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1 Introduction

Pair creation - particularly electron-positron-pair creation - is a often discussed
phenomenon in modern physics. In this work we want to restrict ourselves to
the creation of electron positron pairs from the vacuum in strong external fields
which vary slowly in time.

It is a well known fact (see [10] for example) that pair creation is not possible in
static fields, so at first sight it would be natural to assume, that the probability
of creating a pair from the vacuum goes to zero as the time derivative of the
external field goes to zero, too. As we will see later, this is not true in general.
If the external field strength exceeds a critical threshold, there will be a sudden
jump in the probability of adiabatic pair creation. This sudden jump led to the
notion of ”spontaneous pair creation”.

The problem of spontaneous pair creation has been discussed in the physical
literature (see for example [2]). Several attempts have been made to verify or
falsify the existence of spontaneous pair creation by experiments. So far there
exist no clear experimental data neither in favor nor against the existence of
spontaneous par creation. The reason for the lack of such experiments is that
the critical strength of the field which is needed to create pairs spontaneously
is very big. One possible way to produce such strong potentials is by colliding
heavy ions. The total charge of the collided ions has to be greater than 180e - so
one has to collide two atoms not much smaller than Uranium. Such a collision
leads two many other reactions in the nuclei, so it is not easy to distinguish where
the detected electrons and positrons come from.

In the physical literature the Dirac equation with the so called ”Dirac sea”
interpretation is used to describe pair creation. We will do the same since this
interpretation gives a picturesque description of the situation which leads us also
through the mathematical argument. Therefore we will formulate the theorem
of spontaneous pair creation as a one particle Dirac problem. Non rigourously
the problem can be described as follows: Is it possible to get transitions between
the negative and the positive continuous spectrum by adiabatically turning on
an external potential beyond the critical value and adiabatically turning it off
again? After that we introduce the Dirac equation in second quantization and
give a heuristical connection between the Dirac equation with ”Dirac sea” in-
terpretation and the Dirac equation in second quantization, which gives us also
the right heuristics how to formulate and prove a Corollary which translates the
Theorem of spontaneous pair creation into the formalism of second quantized
Dirac equation. Then we will prove the Theorem of spontaneous pair creation
itself.

For this proof we will need some spectral properties of the Dirac operators
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and properties of its bound states and generalized eigenfunctions. Increasing the
coupling constant of the potential one will see, that any bound state vanishes
in the positive continuous spectrum. For the proof we will need that the time
derivative of the energy of the bound state is non zero as it reaches m - the
threshold of the positive continuous spectrum. In this case there always exists a
bound state with energy equal to m. In our first attempt to prove the existence
of spontaneous pair creation we made the mistake in assuming, that there exists
no bound state with energy m, hence our old proof was worthless.

That mistake was revealed by Gheorge Nenciu, who also suggested some liter-
ature that was very helpful in understanding the true situation.

1.1 The free Dirac equation

The Dirac equation was one of the first equations to describe particle-antiparticle-
creation and -annihilation effects.

Originally the goal of the Dirac equation was to have a covariant relativistic
wave equation - generalizing the non-relativistic Schrodinger equation.

Oy -
i— =—i Y O+ Bmyy, =D’ 1
o Z;”m By = D, (1)
With complex valued «; and (3 this is obviously not possible as, to get the
right ”dispersion relation” (i.e. the relativistic energy-momentum relation £? =
k* + m? under Fourier transforming ;(z) in t and x), the o; and 8 may not
commute, but with matrix valued o; and 3 it is. One possible choice is

mz(oﬂ)ﬁzc ﬂﬂszs (2)
o 0 0o -1

with o; being the Pauli matrices:

_ (1 0 . _ [0 1), _ [0 —i
o1 = ;02 = ;03 = .
0 -1 1 0 i 0

This choice is called the ”"standard representation” and was introduced by
Dirac.

So 1) is not a complex valued function, but a 4-vector valued function and the
underlying Hilbert space is H = L*(R*)* = L*(R*) ® C*%.

The ”generalized” Eigenfunctions ¢ of D°



D% = En¢ = +vVm?2 + k2¢

are of the form e**y, where gamma is a (complex valued) 4-vector. For any

k four different choices of v are possible, so for each k we get four different
Eigenfunctions. Two of them have positive energy, two of them negative energy.
So we denote the Eigenfunctions of D° by ¢*%¥ where the sign stands for the
sign of the energy, j € {1,2} for the two different spins.

As the sign of the energy will play an important role in the following sections,
we define the subspaces H, which is the span of the eigenfunctions with positive
energy, H_ which is the span of the eigenfunctions with negative energy and the
projectors P* and P~ into these spaces. As these subspaces are orthogonal we
can write

H=HydH_

So in contrast to the free Schrodinger Hamiltonian Hy, the essential spectrum
of D? is not bounded from below. It consists of two absolutely continuous parts,
a positive part reaching from m to oo and a negative part reaching from —m
to —oo. In the case of static external fields this does not lead to any problems,
though the physical interpretation of electrons with negative energy may be
difficult. But introducing coupling of the electron to a radiation field would lead
to a radiation catastrophe: Any electron would fall down the negative energy
continuum emitting radiation.

This radiation catastrophe can be heuristically overcome by using antisym-
metrized wave functions. The wave function €2 describing the ”vacuum” is the
antisymmetrized product of all the eigenfunctions of D° with negative energy
(the so called Dirac sea)

antisym

o= [ o¢**.

keR; j=1;2

The antisymmetrized product of {2 and an additional wave function ¥ € H
describes an electron with position probability density | ¢ |?. Introducing an
external interaction which - to keep things simple for the moment - is supposed
to have no influence on €2, any one electron wave function v; x  with ¢; € H,
will after the interaction stay a wave function of the form v, x Q with ¢y € H.
since all possible one particle states in 2 are occupied and adding one more
state would by antisymmetrization yield zero. This phenomenon is called Pauli’s
exclusion principle. Although this heuristic picture has not been made rigorous
we use it anyhow, as it is very descriptive.
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Starting with the vacuum (2, it is now possible that a "photon” with energy
bigger than 2m is absorbed by one of the electrons with negative energy, which
is thus lifted into the positive energy spectrum leaving a "hole” in the Dirac
sea behind. We end up with a wave function, which is the antisymmetrized
product of all eigenfunctions with negative energy except one and some v € H .
The hole propagates - the propagation is given indirectly by the propagation
of all the other electrons in the Dirac sea - like a particle with the same mass
but opposite charge as the electron and is physically interpreted as a positron -
the antiparticle of the electron. Therefore we interpret the factors of our multi
particle wave functions with positive energy as electrons, missing factors with
negative energy ("holes in the Dirac sea”) as positrons. This is the so called "sea
interpretation” of the Dirac equation, originally found by Dirac.

1.2 The Dirac sea under influence of an external potential

We shall now give a more quantitative description. To keep the description of
the interaction as simple as possible we neglect interaction between the different
particles - so the differential equations describing our multi particle wave function
decouple and we can use the Dirac equation for each factor 1 of our multi particle
wave function W, = [[0g*™ ¢I separately.

The one particle Dirac equation with external potential reads:

3
@%—f _— ; ciditby + Aty + B, = (D° + A)hy (3)

where

3
A=140+ > A . (4)

=1
To get a physical interpretation of W, (for example to calculate the amplitude
of pair creation) one has to write it down in the ”free eigenbasis” or more to say
as linear combination of products of eigenfunctions of the free Dirac equation,
though it may make sense to use another basis calculating the v; than the set of

eigenfunctions of the free Dirac equation.



2 Spontaneous pair creation in Dirac theory

2.1 Formulation of the problem

One way of phrasing our result is that we show the existence of slowly varying
potentials which create pairs. A very simple way to describe such a potential is
the so called adiabatic switching formalism: We consider a potential which can
be factorized into a purely space-dependent part and a purely time dependent
part - the so called switching factor.

Aix) = ()4 (x) . (5)

Here A; € C™ (see connection between A(x) and A; in (4)) for all [ €
{0,1,2,3}, A(x) has compact support C and can (due to CPT-symmetry with-
out loss of generality) be defined to be repulsive for electrons. For ¢ we assume:
©(s) € C' with

Jim o(s) = 0 (6)
Osp(s) < 0 for s <0
Osp(s) > 0 for s >0
Osp(s) = 0 for s=0
| 0sp(s)| < C for some C € Rt
wo = 1.

We consider now a slowly varying function A in (3). Then going to the
macroscopic time scale s = te and introducing 5 = ¢: we obtain

a’lvbg 0 A € €
o= (D" 4+ A2(0)0E = D (7

By our description of the Dirac sea we expect (see [2]) that for sufficiently
strong potentials the probability of creating (at least) one pair from the vacuum
is one in the adiabatic limit (lim._,).

Heuristically to get a multi particle wave function W¢ which describes adi-
abatic pair creation from the vacuum with probability one (which means
lim, o lim,, o 5 = Q and lim._¢lim, (VS | Q) = 0) at least one of the
factors 95" of WS has to lie in the positive energy subspace H, in the limit
lim. o limg 4 oo

1€



: : +ohET || —
tiy L | s =1 ®)
Since lim,_,olim,_._ o, U5 = 2 all the 9" lie in the negative energy subspace
H_ in the limit lim,_lim,_,_:

liy T | P57 =0 ©)

So heuristically spontaneous pair creation can be treated as a problem of the
one particle Dirac equation: Find solutions of the one particle Dirac equation
with external potential (7) which satisfy (8) and (9).

We shall prove that such solutions exist. We shall also show that this result
holds correspondingly in the so called second quantized Dirac field with external
field setting, whenever the latter makes sense, i.e. that pair creation holds with
exactly the same parameters in Fock space.

2.2 SPC as one particle Dirac problem

Dealing with the Dirac equation with static external potentials it is helpful to
choose the eigenbasis of the Dirac operator DY + A.

Since the time variation of the potentials is very slow, presenting the wave
function in the eigenbasis of the Dirac operator will still be helpful. But we have
a family of Dirac operators indexed by s and thus a family of eigenenbasis’. One
expects that under fairly general conditions on the potential, the eigenfunctions
of the Dirac operator D° + 4 and their eigenvalues vary smoothly with y, thus
in the adiabatic case the wave function representation in the ”time dependent
basis” will remain invariant (up to a certain error). In particular no jumping
over spectral gaps is possible.

The only way to get transition from the negative to the positive continuous
spectrum is by ”lifting” bound states. Take a potential without bound states
which is repulsive for electrons. Increasing p at least one bound state emerges
from the negative continuous spectrum, is transported through the spectral gap
between the positive and negative continuous spectrum and vanishes - let us say
at = pq - in the positive continuous spectrum. An example for such a potential
is a scalar potential

1 for z<R
A(X)_{ 0 for >R

for some R € R (see [6]).



Figure 1: Bound spectrum of the Dirac operator in the undercritical case

Figure 2: Bound spectrum of the Dirac operator in the overcritical case

With this picture in mind, we are able to understand the cause of spontaneous
pair creation: As long as \ is smaller than p (undercritical regime), the positive
continuous energy spectrum is isolated from the rest of the spectrum for all times
and no transition from negative to positive energies is possible.

Choosing A > u; (overcritical regime) transitions might be possible.

So under fairly general conditions on the potential 4(x) we expect a sudden
change in the probability of creating a pair in the adiabatic limit: For any switch-
ing factor satisfying (6) one expects, that the probability of creating a pair from
the vacuum is zero as long as A is smaller than gy and one for A > py. The
critical value p; for \ is referred to as A. in the literature.
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3 Existence of spontaneous pair creation

Let A > A.. As A will be fixed in the following, we drop the index ”\” for the
potential. We assume that only one eigenvalue E; - which may be degenerated -
disappears in the upper continuous spectrum. Let A denote the respective set
of bound states, i.e. for all ¢, € N,

Ds(bs = (DO + AS(X))¢S = Es¢s .
Let s,,1 < 0 the time the bound states disappear in the continuous positive
spectrum and s,,, > 0 the time, the bound states evolve again

lim E, = m (10)
s,/ Sm1

lim F;, = m.

5 N\iSm2

Any normalized bound state ¢, € N, could in principle lead to a pair creation.
In the following these bound states will be called ”overcritical”.

Definition 3.1 We use the notation "properly dives into the positive continuous
spectrum” for overcritical bound states if there exists a sqg < S,,1 Such that

0<d,E, <C (11)

for all sop < s < Sp1.

For the heuristic treatment we assume that F, is not degenerated, i.e. that
(up to a phase factor) only one bound state is overcritical. A generalization to
overcritical function which do not dive into the positive continuous spectrum
properly is possible, too, but laborious and - as the class of overcritical functions
of bound states which do not dive into the positive continuous spectrum probably
is very special - is left out in this work.

The theorem later will be formulated for an arbitrary number of overcritical
functions.

Let s,,1 and s,,» denote the values of s where the bound state disappears in
the positive continuous spectrum and where it evolves again

lim E, =m lim E,=m. (12)
s,/ Sm1 5\Sm2

5; < Sp1 and sy > 8,0 be values of s where the overcritical bound state already
/ still exist. Furthermore we choose s; and sy so that there is no crossing of the
energy of the eigenstates with the energy of other eigenstates for s; < s < sy.
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Figure 3: Energy eigenvalue of ¢

Let us consider a wave function ¢ which is solution of the Dirac equation (7)
with potential 4,(x) and which is at time #; = % equal (up to a phase factor) to
the overcritical bound state of the Dirac operator with potential A g (x).

o = Os, (13)

Due to the adiabatic switching formalism, ¢ will lie in the negative continuous

energy spectrum for all times s < s, so ¥, will satisfy (8). Assume, that quf is

orthogonal to ¢,, (so ¢5 "missed” the only way, that would lead it back into the

negative continuous spectrum). Such a ¢ will satisfy (9), too. As we heuristically

assumed that wave functions which satisfy (8) and (9) describe the creation of a
pair, we define the probability of adiabatic pair creation as

p(4) =1~ lm(¥5, | ,,) (14)

((f | g) denotes the scalar product [ f'gd®z. In our case f and g are vector
valued.)

We shall show later on, that this is in fact equal to the probability of adiabatic
pair creation in a Fock space setting.

3.1 The Theorem

For technical reasons we will restrict ourselves to pure electric potentials (in this
case A is a multiple of the unit matrix, so we can treat it as a scalar and write
A instead of A) of the form defined in (5) where A(x) is such that
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/A@w&@m%%o (15)

<me/ﬁwwuwm%%o (16)

Remark 3.2 The set of potentials A which satisfy (15) or (16) is not empty.
One can easily prove that the s-wave of a spherical step potential satisfies (15):
In this case ¢y, can be split into two two-spinors which are both eigenstates of
the Schrodinger equation with certain potential and energy. The lowest energy
state of the Schréodinger equation is always positive, so is A and (15) follows.

Theorem 3.3 Let AAy(x) be of the form defined in (5) with Ay, = 0 for 1 # 0
and A > 0, where
- A(x) € C™ is compactly supported and satisfies (15) or (16),
- A s such that only one eigenvalue E, disappears in the upper continuous
spectrum and
- (s) is such that Ey dives properly into the positive continuous spectrum.
Let ¢ and ggs be overcritical bound states of As(x), let s; < spm1 and S§ > Sma

be such that ¢, and ggsf already / still exist. Let ¢ be solution of the Dirac
equation (7) with ¢5 = ¢s,, then

lim(y, | o) =0. (17)

One direct result of Theorem 3.3 and the time adiabatic theorem is

Corollary 3.4 Let Qk be any solution of the dirac equation where 1;; 1s orthog-

onal to all overcritical bound states ¢, and lim,_._o || PT9% ||= 0. Then under
the conditions of Theorem 3.3

. . 1 oe .
il | P =
lim lim || Ptoc ||

e—0 s—4o00

Il
o
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To prove the existence of spontaneous pair creation we follow the propagation
of 9. For sufficiently small e, ¢ follows more or less the bound states ¢;.
Reaching the time s,,; the bound state ”vanishes” in the positive continuous
spectrum of the Hamiltonian. It is left to assure, that ¢% will stay in the positive
continuous spectrum after removing the potential again and not fall back via the
overcritical bound state into the negative energy spectrum.

3.2 Nenciu’s contribution

The picture we gave so far has been developed by Nenciu [5]. He did not prove all
of Theorem 3.3 but conjectured it. Instead he used a switching factor with a jump
of height 6 at s = s,,,1 — O(6) chosen in a way that for s < s,,,; — O(J) the bound
state is isolated from the positive energy spectrum and for s,,; — O(J) < s < Sp2
the bound state disappears. This jump of course is a violation of the adiabatic
idea. But it gives a regime with a sudden change in the pair creation amplitude
when the coupling constant reaches the critical value.

