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Abstract

Supersymmetry, which is the only non-trivial Z; extension of the Poincaré
algebra, can be generalized to fractional supersymmetry, when the space time is
smaller than 3. Since symmetries play an important role in physics; the principal
task of quantum groups consist in extanding these standard symmetries to the
deformed ones, which might be used in physics as well. This two aspects will be
the main focus of this thesis. In this work, we discuss the matrix formulation
of fractional supersymmetry, the g-deformation of KdV hierarchy systems and
noncommutative geometry.

In the first part fractional supersymmetry generated by more than one
charge operator and those which can be described as a matrix model are stud-
ied. Using parafermionic field-theoretical methods, the fundamentals of two-
dimensional fractional supersymmetry Q¥ = P are set up. Known difficulties
induced by methods based on the U,(sl(2)) quantum group representations and
noncommutative geometry are avoided in the parafermionic approach. Moreover,
we find that fractional supersymmetric algebras are naturally realized as matrix
models. The k = 3 case is studied in detail.

In the second part we will study the q-deformed algebra and the g-analogues
of the generalised KdV hierarchy. We construct in this part the algebra of -
deformed pseudo-differential operators, shown to be an essential step toward set-
ting up a g-deformed integrability program. In fact, using the results of this
g-deformed algebra, we derive the g-analogues of the generalised KdV hierarchy.
We focus in particular on the first leading orders of this q-deformed hierarchy,
namely the q-KdV and g-Boussinesq integrable systems. We also present the
g-generalisation of the conformal transformations of the currents w,, n > 2, and
discuss the primary condition of the fields w,, n > 2, by using the Volterra gauge
group transformations for the g-covariant Lax operators.

In the last part we will discuss quantum groups and noncommutative space.
All studies in this part are based on the idea of replacing the ordinary coordi-
nates with non commuting operators. We will also formulate some aspects of
noncommutative geometry mathematically and we will be mainly concerned with
quantum algebra and quantum spaces.
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Chapter 1

Introduction

Supersymmetry has been a popular and fruitful area of research for at least twenty
years. It is a symmetry between bosons and fermions [1], [2], where the fermions
pick up a minus sign (or a phase factor €™) each time two of them commute.
Study of supersymmetry in space time of one dimension, time, has given rise to
the important topic of supersymmetric quantum mechanics [3], [4]. The most
primitive version of supersymmetric quantum mechanics is one that uses a single
real Grassmann number f such that:

0 =
0> = 0. (1.1)

As a results the theory possesses a natural Z;-grading and a single generator )
of its supersymmetry transformations which obeys:

Q* = —0,. (1.2)

The distinctive features of supersymmetric theories which possesses such a Z,-
grading can be seen by reference to various works [5], [6].

Recently, two methods of generalizing ordinary supersymmetry have received con-
siderable attention. The generalization to parasupersymmetry [7], [8] involves the
replacement of the usual bilinear supersymmetry algebra with a trilinear algebra
in analogy to the way in which the ordinary bosonic and fermionic algebras are
generalized to those associated with parabosons and parafermions [9], [10]. Such
generalizations involve the introduction of a parasuperfield and parasuperspace,
and the natural variables to use in working with these are the paragrassmann
variables. On the other hand, the second is the generalization to what is known
as fractional supersymmetry [11], [12], which seeks to replace the Z,-grading as-
sociated with the supersymmetric algebra with a 7Z,-graded algebra in such a way
that the fractional supersymmetry transformations mix elements of all degrees.
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This involves the introduction of fractional superfields and fractional superspace.
This term fractional supersymmetry is currently being applied to a class of gen-
eralisation of supersymmetry in one dimension. The work on fractional super-
symmetry can be presented most straightforwardly by creating theories with Z,,-
grading by generalisation of theories with Z; grading. Thus one considers theories
involving a single real generalised Grassmann number § which obeys:

6 = 0
o = 0, n=234,... |, (1.3)

in which the generator () of the generalised fractional supersymmetry transfor-
mations that leave such a theory invariant obeys:

Q" = -0 (1.4)

The last results accounts loosly for the use of the term fractional as an identifier
of the theory.

The generalisation from ordinary to fractional supersymmetry not only has in-
trinsic interest but may also be expected to produce interesting new models in
classical and quantum mechanics. Indeed, there have been a large number of
studies of fractional supersymmetry [13], Some of these deal with a complex
Grassmann variable 8 obeying equation (1.3). Others employ N different copies
of § which satisfy eq(1.1), thus developing N-extended fractional supersymmetry.
Fractional supersymmetry is then contrasted below with a distinct class of gen-
eralisations of basic, or 7, -graded, supersymmetry, those which possess parasu-
persymmetry. There has been a great deal of attention given recently to work in
this field [14], [15], and often these studies contain thoughts relevant also to frac-
tional supersymmetry. We believe that the whole area promises both activity and
progress in the feature. Two areas need attention: One concerns differentiation
with respect to ; the other is the situation surrounding families of multiplicative
rules of the type:

e = ¢ '0c
qg = exp(im/n), (1.5)

involving a Grassmann number 8, its associated transformation parameter € and
dynamical variables of Grassmann type.

Fractional supersymmetry which aims at a generalisation of supersymmetry, has
been investigated in dimensions one and two. In one dimensional spaces, where
no rotation is available, this symmetry is generated by one generator which can
be seen as the F™" root of the time translation (Q;)" = ;. F = 2 corresponds
to the usual supersymmetry. A group theoretical justification was then given in
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[16], [17] and this symmetry was applied in the world-line formalism [17]. The sec-
ond particuliar cases, are the two-dimensional spaces where, by use of conformal
transformations, the antiholomorphic part of the fields transforms independently
[18]. In this case the fractional supersymmetric algebra is extended by two @,
and @)z generators satisfying: (Qz)F = 0, and (Q;)F = 0s.

Fractional supersymmetry and quantum groups are emerged on one hand as a
symmetric generalisation of groups of some integrable systems and as an alge-
braic structure associated to noncommutative geometry on the other hand. Just
as Lie groups and their associated homogenous spaces provided definitive exam-
ples of classical geometry even before Riemann formulated their intrinsic structure
as a theory of manifolds, so quantum groups and their associated quantum ho-
mogenous spaces, quantum planes etc., provide large classes of examples of proven
mathematical and physical worth and clear geometrical content on which to build
and develop noncommutative geometry. They are noncommutative spaces in the
sense that they have generators or coordinates like the noncommuting operators &
and p in quantum mechanics but with much richer and more geometric algebraic
structure than the Heisenberg algebra.

Noncommutative geometry is a relatively new field of mathematics which is now
becoming one of important tools, or rather ways of thinking, in many areas of
mathematics and theoretical physics. It takes roots in quantum mechanics and
representation theory. But the main motivations come from relatively recent
amazing developments in mathematical physics (quantum groups and related
quantized spaces) and from physics [19], [20].

Noncommutative geometry in simplest terms is the idea that space coordinate
(say, z and y) do not have to commute with each other. This means that:

ry —yx = [z,y] # 0. (1.6)

Since commutation relations are used in quantum mechanics to express uncer-
tainly, noncommuting coordinates were proposed to quantize space at small dis-
tances. Until recently, such proposals were not taken very seriously, since they
require an a priori violation of locality and Lorentz invariance. The idea of non-
commutative geometry was first put on a solid mathematical footing by Alain
Connes [21] in 1980, where it was applied to noncommutative tori.

If one uses Weyl-quantization then classical functions f and g are mapped to
noncommutative one f and g with the property that the product ff] is given by
a deformed product called star product(x) such that:

frg=f g+070:f9;9+ O(6?), (1.7)

where the noncommutativity is controlled by the deformation parameter %,
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The first part of this thesis will be devoted to study fractional supersymme-
try generated by more than one charge operator and which can be described as
a matrix model. Using conformal parafermionic field theoretical methods, we
have studied realisations of the fractional supersymmetric algebras extending the
usual 2D supersymmetries. We will find in this part of thesis that the well known
difficulties present in models based on U,(sl(2)) and non commutative geometry
representations are overpassed. One of the consequences of the new approach
is that instead of one gemerator ()_,,i, fractional supersymmetric algebras are
generated by many basic charge generators. The poliferation of the fractional
supersymmetric generators is the price one should pay in order to build a 2D
local fractional supersymmetric quantum field theory.

In chapter 2, we will first discuss fractional supersymmetry in one dimension
[22], [23], [24]. In this chapter we particularize the case k = 3. In the first step
we define, in analogy with the superspace, the fractional superspace as some kind
of coset space reobtaining all what has been done in the framework of fractional
supersymmetry [25], [26]. The second step is to construct a representation of the
fractional supersymmetric algebra acting on the field @, as well as a covariant
derivative to establish the fractional action S. Then we study the 2D- fractional
supersymmetry, this means that we extend the results already obtained in one
dimension to build the 2D fractional supersymmetric lagrangian, introducing an
adapted fractional superspace by help of generalized Grassmann variables and its
differential structure. In the third step, we will introduce the main lines of RATS
(the Rauch de Traubenberg-Slupinski algebra) analysis [27], [28]. Non-trivial ex-
tensions of the three dimensional Poincaré algebra, beyond the supersymmetric
one, are explicitly built. These algebraic structures are the natural three dimen-
sional generalisations of fractional supersymmetry of order k already considered
in one and two dimensions. Representations of these algebra are exhibited. It is
shown that these extensions generate symmetries which connect fractional spin
states or anyons.

In chapter 3, using parafermionic field theoretical methods, the fundamentals
of 2D fractional supersymetry QF = P are set up. Known difficulties induced by
methods based on the U,(s/(2)) quantum group representations and non commu-
tative geometry are overpassed in the parafermionic approach. Moreover we find
that fractional supersymmetric algebras are realized as a matrix model [29]. So
we start by studying the matrix realisation of 2D supersymmetry. We work out
the links between fractional supersymmetry and parafermions. Then we discuss
the matrix realisation of fractional supersymmetry. The case k = 3 is studied
in details. One of the consequences of the new approach is that instead of one
generator ()_y/x, fractional supersymmetric algebras are generated by many basic
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charge operators Q_,,z = 1/k,2/k,... [29], [30]. For K = 3 for example, the
2D(%,0) fractional supersymmetric algebra is generated by two main charge op-
erators ()_y /3 and ()_,/5 satisfying equations (3.32) and the ZD((%)Q, 0) fractional
supersymmetric algebra generated by two doublets Qfl/?) and Q:_t2/3 verifying
equations (3.34-35).

The results of the chapter 3 have already been published in [29] together with
E.H. Saidi and in [30] together with E.H. Saidi and A. El Rhalami. See also the
work [31] done again together with E.H. Saidi and A. El Rhalami.

The second part of this thesis will be devoted to the study of g-deformed al-
gebra and the g-analogues of the generalised KdV hierarchy. Motivated by the
relevance of both the generalised integrable KdV hierarchies and quantum de-
formations, we focus in this part of this thesis to present a systematic study of
bidimensional g-deformed non linear integrable models by building the algebra
of gq-deformed pseudo-differential operators, shown to be an essential step toward
setting up a g-deformed integrability program [32]. In fact, using the results of
this q-deformed algebra, we derive the g-analogues of the generalised KdV hier-
archy.

In chapter 4, we represent the algebra of g-deformed pseudo-differential oper-
ators. This provides the basic ingredients, which we need in the g-deformed
integrability study. We start in this chapter from the well known ¢-deformed
derivation law, 0z = 1 + ¢z0 [33], [34], and derive the q-analogue of the Leibnitz
rule for both local and non local differential operators. This result, which gives
naturally the algebra of q-deformed pseudo-differential operators, will provide a
way for generating a hierarchy of q-deformed Lax evolution equations.

In chapter 5, we will build up the g-analogue of the generalised KdV hierar-
chy. We will concentrate in particular on the first leading orders of this hierar-
chy, namely q-KdV and q-Boussinesq integrable systems. Then we present the
g-generalisation of the conformal transformations of the currents w,,n > 2 by
taking the two particular examples discussed previously, namely the ¢-KdV and
g-Boussinesq integrable models described respectively by La(u) and Ls(u). Hav-
ing given explicitly the conformal transformation of the currents wy and wusz of
conformal spin 2 and 3, we generalise these results to higher conformal spin cur-
rents u,(z), with n =2,3,....

In chapter 6, we will discuss the primary condition of the fields W,,,n > 2 by
using the Volterra gauge group transformations for the g-covariant Lax operators
which 1s associated to an orbit in which no anomalous terms appear. Our aim
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after is to make an appropriate choice on the Volterra parameters a; such that w;
become primary conformal currents satisfying the last conditions. In the classical
limit, the analytic field uy behaves as spin 2-field of 2D conformal field theory
which coincide with the wy current. Similarly in the deformed case; we will re-
quire for w, to be proportional to wu,.

In chapter 7, we will discuss the field theoritical models describing the self cou-
plings of the matter multiplets (0, (%)2, (%)2) and (0%, (%)4, (%)4) More precisely,
we will describe brefly the superfield theory of the matter couplings of (1, 1)

373

and ((%)2, (%)2) fractional superalgebras. We start first by describing the super-

field theory of the 2D(%, %), fractional supersymmetry equation already studied
in chapter 3, especially the matter coupling of the on shell scalar representation
(@, Wi1/3, Uig/3), using the formal analogy between equations (3.32) and those of
2D N =2 U(1) supersymmetry. After these results we will give the action S[®]
describing the dynamics and the couplings of the superfields ® which is similar
to that of 2D ((%)4,0) su(2) harmonic superspace. More generally the matter
couplings of the ((£)?,(3)?)su(2) fractional supersymmetry, extending equations
(7.4-5) by adjoining the analytic part, give us the action S by help of the har-
monic superspace formulation [35].

The end of this chapter, is devoted to the Toda field theory construction using the
results obtained in chapters 4,5 and 6. We will present here the su(n)-Toda (su(2)-
Liouville) field theory construction by building the g-analogue of the su(2)- Li-
ouville and su(n)- Toda conformal field theories.

All the results of the second part of this thesis have already been published in
[32] together with M.Hssaini, M. Kessabi, B. Maroufi and M.B. Sedra and in [29]

together with E.H. Saidi.

The last part of this thesis will be devoted to the discussion of quantum groups
and noncommutative space. All studies in this part are based on the idea of
replacing the ordinary coordinates with non commuting operators. We will also
formulate some aspects of noncommutative geometry mathematically and we will
be mainly concerned with quantum algebra and quantum spaces.

In chapter 8, we start by studying quantum planes and quantum groups and
their differentials calculus on the noncommutative space. We will give some dif-
ferential relations and as an example we will discuss the Manin plane. In the
second step, we will treat the star product of functions and as examples we will
take the three type of noncommutative structure namely:

e Canonical structure:

¥ =i0Y, 0¥ e C.
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e Lie algebra structure:
(2,27 =Mk NI e C
e Quantum space structure:
23 = g VR AR

We end this chapter by formulating gauge theory on noncommutative space. We
will see that this gauge theorie is based on the idea that multiplication of a field
by a coordinate or a function is not covariant only if that function does not com-
mute with gauge transformation. This can be resolved by adding an appropriate
noncommutative gauge potentials and thus introducing covariant coordinate in
analogy to the covariant derivative of ordinary gauge theory.






Chapter 2

Fractional supersymmetry in 1D

and 2D

The spin statistics theorem and the Haag, Lopuszanski and Sohnius no-go theo-
rem [36] tell us that supersymmetry is the most non trivial symmetry that one
can consider. If we are in a D < 3 dimensional space time one can find statistics
that are neither fermions nor bosons, but anyons [37] or particles which admit
fractional statistics.

In this chapter we will study fractional supersymmetry in one and two dimensions.
Following the way which leads from 1D supersymmetry to the Dirac equation ap-
plied in the context of fractional supersymmetry, we get a new equation acting on
states which are in the representation of the braid group. This equation can be
seen as an extension of the Dirac equation in the sense that the K-th power of the
field operator is equal to the Klein-Gordon one. In this chapter we particularize
the case k = 3.

In the first step we define, in analogy with the superspace, the fractional su-
perspace as some kind of coset space reobtaining all what has been done in the
framework of fractional supersymmetry. In the second step we construct explic-
itly the 1D and 2D fractional supersymmetric actions, introducing an adapted
fractional superspace by help of generalized Grassmann variables and its differ-
ential structure. Then we will introduce the main lines of RATS (the Rauch de
Traubenberg-Slupinski algebra) analysis.

2.1 1D-Fractional supersymmetry

Supersymmetry, which is the only non-trivial 7, extension of the Poincaré algebra
[38], can be generalized to fractional supersymmetry [39], when the space time is
smaller than 3. The fractional supersymmetric algebra, possesses a Z; structure
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whose basic fields will be of graduation 0...k — 1, generalizing the concept of
boson and Fermion. In this section we will consider only the case & = 3.
Fractional supersymmetry is generated by H, the hamiltonian or the generator
of time translation and (), the generator of the fractional supersymmetry trans-
formations. The algebra is given by:

Q. H] = 0
Q = —H, (2.1)

it is important to note that the algebra (2.1) is neither a Lie algebra nor a su-
peralgebra. To developp a field theory which is invariant under the fractional
transformation, we introduce a fractional superspace. The time ¢ is then ex-
tented to (,6) where 6 is a real generalized Grassmann variable, satisfying the

relation 62 = 0 [40].

