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Abstract

The main purpose of the work presented in this thesis is to investigate the phenomenon

of resonant scattering of the Cosmic Microwave Background (CMB) photons by atoms

and molecules. The fine-structure transitions of the various atoms and ions of Car-

bon, Nitrogen, Oxygen and other common metals have wavelengths in the far-infrared

regions, which are particularly suitable for scattering the CMB photons at high red-

shifts (2 . z . 30). Since the CMB photons are released at redshifts z ' 1100, they

must interact with all the intervening matter before reaching us at z = 0. Therefore

scattering of these photons in the far-IR fine-structure lines of various atoms and ions

provide a plausible way to couple the radiation with the matter at those redshifts and

to study the enrichment and ionization history of the universe. Moreover, rotational

transitions of diatomic molecules like the CO have wavelengths extending into the

sub-millimeter wavebands, and hence they can scatter the CMB photons at very low

redshifts. Studying the very low density gas of nearby galaxies in CO lines can yield

a definitive signature of resonant scattering of the CMB photons through a decrement

in the background intensity of the microwave sky. Observation of this scattering signal

from any object in the sky will tell us about its radial velocity in the CMB rest frame.

In this work we first derive the detailed formalism for the scattering effect in presence

of the peculiar motion of the scatterer. Then we investigate the possibility to detect

individual objects at different redshifts through scattering and try to find applications

for this effect. Our main example is the possibility to find the peculiar motions of

nearby galaxies in the CMB rest frame through observation of the scattering signal,

which we explore in detail. Next we discuss the density limits in which scattering effect

can dominate over the line emission in individual objects. We describe three types of

critical densities, and show that detection of single objects through scattering requires

very low density, whereas observation of the integrated scattering signal coming from

many unresolved objects in the sky will permit us to probe higher densities. We discuss

this effect subsequently, as we compute the change in the angular fluctuations of the

CMB sky temperature through resonant scattering. We found that the scattering signal

gets strong enhancement due to a non-zero correlation existing between the density

perturbations at the last scattering surface, where CMB anisotropies are generated,



and at the epoch of scattering. This opens up a new way to study the ionization and

enrichment history of the universe, and we investigate various enrichment scenarios

and the temperature fluctuations that might be caused by them. The resulting signal

is already within the sensitivity limits of some upcoming space- and ground-based CMB

experiments, and we show upto what extent they shall be able to put constraints on

different enrichment histories. Finally we analyze the effect of line and dust emission

in the same frequency range that we used for the detection of scattering signal. These

emissions are coming from very high density objects where active star formation is

taking place, and due to the compactness of their size as well as absence of any velocity

dependence the emission signal is significantly suppressed at large angular scales, where

scattering will be dominant. We present some detailed analytic expressions for the

scattering signal and also a method to solve for the detailed statistical balance equations

in a multi-level system in the appendix.
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Chapter 1

Introduction

The analysis of the Cosmic Microwave Background (CMB) provides a crucial test bed for cosmo-

logical models and theories of interaction of matter and radiation during the course of evolution

of the universe. The CMB photons received today were released at the redshift z ' 1100, when

the universe was only 300, 000 years old, therefore studying the changes in the thermal spectrum

as well as angular intensity distribution of the CMB can yield information about many subsequent

events in the cosmic history, like growth of structure formation, reionization of the universe by the

first stars, or evolution of the chemical abundances leading to present day values. High precision

CMB observations are already giving us unique information about the angular distribution of the

temperature fluctuations, as well as their spectral dependence in a wide frequency range. After an

year of operation, the WMAP satellite has obtained the first peaks of the CMB power spectrum

with an accuracy of a few percent (Hinshaw et al. 2003), and is on its way to provide measure-

ments of the temperature anisotropies in the whole sky with an average sensitivity of 35 µK per

0.3◦×0.3◦ at the end of the mission (Bennett et al. 2002, Page et al. 2002). HFI and LFI detectors

of PLANCK spacecraft will provide unprecedented sensitivity in 9 broad band (∆ν/ν ∼ 20−30%)

channels, uniformly distributed in the spectral region of the CMB where contribution of different

foregrounds are expected to be at a minimum. The ground-based and balloon-borne experiments

like Boomerang, APEX, SPT & ACT, will provide complimentary information about the temper-

ature fluctuations at small scales (θ . 1◦), and will also provide very high precision measurements

of the changes in the background intensity of the CMB inside particular objects in the sky.

In this work we have tried to find some additional use for the sensitivities of these forthcoming

CMB experiments, by means of the process of resonant scattering of the CMB photons in atomic,

ionic or molecular lines. In presence of the peculiar velocity of the scatterer, the change in the

brightness temperature of the background CMB photons takes a particularly simple form

∆T(ν)

TCMB

= − τν

(v‖

c

)

(1.1)

1



1. INTRODUCTION

where ∆T (ν) is the change in brightness temperature observed at the line frequency ν, TCMB

is the mean temperature of background CMB photons, τν is the optical depth for scattering at

resonance, and v‖ is the radial component of peculiar motion of the object in the CMB rest frame.

The negative sign arises from the convention of taking velocities positive for motion away from

the observer, which results in a decrement of temperature. We found that such decrement is the

unique feature of the scattering signal, which might help to distinguish it from the emission in the

same line. In fact, the same effect of scattering had been discussed by several authors in the past,

but a formal derivation of the effect had been absent. It was first analyzed by Dubrovich (1977,

1993), who followed Sunyaev & Zel’dovich papers (1970, 1980) on influence of electron scattering

on CMB angular fluctuations, and coined the term “spatial-spectral fluctuations” to describe the

effect of resonant scattering. This effect was analyzed later in detail by Maoli et al. (1994, 1996).

These authors were interested in the detection of primordial molecules, like HD, LiH, H2D, HD+

etc., and there were also attempts to observe them experimentally (de Bernardis et al. 1993).

We have extended their analysis to the fine-structure transitions of the various atoms and ions of

metals like carbon, oxygen, nitrogen etc., which were produced at the end of the dark ages by the

first stars. These fine-structure transitions arise from the spin-orbit coupling of the energy levels,

and have wavelengths in the far-infrared region which make them suitable for scattering the CMB

photons at high redshifts (2 . z . 30). These lines had been used by Varshalovich, Khersonskii &

Sunyaev (1978) as a means to couple matter and radiation at redshifts around 150 − 300, where

the their different adiabatic indices can lead to absorption of CMB in these lines. There are also

the hyper-fine transitions arising from spin-spin interaction, but their extremely low cross-sections

make these transitions unsuitable for any application with scattering of CMB photons. The other

important application we have made is to consider the effect of scattering in the CO rotational

lines, which are similar to the molecular lines mentioned above, but have wavelength extending

into the sub-millimeter region owing to the larger mass of CO molecule. This feature, together

with the fact that CO is the second most abundant molecule in the local universe, makes analysis

of scattering in the CO lines very attractive in the low redshift universe (z . 2). We shall see that

for galaxies in the local universe, the first three rotational lines of CO which are located near the

CMB spectrum and therefore have a large number of photons available for scattering, can give us

unique information about the motion of these galaxies in the CMB rest frame.

We found that the scattering effect analyzed in this work is identical to the kinematic-SZ effect

described by Sunyaev & Zel’dovich (1970, 1980), but now the signal is obviously a function of

frequency due to the nature of resonant scattering. There are several advantages of this effect, as

it might allow us to probe definite redshift intervals by choosing suitable transitions. This idea is

illustrated in Fig.(1.1) for the integrated signal of scattering as might become observable for satel-

lites like PLANCK. The broad-band channels of this experiment will see the effect of scattering

from a particular redshift slice ∆z/z = ∆ν/ν, ν being the frequency of the resonant transition.

2



Therefore the higher frequency channels will be sampling the lower redshifts, and provided the fu-

ture CMB experiments like ACT measure the CMB sky in many closely packed frequency channels,

one would have the possibility to follow the enrichment and ionization history of the universe from

such observations. The transverse dimension of the slice will be determined by the beam-width of

the experiment, or in case of the integrated signal the angular size of the observing multipole l,

corresponding roughly as θ ≈ π/l. When we shall be speaking of the integrated signal of scattering,

our interest will be in all unresolved objects inside this volume, which contribute to the coherent

distortion in the angular fluctuation of the CMB. On the other hand, future sub-millimeter interfer-

ometers like ALMA shall be able to resolve individual parts of galaxies upto very large distances,

and the high sensitivities of these instruments might allow us to detect the signal of scattering

from individual gas clouds. The precise frequency dependent nature of the signal will allow us to

distinguish it from other emissions which might be coming from the same sources.

We now try to give a rough idea of the effect of scattering on the angular distribution of the

temperature fluctuations in the CMB sky. As depicted in Fig.(1.2), the CMB photons arrive to

us from the inside of a sphere termed as the last scattering surface (LSS), traveling almost freely

except from very occasional effect of scattering (we neglect the scattering by electrons here). The

angular distribution of temperature fluctuations inside this sphere is very accurately predicted by

cosmological models, which gives us the value of temperature fluctuations in average between two

points separated by an angle θ, which we call ∆T (θ), for any value of θ. Introducing the effect of

scattering in this angular distribution, we get

∆T

T0
(θ, ν) = e-τν

∆T

T0
(θ)

∣

∣

∣

∣

orig.

+
∆T

T0
(θ, ν)

∣

∣

∣

∣

new

(1.2)

Here the temperature anisotropies are scaled in terms of the present day CMB temperature, T0.

The first term on the right hand side represents the smoothening or “blurring” of the original tem-

perature anisotropies due to scattering, which were originally free from any frequency dependence.

The CMB photons loose their original direction after scattering, and this causes the blurring of

the primordial temperature anisotropy in the sky. But this is not the only effect, as the scatterers

are in motion with respect to the CMB rest frame as a result of infall of matter into the large-scale

potential wells and growth of structures (Sachs & Wolfe 1967) , and this peculiar motion gives

rise to its own temperature anisotropies as we have seen from eqn.(1.1). This new anisotropies

are represented by the second term in the right hand side. Obviously the new anisotropies are

function of frequency, hence redshift, due to the nature of resonant scattering, which give rise to

particular features in the power spectrum distortion at large angles, where the Sachs-Wolfe effect

is also playing a role.

3



1. INTRODUCTION

CMB photon

Planck HFI
Bandwidth ~ 25%

LSS
at  z=1100

z ~ 12

143  GHz

CMB photon

Planck HFI
Bandwidth ~ 25%

LSS
at  z=1100

217  GHz

z ~ 8

CMB photon

z ~ 4Planck HFI
Bandwidth ~ 25%

LSS
at  z=1100

353  GHz

Figure 1.1: Schematic diagram illustrating the advantage of frequency dependent scattering to
probe definite redshift intervals. The CMB photons are produced at the epoch of recombination
at z ' 1100, which we term as the Last Scattering Surface, and are received by an observing
probe like the PLANCK satellite. The signal of resonant scattering is embedded into the observed
temperature fluctuations of the CMB, but unlike scattering by electrons, which is equally effec-
tive at all redshifts due to the frequency independent Thomson scattering cross-section, resonant
scattering by atomic, ionic or molecular lines work only at definite redshift intervals. This redshift
interval is defined by the frequency resolution of the experiment, ∆z/z = ∆ν/ν. In fact, for the
integrated scattering signal from many unresolved point sources, the effect correspond to a definite
volume along the line-of-sight, whose transverse extent depends on the angular scale of observation.
For a particular resonant transition, the higher observing frequencies probe the lower redshifts, in
accordance with νobs = ν/(1 + z). The illustration above shows the case for scattering by C+

fine-structure line with PLANCK HFI, which has scattering frequency 1.9 THz.
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Figure 1.2: Schematic diagram illustrating the process of resonant scattering of the CMB photons.
One can imagine the primordial temperature fluctuations in the CMB as patterns inside a sphere
at redshift z ' 1100, which is the Last Scattering Surface. We are at the center of this sphere,
and the CMB photons travel almost freely towards us from this surface. However if a photons
is scattered by atomic, ionic or molecular lines, it will cause no change in its energy, but will
redistribute its direction, as shown in the diagram at left. This will result in a smoothing or
blurring of the primordial temperature anisotropies. Moreover, these scatterers will induce their
own temperature anisotropy, because of their motion in the CMB rest frame, as shown in right. This
motion chiefly corresponds to the large-scale infall velocities of matter into dark matter potential
wells, and depends on the redshift of scattering. The observed angular fluctuations are therefore a
combination of the smoothed primordial anisotropies and a newly generated motion-induced term.

Having obtained the expression of temperature anisotropies due to scattering, we try to formu-

late the corresponding distortion in the power spectrum, Cl-s, which are defined as

∆T

T0
(θ, φ) =

∞
∑

l=0

l
∑

m=−l

almYlm (θ, φ)

Cl =
1

2l + 1

l
∑

m=−l

|alm|2

This is the conventional expansion of the temperature fluctuations in spherical harmonics, the

second relation defining the sky correlation function Cl-s in terms of the multipole moments alm.

As a result of resonant scattering, these observed Cl-s now are now function of frequency, and we

can write the modification in the CMB power spectrum as

δCl(ν) ≡ Cobs.
l (ν)− Cprim.

l = τν · C1(ν) + τ2ν · C2(ν) + O(τ3ν ) (1.3)

δCl(ν) is the expected distortion in the CMB power spectrum at frequency ν, which one obtains

after subtracting the original primordial Cl-s from the observed Cl-s with the scattering signal

inside it. In practice, this can be achieved by subtracting the Cl-s from two different frequencies

5

Introduction/IntroductionFigs/LSS_1.eps
Introduction/IntroductionFigs/LSS_2.eps


1. INTRODUCTION

with large enough separation, where one observation can be taken to be free of the scattering effect.

This is one direct advantage of the frequency dependent nature of resonant scattering, which allows

us to pick up extremely small signals by means of comparison at two different frequencies. We

see that the resulting δCl-s can be expressed as a power series in the line optical depth, with the

coefficients C1(ν), C2(ν) etc. as function of frequencies (hence redshifts). Since the optical depths

in scattering are very small, we are only interested in the first order term, and in fact for small

angular scales (l & 100) we obtain a particularly simple form for power spectrum distortion

δCl ' −2 τν Cprim.
l (1.4)

We see that such linear dependence on optical depths provide a massive boost in the amplitude

of our effect, since the multipole Cl-s are squares of the temperature fluctuations, so a priory we

should expect the δCl-s to be proportional to τ 2ν . This huge enhancement is the main difference

of our approach from that of Dubrovich and Maoli et al. Such linear dependence arises from a

non-zero correlation between the density fluctuations existing between the epoch of recombination

and the epoch of scattering (Hernández-Monteagudo & Sunyaev 2004), and we see that it can en-

hance the scattering signal in the CMB power spectrum by a factor upto a million, if we remember

that τν ∼ 10−6 for typical cosmic abundances. This forms the basis for our effort to constrain the

enrichment and ionization history of the universe.

The organization of this thesis is as follows. In Ch.2 we present the formulation for the scatter-

ing effect, and discuss the nature of the spectrum along random line of sight in comparison with

pure absorption spectrum. We also estimate the contribution arising from blurring of primordial

anisotropies inside a single scattering cloud. We derive the necessary expressions for brightness

temperature and intensities of the scattering signal, and as an application apply them in deter-

mining the column densities of CO and molecular gas mass from scattering. Our main example for

scattering by individual objects is the detection of peculiar motions of galaxies, which is discussed

in Ch.3. In that chapter we try to make use of simultaneous observation of scattering and emission

to estimate the optical depths, and also consider the density limits for the effectiveness of scatter-

ing. These formalisms are then applied to the Local Group and the Virgo cluster galaxies, where

the high velocities of the later make them promising candidates for observing the scattering signal.

We demonstrate the method of obtaining the peculiar motions of the galaxies taking into account

our own motion in the CMB rest frame. We also tabulate the expected change in the brightness

temperatures in the CO lines in these galaxies for some representative column densities.

The issue of different density limits for the effectiveness of scattering is discussed in detail

in Ch.4. Here we have defined two new critical densities in addition to the classical definition,

and showed that the effect of scattering can dominate upto large densities, but for an individual

object the number of photons generated by scattering gets dwarfed by photons from line emission

6



at much lower densities. This density limit corresponds to the point upto which we can see an

individual object in scattering, and is very low for diffuse electron plasma, and also low for neutral

gas containing CO. But when one considers the integrated scattering effect coming from many

unresolved point sources in the sky, the coherent distortion in the CMB power spectrum can be

caused by objects with densities several times higher, because the contribution of emission from

small dense objects is smaller at large angles. This makes it necessary to compute the distortion

in the CMB power spectrum as a result of scattering, which we have done in Ch.5.

We have computed the changes in the CMB power spectrum under the limit of very low optical

depths, using the CMBFAST code of Seljak & Zaldarriaga (1996) with appropriate modifications.

This approach had been used previously by Zaldarriaga & Loeb (2002) to compute the change in the

power spectrum arising from scattering in the neutral Li 6708Å line. Although this fine-structure

transition of Li can give τν greater than unity, it has too short wavelength to be observable by

planned CMB experiments, and is outside the high intensity CMB spectrum even for redshifts

800 < z < 1100. The method to overcome the very small optical depth of far-IR fine-structure

lines is one of the main focus of this work, which can be achieved by comparing the power spectrum

of the same part of the sky from two different frequency channels, which gets rid of the limitation

due to the cosmic variance. In Ch.5 we have discussed in detail this approach and the method to

set minimum detectable abundances from any given sensitivity of CMB experiments. We also esti-

mated the limits when removal of foreground signals in the sky is not complete, thereby worsening

the minimum detectable abundances by a factor of 50− 200.

After obtaining the relation between CMB power spectrum distortion and the abundances of

the scattering species, we tried to set constrains on the enrichment and ionization history of the

universe in Ch.6. We are interested in redshifts ∼ 10− 20 because of the recent WMAP finding of

early reionization (Kogut et al. 2003). We have considered several enrichment histories, both with

early (z ∼ 20) and late (z ∼ 6) reionization, and computed the distortion in the power spectrum

in large and small angular scales. The importance of the small angular scale observations lies

in the fact that they might become accessible with ground-based CMB experiments well before

PLANCK, and the simple formulation of eqn.(1.4) allows one to compute the expected signal

immediately. Finally, in Ch.7 we tried to give some preliminary estimate of the signal coming

from free-free, line and dust emission from overdense regions. We have made simple models for

the emissivity of star-forming halos based on their rate of massive star formation, and estimated

the distortion in the CMB power spectrum under the assumption that these point-like sources

are Poissonian distributed in the sky. The main conclusion from this part is that the signal of

emission is significantly lower than that of scattering at large angles. In the two appendices, we

have added the analytical expression for power spectrum distortion and the validity of the linear

approximation, as well as the method to compute level populations in a multilevel system under

the condition of statistical equilibrium.
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Chapter 2

Resonant Scattering of the CMB
Photons

2.1 Characteristics of the scattering signal

First we discuss the basic underlying effect of resonant scattering and the corresponding change

in the background intensity of CMB photons in the direction of the enriched gas. The effect we

discuss here had been used by various authors to estimate primarily the distortion in the CMB

thermal spectrum due to presence of primordial molecules, but a formal derivation of the effect

had been absent. It was first analyzed by Dubrovich (1977, 1993) and later followed-up by various

Italian and French groups (Maoli et al. 1994, de Bernardis et al. 1993), who sought to find signals

from primordial molecules like HD, LiH etc. in the CMB spectrum. Here we have analyzed the

basic underlying principle of this effect and tried to find some other applications. The effect under

consideration is equivalent to the well-known kinematic-SZ type distortion (Sunyaev & Zeldovich

1970,1980), as was stated by Dubrovich (1977), but now it is a function of frequency due to the

nature of resonant scattering. Scattering of CMB photons in an atomic or molecular line has the

combined effect of both loss of CMB photons from the line of sight, and also a gain due to the

photons that are scattered into the line of sight. If the scatterer is at rest with respect to the

isotropic radiation background, these two effect exactly cancel each other and no change in flux

is observed. However, due to the peculiar motion of the enriched gas it will have some non-zero

velocity with respect to the CMB rest frame, and as a result will cause a net increase or decrease

in the intensity of the background radiation as observed through the gas.

2.1.1 Basic formulation for kSZE type distortion

We present below a simple description of the effect demonstrating its equivalence with the kinematic-

SZ type distortion. Let us assume the gas cloud has peculiar velocity ~β with respect to the CMB

8



2.1 Characteristics of the scattering signal

background (fig.2.1). The incident radiation on the cloud is Iν , which in our case is simply the

Planckian spectrum at frequency ν, and Tγ as the mean temperature of background CMB photons

Iν =
2hν3

c2
exp

[ hν

kTγ
− 1

]−1

(2.1)

The observed intensity in the direction of the cloud, as mentioned above, consists of two parts:

i) the scattered intensity in the direction of the observer (denoted by IScatterν in fig.2.1), and ii) the

attenuated intensity of the background CMB radiation: e−τ Iν . Assuming non-relativistic velocity

(β ¿ 1), the frequency transformation relating the cloud frame (denoted by prime) and the CMB

frame is simply

ν′ = ν(1 + ~β · ~n) (2.2)

���
�I

I

β

ν
ν

I ν

CMB

Scatter

Scatter
νIe +I ν

−τ

β ||

Figure 2.1: Schematic diagram illustrating the change in background intensity through resonant
scattering in a moving medium

We can write the intensity in the cloud frame, I ′ν′ , by using the phase-space density conservation

relation I ′ν′ = (ν′3/ν3)Iν , which gives

I ′ν′ = (1− βµ)3 A x3

ex − 1
(2.3)

Here x ≡ hν/kTγ is the dimensionless frequency in the observer frame, and A = 2(kTγ)
3/(hc)2 is a

constant. µ is the direction cosine for the angle between direction of motion and the observer, and

it shows the intensity in the cloud frame is not isotropic but has a dipole component due to the

motion of the cloud. The effect of resonant scattering would be to redistribute this intensity, and

the scattered intensity can be written, in the optically thin limit, after integrating over all angles

as

I ′Scattν′ = τ(ν′) A
x′3

ex′ − 1
(2.4)
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2. RESONANT SCATTERING OF THE CMB PHOTONS

where x′ ≡ hν′/kT0, and τ(ν
′) is the line optical depth. The right hand side of eqn(2.4) is solely

a function of cloud-frame frequency ν ′, and hence can be transformed back to observer frame by

using the same conservation law Iν = (ν3/ν′3)I ′ν′ .

For simplicity, let us consider the case of scattering by one single atom or molecule, without any

line broadening effect by an ensemble of scatterers. In this idealized case the line profile will simply

be a δ-function, and the optical depth will be the product of the line profile with the oscillator

strength of the resonant transition (τ ¿ 1 for the subsequent analysis)

τ(ν′) =
πe2

mec
fi δ(ν

′ − ν0) (2.5)

This allows us to write the scattered intensity back in observer frame by simply using the

properties of δ-function

IScattν = 1
(1− βµ)3

πe2
mec fi δ(ν

′ − ν0) A x′3

ex
′ − 1

= τ∗(ν)Iν

(

1 + xex

ex − 1
βµ
)

+ O(β2) (2.6)

τ∗(ν) is defined as τ∗(ν) ≡ (πe2/mec)δ(ν − ν̃0), with ν̃0 = ν0(1 + βµ). This shows the shift in

the emission profile away from the rest-frame resonant frequency due to the motion of the scatterer.

The absorption profile is also shifted by an equal amount, because only photons with frequency

ν′ = ν0(1− βµ) are in resonance with the moving atom/molecule, and hence lost from the line of

sight. The total intensity in the direction of the cloud is then simply the sum of the absorption

and scattering terms

Itotalν = (1− τ∗ν ) Iν + IScattν (2.7)

which gives the relative change in intensity in the first order as

∆Iν
Iν

=
πe2

mec
fi δ

(

ν − ν0(1 + β‖)
)

β‖
xex

ex − 1
(2.8)

We have used β‖ to denote the velocity component in the direction of the observer. This form is

similar to the kinematic-SZ effect, as becomes evident if we rewrite the above equation in terms of

temperature distortion upto first order

∆T (ν)

Tγ
= τ∗(ν) β‖ (2.9)

In the realistic situation, any molecular cloud or gas will consist of many atoms or molecules in

random thermal motion, and will present a different line-of-sight velocity component towards the

observer. The net result will be, of course, a thermally broadened line profile with a gaussian shape.

As in the case of δ-functions, the thermally broadened absorption and emission (scattering) parts

will match perfectly and result in a net increment or decrement of flux depending on the direction
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2.1 Characteristics of the scattering signal

of motion of the scattering cloud. This can be formally established by writing the emission from

the cloud in terms of partial frequency redistribution function

εν = ni fi

∫ ∞

0

dν1

∫ +1

−1

dµ1 ϕ(ν0) R(ν, 1; ν1, µ1) I
′(ν1, µ1) (2.10)

where R(ν, µ; ν1, µ1) is the photon redistribution function, giving the probability that a photon

incident on the atom or molecule from direction µ1 and having frequency ν1 will be scattered

with frequency ν in the direction of the observer (µ = 1). I ′(ν1, µ1) is the incident radiation, and

ϕ(ν0) is the line profile for single scattering, which we can again represent with a delta function,

ϕ(ν0) = δ(ν1−ν0), assuming zero natural line width. ni is the total number of atoms or molecules in

the lower tradition state available for scattering, and fi is the oscillator strength for the transition.

For pure doppler broadening, the frequency redistribution function takes the form of a truncated

gaussian (see, e.g. Mihalas 1970), and the resulting emission profile, shown in Fig.(2.2), is a

complete gaussian centered at frequency ν0(1 + β‖).
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Figure 2.2: Profile of the emission function of a molecular cloud created by scattering of background
CMB photons, taking into account the doppler broadening caused by the thermal motions of atoms
or molecules. Positive radial velocity corresponds to motion away from the observer, and negative
velocity for motion towards the observer. We get a positive intensity for scattering by cloud moving
towards us, and vice versa. Broadening due to any kind of turbulent motion in the gas cloud is
neglected, but can easily be taken into account.

2.1.2 Spectrum expected from CMB scattering

We have used the effect discussed here in a published work (Basu, Hernández-Monteagudo &

Sunyaev 2004), where we estimated the integrated effect of scattering, or the distortion in the
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2. RESONANT SCATTERING OF THE CMB PHOTONS

CMB power spectrum, by post-reionization atoms and ions in the redshift range 5 − 30. The

detailed spectrum of distortion caused by scattering on the moving atom, ion or molecule was

not of interest, because we were discussing observation with broad-band detectors, whereas in

the present chapter we are interested in discrete objects. In that work we solely focussed on the

temperature fluctuations averaged over angles exceeding the dimensions of individual objects and

halos, because we sought to set constraints on the mean metallicity abundances in the diffuse

low density gas, particularly the IGM. In this subsection, we qualitatively discuss the nature of

the spectrum resulting from scattering of CMB photons in resonant lines in a molecular cloud.

We particularly compare the nature of the predicted signal with the Ly-α absorption lines in the

spectrum of a quasar, and emphasize the distinctive features that might allow to separate out this

much weaker signal. We also show the spectrum expected from a particular object, say a galaxy,

both when we are able to resolve the object and otherwise.
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Figure 2.3: Spectrum of Ly-α forest towards a point source (quasar), and spectrum of scattering of
CMB by the same set of gas clouds along the line-of-sight without any quasar in the background.
The gas clouds are located at z ∼ 3.

