Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München

Synthese und strukturelle Charakterisierung von Trialkylsilylphosphanylzink- und -zinkat-Verbindungen

Gerhard Sapelza

aus Innichen

2005

Erklärung

Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 von Prof. Dr. Matthias Westerhausen betreut.

Ehrenwörtliche Versicherung

Diese Dissertation wurde selbständig ohne unerlaubte Hilfe erarbeitet.

München, 06.09.2005

Juliand Sopples

Gerhard Sapelza

Die Dissertation wurde eingereicht am 08.09.2005

1. Gutachter: Prof. Dr. M. Westerhausen

2. Gutachter Prof. Dr. Th. Klapötke

Mündliche Prüfung am 13.10.2005

Die vorliegende Arbeit wurde unter der Anleitung von Herrn Prof. Dr. Matthias Westerhausen in der Zeit von April 2003 bis September 2005 am Department Chemie der Ludwig-Maximilians-Universität München sowie dem Institut für Anorganische und Analytische Chemie der Friedrich-Schiller-Universität Jena angefertigt.

Danksagung:

Mein besonderer Dank gilt:

Herrn Prof. Dr. Matthias Westerhausen für das Arbeitsklima, das durch seine kollegiale Anleitung ermöglicht wurde und welches sehr zum Gelingen dieser Arbeit beigetragen hat. Insbesondere möchte ich mich für die mir gegebene Forschungsfreiheit, die vielen wertvollen Anregungen und seine tatkräftige und immer diskussionsbereite Betreuung bedanken.

Allen denen ich im Laufe dieser Arbeit im Labor der LMU München und der Friedrich-Schiller-Universität Jena begegnen durfte. Vor allem meinen Laborkollegen/innen Brigitte Stein, Dr. Sabine Weinrich, Dr. Tobias Bollwein, Dr. Alexander Kalisch, Dr. Alexander N. Kneifel, Christian Koch, Rainer Kränzle, Dr. Manfred Oßberger, Dr. Thomas Rotter und dem Arbeitskreis von Prof. Lorenz danke ich für die gute Zusammenarbeit und für die vielen konstruktiven und zielgerechten Gespräche.

Für die durchgeführten Einkristallstrukturanalysen und Auswertung der Diffraktometerdatensätze möchte ich mich bei Herrn Prof. Dr. P. Klüfers, Herrn Dr. P. Mayer, Herrn Dr. Manfred Oßberger und Herrn Dr. Helmar Görls ganz herzlich bedanken. Großer Dank gilt auch Herrn Prof. Dr. A. Pfitzner sowie Herrn Dr. Manfred Zabel an der Universität Regensburg.

Ferner gilt mein Dank den Herren P. Mayer, Priv.-Doz. Dr. K. Karaghiosoff, Dr. B. Krumm, für die Messung zahlreicher NMR-Spektren. Den Mitarbeitern der Analytik-Abteilung in München und Jena, insbesondere Frau Kiesewetter, Frau Ewald und Herrn Dr. Fischer möchte ich für ihre Mithilfe danken. Außerdem danke ich allen namentlich nicht erwähnten Mitarbeitern der Institute für die gute Zusammenarbeit.

Ein herzliches Dankeschön den fleißigen Korrekturlesern: Bertram, Monika, Philipp und Manfred, die sich bemüht haben Zeichen zu setzen und nichts zu übersehen. Bei Monika-Anna für ihr Sein. Meinen Freunden, die ich während der Zeit dieser Arbeit oft vernachlässigt habe. Ich hoffe wir können die Zeit irgendwie nachholen.

Meiner Familie, die mir auch in schwierigen Zeiten beistand, vor allem aber meinen Eltern, die durch ihre Art mir ermöglicht haben meinen eigenen Weg zu gehen und die versuchen mich in jeder Situation zu unterstützen.

Für Monika-Anna

Inhaltsverzeichnis

1. EINLEITUNG	9
2. GANG DER UNTERSUCHUNG	14
2.1 Zinkierung primärer Phosphane	14
2.1.1 Einführung	14
2.1.2 Synthese, Reaktivität und spektroskopische Charakterisierung	18
Dimere Alkylzink-triisopropyl- und tri(<i>tert</i> butyl)silylphosphanide	18
Molekülstruktur von Tetrakis-methylzink-tri(<i>tert</i> butyl)silylphosphanid 5	20
Darstellung von Bis[zinkmethyl-µ-isopropanolatozink-µ-bis(tritertbutylsilylphosphanid)] 6	23
Molekülstruktur von Bis[zinkmethyl-µ-isopropanolatozink-µ-bis(tri <i>tert</i> butylsilylphosphanid)] 6 Darstellung und Charakterisierung von	25
Tetraethyl-hexazink-[tetrakis-tri(tertbutyl)silyl-phosphandiid] 7	26
Molekülstruktur von Tetraethyl-hexazink-[tetrakis-tri(tertbutyl)silyl-phosphandiid] 7	27
2.2 Erdalkalimetallzinkate: Synthese und Struktur	30
2.2.1 Einführung	30
2.2.2 Synthese, Reaktivität und spektroskopische Charakterisierung	33
Calcium-tri(alkyl)silylphosphanylzinkate	33
Molekülstrukturen von Tetrakis(tetrahydrofuran-O)-calcium-[1,3-dimethyl-2,4-bis {tri(tertbutyl)sil	lyl}-
1,3-dizinka-2,4-diphosphetan-2,4-diid] 8, Tetrakis(tetrahydrofuran-O)-calcium-[1,3-diethyl-2,4-	
bis{tri(tertbutyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] 9, Tetrakis(tetrahydrofuran-O)-calci	um-
[1,3-dimethyl-2,4-bis{triisopropylsilyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] 10	36
Strontium-und Barium-Tri(tertbutyl)silyzinkate	42
Molekülstrukturen von Tetrakis(tetrahydrofuran-O)-strontium-[1,3-dimethyl-2,4-bis[tri(tertbutyl)s	ilyl-
1,3-dizinka-2,4-diphosphetan-2,4-diid] 11, Tetrakis(tetrahydrofuran-O)-strontium-[1,3-diethyl-2,4	-
bis{tri(tertbutyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] 12, Tetrakis(tetrahydrofuran-O)-bar	ium-
[1,3-dimethyl-2,4-bis{tri(<i>tert</i> butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] 13	45
Bis(tetrahydrofuran-O)-magnesium-[1,3-dibutyl-2,4-bis{tri(tertbutyl)silyl}-1,3-dizinka-2,4-	
diphosphetan-2,4-diid] 15	52
Molekülstruktur von Bis(tetrahydrofuran-O)-magnesium-[1,3-dibutyl-2,4-bis{tri-tertbutylsilyl}-1,	3-
dizinka-2,4-diphosphetan-2,4-diid] 15	54

Hexakis-	
$(tetrahydrofuran-O)-dibarium-oxa-bis[zinkmethyl-\mu2-(tri(tertbutyl)silyl)phosphandiido-zink] \ 10^{-1} \ $	6 56
$Bis(tetrahydrofuran-O-trimethylsilylamido-N-barium-\mu_2-di(tri(tertbutyl)silyl-phosphandiido-\mu-barium-\mu_2-di(tri(tertbutyl)silyl-phosphandiido-\mu-barium-\mu_2-di(tri(tertbutyl)silyl-phosphandiido-\mu-barium-\mu_2-di(tri(tertbutyl)silyl-phosphandiido-\mu-barium-\mu_2-di(tri(tertbutyl)silyl-phosphandiido-\mu-barium-\mu_2-di(tri(tertbutyl)silyl-phosphandiido-\mu-barium-\mu_2-di(tri(tertbutyl)silyl-phosphandiido-\mu-barium-\mu_2-di(tri(tertbutyl)silyl-phosphandiido-\mu-barium-\mu_2-di(tri(tertbutyl)silyl-phosphandiido-\mu-barium-\mu_2-di(tri(tertbutyl)silyl-phosphandiido-\mu-barium-\mu_2-di(tri(tertbutyl)silyl-phosphandiido-\mu-barium-\mu_2-di(tri(tertbutyl)silyl-phosphandiido-\mu-barium-\mu_2-di(tri(tertbutyl)silyl-phosphandiido-\mu-barium-harium$	zink- µ2-
zinkethanid) 17	59
$Bis[(tetrahydrofuran-O)-barium-\mu_2-bis[ethylzink-tri(tertbutyl)silylphosphandiido]-\mu_2-$	
zinkphosphandiid] 18	64
2.3 Alkalimetallzinkate: Synthese und Struktur	68
2.3.1 Einführung	68
2.3.2 Synthese, Reaktivität und spektroskopische Charakterisierung	68
Neuer Syntheseweg zu den Tri(alkyl)silylphosphaniden der Alkalimetalle. Molekülstruktur vor	1
Bis[bis(tetrahydrofuran-O)-natrium-tri(<i>tert</i> butyl)silylphosphanid] 20	68
Alkalimetall-tri(<i>tert</i> butyl)silylphosphanylzinkate 21 , 22 und 23	71
Molekülstruktur der Alkalimetall-tri(<i>tert</i> butyl)silylphosphanylzinkate 21 und 23	73
Alkalimetall-tri(<i>tert</i> butyl)silylphosphanyloxozinkate 24, 25 und 26	76
Molekülstrukturen der Alkalimetall-tri(<i>tert</i> butyl)silylphosphanyloxozinkate 24, 25 und 26	79
Bis[(tetrahydrofuran-O)natrium-tris(ethylzink)-bis(triisopropylsilylarsandiid)] 27	83
3. EXPERIMENTELLER TEIL	87
3.1 Analytik	87
3.2 Ausgangsverbindungen:	88
Bis[bis(trimethylsilyl)amino]stannylen	88
Erdalkalkalimetall-bis[bis(trimethylsilyl)amide]	88
Triisopropylsilylphosphan	89
Tri(<i>tert</i> butyl)silylphosphan	89
Triisopropylsilyarsan	89
3.3 Darstellung der Zinkphosphanide	90
Bis[methylzink-tri(<i>tert</i> butyl)silylphosphanid] 1	90
Bis[ethylzink-tri(<i>tert</i> butyl)silylpohsphanid] 2	91
Bis[methylzink-triisopropylsilylpohsphanid] 3	91
Bis[ethylzink-triisopropylsilylpohsphanid] 4	92
Tetrakis[methylzink-tri(<i>tertbutyl</i>)silylphosphanid] 5	93
Bis[bis(tri(<i>tert</i> butyl)sillylphopahnyl)-µ-zinkmethyl-µ-isopropylatozinkat] 6	94

Tetraethyl- hexazink-tetrakis[tri(*tert*butyl)silylphosphandiid] 7-----95

3.4 Darstellung der Erdalkalimetallzinkate	96
Tetrakis(tetrahydrofuran-O)-calcium-[1.3-dimethyl-2.4-bis{tri(<i>tert</i> butyl)silyl}-1.3-dizinka-2.4	
diphosphetan-2,4-diid] 8	96
Tetrakis(tetrahydrofuran-O)-calcium-[1,3-diethyl-2,4- bis{tri(<i>tert</i> butyl)silyl}-1,3-dizinka-2,4-	
diphosphetan-2,4-diid] 9	97
Tetrakis(tetrahydrofuran-O)-calcium-[1,3-dimethyl-2,4-bis{triisopropylsilyl}-1,3-dizinka-2,4-	
diphosphetan-2,4-diid] 10	98
Tetrakis(tetrahydrofuran-O)-strontium-[1,3-dimethyl-2,4-bis{tri(tertbutyl)silyl}-1,3-dizinka-2	,4-
diphosphetan-2,4-diid] 11	100
Tetrakis(tetrahydrofuran-O)-strontium-[1,3-diethyl-2,4- bis{tri(tertbutyl)silyl}-1,3-dizinka-2,4	I -
diphosphetan-2,4-diid] 12	101
Tetrakis(tetrahydrofuran-O)-barium-[1,3-dimethyl-2,4-bis{tri(tertbutyl)silyl}-1,3-dizinka-2,4-	
diphosphetan-2,4-diid] 13	102
Tetrakis(tetrahydrofuran-O)-barium-[1,3-diethyl-2,4-bis{tri(tertbutyl)silyl}-1,3-dizinka-2,4-	
diphosphetan-2,4-diid] 14	103
Bis(tetrahydrofuran-O)-magnesium-[1,3-dibuthyl-2,4-bis{tri(tertbutyl)silyl}-1,3-dizinka-2,4-	
diphosphetan-2,4-diid] 15	104
Hexakis-	
$(tetrahydrofuran-O) dibarium-oxo-bis [zinkmethyl-\mu 2-tri(tertbutyl) silylphosphandiidozink] \ 16.5\% (tetrahydrofuran-O) \ 20\% (tetrahydrofuran-O) \ 20\% (tetrahydrofuran-O) \ 20\% (tetrahydrofuran-O) \ 20\% $	105
$Bis[(tetrahydrofuran-O)-trimethylsilylamido-N-barium-\mu_2-di(tri\{tertbutyl)silyl\}-phosphandiidentetrahydrofuran-O)-trimethylsilylamido-N-barium-\mu_2-di(tri\{tertbutyl)silyl\}-phosphandiidentetrahydrofuran-O)-trimethylsilylamido-N-barium-\mu_2-di(tri\{tertbutyl)silyl\}-phosphandiidentetrahydrofuran-O)-trimethylsilylamido-N-barium-\mu_2-di(tri\{tertbutyl)silyl\}-phosphandiidentetrahydrofuran-O)-trimethylsilylamido-N-barium-\mu_2-di(tri\{tertbutyl)silyl\}-phosphandiidentetrahydrofuran-O)-trimethylsilylamido-N-barium-\mu_2-di(tri\{tertbutyl)silyl\}-phosphandiidentetrahydrofuran-O)-trimethylsilylamido-N-barium-\mu_2-di(tri\{tertbutyl)silyl\}-phosphandiidentetrahydrofuran-O)-trimethylsilylamido-N-barium-\mu_2-di(tri\{tertbutyl)silyl\}-phosphandiidentetrahydrofuran-O)-trimethylsilylamido-N-barium-\mu_2-di(tri\{tertbutyl)silyl\}-phosphandiidentetrahydrofuran-O)-trimethylsilylamido-N-barium-\mu_2-di(tri\{tertbutyl)silyl\}-phosphandiidentetrahydrofuran-O)-trimethylsilylamido-N-barium-\mu_2-di(tri\{tertbutyl)silyl\}-phosphandiidentetrahydrofuran-O)-trimethylsilylamido-N-barium-phosphandiidentetrahydrofuran-O)-trimethylsilylamido-N-barium-phosphandiidentetrahydrofuran-O)-trimethylsilylamido-N-barium-phosphandiidentetrahydrofuran-O)-trimethylsilylamido-N-barium-phosphandiidentetrahydrofuran-O)-trimethylsilylamido-N-barium-phosphandiidentetrahydrofuran-O)-trimethylsilylamido-N-barium-phosphandiidentetrahydrofuran-O)-trimethylsilylamido-N-barium-phosphandiidentetrahydrofuran-O)-trimethylsilylamido-N-barium-phosphandiidentetrahydrofuran-O)-trimethylsilylamido-N-barium-phosphandiidentetrahydrofuran-O)-trimethylsilylamido-N-barium-phosphandiidentetrahydrofuran-O)-trimethylsilylamido-N-barium-phosphandiidentetrahydrofuran-O)-trimethylsilylamido-N-barium-phosphandiidentetrahydrofuran-O)-trimethylamido-N-barium-phosphandiidentetrahydrofuran-O)-trimethylamido-N-barium-Phosphandiidentetrahydrofuran-O)-trimethylamido-N-barium-Phosphandiidentetrahydrofuran-O)-trimethylamido-N-barium-Phosphandiidentetrahydrofuran-O)-trimethylamido-N-barium-Phosphandiidentetrahydrofuran-O)-t$	ło)-μ-
zink-µ2-zinkethanid] 17	106
Bis-[(tetrahydrofuran-O)-barium- μ_2 -bis(ethylzink-tri(<i>tert</i> butyl)silyphosphandiido)- μ_2 -	
zinkphosphandiid] 18	107
Darstellung der Alkalimetall-tri(tertbutyl)silylphosphanide	108
3.5 Darstellung der Alkalimetallzinkate	109
Natrium-[1,3-dimethyl-2,4-bis[tri(tertbutyl)silyl-1,3-dizinka-2,4-diphosphetan-2,4-diid] 21	109
Kalium-[1,3-dimethyl-2,4-bis[tri(tertbutyl)silyl-1,3-dizinka-2,4-diphosphetan-2,4-diid] 22	110
$[{(THF)_4K_2(\mu-P(H)SitBu_3)}(\mu_4-PSitBu_3)ZnMe]_2$ 23	111
$[(THF)(\eta^{6}-toluene)K_{2}]_{2}[(MeZn)_{4}Zn_{2}(\mu_{3}-PSitBu_{3})_{4}(\mu_{6}-O)_{2}]$ 24	112
$[Zn(PSitBu_3)_2K_4(thf)_6]_2 [(MeZn)_4Zn_2(\mu_3-PSitBu_3)_4(\mu_6-O)_2]$ 25	113
$[(THF)_3Cs_2]_2 [(MeZn)_4Zn_2(\mu_3-PSitBu_3)_4(\mu_6-O)_2]$ 26	114
Bis[(tetrahydrofuran-O)natrium-tris(ethylzink)-bis(triisopropylsilylarsandiid)] 27	115
3.6 Kristallographischer Anhang	116
4. ZUSAMMENFASSUNG	145
5. ANHANG	153

Inhaltsverzeichnis	

6. LITERATURVERZEICHNIS1	5	6
--------------------------	---	---

1. Einleitung

Heterobimetallische Verbindungen mit Zink sind wegen ihrer Eigenschaften als Polymerisationsinitiatoren, oder wegen ihrer gesteigerten Reaktivität gegenüber den homoleptischen Verbindungen ZnR2 und MR von großem Interesse. Ein Beispiel hierfür wurde für die gut bekannten Bis(trimethylsilyl)amide gefunden.^[1] Toluol wird weder durch Zn(N(SiMe₃)₂)₂ noch durch K(N(SiMe₃)₂)₂ deprotoniert. Beide Amide zusammen bewirken eine synergetische Steigerung der Basizität. Toluol wird so deprotoniert und ergibt das Benzylanion. Mit anderen Kationen wird ein Lösungsmittel abhängiges Gleichgewicht zwischen den homoleptischen Verbindungen und den Metalltris{bis(trimethylsilyl)amino}zinkaten beobachtet. Ein Grund für die stark gestiegene Reaktivität ist die lange Zn-N-Bindung der Zinkate wie in [(12-Krone-4)₂Na]⁺ $[Zn{N(SiMe_3)_2}_3]^{-[2]}$ (Zn-N 197 pm) und $[K_2(Cp)]^+$ $[Zn{N(SiMe_3)_2}_3]^-$ (Zn-N 197 pm)^[3] verglichen mit Zn[N(SiMe₃)₂]₂ (Zn-N 183 pm)^[4]. Durch die gesteigerte Reaktivität ist es auch möglich, Peroxo-Cluster molekularen Oxound der Formel $[M_2Zn_2\{N(SiMe_3)_2\}_4(O_2)_x(O)_{1-x}]$ (M/x = Na/0: Zn-N 198.5 pm; M/x = K/1: 196.3 pm) mit einem M₂Zn₂N₄Ring zu isolieren, die man auch als "inverse Kronenether" betrachten kann.^[5] Andererseits kommt es durch die gesteigerte Reaktivität auch zu Reaktionen mit den Lösungsmitteln. Purdy und George beobachteten, dass Natrium- und Kaliumtris(trimethylsilylmethyl)zinkat Benzol deprotonieren und heteroleptisches $M[Zn(Ph)(CH_2SiMe_3)_2]$ (M = Na und K) entsteht.^[6] Die Reaktion von KPPh₂ und ZnEt₂ in Benzol führt zu Ligandenaustausch- und Additionsreaktionen, und schließlich zur Bildung von KZnEt₃ und Zn(PPh₂)₂, wie in NMR-spektroskopischen Experimenten gezeigt werden konnte.^[7]

Den Zink-Sauerstoff-Verbindungen gilt das Interesse vieler Forschungsgruppen, da ihr Anwendungsbereich sehr groß ist. Sauerstoff zentrierte Zink-Käfige dienen als Ausgangsmaterialien für metallorganische Gerüste^[8] oder als Speichermaterial für Wasserstoff.^[9] Zn-O-Käfige, die als Katalysatoren für CO₂-Aktivierungen dienen sollen, werden bereits erforscht.^[10] Das strukturelle Merkmal all dieser Verbindungen ist ein mit Sauerstoff zentrierter Zn₄-Tetraeder, welcher erstmals vor 35 Jahren von *Corbett* und *Hoskins* beschrieben wurde.^[11] Später gab es viele Publikationen zu dieser strukturellen Einheit, die mit der generellen Formel $Zn_4(\mu_4-O)L_6$ beschrieben werden kann.^[12] Diese Einheiten können weiterhin über Ecken oder Kanten verknüpft sein und so Käfige der allgemeinen Formel $Zn_6(\mu_4-O)_2$ ergeben.^{[13][14]} In Molekülen mit einem $Zn_4(\mu_4-O)$ -Käfig werden die Kanten durch Liganden überbrückt. Dadurch bilden die sechs Liganden L und die vier Zn in $Zn_4(\mu_4-O)L_6$ ein Adamantangerüst Ein Defizit von Liganden führt zu einer Anhäufung dieses strukturellen Elements. Die Liganden L in $Zn_4(\mu_4-O)L_6$ sind oft mehrzähnige Anionen wie zum Beispiel Carboxylate..

