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ZusammenfassungIn dieser Arbeit werden Pr�azisionsre
hnungen f�ur die Prozesse 

 ! 4Fermionen undH!WW=ZZ! 4Fermionen vorgestellt.An einem 

-Collider werden wegen des gro�en Wirkungsquers
hnitts genaue theo-retis
he Vorhersagen f�ur die Prozesse 

 !WW! 4f ben�otigt. Mittels dieser Prozesselassen si
h unter anderem die Ei
hboson-Kopplungen 
WW und 

WW messen. Au�er-dem wird �uber virtuelle geladene, massive Teil
hen die Reaktion 

 ! H!WW=ZZ!4f erm�ogli
ht. Auf diese Weise l�a�t si
h die Kopplung 

H messen, und relativ s
hwereHiggs-Bosonen k�onnten erzeugt werden.F�ur Massen MH >� 135GeV zerf�allt das Higgs-Boson haupts�a
hli
h �uber W- undZ-Bosonen in vier Fermionen. Bei der kinematis
hen Rekonstruktion dieser Zerf�alle spie-len Quanten-Korrekturen, insbesondere Photon-Bremsstrahlung, eine wi
htige Rolle. DieEinbeziehung der Zerf�alle der Ei
hbosonen in Fermionen ist zum einen wi
htig, weil unter-halb vonMH � 2MW=Z "o�-shell\-E�ekte der Ei
hbosonen ber�u
ksi
htigt werden m�ussen.Zum anderen lassen si
h mit Hilfe von Winkel- und Energie-Verteilungen der Fermionender Spin und die CP-Eigens
haften des Higgs-Bosons bestimmen.Besonders geeignet f�ur den Verglei
h theoretis
her Vorhersagen mit experimentellenDaten sind Monte-Carlo-Generatoren. F�ur die Prozesse 

 ! 4f und H ! WW=ZZ !4f werden sol
he Programme konstruiert. Sie liefern zum einen die kompletten Vorher-sagen in niedrigster Ordnung der St�orungstheorie. Zum anderen enthalten sie Quanten-Korrekturen, die si
h unterteilen lassen in reelle Korrekturen, wel
he dur
h Photon-Bremsstrahlung gegeben sind, und virtuelle Korrekturen. W�ahrend die virtuellenQuanten-Korrekturen zu 

 ! WW ! 4f in der Doppel-Pol-N�aherung bere
hnet wer-den, in der nur die doppelt resonanten Beitr�age ber�u
ksi
htigt werden, werden zu denProzessen H ! WW=ZZ ! 4f die kompletten Quantenkorrekturen der Ordnung O(�)bere
hnet. F�ur die Behandlung der in den virtuellen und reellen Korrekturen auftretendeninfraroten Divergenzen ("soft\ und "
ollinear\) wird wahlweise die Dipol-Subtraktions-Methode oder die Phase-Spa
e-Sli
ing-Methode verwendet. Ni
ht bei allen Observablenm�ussen si
h die bei kollinearer Photon-Abstrahlung auftretenden Massen-Singularit�atengegenseitig aufheben. Um au
h sol
he ni
ht-kollinear-si
here Observablen untersu
hen zuk�onnen, wird die Dipol-Subtraktions-Methode diesbez�ugli
h erweitert.Die Diskussion der numeris
hen Ergebnisse umfasst den Ein
uss eines realistis
henPhoton-Spektrums auf die Wirkungsquers
hnitte, das Potential eines 

-Colliders, Gren-zen an anomale Ei
hboson-Kopplungen zu setzen, sowie vers
hiedene Verteilungen in derInvarianten Masse, in der Energie und in Winkeln, die f�ur eine Rekonstruktion der Ei
h-bosonen und die Bestimmung der Eigens
haften des Higgs-Bosons genutzt werden k�onnen.iv



Abstra
tIn this work we provide pre
ision 
al
ulations for the pro
esses 

 ! 4 fermions andH!WW=ZZ! 4 fermions.At a 

 
ollider pre
ise theoreti
al predi
tions are needed for the 

 ! WW ! 4fpro
esses be
ause of their large 
ross se
tion. These pro
esses allow a measurement ofthe gauge-boson 
ouplings 
WW and 

WW. Furthermore, the rea
tion 

 ! H !WW=ZZ ! 4f arises through loops of virtual 
harged, massive parti
les. Thus, the
oupling 

H 
an be measured and Higgs bosons with a relatively large mass 
ould beprodu
ed.For masses MH >� 135GeV the Higgs boson predominantly de
ays into W- or Z-bosonpairs and subsequently into four leptons. The kinemati
al re
onstru
tion of these de
ays isin
uen
ed by quantum 
orre
tions, espe
ially real photon radiation. Sin
e o�-shell e�e
tsof the gauge bosons have to be taken into a

ount below MH � 2MW=Z, the in
lusion ofthe de
ays of the gauge bosons is important. In addition, the spin and the CP propertiesof the Higgs boson 
an be determined by 
onsidering angular and energy distributions ofthe de
ay fermions.For a 
omparison of theoreti
al predi
tions with experimental data Monte Carlo gener-ators are useful tools. We 
onstru
t su
h programs for the pro
esses 

 !WW! 4f andH ! WW=ZZ ! 4f . On the one hand, they provide the 
omplete predi
tions at lowestorder of perturbation theory. On the other hand, they 
ontain quantum 
orre
tions, whi
h
an be 
lassi�ed into real 
orre
tions, 
onne
ted with photon bremsstrahlung, and virtual
orre
tions. Whereas the virtual quantum 
orre
tions to 

 !WW! 4f are 
al
ulatedin the double-pole approximation, i.e. only doubly-resonant 
ontributions are taken intoa

ount, we 
al
ulate the 
omplete O(�) 
orre
tions for the H ! WW=ZZ ! 4f pro-
esses. The infrared (soft and 
ollinear) divergen
es in the virtual and real 
orre
tionsare treated either with the dipole-subtra
tion method or with the phase-spa
e sli
ingmethod. The mass singularities that o

ur due to 
ollinear photon emission do not 
an
elfor all observables. In order to treat also su
h non-
ollinear-safe observables we apply anextension of the dipole-subtra
tion method.The dis
ussion of numeri
al results 
omprises the impa
t of a realisti
 beam spe
-trum on 
ross se
tions, the potential of a 

 
ollider to 
onstrain anomalous 
ouplings,and various angular, energy, and invariant-mass distributions, whi
h 
an be used for akinemati
al re
onstru
tion of the gauge bosons and for determining the properties of theHiggs boson. v





Chapter 1Introdu
tion1.1 Outline of the thesisIn the introdu
tion we will give an overview of the 
onstru
tion and the essentialingredients of the Standard Model (SM) of elementary parti
les, whi
h des
ribes all fun-damental parti
les that we know today and the intera
tions between them. In addition,we will mention some remaining questions, espe
ially the existen
e of the Higgs boson,and the reasons why there should be physi
s beyond the SM. In this 
ontext we will stressthe importan
e of quantum 
orre
tions in the sear
h for the Higgs boson and for newphysi
s.The next 
hapter starts with a brief des
ription of the 

 
ollider, an optional experi-ment at the International e+e�-Linear Collider (ILC), and some interesting pro
esses that
ould be studied there. Fo
using on four-fermion produ
tion, espe
ially through W-bosonpair produ
tion, we des
ribe the strategy for performing a pre
ision 
al
ulation for thesepro
esses. To this end, also subtleties o

urring in the treatment of unstable parti
lesare dis
ussed. The pole expansion is presented as a means of introdu
ing the width of anunstable parti
le in a gauge-invariant way and for 
al
ulating quantum 
orre
tions in ane
onomi
 manner. In Chapter 4 the results will be used in order to 
al
ulate quantum
orre
tions to 

 !WW! 4f in the double-pole approximation.In Chapter 3, whi
h is mainly based on Ref. [ 1℄, we present the lowest-order results for

 ! 4f(
), �rst in the SM and then in
luding anomalous 
ouplings, whi
h parametrizepossible new physi
s phenomena. As a preparation for the next 
hapter, the double-poleapproximation is applied to the lowest-order 
al
ulation and 
ompared to the 
ompleteresult. After dis
ussing the appearan
e of a Higgs boson as s-
hannel resonan
e, webrie
y des
ribe how the 
onvolution over the photon spe
trum is performed. We 
on
ludethe 
hapter with a dis
ussion of numeri
al results that in
lude integrated 
ross se
tions,distributions, the in
uen
e of the Higgs resonan
e, and the potential of the 

 
ollider toset bounds on anomalous 
ouplings.In Chapter 4, whi
h is mainly based on Ref. [ 2℄, quantum 
orre
tions to the pro
ess

 ! WW ! 4f are 
al
ulated in the double-pole approximation, whi
h 
lassi�es thevirtual 
orre
tions into fa
torizable and non-fa
torizable 
orre
tions. The infrared diver-gen
es o

urring in the virtual and real 
orre
tions are treated either with the dipole1



2 Introdu
tionsubtra
tion or with the phase-spa
e sli
ing method, whi
h are explained in some detail.For the 
ase of non-
ollinear-safe observables these methods are generalized. The numeri-
al impa
t of the results is dis
ussed in terms of integrated 
ross se
tions and distributions.This also in
ludes an estimate of the remaining theoreti
al un
ertainty and a 
ompari-son with an improved Born approximation, whi
h only 
ontains universal e�e
ts of thequantum 
orre
tions.In Chapter 5 we dis
uss the Higgs-boson de
ays into W or Z bosons, whi
h are themost relevant de
ay 
hannels for MH >� 140GeV. This de
ay type is, of 
ourse, not onlyimportant for the 

 
ollider but also for the LHC and the e+e� mode of the ILC. Afterhaving presented the analyti
al formulae for the lowest-order pro
esses H!WW=ZZ!4f(
), the 
omplete virtual O(�) 
orre
tions are 
al
ulated in the 
omplex-mass s
heme,whi
h allows a gauge-invariant treatment of width e�e
ts of the gauge bosons. Theimplementation into a Monte Carlo generator pro
eeds along the same lines as for thepro
esses 

 ! 4f(
). The 
hapter 
on
ludes with a presentation of de
ay widths anddistributions that 
an be used to determine the properties of the Higgs boson su
h as spinand parity.In the appendi
es we explain how the phase-spa
e integration over the momenta of the�nal-state parti
les is done with the multi-
hannel Monte Carlo method. Furthermore, wepresent the stru
ture of the infrared (soft and 
ollinear) singularities, whi
h are similar forboth pro
esses 

 !WW! 4f and H!WW=ZZ! 4f . Finally, some details that arene
essary for a stable evaluation of the virtual 
orre
tions to 

 !WW are presented.The numeri
al 
al
ulations in this thesis have been performed using Fortran, and manyof the algebrai
 
al
ulations were done using the program Mathemati
a. The 
omputer
odes are available so that they 
an be used for experimental studies or as a referen
e forfuture Monte Carlo generators.1.2 The Standard Model of elementary parti
le physi
sIn this se
tion we will give a brief a

ount of the SM. More details 
an, for example,be found in Ref. [ 4℄.The SM is a quantum �eld theory in whi
h intera
tions between parti
les are gov-erned by gauge (or lo
al) symmetries. It is most 
onveniently formulated in terms ofthe Lagrange formalism, i.e. all the ingredients of the theory, su
h as kineti
, mass, andintera
tion terms of the �elds, are in
orporated into a single lo
al fun
tional, the La-grangian density. Integrating the Lagrangian density over spa
e-time yields the a
tion ofthe theory. The form of the Lagrangian density is di
tated by symmetry prin
iples andthe requirement of renormalizability.A quantum �eld theory is 
alled renormalizable if all ultraviolet divergen
es 
an beabsorbed into a rede�nition of the parameters and �elds of the Lagrangian. Ultravioletdivergen
es may appear if observables are 
al
ulated by a perturbative expansion. Thehigher-order terms of this expansion usually involve loop integrals that do not yield a UV-�nite result. The pro
edure of regularizing these UV divergen
es, e.g. by 
al
ulating theintegrals inD 6= 4 dimensions, and absorbing them into the parameters of the Lagrangian,is 
alled renormalization. The rede�nition of the bare parameters of the Lagrangian results



The Standard Model of elementary parti
le physi
s 3in so-
alled 
ounterterms. Power 
ounting shows that all operators in the Lagrangianthat have four or less mass dimensions are renormalizable, i.e. the divergen
es 
an be
an
elled by 
ounterterms that also have four or less dimensions. However, the Lagrangianin
luding the 
ounterterms has to obey the underlying symmetries restri
ting the formof the 
ounterterms. Nevertheless, it 
an be shown that non-abelian gauge theories withspontaneous symmetry breaking, and hen
e the SM, are renormalizable [ 5℄.One 
lass of symmetries are spa
e-time symmetries. For example, the SM is invariantunder Poin
are transformations (ex
luding time and spa
e inversions). Mathemati
ally,these transformation form the Poin
are group, whi
h is made up of Lorentz boosts, ro-tations, and translations in the Minkowski spa
e. All irredu
ible representations of thePoin
are group 
an be 
lassi�ed by a real positive number m and a half-integer s that
an be identi�ed with mass and spin of a given parti
le type.On the other hand, there are internal symmetries, whi
h are symmetries among the�elds. The Lagrangian density of the SM is invariant under the transformations of thegroup SU(3)
 
 SU(2)W 
 U(1)Y . These transformations are lo
al, i.e. they may dependon spa
e-time. When 
hanging a symmetry from a global to a lo
al symmetry, new �eldshave to be introdu
ed in order to keep the Lagrangian density invariant. The reason isthat the Lagrangian density of a quantum �eld theory 
ontains derivatives of �elds. Sin
ethe derivatives behave di�erently under lo
al transformations than the �elds themselves,a 
ovariant derivative is de�ned by minimal substitution as�� ! D� = �� � igsGa�ta � igWW i�I i + igYB�Y2 ; (1.2.1)where ta = �a2 , I i, and Y are the generators of the 
orresponding Lie group of the SM,and gs, gW , and gY are 
onstants. The new ve
tor �elds Ga�(a = 1; ::; 8), W i�(i = 1; 2; 3),and B� that have to be introdu
ed in order to 
onstru
t a lo
ally symmetri
 theory are
alled gauge �elds. They transform in the adjoint representation of the gauge group ofthe SM. Thus, kineti
 terms for fermions 
an be 
onstru
ted that are gauge invariant, i.e.invariant under the SM group transformations. These kineti
 terms readLfermioni
 = �	lLi
�D�	lL + �	qLi
�D�	qL+ �	eRi
�D�	eR + �	uRi
�D�	uR + �	dRi
�D�	dR; (1.2.2)where the summation over the three generations is suppressed in the notation. Thefermion �elds, whi
h are 
lassi�ed into leptons and quarks, are summarized in Table 1.1.They are 
hara
terized by their transformation properties under the SM group. Withrespe
t to SU(3)
, leptons are un
harged, and quarks transform in the fundamental repre-sentation, i.e. they have three so-
alled 
olour degrees of freedom whi
h we also suppressin the notation. With respe
t to SU(2)W the fermions are left-
hiral doublets 	L orright-
hiral singlets 	R. In the massless 
ase they 
an be identi�ed with left-handedand right-handed parti
les. The 
orresponding quantum numbers of SU(2)W , the third
omponent of the weak isospin I3, and of U(1)Y , the weak hyper
harge Y , are given inTable 1.1. The weak hyper
harge is �xed by the identi�
ation of the photon in the theory,as explained below.



4 Introdu
tionI3 Y Qleptons 	lL 0� �ee 1AL 0� ��� 1AL 0� ��� 1AL 12�12 �1�1 0�1	eR eR �R �R 0 �2 �1quarks 	qL 0� ud1AL 0� 
s1AL 0� tb1AL 12�12 1313 23�13	uR uR 
R tR 0 43 23	dR dR sR bR 0 �23 �13Table 1.1: Fermions of the SM and their quantum numbers weak isospin I3, weak hyper-
harge Y , and ele
tromagneti
 
harge Q.After introdu
ing a lo
al symmetry, the Lagrangian density (1.2.2) also 
ontains in-tera
tion terms between fermions and gauge �elds in addition to the purely kineti
 termsof the fermions. This is the guiding prin
iple in the 
onstru
tion of gauge theories.Besides the kineti
 terms of the fermions, gauge-invariant kineti
 terms of the gauge�elds 
an be 
onstru
ted from the �eld-strength tensorsGa�� = ��Ga� � ��Ga� � gsfab
Gb�G
�; (1.2.3)W i�� = ��W i� � ��W i� � gW �ijkW j�W k� ;B�� = ��B� � ��B�;where fab
 and �ijk are the stru
ture 
onstants of the Lie algebras su(3) and su(2), respe
-tively. The �eld-strength tensors 
an be expressed in terms of the 
ommutator [D�; D�℄,whi
h transforms 
ovariantly. Taking the tra
e of the squared �eld strengths, a gauge-invariant Lagrangian density 
an be 
onstru
ted asLYM = �14Ga��Ga;�� � 14W i��W i;�� � 14B��B�� : (1.2.4)It 
ontains kineti
 terms (hen
e, the gauge �elds are propagating physi
al �elds), and, inthe 
ase of the non-abelian groups, also intera
tion terms among the gauge �elds.However, there are no mass terms in the theory yet, be
ause these terms would vio-late gauge invarian
e. A solution is provided by the Higgs me
hanism for spontaneoussymmetry breaking. To this end, the Higgs �eld,�(x) = 0��+(x)�0(x) 1A ; (1.2.5)is introdu
ed, whi
h has a weak hyper
harge Y = 1 and transforms as an SU(2)W doublet.Its 
ontribution to the Lagrangian density readsLHiggs = (D��)y(D��) + �2(�y�)� �4 (�y�)2; �2; � > 0: (1.2.6)



The Standard Model of elementary parti
le physi
s 5The last two terms 
onstitute the most general form of a renormalizable self-intera
tion.For the 
lassi
al ground state �0 of the Higgs �eld we havejh�0ij2 = 2�2� = v22 ; (1.2.7)i.e. the Higgs �eld a
quires a non-vanishing va
uum expe
tation value, whi
h breaks theSU(2)W 
 U(1)Y symmetry. A

ording to the Goldstone theorem, there is a masslessboson for every spontaneously broken 
ontinuous symmetry. These Goldstone bosonsappear in an expansion of the Higgs �eld around its va
uum expe
tation value,� = 0� �+v+H+i�p2 1A ; �� = (�+)y: (1.2.8)The �elds �+, ��, and � 
an be eliminated by a suitable gauge transformation, and are,thus, unphysi
al degrees of freedom (would-be Goldstone bosons). However, they deliverthe longitudinal degrees of freedom of the three massive gauge bosons 
orresponding tothe broken symmetries of SU(2)W 
 U(1)Y .Inserting Eq. (1.2.8) into Eq. (1.2.6), we observe that the va
uum expe
tation valueof the Higgs �eld gives rise to mass terms for the ele
troweak gauge bosons. However, the�elds that 
orrespond to mass eigenstates are mixtures of the �elds W i� and B� and 
anbe obtained by diagonalizing the mass matrix,W�� = 1p2(W 1� � iW 2�);0�Z�A� 1A = 0� 
os �W sin �W� sin �W 
os �W 1A0�W 3�B� 1A ; (1.2.9)with 
w � 
os �W � gWqg2W + g2Y ; sw � sin �W � gYqg2W + g2Y ; (1.2.10)where �W is 
alled weak mixing angle. Sin
e after spontaneous symmetry breaking aU(1) symmetry with the generator Q = I3 + Y2 remains unbroken, one gauge boson staysmassless. This is the �eld A�, whi
h 
an be identi�ed with the photon. A

ording to(1.2.2) its 
oupling to fermions is proportional to eQ with the elementary 
hargee � p4�� � gWgYqg2W + g2Y : (1.2.11)The fermion 
harges relativ to the elementary 
harge, whi
h are the eigenvalues of the
harge operator Q, are given in Table 1.1. To summarize, the ele
troweak gauge bosons
onsist of two ele
tri
ally neutral gauge bosons A and Z and two 
harged gauge bosonsW�. Their masses readMW� = 12vgW ; MZ = 12vqg2W + g2Y ; MA = 0: (1.2.12)



6 Introdu
tionThe me
hanism of spontaneous symmetry breaking also allows for in
orporating thefermion masses into the theory. A naive 
onstru
tion of fermion-mass terms m( �	L	R +h:
:), where h:
: denotes the hermitian 
onjugate expression, is not possible, be
ause left-and right-
hiral fermions belong to di�erent representations of the gauge group and havedi�erent quantum numbers. However, fermion mass terms 
an be obtained by 
ouplingthe fermions to the Higgs �eld. The va
uum expe
tation value then yields the desiredmass terms. The 
orresponding 
ontribution to the Lagrangian density readsLYukawa = �Xl;e �	lLGle	eR��Xq;d �	qLGqd	dR��Xq;u �	qLGqu	uR ~� + h:
:; (1.2.13)where ~� = i�2�� is the 
harge 
onjugate Higgs �eld 1. The 
oupling 
onstants thatare 
ontained in the matri
es Gle; Gqd, and Gqu are 
alled Yukawa 
ouplings. The masseigenstates of the fermions are obtained by diagonalizing these matri
es via �eld trans-formations. For massless neutrinos the diagonalization matri
es 
an be absorbed intothe �elds so that there is no di�eren
e between mass eigenstates and eigenstates of theweak intera
tions. However, for quarks the 
hange from the weak eigenstates to the masseigenstates is des
ribed by the Cabibbo-Kobayashi-Maskawa (CKM) matrix. If the quarkmasses are negle
ted, the CKM matrix 
an be set to the unit matrix in most appli
ations.Finally, in order to quantize the theory in the path-integral formalism, a gauge has tobe spe
i�ed to avoid an integration over equivalent �eld 
on�gurations. This is a
hievedby adding gauge-�xing terms to the Lagrangian density. In an R� gauge, gauge-�xingfun
tionals are 
hosen asFG = 1p�G��Ga�; FW� = 1p�W1 ��W�� � iMWq�W2 ��;FA = 1p�A��A�; F Z = 1p�Z1 ��Z� � iMZq�Z2�; (1.2.14)where the 
ase of �G = �A = �W = �Z = 1 is 
alled 't Hooft{Feynman gauge. The
orresponding 
ontributions to the Lagrangian density areL�x = �12 jF �j2; (1.2.15)where we impli
itly sum over the parameter �. The gauge �xing as it is done in Eq. (1.2.15)
hanges the measure of the path integral, whi
h 
an be a

ounted for by introdu
inganother term in the Lagrangian density,LFP = ��u�(x) ÆF �Æ��(x)u�(x); (1.2.16)where u�(x) are 
alled Faddeev{Popov ghosts, and Æ��(x) denotes an in�nitesimal gaugetransformation. The Faddeev{Popov ghosts represent unphysi
al degrees of freedom and1In prin
iple it is possible to in
lude also right-
hiral neutrinos in Table 1.1 and to add a 
orrespondingYukawa 
oupling in Eq. (1.2.13). Also a Majorana mass term is then possible, be
ause the right-
hiralneutrinos are un
harged under the SM group. In fa
t, neutrino os
illation experiments have shown thatneutrinos have a mass. However, their mass is very small and 
an be negle
ted in this 
ontext.
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an
el the degrees of freedom of the gauge bosons that were over-
ounted by the gauge�xing.From the Lagrangian density Feynman rules for 
al
ulating s
attering amplitudes per-turbatively 
an be inferred. For example, the 
ouplings of the fermions to the ele
troweakgauge bosons V = 
;Z;W are obtained by inserting the above de�nitions into Eq. (1.2.2).With the operators !� = 12(1 � 
5), whi
h proje
t onto the right- and left-handed 
om-ponents of the fermions, respe
tively, the 
orresponding Feynman rule readsi�V �f1f2� = ie
�(g+V �f1f2!+ + g�V �f1f2!�) (1.2.17)with g�
 �ff = �Qf ; g�Z �ff = �sw
wQf + I3f
wsw Æ��; g�W�ff 0 = 1p2sw Æ��; (1.2.18)where f and f 0 denote the two 
omponents of an SU(2)W doublet. In our 
al
ulationswe adopt the parti
le masses as input parameters, from whi
h we derive the weak mixingangle via the on-shell 
ondition s2w = 1� 
2w = 1� M2WM2Z : (1.2.19)The Feynman rule for the 
oupling of the gluon to quarks readsi�g �fifj� = igs
��aij2 ; (1.2.20)where i and j are 
olour indi
es and �a are the Gell-Mann matri
es. From Eq. (1.2.6) weobtain the 
oupling of the gauge bosons to the Higgs boson,i�HV V�� = ieg��gHV V ; (1.2.21)with gHZZ = MWsw
2w ; gHWW = MWsw : (1.2.22)The other Feynman rules that are relevant for this thesis 
an, e.g., be found in Ref. [ 6, 7℄.1.3 Open questions and the role of quantum 
orre
tionsThe most obvious question 
on
erns the existen
e of the Higgs boson. Determiningwhether the Higgs me
hanism or some other model to introdu
e parti
le masses is realisedin nature is one of the most outstanding questions in high-energy physi
s. The LargeHadron Collider (LHC), whi
h will start operation in 2007 at CERN, will probably settlethis issue. The LHC is able to dis
over the Higgs boson for the whole range of massesthat are theoreti
ally 
on
eivable. This mass range is determined by a lower bound ofMH > 114:4GeV at 95% 
on�den
e level [ 8℄ by the dire
t sear
hes at the previousexperiment at CERN, LEP, and an upper bound by ele
troweak pre
ision observables of
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tionMH <� 260GeV at 95% 
on�den
e level [ 9℄ and the observation that unitarity would beviolated for a Higgs mass of MH >� 1TeV [ 10℄.However, the SM, as formulated in the previous se
tion, 
annot be an ultimate theory,be
ause it does not in
orporate gravity. It might be possible to formulate a theory thatdes
ribes the phenomena at very high energies, 
lose to the Plan
k s
ale, where thegravitational for
e be
omes as strong as the for
es of the SM.But there are also other reasons why there should be new physi
s, i.e. physi
s beyondthe SM. For example, the SM is not able to explain the dark matter of the universe.Furthermore, as already mentioned in the previous se
tion, neutrinos have a very smallmass whose origin is not 
lear up to now.Besides these obvious problems, there are 
on
eptual problems su
h as the ques-tion why the Higgs mass is so small 
ompared to the Plan
k s
ale (hierar
hy problem).And also the origin of other SM parameters, espe
ially the fermion masses, is un
lear.The fermion masses have to be inserted \by hand" through the Yukawa 
ouplings inEq. (1.2.13). However, their values di�er by several orders of magnitude from ea
h other.This immediately rises the question where this hierar
hy 
omes from. Moreover, it is not
lear why there are exa
tly three generations of quarks and leptons.Many models have been 
onstru
ted that 
an solve some of these problems, su
h assupersymmetry or models with new gauge groups or extra dimensions. A 
ommon featureof these models is that they 
ontain the SM as an e�e
tive theory that is valid at least upto the ele
troweak s
ale. At some higher energy the predi
tions of the new models deviatefrom the SM predi
tions. This is one reason why pre
ise theoreti
al predi
tions are soimportant. If the energy of a 
ollider is not large enough to dire
tly see new parti
les, itmight still be possible to see a deviation from the SM predi
tion in 
ertain observables.However, this is only possible if the a

ura
y of experimental and theoreti
al results ishigh enough.Pre
ise theoreti
al predi
tions for s
attering pro
esses are usually obtained by a pertur-bative expansion in the 
oupling 
onstants. The expansion 
an be visualized by so-
alledFeynman diagrams, whi
h are 
lassi�ed into tree-level diagrams and loop diagrams. Thehigher-order 
ontributions of the expansion are 
alled quantum (or radiative, or loop)
orre
tions.For the LHC the quantum 
orre
tions of QCD are the most relevant ones. They makeup a substantial part of the predi
tions. In some 
ases the lowest-order un
ertainty 
an beup to 100%, but the next-to-leading order redu
es it to the order of some 10% or better.For the ILC the situation is di�erent. Quantum 
orre
tions are typi
ally smaller, and theexperimental environment is mu
h 
leaner allowing for a mu
h higher pre
ision. The ILC
an be seen as a window to higher energies be
ause of virtual e�e
ts of heavy parti
leswhi
h only o

ur in quantum 
orre
tions.During the past years a lot of progress has been made in the 
al
ulation of quantum
orre
tions. For example, the 
al
ulation of one-loop 
orre
tions to 2 ! 2 pro
esses hasbe
ome a standard task, and various tools exist for this purpose. However, many thingsremain to be done. On the one hand, two-loop or even three-loop 
orre
tions are neededfor many high-pre
ision observables. On the other hand, most sear
hes for new physi
sinvolve pro
esses with many parti
les in the �nal state so that 
orre
tions to 2 ! 3 or
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orre
tions 92 ! 4 pro
esses have to be 
al
ulated. Usually, this is not possible by a brute for
e
omputer 
al
ulation, but new te
hniques have to be developed. This is the 
ase, e.g., forthe redu
tion of tensor integrals, for the phase-spa
e integration, and for the treatmentof soft and 
ollinear divergen
es. But also 
on
eptual problems arise, e.g., the questionhow to treat resonan
es of unstable parti
les.This thesis will tou
h some of these issues, and the 
hosen solutions will be presented.



Chapter 2Four-fermion produ
tion at the 


ollider2.1 The 

 
olliderAs a design option at the ILC, a photon (or 

) 
ollider found 
onsiderable interest inre
ent years. The idea, though, was already dis
ussed more than 20 years ago (see, e.g.,Refs. [ 11, 12℄ and referen
es therein). High-energy photons 
an be produ
ed by fo
usinga laser beam on the ele
tron beam. The photons, whi
h have an energy at the order of1 eV, are Compton ba
ks
attered, and most of the energy of the ele
trons is transferredto the photons. Detailed simulations of the resulting energy spe
tra of polarized photonshave been performed in Ref. [ 13℄. Based on these simulations and assuming that the 

luminosity spe
trum 
an be written as the produ
t of the two photon-energy spe
tra, aparametrization of the photon-energy spe
tra has been suggested in Ref. [ 14℄. We will usethe 
omputer 
ode CompAZ, introdu
ed in this referen
e. For an ele
tron beam energy of250GeV the photon energy spe
trum is shown in Figure 2.1, where the laser polarizationis P
 = �1 and the ele
tron polarization �e = +0:85. For �eP
 < 0, the high-energypeak of the spe
trum is very pronoun
ed. Apart from the simple Compton s
attering,whi
h gives rise to the peak at E
=Ee � 0:8, di�erent 
ontributions 
an be seen. Thesmall high-energy end of the spe
trum is due to the s
attering of two in
oming photonsat one ele
tron, whereas as the low-energy part is dominated by se
ondary s
attering ofele
trons.There is a vast number of phenomena that 
ould be studied at the 

 
ollider, and theinformation that 
ould be obtained is 
omplementary to the e+e� mode in many 
ases.One of the most interesting rea
tions is 

 ! H, i.e. the produ
tion of a Higgs boson asan s-
hannel resonan
e, whi
h extends the dis
overy rea
h of the linear 
ollider for heavyHiggs bosons. It also allows a dire
t measurement of the 

H 
oupling. This 
oupling isloop indu
ed (i.e. due to quantum 
orre
tions) in the SM and sensitive to heavy 
hargedparti
les that re
eive their mass through the Higgs me
hanism and that might not beprodu
ed dire
tly.Another intriguing property of the 

 
ollider is the large 
ross se
tion for pair pro-du
tion of 
harged parti
les. This espe
ially applies to W-boson pair produ
tion so that10



Four-fermion produ
tion in 

 
ollisions 11
Ee = 250 GeV

y =
Eγ

Ee

1
N

dN
dy

10.80.60.40.20

4

3.5

3

2.5

2

1.5

1

0.5

0Figure 2.1: Photon energy spe
trum obtain with the program CompAZ for a laser polar-ization P
 = �1 and an ele
tron polarization �e = +0:85.the 

 
ollider 
an be 
onsidered as a W-boson fa
tory. For instan
e, it 
an be used forpre
ision tests of the gauge se
tor of the SM. While the rea
tion e+e� ! WW dependson the gauge-boson 
ouplings ZWW and 
WW, the 
orresponding rea
tion at a 

 
ol-lider, 

 ! WW, is sensitive to the gauge-boson 
ouplings 
WW and 

WW. At ane+e� 
ollider the 
oupling 

WW is only dire
tly a

essible through the bremsstrahlungpro
ess e+e� ! WW
, whi
h is suppressed by a fa
tor �(0)=� w.r.t. the non-radiativepro
ess e+e� ! WW. Therefore, the sensitivity to the anomalous 

WW 
oupling inthe 

 mode is expe
ted to be an order of magnitude better than in the e+e� mode. Thepre
ision for the measurement of the 
WW 
oupling is 
omparable in both modes [ 15℄.2.2 Four-fermion produ
tion in 

 
ollisions2.2.1 Pre
ision 
al
ulations for 

 !WW! 4fSin
e W bosons de
ay into fermion{anti-fermion pairs, the a
tually observed �nalstates of 

 ! WW involve four fermions. A theoreti
al predi
tion 
an be obtained bymultiplying the 
ross se
tion for the pro
ess 

 !WW with the 
orresponding bran
hingratios for the two W-boson de
ays. This approa
h is 
alled narrow-width approximation(NWA), be
ause it is assumed that the W bosons are stable, i.e. that they have a neg-ligible width (the NWA is a
tually a zero-width approximation). If more informationthan the total 
ross se
tion is needed, the kinemati
s and spin 
orrelations between theW-boson produ
tion and the subsequent de
ays have to be taken into a

ount. This
an be done, e.g., in the leading-pole approximation. However, this pro
edure negle
tsterms that are of the order O( �WMW ), where �WMW � 2:6%. A theoreti
al un
ertainty of atleast 2:6% is 
learly not suÆ
ient. Consequently the full pro
ess 

 ! 4f should be
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onsidered, whi
h involves not only the so-
alled \signal diagrams" but also \ba
kgrounddiagrams". The former are related to the pro
ess 

 !WW! 4f , where two W bosons
an be
ome resonant for a spe
i�
 region in phase spa
e. The latter involve only one orno W resonan
e. Compared to the doubly-resonant diagrams, su
h singly-resonant andnon-resonant diagrams are suppressed by roughly a fa
tor �W=MW and (�W=MW)2, re-spe
tively. Lowest-order predi
tions for 

 ! 4f pro
esses (with mono
hromati
 photonbeams and leptoni
 or semi-leptoni
 �nal states) were dis
ussed in Refs. [ 16, 17℄.In addition to the \ba
kground diagrams" from the full four-fermion pro
ess, whi
h areof the order O( �WMW ), there are radiative 
orre
tions to the \signal diagrams", whi
h are ofthe orderO(�). Sin
e � � �WMW , the size of both 
ontributions is 
omparable. This suggeststo 
al
ulate the full four-fermion lowest-order 
ross se
tion and the O(�) 
orre
tions to theresonant parts of the W-pair pro
ess in order to obtain a pre
ise theoreti
al des
riptionof the pro
ess 

 ! WW ! 4f . The resulting theoreti
al un
ertainty is O(�� �WMW ),be
ause radiative 
orre
tions to the ba
kground diagrams are negle
ted. Introdu
ing asafety fa
tor for possibly enhan
ed higher-order 
ontributions, the remaining theoreti
alun
ertainty is <� 0:5%. For the similar pro
ess e+e� ! WW ! 4f this programmehas been 
arried through in Refs. [ 18, 19, 20, 21, 22, 23℄ by applying the double-poleapproximation (DPA). The error estimate of 0:5% was 
on�rmed in Ref. [ 24℄ througha 
al
ulation of the full O(�) 
orre
tions to e+e� ! 4f . Cal
ulating the full O(�)
orre
tions to 

 ! 4f 
learly ex
eeds the s
ope of this work, be
ause the o

urringtensors integrals 
an have an even higher rank than in e+e� ! 4f . Furthermore, due tothe 
omplexity of su
h a 
al
ulation, the run-time of the 
orresponding 
omputer 
odewould be rather long. Therefore, a 
al
ulation of the O(�) 
orre
tions in DPA is a valuablestep in a pre
ise des
ription of the pro
ess 

 !WW! 4f .Close to the produ
tion threshold of W pairs, the error estimate of 0:5% is not reliableanymore, be
ause the ba
kground diagrams are not suppressed by �=MW with respe
t tothe signal diagrams anymore. Hen
e, in this region the DPA 
annot be trusted. Belowthe threshold, only one W-boson propagator 
an be
ome resonant. Thus, a single-poleapproximation 
ould be used. However, sin
e the 
ross se
tion is relatively small in thisregion, we only use an improved Born approximation for the 
orre
tions. The exa
t detailswill be given in Chapter 4.Cal
ulating the O(�) 
orre
tions to the resonan
e pro
ess 

 ! WW ! 4f is, how-ever, not straightforward. First of all, this would mean singling out a spe
i�
 set ofdiagrams whi
h 
auses a violation of gauge invarian
e, and, thus, a violation of Wardidentities. In prin
iple, these e�e
ts are of higher order, but they 
an be enhan
ed, be-
ause the unitarity 
an
ellations are spoiled. This is a problem espe
ially at large energies,be
ause of the appearan
e of ratios of di�erent s
ales, su
h as a momentum of the s
at-tering pro
ess and a mass [ 18, 25, 26℄. A solution is provided by the DPA in whi
h onlythe leading 
ontribution of an expansion around the resonan
es of the propagators (poleexpansion) is taken into a

ount. This expansion also provides a natural way for imple-menting the width of the W bosons, a problem that will be dis
ussed in the next se
tion.The pole expansion will be explained in Se
tion 2.4 while the details of the 
al
ulation ofthe radiative 
orre
tions to 

 !WW! 4f in DPA will be given in Chapter 4.
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ollisions 13In applying the DPA we basi
ally follow the strategy of Ref. [ 19℄, i.e. we 
al
ulateonly the virtual 
orre
tions in DPA, and use the exa
t matrix elements for the lowestorder and for the real 
orre
tions. On the one hand, this requires the 
al
ulation of the
omplete lowest-order matrix elements of the pro
ess 

 ! 4f
. On the other hand,it avoids the distin
tion between di�erent regions of photon momenta. For example, ifE
 � �W a photon that is emitted from a resonant W boson might lead to two over-lapping resonan
es, and it is diÆ
ult to estimate the resulting theoreti
al un
ertainty.Furthermore, depending on the de�nition of the observable, the photoni
 
orre
tions 
anbe large so that a 
al
ulation of them without approximation is desirable.2.2.2 Anomalous 
ouplingsThe pro
ess 

