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1 · Summary 

SUMMARY 
 

The experiments presented in this thesis elucidate selected interactions between the phytoplankton, the 

zooplankton and the microbial food web in aquatic ecosystems. The objective is to provide a 

mechanistic understanding of classic general ecology topics including competition, predator-prey 

relations, food web structure, succession, and transfer of matter and energy. Special relevance is 

attributed to the role of mixotrophic organisms, marine cladocerans, and gelatinous mesozooplankton. 

Although they may contribute substantially to plankton composition they have thus far been neglected 

in common ecosystem models. All experiments were based on enrichment with nutrients and organic 

compounds. Enrichment with nutrients and organic compounds that influence overall system 

productivity is one of the most pervasive human alterations of the environment and profoundly affects 

species composition, food web structure, and ecosystem functioning. In order to predict the 

consequences of such enrichment, a better understanding of the impact that trophic structure has on 

community dynamics and ecosystem processes is required. 

The presented thesis consists of two studies. The first study includes three experiments in which 

I investigated the role copepods, cladocerans and doliolids play in plankton interactions. Copepods, 

cladocerans and doliolids are major mesozooplankton groups in marine systems. The first experiment 

(Katechakis et al. 2004) showed that copepods, cladocerans and doliolids have different food size 

spectra and different assimilation efficiencies. According to my experiment, copepods actively select 

for larger food items, whereas cladocerans and doliolids passively filter medium-sized and small food 

items, respectively, with doliolids being the only group that feeds efficiently on bacteria and 

picoplankton. The results illustrate that food niche separation enables copepods, cladocerans and 

doliolids to coexist. In addition, they emphasize the fact that doliolids are favored in low nutrient 

environments, characterized by small food items, whereas cladocerans and copepods have competitive 

advantages at moderate and high nutrient supplies, respectively. Furthermore, copepods obviously 

utilize ingested food best, gauged in terms of produced biomass, followed by cladocerans and 

doliolids, which suggests that the different mesozooplankton have different impacts on energy transfer 

efficiency within the food web. 

In the second experiment (Katechakis et al. 2002), I investigated how copepods, cladocerans and 

doliolids directly influence the phytoplankton and the microbial food web over a longer period of time 

by grazing. Furthermore, I investigated how they indirectly influence the system's nutrient dynamics 

through "sloppy feeding" and their excretions. According to my experiment, in the long run, doliolids 

and cladocerans promote the growth of large algae whereas copepods shift the size spectrum towards 

small sizes with different consequences for food chain length. Doliolids, cladocerans and copepods 

also affect the microbial food web in different ways. Size-selective grazing may lead to differences in 

the nanoplankton concentrations. These in turn can affect bacterial concentrations in a trophic cascade. 

My findings offered the first experimental evidence for the occurrence of top-down effects in marine 
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systems. Although top-down explanations of phytoplankton size structure had been acknowledged for 

limnic systems before, they had not been attempted for marine systems. 

In the last experiment of this series (Katechakis and Stibor 2004) I sought to complement the 

knowledge about the feeding behavior of marine cladocerans. Marine cladocerans are difficult to 

cultivate in the laboratory. Therefore, the three cladoceran genera found in marine systems, Penilia, 

Podon and Evadne, had never before been compared under similar conditions. Existing studies with 

single cladoceran genera were to some extent contradictory. My experiments indicate similar feeding 

characteristics for Penilia, Podon and Evadne, that is to say, similar food size spectra, clearance and 

ingestion rates. However, Evadne obviously has problems feeding on motile prey organisms. 

The results generated by my first study have been summarized and their importance has been 

hypothetically extended to ecosystem level by Sommer et al. (2002) and by Sommer and Stibor 

(2002). 

My second study includes two experiments that refer to the ecological role of mixotrophs in 

aquatic systems. Mixotrophic organisms combine phototrophic and phagotrophic production 

dependent on the availability of light and nutrients. Although they are common in aquatic systems, 

their function for nutrient cycling and as a link to higher trophic levels has never before been 

examined. 

In my first experiment (Katechakis et al. 2005) I investigated if mixotrophs influence energy 

transfer efficiency to higher trophic levels differently than predicted for purely phototrophic 

organisms. My results indicate that compared to phototrophic specialists mixotrophs may enhance 

transfer efficiency towards herbivores at low light conditions and in situations when limiting nutrients 

are linked to bacteria and to the picoplankton. Additionally, the results suggest that mixotrophs may 

have a stabilizing effect on variations in trophic cascade strength caused by perturbations to light and 

nutrient supply ratios. 

My second experiment (Katechakis and Stibor 2005a) served as a first step towards analyzing if 

the results gained from the first experiment have any ecological relevance in situ, that is, if mixotrophs 

in nature-like communities can gain enough importance to relevantly influence transfer efficiency and 

system stability. Competition experiments revealed that mixotrophs may invade and suppress plankton 

communities that consist of purely phototrophic and purely phagotrophic specialists at low nutrient 

conditions while high nutrient supplies prevent mixotrophs from successfully invading such 

communities. In systems where mixotrophs suppressed their specialist competitors they indeed had a 

habitat-ameliorating effect for higher trophic levels, gauged in terms of plankton food quality. 

In the meantime, the results gained from my experiments have inspired various other studies in 

marine and limnic systems. 
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CHAPTER 1 – INTRODUCTION 
 

Pelagic food webs are the most common type of food webs on earth and planktonic organisms 

involved in pelagic food webs may possibly be the most abundant on earth. Regarding solely protozoa, 

more than 1500 million tons of them exist in the Southern Ocean alone. In contrast, all vertebrates 

together, including fish, penguins, seals and whales make up only 16 million tons (Beaumont 2003). 

Hence, it is not surprising, that the dynamics of planktonic food webs have powerful impacts on 

important issues such as world climate (e.g. Beaumont et al. 1998, Toole and Siegel 2004), global 

biogeochemical cycling (e.g. Dachs et al. 2002, Valdes et al. 2004) and the world food production 

(e.g. Meadows et al. 2004). For example, plankton influences climate and biogeochemical cycling by 

absorbing carbon dioxide (e.g. Beaumont 1998), releasing cloud-forming compounds such as 

dimethylsulfoniopropionate (DMSP) (Toole and Siegel 2004) and drawing huge amounts of nitrogen 

from the air (Capone and Carpenter 1982). Drastic changes in plankton abundances affecting food web 

production have recently been reported from the waters of Northern California. Oceanic plankton have 

largely disappeared there, followed by a general decline in near-shore oceanic life, with far fewer fish, 

birds and marine mammals. Reasons for the absence of the plankton have yet to be fully understood. 

However, a recent study indicates that it may be a long term phenomenon linked to global warming 

(Gregg et al. 2003), that may, on the other hand, enhance plankton growth in other regions of the 

world (Goes et al. 2005). 

These few examples demonstrate that despite their critical relevance for our planet, we are still 

only in the early stages of understanding the interactions in planktonic food webs that take place 

among species at different trophic levels and under changing environmental conditions. The main 

difficulty lies in that even relatively simple food webs have such complicated structures thus one 

cannot intuitively understand how a change in one variable might ultimately affect each of the others. 

Therefore, ecosystem models play an ever more important role in the understanding of applied and 

theoretical problems in food web ecology. The question regarding what features should be 

incorporated into these models is fundamental for improving them. Information on physiological and 

community structuring properties of functional key species are essential within this context. 
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1.1. Thesis objectives, approach and outline 

 

In this thesis I focus on selected interactions such as competition, predator-prey relations, and the 

transfer of matter and energy between the phytoplankton, the zooplankton and the microbial food web. 

Through laboratory microcosm experiments, partly related to mesocosm studies, I specifically 

addressed these interactions. Micro- and mesocosm experiments provide a bridge between abstracted 

mathematical models and the full complexity of nature. Special relevance is attributed to the role of 

mixotrophic organisms, marine cladocerans, and gelatinous mesozooplankton. Although they may 

contribute substantially to plankton composition they have thus far been neglected in aquatic 

ecosystem models. All experiments were based on enrichment with nutrients and organic compounds. 

Enrichment with nutrients and organic compounds that influence overall system productivity is one of 

the most pervasive human alterations of the environment and profoundly affects species composition, 

food web structure, and ecosystem functioning. In order to predict the consequences of such 

enrichment, a better understanding of the impact that trophic structure has on community dynamics 

and ecosystem processes is required. 

 

The thesis consists of two studies, A and B. The first study includes three experiments (A1, A2, A3) in 

which I investigated the ecological role of copepods, cladocerans and doliolids, which are major 

mesozooplankton groups in marine systems. They form a bottleneck in the pelagic food web as they 

distribute the organic matter synthesized by autotrophs towards higher trophic levels. Yet, the feeding 

properties, especially of marine cladocerans and doliolids were practically unknown when I began my 

experiments. Similarly, nothing was known about the role these organisms play in structuring plankton 

communities and in transferring energy to higher trophic levels. Papers A1, A2 and A3 refer to these 

topics. 

The second study includes two experiments (B1, B2) that refer to the ecological role of 

mixotrophs in aquatic systems. Mixotrophic organisms combine phototrophic and phagotrophic 

production dependent on the availability of light and nutrients. Although they are common in aquatic 

systems, their function for nutrient cycling and as a link to higher trophic levels has never been 

examined before. Papers B1 and B2 deal with these questions. 

 

In the following sub-chapters, I will briefly explain the structure of the pelagic food web to better 

illustrate the positions copepods, cladocerans, doliolids and mixotrophs take. Additionally, I describe 

the major flows of energy, matter and control that appear within pelagic food webs and how 

enrichment with nutrients influences them. 

Chapter 2 provides more detailed backgrounds about the two studies, Chapter 3 summarizes the 

papers attached to this thesis, Chapter 4 concludes the findings, Chapter 5 shows how they have 
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already influenced other investigations and offers suggestions regarding next steps to be taken. 

References are provided in Chapter 6. 

Throughout the thesis I follow the generally accepted plankton size classifications: picoplankton 

(<2 µm), nanoplankton (2 – 20 µm), microplankton (20 – 200 µm), mesoplankton (200 µm – 2 mm), 

macroplankton (2 mm – 2 cm), megaplankton (>2 cm). Phytoplankton are not represented in the 

megaplankton size range, zooplankton not in the picoplankton size range, and metazoans not in the 

pico- and nanoplankton size ranges. 
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1.2. The pelagic food web  

 

During the last few decades, the notion of the pelagic food web has undergone drastic changes. The 

classic view was a simple food chain with phytoplankton (mainly diatoms) at the base, herbivorous 

mesozooplankton (mainly copepods in the sea and cladocerans in lakes) at the second trophic level, 

planktivorous fish at the third trophic level, and piscivorous fish at the forth trophic level (Fig. 1). 

 

 

 

Fig. 1 Simplified pelagic food web; DOC: Dissolved Organic Carbon 

 

 

The existence of second trophic zooplankton groups other that crustacea, for example protozoa and 

tunicates, had been acknowledged but considered negligible. Then, some decades ago, the traditional 

view was challenged by the discovery of the so-called microbial food web, composed of bacteria, 

nanoflagellates and microzooplankton, with the latter as key organisms that link the microbial food 

web to the classical food chain (Pomeroy 1974, Azam et al. 1983) (lower, left-hand portion of Fig. 1). 

The bacteria within the microbial food web play an important role in the decomposition of waste 

materials and tissues of dead organisms, that is the remineralization of bound elements which thus 
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become available for the uptake by autotrophic organisms again. On the other hand, it gradually 

became clear that bacteria are often not only remineralizers of mineral nutrients but rather compete 

with phytoplankton for the uptake of dissolved mineral nutrients (Rothhaupt and Güde 1992). The 

subsequent debate centered on the question of whether the microbial food web was a "link" or a "sink" 

in the energy transfer to higher trophic levels. The answer is quite straightforward. The microbial food 

web is a link to the extent that organic carbon consumed by bacteria is made available to higher 

trophic levels. However, it is a sink to the extent, that primary production by pico- and nanoplankton is 

consumed by protozoans instead of metazoans. 

A further extension of the traditional food web was revealed in the early 1980's, when it became 

clear that gelatinous zooplankton also play a larger role than anticipated at least in marine systems 

(e.g. Alldredge and Madin 1982, Bone 1998), with pelagic tunicates taking the position of crustacean 

zooplankton groups while jellyfish (Cnidaria and Ctenophora) take the position of planktivorous fish 

(right-hand side of Fig. 1). These organisms have a much higher water and lower protein content in 

their fresh biomass than crustaceans and fish have. Therefore, the food chain tunicates-jellyfish has 

also been called "jelly food chain" as opposed to the "crustacean-" or "muscle food chain" that leads 

from crustaceans to fish. Gelatinous zooplankton are usually considered a dead end in the pelagic food 

web (Verity and Smetacek 1996) since their low nutritional value makes them a minor food item for 

higher trophic levels (although there are some minor exceptions, e.g. the moon fish Mola mola and sea 

turtles). Consequently, most their biomass is remineralized in the water column thus fueling the 

microbial food web. 

With the discovery of the microbial food web and the gelatinous realm, the classic four-link 

food chain from primary producers to piscivorous fish was forced open. Triggered by the availability 

and stoichiometry of dissolved inorganic nutrients, food chain length may vary up to seven links 

(picoplankton – heterotrophic nanoflagellates, HNF – ciliates – zooplankton – predatory zooplankton 

– planktivorous fish – piscivorous fish) or energy may be channeled away from fish if tunicates 

harvest most of the primary production (Fig. 1). Both food chain elongation and dead ends in energy 

flow have drastic impacts on the ratio of fish production to primary production, as energy is lost from 

the food chain on each transfer to the next higher trophic level (Sommer et al. 2002). 

Mixotrophic organisms have yet to be considered within this context. Mixotrophs combine 

phototrophic and phagotrophic production dependent on the availability of light and nutrients (e.g. 

Sibbald and Albright 1991, Raven 1997). Hence, they act as both consumers and producers of organic 

carbon. Although they may contribute substantially to plankton biomass in marine (e.g. Arenovski et 

al. 1995, Havskum and Riemann 1996, Pitta and Giannakourou 2000) and freshwater (e.g. Sandgren 

1988, Isaksson 1998, Sanders 1991) systems, their contribution to aquatic ecosystems is not yet fully 

understood. 
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1.3. Bottom-up vs. top-down control 

 

The different community components within a food chain directly affect their neighbours through 

trophic interactions thereby indirectly influencing other components with which they are integrated. 

Effects of component interactions can travel through the food chain, although the effects may be 

dampened. Such a flow of controlling influence can start from the bottom of the food chain induced by 

the availability of resources to higher trophic levels (bottom-up control) or can flow downward 

induced by the impact of predators or grazers on lower trophic levels (top-down control). Today it is 

commonly accepted that, within the physical constraints of, for example, mixing, stratification, 

temperature and light conditions, plankton communities are structured by the simultaneous impact of 

bottom-up and top-down effects. However, the strength of each of the two flows will vary between 

ecosystems, over time and with the spatial scale of observation (e.g. Worm 2000). 

Mankind seriously influences both bottom-up and top-down effects. For instance, global fishery 

has fully exploited two thirds of all fish stocks (Botsford et al. 1997), with severe implications for 

lower food web structure and dynamics (e.g. Durán and Castilla 1989, Estes et al. 1998, Steneck 

1998). In addition, humans heavily influence aquatic food webs bottom-up through changes in the 

supply of nutrient resources (to be explained in more detail in the following sub-chapter). 
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1.4. Natural vs. cultural nutrient enrichment 

 

Enrichment with nutrients and organic compounds that limit primary or secondary production is one of 

the most pervasive human alterations of the environment and profoundly affects species composition, 

food web structure, and ecosystem functioning (DeAngelis 1992, Rosenzweig 1995, Polis et al. 1997). 

Nutrient-rich wastes and effluents are often directly disposed into coastal environments and lakes or 

reach them by rain runoff, river input and atmospheric transport (Peierls et al. 1991, Carpenter et al. 

1998). Increasing supply of nutrients and organic matter (eutrophication) has caused changes in 

plankton abundance and species composition, including toxic microalgal blooms in aquatic systems 

around the world. 

The reason for this phenomenon is not solely absolute nutrient concentration, rather nutrient 

stoichiometry. The ratios of the different plant nutrients, mainly phosphorus (P), nitrogen (N), and 

silicate (Si) determine the taxonomical composition of the phytoplankton community. Si is of extra 

importance because it determines the proportion of diatoms in the phytoplankton community (e.g. 

Tilman 1986, Escaravage et al. 1996, Egge and Jacobsen 1997). A certain proportion of diatoms seems 

to be essential for a high food web efficiency (e.g. Sommer et al. 2002, Stibor et al. 2002). Natural 

enrichment from deep waters, as it occurs in upwelling regions and during seasonal mixing, is 

characterized by high Si:N and Si:P ratios beneficial for the growth of diatoms. On the contrary, 

cultural eutrophication is usually characterized by an excess of N and P leading to low Si:N and Si:P 

ratios, respectively (e.g. Billen and Garnier 1997, Cloern 2001). These frequently support the growth 

of large flagellates (mainly dinoflagellates) (e.g. Cadée 1992, Radach et al. 1990, Cooper 1995), that 

generally form a minor food source for herbivorous mesozooplankton compared to diatoms (e.g. 

Lancelot et al. 2002). In addition, many of these flagellates are potentially toxic (Granéli et al. 1989, 

Smayda 1990, Honjo 1993). As a consequence, primary production may be channeled away from 

higher trophic levels that are also substantial for human nourishment. Instead the microbial food web, 

that finally remineralizes all inedible food items, is stimulated. 

Although the problems related to human-induced eutrophication are a recognized issue, the 

present management of eutrophication suffers from an insufficient understanding of the response of 

enhanced nutrient supply to aquatic ecosystems, especially in marine systems. The central question 

here is: How does human-induced nutrient enrichment cause changes in the structure and function of 

nearshore coastal ecosystems? To properly answer this question information on physiological and 

community structuring properties of functional key species is essential, thus leading to the 

backgrounds related to my first study. 
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CHAPTER 2 – STUDY BACKGROUNDS 
 

2.1. Backgrounds Study A 

 

The experiments summarized in Study A were conducted during Marine Science and Technology 

(MAST) III-project COMWEB funded by the EU. COMWEB provided an experimental approach to 

increase our understanding of the process of harmful coastal eutrophication. The project examined the 

effects of variable nutrient supply on the entire pattern of food web components and flows in the lower 

pelagic food web. Fundamental information on physiological properties of functional key species in 

the pelagic food web was used to constrain flow estimations established by so-called inverse modeling 

procedures (see Olsen et al. 2001 for more details). The comparative case studies covered the Baltic, 

the NW-Mediterranean, the North Sea, and the NE-Atlantic. The objective of my experiments was to  

contribute data regarding three major mesozooplankton groups: copepods, cladocerans and doliolids. 

 

As already indicated in the above chapters, the grazing behavior of mesozooplankton is one of the 

critical factors structuring pelagic food webs. Mesozooplankton distribute the organic matter 

synthesized by autotrophs towards higher trophic levels. While marine copepods are relatively well 

investigated within this context, only limited knowledge existed regarding the feeding behavior of 

marine cladocerans and practically nothing was known about the feeding behavior of doliolids when I 

began my experiments. Similarly, nothing was known about the role marine copepods, cladocerans 

and doliolids play in structuring plankton communities and how their assimilation efficiencies differ 

from each other, an important parameter necessary to predict energy transfer efficiency between 

trophic levels. 

 

Pelagic copepods occur both in the sea and in freshwaters. Traditionally, copepods have been 

considered the prototype of marine zooplankton and indeed dominate the mesozooplankton guild in 

many marine areas by number and biomass. Copepods have complicated life cycles (obligate 

sexuality, larval nauplius stages and subadult copepodid stages). Slow somatic growth leads to long 

generation cycles and low birth rates. Fast-growing copepods like Acartia clausi need on an average 

one to two months until maturity, while annual life cycles (e.g. Calanus finnmarchicus) and even 

longer ones (Calanus hyperboreus in polar seas) are common as well. 

Similar to copepods in marine systems, cladocerans have been considered the prototype of 

zooplankton in lakes, particularly the genus Daphnia spp.. Cladocerans have simple life cycles with a 

parthenogenetic reproduction through most of the year and without larval stages. Neonates are 

morphologically similar to adults, relatively large and grow to sexual maturity within a few days. 

Pelagic tunicates (salps, appendicularians, pyrosomas and doliolids) are exclusively marine 

organisms and ubiquitous members of all marine pelagic systems, from coastal areas to the deep sea. 
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As already explained, they are also referred to as gelatinous zooplankton because of their extremely 

watery body tissue (Acuña 2001). The reproduction cycle is complex, including sexual and asexual 

generations with high birth rates. Under good food conditions tunicates exhibit population growth 

rates that rank at the top among metazoans and, therefore, may form large swarms mainly by asexual 

reproduction (Bone 1998). Traditional sampling with nets damage the soft bodies of tunicates so that 

they are not easily identified. Therefore, their abundance has been underestimated for a long period of 

time. 

 

My research focused on the following main questions: 

 

1. Which are the feeding characteristics of copepods, cladocerans and doliolids in the NW 

Mediterranean? (  Paper A1) 

2. Based on the results of experiment A1, how do copepods, cladocerans and doliolids structure the 

phytoplankton community and the microbial food web in the long run? (  Paper A2) 

3. Do sub-tropical and boreal marine cladocerans differ in their feeding habits? (  Paper A3) 
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2.2. Backgrounds Study B 

 

The experiments summarized in Study B were conducted within the frame of a German Research 

Council (DFG) project that studied the effects organisms that work on multiple trophic levels 

(omnivores and mixotrophs) have on planktonic food web structure and dynamics. The experiments 

presented sought to contribute data about mixotrophic organisms. 

 

Mixotrophy is defined as the combination of photosynthesis and phagotrophy in the same individual 

(Sanders 1991). An immediate advantage of being a mixotroph instead of being a specialist phototroph 

or phagotroph is assumed to include a better survival of mixotrophs during periods of nutrient or light 

limitation. On the other hand, the strategy requires investment in both a photosynthetic and a 

phagotrophic cellular apparatus, and the benefits must outweigh these costs. Although the mixotrophic 

feeding mode was already recognized in the first half of this century (Pascher 1917, Biecheler 1936), 

interest in its ecological importance remained low until its re-discovery in the 1980's (Bird and Kalff 

1986). In the meantime, mixotrophs have been found in several classes of single-celled plankton 

(flagellates, ciliates, and radiolarians) (see e.g. Jones 2000 for review) and it is well established that 

mixotrophs are important members of planktonic food webs in marine (e.g. Arenovski et al. 1995, 

Havskum and Riemann 1996, Pitta and Giannakourou 2000) and freshwater (e.g. Sandgren 1988, 

Isaksson 1998, Sanders 1991) systems. 

The relative importance of the phototrophic and phagotrophic modes of nutrition in mixotrophs 

is species specific and varies as a function of environmental parameters like particle density 

(Rothhaupt 1996a), light (Sanders et al. 1990), inorganic nutrient concentration (Nygaard and 

Tobiesen 1993), pH (Sanders et al. 1990) dissolved organic carbon (DOC) (Bergström et al. 2003), 

and perhaps dissolved inorganic carbon (DIC) (Porter 1988, Sanders et al. 1990). However, most 

mixotrophic organisms seem to combine phagotrophy and phototrophy primarily dependent on the 

availability of light and nutrients and generally rely more on either one nutrition mode (Jones 1997). 

 

Mixotrophs offer an interesting field of experimentation. Their ability to combine light, mineral 

nutrients, and prey as substitutable resources suggests that they have a different impact on nutrient 

cycling and energy transfer in pelagic food webs than purely phototrophic or purely phagotrophic 

organisms. Similarly, it is to assume that their competitive capabilities differ from their specialized 

counterparts. 

Although mixotrophs recently have been included more intensively in ecological studies (e.g. 

Hitchman and Jones 2000, Sanders et al. 2000, Bergström et al. 2003, Tittel et al. 2003), good 

controlled experimental tests of competition between mixotrophs and specialist phototrophs or 

phagotrophs are surprisingly rare. Likewise, the importance of mixotrophs for energy transfer to 

higher trophic levels and for nutrient cycling has never before been examined. 
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My research focused on the following main questions: 

 

1. Do mixotrophs influence energy transfer to higher trophic levels differently than their 

specialized counterparts? (  Paper B1) 

2. Can mixotrophs invade established plankton communities consisting of specialist phototrophs 

and specialist phagotrophs? In the case of a successful invasion, how do mixotrophs change 

food web structure? (  Paper B2) 
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CHAPTER 3 – PAPER SUMMARIES 
 

Paper A1 

Feeding selectivities and food niche separation of Acartia clausi, 

Penilia avirostris (Crustacea) and Doliolum denticulatum 

(Thaliacea) in Blanes Bay (Catalan Sea, NW Mediterranean) 

 

 

The grazing behavior of mesozooplankton is one of the critical factors structuring pelagic food webs. 

There are many studies concerning grazing of marine copepods. In contrast, gelatinous 

mesozooplankton and marine cladocerans are poorly investigated, possibly because they are difficult 

to sample and difficult to cultivate in the laboratory. In Blanes Bay (Catalan Sea, NW Mediterranean) 

I had the opportunity to work with copepods, cladocerans and doliolids captured directly from the sea, 

shortly before I started my experiments. 

 

I was interested in the feeding characteristics as such but also in the question why copepods, 

cladocerans and doliolids are able to coexist in the NW Mediterranean, although they obviously 

depend on the same resources and their carbon contents (Table III in Paper A1) and energy 

requirements per carbon unit (Ikeda 1985, Schneider 1992) are similar. My hypothesis was that 

copepods, cladocerans and doliolids must have different niche specifications regarding their dietary 

preferences and that niche specifications must be based on food size, as size is the most important 

factor for feeding relationships in the pelagic (Sommer et al. 2002). 

 

To test my hypothesis, I conducted short-time grazing experiments with the copepod Acartia clausi, 

the cladoceran Penilia avirostris and the doliolid Doliolum denticulatum. The plankton communities I 

used as food were grown at different nutrient supplies in off-shore mesocosms. The resulting average 

plankton sizes, proportion of diatoms and community densities were positively correlated with nutrient 

supply (Tables I, II, and Fig. 2 in Paper A1). The grazing-parameters I determined for each 

mesozooplankton group were food selectivity, clearance and ingestion rate, assimilation efficiency, 

food niche breadth and niche overlap. 

 

My results show that Acartia clausi, Penilia avirostris and Doliolum denticulatum differ substantially 

in their food size selectivities, which helps explain their coexistence in the NW Mediterranean. 

Although all grazers competed for food sizes between 7.5 and 100 µm (longest linear 

extension), none of the grazing spectra completely overlapped any of the others. Doliolids reached 

highest grazing coefficients for small food sizes between <1 and 15 µm, cladocerans for intermediate 

sizes between 15 and 70 µm, and copepods for large algae >70 µm (Fig. 1 in Paper A1). 
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Doliolum denticulatum and Penilia avirostris acted as passive filter-feeders that ingest food only 

as a result of anatomical constraints, whereas Acartia clausi actively selected beneficial prey. To 

actively grab beneficial prey has decisive advantages. First, it helps to choose food items that are 

especially nutritious thus helping to optimize metabolism. The assimilation efficiencies of copepods 

were indeed higher than those of cladocerans and doliolids, although the copepods' mean clearance 

and ingestion rates were lower (Figs. 4 and 5 in Paper A1). Secondly, it helps to avoid toxic or 

otherwise chemically unfavorable algae. Calculations of food-niche breadth sustain that in feeding 

Acartia clausi is indeed more specialized than Penilia avirostris and Doliolum denticulatum (Fig. 6 in 

Paper A1). 

 

Although they coexist in the NW Mediterranean, my experiments revealed that copepods, cladocerans 

and doliolids are in principle best adapted to different kinds of pelagic environments. 

Doliolids were the only mesozooplankton that fed efficiently on picoplankton and small 

nanoplankton. This ability is advantageous in low-nutrient environments that mainly support the 

growth of very small plankton (e.g. this paper, Sommer 2000). In contrast, cladocerans and copepods 

preferred medium-sized and large food items, which are promoted by moderate and high nutrient 

supplies, respectively. Correspondingly, doliolids met the highest proportion of usable food or 

"effective food concentration" (EFC) in plankton communities that were grown at low nutrient 

supplies, whereas cladocerans and copepods found a higher EFC in plankton communities that were 

grown at moderate and high nutrient supplies, respectively (Fig. 3 in Paper A1). 

Furthermore, copepods and cladocerans were able to adjust their clearance rates to changing 

food concentrations, and thus to keep their ingestion rates stable over a wide range of food densities 

(Fig. 4 in Paper A1). This skill is especially useful in environments subject to fluctuating food 

densities, such as those regularly occuring in coastal environments. In contrast, doliolids reached much 

higher clearance rates than copepods and cladocerans, but could not adjust their filtration rates to 

changing food supplies. This caused their filtration apparatus to get blocked at higher food 

concentrations and suggests that they are better adapted to the open ocean where food concentrations 

are generally low but stable. 

 

Two important conclusions can be derived from my experiments: 

 

1. The possibility of metazoans to feed on protozoa and bacteria makes the trophic level of 

mesozooplankton more flexible than suggested by common models of pelagic food webs. 

2. The fact that copepods, cladocerans and doliolids differ substantially in their feeding habits, 

suggests that they have different impacts on both lower food web structure and energy transfer 

efficiency to higher trophic levels.  
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Paper A2 

Changes in the phytoplankton community and microbial food web of 

Blanes Bay (Catalan Sea, NW Mediterranean) under prolonged grazing 

pressure by doliolids (Tunicata), cladocerans or copepods (Crustacea) 

 

 

Based on the results derived from experiment A1, I wanted to know how copepods, cladocerans and 

doliolids would influence the phytoplankton and the microbial food web over a longer period of time, 

not only directly by grazing but also indirectly by influencing the system's nutrient dynamics through 

"sloppy feeding" and through their excretions. This question was especially interesting because top-

down explanations have become accepted by the limnological scientific community since the 1980's 

(e.g. Oksanen 1981, Carpenter et al. 1985), whereas marine ecologists have almost never attempted 

top-down explanations of phytoplankton size structure (Shurin et al. 2002). At the time I conducted 

the following experiments, it was not yet clear whether the lack of data in marine systems is a 

consequence of a different research focus or of the absence of that phenomenon. 

 

My hypothesis was that depending on which type of mesozooplankton grazer is predominant, 

phytoplankton and the microbial food web should be dominated by those size classes which are least 

edible. In addition, I expected the different grazer groups to cause different shifts in nutrient 

stoichiometry and, therefore, to influence competition between algal groups and the microbial food 

web differently. The tendency of zooplankton to minimize the excretion of the nutrient least abundant 

relative to demand in the body mass of their food (e.g. Hessen 1992, Elser and Urabe 1999) should 

accentuate already existing patterns of nutrient limitation or bias nutrient supply ratios. 

 

To test my hypotheses, I invented circular two-stage chemostats (Fig. 1 in Paper A2). In the first 

stages I incubated plankton assemblages from the NW Mediterranean that included the microbial food 

web, as well as the natural phytoplankton community. In the second stages I incubated additionally 

either copepods, cladocerans or doliolids. To provide the grazers with food I regularly transferred a 

defined volume from the first stages to the second stages. Likewise, I returned a defined volume from 

the second stages to the first stages, together with uneaten food items and recycled nutrients. In this 

way, the plankton community in the first stages changed gradually depending on the direct and 

indirect impacts exerted by mesozooplankton grazing. The whole chemostat was fueled by nutrient 

supplies comparable to the in situ nutrient supply rate from natural terrestrial and human sources at the 

site. 

 

My results show that, in the long run, copepods, cladocerans and doliolids alter the phytoplankton 

community in different ways. 
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Doliolids and cladocerans promoted the growth of large algae, whereas copepods shifted the 

size spectrum towards small sizes (Fig. 2 in Paper A2). 

 

Doliolids, cladocerans and copepods also affected the microbial food web in different ways, both 

through direct grazing and indirectly via trophic cascades. 

Doliolids showed a direct link with the microbial food web on the bacterial level, cladocerans on 

the flagellate level and higher. Copepods did not have a direct link to the microbial food web. 

Nevertheless, also copepods changed the structure of the microbial food web. Size-selective grazing 

caused differences in the concentrations of heterotrophic nanoflagellates (HNF). These in turn affected 

bacterial concentrations in a trophic cascade (Fig. 4 in Paper A2). As a consequence, paradoxically, 

bacterial abundances were lowest in treatments with copepods (Fig. 3 in Paper A2). 

 

Furthermore, grazer-induced nutrient recycling led to shifts in dissolved nutrient stoichiometry. 

Phosphorus (P)-rich cladocerans and doliolids retained relatively more P and depressed nitrogen (N):P 

excretion ratios compared to more N-rich copepods. Similarly, all mesozooplankton grazers slowed 

down silicate (Si) cycling (Fig. 3 in Paper A2, right panel). However, these shifts were outweighed by 

the allochthonous input of nutrients to the chemostats (Fig. 3 in Paper A2, left panel). Hence, in my 

experiments, grazer-induced nutrient recycling was not powerful enough to influence phytoplankton 

competition. Nevertheless, grazer-induced nutrient recycling may influence phytoplankton 

composition in environments where nutrient supply is dominated by recycling. This, for example, 

being the case in nutrient-poor surface layers during summer stratification and in ultraoligotrophic 

regions of the open ocean. 

 

Two important conclusions can be derived from my experiments: 

 

1. In contrast to what was traditionally believed, top-down effects also appear in marine systems 

and are mediated differently by different consumers. 

2. If mesozooplankton exert selective influence upon their food guild, then the dominant grazer 

group should decimate its own favored food while sparing the exclusive food sources of other 

mesozooplankton from grazing pressure and vice versa. Any such feedback would obscure 

bottom-up effects and dampen strongly expected shifts in mesozooplankton dominance along an 

eutrophication gradient (Sommer et al. 2002). 
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Paper A3 

Feeding selectivities of the marine cladocerans 

Penilia avirostris, Podon intermedius and Evadne nordmanni 

 

 

Having over 600 recorded species, cladocerans are the dominant mesozooplankton in many lakes 

(Schram 1986). In contrast, only eight cladoceran species have been reported to be truly marine (Onbé 

1977). These belong to the three genera Penilia, Podon and Evadne, which are mainly restricted to 

coastal waters. Penilia only exists in temperate waters (Della Croce and Venugopal 1973, Grahame 

1976), while Podon and Evadne are mainly found in boreal oceans (Raymont 1983). Cladocerans play 

a less important role in marine pelagic systems compared to copepods (Raymont 1983, Egloff et al. 

