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Chapter 1

Introduction

Motto: The real voyage of discovery consists not in
seeking new landscapes, but in having new eyes.

(M. Proust)

The magnetic properties of condensed matter is a subject which has been studied for nearly
three thousand years. Lodestone, a natural ferric ferrite (Fe3O4) attracted the attention of
greek philosophers being mentioned by Thales who believed lodestone to possess a soul.
The chinese were the first to understand and exploit the directive properties of lodestone.
From about 100 AD there are references in chinese texts to a ’south-pointer’, which was a
lodestone spoon mounted on a top of an earthplate, permitting the rotation upon its bowl in
response to magnetic torque. The result of the study on the lodestone’s properties was one of
the first technological product: the navigational magnetic compass. Although the compass
was certainly used in West Europe by the twelfth century (references to it are dated 1175)
only in the 16th century came the first prove that the earth itself is a magnet. William Gilbert
(1544-1603), physicist at the Queen’s Elisabeth court, wrote ’De magnete’ giving the first ra-
tional explanation to the mysterious ability of the compass needle to point north-south. This
work opened the serial of scientific description of magnetic properties of the matter.
The progress in the following centuries has been more rapid and two major achievements
have emerged which connect magnetism with other physical phenomena. Firstly, in 1820
Hans Christian Oersted showed that a magnetic needle rotates if it is placed near an elec-
tric circuit, demonstrating the inextricably link between magnetism and electricity. Later
Michael Faraday [21, 22] demonstrated the link between light and magnetism, the magneto-
optic Faraday effect which bears his name. These capital discoveries were unified in four
equations, the laws of Ampère, Faraday, Biot-Savart and Laplace by Maxwell. These four
equations epitomize the electromagnetic revolution. Richard Feymann claimed that ’ten
thousand years from now, there can be little doubt that the most significant event of the 19th century
will be judged as Maxwell’s discovery of the laws of electrodynamics’.
With Maxwell’s equations the classical electromagnetism was complete, but ferromagnetism
remained a mystery. It was in 1907 when Peter Weiss produced a theory of ferromagnetism

13
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based on the assumption that the interaction between magnetic molecules can be described
by an internal ’molecular field’. Combining the molecular field with the theory by Langevin
of paramagnetic solids gave a description of the phase transition at the Curie temperature
where a ferromagnet losses its magnetisation and becomes paramagnetic.
The existence of this ’molecular field’ produced a strong conflict between classical theory
of magnetism and experiment, the solution being given by quantum mechanics. Bohr pos-
tulated that the angular momentum of electrons is quantized and the orbital magnetic mo-
ments are associated with the orbiting electron currents. In 1922 a famous experiment by
Stern and Gerlach proved beyond all doubts that the magnetic moments have a quantized
character. Compton suggested in 1921 that the electron possessed also a magnetic moment
associated with an intrinsic spin angular momentum and this was discovered by Goudsmit
and Uhlenbeck in 1925. In 1928 Dirac [23, 24] explained the existence of spins by writ-
ing down a relativistically invariant extension of Schrödinger’s equation where the electron
spin came naturally out of the calculation. The Weiss field was shown by Dirac and Heisen-
berg to arise from the Pauli principle that no two electrons could occupy the same state.
We mentioned here just few moments in the history of the magnetism. However it is the
magnetism in condensed matter systems, including ferromagnets, spin glasses and low-
dimensional systems, which is still of great interest today. Macroscopic systems exhibit mag-
netic properties which are fundamental different from those of atoms and molecules, despite
the fact that they are composed of the same basic constituents. This arises because mag-
netism is a collective phenomenon, involving the mutual cooperation of enormous number
of particles, and in this sense similar to the superconductivity and superfluidity.
The technological drive to find new materials for use in permanent magnets, sensors or in
recording applications runs in parallel with the effort to explain theoretically the existent
properties of materials. All new achievements need a strong theoretical support and ac-
cordingly the KKR band structure method in its relativistic version is a valuable tool in the
ground state properties of the condensed matter.
The scope of the present thesis is to give an insight into different aspects of magnetism:
Compton magnetic scattering and positron annihilation in the metallic systems and the mag-
netic properties in Cr-chalcogenide systems, for which a theoretical description is presented.

1.1 Compton effect

The Compton effect was discovered at the beginning of the 20th century, when it was ob-
served that the scattering process affects to some extent the energy spectrum of the radiation.
This revelation arise from experiments with scattered γ-rays, which indicates not only that
the secondary radiation beam was softer than the primary beam, but also that the softening
depends on the scattering angle.
A few years later, Arthur Compton carried out a famous set of measurements with X-rays
(Compton 1923 [25, 26]). Using a recently developed wavelength analyser, he determined
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for the first time numerically the softening of the scattered radiation. The scattering of the
light on a metallic target was described as an interaction between the photons and indi-
vidual electrons which behave as free particles. In classical physics, electromagnetic waves
posses no momentum. To assign a momentum to an electromagnetic wave was a revolution-
ary idea at that time and so, Compton scattering emerged as one of the direct manifestations
of the quantum nature of light.
Soon later it was realized that the Compton scattered line is broaden. Jauncey (1925) [27]
was the first who linked the motion of the target electrons to a Doppler broadening of the
Compton scattered beam. Unfortunately he choose to base his calculations on the Bohr-
Sommerfeld orbital model and, not surprisingly, his predicted lineshapes were unrealistic.
Du Mond(1929) [28, 29] had more success when he used the novel Fermi-Dirac distribu-
tion function to predict the lineshape; indeed, his result on beryllium possibly represent the
earliest direct evidence for the validity of Fermi-Dirac as opposed to Maxwell-Bolzmann
statistics for the electron gas.
Nowadays, most of physicists connect the Compton effect with the early vindication of
quantum ideas whereas many would associate it with the high-energy physics, but only
very few of them would link the phenomenon to studies on the electron momentum density
distributions.
Despite this situation, the Compton scattering is still a subject of interest for the solid state
physicists, Compton-scattering studies providing access to the electron momentum distri-
bution of the target (Cooper 1985 [30], Schülke 1991 [31]). A part of the present work is
an attempt to make the connection between electron momentum density and experimental
accessible Compton profiles more transparent.

1.2 Positron annihilation

Positrons entering a solid annihilate mainly by emitting two γ rays in nearly opposite di-
rections. The 2D-ACAR (two-dimensional angular correlation of the annihilation radia-
tion) measurements consist in detecting simultaneously the direction of the two γ photons.
The 2D-ACAR spectrum is proportional to the two-dimensional projection of the electron-
positron momentum density n2γ(~r). Thus a 2D-ACAR measurement contains information
on the electron and the positron wave functions, and on the positron-electron and electron-
electron correlations. Also, the positron annihilation is a successful method for Fermi sur-
face measurement in metallic systems.

1.3 Cr-chalcogenide systems

The system Cr-chalcogenide is a class of materials possessing metallic, half-metallic or semi-
conducting character dependent on the anion and on the ratio between Cr and chalcogen
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atoms. Also, Cr-chalcogenides may have ferromagnetic, antiferromagnetic or non-collinear
spin structure for different structures and compositions. The substitution of Ti or V for Cr
enlarge this class of materials and enable new properties, as spin-glass behaviour for Ti
substituted Cr5Te8. Also, the Te substitution for Se within an isostructural serial leads to
a significant change of interatomic distances between metal atoms. As a consequence, the
magnetic interaction between metal neighbours is weaker.
All these structural and compositional modifications for the Cr-chalcogenide systems in dis-
cussion within this thesis have been very precisely characterized by experimental measure-
ments performed by the group of Prof. W. Bensch from University of Kiel. The theoretical
investigations performed by us comes to support the interpretation of the experimental re-
sults and to enable the understanding of the different magnetic properties of individual
Cr-chalcogenide systems.

1.4 Scope of the work

First-principles investigations are performed in the framework of density functional the-
ory (DFT) within the local density approximation as implemented in the spin polarized
relativistic version of the Korringa-Kohn-Rostoker (SPR-KKR) band structure method. The
fundamentals of the density functional theory (DFT) which represent the basis of the self-
consistent band structure calculations, as well as the method to solve the Kohn-Sham-Dirac
equation based on the multiple scattering theory treating spin-orbit coupling and spin po-
larisation on an equal footing are presented in detail in Chapter 2. The coherent potential
approximation (CPA) used to deal with random substitutional alloys is presented also in
Chapter 2 .
The basics of the theoretical approach of the magnetic Compton profile is presented in Chap-
ter 3. The calculations of the directional magnetic Compton profile for the pure transitional
metals (Fe and Ni) is compared with the experimental data. The decomposition of the Fe
spectra into s, p and d-like contribution is accomplished. The anisotropic Compton profile
for the disordered alloy Ni-Co is calculated and the effect of the disorder in Fe3Pt systems
is discussed. The influence of spin-orbit coupling on the magnetic Compton profiles of Gd
and Y-Gd alloys is considered. Finally, the influence of the spin-orbit coupling and orbital
polarisation on the magnetic Compton profile of UFe2 is discussed in detail.
The theoretical approach for the electron-positron momentum density and the formalism
for calculating the two-dimensional angular correlation of the annihilation radiation (2D-
ACAR) is presented in Chapter 4. 2D-ACAR spectra for a pure transitional metal (V) is
compared with the experimental data and with LMTO calculations.
In Chapter 5, the connection between the composition, structural characteristics and mag-
netic properties in Cr-chalcogenide systems is discussed. Ground state band structure SPR-
KKR calculations have been performed in order to establish the magnetic moments and
magnetic phase stability for binary CrX (X = S, Se, Te) compounds and for CrSexTe1−x al-
loys. The magnetic moments and density of states in the non-stoichiometric Cr1+x(Te/Se)2
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compounds have been calculated. The preference of Cr for one crystallographic site in the
trigonal structure of the space group P 3̄m1 is explained using energetic arguments. The
influence of Ti substitution for Cr into Cr5Te8 on the structure and the magnetic properties
is discussed. The preferential site occupation of the metal atoms Ti and Cr is determined.
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Chapter 2

Theory

2.1 Density Functional Theory

In the last 30 years, many theoretical techniques were developed to describe the electronic
structure of condensed material using self-consistent first principles quantum-mechanical
methods.
One of the difficulties for a successful theoretical description of a given material arise from
electron-electron interaction. If one decides to ignore the effects of electron-electron interac-
tion, then the motion of each electron is described by a single-particle wave function. Thus
the ground state of the system could be written (Hartree Fock Theory) as a antisymmetric
product of one-electron wave functions. However in this way the properties of the con-
densed material cannot be described correctly. Therefore, one should include the effects of
the interaction between the electrons making some sensible approximations to enable one
to successfully model such a system.
Density Functional Theory (DFT) is a general theoretical framework which enable us to cal-
culate the ground state energy Eg of any condensed matter system consisting of electrons in
some external potential.
DFT was introduced in 1964 by Hohenberg and Kohn [32]. It is a theoretical tool that pro-
vides a general framework for the calculation of the ground state of an ensemble of atoms,
whose nuclei are fixed at specified positions, using the electronic density as a basic variable
of the total energy functional, which is written E[n(~r)]. The square brackets are the standard
way to indicate that a function depends on a function rather than a variable; in this case
energy is a function of electronic density n(~r) which vary with respect to ~r.
DFT differs from Hartree Fock theory, as it uses the electronic density rather than wave
functions as basic quantities to describe the properties of a material. DFT also includes both
exchange and correlation effects in a mean field sense, whereas Hartree Fock theory includes
exchange, but ignores correlation effects. DFT has also the advantage that it can be used ef-
ficiently for calculating the properties of systems that contains hundreds of particles - one
would not attempt to solve such a problem using Hartree-Fock-like methods.

19
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2.1.1 Non-relativistic Density Functional Theory

The development of the DFT enable a wide variety of systems to be described correctly by
this theory including systems with degenerate ground states, spin-polarised systems and
many others.
The Hamiltonian for a system of N interacting electrons can be written as:

Ĥ = T̂ + Û + V̂ = Ĥ0 + V̂ . (2.1)

In this equation, T̂ represents the kinetic energy of the electrons, Û represents their Coulomb
repulsion and V̂ is their interaction with an external field.
The ground state energy of the electronic system is:

Eg =< Ψ|Ĥ0 + V̂ |Ψ > . (2.2)

The electronic density is written as:

n(~r) =< Ψ|n̂(~r)|Ψ > (2.3)

where Ψ is the many-electron wave function representing the whole system. The operator
n̂(~r) represents the electronic density at point ~r. In terms of field operators for creation and
annihilation of particles this operator reads:

n̂(~r) =
∑

σ

Φ+
σ (~r)Φσ(~r) , (2.4)

where we sum over the particle spin σ. We can also write down the expression for the oper-
ators in Eq. (2.1) in terms of field operators:

Û =
1

2

e2

4πε0

∑

σ,σ′

∫ ∫

Φ+
σ (~r)Φ+

σ′(~r
′)

1

|~r − ~r ′|
Φσ′(~r ′)Φσ(~r)d3rd3r′ (2.5)

V̂ =
∑

σ

∫

vext(~r)Φ+
σ (~r)Φσ(~r)d3r (2.6)
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T̂ = −
~

2

2m

∑

σ

∫

∇Φ+
σ (~r)∇Φσ(~r)d3r . (2.7)

Eq. (2.5) represents the Coulomb repulsion between the electrons, the factor 1
2

outside oc-
curs because the summation for each pair is done twice. Eq. (2.6) represents the effect of the
external potential vext and (2.7) is the kinetic energy operator.
Nonrelativistic DFT is based on two statements, that were derived by Hohenberg and Kohn
[32] and that form the basic theorems for DFT:

1. All ground state properties of a system of N interacting electrons acted on by the same well
defined external potential vext(~r) can be expressed as a unique functionals of the density distri-
bution n(~r). In particular one has for the ground state energy:

Eg[n(~r)] =

∫

vext(~r)n(~r)d3r + F [n(~r)] . (2.8)

This first term in Eq. (2.8) describes the energy due to the interaction of the electrons with the
external potential vext and the second term describes the rest of the energy contributions of
the system. The energy functional F [n(~r)] is actually defined as the ground state expectation
value of the Hamiltonian Ĥ0, where Ĥ0 = T̂ + Û , with T̂ describing the kinetic energy of
electrons and Û describing the interactions between electrons, respectively.
It should be mentioned that the energy functional F [n(~r)] is a universal functional and this
implies that F [n(~r)] does not refer solely to a particular system, but is valid for any number
of particles in the system and for any external potential vext(~r).
It is convenient to separate the functional F [n(~r)] into two parts. The first term is the Hartree
energy EH [n(~r)] and the second is the unknown functional G[n(~r)], which is a universal
functional in the same manner as F [n(~r)].

F [n(~r)] = EH [n(~r)] + G[n(~r)] (2.9)

Furthermore, one may make the definition

G[n(~r)] = T0[n(~r)] + Exc[n(~r)] (2.10)

where T0[n(~r)] is the kinetic energy of a system of non-interacting electrons in the ground
state with density distribution n(~r) and the only unknown is the so-called exchange -corre-
lation energy Exc[n(~r)] and thus an approximation for this has to be made. The exchange-
correlation energy is defined as the part of energy F [n(~r)] not included in EH [n(~r)] nor in
T0[n(~r)]. The physical origin for this term is the fact that electrons tend to avoid each other
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as a consequence of the Pauli exclusion principle and Coulomb repulsion.
Under the previous suppositions, the expression for the ground state energy reads as :

Eg[n(~r)] =

∫

vext(~r)n(~r)d3r + EH [n(~r)] + T0[n(~r)] + Exc[n(~r)]

=

∫

vext(~r)n(~r)d3r +
1

2

e2

4πε0

∫ ∫
n(~r)n(~r ′)

|~r − ~r ′|
d3rd3r′

+ T0[n(~r)] + Exc[n(~r)] . (2.11)

To deal with this expression for the ground state energy one can make use of the second
theorem of DFT:

2. The ground state energy associated with a given external potential is found by minimizing the
total energy functional with respect to changes in the electron density while the number of par-
ticles is held fixed. The density that yields the minimum total energy is the ground state density.

Next we need to perform the minimization of the total energy. The number of electrons N
in our system does not change and we can write:

K[n(~r)] =

∫

n(~r)d3r = N . (2.12)

To solve the minimization problem the Lagrange multiplier method is used. According to
this method, K[n(~r)] is multiplied by the unknown Lagrange multiplier µ (which must have
the unit of energy) and subtracts it from the total energy functional. The result is written as:

E[n(~r)] − µK[n(~r)] = T0[n(~r)] +
1

2

e2

4πε0

∫ ∫
n(~r)n(~r ′)

|~r − ~r ′|
d3rd3r′ +

∫

n(~r)vext(~r)d3r +

Exc[n(~r)] − µ

∫

n(~r)d3r . (2.13)

Minimizing this functional with respect to the electronic density distribution n(~r), one is
now able to determine µ from the conservation of particles constraint, K[n(~r)], for a given
electron density distribution. Taking an infinitesimal variation of Eq. (2.8) and setting the
resultant expression equal to zero, we end up with:

∫

δn(~r)
[

vext(~r) +
δT0[n(~r)]

δn(~r)
+

1

2

e2

4πε0

∫
n(~r ′)

|~r − ~r ′|
d3r ′ +

δExc[n(~r)]

δn(~r)
− µ

]

d3r = 0 . (2.14)
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Eq. (2.14) should be valid for an arbitrary variation in density δn(~r) and this can only be
true if the expression between the brackets is zero. The extremal nGS , which is the ground
state density for the energy functional is obtained when:

µ = vext(~r) +
δT0[n(~r)]

δn(~r)
+

1

2

e2

4πε0

∫
n(~r ′)

|~r − ~r ′|
d3r ′ +

δExc[n(~r)]

δn(~r)
. (2.15)

This Euler equation for an interacting system of electrons seems to be not very helpful to
get nGS(~r), because of the unknown quantities µ and Exc(~r). To solve the problem, one
make the following supposition using quantum mechanical theory: for a non-interacting
electronic system, EH [n(~r)] = Exc[n(~r)] = 0, so Eq. (2.15) becomes:

vext(~r) +
δT0[n(~r)]

δn(~r)
= µ (2.16)

If we use the notation:

veff (~r) = vext(~r) +
1

2

e2

4πε0

∫
n(~r ′)

|~r − ~r ′|
d3r ′ +

δExc[n(~r)]

δn(~r)
(2.17)

we get

veff (~r) +
δT0[n(~r)]

δn(~r)
= µ (2.18)

and one can notice that the Euler equations for an interacting system and that of a non-
interacting gas are formally identical. Assuming that there is a method to obtain the effec-
tive potential veff (~r), one is now able to determine the ground state of an interacting system
using similar techniques to that for determining the ground state of a non-interacting sys-
tem acted on by the external potential vext(~r).
For this system, the many body Schrödinger equation can be reduced by separation of vari-
ables to N single-particle Schrödinger equations and the many body wave function is a
product of single-particle wave functions. Accordingly we can write the Schrödinger equa-
tion for each electron individually:

[

−
~

2

2m
∇2 + vext(~r)

]

Ψi = εiΨi . (2.19)

Using the defined effective potential from Eq. (2.17), the Schrödinger equation for our inter-
acting electronic system is formally identical:

[

−
~

2

2m
∇2 + veff (~r)

]

Ψi = εiΨi . (2.20)
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The Schrödinger-like equation containing veff is the so-called the Kohn-Sham equation and
Ψi are Kohn-Sham orbitals. Ψi and εi are not the wave function and the corresponding
energy for real electrons and because of this they don’t have any physical meaning. Ψi

and εi are simply auxiliary quantities for calculating n(~r) and the total energy using the
expression:

n(~r) =
N∑

i=1

|Ψi(~r)|
2 . (2.21)

The eigenvalues εi can also be used to express the total energy associated with the set of
one-electron equations (see Eq. (2.20)):

N∑

i=1

εi = T0[n(~r)] +

∫

veff (~r)n(~r)d3r

= T0[n(~r)] +

∫

vext(~r)n(~r)d3r +
e2

4πε0

∫ ∫
n(~r)n(~r ′)

|~r − ~r ′|
d3rd3r′

+

∫
δExc[n(~r)]

δn(~r)
n(~r)d3r . (2.22)

If we substitute T [n(~r)] from Eq. (2.22) into Eq. (2.11) we get:

Eg[n(~r)] =
N∑

i=1

εi−
1

2

e2

4πε0

∫ ∫
n(~r)n(~r ′)

|~r − ~r ′|
d3rd3r′−

∫
δExc[n(~r)]

δn(~r)
n(~r)d3r+Exc[n(~r)] .(2.23)

Let’s assume we have an adequate approximation for Exc. Then we have a set of self consis-
tent equations to solve. The starting point is to make a guess for the effective potential in Eq.
(2.17). Using this effective potential one can solve the Kohn Sham Eq. (2.20) using standard
single-particle theory (see refs. [33], [34]). The resulting Ψi is used to calculate n(~r) by Eq.
(2.21). The density n(~r) is re-used to calculate, by Eq. (2.17), the potential veff . We continue
going round this loop until the potential at one iteration is the same (within a required accu-
racy) with the potential coming from the previous iteration and we get at the final veff . The
eigenfunctions εi obtained solving the Kohn-Sham Eq. (2.20) with this effective potential are
used to calculate the total energy Eg[n(~r)] from Eq. (2.23).
This formalism is equally applicable to bosons and fermions, the exchange-correlation en-
ergy is that which takes the statistics into account.
In the formalism presented above, all the terms except the exchange-correlation energy are
treated exactly. The critical problem of DFT is to use an appropriate approximation for the
exchange-correlation energy, because for solid state systems, except for the case of a uni-
form electron gas, the explicit form is not known. Due to the Coulomb repulsion, one may
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think that there is a region of depleted charge surrounding each electron. At a given point
~r ′ the density depletion associated with the electron located at ~r is nh(~r, ~r ′). The exchange-
correlation hole must contain a unit charge, i.e., the sum-rule

∫

nh(~r, ~r ′)d3r′ = −1 (2.24)

must be satisfied.
The derivation of the exchange-correlation energy Exc[n(~r)] can be done using a method
known as adiabatic connection [35, 36, 37]. The basic concept is that while keeping the den-
sity fixed, the non-interacting system is connected to the interacting system via a coupling
constant λ, which represent the strength of the electron-electron interaction. λ = 0 implies
the non-interacting system and λ = 1 is the fully interacting system. Using this method, the
exchange-correlation functional can be written as:

Exc[n(~r)] =
1

2

e2

4πε0

∫

n(~r)d3r

∫
nh(~r, ~r ′)

|~r − ~r ′|
d3r′ . (2.25)

The exchange-correlation hole nh(~r, ~r ′) is actually averaged over a coupling constant depen-
dent hole nh

λ(~r, ~r
′):

nh(~r, ~r ′) =

∫ 1

0

nh
λ(~r, ~r

′)dλ . (2.26)

A useful quantity to define from Eq. (2.25) is the exchange-correlation energy per particle
εxc(n(~r)), otherwise known as energy density:

εxc(n(~r)) =
1

2

∫
nh(~r, ~r ′)

|~r − ~r ′|
d3~r ′ . (2.27)

Simply said, the electronic many body problem would be solved if nh(~r, ~r ′) were known
exactly in analytic form.
Because of the isotropic nature of the Coulomb interaction, the exchange-correlation func-
tion can be evaluated using exact wave functions and it can be shown that, although the hole
may be strongly non-spherical, the only contributing parts to the total exchange-correlation
energy are the spherical ones, due to the fact that the non-spherical terms average out to
zero.

The most used approximation method to calculate the exchange-correlation energy is called
Local Density Approximation (LDA). In LDA, a slowly varying electron density distribution
is supposed. The exchange-correlation energy of an electronic system is constructed by
assuming that the exchange-correlation energy per electron at a point ~r in the electron gas,
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is equal to the exchange-correlation energy per electron in a homogeneous electron gas that
has the same electron density at the point ~r. It follows that

Exc[n(~r)] ≈

∫

n(~r)εxc(n(~r))d3r . (2.28)

The physical meaning of this formula is the following: in performing an integral we divide
the volume up into infinitesimal volumes and sum all their contribution to the integral. Here
the assumption is made that in each infinitesimal volume the density is constant and hence
the exchange-correlation energy will approximately take on the value for the homogeneous
electron gas in that infinitesimal volume.
The LDA approximation is exact for two extreme cases: slowly varying charge densities and
high electron densities, but in spite of some famous failures, it was found that the LDA pro-
duces surprisingly good results for a wide class of systems with rapidly varying densities.
If the spin degrees of freedom are taken into account, von Barth and Hedin [38] established
a straightforward generalization of the Hohenberg-Kohn theorem, founding so-called spin-
density functional theory (SDFT). Within this approach it was assumed that the external
field couples only to the spin degree of freedom which leads to the additional potential term
in the Hamiltonian

µB

∫

~Bext(~r) ~̂m(~r)d3r (2.29)

with Bext, the external magnetic field and ~̂m(~r) the spin density operator

~̂m(~r) =
∑

α,β

Φ+
α (~r)~σαβΦβ(~r) (2.30)

and ~σαβ , the vector of Pauli matrices.
The energy functional depends now not only on the particle density n(~r) but also on the
spin density ~m(~r). If the external magnetic field Bext and the quantization axis point along
the z direction everywhere, one has to consider only the z projection mz of the spin density
and the particle density n as independent variables in the energy functional

Eg[n(~r,mz(~r)] = F [n(~r),mz(~r)] +

∫

[vext(~r)n(~r) − µBBz(~r)mz(~r)]d
3r . (2.31)

Using the notation n+ and n− for the spin-projected particle densities, we can write the spin
and particle densities as

m(~r) = n+(~r) − n−(~r) (2.32)

n(~r) = n+(~r) + n−(~r) (2.33)
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and one can generalize the Kohn-Sham Eq. (2.20) for each spin σ in the following way:

(−~∇2 + V σ(~r))Φσ
i (~r) = εσ

i (~r) . (2.34)

The effective spin-dependent potential used in this equation is

V σ = Vext + VH + V σ
xc + σBext , (2.35)

with the exchange-correlation potential

V σ
xc(~r) =

∂Exc[n
+, n−]

∂nσ(~r)
. (2.36)

Doing some transformations, one can set up the new independent potentials:

Vxc(~r) =
1

2
(V +

xc(~r) + V −
xc(~r)) =

∂Exc[n,m]

∂n(~r)
(2.37)

Bxc(~r) =
1

2
(V +

xc(~r) − V −
xc(~r)) =

∂Exc[n,m]

∂m(~r)
(2.38)

and re-write the spin-dependent potential as:

V σ = Vext + VH + Vxc + σBeff (2.39)

with Beff = Bext + Bxc. Clearly, due to the definition of Beff , there may exist a magnetic
solution for zero external field strength. If such a solution exists, it may have a lower energy
than the non-magnetic case and the theory may predict magnetic ordering.
Similar with the DFT, a crucial point in SDFT is to supply a reasonable approximation for
the exchange-correlation energy. Using the same justification like in the case of LDA, the
most used approximation in the spin-dependent case has the form:

Exc[n(~r),mz(~r)] =

∫

n(~r)εxc[n,m]d~r , (2.40)

where εxc[n,m] is the correlation energy of a homogeneous spin polarized electron gas.
Parametrizations for εxc[n,m] can be found in the work of v. Barth and Hedin [38], Gunnars-
son and Lundqvist [39], Vosko, Wilk and Nusair [40], Perdew and Zunger [41], respectively.
The LSDA provides a realistic description of the structural properties, elastic and vibrational
properties for both solids and molecules, but for certain systems the LSDA has a strong ten-
dency to over-binding.
The Generalized Gradient Approximation (GGA) for the exchange-correlation energy im-
proved upon the Local Spin Density Approximation (LSDA) description of atoms, molecules
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and solids ([42, 43, 44, 45, 46]). In the Generalized Gradient Approximation (GGA) the gra-
dient is included as a new variable and one tries to determine the best scheme that fulfills
the relation:

EGGA
xc [n(~r)] =

∫

d3rf(n+, n−,∇n+,∇n−)n(~r) . (2.41)

There are many parametrizations for the exchange and correlation functionals, among the
most known one should mention the PW91 [47, 48] exchange and correlation functional,
which was constructed by introducing a real-space cut-off of the spurious long-range part
of the density-gradient expansion for the exchange-correlation hole. The cut-off procedure
was designed in such a way that as many as possible of the known features of the exact
exchange and correlation energy were obeyed.
It has later been discovered that there are some unphysical wiggles in the PW91 exchange-
correlation potential for small and large reduced density gradients. There are also quite
many parameters in the PW91 functional, and it has been found that more features of the
exchange-correlation energy exist than those satisfied by the PW91 parametrization.
To remedy the weakness of the PW91 functional the Perdew-Burke-Ernzerhof (PBE) func-
tional has been constructed [49, 50]. This is today the most used GGA functional. The second
order expansion for slowly varying or small density variations is fulfilled, as in the case of
PW91, but this constraint has been relaxed in the PBE functional to give a better description
of the linear response limit.
In the GGA, the appropriate exchange energy form for slowly varying densities is

EGGA
x [n(~r)] ≈

∫

n(~r)εGGA
x (n(~r), s(~r))d3r ≈

∫

n(~r)εLDA
x (n(~r))F GGA

x (s(~r)) (2.42)

where the variable s is the reduced density gradient, given by the formula:

s(n(~r)) =
∇n(~r)

2kF n(~r)
(2.43)

and kF is defined by n(~r) =
k3

F

3π2 .
The functional present in Eq. (2.41), F GGA

x (s(~r)), is the exchange enhancement function of
the GGA and in the case of PBE it is given by

F PBE
x = 1 + κ −

κ

1 + µs2/κ
(2.44)

where, as before, s is the reduced density gradient and the constants µ = 0.2195 and κ =
0.804 are chosen in such a way, that the gradient expansion around s = 0 should give the
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correct linear response of the homogeneous electron gas, and the local Lieb-Oxford bound
[51]:

EPBE
x [n+, n−] ≥ Exc[n

+, n−] (2.45)

≥ −1.679e2

∫

d3rn(~r)4/3

should be satisfied.
The PBE functional is often called as a ’first principles’ functional, because it is constructed
from known limits of the homogeneous electron gas and scaling relations. Furthermore, it
doesn’t contain any parameters, which are not either fundamental constants or determined
to satisfy some specific quantum mechanical boundary conditions. It should however be
noted that except for the high and low gradient constraints (linear response of homogeneous
electron gas and Lieb-Oxford bound) the exchange enhancement function is not restricted.
The GGA has the same problems as LDA in calculating properties like densities of states
(DOS), band structures or photo-emission spectra. Even the correct density functional will
not describe these properties exactly. It is beyond the DFT to calculate properties other than
ground state energy and (spin polarized) charge density. In practice LDA gives reasonably
good optical spectra and band structures are looking as expected in many cases, but there
are exceptions. For example, the strongly correlated system La2CuO4 is predicted to be a
metal while in reality it is an insulator. Also in line with this, band-gaps calculated with
GGA or LDA are smaller than the observed values.