Die Synthese solcher Sauerstoff zentrierter Tetraeder erfolgt durch Reaktion von organischen Zink-Verbindungen mit Wasser oder NaOH. Eine unterschiedliche Reaktivität wurde für Zinkate festgestellt. In heterobimetallischen Zinkaten wie $[M_2Zn_2\{N(SiMe_3)_2\}_4(O_2)_x(O)_{1-x}]$ (M/x = Na/0, K/1) mit M₂Zn₂N₄–Ringen wird der Sauerstoff planar durch Metallatome umgeben. Eine koordinative Abschirmung solcher strukturellen Einheiten durch zwei Metallatome wurde in Li₄Zn₂(µ₆-O)L₆ mit L als N,N'-Diphenylbenzamidinat beobachtet.^[15] Dialkylzink, in Abwesenheit von einem zweiten Metall, baut Sauerstoff aus getrockneter Luft unter Bildung von Alkoxiden [R₆Zn₇(OMe)₈] oder Alkylperoxiden [R₄Et₂Zn₄(OOEt)₂] ein.^[16]

Zinkorganylen kommt auch eine historische Bedeutung zu. *Frankland* stellte im Jahre 1849 die ersten zinkorganischen Verbindungen her, indem er Ethyliodid mit elementarem Zink äquimolar umsetzte.^{[17][18]} Ursprünglich versuchte *Frankland* Ethylradikale herzustellen, erhielt aber eine der ersten metallorganischen Verbindungen mit Metall-Kohlenstoff-Bindung.^[19]

3 EtI + 3 Zn \longrightarrow $\text{ZnEt}_2 + \text{ZnI}_2 + \text{EtZnI}$ *Gleichung 1.*1: Darstellung von ZnEt₂.

*Gleichung 1.*1 zeigt die Darstellung von Diethylzink sowie einem Feststoff, bestehend aus Ethylzinkiodid und Zink(II)iodid.

Dialkylzink wurde vor der Entdeckung der Grignard-Verbindungen über ein halbes Jahrhundert lang zu synthetischen Zwecken als Alkylierungsreagenz verwendet, wie zum Beispiel von *Freund*^[20], der zur Darstellung von Estern Dialkylzinkverbindungen mit Carbonsäuren umsetzte, oder 1863 die Darstellung von Organochlorsilanen von *Friedel* und *Krafts*.^[18]

Erwähnenswert sind auch die Synthese sekundärer Alkohole von *Wagner* und *Saytzeff* durch Alkylierung von Estern mit Dialkylzinkverbindungen, sowie auch die Arbeiten von *Pawlow* zur Umsetzung von Aldehyden und Ketonen mit Dialklylzink zu Alkoholen.^{[21][22]} Auch heutzutage werden noch bei einer Vielzahl organischer Synthesen Zinkorganyle verwendet. Dazu zählen die *Reformatsky*-Reaktion, bei der α -Bromester in β -Hydroxyester übergeführt werden können^[23] und die Ringerweiterungsreaktion nach Hashimoto, bei der Arene zu substituierten Cycloheptatrienen umgewandelt werden können.^[3] Auch zeichnen sich Zinkorganyle aufgrund ihrer eingeschränkten Reaktivität durch hohe Selektivität bei stereoselektiven Reaktionen aus.^[24]

In einer Vielzahl von biologischen Prozessen spielt das Element Zink eine wichtige Rolle.^[25] Als Beispiel für ein Zinkatom im aktiven Zentrum seien hier die Kohlensäure-Anhydrase, die Carboxypeptidase oder die Alkoholdehydrogenase genannt, die den Abbau von Peptiden bzw. von Alkoholen im Körper katalysieren. Das Enzym Superoxid-Dismutase wandelt gefährliches Superoxid in Peroxid und Sauerstoff um. Auch sind binukleare Komplexe mit zwei aktiven Metallzentren keine Seltenheit in katalytischen Prozessen. Als Beispiel sei hier die Alkaliphosphatase erwähnt, die Zink und Magnesium im katalytischen Zentrum enthält.^{[26][27]}

Verbindungen der Erdalkalimetalle wie zΒ die Synthese von Alkylmagnesiumhalogeniden aus Magnesium und Halogenalkanen vor über 100 Jahren führte zu einer rasanten Entwicklung der metallorganischen Chemie.^[28] Diese Grignard-Verbindungen bewähren sich seitdem als leicht zugängliche Metallierungs- und Metathesereagentien in der Organischen und Anorganischen Chemie. Mit der Synthese des Calcocens im Jahre 1956 durch Ziegler und Mitarbeiter wurde das Interesse vieler Forschungsgruppen geweckt, auf dem Gebiet der schweren Erdalkalimetalle zu arbeiten.^[29] Obwohl so seit einigen Jahren großes Interesse an den entsprechenden Verbindungen der schweren Erdalkalimetalle besteht, konnten richtungsweisende Ergebnisse nur für das leichtere Homologe, dem Beryllium, erzielt werden.^{[30][31]} Die eingeschränkte Anwendung der Chemie dieses Elementes ist auf die Giftigkeit berylliumhaltiger Stäube zurückzuführen.

Für die schweren Erdalkalimetalle bereitet die Direktsynthese große Schwierigkeiten, weil die Metalle Calcium, Strontium und Barium sehr reaktionsträge sind. Ihre Reaktivität steigt jedoch innerhalb der Gruppe aufgrund des elektropositiveren Charakters und der größeren Atom- und Ionenradien vom Magnesium zum Barium hin an.^[16] Daraus resultiert auch einen höhere Oxidations- und Hydrolyseempfindlichkeit. Bestes Beispiel hierfür ist die Reaktion mit Wasser. Während Magnesium nur langsam mit Wasser hydrolisiert, reagiert Bariummetall äußerst heftig unter Bildung des entsprechenden Hydroxids.

Aus diesen Gründen entwickelten sind in den letzten Jahren zwei Synthesestrategien:

- (i) die Aktivierung des Metalls
- (ii) die Erniedrigung der Reaktivität der metallorganischen Reagentien durch sterisch anspruchsvolle Substituenten bzw. Abschirmung der Metalle mit Hilfe mehrzähniger Lewis-Basen.

Der erste Teil dieser Arbeit befasst sich mit der Synthese und Charakterisierung von neuartigen Zinkphosphanid-Komplexen. Die leichteren Homologen der Phosphanide, die Amide, werden bereits schon häufig als Katalysatoren für verschiedene Polymerisationsreaktionen verwendet, unter anderem auch zur Darstellung bioabbaubarer Polymere.^{[32][33]} Des weiteren sollten die Zinkphosphanide durch Transmetallierungs-oder Metallierungsreaktionen mit den schweren Alkali- bzw. Erdalkalimetallen zu den entsprechenden binuklearen Metall-zinkat-komplexen umgesetzt werden. Das Spektrum dieser Verbindungsklasse sollte erweitert und neuartige Synthesemethoden entwickelt werden. Mögliche resultierende Alkalimetall- bzw. Erdalkalimetallphosphanylzinkate sollten auf ihre physikalischen, strukturellen und chemischen Eigenschaften hin untersucht werden.

Um eine Oligomerisierung der reaktiven Verbindungen zu vermeiden und trotzdem eine gezielte Synthese zu gewährleisten, werden die sperrigen Tri(*tert*butyl)silyl- bzw. Tri(isopropyl)silylsubstituenten in dieser Arbeit verwendet.

Sterisch anspruchsvolle Substituenten erlangen in der metallorganischen Chemie zusehends an Bedeutung und stabilisieren ungewöhnliche Geometrien und kleine Koordinationszahlen an schweren Haupt- und Nebengruppenelementen.^{[34][35]}

anderem Zu den anspruchsvollen sterisch Gruppen zählen unter der Tris(trimethylsilyl)methyl-, Tris(trimethylsilyl)silyl-, und der Tri(tertbutyl)silylsubstituent. Die Einführung von sperrigen Silylresten hat mehrere Vorteile. Zum einen wird die Löslichkeit in gängigen organischen Lösungsmitteln erhöht und zum anderen erhält man einen weiteren NMR-Kern für analytische Zwecke. Der

Tri(*tert*butyl)silylrest verhält sich in Verbindungen relativ inert.^[36] Im Vergleich dazu sind die sperrigen Reste mit Trimethylsilylgruppen wegen der zu intramolekularen Wanderung neigenden Trimethylsilyl-Substituenten reaktionsfreudiger.

2. Gang der Untersuchung

2.1 Zinkierung primärer Phosphane

2.1.1 Einführung

Frankland erwähnte bereits 1856^[37] und 1876^[38] Zinkierungen primärer Amine. Fast hundert Jahre später begann die systematische Untersuchung der Zinkamide und viele Verbindungen des Typs R'-Zn-NR₂ oder Zn(NR₂)₂ wurden dargestellt.^[39] Zwei unterschiedliche Reaktionswege sind für die Synthese dieser Verbindungen bisher bekannt, nämlich einerseits die Metallierung (Zinkierung) von Aminen mit Alkylzinkverbindungen, andererseits die Methathesereaktion von Alkalimetallamiden mit wasserfreien Zinkhalogeniden. Die auf diesen Wegen dargestellten homoleptischen wurden strukturell charakterisiert.^[40] Zinkbisamide sind wohlbekannt und Untersuchungen hinsichtlich der Zinkierung primärer Amine wurden weitaus weniger nachgegangen und so sind in der Literatur nur wenige Beispiele und strukturelle Charakterisierungen von Alkylzinkamiden beschrieben worden.

Vor kurzem erhielten *Westerhausen* und *Mitarbeiter* bei der Metallierung von Triisopropylsilylamin mit Dimethylzink und Diethylzink in Toluol dimeres Methyl- (**A**) und Ethylzink-triisopropylsilylamid (**B**) (*Gleichung 2.1.*1).

*Gleichung 2.1.*1: Metallierung von Triisopropylsilylamin mit Dialkylzinkverbindungen ZnR₂ zu Methyl- (**A**) und Ethylzink-triisopropylsilylamid (**B**).

Eine Weiterreaktion, die intramolekulare Eliminierung von Methan und somit die Bildung eines Zinkimids, konnte selbst in siedendem Toluol nicht beobachtet werden. Auch die Zugabe eines weiteren Äquivalents Dialkylzink zu Verbindung A oder B in siedendem Toluol ergab nicht die gewünschte Bildung einer Bis(alkylzink)imid-Verbindung.^[41]

Der Versuch, Tri(*tert*butyl)silylamin einfach oder zweifach mit Dimethylzink zu metallieren, schlug fehl.^{[42][43]} Da kein großer elektronischer Unterschied zu Triisopropylsilylamin zu erwarten ist, muss es sich hier um sterische Effekte handeln. Die Aminfunktion des Supersilylamins wird weitgehend durch die drei *tert*Butylgruppen abgeschirmt.

Bei den Phosphaniden des Zinks handelt es sich um eine seit vielen Jahren untersuchte Verbindungsklasse. *Issleib* und *Fröhlich*^[44] synthetisierten 1962 das erste Zinkbisphosphanid, indem sie Diethylzink und Diphenylphosphan im Verhältnis 1:2 umsetzten (*Gleichung 2.1.2*).

$$Et_2Zn + 2 Ph_2PH \rightarrow Zn(PPh_2)_2 + 2 EtH$$

Gleichung 2.1.2

Bereits drei Jahre später gelang *Noltes* ausgehend von Diorganylzink und Diorganylphosphan im stöchiometrischen Verhältnis auf eine ähnliche Weise die Darstellung der ersten heteroleptischen Alkyl- und Arylzinkphosphanide.^[45] (*Gleichung* 2.1.3)

$R_2Zn + R_2'PH \rightarrow RZnPR'_2 + RH$

Gleichung 2.1.3

Cowley und *Jones* gelang 1987 mit $[Zn_2P(t-Bu)_2OH(\mu-OH)]_2$ die Bestimmung eines Zinkphosphanids.^[46] Sie synthetisierten Ende der achtziger Jahre entsprechend *Gleichung 2.1.4* auch trimeres Methyl-di(*tert*butyl)phosphanidozink.

$$12 \text{ Me}_2\text{Zn} + 6 \text{ Ga}(PtBu_2)_3 \rightarrow 4 \text{ (MeZnPtBu_2)}_3 + 3 \text{ (Me}_2\text{GaPtBu_2)}_2$$

$$Gleichung 2.1.4$$

Buhro und Mitarbeiter erhielten 1990^[47] durch Umsetzung von sekundären Phosphanen und Zinkamiden (*Gleichung 2.1.5*) die ersten homoleptischen Zink-Phosphanido-Komplexe.

$$2 \text{ HP}(\text{SiMe}_3)_2 + \text{Zn}[\text{N}(\text{SiMe}_3)_2]_2 \rightarrow 1/2 \{\text{Zn}[\text{P}(\text{SiMe}_3)_2]_2\}_2 + 2 \text{ HN}(\text{SiMe}_3)_2$$

$$Gleichung 2.1.5$$

Wieder wurde der Weg der Darstellung über das homoleptische Zinkbisamid unter Einsatz eines sekundären Phosphans verwendet.

Dagegen konnten heteroleptische Diorganylzink-Verbindungen von *Westerhausen* und *Mitarbeitern* durch Umsetzung von Alkylzinkverbindungen mit einem Äquivalent von Bis(trimethylsilyl)phosphan synthetisiert werden.^[48]

In der Literatur war über die Zinkierung primärer Phosphane des Typs H_2PSiR_3 (R = Alkyl) mit Diorganylzinkverbindungen und kleinen Alkylresten noch nichts beschrieben worden. Ein Ziel dieser Arbeit war es, einen möglichst einfachen Syntheseweg für lösliche Phosphanide zu erkunden. Phosphanid-Liganden sind äußerst basisch. Sie neigen dazu, Metallzentren zu verbrücken. Aus diesem Grund werden raumfüllende Reste benötigt, um kleine Oligomerisierungsgrade zu stabilisieren. Dieses Konzept ist besonders im Bereich der primären Phosphane wichtig. Westerhausen und Mitarbeiter versuchten durch eine sterische Absättigung der Zinkzentren eine Stabilisierung löslicher Phosphandiide zu erreichen. Durch die Umsetzung von Bis(methylzink)-1,2-dipyridyl-1,2-bis(tertbutyldimethylsilylamido)ethan mit Triisopropylsilylphosphan bildete sich durch zweimalige Deprotonierung und unter Abspaltung von Methan der dreikernige [1,2-Dipyridyl-1,2-bis(tert-butyldimethylsilylamido)ethan]trizink-Komplex triisopropylsilyl-phosphandiid.^[49] Durch möglichst große, sterisch anspruchsvolle Gruppierungen der primären Phosphane sollte in dieser Arbeit die Absättigung der Zinkatome durch intramolekulare Koordination erreicht werden.

Trialkylsilylphosphane können grundsätzlich über mehrere Wege synthetisiert werden. Bis(trimethylsilyl)phosphan wird durch Protolyse des entsprechenden Tris(trimethylsilyl)phosphans nach *Gleichung 2.1.6* gewonnen.^[50]

$$2 P(SiMe_3)_3 + HOR \longrightarrow 2 HP(SiMe_3)_2 + O(SiMe_3)_2$$

R = H, Me

Durch die Umsetzung von (Dimethoxyethan- O,O°)lithiumphosphanid mit Trialkylsilylchloriden können ebenfalls tri(alkyl)silylsubstituierte Phosphane erhalten werden. Durch Destillation können diese voneinander getrennt werden (*Gleichung* 2.1.7).^{[51][52]}

$$R_{3}SiCl + (DME)LiPH_{2} \longrightarrow PH_{3} + R_{3}SiPH_{2} + (R_{3}Si)_{2}PH$$
$$SiR_{3} = Si^{i}Pr_{3}, SiMe_{2}^{t}Bu$$
$$Gleichung 2.1.7$$

Im Gegensatz dazu setzt man bei der Synthese von Tri(*tert*butyl)silylphosphan gemäß *Gleichung 2.1.8* den Tri(tert-butyl)silyltrifluormethylsulfonsäureester ein, da sich dieser als ein wirksameres Silylierungsmittel als das analoge Chlorid oder Bromid erwiesen hat.^[53]

$$^{t}Bu_{3}SiH \xrightarrow{+ CF_{3}SO_{3}H} ^{t}Bu_{3}SiOSO_{2}CF_{3} \xrightarrow{+ (DME)LiPH_{2}} ^{t}Bu_{3}SiPH_{2}$$

Gleichung 2.1.8

Das für die Synthese der Phosphane benötigte (Dimethoxyethan-O, O)lithiumphosphanid wird durch Metallierung von PH₃ mit Butyllithium in DME bei -78°C nach *Gleichung* 2.1.9 erhalten.^{[54][55][56]}

$$PH_3 + BuLi \longrightarrow (DME)LiPH_2 + BuH$$

Gleichung 2.1.9

Das hydrolyseempfindliche (Dimethoxyethan-*O*,*O*`)lithiumphosphanid fällt als farbloser Feststoff aus, der nach dem Suspendieren in THF bei -5°C weiter umgesetzt wird.^[57]

2.1.2 Synthese, Reaktivität und spektroskopische Charakterisierung

Dimere Alkylzink-triisopropyl- und tri(tertbutyl)silylphosphanide

Durch Reaktion von Dimethyl- bzw. Diethylzink (beide sind als mild metallierende Reagenzien bekannt) und Tri(*tertb*utyl)silylphosphan (*Gleichung 2.1.10*) in Toluol bei 0° C gelingt die Synthese von Bis[methylzink-tri(*tert*butyl)silylphosphanid] **1** und die entsprechende Ethylverbindung **2**, welche NMR-spektroskopisch nachgewiesen werden können.^[58] Das Signal des AA'XX'-Systems im ³¹P{¹H}-NMR-Spektrum erscheint für beide Verbindungen bei einer Verschiebung um δ = -232. Die ausgewerteten Daten des Spektrums sind in Kapitel 3.3 dargestellt. Zudem gelingt durch den Erstatz der Tri(*tert*butyl)silylgruppe mit der wesentlich weniger sperrigen Triisopropylsilygruppe am Phosphor die Zinkierung des Phosphans und führt zu den entsprechenden Phosphaniden **3** und **4**.

*Gleichung 2.1.*10: Metallierung von Triisopropyl- und Tri(*tert*butyl)silylphosphan mit Dialkylzinkverbindungen ZnR_2 zu den Methyl- und Ethylzink-Verbindungen **1-4**.

Ausgewählte NMR-Daten der Verbindungen 1-4 sind in Tabelle 2.1.1 wiedergegeben.

Verbindung	1	2	3	4
¹ H				
$\delta [^{t}Bu]/[^{i}Pr]$	1.12	1.15	1.01	1.06
¹³ C{ ¹ H}				
$\delta [^{t}Bu/^{i}Pr]$	30.92	31.84	18.84	18.75
δ [C _q /CH]]	23.04	24.09	12.92	12.56
³¹ P{ ¹ H}				
δ [PSi ^t Bu ₃]	-232.44	-231.51		
δ [PSi ⁱ Pr ₃]			-245.14	-244.56

*Tabelle 2.1.*1 Ausgewählte NMR-Parameter der Verbindungen **1-4** gemessen in C₇D₈ bei -80°C. (Chemische Verschiebungen in [ppm])

Im ${}^{31}P{}^{1}H$ -NMR-Spektrum sieht man eine deutliche Verschiebung der Tri(*tert*butyl)silyphosphanide **1** und **2** um 14 ppm ins tiefere Feld gegenüber den Triisopropylsilylverbindungen **3** und **4**. In den NMR-Spektren der Verbindungen **1-4** kann kein *cis/trans*-Isomerengemisch beobachtet werden. Die IR-Spektren zeigen für die PH-Streckschwingungen keine signifikanten Unterschiede, alle werden in einem Bereich von ca. 2300 cm⁻¹ beobachtet.

Die dimeren Zinkphosphanide 1-4 können alle NMR-spektroskopisch nachgewiesen werden. Kristalle erhält man aber lediglich von Bis[methylzinktri(*tert*butyl)silylphosphanid]. Dieses kann als tetrameres Methylzinktri(tertbutyl)silylphosphanid 5 kristallisiert werden.

Molekülstruktur von Tetrakis[methylzink-tri(tertbutyl)silylphosphanid] 5

Verbindung **5** kristallisiert aus Toluol in der tetragonalen Raumgruppe I $\overline{42m}$. Molekülstruktur und Nummerierungsschema von Verbindung **5** sind in der *Abbildung* 2.1.1 dargestellt, wobei die durch Symmetrie generierten Atome durch die nachgestellten Apostrophe gekennzeichnet sind.

Abbildung 2.1.1 Ortep-Plot, Molekülund Nummerierungsschema von Tetrakistritert butylsilyphosphanidozink methanid 5. Die Ellipsoide repräsentieren eine Aufenthaltswahrschienlichkeit von 50%. Die Nummerierung ist sinngemäß zu ergänzen. Der Übersichtlichkeit wegen wurde auf die Wiedergabe aller Wasserstoffatome und der Toluol-Moleküle verzichtet. Die Kohlenstoff-Atome wurden der Übersichtlichkeit wegen nicht als Ellipsoide dargestellt. Symmetrieäquivalente Atome sind mit Apostrophen gekennzeichnet.

Das zentrale Strukturmotiv ist ein Zn_4P_4 Heterocubanfragment. Die Ecken des Würfels bestehen aus sich abwechselnden vierfach koordinierten Phosphor- und Zinkatomen. Jedes Phosphoratom wird von drei Zinkatomen, und jedes Zinkatom von drei Phosporatomen umgeben. Die vierte Koordinationsstelle nimmt das Silicium für den Phosphor bzw. die Methylgruppe für das Zink ein. Zwischen diesen tetrameren Molekülen sind fehlgeordnete Toluol Moleküle eingelagert, wobei sich die Formel $[MeZn(\mu_3-P(H)SitBu_3)]_4 \cdot 2Toluol für den kristallinen Zustand ergibt. Den Aufbau der$ Elementarzelle zeigt*Abb. 2.1.2*. Ausgewählte Bindungslängen sind in*Tabelle 2.1.2* aufgelistet.

