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Zusammenfassung

In dieser Arbeit werden Prézisionsrechnungen fiir die Prozesse vy — 4 Fermionen und
H — WW/ZZ — 4 Fermionen vorgestellt.

An einem 77-Collider werden wegen des groflen Wirkungsquerschnitts genaue theo-
retische Vorhersagen fiir die Prozesse vy — WW — 4f benotigt. Mittels dieser Prozesse
lassen sich unter anderem die Eichboson-Kopplungen yYWW und yyWW messen. Aufier-
dem wird iiber virtuelle geladene, massive Teilchen die Reaktion vy — H - WW/Z7Z —
4f ermoglicht. Auf diese Weise 1483t sich die Kopplung yyH messen, und relativ schwere
Higgs-Bosonen konnten erzeugt werden.

Fiir Massen My 2 135GeV zerfallt das Higgs-Boson hauptsachlich iiber W- und
Z-Bosonen in vier Fermionen. Bei der kinematischen Rekonstruktion dieser Zerfélle spie-
len Quanten-Korrekturen, insbesondere Photon-Bremsstrahlung, eine wichtige Rolle. Die
Einbeziehung der Zerfalle der Eichbosonen in Fermionen ist zum einen wichtig, weil unter-
halb von My ~ 2Myy /7 ,off-shell“-Effekte der Eichbosonen beriicksichtigt werden miissen.
Zum anderen lassen sich mit Hilfe von Winkel- und Energie-Verteilungen der Fermionen
der Spin und die CP-Eigenschaften des Higgs-Bosons bestimmen.

Besonders geeignet fiir den Vergleich theoretischer Vorhersagen mit experimentellen
Daten sind Monte-Carlo-Generatoren. Fiir die Prozesse vy — 4f und H - WW/Z7 —
4f werden solche Programme konstruiert. Sie liefern zum einen die kompletten Vorher-
sagen in niedrigster Ordnung der Storungstheorie. Zum anderen enthalten sie Quanten-
Korrekturen, die sich unterteilen lassen in reelle Korrekturen, welche durch Photon-
Bremsstrahlung gegeben sind, und virtuelle Korrekturen. Wahrend die virtuellen
Quanten-Korrekturen zu vy — WW — 4f in der Doppel-Pol-Naherung berechnet wer-
den, in der nur die doppelt resonanten Beitrage beriicksichtigt werden, werden zu den
Prozessen H — WW/ZZ — 4f die kompletten Quantenkorrekturen der Ordnung O(«)
berechnet. Fiir die Behandlung der in den virtuellen und reellen Korrekturen auftretenden
infraroten Divergenzen (,soft“ und ,collinear”) wird wahlweise die Dipol-Subtraktions-
Methode oder die Phase-Space-Slicing-Methode verwendet. Nicht bei allen Observablen
miissen sich die bei kollinearer Photon-Abstrahlung auftretenden Massen-Singularitéten
gegenseitig aufheben. Um auch solche nicht-kollinear-sichere Observablen untersuchen zu
konnen, wird die Dipol-Subtraktions-Methode diesbeziiglich erweitert.

Die Diskussion der numerischen Ergebnisse umfasst den Einfluss eines realistischen
Photon-Spektrums auf die Wirkungsquerschnitte, das Potential eines yy-Colliders, Gren-
zen an anomale Eichboson-Kopplungen zu setzen, sowie verschiedene Verteilungen in der
Invarianten Masse, in der Energie und in Winkeln, die fiir eine Rekonstruktion der Eich-
bosonen und die Bestimmung der Eigenschaften des Higgs-Bosons genutzt werden konnen.
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Abstract

In this work we provide precision calculations for the processes vy — 4fermions and
H — WW/ZZ — 4 fermions.

At a 77 collider precise theoretical predictions are needed for the vy — WW — 4f
processes because of their large cross section. These processes allow a measurement of
the gauge-boson couplings YWW and vyWW. Furthermore, the reaction vy — H —
WW/ZZ — 4f arises through loops of virtual charged, massive particles. Thus, the
coupling yyH can be measured and Higgs bosons with a relatively large mass could be
produced.

For masses My 2 135 GeV the Higgs boson predominantly decays into W- or Z-boson
pairs and subsequently into four leptons. The kinematical reconstruction of these decays is
influenced by quantum corrections, especially real photon radiation. Since off-shell effects
of the gauge bosons have to be taken into account below My ~ 2Myy,z, the inclusion of
the decays of the gauge bosons is important. In addition, the spin and the CP properties
of the Higgs boson can be determined by considering angular and energy distributions of
the decay fermions.

For a comparison of theoretical predictions with experimental data Monte Carlo gener-
ators are useful tools. We construct such programs for the processes vy - WW — 4 f and
H — WW/ZZ — 4f. On the one hand, they provide the complete predictions at lowest
order of perturbation theory. On the other hand, they contain quantum corrections, which
can be classified into real corrections, connected with photon bremsstrahlung, and virtual
corrections. Whereas the virtual quantum corrections to vy — WW — 4f are calculated
in the double-pole approximation, i.e. only doubly-resonant contributions are taken into
account, we calculate the complete O(«) corrections for the H — WW/ZZ — 4f pro-
cesses. The infrared (soft and collinear) divergences in the virtual and real corrections
are treated either with the dipole-subtraction method or with the phase-space slicing
method. The mass singularities that occur due to collinear photon emission do not cancel
for all observables. In order to treat also such non-collinear-safe observables we apply an
extension of the dipole-subtraction method.

The discussion of numerical results comprises the impact of a realistic beam spec-
trum on cross sections, the potential of a vy collider to constrain anomalous couplings,
and various angular, energy, and invariant-mass distributions, which can be used for a
kinematical reconstruction of the gauge bosons and for determining the properties of the
Higgs boson.






Chapter 1

Introduction

1.1 Outline of the thesis

In the introduction we will give an overview of the construction and the essential
ingredients of the Standard Model (SM) of elementary particles, which describes all fun-
damental particles that we know today and the interactions between them. In addition,
we will mention some remaining questions, especially the existence of the Higgs boson,
and the reasons why there should be physics beyond the SM. In this context we will stress
the importance of quantum corrections in the search for the Higgs boson and for new
physics.

The next chapter starts with a brief description of the v~ collider, an optional experi-
ment at the International ee -Linear Collider (ILC), and some interesting processes that
could be studied there. Focusing on four-fermion production, especially through W-boson
pair production, we describe the strategy for performing a precision calculation for these
processes. To this end, also subtleties occurring in the treatment of unstable particles
are discussed. The pole expansion is presented as a means of introducing the width of an
unstable particle in a gauge-invariant way and for calculating quantum corrections in an
economic manner. In Chapter 4 the results will be used in order to calculate quantum
corrections to vy — WW — 4f in the double-pole approximation.

In Chapter 3, which is mainly based on Ref. [ [I], we present the lowest-order results for
vy — 4f(7), first in the SM and then including anomalous couplings, which parametrize
possible new physics phenomena. As a preparation for the next chapter, the double-pole
approximation is applied to the lowest-order calculation and compared to the complete
result. After discussing the appearance of a Higgs boson as s-channel resonance, we
briefly describe how the convolution over the photon spectrum is performed. We conclude
the chapter with a discussion of numerical results that include integrated cross sections,
distributions, the influence of the Higgs resonance, and the potential of the vy collider to
set bounds on anomalous couplings.

In Chapter 4, which is mainly based on Ref. [ 2], quantum corrections to the process
vy — WW — 4f are calculated in the double-pole approximation, which classifies the
virtual corrections into factorizable and non-factorizable corrections. The infrared diver-
gences occurring in the virtual and real corrections are treated either with the dipole
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subtraction or with the phase-space slicing method, which are explained in some detail.
For the case of non-collinear-safe observables these methods are generalized. The numeri-
cal impact of the results is discussed in terms of integrated cross sections and distributions.
This also includes an estimate of the remaining theoretical uncertainty and a compari-
son with an improved Born approximation, which only contains universal effects of the
quantum corrections.

In Chapter 5 we discuss the Higgs-boson decays into W or Z bosons, which are the
most relevant decay channels for My 2 140 GeV. This decay type is, of course, not only
important for the v+ collider but also for the LHC and the e™e™ mode of the ILC. After
having presented the analytical formulae for the lowest-order processes H - WW /77 —
4f (), the complete virtual O(«a) corrections are calculated in the complex-mass scheme,
which allows a gauge-invariant treatment of width effects of the gauge bosons. The
implementation into a Monte Carlo generator proceeds along the same lines as for the
processes 7y — 4f(v). The chapter concludes with a presentation of decay widths and
distributions that can be used to determine the properties of the Higgs boson such as spin
and parity.

In the appendices we explain how the phase-space integration over the momenta of the
final-state particles is done with the multi-channel Monte Carlo method. Furthermore, we
present the structure of the infrared (soft and collinear) singularities, which are similar for
both processes vy — WW — 4f and H - WW/ZZ — 4f. Finally, some details that are
necessary for a stable evaluation of the virtual corrections to vy — WW are presented.

The numerical calculations in this thesis have been performed using Fortran, and many
of the algebraic calculations were done using the program Mathematica. The computer
codes are available so that they can be used for experimental studies or as a reference for
future Monte Carlo generators.

1.2 The Standard Model of elementary particle physics

In this section we will give a brief account of the SM. More details can, for example,
be found in Ref. [ 4].

The SM is a quantum field theory in which interactions between particles are gov-
erned by gauge (or local) symmetries. It is most conveniently formulated in terms of
the Lagrange formalism, i.e. all the ingredients of the theory, such as kinetic, mass, and
interaction terms of the fields, are incorporated into a single local functional, the La-
grangian density. Integrating the Lagrangian density over space-time yields the action of
the theory. The form of the Lagrangian density is dictated by symmetry principles and
the requirement of renormalizability.

A quantum field theory is called renormalizable if all ultraviolet divergences can be
absorbed into a redefinition of the parameters and fields of the Lagrangian. Ultraviolet
divergences may appear if observables are calculated by a perturbative expansion. The
higher-order terms of this expansion usually involve loop integrals that do not yield a UV-
finite result. The procedure of regularizing these UV divergences, e.g. by calculating the
integrals in D # 4 dimensions, and absorbing them into the parameters of the Lagrangian,
is called renormalization. The redefinition of the bare parameters of the Lagrangian results
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in so-called counterterms. Power counting shows that all operators in the Lagrangian
that have four or less mass dimensions are renormalizable, i.e. the divergences can be
cancelled by counterterms that also have four or less dimensions. However, the Lagrangian
including the counterterms has to obey the underlying symmetries restricting the form
of the counterterms. Nevertheless, it can be shown that non-abelian gauge theories with
spontaneous symmetry breaking, and hence the SM, are renormalizable [ B].

One class of symmetries are space-time symmetries. For example, the SM is invariant
under Poincare transformations (excluding time and space inversions). Mathematically,
these transformation form the Poincare group, which is made up of Lorentz boosts, ro-
tations, and translations in the Minkowski space. All irreducible representations of the
Poincare group can be classified by a real positive number m and a half-integer s that
can be identified with mass and spin of a given particle type.

On the other hand, there are internal symmetries, which are symmetries among the
fields. The Lagrangian density of the SM is invariant under the transformations of the
group SU(3). ® SU(2)w ® U(1)y. These transformations are local, i.e. they may depend
on space-time. When changing a symmetry from a global to a local symmetry, new fields
have to be introduced in order to keep the Lagrangian density invariant. The reason is
that the Lagrangian density of a quantum field theory contains derivatives of fields. Since
the derivatives behave differently under local transformations than the fields themselves,
a covariant derivative is defined by minimal substitution as

- Y
OM — DM = aﬂ — igSGZta — ngW;I’ + Z'gyBug, (121)

where t, = %a, I', and Y are the generators of the corresponding Lie group of the SM,
and gs, gw, and gy are constants. The new vector fields Gf,(a = 1, ..,8), W;(z =1,2,3),
and B, that have to be introduced in order to construct a locally symmetric theory are
called gauge fields. They transform in the adjoint representation of the gauge group of
the SM. Thus, kinetic terms for fermions can be constructed that are gauge invariant, i.e.
invariant under the SM group transformations. These kinetic terms read

Efermionic - \TJZLZ’YMDM\IJZL + \TJQLZ’Y“DM\IJQL
+ U%iy" D, VS, + Uiy D, WY + Uhin# D, U, (1.2.2)

where the summation over the three generations is suppressed in the notation. The
fermion fields, which are classified into leptons and quarks, are summarized in Table [CT1
They are characterized by their transformation properties under the SM group. With
respect to SU(3),, leptons are uncharged, and quarks transform in the fundamental repre-
sentation, i.e. they have three so-called colour degrees of freedom which we also suppress
in the notation. With respect to SU(2)y the fermions are left-chiral doublets ¥ or
right-chiral singlets Wg. In the massless case they can be identified with left-handed
and right-handed particles. The corresponding quantum numbers of SU(2)y, the third
component of the weak isospin I3, and of U(1)y, the weak hypercharge Y, are given in
Table [L1l The weak hypercharge is fixed by the identification of the photon in the theory,
as explained below.



4 Introduction

L | Y | @Q
e ] I
leptons | W4 (V> (V”) (V) :
e/, n), T).| T3 -1 | -1
‘I’% R HR TR 0 -2 -1
t 1 1 2
quarks | ¥4 (“) (C> () 2| 53
d s b S O
T T 9 2 3 3
\Iﬂlf{ upr CRr tR 0 % %
‘I’dR dR SR bR 0 —% —%

Table 1.1: Fermions of the SM and their quantum numbers weak isospin I3, weak hyper-
charge Y, and electromagnetic charge Q).

After introducing a local symmetry, the Lagrangian density (CLZZ) also contains in-
teraction terms between fermions and gauge fields in addition to the purely kinetic terms
of the fermions. This is the guiding principle in the construction of gauge theories.

Besides the kinetic terms of the fermions, gauge-invariant kinetic terms of the gauge
fields can be constructed from the field-strength tensors

GZV = 8#Gg - 8I/GZ - gsfachZG,C,, (123)
Wy, = 0, W, — 9,W, — gwe " WiW,,
B,, = d,B, — d,B,,

where f%¢ and €% are the structure constants of the Lie algebras su(3) and su(2), respec-
tively. The field-strength tensors can be expressed in terms of the commutator [D,, D, ],
which transforms covariantly. Taking the trace of the squared field strengths, a gauge-
invariant Lagrangian density can be constructed as

Lyv = —iGZUG“”“’ — iWﬁUWi’“” — iBWB‘“’. (1.2.4)
It contains kinetic terms (hence, the gauge fields are propagating physical fields), and, in
the case of the non-abelian groups, also interaction terms among the gauge fields.

However, there are no mass terms in the theory yet, because these terms would vio-
late gauge invariance. A solution is provided by the Higgs mechanism for spontaneous
symmetry breaking. To this end, the Higgs field,

O(z) = (ZZ((;U))) , (1.2.5)

is introduced, which has a weak hypercharge Y = 1 and transforms as an SU(2)y, doublet.
Its contribution to the Lagrangian density reads

A
Lhtiggs = (D, ®)'(D"®) + p?(®10) — 2(T®)%, 4%, A > 0. (1.2.6)
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The last two terms constitute the most general form of a renormalizable self-interaction.
For the classical ground state ®, of the Higgs field we have
2u? 02
P)? = L = —, 1.2.7
(@g)p = 2= 2 (1.27)
i.e. the Higgs field acquires a non-vanishing vacuum expectation value, which breaks the
SU(2)w ® U(1)y symmetry. According to the Goldstone theorem, there is a massless
boson for every spontaneously broken continuous symmetry. These Goldstone bosons
appear in an expansion of the Higgs field around its vacuum expectation value,

¢+
b = (U+H+’i ) , qﬁf = (¢+)T (128)
V2

The fields ¢, ¢~, and x can be eliminated by a suitable gauge transformation, and are,
thus, unphysical degrees of freedom (would-be Goldstone bosons). However, they deliver
the longitudinal degrees of freedom of the three massive gauge bosons corresponding to
the broken symmetries of SU(2)y @ U(1)y.

Inserting Eq. (CLZY) into Eq. (CLZH), we observe that the vacuum expectation value
of the Higgs field gives rise to mass terms for the electroweak gauge bosons. However, the
fields that correspond to mass eigenstates are mixtures of the fields le and B, and can
be obtained by diagonalizing the mass matrix,

Wit = (W, i),

Z,\ cos Oy sin Oy wp (1.2.9)
A, | —sin Ow cos Oy B, ’ o
aw gy

o + a2 Vo +

where 0y, is called weak mixing angle. Since after spontaneous symmetry breaking a
U(1) symmetry with the generator ) = I3 + ¥ remains unbroken, one gauge boson stays
massless. This is the field A,, which can be identified with the photon. According to
([CZ2) its coupling to fermions is proportional to e@) with the elementary charge

with

Cw = cos By = Sy = sin By = (1.2.10)

e = Vira = VI (1.2.11)

N

The fermion charges relativ to the elementary charge, which are the eigenvalues of the
charge operator (), are given in Table [T To summarize, the electroweak gauge bosons
consist of two electrically neutral gauge bosons A and Z and two charged gauge bosons
W=, Their masses read

1 1
My = Svgw, Mz = Svy g +9v.  Ma=0. (1.2.12)
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The mechanism of spontaneous symmetry breaking also allows for incorporating the
fermion masses into the theory. A naive construction of fermion-mass terms m(¥ ¥y +
h.c.), where h.c. denotes the hermitian conjugate expression, is not possible, because left-
and right-chiral fermions belong to different representations of the gauge group and have
different quantum numbers. However, fermion mass terms can be obtained by coupling
the fermions to the Higgs field. The vacuum expectation value then yields the desired
mass terms. The corresponding contribution to the Lagrangian density reads

Lyukawa = — 3 U1 GU%0 — S WIG 04 — Y UG U5d + hec., (1.2.13)

le q,d q,u

where ® = igy®* is the charge conjugate Higgs field . The coupling constants that
are contained in the matrices Gje, G4, and Gy, are called Yukawa couplings. The mass
eigenstates of the fermions are obtained by diagonalizing these matrices via field trans-
formations. For massless neutrinos the diagonalization matrices can be absorbed into
the fields so that there is no difference between mass eigenstates and eigenstates of the
weak interactions. However, for quarks the change from the weak eigenstates to the mass
eigenstates is described by the Cabibbo-Kobayashi-Maskawa (CKM) matrix. If the quark
masses are neglected, the CKM matrix can be set to the unit matrix in most applications.

Finally, in order to quantize the theory in the path-integral formalism, a gauge has to
be specified to avoid an integration over equivalent field configurations. This is achieved
by adding gauge-fixing terms to the Lagrangian density. In an R, gauge, gauge-fixing
functionals are chosen as

G _ _1 a wE _ 1 + W i+
F* = \/g—Gal‘Gu, Y = ﬁauwu FiMwy/& o™,
_ 1 A . z

= F@“Au, F = ﬁa‘uzu — IMZ 52 X (1214)
where the case of ¢ = ¢4 = ¢V = ¢ = 1 is called 't Hooft-Feynman gauge. The
corresponding contributions to the Lagrangian density are

FA

1
Loy = —§\F“\2, (1.2.15)

where we implicitly sum over the parameter a. The gauge fixing as it is done in Eq. (CLZT5)
changes the measure of the path integral, which can be accounted for by introducing
another term in the Lagrangian density,

Lrp = —u*() u (z), (1.2.16)

where u®(z) are called Faddeev—Popov ghosts, and 66°(z) denotes an infinitesimal gauge
transformation. The Faddeev—Popov ghosts represent unphysical degrees of freedom and

'In principle it is possible to include also right-chiral neutrinos in Table [[Tland to add a corresponding
Yukawa coupling in Eq. (LZI3). Also a Majorana mass term is then possible, because the right-chiral
neutrinos are uncharged under the SM group. In fact, neutrino oscillation experiments have shown that
neutrinos have a mass. However, their mass is very small and can be neglected in this context.
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cancel the degrees of freedom of the gauge bosons that were over-counted by the gauge
fixing.

From the Lagrangian density Feynman rules for calculating scattering amplitudes per-
turbatively can be inferred. For example, the couplings of the fermions to the electroweak
gauge bosons V' = «,Z, W are obtained by inserting the above definitions into Eq. (CZ2).
With the operators wy = $(1 £ ~°), which project onto the right- and left-handed com-
ponents of the fermions, respectively, the corresponding Feynman rule reads

iTy N = ievu(9y 7, W+ + 9y f, W) (1.2.17)
with
5 I3 1
o _ o_ _ _ "W / o _  _
0351 =@ Grp = Qi — e Gy = —ﬂswég_, (1.2.18)

where f and f' denote the two components of an SU(2)y doublet. In our calculations
we adopt the particle masses as input parameters, from which we derive the weak mixing
angle via the on-shell condition

s =1—c,=1——. (1.2.19)

The Feynman rule for the coupling of the gluon to quarks reads

_ A2
Z’l"Zfifj — Z'gsfm%’ (1.2.20)

where 7 and j are colour indices and A are the Gell-Mann matrices. From Eq. (L2Z6) we
obtain the coupling of the gauge bosons to the Higgs boson,

ity = iegugnvy, (1.2.21)
with Iy r
guzz. = %7 grww = ——. (1.2.22)

The other Feynman rules that are relevant for this thesis can, e.g., be found in Ref. [, [7].

1.3 Open questions and the role of quantum corrections

The most obvious question concerns the existence of the Higgs boson. Determining
whether the Higgs mechanism or some other model to introduce particle masses is realised
in nature is one of the most outstanding questions in high-energy physics. The Large
Hadron Collider (LHC), which will start operation in 2007 at CERN, will probably settle
this issue. The LHC is able to discover the Higgs boson for the whole range of masses
that are theoretically conceivable. This mass range is determined by a lower bound of
My > 114.4GeV at 95% confidence level | B] by the direct searches at the previous
experiment at CERN, LEP, and an upper bound by electroweak precision observables of
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My S 260 GeV at 95% confidence level [ ] and the observation that unitarity would be
violated for a Higgs mass of My 2 1 TeV [[10].

However, the SM, as formulated in the previous section, cannot be an ultimate theory,
because it does not incorporate gravity. It might be possible to formulate a theory that
describes the phenomena at very high energies, close to the Planck scale, where the
gravitational force becomes as strong as the forces of the SM.

But there are also other reasons why there should be new physics, i.e. physics beyond
the SM. For example, the SM is not able to explain the dark matter of the universe.
Furthermore, as already mentioned in the previous section, neutrinos have a very small
mass whose origin is not clear up to now.

Besides these obvious problems, there are conceptual problems such as the ques-
tion why the Higgs mass is so small compared to the Planck scale (hierarchy problem).
And also the origin of other SM parameters, especially the fermion masses, is unclear.
The fermion masses have to be inserted “by hand” through the Yukawa couplings in
Eq. (CZTI3)). However, their values differ by several orders of magnitude from each other.
This immediately rises the question where this hierarchy comes from. Moreover, it is not
clear why there are exactly three generations of quarks and leptons.

Many models have been constructed that can solve some of these problems, such as
supersymmetry or models with new gauge groups or extra dimensions. A common feature
of these models is that they contain the SM as an effective theory that is valid at least up
to the electroweak scale. At some higher energy the predictions of the new models deviate
from the SM predictions. This is one reason why precise theoretical predictions are so
important. If the energy of a collider is not large enough to directly see new particles, it
might still be possible to see a deviation from the SM prediction in certain observables.
However, this is only possible if the accuracy of experimental and theoretical results is
high enough.

Precise theoretical predictions for scattering processes are usually obtained by a pertur-
bative expansion in the coupling constants. The expansion can be visualized by so-called
Feynman diagrams, which are classified into tree-level diagrams and loop diagrams. The
higher-order contributions of the expansion are called quantum (or radiative, or loop)
corrections.

For the LHC the quantum corrections of QCD are the most relevant ones. They make
up a substantial part of the predictions. In some cases the lowest-order uncertainty can be
up to 100%, but the next-to-leading order reduces it to the order of some 10% or better.
For the ILC the situation is different. Quantum corrections are typically smaller, and the
experimental environment is much cleaner allowing for a much higher precision. The ILC
can be seen as a window to higher energies because of virtual effects of heavy particles
which only occur in quantum corrections.

During the past years a lot of progress has been made in the calculation of quantum
corrections. For example, the calculation of one-loop corrections to 2 — 2 processes has
become a standard task, and various tools exist for this purpose. However, many things
remain to be done. On the one hand, two-loop or even three-loop corrections are needed
for many high-precision observables. On the other hand, most searches for new physics
involve processes with many particles in the final state so that corrections to 2 — 3 or
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2 — 4 processes have to be calculated. Usually, this is not possible by a brute force
computer calculation, but new techniques have to be developed. This is the case, e.g., for
the reduction of tensor integrals, for the phase-space integration, and for the treatment
of soft and collinear divergences. But also conceptual problems arise, e.g., the question
how to treat resonances of unstable particles.

This thesis will touch some of these issues, and the chosen solutions will be presented.



Chapter 2

Four-fermion production at the ~~
collider

2.1 The ~~ collider

As a design option at the ILC, a photon (or v7) collider found considerable interest in
recent years. The idea, though, was already discussed more than 20 years ago (see, e.g.,
Refs. [[TT, T2] and references therein). High-energy photons can be produced by focusing
a laser beam on the electron beam. The photons, which have an energy at the order of
1eV, are Compton backscattered, and most of the energy of the electrons is transferred
to the photons. Detailed simulations of the resulting energy spectra of polarized photons
have been performed in Ref. [[I3]. Based on these simulations and assuming that the vy
luminosity spectrum can be written as the product of the two photon-energy spectra, a
parametrization of the photon-energy spectra has been suggested in Ref. [ [14]. We will use
the computer code CompAZ, introduced in this reference. For an electron beam energy of
250 GeV the photon energy spectrum is shown in Figure Z1], where the laser polarization
is P, = —1 and the electron polarization A, = +0.85. For \.P. < 0, the high-energy
peak of the spectrum is very pronounced. Apart from the simple Compton scattering,
which gives rise to the peak at E,/E, ~ 0.8, different contributions can be seen. The
small high-energy end of the spectrum is due to the scattering of two incoming photons
at one electron, whereas as the low-energy part is dominated by secondary scattering of
electrons.

There is a vast number of phenomena that could be studied at the v+ collider, and the
information that could be obtained is complementary to the ete™ mode in many cases.
One of the most interesting reactions is vy — H, i.e. the production of a Higgs boson as
an s-channel resonance, which extends the discovery reach of the linear collider for heavy
Higgs bosons. It also allows a direct measurement of the yyH coupling. This coupling is
loop induced (i.e. due to quantum corrections) in the SM and sensitive to heavy charged
particles that receive their mass through the Higgs mechanism and that might not be
produced directly.

Another intriguing property of the v~ collider is the large cross section for pair pro-
duction of charged particles. This especially applies to W-boson pair production so that

10
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Figure 2.1: Photon energy spectrum obtain with the program CompAZ for a laser polar-
ization P, = —1 and an electron polarization A\, = +0.85.

the v collider can be considered as a W-boson factory. For instance, it can be used for
precision tests of the gauge sector of the SM. While the reaction ete” — WW depends
on the gauge-boson couplings ZWW and yYWW, the corresponding reaction at a vy col-
lider, vy — WW, is sensitive to the gauge-boson couplings YWW and yyWW. At an
eTe™ collider the coupling vyWW is only directly accessible through the bremsstrahlung
process ete” — WW+, which is suppressed by a factor «(0)/m w.r.t. the non-radiative
process ete” — WW. Therefore, the sensitivity to the anomalous yyWW coupling in
the vy mode is expected to be an order of magnitude better than in the ete™ mode. The
precision for the measurement of the YWW coupling is comparable in both modes [ [I5].

2.2 Four-fermion production in ~+ collisions

2.2.1 Precision calculations for vy - WW — 4f

Since W bosons decay into fermion—anti-fermion pairs, the actually observed final
states of vy — WW involve four fermions. A theoretical prediction can be obtained by
multiplying the cross section for the process vy — WW with the corresponding branching
ratios for the two W-boson decays. This approach is called narrow-width approximation
(NWA), because it is assumed that the W bosons are stable, i.e. that they have a neg-
ligible width (the NWA is actually a zero-width approximation). If more information
than the total cross section is needed, the kinematics and spin correlations between the
W-boson production and the subsequent decays have to be taken into account. This
can be done, e.g., in the leading-pole approximation. However, this procedure neglects
terms that are of the order O(AIZI—VVVV), where T ~ 2.6%. A theoretical uncertainty of at

M
least 2.6% is clearly not sufficient. Consequgntly the full process vy — 4f should be
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considered, which involves not only the so-called “signal diagrams” but also “background
diagrams”. The former are related to the process vy -+ WW — 4f, where two W bosons
can become resonant for a specific region in phase space. The latter involve only one or
no W resonance. Compared to the doubly-resonant diagrams, such singly-resonant and
non-resonant diagrams are suppressed by roughly a factor Tvw /My and (T'w/Myy)?, re-
spectively. Lowest-order predictions for vy — 4f processes (with monochromatic photon
beams and leptonic or semi-leptonic final states) were discussed in Refs. [ 16, [I7].

In addition to the “background diagrams” from the full four-fermion process, which are
of the order O(ZE—\\}:’V)’ there are radiative corrections to the “signal diagrams”, which are of

the order O(«a). Since o ~ ]E[—VVVV, the size of both contributions is comparable. This suggests
to calculate the full four-fermion lowest-order cross section and the O(«) corrections to the
resonant parts of the W-pair process in order to obtain a precise theoretical description
of the process vy — WW — 4f. The resulting theoretical uncertainty is O(%%VL),
because radiative corrections to the background diagrams are neglected. Introducing a
safety factor for possibly enhanced higher-order contributions, the remaining theoretical
uncertainty is S 0.5%. For the similar process efe™ — WW — 4f this programme
has been carried through in Refs. [[I8, [T9, 20, 2T, 22, 23] by applying the double-pole
approximation (DPA). The error estimate of 0.5% was confirmed in Ref. [ 24] through
a calculation of the full O(a) corrections to ete™ — 4f. Calculating the full O(«)
corrections to vy — 4f clearly exceeds the scope of this work, because the occurring
tensors integrals can have an even higher rank than in ete™ — 4f. Furthermore, due to
the complexity of such a calculation, the run-time of the corresponding computer code
would be rather long. Therefore, a calculation of the O(«) corrections in DPA is a valuable
step in a precise description of the process vy — WW — 4f.

Close to the production threshold of W pairs, the error estimate of 0.5% is not reliable
anymore, because the background diagrams are not suppressed by I'/My with respect to
the signal diagrams anymore. Hence, in this region the DPA cannot be trusted. Below
the threshold, only one W-boson propagator can become resonant. Thus, a single-pole
approximation could be used. However, since the cross section is relatively small in this
region, we only use an improved Born approximation for the corrections. The exact details
will be given in Chapter El

Calculating the O(«) corrections to the resonance process vy — WW — 4f is, how-
ever, not straightforward. First of all, this would mean singling out a specific set of
diagrams which causes a violation of gauge invariance, and, thus, a violation of Ward
identities. In principle, these effects are of higher order, but they can be enhanced, be-
cause the unitarity cancellations are spoiled. This is a problem especially at large energies,
because of the appearance of ratios of different scales, such as a momentum of the scat-
tering process and a mass [ [I8, 20, 26]. A solution is provided by the DPA in which only
the leading contribution of an expansion around the resonances of the propagators (pole
expansion) is taken into account. This expansion also provides a natural way for imple-
menting the width of the W bosons, a problem that will be discussed in the next section.
The pole expansion will be explained in Section EZ4] while the details of the calculation of
the radiative corrections to vy — WW — 4f in DPA will be given in Chapter E.
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In applying the DPA we basically follow the strategy of Ref. [[19], i.e. we calculate
only the virtual corrections in DPA, and use the exact matrix elements for the lowest
order and for the real corrections. On the one hand, this requires the calculation of the
complete lowest-order matrix elements of the process vy — 4fv. On the other hand,
it avoids the distinction between different regions of photon momenta. For example, if
E, ~ T'wy a photon that is emitted from a resonant W boson might lead to two over-
lapping resonances, and it is difficult to estimate the resulting theoretical uncertainty.
Furthermore, depending on the definition of the observable, the photonic corrections can
be large so that a calculation of them without approximation is desirable.