2.1.2 Relativistic Density Functional Theory

In the previous section, an explicit form of the Hamiltonian was not specified, so this means
that relativistic effects can be included through various correction terms, like the inclusion
of the rest mass effect or spin-orbit coupling, in this formalism.
Nevertheless, not all the phenomena can get this way an appropriate treatment. Many phe-
nomena appearing in magnetic materials are intrinsically of relativistic origin and because
of that, they require an adapted fully relativistic version of DFT.
The first of such a description was made by Rajagopal and Callaway [52]. They generalized
the Kohn-Hohenberg-Sham description for the non-relativistic inhomogeneous fermion gas,
with spin effects included. A further development of this model was done later by Ra-
jagopal (1978) [53], Ramana and Rajagopal (1979) [54] and separately, by McDonald and
Vosko (1979) [55].
The interaction of the external magnetic field ~Bext(~r) = ~∇ × ~Aext with the electronic sys-
tem is included in the Hamiltonian through the coupling of the Dirac current to the vector
potential ~Aext:

Ĥ = T̂ + Û + V̂ − e

∫

Ĵ(~r) ~Aext(~r)d
3r . (2.46)
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Here the Dirac electronic system is described using four-vector notation, so the scalar po-
tential and the vector potential are combined to get the following expression for the external
potential:

Aµ
ext(~r) = (

1

ec
vext, ~Aext(~r)) . (2.47)

The four-current electron density distribution has the expression:

Jµ(~r) = (cn(~r), ~J(~r)) . (2.48)

These four components of Jµ(~r) must satisfy the continuity equation, ensuring that the
charge within the system is conserved, so the four components of the vector are not all
independent of one other:

δJµ(~r)

∂xµ

= 0 = ∇ ~J(~r) +
δn(~r)

∂t
. (2.49)

The operatorial form of this vector is:

ˆ~J(~r) = cϕ+(~r)~αϕ(~r) , (2.50)

where c is the speed of light, ϕ+(~r) and ϕ(~r) are Dirac field operators and ~α is the 4x4 Dirac
matrix

~α =

(
0 ~σ
~σ 0

)

. (2.51)

The energy operators which enter in the Eq. (2.46) are similar with those used in the non-
relativistic version of DFT ( Eqs. (2.5), (2.6) and (2.7))

Û =
1

2

e2

4πε0

∫ ∫

ϕ+(~r)ϕ+(~r ′)
1

|~r − ~r ′|
ϕ(~r ′)ϕ(~r)d3rd3r′ (2.52)

V̂ =

∫

vext(~r)ϕ+(~r)ϕ(~r)d3r (2.53)

T̂ =

∫

ϕ+(~r)(c~α~p + βmc2)ϕ(~r)d3r (2.54)

where β is a 4×4 Dirac matrix (I2 -the 2×2 identity matrix):

β =

(
I2 0
0 −I2

)

. (2.55)
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The Kohn Hohenberg theorems were changed to describe the properties of the total energy
functional W [Jµ(~r)] of a system of relativistic electrons:
• The total energy per unit volume of a system described by Hamiltonian from Eq. (2.46) can be
written as a functional of the expectation value of the four-current density

W [Jµ(~r)] = T [Jµ(~r)] + G[Jµ(~r)] + e

∫

Jµ(~r)Aµ(~r)d3r . (2.56)

Here T [Jµ(~r)] =< Φ|T̂ |Φ > is the relativistic kinetic energy of a system of non-interacting
electrons, with the rest mass energy included and G[Jµ(~r)] =< Φ|Û |Φ > is the internal
potential energy of the system. Making use of the Lagrange multiplier method one can get

δW [Jµ(~r)] =

∫

δJµ(~r)
[ δT (~r)

δJµ(~r)
+

δG(~r)

δJµ(~r)
+ eAµ

ext − ωµ

]

d3r = 0 . (2.57)

δJµ(~r) is an arbitrary small change in Jµ(~r) so the quantity between the brackets must be
zero to fulfill this condition:

δT (~r)

δJµ(~r)
+

δG(~r)

δJµ(~r)
+ eAµ

ext = ωµ . (2.58)

Furthermore, this relation can be arranged in such a way to look similar with that for non-
interacting electronic system, introducing the effective potential:

Aµ
eff [J

µ(~r)] = eAµ
ext +

1

e

δG(~r)

δJµ(~r)
, (2.59)

which can be split into effective scalar and vectorial potentials:

veff = vext +
δG(~r)

δn(~r)
(2.60)

and

~Aeff = ~Aext +
1

e

δG(~r)

δ ~J(~r)
. (2.61)

For getting the effective potential, the following internal energy functional expression is
used:

G[Jµ(~r)] =
1

2

e2

4πε0

∫ ∫
n(~r)n(~r ′)

|~r − ~r ′|
d3rd3r′

−
1

2

e2

4πε0c2

∫ ∫
J(~r)J(~r ′)

|~r − ~r ′|
d3rd3r′ + Exc[J

µ(~r)] (2.62)
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Now one can make use of the second Kohn-Hohenberg statement, adapted for the relativis-
tic case:
•The non-degenerate ground state of an inhomogeneous interacting system of N relativistic electrons
can be described by a set of N single particle effective Dirac equations with a suitable defined single
particle-like scalar and vector potential.
The effective single-particle Kohn-Sham-Dirac equation obtained looks as:

(

cα(p̂ − e ~Aeff (~r)) + βmc2 + veff (~r)
)

Ψi(~r) = wiΨi(~r) . (2.63)

One needs to start with a reasonable guess for the exchange-correlation energy Exc[n(~r, ~J(~r)]
which is evaluated by means of relativistic quantum Monte-Carlo calculations. The second
step is to get the effective potentials (using Eq. (2.62) and then Eqs. (2.60) and (2.61)) which
will be inserted in the Kohn-Sham-Dirac equation. Solving this equation and getting wi and
Φi will enable us to calculate the new electronic and current densities:

n(~r) =
N∑

i=1

Ψ+
i (~r)Ψi(~r) (2.64)

and

~J(~r) = c
N∑

i=1

Ψ+
i (~r)αΨi(~r) (2.65)

respectively, which will enter in the next loop. One ends up this loop with a self-consistent
determined effective potential and electronic current densities. Those will be used to deter-
mine the total energy through the formula:

W [n(~r), ~J(~r)] =
N∑

i=1

wi −
1

2

e2

4πε0

∫ ∫
n(~r)n(~r ′)

|~r − ~r ′|
d3rd3r′ + Exc[J

µ(~r)]

−
1

2

e2

4πε0c2

∫ ∫
J(~r)J(~r ′)

|~r − ~r ′|
d3rd3r ′ −

∫
δExc[n(~r), ~J(~r))]

δn(~r)
n(~r)d3r

−

∫
δExc[n(~r), ~J(~r))]

δ ~J(~r)
~J(~r)d3r . (2.66)

It should be emphasized that this equation doesn’t contain the vector potential ~A and the
current density ~J has no explicitly dependence on the vector potential.
The exchange-correlation energy poses the most severe problem as this term include the
current-current interactions. The relativistic exchange-correlation functional, Exc[Jµ(~r)] has
to include all the magnetic exchange-correlation effects which are intrinsically relativistic in
nature, like the retardation of the Coulomb interaction between electrons and the magnetic
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interaction between moving electrons, through its dependence on the spatial components
of current. In principle, the exchange-correlation energy can be calculated from the solution
of the self-consistent set of Kohn-Sham equations together with the expression for the total
energy functional but in practice this implementation is done using several approximations,
not unlike the non-relativistic Local Density Approximation (see [37]).
Such an alternative method of taking relativistic effects into account in DFT has been de-
veloped by Rajagopal and Callaway(1973) [52] and emphasized by MacDonald and Vosko
(1979) [55]. Using this approach, one is able to derive equations that look more like the fa-
miliar non-relativistic DFT for magnetic systems.
Performing a Gordon decomposition of the current density, one is able to separate its orbital
and spin parts, leading to a fully relativistic version of SDFT described above. Ignoring the
diamagnetic effects, i.e. neglecting the terms in ~Aext(~r) and assuming that the orbital cur-
rents are also negligible, the coupling of the spin part of the current to the vector potential
~Aext(~r) can be described by a term analogous to that in Eq. (2.31)

µB ~m(~r) · ~Beff (~r) (2.67)

with the spin magnetisation defined by:

~m(~r) =
∑

i

Φ†
i (~r)β~σΦi(~r) . (2.68)

As in the SDFT, the quantization axis is chosen to be the z direction. Under these supposi-
tions, one gets the approximate Kohn-Sham-Dirac equation

[

ic~~α∇ + βmc2 + veff + µBσzBeff (~r)
]

Φi(~r) = wiΦi(~r) (2.69)

with the effective scalar potential veff (~r) and the effective magnetic field Beff (~r) given by
the following expressions:

veff (~r) = vext(~r) +
e2

4πε0

∫
n(~r ′)

|~r − ~r ′|
+

δExc[n(~r),m(~r)]

δn(~r)
(2.70)

Beff = Bext +
δExc[n(~r),m(~r)]

δm(~r)
. (2.71)

In this way, ignoring the orbital current density contribution, one arrives at a Kohn-Sham-
Dirac equation completely analogous to the non-relativistic SDFT Schrödinger equation
(2.31). It should be emphasized that this relativistic DFT approach is derived as a first princi-
ple framework to calculate the properties of condensed mater with internal magnetic effects.
However, the implementation of this theory is a complex problem. An adequate method for
this implementation will be presented in the following.
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2.2 Korringa-Kohn-Rostoker Green’s Function Method

In the previous chapter it was shown how the many-body problem can be reduced using
DFT to that of single particles moving independently in an effective field that describes
all the interactions with the surrounding electrons and nuclei. One has to choose now an
appropriate numerical band-structure method in order to perform a quantitative ab-initio
description of the electronic structure of the crystal on the basis of the Kohn-Sham scheme.
The basis of all calculations done within this thesis is multiple scattering theory. When
applied to ordered solids, multiple scattering theory leads to the so-called Korringa-Kohn-
Rostoker band theory method. This theory was first derived by Korringa [56, 57] and, in-
dependently, a bit later by Kohn and Rostoker [58]. Unlike most other methods, the KKR
aims to calculate the so-called ’single-particle Green’s function(GF)’ instead of the electronic
wave functions and energy eigenvalues of the crystal. As will be shown later, knowledge of
the Green’s function is enough to calculate all single-particle expectation values of a crystal
like particle densities or other quantities important in condensed matter physics, such as
densities of states and magnetic moments.
It should also be emphasized that the KKR method produces equations that can be used for
the first-principle calculations in a manner that is very efficient from a computational point
of view and it has the very appealing advantage that it can be easy generalized to deal with
disordered alloys as well as periodic solids.
Between those who brought important contributions to the KKR-GF method, should be
mentioned Faulkner [59, 60], Faulkner and Stocks [61], Györffy and Stocks [62], Stocks,
Temmerman and Györffy [63], Gonis [64, 65, 66], Dederichs et al. [67] and for relativistic
treatment, Strange et al. [68], Weinberger [69], Strange [37] and Ebert [70, 71, 72, 73].
The basic idea of KKR is that an incident wave function to any given site is a superposition of
the outgoing ones from all the other sites. In order to determine the Green’s function of the
system at a fixed energy, the first task is to determine the wave functions and the so-called
t-matrix which describes the scattering on each individual atomic scatterer characterized by
non-overlapping, spatially bounded potentials. Further one has to construct the so-called
T-matrix in order to reproduce the scattering in the whole crystal. Using the appropriate
Dyson equation, the atomic t-matrices and the structure constants G which depend only on
the crystal structure can be combined to construct the so-called scattering path operator τ .
This scattering path operator describes all possible scattering events for a single electron on
its way between two individual scattering centers and because of this is a central quantity
to construct the Green’s function for the whole system.
Because much of the scattering theory is written in terms of the Green’s function, the fol-
lowing section will be devoted to introduce this very useful mathematical instrument and
to indicate some of its most characteristic features and uses.
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2.2.1 Green’s Function

Let’s consider the following eigenvalue problem, where Ĥ0(~r) is a general Hermitian oper-
ator:

Ĥ0(~r)Φ(~r) = EΦ(~r) . (2.72)

The Green’s function associated to this Hamiltonian equation is defined by

[E − Ĥ0(~r)]G0(~r, ~r
′, E) = δ(~r − ~r ′) . (2.73)

Here it must be noticed that G(~r, ~r ′, E) must fulfill the same boundary conditions as the
solution of Eq. (2.72), Φ(~r).
The Green’s function can be expressed through the eigenvalues En and eigenfunctions Φn(~r)

of the Hamiltonian Ĥ0(~r). Assuming a complete set of orthonormal wavefunctions with the
property

∑

n

Φn(~r)Φ†
n(~r ′) = δ(~r − ~r ′) (2.74)

the spectral representation of the Green’s function is given by:

G0(~r, ~r
′, E) =

∑

n

Φn(~r)Φ†
n(~r ′)

E − En

. (2.75)

One has to notice that the energy integral of the Green’s function is not defined at real en-
ergies because of the singularities at En and has to be evaluated as a contour integral. In
order to define the Green’s operator for each real energy, it is necessary to specify a limiting
procedure for the parameter E. For this reason, the so-called retarded (-) and advanced (+)
Green’s functions are introduced:

G±(~r, ~r ′, E) = lim
ε→0

∑

n

Φn(~r)Φ†
n(~r ′)

E − En ± iε
. (2.76)

Those two operators are connected through the following relation:

G+(~r, ~r ′, E) = G−(~r ′, ~r, E)† (2.77)

The Green’s function is used in scattering theory as a method of solving inhomogeneous
differential equations. The solution of the equation:

(Ĥ0(~r) + V (~r))Ψ(~r) = EΨ(~r) (2.78)
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where E is an eigenvalue of the Hamiltonian Ĥ0(~r), can be written as

Ψ(~r, E) = Φ(~r, E) +

∫

G0(~r, ~r
′, E)V (~r ′)Ψ(~r ′, E)d3r′ . (2.79)

This equation is called Lippman-Schwinger equation and Φ(~r, E) is an eigenvector of the
operator Ĥ0. Analogously, the Green’s function of a perturbed system is connected to the
Green’s function of the unperturbed system by the so-called Dyson equation:

G(~r, ~r ′, E) = G0(~r, ~r
′, E) +

∫

G0(~r, ~r
′′, E)V (~r ′′)G(~r ′′, ~r ′, E)d3r′′ . (2.80)

We can use this equation to approximate the Green function for the perturbed system, sub-
stituting G(~r ′′, ~r ′, E) back into this equation and keeping only the n first terms. This kind of
approximation is called Born approximation of nth order.
A very useful quantity defined in scattering theory is the so-called T-operator. The matrix
of this operator is defined in many ways. Two equivalent definitions are:

V (~r)G(~r, ~r ′, E) =

∫

T (~r, ~r2, E)G0(~r2, ~r
′, E)d3r2 (2.81)

G(~r, ~r ′, E)V (~r ′) =

∫

G0(~r, ~r2, E)T (~r2, ~r
′, E)d3r2 (2.82)

Substitution of the first of these expressions into the Dyson equation gives:

G(~r, ~r ′, E) = G0(~r, ~r
′, E) +

∫ ∫

G0(~r, ~r1, E)T (~r1, r2, E)G0(~r2, ~r
′, E)d3r1d

3r2 (2.83)

This equation connect via the T-operator the free-particle Green’s function to the full scat-
tering Green’s function and describes all possible scattering in the system. The Dyson-type
equation for the T-matrix can be written also as follows:

T (~r, r′, E) = V (~r)δ(~r − ~r ′) +

∫

V (~r)G0(~r, ~r1, E)T (~r1, ~r
′, E)d3r1 . (2.84)

2.2.2 The Calculation of Observables

The Green’s function contains all physical relevant informations about an electronic system
and can be used directly to calculate many observable quantities straightforwardly. We will
show in this section how the density of states, charge density or magnetic moments can be
calculated.
The starting point will be the retarded Green’s function formula (2.76), where Φn and En are
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the eigenfunction and eigenvalues of the Hamiltonian. If one can let ~r and ~r ′ to be in the
same atomic cell, one has the site-diagonal Green’s function. Taking the trace of both sides
of the formula and integrating over ~r we have:

∫

TrG+(~r, ~r ′, E)d3r = lim
ε→0

∑

n

1

E − En + iε
(2.85)

where the normalization condition
∫

Φ†
n(~r)Φn(~r)d3r = 1 (2.86)

was taken into account. Making use now on the following identity

lim
ε→0

1

x − a + iε
=

1

x − a
− iπδ(x − a) (2.87)

we can write

−
1

π
=

∫

TrG+(~r, ~r ′, E)d3r =
∑

n

δ(E − En) . (2.88)

The right side of the previous equation is clearly the density of states, because

∫ E+∆E

E

∑

n

δ(E − En)dE = N , (2.89)

where N is the number of states between E and E +∆E. Therefore we can write the follow-
ing simple expression for the density of states in terms of the Green’s function:

n(E) = −
1

π
=

∫

TrG+(~r, ~r ′, E)d3r (2.90)

and the number of states below energy Emax as

N(Emax) = −
1

π
=

∫ Emax

−∞

∫

TrG+(~r, ~r ′, E)d3r . (2.91)

To calculate the charge density, we consider the following expression for this quantity:

ρ(~r) = e
occ∑

n

Φ†
n(~r)Φn(~r) (2.92)
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where the summation extends over all occupied states. Combining this expression with
retarded Green’s function expression (2.76), putting then ~r = ~r ′ and integrating over the
energy up to the highest occupied state at the Fermi level EF , gives

∫ EF

−∞

TrG+(~r, ~r ′, E)dE = lim
ε→0

∑

n

∫ EF

−∞

Tr
Φn(~r)Φ†

n(~r ′)

E − En + iε
dE

= lim
ε→0

∑

n

Tr{Φn(~r)Φ†
n(~r ′)}

∫ EF

−∞

1

E − En + iε
dE

=
∑

n

Φn(~r)Φ†
n(~r)

∫ EF

−∞

(
1

E − En

− iπδ(E − En)

)

dE (2.93)

where under the trace, the order of Φn and Φ†
n can be reversed. If we take the imaginary part

of each side and take into account the integration of the δ-function over the specified range
change the summation of all states to all occupied states, we can write the final expression
for the charge density as follows:

ρ(~r) = −
e

π
=

∫ EF

−∞

TrG+(~r, ~r, E)dE . (2.94)

Another quantity of interest is the spin magnetization density, given by:

~m(~r) = −

occ∑

n

Φn(~r)β~σΦ†
n(~r) . (2.95)

Similar to the previous derivation, we obtain the following expression for this quantity:

~m(~r) =
1

π
=

∫ EF

Trβ~σG(~r, ~r, E)dE , (2.96)

where the trace includes the spin. One can get the spin magnetic moment performing the
integral over ~r:

mspin =
1

π
= Tr

∫ EF

dE

∫

Ω

βσ̂zG(~r, ~r, E)d3r (2.97)

The magnetic moment at a site, coming from the orbital motion of electrons, the so called
orbital magnetic moment, can be expressed in an analogous way as

morb =
1

π
=Tr

∫ EF

dE

∫

Ω

βl̂zG(~r, ~r, E)d3r . (2.98)
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The probability that an electron in the solid will have a momentum ~p and an energy E is
given by the spectral density function,

A(E, ~p) = −
1

π

∫ EF

−∞

=G(~p, ~p, E)dE . (2.99)

The function G(~p, ~p ′, E) that appears in this expression is the double Fourier transform of
G(~r, ~r ′, E), written as

G(~p, ~p ′, E) =
1

NΩ

∫ ∫

exp
(

i(~p~r − ~p ′~r ′)
)

G(~r, ~r ′, E)d3rd3r′ . (2.100)

The spectral density A(E, ~p) is very useful for interpreting the results of positron annihila-
tion experiments, but can also be connected with momentum densities, constructed from
magnetic Compton scattering experiments.

2.2.3 The single-site scattering

The first step in a first-principles study of magnetic and relativistic effects in metals and al-
loys using the KKR-GF method is to get the solutions of the Kohn-Sham-Dirac equations for
an individual scattering center. For that purpose Strange et al. [74] investigated the associ-
ated Lippman-Schwinger equation and derived a set of radial differential equations for the
single-site solutions.
Before one begins to delve into the details of scattering theory, it is useful to examine the
physical properties of the scattering potential. The overall potential of the material can be
thought of as being composed of individual smoothly varying single-site potentials centred
on each lattice site. As one is dealing with close packed systems, it is reasonable to assume
that the potential centred on each individual lattice site can be taken to be spherical sym-
metric around this lattice point. This assumption allowed us to use the so-called muffin-tin
construction for the effective potential: the space is divided into non-overlapping at most
touching spheres centered at each atom-site. The potential is supposed to be symmetric
inside this so-called muffin-tin sphere and to have a constant value between the bounding
spheres. For convenience, this constant value of the potential in the so-called interstitial re-
gion is often chosen to be the origin of the energy scale. The expression of the potential can
be written as:

Vn(~r − ~Rn) = Vn(~rn) =

{
Vn(rn) if |~rn| < rn

mt

0 otherwise (2.101)

For a system which is subject to a magnetic field, one will consider the motion of an electron
in a spherically symmetric potential and an effective magnetic field, for simplicity chosen to
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point along the z axis: ~B(~r) = B(r)êz. The corresponding Dirac equation has the following
expression:

[iγ5σrc(
∂

∂r
+

1

r
−

β

r
~K) + V + βσzB + (β − 1)

c2

2
− E]Ψν = 0 . (2.102)

Here σr = r̂ · ~σ and the matrix γ5 is given by:

γ5 =

(
0 −I2

−I2 0

)

. (2.103)

The spin-orbit operator is defined by:

K̂ = β(~σ ·~l + 1) . (2.104)

To solve the Dirac equation, one makes the ansatz:

Ψν =
∑

Λ

ΨΛν (2.105)

where ΨΛν have the same form as the linearly independent solutions for a spherical sym-
metric potential:

ΨΛ(~r, E) =

(
gκ(r, E)χΛ(r̂)

ifκ(r, E)χ−Λ(r̂)

)

. (2.106)

Here gκ and fκ are the large, and respectively the small component of the radial wave func-
tion and χ±Λ are the spin angular functions. The spin-orbit quantum number κ and mag-
netic quantum number µ were combined in the symbol Λ = (κ, µ) and −Λ = (−κ, µ). The
spin-angular functions χΛ can be expanded further, using the Clebsch-Gordon coefficients
C(l 1

2
j; ml,ms), the complex spherical harmonics Y ml

l and the Pauli-spinors χms
in the fol-

lowing expression:

χΛ =
∑

ms=±1/2

C(l
1

2
j; µ − ms,ms)Y

µ−ms

l (r̂)χms
. (2.107)

The spin-angular functions χΛ(r̂) are simultaneous eigenfunction of the operators j2, jz and
K̂, with ~j = ~l + 1

2
~σ. The eigenvalues of these operators can be connected by the following

relations:

κ =

{
−l − 1 for j = l + 1

2

l for j = l − 1
2

(2.108)
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j = |κ| −
1

2
(2.109)

−j ≤ µ ≤ +j (2.110)

l̄ = l − Sκ . (2.111)

Here Sκ = κ/|κ| is the sign of κ and l̄ is the orbital angular momentum quantum number
corresponding to χ−Λ. If one inserts the ansatz (2.106) into the single-site Dirac equation
(2.102) and integrates over the angles, the following radial differential equation are obtained:

P ′
Λν = −

κ

r
PΛν +

[
E − ν

c2
+ 1

]

QΛν +
B

c2

∑

Λ′

< χ−Λ|σz|χ−Λ′ > QΛ′ν (2.112)

Q′
Λν =

κ

r
QΛν − [E − ν]PΛν + B

∑

Λ′

< χΛ|σz|χΛ′ > PΛ′ν . (2.113)

Here PΛν = rgΛν , QΛν = crfΛν and the coupling coefficients are given by

< χΛ|σz|χΛ′ >= δµµ′







− µ
κ+1/2

if κ = κ′

−
√

1 − ( µ
κ+1/2

)2 for κ = −κ′ − 1

0 otherwise

. (2.114)

The selection rules derived from the properties of the angular matrix elements lead to a cou-
pling between the partial waves with the same µ, i.e. µ is still a good quantum number.
Also, for two coupled partial waves with angular momentum l and l′ one has the restriction
l − l′ = 0,±2, . . ., i.e. only waves with the same parity are coupled. Even with these re-
strictions, there are an infinite number of partial waves coupled, but in practice all coupling
terms for which l − l′ = ±2 are ignored. Feder et al. [75] justify this restriction showing
that the error introduced by this approximation is of the order 1/c2. On the other hand,
Jenkins and Strange [76] showed that one has to retain the coupling in κ (up to l = 5, 6) if
the calculated quantities are very small on the energy scale, such as the magnetocrystalline
anisotropy energy, for example. For the present calculations, only l − l ′ = 0 coupling was
kept, restricting the number of terms in Eq. (2.112) and (2.113) to 2, if |µ| < j. For the case
µ = j, there is no coupling at all and one can say that the solutions Ψν have pure spin-
angular character Λ.
Obviously, the Eqs. (2.112) and (2.113) has to be solved numerically. In order to solve these
equations, inside the muffin-tin sphere one has to set a limit for the angular momentum ex-
pansion lmax. Accordingly a set of 2(lmax + 1)2 linear independent regular solutions Ψν can
be created solving the Dirac equation (2.102) numerically. Because near the nucleus (r → 0)
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the magnetic part of the effective potential can be neglected, one can initialize the outward
integration with a well-defined spin angular character as follows:

Ψν =
∑

Λ′

ΨΛ′ν(~r, E)
r→0
−→ ΨΛν(~r, E) . (2.115)

Going away from the nucleus, the coupling introduced by the magnetic field has to be con-
sidered and a possible choice for the index of regular solution is to identify ν with Λ, giving
the asymptotic behaviour for r → 0:

ΨΛ(~r, E) =
∑

Λ′

ΨΛ′Λ(~r, E) . (2.116)

The radial Dirac equation for the free particle has two linearly independent solutions, reg-
ular and irregular at the origin. These solutions can be written in terms of spherical Bessel
functions jl(x) (the incoming regular solution) and the spherical Hankel function hl(x) (the
outgoing regular solution), as follows:

jΛ(~r, E) =

√

1 +
E

c2

(
jl(pr)χΛ(r̂)

icpSκ

E+c2
jl̄(pr)χ−Λ(r̂)

)

(2.117)

j×l (~r, E) =

√

1 +
E

c2

(
jl(pr)χ

∗
Λ(r̂)

−icpSκ

E+c2
jl̄(pr)χ

∗
−Λ(r̂)

)T

(2.118)

h+
Λ(~r, E) =

√

1 +
E

c2

(
h+

l (pr)χΛ(r̂)
icpSκ

E+c2
h+

l̄
(pr)χ−Λ(r̂)

)

(2.119)

h+×
Λ (~r, E) =

√

1 +
E

c2

(
h+

l (pr)χ∗
Λ(r̂)

−icpSκ

E+c2
h+

l̄
(pr)χ∗

−Λ(r̂)

)T

, (2.120)

where p =
√

E(1 + E/c2) is the relativistic electronic momentum. The row spinor functions
in Eqs. (2.118) and (2.120) signed by a ” × ” denote left hand side eigenfunctions of Ĥ0 , i.e.
they obey the left-hand side free-particle Dirac equation:

< Ψ×|(E − Ĥ0) = 0 . (2.121)

The left-hand-side solution < Ψ×| can be understood as the Hermitian conjugate of the
right-hand-side solution of the adjoint equation

(E∗ − Ĥ†
0)|Ψ

×† >= 0 (2.122)
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Here E∗ is the complex conjugated energy including the rest mass energy and Ĥ†
0 = Ĥ0 for

free particles [77].
With the functions (2.117) and (2.119) one can construct the regular wave function at the
boundary of the muffin-tin sphere as a combination of the incoming and outgoing waves:

RΛ(~r, E) = jΛ(~r, E) − ip
∑

Λ′

h+
Λ′(~r, E)tΛΛ′(E) , (2.123)

which is the asymptotic solution of the Eqs. (2.112) and (2.113). Here tΛΛ′ defines the ele-
ments of the single-site scattering matrix t. By definition, the single-site t-matrix operator
generates the scattered wave by a single-site muffin-tin potential.
A procedure to determine the t-matrix elements tΛΛ′(E) was introduced by Ebert and Györffy
[78]. They defined two auxiliary functions f±(~r, E) with the boundary conditions given by
the Hankel functions

f±(~r, E) = h±(~r, E) if ~r ≥ ~rmt . (2.124)

Because these functions are a complete set of eigenfunctions of Dirac Hamiltonian, they can
be used to express the set of independent solutions ΨΛ(~r, E) as:

ΨΛ(~r, E) =
∑

Λ′

ΨΛ′Λ(~r, E) =
1

2

∑

Λ′

(
aΛ′Λ(E)f+

Λ′(~r, E) + bΛ′Λ(E)f−
Λ′(~r, E)

)
(2.125)

where a(E) and b(E) are auxiliary matrices given by

aΛΛ′(E) = −ipr2[h−
Λ(pr), ΦΛΛ′(~r, E)]r

bΛΛ′(E) = ipr2[h+
Λ(pr), ΦΛΛ′(~r, E)]r . (2.126)

Here [· · ·] denotes the relativistic form of the Wronskian

[h+
Λ , ΦΛΛ′ ]r = h+

l cfΛΛ′ −
p

1 + E/c2
Sκh

+
l̄
gΛΛ′ . (2.127)

Outside the muffin-tin sphere, one has Veff = 0 and Beff = 0. Thus the Dirac equation has
free-particle-like solutions. The solutions given by Eq. (2.123), valid for ~r ≥ rmt and Eq.
(2.125), valid for ~r ≤ rmt have to match at the muffin-tin boundary. This condition enables
us to determine the t-matrix elements, for which one can find the following expression:

t(E) =
i

2p
(a(E) − b(E)) b−1(E) . (2.128)
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An alternative set of linearly independent regular solutions for the Dirac equation, allowed
by the t-matrix symmetry properties, can be obtained by superposition of the wave func-
tions ΦΛ according to the boundary conditions

ZΛ(~r, E) =
∑

Λ′

RΛ(~r, E)t−1
Λ′Λ(E)

=
∑

Λ′

jΛ′(~r, E)t−1
Λ′Λ(E) − iph+

Λ(~r, E) . (2.129)

These functions are normalized according to the convention of Faulkner and Stocks [61] and
allow straightforwardly to set up the electronic Green’s function. The irregular solutions are
fixed by the boundary condition:

JΛ(~r, E)
r→rmt−→ jΛ(~r, E) (2.130)

and can be obtained just by inward integration. The solutions of the Dirac equation, ZΛ

and JΛ, outside the potential well can be continued into the sphere in such a way that they
represent the solutions to the Dirac equation in the whole space. The special advantage for
using those free particle solutions is that these functions are real for real energies, if the cell
potential satisfies some very common symmetry properties.

2.2.4 The single-site Green’s function

In order to get the single-site Green’s function, one has to start with the free-particle Green’s
function, which is a solution of the equation:

(
cαp̂ + βmc2 − E

)
G0(~r, ~r

′) = −δ(~r − ~r ′)Ĩ (2.131)

Introducing ~R = ~r − ~r ′ (with R = |~R|), the solution can be written as

G0(~r, ~r
′, E) = −(cαp̂ + βmc2 − E)

eipR

4πR
Ĩ4 . (2.132)

Here we should note that G0 is a 4x4 matrix and E is the electron energy with the rest mass
mc2 included. Using the plane-wave expansion

eipR

4πR
= ip

∑

Λ

jl(pr<)h+
l (pr>)χΛ(r̂)χ†

Λ(r̂′) , (2.133)

where r< = min{~r, ~r ′} and r> = max{~r, ~r ′}, together with the Eq. (2.132), one can get the
free-electron relativistic Green’s function:

G0(~r, ~r
′, E) = −ip

∑

Λ′

[jΛ(p~r)h+×
Λ (p~r ′)Θ(~r ′ − ~r) + h+

Λ(p~r)j×Λ (p~r ′)Θ(~r − ~r ′)] , (2.134)
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where θ(~r) is the well-known step-function. Here the left-hand side solutions of the free
particle Dirac equation appear, j×Λ (p~r) and h×

Λ(p~r), given by the relations (2.118) and (2.120).
The regular and irregular solutions of the Dirac equation,jΛ(p~r) and hΛ(p~r) are given by the
relations (2.117) and (2.119). The single-site Green’s function is now easy to obtain, inserting
the free electron Green’s function into the Dyson equation (2.80):

Gss(~r, ~r
′, E) = G0(~r, ~r

′, E) +

∫ ∫

d3r1d
3r2G0(~r, ~r1, E)t(~r1, ~r2, E)G0(~r2, ~r

′, E) . (2.135)

In order to obtain the single-site t-matrix elements (see Eq. 2.128), one can make use of the
Lippman-Schwinger equation. If one consider for the single-site scattering the asymptotic
solution RΛ(~r, E) given by the relation (2.123) and jΛ(~r, E) as free electron solution, the
Lippman- Schwinger equation reads:

RΛ(~r, E) = jΛ(~r, E) +

∫ ∫

d3r′d3r ′′G0(~r, ~r
′, E)tn(~r ′, ~r ′′, E)jΛ(~r ′′, E) . (2.136)

Substituting the expression for G0 into this equation and comparing with the expression
for RΛ(~r, E) from Eq. (2.123), one can find the single-site t-matrix elements in the angular
momentum representation:

tnΛΛ′(E) =

∫ ∫

d3rd3r′j+
Λ (~r, E)tn(~r, ~r ′, E)jΛ′(~r ′, E) . (2.137)

Now, going back with this expression for the single-site t-matrix into the Dyson equation
(2.135), we arrive at the following expression for the single-site Green’s function:

Gss(~r, ~r
′, E) =

∑

ΛΛ′

Zn
Λ(~r, E)tnΛΛ′(E)Zn×

Λ′ (~r ′, E)

−
∑

Λ

Zn
Λ(~r, E)Jn×

Λ (~r ′, E)Θ(~r ′ − ~r)

−
∑

Λ

Jn×
Λ (~r, E)Zn

Λ(~r ′, E)Θ(~r − ~r ′) , (2.138)

where the right and left hand-side solutions of free-particle Dirac equation, ZΛ and respec-
tively Z×

Λ are defined by:

ZΛ(~r, E) =
∑

Λ′

jΛ′(p~r)t−1
ΛΛ′(E) − iph+

Λ(p~r) (2.139)

Z×
Λ (~r, E) =

∑

Λ′

j×Λ′(p~r)t
−1×
ΛΛ′ (E) − iph+×

Λ (p~r) , (2.140)
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where t× = tT is the left hand side t-matrix. One has to note that the left-hand-side solutions
of Dirac equation are obtained from the same differential equations as the conventional
right-hand-side solutions ZΛ and JΛ. For highly symmetric systems Z×

Λ and J×
Λ are obtained

from ZΛ and JΛ by simple complex conjugation and transposition:

Z×
Λ (~r, E) =

∑

Λ′

(gΛ′Λ(~r, E)χ†
Λ′(r̂);−ifΛ′Λ(~r, E)χ†

Λ̄′
(r̂)) (2.141)

and

J×
Λ (~r, E) =

∑

Λ′

(g̃Λ′Λ(~r, E)χ†
Λ′(r̂);−if̃Λ′Λ(~r, E)χ†

Λ̄′
(r̂)) (2.142)

since the left and right hand solutions are identical with respect to their radial parts.

2.2.5 Multiple scattering

In order to describe the multiple scattering of electrons by a distribution of scatterers, our
aim is to calculate the Green’s function and the T-matrix of the whole system starting from
the single-site scattering on the nth site potential. First, we have to construct the potential
function:

V (~r) =
N∑

i=1

Vi(~ri) (2.143)

that is a sum of potential wells centered on a set of N sites whose locations are at the points
~Ri. The vectors ~ri are defined by ~ri = ~r − ~Ri and it will be supposed that each potential is
zero outside a bounding sphere of radius Si, Vi = 0 if ~ri > Si and that the bounding spheres
do not overlap each other.
Making use of this potential function, the T-matrix equation (2.84) in operator form will
read:

T (E) = V + V G0(E)T (E) =
N∑

i=1

(Vi + ViG0(E)T (E)) =
N∑

i=1

Pi(E) (2.144)

where

Pi(E) = Vi + ViG0(E)T (E) = Vi + ViG0(E)Pi + ViG0(E)
∑

j 6=i

Pj(E) (2.145)

Pi(E) =
Vi

1 − ViG0(E)

(

1 +
∑

i6=j

G0(E)Pj(E)

)

(2.146)
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Let’s consider now a single site scattering on a potential well centered at ~Ri. The t-matrix
reads as:

ti(E) = Vi + ViG0(E)ti(E)

ti(E) =
Vi

1 − ViG0(E)
(2.147)

This expression can be substituted in equation (2.145) to give

Pi(E) = ti(E) +
∑

i6=j

ti(E)G0(E)Pj(E) (2.148)

If we introduce now the new quantity

τ ij(E) = ti(E)δij +
∑

k 6=i

ti(E)G0(E)τ kj(E) (2.149)

it can be shown that the T-matrix of the system has the form:

T (E) =
N∑

i,j=1

τ ij(E) (2.150)

The quantities τ ij(E) is known as scattering path operators and were first introduced by
Görffy and Stott (1972) [79]. They will help us to write down the solution of multiple scat-
tering problem in terms of the solution of the single-site scattering problem.
As we have already seen, the single-site t-matrix generates the scattered wave due to a sin-
gle potential. In multiple scattering, T (E) gives the scattered wave due to a distribution
of scatterers. The scattering path operator τ ij gives the scattered wave from site j due to a
wave incident upon site i with all scatterings in between (Györffy and Stocks, 1980 [62]) and
this can be seen easier expanding the previous expression in Born series:

τ ij = ti(E)δij +
∑

k 6=j

tiGot
kδkj +

∑

k 6=i

∑

l 6=k

tiG0(E)tkG0(E)tlδlj + · · · (2.151)

We have seen how to solve the Kohn-Sham-Dirac equation for scattering an electron from
a single site. The scattering path operator allows us to write the solution to the multiple-
scattering problem in terms of the single-site scattering t-matrix.
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2.2.6 Multiple Scattering Green’s function

In order to obtain the Green’s function, it can be considered that our reference system con-
sists in a single scatterer at position n, surrounded by vacuum. One can consider as pertur-
bation all the rest of the scattering centers. In this way, for a crystal system, the perturbation
will be the whole crystal with one atom at site n missing. It is not usual to have the pertur-
bation bigger than the system, but this approach suggested by Faulkner and Stocks [61] was
remarkably successful.
We write the Green’s function for the whole system in terms of the Green’s function for the
single-site scattering as:

G(~r, ~r ′, E) = ~Gn(~r, ~r ′, E) +

∫ ∫

Gn(~r, ~r1, E)Tnn(~r1, ~r2, E)Gn(~r2, ~r
′, E)d3r1d

3r2 (2.152)

where r1 > r and r2 > r′. The quantity Tnn is the scattering matrix for the system of all
scatterers except the nth:

Tnn(E) =
∑

i6=n

∑

j 6=n

τ ij(E) . (2.153)

We suppose that ~r is in the nth and ~r ′ is in the mth bounding sphere, so we can write
~r = ~rn + ~Rn and ~r ′ = ~rm + ~Rm. In analogy with Eq. (2.137) we define the spin-angular matrix
elements of τ ij as following:

τ ij
ΛΛ′(E) =

∫

Ωi

d3r

∫

Ωj

d3r ′j×Λ (p(~r − ~Ri))τ
ij(~r, ~r ′, E)jΛ′(p(~r ′ − Rj)) (2.154)

where the integration volume for ~r and ~r ′ is confined to the volume Ωi and Ωj of the cells
i and respectively j. Replacing the single-site Green’s function, together with the τ ij spin-
angular matrix elements into Eq. (2.152), we get the following expression for the multiple
scattering Green’s function:

G(~rn + ~Rn, ~rm + ~Rm, E) =
∑

ΛΛ′

Zn
Λ(~rn, E)τnm

ΛΛ′(E)Zm×
Λ′ (~rm, E)

− δmn

∑

Λ

[Zn
Λ(~rn, E)Jn×

Λ (~r ′
n, E)θ(~r ′

n − ~rn)

+ Jn
Λ(~rn, E)Zn×

Λ (~r ′
n, E)θ(~rn − ~r ′

n)] . (2.155)

Concerning this expression we have to note first that we have not made any supposition
upon the array of scatterers, so is it valid for any array of non-overlapping potential func-
tions. Secondly, the multiple scattering information (in τ nm) is completely separated from
the wave function information (in Zn and Jn).
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The last task is now to determine the scattering operator for the whole system. We start
putting the operator-equation (2.149) in the coordinate representation:

τ ij(~r, ~r ′, E) = δijt
i(~r, ~r ′, E) +

∑

k 6=i

∫ ∫

d3r1d
3r2t

i(~r, ~r1, E)G0(~r1, ~r2, E)τ kj(~r2, ~r
′) . (2.156)

One has to note that ti is non-zero just inside the ith sphere. The free-particle Green’s func-
tion G0(~r1, ~r2, E) describes the propagation from site k to site i, so ~r1 is in the ith and ~r2 is in
the kth bounding sphere. Because of this, we can write ~r1 = ~Ri +~ri and ~r2 = ~Rk +~rk. Due to
the translational symmetry of the Green’s function, we have