2.1.1 Transformation of ¢t and ¢

In the usual superspace §* = 0, the point (¢,6) is parametrized by:
exp(tH + 0Q). (2.2)

Using the supersymmetric algebra:

[QaH] =0

and the definition of a supersymmetry transformation with parameter e, we get
the transformation law:

ez‘p(t’H + HIQ) = exp(eQ)exp(tH 4 0Q)
= exp[(t+1ed)H + (6 + €)Q]. (2.4)

Let now @) the generator of fractional supersymmetry satisfying the condition:
Q° = —H, (2.5)

and define a point in the fractional superspace (¢,6), with (6° = 0) by its
parametrization:

expy,(tH +0Q) = exp, (tH)exp, (0Q)
— copltH e, (0Q) (2.6
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where exp,, is the graded exponential and ¢ is a primitive cubic root of unity
that we can take equal to exp(2i7/3) and:

expga(z) = Z {5—; ; (2.7)

where:
{n}y ={ntdn—1}.... {1},
is the g-factorial.
1 — qak
1 —q®

{k}a =
pIL
=)
This series exactly stops with its (n — 1)-th power because §” = 0, in the general
case. For n = 2 we have only two terms and in this case the usual exponential
coincides exactly with the ¢(= —1)-exponential. Going back to n = 3 we get:

eop,(0Q) = 1+ 0Q — q(0Q)* (2.8)

is the g-number, with ¢ = exp(

Introducing e the real parameter of the fractional supersymmetry (¢* = 0), and
using the following commutation relations:

Q0 = ¢°0Q
Qe = ¢'cQ, (2.9)

we get the fractional supersymmetry transformation in the superspace:

e.rp(tlﬂ)empq(alQ) = exp,(eQ)exp(tH)exp,(6Q)
— capl(t +q(c0+ ) Hlezp, (04 0Q). (210

From this transformations we obtain:

’

= t—l—q(620+692)
0§ = 0+e (2.11)

The parameter of the fractional supersymmetry transformation e verifying ¢ = 0
satisfies the following commutation law:

fe = qgeb,

this commutation relation between the two variables € and § has the following
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consequences:
o It ensures that if ¢ = 6% = 0 then (¢ + 6)® = 0 [41].

e The time remains real after a fractional supersymmetry transformation.

e The fractional supersymmetry transformations commute with the covariant
derivatives.

e The fractional supersymmetry transformations e satisfy the Leibnitz rule [24].

2.1.2 Construction of the action in D =1

In this part we construct a representation of the fractional supersymmetric algebra
acting on @, as well as a covariant derivative to establish the action. We first need
to recall some basic features of the derivation acting on generalized Grassmann
variables @ (6° = 0). This Z; structure admits in general (k — 1) derivatives,
noted dy and &y in the case of k = 3 and which satisfy:

0 — g0y = 1
800 — ¢*05y = 1
9y = 0 (2.12)
5 = 0
090y = ¢*840,.

In the general case this two derivatives act as:

0(0") = (M4+q+q*+...+¢H0 + 4509,

§o(0F) = (14+q+G+...+3 10" + 34056, (2.13)
where g = ¢71.
Let us consider the two basic objects () and D, which represent respectively the
fractional supersymmetry generator and the covariant derivative [24], [25], [42]:

Q = 0+ qb°0
D = 6§ +q¢°0°0,. (2.14)

Using the equations (2.14) and (2.5), we can check explicitly that:
D?=Q°=-0,=—H. (2.15)

There is an other method to verify that Q® = —d; using the matrix representation
of 0y and &g as follows:
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0 0 0
0l = 1 0 0}, (2.16)
10
from this two matrices we find that:
-0 0 0
QS = 0 —875 0
0 0 -0
1 0 0
0 0 1
which implies the relation:
Q° = —0,. (2.18)
The two representations D and @) satisfy the commutation law given by:
QD = ¢*DQ. (2.19)

We consider now a real fractional superfield ® belonging to the fractional super-
space. The Taylor expansion of ®(¢,0) gives:

B(t,0) = x(t) + ¢°0U,(t) + ¢°0° W, (1), (2.20)

where (1), Wy (1), U,(t) are three real fields respectively of grade 0,1, 2 such that
U? = U5 = 0 and are submitted to the commutation relations:

0x = x0
9\111 = q\Ille
00, = ¢*Uy0 (2.21)

\pijl = q\Tllleg.

It should be stressed that these relations are the only ones which are arbitrary,
all the other follow naturally [17]. Tt is easy to obtain the transformations on
the fractional superfield induced by fractional supersymmetry transformations

O(t,0) — q)(t’,ﬁl) as folows:

B(1,0) — (1 ,0) = (1) + @0 Ts(t) + 07T, (1), (2.22)
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Inserting the values of ¢ and #" obtained previously in equation (2.11), we get the
transformed fields:

O(1,0') = () + €Ty(t) + ¢*E Uy (1) 4+ *0(Vy(1) + ei(t) — qeWy (1)) +
q292(\111(t) + ex(t) — ch\Ilg(t)). (2.23)

We obtain then the fractional supersymmetry transformations of the fields x(t),

Uy (t) and Wy(t) :

dex = eV,
56\112 = —qﬁqll (224)
(56\111 = G.i.

A direct caleulation proves on one hand:
B(t0) = epp(cQ)B(1,0),
and on the other hand that:
5.0 = cQb(1,0).
Using the relation (2.19), we get:
5.D% = D6,0. (2.25)

Finally arguing that the 6% component of ® transforms like a total derivative,
we can take the opportunity to construct the action by taking the #* part of
the action built in the fractional superspace. In other words, using the results
on integration upon generalized Grassmann variables, which is interpreted as a
derivation of order (k — 1) over 6 as [43]:

/d& = (%)’“-1, (2.26)

we construct the fractional real action in one dimension:

q’ :
S = —E/dthCI)DCD
j}.Z q2 . q .

This action represent the fractional supersymmetry action in one dimension. In
the next section we will extend this results found in one dimension to construct
an action in the case of fractional supersymmetry in two dimensions.
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2.2 2D- Fractional supersymmetry

In this section, we study the fractional supersymmetry in two dimensions. We con-
struct explicitly the 2D fractional supersymmetry action, introducing an adapted
fractional superspace by help of generalized Grassmann variables and its differ-
ential structure.

We want to extend all those results of fractional supersymmetry in one dimension
to build an action in the complex plane.

Let 0 and 8 two generalized Grassmann variables satisfying the following commu-

tation law:
0 = 0,
> =0 (2.28)
00 = q09.

It is clear that if §# = 6%, the equation (2.28) is not satisfied. In fact, if we take
62 instead of f in this equation, the complex conjugation lead to a contradiction
(¢* = 1). To solve this problem, we will proceed like in heterotic string [44],
where z and z are extended differently z — (z,6) and z remains unaffected. We
associate to z and z two real generalized Grassmann variables 07, and 0y acting
respectively from the right and left.

Consedering the generalized Grassmann variables §; and 63 and their two deriva-
tives ¢4 and &1 and 0y and &y respectively; let:

0, = 0
02 — HR
& = o (2.29)
82 - 83.
From :
GLHR = qGRHL, (230)

the consistency of the algebra leads to the following relations:

01;03 = qaRaL
OLHR = QQQRaL (2.31)
03(9]; = qaLaR.

In general case and in presence of k variables 6; (i runing from 1 to k), we have:

92'9]' = qgjgi, 1 < 7. (2.32)
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From which we get:
8@- = qajaz', 1 < ]

&-Hj q_lejai, 1< (233)
@-02- q&iaj, 1 < ]

Returning to our heterotic extension of the complex plane, we can define an
automorphism of the algebra exchanging (z,6;,) and (z,0g). The algebra defined
in relations (2.33) is neither stable under complex conjugation (), nor under the
permutation o of variables . However it is stable under the composition of both
(x00):

(AB)*O(T — A*OJB*OU. (234)

Under this automorphism, (z,0y, 0y, d;,) is mapped onto (z,0g, 0, 0r) and vice-
versa. Remark that (00%)* = 0§, where 0 acts from the right and 6 from the left
and where 0* = ¢ et 0* = 6.

If we set:

Dy, = 6, + %070,
Q1 = 0+ qb70., (2.35)

where D and @) are respectively the covariant derivative and the fractional
supersymmetry generator, associated to z and acting from the left. Using the
equation (2.35), we prove that:

D} = Q% =—4.. (2.36)

Under the (% o ), conjugation, we obtain the covariant derivative and the frac-
tional supersymmetry generator of the z modes

DR = aR+q9]2%a§
Qr = Or+¢*0%0-. (2.37)

A direct calculation gives:

where Dg and Qg act from the right. The two representations Dy, and @), satisfy
the commutation relation:

QD1 = ¢*D1.Qr. (2.39)
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Remark that the equations (2.36) and (2.38) are the same case as this discussed
in one dimension. The relation of commutation between Qg and Dg acting from
right can be written in the form:

QrDr = qDrQrR. (2.40)

Introduce the fractional superfield,
®(2,01,2,0R) = X(2,2) + ¢°0,Va0(2,2) + ¢*01 U 10(2, 2)
+¢*0rW0s(2,2) + 01.0rY (2, 2) + ¢°070rV12(2, 2) +
QQO%\II(H(Z, 2) + QQOLH%\IIQl(Z, 2) + 0%912%@11(2, 2) (241)
The components W, with X = Wy, are of grade (a + b) and satisfy the commu-
tation relations,
00 = ¢"T*U.,0r
ngab = qa+bwabaR. (242)
Let ¢7, and €eg, the parameters of the fractional supersymmetry transformations.
Using the structure of the algebra for the left and right sectors (Qr, Dy, = ¢*DrQr,
et QrDr = ¢DrQR), the fact that the covariant derivative has to commute with

the fractional supersymmetry transformations and the (¥ o o) automorphism, we
get the following commutation relations:

€LER — ({CREL
etfr = qbper,
b, = ¢*Orer (2.43)
erfr, = q°Oren
erfr = qOger.

Then the fractional supersymmetry transformations of the field ® are in the form:
6P = er.Qr® + PQrer, (2.44)
using this results we find:

06X = ¢PeWao+ qUoser

0 W = —qerVig+ ¢"Upgep

Wi = €10.X + Wygep

d0Woy = q2€L\I’22 - QQ\I’mﬁR

S Uy = Py +0:Xer (2.45)
0Va = —qerVia — Uyiep

50Uy = €,0.9g + ¢°0:V10en
0Viy = €0.Vpy — qViier
0.V = —qerWyy + q0:Wa0en.
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With similar arguments as those used in 1D, and with Dy, (Dg) acting from the
left (right), we build the 2D action S. This action is given by the formula [45]:

S = q/dZdEdQRdgL[DL(I)(Z,QL,2,9R>(I)(Z,9L,5,9R)DR]

83

= /dzdz[azX(z,z)azX(z,z) — q0,Vos(2,2) W (2,

(
+q28zq’01(2'a 2)Wos(2,2) + qVg0(2, 2)0: W 1o(
—q2\1110(z, 5)82\1’20(2, 5) - q\I/H(Z, 5>\I’22(
—qquQQ(Z, 2)@11(2, 2) + \1112(2, 2)\1;21(2, z
+\I;2'| (Z, 2)@]2(2, z ]

]

z

(2.46)

b

S

2y

)
)
)
)

Note that This action S is a grade null number. If we choose ¥, = ¥, and also
with the appropriate choice of the power of ¢, in the definition of ®, we ensure
that the lagrangian is real. Solving the equations of motion, we see that:

e X has a holomorphic and an antiholomorphic part.

e Uy and Wy are holomorphic.

e Uy, and Wy, are antiholomorphic.

o Uy, Uy, Uy and Uy, are auxilliary fields that vanish on-shell.

2.3 RdTS Fractional supersymmetry

A non trivial generalisation of the (1+2) dimensional Poincaré algebra going
beyond the standard supersymmetric extension has been obtained in [46]. In
addition to the usual Poincaré generators, this extension refered herebelow to as
the Rauch de Traubenberg-Slupinski algebra (RATS algebra for short), involves
two kinds of conserved charges Q% transforming as so(1,2) Verma modules of
spin s = :I:%, k > 2. This consruction is interesting first because it goes beyond
standard 2D-fractional supersymmetry based on considering k-th roots of the
s0(2) vector and second because it gives a new algebraic structure which a priori
is valid for higher rank Lie algebra g where so(2) and so(1,2) appear just as two
special examples. In one-dimensional spaces, where no rotation is available, the
fractional supersymmetry is generated by one generator which can be seen as the
k™ root of the time translation (Q)* = d;. The case k = 2 corresponds to the
usual supersymmetry. In two-dimensional spaces, the fractional supersymmetric
algebra was extended by two generators satisfying (Q.)* = 9. and (Q:)* = 9..
In this section, we will study the case of (1 + 2) dimensions which have also
arbitrary spin and statistics where its particles are called anyons. In fact, studying
the representations of the (1+2)D- Poincaré algebra P ; the unitary irreducible
representations divide into two classes: massive and massless.
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In this section we will build the non-trivial extensions of the Poincaré algebra P; 5
which contains the fractional supersymmetry then we will give the representations
of the RATS fractional supersymmetry.

2.3.1 RdATS Fractional supersymmetry

To start consider the Poincaré symmetry in (1+42) dimensions generated by the
space time translations P, and the Lorentz rotations J, satisfying altogether the
following closed commutations:

[P*,PP] = 0
[J*, PPl = in°"nPle,s, P" (2.47)
[JQ,JB] = 77(”77556“/5an-

In this equations, n°# = diag(1,—1,—1) is the (1+2) Minkowski metric and €3
is the completly antisymmetric Levi-Civita tensor such that ey = 1.

Particles are then classified according to the values of the Casimir operators of
the Poincaré algebra. This means for a mass m particle of positive or negative
energy, the unitary irreducible representations are obtained by studying the little
group leaving the momentum P* = (m,0,0) invariant. The stability group in

SO(1,2) is the abelian sub-group SO(2) generated by J° (J1 = 0). One of the
remarkable property is that the transformation J° — J° + s leaves the SO(2)
part invariant.This property of SO(1,2) shows that the translation of J* which is
given by J* — J' + splm, leaves the algebraic structure eq(2.47) unchanged.

POt
J,? = J'+5
1
1 1 sp
no= e (2.45)
2
2 12 sp
L]s - J +p0+m7
with p p
o_ 1 9 9 0
JP=1(p 7 8p1>
0 0
JU = (2 0
i(p 0 ap2)
0 0
2 09 40
J - Z(p apl p apo)v

where p®, o = 0,1,2, are the eigenvalues of the operators P“.
The two Casimir operators of P; 5 are the two scalars P.P and P.J. When acting
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on highest weight states of mass m and spin s, The eigenvalues of these operators
are respectively m? and ms. The equations of motion are then:

(P*—m*)p = 0
(P.J—sm)y = 0. (2.49)
A convinient way to handle eqs (2.47) is to work with an equivalent formulation

using the following Cartan basis of generators P = P, £1P, and J; = J; £1.J,.
In this basis eqs (2.47) read as:

e J] = —2J

o Js] = +J

e, Ps] = +P (2.50)
[J+, Py] = [J-,P.]=0

[Jo, o] = [Py, P£] =0,

where the Casimir operators P? and P.J are given by:

1
P?= P} — (PP + P_Fy)

1
P.J = PoJo = 5(PrJ-+ P-J,).

For a given s, one distinguishes two classes of irreducible representations: massive
and massless representations. To build the so(1,2) massive representations, it is
convinient to go to the first frame where the momentum vector P, is (m,0,0)
and the SO(1,2) group reduces to its abelian SO(2) little subgroup generated
by Jy. In this case, massive irreducible representations are one dimensional and
are parametrized by a real parameter. For the full SO(1,2) group however, the
representations are either finite dimensional for |s| € ZT /2 or infinite dimensional
for the remaining values of s.

Given a primary state |s > of spin s, and using the abovementioned SO(1,2)
group theoretical properties, one may construct in general two representations
HWR(I) and HWR(II) out of this state |s >.

The first representation HWR(I) is a highest weight representation given by:

Jols > = sls>
J_ls> =0
I'(2s)
= r >1 2.51
|5an > \/F(QS—I—TL)F(TL-I— 1)<J+> |5 >, nzZ ( 5 )
Jo|ls,n > = (s+mn)|s,n>

J+|s,n > = \/(25+n)(n+1)|s,n—|—1 >

J_|ls,n> = /(2s+n—1)n|s,n—1>.
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The second representation is a lowest weight representation which we refer to

denote as HWR(H) is defined as:

j0|§ > = —s|s>

J_|z> =0

|s,n > = (_1)n\/F(25 +F7§§;)(n — 1>(j+)"|§ > n>1 (2.52)
Jols,n> = —(s+n)ls,n >
Jils,n > = —v/(2s+n—1)n|s,n—1>
j_|§,n> = —\/(25+n)(n+1)|§,n+1>.