2.2.2 Anomalous couplings

The process vy — WW offers the possibility to measure the gauge couplings YWW
and yYWW very precisely. Thus, it is possible to search for the effect of new physics at
an energy A that is larger than the electroweak scale. The influence of the high-energy
theory can be described by an effective theory that is valid at the energy scale that can be
accessed by colliders. This effective theory would break down at the energy A so that it
need not be renormalizable and can contain higher-dimensional operators. Not knowing
the high-energy theory, a reasonable approach is to guess these new operators, guided by
symmetry principles, and to put limits on the size of the couplings in these operators.
The corresponding couplings are called anomalous couplings as they deviate from the SM
couplings.

With the exception of Ref. [27], the existing analyses on anomalous couplings at a
v collider, which focus on anomalous triple gauge-boson couplings (ATGC) [[15, 28], on
anomalous quartic gauge-boson couplings (AQGC) [ 29, B0], on CP-violating gauge-boson
couplings | BT, and on effects of strongly interacting longitudinal W bosons [ B2], treat
W bosons as stable. In the above studies radiative corrections were not fully taken into
account either.

In our calculation anomalous couplings are introduced in the lowest-order matrix el-
ements for the processes vy — 4f. The coefficients of the corresponding anomalous
operators are already constrained from the LEP2 analysis to be small. Therefore, the in-
clusion of anomalous couplings can be viewed as an expansion in these coefficients which

are of O(a).

2.2.3 Higgs production

As already mentioned in Section [ZT], the process vy — H is one of the most inter-
esting processes at a vy collider. For Higgs masses of My 2 135 GeV, the Higgs boson
dominantly decays into W and Z bosons. Thus, the processes vy — H — WW/ZZ — 4f
can be observed. In Section we take this reaction into account in our lowest-order
calculation by defining an effective vyH coupling that is derived from the loop-induced
SM vertex. On the other hand, the process vy — H — WW is contained in the one-loop
corrections to vy — WW, which will be discussed in Chapter @l In Section IEZZ4] we
describe how the Higgs resonance is separated in a gauge-invariant way allowing for the
inclusion of higher-order corrections to the Higgs signal in the future.
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2.3 Problems with unstable particles in field theory

An overview of unstable particles in field theory can be found in Ref. [B3]. In the
following we will sketch the issue of unitarity, the definition of the mass and width of an
unstable particle, the implementation of the width in perturbative calculations, and the
pole expansion.

The first problem that can be encountered with unstable particles is the validity of
unitarity, and related to this, of causality. The scattering of particles is described by the
S-matrix

Spi = (T, [¥), (2.3.1)

which is related to the probability amplitude for an “in” state |¥;") to evolve to an “out”
state [U, ). These asymptotic states are defined via the limit

%) = lim U(t, to)[pa) (2.3.2)

with the time-evolution operator in the interaction picture U(t,ty) and the momentum
eigenstates |p,). The origin of the problem obviously lies in the fact that unstable par-
ticles cannot be defined as asymptotic states. Hence, unstable particles should only be
considered as virtual intermediate states, and should not be contained in the Hilbert space
of asymptotic states. In Ref. [[B4] it was shown that such a theory respects unitarity and
causality.

Another problem is the finite width of unstable particles. The propagator of an unsta-
ble particle involves a factor 1/(p? —m?), where p is the momentum and m the mass of the
particle. If p? is not fixed but must be integrated over like in the process vy — WW — 4f,
this would lead to an infinite result at lowest order of perturbation theory. This can be
cured by including higher-order contributions from the self-energy ¥:(p?) of the unstable
particle. Performing a Dyson summation, i.e. summing up the self-energies to all orders,
the propagator of a scalar particle becomes

PG = mQZ( w)

p* —m?

= m2 > ol (2.3.3)

Close to the resonance, the self-energy behaves as X(p?) ~ imI'. The constant T' can be
viewed as width of the particle. This becomes clear when squaring the propagator,

1
p2/—\);12 (pQ _ m2)2 4+ m2r2’

|P(p?)|” (2.3.4)

which yields a Breit-Wigner profile. When the Fourier transform is taken, an exponential

decay can be observed

|P(2)* exp(—%rt) (2.3.5)

p
where F, is the energy of the particle.
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Using the Dyson summation of Eq. (Z33)) mixes different orders of perturbation the-
ory. In the beginning of this section we already mentioned that selecting specific diagrams
of the O(«) corrections to the process 7y — 4f potentially violates gauge invariance. This
is also the case if the width is included by a Dyson summation. A possible solution is
provided by taking into account even more higher-order terms in order to obtain a gauge-
invariant set of diagrams. In Ref. [ 25] it was noted that the contribution to the imaginary
part of the gauge-boson self-energy near the resonance and, hence, to the width, origi-
nates from fermion loops. Consequently, also vertex corrections with closed fermion loops
were taken into account which leads to a gauge-invariant result. In a more general way
this can be done in the background-field method [ [7 B5] so that also bosonic loops can
be taken into account. The drawback of this method is the large calculational effort that
is necessary, because the width calculated at n-loop level only yields a description of the
resonance that is accurate at the (n — 1)-loop level.

A simpler way is provided by the naive fixed-width scheme, were a fixed width is
included in all propagators, also in space-like propagators. In principle, it is not neces-
sary to include a width in space-like propagators. However, compared to the step-width
scheme, where the width is only included in time-like propagators, the fixed-width scheme
has the advantage that it respects U(1) gauge invariance. Both schemes violate SU(2)
symmetry and the corresponding Ward identities. A more accurate description of the
self-energy close to resonance is provided by the running-width scheme, where imI is
replaced by ip?*(T'/m)6(p*). The step function indicates that the width is only introduced
in time-like propagators. This scheme also violates both U(1) and SU(2) invariance, and
now these effects can even be enhanced by the factor p? at large energies. Examples for
this phenomenon were found, e.g., in Refs. [[I8] 25l 26].

Finally, the complex-mass scheme [[I8], where the mass is replaced by m — vm? — imI’
at the level of the Lagrangian density, respects all Ward identities. At lowest oder this
scheme is similar to the fixed-width scheme. The only difference is that the width also
appears in other quantities that are defined through the mass, such as the weak mixing
angle.

The application of the fixed-width, the step-width, the running-width, and the complex-
mass scheme for the lowest-order processes vy — 4 f(y) will be discussed in Section
For the processes ete™ — 4f(v) this has, e.g., been done in Ref. [[I§]. In Chapter Bl the
generalization of the complex-mass scheme to the one-loop order [[24] will be used for the
calculation of the O(«) corrections to H - WW /ZZ — 4f without resonance expansion.

Until now, we did not specify how to renormalize the mass of an unstable particle. This
will be important for the next section, where we need the concept of the complex-pole mass
in contrast to the more common on-shell mass. In Eq. (233)) the ultraviolet divergence
of the self-energy has to be absorbed into a redefinition of the mass. However, the exact
form of the redefinition involves some arbitrariness, which is fixed by a renormalization
condition. In the case of stable particles, where the self-energy is a real quantity near
p? = m?, the square of the mass is defined as the location of the pole of the propagator.
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In analogy, the on-shell mass for an unstable particle is defined as the zero of the real
part of the inverse propagator,

mbs = mi — Re X (mdy), (2.3.6)
where my is the bare mass. The corresponding on-shell width is obtained from the prop-
agator in Eq. (Z33),

1+ Re X' (mdg)

p(pQ) = 1 ImE(p2) + O(p2 - m208)7 (237)

2 _ o0 i Imu(p?)
P7 = Mos T 1 qRes (m3 )

as
Im> (mos)

1+ ReX/(mdq)

Alternatively, the complex pole position can be used as renormalization condition,
resulting in

mosros = (238)

M? =m2 — S(M?), M? = m?

pole

- impolef‘pole, (239)

where mye is called pole mass and M is the complex-pole mass. Since the location of
the complex pole is a property of the S-matrix, the pole mass is gauge invariant, whereas
the on-shell mass becomes gauge dependent beyond one-loop order [[B6]. Unfortunately,
mog is sometimes called pole mass in the literature. It is, however, important to note,
that mog and mye in fact differ by 2-loop terms. This can be seen by expanding the real
and complex parts of Eq. (Z239) separately in terms of I' ~ m.O(a), resulting in

m12)ole = mg — Re E(Tnf)ole) - mp01er01e Im Z:’(Tnf)ole) + O(a3)7
Mpolel pote = Im z(mfm) — Mypote] pole Re 2'(mf,ole) + O(a?). (2.3.10)

We can now determine the difference of the on-shell and the pole mass,

mis = m? . +Im Y (m2 ) Im ¥ (m?,,) + O(a?)

pole pole pole
~ mlge + Dogle + O(0%). (2.3.11)
In the second line it is assumed that the main contribution to the width originates from
light fermions. For the W boson the difference corresponds to mos — mpee ~ 28 MeV.

2.4 The pole expansion

The pole expansion is an expansion around the pole of the propagator. It can be
viewed as an expansion in terms of I'/m. Performing a calculation in the double-pole
approximation (DPA) means to calculate the first term of a (double-)pole expansion. As
already mentioned in the previous sections, the reason to use the DPA to calculate the
radiative corrections to the process vy — WW — 4f is twofold. Since each term of the
pole expansion is gauge invariant, the DPA provides a means of calculating a reduced set
of diagrams, the W-pair signal diagrams in our case, in a gauge-invariant way. Second,
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production decay

Figure 2.2: A generic factorizable diagram.

the pole expansion naturally enables us to incorporate also the finite gauge-boson width
in a gauge-invariant way.

The terms with the highest degree of resonance in the pole expansion can be expressed
by the complex pole position and the residue at this pole, which are properties of the S-
matrix, and they are therefore gauge invariant. The resonant terms consist in two different
kinds of contributions. First, there are factorizable contributions. The corresponding
diagrams factorize into the production process of the unstable particle and the subsequent
decay process. The generic structure is shown in Figure

After Dyson summation the matrix elements of the factorizable diagrams can be ex-
panded around the square of the complex-pole mass M? as

W) w(M?)

— 2
Miper, = PERE RS ) S B V5 + n(p?), (2.4.1)
with W)
2y
w(M?) = ESSTIER (2.4.2)

where W (p?) contains the parts of the matrix elements that are related to the production
and the decay processes. Equation (ZZ]]) separates resonant and non-resonant terms in
a gauge-invariant way. Yet, the definition of W (M?) is unclear, because with a complex
argument it would involve complex momenta. This problem can be circumvented by an
alternative expansion around a real mass m. If m is the pole mass, the following relations
hold exactly, otherwise they hold up to higher-order terms. Assuming that this mass has
been renormalized, the expansion reads

e FRLE L S L

p? — m? p? -

with

W_i(m?) = W (m? —
=Wty + 35 [
The quantities N(p?) and W_,, can be defined accordingly. In Ref. [[37] it was shown to
all orders that

WMa@MﬂLQ. (2.4.4)

W(M?) = W_i(m?),  n(p?) = N(p). (2.4.5)

With this relation we are now able to calculate the one-loop corrections to the first term
of the pole expansion,

W (m?) = WO (m?) = WO (m?) 2O (m?) — WO (m2) S0 (m?), (2.4.6)
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production decay

Figure 2.3: A manifestly non-factorizable diagram.

where the superscripts denote the order of perturbation theory. The second term corre-
sponds to the wave-function renormalization of the resonant field. Since the last term of
Eq. (ZZ4) is already contained in the complete leading order result, we can write the
factorizable one-loop corrections in the pole approximation as

W(l)(m2) W(U)(mQ)Z(l)l(mQ)

1 1 0 0 1
= Z m (Mérz)ductionM((:le)cay + Mér?)ductioth(ie)cay) ) (247)
pol

where we sum over the polarizations of the unstable particle. The matrix element Mpa gact
depends on the complete on-shell matrix elements for the production and the decay, which
are gauge invariant, and on the complex pole position M?. Consequently, it is also gauge
invariant.

Second, there are non-factorizable diagrams where the production and decay processes
are linked by a massless particle like the photon in our case. A generic diagram of this
kind is shown in Figure 23 TIf this linking particle was massive, the position of the
resonance in phase space would be changed with respect to the lowest-order diagram.
After squaring the matrix element, these diagrams do not contribute to the first terms
in the pole expansion. For the same reasoning only soft photons contribute, so that the
non-factorizable contributions can be written as a correction factor times the leading-
order resonant cross section. Power counting reveals that in the limit p? — m? and
q — 0, where ¢ is the photon momentum, the non-factorizable diagrams develop a linear
singularity (a quadratic singularity in the case of two resonances). Remote from the
resonance, the singularity is mitigated to a logarithmic singularity. Hence, the linear
singularity is characteristic for the contribution of the non-factorizable diagrams to the
first term in the pole expansion and can be used to split off non-resonant terms.

But there are also diagrams that contain both a factorizable and a non-factorizable
contribution. An example is shown in Figure P4l where the photon is attached to the
resonant particle and an external particle. Alternatively, it may be emitted and reab-
sorbed by the resonant particle. Taking the on-shell limit (p? — m? everywhere but in
the resonant propagator) before A — 0, where A is the photon mass, obviously yields a
factorizable contribution. However, these two limits do not commute, and performing an
off-shell calculation with A — 0 and then taking p?> — m? gives a different result. This
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production decay

Figure 2.4: A diagram that contains both factorizable and non-factorizable contributions.

shows that these diagrams, which are neither manifestly factorizable nor manifestly non-
factorizable, contain both types of contributions. We also arrive at this conclusion when
we try to define a gauge-invariant contribution from the non-factorizable diagrams. This
can be done by subtracting the factorizable resonant contribution (defined by p? — m?)
from the complete resonant contribution. Since these terms are both gauge invariant,
as explained above, the result is gauge invariant as well. While the diagram depicted in
Figure 24 receives contributions from the whole range of the photon momenta ¢, after
subtracting the factorizable contribution, only soft photons contribute. Thus, the non-
factorizable contribution, defined in this way, can still be written as a correction factor to
the Born cross section.

In Ref. [B8] the possible impact of non-factorizable contributions was discussed. It
was proven that for inclusive quantities their effect is suppressed by T'/m. Inclusive in
this context means, that the invariant mass of the unstable particle has to be integrated
over completely. Since we only take into account the first term of the pole expansion, the
non-factorizable contributions vanish for inclusive quantities in the pole approximation.
However, they become important, e.g., in invariant-mass distributions of the unstable
particle.



Chapter 3

Lowest-order predictions for
vy — 4f(7)

3.1 Analytical results for amplitudes in the Standard Model

3.1.1 Notation and conventions

We consider reactions of the types

Y(k1, A1) + k2, A2) = fi(pi, 01) + f2(p2, 02) + f3(p3,03) + fa(pa, 04), (3.1.1)
Y(k1, A1) + y(ka, A2) = fi(p1,01) + fa(p2,02) + fa(p3,03) + fa(pa, 04) + v(ps, 05). (3.1.2)

The arguments label the momenta k;, p; and helicities A, o; (which take the values +1/2
in the case of fermions and +1 in the case of photons) of the corresponding particles.
We often use only the signs to denote the helicities. The fermion masses are neglected
everywhere assuming that all mass singularities are avoided by appropriate phase-space
cuts. In Section 232l however, we will restore the mass logarithms for non-collinear-safe
observables.

For the Feynman rules we follow the conventions of Ref. [ 6]. We extend the usual lin-
ear gauge-fixing term ([CZTH) in the 't Hooft-Feynman gauge by a term that is non-linear
in the gauge fields according to Refs. [ I8, B9, 40]. In this way the vertex yW¢ vanishes,
where ¢ are the would-be Goldstone bosons corresponding to the W bosons. Note that
this also affects the gauge-boson couplings yvYWW and yYWW. The corresponding Feyn-
man rules relevant for 4y — 4f(y) in lowest order can be found in Ref. [[I8]. Since we
neglect fermion masses, the would-be Goldstone bosons do not couple to fermions and do
not occur in the Feynman graphs of the SM amplitudes to vy — 4f(), which leads to a
considerable reduction of the number of Feynman diagrams.

3.1.2 Classification of final states for vy — 4f(v)

The final states for vy — 4f and vy — 4 f~ can be classified similarly to the processes
efe” — 4f and ete” — 4fy [[I8]. In the following, f and F are different fermions
(f # F), and f" and F’ denote their weak-isospin partners, respectively. We distinguish
between states that are produced via charged-current (CC, corresponding to W bosons),

20
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via neutral-current (NC, corresponding to photons or Z bosons) interactions, or via both
interaction types:

(i) CC reactions:
vy — ff'FF (CC31 family),

(ii) NC reactions:

(a) vy — ffFF (NC40 family),
(b) vy = fIf] (NC2-40 family),
(iii) Mixed CC/NC reactions:
v = fIff (miz71 family).

The radiation of an additional photon does not change this classification. Following
Ref. [H1] we give the names of the process families in parentheses where the numbers
correspond to the number of Feynman diagrams involved in unitary or non-linear gauge
(for processes without neutrinos in the final state, not counting gluon-exchange diagrams).

Since the matrix elements depend on the colour structure of the final state, we further
distinguish between leptonic, semi-leptonic, and hadronic final states. Keeping in mind
that we neglect fermion masses, omitting four-neutrino final states, and suppressing re-
actions that are equivalent by CP symmetry we end up with 17 different representative
processes which we have listed in Table Bl

Since the photons are polarized after Compton backscattering, final states that are
flavour equivalent up to a CP transformation need not necessarily yield the same cross
section if the convolution over a realistic photon beam spectrum is included. However,
as we neglect fermion masses, this is only relevant for the semi-leptonic CC processes
vy = e~ Beud(v) and yy — veetdu(y).

3.1.3 Lowest-order amplitudes for vy — 4f
3.1.3.1 Construction of matriz elements

The amplitudes for the processes vy — 4f are constructed by attaching the two
incoming photons in all possible ways to the corresponding diagrams with four external
fermions as shown in Figure Bl The matrix element of the generic diagram in Figure B1]
where two fermion lines are linked by a gauge boson V', can be written as

0102030 4 o o 010

)\1)\3,‘?} 4(ki;pja Qy) = 4de 601,702603,704 gvlf1f29V3f3f4A)\i)\z’V(ki,pj, Qj), (313)
where k;, pj, and Q; (1 = 1,2;j = 1,..,4) stand for the momenta and relative electric
charges of the particles, respectively. The coupling factors g have been introduced in
(CZIY). For the gluon coupling we define

o o gS



22 Lowest-order predictions for yy — 4f()
final state | reaction type vy —
leptonic CC e Devuut
NC(a) e ety
e"efuput
NC(b) e"ete e
CC/NC e~ et i,
semi-leptonic CC(c) e veud
NC(a) VelpUlL
veedd
e"etul
e etdd
hadronic CC udse
NC(a) uiicc
NC(a) uiiss
NC(a) ddss
NC(b) unuu
NC(b) dddd
CC/NC utidd

Table 3.1: Set of representative processes for vy — 4 (7).

Quark mixing is neglected everywhere, i.e. we set the CKM matrix equal to the unit
matrix. The auxiliary functions AS(T? - are calculated within the Weyl-van-der-Waerden
(WvdW) formalism following the conventions of Ref. [ 42]. The WvdW spinor products
are defined by

. ) 0 . 6 6
(pq) = APpaas = 2P0 (e“bp cos Ep sin Eq — e % cos Eq sin E”) , (3.1.5)

where p4, g4 are the associated momentum spinors for the momenta

P = po(1,sin b, cos ¢, sin O, sin ¢, cos b,,),
¢" = qo(1,sin B, cos ¢,, sin b, sin ¢, cos b,). (3.1.6)

Moreover, we define the shorthands

(piPrp;) = pi iPi " pis = P avi Pk s = (Pipe) " (DiPk),

(pil P+ Pulps) = (piPipj) + (piPmpj), (3.1.7)
where pg, are light-like momenta, i.e., p7 = p? = p2, = 0. In the following, the
denominators of the gauge-boson propagators are abbreviated by

1
Py(p) V=+2W,g,  M,=M,=0. (3.1.8)

p*— M¢
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Figure 3.1: Generic diagram for the process vy — 4f where the photons 7y, 7, couple to

the fermions fi,..., fy and the gauge boson V in all possible ways.

The introduction of the finite width is described in Section B.L4 below.
The auxiliary functions AS$? | explicitly read

AT y(kipy, Q)) = ((p2pa)*)?
y {_ o (p1p2)*(psps) Pv(ps +p4) 0.0 (p1+ P2 — k1)* Py (pr + p2 — 1)
" (kp)* (kapa)* (kapr)* (kapa)* ’ (k1p1)* (k1pa)* (kaps)* (kapa)*
+ Q3(Q1 — Q2) Py (p1 + p2)
y [—@2,’04)*(,’01,’02) + (k1pa)* (k1p1) ME Py (py + p2 — ki)
(k1p2)* (k1pa)* (kops)* (kapa)*

+ (kl e 1{22)

+ (@1 — Q2)* Py (p1 + p2) Py (p3 + pa) [—<p2p4>* <Z;2<Z;€41>;2<>111<1;€21>;53;122>2; >ZZ§§§E )
2 . <k1p1>< >
+ My Py (p1 + pa kl)‘<k1p2>*< >*]

+ ({pl, Q1;p2, Q2} —{ps3, Q3; pa, Q4}) },

_ 2 (D2p4)* (k1p1) (ko[ Py + Pylps)
A+_’V(ki7pj’ Qj) a lev(p?, " p4) (k1p1>*(k2p1>(p2 + ps + p4)2
(kopa)*(p1p3) (pal P + Pslk1)
(k1pa)*(kop2) (p1 + p3 + pa)?

(p2[ K1 — Prlps) (pa[ K1 — Ps]p1)
- Q1Q2Pv(p3 - ) <k1p1>*<k1p2>*<k2p1><k2p2>
(papa)*(p1p3) (pa[ Iy — Ps]py) (p2[ K1 — Pi]ps)
(@ Q”R“%+“Nm@ywwol2<mewwg 1<meww9]

(Qa — Q1)* Py (p1 + p2) Py (p3 + pa)

+ Q%Pv(pg + p4)

l\:>|>—\

Xmmwmmmm—mmmmfam%M%wwmm)
(k1p2)* (k1pa)* (kap1) (kaps)
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+ [=Q1 + (Q1 — Q2)2(k1p1) Py (p1 + p2)] [Q4 + (Q3 — Qu)2(kaps) Py (ps + pa)]
((pal K1 — Prlps))* Py (p1 +p2 — ki)
(klpl)*<k1p2)*<k2p3)<k2p4)
+ ({p1, Qu; P2, Q2} +{ps, Q31 ps. Qu}). (3.1.9)

The other auxiliary functions Af}$? | follow from the relations

A v (ki py, Qj) = [ Kiii,v(’fiapy‘an‘)}

T (ki Q) = [AT52 v (ki pj, Q)]

{p1,Q1} ={p2,—Q2}’

, (3.1.10)
{p3,Q3} <{p4,—Qa}

and
AZSVZS v (ki pjy Q) :{ Kiﬁ,v(’fiapjan)} : (3.1.11)

The last relation expresses a parity transformation. Note that the operation of complex
conjugation in Eq. (BZLTI) must not affect the gauge-boson widths in the propagator
functions Py, which will be introduced in Section B4l

The calculation of the helicity amplitudes for vy — 4 fv proceeds along the same lines.
The result, however, is quite lengthy so that we do not write it down explicitly.

3.1.3.2  Squared amplitudes for leptonic and semi-leptonic final states

The result for leptonic and semi-leptonic final states follows immediately from the
generic amplitude (BI3]). The gauge boson cannot be a gluon in this case, and the sum
over the colour degrees of freedom in the squared matrix elements trivially leads to the
global factors Ni; = 1 and Ng, ... = 3. Note that for NC diagrams the result for the
amplitude is much simpler than for CC diagrams, since all terms in Eq. (BL9) involving
a factor (@1 — @Q2) or (Q3 — Q4) drop out. Most of these terms originate from diagrams
where a photon couples to a virtual W boson.

The explicit results for the colour-summed squared matrix elements read

; Mecl* = N Muwl?, (3.1.12)
12 Mycwl* = N Mncl”, (3.1.13)
C%r My = N° ‘MNC — IMxclip,,01.00} > {pa.Qara) 2, (3.1.14)
;1 [Mecel? = N¢[Msc = [IMwl i 00 oo o] - (3.1.15)
where we use the shorthand
Mxc = >, My (3.1.16)

V=v,Z

and suppress the helicity indices and the dependence on momenta and relative charges.
The relative signs account for interchanging external fermion lines.
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3.1.3.3  Squared amplitudes for hadronic final states

Next we consider purely hadronic final states, i.e., the cases where all final-state
fermions are quarks. This renders the summation of the squared matrix elements over the
colour degrees of freedom non-trivial, and in addition gluon-exchange diagrams appear.
Since gluon-exchange diagrams require two quark—anti-quark pairs in the final state they
do not appear in CC processes. For CC processes there is only one possibility for the
colour flow, and the summation over the colour degrees of freedom leads to an overall
factor N,qcc = 3* =9 to the squared matrix elements as given in Eq. (ETT2).

For NC reactions we have to compute the sum of pure electroweak (ew) and gluon-
exchange (QCD) matrix elements,

C1C2€3C4 __ c1C2C3C4 c1c2c3C4
Mhpad *" = Miadew T Mhiad.gcns (3.1.17)

where ¢; denotes the colour indices of the quarks. The electroweak diagrams are diagonal
in colour space and therefore read

C1C€2C3C4 —
NC(a),had,ew — MNC(SCl 2 603 car

CNl(C}Q(lC)?S,Cﬁad,eW = MNC(56162663C4 - [MNC]{pl,Q1,01}<—>{p3,Q3,03} 50362(56164. (3118)

The gluon-exchange diagrams are obtained from the generic formula (B3] by inserting
the corresponding generators, A*/2, of the gauge group SU(3),
1

CN%Q(g?,Cﬁad,QCD = Mgi)\glc2)\g3c4’

Noma =M 1)\“ Al M 1)\“ a 3.1.19

NC(b),had,QCD — gZ cieatezeq [ g]{pl’Ql’Jl}(—){p3’Q3’g3} Z cacatereq” ( ke )
The matrix element M, is defined by Eq. (BI3) with V = g.

Carrying out the colour sum using the completeness relation for the Gell-Mann ma-

trices,

a a 2
AijAu = —géz’jém + 26,0, (3.1.20)
yields
Y IMxc@ynaal” = 9 Mncl® + 2| M,
colour
> M 2 = 9| Muc? + 9| [Mxc] S oM,
1 NC(b)had| — NC NCl{p1,Q1,01} <+ {p3.Q3,03} g

+2|[My]

{p1,Q1,01} <{p3,Q3,03}

2 *
—GRe {MNC [MNC]{pl,Ql,Ul}H{pa,Qa,Ua}}
4
+ —Re {Mg {M*

3 g] {p1,Q1,01}<—>{p3,Q3,03}} —8he {MNC [Mg] {Plsleal}H{P&Q:&;U:%}}
—8Re {Mg [M*NC]{PMQI;UI}H{pS,Q&O’S}} : (3.1.21)

All squared matrix elements of this section have been compared numerically with
results obtained with the program MADGRAPH [ 43| at several phase-space points, and
perfect agreement has been found.
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3.1.4 Implementation of finite gauge-boson widths

We have implemented the finite widths of the W- and Z-boson propagatorsﬂ in four
different ways:

e fized width in all propagators:
1

P, = 3.1.22
V(p) p2 — M‘Q/ + iMVFV, ( )
e step width (fixed width in time-like propagators):
Py (p) = ! (3.1.23)
VS M 4 M T 0(p?) .
e running width in time-like propagators:
1
Py (p) (3.1.24)

TP — M2+ ipA(Ty /My)6(p?)’

e complex-mass scheme [ [I8]: complex gauge-boson masses are used everywhere, i.e.

M2 — iMy Ty instead of My in all propagators and couplings. This results in a
constant width in all propagators,

1

P = 3.1.25
v(p) p? — ME +iMyTy’ ( )
and in a complex weak mixing angle
M3, — iMwTwy
2 2 W
=1 = . 3.1.26
CW SW 7\ [% 1 7\ [ZFZ ( )

The virtues and drawbacks of the first three schemes were mentioned in Section
and are discussed in more detail in Ref. [25]. All but the complex-mass scheme, in
general, violate SU(2) gauge invariance, the step- and the running-width schemes also
violate electromagnetic U(1)em gauge invariance, which is preserved by using a fixed width.
As known from many examples in eTe™ physics [ [18, 25|, 26], gauge-invariance-violating
effects, in particular when enhanced by factors p?/MZ as in the running-width scheme,
can lead to totally wrong results. Furthermore, the violation of U(1)ey, gauge invariance
also causes a dependence of matrix elements and cross sections on the gauge chosen for
external photons. In ete™ — 4f and ete™ — 6f this problem does not occur since no
external photons are involved.

'We have also supplemented the explicit gauge-boson masses appearing in the numerators of Eq. (B1.9)
by the corresponding widths, because these mass terms originate from denominators upon combining
different diagrams.
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The complex-mass scheme, which was introduced in Ref. [[I8] for tree-level calcula-
tions, preserves gauge invariance and thus all Ward identities which rule gauge cancella-
tions. Its application is particularly simple for 4y — 4f(7) in the non-linear gauge. In
this case, no couplings involving explicit gauge-boson masses appear, and it is sufficient
to introduce the finite gauge-boson widths in the propagators [cf. Eq. (BZLZH)] and to
introduce the complex weak mixing angle (B2.26) in the couplings.

For CC processes vy — 4f(y) with massless fermions, the fixed-width (FW) approach
in the non-linear gauge and the complex-mass scheme (CMS) are practically equivalent,
because all Feynman graphs are proportional to e!/s2 (e5/s2) and gauge-boson masses
appear only in propagator denominators. In this case the corresponding amplitudes in
the two schemes differ only in the global factor S%V’FW/SEV’CMS, where sy pw and sy cms
are the values of sy, in the different schemes, i.e., sy rw is derived from the ratio of real
gauge-boson masses and sy cwmg from complex masses. Thus, both squared amplitudes
are gauge invariant and are equal up to the factor |sy rw/sw,cms|* which is equal to 1 up
to terms of O(T'%,/M%).

For NC and CC/NC processes a similar reasoning can be used to show that the fixed-
width approach does not violate gauge invariance in 4y — 4f(7) for massless fermions.
The trick is to apply the above argument to gauge-invariant subsets of diagrams. For NC
diagrams with photon exchange, which is the (gauge-invariant) QED subset of diagrams
(Figure BIlwith V' = ), there is nothing to show. The sum of NC diagrams of type NC(a)
with Z-boson exchange (Figure Bl with V' = Z) again involves ¢, and sy, only in a global
coupling factor (per helicity channel); the remaining dependence on the gauge-boson
masses is located in the propagator denominators. Thus, the subamplitudes of the fixed-
width and the complex-mass scheme are again identical up to a global factor and both
preserve gauge invariance and Ward identities. For NC processes of type NC(b) a second
class of diagrams exists (Figure Bl with V' = +,7Z and external fermions interchanged).
This new class of diagrams forms a gauge-invariant subset because of the different flow of
fermion numbers. Thus, the reasoning for type NC(a) applies to both classes of diagrams
of NC(b) reactions. The same argument is also valid for the subset of CC diagrams in
mixed CC/NC reactions.

In summary, we have argued that the use of naive fixed gauge-boson widths does not
lead to gauge-invariance violations in amplitudes for vy — 4f(7) as long as fermions are
massless and the non-linear gauge with vanishing YW¢ coupling (or the complex W-boson
mass in this coupling if the 't Hooft-Feynman gauge is chosen) is used. The corresponding
squared amplitudes agree with the ones of the (gauge-invariant) complex-mass scheme up
to terms of O(T'yw/Myy), for CC processes even up to terms of O(T'%,/MZ,).