G0(~r1, ~r2, E) = G0(~ri, ~Rk − ~Ri + ~rk, E) . (2.157)

The following expression for G0 will be used, according to Eq. (2.134):

G0(~ri, ~Rk − ~Ri + ~rk, E) = −ip
∑

Λ

jΛ(~ri, E)h+×
Λ (~Rk − ~Ri + ~rk, E) . (2.158)

The spherical Hankel function h+×
Λ diverges at ~Ri but is regular at all other points, so another

expansion, around ~Ri, can be used

−iph+×(~Rk − ~Ri + ~rk, E) =
∑

Λ′

Gij
ΛΛ′(E)j×Λ′(~rk, E) (2.159)

and we finally get for the free-particle Green’s function the expression:

G0(~r, ~r
′) =

∑

ΛΛ′

jΛ(~ri, E)Gij
ΛΛ′(E)j×Λ′(~rk, E) . (2.160)

The expansion coefficients Gij
ΛΛ′(E) are called structure constants because they don’t depend

on the potentials Vi, but only on the relative positions of the scatterers i and j. In the rela-
tivistic theory they have the expression:

Gij
ΛΛ′(E) = −4πip

∑

ms

∑

Λ′′

il−l′−l′′Cms

Λ Cms

Λ′ h+
l′′(pRij)CΛΛ′Λ′′ (2.161)

with Rij = |~Rj − ~Ri|, Cms

Λ = C(l 1
2
j; µ − ms,ms) and the Gaunt coefficients

CΛΛ′Λ′′ =

∫

dΩY µ−ms∗
l (r̂)Y µ′−ms

l′ (r̂)Y µ′′−ms

l′′ (r̂) (2.162)
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Using the angular representation of the scattering path operator (2.154) we can now write
for the scattering path operator the following expression

τ ij
ΛΛ′(E) = δijt

i
ΛΛ′(E) +

∑

Λ′′Λ′′′

tiΛΛ′′(E)
∑

k 6=i

Gij
Λ′′Λ′′′(E)τ jk

Λ′′′Λ′(E) . (2.163)

In the super-matrix notation, the equation of motion for the τ -matrix is

τ ij = tiδij + ti
∑

k 6=i

Gikτ kj

= tiδij +
∑

k 6=i

τ ikGikti , (2.164)

where the underline indicates a matrix with respect to Λ = (κ, µ). Here the single site t-
matrix ti is fixed by the solutions to the single-site Dirac equation for site i. Furthermore,
Gij is the relativistic real space Green’s function or structure constants matrix that represents
the propagation of free electron between sites i and j. It is related to its non-relativistic
counterparts Gij

LL′ = Gij
LL′δmsm′

s
by the relation

Gij
ΛΛ′ = (1 + E/c2)

∑

LL′

S+
ΛLGij

LL′SL′Λ′ , (2.165)

where L and L stand for the sets (l,ml,ms) and (l,ml), respectively, of non-relativistic quan-
tum numbers. The elements of the unitary transformation matrix S in Eq. (2.165) are given
by the Clebsch Gordan coefficients C(l 1

2
j, µ − ms,ms). Furthermore one can write

τ ij = tiδij + ti
∑

k

Gikτ kj (2.166)

ti
−1

τ ij −
∑

k

Gikτ kj = δij (2.167)

∑

k

δikt
i−1

τ ik − Gikτ kj = δij (2.168)

∑

k

[δikt
i−1

− Gik]τ kj = δij (2.169)

(2.170)

where
∑

k 6=i G
ik · · · has been replaced by

∑

k Gik · · · by defining Gii = 0. Finally the τ matrix
reads as :

τ = [t−1 − G]−1 (2.171)
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where each element of the supermatrix is

τ ij = {
[
t−1 − G

]−1
}ij . (2.172)

If we have N scattering centers and angular momentum expansion going up to lmax, the
dimension of the τ matrix will be 2N

∑lmax

l=0 (2l + 1) = 2N(Lmax + 1)2.
In the calculations we will use the spin polarized relativistic (SPR) KKR program to solve
the Kohn-Sham-Dirac equations, we deal with infinite crystals, so one can make use of the
periodicity of such an ordered infinite system. Using the Fourier transformation, we can
write:

τΛΛ′(~k, E) =
1

N

∑

ij

e−i~k(~Ri−~Rj)τ ij
ΛΛ′(E) (2.173)

and

GΛΛ′(~k, E) =
1

N

∑

ij

e−i~k(~Ri−~Rj)Gij
0ΛΛ′(~Ri − ~Rj, E) . (2.174)

If we assume the t-matrix is the same at every lattice site, we find that

τ(~k, E) = [t−1(E) − G(~k, E)]−1 (2.175)

The scattering path operator can be obtained through a Brillouin-zone integration of the
form:

τ ij
ΛΛ′ =

1

VBZ

∫

VBZ

d~k
[

t−1(E) − G(~k, E)
]−1

ΛΛ′

ei~k(~Ri−~Rj) . (2.176)

As usual, one can make use of group theory to restrict the integration in Eq. (2.176) to the
irreducible part of the Brillouin-zone, that depends on the orientation of the magnetization.
Clearly, the scattering path operator in Eq. (2.174) will be singular when

|t−1(E) − G(~k, E)| = 0 . (2.177)

This is known as the KKR determinant, after Korringa (1947) and Kohn and Rostoker (1954)
who introduced the method. When Eq. (2.177) is satisfied, the scattering path operator has
a singularity which corresponds to a pole in the Green’s function, and poles in the Green’s
function occur at the same energies as the eigenvalues of the Hamiltonian. Hence, finding
the zeros of the KKR determinant is a method to find electronic energy levels or equiva-
lently, the band structure.
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2.3 Treatment of Disordered Alloys

In order to be able to describe disordered alloys, the theoretical methods presented so far
have to be reconsidered, because they were directly relevance only to ordered stoichiometric
systems. In practice there are many types of disordered systems with technological applica-
bility, that’s why it was necessary to develop theoretical methods to describe such systems.
The type of disorder considered within this thesis, is that of a random substitutional binary
alloy. Such a material is assumed to possess structural order, and so has a clear underly-
ing crystalline lattice structure. However, due to the random distribution of its constituent
atoms, such a material is not translational invariant. Density Functional theory is not af-
fected by the translational invariance, and because of this will play a central role in the
description of random substitutional alloys. The difficulty which arise due to the random
distribution of the constituent atoms is that Bloch’s theorem cannot be applied directly.
A viable idea to evade this problem and to be able to solve the Kohm-Sham-Dirac equations
is to replace the disordered system by an ordered one, consisting of effective ’atoms’. In
this way it is possible to regain the translational invariance and one has to solve further the
relevant equations for an ordered system of effective ’atoms’. This approach is known as
’effective medium theory’ and, depending on the assumptions made about the properties of
effective ’atoms’, can describe successfully the disordered systems.
The calculations done within this thesis in order to describe disordered systems use the
so-called Coherent Potential Approximation (CPA) method. This approach, in combination
with KKR method turned out to be a reliable tool to study the electronic structure of random
substitutional binary alloys (see the contributions of Bansil et al.(1975) [80], Temmerman et
al. (1978) [81], Györffy and Stocks (1980) [62], J. S. Faulkner (1982) [82] and Faulkner and
Stocks (1980) [61]).

2.3.1 The Coherent Potential Approximation Method

The aim of the Coherent Potential approximation is to calculate configurationally averaged
properties of a random material in a self consistent way. Essentially one can describe the ran-
dom metallic alloy by a lattice of effective potentials in such a way that the average motion
of an electron through the effective medium is approximatively the same like through the
actual material. This means that if one wishes to describe the system using an(periodic) co-
herent potential V CPA, the Green’s function corresponding to this coherent potential should
be equivalent to the true ensemble-averaged Green’s function of the alloy.
The Coherent Potential approximation (CPA) was introduced simultaneously by Soven [83]
in connexion with disordered electronic systems, and by Taylor [84] in connection with the
lattice dynamics of mass disordered alloys. The CPA belongs to the class of mean-field the-
ories, in which the properties of the entire material are determined from the behaviour at
a localized region, usually taken to be a single site (cell) in the material. In order to create
the configuration of the random substitutional binary alloy of composition AxB1−x it is as-
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sumed that the site occupancies are uncorrelated and that the probability that a particular
lattice site i is occupied by element A is xA = x and likewise for B is xB = 1 − x. For this
disordered system, one may assume that there are only two distinct types of potential, V A

and V B, corresponding to the two elements A and B of the material.
This coherent potential V CPA (which in general is a complex energy-dependent quantity)
is constructed by replacing at any single site in the effective medium the individual con-
stituent potentials of the alloy, given as V A or V B , in such a way that no further scattering is
produced on average.
This medium can be chosen in some physically and intuitively reasonable manner in such a
way that averages over the occupation of a site embedded in the effective medium should
yield quantities indistinguishable from those associated with a site of the medium itself. Be-
cause a translational invariant medium produces no scattaring of a wave, it is assumed that
the scattering off of a real atom embedded in the CPA medium must vanish on the average.
This condition, schematic presented in Fig. 2.1 has the following mathematical expression:

c c c

 x

c c c c c c

c c c c c c c

c c c c c c c c c

=A B+ xBA

Figure 2.1: The schematic representation of the CPA condition. Label ’c’ stands for ’effec-
tive atoms’ of the coherent medium and the sites labelled ’A’ and ’B’ are occupied by the
constituent atoms A or B with relative probability x = xA and respectively 1 − x = xB .

τC = xAτA + xBτB , (2.178)

where τ c is the scattering path operator corresponding to this hypothetical ordered CPA
medium and τA or τB describes the total scattering due to a single atom of type A or B,
respectively, which is embedded in the effective coherent-potential medium. Equivalently,
the site-diagonal part of the Green’s function of a real atom embedded in the CPA medium,
averaged over the possible occupations of a single site, should be equal with the correspond-
ing Green’s function of the medium itself.
The averages one performs in the CPA involve only the occupation of a single site and con-
sequently the CPA is a single-site (SS) approximation, this averaging procedure neglects
scattering off of clusters of atoms, which may be important in some cases.
Our first aim is to obtain approximations for the average < G > over the previously de-
scribed configuration. As has been shown in the previous chapter, the Green’s function
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G(E,~r, ~r ′) for an electron moving in the field of a collection of muffin-tin scatterers can be
written in the form (see also Eq. (2.155)) :

G(~r, ~r ′, E) =
∑

ΛΛ′

Zi
Λ(~ri, E)τ ii

ΛΛ′(E)Z i×
Λ′ (~r

′
i, E) −

∑

Λ

Zi
Λ(~ri<, E)J i×

Λ (~ri′>, E) (2.179)

when ~r and ~r ′ are both in the neighbourhood of the ith scatterer, so the vectors ~r and ~r ′ may
fall inside the ith muffin-tin sphere, but they must not be in any other sphere. Z i and J i are
the regular and irregular solutions of the Dirac equation for single-site potential V i (see also
Eqs. (2.129) and (2.130)). We will refer to Eq. (2.179) as the site-diagonal (SD) expression of
the Green’s function.
If the vector ~r is in the neighbourhood of the ith scatterer and ~r ′ is in the neighbourhood of
the jth scatterer, the Green’s function may be written in the form:

G(~r, ~r ′, E) =
∑

ΛΛ′

Zi
Λ(~ri, E)τ ij

ΛΛ′(E)Zj×
Λ′ (~r′j, E) . (2.180)

This equation (2.180) is the non-site-diagonal (NSD) Green’s function expression. Doing
the following step in the CPA description, is now needed to calculate the average of such a
Green’s functions, the averaging being over the ensemble of all alloy configurations that can
be formed by distributing xAN atoms of type A and xBN atoms of type B over the lattice
sites.
The ensemble average of the site-diagonal (SD) Green’s function can be written as:

< G(~r, ~r ′, E) > = xA

∑

ΛΛ′

Zi,A
Λ (~ri, E) < τ ii,A

ΛΛ′ (E) > Z i,A×
Λ′ (~r ′

i, E)

+ xB

∑

ΛΛ′

Zi,B
Λ (~ri, E) < τ ii,B

ΛΛ′ (E) > Z i,B×
Λ′ (~r ′

i, E)

−
∑

Λ

[xAZi,A
Λ (~ri<, E)J i,A×

Λ (~r ′
i>, E)

− xBZi,B
Λ (~ri<, E)J i,B×

Λ (~r ′
i>, E)] , (2.181)

where Z i,α
Λ (E,~ri), respectively J i,α

Λ (E,~ri), are the wave functions for the case when ~ri is in
the ith muffin-tin sphere and an α atom is in that site, α being A or B. < τ ii,α

ΛΛ′ (E) > is the
average over the subset of the ensemble for which the atom of type α (A or B) is definitely
known to be on the ith site. A similar average can be done for the non-site-diagonal (NDS)
Green’s function and the result of averaging looks like:

< G(~r, ~r ′, E) > = x2
A

∑

ΛΛ′

Zi,A
Λ (~ri, E) < τ ij,AA

ΛΛ′ (E) > Zj,A×
Λ′ (~r′j, E)

+ x2
B

∑

ΛΛ′

Zi,B
Λ (~ri, E) < τ ij,BB

ΛΛ′ (E) > Zj,B×
Λ′ (~r′j, E)
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+ xAxB

∑

ΛΛ′

Zi,A
Λ (~ri, E) < τ ij,AB

ΛΛ′ (E) > Zj,B×
Λ (~r′j, E)

+ xBxA

∑

ΛΛ′

Zi,B
Λ (~ri, E) < τ ij,BA

ΛΛ′ (E) > Zj,A×
Λ (~r′j, E) . (2.182)

Here there is another kind of average for the scattering path operator, namely < τ ij,αβ
ΛΛ′ (E) >,

which is the restricted average over the subset of ensemble for which an atom of type α (A
or B) is known to be on the ith site and another atom of type β (B or A) is known to be on
the jth site. The next step is now to calculate those ensemble averages for the scattering
path operators. For this purpose, we will make use of the so-called single-site approxi-
mation, which means that, if we calculate for example < τ ii,α

ΛΛ′ (E) > we presume that the
effective scattering matrix tC(E) appears on every site except the ith site and tα(E) appears
there. Equations (2.181) and (2.182) are exact, but they can be greatly simplified invoking
the single-site approximation. This derivation ends up with the following result:

< τ ii,α(E) >= Dii
ατ ii

C , (2.183)

where

Dii
α = {I + τ ii

C

[
t−1
α − t−1

C

]
}−1 (2.184)

and

τ ii
C =

Ω

(2π)3

∫

τC(E,~k)d3k . (2.185)

τC(E,~k) is given by the matrix inversion:

τC(E,~k) =
[

(tC)−1 − G(E,~k)
]−1

. (2.186)

We have to note that the average < τ ii,α(E) > is independent on the site index i and that’s
why we can name it < τ 00,α(E) >. For the same reason, the matrix Dii

α will be named further
simpler, namely D00

α .
In order to obtain the average < τ ij,αβ(E) >, one has to put tα(E) on the ith site, tβ(E) on
the jth site and tC(E) on all the others. The result is

< τ ij,αβ(E) >= D00
α τ ij

CD̃
00

β (2.187)

where the matrix D00
α is defined in Eq. (2.184) and D̃

00

β is given by:

D̃
00

β = {I +
[
t−1
β − t−1

C

]
τ ii

C}
−1 (2.188)
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The matrix τ ij
C is given by the expression:

τ ij
C =

Ω

(2π)3

∫

ei~k ~RijτC(E,~k)d3k (2.189)

The τ ij
C is the same for the i-j pairs of sites separated by a vector ~Rij = ~Rj − ~Ri of the same

magnitude and direction.
In order to obtain the ensemble averaged Green’s function within the single-site approxima-
tion, Gc(E,~r, ~r ′) =< G(E,~r, ~r ′) >, the ensemble averages < τ 00,α(E) > and < τ ij,αβ(E) >
have to be substituted into Eqs. (2.181) and (2.182). The site-diagonal (SD) and non-site-
diagonal ensemble average Green’s functions are needed for most calculations of electronic
properties in alloys.
It can be seen from the defining equations that Gc(~r, ~r

′, E) describes a periodic system in the
sense that

Gc(~r + ~Rn, ~r
′ + ~Rn, E) = Gc(~r, ~r

′, E) . (2.190)

No statement has been made so far in this derivation concerning the way that the effec-
tive scattering matrix tC is defined. One has to note that the most remarkable feature of
Gc(~r, ~r

′, E) is that the effective wave function for each site is different for the SD and NSD
cases. The theory for electronic states in an alloy has been designed to arrive at an effective
Green’s function rather than to get an effective wave function because every property of an
alloy can be calculated using Gc(~r, ~r

′, E). In the following section it will be shown how one
can calculate electronic properties of alloys. Let’s consider first the average density of states
for a random substitutional alloy, in the single-site approximation. This can be expressed in
the formula:

ρC(E) = −
1

π
=

∫

Ω

Gc(~r, ~r, E)d3r (2.191)

Because only values of Gc(~r, ~r
′, E) for which ~r = ~r ′ enters in the expression, only the SD

form of Green’s function is needed. Inserting Eq. (2.181), with the average scattering path
operator given by Eq. (2.183) into this expression, leads to

ρC(E) = −
1

π

∑

α=A,B

xα

∑

ΛΛ′

=< τ 00,α
ΛΛ′ (E) >

∫

Ω

Zα
Λ(~r, E)Zα×

Λ′ (~r, E)d3r , (2.192)

where α = A or B indicates that the site in question is occupied by an atom of type A or B. If
we use the notation

F αα
ΛΛ′(E) =

∫

Ω

Zα
Λ(~r, E)Zα×

Λ′ (~r, E)d3r (2.193)
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where the underline means a matrix with respect to Λ = {κ, µ}, one may express ρC(E) as

ρC(E) = −
1

π

∑

α=A,B

xα=TrF αα(E)D00
α (E)τ 00

C (E) . (2.194)

From the expression given for the average density of states (2.194) it is clear that one may
resolve the total density of states ρC(E) into components ρA(E) and ρB(E). These quantities
may be thought of as the average density of states (per atomic cell) on an A- or B-type
site in the alloy. Consequently the total density of states may be written as the sum of the
concentration weighted component density of states thus

ρC(E) = xAρA(E) + xBρB(E) , (2.195)

where the component density of states can be identified as

ρα(E) = −
1

π
=Tr[F αα(E)D00

α (E)τ 00
C (E)] (2.196)

with α = A or B. The expressions for the total and component densities of states, which are
identical to those derived by Faulkner and Stocks [61], are given in a completely general
form such that they can be used for both relativistic or non-relativistic calculations.
The charge densities ρA(~r) and ρB(~r) associated with a given atomic type can be obtained
through a energy integration up to the Fermi energy, as follows:

ρα(~r) = −
1

π

∫ EF

−∞

=Tr[F αα(~r, ~r, E)D00
α (E)τ 00

C (E)]dE (2.197)

where

F αα
ΛΛ′(E,~r, ~r) = Zα

Λ(~r, E)Zα×
Λ′ (~r, E) . (2.198)

Another quantity, used by Györffy et al. [62] in order to formulate theories for soft X-ray
emission, electron-photon interaction and other phenomena is so called density matrix, de-
fined as

ρ(~r, ~r ′E) = xAρA(~r, ~r ′, E) + xBρB(~r, ~r ′, E) . (2.199)

The components of density matrix are (α is A or B):

ρα(~r, ~r ′, E) = −
1

π
=Tr[F αα(~r, ~r ′)D00

α τ 00
C ] . (2.200)

With the formulas for Gc(~r, ~r
′, E) available, the comparison with experimental data for den-

sity of states for example, is straightforward (see [82] and [61]). The CPA is regarded as one
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of the best single-site theories for the description of random substitutional binary alloys. On
the other hand, multiple-site scattering effects are implicitly included within the theory as
the single-site approximation is based on the idea of a single scattering site immersed in an
average ’effective’ medium. Consequently, it is appropriate to preceed developing calcula-
tions combining the CPA with the KKR theory. The calculations done in this thesis use this
approach in order to investigate the properties of random substitutional alloys.

2.4 Conclusions

This chapter presented the theoretical framework used within this thesis in order to describe
the electronic structure of condensed matter.
As the description of any solid is in essence a many body problem, it has been presented
how the use of the DFT can reduce and hence simplify considerably such a many body
problem to that of a single electron moving independently of all other electrons in a effec-
tive field created by surrounding electrons and nuclei.
The multiple scattering KKR theory is used to solve the previously simplified problem and
to obtain the full description of the electronic structure of the condensed matter systems un-
der investigation.
On the basis of the underlying band structure, one is able to calculate important properties
of materials. Such a class of materials which will be investigated in the following is the Cr-
chalcogenides system with different transitional metals substituting partially the Cr atoms.
In addition, the formalism presented above will be extended in order to calculate spectro-
scopic properties, namely the magnetic Compton profile for pure metallic systems and for
random substitutional alloys respectively.



Chapter 3

Compton scattering

The purpose of a Compton scattering experiment is to determine the momenta, or momen-
tum distribution of the target electrons. Typically, one employs a primary beam of a known
photon energy E, and measures the spectrum of secondary photon energies E’ after scatter-
ing from the sample through a known angle θ. When radiation is Compton scattered, the
emerging beam is Doppler broadened because of the motion of the target electrons. The
analysis of this broadened spectra, the so-called Compton profile, provides informations
about the electron momentum distribution of the scatterers.
Compared with other experimental techniques, Compton scattering offers several advan-
tages. Compton scattering is an inelastic process, in which a high energy photon collides
with a single electron and imparts energy to it. Since the scattering is from a single-electron
and (to a good approximation) occurs at a single point in space, the process must be inco-
herent. Incoherent scattering, as opposed to coherent Bragg scattering, occurs when there is
no phase relationship between the waves scattered by different atoms in a sample. The in-
coherent nature of Compton scattering means that the process can only be sensitive to bulk
properties- that it is, an average over real space.
Due to these features, Compton scattering is directly related to the electronic ground state,
whereas other spectroscopic methods (e.g. photoemission spectroscopy) involve excited
states. Since theoretical methods (like density functional theory) are tailored to give predic-
tions of the ground state, Compton scattering allows for a rather fundamental test of these
theories. Also, Compton scattering has the advantage that is not much sensitive to the sam-
ple purity, lattice defects or to the surface, so the Compton experiment samples the electrons
in the crystal uniformly.
A limiting factor have been the poor momentum resolution achieved in experiments, but the
utilization of solid-state detectors since 1970’s, and subsequently the employment of high-
resolution crystal spectrometers at modern synchrotron radiation sources since the 1980’s
have revived this field.
The interpretation of standard Compton profiles is far from trivial, because the directly ac-
cessible quantity is a projection of the momentum density n(~p) onto the scattering vector and
some features of n(~p) are lost because of projection. There is a complementary experimental

59



60 CHAPTER 3. COMPTON SCATTERING

technique, the 2D-ACAR (2D angular correlation of the annihilation radiation) which can re-
solve these details. It gives the 2D projection of the 3D electronic momentum density along
the direction perpendicular to the detector plane, while the Compton scattering gives the
momentum density n(~p) integrated over the perpendicular plane to the scattering vector.
Obviously, first-principles prediction within the conventional band theory model can facili-
tate the interpretation of Compton data a lot.

3.1 Compton scattering cross section

Many of the important features of Compton scattering can be explained analysing the kine-
matics of this process. In the scattering experiment the total flux reaching the detector can be
measured and the differential scattering cross section dσ

dΩ
deduced. When inelastic processes

are involved, the spectral distribution can be plotted and the double differential scattering
cross section d2σ

dΩdω
can be obtained (ω = ω1 − ω2 is the energy transfer). In the past, many ex-

pressions for the scattering cross section were developed, starting with the non-relativistic
Thomson cross-section for unpolarized photons:

dσ

dΩ
=

r2
e

2
(1 + cos2 θ) , (3.1)

where re = e2/mc2 is the classical electron radius. However, soon it was found that high en-
ergy radiation doesn’t obey this formula (the total cross-section was lower than predicted)
and other approaches were developed. Klein and Nishina (1929) performed a quantum
electrodynamical calculation of the Compton scattering cross-section obtaining the follow-
ing formula [85]:

dσ

dΩ
=

r2
e

2
(
E ′

E
)2{(1 + cos2 θ) +

E − E ′

mc2
(1 − cos θ)} (3.2)

valid for a free electron initially at rest and for any photon energy. This formula explains
the puzzling asymmetry between forward and back scattering and it contains no parameter
specific to the scatterer.
At low photon energies, E ∼ E’ and the Klein-Nishina cross section reduces to the classical
form, as one would expect. When the incident photon energy becomes an appreciable frac-
tion of mc2, the departure from the Thomson formula becomes prominent.
With very high energy photons, the role of the electron spin starts to be important in the
interaction and the scattering becomes sensitive to the magnetic properties of the sample
for incident circularly polarized radiation. A term depending on the electron spin in the
scattering cross section was first derived by Lipps and Tolhoek (1954) [86] and an extension
to electrons in molecules and solids was done by Platzman and Tzoar (1970) [87]. This term
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is a first order correction which couples the electron spin orientation to the photon circular
polarization:

dσ

dΩ
=

r2
e

2
[(1 + cos2 θ + P3 sin2 θ) − 2P2τ(1 − cos θ) < ~S > (q̂ cos θ − q̂′)] , (3.3)

where P2 and P3 are the Stokes parameters for circular, respectively linear polarization, ~S is
the electron spin vector and q̂ and q̂′ are the directions of the primary and secondary photon
beams, respectively.
The term proportional to P2 can be viewed as an interference between charge and magnetic
amplitude, so this term is sensitive to the momentum space spin polarization in a magneti-
cally ordered material. The prefactor τ = E/m0c

2 (E is the incident photon energy and mc2 is
the rest mass energy of the electron) makes this term typically about 1 % of the charge cross
section [13]. If the magnitude and angular variation of the magnetic scattering is compared
with the unpolarized scattering, appreciable differences will be observed at high scattering
angles for short wavelengths.
Starting from the supposition enclosed in the previous formula, many ferromagnetic sys-
tems have been studied using magnetic Compton scattering, providing valuable informa-
tions about their spin momentum density, as will be seen in the next sections. In addition,
many theoretical studies have been done in this field and one should mention among others
the work of Wakoh and Kubo (1977) [88], Williams (1977) [89], Mills (1987) [90], Collins et
al. [91], Sakurai et al. [92], Kubo and Asano [11], Y Tanaka et al. [13], Cooper et al. [93],
Cardwell and Cooper (1989) [94] and Dixon et al. [12].
An important role in the development of the Compton scattering cross-section measure-
ments played the radiation sources, spectrometers and photons detectors. While the first
observations of the Compton scattering were made using radioactive sources, the majority
of the Compton scattering experiments use today synchrotron radiation sources. In par-
ticular, magnetic Compton scattering is included in the research program of every third
generation synchrotron facility.

3.2 Magnetic Compton Scattering (MCS)

Conventional Compton scattering studies did not involve magnetic properties of the scatter-
ers. However, as has been indicated above, the magnetic term in the scattering cross section
derived first by Lipps and Tolkoek made it possible to investigate the magnetic properties
of the scatterers.
This type of experiment became feasible with the advent of the high energy synchrotron ra-
diation sources, in spite of inherently small cross section involved. Compared to the charge
scattering contribution, the magnetic term is smaller by a factor of ~ω/m0c

2, where m0c
2 is

the rest mass energy of the electron and ~ω is the incident photon energy. Therefore, these
experiments must be performed with powerful photon sources, in order to maximize the
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signal connected with the cross section for magnetic scattering.
By alternately measuring the standard Compton profiles with opposite sample magnetiza-
tion (or photon helicity), magnetic Compton scattering (MCS) provides a measure of the
momentum distribution of the difference between the spin-up and spin-down electrons. To
be sensitive to the magnetic electrons, MCS require circularly polarized photons that couple
according to that term in the incoherent scattering cross section which arises from the charge
and magnetic scattering interference.
The first magnetic Compton profile measurements were performed by Sakai and Ono [95]
who obtained circularly polarized gamma rays from the cryogenically oriented radioactive
source of 57Co. Although this pioneering experiment suffered from a low count rate, the
result clearly demonstrated the existence of the magnetic effect predicted theoretically by
Platzman and Tzoar [87].
The interpretation of the measured Compton scattering cross section is in most cases made
within the so-called impulse approximation (IA). In this approximation it is assumed that
the electrons involved in the scattering can be treated like free and their binding can be only
seen in the spread of their momenta. The physical meaning of this approximation can be
seen as follows: the time the photon spends probing the electron distribution (∼ ~/ω) is so
short that the other electrons of the sample cannot relax to take into account the hole cre-
ated by the recoiling electron until it has completely escaped from the system so that the
scattering is essentially from single electrons which can be thought as free electrons. The
potential energy of the electron distribution V (r) is considered constant for the duration of
the collision and thus cancels out in the energy conservation equation.
The deviation from the impulse approximation has been the subject of several theoretical
studies. Ribberfors [96] and Holm and Ribberfors [97] made thorough calculations using
the incident photon energy, the atomic number and the scattering angle as parameters to
find a possible deviation from the IA. It turned out that the IA works surprisingly well.
Eisenberg and Platzman [98] studied the influence of the potential to the observed spectrum
and expressed the errors in terms of (EB

Er
)2, where EB is the binding energy and Er is the

recoil energy of the photons. For small ratio, as it is the case for most experiments, the IA
works well again.
Within this approximation, if one considers an incident photon with wave vector ~k0 and a

scattered photon with the wave vector ~k′ (see Fig. 3.1), the magnetic Compton cross section
for a solid can be written as:

[
d2σ

dΩdpz

]

↑

−

[
d2σ

dΩdpz

]

↓

≡

[
d2σ

dΩdpz

]

∆

= Pcr
2
0

(
k′2

k2
0

)

Ψ2(σ)Jmag(pz), (3.4)

where Pc is the degree of circular polarization and r0 is the classical electron radius and Ψ2

is a geometrical factor, defined as:

Ψ2 = ±σ (k0 cos α cos ϕ − k′ cos(α − ϕ)) (cos ϕ − 1)
~c

m0c2
. (3.5)
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Figure 3.1: The Compton scattering geometry.

In this formula, σ is the electron spin (±1), α is the angle between the incident photon (~k0)
and the magnetization direction ( ~B) and ϕ is the scattering angle. As can be seen from Eqs.
(3.4) and (3.5), the magnetic cross-section can be increased by making the angle α smaller
and φ larger. Jmag is the momentum distribution of the unpaired electrons projected along
the scattering vector (pz), also known as the magnetic Compton profile:

Jmag(pz) =

∫ ∫
(
n↑(~p) − n↓(~p)

)
dpxdpy . (3.6)

Here the electron momentum density for a given spin orientation is given by n↑(↓)(~p).
By constraining the sample magnetisation and the incident and scattered wave vector to be
coplanar (see Fig. 3.1), the measured profile depends only upon the electron’s spin. The tra-
ditional Compton scattering samples a projection of the electron momentum density, where
the integrated area under the Compton profile obtained is proportional to the total number
of electrons. The Compton profile is a one-dimensional projection of the electron momen-
tum density n(~p) along the scattering vector pz:

J(pz) =

∫ ∫

n(~p)dpxdpy . (3.7)

The area under the profile is equal with the number of electrons in the Wigner-Seitz cell, i.e.
∫

J(pz)dpz = Z . (3.8)
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In the magnetic scattering, we are interested only on those electrons which contribute to the
spin moment, and which are, therefore, unpaired. If we consider the total electron momen-
tum density to be composed of spin-up and spin-down electrons, we can write

n(~p) = n↑(~p) + n↓(~p) . (3.9)

If a spin moment exists, this is given by the difference in occupancy of the spin-up and
spin-down bands:

µspin =

∫
[
n↑(~p) − n↓(~p)

]
d3p . (3.10)

This difference can be measured in a magnetic Compton experiment due to the spin depen-
dent term in the scattering cross section. The area under the magnetic Compton profile is
equal to the spin moment per Wigner-Seitz cell:

∫ +∞

−∞

Jmag(pz)dpz = µspin . (3.11)

On the basis of this derivation, we can consider the magnetic Compton scattering as an
established technique for probing the spin-dependent momentum densities and band-struc-
tures of magnetic solids. The orbital momentum is not measured, the magnetic Compton
profile is solely sensitive to the spin moments of the scatterers [99, 90, 89, 87, 100] .
The shape of the magnetic Compton profile carries information about the localization of
the electronic moment. This is a useful asset, as the localization of the moment and its
interaction with the surrounding conduction electrons, e.g. via the s-d interaction, is the
mechanism which drives the magnetic ordering.
The experiments of spin-polarized positron angular correlation also probe the spin density,
but in this case the positron-electron correlation effects have to be considered. The positron
doesn’t sample electrons from all states equally, whilst De Haas-van Alphen measurements
are only sensitive to the electrons from the Fermi surface. Compared to these techniques, the
value of the magnetic Compton scattering stems from its uniform sensitivity to the whole of
electron momentum distribution.

3.3 The expression for the magnetic Compton profile

Our aim is to calculate the magnetic Compton profile Jmag(pz) including all relativistic ef-
fects. Starting from the expression of Jmag(pz) from Eq. (3.7), one needs a method to obtain
the momentum density n(~p). It has been shown in the previous chapters how the Green’s
function G(~r, ~r ′, E) for a system can be calculated and how certain quantities describing a
system can be connected to the Green’s function of that system. In this case, the quantity
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involved is defined in the momentum space. As a consequence, a change of representation
is required for the Green’s function, according to the formula:

Gmsm′

s
(~p, ~p ′, E) =

1

NΩ

∫

d3r

∫

d3r′Φ×
~pms

(~r)=G+(~r, ~r ′, E)Φ~p ′m′

s
(~r ′) . (3.12)

Here Ω is the volume of the unit cell and Φ~pms
are the eigenfunctions of the momentum op-

erator, which can be written as Φ~pms
= U(~p)ei~p~r = U~pms

ei~p~r, where U(~p) is a four-component
spinor satisfying the equation:

(c~α~p + βmc2)U~pms
= EpU~pms

. (3.13)

One may write ~r = ~Rn + ~r0n where ~Rn is the origin of the nth cell and ~r0n is included into
this cell. In addition, one may consider the real-space integration

∫
d3r as a summation over

the cell-integrals
∫

d3r =
∑

n

∫
d3ron. Consequently, the expression for the Green’s function

reads:

Gmsm′

s
(~p, ~p ′, E) =

1

NΩ

∑

n

∫

d3r0

∫

d3r′

× φ×
~pms

(~Rn + ~r0)=G+(~Rn + ~r0, ~r
′, E)φ~p ′m′

s
(~r ′)

=
1

NΩ

∑

n

∫

d3r0

∫

d3r′

× U×
~pms

e−i~p(~Rn+~r0)=G+(~Rn + ~r0, ~Rn + ~r ′, E)U~p ′m′

s
ei~p ′(~Rn+~r ′) .

(3.14)

If the translational invariance property of the Green’s function is taken into account (see Eq.
(2.190)) and the Bloch theorem is applied for Φ~pms

, one gets:

Gmsm′

s
(~p, ~p ′, E) =

1

Ω

∫

d3r0

∫

d3r′U×
~pms

e−i~p~r0=G+(~r0, ~r
′, E)U~p ′m′

s
ei~p ′~r ′ 1

N

∑

n

ei(−~p+~p ′)~Rn

=
1

Ω

∫

d3r0

∫

d3r′U×
~pms

e−i~p~r0=G+(~r0, ~r
′, E)U~p ′m′

s
ei~p ′~r ′

∆(−~p + ~p ′)

(3.15)

and finally, the result is

Gmsm′

s
(~p, ~p ′, E) = Gms

(~p, ~p ′, E)δmsm′

s
δ~p~p ′ . (3.16)

This property is very useful for our purpose, because performing an energy integration up
to the Fermi level, one gets the spin-projected momentum density, according to the formula:

nms(~p) = −
1

π

∫ EF

0

=Gms
(~p, ~p, E)dE . (3.17)
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This is a quantity depending on the momentum vector which has to be projected on the scat-
tering vector direction through integration in a plane perpendicular to it. A two-dimensional
integration in the (px, py) plane is the final step to calculate the magnetic Compton profile
by the formula:

Jmag(pz) =

∫ ∫
(
n↑ − n↓

)
dpxdpy . (3.18)

The problem is still unsolved; in order to make our formalism applicable, we have to get a
general formula for Gms

(~p, ~p, E), equally valid for systems with many atoms per unit cell,
pure systems and for substitutional disordered alloys.
We will start our calculation from the following formula for momentum’s representation
eigenfunctions:

Φ~pms
=

(
Ep + c2

2Ep + c2

) 1

2

(
χms

c~σ~p
Ep+c2

χms

)

ei~p~r ,

(3.19)

where

Ep =
c2

2

(√

1 +
p2

c2
− 1

)

(3.20)

is the electron’s total energy, χms
are the Pauli spinors and ms is the spin quantum number.

