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Abstract

Noncommutative (deformed, quantum) spaces are deformations of the usual commutative
space-time. They depend on parameters, such that for certain values of parameters they
become the usual space-time. The symmetry acting on them is given in terms of a deformed
quantum group symmetry. In this work we discuss two special examples, the #-deformed
space and the k-deformed space.

In the case of the #-deformed space we construct a deformed theory of gravity. In the
first step the deformed diffeomorphism symmetry is introduced. It is given in terms of the
Hopf algebra of deformed diffeomorphisms. The algebra structure is unchanged (as com-
pared to the commutative diffecomorphism symmetry), but the comultiplication changes. In
the commutative limit we obtain the Hopf algebra of undeformed diffeomorphisms. Based
on this deformed symmetry a covariant tensor calculus is constructed and concepts such as
metric, covariant derivative, curvature and torsion are defined. An action that is invariant
under the deformed diffeomorphisms is constructed. In the zeroth order in the deformation
parameter it reduces to the commutative Einstein-Hilbert action while in higher orders cor-
rection terms appear. They are given in terms of the commutative fields (metric, vierbein)
and the deformation parameter enters as the coupling constant. One special example of this
deformed symmetry, the 6-deformed global Poincaré symmetry, is also discussed.

In the case of the x-deformed space our aim is the construction of noncommutative
gauge theories. Starting from the algebraic definition of the x-deformed space, derivatives
and the deformed Lorentz generators are introduced. Choosing one particular set of deriva-
tives, the k-Poincaré Hopf algebra is defined. The algebraic setting is then mapped to the
space of commuting coordinates. In the next step, using the enveloping algebra approach
and the Seiberg-Witten map, a general nonabelian gauge theory on this deformed space is
constructed. As a consequence of the deformed Leibniz rules for the derivatives used in
the construction, the gauge field is derivative-valued. As in the 6-deformed case, in the
zeroth order of the deformation parameter the theory reduces to its commutative analog
and the higher order corrections are given in terms of the usual (commutative) fields. In
this way the field content of the theory is unchanged, but new interactions appear. The
deformation parameter takes the role of the coupling constant. For the special case of U(1)
gauge theory the action for the gauge field coupled to fermionic matter is formulated and
the equations of motion and the conserved current(s) are calculated. The ambiguities in the
Seiberg-Witten map are discussed and partially fixed, and an effective action (up to first
order in the deformation parameter) which is invariant under the usual Poincaré symmetry
is obtained.






Acknowledgements

I would like to thank Professor Julius Wess for many things, first of all for letting me join his
group in autumn 2002. I am grateful to him for not referring me to a book or a paper to read
and learn form, but including me in discussions form the very beginning and in that way
making it possible to learn directly from him and his enormous knowledge and experience.
For interesting discussions, for ideas, comments, critics and for his patience, thanks. Also,
he is "responsible” for providing the financial support from the Max-Plank Institute during
my staying in Munich.

Many thanks to the whole group for accepting me the way I am and for including me in
the group from the very beginning. Specially, I would like to thank the people with whom I
worked most of the time and from whom I learnt very much. Thanks to Larisa Jonke, Frank
Meyer, Lutz Moller and Efrossini Tsouchnika for making the work more understandable,
less difficult and very often fun. Also, I thank them and Claudia Jambor for all their help
concerning (not-so)ordinary life in Munich. Parts of the work presented here were done
together with Paolo Aschieri, Christian Blohmann, Peter Schupp and Michael Wohlgenannt
and I thank them for the fruitful collaboration.

To Wolfgang Behr, Maja Buri¢, Larisa Jonke and Frank Meyer I am grateful for reading
some parts (or the whole) of this manuscript and for their comments concerning both physics
and English.

All the words I can think of (in Serbian as well) would not be enough to express my
gratitude to my parents Milica and Zivorad Dimitrijevi¢ and my sister Aleksandra Dimitri-
jevi¢. Their love, support and encouragements made this work possible.

Finally, I would like to thank all my friends in Serbia. Specially, to Slavica Maleti¢,
Katarina and Andrija Mati¢, Zorica Pajovi¢ and Novica Paunovi¢ many thanks for their
support and for all the emails they wrote during this three years.






Contents

[ntroduction
1 Noncommutative spaced

(L1 Definition . . . . . . . . .




vi

Contents

|5  Gravity on the #-deformed spaced 67
5.1 Commutative diffeomorphismd . . . . . . . . .. 67
5.2 Deformed diffeomorphismd . . . . . ... 70

5.2.1  Inversion of the «=produel . . . . . . . . ... ... ... ... ... 70
5.2.2__Hopf algebra of deformed diffeomorphismd . . . . . . . . .. ... .. 72
5.2.3 _Consequences of the deformed coproductl . . . . . .. ... ... ... 75
B3 Tensor caleulud . . . . . ... 76
Bal Feldd .. ... 76
32 Metrictensad . . . ... .. 77
5.4 Cuorvature and torsiol . . . . .. .o 78
541  Covariant derivativd . . . . . ... 79
|5.4.2  Curvature tensor. Ricci tensor and scalar curvaturd . . . . . . . . . . 80
5.5 Deformed Einstein-Hilbert actionl . . . . . . . . ... oo 81
b.6  Equations of motionl . . . . . .. 83
[5.7  Expansion in the deformation parameted . . . . . . . . . . . .. . ... ... 85
5.8 The f-deformed Poincaré aleebra . . . . . . o . oo 86
5.9 _Noncommutative gauge theory, revisited . . . . . . . .. ..., 89

IA_Vector fields in the s-deformed spacd 95

[B_The s-deformed symmetry from the inversion of the x-product 99

IC_The general s-deformed spacd 103
IC1 Derivatived . . . . ... 103
IC.2 Deformed symmetrst . . . ... 104
IC.3_Dirac derivative, invariantd . . . . . . . ... ... 105
lCa Fieldd . .. 106

Bibl - 109



Introduction

Since the formulations of General Relativity [I] (GR) and Quantum Field Theory (QFT) [2],
[3] in the early decades of the last century, the nature of space-time at small distances has
become one of the fundamental problems in physics. The first idea of a discrete space-time
was formulated by Heisenberg [4]. His motivation was the regularisation of the divergent
electron self-energy. However, he soon gave up this idea, regarding it as too radical. In the
attempt to eliminate the ultra-violet (UV) divergences in QFT, Snyder [5] in 1947 proposed
a way to obtain a discrete space-time replacing the usual coordinates by the operators satis-
fying nontrivial commutation relations. This was the first time that noncommutative spaces
appeared in physics.

However, Snyder’s idea was not accepted at that time. Omne reason was that the
renormalisation theory came out to be very successful in eliminating the divergences in
QFT. The second reason was the mathematical complexity of noncommutative spaces. It
took some time until the mathematical structure was formulated and the first physical models
were derived [6], [7], [S].

The mathematical structure of noncommutative spaces became more clear in the eight-
ies and the nineties of the last century. One of the main results was the Gel'fand-Naimark
theorem [9]. It basically states that it is possible to describe a manifold by (an appropriately
restricted) algebra of functions on the manifold. The space behind can be ignored com-
pletely since all the important informations are now contained in the algebra of functions.
This theorem can be generalised in different ways. For example, the algebra of functions
does not have to be commutative, it can be a deformation of the commutative one. If the
deformation is continuous, then there exists a set of continuous parameters that control the
noncommutativity. The usual commutative space-time (manifold) is obtained for special
values of these parameters. The deformed algebra of functions is not the algebra of func-
tions on a manifold but on a "noncommutative space”. The main notion that is lost in this
generalisation is that of a point, "noncommutative geometry is pointless geometry”.

The deformation quantisation [10], [T1], [I2] provides a setting for connecting deformed
and undeformed spaces. It allows one to describe the properties of a noncommutative space
in a perturbative way, order by order in the deformation parameter. In the zeroth order
the commutative space-time is obtained. The main idea of the deformation quantisation
is to represent a noncommutative space on the space of commuting coordinates. Then the
noncommutative multiplication of two functions is given in terms of the x-product of the
functions, which is defined as a formal power series of bidifferential operators acting on the
functions.

Another important concept in the noncommutative geometry is that of Hopf algebras
[T3] and quantum groups [14], [T5]. Generalising manifolds to noncommutative spaces one
looses the usual space-time symmetries (Lorentz, Poincaré,. .. ). However, is some cases there



2 Introduction

exists a deformed symmetry acting on a noncommutative space and it is given in terms of a
deformed Hopf algebra [T6], [I7]. This enables one to discuss symmetries of noncommutative
spaces.

But not only the mathematical structure of noncommutative spaces became clearer in
the last years. Some recent important physical results and observations renewed the interest
for the noncommutative geometry. In the following we name some of them. For the proper
list of examples and motivation see for example [18], [19], [20].

We start with one classical effect. Consider an electron moving in a homogeneous and
constant magnetic field B*”. In the limit of strong magnetic field and small electron mass
(restriction to the lowest Landau level), the classical Poisson bracket is

(Bfl);w '

{2} = {0} =

We see that in this limit, coordinates perpendicular to the magnetic field do not commute.
This ideas are relevant for the theory of the quantum Hall effect [21], [22].

Another motivation comes from the attempts to construct a quantum theory of gravity.
It is believed that the space-time must change its nature at distances comparable to the
Planck scale. From GR and QFT we know that an object with a given energy E has
two lengths associated with it. One is the Compton wavelength, \ = % and the other
one is its Schwarzschild radius Ry = Gy E. As the energy E grows, the point is reached
when the Schwarzschild radius becomes bigger than the Compton wavelength. At this point
our standard knowledge of QFT does not apply anymore. Also, measuring positions to
better accuracies than the Plank length is not possible, since the energy required for such a
measurement modifies the geometry at this scales [23].

A very strong argument in favour of noncommutative theories came recently from the
string theory [24], [25], [26]. In [26] it was shown that a noncommutative field theory is
obtained in a particular limit of the open string theory on D-brane backgrounds in the
presence of a constant NS-NS B-field. The end points of open strings behave as electric
charges in the presence of an external magnetic field B,,,, which results in a polarisation of
the open strings. Seiberg and Witten proposed a low-energy limit (different than the usual
one) in which the separation between the string endpoints becomes

AX' = 09G .

Here G is the open string metric, p’ is the momentum of the string and the indexi =1,...,p
labels the D-branes directions. This limit makes the string rigid, of the finite length which
depends on the momentum. The resulting low-energy effective theory is a noncommutative
field theory, the constant parameter 0 = (B~!)¥ measures the noncommutativity. This sug-
gests that certain properties of string theories could be obtained studying simpler (compared
with the string theory) noncommutative field theories.

Finally, the original motivation of Heisenberg and Snyder was revisited in the last
years. Namely, using the methods of the deformation quantisation we learned how to for-
mulate noncommutative field theories. It is possible to write down the action and calculate
the Feynman rules for certain noncommutative field theories. Then one calculates the di-
vergences and compares them with the divergences in the corresponding commutative field
theory. In the case of scalar ¢? f-deformed field theory [19], due to the noncommutativity (&
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is the constant deformation parameter which controls noncommutativity) both planar and
nonplanar diagrams are relevant. The UV behaviour of the planar diagrams is the same as
in the corresponding commutative theory, so noncommutativity does not change (improve)
anything there. In the case of nonplanar diagrams, the ultra-violet/infra-red (UV/IR) mix-
ing appears [27], [28]. Namely, one-loop diagrams turn out to be finite for arbitrary values
of the external momenta p*. However, in the limit p* — 0 divergences reappear. This can
be interpreted as a mixing between UV and IR divergences; noncommutativity (6% # 0)
replaces the UV divergences with the p# — 0 IR divergences. Also, the commutative limit
0% — 0 is not smooth. From all this it is obvious that the noncommutativity does not solve
the problem of divergences in QFT, but it rather introduces some new effects.

The aim of this thesis is to formulate (gauge) field theories on noncommutative spaces,
such that they are consistent with the deformed symmetry of the space in question. We
study two special examples, the §-deformed space [24], [25] and the k-deformed space [29],
[30]. The general strategy is to start from an abstract algebra of coordinates which defines
our noncommutative space [31], [32]. The derivatives are then introduced as maps on this
abstract algebra [33], [34]. They cannot be uniquely defined and one has to find arguments to
single out one specific set of them. One way to do this is to construct the deformed symmetry.
In the case of the k-deformed space [35], we recover the r-deformed Poincaré algebra [29],
[30]. In the #-deformed space we construct the deformed diffeomorphism symmetry [36].
Then the 6-deformed global Poincaré symmetry [37], [38], [39], [A0] is the subalgebra (sub
Hopf algebra) of this deformed symmetry.

In the next step, we represent the abstract noncommutative space (together with the
derivatives and the deformed symmetry) on the space of commuting coordinates. This gives
us the playground for construction of the noncommutative (gauge) field theories.

In the case of the r-deformed space we concentrate on the noncommutative SU(N)
theories. Using the enveloping algebra approach and the Seiberg-Witten map [32], 1], the
noncommutative gauge theory is constructed perturbatively order by order in the deforma-
tion parameter. In this way we obtain an effective theory which provides corrections to the
commutative theory up to first order in the deformation parameter. These corrections are
given in terms of the commutative fields, so the field content of the theory is not changed.
However, new interactions arise and the deformation parameter enters as a coupling con-
stant. This approach has been used to construct the noncommutative gauge theory on the
O-deformed space 1], [42], as well as the generalisation of the Standard Model [F3], [#4].
Using these results some new effects which do not appear in the commutative Standard
Model were calculated in [45], [46]. Also, it was shown that the theories obtained in this
perturbative way are anomaly free [47], [48], [49]. It is interesting to note that cutting the
theory at some order in the deformation parameter one avoids the UV /IR mixing. It only
appears in the "summed-up” theories, that is theories to all orders in the deformation pa-
rameter. Also, the ”"summed-up” models allow generalisation of the U(N) gauge theories
only, with some exceptions [50], [B1].

In the #-deformed case we turn to the local space-time symmetries and their (possible)
deformations. It is well known that the gravity can be seen as a gauge theory where the
gauge symmetry is the Poincaré symmetry of the space-time. However, it was not clear if
it is possible to generalise it to the noncommutative spaces in the same way one generalises
the "usual” gauge theories. This problem was analysed in the previous years in [52], [53],
[54] . Here we construct the deformed diffeomorphism symmetry and use it to formulate a
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gravity theory on the #-deformed space [36].

The structure of the thesis is the following: In the first chapter we shortly review the
definition of a noncommutative space in terms of the abstract algebra of coordinates. Then
we discuss derivatives and symmetries introduced as maps on this space. In order to obtain
a theory which gives some predictions (numbers finally) we represent the abstract algebra
formalism on the space of commuting coordinates and introduce the x-product approach.
At the end of the chapter, as an illustration, the described method is applied to one special
example, the #-deformed space.

Chapters 2, 3 and 4 concern the x-deformed space and the formulation of gauge theory
on it. We start with the abstract algebra of coordinates and introduce derivatives and
the k-deformed Poincaré algebra as the deformed symmetry of this space. Aiming at the
construction of the noncommutative gauge theory, we represent everything on the space of
commuting coordinates. The gauge theory is then constructed using the enveloping algebra
approach and the Seiberg-Witten map. The gauge field becomes derivative valued due to
the nontrivial Leibniz rules of the derivatives used in the construction. To define an action
a "good” integral is needed. This problem is shortly discussed in the beginning of Chapter
4. After defining the integral, the U(1) gauge theory is derived. Using the freedom in the
Seiberg-Witten map one obtains the effective action which is explicitly z-independent and
invariant under the commutative Poincaré symmetry. Also, the ambiguity in the conserved
U(1) current is discussed. This work is done in collaboration with Larisa Jonke, Frank
Meyer, Lutz Moller, Efrossini Tsouchnika, Julius Wess and Michael Wohlgenannt and the
results are published in [B5], [55], [B6], [57].

In the last chapter we turn to the problem of defining a gravity theory on noncommu-
tative spaces. We choose to work with the 8-deformed space because of its simplicity. The
starting point is the construction of the Hopf algebra of deformed diffeomorphisms. Using
this result fields and tensor calculus are introduced. Following the same steps as in the com-
mutative case, one constructs covariant derivative, curvature tensor, torsion,.... The final
result is the deformed Einstein-Hilbert action and the equation of motion coming from it.
Expansions of some results up to first order in the deformation parameter are given. Most of
the results presented here are obtained together with Paolo Aschieri, Christian Blohmann,
Frank Meyer, Peter Schupp and Julius Wess and are published in [58], [36].
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Noncommutative spaces

The notion of noncommutative (deformed) spaces is based on the simple idea of replacing
ordinary (commutative) coordinates

[z, 2"] =0, w=0,...n,
with noncommutative operators
@+, 3] # 0.

Since operators 2* do not commute they can not be diagonalised simultaneously, similarly as
in quantum mechanics where operators of coordinates and momenta do not commute. Space-
time is then given by the collection of the eigenvalues of the operators z#. If the spectrum
is discrete then space-time will also be discrete. In the case of commuting coordinates we
obtain a continuous spectrum leading to the continuous space-time we are familiar with.

In this chapter we recall the definition of noncommutative spaces and some of their
properties. Differential calculus as well as the concept of deformed symmetry (in terms
of Hopf algebras) are introduced. We start with the abstract algebra approach, but also
formulate the representation on the space of commuting coordinates, the so-called x-product
representation. In order to illustrate the abstract mathematical formalism, at the end of the
chapter one simple example of a deformed space is presented.

1.1 Definition

Noncommutative (deformed)ﬂ space is generated by n+1 abstract coordinates * which fulfil

&4, 3] = 0" (2),  p=0,...n, (1.1.1)

where ©" (%) is an arbitrary polynomial of coordinates [BY], [38]. More precisely, the non-
commutative space A; is the associative algebra, freely generated by Z* coordinates and

divided by the ideal generated by ([LITI)

[l .., 2]

Ae = Ton -0 (@))

(1.1.2)

1” Noncommutative” and ”deformed” will be used as synonyms from now on, whereas ”classical”, ”unde-
formed” and "usual” will be synonyms for ”commutative”.
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The elements of this space are all possible polynomials in the coordinates z*. If one element
can be transformed into the other one using (LIl then this two elements are considered
equal. Before proceeding further, we clarify the notation we use. Coordinates Z# generate
the abstract algebra Ax, while the operators 0,), a8, - - -are maps of the abstract algebra A;
into itself. Variables without the hat symbol, like x*, 8,,, ... are usual commutative variables.
Sometimes we use A, to denote the space of commuting coordinates]

The defining relation of the deformed space ([LIJ]) is very general since on the right
hand side we have an arbitrary polynomial of coordinates. Usually one consideres some
special examples of it. Among them there are three very important ones

Canonical or #-deformed spaces  [2#,2"] = 0", (1.1.3)
Lie algebra deformed spaces  [i#, #"] = iC}q?, (1.1.4)
g-deformed spaces " = —R", 1P27. (1.1.5)
q
In the case of 6-deformed spaces [24], [25], 0#¥ = —0"* is an antisymmetric constant matrix

of mass dimension —2. For Lie algebra deformed spaces [29], [30], [32], C{" are Lie algebra
structure constants of mass dimension —1. And finally, B* is the dimensionless R-matrix
of the quantum space [60], [61], [62].

This three examples fulfil the Poincaré-Birkoff-Witt (PBW) property. PBW property
has been first developed for Lie algebras [63], but it applies to the other deformed algebras
as well. It states that the finite dimensional vector spaces, spanned by the homogeneous
polynomials of degree r, have the same dimension as the corresponding vector spaces of
commuting variables. In the case of examples ([CI3)-(CTH) PBW property allows us to
introduce a basis of ordered monomials in A;. In the following we always restrict the general
O (%) to one of the three cases (([CI3)-(IH), that is A; denotes canonical, Lie algebra or
g-deformed spaces.

In order to write the elements of A; in a unique way one imposes an ordering prescrip-
tion. There are many possible orderings for a given abstract algebra As. The most oftenly
used ones are the symmetric and the normal ordering.

If we chose the symmetric ordering, the basis in the algebra is given by

okt = ok,
catEy s = — (2t + v at),

(1.1.6)

The vector space spanned by this basis we denote by 1%

=) eV, (1.1.7)

where V, is the vector space spaned by homogeneous polynomials of degree r in the coordi-
nates 7*. The corresponding vector spaces of commuting coordinates we denote by V and V.,

2In the notation of ([CI2) the space of commuting coordinates is the associative algebra freely generated
by the commutative coordinates x*

Ay = Cllz™, ..., z"]).
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respectively. An arbitrary element of A; is then written as an expansion in the basis (CTH)

f(@) = ZCM R
=0
= Co+ Chy i 2" + Oy 2T 0+ (1.1.8)

and it is fully characterised by the expansion coefficients C', .. ,.;. The power series expansion
([CTR) we call the formal power series expansion since we do not say anything about its
convergence.

In the case of normal ordering the ”order” of coordinates is specified. For example, let
2" stand to the furthest left of the expression, then let 2”71 come after it and so on until £°
which then stands on the furthest right. The basis is given by

st =k
sty =3t p >,
(1.1.9)

and every element of A; can be expanded in this basis. Of course, this is not the only
possibility for normal ordering but just an example.

However, multiplying two arbitrary functions f , § € A; gives the result which is no
longer written as an expansion in basis and the elements have to be reordered. For example,
we take the symmetric ordering and multiply two basis elements

st et = ot
1
= 5(:%“;%” + zVat) + = (zHz” — 2VTM)

=@M +%@W(@). (1.1.10)

In the first line we obtain a result which is not written in terms of basis elements, then we
rewrite it differently. Using relations ([LT) in the last line, the result expressed in terms of
basis elements follows. Once again we mention that ©#(z) is restricted to one of the three
examples (CT3)-(CTH) that fulfil PBW property. We come back to this result in Section
1.4 when we consider a representation on the space of commuting coordinates.

1.2 Derivatives

Having defined our framework, we now introduce the concept of derivatives on a deformed
space.
Derivatives are maps of the deformed space into itself [33], [34]

f(@) = (9,))@). (1.2.1)

They are usually defined by the action on the coordinates. This action is extended to the
free algebra of coordinates. To define a map on Aj;, derivatives have to be consistent with
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the defining relations (CTIl). Also, we demand that they are a deformation of the usual
partial derivatives.
Having all this in mind, we make a very general ansatz for the commutator of derivatives
and coordinates
[0, ] = 01+ Y~ AMNG, Dy (1.2.2)

J
J

The coeflicients AZ)‘l"'Aj are complex numbers. Demanding that ([CZ2) is consistent with
the relations ([LTTI) leads to conditions on these coefficients. Ansatz ([CZ32) is not the most
general one, since we do not allow the right hand side of ([LZZ) to depend on coordinates.
However, in all the examples considered here this will be sufficient. Let us just sketch the
idea here. The explicit examples will be given in Sections 1.5 and 2.1. One demands that

ép([w,@"] - z’@W(@)) —0, (1.2.3)

and commutes the derivative 3,, to the furthest right using Ansatz (CZZ). The final result
has to be zero, otherwise new commutation relations on coordinates arise. This gives some
conditions on the coefficients A,”" ", but in most of the cases these conditions are not
sufficient to determine the coefficients uniquely.

Using (CZ2) one calculates the Leibniz rule by applying derivatives on ordered mono-
mials and generalising the result to the product of arbitrary functions. The presence of
nonzero additional terms in ([CZZ) leads to a deformed Leibniz rule

@(f L9) = (0,f) -9+ f - (9,9) + additional terms. (1.2.4)

1.3 Symmetries

The concept of symmetry is very important in physics. Classically, symmetries are described
by Lie groups or Lie algebras and the physical space is the representation space of the sym-
metry algebra. For example, the commutative Minkowski space-time is the representation
space of the Poincaré algebra. Therefore, the question arises if one can introduce deformed
spaces as representation spaces of some symmetry algebras. At first sight it looks as this
will not be possible. If one looks at (LT3), that is the #-deformed space, it is obvious that
the Lorentz invariance is broken since the left-hand side transforms like a tensor while the
right-hand side is constantfl However, it turns out that it is possible to deform the concept
of symmetry such that it can be applied to deformed spaces as well. This is done in the
framework of Hopf algebras [60].

It is well known that the function algebra over a classical Lie group F(G) is a Hopf
algebra. The deformation of this classical function algebra to the respective quantum (de-
formed) group F(G), is well defined. The deformed function algebra F(G), is again a Hopf
algebra and it depends on parameter h. In the limit h — 0 F(G);, reduces to the classical
function algebra F(G). It is very important that this deformation does not lead out of the
category of Hopf algebras. This motivates studying Hopf algebras in more detail.

As mentioned above, the function algebra over a Lie group and the enveloping algebra
of a Lie algebra are examples of Hopf algebras. In general, a Hopf algebra A consists of an

3Note that there are authors who treat 0#¥ as a tensor [64], [65].
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algebra and a coalgebra structure which are compatible with each other. Additionally, there
is a map called antipode which coresponds to the inverse of a group. In the following we
give the precise definition of Hopf algebras.

We start repeating the definition of an algebra and some related concepts. An algebra
(associative algebra with unit) is a vector space A over a field F', with two linear maps,
multiplication or product m: A® A — A and unit n: F — A such that

mo (m®id) = mo (id ® m), (1.3.1)
mo (n®id) =id =mo (id ® n). (1.3.2)

Here id is the identity map on A. If we have two algebras A and B we can define an algebra
homomorphism. It is a F-linear map ¢ : A — B such that ¢(aa’) = ¢(a)p(a’) for all
a,a’ € A and p(14) = 1g. Also, one defines a tensor product algebra A ® B. Its vector
space is the tensor product of vector spaces of A and B and the multiplication is defined by
Maes = (Mg @ mp) o (id ® 7 ® id) where 7 is the so-called flip operator, 7(a ® b) = b ® a,
that is

(a@b)(d @)= ad @bV, a,a € A and bV € B. (1.3.3)

Now we introduce the concept of coalgebra. A coalgebra is defined as a vector space

A over F' with two linear maps, comultiplication or coproduct A : A — A ® A and counit
g: A— F, such that

(A®id)o A = (Id® A)o A, (1.34)
(e®id)oA=id = (id®e¢) o A.

Equation (L3 is referred to as the coassociativity of the comultiplication A and it is
dual to the associativity of the multiplication m ([L3l). In the same way as for algebras,
one defines the coalgebra homomorphism and the tensor product coalgebra. A coalgebra
homomorphism is defined as F-linear map ¢ : A — B, A and B are coalgebras, such that

Agpop=(p@p)oAy, ea=cpogp. (1.3.6)

The tensor product coalgebra A ® B is the coalgebra built on the vector space A ® B with
comultiplication A gg5 = (id ® 7 ® id) o (A4 ® Ag) and counit €405 = €4 ® 5. Coalgebra
is cocommutative if 7o A = A.

If we have an algebra A that is a coalgebra at the same time and if algebra and
coalgebra structures are compatible, we speak about bialgebras. Compatibility is defined in
the following way

A(ad) = A(a)A(d), e(ad)=c(a)e(d), a,d e A A(l)=1x®1, e(1)=1, (1.3.7)

that is the coproduct and counit are algebra homomorphisms.
Finally, to come from a bialgebra to a Hopf algebra we need one additional structure.
It is a linear map called antipode or coinverse S : A — A such that

mo(S®id)oA=noe=mo(id®S)oA. (1.3.8)
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The antipode is an algebra antihomomorphism as well as a coalgebra antihomomorphism,
that is

S(ad') = S(a’)S(a), a,a' € A, S(1)=1, (1.3.9)
AoS=70(S®S)oA, co0S=c. (1.3.10)

To get used to these mathematical concepts we present one example, namely the Hopf
algebra of usual partial derivatives on n 4+ 1 dimensional Minkowski space-time. Although
very simple, it will be useful later when we generalise the concept of derivatives to deformed
spaces. Generators of the algebraE are 0,, p=0,...n and they fulfil

[0,,8,] = 0. (1.3.11)

Multiplication and the unit element are m(9, ® d,) = 0,0, and ) = 1 respectively.
The coalgebra sector is given by comultiplication

A0,) =0,®1+1®0,, (1.3.12)
and counit £(d,) = 0. We calculate

(id®A)oAd, = ([d®A)(0,®1+1®0,)=0,0101+1®(0,81+1®0,)
(A®id)oAd, = (A®id)(0,®1+1®0,) =(0,®1+1®0,) ®1+1®1&®0J,,

and comparing this two lines see that coassociativity ([L34) is fulfilled. From
(e®id) o A(9,) = (e®id) o (0, ®1+1®0,) =0, =id o d,,
(id®e)oA(d,) = ([d®e)o (0, ®1+1®0,) =0, =id o0,

we see that (C3H) is fulfilled as well. The abstract concept of comultiplication encodes the
well known concept of Leibniz rule. For example, from (C312) we have

9p(f9) = (0of)g + [(9pg)- (1.3.13)

Having comultiplication one can always deduce the Leibniz rule. The other way, abstracting
the coproduct from a given Leibniz rule, does not lead to an unique result (in most cases).
This is because the Leibniz rule is representation-dependent, while the comultiplication is
representation-independent and therefore it is a more general concept.

To be able to speak about the bialgebra of derivatives we have to check if

[A(D,), A(0,)] =0 and €(0,0,) = €(0,)e(0y). (1.3.14)
The second relation is obvious. The first one we write explicitly

[A(8,), A(8,)] = A(8,)A(05) = (p = 0)
=(0,141®0,)(0, ®1+1®0,) — (p < 0)
=0,0,®14+0,80,+0, ®0,+1® 0,0, — (p = 0) =0,

4Actually, one is here working with the universal enveloping algebra of 0, derivatives.
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where we used that derivatives commute, that is ((C3I]). Looking at (CL3JI2) we see that
this bialgebra is cocommutative.