In Fig.(2.3) we show a schematic view of the spectrum expected along the line-of-sight, in case

there is a background quasar present, and for the same line of sight without any background quasar

but only for CMB. The absorbing molecular clouds are situated around z = 3, and the top panel

shows a typical Ly-α absorption forest in the spectrum of a quasar situated in the background.
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2.1 Characteristics of the scattering signal

We note that there is only absorption features present, or reduction of background flux, since

quasars being point sources, there can only be loss of photons from the line of sight. In the bottom

panel, we show a schematic view of scattering features in the same set of molecular gas along

the line-of-sight. The main distinguishing feature is that there is both increment and decrement

of background flux (CMB blackbody), depending upon the direction of motion of the cloud. We

assumed only the most damped Ly-α systems are dense enough to have neutral molecular gas

shielded from the ionizing background. Also shown for comparison is the kinematic SZ signal

coming from inter-galactic electrons, which is flat in frequency spectrum.

2.1.3 Temperature distortion from primordial anisotropies

In the preceding discussion we have assumed for simplicity that the intensity of background

radiation is isotropic, and neglected the presence of primordial anisotropies. These primordial

anisotropies have amplitudes of the order of 10−4 − 10−5 in the microwave sky, and will be sup-

pressed by the same resonant scattering we have been discussing when one looks through the gas

cloud. Since one of our main objectives is to discuss the amplitude of scattering signal from nearby

galaxies, whose angular dimension can extend from several arc minutes to one degree scale, we must

also consider this additional temperature fluctuation present on those scales. For objects of smaller

angular size (few arc seconds) one can neglect the contribution from primordial anisotropies.

We here present only an order of magnitude estimate for this secondary effect. For formulation

of the problem we follow Zel’dovich & Sunyaev (1980), where the same effect was discussed for

Thomson scattering by cold electrons in clusters, without any peculiar motion of the scattering

cloud. The starting point is to note that the primordial intensity field contains angular fluctuations

at all angular scales

I(µ′) = I0

[

1 + aµ′ + b

(

µ′
2 − 1

3

)

+

∞
∑

n=3

CnPn(µ
′)

]

(2.11)

where Pn are the Legendre polynomials, and µ′ = cos θ and the angle θ is measured from some

suitable axis. This observed intensity at the direction µ′ will be suppressed by the same scattering

optical depth τν as discussed previously, if a gas cloud happens to be in the same direction. Now,

the resonant scattering couples only with the monopole and quadrupole of the intensity in the

same way as electron scattering, and hence the scattered intensity in the direction of the gas cloud

will be

I1(µ
′) = I(µ′) (1− τν) + I0τν

[

1 + E1b

(

µ′
2 − 1

3

)]

(2.12)

Here the first term is simply the suppression of primordial fluctuations in the direction of the cloud,

stating that the fraction τν of photons are lost from the line of sight due to scattering. The second

term contains the scattered monopole and quadrupole part (obviously no dipole will be present if

the scatterer is at rest with respect to CMB), and also proportional to τν . E1 is a constant for

13



2. RESONANT SCATTERING OF THE CMB PHOTONS

the particular resonant transition involved, and have amplitude of the order 0.1 for pure Rayleigh

indicatrix.

Therefore The fluctuation in the background intensity inside the object will be ∆I/I0 =

(I1(µ
′) − I(µ′))/I0, and using the same factor (ex − 1)/xex we can write the corresponding tem-

perature fluctuation as

∆T (ν)

T0
= −τν

ex − 1

xex
[ aµ′ + (1− E1)b (µ′2 −

1

3
) +

∞
∑

n=3

CnPn(µ
′)]

= −τν
[

āµ′ + b̄

(

µ′
2 − 1

3

)

+

∞
∑

n=3

C̄nPn(µ
′)

]

(2.13)

Comparing this expression with the formula for motion induced dipole anisotropy, ∆T (ν)/T0 =

τνβ‖, we see that for any object of given size, the magnitude of this secondary effect compares

roughly as the ratio of primordial temperature fluctuation at that scale to β‖. We also note that

one can not separate out the contribution of primordial dipole from the motion induced dipole at

line frequency, since the component of primordial dipole in the direction of motion (angle between

the directions corresponding to µ and µ′, where µ marks the direction on motion of the object)

will always be present in the observed signal. However if one takes the magnitude of primordial

dipole to be low (∼ 10−5 or less), the observed dipole will be a good tracer of the peculiar motion

of the scatterer.

We can confirm that the temperature fluctuation generated by motion is dominant over this

suppression of primosdial anisotropies at all angular scales by some simple order of magnitude

estimate. To estimate β‖, we assume the linear regime of structure formation, which gives v(z)/c ≈
v(0)/c (1+ z)−

1
2 . (This relation is true only for matter dominated universe, but we can ignore the

corrections due to a particular cosmological model for the present estimates at z > 1.) v(0) is the

present-day value of large-scale peculiar velocity, which one can take roughly as 600 km s−1, but we

remember that this velocity distribution is Gaussian and we have the probability of higher velocities

in individual objects. Since the scattering effect will be proportional to the radial component of

this motion towards us, we can write v‖(z) = v(z)/
√
3, yielding v‖(z)/c = 1.15× 10−3 (1 + z)−

1
2 .

Hence for objects one can resolve, i.e. for galaxies in the local universe, we have β‖ ≈ 10−3. The

intrinsic dipole can not be separated, so we compare the amplitude of scattered intrinsic quadrupole

with this value. The effect will be maximized for µ′ = 1, and standard ΛCDM model we have

l(l + 1)Cl/2π = 1000µK2 at l = 2. Hence the contribution of scattered quadrupole is more than

80 times smaller for the above value of β‖. However, the temperature power spectrum has its

maximum around 1◦ scale, but even there the maximum probable temperature fluctuation from

the background mean is only 80 µK. This immediately shows the amplitude of motion-induced

signal to be about 30 times higher in average.
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2.2 Amplitude of the scattering signal

The important point to remember about primordial temperature anisotropies is that they

are frequency independent. This means we can separate the small contribution coming from

suppression of primordial fluctuations by observing the same patch of sky away from the resonant

frequency. CMB anisotropy probes like WMAP has presented us with high angular resolution all

sky CMB maps, and hence the contribution from any particular hot or cold spot can be estimated

and subtracted from such maps.

2.2 Amplitude of the scattering signal

After discussing the general properties of the scattering signal, we now present the formulation for

observable properties of the object like brightness temperature of the object or the beam-averaged

flux as might be expected from observation of individual objects. This will help us to set limits

on the column density of the scatterer, or mass of the neutral molecular gas, in terms of the

characteristics of a fiducial experiment. After presenting the necessary formulation, we inspect

which atomic, ionic or molecular lines are most suitable at various redshift ranges. Then we shall

proceed to one application: detection of molecular gas from scattering in the nearby universe from

scattering. Our main example for application of scattering from individual objects, the detection

of peculiar motion of galaxies, is discussed in the next chapter.

The optical depth in scattering is expressed as the product of the number density of the atoms

or molecules with the scattering cross-section along the line-of-sight:

τν =

∫

ni σ(ν) dl (2.14)

Here ni is the number density (in cm−3) of the species i under study, and σ(ν) is the scattering

cross-section at line frequency ν. The cross-section for resonant scattering is expressed in terms of

the oscillator strength of the transition invovlved, which have the following form (see, e.g., Rybicki

& Lightman 1985 for definitions)

σ(ν) =
πe2

mec
fi(ν) ϕ(ν) (2.15)

fi(ν) =
mec

8πe2
gu
gl

(

1− $u

$l

gl
gu

)

c2

ν2
Aul (2.16)

Here fi(ν) is the oscillator strength of the particular transition, which is expressed in terms of

level degeneracy and transition rate. $u and $l are the fraction of atoms/molecules present in

the upper and lower transition levels, and gu and gl are the respective statistical weight. Aul is

the radiative de-excitation probability from upper to lower level, which dominates over collisional

de-excitation in the low density regimes that we are interested in. The term inside the parenthesis

takes into account the necessary correction for the induced emission in presence of the CMB due

to finite population of the upper level. The line profile, ϕ(ν), can be assumed to be a gaussian.
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2. RESONANT SCATTERING OF THE CMB PHOTONS

Therefore expressed in terms of the column-density of the scatterer, Ni =
∫

nidl, the optical

depth due to resonant scattering can be written as

τν = $lNi
1

8π

(

gu
gl

)(

1− $u

$l

gl
gu

)

c2

ν2
Aul ϕ(ν) (2.17)

This optical depth creates a distortion in the brightness temperature of the CMB temperature

according to the relation ∆T/TCMB(z) = τνβ‖(z), as shown in the previous section. x is the

shorthand for x ≡ hν/kTCMB(z) = hνobs/kT0, where T0 is the temperature of the background

radiation today, and νobs is the observing frequency. The mean intensity received today due to

scattering in the object is readily obtained in comparison with Bν , the mean intensity of the

thermal radiation of the CMB, from the relation (following Zel’dovich & Sunyaev 1969)

∆Jν
Bν

=
d lnBν
d lnT

(

∆T

T

)

=
xex

ex − 1

(

∆T

T

)

(2.18)

where both Iν and Bν are at νobs. Hence using eqn.(2.1) for the Bνobs , and remembering that

νobs = ν/(1 + z), the received intensity gets the following form

∆Jobsν =
xex

(ex − 1)2
2hν3

c2
(1 + z)−3 τν β‖(z) (2.19)

We can simplify the expression in eqn.(2.17) if we write the quantity in the parentheses (1 −
$ugl/$lgu) as (1− exp(−x)), because we are interested in the limit TEX ≈ TCMB , i.e. when level

populations are completely governed by background CMB temperature, which will be the case for

very low density gas in thermal equilibrium with the CMB. Since the usually reported observable

quantity is the velocity integrated flux over the telescope beam (Iobs =
∫

Iν dv dΩ), we write the

intensity in the same form

Iobs =
hc

4π

Ωbeam
(1 + z)3

x

(ex − 1)
$lNCO

gu
gl

Aul β‖(z) (2.20)

In this expression Ωbeam is the telescope beam-width. This observed intensity, integrated ober the

line profile, is the usually reported quantity from experiments. For the small scattering signal,

a suitable unit would be mJy·km s−1, and we use thhe eqn.(3.3) to estimate the possibility of

observation from future far-IR or sub-mm experiments.

The results for such computations are shown in Fig.(2.4) and (2.5), which assumes some mean

velocity of the objects in accordance with the typical velocity of large-scale motion in the linear

theory of growth of density perturbations. We have used a rather large beam-width of almost 1

square arc minutes for demonstration purposes, but theis plot clearly shows that the two lowest

rotational levels of CO are most suitable for scattering CMB photons at low redshifts (z . 0.1),

as many more CMB photons are available for scattering at these frequencies. The far-IR fine-

structure lines become effective only at high (z & 3) redshifts, but they can be of importance

for future milli-arcsecond resolution experiments like ALMA. We shall return to these issues in a

subsequent chapter.
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Figure 2.4: Expected flux arising from scattering of CMB photons, averaged over a 50′′×50′′ beam,
from various species of carbon. The column densities for C+ and neutral C are taken as 1014 cm−2,
whereas the column density for CO molecule is chosen to be a factor of 10 lower, at 1013 cm−2.
We neglect any redshift evolution in abundances for this discussion. This figure demonstrates the
usefulness of the first two rotational lines of CO, as well as the 492 GHz fine-structure transition
of neutral carbon, to probe individual objects at low redshifts. The peculiar velocity of the objects
vary as β‖(z) ≈ 10−3(1 + z)−

1
2 .
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Figure 2.5: Same plot as before, showing the flux expected from scattering by other atomic and
ionic fine-structure lines. Plotted above are the three most important FS lines of elements other
than carbon: the neutral oxygen 63µ, doubly ionized oxygen 88µ, and singly ionized nitrogen 205µ.
The column density for all these species is taken at an uniform 1014 cm−2, without any change in
abundance with redshift. The short wavelengths of these lines make them unsuitable for scattering
CMB at low redshifts, but for redshifts z & 3 they become important.

2.2.1 Application: column densities of molecular gas

Here we present a simple example for the application of the scattering formulation presented so

far. We shall try to estimate the column density of CO moleules, NCO, as can be probed from its

lower rotational lines. Our main application for scattering in individual objects, viz. detection of

peculiar motion in nearby galaxies, shall be discussed in the next chapter.

We derive the limiting column density of CO molecules that can be probed with future ex-

periments like ALMA1 from the observation of scattering. We assume that the abundance of CO

molecules is low, so that the cloud is optically thin in CO lines (τν < 1). We also assume a very

low density gas where line emission from collisional excitation will be more important only for the

lowest rotational transition. To begin, from eqn.(3.3) we write the expression for column density

of CO molecules

NCO =
4π

hc

(1 + z)3

Ωbeam

(

ex − 1

x

)

gl/gu
$lAul

ICO
v‖(z)/c

(2.21)

which we can rewrite, remembering x = kT0/hνobs, in terms of the observing frequency of the

experiment

NCO = 3.6× 1015cm−2

(

1 + z

2

)3(
Ωbeam
5′′ × 5′′

)−1
1

$u

(

Aul
10−7 s−1

)−1
( νobs
100 GHz

)−1

1ALMA website: http://www.eso.org/projects/alma/

18

Chapter1/Chapter1Figs/fluxplot_nitrox_new.eps


2.2 Amplitude of the scattering signal

Experiment / Frequency Wavelength Angular Sensitivity Freq. res.
Instrument (GHz) (µm) Resolution (mJy) (km s−1)

35 - 100 8500 - 2700 0.5′′ - 0.1′′ 0.77 25
ALMA 100 - 300 2700 - 1300 0.1′′ - 0.05′′ 1.2 25

300 - 400 1300 - 730 0.05′′ - 0.04′′ 2 25

Herschel SPIRE 500 - 1500 200 - 600 20′′ - 40′′ 140 600
Herschel PACS 1600 - 5000 60 - 180 50′′ 3 175

SOFIA 500 - 2000 60 - 700 20′′ 100 20

Table 2.1: Spectroscopic sensitivities for current and future IR & sub-mm instruments, in increasing
order of frequency. Instruments capable of low resolution spectroscopy are also chosen depending on
their frequency coverage. The angular resolution of ALMA is computed assuming an intermediate
configuration of 64 antennas, between compacts array and maximum baseline, yielding a resolution
of 0.05′′ × (350/νobs(GHz)). Spectral sensitivities of ALMA are from Butler & Wootten (1999),
and values for Herschel and SOFIA are taken from respective project websites.

× B

(

v‖(z)/c

6× 10−4

)−1(
ICO

mJy km s−1

)

(2.22)

For example, if we consider the CO 2 → 1 230.7 GHz line, scattering at z = 1, the observing

frequency will be 115.4 GHz. The population at the upper level is $2 = 0.11, and we have

Aul = 7.36×10−7 s−1. B is the shorthand for the term in parenthesis in eqn.(2.16), and is roughly

0.8. This corresponds to a column density of 3.0×1015 cm−2 for an intensity of 1 mJy km s−1. For

the same sensitivity the 3 → 2 346 GHz line corresponds to a column density of 1.2 × 1016 cm−2

because $3 = 0.006, and the limits obtained from higher rotational transitions are even worse for

very low excitation. However we have assumed the mean value of the large scale motion for these

estimates: the limits will go lower for objects with very high peculiar velocity. Also for nearby

galaxies (like in the Virgo cluster) scanning with a broader beam (∼ 0.5 square arc minute) can

probe column densities a few times 1013 cm−2 in the CO 230.7 GHz line for similar instrument

sensitivity.

For reference, we have tabulated the published intrument specifications of some of the future

far-IR and sub-mm experiments. Obviously the instrument with the maximum possibility to

detect individual objects from scattering should be ALMA, with its excellent angular and spectral

resolution, and sensitivity extending below mJy level. The frequency coverage of ALMA will

ve particularly suitable for studying the CO rotational lines, as well as the FS lines of neutral

carbon. Air- ans space-borne infrared experiments like SOFIA and Herschell might become useful

for studying the effect of scattering in atomic and ionic FS lines at higher redshifts.

19



Chapter 3

Scattering & Peculiar Motion of
the Galaxies

3.1 Scattering signal in presence of emission

The effect of resonant scattering in presence of peculiar velocities in far-IR or sub-millimeter lines

is extremely attractive, as it might allow us to infer peculiar motions of nearby galaxies in the CMB

rest frame. Using higher rotational transitions of CO molecule, or fine-structure lines of neutral

carbon, we can also probe the peculiar motion of galaxies at low or intermediate redshifts (z . 5).

In this separate section we investigate this possibility as an application of scattering observation

in individual objects.

As shown in the previous section, the formulation for the change in the background CMB

temperature due to resonant scattering in molecular or fine-structure lines is extremely simple, it

consists of only two parameters: the optical depth of the scattering cloud at the line frequency, τν ,

and the component of its peculiar motion in the CMB rest frame in the direction of the observer,

β‖ (Dubrovich 1977, Maoli et al. 1994),

∆Tb
Tγ

= − τν β‖ (3.1)

The negative sign comes from the convention of taking β‖ positive for motion away from the

observer, which gives a decrement in ∆Tb. We take the case of CO molecules as our example, since

we shall be focusing on the scattering in CO rotational lines in nearby galaxies. The change in the

brightness temperature observed from scattering, and the velocity integrated intensity, have the

form

∆T obsb (ν) = T0 $lNCO
c2

8πν2
gu
gl

(

1− exp(−x)
)

Aul ϕ(ν) β‖ (3.2)

Iobs =
hc

4π

1

(1 + z)3
x

(ex − 1)
$lNCO

gu
gl

Aul β‖(z) (3.3)
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3.1 Scattering signal in presence of emission

The later have units of mJy km s−1 sr−1. We shall be using this expression to estimate the column

density, and hence optical depth, of the scattering species in a fully resolved gas cloud.

3.1.1 Simultaneous observations of scattering and emission

We saw that the amplitude of the scattering signal depends on two parameters: the peculiar mo-

tion of the objects towards us, and the optical depth in the line frequency. The optical depth in

turns depends upon the column density of the scatterer. Hence if we try to estimate the peculiar

motion of galaxies from a decrement of background CMB temperature (which can only be caused

by scattering), we must have an accurate idea about the column density of the scatterer. This is

where the simultaneous observation of scattering and emission in two different lines become useful.

It has never been observed previously because the observation of scattering signal requires very

high instrument sensitivity, and also existence of CO molecules in low density regions of galaxies.

As we shall see in the next chapter, different rotational levels of CO have different critical densities

when scattering becomes observable in that transition. e.g. collisions with hydrogen become more

effective for the lowest lying CO rotational level at densities around 2 − 3 cm−3, whereas for the

next transition this density is almost 10 cm−3. For galaxies moving with upto 1500 km s−1, both

density limits become 3- or 4-times higher. So it can very well happen that in one line we have

emission, and in other we have scattering, from the same molecular cloud. Simultaneous obser-

vations at two different frequencies will give us independent estimate on the density and optical

depths.

Let us consider the two lowest transitions of CO rotational system: J=0-1 115 GHz, and J=1-2

230 GHz. Let us consider the local universe, with TEX ≈ T0 where T0 = 2.726 K. We assume from

this low density cloud we have emission due to collision at 115 GHz, but emission is negligible at

230 GHz. If in this neutral cloud the most dominant partner is hydrogen atoms, then the integrated

line intensity at 115 GHz for optically thin emission from a homogeneous gas can be written as

I115 GHz =
hc

4π
NCO nH $0 γ01 (3.4)

We can compute the level population at the lowest level, $0, easily under the assumption TEX ≈
TCMB , and use this column density with eqn.(3.3) to get the line integrated flux at 230 GHz from

scattering

I230 GHz =

(

x12
exp(x12)− 1

)

g2
g1

$1

[

I115 GHz
nH $0 γ01

]

A21 β‖ (3.5)

where x21 ≡ hν21/kT0. This immediately gives us, in the approximation TEX ≈ T0 such that

$0 = 0.712 and $1 = 0.281, an expression for the radial component of velocity in the CMB rest
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3. SCATTERING & PECULIAR MOTION OF THE GALAXIES

frame

β‖ = 1.36× 10−2
( nH
10cm−3

)

(

I230 GHz
I115 GHz

)

(3.6)

where we assumed a 60 K gas cloud in which γ01 = 4.75× 10−10 cm3 s−1 (Balakrishnan et al.

2002), and we have A21 = 7.36× 10−7 s−1 (Chandra et al. 1996).

We still have the uncertainty about the neutral hydrogen density in the gas cloud, for which we

can use observation at yet another frequency, like the 21 cm line. We can also use the fine-structure

line emission for neutral carbon 492 GHz line, as from Fig.(4.5) we see that collision with neutral

hydrogen atoms becomes effective at much lower densities in producing line emission if this FS

doublet. So we will have line emission from neutral carbon at 492 GHz similarly as before

I492 GHz =
hc

4π
NC nH $CI

0 γCI01 (3.7)

which can be used to get an estimate for nH. Using eqn.(3.6) therefrom we can estimate the

peculiar motion of the cloud or galaxy.

We point out that the simple formalism for line emission presented here assumed uniform den-

sity gas, without the effect of clumping. In reality for a moderately large beam-width or for an

object at larger distance we must emply some filling factor into the computation. For our simple

estimate, however, we neglect these complications.

3.1.2 Density limit for the effectiveness of scattering

We briefly point out here the densities which can be probed with scattering, a more detailed

discussion on this topic can be found in the next chapter. We concentrate on predominantly

neutral gas, where the main collision partner for CO molecules will neutral hydrogen atoms or H2

molecules. The brightness temperature from emission can be written as

T emb = Tγ
c2

8πν2
(ex − 1)2

xex
$l NCO nH γlu ϕ(ν) (3.8)

where nH density of the neutral hydrogen atoms (in cm−3), and γlu is the collision rate (in cm−3s−1)

from lower to upper level. If we compare this with the brightness temperature arising from scatter-

ing in the same line, we arrive at the expression of density at which both scattering and emission

contribute equally to the brightness temperature

nH/H
2
=

xex

(ex − 1)2

(

1− $u

$l

gl
gu

)

gu
gl

Aul
γlu

β‖ (3.9)

Below this critical density the gas cloud will not be visible in scattering anymore as the scattering

effect will be dwarfed by the emission due to collisions. If we assume the average peculiar motion

of galaxies in clusters with respect to the CMB rest frame, which scales roughly as 600(1 + z)
1
2
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3.2 Peculiar motion of nearby galaxies

km s−1, such that for local universe the radial component of motion is roughly 350 km s−1, then

this density corresponds to about ∼ 1 hydrogen molecule per cm3, or about ∼ 10 hydrogen atoms

per cm3, in neutral gas. In some massve clusters like Virgo, however, the galaxies can attain

unusually high peculiar velocities, of the order of 1500 − 2000 km s−1. Then this density limits

when scattering becomes effective correspondingly becomes higher, as can be seen from Fig.(3.2)

for Virgo cluster galaxy M 99.

Since we have for low densities (1−$ugl/$lgu) ≈ (1− e−x), we can approximately write the

critical density of hydrogen atoms (or molecules) when a gas cloud becomes visible in scattering as

nH/H
2
≈ x

ex − 1

Aul
γlu

β‖ (3.10)

where, as before, x is the shorthand for x ≡ hν/kTCMB(z) = hνobs/kT0. Now one can see clearly

how higher density objects can be probed by scattering if the peculiar motion is high, from the

direct dependence of this critical density on β‖. We are particularly interested in galaxies having

a positive radial velocity, i.e. galaxies moving away from us with high velocity, since that will

give rise to decrement in the background temperature because of scattering. Such negative signal

is the unique characteristic of the scattering phenomenon. Strong scattering signal will also be

expected from galaxies moving towards us, but since that signal will have the same feature as line

emission, it will be impossible to distinguish the scattering case from emission from an increase in

background temperature.

3.2 Peculiar motion of nearby galaxies

In this section we discuss the expected change in brightness temperature of galaxies for some

low CO column density, which we take fixed at 1013 cm−2. However to minimize the effect of

collision we shall assume that the neutral gas has no more than ∼ 10 hydrogen atoms per cm3

in the scattering cloud. Such extremely low-density objects may provide insufficient shielding for

the CO molecules from the ionizing UV background, and detection of the scattering signal might

prove to be very difficult. However, we note that such column densities for the CO molecules

are at the present observational limit in our Galaxy, deduced from the UV spectra obtained by

Copernicus satellite (Crenny & Federman 2004). It is significantly lower than the column densities

obtained from millimeter wavelength studies of emission from molecule-rich gas (e.g. Lambert et

al. 1994). Detection of scattering signal from very high velocity galaxies, therefore, may prove to

be an important tool for detecting the presence of very low density neutral gas.

We emphasize at this point that in the following discussion we have neglected the rotation

velocity of the spiral galaxies. For face-on spirals like the M99 in Virgo cluster this is not a

problem, as the scattering signal only depends on the radial component of peculiar motion, but
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3. SCATTERING & PECULIAR MOTION OF THE GALAXIES

Change in Brightness Temperature for Local Group Galaxies

Name of Vr Position Vcorr V CMB
pec ∆Tb for J=1-0 ∆Tb for J=2-1

Galaxy (km s−1) (l, b) (km s−1) (km s−1) at 115 GHz at 230 GHz

LMC 275 280.2◦,−33.3◦ +58 +333 -30 -9
SMC 148 302.8◦,−44.3◦ −34 +114 -10 -3

M 31 −315 121.2◦,−21.6◦ −290 -605 +55 +16
M 32 −205 121.1◦,−21.9◦ −291 -496 +45 +13
M 33 −181 133.6◦,−31.5◦ −287 -468 +43 +12
M 110 −241 120.2◦,−21.4◦ −291 -532 +48 +14

IC 1613 −232 129.7◦,−60.5◦ −330 -562 +51 +15
IC 342 31 121.0◦,−26.7◦ −322 -301 +26 +7

Table 3.1: Expected change in the brightness temperatures from scattering in the CO 115.3 GHz
and 230.6 GHz rotational lines. The radial velocity is for the center of the galaxy, ignoring rotation.
Considering rotation will result in an increase and decrease from these mean values on the two
ends of the spiral arms of an inclined galaxy. The correction velocity, Vcorr, takes into account
the Sun’s motion in the CMB rest frame, and explained in Fig.(3.1). The change in brightness
temperature is computed for a CO column density of NCO = 1013 cm−2 and line width 50 km s−1.
The brightness temperatures are in units of µK · km s−1.

for most galaxies the rotation will result in an increase of temperature distortion at one side of the

galaxy and a decrease on the other side. For simplicity we have limited our analysis only to the

mean center-of-mass motion of the galaxies, and for more accuracy the radial component of the

rotational velocity must be added and subtracted on the two opposite sides. It is also worth to

remember that the main component of peculiar motion actually comes from the large-scale motion

of the galaxies, as can be seen from the fact that the motion of our Galaxy as a whole in the CMB

rest frame is larger than the rotational velocity of the Sun around the center.

3.2.1 Brightness temperature of Local Group galaxies

We now focus attention to our neighboring galaxies, and try to predict the expected increment or

decrement in the brightness temperature due to scattering in the CO lines. The obvious reason

for studying these nearby objects is that one can resolve small low-density regions inside this

galaxies with single-dish telescopes, and of course the absence of any Hubble motion or baricentric

velocities in the observed Vr reduces the uncertainty in estimating peculiar motion. However,

most of our local group members, apart from LMC and SMC, are moving towards us, which will

give a increment in brightness temperature from scattering. Such increment will be impossible

to distinguish from the emission signal coming from the same lines. Also relatively weak peculiar

motions of these galaxies forbid studying of most of the density ranges via scattering.

We see that for local group of galaxies, none of them have strong outward motion, and therefore

we should get only increment in the background temperature. Only our two neighboring galaxies
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3.2 Peculiar motion of nearby galaxies

LMC and SMC move away from us, and might give us a decrement in the CMB temperature.