Using the expansion (see Rose [101])

χms
ei~p~r = 4π

∑

Λ

ilCms

Λ Y µ−ms∗
l (~p)jl(pr)χΛ (3.21)

and the properties of the operator ~σ~p, these functions are rewritten as:

Φ~pms
= 4π

(
Ep + c2

2Ep + c2

) 1

2 ∑

Λ

ilCms

Λ Y µ−ms∗
l (~p)

(
jl(pr)χΛ(r̂)

icSk

Ep+c2
jl̄(pr)χ−Λ(r̂)

)

, (3.22)

where Cms

Λ are the Clebsch-Gordan coefficients, Y ml

l are the complex spherical harmonics,
χΛ(r̂) are the spin-angular functions and jl(pr) are the spherical Bessel functions.
Introducing this expression of the momentum operator eigenfunctions into the Green’s func-
tion expression (3.12), together with the site-diagonal (SD) (Eq. (2.179)) and site-nondiagonal
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(NSD) expressions (Eq. (2.180)) of the Green’s function in the coordinate representation, one
gets:

Gms
(~p, ~p, E) =

1

Ω

∫

d3r0q

∫

d3r′0qU
×
~pms

e−i~p(~r0q+~Rq)

=
[∑

α

xqα

∑

ΛΛ′

Zqα
Λ (~r0q, E)τ 0q0q,α

ΛΛ′ (E)Zqα×
Λ′ (~r′0q, E)

−
∑

Λ

Zqα
Λ (~rnq<, E)J qα×

Λ (~rnq>, E)
]

U~pm′

s
ei~p(~r′

0q+~Rq)

+
1

Ω

∑

q

∑

n′q′

′
∫

d3r0q

∫

d3r′n′q′U×
~pms

e−i~p(~r0q+~Rq)

=
[∑

αβ

xqαxq′β

∑

ΛΛ′

Znqα
Λ (~rnq, E)τnqαn′q′β

ΛΛ′ (E)Zn′q′β×
Λ′ (~r′n′q′ , E)

]

× U~pm′

s
e

i~p(~r′

n′q′
+~Rn′+~Rq′ ) .

(3.23)

The details of the calculations are presented in the Appendix A. The quantities M qα
msΛ

and
M̃ qα

msΛm′

s
are the following matrix elements (see Appendix B) of the regular and irregular

solutions of the Dirac equation:

MmsΛ = MmsΛ(~p, E)

= 〈φ~pms
|ZΛ〉 (3.24)

and

MmsΛ′′m′

s
= MmsΛ′′m′

s
(~p, E)

= 〈φ~pms
(~r)|
(

ZΛ′′(~r)J×
Λ′′(~r

′)Θ(r′ − r)

JΛ′′(~r)Z×
Λ′′(~r

′)Θ(r − r′)
)

|φ~pm′

s
(~r′)〉 . (3.25)

From this, the following expression for the momentum representation Green’s function is
derived (see Appendix A):

Gmsm′

s
(~p, ~p, E) =

1

Ω
=
∑

q

∑

α

xqα

[∑

ΛΛ′

M qα
msΛ

tqα
ΛΛ′M

qα∗
m′

sΛ
′ −
∑

Λ

M̃ qα
msΛm′

s

]

+
1

Ω
=
∑

q

∑

α

xqα

∑

ΛΛ′

M qα
msΛ

(

Dqατ 0q0qCPA − tqα
)

ΛΛ′

M qα∗
m′

sΛ
′



68 CHAPTER 3. COMPTON SCATTERING

−
1

Ω
=
∑

q

∑

αβ

xqαxqα

∑

ΛΛ′

M qα
msΛ

(

Dqατ 0q0qCPAD̃qα
)

ΛΛ′

M qα∗
m′

sΛ
′

+
1

Ω
=
∑

q

∑

q′

e−i~p(~Rq−~Rq′ )
∑

αβ

xqαxq′β

∑

ΛΛ′

M qα
msΛ

(

Dqατ qq′CPA(~p)D̃q′β
)

ΛΛ′

M q′β∗
m′

sΛ
′ . (3.26)

The first term in this formula is the single-site part, with the single-site t-matrix elements
given by Eq. (2.137). For the energy-integration of this term, a path along the real axis will
be used; in this way, the matrices M̃ qα

msΛm′

s
can be ignored, because they contain the irregu-

lar solutions of the Dirac equations which can be ignored for real energies because only the
imaginary part has to be considered.
The second term is the so-called backscattering term and can be evaluated through an en-
ergy integration in the complex plane, along an arc-like contour path with only few energy
mesh points. The scattering path operator τ 0q0qCPA is given by the CPA equation (2.183) and
the matrix Dqα is defined in Eq. (2.184). The third term prevents a double-counting com-
ing from the same site in the non-site diagonal expression of the Green’s function, which is
present in the fourth term. The scattering path operator which appears in the fourth term
was already defined in the CPA theory for disordered alloys and is given in Eq. (2.189).
One should emphasize that this formula enables us to treat pure systems as well. In this case
the matrix Dqα is the identity matrix, xqα = 1 and the τ 0q0qCPA is replaced by the supermatrix
(2.171) defined in the multiple scattering section. Also, the systems with many atoms per
unit cell and substitutional disordered alloys are successfully described by this formalism,
as will be shown in the next sections.

3.4 Application to the transition metals Fe and Ni

A first test of the formalism presented before has been done for the transition metals Fe and
Ni. Ferromagnetic iron has been a very popular material for many magnetic measurements,
mainly because of its large (spin) magnetic moment at room temperature which maximize
the magnetic Compton cross-section. From a theoretical point of view, Fe is relatively sim-
ple system to model, and several band-structure techniques have been adapted to calculate
magnetic Compton profiles. Because of these reasons, there are several studies on the MCP
in Fe, first of them published in 1976 by Sakai and Ono [95]. The resolution of the experi-
mental data is rather poor in this early study, so we convoluted our calculated profiles with
a Gaussian having a full width at half maximum (FWHM) equal to the experimental mo-
mentum resolution.
The experimental profiles we used for comparison are already normalized with the area
under the profile equal with the spin magnetic moment and we didn’t perform a further
normalization.
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The magnetic Compton profiles along the scattering directions [001], [110] and [111] are cal-
culated by applying the SPR-KKR package to perform electronic structure calculations based
on the Vosko, Wilk and Nusair parametrization for the exchange-correlation energy. The cal-
culation routine allows to have the magnetic moments rotated away from the global z-axis.
This means that the band-structure problem is solved in a local frame of reference having
the scattering vector direction as z-axis. The integration in the (px, py) plane is done up to
px,max = py,max = 10 a.u. in a rectangular grid which consists of 50×50 grid points. The test
calculations we have done to check the validity of this approach showed that any increas-
ing of the number of grid points or the maximum value of the px or py momentum doesn’t
change the shape of the calculated profiles. The energy integration splits into an arc-like
path of 30 points in the complex energy plane and a path parallel to the real energy axis
which consists of 50 energy-points.
The directional profiles for Fe are presented in Figs. 3.2 and 3.4. The experimental data of
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Figure 3.2: Magnetic Compton profiles for Fe along the [001] direction (left) and [110] direc-
tion (right). Experimental data of Collins et al. (circles), APW calculations of Wakoh et al.
(dotted line) and KKR calculations (full line).

directional magnetic profiles in bcc Fe have been measured by Collins et al. [91] using circu-
larly polarised 60 keV synchrotron radiation with a circularly polarisation degree of 0.45 %.
The total momentum resolution of the spectrometer is 0.7 atomic units. The profiles have
been normalised to an area in the momentum range -8 to +8 a.u. equal with the spin mag-
netic moment of Fe (2.2µB).
The APW data of Wakoh et al. [91] and our SPR-KKR calculations have been convoluted
with a Gaussian of FWHM 0.70 a.u. to match the experimental resolution. As can be seen in
Figs. 3.2 and 3.4, the KKR Compton profiles are in good agreement with the experimental
data and with the APW calculations. The differences appear primarily in the low momen-
tum region, where all the directional profiles are characterized by a central dip. This dip is
due to the existence of regions in the momentum space where the momentum density of the
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majority band n↑(~p) is decreased compared with that of the minority band, n↓(~p).
In general, magnetism arises from more than one orbital in a solid state material. Com-
monly, the moments are spatially concentrated around the atomic sites, but with polarized
band electrons playing a crucial role in the exchange interaction responsible for magnetic
ordering. The negative polarization at low momentum is therefore supposed to occur (see
[91, 11, 93]) because the s-p bands have opposite polarisation to that of 3d bands. The s-p
states are spread out in real space and therefore are more localized in momentum space con-
tributing mainly to the low momentum region near the center of the profile.
We checked this supposition, calculating the s-p and d-states contributions to the magnetic
Compton profile for Fe along the [001] direction. According to formula (3.26), we can isolate
the different s-p or d-like contributions if we restrict to the appropriate Λ = (κ, µ) for the cal-
culation of the matrix elements M qα

msΛ
. The s-p and d contributions to the MCP are presented

in Fig. 3.3. As can be seen, for pz ≤ 1.0 a.u. the negative s-p contribution plays an important
role. This result confirms once more the previous theoretical predictions [91, 11, 93].
Due to the broadening, the fine structure of the spectra disappears but a discrepancy is still
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Figure 3.3: The SPR-KKR s, p and d- contribution to the magnetic Compton profile of Fe
along the [001] direction.

visible between theory and experiment at low momentum in Fig. 3.2. Both APW and KKR
calculations did not reproduce correctly the behaviour for pz < 1 a.u. in any scattering direc-
tion, and because of this we considered the more accurate experimental data of McCarthy
along [111] direction [102] with 0.2 a.u. momentum resolution to check the agreement. In
addition, the FLAPW results of Kubo and Asano [11] convoluted with a 0.2 a.u. FWHM
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Figure 3.4: The MCP for Fe along the [111] direction. The momentum resolution of exper-
imental data (Cooper et al.) is 0.7 a.u. (left) and 0.2 a.u. (McCarthy) (right). Both KKR
and FLAPW calculations have been convoluted with a Gaussian of FWHM equal with the
experimental momentum resolution.

parameter have been plotted in Fig. 3.4. Again the discrepancy between theory and exper-
iment is located mostly in the first Brillouin zone and the fully relativistic KKR approach
doesn’t improve too much the agreement. Both theoretical description predict a local peak
at pz ' 0.5 a.u. which is absent in the experimental profile. The fine structure shows some
additional peaks at pz ' 1.5, 2.5 and 3.5 a.u. which are, according to Cooper et al. [102], the
so-called ’umklapp’ features of the predicted peak at pz ' 0.5 a.u. in the first Brillouin zone.
They point out that for momenta greater than those of the first Brillouin zone boundaries, all
features are due to higher moment components of the structure present in the first Brillouin
zone. These arise because electrons with a given ~k contribute to the momentum density at
~p = ~k +n~G, where ~G is the reciprocal lattice vector and n = 0, 1, 2, . . .. Thus some features in
the momentum density propagates according to reciprocal lattice vectors from those in the
first zone.
Unfortunately, the system with one of the highest magnetic effect, Fe, is not necessarily the
most interesting. The fine structure predicted from calculations on Fe has far less structure
than is found for example in the case of Ni which will be discussed in the following. In it’s
ferromagnetic phase, it has a magnetic moment of 0.61 µB to which its spin part contributes
0.56 µB. This net moment is caused by the exchange-splitting of the 3d band and includes,
as in the Fe case, a negative polarisation of the s- and p-like electrons.
The most recent MCP experimental profiles with the best resolution (0.43 a.u.) have been
measured by Dixon et al. [12] at the high-energy X-Ray beamline (ID15) at the ESRF. Even if
powerful sources are available, such a good resolution is difficult to achieve because of the
small magnetic moment of Ni. The experimental profiles have been normalized to the spin
magnetic moment (0.56 µB). Our calculations and other theoretical profiles presented here
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Figure 3.5: The MCP profiles of Ni along the [001] direction. The FLAPW calculations of
Kubo and Asano [11], the LMTO-LSDA/GGA calculations of Dixon et al. and the KKR
calculations (full line) have been convoluted with a Gaussian of 0.43 a.u. FWHM., according
to the experimental resolution of Dixon et al.’s data [12].

have not been normalized to this value. The scaling of the KKR profile was adjusted to give
the best fit of the experimental profile.
In Fig. (3.5) we present our KKR magnetic Compton profile along the [001] direction, to-
gether with the experimental data of Dixon et al., the FLAPW calculations of Kubo and
Asano [11] and LMTO-LSDA/GGA calculations of Dixon et al. [12]. The KKR, FLAPW and
LMTO calculated profiles have been broadened using a Gaussian with FWHM of 0.43 a.u.,
according to the experimental resolution.
All the theoretical results fit the data at high momenta, but they all predict spin moments
which are too large. At low momenta, all theoretical MCP are predicting a local peak at '
0.5 a.u., which is absent in the experimental spectra. This is a common failure of the theories
thought to be most likely due to a failure of the description of the exchange and correlation
effects [102, 103]. This result is similar to Fe: although the magnetic profile has less structure,
the major discrepancy between theory and experiment is again in the first Brillouin zone.
Due to the lower resolutions, the ’umklapp’ features are not very prominent at higher mo-
menta, but still visible at ' 1.2, 1.7, 2.7 and 3.7 a.u.. While LMTO overestimates the 1.2 and
1.7 a.u. peaks, the features at 2.7 and 3.7 a.u. are good reproduced by all calculations.
Our calculations gives the best fit along the [001] scattering direction, but this does not hold
for all geometries, as can be seen in Fig. 3.6. Because the LMTO calculations are far from the
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Figure 3.6: The MCP profile of Ni along [111] direction (left) and [110] direction (right). The
FLAPW calculations of Kubo and Asano [11] and the KKR calculations (full line) have been
convoluted with a Gaussian of 0.43 a.u. FWHM to fit the experimental data of Dixon et al.
[12].

experiment, they have not been reproduced in this figure.
Along the [110] direction, the KKR and FLAPW results are almost identical, both predict a
peak at ' 0.7 a.u. which is absent in the experimental data but reproduce well the features
at ' 2.0, 3.3 and 4.6 a.u.. Also, the fit at 0 a.u. is quite satisfying for both calculations.
Along the [111] direction, the peak at pz = 0 a.u. is overestimated by our calculations and
better reproduced by the FLAPW results. Also, the dip at ' 0.6 a.u. in the experimental
data, better reproduced by FLAPW, is shifted by our KKR calculations at ' 0.8 a.u..

In conclusion, our KKR fully relativistic calculations of the MCP for pure metallic systems
Fe and Ni are in reasonable agreement with the experimental data and with other non-
relativistic theoretical results. One should note that relativistic effects are small for these
systems and a noteworthy improvement of the agreement with experimental data by fully
relativistic calculations is difficult to see.

3.4.1 Three-dimensional spin momentum density

The first three-dimensional spin momentum density was reconstructed for Fe from 14 sep-
arate magnetic Compton profiles by Tanaka et al. [13] using a Fourier transform technique.
The surface perpendicular to the [001] direction crossing the Γ point has a deep minimum
around the Γ point and four peaks at px = ±1.8 a.u. and py = ±1.8 a.u.. The experimental
two-dimensional projection normal to the [001] direction of the spin momentum density is
correctly reproduced by the FLAPW band calculations of Kubo [13]. Because the full three-
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Figure 3.7: A two-dimensional projection of the spin momentum density: KKR calculations
(up), FLAPW calculations [13] (middle) and experiment (down) [13].
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dimensional momentum density offers an excellent opportunity to test theoretical models,
this was the next application for our KKR method. The result of our calculations, namely the
two-dimensional projection normal to the [001] direction (convoluted with the experimental
resolution expressed by a Gaussian of FWHM 0.76 a.u.) is shown in the Fig. 3.7. The agree-
ment between the KKR two-dimensional projection and experimental, respectively FLAPW
calculated two dimensional projection of the spin momentum density is good, demonstrat-
ing the reliability of MCP calculation using the KKR method. This encouraged us to develop
our code in order to describe momentum densities of more complex compounds and in dis-
ordered alloys, which will be treated in the next section.

3.5 Application to disordered alloys

3.5.1 Compton anisotropic profiles in NixCo1−x alloy

The Compton profiles along the [001], [110] and [111] directions for Ni0.75Co0.25 disordered
alloy were calculated using the KKR method within the CPA and the atomic sphere approx-
imation. The exchange-correlation part of the potential was described, as before, in the local
spin-density (LSDA) approximation. The fcc structure was used with the experimental lat-
tice parameters of 6.6694 for the alloy and 6.6518 atomic units [104] for pure nickel. The
parameters for the energy and momentum integration given in the previous section were
used.
The motivation of considering this alloy was the idea that the electronic structure of
Ni0.75Co0.25 and of pure Ni may differ substantially. If one start to add Co in the Ni-system,
the average moment of the alloy will increase because of the open d-shell of Co. Also, the
number of electrons in the unit cell will decrease because Co has less electrons in the d-shell.
The KKR band structure calculations show that each Ni atom in the alloy carries a spin mo-
ment of 0.59 µB, while the Co atoms carried a spin moment of 1.62 µB giving a net moment
of 0.85 µB per formula unit. The spin and orbital magnetic moment was 0.63 µB on Ni atom
and 1.69 µB on Co atom. These values are in agreement with the KKR-CPA computed values
of Bansil et al. [14] (0.64 µB on Ni atom and 1.63 µB on Co atom).

Because the results for the MCP in Ni and Ni0.75Co0.25 alloy are quite similar, it is inter-
esting to analyse the fine structure of the spectra. For this purpose, the theoretical charge
(spin up + spin down) profiles for Ni0.75Co0.25 along the high-symmetry were subtracted
two by two, in order to obtain the so-called anisotropic profiles. In Fig. 3.8 the ∆J[110]−[001]

and ∆J[111]−[110] anisotropic profiles are presented, together with the experimental data and
the KKR-CPA calculations of Bansil et al. [14]. The experimental data were produced using
a 137Cs γ-ray source within a total momentum resolution of 0.4 atomic units.
The theoretical profiles were convoluted with a Gaussian of FWHM 0.4 a.u. in order to simu-
late the experimental resolution and thus to allow a direct comparison with the experiment.

As can be seen, our calculations are consistent with the experimental data and with the
KKR-CPA calculations of Bansil et al.. The shape of the oscillations are similar, but for pz > 3
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Figure 3.8: The anisotropic Compton profiles of Ni0.75Co0.25. Our SPR-KKR calculations (full
line) are compared with experimental data and KKR calculations of Bansil et al. [14].
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Figure 3.9: The anisotropic Compton [110]-[001] profiles of Ni0.75Co0.25 and pure Ni obtained
by the SPR-KKR calculations.
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Figure 3.10: The anisotropic [110]-[001] spin-up (left) and spin-down (right) profiles of
Ni0.75Co0.25 and pure Ni obtained by the SPR-KKR.

a.u. our calculations doesn’t reproduce correctly the position of the maxima and minima.
A small shift towards smaller momenta is visible in our [110]-[001] calculated profile, the
maximum at ' 4.2 a.u in the experimental spectra is given by our calculations at ' 4.0 a.u..
Also, for pz > 3 a.u. the amplitude of the minimum at ' 3.5 a.u. is underestimated.
In the [111]-[110] anisotropic profile, our calculations describe the minima and maxima po-
sitions better, but the amplitude of the spectrum is overestimated at pz < 2.5 a.u. and un-
derestimated for higher momenta. Also, the shift towards smaller momenta is still present
in this spectra for pz > 3 a.u.. Both theoretical calculations show a deviation from the ex-
perimental spectra at pz = 0 in the [110]-[001] profile. There are differences also between
our KKR calculations and those of Bansil et al., supposed to appear due to the different
exchange-correlation parametrizations within the LSDA. Nevertheless, the agreement be-
tween both calculation and experiment is reasonable. Our fully relativistic KKR calculation
doesn’t improve substantially the agreement with experiment because the relativistic effects
in the 3d transition metals are small. The achieved agreement allows us to use our calcula-
tions for Ni and Ni0.75Co0.25 alloy to investigate possible changes in the anisotropic profile
due to alloying.
The anisotropic profiles for Ni and Ni0.75Co0.25 alloy are represented in Figs. 3.9 and 3.10. As
can be seen, the similarity of the profiles makes a identification of Co specific features very
difficult. According to our calculations, the similarity remains when the spin up, respec-
tively spin-down anisotropic profiles are discussed, so we cannot conclude that the spectral
changes in the alloy are limited mainly to the minority-spin states, as it was concluded by
Bansil et al. [14]. The slight shift towards smaller momenta of the alloy’s spectra may have
several reasons. A study of the behaviour of this shift with respect to the alloy’s concentra-
tion or exchange-correlation parametrization would be required before one may allow for a
reasonable conclusion.
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3.5.2 Magnetic Compton profiles in Fe3Pt Invar alloy and ordered
compound

In 1897 Guillaume discovered that face-centred cubic alloys of Fe and Ni with Ni concen-
tration around 35 % exhibit anomalously low (almost zero) thermal expansion over a wide
temperature range. This effect, known as the Invar effect, has since been found in vari-
ous ordered and random alloys and even in amorphous materials. One of those systems is
Fe1−xPtx, which exhibits the invar effect around the ordered crystallographic phase Fe3Pt.
It was found that also other physical properties of invar systems, such as the atomic vol-
ume, elastic modulus, heat capacity, magnetization and Curie (Néel) temperature show an
anomalous behaviour [105].
There is much theoretical work undertaken on the invar problem, but the mechanism re-
sponsible for it is still subject of debates. The first theoretical model, proposed by Weiss
[106], postulates that γ-Fe (fcc) has two different nearly-degenerate magnetic states: a high
spin (HS) state with a moment of ∼ 2.8 µB/atom and a larger atomic volume and a low spin
(LS) state with a moment of ∼ 0.5 µB/atom and small atomic volume. The relative popula-
tions of these states depends upon the system temperature in such a way as to create a large
volume magnetostriction that opposes the thermal expansion of the lattice.
Until now, there has not been an experimental evidence that conclusively supports the two
state model. The neutron scattering experiments [107] studying the temperature depen-
dence of the form factor shows no evidence for a charge transfer in the material. Also, the
photoemission data [108] are not conclusive concerning a possible charge transfer.
Recent theoretical studies [105] suggest that the invar ground state is a non-collinear-one,
but the experiment [109] doesn’t prove this hypothesis and the invar compound is thought
to have a collinear magnetic structure.
The first studies of magnetic Compton profiles on Fe3Pt compound were done by Srajer et
al. [15]. They determined the [001] MCP profile experimentally at 305 K and 490 K and
calculated the profile using the FLAPW method with a LSDA potential, showing that the
charge transfer between HS and LS states may exist. Their MCP studies were continued
by Taylor et al. [1] and Major et al. [110], who measured the [110] and [111] profiles and
found no temperature-dependence of the profile shapes. In addition, the LMTO and KKR
calculations together with the experimental data show that disorder doesn’t play a major
role concerning the profile’s shape.
The FLAPW-GGA calculations of Wakoh et al. [16] seems to fit the experimental data better
than the LMTO calculations, although they didn’t take the disorder into account.
Our work on ordered and disordered Fe3Pt continue the combined efforts to determine the
shape of the MCP profiles and to find a hint to elucidate the invar mechanism.
Self-consistent potentials of ferromagnetic Fe3Pt were determined by the SPR-KKR within
the atomic sphere approximation (ASA). The Coherent Potential Approximation (CPA) was
used for the treatment of the disordered alloy. The Cu3Au structure was used for the or-
dered compound with a lattice parameter a = 7.088 a.u.. The same lattice parameter was
kept for the disordered fcc-Fe0.75Pt0.25 alloy. With these parameters, each Fe atom carried a
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spin moment of 2.59µB while the spin moment induced on Pt was 0.27µB per atom in the
ordered compound. The net magnetic moment was 2.085µB/FU, while the spin contribu-

Au

Cu

Figure 3.11: The Cu3Au structure.

Ordered sample Disordered sample
15K MCS experiment [1] 1.85 ±0.02 1.64±0.02
300K MCS experiment [1] 1.54 ±0.02 1.47±0.02
300K VSM experiment [1] 1.61

KKR-CPA(Major) [110] 2.136 2.156
SPR-KKR(present work) 2.009 2.132

LMTO [1] 2.096
FLAPW [16] 2.169

Table 3.1: Spin magnetic moments per formula unit in Fe3Pt compound. Results are quoted
as µB per formula unit of Fe0.75Pt0.25. The MCS (magnetic Compton scattering) and VSM
(vibrating sample magnetometer) experimental data stem from Taylor et al. [1].

tion to the total magnetic moment was 2.009µB/FU. Here FU means the formula unit, taken
as Fe0.75Pt0.25 in order to facilitate the comparison with the disordered alloy.
For the disordered alloy, the Fe spin moment was determined to be 2.76µB per atom, while
the induced spin moment on the Pt atom was determined to be 0.244µB . This yields a net
magnetic moment of 2.202µB/FU with a spin contribution of 2.132µB/FU.
The comparison with the experimental data of Taylor et al. [1] and with the results of other
theoretical calculations is done in Tables 3.1 and 3.2. As can be seen, the different methods
of calculation produce similar results, even if the lattice parameter used is slightly different.
The calculations do not describe correctly the magnetic moments (Taylor et al. [1]). In par-
ticular, the spin magnetic moments are overestimated by all methods of calculation. As one
notes, the spin magnetic moment on Fe at 15K (2.46 µB) is higher than in pure Fe (∼ 2.1 µB).
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Ordered sample Disordered sample
15K MCS experiment [1] 2.46 2.18
300K MCS experiment[1] 2.056 1.97
KKR-CPA(Major) [110] 2.73 2.79

SPR-KKR(present work) 2.59 2.76
LMTO [1] 2.62

FLAPW [16] 2.77

Table 3.2: Spin magnetic moments per Fe atom in Fe3Pt compound.

A possible explanation for the low temperature (15K) magnetic moment on Fe to be higher
than that one may expect in pure Fe is a martensitic phase transition [111, 112] producing a
bct distortion of the lattice below ≈ 100 K.
The magnetic Compton profile resolved along the [001] direction for ordered Fe3Pt and
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Figure 3.12: Left: The [001] directional MCP of Fe3Pt. The experimental profile was mea-
sured at 305 K (Srajer et al. [15]) and normalized to the corresponding total spin moment.
The SPR-KKR and FLAPW (Srajer et al. [15]) profiles have been broadened with a Gaussian
of 0.8 a.u. FWHM. Right: The unbroadened [001] directional MCP of Fe3Pt derived from
SPR-KKR and FLAPW GGA (Wakoh et al. [16]) calculations, respectively.

Fe0.75Pt0.25 disordered alloy is shown in Fig. 3.12 (left). Our calculations are compared with
experimental data of Srajer et al. [15] measured at 305 K within a momentum resolution
of 0.8 a.u.. The theoretical profiles have been broadened with a Gaussian of FWHM corre-
sponding to the experimental momentum resolution. The values of the experimental mag-
netic moment have been determined from the area of the measured profile, normalized to a
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Fe standard with a known moment. The results of the FLAPW calculations of Srajer et al.,
with the appropriate broadening, have also been represented in the figure.
As can be seen, the broadening parameter that should be used to allow a comparison with
the experiment smears out the fine structure of the spectra. Because of this, the KKR profiles
for the ordered structure and the disordered alloy almost coincide.
Our calculation doesn’t reproduce the behaviour at pz ≤ 0.5 a.u. present in Srajer’s FLAPW
calculations. A dip around pz = 0.5 a.u. in the KKR calculation can be seen but it doesn’t
extend through pz = 0 a.u.. This is the main difference between our SPR-KKR calculations
and the FLAPW calculations of Srajer et al.. Because experimental data with a better accu-
racy along [001] direction are not available, we compared our unbroadened spectra with the
FLAPW calculations of Wakoh et al. [16].
As can be seen in Fig. 3.12 (right), the agreement between KKR and FLAPW-GGA [16] cal-
culations is good. A dip at pz = 0 a.u. cannot be seen in any of the theoretical spectra.
As a consequence, the dip at pz ' 0 a.u. in Srajer’s FLAPW profile is questionable. The
difference between theory and experiment should be ascribed to shortcomings of LSDA to
deal with electron correlation.
As it has been shown before, the d-like and s-p like contributions to the MCP can be iso-
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Figure 3.13: The SPR-KKR MCP along the [001] direction of Fe3Pt decomposed into atomic
type contributions (left). The d orbitals contributions at the MCP along the [001] direction
of Fe3Pt, decomposed into atomic type contributions (right), by SPR-KKR calculations.

lated by a corresponding setting of the quantum number Λ = (κ, µ) in the calculation of the
matrix elements M qα

ms,Λ from Eq. (3.26). Also, a further decomposition of the MCP is possi-
ble in our SPR-KKR formalism. Considering the formula (3.26) of the Green’s function, the
MCP can be written as a sum over the atomic types, plus an additional so-called interference
term which takes into account the contribution of pairs of atoms sitting on different sites.
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The previous described decomposition has been performed for the MCP of ordered Fe3Pt
system. The decomposed spectra are presented in Fig. 3.13. On the left hand side one can
see the total spectra decomposed into Fe and Pt contributions, plus the interference term.
On the right hand side, the decomposition on the atomic types has been done for the d-like
MCP of ordered Fe3Pt system.
As can be seen in Fig. 3.13, the most significant contribution to the MCP comes from Fe.
This result is expected, if one takes into account it’s spin magnetic moment (see Tables 3.2
and 3.1) which is responsible for the magnetic Compton effect. The very small spin moment
on Pt is reflected by its minor contribution to the MCP. Most significant for the MCP shape
is the oscillating interference term.
Comparing the d-like MCP and the total MCP of Fe3Pt along the [001] direction, we can see
that for pz > 1 a.u. there aren’t major difference between the various spectras. This means
that the major contribution on the MCP for pz > 1 a.u. comes from d orbitals of Fe and Pt.
The differences between d-like and total MCP spectras are visible at pz ∼ 0.7 a.u., where the
d-like dip of the MCP spectra is less pronounced. Responsible for this difference seems to
be the negative polarization of s-p orbitals, as in the case of pure Fe, reflected in lowering of
the Fe (total) profile compared with Fe(d) at pz < 1 a.u.. Also, the interference term gives a
wider negative contribution at pz < 1 a.u. in the total profile compared with the d-d inter-
ference term. These combined influences seems to be decisive for the shape of the MCP of
Fe3Pt.
To allow for a more complete picture over the one dimensional projection of the spin mo-
mentum distribution in Fe3Pt we performed calculations of the MCP along the [111] and
[110] directions for the ordered system and the disordered alloy.
The experimental data of Taylor et al. [1] with a momentum resolution of 0.4 a.u. at 300K,
normalized to an area of 1.85 µB have been used for comparison. The experiment performed
on a single crystal and on chemically disordered sample, respectively, showed that the MCP
is not sensitive to the degree of order in the sample. This result is in agreement with our
calculations along the [001] direction which seems not to be affected by disorder.
The MCP for ordered Fe3Pt is presented in Fig. 3.14. The FLAPW calculations of Wakoh et
al. [16] and LMTO calculations of Major et al. [1] with the 0.4. a.u. FWHM gaussian param-
eter have been used for comparison.
The calculated MCP is in good overall agreement with the experimental profile, especially
the high momentum components of the experimental profile are well reproduced by theory.
As can be seen, our KKR calculations give a fit comparable with the FLAPW calculations,
whereas the LMTO-calculated MCP is too large for pz ≤ 2 a.u. along both crystallographic
directions.
In Fig. 3.15 our KKR-CPA magnetic Compton profiles for disordered Fe0.75Pt0.25 alloy are

presented, together with the KKR-CPA calculations of Major et al. and experimental data
[1]. The value of 0.4 FWHM for the gaussian broadening has been used for both KKR-CPA
calculations, in accordance with the experimental momentum resolution.
The calculated MCPs are again in good overall agreement with that measured experimen-
tally. Our fully-relativistic version of KKR-CPA leads to a more satisfying agreement with
the experimental data in the momentum region below 2 a.u.. However, one should note that
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Figure 3.14: The [110] (left) and [111] (right) directional MCP of Fe3Pt. The SPR-KKR profile
(full line), the LMTO [1] and FLAPW [16] calculations are compared with experimental data
[1].
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Figure 3.15: The [110] (left) and [111] (right) directional MCP for disordered Fe0.75Pt0.25 alloy.
The SPR-KKR calculations (full line) are compared with KKR-CPA calculations of Major et
al. and experimental data [1]. Both KKR-CPA calculations have been broadened with a
Gaussian of 0.4. a.u. FWHM, in accordance with the experimental momentum resolution.
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Figure 3.16: The unbroadened [110] (left) and [111] (right) directional MCP of Fe3Pt. The
SRR-KKR calculations for ordered and disordered compounds, respectively FLAPW-GGA
calculations (Wakoh et al. [16]) are presented.

the calculated spin moments for each KKR-CPA version are very similar.
As the experimental measurements demonstrate [1], the directional magnetic Compton pro-
files for ordered and disordered compounds are almost identical, within the experimental
resolution. We checked if from a theoretical point of view, one should notice some difference
between the MCP for ordered and disordered sample. We investigated the disorder effect
on the MCP along the [110] and the [111] direction using the KKR and CPA-KKR code and
the same lattice parameters for Cu3Au and fcc structure. The result can be seen in Fig. 3.16.
The difference in the [110] profiles between the KKR and KKR-CPA appear at pz ≤ 2 a.u.,
where the dip at ∼0.7 a.u. and the peak at ∼0.5 a.u. are lower for a disordered sample. This
means that the negative polarisation in this momentum region is more pronounced for the
ordered sample, supposing that between experimental spectra for ordered and disordered
sample the difference is negligible.
For the [111] direction MCP, the fine structure of the spectra is reduced, so the information
we can extract comparing the KKR, KKR-CPA and FLAPW spectra is limited. We notice the
existence of a small hump around 0.7 - 0.9 a.u., present in the KKR spectra for the ordered
system, which cannot be seen in the other spectra.
The very good overall agreement between KKR and FLAPW spectra must be emphasized.
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3.6 Magnetic Compton profiles for rare earth systems

A fully relativistic study of the magnetic Compton profiles for the rare earth systems Gd and
Y-Gd alloy is presented in this section. Because the relativistic effects cannot be neglected
for the rare earth systems, this approach is expected to get a more appropriate description
of the momentum distribution compared with the calculations which have been published
until now [3].
There are several studies [113, 114, 115] about the applicability of the local spin-density ap-
proximation (LSDA) in the ground-state description of 4f-electronic systems. Because the
LSDA will overestimate the extent of the 4f itineracy leading to an overestimation of the
strength of the 4f bonding, the LSDA may produce poor agreement with experiment [116].
The investigation of Duffy et al. [3] concerning the validity of LSDA within the LMTO
method for the description of the one-dimensional momentum densities of Gd showed very
similar profile shapes for the LMTO-LSDA and LMTO-GGA calculations. Kubo and Asano
calculated the MCP of Gd by the full-potential linear augmented-plane-wave (FLAPW)
method on the basis of LSDA. They found a good agreement between their calculations
and the experimental data of Sakai et al. [117], concluding that the spin polarization of the
conduction electrons is satisfactorily reproduced by the band structure model based on the
LSDA. Taking into account these studies, it is expected that the results of our calculations
using LSDA will not suffer due to an inadequate treatment of exchange and correlation.