3.1.5 W-pair signal diagrams and double-pole approximation

The diagrams to CC and CC/NC processes comprise graphs with two, one, or no
internal W-boson lines that can become resonant, similar to the situation for ete™ —
WW — 4f (see Refs. [H4, A5] and references therein). It is interesting to investigate
the possibility to define an amplitude for the W-pair signal based on doubly-resonant
contributions only, because such an amplitude is much simpler than the full amplitudes
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for four-fermion production and is universal (up to colour factors) for all relevant 4f
final states. Moreover, this study is an important exercise for the calculation of radiative
corrections to vy — WW — 4f in the double-pole approximation (DPA), which is done
in the next chapter. Taking simply all doubly-resonant diagrams, of course, yields a result
that is not gauge invariant. Nevertheless in the eTe™ case the lowest-order cross section
based on such a gauge-dependent amplitude (defined in the 't Hooft—Feynman gauge),
known as “CCO03 cross section”, is a very useful quantity that is very close to the full
4f calculation if both W bosons are close to resonance. The CCO03 amplitude can be
rendered gauge invariant upon deforming the momenta of the four outgoing fermions in
such a way that the intermediate W-boson states become on shell, because the residues
of the W resonances are gauge-invariant quantities. This “on-shell projection” is part of
the pole expansion (ZZ7]) and is needed in the construction of the DPA. The definition of
the “on-shell projection” involves some freedom, and different versions, which have been
described in Refs. [ 20} 22], differ by contributions of relative order O(I'vw /My ), which is
the uncertainty of the DPA for leading-order predictions.

We want to perform the exercise to study the usefulness of a possible «cC03"B off-
shell cross section for vy — WW — 4f. To this end, we define the amplitude for the
off-shell W-pair signal by evaluating the three W-pair diagrams in the non-linear gauge
with polarization vectors ;(k;) for the incoming photons, which obey the gauge conditions

81(k1) : kQ = 82(1€2) : I{Jl =0. (3127)
In terms of WvdW spinors, this means that the gauge spinors ¢g; and g, of the photons

are identified with the spinors of the momenta ky and kq, respectively. With this choice
the auxiliary functions for the matrix elements (B3] read

A7 ww (ki 9, Q5) = Par(py + ps) P (ps + pa) %2;
X {[Pw(pl + p2 — kl)}Fw:O [<k2p1><k2p3><k2[P1 + PQ]k1> + <k1p1><k1p3><k1[P3 + P4]k2>
(p1p3)
+ (krka)® (ko[ Py + Polky) (k1 [Ps + Pylko) — 2(ky - k2)<k1p1><k2p3>]

1

- §<p1p3)<k1k2)} + (k1 > k),

AL~ ww (ki pj, Q5) = Pw(py + p2) Pw (ps + pa)

X [Pw(pl +p2 — k1) + Pw(pi +p2 — kQ)]FWZO

% {<k2[p1 + Pk l<k2p2>*<k2p4>*<p1p3> B <p2p4>*(k1p1>(k1p3>]

<k1k2>* <k1k2>
<p2p4>* <p1p3>

_ W(lzz[ﬂ + Polk1)? + <k2p2>*<k2p4>*<k1pl><k1p3>}. (3.1.28)

2The name also fits to the vy case where three W-pair diagrams exist in unitary or non-linear gauge.
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Note that AS}T ww do not coincide with the parts of the functions AS$? \y of Eq. (BI3)
that are proportional to Py (p; + p2) Pw(ps + pa) because the derivation of Eq. (BLJ)
involves rearrangements of various singly-resonant contributions. We point out that the
definition (BI28) is neither independent of the gauge fixing used to define gauge-boson
propagators nor of the gauge of the external photons. The definition is gauge invariant
after the outgoing fermion momenta p; are on-shell projected as described above, while
leaving the resonant propagators Pw(pi + p2) Pw(ps + ps) untouched. This defines the
lowest-order amplitude in DPA. Finally, we stress that the ¢- and u-channel W propagators
in Eq. (B28)) do not receive a finite W width; otherwise the gauge invariance of the DPA
would be spoiled.

3.2 Inclusion of anomalous gauge-boson couplings

In this section we introduce the most important anomalous gauge-boson couplings
accessible by the process vy — 4f and give explicit analytical results for the corresponding
helicity amplitudes.

3.2.1 The effective Lagrangians

First we consider anomalous triple gauge-boson couplings (ATGC) in the charged-
current sector, i.e., anomalous YWW and the related yYWW couplings. Instead of using
rather general parametrizations of non-standard couplings [ 46], we follow the approach
already used at LEP2 to reduce the number of free parameters by requiring that all
symmetries of the SM are respected. From the resulting operators we only keep those
that appear in the lowest-order cross section of vy — 4f. Specifically, we start from the
gauge-invariant CP-conserving effective Lagrangian with dimension-6 operators | 47]

LATCC = gy 2B (D ) B (D,®) — igw -2 (D,®) o W (D,®)

Y —_—
M, M3,
— g W, - (W, x WP,) (3.2.1)
6 M3, v , wr
where ® is the Higgs doublet field and
B" = o'B" — 0" B*,
WH = (W, W}, W) = 0"WY — 0" WH + gy WH x W (3.2.2)

are the field strengths of the U(1) and SU(2) gauge fields, respectively. The Pauli matrices
are combined into the vector & = (07, 09, 03), and the parameters gy, gy denote the gauge
couplings.ﬁ Inserting the vacuum expectation value of the Higgs field ®, we can relate

the coefficients apg, awy, and ayw to the coefficients of the Lagrangian considered in the
LEP2 analysis [ 41,

2

a cZ
Agl=—3%  Amy=—2(Ak - Agl) =aws +aps A=Az =ow. (3.2.3)

3In order to be compatible with the conventions of Ref. [B] used for the SM amplitudes above, we
had to change the sign of the SU(2) coupling gw w.r.t. Ref. [ E7].
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In contrast to the pure anomalous YWW coupling [ 46], the SU(2)xU(1) symmetry of the
effective Lagrangian (B2Z1]) induces additional anomalous yyWW and yW¢ couplings.
The corresponding Feynman rules are

D™ (ko by, k) = —ie{A'ﬁv(%ugup — kopGpuv)

Ay

T o = K k) iy ()

+ Gup(kov (ks k-) = k- (k1 ko)) + g (ki p (ko) — kUp(kJrk))] }a
Ay
FZZX‘?-W (kl, kQ, k_|_, k_) = —ie W{guyglm(lﬁ + kQ) + gupgyg(kgl@_ + klk_)
+ GupGuo (kb + kakZ) + g [(k1 + ka) ko + (k1 + ko) ok,
+ Gpo (ks + k) ubivy + (kg + k)ukoy] + G [(F1 = ka)obw — ko — gk ]
+ gua |:(k1 - k?)pk—u - kluk—p - klpk—l—u] + gup |:(k2 - kl)ak—l—u - k?uk—l—a - k?ak—u]

+ Yo [(kQ — k1) pk—p — kouk—, — k2pk+u] }a

Ak
iFZ}IN¢(I€U: kW; kd)) = —le {(kgbko)g;w kd),uk(],u}; (324)
My

where all fields and momenta are considered incoming. Note that the neglect of the
contribution to the quartic coupling yyYWW, which is proportional to A,, would lead to
a violation of electromagnetic gauge invariance in predictions for vy — WW(— 4f). In
contrast, neglecting the yW¢ coupling, which is proportional to Ax,, would not spoil the
electromagnetic gauge invariance of the predictions.

Next we consider anomalous triple gauge-boson couplings involving only the neutral
gauge bosons v and Z. Assuming Lorentz invariance and electromagnetic gauge invariance,
the most general effective dimension-6 Lagrangian for vyZ, vZZ, and ZZZ couplings can
be written as [MH

L85 = S [10uF™) = [0 2 22 + [ ROF™) = FL0,2)] 2oy 2*
+ (W] (B, F™) — W0, 2M)|F,p 2° + [h3 (0, F*) — h%(&uZ“”)]ﬁ,,pZ"} (3.2.5)
with the abelian field-strength tensors
FH = ol AY — 0" A¥, I =0orZ" — 0¥ ZH, (3.2.6)
and the dual field-strength tensors (%23 = +1)

o1 o1
P = e By I = 5 Dy (3.2.7)

“Note that our conventions differ from those of Ref. [HA8] by a minus sign in the Z-boson field.
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Figure 3.2: Representative diagrams with anomalous yYWW and vyWW couplings (black
blobs) contributing to CC processes vy — 4f.

An operator inducing a ¥y coupling does not appear in Eq. ([BZ3) since it violates
electromagnetic gauge invariance.

Apart from the yvYWW coupling which is induced by symmetries in the Lagrangian
BZT), we also include genuine anomalous quartic gauge-boson couplings (AQGC) in
our analysis, whose lowest dimension is 6. In Refs. [A9, B0] all genuine dimension-6
AQGC that involve photons and that are allowed by electromagnetic gauge invariance
and custodial SU(2), have been classified; more general AQGC have been discussed in
Ref. [ B1]. Following Ref. [ B0] we use the effective Lagrangian

EAQGC _ €
VYT 16A2

with the definition

{ao FM"F,, W, W + a, F*F, ;W W, + g FWFWWQW“} (3.2.8)

- —1 =2 —=3 ]_ _ l o ]_
W, = (W, W, W,) = <—(W+ W)y —= (W = W), —Z“> . (3.2.9)

V2 V2 Cw
The scale of new physics, A, is introduced in Eq. (B28) to render the coupling coefficients
ag, a¢, ag dimensionless. The effective Lagrangian Eﬁ?ﬁ%c contains yYWW and yyZZ cou-
plings, whose Feynman rules can be found in Ref. [50]. The other coupling structures

L, and L, considered in Ref. [B0] induce yYZWW couplings that are not relevant for
vy = 4f.

3.2.2 Amplitudes with triple gauge-boson couplings

Before we write down the helicity amplitudes including ATGC explicitly, we discuss the
impact of these couplings w.r.t. the SM cross section. The diagrams containing ATGC and
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the corresponding quartic couplings in CC diagrams are shown in Figure We quantify
the size of the anomalous contributions in terms of powers of anomalous coupling factors
(generically denoted by a3) or suppression factors I'vy /My . Considering the SM process
vy — WW — 4f as the leading contribution, i.e., regarding anomalous-coupling effects
as small, we get non-standard contributions to CC and CC/NC cross sections from CC
ATGC of the following orders:

e O(az):
The matrix elements of diagrams (a) and (b) in Figure B2 involve one power of as.
Both diagrams are not suppressed by I'vy/My since they are doubly resonant.

[ ] O(agrw/Mw)
The diagram (c) of Figure B2 has one power of a3 and one resonant W-boson prop-
agator, i.e., it is only singly resonant. Thus, it is of O(a3l'w/Mw).

e O(a3):
The diagrams (d) and (e) of Figure B2 involve two anomalous couplings a3 and
are doubly resonant. Therefore, they are of O(a3). Note that the squares of the
diagrams (a) and (b), as well as their products with one another, are of the same
order as the interference of diagrams (d) and (e) with the SM amplitude.

There are no diagrams containing CC ATGC for NC processes.

Next we consider the impact of NC ATGC, as defined in the effective Lagrangian
BZ3H). The by far largest SM cross sections of the process class 7y — 4f belong to
diagrams with two resonant W bosons in CC and CC/NC reactions. Thus, the largest
effect of NC ATGC could be expected from an interference of “anomalous diagrams” with
the SM amplitude for CC or CC/NC processes. The only candidate of this kind is a
diagram where an off-shell s-channel Z boson is produced by an anomalous yyZ coupling
that subsequently produces a W-boson pair. However, the effective yyZ coupling of
Eq. (BZ3) vanishes for two on-shell photons, so that this diagram does not contribute.
No other CC diagram exists that includes a NC ATGC.

We now turn to the effects of NC ATGC in NC amplitudes, i.e., in diagrams without
W bosons. The corresponding SM amplitudes involve at most a single resonance of the
7 boson, which leads already to a suppression of NC cross sections w.r.t. CC cross sections
by a factor (I'z/Mz)?. This suppression is clearly visible in the numerical results presented
in Section B 2Tl below. Diagrams with one NC ATGC also possess at most one resonant
Z boson and, therefore, show a suppression by a factor a3(I'z/Mz)? w.r.t. the CC signal
diagrams. This suppression is not changed by interferences with doubly-resonant CC
diagrams in CC/NC processes because the Z- and W-boson resonances are located at
different regions in phase space and do not enhance each other. Diagrams with two NC
ATGC can involve two Z-boson resonances resulting in a suppression of O(a3l'z/My),
which is also small compared to the CC case owing to the squared ATGC. In summary,
we conclude that the sensitivity of the processes vy — 4f to NC ATGC is much smaller
than to CC ATGC. Therefore, we restrict our investigation on ATGC to CC couplings in
the following.
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As explained above, the diagrams of Figure induce contributions to the amplitude
that are either linear or quadratic in the CC ATGC. We give the explicit contributions
to the helicity amplitudes in a way similar to the SM case ([BI3),

0102030 4 — — o100
Ai/\Z,SCAZTGC(kiﬂpj’ Q]) =e€ 501,*502#603,*504# nglfQ'ng3f4 6314)\1)\3 (ki:pja Q]) (3'2'10)

with the auxiliary functions §3AS}2. The generic amplitude M3\ rqc is coherently

added to the SM amplitude M%7* of Eq. (BET3). The colour summation of the
squared amplitudes for the various process types proceeds as described in Sections B T.3.2)

and
The terms in 63A%! S that are quadratic and linear in ATGC explicitly read

53A;;‘quad = —Pw(p1 + p2) Pw(ps + pa) Pw(p1 + p2 — k1) (kip1) (kaps)
1
X {A/‘Gg (papa)™ (k1k2) + W<p1p2>*<p3p4>*<k1p1><k2p3>]
W

+ Ay () o) (k) ) = ) )

+ (ko) ((papa)” (ki) ups) = (pupa) (i) (hap) |
)\2

+M—év<p1p2>*<p3p4>*%(p1 +po — k)’ [<k1p3><k2p1> - <k1k2><p1p3>} }

+ (kl < kg),
05 AT C

= —Pw(p1 + p2) Pw(ps + pa) Pw (p1 4 p2 — k1) (kapa) ™ (F1p1)

quad
2
x{ Ar

A
+ A’%M—év {_2(1?1 + P — k1) (kopo)* (k1ps)

(kap2)™ (k1ps) +

ﬁ (p1p2) " (kapa)™ (k1p1) <p3p4>}

+ (pa[ Ko — Ki]ps) (ko[ Pr + Palk1) — <p1p2>*</€2p4>*<p3p4></€1p1>}
)\2

1
+ M—1<p1p2>*<p3p4> [—5(231 + pa — k1) (kapa)*(k1p1)
w

+ (pa[ Ko — Pslkr) (ko[ K — P2]ﬁ1>} }
+({p1,Ql;pmQQ}H{p3;Q3;p4,Q4}),

63A;;‘ = 2Py (p1 + p2) Pw (p3 + pa) (kap1) (kap3)

lin

(D2pa)* LN . )
X W{Amﬁpzm) - M—\?V<p3p4> (p1p2) <p1p3>}

+ {2(Q4 —Q3) [—Q1 + (Q1 — Q2)2(kip1) Pw(p1 + p2)] Pw(ps + p4)
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(kops) (2| PL — Ki]ks)
<k1p1>*<k1p2>*

X |:A/€7<p2p4>* + ]\2—:}2‘/(173174)*(232[1[)4 - K2]p3>}

+ ({pla Q15 p2, Qo <+{ps, Q35 P, Q4})} + (k1 < k2),

X Py (ps + pa — k2)

. (k1p1) (k1ps)
53A+—‘Hn = —2Py(p1 + p2)Pw(ps + p4)<p1p3>m
X [_A"“?7<p2p4>* + Az—év(<p1p2>*<k2p4>*<k2pl> - <p3p4)*<k2p2)*<k2p3)

+ <p1p2>*(p3p4>*(p1p3>)}

- {2(Q1 — Q2)Pw(p1 + p2) [[Q4 + (Q3 — Q4)2(kaps) Pw (p3 + pa)]

(k1p1) (k1ps)
x Pw(p1 +p2 — kl)m(—&%(m[ﬂ — Ky)ps)
+ ]\z—év<p1p2>*<p1p3>(p3 + D4 — k2)2)}

4 ({pl: Q1; P2, Q2} <{ps, Q3; D4, Q4})}

+ (C-C- and {p1, Q1; p3, Q3; k1 } < {p2, Q2: s, Qu; kQ}): (3.2.11)

where “c.c. and {...} <»{...}” indicates that the complex conjugate of the preceding
expression has to be added after some substitutions. The auxiliary functions for the
remaining polarizations follow from the relations (BII0) and (BITIT).

In order to check our results, we have implemented the ATGC of the effective La-
grangian (B2J)) into the program MADGRAPH [ 43] and compared our amplitudes with
the MADGRAPH results for various phase-space points. We found perfect numerical agree-
ment.

3.2.3 Amplitudes with genuine quartic gauge-boson couplings

Figure shows the only diagram with an AQGC (generically denoted by a4) that
contributes to 7y — 4f. For CC processes the “anomalous diagram” contributes in
O(ay4) to the cross section, because it is (as the SM contribution) doubly resonant. For
NC processes, the diagram involves one power of a4 and two Z-boson resonances and
interferes with the singly-resonant SM amplitude. In this case, the contribution to the
corresponding cross section is suppressed by a4I'z/My; w.r.t. CC cross sections, i.e., the

suppression factor involves one factor in the anomalous coupling or in I'z /My less than we
counted for NC ATGC. In the following we take both CC and NC AQGC into account.
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Figure 3.3: Diagram with AQGC (black blob) contributing to vy — 4f.

The AQGC contributions to the amplitudes read

4
0102030 € o ag
Mxixi,vgvév = W(Sal,—@(sam—m gyyvv gvlf1f29vgf3f4pv(p1 + pQ)PV(p3 + p4)
X 64 Kiii (kla k27p17p27p37p4) (3212)
with .
Gryww = 1, Grrz. = 5 (3.2.13)
and

04 AT7 (k1 ko, 1, p2, 3, pa) = (dag — didg + ac)(papa)* (k1ka)* (p1ps),
54141:(]?1, k?aplap%p?npzl) = —2ac<k2p2>*<k2p4>*<k1p1><k1p3>. (3-2-14)

The remaining auxiliary functions 6,435} can be obtained via the substitutions

5414;1’;;(]61,kQ,p1,p2ap3,p4) = 04 ALY, (K1, ko, pi, P2, 4, P3),
54A;\r£§z(klakQ:plaPQap37p4) = 04 A, (K1, k. p2, 1, D3, Pa),s
54Aiiig(klak?:plap27p3ap4) = (54A:§i::§2(k1,kQ,pl,pQ,pg,m)) ‘ (3-2-15)

The generic amplitude MS 2727 is coherently added to the SM amplitude M, 32757 of
Eq. BI3) for V.= W, Z, respectively. The colour summation of the squared amplitudes
for the various process types proceeds as in the SM case.

Again we have checked the amplitudes against results obtained with MADGRAPH, as
explained at the end of the previous section.

3.3 Effective vyH coupling and Higgs resonance

In order to incorporate a possible Higgs resonance in vy — H — VV — 4f with
V =W, Z, as depicted in Figure B4, we consider an effective coupling of the Higgs boson
to two photons. In the SM this coupling is mediated via fermion (mainly top-quark) and
W-boson loops. We define the effective Lagrangian for the yyH vertex [ B2] by

H
[”Y’YH = _g’ZH FIWF;LV?; (331)
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Figure 3.4: Diagram with effective yyH coupling (black blob).

where v = 2Mysy /e is the vacuum expectation value of the Higgs field H. Up to
normalization, £,,x is the lowest-dimensional, CP-conserving, electromagnetically gauge-
invariant operator for two photons and the scalar field H. The corresponding Feynman
rule reads

. i
IFZZH(kla k27 kH) - g’;}’YH [g;w(klkZ) - kl,ukZ,y] ) (332)

where ki, ky are the incoming photon momenta. Comparing this Feynman rule to the
loop-induced SM vertex with the external fields on shell, which has, e.g., been given in
Refs. [ B9, 62], we obtain

o [ 6M3 6 M3
QWH‘SM = ;{ MI;{N +1+ TI%N(QM\%V — M) Co(My, M)

2

-2% NjQi g 2 (4 = MG )] } (3.3.3)

where the colour factor N§ in the sum over all fermions f is equal to 3 for quarks and 1
for leptons. The scalar 3-point integral Cj is given by

1 o+ 1 / 4m? |

The complete matrix elements for the diagrams with a Higgs resonance (as shown in
Figure B4)) can then be written as

64

Kigé?ﬁ{'}V = T 9g2 Oo1,-52003,~ 04 GyyH GrA V'V 9{'/1f1f2g{'}}3f4pv (p1 + p2) Py (ps + p4)
X My Pu(ki + ko) Su AS'S (k1, ko, D1, P2, 3. Pa) (3.3.5)

with g,,vv defined in Eq. (B2ZZT3)) and
(k1k2)
(k1ka)*

The other expressions for 0y A3!$3 follow in the same way as described in Eq. (B2ZT3)) for
04 ASIS2. The width in the Higgs-boson propagator Py is introduced in the same way as
in Section B4l for the gauge bosons.

6HA-T-—T—(k17k27plap27p3ap4) = (p2pa)™(P1P3), 5HA11¢03 = 0. (3.3.6)
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3.4 Phase-space integration and convolution over the photon spectrum

The squared matrix element is integrated over the phase space following the strat-
egy described in Refs. [ [[8, 26, B3], where the multi-channel Monte Carlo technique [ b4]
was applied. This method cures problems that occur due to the very complex peaking
structure of the integrand induced by various diagram types. More precisely, appropri-
ate mappings of the pseudo-random numbers into the momenta of the outgoing particles
are constructed and combined in such a way that the integrand is widely smoothened
everywhere. The details are presented in App. [Al

The convolution over the photon spectrum is given by

1 1
do :/U d$1A dl‘Q ffy(l'l) ffy(l'Q) dO',W(.Ilpl,l'QPQ), (341)

where do,, is the differential vy cross section. The function f,(z;) denotes the proba-
bility density for obtaining a photon with momentum k; = z;P;, and P; is the electron
momentum before Compton backscattering. In order to reduce the statistical error of
this integration we use a simple way of stratified sampling. The integration region for z;
of each photon spectrum is divided into a fixed number of bins. We choose bin 7 with
a probability a; and divide the corresponding weight by ;. In this way the integration
remains formally unchanged if we normalize }"; a; = 1. The parameters «; can be used
to improve the convergence of the numerical integration. By choosing the «; proportional
to the cross section of the corresponding bin 7, more events are sampled in regions where
the photon spectrum is large. Care has to be taken that the «; do not become too small
because this might lead to rare events with very large weights that render the error es-
timate unreliable. This optimization typically reduces the Monte Carlo integration error
by a factor 2-5.

3.5 Numerical results

3.5.1 Input parameters

We use the following set of input parameters [ [BA]:

My = 80.423 GeV, Tw = 2.118 GeV,
My = 91.1876 GeV, Iz = 2.4952 GeV,
My =170 GeV, Ty = 0.3834 GeV,
a(0) = 1/137.03599976, o= 0.1172,
G, = 1.16639 x 107° GeV~?, (3.5.1)

where the Higgs mass is chosen well above the W-pair threshold so that intermediate
Higgs bosons decay rapidly into W pairs; the corresponding decay width I'y has been
obtained with the program HDECAY [ hf].
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Furthermore, we apply the separation cuts

E, > 10GeV, (v, beam) > 5°, 0(l,v) > 5°, 0(q,~) > 5°,
E; > 10GeV, 6(l, beam) > 5°, O(1,1") > 5°, (1, q) > 5°,
E,>10GeV, 6(q, beam) > 5°, m(q,q') > 10 GeV, (3.5.2)

where ¢ and [ denote quarks and charged leptons, respectively, and m(q, ¢') is the invariant
mass of an outgoing quark pair. The energies Ex and angles (X,Y") are defined in the
laboratory frame. Using these cuts all infrared, i.e., soft or collinear, singularities are
removed from the phase space.

In order to account for leading universal corrections, we use two different values for
the coupling constant o = e?/(4m). Since on-shell photons couple to charged particles
with the coupling constant «(0) (effective electromagnetic coupling at zero-momentum
transfer), we take this coupling for each external photon in the processes vy — 4f and
vy — 4f~. For CC reactions, the remaining couplings correspond to W f f vertices. For
these vertices a large part of the electroweak radiative corrections [ b7 (the running of
the electromagnetic coupling and the universal corrections related to the p parameter) are
absorbed into an effective electromagnetic coupling g, which is derived from the Fermi
constant G, by
_ V2G, M s

™

ac (3.5.3)

I

Therefore, in the following numerical studies, we replace a* by a(0)?

vy = 4f and o’ by oz(())?’a%;# for vy — 4f~.

For the evaluation of the photon spectrum we use the program COMPAZ [ [14] with
the polarization of the laser beams —1 (i.e. photon helicity —l)ﬁ and the polarization of
the electron beams +0.85. This choice for the relative signs in the polarizations yields
a sharper peak at the upper end of the photon spectrum. Results for monochromatic
photon beams are shown for unpolarized photons if not stated otherwise.

The results are obtained in the fixed-width scheme, except from Section BXh.25] where
we compare different schemes.

The numerical integration over the phase space is carried out applying the multi-
channel Monte Carlo technique as described in App.[Al We use 107 events leading to a
runtime of our Monte Carlo program on a PC with 2 GHz that varies from 30 minutes to
6 hours depending on the considered process.

2
ag,, for the processes

3.5.2 Results for integrated cross sections
3.5.2.1 Survey of cross sections

In order to illustrate the reliability of our Monte Carlo generator we compare our
results on cross sections for a representative set of the processes vy — 4f and vy —
4f~ with the results obtained with the Monte Carlo program WHIZARD (version 1.28)

Internally in COMPAZ the polarization of the laser light is defined as the negative of the photon
helicity.
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present work WHIZARD/MADGRAPH
7y = ouglfh] | ou[fb)(conv) | aus[fb] | oug[b](conv)
e Vevuput || 826.47(21) 190.87(10) 826.39(26) 191.05(16)
e efy,u, | 1.75460(62) | 0.90525(61) | 1.75518(78) | 0.9050(11)
e et pt | 19.400(33) 19.129(61) 19.342(21) 19.188(48)
e"eteet 9.469(17) 9.357(32) 9.453(11) 9.383(25)
e"etu., || 828.34(21) 191.72(10) 828.29(26) 191.55(17)
e~ Joud 2351.11(68) | 565.05(33) || 2351.79(84) | 565.07(51)
veetdi 2350.84(68) | 558.39(32) || 2353.21(84) | 558.41(50)
VeDolll 1.19761(50) | 0.61256(50) | 1.19684(57) | 0.61083(71)
veedd | 0.095981(44) | 0.049092(45) || 0.096011(48) | 0.049118(57)
e etui 14.036(21) 10.597(26) 14.016(15) 10.574(21)
e"etdd 4.7406(29) 2.6614(32) 4.7377(28) 2.6651(38)
udse 6659.6(2.1) | 1603.8(1.0) || 6663.5(2.7) | 1605.0(1.5)
utice 10.469(14) 6.111(12) 10.4531(88) 6.113(10)
with QCD || 1543.6(2.9) | 1071.3(2.9) — —
uiiss 3.3282(21) 1.6569(18) 3.3310(20) 1.6595(23)
with QCD || 412.97(75) 288.79(72) — —
ddss 0.49807(29) | 0.23232(24) || 0.49804(30) | 0.23252(32)
with QCD || 96.34(18) 66.80(18) — —
utiui 5.1846(69) 3.0298(57) 5.1900(45) 3.0419(53)
with QCD || 772.6(1.5) 538.9(1.4) — —
dddd 0.24683(15) | 0.11581(12) | 0.24665(17) | 0.11579(17)
with QCD || 48.252(96) 33.685(88) — —
uiidd 6663.5(2.3) | 1606.1(1.1) || 6664.8(2.8) | 1604.6(1.6)
with QCD || 7075.8(3.7) | 1896.4(2.9) — —

Table 3.2: Total cross sections for vy — 4f at /s = 500 GeV for various final states with
and without convolution over the photon spectrum.
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present work WHIZARD/MADGRAPH
vy = agy [ 1] 0444 fb](conv) Oafy [ D] a4 [1b](conv)
e Devuuty || 39.234(44) 6.188(11) 39.218(29) 6.2040(87)
e~etu,z,y || 0.10157(10) | 0.028612(40) || 0.101556(88) | 0.028548(52)
e etp pty || 1.0567(35) 0.5083(28) 1.0547(20) 0.5091(29)
e"etemety | 0.5085(18) 0.2433(13) 0.5091(10) 0.2461(12)
eet veiey 39.301(46) 6.213(11) 39.332(30) 6.2069(89)
e~ eudy 96.61(13) 14.216(27) 96.575(75) 14.159(21)
veetdiiy 96.60(13) 15.459(30) 96.520(76) 15.429(22)
Veeuily 0.030818(35) | 0.008640(14) | 0.030756(28) | 0.008609(16)
veleddy || 0.00061753(75) | 0.00017313(31) || 0.00061731(56) | 0.00017358(34)
e eTuily 0.6446(17) 0.25463(99) 0.6477(10) 0.2579(10)
e etddy 0.26653(36) 0.08137(17) 0.26689(28) 0.08166(21)
udscy 229.86(36) 32.621(81) 229.52(19) 32.531(49)
uicey 0.30556(69) 0.10718(34) 0.30563(47) 0.10836(43)
with QCD 34.73(14) 13.801(77) —
uiissy 0.08791(13) | 0.026278(59) | 0.087935(98) | 0.026271(65)
with QCD 6.362(23) 2.493(13) —
ddssy 0.0046253(71) | 0.0014842(37) || 0.0046191(52) | 0.0014832(36)
with QCD 0.5427(22) 0.2165(11) —
utuiy 0.15081(33) 0.05301(16) 0.15082(21) 0.05332(16)
with QCD 17.377(71) 6.964(35) —
dddd~ 0.0022893(37) | 0.0007421(21) | 0.0022878(25) | 0.0007398(18)
with QCD 0.2716(11) 0.10863(53) —
uiddy 229.86(40) 32.85(15) 229.65(19) 32.518(51)
with QCD 236.31(42) 35.14(11) —

Table 3.3: Total cross sections for vy — 4fy at /s = 500 GeV for various final states

with and without convolution over the photon spectrum.
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[ B8] which uses the matrix-element generator MADGRAPH | 43]@. In Tables and
we list the results for the 17 different final states defined in Table Bl The numbers
in parentheses correspond to the Monte Carlo error. For the final states that can be
produced via intermediate gluons we compute the cross section both with and without
gluon-exchange contributions. Since the version of MADGRAPH implemented in WHIZARD
is not able to deal with interferences of electroweak and QCD diagrams, we give only the
pure electroweak WHIZARD/MADGRAPH results for these processes. Furthermore, we
list the corresponding cross sections with and without convolution over the photon beam
spectrum. For this study, we have implemented the program COMPAZ into WHIZARD.

As explained in Section B2 the cross sections for the CP-equivalent final states
e~ Doud(7y) and veetdii(y) are not identical if the convolution over the photon beam spec-
trum is carried out. Therefore, we give results for both final states. In all other cases, the
cross sections for a given final state and for the CP-conjugated one coincide.

CC and CC/NC processes possess the largest cross sections because of the dominance
of W-pair production. The convolution over the photon spectrum reduces these cross
sections significantly since low-energy photons cannot produce on-shell W pairs. NC
processes are affected less, and in some cases, such as vy — eTe™ "™, the cross section
is only slightly reduced. Owing to the colour factors of the quarks, hadronic and semi-
leptonic cross sections differ by roughly a factor 3, hadronic and leptonic cross sections
by roughly a factor 32 = 9. For CC processes vy — 4f we obtain a rough estimate
of the cross sections by multiplying the cross section of vy — WW with the branching
ratios of the W bosons into leptons or quarks depending on the final state. Note that this
estimate, which is only good within 10—20%, does not take into account contributions
from background diagrams, width effects, and cuts on final-state fermions. The difference
of cross sections for CC processes and the corresponding processes of mixed type reflects
the size of the background contributions induced by NC diagrams.

The results of WHIZARD, which are also generated with 107 events, and of our program
typically agree within 1-2 standard errors. The size of the statistical errors obtained with
WHIZARD and our program is comparable. The runtime of WHIZARD is usually somewhat
bigger than the one of our program. Depending on the process class, the speed of our
program is 1—7 times higher, where the largest difference occurs for NC processes.

