figure 1-4). Indeed, there could be other amino acids not yet identified that are important for the apparent affinity of DHPs, but it is very likely that the observed differences for $Ca_v 1.4\alpha 1$ in DHP binding result from its unique biophysical properties. The DHP block is highly voltage dependent^{69,70} because DHPs bind preferentially to the inactivated state of LTCCs. Due to the fact that Ca_v1.4 channels inactivate very slowly and show the mentioned conductance window in contrast to $Ca_v 1.2$ channels, the affinity of DHPs to $Ca_v 1.4\alpha 1$ is decreased. This finding is corroborated by an experiment where the holding potential was shifted from -80mV to -50mV, increasing the fraction of channels in the inactivated state. In this experiment the DHP block was strongly increased. Also the low sensitivity of Ca_v1.4 currents to verapamil and diltiazem could be induced by the very specific inactivation properties of $Ca_v 1.4\alpha 1$.

Another surprising finding is that the IC₅₀ of L-cis-diltiazem is in the same range than the IC₅₀ of D-cis-diltiazem. In other LTCCs the affinity for L-cis-diltiazem is at least 20-fold lower than the affinity for D-cis-diltiazem^{13,62,71}. The binding site for diltiazem in Ca_v1.2b α 1 is overlapping with the binding site for DHPs⁷². Except for the tyrosine phenylalanine exchange

mentioned above the corresponding amino acids are completely conserved in $Ca_v 1.4\alpha 1$. Hence, the different performance of $Ca_v 1.2b$ and $Ca_v 1.4$ channels can not be explained at the moment. So far L-cis-diltiazem was thought to be a specific blocker for cyclic-nucleotide-gated (CNG) channels in rod and cone photoreceptors^{73,74}. This channels are required to depolarize photoreceptors in response to an increase of cGMP. In experiments micromolar concentrationsof L-cis-diltiazem have been used to block this channels. In the light of our new findings extreme care is has to be taken to distinguish the effects of the blocker on CNG channels from those on retinal $Ca_v 1.4$ channels.

4.2 Proposed mechanism for block of CDI in Ca_v1.4 channels

Surprisingly, inactivation of $Ca_v 1.4$ channels is not accelerated in the presence of Ca^{2+} as charge carrier compared to Ba^{2+} currents. Most HVA calcium channels have such a self-regulatory feedback mechanism to limit Ca^{2+} influx into the cell. $Ca_v 1.2b$ as a typical representative of LTCCs is strongly regulated by Ca^{2+} . After passing the pore Ca^{2+} binds to calmodulin which is prebound to the cytosolic C-terminus of the channel. Thus it causes a very fast decay of I_{Ca} within milliseconds (CDI)^{16,26}.

The current view on CDI is that this process is conferred by the proximal C-terminus of the channel. In this study we extend this view to a domain residing in the proximal C-terminus of $Ca_v 1.4$. The Ca^{2+} sensing apparatus of $Ca_v 1.2$ resides in the poximal C-terminus of the channel^{17,21-28}. It consists of a sequence stretch (Pre-IQ and IQ motif) that binds calmodulin, the primary Ca^{2+} sensor and an EF hand motif. The EF hand is the transducing element between the Ca^{2+} sensing machinery and the inactivation gate of the channel. Although these sequences are highly conserved in $Ca_v 1.4\alpha 1$ (Figure 6-1, alignment) and the whole HVA calcium channel family¹⁷⁻²⁹, $Ca_v 1.4$ channels show no CDI (see alignment, Figure 6-1). The findings of this study exclude the loss of the Ca^{2+} sensor calmodulin as explanation for this behaviour. Despite the fact that binding of calmodulin to the C-terminus was only observed in the presence of Ca^{2+} in GST pull-down experiments, CaM_{1234} , which corresponds to apocalmodulin, can bind to the C1884Stop mutant (Figure 3-10). Due to this fact apocalmodulin must be prebound to the channel like in $Ca_v 1.2$

The data rather indicate that CDI is likely to be masked by an autoinhibitory channel domain. The ICDI domain (inhibitor of calcium dependent inactivation, L1885-L1984) was revealed as this channel domain and a stretch of 23 amino acids (Q1930-A1952) that is of outstanding importance for the block of CDI was identified within this domain in electrophysiological

experiments. Furthermore, it is shown that the ICDI domain interacts with the EF hand motif of the proximal C-terminus of LTCCs and coexpression experiments show (Figure 10E) that it acts as an independent protein unit that is sufficient for block of CDI in Ca_v1.4 channels. Considering primary structure analysis predicting an α -helical structure for the ICDI domain (predicted by PhD analysis⁷⁵, confidence level >82%) and the fact that the EF hand motif contains helices¹⁷, this two structures may form a paired helix complex with each other.

According to an established model, inactivation of HVA calcium channels is conferred by the so-called pore occluder (PO), which is formed by the cytoplasmatic I-II loop. This PO is a blocking particle that closes the pore¹⁴⁻¹⁶. When the channel is in the resting state the PO is tonically inhibited by the EF-hand³⁰. Changes in the membrane potential induce a slow conformational change and thus the inhibition of the PO by the EF hand is relieved. The PO now closes the pore with its intrinsic kinetics (VDI) (Figure 4-2A, top).

When Ca^{2+} passes the channel pore, it binds to apocalmodulin which is prebound to the proximal C-terminus. Subsequently, Ca^{2+} -calmodulin moves to its effector site and thereby induces a conformational change in the whole Ca^{2+} sensing apparatus. This results in a productive interaction between the EF hand and the PO that accelerates the movement of the PO (CDI) (Figure 4-2A, bottom)^{23,30}. This model is valid for wild type $Ca_v1.2$ channels and truncated $Ca_v1.4$ chanels lacking the ICDI domain.

This study now extends the model to channels lacking CDI, like the retinal $Ca_v 1.4 \text{ LTCC}$ and the $Ca_v 1.2b\alpha 1$ mutant carrying the distal C-terminus of $Ca_v 1.4\alpha 1$ (1.2-A+ICDI1.4; Figure 4-2B). In this channels the ICDI domain is permanently bound to the EF hand motif, which is a general downstream transduction element of CDI. Thus, the EF hand is uncoupled from the Ca^{2+} sensing machinery and there is no tonic inhibition of the PO and no acceleration of the PO movement in the presence of Ca^{2+} . CDI is abolished by the ICDI domain. Consequently, inactivation occurs strictly voltage dependent with kinetics intrinsic to the PO or rather the channel core. These intrinsic kinetics are very slow for $Ca_v 1.4$ and fast for $Ca_v 1.2$ channels. Theoretically, a mutant channel truncated immediately after the IVS6 transmembrane segment should show the intrinsic kinetic parameters of the channel core. We constructed such a mutant from $Ca_v 1.4\alpha 1$, G1458Stop. For an unknown reason no current could be measured from this channel.

Figure 4-2 Model for CDI and VDI. A, top) In $Ca_v 1.2$ wild type and $Ca_v 1.4$ lacking ICDI voltage induces a slow conformational change that relieves tonic inhibition of the I-II loop ("pore occluder", grey ball) by the EF motif and induces closure of the pore (VDI). A, **bottom)** Ca²⁺ binds to CaM and triggers an interaction of the EF hand with the pore occluder that speeds up channel closure, thus promoting fast CDI. B) In Ca_v1.4 and Ca_v1.2 carrying the distal Cterminus of Ca_v1.4 ICDI binds to the EF motif. Hence, the pore occluder is uncoupled from the EF hand and inactivation occurs in a voltagedependent fashion with kinetics that are intrinsic to the respective channel core. The molecular target of peptide A remains to be determined.

This proposed mechanism is supported by the properties of a deletion mutant of $Ca_v 1.2$ lacking the EF hand motif²³, which corresponds to our 1.2-A+ICDI1.4 chimera where the EF hand motif is disabled. This channel also shows no CDI and its inactivation time constants are nearly identical to the parameters of 1.2-A+ICDI1.4. Unfortunately, from the corresponding mutant of $Ca_v 1.4\alpha 1$ lacking the EF hand motif, $Ca_v 1.4\Delta EF$, no measurable current was achieved. The molecular details of the interaction of peptide A in the $Ca_v 1.2$ backbone are not known at the moment. We know that peptide A is not necessary to block CDI in $Ca_v 1.4$ channels. By contrast, in $Ca_v 1.2$ channels it is required but not sufficient to block CDI. Due to this findings it may support the inhibitory action of the ICDI domain via an indirect and

independent pathway. Since peptide A is not needed in $Ca_v 1.4$ channels to abolish CDI, its contribution seems to be of minor importance. Attempts to narrow down the border of peptide A further more failed. It seems that the whole sequence is needed for blocking CDI.

4.3 Physiological function of Ca_v1.4 calcium channels

Our data show that the unique properties of retinal LTCC currents are caused by expression of $Ca_v 1.4$ calcium channels. They are tailored to fulfill the tasks required in ribbon synapses of the retina. Ca^{2+} and Ba^{2+} currents obtained from native rod photoreceptor^{36,40,76} and bipolar cells^{39,77} show nearly the same properties as currents obtained from heterologously expressed $Ca_v 1.4$ channels in HEK 293 cells (Figure 1-6). The only difference is that currents measured in native cells activate at 10-15mV more negative potentials^{36,39,40,76,78}. This difference may be explained by different environmental conditions and posttranslational modifications in native cells and HEK 293 cells. For the physiological function of the retina a tonic neurotransmitter release in the dark at the ribbon synapses of rod photoreceptor cells is essential. This glutamate release is triggered by a sustained Ca^{2+} inward current (Figure 4-3). Due to the very slow inactivation time course of $Ca_v 1.4$ calcium currents, the conductance window and the lack of CDI, this channel is well suited to provide a sustained Ca^{2+} inward current into this cells over the required voltage range³⁹.

Figure 4-3 Schematic representation of a rod photoreceptor cell (left) and a bipolar cell (right). At the ribbon synapses of these cells a sustained Ca^{2+} influx mediates tonic neurotransmitter release (middle). $Ca_v 1.4$ calcium channel currents, with its very slow time course of inactivation, are perfectly qualified to guarantee this sustained Ca^{2+} influx.

The properties of the heterologously expressed murine Ca_v1.4 calcium channel are consistent with the properties of its human counterpart⁶⁵. In humans different mutations in the gene coding for Ca_v1.4α1 (CACNA1F) have been described. Several of the mutations lead to frame shifts or truncations within the channel core. Such massive exchanges almost surely will lead to the loss of function of the channel. The respective patients show the symptoms of CSNB2. Also an established mouse model with a loss of function mutation in the CACNA1F gene shows the same symptoms⁴². Interestingly, a few mutations in the human CACNA1F gene have been identified (K1591X and R1816X, corresponding to murine K1605X and R1834X)^{35,43} that do not affect the channel core. These mutations lead to truncations in the distal part of the C-terminus. The complete Ca²⁺ sensing apparatus will probably stay intact and only the ICDI domain is removed from the channel, according to our data. Even more interesting is the mutation 5665delC^{44} that leads to a frame shift starting with residue 1888 (corresponding to murine S1895) and a premature stop after 43 unrelated amino acids. In this truncation mutant the Cav1.4 terminates immediately 10 aminoacids after the beginn of ICDI. All three truncations nearly correspond to truncation mutants presented in this study (Figure 6-2, alignment) and they also lead to CSNB2. How can this be explained? Maybe these mutations lead to aberrant folding of the proteins and thus to a complete loss of function. We cannot abandon this option completely. Our study provides an alternative model to explain this phenomenon. Considering our data these mutant channels will display CDI in contrast to wild type $Ca_v 1.4$ channels. The mechansim of CDI is recovered and the sustained Ca^{2+} influx, which is essential for tonic neurotransmitter release at the ribbon synapses in the retina, is not existent anymore because the mutant channels inactivate. Retinal neurotransmission is impaired and, thus, we can explain the phenotype of these mutations.