1997). Nevertheless, cladocerans sporadically consume a substantial portion of the primary production 

(Bosch and Taylor 1973, Turner et al. 1988, Kim et al. 1989). 

 

Little is known about the feeding habits of marine cladocerans. At the time I conducted my 

experiments, the published studies were contradictory to some extent and did not include any feeding 

experiments with Podon or Evadne grazing on natural phytoplankton communities. During research 

stays in Spain and in Norway I had the opportunity to compare the feeding characteristics of 

representatives of all three cladoceran genera under similar experimental conditions. 

 

For this reason, I conducted short-time grazing experiments with Penilia avirostris from the NW 

Mediterranean and with Podon intermedius and Evadne nordmanni from the NE Atlantic. The 

plankton communities I used as food for Penilia avirostris were grown at different nutrient supplies in 

off-shore mesocosms. The resulting average plankton sizes, proportion of diatoms and community 

densities were positively correlated with nutrient supply (Tables 1, 2, and Fig. 2 in Paper A3). The 

plankton community I used as food for Podon intermedius and Evadne nordmanni was the natural 

plankton community found in summer in Hopavågen Fjord, Norway (Tables 1, 3, and Fig. 3 in Paper 

A3). The grazing-parameters I determined for each cladoceran species were food size selectivity and 

food taxon selectivity, as well as clearance and ingestion rate. 

 

My results show that Penilia avirostris and Podon intermedius act as true filter feeders, while Evadne 

nordmanni feeds to some extent selectively. 

Penilia avirostris and Podon intermedius reached highest grazing coefficients at similar food 

sizes ranging between 15 and 70 µm and between 7.5 and 70 µm (longest linear extension), 

respectively. Evadne nordmanni preferred organisms around 125 µm, but also showed high grazing 

coefficients for particles around 10 µm, while grazing coefficients for intermediate food sizes were 
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low (Fig. 1 in Paper A3). The latter indicates that Evadne nordmanni has difficulties capturing motile 

prey, as intermediate food sizes were attributed especially to motile plankton organisms. 

All cladocerans fed relevantly on components of the microbial food web, that is ciliates and 

nanoflagellates. There is some evidence that Podon intermedius and Evadne nordmanni additionally 

fed on bacteria. However, for methodical reasons I could not ultimately verify grazing on bacteria. 

 

Penilia avirostris was able to adjust its clearance rates to changing food concentrations thus keeping 

its ingestion rate stable over a wide range of food densities (Fig. 5 in Paper A3). This skill is especially 

useful in environments that are subject to fluctuating food densities, such as those regularly occuring 

in coastal environments. I did not offer different food densities to Podon intermedius and Evadne 

nordmanni. Therefore, future investigations will have to show how they handle different food 

abundances. However, mean clearance and ingestion rates were similar for all investigated cladocerans 

at similar food concentrations (Fig. 5 in Paper A3). 

 

Penilia avirostris met the highest proportion of usable food or "effective food concentration" (EFC) in 

plankton communities that were grown at intermediate nutrient supplies (Fig. 4 in Paper A3). 

Nutrient conditions in Hopavågen Fjord provided higher EFC for Podon intermedius than for 

Evadne nordmanni. This may be considered a competitive advantage for Podon intermedius, and 

could in part explain the general predominance of Podon intermedius over Evadne nordmanni in 

Hopavågen Fjord (Olav Vadstein, personal communication). On the other hand, clearance and 

ingestion rates were the same for both species. 

 

Two important conclusions can be derived from my experiments: 

 

1. On the whole, the feeding habits of marine cladocerans seem to be relatively similar. 

2. However, further studies are necessary to investigate the functional responses of boreal 

cladocerans and to examine the importance of cladocerans in marine pelagic food webs in more 

detail. 
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Paper B1 

Mixotrophic vs. obligately autotrophic algae as food for zooplankton – 

the light:nutrient hypothesis might not hold for mixotrophs 

 

 

Studies in aquatic productivity traditionally focused the role of food quantity. That is to say, high 

primary production and biomass would yield high secondary production and biomass of zooplankton 

and thus potentially also sustain a higher biomass of top predators (e.g. Begon et al. 1996). Recently, 

however, it has become clear that food quality in terms of elemental nutrient composition may be a 

key determinant to trophic efficiency in food webs (e.g. Hessen 1992, Gulati and DeMott 1997), and 

that food chain production varies with the degree of mismatch between the carbon (C):nutrient ratios 

of autotrophs and their consumers (e.g. Sterner et al. 1998, Hessen and Faafeng 2000). 

The C:nutrient ratio of photoautotrophic primary producers is determined by the supply of light 

and nutrients. Global perturbations to solar insolation and to biogeochemical cycles are altering the 

inputs of light and nutrients to ecosystems thus influencing primary and secondary production (e.g. 

Lindroth et al. 1993, Schindler 1998). Recent ecological models predict an increasing decoupling of 

higher and lower trophic levels in lakes in the coming decades, especially because of an increasing 

mismatch in the C:phosphorus (P) ratios of autotrophs and their consumers (Sterner et al. 1997, 1998). 

In this context, algae with low C:P ratios are rated a better food quality for mesozooplankton than 

algae with high C:P ratios (e.g. Hessen and Faafeng 2000, Makino et al. 2002). 

High C:P ratios in algae have been attributed to a joint effect of high light intensities and low P 

supplies. At high light:nutrient ratios, higher primary production may therefore, paradoxically, cause 

lower zooplankton production, due to a reduction in transfer efficiency caused by low food quality. On 

the other hand, at low light supply, food quantity may limit secondary production. These relationships 

have been summarized in the light:nutrient hypothesis (LNH) by Sterner et al. (1997), and seem well 

supported by recent theoretical (Andersen 1997, Loladze et al. 2000) and empirical studies (e.g. Urabe 

and Sterner 1996, Hessen et al. 2002, Urabe et al. 2002a). 

However, the LNH is based on the assumption that purely photoautotrophic organisms 

constitute the base of the food chain. The role of mixotrophic organisms has thus far been neglected 

within this context, although they may contribute substantially to phytoplankton biomass (see Chapter 

2.2.). Mixotrophic organisms combine phototrophic and phagotrophic production dependent on the 

availability of light and nutrients (e.g. Sibbald and Albright 1991, Raven 1997) and for the following 

reasons, I expected mixotrophs to have different effects on the algae–herbivore interface than 

predicted by the LNH: 

− The ability to use alternative production pathways suggests that the stoichiometric composition 

of mixotrophs may be less affected by alterations in the supply with light and dissolved nutrients 

than the stoichiometry of phototrophic specialists. 
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− Potentially limiting nutrients, particularly P, are often several orders of magnitude more 

concentrated in the biomass of food organisms of mixotrophs (bacteria and bacterial-sized 

particulate matter) than in the dissolved phase (e.g. Vadstein 2000). Heterotrophic nutrition may 

therefore, entail low C:P ratios in mixotrophs, making them a nutrient-rich food source for 

mesozooplankton grazers even at high environmental light:nutrient ratios. 

− Mixotrophic organisms may dominate phytoplankton biomass under low light conditions and in 

low nutrient environments (e.g. Riemann et al. 1995), that is exactly in those environments 

where, according to the LNH, secondary production may be restricted by autotroph food 

quantity and quality, respectively. 

 

Based on these expectations I formulated the following two hypotheses: 

1. The C:P ratios of mixotrophs are lower and much less dependent on external light:nutrient 

supply ratios than the C:P ratios of purely phototrophic algae. 

2. Compared to photoautotrophic specialists, mixotrophs are a superior food source for 

mesozooplankton grazers at high light:nutrient supply ratios and in low light environments. 

 

To test my hypotheses, I reared mixotrophic organisms (Ochromonas tuberculata and Cryptomonas 

sp.) and purely photoautotrophic algae (Scenedesmus obliquus) at different light:P supplies and 

compared their effects as food for zooplankton (Daphnia magna) in semicontinuous two-stage 

chemostats. 
 
In accordance with the LNH, biomass and nutrient stoichiometry of Scenedesmus obliquus depended 

strongly on light:P supplies. As a consequence, Daphnia magna growth and fecundity were limited by 

food quantity at low light intensities and by stoichiometric food quality at high light intensities. In 

turn, P fertilization caused a transition from limitation by food quality to limitation by food quantity 

(Fig. 1 in Paper B1, circles). 

In contrast to the LNH, biomass and nutrient stoichiometry of mixotrophs were almost 

unaffected by alterations in the supply of light and dissolved nutrients (Fig. 1 in Paper B1, open 

symbols). Bacterial counts suggest that mixotrophs compensated for light or P deficiency by 

heterotrophic nutrition (Fig. 3 in Paper B1). Compared to phototrophic specialists, a diet of 

Cryptomonas sp. therefore enabled a similar or higher and more stable secondary production at most 

light:nutrient supplies (Fig. 1 in Paper B1, triangles). O. tuberculata, however, appeared to be toxic. 

 

Two important conclusions can be derived from my experiments: 

 

1. My results show that compared to phototrophic specialists mixotrophs may enhance transfer 

efficiency towards herbivores at low light conditions and in situations when limiting nutrients 

are linked to bacteria and to the picoplankton. 
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2. Additionally, my results suggest that mixotrophs may have a balancing effect on variations in 

trophic cascade strength caused by perturbations to light and nutrient supply ratios. 
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Paper B2 

The mixotroph Ochromonas tuberculata may invade and suppress 

specialist phago- and phototroph plankton communities depending on 

nutrient conditions 

 

 

The following experiment served as a first step towards analyzing if the results gained from 

experiment B1 have any ecological relevance in situ, that is, if mixotrophs in nature-like communities 

can gain enough importance to relevantly influence transfer efficiency to higher trophic levels and 

system stability. 

 

Mixotrophs combine light, mineral nutrients, and prey as substitutable resources. This nutritional 

flexibility may be advantageous against phototrophic specialists when dissolved nutrients are limiting 

and may be advantageous against phagotrophic specialists when prey like bacteria and picoplankton 

are limiting. On the other hand, mixotrophic organisms must invest in the synthesis and maintenance 

of both a photosynthetic apparatus and in the mechanisms for prey uptake and its subsequent 

digestion. These energetic costs may lower a mixotroph's resource use efficiency and may lower 

photosynthetic performance, resulting in a reduced maximum growth rate compared with a 

phototrophic or heterotrophic specialist. A mixotroph is therefore expected to be inferior if the 

environmental conditions sufficiently satisfy the demands of purely phototrophic and phagotrophic 

specialist, respectively (e.g. Rothhaupt 1996a, Raven 1997, Jones 2000). However, good controlled 

experimental tests of competition between mixotrophs and specialist phototrophs or phagotrophs are 

surprisingly rare and the mechanisms underlaying the succession or possible invasion of mixotrophs in 

aquatic systems are hardly known. 

 

In the present study I tested the ability of mixotrophs to invade established plankton communities. I 

was interested as to if and how invading mixotrophs would alter food web structure, species diversity, 

and nutrient cycling.  

 

Based on the aforementioned explanations and the results gained from experiment B1, I formulated 

the following hypotheses: 

1. The potential of mixotrophs to invade an existing plankton community decreases with nutrient 

enrichment. 

2. The carbon (C):nutrient ratio of a plankton community decreases as the proportion of 

mixotrophs increases. 
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To test my hypotheses, I first assembled limnic planktonic food webs in semicontinuous chemostats at 

different supplies of dissolved inorganic nutrients and dissolved organic carbon (DOC). Food webs 

consisted of bacteria, specialist phagotrophs (heterotrophic nanoflagellates, HNF, and ciliates), and 

purely phototrophic algae (siliceous and non-siliceous) covering a wide range of plankton sizes from 

pico- to microphyto- and -zooplankton (Fig. 1 in Paper B2). After plankton communities had 

established themselves for two weeks, I let mixotrophic Ochromonas tuberculata invade the systems. 

 

In accordance with my expectations, low nutrient supplies fascilated the invasion of mixotrophic 

organisms while high nutrient supplies prevented mixotrophs from successfully invading the food 

webs (Figs. 2 and 3 in Paper B2). 

Ochromonas tuberculata obviously supplemented nutrient restriction by grazing bacteria and 

picophytoplankton at oligotrophic and mesotrophic conditions (Fig. 4 in Paper B2). As a consequence 

of combining alternative production pathways, Ochromonas tuberculata practically suppressed all 

other plankton species that were present at the beginning of the experiments. In addition mixotrophs 

made much better use of the given resources (in the sense of generating biomass) than purely auto- 

and heterotrophic specialists (Fig. 2 in Paper B2). 

In systems where mixotrophs suppressed their specialist competitors they significantly changed 

seston C:nutrient ratios and had a habitat-ameliorating effect for higher trophic levels, gauged in terms 

of plankton food quality (see experiment B1). The overall C:phosphorus (P) ratio was considerably 

lower where mixotrophs were common (Fig. 5 in Paper B2). This speaks for a scarcity of dissolved 

inorganic P that was compensated by additional P uptake by mixotrophs using particular P from prey 

as P source. In this way, mixotrophs may make nutrient sources available for higher trophic levels, 

which would not be accessible to them otherwise. On the contrary, nitrogen (N) obviously was 

obtainable in excess in my experiments as C:N ratios remained unaffected. 

 

According to the presented results, one would expect mixotrophs to be especially invasive in steady-

state like situations where light is sufficient, but dissolved nutrients are limiting and overall 

productivity is rather low, as is the case in surface layers after a longer period of stratification (e.g. 

Havskum and Riemann 1996) and in low productive areas like the subtropical Atlantic Ocean (Mann 

and Lazier 1996). Under such conditions, external import of nutrients is low, and recycling is the 

primary source for mineral nutrients. Growth rates of pure autotrophs are well below their possible 

maxima, and mixotrophs might take full advantage of their strategy. 

 

Two important conclusions can be derived from my experiments: 
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1. In contrast to ecology perception, specialization may not necessarily be the most successful 

strategy for survival under stable conditions. Rather, the use of several resources with lower 

efficiency can be an equally or even more successful tactic in nature. 

2. When limiting nutrients are linked to the bacterio- and picophytoplankton, invading mixotrophs 

may have a habitat-ameliorating effect for higher trophic levels, gauged in terms of food 

quantity and quality. This may help explain why trophic transfer efficiency and food web 

strength are generally higher in low nutrient environments than in eutrophic systems (Carpenter 

and Kitchell 1984, McQueen et al. 1986). However, further investigation will be necessary to 

sustain these findings in situ. 
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CHAPTER 4 – CONCLUSIONS 
 

Two main conclusions can be derived from my studies: 

 

1. The results gained from Study A show that mesozooplankton grazers influence the microbial 

food web and the phytoplankton on multiple trophic levels, not only by direct grazing but also 

indirectly by grazing-induced nutrient cycling and via trophic cascades. In other words, the 

results indicate that the trophic level of mesozooplankton is much more flexible than conveyed 

by classic food web theory. Therefore, depending on their feeding habits, different 

mesozooplankton grazers may influence food chain length differently along an oligotrophic-

eutrophic gradient. Filter feeding mesozooplankton (cladocerans, doliolids) are around 15 to 

1500 times larger than their food, whereas copepods which may feed by individual particle 

capture are around 5 to 120 times larger. If size constraints were the only determinant for food 

chain length it would be easy to squeeze one or even two trophic levels. Furthermore, 

mesozooplankton grazers obviously have deviating assimilation efficiencies. The combined 

outcomes suggest that the transmission of energy from primary producers to top trophic levels is 

more complex than predicted by common pelagic ecosystem models that only treat 

mesozooplankton as a single box. 

 

2. The results gained from Study B indicate that mixotrophs may be strong competitors against 

specialist phototrophs and specialist phagotrophs depending on light–nutrient supplies. 

Furthermore, mixotrophs may influence nutrient cycling, secondary production and food web 

stability differently than predicted by common models that are exclusively based on purely 

phototrophic algae. 
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CHAPTER 5 – RESEARCH OUTLOOK 
 

In the meantime, my experiments have influenced and inspired various other studies. 

− The information on the feeding properties especially of marine cladocerans and doliolids have 

promoted extensive studies by other working groups in the NW Mediterranean (Albert Calbet 

and Dacha Atienza, personal communication) and have contributed to a better understanding of 

the role cladocerans play in marine systems compared to copepods (Ulrich Sommer, personal 

communication). 

− The insight that trophic cascades also exist in marine systems has been extended to the upper 

pelagic food web. In experimental mesocosm studies we showed that top-down control in 

marine pelagic systems can be of the same strength as in trophic cascades in lakes (Stibor et al. 

2004). 

− The definition of mixotrophy as a special kind of omnivory (defined as feeding on more than 

one trophic level) and the work with differently enriched systems led me to the question how 

productivity, omnivory and mixotrophy influence food chain length and food web stability in 

pelagic systems – a question that is discussed controversially in regard to both productivity (e.g. 

Rosenzweig 1971, Kaunzinger and Morin 1998) and omnivory (e.g. Polis and Strong 1996, 

Diehl and Feissel 2000). Two experiments I recently finished indicate that the combination of 

high nutrient levels and the presence of omnivores may have a destabilizing impact on pelagic 

food webs leading to shorter food chains than expected from nutrient conditions alone 

(Katechakis and Stibor 2005b). Mixotrophs again shortcut the food chain in the lower food web 

but lengthen it towards higher trophic levels by making nutrients available to consumers that 

would get lost for secondary production in the absence of mixotrophs (Katechakis and Stibor 

2005c). 

− Finally, the information about the feeding habits of the investigated mesozooplankton coupled 

with the realization that mixotrophs may influence the flow of nutrients, material and energy 

differently than indicated by classical food chain theory, already have implications for pelagic 

food web modeling (Dag Hessen and Tom Andersen, personal communication). 

 

Nevertheless, the results and hypotheses put forward by my work, certainly merit further exploration. 

From my findings I recommend the following future research topics:  

 

1. Does the crustacean to gelatinous ratio change along nutrient gradients? 

Based on my results and the investigation of other authors we hypothesized in 2002 that 

the emphasis of either the "crustacean food chain" or the "jelly food chain" (see Chapter 1.2.) 

may depend substantially on the present nutrient regime (Sommer et al. 2002). In our article we 

give rise to the concern that the jelly food chain may be an alternative stable pathway in the 
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marine pelagic food web that once established may resist change and that cultural eutrophication 

may be an initiatory factor in this context. Since gelatinous zooplankton are usually considered a 

dead end in the pelagic food web (Verity and Smetacek 1996), a long-term shift from the the 

crustacean- to the jelly food chain and, thus, from fish to gelatinous megazooplankton will have 

drastic impacts on the ratio fish production to primary production as well as human nutrition. 

Despite observations in the field that sustain this assumption (Shushkina and Vinogradov 1991, 

Gove and Breitburg 2005), increased research efforts are needed for tunicates, cnidaria and 

ctenophores within this context. 

To address the question whether the crustacean to gelatinous ratio changes along nutrient 

gradients, I suggest a combination of mesocosm studies and meta-analyses based on published 

data on the distribution of gelatinous zooplankton in the ocean. 

 

2. Does the impact of mixotrophic organisms change along nutrient gradients in situ? 

I used laboratory experiments to approach the question how mixotrophs influence 

planktonic food webs. It is important to recognize the limitation of this approach. Microcosm 

experiments are essential in highlighting distinctive interactions that cannot be resolved in field 

experiments. However, they do not capture the full range of species interactions, seasonal 

changes and natural variability of biotic and abiotic factors. Field studies are necessary to test 

my results under realistic conditions. 

I suggest a comparative study in lakes subject to different nutrient supply rates. No such 

study has been thus far reported in the literature. Furthermore, in most standard plankton 

analyses potentially mixotrophic organisms are not even distinguished from purely phototrophic 

algae. 

 
Basic research questions should include: 

− Does the abundance of mixotrophs and their occurrence in relation to other nano- and 

microplankton (phototrophic and phagotrophic) depend on the trophic status of a lake? 

− Does the proportion of mixotrophs change seasonally? 

− To which extent do phago- and phototrophy contribute to mixotrophic production 

▪ at different nutrient supplies? 

▪ along vertical light gradients? 

▪ seasonally, that means depending on the combined influence of changing light- and 

nutrient-supplies? 

 
Further research topics may include  

− the question if seston stoichiometry varies with the abundance of mixotrophs and  

− the determination of the trophic position of mixotrophs in planktonic food webs with the 

help of stable isotope measurements. 
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3. Do mixotrophic organisms react differently to elevated pCO2-pressure than purely 

phototrophic algae? 

It has become obvious that anthropogenic emissions of carbon dioxide (CO2) have strong 

effects on the growth physiology of terrestrial plants across the earth (e.g. Körner 2000, Reich et 

al. 2001). Still, it is far from clear how increasing concentrations of CO2 will influence aquatic 

food webs. Two recent studies indicate that an increased partial CO2-pressure (pCO2) may 

stimulate primary production in specialist phototrophic algae (Burkhart 1998, Urabe et al. 2003). 

On the other hand, the study of Urabe et al. (2003) also suggests that increases in pCO2 may 

have a detrimental effect on secondary production by dilution of other essential elements by 

carbon. Such aspects have yet to be explored in mixotrophs. Based on the insight that 

mixotrophs may have a balancing effect on variations in light to nutrient supply ratios (Paper 

B1), I hypothesize that where mixotrophs are common they likewise may dampen perturbations 

to pCO2. 

I suggest to first test this hypothesis using chemostat experiments in the laboratory. In 

combination with the data received on the abundances of mixotrophs in natural systems (see 

Research outlook 2.), mathematically interpolating of the gained results to a larger scale should 

be possible. 

 

4. Does the biochemical composition of mixotrophs change depending on the contribution of 

phagotrophy to overall production? 

In some of my experiments I observed a declining secondary production in 

mesozooplankton feeding on mixotrophs, although the mixotrophs' stoichiometrical composition 

should have been perfect to sustain a high secondary production (Fig. 1 in Paper B1, open 

triangles). At the same time I found indications for a decreasing contribution of phagotrophy to 

overall mixotrophic production (Fig. 3 in Paper B1, open triangles). I assume that the lowered 

intake of bacteria had an impairing effect on the mixotrophs' food quality beyond nutrient 

stoichiometry. Recent publications show that besides nutrient stoichiometry biochemical 

compounds (and here especially essential fatty acids, EFAs) are a pivotal factor for the 

efficiency with which biomass and energy are transferred across the plant-animal interface (e.g. 

Müller-Navarra et al. 2004). I therefore hypothesize that the biochemical make-up of 

mixotrophs changes with the contribution of phagotrophy to overall mixotrophic production. 

I suggest that this hypothesis be addressed using two-stage chemostat experiments similar 

to the experiments presented in Paper B1 but with a special focus on EFA-composition in purely 

phototrophic and mixotrophic organisms. In order to quantify the contribution of phagotrophy to 

overall mixotrophic production I recommend complementary experiments with fluorescent 

labeled bacteria (FLBs) or algae (FLAs) (e.g. Havskum and Riemann 1996, Sanders et al. 2000). 



31 · References 

CHAPTER 6 – REFERENCES 
 

Acuña JL (2001) Pelagic tunicates: why gelatinous? Am Nat 158:100-107 

Alldredge AL, Madin LP (1982) Pelagic tunicates: unique herbivores in the marine plankton. 
Bioscience 32:655-663 

Andersen T (1997) Grazers as sources and sinks for nutrients. Springer, Berlin Heidelberg  

Arenovski AL, Lim EL, Caron DA (1995) Mixotrophic nanoplankton in oligotrophic surface waters of 
the Sargasso Sea may employ phagotrophy to obtain major nutrients. J Plankton Res 17:801-820 

Azam F, Fenchel T, Field JG, Meier-Reil LA, Thingstad F (1983) The ecological role of water column 
microbes in the sea. Mar Ecol Progr Ser 10:257-263 

Beaumont KL (2003) Planktonic interaction and particulate flux in Ellis Fjord, East Antarctica. PhD 
Thesis, Univ Tasmania, pp 247 

Beaumont KL, Hosie GW, Swadlin KM, Davidson AT, Ritz DA, Trull T (1998) The impact of 
grazing and faecal production by Oncaea curvata (Poecilostomatoida, Copepoda) on carbon 
flux in coastal waters, eastern Antarctica. New Zeal Nat Sci 23:11-18 

Begon M, Harper J, Townsend C (1996) Ecology: Individuals, Populations and Communities. 
Blackwell, Oxford 

Bergström AK, Jansson M, Drakare S, Blomqvist P (2003) Occurrence of mixotrophic flagellates in 
relation to bacterioplankton production, light regime and availability of inorganic nutrients in 
unproductive lakes with differing humic contents. Freshwat Biol 48:868-877 

Biecheler B (1936) Observation de la capture th la digestion des proies chez un péridien vert. Comptes 
rendus des séances de la Société de Biologie 122:1173-1175 

Billen G, Garnier J (1997) The Phison river plume: coastal eutrophication in response to changes in 
land use and water management in the watershed. Aquat Microb Ecol 13:3-17 

Bird DF, Kalff J (1986) Bacterial grazing by planktonic lake algae. Science 231:493-495 

Bone Q (ed) (1998) The biology of pelagic tunicates. Oxford Univ Press, Oxford 

Bosch HF, Taylor WR (1973) Distribution of the cladoceran Podon polyphemoides in the Chesapeake 
Bay. Mar Biol 19:161-171 

Botsford LW, Castilla JC, Peterson CH (1997) The management of fisheries and marine ecosystems. 
Science 277:509-515 

Burkhart S, Zondervan I, Riebesell U (1999) Effect of CO2 concentration on C:N:P raio in marine 
phytoplankton: a species comparison. Limnol Oceanogr 44:683-690 

Cadée GC (1992) Phytoplankton variability in the Marsdiep, the Netherlands. ICES Mar Sci Symp 
195:213-222 

Capone DG, Carpenter EJ (1982) Nitrogen fixation in the marine environment. Science 217:1140-
1142 

Carpenter SR, Caracao NF, Corell DL, Howarth RW, Sharpley A, Smith VH (1998) Non-point 
pollution of surface waters with phosphorus and nitrogen. Ecol Applic 8:559-568 

Carpenter SR, Kitchell JF (1993) The trophic cascade in lakes. Cambridge University Press, 
Camebridge 

Carpenter SR, Kitchell JF, Hodgson JR (1985) Cascading trophic interactions and lake productivity. 
BioScience 35:634-639 

Cloern JE (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol 
Prog Ser 210:223-253 



References · 32 

Cooper SR (1995) Chesapeake Bay watershed historical land use: impact on water quality and diatom 
communities. Ecol Appl 5:703-723 

Dachs J, Lohmann R, Ockenden WA, Eisenreich SJ, Jones KC (2002) Oceanic biogeochemical 
controls on global dynamics of persistent organic pollutants. Environ Sci Technol 36:4229-4237 

DeAngelis DL (1992) Dynamics of nutrient cycling and food webs. Chapman and Hall, New York 

Della Croce N, Venugopal P (1973) Penilia avirostris Dana in the Indian Ocean (Cladocera). Int Rev 
Gesamte Hydrobiol Hydrogr 58:713-721 

Diehl S, Feissel M (2000) Effects of enrichment on three-level food chains with omnivory. Am Nat 
155:200-218 

Durán LR, Castilla JC (1989) Variation and persistance of the middle rocky intertidal community of 
central Chile, with and without human harvesting. Mar Biol 103:555-562 

Egge JK, Jacobsen A (1997) Influence of silicate on particulate carbon production in phytoplankton. 
Mar Ecol Progr Ser 147:219-230 

Egloff DA, Fofonoff  PW, Onbé T (1997) Reproductive biology of marine cladocerans. Adv Mar Biol 
31:79-167 

Elser JJ, Urabe J (1999) The stoichiometry of consumer-driven nutrient cycling: theory, observations, 
and consequences. Ecology 80:735-751 

Escaravage V, Prins TC, Smaal AC, Peeters JCH (1996) The response of phytoplankton communities 
to phosphorous input reductions in mesocosm experiments. J Exp Mar Biol Ecol 198:55-79 

Ester JA, Tinker MT, Williams TM, Doak DF (1998) Killer whale predation on sea otters linking 
oceanic nad nearshore ecosystems. Science 282:473-476 

Goes JI, Thoppil PG, Gomes HR, Fasullo JT (2005) Warming of the Eurasian Landmass is making the 
Arabian Sea more productive. Science 308:545-547 

Grahame J (1976) Zooplankton of a tropical harbour: the numbers, composition and response to 
physical factors of zooplankton in Kingston Harbour, Jamaica. J Exp Mar Biol Ecol 25:219-237 

Granéli E, Carlsson P, Olsson P, Sundström B, Granéli W, Lindahl O (1989) From anoxia to fish 
poisoning: the last ten years of phytoplankton blooms in Swedish marine waters. In: Cosper EM, 
Bricelj VM, Carpenter EJ (eds) Novel Phytoplankton Blooms. Springer, New York, pp 407-427 

Gregg WW, Conkright ME, Ginoux P, O'Reily JE, Casey NW (2003) Ocean primary production and 
climate: global decadal changes. Geophys Res Letter 30:doi10.1029/2003GL016889 

Grove M, Breitburg DL (2005) Growth and reproduction of gelatinous zooplankton exposed to low 
dissolved oxygen. Mar Ecol Progr Ser 301:185-198 

Gulati RD, DeMott WR (1997) The role of food quality for zooplankton: remarks on the state-of-the-
art, perspectives and priorities. Freshwat Biol 38:753-768 

Havskum H, Riemann B (1996) Ecological importance of bacterivorous, pigmented flagellates 
(mixotrophs) in the Bay of Aarhus, Denmark. Mar Ecol Progr Ser 137:251-263 

Hessen DO (1992) Nutrient element limitation of zooplankton production. Am Nat 140:799-814 

Hessen DO, Faafeng BO (2000) Elemental ratios in freshwater seston: implications for community 
structure and energy transfer in food webs. Arch Hyrobiol Special Issues Advanced Limnol 
55:349-363 

Hessen DO, Færøvig P, Andersen T (2002) Light, nutrients and P:C-ratios in algae: grazer 
performance related to food quality and quantity. Ecology 83:1886-1898 

Hitchman RB, Jones HLJ (2000) The role of mixotrophic protists in the population dynamics of the 
microbial food web in a small artificial pond. Freshwat Biol 43:231-241 



33 · References 

Honjo T (1993) Overview on bloom dynamics and physiological ecology of Heterosigma akashiwo. 
In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea. Elsevier, Amsterdam, 
pp 33-41 

Ikeda T (1985) Metabolic rates of epipelagic marine zooplankton as a function of body mass and 
temperature. Mar Biol 85:1-11 

Isaksson A (1998) Phagotrophic phytoflagellates in lakes – a literature review. Arch Hydrobiol Arch 
Hyrobiol Special Issues Adv Limnol 51:63-90 

Jones HLJ (1997) A classification of mixotrophic species based on their behaviour. Freshwat Biol 
37:35-43 

Jones RI (2000) Mixotrophy in planktonic protists: an overview. Freshwat Biol 45:219-226 

Katechakis A, Haseneder T, Kling R, Stibor H (2005) Mixotrophic vs. obligately autotrophic algae as 
food for zooplankton – the light:nutrient hypothesis may not hold for mixotrophs. Limnol 
Oceanogr 50:1290-1299 

Katechakis A, Stibor H (2004) Feeding selectivities of the marine cladocerans Penilia avirostris, 
Podon intermedius and Evadne nordmanni. Mar Biol 145:529-539 

Katechakis A, Stibor H (2005a) The mixotroph Ochromonas tuberculata may invade and suppress 
specialist phago- and phototroph plankton communities depending on nutrient conditions. 
Oecologia (submitted) 

Katechakis A, Stibor H (2005b) Effects of productivity and omnivory on the stability of an 
experimental limnic planktonic food web. (in prep) 

Katechakis A, Stibor H (2005c) Effects of productivity, omnivory and mixotrophy on an experimental 
limnic planktonic food web. (in prep) 

Katechakis A, Stibor H, Sommer U, Hansen T (2002) Changes in the phytoplankton community and 
microbial food web of Blanes Bay (Catalan Sea, NW Mediterranean) under prolonged grazing 
pressure by doliolids (Tunicata), cladocerans or copepods (Crustacea). Mar Ecol Progr Ser 
234:55-69 

Katechakis A, Stibor H, Sommer U, Hansen T (2004) Feeding selectivities and food niche separation 
of Acartia clausi, Penilia avirostris (Crustacea) and Doliolum denticulatum (Thaliacea) in 
Blanes Bay (Catalan Sea, NW Mediterranean). J Plankton Res 26:589-603 

Kaunzinger CMK, Morin PJ (1998) Productivity controls food-chain properties in microbial 
communities. Nature 195:495-497 

Kim SW, Onbé T, Yoon YH (1989) Feeding habits of marine cladocerans in the Inland Sea of Japan. 
Mar Biol 100:313-318 

Körner C (2000) Biosphere responses to CO2 enrichment. Ecol Appl 10:1590-1619 

Lancelot C, Martin JM, Panin N, Zaitsev Y (2002) The north-western Black Sea: a pilot site to 
understand the complex interaction between human activities and the coastal environment. 
Estuar Coast Shelf Sci 54:279-283 

Lindroth RL, Kinney, KK, Platz CL (1993) Responses of deciduous trees to elevated atmospheric 
CO2-productivity, phytochemistry, and insect performance. Ecology 74:763-777 

Loladze I, Kuang Y, Elser JJ (2000) Stoichiometry in producer-grazer systems: linking energy flow 
and element cycling. Bull Math Biol 62:1137-1162 

Makino W, Urabe J, Elser JJ, Yoshimizu C (2002) Evidence of phosphorus-limited individual and 
population growth of Daphnia in a Canadian Shield lake. Oikos 96:197-205 

Mann KH, Lazier JRN (1996) Dynamics of marine ecosystems: biological-physical interactions in the 
ocean. Blackwell, Cambridge 

McQueen DJ, Post JR, Mills EL (1986) Trophic relationships in freshwater pelagic ecosystems. Can J 
Fish Aquat Sci 43:1571-1581 