 ! WW o�ers the possibility to measure the gauge 
ouplings 
WWand 

WW very pre
isely. Thus, it is possible to sear
h for the e�e
t of new physi
s atan energy � that is larger than the ele
troweak s
ale. The in
uen
e of the high-energytheory 
an be des
ribed by an e�e
tive theory that is valid at the energy s
ale that 
an bea

essed by 
olliders. This e�e
tive theory would break down at the energy � so that itneed not be renormalizable and 
an 
ontain higher-dimensional operators. Not knowingthe high-energy theory, a reasonable approa
h is to guess these new operators, guided bysymmetry prin
iples, and to put limits on the size of the 
ouplings in these operators.The 
orresponding 
ouplings are 
alled anomalous 
ouplings as they deviate from the SM
ouplings.With the ex
eption of Ref. [ 27℄, the existing analyses on anomalous 
ouplings at a

 
ollider, whi
h fo
us on anomalous triple gauge-boson 
ouplings (ATGC) [ 15, 28℄, onanomalous quarti
 gauge-boson 
ouplings (AQGC) [ 29, 30℄, on CP-violating gauge-boson
ouplings [ 31℄, and on e�e
ts of strongly intera
ting longitudinal W bosons [ 32℄, treatW bosons as stable. In the above studies radiative 
orre
tions were not fully taken intoa

ount either.In our 
al
ulation anomalous 
ouplings are introdu
ed in the lowest-order matrix el-ements for the pro
esses 

 ! 4f . The 
oeÆ
ients of the 
orresponding anomalousoperators are already 
onstrained from the LEP2 analysis to be small. Therefore, the in-
lusion of anomalous 
ouplings 
an be viewed as an expansion in these 
oeÆ
ients whi
hare of O(�).2.2.3 Higgs produ
tionAs already mentioned in Se
tion 2.1, the pro
ess 

 ! H is one of the most inter-esting pro
esses at a 

 
ollider. For Higgs masses of MH >� 135GeV, the Higgs bosondominantly de
ays into W and Z bosons. Thus, the pro
esses 

 ! H!WW=ZZ! 4f
an be observed. In Se
tion 3.3 we take this rea
tion into a

ount in our lowest-order
al
ulation by de�ning an e�e
tive 

H 
oupling that is derived from the loop-indu
edSM vertex. On the other hand, the pro
ess 

 ! H!WW is 
ontained in the one-loop
orre
tions to 

 ! WW, whi
h will be dis
ussed in Chapter 4. In Se
tion 4.2.2.4 wedes
ribe how the Higgs resonan
e is separated in a gauge-invariant way allowing for thein
lusion of higher-order 
orre
tions to the Higgs signal in the future.
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ollider2.3 Problems with unstable parti
les in �eld theoryAn overview of unstable parti
les in �eld theory 
an be found in Ref. [ 33℄. In thefollowing we will sket
h the issue of unitarity, the de�nition of the mass and width of anunstable parti
le, the implementation of the width in perturbative 
al
ulations, and thepole expansion.The �rst problem that 
an be en
ountered with unstable parti
les is the validity ofunitarity, and related to this, of 
ausality. The s
attering of parti
les is des
ribed by theS-matrix Sfi = h	�f j	+i i; (2.3.1)whi
h is related to the probability amplitude for an \in" state j	+i i to evolve to an \out"state j	�f i. These asymptoti
 states are de�ned via the limitj	�� i = limt!�1U(t; t0)jp�i (2.3.2)with the time-evolution operator in the intera
tion pi
ture U(t; t0) and the momentumeigenstates jp�i. The origin of the problem obviously lies in the fa
t that unstable par-ti
les 
annot be de�ned as asymptoti
 states. Hen
e, unstable parti
les should only be
onsidered as virtual intermediate states, and should not be 
ontained in the Hilbert spa
eof asymptoti
 states. In Ref. [ 34℄ it was shown that su
h a theory respe
ts unitarity and
ausality.Another problem is the �nite width of unstable parti
les. The propagator of an unsta-ble parti
le involves a fa
tor 1=(p2�m2), where p is the momentum and m the mass of theparti
le. If p2 is not �xed but must be integrated over like in the pro
ess 

 !WW! 4f ,this would lead to an in�nite result at lowest order of perturbation theory. This 
an be
ured by in
luding higher-order 
ontributions from the self-energy �(p2) of the unstableparti
le. Performing a Dyson summation, i.e. summing up the self-energies to all orders,the propagator of a s
alar parti
le be
omesP (p2) = ip2 �m2 1Xn=0 ��(p2)p2 �m2!n= ip2 �m2 + �(p2) : (2.3.3)Close to the resonan
e, the self-energy behaves as �(p2) � im�. The 
onstant � 
an beviewed as width of the parti
le. This be
omes 
lear when squaring the propagator,jP (p2)j2 gp2!m2 1(p2 �m2)2 +m2�2 ; (2.3.4)whi
h yields a Breit-Wigner pro�le. When the Fourier transform is taken, an exponentialde
ay 
an be observed jP (x)j2 / exp(�m�Ep t); (2.3.5)where Ep is the energy of the parti
le.
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les in �eld theory 15Using the Dyson summation of Eq. (2.3.3) mixes di�erent orders of perturbation the-ory. In the beginning of this se
tion we already mentioned that sele
ting spe
i�
 diagramsof the O(�) 
orre
tions to the pro
ess 

 ! 4f potentially violates gauge invarian
e. Thisis also the 
ase if the width is in
luded by a Dyson summation. A possible solution isprovided by taking into a

ount even more higher-order terms in order to obtain a gauge-invariant set of diagrams. In Ref. [ 25℄ it was noted that the 
ontribution to the imaginarypart of the gauge-boson self-energy near the resonan
e and, hen
e, to the width, origi-nates from fermion loops. Consequently, also vertex 
orre
tions with 
losed fermion loopswere taken into a

ount whi
h leads to a gauge-invariant result. In a more general waythis 
an be done in the ba
kground-�eld method [ 7, 35℄ so that also bosoni
 loops 
anbe taken into a

ount. The drawba
k of this method is the large 
al
ulational e�ort thatis ne
essary, be
ause the width 
al
ulated at n-loop level only yields a des
ription of theresonan
e that is a

urate at the (n� 1)-loop level.A simpler way is provided by the naive �xed-width s
heme, were a �xed width isin
luded in all propagators, also in spa
e-like propagators. In prin
iple, it is not ne
es-sary to in
lude a width in spa
e-like propagators. However, 
ompared to the step-widths
heme, where the width is only in
luded in time-like propagators, the �xed-width s
hemehas the advantage that it respe
ts U(1) gauge invarian
e. Both s
hemes violate SU(2)symmetry and the 
orresponding Ward identities. A more a

urate des
ription of theself-energy 
lose to resonan
e is provided by the running-width s
heme, where im� isrepla
ed by ip2(�=m)�(p2). The step fun
tion indi
ates that the width is only introdu
edin time-like propagators. This s
heme also violates both U(1) and SU(2) invarian
e, andnow these e�e
ts 
an even be enhan
ed by the fa
tor p2 at large energies. Examples forthis phenomenon were found, e.g., in Refs. [ 18, 25, 26℄.Finally, the 
omplex-mass s
heme [ 18℄, where the mass is repla
ed bym!pm2 � im�at the level of the Lagrangian density, respe
ts all Ward identities. At lowest oder thiss
heme is similar to the �xed-width s
heme. The only di�eren
e is that the width alsoappears in other quantities that are de�ned through the mass, su
h as the weak mixingangle.The appli
ation of the �xed-width, the step-width, the running-width, and the 
omplex-mass s
heme for the lowest-order pro
esses 

 ! 4f(
) will be dis
ussed in Se
tion 3.1.4.For the pro
esses e+e� ! 4f(
) this has, e.g., been done in Ref. [ 18℄. In Chapter 5 thegeneralization of the 
omplex-mass s
heme to the one-loop order [ 24℄ will be used for the
al
ulation of the O(�) 
orre
tions to H!WW=ZZ! 4f without resonan
e expansion.Until now, we did not spe
ify how to renormalize the mass of an unstable parti
le. Thiswill be important for the next se
tion, where we need the 
on
ept of the 
omplex-pole massin 
ontrast to the more 
ommon on-shell mass. In Eq. (2.3.3) the ultraviolet divergen
eof the self-energy has to be absorbed into a rede�nition of the mass. However, the exa
tform of the rede�nition involves some arbitrariness, whi
h is �xed by a renormalization
ondition. In the 
ase of stable parti
les, where the self-energy is a real quantity nearp2 = m2, the square of the mass is de�ned as the lo
ation of the pole of the propagator.



16 Four-fermion produ
tion at the 

 
olliderIn analogy, the on-shell mass for an unstable parti
le is de�ned as the zero of the realpart of the inverse propagator, m2OS = m20 � Re�(m2OS); (2.3.6)where m0 is the bare mass. The 
orresponding on-shell width is obtained from the prop-agator in Eq. (2.3.3),P (p2) = i 1 + Re�0(m2OS)p2 �m2OS + i Im�(p2)1+Re�0(m2OS) +O(p2 �m2OS); (2.3.7)as mOS�OS = Im�(mOS)1 + Re�0(m2OS) : (2.3.8)Alternatively, the 
omplex pole position 
an be used as renormalization 
ondition,resulting in M2 = m20 � �(M2); M2 = m2pole � impole�pole; (2.3.9)where mpole is 
alled pole mass and M is the 
omplex-pole mass. Sin
e the lo
ation ofthe 
omplex pole is a property of the S-matrix, the pole mass is gauge invariant, whereasthe on-shell mass be
omes gauge dependent beyond one-loop order [ 36℄. Unfortunately,mOS is sometimes 
alled pole mass in the literature. It is, however, important to note,that mOS and mpole in fa
t di�er by 2-loop terms. This 
an be seen by expanding the realand 
omplex parts of Eq. (2.3.9) separately in terms of � � mpoleO(�), resulting inm2pole = m20 � Re�(m2pole)�mpole�pole Im�0(m2pole) +O(�3);mpole�pole = Im�(m2pole)�mpole�poleRe�0(m2pole) +O(�3): (2.3.10)We 
an now determine the di�eren
e of the on-shell and the pole mass,m2OS = m2pole + Im�(m2pole) Im�0(m2pole) +O(�3)� m2pole + �2pole +O(�3): (2.3.11)In the se
ond line it is assumed that the main 
ontribution to the width originates fromlight fermions. For the W boson the di�eren
e 
orresponds to mOS �mpole � 28MeV.2.4 The pole expansionThe pole expansion is an expansion around the pole of the propagator. It 
an beviewed as an expansion in terms of �=m. Performing a 
al
ulation in the double-poleapproximation (DPA) means to 
al
ulate the �rst term of a (double-)pole expansion. Asalready mentioned in the previous se
tions, the reason to use the DPA to 
al
ulate theradiative 
orre
tions to the pro
ess 

 ! WW ! 4f is twofold. Sin
e ea
h term of thepole expansion is gauge invariant, the DPA provides a means of 
al
ulating a redu
ed setof diagrams, the W-pair signal diagrams in our 
ase, in a gauge-invariant way. Se
ond,
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produ
tion de
ayFigure 2.2: A generi
 fa
torizable diagram.the pole expansion naturally enables us to in
orporate also the �nite gauge-boson widthin a gauge-invariant way.The terms with the highest degree of resonan
e in the pole expansion 
an be expressedby the 
omplex pole position and the residue at this pole, whi
h are properties of the S-matrix, and they are therefore gauge invariant. The resonant terms 
onsist in two di�erentkinds of 
ontributions. First, there are fa
torizable 
ontributions. The 
orrespondingdiagrams fa
torize into the produ
tion pro
ess of the unstable parti
le and the subsequentde
ay pro
ess. The generi
 stru
ture is shown in Figure 2.2.After Dyson summation the matrix elements of the fa
torizable diagrams 
an be ex-panded around the square of the 
omplex-pole mass M2 asMfa
t = W (p2)p2 �m2 + �(p2) = !(M2)p2 �M2 + n(p2); (2.4.1)with w(M2) = W (M2)1 + �0(M2) ; (2.4.2)where W (p2) 
ontains the parts of the matrix elements that are related to the produ
tionand the de
ay pro
esses. Equation (2.4.1) separates resonant and non-resonant terms ina gauge-invariant way. Yet, the de�nition of W (M2) is un
lear, be
ause with a 
omplexargument it would involve 
omplex momenta. This problem 
an be 
ir
umvented by analternative expansion around a real mass m. If m is the pole mass, the following relationshold exa
tly, otherwise they hold up to higher-order terms. Assuming that this mass hasbeen renormalized, the expansion readsM = W (p2)p2 �m2 1Xn=0 ��(p2)p2 �m2!2 = �N(p2) + W�1(m2)p2 �m2 + 1Xn=2 W�n(p2 �m2)n ; (2.4.3)with W�1(m2) =W (m2) + 1Xn=1 1n! " dn(dp2)nW (p2) ���(p2)�n#p2=m2 : (2.4.4)The quantities �N(p2) and W�n 
an be de�ned a

ordingly. In Ref. [ 37℄ it was shown toall orders that !(M2) = W�1(m2); n(p2) = �N(p2): (2.4.5)With this relation we are now able to 
al
ulate the one-loop 
orre
tions to the �rst termof the pole expansion,W (1)�1 (m2) =W (1)(m2)�W (0)(m2)�(1) 0(m2)�W (0)0(m2)�(1)(m2); (2.4.6)
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ollider
produ
tion de
ay

q
Figure 2.3: A manifestly non-fa
torizable diagram.where the supers
ripts denote the order of perturbation theory. The se
ond term 
orre-sponds to the wave-fun
tion renormalization of the resonant �eld. Sin
e the last term ofEq. (2.4.6) is already 
ontained in the 
omplete leading order result, we 
an write thefa
torizable one-loop 
orre
tions in the pole approximation asMPA;fa
t = W (1)(m2)p2 �M2 � W (0)(m2)�(1) 0(m2)p2 �M2= Xpol 1p2 �M2 �M(1)produ
tionM(0)de
ay +M(0)produ
tionM(1)de
ay� ; (2.4.7)where we sum over the polarizations of the unstable parti
le. The matrix elementMPA;fa
tdepends on the 
omplete on-shell matrix elements for the produ
tion and the de
ay, whi
hare gauge invariant, and on the 
omplex pole position M2. Consequently, it is also gaugeinvariant.Se
ond, there are non-fa
torizable diagrams where the produ
tion and de
ay pro
essesare linked by a massless parti
le like the photon in our 
ase. A generi
 diagram of thiskind is shown in Figure 2.3. If this linking parti
le was massive, the position of theresonan
e in phase spa
e would be 
hanged with respe
t to the lowest-order diagram.After squaring the matrix element, these diagrams do not 
ontribute to the �rst termsin the pole expansion. For the same reasoning only soft photons 
ontribute, so that thenon-fa
torizable 
ontributions 
an be written as a 
orre
tion fa
tor times the leading-order resonant 
ross se
tion. Power 
ounting reveals that in the limit p2 ! m2 andq ! 0, where q is the photon momentum, the non-fa
torizable diagrams develop a linearsingularity (a quadrati
 singularity in the 
ase of two resonan
es). Remote from theresonan
e, the singularity is mitigated to a logarithmi
 singularity. Hen
e, the linearsingularity is 
hara
teristi
 for the 
ontribution of the non-fa
torizable diagrams to the�rst term in the pole expansion and 
an be used to split o� non-resonant terms.But there are also diagrams that 
ontain both a fa
torizable and a non-fa
torizable
ontribution. An example is shown in Figure 2.4, where the photon is atta
hed to theresonant parti
le and an external parti
le. Alternatively, it may be emitted and reab-sorbed by the resonant parti
le. Taking the on-shell limit (p2 ! m2 everywhere but inthe resonant propagator) before � ! 0, where � is the photon mass, obviously yields afa
torizable 
ontribution. However, these two limits do not 
ommute, and performing ano�-shell 
al
ulation with � ! 0 and then taking p2 ! m2 gives a di�erent result. This
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produ
tion de
ay

q
Figure 2.4: A diagram that 
ontains both fa
torizable and non-fa
torizable 
ontributions.shows that these diagrams, whi
h are neither manifestly fa
torizable nor manifestly non-fa
torizable, 
ontain both types of 
ontributions. We also arrive at this 
on
lusion whenwe try to de�ne a gauge-invariant 
ontribution from the non-fa
torizable diagrams. This
an be done by subtra
ting the fa
torizable resonant 
ontribution (de�ned by p2 ! m2)from the 
omplete resonant 
ontribution. Sin
e these terms are both gauge invariant,as explained above, the result is gauge invariant as well. While the diagram depi
ted inFigure 2.4 re
eives 
ontributions from the whole range of the photon momenta q, aftersubtra
ting the fa
torizable 
ontribution, only soft photons 
ontribute. Thus, the non-fa
torizable 
ontribution, de�ned in this way, 
an still be written as a 
orre
tion fa
tor tothe Born 
ross se
tion.In Ref. [ 38℄ the possible impa
t of non-fa
torizable 
ontributions was dis
ussed. Itwas proven that for in
lusive quantities their e�e
t is suppressed by �=m. In
lusive inthis 
ontext means, that the invariant mass of the unstable parti
le has to be integratedover 
ompletely. Sin
e we only take into a

ount the �rst term of the pole expansion, thenon-fa
torizable 
ontributions vanish for in
lusive quantities in the pole approximation.However, they be
ome important, e.g., in invariant-mass distributions of the unstableparti
le.



Chapter 3Lowest-order predi
tions for

 ! 4f(
)3.1 Analyti
al results for amplitudes in the Standard Model3.1.1 Notation and 
onventionsWe 
onsider rea
tions of the types
(k1; �1) + 
(k2; �2) ! f1(p1; �1) + �f2(p2; �2) + f3(p3; �3) + �f4(p4; �4); (3.1.1)
(k1; �1) + 
(k2; �2) ! f1(p1; �1) + �f2(p2; �2) + f3(p3; �3) + �f4(p4; �4) + 
(p5; �5): (3.1.2)The arguments label the momenta ki, pj and heli
ities �k, �l (whi
h take the values �1=2in the 
ase of fermions and �1 in the 
ase of photons) of the 
orresponding parti
les.We often use only the signs to denote the heli
ities. The fermion masses are negle
tedeverywhere assuming that all mass singularities are avoided by appropriate phase-spa
e
uts. In Se
tion 4.3.2, however, we will restore the mass logarithms for non-
ollinear-safeobservables.For the Feynman rules we follow the 
onventions of Ref. [ 6℄. We extend the usual lin-ear gauge-�xing term (1.2.15) in the 't Hooft{Feynman gauge by a term that is non-linearin the gauge �elds a

ording to Refs. [ 18, 39, 40℄. In this way the vertex 
W� vanishes,where � are the would-be Goldstone bosons 
orresponding to the W bosons. Note thatthis also a�e
ts the gauge-boson 
ouplings 

WW and 
WW. The 
orresponding Feyn-man rules relevant for 

 ! 4f(
) in lowest order 
an be found in Ref. [ 18℄. Sin
e wenegle
t fermion masses, the would-be Goldstone bosons do not 
ouple to fermions and donot o

ur in the Feynman graphs of the SM amplitudes to 

 ! 4f(
), whi
h leads to a
onsiderable redu
tion of the number of Feynman diagrams.3.1.2 Classi�
ation of �nal states for 

 ! 4f(
)The �nal states for 

 ! 4f and 

 ! 4f
 
an be 
lassi�ed similarly to the pro
essese+e� ! 4f and e+e� ! 4f
 [ 18℄. In the following, f and F are di�erent fermions(f 6= F ), and f 0 and F 0 denote their weak-isospin partners, respe
tively. We distinguishbetween states that are produ
ed via 
harged-
urrent (CC, 
orresponding to W bosons),20
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urrent (NC, 
orresponding to photons or Z bosons) intera
tions, or via bothintera
tion types:(i) CC rea
tions:

 ! f �f 0F �F 0 (CC31 family),(ii) NC rea
tions:(a) 

 ! f �fF �F (NC40 family),(b) 

 ! f �ff �f (NC2�40 family),(iii) Mixed CC/NC rea
tions:

 ! f �ff 0 �f 0 (mix71 family).The radiation of an additional photon does not 
hange this 
lassi�
ation. FollowingRef. [ 41℄ we give the names of the pro
ess families in parentheses where the numbers
orrespond to the number of Feynman diagrams involved in unitary or non-linear gauge(for pro
esses without neutrinos in the �nal state, not 
ounting gluon-ex
hange diagrams).Sin
e the matrix elements depend on the 
olour stru
ture of the �nal state, we furtherdistinguish between leptoni
, semi-leptoni
, and hadroni
 �nal states. Keeping in mindthat we negle
t fermion masses, omitting four-neutrino �nal states, and suppressing re-a
tions that are equivalent by CP symmetry we end up with 17 di�erent representativepro
esses whi
h we have listed in Table 3.1.Sin
e the photons are polarized after Compton ba
ks
attering, �nal states that are
avour equivalent up to a CP transformation need not ne
essarily yield the same 
rossse
tion if the 
onvolution over a realisti
 photon beam spe
trum is in
luded. However,as we negle
t fermion masses, this is only relevant for the semi-leptoni
 CC pro
esses

 ! e���eu�d(
) and 

 ! �ee+d�u(
).3.1.3 Lowest-order amplitudes for 

 ! 4f3.1.3.1 Constru
tion of matrix elementsThe amplitudes for the pro
esses 

 ! 4f are 
onstru
ted by atta
hing the twoin
oming photons in all possible ways to the 
orresponding diagrams with four externalfermions as shown in Figure 3.1. The matrix element of the generi
 diagram in Figure 3.1,where two fermion lines are linked by a gauge boson V , 
an be written asM�1�2�3�4�1�2;V (ki; pj; Qj) = 4e4Æ�1;��2Æ�3;��4 g�1V �f1f2g�3V �f3f4A�1�3�1�2;V (ki; pj; Qj); (3.1.3)where ki, pj, and Qj (i = 1; 2; j = 1; ::; 4) stand for the momenta and relative ele
tri

harges of the parti
les, respe
tively. The 
oupling fa
tors g have been introdu
ed in(1.2.18). For the gluon 
oupling we de�neg�g �fifi = gse : (3.1.4)
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 ! 4f(
)�nal state rea
tion type 

 !leptoni
 CC e���e���+NC(a) e�e+�����e�e+���+NC(b) e�e+e�e+CC/NC e�e+�e��esemi-leptoni
 CC(
) e���eu�dNC(a) �e��eu�u�e��ed�de�e+u�ue�e+d�dhadroni
 CC u�ds�
NC(a) u�u
�
NC(a) u�us�sNC(a) d�ds�sNC(b) u�uu�uNC(b) d�dd�dCC/NC u�ud�dTable 3.1: Set of representative pro
esses for 

 ! 4f(
).Quark mixing is negle
ted everywhere, i.e. we set the CKM matrix equal to the unitmatrix. The auxiliary fun
tions A�1�3�1�2;V are 
al
ulated within the Weyl{van-der-Waerden(WvdW) formalism following the 
onventions of Ref. [ 42℄. The WvdW spinor produ
tsare de�ned byhpqi = �ABpAqB = 2pp0q0  e�i�p 
os �p2 sin �q2 � e�i�q 
os �q2 sin �p2 !; (3.1.5)where pA, qA are the asso
iated momentum spinors for the momentap� = p0(1; sin �p 
os�p; sin �p sin�p; 
os �p);q� = q0(1; sin �q 
os�q; sin �q sin�q; 
os �q): (3.1.6)Moreover, we de�ne the shorthandshpiPkpji = pi; _AP _ABk pj;B = pi; _Ap _Ak pBk pj;B = hpipki�hpjpki;hpi[Pl + Pm℄pji = hpiPlpji+ hpiPmpji; (3.1.7)where pk;l;m are light-like momenta, i.e., p2k = p2l = p2m = 0. In the following, thedenominators of the gauge-boson propagators are abbreviated byPV (p) = 1p2 �M2V ; V = 
;Z;W; g; M
 =Mg = 0: (3.1.8)
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f3�f4V f1�f2
2
1Figure 3.1: Generi
 diagram for the pro
ess 

 ! 4f where the photons 
1; 
2 
ouple tothe fermions f1; : : : ; �f4 and the gauge boson V in all possible ways.The introdu
tion of the �nite width is des
ribed in Se
tion 3.1.4 below.The auxiliary fun
tions A�1�3�1�2;V expli
itly readA��++;V (ki; pj; Qj) = (hp2p4i�)2� (�Q21 hp1p2i�hp3p4iPV (p3 + p4)hk1p1i�hk1p2i�hk2p1i�hk2p2i� �Q1Q3 (p1 + p2 � k1)2PV (p1 + p2 � k1)hk1p1i�hk1p2i�hk2p3i�hk2p4i�+Q3(Q1 �Q2)PV (p1 + p2)� "�hp2p4i�hp1p2i+ hk1p4i�hk1p1iM2V PV (p1 + p2 � k1)hk1p2i�hk1p4i�hk2p3i�hk2p4i� + (k1$ k2)#+ (Q1 �Q2)2PV (p1 + p2)PV (p3 + p4) "�hp2p4i� hp2p4i�hp1p2ihp3p4i+M2V hp1p3i2hk1p2i�hk1p4i�hk2p2i�hk2p4i�+ M2V PV (p1 + p2 � k1) hk1p1ihk2p3ihk1p2i�hk2p4i�#+ �fp1; Q1; p2; Q2g$fp3; Q3; p4; Q4g�);A��+�;V (ki; pj; Qj) = Q21PV (p3 + p4)hp2p4i�hk1p1ihk2[P2 + P4℄p3ihk1p1i�hk2p1i(p2 + p3 + p4)2+Q22PV (p3 + p4)hk2p2i�hp1p3ihp4[P1 + P3℄k1ihk1p2i�hk2p2i(p1 + p3 + p4)2+Q1Q2PV (p3 + p4)hp2[K1 � P1℄p3ihp4[K1 � P3℄p1ihk1p1i�hk1p2i�hk2p1ihk2p2i+ (Q2 �Q1)PV (p3 + p4) hp2p4i�hp1p3ihk1p2i�hk2p1i "Q2 hp4[K1 � P3℄p1ihk1p4i�hk2p2i +Q1 hp2[K1 � P1℄p3ihk1p1i�hk2p3i #+ 12(Q2 �Q1)2PV (p1 + p2)PV (p3 + p4)� hp2p4i�hp1p3i�hp2[K1 � P1℄p3ihp4[K1 � P3℄p1i �M2V hp2p4i�hp1p3i�hk1p2i�hk1p4i�hk2p1ihk2p3i
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tions for 

 ! 4f(
)+ [�Q1 + (Q1 �Q2)2(k1p1)PV (p1 + p2)℄ [Q4 + (Q3 �Q4)2(k2p4)PV (p3 + p4)℄� (hp2[K1 � P1℄p3i)2PV (p1 + p2 � k1)hk1p1i�hk1p2i�hk2p3ihk2p4i+ �fp1; Q1; p2; Q2g$fp3; Q3; p4; Q4g�: (3.1.9)The other auxiliary fun
tions A�1�3�1�2;V follow from the relationsA��1;�3�1�2;V (ki; pj; Qj) = hA�1�3�1�2;V (ki; pj; Qj)ifp1;Q1g$fp2;�Q2g ;A�1;��3�1�2;V (ki; pj; Qj) = hA�1�3�1�2;V (ki; pj; Qj)ifp3;Q3g$fp4;�Q4g ; (3.1.10)and A��1;��3��1;��2;V (ki; pj; Qj) = hA�1�3�1�2;V (ki; pj; Qj)i� : (3.1.11)The last relation expresses a parity transformation. Note that the operation of 
omplex
onjugation in Eq. (3.1.11) must not a�e
t the gauge-boson widths in the propagatorfun
tions PV whi
h will be introdu
ed in Se
tion 3.1.4.The 
al
ulation of the heli
ity amplitudes for 

 ! 4f
 pro
eeds along the same lines.The result, however, is quite lengthy so that we do not write it down expli
itly.3.1.3.2 Squared amplitudes for leptoni
 and semi-leptoni
 �nal statesThe result for leptoni
 and semi-leptoni
 �nal states follows immediately from thegeneri
 amplitude (3.1.3). The gauge boson 
annot be a gluon in this 
ase, and the sumover the 
olour degrees of freedom in the squared matrix elements trivially leads to theglobal fa
tors N 
lept = 1 and N 
semilept = 3. Note that for NC diagrams the result for theamplitude is mu
h simpler than for CC diagrams, sin
e all terms in Eq. (3.1.9) involvinga fa
tor (Q1 � Q2) or (Q3 � Q4) drop out. Most of these terms originate from diagramswhere a photon 
ouples to a virtual W boson.The expli
it results for the 
olour-summed squared matrix elements readX
olour jMCCj2 = N 
jMWj2; (3.1.12)X
olour jMNC(a)j2 = N 
 jMNCj2 ; (3.1.13)X
olour jMNC(b)j2 = N 
 ���MNC � [MNC℄fp1;Q1;�1g$fp3;Q3;�3g���2 ; (3.1.14)X
olour jMCC=NCj2 = N 
 ���MNC � [MW℄fp1;Q1;�1g$fp3;Q3;�3g���2 ; (3.1.15)where we use the shorthand MNC = XV=
;ZMV (3.1.16)and suppress the heli
ity indi
es and the dependen
e on momenta and relative 
harges.The relative signs a

ount for inter
hanging external fermion lines.
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 �nal statesNext we 
onsider purely hadroni
 �nal states, i.e., the 
ases where all �nal-statefermions are quarks. This renders the summation of the squared matrix elements over the
olour degrees of freedom non-trivial, and in addition gluon-ex
hange diagrams appear.Sin
e gluon-ex
hange diagrams require two quark{anti-quark pairs in the �nal state theydo not appear in CC pro
esses. For CC pro
esses there is only one possibility for the
olour 
ow, and the summation over the 
olour degrees of freedom leads to an overallfa
tor N 
had;CC = 32 = 9 to the squared matrix elements as given in Eq. (3.1.12).For NC rea
tions we have to 
ompute the sum of pure ele
troweak (ew) and gluon-ex
hange (QCD) matrix elements,M
1
2
3
4had =M
1
2
3
4had;ew +M
1
2
3
4had;QCD; (3.1.17)where 
i denotes the 
olour indi
es of the quarks. The ele
troweak diagrams are diagonalin 
olour spa
e and therefore readM
1
2
3
4NC(a);had;ew = MNCÆ
1
2Æ
3
4 ;M
1
2
3
4NC(b);had;ew = MNCÆ
1
2Æ
3
4 � [MNC℄fp1;Q1;�1g$fp3;Q3;�3g Æ
3
2Æ
1
4: (3.1.18)The gluon-ex
hange diagrams are obtained from the generi
 formula (3.1.3) by insertingthe 
orresponding generators, �a=2, of the gauge group SU(3),M
1
2
3
4NC(a);had;QCD = Mg 14�a
1
2�a
3
4 ;M
1
2
3
4NC(b);had;QCD = Mg 14�a
1
2�a
3
4 � [Mg℄fp1;Q1;�1g$fp3;Q3;�3g 14�a
3
2�a
1
4 : (3.1.19)The matrix element Mg is de�ned by Eq. (3.1.3) with V = g.Carrying out the 
olour sum using the 
ompleteness relation for the Gell-Mann ma-tri
es, �aij�akl = �23ÆijÆkl + 2ÆilÆjk; (3.1.20)yieldsX
olour jMNC(a);hadj2 = 9jMNCj2 + 2jMgj2;X
olour jMNC(b);hadj2 = 9jMNCj2 + 9 ���[MNC℄fp1;Q1;�1g$fp3;Q3;�3g���2 + 2jMgj2+ 2 ���[Mg℄fp1;Q1;�1g$fp3;Q3;�3g���2 � 6RenMNC [M�NC℄fp1;Q1;�1g$fp3;Q3;�3go+ 43 Re�Mg hM�gifp1;Q1;�1g$fp3;Q3;�3g�� 8Re�MNC hM�gifp1;Q1;�1g$fp3;Q3;�3g�� 8RenMg [M�NC℄fp1;Q1;�1g$fp3;Q3;�3go : (3.1.21)All squared matrix elements of this se
tion have been 
ompared numeri
ally withresults obtained with the program Madgraph [ 43℄ at several phase-spa
e points, andperfe
t agreement has been found.



26 Lowest-order predi
tions for 

 ! 4f(
)3.1.4 Implementation of �nite gauge-boson widthsWe have implemented the �nite widths of the W- and Z-boson propagators1 in fourdi�erent ways:� �xed width in all propagators:PV (p) = 1p2 �M2V + iMV �V ; (3.1.22)� step width (�xed width in time-like propagators):PV (p) = 1p2 �M2V + iMV �V �(p2) ; (3.1.23)� running width in time-like propagators:PV (p) = 1p2 �M2V + ip2(�V =MV )�(p2) ; (3.1.24)� 
omplex-mass s
heme [ 18℄: 
omplex gauge-boson masses are used everywhere, i.e.qM2V � iMV �V instead of MV in all propagators and 
ouplings. This results in a
onstant width in all propagators,PV (p) = 1p2 �M2V + iMV �V ; (3.1.25)and in a 
omplex weak mixing angle
2w = 1� s2w = M2W � iMW�WM2Z � iMZ�Z : (3.1.26)The virtues and drawba
ks of the �rst three s
hemes were mentioned in Se
tion 2.3and are dis
ussed in more detail in Ref. [ 25℄. All but the 
omplex-mass s
heme, ingeneral, violate SU(2) gauge invarian
e, the step- and the running-width s
hemes alsoviolate ele
tromagneti
 U(1)em gauge invarian
e, whi
h is preserved by using a �xed width.As known from many examples in e+e� physi
s [ 18, 25, 26℄, gauge-invarian
e-violatinge�e
ts, in parti
ular when enhan
ed by fa
tors p2=M2V as in the running-width s
heme,
an lead to totally wrong results. Furthermore, the violation of U(1)em gauge invarian
ealso 
auses a dependen
e of matrix elements and 
ross se
tions on the gauge 
hosen forexternal photons. In e+e� ! 4f and e+e� ! 6f this problem does not o

ur sin
e noexternal photons are involved.1We have also supplemented the expli
it gauge-bosonmasses appearing in the numerators of Eq. (3.1.9)by the 
orresponding widths, be
ause these mass terms originate from denominators upon 
ombiningdi�erent diagrams.



Analyti
al results for amplitudes in the Standard Model 27The 
omplex-mass s
heme, whi
h was introdu
ed in Ref. [ 18℄ for tree-level 
al
ula-tions, preserves gauge invarian
e and thus all Ward identities whi
h rule gauge 
an
ella-tions. Its appli
ation is parti
ularly simple for 

 ! 4f(
) in the non-linear gauge. Inthis 
ase, no 
ouplings involving expli
it gauge-boson masses appear, and it is suÆ
ientto introdu
e the �nite gauge-boson widths in the propagators [
f. Eq. (3.1.25)℄ and tointrodu
e the 
omplex weak mixing angle (3.1.26) in the 
ouplings.For CC pro
esses 

 ! 4f(
) with massless fermions, the �xed-width (FW) approa
hin the non-linear gauge and the 
omplex-mass s
heme (CMS) are pra
ti
ally equivalent,be
ause all Feynman graphs are proportional to e4=s2w (e5=s2w) and gauge-boson massesappear only in propagator denominators. In this 
ase the 
orresponding amplitudes inthe two s
hemes di�er only in the global fa
tor s2w;FW=s2w;CMS, where sw;FW and sw;CMSare the values of sw in the di�erent s
hemes, i.e., sw;FW is derived from the ratio of realgauge-boson masses and sw;CMS from 
omplex masses. Thus, both squared amplitudesare gauge invariant and are equal up to the fa
tor jsw;FW=sw;CMSj4 whi
h is equal to 1 upto terms of O(�2W=M2W).For NC and CC/NC pro
esses a similar reasoning 
an be used to show that the �xed-width approa
h does not violate gauge invarian
e in 

 ! 4f(
) for massless fermions.The tri
k is to apply the above argument to gauge-invariant subsets of diagrams. For NCdiagrams with photon ex
hange, whi
h is the (gauge-invariant) QED subset of diagrams(Figure 3.1 with V = 
), there is nothing to show. The sum of NC diagrams of type NC(a)with Z-boson ex
hange (Figure 3.1 with V = Z) again involves 
w and sw only in a global
oupling fa
tor (per heli
ity 
hannel); the remaining dependen
e on the gauge-bosonmasses is lo
ated in the propagator denominators. Thus, the subamplitudes of the �xed-width and the 
omplex-mass s
heme are again identi
al up to a global fa
tor and bothpreserve gauge invarian
e and Ward identities. For NC pro
esses of type NC(b) a se
ond
lass of diagrams exists (Figure 3.1 with V = 
;Z and external fermions inter
hanged).This new 
lass of diagrams forms a gauge-invariant subset be
ause of the di�erent 
ow offermion numbers. Thus, the reasoning for type NC(a) applies to both 
lasses of diagramsof NC(b) rea
tions. The same argument is also valid for the subset of CC diagrams inmixed CC/NC rea
tions.In summary, we have argued that the use of naive �xed gauge-boson widths does notlead to gauge-invarian
e violations in amplitudes for 

 ! 4f(
) as long as fermions aremassless and the non-linear gauge with vanishing 
W� 
oupling (or the 
omplex W-bosonmass in this 
oupling if the 't Hooft{Feynman gauge is 
hosen) is used. The 
orrespondingsquared amplitudes agree with the ones of the (gauge-invariant) 
omplex-mass s
heme upto terms of O(�W=MW), for CC pro
esses even up to terms of O(�2W=M2W).3.1.5 W-pair signal diagrams and double-pole approximationThe diagrams to CC and CC/NC pro
esses 
omprise graphs with two, one, or nointernal W-boson lines that 
an be
ome resonant, similar to the situation for e+e� !WW ! 4f (see Refs. [ 44, 45℄ and referen
es therein). It is interesting to investigatethe possibility to de�ne an amplitude for the W-pair signal based on doubly-resonant
ontributions only, be
ause su
h an amplitude is mu
h simpler than the full amplitudes
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tions for 

 ! 4f(
)for four-fermion produ
tion and is universal (up to 
olour fa
tors) for all relevant 4f�nal states. Moreover, this study is an important exer
ise for the 
al
ulation of radiative
orre
tions to 

 !WW ! 4f in the double-pole approximation (DPA), whi
h is donein the next 
hapter. Taking simply all doubly-resonant diagrams, of 
ourse, yields a resultthat is not gauge invariant. Nevertheless in the e+e� 
ase the lowest-order 
ross se
tionbased on su
h a gauge-dependent amplitude (de�ned in the 't Hooft{Feynman gauge),known as \CC03 
ross se
tion", is a very useful quantity that is very 
lose to the full4f 
al
ulation if both W bosons are 
lose to resonan
e. The CC03 amplitude 
an berendered gauge invariant upon deforming the momenta of the four outgoing fermions insu
h a way that the intermediate W-boson states be
ome on shell, be
ause the residuesof the W resonan
es are gauge-invariant quantities. This \on-shell proje
tion" is part ofthe pole expansion (2.4.1) and is needed in the 
onstru
tion of the DPA. The de�nition ofthe \on-shell proje
tion" involves some freedom, and di�erent versions, whi
h have beendes
ribed in Refs. [ 20, 22℄, di�er by 
ontributions of relative order O(�W=MW), whi
h isthe un
ertainty of the DPA for leading-order predi
tions.We want to perform the exer
ise to study the usefulness of a possible \CC03"2 o�-shell 
ross se
tion for 

 ! WW ! 4f . To this end, we de�ne the amplitude for theo�-shell W-pair signal by evaluating the three W-pair diagrams in the non-linear gaugewith polarization ve
tors "i(ki) for the in
oming photons, whi
h obey the gauge 
onditions"1(k1) � k2 = "2(k2) � k1 = 0: (3.1.27)In terms of WvdW spinors, this means that the gauge spinors g1 and g2 of the photonsare identi�ed with the spinors of the momenta k2 and k1, respe
tively. With this 
hoi
ethe auxiliary fun
tions for the matrix elements (3.1.3) readA��++;WW(ki; pj; Qj) = PW(p1 + p2)PW(p3 + p4) hp2p4i�hk1k2i�� (hPW(p1 + p2 � k1)i�W=0"hk2p1ihk2p3ihk2[P1 + P2℄k1i+ hk1p1ihk1p3ihk1[P3 + P4℄k2i+ hp1p3ihk1k2i� hk2[P1 + P2℄k1ihk1[P3 + P4℄k2i � 2(k1 � k2)hk1p1ihk2p3i#� 12hp1p3ihk1k2i)+ (k1$ k2);A��+�;WW(ki; pj; Qj) = PW(p1 + p2)PW(p3 + p4)� hPW(p1 + p2 � k1) + PW(p1 + p2 � k2)i�W=0� (hk2[P1 + P2℄k1i"hk2p2i�hk2p4i�hp1p3ihk1k2i� � hp2p4i�hk1p1ihk1p3ihk1k2i #� hp2p4i�hp1p3i2(k1k2) hk2[P1 + P2℄k1i2 + hk2p2i�hk2p4i�hk1p1ihk1p3i): (3.1.28)2The name also �ts to the 

 
ase where three W-pair diagrams exist in unitary or non-linear gauge.