For 6 < 1 the part of the wave function which does not lie in the upper
continuous spectrum is negligible. So for any fixed 0 < § < 1 the wave function
will show a typical scattering state behavior and thus propagate away from the
range of the potential. Hence it is orthogonal to any bound state which may
reappear at times s > s,,2. Hence we have pair creation with probability one in
the limit lims_q lim._q.
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4 Fock space formulation of the theorem

The usually accepted way of describing pair creation and annihilation effects is by
virtue of the so called Second Quantized Dirac Equation with external potential.

We shall show that our main Theorem 3.3 yields as corollary the corresponding
statement in the setting of second quantized formulation.

4.1 Heuristic connection between Fock space and Dirac
sea

The Dirac sea uses the ideas of a wave function describing an infinite number
of particles. This idea has not been made mathematically rigorous. We want
to give a phenomenological description: Any heuristically antisymmetrized multi
particle wave function W, = [[*05""™ 17 where all the ¢} are eigenfunctions of the
free Dirac operator can be clearly characterized by giving the number of states
with positive energy and the number of holes in the Dirac sea and their spins
and momenta. Generalization to wave functions W, = [[2p**™ )7 which are not
products of eigenfunctions is possible via linear combination of the WU,.

Let us introduce the Fock space F. This space essentially focuses on the
arbitrary number of electron positron pairs which may be present. One takes

the direct sum of all spaces F™ describing n electron-positron pairs

F =@ F™

where the wave functions in F™ describe n particles with positive energy
and n holes in the Dirac sea (see the interpretation of the multi particle wave
functions given in section 1.1):

Fo =" e

]:i”) are the antisymmetrized tensor products of n copies of H...

Here we have defined the Fock space for zero total charge. It is possible to
allow more electrons than positrons or vice versa. But as we are dealing with
pair creation from the vacuum (the state where no electrons and positrons are
present), the total charge of our system is always zero.
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4.2 Spontaneous pair creation in Second Quantized Dirac
Theory

What happens in the presence of a compactly supported time dependent potential
A7 In contrast to the free case the vacuum is in general not stable anymore
(see discussion in section 1.1). Electrons with negative energy may propagate
into the positive energy spectrum, leaving holes in the Dirac sea, so pair creation
may occur.

We want to estimate the amplitude of pair creations and the wave functions
of the created electrons and positrons during a small time interval At.

Let us start at time ¢ with an arbitrary number n of particles with positive
energy. As we only deal with an uncharged system, there are also n holes in
the Dirac sea - or in other words all but n negative energy states are occupied.
Assume that at time ¢ = 0 all the wave functions ¢} are eigenfunctions of D°.
In general | ¥;) will of course be a superposition of such wave functions, also
with different numbers of pairs, but due to linearity the generalization is easy.
Since there is no interaction between the particles, the differential equations for
the different particles decouple and the propagation of the system is given by the
propagation of each single particle. In general there might be transition from
H™ to H™, so pair creation may occur.

To calculate the amplitude of the pair creations and the wave functions of the
electrons and positrons at time ¢ + At, one has to observe the propagation of all
particles which are - as mentioned above - of infinite number. For each factor 1]
of the multi particle wave function ¥, = H?ngym 17 the propagation is given by
the Dirac equation (3). So for small At we get (using the notation D, for the
Dirac operator D° + 4;)

Uipar = (1 — iALD )Yy

as approximation.

Look at the situation in Fock space, identifying particles with positive energy
as electrons and holes in the Dirac sea as positrons.

Let us start with a vector in Fock space describing n electrons and n positrons
whose wave functions are eigenfunctions of DP°.

From the propagation of the particles which are present in the Dirac-sea pic-
ture we construct the new Fock space vector. We separate each Dirac particle,
calculate its propagation and put it back again. Taking away a particle with
negative energy leaves a hole in the Dirac sea. In Fock-space language, taking
away a particle with negative energy means to create a positron, taking away a
particle with positive energy means to annihilate an electron.
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Therefore we define the operators ay ;x as the creators of a electron/positron
with spin 7 and momentum k, aLjvk as the annihilators. As the multi particle
wave function was antisymmetrized, these operators satisfy the anti-commutation
relations

At iy o+ al i was i = 0(k,kK)d(s, 5)
T _

Otherwise it would be possible to create two electrons or two positrons with
same spin and same momentum, which is a violation of Pauli’s exclusion princi-
ple.

We start with the propagation of the particles with negative energy. As de-
scribed above, we take away a particle with negative energy and ” quantum num-

bers” j and k for spin and momentum. In Fock space language, taking away a
electron with negative energy is creation of a positron

[ v) = ajac | W) (19)

Then we calculate the propagation of the particle with the given spin and
momentum

Gt+At = (1 — ’L'AtDt)(bi’j’k
We calculate for each ”quantum number” 4, 5’ and k’ the scalar product of
¢i’jl’kl and @A

Pirar’ = (@™ | (1 —iAtD)g ™)

and create/annihilate all the electrons/positrons with these quantum numbers
in the given amplitude to v (see 19):

(> / al (677 | 1 —iAtD 7 ) dPE
k/

j'=1,2

) / ay (T | 1 —iAD T NPE ) ajuc | W)
k/

§/=1,2

We do this procedure for any occupied state of the Dirac sea. Since a_ ;x |
U) = 0 if there is a positron with spin j and k present in | U) we can generalize
this formula to all states - not caring whether they are occupied or not. This
leads us to:

17



Z/ Z/ L™K [ 1 —iAtDg =7 ) dPk

j=12"k §'=1,2

+ ) / ¢TI | 1 —iAD ™, VK ) a_jukd’k | ) .

j'=1,2

Observing the propagation of the particles with positive energy we have to use
- as described above - the annihilator of electrons. Now we use the fact, that
ai’ ik | W) = 0 if the electron with the given quantum numbers is not present in
| ¥) to generalize the formula to all j and k without caring, whether the particles
with the given quantum numbers are present in our system.

So observing the propagation of all particles we get for small At:

| Uryns) = Z/ Z/ L™K [ 1 —iAtDg =7k ) dPk

j=1,2 j'=1,2

+ ) / ay a1 —iAD TR K )l dk
j'=1,2

+Z/ Z/ L S N7 S U
j=1,2 §'=1,2

+ Y / Ay il | 1 —iAtD TR VK ) a_jud®k ) | Ty

j'=1,2

and

| Werae)— | W) = —idt () / 2 / R o

j=127k =12

+ Z / ay (@™ | Dy tIE VP ) ai,j,kd%
J=1,2

*Z/ (3 [ a o™ | Do i* parw
j=127k =12

+ Z /k/ a+,j,k<¢+’jl’k/ | ‘Dt(b_’j’k |>d3k, ) a/_’jykd3k' ) | \I[t> °
j'=1,2

Thus dividing by At we get with At — 0

18



0, | Uy) = Z/ Z/ f @7 | D )k

j=12 j'=1,2

#30 [ angadot € | DB ) ot
j'=1,2

+Z/ S [ al o | Do
j=1,2 §'=1,2

+ / ap o@Dy NEE ) ajudh ) | Wy)

j'=12

Defining the field operators as

2
V3 [ ae ol (20
j=1
we get
i0; | W) = /dgxiTthé\ | Uy) (21)

as second quantized Dirac equation with [ d®zxTDY as Dirac field Hamilto-
nian.

We want to draw from Corollary 3.4 another Corollary asserting the pair cre-
ation in the Second Quantized Dirac Equation. That equation is not always well
depending on the choice of A. We assume that A be such that the second quan-
tized Dirac equation makes sense (see [10] for references). We call such A’s good.
Using the notation | §2) for the vacuum and having the ideas of the previous
sections in mind, we have

Corollary 4.1 Let A (x) be a good potential of the form defined (5) with (at
least) one overcritical bound state. Let this overcritical bound state dive properly
into the positive continuous spectrum. Let | WU§) be a solution of the Second
Quantized Dirac Equation with potential Aé(x) with lim;_,_ | U5) =| Q).

Then

lim lim (Q | ¥§) =0.

e—0t—o00

Proof of Corollary 4.1
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We shall prove this Corollary rigorously, following the intuition given by the
sea picture. "Adding” an electron with positive energy to the multi particle
wave function ¥, = [[*2"™ 7 corresponds to the creation of an electron in Fock
space, "adding” an electron with negative energy corresponds to the annihilation
of a positron.

"Subtracting” an electron with positive energy corresponds to the annihilation
of an electron, ”subtracting” an electron with negative energy corresponds to the
creation of a positron.

Hence we define for any w € L*(R?) & C* the operators in Fock space

2 2
ot =y / (w, o)l APk +> / (W, b7 Va_ 1 d®k (22)
j=1 j=1

9 2
O = Z/<W7¢Z’J>a+,j,kd3k+Z/<w’¢’:j>aT,j,kdgk'
j=1 Jj=1

whereas gb:] and gb,;j are the solutions of the free Dirac equation with mo-
mentum k spin j € {1;2} and positive and negative energy respectively.
Following the ideas above we get

Lemma 4.2 Let | ¥;) be solution of the Second Quantized Dirac Equation (21),
& € L2(R3) ® C* be solution of the Dirac equation (7).
Then

| ‘E’t> = gj | ‘I’t>
[T = & | Ty)

are solutions of the Second Quantized Dirac Equation (21).

The proof of this Lemma is given below.
We use this Lemma on | U$), the special lim; o | U§) =| §2) solution of the
second quantized Dirac equation with potential A ¢ (x) and on 5. It follows that

7)) =5 | 0) (23)

is solution of the Second Quantized Dirac Equation. Furthermore one can show
by direct calculation (using the commutator relations of the ay jx and al X the

fact, that ait,j,k | ) =0 and (9)) that
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=1
2 .
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j=1
- am (Y Juwt o0 ol k) ) )
= lim ( Z/w\qs al A%k
+Z Jwi 1oy asndn) Y [wi a0 of kw9
j=1

— an//w | o) W | & N agwal | U5 dEKAE

t—>ool —1
= (3 [ w16 Wi le a6 0k |9 dra
l] 1

|
]
~ ]
>
=

o) (W5 1677) ol jaa | W5) AR ER)

= im Y [wilad) wiled) v &

This equation, lim; (15 | ¢,”) = 0 (which follows directly from Corollary
3.4) and al%k | 2) =0 yield
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lim lm (Q | U5) = lim lim (Q | 45 | TF)

e—0t—o0 e—0t—o0

= lim lim (5 Q | T)

e—0t—o00 e

e—0t—o00

2
— tinlimn (Y [ (1 6l 'k
=1

2
+Z/<¢Z | 67 Va j,d®k)Q | TF)
j=1

e—0t—o0

2
— tim lim (3 / W3 | ), k) | TF)
- 0 ~
which proves Corollary 4.1.
OJ

We shall now give the proof of Lemma 4.2. For ease of reference we recall what
the Lemma says.

Lemma 4.2
Let | W) be solution of the Second Quantized Dirac Equation (21), & €
L*(R3) ® C* be solution of the Dirac equation (7) with & defined as in (22).
Then
~ ~t
| W) = & | W) (25)
[T = & W) (26)
are solutions of the Second Quantized Dirac Equation (21).

Proof

We will only prove (25). (26) follows analogously. We shall leave out the index
L.
We need to show that
(€| W) =H(E | D)) (27)
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We start with the right hand side:

HE | w) = [0 v,
Inserting the field operator(20) leads to

2
HE W) = [0DY [ ot ortal ,dhds &),
s=1

Using the definition (22) of the operator ?f yields

2
HE@ ) = [3DY [ o eru+ap a_skd?’kz / €657Vl K
s=1
+/<§, ¢;7S,>G_7S/7k/d3k/d3l‘ | \I’t> .

Next we use the commutation relations for the air)s . (18). This leads to

HE | w)) = & / JIDddr |0

/w*DZ//w )63 (k, K)o(s, o)

s,8'=1

+(¢, gzﬁ,;,’s Vo "5 (k, K)O(s, 8 Pkd* K dPx | W,)

Executing the d®k’-integration gives us

2
H(E W) = & [9'Dyd*s | W)+ [ 9D (€ 00 on
cro - o v s
+(&, 0,V PkdP T | W)
= 4 / OVIDPPr |, + / DIDEP | 0)

As ¢ is by definition solution of the Dirac equation (7) we can write

HE W) = & [0Dids [w)+ [Fogas | v).
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We again use (20), now for @//J\T and get

HE 1)) = & / JDide |0,
2
=[S0 [ota ot o v,
s=1

Executing the d3z-integration gives us

HE@ ) = & [9Dids |w)
+i/<¢?saat§>a1,s,k + (0%, 0 a s xd’k | Wy)
s=1
For the left hand side of (27) we have
at(?r | ,) = 9,E! | Uy) +£10, | Uy)
= 22:/< 2% 0i)al L+ (6%, 0i)a axdk | W)

s=1

+ET / DDA | W)

and (27) follows.

0
5 The ”Critical” Bound State
We consider the Dirac operator
D, = D"+ uA(x) . (28)

We call a coupling constant \. critical, if and only if there exists a solution
oy, € L? with
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(Dx, —m) s, =0. (29)

Note that by our choice of the potential A € C'*° the solution ¢, is also C'*°.
To see whether a critical state exists we invert (29) and get formally

$x.(x) = (m — D) AAX)$a. (%) | (30)
and replacing the (m — DY)™! = lims_o(m — D" +i6)~! by the integral kernel
Gi_,=G":
k=0
(m - DG (x—x)=d(x—x) . (31)
where [10]

Gt (x) = ﬁ (—x_l(m + pm) — iz 2 Z og%) : (32)

=1

we obtain the Lippmann Schwinger equation

o (x) = / GHX)NAX — X)o, (x — X )P’ (33)
— = [ B A X)n (x - X)
S 22% LA A(x — ¥ )hn x — X )

a0+ bea(). (3)

Since A has compact support, ¢.2(x) decays like 22 and thus is in L?. For
be.1(x) we can write

bea) = = [l B A~ X (x - X)
- / %(-T/_l — 27D (m + Bm)AA(x — X )¢y, (x — X )d*2’
= Pe3(X) + Pea(x) (35)
Using
l‘,_l . w_1 _ x—1




we see that for large = and x — x’ € Sy, the compact support of A,

1
|2 = 27" |< diam(Sa)—
Tx

is of order 272 and thus ¢.4 of order 72, Hence ¢.4 € L%

The decay of ¢.3(x) depends on the spinor components of ¢, (y). There are
two possibilities:

Either the spinor components of ¢, (y) are such that

/ (1+ B)Aly)on.(y)d% # 0

and thus ¢, 1(x) is of order 7! and thus not in L? or such that the spinor

/ (1+ B)A(y)on.(y)d% = 0 (36)

and thus ¢.1(x) is of order x72 and thus in L?. The identity (36) will play a
crucial role later on.

It has been proven by Klaus [4] that for ”critical” bound states that dive into
the positive continuous spectrum properly ¢, is in L?. Thus (36) holds in our
case and we have that ¢, = ¢c2 + ¢4, and thus

| dx I< Ca™” (37)

for some appropriate C' < oo.

Notation 5.1 In what follows the letters C' and C,, n € Ny will be used for
various constants that need not be identical even within the same equation.

In the following we denote the set of bound states present at p = \. by N:

N :={¢s. € L*: (Dy, —m)o5, =0} . (38)

6 Generalized Eigenfunctions

In the following we will use with slight abuse of notation the spin index j €
{1,2,3,4}, where j = 1,3 stands for the different spins of the eigenfunctions
with negative energy, 7 = 2,4 stands for the different spins of the eigenfunctions
with positive energy.
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The generalized eigenfunctions ¢’ (k, y1,x) are solutions of

(~1) B (k, 1, %) = D (k. 1, %) (39)
with Ek =V m? + k2.

We change to the Lippmann Schwinger equation

V0 3) = (k0.3 + [ G = X))ol kg (10)

with ¢’(k,0,x) being the well known generalized eigenfunctions of the free
Dirac operator D° [10] and G} being the kernel of (Ej, — D)~ = lims_o(Ey —
DY +44)~1

3

1, ’ X - X
Gl (x) = Eem <—x_1(Ek + Z ozjk?j + Bm) — iz 2 Zaj—]> . (4

- - x
Jj=1 Jj=1

Lemma 6.1 Let A € C™ be compactly supported, A > 0, 1 > A\, be such, that
Ac s the only critical coupling constant in [N, 11]. Let P :=R3 x [Ae, 1]\ (0, \.),
j=2,4.