3.6.1 Magnetic Compton profile of Gd

Compared with the other rare earth systems, the magnetic order in Gd is relatively simple.
Gd is a ferromagnetic system with a Curie-temperature of Tc= 293 K. The magnetic moment
lies parallel to the c-axis and remains so down to 232 K. At lower temperature the moment
moves away from the c-axis, the maximum deviation of about 65o being achieved at 180 K,
with the moments canted in a random cone structure.
The magnetic properties of the system originate predominantly from the exchange field of
the localized 4f electrons, rather than that of the conduction electrons, as in the case of fer-
romagnetic transition metals. Due to the high localization of the 4f electrons, the exchange

Calculation method Spin magnetic moment (µB)
LMTO-LSDA [3] 7.65
LMTO-GGA [3] 7.52

FLAPW-LSDA [2] 7.70
KKR 7.53

Table 3.3: The theoretical spin magnetic moments in Gd . The SPR-KKR calculated magnetic
moments are compared with FLAPW results of Kubo and Asano [2] respectively with LMTO
magnetic moments of Duffy et al. [3].
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interaction driving the magnetism is supposed to be indirectly mediated via the conduction
electrons.
Before discussing the MCP results, is interesting to examine the ground-state magnetic mo-
ments derived from self consistent calculations. The magnetic moment comprises 7 µB from
the half-filled 4f shell, plus an induced conduction electron moment. The experimental mag-
netic moment determined at 4.2 K is µtotal = 7.62± 0.01 µB [118]. The spin magnetic moments
obtained by different calculation methods are summarized in Table 3.3.
Many of the early MCP measurements were made at nitrogen temperature, but a higher
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Figure 3.17: Magnetic Compton profile of Gd. Theoretical calculations are broadened with
a Gaussian of FWHM 0.44 a.u.. The fully relativistic SPR-KKR profiles are compared with
FLAPW [2], LMTO [3] MCP and experimental data [3].

temperature is needed to avoid the phase where the c-axis moments are canted. The ex-
perimental Compton profiles presented here were measured at ID15 X-Ray beam line at the
ESRF. The temperature of the sample was 235 ± 2 K, such that the moments of the sample
are still parallel to the c-axis. The momentum resolution for the measured profiles was 0.44
atomic units.
The results of the previous FLAPW and LMTO calculations [3, 2] showed that (a) FLAPW

theory doesn’t produce any improvement compared to the LMTO calculation, in contrast
to the situation in Ni and (b) GGA doesn’t improve the results of LSDA, maybe due to the
localized nature of the magnetisation.
The results of our KKR calculations are presented in Fig. 3.17, together with the results
of LMTO and FLAPW calculations. All theoretical predictions were convoluted with the
(Gaussian) experimental resolution function with width 0.44 atomic units. The experimen-
tal data were normalized, such that the area under the profile is equal with the spin mag-
netic moment determined by experiment [3]. After broadening, the calculated SPR-KKR
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Figure 3.18: Theoretical predictions on the magnetic Compton scattering of Gd. Left: The
SPR-KKR calculations (full line) together with FLAPW calculations of Kubo and Asano [2]
and respectively LMTO calculations of Duffy et al. [3]. The gray line is the equivalent free-
atom profile for Gd 4f, normalized to 7 electrons. Right: The effect of the spin-orbit coupling
on the SPR-KKR MCP of Gd.

profile was normalized to the experimental MCP. The unbroadened theoretical predictions
are represented in Fig. 3.18 (left) together with the equivalent free-atom profile for Gd 4f,
normalized to seven electrons [3].
The 4f electrons contribution to the MCP of Gd is giving a broader profile compared with 3d
ferromagnets, with an extension beyond 5 atomic units. At lower momenta (pz ≤ 1.5 a.u.)
there is a small contribution arising from the spin polarisation of the conduction electrons
(6d25d) superimposed on the 4f electrons contribution, as can be seen in Fig. 3.18.
The results of KKR calculations are obtained fully relativistically as well as in scalar relativis-
tic way, with the spin-orbit coupling switched off. The effect of the spin-orbit coupling on
the SPR-KKR magnetic Compton profile (MCP) can be seen in Fig 3.18 (right). As expected,
the spin-orbit coupling effect is important for the spin momentum density calculations. The
scalar relativistic profile overestimates the profile at small momenta, whilst the fully rela-
tivistic calculations gives the best fit of the experimental data (see Fig. 3.17). In Fig. 3.18,
the fine structure of the theoretical magnetic Compton profile can be seen. We note that the
shape of the KKR profile is very similar to the FLAPW profile. The peaks at '0.4 a.u. and
'0.8 a.u. are prominent in both calculations. The difference is the magnitude of the peaks
and the behaviour at pz = 0 a.u., where the dip in the KKR profile is more pronounced. This
behaviour around pz = 0 a.u. seems to be decisive, after broadening, for a better fit of the
experimental data.
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3.6.2 Magnetic Compton profile of Y0.38Gd0.62 alloy

Y has the same structure and similar atomic volume as Gd, and hence the Gd1−xYx alloy
readily form over the whole concentration range with only small changes in their lattice pa-
rameter.
The Gd-Y alloy series has been subject of investigations [119, 120] in view of the competition
between ferromagnetic order favourable in Gd-rich alloy and the helical magnetism found
in Y-rich alloy. The magnetic behaviour of the bulk alloy is complex; there are three different
magnetic ordered phases in competition: for x ≤ 0.3 Y, the ferromagnetic order is present,
for x ≥ 0.4 there is a helical antiferromagnetic phase and in between there is a delicate bal-
ance of the two phases at different temperatures.
Because Y is non magnetic, it might be thought that it will act like a diluent on the magnetic
properties of Gd. This assumption was falsified by Thoburn et al. [119] through the evi-
dence of a large additional total moment in the ferromagnetic phase of GdxY1−x alloys. The
behaviour of the total moment can be explained either through the appearance of an addi-
tional orbital moment due to the crystal field modification induced by the presence of Y, or
an extra-spin moment induced by the hybridisation of the conduction bands in the alloy.
The magnetic Compton investigations of Duffy et al. [4] evidenced an additional spin mo-
ment of 0.16 ± 0.03 µB . The magnetic moment was determined comparing the magnetic
Compton profile of the alloy and of pure Gd, normalized to the same 4f electronic contribu-
tion in order to take into account the Gd dilution in the alloy. The area under the Y0.38Gd0.62

MCP is higher than the corresponding area for pure Gd, the difference being attributed
to the extra-spin moment on Y. LMTO calculations support the evidence of the extra-spin
moment, supposed to arise from the polarisation of electrons on Y through a Ruderman-
Kittel-Kasuya-Yoshida (RKKY) type of interaction.

Taking into account the previous work in the field, our purpose is to analyse the KKR
predictions for the magnetic moments obtained from electronic band calculations and to
compare them with experiment and with LMTO calculations. Also, the magnetic Compton
profiles will be calculated and compared with the previous experimental data and theoreti-
cal predictions.
Fully relativistic KKR self-consistent band structure calculation have been performed for
Y0.38Gd0.62 alloy in a hcp structure with a lattice parameter a = 6.8758 a.u. and c/a = 1.584.
The Coherent Potential Approximation (CPA) was used for the treatment of the disordered
alloy. The magnetic moments for Gd and Y are presented in Table 3.4, together with the

Calculation method Gd (pure) Gd (alloy) Y (alloy)
LMTO-LSDA 7.64 7.56 0.35
KKR-LSDA 7.53 (7.44) 7.53 (7.42) 0.245 (0.24)

Table 3.4: LMTO [4] and SPR-KKR magnetic moments of Y0.38Gd0.62 alloy. The SPR-KKR
spin magnetic moments are presented in parenthesis.
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LMTO based magnetic moments of Duffy et al. [4]. The KKR spin magnetic moments for
each atom-type are presented in parenthesis. Both calculation methods predict a small mag-
netic moments induced by Y. KKR calculations show that the induced moment is associated
with the spin, the orbital component being very small. This extra spin-moment has to be
evidenced by the MCP calculations for Y0.38Gd0.62 alloy, as will be shown in the following.
The experimental data of the [0001] MCP for Y0.38Gd0.62 alloy were measured at the high
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Figure 3.19: Magnetic Compton profile of Y0.38Gd0.62 alloy. SPR-KKR profiles have been
broadened with a Gaussian of FWHM 0.44 a.u. and normalized according to the 4f moment
to be compared with experimental data of Duffy et al. [4].

energy beamline X-Ray beamline at the ESRF with an incident energy of 200 keV [4]. The
temperature of the sample was maintained at 70±2 K. According to Thoburn et al.[120], for
this temperature and concentration the alloy has a ferromagnetic order. The momentum
resolution achieved during the measurements was 0.44 atomic units.
In Fig. 3.19 we present the theoretical KKR MCP of Y0.38Gd0.62 convoluted with a Gaussian
of FWHM 0.44 a.u. to simulate the experimental resolution and normalized according to the
4f moment. For normalization, the theoretical KKR MCP profile of pure Gd has been rep-
resented in the same figure in order to estimate the 4f contribution. The theoretical profile
is compared with the experimental data of Duffy et. al [4]. The KKR MCP gives a new evi-
dence of the extra-spin moment contribution of Y in the Y0.38Gd0.62 alloy, compared with the
pure Gd system. This extra spin contribution to the magnetic moments seems to be slightly
overestimated by the KKR MCP calculations.
We performed KKR MCP calculations for ferromagnetically ordered Y0.50Gd0.50 alloy, in or-
der to investigate if the trend of the magnetic moments behaviour versus the concentration
of Gd in the GdxY1−x is reflected by the MCP calculations. According to Thoburn et al.
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Figure 3.20: Magnetic Compton profiles of Y0.38Gd0.62 and Gd0.50Y0.50 alloys. The SPR-KKR
profiles have been normalized to free atom-like 4f contribution.

[119], the magnetic moments in GdxY1−x alloy increase with increasing the Y content, al-
though pure Y is non-magnetic. The theoretical predictions for Y0.50Gd0.50, Y0.38Gd0.62 and
pure Gd are presented in Fig. 3.20. The MCP for the alloys have been normalized to the
same 4f contribution as in pure Gd. The results are in agreement with experimental mag-
netisation data [119], the spin magnetic moment in the Y0.50Gd0.50 alloy being higher than in
Y0.38Gd0.62.

3.7 Magnetic Compton profile of UFe2

In recent years, the study of actinides and actinide compounds has attracted much inter-
est because of great variety of magnetic behaviour, such as Pauli paramagnetism, local-
ized/itinerant magnetism and heavy fermion behaviour. The complexity of the magnetic
behaviour is connected with the spin-orbit coupling strength, which is rather large com-
pared with the crystal field energy. The spin-orbit coupling induced orbital moment can be
appreciable if the strength of the coupling is comparable to the f-band width.
Although f-electrons are usually treated as localized, there are some compounds for which
the f-states are strongly coupled to the conduction band (s, p and d) giving rise to unusual
properties. One consequence of delocalization is the formation in some compounds with
ordered magnetic moments, much smaller than those anticipated from localized f-electrons
[121]. This 5f electron delocalization has been reported in UFe2 compound [122]. UFe2 is a
soft ferromagnet with a Curie temperature of 160 K, which crystallize in the cubic fcc Laves
phase and has low magnetic anisotropy. Neutron diffractions experiments [123, 124] found
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a very small total moment in this system. The orbital and spin magnetic moments, which
individually have a value of ∼ 0.23µB , almost completely cancel on the U sublattice.
The theoretical predictions based on spin-polarized LMTO calculations [122] found an 5f or-
bital moment on the U site µl = 0.47µB and an antiparallel spin component of µs = −0.58µB .
Adding the small s, p and d contribution, the total U moment is −0.24µB per atom, antipar-
allel to the larger (0.77µB) Fe moment. The spin and orbital moments on the uranium site
in UFe2 deduced later from circular dichroism data by using the sum rules [125] confirmed
the neutron diffraction data, but the spin and orbital contribution on U site are less than half
(µl ' µs ' 0.23µB) of the values obtained from LMTO calculations.
Neutron experiments probe the total site magnetization, which for UFe2 is very small. Mag-
netic dichroism experiments are element specific, i.e. it doesn’t show a complete picture of
the UFe2 magnetism. For these reasons, magnetic Compton scattering experiments have
been performed by Lawson et al. [17] in order to get information about the spin magnetiza-
tion of this compound.
The measured profile is placed on an absolute scale by calibration with a measurement on
pure metallic Fe whose moment is well known to be 2.1 µB. This moment is almost entirely
due to spin, while the orbital moment being negligible. The average momentum resolution
achieved using an Ge solid state detector was 0.78 atomic units. The measured profile was
fitted by using free-atom Compton profiles for Fe 3d, U 5f and a diffuse component, mod-
eled as the sum of a U 6d free-atom profile and a free-electron parabola smeared with the
experimental resolution function. Following this empirical procedure, Lawson et al. [17]
obtained spin moments for 5f U and 3d Fe in agreement with those deduced from neutron
measurements.
Our purpose is a direct KKR calculation of the magnetic Compton profile for UFe2 and a
investigation concerning the role played by the spin-orbit coupling and by the interactions
responsible for Hund’s second rule.

3.7.1 The orbital polarization

Hund’s first rule (concerning the exchange interaction between spins) is accounted for by
the LSDA leading to the spin polarization. The second Hund rule (concerning the orbital
exchange interaction between atomic orbital moments) is absent in LSDA because this the-
oretical approach is based on the properties of a spin polarized homogeneous electron gas.
Although the interactions leading to Hund’s second rule are usually neglected in an energy
band calculations, they are crucial in atoms. Since we are dealing with a very narrow band
system here, the atomic-like interactions play an important role. During the last years, the
energy band calculations including the Hund’s second rule have been applied with remark-
ably success to d- as well as f- electrons [122, 126].
The orbital polarization (OP) term added to the Hamiltonian is meant to account for Hund’s
second rule i.e. to maximize the orbital angular momentum. For f-electron systems Brooks’
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OP-term has the form

∆εlmlms
= −E3

ms

〈
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〉

ms

mlδl3 . (3.27)

This term describes a shift in energy by ∆εlmlms
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Introducing the vector potential function

AOP
ms

= −E3
ms

(r) < lz > (3.30)

one can get the Dirac Hamiltonian in the form

H =
~c

i
~α · ~∇ + βmc2 + Veff (~r) + β~σ · ~Beff (~r) + AOP βlz . (3.31)

The influence of the OP-term on the magnetic moments of UFe2 has been investigated.
Self-consistent energy-band calculations were done, using the KKR band structure method
within the local approximation to the density-functional theory (LSDA). The magnetic mo-
ments resulted from a fully-relativistic calculation, with and without the orbital polarization

U Fe
mspin morb mspin morb

KKR 0.56 -0.29 -0.69 -0.06
KKR OP 0.62 -0.32 -0.74 -0.09

Experiment [123, 124] 0.22 -0.23 -0.59 -
LMTO [122] 0.71 -0.47 -0.75 -0.07

LMTO OP [122] 1.03 -0.88 -0.82 -0.07

Table 3.5: Magnetic moments of U and Fe in UFe2 compound.
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term included in Hamiltonian, are presented in Table 3.5. These results are compared with
the neutron diffraction experimental data [123, 124] and with results of LMTO calculations
[126]. The theoretical KKR values for the spin and orbital moments compare rather well with
LMTO calculations and with experimental data. Both KKR and LMTO calculated magnetic
moments overestimate the moments, but the KKR results are closer to experiment. This re-
sult enable us to continue the investigations on the magnetic properties of this system.

3.7.2 Influence of spin-orbit coupling and orbital polarization
on the MCP of UFe2

The KKR-LSDA calculations of MCP with spin-orbit coupling switched on/off have been
performed for UFe2. The influence of the spin-orbit coupling on the magnetic Compton
profile of UFe2 is presented in Fig. 3.21 (left). The theoretical KKR calculations have been
convoluted with a Gaussian of 0.78 a.u., the same as the experimental resolution function.
The experimental data stem from Lawson et al. [17].
As can be seen, in the high-momentum region (pz ≥ 2 a.u.) the spin-orbit coupling doesn’t
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Figure 3.21: Influence of the spin orbit coupling (left) and orbital polarization (right) on the
magnetic Compton profile of UFe2. The theoretical spectra have been convoluted with a
Gaussian of FWHM 0.78 a.u. to fit the experimental data of Lawson et al. [17]

influence the magnetic spin density. It is not the case for the low momentum region (pz ≤ 2)
a.u., where the calculation with spin-orbit switched off overestimates the magnetic Compton
profile. This negative polarization of the profile in the low momentum region is almost
correctly estimated by the fully relativistic calculations.
The MCP was calculated by the KKR-LSDA method, using the Hamiltonian from the Eq.
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Figure 3.22: The theoretical magnetic Compton profile of UFe2. The SOC = 0 labels the
scalar-relativistic calculation and SOC labels the fully relativistic calculation. OP denotes
the SPR-KKR calculation with orbital polarization included.

(3.31) in order to take into account the orbital polarization (KKR-OP mode). The profile
calculated in the OP-mode is represented together with the fully relativistic profile, with the
OP term missing from the Hamiltonian (KKR mode) and with the experimental data in Fig.
3.21 (right). The role played by the orbital polarization in the MCP of UFe2 is less obvious,
but an improvement of the profile in the region of 0.5 ≤ pz ≤ 1.7 a.u. is visible, the KKR-
OP profile being closer to experiment. Because Compton scattering is driven by the spin
magnetism, it is expected that changes in orbital interaction will affect it only if there are
also changes in the spin polarization induced by spin-orbit interaction.
For a more detailed investigation of the role played by spin-orbit, and by the OP in different
momentum regions of the MCP, the raw calculated spectra have not been convoluted and
the fine structure of MCP is visible. As can be seen, the OP-mode of calculation enhances
the peaks at 1.5 and 2.0, compared with the non-OP-mode. Inside the regions with pz ≤ 1.5
a.u. and pz ≥ 2.5 a.u., the OP and non-OP fully relativistic calculation coincide.
As expected, a non-relativistic band structure treatment is not adequate for this system, but
one should note the big influence of the spin-orbit coupling in the MCP, compared with the
smaller effect of the orbital polarization.

3.7.3 Individual atomic-type contributions on the magnetic Compton
profile of UFe2

We are interested to see which are the Fe and U contributions in the MCP of UFe2. The MCP
spectra can be decomposed into site contributions, making use on the Green’s function
formula (3.26). Further, if one associate the atomic type to each site into the unit cell, the
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Figure 3.23: The magnetic Compton profile of UFe2 (full line) decomposed into U (dotted
line), Fe (dashed line) and interference term (U-Fe) contribution (dashed-dotted line). The
profiles have been broadened with a Gaussian of FWHM = 0.78 a.u., according to the exper-
imental momentum resolution. The experimental data of Lawson et al. [17] are represented
by circles.
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Figure 3.24: The partial components: U (circles), Fe (squares) and interference term (trian-
gles) resulting from the SPR-KKR decomposition of the magnetic Compton profile, together
with the ’Fe-3d’ (full line), ’U-5f’ (dotted line) and the ’spd’ (dashed line) term used by
Lawson et al. [17] to compose the best fit of the experimental data.
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MCP spectra can be decomposed into distinct atomic-type contributions plus an interfer-
ence term which takes into account the combined U-Fe contributions. The decomposition
is presented in Fig. 3.23. As can be seen, Fe gives a positive free atom-like contribution,
which is partially compensated by the negative free atom-like U contribution, in agreement
with the antiparallel spin coupling determined by experiment [125] and confirmed by other
theoretical calculations [122].
The decisive term for the final shape of the total profile is the interference term, which is
negative for pz ≤ 1.2 a.u. and positive for pz ≥ 1.2 a.u.. It is obvious that this term is
responsible for the negative polarization of the total profile at pz ≤ 1.2 a.u. and for the
maxima at pz ' 1.7 a.u..
Our decomposition, described below and presented in Fig. 3.23 is compared with the fit-
ting of the experimental data performed by Lawson et al. [17]. They fitted the experimen-
tal profile by free-atom Compton profile for Fe 3d, U 5f and a diffuse component, labeled
spd, which is modeled as the sum of a U 6d free-atom profile and a free-electron parabola
smeared with the experimental resolution function. The partial components of the MCP are
presented for comparison in Fig. 3.24. The fitting realized by the total best-fit curve of Law-
son et al. is comparable with the SPR-KKR fitting of the experimental data and it has not
been represented in Fig. 3.24.
As can be seen in Fig. 3.24, the Fe contribution is similar in the SPR-KKR decomposition
with the free atom profile for Fe 3d [17]. Also, the shape of the U partial profile is similar
with the free atom profile for U 5f of Lawson et al.. This suggests a free atom-like contri-
bution of Fe and U. The difference appears when the spin magnetic moment is estimated.
If the Fe spin magnetic moment is comparable in the two cases, we conclude that the spin
magnetic moment of U has been underestimated by the fitting of Lawson et al..
According to our direct calculation of the partial components, there is no reason of a pos-
sible representation of the interference term (or diffuse term) as a sum of U 6d free atom
profile and a free-electron parabola. Our SPR-KKR band structure calculations gives a spin
moment on s p and d orbitals of U ' 20 % of the U-f spin moment, so there is no evidence
for such a big negative U-6d contribution compared with the U -5f one. As a consequence,
the possibility of fitting the MCP by free atom-like profiles is questionable.

3.8 Conclusions

The SPR-KKR magnetic Compton profile calculated for Fe and Ni along [001], [110] and
[111] directions show good agreement with the experimental data. The decomposition of
the MCP [001] spectra of Fe into s-, p- and d-like contributions show a significant negative
polarisation of s- and p- orbitals in the spin momentum density at small values of momen-
tum.
The SPR-KKR two-dimensional projection of the spin momentum density for Fe perpendic-
ular to the [001] direction crossing the Γ point is in good agreement with the FLAPW calcu-
lations and with the reconstruction from experimental spectra. This result demonstrates the
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reliability of the SPR-KKR calculations of the MCP spectra.
The SPR-KKR calculations of the magnetic Compton profiles in Fe3Pt Invar alloys show that
the ordering doesn’t play a major role for the spin momentum density of the system. The
decomposition of the MCP [001] spectra for Fe3Pt into Fe, Pt and interference terms show
that Fe has the major contribution to MCP. Nevertheless, the shape of the profile is influ-
enced by interference term which has a change in sign along the momentum axis.
The influence of the relativistic effects on the spin momentum density can be seen in the
magnetic Compton profiles for Gd, Y0.38Gd0.62 and UFe2. Also, the influence of the orbital
polarisation (i.e the Hund’s rule which describes the interaction between orbital moments)
in UFe2 systems is discussed. The decomposition of the MCP spectra of UFe2 [001] into the
U, Fe and interference terms show that the interference term cannot be neglected. Because
of this, the atomic-like decomposition of the MCP spectra is questionable.
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Chapter 4

Positron annihilation

4.1 Introduction to positron annihilation

There are only few experimental techniques for measuring directly wave-function-related
quantities such as real-space electron density or momentum density. The positron annihila-
tion experiment provide useful information on the electron momentum density and hence,
on the electronic structure of solids. A short description of the positron annihilation experi-
ment will be given in the following.
Solid state positron spectroscopy is based on the annihilation of positrons with electrons
with the creation of, in general, pairs of high energy photons (∼ 0.5 MeV) which carry in-
formation about both the energies and momenta of the annihilated electron-positron pair
[127, 128]. The schematic process is presented in Fig 4.1. Positrons can be injected in the
sample either directly from a radioactive source, in which case they have a continuous en-
ergy distribution from 0 to ∼ 1 MeV, or as monoenergetic beams with energy typically in the
range 0 - 40 keV. The mean penetration depth depends on the target material. In the sam-
ple positrons rapidly lose their initial kinetic energy first via ionization processes, then via
electron-hole excitations, and finally via phonon-scattering. After losing the excess energy
positrons exist in thermal equilibrium with the ions and the electrons in the sample. The
thermalization time of the positron is short compared with the life-time and can be ignored
in most cases.
In thermal equilibrium the positron state develop according to a diffusion process in real
space. The positrons scatters from phonons, electrons and defects of which the phonons
give the dominant contribution. The average diffusion length is of the order of 1000 Å. In
the case of periodic crystals and normal experimental conditions there is only one positron
in the sample at a time. Due to Coulomb repulsion the positron wave function is mainly lo-
cated in the interstitial region of the crystal, far from the positive nuclei. Localized positron
states can be formed at open-volume crystal defects (vacancies, voids or dislocations). In
the case of semiconductors and insulators, the positrons can be weakly bound by negative
charged defects (impurity ions).

99
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Figure 4.1: Positron annihilation in the solid gives rise to the γ-rays detected by experimental
measurements.

In the center of the momentum frame of a low energy (p << m0c) electron-positron pair, the
two photons are emitted in exactly opposite directions. However, in the laboratory frame,
the momentum of the center-of-mass of annihilating pair produces small Doppler shifts (≤
2 keV) in the energies of the two photons and a small deviation from antiparallel alignment
(≤ 0.5 degrees). The deviation can be measured with the one- or two-dimensional angular
correlation of the annihilation radiation (1D- or 2D-ACAR) methods.
The quantity measured in the 2D-ACAR experiment is usually identified with the 2D pro-
jections of the three-dimensional electron-positron momentum density distribution function
n2γ(~p), given by the formula:

n2γ(~p) =
∑

iocc

|

∫

Ω

e−i~p~rΨep
i (~r, ~r)d3~r|2 . (4.1)

Here Ψep(~r, ~r) is the two particle wave function when the positron and the electron of state i
reside at the same point. The summation is done over all electronic occupied states, ~p is the
electron momentum and Ω is the volume of the sample.
The two-particle wave function is usually written in a product form:

Ψep
i (~r, ~r) = Ψp(~r)Ψe

i (~r)
√

γi(~r) , (4.2)

where Ψp(~r) and Ψe
i (~r) are the positron and electron wave functions for the independent

systems. The effects of the electron-positron interaction are included in the so-called en-
hancement factor γi(~r). The positron-electron correlation gives rise to an electronic cloud
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around the positron which screens its positive charge, thereby greatly increasing the elec-
tron charge in its environment. This attraction strongly depends on the electron density.
The enhancement factor γi(~r) is defined as the ratio of perturbed to unperturbed electron
densities in the initial i state at the positron position ~r. If the electron-positron correla-
tions are neglected, the value of the function γi(~r) is approximated by 1. In this case, the
positron annihilation is treated within the independent particle model (IPM). Apart from
the IPM model, several models to determine the enhancement function have been devel-
oped [129, 130, 131, 132, 133, 134]. The electron-positron correlation is a complex many-body
problem which will be not dealt within this work.
Instead, the quantity of interest from the electronic point of view is however the electron
momentum distribution function n(~p), given by formula

n(~p) =
∑

iocc

|

∫

Ω

e−i~p~reΨe
i (~re)d

3~re|
2 . (4.3)

To deduce features of n(~p) from measurements of n2γ(~p) one has to understand the positron
annihilation process and the states of the positron in a metal.
To first order in the positron-ion and electron-positron interactions, the most prominent
feature of n2γ(~p) is the break that occurs when ~p crosses the Fermi surface separating the
filled and unfilled parts of ~p space. The positions of these breaks define the Fermi surface.
The effect of the interactions between positrons and ions and respectively between positrons
and electrons is reflected in the differences between n2γ(~p) and n(~p). The importance of the
electron-positron interaction becomes especially apparent when comparing ACAR spectra
with Compton profiles.

4.2 The electron-positron momentum density

The purpose of this section is to present a general scheme to calculate n2γ(~p) such that it
can be used in a practical determination of the two-dimensional angular correlation of the
annihilation radiation (2D-ACAR) spectra and of the coincidence Doppler broadening (1D-
ACAR) spectra.
One can relate the electron-positron momentum density n2γ(~p) to the two particle Green
function Gmsm′

s
(~pe, ~pp) in momentum representation, where ms, ~pe , m′

s and ~pp are the spins
and momenta of electron and positron, respectively. In the following calculations we will
neglect the electron-positron correlations, breaking the system consisting of one positron
and n electrons into two non-interacting subsystems: one subsystem consist on n fully in-
teracting electrons and the other subsystem consists only in the positron. The Green’s func-
tion of the electron-positron pair in momentum representation can be expressed using the
multiple scattering Green’s function given by formula (2.155) and the eigenfunctions of the
momentum operator Φ~pms

as:

Gmsm′

s
(~pe, ~pp) =

1

NΩ

∫

d3r

∫

d3r′φe†
~pems

(~r)=Ge+(~r, ~r ′, Ee)φ
e
~pems

(~r ′)
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φp†
~ppm′

s
(~r)=Gp+(~r, ~r ′, Ep)φ

p
~ppm′

s
(~r ′) . (4.4)

The eigenfunctions of the momentum operator can be written as Φ~pms
= U(~p)ei~p~r = U~pms

ei~p~r,
where U(~p) is a four-component spinor (see Eq. (3.13)). This leads to the expression for the
Green’s function:

Gmsm′

s
(~pe, ~pp) =

1

Ω

∫

d3r0

∫

d3r′U e†
~pems

e−i~pe~r0=Ge+(~r0, ~r
′, Ee)U

e
~pems

ei~pe~r ′

Up†
~ppm′

s
e−i~pp~r0=Gp+(~r0, ~r

′, Ep)U
p
~ppm′

s
ei~pp~r ′

. (4.5)

The space integral can be written as a summation over the cell-integrals:
∫

d3r =
∑

q

∫
dr0q

and
∫

d3r′ =
∑

n′q′

∫
dr′n′q′ , where ~r0 = ~r0q + ~Rq and ~r ′ = ~r ′

n′q′ + ~Rn′ + ~Rq′ as in Fig. A.1. With
this, the Green’s function reads as:

Gmsm′

s
(~pe, ~pp) =

1

Ω

∑

q

∑

n′q′

∫

d3r0q

∫

d3r′n′q′

U e†
~pems

e−i~pe(~r0q+~Rq)=Ge+(~r0q, ~r
′
n′q′ , Ee)U

e
~pems

e
i~pe(~r ′

n′q′
+~Rn′+~Rq′ )

Up†
~ppm′

s
e−i~pp(~r0q+~Rq)=Gp+(~r0q, ~r

′
n′q′ , Ep)U

p
~ppm′

s
e

i~pp(~r ′

n′q′
+~Rn′+~Rq′ ) . (4.6)

Splitting the summation for q = q′ and q 6= q′, one can write:

Gmsm′

s
(~pe, ~pp) =

1

Ω

∑

q

∫

d3r0q

∫

d3r′0q

U e†
~pems

e−i~pe(~r0q+~Rq)=Ge+(~r0q, ~r
′
0q, Ee)U

e
~pems

ei~pe(~r ′

0q+~Rq)

Up†
~ppm′

s
e−i~pp(~r0q+~Rq)=Gp+(~r0q, ~r

′
0q, Ep)U

p
~ppm′

s
ei~pp(~r ′

0q+~Rq)

+
1

Ω

∑

q

∑

n′q′

′
∫

d3r0q

∫

d3r′n′q′

U e†
~pems

e−i~pe(~r0q+~Rq)=Ge+(~r0q, ~r
′
n′q′ , Ee)U

e
~pems

e
i~pe(~r ′

n′q′
+~Rn′+~Rq′ )

Up†
~ppm′

s
e−i~pp(~r0q+~Rq)=Gp+(~r0q, ~r

′
n′q′ , Ep)U

p
~ppm′

s
e

i~pp(~r ′

n′q′
+~Rn′+~Rq′ ) . (4.7)

Taking into account that the sites q and q ′ (q 6= q′) can be occupied with atoms of type α or β
with the probability xqα and xq′β , respectively, one can write:

Gmsm′

s
(~pe, ~pp) =

1

Ω

∑

q

∑

α

xqα

∫

d3r0q

∫

d3r′0q
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U e†
~pems

e−i~pe~r0q=Ge+α(~r0q, ~r
′
0q, Ee)U

e
~pems

ei~pe~r ′

0q

Up†
~ppm′

s
e−i~pp~r0q=Gp+α(~r0q, ~r

′
0q, Ep)U

p
~ppm′

s
ei~pp~r ′

0q

+
1

Ω

∑

q

∑

n′q′

′∑

αβ

xqαxq′β

∫

d3r0q

∫

d3r′n′q′

U e†
~pems

e−i~pe(~r0q+~Rq)=Ge+αβ(~r0q, ~r
′
n′q′ , Ee)U

e
~pems

e
i~pe(~r ′

n′q′
+~Rn′+~Rq′ )

Up†
~ppm′

s
e−i~pp(~r0q+~Rq)=Gp+αβ(~r0q, ~r

′
n′q′ , Ep)U

p
~ppm′

s
e

i~pp(~r ′

n′q′
+~Rn′+~Rq′ ) . (4.8)

Extending the summation for arbitrary q and q ′, the Green’s function reads:

Gmsm′

s
(~pe, ~pp) =

1

Ω

∑

q

∑

α

xqα

∫

d3r0q

∫

d3r′0q

U e†
~pems

e−i~pe~r0q=Ge+α(~r0q, ~r
′
0q, Ee)U

e
~pems

ei~pe~r ′

0q

Up†
~ppm′

s
e−i~pp~r0q=Gp+α(~r0q, ~r

′
0q, Ep)U

p
~ppm′

s
ei~pp~r ′

0q

−
1

Ω

∑

q

∑

αβ

xqαxqβ

∫

d3r0q

∫

d3r′0q

U e†
~pems

e−i~pe~r0q=Ge+αβ(~r0q, ~r
′
0q, Ee)U

e
~pems

ei~pe~r ′

0q

Up†
~ppm′

s
e−i~pp~r0q=Gp+αβ(~r0q, ~r

′
0q, Ep)U

p
~ppm′

s
ei~pp~r ′

0q

+
1

Ω

∑

q

∑

n′q′

∑

αβ

xqαxq′β

∫

d3r0q

∫

d3r′n′q′

U e†
~pems

e−i~pe(~r0q+~Rq)=Ge+αβ(~r0q, ~r
′
n′q′ , Ee)U

e
~pems

e
i~pe(~r ′

n′q′
+~Rn′+~Rq′ )

Up†
~ppm′

s
e−i~pp(~r0q+~Rq)=Gp+αβ(~r0q, ~r

′
n′q′ , Ep)U

p
~ppm′

s
e

i~pp(~r ′

n′q′
+~Rn′+~Rq′ ) . (4.9)

The calculation of the first and second term (so-called site-diagonal contribution) is pre-
sented in Appendix C.1, whilst the third term (site-off-diagonal contribution) is calculated
in Appendix C.2. Using the matrix elements M µν α

msΛ m′

sΛ
′′ and W pν qα q′β calculated in Appendix

D and in Appendix C.3, respectively, the Green’s function reads:

Gmsm′

s
(~pe, ~pp) =

1

Ω
=
∑

q

∑

α

xqα

(

= τ p+ 0q0q,α
ΛsΛs

(Ep)
)∑

ΛΛ′

M++ α
msΛ m′

sΛs
M̃++ α

msΛ′ m′

sΛs
τ e+ 0q0q,α
ΛΛ′ (Ee)

−
1

Ω
=
∑

q

∑

αβ

xqαxqβ

(

= τ p+ 0qα 0qβ
ΛsΛs

(Ep)
)

∑

ΛΛ′

M++ α
msΛ m′

sΛs
M̃++ β

msΛ′ m′

sΛs
τ e+ 0qα 0qβ
ΛΛ′ (Ee)

+
1

Ω
=
∑

q

∑

q′

e−i(~pe+~pp)(~Rq−~Rq′ )
∑

αβ

xqαxq′β

(

=W p+ qα q′β
)
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∑

ΛΛ′

M++ α
msΛ m′

sΛs
M̃++ β

msΛ′ m′

sΛs

(

De+ ατ e+ qq′CPA(~p − ~Km)D̃e+ β
)

ΛΛ′

. (4.10)

In the previous calculation step we took into account the thermalization of the positron.
This means that one may consider the positron to be in a state with ~kp = ~pp = 0 with s-
type symmetry, at the bottom of the positronic band [135, 128]. This implies for the orbital
quantum number of the positron: l(Λp) = 0. Accordingly, the quantum number for the
positron is given by Λp = Λs. Also, the positron energy Ep enters into the electron-positron
Green’s function as a parameter, Ep = E0

p , where E0
p is the energy of the bottom of the

positronic band.
Introducing the single-site scattering matrix te+ qα

ΛΛ′ , one can split the first term into the single-
site and respectively backscattering contributions, as follows:

Gmsm′

s
(~p) =

1

Ω
=
∑

q

∑

α

xqα

(

= τ p+ 0q0q,α
ΛsΛs

(Ep)
)∑

ΛΛ′

M++ α
msΛ m′

sΛs
M̃++ α

msΛ′ m′

sΛs
te+ qα
ΛΛ′ (Ee)

+
1

Ω
=
∑

q

∑

α

xqα

(

= τ p+ 0q0q,α
ΛsΛs

(Ep)
)∑

ΛΛ′

M++ α
msΛ m′

sΛs
M̃++ α

msΛ′ m′

sΛs

(

τ e+ 0q0q,α
ΛΛ′ (Ee) − te+ qα

ΛΛ′ (Ee)
)

−
1

Ω
=
∑

q

∑

αβ

xqαxqβ

(

= τ p+ 0qα 0qβ
ΛsΛs

(Ep)
)

∑

ΛΛ′

M++ α
msΛ m′

sΛs
M̃++ β

msΛ′ m′

sΛs
τ e+ 0qα 0qβ
ΛΛ′ (Ee)

+
1

Ω
=
∑

q

∑

q′

e−i(~pe+~pp)(~Rq−~Rq′ )
∑

αβ

xqαxq′β

(

=W p+ qα q′β
)

∑

ΛΛ′

M++ α
msΛ m′

sΛs
M̃++ β

msΛ′ m′

sΛs

(

De+ ατ e+ qq′CPA(~p − ~Km)D̃e+ β
)

ΛΛ′

. (4.11)

The off-diagonal scattering path operator τ e+ qq′CPA is defined in Eq. (2.189) and the matrices
De+ α and D̃e+ β

ΛΛ′ are defined in Eqs. (2.184) and (2.188), respectively. One has to note that the
solutions of the Dirac equation Zp+qα

Λ for the positron which enters into the matrix elements
M++ α

msΛ m′

sΛs
expression are calculated for a positron potential equal to the electronic Coulomb

potential but with the opposite sign.
Based on the Feynman diagrams and the conservation of the spin angular momentum in the
annihilation process [136] it was demonstrated that in a system where a positron can inter-
act with electrons of both parallel and anti-parallel spin, it will almost always annihilate via
two photons from an antiparallel positron-electron spin configuration. As consequence, the
electron-positron pair has zero total spin angular momentum and ms = −m′

s holds.
The electron-positron momentum density can be expressed using the electron-positron



4.3. ELECTRON-POSITRON MOMENTUM DENSITY OF V 105

Green’s function as:

nms

2γ (p) = −
1

π

∫ EF

0

Gms
(p)dEe . (4.12)

The 2D angular correlation of annihilation radiation (2D-ACAR) spectra, which are usually
identified with the 2D projections of the three-dimensional (3D) electron-positron momen-
tum density is expressed as:

n2D−ACAR(px, py) =

∫

(n↑
2γ + n↓

2γ)dpz , (4.13)

where the momentum components px,y are perpendicular to the photons propagation direc-
tion. The 1D-ACAR or the Doppler broadening spectrum is the one-dimensional momen-
tum distribution:

n1D−ACAR(pz) =

∫ ∫

(n↑
2γ + n↓

2γ)dpxdpy , (4.14)

where the integration is performed in a plane perpendicular to the photons propagation di-
rection.