3.5.2.2  FEnergy dependence of integrated cross sections

In Figure B3 we show the cross sections for the processes 7y — e~ 7ud(7) as a function
of the centre-of-mass (CM) energy /s with and without convolution over the photon
spectrum. Here and in the following, with convolution over the photon spectrum /s
stands for the CM energy ,/see of the incoming electron beams, without convolution it
is the CM energy /s, of the incoming photons. In the case without photon spectrum,
the rise of the cross section is clearly visible at the W-pair threshold, /s,y 2 160 GeV.

For 7y — e~ ,ud the cross section increases roughly proportional to 3 = /1 — AMB; /Sy

For a tuned comparison we rescaled the WHIZARD/MADGRAPH results by a factor a(0)2aé” /at for
vy — 4f and a(0)3aéu /a® for 4y — 4f7.
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Figure 3.5: Integrated cross sections of the processes vy — e~ 7,ud(7y) with and without
convolution over the photon spectrum as a function of the CM energy /s.

above the threshold, as expected from the two-particle phase space of the W pairs. For
vy — e~ Dudry the rise of the cross section is not as steep because of the higher-dimensional
WW+~ phase space. The convolution over the photon spectrum reduces the available
energy for W-pair production and shifts the onset of the cross section to higher CM
energies.

The cross sections for vy — 4f as well as 7y — 4fv decrease at high energies, even
though the total cross section of the vy — WW process approaches a constant in the
high-energy limit if no cuts are imposed, i.e., if the W bosons are allowed to go in the
beam directions. At high energies, however, forward and backward scattering of W bosons
is restricted due to the cuts applied to the outgoing fermions, because the decay fermions
mainly follow the direction of the decaying W boson.

3.5.2.3  Contributions from CC, NC, and gluon-exchange diagrams

In Figure we show the impact of CC, NC, and gluon-exchange diagrams on the
CC/NC processes vy — uiidd and vy — uiiddy. We do not include the photon spectrum
in this analysis. Above the W-pair threshold, /55, > 160 GeV, the CC diagrams are
clearly dominating, while the contributions from gluon-exchange diagrams are one or
two orders of magnitude smaller. The impact of the gluon-exchange diagrams strongly
depends on the choice of the invariant-mass cut between two quarks, and gluon-exchange
diagrams are more important if the invariant-mass cut is small. The contributions from
pure NC diagrams are totally negligible as long as W-pair production is possible.
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Figure 3.6: Different contributions to the integrated cross sections for the processes vy —
uidd(7) as a function of the CM energy without photon spectrum.

3.5.2.4  W-pair signal diagrams and double-pole approrimation

In Figure B the cross sections of the W-pair signal diagrams and the DPA for vy —
WW — 4f (see Section BI.H for definitions) are compared with the complete lowest-
order cross section for several processes. The plots on the l.h.s. show the cross sections
for various final states calculated from the full set of (electroweak) diagrams, from the
signal diagrams only, and in DPA separately for hadronic, semi-leptonic, and leptonic final
states, while the plots on the r.h.s. show the relative deviation from the corresponding
DPA. We do not include the convolution over the photon spectrum and gluon-exchange
diagrams in this analysis so that effects of the approximation are clearly visible. For
energies not too close to the W-pair threshold, the DPA agrees with the full lowest-order
cross section within 1-3%, which is of the expected order of I'wy/My. Near threshold,
i.e. for \/5,, — 2Myw = O(I'w), the reliability of the DPA breaks down, since background

diagrams become more and more important and small scales 7, such as y/s,, — 4M, can
increase the naive error estimate from 'y /My to T'w/v. The cross sections of the W-pair
signal diagrams, however, shows large deviations from the full vy — 4f cross sections for
the whole energy range, in particular, at high energies. As explained in Section B.T3l, the
W-pair signal diagrams are not gauge invariant, and thus the reliability and usefulness
of the resulting predictions should be investigated carefully. The results of Figure B.1
clearly show that a naive signal definition is a bad concept for vy — WW — 4f since
deviations from the full process vy — 4f even reach 5-10% in the TeV range. This is
in contrast to the situation at e*te™ colliders where the naive W-pair signal (defined in
't Hooft-Feynman gauge) was a reasonable approximation (see, e.g., Ref. [ 44]).



44 Lowest-order predictions for yy — 4f()

o [fb} O'DUPA -1 [%]
| | | | 10 | | | |
7000 - _ =
sE -
6000 |- ' il
ettt oeaearararararraraoa et
0 - // —
5000 |- / .
! signal -----
! uds¢ ===
B 75 | uﬁdd ........... _
4000 ,' without QCD
without QCD |
3000 | | | | _10 L1 | | |
200 400 600 800 1000 200 400 600 800 1000
V3 [GeV] V3 [GeV]
o [fb] aoen — L1%]
2600 | | | | 10 | | | |
2400 |- St
2200 |- T Jttant 7
2000 |- eI
0 - // —
1800 | / signal —- - -
l’ e rveud ------
1600 |~ 5 1
5L | i
1
1400 i
1
1
1200 —10 ! . . .
200 400 600 800 1000 200 400 600 800 1000
/vy [GeV] /vy [GeV]
g [fb] ”DJPA -1 [%]
900 T T T T 10 T T T T
800 IS
5 /’,/” -
woof /4 | AR .
600 ofFF s =
f signal -----
500 [~ ,’ e VeV,uﬂ ......
_5 | 'l e ﬁeyee ........... ]
400 | :'
]
1
300 —10 Ll : : '
200 400 600 800 1000 200 400 600 800 1000
/3y [GeV] /3y [GeV]

Figure 3.7: Cross sections of various processes including all diagrams, only W-pair signal
diagrams, and in DPA as a function of the CM energy (Lh.s.), and the corresponding
relative deviations from the DPA (r.h.s.); photon spectrum and gluon-exchange diagrams

are not included.
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o(yy = e Doy ™)

J/F [GeV] 500 800 1000 2000 10000
fixed width | 826.40(21) | 788.35(21) | 746.94(21) | 500.70(20) | 31.745(68)
step width | 827.45(22) | 789.34(21) | 748.17(23) | 501.41(21) | 31.746(68)
running width | 827.43(23) | 789.29(21) | 748.11(23) | 501.32(21) | 31.715(68)
complex mass | 826.23(21) | 788.18(21) | 746.78(21) | 500.59(20) | 31.738(68)

a(yy = e Do)

57, [GeV] 500 800 1000 2000 10000
fixed width | 39.230(45) | 47.740(73) | 49.781(91) | 43.98(18) | 4.32(23)
step width | 39.253(45) | 47.781(73) | 49.881(96) | 44.01(18) | 4.31(24)
running width | 39.251(49) | 47.781(74) | 49.898(95) | 44.48(22) | 10.83(28)
complex mass | 39.221(45) | 47.730(73) | 49.770(91) | 43.97(18) | 4.31(23)

Table 3.4: Cross sections for the processes vy — e Dev,u™ and vy — e Dev,uty for
various CM energies and various width schemes without convolution over the photon
spectrum.

The failure of the naive W-pair signal definition for v collisions was also pointed out
in Refs. [[T6, [I7] before. In Ref. [[I7 an “improved narrow-width approximation” was
presented which provides another variant for a gauge-invariant W-pair signal definition.
It is based on the factorization of production and decay matrix elements, while retaining
W-spin correlations.

3.5.2.5 Comparison of schemes for introducing finite gauge-boson widths

In this section we compare the different implementations of gauge-boson widths de-
scribed in Section B4l numerically. As explained in Section B-T4l, the complex-mass
scheme is the only scheme that yields gauge-invariant results in general, but for the pro-
cess classes vy — 4f(7) the fixed-width approach (in the non-linear gauge) also yields
amplitudes that respect Ward identities and gauge cancellations. Table lists the cross
sections for the processes vy — e v, u™ and vy — e v, uty obtained with the fixed
W width, the step-width, the running-width, and with the complex-mass scheme. The
results of all four schemes for the process vy — e Tev,ut agree within the expected ac-
curacy of O(I'w/Mw) up to energies in the TeV range. However, for vy — e o, puty
the running-width scheme yields totally wrong results for several TeV, while the other
schemes are still in good agreement. Although the gauge-invariance-breaking effects in
the running-width scheme are formally of O(I'w /M), they are enhanced by spoiling
gauge cancellations, thereby ruining the reliability of the prediction completely.
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0. | Ee[GeV] o[ D]
vy = e~ Deud | vy — veetdi

1° 10 9557.2(1.6) | 2618.6(1.6)
5 | 10 2492.0(1.6) | 2505.6(1.6)
10°] 10 2413.2(1.6) | 2258.5(1.5)
5 1 2611.4(1.6) | 2505.7(1.6)
5 | 10 2492.0(1.6) | 2505.6(1.6)
5 | 20 2181.1(1.4) | 2505.1(1.6)

Table 3.5: Polarized cross sections for the processes vy — e~ 7,ud and vy — veetda
without convolution over the photon spectrum at ,/s5,, = 500 GeV for different angular
and energy cuts of e~ and e™.

For the semi-leptonic 7y — 4f process it was already observed in Ref. [[I7] that
the cross section does not vary significantly if the fixed-width, the running-width, or a
so-called “fudge-factor” scheme is used for introducing finite widths.

3.5.2.6 Effect of phase-space cuts on vy — e~ Joud and vy — veetdi

As observed in Section 21l the CP-related final states e"Z,ud and veetdi do not
yield the same cross section if the photon spectrum is included. A CP transformation not
only transforms the two final states into each other, but also flips the polarization of the
photons. Thus, for unpolarized photons the two processes have the same cross section.
However, the photon spectrum induces an effective polarization of the photons so that
CP invariance does not require the two cross sections to be equal anymore. Which cross
section is larger in this case depends on the applied phase-space cuts [ [I7].

In fact, there are two competing influences. On the one hand, there is the angular
cut of e~ and e™ w.r.t. the beam axis, on the other hand, the cross sections are sensitive
to the energy cut of e~ and e™. In this context it is important to note that two photons
with polarization (A;\y) = (+4) mainly produce W bosons with helicities (++) (see,
e.g., Refs. [[I7, £9]). Since W bosons decay into left-handed particles and right-handed
anti-particles, helicity conservation requires that the largest part of the cross section (for
positive photon helicities) comes from a region of the phase space where the 7, in the final
state e~ Z.ud is emitted in the direction of flight of the W~ boson. In the rest frame of the
W boson the e~ is emitted in the opposite direction. However, the cuts are applied in the
laboratory frame so that the Lorentz boost tends to push the e™ out of the angular cut
w.r.t. the beam axis (remember that the W bosons are preferably produced in a direction
close to the beam axis). For the 7, no cuts are applied, thus, the Lorentz boost of the 7,
does not have any effect. In the process vy — veetdu the et is emitted in the forward
direction of the W™ boson, while the 1, is emitted in the backward direction. In this case,
more events are subject to the phase-space cut. As a result, the angular cut of et /e”
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Figure 3.8: Invariant-mass distribution of the W+ boson reconstructed from the ud quark
pair (Lh.s.) as well as its production-angle distribution (r.h.s.) in the reaction vy —
e voud at /s = 500 GeV with and without convolution over the photon spectrum.

reduces the cross section of the process vy — vee*di more than the cross section of the
process 7y — e~ J,ud. This is illustrated in Table A, where we compare the polarized
cross sections for both processes for different values of the angular cut.

On the other hand, the cross sections also depend on the energy cut that is applied
to e~ and e. As explained above, the largest part of the cross section for vy — e~ 7.ud
comes from a phase-space region where the 7, is emitted parallel to the W~ boson and
the e™ anti-parallel. Since the v, carries most of the energy of the W~ boson and the e~
only a small fraction, the energy cut of e™ disfavours this process. For the CP-conjugate
final state vee™dil the energy cut has almost no effect on the cross section, because the
e carries most of the energy and the v, is not subject to an energy cut. This situation
is also illustrated in Table B0 where we show the cross sections for different energy and
fixed angular cut in the lower part of the table.

3.5.3 Results for differential cross sections
3.5.3.1 Invariant-mass and angular distributions for W bosons

In Figure B.§ we show the invariant-mass and angular distributions of the intermediate
W+ boson for the process vy — e~ eud at /s = 500 GeV. The momentum of the W+
boson is reconstructed from the outgoing quark pair in the decay W+ — ud. Figure
also illustrates the effect of the convolution over the photon spectrum.

The resonance in the invariant-mass distribution (Lh.s. of Figure B§|) has the typi-
cal Breit-Wigner shape and can be used to determine the W-boson mass and width at
a vy collider. Moreover, owing to its large cross section, the W reconstruction in this
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reaction seems to be a promising possibility for detector calibration at a vy collider. Sim-
ilarly to the integrated cross sections discussed in the previous sections, the convolution
qualitatively rescales the distribution by roughly a factor 4.

The r.h.s. of Figure B8 shows the distribution in the angle 6,5 between the W' boson
and the beam axis. Since the incoming v state is symmetric w.r.t. interchange of the two
photons, the angular distribution is symmetric in the production angle #,5. W bosons are
predominantly produced in forward or backward direction owing to diagrams with ¢- and
u-channel exchange of W bosons. For the process vy — WW with on-shell W bosons,
the forward and backward peaks are integrable and lead to a constant cross section in
the high-energy limit. As already pointed out in Section B5Z2 the angular cuts (B5.2)
restrict the available phase space of the intermediate W bosons and lead to a reduction
of the forward and backward peaks for high energies. Note that the reduction induced
by the convolution over the photon spectrum is not uniform, but tends to flatten the
shape of the angular distribution slightly. This is mainly due to the reduced CM energy
in the photon spectrum, leading to a less pronounced peaking behaviour in the forward
and backward directions.

3.5.3.2  FEnergy and production-angle distributions of fermions

In Figure we show the energy and angular distributions of the outgoing fermions
e, u, and d in the reaction vy — e~ Zud at /s = 500 GeV with and without convolution
over the photon spectrum.

For monochromatic, unpolarized incoming v beams (i.e. without convolution over the
photon spectrum), the energy distributions (1.h.s. of Figure B3) of the fermions e, u, and
d almost coincide and are maximal at their largest and smallest kinematical limits. These
regions are dominated by the situations where the respective W boson emits the considered
fermion parallel or anti-parallel to its direction of flight. The convolution over the photon
spectrum changes the shapes of the energy distributions considerably. Since the photon
spectrum falls off rapidly for energies above 80% of the incoming electron energy, energies
of the final-state fermions larger than 200 GeV become practically impossible. For fermion
energies below 200 GeV the shapes of the distributions of the outgoing fermions e~ and
u look rather different from the one for the anti-fermion d. This effect is due to the
effective v beam polarization in the photon spectrum; for unpolarized v beams the energy
distributions would look almost identical. In detail, the effective polarization of the ~~
system is mainly (A A2) = (++), leading predominantly to WHW~ production with
effective helicities (++). Following the line of thought of Section W bosons with
helicity +1 cannot decay into fermion—anti-fermion pairs with a fermion (which must have
helicity —%) parallel to the flight direction of the W boson. Thus, much more anti-fermions
(which have helicity +%) than fermions follow the directions of the decaying W bosons,
which qualitatively explains the reduction (enhancement) of the fermion (anti-fermion)
energy distributions at the upper kinematical energy limit. The above arguments are
nicely illustrated in Ref. [ [[7], where the fermion energy distributions are shown for fully
polarized, monochromatic photon beams.
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Figure 3.9: Energy (Lh.s.) and production-angle (r.h.s.) distributions of the outgoing

fermions e~, u, and d in the process vy — e Dud at /s = 500 GeV with and without
convolution over the photon spectrum.
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The r.h.s. of Figure B9 shows the distributions in the angles 6 of the (anti-)fermions
f = e ,u,d to the beam axis. Because of the symmetry of the incoming v+ state w.r.t.
interchange of the two photons, the angular distribution is symmetric in 6. The forward
and backward peaks originate from two sources. The by far largest contribution to the
differential cross section comes from signal diagrams and thus from configurations where
the W bosons as well as the decay fermions are nearly parallel to the beam. The second
source, which is widely suppressed by the applied cuts, is related to collinear singularities
of background diagrams where an incoming photon splits into an fermion—anti-fermion
pair ff, with the fermion or anti-fermion directly going into the final state. If the phase
space of the outgoing (anti-)fermion is not restricted by cuts, such collinear or mass
singularities lead to logarithms of the form In(s/m?), where my is the fermion mass. Since
our calculation is done for massless fermions, the collinear singularities must be excluded
by phase-space cuts and the fermion mass in ln(s/m}) is replaced by the corresponding
cut parameter.

The photon spectrum reduces the differential cross section over the whole range and
again flattens the angular distributions, especially in the cases of outgoing fermions. The
significant difference between the outgoing fermions and anti-fermions is again due to the
effective v polarization in the photon spectrum. As explained above, more anti-fermions
than fermions follow the flight directions of the W bosons, which are mainly produced in
the forward and backward directions. This is the reason why the .- and 6, distributions
are flattened, while the peaking behaviour in the 63 distribution is more pronounced after
the convolution over the photon spectrum.

3.5.3.3 Higgs-boson resonance

In Figure B0 we show the invariant-mass distribution of the Higgs boson for the
process vy — H — WW — udsc for a Higgs mass of My = 170 GeV. The CM energy of
the electron beams is chosen to be /s.c = 260 GeV which maximizes the v~ luminosity
in the region /s, ~ My. The invariant mass M. of the Higgs boson is reconstructed
from its decay products which are the four outgoing quarks. This means that M . is
equal to the photonic CM energy, M5z = /5,,. Thus, the shape of the distribution
depends on the form of the photon spectrum very strongly. The effective yyH coupling
is set to the SM value (B33)). For comparison the situation without Higgs resonance is
also included in Figure BI0, illustrating the significance of the Higgs signal. The different
peak heights in the two plots simply result from different bin sizes.

3.5.4 Anomalous couplings

In this section we study the impact of possible anomalous gauge-boson couplings on
CC cross sections of the process class vy — 4f. In order to estimate the full sensitivity of
a future vy collider, such as the vy option at the ILC, on anomalous couplings, in addition
differential distributions and realistic event selections should be taken into account. Such
a study goes beyond the scope of this work, but our Monte Carlo generator can serve as
a tool in this task.
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Figure 3.10: Invariant-mass distribution of the four-quark final state for the process vy —
udsc at /see = 260 GeV including convolution over the photon spectrum.

We consider only semi-leptonic final states, since these have the cleanest experimental
signal. The cross section for semi-leptonic final states is obtained from the sum over all
reactions vy — [~pqq, with ¢ = u,c and [ = e, u, 7, and their corresponding charge-
conjugated processes vy — vl*q¢'q. The results are shown in Figure BT for ATGC and
in Figure for AQGC. In the left plot of Figure B-I1l and the upper plot of Figure
we show the cross section as a function of the anomalous coupling constant normalized
to the SM cross section. As can be seen in the insert of Figure BI1l the minimum in
the Ak, curve is shifted to negative values which is caused by contributions to the cross
section that are linear in Ax,. These contributions result from the interference between
matrix elements linear in the ATGC Ak, with the SM amplitude. On the other hand,
the interferences for the ATGC A, are small. In the case of AQGC, such interferences are
relatively large for a..

In order to examine the sensitivity of a linear collider to anomalous couplings, we
consider a vy collider with an integrated luminosity of £ = 100fb™" and a CM energy of
V/See = 500 GeV [[II]. We define

2 _ (N(ai) = N)*
N

X with N =osul, N(a;)=o0(a;)L, (3.5.4)
where N is the expected number of events in the SM and N(a;) the number of events in
the SM extended by the non-standard couplings. In Figures B11land B2 the 1o contours
corresponding to x? = 1 are shown. Note that the 1o contour can result from N(a;) > N
and N(a;) < N. While x* = 1 with N(a;) > N is always possible for sufficiently large
anomalous couplings, x*> = 1 with N(a;) < N requires large interference effects of matrix
elements with anomalous couplings. In our case, both branches of the 1o contours are
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Figure 3.11: Combined cross section for semi-leptonic final states as a function of the
ATGC Ak, and A, (Lh.s.) and 1o contours (r.h.s.) in the (Ax,, A,) plane at |/Se =
500 GeV including the convolution over the photon spectrum.

realized. In Figure BTl the plot on the r.h.s. shows the 1o contours in the (Ax,, A,) plane.
Since the cross section is a polynomial up to fourth power in the ATGC, the contours
are not of elliptic form. The allowed region lies between the two contours that are rather
close to each other so that they cannot be distinguished in the insert which shows the
contours on a larger scale. Note that in the limit of large luminosity the contour in the
insert of the r.h.s. of Figure BTl does not shrink to a point, but reduces to a line in the
(Ak,, Ay) plane on which oapom = ogum. In order to resolve this correlation between Ak,
and \,, anomalous effects on distributions should be considered, or other constraints from
the ete™ or e vy modes should be included.

In case of AQGC the cross section is at most quadratic in the AQGC, and the %2 =1
surface consists of two ellipsoids in the (ay, ac, @o) space. The existence of two branches
is again due to large interferences of anomalous contributions. In the lower left plot of
Figure we show the projections of the outer ellipsoid into the coordinate planes of
two AQGC (where the third AQGC is zero). In the lower right plot the sections of both
ellipsoids with these planes are given. Since the centre of the ellipsoids is shifted in the a,
and ag directions, the terms in o(a;) linear in these couplings are significant; they result
from interferences of the diagram with the AQGC with the SM amplitude. Interferences
that are proportional to @y turn out to be small. From Eq. (B2ZI4) it is obvious that
there are no agag and acag terms in o(a;). Consequently, the projection into and the
section with the (ag, a.) plane coincide. On the other hand, the two other projections and
sections differ, signalling that the a.ay term in o(a;) is significant.

The allowed 1o region (x* < 1) in the (ag, ac, Gg) space is the shell at the boundary
of the shown ellipsoid. Similar to the observation made above for the ATGC, the size
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Figure 3.12: Combined cross section for semi-leptonic final states as a function of the
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of the ellipsoid does not shrink for larger luminosity, only the thickness of the shell will
decrease. This means that the size of the projections shown in the lower left plot of
Figure BT2 will not reduce for larger luminosity. Thus, using only information on an
integrated cross section (for a fixed energy) could not improve the bounds on AQGC
w.r.t. the ones resulting from efe™ — WW~y — 4f~ [ B0]. However, the thinness of
the shell of the ellipsoid, as illustrated in the lower right plot of Figure BI2 shows that
the bounds can be drastically tightened if the correlation between the three AQGC is
resolved. Differential distributions will certainly provide this information, so that a ~v
collider should be able to constrain AQGC by an order of magnitude better than an ete™
collider operating at comparable energy.



Chapter 4

Quantum corrections to
¥y = WW — 4f in double-pole
approximation

4.1 Strategy of the calculation

We consider the process
Yk An) + (b2, Ao) = Wk, AL) + W™ (k- o)
— fi(pr,01) + fa(p2, 02) + f3(ps, 03) + fa(ps, 04), (4.1.1)

where k; and p; denote the momenta and A; and o; the helicities of the corresponding
particles.

The lowest-order cross section dagg;‘*f, based on the complete matrix elements
M%Z;ff with massless fermions, has been discussed in the previous chapter. Suppressing
the averaging over the photon polarizations and the spin and colour summation for the

final state in the notation, it reads
1
[ ottt = - [ ddy ME P, (4.1.2)
S
with
s= (ki +k)?  si=(pi+py)? 6,5 =1,2,34 (4.1.3)
The variables s;; are introduced for later use.

In the following we focus on the radiative corrections of O(«) which consist of vir-

. 4 . .
tual corrections do?"* to the process @) and real-photonic corrections do?7 =417,

originating from the process
Yk An) + (ko Ag) = WH (ki AL) + W™ (o, An) (+7)
= fi(p1,01) + f2(p2, 02) + fa(p3, 03) + fa(pa, 04) + (K, A,). (4.1.4)

Combining the different contributions we obtain the O(«)-corrected prediction for the
cross section,

[do = [aog + [ o 4 [agmin, (4.15)
5

5
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The real-photonic corrections do?4/7 are based on the full lowest-order matrix elements
M%Z:fﬁ of the process vy — 4f~ for massless fermions, which were calculated in the
previous chapter . In the limit of vanishing photon momentum £ (soft limit) or when
the photon becomes collinear to an external charged fermion (collinear limit), the cross
section diverges. Considering the process vy — 4fv with a visible photon (which is
neither soft nor collinear), these soft and collinear singularities are removed by imposing
appropriate phase-space cuts which are justified by the finite experimental resolution.
For predictions of the vy — 4f() processes, i.e. with or without photon radiation, the
singular phase-space regions of soft or collinear emission have to be integrated over. In this
case the real corrections are combined with the virtual corrections which contain exactly
the same singularities with opposite sign. The regularization of the singularities in the
real corrections by small photon and fermion masses, A and my, as well as the matching
with the singularities in the virtual corrections, is described in detail in Section B3 The
starting point is a separation into a finite and a singular part,

yy—=4fy — yy—=4fy yy—=4fy
do - daﬁnite + dasing )

(4.1.6)

Yy—=4fy

where the soft and collinear singularities appear in dog,

respectively.

The virtual corrections to the process (L)) are calculated in the DPA, which is
explained in Section L2 Since the real corrections are based on complete vy — 4f~
matrix elements (i.e. they are not calculated in DPA), the cancellation of soft and collinear
singularities in Eq. ({ELH) requires particular care. To this end, we apply the DPA only
to the finite part of the virtual corrections,

as In A and Inm; terms,

4 WW—4 4
do—\’zyl’ly“:> / — do—;yi’ly":;inite,ng; + do’\’zyl’ly":su{g (417)
Technically this is achieved by subtracting the singular part in DPA from the DPA virtual
corrections and adding the exact singular part da;’gt;i{g. Of course, this procedure involves
: . 4 4
some freedom, because finite terms can be shifted between da;’g&n’;te’DPA and dazg:sh{g.
This arbitrariness is, however, of the order of the uncertainty O(al'w/(mMywy)) of our
calculation. In the ete™ case this has been checked numerically in Ref. [ [19)].

Inserting these rearrangements into Eq. (EEI0) we obtain

— yy—4f Yy WW—4f yy—sdf Y34 fry
/da N /dUBorn + /dJVirt,ﬁHitE,DPA + davirt+real,sing + daﬁnite ) (418)
vy—=4f = Y4 f vy—4fy .
where fdavirt+real,sing - fdavirt,sing + fdareal,sing does not contain any dependence on the

photon mass anymore. Collinear singularities, appearing as Inmy terms, also cancel if
the observable is sufficiently inclusive. Such collinear-safe observables result if photons
within cones collinear to any outgoing charged fermion are treated inclusively, i.e. if they
are not separated from the nearly collinear fermion by any phase-space or event selection
cuts. For non-collinear-safe observables logarithms of the fermion masses remain in the
final result. This case demands a special treatment of the singular terms. We elaborate
more on this issue in Section 32
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vy . .
On-shell production On-shell decays

Figure 4.1: Generic Feynman diagram of the virtual factorizable corrections to vy —
WW — 4f. The shaded blobs stand for loop corrections to the production and decay
processes.

4.2 Virtual corrections

4.2.1 Concept of the double-pole approximation

In Section Z4] we described how to construct a pole expansion around a resonant prop-
agator. In order to obtain the first term of this expansion factorizable and non-factorizable
contributions have to be calculated. In the following, we apply the results to the case
of two resonant propagators, i.e. we expand the matrix element for vy — 4f around the
poles of the two resonant W propagators. For more details of the DPA, especially how
a gauge-invariant decomposition into factorizable and non-factorizable contributions is
obtained, we refer to Refs. [ 19, B7, 60, 61].

The generic Feynman diagram for the factorizable corrections is shown in Figure
It factorizes into the on-shell W-pair production, the off-shell W-boson propagators, and
the subsequent on-shell W decays. The corrections can be attributed to either of these
subprocesses. When integrating over the full 4 f phase space, the W bosons usually are not
on shell. However, a gauge-independent evaluation of the matrix elements for production
and decay requires on-shell momenta for the W bosons. Therefore, we have to perform an
on-shell projection, i.e. the momenta of the fermions are deformed in such a way that the
W bosons become on shell. The deformation involves a certain freedom and introduces
an error of O(al'w/(mMy)). We define the on-shell projection by fixing the directions
of the W* boson and of the fermions f; and f;. The explicit formulas can be found in
Appendix A of Ref. [[T9]. For later use, we label the new momenta k. and p; and define
the kinematic invariants

t=(ky —ky)? = (ky —p1 — po)?,  G=2M2% —s—1i. (4.2.1)

Apart from the factorizable corrections there are additional doubly-resonant contribu-
tions. In the corresponding diagrams subprocesses are linked by a photon. These diagrams
become doubly resonant in the limit of vanishing photon momentum, as can be seen from
the soft-photon approximation in which the correction is proportional to the lowest-order
cross section. The relative correction factor for these so-called non-factorizable correc-
tions is, thus, not dependent of the actual production mechanism of the W pairs, but
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Figure 4.2: A representative set of diagrams contributing to the virtual non-factorizable
corrections. The shaded blobs stand for all tree-level structures contributing to vy —
WW.

only on the electric charges and kinematics of the external particles of the process. The
non-factorizable corrections were calculated in Refs. [ 60, G1] for ete™ - WW — 4f. We
can transfer the results for the ete™ case by simply omitting all contributions in which
the exchanged photon is linked to an e* from the initial state. The different types of
relevant diagrams are depicted in Figure 2 The first two diagrams, labelled (a) and
(b), are manifestly non-factorizable, i.e. the photon links different subprocesses so that
the propagators in the diagrams cannot be factorized anymore. The diagrams (c), (d),
and (e) contain both factorizable and non-factorizable contributions. Their factorizable
parts are defined as the residues for on-shell W bosons times the off-shell W-boson prop-
agators; note that this procedure introduces artificial soft IR divergences connected with
the on-shellness of the W bosons in the loops. The non-factorizable parts of the diagrams
are obtained from the difference of the doubly-resonant contribution of the full diagrams
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and their factorizable parts; the artificially introduced IR divergences of the factorizable
parts are, thus, compensated by corresponding terms in the non-factorizable parts.
Following this strategy, the virtual corrections in DPA can be written as

1 *
dazg.:];]‘éxv_ﬂf = 2—S/d<134f (2 Re{(SMvirt,factMBorn,DPA}

+ 6virt,nfact ‘-/\/lBorn,DPA|2 + |6MHiggs2>; (422)

where Mponppa denotes the tree-level matrix element in DPA and dyiys nfact contains
the non-factorizable corrections. The factorizable corrections 6 Miy fact also contain a
contribution of the s-channel Higgs resonance,  Miges. In order to describe this resonance
properly, it is not sufficient to include the interference of 0 Mg With the Born matrix
element, but the square of this matrix-element contribution has to be taken into account in
addition. To this end, 6 Mg has to be defined in a gauge-invariant way. Our treatment
of 0 Mg, is described in Section in detail.

4.2.2 Factorizable corrections
4.2.2.1  Calculation of the one-loop amplitudes

The factorizable corrections comprise the corrections to the on-shell production of the
W bosons and their on-shell decay and can be expressed as

dIMyirt fact = Z [7a IK (5MWWWME{;:f1f2ME{);:f3f4
Apa
o ME MY R E A
+ METY MBI O MW TR (4.2.3)
where we introduced the abbreviations
Ky =k — My, +iMyTyy, (4.2.4)

and d M denote one-loop matrix elements. Note that all matrix elements on the r.h.s. of
Eq. (E2Z3) depend on the on-shell projected momenta, but the momenta in Ky remain
unchanged. The results for the different one-loop corrections to the production [39, 59, 62]
and the decay [[B7] are already known in the literature. Combining them in Eq. ([Z2Z3) is,
however, non-trivial since the polarizations of the W bosons have to be defined consistently
in a common reference frame.

The one-loop corrections SMW=/ifi to the W decays are rather simple. In the massless

limit they are proportional to the respective Born matrix elements My, """,

SMYEE (N i, ) = OIS MR (i ). (4.2.5)

orn

where 6W=/ifi i a constant correction factor that neither depends on the kinematics nor

on the helicity Ay of the decaying W boson.
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The one-loop correction SM”WW to the W-pair production process contains the com-
plicated part. Our calculation is based on the results of Ref. [B9]. As in the previous
chapter which use a non-linear gauge fixing term, so that the vertex yYW¢ of a photon, a
W boson, and the would-be Goldstone boson of the W boson vanishes. This reduces the
number of diagrams compared to the conventional 't Hooft-Feynman gauge.