5 SUMMARY

This study provides novel insights to the function and regulation of Ca_v1.4 LTCCs.

In the first part of the sudy the basic biophysical and pharmacological properties of $Ca_v 1.4$ have been characterized. To this end $Ca_v 1.4$ was cloned from murine retinal cDNA. The full-length cDNA comprises 6111bp and contains an open reading frame encoding for a protein of 1984 amino acids. $Ca_v 1.4$ was functionally expressed in HEK 293 cells. Like in the case of other LTCCs the coexpression of $\alpha 2\delta$ and β subunits was necessary to get measurable currents^{46,65,66}. The electrophysiological properties of $Ca_v 1.4\alpha 1$ found in patch clamp experiments distinguish these channels from other LTCCs. Activation kinetics were very fast, the activation threshold was relatively low and the time course of inactivation was extremely slow. Also the pharmacological properties were different from those of classical LTCCs. $Ca_v 1.4$ channels show a much lower sensitivity for LTCC blockers compared to $Ca_v 1.2b$ channels.

The most important findings of this study are the novel insights on the regulation of CDI. Surprisingly, no CDI was observed in Cav1.4 LTCCs in electrophysiological experiments. CDI is a negative feedback mechanism by which Ca^{2+} limits its own influx into the cell. This feedback inhibition is essential for many cell types to prevent excessive and potentially toxic Ca^{2+} levels and is widespread among HVA calcium channels. The sequences conferring CDI¹⁷⁻²⁹ are conserved throughout the whole HVA calcium channel family and also in $Ca_v 1.4\alpha 1$ raising the question of how this channel manages to switch off CDI. We identified an autoinhibitory domain in the distal C- terminus of $Ca_v 1.4$ that serves to abolish CDI. This domain (ICDI, inhibitor of CDI) uncouples the molecular machinery conferring CDI from the inactivation gate by binding to the EF hand motif in the proximal C-terminus. Deletion of ICDI completely restores Ca^{2+} -calmodulin mediated CDI in $Ca_v 1.4$. CDI can be switched off again in the truncated $Ca_v 1.4$ channel by coexpression of ICDI indicating that it works as an autonomous unit. Furthermore, replacement of the distal C-terminus in the $Ca_v 1.2b$ LTCC by the corresponding sequence of $Ca_v 1.4$ is sufficient to block CDI. This finding suggests that autoinhibition of CDI can be principally introduced into other Ca^{2+} channel types.

The novel mechanism described is also of great physiological impact. In vivo, $Ca_v 1.4$ is expressed in photoreceptors and bipolar cells of the retina. In these cells the lack of CDI is of great physiological importance since it is required to generate a sustained Ca^{2+} influx and, hence, to mediate tonic glutamate release from synaptic terminals^{38,79}. Mutations in the gene coding for the $Ca_v 1.4\alpha 1$ subunit in humans are linked to a disease called congenital stationary nightblindness type 2 (CSNB2). Some of these mutations lead to truncated channels nearly identical to channel mutants analyzed in this study that show CDI. Thus, the phenotype of these mutations can be explained by the recovery of CDI.