4.3 Electron-positron momentum density of V

The formalism described before is used to calculate 2D electron-positron momentum den-
sity projections and the results are compared with the two-dimensional angular correlation
of the annihilation radiation (2D-ACAR) spectra determined by experiments. In order to
see the impact of the electron-positron correlation on the electron-positron momentum den-
sity, we compare our calculations also with the LMTO spectra with electron-positron cor-
relations included. The two dimensional projections of the electron-positron momentum
density n2γ(~p) perpendicular to the [001] and [210] directions of bcc V have been calculated
using the fully relativistic SPR-KKR package.
As a first step the electronic structure of V has been calculated self-consistently for the bcc
structure with the lattice parameter alat=5.709 a.u.. The band structure calculations for the
positron have been performed using the same calculation code as for the electronic struc-
ture. The positron potential was taken as the inverse of the electron Coulomb potential.
The integration (see Eq. (4.13)) along the pz direction is done up to pz,max = 6 a.u. in a
equidistant grid of 60 points. No significant change of the spectra appeared when pz,max or
the number of the grid points along pz direction was increased.

The energy integration (see Eq. (4.12)) splits into an arc-like path of 30 points in a com-
plex plane and a path parallel to the real axis consisting of 50 energy points. The arc-like
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Figure 4.2: 2D-ACAR for V perpendicular to the [001] direction: SPR-KKR calculations (top),
LMTO calculations [18] (middle), experiment [18] (bottom).
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Figure 4.3: 2D-ACAR for V perpendicular to the [210] direction: SPR-KKR calculations (top),
LMTO calculations [18] (middle) and experiment [18] (bottom).
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energy path is used to evaluate the backscattering term and the off-diagonal contribution
of electron-positron Green’s function in Eq. (4.11), whilst the single-site term is evaluated
through the energy integration path parallel to the real energy axis.
The SPR-KKR 2D electron-positron momentum density projected in the plane perpendicu-
lar to the [001] direction is presented in Fig. 4.2, together with the LMTO calculations [18]
and the 2D-ACAR experimental data [18]. The resolution of the momenta for SPR-KKR
spectra in the (px, py) plane is ∆p = 0.04975 a.u. whilst for the LMTO calculated spectra and
for the experimental 2D-ACAR spectra is ∆p = 0.05489 and ∆p = 0.01344 respectively. The
theoretical spectra are scaled to the same height as the experimental 2D-ACAR spectra.
As can be seen in both figures, the agreement between the SPR-KKR and LMTO calculations
is very good. As the LMTO calculations include the electron-positron correlation effect, one
should notice that this effect is minor in this case. The main features of the SPR-KKR and
LMTO two-dimensional electron-positron momentum density can be traced back to the ex-
perimental spectra if one takes into account that the broadening is present in the experimen-
tal measurements.

4.4 Comparison with Compton scattering

As it was mentioned, the quantity of interest in Compton scattering is the electron momen-
tum density given by Eq. (4.3), whilst the positron annililation experiment is able to explore
features of the electron-positron momentum density (see Eq. (4.1)). By the procedure de-
scribed above one is able to determine both distribution functions. Between the expressions
for n2γ(~p) and n(~p) the difference appear mostly in the matrix elements which enter the ex-
pression for the Gms

(~p) (see the comparison of the matrix elements in Appendix D) and in
the calculation of the t-matrix and the scattering path operators. The aim in the following
is to demonstrate the difference between those two distribution functions. In other words,
we want to see the impact of the positron wave function on the momentum distribution
function in the case of pure Fe.
We will compare the magnetic Compton profile for Fe with the corresponding quantity,
which is the one-dimensional projection of the (n↑

2γ−n↓
2γ) electron-positron momentum den-

sity (see Eq. (4.12)) , given by:

J2γ
mag(pz) =

∫ ∫

(n↑
2γ − n↓

2γ)dpxdpy . (4.15)

The SPR-KKR magnetic Compton profile (here denoted as Jmag(pz)) for Fe along the [001]
and [110] scattering directions is represented in Fig 4.4, together with J 2γ

mag(pz) constructed
on the basis of the electron-positron momentum density. Also, the comparison between the
SPR-KKR and LMTO calculations [18] of the magnetic Compton profile and the one dimen-
sional projection of the (n↑

2γ − n↓
2γ) electron-positron momentum density is shown in Fig 4.4.
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Figure 4.4: Left: The SPR-KKR and LMTO [18] calculated magnetic Compton profile
Jmag(pz) of Fe along the [001] (left) and the [110] direction (right) is compared with the
positron annihilation spectra J 2γ

mag(pz).

One can see in Fig. 4.4 that the positron annihilation profile J 2γ
mag(pz) decay more rapidly

than the magnetic Compton profile Jmag(pz) along the pz direction for both scattering direc-
tions. The reason why the positron annihilation profile decays more rapidly in p-space is
that the more localized states (at higher momentum) are not sampled by the positron, be-
cause the positron interact in a more pronounced way with the delocalized s and p-electrons
from the interstitial region. Therefore the resulting profile is narrower for the positron anni-
hilation spectra than for the Compton case.
Also, the dips at ∼ 0.7 a.u in the [001] spectra and at pz ∼ 0 a.u. in the [110] spectra are deeper
in the positron annihilation spectra. One can explain this feature due to a more pronounced
contribution of the s- and p-orbitals for the positron annihilation spectra. The decomposition
of the MCP spectra of Fe along the [001] direction into the s-, p- and d-like contributions has
been presented in Fig. 3.3 and is given once more in Fig. 4.5 (right). As can be seen in Fig.
4.5, the s- and p-orbitals have a negative contribution at the MCP of Fe. Because the inter-
action between the positron and the s- and p-electrons is more pronounced in the positron
annihilation experiment, one can expect that the negative contributions of the s- and p-
electrons at the total positron annihilation spectra are increased compared with the Comp-
ton profile. The effect of this increased negative contribution is to generate deeper dips in
the positron annihilation spectra compared with the Compton profile. In order to verify this
effect, we performed a decomposition of the positron annihilation spectra J 2γ

mag(pz) into s-, p-
and d-like contributions. As expected, the s- and p-like contributions are negative and their
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Figure 4.5: The SPR-KKR s, p and d- contribution to the positron annihilation spectra
J2γ

mag(pz) of Fe along the [001] direction (left) compared with the decomposition of the corre-
sponding magnetic Compton profile (right).

magnitude is increased compared with the s- and p-like contributions at the corresponding
magnetic Compton profile. One also has to notice the very good agreement between the
SPR-KKR and LMTO calculations, as can be seen in Fig. 4.4.

4.5 Conclusions

The SPR-KKR formalism for calculation of the electron-positron momentum density has
been presented. This formalism was applied for the calculation of the two-dimensional
momentum density of V perpendicular to the [001] and [211] directions, respectively. The
very good agreement between the SPR-KKR and LMTO theoretical spectra and also with
the experimental 2D-ACAR measurements should be emphasized. Also, the comparison of
the magnetic Compton profile Jmag(pz) and the positron annihilation spectra J 2γ

mag(pz) for Fe
along [001] and [110] directions is presented.



Chapter 5

Ground-state properties of
Cr-chalcogenide systems

Transition-metal chalcogenides have attracted much interest in the past due to their large va-
riety of physical properties, particularly concerning the relationship between the magnetic
ordering and the combination of the metal and chalcogen atom. In this chapter we will sum-
marize first the structural and magnetic properties of Cr-chalcogenides, as they are reflected
in the investigations of several research groups. After the picture of the magnetism in CrX
(X=S, Se, Te) systems - as reflected in the literature - has been sketched, we will present and
discuss new features of the magnetic properties in this systems found by our fully relativis-
tic band-structure SPR-KKR calculations. The relationship between the crystalline structure,
chemical composition and ground-state properties in CrX - CrX2 (X = S, Se, Te) systems will
be investigated in the following section.
The binary CrX (X = S, Se, Te) systems crystallize in the NiAs-type crystal structure. This
structure (see below) consists of a hexagonal close packing of the metalloid atoms with the
transition metal atoms located in the interstices in such a way as to form a simple hexagonal
array. In all binary Cr-selenides, sulphides or tellurides magnetic moments - mainly local-
ized on Cr - are present. The exchange interactions are predominantly antiferromagnetic
in Cr-selenides and Cr-sulphides (Goodenough 1963 [137]), in contrast to the ferromagnetic
Cr-tellurides [138].
NiAs-type Cr1−xS, which always has a few per cent Cr vacancies, exists only above 623 K.
Below this temperature a Jan-Teller distortion around Cr2+ (d4) results in a monoclinic lat-
tice (Jellinek 1957 [139]). High temperature susceptibility data above 900 K give θ = -1585 K
and µeff = 5.24 µB for CrS (Popma and Bruggen 1969 [140]). The extrapolated Curie-Weiss
temperature θ is a measure of the overall sign and magnitude of the exchange constants
(positive θ means ferromagnetic state, negative θ, antiferromagnetic state). The sign of θ
gives the indication for an antiferromagnetic state in Cr1−xS below the Néel temperature at
450 K [141]. A metal-semiconductor transition is observed for Cr1−xS with x ≤ 0.1 at ∼ 620
K, while Cr1−xS with x ≥ 0.1 are metals.
The magnetic susceptibility measurements (Tsubokawa 1956 [142]) on NiAs-type compound

111
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Cr1−xSe performed on single crystals show a Néel point close to 300 K and an effective mag-
netic moment of 4.90 µB. The extrapolated Curie-Weiss temperature determined by Lotger-
ing and Gorter (1957) [143] is θ= -185 K, which gives an evidence of an antiferromagnetic
state of this compound. Specific heat measurements (Tsubokawa 1960 [144]) locate the Néel
temperature TN at 320 K.
The anomalies present in both susceptibility data sets [143, 142] below 300 K have led these
authors to suggest a magnetic phase transition and a non-collinear spin structure at lower
temperature. The calculations of Hirone and Adachi [145], who considered the magnetic
properties of the NiAs structures in the molecular-field approximation, showed that trian-
gular spin configurations were stable over certain regions of the molecular-field coefficients
of first, second and third nearest neighbours.
This theoretical result seems to be confirmed by the neutron diffraction measurements of the
magnetic structure for CrSe performed by Corliss et al. [146] which show a umbrella-like
antiferromagnetic spin structure.
The system Cr1−xTe can be found in different phases, depending on the x value. Accord-
ing to the phase diagram determined by Ipser et al. [147], for x ≤ 0.1, the system has the
hexagonal NiAs structure. The monoclinic structure was found for the Cr3Te4, whilst the
system Cr2Te3 is trigonal. For the system Cr5Te8, both monoclinic and trigonal structures
have been observed (Bensch et al. [148]). The monoclinic and trigonal structures are related
to the NiAs structure type by successive removal of Cr in every second metal atom layer
parallel to the c axis. The vacancy ordering within the layers can be influenced by thermal
treatment. Also, a slight increase of the Te content leads to an order-disorder transition of
the Cr vacancies from the monoclinic to trigonal phase [148].
Cr1−xTe with the hexagonal NiAs structure is a ferromagnet with the Curie temperature TC

∼ 340 K, a saturation moment at 4.2 K of about 2.4 – 2.7 µB and an effective paramagnetic
moment of ∼ 4.0 - 4.5 µB [143, 149, 150, 151].
There is a disagreement between the magnetic moments on Cr of 4 µB and higher deter-
mined by paramagnetic susceptibility measurements or the band structure calculations and
respectively the low values of Cr magnetic moments from the saturation of the magnetisa-
tion at 4.2 K (∼ 2.4 µB). The ionic description in Cr+2Te−2 would give for Cr the 3d4 electronic
configuration which corresponds to a magnetic moment of about 4.8 µB (µeff = [qc(qc+2)]1/2,
where qc is the number of unpaired electrons). This disagreement can be explained to some
extent by non-collinear spin structures which may occur in this compound. Such structures
are suggested by neutron diffraction studies (Bertaut et al. 1964 [152], Lambert-Andron et
al. [153], Andresen 1963 [154], Makovetskii and Shakhlevich 1979 [155], Hamasaki et al.
[156]) but the various investigations don’t agree concerning the spin structure and magni-
tude of the Cr local magnetic moment. Most investigators conclude that the diffractograms
of hexagonal Cr1−xTe between 0 K and TC can be described in terms of a collinear ferromag-
netic structure. If the spin structure is collinear ferromagnetic, the ratio mc/ms (where mc

and ms are the number of Bohr magnetons derived from the saturation magnetisation and
from paramagnetic susceptibilities, respectively) is 4.0/2.4 ∼ 1.6. This value is bigger than
1, as expected for itinerant ferromagnets.
The band structure calculations performed for Cr-chalcogenide systems by Dijkstra et al.
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Figure 5.1: The magnetic phase diagram of CrTe1−xSex [19] deduced from temperature de-
pendence of magnetisation (crosses), neutron scattering measurements (triangles) and re-
sistivity measurements (circles). The magnetic ordering (ferro-, antiferromagnetic and non-
collinear) is indicated by arrows.

[8, 138] using the ASW method show for CrS and CrSe an antiferromagnetic ordering, apart
form CrTe which is ferromagnet. This magnetic behaviour is confirmed by FLAPW band-
structure calculations of Kawakami et al. [157].
There are studies which show that the magnetic ordering in CrX (X = S, Se, Te) is influenced
by the pressure. Kanomata et al.[158] found a giant magnetovolume effect for CrTe, which
was suggested by the earlier FLAPW calculations of Takagaki et al. [159, 160]. From the total
energy calculations as a function of lattice parameter it was found in addition that a pressure
induced ferromagnetic → antiferromagnetic transition is expected for CrTe at about 40 GPa.
The complexity of the magnetic behaviour of Cr-chalcogenides is reflected in the magnetic
phase diagram of the system CrTe1−xSex (see Fig. 5.1). This phase diagram was suggested
by Makovetskii (1986) [19]. The results of magnetic phase transition studies in the system
CrTe1−xSex, based on neutron diffraction measurements (triangles in Fig. 5.1), on analysis
of the temperature dependence of magnetization (crosses) and electrical resistivity (circles)
are used to obtain this phase diagram. In the region of Se concentration lower than 0.4,
when the temperature is lower than line (a), the ferromagnetic ordering is observed with
the arrangement of the magnetic moments within the basis plane. The Curie temperature
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Figure 5.2: The NiAs structure for the CrX (X = S, Se, Te) systems.

decreases nearly linear with the increasing of the Se content. Below the curve (c) the non-
collinear magnetic structure occurs.
The alloys with Se concentration x between 0.7 and 1.0 have an antiferromagnetic order be-
low the line (b), an umbrella-like non-collinear ordering of the magnetic moments being the
most probable. The variation of the Néel temperature with increasing of the Se concentra-
tion of solid solutions deviates from a linear variation. In the region with Se concentration
between 0.2 and 0.6 both ferromagnetic and antiferromagnetic ordering occurs, at the tem-
peratures below lines (a) and (b).

5.1 Structural properties of binary CrX (X = S, Se, Te)
compounds

The systems CrX (X = S, Se, Te) crystallize in the hexagonal NiAs structure (see Fig. 5.2).
The space group of this structure is P63/mmc or D4

6h (No. 194 in the International Table of
Crystallography), with the Cr atoms at the (2a) sites (0, 0, 0) and (0, 0, 1

2
) and the chalcogen

atoms at the (2c) sites ( 1
3
, 2

3
, 1

4
) and (2

3
, 1

3
, 3

4
).

The experimentally determined lattice parameters at room temperature are listed in the
Table 5.1. The c0/a0 ratio is smaller than the ideal value of 1.663 for CrTe and bigger than the
ideal value for the other Cr-chalcogenides. Six chalcogen atoms form a trigonally distorted
octahedron around Cr. A Cr atom is further surrounded by six other Cr atoms in the basal
ab plane at the distance a0. Much shorter metal-metal distances are present along the c-axis:
a Cr atom has two Cr neighbours at c0/2, as can be seen in the interatomic distances in the
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CrS CrSe CrTe
a0( Å) 3.456 3.684 3.997
c0( Å) 5.761 6.020 6.223
c0/a0 1.667 1.634 1.557

Table 5.1: The experimental [5, 6, 7] lattice parameters for CrX (X = S, Se, Te) systems.

N CrS CrSe CrTe
Cr-X (Å) 6 2.461 2.606 2.783
Cr-Cr (Å) 2 c 2.881 3.010 3.112
Cr-Cr (Å) 6 ab 3.456 3.684 3.997

Table 5.2: The interatomic distances in the NiAs structure for CrX (X = S, Se,Te) systems. N
is the number of neighbours and c and ab distinguish Cr-neighbours along the c-axis and
within the ab plane.

NiAs structure for the CrX (X = S, Se, Te) compounds presented in Table 5.2. One should
note that the NiAs structure is not unique for the CrX (X = S, Se, Te) systems, the monoclinic
distorsion for the non-stoichiometric Cr1−xS (Jellinek 1957 [139]) or the (partial) ordering of
Cr vacancies in alternate metal layers of Cr1−xTe, resulting in the trigonal space group P 3̄m1
(or D3

3d) [138] are often mentioned as alternative crystal structure for these compounds.

5.2 Band-structure calculations of CrX (X = S, Se, Te) systems

Electronic band-structure calculations of CrX (X = S, Se, Te) have been performed for a
collinear ferromagnetic and respectively antiferromagnetic arrangement of the Cr magnetic
moments, as is shown in Fig. 5.6.
The band-structure calculations have been performed using the SPR – KKR method within
the atomic sphere approximation (ASA). Exchange and correlation were treated in the lo-
cal spin density approximation (LSDA). The parametrization of Vosko, Wilk and Nusair for
exchange-correlation energy was used.
In the SPR-KKR-ASA, the Wigner-Seitz cells, located at the atomic sites are replaced by
atomic spheres (AS) and the spherically symmetric potential within the spheres is extend-
ing to their boundaries. The sum of the volumes of those spheres is equal to the unit cell
volume. This approximation completely neglects the interstitial part of the crystal. The
coherent potential approximation (CPA) described in the section 2.3.1 is used to deal with
disordered/non-stoichiometric compounds.
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5.2.1 Density of states

The total density of states (DOS) of ferromagnetic CrS, CrSe and CrTe obtained by SPR-KKR
calculations are shown in Figs. 5.3, 5.4 and 5.5. The density of states of CrS, CrSe and CrTe
systems have similar features, which are listed in the following.

The band at around 12 eV binding energy has s-anion origin, whilst the higher energy
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Figure 5.3: The spin-resolved KKR density of states of CrS.

band has Cr(3d)-X(p) character. In the lower part of the d-p band, the p-character is obvious
and the influence of the exchange-splitting is minor. The higher part of the d-p band, hav-
ing a Cr(3d) character show a clear exchange-splitting. The differences between the three
compounds appear in the exchange-splitting and d-p peaks separation (in ↑ and ↓ bands),
as can be seen in the Table 5.3. The SPR-KKR density of states (DOS) for CrX (X = S, Se, Te)

Exchange splitting Cr 3d (eV) CrS CrSe CrTe
KKR 2.2 2.6 2.7

ASW [8] 2.5 2.7 2.9

Table 5.3: The exchange-splitting of the Cr(3d) states of CrX (X = S, Se,Te) systems in KKR
and ASW calculations (Dijkstra et al. [8]).
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Figure 5.4: The spin-resolved KKR density of states of CrSe.
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Figure 5.5: The spin-resolved KKR density of states of CrTe.
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systems are similar with the ASW results of Dijakstra et al. [8] and LMTO calculations of
Knecht [161].

5.2.2 Phase stability

Figure 5.6: The spin configuration for ferromagnetic/antiferromagnetic calculation.

As it was suggested by the extrapolated Curie-Weiss temperature [140, 143], the ground state
in the CrS and CrSe compounds is not ferromagnetic, but rather antiferromagnetic. For the
CrTe compound, the ferromagnetic state is reported to be more stable [138, 159]. Having
this in mind, we performed SPR-KKR calculations for the CrX (X = S, Se, Te) systems with
a ferro- and antiferromagnetic spin configuration shown in Fig. 5.6. Comparing the total
energies of the systems, as shown in Table 5.4, we found that the AF state of CrS and CrSe
is indeed lower in energy than the FM state. For CrTe, the FM state is energetically more
favourable. These trends confirm the previously cited experimental measurements and the
ASW calculations of Dijkstra et al. [8], but doesn’t exclude a possible non-collinear spin
configuration as ground state of these systems.

EFM − EAF (mRy) lower in energy
CrS 1.31 AF
CrSe 0.88 AF
CrTe -3.91 FM

Table 5.4: Total energy difference EFM − EAF (mRy) in CrX (X = S, Se, Te) systems from
SPR-KKR calculations.
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5.2.3 Magnetic moments

The different number of occupied majority and minority states gives rise to a net magnetic
moment per formula unit of CrX (X = S, Se, Te). The SPR-KKR calculated magnetic mo-
ments are presented in Table 5.5, together with the magnetic moments resulting from scalar-
relativistic LMTO (Perlov [9]) and from ASW calculations (Dijkstra et al. [8]). As can be seen

calculation mode CrS CrSe CrTe
Cr magnetic moment (µB) SPR KKR 2.73 3.28 3.44

LMTO 2.63 3.23 3.38
ASW 2.84 3.40 3.51

X magnetic moment (µB) SPR KKR 0.001 0.002 -0.011
LMTO 0.04 0.05 0.04
ASW 0.20 0.24 0.22

Table 5.5: Magnetic moments in CrX (X = S, Se, Te) compounds resulting from SPR-KKR,
LMTO [9] and ASW [8] calculations.

in Table 5.5, the Cr magnetic moments obtained by different calculation methods are com-
parable. The Cr magnetic moments increase from CrS to CrTe, this trend being present in
all calculations. While the different band-structure calculation are in agreement concerning
the Cr magnetic moment in CrX (X-S, Se, Te) systems, this does not apply for the chalcogen
magnetic moment. The SPR-KKR finds the chalcogen atom almost non-magnetic, whilst the
LMTO method predict magnetic moments ∼ 0.04 µB. The ASW predictions for the magnetic
moment of chalcogen atom in those compounds give rather big values of ∼ 0.2 µB , but still
small compared to Cr magnetic moments. Element specific magnetic measurements would
be necessary to allow for a better description of these compounds.
Our fully relativistic SPR-KKR method allows for the calculations of orbital and spin mag-
netic moments, giving a more detailed picture of Cr-chalcogenide magnetism compared
with the scalar-relativistic ASW (Dijkstra et al. [138]) or LMTO (Perlov [9]) methods. The
spin and orbital magnetic moments for Cr, resulting from ferro- and antiferromagnetic cal-
culations are shown in Table 5.6. As can be seen, the orbital magnetic moment in these
compounds are about ∼ 1% of the value of spin magnetic moments. In the ground state, the
spin and orbital magnetic moments are antiparallel for CrS and CrSe and parallel for CrTe.
For all calculations, the spin magnetic moments of Cr in antiferromagnetic state is found
to be ∼ 5 % lower than in the ferromagnetic state. The same trend concerning the AF/FM
Cr magnetic moments was reported by Dijkstra et al. [8] obtained from ASW calculations.
They reported AF total magnetic moments for Cr to be about ∼ 7-10 % lower than the FM
magnetic moments.
The orbital magnetic moments are very small, antiparallel with the spin magnetic moment
in Cr S and CrSe compounds and parallel in CrTe.
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FM AF
ms ml ms ml

CrS 2.736 -0.024 2.606 -0.032
CrSe 3.282 -0.013 3.066 -0.010
CrTe 3.439 0.007 3.284 0.022

Table 5.6: Magnetic moments of Cr in CrX (X = S, Se, Te) compounds resulted from FM/AF
SPR-KKR calculations.

5.3 Non-collinear spin structures

A complementary approach to investigate the magnetic behaviour of solids is to consider
particular microscopic models making use of magnetic interaction. One of the approaches
widely used to consider magnetic properties of solids is the Heisenberg model that is nor-
mally used to describe the interaction of exchange coupled localised magnetic moments. An
application of this model to metals requires some care because of the features related to the
itinerant character of d-electrons [162, 163, 164, 165]. Nevertheless, this approach turned out
to be very useful for the understanding of magnetic properties. Moreover, it is used very
successfully in studies of magnetic metals and alloys. In line with these experiences, it is as-
sumed in the following that the itinerant-electron system can be described (as is discussed
in [162, 163]) by an effective classical Heisenberg Hamiltonian

Hex = −
∑

ij

Jij êi · êj , (5.1)

where the summation is performed over all lattice sites i and j. Here êi and êj are the unit
vectors along the directions of the magnetic moments on sites i and j respectively, Jij is
the exchange coupling parameter for the corresponding magnetic moments. A rigorous ex-
pression for the exchange parameters Jij can be obtained using local spin density functional
(LDSF) approach together with the KKR method. The approach described by Lichtenstein
et al. [162, 163] is based on the calculation of the variation of the total energy with small
deviations of two magnetic moments from their equilibrium directions. The exchange inter-
action parameter Jij between the magnetic moments located on sites i and j is then given
by the formula:

Jij =
1

4π
=

∫ EF

TrL(t−1
i↑ − t−1

i↓ )τ̂ ij
↑ (t−1

j↑ − t−1
j↓ )τ̂ ji

↓ dE . (5.2)

Here tims
and τ̂ ij

ms
are the single-site scattering t-matrix and the scattering path operator for

spin ms and connected with the sites i and j. TrL means the trace over the orbital states
labelled by the combined quantum number L = (l,ml).
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Since these parameters are nothing else but the energy changes due to rotations of spin
magnetic moments, they can be used to analyse the stability of a magnetic structure in a
crystal. In particular, if negative values of Jij parameters give the main contribution to the
spin magnetic moment exchange interaction within a crystal implies that the underlying
magnetic configuration is unstable because a small deviation results in an energy decrease.
Thus analysing the Jij values one can already draw some conclusions about the stability of
a magnetic configuration.

5.3.1 Non-collinear spin structure in CrSe system

Figure 5.7: Non-collinear spin configuration in CrSe system. The spin orientation is shown
for Cr atoms.

The KKR calculation of the exchange-coupling parameters Jij in CrSe has been done by S.
Mankovsky [20]. The exchange-coupling parameters are represented as a function of dis-
tance in Fig. 5.8 considering a ferromagnetic spin configuration of the system. The origin of
the distance scale is the Cr(a) site at the position (0, 0, 0) (see Fig. 5.2 ). The Cr atom located
at the position (0, 0, 1

2
) will be denoted Cr(b). The chalcogen atoms are located at ( 2

3
, 2

3
, 1

4
)

and (1
3
, 1

3
, 3

4
) in crystallographic units. The interatomic distances in the CrSe system can be

seen in Table 5.2.
As have been discussed in section 5.2.3, the Se atoms have no own spontaneous mag-

netic moments, and the existing magnetic moments are induced on Se by the magnetic Cr
atoms. For this reason their magnetic moments values are extremely sensitive to the neigh-
bourhood. Therefore it will be more correct from our point of view if we will consider only
Cr-Cr magnetic interactions and to neglect Cr-Se interactions. For the pair Cr(a)-Cr(b) a
significant negative exchange coupling parameter has been obtained, but the energy intro-
duced by the Heisenberg interaction (see Eq.(5.1)) is positive, which means that the relative
spin orientation of the pair Cr(a)-Cr(b) is energetically not favourable.
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Figure 5.8: The exchange coupling parameters Jij for ferromagnetic spin configuration in
the system CrSe [20].
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Figure 5.9: The exchange coupling parameters Jij for antiferromagnetic spin configuration
in the system CrSe [20].
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Figure 5.10: The total energy vs. θ angle for the spin configuration from Fig. 5.7. SPR-KKR
calculations for CrSe system.

The pair Cr(a)-Cr(a) has positive exchange-coupling parameter, but the magnitude of the
exchange coupling parameter Jij is ∼ 12 times smaller than the corresponding value of the
parameter for the Cr(a)-Cr(b) pair. The ferromagnetic spin orientation of the Cr(a)-Cr(a)
pair is energetically favourable, but the ordering energy is much smaller compared with the
contribution of a Cr(a)-Cr(b) pair.
This consideration may give us a hint of a possible alternative spin configuration of the sys-
tem. The conclusion from studying the nearest-neighbour spin interaction CrSe system is
that the ferromagnetic spin arrangement is not energetically favourable and cannot be the
ground state of this system.
The band-structure calculations are in agreement with this result, giving for a possible
ground state an antiferromagnetic arrangement of spins. The calculation of the exchange
coupling parameters has been done (Mankovsky [20]) also for an antiferromagnetic spin ar-
rangement in CrSe system. The geometry is the same like in the ferromagnetic case. The
exchange coupling parameters Jij are represented in Fig. 5.9 as a function of the distance.
As can be seen, the main features in the spin-spin interaction between nearest neighbours
seems to be unchanged. The Cr-Se magnetic coupling is negligible. The Cr(a)-Cr(a) mag-
netic interaction is smaller than in the ferromagnetic phase. The highest magnitude of the
coupling occur for the Cr(a)-Cr(b) pairs. The sign of the exchange-coupling parameters
shows us that in the antiferromagnetic phase, like in the ferromagnetic one discussed before
the magnetic energy introduced by the spin-spin coupling destabilise the system. As a con-
sequence we can expect that the magnetic ordering in the ground state of this system have
to be a non-collinear one.
In order to prove this conclusion, we performed SPR-KKR calculations for a non-collinear
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spin arrangement of the CrSe system. The spin configuration is shown in Fig. 5.7. The spins
of Cr(a) and Cr(b) atoms are tilted, having a tilt angle θ/2 in respect to the c axis. Fig. 5.10
shows the total energy as a function of the tilt angle θ/2. One can see in Fig. 5.10 that the
spin configuration with θ = 0o (ferromagnetic phase) is not favourable. Also, the spin con-
figuration for θ = 180o (antiferromagnetic phase) is not favourable, but is lower in energy
compared with the ferromagnetic phase. The configuration lowest in energy and in conse-
quence the most favourable one is the non-collinear spin arrangement having the θ angle
about 80o.
On the basis of this result, we conclude that a non-collinear spin arrangement in the CrSe
is preferred. The SPR-KKR energy-band calculations and the calculations of the exchange
coupling parameters are in full accordance concerning the ground-state spin configuration
in CrSe system. One has to mention that the non-collinear spin configuration of the CrSe
system may be more complex and the refinement of the spin configuration is possible in
order to confirm a certain spin structure determined in experiment.

5.3.2 Non-collinear spin structure in CrTe system

The KKR calculation for the exchange-coupling parameters Jij in CrTe has been done by S.
Mankovsky [20]. The exchange-coupling parameters are represented as a function of dis-
tance in Fig. 5.11 for a ferromagnetic spin configuration and respectively in Fig. 5.12 for a
antiferromagnetic spin configuration. Analysing the Jij values for both spin configurations
one can see similarities with the CrSe system. The Cr(a)-Cr(b) exchange parameters have
considerably large negative values for the first coordination shell for both spin configura-
tions. For shells farther away, the Cr(a)-Cr(b) exchange parameters indicate slight magnetic
stabilities in the ferromagnetic case (Fig 5.11), while Jij oscillates in the antiferromagnetic
configurations (Fig. 5.12).

The energy of the exchange interaction between Cr(a) magnetic moments is negligible in
the ferromagnetic configuration, only the second shell gives a small positive contribution.
In the antiferromagnetic case, the Cr(a) - Cr(a) magnetic exchange interaction is positive for
all coordination shells, but the energy of this interaction is significant smaller than the cor-
responding energy of Cr(a)-Cr(b) nearest neighbours.
Our analysis on the Jij values cannot decide whether one of the ferro/antiferromagnetic
phase of CrTe is more stable. The SPR-KKR calculation for a non-collinear spin arrange-
ment in the CrTe system is required to give a clearer indication concerning the most stable
spin configuration. Considering the spin configuration shown in Fig. 5.7, the total energy
dependence on the half of the tilt angle between the spins is shown in Fig. 5.13.
As in the CrSe case, the spin configuration with θ = 0o (ferromagnetic phase) and θ = 180o

(antiferromagnetic phase) are not favourable. The spin configuration with the highest sta-
bility is non-collinear, as in the CrSe case. This result (see also [166]) is in agreement with
the phase diagram from Fig. 5.1 reproduced from Makovetskii [19]. Also, other experimen-
tal reports about non-collinear spin configuration in CrTe systems [152, 153, 154, 155, 156]
support our result.
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Figure 5.11: The exchange coupling parameters Jij for ferromagnetic spin configuration in
the system CrTe [20].
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Figure 5.13: The total energy vs. tilt angle θ for the spin configuration from Fig. 5.7. SPR-
KKR calculations for the CrTe system.

5.4 Band-structure calculations for the system CrTe1−xSex

5.4.1 Magnetic moments

In order to investigate the influence of the Se/Te content on the ground state properties
of the CrTe1−xSex system, we performed fully relativistic SPR-KKR calculations for the fer-
romagnetic phase of this system. The lattice parameters a and c used for band-structure
calculations have been derived considering that they have linear dependence on the Se con-
centration.