Grosse Substituenten erlauben die Isolation von monomeren Molekülen wie in Zn[P(SiPh₃)₂]₂, dimere und trimere cyclische Strukturen sind sehr häufig bei den Zinkphosphaniden. ^{[59][44][45]} Verbindung **5** ist das erste Beispiel für ein tetrameres Zink-Phosphanid.

Abb.2.1.2: Aufbau der Elementarzelle von Tetrakis-tri(*tert*butyl)silyl-methylzink-phosphanid **5**. Jeweils zwei fehlgeordnete Toluol-Moleküle liegen direkt zwischen den Zn-P Würfeln.Gold: Zn; Grün: Si; Blau: P.

Die Winkel in den einzelnen Ebenen betragen alle knapp 90°. Der Winkel am Phosphor zum Silicium, beträgt 124° ausgehend vom Zn bzw. 124.5° ausgehend vom Zn'. Die P-Zn-C Winkel zur endständigen Methylgruppe des Zinks betragen 126.1°. Die Abstände zwischen den P-Zn Atomen betragen 248.62(8) pm.

Der durchschnittliche Bindungsabstand in **5** zwischen dem fünffach koordinierten Phosphor-Atom und den Zink-Atomen beträgt 248.3(1) pm und ist somit um einiges länger als für endocyclische Z-P Bindungen wie im dimeren Bis[bis(trimethylsilylphosphanyl)]zink mit einer P-Zn Bindungslänge von 242 pm.^{[60][61]} Die Koordinationszahl des Phosphoratoms liegt in dieser Verbindung ((R₂P-Zn(μ -PR₂)Zn-PR₂) (R = SiMe₃)) jedoch nur bei vier.

Darstellung von bis(tri(*tert*butyl)silylphosphanid)] 6

Bis[zinkmethyl-µ-isopropanolatozink-µ-

Da Zink elektropositiver als Silicium ist und damit anfälliger für einen nucleophilen Angriff, wird die Reaktivität von Bis[methylzink-tri(*tert*butyl)silylphosphanid] **1** auf einen nucleophilen Angriff durch Isopropanol untersucht. Verbindungen dieses Typs sind nicht neu, denn bereits vor ca. 30 Jahren erschienen erste Arbeiten, die sich gezielt mit Verbindungen des Typs [R-Zn-OR']_n beschäftigten^[62]. Diese Verbindungen wurden ebenfalls durch Metallierung der entsprechenden Alkohole mit Dialkylzink in Benzol und THF laut *Gleichung 2.1.*11 synthetisiert.

 $ZnR_2 + R'OH \rightarrow 1/n [R-Zn-OR']_n$

Gleichung: 2.1.11

Gückel synthetisierte ein tetrameres Trimethylsilylmethylzinktrimethylsilylmethanolat durch partielle Oxidation des Dialkylzinks mit Sauerstoff (*Gleichung 2.1.*12). Hierbei ließ er Sauerstoff durch eine Lösung von Bis(trimethylsilylmethyl)zink in Toluol strömen.^[63]

 $4 \operatorname{Zn}(\operatorname{CH}_2\operatorname{SiMe}_3)_2 + O_2 \rightarrow [\operatorname{Me}_3\operatorname{SiCH}_2\operatorname{ZnOCH}_2\operatorname{SiMe}_3]_4$

Gleichung: 2.1.12

Für die Alkoholyse wird zu einer Lösung von Bis[zinkmethyltri(tertbutyl)silylphosphanid] 1 in THF frisch getrocknetes Isopropanol zugegeben (Gleichung 2.1.13). Das stöchiometrische Verhältnis von 2:1 führt dabei unter Abspaltung von Methan zur Bildung von Bis[bis(tri(tertbutyl)silyl)-phosphanido-µ $zinkmethyl-\mu-isopropyanolatozink$] 6. Wird das Isopropanol in äquivalenter Stöchiometrie zugegeben, kann kein spektroskopischer Hinweis auf eine zweite Alkoholyse des zweifach alkylierten Vierringes von Bis[zinkmethyltritertbutylsilylphosphanid] gefunden werden. Im Überschuss von Isopropanol spaltet sich vielmehr langsam wieder das Tri(*tert*butyl)silylphosphan ab.

Gleichung 2.1.13: Alkoholyse von Bis[zinkmethyl-tri*tert*butylsilylphosphanid] **1** und Darstellung von Bis(di-tri*tert*butylsilyl-phosphanyl-µ-zinkmethyl-µ-isopropyloxyzink) **6**.

Die NMR-Daten der Verbindung 6 erscheinen in dem zu erwartenden Bereich. Die PH-Streckschwingung sieht man im IR-Spektrum im charakteristischen Bereich für PH-Streckschwingungen bei einer Wellenzahl von 2301 cm⁻¹.

Molekülstruktur von Bis[zinkmethyl-µ-isopropanolatozink-µbis(tri(*tert*butyl)silylphosphanid)] 6

Verbindung **6** kristallisiert in der triklinen Raumgruppe P $\overline{1}$. Molekülstruktur und Nummerierungsschema sind in *Abbildung 2.1.3* zusammengefasst. Ausgewählte Bindungslängen sind in *Tabelle 2.1.2* aufgeführt. Symmetriegenerierte (A: -x, 1-y, -z) Atome sind mit dem Großbuchstaben A gekennzeichnet. Das zentrale Strukturelement ist ein Achtring mit sich abwechselnden Zink und Phosphoratomen. "Zusammengeschnürt" wird der Ring durch die beiden Zink Atome Zn2 und Zn2A, an denen jeweils eine Isopropanolato-Gruppe hängt. Die Sauerstoffatome koordinieren mit je drei Zink-Atomen und bilden einen planaren (ZnOiPr)₂ Vierring. Die Abstände der Zinkatome zu den Sauerstoffatomen variieren um 20 pm, je nachdem, ob das Zink noch alkyliert ist oder nicht. Der Winkel O1A-Zn2-P1A ist mit 90.28° beinahe rechtwinkelig. Dagegen

bildet Zn2 mit P2 und O1A einen Winkel von 104.42°. Die P-Zn2 Abstände liegen bei 239 pm. Die P-Zn1 Abstände sind um 6 pm länger. Die P-Si Bindungsabstände liegen mit 227.2 pm im leicht gedehnten Bereich für vierfach koordinierte Phosphoratome^[64]65].

Abbildung 2.1.3: Ortep-Plot, Molekülstruktur und Nummerierungsschema von **6**. Die Ellipsoide repräsentieren eine Aufenthaltswahrscheinlichkeit von 40%. Symmetriegenerierte Atome sind mit einem nachgestellten Großbuchstaben A gekennzeichnet. Die Nummerierung ist sinngemäß zu ergänzen. Auf die Wiedergabe der Wasserstoffatome wurde der Übersichtlichkeit wegen verzichtet.

Tabelle2.1.2:AusgewählteBindungslängen[pm]vonTetrakis-methylzink-tri(*tert*butyl)silylphosphanid**5**undBis(di-zinkmethyl-µ-isopropyloxyzink-µ-tri*tert*butylsilylphosphanid)**6**.

Bindungslängen				
5		6		
Zn-P 248.62(8)	Zn1-P1 245.1(1)	Zn2-P1A 239.0(1)		
Zn-C8 197.8(4)	Zn1-P2 245.1(1)	Zn2-O1A 207.8(2)		
Zn-P' 248.3(1)	Zn1-O1 227.4(2)	P1-Si1 227.2(1)		
P-Si 220.20(1)	Zn1-C25 198.7(5)	P2-Si2 227.1(1)		
	Zn2-P2 239.3(1)			
	Zn2-O1 207.8(2)			

Darstellung und Charakterisierung von Tetraethyl-hexazink[tetrakistri(*tert*butyl)silyl-phosphandiid] 7

Die Deprotonierung von Anionen wie den Amiden ist mit Alkylzinkverbindungen schwer möglich. Trotzdem in der Berichte gibt es Literatur von Bis(alkylzink)verbindungen, die als Polymerisationskatalysatoren Verwendung finden.^[19] Diese Verbindungen sind jedoch wenig charakterisiert und weitere Vesuche schlugen fehl.^[66] Verbindungen des Types zur Darstellung von (RZn)₂NR' (MeZnNPR'₃)₄ mit einem Zn₄N₄ Heterokuban- Käfig sind bereits schon seit mehr als 35 Jahre bekannt.^[67] Uns interessierte die mögliche Synthese solcher Käfige mit Phosphor, dem schwereren Homologen des Stickstoffs, unter Verwendung primärer Phosphane.

Für die Darstellung von Phosphandiiden sind mehrere Synthesewege untersucht worden. Die Reaktion von P(SiMe)₃ mit Zink(II)chlorid in Anwesenheit von Triisopropylsilylphosphan führt zu $Zn_{10}Cl_{12}(PSiMe_3)_4$ und flüchtigem Chlorotrimethylsilan.^[68] Der zentrale Heteroadamantankäfig ist in eine Zink(II)chlorid Matrix eingebaut. Ein Phosphandiid wurde auch bei der Metathese-Reaktion von beobachtet.^[69] (Me₃Si)₃CZnCl mit LiP(H)Si*i*Pr₃ Diorganylphosphanide sind

vergleichsweise unreaktiv, was die Isolierung eines Diphenylphosphankomplexes von Alkylzinkdiphenylphosphanid ermöglichte.^[70]

Um eine lösliche Käfigverbindung mit hoher Reaktivität zu gewinnen, wird das primäre Tri(*tert*butyl)silyl-substituierte Phosphan mit Dialkylzink umgesetzt, wobei kleine Alkylgruppen am Zinkatom dessen Reaktivität erhöhen.

Die Reaktion von Diethylzink mit H₂PSi*t*Bu₃ in Toluol bei Raumtemperatur führt zu Tetraethyl-hexazink[tetrakis-tri(*tert*butyl)silyl-phosphandiid] 7 (*Gleichung 2.1.14*), welches in einer toluolischen Lösung in Form gelblicher Plättchen auskristallisiert.

Gleichung 2.1.14:

Darstellung von Tetraethyl-hexazink-[tetrakis-tri(tertbutyl)silyl-phosphandiid] 7.

Molekülstruktur von

Tetraethyl-hexazink-[tetrakis-tri(tertbutyl)silyl-phosphandiid] 7

Das innere Molekülfragment von 7 ist in *Abb.2.1.*4 dargestellt. Die durch das Inversionszentrum generierten Atome sind mit einem Apostroph gekennzeichnet. Das Molekül besteht aus zwei $(EtZn)_2(PSitBu_3)_2$ -Ringen mit zwei koordinierenden Metallatomen Zn1 und Zn2. Diese Zn₂P₂ Ringe sind über die zweifach koordinierten Zinkatome Zn3 und Zn3' verknüpft. Durch die kleinen Koordinationszahlen und die hohe elektrostatische Anziehung ist die Zn3-P2-Bindungslänge von 224.4 pm um fast 20

pm kürzer als der Abstand im Ring mit 242.0 pm. Die beiden Zn3-Atome koordinieren zu den Phosphoratomen in einem Winkel P2-Zn3-P1'von 163.3°. Der Grund für die Abweichung von der linearen Koordination liegt in der intramolekularen elektrostatischen Zn3...Zn3' Abstoßung. Dies führt zu einer Verschiebung der beiden Zn₂P₂ Ringe gegeneinander und dadurch zu einer Erhöhung des van der Waals Kontaktes der sperrigen Tri(*tert*butyl)silyl-Gruppen.

Die P-Si Bindungslängen sind mit 227.6 pm länger als jene in P(SiMe₃)₃ (224.5 pm) durch die höher Koordinationszahl und die sterische Abstoßung der sperrigen *tert*Butyl-

gruppen. Die P-Si Bindungen im Kation $[P(SiMe_3)_4]^+$ sind mit 230 pm länger.^[71] Die Zink-Phosphor Winkel in den Ringen sind fast rechtwinklig.

Abbildung 2.1.4: Inneres Molekülfragment von $(EtZn)_4Zn_2(PSitBu_3)_4$ 7. Symmetrie-generierte atome (-x+1, -y, -z+2) sind mit einem Apostroph gekennzeichnet. Die Ellipsoide repräsentieren eine Aufenthaltswahrscheinlichkeit von 50%. Auf die Darstellung der *tert*Butyl-Gruppen am Siliciumatom und die Wasserstoffatome wurde der Übersichtlichkeit wegen verzichte.

Tetraethyl-hexazink-[tetrakis-tri(*tert*butyl)silyl-phosphandiid] 7 ist die erste bekannte Käfigverbindung von Zink und Phosphor mit mäßiger Stabilisierung durch sterische Abschirmung der Reaktionszentren.

Der Trialkylsilylrest ist notwendig, um unter milden Reaktionsbedingungen eine zweite Deprotonierung zu ermöglichen. In heteroleptischen Verbindungen des Typs R-Zn-X (R = Alkyl, X = NR'₂, PPh₂)^[70] ist die metallierende Kraft der am Zink gebundenen Alkyl-Gruppen stark reduziert und sie reagieren somit als Lewis Basen. Sie binden bevorzugt an das Metall, die Deprotonierung der zweiten Alkylgruppe erfordert drastische Reaktionsbedingungen

Abbildung 2.1.5: Die Molekülstruktur von (EtZn)₄Zn₂(PSitBu₃)₄ (Zn orange, P violett und Si blau) zeigt die Abschirmung des Käfigs durch die Tri(*tert*butyl)silyl- Substituenten. Die Atome Zn, P und Si sind mit einem Radius von 37, 32 und 33 pm dargestellt. Der Übersichtlichkeit wegen wurde auf die Wiedergabe der Wasserstoffatome verzichtet und der Radius der Kohlenstoffatome mit einem sehr kleinen Radius von 10 pm dargestellt.

2.2 Erdalkalimetallzinkate: Synthese und Struktur

2.2.1 Einführung

Zinkate sind als Verbindungsklasse seit vielen Jahren von großem Interesse.^[72] Metallorganische Derivate, die sowohl Calcium als auch Zink enthalten wurden 1924 erstmals von Hein^[73] dargestellt. Später wurde die Transmetallierung von Dialkylzink durch Barium von Gilman und Woods untersucht. Erdalkalimetalle wurden mit Diethylund Dibutylzink zur Reaktion gebracht und die Verbindungen mit der Formel MR₂-ZnR₂ (M = Erdalkalimetall) beschrieben.^{[74][75]} Die NMR-spektroskopische Charakterisierung führte Kaufmann ungefähr 25 Jahre später durch. Es wurde gezeigt, dass die Alkyl-Gruppen innerhalb der NMR-Zeitskala chemisch und magnetisch äquivalent sind ^[76]. *Kaufmann* und *Mitarbeiter*^[77] untersuchten das in Lösung vorhandene Gleichgewicht und zogen die freien Alkyl-Verbindungen BaR2 und ZnR2, den Zwischenstufenkomplex $BaZnR_4$, das Kontaktionenpaar $Ba^{2+}ZnR_4^{2-}$ (welches auch solvatisiert vorliegen kann) sowie die freien Ionen Ba^{2+} und ZnR_4^{2-} in Betracht. Die ionischen Spezies dominieren in polaren Lösemitteln. Bei der Zugabe von Pyridin zur Zinkat-Lösung scheidet sich ein roter Niederschlag ab, für den Kaufmann und Mitarbeiter^[78] die Bildung einer Mischung von (py)2ZnR2 und (py)2BaR2 vorschlugen. Das Hauptinteresse der Autoren galt damals der Anwendung dieser Verbindungen als anionische Polymerisationsstarter von βungesättigten Ketonen und Estern^[37], Butadienen^[39] und Nitrilen.^[79] Westerhausen und Calcium-bis{tris[bis(trimethylsilyl)amino]zinkat} Mitarbeiter konnten für die Lösungsmittelabhängigkeit mit NMR-spektroskopischen Experimenten aufklären.^[80] Während in nicht donorfähigen Lösemitteln das Gleichgewicht auf der Seite von CaR2 und ZnR2 liegt, stabilisieren Lewis-Basen wie THF oder 1,2-Dimethoxyethan das Zinkat Ca{Zn[N(SiMe₃)₂]₃}₂ aufgrund der koordinativen Sättigung des elektropositiven Metallzentrums durch die Sauerstoffatome.

Mehrere Methoden der Darstellung der Erdalkalimetallzinkate sind in der Literatur beschrieben. Durch die stöchiometrische Addition (*Gleichung* 2.2.1) von (DME)₂Calciumbis[bis(trimethylsilyl)amid]^[35] an Bis[bis(trimethylsilyl)amido]zink in DME lassen sich Tris[bis(trimethylsilyl)amido]zinkate darstellen.^[42]

$$(DME)_{2}Ca[N(SiMe_{3})_{2}]_{2} + 2 Zn[N(SiMe_{3})_{2}]_{2} \rightarrow (DME)_{3}Ca\{Zn[N(SiMe_{3})_{2}]_{3}\}_{2}$$

Gleichung 2.2.1

Hexakis(tetrahydrofuran-*O*)magnesium-bis(tribenzylzinkat) wurde auf demselben Weg dargestellt.^[81] Die Reaktion von Mg(CH₂Ph)₂(thf)₂ mit Zn(CH₂Ph)₂ in einem molaren Verhältnis von 1:2 bei Raumtemperatur liefert nach *Gleichung 2.2.2* den Zinkat-Komplex. Versuche, Verbindungen der Zusammensetzung Mg(CH₂Ph)(thf)_nZn(CH₂Ph)₃ und Mg(thf)nZn(CH₂Ph)₄ durch ein anderes stöchiometrisches Verhältnis darzustellen, gelangen nicht.

 $Mg(CH_2Ph)_2(thf)_2 + 2 Zn(CH_2Ph)_2 \rightarrow Mg(thf)_6[Zn(CH_2Ph)_3]_2$

Gleichung 2.2.2

Mitarbeiter^[82] **Bradley** und synthetisierten Bis(tetrahydrofuran-O)calciumbis[bis(trimethylsilyl)amid] durch Transmetallierung von Bis[bis(trimethylsilyl)amido]quecksilber mit Calciummetall in THF, die Bildung von Tris[bis(trimethylsilyl)amido]mercuraten wurde dabei nicht beobachtet. Schon Tochtermann stellte eine zunehmende "at"-Komplexstabilität vom Mercurat zum Zinkat fest.^[83] Setzt man hingegen elementares Calcium in DME mit Bis[bis(trimethylsilyl)amido]zink um, scheidet sich im Laufe von mehreren Stunden Zink ab. Der erste, langsam ablaufende Schritt ist auch hier ein Metall-Metall-Austausch, gefolgt von der Abfangreaktion durch das Diamidozink unter Bildung von Tris(dimethoxyethan)calcium-bis{tris[bis(trimethylsilyl)amino]zinkat}.^[42] Die Nettoreaktion ist in Gleichung 2.2.3 aufgeführt.

$$Ca + 3 Zn[N(SiMe_3)_2] \rightarrow (DME)_3Ca\{Zn[N(SiMe_3)_2]_3\}_2 + Zn$$

Gleichung 2.2.3

Keine Transmetallierungsreaktion zur Bildung des Zinkats konnte in benzolischer Lösung nachgewiesen werden. Die Schwerlöslichkeit dieser Verbindungen in aromatischen und aliphatischen Kohlenwasserstoffen einerseits und die Zahl der Komplexliganden andererseits sprechen für das Vorliegen getrennter Ionen in Lösung und im Festkörper. Vor kurzem gelang Westerhausen und Mitarbeitern durch Transmetallierung von Bis(trimethylsilylmethyl)zink mit Calcium, Strontium und in THF bei Raumtemperatur die Synthese Barium der Erdalkalimetallbis(trialkylzinkate).^[84] Wurde an Stelle von THF Toluol als Lösemittel verwendet, war nur noch Barium reaktiv genug, um Bis(trimethylsilylmethyl)zink zu transmetallieren und zum Bis(η^6 -toluol)barium-bis[tris(trimethylsilylmethyl)zinkat] zu reagieren. Um die Anwesenheit von Lewis-Basen auszuschließen, wurde Heptan als Lösemittel gewählt. Die Transmetallierung gelang wiederum nur mit Barium, jedoch konnte das Produkt nicht kristallisiert werden. Die NMR-spektroskopische Untersuchung bestätigte aber die Bildung des solvensfreien Bariumbis[tris(trimethylsilylmethyl)zinkats].

Trotz des regen Interesses an der Darstellung und der Charakterisierung sind sehr wenige Organobarium-Verbindungen bekannt. Gründe hierfür sind die geringe Löslichkeit in organischen Lösemitteln (hohe ionische Metall-Kohlenstoffbindungen), geringe Ausbeute durch Nebenreaktionen, die Notwendigkeit der Aktivierung des Metalls um die Reaktivität zu steigern, schlechte Reinheit und Reaktionen mit dem Lösungsmittel (Etherspaltung). In den letzten Jahrzehnten wurden einige Synthesemöglichkeiten für σ gebundene Alkylbariumverbindungen entwickelt.^[85]

Zur Darstellung der Zinkate haben die Transmetallierungsreaktion bzw. Metallierungsreaktion den Vorteil, dass der Einbau von Halogeniden und Pseudohalogeniden in die organometallischen Produkte vermieden werden kann. Da man auf die hohe Reaktivität der Erdalkalimetalle bei diesen Reaktionen angewiesen ist, werden die Metalle Calcium, Strontium und Barium destilliert.^[86]

Die Reaktion von Zinkphosphaniden in THF mit destillierten Erdalkalimetallen führt nach Abspaltung von Wasserstoff zu den vierfach THF-koordinierten Erdalkalimetallphosphanylzinkaten. Ebenfalls gelingt durch die Metallierungsreaktion der Zinkphosphanide mit Erdalkalimetallbis[bis(trimethylsily)amid] in THF die Darstellung der entsprechenden Phosphanidozinkate.