Then

(a) there exist unique solutions ¢’ (k, p,-) of (40) in L™ for all (k,u) € P such
that

(b) for any (k, u) € P, these solutions ¢’ (k, ji, ) are Holder continuous of degree
11in x,

(c) any such solution ¢’ (k,u,-) satisfies (39),

(d) for any p € [N, 7] the set of {¢/ (k, u,-)} defines a generalized Fourier trans-
form in the space of scattering states in the positive continuous subspace
by

Ful) (k. j) = / (2m) (6 (k, 1, %), ()2 (42)
and
v =3 [ o kR, ()

The so defined F,(v) is isometric to 1, i.e.
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1 4 1

lol= ([ 1ot as) =3 ([ 1700 P ar) =170

j=1

(e) the functions ¢*(k, p,x) are infinitely often continuously differentiable with
respect to k for (k, u) € P. Furthermore there exists 0 < o < oo uniform in
(k, ) € P and for alln € Ny constants C,, < oo uniform in (k, ) € P and

functions f™(k, u,x) € N (see (38)) with (|| f(*) ||oo:= Supgers | f(x) |)

|70 ) oo < Co (TR (L= A= ok | +87)"7")  (a4)

such that

H (| ’ | +1)7n (al?(bj(kv 2 ) - fn(knu7 )) ||00
<Co (T4 (= A+ K || [k, ) o) - (45)

Remark 6.2 For j = 1,3 we can use the results in [1].

The divergent behavior of the generalized eigenfunctions expressed by (44) is
related to the fact, that there exist solutions ¢, of (29). Non rigorously such
solutions can be seen as solutions of (40) with || ¢x, ||e>> 1 so that ¢?(k,0,x)
becomes negligible. Since the generalized eigenfunctions are continuous in p and
k it is reasonable to assume that the divergent part of ¢?(k, u,x) as p — A. and
k — 0 lies in N.

Equation (44) and (45) give us a quantitative estimate of the divergent behavior
of ¢/ (k, p, ) and its derivatives with respect to k for small k and p close to ..

Observe for example the case n = 0. Adding (44) and (45) yields, that
& (k, i, ) diverges like the right hand side of (44) (note, that for small k and
small pn— A, the right hand side of (45) is much smaller than the right hand side
of (1))

Hence subtracting a sufficient multiple of the critical bound states f°(k, p,x)
the divergence of the generalized eigenfunctions becomes weaker, as can be seen

on (45).
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Proof of Lemma 6.1

For (a) - (d) with p # A. one can use Lemma 3.4 in [1]. The p = A, with
k # 0 can be proven equivalently (one needs the invertibility of 1 — uT} which is
given in that case).

We shall therefore only prove

Part (e) of the Lemma

We start with a short summary of proof of part (a) of the Lemma, following
the proof in [1].

We first show that for any (k, i) € P there exists a unique solution ¢/ (k, p, -)
of (48).

Let B be the Banach space of all continuous functions tending uniformly to
zero as ¢ — oo (equipped with the supremum norm).

Defining the family of operators Ty : L> — B by

(40) can be written as

qu(kmuax) = ¢j(k,0,X) +H’Tk¢j(k7:uvx) : (48)
The proof that T;; maps C'* into B can be found in [1]. Note that the definition
of T} yields that || T |2 exists. Using the continuity of T} it follows that

sup || Ty |loo< 00 (49)
k<kg

for any ko < co. In view of (32) and (41) we have that

Topy, = /G+(x’)A(x —xoy, (x — X )d*a
It follows with (33) that

Acdodr, = ¢a. (50)

Furthermore defining
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Cj<k7:u7x) = ¢j(k>ﬂax) - ¢j(k7 O’X) (51)

and

gj(k7 Ky X) = _:uqubj (kv 0, X) (52)
(48) becomes

Uk p,x) = phd (k, p,x) + ¢ (k, 1, x) (53)

We wish to show that (53) has a unique solution in B for any (k, ) € P. For
the Schrodinger Greens-function, this has been proven by Ikebe [3]. We want to
proceed in the same way.

Note that by [1] g(k,u,-) € B for any (k,u) € P. Ikebe uses the Riesz-
Schauder theory of completely continuous operators in a Banach space [7]:

If T is a completely continuous operator in B, then for any given g € B the
equation

f=9+Tf (54)

has a unique solution in B if ]7: T f implies that fz 0.
Since T} is a "nice” integral operator it is completely continuous. We wish to
assert that

fx) = =T f(x) (55)
has for (k, 1) € P only the trivial solution. Due to [4] there are no zero energy
resonances for the class of Dirac operators we consider, so the only non trivial
solutions are the bound states with energy m. Since we assumed that there is
no bound state with energy m in pu €|\, ], (55) has for (k,u) € P the unique
solution fz 0.
Now we are in the position to prove (e). We formulate (e) for ¢/ (k, u, -), which
can straight forwardly be done.

Lemma 6.3 Let A € C* be compactly supported, A > 0, @ be such, that \.
is the only critical coupling constant in [A.,1|. Let B be the Banach space of
all continuous functions tending uniformly to zero as x — oo (equipped with
the supremum norm). Then on P the functions (7 (k,u,-) € B are infinitely
often continuously differentiable with respect to k, furthermore there exists a
0 < a < oo and for every n € Ny a constant C™ < oo uniform in (k,u) € P and
a function f™(k, p,x) € N (see (38)) with
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|70k 1,0) oo € (14 K7 (| o= Ae = 0k | +£7) ) (56)
such that
| (@ +1)7" (0p¢ (%, 1, ) = (41 7)) [l
<O (U (= At B | e ) . (57)

From (57)

T+ 9k (O, 1, ) = £ (11, 0) oo
< T+ (08¢ (e ) = (ki) Dl
10T+ (08 (k,0,) = f(k 11,)) s
<Co (L4 (= A+ 87 || 170k, 1) lloo) + Ca

Lemma 6.1 (e) follows.

g

The main difficulty in proving Lemma 6.3 arises from small k. Therefore we

show first

Lemma 6.4 Under the conditions of Lemma 6.3 there exists a ko > 0 such that
on Py, = {(k,n) € R* x [A\;;7] : k < ko}\(0,\.) the functions ¢ (k, u,x) are
infinitely often continuously differentiable with respect to k, furthermore there
evists a 0 < a < oo and for every n € Ny a constant C' < oo uniform in
(k, 1) € Py, and a function f™(k, p,x) € N with

L ) e R (e e G R

such that

I (417" (R (k) = F (K p,)) o< C™ (T4 (= Ae + K [ f™ [loo) -

Remark 6.5 From the proof we shall see that kg is small.
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We first prove Lemma 6.4, later we will show that Lemma 6.4 implies Lemma
6.3.

Proof of Lemma 6.4

For ease of notation we shall drop the spin index j.
We define a split of B into a direct sum of two ”orthogonal” linear subspaces.

Definition 6.6 Set
M= AN ={f| f=Ap,6 € N} . (58)

and let M+ C B be the set of functions in B which are "orthogonal” to M in
the sense that

feMt e (Af,¢)=0 Vo e N .

Remark 6.7 Since f need not be in L* we nevertheless write with slight abuse

of notation (f, Ap) for (Af, ).

Lemma 6.8

B=Mao M, (59)

i.e. every f € B can be uniquely decomposed in fl € M and f+ € M+ such
that

f=+r. (60)
Proof
Let f € B, 1s, be the characteristic function of the support of A. Set

fl = 15Af
f2 = (1_1SA)f

f2 is zero on the support of A hence it follows trivially that fo € M*. f; € B,
being compactly supported, is in L? N B.
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Since M is a linear subspace of L2NB and M+ N L? its orthogonal complement
it follows that

L’NB=Mo M nL?.
Hence there exists a fl € M and a f; € M+ N L? with f; = fl + f5. Setting
fL = f2 + f3 (60) follows.
O

We introduce now for any A C B and any kg > 0 the sets ﬂko of functions
f(k,pu,x) : P xR> — C*

Definition 6.9 Let Py, := {(k,u) € R® x [A\;; 1] : k < ko }\(0, \.), then

flk,p.x) € Ay, & (a) flk,p,-) €A for any (K, ) € Py,
(b)  f(k,p,x)is for any k € R® with k < ko continuous in 1
with respect to the supremum norm in B,

@ Iflle:= sup  {]flk p,x)|} <oo.

(knu'»x) epko xR3

We shall first prove Lemma 6.4 for n = 0. Choose (k,u) € P and recall
equation (53)

g(knuvx) = (1 - MTk)il g(kvluvx) . (61)

We wish to estimate the "close to k = 07 behavior of ¢’(k, u,x). For that we
will split g(k, u, -) into two parts

g<ka:ua') =. g(k> ﬂ»')H —|—gJ‘(k,,u,-) (62)

where g(k, u,-)l € M and g*(k,u,-) € M*, ie. g(k, u, )l can be written
as (note that A is positive and ¢ is nonzero in the range of the potential, thus

| Aga, [IP# 0)

<¢>\c | Ag(kuua >>
| Adx, |2

for some ¢, € N. We choose the normalization || ¢, ||so= 1.
[

g(k7ﬂ>)” = A¢/\c

(63)

Letting now (k, 1) vary in Py, we shall show that g(k, u,-)l(x) € My, and
gt(k, i, )(x) € ./\/lﬁO for any kg > 0.
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Since || T ||%2 is bounded uniformly in & < ko for any ky < oo (see (49)) it
follows that || g(k, u, ) || (see (52)) is bounded uniformly in any (k, u) € Pg,.
Hence

(6r, | Aglk, j,x)) = /@c k, 1 x)d’

sug&wwum/¢umA@m%
is bounded uniformly in (k,pu) € Py, for any kg < oo with an appropriate
C < oo since ¢y, is bounded uniformly in (k, ) € P.

Hence we have for gll(k,p,-) and g*(k,p,-) := g(k, i, ) — gll(k, s, -) that on
Pro

9" oo < o0 (64)
9" lloe < o0 (65)

The continuity of the scalar product and the continuity of g(k, u, ) in p yield
that gl (k, , -) and g*(k, u, -) are continuous in g for any k € R3, hence gl € Mko
and gt € Mﬁo for any ko > 0.

We now return to (61). We get with (62)

Cj(ka My ) = (MTk - 1)71gH(k7:U’7 ) + (MTk - 1)71gl(k7/vbv ) : (66)

We shall determine ¢?(k, ,-) now more precisely by the following iteration
procedure

Lemma 6.10 Let kg > 0. Then there exits a constant 0 < C' < oo _such that for
any h” € ./\/lkO and for any hy € /\/lL there exist fi € Nko, wy € Bko, h‘ € My,

and hi € MLO with
(uTx — 1) hy + (T — 1) ~*hg
= fitw + Wl — 1) 4 (un, - 1) ht (67)
and
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LAk ) e < C I AbE ) oo (| 11— A — ak? | +4%)
lwrom ) o < CR | filk, i) oo +C || Bg (ko 1,) [l

IR ) oo < C Il R (s ) lloe +CR || (s ) e
1At ) oo < C ALK 1) oo +C || B (ot )l -

The proof of this Lemma is the heart of this section and will be done later.
[terating this Lemma p-times yields that

(T, = 1) hy + (T = 1) hg

—zmz% D= U G- )R (9

It follows iteratively that

Il i) o < CBCR) (69)
I bt (ko) oo < C(3CKY (70)
1) oo < (11— Ae— ak? | +4%) 7" QIR (71)
lwikos,) oo < CR* || £k, g2, ) [loo +C7F 1R

< (02 (ot = Ao — ak? | +5%) ' CIR2 + Cj“) K (72)

Next we prove the convergence of the four summands on the right hand side of
(68). Choose kg such that C'kg < 1. Note that in fact C' does depend on kq. But
since Py, C Py, for all ky < kq, it follows that the C' one gets for k¢ is smaller or
equal to the C one gets for kq, hence kg can in fact be chosen such that C'ky < 1.

Then it follows with (69) and (70) that

lim || A o = 0
Jj—00
Jim | h e = 0.

Since the operator (uT}y, — 1)~ is for fixed (k, 1) # (0, \.) a bounded operator
in B it follows that

lim || (uTy = 1) hy + (uTp — 1) "' hy =0 (73)
p—00
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Since Z?f:l f; is geometric it is a Cauchy series for all (k,u) € Py,. N is a
finitely dimensional vector space hence it is complete. It follows that for any
(k, i) € Py, there exists a f(k, i, -) such that

N

Using the completeness of B we get similarly with (72) the convergence of
Z;.V:l wj, i.e. for any (k, i) € Py, there exists a w(k, i, -) € By, such that

N—oo

N
lim || ij(kv M, ) - w(k7:u7 ) ||00: 0.
=1

Using (71) we have that

(AR N P ”Zf] ) lloo

oo

< Z 50, 12,) oo
oo

<

Z (l - )\c o O[k’2 | +k3)*1 Cj-l-lk,j—l
j=1

= (lp— A —ak? | +k°)" ZC’]“I{J

1

= O(|M—Ac—ak2|+k3)_ [~ Ch

using (72)

[ wk, p,°) loo = HZ% ) lloo (75)

< Gk Z £ 1) floo + Y C7HRTE(76)
j=1 j=1

= O | filkop, )l + ) CTH R (77)
j=1 Jj=0

= Ck?fjnf(ku-) oo +—— . (78)
R 1-Ck
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So taking the limit p — oo on the right hand side of (68) and using (73) yields

(T — 1) 7B+ (T — 1) 'hg = f 4w
We apply this to s} = gl and ht = g* observing (64) and (65). With (62)
and (61)
C=Wh—1)g=f+w. (79)
(75), (79) and (74) yield Lemma 6.4 for n = 0.

OJ
Proof of Lemma 6.10
Let hg € kao, hy € /K/lvio We denote
13 lloe =t C! (80)
I hy e = CF. (81)

To prove the Lemma we first control the term (p7j — 1)_1h[‘l. Since the control
of this term is involved we give the result in

Lemma 6.11 There exist o, ko, C1,Co € R, C5 > 0 such that for any hll € Mko
there exists [ € Ny, and h* € My, so that

(WL = 1) Al = f+ (uTi = 1) 7't

and

H f(kalua ) HOOS Cy H h”<k7,u7 ) HOO (‘ = Ae — ak? | +03k3)_1

and

IRt (ko) oo < Colu— A+ ) || flk, p1,) lloo

which we will prove later on.

Using Lemma 6.11 for hll = h(‘)‘ we get that there exist a f € ./{v/'ko and ht € ./f\/lvﬁ0
with

(uTx = 1)"'hy = f + (uTi — 1) "' h*
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and with (80)

| Fep) e < GO (= —ak? | +Cok?) (82)
|| hL(an“a') HOO < Gy || f(k’ﬂv) ||<>O (M_ /\0+ k2) : (83)

Hence setting

ht =h*+ hy
we have by (80) and (83)

170k, 1) oo Co [ (ks p1,) oo (1= Ae + %) + CF (84)

and we obtain
(uTh, — 1) (h'(') + hé) —f= (T - 1)t (85)

(85) is almost of the form of (67) in Lemma 6.10. To obtain the desired result
we need to estimate now (uT}, — 1)~'h*. For that we consider first the operator
(uTy, — 1)~ for k = 0.

Our proof is based on the insight that A\.7j — 1 is invertible on M+ which is
spelled out in Lemma 6.12 below. For this we note that \.7Tj is symmetric with
respect to the scalar product (f, Ag), f, g € B (see (130) below). This explains
a posteriori that M and M are the relevant spaces and not N and N'* as one
might think at first sight.

Furthermore M+ NN = {0}, which is immediate from (remember that A > 0)

(A,

or) = A6 | 60 () >0, (56)
Lemma 6.12 (a) For any p € [\, 1] we have that
ht e Mt & (uTy — DAt € M- .

(b) For any u € [\, 71 the map uTy —1: M+ — ML is invertible.

