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Abstract

This work aims to clarify some of the basic concepts of the giant planet formation.

In order to enhance the understanding of the general roadmap of the giant planet

formation we have mapped out all the qualitatively different protoplanetary equilibria,

for a simple isothermal self-gravitating core-envelope model.

A clear concept for the distinction between a planet and a minor body naturally

follows from our static classification. We explain e.g. why Titan has an atmosphere, while

Rhea has none. Also, we offer a new interpretation for the locally isothermal disk-planet

interaction calculations.

We examine the role of so-called critical mass, necessary to permanently attract gas of

the protoplanetary nebula to a terrestrial-planet-like, heavy element core. We develop a

concept for the global static critical core mass, as a core of a protoplanet which connects

all four qualitatively different parameter-space regions of the core-envelope solutions.

To determine the subset of physically significant protoplanetary solutions, as well as

to investigate the role of the stability in the formation of the planets, we perform the non-

linear stability analysis - the evolution of the models which are the typical representatives

of their class is followed on a timescale of the envelope dynamics.

We find five basic modes of dynamical behavior: oscillation, pulsation, transition,

ejection, and collapse. We also investigate and identify the transitions within a classified

protoplanetary core-envelope solution set. Static core-envelope solutions can be either

stable or unstable, depending on the region of a parameter-space. We find examples of

both linear and non-linear instability. We find that the whole parameter-space region

around the critical core mass is unstable against collapse.
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‘The current understanding of the planetary astrophysics reminds me of the

build-up of the Ptolemy’s crystal spheres’.

Dr Tsevi Mazeh

We (the planetary astrophysicists) understand only parts of the evolution of the plane-

tary systems, and have little knowledge of the global evolutionary properties of the planets.

Studying particular cases of the planetary evolution, described with models containing de-

tailed physics, revealed a whole zoo of different planetary properties including different core

growth models, protoplanetary disk stability and interaction issues, a variety of relevant

timescales, chaotic dynamical nature, etc. It became clear that the investigation of a sin-

gle aspect of the evolution of a planetary system, no matter how careful and detailed, will

stand only a small chance of delivering a general understanding of the planetary evolution

that would be comparable to the current understanding of the evolution of stars.

With the complexity of the issue in mind, we choose a different approach that should

provide more insight to a planetary evolution. Questions we will try to address are dis-

cussed in the introductory chapter. We selected a simple model which should be a reason-

ably good representation for the protoplanet during the largest part of its early evolution.

We address the model applicability in Chapter 1. In the same Chapter we classify static

protoplanets into four qualitatively different regimes. In Chapter 2 we discuss the implica-

tions of such classification for the definition of a planetary body. We try to discriminate

the physically significant models from all the available solutions in Chapter 3, as well as

to understand the typical dynamical protoplanetary timescales and perturbations.



Questions in the planetary
astrophysics

The problematique of planet formation is interwoven with star formation, protoplanetary

disks, the growth of dust and solid planets in those nebula disks, and finally nebula dis-

persal (e.g. Hayashi et al., 1985).

Planets are believed to form concurrently with a ‘parent’ star, from a centrifugally-

supported disk of gas and dust (e.g. Safronov, 1969; Lissauer, 1993). The protoplanetary

nebulae are a natural outcome of the modelling of the observed cloud core conditions, if

a macroscopic mechanism for the angular momentum transfer exists (e.g. Morfill et al.,

1985). However, present modelling still cannot span the evolution from the cloud collapse

to the protoplanetary nebula conditions, where the planet formation occurs.

Disk observations have recently improved with the introduction of the infra-red space-

based Spitzer telescope (e.g. Chen et al., 2005), but the observational data for the inner

disk (0.05-30 AU) still ‘can not be used to discriminate between various one-parameter

disk models’1. Although, observations do show that the disk disappearance occurs on a

10 − 30 Ma time scale, and there are indications of the inner (dust) disk disappearing

before the outer part, as if being ‘eaten’ by forming planets. The radial velocity observa-

tions also show uniform distribution of the orbital distances of mature extra-solar planets

(see ‘California & Carnegie Planet Search’ webpage2 and ‘Lists of Extrasolar Planets’3 of

the IAU’s Working Group on Extrasolar Planets, as well as Jean Schneider’s ‘Extrasolar

1quote from the summary of the ‘Disks to Planets 2005’ conference, Pasadena, California
2http://exoplanets.org/massradiiframe.html
3http://www.dtm.ciw.edu/boss/IAU/div3/wgesp/planets.html

2
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Planets Encyclopaedia’4, or Udry et al. (2003) and Santos et al. (2003)), hinting that there

is no preferred orbital position for the formation of the gas giants around the solar-type

stars.

Theory provides several ways to form giant planets (for a review see Wuchterl et al.,

2000), of which the ‘nucleated instability’ is serving as the standard model for the planet

formation. In this model, a gravity field of a sufficiently large solid core (i.e. ‘the critical

core’) is used to produce a local enhancement of self-gravity, necessary to overcome the

counteracting gas pressure and trigger the accumulation of planet’s envelope. Other mod-

els provide the necessary gravity field through the gravitational instability of the nebula

itself (the ‘disk instability’ model), or through an ‘external perturber’ (e.g. rendezvous

with a stellar companion), or through a ‘fragmentation during collapse’, although the last

case is unlikely to form objects of planetary mass because opacity limits the process to

masses above ≈ 10 MJ (see Bodenheimer et al., 1993).

It is not exactly clear what is the nature of the instability connected with the formation

of a giant planet. It has the elements of disk instability (i.e. Toomre instability), and the

cloud instability (i.e. Jeans instability), but its neither of those; the nebulous disk forms

a planet in a presence of an external gravity field (i.e. core), and the relevant instability

most likely has properties which can be fully understood only through the analysis of all

three spatial dimensions.

In general, present theory of the planet formation still leaves its key building blocks

somewhat unconstrained. Complexity of the constitutive physical processes is surely to

blame for the lack of the complete picture, but it can also partly be attributed to the

insufficient knowledge of the typical protoplanetary environment. On the other hand, cur-

rent diversity of the observations of the extra-solar planets is still waiting to be explained

by the theory’s ‘planetary main sequence’.

We tried to address this apparent deadlock by providing a roadmap toward a general

4http://www.obspm.fr/encycl/encycl.html
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framework of the planet formation, within a paradigm of the standard model (i.e. the

nucleated instability);

During the early stages of the planetary evolution, typical dynamical processes most likely

operate on the time-scales much smaller than the core-accretion timescale. Thus, most

of its early days proto-planet will spend in a hydro-static equilibrium or very close to it.

It was therefore important to provide an idealized but complete survey of all hydrostatic

states. We provide such a classification for an isothermal core-envelope model, based on a

fairly simple set of assumptions (c.f. Chapter 1). A comparison of our classification with

an analogous study containing improved microphysics (Broeg, 2005, including numerical

equation of state, detailed energy transfer, and tabulated gas and dust opacities), shows

that our model provides a qualitatively correct and complete overview of hydrostatic

equilibria.

Based on the compactness and the self-gravitating properties of our core-envelope models,

we classify protoplanetary equilibria into four categories (c.f. Sect. 1.3.2):

‘mature telluric planet’, ‘mature gas giant’, ‘nebula’, and ‘protoplanet’.

Furthermore, we redefine the concept of the static critical core mass as the core mass of

the model which connects all four qualitatively different envelope categories.

The role of a critical core in the planet evolution has been associated with the envelope gas

accumulation, either through a quasi-static accretion or through an envelope collapse. The

evolution of just-critical models was followed by other investigators, through a sequence

of quasi-static models (e.g. Ikoma et al., 2001; Bodenheimer et al., 2000), or dynamically

(e.g. Wuchterl, 1991a,b, 1993), with discrepant results which were difficult to put into a

single, general framework.

We aim to provide a simplified, but general paradigm for the protoplanetary evolution

up to, and around, the critical core mass, through the stability analysis of our qualitatively

complete set of static solutions.

The issue of the equilibrium stability could have been looked into through the linear
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stability analysis, or through the non-linear hydro-dynamical evolution. While the linear

analysis can discriminate a linearly stable equilibrium from an unstable one, it cannot

provide sufficient information about the end-state of the unstable equilibria. Thus we

perform a non-linear analysis of all qualitatively different protoplanets, using (the typical

representatives of) the equilibria from our static classification as initial states for hydro-

dynamic simulations (c.f. Chapter 3).

With such an approach, three main issues that we address are;

First, we investigate whether a protoplanetary embryo necessarily has to acquire a critical

core mass in order to become a giant planet, or whether there is another venue to initiate

an envelope accumulation (c.f. Sect. 3.4.2: Subcritical core mass model sequence). Such an

evolutionary option, alternative to the steady (sub-critical) core growth, could help solve

the biggest problem of the current standard model - the core growth/nebula dissipation

timescale missmatch.

Second issue deals with the protoplanetary dynamics around the critical core mass (c.f.

Sect. 3.4.2: Region around the critical core). A detailed look at all qualitatively different

models in the vicinity of the critical core could potentially lead to a joint framework for

the previously disparate studies of the critical models.

Third, we investigate, and confirm, the stability of the compact protoplanet against the

nebula removal. As a corollary, we develop one of the criteria an object needs to fulfill in

order for it to be a planet (c.f. Sect. 2.1), i.e. using our new concept of the critical core

mass, we precisely determine requirements, on the planetary body, necessary to retain the

gaseous envelope in the vacuum of space.



Chapter 1

Hydrostatic Classification

In this chapter we classify the protoplanets according to the general properties of their

envelopes. Resulting from this classification, we provide a concise and precise statement

for distinction between a planet and a minor planet, discussed in Chapter 2. We also

develop a concept for the global static critical core mass, a core of a protoplanet which

connects all four qualitatively different envelope regimes. We present the multiplicity of

protoplanetary solutions, and discuss the role of the envelope self-gravity. We show that

the self-gravitating effect can determine the envelope features even if the envelope mass is

small compared to the core mass.

1.1 Introduction

With the discovery of the extra-solar gas giants, the general problem of the planet for-

mation has considerably grown in complexity over the last decade. However, a global

theoretical overview of the properties of the giant planets, irrespective of the parent pro-

toplanetary disc or the total mass of the giant planet, is still missing.

In the nucleated instability hypothesis, envelopes of giant planets are thought to be formed

as a consequence of accretion of solid bodies forming their cores. To determine the en-

velope mass corresponding to a given core, static protoplanetary models have been con-

structed (e.g. Perri and Cameron, 1974; Mizuno, 1980; Stevenson, 1982).

6
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If the envelope is modelled including detailed energy transfer and if the outer part of the

envelope is radiative, and for standard assumptions about nebula conditions, it has been

found that there is an upper limit for the masses of static envelopes and therefore for the

total mass of a proto giant planet. This upper limit in core mass - the critical mass -

was found to be insensitive to nebula conditions, but to weakly depend on dust opacities

(Mizuno, 1980) and on the rate at which the core (solid body) is accreted (Stevenson,

1982).

Even the largest static critical masses are typically more than a factor of ten smaller than

Jupiter’s mass (see Mizuno, 1980; Stevenson, 1982; Wuchterl, 1991b; Ikoma et al., 2001).

The nondependence of the critical mass on nebula conditions disappears when the outer-

most parts of the protoplanetary envelopes become convective, which happens for nebula

properties which are well within of proposed solar nebula conditions (Wuchterl, 1993).

Envelope masses of such protoplanets range between 6 and 48 Earth masses (M⊕) but

hydrostatic models alone are unable to reproduce a Jupiter-mass protoplanet. Therefore

dynamical and/or quasi-hydrostatical effects should play an important role in formation

of gas giants.

There are a number of incompletely studied processes (e.g. the formation, evolution, and

stability of the protoplanetary disks, the dust growth, the planetesimal formation, etc. )

that are relevant for the general problem of planet formation. Their complexity makes a

piecewise approach necessary in studies of planet formation. An alternative approach is

to study the final outcome, i.e. the possible and probable end-states of the process. In

that context, we present an idealized road-map of all hydrostatic states, in order to pro-

vide insight when analyzing the complex behavior of hydrodynamic and quasi-hydrostatic

models with detailed microphysics. In addition, this work aims to clarify the concept of

the critical core mass necessary to permanently attract gas of the protoplanetary nebula

to a terrestrial-planet-like heavy element core.
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1.2 Model

1.2.1 Motivation

Within nucleated instability theory, the formation of giant planets includes many possible

scenarios for protoplanetary cores and their respective envelopes. Those range from small

planetoids embedded in dilute protoplanetary nebulae to present-day-Jovian-like cores of

several M⊕ squeezed by some Mbars of metallic H2-He mixtures (Guillot, 1999). To date,

many investigations have been made into the evolution of protoplanets, both hydrostati-

cally (Bodenheimer et al., 2000; Ikoma et al., 2001), (for review see Wuchterl et al., 2000)

and hydrodynamically (e.g. Wuchterl, 1991a,b, 1993). In these studies, ’the evolution’ of

particular planets is followed, but not much is known about the evolution of all possible

protoplanets. Therefore, it is somewhat difficult to frame the detailed solutions of previous

investigations within a global perspective.

We follow the thermodynamical approach that was used by (Stahl et al., 1995) to investi-

gate the coreless equilibria of constant mass, isothermal gas spheres, and the nature of the

Jeans instability. We also expand on the work of (Sasaki, 1989), who studied isothermal

protoplanets in the minimum mass solar nebula (MMSN). In our model the total mass

of the protoplanet and the density of nebula cloud, in which the protoplanet is embed-

ded, are not prescribed. In leaving these as output variables, and starting only with the

(heavy-element) core mass and the density of the envelope gas at the core’s surface, we

aim for a complete classification of all hydrostatic equilibria. This classification should

contribute in clarifying whether multiple planetary equilibria exist for given nebula con-

ditions and how protoplanetary models relate to gas giants, both inside and outside of

the solar system.
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1.2.2 Model Assumptions

We approximate the protoplanet as a spherically symmetric, isothermal, self-gravitating

classical ideal gas envelope in equilibrium around a core of given mass. This gaseous

envelope is that required to fill the gravitational sphere of influence, approximated by the

Hill-sphere:

rHill = a 3

√
Mplanet/3M?, (1.2.1)

where a is the orbital distance from a parent star. With mean molecular weight of

µ = 2.3 10−3 kg mol−1, protoplanetary envelopes, as well as the nebula, are roughly

approximated by a hydrogen-helium mixture. The protoplanet’s heavy-element-core is

represented by a rigid sphere of uniform density of %core = 5500 kg m−3.

The nebula temperature profile is taken according to (Kusaka et al., 1970; Hayashi

et al., 1985), cf. Table 1.2. The nebula density structure is not apriori determined, but,

for critical core mass determination, nebula densities agree with those from (Kusaka et al.,

1970) for a = 1 and 30 AU, and from (Hayashi et al., 1985) for a = 5.2 AU, cf. Table 1.2.

It has been shown that the critical core mass values have only a weak dependence on the

nebula density (cf. Sect. 1.3.9), therefore choice of the nebula density is not critical.

1.2.3 Model Equations

The envelope is set in isothermal hydrostatic equilibrium, with spherical symmetry, and

as such is described by:

dM(r)

dr
= 4πr2%(r), (1.2.2)

the equation of hydrostatic equilibrium:

dP (r)

dr
= −GM(r)

r2
%(r), (1.2.3)
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and the equation of state for an ideal gas:

P (r) =
<T

µ
%(r). (1.2.4)

M(r) is defined as the total mass (core plus envelope) contained within the radius r:

M(r) = Mcore +

∫ r

rcore

4πr′2%(r′) dr′, (1.2.5)

where r is the radial distance measured from the core center and % is the envelope gas

density at radial distance r.

1.2.4 Boundary Conditions

The total mass of the protoplanet is defined as:

Mtot = Mcore + Menv = M(rout) (1.2.6)

with

M(rcore) = Mcore. (1.2.7)

The inner and outer radial boundaries are:

rin = rcore = 3

√
Mcore

4
3
π%core

and rout = rHill. (1.2.8)

An additional boundary condition at the core surface is:

%env(rcore) = %csg. (1.2.9)

This model, together with the specified assumptions and boundary conditions, is suf-

ficient to completely determine a single model-protoplanet. The total mass and nebula

density at rHill (gas density at protoplanet’s outer boundary) are results of the calculation.

1.2.5 Solution Procedure

The total protoplanetary mass is obtained by integrating outward from rcore to rHill(Mtot),

starting with r0
Hill = rHill(Mcore) and iterating rHill(Mcore + Menv).
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Figure 1.1: Envelope mass solution manifold. Environmental parameters for this manifold
are set to a=5.2 AU, and T=123 K. Each point on the surface gives the mass of the
protoplanet’s envelope for given Mcore and gas density at core surface, %csg. Models with
different initial parameters generally connect to different nebulae. Several different regions
are easily discernible: I - flat slope with gradient of 1, for the region [-1,2] in log Mcore

and [-12,6] in log %csg; II - flat slope with gradient of 0.5, roughly encompasses [4-6,8]
in log %csg, and all log Mcore; III - ’base of the island’, [-8,-1] in log Mcore and [-12,-6] in
log %csg; IV - ’island’, [-8,-1] in log Mcore and [-6,4-8] in log %csg (cf. Fig. 1.2).
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Table 1.1: Symbols

Symbol† Meaning

a [AU] orbital distance
G = 6.67259 10−11 gravitational constant
µ = 2.3 10−3 mean molecular weight
Mcore predefined core mass
Menv envelope mass
Mtot total mass
M(r) total mass interior to radius r
M¯ = 1.989 1030 solar mass
M⊕ = 5.976 1024 Earth mass
rcore core radius
rHill Hill sphere radius
< = 8.31441 molar gas constant
%core = 5500 predefined core density
%csg envelope gas density at core surface
%env envelope gas density
T (a) nebula gas temperature

† SI units used unless otherwise specified

Integration is performed from the core surface to the Hill radius, using the Maple 6

software (e.g. Garvan, 2001), with the Fehlberg fourth-fifth order Runge-Kutta method.

1.3 Results

1.3.1 Solution Manifold

In order to cover as many hydrostatic solutions as possible, the system of equations 1.2.2,

1.2.3, and 1.2.4 is solved for a wide range of parameters Mcore and %csg. The set of all

solutions for this range constitutes the solution manifold. Figure 1.1 shows the solution

manifold for a protoplanet whose orbital distance corresponds to the position of proto-

Jupiter according to the Kyoto-model of solar system formation (Hayashi et al., 1985).

The manifolds with orbital parameters (a, T ) of proto-Neptune and proto-Earth have
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Table 1.2: Manifolds

Orb. param. (a, T ) (1, 225) (5.2, 123) (30, 51.1)

MMMSN
core,crit/[M⊕] 0.1524 0.0948 0.0335

Mmax
env /[M⊕] 21 96 380

Critical core mass increases for smaller orbital distances because of (in order of
importance): the higher gas temperature (cf. Sect. 1.3.8 and 1.3.10), the smaller
Hill sphere (cf. Sect.1.3.8), and the higher densities of the reference nebulae (taken
from the minimum mass solar nebula models of (Kusaka et al., 1970; Hayashi et al.,
1985)).

Figure 1.2: Manifold regions: I - compact non-self-gravitating envelopes, II - compact
self-gravitating envelopes, III - uniform non-self-gravitating envelopes, IV - uniform self-
gravitating envelopes. The border of the region IV somewhat depends on the choice of
the surrounding nebula (cf. Fig 1.12); we use here a value from the (Hayashi et al., 1985)
minimum mass solar nebula model.

similar morphologies. It should be reiterated that the solution set contains all qualitatively

different protoplanetary models at a particular orbital distance; not just for a particular

nebula, but for any nebula - from a dense gravitationally-just-stable clouds to a near-

vacuum space.
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1.3.2 Manifold Regions

Several distinct regions exist in the parameter space of the solution manifold (Fig. 1.2),

and they can be examined from two complimentary perspectives. One way is to use

gas density at the core surface, %csg, as an independent variable (eg. Fig. 1.3), and the

other is to use the nebula gas density, %out (eg. Fig. 1.4). While %out is more physically

intuitive, %csg maps out region IV of Fig. 1.2 more clearly, and is more efficient in terms

of representing the entire manifold.

Figure 1.2 divides the solution manifold into four distinct regions, depending whether the

solution is compact or uniform and self-gravitating or not. Figures 1.3 and 1.4 point to

the existence of the four possible regimes for a planet;

1. ‘mature telluric planet’ (region I): envelope mass is a linear function of %out, and

%csg.

2. ‘mature giant planet’ (region II): envelope mass weakly drops with %out (Menv ∝
%−0.005

out ).

Menv ∝ %0.5
csg is weaker than for the ‘mature telluric planet’ region. ‘Nebula’ densities

(%out) are so low that they may well be considered vacuous.

3. ‘nebula’ (region III): envelope mass is a linear function of %out, and %csg.

4. ‘protoplanet’ (region IV): envelope mass is a non-trivial function of %out or %csg.