Finally, in order to obtain the Hopf algebra of derivatives, we add the antipode S(9,) =
—0, and check if it fulfils (C3F)

mo (S®id)oA(d,) =mo(S®id)o(0,®1+1®0J,)
=m(—0,814+1®0,) =—0,+0,=0=mn0¢(0,).

The second part of (L3H) one proves analogously.

1.4 Representation on the space of commuting coordi-
nates

So far our analysis of deformed spaces was given in terms of the abstract algebra. But we
would like to have a theory which could give some predictions (numbers finally) that might be
experimentally checked. The deformation quantisation provides the way to connect deformed
and undeformed spaces. It allows us to to describe the properties of a noncommutative space
in a perturbative way, order by order in the deformation parameter. In the zeroth order the
commutative space-time is obtained.

The main idea of the deformation quantisation is to represent a noncommutative space
on the space of commuting coordinates. Remember that we consider only the deformed
spaces A; which fulfil PBW property and in which a basis can be introduced. Therefore, we
can map the basis in Aj; to the basis of monomials of commuting coordinates

st - ot

o v R = vt s

This enables us to map an element f (2) of A; to the space of commuting coordinates. We
expand it in terms of basis elements and then map every element to the space of commuting
coordinates

F(2)=Co+ Crp: 8" i + Copy - 33" 1 + . ..
| (1.4.1)
f(x) = CO —+ le’“ —+ CQH,,SL’HSL’V + ...

The function f(z) is a function of commuting coordinates and is a representation of the
abstract function f (). This establishes the isomorphism between the vector space V defined
in (CI7) and the corresponding vector space of commuting coordinates V.

The next step is to extend this vector space isomorphism to an algebra morphism.
To do this one has to map the multiplication in the abstract algebra A; to the space of
commuting coordinates. We start with two elements of A;, f () and g(z). Their product is
an element of A,:

~ A A

f@)§(@) = f-4(2) € As. (1.4.2)
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This element can be expanded in the chosen basis and mapped to the algebra of commuting
variables Alﬁ

f9(2) — frg(z) € A,. (1.4.3)

Its image we label f*g(z) and it defines the star product (x-product) of two functions. The
algebra of noncommuting coordinates A is then isomorphic to the algebra of commuting
variables with the x-product as multiplication.

Before discussing some properties of this product, we give one simple example. In
Section 1.1, using the symmetric ordering, we found that

R Y= i +%@W(@). (1.4.4)

This can be mapped to the space of commuting coordinates

j o | (1.4.5)

ot xx¥ = ata” + %@‘“’(:c).

Also,

caV ot =2t e o xat = oVt — %@“”(az) (1.4.6)

and therefore
[ZH, 2] — [zt * 2¥] = 10M (x). (1.4.7)

Now we come back to some of the properties of *—productsﬁ. A general x-product
is an associative and noncommutative product and can be written as an expansion in the
deformation parameter h

f*g:=Bo(f,g)+hBi(f,g)+hBs(f,g)+...= B(f,g), (1.4.8)

where B = Y, h*By. The bilinear operators By, are not independent, since the condition
for associativity of ([CZY) yields an infinite number of equations quadratic in the B’s. In
addition to associativity, it is useful to require the product to be unital, fx1 = f = 1% f. In
the commutative limit (h — 0) a x-product should reproduce the pointwise multiplication
of functions

Bo(f,9) = (f9)(x) = f(z)g(x). (1.4.9)
The product (CZLF) can be written as

frg=B(f.g)=> KB+ (@) ... 0u )00 - 00.9). (1.4.10)
k=0

5Algebra A, can be also seen as the vector space V equipped with the usual pointwise multiplication.
6Using PBW property is not the only way one can construct x-products, one can use the Weyl quantisation
[66], [31], for example.
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The series in ([CZI0) we regard as the formal power series. The deformation property and
associativity of the x-product imply that

{f.ghe = lin%%(f*g—g*f)

— lim [/ 1 g] = (BI"(2) — BY*(2)) (8,f)(Dh)

h—0 1h

= 0"(2)(9,1)(0v9) (1.4.11)

defines a Poisson bracket. The antisymmetric tensor ©* = ©*(z) in the last line represents
the Poisson structure. The Jacobi identity which this Poisson structure satisfies is expressed
in terms of ©"” as

OM9,0" + O"20,0°" + 070,01 = 0. (1.4.12)

Conversely, given a Poisson tensor ©*”, we can always find a x-product such that ([CZTIT)
holds by the Kontsevich construction [T2]. We mention that for ©#” more general than in the
examples ([LT3)-(CTH), relation (CATZ) might not be fulfilled and then we can not define
a Poison bracket ([CZTT]). To first order, the Kontsevich x-product reads

frg=fo+ S 07(0,1)(0e9) + O), (1413)

and the first order term B of the x-product is proportional to the Poisson bracket. Applied
to coordinates, ((CZAIJ) gives

ih

atx ¥ =tz — 5@““@),
that is
[zh % 2¥] = ih©O" (x)

which is exactly ([CZT). In the next section we give one concrete example of the x-product
for the #-deformed space.

So far we have learned how to map functions from the abstract algebra to the space
of commuting coordinates and how to multiply them. But this is not enough to formulate
a field theory on a deformed spaceﬂ. One has also to learn how to map derivatives éu from
the abstract algebra A; to the space of the commuting coordinates.

The principle how to do it is given by the following diagram

a# laz (1.4.14)

"In Section 1.1 we defined deformed space in terms of the abstract algebra. In this section we represent it
on the space of commuting coordinates, and this representation we also call deformed space. It is the usual
commutative space, equipped with a x-product, x-derivatives,. ...
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In words, applying éu to a function f () in A gives a new function (é f )(2). This function,
as well as f (), can be mapped to the space of commuting coordinates. The images we
call (9  f)(x) and f(x) respectively. From this two results one "reads off” the operator
0. In practice, one applies &L on symmetrised polynomials (if the ordering in A, is chosen
to be symmetric one) using (LZZ) and finds a perturbative expression for 9. This result
is then generalised to a closed formula when possible. The same procedure can be used to
find x-representations of other operators defined in the abstract algebra (like generators of
deformed symmetries, see Section 2.6).

1.5 An example, the #-deformed space

In this section we present one special example, the #-deformed space defined by relation
(CT3). Compared to the other examples of deformed spaces, this is a very simple deforma-
tion since the right-hand side of (LI3) does not depend on the coordinates z#. Therefore,
some of the properties of the #-deformed space will be simpler compared to the other more
general examples.

As outlined in Section 1.2 we now define derivatives on this space. Since they should
be a deformation of the usual derivatives we make the following ansatz

[0, 2] = 84 + f4(0,0). (1.5.1)

Additionally, the derivatives ép are maps of the #-deformed space into itself. Therefore, the
relation (L)) has to be consistent with ([LI3)). We obtain

Opia” = ([0, 2] + 0,)2"

= (3 + (0, )):% + &[0, 8] + 2" 0))
(8 + f4(D,0))2" +2"(5, + f(0,6) +
Dpvit = ...

= (5; + f;(a, 0))z" + i:”(é;; + f,f(a, )+ 2#0,)

+370,),

and A R
0,0 = 0" 0,.

Adding these three terms together we see that
9, ([, &) — i0™) = ([a",2"] — 0",
is fulfilled for f;f(é, 0) = 0. Therefore,
[0,, 2] = &k, (1.5.2)

In contrast to the expectations, there are no additional terms in ([CLH2). This is due to
the fact that the right hand side of ([LI3)) is constant. In the next chapter we study the
r-deformed space which is an example for a Lie algebra deformation. There it is not possible
to set fﬁ(é, k) = 0 and additional terms arise.



1.5 An example, the f-deformed space 15

One can check that

[0,,0,] =0 (1.5.3)
is consistent with (C52). From ([CR2) the Leibniz rule for derivatives follows,
(19) = (9,3 + 1(9,9). (1.5.4)

It is undeformed, as expected from ([C22). In terms of the comultiplication we have

A),=0,01+1®9,. (1.5.5)

We define the counit £(8,) = 0 and check that (C34) and () are fulfilled. Since this is
the case, we speak about the coalgebra of derivatives.

To be able to define the bialgebra of derivatives, we have to check whether the coproduct

(C2H) is compatible with the algebra of derivatives ([LR3)

[AD,, AD,] = 0, (1.5.6)
and whether o A R
£(0,0,) = €(0,)e(0,). (1.5.7)

It is not difficult to see that both (LHH) and (LCHT) are fulfilled, calculation is the same
as in the example given in Section 1.3, so we have the bialgebra of derivatives. Adding the
antipode S (3,)) = —3,, this becomes the Hopf algebra of derivatives on the -deformed space.

Following the logic of the previous sections one should proceed with the analysis of
the deformed symmetries on this space. However, we postpone this problem until Chapter
5. Instead, we continue our analysis in the x-product representation. Since the #-deformed
space has PBW property, one can map functions from the abstract algebra to the space of
commuting coordinates, one only has to specify the ordering (basis) in A;. We chose the
symmetric ordering.

For the f-deformed space the symmetrically ordered x-product is the Moyal-Weyl -
product [66], [67]

igpo 9 __0

fxg(x) = lime2™ 2797 f(x)g(y) (1.5.8)

r—y

_ i (%)n%mm _gpnon (a,,l N .apnf(x)) (aal ...&,ng(x))-

When applied on coordinates, (CA.8) gives
[zh % V] =i, (1.5.9)

Note that one can start from ([C50) with the x-product given by ([CAF) and formulate a
theory based on this relation, forgeting about the abstract algebra all together.
The *-product ([CAF) respects the usual complex conjugatio

Trg(@ =g+ 7(x) (1.5.10)

80ne can show that all the symmetrically ordered *-products respect the usual complex conjugation.
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and this is the reason why we continue working with it in Chapter 5.
Now we have to introduce the *-representation of the derivatives ([CR2) following the
prescription given in Section 1.4. It is not suprising that

Op = 0y =0, (1.5.11)
and
(@ (fx9) = v (frg) = (T % f) *g+ f* (9 +g)
= (5> f)xg+ [+ (T g). (1.5.12)

In the last line we have introduced a new notation concerning 9 derivatives. In order to
distinguish between derivatives acting on a function and derivative as an operator multiplied
with a function

Oyxf=(0)xf)+ fx0;, (1.5.13)
we introduce a new symbol "> which stands for ”a derivative acting on a function”, that is
oy f= (9, f). (1.5.14)

Obviously, this symbol replaces the usual bracket notation. However, in what follows we will
use both ">” and the bracket notation. Also, for the usual partial derivatives we often omit
the bracket notation when it is not necessary and write

0,f = (9,). (1.5.15)

With (C2F), (C2II) and (CIZ) one has enough (basic) information to formulate field
theories on this space [19], [41], [43].
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The k-deformed space

After the general introduction in the previous chapter we continue with one special example
of noncommutative spaces. In this and in the next two chapters we study the k-deformed
space and formulation of the gauge field theory on it. The reason why the x-deformed space
has been studied in the last years is that there is a quantum group symmetry acting on itfl.
It is the so-called k-Poincaré group. Historically, it was first obtained by Lukierski et al.
[29], [B0] contracting the g-anti-de Sitter Hopf algebra SO,(3,2). The x-Poincaré algebra
was introduced in [68] as a dual symmetry structure to the x-Poincaré group. Then the k-
deformed space is introduced as a module of this algebra. This space plays also an important
role in the Doubly Special Relativity (DSR) theories [69], [70], [7T], which are introduced as
a possible generalisation of Special Relativity.

Here we start from the definition of the x-deformed space in terms of the abstract
algebra of coordinates. As it was outlined in the previous chapter, we introduce derivatives
and symmetry generators as maps in the abstract algebra and represent obtained results on
the space of commuting coordinates.

2.1 Quantum space and derivatives

Algebraically, the n + 1-dimensional x-deformed space can be introduced [35] as the algebra
freely generated by coordinates z# and divided by the ideal generated by the following

commutation relations:
[i“,i"] = iC’g”iP, (2.1.1)

where
C’;“’ = a(éﬁéz — 57’;55), pw=0,...,n. (2.1.2)

Latin indices denote the undeformed dimensions, n denotes the deformed dimension and
Greek indices refer to all n + 1 dimensions. Indices are raised and lowered by the (formal)
metric " = diag(1,—1,...,—1). We have chosen that the constant deformation vector a*
of length a points in the n-th spacelike direction, a™ = a. Different choices are discussed in
the literature [72], [73]. In Appendix C we analyse the general x-deformed space, imposing
no restriction on the deformation parameter a”. The parameter a is related to the frequently

Tt has been believed until recently that a quantum group symmetry for the #-deformed space does not
exist. Therefore, the k-deformed space has been considered to be one of the simplest examples of possible
deformations of the usual Minkowski space.
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used parameter k as @ = 1/k. Using (Z1.2) the commutation relation (1) is written more
explicitly
(2" 2 =dazt, [2F,2'=0; k,1=0,1,...,n— 1. (2.1.3)
Derivatives are introduced as maps on the abstract algebra of coordinates. One can
start from ansatz (CZ2); demanding the consistency with (Z13) one obtains conditions on
the coeflicients AZ)‘l"'Aj . However, we start here with a less general ansatz

[0, 37) = 6% + i AP0, (2.1.4)

where we supposed that the right hand side is at most linear in derivatives. Looking at the
index structure and from dimensional reasons ansatz (21.4]) can be written in the following
way

00, "] = 1+ iac,0y,

[én, '] mcwlmém = jacyd,

[Aj,:i""] = mc;gé],

[0;,3"] = 6L(1 + iacs0y). (2.1.5)

Then one calculates

(2.1.6)

using (ZT.H). The calculation is the same as in Section 1.5 and it gives the following condi-
tions on the constants ¢;

1st equation: no conditions,

2nd equation: =0V cg—c3—1=0,

3rd equation: co=0V ¢y =0,

4th equation: cg—cs—1=0 A (04 =0Ve—c—1= O). (2.1.7)

Analysing these conditions we obtain three one parameter families of derivatives

(09, 3" = 1 + iac, 0%, [ff,i’]—l—i-zacﬁ?, [0, 3" = 1+ 2iad’®,

05,3 = 0, [ 22737] (0%, 21 = iacs0%!,

05,37 = iad', 0, 3") = m(l +e)df (058" = iad,

(05, 3] = o, [022,3"] = 64(1 +dacd?), (05,3 = dl. (2.1.8)

The constants ¢y, co and c3 remain arbitrary and can not be fixed by the consistency condi-
tion. One can check that derivatives of all three families commute

[69,09=0, i=1,23 (2.1.9)

wo Yy
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In the following sections we work with one specific choice, namely we take ¢; =0

~

[On, 3] = oy,
[0;,2"] = &% — ian™0;, (2.1.10)

where we denoted 351:0 as &L. But it is always possible to map &L derivatives to any other

éfj The explicit maps are given by

iac 5n

b, =g, =l (2.1.11)
p J J " iacy

ém . 602 — 6“10237"—1 éc? = é»echén (2 1 12)
po " iacy I ’ ’ .

. A e2n _ 1 jaey 4 A A

Hes - 5o — 9.0F 0% = 0.. 2.1.13
u n 2ia 2 kO 7 (2.1.13)

Next step is to calculate the Leibniz rule for éu derivatives. Applying éu on ordered
polynomials using (ZTI0) gives

)i (F-3) = (0:f) - g+ (99 f) - (;9), (2.1.14)

or written in terms of coproduct

A, =8, 914+1®0,,
AD; =0, @1+ @0, (2.1.15)

Leibniz rules and coproducts for ¢ derivatives are

O (f-g) = (02 f) - g+ (1 +iciads)f) - 924,
5 (f-9) = (02 f) - g+ ((L+icadi)V* f)- 924, (2.1.16)

G2 (F+9) = (020) -9+ (1L icaad?) ) - 029,
0 (F-9) = (07 F) (1 +icaad)) + (1 +iacdp) /e f) - (92), (2.17)

8 (F- ) = (8% f) - g+ (1 + 2iad® + aczd29™) f) - 92
+iacs((1 + Qiaéfla + QQCgéﬁgécg,m)l/Qélcsf) . 5C31A’
803<f: . g) = (éjchA> . g —+ ((1 —+ 2201323 + a/2csércr:fé(23m>l/2f> . (é]cgg) (2118)
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and

A = 9% @1+ (1 +iciadl) @ I,

AP =07 @1+ (1 +iciads) @ 05, (2.1.19)
AO2 = 2 f

2 ) @ 1+ (1 + icoad?) @ 92,
2 @ (1+ ic2a02?) + (1 +iacsd?) Ve @ 02, (2.1.20)

o
AI® = 9% @1+ (1 + 2iad® + a’c;929%™) @ &%

+iacs(1 + 2iad% + a?e;d2 93 ™) V25 @ 99!,
AYP = 02 @1+ (14 2iad? + a®c;030° ™) @ 0. (2.1.21)

One can check that these coproducts are coassociative and that they are consistent with the

algebra (ZT1.3).
Adding counit and antipode to equations (Z1.9) and (ZI.TH) we obtain a Hopf algebra

of éu derivatives on the x-deformed space

g(én) = 07 S(én) = _éna
£(0;) =0, S(9;) = —Djei. (2.1.22)

Analogously, for 33 derivatives counits and antipodes are

. . . e
9, e(0) =0, S0O)=—"—%,
1+ iac, 05
(0) =0, S©O) = =0 (1 +iac,09) 7, (2.1.23)
. . . b
o e(02) =0, S0 = —"—%—,
1 + iacy 052
(0) =0, S(O?) = 0> (1+iac,d?) 7, (2.1.24)
~ ~ R 363 _ i_ac aACgéC?J . . .
o e(02) =0, SO) = R B Y
1+ 2iacs03 + a2c30530esm 2

—~1/2

e(02) =0, S(9%) = =07 (1 + 2iac;0% + a’c;0{*9°") (2.1.25)

2.2 Symmetry generators

In our algebraic approach symmetry of the xk-deformed space is given in terms of the sym-
metry algebraﬁ generators M* . Just like derivatives, they are maps in the abstract algebra.
Additional condition on the generators M* is that they have to be a deformation of the

2This means that we only consider infinitesimal transformations and not the finite ones.
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usual (commutative) Lorentz generators. This means that in zeroth order of the deforma-
tion parameter a they have to coincide with the generators of the commutative Lorentz
transformations

(MM 3] = 23" — n" 3" + O(a). (2.2.1)

The additional terms on the right hand side of (22Z1) can be calculated using the consistency
conditions

M (23t — 38" — iaz') = 0,

M (33— 2'3F) = 0. (2.2.2)

The calculation can be done in the same way as for the derivatives in the previous section.
However, there are some additional restrictions one can impose on the right hand side of
@2ZT). First of all, the generators M* should appear at most linearly on the right hand
side of (ZZT]) so that in first order in a only terms with M#* appear. This follows from
dimensional arguments since M*” are dimensionlesd]. In higher order in a we would have
to include derivatives as well, again because of dimensional reasons. Since we want (222.1])
to close only in coordinates and M* generators we stop at first order in a. Of course, the
indices on both sides have to match. Using these restrictions one commutes M*” to the
furthest right in equations (ZZ2) and finds conditions on the additional terms. The unique
solutionf] is given by

(MY, 3] = &t —nh'ad,

[M™ 3#] = nhma' — nHa™ +iaM™. (2.2.3)
We see that M%¥ commute with coordinates as in the undeformed algebra, while the gener-
ators M have deformed commutation relations with coordinates. We do not refer to M
as boost generators, since n is not the time direction, M include both boosts M and
rotations M**, a=1,...n — 1.

Although from (ZZZ3) it follows that M* act in a deformed way on coordinates, one
can check that the generators M themselves close the undeformed Lorentz algebra

[MP, MP?] = " MY P MPT — ' MY — 1" M2 (2.2.4)

But we are also interested in the coalgebra structure. Therefore, one calculates the
Leibniz rules for the generators M* by applying them to ordered polynomials using (22Z3))
and generalising the result to arbitrary functions. This gives

MY(f-g) = (M7f)- g+ f- (M),
M™(f-g) = (M™f)- g+ (% f) - (M™§) + ia(Opf) - (M™g). (2.2.5)
It is not difficult to see that this Leibniz rules come from the following coproduct
AMY = M7 @1+ 10 MY,
AM™ = M™ @1+ €99 @ M™ + iady @ M*. (2.2.6)

3Compare with the undeformed angular momentum L% = 9" — 289,
4Note the discussion in Appendix B.
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Looking at (ZZ0) one sees that the coproduct for the generators M* does not close in
the algebra of the deformed Lorentz generators, one has to include the derivatives @ intro-
duced in the previous section as well. In order to have the full k-deformed Poincaré algebra
one needs besides (ZI0) and ([Z2Z4) also the commutator between Lorentz generators and
derivatives

A

[M%,0,] = 610" — 6107,

[Mm’én] _ éi’
in A z‘62mén —1 taya . A
[M™,0;] = J; yia 55]0 O + 1ad"0;. (2.2.7)

The coproducts are given by (ZITIH) and (220, counit and antipode for éu are given by
(ZI22) and counit and antipode for M read

e(M7) =0, S(MY) = —M",
e(M™) = 0, S(M™) = —M™e~n 4+ jaM*Ope~ " 4+ ja(n — 1)d'e " (2.2.8)

One checks that the conditions for a Hopf algebra introduced in Section 1.3 are fulfilled.
The Lorentz part of the algebra sector is undeformed (as well as translation part itself), but
we have nontrivial commutation relations between Lorentz generators and derivatives. The
coalgebra sector is deformed for both Lorentz generators and derivatives. In the next section
we define a new set of derivatives such that we obtain the complete algebra sector of the
r-deformed Poincaré Hopf algebra undeformed.

In analogy with the undeformed space one can represent the generators M* in terms
of coordinates and derivatives

MV =39 — 319" = L9
. .1—62“13" N LG A1 A def A
M™ = Z@ZT —2"0" + 5”8181 = L (2.2.9)

2.3 Dirac derivative

We have seen that there is no unique derivative for the xk-deformed space and that one can
always relate one set of derivatives with the other one. Now we use this freedom to find new
set of derivatives, such that they commute with the generators M* in the undeformed way.
We call this derivative the Dirac derivative [74], [75] and denote it with D,. Then

[M",D,] = 6"D" — §4D" (2.3.1)
has to be fulfilled. Using the derivatives ép and (ZZZ71) one shows that the definition

A 1 A 1a

D, = —sin(ad,) — =g~
- sin(ad,) 500 :
D; = d;e7", (2.3.2)

leads to ([Z3). Since D, is the linear combination of 5,) derivatives, it is obvious that

A~

[D,, D,] = 0. (2.3.3)
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From (Z3]) it follows that if one uses ﬁp instead of ép as the generators of translations
one obtains the undeformed algebra sector of the k-deformed Poincaré algebra. But in order
to have the full Hopf algebra in terms of the generators M* and ﬁ one has to calculate
the coproduct for the derivatives D and add counit and antipode as Well Also, one has to
express the derivatives 0 appearing in (22Z0) in terms of the derivatives D

We start from the commutation relations of ﬁp with coordinates. Knowing Z32) and
(ZIT10) it is not difficult to calculate them, but at the end the result has to be expressed in
terms of the derivatives ﬁp and coordinates only. To be able to do this we have to invert
the relations (2332). Starting form

éj _ Dj giadn 88" = DD ezz‘aén7
R 1 /- . i~
Dn _ _(ezaan _ efwan> - 2D Dlezaan 234
%ia 5 M (2.3.4)
and multiplying equation [Z3ZZ) by e~ leads to the quadratic equation for e~%n
6—2ia5n + 2iabne—iaén _ a2DlDl 1= 0
The solution of this equation is

e = _jaD, + \/1+ a2D, D, (2.3.5)

where the sign of the square root is determined by the limit a — 0. On the other hand,
multiplying equation (E32]) by eiadn we find a quadratic equation for eiodn with the solution

. A 1 . / N
ewa” = = (an —+ 1 —+ CLQDMD“) . (236)
1 —+ CLZDIDZ
It is easy to verify that (230) is the inverse of (223H). Now we invert (Z3.2)
8@' = (laDn + 1 + CLQDMD“) s
1 + CLZD[DZ
1 . ~ -
Op = ——1In (—iaDn +4/1+ a2DﬂD“) . (2.3.7)
ia

This result was independently obtained in [(6]. Using this result the commutator of the
derivatives D, and coordinates is obtained

[D,,,i"] = 1\/1+ a2D, D,
(D, 2] = iaD',
[bj, i‘l] = 5; (—mﬁn +1/1+ azﬁubu) . (238)

It is obvious that the Dirac derivative is not a linear derivative (in the sense of (ZT.4)), the
right hand side of (2238) being a complicated function of D,. Also, the Leibniz rule following

>
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from (Z3) is not simple

Dy (f-9) = (Duf) - (7% g) + (O f) - (Dng) — ia(Dye*® f) - (D'),

Di (f-9) = (Dif)- (e *g) + f - (D;9). (2.3.9)
For et the expressions [Z231) and ([£2X8) have to be inserted. The comultiplication from
which (Z33) follows is

X ) ) — iaD, + /1 +a2D,Dr .
ADn:Dn®(—mDn+\/1+a2DuDu)+ ® D,,

1 -+ G,Q[lel

D ) — )
ig——r (iaDn +4/1+ aQDMD“) ® D,
1 —+ aQDlDl
AD; = D@ (—iaDy+\/1+ @D, Dr) +18 D;, (2.3.10)

where we have used equations (Z3H) and (2238). One can check that (22310) is coassociative
and that it is consistent with the algebra (Z33)). Counit and antipode are

. . . __iaD, + /1 +aD,Dn
e(D,) =0, S(D,) = —D, +iaD; D"

1 + CLQﬁlbl

) o5 . iaD, +/1+a2D,Dn : )
e(D;) =0, )=—-D; — ) 2.3.11
(D)) (B) = D
Finally, with all this relations one can introduce the r-deformed Poincaré Hopf algebra
in terms of the generators M*” and D,. All the necessary relations have already been written,

but just for the completeness we collect them all at one place here.
Algebra sector

MM MP°] = pho MYP + n"P MM — nhP MY — ¥ MM,
U] Ul U] Ul
[Dpa Da] = 07
[M*,D,] = §"D" — §4D". (2.3.12)

Y

Coproducts
AMY = M7 @1+ 1@ MY,

, ‘ iaD, + /14 a2D,Dr ‘
AMZ?’L — Mln ® 1 + ® Mln

1 + Gleﬁl
iaDk oA ~ A ik
‘|‘f(ﬂan+ 1+G2DMD“) ®M s
1 + CLQDlDl
R ) ) — iaD, +\/1+a2D,Dr
AD, = Do ® (= iaDy+\/1+a*D,Dr) + ® D,

1 + Gleﬁl

D - —— )
Fia——— (iaDn +4/1+ aQDMD“) ® D,
1 + CLQDlDl
AD; = D@ (—iaDy+\/1+@D,Dr) +1& D;. (2.3.13)
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Counits and antipodes
e(M7) =0, S(M7) = —MY,
e(M™) =0, S(M™) — Mine=iadn 4 iaMikéke_mé" +ia(n — 1)éie_mé"

~ A oA ZaDn+ \/1+a/2D“DM
n) = — D, +iaDD"

1 + GQﬁlﬁl

. ) _iaD, + /14 a2D,D»
e(D;) =0, S(0)) D; L @DD . (2.3.14)
One sees from ([Z312) that the algebra sector is undeformed (as it has been demanded in
the beginning of this section), but the coalgebra sector (Z3I3) is deformed for both M
and Dp generators. To be more precise, there is no deformation for the generators M%, since
they are Lorentz generators for the undeformed dimensions.

Like in the classical case one is also interested in the invariants (Casimir operators) of
this algebra. For the usual four dimensional Minkowski space-time there are two invariants,
the square of momenta P? = P,P* (P, = i9,) and the square of the Pauli-Lubanski vector
W2 =W, Wr (W+ = e M,,P,). We would like to generalise this to the n+1 dimensional
r-deformed space. From (EZ3]) follows

>

e(D,) =0, S

I

[M* . D,DP] =0, (2.3.15)

that is ﬁpﬁp can be considered as a generalisation of P?. However, this is not the only

possibility. One can show that the lowest order invariant in terms of the derivatives 0, is
[29], [30]

. a9 .
O=e"90 — ?(1 — cos(a@n)) (2.3.16)

and it fulfils )
(MM, £ = 0. (2.3.17)

The operator [J defined by (Z3I0) we call the deformed d’Alembert operator and we use
it to construct the k-deformed Klein-Gordon equation in Section 2.5. Unlike in the classical
case, we have

2
D, D" = D(1 n %D), (2.3.18)

the square of the Dirac derivative is not the d’Alembert operator.
Concerning the second invariant, we first introduce the generalisation of the Pauli-
Lubanski vector in d =n+ 1 = (2k + 1) 4+ 1 dimensions [77]

w,

p1-pziel o Cpnepn

MH2ik2i41 | [HEn—2bn—1 [)in (2.3.19)

There are (d — 2)/2 invariants given by

W'2-i-1 = Wu1~~~u2¢71wmmu2i_lv 1= 17 B N (2-3-2())

7

Note that since the algebra sector (Z3T12) is not deformed, the invariants are just the
straight-forward generalisation of the commutative ones. The exception is of course the
deformed d’Alembert operator (Z310).
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2.4 Representation on the space of commuting coordi-
nates

In this section we construct the x-product representation of the abstract algebra and maps on
it (derivatives, Lorentz generators,...) defined in previous sections. The general procedure
has been outlined in Chapter 1, here we just apply it to the x-deformed space.