(c) There exists a C' < 0o such that for all h* € M* and all u € [\, 7]

I (o = 1) A [l O Il 2 loo (87)
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which will be proven below.
Setting now

w(k, p,x) := (uTy — 1)"'h't . (88)

we get with (84) in (87) for ht = ht

ok, ) o< CCo || flk, pt.0) lloo (1= Ae + &%) + CCH (89)

Thus w(k, p,-) € B.
Now we can estimate (uTy — 1)~"*h*. Writing

(:uTk - 1>w<k7 1, ) = %J_ + :U’(Tk - T0>w(k7:u7 ) )

we obtain
(T —1)7'hY = w(k,p,) = (uTe = 1) u(Te = To)w(k, g, )
= W(k, Ky ) + (:uTk - 1)71h1 (90)
with
hi(k, p, ) = —p(T), — To)w(k, p, -) - (91)

We now consider the usual splitting (62)

hi = hi+hi

and estimate the || hg(k, ) |loo and || (K, i, ) ||oo separately. This can be
done using

Lemma 6.13 There exists a C € R such that for all w € B

(T = To)w [loo< Ck || W [l

and

| (AT, — To)w | x.)
for all ¢y, € N with || ¢a,

< Ck || |loo

=1
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The proof will be given later.
We use the Lemma in (91) for w = w(k, i, -) and get with (89) that

[ Foa (K, g2, ) [l

I (T = To)w (X, 12, ) o
ﬂCCgk (” f(k> K, X) HOO (:U — A+ kQ) + CJ—)

<
1AV ) e < sup | (Aha(k, p1,-) | 6a.)
Dr EN

pCCk? (|| £k, 11,%) [loo (1 — Ao + k%) + CF)

A\

It follows with (82) that

CiCl (= Ao + ) I
k, u,- 2
Il e < p0Cok (SOCURE D het) o

CC”(M—)\ + k?)
hH k . L2 1 c i
[ hilk, ) loo < pCCy (‘ L — A — ak? | +C5k3 +C ) (93)

Since for (k, ) € Pr, (= k < ko < 1).

k(p— Ao + k2) E(p — Ao — ak?) + ak® + K°
| o — Ae — ak? | +C3k3 | o — Ae — ak? | +C3k3
k(p — Ao — ak?) N (1 + a)
| p— Ao —ak? | +Cs5k3 | p— Ao — ak? | +C3k3
(14 )
< 14+ -———+=
< I+ c;

it follows with (92) and (93) that there exists a C' < oo such that

IR, ) [l < C(CR2 + CHE) (94)

I hr () oo 1= [ Pl ) = Bk o) o< C (ClR+CF) o (95)
With (82) and (89) Lemma 6.10 follows.
U

We shall now give the proofs of Lemma 6.11, 6.12 and 6.13 . For ease of
reference we recall each time what the Lemmata say.
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Lemma 6.11

There exist o, ko, C1,Cy € R ,C5 > 0 such that for any hll € ./T/l/ko there exists
f €Ny, and h* € Mﬁo so that

(T = 1) Al = f+ (uTh — 1) A" (96)

and
£k p) oo O LRI 1) Hloo (| 1= Ae — ak? | +C3k) 7 (97)

and
Atk ) I < Colpn— Ae+£2) || F(K 11, ) [loo (98)

Proof

Let hll € kao. Let the degeneracy of the critical bound state be n.
(96) is equivalent to

(T = 1) f (e, p, ) = Al + (k)

While the logic here is that Al is given and f, h* are to be found, we turn the
argument around. We start with controlling (,uTk — 1) f for arbitrary f € /\fko,

and show that there exists a hl € Mk and a ht € Mﬁ such that

(Wl — 1) f=hl + 1t .

Since T}, — 1 is a linear operator and since the projectors from B onto M and
M are linear, it follows that for any (k, u) € Py, there exists linear operators
B(k,p) from N'— M and Bt(k, u) from N’ — M such that for any f € N,

hJ_(kv K ) = BL(ka lu)f(ka s ) (100)
Note that A" and M have finite dimension, so B is a mapping between finite
dimensional vector spaces.

We now give some properties of B(k, 1) and B*(k, p1). We will first show how
they imply the Lemma and then prove them one after another.
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B(k, i) is invertible for any (k, i) € Py, (101)
(b) 1
| B~ (k) [|7< Cy (| p— Ae — ak® | +C5k%) (102)
© ]
I B*(k, 1) < Colp = Ae + &) (103)

for appropriate C < 0o, Cy < 00, 0 < C5 < oo uniform in (k, y) € Py,.

Assume that (a) holds, i.c. we can find for any hll € My, a f € N}, such that
the projection of (uTy — 1)f onto Mko is equal to hl. Let h* be the projection
of (uTy, — 1) f onto //\/lvﬁ0 It follows that (96) is satisfied.

Assume that furthermore (b) holds. Using the equivalence of all norms
in a finitely dimensional vector space (i.e. replacing || - | by || - || in
the n-dimensional spaces M and N) it follows that | B~ '(k,u) ||< C |
B~ (k, p) ||%. Since

H f(knu’: ) Hoo

I Bl ) 1 (0, 1) [l
| Bl )™ 121 Rk ) e

IN

(97) follows.
Assume that furthermore (c¢) holds. Since ht(k, u, ) = B+ (k, u) f(k, s, ) (98)

follows.
It is left to prove that (a)-(c) hold to verify Lemma 6.11.
(a) holds if B(k, i) f = 0 has no non trivial solution.
Furthermore for (b) if B were invertible

~ ~ —1

B-1pl -

1B o) o= sup Ao WL 87
meanfoy |l A femvioy | Bf |l FeN I fi=1

Hence (a) and (b) follow from

inf B
br €N b2 lI=1 | Béx.

> C (| g = Ae — ak? | +C3k?) (104)

with C' > 0 uniform in (k, i) € Py,.
Using Schwartz inequality we have that
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1 1
| Béa || > ] [(Box,, Apa,)| = Taen [(Prm(pTy — 1)@, Apa.)|
1
= Ao |A(uTy — 1)da., da.)

where P, is the projector on M. Since A is bounded it follows, that

sup || Agy, [I< o
Pr.EN||Pa lI=1

hence (104) holds if there exists a C' > 0 uniform in (k, i) € Py, with

inf  {[{A(Te — Do, )1} = C L= Ae —ak® [+ (105)

Ir. EN[loa lI=1

We shall show this now.

For this let ¢,, € N\{0}. We shall use Taylors formula to estimate

(uTy — 1) pa.. In view of (46)

(Tic=on. = [ (GL) = G (x)) Abx = x)fx = X

i.e. we develop G} around k = 0, so we need the following derivatives

3 3
1 ikx — €T . X
Gl = Ok <E€ § (‘95 HE + jEZl Oéjk’zj + fm) —ix~? jEZl Oéj?))
1 ’ x Lo k Lo
_ ik |- R 1 Ty T
= (—@(Ek + ]El ozjkz—x + Om) +x jgl = (_Ek + E 1 og—)) :
3
— ke (B R _ 1
s ( i(Ey + ;21 a;k s pm) —x Ek) :
1 i x; k
RGF = 8kEe’kx (—Z(Ek - ]Ezl ajk—aj + Bm) — :cl—Ek>

ikx

Ey Ey

I
=y
3
o
/N N

3
j k k A 2
x(Ek—l—iZozjk% + Bm) —i— —i— _Z'Zajﬂ _x—17g3>
j:1 j k



and

1 m
Gy = ak:Ee ( Ek-i‘zagk ~L 4 Bm) —21 ZZoz]——a: ! )

1 'Lkz J
= e (ia? Ek+2ajk: +6m)+2xEk E3+Zam

k m? _ km?
+mE—k—|—z_;ajxj 2E3+3 E5)

1 e x; k
= et (ZxQ(Ek—i-jZlOéjk;J—Fﬁm)—FBl'E—k

2
1 km

2
+2Za]xj e 31— (108)
k

By Taylors formula there exists a ky < k such that

(AL = pTi) or. [ dx.) = (A —pTo) da, | Oa.) + Fk (O(ApTidn, | da.) [k=0)
%;g (R (AuTia, | $.) li=o)

1
+6’“3 (O AuTiox, | 6.) li—o)

+24 Kk (Op(AuTida, | da.) le=ro)

= So+ 51+ 52+ S5+ S, . (109)

We estimate these terms separately. For the first term we have using (50) that

A
So= (A0 - D)o | n) = “Plas o) >0 (10)
for A\, > p since A is positive.
For S; we obtain with (106) that
1
o Ty [0 &r, = —i / . (m + Bm) A(x — x')py. (x — X)d°2’ .

Hence by (36)
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S =0. (111)
For S3 we obtain by (108)

Sy = ékmu / ORGy (x = x)AX)dx. (X )d*2 | 6.)

= A / (x = X)2(m + Bm) A(X) b, (X )&% | 62,)

+ék3 AM—/ Z% = ) Ao ()2 | 6a.)

2

+1k3<A 1 / 32_ ( )gb)\( )d3$/|¢>\c>
N 247rk3// (x = x)2AX)dr. (X) (1 + )9}, (x)d*a'd’x

+ﬁk3// x) Y AX)oa (X ) () — )} (x)d*a'dx

—§$ﬁ§//ﬂu92@mm4fm%@m%ﬂ%

= 5371 + S3’2 + 83’3 . (112)

For S5, we can write

Sz1 = gz::k?’//A (x* + x)A(X ), (x) (1 + B)p}_(x)d*x'd*x

q;mlcg // x)x - X' A(X ), (x) (1 + B)pL (x)d*z'd®x . (113)
7T c
Using symmetry in exchanging x with x’ on the first term it becomes
woi [ [ A )1+ Ao}, ()&’ da
127 ©
= L [ ()%m()/ﬂ+6ﬂ%ﬂ@(fﬂ%ﬂ%=0
7T c

S = A5k [ Al xd’a(1+ ) [ Ao ()%
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Setting

e= it [ Ao s (114)

we obtain

S31 = —ik*(E(1 - B)E) (115)

Since () is self adjoint it follows that (£(1—3)¢&) € R, since || 5 ||= 1 it follows
that (£(1 — 8)€) > 0 hence there exists a Cy € Ry such that

Sz1 = —ik’Cy . (116)

Due to symmetry in exchanging x with x’ we have that

33’2 = —5372 =0. (117)
For S5 3 we can write
i ’
S33 = —%kﬁ” /A(x)gzﬁAC(x)dgx (118)

it follows that there exists a C5 > 0 with

Ss3 = —ik*Cs . (119)
This (116) and (117) in (112) yield that there exists a C'3 > 0 such that

S3 = —ik3Cy . (120)

Since A was defined to satisfy either (15) or (16) it follows taking note of (114)
and (115) as well as (118) that Cy or C5 > 0.
For Sy (see (109)) we have that there exists a C' € R such that

| Sy IS K'C . (121)

(110), (111) and (120) in (109) yield that

W= A
Ac

(AL = pTy) da, | Ox.) = ~(Agy, | ¢Ac>+%3§<AMTk¢AC | ¢r.) le=o K*—ik*C5+5y .

We split the equation into real and imaginary part (observing that A is posi-
tive)
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Y
Pr.) = M}\ (A,

FRGOANTON | 62.) [k + R(S122)

ROA (1 = pTk) oa,

P

(A~ iTi) 0x, | 63)) = S(GOHANTIx, | 63,) lico K7)
_KCs + 3(S4) (123)

Since the first summand in (122) is positive and the second summand in (122)is
of order k? it follows with (121) that there exists a C' > 0 and a o € R such that

,u_)‘c

C

| RU(A (1 — pTx) da. — ak?

o) [ c\ (124)

For (123) observe that since k% < k? for k — 0 it follows that there exists a
C > 0 such that for k < kg with appropriate kg

| S((A (L — puTy) ¢a, | a.)) |= CK (125)

Remark 6.14 (125) seems to be not optimal since the right hand side of (123)
seems to be of order of order k*. But

1
%(532<AMTMAC | dx.) k=0 k*) =0,

the proof of which is not given since (125) suffices.

Using now the fact that the absolute value of a complex number z = u + v

P P P N Py P
Z|l= =1 Z — | Z — | U — |V
2 2 -2 2

with (124) and (125) equation (105) follows.
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Resonances P

%n(%’“)—l Ac
7 k2
/// Bound States L

e l’l'

. . Y .
Figure 4: Resonances and eigenvalues. For #3=¢ — ak? =~ 0 we have eigenvalues

for ;1 < A\, and resonances in the continuous spectrum for g > A..

Remark 6.15 Note that « is in fact greater than zero: For pu < A, there exist
imaginary k (in this case we in fact have no imaginary part c.f. (123): The
imaginary k makes all imaginary parts which are of odd order in k real) - thus
negative k* - such that B(k, 1) f(k, p,-) = 0 (namely the respective eigenvalues).
Hence we can find j < \. and k? < 0 such that “;—c’\c — ak? = 0, hence a > 0.

Since ¢, dives properly into the continuous spectrum, hence “;—)‘ —ak? =0 for

v proportional to By ~ £ it follows that o # 0.

Also in the case u > A, k € R it may happen that “;:‘C —ak?* = 0. This
case 1s called “resonance” in the physical literature. Around the resonance the
norm of B is governed by the imaginary part above which is of order k*. Varying
k the real part above changes its sign when crossing the resonance, so does the

divergent part of the generalized eigenfunctions.

We thus have proven (101) and (102) (recalling (105) yields (104); (104) yields
(101) and (102)). It is left to prove (103).
Let (k, u) € Py,, f € N. Similar as above we have using Taylors formula that

(WT = 1)f = (uTo = Df +kO(uTe) f lv=o +OK*) || f(k p1.0) lloo -

Since f € N

and thus




It follows that

N_>\c

Wl =1f = = —f+ko(uT = 1)f li=o +OR) || f oo -
and
= Ae
T =D f o < = 1 f oo +5 1 [Ok(1Tk = D]i=of li=olo
+OR) || £ lloo - (126)

With (106) and (46) we have that by virtue of (36)

—m

[Ok(pTy — Dg=of = g

/ (1 + B)AX) f( )P’ |

Using (36) it follows that

Ok (uTy — D]k=of = 0.
Thus we can estimate (126) by

p= A
Ac
with appropriate C' < oo uniform in (k, p) € Py, .

Hence in view of (100)

| (eI = Df o< C | £ lloo +CE* || £ [loo (127)

| Bk, p) |2 = sup || Bk, 1) f |l

FEN I fllso=1

= sup || (1= PH(uTi = 1)f ||
FEN || fllse=1

< sup || (uTk — 1) f |l
FEN || fllse=1
+ sup || PYuTe = 1)f [l (128)

FEN || fllo=1

Using the equivalence of all norms in the finite dimensional vector space M it
follows that there exists a C' < oo uniform in (k, i) € Py, such that
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sup | Pl(uT—1)f e < C  sup || Pl(uTe = 1)f |
FEN | flleo=1 FEN, | flleo=1
< C sup || (pl—=1)f]
FEN, | flleo=1
H— A
< C | £ lloo +C3E* || £ lloo

A

by (127).
This and (127) in (128) yield (103).

i

We turn now to the proof of Lemma 6.12, and we recall the Lemma for con-
venience.

Lemma 6.12

(a) For any u € [\, 1| we have that

hte M+ < (uTy — 1)h*t e M+ .
(b) For any u € [Ae, o] the map pTy — 1 : M+ — ML is invertible.

(c) There exists a C' < 0o such that for all h* € M+ and all u € [\, 7]

(o =) At [l O Il B loo

Proof of part a) of Lemma 6.12

Let pu € [Ac, 7).
We show first that for h € B and g € BN Ly with Thg € Lo

(Ah, Tog) = (AToh, g) (129)

by computing
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(A Tog) = [ AN (0 Tog(x) s
= /A(X)h*(x)/GS_(X—X/)A(X,)g<X/)d3£L’/d3$

_ / / Alx (x — X )P A ) g(x)d*a’

We may apply this to h € B and g = ¢ € N to obtain

<Ah7 ¢> = <Ah7 )\CTO¢>
/\C<ATOh> ¢>

and thus

H _

)\_<Ah ¢) = u(AToh, )
and hence

Ae — [
Ac

(A(L— T h|g) = (A2 Fp|g) =

. (Ah, 6 . (131)

This equation directly implies part a) of Lemma 6.12: If h € M* (which
means that (Ah,$,.) = 0) it follows that (1 — uTy)h € M+ (which means
(A(1 —uTo) h | ¢) =0) and vice versus.
Proof of part b) of Lemma 6.12 for p # A,
First observe that there exists no bound state or resonance for p €|\, 1] hence
following the proof of Lemma 3.4. in [1] (uTy — 1)71f exists for all f € B, so
wTy — 1 is invertible on M+ C B.
Proof of part c) of Lemma 6.12 for 1 # A.
Let p €]\, 1), f € M*. Set

h=(1—puTy)"" f. (132)
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Then by Lemma 6.12 (a)
he M*. (133)

We now show that there exists a C' < oo such that for all h € M=+ and
1 €] A, 1]
[ 7 flo< C || (1= pTo) b [loo (134)

from which (87) follows.

We will prove (134) by contradiction. Hence assume that for every C' > 0
there exist a e with A\, < e < I and a function he € M+ such that

| he lloo> C [ (1 = pcTo) he oo - (135)

Since Tj is a linear operator we can restrict ourselves to functions he with
| he ||oo= 1. Hence (135) becomes

1

1— ucdy) he |leo< = .