Borders between regions are drawn using morphological features of the envelope mass

properties - zero curvature (transition from positive to negative curvature) for border

along the protoplanet region, and with ∂M/∂%cs = 0.75 for the border between the two

compact regions.
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Figure 1.3: Demonstration of the self-gravitating effect for sub- and super-critical cores:
comparison of cuts through two manifolds - with- (M = M(r) in Eq. 1.2.3) and without-
(M = Mcore) the envelope’s gravitating effect, each for two core masses. Cuts are for
a = 30 AU and T = 51.1 K. Circles and squares represent the envelope mass of the
subcritical core, calculated for M = M(r) and M = Mcore in Eq. 1.2.3, respectively.
White and black triangles have the same meaning but for the supercritical core. Labels
without arrows correspond to manifold regions from Fig. 1.2, while labels with arrows
mark interfaces between regions. D corresponds to the ’divergent wall’ which surrounds
region IV (cf. Fig 1.1). Self-gravitating envelopes with M = M(r) in Eq. 1.2.3 equation
have a larger envelope mass than the corresponding envelopes with M = Mcore in Eq. 1.2.3
(cf. Fig. 1.6).

1.3.3 Self-Gravity Effect

The key effect, which is responsible for the manifold morphology as observed in Fig. 1.1,

can be described as a self-gravity of the protoplanet’s envelope. Keeping in mind the

hydrostatics of the model, and the fact that the surrounding nebula is not prescribed,

one can see that self-gravity reduces envelope mass for given core surface pressure, i.e.

envelope mass would be larger if there were no self-gravitating effect (Fig. 1.3).

The envelope’s radial gas density profile is shaped through the interplay of inward

gravitational force and outward gas pressure. If the envelope mass is small compared

to the core mass, gravitational force can be approximated as arising from the core’s

gravitational potential only. Once the envelope mass is comparable to (or greater than)
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Figure 1.4: Envelope mass as a function of the nebula density %out. Labels are the same
as in Fig. 1.3. Lines connect states with increasing %csg. Note the strong dependence of
%out on the envelope mass, and a non-trivial behavior of the Menv(%out) for the region IV
(enlargement in Fig. 1.5).

Figure 1.5: Enlargement of the boxed region of Fig. 1.4, isothermal curl regularized with
the finite-density core; ‘-1.25’ - black squares represent protoplanets with first subcritical
Mcore line on the mesh of Fig. 1.1 and arrow points at the black square with highest Menv,
DS - two protoplanetary states with the largest envelope mass in the manifold, but with
typically very different %csg (cf. Sect. 1.3.9); in and out curves are the consequence of the
core. The smaller the core, the closer the in and out curves are. Figure is corresponding
to a V-U plane for the protoplanets (see Sect. 1.3.5 for further discussion).
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the core mass, they both contribute to gravitational potential, making its gradient steeper

and, in effect, reducing the envelope mass. As a consequence, the self-gravitating envelope

connects to a nebula different than the one which is in balance with the envelope in the

absence of the self-gravitating effect. Further discussion of the role of self-gravity can be

found in Sect. 1.3.5.

1.3.4 Two types of envelope equilibria

The solution manifold (Fig. 1.2) contains two basic types of envelope equilibria (Fig. 1.6):

1. uniform, or quasi-homogenous envelope: density of the envelope gas drops weakly

with increasing radial distance, keeping the distribution of mass more or less uniform

throughout the entire envelope; ∂Menv/∂rout > 0

2. condensed, or quasi-compact envelope: typically small, but very dense gas layer

is wrapped around the core, at larger radii further out gas density is very low;

∂Menv/∂rout ≈ 0

This is reminiscent of a similar equilibria, found by (Stahl et al., 1995), for constant mass

coreless ’Van der Waals’ gas spheres.

If an envelope’s mass is much smaller than the core mass, the radial profile of gas density

is simply an exponential function, well approximated by :

P (r) = P0 exp(− µ

<T
GM(r)(

1

rcore

− 1

r
)). (1.3.1)

If (M(r)−Mcore) ¿ Mcore, then Eq. 1.3.1 reduces to the barometric formula.

1.3.5 Differences: Isothermal Coreless Gas Spheres vs. Isother-

mal Protoplanets

The curl in Figs. 1.4 and 1.5 is reminiscent of a similar feature found for the isothermal

coreless ideal-gas spheres (e.g. Schwarzschild, 1958, § 13) represented in the U-V plane.
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Figure 1.6: The uniform, compact and self-gravitating profiles. The uniform self- grav-
itating profile resembles the non-self-gravitating one until the envelope mass becomes
comparable to the core mass. At this part the density profile changes to %env(r) ∝ r−2.

Similarity follows from the definition of U and V quantities:

U =
r

M(r)

dM(r)

dr
=

4πr3%

M(r)
= 3

%

M(r)/(4
3
πr3)

(1.3.2)

V = − r

P

dP

dr
=

%

P

GM(r)

r
=

3

2

GM(r)/r
3
2
P/%

(1.3.3)

and from the fact that the mean density of the total object for our model is always the

same, as implicitly defined through Eq. 1.2.1.

Unlike the singular isothermal sphere - with an infinite pressure at the center, our

protoplanetary model has a solid core of uniform (and finite) density at its center. This

will result in the departure from the potential of the coreless isothermal sphere - instead

of %(r) ∝ r−2 structure, the envelope gas close to the core surface will obey a form of

barometric law (c.f. Eq. 1.3.1).

If the mean envelope density at lower stratifications is comparable to the the core density,

an ‘effective’ core will shorten the characteristic length-scale of the potential, making the

exponential profile of the barometric-law-like profile even steeper. For the appropriate

effective core, the outer stratifications will exactly match the outer stratifications of the

solution which has the gas density at the core surface much smaller than the core density
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(cf. Fig. 1.14). Those profiles will connect to the same nebula density, but will have a

slightly different envelope mass, due to the difference in the profile of the inner stratifi-

cation. Therefore, a curl from Fig. 1.5 will have two branches - ‘in’ (the solution with a

non-self-gravitating inner stratification) and ‘out’ (the solution with an effective core).

The smaller the core mass, the sooner will the profile connect to the ‘r−2’ structure, thus

smaller the difference in the envelope mass between the pairs of solutions, and the closer

will ‘in’ and ‘out’ branches in Fig. 1.5 be.

The fall off of gas density with increasing radius in the self-gravitating part of the

envelope can be approximated by %env(r) ∼ r−2 (cf. Fig. 1.6, self-gravitating profile), as

expected in the theory of stellar structure for a self-gravitating isothermal sphere of ideal

gas (e.g. Shu, 1992, § 18). Small deviations from r−2 are due to the finite amount of mass

needed for the envelope to become self-gravitating, which produces a slight imbalance

between the self-gravity and the amount of mass M(r). No similar effect is observed for

coreless, isothermal gas spheres (Stahl et al., 1995).

Depending on the fraction of the self-gravitating part of the envelope and of the core

mass, this wavelike deviation can extend to the outer boundary, or can be attenuated

deep within the envelope.

1.3.6 Estimating the Applicability of the Ideal Gas

We made two major assumptions while constructing our model - that the gas is ideal, and

that the heat is instantaneously radiated away, i.e. the gas is isothermal. In Sect. 1.3.7

we examine the isothermal assumption, and we deal with the ideal gas in this section.

In order to keep the protoplanet in an equilibrium with the surrounding nebula, we

have set the envelope gas temperature equal to the nebula temperature for the appropri-

ate orbital distance. Therefore, we compare different equations of state at the envelope

temperature. In addition to ideal gas, we take (Saumon et al., 1995) EOS, (Carnahan

and Starling, 1969) EOS, as well as the completely degenerate electron gas.
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Figure 1.7 shows that for the gas densities up to about 40 kgm−3, ideal gas, Saumon-

Chabrier-van Horn, and Carnahan-Starling EOS agree to better than a percent. For higher

densities Saumon-Chabrier EOS shows additional non-ideal effects, while Carnahan-Starling

EOS exhibits similar behavior for densities larger than 200 kgm−3. We can also see that

the electron degeneracy does not contribute to the pressure at least till the point where

Saumon-Chabrier EOS departs from ideal-gas behavior.

However, in general we see that the ideal gas is an excellent approximation for our

model, for the better part of the envelope gas density range. Certainly, there are also

models where densities are high enough for significant non-ideal effects, but typically for

the protoplanets in our model those high density envelope regions are restricted to areas

close to the core, while the rest of the envelope will be well approximated with the ideal

gas. We can see on Fig. 1.8 that if we use e.g. Carnahan-Starling EOS, numerical details

will be changed, but the qualitative picture will remain the same. This is also true for

Saumon-Chabrier EOS, which is work in preparation by C. Broeg. The ideal isothermal

gas will not be a good approximation for the compact envelopes, which are typically

associated with the giant planets in the late stages of their evolution. Using our model,

we can show that a protoplanet will have a compact envelope under certain conditions.

What we can not do with this model is to obtain a quantitatively correct picture of such

a compact envelope.

Additionally, Fig. 1.14 shows why the choice of EOS is not critical for the qualitative

picture: Although the non-ideal effects might change the density stratifications of the

compact inner parts, each solution which is not self-gravitating in it’s inner (barometric-

law like) part, will have a counterpart solution with an effective core. Properties of the

effective core will be dictated by the EOS, but its effect on the scale-height will remain

the same.
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Figure 1.7: Pressure as a function of density, for T = 123 K. Black circles represent the
ideal gas, squares are for the Carnahan-Starling EOS, and triangles are for the Saumon-
Chabrier EOS. This figure also shows that the completely degenerate electron gas (stars)
is not a good assumption for this (%, T ) parameter range.
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1.3.7 Estimating the Applicability of the Isothermal Assump-

tion

In the previous section we showed that ideal gas is a good approximation for most of the

parameter range we use. The validity of the isothermal assumption is examined below.

By analogy with the pressure scale-height, a temperature scale-height of a radiative

stratification can be defined as:

HT =
HP

∇rad

= − ∂r

∂ ln T
(1.3.4)

where

HP = − ∂r

∂ ln P
=

P

%

r2

GM(r)
(1.3.5)

for ideal gas and hydrostatic equilibrium, and

∇rad = −∂ ln T

∂ ln P

∣∣∣∣
rad

=
3 κL P

4 π a c G M(r) T 4
, (1.3.6)

where a is the radiation constant, κ is the gas opacity taken to be 0.1 m2 kg−1, c is the

speed of light, and L is the core luminosity due to the planetesimal accretion rate of

10−6 M⊕ yr−1.

The temperature scale-height corresponds to the length-scale of a radiative giant-protoplanet

over which the envelope temperature drops by a factor of 1/e. The specific temperature

scale-height HT(r)/rHill evaluates the ratio of the thermal length-scale to the radial extent

of the entire protoplanetary envelope, at a position r. Evaluated at r = rHill, HT(rHill) is

the global estimate of the thermal scale-height of the protoplanet. Figure 1.9 shows that

the isothermal assumption is valid for large portions of the manifold regions III and IV

(cf. Fig. 1.2), where HT(rHill)/rHill has values much larger than unity. These envelopes

have a relative thermal scale-height above unity for at least the outer 90% of the envelope.

Therefore, even though the small innermost envelope region is probably non-isothermal,
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the protoplanet should be well represented by the isothermal gas.

Close to giant-protoplanet’s critical core mass (e.g. log Mcore = −1.25 in Fig. 1.4), HT/rHill

is expected to be of order unity and the isothermal assumption breaks down. Compact

solutions (regions I and II from Fig. 1.2, and high %csg solutions in Fig. 1.9) have very large

HT/rHill, indicating that nearly vacuous space, around the compact envelope, is nearly

isothermal. Detachment from a protoplanetary nebula could represent either hydrody-

namically active protoplanets, or the collapsed gas giants with cleared protoplanetary

nebula (i.e. mature giant planets). In both cases objects are expected to be deep in the

non-isothermal regime. The radial profiles of the compact objects will change if a detailed

energy transport is included, but they will nevertheless remain compact. A comparison

of the Jupiter’s radius with the one of our model planet’s (of equivalent mass and Tenv

of 5000 K, estimated to be representative of Jupiter’s average temperature from (Guillot,

1999) shows that, with rcompact =6.63 · 107 m, our model falls short less than 10% of

reproducing the radius of the real gas giant.

In the context of Jupiter’s potentially rapid formation (order of 106 years), it could be ar-

gued that the core accretion rate should be even higher. However, HT/rHill is proportional

to the inverse of Ṁcore, and even if it is set to 10−5 M⊕ yr−1, the validity of the isothermal

assumption is still appropriate for the regions III and IV of Fig. 1.2. Indeed, such high

core accretion rates are applicable for cores comparable to M⊕ (i.e. cores at late stages

of giant-protoplanet’s evolution), and are surely an overestimation for the younger cores

(e.g. for the cores of 10−3 M⊕), making the case for the isothermal regime even more solid.

However, because of the simplicity of our model, the results are only qualitative, while

quantitatively correct values would only be accessible through a more elaborate model.

HT/rHill shows that close to the critical core mass, there are non-isothermal effects.

But the basic isothermal picture is valid for most of (quasi-homogenous part of) the man-

ifold. It even appears that the possible transition from homogenous to compact state can

be initiated within the isothermal regime.
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Figure 1.9: Specific temperature scale-height as a function of the density at the core
surface, for different subcritical core masses. Protoplanetary models with cores of -8
(black circles), -5 (stars), and -3 (crosses) in logarithmic M⊕ units have HT(rHill)/rHill

much larger than unity. This justifies the isothermal assumption for the manifold regions
III and IV.

1.3.8 Manifolds and Environment

Manifold solutions are dependent on four environmental parameters: the gas temperature

T of the protoplanet (and of the surrounding-nebula), the orbital distance a from the

parent star, the mean molecular weight µ, and the mass of the parent star M?. These

parameters influence the balance of the two forces that determine the radial density struc-

ture - the outward force arising from the gas pressure, and the inward gravity force; T

and µ are connected with pressure through Eq. 1.2.4, while a and M? determine the

Hill-sphere, i.e. the volume of the envelope mass.

Due to the simplicity of the model, the impacts of T and µ on the solutions will be dis-

cussed together, as will the influence of a and M?. In reality, these parameters will have

very different impacts.

Unless otherwise specified, the reference parameters throughout the current section

are: log(Mcore/M⊕)=-5, a = 5.2 AU, Tenv = 123 K, and µ = 2.3 10−3 kg mol−1.
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Figure 1.10: Envelope mass solutions as a function of gas density at the core surface, for
gas temperatures of 100, 500, 1000, 5000, and 10000 K. Change of T has no influence on
the envelope mass of the non-self-gravitating regions, while same change of T will produce
a significant effect for protoplanets in self-gravitating regions.

Temperature and Mean Molecular Weight

Although this model is isothermal, the choice of gas temperature influences the solution

manifold quantitatively. From Eq. 1.2.4 it is clear that pressure relates linearly to tem-

perature. Since the pressure force counterbalances the gravitational force, protoplanets

with hotter envelopes require more gravity (and thus more mass) to have a hydrostatic

solution. The value of the critical core mass is a good example of the quantitative in-

fluence of temperature. For example, the critical core mass for a 123 K protoplanet in

Jupiter’s orbit is 0.0948 M⊕, while the critical core mass value for a 5000 K case is 24.5

M⊕.

Figure 1.10 shows that, for subcritical cores and small gas densities at the core surface

(region III in Fig. 1.2), gas temperature has virtually no impact on envelope mass. Since

the envelope mass is small compared to the core mass, the envelope parameters (e.g.

Tenv) have no influence on the hydrostatic force balance via gravity feedback. On the

contrary, for envelopes in which self-gravity shapes the radial structure (regions IV and
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Figure 1.11: Envelope mass solutions as a function of gas density at the core surface, for
orbital distances of 0.05, 0.1, 1, 5.2, and 30 AU. Enlargement: Transition from uniform
to compact envelope solutions is more abrupt for protoplanets at large orbital radii. This
is a consequence of larger Hill-sphere for outer protoplanets.

II in Fig. 1.2), the envelope mass is significantly affected by different Tenv.

The scaling law which relates manifolds of various temperatures is discussed in Sect. 1.3.10.

As previously mentioned, this simple model does not incorporate an energy transport

equation, nor does it account for the gas and dust opacities. Therefore, a change in µ

can not be distinguished from the corresponding change in T , and will not be further

discussed.

Orbital Distance and Star Class

Orbital distance, together with the masses of the protoplanet and the parent star deter-

mine the protoplanet’s gravitational sphere of influence, the so called Hill-sphere. Since

the available volume for the protoplanet’s envelope scales with the cube of the orbital

distance (see Equ. 1.2.1), the strength of the envelope’s self-gravitating effect depends

critically on the distance from the core to the parent star (see Fig. 1.11). Therefore, in

order for the inner protoplanets to have (at least partly) self-gravitating envelopes, the gas
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density at the core surface must be larger than for the corresponding outer protoplanets.

For solutions with compact envelopes (right side of Fig. 1.11 and enlargement) the orbital

distance has no impact on the envelope mass, since the radii of the compact inner part

are typically several orders of magnitude smaller than their respective Hill-spheres.

The transition from a uniform self-gravitating to a compact envelope is characterized by

a considerable drop in the gas density for the outer envelope stratifications. In addition,

protoplanets close to the parent star have relatively small Hill-radii and most of the en-

velope mass can be found in the core proximity. Therefore, the transition from uniform

to compact envelope for protoplanets close to the parent star is less abrupt than for more

distant protoplanets, as can be seen in the enlargement of Fig. 1.11.

Varying the mass of the parent star is equivalent to changing the orbital distance of

the protoplanet, provided that the gas temperature stays the same. It follows from Eq.

1.2.1 that δa−3 = δM?, e.g. changing the orbital distance of the protoplanet from 5.2

AU to 1 AU is equivalent to changing the mass of the parent star from M? = 0.21 M¯

to M? = 30 M¯. It remains to be seen if this equivalence will hold for a more com-

plex model, because the nebula properties will likely change in accordance to the known

mass-luminosity relation as M? is varied.

1.3.9 Static Critical Core Mass

There are several definitions of the critical core mass currently in use. The critical core

mass concept has been introduced by various investigators (e.g. Perri and Cameron, 1974;

Mizuno et al., 1978; Mizuno, 1980; Bodenheimer and Pollack, 1986; Wuchterl, 1991a). As

a starting point, we choose here a definition suggested by (Wuchterl, 1991a), for ’static

critical core mass’: No more static core-envelope models with increasing core mass exist

at the critical mass.

This definition is valid along a (time) sequence of protoplanetary models with increasing

Mcore. It is only along such a sequence, in the context of the static models, that a time
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evolution with growing cores can proceed. Essentially, the static critical core mass is

the largest core mass for a static protoplanet that can be embedded in a given nebula,

characterized by a nebula gas density, a temperature, and a distance from a parent star.

For the (a = 5.2 AU and T = 123 K) manifold this means that, among the solutions

with %env(rHill) = 1.4 10−8 kg m−3 (defined for the minimum mass solar nebula, (e.g.

Hayashi et al., 1985), the solution with the largest core mass determines the static crit-

ical mass (Fig. 1.12, the innermost solid line). This gives static critical core mass of

MMMSN
core,crit = 0.0948M⊕.

Figure 1.12 shows that the value for critical core mass exhibits a generally weak depen-

dence on the density of the surrounding nebula, so the choice of %MMSN
out from different

nebula models is not critical. For the very dense nebulae (around 10−6 kg m−3) and de-

pending on the choice of the solution branch (cf. Sect. 1.3.9), the values for the local

critical core masses can span several orders in magnitude even for the same nebula.

The critical core masses for different manifolds are presented in Table 1.2, and are found

to depend on the parameters that affect hydrostatic balance (cf. Sect. 1.3.8).

By comparing the Figs. 1.1 and 1.2 it follows that the natural choice for the global

static critical core mass, one which is valid for the whole manifold, should be the core of

the protoplanet which is at the interface of all four manifold regions (c.f. Fig. 1.2). The

model at the interface has a minimum in the envelope mass, for a manifold cut along

the constant %csg value. The interface is also an inflection point, for a manifold cut at a

constant Mcore. The conditions for the global static critical core mass thus are:

∂Menv

∂Mcore
= 0 ∂2Menv

∂M2
core

> 0

∂Menv

∂%csg
= 0 ∂2Menv

∂%2
csg

= 0
(1.3.7)

Since the numeric values for the global critical core masses are very close to the values

of the critical core masses from the definition suggested by (Wuchterl, 1991a), we do not

present the global numerical values separately.
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Figure 1.12: Solution branches - isobars for %env(rHill) = %out - for (a = 5.2 AU and
T = 123 K) manifold: standard solar nebula solution branch is represented by innermost
solid line; an enhanced nebula with the %out = 10−6kg m−3 nebula (dashed lines) has
multiple solution branches; each solution branch has it’s own maximum core mass, hence,
local critical mass

The values obtained for critical core masses in this model agree well with those of

Sasaki (Sasaki (1989)), who used a similar set of assumptions. However, such isothermal

values are significantly smaller than today’s commonly accepted critical mass values,

obtained with inclusion of detailed energy transfer, that are typically between 7 and 15

M⊕. The reasons for this are two-fold. Firstly, we use the equation of state for ideal gas.