References · 34 

Meadows DL, Randers J, Meadows DL (2004) Limits to growth: the 30-year update. Chalsea Green 
Publishing Cpmpany, Chalsea 

Müller-Navarra DC, Brett MT, Park S, Chandra S, Ballantyne AP, Zortta E, CR Goldman CR (2004) 
Unsaturated fatty acid content in seston and tropho-dynamic coupling in lakes. Nature 427:69-
72 

Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MCM, Clay J, Folke C, Luchenco J, 
Mooney H, Troell M (2000) Effect of aquaculture on world fish supplies. Nature 405:1017-1024 

Oksanen L, Fretwell SD, Arruda L,  Niemela P (1981) Exploitation ecosystems in gradients of primary 
productivity. Am Nat 118:240-261 

Olsen Y, Reinertsen H, Vadstein O, Andersen T, Gismervik I, Duarte C, Agusti S, Stibor H, Sommer 
U, Lignell R, Tamminen T, Lancelot C, Rousseau V, Hoell E, Sanderud KA (2001) 
Comparative analysis of food webs based on flow networks: effects of nutrient supply on 
structure and function of coastal plankton communities. Cont Shelf Res 21:2043-2053 

Onbé T (1977) The biology of marine cladocerans in a warm temperate water. Proc Symp Warm 
Water Zoopl, Spec Publ, UNESCO/NIO (Goa), pp 383-398 

Pascher A (1917) Flagellaten und Rhizopoden in ihren gegenseitigen Beziehungen. Archiv für 
Protistenkunde 38:1-87 

Peierls B, Caraco N, Pace M, Cole J (1991) Human influence on river nitrogen. Nature 350:386-387 

Pitta P, Giannakourou A (2000) Planktonic ciliates in the oligotrophic Eastern Mediterranean: vertical, 
spatial distribution and mixotrophy. Mar Ecol Prog Ser 194:269-282 

Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: 
the dynamics of spatially subsidized food webs. Ann Rev Ecol Sys 28:289-316 

Polis GA, Strong DR (1996) Food web complexity and community dynamics. Am Nat 147:813-846 

Pomeroy LR (1974) The ocean foodweb, a changing paradigm. BioScience 24:499-504 

Porter KG (1988) Phagotrophic phytoflagellates in microbial food webs. Hydrobiologia 159:89-97 

Radach G, Berg J, Hagneier E (1990) Longterm changes of the annual cycles of meteorological, 
hydrographic, nutrient and phytoplankton time series at Helgoland and the LV ELBE 1 in the 
German Bight. Cont Shelf Res 10:305-328  

Raven JA (1997) Phagotrophy in phototrophs. Limnol Oceanogr 42:198-205 

Raymont JEG (1983) Plankton and productivity in the oceans: Zooplankton, vol 2. Pergamon, New 
York 

Reich PB, Tilman D, Craine J (2001) Do species and functional groups differ in acquisition and use of 
C, N and water under varying atmospheric CO2 and N availability regimes? A field test with 16 
grassland species. New Phytol 150:435-448 

Reynolds CS (1997) Vegetation processes in the pelagic: A model for ecosystem theory. Ecology 
Institute, Oldendorf/Luhe 

Riemann B, Havskum H, Thingstad F, Bernard C (1995) The role of mixotrophy in pelagic 
environments. In: Joint I (ed), Molecular Ecology of Aquatic Microbes. NATO ASI Series G 38. 
Springer, New York, pp 87-114 

Rosenzweig ML (1971) Paradox of Enrichment: destabilisation of exploitation ecosystems in 
ecological time. Science 171:385-387 

Rosenzweig ML (1995) Species diversity in space and time. Camebridge Univ Press, Cambridge 

Rothhaupt KO (1996a) Utilizations and substitutable carbon and phosphorus sources by the 
mixotrophic chrysophyte Ochromonas sp.. Ecology 77:706-715 

Rothhaupt KO (1996b) Laboratory experiments with a mixotrophic chrysophyte and obligately 
phagotrophic and phototrophic competitors. Ecology 77:716-724 



35 · References 

Rothhaupt KO, Güde H (1992) The influence of spatial and temporal concentration gradients on 
phosphate partitioning between different size fractions of plankton: Further evidence and 
possible causes. Limnol Oceanogr 37:739-749 

Sanders RW (1991) Mixotrophic protists in marine and freshwater ecosystems. J Protozool 38:76-81 

Sanders RW, Berninger UG, Lim EL, Kemp PF, Caron DA (2000) Heterotrophic and mixotrophic 
nanoplankton predation on picoplankton in the Sargasso Sea and on Georges Bank. Mar Ecol 
Prog Ser 192:103-118 

Sanders RW, Porter KG, Caron DA (1990) Relationship between phototrophy and phagotrophy in the 
mixotrophic chrysophyte Proteriochromonas malhamensis. Microb Ecol 19:97-109 

Sandgren CD (1988) The ecology of chrysophyte flagellates: their growth and perennation strategies 
as freshwater phytoplankton. In: Sandgren CD (ed) Growth and Reproductive Strategies of 
Freshwater Phytoplankton. Cambridge University Press, Cambridge, pp 9-104 

Schindler DW (1998) A dim future for boreal waters and landscapes: cumulative effects of climate 
warming, stratospheric ozone depletion, acid precipitation and other human activities. 
BioScience 48:157-164 

Schneider G (1992) A comparison of carbon-specific respiration rates in gelatinous and non-gelatinous 
zooplankton: a search for general rules in zooplankton metabolism. Helgoländer 
Meeresuntersuchungen 46:377-388 

Schram FR (1986) Crustacea. Oxford Univ Press, New York 
Shurin JB, Borer ET, Seabloom EW, Anderson K, Blanchette CA, Broitman B (2002) A cross-

ecosystem comparison of the strength of trophic cascades. Ecol Lett 5:785-791 

Shushkina EA, Vinogradov MY (1991) Long-term changes in the biomass of plankton in open areas 
of the Black Sea. Oceanology 31:716-721 

Sibbald MJ, Albright LJ (1991) The influence of light and nutrients on phagotrophy by the 
mixotrophic nanoflagellate Ochromonas sp.. Mar Microb Food Webs 5:39-47 

Smayda TJ (1990) Novel and nuisance blooms in the sea: evidence for a global epidemic. In: Granéli 
E, Sundström B, Edler L, Anderson DM (eds) Toxic Marine Phytoplankton. Elsevier, 
Amsterdam, pp 29-41 

Sommer U (2000) Scarcity of medium-sized phytoplankton in the northern Red Sea explained by 
strong bottom-up and weak top-down control. Mar Ecol Progr Ser 197:19-25 

Sommer U,  Stibor H (2002) Copepoda – cladocera – tunicata: the role of three major 
mesozooplankton groups in pelagic food webs. Ecol Res 17:161-174 

Sommer U, Stibor H, Katechakis A, Sommer F, Hansen T (2002) Pelagic food web configurations at 
different levels of nutrient richness and their implications for the ratio fish production:primary 
production. Hydrobiologia 484:11-20 

Steneck RS (1998) Human influences on coastal ecosystems: does overfishing create trophic 
cascades? TREE 13:429-430 

Sterner RW, Clasen J, Lampert W, Weisse T (1998) Carbon:phosphorus stoichiometry and food chain 
production. Ecol Lett 1:146-150 

Sterner RW, Elser JJ, Fee EJ, Guilford SJ, Chrzanowski TH (1997) The light:nutrient ratio in lakes: 
the balance of energy and materials affects ecosystem structure and process. Am Nat 150:663-
684 

Sterner, R. W., Clasen, J., Lampert, W., and T. Weisse. 1998. Carbon:phosphorus stoichiometry and 
food chain production. Ecol. Lett. 1: 146-150. 

Stibor H, Vadstein O, Diehl S, Gelzleichter A, Hansen T, Hantzsche F, Katechakis A, Lippert B, 
Løseth K, Peters C, Roederer W, Sandow M, Sundt-Hansen L, Olsen Y (2004) Copepods act as 
a switch between alternative trophic cascades in marine pelagic food webs. Ecol Lett 7:321-328 



References · 36 

Tilman D, Kiesling R, Sterner RW, Kilham SS, Johnson FA (1986) Green, blue-green and diatom 
algae: taxonomic differences in competitive ability for phosphorous, silicon and nitrogen. Arch 
Hydrobiol 106:473-485 

Tittel J, Bissinger V, Zippel B, Gaedke U, Bell E, Lorke A, Kamjunke N (2003) Mixotrophs combine 
resource use to outcompete specialists: Implications for aquatic food webs. Proc Nat Acad Sci 
100:12776-12781 

Toole DA, Siegel DA (2004) Light-driven cycling of dimethylsulfide (DMS) in the Sargasso Sea: 
Closing the loop. Geophys Res Letter 31:doi10.1029/2004GI019581 

Turner JT, Tester PA, Ferguson RL (1988) The marine cladoceran Penilia avirostris and the 
"microbial loop" of pelagic food webs. Limnol Oceanogr 33:245-255 

Urabe J, Kyle M, Makino W, Yoshida T, Andersen T, Elser JJ (2002a) Reduced light increases 
herbivore production due to stoichiometric effects of light/nutrient balance. Ecology 83:619-627 

Urabe J, Sterner RW (1996) Regulation of herbivore growth by the balance of light and nutrients. Proc 
Natl Acad Sci USA 93:8465-8469 

Urabe J, Togari J, Elser JJ (2003) Stoichiometric impacts of increased carbon dioxide on a planktonic 
herbivore. Global Change Biology 9:818-825 

Vadstein O (2000) Heterotrophic planktonic bacteria and cycling phosphorus. Phosphorus 
requirements, competitive ability and food web interactions. In: Schink B (ed) Advances in 
Microbial Ecology. Kluwer, pp 115-167 

Valdes L, Harris R, Ikeda T, McKinnell S, Peterson WT (eds) (2004) The role of zooplankton in 
global ecosystem dynamics: Comparative studies from the world oceans. ICES J Mar Sci 
61:441-737 

Verity PG, Smetacek V (1996) Organism life cycles, predation, and the structure of marine pelagic 
ecosystems. Mar Ecol Progr Ser 130:277-293 

Worm B (2000) Consumer versus resource control in rocky shore food webs. PhD thesis, University 
Kiel, pp 147 

 

 

 



 

 

 

 

 

 

 

 

 

 PAPER REPRINTS 
 

 

 



Paper A1 

 

 

PAPER A1 

 

 

 

 

 

Feeding selectivities and food niche separation of Acartia clausi, Penilia avirostris (Crustacea) 

and Doliolum denticulatum (Thaliacea) in Blanes Bay (Catalan Sea, NW Mediterranean) 

 

 

Katechakis A, Stibor H, Sommer U, Hansen T (2004) 

Journal of Plankton Research 26:589–603 

 

 

 



Feeding selectivities and food niche
separation of Acartia clausi, Penilia avirostris
(Crustacea) and Doliolum denticulatum
(Thaliacea) in Blanes Bay (Catalan Sea,
NW Mediterranean)

ALEXIS KATECHAKIS*, HERWIG STIBOR, ULRICH SOMMER1 AND THOMAS HANSEN1

DEPARTMENT BIOLOGIE II, LUDWIGS-MAXIMILIANS-UNIVERSITÄT, ABTEILUNG AQUATISCHE ÖKOLOGIE, KARLSTRAßE 23–25, 80333 MÜNCHEN, GERMANY

AND
1
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Selectivity-size spectra, clearance and ingestion rates and assimilation efficiencies of Acartia clausi

(Copepoda), Penilia avirostris (Cladocera) and Doliolum denticulatum (Doliolida) from Blanes Bay

(Catalan Sea, NW Mediterranean) were evaluated in grazing experiments over a wide range of food

concentrations (0.02–8.8 mm3 L�1 plankton assemblages from Blanes Bay, grown in mesocosms at

different nutrient levels). Acartia clausi reached the highest grazing coefficients for large algae >70 �m
(longest linear extension), P. avirostris for intermediate food sizes between 15 and 70 �m, and
D. denticulatum for small sizes from 2.5 to 15 �m. Penilia avirostris and D. denticulatum acted as

passive filter-feeders. Acartia clausi gave some evidence for a supplementary raptorial feeding mode.

Effective food concentration (EFC) decreased linearly with increasing nutrient enrichment for

D. denticulatum and followed domed curves for A. clausi and for P. avirostris with maximum values

at intermediate and high enrichment levels, respectively. Clearance rates of crustacean species showed

curvilinear responses with narrow modal ranges to increasing food concentration. Clearance rates of

D. denticulatum increased abruptly and levelled into a plateau at low food concentrations. Mean

clearance rates were 13.9, 25.5 and 64.1 mL ind.�1 day�1, respectively. No clearance could be

detected for A. clausi at food concentrations <0.1 mm3 L�1 and for P. avirostris at food concentra-

tions �0.02 mm3 L�1. Ingestion rates indicate a rectilinear functional response for A. clausi and for

P. avirostris and showed a sigmoidal curve for D. denticulatum. Mean ingestion rates were 1.3, 2.8

and 7.7 �g C �g Cind.
�1 day�1, respectively. Conversion of ingested carbon to tissue was 30–80%

for the investigated crustaceans and 20–50% for doliolids. Food niche calculations suggest that food

niche separation may explain the coexistence of the three species in summer in Blanes Bay.

INTRODUCTION

The grazing behaviour of mesozooplankton is one of

the critical factors structuring pelagic food webs. Meso-

zooplankton distribute the organic matter synthesized

by autotrophs towards higher trophic levels. There are

many studies concerning grazing of marine copepods.

Gelatinous mesozooplankton and marine cladocerans

are poorly investigated, though seasonally they may

dominate zooplankton communities (Alldredge and

Madin, 1982; Deibel, 1982, 1998; Crocker et al., 1991;

Paffenhöfer et al., 1991). Likewise, the calanoid cope-

pod Acartia clausi, the cladoceran Penilia avirostris and the

doliolid Doliolum denticulatum may dominate the mesozoo-

plankton community in summer in Blanes Bay (Catalan

Sea, NW Mediterranean) in terms of both abundance and

biomass (Andreu and Duarte, 1996). Although they

obviously depend on the same resources and their carbon

contents (this article) and energy requirements per carbon
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unit (Ikeda, 1985; Schneider, 1992) are similar, they co-

exist. This indicates different niche specifications regard-

ing their dietery preferences.

To study the feeding selectivities and potential niche

overlap of A. clausi, P. avirostris and D. denticulatum, we

conducted short-term grazing experiments with plankton

assemblages of Blanes Bay, grown at different nutrient

levels.

METHOD

Experiments were performed as batch cultures in 100 mL

glass jars. The jars were placed randomly in a water

bath at �22�C. The in situ surface temperature in Blanes

Bay was 25–26�C (measured with a WTW LF 20

temperature sensor). The jars were filled with the plank-

ton assemblages, including bacterioplankton, protozoa

and phytoplankton, found in summer in Blanes Bay.

Plankton assemblages were grown in mesocosms 0.8 km

off-shore at different nutrient levels. The mesocosm

units (33 m3) received N, P and Si at a stoichiometric

ratio of 20 N:7 Si:1 P, at the normal nutrient loading

rate at the site (5 mmol N m�2 day�1 and 0.25 mmol P

m�2 day�1), and at 0.5 to 16 times the normal nutrient

loading rate [for more details see (Duarte et al., 2000)].

Enrichment resulted in nine different food densities cov-

ering a biovolume range between 0.02 and 8.81 mm3

L�1 (Table I) and a range of seston food sizes from <1

to 300 mm at the longest linear extension (Tables I and

II). The higher the enrichment level, the higher the

community’s density and the bigger its size spectrum.

Community 5 resembled the conditions in situ in summer

in Blanes Bay.

To exclude extraneous metazoan grazers from the

jars, water was filtered through a 100 mm mesh size

plankton net. Filtration allowed sufficient needle-shaped

algae >100 mm to pass, so that the plankton com-

munities offered as food contained enough food species

>100 mm (at the longest linear extension). For each of

the nine food densities five adult copepods (Acartia clausi

females), five adult cladocerans (Penilia avirostris), or three

doliolids (solitary gonozooids of Doliolum denticulatum)

were incubated once for 6 h in the dark. Grazers were

collected with surface tows using a mesozooplankton net

with a mesh size of 250 mm, and were returned to the

laboratory within 1 h of collection inside a cooler. A

plastic bag in the cod end of the net prevented the

animals from being much damaged.

Experimental grazers were sorted with a wide-bore

pipette. Between 24 and 36 individuals were measured,

placed into filtered sea water and allowed to acclimate to

the laboratory conditions for 1 h before being incubated

for the experiments. The decision was made to incubate

fewer doliolids than crustacean grazers because of differ-

ent dry weights (Table III). Dry weights were determined

by filtering batches of 19 to 39 animals on precombusted

Whatman GF/C filters. The filters were dried before

and after the filtration at 60�C for 24 h and weighed

each time with a Sartorius microbalance to the nearest

mg. Dry weights were obtained from calculating the

weight differences. For the determination of particulate

carbon and nitrogen the same filters were measured with

Table I: Densities, size spectra, main food size and relative biovolume of main
food size of plankton communities from Blanes Bay (NW Mediterranean) offered as food
in grazing experiments with Acartia clausi, Penilia avirostris
and Doliolum denticulatum

Food plankton

community

Concentration

(mm3 L�1)

Size spectrum

(mm)

Main size class

(interval means in mm)

Relative biovolume of

main size class (%)

1 0.023 <1–50 2.5 35.96

2 0.074 <1–60 2.5 41.58

3 0.091 <1–85 10.25 59.53

4 0.363 <1–125 42.5 54.59

5 0.364 <1–125 85 35.12

6 1.290 <1–205 85 57.88

7 5.460 <1–250 125 86.88

8 5.940 <1–250 175 78.85

9 8.807 <1–300 >210 53.85

All food sizes are based on the longest linear extension of food organisms. Community 5 resembles the conditions in situ in summer in Blanes Bay.
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Table II: Taxonomic list of all plankton offered as food in grazing experiments

Longest extension (mm) Biovolume (mm3 cell�1) Carbon content (pg C cell�1)

Picoplankton

around 1 mm 1 0.52 0.05

Nanoplankton

around 2.5 mm 2.5 8.2 0.82

around 5 mm 5 65 6.5

Cyanobacteria

Filamentous 20 98 9.8

Bacillariophycaea

Centrales

Bacteriastrum sp. 30 9425 943

Coscinodiscus sp. 12.5–150 920–530 144 92–53 014

Chaetoceros socialis 17.5–52.5 221–663 22–66

Chaetocerus sp. A 25 295 30

Chaetocerus sp. B 75 2356 236

Rhizosolenia alata 60–125 1178–22 089 118–2209

Rhizosolenia fragilissima 125–250 22 089–44 178 2209–4418

Rhizosolenia shrubsolei 300 5890 589

Skeletonema costatum 32.5–195 1436–8616 144–862

Stephanopyxis sp. 120 85 765 8577

Thalassiosira sp. 42.5–255 7510–45 060 751–4506

Pennales

Licmophora sp. 70–120 13 779–94 162 1378–9416

Navicula sp. 15 147 15

Nitzschia longissima 75–200 125–2344 13–234

Pleurosigma sp. 50 1094 109

Dinophyceae

Dinophysiales

Dinophysis rotundata 40 4712 471

Dinophysis sp. 25 2045 205

Peridiniales

Ceratium lineatum 100 8357 836

Ceratium longipes 180 74 286 7429

Gymnodinium sp. 15 785 79

Heterocapsa triquetra 20 1178 118

Peridinium sp. A 15 1767 177

Peridinium sp. B 55 40 497 4050

Prorocentrales

Prorocentrum micans 30 2209 221

Prymnesiophyceae

Coccolithus sp. 7.5 221 22

Other flagellates

ANF spp. 2.5–10 8.2–523 1.8–73

HNF spp. 2.5–10 8.2–523 1.8–73

Ciliata

Ciliate sp. A 15 4712 660

Ciliate sp. B 25 29 452 4123

Biovolumes were calculated using the equations of Hillebrand et al. (Hillebrand et al., 1999). Carbon contents were estimated after Nalewajko

(Nalewajko, 1966) for phytoplankton, after Bøsheim and Bratbak (Bøsheim and Bratbak, 1987) for flagellates, and after DeBiase et al. (DeBiase et al.,

1990) for ciliates. ANF, autotrophic nanoflagellates; HNF, heterotrophic nanoflagellates.
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a Fisons CN-analyser (NA 1500N) using acetanilide

(71.09% C, 10.30% N) as standard. Measurements

were duplicated for doliolids and triplicated for cope-

pods and cladocerans.

Swimming behaviour was observed at the beginning

of the experiments and several times during the experi-

mental terms as a way of checking whether the animals

were intact. To prevent food plankton sedimentation,

the vessels were also mixed gently on these occasions.

In addition, mesozooplankton swimming caused some

turbulence in the flasks. To account for possible changes

in the species composition of the food guilds during the

experiment, start samples were taken and compared

with controls without mesozooplankton. After the incu-

bation period, the experiments were terminated by add-

ition of Lugol’s iodine (5 g I2 + 10 g KI in 100 mL

aq. dest.) to all vessels.

To determine grazer-induced changes in abundance,

the species composition, the biovolume and the biomass

of the food guild, samples were counted using an

inverted microscope (Leica DMIL) and settling cham-

bers with a volume of 10 or 30 mL, depending on the

food guild’s density (Utermöhl, 1958). Sedimentation

time was at least 24 h. If present, at least 400 cells

were counted for each species to ensure an error <10%

(Lund et al., 1958). Biovolumes were calculated using the

equations of Hillebrand et al. (Hillebrand et al., 1999).

For this purpose, the linear dimensions of 20 specimens

were measured for each species. Carbon contents were

estimated after Nalewajko (Nalewajko, 1966) for phyto-

plankton, after Bøsheim and Bratbak (Bøsheim and

Bratbak, 1987) for flagellates, and after DeBiase et al.

(DeBiase et al., 1990) for ciliates (Table II).

For all following analyses the plankton community

was subdivided into nine size classes with interval

means of 1, 2.5, 5, 10.25, 42.5, 85, 125, 175 and 205 mm

and into organisms >210 mm. All food sizes are based

on the longest linear extension of food organisms.

Colonial species were assigned to classes according to the

longest linear extension of colonies. Pico-, nano- and

microplankton are used to describe food sizes ranging

from �0.2 to 2 mm, from 2 to 20 mm and from 20 to

200 mm.

Selectivity coefficients and effective food
concentrations

Grazing coefficients g (day�1) of A. clausi, P. avirostris and

D. denticulatum were measured by calculating the differ-

ences between food concentrations at the beginning and

at the end of the experiments using the equations of

Frost (Frost, 1972):

g = m� lnC�1 � lnC�0
t1 � t0

with m =
lnC1 � lnC0

t1 � t0
;

where m is the gross growth rate of food organisms, C1

and C0 are the food concentrations (mm3 L�1) at the end

(t1) and at the beginning (t0) of the experiment in the

controls, and C1
� and C0

� are the food concentrations in

treatments with grazers.

The grazing coefficients, g, were used to study selec-

tivity through the normalized selectivity coefficient W 0

defined by Vanderploeg and Scavia (Vanderploeg and

Scavia, 1979) and modified after Vanderploeg et al.

(Vanderploeg et al., 1984):

W 0
=

gi

gmax

where gi is the the grazing coefficient reached for food

size class i and gmax is the grazing coefficient for the most

preferred size class (0 < W 0 < 1).

According to Vanderploeg et al. (Vanderploeg et al.,

1984), these W 0 values were used to estimate the effec-

tive food concentrations (EFCs) for every grazer and

every plankton community offered as food:

EFC =
Xn

i¼1

W 0 � Xi

where Xi is the concentration of food size class i and n is

the total number of size classes.

Table III: Sizes, biovolumes, dry weights, biomasses and C:N ratios of Acartia clausi,
Penilia avirostris and Doliolum denticulatum incubated in grazing experiments

n Size (mm) Biovolume

(mm3 ind.�1)

n Animals

on filters

Dry weight

(mg ind.�1)

Biomass

(mg C ind.�1)

Biomass

(mg N ind.�1)

C:N

D. denticulatum 24 1480 � 127 1.07 � 0.18 2 59 0.41 � 0.03 2.73 � 0.15 0.61 � 0.05 4.50 � 0.09

P. avirostris 25 680 � 44 0.12 � 0.02 3 87 0.25 � 0.04 2.17 � 0.06 0.39 � 0.02 4.84 � 0.39

A. clausi 36 920 � 31 0.12 � 0.01 3 92 0.23 � 0.01 3.80 � 0.34 0.84 � 0.14 4.57 � 0.43

Means � SEM are based on n measurements of animals and filters, respectively (see text for details).
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Clearance rates and ingestion rates

Clearance rates F [mL individual (ind.)�1 day�1] and

ingestion rates I (mg C ind.�1 day�1) were calculated

according to Frost (Frost, 1972):

F = V � g

NG

and I = F � �CC ;

where V is the jar volume (mL), g is the grazing coeffi-

cient (day�1), NG is the number of incubated animals,

and �CC is the mean food concentration (mg C mL�1) in

the experimental vessel.

Assimilation efficiencies

A radioisotope technique was used to measure assimi-

lation rates of A. clausi, P. avirostris and D. denticulatum.

Tissue culture flasks (250 mL) were filled with the same

plankton assemblages as used in the grazing experi-

ments described above and then incubated with

20 mCi 14C for 24 h. This ensured an even radioactive

labelling of the included plankton. Twenty copepods,

20 cladocerans, or 20 doliolids were allowed to feed on

each of the radioactive labelled plankton assemblages.

After 8 min, the estimated time needed to fill the

digestive tract, the grazers were removed from the

flasks and washed in Whatman-GF/F-filtered sea

water to remove the attached radioactivity. Half of the

animals were put into scintillation vials, the other half

were transferred to non-radioactive food of the same

type and concentration. After allowing the animals to

feed on non-radioactive food for 15 min, the animals

were removed, assuming that they had cleared their

digestive tracts of radioactive material. Afterwards all

animals were radio-assayed.

Ingestion was calculated from the amount of radio-

active material eaten before the animals started to

reject the undigested remains of radioactively labelled

food. Assimilation was calculated from the amount of

radioactivity left in the animals after they had cleared

their digestive tracts. For all radio-assays, animals were

first dissolved with a tissue solubilizer (Soluene 350),

and Hionic Fluor was added as a scintillation reagent.

All measurements were made in triplicate and carried

out with a Packard Tricarb 1800 scintillation counter.

Replicates with animals that were damaged during the

washing procedure or with animals that showed an

abnormal swimming behaviour afterwards remained

unaccounted for.

Food niche calculations

To quantify the different degrees of specialization of the

investigated mesozooplankton grazers, their food niche

breadths were measured, using Hurlbert’s standardized

niche breadth B 0A [(Hurlbert, 1978) cf. (Krebs, 1999)]:

B 0A =
B 0 � amin

1� amin

with B 0 =
1

Pn

i¼1

ðp2
i =aiÞ

where B 0 is Hurlbert’s niche breadth, pi is the proportion

that size class i is of the total resources used by the

studied grazer group (�pi = 1), ai is the proportion that

size class i is of the total resources (�ai = 1), and amin is

the smallest observed proportion of all size classes. B 0A
can take values from 0 to 1; the higher the value, the

broader the niche, the less selective the consumer.

To infer the degree of interspecific competition

between the investigated grazers the extent of food size

niche overlap was calculated with the Morosita–Horn

index CH [(Horn, 1966) cf. (Krebs, 1999)]:

CH =

2
Pn

i¼1

pij pik

Pn

i¼1

p2
ij þ

Pn

i¼1

p2
ik

;

where pij and pik are the proportions that size class i is of

the total resources used by the two grazer groups j and k,

and n is the total number of size classes.

For statistical analysis SigmaStat 2.0 software was used.

RESULTS

Selectivity-size spectra, selectivity profiles
and effective food concentrations

Figure 1 shows the selectivity-size spectra of A. clausi,

P. avirostris and D. denticulatum, expressed as the selectivity

coefficient W 0 of Vanderploeg and Scavia (Vanderploeg

and Scavia, 1979), based on the grazing coefficients

presented in Table IV. Values for W 0 are overall

means calculated from the single experiments shown in

Figure 2. As not all plankton communities offered as

food covered the whole size range of all food size classes

(Table I, Figure 2), calculation of means and standard

errors are based on three to nine measurements (n in

Table IV). All grazing coefficients measured are sign-

ificantly different from zero at P < 0.01 (99% CI). All

food sizes are based on the longest linear extension of

food organisms. Doliolum denticulatum filtered the entire

food size range from the smallest sizes detected by

counting, �1 mm, to large phytoplankton, �75 mm.

Penilia avirostris reached the highest grazing coefficients

at intermediate food sizes between 15 and 70 mm. Lower

size limits were >2.5 mm, thus including nanoflagellates
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and ciliates, and upper ones were �100 mm. Acartia clausi

did not ingest particles <7.5 mm and showed the highest

values for large diatoms �70 mm. The upper size limit

was 210 mm.

The selectivity profiles of D. denticulatum and P. avirostris

followed the food size patterns only at low total food

concentrations (TFCs �0.09 and �0.36 mm3 L�1,

respectively) (Figure 2). Doliolum denticulatum always

showed the highest selectivity coefficients for pico- and

small nanoplankton, even if other food sizes dominated

the community. In cases where food sizes �70 mm

prevailed (TFC �1.3 mm3 L�1, communities 6 to 9)

D. denticulatum also established high grazing coefficients

for particles �85 mm. Similarly, P. avirostris normally

reached highest selectivity coefficients for intermediate

food sizes, but expressed high grazing rates on bigger

food items �85–125 mm, when these food sizes were

dominant (TFC 1.3–5.5 mm3 L�1, communities 6 and

7). The selectivity curve of A. clausi always matched the

peak of the particle-size spectrum; with one exception at

very high TFC (8.8 mm3 L�1, community 9), dominated

by food particles >210 mm, not ingestable for A. clausi.

Community 5 resembles the conditions in situ in summer

in Blanes Bay.

The EFC calculated for each grazer in every experi-

ment depended on TFC (Figure 3). EFC decreased

linearly with increasing TFC for D. denticulatum and

followed domed curves for A. clausi and for P. avirostris

with maximum values at intermediate and high TFC,

respectively (for regression equations see Figure 3). Max-

imum EFC were 84.2 � 2.7% SE of the means (based on

the three highest values measured) for D. denticulatum at

TFC <0.1 mm3 L�1, characterized by food particles

<15 mm; 58.8 � 5.6% for P. avirostris (TFC 0.1–0.4 mm3

L�1, main food size classes 10.25–85 mm); and 57.1� 6.1%

for A. clausi (TFC 0.4–5.5 mm3 L�1, main food size classes

85–125 mm).

Clearance rates and ingestion rates

Clearance rates of A. clausi and of P. avirostris showed curvi-

linear responses with narrow modal ranges to increasing

food size (µm)
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Fig. 1. Food niche separation and niche overlap of Acartia clausi, Penilia
avirostris and Doliolum denticulatum, based on the selectivity coefficients
W 0 of Vanderploeg and Scavia (Vanderploeg and Scavia, 1979) pres-
ented in Table IV. All food sizes are based on the longest linear
extension of food organisms. Data points are means of three to nine
measurements (see text for details). Error bars represent � SE of the
means. All grazing coefficients are significantly different from zero at
P < 0.01 (99% CI). Note logarithmic scale of food size axis.

Table IV: Mean grazing coefficients g (day�1) and selectivity coefficients W 0 of Acartia clausi, Penilia
avirostris and Doliolum denticulatum for different food sizes (longest linear extension of food organisms)

Food size Interval Acartia clausi Doliolum denticulatum Penilia avirostris

class (mm) mean (mm) n g (day�1) W’ g (day�1) W’ g (day�1) W’

around 1 1 9 0 0 0.14 � 0.03 0.51 � 0.09 0 0

around 2.5 2.5 9 0 0 0.28 � 0.05 0.99 � 0.17 0 0

>2.5 to <7.5 5 9 0 0 0.28 � 0.06 1.00 � 0.20 0.05 � 0.01 0.61 � 0.18

7.5 to <15 10.25 9 0.12 � 0.04 0.21 � 0.07 0.27 � 0.07 0.94 � 0.25 0.06 � 0.01 0.74 � 0.07

15 to <70 42.5 9 0.17 � 0.06 0.31 � 0.11 0.14 � 0.03 0.49 � 0.11 0.08 � 0.02 1.00 � 0.19

70 to <100 85 7 0.56 � 0.14 1.00 � 0.25 0.17 � 0 03 0.59 � 0.12 0.05 � 0.01 0.60 � 0.17

100 to <150 125 6 0.26 � 0.03 0.46 � 0.05 0 0 0.02 � 0.01 0.25 � 0.08

150 to <200 175 4 0.20 � 0.04 0.37 � 0.08 0 0 0 0

200 to <210 205 4 0.10 � 0.01 0.18 � 0.02 0 0 0 0

�210 – 3 0 0 0 0 0 0

Means � SEM are based on three to nine measurements of n (see text for details). All grazing coefficients are significantly different from zero at P <0.01

(99% CI).
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food concentration [turning points at �2 and 1 mm3 L�1,

respectively; (Figure 4) using adjustments of the data by

eye]. Clearance rates of D. denticulatum increased abruptly

within a small range of low food concentrations from

minimum values measured at 0.02 mm3 L�1 (2.4 mL

ind.�1 day�1) to values close to maximum rates around

100 mL ind.�1 day�1 at 0.4 mm3 L�1. Clearance rates

levelled afterwards into a wide plateau, and decreased

slightly at �6 mm3 L�1. No clearance could be detected

for A. clausi at food concentrations �0.09 mm3 L�1
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Fig. 2. Selectivity coefficient curves W 0 of Acartia clausi, Penilia avirostris and Doliolum denticulatum for different food sizes (longest linear extension of
food organisms) at different total food concentrations (TFCs) as found in plankton communities (1–9) from Blanes Bay (NW Mediterranean) offered as
food in grazing experiments. Community 5 resembles the conditions in situ in summer in Blanes Bay. Note logarithmic scale of food size axis.
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(equivalent to �9 mg C L�1), and for P. avirostris at food

concentrations of 0.02 mm3 L�1 (equivalent to 1.5 mg C

L�1) (Figures 2 and 4). Mean clearance rates were 13.9 �
4.5 mL ind.�1 day�1 for A. clausi, 25.5 � 5.5 mL ind.�1

day�1 for P. avirostris, and 64.1� 11.9 mL ind.�1 day�1 for

D. denticulatum. Maximum values were 38.1, 54.9 and

107.3 mL ind.�1 day�1, respectively.