Since temperature decrement is the most definitive sign for scattering signal, we consider galaxies

outside our local group, in Virgo cluster, where the high mass of the cluster gives rise to very

strong peculiar motions.

3.2.2 Correction due to Sun’s proper motion in the CMB frame

corrV         =  V cos θ

V

θ

Sun−CMB

V

Sun − CMB

Sun

GC − CMB

Sun −M31

Sun − CMB

M31

Sun −M31

Sun −M31
Sun − CMB

l=0  b=0

Figure 3.1: Schematic diagram for vector addition, trying to illustrate the approach used for the
correction of our own proper motion in the CMB rest frame. The galaxy in the example is chosen
to be M 31 (Andromeda), and for the time being we neglect its rotation and focus on its center-
of-mass motion. Center of M 31 is situated at the galactic coordinates (l, b) = (121.2◦,−21.6◦),
and has heliocentric radial velocity of 315 km s−1towards us. Our own heliocentric motion is 370
km s−1in the direction (l, b) = (264.4◦, 48.4◦), thus making an angle of Θ = 156◦ between the
vectors Sun-M31 and Sun-CMB. The correction velocity due to Sun’s proper motion in the CMB
rest frame is therefore VSun-CMB cos(π−Θ), directed in the opposite direction on M 31 for velocity
addition.

For estimating the change in brightness temperature at the resonant frequency due to peculiar

motion of the galaxies, we must take into consideration our own motion with respect to the CMB.

This heliocentric velocity in the CMB rest-frame has been accurately measured from the cosmic

dipole by COBE DMR instrument, and we know the Sun is moving with a velocity 369.5 km s−1

towards the direction (l, b) = (264.4◦, 48.4◦) in the CMB rest-frame (Kogut et al. 1993). We

correct for this motion by adding a correction velocity, Vcorr, to the observed radial motion of the

galaxy

Vcorr = −~n · ~VSun−CMB (3.11)

where the unit vector ~n points towards the galaxy, or a section of the galaxy, under study. In this

way, we pick up the component of the Sun-CMB motion in the direction opposite to the direction

of the galaxy, Vcorr = −(VSun−CMB cos θ) where θ is the angle between our direction of motion
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3. SCATTERING & PECULIAR MOTION OF THE GALAXIES

with respect to the CMB and the galaxy’s motion towards us (Fig.3.1). This Vcorr can then be

added to the radial motion of the galaxy to get its absolute peculiar motion (more accurately,

the component of absolute motion in our direction) in the CMB rest-frame. The result for such

velocity estimation and prediction of temperature change due to scattering is listed in Table(3.1)

and (3.2).

It is worthwhile to remember that the effect of scattering is sensitive only to the proper motion

of the galaxy in the CMB rest frame. Hence for galaxies beyond the local group we must correct

for the Hubble expansion either by assuming some definite Hubble constant and distance to the

object, or by taking a fixed baricentric velocity of the galaxy cluster and aubtracting it from the

observed radial motion. We employ he later technique for analysis of Virgo cluster.

3.2.3 Peculiar motion of galaxies in the Virgo cluster

Next we consider some galaxies from nearby Virgo galaxy cluster, both because of its proximity and

because the high mass of Virgo gives rise to unusually high peculiar velocity of some of the galaxies.

There are many well-defined spirals in the central region of Virgo whose large angular dimensions

may allow us, with future facilities like ALMA, to study small outer sections of the galaxies with

very low density. For a distance of almost 20 Mpc, the value of Hubble expansion at Virgo is

approximately 1300 km s−1, and we must subtract this value from the observed radial motion of

the galaxies in the cluster. We show below that because of the very high peculiar velocities inside

the Virgo cluster, temperature decrement as low as −100µK can be observed in galaxies like M88

and M99.

To derive the peculiar motion of the member galaxies in Virgo, we proceed as following. The

observed radial motion of the galaxies has three components:

Vr = Vh + ~Vpec · n̂+ ~Vgal · n̂ (3.12)

where Vh is the Hubble expansion velocity at the center of the Virgo cluster, Vpec is the peculiar

motion of the cluster as a whole in the CMB rest frame (motion in the Great Attractor potential),

and Vgal is the Virgocentric peculiar motion of the galaxy itself. n̂ is the unit vector in our

direction to pick the appropriate radial component. The effect of scattering under discussion does

not depend on the Hubble expansion velocity, as the scattering of CMB photons by atoms and

molecules depends only on their velocity in the CMB rest frame. We can subtract the Vh term by

assuming some definite Hubble constant (e.g. H0 = 71 km s−1Mpc−1from WMAP data, Spergel

et al. 2003) and multiplying it by the distance of Virgo cluster (∼ 18 Mpc, from observations of

Cepheids, Freedman et al. 1994). Alternatively, we can subtract a fixed cluster velocity from the

observed radial motion of the galaxy, and take the remainder as the galaxy’s peculiar motion in

the CMB rest frame. This cluster velocity already has the Hubble expansion term inside it

Vcl = Vh + Vpec ≡ 1200 km s−1 (3.13)
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3.2 Peculiar motion of nearby galaxies

Peculiar Motion and Change in Brighness Temperature for

Virgo Cluster Galaxies in CO Lines

Name of Vr Vpec Position Vcorr ∆Tb for J=2-1
Galaxy (km s−1) (km s−1) (l, b) (km s−1) (µK · km s−1)

NGC 4406 (M 86) -227 -1487 279.1◦, 77.6◦ +263.1 +32.8
NGC 4569 (M 90) -235 -1495 288.5◦, 75.6◦ +330.5 +31.2

NGC 4419 -261 -1521 276.5◦, 76.6◦ +330.4 +31.9

IC 3453 +2559 +1299 281.4◦, 76.9◦ +328.9 -43.6
NGC 4388 +2524 +1264 279.1◦, 74.3◦ +336.2 -42.9

NGC 4254 (M 99) +2407 +1147 270.4◦, 75.2◦ +334.6 -39.7
NGC 4607 +2257 +997 293.5◦, 74.6◦ +331.0 -35.6

Table 3.2: Galaxies in the Virgo cluster, and the predicted change in brightness temperature from
scattering in the CO 230 GHz line. We take CO column density to be equal to 1013 cm−2, and
broadening of the line as 50 km s−1. High-velocity galaxies in the direction both towards us
and away from us are chosen to demonstrate the effect of increment or decrement of brightness
temperature due to scattering. Vr is the observed radial motion (heliocentric velocity) of the
galaxy. The correction velocity Vcorr is explained through Fig.(3.1). For estimating the peculiar
velocity (radial component), we have subtracted from the observed radial motion the baricentric
velocity of the Virgo cluster, which we assumed to be 1200 km s−1.

This value of baricentric velocity of Virgo cluster comes from observations of Federspiel, Tam-

mann & Sandage (1998), and we use this fixed value to obtain the peculiar motion of the galaxy:

V CMB
g = Vr − Vcl. This of course leaves the room for uncertainty from the peculiar motion of

the cluster itself in the CMB frame, and the actual result can increase or decrease due to this

uncertainty. Finally, we correct for our own peculiar motion in the CMB rest frame by the method

described previously, and the result for such computations and corresponding increment or decre-

ment in brightness temperatures are tabulated in Table(3.2).

In the table we have only shown the scattering brightness for the second rotational line, as this

transition allows us to probe higher densities in scattering. The main distinguishing feature is the

sign of change in brightness temperature, which is clearly demonstrated. If we assume some low

density gas, with molecular hydrogen density ∼ 10 cm−3, then we shall have emission from the

J = 0 − 1 115 GHz line, and simultaneous measurement of scattering and emission will allow us

to obtain independent measure of the column density of CO molecules. For an assumed column

density of 1013 cm−2 and molecular density of ∼ 10 cm−3, the brightness temperature in emission

in the first rotational line is 35 µK, which is of course always positive in sign.

Example: M99 (NGC 4254)
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3. SCATTERING & PECULIAR MOTION OF THE GALAXIES

M99 (NGC 4254) is a face-on spiral galaxy in the central region of the Virgo cluster, which

has a strong positive heliocentric velocity: it is moving away from us at 2407 km s−1. This is a

bright galaxy (a member of the Messier catalog) having diameter of about 5 arc minutes. This

galaxy is a very good candidate for observing a decrease in the background CMB temperature due

to scattering in the CO lines, which is a definite signature of the scattering effect. Hence we study

this galaxy as a typical example. Such high value of peculiar motion also sets the critical density

higher, upto which scattering signal dominates. This enhances the possibility of observing the

scattering signal in diffuse neutral gas. From eqn.(3.10) we know that the critical density below

which scattering becomes more effective varies linearly with the peculiar velocity, and the result

for both collisions with H2 molecule and neutral hydrogen atoms is shown in Fig.(3.2) for M99.

We remark that such low values of density in the neutral gas lies at the limit the of present day

observation, made from observation of CO absorption lines in the UV bands against continuum

of a background star. The lowest column densities of CO reported to date is from the archived

Copernicus data (Crenny & Federman 2004), which is of the order of 1012−1013 cm−2, and requires

a neutral hydrogen density 10 − 200 cm−3. Under such low density environments CO may only

reach a fraction of its equilibrium abundance, which can make promising the study of rotational

lines of some transitional ions like CH+.
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Figure 3.2: Critical density for effectiveness of emission from collision in case of the Virgo cluster
galaxy M 99, which has a peculiar velocity of +1147 km s−1. The figures show the change in the
ratio of brightness temperature in scattering and emission from a gas cloud in CO lines as function
of densities. In left we show the effect of collision with H2 molecules, and in the right the effect of
collision with hydrogen atoms. The shaded region marks the domain when the object can not be
seen anymore from scattering, as it gets dwarfed by line emission. The labels marked J − J ′ are
the four lowermost rotational transitions of CO.

We briefly describe the formalism we have used to obtain the predicted decrement in brightness

temperature for the M99 galaxy. The radial velocity for M99 is 2407 km s−1, moving away from us.
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3.2 Peculiar motion of nearby galaxies

As descibed above, we subtract from this velocity the baricentric velocity of Virgo cluster, 1200 km

s−1, to obtain a velocity 1207 km s−1as the peculiar motion of the galaxy in our frame. The center

of M99 is located, in galactic coordinates, at (l, b) = (270.4◦, 75.2◦), which gives the component

of VSun−CMB in the opposite direction of the galaxy as 334.6 km s−1. This velocity is added to

the observed peculiar motion of M99 to obtain its peculiar velocity in the CMB rest frame in our

direction, which we plug into eqn.(3.2). We use a gaussian line profile with broadening 50 km s−1,

and CO column density of 1013 cm−2 inside our beam. Under very low density the excitation

temperature is practically equal to the background CMB temperature, 2.726 K. The predicted

temperature decrement for M99 is tabulated in Table(3.2), along with other high-velocity galaxies

in the Virgo cluster.

We conclude this section by emphasizing the importance of having an independent estimator

for peculiar velecities of galaxies in fields and especially inside clusters, by the method of scattering

described in this chapter, if CO or other suitable molecules are found in sufficiently low density

medium. The Virgo cluster is often taken as the zero-point for determination of the Hubble constant

(Tammann & Sandage 1985, Pierce & Tully 1988, Lu et al. 1994), and measuring the distance

of Virgo from Cepheids and thereby estimating its redshift was one of the Hubble Telescope key

projects (Freedman et al. 1994). Estimating the infall velocity of the Local Group towards Virgo

is further important as it provides a very local test for the density parameter Ω0 (Sandage et

al. 1972, Silk 1974 etc.). Furthermore there are evidences that Virgo itself is moving towards

the Great Wall (Hoffman et al. 1995). There have been various direct estimates to measure the

Virgo cluster velocity using many different techniques, using Cepheids, the 21cm HI line, or Tully–

Fischer relationship (see Davis & Peebles 1983 for a review). A detailed modeling of the velocity

distribution of the nearby clusters and also the motion of the Local Group in the potential of the

Great Attractor has been attempted by many groups, which in turn depends on the estimate of

the radial motion of the clusters in the Local Group rest frame (Jerjen & Tammann 1993, Lu,

Salpeter & Hoffman 1994, Giovanelli et al. 1998 etc.). The method we are proposing can prove

to be extremely important in such analyses, as it provides an independent method of estimating

the radial motions directly in the CMB rest frame. However it will be very difficult to pick up the

signal of scattering from galaxies, firsly because of its very low amplitude, but more importantly

because of such low density gas must be very rare and not been studied yet in nearby and Virgo

cluster galaxies. Only for a very few objects with strong positive radial velocty, it might become

possible with the next-generation of smaller but very sensitive sub-mm instruments, to detect a

temperature decrement in the CO 2 − 1 230 GHz line, for example, from moderately low density

neutral gas. Small one-dish but very sensitive intruments, using new sophisticated detectors now

designed for ALMA, APEX, ACT and other similar experiments, will be suitable for searching for

absorption in CO lines due to peculiar velocity. For nearby Virgo cluster galaxies with dimensions
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3. SCATTERING & PECULIAR MOTION OF THE GALAXIES

of several arc minutes, the sub-arc minute resolution provided by such single dish will be sufficient

for scanning the outer regions of the galaxies for any possible decrement in CMB temperature

coinciding with the CO 2− 1 transition, which will show the existence of resonant scattering.

30



Chapter 4

The Three Critical Densities

4.1 Effect of collision in dense regions

In this section we shall be analyzing how the scattering signal compares with the emission in the

same lines under different physical conditions. This section is somewhat pedagogic in nature, but

an understanding of these different density limits is necessary in order to compare scattering and

emission signals from an object. For example for CO, the scattering signal that we are trying

to estimate can only be of relevance in very low density neutral gas, because at higher densities

collisional excitation of higher levels will be significant, and line emission will start to dominate.

At very high densities, collisional excitation and de-excitation will completely determine the level

populations, but such high densities (N > 100 − 1000 cm−3) are only expected in the giant

molecular clouds. Hence between these two extremes there are domains when both scattering and

emission take place, and it is our purpose to analyze their relative importance.

This combined effect of resonant scattering in presence peculiar velocities in sub-mm lines of

molecules like CO, where CMB contains lots of photons for scattering, is very attractive. We tried

to explore this possibility, however found that the densities at which the effect becomes observable is

extremely low, and may be almost non-existent in the neutral gas regions of Milky-Way and nearby

galaxies. In addition we found that there is practically no chance to observe individual objects in

the various fine-structure lines of other atoms and ions that are relevant for CMB observations.

We have seen that the effect of scattering is proportional to β‖τν , where β‖ = v‖/c is the radial

component of peculiar motion and τν is the line optical depth, multiplied to the temperature of

background CMB radiation, T0. In this chapter we shall compare the influence of collision with

neutral or molecular hydrogen, and also electrons, and discuss three types of critical densities: i)

the density below which scattering dominates the brightness of the object, ii) the density range

where both scattering and emission co-exist, but emission is stronger than scattering. Above this

second critical density collisions change the population of the levels significantly. And iii), the

third critical density is well-known and discussed in text-books, where collisional de-excitation
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dominates over radiative de-excitation, and the excitation temperature of the levels approaches

the kinetic temperature of the surrounding gas. Observation of effect from scattering and peculiar

motions in individual objects is possible only for densities lower than the first critical density. Such

low density objects might be very difficult to find.

However, we remember that resonant scattering in the lines of molecules and atoms is also

responsible for changing the angular distribution of the CMB in the direction of the gas cloud. It

tends to decrease the deviations of the brightness of the background sky from the mean brightness,

which is termed as blurring or suppression of primordial anisotropies, and also causes a redistri-

bution of the scattered intensity due to its peculiar motion. This effect is essentially similar to the

one discussed for cold electrons in clusters by Zel’dovich & Sunyaev (1980), and has been described

by Maoli et al. (1993) for primordial molecules and by Basu et al. (2004) for atoms and ions. For

individual objects this effect is very small because β‖ is very low, and also the optical depth in

low density regions is also very low. But as it has been shown in Basu et al (2004), contribution

of emission in the lines from small individual objects are much less important than the coherent

smoothening of CMB fluctuations at small scales from all the objects in the sky, which allows us

to pick up the integrated signal of scattering by measuring the change in CMB fluctuations. Hence

the conclusions of the present work is as following: the effect proposed by Dubrovich and others is

difficult to observe in individual objects, but might be possible to observe through blurring of CMB

anisotropies at low multipoles (l ∼ 10− 200) measured with broad-band CMB telescopes. This is

possible because the later method permits us to observe all the objects below the second critical

density, where scattering as a process is significant. This opens the way to observe primordial

molecules and early chemical enrichment of the universe.

4.1.1 Analytic solution for two-level systems

First we shall present some simple analytic solutions for two-level fine-structure systems to get

an understanding of the influence of collisions in changing level populations. The formulation

presented here is standard, and can be found in many textbooks (e.g. Osterbrock 1988 or Genzel

1991). We present the definition of excitation temperature for a given transition, which we shall

be using to demonstrate the effect of collision at different densities. We are, of course, interested in

the very low density limits when the excitation temperature is practically equal to the background

radiation temperature of CMB photons.

Collisions with electrons (or hydrogen atoms in the case of neutral gas) cause emission from

the same atomic and ionic fine-structure lines and hence change the observed δCl-s by producing

an additional and independent signal on the top of the scattering signal, we compute the deviation

of the equilibrium excitation temperature of a two-level system from the background cosmic mi-

crowave radiation temperature as a function of the overdensity of the enriched region. The result
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of collisions will be to cause a change in the population of atoms and ions in their ground state,

and we estimate the required overdensity for causing a given amount (30% or 50%) of change.

We consider a two-level system (like CII or NIII ion) for simplicity, whose population ratio

between the two levels is determined by the excitation temperature, TEX , defined as

($u/$l) = (gu/gl) exp [−hν/kTEX ] (4.1)

where $u and $l are the relative fraction of atoms/ions in upper or lower levels, respectively, and

gu and gl are the statistical weights of each level. The equilibrium population ratio is obtained by

solving the statistical balance equation:

$u (Aul +BulJν + neγ) = $l

(

gu
gl
BulJν +

gu
gl
neγule

−hν/kTK

)

(4.2)

Here Aul and Bul are the Einstein coefficients for spontaneous and stimulated emission, and

Jν is the source function, which in our case is the background radiation field of CMB photons,

Jν ≡ (2hν3/c2)[exp(hν/kTCMB)− 1]−1. TCMB is the radiation temperature at redshift z, defined

by TCMB ≡ T0(1 + z), with T0 = 2.726 K. ne is the electron density inside the object at redshift

z , connected to its overdensity δ by the following: ne(z) ≡ n̄e(z) (1 + δ), where n̄e(z) = 2.18 ×
10−7(1 + z)3 cm−3. γul is once again the collisional de-excitation rate (in cm3 s−1), and TK is

the kinetic temperature of the electrons, which we assume to be roughly constant at 104 K. Then

from eqn.(4.1) we can express the overdensity as a function of excitation temperature:

1 + δ =
Aul

[

(1 + Γ)e−hν/kTEX − Γ
]

n̄e(z) γul
[

e−hν/kTK − e−hν/kTEX
] (4.3)

where Γ ≡ [exp(hν/kTCMB(z))− 1]−1, and we have used Bul = (c2/2hν3)Aul. Eqn.(4.3) is exact,

which can be further simplified in the Wien limit (which is of interest to us in the redshift range

z ∈ [5, 30]) and using the fact that TCMB(z)¿ TK ,

1 + δ =
Aul

[

e−hν/kTEX − e−hν/kTCMB(z)
]

n̄e(z) γul

[

1− hν
kTK
− e−hν/kTEX

] (4.4)

Now we express the excitation temperature in terms of a given amount of deviation of the

ground state population of the atom/ion, from the ground state population solely determined by

the CMB temperature. This ratio can be written as

$low(TEX)

$low(TCMB)
=

1 + gu
gl

exp(−hν/kTCMB(z))

1 + gu
gl

exp(−hν/kTEX)
(4.5)

This ratio should always be less that unity, i.e. TEX > TCMB , as collisions will tend to ex-

cite atoms or ions from their ground state. However, a very large over-density is needed in order

to produce any significant amount of deviation from the CMB equilibrium, as can be seen from
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Figure 4.1: Overdensity and actual electron number density required to cause significant deviation
of the excitation temperature from the background cosmic microwave temperature, as function of
redshift. Shown here are the cases for CII and NIII fine-structure singlets. The thick lines are for
CII ion,and the thin ones are for NIII ions. The pair of solid and dashed lines correspond to 30%
and 50% decrease in the optical depth for the same column density, respectively.

Fig.(4.1) for the case of CII 158µ and NIII 57µ transitions. These two transitions are picked as

they both arise from two-level fine-structure splitting, but results are similar for all other relevant

atoms and ions. Such high densities are expected in the dense clouds where intense star for-

mation is taking place; however, in a sufficiently large volume the ratio 〈nenXi
〉/〈ne〉〈nXi

〉 (where
nXi

is the ion density) will be small enough to guarantee the effectiveness of the scattering process.

4.1.2 Change in level population in multilevel systems

Now we proceed to solve the statistical equilibrium equations for a multilevel system. Our main

purpose is to solve for the level populations of the CO rotational system, but we have also used

the same method for solving fine-structure doublets like OI and NII. The method to determine

and solve the detailed balance euations is described in Appendix B. In what follows, we take CO

as our standard example.

The detailed statistical balance equation for an arbitrary number of levels, including the effect

of induced upward and downward transitions in presence of CMB photons, can be written as

ni
∑

k

(Rik + Cik) =
∑

k

nk (Rki + Cki) (4.6)

with

Rik = Aik + JνBik and Cik = nH2
γik

Here Rik-s are the radiative transition probabilities including the induced transition effects,

and Cik-s are the collisional transition probabilities which relate to the hydrogen molecule number
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Figure 4.2: Percentatge deviation in the population of CO rotational levels, at a particular redshift:
z = 1, (left) and z = 5, (right). This plot shows how population of individual levels change due to
collisions at different densities of molecular gas. The percentage of molecules at the lowest level
can only decrease, as the increasing amount of collisions will tend to populate the upper levels.
For J = 1 and higher levels, the population first increase as that from the lower levels are reduced,
but they also start to decrease as even higher levels get occupied.

density (or neutral hydrogen number density, depending on which species is predominant) as

Cik = nH2
γik. For CO molecule, we have considered collisional rates for upto 15 levels, which

gives sufficient accuracy at the redshifts and densities of interest, excluding only very overdense

regions (δ > 1010) at redshifts z > 10. The data concerning the A-coefficients for these transitions

are taken from Chandra et al.(1996), and the collisional rates of CO with H2 molecules are taken

from Flower & Launay (1985). Data for neutral hydrogen collision with CO are from Green &

Thaddeus (1976).

The result for such computations is shown in Fig.(4.2). Here we show how population of

individual rotational levels of CO changes as function of hydrogen molecular density at a particular

redshift, assuming a hot molecular gas of temperature 100K. We see that because of the downward

transitions from higher levels due to collisions, the percentage population of some lower levels

actually increase in certain density range, before dropping down again. The most interesting

fact that even upto H2 densities of several hundred molecules per cm3, which corresponds to an

overdensity of roughly 107 at z = 5, the change in level population is negligible from pure thermal

equilibrium. This is shown in Fig.(4.3). Here we plot the required molecular gas densities at

various redshifts to cause a 30% change in the level populations. Scattering will be dominant

over line emission unless densities cross such critical values. In fact we can consider three types

of critical densities: standard critical density is where TEX becomes equal to Tgas, i.e. when

collisional de-excitation probability from the upper level dominates over radiative rates. In this

chapter we are introducing two additional critical densities. First type corresponds to the density

when brightness temperature of an uniformly dense object is contributed mostly from emission,

and we shall discuss this in the next subsection. The second is one when we begin to change level
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Figure 4.3: The evolution of the critical density for CO rotational levels with redshift. This plot
shows the density limits which causes 30% deviation in any given level population, as a result
of collisions with H2 molecules (top) or neutral hydrogen atoms (bottom). This is the density
when collisions start to affect level populations significantly, and scattering as a process becomes
insignificant. We have termed this density as our second critical density, whereas the first critical
density is at which an individual object becomes no longer visible in scattering. We note that the
density limits shown in this figure does not depend on the velocity of peculiar motion of the object,
and is determined only from atomic or molecular properties.
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4.2 Scattering brightness vs. emission brightness

populations significantly, as shown in Fig.(4.3). The third type is the well-know classical definition

of critical density for local thermodynamic equilibrium condition.

In principle any source other than the CMB (e.g. stellar disks) radiating in the sub-mm

wavelengths can influence the level populations of CO rotational lines. But their effect will be

significant only at the very dense core of the gas clouds, very near to the source of the radiation,

and over large distances CMB will be dominant by far. This can be easily verified if we consiter

the influence of a single stellar disk, which at wavelengths around 1000µ has luminosity roughly

10−2 L¯ (Chiang & Goldreich 1997). This means CMB photons at this frequency will be dominant

at a distance of roughly 4700 A.U., or only 0.02 pc. Hence for molecular clouds of size several pc,

especially at outer low density regions, one needs to consider only the effect of CMB for calculating

level populations.

4.2 Scattering brightness vs. emission brightness

Finally we consider the condition when the brightness temperature of an individual objects gets

dwarfed by the emission in lines. This density limit is crucial as it determines whether we can

expect to observe the scattering signal from pointed observations of low density gas inside a galaxy.

We shall see this density depends directly on the peculiar motion of the gas cloud, and consequently

one can probe higher densities through scattering in a high velocity galaxy inside massive clusters,

as we saw in out discussion on Virgo cluster galaxies in Chapter 2.

In order to compare the brightness temperature of a source in both emission and scattering, we

consider the simplistic situation of uniform over-density inside any given volume, neglecting the

effect of gas clumping and filling factors. We recall that the volume emissivity is given by

jemν =
hν

4π
nH2

nCO $l γlu ϕ(ν) (4.7)

where n-s denote the number densities in cm−3, and γlu is the collision rate (in cm−3s−1) from lower

to upper level. This is valid when density is not too high, i.e. when n < ncrit, where ncrit ≡ Aul/γul
is the standard critical density (e.g. Osterbrock 1988). This emissivity gives rise to the observed

line flux according to ∆Iν =
∫

jν(1+z)
−3dl, and using the relation ∆Tb/T0 = [(ex−1)/xex] ∆Iν/Bν

with T0 as present-day CMB temperature, we get

T emb = T0
c2

8πν2
(ex − 1)2

xex
$lNCOnH2

γlu ϕ(ν) (4.8)

We compare this with the brightness temperature from scattering given in eqn.(3.2), and arrive at

the follwing ratio
T scb
T emb

=
xex

(ex − 1)2

(

1− $u

$l

gl
gu

)

gu
gl

Aul
γlu

n−1H2
β‖ (4.9)

The result for this ratio is shown in Fig.(4.4), for collision with H2 molecule, as well as for colli-

sion with neutral hydrogen. This is our first type of critical density, when brightness temperature
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Figure 4.4: The first type of critical density, when the brightness temperature in emission becomes
equal to that in scattering. The results are for CO rotational levels, in collision with H2 molecules
(top), and with neutral hydrogen atoms (bottom). This figure assumes the mean peculiar velocity
of large-scale motion, which scales with redshift as β‖(z) ≈ 2×10−3/

√
1 + z, and is further divided

by
√
3 to get radial component in any direction. For individual objects with high peculiar velocities

(like galaxies in the Virgo cluster) this density limit goes correspondingly higher.
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4.2 Scattering brightness vs. emission brightness

in emission of an uniformly overdense object will start dominating over the brightness temperature

in scattering. Of course this ratio neglect any effect of clumping, and hence this is strictly the

lowest critical density limit when one can resolve the gas cloud into small homogeneous clumps.

The effect of non-zero clumping in a large volume will raise this ratio, provided that CO is present

in sufficient amount in the under-dense parts.