Secondly, the temperature of the isothermal gas is taken from nebula models, hence the

nebula temperature is the temperature of the entire protoplanet. This is certainly a lower

limit for the realistic temperature of the interior of the protoplanet. Larger critical core

mass values are obtained if the gas temperature is in the range of the temperatures for the

interior of gas giants modelled with detailed energy transfer (cf. Sect. 1.3.8). Clearly, the

correct determination of critical core mass requires temperature structure, but emphasis

in this work was not on quantitative details, but rather on global qualitative features.
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Figure 1.13: For nebula density enhanced relative to minimum mass solar nebula, even
more than two hydrostatic equilibria could exist; M - protoplanetary solutions with
log Mcore/[MEarth] = −2 that fit into %out = 10−6 kg m−3 nebula; DS - double solutions -
special case of multiple solutions, cf. Figs. 1.5 and 1.15; S - protoplanetary solutions with
same core, whose envelope fits into minimum mass solar nebula.
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Figure 1.14: Density profiles for the solutions which fit into the same (10−6 kgm−3)
nebula. These solutions are labelled with M in Fig. 1.13.

Local Critical Core Mass

From Figs. 1.12 and 1.13 one can see that, for each subcritical core immersed in a nebula,

there are at least two solutions permitted. However, if one considers only the time-

sequence of hydrostatic models with a growing core, it is clear that solutions with higher

density at the core surface can not be reached.
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The situation is more complicated if the protoplanet is embedded in a denser pro-

toplanetary nebula. Our model clearly predicts multiple solutions for certain sets of

parameters (Fig. 1.13). Instead of one solution-branch for a given nebula cloud (with two

solutions for each core, as for a minimum mass solar nebula), several solution-branches

are possible, again each with two solutions for a specific core (Fig. 1.12, dashed solution

branches for %out = 10−6 kg m−3). Multiple solution-branches are enabled by envelope

self-gravity (cf. Fig. 1.14) and are due to tidal restrictions imposed by the parent-star via

rHill (cf. Fig. 1.3, region IV).

Each solution-branch has one critical core mass, beyond which there is no static solu-

tion, for a sequence of hydrostatic models with increasing core mass. For the minimum

mass solar nebula this means one critical core mass, in the way critical core mass was sug-

gested by (Wuchterl, 1991a). For some denser nebulae, however, the existence of several

branches implies several - local - critical core masses, where solutions beyond the critical

core mass of the branch are unavailable locally. After reaching the local critical core mass,

the planet could, in principle, continue evolution by ‘jumping’ to another branch. Similar

behavior, for certain sets of initial parameters, is observed by one of us in hydrodynamical

models. The local critical core mass satisfies the above definition but not Eq. 1.3.7 for

the global critical core mass.

Double Maxima

A special case of multiple solutions can be seen in Figs. 1.5, 1.13, and 1.15 as double

peaks in envelope mass. For every (subcritical) core, two special solutions, which fit into

the same nebula cloud (i.e. have same %(rHill)) and have almost exactly the same envelope

mass (equal to one part in 104, or better), are found to exist. Usually these two solutions

have a very similar stratification in the outer parts of the protoplanet’s envelope, but deep

inside the protoplanet their radial structure is quite distinct (cf. Sect. 1.3.5).

Supercritical (in the newly proposed, global sense) cores do not posses such a feature,
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Figure 1.15: Mass and density radial structure of the special case of multiple solutions,
where two protoplanets have same core, almost same envelope mass, connect to same
nebula, but have different radial structure. These solutions are labelled with DS in
Fig. 1.13.

because density profile always effectively goes to zero long before Hill radius is reached.

Therefore there is no significant contribution to the envelope mass in the outer stratifi-

cations, and envelope mass increases monotonically with gas density at core surface (cf.

Fig. 1.3).

Envelopes with lower gas density at core surface, %low
csg , (Fig. 1.15) have a maximum

possible mass (for the corresponding manifold) because the envelope gas density at the

core surface is low enough to ensure uniformity for the major part of the radial struc-

ture. Consequently, envelope density does not substantially decrease from the core-surface

value. At the same time, %csg is high enough to enable significant mass contributions from

the outer parts of the envelope, where the volume (and therefore the mass, for a given

density) per unit radius, is the largest. Values for such maximum envelope masses are

tabulated in Table 1.2, page 13.

Envelopes with higher %high
csg build up the self-gravitating effect (which starts as soon as

Menv ≈ Mcore) very close to their core, i.e. within a rcore. Because of the very strong

self-gravitating effect (Menv ≈ 3Mcore for innermost regions), the radial density fall-off

close to the core (Fig. 1.15) is strong.
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A new, effective core is formed from the dense envelope-gas-layer wrapped tightly around

the core. In this case, the envelope density distribution resembles one with the core (and

the radius) of this effective core. In stratifications where the envelope mass becomes com-

parable to the effective core, another self-gravitating effect changes the radial envelope

density distribution to %env ∝ r−2.

For a particular choice of %high
csg , the envelope density profile in outer stratifications matches

that of %low
csg , thus making the mass of both envelopes almost equal.

1.3.10 Temperature-Mass Invariance

It has been noted that, if mass and distance are measured in a system of appropriate units

(i.e. mass in units of core mass, and distance in units of core radii), solution manifolds

with different temperatures are almost identical, except for a shifting on a core-mass-axis,

according to the relation:

T1

T2

= (
M1

M2

)2/3 (1.3.8)

that can be derived for homologous envelopes satisfying %1(r1/rcore,1) = %2(r2/rcore,2), for

any pair of r1 and r2 such that r1/rcore,1 = r2/rcore,2. In other words, the radial profile

of a certain protoplanet with core mass M1 and temperature T1 will be the same as the

radial profile of another protoplanet with core mass M2 and temperature T2, if equation

1.3.8 is obeyed, and if mass is measured in units of core mass and length in units of core

radii.

This is true for all manifold regions, sub- and super-critical, self-gravitating or not. Note

that in Fig. 1.10 the non-self-gravitating region was not affected with change in envelope

temperature, but relation 1.3.8 does hold even for non-self-gravitating envelopes, since it

connects envelopes with different temperatures and core masses. Fig. 1.10 was plotted

for different temperatures, but constant core mass.
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1.3.11 Critical core and core density

It can be shown that the introduction of gravitational smoothing parameter in the disk-

planet interaction type calculations (e.g. Kley, 1999; D’Angelo et al., 2002), or alternative

procedure with the same effect, is equivalent to drastically reducing the core density.

A manifold with a reduced core density (a problem with ‘soft’ potential) has much

higher critical core mass (of the order of 100 M⊕ already for a smoothing parameter as

small as b ≈ 0.1 rHill!). Also, the transition between the envelope regions is smoother.

On Fig. 1.16 we compare the envelope mass manifold for the models with realistic core

density (%core = 5500 kg m−3) with the analogue for the models with low core density

(%core =1.5 · 10−4 kg m−3), equivalent to the gravitational smoothing parameter b=0.5,

used in most of today’s disk-planet interaction type calculations (e.g. D’Angelo et al.,

2003; Nelson and Papaloizou, 2004). Figures 1.12 and 3.28 show the same comparison

for nebula density manifolds. Note that, for the low core density case, local critical core

mass is a strong function of the nebula density!

Different manifold topography could greatly affect the (correctness of the) dynamics

of the models in the disk-planet interaction type calculations. It is not apriori clear that

computed cases are even in the qualitatively same dynamical regime, as the one in which

would be models with correctly calculated gravitational potential1.

1.4 Discussion and Conclusions

In an effort to obtain a global overview of hydrostatic protoplanetary equilibria, we have

chosen a simple physical model so as to be able to clearly understand the interaction of

competing processes.

Our use of relatively simple physics has several consequences; because the ideal gas

equation of state is used, gas particles are ‘soft’, and can be compressed as much as is

1In fact, in Sect. 3.4.3 we show that the dynamics of low-%core manifold is qualitatively different from
dynamics of realistic-%core manifold
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Figure 1.16: Comparison of the envelope mass manifolds for models with %core =
5500 kg m−3 (right plot) and %core =1.5 · 10−4 kg m−3 (the latter core density being
a typical value used in the disk-planet interaction type calculations). Note the different
manifold topography around the critical core mass (the ‘nose’ of the ‘island’), and the
fact that for low core density manifold critical core mass is higher than 1000 M⊕ (more
than four orders of magnitude higher than for the manifold with the correct core mass!).
Also compare nebula density manifolds, Fig. 1.12 with Fig. 3.28. Raw data for the low
core density manifold courtesy of J. Schönke, AIU Jena.

needed, in effect overestimating the importance of gravity relative to gas-pressure, when

large envelope-gas-pressure is applied. Comparison of the ideal gas EOS to the numerical

Saumon-Chabrier EOS shows disagreement for the log T = 2.1 isotherm and densities

above % = 40 kg m−3. This would indicate that the non-ideal EOS for high-density

effective-cores is needed.

It has been noted that manifold properties are insensitive to variation of orbital dis-

tance a or mass of the parent star M?, as long as aM−3
? = const holds (cf. Sect. 1.3.8).

Also, solutions whose envelope temperature and core mass are obeying relation 1.3.8 are

found to be the same, if appropriate units for mass (i.e. core mass) and length (i.e. core

radius) are used. This indicates the existence of analytic solutions for some envelope
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regimes, through certain dimensionless scaling variables. Such a treatment is, however,

out of the scope of the present work.

The envelope gas temperature is equal to the nebula T throughout the protoplanet,

and that certainly underestimates the thermal pressure and hence reduces the values for

the critical core mass. However, from Equ. 1.3.8, one can show that for a more realistic

estimate of the envelope temperature representative for the young planets (5000 K) critical

core mass values are overestimated (∼ 24.5M⊕), due to envelope isothermality/lack of an

energy transport equation and use of ideal-gas EOS, when compared to canonical critical

core mass values from protoplanetary models with detailed microphysics.

Both the local and the global critical core masses signal the end of the availability of

the hydrostatic solutions, for given nebula conditions. In the case of the local critical core

mass, non-availability holds for a small region of the parameter space around the local

critical core mass, while for the global critical core mass this is true for every core larger

than the critical core mass. The significant difference between the two types of critical core

mass is that, at the global critical core mass (and above), the non-isothermal effects are

crucial in shaping the structure of the protoplanetary envelopes, and are present through-

out the parameter space. These non-isothermal effects are important for determining the

details of the dynamical disk-planet interaction.

The critical core mass values obtained in this model are almost two orders of magnitude

smaller than the canonical critical core masses which incorporate detailed energy transfer.

Thus, if subcritical or just-critical regimes of a dynamical disk-planet interaction are to

be investigated through a model that is locally isothermal, the planet mass should be

appropriately set. Most of the present locally-isothermal disk-planet models (e.g. Kley,

1999; D’Angelo et al., 2002, 2003; Nelson and Papaloizou, 2004) operate with planets

which should be deep in the super-critical regime.

A solution set from our model encompasses solutions that are reminiscent of the planets

in the various stages of evolution (from the small rocks embedded in the dilute nebula to
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the mature planets, as we know them), and of various configurations (the telluric planets

of region I in Fig. 1.2, and the gas giants of region II). The ’nebula’ and ’mature planet’

regimes are the physically intuitive beginning and end phase of the planetary evolution.

However, the ’protoplanet’ regime presents us with an interesting region in the parameter

space, where planet could make the transition from ’infancy’ to ’maturity’. Depending on

the detailed structure and the dynamics of the surrounding nebula, it is easy to conceive

a standard scenario of the planet formation. That is, the accretion of nebula gas onto

a supercritical protoplanet. Other scenarios could be imagined as well, e.g. a massive

protoplanet could release a major part of its envelope to reach the appropriate equilibrium,

or it could dramatically condense its otherwise mostly gaseous envelope. Amounts of the

dust in the environment will doubtless play a very important role in the process.

In conclusion, several important features of the solution set have to be mentioned:

1. Two basic types of the envelope equilibria are found for protoplanets:

• uniform; the density of the envelope gas drops weakly from the core to the

outer boundary

• compact ; the dense gas layer forming an effective core, and a very low, expo-

nentially decreasing, gas density further out

Both types can be self-gravitating or non-self-gravitating, dividing the solution man-

ifold into four distinct regions.

2. As a consequence of the envelope’s self-gravitating effect, a wide range of possible

envelope solutions exists.

3. We have developed a new concept for the global static critical core mass, which

marks the contact point of all four qualitatively different types of protoplanets. This

concept is based on a qualitative change of the envelope properties while considering

a complete set of available solutions (a solution manifold), as opposed to the critical
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core mass definitions which are valid only for a solution subset fitting a particular

nebula.

4. For every subcritical core there are at least two envelope solutions possible (a self-

gravitating one and a non-self-gravitating one) for a given nebula, and for a certain

nebula parameters the number of the possible envelope solutions can be even larger.

Such nebulae also have multiple (local) critical core masses.

5. The global static critical core mass value is shown to decrease with the increas-

ing orbital distance a, mainly because of the decrease in the temperature of the

surrounding nebula.



Chapter 2

Planets and minor bodies

In this Chapter we discuss the low mass planetary boundary, a spin-off from the definition

of the global critical core mass (see Sect. 1.3.9).

2.1 Low-mass planetary boundary

The number of known planets has increased by more than an order of magnitude within

the last decade (for the current list see e.g. Jean Schneider’s ‘Extrasolar Planets Ency-

clopaedia’1). However, additional planets brought in a diversity which has made task of

defining what is a planet all the more difficult. Current working definition of the planet

can be examined on the website of ‘the Working Group on Extrasolar Planets’2 of the

International Astronomical Union.

During the course of our investigation, we have developed a concept for a global static

critical core mass (c.f. Sect. 1.3.9). We make use of this concept to provide a planethood

criterion to distinguish between a planet and a lesser body, such as a planetoid, or an

asteroid. The following discourse should be valid upon assumption that the body in

question fulfills the dynamical planethood criteria (i.e. it is the gravitationally dominant

body in the orbit around a star or a stellar remnant).

1http://www.obspm.fr/encycl/encycl.html
2http://www.ciw.edu/IAU/div3/wgesp/

39



40 Chapter 2. Planets and minor bodies

We argue that an object should not be called a planet if it is not capable to retain its

envelope in case it is connected to a vacuum (i.e. to an empty space, as opposed to the

proto-planetary nebula gas cloud). Therefore, one of the characteristics that a celestial

body must fulfill to be called a planet can be specified as:

A planet will have a core which is supercritical within the appropriate manifold 3. A

minor planet will have a subcritical core.

Supecriticality is used here in a reference to a global static critical core mass, as defined

in Sect. 1.3.9. We go further, and define a ‘giant planet’ as a supercritical core within

the respective manifold for a solar (parent star) gas composition. On the other hand,

a ‘telluric planet’ should be supercritical within the respective manifold for a nitrogen

atmosphere.

We have chosen nitrogen in the case of a telluric planet for several reasons, but we

could have decided for some other gas with similar properties. Here we briefly present

arguments for nitrogen. First and foremost, it is the principal ingredient of the first

planet known to the (hu)mankind. Second, it is substantially heavier than hydrogen or

helium, which appears to be a key property enabling a body significantly smaller than

e.g. Saturn’s core to retain a gas envelope in the open space. Third, the only two other

bodies having atmosphere in the Sol system (excluding the giant planets, off-course) both

have nitrogen in their atmospheres, giving (partial) atmospheric pressure similar to the

one on Earth4.

3‘manifold’ is a complete set of equilibrium states relevant to the planetary environment
4Admittedly, Venus has carbon-dioxide as a main atmosphere constituent, but that could be due to

the ongoing geological process. Besides, the molecular weight of carbon-dioxide is not very different from
the molecular weight of nitrogen and thus would lead to similar classification.
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2.2 Planethood affiliation in the solar system

Why Titan has smelly clouds while Rhea is just an ice-ball

The planethood criterion presented in the previous section, for a distinction between

a planet and a minor planet, should be valid generally, even for a completely realistic

(model-)planet, i.e. for a manifold constructed for any relevant physical planetary envi-

ronment, including all relevant micro- and macro- physics. The last statement assumes

that it is possible to define the critical core mass concept, for such a general manifold.

However, we argue that even an isothermal manifold, as defined in the previous Chap-

ter, will be a decent model to distinguish a telluric planet from a planetoid, in case of

the Solar system. The telluric planets are associated with relatively thin atmospheres for

which an isothermal assumption is a reasonable approximation (within a study of general

properties of the planet). Keeping in mind that the deviation from an isothermal approx-

imation might somewhat change the value of the critical core mass (c.f. Sect. 1.3.10), we

conclude that, within a factor of two, we can use an isothermal manifold as a probe for

the telluric planet criterion in the Solar system.

At relevant isothermal manifold is determined with the appropriate values for: the

orbital distance from the primary, the mass of the primary, the envelope gas temperature,

the mean molecular weight (of the envelope gas), and the solid core density.

We investigated manifolds of all large bodies in the Solar System. Results are summa-

rized in Table 2.2. Besides analyzing manifolds of the known planets, we have also looked

into the planethood criteria for (larger) moons, asking: If present-moon’s primary would

be a star (e.g. see Clarke, 1968), what role the orbiting body would assume?

Bodies, having cores of roughly factor two within the mass of the critical core, are

borderline cases, and their affiliation should be investigated with a more sophisticated

physical model.

It should be noted that if a supercritical object does not have an envelope, and it
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object Mprimary orb. dist. %core Tcs/[K] Mcrit/[kg]‡ Mobj/Mcrit TPC
a/[AU] /[kg m−3] satisfied

Mercury M¯ 0.387 5427 440 2.51 · 1022 13.2 X
Venus M¯ 0.723 5204 737 7.08 · 1022 68.8 X
Earth M¯ 1.0 5515 287 1.91 · 1022 312.8 X
Mars M¯ 1.523 3934 210 1.58 · 1022 40.6 X
Jupiter† M¯ 5.203 5515 153 1.12 · 1022 - -
Saturn† M¯ 9.537 5515 143 1.17 · 1022 - -
Uranus† M¯ 19.19 5515 68 4.47 · 1021 - -
Neptune† M¯ 30.07 5515 53 3.16 · 1021 - -
Pluto M¯ 39.48 1750 44 4.46 · 1021 2.8 X?
Ceres M¯ 2.767 2050 167 1.66 · 1022 0.057 ×
Moon M⊕ 0.00254 3344 250 1.0 · 1022 7.35 X
Io M Í 0.0028 3550 130 1.0 · 1021 89.4 X
Europa M Í 0.004486 3010 103 1.12 · 1021 42.78 X
Ganymede M Í 0.00715 1936 115 2.51 · 1021 59.0 X
Callisto M Í 0.01259 1851 115 3.16 · 1021 34.03 X
Mimas M Î 0.00124 1170 70 2.51 · 1020 0.15 ×
Enceladus M Î 0.00159 1300 70 3.16 · 1020 0.27 ×
Tethys M Î 0.00197 990 86 6.31 · 1020 0.98 X?

Dione M Î 0.00252 1500 87 8.91 · 1020 1.23 X?

Rhea M Î 0.00352 1240 76 1.0 · 1021 2.32 X?

Titan M Î 0.00817 1880 94 2.24 · 1021 60.1 X
Iapetus M Î 0.02381 1974 76 2.69 · 1021 0.73 × ?

Table 2.1: Terrestrial Planethood Criterion (TPC) for Solar System objects. Celestial
bodies are assumed to fulfill TPC if they can keep a nitrogen atmosphere of temperature
Tcs, in a vacuum, orbiting at a distance a from a parent star of mass Mprimary. Solar system
giant planets are supercritical even for a solar composition gas (hence also for nitrogen),
thus we only show the value for the nitrogen-supercritical object, at the present-day
locations of the giant planets. See text for discussion.

† At the locations of gas giants we show a critical core mass for Earth’s density

‡ Data sets calculated with C. Broeg, AIU Jena
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Figure 2.1: Mass manifold for the core density of %core = 1880 kg m−3, Titan’s orbital
parameters a, T , M? = M Î , and µ(N2). Color scale is the outer density. Deep blue color

represents compact envelopes. Core with the mass of Titan is supercritical for nitrogen,
and is fulfilling a terrestrial planethood criterion. Titan can have an N2 atmosphere,
because it is supercritical. See text for further discussion.

could have one according to our classification, there is no contradiction.

This simply means that the significant amounts of nitrogen gas (or any other gas with a

relatively high mean molecular weight) was not available during the formation/evolution

of the body, or has been lost. The body itself could still qualify as a planet, on the

condition that its core is supercritical. For bodies without an atmosphere, we choose the

appropriate manifold temperature from the respective present-day surface temperatures.

The surface temperature of Titan, similar to the average surface temperatures of other

major Saturn’s moons, justifies such a choice.