2.2.2 Synthese, Reaktivität und spektroskopische Charakterisierung

Calcium-trialkylsilylphosphanylzinkate.

Durch Reaktion von Bis[methylzink-tri(*tert*butyl)silylphosphanid] **1** in THF mit destilliertem Calciummetall (*Gleichung 2.2.4*) erhält man nach Abspaltung von Wasserstoff die entsprechenden Calciumphosphanidozinkate **8**, **9**, und **10**.

Gleichung 2.2.4: Darstellung von Tetrakis(tetrahydrofuran-O)-calcium-[1,3-dimethyl-2,4-bis[tri(*tert*butyl)silyl-1,3-dizinka-2,4-diphosphetan-2,4-diid] **8** (R = tBu, R' = Me), Tetrakis(tetrahydrofuran-O)-calcium-[1,3-diethyl-2,4-bis[tri(*tert*butylsilyl)-1,3-dizinka-2,4-diphosphetan-2,4-diid] **9** (R = tBu, R' = Et), Tetrakis(tetrahydrofuran-O)-calcium-[1,3-dimethyl-2,4-bis[triisopropylsilyl-1,3-dizinka-2,4-diphosphetan-2,4-diid] **10** (R = iPr, R' = Me) durch Reaktion mit destilliertem Metall.

Die Calciumphospanylzinkate **8**, **9** und **10** erhält man auch über einen zweiten Reaktionsweg (*Gleichung 2.2.5*). Setzt man anstelle des destillierten Metalls das Calciumbis[bis(trimethylsilyl)amid] in THF mit dem Zinkphosphanid um, gelangt man durch die Metallierungsreaktion unter Abspaltung von Hexamethyldisilazan zu den entsprechenden Produkten. Die bei Raumtemperatur aufgenommenen NMR-Daten der Verbindungen **8**, **9** und **10** sind in der *Tabelle 2.2.*1 zusammengestellt.

Gleichung 2.2.5: Darstellung von Tetrakis(tetrahydrofuran-O)calcium-[1,3-dimethyl-2,4-bis[tri-(*tert*butyl)silyl-1,3-dizinka-2,4-diphosphetan-2,4-diid] **8** (R = tBu, R' = Me), Tetrakis(tetrahydrofuran-O)-calcium-[1,3-diethyl-2,4diphosphetan-2,4-diid] **9** (R = tBu, R' = Et), Tetrakis(tetrahydrofuran-O)-calcium-[1,3-dimethyl-2,4-bis[triisopropylsilyl-1,3-dizinka-2,4-diphosphetan-2,4-diid] **10** (R = iPr, R' = Me) über die Metallierungsreaktion mit Calciumbistrimethylsilyamid in THF.

Die chemischen Verschiebungen der Tri(*tert*butyl)silylgruppen von **8** und **9** liegen bei δ = 1.20 für die ¹H-NMR- Messung und bei δ = 32.25 bzw. 32.50 im ¹³C-NMR-Spektrum und sind somit bezogen auf das Tri(*tert*butyl)silylphosphan ins tiefe Feld verschoben. *Abbildung* 2.2.1 zeigt die pseudo-Triplett-Aufspaltungen des AA'X–Systems im ²⁹Si{¹H}-NMR-Spektrums von **8**, wobei die einzelnen P-Si-Kopplungen nicht ausgerechnet werden können. Es kann lediglich der Betrag der Summe der Kopplungen mit |¹J_{SiP}+³J_{SiP}| = 17.0 Hz für **8**, 14.4 Hz für **9** und 8.52 Hz für **10** angegeben werden.

Abbildung 2.2.1: Das ²⁹Si-NMR-Spektrum von Tetrakis(tetrahydrofuran-O)-calcium-[1,3-dimethyl-2,4-bis[tri-*tert*butylsilyl-1,3-dizinka-2,4-diphosphetan-2,4-diid] **8**.

Da die ${}^{3}J_{PSi}$ -Kopplungskonstante kleiner als die Geräteauflösung ist, kann davon ausgegangen werden, dass die ${}^{1}J_{PSi}$ -Kopplungskonstante 17.0 Hz für **8**, 14.4 Hz für **9** und 8.52 Hz für **10** ist.

Im ¹³C{¹H}und ¹H-NMR-Spektrum von **10** beobachtet man Signale im Bereich von δ = 13.65 und δ = 17.51 bzw. bei δ = 1.08 und δ = 1.01 für die Isopropylgruppen, welche damit im erwarteten charakteristischen Bereich liegen.

Verbindung	8	9	10
¹ H			
[ZnR][CH ₂ /CH ₃]	-0.13	0.79/1.31	-0.17
$\delta [^{t}Bu]/[^{i}Pr]$	1.20	1.20	1.08
δСН			1.01
¹³ C{ ¹ H}			
[ZnR][CH ₂ /CH ₃]	-2.85	9.60/11.30	-1.7
$\delta [^{t}Bu/^{i}Pr]$	32.25	32.40	17.51
δ [C _q /CH]]	24.25	24.15	13.65
²⁹ Si{ ¹ H}			
$\delta [PSi^{t}Bu_{3}/iPr_{3}]$	27.33	27.25	19.92
pseudo t (AA'X)			
$ ^{1}J_{SiP}+^{3}J_{SiP} $	17.03	14.4	8.52
³¹ P{ ¹ H}			
$\delta \left[PSi/^{t}Bu_{3}/^{i}Pr_{3}\right]$	-239.15	-239.4	-234.81

Tabelle 2.2.1: Chemische Verschiebungen [ppm] der Calciumphosphanylzinkate 8-10.

Molekülstrukturen von Tetrakis(tetrahydrofuran-O)-calcium-[1,3-dimethyl-2,4bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] 8, Tetrakis(tetrahydrofuran-O)-calcium-[1,3-diethyl-2,4- bis{tri(*tert*butyl)silyl-1,3dizinka-2,4-diphosphetan-2,4-diid} 9, Tetrakis(tetrahydrofuran-O)-calcium-[1,3dimethyl-2,4-bis{triisopropylsilyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] 10

Für eine Kristallstruktur geeignete Einkristalle von Tetrakis(tetrahydrofuran-O)-calcium-[1,3-dimethyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] 8. Tetrakis(tetrahydrofuran-O)-calcium-[1,3-diethyl-2,4bis{tri(tertbutyl)silyl}-1,3dizinka-2,4-diphosphetan-2,4-diid] 9, Tetrakis(tetrahydrofuran-O)-calcium-[1,3dimethyl-2,4-bis{triisopropylsilyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] 10 scheiden sich aus einem Lösungsmittelgemisch von Toluol und THF bei 5°C im Laufe einiger Tage ab. Die Verbindungen 8, 9 und 10 kristallisieren im monoklinen Kristallsystem. Verbindung 8 fällt in der Raumgruppe $P2_1/c$ an, sowohl mit als auch ohne Toluol. Die Verbindungen 9 und 10 kristallisieren ebenfalls in dieser Raumgruppe $(P2_1/n)$. Kristallographische Daten zur Messung der Reflexintensitäten und zu den Strukturbestimmungen sind in dem Kapitel 3 zusammengestellt. Die Verfeinerung der Schweratome in 8, 9 und 10 gelang anisotrop. Die Ortskoordinaten und Auslenkungsparameter von 8, 9 und 10 sind Kapitel 3 zu entnehmen. Ausgewählte Bindungslängen von 8, 9 und 10 sind in *Tabelle 2.2.2* dargestellt.

Die Molekülstruktur und das Nummerierungsschema von Verbindung **8** ist in *Abbildung* 2.2.2 wiedergegeben. Das Calciumatom ist verzerrt oktaedrisch von vier THF-Liganden und den zwei Phosphoratomen des dianionischen, zweizähnigen Zinkphosphanids umgeben. Der Mittelwert der gefundenen Ca-O Abstände liegt mit 241.3 pm im charakteristischen Bereich.^[87] Die Ca-P-Abstände sind mit Ca1-P2 288.2(1) und Ca1-P1 289.9(1) pm um ca. 6 pm kürzer als in Tetrakis(tetrahydrofuran-O)calcium-bis(triisopropylsilylphosphanid), welches einen Ca-P-Abstand von 294.7(1) pm aufweist,^[51] entsprechen aber den Werten des von *Westerhausen et al.* publizierten Calcium-Phosphor-Polyeders.^[88]

Das zentrale Strukturelement in **8**, **9** und **10** ist der gewinkelte $(ZnP)_2$ -Ring. In **8** beträgt der Bindungswinkel zwischen den Zink- und den Phosphoratomen ca. 90°. Hingegen
werden die Zn-P-Zn-Winkel, im Vergleich mit 5, durch die starke elektrostatische Anziehung des Phosphoratoms vom Calcium verkleinert und liegen bei ca.75°.

Abbildung 2.2.2 Molekülstruktur und Nummerierungsschema von Tetrakis(tetrahydrofuran-O)-calcium-[1,3-dimethyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] **8**. Verbindung **8** kristallisiert mit und ohne Toluol im Kristallgitter aus. Alle Kohlenstoffatome sind mit willkürlichen Radien dargestellt. Aus Gründen der Übersichtlichkeit wurde auf die Wiedergabe der Wasserstoffatome verzichtet. Die Thermalellipsoide der restlichen Schweratome repräsentieren eine Aufenthaltswahrscheinlichkeit von 50%.

Die Phosphoratome P1 und P2 sind vierfach koordiniert. Die P-Si-Abstände liegen mit den Werten von P1-Si1 222.6(2) und P2-Si2 222.2(6) pm im charakteristischen Bereich für vierfach koordinierte Phosphoratome.^[89] Die Zn-P-Bindungslängen variieren zwischen P1-Zn1 238.5(6) pm und P2-Zn1 237.8(8) pm. Der Vergleich mit dimerem Bis[bis(trimethylsilylphosphanyl)]zink zeigt, dass sich die Zn-P-Abstände zu den vierfach koordinierten und verbrückend auftretenden Bis(trimethylsilyl)phosphanyl-Substituenten ebenfalls um 240 pm bewegen.^[90] Die Zinkatome werden dreifach, einmal durch den Methylrest und zweimal über die Phosphoratome, koordiniert. Zinkkomplexe enthalten bevorzugt ein vierfach koordiniertes Metallzentrum. Durch die sterische Abschirmung der großen, sperrigen *tert*Butylgruppen am Silicium wird eine weitere Koordination des Zinks unterbunden.^[91] Die Winkelsumme am Zink-Atom beträgt im Rahmen der Standardabweichung 360°, sie sind somit verzerrt trigonal planar umgeben.

Die Molekülstruktur und das Nummerierungsschema von Verbindung 9 sind der *Abbildung* 2.2.3 zu entnehmen.

Abbildung 2.2.3: Molekülstruktur und Nummerierungsschema von Tetrakis(tetrahydrofuran-O)-calcium-[1,3-diethyl-2,4-bis{tri-*tert*butylsilyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] **9**. Alle Kohlenstoffatome sind mit willkürlichen Radien dargestellt. Aus Gründen der Übersichtlichkeit wurde auf die Wiedergabe der Wasserstoffatome und des Toluols verzichtet. Die Thermalellipsoide der restlichen Schweratome repräsentieren eine Aufenthaltswahrscheinlichkeit von 50%.

Verbindung **9** kristallisiert mit Toluol aus einer Lösung von THF und Toluol aus. Die Ca-P Bindungslängen sind mit den Werten von Ca-P1 290.4(1), Ca-P2 290.9(1) pm im Vergleich zu **8** nur geringfügig länger, aber immer noch um 5 pm kürzer als z.B. in Tris(tetrahydrofuran-O)calcium-[1,3-bis(triisopropylsilylphosphanyl)-1,3-

bis(trimethylsilylmethyl)-2-triisopropylsilyl-1,3-dizinka-2-phosphapropandiid],

entsprechen aber den Werten der von Westerhausen publizierten Calcium-Phosphor-Polyeder.^{[92][52]} Das Calciumatom ist verzerrt oktaedrisch von vier THF-Liganden und den zwei Phosphoratomen des dianionischen, zweizähnigen Zinkphosphanids umgeben. Der Mittelwert der gefundenen Ca-O Abstände liegt mit 241.5 pm, ähnlich wie in 8, ebenfalls im charakteristischen Bereich.^[50] Die Phosphoratome P1 und P2 sind vierfach koordiniert. Die P-Si Abstände liegen mit den Werten von P1-Si1 223.3(2) und P2-Si2 222.1(1) pm im charakteristischen Bereich für vierfach koordinierte Phosphoratome.^[93] Die Zn-P-Bindungslängen variieren zwischen P1-Zn1 239.7(1) und P2-Zn1 237.8(8) pm, dimerem sind also ebenfalls ähnlich wie in 8. Der Vergleich mit Bis[bis(trimethylsilylphosphanyl)]zink zeigt, dass sich die Zn-P-Abstände zu den vierfach koordinierten und verbrückend auftretenden Bis(trimethylsilyl)phosphanyl-Substituenten ebenfalls um 240 pm bewegen.^[53] Die Zinkatome sind dreifach, durch den Ethylrest und die Phosphoratome koordiniert. Zinkkomplexe enthalten bevorzugt ein vierfach koordiniertes Metallzentrum. Der sterische Druck ist ähnlich wie in Verbindung 8, so dass auch vergleichbare Verzerrungen beobachtet werden.

Die Molekülstruktur und das Nummerierungsschema von Tetrakis(tetrahydrofuran-O)calcium-[1,3-dimethyl-2,4-bis[triisopropylsilyl-1,3-dizinka-2,4-diphosphetan-2,4-diid] **10** sind in *Abbildung 2.2.4* wiedergegeben. Das Calciumatom ist verzerrt oktaedrisch von vier THF-Liganden und den zwei Phosphoratomen des dianionischen, zweizähnigen Zinkphosphanids umgeben. Der Mittelwert der gefundenen Ca-O Abstände liegt mit 239.1 pm im charakteristischen Bereich, ist aber im Vergleich mit **8** und **9** knapp kürzer. Eine mögliche Erklärung sind die weniger sperrigen Reste am Silicumatom, was zu einer geringeren sterischen Abschirmung des Erdalkalimetalls führt. Dadurch ist eine größere Anziehung der Calcium- und Sauerstoffatome möglich.

Abbildung 2.2.4: Molekülstruktur und Nummerierungsschema von Tetrakis(tetrahydrofuran-O)calcium-[1,3-dimethyl-2,4-bis{tri-*iso*propylsilyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] **10**. Alle Kohlenstoffatome sind mit willkürlichen Radien dargestellt. Aus Gründen der Übersichtlichkeit wurde auf die Wiedergabe der Wasserstoffatome verzichtet. Die Thermalellipsoide der restlichen Schweratome repräsentieren eine Aufenthaltswahrscheinlichkeit von 50%

In Tetrakis(tetrahydrofuran-O)-calcium-[1,3-dimethyl-2,4-bis{tri-*iso*propylsilyl}-1,3dizinka-2,4-diphosphetan-2,4-diid] **10** beobachtet man einen P-Zn-P-Bindungswinkel von ca. 89°. Hingegen werden die Zn-P-Zn-Winkel, im Vergleich mit **5** durch die starke elektronische Anziehung des Phosphoratoms zum Calcium verkleinert und liegen bei ca. 72°, sind also im Gegensatz zu **8** und **9** kleiner. Grund hierfür ist die ebenfalls um 5 pm verkürzte Bindungslänge, zwischen dem Calcium- und den Phosphoratomen Ca1-P2 286.3(4) bzw. Ca1-P1 286.0(3) pm. Bei einer weniger starken Verkürzung der Zn-P Bindungslängen, welche zwischen P2-Zn2 236.6(5) und P2-Zn1 238.7(7) pm variieren, führt dies zu einer stärkeren Verzerrung des (ZnP)₂- Ringes und dadurch auch zu einer Verkleinerung der endocyclischen Winkel.

Die Winkelsumme in Tetrakis(tetrahydrofuran-O)-calcium-[1,3-dimethyl-2,4-bis{triisopropylsilyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] **10** beträgt um das Zink-Atom wie in **8** und **9** im Rahmen der Standardabweichung 360°, und das Zinkatom ist somit wiederum verzerrt trigonal planar umgeben.

Tabelle 2.2.2 Ausgewählte Bindungsparameter Bindungslängen [Å] und Bindungswinkel [°] von Tetrakis(tetrahydrofuran-O)-calcium-[1,3-dimethyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] **8**, Tetrakis(tetrahydrofuran-O)-calcium-[1,3-diethyl-2,4-bis{tri-*tert*butylsilyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] **9**, Tetrakis(tetrahydrofuran-O)-calcium-[1,3-dimethyl-2,4-bis{triisopropylsilyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] **10**.

Bindungslängen [Å]						
8		9		10		
Cal-O1	2.402(3)	Ca-O1	2.398(4)	Cal-O1	2.405(1)	
Cal-O2	2.392(4)	Ca-O2	2.467(4)	Cal-O2	2.400(3)	
Cal-O3	2.397(3)	Ca-O3	2.433(4)	Cal-O3	2.388(2)	
Cal-O4	2.434(3)	Ca-O4	2.421(4)	Cal-O4	2.377(1)	
Ca1-P1	2.899(1)	Ca-P1	2.904(1)	Ca1-P1	2.860(1)	
Ca1-P2	2.884(1)	Ca-P2	2.910(1)	Ca1-P2	2.863(1)	
P1-Si1	2.226(2)	P1-Si1	2.233(2)	P1-Si1	2.200(2)	
P2-Si2	2.222(2)	P2-Si2	2.222(2)	P2-Si2	2.194(1)	
P1-Zn1	2.385(1)	P1-Zn1	2.396(1)	P1-Zn1	2.371(1)	
P1-Zn2	2.383(1)	P1-Zn2	2.378(1)	P1-Zn2	2.386(1)	
P2-Zn1	2.378(1)	P2-Zn1	2.397(1)	P2-Zn1	2.387(1)	
P2-Zn2	2.383(1)	P2-Zn2	2.384(1)	P2-Zn2	2.366(2)	
		Bindung	swinkel [°]			
P1-Ca1-P2	71.50(4)	P1-Ca-P2	69.49(2)	P2-Ca1-P1	70.89(3)	
Zn1-P1-Zn2	75.89(4)	Zn1-P1-Zn2	74.43(5)	Zn1-P1-Zn2	72.56(3)	
Zn1-P2-Zn2	76.02(4)	Zn1-P2-Zn2	74.33(5)	Zn1-P2-Zn2	72.63(3)	
P1-Zn1-P2	90.37(4)	P1-Zn1-P2	87.46(5)	P1-Zn1-P2	88.49(3)	
P1-Zn2-P2	90.30(4)	P2-Zn2-P1	88.16(5)	P1-Zn2-P2	88.62(3)	
O2-Ca1-P1	169.2(1)	O2-Ca-P1	176.2(1)	O2-Ca1-P2	172.52(2)	
O3-Ca1-O1	161.7(1)	O4-Ca-O1	160.0(1)	O4-Ca1-O1	163.98(9)	

Strontium-und Barium-Tri(tertbutyl)silylphosphanylzinkate

Nachdem die Metallierungen mit Calciumbis[bis(trimethylsilyl)amid] bzw. die Transmetallierungen mit destilliertem Calciummetall durch Umsetzung mit dem Bis[alkylzink-tri(alkyl)silylphosphanid] zu dem gewünschten Produkt geführt haben, wird die Reaktion mit den schwereren Homologen dem Strontium und Barium durchgeführt. Für diese Untersuchungen verwenden wir nur den Tri(*tert*butyl)silyl-Rest am Phosphoratom, da bereits bei den Calciumderivaten durch die sterisch bessere Abschirmung der reaktiven Erdalkalimetall-Zentren wesentlich höhere Ausbeuten erzielt werden konnten.

Gleichung: 2.2.6 Darstellung von Tetrakis(tetrahydrofuran-O)-strontium-[1,3-diethyl-2,4-bis{tri*tert*butylsilyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] **12** und Tetrakis(tetrahydrofuran-O)barium-[1,3-dimethyl-2,4-bis{tri-*tert*butylsilyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] **13**.

Beide Reaktionswege werden zur Synthese der Erdalkalimetallzinkate verwendet. Tetrakis(tetrahydrofuran-O)-barium-[1,3-dimethyl-2,4-bis{tri(tertbutyl)silyl}-1,3dizinka-2,4-diphosphetan-2,4-diid] 13 und Tetrakis(tetrahydrofuran-O)-strontium-[1,3dimethyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] 11 wird sowohl über die Transmetallierungsreaktion als auch über die Redoxreaktion (Gleichung 2.2.6) Tetrakis(tetrahydrofuran-O)-strontium-[1,3-diethyl-2,4dargestellt. bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] 12 wird aus dem elementaren, destillierten Metall unter Umsetzung mit dem entsprechenden Phosphanid dargestellt.

Die Synthese von **13** und Tetrakis(tetrahydrofuran-O)-barium-[1,3-diethyl-2,4-bis{tri*tert*butylsilyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] **14** erfolgt über die Metallierung mit den Erdalkalimetall-bis[bis(trimethylsilyl)amiden] (*Gleichung* 2.2.7) unter Eliminierung von Hexamethyldisilazan.^[22]

Gleichung.2.2.7 Darstellung durch Transmetallierung von Tetrakis(tetrahydrofuran-O)-strontium-[1,3-dimethyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid]11,Tetrakis(tetrahydrofuran-O)-barium-[1,3-dimethyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-13undTetrakis(tetrahydrofuran-O)-barium-[1,3-diethyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-diethyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid]14.