In
lusion of anomalous gauge-boson 
ouplings 29Note that A�1�3�1�2;WW do not 
oin
ide with the parts of the fun
tions A�1�3�1�2;W of Eq. (3.1.9)that are proportional to PW(p1 + p2)PW(p3 + p4) be
ause the derivation of Eq. (3.1.9)involves rearrangements of various singly-resonant 
ontributions. We point out that thede�nition (3.1.28) is neither independent of the gauge �xing used to de�ne gauge-bosonpropagators nor of the gauge of the external photons. The de�nition is gauge invariantafter the outgoing fermion momenta pi are on-shell proje
ted as des
ribed above, whileleaving the resonant propagators PW(p1 + p2)PW(p3 + p4) untou
hed. This de�nes thelowest-order amplitude in DPA. Finally, we stress that the t- and u-
hannel W propagatorsin Eq. (3.1.28) do not re
eive a �nite W width; otherwise the gauge invarian
e of the DPAwould be spoiled.3.2 In
lusion of anomalous gauge-boson 
ouplingsIn this se
tion we introdu
e the most important anomalous gauge-boson 
ouplingsa

essible by the pro
ess 

 ! 4f and give expli
it analyti
al results for the 
orrespondingheli
ity amplitudes.3.2.1 The e�e
tive LagrangiansFirst we 
onsider anomalous triple gauge-boson 
ouplings (ATGC) in the 
harged-
urrent se
tor, i.e., anomalous 
WW and the related 

WW 
ouplings. Instead of usingrather general parametrizations of non-standard 
ouplings [ 46℄, we follow the approa
halready used at LEP2 to redu
e the number of free parameters by requiring that allsymmetries of the SM are respe
ted. From the resulting operators we only keep thosethat appear in the lowest-order 
ross se
tion of 

 ! 4f . Spe
i�
ally, we start from thegauge-invariant CP-
onserving e�e
tive Lagrangian with dimension-6 operators [ 47℄LATGCCC = igY �B�M2W (D��)yB��(D��) � igW �W�M2W (D��)y� �W��(D��)�gW �W6M2W W�� � (W�� �W��); (3.2.1)where � is the Higgs doublet �eld andB�� = ��B� � ��B�;W�� = (W ��1 ;W ��2 ;W ��3 ) = ��W� � ��W� + gWW� �W� (3.2.2)are the �eld strengths of the U(1) and SU(2) gauge �elds, respe
tively. The Pauli matri
esare 
ombined into the ve
tor � = (�1; �2; �3), and the parameters gY , gW denote the gauge
ouplings.3 Inserting the va
uum expe
tation value of the Higgs �eld �, we 
an relatethe 
oeÆ
ients �B�, �W�, and �W to the 
oeÆ
ients of the Lagrangian 
onsidered in theLEP2 analysis [ 47℄,�gZ1 = �W�
2w ; ��
 = �
2ws2w (��Z ��gZ1 ) = �W� + �B�; �
 = �Z = �W: (3.2.3)3In order to be 
ompatible with the 
onventions of Ref. [ 6℄ used for the SM amplitudes above, wehad to 
hange the sign of the SU(2) 
oupling gW w.r.t. Ref. [ 47℄.



30 Lowest-order predi
tions for 

 ! 4f(
)In 
ontrast to the pure anomalous 
WW 
oupling [ 46℄, the SU(2)�U(1) symmetry of thee�e
tive Lagrangian (3.2.1) indu
es additional anomalous 

WW and 
W� 
ouplings.The 
orresponding Feynman rules arei�
W+W���� (k0; k+; k�) = �ie(��
(k0�g�� � k0�g��)� �
M2W "k+�k��k0� � k��k+�k0� + g��(k��(k+k0)� k+�(k�k0))+ g��(k0�(k+k�)� k��(k+k0)) + g��(k+�(k�k0)� k0�(k+k�))�);i�

W+W����� (k1; k2; k+; k�) = �ie2 �
M2W(g��g��(k1 + k2)2 + g��g��(k2k+ + k1k�)+ g��g��(k1k+ + k2k�) + g��h(k1 + k2)�k+� + (k1 + k2)�k��i+ g��h(k+ + k�)�k1� + (k+ + k�)�k2�i+ g��h(k1 � k2)�k+� � k1�k+� � k1�k��i+ g��h(k1 � k2)�k�� � k1�k�� � k1�k+�i + g��h(k2 � k1)�k+� � k2�k+� � k2�k��i+ g��h(k2 � k1)�k�� � k2�k�� � k2�k+�i);i�
W��� (k0; kW; k�) = �ie��
MW �(k�k0)g�� � k�;�k0;��; (3.2.4)where all �elds and momenta are 
onsidered in
oming. Note that the negle
t of the
ontribution to the quarti
 
oupling 

WW, whi
h is proportional to �
, would lead toa violation of ele
tromagneti
 gauge invarian
e in predi
tions for 

 ! WW(! 4f). In
ontrast, negle
ting the 
W� 
oupling, whi
h is proportional to ��
, would not spoil theele
tromagneti
 gauge invarian
e of the predi
tions.Next we 
onsider anomalous triple gauge-boson 
ouplings involving only the neutralgauge bosons 
 and Z. Assuming Lorentz invarian
e and ele
tromagneti
 gauge invarian
e,the most general e�e
tive dimension-6 Lagrangian for 

Z, 
ZZ, and ZZZ 
ouplings 
anbe written as [ 48℄4LATGCNC = eM2Z�[f 
4 (��F ��)� fZ4 (��Z��)℄Z��Z� + [f 
5 (��F ��)� fZ5 (��Z��)℄ ~Z��Z�+ [h
1(��F ��)� hZ1 (��Z��)℄F��Z� + [h
3(��F ��)� hZ3 (��Z��)℄ ~F��Z�� (3.2.5)with the abelian �eld-strength tensorsF �� = ��A� � ��A�; Z�� = ��Z� � ��Z�; (3.2.6)and the dual �eld-strength tensors (�0123 = +1)~F �� = 12�����F��; ~Z�� = 12�����Z��: (3.2.7)4Note that our 
onventions di�er from those of Ref. [ 48℄ by a minus sign in the Z-boson �eld.
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lusion of anomalous gauge-boson 
ouplings 31(a)
1
2 WW f1�f2f3�f4
(b)
1
2 WWW

f1�f2f3�f4
(
)f1�f2 
1 f3�f4
2W W

(d)
1
2 WWW
f1�f2f3�f4

(e)
1
2 W�W
f1�f2f3�f4Figure 3.2: Representative diagrams with anomalous 
WW and 

WW 
ouplings (bla
kblobs) 
ontributing to CC pro
esses 

 ! 4f .An operator indu
ing a 


 
oupling does not appear in Eq. (3.2.5) sin
e it violatesele
tromagneti
 gauge invarian
e.Apart from the 

WW 
oupling whi
h is indu
ed by symmetries in the Lagrangian(3.2.1), we also in
lude genuine anomalous quarti
 gauge-boson 
ouplings (AQGC) inour analysis, whose lowest dimension is 6. In Refs. [ 49, 50℄ all genuine dimension-6AQGC that involve photons and that are allowed by ele
tromagneti
 gauge invarian
eand 
ustodial SU(2)
 have been 
lassi�ed; more general AQGC have been dis
ussed inRef. [ 51℄. Following Ref. [ 50℄ we use the e�e
tive LagrangianLAQGC

V V = � e216�2�a0 F ��F��W�W� + a
 F ��F��W�W� + ~a0 F �� ~F��W�W�� (3.2.8)with the de�nitionW� = �W 1�;W 2�;W 3�� =  1p2(W+ +W�)�; ip2(W+ �W�)�; 1
wZ�! : (3.2.9)The s
ale of new physi
s, �, is introdu
ed in Eq. (3.2.8) to render the 
oupling 
oeÆ
ientsa0; a
; ~a0 dimensionless. The e�e
tive Lagrangian LAQGC

V V 
ontains 

WW and 

ZZ 
ou-plings, whose Feynman rules 
an be found in Ref. [ 50℄. The other 
oupling stru
turesLn and ~Ln 
onsidered in Ref. [ 50℄ indu
e 
ZWW 
ouplings that are not relevant for

 ! 4f .3.2.2 Amplitudes with triple gauge-boson 
ouplingsBefore we write down the heli
ity amplitudes in
luding ATGC expli
itly, we dis
uss theimpa
t of these 
ouplings w.r.t. the SM 
ross se
tion. The diagrams 
ontaining ATGC and
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tions for 

 ! 4f(
)the 
orresponding quarti
 
ouplings in CC diagrams are shown in Figure 3.2. We quantifythe size of the anomalous 
ontributions in terms of powers of anomalous 
oupling fa
tors(generi
ally denoted by a3) or suppression fa
tors �W=MW. Considering the SM pro
ess

 ! WW ! 4f as the leading 
ontribution, i.e., regarding anomalous-
oupling e�e
tsas small, we get non-standard 
ontributions to CC and CC/NC 
ross se
tions from CCATGC of the following orders:� O(a3):The matrix elements of diagrams (a) and (b) in Figure 3.2 involve one power of a3.Both diagrams are not suppressed by �W=MW sin
e they are doubly resonant.� O(a3�W=MW):The diagram (
) of Figure 3.2 has one power of a3 and one resonant W-boson prop-agator, i.e., it is only singly resonant. Thus, it is of O(a3�W=MW).� O(a23):The diagrams (d) and (e) of Figure 3.2 involve two anomalous 
ouplings a3 andare doubly resonant. Therefore, they are of O(a23). Note that the squares of thediagrams (a) and (b), as well as their produ
ts with one another, are of the sameorder as the interferen
e of diagrams (d) and (e) with the SM amplitude.There are no diagrams 
ontaining CC ATGC for NC pro
esses.Next we 
onsider the impa
t of NC ATGC, as de�ned in the e�e
tive Lagrangian(3.2.5). The by far largest SM 
ross se
tions of the pro
ess 
lass 

 ! 4f belong todiagrams with two resonant W bosons in CC and CC/NC rea
tions. Thus, the largeste�e
t of NC ATGC 
ould be expe
ted from an interferen
e of \anomalous diagrams" withthe SM amplitude for CC or CC/NC pro
esses. The only 
andidate of this kind is adiagram where an o�-shell s-
hannel Z boson is produ
ed by an anomalous 

Z 
ouplingthat subsequently produ
es a W-boson pair. However, the e�e
tive 

Z 
oupling ofEq. (3.2.5) vanishes for two on-shell photons, so that this diagram does not 
ontribute.No other CC diagram exists that in
ludes a NC ATGC.We now turn to the e�e
ts of NC ATGC in NC amplitudes, i.e., in diagrams withoutW bosons. The 
orresponding SM amplitudes involve at most a single resonan
e of theZ boson, whi
h leads already to a suppression of NC 
ross se
tions w.r.t. CC 
ross se
tionsby a fa
tor (�Z=MZ)2. This suppression is 
learly visible in the numeri
al results presentedin Se
tion 3.5.2.1 below. Diagrams with one NC ATGC also possess at most one resonantZ boson and, therefore, show a suppression by a fa
tor a3(�Z=MZ)2 w.r.t. the CC signaldiagrams. This suppression is not 
hanged by interferen
es with doubly-resonant CCdiagrams in CC/NC pro
esses be
ause the Z- and W-boson resonan
es are lo
ated atdi�erent regions in phase spa
e and do not enhan
e ea
h other. Diagrams with two NCATGC 
an involve two Z-boson resonan
es resulting in a suppression of O(a23�Z=MZ),whi
h is also small 
ompared to the CC 
ase owing to the squared ATGC. In summary,we 
on
lude that the sensitivity of the pro
esses 

 ! 4f to NC ATGC is mu
h smallerthan to CC ATGC. Therefore, we restri
t our investigation on ATGC to CC 
ouplings inthe following.



In
lusion of anomalous gauge-boson 
ouplings 33As explained above, the diagrams of Figure 3.2 indu
e 
ontributions to the amplitudethat are either linear or quadrati
 in the CC ATGC. We give the expli
it 
ontributionsto the heli
ity amplitudes in a way similar to the SM 
ase (3.1.3),M�1�2�3�4�1�2;CCATGC(ki; pj; Qj) = e4Æ�1;�Æ�2;+Æ�3;�Æ�4;+ g�W�f1f2g�W�f3f4 Æ3A�1�3�1�2(ki; pj; Qj) (3.2.10)with the auxiliary fun
tions Æ3A�1�3�1�2 . The generi
 amplitude M�1�2�3�4�1�2;CCATGC is 
oherentlyadded to the SM amplitude M�1�2�3�4�1�2;W of Eq. (3.1.3). The 
olour summation of thesquared amplitudes for the various pro
ess types pro
eeds as des
ribed in Se
tions 3.1.3.2and 3.1.3.3.The terms in Æ3A�1�3�1�2 that are quadrati
 and linear in ATGC expli
itly readÆ3A��++���quad = �PW(p1 + p2)PW(p3 + p4)PW(p1 + p2 � k1)hk1p1ihk2p3i� (��2
�hp2p4i�hk1k2i+ 12M2W hp1p2i�hp3p4i�hk1p1ihk2p3i�+��
 �
M2W �hp1p2i�hp3p4i��hk1p3ihk2p1i � hk1k2ihp1p3i�+ hk1k2i�hp3p4i�hk1p2i�hk1p3i � hp1p2i�hk2p4i�hk2p1i��+ �2
M4W hp1p2i�hp3p4i�12(p1 + p2 � k1)2�hk1p3ihk2p1i � hk1k2ihp1p3i�)+ (k1$ k2);Æ3A��+����quad = �PW(p1 + p2)PW(p3 + p4)PW(p1 + p2 � k1)hk2p4i�hk1p1i� (���2
�hk2p2i�hk1p3i+ 12M2W hp1p2i�hk2p4i�hk1p1ihp3p4i�+��
 �
M2W ��2(p1 + p2 � k1)2hk2p2i�hk1p3i+ hp2[K2 �K1℄p3ihk2[P1 + P2℄k1i � hp1p2i�hk2p4i�hp3p4ihk1p1i�+ �2
M4W hp1p2i�hp3p4i��12(p1 + p2 � k1)2hk2p4i�hk1p1i+ hp4[K2 � P3℄k1ihk2[K1 � P2℄p1i�)+�fp1; Q1; p2; Q2g$fp3; Q3; p4; Q4g�;Æ3A��++���lin = 2PW(p1 + p2)PW(p3 + p4)hk2p1ihk2p3i� hp2p4i�hk1p2i�hk1p4i� ���
hp2p4i� � �
M2W hp3p4i�hp1p2i�hp1p3i�+ (2(Q4 �Q3) [�Q1 + (Q1 �Q2)2(k1p1)PW(p1 + p2)℄PW(p3 + p4)
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)� PW(p3 + p4 � k2)hk2p3ihp2[P1 �K1℄k2ihk1p1i�hk1p2i�� ���
hp2p4i� + �
M2W hp3p4i�hp2[P4 �K2℄p3i�+ �fp1; Q1; p2; Q2g$fp3; Q3; p4; Q4g�)+ (k1$ k2);Æ3A��+����lin = �2PW(p1 + p2)PW(p3 + p4)hp1p3ihk1p1ihk1p3ihk2p1ihk2p3i� ����
hp2p4i� + �
M2W �hp1p2i�hk2p4i�hk2p1i � hp3p4i�hk2p2i�hk2p3i+ hp1p2i�hp3p4i�hp1p3i��� (2(Q1 �Q2)PW(p1 + p2)�[Q4 + (Q3 �Q4)2(k2p4)PW(p3 + p4)℄� PW(p1 + p2 � k1)hk1p1ihk1p3ihk2p3ihk2p4i����
hp2[P4 �K2℄p3i+ �
M2W hp1p2i�hp1p3i(p3 + p4 � k2)2��+ �fp1; Q1; p2; Q2g$fp3; Q3; p4; Q4g�)+ �
.
. and fp1; Q1; p3; Q3; k1g$fp2; Q2; p4; Q4; k2g�; (3.2.11)where \
.
. and f: : :g$f: : :g" indi
ates that the 
omplex 
onjugate of the pre
edingexpression has to be added after some substitutions. The auxiliary fun
tions for theremaining polarizations follow from the relations (3.1.10) and (3.1.11).In order to 
he
k our results, we have implemented the ATGC of the e�e
tive La-grangian (3.2.1) into the program Madgraph [ 43℄ and 
ompared our amplitudes withtheMadgraph results for various phase-spa
e points. We found perfe
t numeri
al agree-ment.3.2.3 Amplitudes with genuine quarti
 gauge-boson 
ouplingsFigure 3.3 shows the only diagram with an AQGC (generi
ally denoted by a4) that
ontributes to 

 ! 4f . For CC pro
esses the \anomalous diagram" 
ontributes inO(a4) to the 
ross se
tion, be
ause it is (as the SM 
ontribution) doubly resonant. ForNC pro
esses, the diagram involves one power of a4 and two Z-boson resonan
es andinterferes with the singly-resonant SM amplitude. In this 
ase, the 
ontribution to the
orresponding 
ross se
tion is suppressed by a4�Z=MZ w.r.t. CC 
ross se
tions, i.e., thesuppression fa
tor involves one fa
tor in the anomalous 
oupling or in �Z=MZ less than we
ounted for NC ATGC. In the following we take both CC and NC AQGC into a

ount.
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1
2 fW;ZgfW;Zg
f1�f2f3�f4Figure 3.3: Diagram with AQGC (bla
k blob) 
ontributing to 

 ! 4f .The AQGC 
ontributions to the amplitudes readM�1�2�3�4�1�2;

V V = e48�2 Æ�1;��2Æ�3;��4 g

V V g�1V �f1f2g�3V �f3f4PV (p1 + p2)PV (p3 + p4)� Æ4A�1�3�1�2(k1; k2; p1; p2; p3; p4) (3.2.12)with g

WW = 1; g

ZZ = 1
2w (3.2.13)and Æ4A��++(k1; k2; p1; p2; p3; p4) = (4a0 � 4i~a0 + a
)hp2p4i�hk1k2i2hp1p3i;Æ4A��+�(k1; k2; p1; p2; p3; p4) = �2a
hk2p2i�hk2p4i�hk1p1ihk1p3i: (3.2.14)The remaining auxiliary fun
tions Æ4A�1�3�1�2 
an be obtained via the substitutionsÆ4A�1;+�1�2(k1; k2; p1; p2; p3; p4) = Æ4A�1;��1�2(k1; k2; p1; p2; p4; p3);Æ4A+;�3�1�2(k1; k2; p1; p2; p3; p4) = Æ4A�;�3�1�2(k1; k2; p2; p1; p3; p4);Æ4A�1�3�1�2(k1; k2; p1; p2; p3; p4) = �Æ4A��1;��3��1;��2(k1; k2; p1; p2; p3; p4)�� : (3.2.15)The generi
 amplitudeM�1�2�3�4�1�2;

V V is 
oherently added to the SM amplitudeM�1�2�3�4�1�2;V ofEq. (3.1.3) for V = W;Z, respe
tively. The 
olour summation of the squared amplitudesfor the various pro
ess types pro
eeds as in the SM 
ase.Again we have 
he
ked the amplitudes against results obtained with Madgraph, asexplained at the end of the previous se
tion.3.3 E�e
tive 

H 
oupling and Higgs resonan
eIn order to in
orporate a possible Higgs resonan
e in 

 ! H ! V V ! 4f withV = W;Z, as depi
ted in Figure 3.4, we 
onsider an e�e
tive 
oupling of the Higgs bosonto two photons. In the SM this 
oupling is mediated via fermion (mainly top-quark) andW-boson loops. We de�ne the e�e
tive Lagrangian for the 

H vertex [ 52℄ byL

H = �g

H4 F ��F��Hv ; (3.3.1)
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1
2 H fW;ZgfW;Zg

f1�f2f3�f4Figure 3.4: Diagram with e�e
tive 

H 
oupling (bla
k blob).where v = 2MWsw=e is the va
uum expe
tation value of the Higgs �eld H. Up tonormalization, L

H is the lowest-dimensional, CP-
onserving, ele
tromagneti
ally gauge-invariant operator for two photons and the s
alar �eld H. The 
orresponding Feynmanrule reads i�

H�� (k1; k2; kH) = ig

Hv [g��(k1k2)� k1;�k2;�℄ ; (3.3.2)where k1; k2 are the in
oming photon momenta. Comparing this Feynman rule to theloop-indu
ed SM vertex with the external �elds on shell, whi
h has, e.g., been given inRefs. [ 39, 52℄, we obtaing

H���SM = ��(6M2WM2H + 1 + 6M2WM2H (2M2W �M2H)C0(MH;MW)� 2Xf N 
fQ2f m2fM2H h2 + (4m2f �M2H)C0(MH; mf )i); (3.3.3)where the 
olour fa
tor N 
f in the sum over all fermions f is equal to 3 for quarks and 1for leptons. The s
alar 3-point integral C0 is given byC0(MH; m) = 12M2H ln2  �m + 1�m � 1! ; �m = s1� 4m2M2H + i0: (3.3.4)The 
omplete matrix elements for the diagrams with a Higgs resonan
e (as shown inFigure 3.4) 
an then be written asM�1�2�3�4�1�2;HV V = � e42s2w Æ�1;��2Æ�3;��4 g

H g

V V g�1V �f1f2g�3V �f3f4PV (p1 + p2)PV (p3 + p4)�M2HPH(k1 + k2) ÆHA�1�3�1�2(k1; k2; p1; p2; p3; p4) (3.3.5)with g

V V de�ned in Eq. (3.2.13) andÆHA��++(k1; k2; p1; p2; p3; p4) = hk1k2ihk1k2i� hp2p4i�hp1p3i; ÆHA�1�3�� = 0: (3.3.6)The other expressions for ÆHA�1�3�1�2 follow in the same way as des
ribed in Eq. (3.2.15) forÆ4A�1�3�1�2. The width in the Higgs-boson propagator PH is introdu
ed in the same way asin Se
tion 3.1.4 for the gauge bosons.
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trum 373.4 Phase-spa
e integration and 
onvolution over the photon spe
trumThe squared matrix element is integrated over the phase spa
e following the strat-egy des
ribed in Refs. [ 18, 26, 53℄, where the multi-
hannel Monte Carlo te
hnique [ 54℄was applied. This method 
ures problems that o

ur due to the very 
omplex peakingstru
ture of the integrand indu
ed by various diagram types. More pre
isely, appropri-ate mappings of the pseudo-random numbers into the momenta of the outgoing parti
lesare 
onstru
ted and 
ombined in su
h a way that the integrand is widely smoothenedeverywhere. The details are presented in App. A.The 
onvolution over the photon spe
trum is given byd� = Z 10 dx1 Z 10 dx2 f
(x1) f
(x2) d�

(x1P1; x2P2); (3.4.1)where d�

 is the di�erential 

 
ross se
tion. The fun
tion f
(xi) denotes the proba-bility density for obtaining a photon with momentum ki = xiPi, and Pi is the ele
tronmomentum before Compton ba
ks
attering. In order to redu
e the statisti
al error ofthis integration we use a simple way of strati�ed sampling. The integration region for xiof ea
h photon spe
trum is divided into a �xed number of bins. We 
hoose bin i witha probability �i and divide the 
orresponding weight by �i. In this way the integrationremains formally un
hanged if we normalize Pi �i = 1. The parameters �i 
an be usedto improve the 
onvergen
e of the numeri
al integration. By 
hoosing the �i proportionalto the 
ross se
tion of the 
orresponding bin i, more events are sampled in regions wherethe photon spe
trum is large. Care has to be taken that the �i do not be
ome too smallbe
ause this might lead to rare events with very large weights that render the error es-timate unreliable. This optimization typi
ally redu
es the Monte Carlo integration errorby a fa
tor 2{5.3.5 Numeri
al results3.5.1 Input parametersWe use the following set of input parameters [ 55℄:MW= 80:423GeV; �W= 2:118GeV;MZ= 91:1876GeV; �Z= 2:4952GeV;MH= 170GeV; �H= 0:3834GeV;�(0)= 1=137:03599976; �s= 0:1172;G�= 1:16639� 10�5GeV�2; (3.5.1)where the Higgs mass is 
hosen well above the W-pair threshold so that intermediateHiggs bosons de
ay rapidly into W pairs; the 
orresponding de
ay width �H has beenobtained with the program HDECAY [ 56℄.
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 ! 4f(
)Furthermore, we apply the separation 
utsE
 > 10GeV; �(
; beam)> 5Æ; �(l; 
)> 5Æ; �(q; 
)> 5Æ;El> 10GeV; �(l; beam)> 5Æ; �(l; l0)> 5Æ; �(l; q)> 5Æ;Eq > 10GeV; �(q; beam)> 5Æ; m(q; q0)> 10GeV; (3.5.2)where q and l denote quarks and 
harged leptons, respe
tively, andm(q; q0) is the invariantmass of an outgoing quark pair. The energies EX and angles �(X; Y ) are de�ned in thelaboratory frame. Using these 
uts all infrared, i.e., soft or 
ollinear, singularities areremoved from the phase spa
e.In order to a

ount for leading universal 
orre
tions, we use two di�erent values forthe 
oupling 
onstant � = e2=(4�). Sin
e on-shell photons 
ouple to 
harged parti
leswith the 
oupling 
onstant �(0) (e�e
tive ele
tromagneti
 
oupling at zero-momentumtransfer), we take this 
oupling for ea
h external photon in the pro
esses 

 ! 4f and

 ! 4f
. For CC rea
tions, the remaining 
ouplings 
orrespond to Wf �f verti
es. Forthese verti
es a large part of the ele
troweak radiative 
orre
tions [ 57℄ (the running ofthe ele
tromagneti
 
oupling and the universal 
orre
tions related to the � parameter) areabsorbed into an e�e
tive ele
tromagneti
 
oupling �G� whi
h is derived from the Fermi
onstant G� by �G� = p2G�M2Ws2w� : (3.5.3)Therefore, in the following numeri
al studies, we repla
e �4 by �(0)2�2G� for the pro
esses

 ! 4f and �5 by �(0)3�2G� for 

 ! 4f
.For the evaluation of the photon spe
trum we use the program CompAZ [ 14℄ withthe polarization of the laser beams �1 (i.e. photon heli
ity �1)5 and the polarization ofthe ele
tron beams +0:85. This 
hoi
e for the relative signs in the polarizations yieldsa sharper peak at the upper end of the photon spe
trum. Results for mono
hromati
photon beams are shown for unpolarized photons if not stated otherwise.The results are obtained in the �xed-width s
heme, ex
ept from Se
tion 3.5.2.5, wherewe 
ompare di�erent s
hemes.The numeri
al integration over the phase spa
e is 
arried out applying the multi-
hannel Monte Carlo te
hnique as des
ribed in App. A. We use 107 events leading to aruntime of our Monte Carlo program on a PC with 2GHz that varies from 30 minutes to6 hours depending on the 
onsidered pro
ess.3.5.2 Results for integrated 
ross se
tions3.5.2.1 Survey of 
ross se
tionsIn order to illustrate the reliability of our Monte Carlo generator we 
ompare ourresults on 
ross se
tions for a representative set of the pro
esses 

 ! 4f and 

 !4f
 with the results obtained with the Monte Carlo program Whizard (version 1.28)5Internally in CompAZ the polarization of the laser light is de�ned as the negative of the photonheli
ity.
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present work Whizard/Madgraph

 ! �4f [ fb℄ �4f [ fb℄(
onv) �4f [ fb℄ �4f [ fb℄(
onv)e���e���+ 826.47(21) 190.87(10) 826.39(26) 191.05(16)e�e+����� 1.75460(62) 0.90525(61) 1.75518(78) 0.9050(11)e�e+���+ 19.400(33) 19.129(61) 19.342(21) 19.188(48)e�e+e�e+ 9.469(17) 9.357(32) 9.453(11) 9.383(25)e�e+�e��e 828.34(21) 191.72(10) 828.29(26) 191.55(17)e���eu�d 2351.11(68) 565.05(33) 2351.79(84) 565.07(51)�ee+d�u 2350.84(68) 558.39(32) 2353.21(84) 558.41(50)�e��eu�u 1.19761(50) 0.61256(50) 1.19684(57) 0.61083(71)�e��ed�d 0.095981(44) 0.049092(45) 0.096011(48) 0.049118(57)e�e+u�u 14.036(21) 10.597(26) 14.016(15) 10.574(21)e�e+d�d 4.7406(29) 2.6614(32) 4.7377(28) 2.6651(38)u�ds�
 6659.6(2.1) 1603.8(1.0) 6663.5(2.7) 1605.0(1.5)u�u
�
 10.469(14) 6.111(12) 10.4531(88) 6.113(10)with QCD 1543.6(2.9) 1071.3(2.9) | |u�us�s 3.3282(21) 1.6569(18) 3.3310(20) 1.6595(23)with QCD 412.97(75) 288.79(72) | |d�ds�s 0.49807(29) 0.23232(24) 0.49804(30) 0.23252(32)with QCD 96.34(18) 66.80(18) | |u�uu�u 5.1846(69) 3.0298(57) 5.1900(45) 3.0419(53)with QCD 772.6(1.5) 538.9(1.4) | |d�dd�d 0.24683(15) 0.11581(12) 0.24665(17) 0.11579(17)with QCD 48.252(96) 33.685(88) | |u�ud�d 6663.5(2.3) 1606.1(1.1) 6664.8(2.8) 1604.6(1.6)with QCD 7075.8(3.7) 1896.4(2.9) | |Table 3.2: Total 
ross se
tions for 

 ! 4f at ps = 500GeV for various �nal states withand without 
onvolution over the photon spe
trum.



40 Lowest-order predi
tions for 

 ! 4f(
)
present work Whizard/Madgraph

 ! �4f
 [ fb℄ �4f
 [ fb℄(
onv) �4f
 [ fb℄ �4f
 [ fb℄(
onv)e���e���+
 39.234(44) 6.188(11) 39.218(29) 6.2040(87)e�e+�����
 0.10157(10) 0.028612(40) 0.101556(88) 0.028548(52)e�e+���+
 1.0567(35) 0.5083(28) 1.0547(20) 0.5091(29)e�e+e�e+
 0.5085(18) 0.2433(13) 0.5091(10) 0.2461(12)e�e+�e��e
 39.301(46) 6.213(11) 39.332(30) 6.2069(89)e���eu�d
 96.61(13) 14.216(27) 96.575(75) 14.159(21)�ee+d�u
 96.60(13) 15.459(30) 96.520(76) 15.429(22)�e��eu�u
 0.030818(35) 0.008640(14) 0.030756(28) 0.008609(16)�e��ed�d
 0.00061753(75) 0.00017313(31) 0.00061731(56) 0.00017358(34)e�e+u�u
 0.6446(17) 0.25463(99) 0.6477(10) 0.2579(10)e�e+d�d
 0.26653(36) 0.08137(17) 0.26689(28) 0.08166(21)u�ds�

 229.86(36) 32.621(81) 229.52(19) 32.531(49)u�u
�

 0.30556(69) 0.10718(34) 0.30563(47) 0.10836(43)with QCD 34.73(14) 13.801(77) | |u�us�s
 0.08791(13) 0.026278(59) 0.087935(98) 0.026271(65)with QCD 6.362(23) 2.493(13) | |d�ds�s
 0.0046253(71) 0.0014842(37) 0.0046191(52) 0.0014832(36)with QCD 0.5427(22) 0.2165(11) | |u�uu�u
 0.15081(33) 0.05301(16) 0.15082(21) 0.05332(16)with QCD 17.377(71) 6.964(35) | |d�dd�d
 0.0022893(37) 0.0007421(21) 0.0022878(25) 0.0007398(18)with QCD 0.2716(11) 0.10863(53) | |u�ud�d
 229.86(40) 32.85(15) 229.65(19) 32.518(51)with QCD 236.31(42) 35.14(11) | |Table 3.3: Total 
ross se
tions for 

 ! 4f
 at ps = 500GeV for various �nal stateswith and without 
onvolution over the photon spe
trum.
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al results 41[ 58℄ whi
h uses the matrix-element generator Madgraph [ 43℄6. In Tables 3.2 and 3.3we list the results for the 17 di�erent �nal states de�ned in Table 3.1. The numbersin parentheses 
orrespond to the Monte Carlo error. For the �nal states that 
an beprodu
ed via intermediate gluons we 
ompute the 
ross se
tion both with and withoutgluon-ex
hange 
ontributions. Sin
e the version ofMadgraph implemented inWhizardis not able to deal with interferen
es of ele
troweak and QCD diagrams, we give only thepure ele
troweak Whizard/Madgraph results for these pro
esses. Furthermore, welist the 
orresponding 
ross se
tions with and without 
onvolution over the photon beamspe
trum. For this study, we have implemented the program CompAZ into Whizard.As explained in Se
tion 3.1.2, the 
ross se
tions for the CP-equivalent �nal statese���eu�d(
) and �ee+d�u(
) are not identi
al if the 
onvolution over the photon beam spe
-trum is 
arried out. Therefore, we give results for both �nal states. In all other 
ases, the
ross se
tions for a given �nal state and for the CP-
onjugated one 
oin
ide.CC and CC/NC pro
esses possess the largest 
ross se
tions be
ause of the dominan
eof W-pair produ
tion. The 
onvolution over the photon spe
trum redu
es these 
rossse
tions signi�
antly sin
e low-energy photons 
annot produ
e on-shell W pairs. NCpro
esses are a�e
ted less, and in some 
ases, su
h as 

 ! e+e��+��, the 
ross se
tionis only slightly redu
ed. Owing to the 
olour fa
tors of the quarks, hadroni
 and semi-leptoni
 
ross se
tions di�er by roughly a fa
tor 3, hadroni
 and leptoni
 
ross se
tionsby roughly a fa
tor 32 = 9. For CC pro
esses 

 ! 4f we obtain a rough estimateof the 
ross se
tions by multiplying the 
ross se
tion of 

 ! WW with the bran
hingratios of the W bosons into leptons or quarks depending on the �nal state. Note that thisestimate, whi
h is only good within 10�20%, does not take into a

ount 
ontributionsfrom ba
kground diagrams, width e�e
ts, and 
uts on �nal-state fermions. The di�eren
eof 
ross se
tions for CC pro
esses and the 
orresponding pro
esses of mixed type re
e
tsthe size of the ba
kground 
ontributions indu
ed by NC diagrams.The results ofWhizard, whi
h are also generated with 107 events, and of our programtypi
ally agree within 1{2 standard errors. The size of the statisti
al errors obtained withWhizard and our program is 
omparable. The runtime ofWhizard is usually somewhatbigger than the one of our program. Depending on the pro
ess 
lass, the speed of ourprogram is 1�7 times higher, where the largest di�eren
e o

urs for NC pro
esses.3.5.2.2 Energy dependen
e of integrated 
ross se
tionsIn Figure 3.5 we show the 
ross se
tions for the pro
esses 

 ! e���eu�d(
) as a fun
tionof the 
entre-of-mass (CM) energy ps with and without 
onvolution over the photonspe
trum. Here and in the following, with 
onvolution over the photon spe
trum psstands for the CM energy psee of the in
oming ele
tron beams, without 
onvolution itis the CM energy ps

 of the in
oming photons. In the 
ase without photon spe
trum,the rise of the 
ross se
tion is 
learly visible at the W-pair threshold, ps

 >� 160GeV.For 

 ! e���eu�d the 
ross se
tion in
reases roughly proportional to � = q1� 4M2W=s

6For a tuned 
omparison we res
aled the Whizard/Madgraph results by a fa
tor �(0)2�2G�=�4 for

 ! 4f and �(0)3�2G�=�5 for 

 ! 4f
.
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1000800600400200
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1Figure 3.5: Integrated 
ross se
tions of the pro
esses 

 ! e���eu�d(
) with and without
onvolution over the photon spe
trum as a fun
tion of the CM energy ps.above the threshold, as expe
ted from the two-parti
le phase spa
e of the W pairs. For

 ! e���eu�d
 the rise of the 
ross se
tion is not as steep be
ause of the higher-dimensionalWW
 phase spa
e. The 
onvolution over the photon spe
trum redu
es the availableenergy for W-pair produ
tion and shifts the onset of the 
ross se
tion to higher CMenergies.The 
ross se
tions for 

 ! 4f as well as 

 ! 4f
 de
rease at high energies, eventhough the total 
ross se
tion of the 

 ! WW pro
ess approa
hes a 
onstant in thehigh-energy limit if no 
uts are imposed, i.e., if the W bosons are allowed to go in thebeam dire
tions. At high energies, however, forward and ba
kward s
attering of W bosonsis restri
ted due to the 
uts applied to the outgoing fermions, be
ause the de
ay fermionsmainly follow the dire
tion of the de
aying W boson.3.5.2.3 Contributions from CC, NC, and gluon-ex
hange diagramsIn Figure 3.6 we show the impa
t of CC, NC, and gluon-ex
hange diagrams on theCC/NC pro
esses 

 ! u�ud�d and 

 ! u�ud�d
. We do not in
lude the photon spe
trumin this analysis. Above the W-pair threshold, ps

 > 160GeV, the CC diagrams are
learly dominating, while the 
ontributions from gluon-ex
hange diagrams are one ortwo orders of magnitude smaller. The impa
t of the gluon-ex
hange diagrams stronglydepends on the 
hoi
e of the invariant-mass 
ut between two quarks, and gluon-ex
hangediagrams are more important if the invariant-mass 
ut is small. The 
ontributions frompure NC diagrams are totally negligible as long as W-pair produ
tion is possible.