In the following we describe an efficient way for calculating the contribution of
SMYWW 0 M yirg tact Of Eq. (EEZ3), taking into account all spin correlations. As de-
scribed in Ref. [ 9], the matrix element 6 MWW for on-shell W-pair production is de-
composed into a sum of products of form factors Fj, which only depend on the kinematic

yYWW
M|

variables s and #, and a set of standard matrix elements (SME) , which contain

the polarizations and momenta of the external photons and W bosons,

5M’WWW(k1; k?; )\1; )\27 I%Jr: 1%77 )‘+7 )‘*)
36
= 3" Fi(s, HMI™ WV (ko ko, iy Aas g by A, M), (4.2.6)

=1

The SME M}”WW are obtained from the 83 basic matrix elements given in Section 2
of Ref. [B9] which are reduced to 36 matrix elements as described therd]. The decay

matrix elements My " which multiply MWW in Eq. (@Z3), can be included by

replacing the W polarization vectors € in the definitions of the SME M by the “effective
polarization vectors”

€ 1

€ 1
—a(p)YHw_v(ps), gt = —(p3)Y'w_v(ps), 4.2.7
N (P1)7"w-v(p2) o I (Da)v"w-v(ps) (4.2.7)

g =

where @(p;) and v(p;) are the Dirac spinors of the fermions and anti-fermions and w_ =
%(1 —75) is the left-handed chirality projector. The effective W-polarization vectors £%_ are
formal shorthands for the W propagators and the tree-level decay matrix elements, which
involve the usual SU(2) gauge coupling e/sy,. Upon substituting €% — £% in the SME for
on-shell W-pair production, we obtain a new set of SME M that correctly transfer the
W polarization to the decay,

Mi(ky, ko, A, Aos k3 B2 5 {pi}) = M}Www(klakm)\1;)\2;/;4;/;77,)\%)\7)

* 2%
E:E_)E:E

1 ~ ~
= Z K_l_K szww(klal{a;)\1,)\2,k+,k7,)\+,)\7)
)‘Jrs)\f -
: i D D B f. A ~
X M\]?{)r:flh()u”pl,p?) M\};‘gr:f3f4()\,,p3,p4)_

(4.2.8)

The new SME M; can be easily evaluated with spinor methods, as e.g. described in
Ref. [ E2].

IThe on-shell momenta IA@C and the helicities A1 of the W bosons are denoted k3 4 and A3 4 in Ref. [[39).
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In summary the factorizable part of the virtual correction takes the form

36
5Mvirt,fact = Z Fj(S, f)Mj(kl, ko, A1y Ag; ki, kz; {ﬁz})

j=1

" (6W+af1f2 +5w—af3f4)MBom’DPA(/ﬁ’kQ,Al,AQ;ki,kz;{ﬁ,}). (4.2.9)

4.2.2.2  Details of the numerical evaluation

The formulas for the coefficient functions F} are rather lengthy and contain many one-
loop integrals, which in turn involve many dilogarithmic functions, etc. Thus, to speed
up the numerical evaluation it is desirable not to evaluate the F}; at each phase-space
point. Moreover, numerical instabilities occur at the boundary of the phase space where
the scattering angle 6 between the W bosons and the beam axis tends to 0 or 7. This is
due to the inverse Gram determinants appearing in the Passarino—Veltman reduction [63]
of the tensor integrals. The problems of speed and stability can be solved by expanding
the functions Fj(s,t) in terms of a generalized Fourier series in the variable # for fixed
values of s. The coefficients of this expansion are calculated before the Monte Carlo
integration. An appropriate system of orthogonal functions in the variable x = cos#,
which is equivalent to a function of ¢ for fixed s, is provided by the Legendre polynomials

1 d
Pi(z) = g (-1, 1=01.. . (4.2.10)

For this basis functions, the coefficients read

20+1 1 . 9\ 5 .

cji(s) = — |, dcosf (t — Myy)(u — M) F;(s,t)P/(cos8), (4.2.11)
where we have introduced the factor (f — Mg)(a — M%) in order to flatten the ¢- and
u-channel poles in the functions Fj. This improves the efficiency of the expansion. The
integration in Eq. (EL2ZIT)) is carried out using Gaussian integration. With 40 integration
points the region of instability is not entered (for energies up to a few TeV), and the
integration is sufficiently precise. During the Monte Carlo integration the coefficient
functions are recovered by the generalized Fourier series

D = T - )

cji(s)Pi(cosb). (4.2.12)

In Ref. [[T9] the same concept was used to evaluate the factorizable corrections to
ete™ — WW — 4f; there it was sufficient to use the Legendre polynomials up to [ = 20
for a good accuracy. In the case of vy — WW, however, the coefficient functions involve
inverse Gram determinants 1/(fi — My;) oc 1/sin? @ which appear in the Passarino-
Veltman reduction of the tensor integrals. As each step in this recursive reduction involves
such an inverse determinant, 1/(fi — My,) can appear up to the fourth power. At cosf ~
+1 this factor leads to a behaviour of the Fj(s, f) that is not well approximated by the
Legendre expansion. Using higher-order Legendre polynomials is not a solution since this
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increases the calculation time and also requires more integration points for the Gaussian
integration. The more points are used in the Gaussian integration, the closer some of these
points approach the integration boundary where the numerical stability of the coefficient
function breaks down. Therefore, we follow a different strategy based on the fact that the
helicity amplitudes for the on-shell process vy — WW are smooth functions of cos ), apart
from the - and u-channel poles. Thus, within the full amplitude the factors 1/(fi — M)
have to cancel between contributions of different coefficient functions. To make use of this
fact we change the basis of SME by a linear transformation in such a way that the new
coefficient functions correspond to helicity amplitudes of the on-shell process vy — WW.
Some details of this transformation can be found in App.[d After this transformation
the uncertainty of the approximated matrix elements in Eq. [EZH) is well below 10~
with respect to the Born matrix elements for all values of cosf.

In contrast to the eTe™ case, the CM energy +/s of the photons is not fixed. Thus, we
have to perform the Legendre expansions for different values of s. During the Monte Carlo
integration we derive an approximate value of the coefficients ¢;;(s) by interpolation. Since
the Fj(s,?) depend on s very smoothly, it is sufficient to calculate the c;;(s) at intervals
of As $1GeV. In these intervals we then interpolate with a polynomial of third order.
We have checked that, up to 1 TeV, this yields a sufficient accuracy (i.e. better than the
accuracy of the Legendre expansion).

4.2.2.3 Renormalization and imaginary parts of virtual corrections

For on-shell W-pair production, which was considered in Ref. [ B9], imaginary parts of
counterterms, if included, do not influence the correction to the matrix element square.
The reason is that for the 2 — 2 scattering process vy — WW all SME, and thus also the
Born matrix element, can be taken real by appropriate phase choices. Thus, the operation
of taking the real part in the interference term 2Re{M M}, } of the counterterm
contribution M to the one-loop amplitude with the Born amplitude effectively acts on
the renormalization constants themselves. The same argument shows that also imaginary
parts of loop integrals drop out. These arguments are no longer true if the decay of the
W bosons is taken into account, because the SME and the Born matrix element Mpom ppa
become necessarily complex. Thus, imaginary parts of renormalization constants and of
loop integrals in general matter. Considering the W-decay amplitudes in the DPA in
more detail, as e.g. done in Ref. [[22] for the eTe™ case, one can see that imaginary parts
average to zero after the azimuthal decay angles of the W-decay products are integrated
over.

We have calculated the virtual corrections taking into account the imaginary parts
of all loop integrals. Comparing the virtual corrections with a second, independent cal-
culation in the 't Hooft-Feynman gauge [ 6] and in the background-field gauge [ [7], we
find agreement between the results obtained in these different gauges. This is, however,
only true if we also take into account the imaginary parts of the loops that contribute
to renormalization constants. In order to explain this fact, we consider the counterterm
contributions to the one-loop matrix element in more detail.
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Following Ref. [ [BY], we write the Born matrix element in DPA as

s s
MBorm =8 —M — Mo, — = EY) 8, 4.2.13
Born,DPA W@{M\%}_t 0t 1+ M2 —a 0, (e162) (€7 )} ( )

where Mg, and Mg, are abbreviations for specific combinations of momenta and po-
larization vectors defined as in Eq. (22) of Ref. [B9] for on-shell W-pair production. In
the 't Hooft-Feynman gauge, the counterterm contribution to the production part of the
factorizable correction reads

(SMEEErOd = MBorn,DPA (2626 + (SZW + 6ZAA - E_W(SZZA>

50 M,

- 7./\/1 u
F— Mz * (@ — M3 " )
(£187)(226") (2187 )(2267) ), My

—4 A 20 M. —0Z
m( (f — M2) T a- 3 v !

(e187)(e267) | (218 )(e267)
(i~ M)? <a—M3v>2>5t’

wW~wW

M
-i-47roz6 W (

25w

(4.2.14)

where we adopt the conventions of Ref. [[6] for the renormalization constants 07,, d Zw,
etc. The explicit calculation of the constants in terms of self-energies is also described
there. The counterterm contribution in the background-field gauge [ [7] can be obtained
from S M4 by simply omitting the 6Z;4 terms, because §Zz4 vanishes owing to the
background-field gauge invariance. In the non-linear gauge the counterterm contribution

reads

6McNthrod = MBorn,DPA (2526 + 02w + 0744 — z_W(SZZA>

L
— 81 <(87W2M0,t +

2
0w My g0 (4.2.15)
t— Mgy) )2

(@ — M

as described in Ref. [B9], which is different from its counterpart in 't Hooft—Feynman
gauge. Note also that the explicit expressions of the renormalization constants in the
different gauges are in general different.

Imaginary parts of loop and counterterm contributions that are proportional to the

Born matrix element, 0 M = cMpym, cannot influence matrix element squares, because
2Re{0MM% ..} = 2Re{c}| Mpom|?>. Thus, the W-mass renormalization constant § Mg,
is the only renormalization constant whose imaginary part plays a role, since the tadpole
counterterm §t is a real quantity. From Eqs. (EZId) and [EZIH), we see that dM;,
which is equal in all three considered gauges, enters the counterterm contributions in the
't Hooft—Feynman gauge and in the non-linear gauge in different ways. In fact, we have
checked numerically that the virtual corrections in these two gauges are different (though
finite) if the usual on-shell prescription §M3 = Re{X¥W (M3)} (see e.g. Ref. [H]) is ap-
plied, where ©3 (k?) is the transverse part of the W-boson self-energy with momentum
transfer k. If we, on the other hand, use the definition dM3, = S (M), i.e. without
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taking the real part of the self-energy, we find agreement for the results from the different
gauges. This clearly shows that the imaginary part of a one-loop amplitude is in gen-
eral gauge dependent if imaginary parts in renormalization constants are not taken into
account. The reason for this fact, in other words, is that the decomposition of a renor-
malized transition matrix element into genuine loop parts and counterterm contributions
depends on the gauge fixing. A consistent renormalization prescription with complex
renormalization constants naturally leads to complex masses for unstable particles. Such
a renormalization scheme was proposed in Ref. [ 24] in the context of a full O(«a) calcu-
lation for ete™ — 4f. We will apply this scheme in the next chapter for the calculation
of the complete one-loop corrections to the process H - WW /ZZ — 4f.

In our Monte Carlo generator we have taken into account the imaginary parts of the
virtual corrections (including the ones from counterterms); more precisely they can be
switched on and off optionally. As explained above, they could only affect observables
that are sensitive to the azimuthal decay angles of the fermions. In our numerical results,
we could, however, find no significant effects.

4.2.2.4 Higgs resonance

The loop-induced Higgs resonance, vy — H — WW — 4f, belongs to the class of
factorizable contributions. Nevertheless, its treatment, especially the question of gauge
invariance when including the Higgs decay width, deserves some care. In Ref. [[B9] the
diagrams with an s-channel Higgs resonance were decomposed into a gauge-invariant
resonant part and a gauge-dependent non-resonant part. If we write the contribution of
the Higgs-exchange diagrams as

FH(s)
s — M3

SMYH = (e122) (€7.6%), (4.2.16)

with F#(s) given in Section 4.3 of Ref. [[39], and £; and &, being the polarization vectors
of the photons, then the Higgs decay width can be introduced by replacing

=1ED). 42.17
s — M% +iMyTy + s (e162) (£76%) ( )

5MWE%<

As the residue F7(M3) is gauge independent, we have introduced the Higgs decay width
'y in a gauge-invariant way. Recall that the choice of the polarization vectors of the
photons is such that they obey

eik; =0,  ij=1,2 (4.2.18)

Close to the resonance, the contribution of the Higgs-exchange diagrams is strongly
enhanced. This is why we also take into account the square of the resonant part in

Bq. B22),

_ PR (160)(£467)

IMpiges = : 4.2.19
MH 68 S — MPQI + IMHFH ( )
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In this approach only the leading contribution to the Higgs resonance is taken into
account. However, the gauge-invariant separation of 6 Mpjges from the remaining one-loop
amplitude easily allows for specific improvements in predictions for the Higgs-production
signal in the future. To this end, a pole expansion about the Higgs resonance would
be an adequate first step. Conceptually this expansion again leads to factorizable and
non-factorizable contributions, but the corresponding ingredients are not all available yet
and their calculation is beyond the scope of this work. It should be mentioned that both
the O(a) electroweak and O(a;) QCD virtual factorizable corrections to (on-shell) Higgs
production vy — H can be deduced from the corresponding two-loop calculations [ 4]
(see also references therein) for the decay H — 7.

4.2.3 Non-factorizable corrections

As explained in Section 2] we make use of the result for the non-factorizable cor-
rections to ete™ — WW — 4f. According to Refs. [[T9, 61] we write the correction
factor to the lowest-order cross section as a sum over contributions that are associated
with different pairs of fermions,

iriatas = 3 3 (=)™ QuQo= Re {A (ks pai ko) } (4.2.20)

a:1,2 b:3’4
The function AVi™ receives contributions from the different types of diagrams in Figure B2

Avirt — Avirt + Ag[rt + Aggﬂ +Avirt +Avirt (4221)

mf’ mf mm>

for which the results were given in terms of scalar integrals in Ref. [[19]. The final result
for a = 2,b = 3 (all other contributions can be derived by appropriate substitutions) is

Avirt +A¥E/rt +Avirt

mf’ mf
K+K_823 det(}/g)
~ — Do(—pa4, k 0,M,M,0
det(Y) U( D4, ++p37p2+p3; ) 3 ) )
K det(Y3) K_ det(Ys) A2 Sog .
. Fy— Fy+In| = |In{-22
det(v) 7 Taepy 2o ) M\ T )
AK}[I;;[’ ~ (QM\%V — S) {Co(k+, _k—,o, M; M) - C10('I€—I—a _k—a)‘a MWaMW) k2 — M2 } )
+ W
AV 9] 2In | —— 4 4.2.22

where the sign “~” indicates that the limit k2 — Mg, and I'wy — 0 is carried out whenever
this does not lead to a singularity. The matrices Yy, Y5, Y3, and Y arise from the reduction
of 5-point functions and can be found in Section 3.1 of Ref. [[GI]. The functions F3 and
F3 are defined in Section 4.2, and the Cy and D, functions in Appendix C.1 of the same
reference. The contribution AY', contains the difference of the full off-shell and on-shell
Coulomb singularity, as described there in detail.

The full correction factor dyit nfact does not contain fermion-mass singularities [[19], but

involves IR-singular terms In A, as explicitly visible in Eq. (EEZ22). The latter originate
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Figure 4.3: Relative correction factor of the non-factorizable virtual and real corrections
to the invariant-mass distribution of the du pair in the reaction vy — vee™du for various

CM energies ,/5,,.

from the subtraction of the virtual factorizable correction, which involves the one-loop
matrix elements for vy — WW and W — ff’ with on-shell W bosons, from the doubly-
resonant part of the matrix element for the full vy — 4f process. Specifically, the
In A terms stem from diagrams with photon exchange between an on-shell W boson and
another on-shell particle. As already explained in Section LZT], these singularities cancel
in the sum of factorizable and non-factorizable contributions, since they are artificially
introduced in the corresponding decomposition of the virtual correction. The explicit
formulae for the soft and collinear singularities of the factorizable and non-factorizable
contributions will be given in App.

In Section we mentioned that the non-factorizable corrections vanish if the invari-
ant mass of the W bosons is completely integrated over. However, they become important
in invariant-mass distributions for the W bosons, which are needed for the kinematical
reconstruction of the event. In order to demonstrate the size of the corrections we show
the relative correction factor for the invariant-mass distribution of the du pair in the re-
action vy — veetdu for the input parameters specified in Section EEZIl Since the virtual
non-factorizable corrections are infrared divergent, we also included the corresponding
non-factorizable real corrections. Note that this is only done in Figure 3 Later we
will employ the real corrections based on the complete lowest-order matrix elements for
vy — 4f~. The non-factorizable real corrections originate from interferences of diagrams
where soft photons are emitted from different subprocesses. As in the case of the virtual
corrections, there are diagrams that contain both factorizable and non-factorizable cor-
rections. Their classification proceeds along the same line as for the virtual corrections.
In Ref. [60] it was shown that all non-factorizable corrections connected with the initial
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state drop out in the sum of virtual and real corrections. Hence, we can simply take over
the correction factor that was calculated in Ref. [[G1] for the process e”e™ — WW — 4f.
Figure shows that the corrections become larger for decreasing CM energy reaching
almost 2% for /Sy = 170 GeV. If a photon is emitted from the final state the invariant
mass of the du pair is smaller than the invariant mass of the resonant W boson. There-
fore, the corrections result in a rearrangement of events in the resonance region. This also
shows that a realistic prediction of the corrections very much depends on how the photons
in the final state are treated experimentally. In the following, instead of employing the
non-factorizable real corrections in DPA, we will make use of the complete matrix ele-
ments for 7y — 4 f~ as defined in Section L1l The experimental treatment of the photons
can then be specified in the Monte Carlo generator. This issue will be discussed in more
detail in Section E4]

4.2.4 Leading universal corrections and input-parameter scheme

We parametrize the cross section in such a way that the universal corrections arising
from the running of the electromagnetic coupling o and from the p-parameter are absorbed
in the lowest order. In Section B2l we argued that the relevant coupling for the vy —
WW production process is the fine-structure constant a/(0), because the external on-shell
photons do not induce any running in their coupling to the W bosons. For the decay of the
W bosons, it is, however, appropriate to derive o from the Fermi constant G, according
to Eq. (B53).

The definition of the electromagnetic coupling o has implications on the renormaliza-
tion. For the vy — WW production process we can perform the on-shell renormalization
precisely as described in Refs. [[6]. For the decay of the W bosons, however, the modifi-
cation of the coupling in the G, scheme induces an additional finite contribution to the
charge renormalization constant,

1
6 Ze|G, = 0Ze|aqo) — §Ar, (4.2.23)

where 6Ze\a(0) is the charge renormalization constant of the on-shell renormalization
scheme [ 6] with «(0) as renormalized coupling. The quantity Ar contains the radiative
corrections to muon decay; explicit expressions for Ar can, e.g., be found in Refs. [ 6] [65].

In summary, our lowest-order cross section scales like a(0)?ag, . For the relative O(«)
corrections we use «(0), which is the correct effective coupling for real photon emission, so
that the corrected cross section scales like 04(0)304%;”. For the loop-induced Higgs resonance
we exceptionally take the scaling factor a(O)Qa?(’;#, which accounts for the two “photonic”
and the three “weak” couplings in the corresponding diagrams. We perform this rescaling,

of course, only in the gauge-invariant resonant part 6 Mpizgs of the one-loop amplitude,

as defined in Eq. (ZT9).

4.2.5 Improved Born approximation

The motivation for calculating the virtual corrections in DPA lies in the domi-
nance of doubly-resonant diagrams. At threshold, however, singly-resonant and non-
resonant diagrams become equally important, thus, rendering the naive error estimate of
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O(al'w/(Mwm)) unreliable. As a consequence, we decided to use the DPA only for a CM
energy /s,y > 170 GeV when integrating over the photon spectrum. For /5., < 170 GeV
we make use of an improved Born approximation (IBA), i.e. we approximate the O(«)
corrections by universal contributions without any expansion about the W resonances.
Assuming that the IBA accounts for all O(«a) corrections with pronounced enhancement
factors, the relative uncertainty of the IBA is about ~ £2%. For the corresponding
eTe” reaction this expectation was confirmed by the full O(a) calculation [ 24] for 4f
production.

In detail, we start from the Born cross section based on the full set of vy — 4f
diagrams, which is parametrized as described in the previous section. We denote the re-
sulting matrix element that includes the Higgs resonance with SM couplings, as described
in Section B3 “Born+Higgs”. In addition, we dress the resulting cross section with the
off-shell Coulomb singularity,

1
[ Ao = 5= [ dar (U oo M e (42.24)
The correction factor deoy for the Coulomb singularity was calculated in Ref. [66] to
A7
Scoul = 0) gy f1g (BE2 =5 , (4.2.25)
g B+A+p

with the abbreviations

2 2 _k?
5 \/1 A —iMwTw) KR (4.2.26)

s s '
4.3 Treatment of soft and collinear photon emission

We calculate the real photonic corrections from the full lowest-order matrix element
of the process (ELI4]) without any expansion about the W-boson resonances. They are
calculated from the integral

1
[ a0 = [y, M0 2 6(y) (431

where we have made the implementation of phase-space cuts explicit by including the step
function ©(®,y,), which is equal to 1 if an event passes the cuts and 0 otherwise. Since
we evaluate the real matrix element M%7 with massless particles, the phase-space
integral diverges in the soft and collinear regions, where the emitted photon is either soft
or collinear to an outgoing external charged fermion. In these regions we reintroduce a
formally infinitesimal photon mass A and small fermion masses my as regulators.

To this end, we apply two different methods: the dipole subtraction and the (two-
cutoff) phase-space slicing methods. In the case of collinear-safe observables we closely
follow the approach of Ref. [[T9] and only give a brief description in Section since
the procedure is very similar to the ee™ case. In Section we describe how the two
methods are extended to non-collinear-safe observables.
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4.3.1 Collinear-safe observables
4.3.1.1 Phase-space slicing

In the phase-space slicing approach the phase space is divided into regions where
the integrand is finite and can, thus, be integrated numerically, and regions where the
integrand becomes singular. In the singular regions the integration over the photon phase
space is carried out analytically in the approximation that the photon is soft and/or
collinear to a charged fermion.

The singular regions consist of two parts one of which contains a soft photon (£ < AF)
and the other a photon that is collinear but not soft (k® > AE and 6,; < Af, where 6.,¢
is the angle between the photon and a charged fermion). Thus, the real corrections are
decomposed according to

/do_,w—wlf'y - /dasoft + /dacoll + /dagr’lyi::ff’ya (432)

where the cutoff parameters AE and A6 are defined in the CM system of the incoming
photons. Both in the soft and collinear regions the squared matrix element |[AM?774/7|2
factorizes into the squared lowest-order matrix element \M%Z:f”Q and a universal factor
containing the singularity. The five-particle phase space also factorizes into a four-particle
phase space and a photon part, so that dog.i and dog, can be integrated over the photon

momentum. Taking over the results from Ref. [[19] yields

4 4 2AFE ij
dogore = dogln " ©(Puy) Z > (-D)™MQiQ; {2111( A > [1 - ln( n >]
T

=1 j=i+1

4 9,0 9 2 4n0p0
—1n< p’p’>+1n2< pl>+1 2( p3>+—+L12 (1—M>} (4.3.3)
m;my; my; m; 3 Sij
and

AFE Af p? 272
dUcoudeg’g:ff@ (Pyy) ZQ2{l —|—21n<p >] [1—21n< 9171)]_’_3_%},

i my
(4.3.4)
where (); and m; denote the relative electric charge and mass of fermion f;, respectively.
The step function ©(®4s) indicates that both dogg and dogn are defined on the four-
particle phase space of the lowest-order cross section, so that the singular part

do? 7Y = dows + doeon (4.3.5)

sing

can be locally combined with the singular part of the virtual corrections, which are defined
on the same phase space. In the result dagg:ééal’sing all dependences on the photon and
fermion masses cancel.

While da;’g:ri’ecal’sing depends on the cutoff parameters AE and Af analytically, the
T=4fy

finite real corrections [ dod,."’7 only show this dependence upon the cuts in the numerical
integration. Nevertheless, the cutoff dependence has to cancel in the full result in the limit
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AFE, A6 — 0. This is illustrated on the Lh.s. of Figures B4 and where the relative

correction factor 6 = o/ogom — 1 of the 4f part ([ davgféﬁte ppa + [ Aol sing) and

of the 4f~ part [ dof?.*" is shown as a function of the cutoff parameters AE and A#.
The cancellations of the cutoff dependence of the two contributions is shown on a smaller
scale on the r.h.s. of Figures L4 and While terms of O(AE/Epeam) and O(AH)
become visible for large values of the cutoff parameters, for smaller values a plateau is
reached. The integration error increases with decreasing cutoff values, until for too small
values the integration error is usually underestimated. As a result, we decided to take
AE/FEpeam = 1073 and Af = 1072 as default values.

4.3.1.2  Dipole subtraction method

In a subtraction method an auxiliary function is constructed that contains the same
singularities as the real corrections. Subtracting this function from the real corrections,
this difference can be integrated numerically. The next step is to perform the singular
integration of the auxiliary function over the photon momentum analytically and to readd
the result to the virtual corrections. In our case where soft and collinear singularities
originate from final-state radiation only, the soft and collinear singularities completely
cancel against their counterparts in the virtual corrections for collinear-safe observables.

In the dipole subtraction method [ B3|, 67], which was originally proposed for QCD
[ B8], the auxiliary function consists of different contributions labelled by all ordered
combinations of two charged fermions ¢ and j, which are called emitter and spectator.
These contributions contain the singularities connected with the emitter ¢. Since there
are only charged particles in the final state in vy — 4f, the situation is simpler than for
ete” — 4f. Explicitly the auxiliary function, which is subtracted from the spin-summed
squared bremsstrahlung matrix element, reads

4

|-A/tsub|2 - Z ‘Msub,ij|27
i,j=1
i#£j

/) sub x
M (Bagy) 2 = —(=1)QiQ;e205" (0i, pj, k) M (Bagif) 2. (4.3.6)

Adopting the formulation of Ref. [ME, the soft and collinear divergences are contained
in the function

(sub) 1 2
9i;  (pi,pj k) = —1— 2z (4.3.7)
! ’ (Pik) (1 = yi5) [ 1 — 2 (1 — vij) !
with "
D PiDj
Yij = , Zij — ——————. 4.3.8
T pip; + ik + pik T pip + pik ( )
The embedding of the 4f phase space &)4,«,”’ into the 4 fv phase space ®4¢, is defined as
Yij L 1 I
P =pi+ R pee L Bl wet & (4.3.9)

>The formulation of Ref. [ B3] differs from that by the regular factor 1/(1 —y;;) in Eq. @30), so that
the readded singular contributions of Refs. [[B3] and [[67] differ by non-singular finite parts.
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Figure 4.4: Dependence of the corrections on the energy cutoff in the slicing approach for
the process vy — veetdu at /55, = 500 GeV. For comparison the corresponding result
obtained with the dipole subtraction method is shown as a 1o band in the plot on the
r.h.s.
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Figure 4.5: Dependence of the corrections on the angular cutoff in the slicing approach for
the process vy — veetdi at /5., = 500 GeV. For comparison the corresponding result
obtained with the subtraction method is shown as a 10 band in the plot on the r.h.s.
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with all other momenta unchanged, p, = pg, k # 7, j. Subtracting the auxiliary function
from the real corrections enables us to carry out the numerical integration,

4

/ o147 = Qis / Ay, |IMOPO(D4) — S I Mani20(ar) | (4.3.10)

1,ig¢=jl

which does not contain any soft or collinear divergences by construction of |Mgy,|? for
collinear-safe observables. In this context, it is important to notice the different arguments
of the step functions © which account for phase-space cuts. Since for a generic point in
4 f~ phase space each 75 contribution corresponds to a different point in phase space, there
is in general no correlation between the values of the different step functions. For collinear-
safe observables, however, we have ©(®4;,) = ©(®4/,;) in the soft region (k — 0) and in
the region where the photon momentum £ is nearly collinear to the emitter momentum
pi (pik — 0). The collinear safety can, e.g., be enforced by photon recombination, as
discussed in the next section in more detail.

In order to combine the subtraction function with the virtual correction, it has to be
integrated over the photon momentum, yielding

4
4 a i+q 1 sub 4
/da;lz "= —5- 2 (F)RiQs5; /d@4f GS™) (507) | MBI (D) [PO(Day ).
i,j=1
i#j
(4.3.11)
The singularities are contained in the function

71'2

L

with

ATNAS A2\ 1 2 1 (m?
L(si, m?) = In <ﬁ> In (—) +1In (—) — —1n? <%> + —1In <ﬁ> ) (4.3.13)
Sij Sij Sij 2 Si]‘ 2 Sij

We have checked numerically that these soft and collinear divergences are completely
cancelled by their counterparts in the virtual correction.

4.3.2 Non-collinear-safe observables

In the previous sections the matching of real and virtual corrections was described
for collinear-safe observables. We speak of collinear-safe observables if a nearly collinear
system of a charged fermion and a photon is treated inclusively, i.e. if phase-space selection
cuts (or histogram bins of distributions) depend only on the sum p; + k of the nearly
collinear fermion and photon momenta. In this case the energy fraction

p

of a charged fermion f; after emitting a photon in a sufficiently small cone around its
direction of flight is fully integrated over, because it is not constrained by any phase-space
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cut (or histogram bin selection in distributions). Thus, the KLN theorem [[69] guarantees
that all singularities connected with final-state radiation cancel between the virtual and
real corrections, even though they are defined on different phase spaces. A sufficient
inclusiveness is, e.g., achieved by the photon recombination described in Section ATl
which treats outgoing charged fermions and photons as one quasi-particle if they are very
close in angle.

In the previous section we could, therefore, integrate the subtraction function |Mgy,|?
and the slicing contribution do.o over z; analytically. In this section we are concerned with
non-collinear-safe observables, i.e. the fermion—photon system is not treated inclusively
and fermion-mass singularities can become visible. As the integration over z; now is
constrained by phase-space cuts (or histogram bins), we have to modify the methods
described in the previous section in such a way that the integration over z; is part of the
numerical phase-space integration.

4.3.2.1 Phase-space slicing

In the slicing method the procedure is straightforward. The numerical integration over
z = z; in the collinear parts reads

E/p}

YY—=4f 1 F o . 2 =4 ~ ~ ~
docon = dogl 2™ (Pay) By > Q; /0 dz 9(231' = 2pi, k = (1 — 2)pi, {pj;éi})
=1

y {pff(z) [21n (Mﬁ?z) —1] +(1—z)}, (4.3.15)

my

with the splitting function ,
1+2

Prp(2) = 77—
The Born cross section and the logarithm still depend on the momenta of the 4f phase
space @4f which are labelled p;. In the cut and recombination function ©, however, the
momentum p; of the fermion i (before photon emission) is distributed to the fermion mo-
mentum p; and the photon momentum k. For collinear-safe observables, as e.g. achieved
by photon recombination, the © function effectively only depends on the sum p; + k = p;
of the collinear momenta, which is independent of z. In this case, the © function becomes
6(5254f), and the z-integration can be easily carried out analytically yielding Eq. ([E34]).

(4.3.16)

4.3.2.2  Dipole subtraction method

In the case of the dipole subtraction method the generalization to non-collinear-safe
observables is more complicated than in the slicing approach, since the integration over
the photon momentum is more involved. Here, we collect the formulas relevant for our
calculation. Details on their derivation are given in Appendix A of Ref. [[].

In order to keep the information on the energy fraction z in each part of the subtraction
function, the finite part of the real corrections is modified to

1
st = o [ a0
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4
- \Msub,¢j|29(pi = zijbis k = (1 — 2i)pi, {ﬁk#z})] (4.3.17)
z,i]#:jl
It is easily seen that the variable z;;, which is defined in Eq. [38), plays the role of the
energy fraction z; in the collinear limit for each dipole 7j. Again, in the collinear-safe
case the © functions of the subtraction function depend only on the sums p; + k£ = p; of
collinear momenta; in this case we recover Eq. (E3110).