Ingestion rates increased linearly with increasing

food supply for the two crustacean species until a con-

centration threshold (around 340 mg C L�1, equivalent

to 3.6 mm3 L�1, for A. clausi and around 270 mg C L�1,

equivalent to 2.8 mm3 L�1, for P. avirostris) beyond which

the relations suggest a plateau, and followed a sigmoidal

curve for D. denticulatum (Figure 4). Mean weight-specific

ingestion rates were 1.3 � 0.5 mg C mg Cind
�1 day�1 for

A. clausi, 2.8 � 1.2 mg C mg Cind
�1 day�1 for P. avirostris

and 7.7 � 3.5 mg C mg Cind
�1 day�1 for D. denticulatum.

Maximum absolute ingestion values measured were

13.9, 15.7 and 67.8 mg C ind.�1 day�1, respectively.

Assimilation efficiencies

Assimilation was measured as the percentage of the

ingested carbon that was incorporated into the body tissue.

Over a broad range of food concentrations A. clausi and

P. avirostris showed assimilation efficiencies of about 40–80%

and 30–70%, respectively. Assimilation efficiencies of

D. denticulatum were lower, with values between 20 and

50%, with one exception at very low food concentration

(1.5 mg C L�1, equivalent to 0.02 mm3 L�1) when assim-

ilation efficiency reached 72% (Figure 5). The range of

assimilation efficiencies of crustacean grazers did not differ

significantly from each other, and was significantly higher

than the range for doliolids (one-way analysis of variance,

P < 0.05, F(2,32) = 3.4 and post hoc Tukey-test analyses,

P < 0.05). Mean assimilation efficiencies differed sig-

nificantly between all grazers and amounted to 54.8 �
1.4% for A. clausi, to 47.7 � 1.1% for P. avirostris and to

40.5 � 0.8% for D. denticulatum. Assimilation efficiencies

of P. avirostris (P � 0.1, F(1,10) = 3.2) and of D. denticulatum

(P � 0.001, F(1,12) = 17.7) decreased significantly with

increasing food concentration (linear regressions, for

equations see Figure 5). No such significant relationship

could be found for A. clausi.

Food niche calculations

Doliolids occupied the broadest food niche. Copepods

showed the narrowest food niche. The food-niche

breadth of cladocerans lay between those of the other

grazer groups studied (Figure 6). Differences were not

significant (95% CI).

Considering all the experiments, niche overlap was

highest among P. avirostris and D. denticulatum (72.24%)

and lowest between D. denticulatum and A. clausi (39.04%).

The selectivity-size spectra of A. clausi and P. avirostris

overlapped to an extent of 62.51% (Figure 1).

DISCU SSION

Copepods, cladocerans and doliolids are the most impor-

tant mesozooplankton taxa in the NW Mediterranean.

Especially the feeding selectivities of marine cladocerans

and doliolids are not well known, mainly as a result of the

difficulties with culturing these animals. In Spain we had

the possibility to conduct grazing experiments withA. clausi,

P. avirostris and D. denticulatum, captured a short time before

the experiments started. Our results show that the three

species differ substantially in their feeding habits, which

may help to explain their coexistence in summer in Blanes

Bay. Doliolids behaved as passive filter-feeders that ingest

food only as a result of anatomical constraints. They

encompassed the broadest food niche of all grazers, were

the most efficient in filtering pico- and small nanoplankton

at low food concentrations and reached the highest clear-

ance and ingestion rates. On the other hand, they attained

the lowest assimilation efficiencies and could not adjust

their filtration rates to changing food supplies. In contrast,

the investigated copepods occupied the narrowest food

niche and fed on the biggest food items among all grazers;

these occurred in particular at higher enrichment levels.

They showed the lowest clearance and ingestion rates, but

in return, they reached the highest assimilation efficiencies

TFC (mm3 L-1)

E
FC

 (
%

)

0

20

40

60

80

100

Acartia clausi
Penilia avirostris
Doliolum denticulatum

0.
02

3

0.
36

3
0.

36
4

1.
29

0

5.
46

0
5.

94
0

8.
80

7

0.
07

4
0.

09
1

Fig. 3. Effective food concentration (EFC) of Acartia clausi, Penilia
avirostris and Doliolum denticulatum as a function of total food concentra-
tion (TFC). The respective relationships between EFC and TFC are
described by the following linear functions: EFCAc for TFC�1.3 = 62.81 +
16.72 lnTFC, r2 = 0.91, P < 0.01, F(1,4) = 40.8; EFCAc for TFC�1.3 =
80.93 – 26.28 lnTFC, P < 0.1, r2 = 0.84, F(1,2) = 13.1; EFCPen for

TFC�0.4 = 79.89 + 10.88 lnTFC, r2 = 0.78, P < 0.1, F(1,2) = 7.2; EFCPen

for TFC�0.4 = 43.84 – 17.12 lnTFC, r2 = 0.84, P < 0.01, F(1,4) = 20.6;
EFCDol = 37.53 – 15.54 lnTFC, r2 = 0.94, P < 0.0001, F(1,7) = 100.0.
Note logarithmic scale of TFC axis.
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and were able to adjust their clearance rates to changing

food concentrations, keeping their ingestion rates stable

over a wide range of food densities. Moreover, copepods

were the only grazers that probably selected actively

beneficial prey. Cladocerans acted as passive filter-feeders

like the doliolids, but were more similar to copepods in

their functional responses. In general, they seem to be

better adapted to intermediate food concentrations and

sizes, provided by moderate nutrient levels.

Selectivity-size spectra, selectivity profiles
and effective food concentrations

Penilia avirostris covered a food size range of >2.5 to 100 mm.

The lower size limit is consistent with the results of

Paffenhöfer and Orcutt (Paffenhöfer and Orcutt, 1986)

who observed a lower size limit of 2.2 mm. In correspond-

spondence with Turner et al. (Turner et al., 1988), our results

indicate no grazing on bacterioplankton. This is in contrast

to previous findings (Pavlova, 1959; Sorokin et al., 1970).

We did not perform specific bacterial counts in the present

experiments, but Katechakis et al. (Katechakis et al., 2002)

showed that P. avirostris influences the bacterioplankton
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only indirectly via a trophic cascade by grazing on

nanoflagellates. Other authors (Gore, 1980; Paffenhöfer

and Orcutt, 1986; Turner et al., 1988; Kim et al., 1989)

reported upper size limits of 15–50 mm. The difference in

the upper size limit between our results and those in other

studies results from the use of different size scales. Other

authors refer to upper size limits as measured by particle

width or equivalent spherical diameters (ESD). We based

our analyses on the longest linear cell and colony exten-

sions, as ESD may disguise the real dimension of particles

that may be handled. In our experiments, grazing coeffi-

cients for sizes >37.5 mm result exclusively from feeding on

needle-shaped species (Nitzschia longissima and Rhizosolenia

spp.) and on long-chain diatoms (Skeletonema costatum and

Thalassiosira sp.). With valve diameters between 5 and 20 mm

these species could be ingested by P. avirostris if orientated

longitudinally in the filtering current. Therefore, the upper

size limit found by us lies within the size spectrum found by

other authors, if expressed as particle width.

Doliolum denticulatum filtered the entire food size range

from the smallest sizes detected by counts, �1 mm, to large

phytoplankton, �75 mm, at which grazing coefficients for

sizes >35 mm are based on the same longish diatom groups

as described for P. avirostris. High grazing coefficients

of 0.14 day�1 (equivalent to 51% of the maximum grazing

coefficient, Table IV) for picoplankton indicate that high

grazing pressure occurred also on particles <1 mm.

Katechakis et al. (Katechakis et al., 2002) documented the

ingestion of bacteria with sizes �0.5 mm by D. denticulatum.

Thus, doliolids were the only mesozooplankton feeding

efficiently on particles as small as those consumed by

many protozoa [e.g. (Fenchel, 1980)]. This ability is of

additional advantage in low-nutrient environments that

mainly support the growth of very small algae and do

not allow the establishment of large-scale algae [this article

(Raven, 1986; Stockner and Antia, 1986; Duarte et al.,

2000; Sommer, 2000)]. Besides, relative picoplankton bio-

mass remains more or less constant throughout the year

(Harris, 1986; Mura et al., 1996), presenting a safe food

source. The ability to take up very small food particles may

be an explanation for the great success of tunicates and

the gelatinous morphotype in general, especially in ultra-

oligotrophic environments (Raymont, 1983); together with

decreased gravitational stresses as a result of their watery

body tissue (Harbison, 1992), high growth rates among

metazoans (Deibel, 1998) and adaptation of their filter

apparatus to extremely low food concentrations (Acuña,

2001).

Acartia clausi did not ingest particles <7.5 mm. Feeding

on particles >50 mm was based on elongated diatoms with

lengths up to 210 mm but valve diameters �20 mm. If

expressed as particle width, the selectivity-size spectrum

found by us is more or less consistent with the results of

Nival and Nival (Nival and Nival, 1976) and of Pagano

et al. (Pagano et al., 2003) who report a size spectrum from

3 mm to at least 50 and 36 mm ESD, respectively. If

expressed as the longest linear dimension, it corresponds

with the findings of Hodgkin and Rippingale (Hodgkin

and Rippingale, 1971) who showed that A. clausi may

collect particles up to �250 mm. In contrast to cladocer-

ans and doliolids, copepods did not feed on components

of the microbial food web in our experiments. They

ingested even larger ciliates at only a very low rate.

Gismervik and Andersen (Gismervik and Andersen,

1997) showed that A. clausi may switch between algal

and ciliate food depending on their respective abundance.

Therefore, our findings may also result from low ciliate

abundances (<<1 to 4.2% of total biovolume). It is known

that A. clausi can affect the microbial food web indirectly

via a trophic cascade (Katechakis et al., 2002).

Within the size-limits of ingestion the selectivity profile

of A. clausi always matched the peak of available food

particles (Figure 2). This peak tracking behaviour can be

interpreted as an active selection of large diatoms�70 mm,

as these were the dominant food taxa corresponding

to the peaks. Such a preference is in agreement with

other studies (Donaghay and Small, 1979; Guisande et al.,

2002) and is known also from other marine copepods

[reviewed in (Kleppel, 1993)]. Nevertheless, grazing always

occurred on less abundant, smaller food organisms. Hence,

taking into account the investigations of various other

authors, our results indicate that A. clausi might supplement

a passive-mechanical filtering mode with a raptorial mode

(particle detection and capture), depending on food size

(Donaghay and Small, 1979; Pagano et al., 2003), food

quality (Donaghay and Small, 1979; Ayukai, 1987;

Wiadnyana and Rassoulzadegan, 1989; Guisande et al.,

2002), and food quantity (Moraitou-Apolostopoulou and
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Verriopoulos, 1976; Gismervik and Andersen, 1997).

This ability seems to be lacking in D. denticulatum and

P. avirostris.

In contrast to copepods, doliolids and cladocerans

showed relatively invariant grazing patterns. This argues

in favour of passive-mechanical filtering modes, consistent

with the considerations in the literature [doliolids

reviewed in (Bone, 1998); P. avirostris in (Pavlova, 1959;

Paffenhöfer and Orcutt, 1986; Lipej et al., 1997)]. Never-

theless, in some experiments doliolids and cladocerans

expressed grazing peaks for dominant particles bigger

than their normally preferred food sizes. But these addi-

tional peaks, separated from the other peaks by zero-

grazing values, are based exclusively on the ingestion of

needle-shaped diatoms, whose valve diameters are within

the normally preferred food-size spectra. Therefore, we do

not rate these ingestions as intended captures of beneficial

prey, but as accidental ingestions, depending on the orien-

tation of the algae in the filtering currents.

The EFC of all grazers depended on TFC and on food

size composition. Both factors depended again on the

nutrient conditions in which the food communities grew

(Table I, Figure 2). The results suggest that ultra-

oligotrophic to oligotrophic conditions, providing low TFC

and small food sizes, are advantageous for D. denticulatum,

while P. avirostris and A. clausi profit by oligotrophic to

mesotrophic and mesotrophic to eutrophic conditions,

respectively. Nevertheless, at levels similar to the normal

nutrient loading rate at Blanes Bay all grazers met similar

EFC of around 50% TFC (community 5, TFC =

0.364 mm3 L�1). This might be one of the preconditions

necessary to enable the coexistence of copepods, clado-

cerans and doliolids in summer in Blanes Bay. We will

discuss this point in more detail together with the food-

niche calculations.

Clearance rates and ingestion rates

Acartia clausi and P. avirostris reached similar clearance

and ingestion rates and showed equivalent functional

responses. Doliolum denticulatum generally attained

higher rates at similar food densities and differed in its

functional response from crustacean grazers. This speaks

for a different metabolic activity of crustacean and

gelatinous mesozooplankton and for an adaptation to

different pelagic environments.

Clearance and ingestion rates of A. clausi and of

P. avirostris are within the range of rates found in the lit-

erature (Table V). No clearance or ingestion rates have

been published forD. denticulatum so far. Therefore, we listed

data published for other doliolid species. In general, we

tried to compare with animals similar in size or biomass to

the individuals used in our experiments. Nevertheless, a

comparison was not always possible because of the use of

different rate units. If possible, we converted units for

clearance rates to mL ind.�1 day�1 and ingestion rates to

mg C ind.�1 day�1. Our results for ingestion rates include

a degree of uncertainty as conversion of phytoplankton

biovolume to carbon biomass depends very much on the

conversion factor chosen. We decided to follow the estima-

tions of Nalewajko (Nalewajko, 1966), which treat all

phytoplankton species equally. Other computations

emphasize small taxa [e.g. (Strathmann, 1967)] or big

algal sizes [e.g. (Rocha and Duncan, 1985)] and may

lead to deviating results. Moreover, rate measurements

are always influenced by a variety of parameters, such

as temperature, type of food source, food density, life

history of animals, and choice of experimental method.

The relationship between clearance rate and TFC

followed a bell-shaped curve with narrow modal ranges

for both crustacean species. For A. clausi this type of

model has been observed by other authors (Gismervik

and Andersen, 1997; Pagano et al., 2003). For P. avirostris

a decrease of clearance rates with increasing food

concentration has been documented (Pavlova, 1959;

Paffenhöfer and Orcutt, 1986; Wong et al., 1992), but

not an initial increase that indicates a switching from

non-feeding to feeding activities (Marten, 1973). Non-

feeding activities suggest that TFC or EFC, or both, are

too low to support basic metabolism. Our results indicate

that this was the instance when TFC was <0.1 mm3 L�1

for A. clausi and at TFC �0.02 mm3 L�1 for P. avirostris.

Paffenhöfer and Orcutt (Paffenhöfer and Orcutt, 1986)

observed feeding activities of P. avirostris also at lower

food concentrations (0.01 mm3 L�1), but reproduction

did not occur at these levels. No comparable studies are

available for A. clausi. Doliolum denticulatum also fed on the

lowest food concentrations offered.

Acartia clausi and P. avirostris decreased their filtration

efforts at higher food concentrations. Nevertheless, their

ingestion rates remained stable. This behaviour points to

an optimal adjustment of energy expenses. According

to Paffenhöfer (Paffenhöfer, 1988), such an ability corre-

sponds to species adapted to varying trophic conditions.

Indeed, A. clausi (Raymont, 1983) and P. avirostris

(Paffenhöfer and Orcutt, 1986) occur most commonly

in near- and in-shore environments that are often subject

to fluctuating particulate densities. Doliolum denticulatum

did not show this kind of behavioural flexibility. Dolio-

lids increased their filtration rates from minimum

to maximum clearance almost without transition, and

kept rates constantly high, despite increasing food sup-

plies. Hence, ingestion rates followed a sigmoidal curve.

According to Holling (Holling, 1959), an S-shaped func-

tional response has the potential to regulate prey density.

This response is also termed a switching response,

following the definition of Murdoch (Murdoch, 1969):
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‘As a prey becomes relatively more abundant, switching

occurs if the relative amount which that species forms

of the predator’s diet increases disproportionately in

comparison with the expected amount.’ As shown

above, D. denticulatum behaved like a passive filter-feeder.

Therefore, ‘switching’ might be interpreted as an abrupt

change from low to high feeding activity, as suggested by

our data. The slight decrease of clearance rates at very

high food concentrations may be the result of the

filtration apparatus of D. denticulatum becoming blocked,

as observed for other tunicates (Deibel, 1985; Harbison

et al., 1986).

Assimilation efficiencies

Both crustacean grazers reached significantly higher

assimilation efficiencies than doliolids. A reason could

be that their body tissues are more similar to the food

guild’s biochemical composition. Assimilation efficien-

cies depend essentially on food quality. The more similar

the biochemical composition of the food to the body

tissue of the consumer, the higher its assimilation

efficiency (Valiela, 1991). Mean efficiencies of copepods

were significantly higher than those of cladocerans.

Acartia clausi may have profited from its presumed ability

Table V: Clearance rates (mL ind.�1 day�1) and ingestion rates (�g C ind.�1 day�1) of
Acartia clausi, Penilia avirostris and three doliolid species

Clearance Mean Ingestion Mean Author(s)

rate rate

Acartia clausi 3.5–24 Ayukai (1987)

6.6–74 Broglio et al. (2001)

* Donaghay and Small (1979)

2.0–20 0.2–5.7a Gismervik and Andersen (1997)

* Guisande et al. (2002)

* 1.3–4.9b 3.3 Pagano et al. (2003)

3.5–20c Tiselius (1998)

3.1–22 * Turner and Granéli (1992)

34–630 * Wiadnyana and Rassoulzadegan (1989)

0–38 14 0–14 5.0 this study

Penilia avirostris 4.8–26 * Paffenhöfer and Orcutt (1986)

41–252 101 * Pavlova (1959)

18–56 * Turner et al. (1988)

4.8–30 21 * Turner et al. (1998)

0.1–20 2.2 * Wong et al. (1992)

0–55 26 0–16 6.0 this study

Dolietta gegenbauri 0.5–264 106 Crocker et al. (1991)

10–355d 46e * Deibel (1982)

24f based on data from Deibel (1982)

and on equations given in Madin

and Deibel (1998)

20–175g 3–8g Gibson and Paffenhöfer (2000)

24–233 139h Tebeau and Madin (1994)

Doliolum nationalis 60–140 Deibel and Paffenhöfer (1988)

Doliolum denticulatum 2.4–107 64 0.01–68 21 this study

*Rates measured by author(s), but conversion of units not possible.
aConverted with an estimated biomass of 750 pg C cell�1T. weissflogii (their figure 2).
bConverted with an estimated biomass of 3.8 mg C ind.�1 (their table 3 and figure 3).
cConverted with an estimated dry weight of 11.6 mg C ind.�1 (his table 1 and figure 5).
dIncluding phorozooids, egonozooids with a biomass of 2.7 mg C ind.�1 (his figure 1).
fGonozooids 1.5 mm long.
gGonozooids with a biomass of 5 mg C ind.�1 (their figures 2, 3, 5, 6 and 8).
hGonozooids.

JOURNAL OF PLANKTON RESEARCH j VOLUME 26 j NUMBER 6 j PAGES 589–603 j 2004

600



to capture actively beneficial prey. With this, the high

abundance of diatoms may have been advantageous

[e.g. (Guisande et al., 2002)]. Considering all experi-

ments, the assimilation efficiencies of A. clausi showed

no clear dependency on food density. This is consistent

with the results of Pechen-Finenko (Pechen-Finenko,

1977). Nevertheless, A. clausi attained maximum efficien-

cies at food concentrations close to the concentration

threshold where maximum ingestion rates were reached

(Figures 4 and 5). At higher food densities assimilation

efficiency decreased continuously, as occurs in other

marine copepods (Conover, 1978). Similarly, assimila-

tion efficiencies of P. avirostris and of D. denticulatum

decreased significantly with increasing food concentra-

tion. These observations might be understood as a result

of the digestibility of food and its retention time in the

gut, related to the superfluous feeding theory proposed

by Beklemishev (Beklemishev, 1962). The theory sug-

gests that at high food concentrations retention time in

the gut might be too short to support effective digestion

of food. At lower concentrations, the retention time will

be longer and the digestion of the food may be more

complete, leading to increased assimilation efficiencies.

Moreover, digestion times seem to increase with prey

size [e.g. (Martinussen and Bamstest, 1999; Suchmann

and Sullivan, 2000)]. In our experiments increasing food

concentrations occurred with increasing food dimensions

(Table I, Figure 2). The efficiency loss was strongest for

doliolids, maybe because they are not able to reduce

filtration, and thus ingestion rates, with increasing food

concentration.

The assimilation efficiencies we measured for A. clausi

are within the range documented for marine copepods

[e.g. (Gaudy, 1974; Pechen-Finenko, 1977)]. However,

assimilation efficiencies computed from short-term experi-

ments like ours do not account for long-term effects, such

as losses of ingested material through moulting and mor-

tality. Therefore, it is likely that assimilation efficiencies on

a population level are lower than those calculated for

individuals. Moreover, assimilation efficiencies of indivi-

duals may vary depending on the life-cycle phase of the

organism investigated ( Jones et al., 2002).

Assimilation efficiencies of marine cladocerans and

doliolids are poorly investigated. However, our results

are consistent with findings for freshwater cladocerans

(Lair, 1991; Urabe and Watanabe, 1991) and for pre-

datory gelatinous zooplankton (Kremer and Reeve,

1989; Reeve et al., 1989; Stibor and Tokle, 2003).

Food-niche calculations

Food-niche breadth calculations sustain that in feeding

A. clausi is more specialized than P. avirostris and

D. denticulatum. The food-niche breadth of doliolids might

even have been underestimated in our experiments as we

did not record sizes <1 mm. Nevertheless, a narrow food

niche might be compensated by high abundances of pre-

ferred prey (high EFC) at food concentrations enabling

high ingestion rates (suitable TFC) and optimum assimila-

tion efficiencies. Thus, especially those organisms which

can actively detect and capture beneficial prey may rival a

competitor with a broader selectivity-size spectrum.

Food-niche overlap was highest between the filter

feeders. However, although all grazers competed for

food sizes between 7.5 and 100 mm, none of the grazing

spectra overlapped any of the others completely. Acartia

clausi, P. avirostris and D. denticulatum reached their highest

grazing coefficients for separated food-size classes (Fig-

ure 1, Table IV). Different niche allocation may be one

explanation for the coexistence of copepods, cladocerans

and doliolids in Blanes Bay at certain times; besides the

influence of hydrographic (Sabatès and Masó, 1990;

Masó and Tintoré, 1991) and seasonal (Andreu and

Duarte, 1996) dynamics. Nevertheless, niche overlap mea-

surements based only on single niche dimensions, such as

food size, do not describe overall niche overlap in a multi-

dimensional niche space (Abrams, 1980; Holt, 1987).

Therefore, our calculations may only reflect tendencies

in the relationship between niche overlap and competi-

tion. Yet, because of the fundamental importance that

food size has for the feeding relationships in pelagic com-

munities [e.g. (Sommer and Stibor, 2002)], we consider

our results to be an appropriate measurement within this

context. Our results indicate that none of the mesozoo-

plankton groups studied here should be out-competed on a

food-resource basis, if the whole size spectrum from pico-

to microphytoplankton is available, and effective and

TFCs are sufficiently high for every grazer to support

basic metabolism. Our data suggest that this is the case

at food concentrations �0.4 to 1.3 mm3 L�1, as is most

commonly found in Blanes Bay.
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Paffenhöfer, G. A. (1988) Feeding rates and behaviour of zooplankton.

Bull. Mar. Sci., 43, 430–445.
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Paffenhöfer, G. A., Stewart, T. B., Youngblouth, M. J. and Bailey,

T. G. (1991) High resolution vertical profiles of pelagic tunicates.

J. Plankton Res., 13, 971–981.

Pagano, M., Kouassi, E., Saint, J. L., Arfi, R. and Bouvy, M. (2003)

Feeding of Acartia clausi and Pseudodiaptomus hessei (Copepoda:

Calanoida) on natural particles in a tropical lagoon (Ebrie, Cote

d’Ivoire). Estuarine Coastal Shelf Sci., 56, 433–445.

Pavlova, E. V. (1959) On grazing by Penilia avirostris Dana. Trans.

Sevastopol. Biol. Stn. Akad. Nauk. Ukr. SSR, 11, 63–71. (English transla-

tion by Translation Bureau, Fish. Res. Bd., Canada, 967).

Pechen-Finenko, G. A. (1977) Efficiency of food assimilation by

planktonic crustaceans in different trophic conditions. Zool. Zh., 56,

1459–1466.

Raven, J. A. (1986) Physiological consequences of extremely small size for

autotrophic organisms in the sea. Can. Bull. Fish. Aqu. Sci., 214, 1–70.

Raymont, J. E. G. (1983) Plankton and Productivity in the Oceans, 2nd edn,

Vol. 2: Zooplankton. Pergamon Press, Oxford.

Reeve, M. R., Syms, M. A. and Kremer, P. (1989) Growth dynamics of

a ctenophore (Mnemiopsis) in relation to variable food supply. I.

Carbon biomass, feeding, egg production, growth and assimilation

efficiency. J. Plankton Res., 11, 535–552.

Rocha, O. and Duncan, A. (1985) The relationship between cell carbon

and cell volume in freshwater algal species used in zooplankton

studies. J. Plankton Res., 7, 279–294.
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ABSTRACT: We report how different zooplankton groups (doliolids, cladocerans and copepods) are
able to influence the coastal pelagic food web, including the microbial food web, in waters of the NW
Mediterranean. We studied the effect of grazing and of grazing-induced nutrient recycling mediated
by different types of zooplankton grazing on a natural phytoplankton community. Experiments were
conducted in semicontinuous 2-stage chemostats. The 1st stage vessels contained seawater from
Blanes Bay, Spain (NW Mediterranean) including its natural phytoplankton community; the 2nd
stage vessels contained the same seawater and copepods, cladocerans or doliolids. At daily intervals
we transferred part of the medium from the 2nd to the 1st stage flasks, which contained ungrazed
algae and excreted nutrients. In this way, the zooplankton could influence phytoplankton dynamics
both by selective grazing and by differential excretion of limiting nutrients. In the 2nd stage flasks
grazing changed the algal community composition. Doliolids and cladocerans promoted the growth
of large algae and copepods shifted the size spectrum towards small sizes. This effect was transferred
to the 1st stage flasks. Doliolids, cladocerans and copepods also affected the microbial food web in
different ways. Size-selective grazing led to differences in the nanoplankton concentrations. These
in turn affected bacterial concentrations in a trophic cascade. The potential to modify a given algal
population increased with increasing selectivity of the grazer.

KEY WORDS: Doliolids. Cladocerans . Copepods . Grazing . Marine pelagic food web. Microbial
food web. Trophic cascade
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INTRODUCTION eIs. In spite of some recent controversy (M~alto et al.
1999, Tang & Dam 2001). the energy flow from diatoms
via crustaceans to fishes is considered particularly effi-
cient (Cushing 1975, Officer & Ryther 1980, Iverson
1990, Sommer et al. 2002). In contrast, gelatinous zoo-
plankton are considered a poor food base for commer-
cial fish stocks (Verity & Smetacek 1996). due to their
high volume to plasma ratio and their low pro tein con-
tent (Cushing 1975).

The grazing behaviour of herbivorous mesozoo-
plankton is one of the critical factors structuring
pelagic food webs. Herbivores distribute the organic
matter synthetized by autotrophs to higher trophic lev-
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There are many studies concerning grazing by
marine copepods and their influence on the marine
pelagic food web structure (e.g. Ki0rboe 1998). Gelati-
nous mesozooplankton and c1adocerans are poorly
investigated in this context, although seasonally they
may dominate zooplankton communities at times

(~.g. Alldredge & Madin 1982, Deibel 1982a,b, 1998,
Crocker et al. 1991, Paffenhöfer et al. 1991, Andreu &
Duarte 1996).

Besides exerting direct grazing pressure, zooplank-
ton mayaIso influence the phytoplankton community
indirecHy (Gismervik et al. 1996 review, Andersen
1997), Whilst fee ding on algae, herbivores release
nutrients through excretion and sloppy feeding. The
regeneration of dissolved nutrients may influence the
gross growth rate of the algal community. Achanging
nutrient-stoichiometry can alter its composition (e.g.
Officer & Ryther 1980, Tilman 1982, Sommer 1983,
1994a, 1996, 1998a, Tilman et al. 1986, Hessen &
Andersen 1992, Escaravage et al. 1996, Schöllhorn &
GraneÜi 1996). This might feed back on the competition
within the herbivorous zooplankton and affect the
energy transfer in the pelagic food web (e.g. Sommer
1998b).

To study the effects of grazing and grazing-induced
nutrient regeneration, we conducted experiments with
mesozooplankton from Blanes Bay (Catalan Sea, NW
Mediterranean) feeding on a natural phytoplankton
assemblage. Three zooplankton groups dominated in
Blanes Bay in summer: copepods, c1adocerans and
doliolids. Short-term grazing experiments (several
hours) with these zooplankton groups showed that
they differ in their size preference for algaej therefore,
they can influence the competition between different-
sized algal groups (Katechakis 1999). This makes them
well-suited for longer experiments (several weeks) to
investigate how copepods, c1adocerans and doliolids
influence the algal community over several phyto-
plankton generations.

MATERIALS AND METHODS

Experimental setup. Experiments were performed
in semicontinuous 2-stage chemostats, consisting of
600 ml tissue culture flasks. The 1st stage flasks were
filled with the natural phytoplankton community
occurring in summer in Blanes Bay (Catalan Sea, NW
Mediterranean, 42° 18' 26" N, 3° 18' 11" E); water was
filtered through a plankton net with a mesh size of
100 pm. to exc1ude mesozooplankton. To the 2nd stage
flasks (reaction chambers) we added 20 copepods
(Acartia sp.), 20 c1adocerans (Penilia avirostris) or 15
doliolids (solitary gonozooids of Doliolum denticula-
tum) , at higher densities than those in summer in

Blanes Bay (natural densities: 500 to 780 copepods m-3,
750 to 1250 c1adocerans m-3, 90 doliolids m-3: Andreu
& Duarte 1996). We were careful to incubate similar
biovolumes of grazers in the various flasks. We esti-
mated biovolumes from size measurements. All treat-

ments were replicated 3 times, inc1uding controls with-
out grazers. The replicates were placed randomly in a
water bath at a temperature between 21 and 23°C. The
in situ surface temperature in Blanes Bay was 25 to
26°C (measured with a WTW LF 20 temperature
sensor). The 1st stage flasks were ventilated with air
pumps and illuminated with 6 fluorescent tubes (3x
Osram light code 77, 3x Osram light code 21-840, 36 W
each). The re action chambers remained dark and were
not ventilated-preliminary experiments had shown
that bubbling affected especially c1adocerans and
doliolids adversely. We took 150 ml from the 1st and
2nd stage flasks daily (dilution rate, D = 0.25 d-1). The
150 ml from the 1st stage flasks were transferred to the
2nd stage flasks. Of the 150 ml taken from the 2nd
stage flasks, 75 ml were returned to the 1st stage
flasks, together with uneaten algae and recyc1ed nutri-
ents but without transferring mesozooplankton graz-
erSj 75 ml were used for sampling or discarded. Sam-
pling was done 4 times during the experiment: at the
beginning, after 6 d, after 12 d and at the end. Sam-
pling of 1st stage flasks after 6 d and after 12 d resulted
in dilution rates higher than 0.25 d-\ however we esti-
mated this to be no problem ta king into account the
duration of the experiment. Sampling at the beginning
and at the end did not influence the dilution rate. The

75 ml deficits in 1st stage flasks were made up with
fresh medium (Fig. 1) consisting of sterile-filtered sea-
water (0.2 pm cellulose-acetate filters) enriched with
nutrients (N, 21 pM: 50% NaN03 and 50% NH4CI;
P, 1 pM: Na2HP04 . 2H2Oj Si, 7 pM: Na203Si . 5H2O),
which is similar to the in situ supply from natural ter-
restial and human sources during summer in Blanes
Bay (Y. Olsen unpubl. data). During the experimental
period of 17 d we visually controlled whether grazers
were intact several times a day by observing their
swimming behaviour in the flasks. Injured individuals
were replaced if necessary. Animals were not repro-
ducing during the experiment.

SampIe preparation and analysis. The recirculat-
ing design permitted the zooplankton to influence
the phytoplankton community in 2 ways-direcHy
through grazing impact and indirecHy through excre-
tion of limiting nutrients. To determine grazer-induced
changes in abundance, species composition, biovol-
urne and the biomass of the nano- and microplankton,
we preserved sampIes with Lugol's iodine (5 g 12+ 10 g
KI ad 100 ml aq. dest.). We counted the sampIes using
an inverse microscope (Leica DMILj UtermöhI1958). If
present, we counted at least 400 cells of each species to
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Fig. 1. Scheme illustrating the experimental setup (for details see 'Materials and methods'). D: dilution rate

achieve an error of <10% (Lund et al. 1958). Biovol-
umes were calculated using the equations of Hille-
brand et al. (1999); for this purpose we measured the
linear dimensions of 20 specimens of each species.
Carbon contents were estimated after Strickland &

Parsons (1972).
Booth et al. (1982) and Reid (1983) criticized the

Utermöhl method, suggesting it underestimates pico-
and small nanoplankton abundances drastically.
Therefore we determined the abundances of bacteria,
naked flagellates <5 pm and dinoflagellates <10 pm
by staining with DAPI (4,6-diamidino-2-phenylindol)
(Porter & Feig 1980). We fixed sampIes in formalin
(final concentration: 2 %) and stained them with a
final concentration of 1.76 pg DAPI ml-l for bacteria
and 2.45 pg DAPI mI-I for flagellates. After 10 min,
the sampIes were filtered onto black 0.2 pm polycar-
bonate filters (Millipore) and 0.8 pm filters (Nude-
pore), respectively. Filters were rinsed with 5 ml
washing solution (sterile filtered tap water, 2 %
formaldehyde). Counts were done using an epifluo-
rescence microscope (Leitz DMRB) equipped with a
blue light and an UV-light filter set. For bacteria, at
least 400 cells of each morphotype were enumerated
if present. Bacteria attached to particles were counted
as 'partide-bound bacteria cells', independent of par-
tide size and abundance measurements. Naked fla-

gellates and dinoflagellates were divided into 3 size
dasses: 2.5 to 5 pm, >5 to 7.5 pm and >7.5 to 10 pm,
of which at least 400, 200 or 100 cells, respectively,
were counted. To calculate biovolumes we measured

the linear dimensions of 50 specimen of each morpho-
type (Fuhrmann & Azam 1980, Bjornsen 1986). Flagel-
late biovolumes were calculated on the base of the

respective interval means of every size dass (3.75, 6.3,
8.8 pm). The carbon content of bacteria was calcu-
lated by multiplying cell numbers with 23.3 fgC cell-l

(Simon & Azam 1989). Flagellate biomass was esti-
mated with 0.22 pgC pm-3 according to Bosheim &
Bratbak (1987), that of ciliates with 0.15 pg C pm-3
(DeBiase et al. 1990). Moreover, under blue light stim-
ulation, the differentiation of autotrophie cells (chloro-
phyll a: red autofluorescence) and heterotrophie cells
(green coloration) was possible, as well as the detec-
tion of cyanobacteria (chI a + accessory phycobilines:
yellow-orange coloratic~n). DAPI-countings were done
for 1st stage flasks.