6.1 Sequence of Ca_v1.4α1 cloned from mouse retinal cDNA

1	ATG	STCG	GAA	ATCT	'GAA	.GTC	CGGG	SAAA	GAT	ACA	ACC	CCA	GAG	CCC	AGT	CCA	GCC	'AAT	'GGG	ACT
1	М	S	Ε	S	E	V	G	K	D	Т	Т	Ρ	Ε	Ρ	S	Ρ	A	Ν	G	Т
61	GGC	CCT	'GGC	CCT	'GAA	TGG	GGG	CTC	TGT	CCT	'GGG	CCI	'CCA	ACT	GTG	GGG	ACT	'GAT	ACC	AGC
21	G	Ρ	G	Ρ	Ε	W	G	L	С	Ρ	G	Ρ	Ρ	Т	V	G	Т	D	Т	S
121	GGG	GCG	TCA	GGC	CTG	GGG	ACC	CCA	AGA	AGA	AGG	ACC	CAG	CAC	AAC	AAA	CAC	AAG	ACT	GTG
41	G	A	S	G	L	G	Т	Ρ	R	R	R	Т	Q	Η	Ν	K	Η	K	Т	V
181	GCG	GTG	GCC	CAGT	GCT	CAG	GAGA	TCA	CCT	CGA	GCG	СТС	TTC	TGC	CTC	ACC	CTT	'ACT	'AAT	CCC
61	A	V	A	S	A	Q	R	S	Ρ	R	A	L	F	С	L	Т	L	Т	Ν	Ρ
241	ATI	CGT	CGG	STCC	TGC	ATC	CAGC	ATT	GTA	.GAG	TGG	AAG	GCCT	TTT	GAT	ATT	CTC	ATC	CTC	CTG
81	I	R	R	S	С	Ι	S	Ι	V	Ε	W	K	P	F	D	Ι	L	I	L	L
																	IS	1		
301	ACA	ATC	TTT: T	'GCC	AAC	TGC	GTG	GCA	TTG.	GGG	GTA	TAT. v	'ATC' T	CCC	TTC	CCT	'GAG	GAC	GAC	TCC
IUI	1	T	Г	A	IN	C	V	A	Ц	G	V	T	T	F	Г	F	Ľ	D	D	5
361	ACA	CTG	СТА	ACC	ACA	ACT	ידיקה	AAC	AGG	TAG	аат	ACG	TGT	TCC	TGG	тgа	יתיית			ТG
121	N	T	A	N	H	N	L	E	Q	V	E	Y	V	F	L	V	I	F	T	V
															IS	2				
																_				
421	GAG	GACA	GTG	GCTC	AAG	ATC	GTA	GCC	TAT	GGG	CTG	GTG	GCTC	CAT	CCC	AGC	GCC	TAT	ATT	CGC
421 141	GAG E	GACA T	IGTG V	CTC L	AAG K	ATC I	GTA V	IGCC A	TAT Y	GGG G	CTG L	GTG V	GCTC L	CAT H	CCC P	AGC S	GCC A	TAT Y	TTA' I	CGC R
421 141	GAG E AAT	SACA T	GTG V	CTC L	K	ATC I	GTA V	IGCC A	TAT Y	GGG	CTG L	GTO V	CTC L	CAT	CCC P	AGC S	GCC A	TAT Y	I I	CGC R
421 141 481 161	GAG E AAI N	GACA T CGGC G	GTG V TGG W	GCTC L GAAC N	AAG K CTG L	ATC I CTC L	GTA V CGAC D	GCC A TTC F	TAT Y ATC	GGG G ATC I	CTG L CTG C V	GTO V GTO V	GTC L GTC V	CAT H GGG G	CCC P CTG L	AGC S TTC F	GCC A A AGC S	TAT Y GTG V	ATT I CTG L	CGC R CTG L
421 141 481 161	GAG E AAI N	GACA T GGC G	GTG V CTGG W	GCTC L GAAC N	AAG K CTG L	ATC I CTC L	CGTA V CGAC D	AGCC A CTTC F	TAT Y ATC I	GGG G ATC I IS3	CTG L CTC CTC V	GTG V GTG V	GCTC L GGTC V	CAT H GGG G	CCC P CTG L	AGC S TTC F	GCC A AGC S	TAT Y GTG V	I I CTG L	CGC R CTG L
421 141 481 161 541	GAG E AAI N GAA	GGGC G G G G G	GTG V TGG W	GCTC L GAAC N	AAG K CTG L	ATC I CTC L	GTA V GAC D	AGCC A CTTC F	TAT Y CATC I	GGG G ATC I IS3 GCC	CTG L CGTC V	GTG V GTG V SCAI	GCTC L GGTC V TACT	CAT H GGGG G	CCC P CTG L	AGC S TTC F AAG	CCA	TAT Y GTG V	CTG L	CGC R CTG L TTC
421 141 481 161 541 181	GAG E AAT N GAA E	GGCC G G CAA Q	GTG V TGG W GGA	GCTC L GAAC N ACCT P	AAG K CTG L GGGG G	ATC I CTC L CGG R	GTA V GAC D GCCA P	AGCC A TTC F AGGA G	TAT Y CATC I GAT D	GGG G ATC I IS3 GCC A	CTG L CGTC V CCG P	GTG V GTG V CAI	GCTC L GGTC V TACT T	CAT H GGGG G GGA G	CCC P CTG L .GGA G	AGC S TTC F AAG K	GCC A AGC S CCA P	ETAT Y CGTC V .GGA	GCTG L GGGC G	CGC R CTG L TTC F
421 141 481 161 541 181	GAG E AAT N GAA E	GGGC G CAA Q	GTG V TGG W GGA	GCTC L GAAC N ACCT P	CTG CGGG G	ATC I CTC L CGC R	GTA V GAC D CCA P	AGCC A TTC F AGGA G	CATC I GAT D	GGG G ATC I IS3 GCC A	CTG L CGTC V CCG P	GTG V GTG V CAI H	GTC L GTC V TACT T	GGGG GGGA GGGA	CCC P CTG L .GGA G	AGC S TTC F AAG K	GCC A CAGC S CCA P	ETAI Y CGTC V GGA	CTG L GGGC G	CGC R CTG L TTC F
421 141 481 161 541 181 601	GAG E AAI N GAA E GAI	GGCC G G CAA Q CGTA	GTG V TGG W GGA G	GCTC L GAAC N CCT P GGCA	CTG CGGG G CTG	ATC I CTC L CGC R	GTA V GAC D GCCA P GCCA	GCC A TTC F GGGA G	CATC I GATC D	GGG G ATC I IS3 GCC A	CTG L GTC V CCG P GCTA	GTG V GTG V CAI H	GTC L GTC V CACT T	GGGG GGGA GCTA	CCC P CTG L .GGA G AGG	AGC S TTC F AAG K CTA	GCC A AGC S CCA P	GTAI Y GTG V GGA G	GCTG L GGGC G	CGC R CTG L TTC F
421 141 481 161 541 181 601 201	GAG E AAI N GAA E GAI D	GGC G CAA Q CAA Q CGTA V	GTG V TGG W GGA G AAAG K	GCTC L GAAC N ACCT P GGCA A	CTG CGGG G CTG L	ATC I CTC L CGG R	GTA V GAC D GCCA P GCCA A	AGCC A TTC F AGGA G ATTT F	CATC I GATC D CAGG R	GGG G ATC I IS3 GCC A GCC A	CTG L CCCG P CTA L	GTG V CAI H CGA R	GTC L GTC V T ACT T	CAT H GGGG G G G G CTA L	CCC P CTG L GGA G AGG R	AGC S TTC F AAG K CTA L	GCC A CAGC S CCA P GTG V	GTAI Y GTG V GGA G TCI S	GGGG GGGG G	CGC R CTG L TTC F GTC V
421 141 481 161 541 181 601 201	GAG E AAI N GAA E GAI D	GGC G CAA Q CAA Q CAA V	GTG V TGC W GGGA G K	GCTC L GAAC N ACCT P GGCA A	AAG K CTG L CGGG G CTG L	ATC I CTC L CGG R CGG R	GTA V GAC D GCCA P GCCA	AGCC A CTTC F AGGA G ATTT F	CATC I GAT D CAGG R	GGG G ATC I IS3 GCC A GTG V	CTG L CGTC V CCCG P CCCA L	GTG V GTG V CAT H CGA R IS4	GTC L GGTC V CACT T L CCT P	CAT H GGG G G G G C TA L	CCC P CTG L GGA G AGG R	AGC S TTC F AAG K CTA L	GCCA A GCCA P GCCA V	TAI Y GTG V .GGA G .TCI S	CTG CTG L CGGC G CGGG G	CGC R CTG L TTC F GTC V
421 141 481 161 541 181 601 201 661 221	GAG E AAT N GAA E GAT D CCCG P	GACA T GGGC G CCAA Q CGTA V CGTA V SAGT S	GTG V TGG W GGGA G LAAG K	GCTC L GAAC N ACCT P GGCA A CCAC H	AAG K CCTG L CGGG G CCTG L CTG L	ATC I CTC L CGGG R CGGG R GTG V	GTA V GGAC D GCCA P GGCA A CCTC L	AGCC A TTTC F AGGA G ATTT F ZAAT N	TAT Y AATC I GAT D PAGG R TTCC S	GGG G ATCC I IS3 GCCC A GTG V ATCC I	CTG L CGTC V CCCG P CCTA L CTA L CTA M	GTG V GTG V CAT H CGA R R IS4 SAAG K	GCTC L GGTC V ZACT T SGCCT P GGCG A	CAT H GGG G GGA G CTA L CTT L	CCC P CTG L GGA G AGG R GTG V	AGC S TTC F AAG K CTA L CCG P	GCCA A ZAGC S CCCA P GCCA V CCTG L	TAI Y GTG V GGA G TCI S CTG L	PATT I CCTG L CGGC G CGGG G CACC H	CGC R CTG L TTC F GTC V ATT I
421 141 481 161 541 181 601 201 661 221	GAG E AAI N GAA E GAI D CCG P	GGGC G CGGC C CCAA Q CGTA V CGTA V S GAGT S	GTG V TGG W GGA G K CTG L	GCTC L GAAC N ACCT P GGCA A CCCC H	AAG K CCTG L CCTG G CCTG L ATA I	ATC I CTC L CGG R CGG R CGG R CGG V	GTA V GGAC D GCCA P GGCA A A SCTC L	AGCC A TTTC F AGGA G TTTT F XAAT N	TAT Y ATC I GAT D PAGG R TCCC S	GGG G ATCC I IS3 GCCC A GTG V ATCC I	CCCG CCCG CCCG CCCG CCCA L CCCA L CCCA L CCCA L CCCA L CCCA L CCCA L CCCA L CCCA L CCCA L CCCA L CCCA L CCCA L CCCA L C CCCA L C CCCA L C CCCA L C CCCA L C CCCA L C CCCA L C CCCA L C CCCA L C CCCA L C CCCA L C C CCCA L C CCCA L C CCCA L C C C C	GTG V GTG V GTG V GTG V SCAT H H SCGA R IS4 K	GCTC L GGTC V P GCCT A GCCG A	CAT H GGGG G G G G G CTA L CTT L	CCC P CTG L GGA G AGG R GTG V	AGC S TTC F AAG K CTA L CCG P	GCCA A CAGC S CCCA P CCCA V CCTG L	TAI Y GTG V GGA G S TCT S CTG L	PATT I CTG L CGGC G CGGG G CACC H	CGC R CTG L TTC F GTC V ATT I
 421 141 481 161 541 181 601 201 661 221 721 	GAG E AAT N GAA E GAT D CCG P GCC	GACA T GGGC G ACAA Q CGTA V GAGT S GAGT S	GTG V TGG W GGGA G LAAG K CTG L	CCTC L GAAC N ACCT P GGCA A CCAC H GGTG	AAG K CTG L CGGG G CTG L ATA I SCTC	ATC I CTC L CGG R CGG R GTG V TTC	GTA V GAC D GCCA P GGCA A SCTC L	AGCC A TTTC F AGGA G ATTT F XAAT N XATT	Y Y CATC I GAT D YAGG R YTCC S YATC	GGG G ATC I IS3 GCC A GTG V ATC I ATT	CTG L CGTC V CCCG P CCTA L CTAC M	GTG V GTG V GCAT H CCAT H SCAT K SCAT K	GCTC L GGTC V ZACT T SGCCT P GGCG A CATC	CAT H GGG G GGA G CTA L CTT L ATC	CCC P CTG L GGA G AGG R GTG V GGA	AGC S TTC F AAG K CTA L CCG P CTC	GCCA A CAGCS CCCA P CCCA CCCA CCCA CCCA CCCA CCCA	TAI Y GTG V GGA G TCI S CTG L	PATT I CTG L CGGC G CGGG G CACC H TTC	CGC R CTG L TTC F GTC V ATT I CTC
 421 141 481 161 541 181 601 201 661 221 721 241 	GAG E AAI N GAA E GAI D CCG P GCC A	GACA T CGGC G ACAAA Q CGTA V CGTA S CCTG L	GTG V TGG W GGGA G AAAG K CTTG L	GCTC L GAAC N ACCT P GGCA A A GGCA H GGTG V	AAG K CTG L GGGG G CTG L XATA I SCTC L	ATC I CTC C CGG R CGG R CGG R CGG T T C F	GTA V GGAC D GCCA P GGCA A SGCC L SGTC V	AGCC A TTTC F AGGA G ATTT F XAAT N XAAT I I	TAT Y AATC I AGAT D PAGG R TTCC S ATC I	GGG G I IS3 GCC A GTG V ATC I ATC I	CTG L CGTC V CCCG P CCTA L CCTA L CTAC Y TAC	GTG V GTG V GTG V GCGA R SAAG K SAAG K	GCTC L GGTC V ZACT T ACCT P GGCG A CATC I	CAT H GGG G GGA CTA L CTTT L CTTT L ATC I	CCC P CTG L GGA G AGG R GTG V GGA G	AGC S TTC F AAG K CTA L CCG P CTC L	GCCA A CAGC S CCCA P CCCA P CCCA C CCCA C CCCA C CCCA C CCCA C CCCA C CCCA C CCCA C CCCA C CCCA C CCCA C C CCCA C	TAI Y GTG V GGA G TCI S CTC L S CTA L	PATT I CTG L CGGC G CGGG G CACC H TTCC F	CGC R CTG L TTC F GTC V ATT I CTC L
421 141 481 161 541 181 601 201 661 221 721 241	GAG E AAI N GAA E GAI D CCG P GCC A	GACA T CGGC G CCAA Q CCAA Q CCAA Q CCAA S CCTG L	GTG V TGG W GGA G L AAG K CTG L STTG L	GCACCI P GCACCI P GCACA H GGTG V	AAG K CCTG L CGGG G CCTG L CCTG L CCTC L	ATC I CTC CGG R CGGG R GTG V TTC F	GTA V GAC D GCCA P GCCA P GCCA C C C C C C C C C C C C C C C C C	GCC A TTTC F GGAA G TTTT F XAAT N XAAT I	TAT Y ATC I GATC D TCCC S TCCC S ATC I	GGG G I IS3 GCC A GTG V ATC I ATT I IS5	CTG L GTC V CCCG P CCTA L CTAC Y	GTG V GTG V CCAT H CCGA R SAAG K SAAG K	GCTC L GGTC V P CACT T GGCG A SGCG A CATC I	CAT H GGGG G G G G CTA L CTT L ATC I	CCC P CTG L GGA G AGG R GTG V GGA G	AGC S TTC F AAG K CTA L CCG P CTC L	GCCA A CAGC S CCCA P CCCA V CCCG CCCG CCCG CCCG CCCG CCCG CC	TAI Y GTG V GGA G TCI S CTG L S CTA L	CTG CTG L CGGC G CGGG G CACC H TTC F	CGC R CTG L TTC F GTC V ATT I CTC L
 421 141 481 161 541 181 601 201 661 221 721 241 781 	GAG E AAI N GAA E GAI D CCCG P GCC A GGA	GACA T GGGC G CCAA Q CGTA V GAGT S GAGT S CCTG L	GGGA GGGA G LAAC L TTTC L LATC	GCAC GCAC GCAC GCAC GCAC	AAG K CCTG L CGGGG G CCTG L XATA I SCTC L XAAG	ATC I CTC L CGG R CGG R GTG V TTC F ACA	GGAC CGAC D GCCA P GGCA A CCTC L CGTC V TGC	AGCC A TTTC F AGGA G ATTT F CAAT N I CAAT I I CTAC	TAT Y GATC C CAGG R TTCC S TTCC I TTCC I	GGG G I IS3 GCC A GTG V ATC I IS5 CTG	CTG L CCCG P CCTA L CTAC Y CTAC Y	GTG V GTG V CAT H CCAT H CCAT K SAAG K SAAG K SAAG K TCT	GCTC L GGTC V ZACT T ACCT P GGCG A CATC I SGAT	CAT H GGG G GGA CTA L CTA L CTT L ATC I ATC	CCC P CTG L GGA G GGA G GGA GAA	AGC S TTC F AAG K CTA L CCG P CTC L GCA	GCCA A GCCA P GCCA CCCA CCCA CCCA CCCA C	TAI Y GTG V GGA G TCI S CTC L S CTA L S GAG	CTG CTG L GGGC G CGGG G CAC F SGAC	CGC R CTG L TTC F CTC V ATT I CTC L CCA