Die NMR-Daten der Verbindungen **11-14** sind in *Tabelle 2.2.3* dargestellt. Die ¹³C{¹H}-NMR und ¹H-NMR-Daten erscheinen alle in dem zu erwartenden Bereich. Die chemischen Verschiebungen der Tri(*tert*butyl)gruppen von **11**, **12**, **13** und **14** erscheinen bei $\delta = 1.16-1.37$ für die ¹H-NMR-Messung und bei $\delta = 30.88$ bzw. $\delta = 32.35$ im ¹³C{¹H}-NMR-Experiment, und sind somit bezogen auf das Tri(*tert*butyl)silylphosphan ins tiefere Feld verschoben.

Im ${}^{31}P{}^{1}H$ -NMR-Spektrum beobachtet man mit steigender Ordnungszahl der Metalle eine Verschiebung zu tiefem Feld hin. Die einzelnen P-Si-Kopplungen können nicht berechnet werden. Es kann lediglich der Betrag der Summe der Kopplungen mit $|{}^{1}J_{SiP}+{}^{3}J_{SiP}| = 19.1$ Hz für **11**, 22.7 Hz für **12**, 25.03 Hz für **13** und 22.01 Hz für **14** angegeben werden. Da die ${}^{3}J_{PSi}$ -Kopplungskonstante unterhalb der Auflösung liegt handelt es sich um die ${}^{1}J_{PSi}$ -Kopplungskonstante.

Tabelle2.2.3NMR-DatenvonTetrakis(tetrahydrofuran-O)-strontium-[1,3-dimethyl-2,4-
bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid]11,Tetrakis(tetrahydrofuran-O)-
strontium-[1,3-diethyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid]12,Tetrakis(tetrahydrofuran-O)-barium-[1,3-dimethyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-
diphosphetan-2,4-diid]13undTetrakis(tetrahydrofuran-O)-barium-[1,3-diethyl-2,4-
bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-
diphosphetan-2,4-diid]14. (Chemische Verschiebungen in
ppm, LM: C₆D₆).

Verbindung	11	12	13	14
¹ H				
$\delta \ [ZnR][CH_2/CH_3]$	-0.13	0.81/1.27	-0.13	0.63/1.24
δ [^t Bu]	1.37	1.16	1.34	1.31
¹³ C{ ¹ H}				
$\delta [ZnR] [CH_2/CH_3]$	-3.39	8.57/12.31	-3.50	5.7/11.83
$\delta [^{t}Bu/]$	32.33	31.87	32.35	30.88
δ [C _q]]	24.25		24.36	25.63
²⁹ Si{ ¹ H}				
δ [PSi ^t Bu ₃]	26.80	28.79	26.68	26.56
pseudo t (AA'X)				
$ ^{1}J_{SiP}+^{3}J_{SiP} $	19.07	22.69	25.03	22.01
³¹ P{ ¹ H}				
δ [PSi ^t Bu ₃]	-224.54	-225.73	-183.84	-182.83

Molekülstrukturen von Tetrakis(tetrahydrofuran-O)-strontium-[1,3-dimethyl-2,4bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] 11, Tetrakis(tetrahydrofuran-O)-strontium-[1,3-diethyl-2,4-bis{tri(*tert*butyl)silyl}-1,3dizinka-2,4-diphosphetan-2,4-diid] 12, Tetrakis(tetrahydrofuran-O)-barium-[1,3dimethyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] 13.

Für eine röntgenographische Kristallstrukturuntersuchung geeignete Einkristalle von Tetrakis(tetrahydrofuran-O)-strontium-[1,3-dimethyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] **11,** Tetrakis(tetrahydrofuran-O)-strontium-[1,3-diethyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] **12** und Tetrakis(tetrahydrofuran-O)-barium-[1,3-dimethyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] **12** und Tetrakis(tetrahydrofuran-O)-barium-[1,3-dimethyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] **13** scheiden sich aus einem Lösungsmittelgemisch von Toluol und THF bei 5°C im Laufe einiger Tage ab. Verbindungen **11, 12** und **13** kristallisieren in einem monoklinen Kristallsystem. **11** kristallisiert sowohl mit als auch ohne Toluol aus. Durch das Toluol ändert sich die Elementarzelle, so dass statt P2₁/c die

Aufstellung in P2₁/n bevorzugt wird. Verbindung **12** kristallisiert in der Raumgruppe P2₁/n. Verbindung **13** kristallisiert in der Raumgruppe P2₁/m.

Die Ortskoordinaten und Auslenkungsparameter von 11, 12 und 13 sind dem Kapitel 3 zu entnehmen. Ausgewählte Bindugslängen von 11, 12 und 13 sind in *Tabelle 2.2.4* dargestellt.

Die Molekülstruktur und das Nummerierungsschema von Verbindung 11 sind in *Abbildung 2.2.5* wiedergegeben.

Das Strontiumatom ist verzerrt oktaedrisch von vier THF-Liganden und den zwei Phosphoratomen des dianionischen, zweizähnigen Zinkphosphanids umgeben. Der Mittelwert der gefundenen Sr-O Abstände liegt mit 257 pm im erwarteten Bereich.^[94] Die Sr-P-Abstände sind mit Sr1-P2 299.7(6) und Sr1-P1 303.6(5) pm kurz. Sie sind durchschnittlich um ca. 6 pm kürzer als in Tetrakis(tetrahydropyran-O)-strontiumbis[bis(dimethylisopropylsilyl)phosphanid],^[95] entsprechen aber den Werten des von *Westerhausen et al.* publizierten Strontium-Phosphor-Polyeders.^[96]

Abbildung 2.2.5 Molekülstruktur und Nummerierungsschema von Tetrakis(tetrahydrofuran-O)strontium-[1,3-dimethyl-2,4-bis{tri(*tert*butyl)sily}l-1,3-dizinka-2,4-diphosphetan-2,4-diid] **11** Alle Kohlenstoffatome sind mit willkürlichen Radien dargestellt. Aus Gründen der Übersichtlichkeit wurde auf die Wiedergabe der Wasserstoffatome verzichtet. Die Thermalellipsoide der restlichen Schweratome repräsentieren eine Aufenthaltswahrscheinlichkeit von 50%.

In 11, 12 und 13 ist das zentrale Strukturfragment auch der gewinkelte (ZnP)₂- Ring. Die Strukturen sind vergleichbar mit den Verbindungen 8, 9 und 10. In 11 liegen die P-Zn-P-Bindungswinkel bei ca. 90°. Hingegen werden auch hier die Zn-P-Zn-Winkel, durch die starke elektrostatische Anziehung des Phosphoratoms zum Calcium verkleinert und liegen bei ca. 75°. Die Phosphoratome P1 und P2 sind verzerrt tetraedrisch koordiniert. Die P-Si-Abstände liegen mit den Werten von P1-Si1 222.8(2) und P2-Si2 221.5(3) pm im üblichen Bereich für vierfach koordinierte Phosphoratome.^[53] Die Zn-P-Bindungslängen variieren zwischen P1-Zn1 237.7(6) und P2-Zn2 239(1) pm. Der Vergleich mit dimerem Bis[bis(trimethylsilylphosphanyl)]zink zeigt, dass sich die Zn-Pvierfach Abstände den koordinierten und verbrückend auftretenden zu Bis(trimethylsilyl)phosphanyl-Substituenten ebenfalls um 240 pm bewegen.^[54] Die Zinkatome werden dreifach koordiniert, einmal durch den Methylrest und zweimal über die Phosphoratome. Zinkkomplexe enthalten bevorzugt ein vierfach koordiniertes Metallzentrum. Durch die sterische Abschirmung der großen sperrigen tri(*tert*Butyl)silylgruppen am Phosphor wird eine weitere Koordination des Zinks unterbunden.^[55] Die Winkelsumme um das Zinkatom beträgt im Rahmen der Standardabweichung wie in den Verbindungen **8-10** 360°, es wird somit ebenfalls verzerrt trigonal planar umgeben.

Verbindung **12** kristallisiert wie **9** in der Raumgruppe P2₁/n. Die Molekülstruktur und das Nummerierungsschema von Verbindung **12** sind der *Abbildung 2.2.6* zu entnehmen. Auch hier wird die gesättigte, verzerrt oktaedrische Koordinationssphäre der Strontiumatome durch vier Lösungsmittelmoleküle (THF) gebildet. Der Zink-Phosphor-Ring im Zentrum enthält Bindungswinkel zwischen den P-Zn-P-Atomen von knapp 90°. Die Zn-P-Zn Winkel liegen bei 75°.

Die P-Si Abstände liegen mit den Werten von P1-Si1 222.5(1) und P2-Si2 221.6(2) pm im charakteristischen Bereich. Die Sr-O Bindungsabstände liegen im Bereich von 258.5 pm und sind somit unwesentlich länger als die von Verbindung **11**. Auch die Sr-P Bindungslängen sind fast genauso lang wie die in **11**. Die Phosphoratome P1 und P2 sind vierfach über Silicium, Strontium und zwei Zinkatome koordiniert. Die Zink-Phosphor-Bindungslängen weisen einen Mittelwert von 238.2 pm auf und liegen somit im zu erwartenden Bereich.

Tabelle 2.2.4 Ausgewählte Bindungsparameter Bindungslängen [Å] und Bindungswinkel [°] vonTetrakis(tetrahydrofuran-O)-strontium-[1,3-dimethyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid]11,Tetrakis(tetrahydrofuran-O)-strontium-[1,3-diethyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid]12und Tetrakis(tetrahydrofuran-O)-barium-[1,3-dimethyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid]13.

Bindungslängen						
11		12		13		
Sr1-O1	2.537(6)	Sr-O1	2.530(4)	Ba-O1	2.729(6)	
Sr1-O2	2.617(5)	Sr-O2	2.589(3)	Ba-O2	2.694(6)	
Sr1-O3	2.543(7)	Sr-O3	2.613(3)	Ba-O3	2.752(5)	
Sr1-O4	2.522(7)	Sr-O4	2.558(4)			
Sr1-P1	3.036(3)	Sr-P1	3.033(1)			
Sr1-P2	2.997(2)	Sr-P2	3.020(1)	Ba-P	3.139(1)	
P1-Si1	2.228(1)	P1-Si1	2.225(1)	P-Si	2.201(1)	
P2-Si2	2.215(2)	P2-Si2	2.216(1)			
P1-Zn1	2.377(1)	P1-Zn1	2.389(1)	P-Zn1	2.371(1)	
P1-Zn2	2.376(2)	P1-Zn2	2.374(1)	P-Zn2	2.358(1)	
P2-Zn1	2.384(2)	P2-Zn1	2.392(1)			
P2-Zn2	2.389(2)	P2-Zn2	2.375(1)			
		Bindungs	winkel			
P1-Sr1-P2	67.57(5)	P1-Sr-P2	66.24(3)	P2-Ba1-P1	64.23(3)	
Zn1-P1-Zn2	75.69(6)	Zn1-P1-Zn2	75.24(4)	Zn1-P1-Zn2	76.41(4)	
Zn1-P2-Zn2	75.31(1)	Zn1-P2-Zn2	75.15(4)			
P1-Zn1-P2	89.60(7)	P1-Zn1-P2	87.54(4)	P-Zn1-P'	90.07(5)	
P1-Zn2-P2	89.48(7)	P2-Zn2-P1	88.30(4)	P-Zn2-P'	89.43(5)	
		1		1		

Abbildung 2.2.6: Molekülstruktur und Nummerierungsschema von Tetrakis(tetrahydrofuran-O)strontium-[1,3-diethyl-2,4-bis{tri-*tert*butylsilyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] **12**. Alle Kohlenstoffatome sind mit willkürlichen Radien dargestellt. Aus Gründen der Übersichtlichkeit wurde auf die Wiedergabe der Wasserstoffatome verzichtet. Die Thermalellipsoide der restlichen Schweratome repräsentieren eine Aufenthaltswahrscheinlichkeit von 50%.

Die Molekülstruktur und das Nummerierungsschema von Verbindung **13** sind der *Abbildung 2.2.7* zu entnehmen. Eine kristallographische Spiegelebene verläuft durch die Atome Ba, O1, O2, Zn1 und Zn2.

Die verzerrt oktaedrische Koordination des schweren Erdalkalimetallatoms Barium wird durch die vier THF Moleküle vervollständigt. Die Verlängerung der Bindung zwischen den Erdalkalimetallen und dem Phosphor-Atom führt zu einer Verkleinerung der P-M-P-Winkel (M = Erdalkalimetall). Dies ist darauf zurückzuführen, dass am zentralen Strukturfragment, dem Zn₂P₂-Ring, nur geringe Veränderungen auftreten. In *Tabelle* 2.2.5 werden ausgewählte Parameter von **8**, **11** und **13** verglichen.

Abbildung 2.2.7 Molekülstruktur und Nummerierungsschema von Tetrakis(tetrahydrofuran-O)-barium-[1,3-diethyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid]13.AlleKohlenstoffatome sind mit willkürlichen Radien dargestellt. Die Fehlordnung der THF Moleküle wurdenicht dargestellt. Die durch Symmetrie generierten Moleküle sind mit einem Apostroph gekennzeichnet.Aus Gründen der Übersichtlichkeit wurde auf die Wiedergabe der Wasserstoffatome verzichtet. DieThermalellipsoide der restlichen Schweratome repräsentieren eine Aufenthaltswahrscheinlichkeit von50%.

Die Ba-P-Bindungslängen liegen im charakteristischen Bereich und sind mit denen in den Ba-P-Polyedern von *Westerhausen* und *Digeser*^[97] vergleichbar. Das tetraedrisch koordinierte Phosphoratom liegt mit einem gemittelten Zn-P-Abstand von 236.5 pm und mit einem P-Si-Abstand von 220.9(1) pm im charakteristischen Bereich. Die Ba-O Abstände liegen zwischen Ba-O2 269.0(1) pm und Ba-O3 275.1(4) pm und liegen im charakteristischen Bereich für Ba-O-Verbindungen. Die verzerrt trigonal planare Umgebung der Zink Atome ist wie in **8-12** gegeben.

Gang der Untersuchung

Tabelle2.2.5VergleichvonausgewähltenStrukturparameternderVerbindungenTetrakis(tetrahydrofuran-O)-calcium-[1,3-dimethyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid]1,3-dizinka-2,4-diphosphetan-2,4-diid]8,Tetrakis(tetrahydrofuran-O)-strontium1,3-dimethyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid]11undTetrakis(tetrahydrofuran-O)-O)-barium-[1,3-dimethyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid]13.

Bindungslängen [Å]						
8		11		13		
Ca1-O1	2.402(3)	Sr1-O1	2.537(6)	Ba-O1	2.729(6)	
Ca1-P1	2.899(1)	Sr1-P1	3.036(3)			
Ca1-P2	2.884(1)	Sr1-P2	2.997(2)	Ba-P	3.139(1)	
P1-Si1	2.226(2)	P1-Si1	2.228(1)	P-Si	2.201(1)	
P2-Si2	2.222(2)	P2-Si2	2.215(2)			
P1-Zn1	2.385(1)	P1-Zn1	2.377(1)	P-Zn1	2.371(1)	
P1-Zn2	2.383(1)	P1-Zn2	2.376(2)	P-Zn2	2.358(1)	
P2-Zn1	2.378(1)	P2-Zn1	2.384(2)			
P2-Zn2	2.383(1)	P2-Zn2	2.389(2)			
		Bindungswi	inkel [°]			
P1-Ca1-P2	71.50(4)	P1-Sr1-P2	67.57(5)	P2-Ba1-P1	64.23(3)	
Zn1-P1-Zn2	75.89(4)	Zn1-P1-Zn2	75.69(6)	Zn1-P1-Zn2	76.41(4)	
Zn1-P2-Zn2	76.02(4)	Zn1-P2-Zn2	75.31(1)			
P1-Zn1-P2	90.37(4)	P1-Zn1-P2	89.60(7)	P-Zn1-P'	90.07(5)	
P1-Zn2-P2	90.30(4)	P1-Zn2-P2	89.48(7)	P-Zn2-P'	89.43(5)	

Bis(tetrahydrofuran-O)-magnesium-[1,3-dibutyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] 15

Die in 1 vorhandenen PH-Bindungen veranlassten uns, Versuche bezüglich deren Reaktivität gegenüber Metallierungsreagenzien durchzuführen. Hierfür wird Bis[methylzink-tri(*tert*butyl)silyphosphanid] 1 mit einem Äquivalent Magnesiumdibutanid umgesetzt. Allerdings kommt es hier nicht sofort zur Deprotonierung des Phosphanids, sondern diese erfolgt erst in einem nachgelagertem Schritt, so dass sich ein Mechanismus wie in *Gleichung 2.2.8* ergibt.

Gleichung. 2.2.8: Entstehung von Bis(tetrahydrofuran-O)-magnesium-[1,3-dibutyl-2,4-bis[tri*tert*butylsilyl-1,3-dizinka-2,4-diphosphetan-2,4-diid] **15** durch Austausch der Alkylgruppen am Zink.

Der erste Schritt ist die Bildung eines Magnesiumzinkats. Ob aus diesem Intermediat heraus die Deprotonierung erfolgt oder sich im Gleichgewicht Methyl-Magnesiumbutanid bildet, ließ sich nicht klären. Im zweiten Fall würde MeMgBu nun das Phosphanid deprotonieren und es entsteht Bis(tetrahydrofuran-O)magnesium-[1,3dibutyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] **15**. Die höhere Reaktivität (Nucleophilie) des Methanids gegenüber dem Butanid ergibt sich aus den pK_s -Werten für CH₄ ($pK_s = 57$) und C₄H₁₀ ($pK_s = 50$), die zwar sowohl lösemittel- als auch reaktionswegabhängig sind, sich aber doch um etwa 7 Größenordnungen unterscheiden.

Ein Vergleich der NMR-Daten von den Verbindungen Tetrakis(tetrahydrofuran-O)calcium-[1,3-dimethyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] 8. Tetrakis(tetrahydrofuran-O)-strontium-[1,3-dimethyl-2,4-bis{tri(tertbutyl)silyl}-1,3dizinka-2,4-diphosphetan-2,4-diid] 11, Tetrakis(tetrahydrofuran-O)-barium-[1,3dimethyl-2,4-bis{tri(tertbutyl)sily}l-1,3-dizinka-2,4-diphosphetan-2,4-diid] 13 und 15 ist in Tabelle 2.2.6 aufgelistet. Die chemische Verschiebung des Phosphandiids erscheint im ${}^{31}P{}^{1}H$ -NMR bei δ = -266.82 und liegt somit verglichen mit den Erdalkalimetallphosphanylzinkaten 8-14 zu höherem Feld verschoben. Das pseudo-Triplett des AA'X-Systems im ²⁹Si{¹H}-NMR-Spektrum ist verglichen mit den Verbindungen 8-14 ebenfalls zu höherem Feld verschoben. Die ¹H-NMR- und ¹³C{¹H}-NMR-Daten zeigen deutliche Abweichungen im Vergleich zum Edukt und man kann deutlich die Abhängigkeit vom Metallzentrum erkennen.

Tabelle 2.2.6 Vergleich der NMR-spektroskopischen Daten von: Tetrakis(tetrahydrofuran-O)-
calcium-[1,3-dimethyl-2,4-bis{tri-*tert*butylsilyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid]8,Tetrakis(tetrahydrofuran-O)-strontium1,3-dimethyl-2,4-bis{tri-*tert*butylsilyl}-1,3-dizinka-2,4-
diphosphetan-2,4-diid]11undTetrakis(tetrahydrofuran-O)-barium-[1,3-dimethyl-2,4-bis{tri-
*tert*butylsilyl}-1,3-dizinka-2,4-diid]13undBis(tetrahydrofuran-O)-barium-[1,3-dimethyl-2,4-bis{tri-
*tert*butylsilyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid]13undBis(tetrahydrofuran-O)-
magnesium-[1,3-dibutyl-2,4-bis{tri-
*tert*butylsilyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid]15(Chemische Verschiebungen in ppm).16

Verbindung	8	11	13	15
$^{1}\mathrm{H}$				
δ [ZnR][ZnBu]	-0.13	-0.13	-0.13	0.21/1.15/1.28
δ [^t Bu]	1.20	1.37	1.34	1.42
¹³ C{ ¹ H}				
[ZnMe][ZnBu]	-2.85	-3.39	-3.50	
δ [^t Bu]	32.25	32.33	32.35	31.90
$\delta [C_q]$	24.25	24.25	24.36	24.06
²⁹ Si{ ¹ H}				
$\delta [PSi^tBu_3]$	27.33	26.80	26.68	24.36
pseudo t (AA'X)				
$ ^{1}J_{SiP}+^{3}J_{SiP} $	17.03	19.07	25.03	14.0
³¹ P{ ¹ H}				
δ [PSi ^t Bu ₃]	-239.15	-224.54	-183.84	-266.82

Molekülstruktur von Bis(tetrahydrofuran-O)-magnesium-[1,3-dibutyl-2,4-bis{tritertbutylsilyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] 15

Für eine Röntgenstrukturanalyse geeignete Kristalle von **15** erhält man nach Einengen der Reaktionslösung auf zwei Drittel und durch Kühlen auf 5 °C. Kleine farblose Kristalle wurden dann für die Messung verwendet. Der vermessene Kristall gab scharfe Reflexe. Leider musste durch die Größe der Kristalle bedingt mit deutlich verlängerten Belichtungszeiten gemessen werden. Die beobachteten Auslöschungen führten zu einer

eindeutigen Raumgruppe und die Strukturlösung bestätigte diesen Vorschlag. Lösungsmittelmoleküle enthalten die Kristalle nach der Röntgenstrukturanalyse nicht. Eine der tertButylgruppen besitzt aufgrund thermischer Bewegung ausgesprochen große Temperaturfaktoren. Kristallographische Daten, sowie Angaben zur Messung der Reflexintensitäten und zur Strukturbestimmung sind in Kapitel 3 zusammengestellt. Bis(tetrahydrofuran-O)-magnesium-[1,3-dibutyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] 15 kristallisiert in der orthorhombischen Raumgruppe Pna2₁. Die Molekülstruktur und die Nummerierungsschemata sind in der Abbildung 2.2.8 dargestellt. Das kleine Magnesiumatom zeigt, anders als seine schwereren Homologen, tetraedrische Koordination. Koordinationsstellen verzerrt sind die dimeren Phosphandiideinheiten und zwei THF Lösungsmittelmoleküle.