The behaviour of the Cr magnetic moments as a function of the Se concentration is pre-
sented in Fig. 5.14. As expected from the results for the stoichiometric compounds, the
total magnetic moments decrease with Se concentration, from 3.42 µB at 10% Se to 3.28 µB

at 90% Se. The spin magnetic moment has a similar behaviour, decreasing with Se concen-
tration. As a consequence of fully relativistic calculations, we can give separate predictions
for the spin and orbital magnetic moments. As can be seen in Fig. 5.14, the orbital and spin
magnetic moments of the compound CrTe1−xSex are parallel for x lower than ∼ 0.25 % Se
and antiparallel for higher Se concentrations. The absolute values of the orbital moment are
lower than 0.012 µB.



5.4. BAND-STRUCTURE CALCULATIONS FOR THE SYSTEM CRTE1−XSEX 127

0 20 40 60 80 100
x (% Se)

3.2

3.25

3.3

3.35

3.4

3.45

3.5

  C
r 

m
ag

ne
ti

c 
m

om
en

t 
(µ

B
 )

spin

total

Figure 5.14: The behaviour of the magnetic moments in CrTe1−xSex system with increasing
Se concentration, as resulted from SPR-KKR calculations.

5.4.2 Magnetic ground state

As it was shown by Makovetskii [19], the magnetic ordering in the system CrTe1−xSex is
very complex. As can be seen in the phase diagram in Fig. 5.1, there are several spin config-
urations for this system for different temperature ranges and Se concentration.

We were interested to determine the magnetic ground state for the concentration points

alat clat c/a
FM 3.559 5.775 1.622
AF 3.535 5.825 1.647
exp 3.777 6.080 1.609

Table 5.7: The SPR-KKR-LSDA equilibrium lattice parameters of CrTe0.30Se0.70 system for
AF and FM, compared with the experimental values ([5, 6, 7]).

close to the ferro- antiferromagnetic border, where the phase diagram didn’t give a clear
answer for the magnetic ground state of the system.
In order to establish the magnetic ground state, we have chosen the point with a concen-
tration of 70 % Se and performed fully relativistic SPR-KKR calculation for the system
CrTe0.30Se0.70 with ferromagnetic and antiferromagnetic spin configuration. The exchange-
correlation treatment was done within the local spin density approximation (LSDA) making
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Figure 5.15: The total energy of the system CrTe0.30Se0.70 as a function of lattice parameters,
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Figure 5.16: The total energy of the system CrTe0.30Se0.70 as a function of lattice parameters,
as resulted from SPR-KKR calculations using the GGA to describe the exchange-correlation
potential.
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use of the Voskow, Wilk and Nusair exchange-correlation energy. The band-structure calcu-
lation for both magnetic states have been done with variable lattice parameters a and c. The
magnetic spin orientation within the unit cell is shown in Fig. 5.6.
Fig. 5.15 shows the total energy of the system in the ferro- and the antiferromagnetic states
as a function of lattice parameters a and c. The energy-surface was reproduced from indi-
vidual calculations, in such a way that the total energy fits the following equation:

ET = α1a
2 + α2c

2 + α3a
2c2 + α4a

2c + α5ac2 + α6ac + α7a + α8c + E0 (5.3)

As can be seen, for both magnetic states, the total energy shows a minimum for a pair of
(amin, cmin) lattice parameters. The antiferromagnetic state is lower in energy than the ferro-
magnetic state; the difference between the AF and the FM minimum energy of the energy-
surface is 6.1 mRy. The result of our SPR-KKR calculations gives a clear indication for an
antiferromagnetic ground state in this system.
The lattice parameters corresponding to the minima of this energy-surface, the so-called
equilibrium lattice parameters are shown in Table 5.7.The calculated equilibrium lattice pa-
rameters are smaller by ∼ 6 % than the experimental values. This disagreement between the
experimental values and calculations is induced by the treatment of exchange-correlation
within the local spin density approximation (LSDA) which overestimates the binding and
lowers the equilibrium lattice parameters.
As a consequence, we repeated our calculations using the Perdew-Burke-Enzerhof (PBE)
version of the general gradient approximation (GGA) for the exchange-correlation energy.
The total energy surfaces have been constructed in the same way as for the SPR-KKR-LSDA
calculations, fitting Eq. (5.3). Fig. 5.16 shows the total energy surfaces for ferro- and antifer-
romagnetic state as a function of the lattice parameters a and c. Different from the SPR-KKR-
LSDA calculations, for certain ranges of the (a, c) lattice parameters, the ferromagnetic state
is lower in energy. There is a crossing of the ferro- and antiferromagnetic energy surfaces,
but the AF phase is still energetically favoured because the AF minimum is lower in energy
with 0.96 mRy than the FM minimum. The equilibrium lattice parameters shown in Table
5.8 are closer to the experimental values, the difference to these values being smaller than
2%.

alat clat c/a
FM 3.7132 5.9605 1.605
AF 3.6563 5.9653 1.631
exp 3.777 6.080 1.609

Table 5.8: The SPR-KKR-GGA equilibrium lattice parameters of CrTe0.30Se0.70 system for AF
and FM, compared with the experimental values ([5, 6, 7]).
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5.5 Band-structure calculations for Cr1+x(Te1−ySey)2 systems

5.5.1 Structural properties of Cr1+x(Te1−ySey)2 compounds

The Cr5Te8 compounds crystallise in a monoclinic or in a trigonal structure, depending
on the actual composition [148, 167]. It is expected that the cation substitution in Cr5Te8

will lead to new phases with distinct crystal structures and different physical properties.
Cr5Te8−xSex samples were synthesised recently by Bensch et al. [10] directly from the ele-
ments via a high-temperature reaction with slowly cooling or quenching the products. An-
other approach was undertaken using the high-pressure high-temperature route [10]. The
crystal structures were determined with Rietveld refinements.
The quenched samples crystallise in the CdI2 type of structure (space group P 3̄m1 or D3

3d)

a(Å) c(Å) c/a z
Cr1.22(Te0.88Se0.12)2 3.8577 5.9876 1.551 0.2525
Cr1.23(Te0.88Se0.12)2 3.8615 5.9894 1.551 0.2531
Cr1.26(Te0.88Se0.12)2 3.8709 6.0113 1.553 0.2521
Cr1.28(Te0.75Se0.25)2 3.8284 6.0087 1.569 0.2508
Cr1.28(Te0.88Se0.12)2 3.8757 6.0355 1.557 0.2522
Cr1.33(Te0.88Se0.12)2 3.8994 6.0546 1.552 0.2515

Table 5.9: The lattice parameters for Cr1+x(Se/Te)2 non-stoichiometric trigonal compounds
[10].

shown in Fig. 5.17 (left), while a superstructure is identified for the samples Cr5+x(Te/Se)8
which were slowly cooled to room temperature. Both structures are related to the NiAs-
type structure. In the quenched samples, the Cr atoms are completely disordered over the
Cr sites, while in Cr5+x(Te/Se)8 the vacancies in the Cr layers are found partially ordered.
The trigonal symmetry of the quenched samples possess the following atom positions: Cr(a)
at (0, 0, 0), Cr(b) at (0, 0, 1/2) and Te/Se at ( 1

3
, 2

3
, z) and (2

3
, 1

3
,−z). One can see in Fig. 5.17 that

Cr(a), Cr(b) and Te/Se crystallographic positions define corresponding atom-layers along
the c axis which alternate in the sequence Cr(a), Te/Se, Cr(b), Te/Se. The value of z is close
to 0.25, which would correspond to equal distances between the Cr(a), Cr(b) and Te/Se lay-
ers.
The SPR-KKR band structure calculations have been performed for the quenched samples
of type Cr1+x(Te0.88Se0.12)2 and Cr1+x(Te0.75Se0.25)2 with x between 0.21 and 0.33, prepared
by Bensch et al. [10]. The lattice parameters and the z values are presented in Table 5.9.
The neutron diffraction measurements performed by Bensch et al. [10] show that the Cr(a)

plane at z = 0 and the Te/Se planes are fully occupied, whilst the Cr(b) plane at z = 1
2

is
only partially occupied. The coherent potential approximation (CPA) described in section
2.3.1 is used to deal with these compounds. Using the CPA, a random distribution of Se/Te
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Figure 5.17: The structure of the non-stoichiometric Cr1+xQ2 (Q=Te/Se) compounds (left).
The crystal structure of Cr5+xTe8 (right) [10].

atoms within the chalcogen planes and a random distribution of the vacancies within the
Cr(b) layer is considered.

5.5.2 Preferential site occupation

The neutron diffraction data (Bensch et al. [10]) concerning the site occupation in the sys-
tems Cr1+x(Te/Se)2 systems was questioned. The layer of Cr at z = 0 denoted by a (see Fig.
5.17, left) is fully occupied, whilst the plane of Cr(b) at z = 1/2 is only partially occupied.
The preference of Cr atoms for one of the layers must be energetically determined and it
must be reflected in the variation of the total energy if a certain percentage of Cr is moved
from Cr(a) to Cr(b) layer.
In order to verify this supposition, we performed SPR-KKR band-structure calculations to
evaluate the variation of the total energy of the system, considering that x % of the Cr(a)
atoms are moved into Cr(b) plane, according to the scheme: Cr1.0Cr0.28(Te0.88Se0.12)2 →
Cra

1−xCrb
x+0.28(Te0.88Se0.12)2. As can be seen in Fig. 5.18, a positive variation in the total en-

ergy of the Cr1.28(Te0.88Se0.12)2 system is produced by moving Cr atoms from Cr(a) to Cr(b)
planes. This variation in the total energy increases almost linearly with x, the amount of the
moved Cr atoms. The increasing of the total energy for this transformation shows clearly
that the Cr(a) sites are preferential occupied by Cr atoms. If the Cr concentration would
increase in this system, the Cr(a) plane would be occupied first. Only after the Cr(a) plane
have been fully occupied, the Cr atoms start to populate the Cr(b) plane.
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Figure 5.18: The SPR-KKR total energy variation of the system Cr1.28(Te0.88Se0.12)2 as a
function of Cr concentration x moved from site a to site b, according to the scheme:
Cr1.0Cr0.28(Te0.88Se0.12)2 → Cra

1−xCrb
x+0.28(Te0.88Se0.12)2.

5.5.3 Density of states and magnetic moments

The spin-resolved density of states for three systems of Cr1+x(Te/Se)2 type are presented in
Figs. 5.19, 5.21 and 5.20. The main features of the DOS for these compounds are the same
as for the binary Cr chalcogenides, namely the s-band at lower energy and the d-p band
crossing the Fermi level. The difference appear in exchange-splitting and in the separation
of the p-like and d-like peaks in the d-p band. For both majority and minority states, the d-p
separation is lower in these trigonal compounds than in the CrTe/CrSe of NiAs-type.

The magnetic moments for Cr1+x(Te/Se)2 obtained by SPR-KKR band-structure calcu-
lations are presented in Tables 5.10 and 5.11. As can be seen in Table 5.10, the magnetic
moments of Cr on Cr(b) sites are about 25 % smaller than the magnetic moments on Cr(a)
sites. We find an increase of the Cr(a)/Cr(b) magnetic moments with an increase of the Cr

x = 0.22 x = 0.23 x = 0.26 x = 0.28 x = 0.33
Cr a 2.955 2.965 3.002 3.031 3.107
Cr b 2.199 2.199 2.343 2.43 2.458
Te -0.200 -0.203 -0.202 -0.203 -0.206
Se -0.282 -0.286 -0.283 -0.285 -0.283

Table 5.10: Magnetic moments in trigonal Cr1+x(Te0.88Se0.12)2 non-stoichiometric compounds
(in µB).
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Figure 5.19: Spin-resolved DOS of the system Cr1.23(Te0.88Se0.12)2 obtained by SPR-KKR cal-
culations.
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Figure 5.20: Spin-resolved DOS of the system Cr1.28(Te0.88Se0.12)2 obtained by SPR-KKR cal-
culations.
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Figure 5.21: Spin-resolved DOS of the system Cr1.28(Te0.75Se0.25)2 obtained by SPR-KKR cal-
culations.

Cr1.28(Te0.88Se0.12)2 Cr1.28(Te0.75Se0.25)2
mspin(µB) morb(µB) mspin(µB) morb(µB)

Cr(a) 3.019 0.011 2.962 0.007
Cr(b) 2.407 0.023 2.356 0.020

Te -0.194 -0.008 -0.188 -0.008
Se -0.281 -0.003 -0.270 -0.003

Table 5.11: Magnetic moments in trigonal Cr1.26(Te0.88Se0.12)2 and Cr1.26(Te0.75 Se0.25)2 non-
stoichiometric compounds (in µB).

content of the system. The average magnetic moments on Cr are in these Cr1+x(Te0.88Se0.12)2
non-stoichiometric compounds about 20 - 25 % smaller compared with the corresponding
values in CrTe1−xSex for x = 0.12.
We should note also the magnitude and the sign of the magnetic moment on the chalcogen
atoms. Their magnetic moments are antiparallel with the Cr moments and their magnitude
is significantly increased compared with the values of chalcogen atoms magnetic moments
in CrTe1−xSex (see Fig. 5.14). The chalcogen magnetic moment for non-stoichiometric com-
pounds is almost independent on the Cr content. The negative magnetic polarisation of
Te/Se atoms is explained by Dijkstra et al. [138] by a covalent mixing of Cr 3d and chalcogen
p-bands. The calculated DOS of Cr1+x(Te/Se)2 systems is in agreement with this supposi-
tion [168].
For the compounds with the same Cr content (x = 0.28) but different Te/Se ratio, the mag-
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netic moments are presented in Table 5.11. The magnetic moments on Cr are slightly in-
fluenced by the chalcogen content. The enhancement of Cr magnetic moment with the Te
content follows the general trend, as it was found for CrTe1−xSex binary alloys.

5.6 Band-structure calculations for (CrxTi1−x)5Te8 systems

Depending on the actual composition and the thermal treatment the binary Cr telluride
Cr5Te8 crystallizes in a monoclinic (m) or trigonal (t) structure [148]. Both structures are
derived from the hexagonal NiAs structure type by successive removal of Cr atoms from
every second metal atom layer parallel to the crystallographic c axis. The monoclinic (m)
phase is stable within the composition range Cr5.42Te8 - Cr4.98Te8, whilst the stability of the
trigonal phase covers the composition range Cr4.96Te8 - Cr4.80Te8. Within the fully occupied
metal atom layers the CrTe6 octahedra share common edges, the connection of the octa-
hedra between full and metal deficient layers is achieved via common faces. The Cr - Cr
distances within the full metal atom layers are longer than 3.8 Å excluding direct magnetic
exchange interactions. In contrast, the Cr - Cr separation across the common faces are about
3 Å favouring direct magnetic exchange.
By magnetisation measurements on this system Bensch et al. [169] found out that the mon-
oclinic to trigonal transition and the change of Cr content leads to important changes in the
magnetic properties of this system. The system Cr5Te8 is ferromagnetic, but a small change
in the Cr content leads to important changes in the Curie temperature: if for the m-Cr5.18Te8

phase the Curie temperature is 180 K, for t-Cr4.85Te8 phase the Curie temperature is 240 K.
Other experimental measurements [170] show for a monocrystalline sample of Cr5Te8 a
Curie temperature of 240 K. Also, the magnetisation measurements along different direc-
tions show a strong magnetocrystalline anisotropy of this system. Unfortunately, the crys-
talline structure characterisation of the samples used in these measurements are missing.
The pseudo-binary compounds (CrxTi1−x)5Te8 crystallize in the trigonal structure. Accord-
ing to the experimental measurements performed by Bensch et al. [171] for CrTi4Te8 system,
the substitution of Cr by Ti drastically alters the magnetic properties of the samples. A tran-
sition into the ferromagnetic state is observed at about 100 K. Susceptibility measurements
performed in the zero field cooling (zfc) and field cooling (fc) mode show a divergence of
the zfc and fc curves below about 100 K indicating spin glass behaviour. The magnetic mo-
ments on Cr are smaller than the reported values for binary CrTe compounds, showing a
value of 2.13 µB .
The magnetic susceptibilities of CdI2-type (Cr1−xTix)5Te8 have been measured by Hatake-
yama et al. [172] for the range 0 ≤ x ≤ 1. The Curie temperature deduced from susceptibil-
ity measurements steeply decreases with the increasing of x. The decreasing slope becomes
smaller in the range of higher x (x ≥ 0.3).
A remarkable magnetovolume effect in (Cr1−xTix)5Te8 systems has been reported [173]. The
variation of Curie temperature with pressure have been studied for (Cr1−xTix)5Te8 and
(Cr1−xVx)5Te8 system. The results show that the pressure needed to destroy the ferromag-
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netic phase decrease with increasing x [173] more pronounced for (Cr1−xVx)5Te8 than for
(Cr1−xTix)5Te8 systems. This is a second proof that Ti as well as V atoms alters the magnetic
phase of the Cr5Te8 system. Also, the measurements of magnetic moments of Cr deduced
from saturation of magnetisation in (Cr1−xVx)5Te8 systems [174] show a value of 1.9 µB/Cr.
This value is remarkably lower than that (∼ 3.0 µB) expected on the localized moment for
Cr3+.
These arguments have been brought to underline the strong dependence of the magnetic
properties of (CrxTi1−x)5Te8 systems into the composition and crystalline structure. The aim
of the SPR-KKR calculations is to give a new insight on the properties of these systems. The
interesting questions about the change of the magnetic moments with the Cr/Ti ratio in the
systems and the preferential occupation of Cr and Ti atoms on different crystallographic
sites can get good grounded answers by complementing the experimental work with calcu-
lations of the ground state properties.

5.6.1 Structural properties of (CrxTi1−x)5Te8 compounds

The crystallographic structure of trigonal Cr5Te8 is complex, being refined in the space group
P 3̄m1 with four crystallographically different sites for both Te and Cr. This phase contains
two-dimensional planes of Cr and Te alternating along the c direction. The Te layers are
fully occupied, whilst in the Cr layers there are vacancies. The crystallographic structure
determined by Bensch et al. [148] takes into account the ordering of the vacancies in the
metal layers. For the present calculations we will make use of the reduced model, denoted
Cr1.25Te2. Within this model, the vacancy ordering in the metal layers is not taken into ac-
count and a random distribution of the vacancies in the metal layers is considered. In this
reduced unit cell, the axes a and c are half as the values reported by Bensch et al. [148].
The same reduced model will be used for (CrxTi1−x)5Te8 systems, denoted now due to this
simplification as (CrxTi1−x)1.25Te2 systems.
The Cr/Ti atoms are located on two crystallographically different sites, namely on (0, 0, 0)
and (0, 0, 1/2). The Te atoms occupy the sites (1/3, 2/3, z) and (2/3, 1/3,−z) where the pa-
rameter z govern the interlayer separation and is not determined by symmetry. This occu-
pation leads to a CdI2 type of structure. In these CdI2-like structures, the metal atoms are
surrounded by the octahedral arrangement of Te atoms. For an ideal octahedral arrange-
ment, the z value is 1/4 which is close to the observed value (see Table 5.12). The lattice
parameters of the systems (CrxTi1−x)1.25Te2 are listed in Table 5.12.

The structure is similar to the non-stoichiometric Cr1+x(Te/Se)2 structure presented in
Fig. 5.17. The Cr and Ti atoms are distributed into the metal-layers at z = 0 and z = 1/2.
From the experimental data it was determined that the layer at z = 0 is fully occupied with
atoms, whilst the vacancies appear into the z = 1/2 layer. The position of Ti cannot be
determined unambiguously making use of the experimental methods [171]. The neutron
diffraction experiments performed in order to determine the Cr/Ti distribution in TiCr4Te8

showed that a statistical distribution of Cr/Ti over the z = 0 and z = 1/2 layers has to be
favoured.
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x = 0 x = 0.2 x = 0.4 x = 0.6 x = 1.0

a0 (Å) 3.8309 3.8434 3.8508 3.8608 3.8735
c0 (Å) 6.4076 6.3703 6.3186 6.2598 6.1266
c0/a0 1.6726 1.6575 1.6408 1.6214 1.579

z 0.2622 0.2606 0.2583 0.2547 0.2540

Table 5.12: The lattice parameters for (CrxTi1−x)1.25Te2 systems measured by Bensch et al.
[10]. The value of z is given in units of c.

From the literature it is known [175, 169] that the magnetic properties of Cr-Te systems
are not only influenced by the Cr:Ti ratio, but also that they are very sensitive to the in-
teratomic distances and c/a ratio. In order to establish a possible dependence, the inter-
atomic distances in (CrxTi1−x)1.25Te2 systems are presented in Table 5.13. The shortest dis-

x = 0.0 x = 0.2 x = 0.4 x = 0.6 x = 1.0

dM−M (Å) 3.204 3.185 3.159 3.129 3.063
dM−Te (Å) 2.730 2.731 2.727 2.723 2.710
dTe−Te (Å) 3.893 3.882 3.863 3.843 3.793

Table 5.13: The average interatomic distances in (CrxTi1−x)1.25Te2 systems. The Cr/Ti atoms
are denoted by M.

tance between the metal atoms is c/2 followed by a. The average distance between the metal
atoms (M=Cr/Ti) and Te atoms is calculated using the formula dM−Te =

√

(a/3)2 + (c/4)2,
whilst for the shortest distance between Te atoms the following formula is used: dTe−Te =
√

(a/3)2 + (c/2)2. As it can be seen in Table 5.13, the metal-metal and metal-Te distances
steeply decrease with Cr content. The interatomic distances presented here are in agree-
ment with the interatomic distances (dTe−Te between 3.79 and 3.90 Å and dM−Te between
2.71 and 2.73 Å) in Cr1−xTixTe2 compounds reported by Hatakeyama et al. [173].

5.6.2 Preferential site occupation

As the position of Ti cannot be determined unambiguously by the experimental methods,
we tried to determine it making use of energetic considerations. We performed SPR-KKR
band structure calculations in order to determine the total energy of (CrxTi1−x)1.25Te2 sys-
tems. We used in our calculations the lattice parameters measured by Bensch et al. [10]. We
started from the supposition that Cr and Ti are statistical distributed on the sites (0, 0, 0) and
(0, 0, 1/2) within the trigonal unit cell described in the previous section. We will denote in
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the following discussion the site (0, 0, 0) as site a and respectively the site (0, 0, 1/2) as site b.
First we tried to determined if one of the crystallographic sites a or b is favoured when the
metal content of the system is increased. The calculation was performed for Cr1.25Te2 sys-
tem, making the supposition that a certain percentage of Cr content is moved from site a
to site b, according to the scheme: Cr1.25Te2 → Cra

1−xCrb
x+0.25Te2. The variation of the total

energy as a function of Cr concentration moved from site b to site a is presented in Fig. 5.22.
The total energy increase if the Cr atoms are moved from site a to site b, so we can conclude

Figure 5.22: The SPR-KKR total energy variation of the system Cr1.25Te2 as a function
of Cr concentration x moved from site a to site b, according to the scheme: Cr1.25Te2 →
Cra

1−xCrb
x+0.25Te2.

that the site a is occupied first. If the Cr concentration would increase in the system, only
after the site a is fully occupied Cr atoms starts to populate the site b. This conclusion is
supported by the experimental results showing the vacancies on the b sites of the Cr1.25Te2

systems.
In order to determine the distribution of Cr and Ti atoms on the sites a and b, we started
firstly from the supposition that site a is occupied with Cr and Ti. Secondly, we supposed
that the distribution is statistical determined and the occupancy of a certain site (a or b)
is proportional with the concentration of Cr/Ti in the compound. This means that for the
(Cr0.4Ti0.6)1.25Te2, the occupation is given by the formula (Cr0.4Ti0.6)a(Cr0.1Ti0.15)bTe2. We sup-
pose now that a certain percentage (denoted by δ) of Cr atoms is moved from site b to site a,
according to the scheme: (Cr0.4Ti0.6)a(Cr0.1Ti0.15)bTe2 → (Cr0.4+δTi0.6−δ)a(Cr0.1−δTi0.15+δ) bTe2.
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Figure 5.23: The SPR-KKR total energy variation of the system (Cr0.4Ti0.6)1.25Te2 as a
function of Cr concentration δ moved from site b to site a, according to the scheme:
(Cr0.4Ti0.6)a(Cr0.1Ti0.15)bTe2 → (Cr0.4+δTi0.6−δ)a(Cr0.1−δTi0.15+δ) bTe2.

The SPR-KKR calculations have been performed for the (Cr0.4Ti0.6)1.25Te2 system and the
variation of the total energy as a function of δ (the percentage of Cr moved from site b to site
a) is shown in Fig. 5.23.
The total energy of the system (Cr0.4Ti0.6)1.25Te2 increase if Cr is moved from site b to site a.
The system with the lowest energy (for δ = −0.15) is described by the formula:
(Cr0.25Ti0.75)a(Cr0.25)bTe2. This result reflects the preference of Ti atoms for site a and re-
spectively of Cr atoms for site b. The SPR-KKR calculations performed for the other systems
of (CrxTi1−x)1.25Te2 type with x = 0.2 and x = 0.6 give similar results.
These results allow us to conclude that the occupation rule in the system (CrxTi1−x)yTe2 are
the following:

a) increasing the y content, the Cr/Ti atoms occupy site a completely

b) if site a is occupied, put Cr on site b

5.6.3 Density of states and magnetic moments

The density of states for ferromagnetic (CrxTi1−x)1.25Te2 systems with 0.2 ≤ x ≤ 1.0 have
been calculated using the SPR-KKR method. The spin-resolved density of states of the sys-
tems with x = 0.2, x = 0.4, x = 0.6 and x = 1.0 are presented in Figs. 5.24, 5.25, 5.26 and
5.27. One should note that the densities of states presented here have been calculated for the
systems which obey the occupation rules derived in the previous section.
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Figure 5.24: The spin-resolved KKR density of states of Cr1.25Te2.
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Figure 5.25: The spin-resolved KKR density of states of (Cr0.6Ti0.4)1.25Te2.
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Figure 5.26: The spin-resolved KKR density of states of (Cr0.4Ti0.6)1.25Te2.
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Figure 5.27: The spin-resolved KKR density of states of (Cr0.2Ti0.8)1.25Te2.
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x = 0.2 x = 0.4 x = 0.6 x = 1.0
Exchange splitting Cr(a) (eV) 1.5 2.4 2.5 2.2
Exchange splitting Cr(b) (eV) - 1.8 1.8 1.8

Table 5.14: The exchange splitting of Cr 3d in (CrxTi1−x)1.25Te2 compounds. Cr(a) and Cr(b)
denote the two crystallographic sites of Cr in P 3̄m1 trigonal symmetry.

A photoemission study (Shimada et al. [175]) has disclosed the electronic structure of Cr5Te8.
If one assume the valence −2 for Te atoms, the nominal number of d electrons in Cr5Te8 sys-
tem is 2.8 electrons per Cr atom. Because Cr atoms are octahedral surrounded by Te atoms,
the Cr 3d orbitals split into threefold degenerated t2g orbitals and respectively twofold de-
generated eg orbitals. If one assume a high spin configuration for Cr ions, the t2g↑ orbitals
are almost filled, whilst the orbital eg ↑ is empty. The t2g↓ and eg↓ orbitals are unoccupied.
From the photoemission study of Cr5Te8 system it was found that the electron correlation
effect is very important in this system which means that electrons tend to localize on the
atom rather to extend over all the crystal.
As one can see in the Figs. 5.24, 5.25, 5.26 and 5.27, the density of states of (CrxTi1−x)1.25Te2

systems keep the characteristics of the DOS of the Cr-Te systems. The contribution of Te is
less affected by the Cr:Ti ratio. Also, the exchange-splitting is less visible in the case of Te
minority/majority bands. A visible change appear due to the Cr contribution to the total
DOS. One can see in particular changes into the position of the minority/majority d-like
contribution of the Cr partial DOS. One can estimate that the splitting between the d-like
majority/minority peaks of Cr increase when increasing the Cr concentration. The exchange
splitting of Cr-3d estimated from the DOS calculations is listed in Table 5.14.
The Ti contribution is small in the occupied part of the valence band, the prominent peak
of Ti partial DOS being located above the Fermi energy. The exchange splitting of the Ti
contribution to the total DOS is weak and less affected by the Ti concentration. One should
note that in Figs. 5.24, 5.25, 5.26 and 5.27 the partial DOS of each component is weighted by
its concentration in order to get the total DOS.
If one considers the rigid band model, because Ti has less valence electrons like Cr, substi-
tution of Ti in the Cr1.25Te2 system would decrease the number of valence electrons and the
Fermi level EF would shift to lower energies in the t2g band. If one compares the DOS of
(CrxTi1−x)1.25Te2 systems with increased Ti content, the picture of band structure looks to be
more complex than it is suggested in the rigid band model.
The SPR-KKR magnetic moments for (CrxTi1−x)1.25Te2 compounds are presented in Table
5.15. The calculation of the magnetic moments has been done respecting the preference of
the Cr/Ti atoms for one of the two different metal sites into the unit cell. The calculations
for Ti1.25Te2 show that this system is non-magnetic.
The magnetic moments of Cr on site a are less influenced by the Ti content in the system,
an increase of Ti content to 60 % in the system increase the magnetic moment of Cr on the
site a by about 2%. The decrease of the magnetic moments of Cr with the increase of the Cr
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x=0.2 x=0.4 x=0.6 x=1.0
Cr a 3.114 3.080 3.043
Cr b 2.394 2.417 2.499 2.487
Te -0.014 -0.080 -0.120 -0.206

Ti a 0.056 0.046 0.076
Ti b 0.164 0.178

Table 5.15: The SPR-KKR calculated magnetic moments in in (CrxTi1−x)1.25Te2 compounds.

content in the system (and implicit in the Cr(a) layer) is not unusual. The variation if the
magnetic moment with the Cr:Te ratio in the systems CrxTiSe2 reported by Titov et al. [176]
show a similar behaviour. The magnetic moment of Cr on site b is more sensitive to the Cr:Ti
ratio in the system. For Cr(b), the magnetic moment increase with about 4 % with increasing
of the Cr content in the system from x = 0.2 to x = 1.0.
The magnetic moments induced on Ti atoms are rather small compared with the Cr mag-
netic moments. The magnetic moments of Ti atoms are depending very much on the crys-
tallographic site occupied by those atoms. For the Ti atoms sitting on site b, the magnetic
moments are about 2-3 times bigger than the Ti(a) magnetic moments.
As in the Cr1+x(Te/Se)2 systems, one can see also for the Te atoms in the
(Cr/Ti)1.25Te2 systems a small negative magnetic moment. The Te magnetic moments are
sensitive to the Cr:Ti ratio in the system, increasing about 14 times if the Cr content in the
system is reduced with 60%. According to the scheme proposed by Dijkstra et al. [138]
for the polarisation of Te 5p orbitals, one can say that the Cr-Te covalency is producing a
negative magnetic polarisation of Te 5d orbitals, less pronounced with decreasing of the Cr
content.
Concerning the magnetism of (CrxTi1−x)1.25Te2 systems, one can conclude that a) Cr mag-
netic moments are site-dependent, but the magnitude of the magnetic moment is less influ-
enced by the Cr:Ti ratio and by the change of the lattice parameters in the system; b) The
magnetism of Ti and Te atoms is negligible compared with Cr magnetic moments.
Our calculations invalidate the supposition that the substitution of Cr by Ti drastic alters the
magnetism of (CrxTi1−x)1.25Te2 systems. The drastically decrease of the Curie temperature
in those systems with increasing Ti content could have other sources. This could be a struc-
tural transition at T ≤ TC for example.
The rather big magnetic moments on Cr (∼ 3.0µB and ∼ 2.5µB) are not in agreement with
the values obtained from magnetisation measurements (2.13µB) [171]. This disagreement
has been often reported in the literature for Cr-Te systems ([156, 155, 154, 153]), suggesting a
spin glass magnetic behaviour. We suppose that a non-collinear/spin glass magnetic struc-
ture in Cr-Ti-Te compounds would explain the disagreement between the measured and
calculated magnetic moments.
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5.7 Conclusions

The band structure calculations performed for Cr-chalcogenide systems show a variety of
magnetic properties of this systems, depending on the composition and on the structure of
the system. We found indications for a non-collinear spin structure in Cr-Se and Cr-Te sys-
tems. Our results are in agreement with the phase diagram of Makovetskii (1986) [19].
The Cr magnetic moments in the CrSexTe1−x alloy show a strong dependence on the Se:Te ra-
tio, in agreement with the individual magnetic moments of Cr in CrSe and CrTe compounds
[8]. The phase stability of ferro-/ antiferromagnetic spin configuration of CrTe1−xSex alloy
was discussed for x = 70% Se. The antiferromagnetic phase was found lower in energy.
The band structure calculations for non-stoichiometric Cr1+xQ2 (Q = Te/Se, Te:Se = 7:1) with
x between 0.21 and 0.33 show a site occupancy preference of Cr atoms within the trigonal
structure. The magnetic moments of Cr depend on the crystallographic site occupied by Cr
atoms and on the Cr content of the system.
Based on the SPR-KKR band structure calculations, we determined the occupation rules of
Cr and Ti atoms on crystallographic sites inside the unit cell. The Ti substitution in Cr1.25Te2

systems show a slight influence on the magnetic moments of Cr atoms despite the pro-
nounced changes of the lattice parameters.



Chapter 6

Summary

Nowadays, the research aiming to discover new materials with technological applications
needs to be supported by reliable theoretical descriptions. The subject of this work was
to use the SPR-KKR formalism to investigate the ground state properties of materials from
Cr-chalcogenide class and to describe the spectroscopic properties (Compton scattering and
positron annihilation) of different metallic systems.
The fundamentals of the theoretical approach applied are presented in Chapter 2. In par-
ticular, the basics of the density functional theory (DFT) used to reduce the many-body
electron-electron interaction to single electrons moving independently in an effective poten-
tial, together with the SPR-KKR formalism used to solve the electronic structure problem
are discussed in detail.
This theoretical formalism is applied to get the description of the (magnetic) Compton pro-
file, as it was shown in Chapter 3. The experimental MCP of Fe and Ni are very good de-
scribed by the SPR-KKR theoretical spectra. If for Fe and Ni the accuracy of the KKR descrip-
tion of the experimental results is comparable with other theoretical descriptions (FLAPW,
LMTO, APW), the quality of the KKR description of MCP spectra is evidenced when deal-
ing with the systems that contain rare earth or actinide atoms. As can be seen for Gd, the
KKR method gives better results compared with the full-potential method (FLAPW), show-
ing that the fully relativistic treatment of this systems is decisive for the MCP description.
The investigation of the influence of the spin-orbit coupling on the KKR MCP spectra of Gd,
Y0.38Gd0.62 and UFe2 show that the relativistic effects cannot be neglected in the study of
these systems. Also, the agreement between theory and experiment in the case of the MCP
spectra of UFe2 spectra is slightly enhanced when the orbital polarization is included.
The description of the 2D projection of the electron momentum density was derived. As it
has been shown, the SPR-KKR 2D projection perpendicular to the [001] direction of bcc Fe
gives a good description of the experimental reconstructed spectra.
The KKR formalism allows us to decompose the MCP spectra into partial contributions of
the orbitals, as it was shown for Fe and Fe3Pt. As the overall shape of the MCP is character-
istic of the particular localization of each orbital, this is a useful method to get informations
about the orbital localizations and the spin polarization of the orbitals. For the systems with
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many atoms per unit cell, the decomposition of the MCP spectra into the atomic-like partial
contributions and an interference term show that the contribution coming from interference
term is crucial for the MCP analysis.
The formalism which describe the positron annihilation is presented in Chapter 4. The 2D
projection of the electron-positron momentum density allows to analyse the experimental
2D-ACAR spectra, as it was shown in the case of V. A further extension of this formalism
can be done in order to determine the topology of the Fermi surface of metals, which in
practice is reconstructed from 2D-ACAR data.
The experimental work performed by the group of Prof. Bensch on the preparation and
determination of the structure and the magnetic properties of Cr-chalcogenide systems was
completed by theoretical calculations of the ground-state properties, as it was shown in
Chapter 5. The SPR-KKR method was used with success to determine the density of states,
the magnetic moments and the occupation rules of the crystallographic sites for the com-
pounds of type Cr1+x(Te1−ySey)2 and (CrxTi1−x)5Te8.
A complementary approach to investigate the magnetic behaviour of solids using a micro-
scopic model of the magnetic interaction was combined with the SPR-KKR band structure
calculations in order to determine the magnetic ground state of the CrSe and CrTe systems.
According to this investigation, the magnetic ground state of CrSe and CrTe systems was
found to have a non-collinear spin configuration, in agreement with the phase diagram
determined by Makovetskii [19]. Nevertheless, combining this method with the neutron
diffraction data suggesting a certain type of spin arrangement can be a useful tool to estab-
lish the full spin configuration of the magnetic systems with non-collinear spin configura-
tion.
The influence of the exchange-correlation treatment on the equilibrium lattice parameters
for CrSexTe1−x alloy was investigated. Using the GGA treatment of the exchange-coupling
energy, the equilibrium lattice parameters differ from the experimental values by less than
2%, whilst the LSDA give an error of about 6%. The antiferromagnetic spin configura-
tion found was lowest in energy for the equilibrium lattice parameters for both exchange-
coupling treatments. Further extension for non-collinear spin configurations could give more
information about the stability of the magnetic phase.