Note in passing that the second module we have supplemented the generators and
the representations states with a bar index. This convention of notation will be
justified later on. Note moreover that both HWR(I) and HWR(II) representations
have the same so(1,2) Casimir Cy = s(s — 1), s < 0. For s € Z7/2, these
representations are finite dimensional and their dimension is (2|s|+1). For generic
real values of s, the dimension of the representations is however infinite. If one
chooses a fractional value of s say s = —%; each of the two representations (2.51-
52) splits a priori into two isomorphic representations respectively denoted as
DI% and D;% This degeneracy is due to the redundancy in choosing the spin

structure of v/ —2/k which can be taken either as +i4/—2/k or —iy/—2/k. These

representation are not independent since they are related by conjugations, this
why we shall use hereafter the choice of [46] by considering only D™, and D
%

1
3

In this case the two representations generators Jy 4 and jO,j: are related as:
jO,:F = (Jovi)* (253)

Furthermore taking the tensor product of the primary states |s > and |5 > of
the two so(1,2) modules HWR(I) and HWR(IT) and using eqs(2.51-52), it is
straightforward to check that it behaves like a scalar under the full charge operator

Jo % 14+ 14 x Jy which we denote simply as Jy + Jo [30]:
(Jo + Jo)|s > @|s >= 0. (2.54)

The equation (2.54) is familiar relation in the study of primary states of Virasoro
algebra. This equation together with the mode operators JZ and J* which act
on |s > ®[s > as:

Jlls>®ls> = 0, n>1
(J)"s>®5> = 0, m>1 (2.55)



22 2 Fractional supersymmetry in 1D and 2D

define a highest weight state which looks like a Virasoro primary state of spin 2s
and scale dimension A = 0.

If we respectively associate to HWR(I) and HWR(II) the mode operators Q7,, =
Qs4n and QZ,_, = Qqypn and using SO(1,2) tensor product properties one may
build under some assumptions, an extension S of the so(1, 2) algebra going beyond
the standard supersymmetric one. To do so, note first that the system Jy, J,, J_

and Qs4, obey the following commutation relations for s = —1/k.
[Jo,Qstn] = (54 1)Qs4n
[J+7 Qs+n] = \/(25 + n)(n + 1)Q8+n+1 (2'56)

S, Qsin] = V(2541 —1)nQsyn-1.

Similarly we have for the antiholomorphic sector:

[j07 Qs+n] = _(S + n)Qs+n
[J4,Qstn] = —V/(2s +n—1)nQspns (2.57)
[J-, Qstn] = _\/(23 +n)(n+ 1) Qstnir-

To close these commutations relations with the Q5’s through a k-th order product

one should fulfill some constraints:

1. The generalised algebra S, we are looking for should be a generalisation of
what is known in two dimensions which means a generalisation of fractional su-
persymmetry.

2. When the charge operator QQs1, goes arround an other, say Qsym, it picks
a phase ® = 2i7/k, i.e:

- 1
QS+TLQS+m = i22sts+sz+n + ... ) S = _E7 (258)

where the dots refer for possible extra charge operators of total .Jy eigenvalue
(2s +n 4+ m).

The equation (2.58) shows also that the algebra we are looking for has a Zyx grad-
uation. Under this discret symmetry, Q4. carries a + 1(modk) charge while the
Fy,+ energy momentum components have a zero charge mod k.

3. The generalised algebra S should split into a bosonic B part and an anyonic A

k-1 k-1
s=PA =BEPA.
r=0 r=1

and may be written as:
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Since A, A C A(ngm)(modr), ONe has:

{A,,...,A} C B

[B,A] C A (2.59)
[B,B] C B.
In this equations, {A,, ..., A,} means the complete symmetrisation of the k any-
onic operators A, and is defined as:
1
{As o A} = 5 Z(Asa(l) A (2.60)
oEY
where the sum is carried over the k elements of the permutation group {1,...,k}.

4. The algebra S should obey generalised Jacobi identities. In particular we
should have:

adB{A,, ... A,} =0, (2.61)

where B stands for the bosonic generators Jo+ or P+ of the Poincaré algebra.
Using eq(2.59) to write {A,,... A}k as o, P* + B,J" where a and f are real
constants; then putting back into the above relation we find that {A,,... A, }x is
proportional to P, only. In other words, 8, should be equal to zero; a property
which is easily seen by taking B = P, in eq(2.61). Put differently the symmetric
product of the D, denoted hereafter as S*[DZ¥] contains the space time vector
representation Dy of so(1,2) and so the primitive charge operators ()_;/; and

Q11 obey:

[Jo, (Qoi/e)'] = —(Qoupw)f ~ P
[T (@)l = 0. (2.62)

Similarly we have:

[‘_70’ (Ql/k>k] = (Ql/k)k ~ Py

[T+ (Quw)f] = 0 (2.63)
Moreover acting on (Q_1/z)* by adJ} and on (Q1/x)" by adJ”, we obtain:
CldJ+(Q_1/k k ~ PO
adJ_(Qi;x)" ~ Py (2.64)

)

)
ad2J+(Q—1/k)k ~ P
ad®J_(Q1)" ~ Py.
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In summary, starting from so(1,2) Lorentz algebra (2.47-48) and the two Verma
modules HWR(I) and HWR(II) (2.51-52), one may build the following new ex-

tended symmetry:

{Qz

. QE N = Po=DP tiP

£ iVE-2{QF .05, QF, QF e (269)
[Jia[]ia[]ia<Q:E%>k]]] = 0.

E

with

QL. .., Q5,05 = (QI) Q1. +... + Q1. (QT)".

k k k k k k k
The equation (2.65) defines what we have been refering to as RdTS algebra.
Then RATS fractional supersymmetry is a special generalisation of fractional su-
persymmetry living in two dimensions and considered in many occasions in the
past in connection with integrable deformation of conformal invariance and rep-
resentations of the universal enveloping U,(sl(2)) quantum ordinary and affine
symmetries [29], [47]. Like for fractional supersymmetry, highest weight repre-
sentations of RATS algebra carry fractional values of the spin and obey more a
less quite similar fractional supersymmetry equations.

2.3.2 Representations of the RdTS algebra

In this family of RATS algebra, if we take & = 2 we are in an exceptional situ-
ation because instead of having an infinite number of charges we have only two.
In this case and with one series of supercharges (), we obtain the well known
supersymmetric extension of the Poincaré algebra. Then the equations (2.56-57)
and (2.65) can be easily rewritten with the Pauli matrices. For more details, one
can see the book of Wess and Bagger [48]. The RdATS algebra obtained is then
a direct generalisation of the super-Poincaré one. The supersymmetric algebra
which is constructed for one and two dimensional spaces, cann also be consid-
ered in (1+2) dimensions which allows to define states with fractional statistics
or anyons. Before starting to study the representations of the RATS algebra, let
first address some general properties.

1. P? commutes with all the generators because it is a Casimir operator. So
all states in an irreducible representation have the same mass.
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2. If we define an anyonic number operator by exp(2im N 4) which gives the phase
exp(2ims), we have then trexp(2im N4) = 0. This formula shows that in each irre-
ducible representation there are k possible statistics namely (s, s — ]E’ ce,8— ]”%),

where s is an anyonic spin. Then, we have the following identities:

1 k=1
Tr(e.rp(Qi?TNA){Qf%,...,Qf%,Qf_%}k) = ETT(Z exp(QiWNA)(Qi'%)‘l
Qi1 (T ) =0 (2.66)
exp(2imNa)Qs = exp(2ims)Qsexp(2imNy).

The unitarity of the representation force us to consider both supercharges Q* and
()~. For the Poincaré and its supersymmetric extension, the massive representa-
tions P*P, = m?* are builded by studying the sub-algebra leaving the momentum
P® = (m,0,0) invariant. Using the framework of the fractional supersymmetric
algebra, all the representations are obtained by studying the sub-algebra when Py
and Jy are suposed to be zero. Looking the equations (2.65), with Py = Jy =0,
we find that only one fundamental bracket does not vanish, the one involving
(k — 1) times the charge Q_%(see the second equality of (2.65)). So all brackets
involving an;], with n > 0 are represented by zero. An appropriate normalization

of the RATS algebra eq(2.65) give:

{Qr_la . '7QT_17QT_L} =
k k k

Ok‘l'—‘

[QF .t = (2.67)
where
) 1 1
11, ’Zk__E’l_E
and
4 ...+ #0.

To obtain the irreducible representations for an arbitrary k, we first observe that
the k' power of Q_% vanish; (Q_%)k = 0. In other words the rank of Q_% is

k—1. Indeed, if we suppose that Q]i_lb =0; b > 1, and multiplying the eqs(2.67)
k

by Q_%, on the left and by (Q_%)k_b_Q = 0 on the right, we get a contradiction.
Using the Jordan decomposition and the fact that all the eigenvalues of Q_% are
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zero, we write QT , and Qj’ , as:
K %

N
Qtl = \/5
0 - VE—1 0/,,
0 0 - JE_1]

0 0 0
+ _ - : :
Oy = |0 : ' (268)
0 --- 0 0 ek

An other representation is valable and is given by:

0 0 e 0

1(k—1)
Qi—l = : 2(k —2)
k
0 IS 0,
0 0 1
1)
0 e
+ _ D : :
Oy = | o ! (2.69)
0 0 0 ki
with [o] = 2722 [k~ 1] = [k — ][k — 2]...[2][1] and ¢ = exp(2in /k).
2—q2
The two representations QF and Q= are related by the conjugation:
Q:% = (Qf%)-lr
Ql‘_% = (QT_%)"'. (2.70)

This two representations @, and Q~, satisfy the quadratic relations [30], [31].
% ~x

In the case of the first serie representations we obtain:

w2

Q:%Qt%—qi%Qt%Q:% = q7
[N.QT.] = QF, (2.71)

1]
[Na Q:%] = Q_%a
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with N = diag(0,1,...,k — 1) is the scalar operator.
For the second choice we have:
[Q~.,Q",] = N=diaglk—1,k—2,...,1—k)
k k
k k
which show that the @ generate the k-dimensional representation of s/(2, R). The

representation built with the (’s is unitary and indeed the quadratic relations
(2.71) and (2.72)prove that (QF,)", with n = 0,...,k — 1, constructed from the
k

Q1. representation is positive.
“k
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Chapter 3

Fractional supersymmetry as a
matrix model

In the few last years, there has been attempts to develop a superspace formula-
tion of 2D quantum field theory that is invariant under fractional supersymme-
try(FSS) defined by: QF = P, Q* = P, k > 2, together with relations involving
both @ and Q. In these equations P = P_; and P = P, are the two het-
erotic components of 2D energy momentum vector operator P,; Q = ()_;/; and
@ = Q1 are the basic generators of FSS which carry a 2D spin s = 1/k. Most
of the studies of this special class of 2D massive quantum field theory(QFT) are
essentially based on methods of U,(sl(2)) quantum group representations and
noncommutative geometry [49], [50]. This approach however has met many dif-
ficulties and has lead to partial results only. Among these difficulties we quote
the two following ones associated with the heterotic K = 3 case (Q* = P).
The first one deals with the computation of the two points correlation function
< \11_1/3(21),\11_2/3(22) > of the two partners \11_1/3(21) and \11_2/3(22) of the
bosonic field ¢(z) of the scalar representation (@, W_y/3, W_y/3) of the @ = P al-
gebra. From the view point of the 2D conformal field theory, one expects from the
braiding feature 212\11_1/3(21 )\11_2/3(22) = 221\11_2/3(22)\11_1/3(21), that the field op-
erators W_y /3 and W_y /3 should anticommute. This result however is not fulfilled
in the approach based on the U,(sl(2)) quantum groups and non commutative
geometry where the W_, /5 and W_, /3 fields obey a generalised commutation rule
[51] leading to a two point correlation function < W_; 5(21), ¥_y/3(22) >uv,(s1(2))
which violate locality.

The second thing we want to quote concerns the construction of the generalised
superspace and superfields. In this context, one uses generalised Grassmann
variables 6, = 0,3 and 0, = 0_,/3 satisfying a third oder nilpotency condition
011/3 = 0, together with (9:2&1/3 # 0 and 6,0, = w0, where w is a C-number
such that w® = 1. The condition 9‘11/3 = 0, which generalizes the usual condition
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of Grassmann variables of spins 1/2; is necessary in order to describe off shell
representations of the fractional supersymmetric algebra in terms of superfields
®(z,0,7,0). In this language, FSS is generated by translations along the § and
directions, 1.e. § — 6 + ¢ and 0 — 6+ €, where € and € are generalized Grassmann
variables of same nature as # and . Until now things are quite similar to the
superspace formulation of ordinary supersymmetry associated with £ = 2. How-
ever there are weak points in the construction of the generalised superspace for
k > 2. One of these weakness deals with the treatement of 62, 6> and the ¢ and
¢ parameters. In trying to establish a given relation by following two equivalent
paths, we get different results. On one hand ,0(f) should commute with itself as
required by the identity (1 —z)0* = 0, which implies that either * = 0 and = # 0
or z = 1 and #2 # 0. On the other hand #(#) and ¢(¢) are required to satisfy
generalized commutation rules type fe = wef (fe = weh); w? = 1.

This is a contradiction since 9(9 + c) # w(9 + 6)(9. This difficulty may be also
viewed from the generalised commutation rule 8y = wnf. Taking the limit = 6,
one obtains 6% = wh? which implies that §? should be zero.

The aim of this chapter is to set up the basis of 2D fractional supersymmetric
QFT by using parafermionic field theoretical methods. These methods , which
were considered recently in [52], seem to be the right language to develop a local
fractional supersymetric QFT. This believe is also supported by the fact that
after all fractional supersymmetry is nothing but a residual symmetry of mas-
sive perturbations of parafermionic critical models. From this point of view, the
generators of fractional supersymmetry are just remanant constants of motion
surviving after deformations of parafermionic conformal invariance. Thinking of
2D fractional supersymmetry as a finite dimensional subsymmetry of the 7 con-
formal invariance [53] for instance, one discovers that all the known difficulties
of the abovementioned approach disappear. Moreover we find that fractional su-
persymmetric algebras are generated by more than one charge operator and can
be described in a natural way as a matrix model. The charge operators @) _,
x = 0,1/k, ..., form altogether a k& x k matrix operator allowing to define the
fractional supersymmetric algebra as: trQ* = P_;.

This chapter is organised as follows. In the first section, we study the matrix
realisations of 2D supersymmetry. In the second section, we work out the links
between fractional supersymmetry and parafermions. Matrix realisations of frac-
tional supersymmetry are analysed in sections 3 and 4.

3.1 2D Supersymmetry as a matrix model

In this paragraph we consider the 2D heterotic supersymmetric algebras respec-
tively defined as:
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{Q—l/%Q—]/Q} = P_l
[P—17Q—1/2]

Il
o

(3.1)

and

{Qtl/Q?Q:l/Q} - P—l
{Q:El/Q?Qi:l/Q} = 0 (32>
[P—laQ:fUQ] - 07

and show that they can be represented as 2 x 2 matrix models. A generalisation
to higher dimensional spaces of these representations turns out to offer a natural
framework to study fractional supersymmetry. It shows, moreover, that methods
of standard supersymmetry can be also used to deal with exotic supersymmetries.
To start consider the following off-diagonal symmetric 2x2 matrix Q whose entries
are given by the 2D(1,0) supersymmetric generator Q_;, [29]:

_ 0 Q—1/2>
Q= <Q_1/2 0 , (3.3)

This matrix operator acts on the 2D space of quantum states |B >= B(0)|0 >
and |F' >= F(0)|0 >, where the letters B and F' stand for Bose and Fermi fields.
Taking the square product of eq(3.3), it is not difficult to see that the (%,0)
supersymmetric algebra (3.1) may be defined as:

Q] = P
w[Q] = 0 (3.4)

where the suffix tr means the usual matrix trace operation. There are several
remarkable features of the matrix definition Eqs(3.3-4) of the QD(%, 0) supersym-
metric algebra; some of them are manifest at the level of the k£ x k& = 2 x 2 matrix
model, others are hidden and emerge for k& > 3 representations.

Moreover, combining the usual constraints of 2D supersymmetry, in particular
Hermiticity of the energy-momentum vector P_;, PY, = P_;, with the features
of the matrix model (3.4), one sees that the realization of Q, eq (3.3), is not the
unique one. Indeed, decomposing Q als Q = Q" 4+ Q~, such that:

_ (0 Q%
o - (7 4.
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one sees that the spins z and y carried by the Q% charge operators are related as:
r+y=1 (3.6)

as required by the first relation of Eq(3.4). Abstraction done from equations (3.1)
and (3.2), there are infinitely many solutions of equations (3.5) and (3.6); we shall
first consider the two solutions z =y = % and z = 0 and y = +1 related with the
leading zero-mode operators of the NS and Ramond sectors of 2D superconformal
invariance. Later on we shall explore the interesting cases x = % and y = (171)’
k = 3,4, ..., and their link with 7, parafermionic invariance. Now using equations

(3.5) instead of Eqs(3.3) one finds that the algebra Eqs(3.4) reads in general as:

r[Q*Q7] = P,
trlQTQ*] = #[Q Q7] =0 (3.7)
QY] = #[Q7]=0
The equation (3.7) has a U(1) automorphism symmetry which breaks down to
Zy in the case of Eqs(3.4), this is why we shall refer to Eqs(3.4) and (3.7) as
QD(%,O) and ((%)2,0) supersymmetric algebras respectively. Moreover introduc-

ing the F;; = |i > ® < j|, 1,5 = B, F generators of the gl(2) Lie algebra, we have

the following 2 x 2 matrix representations:

(i) The NS-like superalgebra.