We choose to work with the symmetric orderingﬁ. In that case the x-product is given
by [56]

Oy 1 — eiadn

1298, < On 1—emor 1) ) F(2)g(y), (2.4.1)

) 8n ) 1— —ia0yn
f*g(2) = limexp (zjﬁxj (—eway"ei — 1)

y—z

Oyn 1 — 7100

where we have used the abbreviations

0 0 0 0

amn:—, an:—7 n — -
ox" Y oy" ox™ * oy

(2.4.2)

Expanding this to second order in a we obtain:

frg(@) = f@ge) + o (0, (0)050(x) — 0, (2)ug )

150 (21 @)D,9(@) — 0,0, (x)ong(@)
0, (@)0;009(w) + 0, (x) 22 (x)

0,2

— ot (G2 ()050h(w) — 20,0, ()00 (x)
0,0 ()829(x) ) + O(a). (2.4.3)
= F@)ge) + SCF 0, () (0o x)
ORI 1 By, (1)) (B0 9 (1)
25O 08 (00,0, ()09 ()
(00 (@) (00,0 9(2) ) + O(@). (244)
One can check that this x-product respects the usual complex conjugation,

frg(x)=g*f(x) (2.4.5)
Applied to coordinates, ([Z41]) gives

(2" 5 2'] = iaz’, [2%* 2] =0, (2.4.6)

>The results for the normal ordering have been given in [56].
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as expected. Also,

w0 b,
P f@) = o), @)t = ),

K9y iad),
x"*ﬂx)z(fﬂ—ﬂ%ﬂégi_l—lﬁf@%

KOy —iad),
ﬂ@*fu:@w_ﬁ%ﬂemg_l—1ﬁﬂm, (2.4.7)

where f(x) is an arbitrary function. A
As the next step we map the derivatives J, to the operators d5 acting on the space of

commuting coordinates. From (EII0) it follows that the derivative 9, has the undeformed
commutation relations with coordinates and therefore

Oy — O = B, (2.4.8)

where 0, is the usual partial derivative. )
In order to find the x-product representation of 9; we apply it to symmetrically ordered
polynomials. From

;" = i0; + 8! — ian0; (2.4.9)
we read off A
0j + 97 = 0; + O(a), (2.4.10)
where 0; is the usual partial derivative. As the next step one uses (ZI.I0) to calculate
~ 1
013 (:&%l + M”) _— (2.4.11)

1 . . . .
=3 (@"(i’aj +8)) + ia(@'0; + &) + 2' ("0 + iad;) + 5§i"> .

The underlined terms in (ZZIT) give

0j 1= 3} = 0; + 50,0, + O(a?). (2.4.12)
Continuing in the similar way leads to the higher order terms. The final result is given by
. eiaﬁn -1
, A PR 24.1
aj = 8] 8] Z a an ( 3)

The Leibniz rule for the derivatives 95 follows from ([ZT.T4)

One (frg) = (050 f) xg+f* (0> ),
> (frg) = (v f)xg+ (%> f)* (95> 9), (2.4.14)
where the notation 9y > f was introduced in (C5.T4).
Using (232)), (Z4F) and [Z413)) the x-product representation of the derivatives bp is

calculated

i L1 i
D, — D = - sin(ad,) + ﬁ(cos(a&z) —1)9,0,

R —ia0n __ 1
D, Dt = ;-

b , (2.4.15)

—1a0y,



28 2. The k-deformed space

as well as the Leibniz rules

Dyv(fxg) = (Dyp f)* (7% b g) + (€% > f) % (D} g)
—ia(Dfe" % > )« (D*' > g), (2.4.16)
Div(fxg) = (Do f)x(e“%>g)+ fx(D}>g). (2.4.17)

Finally, for the d’Alembert operator we find

O 0" =

<1 - cos(a@n)>8u8“. (2.4.18)

202
a?0?

To find the *-product representation of the generators M* one proceeds in the same
way like in the case of the derivatives d,, applying them on symmetrically ordered polyno-
mials. The result is

LY — L' = 2'0? — 20",

Ny - - 4 4 eiadn _ 1 10 1 — jad),
n *xm o __ o tan o nai ) oW v 2 n
L o I = 210 — a0 40 0 s — 00,0 o (2.4.19)
For the Leibniz rule (ZZH) we obtain
L*7> (fxg) = (L' e f)xg+ f* (L b g),
L*inD(f*g):(L*inpf)*g_i_(eiaaflbf)*(L*ian)
+ia(Op > f) * (L > g). (2.4.20)

~

At the end of this section we mention one more set of nonlinear derivatives, J,. They
are given by

[0,,2"] =1,
[0,, 2] = 0,
. o 5.
65,8 = (1- =) &,
6w5n -1 5n
8 ; iaén
[0;,3] = ST (2.4.21)

The Leibniz rule for for 4, is trivial, while for 5j it is very complicated and no closed form
has been obtained so far

0;(f-9) = (51)

3 10 - a’ . . ia A . -
(1= 58 = b )+ (14 Fh— 50.0)7) - (3)
2 N AR AAA A~
+%((5nf) (0n0;9) + (0n0; f) (5ng)> +0O(a®) (2.4.22)
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For the completeness we also give the commutation relations between the derivatives 5p and
the Lorentz generators

[M¥.5,] = 0,
(M, 6] = 6j67 — 614",
STC A ity

1ady,

n g Los iadn iabn mgm
mﬂ,@]:§@%635+1+465-—QEB:)

iasn_' s A
< ,;?" L5t (2.4.23)
1a0n0n

The reason why these derivatives are interesting is their x-product representation

Op — 0% = O,
d; — & = 0, (2.4.24)

so they are represented by the usual partial derivatives acting on the space of commuting
coordinates. We use this result in Appendix B to discuss an alternative way of obtaining
symmetry of the k-deformed space.

2.5 Fields and equations of motion

Since we are interested in defining a field theory on the xk-deformed space, we need a definition
of fields. Also, we formulate covariant equations of motion for a free scalar field and a free
Dirac spinor.

2.5.1 Fields

Under the classical Lorentz transformations

A

A
2 — =2+t

s w = —w"" = const. , (2.5.1)

a scalar field ¢°(2 )l transforms like
§(a) = ¢(x). (2.5.2)
For an infinitesimal parameter w!f this transformation reads
1
<ﬁw@g:¢m@y-wug:_ywj@¢MQ:-Ewwgmwgy (2.5.3)
Here L,g is the orbital part of Lorentz generator

Laﬁ = l‘aag - ZL‘gaa. (254)

6We write ¢°(z) in order to distinguish classical fields from the noncommutative ones.
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This transformation law we generalise to

u(x) =~ (L 6(a)) = 0™ Ly > 6(x). (255)

where L7, ; are generators of the r-deformed Lorentz transformations given by (Z2Z.1d). Note
that L ;> ¢(x) is just the usual action of a differential operator, for example

1adn __

e 1

e — 1 —iad,
92
1a0?

cb) + a¥ (8@ ¢>). (2.5.6)

This is because all the x-product contribution have already been included (expanded) in
writing down the expressions (ZZT9) for the generators L.

Classically, the transformation law of a covariant vector field can be obtained consid-
ering the transformation law of the derivative of a scalar field 9,¢°. However, we have seen
in Section 2.1 and later in Section 2.3 that there is no unique derivative on the x-deformed
space. Depending on the choice of derivatives we will obtain different transformation laws
of a vector field. To stay as close as possible to the classical transformation laws we look at
the Dirac derivative of a scalar fiel

1
5Dy > §) = Dy b (,0) = — 50Dy > (Lo b 0)

1 (e} * * * *
— 50 (Lo (Dp > 0) = mu(Di > 0) + (D32 0)). (257)
This leads to .
8.V, = (Lgﬁ >V, — 0V + nwvﬁ). (2.5.8)

The first term is the transformation of the argument, while the other two stand for the index
transformation. This can be written as

1
0V = =50 (Lig + Sag ) oV, (2.5.9)

where ¥,3 is the constant matrixfl in the index space of fields. Transformation law of an
arbitrary covariant tensor is

1 « *
5wT,u1...;LT = _éw '8<Lalg > T,ul...ur - nﬁulTa,ug...,ur + naulTﬁ,ug...,ur

= =M Ly 0 T naMrTMI---MT—15>

1
= —w (ng + zaﬁ) > Ty (2.5.10)

Because of the deformed Leibniz rules (Z220) we have that the x-product of two scalar
fields is a scalar field again

5w(¢1 * ¢2) = —%wo‘ﬁL;ﬁ > (¢1 * gbz) (2511)

"Although this sentence appears not to make any sense, we repeat that "Dirac derivative” is just the
name we use for one specific choice of derivatives.
8Notation Y, > V,, stands just for the usual multiplication, X,z being a constant matrix.
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In the case of vector fields we have
1 *
5,(V,xV,) = —awaﬁ (Lay(vu*vy)— (nﬁuva—nwvﬁ)*VV—VM*(%V&—%VB)), (2.5.12)

that is the x-product of two vector fields transforms like a second rank tensor. Writing this
in a different way

1
0V x Vi) = =5 (Lgﬁ + zc@ > (V% V)
1 1
— _awaﬂng > (V, *V,) — §waﬁzaﬁ > (V, xV,), (2.5.13)
and comparing with (Z5.12) we see that

Lo (Vyx V) = (Bapb V) x Vo, + Vyx (g > Vo), (2.5.14)

the index part of the Lorentz transformation has the undeformed Leibniz rule.
To calculate the transformation law of a contravariant vector field we use (Z5TIZ).
Demanding that V* x V,, transforms like a scalar field

1
0, (VFxV,) = _awaﬁLgﬁ > (VExV,), (2.5.15)
we find 1
OV = 5w (Lgﬁ > VI 4 oV — 55%1/*). (2.5.16)
This can be generalised to an arbitrary contravariant tensor
5 T,ul...,ur 1 af L* 1. oy 1551 AU2... b ni AU2... b
; = —sw ( LB THA gty T 4 T
L 5{}5»«770()\Tu1...ur,1)\ + 5ZT77&ATM1...MT,1)\>
1
= — s (Lgﬁ + 2a6> > THLb (2.5.17)

Also, using (ZZ20) and [Z52I4) one shows that the x-product of two arbitrary tensors is a
tensor again.

2.5.2 Covariant equations of motion

Having defined fields, we now formulate the covariant equations of motion. First we consider
the equation for a free scalar field, that is a generalisation of the Klein-Gordon equation.
In Section 2.3 we found the deformed d’Alembert operator. Its representation on the space
of commuting coordinates is given by (ZZI8). Using this it is not difficult to write the
deformed Klein-Gordon equation

(O* + m?)¢(x) = 0. (2.5.18)

Because of (2317) and (Z51) this equation is covariant. One can continue and analyse the
solutions of this equation, dispersion relation and even proceed towards quantisation. Part
of that has been done in [§].
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Next, we look at the k-deformed equation for a free spinor field v, that is the k-deformed
Dirac equation. Using the derivatives (2Z1H) one writes

(iv" Dy, —m)yp =0, (2.5.19)
where 4# are the usual v matrices
{" "} =2 (2.5.20)
Using (Z31]),
[Mag, v = 65max7™ — 8knpay (2.5.21)
and .
0wt) = —500“‘3 <L25 + Eaﬁ) > 1, (2.5.22)

where Xo3 = £[Va, 78], one checks that equation (EZ5T9) is covariant under the x-deformed
Lorentz transformations. Next step, the analysis of possible solutions has been partially
done in [7§.

One can use both ([ZLIY) and (ZELIY) to try out the quantisation procedure [79)].
However, this problem is still not very well understood.
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Construction of gauge theories on the
r-deformed space

The best known description of fundamental interactions is given in terms of gauge theories.
Electromagnetic, weak and strong interactions are obtained by localising internal symmetries
while gravity can be understood as the gauge theory with the Poincaré group as the gauge
group. Therefore, it is of importance to generalise this concept to deformed spaces as well.
In this chapter we construct a general nonabelian gauge theory on the k-deformed space.
However, the construction is done in a very general way so that it can be applied to other
deformed spaces as well. In our approach we have to introduce enveloping algebra-valued
quantities (noncommutative gauge parameter, noncommutative gauge field, ...) [32]. This
leads to (apparently) infinitely many degrees of freedom in the theory. The problem is
solved in terms of the Seiberg-Witten map [26]. This map allows to express noncommutative
variables in terms of the corresponding commutative ones and this reduces the number of
degrees of freedom to the commutative ones.

We start with reviewing the commutative gauge theory. Then we define the non-
commutative gauge transformations, see how the enveloping algebra comes in the play and
explicitly construct solutions of the Seiberg-Witten map for the noncommutative variables.
As a consequence of the nontrivial Leibniz rules for the derivatives we use in the construction,
the noncommutative gauge field becomes derivative valued.

3.1 Commutative gauge theory

Gauge theories were first introduced by C. N. Yang and R. L. Mills in 1954 [80] and they
became very important tool in particle physics. Before introducing the concept of gauge
theory on noncommutative spaces, we shortly repeat basic steps in the construction of gauge
theories on the commutative space.

The nonabelian gauge group is generated by the hermitian generators 7* that fulfil

[T, T = if*™T¢, a=1,...,n (3.1.1)

where f¢ are structure constants of the group and the sum over repeated index (here c¢) is
understood. From the Jacobi identity

[T [T, T¢]] + [T°, [T, T + [T¢, [T, T"]] = 0 (3.1.2)
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it follows

fabCfdce + facefbdc + fdac]cbce = 0. (313)

The matter fieldl] Y%(z) is in a certain irreducible representation (fundamental for example)
of this group. Under the gauge transformationd] we have

/

YO(z) — ¢(2) = " OT Y0 (2) = Us(2)¢"(2), (3.1.4)

or infinitesimally
600 (x) = ia®(z)T " (x) = da(z)Y°(z). (3.1.5)

Since the parameter a(z) is x-dependentE the derivative of a field does not transform

like the field itself
60 (0,0°) = ia(9,0°) + (0, )", (3.1.6)

As a consequence of (BLH) the action
Sy = /d4:v VO (>iy"0,, — m)°

for the free spinor field (for example) is not invariant under (BI.H). The symmetry can be
restored introducing the covariant derivative

D = 0, — iAWNT Y = 9, — i A0, (3.1.7)

such that
6a(D, ") = iaD,y°. (3.1.8)

In (BT7) we introduced the Lie algebra-valued gauge field A in order to achieve (BTH).
The transformation law of the gauge field Ag follows from (BI)

0o A)) = Oua +ifa, A)), (3.1.9)
or in terms of the finite transformations
A — AV =UAU +iU(0,U ™). (3.1.10)

To construct the action for the field ¢ which is invariant under (B2I.H) and (BI9) one
uses the minimal coupling prescription, that is in the ordinary action one replaces all the
partial derivatives with the covariant ones

Sy = /d4x PO>iv"0, — m)y’ — S, = /d%« VUi (8, —iA)) —m)y°. (3.1.11)

'We write the all the variables with the upper index 0 to distinguish them from the noncommutative ones
which will be introduced in the next section.

2In this and the next chapter we treat only internal symmetries, that is the transformations that do not
change coordinates, d,xz* = 0. However, one can analyse the global Poincaré symmetry in the same way.
This is how gravity arises as a gauge theory. We will follow this approach in the last chapter when we try
to construct a theory of gravity on a deformed space.

3From now on we will keep this dependence implicit just to simplify the formulas.
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Using (BLH) and (BI9) one checks explicitly that this action is gauge invariant. Note
that although we have started from the free field theory, the action (BZLIIl) describes an
interacting theory. The interaction comes from coupling of the matter field with the gauge
field. In this way the electroweak and strong interactions arise, the gauge groups being
SU(2); x U(1)y and SU(3) respectively.

In order for Ag not to be only external but also a dynamical field one has to introduce
the kinetic term for it. Therefore, we define the field-strength tensor F SV =F SﬁT “ as

F), =i[D), Dy]. (3.1.12)
Applying (BTT2) to the field ¢° gives
Fp, = FXT® = 0,A) — 9,A) —i[A), A)] (3.1.13)
= (0, A% — 0, A0 + A AT (3.1.14)
and
6oL, = ila, F) . (3.1.15)

The covariant derivative fulfils the Jacobi identity
0 [0 70 0 [0 1O 0 10 707
[D;u [DV7 Dp]] + [DV7 [Dp7 DMH + [Dp7 [Duv Dy]] - 0 (3116)
Using (BI1J), from (BII6) the Bianchi identity for the field-strength tensor follows

DF +DYF° + DUFY = . (3.1.17)

wtvp v opu P v

The restriction that the action for the gauge field has to be gauge invariant and the renor-
malisability properties of the theory fix the kinetic term for the gauge field uniquely. The
mass term mQA?LAO“ is not allowed to appear in the action since it is not gauge invariant.
Historically, this was the problem with the theory of Yang and Mills. Namely, it was known
that weak and strong interactions are of short-range type so they were supposed to be carried
by massive particles. But the Yang-Mills theory gave interactions carried by massless parti-
cles. The problem was solved finally with the discovery of the mechanism of spontaneously
broken symmetry [81], [82]. This made it possible for gauge fields to became massive and
the Yang-Mills theory was finally accepted as the theory which describes the fundamental
interactions.
The gauge invariant action for the gauge field Ag (the Yang-Mills action) is

S, = /d4x ( - iTr(FBVFOW)), (3.1.18)

where the factor —1/4 is chosen in analogy with the electrodynamics.
Finally, the complete action is

S =S5,+5,
<0 : 1
= /d4:p PO(ir" (0, — iA)) —m)y° + /d4x ( — ZTI(FSVFOHV))' (3.1.19)

Having (B-TT9) one has enough information to analyse the theory, calculate the equations
of motion, conserved quantities. . ..
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As an example we present the equation of motion and the conserved current for the
. . . . 70 0 0 .
theory given by (BLIJ). Varying the action (BITY) with respect to ¢°, 1" and A;* gives

the following equations of motion

YR " (0,0°) + A AZ Y — map® =0, (3.1.20)
o0 — (0 ) + PO A) — myp? = 0, (3.1.21)
5AD : OpF P 4 fo AP FOMPE )0y T = 0. (3.1.22)

The current J*¢ is introduced as
a __ prabc A0b m0upc 7.0 a
J=f AMF HPE L )" ~yP T ). (3.1.23)

Due to the antisymmetry of F%% we have 9,0,F%® = () and this, together with (BT22)

and (BTZ3) gives
9,J7* =0, (3.1.24)

that is J7 is the conserved current. In order to check if our theory is consistent, we prove
explicitly (using the equations of motion for the fields v, 1) and Ag") that J#* is conserved

apJpa — ap (fabcAngOMpc + ?Z)O’)/pTa’l?Z)O)
= (DAL FH - AV (9, FO%)) + (0,0 T + §T*(0,u)
1 abc e e c 1 abc e e c
= = fU(OAY = O AT [ AYAT) PO e o fee fre AL AL RO
+fabcA2b (fcdeAngOp,ue 4 IEO’Y“TCQ/JO)
—i(PP9P A — m° )T " + ip"T (4 A® — map®) = 0. (3.1.25)

We can cancel the first term in the third line due to the antisymmetry of the structure
constants f%¢ and also the terms proportional to m in the last line. We obtain

a 1 abc e e c 1 abc rcde e
apJp — 5]0 b fbd A;O)dAg FOPM + §f b f d (AgbAgd o AgbAgd)FOpu
—FfabcAng/_}O’}/pTcQ/}O 4 i?/_JO’YpAgb (TaTb - TbTa)wO
— %AgdAgeFOPMC(fabcfbde + faebfbdc o fadbfbec)
—FfabcAng/_}O’}/pTcQ/}O - fabcAgb”LEO’}/pTch
=0, (3.1.26)

where we have used the Jacobi identity (BZL3) to cancel the terms in the third line.

3.2 Noncommutative gauge theory, setting

In the following we generalise the concepts introduced in the previous section to deformed
spaces. Although we are especially interested in the gauge theory on the xk-deformed space,
we try to keep the analysis as general as possible, such that it can be applied to other
deformed spaces as well. The construction of the noncommutative gauge theory is done
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in the x-product approach. However, one can equally well define noncommutative gauge
transformations in the abstract algebra and perform the analysis there. Our motivation for
doing everything in the x-product approach is that in this way one can obtain results which
might be experimentally checked.

The noncommutative gauge transformation of a noncommutative field ¥ (z) is defined
to be

oat(x) = iA(x) % Y(x), (3.2.1)
where A(x) is the noncommutative gauge parameter. This is an infinitesimal transformation,
for finite transformations one has

U(a) = ¢ (x) = M % p(a), (3.2.2)
where ¢ is the *-exponential function. This function is the formal power series, the

ordinary multiplication in every summand is replaced by the x-multiplication
) 1 )
ez*A(m):1+z‘A—§A*A—%A*A*A+.... (3.2.3)

One can check that the equality e*® % e; ™) = 1 is fulfilled.

With this definition of a gauge transformation one can proceed in two ways. One is the
so-called ”covariant coordinate approach” [83], [84], [85]. This approach is closely related
with the appearance of noncommutative gauge theory in the framework of string theory.
Mathematically, it is based on the inner derivations on a deformed space and therefore is
convenient if one does not know the exterior derivatives on the deformed space in ques-
tion. The basic idea comes from the observation that the x-multiplication of a field with a
coordinate is no longer a gauge covariant operation,

n(xh x ) =zt % 0pp =izt x Ax1p # i\ x (z" * ), (3.2.4)

since the x-product is noncommutative. The problem is solved by introducing the covariant
coordinate X* = z* + A*, such that

OIA(XH %) =i * (X* x1). (3.2.5)

Here A" is the noncommutative gauge potential; its transformation law follows from (B:ZZH).
Then one proceeds with defining the field-strength tensor as in the commutative case. How-
ever, we do not wish to follow this approach here. Like we said, it is convenient since one
introduces the gauge potential without having to fix a differential calculus on a deformed
space first; one uses only inner derivations. In this way a variety of concepts on a deformed
space can be introduced without knowing much about its additional algebraic or geometric
structure.

In the previous chapter we analysed in detail the differential calculus on the k-deformed
space. Therefore, we have enough information not to follow the approach of covariant coor-
dinates here. Instead, we construct covariant derivatives and proceeded in the full analogy
with the commutative theory.

Our starting point is the infinitesimal noncommutative transformation of a noncom-
mutative field ¥

Sato(x) = iA(z) % P(2). (3.2.6)
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The field ¥ belongs to a certain irreducible representation (fundamental for example) of the
gauge group. We consider a general nonabelian gauge group generated by the generators 7¢

which fulfil (B1T]). In order to check if our definition of the gauge transformation (B2Zf) is
good, we remember that the commutative gauge transformations close in the algebra

5005 — 0500 = 0_ijag)- (3.2.7)

In words, the commutator of two gauge transformations J, and dg is again a gauge transfor-
mation with the parameter —i[c, §]. Now we check if the same holds for the transformations

BZ4)
(5A15A2 — 5A25A1)w(~r) = (A1 * A2 — A2 *Al) *1/}. (328)

If we take Ay = A7,T, that is the Lie algebra-valued noncommutative gauge parameters,
we obtain

1
(51\15/\2 - 5A25A1)1/1(55) = §<A? * Ag + Ag * A?)[Tau Tb] *1/}
1
+§(A§*Ag — A5 % AT, T} % 1p. (3.2.9)

The first term in (B22Z9) is again Lie algebra-valued because of (BZILTl). However, the second
term is not Lie algebra-valued in general. In the special case of U(IN) gauge theories one can
express the anticommutator {7 T°} in the generators T only (no products of generators)
[26]. In the case of SU(N) groups, which are needed for the construction of a noncommuta-
tive generalisation of the Standard Model, this is not possible. There are two ways to solve
this problem. One is to look only at the U(N) gauge groups (and also SO(N) and Sp(N)
groups [50]). Then the commutator of two gauge transformations is again in the algebra of
transformations. Second possibility is to give up the Lie algebra-valued gauge parameter and
define the enveloping algebra-valued gauge transformations [32]. This approach we follow
here.

3.3 Enveloping algebra approach

The enveloping algebra of the Lie algebra (BIIl) is the algebra freely generated by the
generators T and divided by the ideal generated by (BL)

Cl[TY,..., ]
([T, T —ifer,.Te)

Ar = (3.3.1)

It is infinite dimensional and its elements are all possible products of the generators modulo
the commutation relations. Especially, both [T, T%] and {T%, T} are in the enveloping alge-
bra. Therefore, the transformations (B:Z0l) close in the enveloping algebra and we continue
our analysis there.

A basis in the enveloping algebra can be chosen by specifying the ordering. We choose
the symmetric ordering because of its invariance under the conjugation, for example

1 1
T = §(T“Tb + TbTa) = 5(T*’Tﬂ +T°T") = T°T" : .
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The basis is then

2T =T
1
L TUTY = §(T“Tb+TbT“),
1
ST T = ﬁZ(T"(“l)...T"(‘”)). (3.3.2)
.UGSZ

Since the noncommutative gauge parameter is enveloping algebra-valued it can be expanded

in the basis (B:3.2)
M) =D AP (x) T .. T

=1 basis

=AYz): T+ A" (x) : THT*?: +. ... (3.3.3)

Now we define the covariant derivative D, (x) = 9, > 1(z) — iV, x ¢(x) by its trans-
formation law

SA(Db(z)) = iA x Db (z). (3.3.4)

Before we continue, one remarks is in order. The derivative Jy is not specified here. The
choice of 9} depends on the choice of a deformed space on which we want to construct the
gauge theory (and not only on that, as we shall see later). The reason for not specifying
0, immediately is that we are trying to be as general as possible and first discuss some
problems characteristic for the noncommutative gauge theories in general. We come back to
this problem in the next section.

The transformation law for the noncommutative gauge field V,,, just like in the com-
mutative case, follows from (B34

(0AVu) x b = 05> (Ax ) — Ax (0; 0 9) +iAx V% h — iV, x Ax . (3.3.5)

Note that before we have specified the derivatives J; we can not write (B:3.3) more explicitly
since we do not know the Leibniz rules for the derivatives 9;. It is important that from

B33) and E33) it follows that V), has to be enveloping algebra-valued as well

Vi, = izvzfal---az A A

=1 basis

= Vo(x) : T+ Voo 7T 4 (3.3.6)

From (B33) and B30) looks like we have formulated a theory with infinitely many
degrees of freedom which is an unphysical situation. The way to solve this problem is to
demand that all higher orders degrees of freedom are not independent, but that they can
be expressed in terms of the finitely many degrees of freedom. The most natural then is
to demand that all higher order degrees of freedom can be expressed in terms of the zeroth
order degrees of freedom, that is the Lie algebra-valued quantities. If this is possible (and
that we can only determine by explicit calculation, there is no principle to determine a priori
if this reduction is possible or not) then we reduce the number of degrees of freedom to
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the classical one. That means that our noncommutative quantities (gauge parameter, gauge
fields,...) will be functions of the classical ones. The explicit construction is know as the
Seiberg-Witten map and it was first used by N. Seiberg and E. Witten in [26]. In the next
section we continue with the construction of the Seiberg-Witten map.

3.4 Seiberg-Witten map

We start with the noncommutative gauge parameter A and suppose that it can be written
as a function of the commutative gauge parameter a = a*T* and the commutative gauge
field Ag = Ag“T @, Therefore, we introduce the following notation

A(x) = Ma(A); 2) = Aa(z) = A, (3.4.1)

and keep the dependence on the commutative variables implicit as well as the z-dependence,
unless we want to stress something. Also

0AY = TIA %) = iy x 1) = 040). (3.4.2)

Here 0,7 means that having the expression for the noncommutative field (here 1) in terms
of the commutative variables (¢/° and Ag in this case, as we shall see later), noncommuta-
tive gauge transformation (B42) is given by the commutative gauge transformation of the
expanded noncommutative field. From (BZ2) we have

0000 = 04 (iAgx 1)
= i(5aAg) * 2,0 + ZA@ * (iAa * w) = i(5aAg) * 2,0 — Aﬁ * Aa * ’17/) (343)
The variation d,As is nonzero since Ag depends on the commutative gauge field A?L and
oA, = Dy — i[ A, a]. The consistency condition (B27) then gives
(5QA5 — 5ﬁAa — 1A, * Aﬁ + iAﬁ * A, = A,i[am, (3.4.4)
where we have omitted %x?) in each term since the equation must be true for an arbitrary

field ¢. Since [BZZ) is an equation in A, only, we can use it to solve the Seiberg-Witten
map for A,. We solve it perturbatively, that is we expand A, in the deformation parameter

Ao =A)+all+-+ad"AL+ ... (3.4.5)

But also the x-product in (B:Z4]) has to be expanded. Therefore, this is the place at which
we leave the general discussion and specialise to the k-deformed space. For the x-product
we use (ZZ4), that is the symmetrically ordered x-product. Expanding equation (BZZ) up
to first order in a gives

0¥ GuhG — 050 —i[AD, A9 = A%,y (3.4.6)
a' s abu A — adgAl — ialAY 1 AY)
— da[Ay, Ap] —ia[AL, AY] = aAly, 5, (3.4.7)

4Different expansions are possible, for example the expansion in the enveloping algebra basis ([B:3.3)), or
the expansion in the number of factors of gauge field AB. Of course, these expansions will not coincide.
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where we introduced ! for the first order term of the x-product,

aA® x' AQ = %cgf’ﬁ(ap/\g)(aa/\g).