We present in more detail the manifold for the parameters appropriate for the position

and the environment of Titan. The envelope mass manifold is plotted in Fig. 2.1 and a

manifold for the envelope density at the outer boundary is shown in Fig. 2.2. Compar-

ing those pictures, we see that a 1023 kg core has a compact envelope regardless of the

gas density at the core surface. Such a core always has a hydrostatic envelope solution
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Figure 2.2: Outer density manifold for the core density of %core = 1880 kg m−3, Titan’s
orbital parameters a, T , M? = M Î , and µ(N2). Values bellow 10−10 Pa are plotted as

10−10 Pa. Color scale is the envelope mass.

which connects to the vacuous nebula, and will therefore in principle5 be able to retain

its atmosphere indefinitely. Since Titan’s core mass is larger than 1023 kg, it follows that

it should be able to keep the nitrogen atmosphere, provided it has one. And this is the

case for the real Titan, as we presently see it.

5based on the nature of the hydrostatic equilibrium, i.e. the balance between pressure and gravity
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Hydrodynamic Classification

In Chapter 1 we performed the classification of all possible hydrostatic solutions for a core-

envelope model. This Chapter will try to discriminate stable, i.e. physically significant,

solutions, from unstable ones. Due to intrinsic non-linear nature of the problem, we

felt that a linear stability analysis would not provide a complete picture. Therefore we

decided to use the static profiles, from Chapter 1, as initial states for a hydrodynamical

code. After considering the dynamical timescales of the problem, as well as the number of

the calculations needed for different models, we decided to use an explicit hydrodynamic

code, which was possible to build and test within a reasonable time-frame, and whose

performance was good enough for the required problem. We investigated the transition

region between linearly stable and linearly (and non-linearly) unstable envelopes, as well

as the envelope stability around the critical core mass. We also looked into the typical

perturbations needed to make a transition from one multiple solution to the other.

45
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3.1 Computational strategy

Two basic options are available for the hydro-dynamical analysis; system of equations,

determining a new time level, could either be explicit or implicit functions of the val-

ues/equations from the previous time level. Implicit schemes in general have numerous

physical and numerical advantages over the explicit counterparts, but are technically more

challenging. Faced not only with a problem of technical development, but also with the

challenge of crossing into a relatively uncharted physical problem, we decided to use an

explicit hydrodynamic scheme. Such code was possible to build and test within a given

time-frame, and its performance (correct to 10−3 level) was good enough for the required

problem (c.f. Sect. 3.3).

The nature of our survey requires investigation of more than a hundred different pro-

toplanetary models, and typically follows the evolution of every model for about ten to

hundred sound-crossing times. These requirements would not be possible to fulfill for the

models with a realistic core density of solids (i.e. %core ≈103 kg m−3), because such a core

density imposes a prohibitively small time-step size in our explicit scheme, through the

Courant-Friedrichs-Levy condition (c.f. Sect 3.2).

The compromise solution, increasing the cell size, is achieved through reducing the core

density, but only to the point where we can still be reasonably certain that our dynamical

analysis is qualitatively correct. Through a comparison of the linear stability properties

for manifolds with different core densities (c.f. Schönke, 2005), we have chosen, for our

models, the core density of %core = 1 kg m−3.

Finally, we chose the Ada95 developing environment, as an experiment testing the ad-

vantages of an object-oriented approach to astrophysical numerical modelling, compared

to traditional programming languages (e.g. fortran, pascal).
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3.2 Hydro-code setup

The equation system

The dynamical behavior of radiation and matter is contained in the equations of ra-

diation hydrodynamics (RHD). In the concordance with our model, we assume small,

non-relativistic velocities, spherical (1D) geometry, and an Eulerian (fixed) coordinate

system (c.f. e.g. Winkler and Norman (1987)). Then the equations describing the gas

are:

Equation of continuity (mass conservation):

∂%

∂t
+

1

r2

∂r2%u

∂r
= 0 (3.2.1)

Equation of motion (momentum conservation):

∂%u
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r2
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Equation of gas energy (1st law of thermodynamics):
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The effect of the self-gravity is included by the

Poisson equation (self-gravity):

m =

∫

0

r

4π%r′2 dr′, (3.2.4)

and the radiation field is described with

Radiation energy equation (0th moment):
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Radiation flux equation (1st moment):
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Table 3.1: Symbols in the RHD equations

Symbol Meaning

% gas density
u gas velocity
r radial coordiante
t temporal coordinate
P pressure
m mass
c speed of light
{J, H, K}ν

† 0th, 1st, and 2nd moment of the specific intensity
Sν = 4π

c
Jν

† monochromatic radiation energy density
κH , κJ , κS, interaction with the radiation field
εnuc nuclear energy production rate
εQ artificial viscous energy production rate
uQ artificial viscous pressure
V volume
A surface

† for discussion c.f. e.g. LeVeque et al. (1997), § by D. Mihalas

All of the variables used in these equations can be found in Table 3.1.

The isothermal case simplifies the situation; isothermality implies that the ‘surplus

energy’ is instantly radiated away (with the infinite speed and the perfect efficiency). This

reduces the system of equations which we use to 3.2.7; the continuity equation (3.2.1) and

the equation of motion without the contribution from the radiative flux, F = 4πH:

∂%

∂t
+

1

r2

∂r2%u

∂r
= 0

∂%u

∂t
+

1

r2

∂r2%u u

∂r
+

∂P

∂r
+

G%m

r2
− uQ = 0, (3.2.7)

where m is calculated through the Poisson equation (3.2.4).

To proceed to a discretized set of equations, suitable for the numerical modeling, we will

rewrite our equation set in the integral form:, for a volume V with surface ∂V

∂

∂t

∫

V

% dV +

∫

∂V

%u dA = 0 (3.2.8)
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and

∂

∂t

∫

V

%u dV +

∫

∂V

%u u dA +

∫

V

∇P dV +

∫

V

Gm%

r2
dV = 0. (3.2.9)

Notation and definitions of the discretized system

The discrete version of the equation set is obtained by applying the rules which transform

the differential operators into finite volume operators. The temporal difference (3.2.10)

and the spatial difference (3.2.11) are defined for any physical quantity X located at the

grid point rl, i.e., Xi = X(ri). Label X denotes a physical quantity from a new time level,

while X∗ is referring to the same quantity, but from a previous time level.

δXi = Xi −X∗
i (3.2.10)

∆Xi = Xi −Xi+1 (3.2.11)

X i = 0.5 (Xi + Xi+1) (3.2.12)

∆Voli =
1

3

(
r3
i + r3

i+1

)
(3.2.13)

The smallest grid index (i = 1) is reserved for the outer grid boundary, while the largest

(i = lmax) corresponds to the inner grid boundary. On the other hand, the zero-point for

the radial coordinate is placed into the center of the sphere.

Viscosity and diffusion

The artificial viscosity is used in order to broaden shock waves over a few computational

cells. The artificial viscosity coefficient µQ is given with (c.f. LeVeque et al. (1997), § by

E. Dorfi):

µQi
= q1lvisc cT − (q2 lvisc)

2 min (∇ui, 0) (3.2.14)

The expression for µQ includes a typical viscous length scale lvisc. The linear term in

lvisc is usually included to damp out small scale oscillations near contact discontinuities,

and is always present for non-zero q1. However, test calculations have showed that these
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type of oscillations are either insignificant or non-existent in our model. The second term

is quadratic in lvisc and is set in a way that compressive and non-homologous motions

produce a viscous pressure. To be able to resolve the shock on a grid scale, q1,2 lvisc ' ∆x

must be fulfilled.

We have chosen q2 = 7, to be able to calculate possible strong shocks (>Mach 10). With

q1 = 0, and with the appropriate expression for divergence in spherical geometry, we

calculate the artificial viscosity coefficient from:

µQi
= −q2 ∆ri min

(
∆ (ri

2ui)

∆Voli
, 0

)
(3.2.15)

Introducing artificial viscosity is equivalent to the existence of a diffusive process, which

will introduce an additional restriction on the size of the time step.

Time-stepping

For stability reasons, all explicit schemes must obey Courant-Friedrichs-Levy (CFL) con-

dition, Courant et al. (1928), here presented in its simplest form for a grid spacing ∆x:

tCFL = min
all cells

∆x

|u|+ cT

, (3.2.16)

where u is the gas velocity, and cT is the isothermal sound velocity.

Additional constraint arises from the diffusive process introduced through the artificial

viscosity coefficient (c.f. LeVeque et al. (1997), § by E. Dorfi):

tD = min
all cells

1

6

(∆x)2

µQ

. (3.2.17)

The time step size is then determined from:

δt = α min (tCFL, tD) , (3.2.18)

where α < 1 is additional parameter for ensuring the stability of the scheme. We use

α = 0.4.
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Advection

We tested two advection schemes (cf. Sect. 3.3.1), and decided to use Van Leer’s monotonic

advection (VL), cf. e.g. Winkler and Norman (1987), p.109-110. VL scheme uses 4-point

stencil, i.e. it requires information about physical quantity in question from the neighbor-

ing cells. Hence, it was impossible to implement VL scheme for the cells on the boundaries.

For the inner and the outer boundary, the donor cell (DC) advection scheme was used

instead.

DC scheme can be described with:

Xadv
i =

{
X∗

i if ui ≥ 0

X∗
i−1 if ui < 0

(3.2.19)

VL advection, on the other hand, follows this recipe (Winkler and Norman (1987), p.109-

110):

si =

{
0.5

−0.5

if ui ≥ 0

if ui < 0

dWNXi =





2∆Xi−1∆Xi

Xi−1 −Xi+1

if ∆Xi−1∆Xi > 0

0 otherwise

Xadv
i = (0.5 + si)(X

∗
i + 0.5 dWNX∗

i ) + (0.5− si)(X
∗
i−1 + 0.5 dWNX∗

i−1) (3.2.20)

The use of dWNX here is to be consistent with Winkler and Norman (1987), and is not

to be confused with the differential notation.

The advected quantity for the new time-level is a function of the variables from the

previous time-level only, and can be calculated before the cell gas density and velocity for

the new time-level are known. In fact, such an advected quantity is used to calculate %i

and ui for the new time-level.

Discretized set of equations

Applying the transformations, of the differential operators to the finite volume operators,

onto the equations 3.2.8 and 3.2.9, and solving for the envelope gas density, and the gas
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velocity (both belonging to the new time level), one gets the following relations:

Gas density of the i-th cell:

%i = %∗i −
δt

∆Voli
∆

(
r2
i u
∗
i %adv

i

)
(3.2.21)

Gas velocity of the i-th cell:

ui = u∗i
m∗

i−1

mi−1

− δt

mi−1

· (

∆
[{

r2
i−1%

adv
i−1u

∗
i−1

}
uadv, ∗

i

]

+r2
i ∆ (Pi−1)

+4π
GM(ri)

r2
i,1/2

+

[
−2

3
∆

{
µQi

%∗i−1r
3
i−1

(
∆u∗i−1

∆ri−1

− u∗i−1

ri−1

)}]
) (3.2.22)

The cell mass is defined as mi = %i∆Voli, and mi−1 is used instead of mi in Eq. 3.2.22

for the numerical convenience; choice of whether to average over i-th cell and left or right

neighbor is completely arbitrary.

For the discussion on the renormalization of the radius used to calculate gravitational

term in the equation of motion, ri,1/2, see Sect. 3.2: Numerical perturbations - static grav-

itational cell mass. M(ri) is defined as the mass interior to the grid-point ri.

Note that the %i is a function of the variables from the previous time-level only, in ac-

cordance with the principles of the explicit scheme. Function for the ui, on the contrary,

combines the variables from the previous time-level with the variables from the current

time-level, namely mi−1 and ∆Pi−1. Combining the variables from different time-levels to

compute a new variable is a trademark of implicit schemes. However, during initial testing

we noticed that the scheme is much more stable if we use the combination of variables as

stated in Eq. 3.2.22. Other tests (cf. Sect. 3.3) ensured us that the calculated variables

are consistent with the analytical expectations within the expected order of accuracy.



3.2. Hydro-code setup 53

Boundary conditions

The different sets of boundary conditions (BCs) were used during initial test phases and

main calculation run. Here we discuss only the main calculation BCs. Other BCs are

elaborated in the sections devoted to respective test calculations.

Inner BCs

The inner boundary, with cell index i = imax, represents the immediate sub-surface of the

core. The core is an incompressible sphere. Therefore, envelope gas cannot penetrate or

compress the core. This translates into a following set of inner BCs:

rimax = rcore = const (3.2.23)

%imax = 0 (3.2.24)

uimax = 0

Xadv
imax

= 0,

where % is envelope gas density, u is gas velocity, and Xadv is any advected physical

quantity.

Outer BCs The model represents a planet embedded in an inert nebula with infinite

supply of gas. Thus, the nebula gas density is constant in time, and gas momentum

transferred across the outer boundary will correspond to that of the constant nebula.

Strictly speaking, it is unphysical to keep the gas density at the outer boundary (i.e.

the nebula density) constant. This could lead to the wave-front reflections (of the outer

boundary and back into the envelope), which would not happen in reality. But modelling

the behavior of the nebula density, to properly mimic nebula response to the incoming

envelope wave front, would be complex, to say the least, and there is no guarantee that

the result of such modelling would be more physical than the present (constant density)

assumption.

The following equations describe the stated outer BCs:

r1 = rout(t = 0) = const (3.2.25)
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%adv
1 =

{
%∗1 if u∗1 ≥ 0

%neb if u∗1 < 0

uadv
1 =

{
u∗1 if u∗1 ≥ 0

u∗1 if u∗1 < 0

Nebula density is determined from the initial hydrostatic condition, by linear extrap-

olation from the density gradient of the outermost cell. Such procedure is chosen, as

opposed to %neb = %1, to avoid the perturbation caused by the force imbalance between

the force of gravity and the zero pressure gradient (between the outermost cell and nebula

cloud).

Numerical perturbations - static gravitational cell mass

The hydro-code uses a static radial profile, calculated with the 4-5 order Runge-Kutha

method (rk45) in Maple 6. The discretization schemes in the rk45 and in the hydro-code

are not the same; the rk45 evaluates the mass and the density at a particular point ri,

while hydro-code assumes constant density for the grid cell bounded with points ri and

ri+1. Therefore, using ri, in the calculation of the gravitational component of the equation

of motion,

G ·M(ri)

r2
i

, (3.2.26)

produces underestimation of the strength of the gravitational force, because the mass

element is not evaluated at its center of mass, but at its outer edge, ri. To evaluate the

mass element at the appropriate radius, following substitution is made for the 1/r2
i in the

equation of motion:

ri → ri,1/2 =
3

√
r3
i + r3

i+1

2
(3.2.27)

The mass-centered coordinate ri,1/2 represents a center of mass for a constant-density

spherically symmetric cell. As a result, the scheme-discrepancy perturbation is reduced

by a factor of 3 (cf. Fig. 3.1). If the average amplitude of the scheme-perturbation is

taken to be 4 cm s−1, then the perturbation of the initial (static) solution in this case is

equivalent to Mach 5.6 · 10−5. This should be equivalent to the ideal, no-perturbation,
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Figure 3.1: The time-evolution of the velocity at the outer boundary. Black points repre-
sent solution with ri in the gravitational term of the equation of motion, while red points
is the solution with mass-centered coordinates ri,1/2. Time is in 108 seconds, and velocity
in meters per second.

case for all but the most unstable envelope states.

Small perturbation is true for low gas density gradients. However, for the compact

envelopes, with higher density gradients, deviation from the piecewise-constant density

approximation will be larger, and the envelope perturbation will be stronger. We noticed,

for a specific set of models, a direct analytic relation between the gas density at the core

surface and the strength of the perturbation (c.f. bottom left plot of Fig. 3.21). The

strength of the perturbation is connected to the duration of transition until envelope

reaches the pulsating mode; envelope with 2n higher value than %x will take tn time to

switch from initial state to pulsating mode. Time t is the duration of the transition into

the pulsating mode for the envelope with a %x gas density at the core surface.

This means that, for a model sequence with the same core, but increasing gas density at the

core surface, models with higher %cs will initially be more perturbed (intrinsically, just with

the change of the discretization scheme and the increasing discretization error difference
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for increasing ∇%cs). In other words, perturbation is not the same for all models, but is

instead tied to the envelope density gradients.

Increasing strength of the perturbation has to be taken into account when reviewing model

sequences with the increasing gas density at the core surface (all surveys in Sect. 3.4).

3.3 Scheme tests

3.3.1 Saw-tooth profile advection

Several advection schemes are applicable to our model (c.f. e.g. LeVeque et al. (1997), § by

E. Dorfi). In order to choose the most appropriate one, we tested two of those schemes -

the Van Leer’s monotonic advection (VL) and the donor cell advection (DC).

The donor cell scheme assumes constant value of the advected physical quantity through-

out one cell, while the Van Leer’s scheme presumes constant gradient of the same ad-

vected physical quantity, within each cell. Recipe for the VL scheme we used is given by

Eqs. 3.2.20, while the DC scheme can be described with 3.2.19.

Numerical testing of the advection schemes was done with the same code which was

later used to calculate the dynamics of the planetary envelopes, but the code setup was

specially adjusted to accommodate to the specific requirements of the test.

The advection schemes were tested by advecting a saw-tooth density profile in a constant

velocity field. The radial boundaries of the system were chosen such that the geometrical

effects (spherical system) have minimal effect: (rout− rin)/rout = 5 · 10−4. The core mass

was obviously set to zero, and the gravitating mass of the envelope gas was negligible.

The test results are summarized in Figs. 3.2 and 3.3. Both plots clearly show that

the DC scheme is much more dissipative that the VL scheme - maximum deviation from

the initial profile was about five times lower than for the DC, and the DC deviation

regions are at least twice as large as those of VL. This kind of numerical dissipation has
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Figure 3.2: The radial profile of the advected saw-tooth profile, after half a sound crossing
time. The donor cell advection scheme was used for the red profile, and the Van Leer’s
for the blue one. The initial profile is overplotted as a black line, to give an estimate of
the profile distortion as a result of the advection scheme.

no equivalent in the physical process we are trying to model. Therefore, dissipation due

to advection scheme had to be minimized, resulting in the use of the Van Leer’s advection

in the forthcoming calculations.

3.3.2 Free-fall

One of the tests for the evaluation of the performance of the hydro-dynamical code was

computation of the free-fall of the constant-density gas cloud. The free-fall of the gaseous

cloud will test the performance of the equation of motion used in our model.

When, according to the Jeans criterion, a gaseous mass has become unstable and the col-

lapse has started, gravity increases more than the pressure gradient (c.f. e.g. Kippenhahn

and Weigert (1990)). For spherical symmetry the gravitational acceleration is of the order

GM/R2, where M is the total mass and R is the radius of the cloud, while an estimate
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Figure 3.3: The relative deviation from the original saw-tooth profile. The donor cell-
advected profile is red dashed line, and the Van Leer’s-advected profile is blue solid line.
Maximum deviation is, as expected, around first derivative discontinuities of the original
profile (the wing-bases and the top of the ‘tooth’). The donor cell scheme is considerably
more dissipative than Van Leer’s.

for the acceleration due to the pressure gradient is

∣∣∣∣
1

%

∂P

∂r

∣∣∣∣ ≈
P

%R
≈ <

µ

T

R
. (3.3.1)

The ratio of gravitational force to pressure gradient is therefore ∼ M/(RT ), which during

isothermal collapse increases as 1/R. Consequently we may neglect the gas pressure, both

in the derivation of the expression for the free-fall time, and in the equation of motion

which is part of the numerical model equation set. The test problem is also a good

approximation for the early gas cloud collapse.

The free collapse of a homogenous sphere can be treated analytically (e.g. Kippenhahn

and Weigert, 1990, §27.1). Integrating the equation of motion

∂2r

∂t2
= −4π%0r

3
0

3

G

r2
(3.3.2)
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where subscript zero denotes the values at the beginning of the collapse, and after we

introduce a new variable ζ, defined by

cos2 ζ =
r

r0

(3.3.3)

we can write

ζ +
1

2
sin 2ζ = (

8πG%0

2
)1/2t (3.3.4)

where the integration constant is chosen such that the beginning of the collapse (when r =

r0, or ζ = 0) coincides with t = 0. It should be noted that r0 no longer explicitly appears

in the solution (3.3.4) and that %0 = const. Therefore, solution ζ(t) and consequently

r/r0 and ṙ/r0 at a given time t are the same for all mass shells. This means that the

sphere undergoes homologous compression. Since ṙ/r0 is independent of r0, the relative

density variation is independent of r0, and the sphere, which was homologous at t = 0,

remains homologous.

Since our protoplanetary model always has a core, we are not interested in the free-fall

time to the center of the sphere, but just in the time it takes the outermost mass shell to

reach some rin. Therefore, we choose rin = rcore, and solve Eqn. 3.3.4 for

cos2 ζ =
rin

r0

. (3.3.5)

Setup

The cloud consists of the 1000 log-equidistant, spherically symmetric shells, extending

from rin to rout. All of the shells initially have the same density, and they have zero initial

velocity. The cloud is composed of the isothermal, pressureless, and ideal gas.