In this case the supersymmetric 2 x 2 matrix generators Q% read as:

Q+ = Q—1/2E12
Q- Q-172En (3.8)

for (%, 0) supersymmetry and

Q+ = Qtl/QE]Q
Q_ = Q:1/2E21 (39)

for ((1)?,0) supersymmetry.
(ii) The Ramond like algebra.

Here the matrix generators are realized as:

Q+ = QoEm
Q = Q_Eyn (3.10)
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for the Hermitian case.
and

Q+ = QE;El?
Q" = QI Fq, (3.11)

For the complex one.

Note that compatibility between the usual hermiticity (+) of the energy momen-
tum vector P_; and the adjoint conjugation (+) of the Q* matrix generators
requires the following identifications:

[er]-l- = Q:fl-l-x
[Q—x]+ Q—1+a: (3']2)

equations (3.12) show that Q)_;/; is self-adjoint whereas Qo and ()_; are inter-
changed under the (+) conjugation. However knowing that )¢ should satisfy a
2D Clifford algebra {Qo,Qo} = 1, and using the current modes of the Ramond

superconformal algebra [54], one may set

20_1 = {Qo, P_1} = 2Qo P_1.

This identification reduces the number of generators of the algebra Eq(3.10).
Likewise, one may also set QZ, = Q5 P_; where Q7 together with QF satisfy:

{Q7,Q0}) =
{Q7.Q5 = 0, (3.13)

and where Qo = Q7 + Q5. Before going ahead note that the 2D NS-like superal-
gebra generated by Q_y/2 (Qiﬂ) exchanges bosons B and fermions F wheras

the Ramond like one generated by g (Qoi) preserves the statistics. In the
2D quantum field language, the Ramond like algebra acts on the field doublet

(@1/2(2), ¢_1/2(Z)>, with:
QEdy1/0 =0,
and
QEPz1/2 = Py o,

as follows:

QF Q%
Drijo——Px1/2—0.Ds1)2 (3.14)
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Note, moreover, that the NS- and R-like algebras can be realized with the help

of Grassmann Varlables 911/2 and 6 as:
9, 1
0, = s
1/2 891;/2 )
9, 1
+ _
Qo = 907 + 0 (3.15)

Similar realisations may also be written down for the Hermitian charge operators
Q_l/g and Qo.

In what follows, we want to extend the above matrix formulation to the case
k = 3. At first sight this should be possible if one succeeds in relating fractional
supersymmetry to an infinite dimentional fractional superconformal invariance in
the same manner as usual 2D supersymmetry is related to the superconformal
invariances. To that end we start by establishing the link between fractional
supersymmetry and the 7, parafermionic invariance. Then we study its matrix
realisation.

3.2 Fractional supersymmetry and parafermions

In this section we want to show that from the point of view of 2D 7 parafermionic
invariance, the definition of fractional supersymmetry say

(Q—l/k>k =P k>2,

is just a formal one. The right way to define it is as trQ* = P_;, where P = P_,
is heterotic component of the 2D energy momentum vector operator P,. The
latter show that fractional supersymmetry is, in fact, generated by many charge
operators which we denote as Q_,, =z =0,1/k....

More precisely fractional supersymmetry is generated by a k£ X £ matrix Q whose
entries are the charge operators ()_, carrying various values of fractional spins.
For the k = 3 case we are interested in here, there are in total three pairs of
charge operators Q%, = =0, é, g, together with P_;. Altogether, these operators
generate the formal cubic nonlinear algebra Q® = P_;, which as we shall see, is
correctly defined as

r[Q*QT] = P,
QY = Q7Y =0 (3.16)
Q] = w[Q7]=0
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where QF are 3 x 3 matrices given by:

0 0 QI
Q_ - Q:2/3 0 O I

0 @i 0
0 fs O

Qt = 0 0 Qf |- (3.17)
f2/3 0 0

Note by the way that here also QF_ and QZ, with QZ, = Qy P_, obey the
equations (3.12). A way to derive equations (3.16) and (3.17) is to consider the
75 parafermionic invariance of Zamolodchikov and Fateev [53], [55] given by:

V))& ()
\Il+(z1)\11_(z2) ~ 21_24/3[1+5/3Zf2T(22)]

2/3 1
T(21)U%(2) w~ LQq;i(zg) + —0, V% (z,) (3.18)
2p) Z12
E—1
T'(z1)T(z2) mzf{l + 227, T(22) + 21, 0T (22).

In these equations T'(z) is the usual energy-momentum current and U (z) ([ (2)]T =
UF(z)) are the Zamolodchikov and Fateev parafermionic currents of spin % The
algebra (3.18) has three parafermionic highest weight representations [®]; ¢ =
0,1,2, namely the identity family I = [®]] of highest-weight hy, = 0 and two
degenerate families [®]] and [®3] of weights iy = h, = . Each one of these
parafermionic highest-weight representations [®1] is reducible into three Virasoro
highest-weight representations [®2];  p = ¢,p = q & 2mod6. For more details on
the representation theory of equations (3.18) see [53], [56]. All we need in the
achievement of this study is the algebra equations (3.18), the identities

Ut x 0P = P

q

e = ot (3.19)

as well as the following braiding property of the conformal field operators ®(z;)
and ®y(z,):

O(z) = 2P (21)Pa(22)
= ZQAICI)Q(ZQ)(I)l(Zl), (320)
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where A = A+ Ay— A3, A;; 1 =1,2,3, are the weights of the ®,;’s. Note that
the first equation of (3.19) is the formal equation which should be understood as:

WE(2)@0(20) = > 217 TEQE L a5 ®h(22), (3.21)
where Q:Eni(pil)/?) are the mode operators of UF which in turn may be defined as
QF (15| P >= /dzz”ip/wi(z)@g(o)m > . (3.22)
In addition to equations (3.19) Which predict the existance of three doublets of

T 3, one also has the braiding feature (3.20)
playing a crucial role in the building of fractional supersymmetry. For example,

the charge operators Q%,, =z =0,1

the deformation parameter w (often denoted by ¢ in the literature) of quan-
tum groups and noncommutative geometry dealing with fractional supersymme-
try should be related with the braiding property of the conformal field blocks
®1(z1) and ®y(z3). The equation (3.20) tells us that the parameter w is equal to
exp(+imA). For Az = 0 for instance, w reduces to exp(£i[m(A; + Az)]), so that
for Ay + Ay =1, the field operators ®; and ®; anticommute and then should be
treated as fermions. Choosing Ay = 1/3 and Ay = 2/3 for example, the two-point
function < ®/5(21), ®y/3(22) > should be equal to — < ®y3(22), y/3(21) >=
1/z12. This result, derived from parafermionic conformal field methods, solves
the difficulty of references [45], [51] according to which the two-point function
< @1/3(21), @2/3(22) >, (si(2)) computed in a model of fractional supersymmetry
based on quantum groups and noncommutative geometry methods; i.e:
< Byya(21), Payalza) Suysiey = €< Bypa(z0), Brya(21) Svysi(2))

_ L (3.23)

212
Equation (3.23) shows that the model based on the U,(s/(2)) methods is non local.
In summary local 2D field theoretical realisation of fractional supersymmetry

cannot be generated by only one charge operator. The number of generators

may be obtained by analysing the mode operators Q* n integer. The
+
—nt(pt1)/3

which they act. For ¢ = 0 for example, the non vanishing actions of Q%, .,z =

0, :1,’,% on the leading states |s,p > of spin s, 0 < s < 1 and charge p read as:

nE(p+1)/3’
's depend on the p charge of the conformal representation [®2 > on

2
+
Q= 2/3|00> |§,0>
2
|§7_2 >

Qo| 2>
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2 2
Qol=z,—-2> = |-, 42> (3.24)
3 3
2
Qf1/3|§,—2> = [1,0 >
2
Q_1/3|§,+2> = |1,0>

From these equations and equations (3.21) and (3.22), one sees that Qfl/:,’ and
Qoi cannot act directly on the state |0,0 > similarly Qf2/3 cannot operate directly

on |%, +2 >. This feature gives another indication that fractional supersymmetry
should be generated by more than one () operator as it is currently used in the
literature based on quantum groups and noncommutative geometry approaches.
Recall that the first indication we have mentioned in the begining of this chapter
refers to the inconsistencies induced by the introduction of the generalized Grass-
mann variable @ satisfying a higher order nilpotency condition §* = 0, k > 2 with
0% =1 =£ 0 and where the problem of locality raised above is just one of the manifes-
tation of the limit of the methods used. In the approach based on parafermionic
conformal field theoretical techniques we are considering here, these problems are
avoided. Locality is restored since all fields carrying fractional spins obey anti-
commuting statistics and the higher-order Grassmann nilpotency necessary for
the description of off shell representations of fractional supersymmetry is ensured
by the presence of more than one charge operator. Having discussed the link
between fractional supersymmetry and parafermions, we turn now to study its
relation with matrix theory.

3.3 Fractional supersymmetry as a matrix model

Starting from Eqs(3.24) and denoting by II,,r = 0, £1, the projectors along the
states |s,p >=|i > (p = 2i) and by E;; = |1 > ® < j| the generators of the gl(3)
Lie algebra rotating the state |¢ > into the state |[; >, 7 =0,=%1, (the indices +
refer to the two fractional supersymmetric partners of the bosonic state indexed
by ¢« = 0), one sees that the component P_; of the energy momentum vector reads
in terms of the Q% ’s, z = 0, ,1%, % and the projectors as:

P_1 ~ (rP
P = —1/%Q0 —2/2H0 + Q—Q/'% —1/%Q(-|J-H1 +Qq —2/%Q+1/% 1(3.25)
Note that a similar relation to this equation using QZ, instead of QT is also

valid. Moreover, using equations (3.24), one may rewrite equations (3.25) and its
Hermetic conjugate in the following form.
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2P = [QF,,Q7, ) + @7, 5Q7, 5l + [QF, ,Q7, 5 + QT Q5 ]I (3.26)
+ [Q:2/3Qt1/3 + QleE]H-l.

Comparing equations (3.25) and (3.26), one finds the following constraint rela-

tions:
Qs = QF Q8
Qtl/g = Qil/gQE
Qs = Q@I (3.27)
i-g/g = QO_Q:2/3
Q7 = tz/a t1/3

Qt] = Q:2/3Q:1/3

Equations (3.27) and consequently equations (3.25) and (3.26) may be satisfied
identically by introducing the following 3 x 3 matrix operator Q = Q* + Q~
whose entries are Q%,, 2 = 0, %, % are the generators of fractional supersymmetry.
This matrix representation is in agreement with the Zamolodchikov and Fateev
parafermionic invariance property (3.21) and (3.22) and the constraint equations
(3.27). Using the ¢l(3) generators E;; = |1 > ®|j >,1,j7 = 0,£1, one may write
down the matrix realisations of (%, 0) real fractional supersymmetry and ((%)2, 0)
fractional supersymmetric algebra for the Qs [29].

3.3.1 (3,0) Real fractional supersymmetry
The (%,0) real fractional supersymmetric algebra, to which we shall refer here-
after to as 2D(1,0) fractional supersymmetry is the analogue of equations (3.1)
and (3.4). The matrix representation of the Q% ’s reads as:

f2/3 = Q-g/3khp
Q:2/3 = Q—z/aE—Lo
3_ = QoF_11 (3.28)
Qo = Q0E1,—1
t1/3 = Q—l/an,—l
Q:1/3 = Q_-1/3k0,
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-

morphism symmetry of the matrix operator equation.

The charge carried by the Q% of equations (3.28) is the Z3 charge of the auto-

(B =T, i=0,%1. (3.29)

In the orthonormal basis {|7 >, ¢ = 0,%1}, the matrix representation of the

QZ, s reads as [29]:

0 Q_gyz 0
Qf = 0 0 Qo |;
Qs 0 0

0 0 Q-o3
Q=(Q.s 0 0o . (3.30)
0 Q. 0

Using equations (3.30) it is not difficult to check that the following relations hold:

2P = Q'Q +QQ
Q" = Q'Q* (3.31)
Q? = PQ*F

Taking the traces of both sides of these matrix equations, one discovers the algebra
equations(3.16) which reads in terms of (/3 and Q_y/3 as:

Py = Q—1/3Q—2/3 + Q—2/3Q—1/3
0 = {Q—1/37 Q—l/B} (3-32>
= {Q—Q/Ba Q—2/3}-

Note that equation(3.32) was expected from the constraint equation (3.6). It was
suggested in ref [57] as a linearized form of the non linear operator equation
[@-1/3]* = P_;. The relation between equation (3.32) and 2D((1)?,0) supersym-
metry suspected in [57] will be considered latter on.

3.3.2 ((3)2,0) Fractional supersymmetric algebra

The ((5)%,0) fractional supersymmetric algebra is a complex solution for which
the matrix representation of the Q% ’s reads as:

0 Ty O
Q" =1 o0 0 Qf |;
Q-I_-l/g 0 0
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0 0 @Iy,
Q_ = Q:1/3 0 0 : (3'33)
0 @, 0
Here also the charges carried by the Q%, are Z; charges. Similar calculations
as for the (%,0) algebra show that equations (3.31) are again fulfilled for the

39
representation (3.33). Using equations (3.33), and solving equations (3.31) we

find the following relations:

0 = {Q:El/y Q:_tl/3} = {Qi:g/y Q:—EZ/S}
2P—l = {Qtz/:ﬂ? Q:1/3} + {Qtl/ga Q:2/3} (334>

and

Qs = QF 508
Qs = Q5Q7,
@y = QY (3.35)
Oty = Q705
Equations (3.34) and (3.35) define the ((%)2, 0) fractional supersymmetric algebra.

It is generated by two Z3 doublets of anticommuting charges operators Qfl/g and
QfZ/S' The components of each doublet are related to each another by the Q% ’s

as shown in equations (3.35). Note that the algebra (3.34-35) is stable under the
three following conjugations:

(Q%,) = QF,
( :Ea‘)-l- = Qfl-l-x
(Q:Ex)-l-* = Q:E1+x7

suggesting a link with 2DN = ((3)*, 0)su(2) supersymmetry formulated in har-
monic superspace [58]. In what follows we shall explore this relation in order to
use 1t for the construction of off shell representations of the QD((%)Z, 0) fractional
supersymmetry.

3.4 More on the ((3)%0) fractional supersymmet-
ric algebra

Because of the periodicity (p = p46) of the representations of the Zamolodchikov
and Fateev parafermionic algebra (3.18) which allow to identify the field operators
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Pt as & = %% and ¢t = d**; see the second equation of (3.19), one may
rewrite the charge operators QF, Q7 as Q5 ~, QF T respectively.

Moreover denoting by QY the commutator of the Qf and Qg charge operators,
one sees from equations (3.28) that Qf and Q(jf generated altogether an su(2)

algebra,
Q5.Q5] = @

Q5 Q5] = FQF (3.36)
acting on the Q% z = %,% charges as:
[an _1/3 = :l:Q—l/S
[Q87 —2/31 = j:Q_Q/S
[QO s Qi1/3 = :FQ_l/g (337>

[QO ? Q+ = 0

[QOa =0
Equations (3.36) correspond just to the zero mode subalgebra of the level 3 of
the sus(2) Kac Moody symmetry. The latter is known to be homomorphic to the

75 parafermionic invariance (3.18) [59]. Now using the identification QF = QF*
and the Z3 periodicity ¢ = gmod(3), one may rewrite the algebra (3.36) as:

@5+ Q571 = @
[Q0, Q5] = +2Q7 (3.38)

Substituting QF by QIE in equations (3.37), one gets the following relations
which look like the corresponding ones in 2DN = 4su(2) supersymmetry [58]:

Q" QL] = [Q7,Q7]=0
[Q ) _1/3] = aQ_1/3
[QF, _2/3] = bQ_2/3 (3.39)
Q575 0%, ) = 507,
(@5, _2/3] = aQZ,;
]
]

]
]
[
[Qm _2/3] = iQ:f?/B
]
~]

[QO? _2/3 = j:aQ:fg/g
[QOaQiUg = ianUg

where @ = —b = 1. Recall that in 2D ((1)*,0) su(2) supersymmetry the coeffi-
cients a and b are equal to one, a = b = 1, and the analogues of equations (3.34)
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read as:

2P—l = {Qi—]/yc?:]/g} - {Q:]/WQ-E]/?}
0 = {C?:El/ga C?:El/g} (340)
= {Qfl/w Q:fl/Q}

Observe by the way that a part from the spin of the charge operators in the
first equation of (3.38) differs from the second equation of (3.34) by the presence
of the minus sign which is required by invariance under the su(2) automorphism
group of the 2D N = 4 su(2) supersymmetric algebra. Nevertheless, the similarity
between equation (3.34-35) and (3.37-38) allows us to build an off shell superspace
formulation of QD((%)Q, 0) supersymmetry by mimicking the harmonic superspace
formalism [60].
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Chapter 4

On the algebra of gq-deformed
pseudo differential operators

An interesting subject which have been studied recently from different point of
views deals with the field of non-linear integrable systems and their various higher
and lower spin extensions [61], [62], [63],[64]. These are exactly solvable models
exhibiting a very rich structure in lower dimensions and are involved in many
areas of mathematical physics. One recall for instance the two dimensional Toda
(Liouville) fields theories [62], [65] and the KdV hierarchy models [61], [62], both
in the bosonic as well as in the supersymmetry case.