Abbildung 2.2.7 Molekülstruktur und Nummerierungsschema von Bis(tetrahydrofuran-O)-magnesium-[1,3-dibutyl-2,4-bis{tri-*tert*butylsilyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] **15**. Die Kohlenstoffatome sind mit willkürlichen Radien dargestellt. Aus Gründen der Übersichtlichkeit wurde auf die Wiedergabe der Wasserstoffatome verzichtet. Die Thermalellipsoide der restlichen Schweratome repräsentieren eine Aufenthaltswahrscheinlichkeit von 50%.

Ausgewählte Bindungslängen [Å]: Mg1-O1 2.017(4), Mg1-O2 2.016(5), Mg1-P1 2.470(2), Mg1-P2 2.468(2), P1-Zn1 2.384(2), P1-Zn2 2.390(2), P2-Zn1 2.406(2), P2-Zn2 2.375(2), P2-Si2 2.232(2), P1-Si1 2.226(2). Bindungswinkel [°]: Mg1-P2-Si2 137.30(8), Mg1-P1-Si1 136.52(8), P2-Zn1-C29 130.4(1), P1-Zn1-C29 144.3(1), P2-Zn1-P1 85.16(5), Zn1-P1-Zn2 79.00(6), Zn2-P2-Zn1 78.87(6), P1-Zn2-P2 85.72(5), O1-Mg1-P2 121.5(1), O1-Mg1-P1 121.0(1), O2-Mg1-P2 120.6(1), O2-Mg1-P1 123.6(1), P1-Mg1-P2 82.04(7), O1-Mg1-O2 91.8(1).

Bei allen Atomen von 15 gelang eine anisotrope Verfeinerung. Im Vergleich zu den Verbindungen 8-14 enthält der (Zn-P)₂-Ring wesentlich größere Zn-P-Zn-Winkel, was sich aber durch die Verkleinerung der P-Zn-P-Winkel wieder ausgleicht. Grund hierfür ist die wesentlich kleinere Koordinationszahl des Magnesiums im Vergleich zu den schweren Erdalkalimetallen. Daraus resultiert eine geringe sterische Hinderung am Koordinationszentrum des Erdalkalimetalls und somit auch eine Erweiterung des P-M-P-Winkels, welcher bei 15 mit P1-Mg1-P2 82.04(7) um 20° größer ist als in Verbindungen mit Erdalkalimetallen in oktaedrischer Koordination. Die verminderten Spannungen am Metall bewirken auch die tendenziell leichten Verlängerungen der Zn-P-Bindungslängen. Die Umgebung des Zinkatoms ist auch hier wiederum trigonal planar. Die Si-P-Bindungslängen liegen im erwarteten Bereich. Der Magnesium-Phosphor-Silicium-Winkel hat sich aus sterischen Gründen um gemittelte 4° gegenüber Verbindungen 8-14 verkleinert. Der Mg-P-Abstand hängt sehr stark von den Liganden ab, die am Phosphor gebunden sind. So liegt der Mg-P-Abstand von 15 in dem Bereich von Bis(THF)magnesium-bis[bis(trimethylsilyl)phosphanid]^{[.98][99]} Hingegen ist der in White et al. publizierte Mg-P Abstand in (TMEDA)Mg(PHPh)2 um nahezu 10 pm länger.^{[100][101]}

Hexakis-(tetrahydrofuran-O)-dibarium-oxa-bis[zinkmethyl-µ₂-(tri(*tert*butyl)silyl)phosphandiido-zink] 16

Lässt man eine Lösung von Tetrakis(tetrahydrofuran-O)barium-[1,3-dimethyl-2,4-bis{tritertbutylsilyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] **13** wenige Minuten an der Luft stehen, so entsteht das entsprechende dimerisierte Hydrolyseprodukt unter Abspaltung von Methan (*Gleichung* 2.2.9). Die ¹³C{¹H}-NMR- und ¹H-NMR Daten erscheinen alle in dem zu erwartenden Bereich. Die NMR-Daten des Tri(*tert*butyl)silylrestes weisen nur geringfügige Unterschiede zu den in **13** detektierten Werten auf. Die ¹H-NMR-Resonanzen erscheinen für die Methylgruppen am Zink bei $\delta = -0.14$ und liegen somit im ähnlichen Bereich wie die von **13**. Die NMR-Resonanz im ³¹P{¹H}-NMR-Spektrum weist hingegen eine deutliche Verschiebung im Gegensatz zu Verbindung **13** auf und erscheint um 25 ppm zu hohem Feld verschoben bei $\delta = -209.58$.

Gleichung 2.2.9 Darstellung von Hexakis(tetrahydrofuran-O)dibarium-oxa-bis[zinkmethyl- μ_2 -tri(*tert*butyl)silylphosphandiido-zink] **16** durch Hydrolyse von Tetrakis(tetrahydrofuran-O)-barium-[1,3-dimethyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] **13**.

Abbildung 2.2.8 Molekülstruktur und Nummerierungsschema von Hexakis(tetrahydrofuran-O) dibarium-oxa-bis[zinkmethyl-µ₂-tri(*tert*butyl)silylphosphandiido-zink] **16**. Alle Kohlenstoffatome sind mit willkürlichen Radien dargestellt. Aus Gründen der Übersichtlichkeit wurde auf die Wiedergabe der Wasserstoffatome verzichtet. Die Thermalellipsoide der restlichen Schweratome repräsentieren eine Aufenthaltswahrscheinlichkeit von 50%.

Verbindung **16** kristallisiert aus einer gesättigten Lösung in der ortorhombischen Raumgruppe Pbca aus. Kristallographische Daten zur Messung der Reflexintensitäten und zu der Strukturbestimmung sind in Kapitel 3 zusammengefasst. Die Verfeinerung der Schweratome gelang anisotrop. Die Molekülstruktur und das Nummerierungsschema sind in *Abbildung 2.2.8* wiedergegeben.

Zentrales Strukturatom des Clusters ist ein Sauerstoff, welcher oktaedrisch durch zwei Barium- und vier Zinkatome koordiniert ist. Das Bariumatom wird siebenfach durch vier Sauerstoffatome (drei von den THF Lösungsmittelmolekülen), zweimal über die Phosphoratome und einmal über die Methylgruppe am Zink koordiniert. Die Bindungsabstände zwischen den Barium- und den Sauerstoffatomen betragen zwischen Ba-O2 273.2 pm und Ba-O3 282.8 pm und liegen somit im charakteristischen Bereich für Ba-O Abstände.^[102]

Durch die verbrückende Position der Alkylgruppe und die tetraedrische Koordinationsshäre des Zinkatoms kommt es zu den großen Zn-C-Bindungslängen von 203.5 pm, also einer Aufweitung um 10 pm im Vergleich zu Dialkylzink.^{[103][104][105]} Die Ba-C-Bindungslängen liegen im heteroleptischen dimeren Bariumphosphanylzinkat **16** mit einem Wert von Ba-C37 307.7 pm in einem Bereich, der in der Literatur auch als eine längere Ba-C σ -Bindung beschrieben wird. So liegen z.B. im dimeren Alkenylbarium ^[106] und im dimeren Dibarium-bis[bis(trimethylsilylmethyl)zink]-tris(trimethylsilylmethyl)zinkat^[107] die Ba-C-Bindungslängen zwischen 283.6 und 320.0 pm. Im Kronenether-Komplex von Barium-bis(triphenylsilylacetylid) werden jedoch deutlich kürzere Bindungslängen beobachtet.^[108] In *Tabelle 2.2.7* sind wichtige Strukturparameter von **16** aufgelistet.

Die Zn-O-Bindungslängen betragen durchschnittlich 213 pm und liegen im Bereich von RZnOR'-Verbindungen.^{[109][110]} Sie sind aber im Vergleich mit Bis[tris(tetrahydrofuran-O)barium(μ_4 -oxo))-bis[bis(3-trimethylsilyl-2-zinka-propyl]dimethylsilan]^[69] um ca. 20 pm länger.

Die Ba-P-Bindungslängen liegen im Bereich der Bariumphosphanide. Im Vergleich mit 13 sind die Bindungslängen um ca. 5 pm länger. Grund hierfür ist ebenfalls die lokalisierte negative Ladung im Inneren des Moleküls. Der Winkel zwischen dem Metall und den beiden Phosphoratomen weitet sich im Vergleich zu 13 um etwa 20°, der P-Zn-P-Winkel um ca. 26°.

Bindungslängen [pm]				
Ba-P1 319.0(1)	Zn1-P2 228.4(1)			
Ba-O1 280.5(4)	Zn1-O4 215.05(6)			
Ba-O2 273.2(5)	Zn2-P2 248.8(1)			
Ba-O3 282.8(5)	Zn2-O4 212.79(6)			
Ba-O4 278.72(3)	Zn2-C37 203.5(6)			
Ba-C37 307.7(5)	Zn2-P1' 248.2(1)			
Ba-P2' 318.9(1)	P1 -Si1 223.3(1)			
Zn1-P1 228.8(1)	P2-Si2 222.4(2)			
Bindungs	winkel [°]			
Ba-O4-Zn1 89.55(2)	P1-Ba-P2' 83.16(4)			
Ba-O4-Zn2 90.89(2)	Zn1-P1-Si1 115.60(8)			
Zn1-O4-Zn2 90.06(2)	O1-Ba-O2 73.1(1)			
P1'-Zn2-O4 84.85(4)	Zn1-P1-Zn2' 78.56(5)			
P1'-Zn2-C37 122.9(1)	Zn2'-P1-Si1 122.4(8)			
Ba-P1-Zn1 77.7(4)	Zn1-P2-Zn2 78.61(4)			
P1-Ba-O4 62.54(3)	Zn1-P2-Si2 120.97(7)			
Ba-P1-Si1 159.1(8)	Ba'-P2-Zn1 78.51(4)			
P1-Ba-C37 113.8(1)	Zn2-P2-Si2 122.08(7)			
Ba-P1-Zn2' 74.53(4)	Ba'-P2-Zn2 74.47(4)			

*Tabelle 2.2.*7 Wichtige Strukturparameter von **16**. Bindungslängen in [pm] und Bindungswinkel in [°]

Bis(tetrahydrofuran-*O*-trimethylsilylamido-*N*-barium-μ₂-bis(tri(*tert*butyl)silylphosphandiido-μ-zink- μ₂-zinkethanid) 17

Die Reaktion von Diethylzink mit Tri(*tert*butyl)silylphosphan ergibt das dimere Tri(*tert*butyl)silylphosphanid **2**. Die Deprotonierung von **2** in THF durch die Zugabe von $[(thf)_2Ba(N(SiMe_3)_2]_2$ führt zu $(thf)_4Ba(EtZn)_2(PSitBu_3)_2$ **14**. Wird die Reaktion in Toluol durchgeführt und ein Überschuss an THF vermieden, muss die Koordinationssphäre des

Bariumatoms intramolekular abgesättigt werden. So führt die Reaktion von Ethylzinktri(tertbutyl)silylphosphanid mit Bariumbis[bis(trimethylsilyl)amid] in Toluol zur Bis(tetrahydrofuran-O)-trimethylsilylamido-N-barium-µ2-Bildung von bis[tri(*tert*butyl)silylphosphandiido-µ-zink-µ₂-zinkethanid] 17 (*Gleichung* 2.2.10). Bei Tetrakis(tetrahydrofuran-O)-barium-[1,3-diethyl-2,4-bis{trider Darstellung von *tert*butylsilyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] 14 bzw. von Tetrakis(tetrahydrofuran-O)-barium-[1,3-dimethyl-2,4-bis{tri-*tert*butylsilyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] 13 wirken alle Trimethylsilylamido-Gruppen deprotonierend. Im Gegensatz dazu führen bei der Reaktionsführung in Toluol die Deprotonierung der Phosphanide zwei Ethyl- und zwei Amidogruppen durch. Dies kann dadurch erklärt werden, dass es zuerst zu einer Aktivierung der Ethylgruppen durch Bildung von einer Ba-C_{Et}-Zn-Drei-Zentren-Zwei-Elektronen-Bindung oder zu agostischen Wechselwirkungen zwischen den C-H-o-Bindungen und dem Barium-Kation kommt. Im Gegensatz zur Durchführung in Toluol ist die Ausbildung solcher Bindungen in THF nicht nötig, da in THF die Koordinationssphäre des Bariumatoms immer durch die Lösungsmittelmoleküle gesättigt wird.

Die Resonanz des Phosphors im ³¹P{¹H}-NMR-Spektrum erscheint bei δ = -245.0 ppm und ist im Gegensatz zu dem Signal von Verbindung **13** und **14** zu hohem Feld verschoben. Die *tert*Butylgruppen in den ¹³C{¹H}-NMR und ¹H–NMR Spektren von Verbindung **13**, **14** und **17** erscheinen alle bei ähnlicher Verschiebung.

Die dimere Molekülstruktur und das Nummerierungsschema von 17 sind in *Abbildung* 2.2.9 wiedergegeben. Verbindung 17 kristallisiert im triklinen Kristallsystem in der Raumgruppe P $\overline{1}$. Alle Schweratome konnten anisotrop verfeinert werden. Daten zur Messung der Reflexintensitäten und zu den Strukturbestimmungen sind im Kapitel 3 zusammengestellt. Wichtige Bindungsparameter sind in *Tabelle* 2.2.8 aufgelistet.

In Verbindung **13** bzw. **14** wird die verzerrte oktaedrische Koordinationsspäre des schweren Erdalkalimetalls durch die THF Moleküle aufgefüllt (*Abbildung 2.2.7*). In **17** zeigt das Barium fünffache Koordination (*Abbildung 2.2.9*). Das Bariumatom wird durch die sperrige Trimethylsilylamidogruppe, einen THF-Liganden und den benachbarten Phosphor-gebundenen Tri(*tert*butyl)silyl-Substituenten gebunden. Des weiteren übernimmt eine Zink- gebundene Ethylgruppe eine verbrückende Position. Das zentrale Strukturfragment ist ein verzerrter Ba₂C₂P₄Zn₄-Kubus. Die Verzerrung entsteht durch die

verzerrt trigonal planare Umgebung des Zink-Atoms. Das andere zweifach koordinierte Zink Atom zeigt sehr kurze Zink-Phosphor-Bindungslängen von 224 pm.

Gleichung2.2.10:DarstellungvonBis(tetrahydrofuran-O-trimethylsilylamido-N-barium- μ_2 -di(tri(*tert*butyl)silyl-phosphandiido- μ -zink- μ_2 -zinkethanid)17durch Reaktionsführung in Toluol.DurchReaktionsführung in THF gelangt man zu Tetrakis(tetrahydrofuran-O)-barium-[1,3-dimethyl-2,4-bis{tri-*tert*butylsilyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid]13undTetrakis(tetrahydrofuran-O)-barium-[1,3-diethyl-2,4-bis{tri-*tert*butylsilyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid]14.

Vergleicht man die Barium-Phosphor-Bindungslängen von 17 (323.2(5) und 333.9(5) (pm) mit denen von 13 (313.9(1) pm), erkennt man den verlängerten Abstand in 17. Diese Tatsache kann auf die sperrigen Substituenten zurückgeführt werden. Die Ba-O-Abstände beider Verbindungen liegen im ähnlichen Bereich.

Abbildung2.2.8MolekülstrukturundNummerierungsschemavonBis((tetrahydrofuran-O)-
trimethylsilylamido-N-barium- μ_2 -di(tri(*tert*butyl)silyl-phosphandiido- μ -zink- μ_2 -zinkethanid)17.SymmetriegenerierteAtome(1-x, -y, -z)sindmiteinemKohlenstoffatomesindmitwillkürlichenRadiendargestellt.AufdieWiedergabederWasserstoffatomeverzichtet.DieThermalellipsoidederrestlichenSchweratomerepräsentiereneineAufenthaltswahrscheinlichkeit von 50%.50%.50%.

Verglichen mit den bereits bekannten Organobarium Verbindungen, ist sowohl die Ba-C Bindungslänge (337.9(5) pm) als auch die Zn-C Bindung mit 204 pm in **17** länger als erwartet. In Zinkaten wie (η^6 -Toluol)₂Ba[Zn(CH₂SiMe₃)₃]₂ und dessen Thermolyse-Produkt [Ba₄Zn₆(CH₂SiMe₃)₈(CHSiMe₃)₆] werden kürzere Bindungslängen beobachtet. Für (18-Krone-6)Ba(C=C-SiPh₃)₂ wurden extrem kurze Ba-C Bindungslängen von nur 285.3(3) pm durch *Ruhlandt-Senge* und *Mitarbeiter* publiziert.^[111] Dagegen wurden in (DME)Ba[C(SiMe₃)₂(SiMe₂OMe)]₂ Werte von 304.9(2) pm gefunden.^[112] Der Ba-C-Abstand in **17** ist im längeren Bereich für Moleküle mit π -gebundenen Liganden mit einer großen Ladungsdelokalisierung,^{[113][114]} oder von side-on koordinierten Alken Einheiten.^[115]

Da Alkylzinkamide und -phosphanide stabil sind und lieber Phosphan- und Aminaddukte formen als Deprotonierungen einzugehen, ist eine Aktivierung der Alkylzink-Einheit nötig.^[116] Die Steigerung der Reaktivität von organometallischen Verbindungen durch Bildung von Heterobimetall-Derivaten wurde schon oft beobachtet.^{[117][118]} In Bis(tetrahydrofuran-O-trimethylsilylamido-*N*-barium-µ₂-di(tri(*tert*butyl)silyl-

phosphandiido- μ -zink- μ_2 -zinkethanid) 17 erfolgt eine kinetische Stabilisierung der Ba-C_{Et}-Zn Einheit durch die großen sperrigen Substituenten. *Tabelle* 2.2.9 Ausgewählte Bindungsparameter von Bis((tetrahydrofuran-O)-trimethylsilylamido-*N*-Barium- μ_2 -di(tri(*tert*butyl)silyl-phosphandiido- μ -zink- μ_2 -zinkethanid) **17**. Bindungslängen [pm] und Bindungswinkel [°].

Bindungslängen				
Ba1-P1 323.2(5)	Zn1-P1 223.8(5)			
Ba1-O1 269(2)	Zn2-P2 242.6(5)			
Ba1-N1 255(1)	Zn2-P1' 242.7(4)			
Ba1-P2' 333.9(4)	Zn2-C49 204(1)			
Si5-N1 167(1)	P1-Si1 226.7(7)			
Si6-N1 171(1)	P2-Si2 226.4(6)			
Zn1-P2 224.1(5)				
Bindungswinkel				
Si1-P1-Zn1 110.86(1)	Zn2-C49-Ba1 123.57(1)			
P2-Ba1-P1 73.28(2)	N2-Ba1-C49 124.49(2)			
P1-Zn2-P2-107.88(1)	Si1-P1-Ba1 128.7(1)			
P2-Zn1-P1 158.09(1)				

Bis[(tetrahydrofuran-O)-barium-μ₂-bis[ethylzink-tri(*tert*butyl)silylphosphandiido]μ₂-zinkphosphandiid] 18

Bis[(tetrahydrofuran-O-barium)-µ₂-bis[ethylzink-tri(*tert*butyl)silyphosphandiido]-µ₂zinkphosphandiid] **18** wird durch zwei unterschiedliche Synthesen hergestellt. Kristalle für eine Röntgenstrukturanalyse erhält man nach Suspendierung von **17** und Umsetzung mit stöchiometrischen Mengen von Diethylzink und Tri(*tert*butyl)silylphosphan. Molekülstruktur und Nummerierungsschema sind in *Abbildung 2.2.9* dargestellt. Ausgewählte NMR-Daten der Verbindungen **17** und **18** sind in *Tabelle 2.2.*10 wiedergegeben.

Abbildung 2.2.9: Molekülstruktur und Nummerierungsschema von dimerem Bis[(tetrahydrofuran-O-
barium)-μ2-bis[ethylzink-tri(*tert*butyl)silyphosphandiido]-μ2-zinkphosphandiid]18.Symmetriegenerierte Atome (-1+x, 1+y, z) sind mit einem Apostroph gekennzeichnet. Alle
Kohlenstoffatome sind mit willkürlichen Radien dargestellt. Aus Gründen der Übersichtlichkeit
wurde auf die Wiedergabe der Wasserstoffatome verzichtet. Die Thermalellipsoide der restlichen
Schweratome repräsentieren eine Aufenthaltswahrscheinlichkeit von 50%.

Verbindung **18** kristallisiert in der triklinen Raumgruppe P $\overline{1}$ in einer gesättigten Lösung von Toluol aus. Temperaturfaktoren, kristallographische Daten sowie Angaben zur Messung der Reflexintensitäten und zur Strukturbestimmung sind in Kapitel 3 zusammengestellt. Bei allen Schweratomen gelang eine anisotrope Verfeinerung. Das zentrale Strukturfragment ist der planare (Ba-P)₂- Ring. Das Inversionszentrum liegt in seinem Mittelpunkt. Wichtige Strukturparameter sind in *Tabelle 2.2.11* aufgelistet. Die Ba-P-Bindungslängen betragen 320.5(2) pm (Ba-P3), 317.0(3) (Ba-P1) und 322.5(2) pm (Ba-P1')und liegen verglichen mit **13** und **17** im erwarteten Bereich. Die Koordinationssphäre des Bariums, welches nur über drei Phosphoratome und einem THF-Molekül koordiniert, wird durch agostische Wechselwirkungen der sperrigen

Substituenten der *tert*Butylsilylgruppen gefüllt. Der Ba-O-Abstand liegt im charakteristischen Bereich und unterscheidet sich unwesentlich von dem in **13** und **17**.