The gas is able to freely pass bellow rin = rcore, and the goal of the test is to calculate

the time it takes for the mass shell, that was initially at rinit = r0, to reach the inner

boundary, rin.

To estimate the constancy of the cloud density during the collapse, streamlines are followed

from the shells’ initial positions. A particular streamline is not followed after it has
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Figure 3.4: Time series/[108 s] of the gas density/[kg m−3] at rin. Peak denotes the
moment when the outermost mass shell passes rin.

collapsed bellow rin, arbitrarily set at rin = 1.96 109 m. However, mass of the gas

that has passed rin is added to the mass of the sphere bounded within rin. Therefore

gravitational potential, due to the mass within rin, is accounted for.

The cell grid consists of 1000 log-equidistant eulerian cells, making the typical relative

grid resolution is (4 r)/r ≈ 10−3, which is also a rough estimate for the typical relative

error.

Table 3.2 summarizes parameters used for the free-fall collapse.

Results

Within the isothermal paradigm, all the mass shells should collapse to the center at the

same time. However, to avoid numerical problems at r = 0, and to keep isothermal as-

sumption reasonably valid, collapse was followed only till rin has been reached. Therefore,

mass shells will reach inner boundary, rin, at different times and with different gas densi-

ties. But at any particular time, all the (initial) mass shells outside rin should have the

same density (cf. introduction for this test calculation). This was indeed the case up to
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Figure 3.5: Density profile of the collapse of the initially-constant-density gas cloud. This
particular snapshot is taken at about 0.5 tff of the outermost mass shell. Density scale,
10−9 kg m−3, is centered on a 1.992 · 10−4 kg m−3. Relative density variation across the
collapsing cloud is on the 10−4 level.

a 10−4 level, as can be seen from a typical collapse profile shown on a Fig. 3.5.

Figure 3.6 shows the relative deviation of the numerical values, from the analytical model,

of the free-fall time for different mass shells. The relative difference is on a 10−3 level,

and the deviation is largest for the innermost and the outermost cells. The deviation is

largest at the boundaries because of the imperfect boundary conditions, mimicking open

boundaries, i.e. the gas free-flow. But these boundary conditions were specific for this

test, and were in no part the main subject of the testing procedure.

In general, Fig. 3.6 tells us that our pressureless form of the equation of motion follows

the analytic model to an expected degree of accuracy. The cell grid consists of 1000 log-

equidistant eulerian cells. Therefore, typical relative grid resolution is (∆ r)/r ≈ 10−3.

According to LeVeque et al. (1997, § 4.1.1), the method has global order p if the global

error is O((4 r)/r)p). Since we use a first order method (cf. Section 3.2), we expect that
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Figure 3.6: Relative error (on a 10−3 scale) of the numerical value of the free-fall time (vs
the analytic expression, Eq. 3.3.4), as a function of the shell index, i.

Table 3.2: Free Fall Collapse Setup

initial cloud density %cloud 1.5 · 10−4 kg m−3

inner boundary 1.96 · 109 m
outer boundary 1.27 · 1010 m
number of grid cells 1000
gas temperature 123 K

the relative error will be on the 10−3 level (for a 1000-cell grid).

3.3.3 Isothermal shock tube

One of the tests for the evaluation of the performance of the hydro-dynamical code was

the classical shock tube problem. We follow the discussion of Courant and Friedrichs

(1948), and specialize it for the isothermal case. In the next subsection we present the

analytic solution for the isothermal gas case, and we use that solution in the following

subsections for comparison with the numerical values for the flow variables.
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Figure 3.7: Sketch of the adiabatic-gas shock tube test problem. From the left to right:
pressure, density, and velocity profile for classical Sod shock tube problem at t = 0.2:
Pleft = 1, %left = 1, uleft = 0, Pright = 0.1, %right = 0.125, uright = 0. Time is in dimension-
less units of sound-crossing time.

Analytic solution for the isothermal ideal gas shock tube

General remarks

The most notable difference in a shock tube problem for an isothermal and an adiabatic

gas is the non-existence of the contact discontinuity for the isothermal case (compare

Figures 3.7 and 3.8). The pressure on the both sides of the contact discontinuity has to

be the same. In the adiabatic case, the gas on the right side is heated when passing across

the shock, while the gas on the left side does not change its temperature. Therefore to

keep the pressure balance, the density on the left side has to be higher (than the density

on the right side). For the isothermal gas there is no heating across the shock, and the

densities on both sides of the contact discontinuity are the same.

Figure 3.8 shows a typical test situation; initially, tube is split in the middle with a

membrane at x0. The density of the region left of the membrane (%L) is higher than the

density (%R) of the region to the right.

After the membrane is (instantaneously) removed at t0, two simple waves are created: a

shock wave, travelling with a supersonic shock velocity U into the region of lower density,

and a rarefaction wave, expanding into the region of the higher density with the isothermal
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Figure 3.8: Sketch of an isothermal-gas shock tube. Left figure is a typical density profile
of the isothermal shock tube. Dashed line represents initial density, with the membrane
positioned at x0, while solid line shows density structure at some time after the release
of the central membrane but before the shock hits the tube wall for the first time. Right
figure is a corresponding velocity profile. Unlike the adiabatic case, a pressure profile
completely corresponds to the density profile (cf. Fig. 3.7) and see text. Slight bumps
inside the rarefaction wave (between points x2 and x3) are simplifications of the sketch
and have no physical meaning.

sound speed cT.

The gas is at rest before t0, therefore absolute gas velocities of the unperturbed regions, uL

and uR, are zero by definition. The choice for the moment of the release of the membrane,

t0, is free and we set it to t0 = 0.

As the shock is propagating, it compresses the gas %R to %C, and accelerates the gas from

uR to uC. The shock velocity U is always supersonic, while the gas behind the shock

moves with the relative velocity vC = uC − U , which is always subsonic relative to the

shock. The position of the shock in the tube, x1, is given with

x1 = x0 + U t. (3.3.6)

The region behind the shockwave is a constant-flow region, because it is a product of the

conditions which are valid across the shock and the constant-flow region in front of the

shock. It is connected to the unperturbed, higher density region through the rarefaction
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wave, which extends from x2 to x3. Those rarefaction wave boundaries are determined

with

x2 = x0 + (uC − cT)t, (3.3.7)

x3 = x0 + (−cT)t. (3.3.8)

Equation 3.3.8 is obvious, since the head of the rarefaction wave is moving from the

position of the membrane, x0, towards higher density region, with the isothermal sound

speed. Equation 3.3.7 can be similarly explained, with point x2 being ‘dragged’ from

the membrane position with the velocity of sound towards the higher density region, and

with the velocity uC towards the constant-density region behind the shockwave. The

point x2 will choose its direction of motion depending on the Mach number of the region

downstream from the shock, uC/cT, which is determined through the initial density ratio

%L/%R.

The isothermal solution

The aim of this procedure is to obtain a set of equations which will allow us to describe

the evolution of the sod tube problem from knowing just the initial values of gas densities

at both sides of the membrane.

First two equations are coming from the conditions which are valid across the shock,

namely from conservation of mass, we have

%C vC = %R vR (3.3.9)

and the conservation of momentum yields

%C

%R

= (
U

cT

)2. (3.3.10)

The third equation will be obtained from the relations for the rarefaction wave density

structure.
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The simple wave is characterized with quantities that are conserved in time, so-called

Riemann invariants. For a backward-facing wave, it can be shown (Courant and Friedrichs,

1948, §37) that the characteristic equation looks like

u + l(%) = −2s(α). (3.3.11)

Characteristic equation holds for a simple wave:

u + l(%) = u0 + l0(%). (3.3.12)

The quantity l(%) is given by

l(%) =

∫ %

%′

c d%

%
, (3.3.13)

which for isothermal sound speed gives

l(%) = cT ln(%). (3.3.14)

From this, and for u0 = 0, it follows that the density structure of the simple backward-

facing wave is given with:

% = %L exp (− u

cT

). (3.3.15)

On the other hand, a velocity in the rarefaction wave is given with:

uRW = (−x0 − x

t
+ cs) (3.3.16)

and combining eqns. 3.3.15 and 3.3.16 we get expression for the density structure in the

rarefaction wave:

%RW(x) = %L exp (
x0 − x

c t
− 1) (3.3.17)

Finally, equation 3.3.17 must also be valid for the right boundary of the rarefaction wave,

and we get the last equation needed to resolve the problem,

%RW(x2) = %L exp (−uC

cT

). (3.3.18)
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Now we can determine all the flow variables for the isothermal shock tube by numerically

solving for the system of equations 3.3.9, 3.3.10, and 3.3.18. The analytic solution of

the system is not possible because of the combination of the exponential and polynomial

equations.

Tube setup

In order to be as consistent as possible with the typical computational problem, the setup

was marginally different to the one of (Sod, 1978), to directly test the spherical code.

The tube consists of the spherically symmetric shells, as opposed to Sod’s equal-volume

cells. However, distance from the center of the sphere and the tube range are chosen such

that the volume difference between the first and the last cell is about 3%. Small cell-

volume difference should insure that the geometric factors have minimal influence on the

gas dynamics.

The ideal isothermal gas is used throughout the computation. We derived the piecewise-

analytic solution for the isothermal ideal gas shock tube problem (cf. Sect. 3.3.3) to ex-

amine the numeric results. The resulting equation system is solved numerically with a

Maple V routine.

The cell grid consists of 1000 log-equidistant eulerian cells. Therefore, typical relative

grid resolution is (∆ r)/r ≈ 10−3. According to LeVeque et al. (1997, § 4.1.1), the method

has global order p if the global error is O((4 r)/r)p). Since we use a first order method

(cf. Section 3.2), we expect that the relative error will be on the 10−3 level (for a 1000-cell

grid).

Apart from the 1000-grid-point test, equivalent to the grid used for the non-linear

analysis of the protoplanetary gas envelope, we have performed the test with the 100- and

10000-grid cells. We expect that the numerical solution will converge toward the analytic

one with the increase of the number of grid points.

The initial transition from %L to %R is not discontinuous in the test calculation, because
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Table 3.3: Shock tube setup

%L 10−10 kg m−3

%R 5 · 10−11 kg m−3

Pleft 0.5113 · 10−4 Pa
Pright 0.2557 · 10−5 Pa
tube length 106 m
tube distance from the sphere center 108 m
number of grid cells 100, 1000, 10000
gas temperature 123 K

of the numerical difficulties of the problem, and is described with:

%sod(r) =
%L + %R

2
+

%L − %R

2
tanh(8 105(

r

∆
− 1)) (3.3.19)

where ∆ is the radial distance of the tube center, given with

∆ = rleft−wall +
rright−wall − rleft−wall

2
(3.3.20)

Table 3.3 summarizes parameters used for the shock tube test.

Results

We have tested the hydro code with two shock tubes. One has the initial pressure ratio

between levels PL : PR = %L : %R equal to 2:1, while the other has PL : PR = 200 : 1, which

tests the code for the strong shock, as defined in Courant and Friedrichs (1948, §71). The

pressure ratio in an isothermal case is equivalent to the density ratio.

Summary of the results can be seen in Table 3.4. The tabulated relative errors come from

the areas of the tube which have the largest local truncation error (LeVeque et al., 1997,

§4.1.1 and §4.1.2), therefore we can safely claim that even for strong shocks our method

is first-order convergent, i.e. the global relative error scales with the (first power of the)

relative grid resolution. A moderate shock, with %L : %R = 2 : 1, results in even smaller

relative errors (again, cf. Table 3.4), but still within the order expected from the relative

grid resolution.
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Table 3.4: Flow variables

%L : %R ngrid value U c§T %‡C u‡C

200 100 analytic 2323.46 715.08 5.2788 · 10−12 2103.383
numerical 2273.11 765.41 5.0552 · 10−12 2141.305
relative error 2.2 · 10−2 7.0 · 10−2 4.2 · 10−2 1.8 · 10−2

200 1000 analytic 2323.46 715.08 5.2788 · 10−12 2103.383
numerical 2318.08 718.20 5.2578 · 10−12 2103.453
relative error 2.3 · 10−3 4.3 · 10−3 4.0 · 10−3 3.3 · 10−5

200 10000 analytic 2323.46 715.08 5.2788 · 10−12 2103.383
numerical 2321.57 715.62 5.256 · 10−12 2103.662
relative error 8.2 · 10−4 7.5 · 10−4 6.0 · 10−4 1.3 · 10−4

2 100 analytic 850.01 715.08 7.0650 · 10−11 248.44350
numerical 849.86 714.21 7.0599 · 10−11 248.44225
relative error 1.8 · 10−4 1.2 · 10−3 7.2 · 10−4 5.0 · 10−6

2 1000 analytic 850.01 715.08 7.0650 · 10−11 248.44350
numerical 849.94 714.95 7.0644 · 10−11 248.44291
relative error 8.2 · 10−5 1.8 · 10−4 8.5 · 10−5 2.1 · 10−6

2 10000 analytic 850.01 715.08 7.0650 · 10−11 248.44350
numerical 850.00 715.06 7.06496 · 10−11 248.44337
relative error 1.2 · 10−5 2.8 · 10−5 5.6 · 10−6 5.2 · 10−7

‡ numerical value averaged over the entire central region
§ numerical value for the speed of the head of the rarefaction wave, estimated at grid-cell
j for which (%L − %(rj))/%(rj) ≈ 0.01, see text for disscussion

Figs. 3.9, 3.10, and 3.11 depict simulation of the strong shock, for three different grid

resolutions, at different times. Figs. 3.12, 3.13, and 3.14 are the enlargements of the

interesting regions of the shock tube. Those plots reiterate the result from Table 3.4,

that solution converges towards the analytical one with the increase of the number of grid

points.

The position of the head of the rarefaction wave needs to be precisely determined, in

order to estimate the isothermal sound speed from the numerical result for the propagation

of the head of the rarefaction wave. This is generally not easy (see e.g. middle left plot of

Fig. 3.13). We decided to choose the value rRWhead such that the relative density deviation
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Figure 3.9: Shock tube density (left) and velocity (right) profiles at t=37 s. From top to
bottom: the green grid has 100, the red 1000, and the blue grid has 10000 points. Black
solid line is the analytic solution. Note that individual points are plotted (as visible at
the shock front and in the rarefaction wave), but they combine into a line at flatter parts
of the solution.
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Figure 3.10: Shock tube density (left) and velocity (right) profiles at t=138 s. From top
to bottom: the green grid has 100, the red 1000, and the blue grid has 10000 points. Black
solid line is the analytic solution. Note that individual points are plotted (as visible at
the shock front and in the rarefaction wave), but they combine into a line at flatter parts
of the solution.
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Figure 3.11: Shock tube density (left) and velocity (right) profiles at t=207 s. From top
to bottom: the green grid has 100, the red 1000, and the blue grid has 10000 points. Black
solid line is the analytic solution. Note that individual points are plotted (as visible at
the shock front and in the rarefaction wave), but they combine into a line at flatter parts
of the solution.
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Figure 3.12: Shock tube density (left) and velocity (right) profiles at t=37 s, enlargements
of the various regions. Three grids are overplotted: 100 cells (green points), 1000 cells
(red points), and 10000 cells (blue points). Black solid line is the analytic solution. For
additional orientation use Fig. 3.9.
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Figure 3.13: Shock tube density (left) and velocity (right) profiles at t=138 s, enlargements
of the various regions. Three grids are overplotted: 100 cells (green points), 1000 cells
(red points), and 10000 cells (blue points). Black solid line is the analytic solution. For
additional orientation use Fig. 3.10.
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Figure 3.14: Shock tube density (left) and velocity (right) profiles at t=207 s, enlargements
of the various regions. Three grids are overplotted: 100 cells (green points), 1000 cells
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76 Chapter 3. Hydrodynamic Classification

from the unperturbed level, (%L − %(rj))/%(rj), is about one percent.

The value for the position of the shock, needed to calculate the numerical shock

velocity, is taken from the half-height of the shockwave’s pressure step. Numerical values

for the flow variables of the central region are calculated by averaging the respective flow

variables across the entire central region. The (maximum) relative deviation from the

average value is on the order of the relative grid resolution - 2 ·10−3 for the 1000-cell grid.

First 45 minutes

By observing the time series of the gas densities at the tube walls for the moderate shock

(cf. upper plots of the Fig. 3.15), i.e. noting the clearly correctly reflected density value

and its non-oscillating nature, we infer that the reflection at the tube walls, as well as

interaction of shock- and rarefaction-wave, does not noticeably reduce the quality of the

results on a timescale of a few sound-crossing times.

In the following paragraphs we discuss the evolution of the strong shock case, which

is shown on the lower plots of the Fig. 3.15.

A strong shock will force the tail of the rarefaction wave to follow the initial direction

of the shockwave with the absolute supersonic velocity uRWtail = uC (labels used here

conform to Fig. 3.8). The gas velocity in the rarefaction wave itself smoothly decreases

from u(rRWtail) = uC to u(rRWhead) = 0.

Furthermore, a shock represented with the numerical scheme is spread over several grid

cells, which means that moments before the shock front hits the wall, it will no longer

interact with the zone of quiet - initial ‘right’ zone (%quiet = %R, uquiet = uR = 0), but

instead with the flow variables which are slightly deviating from the ‘quiet’ flow variables.

The shock-front interaction with this deviation just before the reflection will produce

the overshoot in the gas density behind the shock. This relatively small effect is greatly

amplified at the reflection, and the reasons for the strong amplification are two-fold - the

shock is strong, and the gas is isothermal. The amplification of the pressure on the wall
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for the strong shock is given by the Courant and Friedrichs (1948, §70):

PCpost − PR

PC − PR

= 2 +
1

PR

PC
+ µ2

(3.3.21)

where PR is pressure in the zone of quiet, PC is the pressure behind the shock, and PCpost

is pressure behind the shock after the shock-reflection; the constant µ is defined as

µ2 =
γ − 1

γ + 1
, (3.3.22)

which for an isothermal case of γ = 1 amounts to µ = 0, thus the observed large amplifi-

cation of the overshoot (cf. lower right plot on Fig. 3.15, around t = 240 s). In the case

of the moderate shock, the amplification is less than a factor of 3, and the consequence of

the density-overshoot at the shock-front-reflection is not visible at the shown scale (upper

right plot of Fig. 3.15).

At t = 210 s shock front hits the right wall and reflects to the left, but is slowed down by

the supersonic gas flow region created behind the shock before the reflection. Immediately

after the shock front hits the wall, the gas velocity behind the shock drops to zero - gas

bounces off the wall with −uC, but incoming uC gas results in zero absolute velocity. Ap-

proximate zero absolute gas velocity, but high relative velocities (≈ 2uC), combined with

the density-overshoot at the shock reflection, result in the subsequent series of under- and

over-shoots, i.e. in the oscillatory behavior around the correct value for the gas density

behind the front, on a percent-relative-level. With zero gas velocity behind the front, the

reflected front now serves as ‘the wall’ and, as long as the gas incoming to the front has

the constant flow variables of uC and %C, front slowly moves to the left but the density

behind the front stays the same.

However, as the back part of the rarefaction wave hits the front around t = 360 s, incom-

ing gas velocity decreases linearly, but the incoming density increases exponentially. The

net advected mass across the front from left to right, % u,is increased, as is the gas density

(at the right wall), which damps out the density oscillation.

On the left side, at around t = 700 s head of the rarefaction wave (HRW) hits the wall.
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After that, density fall-off at the left wall is slower compared to the moderate shock case

(compare exponential drop-off for the left plots of Fig. 3.15) because rarefaction wave for

the strong shock case is more spread out. But more importantly, as the HRW passes back

through the tube, it drags the gas behind it as a subsonic wave. This further increases the

absolute gas velocity, and flattens the exponential density profile of the initial rarefaction

wave.

At around t = 1700 s, the HRW passes the reflected shock front, which adds a slight

linear component to the front-incoming gas velocity, but replaces the exponential rise of

the front-incoming gas’ density with the exponential fall-off (the same one which is seen

on the bottom left plot of the Fig.3.15). From that moment, net mass is advected across

the front from the right to the left, resulting in the decrease of the density (right of the

front, and including the right wall).

Finally, around t = 2200 s subsonic front hits the left wall.

Conclusion

Overall, the hydrodynamic scheme proved convergent, stable and able to compute the

propagation of the simple waves correctly to the (order of the) first power of the relative

grid resolution, which is in agreement with the expected performance for a first-order

scheme (LeVeque et al., 1997, §4.1.1). We also show that the 1000-cell grid can resolve

strong shocks, but at the same time the calculation is fast enough that evolution can be

followed on a time-scale of a hundred sound-crossing times.
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Figure 3.15: Time-evolution of the densities at the left (left plots) and the right (right
plots) tube wall, for a weak (top plots) and a strong (bottom plots) shock. Evolution is
followed for two sound-crossing times, and every tenth time level is represented with a
point on a plot. The interaction of the strong shock and the rarefaction wave makes the
strong shock plots more difficult to interpret than for the weak shock case. See text for
the discussion.
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3.4 Hydro-dynamical surveys

Manifold survey - non-linear stability analysis

The linear analysis can distinct a (linearly) stable from an unstable protoplanetary model,

but it cannot be used to discover where the instability leads to, even more so for an in-

trinsically non-linear system. Additionally, the linear stability analysis is limited only to

the small envelope perturbations. As we have learned from our own planetary system,

planet formation involves ‘large perturbations’, i.e. giant impacts (e.g. see the rotational

axis of Uranus, or the Earth-Moon system, or Mars’ Schiaparelli crater-Valles Marineris

canyon system, etc).