841	TCA	CCT	TGT(GCA'	TCT'	TCT	GGC	TCT	GGG	CGT	TCA	TGC	ACA	CTG	AAC	CAT	ACC	GAG	TGC	CGC
281	S	P	C	A	S	S	G	S	G	R	S	C	T	L	N	H	T	E	C	R
901	GGG	CGC	TGG	CCA	GGA	CCC	AAC	GGT	GGC	ATC	ACG	AAC	TTC	GAC	AAT	TTT	TTC	TTT	GCC.	ATG
301	G	R	W	P	G	P	N	G	G	I	T	N	F	D	N	F	F	F	A	M
961	CTA	ACT	GTG'	TTC(CAG'	TGT	ATT	ACC	ATG	GAA	GGC	TGG	ACA	.GAC	GTC	CTC	TAC	TGG	ATG	CAG
321	L	T	V	F	Q	C	I	T	M	E	G	W	T	D	V	L	Y	W	M	Q
1021	ATG	CCA	TGG	GGTI	ATG.	AGC	TGC	CTT	GGG	TGT	ACT	TTG	TGA	.GCC	TTG	TCA	TCT	TTG	GGT	CC
341	D	A	M	G	Y	E	L	P	W	V	Y	F	V	S	L	V	I	F	G	S
1081 361	TTC F	TTT F	GTC V	CTC L	AAC N	CTT L	GTG V	CTT L	GGA G	GTC V	CTA L	AGC S	IS GGG G	S6 GAG E	TTC F	TCC S	AAG K	GAA E	AGA R	GAA E
1141	AAG	GCA.	AAA)	GCA	CGA	GGT	GAC	TTT	CAG	AAG	CTT	CGG	GAG	AAG	CAG	CAG	ATG	GAA	GAA	GAC
381	K	A	K	A	R	G	D	F	Q	K	L	R	E	K	Q	Q	M	E	E	D
1201	CTT	CGG	GGC'	TAC	CTG	GAC	TGG	ATC	ACA	.CAG	GCT	GAG	GAG	TTA	.GAC	CTT	CAT	GAC	CCC'	TCA
401	L	R	G	Y	L	D	W	I	T	Q	A	E	E	L	D	L	H	D	P	S
1261	GTA	.GAC	GGCI	AAC'	TTG	GCT	TCT	CTT	GCT	GAA	GAG	GGA	ICGG	GCG	GGC	CAT	CGG	CCA	CAA	CTG
421	V	D	G	N	L	A	S	L	A	E	E	G	R	A	G	H	R	P	Q	L
1321	TCA	.GAG	CTGI	ACCI	AAT.	AGG	AGG	CGC	GGA	CGG	CTG	CGA	NTGG	TTC	AGC	CAC	TCT	ACT	CGC'	ICC
441	S	E	L	T	N	R	R	R	G	R	L	R	W	F	S	H	S	T	R	S
1381	ACA	CAC	TCC)	ACCI	AGC.	AGC	CAC	GCC	AGC	CTC	CCA	.GCC	AGT	GAC	ACT	GGC	TCC	ATG	ACA	GAC
461	T	H	S	T	S	S	H	A	S	L	P	A	S	D	T	G	S	M	T	D
1441	ACC	CCT	GGA	GAT	GAG	GAT	GAA	GAA	.GAG	GGG	ACC	ATG	GCT	AGC	TGT.	ACA	CGC	TGC	CTA.	AAC
481	T	P	G	D	E	D	E	E	E	G	T	M	A	S	C	T	R	C	L	N
1501	AAG	ATT.	ATG.	AAA)	ACA.	AGG	ATC	TGC	CGC	CAC	TTC	CGC	CGA	GCC	AAC	CGG	GGT	CTC	CGT	GCA
501	K	I	M	K	T	R	I	C	R	H	F	R	R	A	N	R	G	L	R	A
1561	CGC	TGC	CGC	CGG	GCC	GTC	AAG	TCC	AAC	GCC	TGC	TAC	TGG	GCT	GTA	CTG	TTG	CTC	GTC	TTC
521	R	C	R	R	A	V	K	S	N	A	C	Y	W	A	V	L	L	L	V	F
1621 541	CTC L	AAC. N	ACG' T	TTG L	ACC. T	ATA I	.GCT A	TCA S	GAG E	CAC H	CAT H	GGG G	CAG Q	CCT P	IIS TTG L	S1 TGG W	CTC L	ACC T	CAG. Q	ACC T
1681	CAA	GAG	TAT(GCC	AAC.	AAA	GTT	CTG	CTC	TGC	CTC	TTC	ACT	GTG	GAG	ATG	CTC	CTC	AAA	CTG
561	Q	E	Y	A	N	K	V	L	L	C	L	F	T	V	E	M	L	L	K	L
1741 581	TAC Y	GGC G	CTG(L	GGC(G	CCC' P	TCT S	GTC V	TAC Y	GTT V	GCC A] TCC S	TTT F	TTC F	AAC N	CGC R	TTT F	GAC D	TGC C	TTC F	GTG V

1801	GTC	TGT	'GGG	GGC	ATC	СТА	GAA	ACC	ACT	TTG	GTG	GAG	GTG	GGG	GCC	ATG	CAG	CCT	CTT	GGC
601	V	С	G	G	I	L	Ε	Т	Т	L	-V	Ε	V	G	A	Μ	Q	Ρ	L	G
1861	ATC	TCA	GTG	CTC	CGA	TGT	GTA	CGT	CTC	CTC	AGG	ATC	TTC	AAG	GTC	ACC	AGG	CAC	TGG	GCA
621	I	S	V	L	R	С	V	R	L	L	R	I	F	K	V	Т	R	Н	W	А
										IIS ²	4									
1921	TCC	СТС	AGC	AAT	CTG	GTG	GCA	TCT	TTG	CTC	AAT	TCC	ATG	AAG	TCC	ATC	GCC	TCC	TTG	CTG
641	S	L	S	Ν	L	V	A	S	L	L	Ν	S	Μ	K	S	Ι	A	S	L	L
1 0 0 1	~~~				~									~~~		~ ~ ~	~		~~~~	~~~
1981 661	CTT T	T'O'	TCTC	TTT	TCTC	TTC E	ATC T	ATC	ATC	TTC F	TCC	CTG T	CTT T	GGC	ATG M	CAG	CTG	TTT T	GGG	GGC
001	Ш	Ц	Ц	Г	Ц	Г	T	1		Г	3	Ц	Ц	G	1•1	Q	Ц		G	G
2041		mmc		mmm	C 7 C		700		\$5 DCC		» c c			mmm	слш	700				~~~
681	AAG K	F F	.AAC N	F	D	CAG O	ACC T	H	ACC T	.AAG K	R	AGC	ACC T	F	D	ACC T	F	P		A
001	10	1	11	L	D	×	-	11	-	10	10	D	-	L	D	1	T	-	×	11
2101	CTC	стс	ACT	GTC	TTT	'CAG	ATC	CTG	ACT	GGT	GAG	GAT	TGG	AAC	GTT	GTC	ATG	TAT	GAT	GGT
701	L	L	Т	V	F	Q	I	L	Т	G	Е	D	W	Ν	V	V	М	Y	D	G
2161	ATC	ATG	GCC	TAC	GGT	GGG	ССС	TTC	TTC	CCA	.GGG	ATG	CTG	GTG	TGT	GTT	TAT	TTC	ATC	ATC
721	I	Μ	А	Y	G	G	Ρ	F	F	Ρ	G	Μ	L	V	С	V	Y	F	Ι	Ι
																	IIS	56		
2221	CTC	TTC	ATC	TGT	GGC	AAC	TAC	ATC	CTG	CTG	AAC	GTG	TTT	CTT	GCC	ATT	GCC	GTG	GAT	AAC
741	Г	F.	T	С	G	Ν	Y	Ţ	Ц	Ц	Ν	V	F.	Г	A	Ţ	А	V	D	Ν
0001	0			~~~	0 7 8		~~~	2 0 0			a a			7 0 7	a a		100			
2281 761	CTA T.	LGCC A	AGC q	ы С	GAT D	'GCA Z	UJJJ C	ACT T	GCC	AAA K	GAC D	AAG K	JUDD C	AGA R	GAG F	AAG K	AGC	AGT S	GAA F	GGA
101	Ц	п	D	0	D	П	U	T	П	Т	D	11	0	IX		I	5	5		0
2341	AAC	ССТ	CCA	AAG	GAG	AAC	ΔΔΔ	GTA	ጥጥር	GTG	ССТ	GGT	'GGA	GAG	ААТ	GAG	GAC	GCA	AAG	GGT
781	N	P	P	K	E	N	K	V	L	V	P	G	G	E	N	E	D	A	K	G
2401	GCA	AGA	AGT	GAA	.GGA	.GCA	GCA	.CCA	.GGC	ATG	GAG	GAG	GAG	GAG	GAG	GAG	GAA	GAA	.GAA	GAA
801	A	R	S	Ε	G	A	A	Ρ	G	М	Ε	Ε	Ε	Е	Ε	Ε	Ε	Ε	Ε	Ε
2461	GAG	GAG	GAG	GAG	GAA	GAG	GAA	AAT	GGT	'GCA	.GGA	CAT	GTG	GAA	СТС	TTG	CAG	GAA	.GTA	GTA
821	Ε	Ε	Ε	Ε	Ε	Ε	Ε	Ν	G	A	G	Η	V	Ε	L	L	Q	Ε	V	V
0 = 0 1																				
2521 0/1	CCC	AAG V	GAG.	AAG	GTG	GTA	CCC D	ATC	CCT	'GAA E	.GGC	AGI	'GCC	TTC E	TTC	TGC	CTT	'AGC	CAA	ACC
041	P	r	L	r	V	V	P	T	P	Ľ	G	5	A	Г	Г	C	Ц	5	Q	T
25.01	770		۰ مست		770		тсс			CTTC	አ ጥ አ	Слп	יכאכ	ᡣ᠕᠇᠇	አ ጥ ር	mm <i>c</i>	ACC	יאריי		᠕ᡣᢕ
861	N	P.CCG	L	R	K K	A	C	H	ACA T	L	I	H	H	H	I	F	T	AGI S	L	I
001		-	-				Ū		-	-	-				_	-	-	<u>с</u> 1		-
2641	СТА	GTG	·ጥጥC	ፚጥሮ	<u> </u>	רייר	дст		GTG		CTG	ССТ	יכריד	GAG	GAC	\sim		DI CGA	GCT	CAC
881	L	V	F	I	I	L	S	S	V	S	L	A	A	E	D	P	I	R	A	H
2701	TCC	TTC	CGA	AAC	CAT	ATT	CTG	GGA	TAT	TTT	GAT	TAT	GCC	TTC	ACC	TCC	ATA	TTC	ACT	GTG
901	S	F	R	Ν	Η	I	L	G	Y	F	D	Y	A	F	Т	S	I	F	Т	V