Appendix A

Green’s function in momentum
representation (Compton)

In order to calculate the Green’s function in momentum representation, one has to introduce
the site-diagonal and non-site diagonal expression for the Green’s function in the coordinate
representation, together with the formula describing the eigenfunction in the momentum
representation:
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Fig. A.1 shows the vectors used, with the Bravais vector ~Rn giving the position of the nth cell
origin and the basis vector ~Rq giving the position of the qth site inside the nth cell. According
to this notation and considering that the origin of the reference system is the origin of the
nth cell, the momentum representation Green’s function reads as:
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Figure A.1: The vectorial configuration for the Green’s function formula A.1
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′ −
∑

Λ

M̃ qα
msΛm′

s

]

−
1

Ω
=
∑

q

∑

αβ

xqαxqα

∑

ΛΛ′

M qα
msΛ

τ 0qα0qα
ΛΛ′ M qα∗

m′

sΛ
′

+
1

Ω
=
∑

q

∑

q′

e−i~p(~Rq−~Rq′ )
∑

αβ

xqαxq′β

∑

ΛΛ′

M qα
msΛ

(

Dqα
[∑

n′

ei~p~Rn′τnqn′q′CPA]D̃q′β
)

ΛΛ′

M q′β∗
m′

sΛ
′

introduce the scattering path operators

=
1

Ω
=
∑

q

∑

α

xqα

[∑

ΛΛ′

M qα
msΛ

(

Dqατ 0q0qCPA
)

ΛΛ′

M qα∗
m′

sΛ
′ −
∑

Λ

M̃ qα
msΛm′

s

]

−
1

Ω
=
∑

q

∑

αβ

xqαxqα

∑

ΛΛ′

M qα
msΛ

(

Dqατ 0q0qCPAD̃qα
)

ΛΛ′

M qα∗
m′

sΛ
′

+
1

Ω
=
∑

q

∑

q′

e−i~p(~Rq−~Rq′ )
∑

αβ

xqαxq′β

∑

ΛΛ′

M qα
msΛ

(

Dqατ qq′CPA(~p)D̃q′β
)

ΛΛ′

M q′β∗
m′

sΛ
′

split the single site part

=
1

Ω
=
∑

q

∑

α

xqα

[∑

ΛΛ′

M qα
msΛ

tqα
ΛΛ′M

qα∗
m′

sΛ
′ −
∑

Λ

M̃ qα
msΛm′

s

]

+
1

Ω
=
∑

q

∑

α

xqα

∑

ΛΛ′

M qα
msΛ

(

Dqατ 0q0qCPA − tqα
)

ΛΛ′

M qα∗
m′

sΛ
′

−
1

Ω
=
∑

q

∑

αβ

xqαxqα

∑

ΛΛ′

M qα
msΛ

(

Dqατ 0q0qCPAD̃qα
)

ΛΛ′

M qα∗
m′

sΛ
′

+
1

Ω
=
∑

q

∑

q′

e−i~p(~Rq−~Rq′ )
∑

αβ

xqαxq′β

∑

ΛΛ′

M qα
msΛ

(

Dqατ qq′CPA(~p)D̃q′β
)

ΛΛ′

M q′β∗
m′

sΛ
′

The formulation presented allows a direct application to disordered system, in which case
the resulting expression represents the corresponding configurational average. In addition
one should note that the final expression has been split into four terms: a pure single-site
term, two site diagonal terms and a additional site-off-diagonal term.
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Appendix B

Matrix elements (Compton)

The calculations of the matrix elements which enter in Eq. (3.23) is based on the expression
for the momentum eigenfunction Φ~pms

:

φ~pms
(~r) = U~pms

ei~p~r

=

(
Ep + c2

2Ep + c2

)1/2( χms

c~σ~p
Ep+c2

χms

)

ei~p~r

= 4π

(
Ep + c2

2Ep + c2

)1/2∑

Λ

ilCms

Λ Y µ−ms∗
l (p̂)

(
jl(pr)χΛ(r̂)

icpSκ

Ep+c2
jl̄(pr)χ−Λ(r̂)

)

with

Ep =
c2

2

(√

1 + 4
p2

c2
− 1

)

Using the previous expression of the momentum eigenfunction and the regular solutions of
the Dirac equation for a spherical symmetric potential (see Eq. (2.106)), the matrix elements
occurring in the expression for the momentum representation of the Green’s function are
given by:

MmsΛ = MmsΛ(~p, E)

= 〈φ~pms
|ZΛ′〉

= 〈εp

∑

Λ

ilCms

Λ Y µ−ms∗
l (p̂)

(
jl(pr)χΛ(r̂)

icpSκ

Ep+c2
jl̄(pr)χ−Λ(r̂)

)

|
∑

Λ′′

(
gΛ′′Λ′(r)χΛ′′(r̂)

ifΛ′′Λ′(r)χ−Λ′′(r̂)

)

〉

= εp

∑

ΛΛ′′

i−lCms

Λ Y µ−ms

l (p̂)
(

〈jl(pr)|gΛ′′Λ′(r)〉〈χΛ(r̂)|χΛ′′(r̂)〉

+
cpSκ

Ep + c2
〈jl̄(pr)|fΛ′′Λ′(r)〉〈χ−Λ(r̂)|χ−Λ′′(r̂)〉

)
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= εp

∑

Λ

i−lCms

Λ Y µ−ms

l (p̂)
(

〈jl(pr)|gΛΛ′(r)〉 +
cpSκ

Ep + c2
〈jl̄(pr)|fΛΛ′(r)〉

)

with

εp = 4π

(
Ep + c2

2Ep + c2

)1/2

Using the orthogonality of the spin-angular functions, (< χΛ(r̂)|χΛ′′(r̂) >= δΛ,Λ′′), one has:

MmsΛ′′m′

s
= MmsΛ′′m′

s
(~p, E)

= 〈φ~pms
(~r)|
(

ZΛ′′(~r)J×
Λ′′(~r

′)Θ(r′ − r)

JΛ′′(~r)Z×
Λ′′(~r

′)Θ(r − r′)
)

|φ~pm′

s
(~r′)〉

= ε2
p

∑

ΛΛ′

∑

Λ1Λ2

i−l+l′Cms

Λ C
m′

s

Λ′ Y µ−ms

l (p̂)Y
µ′−m′

s∗

l′ (p̂)

〈

(
jl(pr)χΛ(r̂)

wκpjl̄(pr)χ−Λ(r̂)

)

|
(

ZΛ1Λ′′(~r)J×
Λ2Λ′′(~r

′)Θ(r′ − r)

JΛ1Λ′′(~r)Z×
Λ2Λ′′(~r

′)Θ(r − r′)
)

|

(
jl′(pr)χΛ′(r̂)

wκ′pjl̄′(pr)χ−Λ′(r̂)

)

〉

= ε2
p

∑

ΛΛ′

∑

Λ1Λ2

i−l+l′Cms

Λ C
m′

s

Λ′ Y µ−ms

l (p̂)Y
µ′−m′

s∗

l′ (p̂)

∫

r2dr

∫

r′2dr′

(

jl(pr)gΛ1Λ′′(r)g̃Λ2Λ′′(r′)jl′(pr)Θ(r′ − r)〈χΛ|χΛ1
〉〈χΛ2

|χΛ′〉

+jl(pr)g̃Λ1Λ′′(r)gΛ2Λ′′(r′)jl′(pr)Θ(r − r′)〈χΛ|χΛ1
〉〈χΛ2

|χΛ′〉

+wκpjl̄(pr)wκ1pfΛ1Λ′′(r)wκ2pf̃Λ2Λ′′(r′)wκ′pjl̄′(pr)Θ(r′ − r)〈χ−Λ|χ−Λ1
〉〈χ−Λ2

|χ−Λ′〉

+wκpjl(pr)wκ1pf̃Λ1Λ′′(r)wκ2pfΛ2Λ′′(r′)wκ′pjl̄′(pr)Θ(r − r′)〈χ−Λ|χ−Λ1
〉〈χ−Λ2

|χ−Λ′〉
)

= ε2
p

∑

ΛΛ′

i−l+l′Cms

Λ C
m′

s

Λ′ Y µ−ms

l (p̂)Y
µ′−m′

s∗

l′ (p̂)

(∫ rws

0

r2drjl(pr)gΛΛ′′(r)

∫ rws

r

r′2dr′g̃Λ′Λ′′(r′)jl′(pr)

+

∫ rws

0

r2drjl(pr)g̃ΛΛ′′(r)

∫ r

0

r′2dr′gΛ′Λ′′(r′)jl′(pr)

+w2
κpw

2
κ′p

∫ rws

0

r2drjl̄(pr)fΛΛ′′(r)

∫ rws

r

r′2dr′f̃Λ′Λ′′(r′)jl̄′(pr)

+w2
κpw

2
κ′p

∫ rws

0

r2drjl(pr)f̃ΛΛ′′(r)

∫ r

0

r′2dr′fΛ′Λ′′(r′)jl̄′(pr)
)
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with

wκp =
cpSκ

Ep + c2
.
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Appendix C

Green’s function in momentum
representation (Positron Annihilation)

C.1 Site-diagonal contribution

The following section gives the various steps to transform the site-diagonal contribution in
the first two terms of Eq. (4.8).

1

Ω

∑

q

∑

α

xqα

∫

d3r0q

∫

d3r′0qU
e†
~pems

e−i~pe~r0q=Ge+α(~r0q, ~r
′
0q, Ee)U

e
~pems

ei~pe~r ′

0q

Up†
~ppm′

s
e−i~pp~r0q=Gp+α(~r0q, ~r

′
0q, Ep)U

p
~ppm′

s
ei~pp~r ′

0q

−
1

Ω

∑

q

∑

αβ

xqαxqβ

∫

d3r0q

∫

d3r′0q U e†
~pems

e−i~pe~r0q=Ge+αβ(~r0q, ~r
′
0q, Ee)U

e
~pems

ei~pe~r ′

0q

Up†
~ppm′

s
e−i~pp~r0q=Gp+αβ(~r0q, ~r

′
0q, Ep)U

p
~ppm′

s
ei~pp~r ′

0q

=
−1

4Ω

∑

q

∑

α

xqα

∫

d3r0q

∫

d3r′0q

U e†
~pems

e−i~pe~r0q

(

Ge+α(~r0q, ~r
′
0q, Ee) − Ge−α(~r0q, ~r

′
0q, Ee)

)

U e
~pems

ei~pe~r ′

0q

Up†
~ppm′

s
e−i~pp~r0q

(

Gp+α(~r0q, ~r
′
0q, Ep) − Gp−α(~r0q, ~r

′
0q, Ep)

)

Up
~ppm′

s
ei~pp~r ′

0q

−
−1

4Ω

∑

q

∑

αβ

xqαxqβ

∫

d3r0q

∫

d3r′0q

U e†
~pems

e−i~pe~r0q

(

Ge+αβ(~r0q, ~r
′
0q, Ee) − Ge−αβ(~r0q, ~r

′
0q, Ee)

)

U e
~pems

ei~pe~r ′

0q

Up†
~ppm′

s
e−i~pp~r0q

(

Gp+αβ(~r0q, ~r
′
0q, Ep) − Gp−αβ(~r0q, ~r

′
0q, Ep)

)

Up
~ppm′

s
ei~pp~r ′

0q
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=
−1

4Ω

∑

q

∑

α

xqα

∫

d3r0q

∫

d3r′0q

U e†
~pems

e−i~pe~r0q

(∑

ΛΛ′

Ze+ qα
Λ (~r0q)τ

e+ 0q0q,α
ΛΛ′ (Ee)Z

e+ qα×
Λ′ (~r ′

0q)

−
∑

ΛΛ′

Ze− qα
Λ (~r0q)τ

e− 0q0q,α
ΛΛ′ (Ee)Z

e− qα×
Λ′ (~r ′

0q)
)

U e
~pems

ei~pe~r ′

0q

Up†
~ppm′

s
e−i~pp~r0q

( ∑

Λ′′Λ′′′

Zp+ qα
Λ′′ (~r0q)τ

p+ 0q0q,α
Λ′′Λ′′′ (Ep)Z

p+ qα×
Λ′′′ (~r ′

0q)

−
∑

Λ′′Λ′′′

Zp− qα
Λ′′ (~r0q)τ

p− 0q0q,α
Λ′′Λ′′′ (Ep)Z

p− qα×
Λ′′′ (~r ′

0q)
)

Up
~ppm′

s
ei~pp~r ′

0q

−
−1

4Ω

∑

q

∑

αβ

xqαxqβ

∫

d3r0q

∫

d3r′0q

U e†
~pems

e−i~pe~r0q

(∑

ΛΛ′

Ze+ qα
Λ (~r0q)τ

e+ 0qα 0qβ
ΛΛ′ (Ee)Z

e+ qβ×
Λ′ (~r ′

0q)

−
∑

ΛΛ′

Ze− qα
Λ (~r0q)τ

e− 0qα 0qβ
ΛΛ′ (Ee)Z

e− qβ×
Λ′ (~r ′

0q)
)

U e
~pems

ei~pe~r ′

0q

Up†
~ppm′

s
e−i~pp~r0q

( ∑

Λ′′Λ′′′

Zp+ qα
Λ′′ (~r0q)τ

p+ 0qα 0qβ
Λ′′Λ′′′ (Ep)Z

p+ qβ×
Λ′′′ (~r ′

0q)

−
∑

Λ′′Λ′′′

Zp− qα
Λ′′ (~r0q)τ

p− 0qα 0qβ
Λ′′Λ′′′ (Ep)Z

p− qβ×
Λ′′′ (~r ′

0q)
)

Up
~ppm′

s
ei~pp~r ′

0q

=
−1

4Ω

∑

q

∑

α

xqα

∑

ΛΛ′

∑

Λ′′Λ′′′

M++ α
msΛ m′

sΛ
′′ M̃

++ α
msΛ′ m′

sΛ
′′′ τ

e+ 0q0q,α
ΛΛ′ (Ee) τ p+ 0q0q,α

Λ′′Λ′′′ (Ep)

−M+−α
msΛ m′

sΛ
′′ M̃

+−α
msΛ′ m′

sΛ
′′′ τ

e+ 0q0q,α
ΛΛ′ (Ee) τ p− 0q0q,α

Λ′′Λ′′′ (Ep)

−M−+ α
msΛ m′

sΛ
′′ M̃

−+ α
msΛ′ m′

sΛ
′′′ τ

e− 0q0q,α
ΛΛ′ (Ee) τ p+0q0q,α

Λ′′Λ′′′ (Ep)

+M−−α
msΛ m′

sΛ
′′ M̃

−−α
msΛ′ m′

sΛ
′′′ τ

e− 0q0q,α
ΛΛ′ (Ee) τ p− 0q0q,α

Λ′′Λ′′′ (Ep)

−
−1

4Ω

∑

q

∑

αβ

xqαxqβ

∑

ΛΛ′

∑

Λ′′Λ′′′

M++ α
msΛ m′

sΛ
′′ M̃

++ β
msΛ′ m′

sΛ
′′′ τ

e+ 0qα 0qβ
ΛΛ′ (Ee) τ p+ 0qα 0qβ

Λ′′Λ′′′ (Ep)

−M+−α
msΛ m′

sΛ
′′ M̃

+−β
msΛ′ m′

sΛ
′′′ τ

e+ 0qα 0qβ
ΛΛ′ (Ee) τ p− 0qα 0qβ

Λ′′Λ′′′ (Ep)

−M−+ α
msΛ m′

sΛ
′′ M̃

−+ β
msΛ′ m′

sΛ
′′′ τ

e− 0qα 0qβ
ΛΛ′ (Ee) τ p+ 0qα 0qβ

Λ′′Λ′′′ (Ep)

+M−−α
msΛ m′

sΛ
′′ M̃

−−β
msΛ′ m′

sΛ
′′′ τ

e− 0qα 0qβ
ΛΛ′ (Ee) τ p− 0qα 0qβ

Λ′′Λ′′′ (Ep)

assume the positron to be in a state with ~kp = ~pp = 0 at bottom of the band
this implies: l(Λp) = 0 and µ(Λp) = m′

s Λ′′ = Λ′′′ = Λs
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=
−1

4Ω

∑

q

∑

α

xqα

∑

ΛΛ′

M++ α
msΛ m′

sΛs
M̃++ α

msΛ′ m′

sΛs
τ e+ 0q0q,α
ΛΛ′ (Ee) τ p+ 0q0q,α

ΛsΛs
(Ep)

−M+−α
msΛ m′

sΛs
M̃+−α

msΛ′ m′

sΛs
τ e+ 0q0q,α
ΛΛ′ (Ee) τ p− 0q0q,α

ΛsΛs
(Ep)

−M−+ α
msΛ m′

sΛs
M̃−+ α

msΛ′ m′

sΛs
τ e− 0q0q,α
ΛΛ′ (Ee) τ p+0q0q,α

ΛsΛs
(Ep)

+M−−α
msΛ m′

sΛs
M̃−−α

msΛ′ m′

sΛs
τ e− 0q0q,α
ΛΛ′ (Ee) τ p− 0q0q,α

ΛsΛs
(Ep)

−
−1

4Ω

∑

q

∑

αβ

xqαxqβ

∑

ΛΛ′

M++ α
msΛ m′

sΛs
M̃++ β

msΛ′ m′

sΛs
τ e+ 0qα 0qβ
ΛΛ′ (Ee) τ p+ 0qα 0qβ

ΛsΛs
(Ep)

−M+−α
msΛ m′

sΛs
M̃+−β

msΛ′ m′

sΛs
τ e+ 0qα 0qβ
ΛΛ′ (Ee) τ p− 0qα 0qβ

ΛsΛs
(Ep)

−M−+ α
msΛ m′

sΛs
M̃−+ β

msΛ′ m′

sΛs
τ e− 0qα 0qβ
ΛΛ′ (Ee) τ p+ 0qα 0qβ

ΛsΛs
(Ep)

+M−−α
msΛ m′

sΛs
M̃−−β

msΛ′ m′

sΛs
τ e− 0qα 0qβ
ΛΛ′ (Ee) τ p− 0qα 0qβ

ΛsΛs
(Ep)

evaluate Gp± for =Ep → 0

this implies: =Gp+ →
∑

Λs
Zp+

Λs
=τ p+

ΛsΛs
Zp+×

Λs

=
1

2iΩ

∑

q

∑

α

xqα

(

= τ p+ 0q0q,α
ΛsΛs

(Ep)
)∑

ΛΛ′

M++ α
msΛ m′

sΛs
M̃++ α

msΛ′ m′

sΛs
τ e+ 0q0q,α
ΛΛ′ (Ee)

−M−+ α
msΛ m′

sΛs
M̃−+ α

msΛ′ m′

sΛs
τ e− 0q0q,α
ΛΛ′ (Ee)

−
1

2iΩ

∑

q

∑

αβ

xqαxqβ

(

= τ p+ 0qα 0qβ
ΛsΛs

(Ep)
)∑

ΛΛ′

M++ α
msΛ m′

sΛs
M̃++ β

msΛ′ m′

sΛs
τ e+ 0qα 0qβ
ΛΛ′ (Ee)

−M−+ α
msΛ m′

sΛs
M̃−+ β

msΛ′ m′

sΛs
τ e− 0qα 0qβ
ΛΛ′ (Ee)

replace ... 1
2i

(Ge+ − Ge−) ... by: = ... Ge+ ...

=
1

Ω
=
∑

q

∑

α

xqα

(

= τ p+ 0q0q,α
ΛsΛs

(Ep)
)∑

ΛΛ′

M++ α
msΛ m′

sΛs
M̃++ α

msΛ′ m′

sΛs
τ e+ 0q0q,α
ΛΛ′ (Ee)

−
1

Ω
=
∑

q

∑

αβ

xqαxqβ

(

= τ p+ 0qα 0qβ
ΛsΛs

(Ep)
)∑

ΛΛ′

M++ α
msΛ m′

sΛs
M̃++ β

msΛ′ m′

sΛs
τ e+ 0qα 0qβ
ΛΛ′ (Ee)
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C.2 Site-off-diagonal contribution

This section describes in detail the transformation of the site-off-diagonal (third) term of Eq.
(4.8).

1

Ω

∑

q

∑

n′q′

∑

αβ

xqαxq′β

∫

d3r0q

∫

d3r′n′q′

U e†
~pems

e−i~pe(~r0q+~Rq)=Ge+αβ(~r0q, ~r
′
n′q′ , Ee)U

e
~pems

e
i~pe(~r ′

n′q′
+~Rn′+~Rq′ )

Up†
~ppm′

s
e−i~pp(~r0q+~Rq)=Gp+αβ(~r0q, ~r

′
n′q′ , Ep)U

p
~ppm′

s
e

i~pp(~r ′

n′q′
+~Rn′+~Rq′ )

=
1

Ω

∑

q

∑

n′q′

∑

αβ

xqαxq′β

∫

d3r0q

∫

d3r′n′q′

U e†
~pems

e−i~pe(~r0q+~Rq)
(

Ge+αβ(~r0q, ~r
′
n′q′ , Ee) − Ge−αβ(~r0q, ~r

′
n′q′ , Ee)

)

U e
~pems

e
i~pe(~r ′

n′q′
+~Rn′+~Rq′ )

Up†
~ppm′

s
e−i~pp(~r0q+~Rq)

(

Gp+αβ(~r0q, ~r
′
n′q′ , Ep) − Gp−αβ(~r0q, ~r

′
n′q′ , Ep)

)

Up
~ppm′

s
e

i~pp(~r ′

n′q′
+~Rn′+~Rq′ )

=
1

Ω

∑

q

∑

n′q′

∑

αβ

xqαxq′β

∫

d3r0q

∫

d3r′n′q′

U e†
~pems

e−i~pe(~r0q+~Rq)
(∑

ΛΛ′

Ze+ qα
Λ (~r0q)τ

e+ 0qα n′q′β
ΛΛ′ (Ee)Z

e+ qβ×
Λ′ (~r ′

0q)

−
∑

ΛΛ′

Ze− qα
Λ (~r0q)τ

e− 0qα n′q′β
ΛΛ′ (Ee)Z

e− qβ×
Λ′ (~r ′

0q)
)

U e
~pems

e
i~pe(~r ′

n′q′
+~Rn′+~Rq′ )

Up†
~ppm′

s
e−i~pp(~r0q+~Rq)

( ∑

Λ′′Λ′′′

Zp+ qα
Λ′′ (~r0q)τ

p+0qα n′q′β
Λ′′Λ′′′ (Ep)Z

p+ qβ×
Λ′′′ (~r ′

0q)

−
∑

Λ′′Λ′′′

Zp− qα
Λ′′ (~r0q)τ

p− 0qα n′q′β
Λ′′Λ′′′ (Ep)Z

p− qβ×
Λ′′′ (~r ′

0q)
)

Up
~ppm′

s
e

i~pp(~r ′

n′q′
+~Rn′+~Rq′ )

=
−1

4Ω

∑

q

∑

q′

e−i(~pe+~pp)(~Rq−~Rq′ )
∑

αβ

xqαxq′β

∑

ΛΛ′

∑

Λ′′Λ′′′

M++ α
msΛ m′

sΛ
′′ M̃

++ β
msΛ′ m′

sΛ
′′′

∑

n′

ei(~pe+~pp)~Rn′ τ e+ 0qα n′q′β
ΛΛ′ (Ee) τ p+ 0qα n′q′β

Λ′′Λ′′′ (Ep)

−M+−α
msΛ m′

sΛ
′′ M̃

+−β
msΛ′ m′

sΛ
′′′

∑

n′

ei(~pe+~pp)~Rn′ τ e+ 0qα n′q′β
ΛΛ′ (Ee) τ p− 0qα n′q′β

Λ′′Λ′′′ (Ep)

−M−+ α
msΛ m′

sΛ
′′ M̃

−+ β
msΛ′ m′

sΛ
′′′

∑

n′

ei(~pe+~pp)~Rn′ τ e− 0qα n′q′β
ΛΛ′ (Ee) τ p+ 0qα n′q′β

Λ′′Λ′′′ (Ep)

+M−−α
msΛ m′

sΛ
′′ M̃

−−β
msΛ′ m′

sΛ
′′′

∑

n′

ei(~pe+~pp)~Rn′ τ e− 0qα n′q′β
ΛΛ′ (Ee) τ p− 0qα n′q′β

Λ′′Λ′′′ (Ep)

assume the positron to be in a state with ~kp = ~pp = 0 at bottom of the band
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this implies: l(Λp) = 0 and µ(Λp) = m′
s Λ′′ = Λ′′′ = Λs

see evaluation of lattice sum below

=
−1

4Ω

∑

q

∑

q′

e−i(~pe+~pp)(~Rq−~Rq′ )
∑

αβ

xqαxq′β

∑

ΛΛ′

M++ α
msΛ m′

sΛs
M̃++ β

msΛ′ m′

sΛs

(

De+ α τ e+ qq′CPA(~p − ~Km) D̃e+ β
)

ΛΛ′

W p+ qα q′β

−M+−α
msΛ m′

sΛs
M̃+−β

msΛ′ m′

sΛs

(

De+ α τ e+ qq′CPA(~p − ~Km) D̃e+ β
)

ΛΛ′

W p− qα q′β

−M−+ α
msΛ m′

sΛs
M̃−+ β

msΛ′ m′

sΛs

(

De−α τ e− qq′CPA(~p − ~Km) D̃e−β
)

ΛΛ′

W p+ qα q′β

+M−−α
msΛ m′

sΛs
M̃−−β

msΛ′ m′

sΛs

(

De−α τ e− qq′CPA(~p − ~Km) D̃e−β
)

ΛΛ′

W p− qα q′β

evaluate Gp± for =Ep → 0

this implies: =Gp+ →
∑

Λs
Zp+

Λs
=τ p+

ΛsΛs
Zp+×

Λs

=
1

2iΩ

∑

q

∑

q′

e−i(~pe+~pp)(~Rq−~Rq′ )
∑

αβ

xqαxq′β

(

=W p+ qα q′β
)∑

ΛΛ′

M++ α
msΛ m′

sΛs
M̃++ β

msΛ′ m′

sΛs

(

De+ α τ e+ qq′CPA(~p − ~Km) D̃e+ β
)

ΛΛ′

−M−+ α
msΛ m′

sΛs
M̃−+ β

msΛ′ m′

sΛs

(

De−α τ e− qq′CPA(~p − ~Km) D̃e−β
)

ΛΛ′

replace ... 1
2i

(Ge+ − Ge−) ... by: = ... Ge+ ...

=
1

Ω
=
∑

q

∑

q′

e−i(~pe+~pp)(~Rq−~Rq′ )
∑

αβ

xqαxq′β

(

=W p+ qα q′β
)

∑

ΛΛ′

M++ α
msΛ m′

sΛs
M̃++ β

msΛ′ m′

sΛs

(

De+ α τ e+ qq′CPA(~p − ~Km) D̃e+ β
)

ΛΛ′
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C.3 Lattice sum

Evaluation of the lattice sum occurring in the positron annihilation (see Eq. (4.8)):

∑

n′

ei(~pe+~pp)~Rn′ τ eµ 0qα n′q′β
ΛΛ′ (Ee) τ pν 0qα n′q′β

Λ′′Λ′′′ (Ep)

=
∑

n′

ei(~pe+~pp)~Rn′ (Deµ ατ eµ 0qn′q′CPAD̃eµ β)ΛΛ′ (Dpν ατ pν 0qn′q′CPAD̃pν β)Λ′′Λ′′′

=
∑

ΛaΛb

∑

ΛcΛd

Deµ α
ΛΛa

D̃eµ β
ΛbΛ′ D

pν α
Λ′′Λc

D̃pν β
ΛcΛ′′′

∑

n′

ei(~pe+~pp)~Rn′ τ eµ 0qn′q′CPA
ΛaΛb

τ pν 0qn′q′CPA
ΛcΛd

=
∑

ΛaΛb

∑

ΛcΛd

Deµ α
ΛΛa

D̃eµ β
ΛbΛ′ D

pν α
Λ′′Λc

D̃pν β
ΛcΛ′′′

∑

n′

ei(~pe+~pp)~Rn′ τ eµ 0qn′q′CPA
ΛaΛb

1

ΩBZ

∫

ΩBZ

d3kpτ
pν qq′CPA
ΛcΛd

(~kp) e−i~kp
~Rn′

=
∑

ΛaΛb

∑

ΛcΛd

Deµ α
ΛΛa

D̃eµ β
ΛbΛ′ D

pν α
Λ′′Λc

D̃pν β
ΛcΛ′′′

1

ΩBZ

∫

ΩBZ

d3kp

(∑

n′

ei(~pe+~pp−~kp)~Rn′ τ eµ 0qn′q′CPA
ΛaΛb

)

τ pν qq′CPA
ΛcΛd

(~kp)

=
∑

ΛaΛb

∑

ΛcΛd

Deµ α
ΛΛa

D̃eµ β
ΛbΛ′ D

pν α
Λ′′Λc

D̃pν β
ΛcΛ′′′

1

ΩBZ

∫

ΩBZ

d3kp

(∑

n′

ei(~ke+ ~Km)~Rn′ τ eµ 0qn′q′CPA
ΛaΛb

)

τ pν qq′CPA
ΛcΛd

(~kp)

=
∑

ΛaΛb

∑

ΛcΛd

Deµ α
ΛΛa

D̃eµ β
ΛbΛ′ D

pν α
Λ′′Λc

D̃pν β
ΛcΛ′′′

1

ΩBZ

∫

ΩBZ

d3kp τ eµ qq′CPA
ΛaΛb

(~pe + ~pp − ~kp − ~Km) τ pν qq′CPA
ΛcΛd

(~kp)

assume the positron to be in a state with ~kp = ~pp = 0 at bottom of the band
this implies: l(Λp) = 0 and µ(Λp) = m′

s

τ pν qq′CPA
ΛcΛd

(~kp) = ξpν qq′

Λs
δ(Ep − E0

p)δ(
~kp −~0) and Λc = Λd = Λ′′ = Λ′′′ = Λs

= δΛ′′Λs
δΛ′′′Λs

Dpν α
ΛsΛs

D̃pν β
ΛsΛs

∑

ΛaΛb

Deµ α
ΛΛa

D̃eµ β
ΛbΛ′ τ eµ qq′CPA

ΛaΛb
(~p − ~Km)

1

ΩBZ

ξpν qq′

Λs
δ(Ep − E0

p)

= δΛ′′Λs
δΛ′′′Λs

Dpν α
ΛsΛs

ξpν qq′

Λs
D̃pν β

ΛsΛs

1

ΩBZ

δ(Ep − E0
p)
(

Deµ α τ eµ qq′CPA(~p − ~Km) D̃eµ β
)

ΛΛ′
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= δΛ′′Λs
δΛ′′′Λs

W pν qα q′β
(

Deµ α τ eµ qq′CPA(~p − ~Km) D̃eµ β
)

ΛΛ′

with W pν qα q′β = Dpν α
ΛsΛs

ξpν qq′

Λs
D̃pν β

ΛsΛs

1

ΩBZ

δ(Ep − E0
p)
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Appendix D

Matrix elements (Positron Annihilation)

The matrix elements entering in Eq. (4.10) are worked out in this section:

Mµν α
msΛ m′

sΛ
′′ =

∫

d3r U e†
~pems

e−i~pe~rZeµ qα
Λ (~r)U p†

~ppm′

s
e−i~pp~rZpν qα

Λ′′ (~r)

=

∫

d3r e−i(~pe+~pp)~rU e†
~pems

Zeµ qα
Λ (~r)U p†

~ppm′

s
Zpν qα

Λ′′ (~r)

assume the positron to be in a state with ~kp = ~pp = 0 at bottom of the band
this implies: l(Λp) = 0 and µ(Λp) = m′

s

=

∫

d3r e−i~p~rU e†
~pms

Zeµ qα
Λ (~r)U p†

0m′

s
Zpν qα

Λ′′ (~r)

=

∫

d3r εpe

∑

Λa

i−laCms

Λa
Y µa−ms

l (p̂)

(

jla(pr)χΛa
(r̂)

icpSκa

Ep+c2
jl̄a(pr)χ−Λa

(r̂)

)†

∑

Λe

(
geµ
ΛeΛ

(r)χΛe
(r̂)

if eµ
ΛeΛ

(r)χ−Λe
(r̂)

)

×

(
χm′

s

0

)† ∑

Λp

(
gpν
ΛpΛ′′(r)χΛp

(r̂)

if pν
ΛpΛ′′(r)χ−Λp

(r̂)

)

=

∫

d3r εpe

∑

Λa

i−laCms

Λa
Y µa−ms

l (p̂)

(

jla(pr)χΛa
(r̂)

icpSκa

Ep+c2
jl̄a(pr)χ−Λa

(r̂)

)†

∑

Λe

(
geµ
ΛeΛ

(r)χΛe
(r̂)

if eµ
ΛeΛ

(r)χ−Λe
(r̂)

)(
χm′

s

0

)† ∑

Λp

(
gpν
ΛpΛ′′(r)χΛp

(r̂)

if pν
ΛpΛ′′(r)χ−Λp

(r̂)

)

︸ ︷︷ ︸

gpν
ΛsΛs

(r)Y00
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= εpe
Y00

∑

ΛaΛe

i−laCms

Λa
Y µa−ms

l (p̂)
(∫

r2dr jla(pr) geµ
ΛeΛ

(r) gpν
ΛsΛs

(r)〈χΛa
(r̂)|χΛe

(r̂)〉

+
cpSκa

Ep + c2

∫

r2dr jl̄a(pr) f eµ
ΛeΛ

(r) gpν
ΛsΛs

(r)〈χ−Λa
(r̂)|χ−Λe

(r̂)〉
)

= εpe
Y00

∑

Λa

i−laCms

Λa
Y µa−ms

l (p̂)
(∫

r2dr jla(pr) geµ
ΛaΛ(r) gpν

ΛsΛs
(r)

+
cpSκa

Ep + c2

∫

r2dr jl̄a(pr) f eµ
ΛaΛ(r) gpν

ΛsΛs
(r)
)

M̃µν α
msΛ′ m′

sΛ
′′′ =

∫

d3r Zeµ qα×
Λ′ (~r)U e

~pems
ei~pe~rZpν qα×

Λ′′′ (~r)U p
~ppm′

s
ei~pp~r

Comparison of the positron-annihilation matrix elements with those of Compton scattering:

Mµν α
msΛ m′

sΛ
′′ = εpe

Y00

∑

Λa

i−laCms

Λa
Y µa−ms

l (p̂)
(∫

r2dr jla(pr) geµ
ΛaΛ(r) g

pν

ΛsΛs
(r)

+
cpSκa

Ep + c2

∫

r2dr jl̄a(pr) f eµ
ΛaΛ(r) g

pν

ΛsΛs
(r)
)

MmsΛ′ = εp

∑

Λ

i−lCms

Λ Y µ−ms

l (p̂)
(

〈jl(pr)|gΛΛ′(r)〉 +
cpSκ

Ep + c2
〈jl̄(pr)|fΛΛ′(r)〉

)

with εp = 4π

(
Ep + c2

2Ep + c2

)1/2
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BERUF

• 1993 – 1996: Physiklehrerin in Gymnasien in Cluj-Napoca, Rumänien

• 1995: Definitiver Titel eines Professors für die mittlere Schulausbildung
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