Thus we perform a non-linear analysis of all qualitatively different protoplanets, using

(the typical representatives of) the equilibria from our static classification as initial states

for hydro-dynamic simulations.

Initial perturbation, due to the difference between the static and dynamic discretiz-

ing schemes, is proportional to the density gradient and can be regarded as small (see

Sect. 3.2). However, this setup could also be used for the analysis of the core-envelope

equilibria under large perturbations.

Envelopes have 1000 log-equidistant grid-points in radius, unless otherwise specified. Such

grid density is sufficient to have results correct on a 10−3 level, as is expected from a first

order scheme and as we have shown in the scheme tests (see Sect. 3.3).

Dynamical indicators

Simple but complete data representation of the complex system is at least as important

as the data analysis. We had a wide choice of possible variables as indicators for the

envelope dynamics: core-surface density, mass flow across the boundary, maximum (pos-

itive/negative) gas velocity, gravitational energy, total energy, free energy, entropy, and

many others.
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We decided to use two indicators: envelope’s gravitational energy, and the extremal gas

velocities (largest positive and negative). Such choice of the dynamic indicators provides

relatively intuitive and complete overview of the envelope evolution.

The gravitational energy is a partially degenerate indicator, measuring the envelope

mass, but also the envelope compactness. The degeneracy is resolved with the other indi-

cator, extremal velocities, which offer an insight into the type of dynamics at work (e.g.

accretion shock vs pulsation vs slow oscillation...). For a brief discussion about choos-

ing extremal velocities over velocities at the outer boundary, see Sect. 3.4.3: Dynamical

properties and the core density.

The gravitational energy is defined by (e.g. Kippenhahn and Weigert (1990)),

Egrav = −
∫ M

0

Gm

r
dm, (3.4.1)

or, in its discretized form:

Egrav =
∑

j

4π
GM(rj)

rj

· %j · 4Volj. (3.4.2)

To be able to get meaningful comparison of the envelopes with the different masses and

different radial structures, all envelope gravitational energies are normalized to their re-

spective initial gravitational energy:

ngrav =
Egrav(t)

Egrav(t0 = 0)
. (3.4.3)

Core mass sequences

Regarding the mass of the core, there are three qualitatively different regions:

1. the subcritical cores

2. the cores in the vicinity of the critical core mass

3. the supercritical cores
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With this in mind, we will perform dynamical investigations of the sequences of the models

which will cover all dynamically qualitatively different cores. A particular model sequence

will, additionally, cover all different envelope configurations for a corresponding core.

As already discussed in Sect. 1.3.2, statically there are four qualitatively different envelope

types, depending on whether the solution is compact or uniform and self-gravitating or

not. Those different envelope types form four distinct regions in the solution manifold

(cf. e.g. Fig. 1.2). Surveys in Sect. 3.4.3 and 3.4.2 will investigate whether the envelopes

within a particular region have similar dynamical properties. Therefore our discussion

will be based on the stability properties of different manifold regions.
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3.4.1 Types of dynamical behavior

The following types of dynamical behavior were noticed within the survey of models with

a medium core density: oscillation, pulsation, transition, ejection, and collapse.
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pattern (e.g. models 29, 30, and 31 on Fig. 3.21).
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Transition - The envelope exchanges one equilibrium for the

other. All of the observed transitions happened after finite pertur-

bation. The envelope mass of the end state could either be higher

or lower than the envelope mass of the initial state. The end state is

always in the ‘nebula’ region, except for the cases with the collaps-

ing envelopes. Thus, in all the observed cases (within this work) the

end state had smaller gas density at the core surface than the initial state. As an example
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of the transition, with identified initial and end states, see Fig. 3.22 and accompanying

discussion.
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Ejection - An ejection is initiated by the envelope dynamics.

Similarly to collapse, an instability is excited which produces the

velocity field. However, this velocity field is positive, unlike the one

for collapsing models. The field grows, becomes supersonic, and

continues to grow, trying to pull the compact part of the envelope

away from the core. The potential of the compact envelope part (plus the core potential)

slows the growth of the velocity field (c.f. Fig. 3.21, e.g. model 42, around Mach≈+2).

This situation is analogous to increase in resistance to the piston which forcefully tries to

open an under-pressurized vessel. During all that time the innermost envelope structure

is virtually unchanged, and still gives rise to the instability-induced velocity field. The

velocity field finally rips the compact envelope part from the surface of the core, envelope

structure is completely destroyed, and consequently with it also the instability-induced

velocity field. The envelope is then in a transition to a new equilibrium.
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Collapse - A collapse is initiated by the envelope dynamics. The

outer part collapses onto a dense inner stratification, which forms

a new, effective core. If an envelope in collapse is connected to a

dilute nebula, the flux of matter falling onto the effective core is

insignificant and the structure of the inner envelope part is pre-

served. However, if the significant amount of material is present in the outer envelope

part, then the shock-front of collapsing matter reduces the radius of the effective core. The

squeezing continues until essentially the complete initial envelope structure is destroyed

and the whole envelope collapses in a free-fall-like manner onto the model’s core surface.

We discuss these two kinds of the envelope collapse in a bit more detail in a section

bellow.
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Two kinds of collapse

After a careful inspection of collapsing envelopes in our surveys, we noticed two different

versions of the collapse evolution.
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‘Slow’ collapse - In the first case, envelope does not have a

significant mass above the compact inner part. When a collapse

starts, the dilute outer part hits the effective core in a free-fall

like manner. Because the density in the outer stratification is low,

the momentum deposited onto the effective core is too small to

be relevant, and the effective core radius stays almost constant in

time. The only contribution to the increase in the gravitational energy of the envelope

by the in-falling mass flux (increase because the gravitational energy is defined with the

positive sign - c.f. Eq. 3.4.1). Such an envelope has (to a very good approximation) a

linear increase of the gravitational energy with time. Good examples are i.e. models 15

to 21 on Figs. 3.25 and 3.26. We dubbed such collapse - a ‘slow collapse’, because the

momentum flux, which forces the radius of the effective core to reduce, is dominated by

the velocity component, while the mass component does not contribute significantly.
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‘Fast’ collapse - In the second case, envelope has a massive outer

stratification above the compact inner part. Thus, the momentum,

carried with the supersonic flow onto the effective core, forces the

compact inner part to further reduce its radius. This gives the

additional component to the increase of the envelope gravitational

energy, along with the incoming mass flux. Such an envelope has

a non-linear increase of the gravitational energy with time; for example, models 1 to 4 on

Figs. 3.25 and 3.26. This type of collapse we named a ‘fast collapse’, because the in-falling

momentum flux has significant contributions both from the (gas and advected) velocity

and the advected mass. Please note that in special cases (for the very large advecting

velocities) the ‘slow’ collapse can happen on timescales shorter than the ‘fast’ collapse.
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Figure 3.16: Nebula density contour plot of the solution manifold for %core = 1 kg m−3,
a = 5.2 AU, and T = 123 K. Color contours show the logarithm of the envelope mass
in M⊕ according to the legend. Thick dashed lines mark the region of linear stability,
each line standing for different outer boundary stability condition for the linear dynamics;
cf. Schönke (2005). Solid black lines are contours for different nebula densities, and labels
represent logarithm of the nebula density in SI units. Raw manifold data for this figure
courtesy of J. Schönke, AIU Jena.

3.4.2 Medium core density

The investigation of the dynamics of the solution manifold with %core = 1 kg m−3 is an

attempt to address both the prohibitively short time-step of the high-core-density models

and the qualitatively different dynamics of the low-core-density models.

Inspecting the linear analysis of the models equivalent to ours, Schönke (2005), we decided

that the ideal core density for the hydrodynamical investigation would be %core = 1 kg m−3,

because it allows large time coverage. Furthermore, the solution manifold with such a core

density (Fig. 3.16) has very similar linear-stability properties to the solution manifold with

the realistic core densities (i.e. %core =103 kg m−3). Thus we expect that the dynamical
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Figure 3.17: Manifold cut for a typical subcritical core (log(Mcore/M⊕) = −1, with %core =
1 kg m−3 core density (complete manifold on Fig. 3.16). Numbers identify different models,
shown in Figs. 3.19 and 3.20.

properties of the mid core density models will also correspond to the dynamical properties

of the high core density models.

Subcritical core mass model sequence

We choose a typical subcritical core mass with log(Mcore/M⊕) = −1 (c.f. Fig. 3.16) for

our model sequence. The model sequence can be seen on Fig. 3.17, covering all the

different envelope regions according to the classification for the static properties of high

core density models (c.f. Chapter 1). For the reasons mentioned in the introductory

paragraph to Sect. 3.4.2 we believe such sequence will cover all the qualitatively different

dynamical regions (accessible to one particular subcritical core). For the same reasons we

believe that the static classification of the models with high core density (c.f. Sect. 1.3.2)

will be applicable within this survey. Therefore we divide models into four classes: ‘mature

telluric planet’, ‘mature giant planet’, ‘nebula’, and ‘protoplanet’.

We start our inspection with the ‘nebula’ models (models 1 to 8 from Fig. 3.17):

Envelopes are stable, and the initial perturbation is small. No transition is observed;

envelopes oscillate around the initial equilibrium. Oscillation is excited with the initial
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Figure 3.18: Envelope density profiles for different models shown on Fig. 3.17. Color
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collapse, blue - transition, magenta - pulsation.
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Figure 3.19: Time evolution of the envelope gravitational energy normalized to its initial
value, Eq. 3.4.3. Every 100th time level is plotted, and is represented with a dot; dots are
not connected. Numbers correspond to models from Fig. 3.17. Color coding is for easier
identification. Calculations begin with slightly perturbed hydrostatic profiles. Spikes in
curves, for models 1 to 6, represent a reflection of the initial perturbation wave from the
outer and the inner boundary. Models 1 to 6 just oscillate, keeping their gravitational
energy constant on a 10−5 level, while models 9 to 21 make a transition to another state,
losing most of their envelope mass. See text for discussion.
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Figure 3.20: Time evolution of the envelope gravitational energy normalized to its initial
value, Eq. 3.4.3. Every 100th time level is plotted, and is represented with a dot; dots are
not connected. Numbers correspond to models from Fig. 3.17. Calculations begin with
slightly perturbed hydrostatic profiles. See text for discussion.
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perturbation. Time evolution of the normalized gravitational energy for such models can

be seen on Fig. 3.19. Wave amplitude of the typical initial perturbation for such a model

is shown as a top right plot on Fig. 3.22. Envelope structure of these models does not

significantly change in time, as shown on relevant plots of Fig. 3.19, where we notice an

essentially constant gravitational energy.

Further, we look at the ‘low-to-mid gas density at the core surface (%cs)’ part of the

‘protoplanet’ region (models 9 to 24 from Fig. 3.17):

Models are characterized with massive, unstable envelopes. The initial perturbation is

strong enough to excite an instability. Models immediately make a transition into the

‘nebula’ region (c.f. plots for these models on Figs. 3.19 and 3.20). After the transition

they oscillate similarly to observed oscillation of ‘nebula’ region models (1 to 8), but with

a much larger (orders of magnitude larger) amplitude. Such an oscillation is excited with

the transition from the initial state. Reflection of the transition-induced perturbation

wave, from the core surface and (on a lesser scale) from the outer boundary, can be seen

(for models 22, 23, and 24) on a top left plot of Fig. 3.21.

Change in the overall dynamics in the model sequence is slow and gradual, indicating

that the instability governing the initial transition to the ‘nebula’ region has linear na-

ture. Additional support for the linear instability case comes from excellent agreement

between our analysis and the prediction of the linear stability analysis by Schönke (2005).

Envelope mass of the end state is smaller than the envelope mass of the initial state.

Next, we stay in the ‘protoplanet’ region, but move to the models with higher %cs

(models 25, 26, and 32 from Fig. 3.17):

Envelopes are massive, but more compact than models 9 to 24. The initial perturbation is

strong enough to excite an effective-core collapse (see plots for these models on Fig. 3.20).

As soon as the initial perturbation wave passes over the area of the (soon-to-be) effective
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core, the envelope instability pumps up a negative velocity field which grows, exceeds the

velocity of sound and becomes a shock, while it continues to grow (see plots for these

models on Fig. 3.21). Effective core feeds on the rest of the envelope, and there is almost

no mass flux from the nebula as long as there is a significant amount of matter in the

outer stratification of the envelope.

The gas density of the effective core is increased with time in accordance with the incom-

ing mass flux from the outer part of the envelope. The outer stratifications collapse in a

free-fall-like manner.

Interestingly, the instability intrinsic to the initial state is weaker for the more compact

of these models. Thus the resulting collapse will be more pronounced for models with

smaller %cs (c.f. plots for these models on Fig. 3.21). This indicates that the nature of the

intrinsic envelope instability might be non-linear, since the dynamical behavior changes

drastically (from oscillation for model 24 to strong collapse for model 25) for models with

relatively similar (initial) stratification (models 24 and 25). An additional argument for

the non-linear nature of this instability is that the (‘fast’ collapse) dynamics of these

models is reminiscent of the non-linear dynamics in the vicinity of the critical core mass.

We now inspect the models with the highest %cs in the ‘protoplanet’ region (models

35, 27, 42, 43, 44, 36, 37, 38, 39, and 40 from Fig. 3.17):

Envelopes are even more compact than models 25, 26, and 32. Like for those models, the

initial perturbation excites the instability which produces the velocity field. However, this

velocity field is positive, unlike the one for a previous group of models, but in accordance

with the trend for the collapsing models: the amplitude of the velocity field goes from

strongly negative toward more positive values, for the (collapsing) models with increasing

%cs. The field grows, becomes supersonic, and continues to grow, trying to pull the com-

pact part of the envelope away from the core. The potential of the compact envelope part

(plus the core potential) slows the growth of the velocity field (c.f. Fig. 3.21, e.g. model
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42, around Mach≈+2). This situation is analogous to increase in resistance to the piston

which forcefully tries to open an under-pressurized vessel. During all that time internal

envelope structure is virtually unchanged, and still gives rise to the instability-induced

velocity field. The velocity field finally rips the compact envelope part from the surface

of the core, envelope structure is completely destroyed, and consequently with it also the

instability-induced velocity field. The envelope is in transition to a new equilibrium. The

end state will share the density of the surrounding nebula cloud with the initial state, but

will be in a ‘nebula’ region.

Figure 3.22, along with plots in Fig. 3.21 featuring model 42 (middle left and bottom

right), shows an example of such an event in more detail.

Middle right plot on Fig. 3.22 shows initial state (black points) of models 42, along with

the envelope state after 100 sound crossing times of evolution (red lines, the ‘end’ state).

This plot is very reminiscent of Fig. 4 in Stahl et al. (1995), who studied thermodynam-

ics of the coreless gas spheres. They formally showed that in their case two states are

coexisting, and process of exchanging one for the other is a phase transition. We can not

formally make a phase transition claim, for lack of the formal thermodynamic analysis,

but all the indications point that the transition observed for model 42 is indeed a phase

transition.

The last remaining part of this model sequence for increasing %cs is the ‘mature giant

planet’ region with models 28, 29, 30, 31 from Fig. 3.17):

The envelopes are basically versions of the barometric law - a compact inner part is

connected to a dilute outer part via an exponential decrease in density. The outer part

does not contain massive, self-gravitating stratifications. The initial perturbation again

excites the intrinsic-instability-induced positive velocity field. But this time either the

potential of the compact inner part is too strong for the structure to be disrupted, or

the envelope structure is only marginally unstable (or both). The velocity field does
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Figure 3.21: Time evolution of the extremal (largest positive and negative) envelope gas
velocities. Every 50th time level is plotted. Calculations begin with slightly perturbed
hydrostatic profiles. See text for discussion.
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Figure 3.22: State transition between different envelope regions. Top row: Time
evolution of the extremal (largest positive and negative) envelope gas velocities, for models
42 (left) and 7 (right). Extremal velocities of model 42 are shown after evolving for about
100 sound crossing times (c.f. Fig 3.21 for the initial evolution including the transition).
Middle row: Density profiles of models 6, 7, and 42 (left), and density profiles of the
initial and the ‘end’ (after 100 tsc) states of model 42 (right) . Bottom row: After initial
perturbation, model 42 (left) made a transition and is oscillating around a radial profile
(right) which is reminiscent of model 7 (compare the lower-right density profile of the
evolved model 42, with the middle left density profile of model 7).
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grow (even to supersonic values), but it is either pushed away from the critical radius

by the (reflected) initial-perturbation wave and destroyed on a rigid, dense inner part, or

it is self regulated - as soon as it grows to velocities large enough to affect the envelope

structure, the structure is changed by the mass flux accompanying the velocity field.

With the envelope structure changed, the instability-induced velocity field is weakened or

completely destroyed. In any case, such an envelope goes through a (not-strictly) cyclic

dynamical pattern, but on the whole it is too stable to be shifted away from the initial

(meta-stable) equilibrium (into a new equilibrium). As the structure settles back into the

initial stratification, the intrinsic instability rises again, starting another cycle, another

(quasi-periodic) pulse (see lower left plot on Fig. 3.21). Throughout the pulse, the overall

radial structure is not significantly changed, keeping the gravitational energy (almost)

constant in time (see lower left plot on Fig. 3.20)

We noticed a direct analytic relation between the gas density at the core surface and

the strength of the perturbation (c.f. bottom left plot of Fig. 3.21); The strength of the

perturbation is connected to the duration of transition until envelope reaches the pulsating

mode; envelope with 2n higher value than %x will take tn time to switch from initial state

to pulsating mode. Time t is the duration of the transition into the pulsating mode for

the envelope with a %x gas density at the core surface.

The strength of the perturbation is discussed in Sect. 3.2: Numerical perturbations - static

gravitational cell mass.

Summary for the survey of the subcritical core model sequence

At the end of the subcritical core mass model sequence survey we reiterate several points

and draw the following conclusions:

1. the ‘nebula’ region is stable

2. models from the ‘protoplanet’ region either make transition to the ‘nebula’ region

or collapse toward the ‘mature giant planet’ region
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3. the ‘mature giant planet’ region is (meta) stable

4. our results for stable and meta-stable envelopes are in a very good agreement with

the stability predictions based on linear stability study by Schönke (2005)

5. additionally to linear instability, we see indications for non-linear instabilities gov-

erning the evolution of the collapsing models

6. for all of the observed transitions, the gas density of the initial state was higher

than the gas density at the core surface of the end state. This gives us the strong

indication that the ‘protoplanet’ region can not be reached within a framework of

the gradual core growth (which leads to monotonically increasing %cs).

7. we would expect that a strong perturbation, such as the coalescence of two cores

of similar sizes, during a collision of two planetary embryos, could throw the model

from a ‘nebula’ region into a ‘mature giant planet’ region, or in a ‘fast collapse’ part

of the ‘protoplanet’ region. This could potentially open a way for a gas giant to

form relatively quickly from a small (i.e. subcritical) core. But the exact nature,

strength, or very existence of the perturbation needed for that kind of transition

will at present remain unknown.

With this we conclude the initial inspection of the subcritical models sequence. We

can confirm that the static classification (Sect. 1.3.2) indeed applies to the dynamical

properties of the models with medium core densities. This further strengthens our hopes

that the medium core density models are a good representation of the models with the

high (realistic) core density.

Generally, further analysis is needed, with a stronger analytic description of the dy-

namic phenomena. Thermodynamical formalism for a core-envelope model needs to be

developed, to be able to strictly describe state transitions and lowest energy states.

Such analysis is unfortunately out of the time-frame of this project.
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Figure 3.23: Nebula density contour plot of the region around the critical core mass of
the solution manifold for %core = 1 kg m−3, a = 5.2 AU, and T = 123 K. Color contours
show envelope mass according to the legend. Thick dashed lines mark the region of linear
stability, each line standing for different outer boundary stability condition; cf. Schönke
(2005). Solid black lines are contours for different nebula densities, and labels represent
logarithm of the nebula density in SI units. White stars mark the position of models
chosen for dynamical calculations. White cross is the position of the global critical core
mass, according to conditions stated in Eq. 1.3.7. Raw manifold data for this figure
courtesy of J. Schönke, AIU Jena.

Region around the critical core

In the previous section we performed a non-linear analysis of the typical subcritical core.

We now put focus on the region around the critical core mass, to get a better understand-

ing of the role of the critical core mass in the early evolution of the planet.

Schönke (2005) performed a linear analysis for the same manifold region, and he found

a region of the linear instability extending around a critical core mass (c.f. Fig. 3.23, thick

dashed line encompassing a white cross). We have chosen our models, shown as stars on

Fig. 3.23, to be able to compare linear and non-linear stability properties of the models
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around the critical core mass. According to the classification of the static, high core

density models (c.f. Sect. 1.3.2) all four envelope regions converge around the critical core

mass. We have placed several models in each of those four regions. Thus we hope that

we will investigate all dynamical phenomena relevant for this region.