Tabelle2.2.10AusgewählteNMR-ParameterderVerbindungenBis[(tetrahydrofuran-O)-trimethylsilylamido-N-barium- μ_2 -di(tri(*tert*butyl)silyl-phosphandiido- μ -zink- μ_2 -zinkethanid]17undBis[(tetrahydrofuran-O-barium)- μ_2 -bis[ethylzink-tri(*tert*butyl)silyphosphandiido]- μ_2 -zinkphosphandiid]18. (Chemische Verschiebungen in [ppm])

Verbindung	17	18
¹ H		
δ [ZnEt]	0.34/1.37	0.35/1.46
δ [^t Bu]	1.28	1.29
¹³ C{ ¹ H}		
δ [ZnEt][5.3/6.0	
δ [^t Bu]	32.1	31.7/32.0/32.4
$\delta [C_q]$	24.0	25.1
³¹ P{ ¹ H}		
δ [PSi ^t Bu ₃]	-245.0	-176.8/-205.5/-207.0

Im ³¹P-NMR-Spektrum von 17 sieht man drei verschiedene Singuletts. Eines davon ist mit δ = -176.8 ins tiefe Feld verschoben, wobei es sich um die Resonanz von des $Si\underline{P}\mu_3(Ba_2Zn)$ handelt. Die beiden Signale dimeren Ethylzinktri(tertbutyl)silylphosphandiids chemischen erscheinen bei einer ähnlichen Verschiebung. Vergleicht man die chemischen Verschiebungen der tertButylgruppen von 17 und 18 im ${}^{13}C{}^{1}H$ -NMR-Experiment sowie auch im ${}^{1}H$ -NMR-Spektrum, kann man nur einen geringen Unterschied erkennen. Im ¹H-NMR-Spektrum ist die Methylgruppe der ZnEt-Einheit von 18 um 0.09 ppm weiter ins tiefe Feld verschoben als bei 17.

Bindungslängen				
Ba-P1	317.0(3)	P2-Zn2	247.6(2)	
Ba-P1'	322.5(2)	P2-Zn1	223.2(2)	
Ba-P3	320.5(2)	P1-Zn1	222.6(2)	
Ba-O1	267.9(5)	P1-Si1	223.8(3)	
P3-Zn2	236.6(2)	P2-Si2	225.2(2)	
P3-Zn3	236.2(2)	P3-Si3	224.0(2)	
P2-Zn3	244.2(2)			
	Bindung	gswinkel		
P3-Ba-P1	94.21(4)	Zn2-P2-Zn3	81.78(5)	
P3-Ba-P1'	135.07(3)	Ba-P3-Si3	112.60(6)	
P2-Zn1-P1	168.31(6)	Zn1-P2-Si2	115.60(7)	
P2-Zn2-P3	88.83(5)	P2-Zn2-C37	126.7(1)	
P3-Zn3-P2	89.73(5)	P2-Zn3-C39	129.1(2)	
Zn2-P3-Zn3	85.85(5)			

Tabelle 2.2.11 Ausgewählte Bindungsparameter von Bis[(tetrahydrofuran-O-barium)- μ_2 -bis[ethylzink-tri(*tert*butyl)silyphosphandiido]- μ_2 -zinkphosphandiid] **18.** Bindungslängen [pm] und Bindungswinkel [°].

Tetrakis(tetrahydrofuran-O)-barium-[1,3-dimethyl-2,4-bis{tri-Im Gegensatz zu tertbutylsilyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] 13 ist der (ZnP)₂-Ring in 18 viel schwächer gewinkelt. Die Zn-P-Zn-Bindungswinkel betragen gemittelt 83.8° im Gegensatz zu 13, wo ein gemittelter Winkel von 75.5° vorliegt. Dies ist darauf zurückzuführen, dass in 13 ein Bariumatom an zwei Phosphoratome gebunden ist. Durch die starke Anziehung des Bariums und des Phosphoratoms resultiert auch die Verzerrung der Winkel. Die P-Zn-P-Winkel sind mit knapp 90° in beiden Verbindungen ähnlich. Die Bindungslängen des überbrückenden "nackten" Zn1 sind mit gemittelten 222.9 pm sehr kurz und um 25 pm kürzer als der Bindungsabstand von Zn2 und Zn3 zu P2. Gründe hierfür sind die elektrostatische Anziehung sowie die niedrige Koordinationszahl von Zn1 im Gegensatz zu Zn2 und Zn3. Aufgrund der intramolekular herrschenden Abstoßung im PBaPZnPZn-Ring und der van der Waals-Bindung mit den benachbarten Siliciumatomen der sperrigen tertButyl-Reste am Phosphor neigt der P1-Zn1-P2-Winkel

mit einem Wert von 168.31° von der linearen Koordination ab. Die Zinkatome im (P-Zn)₂-Ring (Zn2,Zn3) sind wie in den oben beschriebenen Erdalkalimetallphosphanidzinkaten verzerrt trigonal planar koordiniert.

2.3 Alkalimetallzinkate: Synthese und Struktur

2.3.1 Einführung

Wegen ihren Eigenschaften als Polymerisationsinitiatoren und wegen ihrer gesteigerten Reaktivität gegenüber den homoleptischen Verbindungen ZnR₂ und MR sind heterobimetallische Verbindungen mit Zink (MZnR₃, M₂ZnR₄) von grossem Interesse. Im Allgemeinen sind drei präparative Synthesemethoden zur Darstellung von Alkalimetallzinkaten bekannt:

- (i) Die Additionsreaktion von MR und ZnR₂
- (ii) Die Transmetallierung von ZnR₂ durch M
- (iii) Die Methathesereaktion von ZnX₂ mit MR

2.3.2 Synthese, Reaktivität und spektroskopische Charakterisierung

Neuer Syntheseweg zu den Trialkylsilylphosphaniden der Alkalimetalle. Molekülstruktur von Bis[bis(tetrahydrofuran-O)natriumtri(*tert*butyl)silylphosphanid] 20

Lithiumphosphanide des Typs LiPR₂ (R= H, Organyl, Silyl) sind schon seit längerer Zeit bekannt und stellen wichtige Synthone bei der Übertragung von Phosphanidgruppen dar.^[119] Sie bilden, je nach Raumanspruch der Phosphorsubstituenten sowie Absättigung der Metallzentren durch Donoren, Gerüste aus verknüpften polymeren Metall-Phosphor-Einheiten aus und besitzen eine enorme Strukturvielfalt.^{[120][121]} Von den höheren Homologen der Alkalimetalle ist bisher nur wenig bekannt, jedoch sind ihre Strukturprinzipien mit denen der Lithiumphosphanide vergleichbar, zum Teil auch mit höheren Oligomerisierungsgraden.^[122] *Wiberg* und *Mitarbeitern* gelang in den letzten Jahren die Synthese von Lithium- und Natriumphosphaniden, die mit dem äußerst sperrigen Tri(*tert*butyl)silyl-Gruppe substituiert sind.^[123] Substituenten am Phosphoratom mit sterisch anspruchsvollen Resten haben den Vorteil, dass kleinere und lösliche Aggregate ausgebildet werden.

Lithiumphosphanide können durch Metallierung des entsprechenden Phosphans mit ⁿBuLi dargestellt werden.^{[124][125]} Weitere Synthesemöglichkeiten für Phosphanide bietet der Einsatz der entsprechenden Alkalimetall-bis(trimethylsilyl)amide.^{[126][127]}

Wiberg verwendete für die Synthese des Natrium-tri(*tert*butyl)silylphosphanids das Tri(*tert*butyl)silylphosphan und Natriumtri(*tert*butyl)silanid unter Abspaltung des Silans.^[109]

Im Rahmen dieser Arbeit gelingt die Synthese von Kaliumtri(tertbutyl)silylphosphanid 19, welches NMR-spektroskopisch nachgewiesen werden kann, und des auch von Wiberg synthetisierten, und röntgenkristallograpisch bestimmten dimeren **20**. Natriumtri(*tert*butyl)silyphosphanids Wir verwenden jedoch nicht die Alkalimetallsilanide, sondern die reinen Metalle als Metallierungsreagenz. Das Natriumund Kalium-triisopropylsilylphosphanid wurde kurz darauf von Westerhausen und synthetisiert.^[128] demselben Weg Für auf das Mitarbeitern Kaliumtri(tertbutyl)silylphosphan 19 erscheint die ³¹P-NMR-Resonanz in dem mit dem Lösungsmittel C₆D₆ gemessenen Spektrum bei $\delta = -315.1$ ppm mit einer ¹J_{PH}-Kopplung von 142.3 Hz. Die Resonanz des 29 Si 1 H ${}$ -NMR-Spektrums, ebenfalls in C₆D₆, erscheint bei δ = 35.4. Die Ausbeute ist laut NMR-Experiment fast quantitativ. Die ³¹P-NMR-Verschiebung für das Natriumtri(*tert*butyl)silylphosphanid liegt bei $\delta = 329.1$ in C₆D₆ mit einer 1JPH-Kopplung von 164.2 Hz. Man beobachtet eine mit der Größe des Alkalimetallatoms

zunehmende

Tieffeldverschiebung. Die ²⁹Si{¹H}-NMR Resonanz von **20** im Lösungsmittel C₆D₆ erscheint bei δ = 33.3 ppm. Die ¹³C{¹H}-NMR- sowie die ¹H-NMR-Resonanzen der beiden Phosphanide **19** und **20** erscheinen in ähnlichen Bereichen.

Abbildung 2.3.1 Molekülstruktur und Nummerierungsschema von dimerem Natriumtri*tert*butylsilyphosphanids **20**. Alle Kohlenstoffatome sind mit willkürlichen Radien dargestellt. Aus Gründen der Übersichtlichkeit wurde auf die Wiedergabe der Wasserstoffatome verzichtet. Die Thermalellipsoide der restlichen Schweratome repräsentieren eine Aufenthaltswahrscheinlichkeit von 50%

P-Si 2.187(2) Å, Na-O2 2.289(4) Å, Na-O1 2.3278(5) Å; O-Na-O 91.2(8)°.

Verbindung 20 kristallisiert in der monoklinen Raumgruppe Molekülstruktur und $P2_1/n$. Nummerierungsschema sind in Abbildung 2.3.1 abgebildet. die Atome. durch die Symmetrieoperation (1-x, -y, 1-z) erzeugt wurden, sind mit einem nachgestellten Apostroph gekennzeichnet. Die Strukturdaten sind mit denen von Wiberg und Mitarbeitern fast identisch.^[109] Verbindung 20 $(NaP)_2$ enthält einen Vierring mit trans-orientierten Silylgruppen und einen Bindungsabstand Na-P/Na'-P von 2.825(2) Å /2.831(2) Å. Die Na-P-Na/P-Na-P-Bindungswinkel betragen 85.03(7)°/94.97(7)°. Weitere wichtige Bindungsparameter:

Alkalimetall-tri(tertbutyl)silylphosphanylzinkate 21, 22 und 23

Die Reaktion von Dimethylzink mit Tri(*tert*butyl)silylphosphan in Toluol führt, wie bereits oben beschrieben, zu Methylzink-tri(*tert*butyl)silylphosphanid **1**, welches dimer in Lösung und tetramer im festen Zustand vorliegt.^[22]

Die Deprotonierung von 1 mit Natrium oder Kalium in 1,2 Dimethoxyethan (DME) führt dem Solvens getrennten Ionen-Paaren $[(DME)_3Na]^+$ $[(DME)Na(\mu_3 -$ ZU $PSitBu_3)_2(ZnMe)_2$ **21** und $[(DME)_3K]^+$ $[(DME)K(\mu_3-PSitBu_3)_2(ZnMe)_2]^{-1}$ 22. Verbindung 21 kann als farbloses Dimer auskristallisiert werden, (Gleichung 2.3.1.). wogegen Verbindung 22 NMR-spektroskopisch nachgewiesen werden kann. Die Reaktion mit einem Überschuss an Tri(tertbutyl)silylphosphan mit Kalium in THF führt zum farblosen dimeren Komplex [${(THF)_4K_2(\mu-P(H)SitBu_3)}(\mu_4-PSitBu_3)ZnMe]_2$ 23 (Gleichung 2.3.1.) mit einer Ausbeute von 33%. In dieser Reaktion dienen Kaliumtri(tertbutyl)silylphosphanid, welches sich leicht aus H2PSitBu3 und Kaliummetall herstellen lässt, als auch Kaliummetall als metallierende Reagenzien. In beiden Molekülen bleibt das grundlegende strukturelle Element, die (MeZn)₂(PSitBu₃)₂-Einheit erhalten. Während in $[(DME)_3Na]^+$ $[(DME)Na(\mu_3-PSitBu_3)_2(ZnMe)_2]^-$ 21 dieses Fragment gefaltet vorliegt, bildet es in [{(thf)₄K₂(μ -P(H)SitBu₃)}(μ ₄-PSitBu₃)ZnMe]₂ 23 einen zentrosymmetrischen viergliedrigen Zn₂P₂-Ring. Beide Zinkate sind extrem luftund feuchtigkeitsempfindlich. Deswegen müssen die Einkristalle bei tiefer Temperatur und im entsprechenden Lösungsmittel gehandhabt werden. Die ³¹P{¹H}-NMR-Resonanzen von 21 und Kalium-tri(*tert*butyl)silylphosphanylzinkat 22 liegen bei $\delta = -$ 270.3 bzw. δ = -259.2. Man beobachtet mit zunehmender Größe des Alkalimetalls eine zunehmende Tieffeldverschiebung. Für Verbindung 23 erhält man im ³¹P-NMR-Spektrum zwei Resonanzen. Eine liegt mit $\delta = -308.7$ ppm weit im Tieffeld und spaltet in ein Dublett auf und entspricht somit der Kaliumphosphanid-Einheit. Die Kopplungskonstante beträgt 154 Hz. Das andere Signal erscheint bei einer chemischen Verschiebung von $\delta = -260.70$ und entspricht der Phosphandiideinheit.

Die chemischen Verschiebungen der ¹³C-NMR- und ¹H-NMR-Resonanzen für die Alkalimetallphosphanylzinkate **21-23** sind, im Vergleich zum Phosphan, zu tiefem Feld hin verschoben und liegen in ähnlichen Bereichen.

Gleichung 2.3.1: Darstellung der Alkalimetallphosphanylzinkate $[(DME)_3Na]^+$ $[(DME)Na(\mu_3-PSitBu_3)_2(ZnMe)_2]^-$ 21, $[(DME)_3K]^+$ $[(DME)K(\mu_3-PSitBu_3)_2(ZnMe)_2]^-$ 22 und dem dimeren $[{(THF)_4K_2(\mu-P(H)SitBu_3)}(\mu_4-PSitBu_3)ZnMe]_2$ 23.
Molekülstruktur der Alkalimetall-tri(tertbutyl)silylphosphanylzinkate 21 und 23

Für eine Kristallstrukturanalyse geeignete Einkristalle von $[(DME)_3Na]^+$ $[(DME)Na(\mu_3-PSitBu_3)_2(ZnMe)_2]^-$ **21** und $[\{(thf)_4K_2(\mu-P(H)SitBu_3)\}(\mu_4-PSitBu_3)ZnMe]_2$ **23** scheiden sich aus einer Lösung von Toluol mit DME bzw. THF bei -20°C im Laufe einiger Tage ab. Während der Messung wurde ein Abfall der Reflexintensität beobachtet. Lösungsmittelmoleküle sind zwischen den Verbindungen eingelagert und eine freie Verfeinerung gelang nicht. Kristallographische Daten sowie Angaben zur Messung der Reflexintensitäten und zur Strukturbestimmung sind im Kapitel 3 zusammengestellt.

Die Molekülstruktur und das Nummerierungsschema des Anions in **21** ist in *Abbildung* 2.3.2 wiedergegeben. Die Kationen $[(DME)_3Na]^+$ werden aus Gründen der Übersichtlichkeit weggelassen.

Die zentrale Struktureinheit ist eine trigonale Bipyramide mit den Phosphoratomen in den apikalen Positionen. Zwei dieser Einheiten sind über zwei überbrückende DME-Einheiten verbunden.

Die Na1-P1-und Na1-P2-Bindungslängen mitWerten von 285.3 pm sind kürzer als jene in [(DME)NaP(H)Si*t*Bu₃]∞ mit einer mittleren Länge von 291.4 pm.^[114] Grund hierfür ist die höhere negative Ladung am Phosphoratom bei Verbindung **21**.

Die Zn-P-Bindungslängen sind um mehr als 10 pm kürzer als jene in Tetrakis[methylzink-tri(*tert*butyl)silylphosphanid] **5**. Gründe hierfür liegen in der kleineren Koordinationszahl am Phosphoratom und der gestiegenen elektrostatischen Anziehung zwischen den Phosphandiiden und dem Zinkatom.

Die Si-P-Bindungslängen liegen mit mittleren Werten von 221.2 pm in einem charakteristischen Bereich für P-Si-Abstände.

Abbildung 2.3.2 Molekülstruktur und Nummerierungsschema des Anions von $[(DME)_3Na]^+$ $[(DME)Na(\mu_3-PSitBu_3)_2(ZnMe)_2]^-$ 21. Symmetriegenerierte Atome (1-x, 1-y, 1-z) sind mit einem Apostroph gekennzeichnet. Alle Kohlenstoffatome sind mit willkürlichen Radien dargestellt. Aus Gründen der Übersichtlichkeit wurde auf die Wiedergabe der Wasserstoffatome verzichtet. Die Thermalellipsoide der restlichen Schweratome repräsentieren eine Aufenthaltswahrscheinlichkeit von 50%.

Die Molekülstruktur und das Nummerierungsschema von **23** ist in *Abbildung 2.3.3* wiedergegeben.

Das zentrale Strukturfragment ist der zentrosymmetrische planare Zn_2P_2 -Ring mit sehr kurzen Zn-P-Bindungen vergleichbar mit denen in **21**. Das penta-koordinierte Phosphoratom P1 zeigt extrem unterschiedliche Bindungslängen zu den Kaliumatomen. So betragen die K1-P2-Bindungslängen 333.2 pm, während der K2-P1-Wert 349.3 pm beträgt. Die Bindungslängen von K1-P2 und K2-P2 mit den Werten von 319.2 pm und 326.4 pm unterscheiden sich ebenfalls, sind aber im Mittel viel kürzer als die Bindungslängen zu den Phospandiid Substituenten. Diese Tatsache ist auf den sterisch höheren Anspruch des penta-koordinierten P1-Atoms zurückzuführen.

Abbildung 2.3.2 Molekülstruktur und Nummerierungsschema von $[{(THF)_4K_2(\mu-P(H)SitBu_3)}(\mu_4-P(H)SitBu_3)ZnMe]_2$ 23. Symmetriegenerierte Atome (1-x, 1-y, 1-z) sind mit einem Apostroph gekennzeichnet. Alle Kohlenstoffatome sind mit willkürlichen Radien dargestellt. Aus Gründen der Übersichtlichkeit wurde auf die Wiedergabe der Wasserstoffatome verzichtet. Die Thermalellipsoide der restlichen Schweratome repräsentieren eine Aufenthaltswahrscheinlichkeit von 50%.

Die Strukturparameter erlauben eine Beschreibung als $[(THF)_2K(MeZn)PSitBu_3]_2\cdot 2$ (thf)₂KP(H)SitBu₃. In (18-Krone-6)KP(H)SitBu₃ wurde eine ebenfalls ziemlich lange K-P Bindung von 335.3 pm beobachtet.^[114] Hier wird das Kaliumatom jedoch siebenfach koordiniert.

Das zentrale Fragment dieser beiden Alkalimetallphosphanylzinkate ist die $[(MeZn)(\mu-PSitBu_3)_2]^2$ -Einheit mit dem viergliedrigen Zn₂P₂-Ring, welcher gefaltet in $[(DME)_3Na]^+$ $[(DME)Na(\mu_3-PSitBu_3)_2(ZnMe)_2]^-$ **21** und planar in $[{(THF)_4K_2(\mu-P(H)SitBu_3)}(\mu_4-PSitBu_3)ZnMe]_2$ **23** vorliegt. Die Zink Atome liegen wiederum in einer verzerrt trigonal planaren Umgebung vor. Die Phosphoratome zeigen Koordinationszahlen von vier und fünf. Im Gegensatz zu den Natrium und Kaliumzinkaten mit Amino Substituenten wurden jedoch keine "inveresen Kronenstrukturen" beobachtet.^[129]

Alkalimetall-tri(tertbutyl)silylphosphanyloxozinkate 24, 25 und 26

Wie bereits oben beschrieben führt die Metallierung Alkylzink der Trialkysilylphosphanide mit Alkalimetallen zu den Komplexen 21-23 mit einem zentralen Zn₂P₂-Ring (*Gleichung* 2.3.1). Die Alkalimetalle binden an die Phosphorliganden und führen so zu einer tetraedrischen Koordination des Phosphors.^[22] In den zwei Molekülstrukturen von $[(DME)_3Na^+]$ $[(DME)Na(\mu_3-PSitBu_3)_2(ZnMe)_2]^-$ 21 $[{(THF)_4K_2(\mu-P(H)SitBu_3)}(\mu_4-PSitBu_3)ZnMe]_2$ 23 zeigt der Zn₂P₂-Ring und Strukturflexibilität, da in 21 ein gefalteter Ring und in 23 ein zentrosymmetrischer Ring beobachtet wird. Während der Synthese und Isolation der Alkalimetalltri(tertbutyl)silylphosphanylzinkate sowie in Untersuchungen bezüglich derer Reaktivität wird eine extreme Feuchtigkeitsempfindlichkeit beobachtet. Deswegen werden Hydrolyse-Reaktionen untersucht, um eine Möglichkeit der Synthese von organometallischen Molekülen mit Sauerstoffanionen zu erlangen.