Non linear integrable models are associated to systems of non-linear differential
equations, which we can solve exactly. Mathematically these models have become
more fascinating by introducing some new concepts such as the infinite dimen-
sional Lie (super) algebras [66], Kac-Moody algebras [67], W-algebras [63], [64],
quantum groups [68] and the theory of formal pseudo-differential operators [61],
[62]. Note by the way that techniques developped for the analysis of non-linear
integrable systems and quantum groups can be used to understand many features
appearing in various problems of theoretical physics [69], [70].

Recall that, since symmetries play an important role in physics; the principal
task of quantum groups consist in extanding these standard symmetries to the
deformed ones, which might be used in physics as well.

We start in this chapter from the well known g-deformed derivation law, 0z =
1 4+ gz0 [68] and derive the g-analogue of the Leibnitz rule for both local and
nonlocal differential operators. This result, which gives naturally the algebra
of g-deformed pseudo-differential operators, will provide a way for generating a
hierarchy of g-deformed Lax evolution equations.
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4.1 The ring of g-analytic currents

Let us precise that the deformation parameter q we consider in this study is
assumed to be a non vanishing positive number this means that ¢ € R*. However
if we suppose that ¢ € (', then we shall impose for q to differ from the k-th root
of unity i.e ¢* # 1. This requirement is justified by our need of consistency when
we go to the standard limit ¢ = 1.

Consider then the following g-deformed derivation rule [68]

0z =1+ qz0 (4.1)

where the symbol 9 stand for the g-derivative d = 9, = (;—Z)q. The conserved
currents are ingredients that we need highly in the programs of non linear inte-
grable models and two-dimensional conformal field theory building. As we are
interested in the present study to set-up the basic tools towards extending such
programs to g-analogue ones, we will try to describe first the ring of arbitrary
g-analytic fields which we denote by R. Following the analysis developed in [71],
this space describes a tensor algebra of fields of arbitrary conformal spin. This is a

completely reducible infinite dimensional SO(2) Lorentz representation(module)

that can be decomposed as:
R =R (4.2)

keZ

where RECO’O) = Ry are one dimensional spin k-irreducible modules generated by

the g-analytic fields ug(z) of conformal spin & € Z. The upper indices (0,0)
carried by R and that we shall drop whenever no confusion can arise, are special
values of general indices (r,s) introduced in [71] and referring to the lowest and
highest degrees of some pseudo-differential operators.

Inspering from the derivation law Eq(4.1), we introduce in this ring a q-deformed
derivative 9 = J, satisfying:

Juy(z) = u;(z) + qkuk(z)a (4.3)
with § = ¢! and u; = (%Lj)q stands for the standard prime derivative. Note

by the way, the important fact, that we have to distinguish between the prime
derivative u; = Ouy, and the operator derivative duy, = (Quy) + G ur0 given by
the equation (4.3). To illustrate what does it means, consider the following two
examples.

Example 1: Let u_g(2) = 2%,k > 0.
For this choice of the field u_g(z), we derive the following expression:

W) = (3 ) (4.4
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which we can easily check by proceeding with the first leading terms £ = 0,1, 2, ...
Indeed for k& = 0, ug = 0 and for k = 1, we have u_y = z and by virtue of Eq(4.1)
we have

u_,(z) = (Qu-y) = OJu_q — g u_10
= 9z—q 20 (4.5)
= 1

which we can derive also from Eq(4.4), with g~' = ¢. The non trivial case is given
by k = 2, such that u_, = z?, we have

u_y(z) = (Qu_y) = 02% — g *u_y0
= (4 q)z 4?0 — (4.6
= (1+gq)z

which can also easily seen from eq(4.4). These first leading cases, show then
clearly from where the prime derivative formula eq(4.4) comes from.

The total Leibnitz applied to u_z(z) = 2%,k > 0, is simply derived using succes-
sive action of the deformed g-derivative 0 = 9,. We find

k-1

zF = (Z qi)zk_l + ¢*2*0, (4.7)

1=0

which justify, in some sense, the consistency of eq(4.4) in describing the confor-
mal spin content of the analytic fields uy(z). Setting & = 1, one recovers in a
natural way, the standard relation eq(4.1). The second example we consider is
the following:

Example 2: uy(z) = 27% k > 1,
Corresponding relations are computed in the same way. We find

k
07" == _q) + 3o, (4.8)
=1

which reduces to:

027t = —qz"* 4 g2710, (4.9)

upon setting k = 1.

Now having introduced the ring R, of analytic g-deformed currents, and show
how the g-deformed derivative act on, we are now in position to introduce the
space of g-deformed pseudo-differential operators.
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4.2 The space of q-deformed Lax operators

Let E(mr’s) denote the space of g-deformed local differential operators, labelled by
three quantum numbers m,r and s defining respectively the conformal spin, the
lowest and highest degrees. Typical elements of this space, are given by:

L, = Zum_i(z)ai, r,s,me Z. (4.10)

The symbol J stands for the g-derivative and w,,_;(z) are analytic fields of con-
=(rs)

formal spin (m — 1). The space =5, behaves then as a (1 + s — r) dimensional

(r)5)

space generated by Ly~ = L,, and whose space decomposition is given by the

linear sum:
S

=) = P =i, (4.11)
with N _
=) =R, @0 (4.12)

A special example of the space =) i given by R,, = =(0:0) eq(4.2), the set of

analytic fields u,,(2) introduced previously and 9' = a; is the i-th g-derivative.
A natural example of eq(4.10), is given by the g-deformed Hill operator,

LQ = 82 + UQ(Z), (413)

which will play an important role in the study of the g-deformed KdV equation
and the associated conformal g-Liouville field theory.

(r)s)

A result concerning the algebra =, is the derivation of the g-Leibnitz rule for
local g-differential operators. Focusing to derive the general formula, let us start
first by examining the first leading orders. Iteration processing applied to eq(4.3)
gives the following relations

duslz) = uy(=) + un()0
8211,,6(2) = U,Z(z) + (jk(l + (7)11,;(2)8 + c72k71,k(2)82 (4.14)
Pur(z) = uy (2) + (14 G+ P)up(2)0 + FH(1+ G+ §)up(2)0
—+ c73’“uk(z)83

The crucial point was the observation that, these higher first order derivations
formulas can be summarised into the following general Leibnitz rule [32]

Y4
O"u(z) = Y P\ (qul) ()97, p >0, (4.15)
7=0
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where X%(q) are g-coefficient functions that we have introduced such that:

Xpla) = Xb(q) =1, (4.16)

and

J=1 j=—1l-my

i = 107 S 5 e

m10 m10m20

j=1 j=1-m j—=1=(m1+m2)

+ (f)j Z Z Z q3m1+2m2+m3

m1=0 m2:0 m3:0

+ ... (4.17)

j=1 jemlemy  j=1=Y07

+ q(p_j)j Z Z . Z ‘qEﬂ;é_l(p—j—l—B)m;m

m1=0 my=0 Mmp—; =0

for1 <y <p-—1.

Some remarks are in order:

1. From the Leibnitz rule eq(4.15); we can deduce the g-analogue of the stan-
dard binomial coefficients cé as follows:
For j =0 and j = p, we have:

& — @Pxo(g) ="
o — xb(g) =1
and for 1 <7 < p—1, we have:
. IR
b — 7 x(q) (4.18)

2. Setting g = 1, the local Leibnitz rule (4.15) reduces naturally to the standard
derivation law:

A ()P, p>0 (4.19)

M@

8puk
J=0

giving rise to the following useful relations

Xp(1) =
xp(l) =

9]

o
—yvRW B O
Il
R

(4.20)

and for 1 <3 <p—1
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+ Z >y i oo (4.21)

’I’)’L1=0 TVLQ:O ’I’)’L3=0
. . . —g—1
j=1 j=1-m;  J=1-207

SR U R

m1=0 my=0 mp—;=0

3. As we can easily check, eq(4.17) is a sum of (p — 7 + 1) objects starting from
the value 1 which corresponds to set (j = p) with zero summation. In each
term of the remaining (p — j) objects, we have a product of (n) summation
Zm:o Zer:O"'Zmn:O with 1 < n < p — 3. This structure is useful in the
standard limit ¢ = 1, recovering then the explicit form eq(4.21) of the well known

. . . N 1
binomial coefficient ¢/ = —L—.
P (p—7)i7!

Moreover eq(4.10) which is well defined for local differential operators with s >
r > 0, may be extended the negative integers(non local ones) by introducing q-
deformed pseudo-differential operators of the type d;7, p > 1, whose action on
the fields uz(z) of conformal spin k& € Z is constrained to satisfy:

"0 Puy(z) = 07P0Pup(z) = ug(2). (4.22)

Following the same analysis developed previously, we derive the following formulas

o0

a_lm(Z) = Z(—l)lq( (+1)+5) S)(2>8—1—¢
1=0

a_Quk(z) = Z( 1)2 k(i+2))+ LU Zq 8_2 i
1=0

O up(z) = 3 (—1)iqECHN+ +i0 quylﬂg 20 (4.23)
=0 §1=0 j»=0

From these first leading formulas, we extract the following nonlocal Leibnitz rule

[32]:

00 7 Jp—2
07 Pug(z) = Z( )’ Kitp))+HFH [Z Z Z qun_llJ' ( )a—p—i
=0 71=0 j2=0 Jp—1=0

(4.24)
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Here we also remark that, for a fixed value of p > 1, we have a g-deformed
binomial coefficient given by a product of (p — 1)-summation Dm0 Emp =0
Taking ¢ = 1 we find the standard Leibnitz rule for nonlocal differential operators

namely:
P
07 ur(z) = _(=1)'Cly,_yul ()07 (4.25)
=0
where Cz+p , 1s the identity relation given by:

]p?

Cii+p 1 XZ: Z Z L p=1 (4.26)

J1=0 j2=0 Jp—1=0

this relation coincide exactly with Xj:_l_p_l(l), given by eq(4.20).

4.3 -Generalized formulas

Let f(z) be an arbitrary analytic function of conformal spin Af = f Using
eq(4.3) and iterative action of the g-deformed derivative we find:

(=)= +¢ +@ +...+qm ) gl ra, (4.27)

where n is a positive integer number. Setting ¢ = 1 one discovers, once again the
following ordinary derivation rule,

of"(z)=nf """+ [r0. (4.28)
A special choice of f(z) in eq(4.27) is given by f(z) = z with 2 = —1, we have:
0" =(1+q+ ¢ +...+¢"")"" +¢"2"0, (4.29)
which reduces to eq(4.1) upon setting n = 1. For negative integer numbers we
easily find,
Of () = —( + T .+ D i, (4.30)

which becomes upon setting g = 1,

af"(z) = —nf f" N 4 [0 (4.31)
As before, setting f(z) = z we obtain:

0272) = —(q+ @+ ... +3)"" + G270, (4.32)
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Furthermore, we note that for half integer powers of f(z) we can obtain general
formulas. The method to do this starts from setting

Of'1* = ala)f 77 + Bla) f?0, (4.33)

where a(q) and 3(q) are two arbitrary g-dependent functions that we can deter-
mine explicitly by the following trivial property:

a2 = d(f). (4.34)

General formulas are given by:

_I . _2f _2nf
of 5 (2) = (te2+az+...+q> )f’f%
(1+q?) '
+ Ry, (4.35)
and
I i 7 (2n+1)f
afw(z) _ —q2(1—|—q2_|_q2f-|:...—|—q P )f'fw
(1+4¢7)
T Bl i e’} (4.36)

These g-generalized results are important in discussing the g-deformed Lax evo-
lution equations and the covariantisation of g-differential Lax operators.

Note that the ring R = ., R defined in eq(4.2) is a commutative ring,
which means that for each ui(z) and w;(z) belonging to R we have ug(z)wi(z) =
wi(2)ug(z).

However, applying the q-Leibnitz rule eq(4.3), we can easily show the existance of
a non commutative structure in the space =) of local and non local g-differential
operators. Indeed, let f and g be two arbitrary functions of conformal spin f and
g, with fg = gf, we have

@f)g = fg+dfg +qd""P g0

@9)f = gf+daf +q"gf0, (4.37)
which clearly shows that (0f)g # (dg) [ for f% g. Note that this noncommuta-
tivity property of f and g, with respect to the action of the g-derivative d,, arises
naturaly from eq(4.3). Note also the important fact that when the function g is

for example, the n-th power of the function f with n € R, we can set g = ["
which yields g = nf and then:

(0f)g = (99)f, (4.38)
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with f f* = f*f. We can deduce that the two subspaces Rf and Rj of analytic

functions f(z) and g(z) of conformal spin f and § respectively do not commute
under the action of the g-derivative dq unless if there exist a relative integer
n € Z, such that g = f".

Up to now, we have introduced the ring R of analytic functions and constructed
the space of arbitrary g-deformed Lax operators by deriving the generalized q-
Leibnitz rules. In the next chapter we will see how we can apply the obtained
results to study some important features of nonlinear integrable systems and
conformal symmetry. Special examples, namely the Liouville field theory and the
KdV equation as well as their extensions will be considered.
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Chapter 5

g-Generalized conformal
transformation

In this chapter we will use the backgrounds found in chapter 4 to construct the
g-analogues of the KdV-hierarchy systems. We will concentrate in particular on
the first leading orders of this hierarchy, namely the q-KdV and g-Boussinesq
integrable systems. Then we present the conformal transformation of the g-KdV
and g-Boussinesq integrable models described respectively by Lo(u) and Lz(u).

5.1 Generalised q-deformed KdV hierarchy
Let Ly be the g-deformed KdV Lax operator defined by:

L2 282+U2, (51)

:‘(072) .
which belongs to the coset space =y, for which we have
=2

Uy = 1
and

ulz().

5.1.1 Half power of the g-KdV Lax operator

Referring to the references in non-linear integrable models [61], [62] we can define
by analogy the n-th evolution of the q-deformed KdV -hierarchy as follows:

JdL,
at2n+1

= [H2n+1’L2]Q' (52)
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The bracket introduced in this equation is the g-deformed commutator (see ap-
pendix B), which we define as:

[FO7, g0™), = ™ F0"g0™ — T g™ fO" (5.3)

here f and ¢ are two arbitrary functions of conformal spin fand qg.
In equation (5.2), Hy,y is given by:

2n+4+1

Hypgr = (Ly % )y, (5-4)

where the index "+” in this equation stands for the local part of the deformed
pseudo differential operator.

2n41
The deformed pseudo-differential operator L, * is defined as:

L, =LYL?, (5.5)

here L;/Q represent the half power of the -KdV Lax operator given in eq(5.1). It

describes a g-deformed pseudo-differential operator of dimension 2 x % =1.
2nt1

Note that the nonlinear g-deformed pseudo differential operator L, ? is the (2n+

1)-th power of L;ﬁ. Using dimensional arguments, we assume that L;/Z takes the
following form:

’

Ly = 0+ Alq)uz0™" + Blg)uyd ™ + (Clq)uy = D(q)u3)d™> + ... (5.6)
where the coefficients A(q),B(q), C(q) and D(q) are required to satisfy
L, = LY*LY2 (5.7)

Using this requirement, we obtain explicitly:

AW =
—1
SRR
1
W = TrEnTea T >
D(q) = I
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5.1.2 g-Deformed KdV integrable system

If we take n = 0, the equation (5.2) becomes:

oL
a—tf - [HlaLQ]q’ <5'9)

where Hy = (L§)+ = 0. The equation (5.9) corresponds simply to the chiral wave
equation,

Uy = uy (5.10)
in this formula we have introduce the dot on the analytic fields u; to describe the
derivation with respect to time coordinates while the prime derivative is already
used in eq(4.3) to denote the derivation with respect to the space variable z.
The equation (5.10) means the equality of the dimensions [t;] = [z]. For n =1,

we have 5L
= (). (1)
where (L§/2)+, explicitly given by:
(137) = 0°+ (@ + A(0)uad + (1 + Blg))u, (5.12)

is the g-deformed Hamiltonian operator associated with the g-Virasoro algebra.
Injecting this expression into eq(5.11), we can extract a non linear differential
equation giving the evolution of the g-spin two current u;. Now identifying the
right hand side(r.h.s) and the left hand side(l.h.s) of (5.11), we shall impose some
terms of the r.h.s to vanish. We find then the following nonlinear differential
equation representing the q-deformed KdV system:

"

iy = a(q)uay + b(q)us (5.13)

a(q) and b(q) are two constrained, q-dependent coefficients functions, which can
be determined by a required of consistency. Simple computations then lead to:

afq) = It 7
14+ g+ ¢
b = —— 5.14
0 = -l 514
then the q-deformed KdV system is [32]:
_ 1+qg+q" + 14+qg+¢ w
Uy = W'U,QU,Z - Wuz (5.15)
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In the classical limit (¢ = 1) eq(5.15) is just the well known KdV integrable
system [61], [72], given by:

. 3 1 3 "
Uy = —UglUy — —1Uy (5.16)

2 4

which 1s associated to the Hamiltonian differential operator:
3 3
(L3, =& + 520 + Tuy. (5.17)
5.1.3 g-Deformed Boussinesq equation

In this section we use the same technique developed in the case of g-deformed
KdV system to present a g-generalisation of the Boussinesq integrable hierarchy
[61].