I (1= poTo) ke <

Consider a sequence C,, — co. Hence there exists a series of elements (i, hp)nen
in |\, 1] x M= such that

(136)

T | (1= ) B =0

i.e. in sup norm

lim (1 — p, 1) hp, =0, (137)

n—oo

But the sequence u,Tyh,, is Arzela-Ascoli compact, since

A={Tog € B. |l g lloc= 1} (138)

is compact in the Arzela-Ascoli sense, i.e. for any 0 > 0 there exists a ( > 0
such that

| f(x) = fy) <o (139)

for all x,y € R® with || x —y ||< ¢ and all f € A.
To prove this let 6 > 0, f € A and let g be such that f = Tyg ,|| g ||co= 1.
Then
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£ = )] = | Togx) - Tog(y) |
- L/G+ X) AGK)g (X )%

- /Gf{(y -y A )g(y')d*z|

= | [ (G56x=x) = Gty = ) AK)glx) |

==HwaL (Gix—x)— Gily —x) | (140)

Let r > 0 and K, (x) the open ball around x with radius 7. Since | G (x—x') |
(see (41)) is integrable over any compact set we can choose r so small that for
all x and all y

1)
Giix—x")|d®r < —— 141
/T(x)| o )| 3 Al (141)
1)
Gily —x) | &7 < —r—. (142)
/}@‘°< 3T AT

Let

hix) =] G§ (x = x) = Gg (y = x) |

For y € K:(x) the function is continuous on the compact set Si\K,(x)

and thus uniformly continuous on S4\ K, (x)(recall that G§(x) is continuous
on R3\{0}), i.e. there exists a ¢; > 0 such that

J
3 Al Js 1,00 P2
for all X' € SA\K,(x) | and for all || x —y ||< (1, hence

| Gy (x—x) = Gi(y —x) |<

Wl >

[ 40e [ 1GHx=%) = Gily —x) | &4 <
SA\K (x)

for || x —y ||< G-
With (141) and (142) we obtain for (140)
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100 = FO 1N Al [ 1GHx=x) =Gy =x) | ' < 4
A

for | x—y|<(:= mini(l, 5t

It follows directly that A := [Ac, Ti] X Upepp, mptA is compact.

Thus there exists a convergent subsequence (fin), ,un(k)Tohn(k))keN of
(ttns i Tohr ) nen With limy_oo Tohppy = ht e Aand limy oo fhn@ky = 1 € [Ac, T

By virtue of (137) hy,) converges, hence there exists a h € B with
limy,_ o0 Pin(ry) = h. Since Ty is continuous, Tyh = ht.

Hence by (137) (1 — uTp)h = 0. Since (1 — uTy)h = 0 has nontrivial solutions
only for = M. it follows that u = A, and h € N. Since A is positive we have
that

(h, Ah) > 0. (143)
On the other hand since h,, € M+

(h, Ahy,) =0 (144)

for all n € N. (143) with (144) is contradiction to the continuity of the scalar
product. So (134) holds and part ¢) of the Lemma follows for u # ..

Proof of part (b) of Lemma 6.12 for ;= A,

Let f € M*. We develop (1 — uTp)~" into a Neumann series around 1 + 55,
which we show to be convergent on M= if C'is chosen such that (87) is satisfied

for u # A\, and 1;\% < 71 (note, that limg_o J‘? =\ <T0).

Lemma 6.16 Let f € M+ and let

._ 1 RN 1 1 -1 !
= (g =M S (g0 5 AT ) 1A
Then there exists a f € B such that

lim || fu—F =0
Proof
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Let f € M*. We have that

1 1 Ae B 1
1"’%_)\07—‘0 = (14—%) (1—@%) —(1"‘%)(1_%%) :

A

where 1 := —4—. Note that po > A. and by our choice of C' py < 1.
2C

155
Hence part (c) of the Lemma for u = ug €]\, 1] yields that on M=+

| (14 56 = AT0) " f oo 1,
sup <Cl+—=)".
Femr I f lloo 2C
It follows that
1+ L AT ' flle 1 1 1
sup 13+ 50 0"/ | <-(1+-—=)'<=.
Femt I f lloo 2 2C 2

Using part (a) of the Lemma it follows, that for f € M= all the summands in
(145) are in M*. Hence

T+ L AT Y flle 1
sup I ((1+ 35 o)) fl <L
feML | f oo 2

Hence the series on the right hand side of (145) is majorized by a geometrical
series and thus it converges and since B is a banach space, f € B with

F(x) = ((1 + % AT Y (%(1 + % - ACT0)1>] f) (x)

Jj=0

Furthermore we have for f that

I-AT)F = f+—F-oF=f.



We have proven that for any f € M- there exists a f € B such that (1 —
ATo)f = f, hence (1 — \.Tp) is invertible on M+ which is part (b) of Lemma
6.12 for pu = ..

Proof of part (c) of Lemma 6.12 for u = A,
Part ¢) of Lemma 6.12 for y = A, follows direct from part (b) of the Lemma

and part (c) of the Lemma for u # A\, using the continuity of the operator Tj
(see (61)).

g
Proof of Lemma 6.13
We recall the Lemma for convenience
Lemma 6.13
There exists a C' € R such that for all h € B
(T = To)h o< Ck [ oo (146)
and
| (A(T) = To)h | x.) |< CR* || 1 [l (147)

for all ¢, € N with || é», ||o=1.
Proof

Let h € B. We have using (46)

(Ty — To)h = / (Gf (%) = GF (%)) A(x — x')h(x — x')d°" .

It follows that

I (Th = To)h floe <l h!loo/!GZ(X’)—GfT(X’)!A(X—X’)d3x’

IA

[ A ool Al / | GY(xX) = Gg(x') | &2
x—x'ESy
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Using the definition of G} (see (41)) we have that

x
7=1 7j=1
1
- (—x_l(m + Bm) — iz Za3ﬁ> oo
j=1
3
<l e (—x (B —m + Zajk—w) o
j=1
L ke Lj
+ | E(e — 1)) | 2 (m + pm) — Z% oo -
The first summand is of order k. Since e*®* — 1 is of order kx, the second

summand is of order k& and (146) follows.
For the left hand side of (147) we use Taylors formula, i.e. that there exists a
k1 so that

(A(Ty, — To)h, da.)
= kok(A(x)(Tkh)(x), dr.(X)) k=0 +%k23§<A(Tk)h7 Pa.)

= KA ORTi Jemo W) (<), 63.3)) + SR (AQRT) It B | 6.)
= Sl + SQ (148)

For S; we have using (46) and (106)

51 = & [ (ARG oo 1)) 0 (00
= & [ [ 469 @uGulox = x) oo A" 00, ()
= & [ [ AGO- GGlm o+ Bm)) A (<), ()
— & [ A <z<m+ﬁm>>mc<x>d3xﬁA<x'>h*<x'>d%' —0 (1Y)
by virtue of (36) (Recall that A is scalar).
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For Sy we have using (46) and (106) that

/

1 :
(ORT)h |jehy = / e’ (|X x' | (B, —I—Za]k‘l L+ Bm)

47r
7j=1

kq . ’ Lj — -1 m? 3
. — ZZO&jﬁ— ’ X — X/ ’ E—%)A(X/)h<xl)d x'

/|x x| Ekl—i-Zozjkl

-1 3,
Za]‘x X,| —x—x|" Egl)\A | B ||oo 2.

kq
+m—2@
m) — 21t

IN

% is bounded in x € R?. Going back

to (148) we see - again using that A(x’) has compact support - that there exists
a C' < oo such that

Since A(x’) has compact support

Sy < CK* || h |loo

for all in h € B and k € R?.
With (149) (147) follows and Lemma 6.13 is proven.

Lemma 6.4 for n > 0
We exemplarily prove (e) for n = 1.

Heuristically deriving (53) with respect to k will yield 0x¢ (k, s, -). We denote
the function we get by this formal method by ¢?(k, y, -).

éj (kv K X) = “ak’g(ka s X) - M(aka)Cj(k’ Ky X) - MTk’Cj (kv s X) :

Using the definition of T} (46 we get

Fkpx) = porgk /A V0RG(K, p, ) F(x — X (k, p, X' )d> 2
— T’ (K, 11, %) . (150)
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In [1] it is shown that (150) has a unique solution and that in fact ¢7(k, p,-) =
akrgj (kv Hs )

In the present paper we want to go further and also establish the estimates
needed in (44) and (45). Set

g, p,x) = pdrg(k, g, x)
—H / A<X/)<j (k7 s X/)akGa{a s ')+<X - X/)d3$, ) (151)

hence

éj(ku 2 X) = g(k7 12 X) - MTkCJ (k7 12 X) .

Note that g(k, i, x) is in general not in B. Hence we proceed as above (see
below (48)) and define

Zj(k7/“L7X) = éj(k7 122 X) - g(k7M7X)<X) :

¢ (k, pt, -) satisfies:

Zj (k> K, X) = :U’g(k7 H, ) - /LTkzj (k7 Ky ) (152)
with

g(k7 H, ) = _Tkg(kv Hs X) : (153)
Since Ty maps C* into B it follows that g € B.
Multiplying both sides with of (152) || g(k, p,-) ||} it is formally equivalent

to (53). Hence showing that g € B and that

1 90¢, 1) o< © (14 B (|1 = Ao = ak? | +87) ") (154)

for some appropriate constant C' < oo we get (44) and (45) for n = 1.
We need some properties of g, for that we control g. We define

gl(k7 My X) = Hakg(knuax) (155)

il ) = [ 4G X0 o x = X)) )8 (156)

hence
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9=91+92 -
Using (52) we have that

?i(kaﬂax) = _7iaka¢ﬂ(k707X)

= —pu / A(x — x) o (x — x"ORGf (X)d*a
— U / G (x)A(x — X)Ope  (x — x)dP2 .

Using (106) it follows that

. 1 ...
Bk = = [ Alx =) (x - x) e

3 ’
T k
(—i(Ek + Z ajk:j + fm) — xl_lf,g) B!

j=1
—p / G (X A(x — Xt (x — x)d3x .

Since A has compact support it follows that

sup/A(x—X/)d?’x’ <

x€R3

sup/A(x—x')a:'d?’a:’ < o0
x€R3
sup/A(x—x’)x’zd?’x’ < 0.
x€R3

Since ¢’ (k, 0,x) is normalized it follows in view of (41) that

sup || ,gl(kmuu ) H<>0< oo . (157)
(k,p)EP

For go we have in view of (41)

g ! ] / 1 ikx
Galkgex) = g [ Ax= X0 grx - x) e

3 /
x k
(—i(Ek + Z ozjk;j, + fm) — x’_lE—k> 3z’

j=1

/
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With (79) it follows that

/

~ . 1 .
g2 = W / A(X - X/)wj (ka My X — X/)4_61kx
m

3 /
T k
(-Z(Ek + Z Ctjk;], -+ ﬂm) — x/lE_k) d3x/

=1
—e
47

3 /
X, k
(—i(Ek + Z ajk:?j/ + fm) — x,_lﬁk> B!

J=1

+M/A(X — X)) f(k, 11, %) (x — X)) 1

= g3+ ga-

Using Lemma 6.1 (e) for n = 0 it follows, that

sup {” §3(khua ) Hoo} < 0. (158)
kEER3;u> e

For g, we rewrite in view of (36)

1 .
B = —in [ Al )P 00k ) O+ ) B
T
[ A= )70k ) ) e
s
3 x’ k
—i(Ey—m+ Y ak-2)—a'— | &
< ( k Jz_; ] ./L'/) Ek
1 .
= u/A(x —x) Ok, p, x)(x — x')4—6”“
T
3 !
x k
—i(Ey—m+ Y o kL) —a = | 32
(e Y-

Note that by relativistic dispersion relation Ej — m is for small k of order k2.
Furthermore A is compactly supported, so there exists a constant C' < oo such
that

1 9a(k, 1) oo < Okl f (K 11, %) [l

using Lemma 6.1 (e) for n = 0 it follows that
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| 91 |l Ck (1+ (| o= Ae — ak® | +k3)*1) . (159)

With (157) and (158) it follows that there exists a constant C' < oo such that

| 50,13 e C (14 B (| 1= Ao = ak? | +5%) ") (160)
With (153) we have that

|| gk ||oo§ C <1 —+ k <| w— )\c _ ak? | _{_k?,)*l)
g €B. (161)

Similar as above we can show, that (152) has a unique solution in B and that

Jim | 9C (k. p1,) o= 0 (162)

Similar as above we are left with controlling

. =J,0
oy | 06 lleo
We proceed as above, using (161). It follows that 9x((k, u,-) is of order
F(min{] p— Ao |71 k72})7
Similarly we get (e) for n > 1. The factors (x + 1)™" are needed to keep
the functions g(k, u,x) (see (151) for the function g(k, u,x) for n = 1) and the
or¢? (k,0,x) bounded.

g

Proof of Lemma 6.3

We show that Lemma 6.4 implies Lemma 6.3.

Due to [1] the (7 exist and are infinitely often continuously differentiable in &
for all (k,u) € P. Hence the estimates on the generalized eigenfunctions (right
hand side of (44) and (45)) follow for any compact subset of R? x [A., 72]\ (0, A.).

We also verified (44) and (45) for some subset of P ”"around” (0, \.) (Lemma
6.4), so it is left to verify the estimates for & — oco. Hence Lemma 6.3 follows
from

Jim || (z 4+ 1) 7" ¢7 [loo< Cn (163)
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for all n € Ny with appropriate constants C),, < co. In the following we refer
to [8] and show only how the proof of Theorem 2.4. in [8] generalizes to our case.

We will show that ¢/ can for sufficiently large k be written as a Born series,
i.e. that there exists a K < oo such that

¢ (k, 1, %) == > Tl (k,0,%) (164)

J=0

exists for all £ > K. To prove that the right hand side of (164) exists we will
first derive a formula for T7.
Using (46) we can write for any y € L™

Tix = Tk/G—]:(X—X,)A x)x(x")d*x’

)
- [Gix-x)a0) [
= [ [Gix-x)am)

Using (31) we have that

; (X/ o X”)A(X//)X(X,/)d3$”d3$,

G+
Gr(x' —x"&2' AX")x(x")d*z" . (165)

G (x) = (Ex + D)GE9F (x) (166)

(remember that D is the free dirac operator (1)) where G5 < (x) is the Klein
Gordon kernel which solves

(Bi = (D")G 7 (x —x) = §(x — ) . (167)
(166) in (165) yields in view of (1) that

1iv = [ [ (B D6E - x)) Alx)
((Bx+ DOGEST (' = x) ) d'a A ()"
= //( (B, — iV + m)GFET (x — X)) A(X)
(B + DO)GET (x = X)) d*a/ Ay (x )2
One partial integration yields
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T2y = // GO () (B + i+ 260m) (AG)(Be + DOYGES (x —x)) ) P’
AN

= / / GEOT (x — X)) ((Ek — Dy + 26m) (A(x/)(Ek + DGt (X - x"))) 4>’
AX")x(x")dz"

- / / GEO* (x — x)2BmA(X) ((Ek + DGR (x — x")) &’ A(x") (X" )"

// GEGH(x — ¥ <(Ek Do) (A( VE;, + D°)GEO (¢! —x")))d%;'
A" )x(x")dz" .

With (167) it follows that

1 = [ ]GRO - x)28mAG) (B + D)GES (x — ) A ()
+ / / Gy O (x = x') (VAX)) (Bx + DO)G O (x = x")d* o’ A(x") x (x")d*z"
+ [ [ GO =) — x P AN
= [ [ G e x20mA) G XA
s [ [ GO ) (AR 6 (= XA NP

+ [ [ aet e x)ae )

Defining the operator TX%(A) : L — L> by

TG = [ GEO (= XA (168)
we can write

i = T (26mA) T, + T (VA)T;, + T (A) (169)

In a similar manner we write
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Ty (k,0,x) = / (By + DO)GEG (x — x') A(x) ¢ (K, 0, %)
= 20m / Grot (x — X)AX) ¢ (k, 0,x)d>2
+ / GrOt (x — XA (E, — D)@ (k, 0,x))d*z’

— 26m / GEO+ (x — XY A(X ) (k, 0, X )d*a (170)
= TF9(26mA)¢ (k,0,%) (171)

(169) and (170) yield, that all the T/¢/(k,0,x) can be written as sums of
powers of TEKC(A), TEY(2mBA) and TEY(VA(x')) acting on ¢?(k, 0,x’).

Following the proof in [9] (note, that the Klein Gordon eigenvalue equation
and the Schrodinger eigenvalue equation are formally equivalent, with Ej; =
vm? + k? in the Klein Gordon, Fj, = % in the Schrédinger case) we can conclude
that supycgs\p, | T4 |2< co and

lim || (TECY? |2=0.