Looking at (BZ0) we see that it will be fulfilled with the choice AY = a, that is in
zeroth order noncommutative gauge transformation reduces to the classical onetl.
Equation (BZ7) is an inhomogeneous linear equation in Al with the solution

1
all = —ZC§G:E/\{A2,6OQ}. (3.4.8)

Calculating explicitly d,A}, using (BIH) one can check that (BZ7) is fulfilled. However,

this solution is not unique, one can add to it solutions of the homogeneous equation
ado Ny — adghy, — ifo, Ap] —i[A}, B] —all, 5 = 0. (3.4.9)

The analysis of ambiguities of the Seiberg-Witten map was done in detail in [A2] for the
f-deformed space. Most of the things said there can be applied here as well and we will not
go into details. In the next chapter we use the freedom in the Seiberg-Witten map when
discussing the ambiguity of the conserved current in the case of U(1) gauge theory.

Now one can solve the second order for A, and so on. The second order solution is
given in [86]. Here we do not go into second order analysis. Just for completeness we write
the solution for A, up to first order in a

L o
Ay =a— 105 aMAY, O} (3.4.10)

Before proceeding further, we have two comments. When solving (BZT) it was sup-
posed that Al is not derivative-valued, that is it is a function not a differential operator.
Nevertheless, the different approach is possible and we describe it shortly at the end of the
last chapter. If one compares (BZI0) with the solution for Al in the case of #-deformed
space [A1] one sees that they are the same, replaced 6° with C{°z*. This is the consequence
of the first order similarity of the symmetrically ordered x-product for the x-deformed space

and the Moyal-Weyl x-product (LX)

frg =g+ 50 0,0)000) + .. (3411)
frg=fg+ %C’f\’ox’\(ﬁpf)(ﬁgg) - (3.4.12)

However, this analogy only applies to the first order. Already in the second order the
*-products (BZI]) and ([B4T) are different and also the explicit z-dependence of A, in
(BZ10) produces new terms in second order in the case of k-deformed space, compared with
the #-deformed space [86].

Having the solution of the Seiberg-Witten map for the noncommutative gauge param-
eter A, we can now solve the Seiberg-Witten map for the noncommutative matter field
using equation (B.42). Again, ¥ has to be expanded in the deformation parameter a

V=" +ap' +.... (3.4.13)

5Note that 5O¢A%:O.
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Inserting this into (B4.2) and expanding the *-product to first order in a gives
a’ 0, = ian)?, (3.4.14)
1
a': ad Yt = daanpt +iaAl — §C§”xk(a,,a)(aazp0). (3.4.15)

The zeroth order equation is fulfilled if 1/° is the commutative matter field, since §,° = ia1)°.
The first order solution is

apt = _%cg’”xmg(aawo) + %Cﬁ"ﬁ [AD, Ag]. (3.4.16)

The comments about the ambiguities of the Seiberg-Witten map and about the similarity
of the first order solution with the solution in the case of the #-deformed space also apply
here. Again for the completeness we write the solution for the field ¥ up to first order in a

1 loa Il g
P =0 — §C§ xAAg(&,wo) + ng xA[AOp, A0, (3.4.17)

3.5 Covariant derivative and the gauge field

The covariant derivative was introduced in (B34l). However, there we have not specified
the derivatives J;. Now we do that first and then solve the Seiberg-Witten map for the
noncommutative gauge field V,,.

As it was shown in Chapter 2, there is no unique derivative on the k-deformed space
and any of derivatives obtained there is a good candidate for 9;. But if we look at the
transformation laws of different derivatives under the x-deformed Lorentz transformations,
we see that all but one have very complicated commutation relations with the x-Lorentz
generators M*”. The one that is different is the Dirac derivative D} introduced in (2ZZTH).
It fulfils

[L*H, Dy] = 6, D" — 68 D™, (3.5.1)

v L . o e
where L** are given in (24T9). Therefore, the covariant derivative defined as D,, = D7 —iV/,
transforms as

u(Dy) = — 50" (L5 (D) = 15y (Dat) + g (D) ). (352)

This means that the gauge field V, transforms as a covariant vector (EZ3.8).
Having fixed the derivative we want to covariantise, we proceed in the familiar way, by
calculating the transformation law of the gauge filed V,,. From

0a(Dyth) = iM% Dytp = il % (Db 1) — iV, % 1)) (3.5.3)

it follows

(0aVi) %0 = Djp v (Mg %) — Ao (D} > ) +i[Aa 5 V] % 9P (3.5.4)

Now one has to be careful since the derivatives D7 have the nontrivial Leibniz rules (ZZ.10)
and (ZZT7). Tt is convenient to analyse separately the nth and jth components.
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First let us look at the jth component of (B:5.4)). Using the Leibniz rule for D} (24.11),

we obtain
8aVi* ) = (DF o Ag) * (7% b ap) +ilg * Vy*1p — iV * (Mg % 1)) (3.5.5)

If we demand that V; is a function and not a differential operator, we see from (BL.0) that
we can not solve this equation. The problematic term is the first term on the right-hand
side; it is the consequence of the nontrivial Leibniz rule for Dj*ﬁ. The only way to solve this
is to allow that V; is a differential operator, that is it is derivative-valued. Looking at (B50)
we make the following ansatz

V= Ajx e adn (3.5.6)

and insert it in (B50). After using e "% > (f x g) = (e > ) % (€7 > g) and omitting
e~ 11 on the right-hand side we arrive at

adj = (D5 > Ay) + il Aj —iA;x (€79 > A). (3.5.7)

This equation can now be used to solve the Seiberg-Witten map for the field A;. As before,
A; is expanded in the deformation parameter a:

Aj= A} +aAj+ ... (3.5.8)
Expanding (B51) gives
a’: 6,AY) = 00+ i[a, AT (3.5.9)

a': ad,Al = ad;At — %ajana +iafa, AY + ia[A}, AY]

+iafo *! A9 — aAY(0,0). (3.5.10)

The zeroth order solution is obviously the commutative gauge field A?. The first order
solution is given by
A= M A0 O 4% 4 Lo ((F0 A0) — (40,9, 0
ad} = =0, A7 = T{AL AN} + 2002 ({FS, ALY = {45,0,A7}). (3.5.11)
That this is really a solution of (BX5.10) one can check explicitly using (B29). For complete-
ness we write the solution for the field V; up to first order in a

V, = A~ ia A0, — 00,40~ S A% + icgw iz

J pj’

A0} — (A0, aoAg}). (3.5.12)

Comparing this solution with the solution for the noncommutative gauge field in the 6-
deformed case, we see that now they differ already in the first order, namely the second,
third and fourth term in (B2512) do not appear in the #-deformed case.

Before going to the nth component of (BX54]) we remark one more thing. Solving for V;
we made ansatz (B2.6). However, this is not the most general ansatz; we could have started
with

V= Ay e 4 Ayj* Dy + Ay % DY + Al * D} (3.5.13)

6Choosing the different set of derivatives [87] one can avoid the derivative-valued gauge fields, but then
one loses the symmetry properties.
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Inserting this into ([B0.0) gives

baArj = (Dj>Ao) + il * Ay — 1Ay * (€7 5 A,)

—1Agj * (D> Ay) —iAz % (D} > Ay) _iAij*(Dl*DAa), ( )

badlyj = ilax Agj = idda; % (€7 > o), (3.5.15)

Sads = il x Ay — iy % Ay, 5510
Sa Al = iRy x AL — QAL % Ay — ady; x (915 A), (

where we have collected terms proportional to xe~% % > h, xD* > 1), *D7 > and *Df >
respectively. To solve for A;; we have to solve first the equations for Ay;, A3 and Aij. Let
us start from A,y;. Expanding (B5T5) gives

a’: O, Ay = ifo, AY)] (3.5.18)
a' s abaAy; = ialo, Ay] +ia[A', AY] + ialor A AY] + a A (9,0). (3.5.19)

Looking at the zeroth order equation we see that there are no inhomogeneous terms at the
right-hand side, so A3; = 0 is a solution. Equally well, the choice A9, = ¢, Fy; where ¢,
is an arbitrary constant is a possible solution of (B5IH). But this would mean that the
noncommutative gauge potential starts like

V= A? + ngan + O(a)

which in the limit @ — 0 does not reduce to the commutative gauge potential. Since we
always insist on the commutative limit of our theory this solution is not what we want. The
only possibility is therefore to put Agj = 0. For the first order equation this then gives

ado AL =ila, AL]. 3.5.20
27 27

Again, this is a homogeneous equation and we can choose Ay; = 0. Also, A}, = cyaF));
is allowed by (BLZ0) but this time there is no commutative limit restriction. Since so far
we have been ignoring the terms that were the solutions of homogeneous equations (when
solving for A,, ¢, ...); we do the same here, that is we choose Aéj = 0. One should keep in
mind that different choices are possible, but being the solutions of homogeneous equations
they reduce to the freedom in the Seiberg-Witten map.

For A3 we repeat the previous analysis with the same result, A3 = 0 to first order in
a. With this solution the same follows for A};: A}, = 0. Inserting this in (B5Td) gives
(BLI0) again. Therefore, the solution for V; is the same as before, (B2212). To conclude
this remark, we could have started from a more general ansatz for V; leading to a different
solution. However, the difference beetwen (B2I2) and the new solution are just the terms
which are solutions of the homogeneous equations and we say that this two solutions are
equivalent up to the freedom in the Seiberg-Witten map.

Now, we look at the nth component of equation (B54]). Using the Leibniz rule for D}

([ZZT4) leads to
oV x b = (DX 1> Ay) % (€790 1 ) + ((eia% RIS Aa> « D) (3.5.21)
—ia(D]*» > (/9 > Aa)) x (D*7 > ah) +ihg x Viyx ) — iV % (Ag % 1)) .
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The ansatz for V,, is
Vi = Ay x e 4 Ay % DE + AL+ DY, (3.5.22)

but this time it is the most general ansatz we could think of. It gives (after collecting terms
proportional to xe=%% 1), xD* >1) and xDj 1)) the transformation laws for the fields Ay,
Ay, and Agn respectively:
SaAin = (DX Ay) 4 il * Ay, — i Ay, x (6799 b AL)
—iAg, * (DXAL) —iAL  (Df > Ay), (3.5.23)
SoAan = ((€" — 1) Ay) +iAg * Az — 1Az, x (e > A,), (3.5.24)
6o Ay, = —ia(0" > Ay) + il * AL, — iAL, % Ny — ady, % (0'A,). (3.5.25)

We have to solve Ay, first. We expand (B2

a’ 0, AY = i[a, AY) (3.5.26)
a's ada AL, = iad,a +ialo, A ] +ia[AY, A9
+iafo 7t A9 ] 4+ a A, (Op). (3.5.27)

With the same arguments as before (proper commutative limit), the zeroth order solution is
A9 = 0. This then gives

ady Ay, = iad,a + iafa, A,
and the solution for A,, up to first order in a is
Ay, = ia AL, (3.5.28)

Again we have ignored the solutions of the homogeneous equation (for example, we could
have added the first order term c3C5”2*Fy, to the solution (BR2H)).

Expanding (B5.2H) gives

a’ 6, AY = i[a, AY] (3.5.29)
a': ab,AY, = —iad'a +iala, AL) +ia[At, A
+iala st AL — aAY (). (3.5.30)

The solution up to first order is

Al = —iaA”. (3.5.31)
Finally we come to (B:2.23))
a’: 6,AY = O +ifa, A, ] (3.5.32)
a's ad,Al, = a0, N — %Qaloz +iala, A7, ] +da[AY, AY ]
+iala st A9 —iaA), (Op) —ia Al (D). (3.5.33)

The zeroth order solution is just the commutative field A% = A%. Inserting this and the
solutions for A,,, and Agn we find

1 A/l o o5 0 405 L o A 0 40 0 0
aAln_—ﬁ(zajAJjLAjAJ) + 40 ({F A }—{Ap,a(,An}). (3.5.34)

pnr 4o
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Summing up all the results leads to the solution for V,, up to first order in a

pnr * o

V=AY —iaA%9; — %ajAOJ — gAg?AOf + iC’fU‘r’%{Fo AlY —{AD, a,Ag}). (3.5.35)

With this result we end our analysis of the Seiberg-Witten map on the x-deformed
space. Once again we mention that the problem of ambiguities has not been discussed here.
A part of it we will analyse in the next chapter and the rest is left for the future work.

3.6 Gauge covariant Lagrangians

In this section we want to construct the gauge covariant (invariant) Lagrangians for the
matter and gauge field. To write down the Lagrangian for the matter field we already have
all that we need. For the gauge field Lagrangian we first have to calculate the field-strength
tensor. It is defined as

Fu =1i[D, * D, (3.6.1)

and from here it follows

SaFuw = i[Aa ¥ Fuul. (3.6.2)
Applying this to the field ¢ (calculating F,, x 1) gives
Fig = (Do Vi) = (D] Vi) = iV (7% 5 V) iV 5 (70 5 V7)) e 200
o —2ia0n
= FZ/] * e , (363)
Foj = Fljyxe 2 4 F o xe "Dy + F Ly« e Dy, (3.6.4)

where we have used the Leibniz rules for D; derivatives and

Frji = (D2 V) = (Df b Vi) = iV % (7% V) 4V % (7% > Vi)

=iV x (D} 2 Vi) = iVoa % (D 2 V), (3.6.5)
Fio = (€7 = 1) V;) = (D] > Vig) — iVia % (€ > V)

FiVjx (7 > V), (3.6.6)
Fly = —ia(0*'> V) = (Dj > Vi) — Vi * (01 V)

—iVig* Vi + Vi x (e7" > V). (3.6.7)

From (B63) and (BE4) it is obvious that F,, is derivative-valued. Therefore, the
term F,, « F* in the Lagrangian (or in the action afterwards) does not make sense. This
problem can be solved using the analogy with the gravity theory. There one also calculates
the commutator of two covariant derivatives and expresses the result in terms of the curvature
tensor and torsion. We try to do the same here.

Let us look first at the component F;;. We expand e~%9% yp to first order in a

Fij = Flyx e = Fl. % (1 - 2iad,)
— F« (1 — 2ia(8, —iA%) + 2aA2) = F; <1 + 20 A7) — 2@'&773)



3.6 Gauge covariant Lagrangians 47

Here we have covariantised the derivative 0, by adding the field A2 to it (since we are
interested only in the theory up to first order in a) and subtracting the same term. Note that
Fj; is different from F;, the difference is in the first order term coming from covariantising
0,. One can continue this separation on terms proportional to the covariant derivatives to
higher orders and for F,,; as well. We conclude that the field-strength tensor F,,, can be
written as

Fuv = Fpy + T0Dy 4+ TO Dy Dy i . (3.6.8)

where the colons denote a basis in the enveloping algebra of covariant derivatived]. The
term which is not derivative-valued we call curvature-like term, while the other terms T}
are torsion-like terms. When writing the Lagrangian (action) we use only the curvature-like
terms and ignore all the torsion-like terms.

Each of the terms in the expansion transforms covariantly again and that is why we
define the torsion-like terms proportional to the covariant and not to the usual derivatives.
To make this clearer we start form the definition (B:6.1]). Then

Oa(Frp * ) = iNg % Fpp %
5a(FW*1/1—|—T£U*(Dpz/1)+...> — Ay (FHV*Q/}—FT;)V*('DPIM—F...).

From here we have

0aF, = i[Aa * Fl, (3.6.9)
310, = i[Aq 1 T0,). (3.6.10)

If one would expand F,, in terms of the usual derivatives, a term like 7%, x (9,1) would
appear. Then

0o (Tho, % (0p0)) = (8aT5,) * (Dpt0) + T, x (6(0,0))
=il T, % (D).

The last term in the first line produces an additional term (since 9,1 does not transform
covariantly) spoiling the covariant transformation of Ty,
Rewriting (B:63) and (B64) in the form (B6.8) and expanding everything up to first
order in a gives
, 1 oo
Fy = Fj —iaDyFy+ 7C{a <2{F

0 FY} + (DYFD, A%} — {49,0,F3) ), (36.11)

neij pir~ oy i)
T/ = —2iad} Fy), (3.6.12)
R [y p—
Fnj = Fnj_gpﬂ B
L o
+7C% x’\(Q{F[?n, 01 4+ {DUFY A%} — (A, aapgj}), (3.6.13)
TV, = —ian"' F}) — iadlFy),. (3.6.14)

"The enveloping algebra of covariant derivatives is the algebra freely generated by derivatives D, and
divided by the ideal generated by (BEIl).
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Now we have all the ingredients to write both Lagrangians for the matter and gauge field.
The dynamics of the gauge field can be formulated using the tensor F'*¥

Loyge = ¢ Tt (FW * FW). (3.6.15)
Note, however, that Tr (F u *x I ‘“’) is not invariant because of the x-product in (B.6.15) but
0oL gange = 1[Aa ¥ Loauge)- (3.6.16)

The Lagrangian L,,,.. gives the action (formulated with an integral with the trace property,
see the next chapter) which is gauge invariant. The trace will depend on the representation
of the generators T® because higher products of the generators will enter through the en-
veloping algebra. Expanding (BXGIH) up to first order in a and choosing, in analogy with
the undeformed theory ¢ = —i, we obtain

1 17
Lonse = =7 Te(E,F™)

i [ 174 Z vV
~ L T (DFO™)(DEFR,) + S {AD, (9, + D) (F™ L, )}

ot uv
—i{ P {Fp,, Fi 1Y) (3.6.17)
+ T (DY L) = {(DUF™), Fi}), (3.6.18)

where D) = 0,4 — iAW) and Dy Foy = 0, F g5 — i[A), Fjg).

The Lagrangian for the matter field is
Ematter = ,l/_} * (IlfyluD/J« - m) w (3619)

and
5a£matter = 0. (3620)

Expanded up to first order in a (B:6.I9) gives
‘Cmatter - @Eo(lvu(aﬂ - ZA;OL) - m)wo
i o 10,/,0 . Z v T .
+5C87aN (DY) Dg (in" Dy — m) 0 — Sa 740y, (Dgy”).
a — a - ,
29099 (DYDYYO) + S0y (DID). (3.6.21)

These are the Lagrangians which define the dynamics on the k-deformed space. In the next
chapter we formulate the action from these Lagrangians.



4

U(1) gauge theory on the x-deformed
space

In this chapter we focus on the U(1) gauge theory. We would like to come from the La-
grangians obtained in the previous chapter to the action which is necessary if one wants
to analyse the properties of the given theory. To be able to write the action one needs a
definition of an integral. Therefore, we first define an integral for the x-deformed space (we
continue to work in the x-product approach) and formulate the variational principle. Having
these two things at hand we write the action for the U(1) gauge theory coupled to fermions,
r-deformed electrodynamics, and analyse some of its properties. The U(1) gauge theory
has been chosen for its simplicity, but the same approach is possible for nonabelian gauge
theories as well. Calculations are presented up to first order in the deformation parameter
but in some cases the results can be generalised to all orders. We say explicitly which results
are and which are not known to all orders.

4.1 Integral and the variational principle

An integral is a linear map of the algebra A, into complex numbers

/: A, — C, (4.1.1)

/(clf+029):cl/f—|—02/g, Vf,ge A., ¢ €C. (4.1.2)
However, there is one additional property we demand, the cyclicity. The motivation for
this requirement can be given easily. The transformation law of the field-strength tensor
F, = F;T" (for generality we are still considering nonabelian gauge theory) is

aF =il * F). (4.1.3)

The Yang-Mills action is given by

1
Syar = —ZTr/d”“x E,, = F", (4.1.4)
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dn+1

where for the moment [ x is the usual commutative integral. Using (EE13) we obtain

1
0aSym = 0a (—ZTr/d"“x F *F"”)

1
— —ZTr/d"“x (ihg x Eppy % FM —iF,, % FM % A,,). (4.1.5)

If we would have the usual pointwise product in ({LI.H), then cyclicly permuting under the
trace would lead to 6,5y = 0. Unfortunately, we cannot do the same here since the x-
product is noncommutative. One way to repair this (if it is the only way we are not sure) is
to demand one additional property of the integral called cyclicity

/ ™ (f(z) * g(x)) = / 4™ (g(x) * f(2)) = / "y (f@)g(x).  (416)
From (ET4) it follows

/dn+1ZL' (fl*fQ*"'*fk) = /dn+1{L‘ (fk*fl*fQ*"'*fk—l)7 (417)

that is cyclic permutations under the integral are allowed. Then §,Syy; = 0 follows form
ETH).

So far the discussion has been general, the x-product in (BEI0) has not been specified.
Since we are interested in the r-deformed space, we now use the *-product (ZZ4), expand
it up to first order in a and check if (L6 is fulfilled

i
[ g = [ @i (fo+ 5020 0u)00)
_ / " (fg+ SO0 (1 (0uf)g) — 5C5°(0uf)g — 5C3°2(0:051)9)
= /d T (fg - §Cgﬁ(3af)g> # /d T fg.
We see that the usual integral is not suitable for defining the actionf]. Expanding the -
product to higher orders only gives new terms on the left-hand side in the last line and the

conclusion stays the same. Nevertheless, one can modify the usual integral by adding the
measure function [88], [R9] such that

/ & () (f % g) = / &+ () (g% ) = / 4" () (fg). (4.18)

Note that p(z) is not »-multiplied with other functions, it is a part of the volume element.
Expanding (ELF) up to first order in the deformation parameter gives

[arantrsg = [aa (fo+ 005 0 0)
= [ @ (g~ 5O @ @u ) ~ 5O (0S)9)

d:ef /dn+ll’ﬂfg

Tn the case of the #-deformed space, that is the Moyal-Weyl x-product the usual integral fulfils (ELH).
We use this in the last chapter when constructing the deformed Einstein-Hilbert action on this space.
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Using the explicit form for the structure constants C’f\“ﬁ I3 from the last line follows

Onpi(z) =0, 2/ 0ju(z) = —np(x). (4.1.9)

Expanding the x-product up to second order one sees that there are no new conditions on
1 coming from the second order; this is valid for all orders. This result was also obtained in
[90).

The solution of equations (L) is not unique. Some of the possibilities are

1 1
= e (4.1.10)

20, . gn—1’ ((xo)Q___(an)z) 5

M:

The second problem that is obvious from (EELI0) is that the measure function is singular
at 0. However, after defining the Lagrangian density in such a way that it vanishes at
zero we can choose a positive-definite measure function. Note also that the explicit form
of p is not required in any of the calculations later on, we use only relations (E1.9) so the
non-uniqueness of p does not affect our results.

With this integral we define the action as follows:

S = /d”“x p(x)L,

where L is the Lagrangian density. From (EI.9) we see that the measure function is a-
independent and therefore it does not vanish in the a — 0 limit. Since we want that our
theory gives corrections to the classical one, we have to define the Lagrangian density such
that

lirr(l] pl = L.

Here L is the effective Lagrangian density expanded in powers of the deformation parameter
a, and £° is the Lagrangian density of the corresponding undeformed field theory.

Having found the integral that fulfils (LI6) (or ([ELE)) equivalently), we define the
variational principle. Namely, we can always bring the function to be varied to one side of
the product under the integral and then vary it

5
dg()

There is one more thing to be clarified before writing down the action. We know that
the usual derivative is an antihermitian operator

/d"“:c,uf*g*h = 5g5(:c) /d"“xug(h*f) =uhx*f. (4.1.11)

/ 4 f () = — / "12(0, f)g

provided that functions f,g — 0 at the boundary surface at infinity. Using the definition of
the integral (ELY) however,

/ i f(Dyg) = — / & ((0)f + (0 f))g # — / " apu(0, g,
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since we have introduced the z-dependent measure function in the definition of the integral.
If 0 = n then because of (L) there is no additional term and d, is antihermitian. When
o = j we introduce 0; = 0, + p;(x) such that

[ty = - [aiaud;ng (1.1.12)

and from this requirement we calculate p;(z),

/ d"apf(d;g) = / A" apf (9,9 + pig)
= —/d”“fc 0;f)g — /d”“ (051 — 2up;) f9-

From here it follows

i
2u
In this way we obtain antihermitian derivatives compatible with the integral (ELIF). Sub-
stituting

pj(x) = (4.1.13)

8—>8—8+a 9, — 0, = 0,

in (ZZT3) one obtains

D — (l sin(ad,) — Mélé[) 7

" a ia0?
D* = &5. (4.1.14)
Jj _Z'aan J .
and
/d"“:w fx(Divg)=— /d"“x,u (D> f) *g. (4.1.15)

Now one has to recalculate the Leibniz rules for this modified derivatives. We do this
explicitly for D* for D* the calculation is analogous. From (EELI3)) follows

anpj =0, xl(alpj) = —pPj (4116)
and from here and (2-2.7)
ewan . efiaan -1
pixf= 5 f fxp;= a0, f. (4.1.17)
Then
N efiaan -1 —ia0n,
Div(fxg)=——5—(0+p)(fxg9) = Dj> (fxg) +pj————(f*g). (41.18)
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Using (E1TM) we have

gy = e
i 9) = fxg*p;

= fxpjxg+ f*lg%p

o eman o efiaan
9)

2
:f*pj*g+f*pj*( T a—

i 1— efman
= [Hpix(eMg) = [« (%WQ)-

Inserting this result in (ETTS) gives the Leibniz rule for l~)]*
x - * —1a0n yx
D} (fxg)=(D;>f)*(e >g) + f*(Dj>g). (4.1.19)

The Leibniz rule for DY is obtained in the similar way

Dyv(fxg) = (Dho f)x (€7 > g) + (" > f) % (D} > g)
—ia (D} (" > f)) x (D > g). (4.1.20)

It is interesting to note that [); always acts on the last term in the product, function g in
this case. We use this result in the next section when discussing the field-strength tensor.

4.2 Modified Seiberg-Witten map

In the previous chapter we have already solved the Seiberg-Witten map for a general non-
abelian gauge theory on the x-deformed space. Therefore, the solutions for the U(1) gauge
theory immediately follow. However, our solution for the gauge field depends on the defini-
tion of the covariant derivative and this in turn on the choice of the derivative we want to
gauge. Since we prefer to work with D; instead of D}, because of (ETT1H), we have to modify
the solutions for the gauge field V,, obtained in the previous chapter.

Once again we start from the covariant derivative f)u = D;—iffﬂ and its transformation
law

5 (bﬂw(x)) — i\ () * Dt (2). (4.2.1)
From (E2Z7)) it follows

5V %) = D% (Ag %) — Ag % (D;w) Filax Vykt) — iV, (Aaxt).  (4.2.2)

Again, it is more convenient to separate the nth and the jth components of (2.2]).
First we look at the jth component. Using the Leibniz rule for D} ([LII9), we obtain

6oV x1h = (DF > Ay) * (e7"n > V) 4 g * Vi xtp — iV * (Mg %) (4.2.3)

Inserting the ansatz

V= Ajx e ®n (4.2.4)

J
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n (EZ3) leads to
504Aj = (D; > Aa) + iAa * /ij — ZA] * (e_ma" > Aa) . (425)

Expanding Aj field in the deformation parameter a:

Ay =A%+ A% +

and using the solution for the gauge parameter A, (BZI0) gives the solution for \7j up to
first order in a

V; = A? — iaA%, — %anAg - %{Ag, A%+ inoxAGFO A0} — (A°, aUA;?}). (4.2.6)

p3’

One notices that this solution is the same as (BE5T2). This is to be expected, because the
V; field is only 0, derivative-valued and 9, is not modified. )
Next, we look at the nth component of equation (EEZ2). Using the Leibniz rule for D}

ET20) leads to
daVax 0 = (Do M) % (7% 0 ) 4 (e = 1)5 Ao) 5 (D} 0)
—ia(D} > (€% b Ay)) % (D b 1h) + il * Vy k) — iV (Mg 1) (4.2.7)
We make the following ansatz
V= Ay, xe % 4 Ay % D; + flgn * Dl* (4.2.8)

and insert it in equation (EZT). Collecting terms proportional to xe 10 ). *D*@/} and *D*@/}
we obtain the transformation laws for the fields Aln, As, and Ag respectively
0aAin = (D5 Ay) + iy * Ay, — 1Ay, * (7999 b AL)
—iAgn * (D> Ay) — iAL % (DF > Ay),
ooy = ((€"% — 1) > Ao) +ihg % Aoy — 1Az, * (€997 > A,),
0o AL, = —ia (0" > Ny) +ilg x Ay, — Al x Ay — ads, x (0" > A). (4.2.9)

Up to first order in a the solutions of these equations are

. . 1
Ay, = A° — g<¢ajA°J + A;?AOJ) + Zc;%({an, A9} — (A, aaAg}),

— 74 A0
Agp = 1aA,,

Y
A, = —iaAY,
and

U, = A° — iaA%d, — %@»AOJ - gAg?AOf + in"xA<{FO A9} — {4, AO}). (4.2.10)

pn

Comparing this solution with the solution for V;, (BX5335), one sees that the only difference
is in the term —iaA%9;. This is obviously the consequence of modifying derivatives.
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As the next step we construct the field-strength tensor. It is defined as
Applying this to the field ¢ gives

Fiy = ((Dr> Vi) = (D} > )
—iV; % (€710 5 V) 4 iV % (7190 > VJ) Ke 2o, (4.2.12)

Foj = Fpji %€ 29 4 Finwe DY + Fl oy e D}, (4.2.13)
where

Fnjl = (D:; > V}) — (D; > an) — Zan * (e_man > ‘/}) + Z‘/] * (e—iaan > an)

—iVoy x (Df > V;) = Vo % (D} 2 V),
Fan = ((eman — ].) > ‘/j) — (D; > Vng) — Vo x (eiaan > ‘/}) + Z‘/} * (e—iaan > VnZ),
Fujs = =ia(0"' 0 Vj) = (D} Vag) = Vo % (9" 0 V) = iV Vi o Ve (7 2 V),
just like in (B6.H)-(B67).