Numeri
al results 43

QCDNCCCCC+NC+QCD


 ! u�ud�d

ps

 [GeV℄

� [fb℄

1000800600400200

100001000100101



 ! u�ud�d


ps

 [GeV℄

� [fb℄

200 400 600 800 1000
1001010:10:01Figure 3.6: Di�erent 
ontributions to the integrated 
ross se
tions for the pro
esses 

 !u�ud�d(
) as a fun
tion of the CM energy without photon spe
trum.3.5.2.4 W-pair signal diagrams and double-pole approximationIn Figure 3.7 the 
ross se
tions of the W-pair signal diagrams and the DPA for 

 !WW ! 4f (see Se
tion 3.1.5 for de�nitions) are 
ompared with the 
omplete lowest-order 
ross se
tion for several pro
esses. The plots on the l.h.s. show the 
ross se
tionsfor various �nal states 
al
ulated from the full set of (ele
troweak) diagrams, from thesignal diagrams only, and in DPA separately for hadroni
, semi-leptoni
, and leptoni
 �nalstates, while the plots on the r.h.s. show the relative deviation from the 
orrespondingDPA. We do not in
lude the 
onvolution over the photon spe
trum and gluon-ex
hangediagrams in this analysis so that e�e
ts of the approximation are 
learly visible. Forenergies not too 
lose to the W-pair threshold, the DPA agrees with the full lowest-order
ross se
tion within 1{3%, whi
h is of the expe
ted order of �W=MW. Near threshold,i.e. for ps

 � 2MW = O(�W), the reliability of the DPA breaks down, sin
e ba
kgrounddiagrams be
ome more and more important and small s
ales 
, su
h as qs

 � 4M2W, 
anin
rease the naive error estimate from �W=MW to �W=
. The 
ross se
tions of the W-pairsignal diagrams, however, shows large deviations from the full 

 ! 4f 
ross se
tions forthe whole energy range, in parti
ular, at high energies. As explained in Se
tion 3.1.5, theW-pair signal diagrams are not gauge invariant, and thus the reliability and usefulnessof the resulting predi
tions should be investigated 
arefully. The results of Figure 3.7
learly show that a naive signal de�nition is a bad 
on
ept for 

 ! WW ! 4f , sin
edeviations from the full pro
ess 

 ! 4f even rea
h 5{10% in the TeV range. This isin 
ontrast to the situation at e+e� 
olliders where the naive W-pair signal (de�ned in't Hooft{Feynman gauge) was a reasonable approximation (see, e.g., Ref. [ 44℄).
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Figure 3.7: Cross se
tions of various pro
esses in
luding all diagrams, only W-pair signaldiagrams, and in DPA as a fun
tion of the CM energy (l.h.s.), and the 
orrespondingrelative deviations from the DPA (r.h.s.); photon spe
trum and gluon-ex
hange diagramsare not in
luded.
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 ! e���e���+)ps

 [ GeV℄ 500 800 1000 2000 10000�xed width 826.40(21) 788.35(21) 746.94(21) 500.70(20) 31.745(68)step width 827.45(22) 789.34(21) 748.17(23) 501.41(21) 31.746(68)running width 827.43(23) 789.29(21) 748.11(23) 501.32(21) 31.715(68)
omplex mass 826.23(21) 788.18(21) 746.78(21) 500.59(20) 31.738(68)�(

 ! e���e���+
)ps

 [ GeV℄ 500 800 1000 2000 10000�xed width 39.230(45) 47.740(73) 49.781(91) 43.98(18) 4.32(23)step width 39.253(45) 47.781(73) 49.881(96) 44.01(18) 4.31(24)running width 39.251(49) 47.781(74) 49.898(95) 44.48(22) 10.83(28)
omplex mass 39.221(45) 47.730(73) 49.770(91) 43.97(18) 4.31(23)Table 3.4: Cross se
tions for the pro
esses 

 ! e���e���+ and 

 ! e���e���+
 forvarious CM energies and various width s
hemes without 
onvolution over the photonspe
trum.The failure of the naive W-pair signal de�nition for 

 
ollisions was also pointed outin Refs. [ 16, 17℄ before. In Ref. [ 17℄ an \improved narrow-width approximation" waspresented whi
h provides another variant for a gauge-invariant W-pair signal de�nition.It is based on the fa
torization of produ
tion and de
ay matrix elements, while retainingW-spin 
orrelations.3.5.2.5 Comparison of s
hemes for introdu
ing �nite gauge-boson widthsIn this se
tion we 
ompare the di�erent implementations of gauge-boson widths de-s
ribed in Se
tion 3.1.4 numeri
ally. As explained in Se
tion 3.1.4, the 
omplex-masss
heme is the only s
heme that yields gauge-invariant results in general, but for the pro-
ess 
lasses 

 ! 4f(
) the �xed-width approa
h (in the non-linear gauge) also yieldsamplitudes that respe
t Ward identities and gauge 
an
ellations. Table 3.4 lists the 
rossse
tions for the pro
esses 

 ! e���e���+ and 

 ! e���e���+
 obtained with the �xedW width, the step-width, the running-width, and with the 
omplex-mass s
heme. Theresults of all four s
hemes for the pro
ess 

 ! e���e���+ agree within the expe
ted a
-
ura
y of O(�W=MW) up to energies in the TeV range. However, for 

 ! e���e���+
the running-width s
heme yields totally wrong results for several TeV, while the others
hemes are still in good agreement. Although the gauge-invarian
e-breaking e�e
ts inthe running-width s
heme are formally of O(�W=MW), they are enhan
ed by spoilinggauge 
an
ellations, thereby ruining the reliability of the predi
tion 
ompletely.
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)�e Ee[ GeV℄ �++[ fb℄

 ! e���eu�d 

 ! �ee+d�u1Æ 10 2557.2(1.6) 2618.6(1.6)5Æ 10 2492.0(1.6) 2505.6(1.6)10Æ 10 2413.2(1.6) 2258.5(1.5)5Æ 1 2611.4(1.6) 2505.7(1.6)5Æ 10 2492.0(1.6) 2505.6(1.6)5Æ 20 2181.1(1.4) 2505.1(1.6)Table 3.5: Polarized 
ross se
tions for the pro
esses 

 ! e���eu�d and 

 ! �ee+d�uwithout 
onvolution over the photon spe
trum at ps

 = 500GeV for di�erent angularand energy 
uts of e� and e+.For the semi-leptoni
 

 ! 4f pro
ess it was already observed in Ref. [ 17℄ thatthe 
ross se
tion does not vary signi�
antly if the �xed-width, the running-width, or aso-
alled \fudge-fa
tor" s
heme is used for introdu
ing �nite widths.3.5.2.6 E�e
t of phase-spa
e 
uts on 

 ! e���eu�d and 

 ! �ee+d�uAs observed in Se
tion 3.5.2.1, the CP-related �nal states e���eu�d and �ee+d�u do notyield the same 
ross se
tion if the photon spe
trum is in
luded. A CP transformation notonly transforms the two �nal states into ea
h other, but also 
ips the polarization of thephotons. Thus, for unpolarized photons the two pro
esses have the same 
ross se
tion.However, the photon spe
trum indu
es an e�e
tive polarization of the photons so thatCP invarian
e does not require the two 
ross se
tions to be equal anymore. Whi
h 
rossse
tion is larger in this 
ase depends on the applied phase-spa
e 
uts [ 17℄.In fa
t, there are two 
ompeting in
uen
es. On the one hand, there is the angular
ut of e� and e+ w.r.t. the beam axis, on the other hand, the 
ross se
tions are sensitiveto the energy 
ut of e� and e+. In this 
ontext it is important to note that two photonswith polarization (�1�2) = (++) mainly produ
e W bosons with heli
ities (++) (see,e.g., Refs. [ 17, 59℄). Sin
e W bosons de
ay into left-handed parti
les and right-handedanti-parti
les, heli
ity 
onservation requires that the largest part of the 
ross se
tion (forpositive photon heli
ities) 
omes from a region of the phase spa
e where the ��e in the �nalstate e���eu�d is emitted in the dire
tion of 
ight of the W� boson. In the rest frame of theW boson the e� is emitted in the opposite dire
tion. However, the 
uts are applied in thelaboratory frame so that the Lorentz boost tends to push the e� out of the angular 
utw.r.t. the beam axis (remember that the W bosons are preferably produ
ed in a dire
tion
lose to the beam axis). For the ��e no 
uts are applied, thus, the Lorentz boost of the ��edoes not have any e�e
t. In the pro
ess 

 ! �ee+d�u the e+ is emitted in the forwarddire
tion of the W+ boson, while the �e is emitted in the ba
kward dire
tion. In this 
ase,more events are subje
t to the phase-spa
e 
ut. As a result, the angular 
ut of e+=e�
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Figure 3.8: Invariant-mass distribution of the W+ boson re
onstru
ted from the u�d quarkpair (l.h.s.) as well as its produ
tion-angle distribution (r.h.s.) in the rea
tion 

 !e���eu�d at ps = 500GeV with and without 
onvolution over the photon spe
trum.redu
es the 
ross se
tion of the pro
ess 

 ! �ee+d�u more than the 
ross se
tion of thepro
ess 

 ! e���eu�d. This is illustrated in Table 3.5, where we 
ompare the polarized
ross se
tions for both pro
esses for di�erent values of the angular 
ut.On the other hand, the 
ross se
tions also depend on the energy 
ut that is appliedto e� and e+. As explained above, the largest part of the 
ross se
tion for 

 ! e���eu�d
omes from a phase-spa
e region where the ��e is emitted parallel to the W� boson andthe e� anti-parallel. Sin
e the ��e 
arries most of the energy of the W� boson and the e�only a small fra
tion, the energy 
ut of e� disfavours this pro
ess. For the CP-
onjugate�nal state �ee+d�u the energy 
ut has almost no e�e
t on the 
ross se
tion, be
ause thee+ 
arries most of the energy and the �e is not subje
t to an energy 
ut. This situationis also illustrated in Table 3.5, where we show the 
ross se
tions for di�erent energy and�xed angular 
ut in the lower part of the table.3.5.3 Results for di�erential 
ross se
tions3.5.3.1 Invariant-mass and angular distributions for W bosonsIn Figure 3.8 we show the invariant-mass and angular distributions of the intermediateW+ boson for the pro
ess 

 ! e���eu�d at ps = 500GeV. The momentum of the W+boson is re
onstru
ted from the outgoing quark pair in the de
ay W+ ! u�d. Figure 3.8also illustrates the e�e
t of the 
onvolution over the photon spe
trum.The resonan
e in the invariant-mass distribution (l.h.s. of Figure 3.8) has the typi-
al Breit-Wigner shape and 
an be used to determine the W-boson mass and width ata 

 
ollider. Moreover, owing to its large 
ross se
tion, the W re
onstru
tion in this
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 ! 4f(
)rea
tion seems to be a promising possibility for dete
tor 
alibration at a 

 
ollider. Sim-ilarly to the integrated 
ross se
tions dis
ussed in the previous se
tions, the 
onvolutionqualitatively res
ales the distribution by roughly a fa
tor 4.The r.h.s. of Figure 3.8 shows the distribution in the angle �u�d between the W+ bosonand the beam axis. Sin
e the in
oming 

 state is symmetri
 w.r.t. inter
hange of the twophotons, the angular distribution is symmetri
 in the produ
tion angle �u�d. W bosons arepredominantly produ
ed in forward or ba
kward dire
tion owing to diagrams with t- andu-
hannel ex
hange of W bosons. For the pro
ess 

 ! WW with on-shell W bosons,the forward and ba
kward peaks are integrable and lead to a 
onstant 
ross se
tion inthe high-energy limit. As already pointed out in Se
tion 3.5.2.2, the angular 
uts (3.5.2)restri
t the available phase spa
e of the intermediate W bosons and lead to a redu
tionof the forward and ba
kward peaks for high energies. Note that the redu
tion indu
edby the 
onvolution over the photon spe
trum is not uniform, but tends to 
atten theshape of the angular distribution slightly. This is mainly due to the redu
ed CM energyin the photon spe
trum, leading to a less pronoun
ed peaking behaviour in the forwardand ba
kward dire
tions.3.5.3.2 Energy and produ
tion-angle distributions of fermionsIn Figure 3.9 we show the energy and angular distributions of the outgoing fermionse�, u, and �d in the rea
tion 

 ! e���eu�d at ps = 500GeV with and without 
onvolutionover the photon spe
trum.For mono
hromati
, unpolarized in
oming 
 beams (i.e. without 
onvolution over thephoton spe
trum), the energy distributions (l.h.s. of Figure 3.9) of the fermions e�, u, and�d almost 
oin
ide and are maximal at their largest and smallest kinemati
al limits. Theseregions are dominated by the situations where the respe
tive W boson emits the 
onsideredfermion parallel or anti-parallel to its dire
tion of 
ight. The 
onvolution over the photonspe
trum 
hanges the shapes of the energy distributions 
onsiderably. Sin
e the photonspe
trum falls o� rapidly for energies above 80% of the in
oming ele
tron energy, energiesof the �nal-state fermions larger than 200GeV be
ome pra
ti
ally impossible. For fermionenergies below 200GeV the shapes of the distributions of the outgoing fermions e� andu look rather di�erent from the one for the anti-fermion �d. This e�e
t is due to thee�e
tive 
 beam polarization in the photon spe
trum; for unpolarized 
 beams the energydistributions would look almost identi
al. In detail, the e�e
tive polarization of the 

system is mainly (�1�2) = (++), leading predominantly to W+W� produ
tion withe�e
tive heli
ities (++). Following the line of thought of Se
tion 3.5.2.6 W bosons withheli
ity +1 
annot de
ay into fermion{anti-fermion pairs with a fermion (whi
h must haveheli
ity�12) parallel to the 
ight dire
tion of the W boson. Thus, mu
h more anti-fermions(whi
h have heli
ity +12) than fermions follow the dire
tions of the de
aying W bosons,whi
h qualitatively explains the redu
tion (enhan
ement) of the fermion (anti-fermion)energy distributions at the upper kinemati
al energy limit. The above arguments areni
ely illustrated in Ref. [ 17℄, where the fermion energy distributions are shown for fullypolarized, mono
hromati
 photon beams.
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tion-angle (r.h.s.) distributions of the outgoingfermions e�, u, and �d in the pro
ess 

 ! e���eu�d at ps = 500GeV with and without
onvolution over the photon spe
trum.
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 ! 4f(
)The r.h.s. of Figure 3.9 shows the distributions in the angles �f of the (anti-)fermionsf = e�; u; �d to the beam axis. Be
ause of the symmetry of the in
oming 

 state w.r.t.inter
hange of the two photons, the angular distribution is symmetri
 in �f . The forwardand ba
kward peaks originate from two sour
es. The by far largest 
ontribution to thedi�erential 
ross se
tion 
omes from signal diagrams and thus from 
on�gurations wherethe W bosons as well as the de
ay fermions are nearly parallel to the beam. The se
ondsour
e, whi
h is widely suppressed by the applied 
uts, is related to 
ollinear singularitiesof ba
kground diagrams where an in
oming photon splits into an fermion{anti-fermionpair f �f , with the fermion or anti-fermion dire
tly going into the �nal state. If the phasespa
e of the outgoing (anti-)fermion is not restri
ted by 
uts, su
h 
ollinear or masssingularities lead to logarithms of the form ln(s=m2f ), where mf is the fermion mass. Sin
eour 
al
ulation is done for massless fermions, the 
ollinear singularities must be ex
ludedby phase-spa
e 
uts and the fermion mass in ln(s=m2f ) is repla
ed by the 
orresponding
ut parameter.The photon spe
trum redu
es the di�erential 
ross se
tion over the whole range andagain 
attens the angular distributions, espe
ially in the 
ases of outgoing fermions. Thesigni�
ant di�eren
e between the outgoing fermions and anti-fermions is again due to thee�e
tive 
 polarization in the photon spe
trum. As explained above, more anti-fermionsthan fermions follow the 
ight dire
tions of the W bosons, whi
h are mainly produ
ed inthe forward and ba
kward dire
tions. This is the reason why the �e� and �u distributionsare 
attened, while the peaking behaviour in the ��d distribution is more pronoun
ed afterthe 
onvolution over the photon spe
trum.3.5.3.3 Higgs-boson resonan
eIn Figure 3.10 we show the invariant-mass distribution of the Higgs boson for thepro
ess 

 ! H !WW ! u�ds�
 for a Higgs mass of MH = 170GeV. The CM energy ofthe ele
tron beams is 
hosen to be psee = 260GeV whi
h maximizes the 

 luminosityin the region ps

 � MH. The invariant mass Mu�ds�
 of the Higgs boson is re
onstru
tedfrom its de
ay produ
ts whi
h are the four outgoing quarks. This means that Mu�ds�
 isequal to the photoni
 CM energy, Mu�ds�
 = ps

. Thus, the shape of the distributiondepends on the form of the photon spe
trum very strongly. The e�e
tive 

H 
ouplingis set to the SM value (3.3.3). For 
omparison the situation without Higgs resonan
e isalso in
luded in Figure 3.10, illustrating the signi�
an
e of the Higgs signal. The di�erentpeak heights in the two plots simply result from di�erent bin sizes.3.5.4 Anomalous 
ouplingsIn this se
tion we study the impa
t of possible anomalous gauge-boson 
ouplings onCC 
ross se
tions of the pro
ess 
lass 

 ! 4f . In order to estimate the full sensitivity ofa future 

 
ollider, su
h as the 

 option at the ILC, on anomalous 
ouplings, in additiondi�erential distributions and realisti
 event sele
tions should be taken into a

ount. Su
ha study goes beyond the s
ope of this work, but our Monte Carlo generator 
an serve asa tool in this task.
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302520151050Figure 3.10: Invariant-mass distribution of the four-quark �nal state for the pro
ess 

 !u�ds�
 at psee = 260GeV in
luding 
onvolution over the photon spe
trum.We 
onsider only semi-leptoni
 �nal states, sin
e these have the 
leanest experimentalsignal. The 
ross se
tion for semi-leptoni
 �nal states is obtained from the sum over allrea
tions 

 ! l���lq�q0, with q = u; 
 and l = e; �; � , and their 
orresponding 
harge-
onjugated pro
esses 

 ! �ll+q0�q. The results are shown in Figure 3.11 for ATGC andin Figure 3.12 for AQGC. In the left plot of Figure 3.11 and the upper plot of Figure 3.12we show the 
ross se
tion as a fun
tion of the anomalous 
oupling 
onstant normalizedto the SM 
ross se
tion. As 
an be seen in the insert of Figure 3.11, the minimum inthe ��
 
urve is shifted to negative values whi
h is 
aused by 
ontributions to the 
rossse
tion that are linear in ��
 . These 
ontributions result from the interferen
e betweenmatrix elements linear in the ATGC ��
 with the SM amplitude. On the other hand,the interferen
es for the ATGC �
 are small. In the 
ase of AQGC, su
h interferen
es arerelatively large for a
.In order to examine the sensitivity of a linear 
ollider to anomalous 
ouplings, we
onsider a 

 
ollider with an integrated luminosity of L = 100 fb�1 and a CM energy ofpsee = 500GeV [ 11℄. We de�ne�2 � (N(ai)�N)2N with N = �SML; N(ai) = �(ai)L; (3.5.4)where N is the expe
ted number of events in the SM and N(ai) the number of events inthe SM extended by the non-standard 
ouplings. In Figures 3.11 and 3.12 the 1� 
ontours
orresponding to �2 = 1 are shown. Note that the 1� 
ontour 
an result from N(ai) > Nand N(ai) < N . While �2 = 1 with N(ai) > N is always possible for suÆ
iently largeanomalous 
ouplings, �2 = 1 with N(ai) < N requires large interferen
e e�e
ts of matrixelements with anomalous 
ouplings. In our 
ase, both bran
hes of the 1� 
ontours are
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Figure 3.11: Combined 
ross se
tion for semi-leptoni
 �nal states as a fun
tion of theATGC ��
 and �
 (l.h.s.) and 1� 
ontours (r.h.s.) in the (��
 ; �
) plane at psee =500GeV in
luding the 
onvolution over the photon spe
trum.realized. In Figure 3.11 the plot on the r.h.s. shows the 1� 
ontours in the (��
 ; �
) plane.Sin
e the 
ross se
tion is a polynomial up to fourth power in the ATGC, the 
ontoursare not of ellipti
 form. The allowed region lies between the two 
ontours that are rather
lose to ea
h other so that they 
annot be distinguished in the insert whi
h shows the
ontours on a larger s
ale. Note that in the limit of large luminosity the 
ontour in theinsert of the r.h.s. of Figure 3.11 does not shrink to a point, but redu
es to a line in the(��
 ; �
) plane on whi
h �anom = �SM. In order to resolve this 
orrelation between ��
and �
, anomalous e�e
ts on distributions should be 
onsidered, or other 
onstraints fromthe e+e� or e�
 modes should be in
luded.In 
ase of AQGC the 
ross se
tion is at most quadrati
 in the AQGC, and the �2 = 1surfa
e 
onsists of two ellipsoids in the (a0; a
; ~a0) spa
e. The existen
e of two bran
hesis again due to large interferen
es of anomalous 
ontributions. In the lower left plot ofFigure 3.12 we show the proje
tions of the outer ellipsoid into the 
oordinate planes oftwo AQGC (where the third AQGC is zero). In the lower right plot the se
tions of bothellipsoids with these planes are given. Sin
e the 
entre of the ellipsoids is shifted in the a
and a0 dire
tions, the terms in �(ai) linear in these 
ouplings are signi�
ant; they resultfrom interferen
es of the diagram with the AQGC with the SM amplitude. Interferen
esthat are proportional to ~a0 turn out to be small. From Eq. (3.2.14) it is obvious thatthere are no a0~a0 and a
~a0 terms in �(ai). Consequently, the proje
tion into and these
tion with the (a0; a
) plane 
oin
ide. On the other hand, the two other proje
tions andse
tions di�er, signalling that the a
a0 term in �(ai) is signi�
ant.The allowed 1� region (�2 < 1) in the (a0; a
; ~a0) spa
e is the shell at the boundaryof the shown ellipsoid. Similar to the observation made above for the ATGC, the size
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ross se
tion for semi-leptoni
 �nal states as a fun
tion of theAQGC a0, a
, and ~a0 (upper plot) and 1� 
ontours (l.h.s. proje
tion, r.h.s. se
tion) in the
oordinate planes at psee = 500GeV in
luding the 
onvolution over the photon spe
trum.
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tions for 

 ! 4f(
)of the ellipsoid does not shrink for larger luminosity, only the thi
kness of the shell willde
rease. This means that the size of the proje
tions shown in the lower left plot ofFigure 3.12 will not redu
e for larger luminosity. Thus, using only information on anintegrated 
ross se
tion (for a �xed energy) 
ould not improve the bounds on AQGCw.r.t. the ones resulting from e+e� ! WW
 ! 4f
 [ 50℄. However, the thinness ofthe shell of the ellipsoid, as illustrated in the lower right plot of Figure 3.12, shows thatthe bounds 
an be drasti
ally tightened if the 
orrelation between the three AQGC isresolved. Di�erential distributions will 
ertainly provide this information, so that a 


ollider should be able to 
onstrain AQGC by an order of magnitude better than an e+e�
ollider operating at 
omparable energy.



Chapter 4Quantum 
orre
tions to

 !WW! 4f in double-poleapproximation4.1 Strategy of the 
al
ulationWe 
onsider the pro
ess
(k1; �1) + 
(k2; �2) ! W+(k+; �+) +W�(k�; ��)! f1(p1; �1) + �f2(p2; �2) + f3(p3; �3) + �f4(p4; �4); (4.1.1)where ki and pi denote the momenta and �i and �i the heli
ities of the 
orrespondingparti
les.The lowest-order 
ross se
tion d�

!4fBorn , based on the 
omplete matrix elementsM

!4fBorn with massless fermions, has been dis
ussed in the previous 
hapter. Suppressingthe averaging over the photon polarizations and the spin and 
olour summation for the�nal state in the notation, it readsZ d�

!4fBorn = 12s Z d�4f jM

!4fBorn j2; (4.1.2)with s = (k1 + k2)2; sij = (pi + pj)2; i; j = 1; 2; 3; 4: (4.1.3)The variables sij are introdu
ed for later use.In the following we fo
us on the radiative 
orre
tions of O(�) whi
h 
onsist of vir-tual 
orre
tions d�

!4fvirt to the pro
ess (4.1.1) and real-photoni
 
orre
tions d�

!4f
 ,originating from the pro
ess
(k1; �1) + 
(k2; �2) ! W+(k+; �+) +W�(k�; ��) (+ 
 )! f1(p1; �1) + �f2(p2; �2) + f3(p3; �3) + �f4(p4; �4) + 
(k; �
): (4.1.4)Combining the di�erent 
ontributions we obtain the O(�)-
orre
ted predi
tion for the
ross se
tion, Z d� = Z d�

!4fBorn + Z d�

!4fvirt + Z d�

!4f
 : (4.1.5)55



56 Quantum 
orre
tions to 

 !WW! 4f in double-pole approximationThe real-photoni
 
orre
tions d�

!4f
 are based on the full lowest-order matrix elementsM

!4f
Born of the pro
ess 

 ! 4f
 for massless fermions, whi
h were 
al
ulated in theprevious 
hapter . In the limit of vanishing photon momentum k (soft limit) or whenthe photon be
omes 
ollinear to an external 
harged fermion (
ollinear limit), the 
rossse
tion diverges. Considering the pro
ess 

 ! 4f
 with a visible photon (whi
h isneither soft nor 
ollinear), these soft and 
ollinear singularities are removed by imposingappropriate phase-spa
e 
uts whi
h are justi�ed by the �nite experimental resolution.For predi
tions of the 

 ! 4f(
) pro
esses, i.e. with or without photon radiation, thesingular phase-spa
e regions of soft or 
ollinear emission have to be integrated over. In this
ase the real 
orre
tions are 
ombined with the virtual 
orre
tions whi
h 
ontain exa
tlythe same singularities with opposite sign. The regularization of the singularities in thereal 
orre
tions by small photon and fermion masses, � and mf , as well as the mat
hingwith the singularities in the virtual 
orre
tions, is des
ribed in detail in Se
tion 4.3. Thestarting point is a separation into a �nite and a singular part,d�

!4f
 = d�

!4f
�nite + d�

!4f
sing ; (4.1.6)where the soft and 
ollinear singularities appear in d�

!4f
sing as ln� and lnmf terms,respe
tively.The virtual 
orre
tions to the pro
ess (4.1.1) are 
al
ulated in the DPA, whi
h isexplained in Se
tion 4.2. Sin
e the real 
orre
tions are based on 
omplete 

 ! 4f
matrix elements (i.e. they are not 
al
ulated in DPA), the 
an
ellation of soft and 
ollinearsingularities in Eq. (4.1.5) requires parti
ular 
are. To this end, we apply the DPA onlyto the �nite part of the virtual 
orre
tions,d�

!4fvirt ! d�

!WW!4fvirt;�nite;DPA + d�

!4fvirt;sing: (4.1.7)Te
hni
ally this is a
hieved by subtra
ting the singular part in DPA from the DPA virtual
orre
tions and adding the exa
t singular part d�

!4fvirt;sing. Of 
ourse, this pro
edure involvessome freedom, be
ause �nite terms 
an be shifted between d�

!4fvirt;�nite;DPA and d�

!4fvirt;sing.This arbitrariness is, however, of the order of the un
ertainty O(��W=(�MW)) of our
al
ulation. In the e+e� 
ase this has been 
he
ked numeri
ally in Ref. [ 19℄.Inserting these rearrangements into Eq. (4.1.5) we obtainZ d� = Z d�

!4fBorn + Z d�

!WW!4fvirt;�nite;DPA + Z d�

!4fvirt+real;sing + Z d�

!4f
�nite ; (4.1.8)where R d�

!4fvirt+real;sing = R d�

!4fvirt;sing + R d�

!4f
real;sing does not 
ontain any dependen
e on thephoton mass anymore. Collinear singularities, appearing as lnmf terms, also 
an
el ifthe observable is suÆ
iently in
lusive. Su
h 
ollinear-safe observables result if photonswithin 
ones 
ollinear to any outgoing 
harged fermion are treated in
lusively, i.e. if theyare not separated from the nearly 
ollinear fermion by any phase-spa
e or event sele
tion
uts. For non-
ollinear-safe observables logarithms of the fermion masses remain in the�nal result. This 
ase demands a spe
ial treatment of the singular terms. We elaboratemore on this issue in Se
tion 4.3.2.
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WW W

W





On-shell produ
tion On-shell de
aysFigure 4.1: Generi
 Feynman diagram of the virtual fa
torizable 
orre
tions to 

 !WW ! 4f . The shaded blobs stand for loop 
orre
tions to the produ
tion and de
aypro
esses.4.2 Virtual 
orre
tions4.2.1 Con
ept of the double-pole approximationIn Se
tion 2.4 we des
ribed how to 
onstru
t a pole expansion around a resonant prop-agator. In order to obtain the �rst term of this expansion fa
torizable and non-fa
torizable
ontributions have to be 
al
ulated. In the following, we apply the results to the 
aseof two resonant propagators, i.e. we expand the matrix element for 

 ! 4f around thepoles of the two resonant W propagators. For more details of the DPA, espe
ially howa gauge-invariant de
omposition into fa
torizable and non-fa
torizable 
ontributions isobtained, we refer to Refs. [ 19, 37, 60, 61℄.The generi
 Feynman diagram for the fa
torizable 
orre
tions is shown in Figure 4.1.It fa
torizes into the on-shell W-pair produ
tion, the o�-shell W-boson propagators, andthe subsequent on-shell W de
ays. The 
orre
tions 
an be attributed to either of thesesubpro
esses. When integrating over the full 4f phase spa
e, the W bosons usually are noton shell. However, a gauge-independent evaluation of the matrix elements for produ
tionand de
ay requires on-shell momenta for the W bosons. Therefore, we have to perform anon-shell proje
tion, i.e. the momenta of the fermions are deformed in su
h a way that theW bosons be
ome on shell. The deformation involves a 
ertain freedom and introdu
esan error of O(��W=(�MW)). We de�ne the on-shell proje
tion by �xing the dire
tionsof the W+ boson and of the fermions f1 and f3. The expli
it formulas 
an be found inAppendix A of Ref. [ 19℄. For later use, we label the new momenta k̂� and p̂i and de�nethe kinemati
 invariantst̂ = (k1 � k̂+)2 = (k1 � p̂1 � p̂2)2; û = 2M2W � s� t̂: (4.2.1)Apart from the fa
torizable 
orre
tions there are additional doubly-resonant 
ontribu-tions. In the 
orresponding diagrams subpro
esses are linked by a photon. These diagramsbe
ome doubly resonant in the limit of vanishing photon momentum, as 
an be seen fromthe soft-photon approximation in whi
h the 
orre
tion is proportional to the lowest-order
ross se
tion. The relative 
orre
tion fa
tor for these so-
alled non-fa
torizable 
orre
-tions is, thus, not dependent of the a
tual produ
tion me
hanism of the W pairs, but
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orre
tions to 

 !WW! 4f in double-pole approximation(a) type (mf 0) 
WWW
(k1)

(k2) f1(p1)�f2(p2)f3(p3)�f4(p4)

(b) type (ff 0)

WW(
) type (mm0)


WW
W
W

(d) type (mf) 
 WWW(e) type (mm) 
W W WWFigure 4.2: A representative set of diagrams 
ontributing to the virtual non-fa
torizable
orre
tions. The shaded blobs stand for all tree-level stru
tures 
ontributing to 

 !WW.only on the ele
tri
 
harges and kinemati
s of the external parti
les of the pro
ess. Thenon-fa
torizable 
orre
tions were 
al
ulated in Refs. [ 60, 61℄ for e+e� !WW! 4f . We
an transfer the results for the e+e� 
ase by simply omitting all 
ontributions in whi
hthe ex
hanged photon is linked to an e� from the initial state. The di�erent types ofrelevant diagrams are depi
ted in Figure 4.2. The �rst two diagrams, labelled (a) and(b), are manifestly non-fa
torizable, i.e. the photon links di�erent subpro
esses so thatthe propagators in the diagrams 
annot be fa
torized anymore. The diagrams (
), (d),and (e) 
ontain both fa
torizable and non-fa
torizable 
ontributions. Their fa
torizableparts are de�ned as the residues for on-shell W bosons times the o�-shell W-boson prop-agators; note that this pro
edure introdu
es arti�
ial soft IR divergen
es 
onne
ted withthe on-shellness of the W bosons in the loops. The non-fa
torizable parts of the diagramsare obtained from the di�eren
e of the doubly-resonant 
ontribution of the full diagrams



Virtual 
orre
tions 59and their fa
torizable parts; the arti�
ially introdu
ed IR divergen
es of the fa
torizableparts are, thus, 
ompensated by 
orresponding terms in the non-fa
torizable parts.Following this strategy, the virtual 
orre
tions in DPA 
an be written asd�

!WW!4fvirt;DPA = 12s Z d�4f�2RefÆMvirt;fa
tM�Born;DPAg+ Ævirt;nfa
tjMBorn;DPAj2 + jÆMHiggsj2�; (4.2.2)where MBorn;DPA denotes the tree-level matrix element in DPA and Ævirt;nfa
t 
ontainsthe non-fa
torizable 
orre
tions. The fa
torizable 
orre
tions ÆMvirt;fa
t also 
ontain a
ontribution of the s-
hannel Higgs resonan
e, ÆMHiggs. In order to des
ribe this resonan
eproperly, it is not suÆ
ient to in
lude the interferen
e of ÆMHiggs with the Born matrixelement, but the square of this matrix-element 
ontribution has to be taken into a

ount inaddition. To this end, ÆMHiggs has to be de�ned in a gauge-invariant way. Our treatmentof ÆMHiggs is des
ribed in Se
tion 4.2.2.4 in detail.4.2.2 Fa
torizable 
orre
tions4.2.2.1 Cal
ulation of the one-loop amplitudesThe fa
torizable 
orre
tions 
omprise the 
orre
tions to the on-shell produ
tion of theW bosons and their on-shell de
ay and 
an be expressed asÆMvirt;fa
t = X�+;�� 1K+K� �ÆM

WWMW+!f1 �f2Born MW�!f3 �f4Born+M

WWBorn ÆMW+!f1 �f2MW�!f3 �f4Born+ M

WWBorn MW+!f1 �f2Born ÆMW�!f3 �f4� ; (4.2.3)where we introdu
ed the abbreviationsK� = k2� �M2W + iMW�W; (4.2.4)and ÆM denote one-loop matrix elements. Note that all matrix elements on the r.h.s. ofEq. (4.2.3) depend on the on-shell proje
ted momenta, but the momenta in K� remainun
hanged. The results for the di�erent one-loop 
orre
tions to the produ
tion [ 39, 59, 62℄and the de
ay [ 57℄ are already known in the literature. Combining them in Eq. (4.2.3) is,however, non-trivial sin
e the polarizations of the W bosons have to be de�ned 
onsistentlyin a 
ommon referen
e frame.The one-loop 
orre
tions ÆMW!fi �fj to the W de
ays are rather simple. In the masslesslimit they are proportional to the respe
tive Born matrix elements MW!fi �fjBorn ,ÆMW!fi �fj (�W; p̂i; p̂j) = ÆW!fi �fj MW!fi �fjBorn (�W; p̂i; p̂j); (4.2.5)where ÆW!fi �fj is a 
onstant 
orre
tion fa
tor that neither depends on the kinemati
s noron the heli
ity �W of the de
aying W boson.



60 Quantum 
orre
tions to 

 !WW! 4f in double-pole approximationThe one-loop 
orre
tion ÆM

WW to the W-pair produ
tion pro
ess 
ontains the 
om-pli
ated part. Our 
al
ulation is based on the results of Ref. [ 39℄. As in the previous
hapter whi
h use a non-linear gauge �xing term, so that the vertex 
W� of a photon, aW boson, and the would-be Goldstone boson of the W boson vanishes. This redu
es thenumber of diagrams 
ompared to the 
onventional 't Hooft{Feynman gauge.In the following we des
ribe an eÆ
ient way for 
al
ulating the 
ontribution ofÆM

WW to ÆMvirt;fa
t of Eq. (4.2.3), taking into a

ount all spin 
orrelations. As de-s
ribed in Ref. [ 39℄, the matrix element ÆM

WW for on-shell W-pair produ
tion is de-
omposed into a sum of produ
ts of form fa
tors Fj, whi
h only depend on the kinemati
variables s and t̂, and a set of standard matrix elements (SME) M

WWj , whi
h 
ontainthe polarizations and momenta of the external photons and W bosons,ÆM

WW(k1; k2; �1; �2; k̂+; k̂�; �+; ��)= 36Xj=1Fj(s; t̂)M

WWj (k1; k2; �1; �2; k̂+; k̂�; �+; ��): (4.2.6)The SME M

WWj are obtained from the 83 basi
 matrix elements given in Se
tion 2of Ref. [ 39℄ whi
h are redu
ed to 36 matrix elements as des
ribed there1. The de
aymatrix elements MW!fi �fjBorn , whi
h multiply ÆM

WW in Eq. (4.2.3), 
an be in
luded byrepla
ing the W polarization ve
tors "�� in the de�nitions of the SMEMj by the \e�e
tivepolarization ve
tors""̂��+ = ep2sw 1K+ �u(p̂1)
�!�v(p̂2); "̂��� = ep2sw 1K� �u(p̂3)
�!�v(p̂4); (4.2.7)where �u(p̂i) and v(p̂i) are the Dira
 spinors of the fermions and anti-fermions and !� =12(1�
5) is the left-handed 
hirality proje
tor. The e�e
tive W-polarization ve
tors "̂�� areformal shorthands for the W propagators and the tree-level de
ay matrix elements, whi
hinvolve the usual SU(2) gauge 
oupling e=sw. Upon substituting "�� ! "̂�� in the SME foron-shell W-pair produ
tion, we obtain a new set of SME Mj that 
orre
tly transfer theW polarization to the de
ay,Mj(k1; k2; �1; �2; k2+; k2�; fp̂ig) = M

WWj (k1; k2; �1; �2; k̂+; k̂�; �+; ��)���"��!"̂��= X�+;�� 1K+K� M

WWj (k1; k2; �1; �2; k̂+; k̂�; �+; ��)�MW+!f1 �f2Born (�+; p̂1; p̂2)MW�!f3 �f4Born (��; p̂3; p̂4):(4.2.8)The new SME Mj 
an be easily evaluated with spinor methods, as e.g. des
ribed inRef. [ 42℄.1The on-shell momenta k̂� and the heli
ities �� of the W bosons are denoted k3;4 and �3;4 in Ref. [ 39℄.