Hence there exists a K > 0 such that || TFC(A) ||2< L, || TK¢(2mpBA) ||2< i
and || T,X9(VA(X')) ||2< 3. So the right hand side of (164) is bounded by a
geometrical series. Furthermore it follows that

| & (K, 11, %) = ¢ (k,0,%) [loo:=[l Y T} (K, 0,%) ||

1=1
is bounded uniformly in k € R*; k& > K and (163) follows for n = 0.
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7 Derivative of ¢,

We will need some properties of the critical bound state ¢,,. We will only observe
bound states which dive into the continuous spectrum properly. Note that the
switching factor satisfies (6), so (172) is satisfied if and only if there exists a
fo < Ac such that

0<o,E,<C (172)
for all po < p < A

Lemma 7.1 For every ¢, € N (see (38)) there exists a g < A\ and a C' < 0o
such that one can find a function ¢, for any p € (1o, A] with D,¢,, = E, ¢, such
that

25

| O [|< C(Ac — )~ (173)
for all pu € [uo, Ac[.

Remark 7.2 This estimate is not optimal, but sufficient for what is needed later.
It seems reasonable to conjecture that the correct exponent is —%.

Proof of Lemma 7.1

By assumption we have that only one eigenvalue dives into the upper contin-
uous spectrum, hence there is a gap between m and the next smaller eigenvalue
E_,. For transparency of the proof we assume that D,_  has no further eigenval-
ues between —m and m (This assumption is merely convenient and can be easily
relaxed at the cost of more terms).

Let ¢, € N with || ¢, ||= 1. Using Gram Schmidt one can find a orthonormal
Basis By := {¢,,, %, @*... 9"} of M. Let N, be the set of eigenfunctions of D,
with energy eigenvalue F,.

For any 1 < A, we choose a normalized ¢, € N, such that ¢, L®' for all
2<<n.

We first prove, that such a ¢, exists for any N,,.

Let Py be the projector onto N, {®!;1=1,...,n} be a basis of NV,.

1. Case: The vectors PN@L;Z =1,...,n are linearly independent
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Choose a au € N, such that PngM = ¢,, Normalizing @ yields ¢,,.
2. Case: The vectors PNCIDL;Z =1,...,n are linearly dependent
Choose a nontrivial @ € N, such that PN@ = 0. Normalizing %M yields ¢,,.

Now we show that ¢, satisfies the conditions of the Lemma. Therefore we first
define

Gi=
g <¢/I;7 ¢Ac> ’
where by definition of ¢,

Tim (6, 01,) = (174)
so that (¢, ¢x.) # 0 for uo close enough to A., hence ¢, is well defined for
ft € [po, Acl-

Thus
(ED# - Eu)C,u =0, <C,ua ¢Ac> =1 (175)

and using that ¢(D, — D,) = (n — v)A we get

0 = ((eDu = Eu)Gus Oa.)
= <(5D/\c )gm ¢>\ > <(:u - )\c)AC;u ¢>\c>
= (Gus (€Dx. = Ep)oa.) + (1t — A) A, D)
= (m— E) (G da.) + (1= Ac) Ay, &)
= (m—E,) + (1= A)AC, &)
Hence
(m — Eu>¢>\c (A — M)AQM Pre) P,

(
()‘c - ,U)ACM + (<(>‘c - M)ACM’ ¢>\C>¢>\c - ()\c - M)ACM)
= (D), — D,) G+ (((Ae — M)AC,UJ Pae)Pr. — (e — H)A(u)

Using mey, = D) ¢y, and D,(, = E,(, we get that

(D, = Eu) 95, = (D, — Eu) G+ (((Ae = ) A, da)Pr. — (Ae — ) AC,)
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Note that (Dy, — E,)~" exists for all i < A, hence

Or. = Cu— (Ae — 1) (Dy, — Eu)il (ACM - <AC;u Pr.) D) -

This leads us to define for any p € [uo, A the linear operator R, : L* — L?
by

Rux = (Dx, — E,) ™" (Ax — (AX, 6x.)02.) (176)
for all y € L?, so that

dr. = (1—(Ac—p)Ru) (. or
Cu = (1 - (/\c - U)Ru)il ¢/\c .

Below we will show that there exists a C' < oo such that

IRy [l5°< € (Ae — )~ = (177)

Hence taking po close enough to A. we have that for all u € [ug, \[ there exist
q < 1 so that

A =R, < g <1, (178)
and hence
L*5¢ = > (b—A)Riéx, . (179)
j=0

It is this series which we shall eventually differentiate with respect to u. First
we prove (177).
Let x € L? with || x [|= 1 and xL®' for all 2 <1 < n. We set
Note that by construction ¢_L¢,, hence - since Y L®' and ¢y, L®! for all 2 <
[ <n-that LN
Ruyx = (Dx. —p) €. (181)
Let B(r,) be the ball around zero with Radius
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ry= (A —p) 711 (182)

7, is defined such, that part of x which lies outside B(r,) is in L? sufficiently
small and the part of x which lies inside B(r,) is in L' sufficiently small. Further-
more Sy C B(r,) for sufficiently large r,,, so the part of x which lies outside B(r,)
is a multiple of ¢, .Below we will have two different methods in our estimates,
using smallness in L? and smallness in L!.

For large enough r, we have that the Py (1p )qDl) for 1 < [ < n are linear

Tu

independent. Hence we can find a ¢y, € N such that

PN(lB(m)akc) = Py(15(,)§) -

Hence

&1 = 13(7«“)5—13(@)5& (183)
Sopp = E— & (184)

are orthogonal to N
&1, has compact support B(r,), so

4 .
[RSTA/FRS 57”"2 I €r, 1< Cry (185)

for some appropriate C' < co. Introducing (183) and (184) into (181)

R#X = (DAc - Eu)_lf - (D/\c - Eu)_l fl,u + (D/\c - Eu)_l f&u

we see that (177) holds if for some appropriate K < oo

| (D = B) "o ll< K (A = o) = (186)
| (Dr. = Bu) " o < K (e =) (187)

We show (186). By Lemma 6.1
b)) = Pl k)= / (2m) [k, Aer %), €1, (%))
- / (2m) 4 [ (ke Aes ) — £k, 1, ), €1 ()]
—|—/(QW)_%[fO(k,u,x),fw(x)}d?’x
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Since &, is orthogonal to ¢,, we have that

|k, ) | = | Pk, j) |
_ \ [n o a0 - 06 130,640l

< Nk A) = £k ) oo [ €a Il

With Lemma 6.1 (e) and (185) it follows that there exists a C' < oo such that

|Gk, j) | < Crd (188)
for all k € R®, 1 € 10, \e]. Thus
Dy — E,)7! ! 3
|| ( Ae M) 517# || || ( 1>]Ek Mglvﬂ H
1
- Z/I;f? o) P k)
j=1 (1) Ex — E, Y
2 3
< § > d’k
(Z/|E_ (k) | )
1
2 2
+ / f N 2Bk
(Z k)
Since Ejy = Vk? + m? > m > E,, it follows that
(189)

Ek—EHZm—EM>O

and

Ek—EHZEk—mZO.

Hence we have with (188)
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1
2 2
1
I (Dr. = E) " &l < O D / | * &’k
[ I I — h<(m—F,) m— L,

=

2 3
+Cr3 / ] |2 Bk
: (; 15k>(m—E,)% Ek -
2 3
+ 9) P Pk
(Z/M\Ek_ Eu(k.)| )

7j=1

For £ > 1 we have that Ekl_m < Ell_m. Thus

N

2 1 1 C
) Sk ) PPE)] < < <o
<j21 /k>1 | Ek . mglaﬂ( j) ’ ) — E1 - m H 617N H— El - m oo

It follows that

2 . 3
1Dy, —E) " Gull < O (Z/’K o _7E)|2d3k)

2 3
1
+Cr3 / — PPk +C
g (; 1>k>(m—E,)? | Ey,—m |

Since | B, —m | is for k < 1 of order k? (non relativistic limit of the kinetic
energy), there exists a C' < oo such that

1
|Ek—m|26k‘2 f0r1>k>(m—Eu)%.

Hence

[SI[oY

_ _ 47
| (Dr ~ B) e || < Crdm— E,) 1(—

N[

3 (m — Eu)

(Z /Mm N % 4d3lc)% +C (190)

4 _1
") - B+ O (dn(m— B) 4 C

I
Q
o5
—
|
~—
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Hence there exists for py close enough to A\, a C' < oo such that

=

| (Dx. — ) € I< Crd(m — E,)”

Note that (due to (172)) m — E, < C'(A. — p). Using this and (182) we obtain
(186) with some appropriate constant K < oo.
Next we prove (187). By (183) and (184)

I 2 1= =1l < 1€ = 18e0¢ | + 1| 180 Pac

Using &, LN it we have with (183)

(150r,0& D) = (180 Prer O2.) =l 1sOn. [P 6. 17 -
and by Schwartz inequality

| (1500 & D) [=] (€ = 1800 D) 11 E = 1€ || 1| da

hence for R large enough there exists a C' < co uniform in r, > R, such that

| 10 Pac IS C Nl €= 1ae0€E | -

It follows that

[ &nll < 1= 18a0¢8 | + || 1aer) @
= 2|1 &= 1pué || - (191)

By (180) and the fact that A is compactely supported we have that for large
enough 7, £ is outside the ball B(r,) a multiple of ¢, . Hence § — 1p3(.,§ is
outside the ball B(r,) a multiple of ¢,,.

From (37) | ¢». |< Cz™2. Hence || £ —1p4,0€ < C (fz
exists a C' < oo such that

>ry,

m*4d3x> 5. So there

_1
I 2 IS 211 € = 15,8 1< Cru®
It follows that by (189)

1~ 1 ~
_ <
Tl e o

< |m—-E,|7" Cr,? (192)

1(Dr. = B o |l =
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Hence (187) follows as above. We have thus established (177) and we turn
now to the differentiation of ¢, respectively ¢, (179).

Next we estimate || 9,R,, ||3. Using the spectral decomposition the differenti-
ation yields

QRux = 0u(Dy, — Eu)_l (Ax — (Ax, dr.)0a.)
= (auEu) (DAC - Eu)72 (AX - <AXa ¢>\c>¢>\c)
= (auEu) (D>\c - Eu>_1 RuX .

It follows using (172) that there exists a C' < oo such that

Next we estimate 0,(,. Using (179) (Note that > 7=, j (1 — AR, ™ by, s

majorized by a convergent power series uniformly in pg < p < A, (see (178),
hence we can exchange limit and differentiation)

I 0uRy 157< Clm — Eu) ™ || Ry |17 (193)

Ol = au (1= Ac) ¢/\C

hmg

= (9, Zju AR, b,

= Ry i((n=2)R,) " éx,

e

Il
i

J
+(p— R iln W) o,
7j=1

By (178) || 3252, j (1t — Ay’ 'Rl éa, | C < 0o uniform in pg < pp < A Thus
by (177) and (193)

10uCu < CUN B 15"+ [ (1 = A)Op Ry [I57) < CJ Ry [I57 - (194)

with appropriate C' < oco.
Finally, to prove (173), we observe that

Cu
Gl

¢u:

and thus
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0,€, q
Dy = o .
S T A A

Due to (175) we have that || ¢, ||> 1 for all u € [uo, Ac[. Furthermore by
triangle inequality 0, || ¢, ||<|| 0., ||, therefore

10 1< 211 0 ||
This, (177) and (194) yield (173).

8 Proof of Theorem 3.3

In the following we will set s,,; = 0. Since we shall employ often eigenfunction
expansions we need the following properties of the generalized eigenfunctions.
We provide the major results of Lemma 6.1 and Lemma 7.1 in our notation, i.e.
= Ap(s) with the restriction 0 < ds¢(s) < oo (see (6)).

We will slightly abuse notation, writing ¢ for ¢y, ().

Corollary 8.1 Let A be compactly supported, A > 0, s > 0 be such, that \. is
the only critical coupling constant in [A., A\¢p(s)] and Osp(s) > 0 in [, Ap(5)].
Let B be the Banach space of all continuous functions tending uniformly to zero
as r — oo equipped with the supremum norm. Then

(a) there exist unique solutions ¢’ (k,s,x) of (29) in B for all k € R3, s € (0,3]
such that

(b) for any s € (0,5] the set of ¢?(k, s,x) define a generalized Fourier transform
in the space of scattering states by

Fuw)(k.f) = / (2m) (¢ (k. 5, %), b(x))d% (195)
and
DY / (2m) 3 (k, 5, %) Fo (1) (k. )d%% (196)
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The so defined F() is isometric to 1), i.e.

Hwnﬁz(/|¢@>Ff%)2zjé(/kfu¢XkJ>Pd%)%zwfan|

(c) the functions ¢’ (k, s,x) are infinitely often continuously differentiable with
respect to k, furthermore there exist a, C € R™ uniform in (k,s) € R3 x
[0, $;m2] and for all n € Ny functions f"(k,s,x) € N (see (38)) with

| F(k,5,) o< C (1 +E (| s — ak? | +k3)_”_1> (197)

such that

¢ (k. s, %) = Op ¢’ (k, 5,x) — f"(k, 5,%)do(x) (198)

satisfies

|+ 1), 5,5%) oot C (14 (54 82) || 20k 5,7) [l) - (199)

in particular for n =0

| /0, 5,%) llao C (1 (1's = ak® | +5%) ") . (200)
(d) Let ¢s be defined as above. Then there exists s;, < 0 and C' < oo such that

| 9ss ||< Cs™

for all s;, < s <0.

To prove Theorem 3.3 we have to control the time propagation of ¢, . This
propagation is qualitatively different for s < 0 and s > 0. Hence we control the
propagation for s < 0 and s > 0 separately.
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8.1 Control of ¢ for s;,, < s <0

The adiabatic theorem yields that for any s < 0 the wave function will stay a
multiple of the respective bound state as £ goes to zero.
We shall extend the assertion to s = 0.

Lemma 8.2 Let S, ~with s € [siy,0] be solution of the Dirac equation with

Szn Sin = ¢51”
Then uniform in e >0

lim | <'¢O smv(bO) ’_ L.

8in—0

Proof

We introduce

=l =exp <—3/ Evdv) Os . (201)
121N 5 S’Ln

Note, that w;i,sin = ¢, and | <2/18”;m, ¢o) |= 1. Thus to prove the Lemma we
need only show that ¢f ; ~will be equal to @Dgim in the limit lim,, _,o uniform in
g, i.e.

lim sup || ¢5.,,, — ¥, = (202)

sin—0 0<e<

Let now U¢(s,u) be the propagator of the Dirac equation, i.e. i9;U%(s,0) =
1D,U%(s,0). Using that ¢¢, is solution of the Dirac equation it follows with
(201) that

S
ol _ye = / 0, (U%(s, )i ) du

_ / (— —io > exp (-é/ Evdv) Sudu
7 A

_ __/ D, — E,) exp (—5/ Evdv> budu
+Z/ Us(s,u exp( Z/ Evdv) Oududu

Since (D, — Ey)¢, =

o
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S Z u
sl e = z/ Uf(s,u)exp (——/ Evdv> OuPudu .
121n 1 21n szn E SZn

Hence by unitarity of U¢ and by Corollary 8.1 (d)

0
1
lg, — sl | < / | Buda |l du
Sin

0
25 25 3 25 3
< “8duy = —— 3510 — 28
< O/u fdu =~ Clun]l, = 2 Osk

and (202) follows.

Corollary 8.3 (Adiabatic Theorem without a gap)

Let s; < spm1 and sp > Syua be such that ¢, and ¢, already / still exist. Let
U%(s,u) be the time evolution operator of the Dirac equation (7) on the adiabatic
time scale. Let ¢4 be an overcritical bound state of the Dirac operator with po-
tential As(x) of the form (5). Let ¢s dive properly into the positive continuous
spectrum (see (11)).

lim | (UF(0, 5:)¢s,, 40) | = 1 (203)
l{% | <U8(Sf7sm2)¢07 ¢8f> | = 1. (204)

Proof

We only prove (203). (204) follows equivalently following the propagation of
¢s, backwards in time.

We will show that for any ¢ > 0 there exists a ¢y > 0 and phase factors 7§
such that

1 US(0, 8i)bs; — w600 [|< 0 (205)

for all € < ¢g.
Using Lemma 8.2 we choose s;, > 0 such that

1
| 95, — T [I< 55
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for all € < gp with an appropriate phase factor «j.
Then using the adiabatic Theorem (see [9]) we choose € > 0 such that

1
|| Ua(sim Si)¢5i — T3Pss, ||< 55

for all € < gy with an appropriate phase factor 5.
Using the triangle inequality we get that

H U5<Oa 8i)¢si - ﬁ”;% H
< H WEUS(O’SW)QSSZ- — M50 H + H US(Sin7Si)¢sz- — T3Psi
= [ ¥, — ™o | + || US(0, s:)¢s, — m3s,,, |
6 0

< -4+ =-=90
2+2

and (205) follows.