Again we split F,, into the curvature-like terms and torsion-like terms [

Fuw=Fu +T0Dy+ -+ T0" D, .. Dyt 4. . (4.2.14)

Expanding (EZ12) and [EZTI3) up to first order in a and rewriting them in form (EZT4)

gives

1
Fy = FY — iaDyFS + 10570 (2P, Foj} + {DSFS, ASY — {43, 0,F5}),

n* ij pir = oj
TV = —2iad" F;

iJ n- 45

_ 70 10 0

L o
#3572 (25, Py} + {DSFS, ASY = {AD. 0,3} )

pnr = oj pimnj o

T = —ian F, — iadt F) (4.2.15)

ntnj*

These results are the same as (LGTT)-(E6.T4). Actually, we checked this up to second
order in a, and because of the structure of equations (EZ12), (EZ13)), (ETLIY) and EIT20),

we expect that this holds to all orders in a. As in the action for the gauge field only the
curvature-like term is usedﬁ, from equations (LZTH) we see that the modification of the
derivatives does not affect the gauge part of the action.

2Note that now the torsion-like terms are defined to be coefficients in front of the modified covariant
derivatives.

3That we use only the curvature-like term in the action is the matter of choice. In principle, one can also
include terms depending on the torsion-like terms.
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4.3 The action for the xr-deformed electrodynamics

Now we concentrate on the U(1) gauge theory coupled to fermions. For convenience we list
the solutions of the Seiberg-Witten map for the gauge parameter A,, gauge field V,, and
matter filed ¢ in the case of U(1) gauge group

1
Ay = a— §(J§”ﬁAg(&,a), (4.3.1)
L o
Y =0 — 50;’ o AD(9,°), (4.3.2)
- ) 1
V= A —iadf0, — Z0, A0 = SALAT + SO (209,49 — (9;49)) AL,

. ) ~ a . a A
Vo = A8 = iaA%d; — T0,AY = SAVAY + SC(7a (Q(apAg) - (anAg))Ag, (4.3.3)
pit oj

Fij = Fig' - ia@an + CfoxA (FO'FO + (8,)17’28-)142),

F.j = Fy?j _ %auFBj +C§OZE>‘ (FO FO 4 (8PFT?]~)A2). (4.3.4)

pn= oj

4.3.1 Matter field action

First we look at the action for the matter field without gauge symmetry. A proper action
for the spinor field ¢ would be:

S = /d"“x [ * <ify"l~)(*, > — mz/;), (4.3.5)

where D is given in (EELI4). Varying (E33) with respect to 5 using (EI.TT]) we obtain
M(m"[); > — mzz?) ~0. (4.3.6)
The classical limit of this equation is
iy 05 — m)ip = 0,

since p and p; are a-independent. In order to correct this (like we have said before, we want
to have a theory with the good classical limit) we notice that

(2 f) = (9 + p) (2 f) = p2 (0, ) (4.3.7)

and as a consequence - 1 1

This suggests that we can rescale the field ¢
b= e, (4.3.9)
Inserting (E33) into ([E30) gives, after using ([E3H)
iV Disp—mip =0, (4.3.10)
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which has the proper classical limit.

The other way to obtain (E310) is to insert (E39) in the action (E3H) directly

Sn = [ @ 7Ty (in7Die (h0) o)
= /d"“l“ (=3 0) (387397 (D o ) — mp 3o
= /d”“fc (i Dy —map), (4.3.11)

where coming from the first to the second line we used (ELR) and ([@3F). The equation of
motion following from this action is exactly (E310).
Now we write the gauge covariant version of (231

Sn= [ ¥ (4w ("D, — m)3)
= /d"“x ] (@/Z) * (M“f); >+ 7“\~/M * 1) — m@Z))) (4.3.12)
Using the variational principle we obtain the equation of motion for the matter field v

p(iv" Dy > ) + AV, 1h — map) = 0. (4.3.13)

Again we have the same problem, equation (EL313]) does not have the proper classical limit.
Unfortunately, we can not use (EE3d) now since this rescaling is not compatible with the
Seiberg-Witten map. Namely, if 0,1 = iA, x ¢ then

Sath = 00 (1™ 2) = ipt~ 2 (Ao %) # iAo % 9,

since the x-product is noncommutative and the action (E312) will not be gauge invariant.
Nevertheless, demanding

5041/; = ilq *1/;

one redoes the Seiberg-Witten map for the field 1), but this time taking the solution in a — 0
v 5 - ~

limit to be 1% = p~29° instead of 1°. This is allowed by the transformation law §,1° = ia1)°.

Repeating the same calculation as in the previous Chapterﬁ we find the following solution

~ 1 1 1 1
=p 20 — e éCf"x’\Agﬁawo — %u’iAgwo. (4.3.14)

The additional term arises as the consequence of requesting that the a — 0 limit of the
. 7 . 1 . . . .
solution for ¢ field is p~29°. This we might call the ”covariant rescaling”.

4In ([E3TI4) we wrote the solution for ¢ field in the case of U (1) gauge group. Nevertheless, one can
calculate the solution in the case of an arbitrary nonabelian gauge group, first order result is

_1 1 _1 0 T 1 na _1
v=p wofiu 20% :E)‘Ag&ﬂ/)ongu 20% xA[Ag,A?,]wO—Iu 2 A0,
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Now we insert (E314) and ([E33)) in (E313)) and expand the Dirac derivatives up to

first order in a as well. The equation of motion up to first order in a follows
, 1 T oo
(19DY = m)® — SC{T,DIDN — LC{Ta " FS, (DY)
i o 0 ,,0 _
_ZC‘/: YF,,¥" = 0. (4.3.15)

The equation of motion for 1 is obtained analogously, one varies the action with respect to
the field v, rescales the field 1) and expands the Dirac derivatives. The result is

_ _ 1 - i _
— DYy — my)® — SOV DIDAY0y, + §C§f’xADgwagp
i o ,7.0 0 __
+5CETNE,, = 0. (4.3.16)

We see that ([E316) is the hermitian conjugate of (E3TH) (and vice versa) as expected.
But we are also interested in the effective action for fermions up to first order in a. Let
us write the action ({L3I2) with all the derivatives explicitly, using (EZ4) and [(ELZF):

Sm = /d"“x i <1/:1 * (z’fy“[); >4 — ma)) + b * YAV K (67790 1 qh) 4 b " Vi * (DX 1))
b % "V % (D M/?)). (4.3.17)

Now we repeat the calculation leading to (E311]). We omit one * in (E311), rescale the
fermionic fields using (EE314)) and finally insert the solutions for the Seiberg-Witten map for
the gauge field and obtain up to first order in

_ 1 _
S, = / d"+1x(1p0(m“2>2 —m)p° — ch"’waFga(m“Dg — m)y° (4.3.18)
1 o - i oy i
—505 V0, De DY — 505 2O E, (Do) — 1% wow“Fﬁpr)-

It might not be obvious but the action (E31]) is hermitian.
Since the integral in ([{L3IF) is the usual integral, applying the variational principle to
[(E3IR) leads to the usual Euler-Lagrange equation of motio

oL oL oL
0,0, —0 +—=0. 4.3.19
WO o)~ o) o (4.3.19)

Using (E319) the equations of motion for the fields + and 1 follow from ([EZIN). They are
the same as (LTI4) and (E314G) so we do not write them again.

>The covariant derivative D2 is the usual covariant derivative for the undeformed U(1) gauge field theory,
DO = §, — iAY.
6Note that in (EEZ3IX) the Lagrangian density depends on the second derivatives of fields as well.
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4.3.2 Gauge field action

Our first guess for the gauge field action is

1
Sy=—7 / A"y Tr (F, « ™). (4.3.20)

To check if this is a good guess we look shortly at the equations of motion following from

).

If the matter field is not present, the equation of motion for the gauge field is
u(@uFOW’ + higher order terms ) =0, (4.3.21)

that is
9,F° + higher order terms = 0, (4.3.22)

since p is a nonzero function. Equation (E322)) has the proper classical limit.
Now we add matter field to this action, that is we consider the theory described by the
action

S =S+ 5, (4.3.23)
where S, is given by ([E3I8). The equation of motion for the gauge field follows from

d(Sy+ Sm)

A 0, (4.3.24)

u(@uFOW + higher order terms ) = — ("¢ + higher order terms ). (4.3.25)

Looking at the classical limit of this equation one finds
0 L
O F™HP = ——pyP1), (4.3.26)
i

which is obviously not the classical equation. Therefore, we have to cancel the measurdi
under the integral in (E320). The covariant rescaling will not work here. To be more
precise, it might work for the U(1) gauge theory since F SV = 0,AY — 8VA2. Then one
would rescale the gauge field in a proper way and obtain the rescaling of the field-strength
tensor such that it cancels the measure under the integral. But for the general nonabelian
gauge theory we have F), = 0,A) — 9,A) — i[AD, A)]. Since F}), consists of both linear
and quadratic terms in Ag, one cannot rescale the gauge field and obtain the rescaling of
the field-strength tensor as well. Since we would like to have a procedure how to write the
action for a general nonabelian gauge theory on the s-deformed space, we do not consider
the possibility of covariant rescaling of the gauge field, but try to do something else instead.

"Leaving p in EZ20) but also in [@3IT) will not give the requested result since then the equations of
motion for ¢ and 9 will not have the proper limit because of the derivatives 0; appearing.
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In [9T] the similar problem was analysed, namely the construction of the Yang-Mills
action on the E,(2)-covariant plane. The solution was the following. One can write the
action for the gauge field as

1
5=t / I u(z) Tr (X % Fuy 5 F9) (4.3.27)

where X is the gauge covariant expression (so that the gauge invariance of the action is not
spoiled)
0.X = i[A, ¥ X]. (4.3.28)
In the a — 0 limit X should cancel the measure p under the integral, leading to the equation
of motion with the good classical limit.
We take that approach here and calculate X from (E328) in the case of U(1) gauge

theory, having in mind that the generalisation to the nonabelian gauge theory is straight-
forwardl. We obtain up to first order in a,

X =(1—-anA%)u". (4.3.29)

Expanding (E327) up to first order in a and using the solutions for the Seiberg-Witten map
E34) and [E329), the effective action for the gauge field follows

1 1
Sy =1 / d"* i (Ff, PO — SCLa PO F, P, + 205 0 FO FS,FY, ). (4.3.30)

4 pv po up* vo

4.3.3 Conserved currents

The complete action for the U(1) gauge theory coupled with matter is S = S,, +5,. The
equations of motion for the matter fields are given by (E31H) and ([E3T0). For the gauge
field we have from (324

1 1
_ 0 af 1,70, 0 0aB 170 af 170 0
= J = 0 F — SCRIF D, — SO+ COOFM Y

—C’E‘p FOBu FO% + C’E‘“ F98p FO%

1 1
+CV 0, (FPF — SFWFg) — 2O 0,(F 7 Fy)

—CYP 20, (FOPMFg) + O a0, (FO Fly). (4.3.31)
The current J* is given by
Jp:éS_m:_a oL, oL,

+
§A "0(0,A49) " 0AD
— 1 o - o T { « 10 /.0
= 0 — SO Fgy® — Oty B — S OR i D0 yay”
{ - l - 1 — -
—5Cai# (D) + 5 Cor a(D0°) + 2 Co% (DI — 34D’

+%C§”xmg¢w@gw). (4.3.32)

8The solution for X up to first order in a in the case of an arbitrary nonabelian group is the same as
E3Z3), the difference arises in the second and higher orders in a.
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Using the equations of motion (E31H) and (E3TI0) one can show that the current
E332) is conserved, d,J° = 0.

In the undeformed gauge theory the existence and the conservation of the current J? are
the consequences of the symmetry of the action with respect to the gauge transformations.
One expects that the same applies here. To check this we calculate the variation of the

action ({L3I8) for
5ot =ia®,  ,4" = =i, 0,A) = 0ua  and 6, F, = 0. (4.3.33)

Since the action (E3IX) depends on the second derivatives of the field ¢° and ¢° and on
the first derivatives of the gauge field Ag (unlike in the classical case), we have to derive the
Nother theorem from the beginning. We do it for the U(1) gauge symmetry.

GuSn = b [ 4710 (4,00, 000,000, %0, P00, 43, 04)
8£ oL oL

0L = 20+ 0 7504 9,,0,°
000" G ) 55,50 O
0L s o e O oy 0L
( Oéw )a¢0 + ( a(aﬂ,l?b ))a(aﬂ&o) + (504(8/1an ))8(8M6VQZO)
oL oL
+Ma AS + a(ay Ag)éa((‘)VAg). (4.3.34)

Inserting (EE333) into ([E334), using that dq(9,1°) = 9,(0,1°) and the equations of motion
for the fields 1° and ¢° [@3I9) gives (after partial integration)

SaSm = / drtly (a(apjﬂ) + (8,0)M? + (a,,aﬂa)Mpﬂ), (4.3.35)
where
7= s - a1+ )
a8 O - <ay@°>8(%§m), (4.3.30)
M= (majmw - s
2 O ~ 200 g — i jo> (43.37)

Since a(x), 0,a(x) and 0,0,c(x) are independent parameters (functions), then from the
requirement that 6,.5,, = 0 we have

8,j° = 0, (4.3.39)
MP =0, (4.3.40)
MP* = 0. (4.3.41)
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Using the explicit form of the Lagrangian (E3I8]) one calculates that indeed M? = 0,
M?PH = 0, while for j*

. - 1 .o _ 1 ., _
3 = P = GO g — SO Fy (4.3.42)
N : A ]
_ZC)\P‘??AP ('ng/jofyawo _ wOfVa,DBw(]) . ZCY)\P<'DO)V¢O,YC‘{Q/}0 - wOfYQIDOAw(]) )

Comparing this result with (EL332) it looks as there are two conserved currents in the
theory. We first check if the difference A? = JP — j* is a topological current, that is one
proves that it is conserved without using the equations of motion (off-shell). To do this, we

rewrite the difference of (E332) and (EZ342) more conveniently

- Z « « 7 1 «Q o
AP = g7 = = 2 (C5o = O ) u(0a0) + 5O (6 AL

SO DA + LOP (I 0u)) + OO (e AL
2O (0 — 1AL+ SO AL
2O 0T 0) + SO (@), (43.43)
If one wants to check now if 9,A? = 0f] one observes the following
0,8 = L0320,0, (I (0,0°) ) + 5 C3700, (104# (0 A0
+%C§p¢oy“(8aA2)¢° + %cgpau (3 (@), (4.3.44)

Here we have cancelled all the terms we could without using explicitly the equations of
motion. First term in ({343)) is a real topological term; to cancel the others we used that
0,(10P%) = 0. To cancel the terms in ([E3Zd) we have to use the zeroth order equations of
motion for the fields ¥° and ¢°, but not the equation of motion for the field Ag. Therefore,
AP is not really a topological current.

To have two different conserved currents in the theory with only one symmetry is an
unexpected result. One possible interpretation is that it is actually a manifestation of the
freedom of the Seiberg-Witten map. However, there might be some other reasons for the
appearance of two conserved currents in our theory, but so far we were not able to answer
this question properly.

4.4 Seiberg-Witten map and the gauge symmetry

It is well known that the Seiberg-Witten map is not unique [92], [93], [94], [95]. The detailed
analysis of the ambiguities in the Seiberg-Witten map in the 6-deformed space was given in
[42] and we adopt this analysis for the problem at hand. Of course, we only look at the first
order contributions and the U(1) gauge theory.

9Since AP = JP — jP, 9,AP = 0 is certainly fulfilled. The only question is whether one can prove it
explicitly without using the equations of motion.
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Let us start from the solution for the gauge parameter A, 31]). The homogeneous
equation expanded up to first order is

dal\fy — 0gA}, = 0. (4.4.1)

If we restrict ourselves to Al which is hermitian and do not allow for a derivative valued
gauge parameter, then there are no terms coming from the homogeneous equation, AA}X =0.

The solution of the Seiberg-Witten map for the fermions (E314) allows an additional
term

AY = by P FO P, (4.4.2)

which does affect the action, as we shall see later.

When analysing possible additional terms in the solution of the Seiberg-Witten map
for the gauge filed in [#2] the restriction was made that one does not allow for the derivative
valued terms to appear. However, in our setting the derivative-valued gauge fields appear
naturally, as the consequence of the nontrivial Leibniz rules for the Dirac derivatives (EL1.19)
and ([LT20). Therefore, the most general solution of the homogeneous equation is given by

AV, = ibyC{7a? F), DY + ibs C{7a? FY, DY +
+iby C{7aN(DUFy) + ibsCL7aN (DY Fy,) + ibgCLOFy + ib;CROF, . (4.4.3)

Terms ib,C{7z*(DYF),) and ibsC{”z (D} FY,) are related by the Bianchi identity

02 ((DOFO )+ (D°FO ) + (D°F? )) ~0.

o pp w* po ptop

Changing p and o indices in the last term, we see

CL (Q(DOFO ) + (D RO )) —0,

o pp w* po

that is the terms proportional to b, and bs; are not independent, so it is enough to write one
of them.
If in the last two terms in (ELZ3) we use the explicit formula for C{7, we obtain

iabgnF,, + iabr(F,), — F) ) = ia(ben — 2b7) F)), .
In this way we reduce the number of arbitrary constants from 6 to 4,
AVH = ’iszﬁo.’L‘)\FSplbg + Z'b3C§Ul’>\F[?J’Z§2 +
+iby C{7aN(DLFy) + iabs F,. (4.4.4)

Now we demand that Af/ﬂ is hermitian (that is natural, since Vu is also hermitian and
we do not want to spoil that). This fixes the constants b, and b5 and finally

AVH = ’iszﬁo.’L‘)\FSpﬁg + Z'b3C§Ul’>\F[?J’Z~)2 +

+%(b2 — 2by) O N (DOFC ) + %(an — 2bg)FY,. (4.4.5)

o pp

00 _ 500 -
Note also that Dy F}), = 0, F),, since we work with the U(1) gauge theory.
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The new terms from (BEZ0) lead to the modification of the curvature-like terms
AF,, = 2b,CY 2 F,, F,, + 2b3CY 2 F,, F,y +

(by — 2b3)CL° 2 (DSDOFO — DODY 0 ) - %(n ~1)0DYFY (4.4.6)

)
9 ot pp p=o"vp nt pv

and the torsion-like terms

ATy, = —iba(CL7 FS, — O FS, ) — ibaCY 2 (DY, — DUFY,)

v pp wtvp

—ibs <5Z(Cfo‘Fp0a + C’faa:)‘(DBFpOa)) — 87 (CFo, + C’faxA(DngOa))) (4.4.7)
of the field strength (E2ZIH).
Taking into consideration all the additional terms (L42), ({Z40) and (EZH) we obtain

a more general effective action:

n 7,0/ 1 v
S = / d"e (w(mﬂpg —m)y’ — L F, P

1 - I
—105 (0°7,DIDP° + DIDP 0,y

l

1 o . . o A
(L= 8b)CETRMOFS (i (D) — mis®) — (1 = 20) O 60" E, (D)

2
o AT . 1 -

+ibs Y7 Py Fy (D) — 2i(by — 72— 203))CY” " (DY Fp, )y

—%(n + 8by — 2nby + 4bg — 1)1 FO "
1 1

—5(1 — 2by)CY7 T FOFY Fy + g(l - 8b3)C§"xAFO“”F£VF£U>. (4.4.8)

All constants b; are so far completely undetermined and they have been all set to zero in the
previous chapter. The reason for this particular choice has been a technical simplicity in the
construction of the Seiberg-Witten map. However, we have another interesting possibility.
There exists a particular choice of the constants b; such that all the ambiguous, undetermined
terms in the action (LAY are set to zero.

For the massless fermions we choose b; = 1/16, by = 1/2 and b3 = 1/8. The effective
action (EZH) up to first order in the deformation parameter a is then

_ 1
_ n+1 - 70 0,/0 0 Opv
S = /d v (0 Dp® — L Fo, P
1 oy - STyl
€% (U0, D5D" 0 + DI WO)). (4.4.9)

The corresponding equations of motion are

. 1 o I
Dy — SO, DeDYT — - Clmy i =0,
D0/,0 ! poma080 b ipo 70 0
—iDpy = SOTDEDYOy, + - Oy E,, = 0, (4.4.10)
O F = J = 0yPy0 (4.4.11)

(O (DY — 01D + O (PP — P D0) )
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If one calculates the current j” ([E336]), coming from the variation of the action (EL9) one
finds 5 = J*.

For the massive fermions we have to choose by = 1/2, by = 1/2 and b3 = 0. This leads
to the effective action up to first order in a

n 70/, 1 v
S = /d g (1#%27“2?2 —m)y° — ZFSVFO“
1
8

The equations of motion for the matter field which follow from (EZTZ) are

1 _ —
—1050 (¥, DIDY° + DIDON ,0) + CfaxAFOWngFpO(,). (4.4.12)

| Lo i
(iy" Dy = m)y’ = SO, DD — =Py F e = 0,
. I ; _
DOy — mi® — S CL DYDY, + ﬁcgw%wgp —0.  (44.13)

The conserved current is again only one and it is given by (EEZTT]). However, the equation of
motion for the gauge field will have additional terms on the left-hand side of (LZ.TT) and they
will be explicitly x-dependent. It looks like the Yang-Mills part of the action ”feels” if the
fermionic fields are massive or massless, which is unusual. Also, the explicit z-dependence in
the action (EZ132) is not something that one expects to have. Fortunately, there is a freedom
in the Seiberg-Witten map which we have not used so far. Namely, X was also obtained by
solving the Seiberg-Witten map (E328). To the solution (E329) we add

AX = by ' CY 2 F, . (4.4.14)

This leads to the effective action (for the massive fermions, for the massless fermions we set
b4 - 0)

: 1
S = / Aty (@/)O(W“DB — m)y — L FS, P (4.4.15)

1 _ S — 1
—CF (6%, DED™" + DODAY ,1°) + (L= 26O FO E), F )

pvs po

Choosing by = 1/2 we obtain

n 70/ 1 v
S = / d"z (zpo(m“Dg — )y’ — S F, F

1 o (= o
— 357 (97, DD + DIDOG 7,0) ) (4.4.16)

which is exactly ([EZY) (up to m = 0 or m # 0 for the fermions).

In this way we have obtained the same action, equations of motion and conserved
current in the case of U(1) gauge theory coupled to the massive or massless fermions. Fur-
thermore, we have obtained the action and the equations of motion that are both gauge
invariant and invariant under the classical Poincaré transformations. Note that no explicitly
x-dependent terms appear in the action (EZIH). This is the reason why we would prefer
this choice of the Seiberg-Witten solutions. Since we are not sure if the requirement that
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the two conserved currents should be equal is correct, we do not want to use it to fix the
ambiguities in the Seiberg-Witten map. However, we can demand that the action is explic-
itly x-independent and this then gives the preferred choice of the Seiberg-Witten map. In
addition, we say that this choice gives the unique conserved current.

We end this analysis with a few comments. First note that the fermionic action we
have constructed here up to first order in a is

S, = % / dmHly <@E°(z’7“DM — m)® + (—i Dt — m&)zp). (4.4.17)
Here the operator D,, is Dirac operator ((EI.T4) expanded in @ in which partial derivatives are
covariantised by minimal substitution 9, — 9, —1A%. We conjecture that this is also valid for
higher orders, but one needs to be careful in ordering the derivatives in the expansion of the
Dirac operator. Namely, in the second order in a a term like ¢°929;1° appears. Therefore,
it will not be the same if one writes @EODQLDQLD?Q/JO or @EODELD?D?L’(/)O or @EOD?DQDQQ/JO since
the covariant derivatives do not commute. But analysis here is far from being complete, this
is to be investigated in future.
Note also that if one allows for the derivative-valued gauge fields in the #-deformed
case, one can construct the effective U(1) action with no additional terms in the first order
with respect to the undeformed U(1) gauge theory, compare with [41].
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Gravity on the f-deformed space

In the previous two chapters we were analysing the noncommutative gauge theories. In this
chapter we continue with this subject, only now we turn to the local space-time symmetries.
Our aim is the construction of a gravity theory on deformed spaces. For simplicity we
work with the #-deformed space which has been introduced in Chapter 1. Nevertheless, the
method we use is a rather general one and it can be applied to other deformed spaces as
well.

Since our approach is based on a deformation of the commutative diffeomorphism sym-
metry, we first rewrite some of the well known properties of the commutative diffeomorphisms
in a more mathematical way. Then we derive the Hopf algebra of deformed diffeomorphisms
and using this result introduce the concept of fields. Repeating the steps one does in the
commutative case, we obtain the deformed Einstein-Hilbert action and derive the equation
of motion from it. At the end of the chapter we make two remarks. The first one concerns
the f-deformed global Poincaré symmetry which can be viewed as a special case of the dif-
feomorphism symmetry. The second one concerns a different approach to noncommutative
gauge theories.

5.1 Commutative diffeomorphisms

Under the general coordinate transformations
at — g =t + ¢ (x), (5.1.1)

a scalar field ¢° (:c)ﬂ transforms as

¢'°(2") = (), (5.1.2)
or in the language of infinitesimal transformations
g9’ (x) = ¢'%(x) — ¢°(x) = —€"0,0" (). (5.1.3)

Here &#(x) is an arbitrary function of coordinates. These transformations close in the algebra

[ggoc — 8clog]) = otk . (5.1.4)

'We write (almost) all commutative fields with the upper index 0 to distinguish them from their non-
commutative analogs.
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where 5[%1777] @0 = — (£ (") —n"(0,€"))(9,¢°). Algebra (I is the algebra of commutative
(classical, undeformed) diffeomorphisms.
The product of two scalar fields is a scalar field again

o (A(0)h(@)) = (FE'6h(@)) () + 0 (w) (3¢ 05 (=))
= £ 0,(61(2)0s(x) ) (5.1.5)

and we see that the Leibniz rule for the operator 5§l is undeformed. This Leibniz rule follows
from the coproduct

A =0l @1+1® 6. (5.1.6)

It is not difficult to check that (BIH) is coassociative and that it is consistent with the
algebra (BLT4)). Adding the counit and antipode

e(6d) =0,  S(6) = —d¢ (5.1.7)

we define the Hopf algebra of undeformed diffeomorphismsﬁ.
Under the transformations (BI0]) an arbitrary tensor transforms as

Sg T = =N Ye) = (O EN Tt — oo = (00, T
F(ONE T2V e (ONEP )T (5.1.8)

Specially, for a covariant vector we have
5§V = = (O\V)) — (0,6MWY, (5.1.9)
and for a contravariant one
SEVOH = —MNOWVOH) + (02" VO (5.1.10)

Since (EI) is a local transformation (the parameter £* being z-dependent), one pro-
ceeds like in the usual gauge theory, observing that the partial derivative of a vector field
does not transform like a second rank tensor. This is repaired by introducing the covariant
derivative

DOV = (9,V)) = TOov) (5.1.11)

pr o

where Fgﬁ‘ is the commutative connection. Its transformation law follows from the require-
ment

SA(DIVD) = —EX(OADIVD) — (3,69 DIV — (0,6 DVY, (5.1.12)
and it is given by

T =~ (O3T00) — (0TS0 — (BTN + (D0 — (3,0, (5.113)

" pv

2To be more precise, in order to speak about the Hopf algebra of diffeomorphisms one has to go to the
enveloping algebra of (LIl [96]. It is the associative algebra freely generated by 521 elements and divided
by the ideal generated by (L) relations.
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Because of the last term in (EIT3) I')Y is not a tensor. One generalises (ELTI) to an
arbitrary tensor

0 0vy..vs Ovi..vs\ _ 70apO0vi..vs . 70aq0vy..vs
DPTMI---MT o (apTMI---MT ) FPMITaM2---NT FPNTTMI---Mrfla
Ovy 0 avs...vs OvsgOvy..vs—1x
AL T e+ T, ) (5.1.14)

The commutator of two covariant derivatives defines the curvature tensor R?WPU and
the torsion 75

(D, DV, = Ry, VY + Tl DAV, (5.1.15)
with
0 o __ Oo Oc 08100 08100
R;u/p - (aVFup) - (8urup) + pr Fﬂﬁ - Fupryﬁj (5116)
0o _ 10« Oa
T,uu - Fuu - F,uu' (5117)

One also introduces the metric tensor g,, as a symmetric tensor of the second rank.
Together with its inverse ¢g"”, it is used to raise and lower indices. Although metric and
connection are independent objects, they can be related introducing the metricity condition

Dgguu = (OpGyw) — Fg;?gau - Fgfgua = 0. (5.1.18)

This condition enables us to calculate the symmetric part of Fg,‘} in terms of the metric
tensor and its inverse. If the space is torsion-free, T5* = 0, then from (EII7) it follows
that the connection is symmetric in lower indices and it is then given entirely in terms of
the metric and its inverse.

Using the metric one defines the Ricci tensor and scalar curvature as

R, =R, =R), (5.1.19)
R’ = g"R),. (5.1.20)

Finally, the Einstein-Hilbert actionf] is given by

S = /d4:p V—gR°, (5.1.21)

where g is the determinant of the metric tensor g,,. In order to have an action which is
invariant under the undeformed diffeomorphisms, one has to introduce the measure function
v/ —g. Its transformation law

0V=g = —(O\(EV=9)) = —(0&) V=g — (v =9) (5.1.22)

ensures that the action (BIZT) is invariant. Varying (EIZIl) with respect to the metric
gives the equations of motion.

In the next sections we generalise these concepts to the #-deformed space. The starting
point is the Hopf algebra of undeformed diffeomorphisms given in (14)), (E216) and (B11).

30f course, one can define more general actions than (E-L21]) using not only curvature scalar but also
curvature tensor, Ricci tensor and, if it is different from zero, torsion.
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5.2 Deformed diffeomorphisms

In this section we introduce the mathematical tools necessary to derive a gravity theory on
the O-deformed space. We work in the x-product formalism. For convenience some of the
important formulas from Section 1.5 are repeated.