Some physical understanding of the ratio in eqn.(4.9) can be obtained if we express it alterna-

tively in terms of critical density, stated above as ncrit ≡ Aul/γul, with the transformation relation

of collision rates: γlu = γul(gu/gl) exp(−hν/kTgas). Then this ratio can be written approximately

as
T scb
T emb

≈ xex

(ex − 1)2

(

1− $u

$l

gl
gu

)

ncrit
nH2

β‖ (4.10)

assuming the kinetic temperature of the gas to be much larger (Tgas ∼ 50 − 100 K) than the

rotational temperature of the CO levels. The standard critical densities at such gas temperatures

are ncrit ∼ 2000 cm−3 for the J=0-1 transition, and ncrit ∼ 104 cm−3 for the J=1-2 transition.

Recalling that β‖ ∼ 10−3, we immediately see that the brightness temperature in emission will

be equal to that in scattering in the first rotational level when density of the object is ∼ 1 cm−3,

and for the second rotational level when density is a few times more. We also note that for low

densities (1−$ugl/$lgu) ≈ (1− e−x), therefore this ratio can be further simplified as

T scb
T emb

≈ x

ex − 1

Aul
γul

n−1H2
β‖ (4.11)

We note that the factor (ex−1)−1 is the photon occupation number for the CMB, which decreases

exponentially below z . 1 for the far-IR fine-structure lines. This explains why only the two lowest

rotational levels of CO molecule are most effective in producing a signal by scattering.

4.2.1 The three critical densities

Therefore, we have encountered three types of critical densities in this chapter, characterizing the

effect of collision in an atom or molecule. The first type is important for observation of individual

objects, as it determines when an object can no longer be visible from the change in its brightness

temperature caused by scattering. This density depends linearly with the peculiar velocity of the

objects, hence one has better chance of observing the scattering signal in galaxies with high peculiar

velocity. The second critical density is when the level populations start to deviate significantly

as a result of collision, which we have arbitrarily defined for a change of 30% from the fraction

governed by TCMB alone. Between the first and second critical densities, scattering as a process

still compares with that of emission, and we shall see in a subsequent section (Ch.5) that one

can pick up the integrated signal of scattering from all objects below the second critical density

through the power spectrum distortions of the CMB. Above the third critical density, which is
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Figure 4.5: Two types of critical densities for neutral and singly ionized carbon fine-structure lines,
as function of redshift. Left: Result for the ionized carbon FS singlet, in collision with electrons
at ∼ 104 K. The first critical density is extremely low here as collisions of C+ with electrons
are extremely effective in exciting this system. Right: Results for CI FS doublet in collision with
atomic hydrogen, showing both the 609µ (thick lines) and the 370µ (thin lines) fine-structure lines.
The first type (marked (1), solid lines) is when brighness temperature of an object is dominated
by the effect of line emission. The second type (marked (2), dashed lines) is when population of
the levels change by 30%, and collisional process starts to dominate.

defined classically by the ratio Aul/γul, scattering is no longer of significance and one can expect

only emission in the lines.

These three densities are best understood in terms of the change of the excitation temperature

of the transition, defined through eqn.(4.1). We show in Fig.(4.6) for the second CO rotational

transition of 230 GHz. We plot how the excitation temperature varies in a wide range of H2

molecular densities at z = 0. The excitation temperature is defined in terms of level populations,

$u/$l = gu/gl exp(−hνul/kTex), and is equal to the background CMB radiation temperature

at low densities. As the density increases, excitation temperature starts to deviate significantly

from CMB temperature, and it asymptotically reaches the gas kinetic temperature at very high

densities. We note that even when Tex is equal or nearly equal to the TCMB , emission can be more

effective. The gray area marks the density range when scattering can dominate over emission in

the CO line.

We make some brief remarks about the excitation temperature at the third critical density,

when the collisional process dominates completely. For two-level systems, it is very easy to write

the excitation temperature at n = ncrit where ncrit ≡ Aul/γul (see, e.g. Genzel 1991). In presence

of CMB radiation with temperature TCMB, we get the following formula

TEX =
TCMB + hν

k

1 + hν
kTkin

≈
[

(

hν

k

)−1

+ T−1
kin

]−1

(4.12)
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Figure 4.6: Three kinds of critical density discussed in this section, for the second rotational tran-
sition of CO molecule at z = 0. ncr1 is the average density of an object above which its brightness
temperature due to emission starts dominating over that from scattering. ncr2 is the density when
population of any given level starts to deviate significantly from its thermal equilibrium value set
by the background CMB temperature. The density limit in the plot corresponds to 30% devia-
tion. The third critical density, is the classical one, defined as ncr3 = Aul/γul for that particular
transition. Above this density collisional de-excitation probability from the upper level starts to
dominate and the effect of radiation field becomes insignificant.
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4. THE THREE CRITICAL DENSITIES
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Figure 4.7: Excitation temperature for C+ 2-level system at z=5, again showing the location
for the three critical densities characterizing the importance of the scattering process at various
densities of electrons. The background CMB radiation has temperature about 16 K, and the
kinetic temperature of electrons is 104K. The first critical density, below which an object will be
visible from scattering, is unacceptably low for such ionic fine-structure transitions, because they
are very easily excited by collisions of electrons. Objects with densities between the first and the
second critical densities might leave their signature of scattering through distortion in the angular
temperature fluctuations of the CMB, which is the topic the of next chapter.

where the second step is valid under the approximation hν/k À TCMB at that redshift. This

shows clearly that with the above definition of critical density, we have TEX 6= Tkin at that limit if

Tkin is much larger than the level energy, TEX approaches asymptotically the kinetic temperature

of colliding electrons only at much higher densities, as shown in Fig.(4.7). Here we have shown

the case for C+ 157.7µ two-level system in 104K electron gas at redshift z = 5, so that TCMB is

about 16 K. Aul/γul = 50 cm−3 for collisions with electrons, and the exitation temperature at this

density is about 106 K, far below the 104K asymptote. Collisional process completely dominates

the level populations above this density, as had been discussed. Since these ionic fine-structure

transitions are very easily excited collisionally by electrons, we have unacceptably low values for

electron density when an object will be visible in scattering (the first critical density in figure).

For computing this limit, however, we have again used the mean radial component of large-scale

velocities at z = 5, which is about 140 kn s−1.

To summarize, one has the possibility to observe individual objects through scattering only

when the average density inside is below the first critical density. This density marks the point

when collisions become more effective in producing photons in the line, thereby dwarfing the
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4.2 Scattering brightness vs. emission brightness
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Figure 4.8: Another illustration of the concept of the three critical densities, with the help of O++

88µ and 52µ fine-structure doublet. In the left we show the redshift evolution of these densities,
and in the right the case for the 3P1-

3P0 88µ line at z = 6, as such far-IR lines can only scatter
CMB photons effectively at high redshifts. We plot both critical densities for the collision with
electrons: the first one when brightness temperatures in scattering and emission become equal,
and the second one when population in the lower transition level changes by 30%. We see that the
first critical density corresponds to extremely low values, as the collision rates with electrons for
these ionic lines are very high. The third critical density, Aul/γul, is 1700 cm−3 for the 88µ line,
and 4350 cm−3 for the 52µ line, where collisions completely dominate level populations.

scattering signal. For atomic and ionic fine-structure lines in hot diffuse plasma, this transition

occurs at very low densities because electrons are very effective collision partners for such lines.

In neutral gas where the dominant collision partner is atomic or molecular hydrogen, one might

have the possibility to observe individual objects through scattering in CO rotational lines, or even

the neutral carbon FS lines. Especially in objects where the peculiar motion is particularly high,

e.g. in Virgo cluster galaxies, this first critical density can be as high as ∼ 10-20 in neutral gas,

making observation of temperature decrement through scattering a possibility. We must mention

that CO may only be partially protected from the ionizing UV background under such low density

environment, because of insufficient shielding by H2 molecules. However the lower dissociation

rate of CO compared to H2 (Röllig 2002) can make trace amount of CO present at a fraction of

its equilibrium abundance. The present day limit of existence of CO in low density neutral gas

comes from the analysis of archived Copernicus data (Crenny & Federman 2004) of UV absorption

against background stars, with CO column densities upto ∼ 1012−1013 cm−2 and a corresponding

neutral hydrogen density of 10 − 200 cm−3. The non-equilibrium processes in such low density

environments can give rise to higher abundances of some other transitional species like CH+.

Therefore observation of temperature decrement by scattering in CO lines can in reality prove to

be very difficult.
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4. THE THREE CRITICAL DENSITIES

The scattering, as a process, is still comparable with line emission above the first critical density,

unless the level population starts to change significantly due to collision. This marks the second

critical density in our discussion, which we have defined as the point when level population changes

by 30%. Above this density the radiation field due to CMB no longer controls the level population,

and the amplitude of the scattering signal decreases rapidly. However, there is the possibility

to pick up objects between the first and the second critical densities, from the integrated signal

of scattering of all sources in the sky. This is because the contribution of emission from small

individual sources is less important at large angles, where coherent smoothing of primordial CMB

temperature fluctuations due to scattering is significant. This is the topic of the next chapter and

the main conclusion of our work. We shall see that due to the frequency dependent nature of

resonant scattering, one has the possibility to pick up the coherent scattering signal in correlation

with the primordial temperature fluctuations in the CMB. The individual size of the scattering

cloud is no longer important, because in the limit of very low optical depth one can safely assume

the scatterers to be uniformly distributed in the sky. In other words, the mean free path of

the scattered photons is much larger than the individual size of the objects, so the integrated

scattering signal does not depend on the precise location of the scattering cloud. As a result of

non-zero correlation (Hernández-Moteagudo & Sunyaev 2004) between the density fluctuations at

the last scattering surface and at the epoch of scattering, the scattering signal is enhanced; and

because of the frequency dependence its detection is no longer constrained by the limit of cosmic

variance. Now we discuss the nature of this integrated signal of scattering, and the corresponding

modifications in the CMB power spectrum.
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Chapter 5

Distortion in the CMB Power
Spectrum

5.1 Background and motivation

High precision observations of CMB anisotropies are giving us unique information about the angular

distribution of CMB fluctuations, as well as their spectral dependence in a very broad frequency

range. HFI and LFI detectors of PLANCK spacecraft will provide unprecedented sensitivity in 9

broad band (∆ν/ν ∼ 20− 30%) channels, uniformly distributed in the spectral region of the CMB

where contribution of different foregrounds are expected to be at a minimum. CMBpol and other

proposed missions are expected to reach noise levels 20 - 100 times lower than that of PLANCK HFI

with technology already available (Church 2002). The WMAP satellite was designed to provide

measurements of the CMB temperature anisotropies in the whole sky with an average sensitivity

of 35µK per 0.3◦ × 0.3◦ pixel at the end of the mission (Bennett et al. 2002, Page et al. 2002).

Once such sensitivity limit is reached, the WMAP data will be the first real-life test for all those

attempts to estimate, with extremely high precision, the key parameters of our universe using this

sensitivity (Bond, Efstathiou & Tegmark 1997, Einsestein, Hu & Tegmark 1999, Prunet, Sethi &

Bouchet, 2000). Indeed, after the first 12 months of operation, the WMAP team is recovering the

first multipoles of the CMB power spectrum with an accuracy of a few percent (Hinshaw et al.

2003).

In this chapter we are presenting an additional use of the tremendous sensitivity of PLANCK

and CMBpol, and ground-based experiments like ACT, APEX and SPT. We propose to look for

or to place upper limits on the abundances of heavy elements present in the inter galactic medium

and/or in optically thin clouds of gas everywhere in the redshift range [1, 500]. We shall focus on

the fine-structure lines of neutral (CI, OI, SiI, FeI, ...) and ionized (CII, NII, OIII, ...) atoms,

which might provide information about the epoch of first star formation and ionization history

of the universe. Limits on abundances of heavy atoms and ions can be obtained by utilizing the
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5. DISTORTION IN THE CMB POWER SPECTRUM

frequency dependent opacity that will be generated by scattering of background photons by these

species; giving rise to different δCl-s in different observing bands of the experiments. Although

Planck HFI is expected to detect the combined signal from the strongest lines, like OI 63.2µ, CII

157.7µ and OIII 88.4µ, future multichannel broadband CMB anisotropy experiments like CMBpol

might permit to detect contributions from these lines separately from the epoch when dark ages

were terminating, universe became partially ionized and heavy element production begun. It is

important that the polarization signal arising due to resonance scattering depends strongly on the

properties of the transition (Sazonov et al. 2002), and together with the temperature signal will

permit us to separate contributions of different species.

The observed primordial acoustic peaks and angular fluctuations should not depend on the

frequency at all. This is connected with the nature of Thomson scattering which produces these

fluctuations both in the time of recombination of hydrogen in the universe (Peebles & Yu 1970,

Sunyaev & Zel’dovich 1970) and during the secondary ionization of the universe (Sunyaev 1977,

Ostriker & Vishniac 1986, Vishniac 1987, and more recently Gruzinov & Hu 1998, da Silva et

al. 2000, Seljak, Burwell & Pen 2000, Springel, White & Hernquist 2001, and Gnedin & Jaffe

2001). In this context, WMAP polarization measurements have recently shown strong evidence

favouring an early reionization scenario, with zr = 20+10−9 (Kogut et al. 2003, 95% confidence).

But if any amount of chemical elements are present during the dark ages, then these species will

be able to scatter the CMB in their fine-structure lines. This scattering would not only partially

smooth out primordial CMB anisotropies, but in addition will generate new fluctuations through

the Doppler shift of the line associated with the motion of matter connected with the growth of

density perturbations. The main difference with Thompson scattering is that the latter is giving

us equal contribution over the whole CMB spectrum, whereas the discussed line scattering would

give different contribution to different observing channels placed at different parts of the spectrum.

Likewise, the contribution in this case would be restricted to a very thin slice in the universe. Hence

there is a possibility to detect contribution from the lines with high transition probabilities, even

though the typical optical depth we would find is very small (τν < 10−4). Since every line is able

to work only in a given range of redshift, having observations on different wavelengths can give an

upper limit to abundances of different species at different epochs. This method relies critically in

the fact that intrinsic CMB temperature fluctuations are frequency independent. Therefore, in the

absence of other frequency-dependent components, the difference of two CMB maps obtained at

different frequencies must be sensitive to the difference in abundance of resonant species at those

redshifts probed by the frequency channels. For this reason, this method is particularly sensitive

to the possible presence of any frequency-dependent signal coming from foregrounds.

The idea to use the line transitions of atoms and molecules for modifying the CMB power

spectrum is not new. Dubrovich (1977, 1993) proposed the use of rotational lines of primordial

molecules (LiH, HD etc.) as a source of creating new angular fluctuations in the CMB, and
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5.1 Background and motivation

there have been attempts to observe these molecules at high redshifts (de Bernardis et al. 1993).

Varshalovich, Khersonskii and Sunyaev (1978) were trying to estimate the spectral distortions of

CMB due to absorption in fine-structure lines of oxygen and carbon at redshifts around 150-300

where the temperature of electrons should be lower than the temperature of CMB due to different

adiabatic indices of radiation and matter (see Zel’dovich, Kurt & Sunyaev 1968). Suginohara

et al.(1999) probed the possibility of detecting excess flux due to emission in these lines coming

from very over-dense regions in the universe. Recently Loeb (2001) and Zaldarriaga & Loeb (2002)

(hereafter ZL02) computed the distortions connected with the recombination of primordial Lithium

and scattering in the Lithium resonant doublet line. Unfortunately the wavelength of fine-structure

2P-2S transition of Lithium atoms is too short and will be unobservable by PLANCK and balloon

instruments. On the very low frequency domain, future experiments like SKA and LOFAR might

detect signal from neutral hydrogen 21 cm line, which also carry important ioformation from high

redshifts (Sunyaev & Zel’dovich 1975, Madau, Meiksin & Rees 1997). We consider below the

ground-state fine-structure lines of heavier elements, with wavelengths of the order of 50 − 200µ,

which will in principle be observable with PLANCK and CMBpol if they are present in the redshift

range [1, 500]. The problem of overcoming their extremely small optical depth comprises the main

idea of this thesis.

We will not discuss in detail the origin and ways of enrichment of the inter-galactic gas by

heavy elements. This certainly requires existence of massive stars, supernova explosions, stellar

and galactic winds, and even jets from disks around young stars with cold molecular gas (Yu,

Billawala & Bally 1999). The main goal of this part is to show that the announced sensitivity of

PLANCK detectors might permit us to set very strong upper limits to the time of enrichment of

inter-galactic gas by heavy elements, the time of reionization, and maybe even to detect the heavy

elements in the inter-cluster medium. The census of baryons in the local universe (Fukugita et al.

1998) shows that most of the baryon remains unobserved, and the proposed method might set way

to detect its existence at high redshifts, when it had moderate or low temperature. These missing

baryons are centainly out of stars, interstellar gas and intergalactic gas in clusters and groups of

galaxies. However, we know that such baryons should exist because they have been detected by

WMAP at the last scattering surface at z ' 1100, and are also necessary to justify the observed

abundance of deuterium and 6Li in the early universe. Due to the wide range of redshifts under

study, and the uncertain degree of mixture and clumpiness of our species in the interstellar and

inter-galactic medium, we shall assume that all elements are smoothly distributed in the sky. In

other words, in the present chapter we shall address exclusively the homogeneous low density op-

tically thin case, where effects related to strong over-density of gas and collisional excitation are

excluded and left as subject of an upcoming work. Resonant scattering effects will produce the

discussed signal even if all the gas in the enriched plasma has over-density up to 103. Under this

smooth approximation, we will find that the effect of resonant species on the CMB power spectrum
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will be particularly simple, especially in the high multipole range. Indeed, in the small angular

scales, we shall show that the induced change in the Cl’s is given by δCl ' −2 τXi
Cl, where τXi

is

the optical depth induced by the resonant scattering of species X and Cl is the primordial CMB

power spectrum, which is currently the main target of most CMB experiments.

5.2 Basic approach and formulation

We now discuss the method of obtaining the deviations in the CMB power spectrum by resonance

scattering of atoms and ions, and using this deviation to constrain their abundance during the

dark ages. The interaction of CMB photons with atoms and ions will mostly consist of resonant

scattering with either an atomic or a rotational/vibrational transition, depending on the species

under study. This scattering introduces a frequency dependent term in the evolution equation for

the photon distribution function, which results in a frequency dependence drag-force. However,

based on the same arguments of Zaldarriaga & Loeb (2002), we can safely ignore this drag-force as

long as the characteristic time of drag exerted by these species is far larger than the Hubble time,

which is indeed the case due to the low optical depths under consideration. Thereafter we detail

how we introduce the optical depth due to the resonant transition (τXi
) in the CMBFAST code

(Seljak & Zaldarriaga, 1996). We consider a particular resonant transition i for a given species X,

with rest-frame resonant frequency νi. The total optical depth encountered by CMB photons on

their way from the last scattering surface to us is then obtained by adding the contributions from

all lines to the standard Thomson opacity:

τ = τT +
∑

i

τXi
(5.1)

In order to calculate τXi
, we shall recur to the formula which gives the optical depth of a

resonant transition in an expanding medium (Sobolev 1946),

τXi
(z) = fi

πe2

mec

λinXi
(z)

H(z)
(5.2)

where fi is the absorption oscillator strength of the resonant transition, λi is the corresponding

wavelength (in rest frame), nXi
(z) is number density of X species at redshift z, and H(z) is the

Hubble parameter at that epoch. The oscillator strength depends on λi, the Einstein coefficient of

the transition Aul, and the degeneracy of the levels involved in it:

fi =
mec

8π2e2
gu
gl

λ2iAul (5.3)

A simple and elegant treatment following Gunn & Peterson (1965) using δ-function line profile,

instead of thermally broadened gaussian for the same line, gives same value of optical depth.
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5.2 Basic approach and formulation

Further modifications are made to this formula to take into account the finite populations in the

upper transition levels, which is important for atomic fine-structure transitions, where excitation

temperature for them is comparable to the radiation temperature at high redshifts. Also the effect

of non-zero cosmological constant can not be neglected in the low redshift universe of interest.

Considering these facts, we obtain the following formula for optical depths:

τXi
(z) = 1.7× 10−6

(

XXi
(z)

10−6

)(

S(z)

S(z = 10)

) (

λi
100 µ

) (

fi
10−9

)

B (5.4)

Here XXi
(z) is the ratio between the number density NXi

(z) of the atomic or ionic species X

under consideration, with respect to the baryon number density at the same redshift: Nb(z) =

2 × 10−7 (1 + z)3 cm−3. i.e. XXi
(z) = NXi

/Nb presents the evolution of abundance of the

given species due to element production, ionization and recombination processes. We propose

to constrain the minimum abundance that can be detected at that redshift in solar units, or

[X]min ≡ XXi
(z) / X¯, where, for example, X¯ = 3.7 × 10−4 for carbon. S(z) gives the redshift

dependence of optical depth in a ΛCDM universe: S(z) = (1+z)3 [(1+z)2(1+Ωmz)−z(2+z)ΩΛ]
− 1

2

(see, e.g., Bergstrom 1998) , and λi is the wavelength in micron. The final term B accounts for the

actual fraction of atom/ion present in their ground state, and is governed solely by the temperature

of background radiation at the redshift of scattering. For a two-level system, this fraction is simply

nl = [1 + (gu/gl) exp(−hνi/kT0(1 + z))]−1 (5.5)

We also include here the correcting term for the induced emission in the presence of the CMB and

finite population of the upper level:

B = nl ×
[

1− exp

(

− hνi
kBT0(1 + z)

)]

(5.6)

The resonance scattering on ions and atoms in thermal equilibrium with black body radiation

does not change its intensity. However, the observed CMB also has finite primordial angular

fluctuations. The effect of resonant scattering is to decrease these angular fluctuations, and to bring

the system more close to thermodynamic equilibrium. Therefore resulting fluctuations observed

on the frequency of the line should differ from the situation on other frequencies which are far from

the resonance.

At low multipoles peculiar motions arising due to the growth of large scale density perturbations

become important. All ions or atoms are moving in the same direction and change the frequency

of CMB photons during resonant scattering. This leads to generation of new anisotropies of

background.
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5.2.1 Method of computation

Our approach to model the coupling between these heavy species and CMB photons will be similar

to that outlined in Zaldarriaga & Loeb (2002). In their paper they discussed modifications of CMB

spectrum by presence of primordial Lithium atoms. Here we extend their analysis to other atoms

and ions. We also discuss the necessary changes that are enforced while extending this method to

all resonant species.

As a first step, we describe the modifications introduced in the CMBFAST code in order to

compute the effect of resonant transitions. We consider a given resonant transition i of a given

species X, with a resonant frequency νXi
. For a fixed observing frequency νobs, the redshift at

which that species interacts with the CMB is 1 + z = νXi
/νobs, and its opacity can be written, in

general, as τ̇Xi
= τXi

P(η), with a normalized profile function
∫ η0
0
dη′P(η′) = 1. We shall model

this profile with a gaussian:

τ̇Xi
= τXi

exp

(

− (η−ηXi)
2

2σ2
Xi

)

√

2πσ2Xi

(5.7)

where τXi
is the optical depth for the specific transition, ηXi

is the conformal time corresponding to

the redshift 1+ zXi
= νXi

/νobs where scattering takes place, and σXi
is the width of the gaussian.

For a fixed transition, this width should be given by the thermal broadening of the line. For the

sake of simplicity, we shall take σXi
∼ 0.01ηXi

.

Once the line optical depth has been characterized, (as shown in Section 2), the new opacity

term with a gaussian profile is added to the standard Thompson opacity,

τ̇ = aneσT +
∑

i

τXi

exp

(

− (η−ηXi)
2

2σ2
ηXi

)

√

2πσ2ηXi

, (5.8)

and this in turn is used to compute the visibility function Υ(η), defined as

Υ(η) = τ̇(η)e−τ(η). (5.9)

This scattering introduces a frequency dependent term in the evolution equation for the pho-

ton distribution function, which results in a frequency dependence drag-force. However, based on

the same arguments of Zaldarriaga & Loeb, we can safely ignore this drag-force as long as the

characteristic time of drag exerted by these species is far larger than the Hubble time, which is

indeed the case due to the low optical depths under consideration. These are the modifications

we introduced in the CMBFAST code in order to compute the CMB power spectrum under the

presence of scattering by atoms and ions.
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5.2.2 Nature of distortion in the CMB power spectrum

We next give a simple description of the modification of the power spectrum of the CMB when

it encounters a resonant species. As mentioned in the Introduction, our first hypothesis will be

that the species responsible for the scattering are homogeneous, isotropic and smoothly (i.e., not

clumped) distributed in the Universe, at least during the epoch of interaction with the CMB. One

may argue that heavy species are located in halos where the first stars are produced and that their

distribution in the sky can non be regarded as smooth. In this case, the final effect would depend

on the typical angular size of the patches in which the species have been spread and on their total

sky coverage. This work will observe the case where those scattering patches percolate in the sky,

giving rise to a smooth, homogeneous picture. The case of patchy distribution of emitting sources

will be addressed in a forthcoming work, where collissional processes are studied in an extremely

dense optically thick environment.

In the conformal Newtonian gauge, (also known as the longitudinal gauge), the k-mode of the

photon temperature fluctuation at current epoch is given by (Hu & Sugiyama 1994)

∆T (k, η0, µ) =

∫ η0

0

dη eikµ(η−η0)
[

Υ(η) (∆T0 − iµvb) + φ̇+ ψ − ikµψ
]

(5.10)

Here we have neglected the polarization term (which contributes at most with a few percent

of the temperature amplitude). η denotes the conformal time, Υ ≡ τ̇(η) exp−τ(η) is the visibility

function and τ(η) =
∫ η0
η
dη′τ̇(η′) is the optical depth. ∆T0 accounts for the intrinsic temperature

fluctuations, vb for the velocity of baryons and φ and ψ are the scalar perturbations of the metric

in this gauge. We have also neglected all tensor perturbations. If we now introduce the optical

depth associated to a resonant transition as a Dirac delta of amplitude τXi
placed at η = ηXi

,

dτ(η) = σTne(η)dη + τXi
δ(η − ηXi

)dη, (5.11)

we readily obtain that the original anisotropies have been erased by a factor e−τXi , whereas new

anisotropies have been generated at the same place:

∆T (k, η0, µ) = e−τXi∆Torig (k, ηXi
, µ) + ∆Tnew(k, ηXi

, µ) (5.12)

In real space, if we assume that τXi
¿ 1 , the Dirac delta approximation for the resonant

transition (eq.(5.11)) translates into

δT

T0
(n, z = 0) = (1− τXi

)
δT

T0
(n, zXi

) + τXi

δT

T0

∣

∣

∣

∣

lin

new

(n, zXi
) + O

[

τ2Xi

]

(5.13)

Here, n is the unitary vector denoting the observing direction, and δT/T0|linnew(n, zXi
) is the linear

in τXi
term of the newly generated anisotropies (in what follows, our temporal coordinate will be

denoted by redshift or conformal time η indiferently). We remark again that we are assuming that

51



5. DISTORTION IN THE CMB POWER SPECTRUM

the species is homogeneously distributed, so that τXi
does not depend on position. Let us now

consider two different observing frequencies: the first one corresponds to the scattering redshift

zXi
, and the another corresponds to a scattering redshift too high to expect any significant presence

of the species X. If we compute the correlation function,
〈

δT
T0

(n1, z = 0) · δTT0
(n2, z = 0)

〉

, in both

cases, we find that the difference of these quantities will be equal to:1

∆

(

〈δT

T0
(n1, z = 0) · δT

T0
(n2, z = 0)

〉

)

=

τXi

(

− 2
〈δT

T0
(n1, zXi

) · δT
T0

(n2, zXi
)
〉

+ 2
〈δT

T0
(n1, zXi

) · δT
T0

∣

∣

∣

∣

lin

new

(n2, zXi
)
〉

)

+ O
[

τ2Xi

]

(5.14)

That is, the term linear in τXi
of ∆

(

〈

δT
T0

(n1, z = 0) · δTT0
(n2, z = 0)

〉

)

is the sum of two different

contributions: the suppression of original fluctuations (which, as we shall see, dominates at small

angular scales), and the cross-correlation of the newly generated anisotropies with the intrinsic

CMB field. The first term (suppression) does not depend on the potential or velocity fields during

scattering, but only on the intrinsic CMB anisotropy field. Moreover, we must remark that those

contributions are evaluated at scattering epoch2. Hence, if the resonant scattering takes place before

reionization, the changes in the correlation function (or in the power spectrum, as we show below)

will be sensitive to the CMB anisotropy field before being processed by the re-ionized medium. In

the Appendix A we give a detailed computation of the change in the power spectrum due to a

resonant line, which were done by C.Hernández-Monteagudo. As we concentrate in the optically

thin limit, it is possible to make a power expansion on the optical depth τXi
:

δCl ≡ CXi

l − Cl = τXi
· C1 + τ2Xi

· C2 + O(τ3Xi
). (5.15)

In this equation, CXi

l and Cl refer to the angular power spectrum multipoles in the presence and

in the absence of the Xi resonant transition, respectively. For the limit of very small τXi
one can

retain only the linear order, and a direct identification of δCl with the abundance [X](z) is possible

by means of eq.(5.4): the change induced in the CMB power spectrum will be proportional to the

abundance of the species responsible for the resonant scattering. In agreement with what has been

established when studying ∆
(

〈

δT
T0

(n1, z = 0) · δTT0
(n2, z = 0)

〉

)

, we find that C1 changes sign at

some multipole lcross: positive values of δCl imply generation of new anisotropies (l < lcross),

whereas anisotropies are suppressed for l > lcross (see figure 5.1 at very low l). In the Appendix A

1This type of manipulations of the correlation function/power spectrum which avoids the Cosmic Variance limit
is possible as long as the weak signal (signal induced by scattering in this case) has different spectral dependence
than the CMB.