2761	GAG	ATT	СТА	CTC	AAG	ATG	ACA	GTG	TTT	GGG	GCC	TTC	CTG	CAC	CGA	GGC	ТСТ	TTC	TGC	CGT
921	Ε	Ι	L	L	K	М	Т	V	F	G	A	F	L	Η	R	G	S	F	С	R
2821	AGC	TGG	TTC	AAT	CTG	TTG	GAT	CTC	CTT	GTG	GTC	AGT	GTG	TCC	CTC	ATC	TCC	TTC	GGC	ATC
941	S	W	F	Ν	L	L	D	L	L	V	V	S	V	S	L	I	S	F	G	I
										ш	33									
2881	CAC	TCC	AGT		АТС	тса	GTT	GTG	AAG		. СтС	CGA	GTC	СТС	CGA	GTC	СТС	CGG	ССТ	CTC
961	Н	S	S	A	T	S	V	V	K	T	T,	R	V	T,	R	V	T,	R	P	T,
					_	-	-	-		_			-						_	_
																IS4				
2941	CGA	.GCC	A'I'C	AAC	AGA	.GCC	AAG	igga	CTC	AAG	CAT	GTG	G'I'G	CAG	TGT	GTG	TTC	G'I'G	GCC	A'I'C
981	R	A	T	Ν	R	А	K	G	Ц	K	Н	V	V	Q	С	V	F.	V	А	Ţ
3001	CGG	ACC	ATC	GGA	AAC	ATC	ATG	ATT	GTC	ACC	ACC	СТС	TTG	CAG	TTC	ATG	TTC	GCC	TGC	ATT
1001	R	Т	Ι	G	Ν	Ι	М	Ι	V	Т	Т	L	L	Q	F	М	F	A	С	I
													Ι	IIS5						
3061	GGT	GTT	CAG	CTG	TTC	AAG	GGA	AAA	TTC	TAC	AGT	TGC	ACT	GAT	GAG	GCC	AAA	CAC	ACC	CTG
1021	G	V	Q	L	F	Κ	G	K	F	Y	S	С	Т	D	Ε	А	K	Н	Т	L
3121		CDD	TCC			тсс	יידיר	ירייר	ישיר	ሞልሮ	CCT	СЪТ	יככם	СЪТ	стс	тса	CGA	CCT	ጥጥር	GTC
1041	K	E.	C	K	G	S	ा २ म	.стс Т.	T	Y	P	D	G	D	V	S	R	P	T.	V
1011	10	-	Ũ	11	C	0	-	-	-	-	-	2	0	D	·	^o	1.	-	-	v
2101	000	~ ~ ~	~~~		ПОО	~									~ ~ ~	~~~	шал	~~~	3 8 0	лпс
3181 1061	CGG	GAG	CGG D	UT:Ut	TGG	GTC 17	AAC	AGT	GAT.	LIL	AAC	TTT	GAC	AAC	GTC	T.T.O	TCA	GCC	ATG M	ATG M
TOOT	R	Ľ	R	Ц	VV	V	IN	5	D	Г	IN	Г	D	IN	V	Ц	5	A	141	M
3241	GCC	CTG	TTC	ACT	GTC	TCT	ACC	TTT	'GAA	.GGC	TGG	CCI	GCG	CTA	CTA	TAC	AAG	GCC	ATA -	GAT
1081	А	Ц	F.	Τ.	V	S	Т	F.	E	G	W	Р	А	Ц	Ц	Y	K	A	T	D
3301	GCA	AAC	GCA	GAA	.GAT	GAG	GGC	CCT	ATC	TAC	AAT	TAC	CAT	GTG	GAG	ATA	TCA	GTA	TTC	TTC
1101	A	Ν	А	Ε	D	Ε	G	Ρ	Ι	Y	Ν	Y	Η	V	Ε	I	S	V	F	F
																	Ш	S6		
3361	ATT	GTC	TAC	ATC	ATC	ATC	ATC	GCC	TTC	TTC	ATG	ATG	AAC	ATC	TTT	GTG	GGC	TTT	GTT	ATC
1121	I	V	Y	I	I	I	I	А	F	F	М	М	Ν	I	F	V	G	F	V	I
3421	ፚͲሮ		ጥጥሮ	CGT	GCC	CAG	GGA	GAG	CAG	GAG	ͲΔC			тст	GDD	CTG	GAC	AAG	AAC	CAG
1141	T	т Т	F	R	A	0	G	F.	0	E	Y	0	N	C	E E	T.	D	K	N	0
	-	-	-			×	0	_	×	_	-	£		Ũ	_	_	2			×
2401	~~~	~ ~ ~			~			~ ~ ~ ~		~~~	~ ~ ~	~~-	~	~~~	~ ~ ~ ~	~		~~~		
348L	CGC	CAG	TGT	'G'I'G	GAA	'I'A'I'	'GCC	CTC		.GC'I'	CAG	CCA	CTC	CGC	CGA	TAC	ATC T	CCT	AAG	AA'I'
TTQT	R	Q	C	V	E	ĭ	А	Ц	K	А	Q	Р	Ц	R	R	Ϋ́	T	Р	ĸ	IN
3541	CCT	CAT	CAG	TAC	CGC	GTG	TGG	GCC	ACT	GTG	AAC	TCT	GCT	GCC	TTT	GAG	TAC	CTC	ATG	TTT
1181	Ρ	Η	Q	Y	R	V	M	А	Т	V	Ν	S	А	A	F	Ε	Y	L	М	F
																	IV	S1		
3601	CTG	CTC	ATC	CTG	CTC	AAC	ACG	GTG	GCC	СТА	.GCC	ATG	CAG	CAC	TAT	GAA	CAG	ACT	GCT	CCC
1201	L	L	I	L	L	N	T	V	A	L	A	М	Q	H	Y	E	Q	T	A	Ρ
2661	mmm		יייו אידי			$C \rightarrow C$				7	CmO	mmo		~~~	omo	mma	700	7 നന	$C \lambda C$	7
J00⊥ 1221	TII. E	AAC M	TAT V	GCC A	AIG M	GAU	ATC	UTU T.	AAC M	АГG М	GTC V	T L C	AUT T	GGC C	UTU T.	T L C	AUU T	A I''I' T	UAU F	M
ㅗ ႍ ႍ ㅗ	11 I.	тv	-	T 7	Τ.Τ		-		τN	Τ.Τ	v	-	-	J		-	-	-		T.T

3721	GTG	CTC.	AAA	ATC	ATC	GCC	TTT	AAA	.ccc	AAG	CAT	TAC	TTT	GCA	GAT	GCC	TGG	AAT	ACG	TTT
1241	V	Ц	K	T	T	А	Ę,	K	Р	K	Н	Y	F.	А	D	A	W	N	T	E'
3781	GAT	יהריד	ርሞር	∆ጥጥ	ста	GTG	GGC	AGT	GTA	GTC	GAC	ΔΨС	'GCC	GTC		GAA	GTC	חעע		3 GGA
1261	D	A	L	I	V	V	G	S	V	V	D	I	A	V	T	E	V	N	N	G
3841	GGC	CAT	CTT	GGC	GAG	AGT	TCA	GAG	GAC	AGC	TCC	CGC	ATA	TCT	ATC	ACG	TTC	TTT	CGC	CTC
1281	G	Η	L	G	Ε	S	S	E	D	S	S	R	Ι	S	I	Т	F	F	R	L
2001			~	<u>л п с</u>	700						л С П				~~~			S4		
1301	F	r R	V	M M	agg R	L	VUU	aag K	L	L	AGT S	AAG K	GGT	GAG E	G G	I	CGC R	ACA T	L L	L
3961	TGG	GACA	TTC	ATC	AAG	TCT	TTC	CAG	GCC	TTG	ССС	TAT	GTG	GCA	CTT	СТС	ATA	GCA	ATG.	ATA
1321	W	Т	F	Ι	K	S	F	Q	A	L	Ρ	Y	V	А	L	L	Ι	А	М	Ι
																	IV	S 5		
4021	TTC F	TTC. F	ATC T	TAT v	GCA a	.GTC V	ATT T	GGC G	ATG M	CAG	ATG M	TTT F	'GGC G	AAG K	GTG V	GCT	CTT T.	CAG	GAC	GGC
1011		-	-	1	11	v	-	0	11	×	11	Ŧ	•	10	v	11	ш	×	D	0
4081	ACG	CAG.	ATA	AAT	CGA	AAC	AAC	AAT	TTC	CAG	ACC	TTT	CCG	CAG	GCT	GTG	CTG	CTT	CTG	TTC
1361	Т	Q	I	Ν	R	Ν	Ν	Ν	F	Q	Т	F	Ρ	Q	А	V	L	L	L	F
	- ~ ~		~ ~ ~		~ ~ -	~ - ~	~ ~ ~ ~	_ ~ ~	~	~ - ~				~ ~ ~		~	~ ~ -	~ ~ -		~ ~ -
4141 1381	AGG R	FTGT C	GCC A	AC'I' T	GG'I' G	GAG E	GCC A	'I'GG W	CAA	.GAG E	A'I'A T	A'I'G M	C'I'A T.	.GCC A	AGC S	C'I''I' T.	CCA P	GGA G	AA'I' N	CGA R
1001	10	U		-	0				×	-	-		-		2		-	0		10
4201	TGI	GAC	ССТ	GAG	ТСТ	GAC	TTT	GGC	CCA	GGC	GAG	GAA	TTT	ACC	TGT	GGT	AGC	AGT	TTT	GCC
1401	С	D	Ρ	Ε	S	D	F	G	Ρ	G	Ε	Ε	F	Т	С	G	S	S	F	A
10.01			~	~						~~~~		~~~		~ ~ ~				~ ~		~ = ~
4261 1421	ATC I	GTC V	TAC Y	TTC. F	ATC I	AGC S	F	T.I.I. E	ATG M	CTC L	TGT C	GCC A	F F	CTG L	I'I'A I	A'I'A I	AA'I' N	CTC L	T.I.I.	G'I'G V
										IVS	6									
4321	GCI	GTA	ATC	ATG	GAT	AAC	TTT	GAT	TAC	CTA	ACC	AGA	GAT	TGG	TCT	ATC	CTG	GGA	CCC	CAC
1441	А	V	I	М	D	Ν	F	D	Y	L	Т	R	D	W	S	I	L	G	Ρ	Η
4001	~ ~ ~		~ ~ ~	~	~						~ ~ ~			~~~	~~~	~~~		~~~	~~~	
4381 1461	CAC H	L CTT	GAT D	GAA E	TTC F	AAG K	AGG R	ATC I	TGG W	STCT S	GAA E	T'A'I Y	'GAC D	P	GGA G	.GCC A	AAG K	GGC G	CGC. R	ATC I
										-					-			-		
4441	AAG	GCAC	TTG	GAT	GTG	GTT	GCC	CTG	CTG	AGA	CGC	ATC	CAG	CCC	ССА	TTG	GGA	TTT	GGA.	AAG
1481	K	Η	L	D	V	V	A	L	L	R	R	Ι	Q	Ρ	Ρ	L	G	F	G	K
. =																				
4501	CTA T.	TGC.	CCA P	CAC H	CGA R	.GTG V	GCC A	TGC	AAG K	AGA R	CTC T.	GTG V	GCA A	ATG. M	AAT N	GTG V	CCC P	CTC	AAC N	TCA
TOOT		Ŭ	1	11	1.	v	11	Ŭ	10	10	ш	v	11		1,	v	1		11	U
4561	GAT	'GGA	ACA	GTG	ACA	TTC	AAC	GCT	ACA	CTC	TTT	GCC	CTG	GTG	CGG	ACA	TCC	CTG	AAG	ATC
1521	D	G	Т	V	Т	F	Ν	A	Т	L	F	A	L	V	R	Т	S	L	K	Ι
4621 1541	AAG v	ACA	GAA F	GGG	AAC M	CTG	GAT	CAA	.GCC	AAC	CAG	GAG	CTT	CGG	ATG M	GTC	ATC	AAA v	AAG.	ATC
трат	17	Ŧ	خد	G	τN	ш	Ľ	Y	А	TN	Y	Ľ	ш	1/	1.1	v	T	τ/	τ/	Ŧ