The #-deformed space is defined by ([LI3]). Functions in the abstract algebra are repre-
sented by functions of the commutative coordinates, while the abstract algebra multiplication
is represented by the Moyal-Weyl x-product

frg(x) =270 f(2)g(y)| (5.2.1)
Yy—x
or
it 1, Y,
frg@ =3 <§> AN ”<8p1...8pnf(:p))<801...&,ng(x))
n=1 )
i 1
= fg + §9pa<apf>(aog) - §9p1019p202 (8p18p2f>(801802g> o (522)
with 677 = —0?? = const.. The derivatives in the abstract algebra Dy are represented by the
*-derivatives 0}
Oy = Oy, (5.2.3)

where 0y are the usual partial derivatives. In the following we will mainly write 0y, only
when we want to stress something we write explicitly 0%. Because of (B2Z3) this makes no
difference to our results. The Leibniz rule for the derivatives (223 is

Ox(frg) = (rxf)*g+f(05xg)
= (O3> f)*g+ [x (05> 9), (5.2.4)
where the ”>” notation was introduced in ([CEI4).

5.2.1 Inversion of the x-product

In order to proceed towards a deformed theory of gravity we have to introduce a few more
concepts. To start with, we define the x-actionl] of a vector fieldd § = &40, on a function

f(x)
€5 f = €5 (0,1). (5.2.5)
Expanding the *-product in (B2H) gives

o f = &) * 0, (0
s (%)"%9#101 077 (B, 0 () )0 00,0 f ()

= €01 (@)) + 507 (,E)(0,0,1 (1)) + ..
= (2f(x)). (5.2.6)

4Just like for derivatives, one also makes the difference between the x-product and the %-action of a
differential operator on a function. The first one is & x f = & x (O, f) + (" x )0, while the second is
€5 f = % (D f).

Note that £ is not a vector field in the sense of (EELH) or (EII0).
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We see that the x-action of a vector field on a function is given in terms of the higher order
differential operators acting in the usual way on a function. In this way a map from vector
fields to higher order differential operators is defined. Before we continue, we mention why
it is important to have this x-action. In the abstract algebra one has é = é"éu as a vector
field. When this is mapped to the space of commuting coordinates

f = €0uf = & (@)% O x [ = (@) % (O> [ + [ %), (52.7)
the first term in (B227) is exactly (B2ZH).

Since the map (.20 starts with the identity it is possible to invert it, that is express
the usual action of a higher order differential operator on a function in terms of the x-action.
We are interested in the deformation of the commutative diffeomorphisms and therefore we
look a

(€f(2) = &"(0uf(x)) = X{ v f(). (5.2.8)
The operator X7 is constructed perturbatively from the above requirement using the x-

product (22
X=X+ X0+
Xevf = (X0« f) + (X f) +
= (X1 + 207 @,X) @) + (X ) + .
=)
This leads to
Xt = _%epo(apxg(])aa = —%9”"(8,)5“)808#7

so the solution up to first order is

X} = &9, — %9’”(8,)&“)808“. (5.2.9)
It is not difficult to generalise this to all orders
* _Z " 1 101 nOn
xi=%" <7> o (am N .apngu)am .0y, 0. (5.2.10)

n

Before giving the physical meaning to this result we make a few comments. Everything
that has been done for a vector field £ can be generalised to higher order differential oper-
ators. Also, generalisation to more general x-products (more complicated deformed spaces)
is possible but it will not be analysed here. An important property of (E2Z10) is that it has
a meaning in the abstract algebra as well (unlike £#0,,)

Xio 6= & (00) — 207 (0,8") x (0,0,0) + ..
l .
Xeb = €(0u) = 50" (0,€")(0:0,0) + ... (5.2.11)

6 Although it looks like we have too many brackets in (E2ZH), it is convenient to write them all in order
to know how to understand expressions like (BZH).
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5.2.2 Hopf algebra of deformed diffeomorphisms

The transformation law of a scalar field ¢°(x) under the commutative diffeomorphisms is
given by (EI3]). We define the transformation law of a noncommutative scalar fieldf] o(x)
to be

be(x) = &/ (x) — B(x) = —E"0,0(x) = — X7 b B(x) (5.2.12)
and this we call the deformed transformation law of a scalar field. To see if this transforma-
tions close in the algebra, one calculates

de0pp(x) = 55(—X; >o(z)) = X; > Xg* > ¢(z).

Form here it follows
0¢0y — Onde = Ofe - (5.2.13)

However, this result was expected.

What has been done so far is just rewriting the classical transformation law (EI3)
in a rather complicated way (so no reason to call it ”deformed”). But now we remember
one more property of the classical diffeomorphisms. Namely, (EI4) tells us that the usual
product of two scalar fields transforms as a scalar field. This we generalise by demanding
that the x-product of two scalar fields is a scalar field again

O¢ (1% ¢2) = =X & (41 % 62). (5.2.14)

The right-hand side of (E2ZT4), written more explicitly using (E2ZT2), reads

5&(‘251 * <Z52) = =& (au(<l51 * <Z52)) = _fﬂ(<a,u¢1> * Qg + P % (3;@2))
# —(€"(0u1)) * P2 — d1 % (§"(0uep2)),

since the *-product is noncommutative. Commuting £* through the *-product gives addi-
tional terms

O (1 % P2) = (0cp1) * P2 + 1 x (0¢p2) + additional terms. (5.2.15)

and this is where the difference between (BZT2) and the classical transformation law (B213))
arises. The Leibniz rule for the transformations (B2I2) is not (BLH) but it has to be

deformed to (BE2ZTH).

In order to find the additional terms we expand the x-product and the operators X
in (ZTH). Expanding the left-hand side of (BZZTH) up to first order in the deformation

parameter 0 gives

0c(01 % 02) = —€ ((9u) % 62 + 01 % (0,02)) (5.2.16)

= € ((0u0)62 + 01(0,00) + 507 (0,0,01) 0os) + 507 (0,01)(2.0,) ).

"The definitions of fields and tensor calculus will be the subject of the next section. However, in order to
derive the results that follow we introduce the notion of a scalar field here.
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From the right-hand side of (E21H]) follows

(0e1) * g + 1 % (0ct2) + F(d1,$2,0,0,8) = —E"(0uh1) b2 — £,01(0uth2)

]

507 ((06)(0,01) + (3,0, ) D)

2
—507(0p1) ((8(;&“)(8#@) + gﬂ(@aau@))
+F (1, $2,0,0,€), (5.2.17)

where we labeled the unknown additional terms as F'(¢1, ¢2, 0,0, &). Comparing (B2ZT0) and
(EZTD) we find

F(61,02,0,0) = 20 ((0,6)(001)(0002) + (061 (0,6") 0u0)).

Finally, we write the Leibniz rule for the transformation d up to first order in the deformation
parameter 6

0¢(P1x 2) = (de1) * P2 + P1x (d¢h2) — %WU <((8p55)¢1)60¢2 + (9p01) ((8055)?52))7 (5.2.18)

with (9,0¢)¢1 = —(9,£")0,¢1.
This Leibniz rule follows from the abstract comultiplication, which up to first order in
6 reads

Ade = ¢ ® 1+ 1@ b — 26 ((88) © 05 + 0, © (90¢) ). (5.2.19)

It is not difficult to check that (B2ZT9) is coassociative. The counit is defined in the following
way

£(d¢) = 0 (5.2.20)

and it fulfils (C3H). Therefore, we have the coalgebra of deformed diffeomorphisms.
For a bialgebra we have to check whether

[Ade, Ady] = Abjen) (5.2.21)
£(0¢0y) = €(d¢)e(0y). (5.2.22)

We prove (ZZT), (LZZ2) is obvious.
Nde- 8, = (5 © 14105 — 207 (0,00 © 0, + 8, © (3,0)))
(8,014 196, L07(00,) © 0, + 0, (95,)))
= 00, © 14 6@ B, — 07 (5(0,6,) © 0, + 6D, ® (0,,))
16, ® 8 + 1 ® b¢6, %ew ((9,0,) ® 660y + D, ® b¢(0,6,))

_%epa(@pé&) ® 050y + 8, © (050¢)0y + (0,0¢) 0y @ 05 + 0y @ (8055))
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— NG A = ..
= —0p0e © 1 — 0y ® 0¢ + %epa (577(6p5£) ® 0y + 050, ® (8056))
6 ® 6, — 1 ® 6,06 + %ew ((8,0¢) ® 6,05 + 0, @ 6,(050))
L7 (0,80) © Ouc + 0, @ (0ub ) + (0,80 © 0, + 0,0 © (045,)
1
Adjen) = O ® 1+ 1@ Opgn) — 59””((3p5[5,n1) ®0; +9,® @(ﬂm)) (5.2.23)

Adding these three expressions and using (BZI3) gives (BZZT) only if

%ew( (8,0¢) ® 05,y + 0, @ (0,6¢)6,

+ (0,0)0n @ By + 0,0, © (050¢) — (€ = n)) ~0. (5.2.24)

By using 9,6, ® (0,0¢) = ((9,0,) + 6,0,) ® (8,0¢), one proves the last equation; then (BZZI))
is proven as well.

Adding the antipode S(d¢) = —0¢ leads to a Hopf algebra. The condition for the

antipode ([[L3.F) is not difficult to check, but in order to do that we first rewrite (LZI9) in

a different way
U oo
Ade = b6 © 1+ 186 — 56 (0 ® 0 + 0, © 8(0ng)). (5.2.25)
using d(g,¢) = (0,0¢). With (B2ZZ0)
mo(S®id)oAlde) =mo (S®id)o (55 ®1+1® 05— %ew(é@,g) ®0, +0,® 5(3(,@))
1
= mo (—55®1+1®55—59’”(—5(8pf)®3o—3p®5(6af))>
7: g
= =0 + 9 + 50" (00,69 — 00(0,))
1
= 450" (00,695 = (9:0p0¢) = d(0,)05) = 0 =m0 £(d¢),
where we have used S(0,) = —0,, (0-0(9,¢)) = (050,0¢) and the antisymmetry of 6°7.
We have shown that the Hopf algebra of deformed diffeomorphisms exists and that it
is given by
55577 — 57,55 = (5[57,7], 5(55) = O, S((Sg) = —55,
Ade =0 @1 +1®0 — %9”" <5(ap5) ® 0y +0,® 5(30§)>. (5.2.26)

The algebra sector is undeformed, while the coalgebra sector becomes deformed. In the limit
0 — 0 (commutative space), this Hopf algebra reduces to the Hopf algebra of undeformed

diffeomorphisms (EI4), (BId) and (E17).
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All the calculations done here are up to first order in §. However, the result up to all
orders in 6 is known [36] and we cite it here for completeness

0gby — 0p0e = 5[&?7]7
Aé‘g — 6—%9008,)@80 (55 ® 1 + 1 ® 5§>6%99089®80

— 5 ®1+1® 0 — %9#0(5(8p5) @ 0+ 0y @ Do) ) + -
8(5&) = 0, S((Sg) = —(55. (5227)

As in the case of classical diffeomorphisms, one has to consider the full enveloping algebra
of diffeomorphisms in order to be (mathematically) precise.

5.2.3 Consequences of the deformed coproduct

In (B22Z18) the Leibniz rule for d¢ acting on the x-product of two scalar fields is given. When
writing down effective actions one expands all the x-products between fields. Therefore, we
should also know how to transform expanded expressions like

O¢(P1 * P2) = O¢ (<Z51<Z52 + %9/)0(8/)(151)(80(252) + .. ) (5.2.28)

Let us for the moment forget about the nontrivial Leibniz rule for the operator J and
calculate (EZ28) as we would do it in the classical case, by using 6¢(0,¢) = 0,(6¢¢). We
obtain

O¢(1 % P2) = (0¢r) P2 + P1(de2) + %epo((ﬁp(5£¢1))(3o¢2) + (0,01) (05 (0 p2)) + - - -
= —&"0u(¢1 x d2) — %epo(8p£“>((8u¢l)<ao¢2) — (05¢1)(0u62)), (5.2.29)

which is not the transformation law of a scalar field since there is one additional term
compared to (BZI4)). But we know that ¢, x ¢y is a scalar field so we must have done
something wrong calculating this. The answer is the following. The nontrivial Leibniz rule
for the operator J, will also affect the expanded expressions like (BZ28). The classical
transformations do not apply there anymore: one has to change them in a way ”dictated”
by the deformed comultiplication. Coming back to the concrete example one sees that the
problem arises when commuting 0¢(0,¢) = 0,(0¢¢), or equivalently when treating 0,¢ as a
vector field. This has to be changed to

3¢(0p9) = —£"0,0,0. (5.2.30)

One says that either ¢ and d, do not commute anymore, or that the derivatives contracted
with 677 do not transform like the usual derivatives. However this might look unnatural, we
always remember that this is the rule dictated by the comultiplication.

Having this in mind we analyse the transformation properties of objects (fields, equa-
tions, Lagrangians,...) before expanding the x-product, when possible. Analysis can also
be done after the expansion but then one has to be very careful about the rules one uses.
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5.3 Tensor calculus

In the previous section we defined a scalar field by its transformation law (B2ZT2). In this
section we generalise this transformation law to vector and tensor fields. As an example of
a tensor of the second rank we discuss the properties of the metric tensor. Once again we
mention that all calculations are done up to first order in 8, but some of them can be written
to all orders [36].

5.3.1 Fields
In analogy with (B2ZT2), the transformation law of a covariant vector field is given by
0V = —EMOWVy) = (0,Va = =X oV, = Xy oy WA (5.3.1)

— (V) + %epo(apgk) < (0,0\V)
(0 < Vit 7 (0,0, % (0,3 + -

where in the last two lines X and X (*a# ¢r) are expanded. This we generalise to the transfor-
mation law of an arbitrary covariant tensor

5§Tu1---ur = _f)\(a)\Tm---m) - (amg)\)T)\uz---m -t (8/111"5)\)TH/1---/1/7‘71)\
e _Xg > TMIIM" - X&kay‘lg)\) [>T>\M2/"/T‘ e — X{ay"r&)\) [>TH/1"'MT*1>\' (5-3-2)

It is not difficult to check that this transformation close in the algebra (LZI3).

By demanding that the x-product of two scalar fields should be a scalar field again
we derived the Leibniz rule for the operator d¢ (BZI8) and then abstracted the coproduct
(EZTY). Now we check if this was the correct thing to do. Namely, the coproduct is a
representation-independent concept so our result (B22ZTJ) should also apply to vector and
tensor fields. For example, the x-product of two covariant vector fields should transform as
a second rank tensor if we use (B2ZT9)

Se(Vix Vi) = (5 x Vot Viox (0V2) = 507 (G, Vi) 00V2) + (9,V3) (B Vo))
Expanding the x-product in first two terms and cancelling some of the terms coming from
that expansion with the nontrivial terms in the coproduct leads to

5e(Vux V) = = 0\(VV,) — (0,8)VAV, — (8, V,Va
207 (20O V1)) + (B BVA)BV:) + (M) B,V (0,V4))
= —E0(V* V) = (0,6 (Vax Vi) = (8,6 (V% V)
= —Xi> (VuxV,) - (*a#@) >(VAxV,) — (B,67) > (V. * W), (5.3.3)

which we wanted to prove. This means that (B2ZT9) is the correct coproduct.
All that has been done for the covariant vectors (tensors) can also be done for the
contravariant ones. We just summarise the results

S Vi = =XF o VE 4+ Xy DV, (5.3.4)
5£T,LL1.../JT — —Xg > Tﬂl---#r _'_ X?a)\gy‘l) > T)\HQ.““T + te + X?a)\gur) > T“l...#T_l)\. (535)
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Again, V* % V¥ transforms like a second rank tensor due to the coproduct (EEZT9). Also,
having covariant and contravariant vectors and tensors one can construct invariants. For
example,

1
(Vi V) = (06V3) % V- Vi (0V%) = 207 (310, Vi) (0, V7) + (D53 (Bian V™))

= NV x V) = —X{ b (Vi x V), (5.3.6)

To summarise, we know now how to multiply vector and tensor fields and how to
construct invariants under the transformations (E2Z20).

5.3.2 Metric tensor

An important example of a tensor is the metric tensor. Classically, it is a symmetric tensor
of rank two

5?9;11/ = —&"(0p9u) — (0u€”) g — (006" ) Gp- (5.3.7)
Its inverse ¢g"” is defined by
9" gup = 0. (5.3.8)

In analogy to the classical case, we define the noncommutative metric tensor G, as a
symmetric tensor of rank two

06G = =XE > Gy — X[y e0 > G — X ey > G, (5.3.9)
with the condition that it reduces to the classical metric tensor in the # — 0 limit,

G = G- (5.3.10)
=0

However, these conditions do not determine G, uniquely and in the following we present a

few different solutions.

Looking at the transformation law of G, we see that the choice G, = g, that is the
noncommutative metric equals the classical metric, is consistent with (R239). The condition
(E3T0) is automatically fulfilled and we obtain the #-independent metric tensor. Our final
aim is the construction of the deformed Einstein-Hilbert action. Varying this action with
respect to the metric one should obtain deformed equations of motion. By solving these
equations we should obtain the noncommutative metric in terms of the classical one and
the #-dependent corrections. Therefore, starting with the commutative metric and saying
later that it becomes 6-dependent might look a little oddi. Instead, one can choose from the
beginning a #-dependent metric tensor. Then one expands it in orders of the deformation
parameter 6

G = Guw + G+ .., (5.3.11)

where G’}W is the first order correction which one calculates by solving the equations of
motion.

8However, this is just the problem of interpretation. Starting with the classical fields and finding out later
that they have to have #-dependent corrections is normally done in the framework of the Seiberg-Witten
map, see Chapter 3 and Chapter 4.
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On the other hand, we remember that the classical metric tensor can be expressed in

terms of the vierbein elf

Guw = Nave," e, (5.3.12)
where 7,, is the flat Minkowski metric and a and b are local Lorentz indices. This we
generalise to the noncommutative metric tensor

1
G = 5 (B % B+ B % B Y, (5.3.13)

where E,* is the noncommutative vierbein. In order to fulfil (239), £,* has to transform
as a vector field (B3]) and the coproduct (B2ZT9) has to be used. Because of (E310) in

the limit @ — 0 it has to reduce to the classical vierbein
a __ a al
Ef=e!+E" +.... (5.3.14)

Note that one can also start with the classical vierbein (it is consistent with both (B3) and
(E3T)) and after solving the equations of motion obtain that it becomes #-dependent. The
arguments pro and contra are the same as for choosing g,, as the noncommutative metric
and we do not repeat them.

For the moment we do not specify the metric tensor. Instead, we look at the inverse
metric. Starting with the noncommutative metric tensor G, one can introduce two inverses.
The inverse with respect to the pointwise multiplication (classical inverse) we denote by G*

G -G =0y, (5.3.15)
and the inverse with respect to the x-multiplication with G***
G * G =68, (5.3.16)

Expanding G"7* in the deformation parameter 6 and inserting the expansion in (316 gives
the x-inverse in terms of the classical inverse

G = G %9P0<ap0“a)(aoea5)c;ﬁ”
= 2GM — GM % Gop x G*". (5.3.17)

This result is valid up to first order in 6. The exact result will of course depend on the choice
of G. From (E3IG), using the comultiplication (EZI9), it follows that G*** transforms
like a tensor of rank two

0eGH" = = X7 GM + X euy > G + X( evy > GH7 (5.3.18)
Although G, is a symmetric tensor, its x-inverse is not symmetric

GHvs o G, (5.3.19)

5.4 Curvature and torsion

In this section we define geometrical objects like curvature tensor, torsion,.... They do not
have the geometrical interpretation like in the commutative case, but we use them to obtain
the deformed Einstein-Hilbert action in the next section.
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5.4.1 Covariant derivative

Let us proceed as in the commutative case, by observing that the partial derivative of a
vector field transforms as

0¢ (0 V1) = (0u0eVi)
= X7 HB(0,V,) = Xy oy B (VL) = Xy ony B (0uVA) = X[ g0 > Vi
= —£0A(0,V) = (0, (V) — (0,67)(0uVA) — (0,0, V. (5.4.1)

Here we have used

0.x0 =3 (g)”%em 077 Dy 0,00 ) O, OO = XD (5.4.2)

and similarly 9,Xy,¢e1) = X(g,9,61)- Because of the last term in (BEZT]) this is not the
transformation law of a tensor. To repair this we introduce the covariant derivative

DV, = (9,V,) — T, x Va, (5.4.3)

where I', is the noncommutative connection. From the demand that (E.43) transforms as
a tensor of rank two

8e(DuV,) = =X %B(DV,) = Xiy ey & (DAV,) = X ey & (DuVA) (5.4.4)

one calculates the transformation law of the connection I';,
0e(DuVy,) = 0,(0eVi) — 0e(I, * Vo). (5.4.5)
To calculate the last term in (BZ0) we have to use the coproductf] (EZT9). We write this

term explicitly
55(1“;/ *V,) = (551“2‘,/) * Vo + T, % (0eVa)
7: (o3 (e}
_§0p0 ((5(8,)5)1—‘#,/)(80‘/&) + (apr,uu) (5(805)‘/04)) : (546)

To calculate 0¢I';, we proceed in the usual way. We expand d¢I';, in orders of the deformation
parameter and expand all x-products in (ZZ6]). This gives

0Ly, = =XEo T, = Xip oy P TS, = X(5,00 D Do + X(oe0) > T, — 9,06 (5.4.7)

Expanding all x-products and the operators X* gives the classical transformation law, as
expected.

In analogy with (2Z3)) one defines the covariant derivative of a contravariant vector
and of an arbitrary tensor

DuV™ = (0,V") + T x V7, (5.4.8)
D)\T;ﬁ;; = (aAT:;Z;) - Fi‘m * T;’LQ”LP — Fiéﬂp % T:;-.-.-.Z;_la
+FK1Q * TI?IVQ;L::T 4+ ..+ F;; * T:;;;_1a (549>

[e3%

v 18 not a

9This step is not straightforward, since the coproduct applies to tensors, but we know that I'
tensor.
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5.4.2 Curvature tensor, Ricci tensor and scalar curvature

The *-commutator of two covariant derivatives applied on a vector field gives the
curvature tensor and torsion

(D3 Dyl x V= Ry’ x Vo + T, x DoV (5.4.10)

By using (2Z9) one obtains

D,D,V, = (9.(D,V,)) =%, % D,V, =% x D,V,

and finally
Ry’ = (0,1,) = (0,19,) + T0 « T, —T0 *T9,, (5.4.11)
T;{I/ = Fg,u o Ffju' (5412)
From (B-Z17) it follows
R,ul/pa = _Ry,upo (5413)
like in the commutative case, but
Rupoe = Ry * Goo # Ryop, (5.4.14)
Riuvpoe # Rpopw- (5.4.15)

This is a consequence of having the x-product in (BZTT]).
The Ricci tensor is defined as

R,uu = R,uauo- (5416)

Contracting the first and the fourth index gives the same result because of (EZI3). Unlike
in the classical case, here it is also possible to contract the third and the fourth index since
the curvature tensor is not antisymmetric with respect to these two indices. However, the
commutative limit of this resulttd] will not give the commutative Ricci tensor, so we do not
consider this possibility. From this analysis it follows that we can define the Ricci tensor
uniquely. One should also note that it is not symmetric

R, # Ry, (5.4.17)

However, there are more possible definitions of the scalar curvature. Some of them are

R = G"* % R,,, (5.4.18)

R = Ry, G"™*, (5.4.19)
1

R = 5(G" % Ry + Ry ). (5.4.20)

We choose (EZT8) to be our working definition, but one should keep in mind that there are
other possibilities.

19In the deformed case from (EZId) we have R, = O(f) and in the limit § — 0, R, — 0.
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Finally, from (2Z.12) we see that if the connection is symmetric, the torsion vanishes.
In the following we analyse only the torsion-free case, that is

re, =re, (5.4.21)

In order to relate the connection with the metric tensor in the commutative case one
imposes the metricity condition (EII8)). We generalise this construction to the #-deformed
case. Namely, we demand that

DaGﬁﬂ/ = (&J{Ggfy) — FZB * Gpﬂ/ — FZ,Y *Gﬁp =0. (5.4.22)

By writing this equation two more times, cyclicly permuting the indices and adding all three
equations we obtain

202, % Gy = (0.G5,) + (05Cir) — (0,Ciat). (5.4.23)

Now it is clear why we insisted on having the x-inverse of G,,. Using the classical inverse
we can not extract I, 5 from (RZ23), we have to use the x-inverse. Then the unique result
follows

1 .
2= 5 ((0:G5y) + (0Gr) = (0,Gan) ) + G (5.4.24)

To obtain this result we have used that the metric tensor and connection are symmetric.
In analogy with the commutative case, we call the connection (BiZ.24) Christoffel symbol.
Using the transformation properties of G, and G**, (E3H) and (B3IY) respectively, and
the coproduct (BZT9), from (E2Z24]) the transformation law (2Z7) of the Christoffel symbol
follows.

Using the result (EZ24)) one expresses the curvature tensor, Ricci tensor and scalar
curvature in terms of the metric tensor and its inverse.

5.5 Deformed Einstein-Hilbert action

In the commutative case, the Einstein-Hilbert action is given by (BLZIl). In the following
we generalise this to the #-deformed space. Our aim is to construct an action invariant under
the deformed diffeomorphisms which in the zeroth order limit reduces to (B.T2T]).

We need an integral with the cyclic property (see also Section 4.1),

/d4ZL‘ (fl*fg*---*fk):/d4$‘ (fk*fl*fZ*"'*fk—l)- (551)

Fortunately, the #-deformed space is simple enough and the usual commutative integral has
this property. In the previous section we obtained the scalar curvature, so the only thing
left to generalise is the density /—g.

We need a *x-density E* that transforms like

0" = =X b B = Xy > BT (5-5.2)

This gives
5e(E* % R) = =0 (Xg# > (E* % R)) (5.5.3)
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and the action

S = /d% E*xR (5.5.4)

is invariant under the deformed diffeomorphisms

55(/d4:c E**R> —0. (5.5.5)

The problem with this so far undetermined x-density is that the transformation law
(E22) does not give enough conditions to fix £* uniquely. Adding the requirement of the
proper commutative limit does not help. For example, we can take

E* = /=g, (5.5.6)

that is the classical object. It transforms like (ER2) and (of course) has the good commu-
tative limit. Also, following the arguments from Section 5.2, one can take

E*=vV-G, G=detG,, =det(gu +G, +...), (5.5.7)

where G’}w is the first order correction to the noncommutative metric tensor.
Let us consider this possibility in more detail. The deformed Einstein-Hilbert action
is then

S = /d4;1: V-G *R (5.5.8)

and we suppose that R is expressed in terms of G, and its inverse using (EZ11), (-ZIR)
and (BZ24). Varying the action (EA8) with respect to G, leads to

68 = /d4x ((5@) * R+ V-G x (6R))
_ /d%« ((%@aﬂu(aam) o m*(am). (5.5.9)

Here we have used that

3G = 6(det(G,,)) = GG (5Gh). (5.5.10)

The problem with (559 is that in the first term we have a mixture of the-x-product and the
usual pointwise product. This makes it difficult (impossible) to write (E5.9) in the following
form

58 = /d%« 3Gl < . ) (5.5.11)

In order to have *-product everywhere one should know how to define (v/—G),. Unfortu-
nately, the square root is a concept which is hard to generalise, so we have to try something
else.

The classical action (BIZT) can be written in a different way

S = /d4:c eR’, (5.5.12)
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where e = dete," is the determinant of the classical vierbein. In Section 5.2 we have
already introduced the noncommutative vierbein and we have to generalise the concept of a
determinant. This is not too difficult, we define the x-determinant as

1
B = det, 55, = qie"Hieg, o B %o x B (5.5.13)

where ¢#1-#4 is the totally antisymmetric tensor of rank 4. By using the comultiplication

(EZT9) one checks that (E5I3) has the right transformation property (B52) and (B3I

ensures the good commutative limit.
Finally, the deformed Einstein-Hilbert action we define as

S = /d4x(E**R+ c.c. ),
= /d% (E*x R+ R E*). (5.5.14)

In order to have a real action we added the complex conjugated part also. The action (E2R.14))
can be varied with respect to E,* to give the equations of motion. Of course, this fixes our
choice of the noncommutative metric tensor to (B313) and all the quantities like R, R,
... have to be expressed in terms of E .

5.6 Equations of motion

In this section we calculate the equations of motion coming from the action (EEIdl). We
vary the action only with respect to F *, equations coming from the variation with respect
to E,* are the complex conjugate of the equation coming from variation with respect to £ .
Therefore, we ignore the second term in (B.5.14),

55 = /d%« (6B xR+ B x (3R))
=T +1I. (5.6.1)
The first term is not difficult to calculate, it follows from (B5.T3))
I = /d4:v (0OE*)x R
1
— aeumzusﬂ%alawgw /d4:L’ (5Eu01n) * (E“Z«Q *E/JCSLS *Euim * R (5.6.2)
FES % Bt x Rk B2 Bt R B2 % B2+ Rox B2« 2+ Bt ).

The second term is more complicated and we do it in a few steps. We write it in terms of
the variation of the metric tensor,

I]:/d4xE**(5R):...