Dissolved inorganic nutrients were analyzed with a
continuous flow analyser using the methods of Grass-
hoff et al. (1983) for silicate, nitrate, ammonium and
phosphate. For the determination of particulate carbon
and nitrogen we filtered sampIes onto precombusted
Whatman GF/C filters and measured them with a

Fisons CN-analyser (NA 1500N).
Similarities between the resulting communities at

the end of the experiment in the 1st stage flasks were
expressed as Euclidean distances (Eq. 1), based on the
following groups: cyanobacteria, naked flagellates,
ciliates, dinoflagellates, diatoms and amoeba.

,i jk =
n

L (Xij - Xik) 2
i=1

(1)

where ,ijk = Euclidean distance between Chemostats j
and k; Xij =proportion of Group i of total biovolume in
Chemostat j (Xik analog) and n = total number of
groups. ,ijk increases with increasing n. To compensate
for this we calculated the average distance djk (Eq. 2):

~
djk = ~-;- (2)

Both ,ijk and djk vary from 0 to +00;the larger the dis-
tance, the less similar are the 2 communities.

Data analysis. For statistical analysis, SigmaStat 2.0
and SPSS 10.0.5 software was used.
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RESULTS

Changes in composition of food guilds

Size composition

Fig. 2 shows how the size composition within the
fo,od changed under the persisting grazing press ure of
copepods, cladocerans or doliolids. We subdivided the
plankton community into 9 size classes with me an
intervals of 1, 2.5, 5, 10,40,85, 125, 175 and 205 pm.

Colo~ial species were assigned to classes according to
the biggest linear dimension of colonies. For the fol-
lowing comparisons of size classes we set the biovol-
urne of the most abundant size class at 100 % and refer

to it as the 'dominating biovolume'.

Initial seawater

The size spectrum of food types initially presented to
grazers was dominated by organisms between 15 and
70 pm (for comparitive purposes we set the biovolume at
100 :t 19.2 % SE of the means: Fig. 2). Microplankton from
150 to 200 pm and >210 pm made up 73.7:t 52.7 % of the

,dominating biovolume and 95.0:t 24.0 % of the dominat-
ing biovolume, respectively. Among small size classes only
individuals around 5 pm were important (36.6:t 1.4 %).

Second stage flasks (reaction chambers)

In 2nd stage flasks copepods, cladocerans and
doliolids caused size compositions according to their
respective grazing spectra, as evaluated in grazing
experiments (Katechakis 1999 and present Fig. 2:
right) , with the following exceptions: After 17 d,
chemostats with cladocerans showed high biovolumes
of intermediate food sizes between 15 and 70 pm
(72.4:t 40.0% of the dominating biovolume) compared
to controls, and in chemostats with doliolids large food
items > 100 pm were efficiently reduced. Controls were
dominated by intermediate food sizes after 6 d and
12 d. Lastly, organisms >210 pm prevailed in control
flasks. Differences among treatments were tested for
significance using 2-way ANOVAs with the factor

. grazer type as a fixed factor and food size as a random
factor. For percentages of dominating biovolume origi-
nal data were arcsine-transformed. The interaction

between different grazers and phytoplankton size
composition was significant (p ::;0.001, Fg,24= 4.904).

First stage flasks

Shifts in food size composition were transferred to
1st stage flasks (p ::;0.05, Fg,24= 2.443) through recur-
rent inoculation with small amounts of material from

the 2nd stage flasks.

Taxonomie composition

Initial seawater: The initial community was dominated
by diatoms, ciliates and organisms <5]lffi. Dinophyceae
and naked flagellates were of little importance. Abun-
dances of amoebae lay below the detection limit initially
but became detectable later. The most important species
were Rhizosolenia iragilissima and Skeletonema costa-
tum. Together they accounted for more than 55 % of the
total food biovolume (for details see Table 2). The whole
taxonomie spectrum is listed in Table 1.

Second stage flasks (reaction chambers): By Day 6,
the taxonomical composition of the various chemostats
differed little. Diatoms extended their dominance in all

treatments. Compared to the initial community, pico-
and nano plankton showed substantial decreases in all
flasks. Ciliates decreased in the copepod and doliolid
treatments (Tables 2 & 3). After 12 d the communities
had changed radically. In all flasks with grazers, non-
siliceous species had become predominant: naked fla-
gellates in chemostats with copepods, dinoflagellates
(mainly Peridinium sp. accompanied by Prorocentrum
micans) in those with doliolids or cladocerans. After
17 d, communities with different treatments differed
greatly from each other. By Day 12 of the experiment,
the prevailing naked flagellates had declined in the
copepod chambers, while pico- and nanoplankton
<5 ]lffi and Peridinium sp. increased. Peridinium sp.
was also the outstanding taxon under the influence of
doliolids. In both chemostats with cladocerans and

controls, diatoms gained importance, whereas dino-
phyceaes declined slightly. For details see Table 3.

First stage flasks; Here the central characteristic was
the rise in dinophyceaens at the expense of diatoms. The
change was expressed by the shift from Rhizosolenia
spp. and Skeletonema costatum to Peridinium sp. and
Prorocentrum micans as the most important species. Ex-
cept for cladoceran treatments this was valid for all
chemostats, although most evident in copepod systems.

Similarity oi communities: The most dissimilar com-
munities resulted from the influence of selective graz-
ers (copepods) on the one hand and unselective filter-
feeders (cladocerans or doliolids) on the other hand
(Table 4). The laUer were more similar to each other.
The most similar communities were chemostats with

doliolids and those serving as controls.

Changes in composition of microbial food web
(1st stage flasks)

Bacteria and cyanobacteria

Solitary bacteria abundances: Solitary bacteria (dia-
meter 0.3 pm, biovolume 0.014 ]lffi3) increased in all
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Table 1. Taxonomie list of all plankton food in ehemostat experiments. Biovolumes were ealculated using the equations of Hille-
brand et al. (1999). Carbon eontents were estimated after Striekland & Parsons (1972) for phytoplankton, after Bosheim & Brat-
bak (1987) for flagellates and after DeBiase et al. (1990) for eiliates. ANF: autotrophie nanoflagellates; HNF: heterotrophie

nanoflagellates

Taxon Geometrieal Cell dimension (pm) Biovolume Biomass

shape biggest extension (11m3 eell-l) (pgC eell-l)

Pieoplankton
1 pm Sphere 1 0.52 0.07

Nanoplankton
2.5 11m Sphere 2.5 8.2 1.2
5pm Sphere 5 65 9.2

Cyanobaeteria
Coeeal Sphere 0.5 0.07 0.01
Filamentous Cylinder 7.0-140 0.88-17.6 1.4-28

Baeillariophyeeae
Centrales

Biddulphia sp. Elliptie prism 15 442 39
Coscinodiscus sp. Cylinder 12.5-40 920-12566 81-1100
Chaetoceros sp. A Elliptie prism 5 79 6.9
Chaetoceros sp. B Elliptie prism 20 707 62
Leptocylindrus sp. Cylinder 45 884 77
Rhizosolenia delieulata Cylinder 28 2160 189
Rhizosolenia fragilissima Cylinder 18-75 344-5890 30-515
Rhizosolenia stolterfothii Cylinder 38-200 1657-62832 145-5498
Rhizosolenia sp. A Cylinder 70 3093 271
Rhizosolenia sp. B Cylinder 100-500 1964-9817 172-859
Skeletonema costatum Cylinder + 2 halfspheres 7.5-25 94-1104 8-97
Thalassiosira sp. Cylinder 20 3534 309

Pennale

Li=ophora sp. Gomphonemoid 75 10000 875
Navicula sp. Elliptie prism 15 147 13
Nitzschia c10sterium Prism on parallelogram 30 94 8.2
Nitzschia longissima Prism on parallelogram 75 125 11
Nitzschia sp. A Prism on parallelogram 17.5-30 47-156 4.1-14
Nitzschia sp. B Prism on parallelogram 70 125 11
Thalassionema nitzschioides Box 40 785 69

Dinophyeeae

Dinophysiales
Dinophysis sp. Ellipsoid 50 10472 1466

Peridiniales

Ceratium tripos 3 eones + eylinder 50 25000 3500
Gymnodinium sp. Ellipsoid 10 654 92
Peridinium sp. Ellipsoid 15-30 1767-9425 247-1319

Proroeentrales
Prorocentrum micans Cone + halfsphere 30-50 2209-6283 309-880

Prymnesiophyeeae
Coccolithus sp. Sphere 7.5 221 31
Phaeocystis pouchetii Sphere 7.5 221 73

Other Hagellates
ANF spp. Sphere 2.5-10 8.2-523 1.8-73
HNFspp. Sphere 2.5-10 8.2-523 1.8-73

Ciliata

Ciliate sp. Ellipsoid 25 29452 4123

Amoeba

Amoeba sp. Irregular 7.5-15 331-2651 46-371
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Table 2. Taxonomie eomposition (% of total food guild bio-
volume and SE of means in ehemostats) of the food presented
to grazers in the initial seawater at the beginning of the

experiment

Functional group %

pieo/nanoplankton <5 pm
Diatoms
Total

Skeletonema costatwn

Rhizosolenia fragilissima

Dinophyeeae
Naked flagellates
Ciliates
Amoeba

15.26 :t 0.87

57.21 :t 6.70
20.66 :t 0.38
35.21 :t 6.00

2.52 :t 1.39

2.51 :t 2.54

22.49 :t 5.25

0

'treatments. At the end of the experiment, controls
showed lower values than chemostats with grazers.
Biovolumes were highest in cladoceran-influenced
systems followed by those systems affected by
doliolids or copepods (Fig. 3). The cell numbers in
the 1st stage chemostats differed significantly from
each other (l-way ANOVA, p :::;0.001, F4.i4 = 16.64).
Post hoc Tukey-test analyses showed a significant
difference between the cladoceran and all the other
treatments.

Partic1e-bound bacteria: We could not find any of
these in natural seawater; 17 d later, in the chambers
with doliolids most bacteria were attached to particles
(2.81 x 105 cells ml-\ while the remaining cham-
bers had densities of 55200 cells ml-i (cladocerans).
51886 cells ml-i (controls), and 8529 cells ml-i (cope-

pods). Differences among treatments were significant
(l-way ANOVA, p :::;0.001, F4.i4 = 15.132). Post hoc
Tukey-test analyses showed that the doliolid treat-
ments formed aseparate group.

Coccal cyanobacteria abundances: Coccal cyano-
bacteria (diameter 0.5 1llll,biovolume 0.065 1llll3)were
below the detection limit in the initial samples and did
not occur in chemostats with doliolids. They reached
highest abundances (5.66 x 105 cells ml-i) in controls,
followed by the treatments with cladocerans and with
copepods, in that order (Fig. 3). Chemostats differed
significantly trom each other (l-way ANOVA, p:::;0.05,
F4.i4 = 4.109). Post hoc Tukey-test analyses showed
that systems with doliolids and the initial sample rep-
resented separate groups.

Filamentous cyanobacteria: These could not be
found at the beginning of the experiment but
occurred in all treatments at the end. Filamentous

cyanobacteria had a diameter of 0.4 pm and covered
lengths trom 7 to 140 pm in all chemostats. The me an
sizes of filamentous cyanobacteria were larger in
treatments with doliolids as grazers (length 38.2 :!:
1.6 1llll SE, biovolume 4.8 :!: 0.2 111113SE) than in
other treatments (copepods: 29.1 :!: 1.8 pm and 3.7 :!:
0.2 pm3, cladocerans: 25.9 :!: 1.1 pm and 3.3 :!:0.11llll3)
and in controls (29.1 :!: 0.6 pm and 3.7 :!: 0.1 1llll3).
Doliolid chambers also contained the most filamen-

tous cyanobacteria (1.48 x 105 pm3 ml-i), followed by
those with cladocerans or copepods and controls. Dif-
ferences between treatments were significant (l-way
ANOVA, p :::;0.05, F(4,14)= 3.495). Post hoc Tukey-test
analyses showed that doliolid treatments formed a
separate group.
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Flagellates and the appearanee of heterotrophie nanoflagellates

(HNF) from 5.1 to 10).lm size (Fig. 4). At the end of the

We found a signifieant negative eorrelation between experiment, ehemostats with cladoeerans as grazers

bacterial abundanee (baeteria + eoeeal eyanobaeteria) showed the lowest HNF biovolumes (3.68 x 105 ).lm3

Table 3. Changes in taxonomie eomposition (% of total food guild biovolume and SE of the means in ehemostats) of the summer
plnkton eommunity in Blanes Bay (NW Mediterranean) under prolonged grazing pressure by doliolids, cladoeerans or eopepods

in semieontinuous 2-stage ehemostats (1st stage: food without grazers, 2nd stage: reaetion ehamber)

Funetional group 1st stage after 2nd stage after
6d 12 d 17 d 6d 12 d 17 d

Copepods

Pieo/nanoplankton <5 pm 2.19:t 0.27 9.23 :t 1.59 5.60:t 1.20 3.55 :t 0.94 16.91 :t 5.62 60.51:t 18.54

Diatoms total 59.33 :t 3.29 5.89 :t 1.36 3.40 :t 1.60 88.39 :t 2.97 7.84 :t 4.28 3.98 :t 1.07
Skeletonema costatum 3.75:t 1.99 33.09 :t 3.33

Rhizosolenia fragilissima 53.52:t 4.79 46.01 :t 4.42

Dinophyeeae total 15.13 :t 3.48 63.40 :t 7.63 52.33 :t 11.22 28.92:t 18.68

PeIidinium sp. 54.13 :t 2.25 50.14:t 10.70 0.75:t 0.61
Proroeentrum micans 2.90:t 0.20 1.64 :t 1.06

Naked flagellates 4.44 :t 1.34 21.38 :t 7.28 31.35 :t 7.52 5.18:t 3.19 73.00:t 10.46 6.47 :t 0.50

Ciliates 18.91 :t 4.38 0 0 1.68 :t 0.73 0 0

Amoeba 0 0.10 :t 0.09 0.66 :t 0.43 0 0 0

Doliolids

Pieo/nanoplankton <5 pm 2.79 :t 0.65 9.43 :t 1.86 3.63 :t 0.38 1.61 :t 0.54 5.57 :t 1.52 5.02 :t 1.06

Diatoms total 90.77 :t 1.70 18.22:t 1.51 26.97 :t 11.86 86.59:t 0.79 13.49:t 3.22 12.89 :t 2.07
Skeletonema costatum 11.03 :t 5.40 18.45:t 10.49 56.90:t 11.26

Rhizosolenia fragilissima 35.59 :t 2.67 7.04:t 1.06 27.80 :t 12.34

Dinophyeeae total 3.93 :t 1.39 54.66 :t 3.26 43.63 :t 0.24 7.50 :t 2.37 64.20:t 7.99 66.20 :t 6.79

PeIidinium sp. 47.19:t 4.57 38.31 :t 1.95 61.08 :t 8.78 59.86 :t 9.35
Prorocentrum micans 7.60 :t 3.92 6.84 :t 2.48 2.72 :t 0.91 6.34 :t 2.68

Naked flagellates 0.48:t 0.16 16.84 :t 3.60 25.73:t 12.49 0.33 :t 0.15 0.58 :t 0.38 14.42 :t 4.53

Ciliates 2.03 :t 1.66 0 0 3.97 :t 3.24 0 0

Amoeba 0 0.85 :t 0.70 0.03 :t 0.02 0 16.17:t 7.31 1.49 :t 0.86

Cladocerans

Pieo/nanoplankton <5 pm 2.26 :t 0.36 6.26 :t 2.12 4.78 :t 0.39 0.98 :t 0.20 4.66 :t 0.09 14.83 :t 2.33

Diatoms total 60.58 :t 3.52 26.69:t 10.76 41.15:t 5.26 66.52 :t 6.07 15.66 :t 7.78 54.56 :t 5.05
Skeletonema costatum 6.20:t 2.13 8.73 :t 6.67 56.90:t 11.26 8.78 :t 3.15

Rhizosolenia fragilissima 51.60:t 1.23 18.68 :t 8.86 27.80:t 12.34 34.27 :t 2.73

Dinophyeeae
Total 19.23 :t 6.26 65.00:t 12.31 28.11:t 7.28 6.44 :t 1.61 54.65:t 21.56 11.56:t 7.93

PeIidinium sp. 63.24 :t 11.85 54.23 :t 21.55
Proroeentrum micans 1.83 :t 0.47 0.33 :t 0.05

Naked flagellates 1.73 :t 0.40 1.83 :t 0.71 22.89:t 4.01 0.63 :t 0.25 0.18:t0.10 16.78 :t 10.03

Cilia tes 16.21 :t 4.65 0 0 25.43 :t 6.32 22.13 :t 12.78 0

Amoeba 0 0.33 :t 0.08 3.07 :t 2.44 0 2.74 :t 1.01 2.27 :t 1.00

Controls

Pieo/nanoplankton <5].Im 2.57 :t 0.08 16.48 :t 2.30 6.16:t 0.40 1.25 :t 0.21 20.61 :t 7.12 15.80:t 0.77

Diatoms total 64.89 :t 5.45 19.22 :t 2.70 22.33 :t 4.84 67.58 :t 10.54 44.10:t 3.29 58.16:t 3.35
Skeletonema costatum 16.90 :t 10.93 30.23:t 10.09 14.88:t 7.12 0.31 :t 0.02
Rhizosolenia fragilissima 42.49:t 16.00 35.07 :t 1.50 27.18 :t 6.86 55.63 :t 3.66

Dinophyeeae total 17.25:t1.45 43.47 :t 5.36 43.99 :t 5.32 3.90 :t 1.07 31.59 :t 6.93 21.97 :t 1.34

PeIidinium sp. 30.89:t 4.64 26.83 :t 2.81 21.36:t 8.30
Prorocentrum micans 12.77:t 1.45 13.38 :t 0.24 9.77 :t 0.73

Naked flagellates 4.60:t 1.43 18.34 :t 7.61 27.53 :t 0.08 0.90 :t 0.22 1.62:t 1.24 4.08 :t 1.24

Ciliates 10.69 :t 4.44 0.30 :t 0.24 0 26.36 :t 9.12 0 0

Amoeba 0 2.19:t1.13 0 0 2.07 :t 1.26 0
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Table 4. Similarity between plankton eommunities at the end
of the experiment expressed as average distanees, djk (see

'Materials and methods': Eq. 2)

1st stage Copepods Doliolids Cladoeerans Controls

Copepods
poliolids
Cladoeerans
Controls

11.09 18.91
8.76

8.95
2.28

10.32

ml-I) and highest bacterial biovolumes (2.50 x 105 ]lm3
ml-I). In contrast, treatments with copepods showed
the highest HNF biovolumes (1.05 x 106 ]lm3 ml-I) and
lowest bacterial biovolumes (1.10 x 105 ]lm3 mI-I), with
even fewer bacteria than the controls (1.26 x 105 ]lm3
ml-I). Under the influence of doliolids HNF had lower
biovolumes (6.69 x 105 ]lffi3 mI-I) and bacteria higher
biovolumes (1.42 x 105 ]lffi3mI-I) than treatments with
copepods and controls.

The ratio of autotrophie to heterotrophie flagellates
(5.1 to 10 ]lm size) increased during the experimental
term compared to the initial seawater (21 % auto-
trophs). The increase was significant for all treatments
(l-way ANOVA, p $ 0.05, F4,14= 6.866). Chemostats
with doliolids had the highest proportion of autotrophs
(63 :!: 4 % SE of the means, cladocerans: 43 :!: 12 %,
copepods: 31 :!:4 %, controls: 27 :!:5 %). Post hoc Tukey-
test analyses showed that systems with doliolids
formed aseparate group (Fig. 5).

300

S 250"

y=yo+a'b', r'=0.999

y" = 1.04 (0.05) x 10'

a = 7.32 (1.07) x 10'

b = 4.39 (0.64) x 10'"

e
~e
..:
e 200
=
Ö
>
0
:s
;;
] 150'""
,t:J

copepods100

200 400 800 1000 1200600

HNF biovolume [11m3mrJ] x 103

Fig. 4. Nonlinear regression ana]ysis of heterotrophie nano-
flagellate (HNF) biovo]ume (5.1 to 10 pm size) on bacterial
biovolume (baeteria + eoeeal cyanobaeteria). Values in paren-
theses are SE, p < 0.05. Data points are means of triplieates;

error bars represent :t SE of the means

70

ö>0
:s 60
oi>..

<;:

'30
.:: 50
0
~~
~..

:E 401..
<;:

f

'"
:c
g. 30
.::
0

-=
..

0 initial seawater

. copepods
0 doliolids
'" cladocerans
0 controls20 0

1"day 17"' day

Fig. 5. Changes in the density of autotrophie flagelJates as
pereentage total flagelJate biovolume (5.1 to 10 11msize). Data
points are means of triplieates; error bars represent :tSE of

the means

Changes in nutrient regime

C:N ratios

The C:N ratios of copepods, cladocerans and dolio-
lids did not differ signifieantly from each other (l-way
ANOVA, p = 0.576, F2,7= 0.168). At the end of the
experiment. the partieulate C:N ratios in 1st stage
flasks approached the Redfield ratio (106:16, Redfield
1958; cf. Copin-Montegut & Copin-Montegut 1983)
best in controls (117:16) and deviated most from it
in treatments with cladocerans (141:16). Differences
were not significant (l-way ANOVA, p = 0.681, F4,13=
0.586). For results see Table 5.

Dissolved nutrients

At the end of the experiment silicate, nitrate, ammo-
nium and phosphate concentrations were higher in
chemostats influenced by grazers than in controls
(Fig. 6). In 1st stage flasks differences were only signif-
ieantfor silieate (l-way ANOVA p $ 0.05, F3.g= 15.176)
between copepod and doliolid treatments, between
doliolid treatments and controls, and between controls
and cladoceran treatments (post hoc Tukey-test p <
0.05). In 2nd stage flasks differences were only signifi-
cant for ammonium (l-way ANOVA, p $ 0.001, F3,g =
45.636). Copepod treatments showed higher values
than all other treatments and the ammonium concen-

trations in the cladoceran treatments were higher than
in controls. These differences were significant (post
hoc Tukey-test, p < 0.05).
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Table 5. C:N ratio of grazers and of the summer plankton
community in Blanes Bay (NW Mediterranean) before (initial
seawater) and after prolonged grazing press ure by doliolids,
cladocerans or copepods. Values in parentheses are SE of the

means

Sampie C:N(SE)

Food guild
Initial seawater
Copepod-chemostats
Doliolid-chemostats
Cladoceran-chemostats
Controls

Grazer
Copepods
Doliolids
Cladocerans

Redfield ratio

9.27 (0.36)
8.64 (0.40)
8.72 (1.51)
8.79 (0.17)
7.32 (1.10)

4.57 (0.25)
4.50 (0.05)
4.84 (0.23)

6.63

At the end of the experiment, Si:N stoichiometry was
more or less in accordance with the Redfield ratio (1:1
in all 1st stage flasks and in 2nd stage control flasks),
but lower in chambers with grazers (Fig. 7). The N:P
ratio was much lower than the Redfield ratio (16:1) in
all 1st stage flasks. In 2nd stage flasks grazer exudates
effected higher N:P values. Systems influenced by
copepods corresponded best with the Redfield ratio.
Chemostats with doliolids or dadocerans caused lower

N:P ratios, although they were higher than those found
in controls.

DISCUSSION

We used semicontinuous, re-circulating, 2-stage
chemostats to study how doliolids, dadocerans and
copepods can influence the phytoplankton community
structure in Blanes Bay (Catalan Sea, NW Mediter-
ranean). Semi-continuous chemostats permit a good
approximation to the results gained from continuous
designs (Sommer 1985), and have been proved to be
effective tools in testing for direct and indirect effects
of herbivore grazing on algae (e.g. Sommer 1988,
1998b).

Changes in composition oi iood guilds

Phytoplankton between 15 and 70 pm domina ted
both stages of all chemostats influenced by herbivores.
This is surprising, because food size spectra of all
grazer types span this size dass (Katechakis 1999).
Possible reasons could be unpalatability of organisms,
toxicity, higher competitive abilities than other phyto-

plankton, or allelopathic effects. We will discuss these
alternatives below.

Experiments were conducted in late August when
copepods, dadocerans and doliolids are present in
high abundances in Blanes Bay (500 to 780, 750 to
1250 and 90 ind. m-3, respectively: Andreu & Duarte
1996), and the dear-water stadium has almost been
reached (Mura et al. 1996, Satta et al. 1996). Hence,
the natural (initial) community may already have been
adapted to high grazing pressure. On the other hand,
mostly Bacillariophyceae, mainly Skeletonema costa-
tum and Rlllzosolenia fragilissima, comprised the size
dass between 15 and 70 pm until Day 6 (Table 2) and
both species are considered food suitable for copepods
(e.g. Paffenhöfer & Knowles 1978, Ryther & Sanders
1980), dadocerans and doliolids (Katechakis 1999).

By Day 12, Dinophyceae dominated the same size
dass, principally Peridinium sp. and Prorocentrum
Inicans. Both taxa are dassified as potentially toxic.
This possibly affected grazers adversely and benefited
dinoflagellates compared to other plankton. Toxicity
can be a potent instrument against grazers, particu-
larly against selective feeders such as copepods
(Graneli 1990). As we did not test for toxicity we do not
know if species were really toxie. However, we did not
observe any obvious detrimental effect on the grazers.

Another explanation for the observed dominance of
dinoflagellates could have been allelopathie effects on
other phytoplankton species. To test for allelopathy
was not a topie of this work. Also, we could find no
reports about possibly allelopathic effects of Peri-
dinium or Prorocentrum species in the literature.

Organisms of intermediate size may also profit, by
being (1) too large to be fed on by protozoans, but
(2) small enough to be better competitors than larger
algae for nutrients.

Only in 2nd stage flasks of the control treatments did
large phytoplankton (>210 pm) dominate at the end of
the experiment (Fig. 2). These were exdusively
diatoms of the genus Rlllzosolenia and sporadically
Nitzscllla spp. colonies (Table 1). They may have de-
veloped because of the high Si:N ratios in 2nd stage
flasks in the control treatments (Fig. 7). A similar rise in
large (and, due to their size, inedible) algae was
observed during mesocosm experiments with high
nutrient supplies in Blanes Bay (Y. Olsen unpubl.
data). Differences between the 1st stage and 2nd stage
control flasks may have resulted from higher Si con-
centrations in the 2nd stage flasks (Fig. 6). In addition
it is conceivable that Bacillariophyceae benefited from
dark incubation in the 2nd stage flasks, whieh con-
tained high cell quotas of nitrogen and phosphorus.
However, measurements cell quotas for different
marine phytoplankton (Y. Olsen unpubl. data) provide
no evidence for this assumption.
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1 st stage flasks

""."'. "'. "'. ."

Various studies have suggested that competition
between diatoms and flagellates is determined by the
stoichiometry of disso1ved nutrients. If Si is not limit-
ing, diatoms usually dominate over non-siliceous spe-
eies (e.g. Officer & Ryther 1980, Tilman et a1. 1986,
Cadee & Hegeman 1991, Sommer 1994a,b,c, 1998a,b).
In the present study, grazers have influenced the nutri-
ent regime in reaction chambers through their excre-
tions; by increasing the disso1ved nutrient concentra-
tions, they changed the stoichiometry in relation to
controls. This effect was weaker in 1st stage than in
2nd stage flasks. The stoichiometry of 1st stage flasks
deviated little from that in controls at the end of the

experiment (Fig. 7). It seems that the food organisms
immediately assimilated the added dissolved nutrients

indicating thaJ their growth was nutrient-limited. The
C:N data (Table 5) support this assumption. Biomass
stoichiometry is an indicator of nutrient status (Droop
1974, 1975, Healey 1978, Healey & HendzeI1980). All

2ndstage flasks

4

3

-- copepods
. . 0 .. doliolids
-+- cladocerans
-- controls

2

the plankton communities exposed to grazers had
C:N ratios >8.3, indicating moderate N-limitation
according to Healey & Hendzel (1980) and Hecky et
a1. (1993).

In size dasses smaller and larger than 15 to 70 pm,
grazers supported partide sizes outside their specific
grazing spectra (Fig. 2). Unexpected distributions com-
pared with controls occurred in chemostats influenced
by doliolids, where large food-item levels (>100 pm)
decreased, and in treatments with copepods, where
picoplankton levels decreased. Doliolids effieiently
decimated organisms > 100 pm, although the maxi-
mum food size ingestible for Doliolum denticulatum
was 75 pm in grazing experiments with natural plank-
ton communities of Blanes Bay (Katechakls 1999). This
can be explained by the circumstance that in this size
dass only long-chain diatoms (Rhizosolenia spp. and
Skeletonema costatum) occurred, whose ingestibility
depends on their orientation in the filtration stream.
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Since their valve diameters are between 10 and 20].illl,
it is possible that they were ingested.

The same grazing experiments showed that cope-
pods were not able to pick up particles <7.5 pm. Yet
temporarily, the proportion of pico plankton was lowest
under the influence of copepods. This may be due to

tr.ophic cascade effects and will be discussed in the fol-
lowing seetion together with the implications for the
microbial food web.

Measurements of similarity suggest that the poten-
tial to modify a given algal population increases with
increasing selectivity of the grazer (Table 4).

Changes in composition of microbial food web
(1st stage flasks)

The abundances of solitary bacteria determined in
the initial sampies correspond weil with results of
Vaque (1996) for Blanes Bay. During the course of the
experiment HNF abundances influenced the abun-
dance of solitary bacteria. High HNF densities were
accompanied by low densities of solitary bacteria, in-
cluding coccal cyanobacteria (Fig. 4). The inability of
copepods to ingest particles< 7.5 pm led to higher HNF
densities than in other treatments. This explains the
low bacterial abundances in chemostats with cope-
pods. Conversely, Penilia avirostris exerted the largest
grazing pressure on HNF of ail grazers, although this
species cannot graze on the bacteria themselves
(Turner at al. 1988, Katechakis 1999). Accordingly, the
cladoceran treatment resulted in the highest bacteria
numbers. Doliolids caused medium HNF and bacteria

densities. Jürgens et al. (1994), Jürgens (1995). Jür-
gens & Jeppesen (2000) described similar cascading
effects for limnic systems. In lakes, strong top-down
effects in the pelagic are weil known (Carpenter at al.
1985). It is still not clear whether such trophic cascades
occur in the marine pelagic. The interactions in our
experiments between mesozooplankton and the micro-
bial food web suggest that a top-down transmission of
effects can occur, at least in tlie lower trophic levels.
Recent enclosure experiments with carnivorous meso-
zooplankton and natural algal communities in the
NE Atlantic indicate that such effects can also occur at

higher trophic levels (H.S. et al. unpubl. data).
The differences in the appearance of particle-bound

bacteria and filamentous cyanobacteria between the
treatments arise from an adaptation to the different
kind of grazing pressures exerted by copepods, clado-
cerans or doliolids. Abundances of both bacterial
groups increased most under the influence of doliolids
(Fig. 3). Filamentous cyanobacteria of ail sizes (7 to
140 ].illl)lay inside the food size spectrum of cladocer-
ans and copepods, but not inside the food size spec-

trum of doliolids, as evaluated in grazing experiments
with natural phytoplankton assemblages from Blanes
Bay (Katechakis 1999). Indeed 18.9 % (:t 5.8 % SE of
the mean) of the total filamentous cyanobacterial
biovolume lay over the maximum size doliolids can
manipulate. As weil, we found many more particles in
treatments with doliolids than in other chemostats. The

combination of a higher density of particles in cham-
bers with doliolids and the production of particles
larger than the ingestible food size for doliolids may
explain the differences in particle- bound bacteria
numbers between the doliolid treatments and the other

chemostats. An elongated shape and attachment to
particles can be an effective bacterial defence against
grazing. Various authors have documented this for
freshwater systems with respect to bacterivorous pro-
tists (e.g. Güde 1989, Simek & Chrzanowski 1992, Jür-
gens et al. 1994, Jürgens 1995, Jürgens & Jeppesen
2000) and metazoan predation (Langenheder & Jür-
gens 2001). Little is known about sirnilar processes in
marine environments. In particular, the importance of
bacterivorous metazooplankton such as appendicular-
ians and doliolids may be underestimated.

The general increase of cyanobacteria in ail1st stage
chemostats (Fig. 3) may be explained by the fact that
the high light intensity was advantageous to cyanobac-
teria (Sommer 1994c).

The ratio of autotrophie to heterotrophie flageilates
was highest in chemostats with doliolids, and these
were the only treatments that differed significantly
from controls (Fig. 3). The annual average autotrophie
nanoflageilates (ANF) is 50.2 % of the nanoflageilate
community in Blanes Bay (Vaque 1996). Under the
influence of doliolids, the proportion was 13 % higher.
One conceivable cause is that doliolids competed with
HNF for bacteria, so that the relative proportion of
ANF increased. Comparable changes in situ might
have consequences for the trophic interactions at lower
trophic levels, as the grazing pressure on the microbial
food web would be altered. Carbon demands should

rise relative to production and, hence, lead to the
potential for top-down control of bacterial biom ass and
production. Changes in food chain length and ener-
getic transfer efficiency might foilow.