In the integration of the subtraction function over the photon phase space, we now have
to leave the integrations over z;; open. The resulting z;; dependence of the integrand is
most conveniently described with a [...] | prescriptiont], which separates the soft singularity

at z;; = 1. The endpoint part at z;; = 1, which results from the full integration over z;;,

exactly corresponds to the contribution of G (sub) (SU) for the collinear-safe case, as given

in Eq. @312), where §;; = 2p;p;. The contlnuum part in z;; involves an integral over
[_C';S“b)(éij, Zij)]Jr with

GE) (5,5, 2) = Py (2) [111 (iif) - 1] F(1+2)In(1l—2) + (1—2). (4.3.18)

i

The total integrated subtraction part explicitly reads

(0% 1 i su
[ Ao = 2 S (1 PQQs - [ Ay MY (B W{ G5™ (3,)0 (@)

+ / L[5 (5, 2], O(pi = zpi k= (1 - 2)p, {m#})}. (4.3.19)

Owing to the [...]. prescription, the continuum part is zero if the full integration over z
is carried out, thereby recovering the collinear-safe case ([E3.TIT]).

4.4 Numerical results

4.4.1 Input parameters and setup

We use the same input parameters as in the previous chapter. In addition, we have
to specify the fermion masses contained in the fermionic loop corrections. The complete
list of input parameters is [ B3]

G,=1.16639 x 105GeV 2, a(0)= 1/137.03599976, s = 0.1172,
My = 80.423 GeV, Ty = 2118 GeV,
Mz = 91.1876 GeV, 'z = 2.4952 GeV,
me = 0.510998902 x 1073 GeV, m,, = 0.105658357 GeV, m, = 1.77699 GeV,
my, = 0.066 GeV, me= 1.2 GeV, m; = 174.3 GeV,
mq = 0.066 GeV, ms= 0.15GeV, mp = 4.3GeV, (4.4.1)

3We use the definition [} dz [f(2)], g(z) = [, dz f(z) [g(x) — g(1)]-
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where the masses of the light quarks are adjusted to reproduce the hadronic contribution
to the photonic vacuum polarization of Ref. [ [70]. If not stated otherwise, the Higgs mass
is My = 170 GeV. In some cases we alternatively use My = 130 GeV. The corresponding
values for the Higgs-boson decay width 'y, which have been obtained with the program
HDECAY [ K6, are given by

Ty (My = 170GeV) = 0.3834GeV,  TI'y (Mg = 130 GeV) = 0.004995 GeV. (4.4.2)

We set the quark-mixing matrix to the unit matrix throughout, but in the limit of massless
external fermions a non-trivial quark-mixing matrix can be included by a simple rescaling
of the cross sections.

Furthermore, we apply a set of recombination and separation cuts:

(i) Bremsstrahlung photons that are closer than 5° to a charged fermion or have less
energy than 1 GeV are recombined with the charged fermion that is closest in angle.
This means that in this case before evaluating distributions or applying phase-space
cuts the momenta of the photon and the fermion are added and associated with the
fermion, while the photon is discarded.

(ii) The separation cuts, which are applied to the momenta defined after a possible
recombination, are the same as the cuts we used in the previous chapter for the
tree-level cross section of vy — 4f. Explicitly, they read

E; > 10 GeV, (1, beam) > 5°, 6(1,1") > 5°, 6(l,q)> 5°,
E, > 10GeV, 6(q,beam) > 5°,  m(q,q') > 10 GeV, (4.4.3)

where an obvious notation for energies F._, angles 6(...), and invariant masses
m(...) for leptons [ and quarks ¢ is used.

Since the separation cuts and input parameters are the same as in the previous chapter
for the processes vy — 4f, the Born cross sections of both chapters coincide. In particular,
we exclude forward and backward scattered charged fermions, because they cause collinear
singularities. While for final-state quarks these singularities signal a non-perturbative
regime, for leptons they are in principle cured by finite-mass effects. However, we exclude
this region by demanding that leptons appear in the detector with finite production angle
and energy. Compared to Ref. [[[9] we use different recombination cuts, because, in
contrast to ete~ collisions, the recombination criterion based on invariant masses does
not lead to collinear-safe observables. This is due to the collinear singularity that arises
if a charged fermion is collinear to the beam. Even though an appropriate cut on the
angle between charged fermions and the beam is imposed, it might happen that a photon
with relatively high energy is recombined with a low-energy fermion that is close to the
beam. Thus, after recombination, the fermion almost follows the direction of the photon
and is not affected by the angular cut. Such events are avoided by taking a recombination
condition based on the angle.

For the evaluation of the lowest-order matrix elements of vy — 4f and vy — 4f~, we
use the fixed-width scheme as defined in Eq. (B2.222)). The photon spectrum is accounted
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for by using the parametrization of the program CompAZ [[T4], as described in Section
In order to distinguish the cases with and without convolution over the photon spectrum,
we write \/see and /5., for the CM energies in these cases, respectively.

In the numerical integration we generate 2 - 107 events for the plots showing the in-
tegrated cross sections, and 5 - 107 events for distributions and for the integrated cross
sections in Table EETl If not stated otherwise, the shown results are based on the subtrac-
tion method, but have been cross-checked with the slicing approach.

4.4.2 Integrated cross sections

In Table EETl we present a survey of integrated cross sections for a leptonic, a hadronic,
and two semi-leptonic final states, as obtained with the subtraction and slicing methods.
The cross sections of the semi-leptonic final states differ because of the effective polar-
izations of the photons resulting from the Compton backscattering (cf. Section BE5ZH).
Final states that differ only in the fermion generation (i.e. in their mass values) receive the
same radiative corrections, since our predictions are based on the massless limit for the
external fermions and mass singularities cancel after performing a photon recombination.
The results obtained with the two methods for treating the real corrections, subtraction
(“sub”) and slicing (“sli”), are in good agreement. Note that they both are implemented in
the same Monte Carlo generator, which, thus, yields identical results for /55, < 170 GeV
where the IBA is used. This is the reason why the “sub” and “sli” numbers are identical
in the case of \/see = 200 GeV with v spectrum, where only the range /5., < 170 GeV is
relevant in the convolution.

In Figure LA the integrated cross section for vy — ve.etdu including radiative cor-
rections is compared with the Born cross section as a function of the CM energy for
monochromatic photon beams. The “best” curves correspond to the O(«)-corrected cross
sections. A Higgs boson of My = 170 GeV produces a sharp peak in the cross section at
/Sy = 170 GeV, while for larger energies the corrections are almost independent of the
Higgs mass. The relative corrections 6 = 0/0pem — 1 in the four lower plots of Figure
behave roughly like the corrections to on-shell W-pair production [ B9, B9l 62]. Close to
the W-pair production threshold the corrections are dominated by the Coulomb singular-
ity. For higher energies the corrections decrease until they reach about —7% at 1 TeV. In
this region they are dominated by large logarithms from the Regge and Sudakov domains.

In Figure E6l(c) we also show the comparison with the IBA for a Higgs mass of My =
130 GeV. Since close to the W-pair production threshold the bulk of the corrections is
due to the Coulomb singularity and since there are no other pronounced corrections, the
agreement between the two curves is quite good. The very good agreement of the DPA
and the IBA at |/5,; ~ 170 GeV both for semi-leptonic and for hadronic final states (in
both cases the difference is well below 0.1%) is of course accidental. For the leptonic final
state the difference is about 0.7%.

As explained in Section EEZ3, the intrinsic uncertainty of the IBA is about ~ 42%,
while the DPA accuracy is up to < 0.5% where it is applicable. Since the convolution
of the hard ~v cross section, in general, involves both the IBA (in the low-energy tail)
and the DPA (for /57, > 170 GeV), the uncertainty of our cross-section prediction is in
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o[ fb] OBorn| D]
CM energy final state | subtraction slicing (sub-sli)/sli
veet 1, | 581.403(67) | 581.41(16) | 575.628(64) | 0.00(3) %
S5 =200GeV | vetdn | 1734.02(23) | 1735.26(43) | 1716.10(22) | 0.07(3) %
without v spectrum | ude~7, | 1734.24(23) | 1734.32(43) | 1716.06(22) | 0.00(3) %
udsc | 4931.01(76) | 4935.0(1.0) | 4878.67(73) | - 0.08(3) %
veet 7, | 801.21(11) | 801.57(20) | 826.620(91) | —0.05(3) %
S5 =500GeV | vetdi | 2278.50(34) | 2279.96(51) | 2351.37(30) | ~0.06(3) %
without 7 spectrum | ude~7, | 2278.45(34) | 2278.84(48) | 2351.39(30) | -0.02(3) %
udsc | 6452.2(1.0) | 6452.8(1.2) | 6662.25(96) | 0.01(2) %
veet i, | 696.25(15) | 696.68(17) | 746.995(93) | —0.06(3) %
/5 = 1000GeV | veetdn | 1836.31(43) | 1836.96(45) | 1979.92(29) | 0.04(3) %
without v spectrum | ude~7, | 1836.37(42) | 1836.95(42) | 1979.95(29) | -0.03(3) %
udsc | 4892.2(1.2) | 4891.4(1.1) | 5300.97(90) | 0.02(3) %
Ve 1~ 7, | 0.073205(44) [ 0.073205(44) | 0.072009(44) 0
e =200GeV | weetdi | 0.33120(21) | 0.33129(21) | 0.32601(21) 0
with 7 spectrum | ude™7, | 0.39204(25) | 0.39204(25) | 0.38593(24) 0
udsc | 1.24460(79) | 1.24460(79) | 1.22537(78) 0
veet 1=, | 190.757(60) | 190.835(96) | 190.816(45) | —0.04(6) %
e =500GeV | weetdi | 559.18(18) | 559.63(24) | 558.50(14) | —0.08(5) %
with 7 spectrum | ude 7, | 564.58(18) | 564.79(25) | 565.05(14) | 0.04(5) %
udse | 1604.92(54) | 1605.60(59) | 1603.80(45) | —0.04(5) %
veet 7, | 165.759(91) | 165.604(81) | 170.588(41) | 0.09(7) %
e =1000GeV | veetdii | 461.02(20) | 461.34(23) | 474.81(12) |-0.07(7) %
with 7 spectrum | ude™7, | 472.10(19) | 471.61(24) | 485.65(13) | 0.10(7) %
udse | 1296.49(52) | 1295.29(62) | 1335.13(38) | 0.09(6) %

Table 4.1: Integrated cross sections for different final states and energies with and without
convolution over the photon spectrum. The third column shows the result obtained with
the subtraction method and the fourth with the slicing method. The last two columns
show the Born cross section and the relative difference between subtraction and slicing.
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Figure 4.6: Integrated cross section for vy — veetdi (the two upper plots) and relative
radiative corrections (the four lower plots) without convolution over the photon spectrum
for Higgs masses My = 130 GeV and 170 GeV.
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VSee/ GeV | 200 | 240 | 260 | 280 | 300 | 500 | 1000
TU 2.0% | 1.9% | 1.3% | 0.8% | 0.7% | 0.5% | 0.5%

Table 4.2: Estimates of the TU (fEZ4) for the O(a)-corrected cross section of yy — vee™di
at various CM energies ./See.

the range 0.5—2%, depending on the contribution of the IBA part to the full convolution.
Denoting the IBA and DPA parts of the full cross section as Aoga and Aoppa (both
including the corresponding lowest-order contribution, so that Aogs + Aoppa = o), we
can estimate the theoretical uncertainty (TU) of the corrected cross section o to

_ Aoa Aoppa

TU = x 2% +
o)

x 0.5%. (4.4.4)

Table illustrates this estimate for a few CM energies |/sq for vy — veetdu. For
VSee < 230 GeV our prediction possesses a TU of ~ 2%, because it is mainly based on the
IBA, but already for /see 2 300 GeV (500 GeV) the IBA contribution is widely suppressed
so that the DPA uncertainty of < 0.7% (0.5%) sets the precision of our calculation. We
note, however, that the overall uncertainty of our calculation certainly becomes worse as
soon as TeV energies for /s, are dominating because of the relevance of high-energy
logarithms beyond O(«).

In Figure E6(e) the comparison of the full correction with the IBA is shown for a
Higgs mass of My = 170 GeV. The IBA includes the Higgs resonance via an effective
coupling and reflects the shape of the resonance quite well.

The cross section including the convolution over the photon spectrum as a function of
CM energy is shown in Figure 27 for a Higgs mass of My = 130 GeV and in the lower
left plot also for My = 170GeV. In the upper plots the integrated cross sections are
shown, and in the lower plots the corrections relative to the Born cross section. Recall
that we use the IBA below /5., = 170 GeV. This means, in particular, that the Higgs
resonance is calculated from the effective coupling and not from the full DPA in this
region. The interesting structure in the lower left plot reflects the shape of the photon
spectrum convoluted with the Higgs resonance. Since the Higgs resonance is very narrow,
a sizable contribution is only possible if 71235, ~ M7 where z; and z, are the energy
fractions carried by the photons. The correction is very small at low ,/se. where z; and
Zo have to be so large in order to match this condition that the corresponding spectrum
is extremely small. Increasing ,/se. allows for lower values of z; and z,. For instance,
for My = 130GeV, the rise at \/see ~ 180 GeV results from a region where both x;
and x5 are in the high-energy tail of the spectrum which is produced by multiple photon
scattering. The peak at /s.. ~ 200 GeV is caused by events where one photon comes from
the high-energy tail and one from the dominant peak in the photon spectrum. Finally,
at y/See 2 210GeV both z; and z, originate from the dominant photon-spectrum peak
which causes the steep rise until /se. ~ 220 GeV.
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Figure 4.7: Integrated cross section for yy — vee™dl (upper plots) and relative radiative
corrections (lower plots) including the convolution over the photon spectrum for Higgs
masses of My = 130 GeV and 170 GeV (lower left plot). For \/se > 300 GeV (shown on
the r.h.s.) the “best” curve for My = 170 GeV practically coincides with the shown curve
for My = 130 GeV.
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4.4.3 Differential cross sections

In Figure EE8§ we show the invariant-mass distributions for the v.et and da pairs in the
process vy — veetdii, both with and without convolution over the photon spectrum. The
upper plots show the absolute predictions, and the lower plots the corrections normalized
to the Born predictions. Since we use /5., = 500 GeV or y/see = 500 GeV, the corrections
are shifted upwards when including the photon spectrum, because the effective energy of
the photons is lower (cf. Figure L6l). The shape of the corrections, however, is hardly
changed by the convolution over the photon spectrum. As the shape of the corrections
determine a possible shift of the peak of the invariant-mass distribution, it is of particular
importance in the determination of the W-boson mass. The measurement of the W-boson
mass can, e.g., be used for understanding and calibrating the detector of a vy~ collider.

The distribution in the W-boson production angle is sensitive to anomalous couplings.
In order to set bounds on these couplings it is mandatory to know radiative corrections,
because both anomalous couplings and radiative corrections typically distort angular dis-
tributions. The corresponding angular distribution of the dii system, which is equal within
the statistical error to the distribution of the v.e* system, is shown in Figure EE9. While
the correction without the photon spectrum is about —9% for W bosons emitted perpen-
dicular to the beam, the corrections are rather small when including the photon spectrum.
As already explained above, the cross section is dominated by a region where the vy CM
energy is smaller. In fact, the relative correction 4 is accidentally small at /s¢e ~ 500 GeV
[cf. Figure EE7(d)] and might also become larger if other cuts or event selection procedures
are applied.

Figure shows the energy distribution of e™ and d for the process vy — vee™du.
The characteristics of the Born cross section, especially the influence of the effective
polarization of the photons after Compton backscattering, were explained in detail in
Section The relative corrections shown in the lower plots amount to a few per cent.
For very low and very high energies, where the Born cross section is very small, the relative
corrections in DPA are not reliable anymore. In this region the assumption that doubly-
resonant diagrams dominate is not fulfilled. The angular distributions for e* and d are
shown in Figure EETTl The shape of the Born cross section and the influence of the photon
spectrum were also explained in Section Similar to the angular distributions of
the v.et and du systems, the corrections are maximal in a region where the fermions are
emitted perpendicular to the beam. However, after including the photon spectrum, the
corrections almost cancel as can be anticipated from Figure EZ(d) which shows that the
corrections to the integrated cross section are almost zero at \/see ~ 500 GeV.

Finally, the energy distribution of the photon in the process vy — v.etdu++ is shown
in Figure ET2 The distribution is dominated by the soft-photon pole at k° — 0 and
decreases rapidly at higher energies. Comparing the distributions with and without con-
volution over the photon spectrum, the convolution shifts the curve to lower energies,
because the initial-state photons already have less energy.
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Figure 4.9: Angular distribution of the W~ boson reconstructed from the di pair in the
process 7y — veetdu at /s = 500 GeV.

4.4.4 Non-collinear-safe observables

As explained in Section EE3.2] the treatment of collinear singularities in non-collinear-
safe observables deserves some care. Applying the generalizations of the subtraction and
the slicing methods described above, we now turn to observables without photon recombi-
nation. Apart from that, the same phase-space cuts are applied as before. In Figure
we show the distributions of the vee™, v,u", and di pairs in the processes vy — veetdd,
v,ptdi. With photon recombination the leptonic invariant masses of the two processes
receive the same radiative corrections since the recombination guarantees the necessary
inclusiveness so that all mass singularities cancel. If the recombination is not applied,
the distributions change drastically. Note, however, that the recombination is mainly
a rearrangement of events, and omitting the recombination affects the integrated cross
section by less than 0.5%. With decreasing invariant masses the relative corrections rise,
while they are smaller at large invariant masses. The reason is that without recombination
final-state radiation (which is enhanced by mass logarithms) reduces the invariant mass of
the reconstructed W boson, thereby shifting events from the dominating resonant region
to lower invariant mass values. The recombination brings most of these events back to
the resonance region, because it prevents momentum loss from final-state radiation. The
L.h.s. of Figure also shows a hierarchy in the mass effects of the outgoing leptons as
the slope for the vee® pair is much steeper than the slope for the v,u™* pair due to the
smaller mass of e™. The plot on the r.h.s. shows that the corrections for the du pair are
not as large as for the v,u™ pair on the Lh.s., because the remaining mass terms behave
like ch Inmy, where Q¢ denotes the charge of the fermion f. We also note that the cor-
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Figure 4.12: Energy distribution of the final-state photon in the processes vy — veetdii+vy
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without convolution over the photon spectrum (with photon recombination); the r.h.s.
compares the cases with and without photon recombination (without convolution over

the photon spectrum).
5 (0] 5 (%]
CIUN [ e s . S S O S BT T T T T T T
50 vee du —— | i veeTdi
vuptdu ks vt da
40 ~ recombination ------ _ 10 F L& ~ recombination ------ -
=
30 - E
20 [~ 5 B LI- 7
h‘h
10 [ 0 k- hl_l_ -
oF " by L
~10 5k - -
—20 hl-"‘-s-...—‘.r'-r..."""___#:h
go b1 111111 ST Y S T T T N N O N
75 76 77 78 79 80 81 82 83 84 85 75 76 77 78 79 80 81 82 83 84 85
Mw+ [GGV] wa [GGV]

Figure 4.13: Invariant-mass distributions of the W+ and W~ boson reconstructed from
the vee™ (v,u™) pair and du pair in the process vy — veetdu (yy — v, utdu) at /s, =
500 GeV, with and without photon recombination.
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250

Figure 4.14: Energy distributions of et and p* in the processes vy — veetdia and vy —
vyptda at /s, = 500 GeV, with and without photon recombination.

rections are smallest in the case with photon recombination because of the cancellation
of all mass singularities.

The photon recombination also affects the energy distributions of the fermions. Fig-
ure shows this distribution for et and p* in the processes vy — veetdi and
vy — v, di with and without recombination. In the former case the curves coincide, as
explained above. The recombination attributes the photon to a fermion and, thus, shifts
events to higher energies of the fermion. The mass-singular effect, which appears without
recombination, is again larger for et than for u™.

The effect of the photon recombination on the photon-energy spectrum is shown in
Figure ET2. Without recombination the distribution is shifted to higher photon energies
because the recombination transfers events to the bin with zero photon energy. The
difference is again bigger for the process vy — veetdu than for vy — v,u*du, since the
mass-singular logarithms of e™ are larger.



Chapter 5

The Higgs-boson decays
H— WW/ZZ — 4f

The primary task of the LHC will be the detection and the study of the Higgs boson.
If it is heavier than 140 GeV and behaves as predicted by the Standard Model (SM),
it decays dominantly into gauge-boson pairs and subsequently into four light fermions.
From a Higgs-boson mass My of about 130 GeV up to the Z-boson-pair threshold 2My,
the decay signature H(— WW) — 2leptons + missing pr [[71] has the highest discovery
potential for the Higgs boson at the LHC [[[2]. For higher Higgs masses, the leading
role is taken over by the famous “gold-plated” channel H — ZZ — 4leptons, which will
allow for the most accurate measurement of My above 130 GeV [[73]. More details and
recent, developments concerning Higgs studies at the LHC can be found in the literature
[[74, [75], [76]. At a future eTe™ linear collider [ [77, [78, [79], the decays H — 4f will enable
measurements of the H — WW /ZZ branching ratios at the level of a few to 10% [80].

A kinematical reconstruction of the Higgs boson and of the virtual W and Z bosons
requires the study of distributions defined from the kinematics of the decay fermions.
In doing so, it is important to include radiative corrections, in particular real photon
radiation. In addition, the verification of the spin and of the CP properties of the Higgs
boson relies on the study of angular, energy, and invariant-mass distributions [ K1, 82].
In particular, the sensitivity of the angle between the two Z-decay planes in H — ZZ —
4 leptons has been frequently emphasized in the literature. As a consequence a Monte
Carlo generator for H — WW/ZZ — 4fermions including electroweak corrections is
needed.

The theoretical description of the decays of a SM Higgs boson into W- or Z-boson pairs
started with lowest-order formulas for the partial decay widths. The first calculations | B3]
that include off-shell effects of the gauge bosons made the approximation that one of the
W or Z bosons was still on shell, an approximation that turns out to be not sufficient.
Later calculations [[84] dealt with the situation of two intermediate off-shell gauge bosons.
The various approaches are compared, e.g., in Ref. [R5]. We note that the program
HDECAY [B6], which is frequently used in practice, calculates the partial decay widths
for H - WW/ZZ with on- or off-shell gauge bosons depending on My. Distributions

88
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of the decay fermions have been considered in Refs. [ BTl 82], but still in lowest order of
perturbation theory.

In the past the electroweak O(«) corrections to decays into gauge bosons, H —
WW /77, were known [ 86, B7] only in narrow-width approximation (NWA), i.e. for on-
shell W and Z bosons. In this case, also leading two-loop corrections enhanced by powers
of the top-quark mass [ B8] or of the Higgs-boson mass [ 89, O0] have been calculated.
However, near and below the gauge-boson-pair thresholds the NWA is not applicable, so
that only the lowest-order results exist in this My range.

In this chapter we describe the calculation of the electroweak O(a) corrections to
the full processes H - WW/ZZ — 4f with off-shell gauge bosons and of the included
improvements beyond this order. The involved Feynman diagrams are closely related to
the ones of the production process ete™ — vH, whose electroweak O(a) corrections
have been evaluated in Refs. [[O1, 02]. Therefore, concerning the algebraic reduction of
the one-loop diagrams we proceed as described in Ref. [92]. On the other hand, the
resonance structure of the decays H — WW/ZZ — 4f is practically the same as in
ete” — WW — 4f, which was treated at the one-loop level in Ref. [ 24]. Thus, we apply
the “complex-mass scheme” [ [24], where gauge-boson masses are consistently treated
as complex quantities. This procedure fully maintains gauge invariance at the price of
having complex gauge-boson masses everywhere, i.e. also in couplings and loop integrals.
For a numerically stable evaluation of the latter we employ the methods described in
Refs. [[03, O4]. Since the final state coincides with the final state of vy — WW — 4f and
since there are no infrared singularities connected with the initial state, the combination
of virtual and real photon corrections is performed in the same way as described in
Section

5.1 Lowest-order results

We consider the lowest-order processes

H(p) — fi(ki,01) + faka, 02) + f3(ks, 03) + fa(ka, 04), (5.1.1)

where the momenta and helicities of the external particles are indicated in parentheses.
The helicities take the values o; = +1/2, but we often use only the sign to indicate the
helicity. The masses of the external fermions are neglected whenever possible; they are
only taken into account in the mass-singular logarithms originating from collinear final-
state radiation (FSR). The matrix elements can be constructed from the generic diagram
shown in Figure BTl

The relevant couplings were already introduced in Eqs. (CZI8) and (CZ22). However,
using the complex-mass scheme we have to replace real gauge-boson masses by complex
masses everywhere,

Mg — pi = M —iMy Ty, V=W,Z, (5.1.2)



90 The Higgs-boson decays H — WW /Z7 — 4f

fa(ka,04)
v fo(kp, 00)
H(p) -------
felke,oe)
V —
fd(kdaad)

Figure 5.1: Generic lowest-order diagram for H — 4f where V =W, Z.

where My and I'y denote the real pole-mass and width parameters. Accordingly the sine
and cosine of the weak mixing angle are fixed by

A =1-5 = “W (5.1.3)
MZ

More details about the complex-mass scheme are described in Section B2 2.7
The generic lowest-order amplitude reads

Mvvaaabacad(ka: kb, kc: kd) - 2639{‘/afafbgg/cfcfdgHVV 6aa,7ob606,7od14;/a‘(/;c (ka; kba kc; kd)a
(5.1.4)
or more specifically for the case of Z-mediated and W-mediated decays

263 Tq T¢
MEBT s (o p e k) = b I s AZE (ke ke k),

2 0q0
CsSw ¢

3
MXVW,UanUcUd (ka, kba kc, kd) = % 60—a’_60—b’+6gc’—6gd’+ AYVYV(ka’ kba kca kd) (5]‘5)

The auxiliary functions are expressed in terms of WvdW spinors following the notation

of Section BELT3T],

koka)"(Kake)
AYY (k. by, ko, k) = ok ,
[(Fa + ko)* = ) [(ke + ka)® — 1i7/]
Avv(kaa kb) kca kd) AV (kba kaa kc, kd))
Avv(k as kba kc; kd) Avv(k as kba kd: )7
AV (ko kpy ke ka) = AYY (kp, ko, ka, k), (5.1.6)
and obey the relations
174 _ 174 *
A_g,, o s o i ) = (A5, (b o b b)) |
_o'a Oe (k a) kb; kca kd) - AVV (kba kaa kc; kd)
a'a,—g'c (k as kba kca kd) = A:,—/a‘gc(ka, kba kda kc)a
174% 174% *
Ag Y U by e ) = (AT, Chas ke b b)) |
AV (kay ks kiey ka) = AYY (ke ka, ks Kp). (5.1.7)
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The relations between the A functions that differ in all helicities result from a P trans-
formation. Those where only one fermion helicity is reversed are related to C symmetry.
The last but one is due to CP symmetry, and the last one results from a symmetry under
the exchange of the two fermion pairs. The replacements py — pj, in (BI1) ensure that
the vector-boson masses remain unaffected by complex conjugation, and ¢ — ¢* indi-
cates that this substitution implicitly also applies to coupling constants that may become
complex via mass factors.

From the generic matrix element Mgv’aaabgcad(ka, ky, ke, kq) the matrix elements for
the specific processes can be constructed as follows. To write down the explicit matrix
elements for the different final states, we denote different fermions (f # F) by f and F,
and their weak-isospin partners by f’ and F', respectively.

e H— ffFF:
M81020304(k1, kg, k3, k4) _ Mgz’010.2030.4(k1; k2, k?” k4) (518)
e H— ff'FF"
MG 72778 (g, Ky, Ky, beg) = MG 7727 (K g, s, K. (5.1.9)
e H— ffff
M8102U3U4 (kl, kQ, kg, k4) = Mgz’glg20304 (kla k?a k37 k4)
B MgZ,cfumasm (kla k4, k3’ kg) (5110)
o H— fff'f"

Mglagagm(kh k2, k?” k4) = MOZZ,01020304 (kh ]{;2, k3, k4)
. MXVW,0'10'40'30'2 (kla k4’ kg, kg) (5111)

The relative signs between contributions of the basic subamplitudes to the full matrix
elements account for the sign changes resulting from interchanging external fermion lines.
The matrix elements of (EL8) and (BIZ9) can be extended to the case of semi-leptonic
or hadronic final states by simply multiplying the squared matrix element by a colour
factor 3 or 9, respectively. Note that care has to be taken in the cases of (EI.I0) and
(ETTT) for hadronic final states (semi-leptonic final states do not exist) owing to the
non-trivial colour interferences. Summing over the colour degrees of freedom, we have

e H — qqqq:
|M81020304 (kh ko, ks, k4)|2 —
77.,01020304 2 77.,01040302
Q‘MU (klak27k37k4)‘ +9‘M0 (k17k47k37k2)
—6Re {MgZ,maQach(kh k2, k3, k4) (MOZZ,U1J40302 (kla k4, kg, kZ))*} ) (5112)

‘ 2
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e H — qqq’Q’:
|M8—1020304 (kla k?) k37 k4) ‘2 -

2
9 ‘MUZZ’UIO—2U3O—4('I€1’ k?a k37 k4)‘ + 9 ‘M[\]NW,0'1‘740'30'2 (kla k47 k3a k?)
—6Re {MgZ,aumascM (kla kQ, k3, k4) (MP]/VW,01040302 (kla k4, kg, kg))*} ) (5113)

‘ 2

Having constructed the matrix elements, we can write the lowest-order decay width
Iy as

1
T, = /d<1> 01,02,073,04 2 5.1.14
0 2MH 0 Z |MU | ) ( )

01,02,03,04::|:%
where the phase-space integral is defined by

4

/d(I)U — (ﬁ/%) (27)46 <p— Zk) (5.1.15)

i=1

5.2 Virtual corrections

5.2.1 Survey of one-loop diagrams

The virtual corrections receive contributions from self-energy, vertex, box, and pen-
tagon diagrams. The structural diagrams containing the generic contributions of vertex
functions are summarized in Figure Here and in the following we omit all diagrams
that vanish in the limit of vanishing external fermion masses from the beginning. For
charged-current processes the generic field V' stands for the W-boson field, for neutral-
current processes we have V' = Z, v, where the photon is of course absent in couplings
to the Higgs boson. The generic diagrams cover all structures relevant for electroweak
corrections to arbitrary four-fermion final states, including quarks. Note, however, that
some four-quark final states receive corrections from diagrams with intermediate gluons
on tree-like lines (quark-loop-induced Hgg vertex). Possible QCD corrections for quarks
in the final state will not be considered in the following lists of diagrams.

The pentagon diagrams are shown in Figures and B4l respectively. The specific
subdiagrams of loop-induced 4-point functions have been shown in Ref. [ [92], where the
process class ete™ — viH was analyzed at one loop. They involve 4-point vertex functions

of the type yyZH, vipyH, I717ZH, [71TyH, and [T (I;)l W*H with [ = e, u, 7 denoting
any charged lepton. The 3-point loop insertions in the Hyz, HI7IT, HWW, and HZZ
vertices have also been listed there; the one-loop diagrams for the HZ~y and H~yy vertices
follow from the HZZ case by obvious substitutions and omissions. Most of the diagrams

for the self-energies and the vpZ, e"e~Z, and li(lje)W vertex functions can be found in
Ref. [ @3]
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Figure 5.2: Generic contributions of different vertex functions to H - WW /ZZ — 4f.

5.2.2 Calculation of the one-loop corrections
5.2.2.1 Algebraic reduction of diagrams and standard matriz elements

The algebraic part of the two calculations has been carried out in the same way as
in the one-loop calculation of ete™ — vH described in Ref. [[92]. This means that we
separate the fermion spinor chains from the rest of the amplitude by defining standard
matrix elements (SME). To introduce a compact notation for the SME, the tensors

i sny = Vs (ko) {Var Ya V575 } worg, (k)
Liamsny = Ur(ke) {Ya: Yavs7y } wrug, (ka) (5.2.1)

are defined with obvious notations for the Dirac spinors vy, (k,), etc., and wy = (1£75)/2
denote the right- and left-handed chirality projectors. Here and in the following, each
entry in the set within curly brackets refers to a single object, i.e. from the first line in
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Figure 5.3: Pentagon diagrams for H — ZZ — ffFF, where f and F are different
fermions with respective weak-isospin partners f’ and F".