— / d*z (6Gop) x M, (5.6.3)
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where M7 is a complicated function of G, (or of E ) which we have to calculate. Finally,

one inserts dGqp in terms of 6F,* which follows from (E3.T3).
From (B.310) and (B-224) it follows

SGM* = —G'* % (6G op) x GP*, (5.6.4)
6T = %((auac;w) F(@0G,0) — (0,6G)) % T~ T} 5 (5G) G, (5.6.5)

By using this results we obtain

SR = —G"* % (6Glag) * G7* % Ry, + G"* ((aaar;;) — (0,07,2)

F(OT ) T + T x (O0) = (OT,8) + T, = T8 (0T2)). (5.6.6)

Inserting this into (LG.3) gives (after some cyclic permutation and partial integration)

II = / d'z (6Gs,) * ( — G"* % Ry x E* x GMP* 4 G % E* x G*"* x Ry,,,°
+ (G’W w02 — (aama*)) « B* % GM* % T f
(GVA* *I0 — (0 GW*)) * B* x GH* Foﬁ
;a ) (GW* o B % GHO* Qo 4 B i (1P
_ Gk B GRY 4 GRP 5 B % GW*)
1
—§8M<((8QGW*) — O™ % %) x E* * (GPr* 4 GHP*)
(( WGHOY) — GPM™ F/\a) *x E* % GVB*
—((WG™) = G« T\l ) % E* % G
—((0:G") — G™* xT\0) % E* x G
—(( ) — G“O‘**F/\i) x B % G
— (3G — GM*) x B* % G™ % T
—GH* 4 B* % GM™* % F/\i — G % B % GOM % r

FG % B % (GM* 5+ T,0 + G w;;))) (5.6.7)
= /d4;1: (6Gg,) x M™Y.
Inserting

1
0Gas = 5 (OB x B + B % (GES) + OE) * B + B« (GEL)  (5.68)
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into (.6.7)) and adding (L6.2) to it, gives finally

58 = / d'z (SE4) »

1
— Bropspa az as n as ag az
(4!6 €aazazay Em *Eua ~)<EM4 *R+EM3 *EM ~)<R*EM2

FES x Rx B2 B + Ru B2 % B2« B,

%nab (E,f o (MPT 4 MOP) 4 (MY M) % Ej’)) : (5.6.9)

The equation of motion is then
1

T agasan (B2 % B x B Rt B0 % B« R B,
FES 5 Ry B s B+ Re B2 w B2 B,

1
+ 5 b (EJ’ (M MOP) 4 (MP + MOP) Ej’) —0. (5.6.10)

Unfortunately, this result is very complicated and it is difficult to make any conclusions just

by looking at it. The expansion in the deformation parameter might be of some help here,
so we proceed in that way in the next section.

5.7 Expansion in the deformation parameter

In this section we expand some of the results from the previous sections up to first order in
the deformation parameter 6 and in terms of the classical fields, vierbein e, metric g, and
the inverse metric g“ . We start with the basic object, the vierbein. It is given by

a __ a al
Ef=e+E' +..., (5.7.1)

where EH“1 is linear in #”?. Note that this differs from the approach that was taken in the
paper [36]. There the vierbein is taken to be the classical object, keeping in mind that after
solving the equations of motion it becomes #-dependent. Here we start from the beginning

with the #-dependent object. Using (BT and (EhI3)) one calculates E*

1
E*=e+ 56“1“2“3“4%1@2@3%@1?1 lep2e t3e 04, (5.7.2)
From (B3T13) and (B3.T6) it follows
GW = Guv + Nab (Eualeyb + euaEybl), (5.7.3)

* v Z g (e} 1%
G = g = 079" (05908)(0-9™)

_nabgua (Eaaleﬁb 4 eaaEﬁbl)g,Bl/. (574>

a

s what we obtain might not be the final form for the

Since one can express g and g"” in terms of e
results.
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For the Christoffel symbol from (2Z24]) we obtain
)
r, = Fg‘j + 19”” (apaugw + 0,0, Gy — apﬁvg,w) (0,97%)

7; g wo . a a wo
—4 e (9” (0p970)(00g”*) = 2inay (B, ey + e E S g )

s (@L (B, lel + e, ")
al b ar bl al b ar bl «
+8V(EM e, +ek, ) —(%(EM e, +e,E, )>g“/
_ 70« al
- PMV +PMV . (575)
We see that already this result is long and not very readable. Therefore, we just give the
implicit result for the curvature tensor

nro

i o}
By’ = R’ + QL) = Q020 + 307 (QI)(@.I3) - @i (0,1%)
FEATY T80 - T - T 5:76)

One can continue like this and calculate R,, and R in terms of the classical fields and
corrections. This results can be inserted into the equation of motion (EEI0) obtained in
the previous section. Solving that equation one finds the corrections to the classical vierbein
and sees how the noncommutativity influences the classical solutions. However, we are not
going to do these calculations here, they will be the subject of future research.

5.8 The 6-deformed Poincaré algebra

In this section we consider one special example of the deformed diffeomorphisms. Namely,
we take the vector field £ to be linear in the coordinates

£o = 2w, 0y, (5.8.1)

where w,,,, is a constant antisymmetric matrix. One obtains in this way the global #-deformed
Lorentz transformations.
The transformation law of a scalar field is

0u = —X5> ¢ = —2"w, (0n), (5.8.2)
Wher .
* * v lo} LPALY
X5 =atw, 0} — i BRI (5.8.3)

Since &, is linear in z, formula (Z83)) is already the exact expression to all orders in . We
rewrite ((.8.2) in a more familiar way

5w(b = —%u)a’aLalg(b, (584)

2In this section we write 8; to stress that the derivatives are the elements of the #-deformed Poincaré
algebra. However, one can also use the 0,, notation, results are the same.
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where L,g is the orbital part of the Lorentz generator M,z given by

Log = 2,03 — 2304,
7
= To*x 05 — x5 %0 + 5«9”" (1pa0f — 1305 ;.- (5.8.5)
The first line of (B83) tells us that L,g is the same like in the classical case. In the second
line this result is rewritten in terms of the x-product such that it also has a meaning in the

abstract algebr . In order to include the spin part of M,z we look at the transformation
law of a vector field

0V = —X5p V= X an Vi

1, L
= 5w (200 — 150a)Vy — 2% (Vs — 1upVa)
1
= 50" (Lag + Zap) Vi (5.8.6)

where X4 is the constant matrix in the index space of fields. Again, the obtained result is
equal to the classical one.

From (2ZT3) it follows

[5w7 5w’] - 5[w,w’}a (587)
or in terms of the generators M,z
[Mpg, Maﬁ] = ﬁngga + ﬁgaMpﬁ — ﬁpaMgg — ﬁggMpa. (588)
If derivatives are included as well,
[0 8;] =w,"0,, (5.8.9)
or
(Mg, 0;] = N — Mup0,  and [8;, a)=0 (5.8.10)

we see that the algebra sector of the #-deformed Poincaré transformations is undeformed.
Let us now look at the coprodut for this transformations. From (B2ZT9) it follows

i * * % %
Ad, =0, ®1+1®d, — éepo<(ap x8,) @O+ @ () *@,)), (5.8.11)
or

AMaﬁ — Maﬁ ® 1 + 1 ® Maﬁ + %epo ((npaaz(g — npﬁa;) ® a; + 8; ® (noaazg - 77050;)) . (5812)

13In the abstract algebra L,z reads

Log = :Eaég — :i‘géa + %9‘” (npaég — Upﬁéa)ég.
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Splitting M,z into orbital and spin parts gives (looking at (B.811]) and noticing that ¥4 is
constant matrix)

ALys = Lo ® 1+ 1® Lag

? * * * % % *
+50° ((pady = 1pa02) © 05 + 03 © (noas —1p0%) ), (5.8.13)
Ao = 2o ®14+1® Xyg. (5.8.14)
We see that the coproduct for the orbital part of the generator M,z is deformed, while for
the spin part we obtain the undeformed coproduct. The coassociativity follows from the

coassociativity of (ZT9), as well as the consistency with the algebra. Adding counits and
antipods defines the #-deformed Poncaré Hopf algebra

[Mﬁav Maﬁ] = npﬁMaa + anMpﬁ - npaMUB - naﬁMpav
[Mag, 8;] = nuaaé — Nup 0y [8;7 a;1 =0,
i lo} * * * * * *
AMys = Mog ®14+1® Mys + 590 <(npaaﬁ —Mpp0) @ 05 + 05 @ (Noaf — ngﬁaa)),
AdL=0,®1+1®03),
e0)) =0,  e(Mag) =0,
S(a;) = =0y, S(Meag) = —Map. (5.8.15)
One should notice that the generators M,s do not close the Hopf algebra themselves since
in (BE8T2) derivatives appear. Using different approaches, this result was obtained in [37]
139], (0] also.
Having the #-deformed Poincaré symmetry at hand, one can construct theories that

are invariant under this symmetry and analyse their properties. We give one very simple
example. Let us consider ¢® theory

1 m?
/3:5(3;*@*(8*“*@—7¢*¢—)\¢*¢*¢. (5.8.16)

One checks that under (B-81H) this Lagrangian density transforms as
6l ==X b L= -2 (O\L). (5.8.17)
To construct the action we use the usual integral as in Section 5.5 and obtain
S = /d% (%(8;*@ « (0 % §) — m72¢*gb _ A¢*¢*¢). (5.8.18)

From (BE8T7) it follows that this action is invariant. Using the variational principle as in
Section 5.6

5S = 5</d4x (—%(b*(&*“@;qb)—%2¢*¢—A¢*¢*¢)>

_ /d4;1: So(x) * ( - 2%(8*“8;@ - 2%2¢ ~ 3\ ¢) (5.8.19)
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we obtain the following equation of motion
(0™05¢) +m*p + 3\ * ¢ = 0. (5.8.20)

The other way to obtain (L820) (expanded in the deformation parameter) is to first expand
the *-products in the action (EE8I8) and then vary it with respect to the field ¢.

Since we have an action invariant under the #-deformed Poincaré symmetry, the next
step is to look at the conserved quantities. Unfortunately, this does not seem to be straight-
forward. It looks as the energy momentum tensor is either conserved or symmetric and not
both. This remains as an open question and will be considered in the future.

5.9 Noncommutative gauge theory, revisited

At the end of this chapter we return to the noncommutative gauge theory.
The starting point for our construction of the noncommutative gauge theory in Chapter
3 was the consistency condition for the noncommutative gauge parameter

5aAg — (5@/\@ — iAa * Aﬁ + ZAB * Aa = A—i[a,ﬁ}a (591)
or expanded up to first order in the deformation parameter
90 : —Z[Ag, A%] = Agl[aﬂ] = Ag =
0" by —0pAL —i[AL, 8] —ila, AR — il Bl = ALy, 4 (5.9.2)

Because of the inhomogeneous term —i[o *' 3] in the last equation we said that 5aA%3 must

be different from zero in order to cancel this term and that led to the Seiberg-Witten map
construction. However, this is true only if we do not allow A, to be derivative-valued, that is
a differential operator. But we can try to follow the strategy from the previous sections now.
Namely, one can lift the commutative gauge transformations to the x-product representation
as we have done for the diffeomorphisms.

The transformation

0¥ = 1) (5.9.3)
can be written as

Sath = X5 >0, (5.9.4)

where
x:i=3 (;)"%em ..fPmon (a,,l . .apna)a(,l O,
— - %epo(apa)ao b (5.9.5)

By inserting A}, = —£67°(0,0)9, in (B02) we see that, although now d, A} = 0, this equation
is satisfied due to the derivative valuedness of A!. Both

1

AL = =507 (9,0)0, SAL (5.9.6)

«

Al

1
= —ZGP‘T{A(;, d,a) = ALea (5.9.7)
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are the first order hermitian solutions of the consistency condition (L92). While (0.7) is
enveloping algebra-valued, (20.0) is derivative-valued. One can always change from one to
the other adding terms which are solutions of the homogeneous equation

5‘)‘/\% - 55‘/\(11 - Z[A;, ﬁ] - i[a7 Aé] = Al_i[aﬂ]- (598)

One checks explicitly that
' 1
Alea — ALdv %epo(apa)pg — 207 (0,0, A7) (5.9.9)

But there is an important difference. With the enveloping algebra-valued gauge pa-
rameter we have

0o %) = (0at)) * ) + ¢ x (0at))
=~ x Ny % + i % Ay x1p =0,

that is ¢ ¢ is invariant under the noncommutative gauge transformation. The situation is
different with the derivative-valued gauge parameter

0o %) = (0at0) ¥ + ¥ x (8a¥)
= —i(Y 9 XZ) x4+ ih x (XZ > ),

where (¢ < X}) means that the derivatives from X* act on v. Expanding this up to first
order in 6

Sul %) = —i(xa %epa(apw) % (8,0)) *
+ith * (a *x 1) — %«9”"(8,,04) * (&ﬂ/})) # 0

one sees that the first order terms do not cancel and 1 % v is not invariant. Continuing
to higher orders does not improve this. We had the same problem when analysing the
diffeomorphisms. There we deformed the coproduct of transformations in order to achieve
the invariance of the x-product of two scalar fields for example. It is possible to do the same
here. However, we do not want to change the coproduct of the gauge transformations since
that is not in the agreement with the philosophy of the Seiberg-Witten map (the commutative
gauge transformations induce the noncommutative ones). Instead, one observes that under
the integral the term 1 % 1) becomes invariant

5a/d4x1/1*1/1 = ...
— / d'e ( - %9P0<ap@>(aoa)w + %ep”zﬁ(@pa)(aaw)
_ % / A"z 0 ((0,) (0500 + 0, ($(3,0))¥)
~(050)(Dp0))t0 = (D,050))00) = 0.
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We partially integrated the second term in the first line, dropped one surface term, cancelled
0r°4)(9,0,))1 term due to the antisymmetry of #77 and by using again the antisymmetry
of 677 we changed indices p and o in the third term.

One can continue to higher orders and the conclusion is the same, ¥ % ¢ is invariant
under the integral only. That means that the Lagrangian

Loy =0 * (mMDMw _ m¢>

is not gauge invariant as before (with the enveloping algebra-valued transformations), but
the action

Sm = /d4x P * (W“D;ﬂ/} — m¢>

is gauge invariant. This situation we have already met in the case of the Lagrangian (action)
for the gauge field. Namely,

1
Eg = —ZTI'(FHV * Fuy)
is only gauge covariant, 0,L, = i[A, ¥ L], but the action
1 4 pv
Sy = ~1 d*z Tr(F,, ~ ")

is gauge invariant provided that the integral has the cyclic property (see Section 4.1).
From this perspective it looks like there is no need to deform the coproduct for (E9.4))
transformations. One can do that of course, but we do not consider that possibility here.
Instead we continue as usual, by introducing the covariant derivative.
From the definition of the covariant derivative it follows

Sa(Dy) = iX2 b (D) = iXE b (D00 — iV, b 1)),
SV, t) = (8MX;)>¢+Z'<X;*VM - VM*X;> >,

or

5aViy = (8,X2) +i<X;*VM - VM*X;). (5.9.10)

Here V), is the noncommutative gauge field and writing V,, > we are taking into account
that it might be derivative valued. Expanding (E20.10) to first order gives

0°: 6.V, = Oua+ifa, V)] (5.9.11)
i .
0': 6.V, = —59’”(8,)3#&)80 + i, V]
1
+50" ((apa)vg — @, V) + a(8,V?) - v;)(apa))ao. (5.9.12)

The zeroth order solution is the commutative gauge field VNO = Ag, the first order solution
(up to the solutions of the homogeneous equation) is

i
V= _§epo(apAg)a(,. (5.9.13)

I
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Continuing to higher orders leads to the following result
i loa
Vi = AL = 507(0,4)06 + ...
-3 (%) g <a,,1 . .apnAg)am o Oay=XGy. (5.9.14)
The field-strength tensor is

Fu = i[Dy D)) = FY, — %QPO(apFﬁy)aa T

=3 (5) 0 0 (O 00 F )OO = Xy (5.9.15)

Its transformation law is given by
5af,ul/ = i[Xa H f,uz/] = X@'[a,FBU}- (5916)

From (BXTH) it is obvious that F,, is derivative-valued, just as in the case of the
r-deformed space. There we split it into the curvature-like and torsion-like terms and used
only the curvature-like terms to construct the action for the gauge field. One would expect
that the same could be done here. Unfortunately, this seems not to be the case. One can do
the splitting, up to first order the result is

1 o} Z o}
Fu = F), + i (0,Fy,) Ay — i (0,Fp)DY + ...
=Fu+T0D,+ ... (5.9.17)
The problem with this result is that F},, (or equivalently 77,) does not transform covariantly,
0aFu # i[Xo % Ful.

This is far from being understood properly. However, one has to find the way to solve this
since we can not construct the Lagrangian (action) for the gauge field otherwise.

Concerning the action for the matter field we can speculate that it will remain classical
(commutative) since

S, = /d4:c Y * (ify“Dulp — mlp)
= /d4x 0 (M“((’?M@/) — iV, > ) — m@/z)
= [t i@ - i42) — mw),
where we have used the cyclicity property to remove one x and the solution (L9.14)) for the
V, field.
Another interesting problem in relation to the enveloping algebra-valued vs. derivative-

valued gauge transformations is the application to the diffeomorphisms. There we have the
reversed situation: the derivative-valued parameter and the connection come out naturally.



5.9 Noncommutative gauge theory, revisited 93

The question would be if one can find the enveloping algebra analogue of these solutions.
Additional difficulty is that in the case of the diffeomorphisms partial derivatives are at
the same time the generators of transformations (they play the role of the gauge group
generators T) so solution (2014 is in a way already enveloping algebra-valued. However,
better understanding of this is needed.

Additional motivation for studying this problem comes from the fact that the local
Lorentz transformations can be treated as the usual gauge transformations. If one wants to
study deformation of the classical local Lorentz transformations (and that is necessary in
order to have a more general theory of gravity, not only General Relativity), the question is
which approach to take. In some recent papers [53], [97] the local Lorentz transformations
were analysed using the enveloping algebra approach. On the other hand, if one wants to
treat the deformed local Lorentz transformations and the deformed diffeomorphisms in the
same way, then to use the derivative-valued transformations looks like a natural thing to do.
All this will be the subject of further research.
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Appendix A

Vector fields in the k-deformed space

In Section 2.5 we have defined the transformation law of a covariant vector field using the
transformation law of the Dirac derivative of a scalar field. It was also said that this is not
the only way to define vector fields since derivatives on the x-deformed space are not unique.
Here we continue this discussion and as an example derive the transformation law of a vector
field related with the derivative 8, introduced in (ZZLI0).

For the convenience we use the abstract algebra approach. The transformation law of
a scalar field (Z0H), rewritten in the abstract algebra notation, is

8u0(8) = —5 Las(), (A1)

where L% is given by ([ZJ). The transformation law of a vector field V,, ([Z58) has been
obtained by generalising the transformation law of the Dirac derivative of a scalar field. In
the abstract algebra notation (ZA.8) reads

1 ~ ~ ~ ~
0V = _§waﬁ (Laﬁvu — NguVa + nauvﬁ>

~

1 PR 1
= 5 LoV + 3" Mo, V] (A2

Now we introduce a vector field /Alu associated with the derivatives éu ZII0). The
transformation law of the J, derivative of a scalar field is

~

~ A~ 1 1 ~ ~
6,00 = —5w 5Lagau<z>+ ~w*[Lag, 0] 0, (A.3)

where for [Lag,d,] @ZD) should be inserted. The transformation law of a vector field
flu should be such that it reproduces ([A3]) when Au is replaced with @(ﬁ The central
assumption is that in this transformation law vector fields appear linearly on the right hand
side. Also, we choose that derivatives are always to the left of the vector field /Alu. Since on
the right hand side of (2227]) complicated expression of derivatives appears, the generalisation
of (ZZ1) to the transformation law of a vector field flu is not straightforward. However,
demanding that this transformations close in the algebra

0t — BB = Olurar] (A.4)
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one finds the following solution

~ ~ ~ 1 ~
duA, = ——wo‘ﬁLagAﬂ + —wo‘ﬁ[Maﬁ, Al (A.5)
with
[MU, Al] - n]lAz - nilA]7 [Mua An] = 07
QZaén 1 - A A
[MZTH Al] - 77zl€ A An - Zanzlamlqm + (8lAl + 82 l)
2ia0,, 2
aon N4 Am N Aam A
—1Nil An tan (7) (3n8mz4 — ama An)
(L - cor () (3,041 + 0,01, — 201014,
62 2311 9 nUi41] nUi<41 1Viiin ),

To calculate ([AL) one makes an ansatz in terms of the power series expansion in a and
inserts it into ([A.4]). This gives a recursion formula which can be solved and the solutionf] is
given by ([AJG).

The square of the vector field corresponding to the Dirac derivative V“Vﬂ is an invariant
under the x-deformed Poincaré transformations. To form an invariant from the vector field
flﬂ, we have to define a vector field A* such that

b, (A\AN) = —%waﬂﬁaﬁmﬂk). (A7)
Using ([Af)) we construct the transformation law for A
S, A" = —%waﬁﬁw}w + %waﬂ[Maﬁ, A (A.8)
and
[M;;, A = 64 A; — 614, [M;;, A"] =0,

My, A') = =014, + %m - %m - %ag;xmém

a v aén A o A oA 1 a al,
+5 Astan (51) 8 = (31470, + Alai)(Tn - 5ot (7)), (A.9)
o o1 — e g alp\ 5 A A a adp\ A A

The transformation ([A.§)) represents the algebra ([A4)).
All the relations considered up to now are invariant under the conjugation

=g, 0, = —d,,
MY =M, M" =M™ (A.10)

'This solution is not unique. If the symmetrisation in the third term of [Mj,, Al] is not performed, the
last term of [M;,,, A;] vanishes.
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Comparing (IEI) and (AJ), we see that A* transforms with the derivatives on the right
hand side, but A + A", they transform differently. The transformation law of A is:

— 1 N~ 1 —
0uA, = —in‘BLagAM + awo‘ﬁ[Maﬁ, Al (A.11)
with
[M@], Al] = 77le' - ?71'1121' [Mij7 An] =0,
— _ 62za8n -1 ia
[Min, Ai] = Annili - —mlA O + (A 0, + Ala)
2ia0,, 2
(3000 — A= tan (2
n 3 B
NN = A A X A oA 1 a aén
+(AiD,0; + Aid,d) — 24,0,0,) (3_3 - 5o (),
(M, A] = —A,. (A.12)
The dual of Zu is ZH,
— <A 1 ~ — <A
5W(A>\A ) = —§waﬁLa5(A>\A ) (A13)
Its transformation law is
GLA = _%wa%aﬁ“ + %waﬁ (Mo, A | (A.14)
and
-l - - —=n
[M;;, A ] = 5§Ai — 5fAj, [Mij,A =0,
! - QA AT A om
UmmA]:—&AW+%yA aA E&mﬂ
aén N 1 a aAn -m =l
+—mn@?y%@—(7——an¢54yamb +O,A), (A.15)
~ 1 — 2iadn— a ady\ A A = 1 a ad, \\ A A =M
M;,, Al = — A, — —tan (—2)0,,0"A; + 2 — — —— cot (—=) ) 0;0mA .
| 2iad), 20, %) <ag 28, 5 ))

~ v y <M
All the vector fields introduced so far A,, A*, A, and A can be obtained from the
vector field V), corresponding to the Dirac derivative via the derivative-valued map

V.=E/A,, A,=(E

", (A.16)

I

The matrix £, = E (9) in (ATIH) depends only on derivatives. To find its explicit form

one expands the transformation laws of Vw /Alu and 5,“ (A2), (A6) and [ZZ7) in powers of
a. In the zeroth order we assume that

~

V“’O(ao) =4

o (A.17)
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In this way a recursion formula in a is obtained and its solution is given by

1 - i, (0 i a0y \ \ O O™
E"™ = —sin(ad,) — e % (— + — tan (—= ) o
aoy, (a0n) 2 9, ( 2 ) On,
EJ = g0 tap (a—)aj,
On 2
En = (e_wa" _lme™ 6Aman>@
! 1a0, Dy
) 1 — 7iaén
JoR I f (A.18)
1a0,

One can also construct the inverse of this map. Here we write result expanded up to second
order in the deformation parameter, the full expression is given in [56]

(ia)? 5 5

-I\n _ 1 _ N2 m 3
(B = 1- 2 - X5, 0m + 0ad),
. . 2
(5 = 2o+ 0.5 1 o),
. 2
g tag 1a)” A A
= 20, - 5.0, + o),
By — i1y 005 5y (s 5 s A9



Appendix B

The k-deformed symmetry from the
inversion of the x-product

Here we apply the technique from Chapter 5 to construct a deformed symmetry for the x-
deformed space introduced in Chapter 2. The underlying idea is to compare the symmetry
obtained in this way with the already known k-Poincaré symmetry analysed in Chapter 2.
We use the symmetrically ordered x-product (224) and derivatives defined in (EZ22T]) and

ZZ224).
The transformation law of a scalar field up to second order in the deformation parameter
a is
5ed = —£10,0 = ~X{o o
7; loa 1 g o
- —(&“@ - §C§ 'r)\(aﬂfu>808l1 - §C§ C’yﬁljlﬁ(apaaflt)aoaﬁau

1 T YO 1 T YO
— OO (D,0a6) D50, — SCX O (0a8")0, 050, + O(a3)> > . (B.1)
For the special case of translations, £# = b* = const. (B]) gives

52‘25 = =V * (Ou0) = =" (0,9). (B.2)

For Lorentz rotations, £# = z¥w,* we have

' 1
Sk = —Pwi * (9,0) + %Cﬁ"x%p" 5 (00,6) + O8O 0w 5 (0,0:0,,0)

= _%waﬁ(Laﬁgb)? (B3)

where L,g = 2,03 — 230,.
Transformations (B.2) and (B3)) close in the undeformed algebra

(L Lpo) = Mo Lup + Mup Lo — Mo Lve — Mo Lyp,
[apa 80] = 07
[Lyrs Op) = 10pOp — MOy (B.4)
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Their coproducts are

AO, =0, ®1+1® 0,
2 : 2

20; = 0 ® (1= 00 = 5000) + (1+ 500 = 50,0,) © 9,
2
+ (000 0,0; + 0,0, 0,) + O(a?). (B.5)

ALaﬁILa5®1+1®La5
a o, A A
— 55a(ag®l‘ O\ — 8)\®85)

2
—51%53(8”85 X .T)\a)\ -+ .T)\a)\ X anﬁﬁ) (B6)

2
+az5g (22050, ® 220305 — 0,05 ® (2703)2
—(1‘)‘8)\)2 ® 8nag + x@ﬁ;; ® xkaﬁn)

2
+%5§ (20500 @ D + Dp @ 22020, + B, @ 17030

+220\0p @ ) — v — ﬁ) + O(a?).

From (B.4) it is obvious that AL,s does not close in the algebra of derivatives and Lorentz
generators (Poincaré algebra). Therefore, we have to enlarge the algebra and include coor-
dinates as well. Before proceeding further we make one remark concerning the uniqueness of
solution (ZZ3) for the commutator of Lorentz generators and coordinates. From equations

(B3) and (B.0) we see that the solution
[MP7, 3] = 730 — 03 (B.7)

is also possible, that is it fulfils (2222) conditions. However, it leads to the coproduct of M*”
generators that does not close in M*? and éu only, but also includes the coordinates. This
is the reason why this solution has not been considered in Chapter 2.

The way that coordinates appear in ([B.fl) suggests introducing the generator of di-
latations. Inserting £ = ex* with € real constant in ([BI) gives for infinitesimal dilatations

5ggz5 = —ext % (0,0) = —ext(0,0) = —€D¢. (B.8)

As the next step we check that generators 0,, Los and D close in the undeformed

algebrall. In addition to ([B4) we obtain

[Dv D] =0,
[D, 0] = O,
[D, L] = 0. (B.9)

!This step is obvious. The transformations (B2), (B3) and (BX) are classical transformations and
therefore the algebra is undeformed.
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Coproduct of the generator of dilatations is

AD=D®1+18D— (9, ® D =D ®0,)

2
—%ﬂ%®D+D®%)
2

6(D8®84H9®D8

%(62®D2+D2®82 —2Dd, © Do,)
)+ O(a®). (B.10)
Coproduct of the Lorentz generators ([B.l) can now be rewritten as

ALys = Lo ®1+1® Lag

~( 5080 © D= D& dy) - =5 50 (0,05 @ D + D ® 0,0) (B.11)
2

+%5Z(D8n ® D33 — 0,95 ® D* — D*© 8,05 + D3 @ DA,)
2

+%5Z(D8n ® 0+ 03 ® DO, + 8, ® D3 + DI @ 0,) — @ 5) +0(d®).

From (BII) we see that AL,s closes in the algebra of 0,, L3 and D generators. Adding
counits and antipodes

£(0,) = (D) = e(Lag) = 0. (B.12)
S(0,) = —0,, (B.13)
S(D) = — 8n — ECL282 + O(a®), (B.14)

2

i a
S(Laﬁ) = —Log — _<77anaﬁ - nﬁnaa) - ?anO]anaﬁ - 7761180!) + O(CLs) (B-15>

2
we obtain the x-deformed Weil Hopf algebra.