2The dependence on cosmic epoch of eqs. (5.13,5.14) has been simplified. We again refer to Appendix A for a
formal derivation.
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5.2 Basic approach and formulation

we note that positive values of δCl (generation) are due to the non-zero correlation existing between

anisotropies generated during recombination and those generated during the resonant scattering.

This correlation is due to the coupling of k modes of the initial metric perturbation field in scales

of the order or larger than the distance separating the two events (recombination at redshift 1100

and resonant scattering at redshift 5-25).
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Figure 5.1: The nature of temperature anisotropy that will be marginally detectable with Planck
HFI 143 GHz channel, using 63µ OI line. Abundance is taken from the table(5.2), as 5.3 × 10−4

solar at redshift 32. Here Primary denotes the measured temperature anisotropy (upper line),
Cpril + δCl ≈ Cpril , and Line denotes the newly generated anistropy, |δCl|, arising from line
scattering (bottom, with filled squares). This |δCl| is obtained by taking the difference from the
100 GHz channel, and changes sign around l = 3. The corresponding noise level is denoted by
HFI noise. Also shown is the cosmic variance limit (short-dashed line) for comparison.

5.2.3 δCl’s at small angular scales

With respect to the high-l range, we find that the change induced in the power spectrum takes a

very simple form:

δCl ' −2 τXi
Cl (5.16)

where Cl is the intrinsic power spectrum. This dependence is identical to the effect of reioniza-

tion on the power spectrum at small angular scales. Indeed, in that scenario, if the optical depth

due to electron scattering during this epoch is given by τreio, then we have that for lÀ 1 the intrin-

sic CMB power spectrum generated at recombination is suppressed by a factor 1−exp(−2τreio), or
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5. DISTORTION IN THE CMB POWER SPECTRUM

≈ −2τreio if τreio < 1. So in both (resonant and Thompson) scatterings, the shape of the induced

change in the power spectrum is particularly simple and equal to δCl ' −2τ Cl, for a given optical

depth τ and intrinsic power spectrum Cl. This simplifies considerably the effect of reionization on

the δCl’s induced by resonant transitions. Indeed, if the symbol ∆reio denotes the difference of

a given quantity evaluated in the presence and in the absence of reionization, then we have that,

for high l, ∆reio(Cl) = −2τreio Cl and ∆reio (δCl) = −2τreio (δCl). This is shown in figure (5.2),

where we plot the quantities V ≡
∣

∣Creiol /Cl − 1
∣

∣ and W ≡
∣

∣

∣

∣δCreiol /δCl
∣

∣− 1
∣

∣, that is, the relative

change of Cl and δCl due to the presence of reionization. We have taken τreio = 0.17. We see that,

for high l, both V and W approach the limit V ' W ' 2 τreio, i.e., the effect of reionization is

identical in the two cases.

Figure 5.2: For two lines placed at different redshifts, (z = 20 in the top, z = 10 in the bottom),
we plot the quantities V (solid lines) and W (dotted lines), defined as V ≡

∣

∣Creiol /Cl − 1
∣

∣ and

W ≡
∣

∣

∣

∣δCreiol /δCl
∣

∣− 1
∣

∣, respectively. In both cases, in the limit of high l, these quantities tend to
2 τreio, where τreio was taken to be 0.17. In both panels, τXi

= 10−3.

5.2.4 Measuring δCl’s and abundances

Next we investigate the limits of detectability of the optical depth of atoms and ionss in current

and future CMB missions. Our starting point is the expected uncertainty in the obtained Cl’s

from any CMB experiment (Knox 1995):

σ2Cl =
2

(2l + 1) fsky

(

Cl + w−1B−2
l

)2
. (5.17)
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5.2 Basic approach and formulation

In this equation, Cl is the underlying CMB power spectrum, fsky is the fraction of the sky covered

by the experiment, and w is the pixel weight given by w−1 = σ2NΩpix, with σN the noise amplitude

for pixels of solid angle Ωpix. Bl is the beam window function, and we shall approximate it by a

gaussian. We are assuming that the noise is gaussian, uniform and uncorrelated. The first term

in parentheses of eq.(5.17) reflects the uncertainty associated to the cosmic variance. In the ideal

case of an experiment with no noise, this would be the unavoidable uncertainty when identifying

the observed Cl’s to the Cl’s corresponding to a particular cosmological model. However, our

interest focuses on the comparison of power spectra measured in different frequency channels with

respect to a measured reference power spectrum, (which is supposed to be free of any contamining

species of atoms and/or ions). Under the assumption that the reference power spectrum contains

only CMB and noise components, we can write the following expression for the uncertainty in the

measured power spectrum difference between a probe channel and the reference channel:

σ2δCl =
2

(2l + 1)fsky

[

(

δCprobl + w−1
probB

−2
l,prob

)2

+
(

w−1
refB

−2
l,ref

)2
]

. (5.18)

The indexes prob and ref refer to the probe and reference channel respectively, and the first

term δCprobl refers to the cosmic variance associated to the temperature anisotropies generated by

the resonant species.

Let us now assume that a CMB experiment is observing at a frequency for which it is expected

to see the effects of a resonant transition of a species X at redshift 1 + zXi
= νXi

/νobs. One

can then make use of eq.(5.15) to relate the minimum τXi
observable with the sensitivity of the

experiment:

(τXi
)min ' n

σδCl
C1

. (5.19)

The factor n expresses the σ-level necessary to claim a detection. For all the results presented in

this chapter, we have set the detection threshold at 3σ, i.e. n = 3. Fig.(5.1) shows how a very

low optical depth suffices to generate changes in the power spectrum (filled squares) which are big

enough to overcome the combined noise of the two experiment channels being compared, (dotted

line). Once this minimum optical depth is obtained, we can easily find the corresponding minimum

abundance through eq.(5.4), which is one of the main goals of our work. In fact, this limit can

be further improved by a factor of ∼
√
∆l if one computes band power spectra on some multipole

range ∆l. We shall address the details of these issues in the next section, where we show that for

PLANCK’s HFI channels, values for the optical depth as low as 10−5 − 10−7 can be detected.

So far we are neglecting the problematic associated to the calibration between channels and

the possible presence of foregrounds. Given the frequency dependent nature of the latter, the

amplitudes and their characterization of the different galactic and extragalactic contaminants are

critical for our purposes. We return to these issues in section 5, were we estimate the effect of
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5. DISTORTION IN THE CMB POWER SPECTRUM

Planck HFI: Reference channel 100 GHz (z = 46.5)

Frequency Scattering redshift τ for 10−2[O]¯ angular scale Minimum Abundance

143 GHz 32.2 9.9× 10−5 l = 12 6.1× 10−4

217 GHz 21.2 6.2× 10−5 l = 10 2.0× 10−3

353 GHz 12.5 3.1× 10−5 l = 8 1.6× 10−2

Planck LFI: Reference channel 30 GHz (z = 157.3)

Frequency Scattering redshift τ for 10−2[O]¯ angular scale Minimum Abundance

44 GHz 106.6 2.1× 10−4 l = 25 5.7× 10−3

70 GHz 67.1 1.7× 10−4 l = 19 4.8× 10−3

100 GHz 46.5 1.3× 10−4 l = 14 4.2× 10−3

WMAP: Reference channel 23 GHz (z = 205.4)

Frequency Scattering redshift τ for 10−2[O]¯ angular scale Minimum Abundance

33 GHz 142.8 2.4× 10−4 l = 29 1.4× 10−1

41 GHz 117.7 2.2× 10−4 l = 26 1.2× 10−1

61 GHz 76.8 1.8× 10−4 l = 21 1.2× 10−1

94 GHz 49.5 1.4× 10−4 l = 15 1.3× 10−1

Table 5.1: Limit on neutral oxygen abundance using Planck and WMAP, from the 63 µ fine-
structure line. The lowest frequency channel of each instrument is chosen as reference, and is
assumed to be free of line contribution. Then each of the other channels act in a wide band of
redshifts centered at scattering redshift z0 (column two). We first compute the optical depth due
to a fixed abundance (column three); and then find what optical depth, and hence abundance, will
correspond to the instrument sensitivity (last column). The corresponding angular scales where
this best limit is obtained is also shown (column four).

foreground contamination on our analysis.

5.2.5 Calculation of minimum detectable abundance

The basic idea of obtaining limits on abundances is described through Table(5.1), where we have

shown results for individual detectors of Planck and WMAP. Each broad-band detector acts in a

specific range of redshifts for a particular line, and we have tabulated the central redshift corre-

sponding to the scattering of 63µ OI line in column two. The lowest frequency channel of each

instrument is assumed to be “clean” from line scattering, and thus used as reference. The central

redshift for the reference channels are given at the top of each table. We use a fixed abundance

(10−2 solar) to obtain the optical depth in column three. Such small values of optical depths allow

us to use the first-order approximation, and so we finally obtain the minimum optical depth , and

hence the minimum abundance (last column, with respect to solar value) from the sensitivity level

of the detector (at 3σ level). The angular scale where this best limit is obtained is also shown,

which can be seen to increase with decreasing redshift, in correspondence with the increasing size

of horizon length.
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Figure 5.3: Top: Minimum abundance of neutral oxygen, from Planck HFI, with 63µ line. Two
data points are for 143 GHz and 217 GHz channels respectively, and position of the reference 100
GHz channel is shown by arrow. The thick horizontal line at the base of the arrow indicates the
width of the reference channel. Bottom: Similar plot for Planck LFI and WMAP.
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5. DISTORTION IN THE CMB POWER SPECTRUM

Fig.(5.3) shows this result graphically. For Planck HFI (left panel), these limits are obtained

by taking difference from the 100 GHz channel (position indicated by arrow), which is our refer-

ence channel and assumed to be free of scattering effects. Two data points are for 143 GHz and

217 GHz channels respectively. The X-errorbar shows the bandwidth (assumed to be ∼ 25%),

and Y-errorbar is given by ∆[X]min ≡ [∂[X]min/∂δCl] σδCl ≈ [X]min/3 for limits obtained at

3σ level, where σ ≡
√

σ2Cl(1) + σ2Cl(2) and 1 & 2 denotes the two channels used for measuring

δCl-s (eqn.5.18). Similar plots from the same table with Planck LFI and WMAP are also shown

in fig.(5.3). The bandwidths for the WMAP results are in accordance with the announcements

of WMAP team (Page et al. 2003). Fig.(5.1) shows the expected behavior of δCl-s when it is

marginally detectable with the 143 GHz channel of HFI, limiting the oxygen abundance as low as

10−4 at redshift 30. We show both the measured temperature anisotropy and δCl-s generated by

line scattering in this plot. This line contribution touches the noise limit at around l ∼ 10, showing

the angular scale where best possible limit can be obtained. We see that this effect always lies

much below the cosmic variance limit, but due to the frequency dependence of new anisotropies

we are not constrained by this limit.

Fig.(5.4) shows the l-dependence of the minimum abundance obtainable. Its significance is

pointed out in Appendix A, where we note that although suppression of primordial power spec-

trum of CMB occurs over all angular scales, new generation of anisotropy will only take place at

low multipoles (l ∼ 10) because the scattering takes place much later than recombination. Actually

our method is strongest, and hence we can put most stringent limits, at that particular multipole

value where Doppler generation is maximum. This multipole should correspond to the horizon

scale at the epoch of scattering, and hence we will get better limits at larger angular scales when

observing frequency is higher, i.e. scattering takes place at lower redshift. Exactly this behavior

can be seen in fig.(5.4), where results from two HFI channels are shown. An important feature

is that l-variation of [X]min is very slow, hence it is possible to take average limits from a band

of multipoles of width ∆l instead of individual l, and thus improve the constraints by a factor

of
√
∆l. This approach is demonstrated in Fig.(5.5), where the noise level of HFI chennels, and

hence the minimum detectable abundance of the scattering species, is reduced by a factor of 3 by

averaging the noise into bins of ∆l = 10. In the present work, however, we show results without

such averaging technique.

5.3 Main results for various atoms & ions

Now we present the results for selected atoms and ions and that can produce measurable distortions

in the CMB spectrum. As mentioned previously, the focus will be on the fine-structure transitions

58



5.3 Main results for various atoms & ions

-4.1

-4

-3.9

-3.8

-3.7

-3.6

-3.5

-3.4

-3.3

-3.2

5 10 15 20 25

217 GHz (w.r.t. 100 GHz)
143 GHz (w.r.t. 100 GHz)

PSfrag replacements

Multipole, l

lo
g(
[O

] m
in
/[
O
] ¯
)

140 160 180 200 220 240 4
6

8
10

12
14

16
18

20
22

 
-4.4

-4.2

-4

-3.8

-3.6

-3.4

-3.2

 

Observed Frequency (GHz)

l (Multipole)

lo
g 

M
in

. A
bu

nd
an

ce

20
25

30 Redshift

143 GHz  (w.r.t. 100 GHz)

217 GHz  (w.r.t. 100 GHz)

log min. abundance = −3.88 at l=14

log min. abundance = −3.58 at l=11

35

PSfrag replacements

Multipole, l
log([O]min/[O]¯)

Figure 5.4: The minimum abundance of atomic oxygen at different multipoles, as deduced from
Planck HFI 143 & 217 GHz channels. The reference channel used is 100 GHz, and the minima of
such plots correspond to the [X]min values quoted in the text. We notice that angular scale for
maximum deviation increases as the observed frequency increases, as discussed in the text.
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Figure 5.5: Figure showing how the prediction of minimum detectable abundance can improve if
we average the instrument noise in bins of multipole ∆l. This is possible because of the smooth
variation of the scattering signal in a broad range of multipoles.

for atoms and ions , as their frequencies fall in the far-infrared and microwave range and are

therefore perfectly suited to our purpose.

We divide this section into two parts: the first part shows results for all the important atomic

and ionic species. In second part we briefly mention the contribution from the ovedense regions to

the effect considered.

5.3.1 Scattering by atoms and ions of heavy elements

In this section we investigate the possibility of distorting the CMB power spectrum by scattering

from neutral atoms like CI, OI, SiI, SI, FeI etc., as well as singly and doubly ionized species of

heavy elements, like CII, NII, SiII, FeII, OIII etc. This is important for various reasons. The

Gunn-Peterson effect permits us to prove that the universe was completely ionized as early as

redshift 6, up to the position of most distant quasars known today. Recent results from WMAP

satellite pushes the reionization redshift as far as z = 20, suggesting a complex ionization history

(Kogut et al, 2003). There is extensive discussion about the nature of reionization, and also on

the possibility for universe being reionized twice (Cen 2003). In any case, before the universe was

ionized completely, there were regions of ionized medium around first bright stars and quasars.

It will be difficult to prove that the universe was partially ionized using Ly-α line because of

its extremely high oscillator strength, which makes the universe optically thick in this line even

when the neutral fraction of Hydrogen is only 10−6 at z = 6. However, the infrared lines that

we are discussing in this section have much weaker oscillator strength and therefore neutral gas is
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Atom/ Wavelength Oscillator HFI freq. Scattering B Opt. depth for [X]min for
Ion (in µ) strength (GHz) redshift factor 10−2 sol. abun. l = 10

C I 609.70 1.33× 10−9 143 2.4 0.76 6.4× 10−6 5.3× 10−3

217 1.3 0.92 3.9× 10−6 1.4× 10−2

353 0.4 0.99 1.6× 10−6 2.1× 10−1

370.37 9.08× 10−10 143 4.7 0.15 1.2× 10−6 2.8× 10−2

217 2.8 0.09 3.7× 10−7 1.6× 10−1

C II 157.74 1.71× 10−9 143 12.3 0.79 1.8× 10−5 2.7× 10−2

217 7.9 0.94 1.1× 10−5 7.7× 10−3

353 4.4 0.99 5.6× 10−6 7.7× 10−2

N II 205.30 3.92× 10−9 143 9.2 0.76 1.1× 10−5 7.6× 10−3

217 5.8 0.92 6.8× 10−6 8.6× 10−3

353 3.1 0.99 3.5× 10−6 1.3× 10−1

121.80 2.74× 10−9 143 16.2 0.16 2.1× 10−6 1.3× 10−1

217 10.5 0.09 6.4× 10−7 3.4× 10−1

N III 57.32 4.72× 10−9 143 35.6 0.79 2.5× 10−5 2.3× 10−3

217 23.4 0.94 1.5× 10−5 6.1× 10−3

353 13.8 1.00 8.1× 10−6 3.1× 10−2

O I 63.18 3.20× 10−9 143 32.2 0.88 1.0× 10−4 5.3× 10−4

217 21.2 0.96 6.3× 10−5 2.0× 10−3

353 12.5 1.00 3.1× 10−5 2.2× 10−1

145.53 1.85× 10−9 143 13.4 .003 1.3× 10−7 1.6× 10−1

O III 88.36 9.16× 10−9 143 22.8 0.76 2.2× 10−4 3.5× 10−4

217 14.8 0.92 1.4× 10−4 8.4× 10−3

353 8.6 0.99 7.4× 10−5 1.2× 10−2

51.81 6.55× 10−9 143 39.5 0.17 4.5× 10−5 1.4× 10−3

217 26.0 0.10 1.4× 10−5 6.5× 10−3

Si I 129.68 6.24× 10−9 143 15.2 0.76 6.4× 10−6 6.9× 10−2

217 9.8 0.92 4.2× 10−6 3.7× 10−2

68.47 4.92× 10−9 143 29.7 0.19 1.8× 10−6 3.1× 10−2

Si II 34.81 7.74× 10−9 217 39.2 0.94 2.0× 10−5 4.8× 10−3

353 23.4 0.99 1.0× 10−5 7.4× 10−3

S I 25.25 8.03× 10−9 217 54.4 0.96 6.0× 10−6 2.4× 10−2

Fe I 24.04 1.69× 10−8 143 86.4 0.83 3.2× 10−5 4.9× 10−3

217 57.2 0.95 2.0× 10−5 7.7× 10−3

353 34.4 0.99 9.7× 10−6 7.5× 10−2

34.71 2.06× 10−8 143 59.5 0.02 9.2× 10−7 1.1× 10−1

Fe II 25.99 1.73× 10−8 217 52.9 0.95 1.9× 10−5 7.1× 10−3

353 31.7 0.99 1.3× 10−7 7.4× 10−2

Fe III 22.93 3.09× 10−8 353 36.1 0.99 1.8× 10−5 4.2× 10−2

Table 5.2: Minimum abundance of the most important atoms and ions that can be detected from
Planck HFI. We have used a fixed value of abundance (1% solar) to obtain the optical depth in the
fine-structure transitions of any given species, and because of the very low values of optical depths,
have used the linear relation from eqn.(5.19) to obtain the minimum detectable abundance for the
sensitivity limit of Planck HFI. The B factor is the correction term obtained from eqn.(5.6). In
the last column we have further improved the sensitivity by averaging the instrument noise in the
multipole range l = 10 − 20. The 100 GHz channel has been used as reference for all the cases.
We present central redshift for corresponding channel, however, in reality HFI will be able to give
limits only for redshift intervals corresponding to the widths of frequency channels.
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transparent in these lines up to very high redshifts, even if we assume solar abundance. This fact

permits us to consider the possibility that Planck and other future CMB experiments setting very

strong limits on abundance of neutral atoms in the early universe.

The effect of line emission to the thermal spectrum of CMB can be estimated in a simple order-

of-magnitude way by the formulation given in Chapter 3. If there were significantly over-dense

regions at high redshifts (up to z ∼ 20) which were completely ionized and enriched with metal ions

(e.g. C+, N+, O++, Fe+ etc.), then collisional excitation followed by radiative de-excitation will

be a significant source of emission in the same fine-structure lines. However, to make line emission

visible we need three factors: high abundance of the elements, high density of the electrons in the

strongly over-dense regions and large amount of over-dense regions in the volume which we are

investigating. Hence it is much more promising to study angular distortions of the CMB generated

by scattering from the low density regions of the universe, rather than studying distortions in its

thermal spectrum, for constraining heavy element abundances at high redshifts. Such low density

inter-galactic gas is believed to contain most of the baryonic mass of the universe, and possibly

exists as warm/hot gas with 105 < Te < 107 K today (Cen & Ostriker 1999). But at redshifts z > 1

this inter-galactic gas should have moderate (Te ∼ 104 K) or low (Te ∼ TCMB(z)) temperature,

and the proposed method of observing angular fluctuations caused by scattering from neutral or

singly ionized atoms might set a direct way to detect its existence.

As mentioned above, the main contributors of opacities in the relevant frequency range are

oxygen, nitrogen, carbon, sulfur, silicon, and iron, along with minor contributions mainly from

phosphorus, aluminum, chlorine and nickel. The 63µ fine-structure line of neutral oxygen gives

strong constraint on neutral species at high redshift, but early reionization makes lines of CII,

NII and OIII even more important. All data relating to fine-structure lines have been taken from

the ISO line-list for far-IR spectroscopy (Lutz, 1998), and the Atomic Data for the Analysis of

Emission Lines by Pradhan and Peng (1995). When necessary, this compilation was supplemented

by the freely available NIST Atomic Database1.

The basic idea of obtaining limits on abundances can be understood from Fig.(5.1) and Ta-

ble(5.2). Each broad-band channel of HFI acts in a specific range of redshifts for a particular line,

and we have tabulated the central redshift corresponding to the scattering for three most sensitive

channels for several atomic and ionic fine-structure transitions. The lowest frequency channel of

100 GHz is assumed to be “clean” from line scattering, and thus used as reference. We use a fixed

abundance (10−2 solar) to obtain the optical depth in accordance with formula (5.4). Such small

values of optical depths allow us to use the first-order approximation, and so we finally obtain the

minimum optical depth , and hence the minimum abundance (last column, with respect to solar

value) from the sensitivity level of the detector (at 3σ level). We have neglected signals below l = 5,

1http://physics.nist.gov/cgi-bin/AtData/lines form
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especially at the quadrupole or l = 2 where noise level is minimum, due to the fact that it will be

very difficult to observe the predicted signal at such large angular scales due to the foregrounds.

The best angular range for Planck HFI is l ∼ 10−30, and we can average it over a multipole range

∆l and improve the detectibility by a factor of
√
∆l.

Fig.(5.1) shows the expected behavior of δCl-s when neutral oxygen is marginally detectable

with the 143 GHz channel of HFI, limiting the oxygen abundance as low as 10−4 relative to solar

at redshift 30. We show both the measured temperature anisotropy and δCl-s generated by line

scattering in this plot. This line contribution touches the noise limit at around l ∼ 10, showing the

angular scale where best possible limit can be obtained. We see that this effect always lies much

below the cosmic variance limit, but due to the frequency dependence of new anisotropies we are

not constrained by this limit.

Part of the results of this section are summarized in Table 5.2. This lists all the atoms and ions

on whose abundances we can put strong limits, and all these limits are computed at 3σ level. With

HFI we have the possibility to use more than one probe channel to show different upper limits for

the same species at different redshifts. This fact can be helpful to model the abundance history of

the universe, and we present a general discussion in the next section.

5.3.2 Contribution from over-dense regions

Enrichment of primordial gas by heavy elements occurs due to supernova explosions of the first

stars. High velocity stellar and galactic winds and low velocity jets from disks around forming stars,

and objects of the type of SS 433 with baryonic jets carry enriched matter to a large distance from

the forming stars. The observation of the most distant galaxies and quasars are showing that even

most distant objects (z ∼ 5 − 6) have chemical abundance on the level of solar (Freudling at al.

2003, Dietrich et al. 2003). At the same time there is a possibility that the low density matter,

e.g. in future voids, will have extremely low abundance of heavy elements. Observational method

we are proposing might permit us to observe ions and atoms of heavy elements in diffuse matter,

with over-density lower than 103 − 104 at redshifts 10− 20, and up to δ ∼ 105 − 106 at z ∼ 2− 5.

This means that even Ly-α clouds are contributing to our effect. We should be careful only with

the most damped Ly-α systems, and with dense gaseous nebulae of the type of Orion and dense

giant molecular clouds. Diffuse gas in the galaxies and proto-galaxies should also contribute to our

signal. In Chapter 3 we estimated the level of densities in the gas clouds, when the discussed effect

is diminished by 30% or 50% in comparison with the case of diffuse inter-galactic space, and showed

that over-densities greater than 103 are needed at high redshifts before collisional effect begins to

decrease amplitude of scattering signal. To summarize, the proposed method might permit us

to get signal from all diffuse matter of the universe, excluding only the extremely over-dense, or

optically thick clouds. It is probable that the over-dense regions were the first to be enriched by
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heavy elements. Therefore it is important that the moderately over-dense regions of the universe

are also contributing to the resonance scattering signal in the CMB angular fluctuations.

The simultaneous effect of free-free, line and dust emission from non-uniformly distributed over-

dense regions at high redshifts, which are in non-linear stage of evolution and entering the state

of intense star formation, produces an independent signal from the scattering effect considered in

this chapter. The same lines which contribute to the Cl-s due to resonant scattering from extended

low density regions, would also contribute to the power spectrum at smaller angular scales due

to emission from over-dense regions. But over-dense objects like damped Ly-α absorbing systems

and low density Ly-α clouds, together with stars, atomic and molecular gas in galaxies and hot gas

in clusters, contains only 20% - 40% of the baryons in the universe (Fukugita et al. 1998, Penton

et al. 2000, Valageas et al. 2001); meaning that resonance scattering from low density, optically

thin gas with low temperature and moderate (<103-105, see discussion in Ch.3) over-density will

always create its own distortion in the CMB power spectrum alongside the emission generated

from denser regions. The former effect is sensitive to the mean density of resonant species, 〈nXi
〉,

whereas the latter probes the clumping of the matter, 〈ne nXi
〉/〈ne〉〈nXi

〉.
Both effects carry information about the abundances of atoms and ions averaged over the

volume defined by multipole l (or angular scale), and the frequency resolution of the detector which

gives us the thickness of the slice in redshift space along line of sight. Future observations with

sufficiently high spectral resolution might reveal that the signal due to suppression of primordial

anisotropies at high l-s is analogous to the Ly-α forests averaged over a broad bandwidth (∆z/z ∼
0.1-0.3). Resonant scattering effect is sensitive only to the mean density of the scattering species

〈nXi
〉 in that volume, whereas the line radiation effect is connected with collisions and therefore

its contribution to Cl’s depends on 〈nenXi
〉 in the same volume. They are, thus, two independent

effects that carry complementary information. This latter effect is sensitive to the most over-dense

regions in the universe, and will be discussed in detail in the final chapter.