Figure 5.4: Pentagon diagrams for H — WW — ff'FF’, where f and F are different
fermions with respective weak-isospin partners f’ and F”.
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the equation above we have T'%7 = v (ko)vawouf, (k), etc. Furthermore, symbols like
', are used as shorthand for the contraction I', p*. We define the 52 SME

“qabcd, ot pab,o Ted,m{o,akdk “qabed,oT __ mab,o cd,7,{a,akqk
My = T Tedmiaatdbl, Mg = Tagy, Tetmieatdl,
M({zgcg}m‘ _ Fabo [eds T,{ka,kb} M({z?csd}m‘ _ Fabﬂ [ed. T,{ka,kb}
abed,ot __ pab,o ed,r,{aBkq,aBky abed,oT ab,o 1ed,r,{aBkq,aBky
M{g Ty = Dagr, Do }, M{n 19 = Lagr, et h
Mabcd ,OT Fab o ch,r,aﬂ'y‘ (522)

The SME are evaluated within the WvdW spinor technique, similar to the lowest-order
amplitudes described in the previous section. The tree-level and one-loop amplitudes
M and MP“HT | respectively, for the generic four-fermion final state fafyf.fs can
be expanded in terms of linear combinations of SME,

13
abed,oT __ abed,orT {\"qabcd,oT o
Mn - Z Fn,i Mz ) n = 07 1; (523)

) ) ) ) bed
with Lorentz-invariant functions F*°“7".

(T3 read

In this notation the lowest-order amplitudes

3 ,0a Oc
€
MEEaToi (e iy by, ) = b2 LTV 5

2 Uaafo'bégca*ad
CwSw

1
" [lka + Fip)? — 2] (ke + k) — 23]

MXVW,UanUcUd(ka’ kb, ka kd) = ¢” /LW 60’a’—60'b,+60-c -0

233

M abed,oq UC

1
" Tla + Fi)2 — 2] [(ke + k) — 123y]

For the one-loop amplitudes in general all invariant functions receive contributions. In
particular, they contain the loop integrals. The one-loop amplitudes for the various final
states are constructed from the amplitudes for H — ffFF and H — ff'FF' as described

n (IF) to (BLII) for the lowest order. The one-loop correction to the partial decay
widths, finally, reads

M= (5.2.4)

1
| m /d(I)O Z 2 Re {Mcln,aa,ag,m (Mg1,o2,03,04)*}. (525)

1
01,02,03,04==%73

The calculation of the one-loop diagrams, which have been generated with FeynArts
[96], has been carried out in the 't Hooft-Feynman gauge and has been repeated using
the background-field method [ [7], where the individual contributions from self-energy,
vertex, and box corrections differ from their counterparts in the conventional formalism.
The total one-loop corrections of the conventional and of the background-field approach
were found to be in perfect numerical agreement.
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5.2.2.2  Gauge-boson resonances and complex-mass scheme

As described in Section the description of resonances in (standard) perturbation
theory requires a Dyson summation of self-energy insertions in the resonant propagator
in order to introduce the imaginary part provided by the finite decay width into the prop-
agator denominator. This procedure in general violates gauge invariance, i.e. destroys
Slavnov-Taylor or Ward identities and disturbs the cancellation of gauge-parameter de-
pendences, because different perturbative orders are mixed.

In our calculation we employ the so-called “complex-mass scheme”, which was intro-
duced in Ref. [[I8] for lowest-order calculations and generalized to the one-loop level in
Ref. [24]. In this approach the W- and Z-boson masses are consistently considered as
complex quantities, defined as the locations of the propagator poles in the complex plane.
To this end, bare real masses are split into complex renormalized masses and complex
counterterms. Since the bare Lagrangian is not changed, double counting does not occur.
Perturbative calculations can be performed as usual, only parameters and counterterms,
in particular the electroweak mixing angle defined from the ratio of the W- and Z-boson
masses, become complex. Since we only perform an analytic continuation of the param-
eters, all relations that follow from gauge invariance, such as Ward identities, remain
valid. As a consequence the amplitudes are gauge independent, and unitarity cancella-
tions are respected. Moreover, the on-shell renormalization scheme can straightforwardly
be transferred to the complex-mass scheme [ 24].

The use of complex gauge-boson masses necessitates the consistent use of these com-
plex masses also in loop integrals. The scalar master integrals are evaluated for complex
masses using the methods and results of Refs. [ 07, O8, ©9.

5.2.2.3 Numerically stable evaluation of one-loop integrals

The one-loop calculation of the decay H — 4 f requires the evaluation of 5-point one-
loop tensor integrals. We calculate the 5-point integrals by directly reducing them to five
4-point functions, as described in Refs. [ 03, 94]. Note that this reduction does not involve
inverse Gram determinants composed of external momenta, which naturally occur in the
Passarino—Veltman reduction [ [T00] of tensor to scalar integrals. The latter procedure
leads to serious numerical problems when the Gram determinants become small.

Tensor 4-point and 3-point integrals are reduced to scalar integrals with the Passarino—
Veltman algorithm [[I00] as long as no small Gram determinant appears in the reduction.
If small Gram determinants occur, the methods that were developed in Ref. [94] are
applied. In particular, we evaluate a specific tensor coefficient, the integrand of which is
logarithmic in Feynman parametrization, by numerical integration. Then the remaining
coefficients as well as the standard scalar integral are algebraically derived from this
coefficient.

The whole procedure for the evaluation of the scalar and tensor one-loop integrals has
been taken over from the one-loop calculation of eTe™ — 4 fermions [ 24].
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5.2.3 Leading two-loop corrections

Since corrections due to the self-interaction of the Higgs boson become important for
large Higgs masses, we have included the dominant two-loop corrections to the decay
H — V'V in the large-Higgs mass limit which were calculated in Refs. [ 89, 00]. They are
of order O(G} My) and read

G. M2 \?
r = 62.0308(86 St 5.2.6
i 0 (1) T (5:26)

where the numerical prefactor has been taken from Ref. [[90]. The error of this factor is
far beyond other uncertainties and, thus, ignored in the numerics.

5.3 Real photon corrections

5.3.1 Matrix element for H — 4 f~

The real photonic corrections are induced by the process

H(p) — fi(ky,01) + falka, 02) + fs(ks, 03) + fa(ks, 04) + (K, N), (5.3.1)

where the momenta and helicities of the external particles are indicated in parentheses.

As for the lowest-order process, we consistently neglect fermion masses whenever pos-
sible. However, we restore the mass-singular logarithms appearing in collinear photon
emission as described in Section improved by higher-order final-state radiation as de-
scribed in Section

The matrix elements for the radiative process can be constructed in the same way as
for the lowest-order process (LI from the set of generic diagrams that is obtained from
Figure b1l by adding a photon line in all possible ways to the charged particles. We have
evaluated the generic helicity matrix elements M%’““bgcad’\(ka, ky, ke, kg, k) of this process
again using the WvdW spinor technique in the formulation of Ref. [ 42]. The amplitudes
generically read

M}y/v’o—ao—bacg—d/\(Qaa Qba Qca Qda kaa kba kca kda k) = (532)
2\/564 g{‘/afafbg{'/cfcfdgHVV 5041,*01;5%,*0(1 A:;/a‘(/;c,\(Qa; Qba Qca Qd; ka; kba kc; kda k)a

or more specifically for the case of Z-mediated and W-mediated decays

M%Z’Uao—baco-d/\(Qaa Qba Qca Qda kaa kba kca kd) k) =
2\/§G4gg?afbggcfcfde 5

Ua,—ab(sac,—ad A(Z;Zac,\(Qa, Qba Qm Qda kaa kba kCa kda k)a

2 sy
MﬁyWW,o’anUcUd/\(Qa, Qba Qca Qda kaa kba kca kda k) =
V2et M.
TW 6Ua,—60b,+60'c,—60'd,+ AYVYY\(Q(I; Qba Qca Qda kaa kba kca kda k) (533)

w
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The auxiliary functions are given by

AYY?(Q(Z, Qba Qca Qda kaa kba kC’ kd) k) =
(k k >*[ <kakb>*<kak0> + <kkb>*<kk6>
[k + Ry k)2 = ME][(he + ka)? = M)

o ( Qa Qo — Qv (kka) >

(ko (ko) (ka + Ro)? — ME Ry
- (koka)* (koka) + (kka)* (ko)
(ko + kp)? — ME][(ke + kq + k)2 — MZ]
y ( Q .  Q-Q <kkc>>
(kko)*(kka)* (ke + ka)? — ME (kkq)*
Qo — Qs <kbkd>*<kakc>}
(ko + kp)? — ME][(ke + ka)? — M3 (kky)*(kka)* 1
A (Qus Qb Qs Qs bias Koy e ka) = AYY (= Qp, —Qu, Qoy Qs ki, o ke, k),
A‘—/-I‘{—(QM Qb’ QC’ Qd’ ka’ kba kc’ kd) AVV (Qaa Qba _Qda _Qa kaa kb) kd, kc),
AYY (Qu, Q, Qes Qus oy ki ey ka) = AV (—Qbpy —Qa, —Qas —Qes ki, ki, ka, ke,
AV (Qas Quy Qe Qas as ki, ke, Ka, k)

(AYY o Qo Q1 Qs Qs s o i s 1))

+

(5.3.4)

My — M’

and obey the relations

ALY UC,_A(Qa,Qb,QC,Qd,ka,kb,kc,kd,m =
(5577 (Qus Qs Qe Qu ks ki s ks )|
70'@0'6 A Qa, @y Qc, Qs kg, ki, ke, ki, k) =
AYY (=Qb, —Qay Qc, Qu, ki, kg, i, kg, ),
AXY,UC (Qa, Qbs Qes Qus kias ki, koo, kg, k) =
ATV (Qay Qv —Qay — Qe kg Ky a, ke, k),
aa,ac,—)\(Qaa Qp: Qs Qua, ko kv, ke, kg) =
— (AV 57 (Qu: Qe Qo Qus ks e ki i, 1))

aa Ocy A (Qa: Qb; Qca Qda kaa kb; kca kd)
A;/C‘;a (Qc;QdaQa;Qbakc; kd;ka;kb;k)- (535)

My — M’

My —M’

The relations between the A functions that differ in all helicities result from a P trans-
formation. Those, where only one fermion helicity is reversed are related to C symmetry.
The last but one is due to CP symmetry, and the last one results from a symmetry under
the exchange of the two fermion pairs. The charges of the fermions are related by

Qa - Qb + Qc - Qd = 0. (536)
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For the Z-mediated decays, where @, = @, and Q. = @4, the auxiliary function (34
simplifies to

A%Z__(Qa, Qaa Qca Qca kaa kb) kca kda k) =

<k k >* <kakb>*<kakc> + <kkb>*<kkc> Qa
PN Tk + ki + k)2 — M2][(ke + ka)?2 — M2] (kkqo)* (kky)*
(keka)* (koka) + (kka)* (kkg) Q.

" [k + E)? — M2][(e + kg + B)2 — M2] (kko)* (kkg)* (5.3.7)

From the generic matrix element MVV:0a%0coaX(f Ly k. kg, k) the matrix elements
for the specific processes can be constructed in complete analogy to the process without
photon as in (T8)—(EIIT).

The squares of the matrix elements ([L32)) have been successfully checked against the
result obtained with the package MADGRAPH | B3] numerically.

The contribution I', of the radiative decay to the total decay width is given by

1 2,03,0
gl TS e

1 —
o1 50-250-370—4::|:§ A==+1

2, (5.3.8)

where the phase-space integral is defined by

/dq) / (27) 32k0 (H/ 2 32k0> m)*ot (p_ K —i’f) (5-3.9)

5.3.2 Treatment of soft and collinear divergences

The structure of soft and collinear singularities of the decay H — 4f is exactly the
same as in the process vy — WW — 4f, because both processes involve the same pattern
of charged particles in the initial and final states. Consequently, apart from obvious sub-
stitutions for the flux factors all formulas given in Section for cross sections literally
carry over to the decay widths. The agreement of the dipole-subtraction method and the
phase-space slicing method is illustrated in Figures and for the widths of the two
decay channels H — veet =9, and H — e"etp~pt. For decreasing auxiliary parameters
AFE and A#, the slicing result reaches a plateau, as it should be, until the increasing sta-
tistical errors become large and are eventually underestimated. In the plateau region the
slicing and subtraction results are compatible within statistical errors, but the subtraction
result shows smaller integration errors although the same number of events is used.

5.3.3 Higher-order final-state radiation

Photons that are emitted collinear from a charged fermion give rise to corrections
that are enhanced by large logarithms of the form alogm?/Q?, where my is a fermion
mass and () is some typical energy scale. If the photons are treated fully inclusively,
as it is the case if the photons are recombined with the corresponding fermion, these
logarithms cancel due to the KLN theorem [[69]. If, however, distributions like in the
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invariant mass of two fermions, as discussed in Section 5.3, are to be considered without
recombining collinear photons, then these logarithms do not cancel and yield large effects.
Thus, corrections of this origin beyond O(a) should be taken into account. This can be
achieved in the structure-function approach [[I0T] which is based on the mass-factorization
theorem. According to this theorem the decay width including the leading-logarithmic
FSR terms can be written as

[ driirsn = Il Uoldzi FZ.LiL(zi,QQ)} [ 48y O {25k }) (5.3.10)

Q;#0

The function O ({z;k;}) generically denotes all histogram routines or phase-space cuts.
It depends on the fermion momenta z;k; which, in the case of charged fermions, may
be reduced by the factor z; due to collinear photon emission. For neutral fermions we
have z; = 1. The structure functions including terms up to O(ce?), improved by the
exponentiation of the soft-photonic parts, read

exp (—%61’YE + %@) Bi 5 4 B

LL,exp 2\ __ _ 5 - -
i P (2,Q%) = r {1+ 14) S(1-2) L (1+2)

1t

— 5_;{ 11+_3§2 In(2) +4(1+ 2)In(1 — 2) + 5+ z}
- 3%1{(1 +2) [6Lin(2) + 12In*(1 — 2) — 37]
+ % E(l + 82 +32%) In(2) + 6(2 +5)(1 — 2) In(1 — 2)

1
+12(1 + 2%) In(2) In(1 — 2) — 5(1 + 72%) In?(2)
1
+ 1(39 — 24z — 1522)} } (5.3.11)
with v and T'(y) denoting Euler’s constant and the Gamma function, respectively. The

mass-singular logarithm
2
B = 20(0) lm(%) - 1] (5.3.12)

™ m;

involves a scale %, which is not fixed in leading logarithmic order and should be set to
a scale typical for the process under consideration. We use Q? = M% in our evaluations.
As the function (1 — z)%i’1 is difficult to integrate numerically, an appropriate mapping
has to be chosen in practice.

In order to study the influence of the higher-order terms we alternatively expanded
the exponential up to terms of O(a?), yielding

9 2 3 2 9
T (z,Q%) = [1+/32 (@_ Z—8> + (%— %*@)] 5(1 - )

. 2 2 —
+[5zl+z+ﬁ_z< 3 (1 z))

41—z 16\1—z 1—2
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+ 756; - Z(z7 — 81?4+ 721In(1 — 2) + 481n*(1 — z))] .
— 5_;{ 11+_3j In(z) +4(1+ 2)In(1 —2) + 5+ z}
- 3%1{(1 +2) [6Lin(2) + 12In*(1 — 2) — 37]

+ 7 i . [2(1 + 82 +32%) In(2) + 6(2 + 5)(1 — 2) In(1 — 2)

1
+12(1 + 2%) In(2) In(1 — 2) — 5(1 +72%) In’(2)
1
+ 1(39 — 24z — 1522)} } (5.3.13)
where ( labels the Riemann (-function.

Since we already accounted for the lowest-order term and the O(«) term which is
contained in the complete O(«) corrections, we have to subtract

1
/dFLLFSR,l = /ng + /ngZ/ le FEL’l(Zi,QQ)@CUt(Ziki,{kj;,gi}), (5314)
—~ Jo
i.e. the leading logarithmic terms up to O(a), from [ dT'ypsg. They are defined by

: 1+ 22
[, Q2) = Dite . 3.1
i (2@ == 1 . (5.3.15)

Note that the leading-logarithmic terms scale with «(0). Therefore, we have to subtract
the O(«) terms according to the scheme that is applied for the virtual corrections. Since
we work in the G, scheme, §; ¢, is proportional to ag,, as defined in Eq. (B23).

5.4 Improved Born Approximation

Some loop diagrams involving top quarks lead to corrections that are enhanced by a
large coupling factor G,m? in the limit of a large top-quark mass m;. For the generic
amplitudes of H — 4f the leading m-dependent corrections in the heavy-top limit read
(in the G ,-scheme)

- Q 1 B 3Cy Qfl + Qfs m‘?
Gu-scheme Mt—00 471'83\, 8 4sy g(Zf}lﬁ gg?}afs M\%V

3-252  m .
(e ) e ] M+ 00
9zt 92fsps) SCwsw  Mw

M%Z,Jlﬂg

2
WwW 0
G -scheme mi—ro0 397s2 M2 MO + O(mt)a (541)

WW
M

where we use the real W-boson mass My, and the terms proportional to a charge factor
Q; are absent if f is a neutrino. The leading m?-enhanced terms of the WW channel
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agree with the terms derived for the HWW vertex [ 88], since in the G-scheme all
leading m? contributions related to the W-boson coupling to fermions are absorbed in
ag,. In the ZH channel, m?2-enhanced terms do not only result from the HZZ vertex, but
there are also remnants originating from the renormalization of the Z-boson couplings to
fermions. In contrast to the WW channel, in the ZZ channel there are also logarithmic
terms In my for a large top-quark mass. For the WW channel and for the ZZ channel with
one Z boson decaying into neutrinos and the other into charged leptons, the correction
terms in (A1) agree with the corresponding results given in Ref. [ 92] for the production

process ete” — vivH.

Including also the one-loop corrections o« G, M and the two-loop corrections o
(G, M3a)? from Refs. [BY, 0] we define the matrix elements for an improved-Born ap-
proximation (IBA) for the non-photonic contributions as

MELi0s M| Gumi (1 3ew ([ Qp n Qs
[BA-non-photonic 2\/§7T2 8 45, gg}lfl chr?J)‘sfs

N G#M\%V ( Qfl Qfa > 3 — 28\2)\/ In my
2\/57(2 gg}lfl 9%303}03 3CwSw My

G, Mg (5m? 19 .
+ 334+ = +ir(2In2 -5
16722 T i )

6
G, M | (34 4082(43) + 21.0031(62) )
— . . 1

1672/2 ’

5G,m?
M}}]\g\/};{non—photonic = M?JNW [1 o 16\;57:2
G, Mj (572 19 .
- _3V3 — 2In2 -5
+167r2\/§ . \/_7r+2+17r( n )

) ( G, M3

167r2\/§>2 (34.4082(43) + 21.0031(62) i)], (5.4.2)

where we suppress some polarization indices in the lowest-order matrix elements that were
defined in Section Bl Since our lowest-order matrix element M, is complex, owing to
the propagator width, both the imaginary part of the G|, M7 term and the imaginary part
of the (G,M})? term contribute when taking the absolute square of the matrix elements.

Finally, we define the IBA for the partial decay widths H - WW — fifofsfs and
H— 77 — fifafsfs as

HozZ—4f 1 77,0103 9
1—‘IBA - 2\ /d(bo Z |MIBA,n0n—photonic ’
H

01,03=+
H-oWW—4f 1 WW 2
r - / dd, | M oy
IBA 0 IBA ,non-photonic
2 My

x 14 0cou (M3, (k1 + k2)?, (ks + k2)?) 9(B)],  (5.4.3)
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which is then convoluted with the FSR as given in (Z3I0). The phase-space integral was
defined in (B33, and the effect of the Coulomb singularity is incorporated in

(0 -B+A
(SCoul(S, ki, k%) = % Im {ln <§+§—+AZ> } ’
\/32 + kL + kL — 25k} — 25k — 2k% k2
= - |

42 k2—k2
ﬁ=vl—%¥, AM:—L;Jg (5.4.4)

with the fine-structure constant «(0). The auxiliary function

9(3) = (1-5) (5.4.5)

restricts the impact of dcoy to the threshold region where it is valid.

The IBA for the final states ffff and fff' f' are defined via the corresponding matrix
elements as in (EII0) and (EITT), respectively. However, the correction factor dcoy is
only multiplied to the squared charged-current matrix element \M%X‘{non_phomnic 2, because
the interference term turns out to be very small.

5.5 Numerical results

5.5.1 Input parameters and setup

We use the following set of input parameters [ [9]

G, =1.16637 x 107° GeV %, «(0)=1/137.03599911, as=0.1172,
My = 80.425 GeV, My = 91.1876 GeV,
me = 0.51099892 MeV, m, = 105.658369 MeV, m, = 1.77699 GeV,
my, = 0.066 GeV, me= 1.2 GeV, my = 178 GeV,
mq = 0.066 GeV, ms= 0.15GeV, mp=4.3GeV. (5.5.1)

For the top-quark mass m; we have taken the value from Ref. | [102].

By applying the G, scheme a large part of the O(a) corrections is absorbed into the
lowest order prediction as described in Section Bl In particular, the electromagnetic
coupling constant is derived from the Fermi constant according to Eq. (BE53), so that our
lowest-order results scale with a?(’;# and the radiative corrections with aéu

The widths of the gauge bosons W and Z, 'y and I'z, are calculated from the above in-
put including O(«) corrections, but using real mass parameters everywhere. Alternatively,
the experimental widths could be used, but the procedure pursued here ensures that the
“effective branching ratios” of the W’s and Z’s, which result from the integration over their
decays, add up to one if all decay channels are summed over. The gauge-boson widths
depend on the Higgs mass only weakly. For the Higgs masses My = 140, 170, 200 GeV
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the corresponding values are given in Table BJl These values are used everywhere, i.e.
we also apply the O(«a)-corrected W and Z widths for the lowest-order predictions.

The angular distributions in Section are defined in the rest frame of the Higgs
boson. All observables are calculated without applying phase-space cuts, and, if not
stated otherwise, a photon recombination is performed. More precisely, if the invariant
mass of a photon and a charged fermion is smaller than 5 GeV, the photon momentum is
added to the fermion momentum in the histograms. If this condition applies to more than
one fermion the photon is recombined with the fermion that yields the smallest invariant
mass.

All but the lowest-order predictions contain the higher-order FSR, as described
in Section 33 as well as the two-loop corrections proportional to GiMé given in
Section The phase-space integration is performed using the multi-channel Monte
Carlo technique, which is described in App.[Al The numerical results presented below
have been obtained using 5 - 107 events except for the plots showing the decay width as a
function of the Higgs mass which were calculated using 2 - 107 events per point. Since the
virtual corrections (rendered finite by adding the soft and collinear singularities from the
real corrections), and also their statistical error, are at least a factor 10 smaller than the
lowest-order values for moderate Higgs masses, we only evaluated the virtual corrections
every 100th time, which improves the run-time of the program but does not deteriorate
the overall statistical error.

5.5.2 Results for the partial decay width

In Table B1] the partial decay width including O(«) corrections is shown for different
decay channels and different values of the Higgs mass. In brackets the statistical error of
the phase-space integration is shown, and ¢ = I'/T\y—1 labels the relative corrections. The
first two channels, e"et =™ and e”eTe~e™ result from the decay H — ZZ — 4f. The
corresponding lowest-order matrix elements are given in (L) and (M), respectively.
The width corresponding to the latter channel is typically smaller by a factor 2, because
the decay H — e eTe e™ proceeds via two Feynman diagrams with small interference in
lowest order and requires a factor 1/4 for identical particles in the final state. The channel
veeT ™7, (BI9) results from the decay H - WW — 4f, while the last channel veeTe™ 7,
(EETTT) receives contributions from the decay into W and into Z bosons. The larger the
Higgs mass, the larger is the decay width, because the available phase space grows.

In the two upper plots of Figure B we show the partial decay width for the final
state vee™ v, as a function of the Higgs mass. The lower plots show the corrections
relative to the lowest-order result. As already explained, we always normalize to the
lowest-order result that already includes the O(a)-corrected width of the gauge bosons.
A large fraction of the O(a) corrections is transferred to the lowest-order decay width by
applying the G, scheme. Thus, the corrections are at the order of 2-8% for moderate
Higgs masses. However, for large Higgs masses the corrections become larger and reach
about 13% at My = 700 GeV. In this region the leading two-loop corrections already
amount to about 4%. Around 160 GeV the Coulomb singularity, which originates from
soft-photon exchange between the two slowly moving W bosons, is reflected in the shape
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Figure 5.7: Partial decay width for H — vee™;1~7, as a function of the Higgs mass. The
upper plots show the absolute prediction including O(a) and O(G? My) corrections, and
the lower plots show the comparison of the relative O(a) and O(G}, My) corrections with
the NWA and IBA.
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My GeV] 140 170 200
I'w[GeV] 2.09273... 2.09275... 2.09276...
T,[GeV] 2.50548... 2.50557... 2.50563...
H — T[MeV] |6[%] | T[MeV] |6[%]]| T[MeV] |o[%]
e~etu~pt | corrected | 0.0012582(5) | 2.2 | 0.020056(7) | 2.7 | 0.8183(2) | 4.4
lowest order | 0.0012310(4) 0.019529(5) 0.78408(8)
e ete et | corrected | 0.0006667(2) | 2.0 | 0.010292(3) | 2.7 | 0.40930(8) | 4.4
lowest order | 0.0006534(2) 0.010026(2) 0.39217(4)
veetu v, | corrected | 0.04789(2) | 3.6 | 4.2062(9) | 6.1 | 12.484(3) | 4.9
lowest order | 0.04623(1) 4.0491(7) 11.899(2)
veeTe D, | corrected | 0.04896(2) | 3.7 | 4.3209(1) | 6.1 | 14.114(3) | 5.0
lowest order | 0.04722(2) 4.0804(8) 13.446(2)

Table 5.1: Partial decay widths for H — 4 leptons including O(«) corrections and relative
correction for various decay channels and different Higgs masses.

of the curve. The influence of diagrams with a Higgs boson splitting into Z-boson pair
(“normal ZZ threshold”) is visible at My ~ 2M7. At about 2m; the tt threshold is visible.

For stable W or Z bosons, i.e. in the limit I'yy — 0 (V = W,7Z), it is possible to
define a narrow-width approximation (NWA) where the matrix elements factorize into
the decay H — V'V and the subsequent decay of the gauge bosons into fermions. By
definition the NWA is only applicable above the WW or ZZ threshold. However, its
analytical structure and evaluation is considerably simpler than in the case of the full
decay H - WW/ZZ — 4f with off-shell gauge bosons. Therefore, above threshold the
NWA allows for an economic way of calculating O(«) corrections to the integrated decay
width, while the lowest-order contribution may, of course, still take into account unstable
gauge bosons. Following this line of thought, we define

NWA FII\IWA
T =T, X (5.5.2)
0
FII\IWA _ FHVV,I Vfifa,l Vf3f4,1, (553)
Fyil'va
and
PNVA Py Lvipol visfio (5.5.4)

V,0
’ Fyil'vy

The indices “0” and “1” label lowest-order and O(a)-corrected results, respectively. The
Higgs-mass-enhanced two-loop terms, described in Section B223), have also been included
in T'gyv,. In order to be consistent we again use the O(a)-corrected total width for the
gauge bosons in TYWA. We note that we have rederived all necessary O(a) corrections
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entering the NWA; the hard photonic corrections to the decay H — WW have been
checked against the expression given in Ref. [ 87].

A few GeV above the corresponding gauge-boson-pair threshold the NWA agrees with
the complete O(«) corrections within 1%. Near My = 180GeV the loop-induced ZZ
threshold can be seen in the relative corrections to H — WW — veet 7, shown in
Figure 71 In the NWA this threshold leads to a singularity visible as a sharp peak; in
the off-shell calculation in the complex-mass scheme this singular structure is smeared
out, because the Z-boson width is taken into account. Since the ZZ threshold corresponds
to the situation where two Z bosons become on shell in the loop, the latter description
with the singularity regularized by a finite I'; should be closer to physical reality. A
similar situation can be seen near H = 2m; for the tt threshold with top quarks in the
loops, where we observe a sharp peak also for the complete O(«a) corrections, because we
have not taken into account the top decay width I';. In principle, this is straightforward
and represents an option for a future improvement of the calculation.

Although the IBA, which is also shown in Figure B reflects the shape of the Coulomb
singularity around My = 160 GeV and the rise of the corrections for large Higgs masses
quite well, it does not provide a good overall description of the complete O(«) correc-
tions. Apparently, the mZ-enhanced terms do not yield the dominant effect, but bosonic
corrections contribute a substantial part of the O(«) corrections.

The plots in Figure show the decay width and the relative correction for the final
state e et~ pu™. The correction are between 2% and 4% for moderate Higgs masses and
rise to more than 10% for large Higgs masses. At a Higgs mass of about 160 GeV the
influence of the diagram where a W-boson loop is coupled to the Higgs boson can be
observed. As explained above, the behaviour of the corrections as a function of the Higgs
mass is smooth, because the gauge-boson width is also used in the loop integrals. In
contrast to the decay H — veet =1, there is no Coulomb singularity at around 180 GeV
because the Z boson is electrically neutral. The NWA reproduces the complete result up
to 0.5% not too close to the threshold, while the IBA is only good within 2%, and deviates
even more in the region My ~ 2my, where the assumption of large top mass is not valid.

Predictions for the partial decay widths of the Higgs boson can also be obtained with
various program packages, such as HDECAY [h6], which contains the lowest-order decay
width for H = V®V® and also the leading one-loop corrections o G, M} and two-loop
corrections o< GiMf_lI. In order to obtain the decay width for H — WW/ZZ — 4f, we
define

pHD _ pHD FxliflfQ,o F?‘m,o, (5.5.5)
Vi1 Vi1

where T{py is the decay width from HDECAY. In (ER3) the branching ratios of the
gauge bosons are normalized in the same way (lowest order in the numerator, corrected
total width in the denominator) as the effective branching ratios of our lowest-order
predictions for the H — V'V — 4f partial widths; otherwise a comparison would not be
very conclusive.

The comparison in Figure B9 where is shown relative to our complete lowest-
order prediction, shows that HDECAY agrees with our lowest-order prediction below the
decay threshold quite well. In this region ['}j}- consistently takes into account the off-shell

FHD
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Figure 5.8: Partial decay width for H — e“et ™ as a function of the Higgs mass. The
upper plots show the absolute prediction including O(a) and O(G? My) corrections, and
the lower plots show the comparison of the relative O(a) and O(G?, My) corrections with
the NWA and IBA.
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e”etu~pt obtained with the program HDECAY normalized to the complete lowest-order
decay width. The corrections shown in Figures .7 and are included for comparison.
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effects of the gauge bosons. Above the threshold HDECAY neglects off-shell effects of
the gauge bosons. In the threshold region, off-shell effects are, however, very important.
Here, the difference between the complete off-shell result and the Higgs width for on-shell
gauge bosons amounts to about 10%. In detail, HDECAY interpolates between the off-
shell and on-shell results within a window of +2 GeV around threshold. The maxima in
the HDECAY curves near the WW and ZZ thresholds in the upper and lower left plots
of Figure L9 respectively, are artefacts originating from the on-shell phase space of the
W or Z bosons above threshold. These maxima have nothing to do with the maximum of
the correction near the WW threshold in the upper left plot, which is due to the Coulomb
singularity. For large My HDECAY follows our corrected result within a few per cent,
because the dominant radiative corrections o< G, My and o G My, which grow fast with
increasing My, are included in both calculations.

5.5.3 Invariant-mass distributions

In Figure we study the invariant-mass distribution of the two fermions resulting
from the decay of the W bosons in the decay H — vee™ i~ 7,. The plots on the Lh.s. show
the distribution for ;1= 7, including corrections for My = 140 GeV and My = 170 GeV,
i.e. for one value of My below and one above the WW threshold. The plots on the
r.h.s. compare the relative corrections for veet and p~7, both with and without photon
recombination. The invariant mass M is calculated from the sum of the momenta of the
fermions f and f’. If no photon recombination is applied, the bare momenta are taken.
In the case of photon recombination the momentum of collinear photons is included in
the invariant mass.

For My = 170 GeV, where both intermediate W bosons can be simultaneously reso-
nant, the physical situation in Figure is very similar to the situation for the process
vy = WW — 4f depicted in Figures and Figure Again, the shape of the curve
can be understood as follows. Resonant gauge bosons give a large contribution to the
width. If one of the decay fermions emits a photon, the invariant mass M;p is reduced,
giving rise to an enhancement for small invariant masses. Without photon recombina-
tion these positive corrections are large due to the appearance of logarithms of the small
fermion masses. As the electron mass is smaller, the corresponding logarithms yield a
larger contribution. If photon recombination is applied, events are rearranged from small
invariant masses to large invariant masses. In this case, the observable is inclusive,i.e.
the fermion mass logarithms cancel due to the KLN theorem, and the vee®™ and p~ 7,
distributions do not differ.