In this way we have constructed another deformed symmetry for the x-deformed space.
Comparing this result with the k-Poincaré Hopf algebra discussed in Chapter 2, we see that
this two quantum symmetries are not equal. The problem is that in the ”x-product inversion”
approach coordinates naturally appear and one is forced to replace the Poincaré algebra with
a larger one (in this case with the deformed Weil algebra).
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Appendix C

The general k-deformed space

In this appendix we concentrate on the general x-deformed space, that is we do not specify
a” = a and ¢ = 0 in equation (ZIITI).
C.1 Derivatives

Starting from the defining relation for the general x-deformed space
[ZH, 2] = ia'Z" —ia" 3", w=0,...n, (C.1.1)

we obtain three families of the linear derivatives

>

[0,37) = 0 + ia’d,,

[0, 3] = (1 — ia*0y),

0,,,2"] = oy, + i’y + i1,,m"° af Dy . (C.1.2)
Here n* = aAlz’ag(l, —1,...,—1) is the formal metric. The last two solutions can be expressed
in terms of 0, derivative]
. d
@L — 7MA,
1 +iar0,
- . i 0B oA A
0y = 0, + o) 5a0,03. (C.1.3)

Derivatives commute among themselves
[0,,0,] =0 (C.1.4)

as well as for the other two solutions. Leibniz rules for (CI2) derivatives are given by

0u(f-3) = (0uf) - g+ (L +14a”8,) ) - (8,4),
u(f+9) = 0uf) - (1 —ia”d,)g) + f - (0.9),
Ou(f-9) = (0uf) - g+ (1 +1ia0,) f) - (9.9) + ianyum™(0af)(059),  (C.1.5)

1One can chose any of this three solutions to work with and express the other two in terms of it. Here
we have chosen to work with the first one for no special reason but the simplicity of some formulas.
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or in terms of the coproduct

AD, = 5 ®1+(1+m”8 ) @ Oy, 4 101,100 @ Dp. (C.1.6)

C.2 Deformed symmetry

Deformed symmetry is introduced like the map on the abstract algebra given by generators
M. The commutation relation between the generators and coordinates is given by

[M??, &H] = nohaP — nPe® —ia” MF + ia® MP*. (C.2.1)
Using this result one checks that M, generators close the undeformed Lorentz algebra
[M* MP7] = nho MYP + 0P MH — gt MY — n"? M*P. (C.2.2)
From (C2.)) the Leibniz rule follows
M?(f-g) = (M f) - g+ f - (M”§) + (ia?Orf) - (M*79) — (ia”Orf) - (M™3),  (C.2.3)
or in the terms of the abstract comultiplication
AM? = M @1+1® M +iady @ M —ia®dy @ M. (C.2.4)
Again we see that the comultiplication does not close on the generators M*?, derivatives
have to be added. Therefore, we have to define the commutator of M*? with derivatives.

This can be done by first representing the generators M by coordinates and derivatives.
Just like in Section 2.2 we call the generators M*? in this realisation L

L7 = P20y — n7 Py + %(apfc" — a%3") 8,0 (C.2.5)
From (C2.1) the action of M*? on the derivatives follows immediately
[M?7,0,] = 650 — 867 0x + i(a"n™ — a*n™) 90, + = 5 ((mﬂ 85a%)0,n™ 0y, (C.2.6)

The k-Poincaré Hopf algebra is defined by the relations (CI4), (C22), ([CZ4),
[C24), ([CIH) and we have to add the counit and antipode:

e(M7) =0, £(d,) =

A~ A P A A0
S(Mpa):—Mpaﬁ“iapMAOLA—ZGUMAPLA_Zn_ M’
1+ iav0, 1+ 1av0, 1+ iav0,
. d
S(@8,) = ——2» (C.2.7)

1+iavd,
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C.3 Dirac derivative, invariants

Like in Section 2.3 we introduce the Dirac derivative and the deformed D’Alambert operator.

The relevant formulas are
B &L + %a“n’”éﬁé,\

[Mpav bu] = (5;77py - 5577W)Dw Eu

1 +iard,
KA A
e ) =0, 0= 100
1 +1iard,
L . rav -
n#uDuDy — D(l _ %D)

The map from &L to Du is invertible:

~

D, — % (1 — \/1 — nma"aTn/\WlA))\lA)w>

5, =
—Z.Cﬂﬁ’y + \/1 — n75a7a5nAyﬁAby

From the commutation relations
[E;m i_u] — 5Z< — Z'apbp + \/1 _ nUTaIJaITT/AwEAﬁw> + inupnvaapﬁa

the Leibniz rule and comultiplication for the Dirac derivative follow

A A A A A~

Du(f 9) = (Duf) - ———=g+ (1 +ia"d,)f) - (D)

1+ 1av0,

(117,000 O, f) - _ A —§ — (ia*0\f)
e 1 4 iavd,

AD,=D,® +(1+ia"d,) ® D,

1+iavd,

. BN
+Z a’ “A(’L Q ————— — iaAa)\ & ——F=.
T 1 +iavd, 1 +iavd,

(C.3.1)

(C.3.2)

(C.3.3)

(C.3.4)

(C.3.5)

(C.3.6)

Equation (C34) has to be used to express 9, by D, on the righthand side of (C-334).
It is now convenient to define the xk-Poincaré Hopf algebra in terms of the Dirac deriva-

tives and M*” generators.
Algebra sector

[ﬁua ﬁu] = 07
[M*?,D,] = (65n* — &1°") D,
MM MPP| = g9 MYP 4 n"P MM — ntP MV — n¥® MHP.
n ] n ]

Coproducts
~ A 1 A
AD, =D, ® — + (1 +14a"0,) ® D
g S 1av0, ( ) :
KA A ) A 3#
+ia"n"" 0, ® — — a0\ ® ,
1 +1ia¥0, 1+1a¥0,

(C.3.7)

(C.3.8)
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Counits and antipodes
5(bu) =0,
e(M??) =0

00— i)
S(D,) = =D, + AL

1+ iavd, ’
S(MPU) = —Mpo +iCLPM)\ULA
1+ 1av0,
d 9, — a®d
1+ 1iav0, 1+ 1iav0,

Casimir operators are again given by the deformed d’Alembert operator ((C3.2) and

the generalisation of the square of the Pauli-Lubanski vector
d—2
Wi2+1 = Wi gy WHE 2L 1= 1,...77 d=n+1=2k+1)+1,

0% M H2ib2it1 | fHn—2fn—1 [)kn (C.3.10)

p1-pzier — Cpiepn

C.4 Fields

Transformation law of a scalar field under the k-deformed Lorentz transformations is given

by .
5,0(%) = —éwaﬁﬁaﬁg&(@), (C.4.1)

where L7 is given by ((CZH). For a vector field V), associated with the Dirac derivative

([C3T)) we have
~ 1 ~ ~ ~ ~
0V = _§waﬁ (Laﬁvu — NguVa + nauvﬁ>

1 PN 1 .
= —§wo‘5La5VM + §waﬁ [Mags, V] (C.4.2)
Also, for a vector field flﬂ related with the derivative @ we have
A 1 o5e 1. .
0uAy = —w BLapA, + ¢ A Magp, A, (C.4.3)
with
X X X 7 N A A 7 A A X
[Mag, Aﬂ] = 776#‘4& — ﬁa#Aﬁ -+ §(aﬁ8a — aaag)Au + éa“<agz4a — aaAﬁ)
i PSS | aM (DD AY — 9,07 A))
a a o o) AA n a o - ; Aw
A - 0
(14 Ll - 1)
a0, 2 log(1 + ia70;)

—a5(25aéufh— )\éuzzla— AéaAu))- (644)
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The last two terms vanish if flu is replaced by éugz; In ([C44) they are needed for the

representation property ([AZ). A A
The transformation law of a vector field B* dual to Au vector field follows from

PR 1

6,(A\BY) = —§waﬁﬁaﬁ(mék) (C.4.5)
and it is given by
. 1 A oa 1 ~
6,B" = _éwﬁLaﬁBﬂ + éwﬁ (M5, B, (C.4.6)
and
N . . ] . . 5229 . .
[Mag, B‘u] = (%Ba — 5535 —+ %(aﬁBa — aaBg)ﬁ“ — a@'a“/é A (aﬁﬁa — aaﬁﬁ)
Y

1 . @00 — DO
+Z(aﬁBa — aaBs) =2 >

1+ %a”@7
1 ia’d,
T SO
(ta70y)? log(1 + ia70;)

(2&“3’\3,\(%@@ — aaéﬁ) — B“a)‘é)\(agéa — aaég)
—B*a*8,0,(8"ay — 5;;%)). (C.4.7)

The derivatives D, and 9, can be transformed into each other using (C3.1]) and (C3.4).
Such a map exists between A, and V), as well. We demand that

V.=ErA, A, =(EM., (C.4.8)

p

such that it is consistent with (C42) and ([C43)). The solution is given by

E wo__ 5!’4 'L’awéw —a é# awéw
(1 4iard,) log(1 +iavd,) (1 +iard,)(2 + iad,) log(1 + ia D)

N ia"d, ( 1 1 )
1 +iard, \iawd, log(l +iavd,)
aaa“épép

_ )(1 41 L )). (C.4.9)

(1+1a°8,)(2 +ia70,) \2  ia“d, log(l + ia“d,

It depends only on derivatives and not on coordinates.



108




Bibliography

1]

2]
3]

A. Einstein, Die Grundlage der allgemeinen Relativitatstheorie, Annalen Phys. 49, 769
(1916).

P. Dirac, The quantum theory of electron, Proc. Roy. Soc. Lond. A117, 610 (1929).

W. Heisenberg and W. Pauli, Zur Quantendynamik der Wellenfelder, Zeitschrift fiir
Physik 56, 1 (1929).

Letter of Heisenberg to Peierls (1930), in: Wolfgang Pauli, Scientific Correspondence,
vol. 11, 15, Ed. Karl von Meyenn, Springer-Verlag 1985.

H. S. Snyder, Quantized spacetime, Phys.Rev. 71, 38 (1947).
A. Connes, Noncommutative Geometry, Academic Press (1994).

G. Landi, An introduction to noncommutative spaces and their geometry, [hep-

th/9701078).
J. Madore, Noncommutative geometry for pedestrians, [gr-qc/9906059].

I. M. Gel’fand and M. A. Naimark, On the embedding of normed linear rings into the
ring of operators in Hilbert space, Mat. Sbornik. 12, 197 (1947).

F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, Deformation
theory and quantization, Ann. Phys. 111, 61 (1978).

D. Sternheimer, Deformation quantization: Twenty years after, AIP Conf. Proc. 453,
107 (1998) [math.qa/9809056].

Maxim Kontsevich, Deformation quantization of Poisson manifolds, I, [q-alg/9709040].

H. Hopf, Uber die Topologie der Gruppenmannigfaltigkeiten und ihre Verallgemeinerun-
gen, Ann. Math. 42, 22 (1941).

S. L. Woronowicz, Compact matriz pseudogroups, Commun. Math. Phys. 111, 613
(1987).

L. D. Faddeev, N. Y. Reshetikhin and L. A. Takhtadzhyan, Quantisation of Lie groups
and Lie algebras, Leningrad Math. J. 1, 193 (1990).

M. Jimbo, A g-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math.
Phys. 10, 63 (1985).



110 BIBLIOGRAPHY

[17] V. G. Drinfel’d, Hopf algebras and the quantum Yang-Bazxter equation, Sov. Math. Dokl.
32, 254 (1985).

[18] M. R. Douglas and N. A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73,
977 (2001) [hep-th/0106048].

[19] R. J. Szabo, Quantum field theory on noncommutative spaces, Phys. Rept. 378, 207
(2003) [hep-th/0109162].

[20] L. Castelani, Noncommutative geometry and physics: a review of selected recent results,

[hep-th/0005210].
[21] S. Girvin and R. Prange, The Quantum Hall Effect (1987).

[22] J. Bellissard, A. van Elst and H. Schulz-Baldes, The noncommutative geometry of the
quantum Hall effect, [cond-mat/9301005].

[23] B. DeWitt, in Gravitation, edited by L. Witten, 266 (1962).

[24] C. S. Chu and P. M. Ho, Noncommutative open string and D-brane, Nucl. Phys. B 550,
151 (1999) [hep-th/9812219].

[25] V. Schomerus, D-branes and deformation quantization, JHEP 9906, 030 (1999) [hep-
th/9903205).

[26] N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 9909,
032 (1999) [hep-th/9908142].

[27] S. Minwalla, M. Van Raamsdonk and N. Seiberg, Noncommutative perturbative dynam-
ics, JHEP 0002, 020 (2000) [hep-th/9912072].

[28] M. Van Raamsdonk and N. Seiberg, Comments on noncommutative perturbative dy-
namics, JHEP 0003, 035 (2000) [hep-th/0002186].

[29] J. Lukierski, A. Nowicki, H. Ruegg and V. N. Tolstoy, Q-deformation of Poincaré alge-
bra, Phys. Lett. B264, 331 (1991).

[30] J. Lukierski, A. Nowicki and H. Ruegg, New quantum Poincaré algebra and k-deformed
field theory, Phys. Lett. B293, 344 (1992).

[31] J. Madore, S. Schraml, P. Schupp and J. Wess, Gauge theory on noncommutative spaces,
Eur. Phys. J. C16, 161 (2000) [hep-th/0001203].

[32] B. Jurco, S. Schraml, P. Schupp and J. Wess, Enveloping algebra valued gauge transfor-
mations for non-Abelian gauge groups on nmon-commutative spaces, Eur. Phys. J. C17,
521 (2000) [hep-th/0006246].

[33] J. Wess and B. Zumino, Covariant differential calculus on the quantum hyperplane,
Nucl. Phys. Proc. Suppl. 18B, 302-312 (1991).

[34] S. L. Woronowicz, Differential calculus on compact matriz pseudogroups (Quantum
Groups), Commun. Math. Phys. 122, 125-170 (1989).



BIBLIOGRAPHY 111

[35]

[36]

[37]

[42]

[43]

[44]

[45]

[46]

M. Dimitrijevi¢, L. Jonke, L. Moller, E. Tsouchnika, J. Wess and M. Wohlgenannt, De-
formed field theory on kappa-spacetime, Eur. Phys. J. C 31, 129 (2003) [hep-th/0307149].

P. Aschieri, C. Blohmann, M. Dimitrijevi¢, F. Meyer, P. Schupp and J. Wess, A Grav-
ity Theory on Noncommutative Spaces, Class. Quant. Grav. 22, 3511 (2005) [hep-
th /0504183].

R. Oeckl, Untwisting Noncommutative R® and the Equivalence of Quantum Field The-
ories, Nucl. Phys. B581, 559 (2000) [hep-th/0003018].

J. Wess, Deformed Coordinate Spaces; Derivatives, [hep-th/0408080].

M. Chaichian, P. P. Kulish, K. Nishijima and A. Tureanu On a Lorentz-Invariant In-
terpretation of Noncommutative Space-Time and Its Implications on Noncommutative
QFT, Phys. Lett. B604, 98 (2004) [hep-th/0408069].

F. Koch and E. Tsouchnika, Construction of 0-Poincaré algebras and their invariants
on My, Nucl. Phys. B717, 387 (2005) [hep-th/0409012].

B. Jurco, L. Moller, S. Schraml, P. Schupp and J. Wess, Construction of non-
Abelian gauge theories on noncommutative spaces, Eur. Phys. J. C21, 383 (2001) [hep-
th/0104153].

L. Moller, Second order of the expansions of action functionals of the noncommutative
standard model, JHEP 0410, 063 (2004) [hep-th/0409085].

X. Calmet, B. Jurco, P. Schupp, J. Wess and M. Wohlgenannt, The Standard Model on
noncommutative spacetime, Eur. Phys. J. C23, 363 (2002) [hep-ph/0111115].

P. Aschieri, B. Jurco, P. Schupp and J. Wess, Noncommutative GUTs, standard model
and C, P, T, Nucl. Phys. B 651, 45 (2003) [hep-th/0205214].

W. Behr, N. G. Deshpande, G. Duplanci¢, P. Schupp, J. Trampeti¢ and J. Wess, The
Z — 7v7v,99 Decays in the Noncommutative Standard Model, Fur. Phys. J. C29, 441
(2003) [hep-ph/0202121].

B. Meli¢, K. Pasek-Kimericki, P. Schupp, J. Trampeti¢ and M. Wohlgennant, The Stan-
dard Model on Non-Commutative Space-Time: Electroweak Currents and Higgs Sector,
[hep-ph/0502249].

C. P. Martin, The gauge anomaly and the Seiberg- Witten map, Nucl. Phys. B 652, 72
(2003) [hep-th/0211164].

F. Brandt, C. P. Martin and F. R. Ruiz, Anomaly freedom in Seiberg- Witten noncom-
mutative gauge theories, JHEP 0307, 068 (2003) [hep-th/0307292].

C. P. Martin, C. Tamarit, The U(1)A anomaly in noncommutative SU(N) theories,
[hep-th/0503139].

L. Bonora, M. Schnabl, M. M. Sheikh-Jabbari and A. Tomasiello, Noncommutative
SO(n) and Sp(n) gauge theories, Nucl. Phys. B 589, 461 (2000) [hep-th/0006091].



112 BIBLIOGRAPHY

[51] 1. Bars, M. M. Sheikh-Jabbari and M. A. Vasiliev, Noncommutative o*(N) and usp*(2N)
algebras and the corresponding gauge field theories, Phys. Rev. D 64, 086004 (2001)
[hep-th/0103209].

[52] J. Madore, Gravity on fuzzy space-time, Class. Quant. Grav. 9, 69 (1992).

[53] A. H. Chamseddine, Deforming Finstein’s gravity, Phys. Lett. B 504, 33 (2001) [hep-
th /0009153].

[54] M. A. Cardella and D. Zanon, Noncommutative deformation of four dimensional Fin-
stein gravity, Class. Quant. Grav. 20, 95 (2003) [hep-th/0212071].

[55] M. Dimitrijevi¢, F. Meyer, L. Moller and J. Wess, Gauge theories on the kappa-
Minkowski spacetime, Eur. Phys. J. C 36, 117 (2004) [hep-th/0310116].

[56] M. Dimitrijevi¢, L. Méller and E. Tsouchnika, Derivatives, forms and vector fields on
the kappa-deformed FEuclidean space, J. Phys. A37, 9749 (2004) [hep-th/0404224].

[57] M. Dimitrijevi¢, L. Jonke and L. Méller, U(1) gauge field theory on kappa-Minkowski
space, JHEP 0509, 068 (2005) [hep-th/0504129].

[58] M. Dimitrijevi¢ and J. Wess, Deformed Bialgebra of Diffeomorphisms, [hep-th/0411224].

[59] Y. I. Manin, Multiparametric quantum deformation of the general linear supergroup,
Commun. Math. Phys. 123, 163 (1989).

[60] A. Klimyk and K. Schmiidgen, Quantum groups and their representations, Springer,
Berlin, Heidelberg (1997).

[61] J. Wess, g-Deformed Heisenberg Algebras, [math-ph/9910013].

[62] B. L. Cerchiai, R. Hinterding, J. Madore and J. Wess, A Calculus Based on a q-deformed
Heisenberg Algebra, Fur. Phys. J. C8, 547 (1999) [math.QA /9809160].

[63] E. Abe, Hopf Algebras, Cambridge University Press (1980).

[64] S. Doplicher, K. Fredenhagen and J. A. Roberts, Spacetime quantization induced by
classical gravity, Phys. Lett. B331, 39 (1994).

[65] C. E. Carlson, C. D. Carone and N. Zobin, Noncommutative Gauge Theory without
Lorentz Violation, Phys. Rev. D66, 075001 (2002) [hep-th/0206035].

[66] H. Weyl, Quantenmechenik und Gruppentheorie, Z. Phys. 46, 1 (1927).

[67] J. E. Moyal, Quantum mechanics as a statistical theory, Proc. Cambridge Phil. Soc. 45,
99 (1949).

[68] P. Kosinski and P. Maglanka, The duality between k-Poincaré algebra and k-Poincaré
group, [hep-th/9411033].



BIBLIOGRAPHY 113

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

(78]

[79]

[30]

[31]

[82]

[83]

[84]

[85]

G. Amelino-Camelia, Relativity in space-times with short-distance structure governed by
an observer-independent (Planckian) length scale, Int. J. Mod. Phys. bf D 11, 35 (2002)
[gr-qc/0012051].

G. Amelino-Camelia, Testable scenario for Relativity with minimum-length, Phys. Lett.
B 510, 255 (2001) [hep-th/0012238].

J. Magueijo and L. Smolin, Lorentz invariance with an invariant energy scale, [hep-
th/0112090).

A. Ballesteros, F. J. Herranz, M. A. del Olmo and M. Santander, A new "null-plane”
quantum Poincaré algebra, Phys. Lett. B 351, 137-145 (1995).

P. Kosinski, P. Maslanka, J. Lukierski and A. Sitarz, Generalized k-deformations and de-
formed relativistic scalar fields on noncommutative Minkowski space, [hep-th/0307038].

A. Nowicki, E. Sorace and M. Tarlini, The quantum deformed Dirac equation from the
k-Poincaré algebra, Phys. Lett. B302, 419-422 (1993) [hep-th/9212065].

J. Lukierski, H. Ruegg and W. Riihl, From k-Poincaré algebra to k-Lorentz quasigroup:
A deformation of relativistic symmetry, Phys. Lett. B 313, 357 (1993).

J. Kowalski-Glikman and S. Nowak, Doubly Special Relativity theories as different bases
of k-Poincaré algebra, Phys. Lett. B539, 126-132 (2002) [hep-th/0203040].

S. L. Lyakhovich, A. A. Sharapov and K. M. Shekhter, D=6 massive spinning particle,
[hep-th/9605186].

E. Tsouchnika, Field theories in noncommutative spacetime, Diploma thesis at the
Ludwig-Maximilian University, Munich (2003).

H. Grosse and M. Wohlgenannt, On k-Deformation and UV/IR Mizing, [hep-
th/0507030].

C. N. Yang and R. L. Mills, Conservation of isotopic spin and isotopic gauge invari-
ance,Phys. Rev. 96, 191 (1954).

P. W. Higgs Broken symmetries and the masses of gauge bosons Phys. Rev. Lett. 13,
508 (1964).

P. W. Higgs Spontaneous symmetry breakdown without massless bosons Phys. Rev. 145,
1156 (1966).

B. Jurco and P. Schupp, Noncommutative Yang-Mills from equivalence of star products,
Eur. Phys. J. C 14, 367 (2000) [hep-th/0001032].

B. Jurco, P. Schupp and J. Wess, Noncommutative gauge theory for Poisson manifolds,
Nucl. Phys. B 584, 784 (2000) [hep-th/0005005].

B. Jurco, P. Schupp and J. Wess, Nonabelian noncommutative gauge theory via non-
commutative extra dimensions, Nucl. Phys. B 604, 148 (2001) [hep-th/0102129].



114 BIBLIOGRAPHY

[86] L. Moller, Noncommutative gauge theory and k-deformed spacetime, PhD thesis at the
Ludwig-Maximilian University, Munich (2004), [preprint MPP-2004-57].

[87] W. Behr and A. Sykora, Construction of gauge theories on curved noncommutative
spacetime, Nucl. Phys. B698, 473 (2004) [hep-th/0309145].

[88] G. Felder and B. Shoikhet, Deformation quantization with traces, [math.qa/0002057].

[89] M. A. Dietz, Symmetrische Formen auf Quantenalgebren, Diploma thesis at the Uni-
versity of Hamburg (2001).

[90] A. Agostini, G. Amelino-Camelia, M. Arzano and F. D’Andrea, Action functional for
kappa-Minkowski non-commutative space-time, hep-th/0407227].

[91] F. Meyer and H. Steinacker, Gauge field theory on the E,(2)-covariant plane, Int. J.
Mod. Phys. A 19, 3349 (2004) [hep-th/0309053].

[92] S. Goto and H. Hata, Noncommutative monopole at the second order in 6, Phys. Rev.
D 62, 085022 (2000) [hep-th/0005101].

[93] B. L. Cerchiai, A. F. Pasqua and B. Zumino, The Seiberg- Witten map for noncommau-
tative gauge theories, [hep-th/0206231].

[94] G. Barnich, F. Brandt and M. Grigoriev, Local BRST cohomology and Seiberg- Witten
maps in noncommutative Yang-Mills theory, [hep-th/0308092].

[95] R. Wulkenhaar, Non-renormalizability of 0-expanded noncommutative QED, JHEP
0203, 024 (2002) [hep-th/0112248].

[96] P. Aschieri, M. Dimitrijevi¢, F. Meyer and J. Wess, Noncommutative Geometry and
Gravity, [hep-th/0510059].

[97] S. Cacciatori, A. H. Chamseddine, D. Klemm, L. Martucci, W. A. Sabra and D. Zanon,
Noncommutative Gravity in two Dimensions, Class. Quant. Grav. 19 , 4029 (2002)
[hep-th/0203038].



115

Curriculum Vitae

Marija Dimitrijevic

Addresses

Permanent Institution Present Institution

Faculty of Physics Theoretical Physics Group

University of Belgrade Ludwig-Maximilians University, Munich
P.O.Box 368 Theresienstr. 37

11000 Belgrade 80333 Munich

Serbia and Montenegro Germany

Tel.: +38111-630-152/119 Tel.: 4498921804379

E-mail: dmarija@ff.bg.ac.yu E-mail: dmarija@theorie.physik.uni-muenchen.de

Personal data

Date and place of birth: 7.10.1975, Jagodina, Serbia and Montenegro

Parents: Zivorad Dimitrijevi¢ and Milica (Mati¢) Dimitrijevié

Education

B. Sc. Physics, 2.11.1998 at the Faculty of Physics, University of Belgrade
Thesis: Hawking Radiation in CGHS Model

M. Sc. Physics, 28.8.2002 at the Faculty of Physics, University of Belgrade
Thesis: Classical and Quantum Properties of BTZ Black Hole

Working Experience

Teaching assistant (1999-) at the Faculty of Physics (University of Belgrade),
Courses: Electrodynamics, Particle Physics, Mechanics and Thermodynamics

Fellowships
Scholarship of Ministry of Science and Technology of Republic Serbia, 1998/99,
DAAD Scholarship 10.2002-7.2003

Doctoral possition in the framework of DFG Schwerpunktprogramm (1096) ” Stringtheorie
im Kontext von Teilchenphysik, Quantenfeldtheorie, Quantengravitation, Kosmologie und

Mathematik”, 1.10.2003-30.9.2004
Max-Plank Institute doctoral scholarship 1.10.2004-31.1.2006

Publications

1. M. Buri¢, M. Dimitrijevi¢, V. Radovanovi¢, Phys. Rev. D 65, 064022 (2002),
[hep-th /0108036]

2. M. Dimitrijevi¢, L. Jonke, L. Moller, E. Tsouchnika, J. Wess and M. Wohlgenannt,

Deformed Field Theory on kappa-spacetime Eur. Phys. J. C31, 129 (2003)



116

[hep-th/0307149].

3. M. Dimitrijevi¢, F. Meyer, L. Moller and J. Wess, Gauge theories on k-spacetime,
Eur. Phys. J. C36, 117 (2004) [hep-th/0310116].

3. M. Dimitrijevi¢, L. Moller and E. Tsouchnika, Derivatives, forms and vector fields on
the k-deformed Fuclidean space, J. Phys. A, 9749 (2004) [hep-th/0404224].

4. M. Dimitrijevi¢, L. Jonke, L. Moller, E. Tsouchnika, J. Wess and M. Wohlgenannt, Field
theory on kappa-spacetime, talk given by L. Jonke at the XIII International Colloquium on
Integrable Systems and Quantum Groups, June 2004, Prague Czech.J.Phys. 54, 1243
(2004) [hep-th/0407187].

5. M. Dimitrijevi¢ and J. Wess, Deformed Bialgebra of Diffeomorphisms, talk given by M.
Dimitrijevic at 1st Vienna Central European Seminar on Particle Physics and Quantum
Field Theory, 26-28 November 2004, hep-th/0411224.

6. M. Dimitrijevi¢, L. Jonke and L. Moller, U(1) gauge field theory on kappa-Minkowski
space, JHEP 0509, 068 (2005) [hep-th/0504129].

7. P. Aschieri, C. Blohmann, M. Dimitrijevi¢, F. Meyer, P. Schupp and J. Wess, A Gravity
Theory on Noncommutative Spaces, Class. Quant. Grav. 22, 3511 (2005) [hep-th/0504183].

8. M. Dimitrijevi¢, L. Jonke and L. Moller, U(1) gauge field theory on kappa-Minkowski
space, talk given by L. Jonke at the XIV International Colloquium on Integrable Systems
and Quantum Groups, June 2005, Prague, to be published in Czech. J. Phys. 55 (2005).

9. P. Aschieri, M. Dimitrijevi¢, F. Meyer and J. Wess, Noncommutative Geometry and
Gravity, hep-th/0510059, submited to Class. Quant. Grav.



	Introduction
	Noncommutative spaces
	Definition
	Derivatives
	Symmetries
	Representation on the space of commuting coordinates
	An example, the -deformed space

	The -deformed space
	Quantum space and derivatives
	Symmetry generators
	Dirac derivative
	Representation on the space of commuting coordinates
	Fields and equations of motion
	Fields
	Covariant equations of motion


	Construction of gauge theories on the -deformed space
	Commutative gauge theory
	Noncommutative gauge theory, setting
	Enveloping algebra approach
	Seiberg-Witten map
	Covariant derivative and the gauge field
	Gauge covariant Lagrangians

	U(1) gauge theory on the -deformed space
	Integral and the variational principle
	Modified Seiberg-Witten map
	The action for the -deformed electrodynamics
	Matter field action
	Gauge field action
	Conserved currents

	Seiberg-Witten map and the gauge symmetry

	Gravity on the -deformed space
	Commutative diffeomorphisms
	Deformed diffeomorphisms
	Inversion of the -product
	Hopf algebra of deformed diffeomorphisms
	Consequences of the deformed coproduct

	Tensor calculus
	Fields
	Metric tensor

	Curvature and torsion
	Covariant derivative
	Curvature tensor, Ricci tensor and scalar curvature

	Deformed Einstein-Hilbert action
	Equations of motion
	Expansion in the deformation parameter
	The -deformed Poincaré algebra
	Noncommutative gauge theory, revisited

	Vector fields in the -deformed space
	The -deformed symmetry from the inversion of the -product
	The general -deformed space
	Derivatives
	Deformed symmetry
	Dirac derivative, invariants
	Fields

	Bibliography