Emission and change in the CMB thermal spectrum

The line-emission processes results in a net injection of energy which should primarily be detectable

via change in the thermal spectrum of CMB. However as have been mentioned, resonance scattering

by atoms and molecules causes only an small change in photon energy, and thus in practice only

modifies the angular power spectrum. Thomson scattering is still the dominant source of opacity;

for example, if universe is completely reionized by z = 20, total Thomson optical depth is of the

order of τThom ∼ 0.23, whereas for singly ionized Carbon the optical depth for scattering at redshift

20 with the 157.7 µ line and full solar abundance is only 6.05 × 10−3, which is about 40 times

lower than τThom. But since this line opacity is frequency dependent, we have the possibility of

detecting its effect on the CMB by our proposed method even when abundance is as low as 10−3

solar.
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The effect of free-free and line emission to the thermal spectrum of CMB can be estimated in

a simple order-of-magnitude way. If there were significantly over-dense regions at high redshifts

(upto z ∼ 20) which were completely ionized and enriched with metal ions (e.g. C+, N+, Fe+ etc.),

then collisional excitation followed by radiative de-excitation will be a significant source of energy

input. In addition to that, free-free emission from the photoionized plasma along the line-of-sight

(with electron temperature Te ≈ 104K) will also play an important role. However, the FIRAS

instrument on-board the COBE satellite has given us very strong limits for any possible distortion

in the CMB spectrum (Fixsen 1996), permitting us to constrain the over-density 〈ne〉 in any model

of reionization. For example, if we consider free-free emission from a uniformly ionized universe

upto redshift 20, temperature distortion observed today will be about 5.7 × 10−8 K at 100 GHz,

or near the peak of the CMB spectrum where most sensitive HFI channels are located. Compar-

ing this with the limit on free-free distortion obtained from FIRAS data, ∆Tff 6 1.67 × 10−5 K

(Smoot & Scott 1996), we see that a mean over-density of ∼ 300 is needed along the line-of-sight

to make spectral distortions detectable at these frequencies. Distortions from collisionally excited

line emission are even lower at these frequencies: e.g. with CII ion (157µ) in hot electron plasma

with 1% solar abundance at redshift 18, an over density of the order of 103 is needed before effect of

collision becomes important. Hence it is much more promising to study angular distortions of the

CMB generated by scattering from the low density regions of the universe, rather than studying

distortions in its thermal spectrum, for constraining heavy element abundances at high redshifts.

5.4 Effect of foregrounds

Before WMAP, the amplitude and spatial and frequency scaling of foregrounds had not been firmly

established, and its modeling was merely in a preliminary phase. After their first mission year,

WMAP’s team have come up with a foreground model which is claimed to reproduce with a few

percent accuracy the observed foreground emission (Bennett et al. 2003b). This and other future

studies of foregrounds may provide a characterization of these contaminants such that their effect

on our method can be minimized. We next proceed to estimate the impact of these contaminants

on our method by the use of current foregrounds models.

We have adopted the middle-of-the-road model of Tegmark et al. (2000). This model studies

separately the contribution coming from different components, giving similar amplitudes for those

which are also modelled by the WMAP’s team, (Bennett et al. 2003b). In this model, we will con-

sider the contribution of five foreground sources, namely synchrotron radiation, free-free emission,

dust emission, tSZ effect (Sunyaev & Zel’dovich 1972) associated to filaments and superclusters of

galaxies, and Rayleigh scattering. The l-dependence of the power spectra was approximated by a

power law for all foreground components, (except for tSZ, for which the model was slightly more
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5. DISTORTION IN THE CMB POWER SPECTRUM

Figure 5.6: (a) Example of optical depth due to a resonant transition which can be detected by the
HFI 100 GHz and HFI 143 GHz PLANCK channels in the absence of foregrounds. The upper thick
solid line gives the reference model CMB power spectrum. Diamonds show the expected difference
in the power spectrum from both channels due to the resonant scattering placed at z = 25 with
τ = 1 × 10−5. (b) Presence of foreground contamination after subtracting HFI 100GHz channel
from HFI 143GHz channel. The reference ΛCDM CMB power spectrum is shown in thick solid line,
whereas the instrumental noise after the map subtraction is shown in solid intermediate-thickness
line. All thin lines refer to the foreground model as quoted as in Tegamrk et al. (2000): vibrating
dust emission is shown by a dashed line, whereas free-free and synchrotron are given by a dotted
and a solid thin line respectively. tSZ effect associated to filaments and superclusters is given by the
triple-dot-dashed line. Rotating dust gives negligible contribution at these frequencies. Rayleigh
scattering introduces some frequency-dependent variations in the Cl’s, but well below the noise
level (thick dashed line at the bottom right corner). Diamonds show the amplitude of the change
in the CMB power spectra induced by resonant species placed at z = 25 and τ = 3× 10−4.
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sophisticated). The frequency dependence observed the physical mechanism behind each contam-

inant: simple power laws were adopted for free-free and synchrotron, whereas a modified black

body spectrum was used for dust. For tSZ, the frequency dependence of temperature anisotropies

is well known in the non-relativistic regime. All details about this modeling can be found in the

paper of Tegmark et al. (2000). We are neglecting the contribution from the SZ effect generated

in resolved clusters of galaxies which can be removed from the map. We are also assuming that

all resolved point sources are excised from the map, and that the contribution from the remaining

unresolved point sources (σps in eq.(10) of Tegmark et al.) can be lowered down to roughly the

noise level. This may require the presence of an external point-source catalogue.

Fig.(5.6a) shows the expected precision level when foreground contaminations can be neglected,

and Fig.(5.6b) shows the effect of foregrounds in our differential method to detect the presence of

resonant species. Together with the power spectrum of our Standard ΛCDM model, (thick solid

line at the top), we show the contribution from residuals of all foregrounds components under

consideration, obtained after subtracting the HFI 100 GHz channel power spectra from the HFI

143 GHz one. The thin solid line corresponds to synchrotron emission, free-free emission is given

by the dotted line; the dashed line gives the contribution of dust through vibrational transitions.

The tSZ associated to filaments is shown by the triple-dot-dashed line, and the contribution from

the combined noise of both channels is shown by the solid line of intermediate thickness which

crosses the plot from the bottom left to (almost) the top right corners. At these frequencies, the

contribution of rotating dust is negligible, and the most limiting foreground is dust emission by

means of vibrational transitions. Finally, the last frequency dependent contribution that we have

considered corresponds to Rayleigh scattering. As shown in Yu, Spergel & Ostriker 2001, hereafter

YSO, Rayleigh scattering of CMB photons with neutral Hydrogen atoms introduce frequency

dependent temperature fluctuations. However, provided that τRayleigh ∝ ν4, this process is only

effective at high frequencies (ν & 300GHz), causing deviations of measured power spectrum from

the model Cl’s of the order of a few percent. YSO characterized the Rayleigh scattering by

introducing in the CMBFAST code a frequency dependent effective optical depth and a frequency

integrated drag force exerted on the baryons. This last modification, which was neglected when

considering resonant scattering, couples the evolution of the different temperature multipoles (∆T,l)

for different frequencies. However, this coupling is exclusively due to the dipole term ∆T,1, which,

at the light of their results, is very similar for all frequencies. Taking the same dipole term for

every frequency allows us evolving a separate system of differential equation for each frequency.

The frequency dependent changes in the angular power spectrum, (δCl/Cl(ν)), obtained under this

approximation are almost identical to those in YSO. For each channel pair under consideration,

we computed the residual in the power spectrum difference due to these frequency dependence

temperature anisotropies. We checked that this effect was always subdominant. In Fig.(5.6b), the
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impact of Rayleigh scattering is shown by a middle thick dashed line at the bottom-right corner

of the panel, for the particular comparison of the 100GHz and 143GHz channels.

The addition of all contaminants (foregrounds + noise) is given by squares. Diamonds show

the change in the power spectrum associated to a resonant transition placed at z = 25 for optical

depth τ = 3 × 10−4. After comparing with Fig.(5.6a) we can appreciate how the presence of

foregrounds affects our method in two different ways: a) it increases the minimum τ to which the

method is sensitive by about two orders of magnitude, b) it changes the range of multipoles to

look at, due mainly to the large typical angular size of dust clouds. In the particular case of HFI

100GHz-143GHz channels, one should focus on the range l ∈ [100, 200] once the dust component

is included rather than in l ∈ [3, 10] for the foreground-free case. Recurring again to the linear

dependence of τ versus the abundance, eq.(5.4), we see that this model of foregrounds increases

by about two orders of magnitude the minimum abundance on which future CMB missions will be

able to put constraints.
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Figure 5.7: Minimum abundance of elements obtained when foregrounds are present. Left : Lowest
abundance detectable of OI atoms with Planck HFI 143 & 217 GHz channels, and lowest value for
CII ion with HFI 143 GHz channel. Arrows show position of reference channel for each. Here X
denotes the atom/ion under study. Right : Nature of temperature anisotropy when neutral Oxygen
abundance is 5.2×10−3 solar at z = 32. We have shown again the primary temperature anisotropy
and cosmic variance limit as before, but now the noise level is added with the total foreground
emission at 143 GHz. As can be seen, best limit on abundance is obtained around l ∼ 175.

Fig.(5.7) presents limits for atomic Oxygen and Singly ionized Carbon abundances when fore-

ground emissions are present along with instrumental noise. We have used Planck HFI 143 and

217 GHz channels where these foreground contaminations are expected to be minimal. The an-

gular scales where the best limits can be obtained from this combined noise+foreground map is

also shown in the figure. In a similar fashion, for CO molecular abundance, the combined noise

and foreground power spectrum for Planck HFI 143 GHz channel (again with 100 GHz channel
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as reference) gives 0.05 [C]¯ at z = 0.6, and 0.08 [C]¯ at z = 1.4 respectively. Our hope is that

with better understanding and modeling of these foreground emissions we will be able to reach a

sensitivity level that is only constrained by instrumental noise.

One particular feature of minimum abundances obtained from foreground maps is worth men-

tioning. The presence of foregrounds significantly increases power in the lower multipoles, the main

contributions coming from thermal emission from vibrating dust and free-free emission. Hence the

combined foreground-noise curve have a minima around l ∼ 100 (depending on instrument spec-

ifications), as can be seen from the right panel of fig.(5.7). Since we are comparing two different

maps at two frequencies, the appropriate foreground-noise curve is also obtained from comparing

two channels (HFI 100 and 143 GHz in this case). The δCl curve shown in the figure is obtained

when neutral Oxygen abundance is 0.52% solar at redshift 32, using its 63 µ fine-structure line.

The best constraint is obtained at l = 175, which is still much below the cosmic variance limit. At

these smaller angular scales, the δCl-s are essentially caused by suppression of primary anisotropy;

whereas previously we had also generation at lower multipoles (l . 10) due to scattering at low

redshift universe. Hence while obtaining limits from foreground (plus noise) maps, even though

scattering redshift changes when observing frequency is changed, the angular scale corresponding

to [X]min is insensitive to this change and does not correspond to the horizon scale at the epoch

of scattering.
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Chapter 6

Enrichment and Ionization
Histories

6.1 The Ionization History of The Universe

Detection of the OI, CII and OIII lines of the two most abundant elements will permit not only to

trace the enrichment of the universe by heavy metals, but also might open the way to follow the

ionization history of the universe. According to recent models of stellar evolution very massive Pop

III stars efficiently produce heavy metals like oxygen, carbon, silicon and sulfur (Heger & Woosley,

2002). The CNO burning phase of the stars appearing immediately afterwards will also produce

large amount of nitrogen, and we can expect strong signal from the ionized nitrogen 205µ line, as

the time of evolution of the first stars is extremely short (∼ 106 years) in comparison with the

Hubble time even at redshift 25.

The WMAP finding that universe has rather high optical depth due to secondary ionization at

redshift zr = 20+10−9 (Kogut et al. 2003, 95% confidence) forced many theoretical groups to return

to the picture of early ionization due to Pop III stars (Cen 2003, Wyithe & Loeb 2003). One of the

possible evolution scenario of abundances for the elements produced by these massive hot Pop III

stars and intense star and galaxy formation is given in Fig.(6.1a). Here we consider two enrichment

histories of the universe, with low (A) and high (B) metal abundances after reionization. The first

phase of metal enrichment occurs during the epoch of Pop III stars, and at later epochs (redshift

3 − 5) intense galaxy formation causes further rise in the metallicity. Later in this section we

consider a third enrichment history with late reionization and metal injection.

In Fig.(6.1b) and (6.1c) , we sketch the relative ion fraction of the three most important atomic

and ionic species under above-mentioned ionization history. We show two different reionization sce-

nario: one for relatively cold stars when production OIII is less efficient (case I), and the other for

hot stars and quasars which are able to keep oxygen fully ionized at all intermediate redshifts (case
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Figure 6.1: A schematic diagram for the abundance history of the universe. (a) The upper panel
shows the global pattern of metal abundances, showing the two major epochs of enrichment of the
IGM: first, during the peak of activity of massive Pop III stars around redshift 15 − 25 (shaded
area), and second, during the peak of galaxy formation around redshift 3 − 5 when global rate
of star formation reaches maximum. (b) Middle panel shows the relative fraction of three major
atomic and ionic species: OI (or HI), CII and OIII, normalized so that the total abundance of
all ions of a given element is close to unity at any redshift. The OI abundance closely follows
the neutral hydrogen fraction of the universe because their almost similar ionization potential (see
discussion in text). The redshift scale is chosen as log(z + 5) to emphasize the redshift region
10− 30 of interest to this work. At very low redshifts (z < 0.7) the IGM gets heated to very high
temperatures (T ∼ 105 − 107 K) causing even higher ionized species to exist, e.g. OIII → OVI.
(c) Lower panel shows another variation of relative ion fraction, where Pop III stars ionize all the
oxygen around redshift 15, so that OIII have higher abundance and correspondingly OI and CII
have lower abundance.
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Figure 6.2: Frequency dependence of optical depth in atomic and ionic fine-structure lines, in
accordance with the abundance history sketched above. Shown here are the contributions from the
four most important lines: neutral oxygen 63µ, doubly ionized oxygen 88µ, singly ionized nitrogen
205µ and singly ionized carbon 158µ, and their total contribution for each histories. History of
NII ion is taken as similar to that of CII ion.

II). Line of OI should give us an information about creation of oxygen before Universe was strongly

ionised. Relative growth of CII line (see Fig.2b) will mark the time when carbon will be ionised

in large ionised regions which do not completely overlap or will be partially ionised everywhere

(we can not dinstinguish this two variants of ionization history using large angle observations).

Potential of CI ionization (I=11.26 eV) is lower than that of HI. Therefore CII fraction might be

higher than that of HII and OII in the beginning of secondary ionization. At the same time OI

fraction should follow that of HI because ionization potentials are so close (I=13.62 and 13.60 eV

correspondently). Pop III stars should be very hot, and therefore they are able to ionize helium

early enough. Simultaneously OIII should become abundant ion because ionization potential of

OII (I= 35.12 eV) is higher than that of HeI but smaller then that of HeII.
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Figure 6.3: Predicted distortion in the CMB power spectrum as a result from scattering by OIII
88µ line, for both history A (low abundance) and history B (high abundance).

Fig.(6.3) shows how the difference in global metallicities from history A and history B produce

different levels of distortion in the CMB power spectrum. The example is chosen for OIII 88µ fine-

structure line as seen by the HFI 217 GHz channel, where the contribution comes from scattering

at redshift ∼ 15. The two histories presented here gives almost an order of magnitude difference

in global metallicity at that redshift, which translates into an order of magnitude difference in the

δCl-s. We see that for l & 20 both curves are exactly similar, demonstrating that at small angles

we have δCl ' −2τCprim
l . This fact will be demonstrated in further detail in the next subsection.

Here we see how Planck HFI can put constraints on the enrichment history of the universe by

ruling out certain models of abundances.

In Fig.(6.4) we show the angular dependence of the temperature anisotropy generated by res-

onant line scattering for the three important HFI channels. The abundance of CII ion is kept

fixed at 10% solar, so that the lower observing frequency (i.e. higher scattering redshift) has a

higher value of optical depth in the same line. The left-side of each curve is dominated by Doppler

generation of new anisotropy, and hence are positive. The righ-side is dominated by suppression

of primordial anisotropy and hence δCl-s are negative, the discontinuity in each curve shows the

interval where δCl changes sign. We see at low multipoles both generation and suppression term

tend to cancel each other. Especially due to the adoption of WMAP reionization model with high

optical depth (τreio = 0.17) in our computations, lines which scatter CMB photons at redshifts

z . 18 encounter a high value of visibility function due to reionization, and therefore causes a

strong Doppler generation (but negative) in the multipole range l = 20 − 100. This is the cause
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Figure 6.4: Angular dependence of temperature anisotropy generated by scattering from CII 158µ
fine-structure line. Shown here are three cases of |δCl| as should be observed from Planck HFI
143 GHz (scattering at z = 12), 217 GHz (scattering at z = 8) and 353 GHz (scattering at z = 4)
channels, (using 100 GHz channel as reference)for 10% abundance of CII ions (with respect to
solar) at all three redshifts. Also shown are the primary anisotropy, Cl, the cosmic variance limit,
and noise level for 217 GHz channel (with respect to 100 GHz) for comparison.

for higher amplitude of the signal at 143 GHz. But at high multipoles l > 100 the contribution

from Doppler generation is negligible, and the signal is simply proportional to the primordial Cl-s,

and the line optical depth, provided τ ¿ 1. Hence using data from Table(5.2), and knowing the

amplitude of primordial CMB signal, one can immediately predict the amplitude of the effect at

small angular scales using formula(5.16).

Fig.(6.5) shows the amplitude of the predicted signal as a function of observing frequency, for

a fixed angular scale l = 10. The contributions from four most important lines, viz. CII 158µ,

NII 205µ, OI 63µ and OIII 88µ, are shown, along with their sum. We also show four different

redshift ranges for each line, which highlights the fact that contributions from CII and NII are

higher because their signal is coming from lower redshifts where abundance is higher according to

our chosen abundance history.

Fig.(6.6) summarizes our results for three different angular scales. As explained above, at low
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Figure 6.5: Frequency dependence of temperature anisotropy generated by scattering from fine-
structure lines. We take two ionization histories and the high abundance case from figure (6.1), and
show the contributions of different lines in different frequency range, for a fixed multipole l = 10.
Four different redshift ranges are marked for each species to emphasize the epochs where the
dominant contribution from each lines are coming. The sensitivity limits of Planck HFI channels
are marked by the crosses. The HFI limits have been improved by a factor of

√
∆l by averaging over

in the multipole range l = 7−16 . The sensitivity limits are for 3 standard deviation detection, and

the y-errorbars correspond to 1σ error in 3σ detection (we recall that σ = 3
√

σ2Cl(probe) + σ2Cl(ref),

where the reference channel is fixed at HFI 100GHz). The x-errorbars corresponds to the wide
bandwidth (∼25%) of Planck HFI channels.
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Figure 6.6: Temperature anisotropy generated by atomic and ionic fine structure lines at different
frequencies in the case of two different angular scales of observation. The figures on left are for
Case I of Fig.3, which is for reionization by stars unable to ionize OII. Figures on right are for
Case II, which is for reionization by hot stars and quasars and hence have high OIII fraction.
Each figure gives the total contribution for both history A and history B. However, the separate
contributions from different lines are given for history A only. We present results for three angular
scales: l = 10 (above) and l = 220 (first Doppler peak, in below). The scattering-generated δCl-s
that are proportional to the intrinsic Cl-s for higher multipoles, as can be clearly seen in comparison
with Fig.(6.2).
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Figure 6.7: Same plot as before, but showing the results for l = 810 which is the position for the
third Doppler peak in CMB power spectrum. The δCl-s are again proportional to the intrinsic
Cl-s, but magnitude is slightly less at the position of third peak because of the reduced power in
primary spectrum from l = 220 to l = 810.

multipoles the effect is not proportional to Cl, as can be seen from the two panels at top. These

low multipole results are important for future satellite missions like Planck and CMBPol. In the

middle, results for l = 220 are shown, where effect is already proportional to Cl. The amplitude of

the signal is highest here due to the large amplitude for the Cl at the first Doppler peak. At the

bottom we give results for the third Doppler peak, or l = 810, where signal drops by a factor of 2

from that of l = 220. However, these angular scales (θ ∼ 13′) are particularly suitable for future

balloon and ground-based experiments with multi-channel narrow-band recievers.

6.1.1 Scenario for late reionization

Finally, in Fig.(6.8) and (6.9), we present an alternative ionization and enrichment history of the

universe, when there were no production of heavy elements before z ∼ 12. This is very interesting

because, even for such late reionization, if there is moderate enrichment of the IGM around redshift

4−5, we have the possibility to detect our signal with Planck HFI around l = 10. The contributions

from high energy oxygen lines are reduced because of the absence of metals at high redshift, but

long-wavelength lines of CII and NII still can generate strong signal from low redshifts (z . 8).

The HFI sensitivities in this figure have again been improved by averaging the noise in a multipole

range of ∆l = 10 around l = 10. As discussed before, the signal for l = 220 and l = 810 are

proportional to the optical depths in these lines and the primordial Cl-s.

Due to relatively small scattering cross-sections of the fine-structure transitions under discus-

sion, such observations are sensitive to significant abundances of the atoms and ions (for example

when given species contributes from 10% up to 100% of the corresponding element abundance),

whereas the Gunn-Peterson effect gives optical depth of the order of unity already when abundance

of neutral hydrogen is of the order of 10−5−10−6. Hence even if the universe is completely opaque
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Figure 6.8: Late ionization and enrichment history of the universe. Top Sketch for the abundance
history with late reionization, where first metals are produced around z ∼ 10 − 12. Bottom
Temperature anisotropy for this abundance history generated at l = 10. Also shown are the
Planck HFI sensitivity, where the noise levels have again been improved by

√
∆l in the multipole

range 10− 20.
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Figure 6.9: Late ionization and enrichment history of the universe, showing the temperature
anisotropies at l = 220 (left) and l = 810 (right), respectively.

to Ly-α photons at redshifts z & 6, ionic fine-structure lines like CII 157.7µ can probe the very first

stages of patchy reionization process. Detection of all three broad spectral features connected with

strongly redshifted OI, CII and OIII microwave lines will open the possibility to trace the complete

reionization history of the Universe. In addition OIII line will proof the existence of extremely hot

stars at that epoch.

The published level of noise of the Planck HFI shows that the three low frequency channels of

HFI are almost an order of magnitude more sensitive than signal coming from cases I & II of history

B. Even in the case of late reionization history (case C, Fig.6.8 ), Planck is about 4-times more

sensitive than predicted signal. However, to be able to find contribution from at least three lines

simultaneously we need higher amount of frequency channels than Planck HFI will have. A higher

amount of frequency channels would certainly be possible for the next generation experiments like

CMBPol even if they are based on already existing technology (Church 2002).

6.1.2 Significance of δCl-s at small angular scales

There is the possibility that balloon and ground-based experiments will be able to check the level

of enrichment of the universe by heavy elements even before Planck, observing at l = 220 and

l = 810, for instance. At these high multipoles, effect is directly proportional to the optical

depths in lines and the primordial CMB anisotropy. Hence using the data from Table(5.2) and

Fig.(6.2), and the simple analytic relation δCl ' −2 τXi
Cprimaryl , one can immediately give the

effect in a first approximation. The high signal-to-noise ratio of the primordial Cl-s around the

first three Doppler peaks will correspondingly give rise to strong signals in scattering, and might

become accessible through the tremendous sensitivity promised from the forthcoming balloon and

ground-based telescopes like Boomerang, ACT, APEX and SPT. Likewise, CBI, VSA and BIMA
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intereforemeters are focusing their study at low frequencies, at which CI lines with wavelengths

609µ and 370µ might contribute to the observed signal.

CBI, VSA and BIMA interferometrs are studying successfully CMB angular fluctuations at low

frequencies (30 GHz), and there are plans to continue observations on 45, 70, 90, 100 and 150 GHz.

CI lines with wavelengths 609 and 370 µ coming from high redshifts (z ∼ 10-15) might contribute

to the observed signal at low frequencies.

Beginning of the end of 60-ties theorists are discussing early star formation due to isothermal

perturbations, making possible production of heavy elements at redshifts well above 100. This

makes interesting the lines with much shorter wavelengths, like 12.8µ Ne II line and many others,

which might be contributing to the Planck HFI spectral bands even from redshifts ∼ 100.
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Chapter 7

Emission from Denser Regions

7.1 Temperature anisotropies from emission

Recent computations of early star formation in the universe show that the regions which will later

form cluster of galaxies are experiencing star formation much earlier than the future empty fields

(Ciardi et al. 2003, Sokasian et al. 2004, Furlanetto et al. 2004). This shows that the merger tree

knows already at rather high redshifts (z ∼ 15 − 20) where the future cluster of galaxies will be.

This numerical information opens a new way to study the process of reionization using the well

known technique of Cosmic Microwave Background fluctuations. The first star formation occurs in

the smallest scale objects which have the highest perturbation and mass of the order of 106 − 108

M¯, and in simulations they are modeled in much larger scales, including the very important scale

of future cluster of galaxies (Yoshida et al. 2002, Springel & Hernquist 2003). Let us remind that

these scales correspond to a comoving size of 20h−1 Mpc. Strong dispersion in the time of first star

formation, generation of ionizing photons, and production of chemical elements make these future

cluster of galaxies very different in their surface brightness in the microwave bands. Numerical

computations show that first such proto clusters might become bright already at redshift 17-20,

but majority of them are really very bright in microwave bands when the bulk of star formation

occurs around redshift 5. It is important for us that universe already at that redshift is separated

into regions of high and low star formation. This inevitably would lead to the fluctuations of

CMB, connected with well-known processes which contribute on different scales to the brightness

of star forming regions of our and other nearby galaxies: bremsstrahlung radiation of dense ionized

plasma, line emission from atoms and ions like C+, and thermal radiation from low temperature

dust. It is obvious that all these emission will come from very dense regions, but let us repeat that

such radiation dense clouds are much more numerous in some parts of the universe (in regions of

20h−1 Mpc scale), and less numerous in regions where star formation is delayed or will not occur

at all (e.g. in voids, or in regions where field galaxies will form much later).
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7. EMISSION FROM DENSER REGIONS

In this chapter we will estimate the observed flux and surface brightness of the regions for

proto-clusters and future cluster of galaxies, and then on simple assumptions we will try to find

what is their contribution to the fluctuations in the microwave sky. It is very important to note

that C+ line emission (as well as other fine structure lines considered previously) from the regions

enriched with heavy elements is spectrally narrow. Using different frequency channels of Planck

spacecraft it might be possible to estimate the contributions to the angular fluctuations in the

microwave background from proto clusters, where star formation is occurring at redshift interval

z ∈ [2, 20]. The cold dust emission in our Galaxy and other nearby galaxies also have spectrum

which drops rapidly in longer wavelengths. This also opens the way of differential broad-band

spectroscopy, because only certain redshift intervals will contribute to any specific Planck channel,

and other redshifts will not.