4681	TGG	AAG	CGG	ATA	AAG	CAG.	AAA'	TTG	ΓTG	GAT	GAG	GTC	ATC	CCT	CCT	CCC	GAT	GAG	GAG	GAG
1561	W	K	R	Ι	K	Q	K	L	L	D	Ε	V	Ι	Ρ	Ρ	Ρ	D	Ε	Ε	Ε
4741	GTC	ACT	GTG	GGA	AAA	TTC	TAT	GCCZ	ACA	TTC	CTG	ATC	CAA	GAT	TAT	TTC	CGA	AAA	TTC	CGG
1581	V	Т	V	G	K	F	Y	A	Т	F	L	I	Q	D	Y	F	R	K	F	R
4801	AGA	AGG	AAA	GAA	AAG	GGG	CTA	CTA	GGA	AGA	GAG	GCC	CCA	ACA	AGC	ACA	rcc:	ГСТ	GCC	CTC
1601	R	R	K	Ε	K	G	L	L	G	R	Ε	A	Ρ	Т	S	Т	S	S	A	L
4861	CAG	GCT	GGT	CTA	AGG	AGC	CTG	CAG	GAC	ГТG	GGT	ССТ	GAG	ATC	CGT	CAAC	GCC	CTC	ACC	TAT
1621	Q	A	G	L	R	S	L	Q	D	L	G	Ρ	Ε	I	R	Q	A	L	Т	Y
4921	GAC	АСТ	GAG	GAA	GAA	GAG	GAA	GAG	GAA(GAG	GCA	GTG	GGT	CAG	GAG	ЗСТО	GAG	3AA(GAG	GAA
1641	D	T	E	E	E	E	E	E	E	E	A	V	G	Q	E	A	E	E	E	E
4981	GCT	GAG					CCA	тас			TCC	מידמ	GAC	TCC			יםםי	rcτι		TGG
1661	A	E	N	N	P	E	P	Y	K	D	S	I	D	S	Q	P	Q	S	R	W
50/1	770	mæm	ACC	ى شىلىر	TCC	277.21	ͲϹͲ	~ ሞ አ (<u>م</u> سىد	ጋጥጥ		CAC	7770	<u>ን</u> ጥጥ	~~~~	יית א	rcπa	יחחר	τĊλ	$\Lambda \subset T$
1681	N	S	R	I	S	V	S	L	P	V	K	E	K	L	P	D	S	L	S	T
5101	GGG	CCG	AGTO	ጋልጥ	ጋልጥ	GAT	GGG	CTG	<u>ЗСТ(</u>	700		тсс	AGG	~ A G(AGTO	GT GZ	ልጥል	~ A G(ЗСТ
1701	G	P	S	D	D	D	G	L	A	P	N	S	R	Q	P	S	V	I	Q	A
5161	CCC	тсс	~~~~	~~~~	~7.0	ACC			ͲϹͲͷ		יתיים	ͲͲϹ	᠕᠊᠋᠋ᡣᢕ	TTC	A C TT	$\nabla T C C$		2770	2770	207
1721	G	S	Q	P	H	R	R	S	S	G	V	F	M	F	T	I	P	E	E	G
5221	ΔСТ	ፚጥጥ	CAC	~ T C			۵CT	~~~~			CAC	ልልጥ	CAC	ልልጥሰ					2770	$\sim \sim T$
1741	S	I	Q	L	K	G	T	Q	G	Q	D	N	Q	N	E	E	Q	E	V	P
5281	CAC	TCC	ሻርጥ	ጉርጥ		~TC	CAT					ሻርሞ	CCTT	TCC			2770	ىىلىنىڭ	זעידיד	
1761	D	W	T	P	D	L	D	E	Q	A	G	T	P	S	N	P	V	L	L	P
5341	ССТ	CAC	TGG	TCC	CAG	CAA	CAC	GTA	AAC	GGG	CAC	САТ	GTG	CCA	CGC	CGA	CGTT	ГТG	CTG	CCC
1781	P	Н	W	S	Q	Q	Н	V	N	G	Н	H	V	P	R	R	R	L	L	P
5401	CCC	ACG	ССТ	3CA	GGT	CGG	AAG	CCC	TCC	гтс	ACC	АТС	CAG	тст	CTG	CAA	CGC	CAG	GGC	AGT
1801	P	T	P	A	G	R	K	P	S	F	T	I	Q	C	L	Q	R	Q	G	S
5461	TGT	GAA	GAT	TTA	ССТИ	ATC	CCA	GGC	ACC	TAC	CAT	CGT	GGA	CGG	ACC	ГСА	GGA	CCA	AGC	AGG
1821	С	Ε	D	L	Ρ	Ι	Р	G	Т	Y	Η	R	G	R	Т	S	G	Ρ	S	R
5521	GCT	CAC	GGTT	TCC	TGG			<u>сст</u>	<u>ר</u> רי	~ A C		сст	CGD	~TC	∼ͲՃי	יידבי	3000	200	ጉጥርי	ттG
1841	A	Q	G	S	W	A	A	P	P	Q	K	G	R	L	L	Y	A	P	L	L
5581	TTG	GTG	GAG	GAA'	ГСТИ	ACA	GTG	GGT	GAA	GGA	TAC	CTT	GGC	AAA	CTTC	GGC	GGC	CCA	CTG	CGT
1001	_ с Т.	V	E	E	S	T	V	G	E	G	Y	L	G	K	L	G	G	Р	L	R

1881 T F T C L Q V P G A H P N P S H R K R 5701 AGTGCTGACAGTTTGGTGGAGGCTGTGCTCATCTCCGAAGGCCTAGGTCTCTTTGCCC 1901 S A D S L V E A V L I S E G L G L F A 5761 GACCCACGATTTGTGGCCCTGGCCAAGCAGGAGAATTGCAGATGCATGTCACCTGACCC 1921 D P R F V A L A K Q E I A D A C H L T 5821 GATGAGATGGACAGTGCTGCCAGTGACCTGCTGGCACAGAGAACCACCTCCCTTTACA 1941 D E M D S A A S D L L A Q R T T S L Y	g AA
 5701 AGTGCTGACAGTTTGGTGGAGGCTGTGCTCATCTCCGAAGGCCTAGGTCTCTTTGCCC 1901 S A D S L V E A V L I S E G L G L F A 5761 GACCCACGATTTGTGGCCCTGGCCAAGCAGGAGAATTGCAGATGCATGTCACCTGACCC 1921 D P R F V A L A K Q E I A D A C H L T 5821 GATGAGATGGACAGTGCTGCCAGTGACCTGCTGGCACAGAGAACCACCTCCCTTTACA 1941 D E M D S A A S D L L A Q R T T S L Y 	AA
1901 S A D S L V E A V L I S E G L G L F A 5761 GACCCACGATTTGTGGCCCTGGCCAAGCAGGAGATTGCAGATGCATGTCACCTGACCC 1921 D P R F V A L A K Q E I A D A C H L T 5821 GATGAGATGGACAGTGCTGCCAGTGACCTGCTGGCACAGAGAACCACCTCCCTTTACA 1941 D E M D S A A S D L L A Q R T T S L Y	
 5761 GACCCACGATTTGTGGCCCTGGCCAAGCAGGAGATTGCAGATGCATGTCACCTGACCC 1921 D P R F V A L A K Q E I A D A C H L T 5821 GATGAGATGGACAGTGCTGCCAGTGACCTGCTGGCACAGAGAACCACCTCCCTTTACA 1941 D E M D S A A S D L L A Q R T T S L Y 	Q
1921 D P R F V A L A K Q E I A D A C H L T 5821 GATGAGATGGACAGTGCTGCCAGTGACCTGCTGGCACAGAGAACCACCTCCCTTTACA 1941 D E M D S A A S D L L A Q R T T S L Y	TG
5821 GATGAGATGGACAGTGCTGCCAGTGACCTGCTGGCACAGAGAACCACCTCCCTTTACA 1941 D E M D S A A S D L L A Q R T T S L Y	L
1941 D E M D S A A S D L L A Q R T T S L Y	GТ
	S
3881 GATGAGGAGTCTATTCTTTCCCGCTTTGATGAAGAGGACCTGGGAGATGAGATGGCCT	G.T.
1961 D E E S I L S R F D E E D L G D E M A	С
5941 GTCCATGCCCTCTAA	
1981 V H A L *	

Bars below the lines indicate the transmembrane segments of the Cav1.4 α 1 subunit.

6.2 Alignment

	EF Pre-IQ	
Cav1.2	DNFDYLTRDWSILGPHHLDEFKRIWAEYDPEAKGRIKHLDVV <mark>I</mark> LLRRIQPPLGFGKLCPH	1561
Cav1.4	DNFDYLTRDWSILGPHHLDEFKRIW <mark>S</mark> EYDPGAKGRIKHLDVVALLRRIQPPLGFGKLCPH	1504
Cav1.2	RVACKRINGMNMPINSDGTVMFNATLFALVRTAIBIKTEGNIBOANEELRAIIKKIWKRT	1621
Cav1.4	RVACKRIVAMNNPINSDGTVIFNATLFALVRIGIKIKTEGNLDOANQELBMNIKKIWKRI	1564
Cavl.2	SMKLLDGVMPPAGDDEVIVGKFYATFLIGEYFRKFKKRKEGGIVGKPS.QRNAISLQAGI	1680
Cavl.4	KQKLLDEVIPFFDEFEVIVGKFYATFLIQDYFRKFRRRKEKGLLGREAPISTSSALQAGI	1624
Cav1.2	RILHDIGPEIRBAISGDITAEEFIDKAMKEAVSAASEDDIFRRAGGLEGNHVSYYQSDSR	1740
Cav1.4	RSIQDIGPEIRQALTYDTEFEEEFEAVGQEAEEFEAENNPEPYK.DSI	1672
Cav1.2	SAFPQIFTIQRPLHISKAGNNQGDTESPSHEKIYDSIFTPSSYSSIGSNANINNANNIAL	1800
Cav1.4	DSQPQSRWNSBISVSLEVREKLPDSISTGPS.DDDGLAFNSRQPSVIQA	1720
Cav1.2	GRLFBPAQYESTVSTVEGHGSPLSPAVRAQEAAWKLSSKECHSQESQIAMACQECASQDD	1860
Cav1.4	GSQPHRRSSGVEMETIPEEGSIQLKGTQGQDNQNEFQEVP	1760
Cav1.2	NYDVRIGEDAECCSEPSLISTEMLSYQDDENRQIAPPEEEKRDIRLSPKKGFIRSASIGR	1920
Cav1.4	DWIPDIDEQAGTESNEWLLPEHWSQQHVNGHHMERRILPETPAGR	1806
Cav1.2 Cav1.4		1980 1848
Cav1.2 Cav1.4		2040 1884
Cav1.2 Cav1.4	SINVESGAGAGGROFHGSAGSIVEAVLISEGIGGFAQDPKFIEVTIOELADACDLTIEM	2100 1943
Cav1.2	ENAADDIISGGARQSPNGTLLPFVNRRDPGRDRAGQNEQDASGACAPGCGQ.SEEALADR	2159
Cav1.4	DSAASDILASILSRFDEEDIGDE	1977
Cav1.2	RAGVISSI	2166
Cav1.4	Macvhai	1984