Virtual 
orre
tions 61In summary the fa
torizable part of the virtual 
orre
tion takes the formÆMvirt;fa
t = 36Xj=1Fj(s; t̂)Mj(k1; k2; �1; �2; k2+; k2�; fp̂ig)+ �ÆW+!f1 �f2 + ÆW�!f3 �f4�MBorn;DPA(k1; k2; �1; �2; k2+; k2�; fp̂ig): (4.2.9)4.2.2.2 Details of the numeri
al evaluationThe formulas for the 
oeÆ
ient fun
tions Fj are rather lengthy and 
ontain many one-loop integrals, whi
h in turn involve many dilogarithmi
 fun
tions, et
. Thus, to speedup the numeri
al evaluation it is desirable not to evaluate the Fj at ea
h phase-spa
epoint. Moreover, numeri
al instabilities o

ur at the boundary of the phase spa
e wherethe s
attering angle � between the W bosons and the beam axis tends to 0 or �. This isdue to the inverse Gram determinants appearing in the Passarino{Veltman redu
tion [ 63℄of the tensor integrals. The problems of speed and stability 
an be solved by expandingthe fun
tions Fj(s; t̂) in terms of a generalized Fourier series in the variable t̂ for �xedvalues of s. The 
oeÆ
ients of this expansion are 
al
ulated before the Monte Carlointegration. An appropriate system of orthogonal fun
tions in the variable x = 
os �,whi
h is equivalent to a fun
tion of t̂ for �xed s, is provided by the Legendre polynomialsPl(x) = 12ll! dldxl h(x2 � 1)li ; l = 0; 1; ::: : (4.2.10)For this basis fun
tions, the 
oeÆ
ients read
j;l(s) = 2l + 12 Z +1�1 d 
os � (t̂�M2W)(û�M2W)Fj(s; t̂)Pl(
os �); (4.2.11)where we have introdu
ed the fa
tor (t̂ �M2W)(û �M2W) in order to 
atten the t- andu-
hannel poles in the fun
tions Fj. This improves the eÆ
ien
y of the expansion. Theintegration in Eq. (4.2.11) is 
arried out using Gaussian integration. With 40 integrationpoints the region of instability is not entered (for energies up to a few TeV), and theintegration is suÆ
iently pre
ise. During the Monte Carlo integration the 
oeÆ
ientfun
tions are re
overed by the generalized Fourier seriesFj(s; t̂) = 1Xl=0 1(t̂�M2W)(û�M2W) 
j;l(s)Pl(
os �): (4.2.12)In Ref. [ 19℄ the same 
on
ept was used to evaluate the fa
torizable 
orre
tions toe+e� !WW ! 4f ; there it was suÆ
ient to use the Legendre polynomials up to l = 20for a good a

ura
y. In the 
ase of 

 !WW, however, the 
oeÆ
ient fun
tions involveinverse Gram determinants 1=(t̂û � M4W) / 1= sin2 � whi
h appear in the Passarino{Veltman redu
tion of the tensor integrals. As ea
h step in this re
ursive redu
tion involvessu
h an inverse determinant, 1=(t̂û�M4W) 
an appear up to the fourth power. At 
os � ��1 this fa
tor leads to a behaviour of the Fj(s; t̂) that is not well approximated by theLegendre expansion. Using higher-order Legendre polynomials is not a solution sin
e this



62 Quantum 
orre
tions to 

 !WW! 4f in double-pole approximationin
reases the 
al
ulation time and also requires more integration points for the Gaussianintegration. The more points are used in the Gaussian integration, the 
loser some of thesepoints approa
h the integration boundary where the numeri
al stability of the 
oeÆ
ientfun
tion breaks down. Therefore, we follow a di�erent strategy based on the fa
t that theheli
ity amplitudes for the on-shell pro
ess 

 !WW are smooth fun
tions of 
os �, apartfrom the t- and u-
hannel poles. Thus, within the full amplitude the fa
tors 1=(t̂û�M4W)have to 
an
el between 
ontributions of di�erent 
oeÆ
ient fun
tions. To make use of thisfa
t we 
hange the basis of SME by a linear transformation in su
h a way that the new
oeÆ
ient fun
tions 
orrespond to heli
ity amplitudes of the on-shell pro
ess 

 !WW.Some details of this transformation 
an be found in App. C. After this transformationthe un
ertainty of the approximated matrix elements in Eq. (4.2.6) is well below 10�4with respe
t to the Born matrix elements for all values of 
os �.In 
ontrast to the e+e� 
ase, the CM energy ps of the photons is not �xed. Thus, wehave to perform the Legendre expansions for di�erent values of s. During the Monte Carlointegration we derive an approximate value of the 
oeÆ
ients 
j;l(s) by interpolation. Sin
ethe Fj(s; t̂) depend on s very smoothly, it is suÆ
ient to 
al
ulate the 
j;l(s) at intervalsof �s <� 1GeV. In these intervals we then interpolate with a polynomial of third order.We have 
he
ked that, up to 1TeV, this yields a suÆ
ient a

ura
y (i.e. better than thea

ura
y of the Legendre expansion).4.2.2.3 Renormalization and imaginary parts of virtual 
orre
tionsFor on-shell W-pair produ
tion, whi
h was 
onsidered in Ref. [ 39℄, imaginary parts of
ounterterms, if in
luded, do not in
uen
e the 
orre
tion to the matrix element square.The reason is that for the 2! 2 s
attering pro
ess 

 !WW all SME, and thus also theBorn matrix element, 
an be taken real by appropriate phase 
hoi
es. Thus, the operationof taking the real part in the interferen
e term 2RefM
tM�Borng of the 
ounterterm
ontribution M
t to the one-loop amplitude with the Born amplitude e�e
tively a
ts onthe renormalization 
onstants themselves. The same argument shows that also imaginaryparts of loop integrals drop out. These arguments are no longer true if the de
ay of theW bosons is taken into a

ount, be
ause the SME and the Born matrix elementMBorn;DPAbe
ome ne
essarily 
omplex. Thus, imaginary parts of renormalization 
onstants and ofloop integrals in general matter. Considering the W-de
ay amplitudes in the DPA inmore detail, as e.g. done in Ref. [ 22℄ for the e+e� 
ase, one 
an see that imaginary partsaverage to zero after the azimuthal de
ay angles of the W-de
ay produ
ts are integratedover.We have 
al
ulated the virtual 
orre
tions taking into a

ount the imaginary partsof all loop integrals. Comparing the virtual 
orre
tions with a se
ond, independent 
al-
ulation in the 't Hooft{Feynman gauge [ 6℄ and in the ba
kground-�eld gauge [ 7℄, we�nd agreement between the results obtained in these di�erent gauges. This is, however,only true if we also take into a

ount the imaginary parts of the loops that 
ontributeto renormalization 
onstants. In order to explain this fa
t, we 
onsider the 
ounterterm
ontributions to the one-loop matrix element in more detail.



Virtual 
orre
tions 63Following Ref. [ 39℄, we write the Born matrix element in DPA asMBorn;DPA = 8��( sM2W � t̂M0;t + sM2W � ûM0;u � ("1"2)("̂�+"̂��)) ; (4.2.13)where M0;t and M0;u are abbreviations for spe
i�
 
ombinations of momenta and po-larization ve
tors de�ned as in Eq. (22) of Ref. [ 39℄ for on-shell W-pair produ
tion. Inthe 't Hooft{Feynman gauge, the 
ounterterm 
ontribution to the produ
tion part of thefa
torizable 
orre
tion readsÆMtHF
t;prod = MBorn;DPA �2ÆZe + ÆZW + ÆZAA � 
wsw ÆZZA�� 8�� sÆM2W(t̂�M2W)2M0;t + sÆM2W(û�M2W)2M0;u!� 4�� ("1"̂�+)("2"̂��)(t̂�M2W) + ("1"̂��)("2"̂�+)(û�M2W) ! 2ÆM2W + M2Wsw
w ÆZZA!+ 4��eMW2sw  ("1"̂�+)("2"̂��)(t̂�M2W)2 + ("1"̂��)("2"̂�+)(û�M2W)2 ! Æt; (4.2.14)where we adopt the 
onventions of Ref. [ 6℄ for the renormalization 
onstants ÆZe, ÆZW ,et
. The expli
it 
al
ulation of the 
onstants in terms of self-energies is also des
ribedthere. The 
ounterterm 
ontribution in the ba
kground-�eld gauge [ 7℄ 
an be obtainedfrom ÆMtHF
t;prod by simply omitting the ÆZZA terms, be
ause ÆZZA vanishes owing to theba
kground-�eld gauge invarian
e. In the non-linear gauge the 
ounterterm 
ontributionreads ÆMNL
t;prod = MBorn;DPA �2ÆZe + ÆZW + ÆZAA � 
wsw ÆZZA�� 8�� sÆM2W(t̂�M2W)2M0;t + sÆM2W(û�M2W)2M0;u! ; (4.2.15)as des
ribed in Ref. [ 39℄, whi
h is di�erent from its 
ounterpart in 't Hooft{Feynmangauge. Note also that the expli
it expressions of the renormalization 
onstants in thedi�erent gauges are in general di�erent.Imaginary parts of loop and 
ounterterm 
ontributions that are proportional to theBorn matrix element, ÆM = 
MBorn, 
annot in
uen
e matrix element squares, be
ause2RefÆMM�Borng = 2Ref
gjMBornj2. Thus, the W-mass renormalization 
onstant ÆM2Wis the only renormalization 
onstant whose imaginary part plays a role, sin
e the tadpole
ounterterm Æt is a real quantity. From Eqs. (4.2.14) and (4.2.15), we see that ÆM2W,whi
h is equal in all three 
onsidered gauges, enters the 
ounterterm 
ontributions in the't Hooft{Feynman gauge and in the non-linear gauge in di�erent ways. In fa
t, we have
he
ked numeri
ally that the virtual 
orre
tions in these two gauges are di�erent (though�nite) if the usual on-shell pres
ription ÆM2W = Ref�WT (M2W)g (see e.g. Ref. [ 6℄) is ap-plied, where �WT (k2) is the transverse part of the W-boson self-energy with momentumtransfer k. If we, on the other hand, use the de�nition ÆM2W = �WT (M2W), i.e. without
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orre
tions to 

 !WW! 4f in double-pole approximationtaking the real part of the self-energy, we �nd agreement for the results from the di�erentgauges. This 
learly shows that the imaginary part of a one-loop amplitude is in gen-eral gauge dependent if imaginary parts in renormalization 
onstants are not taken intoa

ount. The reason for this fa
t, in other words, is that the de
omposition of a renor-malized transition matrix element into genuine loop parts and 
ounterterm 
ontributionsdepends on the gauge �xing. A 
onsistent renormalization pres
ription with 
omplexrenormalization 
onstants naturally leads to 
omplex masses for unstable parti
les. Su
ha renormalization s
heme was proposed in Ref. [ 24℄ in the 
ontext of a full O(�) 
al
u-lation for e+e� ! 4f . We will apply this s
heme in the next 
hapter for the 
al
ulationof the 
omplete one-loop 
orre
tions to the pro
ess H!WW=ZZ! 4f .In our Monte Carlo generator we have taken into a

ount the imaginary parts of thevirtual 
orre
tions (in
luding the ones from 
ounterterms); more pre
isely they 
an beswit
hed on and o� optionally. As explained above, they 
ould only a�e
t observablesthat are sensitive to the azimuthal de
ay angles of the fermions. In our numeri
al results,we 
ould, however, �nd no signi�
ant e�e
ts.4.2.2.4 Higgs resonan
eThe loop-indu
ed Higgs resonan
e, 

 ! H ! WW ! 4f , belongs to the 
lass offa
torizable 
ontributions. Nevertheless, its treatment, espe
ially the question of gaugeinvarian
e when in
luding the Higgs de
ay width, deserves some 
are. In Ref. [ 39℄ thediagrams with an s-
hannel Higgs resonan
e were de
omposed into a gauge-invariantresonant part and a gauge-dependent non-resonant part. If we write the 
ontribution ofthe Higgs-ex
hange diagrams asÆM

H = FH(s)s�M2H ("1"2)("̂�+"̂��); (4.2.16)with FH(s) given in Se
tion 4.3 of Ref. [ 39℄, and "1 and "2 being the polarization ve
torsof the photons, then the Higgs de
ay width 
an be introdu
ed by repla
ingÆM

H !  FH(M2H)s�M2H + iMH�H + FH(s)� FH(M2H)s�M2H ! ("1"2)("̂�+"̂��): (4.2.17)As the residue FH(M2H) is gauge independent, we have introdu
ed the Higgs de
ay width�H in a gauge-invariant way. Re
all that the 
hoi
e of the polarization ve
tors of thephotons is su
h that they obey "ikj = 0; i; j = 1; 2: (4.2.18)Close to the resonan
e, the 
ontribution of the Higgs-ex
hange diagrams is stronglyenhan
ed. This is why we also take into a

ount the square of the resonant part inEq. (4.2.2), ÆMHiggs = FH(M2H)("1"2)("̂�+"̂��)s�M2H + iMH�H : (4.2.19)
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orre
tions 65In this approa
h only the leading 
ontribution to the Higgs resonan
e is taken intoa

ount. However, the gauge-invariant separation of ÆMHiggs from the remaining one-loopamplitude easily allows for spe
i�
 improvements in predi
tions for the Higgs-produ
tionsignal in the future. To this end, a pole expansion about the Higgs resonan
e wouldbe an adequate �rst step. Con
eptually this expansion again leads to fa
torizable andnon-fa
torizable 
ontributions, but the 
orresponding ingredients are not all available yetand their 
al
ulation is beyond the s
ope of this work. It should be mentioned that boththe O(�) ele
troweak and O(�s) QCD virtual fa
torizable 
orre
tions to (on-shell) Higgsprodu
tion 

 ! H 
an be dedu
ed from the 
orresponding two-loop 
al
ulations [ 64℄(see also referen
es therein) for the de
ay H! 

.4.2.3 Non-fa
torizable 
orre
tionsAs explained in Se
tion 4.2.1, we make use of the result for the non-fa
torizable 
or-re
tions to e+e� ! WW ! 4f . A

ording to Refs. [ 19, 61℄ we write the 
orre
tionfa
tor to the lowest-order 
ross se
tion as a sum over 
ontributions that are asso
iatedwith di�erent pairs of fermions,Ævirt;nfa
t = Xa=1;2 Xb=3;4(�1)a+b+1QaQb�� Re n�virt(k+; pa; k�; pb)o : (4.2.20)The fun
tion �virt re
eives 
ontributions from the di�erent types of diagrams in Figure 4.2,�virt = �virtmf0 +�virtff0 +�virtmm0 +�virtmf +�virtmm; (4.2.21)for whi
h the results were given in terms of s
alar integrals in Ref. [ 19℄. The �nal resultfor a = 2; b = 3 (all other 
ontributions 
an be derived by appropriate substitutions) is�virtmf0 +�virtff0 +�virtmf� � K+K�s23 det(Y0)det(Y ) D0(�p4; k+ + p3; p2 + p3; 0;M;M; 0)� K+ det(Y3)det(Y ) F3 � K� det(Y2)det(Y ) F2 + ln �2M2W! ln � s23M2W � i�! ;�virtmm0 � (2M2W � s)�C0(k+;�k�; 0;M;M)� C0(k+;�k�; �;MW;MW)���k2�=M2W� ;�virtmm � 2 ln �MW�K+!+ 2 ln �MW�K�!+ 4; (4.2.22)where the sign \�" indi
ates that the limit k2� !M2W and �W ! 0 is 
arried out wheneverthis does not lead to a singularity. The matri
es Y0, Y2, Y3, and Y arise from the redu
tionof 5-point fun
tions and 
an be found in Se
tion 3.1 of Ref. [ 61℄. The fun
tions F2 andF3 are de�ned in Se
tion 4.2, and the C0 and D0 fun
tions in Appendix C.1 of the samereferen
e. The 
ontribution �virtmm0 
ontains the di�eren
e of the full o�-shell and on-shellCoulomb singularity, as des
ribed there in detail.The full 
orre
tion fa
tor Ævirt;nfa
t does not 
ontain fermion-mass singularities [ 19℄, butinvolves IR-singular terms ln�, as expli
itly visible in Eq. (4.2.22). The latter originate
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orre
tion fa
tor of the non-fa
torizable virtual and real 
orre
tionsto the invariant-mass distribution of the d�u pair in the rea
tion 

 ! �ee+d�u for variousCM energies ps

 .from the subtra
tion of the virtual fa
torizable 
orre
tion, whi
h involves the one-loopmatrix elements for 

 !WW and W ! f �f 0 with on-shell W bosons, from the doubly-resonant part of the matrix element for the full 

 ! 4f pro
ess. Spe
i�
ally, theln� terms stem from diagrams with photon ex
hange between an on-shell W boson andanother on-shell parti
le. As already explained in Se
tion 4.2.1, these singularities 
an
elin the sum of fa
torizable and non-fa
torizable 
ontributions, sin
e they are arti�
iallyintrodu
ed in the 
orresponding de
omposition of the virtual 
orre
tion. The expli
itformulae for the soft and 
ollinear singularities of the fa
torizable and non-fa
torizable
ontributions will be given in App. B.In Se
tion 2.4 we mentioned that the non-fa
torizable 
orre
tions vanish if the invari-ant mass of the W bosons is 
ompletely integrated over. However, they be
ome importantin invariant-mass distributions for the W bosons, whi
h are needed for the kinemati
alre
onstru
tion of the event. In order to demonstrate the size of the 
orre
tions we showthe relative 
orre
tion fa
tor for the invariant-mass distribution of the d�u pair in the re-a
tion 

 ! �ee+d�u for the input parameters spe
i�ed in Se
tion 4.4.1. Sin
e the virtualnon-fa
torizable 
orre
tions are infrared divergent, we also in
luded the 
orrespondingnon-fa
torizable real 
orre
tions. Note that this is only done in Figure 4.3. Later wewill employ the real 
orre
tions based on the 
omplete lowest-order matrix elements for

 ! 4f
. The non-fa
torizable real 
orre
tions originate from interferen
es of diagramswhere soft photons are emitted from di�erent subpro
esses. As in the 
ase of the virtual
orre
tions, there are diagrams that 
ontain both fa
torizable and non-fa
torizable 
or-re
tions. Their 
lassi�
ation pro
eeds along the same line as for the virtual 
orre
tions.In Ref. [ 60℄ it was shown that all non-fa
torizable 
orre
tions 
onne
ted with the initial
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orre
tions 67state drop out in the sum of virtual and real 
orre
tions. Hen
e, we 
an simply take overthe 
orre
tion fa
tor that was 
al
ulated in Ref. [ 61℄ for the pro
ess e�e+ !WW! 4f .Figure 4.3 shows that the 
orre
tions be
ome larger for de
reasing CM energy rea
hingalmost 2% for ps

 = 170GeV. If a photon is emitted from the �nal state the invariantmass of the d�u pair is smaller than the invariant mass of the resonant W boson. There-fore, the 
orre
tions result in a rearrangement of events in the resonan
e region. This alsoshows that a realisti
 predi
tion of the 
orre
tions very mu
h depends on how the photonsin the �nal state are treated experimentally. In the following, instead of employing thenon-fa
torizable real 
orre
tions in DPA, we will make use of the 
omplete matrix ele-ments for 

 ! 4f
 as de�ned in Se
tion 4.1. The experimental treatment of the photons
an then be spe
i�ed in the Monte Carlo generator. This issue will be dis
ussed in moredetail in Se
tion 4.4.4.2.4 Leading universal 
orre
tions and input-parameter s
hemeWe parametrize the 
ross se
tion in su
h a way that the universal 
orre
tions arisingfrom the running of the ele
tromagneti
 
oupling � and from the �-parameter are absorbedin the lowest order. In Se
tion 3.5.1 we argued that the relevant 
oupling for the 

 !WW produ
tion pro
ess is the �ne-stru
ture 
onstant �(0), be
ause the external on-shellphotons do not indu
e any running in their 
oupling to the W bosons. For the de
ay of theW bosons, it is, however, appropriate to derive � from the Fermi 
onstant G� a

ordingto Eq. (3.5.3).The de�nition of the ele
tromagneti
 
oupling � has impli
ations on the renormaliza-tion. For the 

 !WW produ
tion pro
ess we 
an perform the on-shell renormalizationpre
isely as des
ribed in Refs. [ 6℄. For the de
ay of the W bosons, however, the modi�-
ation of the 
oupling in the G� s
heme indu
es an additional �nite 
ontribution to the
harge renormalization 
onstant,ÆZejG� = ÆZej�(0) � 12�r; (4.2.23)where ÆZej�(0) is the 
harge renormalization 
onstant of the on-shell renormalizations
heme [ 6℄ with �(0) as renormalized 
oupling. The quantity �r 
ontains the radiative
orre
tions to muon de
ay; expli
it expressions for �r 
an, e.g., be found in Refs. [ 6, 65℄.In summary, our lowest-order 
ross se
tion s
ales like �(0)2�2G� . For the relative O(�)
orre
tions we use �(0), whi
h is the 
orre
t e�e
tive 
oupling for real photon emission, sothat the 
orre
ted 
ross se
tion s
ales like �(0)3�2G� . For the loop-indu
ed Higgs resonan
ewe ex
eptionally take the s
aling fa
tor �(0)2�3G�, whi
h a

ounts for the two \photoni
"and the three \weak" 
ouplings in the 
orresponding diagrams. We perform this res
aling,of 
ourse, only in the gauge-invariant resonant part ÆMHiggs of the one-loop amplitude,as de�ned in Eq. (4.2.19).4.2.5 Improved Born approximationThe motivation for 
al
ulating the virtual 
orre
tions in DPA lies in the domi-nan
e of doubly-resonant diagrams. At threshold, however, singly-resonant and non-resonant diagrams be
ome equally important, thus, rendering the naive error estimate of
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tions to 

 !WW! 4f in double-pole approximationO(��W=(MW�)) unreliable. As a 
onsequen
e, we de
ided to use the DPA only for a CMenergy ps

 > 170GeV when integrating over the photon spe
trum. Forps

 < 170GeVwe make use of an improved Born approximation (IBA), i.e. we approximate the O(�)
orre
tions by universal 
ontributions without any expansion about the W resonan
es.Assuming that the IBA a

ounts for all O(�) 
orre
tions with pronoun
ed enhan
ementfa
tors, the relative un
ertainty of the IBA is about � �2%. For the 
orrespondinge+e� rea
tion this expe
tation was 
on�rmed by the full O(�) 
al
ulation [ 24℄ for 4fprodu
tion.In detail, we start from the Born 
ross se
tion based on the full set of 

 ! 4fdiagrams, whi
h is parametrized as des
ribed in the previous se
tion. We denote the re-sulting matrix element that in
ludes the Higgs resonan
e with SM 
ouplings, as des
ribedin Se
tion 3.3, \Born+Higgs". In addition, we dress the resulting 
ross se
tion with theo�-shell Coulomb singularity,Z d�

!4fIBA = 12s Z d�4f (1 + Æ
oul)jM

!4fBorn+Higgsj2: (4.2.24)The 
orre
tion fa
tor Æ
oul for the Coulomb singularity was 
al
ulated in Ref. [ 66℄ toÆ
oul = �(0)�� Im(ln � +�� ��� +�+ ��!) ; (4.2.25)with the abbreviations�� = 1sqs2 + (k2+)2 + (k2�)2 � 2sk2+ � 2sk2� � 2k2+k2�;� = s1� 4(M2W � iMW�W)s ; � = jk2+ � k2�js : (4.2.26)4.3 Treatment of soft and 
ollinear photon emissionWe 
al
ulate the real photoni
 
orre
tions from the full lowest-order matrix elementof the pro
ess (4.1.4) without any expansion about the W-boson resonan
es. They are
al
ulated from the integralZ d�

!4f
 = 12s Z d�4f
 jM

!4f
j2�(�4f
); (4.3.1)where we have made the implementation of phase-spa
e 
uts expli
it by in
luding the stepfun
tion �(�4f
), whi
h is equal to 1 if an event passes the 
uts and 0 otherwise. Sin
ewe evaluate the real matrix element M

!4f
 with massless parti
les, the phase-spa
eintegral diverges in the soft and 
ollinear regions, where the emitted photon is either softor 
ollinear to an outgoing external 
harged fermion. In these regions we reintrodu
e aformally in�nitesimal photon mass � and small fermion masses mf as regulators.To this end, we apply two di�erent methods: the dipole subtra
tion and the (two-
uto�) phase-spa
e sli
ing methods. In the 
ase of 
ollinear-safe observables we 
loselyfollow the approa
h of Ref. [ 19℄ and only give a brief des
ription in Se
tion 4.3.1 sin
ethe pro
edure is very similar to the e+e� 
ase. In Se
tion 4.3.2 we des
ribe how the twomethods are extended to non-
ollinear-safe observables.



Treatment of soft and 
ollinear photon emission 694.3.1 Collinear-safe observables4.3.1.1 Phase-spa
e sli
ingIn the phase-spa
e sli
ing approa
h the phase spa
e is divided into regions wherethe integrand is �nite and 
an, thus, be integrated numeri
ally, and regions where theintegrand be
omes singular. In the singular regions the integration over the photon phasespa
e is 
arried out analyti
ally in the approximation that the photon is soft and/or
ollinear to a 
harged fermion.The singular regions 
onsist of two parts one of whi
h 
ontains a soft photon (k0 < �E)and the other a photon that is 
ollinear but not soft (k0 > �E and �
f < ��, where �
fis the angle between the photon and a 
harged fermion). Thus, the real 
orre
tions arede
omposed a

ording toZ d�

!4f
 = Z d�soft + Z d�
oll + Z d�

!4f
�nite ; (4.3.2)where the 
uto� parameters �E and �� are de�ned in the CM system of the in
omingphotons. Both in the soft and 
ollinear regions the squared matrix element jM

!4f
j2fa
torizes into the squared lowest-order matrix element jM

!4fBorn j2 and a universal fa
tor
ontaining the singularity. The �ve-parti
le phase spa
e also fa
torizes into a four-parti
lephase spa
e and a photon part, so that d�soft and d�
oll 
an be integrated over the photonmomentum. Taking over the results from Ref. [ 19℄ yieldsd�soft = d�

!4fBorn �(�4f ) �� 4Xi=1 4Xj=i+1(�1)i+jQiQj (2 ln�2�E� � "1� ln sijmimj!#� ln 4p0i p0jmimj!+ ln2  2p0imi !+ ln2  2p0jmj !+ �23 + Li2  1� 4p0i p0jsij !) (4.3.3)andd�
oll = d�

!4fBorn �(�4f ) �2� 4Xi=1Q2i("32 + 2 ln �Ep0i !#"1� 2 ln �� p0imi !# + 3� 2�23 );(4.3.4)where Qi and mi denote the relative ele
tri
 
harge and mass of fermion fi, respe
tively.The step fun
tion �(�4f ) indi
ates that both d�soft and d�
oll are de�ned on the four-parti
le phase spa
e of the lowest-order 
ross se
tion, so that the singular partd�

!4f
sing = d�soft + d�
oll (4.3.5)
an be lo
ally 
ombined with the singular part of the virtual 
orre
tions, whi
h are de�nedon the same phase spa
e. In the result d�

!4fvirt+real;sing all dependen
es on the photon andfermion masses 
an
el.While d�

!4fvirt+real;sing depends on the 
uto� parameters �E and �� analyti
ally, the�nite real 
orre
tions R d�

!4f
�nite only show this dependen
e upon the 
uts in the numeri
alintegration. Nevertheless, the 
uto� dependen
e has to 
an
el in the full result in the limit
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orre
tions to 

 !WW! 4f in double-pole approximation�E;�� ! 0. This is illustrated on the l.h.s. of Figures 4.4 and 4.5 where the relative
orre
tion fa
tor Æ = �=�Born � 1 of the 4f part (R d�

!4fvirt;�nite;DPA + R d�

!4fvirt+real;sing) andof the 4f
 part R d�

!4f
�nite is shown as a fun
tion of the 
uto� parameters �E and ��.The 
an
ellations of the 
uto� dependen
e of the two 
ontributions is shown on a smallers
ale on the r.h.s. of Figures 4.4 and 4.5. While terms of O(�E=Ebeam) and O(��)be
ome visible for large values of the 
uto� parameters, for smaller values a plateau isrea
hed. The integration error in
reases with de
reasing 
uto� values, until for too smallvalues the integration error is usually underestimated. As a result, we de
ided to take�E=Ebeam = 10�3 and �� = 10�2 as default values.4.3.1.2 Dipole subtra
tion methodIn a subtra
tion method an auxiliary fun
tion is 
onstru
ted that 
ontains the samesingularities as the real 
orre
tions. Subtra
ting this fun
tion from the real 
orre
tions,this di�eren
e 
an be integrated numeri
ally. The next step is to perform the singularintegration of the auxiliary fun
tion over the photon momentum analyti
ally and to readdthe result to the virtual 
orre
tions. In our 
ase where soft and 
ollinear singularitiesoriginate from �nal-state radiation only, the soft and 
ollinear singularities 
ompletely
an
el against their 
ounterparts in the virtual 
orre
tions for 
ollinear-safe observables.In the dipole subtra
tion method [ 53, 67℄, whi
h was originally proposed for QCD[ 68℄, the auxiliary fun
tion 
onsists of di�erent 
ontributions labelled by all ordered
ombinations of two 
harged fermions i and j, whi
h are 
alled emitter and spe
tator.These 
ontributions 
ontain the singularities 
onne
ted with the emitter i. Sin
e thereare only 
harged parti
les in the �nal state in 

 ! 4f , the situation is simpler than fore+e� ! 4f . Expli
itly the auxiliary fun
tion, whi
h is subtra
ted from the spin-summedsquared bremsstrahlung matrix element, readsjMsubj2 = 4Xi;j=1i6=j jMsub;ijj2;jMsub;ij(�4f
)j2 = �(�1)i+jQiQje2g(sub)ij (pi; pj; k)jM

!4fBorn (~�4f;ij)j2: (4.3.6)Adopting the formulation of Ref. [ 67℄2, the soft and 
ollinear divergen
es are 
ontainedin the fun
tiong(sub)ij (pi; pj; k) = 1(pik)(1� yij) " 21� zij(1� yij) � 1� zij# (4.3.7)with yij = pikpipj + pik + pjk ; zij = pipjpipj + pjk : (4.3.8)The embedding of the 4f phase spa
e ~�4f;ij into the 4f
 phase spa
e �4f
 is de�ned as~p�i = p�i + k� � yij1� yij p�j ; ~p�j = 11� yij p�j ; (4.3.9)2The formulation of Ref. [ 53℄ di�ers from that by the regular fa
tor 1=(1� yij) in Eq. (4.3.7), so thatthe readded singular 
ontributions of Refs. [ 53℄ and [ 67℄ di�er by non-singular �nite parts.
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e of the 
orre
tions on the energy 
uto� in the sli
ing approa
h forthe pro
ess 

 ! �ee+d�u at ps

 = 500GeV. For 
omparison the 
orresponding resultobtained with the dipole subtra
tion method is shown as a 1� band in the plot on ther.h.s.
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e of the 
orre
tions on the angular 
uto� in the sli
ing approa
h forthe pro
ess 

 ! �ee+d�u at ps

 = 500GeV. For 
omparison the 
orresponding resultobtained with the subtra
tion method is shown as a 1� band in the plot on the r.h.s.
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orre
tions to 

 !WW! 4f in double-pole approximationwith all other momenta un
hanged, ~pk = pk; k 6= i; j. Subtra
ting the auxiliary fun
tionfrom the real 
orre
tions enables us to 
arry out the numeri
al integration,Z d�

!4f
�nite = 12s Z d�4f
 264jM

!4f
j2�(�4f
)� 4Xi;j=1i6=j jMsub;ijj2�(~�4f;ij)375 ; (4.3.10)whi
h does not 
ontain any soft or 
ollinear divergen
es by 
onstru
tion of jMsubj2 for
ollinear-safe observables. In this 
ontext, it is important to noti
e the di�erent argumentsof the step fun
tions � whi
h a

ount for phase-spa
e 
uts. Sin
e for a generi
 point in4f
 phase spa
e ea
h ij 
ontribution 
orresponds to a di�erent point in phase spa
e, thereis in general no 
orrelation between the values of the di�erent step fun
tions. For 
ollinear-safe observables, however, we have �(�4f
) = �(~�4f;ij) in the soft region (k ! 0) and inthe region where the photon momentum k is nearly 
ollinear to the emitter momentumpi (pik ! 0). The 
ollinear safety 
an, e.g., be enfor
ed by photon re
ombination, asdis
ussed in the next se
tion in more detail.In order to 
ombine the subtra
tion fun
tion with the virtual 
orre
tion, it has to beintegrated over the photon momentum, yieldingZ d�

!4f
sing = � �2� 4Xi;j=1i6=j (�1)i+jQiQj 12s Z d�4f G(sub)ij (sij)jM

!4fBorn (�4f )j2�(�4f ):(4.3.11)The singularities are 
ontained in the fun
tionG(sub)ij (sij) = L(sij; m2i )� �23 + 32 (4.3.12)with L(sij; m2i ) = ln m2isij ! ln �2sij!+ ln �2sij!� 12 ln2  m2isij !+ 12 ln m2isij ! : (4.3.13)We have 
he
ked numeri
ally that these soft and 
ollinear divergen
es are 
ompletely
an
elled by their 
ounterparts in the virtual 
orre
tion.4.3.2 Non-
ollinear-safe observablesIn the previous se
tions the mat
hing of real and virtual 
orre
tions was des
ribedfor 
ollinear-safe observables. We speak of 
ollinear-safe observables if a nearly 
ollinearsystem of a 
harged fermion and a photon is treated in
lusively, i.e. if phase-spa
e sele
tion
uts (or histogram bins of distributions) depend only on the sum pi + k of the nearly
ollinear fermion and photon momenta. In this 
ase the energy fra
tionzi = p0ip0i + k0 (4.3.14)of a 
harged fermion fi after emitting a photon in a suÆ
iently small 
one around itsdire
tion of 
ight is fully integrated over, be
ause it is not 
onstrained by any phase-spa
e



Treatment of soft and 
ollinear photon emission 73
ut (or histogram bin sele
tion in distributions). Thus, the KLN theorem [ 69℄ guaranteesthat all singularities 
onne
ted with �nal-state radiation 
an
el between the virtual andreal 
orre
tions, even though they are de�ned on di�erent phase spa
es. A suÆ
ientin
lusiveness is, e.g., a
hieved by the photon re
ombination des
ribed in Se
tion 4.4.1,whi
h treats outgoing 
harged fermions and photons as one quasi-parti
le if they are very
lose in angle.In the previous se
tion we 
ould, therefore, integrate the subtra
tion fun
tion jMsubj2and the sli
ing 
ontribution d�
oll over zi analyti
ally. In this se
tion we are 
on
erned withnon-
ollinear-safe observables, i.e. the fermion{photon system is not treated in
lusivelyand fermion-mass singularities 
an be
ome visible. As the integration over zi now is
onstrained by phase-spa
e 
uts (or histogram bins), we have to modify the methodsdes
ribed in the previous se
tion in su
h a way that the integration over zi is part of thenumeri
al phase-spa
e integration.4.3.2.1 Phase-spa
e sli
ingIn the sli
ing method the pro
edure is straightforward. The numeri
al integration overz = zi in the 
ollinear parts readsd�
oll = d�

!4fBorn (~�4f ) �2� 4Xi=1Q2i Z 1��E=~p0i0 dz��pi = z~pi; k = (1� z)~pi; f~pj 6=ig�� (Pff (z) "2 ln �� ~p0imi z!� 1#+ (1� z)); (4.3.15)with the splitting fun
tion Pff (z) = 1 + z21� z : (4.3.16)The Born 
ross se
tion and the logarithm still depend on the momenta of the 4f phasespa
e ~�4f whi
h are labelled ~pi. In the 
ut and re
ombination fun
tion �, however, themomentum ~pi of the fermion i (before photon emission) is distributed to the fermion mo-mentum pi and the photon momentum k. For 
ollinear-safe observables, as e.g. a
hievedby photon re
ombination, the � fun
tion e�e
tively only depends on the sum pi + k = ~piof the 
ollinear momenta, whi
h is independent of z. In this 
ase, the � fun
tion be
omes�(~�4f ), and the z-integration 
an be easily 
arried out analyti
ally yielding Eq. (4.3.4).4.3.2.2 Dipole subtra
tion methodIn the 
ase of the dipole subtra
tion method the generalization to non-
ollinear-safeobservables is more 
ompli
ated than in the sli
ing approa
h, sin
e the integration overthe photon momentum is more involved. Here, we 
olle
t the formulas relevant for our
al
ulation. Details on their derivation are given in Appendix A of Ref. [ 2℄.In order to keep the information on the energy fra
tion z in ea
h part of the subtra
tionfun
tion, the �nite part of the real 
orre
tions is modi�ed toZ d�

!4f
�nite = 12s Z d�4f
"jM

!4f
j2�(�4f
)
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tions to 

 !WW! 4f in double-pole approximation� 4Xi;j=1i6=j jMsub;ijj2��pi = zij ~pi; k = (1� zij)~pi; f~pk 6=ig�#: (4.3.17)It is easily seen that the variable zij, whi
h is de�ned in Eq. (4.3.8), plays the role of theenergy fra
tion zi in the 
ollinear limit for ea
h dipole ij. Again, in the 
ollinear-safe
ase the � fun
tions of the subtra
tion fun
tion depend only on the sums pi + k = ~pi of
ollinear momenta; in this 
ase we re
over Eq. (4.3.10).In the integration of the subtra
tion fun
tion over the photon phase spa
e, we now haveto leave the integrations over zij open. The resulting zij dependen
e of the integrand ismost 
onveniently des
ribed with a [:::℄+ pres
ription3, whi
h separates the soft singularityat zij = 1. The endpoint part at zij = 1, whi
h results from the full integration over zij,exa
tly 
orresponds to the 
ontribution of G(sub)ij (~sij) for the 
ollinear-safe 
ase, as givenin Eq. (4.3.12), where ~sij = 2~pi~pj. The 
ontinuum part in zij involves an integral overh �G(sub)ij (~sij; zij)i+ with�G(sub)ij (~sij; z) = Pff(z) "ln ~sijzm2i !� 1#+ (1 + z) ln(1� z) + (1� z): (4.3.18)The total integrated subtra
tion part expli
itly readsZ d�

!4f
sing = � �2� 4Xi;j=1i6=j (�1)i+jQiQj 12s Z d~�4f;ij jM

!4fBorn (~�4f;ij)j2(G(sub)ij (~sij)�(~�4f;ij)+ Z 10 dz h �G(sub)ij (~sij; z)i+��pi = z~pi; k = (1� z)~pi; f~pk 6=ig�): (4.3.19)Owing to the [:::℄+ pres
ription, the 
ontinuum part is zero if the full integration over zis 
arried out, thereby re
overing the 
ollinear-safe 
ase (4.3.11).4.4 Numeri
al results4.4.1 Input parameters and setupWe use the same input parameters as in the previous 
hapter. In addition, we haveto spe
ify the fermion masses 
ontained in the fermioni
 loop 
orre
tions. The 
ompletelist of input parameters is [ 55℄G�= 1:16639� 10�5GeV�2; �(0)= 1=137:03599976; �s= 0:1172;MW = 80:423GeV; �W= 2:118GeV;MZ= 91:1876GeV; �Z= 2:4952GeV;me= 0:510998902� 10�3GeV; m�= 0:105658357GeV; m� = 1:77699GeV;mu= 0:066GeV; m
= 1:2GeV; mt= 174:3GeV;md= 0:066GeV; ms= 0:15GeV; mb= 4:3GeV; (4.4.1)3We use the de�nition R 10 dx [f(x)℄+ g(x) � R 10 dx f(x) [g(x)� g(1)℄.
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al results 75where the masses of the light quarks are adjusted to reprodu
e the hadroni
 
ontributionto the photoni
 va
uum polarization of Ref. [ 70℄. If not stated otherwise, the Higgs massis MH = 170GeV. In some 
ases we alternatively use MH = 130GeV. The 
orrespondingvalues for the Higgs-boson de
ay width �H, whi
h have been obtained with the programHDECAY [ 56℄, are given by�H (MH = 170GeV) = 0:3834GeV; �H (MH = 130GeV) = 0:004995GeV: (4.4.2)We set the quark-mixing matrix to the unit matrix throughout, but in the limit of masslessexternal fermions a non-trivial quark-mixing matrix 
an be in
luded by a simple res
alingof the 
ross se
tions.Furthermore, we apply a set of re
ombination and separation 
uts:(i) Bremsstrahlung photons that are 
loser than 5Æ to a 
harged fermion or have lessenergy than 1GeV are re
ombined with the 
harged fermion that is 
losest in angle.This means that in this 
ase before evaluating distributions or applying phase-spa
e
uts the momenta of the photon and the fermion are added and asso
iated with thefermion, while the photon is dis
arded.(ii) The separation 
uts, whi
h are applied to the momenta de�ned after a possiblere
ombination, are the same as the 
uts we used in the previous 
hapter for thetree-level 
ross se
tion of 

 ! 4f . Expli
itly, they readEl> 10GeV; �(l; beam)> 5Æ; �(l; l0)> 5Æ; �(l; q)> 5Æ;Eq > 10GeV; �(q; beam)> 5Æ; m(q; q0)> 10GeV; (4.4.3)where an obvious notation for energies E:::, angles �(: : :), and invariant massesm(: : :) for leptons l and quarks q is used.Sin
e the separation 
uts and input parameters are the same as in the previous 
hapterfor the pro
esses 

 ! 4f , the Born 
ross se
tions of both 
hapters 
oin
ide. In parti
ular,we ex
lude forward and ba
kward s
attered 
harged fermions, be
ause they 
ause 
ollinearsingularities. While for �nal-state quarks these singularities signal a non-perturbativeregime, for leptons they are in prin
iple 
ured by �nite-mass e�e
ts. However, we ex
ludethis region by demanding that leptons appear in the dete
tor with �nite produ
tion angleand energy. Compared to Ref. [ 19℄ we use di�erent re
ombination 
uts, be
ause, in
ontrast to e+e� 
ollisions, the re
ombination 
riterion based on invariant masses doesnot lead to 
ollinear-safe observables. This is due to the 
ollinear singularity that arisesif a 
harged fermion is 
ollinear to the beam. Even though an appropriate 
ut on theangle between 
harged fermions and the beam is imposed, it might happen that a photonwith relatively high energy is re
ombined with a low-energy fermion that is 
lose to thebeam. Thus, after re
ombination, the fermion almost follows the dire
tion of the photonand is not a�e
ted by the angular 
ut. Su
h events are avoided by taking a re
ombination
ondition based on the angle.For the evaluation of the lowest-order matrix elements of 

 ! 4f and 

 ! 4f
, weuse the �xed-width s
heme as de�ned in Eq. (3.1.22). The photon spe
trum is a

ounted
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tions to 

 !WW! 4f in double-pole approximationfor by using the parametrization of the program CompAZ [ 14℄, as des
ribed in Se
tion 3.4.In order to distinguish the 
ases with and without 
onvolution over the photon spe
trum,we write psee and ps

 for the CM energies in these 
ases, respe
tively.In the numeri
al integration we generate 2 � 107 events for the plots showing the in-tegrated 
ross se
tions, and 5 � 107 events for distributions and for the integrated 
rossse
tions in Table 4.1. If not stated otherwise, the shown results are based on the subtra
-tion method, but have been 
ross-
he
ked with the sli
ing approa
h.4.4.2 Integrated 
ross se
tionsIn Table 4.1 we present a survey of integrated 
ross se
tions for a leptoni
, a hadroni
,and two semi-leptoni
 �nal states, as obtained with the subtra
tion and sli
ing methods.The 
ross se
tions of the semi-leptoni
 �nal states di�er be
ause of the e�e
tive polar-izations of the photons resulting from the Compton ba
ks
attering (
f. Se
tion 3.5.2.6).Final states that di�er only in the fermion generation (i.e. in their mass values) re
eive thesame radiative 
orre
tions, sin
e our predi
tions are based on the massless limit for theexternal fermions and mass singularities 
an
el after performing a photon re
ombination.The results obtained with the two methods for treating the real 
orre
tions, subtra
tion(\sub") and sli
ing (\sli"), are in good agreement. Note that they both are implemented inthe same Monte Carlo generator, whi
h, thus, yields identi
al results for ps

 < 170GeVwhere the IBA is used. This is the reason why the \sub" and \sli" numbers are identi
alin the 
ase of psee = 200GeV with 
 spe
trum, where only the range ps

 < 170GeV isrelevant in the 
onvolution.In Figure 4.6 the integrated 
ross se
tion for 

 ! �ee+d�u in
luding radiative 
or-re
tions is 
ompared with the Born 
ross se
tion as a fun
tion of the CM energy formono
hromati
 photon beams. The \best" 
urves 
orrespond to the O(�)-
orre
ted 
rossse
tions. A Higgs boson of MH = 170GeV produ
es a sharp peak in the 
ross se
tion atps

 = 170GeV, while for larger energies the 
orre
tions are almost independent of theHiggs mass. The relative 
orre
tions Æ = �=�Born� 1 in the four lower plots of Figure 4.6behave roughly like the 
orre
tions to on-shell W-pair produ
tion [ 39, 59, 62℄. Close tothe W-pair produ
tion threshold the 
orre
tions are dominated by the Coulomb singular-ity. For higher energies the 
orre
tions de
rease until they rea
h about �7% at 1TeV. Inthis region they are dominated by large logarithms from the Regge and Sudakov domains.In Figure 4.6(
) we also show the 
omparison with the IBA for a Higgs mass of MH =130GeV. Sin
e 
lose to the W-pair produ
tion threshold the bulk of the 
orre
tions isdue to the Coulomb singularity and sin
e there are no other pronoun
ed 
orre
tions, theagreement between the two 
urves is quite good. The very good agreement of the DPAand the IBA at ps

 � 170GeV both for semi-leptoni
 and for hadroni
 �nal states (inboth 
ases the di�eren
e is well below 0.1%) is of 
ourse a

idental. For the leptoni
 �nalstate the di�eren
e is about 0.7%.As explained in Se
tion 4.2.5, the intrinsi
 un
ertainty of the IBA is about � �2%,while the DPA a

ura
y is up to <� 0:5% where it is appli
able. Sin
e the 
onvolutionof the hard 

 
ross se
tion, in general, involves both the IBA (in the low-energy tail)and the DPA (for ps

 > 170GeV), the un
ertainty of our 
ross-se
tion predi
tion is in
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�[ fb℄ �Born[ fb℄CM energy �nal state subtra
tion sli
ing (sub{sli)/sli�ee+����� 581.403(67) 581.41(16) 575.628(64) 0.00(3) %ps

 = 200GeV �ee+d�u 1734.02(23) 1735.26(43) 1716.10(22) { 0.07(3) %without 
 spe
trum u�de���e 1734.24(23) 1734.32(43) 1716.06(22) 0.00(3) %u�ds�
 4931.01(76) 4935.0(1.0) 4878.67(73) { 0.08(3) %�ee+����� 801.21(11) 801.57(20) 826.620(91) { 0.05(3) %ps

 = 500GeV �ee+d�u 2278.50(34) 2279.96(51) 2351.37(30) { 0.06(3) %without 
 spe
trum u�de���e 2278.45(34) 2278.84(48) 2351.39(30) { 0.02(3) %u�ds�
 6452.2(1.0) 6452.8(1.2) 6662.25(96) { 0.01(2) %�ee+����� 696.25(15) 696.68(17) 746.995(93) { 0.06(3) %ps

 = 1000GeV �ee+d�u 1836.31(43) 1836.96(45) 1979.92(29) { 0.04(3) %without 
 spe
trum u�de���e 1836.37(42) 1836.95(42) 1979.95(29) { 0.03(3) %u�ds�
 4892.2(1.2) 4891.4(1.1) 5300.97(90) 0.02(3) %�ee+����� 0.073205(44) 0.073205(44) 0.072009(44) 0psee = 200GeV �ee+d�u 0.33129(21) 0.33129(21) 0.32601(21) 0with 
 spe
trum u�de���e 0.39204(25) 0.39204(25) 0.38593(24) 0u�ds�
 1.24460(79) 1.24460(79) 1.22537(78) 0�ee+����� 190.757(60) 190.835(96) 190.816(45) { 0.04(6) %psee = 500GeV �ee+d�u 559.18(18) 559.63(24) 558.50(14) { 0.08(5) %with 
 spe
trum u�de���e 564.58(18) 564.79(25) 565.05(14) { 0.04(5) %u�ds�
 1604.92(54) 1605.60(59) 1603.80(45) { 0.04(5) %�ee+����� 165.759(91) 165.604(81) 170.588(41) 0.09(7) %psee = 1000GeV �ee+d�u 461.02(20) 461.34(23) 474.81(12) { 0.07(7) %with 
 spe
trum u�de���e 472.10(19) 471.61(24) 485.65(13) 0.10(7) %u�ds�
 1296.49(52) 1295.29(62) 1335.13(38) 0.09(6) %Table 4.1: Integrated 
ross se
tions for di�erent �nal states and energies with and without
onvolution over the photon spe
trum. The third 
olumn shows the result obtained withthe subtra
tion method and the fourth with the sli
ing method. The last two 
olumnsshow the Born 
ross se
tion and the relative di�eren
e between subtra
tion and sli
ing.
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 ! �ee+d�u (the two upper plots) and relativeradiative 
orre
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trumfor Higgs masses MH = 130GeV and 170GeV.
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al results 79psee=GeV 200 240 260 280 300 500 1000TU 2.0% 1.9% 1.3% 0.8% 0.7% 0.5% 0.5%Table 4.2: Estimates of the TU (4.4.4) for theO(�)-
orre
ted 
ross se
tion of 

 ! �ee+d�uat various CM energies psee.the range 0:5�2%, depending on the 
ontribution of the IBA part to the full 
onvolution.Denoting the IBA and DPA parts of the full 
ross se
tion as ��IBA and ��DPA (bothin
luding the 
orresponding lowest-order 
ontribution, so that ��IBA +��DPA = �), we
an estimate the theoreti
al un
ertainty (TU) of the 
orre
ted 
ross se
tion � toTU = ��IBA� � 2% + ��DPA� � 0:5%: (4.4.4)Table 4.4.2 illustrates this estimate for a few CM energies psee for 

 ! �ee+d�u. Forpsee <� 230GeV our predi
tion possesses a TU of � 2%, be
ause it is mainly based on theIBA, but already forpsee >� 300GeV (500GeV) the IBA 
ontribution is widely suppressedso that the DPA un
ertainty of <� 0:7% (0:5%) sets the pre
ision of our 
al
ulation. Wenote, however, that the overall un
ertainty of our 
al
ulation 
ertainly be
omes worse assoon as TeV energies for ps

 are dominating be
ause of the relevan
e of high-energylogarithms beyond O(�).In Figure 4.6(e) the 
omparison of the full 
orre
tion with the IBA is shown for aHiggs mass of MH = 170GeV. The IBA in
ludes the Higgs resonan
e via an e�e
tive
oupling and re
e
ts the shape of the resonan
e quite well.The 
ross se
tion in
luding the 
onvolution over the photon spe
trum as a fun
tion ofCM energy is shown in Figure 4.7 for a Higgs mass of MH = 130GeV and in the lowerleft plot also for MH = 170GeV. In the upper plots the integrated 
ross se
tions areshown, and in the lower plots the 
orre
tions relative to the Born 
ross se
tion. Re
allthat we use the IBA below ps

 = 170GeV. This means, in parti
ular, that the Higgsresonan
e is 
al
ulated from the e�e
tive 
oupling and not from the full DPA in thisregion. The interesting stru
ture in the lower left plot re
e
ts the shape of the photonspe
trum 
onvoluted with the Higgs resonan
e. Sin
e the Higgs resonan
e is very narrow,a sizable 
ontribution is only possible if x1x2see � M2H where x1 and x2 are the energyfra
tions 
arried by the photons. The 
orre
tion is very small at low psee where x1 andx2 have to be so large in order to mat
h this 
ondition that the 
orresponding spe
trumis extremely small. In
reasing psee allows for lower values of x1 and x2. For instan
e,for MH = 130GeV, the rise at psee � 180GeV results from a region where both x1and x2 are in the high-energy tail of the spe
trum whi
h is produ
ed by multiple photons
attering. The peak atpsee � 200GeV is 
aused by events where one photon 
omes fromthe high-energy tail and one from the dominant peak in the photon spe
trum. Finally,at psee >� 210GeV both x1 and x2 originate from the dominant photon-spe
trum peakwhi
h 
auses the steep rise until psee � 220GeV.
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ross se
tion for 

 ! �ee+d�u (upper plots) and relative radiative
orre
tions (lower plots) in
luding the 
onvolution over the photon spe
trum for Higgsmasses of MH = 130GeV and 170GeV (lower left plot). For psee > 300GeV (shown onthe r.h.s.) the \best" 
urve for MH = 170GeV pra
ti
ally 
oin
ides with the shown 
urvefor MH = 130GeV.
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al results 814.4.3 Di�erential 
ross se
tionsIn Figure 4.8 we show the invariant-mass distributions for the �ee+ and d�u pairs in thepro
ess 

 ! �ee+d�u, both with and without 
onvolution over the photon spe
trum. Theupper plots show the absolute predi
tions, and the lower plots the 
orre
tions normalizedto the Born predi
tions. Sin
e we use ps

 = 500GeV orpsee = 500GeV, the 
orre
tionsare shifted upwards when in
luding the photon spe
trum, be
ause the e�e
tive energy ofthe photons is lower (
f. Figure 4.6). The shape of the 
orre
tions, however, is hardly
hanged by the 
onvolution over the photon spe
trum. As the shape of the 
orre
tionsdetermine a possible shift of the peak of the invariant-mass distribution, it is of parti
ularimportan
e in the determination of the W-boson mass. The measurement of the W-bosonmass 
an, e.g., be used for understanding and 
alibrating the dete
tor of a 

 
ollider.The distribution in the W-boson produ
tion angle is sensitive to anomalous 
ouplings.In order to set bounds on these 
ouplings it is mandatory to know radiative 
orre
tions,be
ause both anomalous 
ouplings and radiative 
orre
tions typi
ally distort angular dis-tributions. The 
orresponding angular distribution of the d�u system, whi
h is equal withinthe statisti
al error to the distribution of the �ee+ system, is shown in Figure 4.9. Whilethe 
orre
tion without the photon spe
trum is about �9% for W bosons emitted perpen-di
ular to the beam, the 
orre
tions are rather small when in
luding the photon spe
trum.As already explained above, the 
ross se
tion is dominated by a region where the 

 CMenergy is smaller. In fa
t, the relative 
orre
tion Æ is a

identally small at psee � 500GeV[
f. Figure 4.7(d)℄ and might also be
ome larger if other 
uts or event sele
tion pro
eduresare applied.Figure 4.10 shows the energy distribution of e+ and d for the pro
ess 

 ! �ee+d�u.The 
hara
teristi
s of the Born 
ross se
tion, espe
ially the in
uen
e of the e�e
tivepolarization of the photons after Compton ba
ks
attering, were explained in detail inSe
tion 3.5.3.2. The relative 
orre
tions shown in the lower plots amount to a few per 
ent.For very low and very high energies, where the Born 
ross se
tion is very small, the relative
orre
tions in DPA are not reliable anymore. In this region the assumption that doubly-resonant diagrams dominate is not ful�lled. The angular distributions for e+ and d areshown in Figure 4.11. The shape of the Born 
ross se
tion and the in
uen
e of the photonspe
trum were also explained in Se
tion 3.5.3.2. Similar to the angular distributions ofthe �ee+ and d�u systems, the 
orre
tions are maximal in a region where the fermions areemitted perpendi
ular to the beam. However, after in
luding the photon spe
trum, the
orre
tions almost 
an
el as 
an be anti
ipated from Figure 4.7(d) whi
h shows that the
orre
tions to the integrated 
ross se
tion are almost zero at psee � 500GeV.Finally, the energy distribution of the photon in the pro
ess 

 ! �ee+d�u+
 is shownin Figure 4.12. The distribution is dominated by the soft-photon pole at k0 ! 0 andde
reases rapidly at higher energies. Comparing the distributions with and without 
on-volution over the photon spe
trum, the 
onvolution shifts the 
urve to lower energies,be
ause the initial-state photons already have less energy.
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ted fromthe �ee+ and d�u pairs in the pro
ess 

 ! �ee+d�u at ps = 500GeV.
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ted from the d�u pair in thepro
ess 

 ! �ee+d�u at ps = 500GeV.4.4.4 Non-
ollinear-safe observablesAs explained in Se
tion 4.3.2, the treatment of 
ollinear singularities in non-
ollinear-safe observables deserves some 
are. Applying the generalizations of the subtra
tion andthe sli
ing methods des
ribed above, we now turn to observables without photon re
ombi-nation. Apart from that, the same phase-spa
e 
uts are applied as before. In Figure 4.13we show the distributions of the �ee+, ���+, and d�u pairs in the pro
esses 

 ! �ee+d�u,���+d�u. With photon re
ombination the leptoni
 invariant masses of the two pro
essesre
eive the same radiative 
orre
tions sin
e the re
ombination guarantees the ne
essaryin
lusiveness so that all mass singularities 
an
el. If the re
ombination is not applied,the distributions 
hange drasti
ally. Note, however, that the re
ombination is mainlya rearrangement of events, and omitting the re
ombination a�e
ts the integrated 
rossse
tion by less than 0:5%. With de
reasing invariant masses the relative 
orre
tions rise,while they are smaller at large invariant masses. The reason is that without re
ombination�nal-state radiation (whi
h is enhan
ed by mass logarithms) redu
es the invariant mass ofthe re
onstru
ted W boson, thereby shifting events from the dominating resonant regionto lower invariant mass values. The re
ombination brings most of these events ba
k tothe resonan
e region, be
ause it prevents momentum loss from �nal-state radiation. Thel.h.s. of Figure 4.13 also shows a hierar
hy in the mass e�e
ts of the outgoing leptons asthe slope for the �ee+ pair is mu
h steeper than the slope for the ���+ pair due to thesmaller mass of e+. The plot on the r.h.s. shows that the 
orre
tions for the d�u pair arenot as large as for the ���+ pair on the l.h.s., be
ause the remaining mass terms behavelike Q2f lnmf , where Qf denotes the 
harge of the fermion f . We also note that the 
or-
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trum).
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esses 

 ! �ee+d�u and 

 !���+d�u at ps

 = 500GeV, with and without photon re
ombination.re
tions are smallest in the 
ase with photon re
ombination be
ause of the 
an
ellationof all mass singularities.The photon re
ombination also a�e
ts the energy distributions of the fermions. Fig-ure 4.14 shows this distribution for e+ and �+ in the pro
esses 

 ! �ee+d�u and

 ! ���+d�u with and without re
ombination. In the former 
ase the 
urves 
oin
ide, asexplained above. The re
ombination attributes the photon to a fermion and, thus, shiftsevents to higher energies of the fermion. The mass-singular e�e
t, whi
h appears withoutre
ombination, is again larger for e+ than for �+.The e�e
t of the photon re
ombination on the photon-energy spe
trum is shown inFigure 4.12. Without re
ombination the distribution is shifted to higher photon energiesbe
ause the re
ombination transfers events to the bin with zero photon energy. Thedi�eren
e is again bigger for the pro
ess 

 ! �ee+d�u than for 

 ! ���+d�u, sin
e themass-singular logarithms of e+ are larger.



Chapter 5The Higgs-boson de
aysH!WW=ZZ! 4fThe primary task of the LHC will be the dete
tion and the study of the Higgs boson.If it is heavier than 140GeV and behaves as predi
ted by the Standard Model (SM),it de
ays dominantly into gauge-boson pairs and subsequently into four light fermions.From a Higgs-boson mass MH of about 130GeV up to the Z-boson-pair threshold 2MZ,the de
ay signature H(!WW)! 2 leptons + missing pT [ 71℄ has the highest dis
overypotential for the Higgs boson at the LHC [ 72℄. For higher Higgs masses, the leadingrole is taken over by the famous \gold-plated" 
hannel H ! ZZ ! 4 leptons, whi
h willallow for the most a

urate measurement of MH above 130GeV [ 73℄. More details andre
ent developments 
on
erning Higgs studies at the LHC 
an be found in the literature[ 74, 75, 76℄. At a future e+e� linear 
ollider [ 77, 78, 79℄, the de
ays H! 4f will enablemeasurements of the H!WW=ZZ bran
hing ratios at the level of a few to 10% [ 80℄.A kinemati
al re
onstru
tion of the Higgs boson and of the virtual W and Z bosonsrequires the study of distributions de�ned from the kinemati
s of the de
ay fermions.In doing so, it is important to in
lude radiative 
orre
tions, in parti
ular real photonradiation. In addition, the veri�
ation of the spin and of the CP properties of the Higgsboson relies on the study of angular, energy, and invariant-mass distributions [ 81, 82℄.In parti
ular, the sensitivity of the angle between the two Z-de
ay planes in H ! ZZ!4 leptons has been frequently emphasized in the literature. As a 
onsequen
e a MonteCarlo generator for H ! WW=ZZ ! 4 fermions in
luding ele
troweak 
orre
tions isneeded.The theoreti
al des
ription of the de
ays of a SM Higgs boson into W- or Z-boson pairsstarted with lowest-order formulas for the partial de
ay widths. The �rst 
al
ulations [ 83℄that in
lude o�-shell e�e
ts of the gauge bosons made the approximation that one of theW or Z bosons was still on shell, an approximation that turns out to be not suÆ
ient.Later 
al
ulations [ 84℄ dealt with the situation of two intermediate o�-shell gauge bosons.The various approa
hes are 
ompared, e.g., in Ref. [ 85℄. We note that the programHDECAY [ 56℄, whi
h is frequently used in pra
ti
e, 
al
ulates the partial de
ay widthsfor H ! WW=ZZ with on- or o�-shell gauge bosons depending on MH. Distributions88



Lowest-order results 89of the de
ay fermions have been 
onsidered in Refs. [ 81, 82℄, but still in lowest order ofperturbation theory.In the past the ele
troweak O(�) 
orre
tions to de
ays into gauge bosons, H !WW=ZZ, were known [ 86, 87℄ only in narrow-width approximation (NWA), i.e. for on-shell W and Z bosons. In this 
ase, also leading two-loop 
orre
tions enhan
ed by powersof the top-quark mass [ 88℄ or of the Higgs-boson mass [ 89, 90℄ have been 
al
ulated.However, near and below the gauge-boson-pair thresholds the NWA is not appli
able, sothat only the lowest-order results exist in this MH range.In this 
hapter we des
ribe the 
al
ulation of the ele
troweak O(�) 
orre
tions tothe full pro
esses H ! WW=ZZ ! 4f with o�-shell gauge bosons and of the in
ludedimprovements beyond this order. The involved Feynman diagrams are 
losely related tothe ones of the produ
tion pro
ess e+e� ! ���H, whose ele
troweak O(�) 
orre
tionshave been evaluated in Refs. [ 91, 92℄. Therefore, 
on
erning the algebrai
 redu
tion ofthe one-loop diagrams we pro
eed as des
ribed in Ref. [ 92℄. On the other hand, theresonan
e stru
ture of the de
ays H ! WW=ZZ ! 4f is pra
ti
ally the same as ine+e� !WW! 4f , whi
h was treated at the one-loop level in Ref. [ 24℄. Thus, we applythe \
omplex-mass s
heme" [ 24℄, where gauge-boson masses are 
onsistently treatedas 
omplex quantities. This pro
edure fully maintains gauge invarian
e at the pri
e ofhaving 
omplex gauge-boson masses everywhere, i.e. also in 
ouplings and loop integrals.For a numeri
ally stable evaluation of the latter we employ the methods des
ribed inRefs. [ 93, 94℄. Sin
e the �nal state 
oin
ides with the �nal state of 

 !WW! 4f andsin
e there are no infrared singularities 
onne
ted with the initial state, the 
ombinationof virtual and real photon 
orre
tions is performed in the same way as des
ribed inSe
tion 4.3.5.1 Lowest-order resultsWe 
onsider the lowest-order pro
essesH(p) �! f1(k1; �1) + �f2(k2; �2) + f3(k3; �3) + �f4(k4; �4); (5.1.1)where the momenta and heli
ities of the external parti
les are indi
ated in parentheses.The heli
ities take the values �i = �1=2, but we often use only the sign to indi
ate theheli
ity. The masses of the external fermions are negle
ted whenever possible; they areonly taken into a

ount in the mass-singular logarithms originating from 
ollinear �nal-state radiation (FSR). The matrix elements 
an be 
onstru
ted from the generi
 diagramshown in Figure 5.1.The relevant 
ouplings were already introdu
ed in Eqs. (1.2.18) and (1.2.22). However,using the 
omplex-mass s
heme we have to repla
e real gauge-boson masses by 
omplexmasses everywhere, M2V ! �2V = M2V � iMV �V ; V = W;Z; (5.1.2)



90 The Higgs-boson de
ays H!WW=ZZ! 4f
H(p) VV

fa(ka; �a)�fb(kb; �b)f
(k
; �
)�fd(kd; �d)Figure 5.1: Generi
 lowest-order diagram for H! 4f where V = W;Z.where MV and �V denote the real pole-mass and width parameters. A

ordingly the sineand 
osine of the weak mixing angle are �xed by
2w = 1� s2w = �2W�2Z : (5.1.3)More details about the 
omplex-mass s
heme are des
ribed in Se
tion 5.2.2.2.The generi
 lowest-order amplitude readsMV V;�a�b�
�d0 (ka; kb; k
; kd) = 2e3g�aV fafbg�
V f
fdgHV V Æ�a;��bÆ�
;��dAV V�a�
(ka; kb; k
; kd);(5.1.4)or more spe
i�
ally for the 
ase of Z-mediated and W-mediated de
aysMZZ;�a�b�
�d0 (ka; kb; k
; kd) = 2e3g�aZfafbg�
Zf
fd�W
2wsw Æ�a;��bÆ�
;��d AZZ�a�
(ka; kb; k
; kd);MWW;�a�b�
�d0 (ka; kb; k
; kd) = e3�Ws3w Æ�a;�Æ�b;+Æ�
;�Æ�d;+AWW�� (ka; kb; k
; kd): (5.1.5)The auxiliary fun
tions are expressed in terms of WvdW spinors following the notationof Se
tion 3.1.3.1,AV V��(ka; kb; k
; kd) = hkbkdi�hkak
i[(ka + kb)2 � �2V ℄[(k
 + kd)2 � �2V ℄ ;AV V+�(ka; kb; k
; kd) = AV V��(kb; ka; k
; kd);AV V�+(ka; kb; k
; kd) = AV V��(ka; kb; kd; k
);AV V++(ka; kb; k
; kd) = AV V��(kb; ka; kd; k
); (5.1.6)and obey the relationsAV V��a;��
(ka; kb; k
; kd) = �AV V�a�
(ka; kb; k
; kd)������V!��V ;g!g�;AV V��a;�
(ka; kb; k
; kd) = AV V�a�
(kb; ka; k
; kd);AV V�a;��
(ka; kb; k
; kd) = AV V�a�
(ka; kb; kd; k
);AV V�a;�
(ka; kb; k
; kd) = �AV V�
�a(kd; k
; kb; ka)������V!��V ;g!g�;AV V�a�
(ka; kb; k
; kd) = AV V�
�a(k
; kd; ka; kb): (5.1.7)



Lowest-order results 91The relations between the A:::::: fun
tions that di�er in all heli
ities result from a P trans-formation. Those where only one fermion heli
ity is reversed are related to C symmetry.The last but one is due to CP symmetry, and the last one results from a symmetry underthe ex
hange of the two fermion pairs. The repla
ements �V ! ��V in (5.1.7) ensure thatthe ve
tor-boson masses remain una�e
ted by 
omplex 
onjugation, and g ! g� indi-
ates that this substitution impli
itly also applies to 
oupling 
onstants that may be
ome
omplex via mass fa
tors.From the generi
 matrix element MV V;�a�b�
�d0 (ka; kb; k
; kd) the matrix elements forthe spe
i�
 pro
esses 
an be 
onstru
ted as follows. To write down the expli
it matrixelements for the di�erent �nal states, we denote di�erent fermions (f 6= F ) by f and F ,and their weak-isospin partners by f 0 and F 0, respe
tively.� H ! f �fF �F : M�1�2�3�40 (k1; k2; k3; k4) = MZZ;�1�2�3�40 (k1; k2; k3; k4): (5.1.8)� H ! f �f 0F �F 0:M�1�2�3�40 (k1; k2; k3; k4) = MWW;�1�2�3�40 (k1; k2; k3; k4): (5.1.9)� H ! f �ff �f : M�1�2�3�40 (k1; k2; k3; k4) = MZZ;�1�2�3�40 (k1; k2; k3; k4)�MZZ;�1�4�3�20 (k1; k4; k3; k2): (5.1.10)� H ! f �ff 0 �f 0:M�1�2�3�40 (k1; k2; k3; k4) = MZZ;�1�2�3�40 (k1; k2; k3; k4)�MWW;�1�4�3�20 (k1; k4; k3; k2): (5.1.11)The relative signs between 
ontributions of the basi
 subamplitudes to the full matrixelements a

ount for the sign 
hanges resulting from inter
hanging external fermion lines.The matrix elements of (5.1.8) and (5.1.9) 
an be extended to the 
ase of semi-leptoni
or hadroni
 �nal states by simply multiplying the squared matrix element by a 
olourfa
tor 3 or 9, respe
tively. Note that 
are has to be taken in the 
ases of (5.1.10) and(5.1.11) for hadroni
 �nal states (semi-leptoni
 �nal states do not exist) owing to thenon-trivial 
olour interferen
es. Summing over the 
olour degrees of freedom, we have� H ! q�qq�q:jM�1�2�3�40 (k1; k2; k3; k4)j2 =9 ���MZZ;�1�2�3�40 (k1; k2; k3; k4)���2 + 9 ���MZZ;�1�4�3�20 (k1; k4; k3; k2)���2�6Re nMZZ;�1�2�3�40 (k1; k2; k3; k4) �MZZ;�1�4�3�20 (k1; k4; k3; k2)��o : (5.1.12)
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ays H!WW=ZZ! 4f� H ! q�qq0�q0:jM�1�2�3�40 (k1; k2; k3; k4)j2 =9 ���MZZ;�1�2�3�40 (k1; k2; k3; k4)���2 + 9 ���MWW;�1�4�3�20 (k1; k4; k3; k2)���2�6Re nMZZ;�1�2�3�40 (k1; k2; k3; k4) �MWW;�1�4�3�20 (k1; k4; k3; k2)��o : (5.1.13)Having 
onstru
ted the matrix elements, we 
an write the lowest-order de
ay width�0 as �0 = 12MH Z d�0 X�1;�2;�3;�4=� 12 jM�1;�2;�3;�40 j2; (5.1.14)where the phase-spa
e integral is de�ned byZ d�0 =  4Yi=1 Z d3ki(2�)32k0i ! (2�)4Æ(4) p� 4Xi=1 ki!: (5.1.15)5.2 Virtual 
orre
tions5.2.1 Survey of one-loop diagramsThe virtual 
orre
tions re
eive 
ontributions from self-energy, vertex, box, and pen-tagon diagrams. The stru
tural diagrams 
ontaining the generi
 
ontributions of vertexfun
tions are summarized in Figure 5.2. Here and in the following we omit all diagramsthat vanish in the limit of vanishing external fermion masses from the beginning. For
harged-
urrent pro
esses the generi
 �eld V stands for the W-boson �eld, for neutral-
urrent pro
esses we have V = Z; 
, where the photon is of 
ourse absent in 
ouplingsto the Higgs boson. The generi
 diagrams 
over all stru
tures relevant for ele
troweak
orre
tions to arbitrary four-fermion �nal states, in
luding quarks. Note, however, thatsome four-quark �nal states re
eive 
orre
tions from diagrams with intermediate gluonson tree-like lines (quark-loop-indu
ed Hgg vertex). Possible QCD 
orre
tions for quarksin the �nal state will not be 
onsidered in the following lists of diagrams.The pentagon diagrams are shown in Figures 5.3 and 5.4, respe
tively. The spe
i�
subdiagrams of loop-indu
ed 4-point fun
tions have been shown in Ref. [ 92℄, where thepro
ess 
lass e+e� ! ���H was analyzed at one loop. They involve 4-point vertex fun
tionsof the type �l��lZH, �l��l
H, l�l+ZH, l�l+
H, and l� (�)� l W+H with l = e; �; � denotingany 
harged lepton. The 3-point loop insertions in the H�l��l, Hl�l+, HWW, and HZZverti
es have also been listed there; the one-loop diagrams for the HZ
 and H

 verti
esfollow from the HZZ 
ase by obvious substitutions and omissions. Most of the diagramsfor the self-energies and the �l��lZ, e�e�Z, and l�(�)�eW vertex fun
tions 
an be found inRef. [ 95℄.
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H fa�fbf
�fdVV V H fa�fbf
�fdVV V H fa�fbf
�fdVV H fa�fbf
�fdVV
H fa�fbf
�fdVV H fa�fbf
�fd

Vfd H fa�fbf
�fdVf
 H fa �fb f
�fdVfa
H fa�fb f
�fdVfb H fa�fbf
�fdV H fa�fbf
�fdV H fa�fbf
�fdFigure 5.2: Generi
 
ontributions of di�erent vertex fun
tions to H!WW=ZZ! 4f .5.2.2 Cal
ulation of the one-loop 
orre
tions5.2.2.1 Algebrai
 redu
tion of diagrams and standard matrix elementsThe algebrai
 part of the two 
al
ulations has been 
arried out in the same way asin the one-loop 
al
ulation of e+e� ! ���H des
ribed in Ref. [ 92℄. This means that weseparate the fermion spinor 
hains from the rest of the amplitude by de�ning standardmatrix elements (SME). To introdu
e a 
ompa
t notation for the SME, the tensors�ab;�f�;��
g = �vfa(ka) f
�; 
�
�

g!�u �fb(kb);�
d;�f�;��
g = �vf
(k
) f
�; 
�
�

g!�u �fd(kd) (5.2.1)are de�ned with obvious notations for the Dira
 spinors �vfa(ka), et
., and !� = (1�
5)=2denote the right- and left-handed 
hirality proje
tors. Here and in the following, ea
hentry in the set within 
urly bra
kets refers to a single obje
t, i.e. from the �rst line in
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H f �f
F �FZZ f 
; ZF H f �fF�F

ZZ f 
; ZF H f �fF�F
WW f 0 WF 0 H f�f

F �FZZ f 
; ZF
H f�f

F�F
ZZ f 
; ZF H f�f

F �FWW f 0 WF 0Figure 5.3: Pentagon diagrams for H ! ZZ ! f �fF �F , where f and F are di�erentfermions with respe
tive weak-isospin partners f 0 and F 0.
H f �f 0

F �F 0ZZ f WF H f �f 0
F �F 0WW f 0 
; ZF 0 H f �f 0F�F 0

ZZ f WF 0 H f �f 0F�F 0
WW f 0 
; ZF

H f�f 0
F �F 0ZZ f 0 WF H f�f 0

F �F 0WW f 
;ZF 0 H f�f 0
F�F 0

ZZ f 0 WF 0 H f�f 0
F�F 0

WW f 
;ZFFigure 5.4: Pentagon diagrams for H ! WW ! f �f 0F �F 0, where f and F are di�erentfermions with respe
tive weak-isospin partners f 0 and F 0.