Our models range from massive to low envelope mass, but all of them are quite compact

(c.f. Fig. 3.24).

We present the results of the non-linear dynamical analysis of the critical core mass

region on Figs. 3.25 and 3.26. As it turns out, all of the models we investigate follow

the same dynamical behavior - they are all unstable against collapse. Subcritical, just

critical, supercritical, self-gravitating or not, all of the models went into collapse after

initial perturbation. This is in sharp contrast to the previous survey (subcritical core

mass model sequence), where we observed several different types of dynamics at work.

Even models which are supposed to be linearly stable, according to Schönke (2005),

go into collapse. The same is true for models which have an alternative state available

(same nebula density, but lower gas density at the core surface). Such models in previous

survey would usually make a transition to the alternative state with the lower %cs, and

would collapse only for a special subset of models (see Sect.3.4.2: Subcritical core mass

model sequence).

Rebound of the effective core during collapse

When massive stars use up their fuel, they go into a collapse from a white dwarf to a

neutron star (or to a black hole, for extremely massive stars) (see e.g. Kippenhahn and

Weigert (1990), Sect. 34). During collapse, the core remnant is somewhat over-compressed

by inertia beyond its equilibrium state, and it rebounds, sending shock-waves into the

infalling matter above. If the shock expands to optically thin parts of the envelope, the

core explodes and the object becomes a ‘supernova’.
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Figure 3.24: Envelope density profiles for different models shown on Fig. 3.23. Color
coded lines are just for model distinction.
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(c.f. Eq. 3.4.3) for models in the vicinity of the critical core mass. Every 50th time level
is plotted, and is represented with a dot; dots are not connected. Numbers correspond
to models from Fig. 3.23. All models evolve into collapse. Difference between curves
and straight lines is in the momentum that arrives onto the effective core; ‘fast’ collapse
models (e.g. models 1 to 4) deploy a significant amount of the material onto the effective
core, forcing the effective core to smaller radii and compressing it to higher densities, both
of which contribute to the gravitational energy; ‘slow’ collapse models (e.g. models 17 to
19) do not transfer enough of momentum to force the effective core to the smaller radii,
thus they increase gravitational energy only through the increase in the envelope mass.
See text for further discussion.
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Figure 3.26: Time evolution of the extremal (largest positive and negative) envelope gas
velocities. Every 50th time level is plotted. Calculations begin with slightly perturbed
hydrostatic profiles. All models evolve into collapse. See caption of Fig. 3.25 and text for
discussion on the difference between ’slow’ and ‘fast’ collapse models.
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We have noticed that the collapsing envelope of the model planet has a feature remi-

niscent of the core collapse for massive stars - a core rebound. In this case, it is not the

real, incompressible model’s core which rebounds, but the compact inner envelope part -

the effective core.

When the envelope goes into a collapse, in some cases the initial mass infall onto the

effective core can transfer a significant amount of momentum. The equation of state is

for an ideal gas, and as such is not very ‘stiff’, yet it is stiffer than degenerate electron

gas. Therefore the effective core could be over-compressed, and excited into a (damped)

oscillation. Figure 3.27 shows several different examples of this phenomena.

In case of a massive envelope, collapsing with the strong initial ‘kick’, effective radius will

be excited into an oscillation, and on top of that the continuous flux of incoming material

will additionally reduce the radius of the effective core (left plot of Fig. 3.27).

If, on the other hand, the envelope is compact, but has no significant amounts of material

to supply through collapse beyond the initial ‘kick’, the effective core will be excited into a

damped oscillation, but its radius will not be further reduced (e.g. model 21 on Fig. 3.27).

We noticed a rebound of the effective core for both surveys of models with the medium

core density.

An additional feature, not known from stellar astrophysics, is a non-linear ‘crunch’

just before the rebound. We noticed this only for just-critical and (weakly) supercritical

cores. It is thus possible that this ‘crunch’ is connected to the critical core mass, possibly

as a non-linear oscillation of the inner part of the envelope. Two examples can be seen

on right plot of Fig. 3.27, for models 14 (just critical) and 21 (weakly supercritical), at

t ≈3 · 107 s, i.e. t ≈ 1a.
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Figure 3.27: Effective core rebound: Time evolution of the radius of the effective core for a
typical subcritical collapsing model (left figure, ‘fast’ collapse of model 25 from Fig. 3.17),
and for models around the critical core mass (right figure): a subcritical core - model 3
(black, ‘fast’ collapse), a just-critical core - model 14 (blue, ‘fast’ collapse), a supercritical
core - model 21 (red, ‘slow’ collapse). Models from the figure on the right are shown on
the Fig. 3.23. Every 50th time level is plotted. See text for discussion.

Conclusions for the survey of the region around critical core

At the end of the survey of the region around the critical core mass we reiterate several

points and draw the following conclusions:

1. all of the states around the critical core mass are unstable against collapse.

2. collapse can proceed either by keeping the radius of the effective core constant in

time, or it can reduce the effective core radius essentially all the way to the real core

radius, completely destroying the initial envelope structure in the process

3. in some cases the collapse can excite a damped oscillation of the effective core - an

effective core rebound. Similar feature has been found for the collapse of massive

stars (c.f. e.g. Kippenhahn and Weigert (1990)).

4. instability against collapse of the (weakly) subcritical models, found within this sur-

vey (models 1 to 12 from Fig. 3.23), hints that a protoplanet can start the dynamical
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part of its early evolution even with a subcritical core.

5. the results of our analysis, for the region around the critical core mass, are not in

agreement with the prediction of linear stability analysis by Schönke (2005). This,

along with a non-linear ‘crunch’ during the rebound of the effective core, indicate

that the critical core mass is associated with at least one kind of (strong) non-linear

instability.

6. the effect of this instability is obviously greatly reduced, if not completely removed,

in case of a subcritical core mass model (e.g. the subcritical core which we have

chosen in our previous survey). Just how far exactly this (critical) core instability

reaches will presently remain unknown.
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Figure 3.28: Nebula density contour plot of the solution manifold for
%core =1.5 · 10−4 kg m−3, a = 5.2 AU, and T = 123 K. Color contours show the
logarithm of the envelope mass in M⊕ according to the legend. Thick dashed lines mark
the region of linear stability, each line standing for different outer boundary stability
condition for the linear dynamics; cf. Schönke (2005). Stability for a given boundary
condition is to the right (higher Mcore) of the respective dashed line. Solid black lines
are contours for different nebula densities, and labels represent logarithm of the nebula
density in SI units. Raw manifold data for this figure courtesy of J. Schönke, AIU Jena.

3.4.3 Low core density

The core’s gravitational potential needed to be ‘softened’ for the numerical convenience.

The ‘softening’ was introduced by reducing the core density (see discussion in Sect. 3.1).

The lowest core density we used was %core =1.5 · 10−4 kg m−3 = 50%Hill, where Hill

density is set through the definition of the Hill Sphere (c.f. Eq. 1.2.1). For such a core

density rcore/rHill ≈ 0.399, while a %core = 5500 kg m−3 gives rcore/rHill ≈ 0.0012. Although

‘core’ with %core =1.5 · 10−4 kg m−3 is roughly six orders of magnitude less dense than

rock/ice and is arguably closer to a typical nebula density than to a typical condensible
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element structure, it was interesting to examine this case (see Fig. 3.28) for two reasons.

Firstly, such a small core density enabled fast calculation of the envelope dynamics, and

many models could have been covered for many (tens, even hundreds of) sound crossing

times. Secondly, such a core density closely corresponds to the effective core density

of the ‘gravitationally smoothed’ models in the state-of-the-art disk-planet-interaction

type calculations, (e.g. Kley, 1999; D’Angelo et al., 2002, 2003; Nelson and Papaloizou,

2004). Therefore, it was valuable to learn to what degree the dynamics of such a system

corresponds to the dynamics of the system with a much deeper potential (higher core

density). For further discussion of the consequences of the results for such core densities,

see Sect. 3.5.1.

A separate issue arises upon comparing the dependance of Menv and %neb vs %cs,

Fig. 3.28 with Fig. 3.16, or Fig. 3.29 with Figs. 3.17 and/or 3.30. For model planets with

middle to realistic core densities (i.e. 1 to 103 kg m−3) distinct manifold regions, as deter-

mined by envelope mass properties, are closely overlapping with manifold regions derived

from envelope’s outer density properties (c.f. Sect. 1.3.2 for a description of the manifold

regions). The same is not true for models with low core densities (e.g. %core ≈10−4 kg

m−3). This can easily be seen on Fig. 3.29, where the equivalent to the ‘mature gas giant’

region (compact self-gravitating envelopes) starts at different %cs, gas densities at the core

surface, for the envelope mass and for the nebula density. That is not the case for high

core density models, c.f. Fig. 3.30, where the ‘mature giant planet’ region starts at the

same %cs for both the envelope mass and the nebula density. From Fig. 3.29, we can see

that %out would put the ‘mature gas giant’ region at %cs > 0.1, whereas Menv would put

it at %cs > 0.001. Upon inspecting Fig. 3.28, we can come to a similar conclusion about

the ‘location’ of the (global) critical core mass; one position (Mcore, %cs) would be chosen

according to nebula density properties, entirely different position would be derived from

the envelope mass properties, and yet another from linear instability lines.

This discrepancy questions the uniqueness and validity of the classification based upon
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Figure 3.29: Manifold cut for a typical subcritical core (log Mcore/M⊕ = 0.5), with
%core =1.5 · 10−4 kg m−3 = 50%Hill core density, where Hill density is set through the
definition of the Hill Sphere (c.f. Eq. 1.2.1). Numbers identify different models, shown in
Figs. 3.31 and 3.32. Stars represent models from ‘nebula’ region, black circles and white
circles are ‘protoplanet’ region models, while black squares are ‘mature gas giants’ region
models (according to the classification of static high core density models, from Sect. 1.3.2).

the static properties of the high core density models. The ambiguity is confirmed when

applied to the dynamical behavior of low core density models.

It also stopped us from performing dynamical analysis around the critical core mass. The

critical core mass is so unconstrained that the model grid needed to cover the required

area is just too large, in the time-frame presently available. A smaller grid density (than

the grid density for the medium core density models) would not make sense, because some

of the dynamical properties could easily be missed. Hence it would be very difficult to

state any kind of reliable conclusions about the dynamical properties of that part of the

solution manifold.

Because of the above stated reasons, we decided not to perform the analysis of the

region around the critical core mass. The only analysis we will perform for the low density

core models will be the analysis of the typical subcritical core model sequence.
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Figure 3.30: Manifold cut for a typical subcritical core (log Mcore/M⊕ = −5), with high
(realistic) core density, %core = 5500 kg m−3 =3.7 · 107%Hill, where Hill density is set
through the definition of the Hill Sphere (c.f. Eq. 1.2.1).

Subcritical core mass sequence

Figure 3.29 shows a sequence of models placed along an envelope mass manifold cut for a

typical subcritical core. The corresponding radial profiles of individual models can be seen

on Fig. 3.31. Those models were used as initial states for hydro-dynamical calculation,

and their evolution was followed for one hundred sound crossing times.

Figure 3.32 shows a time evolution of the envelope’s gravitational energy, as defined with

Eq. 3.4.3, while Fig. 3.33 shows a time evolution of the extremal velocity values (largest

positive and largest negative). For a brief discussion on a choice of the dynamical indica-

tors, see Sect. 3.4.

As in the equivalent survey for the medium core density models, we will inspect the model

sequence in the order of increasing gas density at the core surface, %cs. The reader should

keep in mind the discussion of the initial perturbation (c.f. Sect. 3.2: Numerical pertur-

bations - static gravitational cell mass), i.e. that models with higher %cs will initially be
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more perturbed.

Initially we inspect the models with the lowest %cs, the ‘nebula’ region models. Just

as for the medium core density models, the stability of these models is well represented in

the linear analysis of Schönke (2005). The models 1 to 10 from Fig. 3.29 are stable, and

just oscillate around the initial equilibrium excited by the initial perturbation, as can be

seen on Fig. 3.32.

The ‘protoplanet’ region follows, with massive envelope models, immersed into dense

nebulae. As we mentioned already, the lower %cs boundary of the ‘protoplanet’ region

agrees well with the linear instability line, i.e. we start noticing the dynamical transition

of the initial models into the ‘nebula’ region equilibria, for the %cs which are within a

factor two from linear stability analysis prediction for the first unstable model. The same

was the case for the medium core density models. Figure 3.32 demonstrates that the

transition into the ‘nebula’ region, followed with an oscillation excited by the transition,

is a behavior characteristic for models 11 to 16 from Fig. 3.29.

We believe that the transition, from the lower %cs side of the ‘protoplanet’ region

into the ‘nebula’ region, is initiated by a linear instability, because the region boundary

agrees so well (within a factor of two) with the prediction of the linear instability analysis,

and because the change of the behavior is gradual (as we go through the model sequence).

We now move to models with even larger %cs, models 16 to 19 from Fig. 3.29. From

the same figure it is clear (especially upon comparison with the equivalent core mass

manifold cut for the realistic core density models, Fig. 3.30) that, due to the low gradient,

the ‘protoplanet-mature gas giant’ region boundary is not obvious for low core density

models. Thus it is difficult to say with certainty to which region models 16 to 19 belong to.

From comparison of the dynamical properties of these models (from Figs. 3.32 and 3.33)
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with the dynamical properties of the equivalent medium core density models (e.g. models

25, 26, and 32 from Figs. 3.20 and 3.21), and noting the linear instability line for high %cs

(c.f. Fig. 3.28), we suggest that models 16 to 19 still belong to the ‘protoplanet’ region .

Just as it was the case for the medium core density models, the change is sharp, in

the dynamical properties of the model sequence between the ‘transiting’ (models 11 to

16) and ‘collapsing’ (16 to 19) models of the ‘protoplanet’ region. This sharp change in

the qualitative dynamics, along with the ‘fast’ collapse reminiscent of the ‘fast’ collapse

around the critical core mass region (for the medium core density models), indicates that

the instability responsible for the ‘fast’ collapse of models 16 to 19 has a non- linear na-

ture.

For further details of the dynamics of the ‘fast’ collapsing models of the ‘protoplanets’

region we refer the reader to the equivalent section in the subcritical core mass model

survey for the medium core density models.

Finally, we inspect models with the highest gas density at the core surface - models 20

to 22. For the medium core density models this would be the region of the (meta) stable

‘mature gas giant’ models. As we can see from Fig. 3.32, the gravitational energy of this

group of models is constant in time. This reflects the fact that, although the effective core

radius is slowly pushed back toward inner stratifications, the most massive part of the

envelope stays virtually unchanged. In this context, this is the extreme example of the

‘slow’ collapse - the momentum flux of the collapsing outer stratifications is completely

unable to significantly affect the massive inner parts. We followed the evolution of such

‘slow’ collapse up to shock (gas) velocities in excess of Mach 100, but were unable to

locate any deviation from the dynamical characteristics described above.

We have performed the survey even further, for higher %cs, hoping to find the (meta)

stable equilibria. The model with the highest %cs gas density at the core surface we
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analyzed, model 40 from Fig. 3.29, exhibits the same dynamics as the ‘slow’ collapsing

models (20 to 22). Further investigation of models with even higher %cs was restricted

because of lack of time, and, more importantly, because our numerical scheme started to

break down.

Break-down of the code was most likely connected to outward shock propagation

through the compact envelope with its exponentially decreasing density and the dynamic

range of over 35 orders of magnitude. This type of environment is the only one our scheme

had problems with.

Dynamical properties and the core density

Within this work we have performed a general study of the dynamical properties of a

simple core-envelope system. One important aspect was to investigate how dynamical

properties change with the change in the core density. This question is particulary inter-

esting because artificially-low core density systems are used today in the state-of-the-art

investigations of the (protoplanetary) disk-planet interaction. The low core density sys-

tems are used there for numerical convenience, and are generally considered to preserve

the qualitative dynamical properties of the realistic core density systems.

We noticed qualitative differences in the evolution/stability of the envelopes for sub-

critical cores with low core density (Sect. 3.4.3) and mid core density (Sect. 3.4.2).

Differences are not qualitative as long as the core is not supercritical, and as long as

the gas density at the core surface is small, when compared to the core density. Thus, the

‘nebula’ region and the ‘nebula-protoplanet’ region boundary are qualitatively the same

for both low and mid core density.

First, but major, qualitative difference in the dynamics occurs in the ‘protoplanet’

region, for equilibria with gas densities at core surface larger than those in ‘fast’ collapse

model sequence (i.e. for models 20-22 from Fig. 3.29).

For medium core density survey, after ‘fast’ collapsing models in the ‘protoplanet’ region,
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Figure 3.32: Time evolution (100 sound crossing times) of the envelope gravitational
energy normalized to its initial value, c.f. Eq. 3.4.3. Every 500th time level is plotted, and
is represented with a dot; dots are not connected. Numbers correspond to models from
Figs. 3.29 and 3.31. Models 1 to 10 show an oscillation around the initial equilibrium;
models 11 to 15 make a transition to an equilibrium (with a lower core mass than the
initial equilibrium) and then oscillate; models 16 to 19 go into a fast collapse, quickly
reducing their effective core (quickly relative to the sound-crossing time scale); models 20
to 22 go into a slow collapse, where the dilute outer part collapses onto the (essentially)
fixed effective core. See text for discussion.
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Figure 3.33: Time evolution of the extremal (largest positive and negative) envelope gas
velocities. Every 500th time level is plotted, and is represented with a dot; dots are not
connected. Numbers correspond to models from Figs. 3.29 and 3.31. Models 1 to 10
show an oscillation around the initial equilibrium; models 11 to 15 make a transition to
an equilibrium (with a lower core mass than the initial equilibrium) and then oscillate;
models 16 to 19 go into a fast collapse, quickly reducing their effective core (quickly
relative to the sound-crossing time scale); models 20 to 22 go into a slow collapse, where
the dilute outer part collapses onto the (essentially) fixed effective core. See text for
discussion.
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a sequence of models would follow which have their initial structures ripped apart by

the instability triggered by the initial perturbation; after the envelope destruction, those

models would undergo transition to the ‘nebula’ regime. In contrast, for low core density

models, the sequence is continued with extreme cases of ‘slow’ collapsing models, such as

models 20 to 22. The high %cs ‘transiting’ subregion of the ‘protoplanet’ region could not

be found and likely is small or simply non-existent.

Equilibria with even higher %cs (e.g. model 40 from Fig. 3.29), exhibit the same dy-

namics as the ‘slow’ collapsing models (20 to 22). Thus, we were also been unable to

find the meta-stable ‘mature gas giant’ region. This means that compact equilibria are

unstable against collapse, for core-envelope systems with the low core density.

Such instability is in the sharp contrast to a (meta) stable ‘mature gas giant’ region, for

core-envelope systems with the medium core density.

We continue by comparing the properties of a compact density profile for low and

medium core density systems. This comparison reveals the advantages of choosing ex-

tremal velocity over velocity at the outer boundary, as one of the dynamical indicators.

Differences in the dynamical properties of the low and mid core density systems are

not easy to spot by inspecting the evolution of the gravitational envelope energy; the

constant-density (outer) boundary condition, coupled with the very low nebula density

(order of 10−21 kg m−3), greatly limits the accretion of an already quite compact envelope

(c.f. radial profile of model 22 on Fig. 3.31). Envelope of such a compact model will look

steady (c.f. model 22 on Fig. 3.32 and model 31 on Fig. 3.20).

But, upon comparing the velocities at the outer envelope boundary for both cases (low

and mid core density), we see (Fig. 3.34) that the difference in the envelope evolution is

qualitative; low core density model (on the left) goes into collapse, while mid core density

model (right), after initial perturbation, finds a stable solution (and pulsates around it).

This could mean that the ‘protoplanet’-region-instability extends to lower nebula densities
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Figure 3.34: Comparison of the evolution of the velocity at the outer envelope boundary
for two envelopes with similar nebula densities (order of 10−21 kg m−3) and in a similar
manifold region (lower %cs of the ‘mature gas giant’ region), but with different core densi-
ties. Model on left figure (model 20) has a core density of %core = 1.5 · 10−4 kg m−3 (low
core density), while the model on the right (model 31) has %core = 1 kg m−3 (medium core
density). Model with the low core density goes into an envelope collapse, while the model
with the mid core density settles around a meta-stable solution (c.f. Fig. 3.35). Time is
in units of sound-crossing times, and velocity has dimension of Mach number.
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an envelope collapse, whilst models with the mid core density settle around a meta-stable
solution.
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for low density cores (even quite compact envelopes in near vacuum are unstable against

collapse), as opposed to mid core density models, which are (meta) stable if placed in

near-vacuum (in, e.g., 10−18 kg m−3).