Figure 6-1 Alignment of the C-termini of $Ca_v 1.2b\alpha 1$ and $Ca_v 1.4\alpha 1$ starting at the end of the IVS6 segment. Bars on top of the lines indicate the borders of the EF hand motif, the Pre-IQ and the IQ segment, peptide A and the ICDI domain. Red asterisks indicate the amino acids mutatet to stop codons in truncation mutants of $Ca_v 1.4\alpha 1$. Arrowheads indicate stop mutantions observed in humans $CSNB2^{35,43,44}$. The arrowhead at S1895 idicates a frame shift leading to a premature stop after 43 unrelated amino acids

6.3 **Primers**

Primer Pair	Sequence (5' to 3')	Localization of Amplicon (AF192497)	Length of Amplicon (bp)
17	cggaattcgccgccaccATGTCGGAATCTGAAGTCGGGAA	nt 49-2138	2105
18	GGTATCAAAGGTGCTCCTCTTGGT		
19	CCATGAAGTCCATCGCCTCCTTG	nt 2003-4056	2054
20	TGCCACATAGGGCAAGGCCTGGAA		
21	GTTCAGAGGACACGTCCCGCATA	nt 3911-6006	2106
22	gggtctcgagTTAGAGGGCATGGACACAG		

Table 6-1 Primers used for cloning of $Ca_v 1.4\alpha 1$

Coding sequences are represented in uppercase letters, 5'- and 3'-untranslated sequences are shown in lowercase letters.

7 **REFERENCES**

- 1. Catterall, W. A., Perez-Reyes, E., Snutch, T. P. & Striessnig, J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. *Pharmacol Rev* **57**, 411-25 (2005).
- 2. Yu, F. H. & Catterall, W. A. The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. *Sci STKE* **2004**, re15 (2004).
- 3. Takahashi, M., Seagar, M. J., Jones, J. F., Reber, B. F. & Catterall, W. A. Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. *Proc Natl Acad Sci U S A* **84**, 5478-82 (1987).
- 4. Hofmann, F., Biel, M. & Flockerzi, V. Molecular basis for Ca2+ channel diversity. *Annu Rev Neurosci* **17**, 399-418 (1994).
- 5. Lipscombe, D., Helton, T. D. & Xu, W. L-type calcium channels: the low down. *J Neurophysiol* **92**, 2633-41 (2004).
- 6. Koschak, A. et al. alpha 1D (Cav1.3) subunits can form l-type Ca2+ channels activating at negative voltages. *J Biol Chem* **276**, 22100-6 (2001).
- 7. Michna, M. et al. Cav1.3 (alpha1D) Ca2+ currents in neonatal outer hair cells of mice. *J Physiol* **553**, 747-58 (2003).
- 8. Safa, P., Boulter, J. & Hales, T. G. Functional properties of Cav1.3 (alpha1D) L-type Ca2+ channel splice variants expressed by rat brain and neuroendocrine GH3 cells. *J Biol Chem* **276**, 38727-37 (2001).
- 9. Scholze, A., Plant, T. D., Dolphin, A. C. & Nurnberg, B. Functional expression and characterization of a voltage-gated CaV1.3 (alpha1D) calcium channel subunit from an insulin-secreting cell line. *Mol Endocrinol* **15**, 1211-21 (2001).
- 10. Xu, W. & Lipscombe, D. Neuronal Ca(V)1.3alpha(1) L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. *J Neurosci* **21**, 5944-51 (2001).
- 11. Striessnig, J. Pharmacology, structure and function of cardiac L-type Ca(2+) channels. *Cell Physiol Biochem* **9**, 242-69 (1999).
- 12. Hofmann, F., Lacinova, L. & Klugbauer, N. Voltage-dependent calcium channels: from structure to function. *Rev Physiol Biochem Pharmacol* **139**, 33-87 (1999).
- 13. Hockerman, G. H., Peterson, B. Z., Johnson, B. D. & Catterall, W. A. Molecular determinants of drug binding and action on L-type calcium channels. *Annu Rev Pharmacol Toxicol* **37**, 361-96 (1997).
- 14. Stotz, S. C., Hamid, J., Spaetgens, R. L., Jarvis, S. E. & Zamponi, G. W. Fast inactivation of voltage-dependent calcium channels. A hinged-lid mechanism? *J Biol Chem* **275**, 24575-82 (2000).

- 15. Cens, T., Restituito, S., Galas, S. & Charnet, P. Voltage and calcium use the same molecular determinants to inactivate calcium channels. *J Biol Chem* **274**, 5483-90 (1999).
- 16. Bernatchez, G., Berrou, L., Benakezouh, Z., Ducay, J. & Parent, L. Role of Repeat I in the fast inactivation kinetics of the Ca(V)2.3 channel. *Biochim Biophys Acta* **1514**, 217-29 (2001).
- 17. Erickson, M. G., Liang, H., Mori, M. X. & Yue, D. T. FRET two-hybrid mapping reveals function and location of L-type Ca2+ channel CaM preassociation. *Neuron* **39**, 97-107 (2003).
- 18. Liang, H. et al. Unified mechanisms of Ca2+ regulation across the Ca2+ channel family. *Neuron* **39**, 951-60 (2003).
- 19. DeMaria, C. D., Soong, T. W., Alseikhan, B. A., Alvania, R. S. & Yue, D. T. Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. *Nature* **411**, 484-9 (2001).
- 20. Lee, A. et al. Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. *Nature* **399**, 155-9 (1999).
- 21. Peterson, B. Z., DeMaria, C. D., Adelman, J. P. & Yue, D. T. Calmodulin is the Ca2+ sensor for Ca2+ -dependent inactivation of L-type calcium channels. *Neuron* **22**, 549-58 (1999).
- 22. Qin, N., Olcese, R., Bransby, M., Lin, T. & Birnbaumer, L. Ca2+-induced inhibition of the cardiac Ca2+ channel depends on calmodulin. *Proc Natl Acad Sci U S A* **96**, 2435-8 (1999).
- 23. Zuhlke, R. D. & Reuter, H. Ca2+-sensitive inactivation of L-type Ca2+ channels depends on multiple cytoplasmic amino acid sequences of the alpha1C subunit. *Proc Natl Acad Sci U S A* **95**, 3287-94 (1998).
- 24. Zhou, J. et al. Feedback inhibition of Ca2+ channels by Ca2+ depends on a short sequence of the C terminus that does not include the Ca2+ -binding function of a motif with similarity to Ca2+ -binding domains. *Proc Natl Acad Sci U S A* **94**, 2301-5 (1997).
- 25. Zuhlke, R. D., Pitt, G. S., Deisseroth, K., Tsien, R. W. & Reuter, H. Calmodulin supports both inactivation and facilitation of L-type calcium channels. *Nature* **399**, 159-62 (1999).
- 26. Romanin, C. et al. Ca(2+) sensors of L-type Ca(2+) channel. *FEBS Lett* **487**, 301-6 (2000).
- 27. Pate, P. et al. Determinants for calmodulin binding on voltage-dependent Ca2+ channels. *J Biol Chem* **275**, 39786-92 (2000).
- 28. Pitt, G. S. et al. Molecular basis of calmodulin tethering and Ca2+-dependent inactivation of L-type Ca2+ channels. *J Biol Chem* **276**, 30794-802 (2001).

- 29. Halling, D. B., Aracena-Parks, P. & Hamilton, S. L. Regulation of voltage-gated Ca2+ channels by calmodulin. *Sci STKE* **2005**, re15 (2005).
- 30. Kim, J., Ghosh, S., Nunziato, D. A. & Pitt, G. S. Identification of the components controlling inactivation of voltage-gated Ca2+ channels. *Neuron* **41**, 745-54 (2004).
- 31. Chin, D. & Means, A. R. Calmodulin: a prototypical calcium sensor. *Trends Cell Biol* **10**, 322-8 (2000).
- 32. Morgans, C. W. Localization of the alpha(1F) calcium channel subunit in the rat retina. *Invest Ophthalmol Vis Sci* **42**, 2414-8 (2001).
- 33. Xu, H. P., Zhao, J. W. & Yang, X. L. Expression of voltage-dependent calcium channel subunits in the rat retina. *Neurosci Lett* **329**, 297-300 (2002).
- 34. Bech-Hansen, N. T. et al. Loss-of-function mutations in a calcium-channel alpha1subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. *Nat Genet* **19**, 264-7 (1998).
- 35. Strom, T. M. et al. An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. *Nat Genet* **19**, 260-3 (1998).
- 36. Wilkinson, M. F. & Barnes, S. The dihydropyridine-sensitive calcium channel subtype in cone photoreceptors. *J Gen Physiol* **107**, 621-30 (1996).
- 37. Rieke, F. & Schwartz, E. A. A cGMP-gated current can control exocytosis at cone synapses. *Neuron* **13**, 863-73 (1994).
- 38. Schmitz, Y. & Witkovsky, P. Dependence of photoreceptor glutamate release on a dihydropyridine-sensitive calcium channel. *Neuroscience* **78**, 1209-16 (1997).
- 39. Protti, D. A. & Llano, I. Calcium currents and calcium signaling in rod bipolar cells of rat retinal slices. *J Neurosci* 18, 3715-24 (1998).
- 40. Taylor, W. R. & Morgans, C. Localization and properties of voltage-gated calcium channels in cone photoreceptors of Tupaia belangeri. *Vis Neurosci* **15**, 541-52 (1998).
- 41. Yagi, T. & Macleish, P. R. Ionic conductances of monkey solitary cone inner segments. *J Neurophysiol* **71**, 656-65 (1994).
- 42. Mansergh, F. et al. Mutation of the calcium channel gene Cacna1f disrupts calcium signaling, synaptic transmission and cellular organization in mouse retina. *Hum Mol Genet* 14, 3035-46 (2005).
- 43. Wutz, K. et al. Thirty distinct CACNA1F mutations in 33 families with incomplete type of XLCSNB and Cacna1f expression profiling in mouse retina. *Eur J Hum Genet* **10**, 449-56 (2002).