Virtual 
orre
tions 95the equation above we have �ab;�� = �vfa(ka)
�!�u �fb(kb), et
. Furthermore, symbols like�p are used as shorthand for the 
ontra
tion �� p�. We de�ne the 52 SMEM̂ab
d;��f1;2g = �ab;�� �
d;�;f�;�kakbg; M̂ab
d;��f3;4g = �ab;��k
kd �
d;�;f�;�kakbg;M̂ab
d;��f5;6g = �ab;�k
 �
d;�;fka;kbg; M̂ab
d;��f7;8g = �ab;�kd �
d;�;fka;kbg;M̂ab
d;��f9;10g = �ab;���k
 �
d;�;f��ka;��kbg; M̂ab
d;��f11;12g = �ab;���kd �
d;�;f��ka;��kbg;M̂ab
d;��13 = �ab;���
 �
d;�;��
: (5.2.2)The SME are evaluated within the WvdW spinor te
hnique, similar to the lowest-orderamplitudes des
ribed in the previous se
tion. The tree-level and one-loop amplitudesMab
d;��0 and Mab
d;��1 , respe
tively, for the generi
 four-fermion �nal state fa �fbf
 �fd 
anbe expanded in terms of linear 
ombinations of SME,Mab
d;��n = 13Xi=1 F ab
d;��n;i M̂ab
d;��i ; n = 0; 1; (5.2.3)with Lorentz-invariant fun
tions F ab
d;��n;i . In this notation the lowest-order amplitudes(5.1.5) readMZZ;�a�b�
�d0 (ka; kb; k
; kd) = e3g�aZfafbg�
Zf
fd�W
2wsw Æ�a;��bÆ�
;��d� 1[(ka + kb)2 � �2Z℄[(k
 + kd)2 � �2Z℄ M̂ab
d;�a�
1 ;MWW;�a�b�
�d0 (ka; kb; k
; kd) = e3�W2s3w Æ�a;�Æ�b;+Æ�
;�Æ�d;+� 1[(ka + kb)2 � �2W℄[(k
 + kd)2 � �2W℄ M̂ab
d;��1 : (5.2.4)For the one-loop amplitudes in general all invariant fun
tions re
eive 
ontributions. Inparti
ular, they 
ontain the loop integrals. The one-loop amplitudes for the various �nalstates are 
onstru
ted from the amplitudes for H ! f �fF �F and H ! f �f 0F �F 0 as des
ribedin (5.1.8) to (5.1.11) for the lowest order. The one-loop 
orre
tion to the partial de
aywidths, �nally, reads�virt = 12MH Z d�0 X�1;�2;�3;�4=� 12 2Re fM�1;�2;�3;�41 (M�1;�2;�3;�40 )�g : (5.2.5)The 
al
ulation of the one-loop diagrams, whi
h have been generated with FeynArts[ 96℄, has been 
arried out in the 't Hooft{Feynman gauge and has been repeated usingthe ba
kground-�eld method [ 7℄, where the individual 
ontributions from self-energy,vertex, and box 
orre
tions di�er from their 
ounterparts in the 
onventional formalism.The total one-loop 
orre
tions of the 
onventional and of the ba
kground-�eld approa
hwere found to be in perfe
t numeri
al agreement.
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ays H!WW=ZZ! 4f5.2.2.2 Gauge-boson resonan
es and 
omplex-mass s
hemeAs des
ribed in Se
tion 2.3 the des
ription of resonan
es in (standard) perturbationtheory requires a Dyson summation of self-energy insertions in the resonant propagatorin order to introdu
e the imaginary part provided by the �nite de
ay width into the prop-agator denominator. This pro
edure in general violates gauge invarian
e, i.e. destroysSlavnov{Taylor or Ward identities and disturbs the 
an
ellation of gauge-parameter de-penden
es, be
ause di�erent perturbative orders are mixed.In our 
al
ulation we employ the so-
alled \
omplex-mass s
heme", whi
h was intro-du
ed in Ref. [ 18℄ for lowest-order 
al
ulations and generalized to the one-loop level inRef. [ 24℄. In this approa
h the W- and Z-boson masses are 
onsistently 
onsidered as
omplex quantities, de�ned as the lo
ations of the propagator poles in the 
omplex plane.To this end, bare real masses are split into 
omplex renormalized masses and 
omplex
ounterterms. Sin
e the bare Lagrangian is not 
hanged, double 
ounting does not o

ur.Perturbative 
al
ulations 
an be performed as usual, only parameters and 
ounterterms,in parti
ular the ele
troweak mixing angle de�ned from the ratio of the W- and Z-bosonmasses, be
ome 
omplex. Sin
e we only perform an analyti
 
ontinuation of the param-eters, all relations that follow from gauge invarian
e, su
h as Ward identities, remainvalid. As a 
onsequen
e the amplitudes are gauge independent, and unitarity 
an
ella-tions are respe
ted. Moreover, the on-shell renormalization s
heme 
an straightforwardlybe transferred to the 
omplex-mass s
heme [ 24℄.The use of 
omplex gauge-boson masses ne
essitates the 
onsistent use of these 
om-plex masses also in loop integrals. The s
alar master integrals are evaluated for 
omplexmasses using the methods and results of Refs. [ 97, 98, 99℄.5.2.2.3 Numeri
ally stable evaluation of one-loop integralsThe one-loop 
al
ulation of the de
ay H! 4f requires the evaluation of 5-point one-loop tensor integrals. We 
al
ulate the 5-point integrals by dire
tly redu
ing them to �ve4-point fun
tions, as des
ribed in Refs. [ 93, 94℄. Note that this redu
tion does not involveinverse Gram determinants 
omposed of external momenta, whi
h naturally o

ur in thePassarino{Veltman redu
tion [ 100℄ of tensor to s
alar integrals. The latter pro
edureleads to serious numeri
al problems when the Gram determinants be
ome small.Tensor 4-point and 3-point integrals are redu
ed to s
alar integrals with the Passarino{Veltman algorithm [ 100℄ as long as no small Gram determinant appears in the redu
tion.If small Gram determinants o

ur, the methods that were developed in Ref. [ 94℄ areapplied. In parti
ular, we evaluate a spe
i�
 tensor 
oeÆ
ient, the integrand of whi
h islogarithmi
 in Feynman parametrization, by numeri
al integration. Then the remaining
oeÆ
ients as well as the standard s
alar integral are algebrai
ally derived from this
oeÆ
ient.The whole pro
edure for the evaluation of the s
alar and tensor one-loop integrals hasbeen taken over from the one-loop 
al
ulation of e+e� ! 4 fermions [ 24℄.
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orre
tions 975.2.3 Leading two-loop 
orre
tionsSin
e 
orre
tions due to the self-intera
tion of the Higgs boson be
ome important forlarge Higgs masses, we have in
luded the dominant two-loop 
orre
tions to the de
ayH! V V in the large-Higgs mass limit whi
h were 
al
ulated in Refs. [ 89, 90℄. They areof order O(G2�M4H) and read�G2�M4H = 62:0308(86) G�M2H16�2p2!2 �0; (5.2.6)where the numeri
al prefa
tor has been taken from Ref. [ 90℄. The error of this fa
tor isfar beyond other un
ertainties and, thus, ignored in the numeri
s.5.3 Real photon 
orre
tions5.3.1 Matrix element for H! 4f
The real photoni
 
orre
tions are indu
ed by the pro
essH(p) �! f1(k1; �1) + �f2(k2; �2) + f3(k3; �3) + �f4(k4; �4) + 
(k; �); (5.3.1)where the momenta and heli
ities of the external parti
les are indi
ated in parentheses.As for the lowest-order pro
ess, we 
onsistently negle
t fermion masses whenever pos-sible. However, we restore the mass-singular logarithms appearing in 
ollinear photonemission as des
ribed in Se
tion 4.3 improved by higher-order �nal-state radiation as de-s
ribed in Se
tion 5.3.3.The matrix elements for the radiative pro
ess 
an be 
onstru
ted in the same way asfor the lowest-order pro
ess (5.1.1) from the set of generi
 diagrams that is obtained fromFigure 5.1 by adding a photon line in all possible ways to the 
harged parti
les. We haveevaluated the generi
 heli
ity matrix elements M�a�b�
�d�
 (ka; kb; k
; kd; k) of this pro
essagain using the WvdW spinor te
hnique in the formulation of Ref. [ 42℄. The amplitudesgeneri
ally readMV V;�a�b�
�d�
 (Qa; Qb; Q
; Qd; ka; kb; k
; kd; k) = (5.3.2)2p2e4 g�aV fafbg�
V f
fdgHV V Æ�a;��bÆ�
;��d AV V�a�
�(Qa; Qb; Q
; Qd; ka; kb; k
; kd; k);or more spe
i�
ally for the 
ase of Z-mediated and W -mediated de
aysMZZ;�a�b�
�d�
 (Qa; Qb; Q
; Qd; ka; kb; k
; kd; k) =2p2e4g�aZfafbg�
Zf
fdMW
2wsw Æ�a;��bÆ�
;��d AZZ�a�
�(Qa; Qb; Q
; Qd; ka; kb; k
; kd; k);MWW;�a�b�
�d�
 (Qa; Qb; Q
; Qd; ka; kb; k
; kd; k) =p2e4MWs3w Æ�a;�Æ�b;+Æ�
;�Æ�d;+AWW���(Qa; Qb; Q
; Qd; ka; kb; k
; kd; k): (5.3.3)



98 The Higgs-boson de
ays H!WW=ZZ! 4fThe auxiliary fun
tions are given byAV V���(Qa; Qb; Q
; Qd; ka; kb; k
; kd; k) =hkbkdi�" hkakbi�hkak
i+ hkkbi�hkk
i[(ka + kb + k)2 �M2V ℄[(k
 + kd)2 �M2V ℄� Qahkkai�hkkbi� + Qa �Qb(ka + kb)2 �M2V hkkaihkkbi�!� hk
kdi�hk
kai+ hkkdi�hkkai[(ka + kb)2 �M2V ℄[(k
 + kd + k)2 �M2V ℄� Q
hkk
i�hkkdi� + Q
 �Qd(k
 + kd)2 �M2V hkk
ihkkdi�!+ Qa �Qb[(ka + kb)2 �M2V ℄[(k
 + kd)2 �M2V ℄ hkbkdi�hkak
ihkkbi�hkkdi� �;AV V+��(Qa; Qb; Q
; Qd; ka; kb; k
; kd) = AV V���(�Qb;�Qa; Q
; Qd; kb; ka; k
; kd);AV V�+�(Qa; Qb; Q
; Qd; ka; kb; k
; kd) = AV V���(Qa; Qb;�Qd;�Q
; ka; kb; kd; k
);AV V++�(Qa; Qb; Q
; Qd; ka; kb; k
; kd) = AV V���(�Qb;�Qa;�Qd;�Q
; kb; ka; kd; k
);AV V�a�
+(Qa; Qb; Q
; Qd; ka; kb; k
; kd; k) =�AV V��a;��
;�(Qa; Qb; Q
; Qd; ka; kb; k
; kd; k)�����MV!M�V ; (5.3.4)and obey the relationsAV V��a;��
;��(Qa; Qb; Q
; Qd; ka; kb; k
; kd; k) =�AV V�a�
�(Qa; Qb; Q
; Qd; ka; kb; k
; kd; k)�����MV!M�V ;AV V��a;�
;�(Qa; Qb; Q
; Qd; ka; kb; k
; kd; k) =AV V�a�
�(�Qb;�Qa; Q
; Qd; kb; ka; k
; kd; k);AV V�a;��
;�(Qa; Qb; Q
; Qd; ka; kb; k
; kd; k) =AV V�a�
�(Qa; Qb;�Qd;�Q
; ka; kb; kd; k
; k);AV V�a;�
;��(Qa; Qb; Q
; Qd; ka; kb; k
; kd) =��AV V�
�a�(Qd; Q
; Qb; Qa; kd; k
; kb; ka; k)�����MV!M�V ;AV V�a;�
;�(Qa; Qb; Q
; Qd; ka; kb; k
; kd) =AV V�
�a�(Q
; Qd; Qa; Qb; k
; kd; ka; kb; k): (5.3.5)The relations between the A:::::: fun
tions that di�er in all heli
ities result from a P trans-formation. Those, where only one fermion heli
ity is reversed are related to C symmetry.The last but one is due to CP symmetry, and the last one results from a symmetry underthe ex
hange of the two fermion pairs. The 
harges of the fermions are related byQa �Qb +Q
 �Qd = 0: (5.3.6)
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orre
tions 99For the Z-mediated de
ays, where Qa = Qb and Q
 = Qd, the auxiliary fun
tion (5.3.4)simpli�es toAZZ���(Qa; Qa; Q
; Q
; ka; kb; k
; kd; k) =hkbkdi�" hkakbi�hkak
i+ hkkbi�hkk
i[(ka + kb + k)2 �M2V ℄[(k
 + kd)2 �M2V ℄ Qahkkai�hkkbi�� hk
kdi�hk
kai+ hkkdi�hkkai[(ka + kb)2 �M2V ℄[(k
 + kd + k)2 �M2V ℄ Q
hkk
i�hkkdi� �: (5.3.7)From the generi
 matrix element MV V;�a�b�
�d�(ka; kb; k
; kd; k) the matrix elementsfor the spe
i�
 pro
esses 
an be 
onstru
ted in 
omplete analogy to the pro
ess withoutphoton as in (5.1.8){(5.1.11).The squares of the matrix elements (5.3.2) have been su

essfully 
he
ked against theresult obtained with the pa
kage Madgraph [ 43℄ numeri
ally.The 
ontribution �
 of the radiative de
ay to the total de
ay width is given by�
 = 12MH Z d�
 X�1;�2;�3;�4=� 12 X�=�1 jM�1;�2;�3;�4;�
 j2; (5.3.8)where the phase-spa
e integral is de�ned byZ d�
 = Z d3k(2�)32k0  4Yi=1 Z d3ki(2�)32k0i ! (2�)4Æ(4) p� k � 4Xi=1 ki!: (5.3.9)5.3.2 Treatment of soft and 
ollinear divergen
esThe stru
ture of soft and 
ollinear singularities of the de
ay H ! 4f is exa
tly thesame as in the pro
ess 

 !WW! 4f , be
ause both pro
esses involve the same patternof 
harged parti
les in the initial and �nal states. Consequently, apart from obvious sub-stitutions for the 
ux fa
tors all formulas given in Se
tion 4.3 for 
ross se
tions literally
arry over to the de
ay widths. The agreement of the dipole-subtra
tion method and thephase-spa
e sli
ing method is illustrated in Figures 5.5 and 5.6 for the widths of the twode
ay 
hannels H! �ee+����� and H! e�e+���+. For de
reasing auxiliary parameters�E and ��, the sli
ing result rea
hes a plateau, as it should be, until the in
reasing sta-tisti
al errors be
ome large and are eventually underestimated. In the plateau region thesli
ing and subtra
tion results are 
ompatible within statisti
al errors, but the subtra
tionresult shows smaller integration errors although the same number of events is used.5.3.3 Higher-order �nal-state radiationPhotons that are emitted 
ollinear from a 
harged fermion give rise to 
orre
tionsthat are enhan
ed by large logarithms of the form � logm2f=Q2, where mf is a fermionmass and Q is some typi
al energy s
ale. If the photons are treated fully in
lusively,as it is the 
ase if the photons are re
ombined with the 
orresponding fermion, theselogarithms 
an
el due to the KLN theorem [ 69℄. If, however, distributions like in the
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e of the relative 
orre
tions Æ to the partial de
ay width on theenergy 
uto� �E (l.h.s.) and on the angular 
uto� �� (r.h.s.) in the sli
ing approa
hfor the pro
ess H ! �ee+����� with MH = 170GeV. For 
omparison the 
orrespondingresult obtained with the dipole subtra
tion method is shown as a 1� band in the plots.
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orre
tions 101invariant mass of two fermions, as dis
ussed in Se
tion 5.5.3, are to be 
onsidered withoutre
ombining 
ollinear photons, then these logarithms do not 
an
el and yield large e�e
ts.Thus, 
orre
tions of this origin beyond O(�) should be taken into a

ount. This 
an bea
hieved in the stru
ture-fun
tion approa
h [ 101℄ whi
h is based on the mass-fa
torizationtheorem. A

ording to this theorem the de
ay width in
luding the leading-logarithmi
FSR terms 
an be written asZ d�LLFSR = YiQi 6=0 �Z 10 dzi �LLii (zi; Q2)� Z d�0�
ut(fzjkjg): (5.3.10)The fun
tion �
ut(fzjkjg) generi
ally denotes all histogram routines or phase-spa
e 
uts.It depends on the fermion momenta zjkj whi
h, in the 
ase of 
harged fermions, maybe redu
ed by the fa
tor zj due to 
ollinear photon emission. For neutral fermions wehave zj = 1. The stru
ture fun
tions in
luding terms up to O(�3), improved by theexponentiation of the soft-photoni
 parts, read�LL;expii (z; Q2) = exp ��12�i
E + 38�i�� �1 + 12�i� �i2 (1� z)�i2 �1 � �i4 (1 + z)� �2i32�1 + 3z21� z ln(z) + 4(1 + z) ln(1� z) + 5 + z�� �3i384�(1 + z) h6 Li2(z) + 12 ln2(1� z)� 3�2i+ 11� z �32(1 + 8z + 3z2) ln(z) + 6(z + 5)(1� z) ln(1� z)+ 12(1 + z2) ln(z) ln(1� z)� 12(1 + 7z2) ln2(z)+ 14(39� 24z � 15z2)�� (5.3.11)with 
E and �(y) denoting Euler's 
onstant and the Gamma fun
tion, respe
tively. Themass-singular logarithm �i = 2�(0)� "ln�Q2m2i �� 1# (5.3.12)involves a s
ale Q2, whi
h is not �xed in leading logarithmi
 order and should be set toa s
ale typi
al for the pro
ess under 
onsideration. We use Q2 = M2H in our evaluations.As the fun
tion (1� z)�i2 �1 is diÆ
ult to integrate numeri
ally, an appropriate mappinghas to be 
hosen in pra
ti
e.In order to study the in
uen
e of the higher-order terms we alternatively expandedthe exponential up to terms of O(�3), yielding�LLii (z; Q2) = "1 + �2  9128 � �248!+ �3  �(3)24 � �2128 + 91024!# Æ(1� z)+ "�i4 1 + z21� z + �2i16  31� z + 4ln(1� z)1� z !



102 The Higgs-boson de
ays H!WW=ZZ! 4f+ �3i768 11� z (27� 8�2 + 72 ln(1� z) + 48 ln2(1� z))#+� �2i32�1 + 3z21� z ln(z) + 4(1 + z) ln(1� z) + 5 + z�� �3i384�(1 + z) h6 Li2(z) + 12 ln2(1� z)� 3�2i+ 11� z �32(1 + 8z + 3z2) ln(z) + 6(z + 5)(1� z) ln(1� z)+ 12(1 + z2) ln(z) ln(1� z)� 12(1 + 7z2) ln2(z)+ 14(39� 24z � 15z2)��; (5.3.13)where � labels the Riemann �-fun
tion.Sin
e we already a

ounted for the lowest-order term and the O(�) term whi
h is
ontained in the 
omplete O(�) 
orre
tions, we have to subtra
tZ d�LLFSR;1 = Z d�0 + Z d�0Xi Z 10 dzi �LL;1ii (zi; Q2)�
ut(ziki; fkj 6=ig); (5.3.14)i.e. the leading logarithmi
 terms up to O(�), from R d�LLFSR. They are de�ned by�LL;1ii (z; Q2) = �i;G�4  1 + z21� z !+ : (5.3.15)Note that the leading-logarithmi
 terms s
ale with �(0). Therefore, we have to subtra
tthe O(�) terms a

ording to the s
heme that is applied for the virtual 
orre
tions. Sin
ewe work in the G� s
heme, �i;G� is proportional to �G� , as de�ned in Eq. (3.5.3).5.4 Improved Born ApproximationSome loop diagrams involving top quarks lead to 
orre
tions that are enhan
ed by alarge 
oupling fa
tor G�m2t in the limit of a large top-quark mass mt. For the generi
amplitudes of H ! 4f the leading mt-dependent 
orre
tions in the heavy-top limit read(in the G�-s
heme)MZZ;�1�31 ���G�-s
heme gmt!1 �4�s2w " 18 � 3
w4sw  Qf1g�1Zf1f1 + Qf3g�3Zf3f3!! m2tM2W� Qf1g�1Zf1f1 + Qf3g�3Zf3f3! 3� 2s2w3
wsw ln mtMW #MZZ;�1�30 + O(m0t );MWW1 ���G�-s
heme gmt!1 � 5�32�s2w m2tM2W MWW0 + O(m0t ); (5.4.1)where we use the real W-boson mass MW, and the terms proportional to a 
harge fa
torQf are absent if f is a neutrino. The leading m2t -enhan
ed terms of the WW 
hannel



Improved Born Approximation 103agree with the terms derived for the HWW vertex [ 88℄, sin
e in the G�-s
heme allleading m2t 
ontributions related to the W-boson 
oupling to fermions are absorbed in�G� . In the ZH 
hannel, m2t -enhan
ed terms do not only result from the HZZ vertex, butthere are also remnants originating from the renormalization of the Z-boson 
ouplings tofermions. In 
ontrast to the WW 
hannel, in the ZZ 
hannel there are also logarithmi
terms lnmt for a large top-quark mass. For the WW 
hannel and for the ZZ 
hannel withone Z boson de
aying into neutrinos and the other into 
harged leptons, the 
orre
tionterms in (5.4.1) agree with the 
orresponding results given in Ref. [ 92℄ for the produ
tionpro
ess e+e� ! ���H.In
luding also the one-loop 
orre
tions / G�M2H and the two-loop 
orre
tions /(G�M2H)2 from Refs. [ 89, 90℄ we de�ne the matrix elements for an improved-Born ap-proximation (IBA) for the non-photoni
 
ontributions asMZZ;�1�3IBA;non-photoni
 = MZZ;�1�30 "1� G�m2t2p2�2  18 � 3
w4sw  Qf1g�1Zf1f1 + Qf3g�3Zf3f3!!� G�M2W2p2�2  Qf1g�1Zf1f1 + Qf3g�3Zf3f3! 3� 2s2w3
wsw ln mtMW+ G�M2H16�2p2  5�26 � 3p3� + 192 + i�(2 ln 2� 5)!�  G�M2H16�2p2!2 �34:4082(43) + 21:0031(62) i�#;MWWIBA;non-photoni
 = MWW0 "1� 5G�m2t16p2�2+ G�M2H16�2p2  5�26 � 3p3� + 192 + i�(2 ln2� 5)!�  G�M2H16�2p2!2 �34:4082(43) + 21:0031(62) i�#; (5.4.2)where we suppress some polarization indi
es in the lowest-order matrix elements that werede�ned in Se
tion 5.1. Sin
e our lowest-order matrix element M0 is 
omplex, owing tothe propagator width, both the imaginary part of the G�M2H term and the imaginary partof the (G�M2H)2 term 
ontribute when taking the absolute square of the matrix elements.Finally, we de�ne the IBA for the partial de
ay widths H ! WW ! f1 �f2f3 �f4 andH! ZZ! f1 �f2f3 �f4 as�H!ZZ!4fIBA = 12MH Z d�0 X�1;�3=� jMZZ;�1�3IBA;non-photoni
j2;�H!WW!4fIBA = 12MH Z d�0 jMWWIBA;non-photoni
j2� h1 + ÆCoul �M2H; (k1 + k2)2; (k3 + k4)2� g( ��)i ; (5.4.3)
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h is then 
onvoluted with the FSR as given in (5.3.10). The phase-spa
e integral wasde�ned in (5.3.9), and the e�e
t of the Coulomb singularity is in
orporated inÆCoul(s; k2+; k2�) = �(0)�� Im(ln � � �� +�M� + �� +�M !) ;�� = qs2 + k4+ + k4� � 2sk2+ � 2sk2� � 2k2+k2�s ;� = s1� 4�2Ws ; �M = jk2+ � k2�js ; (5.4.4)with the �ne-stru
ture 
onstant �(0). The auxiliary fun
tiong( ��) = �1� ��2�2 (5.4.5)restri
ts the impa
t of ÆCoul to the threshold region where it is valid.The IBA for the �nal states f �ff �f and f �ff 0 �f 0 are de�ned via the 
orresponding matrixelements as in (5.1.10) and (5.1.11), respe
tively. However, the 
orre
tion fa
tor ÆCoul isonly multiplied to the squared 
harged-
urrent matrix element jMWWIBA;non-photoni
j2, be
ausethe interferen
e term turns out to be very small.5.5 Numeri
al results5.5.1 Input parameters and setupWe use the following set of input parameters [ 9℄G�= 1:16637� 10�5GeV�2; �(0)= 1=137:03599911; �s= 0:1172;MW = 80:425GeV; MZ= 91:1876GeV;me= 0:51099892MeV; m�= 105:658369MeV; m� = 1:77699GeV;mu= 0:066GeV; m
= 1:2GeV; mt= 178GeV;md= 0:066GeV; ms= 0:15GeV; mb= 4:3GeV: (5.5.1)For the top-quark mass mt we have taken the value from Ref. [ 102℄.By applying the G� s
heme a large part of the O(�) 
orre
tions is absorbed into thelowest order predi
tion as des
ribed in Se
tion 3.5.1. In parti
ular, the ele
tromagneti

oupling 
onstant is derived from the Fermi 
onstant a

ording to Eq. (3.5.3), so that ourlowest-order results s
ale with �3G� and the radiative 
orre
tions with �4G�The widths of the gauge bosons W and Z, �W and �Z, are 
al
ulated from the above in-put in
ludingO(�) 
orre
tions, but using real mass parameters everywhere. Alternatively,the experimental widths 
ould be used, but the pro
edure pursued here ensures that the\e�e
tive bran
hing ratios" of the W's and Z's, whi
h result from the integration over theirde
ays, add up to one if all de
ay 
hannels are summed over. The gauge-boson widthsdepend on the Higgs mass only weakly. For the Higgs masses MH = 140; 170; 200GeV
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orresponding values are given in Table 5.1. These values are used everywhere, i.e.we also apply the O(�)-
orre
ted W and Z widths for the lowest-order predi
tions.The angular distributions in Se
tion 5.5.4 are de�ned in the rest frame of the Higgsboson. All observables are 
al
ulated without applying phase-spa
e 
uts, and, if notstated otherwise, a photon re
ombination is performed. More pre
isely, if the invariantmass of a photon and a 
harged fermion is smaller than 5GeV, the photon momentum isadded to the fermion momentum in the histograms. If this 
ondition applies to more thanone fermion the photon is re
ombined with the fermion that yields the smallest invariantmass.All but the lowest-order predi
tions 
ontain the higher-order FSR, as des
ribedin Se
tion 5.3.3, as well as the two-loop 
orre
tions proportional to G2�M4H given inSe
tion 5.2.3. The phase-spa
e integration is performed using the multi-
hannel MonteCarlo te
hnique, whi
h is des
ribed in App. A. The numeri
al results presented belowhave been obtained using 5 � 107 events ex
ept for the plots showing the de
ay width as afun
tion of the Higgs mass whi
h were 
al
ulated using 2 � 107 events per point. Sin
e thevirtual 
orre
tions (rendered �nite by adding the soft and 
ollinear singularities from thereal 
orre
tions), and also their statisti
al error, are at least a fa
tor 10 smaller than thelowest-order values for moderate Higgs masses, we only evaluated the virtual 
orre
tionsevery 100th time, whi
h improves the run-time of the program but does not deterioratethe overall statisti
al error.5.5.2 Results for the partial de
ay widthIn Table 5.1 the partial de
ay width in
luding O(�) 
orre
tions is shown for di�erentde
ay 
hannels and di�erent values of the Higgs mass. In bra
kets the statisti
al error ofthe phase-spa
e integration is shown, and Æ = �=�0�1 labels the relative 
orre
tions. The�rst two 
hannels, e�e+���+ and e�e+e�e+ result from the de
ay H ! ZZ ! 4f . The
orresponding lowest-order matrix elements are given in (5.1.8) and (5.1.10), respe
tively.The width 
orresponding to the latter 
hannel is typi
ally smaller by a fa
tor 2, be
ausethe de
ay H! e�e+e�e+ pro
eeds via two Feynman diagrams with small interferen
e inlowest order and requires a fa
tor 1=4 for identi
al parti
les in the �nal state. The 
hannel�ee+����� (5.1.9) results from the de
ay H!WW! 4f , while the last 
hannel �ee+e���e(5.1.11) re
eives 
ontributions from the de
ay into W and into Z bosons. The larger theHiggs mass, the larger is the de
ay width, be
ause the available phase spa
e grows.In the two upper plots of Figure 5.7 we show the partial de
ay width for the �nalstate �ee+����� as a fun
tion of the Higgs mass. The lower plots show the 
orre
tionsrelative to the lowest-order result. As already explained, we always normalize to thelowest-order result that already in
ludes the O(�)-
orre
ted width of the gauge bosons.A large fra
tion of the O(�) 
orre
tions is transferred to the lowest-order de
ay width byapplying the G� s
heme. Thus, the 
orre
tions are at the order of 2{8% for moderateHiggs masses. However, for large Higgs masses the 
orre
tions be
ome larger and rea
habout 13% at MH = 700GeV. In this region the leading two-loop 
orre
tions alreadyamount to about 4%. Around 160GeV the Coulomb singularity, whi
h originates fromsoft-photon ex
hange between the two slowly moving W bosons, is re
e
ted in the shape
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corrected
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ay width for H ! �ee+����� as a fun
tion of the Higgs mass. Theupper plots show the absolute predi
tion in
luding O(�) and O(G2�M4H) 
orre
tions, andthe lower plots show the 
omparison of the relative O(�) and O(G2�M4H) 
orre
tions withthe NWA and IBA.
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al results 107MH[ GeV℄ 140 170 200�W[ GeV℄ 2:09273::: 2:09275::: 2:09276:::�Z[ GeV℄ 2:50548::: 2:50557::: 2:50563:::H ! �[MeV℄ Æ[%℄ �[MeV℄ Æ[%℄ �[MeV℄ Æ[%℄e�e+���+ 
orre
ted 0.0012582(5) 2.2 0.020056(7) 2.7 0.8183(2) 4.4lowest order 0.0012310(4) 0.019529(5) 0.78408(8)e�e+e�e+ 
orre
ted 0.0006667(2) 2.0 0.010292(3) 2.7 0.40930(8) 4.4lowest order 0.0006534(2) 0.010026(2) 0.39217(4)�ee+����� 
orre
ted 0.04789(2) 3.6 4.2962(9) 6.1 12.484(3) 4.9lowest order 0.04623(1) 4.0491(7) 11.899(2)�ee+e���e 
orre
ted 0.04896(2) 3.7 4.329(1) 6.1 14.114(3) 5.0lowest order 0.04722(2) 4.0804(8) 13.446(2)Table 5.1: Partial de
ay widths for H! 4 leptons in
luding O(�) 
orre
tions and relative
orre
tion for various de
ay 
hannels and di�erent Higgs masses.of the 
urve. The in
uen
e of diagrams with a Higgs boson splitting into Z-boson pair(\normal ZZ threshold") is visible atMH � 2MZ. At about 2mt the t�t threshold is visible.For stable W or Z bosons, i.e. in the limit �V ! 0 (V = W;Z), it is possible tode�ne a narrow-width approximation (NWA) where the matrix elements fa
torize intothe de
ay H ! V V and the subsequent de
ay of the gauge bosons into fermions. Byde�nition the NWA is only appli
able above the WW or ZZ threshold. However, itsanalyti
al stru
ture and evaluation is 
onsiderably simpler than in the 
ase of the fullde
ay H ! WW=ZZ ! 4f with o�-shell gauge bosons. Therefore, above threshold theNWA allows for an e
onomi
 way of 
al
ulating O(�) 
orre
tions to the integrated de
aywidth, while the lowest-order 
ontribution may, of 
ourse, still take into a

ount unstablegauge bosons. Following this line of thought, we de�ne�NWA = �0 �NWA1�NWA0 ; (5.5.2)with �NWA1 = �HV V;1 �V f1 �f2;1�V f3 �f4;1�V;1�V;1 ; (5.5.3)and �NWA0 = �HV V;0 �V f1 �f2;0�V f3 �f4;0�V;1�V;1 : (5.5.4)The indi
es \0" and \1" label lowest-order and O(�)-
orre
ted results, respe
tively. TheHiggs-mass-enhan
ed two-loop terms, des
ribed in Se
tion 5.2.3, have also been in
ludedin �HV V;1. In order to be 
onsistent we again use the O(�)-
orre
ted total width for thegauge bosons in �NWA0 . We note that we have rederived all ne
essary O(�) 
orre
tions
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orre
tions to the de
ay H ! WW have been
he
ked against the expression given in Ref. [ 87℄.A few GeV above the 
orresponding gauge-boson-pair threshold the NWA agrees withthe 
omplete O(�) 
orre
tions within 1%. Near MH = 180GeV the loop-indu
ed ZZthreshold 
an be seen in the relative 
orre
tions to H ! WW ! �ee+����� shown inFigure 5.7. In the NWA this threshold leads to a singularity visible as a sharp peak; inthe o�-shell 
al
ulation in the 
omplex-mass s
heme this singular stru
ture is smearedout, be
ause the Z-boson width is taken into a

ount. Sin
e the ZZ threshold 
orrespondsto the situation where two Z bosons be
ome on shell in the loop, the latter des
riptionwith the singularity regularized by a �nite �Z should be 
loser to physi
al reality. Asimilar situation 
an be seen near H = 2mt for the t�t threshold with top quarks in theloops, where we observe a sharp peak also for the 
omplete O(�) 
orre
tions, be
ause wehave not taken into a

ount the top de
ay width �t. In prin
iple, this is straightforwardand represents an option for a future improvement of the 
al
ulation.Although the IBA, whi
h is also shown in Figure 5.7 re
e
ts the shape of the Coulombsingularity around MH = 160GeV and the rise of the 
orre
tions for large Higgs massesquite well, it does not provide a good overall des
ription of the 
omplete O(�) 
orre
-tions. Apparently, the m2t -enhan
ed terms do not yield the dominant e�e
t, but bosoni

orre
tions 
ontribute a substantial part of the O(�) 
orre
tions.The plots in Figure 5.8 show the de
ay width and the relative 
orre
tion for the �nalstate e�e+���+. The 
orre
tion are between 2% and 4% for moderate Higgs masses andrise to more than 10% for large Higgs masses. At a Higgs mass of about 160GeV thein
uen
e of the diagram where a W-boson loop is 
oupled to the Higgs boson 
an beobserved. As explained above, the behaviour of the 
orre
tions as a fun
tion of the Higgsmass is smooth, be
ause the gauge-boson width is also used in the loop integrals. In
ontrast to the de
ay H! �ee+�����, there is no Coulomb singularity at around 180GeVbe
ause the Z boson is ele
tri
ally neutral. The NWA reprodu
es the 
omplete result upto 0:5% not too 
lose to the threshold, while the IBA is only good within 2%, and deviateseven more in the region MH � 2mt, where the assumption of large top mass is not valid.Predi
tions for the partial de
ay widths of the Higgs boson 
an also be obtained withvarious program pa
kages, su
h as HDECAY [ 56℄, whi
h 
ontains the lowest-order de
aywidth for H! V (�)V (�), and also the leading one-loop 
orre
tions / G�M2H and two-loop
orre
tions / G2�M4H. In order to obtain the de
ay width for H ! WW=ZZ ! 4f , wede�ne �HD = �HDHV V �V f1f2;0�V;1 �V f3f4;0�V;1 ; (5.5.5)where �HDHV V is the de
ay width from HDECAY. In (5.5.5) the bran
hing ratios of thegauge bosons are normalized in the same way (lowest order in the numerator, 
orre
tedtotal width in the denominator) as the e�e
tive bran
hing ratios of our lowest-orderpredi
tions for the H ! V V ! 4f partial widths; otherwise a 
omparison would not bevery 
on
lusive.The 
omparison in Figure 5.9, where �HD is shown relative to our 
omplete lowest-order predi
tion, shows that HDECAY agrees with our lowest-order predi
tion below thede
ay threshold quite well. In this region �HDHV V 
onsistently takes into a

ount the o�-shell
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ay width for H! e�e+���+ as a fun
tion of the Higgs mass. Theupper plots show the absolute predi
tion in
luding O(�) and O(G2�M4H) 
orre
tions, andthe lower plots show the 
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ts of the gauge bosons. Above the threshold HDECAY negle
ts o�-shell e�e
ts ofthe gauge bosons. In the threshold region, o�-shell e�e
ts are, however, very important.Here, the di�eren
e between the 
omplete o�-shell result and the Higgs width for on-shellgauge bosons amounts to about 10%. In detail, HDECAY interpolates between the o�-shell and on-shell results within a window of �2GeV around threshold. The maxima inthe HDECAY 
urves near the WW and ZZ thresholds in the upper and lower left plotsof Figure 5.9, respe
tively, are artefa
ts originating from the on-shell phase spa
e of theW or Z bosons above threshold. These maxima have nothing to do with the maximum ofthe 
orre
tion near the WW threshold in the upper left plot, whi
h is due to the Coulombsingularity. For large MH HDECAY follows our 
orre
ted result within a few per 
ent,be
ause the dominant radiative 
orre
tions / G�M2H and / G2�M4H, whi
h grow fast within
reasing MH, are in
luded in both 
al
ulations.5.5.3 Invariant-mass distributionsIn Figure 5.10 we study the invariant-mass distribution of the two fermions resultingfrom the de
ay of the W bosons in the de
ay H! �ee+�����. The plots on the l.h.s. showthe distribution for ����� in
luding 
orre
tions for MH = 140GeV and MH = 170GeV,i.e. for one value of MH below and one above the WW threshold. The plots on ther.h.s. 
ompare the relative 
orre
tions for �ee+ and ����� both with and without photonre
ombination. The invariant massMf �f 0 is 
al
ulated from the sum of the momenta of thefermions f and f 0. If no photon re
ombination is applied, the bare momenta are taken.In the 
ase of photon re
ombination the momentum of 
ollinear photons is in
luded inthe invariant mass.For MH = 170GeV, where both intermediate W bosons 
an be simultaneously reso-nant, the physi
al situation in Figure 5.10 is very similar to the situation for the pro
ess