Our results show that in marine systems direct and
indirect effects of herbivores can result in trophic cas-
cades and that the effects of herbivores on phyto-, pro-
tozoo- and bacterioplankton strongly depend on the
taxonomie compostion of the herbivores. This has
implications for the modeling of grazing effects in
marine pelagic ecosystems.
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Abstract We conducted grazing experiments with the
three marine cladoceran genera Penilia, Podon and
Evadne, with Penilia avirostris feeding on plankton com-
munities from Blanes Bay (NW Mediterranean, Spain),
covering a wide range of food concentrations (0.02–
8.8 mm3 l�1, plankton assemblages grown in mesocosms
at different nutrient levels), and with Podon intermedius
and Evadne nordmanni feeding on the plankton commu-
nity found in summer in Hopavågen Fjord (NE Atlantic,
Norway, 0.4 mm3 l�1). P. avirostris and P. intermedius
showed bell-shaped grazing spectra. Both species reached
highest grazing coefficients at similar food sizes, i.e. when
the food organisms ranged between 15 and 70 lm and
between 7.5 and 70 lm at their longest linear extensions,
respectively. E. nordmanni preferred organisms of around
125 lm, but also showed high grazing coefficients for
particles of around 10 lm, while grazing coefficients for
intermediate food sizes were low. Lower size limits were
>2.5 lm, for all cladocerans. P. avirostris showed upper
food size limits of 100 lm length (longest linear extension)
and of 37.5 lm particle width. Upper size limits for P. in-
termedius were 135 lm long and 60 lm wide; those for E.
nordmanni were 210 lm long and 60 lm wide. Effective
food concentration (EFC) followed a domed curve with
increasingnutrient enrichment forP.avirostris;maximum
values were at intermediate enrichment levels. The EFC
was significantly higher for P. intermedius than for E.
nordmanni. With increasing food concentrations, the
clearance rates of P. avirostris showed a curvilinear re-
sponse, with a narrow modal range; ingestion rates indi-

cated a rectilinear functional response. Mean clearance
rates ofP. avirostris,P. intermediusandE.nordmanniwere
25.5, 18.0 and 19.3 ml ind.�1 day�1, respectively. Inges-
tion rates at similar food concentrations (0.4 mm3 l�1)
were 0.6, 0.8 and 0.9 lg C ind.�1 day�1.

Introduction

The grazing behaviour of herbivorous mesozooplankton
is one of the critical factors structuring pelagic food
webs. Herbivores distribute the organic matter synthes-
ised by autotrophs towards higher trophic levels.
Herbivorous cladocerans are considered filter feeders
(Brendelberger et al. 1986) and form the most well-
studied group of mesozooplankton in lakes. In contrast
to the multitude of over 600 recorded freshwater cla-
doceran species (Schram 1986), only eight cladoceran
species have been reported to be truly marine (Onbé
1977). These belong to the three genera Penilia, Podon
and Evadne (Baker 1938; Onbé 1977). Penilia only exists
in temperate waters (Della Croce and Venugopal 1973;
Grahame 1976), while Podon and Evadne are mainly
found in boreal oceans (Raymont 1983). In contrast to
limnic systems, cladocerans play a less important role in
marine pelagic systems compared to copepods (Ray-
mont 1983; Egloff et al. 1997). Nevertheless, cladocerans
sporadically consume a substantial portion of the pri-
mary production in marine environments (Bosch and
Taylor 1973; Turner et al. 1988; Kim et al. 1989). Besides
other factors, food size is fundamentally important for
feeding relationships in the pelagic. It is the only com-
munity that follows the rule ‘‘smaller organisms are
eaten by larger ones’’, except for parasitic fungi and a
few naked protozoa (Sommer and Stibor 2002). The
selectivity-size range of marine cladocerans is not well
known. Moreover, published studies are to some extent
contradictory. This may be due to the use of different
methods by different authors. Feeding experiments with
Penilia avirostris showed that this species does not
generally graze upon particles >15 lm (Gore 1980;
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Paffenhöfer and Orcutt 1986; Turner et al. 1988). Nival
and Ravera examined the morphology of the feeding
appendages of Podon (Nival and Ravera 1981) and
Evadne (Nival and Ravera 1979), and suggested that
these animals probably consume food particles with sizes
up to 250 lm and between 20 and 170 lm, respectively.
Based on gut content analyses, Kim et al. (1989) have
reported a size range of food organisms from 4 to 115 lm
for marine cladocerans in general, with no significant
differences between Penilia, Podon and Evadne. To
resolve the contradictory evidence presented in the liter-
ature, we chose similar techniques to investigate the
selectivity-size spectra of Penilia avirostris, Podon inter-
medius and Evadne nordmanni feeding on natural plank-
ton communities.

Materials and methods

Grazing experiments with Penilia avirostris were con-
ducted in the NW Mediterranean (Blanes Bay, Catalan
Sea, Spain), those with Podon intermedius and Evadne
nordmanni in the NE Atlantic (Hopavågen, Trondheim
Fjord, Norway). Experiments were performed as batch
cultures in 100-ml glass jars. The jars were placed ran-
domly in a water bath at a temperature around 22�C in
Spain and around 20�C in Norway. The in situ surface
temperature in Blanes Bay was 25–26�C (measured with
a WTW LF 20 temperature sensor) and 17–18�C in
Hopavågen Fjord. We filled the jars with natural
plankton assemblages, including bacterioplankton, pro-
tozoa and phytoplankton, found in summer in Blanes
Bay or in Hopavågen Fjord. Plankton assemblages for
the grazing experiments with P. avirostris were grown in
mesocosms 0.5 sea miles (�0.93 km) off-shore, at dif-
ferent nutrient levels. The mesocosm units (33 m3) re-
ceived N, Si and P at a stoichiometric ratio of
20 N:7 Si:1 P, at the normal nutrient loading rate at the
site (5 mmol N m�2 day�1 and 0.25 mmol P m�2 day�1)
and at 0.5–16 times the normal nutrient loading rate (for
more details see Duarte et al. 2000). Enrichment resulted
in nine different food densities, covering a biovolume
range between 0.02 and 8.8 mm3 l�1 (Table 1) and a range
of seston food sizes from <1 to 300 lm at the longest
linear extension (Tables 1, 2). For the grazing experi-

ments with P. intermedius and E. nordmanni we used the
natural phytoplankton community found in the summer
in Hopavågen Fjord, with a density of 0.4 mm3 l�1 and a
size range of <1 to 380 lm (Tables 1, 3).

To exclude extraneousmetazoan grazers from the jars,
water was filtered through a plankton net with a mesh
size of 100 lm. Filtration let sufficient needle-shaped al-
gae >100 lm pass. For each of the nine food densities in
the experiments with P. avirostris, five adult cladocerans
(mean±SEM: 680±44 lm, n=25) were incubated once
for 6 h in the dark. Experiments with P. intermedius
(569±48 lm, n=15) and with E. nordmanni (690±31
lm, n=17) were replicated three times. Here also five
individuals were incubated for each treatment. The cla-
docerans were collected with surface tows using a meso-
zooplankton net with amesh size of 250 lm, and returned
to the laboratory inside a cooler within 1 h of collection.
We sorted experimental grazers with a wide-bore pipette,
placed them into filtered seawater and allowed them to
acclimate to the laboratory conditions for 1 h, before we
incubated them for the experiments. We visually con-
trolled whether grazers were intact at the beginning of the
experiments and several times during the experimental
terms by observing their swimming behaviour. To pre-
vent food plankton sedimentation, we also mixed the
vessels gently on this occasion. In addition, mesozoo-
plankton swimming caused some turbulence in the flasks.
To correct for possible changes in the food guild during
the experiment, we took initial samples and compared
them with controls without mesozooplankton. We did
this once for each of the nine food densities in the
experiments with P. avirostris and in triplicate for the
experiments with P. intermedius and with E. nordmanni.
After the incubation period, experiments were termi-
nated by addition of Lugol’s iodine (5 g I2+10 g KI ad
100 ml aq. dest.) to all vessels.

To determine grazer-induced changes in the abun-
dance, the species composition, and the biovolume of
the food guild, we counted samples using an inverted
microscope (Leica DMIL), counting settling chambers
with a volume of 10 or 30 ml, depending on the food
guild’s density (Utermöhl 1958). Sedimentation time
lasted at least 24 h. If present, we counted at least 400
cells of each species to ensure an error margin of <10%
(Lund et al. 1958). Biovolumes were calculated using the

Table 1 Densities, size spectra,
main food size and relative
biovolume of main food size of
plankton communities offered
as food in grazing experiments
with Penilia avirostris, Podon
intermedius and Evadne
nordmanni

Plankton
community

Density
(mm3l�1)

Size spectrum
(lm)

Main size class
(interval means in lm)

Relative biovolume
of main size class (%)

Blanes Bay
1 0.02 <1 to 50 2.5 36.0
2 0.07 <1 to 60 2.5 41.6
3 0.09 <1 to 85 10 59.5
4 0.36 <1 to 125 40 54.6
5 0.36 <1 to 125 85 35.1
6 1.29 <1 to 205 85 57.9
7 5.46 <1 to 250 125 86.9
8 5.94 <1 to 250 175 78.9
9 8.81 <1 to 300 >210 53.9

Hopavågen Fjord 0.38 <1 to 380 10 and 40 24.7 and 25.5
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equations of Hillebrand et al. (1999). For this purpose,
we measured the linear dimensions of 20 specimens of
each species. Carbon contents were estimated after
Nalewajko (1966) for phytoplankton, after Bøsheim and
Bratbak (1987) for flagellates, and after DeBiase et al.
(1990) for ciliates (Tables 2, 3).

For all following analyses, we subdivided the plank-
ton community into nine size classes with interval means
of 1, 2.5, 5, 10.25, 42.5, 85, 125, 175 and 205 lm and into
organisms ‡210 lm. Food species were assigned to
classes according to the longest linear dimension of cells
or colonies. By the designations pico-, nano- and
microplankton we mean food sizes ranging from around
0.2 to 2, 2 to 20 and 20 to 200 lm, respectively.

Selectivity coefficients and effective food concentrations

Grazing coefficients g (day�1) of P. avirostris, P. inter-
medius and E. nordmanni were calculated using the
equations of Frost (1972):

g ¼ l� lnC�1 � lnC�0
t1 � t0

with l ¼ lnC1 � lnC0

t1 � t0
ð1Þ

where l is the gross growth rate of food organisms, C1

and C0 are the food concentrations (lm3 ml�1) at the
end (t1) and at the beginning (t0) of the experiment in the
controls, and C1* and C0* are the food concentrations in
treatments with grazers.

Table 2 Taxonomic list of all
plankton from Blanes Bay (NW
Mediterranean) offered as food
in grazing experiments with
Penilia avirostris. Biovolumes
were calculated using the
equations of Hillebrand et al.
(1999). Carbon contents were
estimated after Nalewajko
(1966) for phytoplankton, after
Bøsheim and Bratbak (1987)
for flagellates, and after
DeBiase et al. (1990) for ciliates
(ANF autotrophic
nanoflagellates; HNF
heterotrophic nanoflagellates)

Taxon Cell dimension (lm) Biovolume
(lm3cell�1)

Biomass
(pg C cell�1)

Longest
extension

Width or
diameter

Picoplankton
�1 lm 1 1 0.52 0.05
Nanoplankton
�2.5 lm 2.5 2.5 8.2 0.82
�5 lm 5 5 65 6.5

Cyanobacteria
Filamentous 20 2.5 98 9.8

Bacillariophyceae
Centrales
Bacteriastrum sp. 30 20 9,425 943
Coscinodiscus sp. 12.5–150 12.5–150 920–530,144 92–53,014
Chaetoceros socialis 17.5–52.5 10–30 221–663 22–66
Chaetoceros sp. A 25 15 295 30
Chaetoceros sp. B 75 62.5 2,356 236
Rhizosolenia alata 60–125 5–15 1,178–22,089 118–2,209
Rhiosolenla fragilissima 125–250 15 22,089–44,178 2,209–4,418
Rhizosolenia shrubsolei 300 7.5–20 5,890 589
Skeletonema costatum 32.5–195 7.5 1,436–8,616 144–862
Stephanopyxis sp. 120 30 85,765 8,577
Thalassiosira sp. 42.5–255 15 7,510–45,060 751–4,506

Pennales
Licmophora sp. 70–120 15–30 13,779–94,162 1,378–9,416
Navicula sp. 15 5 147 15
Nitzschia longissima 75–200 2.5–7.5 125–2,344 13–234
Pleurosigma sp. 50 2.5 1,094 109

Dinophyceae
Dinophysiales
Dinophysis rotundata 40 12.5 4712 471
Dinophysis sp. 25 15 2,045 205

Peridiniales
Ceratium lineatum 100 30 8,357 836
Ceratium longipes 180 165 74,286 7,429
Gymnodinium sp. 15 10 785 79
Heterocapsa triguetra 20 15 1,178 118
Peridinium sp. A 15 15 1,767 177
Peridinium sp. B 55 37.5 40,497 4,050

Prorocentrales
Prorocentrum micans 30 15 2,209 221

Prymnesiophyceae
Coccolithus sp. 7.5 7.5 221 22

Other flagelIates
ANF spp. 2.5–10 2.5–10 8.2–523 1.8–73
HNF spp. 2.5–10 2.5–10 8.2–523 1.8–73

Ciliata
Ciliate sp. A 15 10 4,712 660
Ciliate sp. B 25 20 29,452 4,123
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Selectivity was studied through the normalised
selectivity coefficient W’¢ defined by Vanderploeg and
Scavia (1979) and modified after Vanderploeg et al.
(1984):

W 0 ¼ gi

gmax
ð2Þ

where gi is the grazing coefficient reached for food size
class i and gmax is the grazing coefficient for the most
preferred size class (0<W’<1). Confidence intervals
were used to estimate which selectivity coefficients differ
significantly from zero grazing.

According to Vanderploeg et al. (1984), these W’ val-
ueswere used to estimate the effective food concentrations

Table 3 Taxonomic list of all
plankton from Hopavågen
Fjord (NE Atlantic) offered as
food in grazing experiments
with Podon intermedius and
Evadne nordmanni. Biovolumes
were calculated using the
equations of Hillebrand et al.
(1999). Carbon contents were
estimated after Nalewajko
(1966) for phytoplankton, after
Bøsheim and Bratbak (1987)
for flagellates, and after
DeBiase et al. (1990) for ciliates

Taxon Cell dimension (lm) Biovolume
(lm3cell�1)

Biomass
(pg C cell�1)

Longest
extension

Width or
diameter

Picoplankton
1 lm 1 1 0.52 0.05

Nanoplankton
2.5 lm 2.5 2.5 8.2 0.82
5 lm 5 5 65 6.5
7.5 lm 7.5 7.5 221 22

Cyanobacteria
Filamentous 15 2.5 74 7.4

Bacillariophycese
Centrales
Coscinodiscus sp. 20 20 3,770 377
Chaetoceros socialis 15 7.5 147 15
Chaetoceros sp. 60 35 571 57
Leptocylindrus minimus 22.5 5–7.5 442 44
Leptocylindrus danicus 40 10–15 3,142 314
Rhizosolenia sp. 15 7.5–10 663 66
Skeletonema costatum 12.5 7.5 773 77

Pennales
Licmophora sp. 90 25 14,456 1,446
Nitzschia longissima 70–130 2.5–10 104–525 10–53
Pleurosigma sp. 95 2.5–5 2,019 202
Pseudonitzschia pungens 95 2.5–5 742 74
Pseudonitzschta sp. 75–105 2.5–5 468–1,181 47–118
Thalassionema nitzschioides 25 2.5–7.5 313 31
Thalssiosira sp. 15 5 295 29

Dinophyceae
Diaophysiales
Dinophysis acuminata 55 50 71,995 7,199
Dinophysis acuta 45 27.5 17,819 1,782
Dinophysis norvegica 65 45 68,919 6,892

Perdiniales
Alexandrium sp. 25 20 3,272 327
Ceratiumfurca 105–320 44–125 113,097–2,208,932 11,310–220,893
Ceratiumfusus 380 30 62,177 6,218
Ceratium tripos 305 255 452,389 45,239
Dinoflagellate sp. 25 10 1,309 131
Eutreptiella sp. 40 10 1,047 105
Gymnodinium sp. 30 10 1,571 157
Peridinium sp. 22.5–35 20–30 4,712–16,493 471–1,649
Protoperidinium sp. 30 25 4,909 491
Scrippsiella sp. 32.5 13.75 3,514 351

Prorocentrales
Prorocentrum micans 57.5 30 14,137 1,414

Prymnesiophyceae
Coccolithus sp. 7.5 7.5 221 22
Phaeocystis pouchetii 7.5 7.5 221 22

Chrysophyceae
Distephanus speculum 42.5 40 4,189 419

Cryptophyceae
Rhodomonas sp. 15 7.5 276 28

Ciliata
Ciliate spp. 20–55 15–55 3,142–39,597 314–3,960

Others
Cyst 10–20 7.5–15 295–2,356 30–236
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(EFC) for every grazer and every plankton community
offered as food:

EFC ¼
Xn

i ¼1
W 0 � Xi ð3Þ

where Xi is the concentration of food size class i and n is
the total number of size classes.

Clearance rates and ingestion rates

Clearance rates F (ml ind.�1 day�1) and ingestion rates I
(lg C ind.�1 day�1) were calculated according to Frost
(1972):

F ¼ V �
g

NG
and I ¼ F �C ð4Þ

where V is the jar volume (ml), g is the grazing coefficient
(day�1), NG is the number of incubated animals, and C
is the mean food concentration (lg C ml�1) in the
experimental vessel.

Results

Selectivity-size spectra, selectivity profiles and
effective food concentrations

Figure 1 shows the selectivity-size spectra of Penilia
avirostris, Podon intermedius and Evadne nordmanni,
based on the grazing coefficients presented in Table 4. In
the case of P. avirostris values for W’ are overall means
calculated from the single experiments shown in Fig. 2.
Not all plankton communities offered as food in the
grazing experiments with P. avirostris covered the whole
size range of all food size classes (Table 1; Fig. 2).
Therefore, calculation of means and standard errors
(SEM) for P. avirostris are based on three to nine
measurements (n in Table 4). As no organisms ‡210 lm
were eaten by any of the investigated cladoceran species,
we pooled all plankton offered as food ‡210 lm into one
size class. As this size class has no defined upper limit,
and thus no defined interval mean, it is not included in
Fig. 1.

P. avirostris reached highest grazing coefficients at
intermediate food sizes between 15 and <70 lm. These
consisted mainly of diatoms (50.5–100% of the biovo-
lume of the size class) with valve diameters from 2.5 to
20 lm. Lower size limits were >2.5 lm, thus including
nanoflagellates and ciliates. Upper size limits covered
particles up to 100 lm long (the dominating length in
size class 125 lm) and 37.5 lm wide. The selectivity
profile hardly changed from one experiment to another
as the shape of the particle size spectrum changed
(Fig. 2). P. avirostris always showed high selectivity
coefficients for intermediate food sizes (nanoplankton
and small microplankton), even if other food sizes

dominated the community. Only in two cases (TFC 1.3
and 5.5 mm3 l�1, communities 6 and 7) did P. avirostris
also express high grazing rates on larger food items of
around 85–125 lm (diatoms with valve diameters
£ 20 lm).

Fig. 1 Penilia avirostris, Podon intermedius, Evadne nordmanni.
Food size selectivities, based on the selectivity coefficients W’ of
Vanderploeg and Scavia (1979) presented in Table 4. Data points
are means of three to nine measurements for P. avirostris (see
Table 4 for details) and three measurements each for P. intermedius
and E. nordmanni. Error bars: ±SEM. Asterisks denote statistically
significant differences from zero at P<0.05 (*, 95% CI) and at
P<0.01 (**, 99% CI), respectively (n.s. not significant). Note
logarithmic scale of food size axes
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P. intermedius reached highest grazing coefficients at
food sizes between 7.5 and <70 lm. These consisted
mainly of diatoms and of dinoflagellates (means±SEM:
43.9±1.3% and 35.9±1.6%, respectively) that were
2.5–50 lm wide. Grazing coefficients for adjacent size
classes (unidentified nanoplankton from >2.5 to
<7.5 lm and organisms between 70 and <100 lm long,
consisting of 93.0±3.1% diatoms) were also high
(82.8±22.5% and 68.6±7.5%, respectively, of the
maximum grazing coefficient measured). The lower size
limit was >2.5 lm, the upper one around 135 lm at the
maximum linear extension (the dominating seston size in
size class 125 lm from Hopavågen Fjord) and 60 lm
particle width. Although statistically not significantly
different from zero, grazing also occurred on the small-
est sizes detected by counts, and was statistically sig-
nificant (P<0.01, 99% CI) on diatom colonies around
205 lm long and 15 lm wide (Fig. 1; Table 4). The
selectivity profile of P. intermedius was very similar to
the offered food size spectrum (Fig. 3).

In contrast, E. nordmanni filtered the entire food size
range offered<210 lm, but preferred organisms between
7.5 and <15 lm (Prymnesiophyceae and different kinds
of unidentified nanoplankton) and particles between 100
and <150 lm long (diatoms, 5–15 lm in diameter).
Grazing coefficients of E. nordmanni for intermediate
food sizes (diatoms, dinoflagellates, ciliates) were low
(9.9±7.5% for sizes between 15 and <70 lm and
11.9±5.3% for sizes between 70 and <100 lm). Statis-
tically feeding on sizes between 15 and <70 lm and on
organisms £ 2.5 lm was not significantly different
from zero. The upper size limit of ingested food,
expressed as particle width, was 60 lm.

Effective food concentration (EFC) ranged from 3%
to 71% for P. avirostris, depending on total food con-
centration (TFC), and followed a domed curve with
maximum values at intermediate TFCs (for regression
equations see Fig. 4). Maximum (±SEM) EFC was
58.8±5.6% (based on the three highest values mea-
sured) at TFCs from 0.1 to 0.4 mm3 l�1, characterised by
food particles around 10–85 lm.

Feeding on the same plankton community from
Hopavågen Fjord (TFC 0.4 mm3 l�1, main food sizes
around 10 lm and around 40 lm), P. intermedius and
E. nordmanni attained EFCs of 72.3±15.5% and
36.1±3.7%, respectively. Values for P. intermedius were
significantly higher than for E. nordmanni (one-way
ANOVA, P<0.1, F(1,4)=5.2).

Clearance rates and ingestion rates

The clearance rate of P. avirostris showed a curvilinear
response with increasing food concentration, with a nar-
row modal range (turning point at around 1 mm3 l�1,
Fig. 5, eye adjustment of the data). No clearance could be
detected at food concentrations of 0.02 mm3 l�1 (equiva-
lent to 1.5 lg C l�1) (Figs. 2, 5). The mean clearance rate
was 25.5±5.5 ml ind.�1 day�1. The maximum value at-
tained was 54.9 ml ind.�1 day�1. P. intermedius and
E. nordmanni showed clearance rates of 18.0±5.4 and
19.3±5.5 ml ind.�1 day�1, respectively (Fig. 5).

Ingestion rates increased linearly with increasing food
supply for P. avirostris until a concentration threshold
(around 270 lg C l�1, equivalent to 2.8 mm3 l�1, for
P. avirostris) beyondwhich the relation suggests a plateau
(Fig. 5). The mean ingestion rate measured was
6.0±2.2 lg C ind.�1 day�1. Ingestion rates for P. inter-
medius andE. nordmanni at 0.4mm3 l�1 were 0.8±0.2 and
0.9±0.2 lg C ind.�1 day�1, respectively (Fig. 5).

Clearance rates and ingestion rates of P. avirostris,
P. intermedius and E. nordmanni, attained at similar
food concentrations (0.4 mm3 l�1), did not differ
significantly from each other (one-way ANOVAs,
clearance rates P=0.91, ingestion rates P=0.85).

Discussion

The feeding selectivity of marine cladocerans is not well
known, mainly as a result of the difficulties with cul-
turing these animals. During research stays in Spain and

Table 4 Penilia avirostris, Podon intermedius, Evadne nordmanni.
Absolute (g, day�1) and relative (W¢, %) grazing coefficients for
different food sizes. Means (±SEM) are based on three to nine
measurements (n) for P. avirostris (see ‘‘Materials and methods’’

for details) and three measurements each for P. intermedius and E.
nordmanni.Asterisks denote statistically significant differences from
zero at P<0.05 (*, 95% CI) and at P<0.01 (**, 99% CI), re-
spectively (n.s. not significant)

Food size
class (lm)

Interval
means (lm)

Penilia avirostris Podon intermedius Evadne nordmanni

n g W¢ Signif. g W¢ Signif. g W¢ Signif.

�1 1 9 0 0 0.08±0.05 0.40±0.28 n.s. 0.06±0.04 0.22±0.16 n.s.
�2.5 2.5 9 0 0 0.03±0.05 0.15±0.27 n.s. 0.07±0.06 0.29±0.23 n.s.
>2.5 to <7.5 5 9 0.05±0.01 0.61±0.18 ** 0.16±0.04 0.83±0.23 ** 0.09±0.01 0.38±0.05 **
7.5 to <15 10.25 9 0.06±0.01 0.74±0.07 ** 0.18±0.03 0.97±0.16 ** 0.19±0.03 0.76±0.13 **
15 to <70 42.5 9 0.08±0.01 1.00±0.19 ** 0.19±0.05 1.00±0.25 ** 0.03±0.02 0.10±0.08 n.s.
70 to <100 85 7 0.05±0.01 0.60±0.17 ** 0.13±0.01 0.69±0.08 ** 0.03±0.01 0.12±0.05 *
100 to <150 125 6 0.02±0.01 0.26±0.08 ** 0.11±0.03 0.58±0.15 ** 0.25±0.09 1.00±0.35 **
150 to <200 175 4 0 0 0 0 0.13±0.05 0.53±0.22 *
200 to <210 205 4 0 0 0.02±0.01 0.11±0.03 ** 0.12±0.06 0.47±0.22 *
‡210 – 3 0 0 0 0 0 0
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in Norway, we had the possibility to conduct grazing
experiments with animals captured briefly before the
experiments started. Our goal was to investigate the
food size selectivities of members of all three marine
cladoceran genera, Penilia, Podon and Evadne, under
similar conditions. For this, we compared Penilia avi-

rostris, Podon intermedius and Evadne nordmanni feeding
on natural plankton communities with a broad range of
food sizes.

P. avirostris and P. intermedius showed similar
grazing profiles, with maximum grazing coefficients for
intermediate food sizes. E. nordmanni deviated from

Fig. 2 Penilia avirostris.
Selectivity coefficient curves
W’ for different food sizes at
different total food
concentrations (TFC) as found
in plankton communities (1–9)
from Blanes Bay (NW
Mediterranean). Note
logarithmic scale of food size
axis
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the others, with high grazing coefficients for both large
and small sizes, but low grazing coefficients for inter-
mediate sizes (Fig. 1; Table 4). As we will explain
below, the latter indicates that Evadne might have
problems with motile prey. All investigated cladocer-
ans fed on particle sizes that included components of
the microbial food web, that is ciliates and nanofla-
gellates. There is some evidence, that P. intermedius
and E. nordmanni might even consume picoplankton.
Further investigation will be needed to varify these
indications.

The EFC varied with the TFC. Nevertheless, P. avi-
rostris was able to keep its ingestion rates stable over a

wide range of food densities by adjusting its clearance
rate to changing TFC. P. intermedius reached higher
EFCs than E. nordmanni, which might be a competitive
advantage for P. intermedius. On the other hand, clear-
ance and filtration rates were similar for both species,
and in accordance to the rates attained by P. avirostris at
the same food concentrations.

Selectivity-size spectra, selectivity profiles
and effective food concentrations

The grazing spectrum of P. avirostris covered a food size
range of >2.5 to 100 lm. The lower size limit is con-
sistent with the results of Paffenhöfer and Orcutt (1986),
who observed a lower size limit of 2.2 lm. In corre-
spondence with Turner et al. (1988), our results indicate
no grazing on bacterioplankton. This is in contrast with
the findings of Pavlova (1959 and Sorokin et al. (1970).
We did not specifically count bacteria in the present
experiments. However, Katechakis et al. (2002) docu-
mented that P. avirostris does not feed on solitary bac-
teria in any case, but influences the bacterioplankton
indirectly via a trophic cascade by grazing on nanofla-
gellates. Gore (1980), Paffenhöfer and Orcutt (1986),
Turner et al. (1988) and Kim et al. (1989) observed up-
per size limits of 15–50 lm. The difference in the upper
size limit between our findings and other studies results
from the use of different size scales. Other authors refer
to upper size limits as measured by particle width or
equivalent spherical diameters (ESD). We based our
analyses on the longest linear cell and colony extensions,
as the ESD may disguise the real dimensions of particles
that can be handled. In our experiments, grazing coef-
ficients for sizes >37.5 lm result exclusively from
feeding on needle-shaped (Nitzschia longissima and
Rhizosolenia spp.) and long-chain diatoms (Skeletonema
costatum and Thalassiosira sp.). With valve diameters

Fig. 3 Podon intermedius,
Evadne nordmanni. Selectivity
coefficient curves W’ of
P. intermedius (closed circles)
and E. nordmanni (open circles)
for different food sizes at the
total food concentrations (open
diamonds, TFC) found in
summer in Hopavågen Fjord
(NE Atlantic). Error bars:
±SEM, based on three
measurements. Note
logarithmic scale of food size
axis

Fig. 4 Penilia avirostris, Podon intermedius, Evadne nordmanni.
Effective food concentration (EFC) as a function of total food
concentration (TFC). For P. avirostris (Pen) the relationship
between EFC and TFC is described by the following linear

functions: EFCPen for TFC £ 0.4=79.89+10.88(lnTFC), r2=0.78,
F(1,2)=7.2, P<0.1; EFCPen for TFC‡0.4=43.84–17.12(lnTFC),

r2=0.84, F(1,4)=20.6, P<0.01. Note logarithmic scale of TFC axis
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between 5 and 20 lm, they could be ingested by P. avi-
rostris if orientated longitudinally in the filtering current.
Therefore, the upper size limit we found lies within the
size spectrum found by other authors, if expressed as
particle width.

The grazing profile of P. avirostris poorly followed the
peak of available particles, but showed relatively invari-
ant patterns. This speaks for a passive, mechanical
filtering mode, which would be consistent with consider-
ations in the literature (Pavlova 1959; Paffenhöfer and
Orcutt 1986; Lipej et al. 1997). Nevertheless, in some
experiments, P. avirostris expressed grazing peaks for
dominant particles larger than its normally preferred
food sizes (Fig. 2, communities 6 and 7). But these addi-
tional peaks, separated from the other peaks by zero-
grazing values, are based exclusively on the ingestion of
needle-shaped diatoms, whose valve diameters are within
the normally preferred food size spectrum. Therefore, we
do not rate these ingestions as intended captures of
beneficial prey, but as accidental ingestions, depending on
the alga’s orientation in the filtering current.

The selectivity-size spectrum we detected for P. in-
termedius reached from >2.5 to 135 lm. Our results
correspond more or less with those of Kim et al. (1989),
who reported a size range of food organisms from 4 to
115 lm for marine cladocerans in general. Based on the
morphology of the feeding appendages, Nival and Ra-
vera (1981) suggested a maximum food size of 250 lm
for P. intermedius. The only food organisms reaching
these sizes in our experiments were colonies of diatoms
and dinoflagellates belonging to the genus Ceratium
(Table 3); the latter were not eaten by P. intermedius.
This is in accordance with Jagger et al. (1988), who did
not find any remains of Ceratium in faecal pellets of
P. intermedius, although Ceratium was very abundant
during their sampling. Diatoms showed large linear cell
and colony extensions, but valve diameters £ 15 lm.
Grazing on sizes >60 lm resulted almost exclusively
from feeding on long-chain diatoms (mainly Leptocyl-
indrus minimus, Leptocylindrus danicus and Skeletonema
costatum).

Various authors presumed, but could not prove,
raptorial feeding modes for Podon species (P. interme-
dius: Nival and Ravera 1981; Jagger et al. 1988;
P. polyphemoides: Nival and Ravera 1981; Kim et al.

1989; Turner and Granéli 1992). Our experiments gave
no evidence that P. intermedius might actively select
beneficial prey.

In contrast to P. avirostris and P. intermedius, the
food-size-based grazing of E. nordmanni did not follow a
bell-shaped curve. Nival and Ravera (1979) suggested
that Evadne probably can catch and hold animal prey or
large algae. This might be an explanation for the high
grazing coefficients in the size classes 125, 175 and
205 lm, and indicates that E. nordmanni actively selected
for large diatoms. On the other hand, the curve shape for
E. nordmanni grazing can also be interpreted as an
inability to catch motile prey. Except for nanoflagellates,
only the size classes 42.5 and 85 lm contained motile
plankton organisms, such as ciliates and dinoflagellates.
They made up 52.3±1.6% and 27.0±3.1%, respectively,
of the size classes’ biovolume. E. nordmanni showed
the lowest grazing coefficients for these size classes. The
assumption that E. nordmanni might have problems with
motile prey is supported by Freyer (1968, 1974), who
reports thatEvadne is quite slow in capturing motile prey.

E. nordmanni filtered the entire food size range of-
fered. For methodical reasons described below, we sug-
gest a selectivity-size spectrum from >2.5 to <210 lm
at the longest linear extension. Nival and Ravera (1979)
suggested that related Evadne spinifera probably con-
sumes food particles between 20 and 170 lm. Thus, the
lower size limit detected by us is about one order of
magnitude smaller than that predicted by Nival and
Ravera (1979), but it corresponds roughly with the re-
sults of Kim et al. (1989). An explanation may be that
morphology alone generally does not adequately de-
scribe the filtering characteristics of filter feeders, but
that filtration physics also has to be taken into account
(Brendelberger et al. 1986; Jürgens 1994; Acuña 2001).
The upper size limit we found is larger than that pre-
dicted by Nival and Ravera (1979) and that shown by
Kim et al. (1989), but grazing on sizes >60 lm resulted
from feeding on the same long-chain diatoms as de-
scribed for P. intermedius.

Although results were not statistically significant,
E. nordmanni and P. intermedius showed some evidence
of grazing on food sizes around 1 lm and around
2.5 lm, thus including bacterial sizes. This may have
been a result of grazing by nanoflagellates and ciliates in

Fig. 5 Penilia avirostris, Podon
intermedius, Evadne nordmanni.
Clearance rates and ingestion
rates; for P. avirostris eye
adjustments of the data were
done. Error bars: ±SEM, based
on three measurements
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our experiments. We did not find any indications of a
relationship between the abundances of ciliates, nano-
flagellates and picoplankton; however, inverse micros-
copy is not the proper method to investigate pico- and
small nanoplankton abundances (Booth et al. 1982;
Reid 1983).