To compute the angular fluctuations we will adopt the following simple model. We will assume

that the regions of intense star formation are very rare at higher redshifts, and their numbers

are increasing, and have maxima at z ∼ 5.4, according to the star formation history presented

by Springel & Hernquist (2003). This history reflects the low mass long-lived star population,

however for our purpose we are more interested in the massive (> 8M¯) star population at all

redshifts which are the most efficient producer of UV photons. This we obtain by extrapolating the

Initial Mass Function (IMF) into the low mass end assuming the simple Salpeter IMF (Salpeter

1955), which results into a renormalization of the star-formtation history. We use this global star

formation rate to estimate the amount of massive stars formed inside halos of specific mass range,

and estimate their luminosity in dust or C+ line emission using the observed correlation of SFR-

Luminosity in nearby star forming galaxies. This approach obviously gives the upper limit in line

or dust emission, since this uses the metallicity or dust-to-gas ratio inside the halos to be the same

as in local universe. But we see that even with solar abundance at high redshifts, the correlation

signal from line emission is at best of similar magnitude to the scattering signal discussed in the

thesis, and the reason for the smallness of the emission signal is the absence of any “suppression”

term at high l-s, as well as from the lack of velocity dependence in the correlation part. We discuss

these points in detail later.

In this final chapter we discuss the method of computation for the temperature fluctuations

due to line emission from star-forming halos. We demonstrate only the case for C+ 157.7µ fine-

structure line, but the formalism developed below using the correlation between star-formation

and brightness temperature of an object is applicable for any line, as well as for the dust emission.

The redshift of line emission is chosen to be around z = 10.
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7.2 Correlation Between the SFR and Total Luminosity

7.2 Correlation Between the SFR and Total Luminosity

In this section we try to formulate simple correlations between star formation rate inside halos and

their total luminosity in far-IR lines or dust. This luminosity is then converted to the observed

flux (when the halo is unresolved) or brightness temperature which can be used to compute the

angular distribution of the sky intensity at the relevant frequencies.

7.2.1 Star Formation Rate Inside the Halos

The star formation history of the universe is obtained from the well-known Madau plot (Madau et

al. 1996, 1998), which gives the amount of newly formed stars (inM¯) per year per unit co-moving

volume of the universe. At high redshifts (z & 3) we must rely on numerical simulations of the star

formation history for extending the Madau plot upto high redshifts (z & 20), as has been used,

for example, by Barkana & Loeb (2000). In the present analysis we use the recent high-resolution

simulations of the star formation history of the universe by Springel & Hernquist (2003), who have

obtained a semi-analytic fit to the global star formation history

ρ̇?(z) = 0.15 M¯yr
−1Mpc−3

[

b exp [a(z − zm)]

b− a exp [b(z − zm)]

]

(7.1)

with a = 3/5, b = 14/15 and the peak of star formation at zm = 5.4. This is, however, the

integrated star formation rate over all halo masses, and we need the star formation rate inside the

halo of a specific mass. One way of obtaining it would be to assume the normalized star formation

rate (star formation rate inside a halo per unit halo mass) to have a shape like step-function, which

becomes zero below some critical halo mass (Hernquist & Springel 2003). In such approximation

we can apply the Press-Schechter formalism to obtain the star formation rate (SFR) for a halo of

mass Mhalo as

Ṁ? =
Mhalo ρ̇?(z)

ρ̄ [F (∞, z)− F (M4, z)]
(7.2)

Here ρ̄ is the comoving background density of the universe, and F (M, z) denotes the fraction

of mass that is bound at epoch z in halos of mass smaller than M. M4 corresponds to virial

temperature of Tvir = 104K (which is assumed to be the threshold halo mass to have star forma-

tion), and can be computed from the following formula Tvir(M, z) = 9.5 × 107K [(1 + z)3Ωm +

ΩΛ]
1
3 (Mhalo/10

15h−1M¯)
2
3 for a flat universe.

This star formation rate corresponds to the rate at which long-lived stars form, which have

masses . 8 M¯. As we will see in the next section, the dust or far-IR line luminosity inside a

galaxy corresponds to the rate of new-born massive stars, which have masses 8 M¯ or higher and

produce the bulk of ionizing UV photons. These stars have a lifetime . 3 × 107 years, which is

much shorter than the cosmological timescale at the redshifts of interest. Hence the slope of the
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7. EMISSION FROM DENSER REGIONS

total star-formation rate, and the luminosity function inside the halos, critically depends on this

high-mass end of the star formation history. We must employ an additional normalization factor

to the above star formation rate (eqn.7.2), which will correspond to the massive star formation

rate inside the halo.

We do this by simply assuming a universal initial mass function (IMF) of Salpeter (1955) with

a slope of −1.35 in the mass range 0.1 − 40 M¯. The star formation rate given in eqn.(7.2)

corresponds to stars with masses below 8 M¯, hence we should multiply it with the correction

factor

f(> 8M¯) =

40
∫

8

F(M)dM

8
∫

0.1

F(M)dM

' 0.12 (7.3)

where F(M) ∝ M−1.35. Hence the mass of the massive stars, which are the dominant producer

of UV photons, is about 12% of the long-lived stars of smaller mass. Therefore to obtain the

luminosity of a halo from its star formation rate, we must put this correction factor to the SFR

obtained from the Madau plot, or in our case the global star formation history of Springel &

Hernquist (2003).

7.2.2 Luminosity-SFR Relations in Galaxies

The star formation rate indicators inside a galaxy connected with its total luminosity can have

many uncertainties, as it will depend on the metallicity, dust content, and the shape of the IMF.

However we shall not go into a detailed study of these relations, and simply assume the most

well-known calibrations in use for the local universe. Kennicutt (1998) formulate the following star

formation rate indicators from the bolometric luminosities of galaxies

Ṁ∗ (M¯ yr−1) = 1.1× 10−41 LHα (erg s−1) (7.4)

Ṁ∗ (M¯ yr−1) = 4.5× 10−44 LFIR (erg s−1) (7.5)

There relations refer to star formation in stars more massive than ∼ 5 M¯, and we are mostly

interested in stars above 8 M¯ which have life-time . 3 × 107 years and explode as supernovae

after that time scale. However, the SFR correction from M > 5 to M > 8 solar masses is

relatively small, of the order of 20% (Grimm et al. 2003), which we can ignore in our modeling.

Also, the above relations are based on the average properties of star forming galaxies, and there

is considerable scatter in any correlation. We shall return to these issues when we describe the

individual correlations with the spectral luminosities of dust or the lines with star formation rate,

but before that we discuss the necessary formulation of observed flux and brightness temperature.
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7.2 Correlation Between the SFR and Total Luminosity

7.2.3 The Observed Flux and Brightness Temperature

We give here the definitions of observed flux and brightness temperatures that we shall be using

subsequently. For details, any standard text on cosmology can be consulted, e.g. Padmanabhan

(2002).

The bolometric flux observed from a source at redshift z is given by

Fbol =
Lbol
4πd2L

erg s−1 cm−2 (7.6)

where dL is the luminosity-distance of the object at redshift z

dL =
c

H0
(1 + z)

∫ z

0

dz
√

(1 + z)2(1 + ΩMz) − z(2 + z)ΩΛ

(7.7)

However, we are more interested in the observed flux density for any frequency-dependent emission.

For a power-law emission with spectral luminosity Lν ∝ ν−α, we have the observed flux density,

or simply flux, given by

Fν(νobs) =
Lν(νobs)

4πd2L (1 + z)α−1
erg s−1 cm−2 Hz−1 (7.8)

For example, for dust emission with a ν1.5 emissivity law, we have α = −3.5 in the R-J limits.

For line emission, we can obtain the spectral luminosity at the line center approximately by

dividing the total luminosity with the line width: Lν ≈ Lbol/∆ν (erg s−1 Hz−1). Now remembering

that ∆ν = (∆vth/c)ν, and the scaling between observed and emitted frequency νobs = νem/(1+z),

we immediately obtain

Fν(νobs) ≈
Lbol

4πd2L(1 + z) ∆νobs
erg s−1 cm−2 Hz−1 (7.9)

For a more accurate treatment we must integrate over the line profile, which can be assumed to

be a Gaussian with line-width ∆ν. With the above definition of flux, we can finally write the

expression for mean intensity, Jν = Fν/4π (erg s−1 cm−2 Hz−1 sr−1), which is the quantity

that can be compared with the mean background intensity of the CMB photons (Bν) to obtain

the change in brightness temperature due to emission

∆Tb = T0
ex − 1

xex

(

∆Jν
Bν

)

≈ c2

2kν2
∆Jν (in the R-J limit) (7.10)

Here both Jν and Bν are at νobs, and we have used the usual dimensionless frequency x ≡ hνobs/kT0
with T0 = 2.726 K as the present-day CMB temperature.

In case it is necessary to compute the brightness temperature of an object in situ, i.e. in the

comoving frame of emission, then one must assume some definite size of the emitting halo. Given

the radius R of the object, the mean intensity will be simply

Jν(νem) =
Lν

4π · 4πR2
erg s−1 cm−2 Hz−1 sr−1 (7.11)
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which should be compared with the intensity of CMB photons at the emitting redshift to obtain

the brightness temperature of the halo. In the subsequent computation we shall assume R to be

equal to the virial radius, or 1/10th of the virial radius, of the halo.

7.3 Modeling the line emission

In this section we show how we model the line and dust emission from star formation rate inside

galaxies. All these correlations are taken from existing literature, we merely apply the appropriate

normalization for massive star formation within halos, and rearrange or re-group them to find the

luminosity which interests us. All the references are cited in individual sections.

7.3.1 Emission from C+ fine-structure line

The CII 158µ FS line is the most extensively studied FIR line that has been used as a star-

formation tracer in galaxies, and it the dominant coolant of inter-steller gas. This radiation is

generated both in diffuse inter-stellar medium, and in photo-dissociation regions, at the interface

between molecular clouds and HII regions. The photo-ionizing radiation is dominated by B3 and

B0 stars with 5 ≤ M ≤ 20 M¯ (e.g. Xu et al. 1994), but of course hotter and more massive

stars contribute. However, the intensity in CII line can in a galaxy not be expected to be directly

proportional to the star formation rate, mainly because of the variety of the line sources and

their physical condition. Also the excitation of the upper fine-structure level of CII fine-structure

doublet saturates at high temperatures and high densities (e.g. see Kaufman et al. 1999). However

the emission in this line is strong, and future sum-mm and far-IR experiments like ALMA and

Herschell will be able to pick up galaxies in the CII line easily in wide range of redshifts.

To find the brightness temperature from the emission of CII line in a star-forming halo of mass

Mhalo at redshift z, we start with the correlation between total CII luminosity of a galaxy and its

star formation rate, Ṁ∗ (Boselli, Gavazzi, Lequeux et al. 2002)

Ṁ∗ = 5.953× 10−33 × 100.8×logLCII M¯ yr−1 (7.12)

which gives

logLCII = 1.25
[

log Ṁ∗ + 32.225
]

(7.13)

The slightly non-linear correlation given above is also supported by the observations from Stacey

et al. 1991. This CII luminosity (in erg s−1) is integrated over the entire line profile. To convert

it into spectral luminosity at the line center, we divide it by the line-width, Lν ≈ LCII/∆ν. This
spectral luminosity is then converted to the brightness temperature with the standard formalism

for conversion between flux and temperature.
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7.3.2 Emission from dust

Although we shall not be presenting the results for temperature fluctuations due to dust emission,

we show below that the dust emission from a halo can be correlated with its star formation rate in

a similar manner. The correlation between the total FIR emission and star-formation rate is well

established. From Kennicutt 1998, we have for starburst galaxies

Ṁ∗ (M¯ yr−1) = 4.5× 10−44 LFIR (erg s−1) (7.14)

Here LFIR refers to the full integrated IR luminosity in the 8 − 1000µ range. However, most of

this emission comes from the wavelength range 20 − 200µ, with the peak of emission near 100µ,

and hence the spectral luminosity of dust at 100µ shows good correlation with the star-formation

rate (Buat & Xu 1996, Misiriotis et al. 2004)

logL100 = 29.03 + log Ṁ∗ (7.15)

where L100 is the spectral luminosity (in ergs s−1 Hz−1 sr−1) for the dust spectrum at 100µ. The

advantage of this formulation is that L100 is a directly observable quantity, and we need no detailed

dust SED modeling and dependence on dust temperature.

For broad-band CMB experiments like PLANCK, the flux incident in each frequency channels

will be the integrated flux over a band-width ∆ν ≈ 0.25ν. In such case the detailed modeling of

dust SED is necessary. In star-forming galaxies like M 82, the dust SED is modeled with a ν1.5

emissivity law

Fν = (const.) ν1.5 Bν(Td) (7.16)

We try to use this relation, normalized with the 100µ flux from eqn.(7.15) to get the SED for

dust emission. Our modeling is based on the observations of Colbert et al. (1999). As the first

approximation, we again model the spectrum of the star-forming galaxy M 82, and assume that

similar spectrum will be obtained from halos at all redshifts. Surely this will give us an upper limit

on the contribution from dust emission. Under such assumption, the formula for the observed flux

density from dust emission becomes

F obs
ν = 8.22

(

L100
D2
L

) [

νobs(1 + z)

3× 1012 Hz

]4.5 [

exp

(

hνobs(1 + z)

kTd

)

− 1

]−1

(7.17)

in ergs s−1 cm−2 Hz−1, where νobs is the observing frequency, νobs = νem(1 + z), and DL is the

luminosity distance (in cm). Integrating this flux we immediately get the dust contribution in each

broad-band observing channel.

The correlation between the IR-luminosity and dust temperature is very weak, as shown by

Blain, 1999. He has given a simple relation between bolometric luminosity and Td for luminous

infrared galaxies for the same emissivity index β = 1.5 and a single population of isothermal dust

Td/K ' 40
(

LFIR/10
10L¯

)0.03
(7.18)
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For further correction, we should extrapolate the dust temperature at high redshifts taking into

account the increased CMB temperature, to get appropriate dust temperature at that redshift.

This can be done approximately by using the relation

Td(z) =
[

T 4+βd + T 4+βCMB

(

(1 + z)4+β − 1
)

]1/(4+β)

(7.19)

where TCMB is today’s CMB temperature.

7.4 Computation of the Power Spectrum

We now proceed to compute temperature fluctuations arising from the non-uniform distribution of

the emitting sources, as well as the component resulting from the non-zero correlation of density

fluctuations with the last scattering surface. We divide this section into two parts: in the first part

we describe the standard techniques of computing the power spectrum, using the number density

of halos prescribed by hierarchical model of structure formation, resulting into temperature fluc-

tuations which has a Poissonian component and a halo-halo correlation component. In the second

part we try to wstimate the effect of correlation of density perturbations at the emitting redshift

with that of in the last scattering surface. This part uses a line-of-sight integration approach, using

the CMBFAST code, and has been done in collaboration with C.Hernández-Monteagudo.

7.4.1 Poisson (shot noise) and the 2-point correlation components

In order to copute the power spectrum due to non-uniform distribution of the sources and due to

clustering between the sources, we use the formulation from Komatsu & Kitayama (1999), assuming

some definite size of the emissting objects. This is because the power spectrum is computed in situ

by adding the ∆Tb(M, z) from many halos into the comoving volume at redshift z, whose radial

extent is determined by the instrument’s frequency resolution. To convert the spectral luminosity

of a resolved halo into flux, and hence the brightness temperature, we must assume some size of

the emitting source. For a rough estimate, we assume the size to be a fixed 10% of the virial radial

of the halo, where the virial radius is defined as

Rvir =
GµMhalo

3kTvir
(7.20)

where µ ≈ 0.6mp is the mean molecular weight, and we have dependence of virial temperature of

the halo on its mass and redshift z as

Tvir = 9.5× 107K

(

Mhalo

1015h−1M¯

)
2
3
(

H(z)

H0

)
2
3

(7.21)
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The change in intensity is obtained by dividing the spectral luminosity by the total surface area

of the source, and averaging over all solid angles

∆Iν ≈
Lν

4π · 4πR2
erg s−1 cm−2 Hz−1 sr−1 (7.22)

which gives

∆T (M, z) = Tγ
c2

2hν3
(ex − 1)2

xex
∆Iν (7.23)

with Tγ = 2.726(1+ z) as the CMB temperature at redshift z, x ≡ hν/kTγ . Below we show results

for the C+ line only, with ν = 1.9 THz, and at redshift z = 10 with ∆z = 0.25z.

The power spectrum arising from the number fluctuation of unresolved sources is well estab-

lished. Following Cole & Kaiser (1988), the expression for Cl-s due to Poisson distributed sources

is

CPoissonl =

∫

dz
dV

dzdΩ

∫ Mmax

M4

dM
dn

dM
(M, z) |Tl(M, z)|2 (7.24)

Here dV is the comoving volume element at redshift z, and the quantity dV/dzdΩ can be expressed

simply in terms of the angular diameter distance dA = dL/(1 + z)2 as

dV

dzdΩ
= d2A c

dt

dz
(7.25)

∆Tl is the angular Fourier transform of ∆T (θ). For the brightness temperature, eqn.(7.23) is

used, which corresponds to the temperature in real space with a definite angular size θh ≈ Rvir/dA.
Hence the temperature in Fourier space for a particular multipole l is obtained by convolving the

real-space temperature with the angular area of the halo

∆Tl(M, z) = ∆Tθ(M, z)
(

2πθ2h
)

exp

[

− l(l + 1)

2

θ2h
2

]

(7.26)

We see that CPl ∝ |∆Tl|2 ∝ θ4h, and is constant for l¿ lh where lh = π/θh. This coefficient explains

the smallness of Cl-s at large angles, since we have typically Rvir ∼ 3 kpc for a star-forming halo,

which at z = 10 corresponds to θh ∼ 10−6 radians.

The other important part of the Poissonian component is the number count of the objects,

dn/dM at redshift z. To estimate the comoving number density of the halos, we employ the

standard Press-Schechter formalism (Press & Schechter 1974)

dn

dM
=

√

2

π

ρ̄

M

δc
D(z)

∣

∣

∣

∣

1

σ2(M)

dσ(M)

dM

∣

∣

∣

∣

× exp

[

− δ2c
2σ2(M)D2(z)

]

(7.27)

Here ρ̄ is mean comoving matter density of the universe, δc is the overdensity threshold, D(z) is

the linear theory growth function of density perturbations, and σ(M) is the variance of the density

field smoothed with mass scale M. We have used σ(M, z) = σ(M)D(z). This number density

incorporates em all halos per unit mass range per comoving volume, but we are interested only in
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Figure 7.1: Brightness temperature and number density of star-forming (recently merged) halos
at z = 10. In left, we show the brightness temperature (in mK) of star-forming halos in the C+

line, following the correlation derived in eqn.(7.13). The temperature grows linearly with mass
because we assumed the star formation rate inside halos is directly proportional to its mass. The
sharp cut-off around 5× 107 M¯ is due to the assumption that no halos below virial temperature
104 K is able to form stars. In reality there will be a smooth transition around this cut-off. In
right we show the number density of recently merged halos at z = 10, following the formulation of
Sasaki (eqn.7.28) and Press-Schechter number count. The resulting Cl-s are product of these two
quantities.

those halos which are having star formation at any given time. We assume the formation rate of

massive stars are proportional to the merger rate of the halos, where the later quantity is given by

Sasaki (1994)

d

dt

(

dnmerg
dM

)

=
1

D

dD

dt

dn

dM

δ2c
σ2(M)D2(z)

(7.28)

where symbols have the same meaning as before. This we multiply by the average life-time of

massive stars, ∆t = 107 years, to get the amount of starburst that is actually going on at any

given redshift. This is the quantity that we use in eqn.(7.24).

The mass integration is done over halos of all masses that can form stars. We choose Mmax =

1015 M¯ as the maximum mass for star forming halos, and for the lower mass limit we use M4,

which corresponds to halos with virial temperature Tvir = 104K at that redshift. Below this limit

we assume no star formation inside the halo, following Springel & Hernquist (2003), although this

is a crude approximation which might under estimate the contribution from low-mass halos. The

contribution from very massive halos of masses Mhalo > 1012 M¯ into the power spectrum is very

small due to the rarity of these objects.

In addition to the Poisson term, there would be additional clustering term in the power spectrum

due to halo-halo correlation. At large angular scales the contribution from the clustering term

may be significant over the Poisson term. For this part we follow the formulation of Komatsu &
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7.4 Computation of the Power Spectrum

Kitayama (1999), who used this expression

Cl =

∫

dz
dV

dzdΩ
P

(

k =
l

r(z)

)

[

∫ Mmax

M4

dM
dn

dM
(M, z) D(z)b̃(M, z) Tl(M, z)

]2

(7.29)

P (k, z) is the linear theory power spectrum, and we have used the Limber approximation k =

l/r(z), where r(z) = dA(1+ z) is the comoving distance or proper motion distance. The clustering

power spectrum relates to the matter power spectrum P (k, z) through the time-independent bias,

b(M, z), whose analytic expression is given by Mo & White (1996). However, following Oh et al.

(2003), we use the mass weighted bias for our computation, given by

b̃(M, z) =

∫ Mmax

M4

dM
dn

dM
M b(M, z)

/

∫ Mmax

M4

dM
dn

dM
M (7.30)

which corresponds to flux-weighted bias since we assume Fν ∝Mhalo. The lower limit of halo mass

is again chosen to be equal to halos with virial temperature 104K at that redshift, below which we

assume no star formation.

The results for such computations are shown in Fig.(7.2). The shape of these power spectra are

weakly dependent on the size of the sources, and fairly well determined., but their amplitudes are

somewhat more uncertain. The relative amplitude of the Poisson and clustering terms depends on

the thickness of the redshift interval, ∆z, sampled by the frequency resolution of the instrument,

and we have used parameters similar to a broad-band instrument like PLANCK HFI with 25%

bandwidth. Also the amplitude of the power spectrum is very sensitive to the halo mass-function,

dn/dM in the low mass range, i.e. on the lower cut-off in our mass integration.

These computations show that even assuming solar abundance of the emitting species, i.e.

taking the same SFR-luminosity correlation as in the local universe, the amplitude of the emission

term is several orders of magnitude lower than the scattering term arising from the same C+ line.

However the reason for the high amplitude of the scattering signal discussed in this thesis is a non-

zero correlation between the density fluctuations at the epoch of scattering/emission and that in

the last scattering surface, which resulted in Cl ∝ τν at large angles. We must check whether there

is any boost in the emission power spectrum at low l-s from such correlation. This is done next

where we employ a line-of-sight approach for computing temperature fluctuations in accordance to

the one used in scattering.

7.4.2 Effect of correlation with the CMB

In order to compute the correlation between the C+ line emission and the CMB, we must express

the emission as a function of the linear density field. This is because the correlation existing between
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Figure 7.2: Figure showing the temperature fluctuations generated by emission in the C+ 157.7µ
FS line, without any correlation with the density perturbations with the LSS. Observing frequency
is 170 GHz, for which the contribution of C+ line comes from redshifts around z = 10, and we
have chosen a frequency resolution ∆ν/ν = 0.25. The Poisson Cl-s are constant upto a very high
l which roughly corresponds to the size of the objects, which we took as 10% of the virial radius.
This plot shows that without any correlation with the density fluctuations in the LSS, which
were responsible for the high amplitude of the scattering signal (shown in figure), the emission
contribution is negligible even with solar abundance of the metals.

CMB temperature anisotropies and C+ emission resides in the fact that the halo population trace,

in the large scales, the cosmological density field. We use the halo bias factor bh relating the

density fluctuation field with that of the halo (Cooray 2001), and write the mass of newly formed

stars inside the halo as the following

M? = feff ρb bh δ(~r) Vhalo (7.31)

Here feff is the fraction of the baryonic mass of the halo that goes into massive stars, which we

assume to be 0.01. ρb is the mean baryon density of the universe, and δ(~r) denotes the linear over-

density at the point ~r. The halo bias bh relates the cosmological density contrast δ with the density

contrast inside the halo, and its value is close to 18π2. From the previous analysis of empirical

correlation between the star formation and luminosity of the halo, which is roughly linear, we can

write Lν = A (M?/∆t?), where A is a constant. Therefore we have the volume emissivity for any

given point

jν(~r) ≈
A

4π∆t?
feff ρb bh δ(~r) (7.32)
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7.4 Computation of the Power Spectrum

Having this relation we can compute the change in intensity along the line-of-sight by integrating

the volume emissivity through the halo, which gives

∆Iν =

∫

halo

jνds ≈
A

4π∆t?
feff ρb bh δ(~r) 2Rvir (7.33)

The constant A relates the luminosity of the halo to its star formation rate, according to Lν =

A (M?/∆t?), for which we derived the empirical relations previously. The factor ∆t? ∼ 107 years

comes from using Ṁ? = M?/∆t?, so that only the recently merged halos contribute, although we

shall see that results are independent of ∆t?.

From this, we can compute the relative change in brightness along the line-of-sight by comparing

the above result with the CMB intensity at that redshift

∆Iν
Bν(Trad)

[M, z] =
A/(4π∆t∗) feff ρb bh δ 2Rvir(M, z)

2
(kT0)

3

(hc)2
x3

ex − 1
(1 + z)3

(7.34)

where Trad ≡ T0(1 + z) and T0 = 2.726 K. x is the dimension-less frequency, x ≡ hν/kTrad.

Therefore, the brightness change for a single halo of mass M at redshift z is an integral along

the line of sight intersected by the halo, and has an ∝ 1/(1 + z)3 dependence. We remind that

νobs = ν/(1 + z), with ν = 1.9 THz for the C+ line.

However, when computing the contribution of the halo population by means of an integral

along the line of sight, we shall proceed as in Hernández–Monteagudo & Sunyaev (2004a), where

the following formalism is detailed. The k-mode of the temperature fluctuation δTT0
can be expanded

onto a basis of Legendre polynomia,

∆(k, η) =
∑

l

(−i)l(2l + 1) Pl(µ) ∆l(k, η), (7.35)

with µ the cosine given by the scalar product of the unitary vectors of k and the direction of

observation, n (see, e.g., Hernández–Monteagudo & Sunyaev 2004b); and the multipoles ∆l are

given by an integral along the line of sight:

∆l(k, η0) =

∫ η0

ηdec

dη jl[k(η0 − η)] S(k, η) (7.36)

η denotes conformal time, and it is equivalent to comoving distance. The source function S(k, η),

for this case, can be written as

SCII(k, η) =

∫

M4

dM

(

dnmerg
dM

j̃ν(k,M) W̃h(k)

)

BCMB
ν (η)

(7.37)

In this equation, the lower limit of the mass integral is given byM4, which is the mass corresponding

to a virial temperature to 104 K. The quantity j̃ν(k,M)
dnmerg
dM

is the Fourier transform of jν ·
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7. EMISSION FROM DENSER REGIONS

dnmerg
dM

, i.e., the emissivity within haloes times the number density per unit mass of recently

formed haloes. This product is, a priori, a position dependent quantity, since it depends on the

spatial distribution of the haloes. We are taking
dnmerg
dM

from the model of Sasaki (1994) as before

dnmerg
dM

= Ṅform(M,η)×∆t? (7.38)

That is, we are looking at those haloes which have formed as a result of mergers in the last time

interval given by ∆t?. This number density will be taken to be dependent on mass and cosmic

epoch, but independent of position in space. The statistical properties of our halo distribution will

be ruled then by the underlying density field δ present in jν by means of the bias factor b(M,η) (Mo

& White, 1996), connecting the halo clustering properties with the power spectrum of δ. Hence,

the bias factor b(M,η) must be introduced in SCII(k, η). Finally, W̃h(k) is the Fourier transform

of a volume window function giving the physical size of the halo. For simplicity, we shall assume

that the halos have a gaussian profile, given in real space by

Wh(x) = exp

(

− x2

2σ2h

)

(7.39)

for a halo placed at xh = 0, with a typical size of σh. In practice, we shall take σh equal to the

virial radius, Rv(M,η). The Fourier transform of this profile reads

W̃h(k) =

(

2πσ2h

)3/2

× exp

(

−k
2 · σ2h
2

)

(7.40)

and hence, for large scales (small k’s), it is essentially the volume of the halo.