8.2 Control of ¢ for s > 0

Due to Corollary 8.3 9§ is - in the given limits and up to a phase factor - equal
to the bound state ¢y. So Theorem 3.3 is a direct result of Corollary 8.3 and

Lemma 8.4 Let U¢(s,u) be the time evolution operator of the Dirac equation

(7) on the adiabatic time scale. Let ¢ and ¢s be overcritical bound states of the
Dirac operator with potential As(x) of the form (5) that dive properly into the
positive continuous spectrum (see (11)). Then (remember that Dy = Dy, ,, hence

¢Sm2 = 50)

(U (s1ma, 0) o, o) = 0. (206)

Proof
Set
g = U(s,0)¢0 (207)
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To begin with we introduce the time s. which shall be specified later and
which should be thought of as a time much larger than € and smaller than 1 (for
example 700 . s will serve for defining an appropriate approximating dynamics:
Let V; be the time evolution operator of the time independent Dirac operator
%Dse. This evolution is controllable since we have by Corollary 8.1 good control
of the generalized eigenfunctions and

VE (s, 1) (K, 52, X) = exp <—§Ek(s - u)> & (K, 5., %) (208)
In the following we will always use the notation

V= Fo () (209)

for the generalized Fourier transform of ¢ in the ¢/(k, s.,x) eigenbasis.

We first give some formulas for different propagators, we will need below.
Let U(s, s;n) and U(s, s;n) be time propagators, D, and D, the respective - in
general time dependent - generators, i.e.

U (3, 8i) = DU(s, 5i) 85(7(3, Sin) = DsU(S, Sin) -

Then

U(s, sin) — U(S, $n) = — /: Dy <Us<s,u)ﬁ(u,sm)> du
- — /: U (s,u) (D, —i0y) Uu, sin)du  (210)
= — /: U (s,u) (Eu - 5u> Uu, si)du . (211)

We shall use the following identity for the time U¢, which follows directly from
(211) setting U = U® and U = V.

s 1
Us(s,0) = V(s,0) + z/ V;,i(s,w)g(Dw — D, )U(w,0)dw . (212)
0

We shall now approximate ¢ in three steps by a wave function ¢ which is
easier to control and such that the difference || 9% —¢¢ || — 0 as € — 0.
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1. Step:

We replace ¢g by ¢° given by

¢ (x) = do(x)(1 — p_ 1 (%)) (213)
where p,, € C™ is a mollifier given by
0, forxz<1;
plx) = { 1, for x > 2. (214)
and
X
pr(x) = p(—) (215)

for > 0. Hence ¢5(x) = 0 for x > 2e~ 1m0 and ¢¢(x) = ¢o(x) for x < &~ 10w,
So ¢° has compact support 7. with

4
| T2 |< g8 mm (216)
and that
o< 1. (217)
We set
ot = U%(s,0)¢° (218)
and for the error
ot o= wL -yt (219)

2. Step:
Observing (212) we obtain for (218)
s 1
U = VIO 4 [ Vi(sw)2(Dy - DU w06 e (220)
0

and setting
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1
(Dw - Dse)

£

GO = (D~ DU (w,0)6°

(220) becomes

U = VE(s,0)¢° 4+ / VE (5, 0)C5 (%) dus
0

We write

Cu(x) = Z / (2m) 27 (K, 5., x)C5 (K, j)dPk

and replace for 0 < w < s, ai(k, J) - using some
c<k. <1< K.

which will be specified later on - by

Gk, ) = Gk j)pr. (1 — pr.)

Furthermore we write (213) as

700 = 3 [0 1005 )ik

and replace $€ by
o7k, j) == ¢°(k, ))pa(k) (1 = pK.) -
These replacements define a new wave function, namely
U= VIO i [ V(s )G o
0

for s < s. and

&2 = Uls, sa)wEf

s
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for s > s..
We shall need the difference

2 . ,1 2
neT =y —

only at time s = $,,,2 (see Lemma 8.5 below) and we note here already that
(see (218) and (227))

1 £,2

£,2
nst - Sm2 Sm?2
_ € g,1 €,2
- U (SmQaSE)( Se 55> .

With (220) and (226) we get that

02, = U(sma,s)Ve(s:,0) (67— 67') (228)
FiU (smr52) [ VE (50w (C5(%) — €5 (%)) duw
0

3. Step:

In this last step we more or less assert that the wave function evolution after
time s, is close to the auxiliary time evolution V, namely we replace e? by

&2 for s < s.;
€3 . s = ¢,
Lo { VE (s, so)1h3?,  else. (229)

Again we shall need the difference

Se ?

73 R — 72 73
nsw =t —

only at time s = $,,2 (see Lemma 8.5 below) and we note here already that
(see (227) and (229))

02 = (U (smay ) = Vi (smay 52)) 057 (230)

We use (211) setting U = Ve and U = U* and get

Sm2 1
S = i / Uz, )2 (Do = Do)V (w5205 . (231)
Now Lemma 8.4 follows from
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Lemma 8.5 Let ¢=3 and no' | = 1,2,3 given by (229), (219), (228) and (230).
Then for s. = gﬁ, k. = e5t00 and K. =¢*

(a)

(b)

lim [ 75, || = 0

S
SE—>0 m2

forl=1,2,3.
Proof

To prove the Lemma we need to control wave functions which have Vi as time
evolution operator. We note that the wave functions above which have V as time
evolution operator have nice features, which we shall summarize below. We will
use that such wave functions (which are smooth in generalized momentum space
and not to heavily peaked around k = 0 as s. — 0) show a typical scattering
behavior, i.e. they decay fast enough in time.

Lemma 8.6 Let Rs be defined by

é\(k,j) € Rs <l & ||=1 and £(x) has support S (232)

For any n € Ny there exist C,, < oo such that for any 1 > e, k., s.,u > 0,
K. < 0o and any compact set S. C R?

(a) for all T € (1 - pp.)Rs.

Il Cosup (] 50— ak® | +4%) ") TSo ke (233)
k<2k.

and

| Ve (0, 0)x 1= Co sup (| 52— ok | +47) ) VIS TS, (230)

k<2k.

33



(b) for all x(x) with X € pr.(1 — p.)Rs.
n _3,
[ Vi(u,0)x e < CoKZ2+\/]8- IZ—nsg?’ (k:;?” + 5.2 ) . (235)

Proof of Lemma 8.6 (a) formula (233)

Let ¥ € (1 — px.)Rs.. Writing ¥ = 7(k, j)(1 — pr.) with 7 € Rs, in view of
(215) we have

12 = ([ 1akaa-p d%)%

< [Ix 1< sup {[ 5k, 5) [} [[ 1= pu. | (236)
k<2k.

Substituting p = % yields in view of (215)

1
3 2
o =1 I= ([ 1)~ 1P %) (237)
where by (214) [ | p(p) — 1 |? d®p is bounded.

Furthermore

sup {| Ak, j) [} < sup { [ (21)7% [ (¢ (K, 5.,%), (%)) | &z}
k<2ke k<2k.

< sup (]| /cs.) ) / (2m)} | n(x) | d*x  (238)

Using Schwartz (observing 7) € Rs.)

Il = ]/|n<x>|d3x

_ ’/1sg|77(><)|d3$
< ) | VIS = VIS (230)

For supy o {I| ¢/ (k, s, ") ||} we have by Corollary 8.1 (c) formula (200) that
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sup {|| ¢’ (k, s2,-) loo} < sup {C (| 5. — ak? | +£%) 7'} . (240)
k<2kc k<2kc

Hence for (238)

sup {| 7k, 7) [} < sup {CVI S (|5 —ak® [ +5%) 7} (241)
k<2kc k<2kc
This and (237) in (236) yield (233).
Proof of Lemma 8.6 (a) formula (234)

As above and in view of Corollary 8.1 (b)

Ve (1, 0)x [l
<[l / (2m) 72 | Ve (u, 0)ii(k, 7)(1 = pr. ()@ (K, 52, %) | d°F o

S| [ )R e B )1~ ()6 ) | P
< sup {7k, 5) |} sup {ll #(k, 52, ) [} / (2m)3 | (1 - po (6)) | &k
k<2ke k<2ke

By (240) and (241) and substituting p = k% we can find a C' < oo such that

I VE@,0)x le < Csup {(|s.—ak? | +k*) IS k2. (242)

k<2ke

Proof of Lemma 8.6 (b)

Using Corollary 8.1 (b) and (208) we have that

Vi (u,0)x(x) = V(u,0) Z/% “2¢9 (K, 5., x)X(k, §)dk

S / ) exp (= Lubi ) 0 s 00T )

We estimate the right hand side via stationary phase method, i.e. we integrate

by parts. Using “ki" Oy exp (—guEk) = exp (—éuEk) n partial integrations yield
- writing
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E
(ak?’ﬁ) _ak ak

where 0, acts on everything to the right -

Viwont = (-iorY |

— (—i%)"i k2(2m) 72 exp <—§uEk)

Since pi. (k) =0 for k < k. and k > K.

I Ve (u, 0)

X [loo
% K3 sup ” k~ (( ) ZW k 85,' 7])k2> ”00 :

Since X € pr. (1—pk.)Rs. (234) holds, if for any n € Ny there exists a C,, < 0o
such that

n 4
By :
sup k2 (8 —) (1 —pk. (K, 52, )k | oo
s ( ) el pre) 3Gk W |
< 0./|S. 3*3@ My o]

For this we first show that for any j,[,r € Ny there exist C;;, with

vl Q

”) (243)

(ak%) E*f(k) = Z Cl  Er 2 k=290 £(k) (244)

jHl+r=n

We prove this equation by induction over n. For n = 0 (244) follows trivially.
Assume that (244) holds for some n € N. It follows that
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n+1 n
(ak%) o) = 0 (ak%) K1 ()

E .
= 0" DD CudElRT Ol (k)
j+l+7“=n
— ak Z Cj’l’TEg_2r+1k(_n_1+2)_l+raif(k)
= D Chuy (OB KT £ (k)
j+l+7“:n
* Z Ciar B2 (akk(*"flﬂ)flw) 90 f (k)
jHl+r=n
+ Z C’jJ’TEl?ferkfn+3fl+rai+1f(k)

Using that Ej, = v k2 + m? we have that

8kE2 = nE};‘_lﬁk VEZ+m? = nE,?_2k .
Settingﬁ:n—l—l,}/:j—l—l,le—l—l and 7 =7+ 1 yields

E n+1 o o
(ak?k> ]{?2f<k‘) _ Z Cj,l,rE]?_QTk_n+2_l+raif(k)
JH+T=n
JjHl+r=n

+ Z C- E%_Qrk_ﬁ+2_l+rai+1f(k’)

7,lr "k
JHl+r=n

for appropriate C5,, < oo, €7, < o0 and Cj;7 < 00, and (244) follows for

7 = n+ 1. Induction yields that (244) holds for all n € Ny.
Note that for £ — 0
k=2Ep 2 271 s of order kT

For k — oo E} is of order k, hence

k=2 B2 =271 s of order k=" (hence bounded for large k). Since we only
observe k. — 0 it follows with (244) that for any n, j € Ny there exist C,, ; < 0o
such that

e (a) i < o opw ). e

J=0
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Remember that due to Corollary 8.1 (c),

195’ (k,se) o < i (1 + k" (] 5. — ak? | +k3)‘”‘2) . (246)

Next we show that

sup{| Ofpu. () [} < Gk (247
>FKe
sup | ik, j) | < Cuv/S. (1+kn(y ss—ak2]+k3)_”_2). (248)
NERs

We start with (247). Using the definition of pi_ (215) and substituting k = k.p
yields

sup{| 9 pr. (k) [} < k" sup{| Gy p(p) |}

k>ke peR3

Since p(p) € C* (247) follows.
it is left to prove (248). Let j € Rs.. Using Corollary 8.1 (b) we have that

| Oxnk,j) | =

o / (2m)~ ¢ (k, 52,%), n(x))d%

N ‘/ (2m) 72 (0p ¢ (K, 52,%), n(x))d*x

L TRIN ' JESRIECIEE

Using (239) and (246) (248) follows.

It is left to show how (245) - (248) imply (243).

Using the product rule of differentiation, (246) - (248) yield that for any n,j €
N there exist C), ; < oo such that

|| <8lqclpksﬁ(k7.])¢3(k7 587')) Hoo

ZC”J\/@ <1 + kl (| Sa- — O(k‘z | +k53)7172> ka—n-‘rl )
=0

The sum will now be estimated by n-times the largest summand which however
depends on k.. Hence there exists for any n € N a C,, < oo such that
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sup | o7k, 7 (k,52,) oo

<cm(1+( (s ak? [ ) (K (s — ak? [ +49)77))

With (245) it follows that for any n,j € Ny there exist C), ; < oo such that

_ EN\" PO
sup || k 2(8k_k) ok, j)¢7 (K, se, ) |l

k:>k’a7';7\67?,5

| S. |ch]k 2”sup (I'sc — ak® | +k%) 7"

7=0

VTSI Gk sup (1 (15— ak? | +87) 7).
j=0

k>ke

Note that the supremum supy., (| s. — ak® | +k%)"" is realized at the reso-
nance ak =~ s.. Hence there exists a constant C' < oo such that

_ _ 3
sup (| s. — ak® | +k°) ' < sup (] s — ak® | +k%) < osl?
k<2ke keR3

It follows that

sup || k2
k>k‘e7ﬁERS

B,
0L ) R ) s 1

n

\/T (1+k n -3 k;2n+2j8;3—%j) ‘

As above the sum will be estimated by n-times the largest summand which
again depends on k.. Using that 1 < s. 2" (243) follows.

g

Lemma 8.7 Let ¢! be defined as above (see (218)), K¢ = e~*. Then there
exists a C' > 0 such that

| Fu(wipx. < Ce?

and
| Fu(ATH p. || < Ce?

for all w,s > 0.
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Proof of Lemma 8.7

We first show, that the energy of 15! is bounded uniform in ¢ > 0 and s > 0.
Let B be either 1 or A. We have that

Os(BYS, DBYSYy = (B (04°"), DyBYS') 4+ (BYSt, (0,Dy) ByS)
+(BySt, D,BOaS)

- <B§Ds¢:ﬁl, DyBySY) + (BySt, (9,D,) BySt)

+H(BYSt, D,BED )
g

(B ?17 (0sDs) B¢?1>
= (BYY' (0sp(s)A) , Byt
< C AL ds0(s)

Hence observing @Z)S’l = ¢° and Dypy = maog

(Bt DBUst) < C |l A (p(s) = 9(0) + (Bo", DoBo)
< Cl A (p(s) = 9(0) + (Be*, DoB(1 = p_y, )é)
= ClIA % (9(s) = 9(0) + (B*, B <1—pm>Do¢o>
(B ¥ (B~ p_y,)) é0)
= CIAI (o(s) = 9(0) +m | A % (%, 6°)
+(Bo", V(B0 = p_g,)) 00) -

Since Dy — Dy, = (¢(s) — ¢(w))A it follows that

(B, DuBUs') | < | (BUS () — pw) A, BUs") | + | A I (¢(s) = 2(0))
s | A% (6%, 6°) + (B, Y (B(L=p_y,)) o)

£

Noting that

V(1= p_gy) lloe= 0 || V(1 = p) llso ,

and that || VA ||oc< 0o we have that
| (B> D,,, BY2') |< C fore < 1 and for all s,w .

90



We calculate the scalar product on the left hand side in generalized Fourier

space using that E, = vm? + k% > k

C'> (BUS' Dy, BUS') = / Fu(BU) (k. §) ExFo( BUs ) (K, )dk
> / pic. () Fu(BUY) (k. ) Bupre, () Fo(BUS) (k, )dk

> K [ o (0Fu(BU) K o (0 F (B e )k
= K|l pr. Fu(BYIY) |1
Hence €72 || px.Fuw(BYS) || is bounded and Lemma 8.7 follows.

i

We shall now provide an estimate, how long the wave function ! will stay
in the range of the potential. That time is roughly of the order of s = g5 (see
below). For times larger than s = £379 the part of the wave function which is
affected by the potential goes to zero with ¢ — 0. Note that we establish the
estimate (249) only for times s < 5. But this suffices already to establish the
main result since for times larger than s the potential has no more influence on
the motion of the wave function, i.e. it evolves freely and thus behaves like a
scattering state going off to infinity.