The EFC of P. avirostris depended on the TFC and
on the food size composition. Both factors depended
again on the nutrient conditions under which the food
communities grew (Table 1; Fig. 2). The results suggest
that oligotrophic to mesotrophic conditions, providing
intermediate TFC and food sizes, are advantageous for
P. avirostris.

Nutrient conditions in Hopavågen Fjord provided
higher EFC for P. intermedius than for E. nordmanni.
This might be rated a competitive advantage for P. in-
termedius, and could partly explain the general pre-
dominance of P. intermedius over E. nordmanni in
Hopavågen Fjord (O. Vadstein, personal communica-
tion). On the other hand, clearance and ingestion rates
were the same for both species.

Clearance rates and ingestion rates

All cladocerans investigated reached similar clearance
and ingestion rates at comparable food concentrations.
Clearance and ingestion rates of P. avirostris were within
the range of rates found in literature (Table 5). No
clearance or ingestion rates have been published for
P. intermedius or any Evadne species so far. The values
found for P. intermedius are within the range measured
by Turner and Granéli (1992) for Podon polyphemoides.
Nevertheless, a comparison of results was not always
possible due to the use of different rate units. If possible,
we converted units for clearance rates to millilitres per
individual per day and ingestion rates to micrograms of
carbon per individual per day. Our results for ingestion
rates include a degree of uncertainty, as conversion of
phytoplankton biovolume to carbon biomass depends
very much on the conversion factor chosen. We decided
to follow the estimations of Nalewajko (1966), which
treat all phytoplankton species equally. Other compu-

tations emphasise small taxa (e.g. Strathmann 1967) or
large algal sizes (e.g. Rocha and Duncan 1985) and
may lead to deviating results. Moreover, rate measure-
ments are always influenced by a variety of parameters,
such as temperature, kind of food source, food density,
life history of animals, and choice of experimental
method.

The relationship between the clearance rate and TFC
followed a bell-shaped curve with narrow modal ranges
for P. avirostris. A decrease of clearance rates with
increasing food concentration has been documented al-
ready for this cladoceran species (Pavlova 1959; Pa-
ffenhöfer and Orcutt 1986; Wong et al. 1992), but not an
initial increase, which would indicate a switching from
non-feeding to feeding activities (Marten 1973). Non-
feeding activities suggest that TFC or EFC or both are
too low to support basic metabolism. Our results indi-
cate that this was the case at TFC £ 0.02 mm3 l�1 for
P. avirostris. Paffenhöfer and Orcutt (1986) observed
feeding activities of P. avirostris also at lower food
concentrations (0.01 mm3 l�1), but reproduction did not
occur at these levels.

Although P. avirostris reduced its filtration efforts at
higher food concentrations, ingestion rates remained
stable. This behaviour points to an optimal adjustment
of energy expenses. According to Paffenhöfer (1988),
such an ability corresponds to species adapted to vary-
ing trophic conditions. Indeed, P. avirostris (Paffenhöfer
and Orcutt 1986) occurs most commonly in near- and in-
shore environments that are often subject to fluctuating
particulate densities.

For Podon and Evadne no feeding experiments over a
wider range of food concentrations have been published
so far. They will be necessary to investigate their func-
tional responses and to examine in more detail the
importance of cladocerans in marine pelagic food webs.
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Table 5 Penilia avirostris,
Evadne nordmanni, Podon spp.
Clearance rates and ingestion
rates

aRates measured by author(s),
but conversion of units not
possible

Taxon Clearance rate
(ml ind.�1day�1)

Ingestion rate
(lg C ind.�1day�1)

Reference

Range Mean Range Mean

Penilia avirostris 4.8–26 a Paffenhöfer and
Orcutt (1986)

41–252 101 a Pavlova (1959)
18–56 a Turner et al. (1988)
4.8–30 21 a Turner et al. (1998)
0.1–20 2.2 a Wong et al. (1992)
0–55 26 0–16 6.0 Present study

Podon polyphemoides 2.9–62 a Turner and
Granéli (1992)

Podon intermedius 8.4–28 18 0.4–1.2 0.8 Present study
Evadne nordmanni 9.8–29 19 0.4–1.3 0.9 Present study
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Mixotrophic versus photoautotrophic specialist algae as food for zooplankton:
The light : nutrient hypothesis might not hold for mixotrophs
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Abstract

We reared mixotrophic (Ochromonas tuberculata and Cryptomonas sp.) and photoautotrophic specialist algae
(Scenedesmus obliquus) at different light : phosphorus supplies and compared their effects as food for zooplankton
(Daphnia magna). According to the light : nutrient hypothesis (LNH), biomass and nutrient stoichiometry of pho-
totrophic specialists depend strongly on light : phosphorus supplies. If this is true, herbivore growth and fecundity
should be limited by food quantity at low light intensities and by stoichiometric food quality at high light intensities.
In turn, phosphorus fertilization should cause a transition from limitation by food quality to limitation by food
quantity. In contrast to the LNH, biomass and nutrient stoichiometry of mixotrophs were almost unaffected by
alterations in the supply of light and dissolved nutrients. Bacterial counts indicate that mixotrophs compensated for
light or phosphorus deficiency by heterotrophic nutrition. Compared to phototrophic specialists, a diet of Crypto-
monas sp. therefore enabled a similar or higher and more stable secondary production at most light : nutrient supplies.
O. tuberculata, however, appeared to be toxic. Our results indicate that mixotrophs might have a balancing effect
on variations in transfer efficiency caused by perturbations to light and nutrient supplies.

Global perturbations to solar insolation and to biogeo-
chemical cycles are altering the inputs of light and nutrients
to ecosystems, thus influencing primary and secondary pro-
duction (e.g., Lindroth et al. 1993; Schindler 1998). Studies
in this context have traditionally focused on the role of food
quantity and have suggested that high primary production
and biomass should yield high secondary production and
biomass and therefore potentially also sustain a higher bio-
mass of top predators (e.g., Begon et al. 1996). More re-
cently, however, it has become increasingly clear that food
quality in terms of elemental nutrient composition may be a
key determinant with regard to trophic efficiency in food
webs (e.g., Hessen 1992; Gulati and DeMott 1997) and that
food chain production varies with the degree of mismatch
between the carbon : nutrient ratios of autotrophs and their
consumers (e.g., Sterner et al. 1998; Hessen and Faafeng
2000).

A compilation of stoichiometric data in terrestrial and
aquatic food webs indicates that carbon : nutrient ratios of
autotrophs are suboptimal for herbivores in many ecosys-
tems (Elser et al. 2000). In aquatic systems, for example, the
mismatch between the cellular carbon : phosphorus (C : P) ra-
tios of algae and their consumers can be very high. While
the C : P ratios of phytoplankton may range from 100 to
;1,000 (e.g., Gächter and Bloesch 1985; Elser and Hassett
1994), C : P ratios of herbivorous zooplankton are typically
much smaller and less variable. The total range of body C :
P in crustacean zooplankton taxa studied to date varies from

1 Corresponding author (alexis.katechakis@gmx.net).

Acknowledgments
We thank Sebastian Diehl for helpful comments on an earlier

draft of the manuscript and Angelika Wild and Achim Weigert for
technical assistance. We also thank Dag Hessen and two anonymous
reviewers for their most helpful comments toward the final version
of the article. Experiments were supported by the Deutsche For-
schungsgemeinschaft, DFG (project ST180/ 1-1, 1-2).

50 to 200 (e.g., Andersen and Hessen 1991), showing limited
intraspecific variability (strong physiological homeostasis),
with most variation associated with differences among spe-
cies. Hence, algae with low C : P ratios are rated a better
food quality for herbivorous mesozooplankton than algae
with high C : P ratios (e.g., Sterner et al. 1998; Hessen and
Faafeng 2000; Makino et al. 2002).

High C : P ratios in autotrophs have been attributed to a
joint effect of high light intensities and low P supplies. At
high light : nutrient ratios, higher primary production may,
therefore, paradoxically cause lower zooplankton production
as a result of a reduction in transfer efficiency caused by
low food quality. On the other hand, at low light supply,
food quantity may limit secondary production. These rela-
tionships have been summarized in the light : nutrient hy-
pothesis (LNH) by Sterner et al. (1997) and seem well sup-
ported by recent theoretical (Andersen 1997; Loladze et al.
2000) and empirical studies (e.g., Urabe and Sterner 1996;
Hessen et al. 2002; Urabe et al. 2002a).

The LNH is based on the assumption that photoautotro-
phic specialists constitute the base of the food chain. To date,
the role of mixotrophic organisms has been neglected within
this context. Mixotrophic algae combine phototrophic and
phagotrophic production dependent on the availability of
light and nutrients (e.g., Sibbald and Albright 1991; Raven
1997) and have been found in several classes of phytoplank-
ton (e.g., Jones 2000). Mixotrophic algae are widespread in
pelagic ecosystems and, for the following reasons, mixo-
trophs can be expected to have different effects on the algae–
herbivore interface than predicted by the LNH. First, the
ability to use alternative production pathways indicates that
the stoichiometric composition of mixotrophs might be less
affected by alterations in the supply with light and dissolved
nutrients than the stoichiometry of phototrophic specialists.
Second, potentially limiting nutrients, particularly P, are of-
ten several orders of magnitude more concentrated in the
biomass of food organisms of mixotrophs (bacteria and bac-
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terial-sized particulate matter) than in the dissolved phase
(e.g., Vadstein 2000). C : P ratios of bacteria are indeed rel-
atively low and constrained (;10–500) (e.g., Makino 2003).
Heterotrophic nutrition might therefore entail low C : P ratios
in mixotrophs, making them a nutrient-rich food source for
herbivores at high environmental light : nutrient ratios as
well. Third, mixotrophic organisms may dominate phyto-
plankton biomass under low light conditions and in low-
nutrient environments (e.g., Riemann et al. 1995) (i.e., ex-
actly in those environments where, according to the LNH,
secondary production may be restricted by autotroph food
quantity and quality, respectively).

Based on these expectations, we formulated the following
two hypotheses and tested them experimentally in the lab-
oratory: (1) The C : P ratios of mixotrophs are lower and
much less dependent on external light : nutrient supply ratios
than the C : P ratios of purely phototrophic algae, and (2)
compared to photoautotrophic specialists, mixotrophs are a
superior food source for herbivorous zooplankton at high
light : nutrient supply ratios and in low light environments.

Material and methods

Experimental setup—Experiments were performed in
semicontinuous two-stage chemostats consisting of 600-ml
tissue culture flasks. We filled all chemostats with sterile-
filtered, autoclaved water from oligotrophic Lake Langbür-
gener See (South Bavaria, Germany). Chemostats were
placed in a climate chamber at a temperature of 208 6 18C
and illuminated with fluorescent bulbs (Osram light code 77
and Osram cool-white 21–840, 36 W each, in equal parts,
Osram) in a 16 : 8h light : dark rhythm.

In the first stages, we inoculated equivalent biovolumes
(measured with a Casy 1 TTC particle counter, Schärfe Sys-
tems) of purely phototrophic Scenedesmus obliquus (SAG
culture 276-3a, SAG culture collection, Göttingen, Germa-
ny), mixotrophic Ochromonas tuberculata (CCAP culture
933/27, CCAP culture collection, Ambleside, U.K.), mixo-
trophic Cryptomonas sp. (SAG 19.80), or a mixture of S.
obliquus and O. tuberculata. Algal stock cultures were non-
axenic. O. tuberculata and Cryptomonas sp. cover the two
extremes of mixotrophic strategies documented in literature
(e.g., Jones 2000). Ochromonas is a predominantly hetero-
trophic mixotroph (e.g., Sibbald and Albright 1991) that uses
phototrophy only when prey concentrations limit heterotro-
phic growth (Rothhaupt 1996b). Cryptomonas is rated pri-
marily as a phototroph, ingesting prey only at low rates, for
example to meet requirements for cell maintenance during
prolonged dark periods or for the uptake of essential organic
carbon compounds, such as vitamins (e.g., Sanders and Por-
ter 1988; Tranvik et al. 1989).

In the second-stage flasks, three neonates each of Daphnia
magna were fed with material from the first-stage flasks.
Neonates were born within 12 h before setting up the ex-
periment, gathered from mothers established in stock cul-
tures at our institute.

We conducted two series of experiments: One series in a
light gradient (60–345 mmol quanta m22 s21) at constant nu-
trient supply (N : P was 16 : 1 in molar units, with P 5 0.5

mmol L21), and a second series in a P gradient (N : P 5 16 :
1 to 16 : 20, with P 5 0.5 to 10 mmol L21) at constant light
conditions (345 mmol quanta m22 s21). Light intensity in the
first series was adjusted by shading the chemostats with lay-
ers of greaseproof paper. We established seven light inten-
sities: 60, 90, 125, 160, 205, 265, and 345 mmol quanta m22

s21 (measured with a LI-1400 DataLogger, Li-Cor). P con-
centrations in the second series were adjusted by adding the
desired concentration of P as NaH2PO4. We used seven P
concentrations: 0.5, 1, 2.5, 4, 5, 7.5, and 10 mmol L21. N
was added as NaNO3 and NH4Cl in equal parts to all treat-
ments. All chemostats received a mixture of vitamins (0.02
mmol L21 vitamins H and B, 0.004 mmol L21 vitamin B12,
final concentration) and supplementary nutrients (Na2EDTA,
FeSO4, MnCl2, 1 mmol L21 final concentration each). To
maintain a sufficient stock of bacterial biomass for potential
phagotrophy by mixotrophs, chemostats received addition-
ally 0.1 mg glucose ml21. Every light : nutrient treatment was
replicated in triplicate for every tested algal species.

After inoculation, first-stage chemostats with algal mono-
cultures were allowed to grow for 7 d to attain a sufficient
food concentration of a least 104 cells ml21 (measured with
a Casy 1 TTC particle counter) and to stabilize food quality
before starting Daphnia performance experiments. Chemo-
stats with mixtures of S. obliquus and O. tuberculata were
run for 3 weeks before experiments started to enable equi-
librium of both taxa. From the time of inoculation on, every
2 d, 200 ml of the culture suspension were replaced by fresh
medium (sterile-filtered, autoclaved lake water, supplement-
ed with nutrients as described above) and transferred to sec-
ond-stage flasks, yielding an average dilution rate of the me-
dium of D 5 0.17 d21. D. magna individuals remained
undiluted. Experiments were terminated when all cladocer-
ans in a chemostat had produced eggs or had reached adult-
hood (after 6–10 d). Adulthood was judged with regard to
instar numbers and size of abdominal appendages (Stibor
and Lampert 1993). During the experimental period, we in-
spected by eye whether grazers were intact several times a
day by controlling their swimming behavior in the chemo-
stats. To homogenize the culture suspension, we also mixed
the vessels gently on this occasion.

Sample preparation and analysis—All parameters were
determined once at the beginning and once at the end of the
experiment.

Food quantity and quality—For the examination of algal
biomass and C : P stoichiometry, we filtered known aliquots
of the culture suspensions from first-stage chemostats on
precombusted Schleicher and Schuell GF6 glass-fiber filters.
Filters were dried in an oven at 608C and stored in a des-
iccator (C) or freezer (P) until analysis. C content was de-
termined with a C-Mat 500 carbon analyzer (Juwe). Algal P
concentration was determined by spectrophotometric meth-
ods (acid molybdenum-blue technique) after oxidation by
persulfate (APHA 1992).

To ascertain the proportions of S. obliquus and O. tuber-
culata in the mixed chemostats, we fixed samples with Lu-
gol’s iodine (5 g I2 1 10 g KI in 100 ml distillated water,
1% final concentration), settled samples in Utermöhl cham-
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bers (Hydrobios), and counted them in an inverted micro-
scope (Leica DMIL, Leica) according to the method of Uter-
möhl (1958) and Lund et al. (1958).

To assess Daphnia magna performance, we determined
the individuals’ somatic growth rates and standardized egg
numbers. Somatic growth rates, g (per day), were estimated
by measuring the rate of change of body lengths, L (in mm),
under a dissecting microscope and converting body lengths
to body mass, v (in mg), using conventional length–mass
regressions, thus (Stibor 2002):

g 5 (ln vadult 2 ln vneonate)/t,

where t is the experimental duration in days, and v 5 12.58
L2.41. Standardized egg number was calculated as the number
of produced eggs per adult female divided by individual
body length.

Bacterial net growth—To determine possible impacts on
the bacterial guild in the chemostats, we preserved samples
with 0.2-mm–filtered formaldehyde (2% final concentration),
stained them with 4,6-diamidino-2-phenylindol (DAPI; 2 mg
DAPI ml21, sample final concentration), after Porter and
Feig (1980), and enumerated samples at 31,000 magnifi-
cation using an epifluorescence microscope (Zeiss Axioplan,
Carl Zeiss). Bacterial net growth rate, r (per day), was cal-
culated as

r 5 (ln C1 2 ln C0)/t

where C1 and C0 are the bacterial abundances (cells ml21) at
the end and at the beginning of the experiment and where t
is the experimental term in days.

Results

In the following, we will initially treat the monospecific
cultures and subsequently the mixed treatments. Detailed re-
sults are presented first for light manipulations and then for
P fertilization.

Food quantity and quality—Purely phototrophic algae
reached higher maximum biomasses than mixotrophs in both
the light and the P gradient, but generally provided a lower
food quality in terms of C : P ratios. Moreover, both param-
eters were much more affected by changing light or nutrient
supplies in phototrophic specialists than in mixotrophs.

The biomass and the C : P ratio of phototrophic specialist
Scenedesmus obliquus increased considerably with increas-
ing light supply. In contrast, mixotroph biomasses and C : P
ratios remained largely constant across the light gradient
(Fig. 1A,B, left panel; Table 1). Biomasses and C : P ratios
of purely phototrophic algae were higher than values for
mixotrophs throughout the light gradient. Only at the lowest
light intensity of 60 mmol quanta m22 s21 did biomasses and
C : P ratios not differ significantly between purely photo-
trophic and mixotrophic species (two-way analyses of vari-
ance [ANOVAs]; Table 2, and post-hoc Tukey-test analyses,
p , 0.01).

While the biomass of Cryptomonas sp. increased slightly
along the entire P supply range, P fertilization left biomasses
of S. obliquus and O. tuberculata largely unaffected, except

for an initial increase in S. obliquus biomass, from the lowest
to the second lowest P concentration (Fig. 1A, right panel;
Table 1). Similarly, P fertilization influenced mixotroph C :
P ratios only at the lowest P concentrations. In contrast, P
fertilization severely affected C : P ratios of phototrophic
specialists across the entire P gradient, leading to a more
than sixfold decrease from ;800 to ;120 (Fig. 1B, right
panel; Table 1). Similar to the light gradient, biomasses of
phototrophic specialists were higher throughout the P gra-
dient than values for mixotrophs (two-way ANOVAs, Table
2, and post-hoc Tukey-test analyses, p , 0.01). C : P ratios
of phototrophic specialists approached mixotrophic C : P ra-
tios with increasing P supply. At P supplies $4 mmol L21

C : P ratios did not differ significantly between purely pho-
totrophic and mixotrophic species (two-way ANOVAs, Ta-
ble 2, and post-hoc Tukey-test analyses, p , 0.01).

Chemostats with mixtures of S. obliquus and O. tuber-
culata developed very similarly to chemostats containing
only phototrophic specialists (Fig. 1A,B). Only at low light
intensities of #120 mmol quanta m22 s21 did biomasses and
C : P ratios of mixed cultures develop similarly to treatments
with mixotrophs (Fig. 1A,B, left panel; two-way ANOVAs,
Table 2, and post-hoc Tukey-test analyses, p , 0.05). This
is because S. obliquus generally dominated mixed chemo-
stats (Fig. 2), while O. tuberculata reached appreciable pro-
portions of total biomass only at low light intensities of
#120 mmol quanta m22 s21 (between 42.0% 6 7.9% stan-
dard error [SE] of the means and 59.9% 6 6.4%). Its pro-
portion of total biomass decreased continuously with in-
creasing light supply. At light intensities .120 mmol quanta
m22 s21 and throughout the P gradient, O. tuberculata was
almost completely outcompeted by S. obliquus (relative bio-
mass of O. tuberculata of ,5% and ,3%, respectively).

Daphnia magna performance—ANOVAs indicate that
growth and fecundity of D. magna differed for different food
types, for different treatments (light supply or P supply), and
for interactions between food type and treatments (Table 3).
Animals feeding on O. tuberculata suffered high mortality
during the course of the experiment and died out before they
could reproduce. Therefore, they are not further treated here.
Growth rates and reproduction were significantly affected by
food quantity and quality (Fig. 1C,D).

In the light gradient, D. magna juveniles grew more rap-
idly and reproduced more robustly feeding on the mixotroph
Cryptomonas sp. relative to the phototrophic specialist diet
(two-way ANOVAs, Table 3, and post-hoc Tukey-test anal-
yses, p , 0.01). At most light intensities, somatic growth
and egg production were higher on Cryptomonas sp. than on
S. obliquus (Fig. 1C,D, left panel), although purely photo-
trophs provided higher food quantities (Fig. 1A, left panel).
This was due to a better food quality of Cryptomonas sp.,
gauged in terms of C : P ratios (Fig. 1B, left panel). More-
over, the constant mixotroph food characteristics across the
light gradient (Fig. 1A,B, left panel) produced relatively sta-
ble D. magna responses. In contrast, somatic growth and egg
production were more affected by changing light conditions
feeding on S. obliquus, with highest performances at inter-
mediate light intensities of between 90 and 160 mmol quanta
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Fig. 1. (A and B) Biomasses (mg C L21) and C : P ratios (molar) of phototrophic specialist algae
(Scenedesmus obliquus), mixotrophic algae (Ochromonas tuberculata, Cryptomonas sp.), and mix-
tures of phototrophic specialist and mixotrophic algae (S. obliquus and O. tuberculata) in a light
gradient at constant nutrient supply (left panel) and in a P gradient at constant light conditions
(right panel). Data points are means of 3 3 2 (replicates 3 measurements) 5 6 samples (see
Materials and methods for details). Error bars indicate 6SE of the means. (C and D) Average
somatic growth rates (d21) and average standardized egg numbers (eggs per mm body length) of
Daphnia magna feeding on phototrophic specialist algae, mixotrophic algae, or mixtures of pho-
totrophic specialist and mixotrophic algae. Data points are means of three replicates. Error bars
indicate 6SE of the means.
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m22 s21 (Fig. 1C,D, left panel; two-way ANOVAs, Table 3,
and post-hoc Tukey-test analyses, p , 0.05).

Results in the P gradient were not as clear. At low P con-
centrations of #1 mmol L21, D. magna growth and fecundity
were higher feeding on Cryptomonas sp. than on S. obliquus
(Fig. 1C,D, right panel). With increasing P supply, photo-
trophic specialists provided the better food source (Fig.
1C,D, right panel; two-way ANOVAs, Table 3, and post-hoc
Tukey-test analyses, p , 0.01). This is because at P supplies
of .2.5 mmol L21, S. obliquus attained food qualities similar
to Cryptomonas sp. (Fig. 1B, right panel), but simultaneous-
ly provided higher food quantities (Fig. 1A, right panel).
Although the investigated food characteristics of Crypto-
monas sp. remained relatively constant across the P gradient
(Fig. 1A, B, right panel), D. magna performance declined
with rising P supply (Fig. 1C,D, right panel), a result that is
different from the observations made in the light gradient.
As was the case with the light gradient, somatic growth rates
and egg production attained on S. obliquus were highest at
intermediate P supplies from 5 to 7.5 mmol L21 and from
2.5 to 7.5 mmol L21, respectively (Fig. 1C,D, right panel;
two-way ANOVAs, Table 3, and post-hoc Tukey-test anal-
yses, p , 0.05).

As S. obliquus dominated almost all chemostats with mix-
tures of S. obliquus and O. tuberculata (Fig. 2), mixed diets
and phototrophic specialist diets caused similar D. magna
responses in both gradients (Fig. 1C,D). However, cladoc-
erans usually grew and reproduced better on the pure S. ob-
liquus diet, although the food characteristics of both kinds
of diets were similar (Fig. 1A,B). Despite generally low rel-
ative biomasses, O. tuberculata may have had a detrimental
effect on D. magna in the mixed diets.

Bacterial net growth—Two-way ANOVAs indicate that
bacterial net growth rates differed for different alga species,
but not for different treatments (light supply or P supply)
(Table 4). Calculations of bacterial net growth rates are
based on the bacterial abundances shown in Fig. 3B–D.

In the light gradient, bacterial net growth rates were in-
fluenced differently in the presence of phototrophic special-
ists or mixotrophic algae (two-way ANOVA, Table 4, and
post-hoc Tukey-test analyses, p , 0.05). Mean bacterial net
growth rates were negative in chemostats with O. tubercu-
lata (20.06 6 0.02 SE of the means d21) or Cryptomonas
sp. (20.05 6 0.01 d21), but positive in chemostats with S.
obliquus (0.05 6 0.01 d21). Linear regressions indicate that
bacterial net growth rates increased slightly with light inten-
sity in chemostats with O. tuberculata (y 5 20.15 1
0.0005x, r2 5 0.91, F1,5 5 51.3, p , 0.001), but remained
constant throughout the light gradient in treatments with
Cryptomonas sp. (p 5 0.75) or S. obliquus (p 5 0.92) (Fig.
3A).

In the P gradient, bacterial net growth rates were influ-
enced differently in the presence of O. tuberculata than with
S. obliquus or Cryptomonas sp. (two-way ANOVA, Table 4,
and post-hoc Tukey-test analyses, p , 0.05). Mean bacterial
net growth rates were highest under the influence of O. tub-
erculata (0.24 6 0.04 d21), 0.06 6 0.03 d21 with S. obliquus,
equivalent to the light gradient, and 0.01 6 0.01 d21 in che-
mostats with Cryptomonas sp. Bacterial net growth rates
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Table 2. Results of analyses of variance (ANOVAs) for biomass (mg C L21) and C : P ratio (molar) development for Scenedesmus
obliquus, Ochromonas tuberculata, Cryptomonas sp., and a mixture of S. obliquus and O. tuberculata in a light gradient at constant nutrient
supply and in a P gradient at constant light conditions (see Materials and methods for details). Sample size in each gradient: 3 3 2 3 7
3 4 (replicates 3 measurements 3 treatments 3 species) 5 168.

Light gradient P gradient

df

Biomass
(mg C L21)

F p

C : P ratio
(molar)

F p

Biomass
(mg C L21)

F p

C : P ratio
(molar)

F p

Species
Treatment (light or P)
Species 3 treatment

3
6

18

379.6
106.8

41.8

,0.001
,0.001
,0.001

117.8
53.3
15.7

,0.001
,0.001
,0.001

793.9
15.6

5.9

,0.001
,0.001
,0.001

123.7
62.5
7.9

,0.001
,0.001
,0.001

Fig. 2. Proportion of mixotrophic Ochromonas tuberculata bio-
mass (%) of total biomass in competition with phototrophic spe-
cialist Scenedesmus obliquus in a light gradient at constant nutrient
supply and in a P gradient at constant light conditions (see Materials
and methods for details). Data points are means of 3 3 2 (replicates
3 measurements) 5 6 samples. Error bars indicate 6SE of the
means.

were positively correlated to P supply under the influence of
O. tuberculata (y 5 0.14 1 0.0002x, r2 5 0.52, F1,5 5 5.5,
p , 0.1) and Cryptomonas sp. (y 5 20.03 1 0.01x, r2 5
0.67, F1,5 5 10.0, p , 0.05), but stable in chemostats with
S. obliquus (p 5 0.89) (Fig. 3A).

Discussion

Mixotrophs expressed low and remarkably stable C : P ra-
tios between 100 and 300, despite huge variations in abso-
lute and relative light and nutrient supplies. In contrast, C :
P ratios of purely phototrophic algae varied between 100
and 800 (Fig. 1B). The response of phototrophic specialist
C : P ratios to the manipulations accords well with the LNH
(Sterner et al. 1997) and with previous studies, which
showed that algal C fixation depends strongly on light in-
tensity, while P acquisition is closely coupled to overall P

supply (e.g., Urabe and Sterner 1996; Makino et al. 2002;
Urabe et al. 2002a).

In contrast to the LNH, changes in light or nutrient supply
left the nutrient composition of mixotrophs almost unaffect-
ed. O. tuberculata and Cryptomonas sp. probably compen-
sated for light or P deficiency by heterotrophic nutrition. We
did not conduct specific grazing experiments with mixo-
trophs in the present study. Comparisons of bacterial net
growth rates, however, indicate that O. tuberculata and
Cryptomonas sp. ingested bacteria at low light and P sup-
plies and that both mixotrophs became increasingly photo-
autotrophic at sufficiently high light and nutrient supplies
(Fig. 3). As a consequence, at high light : nutrient ratios and
at low light conditions, mixotrophs contained on average two
to three times as much P per unit carbon as phototrophic
specialists and fairly closely resembled the C : P ratios com-
monly found in bacteria (e.g., Makino et al. 2003). Similarly,
algal C : P ratios were low and stable in mixed chemostats,
as long as O. tuberculata contributed substantially to overall
biomass. To the extent mixotrophs were suppressed, com-
munity C : P ratio increased rapidly, resembling the treat-
ments containing only Scenedesmus obliquus (Figs. 1B, 2).

The observation that O. tuberculata was supressed by S.
obliquus at high light and nutrient levels (Fig. 2) and the
finding that mixotrophs generally expressed lower biomasses
than purely phototrophic algae (Fig. 1A) can be explained
with the energetic costs mixotrophic organisms have to in-
vest in the synthesis and maintenance of both a photosyn-
thetic apparatus and in mechanisms for prey uptake and its
subsequent digestion. These energetic costs may lower a
mixotroph’s resource use efficiency and may lower photo-
synthetic performance, resulting in a reduced maximum
growth rate compared with a phototrophic or heterotrophic
specialist. A mixotroph is therefore expected to be inferior
if it competes with specialist phototrophs for light or with
specialist phagotrophs for prey (e.g., Rothhaupt 1996a; Ra-
ven 1997; Jones 2000).

Another expectation that our results support is that at high
light : nutrient ratios, as at low light conditions, the mixo-
troph Cryptomonas sp. provided the better food source for
herbivore production compared to phototrophic specialists.
At high light and nutrient supplies, phototrophic specialists
presented the more favorable food (Fig. 1C,D).

In accordance with the LNH and numerous experimental
studies (e.g., Urabe and Sterner 1996; Hessen et al. 2002;
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Table 3. Results of analyses of variance (ANOVAs) for growth rate and reproduction data of Daphnia magna feeding either on pho-
totrophic specialist Scenedesmus obliquus, mixotrophic Cryptomonas sp., or a mixture of phototrophic specialist S. obliquus and mixotrophic
Ochromonas tuberculata in a light gradient at constant nutrient supply and in a P gradient at constant light conditions (see Materials and
methods for details). Sample size in each gradient: 3 3 7 3 3 (replicates 3 treatments 3 species) 5 63.

Light gradient P gradient

df

Somatic growth rate
(d21)

F p

Stand and egg number
(eggs per mm body length)

F p

Somatic growth rate
(d21)

F p

Stand and egg number
(eggs per mm body length)

F p

Food type
Treatment (light or P)
Type 3 treatment

2
6

12

313.9
12.0

3.8

,0.001
,0.001
,0.001

20.0
4.4
4.3

,0.001
0.001

,0.001

19.7
0.3

10.7

,0.001
0.909

,0.001

22.3
3.8
9.5

,0.001
0.004

,0.001

Table 4. Results of analyses of variance (ANOVAs) for bacterial
net growth in chemostats with Scenedesmus obliquus, Ochromonas
tuberculata, or Cryptomonas sp. in a light gradient at constant nu-
trient supply and in a P gradient at constant light conditions (see
Materials and methods for details). Sample size in each gradient: 1
3 7 3 2 (replicates 3 treatments 3 species) for mixotrophs 1 1
3 3 3 1 for purely phototrophs 5 17.

Bacterial net growth rate (d21)

df

Light gradient

F p

P gradient

F p

Species
Treatment (light or P)

2
6

6.5
2.3

,0.05
0.13

12.2
0.6

,0.01
0.71

Urabe et al. 2002a), the shifts in algal biomass and elemental
stoichiometry of purely phototrophic S. obliquus caused a
trade-off scenario for herbivores in both gradients. Juvenile
somatic growth rates and adult fecundity of D. magna were
limited by food quantity at low light intensities and were
limited by food quality at high light intensities (Fig. 1C,D,
left panel). In turn, P fertilization caused a transition from
limitation by food quality to limitation by food quantity (Fig.
1C,D, right panel).

In contrast to the LNH, the steady food characteristics of
mixotrophic Cryptomonas sp. enabled a constant herbivore
production throughout the light gradient. It is remarkable
that at most light : nutrient supply ratios, herbivore growth
and fecundity were considerably higher on the mixotroph
diet, although food quantity was on average 40% to 70%
lower than in monocultures with purely phototrophs. Obvi-
ously, transfer efficiency was primarily triggered by food
quality. This is consistent with the results received for spe-
cialist phototroph and for mixed treatments in the P gradient
and sustains recent findings by other authors (e.g., Boersma
and Kreutzer 2002; Urabe et al. 2002a; Acharya et al. 2004).
However, the relative influences of food quality and quantity
on zooplankton production are still controversial. Our results
from pure and mixed cultures containing S. obliquus indicate
that increases in food quantity stimulate secondary produc-
tion only at low C : P ratios of ,300, whereas improvements
in food quality always enhance transfer efficiency (Fig. 1).
This outcome is supported by various estimates of stoichio-
metric food quality thresholds, which show that the transi-
tion from C limitation to P limitation in the growth and

reproduction of D. magna takes place when food has a C :
P ratio of about 250 to 300 (e.g., Hessen 1992; Hessen and
Faafeng 2000; Urabe et al. 2002b).