For My = 140 GeV, i.e. below the threshold, only one W boson can become on shell.
Thus, there is still a resonance around M;p ~ My, but also an enhancement below an
invariant mass of about 60 GeV, where the other decaying W boson can become resonant.
Near the resonance at M;p ~ My the corrections look similar to the doubly-resonant
case discussed for My = 170 GeV above. The same redistribution of events from higher
to lower invariant mass due to FSR happens as explained above. Between 70 GeV and
60 GeV in M;p the large positive corrections decrease until the broad maximum near
Mg ~ 54 GeV is seen. In the region of this maximum the same qualitative FSR effects
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(but of course much less pronounced) are visible as in the vicinity of the resonance at Myy:
apart from a constant positive off-set in the relative corrections, events a distributed from
the right to the left of the maximum.

Figure BLTT] shows the corresponding invariant-mass distributions for the decay H —
e~eTp~put with My = 170 GeV and My = 200 GeV. The generic features of the plots are
similar to the decay into W bosons. Above the ZZ threshold (My = 200 GeV), there is
one resonance region around My, and the corrections become large in the non-collinear-
safe case. Photon recombination rearranges the events, so that the fermion logarithms
cancel. Below the ZZ threshold (My = 170 GeV), there is an additional resonance region
for M7 < 80GeV. The shape and the large size of the corrections are due to collinear
FSR as explained above. In Ref. [[82] it was pointed out that the kinematical threshold
where the other Z boson can become on shell, which is at M < 80 GeV in this case, can
be used to verify the spin of the Higgs boson. A particle of spin 1, e.g., would at least
involve one power of momentum in the coupling to vector bosons. Thus, the invariant-
mass spectrum would decrease more rapidly at the kinematical threshold compared to
the SM case. Figure B.1T] shows that the radiative corrections influence the slope at the
kinematical threshold significantly.

Finally, in Figure B T2 we investigate the influence of higher-order FSR on the invariant-
mass distribution of p~v, and g~ p*t in the decays H — veetp v, and H — e"etp pt.
The invariant mass is defined via the momenta of the fermions alone, i.e. without photon
recombination. If photon recombination was applied, the leading logarithmic FSR cor-
rections, as described in Section B33 would vanish completely. Subtracting the O(«)
terms (B34 from the structure functions yields the contribution that is beyond O(a).
In Figure BET2 the impact of this contribution is studied revealing corrections of up to
4% in regions where the lowest-order result is relatively small. Figure also shows the
comparison between the structure function with and without the exponentiation of the
soft-photonic parts in (E311)) and (E3.13)), respectively. The difference is beyond O(a?)
and turns out to be tiny.

5.5.4 Angular distributions

The investigation of angular correlations between the fermionic decay products is an
essential means of testing the properties of the Higgs boson. In Ref. [RI, 82] it was
demonstrated how the spin of the Higgs boson can be determined by looking at the angle
between the decay planes of the Z bosons in the decay H — ZZ. This angle can be defined
as

(ki x ki) (ky X ks)

ks x K[k x ks
sgn(sin ¢') = sgn{k, - [(k; x ki) x (ky x k3)]}, (5.5.6)

cos ¢ =

where k, = ky + ky. The Lh.s. of Figure shows the decay width for H — e ety pu*
as a function of ¢ revealing a cos2¢’ term. As was noticed in Ref. [ 8] 82], this term
would be proportional to (— cos2¢') if the Higgs boson was a pseudo-scalar.
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Note that for non-photonic events the definition of ¢’ coincides with the definition
given in Ref. [[T9] where (—k_ X k3) with k_ = k3 + k4 was used instead of (ky x kj).
Explicitly, ¢ was defined as

(ky x ky)(—k_ x k)
lky x ky|| — k_ x k3|’
sgn(sin¢) = sgn{k, - [(k+ x k;) x (=k_ x k3)]}. (5.5.7)

cos ¢ =

However, this definition yields large negative contributions at ¢ = 0° and ¢ = 180°. As
was explained in Ref. [[19], this is an effect of the suppressed phase space of the real
corrections. At ¢ = 0° and ¢ = 180° the phase space for photonic events shrinks to the
configurations where the photon is either soft or lies in the decay plane of the gauge bosons.
Thus, the negative contributions from the virtual corrections are not fully compensated
by the real corrections. Using k, x ks as in (B25.6) avoids this suppression and gives rise
to a smooth dependence of the corrections on ¢ as can be seen on the r.h.s. of Figure
which shows the relative corrections for ¢ and ¢’ in the decay H — e~e*pu~u™. Since the
difference of ¢ and ¢’ is only due to photons, this, again, emphasizes the large influence
of the photon treatment.

In contrast to the invariant-mass distribution of Figure .I0, photon recombination
does not produce any significant effect for the observable ¢. This is because adding a soft
or collinear photon to a fermion momentum does not change its direction very much and,
thus, has only a small influence on the angle ¢.

The decay angle of the u~ relative to the corresponding Z boson in the decay H —
e etp pt is shown in Figure The angle is defined in the rest frame of the Z boson
so that the distribution is symmetric w.r.t. cosflz,-. The relative corrections which are
shown in the plot on the r.h.s. reveal a strong enhancement in the forward and backward
direction if no recombination is applied. These corrections are due to events where the
1 has only a small energy and emits a collinear photon. Since the momentum of the
Z boson is defined via its decay fermions, it has almost the same momentum as the p~.
After applying photon recombination, the momentum of the Z boson is defined via the
sum of the fermion and photon momenta. Thus, the 1~ is not necessarily collinear to the
Z boson anymore, and large events are rearranged to smaller | cosfy,-| giving rise to a
flatter distribution.

Next, we consider the angle between two fermions. In the case of H - WW the angle
between the charged fermions can be used to discriminate the Higgs signal events from
background events, because the fermions are emitted preferably in the same direction.
This can be understood as follows. At leading order, the only non-vanishing helicity
amplitudes for H — WW are those with equal helicity W bosons. Since W bosons only
couple to left-handed particles and due to angular momentum conservation, particles
(anti-particles) are emitted preferably in the forward direction of transverse W bosons
with negative (positive) helicity, and anti-particles (particles) in the backward direction.
As, close to threshold, 2/3 of the W bosons are transverse and as the W bosons fly in
opposite directions, a particle and an anti-particle of their decay products will be emitted
in the same direction.
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In the decay H — vee™ i~ v, neither the Higgs-boson nor the W-boson momenta can
be reconstructed from the decay products. The distribution in the angle between the et
and p~ can, thus, only be studied upon including the Higgs-production process. If the
Higgs boson was, however, produced without transverse momentum, or if the transverse
momentum is known, the angle between e™ and p~ in the plane perpendicular to the beam
axis could be studied without knowledge of the production process. For gluon—gluon and
v fusion into a Higgs boson, this is to some approximation the case. We define the
transverse angle between e and p~ as

bor _ kor ks
etu= T = T
g kol [k o
sgn(sin ¢e+,- 1) = sgnfe, - (ko x k3)}, (5.5.8)

where k;  are the transverse components of the fermion momenta w.r.t. the unit vector
e,.

The corresponding distribution, together with the influence of the corrections, is shown
in Figure The enhancement for small angles, which was explained above, is trans-
ferred to the distribution of the transverse angle ¢e+,- . Since the photon recombination
does not change the direction of the fermions, it does not have any visible effect on the
relative corrections.

Finally, we investigate the distribution of the angle between e~ and p~ in the decay
H — e eTp put. We prefer to choose the angle between two fermions with the same
charge because this constitutes an unambiguous choice in the decay H — pu ptpu pt.
Figure shows the tendency that the fermions are emitted in opposite directions for
the same reason as explained above. However, this feature is not as pronounced as in
H — veet 1=, because Z bosons do not only couple to left-handed particles so that one Z
boson might decay into a left-handed particle and the other into a right-handed particle.
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Chapter 6

Summary and conclusions

We have performed precision calculations for the processes vy — 4f and H - WW /ZZ —
4f. Starting with the predictions in lowest order of perturbation theory, we presented
compact results for the transition amplitudes in terms of Weyl-van-der-Waerden spinor
products. In the next step, radiative corrections in O(«), which can be classified into real
and virtual corrections, were calculated. The real corrections, originating from photon
emission, are based on the complete lowest-order matrix elements for vy — 4fv and
H —» WW/ZZ — 4f~. In the case of vy — WW — 4f virtual corrections to doubly-
resonant terms were calculated in the double-pole approximation and decomposed into
factorizable and non-factorizable corrections. For H — WW/ZZ — 4f we calculated
the complete O(«) corrections. The infrared divergences appearing in the virtual and
real corrections due to soft or collinear photon emission were treated in two different
ways, using the dipole-subtraction method or the phase-space slicing method. In order to
cover also non-collinear-safe observables, where mass-singularities from collinear photon
emission do not cancel, extensions of these methods were used. Finally, the phase-space
integration over the final-state momenta was carried out with the adaptive multi-channel
Monte Carlo method.

Special attention was paid to the treatment of the gauge-boson width, which has
to be implemented in order to describe resonances. For the lowest-order predictions for
vy — 4f(7v) we compared different schemes, revealing good agreement between the gauge-
invariant complex-mass scheme and the fixed-width scheme. However, we encountered
problems with the running-width scheme for vy — 4f+v, because it does not preserve
gauge invariance. For the radiative corrections to vy — WW — 4f the double-pole
approximation represents a gauge-invariant way of introducing the width. In the case
of H > WW/ZZ — 4f the corrections were calculated using a generalization of the
complex-mass scheme to the one-loop level, which respects gauge invariance.

Monte Carlo generators have been constructed, called COFFERyy (yy — 4f) and
PROPHECY4F (H — WW/ZZ — 4f), which can be used in experimental studies. We
have presented a variety of numerical results that were obtained with these generators:

For the lowest-order processes vy — 4f and vy — 4fv and for the processes vy —
WW — 4f including O(«) corrections we presented a representative list of integrated
cross sections. For some of these processes we showed the dependence of cross sections
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on the centre-of-mass energy, thereby studying the influence of a realistic photon-beam
spectrum and the size of the radiative corrections. In the W-pair threshold region the
corrections are dominated by the Coulomb singularity and are, thus, positive and of the
order of a few per cent. For increasing v+ scattering energies the corrections become more
and more negative and reach about —10% in the TeV range for integrated cross sections.

Various distributions were shown, especially in the invariant mass and in the produc-
tion angle of the reconstructed W bosons and in the invariant mass of a resonant Higgs
boson in the loop-induced reaction vy - H - WW — 4f. Moreover, it is shown that
the convolution over the photon spectrum significantly distorts energy and angular distri-
butions due to an effective photon polarization. Typically, collinear-safe observables (i.e.
where mass-singular logarithms cancel due an inclusive treatment of final-state radiation)
receive corrections of a few per cent for energies of the e”e™ system before Compton
backscattering up to 1 TeV. As expected, non-collinear-safe observables receive very large
corrections (tens of per cent) because of the existence of logarithmic mass singularities.
Also for large scattering angles, where the Born cross section is relatively small, the impact
of the corrections is usually larger.

In addition, we examined the effects of anomalous triple and quartic gauge-boson
couplings on integrated vy — 4f cross sections. Since contributions of anomalous cou-
plings to cross sections can cancel in specific configurations, it is necessary to take into
account results from other observables (such as differential distributions) or from other
experiments (such as eTe™ or e”+ collisions) in order to constrain individual anomalous
couplings. However, our results suggest that an analysis of the processes vy — 4f can
constrain anomalous yYWW couplings about an order of magnitude better than studying
ete” — 4f~. The Monte Carlo generator COFFER~Y~y can serve as a tool for more realistic
studies.

At the LHC the Higgs boson decays H - WW/ZZ — 4f lead to signatures that can
be exploited for its detection and for the subsequent study of its properties. In order
to achieve the required accuracy of theoretical predictions, off-shell effects of the gauge
bosons and radiative corrections have to be taken into account. Since we calculated
the O(a) corrections in the complex-mass scheme, which does not employ any type of
expansion or on-shell approximation, our results are equally valid above, in the vicinity
and below the WW and ZZ thresholds. Comparing our results to an on-shell (narrow-
width) approximation, we found that in the threshold region off-shell effects amount to
about 10%. Treating only one gauge boson as off-shell also leads to deviations of some
10% far below this threshold. The radiative corrections to partial decay widths typically
amount to several per cent and increase with growing Higgs masses reaching about 10% at
My ~ 500 GeV. In this regime also corrections beyond O(«) originating from heavy-Higgs
effects, which we included in our calculation, are relevant. For angular distributions that
are important in the verification of the discrete quantum numbers of the Higgs boson,
we found corrections of the order of 5—10%. To conclude, the Monte Carlo generator
ProPHECY4F will be a useful tool for the Higgs reconstruction and related studies.
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A Phase-space integration

The squared matrix elements of the processes vy — 4f(y) with n = 4(5) final-state
particles are integrated over the phase space yielding the cross section

/da - i/dcbn M,

/ 4, = (H / zdgpl ) (27) 16 (k1+k2 sz> (A1)

T 32pZ

with the incoming momenta k1, ks, the outgoing momenta p;(i = 1,..,4(5)), and the CM
energy 1/s. The corresponding relation for the decay width of H — 4f() was given in
Sections i1l and B3l We basically follow the strategy described in Refs. [[I8] 26l B3],
which is based on multi-channel Monte Carlo integration.

A.1 Phase-space mappings and multi-channel Monte Carlo integration

In a Monte Carlo integration the integration region is covered by mapping pseudo-
random numbers into the phase space of the outgoing particles. Each phase-space config-
uration, called event, gives a contribution to the integral with a certain weight. The main
challenge of the integration arises due to the complex peaking structure of the integrand
in eight (yy/H — 4f) or eleven (yy/H — 4fv) dimensions. This structure is induced
by various diagram types with time- and space-like propagators that peak at different
points in phase space. As a consequence, the statistical error of the numerical integra-
tion increases, and the numerical results may even become unstable. As a first step to
a solution, we employ phase-space mappings. To this end, the integration variables are
chosen such that they contain the kinematical invariants of the propagators. The map-
pings of the pseudo-random numbers into the momenta of the outgoing particles are then
constructed in such a way that their Jacobian cancels or compensates the denominator
of the propagator. Thus, more events are generated in regions where the squared matrix
element is large, so that the integrand is flattened. For time-like Breit—Wigner resonances
of a particle with mass My and width I'y,, an appropriate mapping to the square of the
propagator momentum p? is

2 2

2 2 pmin/max MV
p°(r) = MyTy tan <y1 + (yo — y1)7‘> + My, Y12 = arctan . (A.2)
My Ty,

123
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The corresponding Jacobian,

(y2 — 1)
= [(p2 — Mp)? + M‘%F%/] ﬁa (A.3)

9(p?)

cancels the denominator of the squared propagator. For a propagator without width we
choose the mapping
1

PP(r) =[PPl — M)+ (1= 1) (Pl — )77 4 m?, (A.4)

with the Jacobian

= (p* —m’

o Pl = ) = (Pl = )] (A.5)

9(p?) 1—v ’

which cancels the square of the denominator of a propagator with vanishing width for
v = 2. The choice of v and m? will be discussed in the next section.

Combining the mappings for the propagators of a given Feynman diagram we can
build up the phase space. This is done successively from the subprocesses of the diagram.
First, time-like invariants are generated according to Eqs. (A2) or ([(Adl). Second, the
2 — 2 particle subprocesses are generated. The corresponding space-like invariants are
only mapped for particles with vanishing width, and the corresponding azimuthal angle
is generated uniformly. Finally, the azimuthal angle and the polar angle of the 1 — 2
particle decays are generated without any mapping. In the construction of the phase
space, detector cuts are taken into account as much as possible in order to increase the
efficiency of the Monte Carlo generator. For further details, we refer to Ref. [ [I8 B3].

Obviously, it is not possible to construct mappings of the pseudo-random numbers that
are adjusted for all Feynman diagrams at the same time. What can be done is to construct
a mapping for each squared diagram following the procedure described above. The naive
approach would be to choose one of these mappings randomly at each iteration of the
integration. However, it might happen that one mapping produces a phase-space point
where another diagram becomes resonant, but the Jacobian of this mapping is small and
does not smooth the integrand. As a solution the multi-channel Monte Carlo technique
[ B4] was developed. In this approach the mappings for the various diagrams, which are
called “channels”, are combined in such a way that the integrand is smoothed everywhere
in phase space (for squared propagators; interferences of different diagrams are not taken
into account). To this end, the integration over the phase space of n = 4(5) final-state
particles is rewritten

v 1 2
/d% > GG |M|2 _ Zai/ drs(n) ‘M‘ : Grot = Zaigi; (A.6)
Gtot i 0 Gtot i

in terms of the pseudo-random numbers r. The densities g;, which are the product of
the inverse jacobians in Eqs. (A3 and ([Al3), are combined in the total density gios.
This density smoothes the squared matrix element |M|?>. The parameters a; 2 0, with
>;a; = 1, denote the probability that a certain channel is chosen. This means that for
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each event a single channel is chosen with probability «;, and the phase-space configuration
is determined according to the mapping of the channel. In addition to the density of this
channel, also the densities of all other channels at the given phase-space point have to be
calculated in order to obtain gi;. The probability «; is optimized according to Ref. [ [103]
to minimize the statistical error as much as possible. This procedure, called “adaptive
optimization”, is repeated several times during the integration.

For the process vy — 4f(v) the number of channels ranges from 13(72) for vy —
veet 1 1,(7y) to 71(468) for vy — uiidd(y). Generally, the number of Feynman diagrams
coincides with the number of channels. Only the diagrams with gluon exchange receive
the same mapping as the corresponding diagrams with photon exchange. In the integra-
tion over the matrix elements for H — WW/ZZ — 4f(y), there are much less diagrams,
resulting in 1-10 channels. However, below the WW and ZZ thresholds, only one propa-
gator can become on shell. Therefore, we introduce additional channels, in which one of
the propagators receives a flat mapping instead of the Breit-Wigner mapping ([A-2]).

For both processes additional channels are constructed according to Ref. [ B3] for the
integration of the subtraction terms defined in Section These terms are integrated
over the 4 fv phase space ®4¢, but also depend on the 4f phase space ®4;;;. Therefore,
the 4f phase space is generated first, and from this the 4f~ phase space is constructed
with the mappings corresponding to different emitter/spectator pairs i/j.

A.2 Technical parameters

In the Monte Carlo generator several technical parameters are introduced for different
purposes. First, we discuss the parameters of the mappings for propagators with vanishing
width introduced in the previous section. Although the squared matrix element contains a
factor (p?)~2, the choice v < 1 turns out to be more appropriate, because the propagator
is partly cancelled in the collinear limit where p? becomes small. The mass could be
chosen m? = 0, because the mapping is used for photons and for fermions, whose mass
is neglected. However, the density ¢; in Eqs. ([(AH) and ([AZ6) could get arbitrarily large
in this case, and the mapping ([A4) produces many events with small p? increasing the
number of events that have to be discarded due to numerical instabilities. Therefore,
it is useful to choose m? = —a with a positive a. This mitigates the strong increase of
g; for p> — 0. We choose a ~ 107°GeV? for the subtraction method, but changing a
over several orders of magnitude has almost no visible numerical impact. For the slicing
method, however, a should be chosen smaller, because many events are needed in the soft
and collinear regions due to the large squared matrix elements in this region.

Second, the cut-off parameters used in the phase-space slicing method are chosen
EAci ~ 3-107* with CM energy Ecyr, and Af ~ 1072 (corresponding to 1 —cosf > 5-107°
for non-singular events). For a sufficiently large number of events this results in an
accuracy of O(1073) or better as can be seen in Figures 4 B3, BH, and In the
singular regions defined by AE and Af the matrix elements are integrated analytically
in the soft or collinear approximation, respectively. In order to reduce the corresponding
error, the cuts have to be chosen smaller. Thus, one of the weaknesses of the slicing
method is that for given AE and A#, the accuracy of the calculation cannot be improved




126 Appendix
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Figure 6.1: Comparison of the relative corrections obtained with the subtraction and the
slicing methods. The plot on the l.h.s. shows the distribution in the angle between the
decay planes of the Z boson in the process H — ZZ — e etu p' and the plot on the
r.h.s. shows the invariant mass distribution of the p~ u™ pair with and without photon
recombination for My = 170 GeV.

simply by increasing the number of events. The above choice of parameters is such that
the statistical error of the integration with the slicing method is generally larger than the
corresponding error in the subtraction method. If the desired accuracy is at the order
of several per mille, it suffices to calculate with larger slicing cuts. For example, the
histograms contained in this work agree between the subtraction method and the slicing
method with AE =103 and A = 3-102 within the statistical error of the integration,
which is smaller in this case. In Figure 61l we show the comparison for the angle between
the decay planes defined in Eq. (26 and the invariant mass distribution of the p~pu*
pair in the process H — Z7Z — e~ ety pu*

Third, we introduce parameters in order to overcome numerical instabilities. Since the
precision of variables in a numerical integration on a computer is limited, it might happen
that in certain kinematical regions the weight of an event is not calculated correctly. For
example, time-like invariants can become smaller than zero. With O(107) events this
may happen a few times. In this case, we discard the event. In the subtraction method,
the bremsstrahlung matrix elements are completely integrated over, i.e. also over the
singular region. The subtraction terms are constructed in such a way that they cancel the
singularities. Hence, the weight should vanish in the soft and collinear limit. However,
as the terms get very large, the cancellation is not accurate anymore due to the limited
numerical accuracy Therefore, events with an invariant mass of a photon and a charged
fermion of mf, < mf,, ., are discarded. We choose mi,, in = (107*Ecy)?, but the

integration is stable for a variation of m? min OVET & relatlvely large range, because the
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events that are discarded have a negligible weight. This cut affects up to O(1072) of the
events.

Finally, numerical instabilities can occur in the generation of histograms. In the sub-
traction method, which was introduced in Sections and L322 the cancellation
between the bremsstrahlung matrix elements and the subtraction terms is non-local. The
bremsstrahlung matrix elements are defined on the 4 fv phase space ®4¢,, while the sub-
traction terms are defined via the mapping to the 4 f phase space é4f,ij. For non-collinear-
safe observables the events of the subtraction terms are distributed to the histogram bins
according to @(pi = zi;Dis k = (1 — 2ij)pi, {ﬁk#}) as defined in Eq. (E3T11). In the soft
limit the momenta of both phase spaces coincide. Nevertheless, it may happen that close
to the singularity the two corresponding large weights, which compensate each other, are
distributed into neighbouring bins of the histogram. This means that the integral for
a specific bin shows large fluctuations. For the processes vy — 4f, however, numerical
problems of this kind are smaller than the overall statistical uncertainty. In the case of
H — WW/ZZ — 4f the statistical error of the histograms is deteriorated considerably
due to this non-local cancellations. Therefore, we distribute weights of the subtraction
terms into the histograms according to ©(®4y,), if the photon momentum is & < 103 Ecy
and y;; < 1073, Equation ([33) implies that the momenta p; of ®4s,; and p; of Dy,
are almost the same under this condition. The number of events that are affected by
this cut is of O(1073). Another situation where the definition of the histogram bins is

problematic occurs in Eq. (E3I9). For z — 1, C;S“b)(sij,z) becomes very large. Due
to the [...]; prescription two events with large weight, which cancel each other in the
integrated cross section, might be distributed to different bins. Again, for the processes
vy — 4f the numerical effect is obscured by statistical uncertainty of the integration.
For the processes H - WW/ZZ — 4f it turns out that a cut of (1 — 2) < 10~ does not

change the distributions but improves the statistical uncertainty.

B Soft and collinear divergences

In this appendix we describe different contributions to the soft and collinear diver-
gences that appear in the calculation of the one-loop corrections to vy - WW — 4f and
H—» WW/Z7Z — 4f.

Soft divergences in the real corrections arise if a photon with very small energy is
emitted from an external particle, while collinear divergences arise due to collinear photon
emission from a light external particle. The corresponding soft divergences in the virtual
corrections appear when a massless particle is exchanged between two external particles.
This situation is illustrated in diagram (a) of Figure [£2, where a photon is exchanged
between two on-shell fermions with small masses m; and msy. If the momentum transfer
of the photon tends to zero, the propagator denominators, which can be written as ¢,
q>+2gp1, and ¢% — 2¢p,, cause a logarithmic singularity of the corresponding loop integral.
Collinear singularities in virtual corrections arise if a massless external particle couples
to two massless particles. In this case the singularity originates from a region in the loop
integral, where the momenta in the massless propagators are collinear to the momentum of
the external particle. In fact, diagram (a) of Figure EZ2also contains a collinear singularity.
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Ve
(a) p1,mi (b) m?
mq A
$19 q, A\ 812 my
V V
mo 9 MV 9
b2, My msy

Figure 6.2: Two vertex subdiagrams of the processes vy — WW — 4f and H —
WW/7Z7 — 4f, where a gauge boson V. = W/Z couples to two fermions, containing
soft and collinear (m; < s12, M) singularities.

For ¢ ~ xp; with a constant x, the photon is collinear to the fermion with mass my, and
the two corresponding propagator denominators are z°p? and (x + 1)?p? in the limit of
vanishing fermion mass (p? = m? — 0). Consequently, the loop integral also develops a
logarithmic singularity for this configuration.

In Ref. [ [T04] an explicit formula for the soft and collinear singularities of a general ten-
sor one-loop N-point integral was presented. The application to the diagrams of Figure B2
is, of course, particularly simple. Decomposing the tensors and reducing them to scalar
integrals, the matrix element for diagram (a) can be written in the conventions of Ref. [ 6]
as

M@~ _%Q1Q2MB512(CO +C,+Cy)

Q
~ _§Q1Q2MB{SIQCU - BO(m?amla )\) - Bo(mi, ma, )\)}
2
~ —ngQQMB{ln ( )\_ ) In (ml_m2>
2 — 512 —S12

4 —512 4 —512 ST ,

where (); denote the relative fermion charges, M g denotes the corresponding Born matrix
element, and 519 = s15 + te. The sign ~ indicates that non-singular parts were omitted.
The singularities are regulated with mass parameters for the photon, A, and for the
fermions, m; and my (|si2] > mi, > X — 0). The collinear singularity of diagram (b)
can be derived as

MO~ —%Ql(Ql — Q2)Mps12Cy

~ +%Q1(Q1 — QQ)MB{BO(m%a mi, ) + M{Q/CO}

~ Qi@ — Q)M n (ﬁ%> {1 LM (1 _ 2) } (B.2)

2
S19 519 MV

The singularities of the diagram where the photon couples to the fermion with mass ms
is obtained by appropriate substitutions.

The calculation of radiative corrections to vy — WW — 4f in DPA included the
corrections to the decay of on-shell W bosons. In this case diagram (b) also develops a
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soft singularity, as can be seen from Eq. (B2)), which is not defined for s;o — M. In
this limit the singularity of diagram (b) can be written as

Miﬁl—)Mav ~ _%QI(QI Q2)MB{1T1 <M;> In <m1)f\2/.fw> In <XZ—JV> } (B.3)

The singularities of the corresponding counterterm, which originates from the field renor-
malization constants of the W boson and of the fermions, read

1n(:j>—%1n<$§v>“. (B.4)

Summing up all contributions for both W-boson decays in vy - WW — 4f and taking
also the limit s;; — M3, for diagram (a), the singularities can be written as a factor to
the squared lowest-order matrix element for vy — WW — 4f/

i \? A2 ) m;
wor = oo (g ) oo (o) oo ()
1 mf 9 mf
+§;Qf In (M—VQV> —In (MVQVN} (B.5)

Similarly, the production process of the on-shell W bosons acquires a soft singularity [ 39],

A2 s — 2M2 1-5 4N
4f ~ ~ —
Oy WY ln ( 5 ){1 + . In (1 > }, o] 1 . (B.6)

with the CM energy /s. As explained in Section the soft singularities for photon
emission off on-shell W bosons were artificially introduced in the decomposition of the
virtual corrections in DPA. They cancel together with the non-factorizable corrections,

ol ~ 1n<]\322>{2+3—826M\%V1n<1;g> Q1Q3ln(]\841§>
+Q1QiIn (;;3 ) +Q:QsIn (;ji ) Q:Qiln (AS;;‘ )} (B.7)

where s;; was defined in (LI3). The first term stems from the diagrams of type (mm)
depicted in Figure E2] the second term from the dlagram of type (mm’), and the last
terms from diagrams of type (ff'). The sum 5é$ff, + 5www + 621 yields the complete
singularities of the virtual corrections to vy - WW — 4f,

4 ] 2 )\2 )\2
64f ~ o z-I-J ; ,{1 mi 1 1
sing,virt T Z_ Q Q] n 5ij n 5ij +1In 5ij

#j

)\2
Mcount ~ __MB{IH <M2 > + ZQQ
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where we used Q; = 3-1 Q;(—1)) and the fact that in DPA after the on-shell projec-
i

tion the invariants obey si9 = s34 = M%V Even though Eq. (B8)) was derived in DPA it
is valid also for the complete vy — 4f process without on-shell projection, as can be seen
from the construction of the dipole-subtraction terms in Eq. (E3IT)). In order to avoid
a mismatch between the singularities of the virtual corrections, which are calculated in
DPA, and the singularities of the real corrections, which are calculated without on-shell
projection, we proceed as explained in Section LIl We subtract the singular part of the
virtual corrections, defined via the negative of Eq. (B30 in DPA, and readd the same
expression with off-shell kinematics. The error introduced by this procedure is of the order
of the accuracy of the DPA. Note that the singularities that are subtracted and readded
in this way, should not be defined from the corresponding Eqs. (E33) and @33) of the
slicing method, because these expressions involve the small slicing parameters AFE and
Af. Hence, these parameters would not drop out in the final result.

The process H - WW/ZZ — 4f is calculated with off-shell gauge bosons. Hence, the
singularities from vertex diagrams are given by Eqgs. (Bl and (B2). In addition, collinear
divergences arise from box diagrams, where a photon couples to an external fermion and
an internal gauge boson, and soft and collinear divergences arise from pentagon diagrams,
where a photon couples to two fermions originating from different gauge bosons. Since
the processes vy - WW — 4f and H - WW/ZZ — 4f involve the same final state, the
sum of all contributions is also given by Eq. (B.S).

C Transformation of the coefficient functions F;

In this appendix we describe the transformation of the coefficient functions Fj for the
factorizable virtual corrections (L29) that transforms all Fj into the helicity amplitudes
of the on-shell process vy — WW.

The 36 SME M}VWW of Ref. [B9], which fix the coefficient functions F; by Eq. ([EZZG),
are defined for 36 different helicity configurations which can be enumerated with a single
index [,

MIVW L A A, M) = My, 1= (M, day Mg, Ao, (C.1)

where j,[ =1,...,36. The 36x36 matrix M is explicitly obtained by inserting momenta
and polarization vectors into the 36 independent SME M}WWW of the 83 structures defined
in Eqs. (5)-(9) of Ref. [ B9].

If we transform the Fj according to

36
Fi =) F;Mj, (C.2)
=

the function £ is the helicity amplitude for the on-shell process vy — WW corresponding
to the helicity configuration I = (Ay, Ao, Ay, A_). As such, it can be well approximated by
the generalized Fourier series described in Section LZZ2 It is important to notice that
in Ref. [[9] the scattering plane spanned by the beam axes and the produced W bosons
was rotated into the (z', 23)-plane, so that the SME M}”WW depend only on s and cos 0,
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or equivalently on s and ¢. Since, thus, the matrix M is a function of s and ¢, also the
new functions F; depend only on s and #, but not on the azimuthal angle of the scattering
plane or other on kinematical variables. According to Eq. ((C2), the SME M transform

as
36

My =Y (MM, (C.3)
j=1

where M ! denotes the inverse matrix of M. By construction, the transformation de-
couples the different helicity channels of vy — WW. When including the W decays in
the SME, as done in Eq. ([C3), this decoupling is somewhat disguised for the W-boson
polarizations, but still valid for the photon helicities. This means that the new SME
M, consist of four subsets, each of which contributes only for one of the four different
polarization combinations (A;, Ay) of the photons. In practice, we have evaluated and
simplified the matrix M and the new SME M, analytically as much as possible.
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