Let L3 be the Lax operator associated with the q-Boussinesq hierarchy as follows:
L3 = a'% + 'uga + Us (518)

where uy and ug are two currents of conformal spin 2 and 3 respectively.
Knowing that (L;/B)S = L3 and the fact that L;/g is an object of conformal spin
1, we can set:

L = 04 Aupd™" + (Bus — Cul)d™ + (Dujy — Eul — Ful)o™ + ... (5.19)

where the coefficients A, B,C, D, E and F' are given explicitly by:

1
A= —
1+q@+¢
B = %
L+¢@+q°
C = , _ 5.20
1+@+3)(1+3+ 7% (5-20)
1 1+ +@)01+¢+q")
D = S ——( - —1)
I+@+a)(1+q +3) 1+@+ ¢
g o_ _ttatd
(1+q?+q4)2
~3 | -4
F = Ma
1+3@+q¢°

for which we have

(L") =0 (5.21)
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Comparing the r.h.s and L.h.s of the following expression:

oL
O 11y (5:22)
1
we obtain
U/Iz = 7.1,2

which give the chiral wave equations for the Boussinesq hierarchy.
Similarly the identification of

aL
S = [ Ll
with
(L") = 0" 4+ A(a* + Dy
gives

s = uy+ A(l+ ) (ouy + Buguy)
iy = uy(1+ad@(1+ @)1 +q+ )+ @1 + Qu, (5.24)

" "

Tuz = (1+q) (14 aAF(1+ 7))y,

a and (3 are two arbitrary functions of the parameter ¢, which can be conveniently
fixed in such a way that @ = 8 = —1 in the classical limit.
Combining the first and third equations of (5.24) we find:

s = —q*(1+ g+ Aaq(l + @)y + AB(1 + )uzus. (5.25)

Note that we can write the third equation of (5.24) as:

s
“ = AT AP 7)™ (5:26)
which imply using the second equation of (5.24) that
ly = b(q, )us, (5.27)
with:
bg,a) = (1 +5)+ LA AU @)U +a+a) 5o

(I+q)(1 + Aag?*(1 + ¢?))
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The two equations (5.25) and (5.27) represent the q-deformed Boussinesq equa-
tions. Setting ¢ = 1 we recover the classical Boussinesq equation namely [61]

: 7.

Uy = §u3

. . 4 2 ’ (5 29)
Uus = 3u2 SUQUQ [y

Then the g-deformed Boussinesq equations (5.25) and (5.27) can be written in
the simple form using the algebraic computations (5.25) and (5.29) as:

™ " X "

liy = b(q, a)(z1uy + ﬁ(@)) , (5.30)
where z; and x5 are given by:

o1 = —¢*(14+q+ Aaq(l +¢)

o = AB(1+q°) (5.31)

For ¢ = 1, we obtain the standard Boussinesq equation namely:

. 1" 1 "
iy = 2u, + 5(713) .

(5.32)

5.2 g-Generalised conformal transformations

In this section, we consider two particular examples discussed previously, namely
the ¢-KdV and ¢-Boussinesq integrable models described respectively by L,(u)
and Ls(u).

5.2.1 Conformal transformation of q-KdV hierarchy

Here we consider the Lax operator of the KdV hierarchy discussed in section 1:
L2 = 62 + Ua, (533)

to show how the spin 2-conformal current wu,(z) transforms under a conformal
transformation:

z— z = f(2). (5.34)

Under such a transformation, we assume that the q-deformed KdV Lax operator

defined in eq(5.33), transforms as [62], [73]:

Lo(u(z)) — La(@a(2)) = ¥ La(ua(2))y'/? (5.35)
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where 1 = g—; The t-powers given in this equation is dictated by the fact that

Ly(us(2)) maps from the densities of degree (]5) to densities of degree (+2).

2
The transformation law of the derivative @ is as:
& — 0 = 00, (5.36)

which gives for 9% N
9 = p' O + 202 (5.37)

Using straightforward computations, we find:

1 ! 1 " 1 !
G Ly (un(2)) 1 = 0"+ S (1 + @0 + PP + S (7Y — Sa(v)?), (5:38)
from which we can derive the following result
~ = -1 /= _
waay:y+€3—¢a+m (5.39)

This results show how the conformal transformation violates the standard covari-
antisation property in the case of the ¢-Lax operators. This property, we recover
in the classical case by taking ¢ = 1, since the coefficient term of 9 in eq(5.39)
vanishes as is proportional to =1,

Identifying the two equations (5.38)and (5.39), we obtain the following conformal

transformation of the field uy(2):
. 1
uy(z) = P Uy(Z) — 555?((],1/}), (5.40)

where Sq(j)(q, 1) denote the q-Shwarzian derivative associated with the current u,

and defined as: .,

1_v
@) (g )= _ Loty
S (@5 9) s 2q(?/)) , (5.41)
here the upper index in S,EZ) stands for the order of the q-KdV hierarchy.

From the equation (5.40), we can see that uy(z) transform as a field of conformal
spin two, up to an anomalous term Sg)(q, ) exactly like the energy momentum

tensor of two dimensional conformal fields theories.

5.2.2 Conformal transformation of Boussinesq hierarchy

Now we consider the q-Boussinesq hierarchy associated with the g-deformed Lax
operator:

L3(U2, U3> = 83 + UQa + us. (542)
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Similarly, the conformal transformation eq(5.34) implies in this case:
La(uy, us) — La(ia, Us) = 0? La(ua, us ). (5.43)
Using strightforward computation, we find:
VP La(uz,us)y = P8+ (14 G+ )"0 + ((1+q+ @)™ + usg®)d
+ gt +upp?P 4 " (5.44)
which means that:
Ls(ta, Uis) = 0° + (§* — 1)¢'0* + a0 + Us. (5.45)

Comparing the equations (5.44) and (5.45), we obtain the following expression of
ug and wus:

uy = 7%, — S (q, )

!

) /
w = 97— - 50(0v) (5.46)

where ngi))(q, ) and Sﬁi’)(q, 1) are the q-Shwarzian derivatives associated respec-
tively to the currents uy and w3 such that:

’

SO(q, ) = qz(%f—q(wl)%
sﬂwo=%+%$@w. (5.47)

Note that Sﬁﬁ)(q, ) and S?(fj)(q, 1) are related by the following formula:
95% + q(g+1)SP =0 (5.48)
Putting ¢ = 1, we obtain the standad expressions given by [62], [73]:

Uz = 1#_2172—58)(1,1/))

e Y
U = By — —1y — SO(1, 4
7 w(1,4h)
mm@>=«%%n% (5.49)
%mm::%+%$mw



5 g-Generalized conformal transformation 61

5.2.3 Conformal transformation of u,(z)

Having given explicitly the conformal transformation of the currents uy and wugz of
conformal spin 2 and 3 respectively, we focus now to generalise these results to
higher conformal spin currents u,(z), with n =2,3,....

Let L,(u) be the higher order Lax operator involving (n — 1) conformal currents

defined by:

n—2
Lo(u) = 0"+ unid', (5.50)
=0

with ug =1 and u; = 0 and where J = 9.
Under the conformal transformation eq(5.34), this Lax operator is assumed to
transform as:

n+1 , n—1

Ln(u) — Lp(@) = % Ly(u)™ . (5.51)

Similarly to the previous study, the structure of the Lax operator L,(u) takes the
following generale conformal transformation:

n—2
Lo(i) = 0"+ AP 0"+ 0, (5.52)
=0
where A is an arbitrary Lorentz scalar function which we will precise.

Starting from eq(5.36) and using simple algebraic manipulation, we find that "
can be written in the form:

o => M, (5.53)
i=1
where M are functions of conformal spin (n — ¢), which we can summarize as:

My = "
M = oM;! (5.54)
M = Mg oM. 2<i<n—1

3

Substituting these relations into eq(5.52) we find:

L= Xi(A, M,)o"", (5.55)
2=0
where '
Xi(A, M) =Y M~ (5.56)

j=0
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Simple algebraic calculation lead to

S L () = 0™ 3 (3w X (@) () (5.57)

=0 ;=0

Comparing the two relations (5.52) and (5.57) we obtain:

Lbl—n nil el .
A(q,¥) = " Xn(@¥ = (07 ) — M)y, (5.58)
with
n—1 -
Xalq) = 7
2=0
X% = x,=1, (5.59)
and

n—1

wi =M+ M = x99 )9)),0 < i <n (5.60)
7=1

The equation (5.60) represent the general transformation of the conformal cur-
rents u; ¢ > 2.

To illustrate the obtained results, we consider the two particular ¢-KdV and g-
Boussinesq hierarchy discussed previously and described respectively by Lo(u)
and Ls(u).

The former is easily obtained by setting n = 2 into the equations (5.58) and
(5.60), which recover the relations (5.40) and (5.41) with

Similarly eqs(5.46) and (5.47) are obtained by taking n = 3 in eqs (5.57) and
(5.58) with
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Chapter 6

g-w-Currents

In the last chapter we have generalised the conformal transformation to the q-
deformed case, we found in addition to new features, the presence of anomalous
terms at the level of the conformal currents us, ug, ..., u,.

Our idea in this chapter, is to consider the Volterra gauge group transformation
associated to an orbit in which no such anomalous terms can appear. Our aim
is then to make an appropriate choice on the Volterra parameters a; such that
w; become primary conformal currents satisfying the last conditions given in
chapter 5. In the classical limit, the analytic field uy behaves as spin 2-field of
2D conformal field theory which coincide with the w, current. Similarly in the
q-deformed case; we will require for w;y to be proportional to us,.

6.1 Volterra gauge group transformation

The Volterra gauge group symmetry is a symmetry group whose typical elements
are given by the Lorentz scalar q-pseudo-differential operators [74]

Kl =1+ ai(2)d', (6.1)

i>1

where a;(z) are arbitrary analytic functions of conformal spin ¢ =1,2,3,....
These functions, which are the Volterra gauge parameters can be expressed in
term of the residue operation as:

ai(z) = Res(K(a)0™), (6.2)

with
Res@i = (SH_LO (63)



64 6 q-w-Currents

Now, we apply this Volterra gauge group symmetry to the algebra of q-Lax op-
erators given by the relation:

Lo(u) — L,(w) = K™ (a)L,(u)K (a) (6.4)

L, (w) is the transform of L,,(«) under the Volterra group action, with w = w(a, u)
is a function depending on the Volterra parameter a; and the u-fields.

Note that from eq(6.4), we can see that the u-currents may be expressed in terms
of the Volterra gauge parameters a; and their kth derivatives. Solving also this
equation we find that the new fields w; are plynomials of u-fields, the Volterra
parameters and their derivatives.

For an appropriate choices of the Volterra parameters dictated by the primary
condition, the w-fields can then be written in terms of the u fields exactly as do
the primary w-currents which satisfy [73]:

wy(z) = 67, (). (6.5)

Next, we solve the equation (6.4) for the Lax operator of the g-Boussinesq inte-
grable system
Ls(u) = 0° + uy0 + us, (6.6)

which represent the special case n = 3. Applying the Volterra gauge group
symmetry eq(6.4) to eq(6.6), we have:

K(a)Ls(w) = Ls(u)K(a). (6.7)

The algebraic calculation lead to the following formulas of the first parameters
ay, az,ds, dq:

ga; = a
az+wy = g+ ¢Pay + 1+ G+ 3))d;
az+ws + ¢Paywy = us+ Qas + qayus + ¢ (1 + g+ (f)a;
+ G+ 3+ 3)d (6.8)
avus + Gagus + ¢ ag + (1 + § + ¢%)ay
+ P +G+7)as+a, +ayu.

3 5 ! 4
(s + g a wz — g a1wy + g azws

This equation show that the spin-1 Volterra gauge parameter a; vanishes naturally
for an arbitrary values of the parameter q. This allow us to set:

aq = 0
(1 - qﬁ)ﬁh = Uz — Wy
(1—¢Yas = us—ws+ ¢ (1+q+q*)a, (6.9)

(@ —Das = q'aaws — T+ G+ 7)a, — (L + 7+ 7 )az — (a; + T az)ua.
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Note that when ¢ = 1, we recover from this relations the Volterra gauge orbit
K,=1{a;} in which the w;- fields are seen as primary currents [74].
In the general case the Volterra parameters a;, 7 > 2 satisfy the formula:

ajys(PU — 1) = al(_l)j—lqsﬁj(@;l) (j—l)_l_a (—1 )jq2(j+1)+j(%)ng)
+ ) g Z Z g T b))
=0 k=0 k=0
b P Y S B a0
1=0 kl—o j 1—0

"

- (1+q+q)_7+1—q Ajt1Us — a;
- g (J+2)(] +q+q ) ]+2 a,ju,Q — a;usg.

6.2 qg-w-Currents

Our aim in this section is to make an appropriate choice of the Volterra parameters
a; such that w; become primary conformal currents satisfying eq(6.5).

Recall that in the classical limit, the analytic field u; behaves as spin 2-field of
2D conformal field theory which coincide with the w, current. Similarly in the
deformed case; we can require for wy to be proportional to us.

Using the second equation of (6.9), we set:

ay = Oy (6.11)
where § is an arbitrary constant. Then, we have:
wy = uy(1 —§(1 — g%) (6.12)
substituting this equation into the third equation of (6.9), we obtain:
as = Brus + P, (6.13)

here 8, and 3, are arbitrary constant which can be fixed.
The resulting expression for the g-deformed w-current of spin 3 is

wy = ua[l + (¢ = D]+ ug[q (1 + G+ )3+ Ba(d = 1)), (6.14)

with the constraints equation (6.10) giving the remaining Volterra parameters
aj, ] 2 9.
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as(q’—1) = q4a2w3—c§2(1+q+62)a;§—cf(l+q+cf) 5 — (ay + g%az)uy
3 J i—1
ajs(UT) 1) = > ajiq” Z D gEm=thn
2_0 kl 0 j Z—O
+ Z% e AR Z Z gZm=Fn Y (6.15)
k=0 kj_;=0

1"

= PO ) = P g =

_ (?2(]+2)(1 +q+q ) j+2 — CL;—'LLZ — ajus.

We consider now the conformal transformation of the spin-3 w-current (6.14) such
that:
Wy = Pws + ys (6.16)

where y3 1s a function of conformal spin 3 given by:

ys = {4270+ q3+ )0+ (3 — 181 +2(3° — 1)Ba}us

+ ¢3{(555>—%5753))_(2253@85@)-4(1+q+q)5 (6.17)
+ (@ - 1)(8Y - %sﬁm — (7" - 1)(2%55‘2’) + 0882}

Imposing the primarity conditions (6.5) imply the vanishing of y3. This results
can derive a solution for the constant §(q), 51(q) and B2(q) which are required
to coincide in the classical limit with §(1) = —1/6,51(1) = 0 and Sz(1) = 1/6

respectively.
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Chapter 7

Field and superfield theory

In this chapter, we will discuss the field theoretical models describing the self
couplings of the matter multiplets (0%, ($)?,(3)?) and (0%, (3)* (3)*). More pre-
cisely, we will describe brefly the superfield theory of the matter couplings of (%, %)
and ((%)2, (%)2) fractional superalgebras studied in chapter 3. We start first by
describing the superfield theory of the QD(%, %), fractional supersymmetry equa-
tion already studied in chapter 3, especially the matter coupling of the on shell
scalar representation (@, Wy /3, Wiy/3), using the formal analogy between equa-
tions (3.32) and those of 2DN = 2U(1) supersymmetry. In the second step we
will give The action S[®] describing the dynamics and the couplings of the super-
fields ® which is similar to that of 2D((3)*,0)su(2) harmonic superspace. More
generally the matter couplings of the ((1)?,(3)?)su(2) fractional supersymmetry,
extending equations (3.32) by adjoining the analytic part, give us the action S
by help of the harmonic formulation.

The end of this chapter, is devoted to the construction of the g-deformed Euler
Lagrange equations using the results obtained in chapters 4,5 and 6. We will
present here also the su(n)-Toda (su(2)- Liouville) field theory construction by
building the g-analogue of the su(2)- Liouville and su(n)- Toda conformal field

theories.