In contrast to our expectations and the LNH, the perfor-
mance of D. magna declined under P fertilization with Cryp-
tomonas sp. as food, despite low C : P ratios of around 160
and an increasing food quantity (Fig. 1, right panel). The
strongly decreasing responses in D. magna growth and fe-
cundity indicate that other factors different from algal nutri-
ent stoichiometry influenced food quality. Recent studies
have shown, for example, that biochemical constraints like
essential fatty acid deficiency may limit secondary produc-
tion independent from the elemental nutrient composition of
food organisms (e.g., Müller-Navarra et al. 2004), and es-
pecially at low C : P ratios of ,300 (Boersma 2000; Elser et
al. 2001; Urabe et al. 2002a,b). As explained above, we
found indications for a decreasing contribution of phagotro-
phy to overall production at high light and P supplies in both
mixotrophs. It is possible that a lowered intake of bacteria
had an impairing effect on the food quality of Cryptomonas
sp. beyond nutrient stoichiometry.

Despite all the positive effects described so far, our ex-
periments imply that mixotrophs may also have detrimental
impacts on the algae–herbivore interface. O. tuberculata
gave some evidence for having a toxic impact on herbivores.
D. magna suffered high mortality feeding on O. tuberculata
shortly after the experiments started. We did not test for
toxicity, but toxins have been isolated from ochromonads
before (e.g., Spiegelstein et al. 1969), and their harmful ef-
fect on D. magna has been reported by Leeper and Porter
(1995).

In conclusion, our study indicates that shifts in light : nu-
trient supply ratios must not necessarily be accompanied by
shifts in seston nutrient stoichiometry as predicted by the
LNH, if mixotrophs contribute substantially to overall seston
biomass. Consequently, feeding on mixotrophs might also
influence secondary production differently than proposed by
the LNH. Our results strongly imply that mixotrophs should
be considered in the further development of ecological the-
ories that incorporate stoichiometric effects on food web dy-
namics. Various authors have suggested that variation in ses-
ton C : nutrient ratios may regulate the strength of trophic
cascades in aquatic ecosystems, with strong cascades occur-
ring at low particulate C : nutrient ratios (e.g., Elser et al.
1998; Hessen and Faafeng 2000). P limitation, supporting
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Fig. 3. (A) Bacterial net growth rates (d21) and (B to D) bacterial abundances (ml21 3 106) in
the presence of phototrophic specialist algae (Scenedesmus obliquus) or mixotrophic algae (Och-
romonas tuberculata or Cryptomonas sp.) in a light gradient at constant nutrient supply and in a P
gradient at constant light conditions (see Materials and methods for details). Bacterial net growth
rates were positively correlated to light supply (y 5 20.15 1 0.0005x, r2 5 0.91, F1,5 5 51.3, p
, 0.001) under the influence of O. tuberculata and positively correlated to P supply under the
influence of O. tuberculata (y 5 0.14 1 0.0002x, r2 5 0.52, F1,5 5 5.5, p , 0.1) and Cryptomonas
sp. (y 5 20.03 1 0.01x, r2 5 0.67, F1,5 5 10.0, p , 0.05).
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high C : P ratios, seems to be widespread in lakes today (El-
ser and Hassett 1994; Elser et al. 2000; Hessen and Faafeng
2000) and might be enhanced in the future (Schindler 1998).
Sterner et al. (1997, 1998) predicted an increasing decou-
pling of higher and lower trophic levels in this case. Indeed,
the trophic cascade appears to be muted in P-limited lakes
(Carpenter and Kitchell 1993; Pace et al. 1999; Makino et
al. 2002). Our results indicate that mixotrophs might act as
a buffer within this context. Certainly the hypotheses put
forward here merit further exploration in the laboratory and
in the field.
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Mixotrophic organisms combine light, mineral nutrients, and prey as substituable resources. Based on 

theoretical assumptions and field observations, we tested experimentally the hypothesis that 

mixotrophs may invade established plankton communities depending on the trophic status of the 

system and investigated possible effects on food web structure, species diversity, and nutrient 

dynamics. Oligotrophic systems fascilated the invasion of mixotrophic organisms in two different 

ways. First, the combination of photosynthesis and phagotrophy gave them a competitive advantage 

over specialist phototrophs and specialist phagotrophs. Second, low nutrient supplies supported the 

growth of small plankton organisms that fall into the food size spectrum of mixotrophs. Conversely, 

high nutrient supplies prevented mixotrophs from successfully invading the food webs. Two important 

conclusions were derived from our experiments. First, in contrast to ecology paradigm, specialization 

may not necessarily be the most successful strategy for survival under stable conditions. Indeed, the 

use of several resources with lower efficiency can be an equally or even more successful tactic in 

nature. Second, when limiting nutrients are linked to the bacterio- and picophytoplankton, invading 

mixotrophs may have a habitat-ameliorating effect for higher trophic levels, gauged in terms of food 

quantity and quality. Using given resources more efficiently, mixotrophs generated higher biomasses 

and expressed a superior nutritional value for potential planktivores compared to specialized plankton 

taxa. Our findings may help to explain why energy transfer efficiency between phytoplankton and 

higher trophic levels is generally higher in oligotrophic systems than in nutrient rich environments. 
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Enrichment with nutrients and organic compounds that limit primary or secondary production is one of 

the most pervasive human alterations of the environment and profoundly affects community structure, 

species diversity, and ecosystem functioning (DeAngelis 1992; Rosenzweig 1995; Polis et al. 1997). 

Accurately predicting the consequences of such enrichment requires a better understanding of the 

influence of trophic structure on community dynamics and ecosystem processes. Studies in this 

context have traditionally focused on purely photoautotrophic and purely heterotrophic organisms. The 

role of mixotrophic organisms is still poorly understood. Mixotrophy in the restricted sense is defined 

as the combination of photosynthesis and phagotrophy in the same individual (Sanders 1991). 

Mixotrophs have been found in several classes of single-celled aquatic organisms (flagellates, ciliates, 

and radiolarians) (e.g. Jones 2000). They are widespread in pelagic ecosystems and may compose a 

considerable portion of planktonic communities in many kinds of waters (e.g. Sanders 1991; Riemann 

et al. 1995; Isaksson 1998). The ability of mixotrophs to combine light, mineral nutrients, and prey as 

substituable resources (Nygaard and Tobiesen 1993; Rothhaupt 1996a) suggests, that they react 

differently on alterations to the inputs of nutrients to ecosystems than specialist phototrophs and 

specialist phagotrophs do. Indeed, mixotrophs generally express lower and more stable carbon 

(C):nutrient ratios than specialist phototrophs (Katechakis et al. 2005). Where mixotrophs are 

common, they may therefore have a balancing effect on variations in nutrient dynamics caused by 

perturbations to nutrient supplies. While algae with low C:nutrient ratios are rated a better food quality 

for higher trophic levels than algae with high C:nutrient ratios (e.g. Sterner et al. 1998; Hessen and 

Faafeng 2000; Makino et al. 2002), mixotrophs may, moreover, have a balancing effect on variations 

in transfer efficiency (Katechakis et al. 2005). 

In general, mixotrophs are most common in natural oligotrophic environments (see Riemann et 

al. 1995; Isaksson 1998; Jones 2000 for reviews). However, the mechanisms underlaying the 

succession or possible invasion of mixotrophs in aquatic systems are hardly known. The potential of 

mixotrophs to invade natural-like plankton communities consisting of specialist phototrophs and 

specialist phagotrophs has never been examined experimentally. Mechanistic resource competition 

theory (Tilman 1982; Tittel et al. 2003) predicts that mixotrophs can take full advantage of their 

strategy, first, if significant losses to higher trophic levels do not occur, second, if organic carbon (prey 

items) is available to mixotrophs, and third, if the mixotrophs are able to combine light and organic 

carbon resource use. The first prerequisite is rather given in oligotrophic areas, because predation 

generally increases with enrichment. Also the second prerequisite should be rather given in 

oligotrophic areas, due to the fact that small plankton organisms that fall into the food size spectrum of 

mixotrophs normally seem to dominate nutrient-poor environments, at least in marine systems (e.g. 

Sommer 2000; Katechakis et al. 2002, 2004). In accordance with the third prerequisite, the combined 

 3



use of light and organic carbon resources by mixotrophs has been exemplified under laboratory and 

field conditions (e.g. Rothhaupt 1996a; Tittel et al. 2003). 
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In the present study we tested the ability of mixotrophs to invade established plankton 

communities consisting of a variety of specialized phototrophic and phagotrophic plankton taxa grown 

at different supplies of dissolved inorganic nutrients and dissolved organic carbon (DOC). Based on 

the explanations made above, we formulated the following hypotheses: (1) the potential of mixotrophs 

to invade an existing plankton community decreases with nutrient enrichment, and (2) the C:nutrient 

ratio of a plankton community decreases as the proportion of mixotrophs increases.
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Experimental setup 

Experimental containers. Experiments were performed in semicontinuous chemostats 

consisting of 30 L polypropylene buckets. We filled all chemostats with 25 L of water from 

oligotrophic Lake Langbürgener See, S Bavaria, Germany. The water was filtered by a 0.45 μm filter 

capsule (Sartorius Sartobran-P, Sartorius Göttingen, Germany) to exclude all eukaryotic protists, but 

possibly allowed the passing of smaller bacteria from the natural bacterial assemblage. To avoid 

contamination, all buckets were covered with a transparent lid. Atmospheric air was pumped into the 

airspace between the lid and the water surface. A filter located at the connection point between the 

tube and the lid prevented air flow contamination. To reduce sedimentation and to enhance dispersion 

of nutrients and organisms, the water was continuously mixed by a propeller at the bottom of each 

container. A faucet mounted in midheight of every bucket allowed water sampling. Chemostats were 

placed randomly in a climate chamber at a temperature of 20 ± 1 °C and illuminated with fluorescent 

bulbs (Osram light code 77 and Osram cool-white 21-840, 36 W each, in equal parts, Osram, 

München, Germany) in a 16:8 hours light:dark rhythm. The photon flux density was 134 ± 14 μmol m-

2 s-1 SE of the means (n = 4) at the surface and 101 ± 4 SE μmol m-2 s-1 at the bottom of the containers 

under pure water (measured with a sphaerical Li-Cor light probe, Li-Cor, Lincoln, Nebraska, USA). 

Food webs. Initial food webs consisted of bacteria, specialist phagotrophs (heterotrophic 

nanoflagellates, HNF, and ciliates), and purely phototrophic algae (siliceous and non-siliceous) 

covering a wide range of plankton sizes from pico- to microphyto- and -zooplankton (Table 1). The 

food webs were built up successively over a period of ten days. First we inoculated specialist 

phototrophs, then HNFs and finally the ciliates. Thereby, we took care to inoculate equivalent 

biovolumes of all organisms (~0.03 mm3 L-1 final concentration in each bucket, measured with a Casy 

1 TTC particle counter, Schärfe Systems, Reutlingen, Germany). Algal stock cultures were non-

axenic. After the completion of all food webs, we allowed the plankton communities to establish 

themselves for another two weeks before invasion experiments with mixotrophic Ochromonas 

tuberculata started. We simulated invasion by inoculating equivalent biovolumes of O. tuberculata in 

all treatments (~0.02 mm3 L-1 final concentration). 

Contaminations. Although containers were covered with a transparent lid, purely phototrophic 

Monoraphidium minutum was transferred to the chemostats one week after invasion experiments with 

O. tuberculata had started, probably from an adjacent climate chamber. At this point in time, some of 

the plankton communities were already dominated by mixotrophs (see results). Hence, unintentionally 

we additionally tested, if purely phototrophic organisms can 'recapture' plankton communities 

dominated by mixotrophs. A scheme of the final resulting food web is illustrated in Fig. 1. Feeding 

relationships were verified by grazing experiments and microscopical observations (Katechakis and 

Stibor, unpublished). 
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Enrichment. Overall system production was manipulated by three levels of enrichment (low – 

moderate – high). For this, the chemostats received nitrogen (N), silicon (Si) and phosphorus (P) at a 

stoichiometric ratio of 16:16:1, with P = 0.1, 1, and 10 µmol L
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-1 (final concentrations), respectively. N 

was added as NaNO3 and NH4Cl in equal parts, Si was added as Na2O3Si, P was added as NaH2PO4. 

Bacterial production was fueled by the addition of 0.1, 1, and 10 mg glucose L-1, respectively. 

Furthermore, all chemostats received a mixture of vitamins (0.02 µmol L-1 vitamin H and B, 0.004 

µmol L-1 vitamin B12, final concentrations) and supplementary nutrients (Na2EDTA, FeSO4, MnCl2, 1 

µmol L-1 each, final concentrations). From the time of first inoculation on, every five days 2.5 L of the 

culture suspension in the chemostats were replaced by fresh medium (sterile filtered, autoclaved lake 

water, supplemented with nutrients as described above) within a clean bench, yielding an average 

dilution rate of the medium of D = 0.2 day-1. Every treatment was replicated four times. 

 

 

Sample preparation and analysis 

Plankton composition. To ascertain the development of the plankton communities in the 

chemostats over time, we regularly fixed samples with Lugol’s iodine (5 g I2 + 10 g KI in 100 ml 

distillated water, 1 % final concentration), settled samples in Utermöhl chambers (Hydrobios, Kiel, 

Germany), and counted them in an inverted microscope (Leica DMIL, Leica, Wetzlar, Germany) 

according to the method of Utermöhl (1958) and Lund et al. (1958). Biovolumes were calculated by 

approximation to simple geometrical bodies using the equations of Hillebrand et al. (1999). We started 

sampling one day after the inoculation of O. tuberculata (defined as 'day 1' in the presented figures) 

and then ran the experiment for another 30 days. 

Bacterial numbers were quantified by means of epifluorescence microscopy (Zeiss Axioplan, 

Carl Zeiss, Oberkochen, Germany) after staining with DAPI (4,6-diamidino-2-phenylindol, 2 µg DAPI 

ml-1 sample final concentration, Porter and Feig 1980), once at the beginning and once at the end of 

the experiment. 

Plankton nutrient stoichiometry. For the examination of plankton C:P ratios we filtered 

known aliquots of each chemostat on precombusted Schleicher and Schuell GF6 glass fiber filters. 

Filters were dried in an oven at 60 °C and stored in a desiccator (C) or freezer (P) until analysis. C 

content was determined with a C-Mat 500 carbon analyser (Juwe, Viersen, Germany). Algal P 

concentration was determined by spectrophotometric methods (acid molybdenum-blue technique) 

after oxidation by persulfate (APHA 1992). For the determination of particulate C:N ratios we filtered 

samples onto precombusted Whatman GF/C filters and measured them with a Fisons CN-Analyser 

(NA 1500N). Particulate nutrient ratios were determined once at the beginning and once at the end of 

the experiment.
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Food web production and community size structure. Overall system production and food web size 

structure were clearly determined by the supply of dissolved inorganic nutrients and DOC to the 

chemostats. At the end of the experiment, overall biovolume, which is a good measure of biomass, 

was more then ten times higher in highly fertilized systems (47.8 ± 9.1 mm3 L-1 SE of the means) than 

under moderate nutrient supplies (4.5 ± 0.8 mm3 L-1), and around 16 times higher than in oligotrophic 

treatments (2.9 ± 0.4 mm3 L-1) (Fig. 2). Oligotrophic systems were initially dominated by picoplankton 

around 2 µm, namely C. minor, and small nanoplankton around 5 µm (C. pseudostelligaria and B. 

saltans). At high nutrient supplies, the slightly larger M. minutum (~8.5 µm) and the much larger S. 

delicatissima (>60 µm) dominated the community. Mesotrophic systems developed the most balanced 

food webs regarding both community size structure and taxonomical composition (Fig. 3). 

Taxonomical composition. Mixotrophic O. tuberculata was able to invade all kinds of systems, 

but only persisted at low and moderate nutrient supplies. At the end of the experiment, mixotrophs 

clearly dominated oligotrophic systems presenting 91.6 ± 2.7 % of the overall biovolume. Similarly, 

mixotrophs represented the most important plankton guild at moderate nutrient supplies (72.9 ± 3.9 % 

of overall biovolume) (Figs. 2 and 3). Although O. tuberculata was not completely outcompeted under 

eutrophic conditions, its success here was marginal in terms of both absolute (0.2 ± 0.04 mm3 L-1) and 

relative biovolumes (0.4 ± 0.1 %) at the end of the experiment. Instead, purely phototrophic algae 

controlled the community at high nutrient supplies, where they made up 96.3 ± 2.3 % of the overall 

biovolume (Fig. 3), with M. minutum and S. delicatissima as the prevailing species in equal parts (one-

way ANOVA, F1,6 = 0.4, n.s.) (Fig. 2). In the same way O. tuberculata was able to invade all 

chemostats, also purely phototrophic M. minutum invaded all systems. However, in contrast to O. 

tuberculata, M. minutum was able to build up noteworthy abundances only at high nutrient supplies 

(Figs. 2 and 3). Likewise, the relative importance of specialist phagotrophs increased slightly with 

nutrient enrichment from 0.7 ± 0.3 % at oligotrophic conditions to 2.2 ± 0.7 % in mesotrophic systems 

up to 3.6 ± 1.6 % at highest nutrient supplies. However, neither relative (one-way ANOVA, F2,9 = 2.0, 

n.s.) nor absolute biovolumes (one-way ANOVA, F2,9 = 1.8, n.s.) differed significatly between 

treatments. Whereas the overall biovolume of specialist phagotrophs was not much influenced, their 

composition changed considerably in such a way that Cyclidium sp. gained relative importance over B. 

saltans with increasing nutrient enrichment (one-way ANOVAs: oligotrophic F1,6 = 12.5, P = 0.01; 

mesotrophic F1,6 = 0.6, n.s.; eutrophic F1,6 = 11.3, P < 0.05) (Fig. 2). 

Bacterial numbers. Prior to the invasion of mixotrophs, overall bacterial abundances were 

highest in low nutrient systems (2.2 ± 0.2 x 106 cells ml-1), followed by moderately (2.0 ± 0.4 cells ml-

1 x 106) and highly fertilized (1.4 ± 0.3 x 106 cells ml-1) treatments. Differences among treatments, 

however, were not significant (one-way ANOVA, F2,9 = 1.6, n.s.). During the experiment overall 

bacterial abundances decreased significantly in oligotrophic sytems and increased significantly in 
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eutrophic sytems. Changes at moderate nutrient supplies were not substantial (paired t-tests: 

oligotrophic t
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3 = 3.4, P = 0.01; mesotrophic t3 = 0.9, n.s.; eutrophic t3 = -2.0, P < 0.1) (Fig. 4). 

Consequently, at the end, bacterial abundances were considerably higher at high nutrient supplies (4.9 

± 1.7 x 106 cells ml-1) compared to moderate (1.5 ± 0.4 x 106 cells ml-1) and low (1.2 ± 0.2 x 106 cells 

ml-1) nutrient conditions (one-way ANOVA, F2,9 = 4.0, P = 0.05, and post hoc Tukey-test analyses, P 

< 0.05). The differences observed among treatments were mainly due to changes in numbers of rod-

shaped and coccal bacteria. While abundances of filamentous bacteria increased in all chemostats 

(paired t-tests: oligotrophic t3 = -7.5, P < 0.01; mesotrophic t3 = -6.8, P < 0.01; eutrophic t3 = -4.3, P < 

0.05), rod-shaped and coccal bacteria decreased in oligotrophic treatments (paired t-tests: t3 = 3.6, P < 

0.05 and t3 = -3.3, P < 0.05, respectively) and in mesotrophic systems (t3 = 4.1, P < 0.05 and t3 = 3.2, 

P < 0.05, respectively) but increased under high nutrient supplies (t3 = -2.6, P < 0.1 and t3 = -2.8, P < 

0.1, respectively) (Fig. 4). 

Plankton nutrient stoichiometry. Overall plankton C:N ratios were significantly higher in 

eutrophic systems than in other treatments (one-way ANOVAs: start F2,9 = 7.9, P < 0.05; end F2,9 = 

5.8, P < 0.05; post hoc Tukey-test analyses, P < 0.05) and remained unaffected throughout the 

experiment in all chemostats (paired t-tests: oligotrophic t3 = 0.01, n.s.; mesotrophic t3 = 0.3, n.s.; 

eutrophic t3 = 0.8, n.s.) (Fig. 5). C:P ratios were generally lowest in oligotrophic systems, followed by 

mesotrophic and eutrophic treatments. These differences were not significant at the beginning (one-

way ANOVA, F2,9 = 0.8, n.s.) but intensified during the experiment. C:P ratios decreased considerably 

in oligotrophic and mesotrophic systems (paired t-tests, t3 = 2.6, P < 0.1 and t3 = 5.1, P = 0.01, 

respectively) but remained constant in eutrophic systems (t3 = 0.2, n.s.). Consequently, at the end, C:P 

ratios were significantly lower at low and moderate nutrient supplies (one-way ANOVA, F2,9 = 6.1, P 

< 0.05 and post hoc Tukey-test analyses, P < 0.05) (Fig. 5).
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Succession is an important biological parameter that continually changes the structure and functioning 

of food webs. Because of succession, species are continually invading and being lost from 

communities. Species that invade may or may not be successful and persist. But when they do persist, 

they alter the shapes of the food webs, unless they simply replace existing species (Pimm 1982). In our 

experiments, invading mixotrophs changed plankton and bacterial community structure, species 

diversity, and nutrient cycling, and hence, probably would have changed ecosystem functioning in 

situ. The observed processes strongly depended on nutrient availability and thus, support several of 

our expectations: (1) The potential of mixotrophs to invade established plankton communities and 

successfully compete with purely auto- and heterotrophic specialists was considerably higher at low 

nutrient conditions. (2) Plankton communities containing high proportions of mixotrophs expressed 

much lower overall C:P ratios than plankton communities without mixotrophs. However, C:N ratios 

remained unaffected. 

 

 

Plankton community composition 

 

Low and moderate nutrient supplies fascilated the invasion of mixotrophic organisms in two 

different ways. First, the ability of mixotrophs to combine light, mineral nutrients, and prey as 

substituable resources (Nygaard and Tobiesen 1993; Rothhaupt 1996a) gave them a competitive 

advantage over specialist phototrophs and specialist phagotrophs. Second, low nutrient supplies 

supported the growth of small plankton organisms that fall into the food size spectrum of mixotrophs. 

O. tuberculata obviously supplemented nutrient restriction by grazing bacteria and 

picophytoplankton at oligotrophic and mesotrophic conditions. Abundances of both C. minor and 

edible bacteria (coccal and rod-shaped morphotypes) declined considerably in both kinds of systems 

as mixotrophs gained importance. Other phagotrophs were of minor significance. Therefore, we rate 

their influence as comparatively negligible. A decline of bacteria and picophytoplankton due to 

nutrient competition with other phytoplankton is also improbable. Because of their high surface to 

volume ratio, bacteria and picophytoplankton are estimated stronger competitiors for inorganic 

nutrients than bigger algae (e.g. Currie and Kalff 1984; Sommer et al. 2002). The consumption of 

small phototrophs by mixotrophs has also been suggested by other authors (e.g. Havskum and Hansen 

1997; Sanders et al. 2000). 

As a consequence of combining alternative production pathways, O. tuberculata practically 

suppressed all other plankton species that were present at the beginning of the experiments. At the end, 

the ratio of mixotrophs to purely autotrophs (M:A) was 12:1 in oligotrophic systems and 3:1 in 

mesotrophic treatments. The ratio of mixotrophs to purely heterotrophs (M:H) was 135:1 and 33:1, 
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respectively. This outcome is in accordance with the mechanistic resource competition theory (Tilman 

1982; Rothhaupt 1996b; Tittel et al. 2003). The theory predicts that mixotrophs should compete 

successfully with specialist phototrophs when light and/or nutrient supplies limit autotrophic growth 

but particulate prey is available. Similarly, mixotrophs should compete successfully with specialist 

phagotrophs when prey abundances limit heterotrophic growth but light and nutrient conditions allow 

photosynthesis. 
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Still, mixotrophs were not able to completely outcompete specialist photo- and phagotrophs. 

Probably because of its advantageous surface to volume ratio, C. minor was able to maintain stable 

populations under both nutrient regimes, albeit on very low levels. Additionally, S. delicatissima 

reached some importance towards the end of the experiment at moderate nutrient supplies. As the only 

unedible alga in our experiments, S. delicatissima probably benefited from the decrease of all other 

phytoplankton taxa. Similarly, ciliates apparently took advantage of the weakening of B. saltans in 

mesotrophic systems. B. saltans was exposed to a double pressure. The HNF formed an intermediate 

prey in the heterotrophic food chain (bacteria/picophytoplankton – HNF – ciliates) and furthermore 

competed with O. tuberculata for bacteria and picophytoplankton. The reduction of B. saltans is 

consistent with the expectation that an omnivorous top consumer (i.e. here the ciliate) reduces its 

intermediate prey (e.g. Diehl and Feissel 2000; Mylius et al. 2001) by feeding simultaneously on the 

intermediate prey and on the common basal resource ("strategy of eating your competitor", Thingstad 

et al. 1996). It is also consistent with the results of Rothhaupt (1996b) who showed that O. tuberculata 

eventually outcompetes B. saltans once the bacterial prey has been grazed down to a density that 

limits the growth of the HNF. However, from our results it cannot be seen which of the two processes 

contributed to which extent to the decrease of B. saltans. 

 

High nutrient supplies prevented mixotrophs from successfully invading the food web. The 

observation that O. tuberculata could not persist in eutrophic systems can be explained by the 

energetic costs mixotrophic organisms must invest in the synthesis and maintenance of both a 

photosynthetic apparatus and in mechanisms for prey uptake and its subsequent digestion. These 

energetic costs may lower a mixotroph’s resource use efficiency and may lower photosynthetic 

performance, resulting in a reduced maximum growth rate compared with a phototrophic or 

heterotrophic specialist. A mixotroph is therefore expected to be inferior if the environmental 

conditions sufficiently satisfy the demands of purely phototrophic and heterotrophic specialist, 

respectively (e.g. Rothhaupt 1996a; Raven 1997; Jones 2000). Prey abundances in eutrophic systems 

apparently supported the growth of ciliates (M:H = 0.05). Likewise, nutrient concentrations promoted 

specialist phototrophs, which is especially reflected by the impressive development of M. minutum 

(M:A = 0.002). Both processes together signed for the suppression of mixotrophs in eutrophic 

systems, an observation that is in accordance with field studies (e.g. Bergström et al. 2003; Tittel et al. 

2003) and fertilization mesocosm experiments (e.g. Jansson et al. 1996). 
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An important conclusion from the results discussed above is that mixotrophs may compete 

successfully with purely autotrophic and purely heterotrophic organisms at the same time, although 

ecology paradigm predicts that specialization should be the most successful strategy for survival under 

stable conditions (MacArthur and Connell 1966; Dall and Cuthill 1997). This indicates that the use of 

several resources with lower efficiency can be an equally successful strategy in nature. Indeed, at low 

to moderate nutrient supplies, mixotrophs made much better use of the given resources (in the sense of 

generating biomass) than purely auto- and heterotrophic specialists. This suggests that in situations 

when limiting nutrients are linked to the bacterio- and picophytoplankton, invading mixotrophs may 

have a habitat-ameliorating effect for higher trophic levels. A lake for example may continue to be 

productive during periods that do not favour the growth of specialist phototrophs – a consideration that 

is sustained by field data (Hitchman and Jones 2000). Higher trophic level production may not only be 

supported by mixotrophs in terms of food quantity, but may be additionally promoted with regard to 

food quality (to be explained in following section). 

 

 

Community nutrient stoichiometry 

 

The elemental nutrient stoichiometry of phytoplankton is an important characteristic for food 

quality for higher trophic levels such as herbivorous mesozooplankton and fish (Sterner et al. 1998). In 

this context, algae with low C:P ratios <300 are rated a better food quality than algae with high C:P 

ratios (e.g. Elser et al. 1998; Hessen and Faafeng 2000; Hessen et al. 2002). Katechakis et al. (2005) 

showed recently, that when using different nutrient sources, mixotrophs generally express lower and 

more stable C:P ratios than purely phototrophic algae, and that mixotrophs may therefore enhance 

transfer efficiency towards herbivores. The present study illustrates that invading mixotrophs may 

even improve a whole plankton community's food quality, gauged in terms of seston nutrient 

stoichiometry. The overall C:P ratio was considerably lower where mixotrophs were common. This 

speaks for a scarcity of dissolved inorganic P that was compensated by additional P uptake by 

mixotrophs using particular P from prey as P source. In this way, mixotrophs may make nutrient 

sources available for higher trophic levels, that would not be accessible to them otherwise. On the 

contrary, N obviously was obtainable in excess in our experiments as C:N ratios remained unaffected. 

 

The outcome that mixotrophs have relevant competition advantages in oligotrophic systems 

together with the observation that mixotrophs may upgrade plankton food quality for higher trophic 

levels, might help explain why trophic transfer efficiency and food web strength are generally higher 

in low nutrient environments than in eutrophic systems (Carpenter and Kitchell 1984; McQueen et al. 

1986). Thus far, there is no clear understanding of the reasons for this observation. Müller-Navarra et 
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al. (2004) showed, however, that differences in ω3-polyunsaturated fatty acid (PUFA)-associated food 

quality at the plant-animal interface play a role. If confirmed in situ, our results could complement 

these findings. 
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Implications for natural aquatic food webs 

 

According to the presented results, one would expect mixotrophs to be especially invasive in 

steady-state like situations where light is sufficient, but dissolved nutrients are limiting and overall 

productivity is rather low, as is the case in surface layers after a longer period of stratification. Under 

such conditions, external import of nutrients is low, and recycling is the primary source for mineral 

nutrients. Growth rates of pure autotrophs are well below their possible maxima, and mixotrophs 

might take full advantage of their strategy. We are aware, however, that our experiments are subject to 

different restrictions. First, compared to nature, we chose a system with a low-diversity food web. As 

community invasibility may vary with species diversity (Bruno et al. 2003), the susceptibility of 

communities to invasion might be different in situ. Second, our conclusions are based on 

investigations having only one mixotrophic species. Ochromonas is a predominantly heterotrophic 

mixotroph (e.g. Sibbald and Albright 1991). Other mixotrophs may behave in another way and hence 

lead to deviating insights. Finally, the exclusion of higher trophic levels such as herbivorous 

mesozooplankton and fish provokes questions about the generality of the findings presented here. 

Nevertheless, our results may help explain observations in very different aquatic habitats. A number of 

studies have shown, that mixotrophs are abundant and active in illuminated oligotrophic surface 

marine (e.g. Arenovski et al. 1995; Dolan and Marrase 1995; Havskum and Riemann 1996; Pitta and 

Giannakourou 2000; Sanders et al. 2000; Pitta et al. 2001) and freshwater systems (e.g. Sandgren 

1988; Berninger et al. 1992; Sommer et al. 1993; Tittel et al. 2003). Additionally, the strength of 

mixotrophic nutrition of mixotrophic algae has been shown to depend on the trophic status of the 

environment (Stibor and Sommer 2003). Thus, the hypotheses put forward here certainly merit further 

exploration in the laboratory and in the field.
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Table 1 Plankton taxa used for experiments. Given cell dimensions are means of 20 measurements 

each. Biovolumes were calculated using the equations of Hillebrand et al. (1999) 

 

 

 

Taxon Cell dimensions (µm)
 Longest 

extension 
Width or 
diameter 

Biovolume 
(µm3 cell-1)

  Strain 

Specialist phototrophs     
Bacillariophyceae     
  Cyclotella pseudostelligaria 4.9 4.8 86.1   CCAPa 1070/3 
  Synedra delicatissima 64.0 4.5 857.0   CCAP 1080/11 

Chlorophyta  
  Choricystis minor 2.0 1.7 2.8   SAGb 17.98 
  Monoraphidium minutum 8.5 3.2 22.8   SAG 243-1 
  
Specialist phagotrophs  
Heterotrophic nanoflagellates (HNF)  
  Bodo saltans 5.5 4.2 35.2   MPIc-Bodo saltans 

Ciliates  
  Cyclidium sp. 25.4 12.8 8140.2   LMUd-Cyclidium sp. 
  
Mixotrophs  
  Ochromonas tuberculata 10.3 8.5 355.3   CCAP 933/27 
aCulture Collection of Algae and Protozoa, Argyll, UK 
bExperimental Phycology and Culture Collection of Algae, Göttingen, Germany 
cMax-Planck-Institute for Limnology, Plön, Germany 
dLudwigs-Maximilians-University, Aquatic Ecology, Munich, Germany 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 Katechakis and Stibor – Plankton taxa

 



Fig. 1 Experimental food web consisting of specialist phototrophs (grey underlayed), specialist 

phagotrophs, mixotrophs (cross-striped) and bacteria. Solid lines represent major links, dashed lines 

represent minor links 

 

Fig. 2 Changes over time in the absolute biovolumes of specialist phototrophs (left panel), specialist 

phagotrophs (middle panel) and mixotrophs (right panel) at low, moderate and high nutrient supplies. 

Data points are means of four replicates, error bars represent SE of the means. Note different y-axes 

scaling   

 

Fig. 3 Changes over time in the relative biovolumes of specialist phototrophs, specialist phagotrophs 

and mixotrophs at low, moderate and high nutrient supplies. Data represent means of four replicates 

 

Fig. 4 Changes in the abundance and the composition of the bacterial community under the influence 

of different food web compositions (see Figs. 2 and 3) at low, moderate and high nutrient supplies. 

Rod-shaped bacteria were devided into three size classes: <1.5 µm, 1.5 to 3.0 µm, and >3.0 µm; mean 

length (N = 20) in each size class: 1.0 ± 0.04 µm SE of the means, 2.3 ± 0.1 µm, and 3.5 ± 0.2 µm, 

respectively. Coccal bacteria had a mean diameter of 0.7 ± 0.03 µm. Filamentous cyanobacteria were 

devided into three size classes: 3 to 10 µm, 10 to 20 µm, and 20 to 40 µm; mean length (N = 20) in 

each size class: 5.6 ± 0.4 µm SE, 13.0 ± 0.4 µm, and 33.7 ± 1.1 µm, respectively. Data points are 

means of four replicates, error bars represent SE of the means. Note different y-axes scaling 

 

Fig. 5 . Changes in the overall C:N and C:P stoichometry of the plankton community depending on the 

development of the food web composition (see Figs. 2 and 3) at low, moderate and high nutrient 

supplies. Data points are means of four replicates, error bars represent SE of the means. Note different 

y-axes scaling 
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Fig. 1 Katechakis and Stibor – Food web 
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Fig. 2 Katechakis and Stibor – Absolute biovolumes 
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Fig. 3 Katechakis and Stibor – Relative biovolumes 
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Fig. 4 Katechakis and Stibor – Bacterial abundances 
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Fig. 5 Katechakis and Stibor – Seston nutrient ratios 
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