Although in this case velocity at the outer boundary did indicate that one envelope is

in collapse (model 22, left plot on Figs. 3.34 and 3.35), while the other (model 31, right plot

on Figs. 3.34 and 3.35) is not, we are often limited to timescales shorter than the free-fall

timescale. In such cases collapse does not have time to connect to the nebula, and from

the outer boundary perspective envelope looks almost static. Therefore, additionally to

normalized gravitational energy, we will use, as a stability indicator, the extremal (largest

positive and negative) values of the envelope gas velocity. Extremal velocities will correctly

indicate the state of the envelope, regardless of where the important dynamics is located.

Extremal velocity indicator shows that ‘more realistic’ (i.e. denser) cores indeed are

able to stabilize against collapse. Thus, cores with low effective densities do not show the

stabilizing influence of realistic cores!
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Summary for the subcritical core model sequence

We conclude the subcritical core mass model sequence survey for low density cores with

the recapitulation of the several important points:

1. the ‘nebula’ region is oscillating and stable

2. a linear instability operates in the ‘protoplanet’ region and drives the transition

(from the ‘protoplanet’ to the ‘nebula’ region)

3. the border between the ‘fast’ and the ‘slow’ collapsing models is determined well

by the linear instability line, c.f. Schönke (2005), and could serve as a dynamical

counterpart to the static border between the ‘protoplanet’ and the ‘mature gas giant’

regions

4. a second ‘transiting’ subregion in the ‘protoplanet’ region does not exist (unlike for

the medium core density models)

5. the entire ‘mature gas giant’ region appears to be unstable against the ‘slow’ collapse

6. a subcritical core model sequence, for a low density core, is NOT dynamically equiv-

alent to its medium core density counterpart. Differences are qualitative.

Unlike for the high and medium core density models, the values of the classical de-

finition of the static critical core mass, e.g. Wuchterl (1991a), and of the our newly

proposed global static critical core mass (see Sect. 1.3.9) are numerically incompatible,

i.e. M class
CCM ≈ 8M glob

CCM. Thus a simple test could be performed in the future (dynamical

stability of a core which is subcritical in the classical sense and supercritical in the new,

global sense), to see which definition, if any of those, has more physical relevance.
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3.5 Fluid-dynamics and disk-planet models

3.5.1 Future of the disk-planet calculations

We argue that the present-day locally isothermal disk-planet calculations are operating

in a qualitatively different dynamical regime, than the one they are normally assumed to.

In Sect. 1.3.11 we showed that the introduction of the gravitational smoothing para-

meter in the disk-planet interaction type calculations (or alternative procedure with the

same effect) is equivalent to drastically reducing the core density. Manifold with reduced

core density (a problem with ”soft” potential) has a much higher critical core mass (of

the order of 100 M⊕ already for the gravitational smoothing parameter b ≈ 0.1 rHill!).

In the same Sect. we also showed that the transition between the envelope regions is

smoother for smaller core densities.

Both of these facts will greatly affect the dynamics of the models in the disk-planet in-

teraction type calculations. The dynamical properties of the system depend on the core

density in number of instances (see summaries of the hydro-surveys for medium and low

core density models). In other words, medium and low core density models operate in

dynamical regimes which are mutually qualitatively different.

Therefore, present-day disk-planet calculations operate in a qualitatively different dy-

namical regime, from the one in which would be models with a correctly calculated gravi-

tational potential.

We now give the outline of an idea that should greatly improve the resolution and the

accuracy of the current hydrodynamical codes emulating a circumstellar protoplanetary

nebula. The implementation should be relatively straightforward, and should not pose

great difficulties for the hydro-codes written in a well-abstracted and structured manner.

If the hydro-code is written in an object-oriented language, the matter of resolving the

gravitational potential close to the core surface will be simplified even further.
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Global 3D disk codes can greatly benefit in accuracy and computational speed by

coupling to 1-(or 2- or 3-)D hydro code in a region between (proto)planet’s core surface

and a surface which is a (fraction to few) Hill radii away from the planet.

Close to the core surface spherical symmetry will be a good approximation, and the

existing implicit hydro-codes will be able to include correct microphysics and will resolve

the inner envelope stratifications much better than any existing global hydro-code.

Special attention will have to be paid to the consistent boundary conditions between the

inner stratifications and the protoplanetary disk, as well as to the correct advection across

this boundary.

3.5.2 Perturbations and the protoplanetary evolution

Additionally to the discussion of 3-(2-)D disk-planet interaction calculations, it can be ar-

gued that by putting a planet directly into an unperturbed nebula, instead of the gradual

core growth, one type of solutions, with the higher %cs, will be favored to the other, with

the lower %cs. At the same time, it is not apriori clear that the typical nebula perturbation

will bring the planet to the state with higher gas density at the core surface.

This (type) of solution is more stable than the (type of) solution with the lower %cs, but it

is unclear under what circumstances during the evolution of the protoplanet the transition

to the most stable equilibrium is made, and if it is made at all.

In future work, we could analyze the type and the strength of the perturbations which

are able to produce the aforementioned transition, and the possible implications for the

protoplanetary evolution.
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Summary and Discussion

Introduction

Our work is an investigation of the various aspects of the planetary formation theory,

within the framework of the nucleated instability (for more on nucleated instability frame-

work see e.g. Wuchterl et al., 2000).

Theory of the giant planet formation is to a large degree the question of how to accrete

gas from otherwise stable nebula. That involves the issue of triggering the collapse or

steady accretion. It has been assumed that the envelope accretion would follow once a

critical mass of solids is assembled. The question of when this occurs has been tried to

answer by constructing static models to the limit where no more static models would

exist, and assumed accretion would occur (e.g. Ikoma et al., 2001; Bodenheimer et al.,

2000). Dynamical studies have also been performed (e.g. Wuchterl, 1991a,b, 1993), as

well as the disk-planet interaction investigations in 2D and 3D (e.g. Kley, 1999; D’Angelo

et al., 2002, 2003; Nelson and Papaloizou, 2004). In all of these studies, both static and

dynamic, ’the evolution’ of particular planets is followed, but not much is known about

the evolution of all possible protoplanets. Therefore, it is somewhat difficult to frame the

detailed solutions of previous investigations within a global perspective.

We did the first survey of the dynamics of proto-planetary envelopes for arbitrary

core and surrounding nebula. In our study we use a simple core-envelope model (c.f.

Chapter 1) and aim for a complete hydro-dynamical classification of protoplanets.
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Mapping out the solution space

During the early stages of the planetary evolution, typical dynamical processes most

likely operate on the time-scales much smaller than the core-accretion timescale. Thus,

most of its early days proto-planet will spend in a hydro-static equilibrium, or very close

to it. It was therefore important to provide an idealized but complete road-map of all

hydrostatic states, which we did in Chapter 1. Although our model is based on a fairly

simple set of assumptions, after comparison with Broeg (2005), we are confident that

our model provides a qualitatively correct and complete overview of hydrostatic equilibria.

We classify the protoplanets according to the general properties of

their envelopes, within the complete set of core-envelope solutions (we

propose to call it solution manifold). Depending if the protoplanetary

envelopes are compact or quasi-homogenous, and self-gravitating or

not, we have found four different envelope regions (c.f. Sect. 1.3.2):

mature telluric planet (I), mature gas giant (II), nebula (III), proto-

planet (IV). Borders between the regions are drawn using the morphological features of

the envelope mass properties (c.f. Sect. 1.3.2).

We also develop a concept for the global static critical core mass, as a core of a pro-

toplanet which connects all four qualitatively different envelope regions (c.f. Sect. 1.3.9).

As one of the byways of such global critical core mass, we provide a precise statement

for the distinction between a planet and a minor planet, discussed in Chapter 2. In brief,

a planet will have a core which is supercritical within the appropriate manifold. On the

contrary, a minor planet will have a subcritical core. In Sect. 2.2 we show which of the

larger bodies in the Sol System fulfill this planethood criterion.

The planethood criterion definition is general, and its validity extends beyond our isother-

mal model to any complete protoplanetary solution set, regardless of the complexity of

the physical model used.
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Protoplanetary dynamics

The next step in the understanding of the planetary equilibria was to find physically

significant manifold solutions, i.e. to discriminate stable from unstable model-planets.

We had the choice of either performing a linear or a non-linear stability analysis.

The linear analysis can distinguish a (linearly) stable from an unstable protoplanetary

model, but it cannot be used to discover where the instability leads to, and even more so

for an intrinsically non-linear system. Additionally, the linear stability analysis is limited

only to the small envelope perturbations. As we have learned from our own planetary

system, planet formation involves ‘large perturbations’, i.e. giant impacts (e.g. see the

rotational axis of Uranus, or the Earth-Moon system, or Mars’ Schiaparelli crater-Valles

Marineris canyon system, etc).

Therefore we decided to perform a non-linear stability analysis - we use the static profiles

from a solution manifold as the initial states for a hydrodynamical code.

We use an explicit hydrodynamic code (c.f. Sect. 3.2), which was possible to build

and test within a given time-frame, and whose performance (correct to 10−3 level) was

good enough for the required problem (c.f. Sect. 3.3). The nature of our survey requires

investigation of more than a hundred different protoplanetary models, and typically fol-

lows the evolution of every model for about ten to hundred sound-crossing times. These

requirements would not be possible to fulfill for the models with a realistic core density of

solids (i.e. %core ≈103 kg m−3), because such a core density imposes a prohibitively small

time-step size in our explicit scheme1. The compromise solution is to reduce the core

density, but only to the point for which we can be reasonably certain that our dynamical

analysis is still qualitatively correct. Through a comparison of linear stability properties

for manifolds with different core densities (c.f. Schönke, 2005), we have chosen for our

models a core density of %core = 1 kg m−3.

1time-step is determined, among other criteria, by the grid-cell size through the CFL condition; see
Sect. 3.2



125

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

-7

-6

-8

-8

-9
-10

-12

-6

-16
-20

-9

-30

-10

-40

-2,0 -1,5 -1,0 -0,5 0,0 0,5

-6

-4

-2

0

2

Pulsation

Ejection/Transition

Collapse

Transition

Oscillation

log M
env

 

 

-7,50
-7,00
-6,50
-6,00
-5,50
-5,00
-4,50
-4,00
-3,50
-3,00
-2,50
-2,00
-1,50
-1,00
-0,50
0
0,50
1,00
1,50
2,00
2,05

log (M
core

/M
Earth

)

lo
g

(ρ
cs

/[k
g 

m
-3
])

  

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

10-7 10-6 1x10-51x10-4 10-3 10-2 10-1 100 101 102 103

0,0

5,0x10-7

1,0x10-6

1,5x10-6

2,0x10-6

2,5x10-6

3,0x10-6

10-3

10-2

10-1

100

101

102

 envelope mass

M
e

nv
/[M

e
ar

th
]

 nebula density

- Pulsation

- Ejection/Transition

- Collapse

- Transition
- Oscillation

 

 

ρ ne
b/[k

g 
m

-3
]

ρ
csg

/[kg m-3]

Figure 4.1: Protoplanetary dynamics Top figure: Dynamical characteristics of the
solution manifold, with model parameters (Mcore, %cs) and for a core density of %core =
1 kg m−3, a = 5.2 AU, and T = 123 K. Shades of grey show the logarithm of the envelope
mass in M⊕ according to the legend. Thick dashed lines mark the region of linear stability,
with stable solutions to the right of the curve, c.f. Schönke (2005). Solid black lines are
contours for different nebula densities, and labels represent logarithm of the nebula density
in SI units. Colored boxes show dynamical characteristics according to the legend. The
critical core mass is located roughly in the middle of the large red box on the right side.
Bottom figure: Manifold cut for a typical subcritical core (log(Mcore/M⊕) = −1, with
%core = 1 kg m−3 core density. Arrows indicate initial and end states for the different
dynamical regions, according to the legend. Typical subcritical core has five dynamical
regions with different characteristic behavior: oscillation (stable), transition, collapse,
ejection+transition, and pulsation (meta-stable). See text for details.
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Although the non-linear analysis uncovered a whole zoo of evolutionary possibilities, all

of them fitted into one or more of the five basic modes of dynamical behavior: oscillation,

pulsation, transition, ejection, and collapse (c.f. Fig. 4.1). As the nomenclature suggests,

some of these dynamical modes are stable or meta-stable (oscillation and pulsation), while

other modes loose knowledge of the ‘initial’ envelope structure (transition, ejection, and

collapse). Detailed description of the dynamical modes is available in Sect. 3.4.1: Types

of dynamical behavior.

Dynamical diversity of embryo cores

During the earliest stages of the protoplanetary evolution, protoplanetary cores, composed

from accreted solids, are believed to be unable to trigger the rapid gas accretion or the

envelope collapse, upon a ‘small perturbation’; such cores do not have the ‘critical mass’

believed necessary for further evolution into a mature planet.

However, in our classification of static equilibria, we have shown that sub-critical cores

(embryos) can have several qualitatively different envelope structures (e.g. quasi-uniform

and non-self-gravitating, quasi-uniform and self-gravitating, and compact self-gravitating).

A question naturally followed: ‘Can sub-critical cores with qualitatively different envelope

structures have different dynamical properties?’. If this would be the case, than proto-

planetary embryos could take different evolutionary paths already in the very early stages

of their existence.

In order to understand this potential dynamical diversity, we have investigated a typ-

ical subcritical core mass for all the different envelope structures it can take, and have

found out that five basic dynamical regimes are possible: oscillation, transition, collapse,

ejection+transition, and pulsation (c.f. bottom plot in Fig.4.1).

The results of the hydro-dynamical calculations agreed quite well with the predictions

of the linear stability analysis (c.f. Schönke, 2005), i.e. the boundary between the sta-

ble and the unstable core-envelope equilibria, obtained with the linear stability analysis,
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agrees well with the same boundary coming from the hydro calculations. However, linear

stability analysis predicts a stable solution for the ‘mature gas giant’ region models (ones

with the highest %cs), while hydro calculations show that the ‘mature gas giant’ is only

meta-stable, and that such models experience a ‘pulsation’ (c.f. Sect. 3.4.2 for details).

Furthermore, we show that the ‘protoplanet’ region, predicted by linear stability analysis

to be unstable, actually exhibits three different kinds of dynamical phenomena. One of

those (‘transition’) shows several indications that its a linear instability, while the other

two (‘collapse’ and ‘ejection’) appear to have a non-linear nature (again, c.f. Sect. 3.4.2

for details).

On the issue of borders between different protoplanetary regions, we note that the

borders defined for the static classification do not agree with the borders defined by dy-

namical properties. It came somewhat as a surprise that, for some nebulae, stable quasi-

homogenous and self-gravitating (i.e. quite massive) equilibria exist (c.f. bottom plot of

Fig. 4.1, for models with 10−5< %cs <10−4). Such models can even be end-states of the

transition which comes after a ‘strong perturbation’, i.e. after a complete destruction of

the initial envelope structure (c.f. Sect. 3.4.2).

These models have envelope surface densities that are comparable to the asteroid density,

and could consequently have their core-accretion cross-sections increased by several orders

of magnitude2. This could possibly be a venue for a fast core accretion process, one which

could produce a significant (even critical) core in just a fraction of the canonical critical

core growth time-scale (present-day best-guess value is around 5-10 Ma).

Another alternative for a rapid gas giant formation could be facilitated through initi-

ation of a collapse for the subcritical core-envelope structure. Our investigation showed

that collapse is one of the possible dynamical modes of the subcritical core. It is clear that

2For example, planet-model 8 from the subcritical core survey (see Fig. 3.18), has an average envelope
density of %env =4.75 · 10−6 kg m−3, and a radius of rHill(m8) =3.4 · 1010 m. This gives a column
density of ≈3.2 · 105 kg m−2. Such an envelope, overdense relative to the nebula, would barely slow
down a 10 km asteroid with %aster = 3000 kg m−3 (effect would be on a percent level). But it also means
that any asteroid smaller than 100 m, crossing a significant part of the protoplanet’s envelope, would be
captured by the protoplanet!
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the core-envelope structure required for the initiation of the collapse can not be reached,

if one considers only the time-sequence of hydrostatic models with a (discretely) growing

core, i.e. if only small perturbations are possible.

But at present time we can not exclude the possibility that the subcritical core collapse

could be initiated by a large perturbation (e.g. by a collision with a core of similar size).

Once started, collapse would end only after most of the available mass reservoir is eaten

up, leaving the protoplanet with the compact envelope. We have shown that the compact

envelope structure is meta-stable. Thus, once such compact equilibrium is reached, it

would remain compact during consecutive evolutionary stages.

Such an evolutionary scenario could explain Jupiter’s possibly subcritical core (see e.g.

Guillot, 1999; Wuchterl et al., 2000). It could also serve as an alternative for the formation

of gas giants in very young planetary systems (e.g. Neuhaeuser et al., 2005).

We have performed another dynamical survey of the typical subcritical core. This

survey is equivalent in scope to the one discussed above, but for models with a much lower

core density - %core =1.5 · 10−4 kg m−3 (c.f. Sect.1.3.11 for a comparison of manifolds

with different core densities).

Although such a low core density is more reminiscent of the protoplanetary nebulae

than of the density of the solids, it was important to perform the dynamic analysis, because

this core density closely corresponds to the effective core density of the ‘gravitationally

smoothed’ models in the state-of-the-art disk-planet-interaction type calculations, (e.g.

Kley, 1999; D’Angelo et al., 2003; Nelson and Papaloizou, 2004).

In brief (c.f. Sect. 3.4.3 for details), we have found dynamical behavior similar to the

one for the models with the medium core density, but with several important differences,

of which we state two here (c.f. summary of Sect. 3.4.3 for the others); first, the ‘mature

gas giant’ region is unstable - we have been unable to find a compact equilibrium stable

against collapse, and second, the ‘ejection+transition’ dynamical mode (c.f. Fig.4.1) from

the ‘protoplanet’ region appears to be missing.
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Hence, we conclude that the low core density solution manifold has dynamical prop-

erties which are qualitatively different from the dynamical properties of the medium core

density solution manifold (and, along the same line, different from the dynamical prop-

erties of the solution manifold with the core density of solids).

Collapse of the Critical Core

As we state in the introduction to the summary, the role of the critical mass in the

planetary evolution is still poorly understood. Hence, another focus of our dynamical

survey was the manifold region around the critical core mass (red square on the right side

of the upper plot of Fig. 4.1).

In this analysis, we covered the manifold region within a factor of two (in core-mass)

around the critical core (c.f. Fig. 3.23 for the model grid around the critical core mass).

The most important finding of this analysis is:

All of the states around the critical core mass are unstable against collapse.

This is true regardless if the models are sub- or super-critical, self-gravitating or not, as

long as they are in vicinity of the critical core. The general instability against collapse

is not in agreement with the prediction of the linear stability analysis by Schönke (2005)

(compare the red box on the right side of the upper plot of Fig. 4.1 with the dashed line).

Disagreement indicates that the critical core mass is associated with at least one kind of

non-linear instability.

Furthermore, from the general instability against collapse we see that the envelope

collapse will be a prominent evolutionary feature as soon as the core grows to (at most)

half the size of the critical core; i.e. a protoplanet can start the dynamical part of its

early evolution even with a subcritical core, and regardless of the nebula environment the

protoplanet is in.

The effect of this instability is obviously greatly reduced, if not completely removed,

in case of a typical subcritical core mass model (e.g. the subcritical core which we have
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chosen in our previous survey). Exactly to how small cores the non-linear, critical-core-

instability reaches will presently remain unknown.

For the details of the critical core region study, we refer the reader to Sect. 3.4.2: Region

around the critical core.

Outlook

Although most of the goals of this study have been achieved, in the light of the new results

we deem several avenues worth of further study.

Within a current physical model, we feel that an additional investigation of the dy-

namical properties of the supercritical models would be important, as well as the study

of the boundaries of the unstable region around the critical core mass.

A better developed analytic description would be valuable, but due to intrinsic non-

linearity of the system it is at present unknown how powerful traditional analytic analysis

could be. Alternative approach would be to develop a thermodynamic formalism for self-

gravitating system with core, retracing the steps done by Stahl et al. (1995) for coreless

gas spheres.

Furthermore, the investigation of the highly distorted region around the critical core

mass of the low-core-density manifold would probably improve understanding and inter-

pretation of the results of the global disk-planet interaction type calculations.

A solution for the qualitatively correct gas flows in the protoplanet’s vicinity, for the

disk-planet interaction type calculations, would be to couple the (kind of) hydro code

which we used to the global 2D/3D hydrodynamical disk model. Spherical symmetry is

a good approximation of the envelope stratification deep in the gravitational potential of

the protoplanet. Thus, such a model, embedded within a disk model covering the rest of

the protoplanetary disk, would provide a (far) better representation, of the protoplanet’s

feedback onto the disk, than present day state of the art disk-planet models have.

A concept of the solution manifold needs to be further developed, for a system with
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better microphysics. The protoplanet’s surroundings - the nebula - needs to be described

in a physically meaningful way, but one which would not over-constrain the model of

planet itself. Additionally, a new paradigm is most likely needed for the core-luminosity-

temperature relation at the core surface of the protoplanet.

Once a concept is developed for a solution manifold which includes more physics

than the present study, it would be very important to redo the hydro-dynamical surveys,

analogous to the ones we did within this investigation.
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