7.1 Superfield theory

We start first by describing the superfield theory of the 2D(1, 1), fractional su-

373
persymmetry equation (3.32) especially the matter coupling of the on shell scalar
representation (¢, W43, Uyg/3). Using the formal analogy between equations

(3.32) and those of 2D N =2 U(1) supersymmetry, namely:
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Qs — L/Q

Or13 — 911/2

Qq:2/3 — Q:;l/g

Oro/3 — 9;1/2 (7.1)
v — ey

Vgis — LTj$1/2

Wgass — \I;:T:I/Z

and following the same lines used in the building of 2D N = 2 U(1) supersym-
metric matter coupling [75], one sees that the superfield action S[®, ®] invariant
under the QD(%, %) fractional supersymmetry reads as:

S[@,é] = /d2Zd91/3d9_1/3d02/3d9_2/3[&7[®,@]. (72)

In this equation A is the kahler potential depending on the chiral superfields ®
and @ given by:
O = p+ 013V 15+ 0_13V15+ 0130 1/3F

O = o+ 053V g3 +0_3/3Wy3+ 0530 53 F (7.3)
® and ® describe a complex scalar representation of the algebra (3.32); each
bosonic degree of freedom has two partners of spin £ and 2. Note that using
equation (7.2) and the matter superfield representation equation (7.3), we get
the right two point free correlation functions, i.e: < \11_1/3(21), \11_2/3(22) > and
< W_y3(21), Uiyys(ze) >=< Vg 3(21), Uogys(22) >= 0.

Concerning the ((3)%,0) fractional supersymmetric algebra (3.34-35) generated
by the four generators Qfl/g and QEQ/S, one may use here also the similarity with

2D N = 4 extended supersymmetry. Thus extending equations (3.34-35) as:
Py = {D+ D:1/3}

-2/3>
= _{Dt1/3’D:2/3} (74>
+ +
0 = {DZ,, DI},

together with

1 2
[D++3Dtx] = [D__vD:x]:O’ ngvg
[D++’ D:x] = D-l—_JL‘
[D**.D77] = D° (7.5)
[D07Dfx] - inzv
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and using the Grassmann variables 91i/3 and 9;/3 of spin % and % respectively, but

still satisfying 932 = 0 one can build a superspace realisation of equations (7.4-5)
and consequently a 2D quantum superfield theory. A remarkable realisation of
the algebra (7.4-5), stable under the combined conjugation (+%) and using the
covariant superderivatives D¥ and D¥*_ DY instead of the Q% generators is given

by:

0
Dl = 007,

0
Plopa = o,
D7,y = 89&;;3_91_/3]3‘1 (7.6)
DI,y = 8%3—95/31{1

0

P = 7

where

T _ _
Yy==z— 5(91/39;—/3 + 6’T/392/3>

and where:

d

D+t — [““au—i — 91/39;/313_1]
__ i 0 - - "
D™ = [uT = 0, Po] (7.7)

D° = [DY, D]

In this realisation u¥ are the well known harmonic variable stisfying utiu; = 1

and ufuf = 0. Using the realisation (7.6-7), the on shell matter multiplet

(0%, (3)* (2)*) of the fractional supersymmetric algebra (7.4-5) is given by a Her-
mitian superfield satisfying the analytic conditions:
D* . =D & =0, (7.8)

/ /3

and the equation of motion
D2 =0 (7.9)
The 6} expansion of the superfield ®, stable under the combined conjugation

(4*) reads as:
O = @ufuy + 07,00 qui + 07,00, qui + 607,05 Fuiuj (7.10)

1/3 2/3% — 1/372/3
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The action of S[®] describing the dynamics and the couplings of the superfields
® is similar to that of 2D((3)*,0)su(2) harmonic superspace. More generally
1

the matter couplings of the (($)?, (3)?)su(2) fractional supersymmetry, extending

equations (7.4-5) by adjoining the analytic part, read in the harmonic formulation

[58], as:

sz/ﬁﬁqwm+de® (7.11)

F2/3

where L4 is the functional of the superfield ®.

7.2 g-Deformed su(2) Liouville field theory

The aim of this section is to set up some crucial ingredients towards building
the g-deformed analogue of the 2D su(2) Liouville field theory, using the previous
analysis studied in chapter 4, 5 and 6. Note also that there exist a correspondence
between the second Hamiltonian structure of integrable systems and the Virasoro
conformal algebra representing the symmetry of 2D Liouville field theory.

7.2.1 g-Deformed spin-2 current u,

Let consider the integrable q-KdV equation, discussed in chapter 5, which take
the following expression:

l+qg+q¢* + 1+qg+¢ u
Ug = W[LQUZ — WUQ . (712)

Applying the Miura transformation connecting the dynamical current u, with the
scalar field ¢ = ¢(z, z) to the g-deformed KdV Lax operator as follows:

where A and B are spin-1 fields. This two fields satisfy the relation:

A = —gB
AB+ B = u, (7.14)

with B" = (9B).

This equations have the solution

B = g0y, (7.15)
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from which we conclude that

uy = q(0% — (99)?). (7.16)

This relation shows that u, is a q-deformed spin two current, which behaves like
energy momentum tensor of 2D Liouville conformal field theory.

7.2.2 g-Deformed Fuler-Lagrange equations

Consider the g-deformed Liouville action which we write as [65], [69]:

Sle] = / Pe{dpdi + Sexp(be)) (7.17)

where b is q-dependent coefficients which can be determined using dimensional
arguments and conservation of the induced conserved current.
The variational principle applied to the g-Liouville action S reads as:

oL

0 >(5g0)} =0, (7.18)

5S[p] = 0 +— /d2z{—550 5
where the lagrangian is given by

L = dpdp + %exp(bap); 0 =0,

and where the variation § is required to satisfy [4,0], = 0, which means that
06 = §0. Using these remarks and the equation (4.3), we obtain:
aL oL )
0(=—=0p) = (=———d¢
@ = G
aL ., OL

= (3

20 90>> do+q 8(8@)8(&’9) (7.19)

where z is the conformal dimension of ( ), we obtain the g-deformed Euler

Lagrange equation given by:
aL aL
— — ¢ 0—==0 (7.20)
¢ ()

for the g-Liouville lagrangian density L = dpdy + 2exp(by).

An algebraic computations give (see appendix A):

oL 2 dexp(by)

oL -
0———— = 00p. 7.21
309) o (7.21)
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Using this relation, we derive the following q-deformed Liouville equation of mo-
tion:

2exp(bp) — ¢"00p = 0. (7.22)

The dimensional arguments show that # = 1 as the conformal dimension of the
lagrangian is I =2

To determine the coefficient constant b, we use the conservation of the ¢-deformed
current eq(7.26), then we have

0= 9T (¢) = qd(ddp) — qI(Dp)*. (7.23)
This equation fixe the coefficient b = (1 4 ) with ¢ = 0 and then:
D(0¢)? = (14 q)0pddy (7.24)

Finally, we have:

Do — 241D =0, G=q¢7" (7.25)

Setting ¢ = 1, we recover the well known Liouville equation 90yp = 2e?¢ associated

to the Liouville Lagrangian L = dpdp + exp(2¢p).

7.2.3 g-Deformed su(2) Liouville field theory

The g-deformed form of the conserved current can be written as:

T(¢) = q0°¢ — q(dp)? (7.26)

whose conservation is assured by the equation of motion eq(7.18)
dT(p) = 0. (7.27)

Note that this conservation law combined with eq(7.25) fixes the qg-coefficient
number b = (1 + g) in the exponential eq(7.17). Some remarks are in order:

1. The action eq(7.17) is invariant and generalize the su(2) standard Liouville
theory.

2. As for the standard studies, the coefficient number in the exponential Liouville
potential is connected to the Cartan matrix of some simple Lie algebra. An
important task is to look for the interpretation of the coefficient b appearing in
our exponential, from the Lie algebraic point of view.

3. The coefficient b = (1 + (j) coincide in the classical limit case with the number
2 which is the Cartan matrix of the su(2) Lie algebra.

4. The q-KdV Lax operator defined in eq(7.13), shows the existence of an su(2)
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symmetry; which can be recovered also from the Liouville action.
If we redefine the scalar field ¢ to be as:

7+ 1
o= %% (7.28)

We can easily read the su(2) symmetry from the Liouville action which becomes

as:
- 2
S[®[= /d%{z\@@@@ + = 1e:L'p(2CI>)} (7.29)
q
with X is a parameter which take the value
_atly
A= ( 5 )°.

Then the g-deformed Liouville equation of motion take the form:
0% — G(q+ 1)exp(2®) = 0. (7.30)

We can also think to generalize the above g-deformed su(2) Liouville field theory
to the su(n) conformal Toda field theory. We set:

Ssu(n)Toda = /d22{6¢5¢ + T/(Q> Z GCEP(OQ(ﬁ)} (731>

=1

where ¢ = Z;:]l a;¢; and a; are the simple root of the su(n) Lie algebra whose
Cartan matrix is defined as:

[(Z'j = ;04 (732)

and where 7(q) is a function of the parameter ¢, which can easily be fixed given
the corresponding model in the generalised KdV hierarchy.
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Chapter 8

Quantum groups and
noncommutative space

Noncommutative geometry is based on noncommutative coordinates ' and 2’
satisfying the relation [2°, #7] # 0, and which means that this two coordinates are
noncommutative operators. More general the theory of noncommutative geom-
etry is based on the idea of replacing ordinary coordinates with noncommuting
operators.

In this chapter, we will formulate some aspects of noncommutative geometry
mathematically and we will be mainly concerned with quantum algebra and quan-
tum spaces. We start by studying quantum planes and quantum groups and their
differentials calculus on the noncommutative space [76]. Here, we will give some
differential relations and as an example we will discuss the Manin plane. In the
second step, we will treat the star product of functions and as examples we will
take the three type of noncommutative structure namely canonical structure, Lie
algebra structure and quantum space structure. We end this chapter by formulat-
ing gauge theory on noncommutative space. We will see that this gauge theorie
is based on the idea that multiplication of a field by a coordinate or a function is
not covariant only if that function does not commute with gauge transformation.
This can be resolved by adding an appropriate noncommutative gauge potentials
and thus introducing covariant coordinate in analogy to the covariant derivative

of ordinary gauge theory [77], [78].

8.1 Quantum planes

In this section we study the quantum planes, which have the following algebraic
structure:

'z = qata’, (8.1)
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where ¢ is the deformation parameter. In the general case the relation (8.1) is
written as:

(1 — R)%ztz? =0, (8.2)
where R is the 4 by 4 matrix which satisfy the Yang Baxter equation
RisRisRos = RosRishig

{mn in»

R is defined by:

with (ng)ijk = (%Rik ]%12 and ]%23 have the same relation.

1 0 0 0

s [0 ¢tA ¢t 0

R - 0 q—l 0 0 I (83)
0 0 0 1

with A = ¢ — ¢! and the rows and columns of R are labelled by 11,12,21 and 22.
It 1s easy to verify that this matrix satisfies the characteristic equation:

(R—1)(R+¢%H=0 (8.4)
This means that R has two eigenvalues
A =1 Multiplicity 3
A = —q7* Multiplicity 1 (8.5)

The projectors that project on the respective eigenspaces follow from the charac-
teristic equation, and are given by:

1 2 —2
Ps = W(R‘l‘q )
1 .
Py = 1-R .
V= () 56

A

R = Pg—q_QPA,

where Pg is the g-deformed generalisation of the symmetriser and P4 of the
antisymmetriser. Note that for ¢ = 1, we find the classical symetriser and anti-
symetriser.

A natural definition of the quantum plan algebra is [79]:

(PA)gs;cc;cd =0. (8.7)

Substituting the expression of P4 in equation (8.7), we find:

1 A
0= (Py)%atz® = —— (1 - R)®aca?, (8.8)
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In two dimensions this relation reduce to the equation (8.1).
The symmetry algebra SU,(2) is generated by T+, T~ and T®, which satisfy the
following defining relations [80]:

1

ST 7T = TR,

q
1 1

GTT — —T+T* = (g4 )T+, (8.9)
q q

DY S |-

this algebra contains the following (2j+1) dimensional representations carac-

terised by [79]:

. 1 .
T?lj,m > = 6[2m]q—z|j,m>
. 1 . . .
Tl > =\l m et 1l = mlelim 41>
Tljm> = qy/li+mly=lj —m+1plim—1> (5.10)
Tljm > = [jl,=li+ plim >

where the g-number and the Casimir operator T? are defined by [79]:

1

- 1
T2 — q2(T—T+ + F)7_—1/2 + F(,7_1/2 1= (]2)
1 — qnz‘
['r]q 1 _ qn ? ( )

with 7 =1 — AT?. The Casimir operator T? commutes with T+, T~ and T?.
For a two dimensional representation j = % the relations (8.10) become:

11 11
TH=——=> = ¢ =, - >
|2, 5 q |2,2

11

T =, = =0
|272>

1 1
T = >
53
11 11
T = -> = q|-,—— > 8.12
IQ,2 ql=, 5 (8.12)
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11 1T 1
T?=—=> = —q|=, —=
511 11
T’=,=> = ¢ '=,=>.

We can identify the vectors of a representation with the elements of a quantum
plane. The elements of a quantum plane can be multiplied. This product, we can
identify with the tensor product of the representations to obtain its transformation
properties. Like in the case of the Hopf algebra, The SU,(2) algebra allows the

following coproduct:

AT?) = T°@1+70T°
ATY) = Tt@l4+7r2@T* (8.13)
AT™) = T-@14+720T".

By identifying ' ~ |%, —% > and z% ~ %, % > in eqs(8.12-13), we find the action

of the generators 7%, T~ and T° on the coordinates z' and z? as:

1
Tta! = qa:lT++—x2
q
Ttz = l;L'2T'|'
q
T=2' = qz'T~
1
T 2* = ngT_-I—q;cl (8.14)
T32' = 22 T — ga
1 1
T32? = —2$2T3+—$2
q q

where

A(T?’)xi = T(xi)TS + TS(;ci) 1 =1,2
A(T+)T7 T(J,‘?:)T-F + T+(.7:77) (8.15)
A(T“)xi T(xi)T+ + T_(;vi

In the classical limit, the symmetry algebra fulfills the usual relations:
[rt,71-] = 1°

[T°,T*] = 2T* (8.16)
[T-,T% = 27T-.
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8.2 Quantum groups

Quantum groups are a generalisation of the concept of groups. More precisely,
a quantum group is a deformation of a group that, for particular values of the

deformation parameter, coincides with the group.
To start let 2' and y* with 7 = 1,2, two quantum planes. We define the following

variables A,B.C' and D as:

A _ .ﬁClyl
B — $2y1
C = z'y? (8.17)
D = z%y°
Using equations (8.12), the SU,(2) generators act on this coordinates as:
T°A = ¢'AT° —q(¢°+1)A
B = BT®
°C = COT1°
3 1 |
q q q
1
TYA = FATT+ B+ gC
1
T*B = BTT4+-D
q
1
THC = C’T+—|——2D (8.18)
q
D = %DT"’
q
T-A = AT~
T-B = BT +4%A
T-C = CT™ 4+49A
1
"D = —DT™+C+¢4B.
q
From the equation (8.10), and for 7 = 0 and j = 1, we find the following repre-
sentations:
1,1 > = l(1+i)|1 1>
7 q q2 7
T?1,0> = 0
I, -1> = —q(14+¢)1,-1>
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TH,1> = 0
1

THL0> = —/T+ 11> (8.19)
q

1
THL,—-1> = —y/1+¢*1,0>
q

T7|1,1> = /1+¢1,0>
T71,0> = g/1+¢*1,—-1>
0

T=1,-1> =
Identifying the two equations (8.18) and (8.19) we obtain the relations [80]:
1,-1> ~ A=:X"
1
1+ q?
1,0> ~ D=:X" (8.20)
0,0> ~ C—¢B=Y

11,0 > ~ (B+qC)=:X°

Let now consider the two copies of the quantum plane (X*,Y) and (X”, 17) with
i = +,—,0 which are written as the product of the quantum planes (z,y) and
(u,v). We choose the following expressions:

ur = —qRzu

uv = —EUU/

yv = —FRoy (8.21)
yr = —qRzy

Using equations (8.20) and (8.21), we find the following different relations [81]:

Ytxt+t — CIQ)?-I-X-I-
XtXY = XOx+

X+)’;;_ = q_Qj\(/_X-I-
X=Xt = XX 4 N1+ ¢ H)X X 4 A XOXO
X_)/;;_ = qz)A(J_X_

XX = XX~ 427 '(14¢)X~X°

XOXt = XTXO4 M\g+q¢ H)XOXT

X°X- = X-X° (8.22)
X°X° = Ml4¢ )X Xt + XX



8 Quantum groups and noncommutative space 81
Xty = vx+t
XY = vx°
XY = YX-
YY = YY
YXt = XY
YX° = X%
YX~ = X7,
where B
X ~ uy, X ~zv (8.23)
and where
Y = uly —quty,
Y = z'v? — ga’o! (8.24)

In this relations the Y and Y commute with all X% and )?i, for e =+, —,0.
The two copies planes X' and X*, i = +, —,0 construct the three dimensional
plan which is caracterised by the R matrix and satisfy the following relation:

XAXE = RABXCOXP (8.25)
with fx’ég is the 9 x 9 matrix given by [81]:
¢
e
0 1
I Mg+q7™)
R= 0 1
I Ag7(1+¢)
0 q°
0 1 AL+ q_2)
\ ¢t AT N(1+q7)
(8.26)

The rows and columns of R are labelled by ++,——,+0,04+,0—,—0,+—,00
and —+.