Having this present, the 2-point correlation contribution to the angular power spectrum reads

CCII, 2h
l = (4π)2

∫

dk k2Pψ(k)

[

∆CII
l (k, η0)

]2

(7.41)

where Pψ(k) is the primordial scalar power spectrum. Similarly, the cross-correlation between CII

emission and CMB will be given by

CCII - CMB
l = (4π)2

∫

dk k2 Pψ(k)

[

∆CMB
l (k, η0)∆

CII
l (k, η0)

]

(7.42)

The result for such computation is shown in Fig.(7.3). This plot concludes our analysis of the

line emission in this chapter, showing that the correlation term of the line emission with CMB is

smaller in amplitude, or at best comparable, with the amplitude of the scattering signal we have

discussed in this thesis even for solar abundance of the emitting species at very high redshift. In

this figure we show both the halo-halo correlation term (eqn.7.41) and the enhancement due to

correlation with the CMB (eqn.7.42). We also plot the Poisson term in the power spectrum follow-

ing the procedure given in previous section, and we see that the 2-point halo-halo correlation term
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CMB primary

Correlation with CMB

Halo−halo correlation

Poisson (shot noise)

CII line emission at z=10

Figure 7.3: Results for line-of-sight computation and enhancement of the emission signal due to
correlation with the density field. We show both the halo-halo correlation (solid line) and the
correlation with the CMB (diamonds), as both can be obtained from the line-of-sight integration
as discussed in the text. Also shown is the Poisson component (dashed line) as discussed pre-
viously. We see the effect of correlation with the CMB which causes strong enhancement of the
emission amplitude, especially at large angles. However, this enhancement is small compared to
the scattering signal in the same line.
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7. EMISSION FROM DENSER REGIONS

following the line-of-sight integration approach matches with the standard model for computation

of 2-point correlation (see Fig.7.2). There is an enhancement in the emission signal due to corre-

lation with CMB, particularly at low l-s, but its amplitude is smaller than that of the scattering

amplitude that we have discussed. There are two reasons for this: firstly there is no “suppression”

term at the high l-s (given by δCl ≈ −2τνCprim
l ), which correspond to the uniform smoothing of

primordial anisotropies due to resonant scattering and gave a high amplitude for the change in

temperature anisotropies from scattering at small angles. The second reason is that because of the

velocity dependent nature of the resonant scattering, there was also a velocity related correlation

term present which caused enhancement of the signal at low l-s. The emission amplitude, on the

other hand, is independent of the velocity of the emitter, and therefore the CMB correlation term

contains only density correlation of the emitting regions with the CMB. This causes further loss

in power at large angles.

The result for line emission at z = 10 shows an amplitude of the emission signal correlated

with the CMB at 10−4 µK2 for roughly 1◦ scale. In Ch.5 we obtained an amplitude for the

scattering signal a few times 10−3 µK2 for the same CII line at the same redshift even for very

moderate abundance level (about 1000 times lower than the solar abundance value). Since the

SFR-luminosity correlation for the CII line in eqn.(7.13) was obtained from the starburst galaxies

in the local universe, the amplitude for the emission signals given in Fig.(7.3) all correspond to

solar values for ionic Carbon abundance, and will be much lower if any realistic abundance history

is chosen. The Poisson and the halo-halo correlation parts will go down at square of the abundance,

whereas the signal correlating with the CMB will go down linearly with abundance. Therefore the

integrated effect of resonant scattering, discussed in this thesis, will dominate over the line emission

signal for all angular scales important for CMB studies.
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Chapter 8

Conclusions

We have investigated in detail the process of resonant scattering of the CMB photons by atoms, ions

and molecules; in presence of peculiar motion of the scatterer. This is a very attractive problem

because of its simplicity: the resultant change in the brightness temperature of the background

CMB photons depends only on two parameters, the optical depth in scattering and the radial

component of peculiar velocity. The far-IR fine-structure lines of various atoms and ions, as well

as the sub-millimeter rotational lines of diatomic molecules like the CO, provide an effective cross-

section for scattering of CMB photons in a wide range of redshifts, which in turn is suitable for

various applications like finding peculiar motion of the galaxies, or probing the enrichment and

ionization history of the universe.

We presented an exact formulation of the process of resonant scattering in presence of peculiar

velocities, which had been absent in the literature. Therefrom we have tried to find applications

for the scattering process in individual gas clouds, the main example of which was inferring the

motion of nearby galaxies in the CMB rest frame from scattering in CO rotational lines. The

process of scattering can cause both an increment or a decrement in the background temperature

depending on the direction of motion of the object, but only a decrement in temperature can be

regarded as the definite signal of scattering, which one can distinguish from emission in the same

line. We paid particular attention to Virgo cluster galaxies, where the high amplitude of galactic

velocities can give rise to a temperature change of more than 40 µK km s−1in the CO J = 2 − 1

230 GHz line. Future sub-mm instruments like ALMA will be able to resolve galaxies at much

further distances (z & 3), where higher excitation levels of CO as well as the CI fine-structure lines

become important. Observing this scattering signal might open a new way to infer cluster peculiar

motions and their internal dynamics, as the scattering signal does not depend on the velocity of

Hubble expansion and thereby serve as an independent estimator of large scale peculiar motions.

However, observing the signal of scattering from an individual object requires very low density

gas, as even at relatively low overdensities the process of collision becomes more effective in pro-

ducing photons and the object can no longer be visible via scattering. For high velocity galaxies
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like M99 in the Virgo cluster this happens at densities ∼ 20 cm−3 in neutral atomic gas for CO 230

GHz line, but for average amplitude of peculiar motions this density limit is lower. In this regard

we have described three types of critical densities characterizing the effect of collision. The most

important fact is that although individual objects are no longer visible in scattering after the first

critical density, when brightness temperature in emission and scattering becomes equal, one can

expect to see the integrated signal of scattering from all objects in the sky having densities upto

several times higher. This is possible through observing the large-scale coherent distortion in the

primordial CMB temperature fluctuations, where the emission from small dense objects are less

significant. The frequency dependent nature of the scattering signal, and the possibility to have an

enhancement in its amplitude via a non-zero correlation between large-scale density fluctuations at

the last scattering surface and at the epoch of scattering, makes the study of CMB power-spectrum

distortion an useful tool to study the enrichment and ionization history of the universe.

Under the approximation of negligible drag force, we have computed what are the changes

in the CMB angular power spectra introduced by resonant species placed at redshifts which are

dependent on the observing and resonant frequencies. The overall effect can be decomposed into

a damping or suppression of the original CMB temperature fluctuations, and a generation of new

anisotropies. For the optically thin limit to which we have restricted ourselves, damping dominates

over generation of new anisotropies in the intermediate and high multipole range (l & 20).

These changes in the CMB are of very small amplitude (0.01 − 0.3µK), and could be distin-

guished from the CMB component by means of their frequency dependence. Indeed, a comparison

with respect to a reference channel containing only non-frequency dependent temperature fluctu-

ations could be used to quantify the amount of angular power introduced by the resonant species.

However, this would only be feasible if either the other frequency-dependent components are neg-

ligible or characterized with extreme accuracy. The possible presence of foregrounds, galactic of

extragalactic, whose amplitude and spectral behavior is still under characterization, is a serious

aspect to be taken into account. Other technical challenges, such as the calibration of different

channels and the enormous sensitivity required, should be accessible from the next generation of

detector technology.

We have obtained limits for abundances of heavy elements when complete foreground removal is

possible, but also have shown values when all foregrounds are present in the sky map. Our analyses

have particularly focused on PLANCK HFI channels, whose very low noise levels give extremely

strong limits on abundances. It is easiest to observe the proposed effect with HFI at angular scales

of θ ∼ 20◦ or l ∼ 10 because of the very low noise of the first three HFI channels at these multipoles.

Using the 143 & 217 GHz channels of HFI, with the 100 GHz channel as reference, limits as low

as 10−3 − 10−4 solar abundance were obtained for atoms and ions of the most important elements

like carbon, nitrogen and oxygen in the redshift range [5, 30]. At higher multipoles (l > 200),

we have shown that future balloon and ground-based experiments like ACT, APEX and SPT can
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put similar constraint on abundances, where the predicted signal is stronger because of the higher

amplitude of the primordial CMB signal, and effect will be directly proportinal to the optical

depths in lines. The presence of foregrounds makes all these limits about a factor of 102 worse,

but that must be considered as the most pessimistic scenario.
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Appendix A

Appendix: Analytic form of δCl-s

Following the equation for the k-mode of the photon temperature fluctuation,

∆T (k, η0, µ) =

∫ η0

0

dη eikµ(η−η0)
[

Υ(η) (∆T0 − iµvb) + φ̇+ ψ − ikµψ
]

(A.1)

we proceed now to characterize the change in the radiation power spectrum. In eq.(A.1), the terms

in the angle µ = k̂ · n̂ can be eliminated after integrating by parts and neglecting the contribution

of boundary terms, (Seljak & Zaldarriaga 1996). This gives:

∆T =

∫ η0

0

dη eikµ(η−η0)S(k, η) (A.2)

where the source term S(k, η) is defined as

S(k, η) = e−τ
(

φ̇+ ψ̇
)

+Υ

(

∆T0 + ψ +
v̇b
k

)

+ Υ̇
(vb
k

)

(A.3)

From this source term, the angular power spectrum can be expressed as, (e.g. Seljak & Zaldar-

riaga, 1996):

Cl = (4π)
2
∫

dk k2Pψ(k)

∣

∣

∣

∣

∫ η0

0

dηS(k, η)jl [k(η0 − η)]
∣

∣

∣

∣

2

= (4π)
2
∫

dk k2Pψ(k) |∆T,l|2 (A.4)

where jl is the spherical Bessel function of order l and Pψ(k) is the initial scalar perturbation

power spectrum. If at a given frequency the CMB interacts through the resonant transition i of a

species X, the measured power spectrum will differ from the reference one by an amount:

δCl ≡ CXi

l − Cl

= (4π)2
∫

dk k2Pψ(k)
[

∣

∣

∣

∣

∫ η0

0

dη SXi(k, η)jl [k (η0 − η)]
∣

∣

∣

∣

2
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∣

∣

∣

∣

∫ η0

0

dη S(k, η)jl [k(η0 − η)]
∣

∣

∣

∣

2
]

= (4π)
2
∫

dk k2Pψ(k)
[

∣

∣

∣∆Xi

T,l

∣

∣

∣

2

− |∆T,l|2
]

= (4π)
2
∫

dk k2Pψ(k)
[

2 ∆T,l + δ∆T,l

]

δ∆T,l (A.5)

with δ∆T,l ≡
∫ η0
0
dη

(

SXi(k, η)− S(k, η)
)

jl [k(η0 − η)], and where the term SXi(k, η) refers to

the sources including the species X. Note that the cross term 2 ∆T,l · δ∆T,l only arises after

computing the difference of the power spectra, i.e., it is not present if one computes the power

spectrum of the difference of two maps obtained at different frequencies. This cross term is precisely

the responsible of having δCl linear in τxi , and hence also linear in the abundance of the species

Xi. This term also accounts for the correlation existing between the temperature fluctuations

generated during recombination and those generated during the scattering with the species X.

This non-zero correlation is essentially due to those k modes corresponding to lengths bigger than

the distance separating the two events, i.e., recombination and scattering with X. Let us now

model the differential opacity due to this transition as ˙τXi
= τXi

P(η), where P(η) is a profile

function of area unity,
∫ η0
0
dη′ P(η′) = 1. We write the optical depth as τtot(η) = τ(η) + τXi

(η),

where the last term refers to the optical depth due to the transition i of the X species. It can

be expressed as τXi
(η) = τXi

A(η) = τXi

∫ η0
η
dη′ P(η′), with A(η) the area function of the profile

P(η). We will assume that the profile peaks at η = ηXi
and that η− and η+ are such that P(η) ≈ 0

for η < η− and η > η+. Hereafter, ηXi
will be referred to as transition epoch or line epoch. If we

add this new term to the opacity, and assume that τXi
¿ 1, then we can expand the term δ∆T,l

in a power series of τXi
. In this case, we obtain:

δ∆T,l = τXi
·
{

−
∫ η+

0

dη jl [k(η0 − η)]A(η)

×
[

e−τ
(

φ̇+ ψ̇
)

+ τ̇ e−τ
(

∆T0 + ψ +
v̇b
k

)

+ e−τ
(

τ̈ + τ̇2
) vb
k

]

+

∫ η+

0

dη jl [k(η0 − η)]P(η)e−τ
[(

∆T0 + ψ +
v̇b
k

)

+

(

1

P

dP

dη
+ 2τ̇

)

vb
k

]}

+ τ2Xi
·
{

1

2

∫ η+

0

dη jl [k (η0 − η)]A2(η)

×
[

e−τ
(

φ̇+ ψ̇
)

+ τ̇ e−τ
(

∆T0 + ψ +
v̇b
k

)

+ e−τ
(

τ̈ + τ̇2
) vb
k

]

+

∫ η+

0

dη jl [k (η0 − η)] e−τ
[

−
(

∆T0 + ψ +
v̇b
k

)

A(η)P(η)
vb
k

(

P
2(η) + A(η)

(

−dP
dη
− 2τ̇

))]}
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+ O(τ3Xi
)

= τXi
·D1 + τ2Xi

·D2 + O(τ3Xi
). (A.6)

It is worth to note that D1 contains both the suppression of intrinsic CMB anisotropies, and

the generation of new fluctuations at line epoch. This expansion allows us writing δCl as a power

series of τXi
as well,

δCl = τXi
· (4π)2

∫

dk k2Pψ(k) [D1 2∆T,l]

+ τ2Xi
· (4π)2

∫

dk k2Pψ(k)
[

D2 2∆T,l + D
2
2

]

+ O(τ3Xi
)

= τXi
· C1 + τ2Xi

· C2 + O(τ3Xi
) (A.7)

The result of this expansion is displayed in Fig.(A.1): the change in the power spectrum induced

by resonant transitions is computed for different redshifts, 25 (top panel) and 500 (bottom panel),

and different amplitudes of the optical depth (solid lines correspond to τ = 1.5 × 10−4 and dot-

dashed lines to τ = 0.15). Diamonds give the linear approximation in τ , whereas triangles show

the quadratic one. Both match the exact δCl’s fairly well for the low τ cases. Therefore, by means

of eq.(5.4), we can establish a linear relation between δCl and the abundance of the species.

In Fig.(A.2), diamonds show the absolute value of C1 versus l. As shown above, this term is

the sum of two integrals. The first one is the suppression induced by the e−τXi term, (thick solid

line in the figure), whereas the second contain the newly generated anisotropies, (thick dashed

line). The latter term has a monopole (∆0 + ψ, thin dashed line) and a velocity (thin dotted

line) contribution. We are plotting absolute values of all terms. As pointed out by Zaldarriaga &

Loeb (2002), the monopole term decreases with cosmic time and hence the velocity term becomes

the most important source of generation of new anisotropies. However, this generation takes

place at the transition epoch, and hence is shifted towards the low multipole range. It is easy to

show that the maximum multipole below which generation becomes significant is roughly given by

lXi
∼ 2π (η0 − ηXi

) /ηXi
. We show that the suppression term is dominant for high multipoles, and

only at very low multipoles suppression and generation tend to cancel each other. Only if higher

orders in the power expansion are relevant, (i.e., if τXi
∼ 1) the newly generated anisotropies

become important.

This cancellation of suppression and generation terms at low multipoles can be better under-

stood when coming back onto eq.A.1. If in this equation we substitute τ by τ + τXi
, we find that

the change in the temperature modes due to τXi
can be written as:
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Figure A.1: This figure shows the validity of the linear (diamonds) and quadratic (triangles)
approximations on τ when trying to describe the changes induced in the power spectrum by a
resonant transition (δCl’s). We see that both suffice to accurately match the theoretical δCl’s for
redshifts 25 (top panel) and 500 (bottom panel) and for τ = 1.5 × 10−4, (solid lines). However,
when τ is closer to one (dot-dashed lines), the quadratic approximation performs remarkably better
than the linear one.

δ∆T =
(

e−τXi − 1
)

∫ η0

0

dη eikµ(η−η0)τ̇ e−τ (∆T0 − iµvb)

+ e−τXi

∫ η0

0

dη eikµ(η−η0)τ̇Xi
e−τ (∆T0 − iµvb) , (A.8)

where we have applied the definition of the visibility function, Υ(η) = τ̇(η) e−τ(η). However,

recalling that the visibility function gives the probability of a photon being emitted at a given η,

and taking τ̇Xi
= τXi

δD(η − ηXi
), the last equation merely implies that

δ∆T ' τXi
[∆T0(ηXi

)−∆T0(ηrec)− iµ (vb(ηXi
)− vb(ηrec))] , (A.9)

where we have taken into account that τXi
is much smaller than unity, and approximated

the exponentials to unity, as we shall focus on the very low k range. That is, the change in

the temperature mode ∆T (k, µ, η) reflects the difference of the monopole (∆T0) and velocity terms

when evaluated at recombination and at the transition epochs. We can estimate how this difference
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Figure A.2: Study of the different contributions to C1 in eq.(5.15). Diamonds give C1 versus
multipole. We are plotting only absolute values. In units of τXi

, we plot the damping term in
solid line. The term responsible for the generation of new anisotropies is plotted in thick dashed
line. Its two components, monopole ((∆0+ψ)) and velocity, are also displayed in thin dashed and
thin dotted lines respectively. As conformal time goes by, the relative weight of the velocity term
with respect the monopole term increases, and the sum of both at low multipoles approaches the
amplitude of the original CMB anisotropies, (solid line). Both generation and damping tend to
cancel each other at a multipole l = lXi

, dependent on the epoch of interaction ηXi
.

projects onto multipole space if we restrict ourselves to the low multipole (large angle) range. For

the scattering redshifts under consideration (zXi
> a few), we can safely neglect the term due to

the Integrated Sachs-Wolfe effect. Then from eq.(A.1), one finds that the time dependence of the

monopole term ∆T0(η) can be approximated as ∆T0(η) ' ∆T0(ηrec) j0 (k [η − ηrec]), where j0(x)
is the spherical Bessel function of order zero. From this dependence, it is easy to see that at low

multipoles, i.e., at small enough k’s, ∆T0(ηrec) and ∆T0(ηηXi
) will be roughly equal, and thus

their difference in the equation above will tend to vanish. This can also be seen in Fig.(A.2), where

the contribution of the monopole term to C1 (thin dashed line) has roughly the same amplitude

at redshifts 500 and 25 for l < 10. This behaviour is the responsible for the cancellation of

the δCl’s at low l’s. In this situation, the difference of the velocity terms will be of particular

relevance. The evolution of velocities can be approximated, after integrating in µ, as vb(η) '
vb(ηrec)Ḋ(η)/Ḋ(ηrec)j1 (k [η − ηrec]), with D(η) the linear growth factor . The growth of velocities
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will assure an increase of the Doppler-induced anisotropy power. Finally, due to the fact that

jl(x) is maximum at x ∼ l, then we have that the Doppler term will predominantly contribute

for 1 k ∼ 2π/ηXi
, which corresponds to multipoles lXi

∼ 2π (η0 − ηxi) /ηXi
. Again, this can be

checked by looking at the velocity term (dotted line) in Fig.(A.2): the power is projected at lower

multipoles at later epochs, scales at which the amplitude grows with conformal time as Ḋ.

Therefore, the factors determining the cross-over of the δCl’s from (Doppler-induced) positive

values at small l to (absorption-induced) negative values at large l are two: a) the constant

amplitude of the monopole at large scales, and b) the growth of peculiar velocities with cosmic

time . The angular scale at which such crossing takes place is roughly determined by the time at

scattering epoch, ηXi
, lXi

∼ 2π (η0 − ηxi) /ηXi
.

1We are assuming that ηXi
>> ηrec throughout the paper. However, strictly speaking, one should consider the

difference of conformal times of recombination and resonant scattering, i.e., k ∼ 2π/(ηXi
− ηrec).
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Appendix B

Appendix: Solution of Statistical
Equilibrium Equation

Under the condition of statistical equilibrium, the level populations in a multilevel system are

determined by the detailed balance equations

ni

[

Ai,i−1 + Jνi,i−1
Bi,i−1 + NH2

i−1
∑

j=1

γij

]

+ ni

[

Jνi,i+1
Bi,i+1 + NH2

N
∑

k=i+1

γij

]

= ni+1

[

Ai+1,i + Jνi+1,i
Bi+1,i

]

+ NH2

N
∑

k=i+1

nkγki

+ ni−1Jνi−1,i
Bi−1,i + NH2

i−1
∑

j=1

njγij

(B.1)

Here ni represents population of the i-th level, Ai,j and Bi,j are respectively the Einstein A- and

B-coefficients for radiative and induced transitions, and γi,j are the collision rates per unit density

(in cm−3s−1). NH2
is the number density of (colliding) H2 molecules, and Jν is the background

radiation field due to the CMB at frequency ν

Jν =
2hν3

c2

[

exp
( hν

kTCMB(z)

)

− 1

]−1

(B.2)

We can rewrite eqn.(B.1) as the following

ni
∑

i6=j

(

Cij + JνijBij

)

+ ni
∑

j<i

Aji−
∑

j<i

nj

(

Cji + JνjiBji

)

−
∑

j>i

nj

(

Cji +Aji + JνjiBji

)

= 0
(B.3)

where we have redefined the collision rate as Cij = NH2
γij . These are the set of equations we

wish to solve.
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Clearly, eqn.(B.3) represents a set of N linear equations (N is the maximum number of levels

that is being considered), which can be written in matrix format

























D11 D12 D13 . . . D1,N−1 D1N

D21 D22 D23 . . . D2,N−1 D2N

D31 D32 D33 . . . D3,N−1 D3N

...
...

...
...

...
...

...
...

...
...

...
...

DN−1,1 DN−1,2 DN−1,3 . . . DN−1,,N−1 DN−1,N

DN1 DN2 DN3 . . . DN,N−1 DNN

















































n1
n2
n3
...
...

nN−1

nN

























=

























0
0
0
...
...
0
0

























(B.4)

However, these set of N equations form an exactly singular system, as can be seen by summing

these equations (it gives 0 = 0). We need to replace one of the equations (any one can be replaced,

but we choose the last one) by the conservation equation

n1 + n2 + n3 + . . . nN = 1 (B.5)

Hence our matrix equation to be solved becomes

























D11 D12 D13 . . . D1,N−1 D1N

D21 D22 D23 . . . D2,N−1 D2N

D31 D32 D33 . . . D3,N−1 D3N

...
...

...
...

...
...

...
...

...
...

...
...

DN−1,1 DN−1,2 DN−1,3 . . . DN−1,,N−1 DN−1,N

1 1 1 . . . 1 1

















































n1
n2
n3
...
...

nN−1

nN

























=

























0
0
0
...
...
0
1

























(B.6)

This we solve by the standard Gauss-Jordan elimination method, which replaces the matrix of

equation coefficients by the unity matrix, so that we have

























1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1

















































n1
n2
n3
...
...

nN−1

nN

























=

























p1
p2
p3
...
...

pN−1

pN

























(B.7)

p1, p2, . . . pN are the required set of solution for level populations.
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Method of computation

We begin by the collision rates γij , and compute the full γ-matrix using the relation

γji = γij
gi
gj

exp
(

− hνij
kTgas

)

Then we compute the collision rate matrix C by multiplying this with the Hydrogen molecule

number-density, which in turn is obtained from the mean baryonic density and the overdensity of

the cloud.

The Einstein A- and B-coefficients are related by

Bij =
c2

2hν3ij
Aij if i > j

=
gj
gi

Bji if i < j

We assume the radiative transition probabilities are of significance only between adjacent levels.

Now using eqn.(B.2), we compute the matrix (BJν) by the relation

BijJνij = Aij

[

exp
( hνij
kTCMB(z)

)

− 1

]−1

if i > j

= (gj/gi) BjiJνij if i < j

To compute the matrix of equation coefficients D, we first put all diagonal elements equal to

zero, and calculate the off-diagonal elements by the relation (these coefficients are negative since

they represent loss of molecules from a given level)

Dij = −
(

Cji +Aji +BjiJνji

)

if i < j

= −
(

Cij +BijJνij

)

if i > j

Finally the diagonal elements of matrix D are computed by summing all the elements in a given

column, since they represent net gain of molecules into any given level (and hence are positive)

Dii = −
(

∑

i>j

Dji +
∑

i<j

Dij

)

Thus we have the matrix equation Dn = 0 to solve. The last row is replaced by the conservation

or closure relation to prevent singular solution, and Gauss-Jordan method is applied to obtain the

level populations p.
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Figure B.1: Change in level population of different rotational levels of the CO molecule at different
redshifts, as fuction of density of H2 molecules. In the horizontal axis we plotted the molecular
density, and in the vertical axis the percentage change in the level population, both increase and
decrease, compared with the population dictated only by CMB. Therefore a change by 100%
corresponds to doubling of a level populations. Results are shown for redshifts z = 0, 1, 5 & 10,
respectively.

Application: level populations of the CO molecule

Our example for applying the above formalism in a physical system is the excitation of the rotational

levels of CO molecules in collision with H2. We solved for the level populations upto N = 15, in

a 100 K neutral gas, for different redshifts. The Einstein coefficients were taken from Chandra et

al. (1996), and the collisional rates are from Flower & Launay (1985). The only radiation field

affecting the level populations were assumed to be that of the CMB.

In Fig.(B.1) we have shown how the fraction of CO molecules in the first five rotational levels

changes with increasing molecular density. The four panels correspond to redshifts z = 0, 1, 5 & 10,

respectively. The population of the lowest (J = 0) level can only decrease as the density increases,

as the collisions will tend to populate the upper levels more and more, thereby reducing the pop-

ulation at the lowest level. The upper levels initially increase their population as a result of

depopulation of lower levels, before decreasing again as for higher densities even higher levels get
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populated. The very rapid increase for levels J ≥ 3 levels at low redshifts reflect the fact that these

levels had been almost not populated when only CMB was present, therefore any slight increase

in their population coming from collisions results in a rapid increase in the percentage deviation.

Figure B.2: Excitation temperature for various CO rotational levels, as function of H2 molecular
density. For low densities we have TEX equal to the background CMB temperature for all levels.
Then with increasing density the collision starts to influence level populations and makes TEX
to increase. At very high densities collisional processes completely dominates populating and de-
populating levels, and the excitation temperature becomes equal to the kinetic temperature of the
gas (LTE condition). The discontinuity in the TEX for J = 0 level corresponds to a range of
densities where the excitation temperature becomes negative and population inversion occurs for
this transition.

Fig.(B.2) shows how the excitation temperature of the first four rotational transitions change

with increasing density. For very low density the excitation temperature is equal to the TCMB ,

reflecting the fact that collisions does not exert any influence in populating or de-populating the

levels. With increasing density the excitation temperature increases gradually, and finally it asymp-

totically approaches the kinetic temperature of the gas. This is the domain of classical critical

density, when collisional de-excitation rate from the upper levels become faster than the radiative

de-excitation rates. The interesting discontinuity in the curve corresponding to J = 0 − 1 115.35

GHz transition marks the region when TEX becomes negative! This corresponds to a population

inversion, which can lead to maser action in this lowest CO rotational line. We found that such

an effect has actually been discussed by some authors, first described by Morris (1980) and later

analyzed in details by Piehler et al. (1991).
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