Lemma 8.8 Let 5! be given by (214), K = &4, 5 as in Corollary 8.1. Then
there ezists a C' > 0 such that

[ 15,050 | < min{l,Cs 3es )} (249)

forall0 < s <s.

Proof of Lemma 8.8
We shall use that

Msax | < sy I=VISal [Tl for y € L™ (250
Fsax | < sy lloo X NI=lEx Il for x € L7 (251)

By (213), (214) and the unitarity of U® - that
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I s, IS ost <1 (252)

Since for s < 2¢3 and & small enough s~3c6 om0 > 1 the difficult part is to
show that (249) holds for s > 2¢3.

Let 5> s > 2¢5. Using (208) with s. = s and

Dy = Dy = Do + p(w)A = (Do + ¢(s)) = (p(w) — ¢(s)) (253)

we have that

1SA¢§’1 = 15,4‘/36(870)¢6
il / VE(s, w)(p(w) — p(s) AUS (R)dw . (254)
0

Now

15, V(5,000 | < [ 16, Vi (5,0)(1 = p. , F(97) |
+ [ 15, Vi (5, 0)(1 = pr ) o . Fs(¢°) |l
+ [ 15,V (s, 0)pr. Fo(97 )

We use (250) and (251),the unitarity of VE and the isometry in ordinary and
generalized momentum space (see Corollary 8.1 (b)) to obtain

15,V (5,000 | < C V(5,001 = pre  Fs(0°) oo
+C [V (5,0)(1 = prpre o Fs(0°) lloo + [ pr.Fs(67) ||
= C [ Vi(s0)(1 = pr. Fs(07) llo
+C [V (5,0)(1 = prc)pre o Fo(0°) lloo + [ . Fs(6°) ]

Now we use Lemma 8.6 (a) (setting s. = s, k. = kes, u = s and ¥ = (1 —

pks)%) on the first, Lemma 8.6 (b) (setting s. = s, k. = k.5, u = s and
X = pr. (k) (1—pk.(k)) %) on the second and Lemma 8.7 on the third summand.

Hence there exists for any n € N a (), < oo and a C' < oo such that

|15, V(5,000 | < C sup ((\s—ak2!+k3)‘2) VI T |KL,

k<2ke,s
e 3
3 -3 —2n —5n 2
+C,KZ2\/| T: |_S"S </<6’S + 572 ) +Ce”
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where we recall (c.f.(213)) that 7; is the support of ¢e.
We now choose

4999 1

Kes = £10000572 (255)
so that
5
— = o (256)
sk2,
and for s > 23
€ 3 5512
So7h = es573 < 273ct < cTOOm (257)
s
2, = etoms s, (258)

Hence there exists a C' < oo such that

inf <| s — arl, | +5%> > Cs (259)

k<22 g

It follows that there exists for any n € N a C,, < oo and a C' < oo such that

|16, VE(5,000° | < Cs 3| T2 12, + CuK3\/| T2 [s 2emoom™ 4 Ce? .

Choosing n large enough the second term decays faster than any polynomial
in e. Using (216) noting that /| 7. | <| T¢ | for small enough € we can find a
C < oo such that

H 13,4‘/35(87 O)¢€ ”S 037%57 108006% = 037%5}3883 (260)

Next we estimate the second summand in (254). Below we will introduce the
Ke s—y-cutoff. For w — s K. s_,, goes to infinity. So to keep the k. ;_,, cutoff small
we use the above estimate only for sufficiently large s —w and handle s —w < o,
for some o. which will be specified later separately. Hence we split

Is, / V(s 0) (p(w) — p(s))e AU (x)dw
< f 1 182V (s, w) (0(w) — () AU || duw

e / LV (s, w0) (0 (w) — o(5)) AYS! || duo
=S+ 8, . (261)
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For S; we have using (251), (6) and (252)

5 < / | VE (s, w)e (o) — o)) AYS! || duw
- /H o(s) Aus | du
< o / | A llsell (o) — () L5 | duw

< Ce /( ) | 1,950 || dw

< C’e_l/ (s —w)dw = %5_1(3 —0.)? (262)

S, < o / | LsaVE(s,0)(1 = pic ) () — p(5) FulAus)) | dus

e o s, Vi (swprce (p(w)=2(9) 7 (Ayst) || dw

e [TV )1 = ) = () (A5 | d
= 53 + S4 + SS . (263)

For S3 we have by (250)

VISale™ ) 1V (s, 0)(1 = P )P (P(w) — 0(8)) Fo(AUG) oo duw

0
Applying Lemma 8.6 (b) (choosing k. = Kesw, Se = 8, u = s — w and

X=01=pr.)ps.._ wf”i‘zf’f”)) there exists a C' < oo so that

_ Oe En —
Sy < Ce 1/ (so(w)—cp(S))Can\/mWs ’
0
(2, +s78) | Avs! | du

Now we choose . such that this integral decays faster than any polynomial in
g, i.e. setting

9998 _ 3
Og = 8§ — €100005™ 2 (264)

we get for w < o,
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9998 3 3 S —w
9998 3 -3 _ -2
§—w > egl0s 2 = 52 < g = H_, L, (265)
£10000

So there exists a C' < oo such that

Sy < 06‘1/0%(90(?0)—w(S))CnKS\/W(;QH)nS_?’~

(5 - w)"ie,

&, — cmm (see (256)) it follows that the integrand of S; decays

(s_w)ﬁs,sfw

Since

faster than any polynomial in € and all w < o, hence there exists a C' < oo such
that

Sy < Ce . (266)
Furthermore (264) yields that
S < %sfogogoﬁos—?’ (267)

Next we estimate Sy (see (263)). Using (250) and unitarity of VF we have

S < o / T VE(s.0) i (plw0) — 9(3)) Ful A || duw
< / N o () — 9() Fo(AYSY) || do

Lemma 8.7 yields that there exists a C' < oo such that

Sy

IA

C=! / " (p(s) — plw))duw
Ce | (268)

IN

For S5 by (250)

Ss < V| Sale™ /an 1V (s, w) (1 = pre ) (p(w) = () Fa(Avg) [loo duw

and using (6) (| dsp(s) |< C, hence | p(w) — p(s) |< C(w — s))

S, < C=t / (s —w) | VE(s,w)(1 = por . NFo (A [l do
0
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Applying Lemma 8.6 (a) (with s, = s, k. = k.5, u = s —w and ¥ = (1 —

Fo(AyYh)
Pres—w T aps]

), there exists a C' < oo, such that

S, < Ck—{é (s — w) || Avs! |

sup s — ak? | +k3) 7 Sa k2. dw
(( | [Salkta,

k<2/€5,s—w
With (256) it follows that

K2 LLs—w<s,

€,8—w

hence there exists a C' < oo such that

. 3
inf (|S—Oé/£§s|+82>>08.
k<2k? ’

This and (253) yield that

S; < C’s_l/ 6(3 —w) || AYst || s72K2,_ dw
0

£,5—w
7 el || -2 097 _1
= C | AS™ || s™“e10000 (s — w) ™ 2dw
005 4997 1
< 0 [ st |5 W s - w) e
0

Summarizing (254), (260) - (263), (267) - (268) we get that there exists a
C' < oo such that for all 2e3 <s<3s

7 14994 9996
| 1s,05 | < Cs™zetoon + Ceioonos >

_o 4997

-H?/ | 1,05 || 520 (s — w)~ddw .
0

1 7 14994 1oy 5 9994 o 9994
For s > 2¢5 we have that s~ 21000 = (s72£2)s 31000 < s 310000, Hence

there exists a C' < oo such that

S
|u&@H|scw%%%+c/|u&%ﬂm*ﬁ%@—wr%w@w>
0
Furthermore || ¢! [|< 1, so
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9994 4997 1
15,41#?1 || < (10000 5~ -|-C’/ 270000 S—w) 2 dw

9994 49 1
= (Cgioons 3 + 205~ gmooo[(s —’LU)Q]S
9994 4997
= (Cgioons 3 + 205 3 £ 10000
. 1
Observing that s > 2¢3 we have
9994 4 3 1 _3 4994 3 4994
£10000 870 = § 228 270000 < § 2 £ 10000
and hence
el 4994
| 15,05 | < Csm2e1000 (270)

Once more using (269) yields that

1
3
4997

£
| 1,05 || < Cs 3einm 4 C / | 1s, 05" || s 2emm0m0 (5 — w) ™2 dw
0

S
+0/ | 1s, 005" || s 21000 (5 — w) "2 duw .

1
3

Inserting (252) into the second, (270) into the third summand yields

m
ol

4997

H 1SA¢§71 H = 08%8_3 + O/ s~ 810000 (3 — w)_%dw
0
S
+C/ 5*25%(5 _ w>7%w7%€140909070dw
&€

1
3

Note that w < 3 and s > 255, hence s —w > 7. Hence

W=
[

5 4997

e e
4997 1 _1 _5
/ 3_2510000 (3 — w)_2dw < 2728 2£70000 / dw
0 0

_1 5 4997 1
= 2728 2g70000 "3

It follows that
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g1 9994 5 4997 1 9991 13
H s, ws H < (100005~ 3 4 Cs 2g10000 73 4 (s~ 210000 2w 2 dw
€

m|c, W—‘

9994 4997 1 9991 3
— ('e10000 g3 +Cs™ 2510000"’3 +(Cs™ 510000/ 2w 2dw

CAJ\»—A

Using that

:NI
W
|
S
gH
.
S
IN
=
%\
n\
S
&w
S
VAN
~
e
e
(“ﬂ‘
[N

and

<

wﬁ
@
|
S
I
g
N
QU
g
51w
~—
ol
wlm\
—~ @
»
|
S
~~
QU
g
AN
[\
[N]
V)
L

it follows that there exists a C < oo such that

4997 5 5__ 9

el 9994 41
H 13A¢s H < Cleioooo s 3 4+ COs™ 2510000 3 + (C's 26 10000
_|_CS*351710000

For s > €3 we have that

9994 _ g -1 1, 4 5 5__1_ 5 5__1_
£10000 § = § 2£67100008 26 1000 < § 2£6 1000
5 4907 1 T 7§ 5__1 5 5__1

S 2£10000 73 = 1000 2£6 1000 < § 2£6 1000
_3 1- _1 1 _5 5__1_ _5 5__1_

s °¢ 10000 S 2£68 26 1000 < § 2£6 1000

and (249) and thus Lemma 8.8 follows.

Proof of Lemma 8.5 (a)

We need to show that
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hm< sz, ¢0>

E—>

Using (227) and (224) we have that

Z;SQ = V;‘s<5m2a 55) 2= Vsi (5m27 0)¢€71 +i/ Vsi (3m27w)C§;’1<X)dw .
0

Note that by construction Efuvl(k,j) € pr.(1 — pr.)Rs, (see (220)) and (}5’571 =

Pr. (1 — pr. ) Fs(6°) (see (223)). Hence by Lemma 8.6 (c¢) (with y = ”gf_fzg ;” and

X =|| ¢° ||) we get as above that

1455, e < CuRIVIT st (ke 45 7) (271)

m2

Se n 3
K38 [— s (k2 + 522" ) dw (272
+/O Cr € |SA|(Sm2—w)”SE<E +s > w(7)

) 4, 1 1
Furthermore since k. = es 100 and s. = e300 (c.f. Lemma 8.5
€ 1>

_3
© <k;2 + 50 ) < Cev—im

Sm2 — Se

By choosing n large enough

lim || 957, [loe= 0,

and hence

hm< 27 ¢0>

Proof of Lemma 8.5 (b) for [ =1

Using unitarity of U® we get in view of (214), (203) and (215)

lim || ¥5,,, = ¥5,,

~ i 6~ do |

. 1
lim [ 75, ||
e—0

With (213), (221) and (211) it follows that since ¢ € L?
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I
hn% I o1~ 1

tim [ 755 |

IN

,m%m) =

Proof of Lemma 8.5 (b) for | =2

Using (226) and the unitarity of the propagators U® and V,_ we get that

o2 | < I (6 — ) | + / I — ¢t | dw.

Using (223) and (220) we have that

2 | < 13 (1= pel—p) |
#1180 ) I de
< IFA-p) |+ Tl
F[TIG 0= s [ G

Using Lemma 8.6 (a)(with x = 3 5”) on the first summand and (with y = e ”)
on the third summand and Lemma 8.7 on the second and the fourth summand
it follows that there exists a C' < oo such that

Iz < C s (15— ok |47 ) VT IR | 67 ) CF°
+c/s€ |Gl sup ((| —ak?| +k3)_1> VT8 k2 dw
+0 [ (pts) = plu)ed.

Using (217) and (6)

I¢o lI< Clse —w)e™ || s, || -

Furthermore we have that k% < s., hence there exists a C' < oo such that
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sup . —ak? | +K%) ") < st
(( | :

k<2ke
and it follows that

1052, | < CsZ'| T2 [k2 || ¢° || +Ce®
+C’/ (5 —w)e ™t || 15,05 || sc /| Sa k2 dw
0
+C’/ (p(se) — p(w))edw .
0

Note that || ¢o ||= 1, hence with (251) || ¢° ||< 1, so

e—0

Se 3
iy (|2, | = tmC [ (s = w)et 16,05 | 5V Sa R
E—> 0
—1—1111%0/ (p(se) — p(w))edw
E— 0

Se 3
= limC/ (e —w)gil | 1s, 95 || 8;1\/‘ Sa |k2dw .
0

e—0

Next we split the integration and apply on the first integral || 15,75, ||< 1 and
on the second integral Lemma 8.8

ol

e—0

© 3
fi |2, | =l [ (s - w)e s Sa
0

Se 5
. _5 __1 _ 1 _ 5
+1H%C/1 (sg—w)w 2 £ 1000 68811/‘814 |l€§dw
e— 1
g3
1
. €? 1 3 . 3 1 1 3
< lim C o /{ngw—i—llmC[—w*ig*moo*EI{;g]si
e—0 0 e—0 €3
. _2,3 . 1 118
< limCe 3k +1limCe 2 000 6k2 .
e—0 e—0

2 3 3
€7 3k2 = 2000
and
1 1 1.3 1
€727 1000 6 k2 = £2000 ,



hence

. ’2 _
lim || 757, [|= 0

and Lemma 8.5 (b) follows for | = 2.
Proof of Lemma 8.5 (b) for | =3

Using (229) we have

77;32 = z’gl/ UE(smg,w)(Dw—DSS)V;(w,sg)w;fdw

sg—i—s%
= 4t / UE(SmQ, w)(Dw — DSE)V:; (w7 Se)wifdw

+z’51/ U (sm2,w)(Dy — Dy Ve (w, 52)005 2 dw
Se+e10

= Sl —|—SQ

(273)

For S; we can write (doing the last steps in section ”3. Step” backwards)

Sl — wE,Q N _¢€,3

1
Se+e10 Se+e10

Using the definition of ¢%3 (see (227)) yields in view of (224) that

73 L
?f = ‘/tgi (35 + €10, SEWE;Q

Se+el

g~

V(s 4 e,0)65 + i / VE (5. + e, w)C5! (x)duw
0

Hence with (224)

55+51% 1
Si—i / VE (50 + e, w)C5 (x)duw .

and hence (by unitarity of V7)

1

Se+e10
| 5, ||§/ IG5t || duw
Se

Using (220), (217) and Lemma 8.8 we have that
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It I = N e (0= pr ) Fu(Go) I G |l
= || ((se) — p(w))e A [ C |l w = s. | w2 s T

This in (274) yields that

1

Se+€10 5 . )
[ Si] < C/ (w— s.)w 2”6 W000dw
Se
< Ceto(et)sste b mom |

. 1
Since s, = £2000

| Sy ||< Cemnmm

hence

lim || Sy [|=0. (275)

It is left to estimate Sy. We write using (227), the triangle inequality and the
unitarity of U®

18] < & / | U (5,w) (D — Do | duw

e+€10

=t [ el = els)) | AV | du (276)

c+el0

< o / (o) — (s ) | AN 5 e dw  (277)

5+€m

To control this we estimate || Y52 || .
We write using (227) and (224)

U5 = VE(s,0)6% 4 / VE (5, w)C3 () dus
0

Using Lemma 8.6 (b) (with y = %) on the first summand and (with y = ||§§“||)
on the second summand yields
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€ € en _ —om _3n
105 e < Coll 6 | BOVTT T (k% 4 5227)
Se on e
+Cu [ G VTS s (ke 5
0

w)n €
Note that
1 1
I3 £97 500 1 1
= < £90 500
(s—uwk? s—u

3

for any u < s, and s > s, + 6 and that k-2 > s. 2. Hence

1957 o

decays for all s > s. + e1o faster than any polynomial in ¢.
In view of (276) it follows that

lim || Sz [|= 0. (278)
This and (275) yield the Lemma.
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