8.3 Differentials

It is known through the work of Wess [79], [82] that one can define a consistant
differential calculus on the noncommutative space of a quantum group. In this
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section we will give some differential relations and as an example we will study
the Manin plane [83].
The commutation relation of the differential 04 are the same as the coordinate
and fulfill [76]: -

P3,0:0; = 0. (8.27)

this equation is comming form the assumptions on the exterior derivative d such
that
d = EAaAa

where €4 is the coordinate differentials and d is the exterior derivative, which
satisfy the same properties as in the classical case,

d =0
dz? = ¢ + 2%, (8.28)
€4 are suposed to anticommute, this means that:
PARECED — 0, 829)

where Ps is the g-deformed symmetriser which obey the relation

A

R =X Ps+ APy,

with A\; and Ay are the eigenvalues of the matrix R and P, the g-deformed anti-
symmetriser. Consequently, the differentials satisfy a modified Leibniz rule

04(fg) = (94f)g + OF f(959); (8.30)

where the operator OF is a homomorphism, such that [76]:

05 (fg9) = 05())08(9).

As example for this section we take the known two dimensional Manin plane.
The Manin plane is generated by two coordinate & and g, which satisfy the rela-
tion:

Ty = qyz. (8.31)

The differentials obey the same relation, except for some scaling factor,
1
0,0y = —0y0;. (8.32)
q

Then the relations between differentials and the coordinate & and g are given by:

Opd = 1+ ¢°20, + qAjo,
0:y = qyoy, (8.33)
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similarly, we have for 0,

ayy = 1‘1‘(]2@811
0y = qz0y, (8.34)

With)\:q—%.

8.4 Star product

The framework of deformation quantization allows to map the associative algebra
of functions on noncommutative space to an algebra of functions on a commutative
space by means of star product which we denote by (x). There are several ways to
construct a star product. A particulary efficient way of computing this x-products
is Weyl quantization [84].

In this section, we will treat the star product of functions and as examples we
will take three types of noncommutative spaces namely canonical structure, Lie
algebra structure and quantum space structure.

8.4.1 Definition of star product:

1: Definition of Poisson Bracket:
A Poisson Bracket is defined by a bi-linear map {} such that: C*°(M)xC>*(M) —
C°°(M) where M is a smooth manifold. the functions f,g,h € C*(M) satisfy:

i {fag} = _{ga f}a antisymmetrya
o {{/. 9} 1} +{{g,h}, [} + {{h, [}, 9} = 0, Jacobi identity

d {f7 gh} = {fvg}h + {f, h}g, Leibniz rule.

The Poisson Bracket can be written in function of an antisymmetric tensor as:

{f.9} =070:10;9 (8.35)
where 07 = —#7°. From the antisymmetry and the Jacoby identity, we conclude
that 0% satisfy:

070,08 + 0% 0;0" + 69,0 = 0. (8.36)

2. Definition of star product:
A star product is a deformation of a Poisson structure on a manifold.

Let now f and g € C*°(M), with C*(M)][[h]] is the algebra of formal power series
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in the formal parameter A with coefficients in C*°(M). We define the star product
*: C°(M) x C®°(M) — C°(M)[[h]] by:

[xg=> h"Cu(f,9), (8.37)

n=0

with C,, : C*(M) x C*(M) — C*°(M) are local bi-differential operators. This
definition eq(8.37) satisfy the following axioms:

(i) * is associative product

(i1)Co(f,g) = fg, classical limit.

(iii) [ fxg] = —i{f, g} in the limit A — 0, semiclassical limit.
with

[figl=frg—gx[.

The bi-differential operators obey the expression:

Ci(f,9) = (=1)"Ci(g. ), (8-38)

which means that the commutator [f%g] can be written in function of the param-
eter h as:

[f3g] =2 Z R o (f, g). (8.39)

For the first order of A of this equation, we obtain:
h ..
f*xg=fg+ 59”&'][8]'9 + O(h2>. (8.40)

8.4.2 Star product of functions

Let A be the noncommutative algebra of functions defined on the noncommutative
space such that:
i C <<, ..,2">>
R

where R is the ideal generated by the commutation relations of the coordinate

(8.41)

functions, and the commutative algebra of functions:

1 n
PRAS LTI e - | (8.42)

(27, 27]
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where [z°, 7] = 0.

We want now to construct a vector space isomorphism noted by W by choosing
a basis ordering in A which must satisfy the Poincaré-Birkhofl-Witt property.
The elements of A are maped as:

W:A4 — A,
o o— (8.43)
x'x! — 5(:%2:%-7 + 73" = atd (8.44)

which transform the coordinate = to 2. The ordering is indicated by (: :).
So, for a function f we have:

W(f(a',2')) = f(&",37): (8.45)

The noncommutative multiplication % in A for two functions f and ¢ is defined
then by:

W(fxg) = W()W(g) = /4

A

(A,x) = (A,.), (8.46)
where f g € A and f,g € A. The commutation relation between &' and 24 is
given by: o B

[2', 3] = 16" (2) (8.47)
The Weyl quantization procedure is given by using the Fourier transformation
[77], as :
1

W) = s [ e Fib) (3.43)

with
1 m,. —tk;z!
f(k) = W/d we™ M f(x), (8.49)

here we have replaced the commutative coordinates by noncommutative ones &
in the inverse Fourier transformation eq(8.48). The exponential is ordred accord-
ing to the prescription choosen for the symmetric ordering or normal ordering.
Using the equation (8.46), we can write the deformed product of the functions

(f*g) as:

W()Wig) = —

(2m)"

/dnkdnpe”weip”‘?(k)f(p) = W(f*g). (8.50)

The product of the two exponentials have to be rearranged into one exponential

by help of the Campbell-Baker-Hausdorff formula defined by:

eAeB — e{A+B+%[AvB:H'%[[AvB]vB]_% [AvB]vA:H'“'}' (851)
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Now we need to specify 6 (%) eq(8.47) in order to evaluate the Campbell-Baker-
Hausdorff formula. For this aim let us consider some examples.

8.4.3 Examples
8.4.3.1 Canonical structure
The noncommutative canonical structure is defined by:
(2,27 =0, 09 eC (8.52)
Using the Campbell-Baker-Hausdorff formula we find:
kit 8! _ ez’(kj-i-p])w—;—'kipjew7 (8.53)

where terms with more than one commutator will vanish, due to the constant
commutation relations (8.52).
Substituting this expression in eq(8.50), we obtain:

1 ; $J L0, ~
W(Teg) = oy [ REp P00 fg) (s.)
which can be reads as:
1 : J_t1.pig w ~
(f*g)(_r) = (27T>n /dnkdnpel(k]+pj)$ skif p]f(k)g(p) (855)

Then we get the Moyal-Weyl star product [77]:
1 9 pij 8
Frg=erom 27 f(2)g(y)ly—e (8.56)

8.4.3.2 Lie algebra structure
The second example that we will study is the Lie algebra case given by:
(3,2 = i\73F N e (8.57)

where /\jcj is structure constants. In this case the product of the two exponential
is:

ezkzx elp]&? — eZPz(kvp)x’ (858)

where P;(k, p) are the parameters of a group element obtained by multiplying two
group elements, one parametrized by & and the other by p. From the Campbell-
Baker-Hausdorff formula we get:

1
Fi(k.p) = ki + pi + 59i(k, p), (8.59)
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where all the terms containing more than one commutator are collected in g;(k, p).
Using this results, eq(8.50) becomes:

1
2m)n

fxg= ( / " kd"pe’ ™ FP7 [k g(p) (8.60)

Then the star product take the form:

g ; ii,ii
[Hg=er® 5152 ) g(2)]voe. (8.61)

z2=T

The first terms of gi(i;—y, i:-) are given by [85]:

.0 .0 w. 0 0 Uik, 0 0 0 g o 0
(o) = Mig—aa = NN (=gt =
g(zay ldz) ! Zdyf dzk 6t <dyf dy™ 0k i 0z7 0zm dyk)

1 .. o o0 9 0 0 0 0 0
SV VAL L (e e 8.62
+ 24 ™o (ayﬂ dy" 0zF 0z* + 0z7 0z" Qy* ('3ys) ( )
+
8.4.3.3 Quantum space structure
This structure take the form:
Fi =g R, (8.63)

where R;CJI is the dimensionless braid- or simply R-matrix of the quantum space
with ¢ its deformation parameter.
As example here we take the Manin plane [83], and the quantum plane G L,(n).

e Manin plane:
The Manin plane fulfill the equation:

Ty = qyz. (8.64)
To compute the star product of this plane we will not use the Weyl quantisation

but the normal ordering which allow us to placed all the & operators befor §. For
this two operators we have:

#2: = i
9y = 9y (8.65)

&>
Neg¥
|
-|-
Neg¥
&>
Il
&>
Neg¥
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Then, we obtain for monomials:

— —ming Ani+ng fmi+me
= 49 z Y
AN AT L, A2 AMa —ming , sni+ng Amitme
] gt = g s ] : (8.66)
—xli,yi e ne 'm

= W By .+ g 2 2 .

- (q 9z vix 1y 1$ y * |zl—)m)
v >y

From this equation we have the star product for the Manin plane given by:

!

—r 242 T
frg=q """ f(z,y)g(z,y )|, (8.67)

!
Yy =y

¢ Quantum plane GL4(N):

The covariant quantum plane GL,(N) contain the coordinates #',... &V
which satisfy the relation:
P = g1, i<j For qéeC. (8.68)

Using the weyl quantisation, the star product of this algebra has the form [85]:

—h i 0 g 8 i 8 5 8
[rg=e? OV a w0 f () (y) s (8.69)

where h = Ing is a deformed parameter. Taking in this relation f = z* and
g = 2, we find the star product of eq(8.68) as 2" x 27 = ¢qi/ 1, 1 < j.

8.5 Gauge theory on noncommutative space

In this section we will concentrate on noncommutative geometry formulated in
the star product formalism to formulate gauge theories on noncommutative space.
In this study we will observe that this gauge theorie is based on the idea that
multiplication of a field by a coordinate or a function is not covariant only if that
function does not commute with gauge transformation [77]. This can be resolved
by adding an appropriate noncommutative gauge potentials and thus introducing
covariant coordinate in analogy to the covariant derivative of ordinary gauge
theory.

8.5.1 Gauge transformations
Let ¢(#) be field of the algebra A such that:

P(2) = (', 22, .., 4") € A, (8.70)
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where # is the noncommutative coordinate and A is the algebra given by eq(8.41).
We define the parameter of transformation which represent an infinitesimal gauge
transformation by &(#). The gauge transformation of the field ¢ can be written
in the form:

§ip(3) = iah(z), a0 € A (8.71)

This transformation is called a covariant transformation law of the field 1& Since
& is an element of the algebra At is the equivalent of an abelian gauge transfor-
mation but if this parameter of transformation belonged to an algebra of matrices
then it is the equivalent of a non abelian gauge transformation [86].

The non abelian gauge theory is based on a Lie group with Lie algebra

T, T = i [T, (8.72)

where T? are generators of the Lie algebra and f are its structure constants.
The elements of the algebra are represented by n x n matrices and the fields are
given by n-dimensional vectors carrying an irreducible representation of the gauge

group.

In the usual formulation of a gauge theory, fields noted by @ are considered
to transform under gauge transformation with Lie algebra valued infinitisimal
parameters:

56 (z) = iale)i(a), (5.73)
where a(z) is Lie algebra valued, defined by:
a(z) = a,(x)T". (8.74)

Using this equations we observe that the derivative of the field ¢ does not trans-
form covariantly, this means that:

50,1 () # ia(2)0,0 (). (8.75)

If we replace the usual derivative d, by covariant derivative noted by D, which
we can write in function of the gauge petential A,(z) as:

D, =0,—19A,(z), (8.76)
then D, can be transform covariantly, where A, is written in the form:
Auz) = Aye(x)T"
1
SAMe) = <B,0(e) + [ale), Au(o)] (3.7
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8.5.2 Covariant coordinates

The coordinates &' are invariant under the gauge transformation, this means that:
§&' = 0. (8.78)

The product of a field and a coordinate does not transform covariantly, since 2
and &(7) does not commute,

o) = id'a(2))
4+ id(2)a"). (8.79)
The arguments are the same as before for the classical gauge theory, we introduce
here also covariant coordinates given by

iz st Az(i) (8.80)
and satisfying the relation: . o
where o o VA
§(XY) = §(X) + X6(x)). (8:82)

Using this relation and the equation (8.71), we find:
§(X7) = ia, X7 (8.83)

Then the gauge potential transform under a noncommutative gauge theory trans-
formation in the following way:

SA = i[a, A — i[2', a]. (8.84)

We can define also the tensor 7% which are covariant ob jects. For our three case
of structure we write this tensors as [77]:
e Canonical structure:

T = [X', X9] — 6", (8.85)
o e structure:
T9 = [X', X9 —ifii X", (8.86)

¢ Quantum space:

TV = X% g R R (8.87)
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Using the general expression given by:

SA = ila, Al
§B = il&, B (8.88)
S(AB) = ila, AB)

we find for our three case structures the following relation:

5T = [, T). (8.89)
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Appendix A

g-Deformed exponential

The exponential function exp(z) is also shown to take a gq-deformed form.

Indeed, from the equation (4.7) we can extract the following prime derivative:

(=) = 0 = (Y ),

and write the exponential exp(z) as follows:

exp(z) = go [;]q!

where we define the g-deformed factorial numbers as follows

[yt =1(g+1).(¢" +q+1)(¢" +¢" 7+ ..+ q+1).

With this definition, we clearly see from eq(A.1) and (A.2), that

exp(z) = dexp(z),

where

(A.1)

(A.5)

Note that one can generalize these definitions of the exponential for an arbitrary

function f(z) of conformal spin fby exploiting just the results established before.
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A g-Deformed exponential
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Appendix B

g-Deformed commutator and

compatibility condition

The use of the q-deformed commutator (5.3) instead of the usual one, namely
[L,B] = LB — BL, which is nothing but the ¢ = 1 limit of eq(5.3), implies a

nontrivial consideration of the Lax evolution equation (5.2) in terms of the two

compatibility equations. To be more precise, let us recall how these equations

give rise to the standard evolution Lax equation for ¢ = 1 for arbitrary Lax pair

The compatibility equations are given by the following system of linear equations:

L, B.
LV = \U
ov
BY = —
ot
We have .
BLY = BAV = ABVU = )\a =

which also gives
oLV  OL ov
a o

We then have

(B, L]V = (BI — LB)¥

which implies that

oL
[BvL] = a

2N A
at ot
oL
= ij + LBV,
JL
= =9
ot

(B.1)

(B.2)

(B.4)

(B.5)

In the g-deformed case, the situation is not trivial, since the commutator is in-

disponsable to ensure this compatibility is g-deformed. In fact, let us consider
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2n+41

for simplicity the q-differential Lax pairs L, and Hy,qq = (L, 2
satisfy by analogy the Lax evolution equation (5.2)

)+ required to

0L,
at?n-}-]

= [Hany1, L2, (B.6)

where the q-deformed commutator is defined in eq(5.3). As suspected, by simply
performing algebraic computations, we obtain:

[Hy, L)), = HiLy—q*LyH, + (" —1)0° + ...

[Hs, Ly), = Hslo—¢°LoHs+ (¢° —1)0° +...

[Hs,Ly), = HsLy— q"LoHs + (¢ — 10" + ... (B.7)
[Hy, Ly), = HilLo— ¢ LoH, + (¢ — 1)0” + ...

This equation can be generalised for arbitrary order n of the q-KdV hierarchy as
follows:

[H2n+1 ) L?]q = H2n+1 L2 - 62(2n+1)L2H2n+1 + (62(2n+1) - 1>82n+3 + e (B8>

The terms (QQ(Q”+1) — 1)0%"* 4 ...) in (B.8) are extra nonlinear g-differential
operators and which are proportional to (¢ — 1). These extra terms vanish in the
standard limit (¢ = 1) to give rise to the standard commutator (B.4) and (B.5)

[H2n+1 ) L2]q=1 = H2n+1L2 — L2H2n-|-1- (B-9>

The important remark here is that if the compatibility equations exist, they must
be highly nonlinear with a dependance in ¢ as they should take into account
the presence of the nonlinear extra terms in the g-deformed commutators (B.7).
The possibility to write the two compatibility linear equations can naturally be
emerged as ¢ = 1 limit of the previous equations.
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