- 44. Boycott, K. M. et al. A summary of 20 CACNA1F mutations identified in 36 families with incomplete X-linked congenital stationary night blindness, and characterization of splice variants. *Hum Genet* **108**, 91-7 (2001).
- 45. Ball, S. L. et al. Role of the beta(2) subunit of voltage-dependent calcium channels in the retinal outer plexiform layer. *Invest Ophthalmol Vis Sci* **43**, 1595-603 (2002).
- 46. Baumann, L., Gerstner, A., Zong, X., Biel, M. & Wahl-Schott, C. Functional characterization of the L-type Ca2+ channel Cav1.4alpha1 from mouse retina. *Invest Ophthalmol Vis Sci* **45**, 708-13 (2004).
- 47. Biel, M. et al. Primary structure and functional expression of a high voltage-activated calcium channel from rabbit lung. *FEBS Lett* **269**, 409-12 (1990).
- 48. Xia, X. M. et al. Mechanism of calcium gating in small-conductance calciumactivated potassium channels. *Nature* **395**, 503-7 (1998).
- 49. Hullin, R. et al. Calcium channel beta subunit heterogeneity: functional expression of cloned cDNA from heart, aorta and brain. *Embo J* **11**, 885-90 (1992).
- 50. Ellis, S. B. et al. Sequence and expression of mRNAs encoding the alpha 1 and alpha 2 subunits of a DHP-sensitive calcium channel. *Science* **241**, 1661-4 (1988).
- 51. Kozak, M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. *J Biol Chem* **266**, 19867-70 (1991).
- 52. Birnboim, H. C. & Doly, J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. *Nucleic Acids Res* 7, 1513-23 (1979).
- 53. Graham, F. L., Smiley, J., Russell, W. C. & Nairn, R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. *J Gen Virol* **36**, 59-74 (1977).
- 54. Graham, F. L. & van der Eb, A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. *Virology* **52**, 456-67 (1973).
- 55. Ishiura, M. et al. Phage particle-mediated gene transfer to cultured mammalian cells. *Mol Cell Biol* **2**, 607-16 (1982).
- 56. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal Biochem* **72**, 248-54 (1976).
- 57. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* **227**, 680-5 (1970).
- 58. Mori, M. X., Erickson, M. G. & Yue, D. T. Functional stoichiometry and local enrichment of calmodulin interacting with Ca2+ channels. *Science* **304**, 432-5 (2004).

- 59. Naylor, M. J., Rancourt, D. E. & Bech-Hansen, N. T. Isolation and characterization of a calcium channel gene, Cacna1f, the murine orthologue of the gene for incomplete X-linked congenital stationary night blindness. *Genomics* **66**, 324-7 (2000).
- 60. Berjukow, S. et al. Endogenous calcium channels in human embryonic kidney (HEK293) cells. *Br J Pharmacol* **118**, 748-54 (1996).
- 61. Budde, T., Meuth, S. & Pape, H. C. Calcium-dependent inactivation of neuronal calcium channels. *Nat Rev Neurosci* **3**, 873-83 (2002).
- 62. Glossmann, H., Linn, T., Rombusch, M. & Ferry, D. R. Temperature-dependent regulation of d-cis-[3H]diltiazem binding to Ca2+ channels by 1,4-dihydropyridine channel agonists and antagonists. *FEBS Lett* **160**, 226-32 (1983).
- 63. Namkung, Y. et al. Targeted disruption of the Ca2+ channel beta3 subunit reduces Nand L-type Ca2+ channel activity and alters the voltage-dependent activation of P/Qtype Ca2+ channels in neurons. *Proc Natl Acad Sci U S A* **95**, 12010-5 (1998).
- 64. Burgess, D. L., Jones, J. M., Meisler, M. H. & Noebels, J. L. Mutation of the Ca2+ channel beta subunit gene Cchb4 is associated with ataxia and seizures in the lethargic (lh) mouse. *Cell* **88**, 385-92 (1997).
- 65. Koschak, A. et al. Cav1.4alpha1 subunits can form slowly inactivating dihydropyridine-sensitive L-type Ca2+ channels lacking Ca2+-dependent inactivation. *J Neurosci* 23, 6041-9 (2003).
- 66. McRory, J. E. et al. The CACNA1F gene encodes an L-type calcium channel with unique biophysical properties and tissue distribution. *J Neurosci* **24**, 1707-18 (2004).
- 67. Striessnig, J. et al. Structural basis of drug binding to L Ca2+ channels. *Trends Pharmacol Sci* **19**, 108-15 (1998).
- 68. Xu, M., Welling, A., Paparisto, S., Hofmann, F. & Klugbauer, N. Enhanced expression of L-type Cav1.3 calcium channels in murine embryonic hearts from Cav1.2 deficient mice. *J Biol Chem* (2003).
- 69. Kokubun, S., Prod'hom, B., Becker, C., Porzig, H. & Reuter, H. Studies on Ca channels in intact cardiac cells: voltage-dependent effects and cooperative interactions of dihydropyridine enantiomers. *Mol Pharmacol* **30**, 571-84 (1986).
- Kamp, T. J., Sanguinetti, M. C. & Miller, R. J. Voltage- and use-dependent modulation of cardiac calcium channels by the dihydropyridine (+)-202-791. *Circ Res* 64, 338-51 (1989).
- 71. Bohle, T. The effect of the benzothiazepine diltiazem on force and Ca2+ current in isolated frog skeletal muscle fibres. *J Physiol* **445**, 303-18 (1992).
- 72. Hockerman, G. H., Dilmac, N., Scheuer, T. & Catterall, W. A. Molecular determinants of diltiazem block in domains IIIS6 and IVS6 of L-type Ca(2+) channels. *Mol Pharmacol* 58, 1264-70 (2000).

- 73. Kaupp, U. B. & Seifert, R. Cyclic nucleotide-gated ion channels. *Physiol Rev* 82, 769-824 (2002).
- 74. Finn, J. T., Grunwald, M. E. & Yau, K. W. Cyclic nucleotide-gated ion channels: an extended family with diverse functions. *Annu Rev Physiol* **58**, 395-426 (1996).
- 75. Rost, B. & Sander, C. Prediction of protein secondary structure at better than 70% accuracy. *J Mol Biol* **232**, 584-99 (1993).
- Kourennyi, D. E. & Barnes, S. Depolarization-induced calcium channel facilitation in rod photoreceptors is independent of G proteins and phosphorylation. *J Neurophysiol* 84, 133-8 (2000).
- 77. von Gersdorff, H. & Matthews, G. Calcium-dependent inactivation of calcium current in synaptic terminals of retinal bipolar neurons. *J Neurosci* **16**, 115-22 (1996).
- 78. Berntson, A., Taylor, W. R. & Morgans, C. W. Molecular identity, synaptic localization, and physiology of calcium channels in retinal bipolar cells. *J Neurosci Res* **71**, 146-51 (2003).
- 79. Tachibana, M., Okada, T., Arimura, T., Kobayashi, K. & Piccolino, M. Dihydropyridine-sensitive calcium current mediates neurotransmitter release from bipolar cells of the goldfish retina. *J Neurosci* **13**, 2898-909 (1993).

8 **PUBLICATIONS**

Much B, Wahl-Schott C, Zong X, Schneider A, <u>Baumann L</u>, Moosmang S, Ludwig A, Biel M. Role of subunit heteromerization and N-linked glycosylation in the formation of functional hyperpolarization-activated cyclic nucleotide-gated channels. J Biol Chem. 2003 Oct 31;278(44):43781-6.

<u>Baumann L</u>, Gerstner A, Zong X, Biel M, Wahl-Schott C. Functional characterization of the L-type Ca2+ channel Cav1.4alpha1 from mouse retina. Invest Ophthalmol Vis Sci. 2004 Feb;45(2):708-13.

Wahl-Schott C, <u>Baumann L</u>, Zong X, Biel M. An arginine residue in the pore region is a key determinant of chloride dependence in cardiac pacemaker channels. J Biol Chem. 2005 Apr 8;280(14):13694-700.

Zong X, Eckert C, Yuan H, Wahl-Schott C, Abicht H, Fang L, Li R, Mistrik P, Gerstner A, Much B, <u>Baumann L</u>, Michalakis S, Zeng R, Chen Z, Biel M. A novel mechanism of modulation of hyperpolarization-activated cyclic nucleotide-gated channels by Src kinase. J Biol Chem. 2005 Oct 7;280(40):34224-32.

Wahl-Schott C*, <u>Baumann L*</u>, Cuny H, Eckert C, Biel M. Switching off calcium dependent inactivation in L-type calcium channels by an autoinhibitory domain. Manuscript submitted.
9 ACKNOWLEDGEMENTS

Bei Herrn Prof. Dr. Martin Biel bedanke ich mich herzlich für die Aufnahme in seine Arbeitsgruppe, die Betreuung der Arbeit und die stets offene Tür für Probleme und Fragen.

Mein Dank gilt außerdem Herrn Prof. Dr. Alexander Pfeifer für die Übernahme des Koreferats.

Herrn Dr. Christian Wahl-Schott danke ich für die Betreuung und die zahlreichen anregenden Diskussionen während meiner Arbeit. Besonders bedanken möchte ich mich für die fundierte Einarbeitung in die Elektrophysiologie. Gerade am Anfang meiner Arbeit wäre ein Vorankommen ohne seine Hilfe viel schwieriger gewesen.

In diesem Zusammenhang danke ich auch Herrn PD Dr. Xiangang Zong für zahlreiche anregende Diskussionen während meiner Arbeit.

Mein besonderer Dank geht an Hartmut Cuny, Melanie Gebhard und vor allem auch an Christian Eckert. Sie haben mich im Labor immer tatkräftig unterstützt. Ohne sie hätte die Arbeit wohl etwas länger gedauert.

Für die gewissenhafte Durchsicht der Arbeit bedanke ich mich ganz herzlich bei Heidi und Christian.

Für den meist sehr angenehmen und häufig lustigen Laboralltag danke ich sämtlichen Mitgliedern unseres Arbeitskreises sehr herzlich. Ich bedanke mich an dieser Stelle auch für die eine oder andere mehr oder weniger feucht-fröhliche Feierabendrunde.

10 CURRICULUM VITAE

Persönliche Daten:

Name: Anschrift:	Ludwig Alois Baumann Jakob-Klar-Str. 10 80796 München
Geburtsdatum, -ort: Staatsangehörigkeit:	25. September 1975, Eichendorf deutsch
Schule, Zivildienst, Studium:	
09/86 – 05/95	Schulausbildung Gymnasium Landau an der Isar Naturwissenschaftlicher Zweig
08/95 – 08/96	Zivildienst
11/96 – 03/01	Studium der Pharmazie Universität Regensburg
08/98	1. Staatsexamen
03/01	2. Staatsexamen
Praktische Ausbildung:	
05/01 – 10/01	Arcis Apotheke, München
11/01 – 04/02	Apotheke des Berzirkskrankenhauses Haar
11/01 – 04/02 06/02	Apotheke des Berzirkskrankenhauses Haar 3. Staatsexamen
11/01 – 04/02 06/02 02/03	Apotheke des Berzirkskrankenhauses Haar 3. Staatsexamen Erteilung der Approbation als Apotheker der Bayerischen Landesapothekerkammer (BLAK)
11/01 – 04/02 06/02 02/03 Beruflicher Werdegang:	Apotheke des Berzirkskrankenhauses Haar 3. Staatsexamen Erteilung der Approbation als Apotheker der Bayerischen Landesapothekerkammer (BLAK)