 !WW! 4f depi
ted in Figures 4.8 and Figure 4.13. Again, the shape of the 
urve
an be understood as follows. Resonant gauge bosons give a large 
ontribution to thewidth. If one of the de
ay fermions emits a photon, the invariant mass Mf �f 0 is redu
ed,giving rise to an enhan
ement for small invariant masses. Without photon re
ombina-tion these positive 
orre
tions are large due to the appearan
e of logarithms of the smallfermion masses. As the ele
tron mass is smaller, the 
orresponding logarithms yield alarger 
ontribution. If photon re
ombination is applied, events are rearranged from smallinvariant masses to large invariant masses. In this 
ase, the observable is in
lusive,i.e.the fermion mass logarithms 
an
el due to the KLN theorem, and the �ee+ and �����distributions do not di�er.For MH = 140GeV, i.e. below the threshold, only one W boson 
an be
ome on shell.Thus, there is still a resonan
e around Mf �f 0 � MW, but also an enhan
ement below aninvariant mass of about 60GeV, where the other de
aying W boson 
an be
ome resonant.Near the resonan
e at Mf �f 0 � MW the 
orre
tions look similar to the doubly-resonant
ase dis
ussed for MH = 170GeV above. The same redistribution of events from higherto lower invariant mass due to FSR happens as explained above. Between 70GeV and60GeV in Mf �f 0 the large positive 
orre
tions de
rease until the broad maximum nearMf �f 0 � 54GeV is seen. In the region of this maximum the same qualitative FSR e�e
ts
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ourse mu
h less pronoun
ed) are visible as in the vi
inity of the resonan
e atMW:apart from a 
onstant positive o�-set in the relative 
orre
tions, events a distributed fromthe right to the left of the maximum.Figure 5.11 shows the 
orresponding invariant-mass distributions for the de
ay H !e�e+���+ withMH = 170GeV and MH = 200GeV. The generi
 features of the plots aresimilar to the de
ay into W bosons. Above the ZZ threshold (MH = 200GeV), there isone resonan
e region around MZ, and the 
orre
tions be
ome large in the non-
ollinear-safe 
ase. Photon re
ombination rearranges the events, so that the fermion logarithms
an
el. Below the ZZ threshold (MH = 170GeV), there is an additional resonan
e regionfor Mf �f <� 80GeV. The shape and the large size of the 
orre
tions are due to 
ollinearFSR as explained above. In Ref. [ 82℄ it was pointed out that the kinemati
al thresholdwhere the other Z boson 
an be
ome on shell, whi
h is at Mf �f <� 80GeV in this 
ase, 
anbe used to verify the spin of the Higgs boson. A parti
le of spin 1, e.g., would at leastinvolve one power of momentum in the 
oupling to ve
tor bosons. Thus, the invariant-mass spe
trum would de
rease more rapidly at the kinemati
al threshold 
ompared tothe SM 
ase. Figure 5.11 shows that the radiative 
orre
tions in
uen
e the slope at thekinemati
al threshold signi�
antly.Finally, in Figure 5.12 we investigate the in
uen
e of higher-order FSR on the invariant-mass distribution of ���� and ���+ in the de
ays H ! �ee+����� and H ! e�e+���+.The invariant mass is de�ned via the momenta of the fermions alone, i.e. without photonre
ombination. If photon re
ombination was applied, the leading logarithmi
 FSR 
or-re
tions, as des
ribed in Se
tion 5.3.3, would vanish 
ompletely. Subtra
ting the O(�)terms (5.3.14) from the stru
ture fun
tions yields the 
ontribution that is beyond O(�).In Figure 5.12 the impa
t of this 
ontribution is studied revealing 
orre
tions of up to4% in regions where the lowest-order result is relatively small. Figure 5.12 also shows the
omparison between the stru
ture fun
tion with and without the exponentiation of thesoft-photoni
 parts in (5.3.11) and (5.3.13), respe
tively. The di�eren
e is beyond O(�3)and turns out to be tiny.5.5.4 Angular distributionsThe investigation of angular 
orrelations between the fermioni
 de
ay produ
ts is anessential means of testing the properties of the Higgs boson. In Ref. [ 81, 82℄ it wasdemonstrated how the spin of the Higgs boson 
an be determined by looking at the anglebetween the de
ay planes of the Z bosons in the de
ay H! ZZ. This angle 
an be de�nedas 
os�0 = (k+ � k1)(k+ � k3)jk+ � k1jjk+ � k3j ;sgn(sin�0) = sgnfk+ � [(k+ � k1)� (k+ � k3)℄g; (5.5.6)where k+ = k1 + k2. The l.h.s. of Figure 5.13 shows the de
ay width for H! e�e+���+as a fun
tion of �0 revealing a 
os 2�0 term. As was noti
ed in Ref. [ 81, 82℄, this termwould be proportional to (� 
os 2�0) if the Higgs boson was a pseudo-s
alar.
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corrected
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ays H!WW=ZZ! 4fNote that for non-photoni
 events the de�nition of �0 
oin
ides with the de�nitiongiven in Ref. [ 19℄ where (�k� � k3) with k� = k3 + k4 was used instead of (k+ � k3).Expli
itly, � was de�ned as
os� = (k+ � k1)(�k� � k3)jk+ � k1jj � k� � k3j ;sgn(sin�) = sgnfk+ � [(k+ � k1)� (�k� � k3)℄g: (5.5.7)However, this de�nition yields large negative 
ontributions at � = 0Æ and � = 180Æ. Aswas explained in Ref. [ 19℄, this is an e�e
t of the suppressed phase spa
e of the real
orre
tions. At � = 0Æ and � = 180Æ the phase spa
e for photoni
 events shrinks to the
on�gurations where the photon is either soft or lies in the de
ay plane of the gauge bosons.Thus, the negative 
ontributions from the virtual 
orre
tions are not fully 
ompensatedby the real 
orre
tions. Using k+ � k3 as in (5.5.6) avoids this suppression and gives riseto a smooth dependen
e of the 
orre
tions on � as 
an be seen on the r.h.s. of Figure 5.13whi
h shows the relative 
orre
tions for � and �0 in the de
ay H! e�e+���+. Sin
e thedi�eren
e of � and �0 is only due to photons, this, again, emphasizes the large in
uen
eof the photon treatment.In 
ontrast to the invariant-mass distribution of Figure 5.10, photon re
ombinationdoes not produ
e any signi�
ant e�e
t for the observable �. This is be
ause adding a softor 
ollinear photon to a fermion momentum does not 
hange its dire
tion very mu
h and,thus, has only a small in
uen
e on the angle �.The de
ay angle of the �� relative to the 
orresponding Z boson in the de
ay H !e�e+���+ is shown in Figure 5.14. The angle is de�ned in the rest frame of the Z bosonso that the distribution is symmetri
 w.r.t. 
os �Z�� . The relative 
orre
tions whi
h areshown in the plot on the r.h.s. reveal a strong enhan
ement in the forward and ba
kwarddire
tion if no re
ombination is applied. These 
orre
tions are due to events where the�+ has only a small energy and emits a 
ollinear photon. Sin
e the momentum of theZ boson is de�ned via its de
ay fermions, it has almost the same momentum as the ��.After applying photon re
ombination, the momentum of the Z boson is de�ned via thesum of the fermion and photon momenta. Thus, the �� is not ne
essarily 
ollinear to theZ boson anymore, and large events are rearranged to smaller j 
os �Z�� j giving rise to a
atter distribution.Next, we 
onsider the angle between two fermions. In the 
ase of H!WW the anglebetween the 
harged fermions 
an be used to dis
riminate the Higgs signal events fromba
kground events, be
ause the fermions are emitted preferably in the same dire
tion.This 
an be understood as follows. At leading order, the only non-vanishing heli
ityamplitudes for H ! WW are those with equal heli
ity W bosons. Sin
e W bosons only
ouple to left-handed parti
les and due to angular momentum 
onservation, parti
les(anti-parti
les) are emitted preferably in the forward dire
tion of transverse W bosonswith negative (positive) heli
ity, and anti-parti
les (parti
les) in the ba
kward dire
tion.As, 
lose to threshold, 2/3 of the W bosons are transverse and as the W bosons 
y inopposite dire
tions, a parti
le and an anti-parti
le of their de
ay produ
ts will be emittedin the same dire
tion.
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118 The Higgs-boson de
ays H!WW=ZZ! 4fIn the de
ay H ! �ee+����� neither the Higgs-boson nor the W-boson momenta 
anbe re
onstru
ted from the de
ay produ
ts. The distribution in the angle between the e+and �� 
an, thus, only be studied upon in
luding the Higgs-produ
tion pro
ess. If theHiggs boson was, however, produ
ed without transverse momentum, or if the transversemomentum is known, the angle between e+ and �� in the plane perpendi
ular to the beamaxis 
ould be studied without knowledge of the produ
tion pro
ess. For gluon{gluon and

 fusion into a Higgs boson, this is to some approximation the 
ase. We de�ne thetransverse angle between e+ and �� as�e+��;T = k2;T � k3;Tjk2;Tjjk3;Tj ;sgn(sin�e+��;T) = sgnfez � (k2 � k3)g; (5.5.8)where ki;T are the transverse 
omponents of the fermion momenta w.r.t. the unit ve
torez. The 
orresponding distribution, together with the in
uen
e of the 
orre
tions, is shownin Figure 5.15. The enhan
ement for small angles, whi
h was explained above, is trans-ferred to the distribution of the transverse angle �e+��;T. Sin
e the photon re
ombinationdoes not 
hange the dire
tion of the fermions, it does not have any visible e�e
t on therelative 
orre
tions.Finally, we investigate the distribution of the angle between e� and �� in the de
ayH ! e�e+���+. We prefer to 
hoose the angle between two fermions with the same
harge be
ause this 
onstitutes an unambiguous 
hoi
e in the de
ay H ! ���+���+.Figure 5.16 shows the tenden
y that the fermions are emitted in opposite dire
tions forthe same reason as explained above. However, this feature is not as pronoun
ed as inH! �ee+����� be
ause Z bosons do not only 
ouple to left-handed parti
les so that one Zboson might de
ay into a left-handed parti
le and the other into a right-handed parti
le.
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Chapter 6Summary and 
on
lusionsWe have performed pre
ision 
al
ulations for the pro
esses 

 ! 4f and H!WW=ZZ!4f . Starting with the predi
tions in lowest order of perturbation theory, we presented
ompa
t results for the transition amplitudes in terms of Weyl{van-der-Waerden spinorprodu
ts. In the next step, radiative 
orre
tions in O(�), whi
h 
an be 
lassi�ed into realand virtual 
orre
tions, were 
al
ulated. The real 
orre
tions, originating from photonemission, are based on the 
omplete lowest-order matrix elements for 

 ! 4f
 andH ! WW=ZZ ! 4f
. In the 
ase of 

 ! WW ! 4f virtual 
orre
tions to doubly-resonant terms were 
al
ulated in the double-pole approximation and de
omposed intofa
torizable and non-fa
torizable 
orre
tions. For H ! WW=ZZ ! 4f we 
al
ulatedthe 
omplete O(�) 
orre
tions. The infrared divergen
es appearing in the virtual andreal 
orre
tions due to soft or 
ollinear photon emission were treated in two di�erentways, using the dipole-subtra
tion method or the phase-spa
e sli
ing method. In order to
over also non-
ollinear-safe observables, where mass-singularities from 
ollinear photonemission do not 
an
el, extensions of these methods were used. Finally, the phase-spa
eintegration over the �nal-state momenta was 
arried out with the adaptive multi-
hannelMonte Carlo method.Spe
ial attention was paid to the treatment of the gauge-boson width, whi
h hasto be implemented in order to des
ribe resonan
es. For the lowest-order predi
tions for

 ! 4f(
) we 
ompared di�erent s
hemes, revealing good agreement between the gauge-invariant 
omplex-mass s
heme and the �xed-width s
heme. However, we en
ounteredproblems with the running-width s
heme for 

 ! 4f
, be
ause it does not preservegauge invarian
e. For the radiative 
orre
tions to 

 ! WW ! 4f the double-poleapproximation represents a gauge-invariant way of introdu
ing the width. In the 
aseof H ! WW=ZZ ! 4f the 
orre
tions were 
al
ulated using a generalization of the
omplex-mass s
heme to the one-loop level, whi
h respe
ts gauge invarian
e.Monte Carlo generators have been 
onstru
ted, 
alled Coffer

 (

 ! 4f) andProphe
y4f (H ! WW=ZZ ! 4f), whi
h 
an be used in experimental studies. Wehave presented a variety of numeri
al results that were obtained with these generators:For the lowest-order pro
esses 

 ! 4f and 

 ! 4f
 and for the pro
esses 

 !WW ! 4f in
luding O(�) 
orre
tions we presented a representative list of integrated
ross se
tions. For some of these pro
esses we showed the dependen
e of 
ross se
tions121



122 Summary and 
on
lusionson the 
entre-of-mass energy, thereby studying the in
uen
e of a realisti
 photon-beamspe
trum and the size of the radiative 
orre
tions. In the W-pair threshold region the
orre
tions are dominated by the Coulomb singularity and are, thus, positive and of theorder of a few per 
ent. For in
reasing 

 s
attering energies the 
orre
tions be
ome moreand more negative and rea
h about �10% in the TeV range for integrated 
ross se
tions.Various distributions were shown, espe
ially in the invariant mass and in the produ
-tion angle of the re
onstru
ted W bosons and in the invariant mass of a resonant Higgsboson in the loop-indu
ed rea
tion 

 ! H ! WW ! 4f . Moreover, it is shown thatthe 
onvolution over the photon spe
trum signi�
antly distorts energy and angular distri-butions due to an e�e
tive photon polarization. Typi
ally, 
ollinear-safe observables (i.e.where mass-singular logarithms 
an
el due an in
lusive treatment of �nal-state radiation)re
eive 
orre
tions of a few per 
ent for energies of the e�e� system before Comptonba
ks
attering up to 1TeV. As expe
ted, non-
ollinear-safe observables re
eive very large
orre
tions (tens of per 
ent) be
ause of the existen
e of logarithmi
 mass singularities.Also for large s
attering angles, where the Born 
ross se
tion is relatively small, the impa
tof the 
orre
tions is usually larger.In addition, we examined the e�e
ts of anomalous triple and quarti
 gauge-boson
ouplings on integrated 

 ! 4f 
ross se
tions. Sin
e 
ontributions of anomalous 
ou-plings to 
ross se
tions 
an 
an
el in spe
i�
 
on�gurations, it is ne
essary to take intoa

ount results from other observables (su
h as di�erential distributions) or from otherexperiments (su
h as e+e� or e�
 
ollisions) in order to 
onstrain individual anomalous
ouplings. However, our results suggest that an analysis of the pro
esses 

 ! 4f 
an
onstrain anomalous 

WW 
ouplings about an order of magnitude better than studyinge+e� ! 4f
. The Monte Carlo generator Coffer

 
an serve as a tool for more realisti
studies.At the LHC the Higgs boson de
ays H !WW=ZZ! 4f lead to signatures that 
anbe exploited for its dete
tion and for the subsequent study of its properties. In orderto a
hieve the required a

ura
y of theoreti
al predi
tions, o�-shell e�e
ts of the gaugebosons and radiative 
orre
tions have to be taken into a

ount. Sin
e we 
al
ulatedthe O(�) 
orre
tions in the 
omplex-mass s
heme, whi
h does not employ any type ofexpansion or on-shell approximation, our results are equally valid above, in the vi
inityand below the WW and ZZ thresholds. Comparing our results to an on-shell (narrow-width) approximation, we found that in the threshold region o�-shell e�e
ts amount toabout 10%. Treating only one gauge boson as o�-shell also leads to deviations of some10% far below this threshold. The radiative 
orre
tions to partial de
ay widths typi
allyamount to several per 
ent and in
rease with growing Higgs masses rea
hing about 10% atMH � 500GeV. In this regime also 
orre
tions beyond O(�) originating from heavy-Higgse�e
ts, whi
h we in
luded in our 
al
ulation, are relevant. For angular distributions thatare important in the veri�
ation of the dis
rete quantum numbers of the Higgs boson,we found 
orre
tions of the order of 5�10%. To 
on
lude, the Monte Carlo generatorProphe
y4f will be a useful tool for the Higgs re
onstru
tion and related studies.



AppendixA Phase-spa
e integrationThe squared matrix elements of the pro
esses 

 ! 4f(
) with n = 4(5) �nal-stateparti
les are integrated over the phase spa
e yielding the 
ross se
tionZ d� = 12s Z d�n jMj2;Z d�n =  nYi=1 Z d3pi(2�)32p0i ! (2�)4Æ(4) k1 + k2 � nXi=1 pi! (A.1)with the in
oming momenta k1; k2, the outgoing momenta pi(i = 1; ::; 4(5)), and the CMenergy ps. The 
orresponding relation for the de
ay width of H ! 4f(
) was given inSe
tions 5.1 and 5.3.1. We basi
ally follow the strategy des
ribed in Refs. [ 18, 26, 53℄,whi
h is based on multi-
hannel Monte Carlo integration.A.1 Phase-spa
e mappings and multi-
hannel Monte Carlo integrationIn a Monte Carlo integration the integration region is 
overed by mapping pseudo-random numbers into the phase spa
e of the outgoing parti
les. Ea
h phase-spa
e 
on�g-uration, 
alled event, gives a 
ontribution to the integral with a 
ertain weight. The main
hallenge of the integration arises due to the 
omplex peaking stru
ture of the integrandin eight (

=H ! 4f) or eleven (

=H ! 4f
) dimensions. This stru
ture is indu
edby various diagram types with time- and spa
e-like propagators that peak at di�erentpoints in phase spa
e. As a 
onsequen
e, the statisti
al error of the numeri
al integra-tion in
reases, and the numeri
al results may even be
ome unstable. As a �rst step toa solution, we employ phase-spa
e mappings. To this end, the integration variables are
hosen su
h that they 
ontain the kinemati
al invariants of the propagators. The map-pings of the pseudo-random numbers into the momenta of the outgoing parti
les are then
onstru
ted in su
h a way that their Ja
obian 
an
els or 
ompensates the denominatorof the propagator. Thus, more events are generated in regions where the squared matrixelement is large, so that the integrand is 
attened. For time-like Breit{Wigner resonan
esof a parti
le with mass MV and width �V , an appropriate mapping to the square of thepropagator momentum p2 isp2(r) =MV �V tan�y1 + (y2 � y1)r�+M2V ; y1=2 = ar
tan p2min=max �M2VMV �V ! : (A.2)123



124 AppendixThe 
orresponding Ja
obian,1g(p2) = h(p2 �M2V )2 +M2V �2V i (y2 � y1)MV �V ; (A.3)
an
els the denominator of the squared propagator. For a propagator without width we
hoose the mappingp2(r) = hr(p2max �m2)1�� + (1� r)(p2min �m2)1��i 11�� +m2; (A.4)with the Ja
obian 1g(p2) = (p2 �m2)� [(p2max �m2)1�� � (p2min �m2)1��℄1� � ; (A.5)whi
h 
an
els the square of the denominator of a propagator with vanishing width for� = 2. The 
hoi
e of � and m2 will be dis
ussed in the next se
tion.Combining the mappings for the propagators of a given Feynman diagram we 
anbuild up the phase spa
e. This is done su

essively from the subpro
esses of the diagram.First, time-like invariants are generated a

ording to Eqs. (A.2) or (A.4). Se
ond, the2 ! 2 parti
le subpro
esses are generated. The 
orresponding spa
e-like invariants areonly mapped for parti
les with vanishing width, and the 
orresponding azimuthal angleis generated uniformly. Finally, the azimuthal angle and the polar angle of the 1 ! 2parti
le de
ays are generated without any mapping. In the 
onstru
tion of the phasespa
e, dete
tor 
uts are taken into a

ount as mu
h as possible in order to in
rease theeÆ
ien
y of the Monte Carlo generator. For further details, we refer to Ref. [ 18, 53℄.Obviously, it is not possible to 
onstru
t mappings of the pseudo-random numbers thatare adjusted for all Feynman diagrams at the same time. What 
an be done is to 
onstru
ta mapping for ea
h squared diagram following the pro
edure des
ribed above. The naiveapproa
h would be to 
hoose one of these mappings randomly at ea
h iteration of theintegration. However, it might happen that one mapping produ
es a phase-spa
e pointwhere another diagram be
omes resonant, but the Ja
obian of this mapping is small anddoes not smooth the integrand. As a solution the multi-
hannel Monte Carlo te
hnique[ 54℄ was developed. In this approa
h the mappings for the various diagrams, whi
h are
alled \
hannels", are 
ombined in su
h a way that the integrand is smoothed everywherein phase spa
e (for squared propagators; interferen
es of di�erent diagrams are not takeninto a

ount). To this end, the integration over the phase spa
e of n = 4(5) �nal-stateparti
les is rewrittenZ d�n Pi �igigtot jMj2 =Xi �i Z 10 dr8(11) jMj2gtot ; gtot =Xi �igi; (A.6)in terms of the pseudo-random numbers r. The densities gi, whi
h are the produ
t ofthe inverse ja
obians in Eqs. (A.3) and (A.5), are 
ombined in the total density gtot.This density smoothes the squared matrix element jMj2. The parameters �i >� 0, withPi �i = 1, denote the probability that a 
ertain 
hannel is 
hosen. This means that for
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h event a single 
hannel is 
hosen with probability �i, and the phase-spa
e 
on�gurationis determined a

ording to the mapping of the 
hannel. In addition to the density of this
hannel, also the densities of all other 
hannels at the given phase-spa
e point have to be
al
ulated in order to obtain gtot. The probability �i is optimized a

ording to Ref. [ 103℄to minimize the statisti
al error as mu
h as possible. This pro
edure, 
alled \adaptiveoptimization", is repeated several times during the integration.For the pro
ess 

 ! 4f(
) the number of 
hannels ranges from 13(72) for 

 !�ee+�����(
) to 71(468) for 

 ! u�ud�d(
). Generally, the number of Feynman diagrams
oin
ides with the number of 
hannels. Only the diagrams with gluon ex
hange re
eivethe same mapping as the 
orresponding diagrams with photon ex
hange. In the integra-tion over the matrix elements for H !WW=ZZ! 4f(
), there are mu
h less diagrams,resulting in 1-10 
hannels. However, below the WW and ZZ thresholds, only one propa-gator 
an be
ome on shell. Therefore, we introdu
e additional 
hannels, in whi
h one ofthe propagators re
eives a 
at mapping instead of the Breit-Wigner mapping (A.2).For both pro
esses additional 
hannels are 
onstru
ted a

ording to Ref. [ 53℄ for theintegration of the subtra
tion terms de�ned in Se
tion 4.3.1.2. These terms are integratedover the 4f
 phase spa
e �4f
 but also depend on the 4f phase spa
e �4f;ij. Therefore,the 4f phase spa
e is generated �rst, and from this the 4f
 phase spa
e is 
onstru
tedwith the mappings 
orresponding to di�erent emitter/spe
tator pairs i=j.A.2 Te
hni
al parametersIn the Monte Carlo generator several te
hni
al parameters are introdu
ed for di�erentpurposes. First, we dis
uss the parameters of the mappings for propagators with vanishingwidth introdu
ed in the previous se
tion. Although the squared matrix element 
ontains afa
tor (p2)�2, the 
hoi
e � <� 1 turns out to be more appropriate, be
ause the propagatoris partly 
an
elled in the 
ollinear limit where p2 be
omes small. The mass 
ould be
hosen m2 = 0, be
ause the mapping is used for photons and for fermions, whose massis negle
ted. However, the density gi in Eqs. (A.5) and (A.6) 
ould get arbitrarily largein this 
ase, and the mapping (A.4) produ
es many events with small p2 in
reasing thenumber of events that have to be dis
arded due to numeri
al instabilities. Therefore,it is useful to 
hoose m2 = �a with a positive a. This mitigates the strong in
rease ofgi for p2 ! 0. We 
hoose a � 10�5GeV2 for the subtra
tion method, but 
hanging aover several orders of magnitude has almost no visible numeri
al impa
t. For the sli
ingmethod, however, a should be 
hosen smaller, be
ause many events are needed in the softand 
ollinear regions due to the large squared matrix elements in this region.Se
ond, the 
ut-o� parameters used in the phase-spa
e sli
ing method are 
hosen�EECM � 3�10�4, with CM energy ECM, and �� � 10�2 (
orresponding to 1�
os � > 5�10�5for non-singular events). For a suÆ
iently large number of events this results in ana

ura
y of O(10�3) or better as 
an be seen in Figures 4.4, 4.5, 5.5, and 5.6. In thesingular regions de�ned by �E and �� the matrix elements are integrated analyti
allyin the soft or 
ollinear approximation, respe
tively. In order to redu
e the 
orrespondingerror, the 
uts have to be 
hosen smaller. Thus, one of the weaknesses of the sli
ingmethod is that for given �E and ��, the a

ura
y of the 
al
ulation 
annot be improved
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Figure 6.1: Comparison of the relative 
orre
tions obtained with the subtra
tion and thesli
ing methods. The plot on the l.h.s. shows the distribution in the angle between thede
ay planes of the Z boson in the pro
ess H ! ZZ ! e�e+���+ and the plot on ther.h.s. shows the invariant mass distribution of the ���+ pair with and without photonre
ombination for MH = 170GeV.simply by in
reasing the number of events. The above 
hoi
e of parameters is su
h thatthe statisti
al error of the integration with the sli
ing method is generally larger than the
orresponding error in the subtra
tion method. If the desired a

ura
y is at the orderof several per mille, it suÆ
es to 
al
ulate with larger sli
ing 
uts. For example, thehistograms 
ontained in this work agree between the subtra
tion method and the sli
ingmethod with �EECM = 10�3 and �� = 3 � 10�2 within the statisti
al error of the integration,whi
h is smaller in this 
ase. In Figure 6.1 we show the 
omparison for the angle betweenthe de
ay planes de�ned in Eq. (5.5.6) and the invariant mass distribution of the ���+pair in the pro
ess H! ZZ! e�e+���+ .Third, we introdu
e parameters in order to over
ome numeri
al instabilities. Sin
e thepre
ision of variables in a numeri
al integration on a 
omputer is limited, it might happenthat in 
ertain kinemati
al regions the weight of an event is not 
al
ulated 
orre
tly. Forexample, time-like invariants 
an be
ome smaller than zero. With O(107) events thismay happen a few times. In this 
ase, we dis
ard the event. In the subtra
tion method,the bremsstrahlung matrix elements are 
ompletely integrated over, i.e. also over thesingular region. The subtra
tion terms are 
onstru
ted in su
h a way that they 
an
el thesingularities. Hen
e, the weight should vanish in the soft and 
ollinear limit. However,as the terms get very large, the 
an
ellation is not a

urate anymore due to the limitednumeri
al a

ura
y. Therefore, events with an invariant mass of a photon and a 
hargedfermion of m2inv < m2inv;min are dis
arded. We 
hoose m2inv;min = (10�4ECM)2, but theintegration is stable for a variation of m2inv;min over a relatively large range, be
ause the
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arded have a negligible weight. This 
ut a�e
ts up to O(10�2) of theevents.Finally, numeri
al instabilities 
an o

ur in the generation of histograms. In the sub-tra
tion method, whi
h was introdu
ed in Se
tions 4.3.1.2 and 4.3.2.2, the 
an
ellationbetween the bremsstrahlung matrix elements and the subtra
tion terms is non-lo
al. Thebremsstrahlung matrix elements are de�ned on the 4f
 phase spa
e �4f
 , while the sub-tra
tion terms are de�ned via the mapping to the 4f phase spa
e ~�4f;ij. For non-
ollinear-safe observables the events of the subtra
tion terms are distributed to the histogram binsa

ording to ��pi = zij ~pi; k = (1 � zij)~pi; f~pk 6=ig� as de�ned in Eq. (4.3.17). In the softlimit the momenta of both phase spa
es 
oin
ide. Nevertheless, it may happen that 
loseto the singularity the two 
orresponding large weights, whi
h 
ompensate ea
h other, aredistributed into neighbouring bins of the histogram. This means that the integral fora spe
i�
 bin shows large 
u
tuations. For the pro
esses 

 ! 4f , however, numeri
alproblems of this kind are smaller than the overall statisti
al un
ertainty. In the 
ase ofH ! WW=ZZ ! 4f the statisti
al error of the histograms is deteriorated 
onsiderablydue to this non-lo
al 
an
ellations. Therefore, we distribute weights of the subtra
tionterms into the histograms a

ording to �(�4f
), if the photon momentum is k < 10�3ECMand yij < 10�3. Equation (4.3.9) implies that the momenta ~pi of �4f;ij and pi of �4f
are almost the same under this 
ondition. The number of events that are a�e
ted bythis 
ut is of O(10�3). Another situation where the de�nition of the histogram bins isproblemati
 o

urs in Eq. (4.3.19). For z ! 1, �G(sub)ij (~sij; z) be
omes very large. Dueto the [:::℄+ pres
ription two events with large weight, whi
h 
an
el ea
h other in theintegrated 
ross se
tion, might be distributed to di�erent bins. Again, for the pro
esses

 ! 4f the numeri
al e�e
t is obs
ured by statisti
al un
ertainty of the integration.For the pro
esses H!WW=ZZ! 4f it turns out that a 
ut of (1� z) < 10�3 does not
hange the distributions but improves the statisti
al un
ertainty.B Soft and 
ollinear divergen
esIn this appendix we des
ribe di�erent 
ontributions to the soft and 
ollinear diver-gen
es that appear in the 
al
ulation of the one-loop 
orre
tions to 

 !WW! 4f andH!WW=ZZ! 4f .Soft divergen
es in the real 
orre
tions arise if a photon with very small energy isemitted from an external parti
le, while 
ollinear divergen
es arise due to 
ollinear photonemission from a light external parti
le. The 
orresponding soft divergen
es in the virtual
orre
tions appear when a massless parti
le is ex
hanged between two external parti
les.This situation is illustrated in diagram (a) of Figure 6.2, where a photon is ex
hangedbetween two on-shell fermions with small masses m1 and m2. If the momentum transferof the photon tends to zero, the propagator denominators, whi
h 
an be written as q2,q2+2qp1, and q2�2qp2, 
ause a logarithmi
 singularity of the 
orresponding loop integral.Collinear singularities in virtual 
orre
tions arise if a massless external parti
le 
ouplesto two massless parti
les. In this 
ase the singularity originates from a region in the loopintegral, where the momenta in the massless propagators are 
ollinear to the momentum ofthe external parti
le. In fa
t, diagram (a) of Figure 6.2 also 
ontains a 
ollinear singularity.



128 Appendix(a)s12 V p2; m22
p1; m21m1m2 q; � (b)s12 V m22

m21�MV m1
Figure 6.2: Two vertex subdiagrams of the pro
esses 

 ! WW ! 4f and H !WW=ZZ ! 4f , where a gauge boson V = W=Z 
ouples to two fermions, 
ontainingsoft and 
ollinear (mi � s12;M2V ) singularities.For q � xp1 with a 
onstant x, the photon is 
ollinear to the fermion with mass m1, andthe two 
orresponding propagator denominators are x2p21 and (x + 1)2p21 in the limit ofvanishing fermion mass (p21 = m21 ! 0). Consequently, the loop integral also develops alogarithmi
 singularity for this 
on�guration.In Ref. [ 104℄ an expli
it formula for the soft and 
ollinear singularities of a general ten-sor one-loop N-point integral was presented. The appli
ation to the diagrams of Figure 6.2is, of 
ourse, parti
ularly simple. De
omposing the tensors and redu
ing them to s
alarintegrals, the matrix element for diagram (a) 
an be written in the 
onventions of Ref. [ 6℄as M(a) � � �2�Q1Q2MBs12(C0 + C1 + C1)� � �2�Q1Q2MB�s12C0 � B0(m21; m1; �)� B0(m22; m2; �)�� � �2�Q1Q2MB�ln �2��s12! ln�m1m2��s12 �� 14 ln2  m21��s12!� 14 ln2  m22��s12!+ ln m21m22s212 !�; (B.1)where Qi denote the relative fermion 
harges,MB denotes the 
orresponding Born matrixelement, and �s12 = s12 + i�. The sign � indi
ates that non-singular parts were omitted.The singularities are regulated with mass parameters for the photon, �, and for thefermions, m1 and m2 (js12j � m21;2 � � ! 0). The 
ollinear singularity of diagram (b)
an be derived asM(b) � � �2�Q1(Q1 �Q2)MBs12C1� + �2�Q1(Q1 �Q2)MB�B0(m21; m1; �) +M2VC0�� � �2�Q1(Q1 �Q2)MB ln m21s12!�1 + M2Vs12 ln 1� �s12M2V !�: (B.2)The singularities of the diagram where the photon 
ouples to the fermion with mass m2is obtained by appropriate substitutions.The 
al
ulation of radiative 
orre
tions to 

 ! WW ! 4f in DPA in
luded the
orre
tions to the de
ay of on-shell W bosons. In this 
ase diagram (b) also develops a
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es 129soft singularity, as 
an be seen from Eq. (B.2), whi
h is not de�ned for s12 ! M2W. Inthis limit the singularity of diagram (b) 
an be written asM(b)s12!M2W � � �2�Q1(Q1 �Q2)MB�ln m21M2W!� ln�m1MW�2 � ln� m1MW��: (B.3)The singularities of the 
orresponding 
ounterterm, whi
h originates from the �eld renor-malization 
onstants of the W boson and of the fermions, readM
ount � � �4�MB�ln �2M2W!+ 2Xi=1Q2i �ln �2m2i !� 12 ln m2iM2W!��: (B.4)Summing up all 
ontributions for both W-boson de
ays in 

 ! WW ! 4f and takingalso the limit s12 ! M2W for diagram (a), the singularities 
an be written as a fa
tor tothe squared lowest-order matrix element for 

 !WW! 4f ,Æ4fWf �f 0 � � �2�(2 ln �2M2W!+ ln �2M2W! 4Xi=1Q2i "1 + ln m2iM2W!#+ 12 4Xi=1Q2i �ln m2iM2W!� ln2  m2iM2W!�): (B.5)Similarly, the produ
tion pro
ess of the on-shell W bosons a
quires a soft singularity [ 39℄,Æ4f

WW � ��� ln �2M2W!(1 + s� 2M2Ws� ln 1� �1 + �!); � � s1� 4M2Ws (B.6)with the CM energy ps. As explained in Se
tion 4.2.3 the soft singularities for photonemission o� on-shell W bosons were arti�
ially introdu
ed in the de
omposition of thevirtual 
orre
tions in DPA. They 
an
el together with the non-fa
torizable 
orre
tions,Æ4fnf � �� ln �2M2W!(2 + s� 2M2Ws� ln 1� �1 + �!�Q1Q3 ln s13M2W!+Q1Q4 ln s14M2W!+Q2Q3 ln s23M2W!�Q2Q4 ln s24M2W!); (B.7)where sij was de�ned in (4.1.3). The �rst term stems from the diagrams of type (mm)depi
ted in Figure 4.2, the se
ond term from the diagram of type (mm0), and the lastterms from diagrams of type (ff 0). The sum Æ4fWf �f 0 + Æ4f

WW + Æ4fnf yields the 
ompletesingularities of the virtual 
orre
tions to 

 !WW! 4f ,Æ4fsing;virt � �2� 4Xi;j=1i6=j (�1)i+jQiQj�ln m2isij ! ln �2sij!+ ln �2sij!� 12 ln2  m2isij !+ 12 ln m2isij !�; (B.8)



130 Appendixwhere we used Qi = P4j=1j 6=i Qj(�1)(i+j) and the fa
t that in DPA after the on-shell proje
-tion the invariants obey s12 = s34 =M2W. Even though Eq. (B.8) was derived in DPA, itis valid also for the 
omplete 

 ! 4f pro
ess without on-shell proje
tion, as 
an be seenfrom the 
onstru
tion of the dipole-subtra
tion terms in Eq. (4.3.11). In order to avoida mismat
h between the singularities of the virtual 
orre
tions, whi
h are 
al
ulated inDPA, and the singularities of the real 
orre
tions, whi
h are 
al
ulated without on-shellproje
tion, we pro
eed as explained in Se
tion 4.1. We subtra
t the singular part of thevirtual 
orre
tions, de�ned via the negative of Eq. (4.3.11) in DPA, and readd the sameexpression with o�-shell kinemati
s. The error introdu
ed by this pro
edure is of the orderof the a

ura
y of the DPA. Note that the singularities that are subtra
ted and readdedin this way, should not be de�ned from the 
orresponding Eqs. (4.3.3) and (4.3.4) of thesli
ing method, be
ause these expressions involve the small sli
ing parameters �E and��. Hen
e, these parameters would not drop out in the �nal result.The pro
ess H!WW=ZZ! 4f is 
al
ulated with o�-shell gauge bosons. Hen
e, thesingularities from vertex diagrams are given by Eqs. (B.1) and (B.2). In addition, 
ollineardivergen
es arise from box diagrams, where a photon 
ouples to an external fermion andan internal gauge boson, and soft and 
ollinear divergen
es arise from pentagon diagrams,where a photon 
ouples to two fermions originating from di�erent gauge bosons. Sin
ethe pro
esses 

 !WW! 4f and H!WW=ZZ! 4f involve the same �nal state, thesum of all 
ontributions is also given by Eq. (B.8).C Transformation of the 
oeÆ
ient fun
tions FjIn this appendix we des
ribe the transformation of the 
oeÆ
ient fun
tions Fj for thefa
torizable virtual 
orre
tions (4.2.9) that transforms all Fj into the heli
ity amplitudesof the on-shell pro
ess 

 !WW.The 36 SMEM

WWj of Ref. [ 39℄, whi
h �x the 
oeÆ
ient fun
tions Fj by Eq. (4.2.6),are de�ned for 36 di�erent heli
ity 
on�gurations whi
h 
an be enumerated with a singleindex l, M

WWj (�1; �2;�+; ��) � Mjl; l = (�1; �2; �+; ��); (C.1)where j; l = 1; : : : ; 36. The 36�36 matrix M is expli
itly obtained by inserting momentaand polarization ve
tors into the 36 independent SMEM

WWj of the 83 stru
tures de�nedin Eqs. (5){(9) of Ref. [ 39℄.If we transform the Fj a

ording tôFl = 36Xj=1FjMjl; (C.2)the fun
tion F̂l is the heli
ity amplitude for the on-shell pro
ess 

 !WW 
orrespondingto the heli
ity 
on�guration l = (�1; �2; �+; ��). As su
h, it 
an be well approximated bythe generalized Fourier series des
ribed in Se
tion 4.2.2.2. It is important to noti
e thatin Ref. [ 39℄ the s
attering plane spanned by the beam axes and the produ
ed W bosonswas rotated into the (x1; x3)-plane, so that the SMEM

WWj depend only on s and 
os �,
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e, thus, the matrix M is a fun
tion of s and t̂, also thenew fun
tions F̂l depend only on s and t̂, but not on the azimuthal angle of the s
atteringplane or other on kinemati
al variables. A

ording to Eq. (C.2), the SME Mj transformas M̂l = 36Xj=1(M�1)ljMj; (C.3)where M�1 denotes the inverse matrix of M . By 
onstru
tion, the transformation de-
ouples the di�erent heli
ity 
hannels of 

 ! WW. When in
luding the W de
ays inthe SME, as done in Eq. (C.3), this de
oupling is somewhat disguised for the W-bosonpolarizations, but still valid for the photon heli
ities. This means that the new SMEM̂l 
onsist of four subsets, ea
h of whi
h 
ontributes only for one of the four di�erentpolarization 
ombinations (�1; �2) of the photons. In pra
ti
e, we have evaluated andsimpli�ed the matrix M and the new SME M̂l analyti
ally as mu
h as possible.
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