Die Verbindung $[(DME)_3K]^+$ $[(DME)K(\mu_3-PSitBu_3)_2(ZnMe)_2]^-$ 22 reagiert mit Feuchtigkeit nach *Gleichung* 2.3.2 zu dem Kalium-oxotri(*tert*butyl)silylphosphanidylzinkat **24.** Die Resonanz im ³¹P{¹H}-NMR-erscheint bei $\delta = -248.40$ und ist verglichen mit dem Tri(*tert*butyl)silylphosphan zu tiefem Feld hin verschoben.

Gleichung 2.3.1: Darstellung von $[(thf)(\eta^6-toluene)K_2]_2 [(MeZn)_4Zn_2(\mu_3-PSitBu_3)_4(\mu_6-O)_2]$ 24 durch Hydrolyse von $[(THF)_nK]^+ [(THF)K(\mu_3-PSitBu_3)_2(ZnMe)_2]^-$.

Durch die uns nun bekannte Verbindung **22**, mit THF als Ligand, werden die Komponenten Kalium, Dimethylzink und Tri(*tert*butyl)silylphosphan in stöchiometrisch molaren Verhältnissen von 2:3:2 in einem Lösungsmittelgemisch aus THF und Toluol gegeben. Über diese Reaktionslösung wird dann für wenige Minuten Luft geleitet und für mehrere Tage bei Raumtemperatur gerührt. Nach Reduktion des Volumens und durch Kühlen auf 4 °C können Kristalle von $[(THF)(\eta^6-Toluol)K_2]_2$ $[(MeZn)_4Zn_2(\mu_3-PSitBu_3)_4(\mu_6-O)_2]$ **24** isoliert werden. Die Koordinationssphären des Kaliums werden durch die Lösungsmittelmoleküle THF und Toluol abgesättigt.

Abbildung 2.3.3 [(MeZn)₄Zn₂(μ_3 -PSitBu₃)₄(μ_6 -O)₂] **25**.

Ein kleinerer Gehalt an Wasser führt zur Bildung von Kristallen des Komplexes $[Zn(PSitBu_3)_2K_4(THF)_6]_2$ [(MeZn)_4Zn_2(µ_3-PSitBu_3)_4(µ_6-O)_2] **25** (Abbildung 2.3.3), neben Tri(*tert*butyl)silylphosphan und **24**. Der zentrale Käfig von **24** bleibt erhalten, jedoch koordinieren nun noch Kalium-phosphandiidozink-Einheiten an den zentralen Käfig. Die Koordinationszahl der inneren Kaliumatome ist sehr klein, da diese durch die sperrigen Tri(*tert*butyl)silyl- Einheiten abgeschirmt werden. Die Reaktion wird wiederholt und anstelle des Kaliums wird das weichere Cäsiummetall verwendet und zu einer Lösung von Methylzink-tri(*tert*butyl)silylphosphanid in THF und Toluol gegeben. Nach Austausch des Inertgases durch Luft für kurze Zeit und sofortiger Aufarbeitung, werden Kristalle von [(THF)₃Cs₂]₂ [(MeZn)₄Zn₂(μ_3 -PSitBu₃)₄(μ_6 -O)₂] **26**

erhalten (*Abbildung 2.3.4*). Das zentrale Strukturfragment ist identisch mit dem in **24** und **25**. Das größere Alkalimetall ist an das Oxid des Käfiges und an ein THF-Lösungsmittelmoleküle gebunden. Ein weiteres THF verbrückt die zwei Caesium-Kationen.

Die Zugabe von Wasser bzw. Wasserdampf führt zu einer Zersetzung und zu bisher unbekannten Hydrolyseprodukten. Als ein Hauptprodukt der Hydrolyse bildet sich das Tri(*tert*butyl)silylphosphan, beobachtet durch

Tri(*tert*butyl)silylphosphan, beobachtet durch ³¹P-NMR-Spektroskopie. Ausgewählte NMR-Daten der Verbindungen **24**, **25** und **26** werden in Tabelle 2.3.1 wiedergegeben.

Verbindung	24	25	26
$^{1}\mathrm{H}$			
[ZnMe]	-0.33	n.b	-0.32
δ [^t Bu]	1.40	n.b.	1.45
¹³ C{ ¹ H}			
δ [^t Bu]	32.47	33.41	31.92
$\delta [C_q]$	24.27	n.b	23.27
³¹ P{ ¹ H}			
δ [PSi/ ^t Bu ₃]	-248.4	-246.4	-242.1
δ KP(sSitBu ₃)Zn		-251.0	

Tabelle 2.3.1: Ausgewählte NMR-Daten der Verbindungen 24, 25 und 26. Chemische Verschiebungen in [ppm].

Molekülstrukturen der Alkalimetall-tri(*tert*butyl)silylphosphanyloxozinkate 24, 25 und 26

Kalium-tri(*tert*butyl)silylphosphanyloxozinkat 24, $[Zn(PSitBu_3)_2K_4(THF_6]_2$ $[(MeZn)_4Zn_2(\mu_3-PSitBu_3)_4(\mu_6-O)_2]$ 25 und $[(THF)_3Cs_2]_2$ $[(MeZn)_4Zn_2(\mu_3-PSitBu_3)_4(\mu_6-O)_2]$ 26 kristallisieren in der triklinen Raumgruppe P $\overline{1}$. Die Ortskoordinaten und Auslenkungsparameter von 24, 25 und 26 sind Kapitel 3 zu entnehmen. Ausgewählte Bindugslängen von 24, 25 und 26 sind in *Tabelle 2.3.2* dargestellt. Die Molekülstrukturen und die Nummerierungsschemata von Verbindung 24, 25 und 26 sind in den *Abbildungen 2.3.5, 2.3.6* und *2.3.7* wiedergegeben. Symmetriegenerierte Atome sind jeweils mit einem Apostroph gekennzeichnet.

Das innere $Zn_6O_2P_4$ -Fragment der Strukturen **24-26** ist ein doppelter, leicht verzerrter Heterokubankäfig, mit einem zentralen Zn_2O_2 Ring, und zwei äußeren Zn_2P_2 -Vierringen.

Abbildung 2.3.5: Molekülstruktur und Nummerierungsschema von $[(THF(\eta^6-toluene)K_2]_2$ $[(MeZn)_4Zn_2(\mu_3-PSitBu_3)_4(\mu_4-O)_2]$ 24. Symmetriegenerierte Atome (1-x,1-y,-z) sind mit einem Apostroph gekennzeichnet. Alle Kohlenstoffatome sind mit willkürlichen Radien dargestellt. Aus Gründen der Übersichtlichkeit wurde auf die Wiedergabe der Wasserstoffatome verzichtet. Die Thermalellipsoide der restlichen Schweratome repräsentieren eine Aufenthaltswahrscheinlichkeit von 50%

Gang der Untersuchung

Die Hauptursache für die Abweichungen von der Würefelgeometrie sind den unterschiedlichen Radien von Sauerstoff und dem Phosphor zuzuschreiben.

Die außenliegenden tetra-koordinierten Phosphoratome sind zu den extrem sperrigen tri(*tertB*utyl)gruppen gebunden. Die äußeren Zinkatome tragen noch die Methyl-Substituenten, während die inneren Zinkatome wie die äußeren zwar vierfach koordiniert sind, aber keine Alkylsubstituenten mehr tragen.

Abbildung 2.3.6 Molekülstruktur und Nummerierungsschema von $[Zn(PSitBu_3)_2K_4(THF)_6]_2$ $[(MeZn)_4Zn_2(\mu_3-PSitBu_3)_4(\mu_6-O)_2]$ 25. Symmetriegenerierte Atome (1 -x,-y-1,-z+4) sind mit einem Apostroph gekennzeichnet. Alle Kohlenstoffatome sind mit willkürlichen Radien dargestellt. Aus Gründen der Übersichtlichkeit wurde auf die Wiedergabe der Wasserstoffatome verzichtet. Die Thermalellipsoide der restlichen Schweratome repräsentieren eine Aufenthaltswahrscheinlichkeit von 50%.

Die Sauerstoffatome koordinieren zu den angrenzenden Alkalimetallen Kalium für 24 und 25 und dem Cäsium für 26. Deswegen stellen die Oxidanionen das Zentrum von einem verzerrten M₂Zn₄-Oktaeder mit den elektropositiven Metallen in cis-Stellung dar. Die Tatsache, dass die äußeren Zinkatome noch an die Alkylgruppen gebunden sind, reduziert deren Ladung im Vergleich zu den inneren Zinkatomen. Die elektrostatische Anziehung der Anionen zu den inneren Zinkatomen führt zu einer Verkürzung der Bindungen zu den benachbarten Phosphoratomen und den Sauerstoffatomen.

Abbildung 2.3.7 Molekülstruktur und Nummerierungsschema von $[(THF)_3Cs_2]_2$ $[(MeZn)_4Zn_2(\mu_3-PSitBu_3)_4(\mu_6-O)_2]$ **26**. Symmetriegenerierte Atome (-x,2-y,1-z) sind mit einem Apostroph gekennzeichnet. Alle Kohlenstoffatome sind mit willkürlichen Radien dargestellt. Aus Gründen der Übersichtlichkeit wurde auf die Wiedergabe der Wasserstoffatome verzichtet. Die Thermalellipsoide der restlichen Schweratome repräsentieren eine Aufenthaltswahrscheinlichkeit von 50%.

Der Zn2-O1 Abstand ist durchschnittlich 10 pm kleiner als die Abstände zwischen Zn1-O1 und Zn3-O1'. Eine vergleichbare Verkürzung der Bindungslängen beobachtet man zwischen den Zn-P-Bindungen. Diese strukturellen Daten ergeben einen doppelten Heterokubus, der in der Zn₂O₂ Ebene zusammengeschnürt wird. Als eine Konsequenz

ergibt sich eine Abweichung der Zn1-O1-Zn3' Winkel bzw. P1-Zn2'-P2' von der linearen Geometrie von 10 °.

Die oktaedrische Umgebung von O1 zeigt eine Verzerrung wegen der längeren Abstände zu den Alkalimetall-Kationen und wegen der Abweichung der M1-O1-Zn2' und M1-O1-Zn2 Winkel (M = K, Cs) von der linearen Geometrie. Diese Abweichungen werden von Tri(*tert*Butyl)silyl-Gruppen sperrigen verursacht. welche nur eine kleine Koordinationslücke an O1 offenlassen. Die Alkalimetalle werden so in diese offenen Koordinationsmöglichkeiten "gepresst" und haben dadurch auch kleine Koordinationszahlen. In $[(THF)(\eta^6-Toluol)K_2]_2$ $[(MeZn)_4Zn_2(\mu_3-PSitBu_3)_4(\mu_6-O)_2]$ 24 koordiniern zwei Kaliumatome mit je einem THF-Lösungsmittelmolekül und die anderen an je ein η^6 -gebundenes Toluol. In **26** bindet jedes Cäsium-Atom an ein terminales THF-Molekül und einen verbrückenden THF-Liganden. Dadurch unterscheiden sich die Cs-O Bindungslängen in Abhängigkeit von der Ladung und dem Bindungsmodus. Die Cs(1/2)-O1 Bindungslängen liegen bei einem durchschnittlichen Wert von 293.5 pm, die Bindungslängen zu den terminal gebundenen THF-Molekülen liegen bei 306 pm, wobei der Abstand vom Caesium zu dem verbrückenden THF-Molekül bei 330 pm liegt. Dies ist auch ein Abstand für eine Cs₂(μ -THF) Einheit, wie ihn bereits *Rabe* in (μ -THF)Cs₂[μ - $P(H)C_6H_2-2,4,6-tBu_3]_2$ publizierte.^[130]

Das äußere Fragment in 25 kann als Zn[P(SitBu₃)K(thf)₃]₂ formuliert werden und als Bis[tris(tetrahydrofuran-O)kalium]-bis(trialkylsilylphosphandiylzinkat) betrachtet werden. Durch die kleine Koordinationszahl von zwei für Zn4 wird eine sehr kleine Zn4-P Bindungslänge von 221.2 pm beobachtet. Die Abweichung des P3-Zn4-P4-Winkels mit 163.38(8)° von der linearen Geometrie ist ein Charakteristikum für ein solches Strukturfragment und wurde bereits früher beobachtet.^{[13][22][58]}

Das Anion $[(MeZn)_4Zn_2(\mu_3-PSitBu_3)_4(\mu_4-O)_2]^{4-}$ ist das einzige Sauerstoff beinhaltende Produkt, welches während der Protolyse von Alkalimetallphosphanylzinkaten beobachtet wurde. Ein Sauerstoffdefizit führt zur Bildung eines Zinkat- Fragmentes, welches außen an die Alkalimetalle bindet. Ein Überschuß an Wasser führt zur Zersetzung und zur Bildung bisher unbekannter Verbindungen.

Da die Koordinationsstellen durch die großen sperrigen Tri(*tert*butyl)silyl-Gruppen abgeschirmt werden, ist eine weitergehende Aggregation der beiden $[(MeZn)_4Zn_2(\mu_3-PSitBu_3)_4(\mu_4-O)_2]^{4-}$ Anionen nicht möglich. Diese Komplexe zeigen auch, wie schnell durch Zugabe von Wasser große Käfige gebildet werden können.

Verbindungen	24	25	26
O1-Zn1	216.4(3)	214.6(4)	213.1(4)
O1-Zn2	206.2(3)	209.2(4)	207.0(4)
O1-Zn3'	216.2(3)	214.6(4)	211.8(4)
O1-Zn2'	208.6(3)	208.4(4)	208.1(4)
Zn1-P1	247.0(2)	245.8(2)	246.7(3)
Zn1-P2	243.4(2)	246.2(2)	247.5(3)
Zn1-C25	203.4(8)	202.9(7)	203.4(6)
Zn2-P1	233.3(2)	232.5(1)	233.6(2)
Zn2-P2'	233.4(2)	233.2(1)	233.6(3)
Zn3-P2	244.3(1)	245.8(2)	245.8(3)
Zn3-P1	248.4(2)	245.4(2)	244.5(3)
Zn3-C26	203.2(7)	203.2(7)	202.7(8)
P1-Si1	221.7(2)	219.4(3)	220.8(3)
P2-Si2	221.7(3)	220.0(3)	221.1(3)
Zn1-O1-Zn2	93.7(1)	91.8(1)	92.9(1)
Zn1-O1-Zn2'	93.1(1)	92.4(1)	92.5(1)
Zn1-O1-Zn3'	172.9(2)	173.8(2)	173.4(2)
Zn2-O1-Zn2'	87.4(1)	87.1(1)	88.2(1)
Zn2-O1-Zn3'	91.3(1)	91.9(2)	91.8(1)
Zn3'-O1-Zn2'	92.2(1)	92.8(1)	92.3(1)
M1-O1-Zn2'	168.9(1)	175.2(1)	176.4(2)
M2-O1-Zn2	174.7(1)	176.5(1)	178.0(2)

*Tabelle 2.3.*2: Ausgewählte Bindungsparameter und die Koordinationsspäre vom Sauerstoffatom des $[(MeZn)_4Zn_2(\mu_4-O)_2(\mu_3-PSitBu_3)_4]^4$ Anions in **24**, **25** und **26** mit M = K (**24** und **25**), Cs (**26**). Bindungslängen [pm], Bindungswinkel [°].

Bis[(tetrahydrofuran-O)natrium-tris(ethylzink)-bis(triisopropylsilylarsandiid)] 27

In Anbetracht der Ergebnisse der Metallierungen von Tri(isopropyl)silylphosphan bzw. Tri(tertbutyl)silylphosphan mit Dialkylzink werden die Untersuchungen auf das nächst höhere homologe Pentelan ausgedehnt. Tri(isopropyl)silylarsan wird nach einer Anleitung von Westerhausen und Mitarbeiteren durch Umsetzung von (Dimethoxyethan-O,O')lithiumarsanid mit der stöchiometrischen Menge Triisopropylsilylchlorid dargestellt.^[134] Zur Synthese von Natrium-tri(isopropyl)silylarsanid wird Triisopropylsilylarsan Abspaltung Hexamethyldisilazan mit unter von Natriumbis(trimethylsilylamid) Reaktion umgesetzt. Durch von Natriumtri(isopropyl)silylarsanid Triisopropylsilylarsan Diethylzink und mit konnte Bis[(tetrahydrofuran-O)natrium-tris(ethylzink)-bis(triisopropylsilylarsandiid)] 27 quantitativ dargestellt und isoliert werden. (*Gleichung 2.3.2*)

Gleichung 2.3.2: Darstellung von Bis[(tetrahydrofuran-O)natrium-tris(ethylzink)-bis(triisopropylsilylarsandiid)] **27**.

Die chemischen Verschiebungen der Triisopropylsilyl-Substituenten liegen im ¹H-NMR mit Werten von $\delta = 1,32$ im erwarteten Bereich und sind im Vergleich zum Tri(isopropyl)silylarsan zu tiefem Feld verschoben.^{[131][132]} Im ²⁹Si{¹H}-NMR-Spektrum wird kein Signal beobachtet. Das hohe Quadrupolmoment des Arsens führt möglicherweise zur Verbreiterung des Arsandiid-Signals, so dass es im Spektrum nicht beobachtet werden kann.^[133]

Verbindung 27 kristallisiert in der monoklinen Raumgruppe P2/c. Kristallographische Daten sowie Angaben zur Messung der Reflexintensitäten und zur Kristallstrukturbestimmung sind im Kapitel 3 zusammengestellt. Die Verfeinerung der Schweratome gelang anisotrop, die Wasserstoffatome wurden unter Vorgabe idealer Geometrie am entsprechenden Kohlenstoffatom mitgeführt. Die Molekülstruktur und das Nummerierungsschema sind in *Abbildung 2.3.*8 dargestellt. Symmetriegenerierte Atome sind mit einem Apostroph gekennzeichnet.

Abbildung 2.3.8 Molekülstruktur und Nummerierungsschema von Bis[(tetrahydrofuran-O)natriumtris(ethylzink)-bis(triisopropylsilylarsandiid)] **27**. Alle Kohlenstoffatome sind mit willkürlichen Radien dargestellt. Aus Gründen der Übersichtlichkeit wurde auf die Wiedergabe der Wasserstoffatome und der Fehlordnungen verzichtet. Die Thermalellipsoide der restlichen Schweratome repräsentieren eine Aufenthaltswahrscheinlichkeit von 40%.

Ausgewählte Bindungslänge [Å]: Na-O 2.252(1), Na-As1 3.014(2), As1-Zn1 2.518(1), As1-Zn1 2.543(2), Na-C23 2.955(1), C11-Na 2.941(1), As1-Zn2 2.481(1), As2-Zn2 2.471(1), Na-As2 3.091(2), As2-Zn3 2.598(1), Zn3-As2 2.467(1), As2'-Si2' 2.405(2), As1-Si1 2.354(1). Bindungswinkel [°]: As1-Na-As2 86.79(1), Zn1-As1-Zn1' 69.0(6), As1-Zn1-As1' 107.7(1), Zn2-As1-Na 112.9(5), Zn3-As2-Na 127.2(1), C21-Zn2-As1 126.46(5), As1-Zn2-As2 102.48(6), As2-Zn2-C21 131.06(6), As2-Zn3-As2' 107.28(4), As2'-Zn3-C23 138.29(6). As2-Zn3-C23 114.18(6), As1-Zn1-As1' 107.72(6), As1-Zn1-C10 120.95(6), As1-Zn1-C10 131.25(7).

Der Grundkörper der Struktur sind zwei Zn₂As₂-Ringe. Die Arsandiid-Einheiten dieser Fragmente sind jeweils abwechselnd über ein Zinkalkyl-Fragment und ein Natrium-Kation miteinander verknüpft. Die Koordinationssphäre des Natrium-Kations wird mit einem THF-Lösungsmittelmolekül vervollständigt. Der Bindungsabstand zwischen dem Natriumatom und dem Sauerstoffatom der THF-Moleküle beträgt 225.2(1) pm und ist zu den Abständen im Anion $[{H_2Al}_3AsSiiPr_3)_3}_2Na_4(thf)_5]^{2-}$, die dort zum terminalen THF einen Wert von 222.6(3) pm aufweisen.^[134] Um 7 pm kürzer ist der Na-O1 Abstand von 27 gegenüber jenem in Bis[bistetrahydrofuran-O-natrium-tri(*tert*butyl)silylphosphanid] 20 und um 20 pm kürzer als in dem von DME koordinierten Bis[(1,2-dimethoxyethan-O,O')natrium-tri(*tert*butyl)silylphosphanid].^[112]

Grund hierfür ist die kleine Koordinationszahl des Natriums in **27**. Das Natriumatom ist trigonal planar von As1, As2 und dem Sauerstoffatom von THF umgeben. Die freien Koordinationsstellen werden durch agostische Wechselwirkungen abgesättigt.

Die Zinkatome der Ringe (Zn1 und Zn3) sowie das überbrückende Zn2-Atom zwischen den Ringen liegen im Rahmen der Standardabweichung, in einer planaren Umgebung.

Die Bindungsabstände der As-Zn-Atome liegen bei einem mittleren Wert von 247.5 pm. Im Vergleich dazu weisen die verbrückenden Trimethylsilylarsanyl-Substituenten im dimeren Bis[bis(trimethylsilyl)arsanyl]zink Zn-As-Bindungsabstände von 238 pm auf.^[57] Der As1-Si1 Abstand liegt bei 235 pm und somit im erwarteten Bereich.^{[65][117][118][119]} Wegen einer Fehlordnung lässt sich der As2-Si2-Abstand nicht als Referenz heranziehen. Die Na-As-Bindungen in **27** sind 301.4(2) pm lang, in den Verbindungen [(diox)NaAsPh₂]_∞ werden Na-As-Bindungslängen von 293.7 bis 296.2 pm beobachtet.^[135] Im Anion [{H₂Al}₃AsSiiPr₃)₃}₂Na₄(thf)₅]²⁻ sind die Bindungen 300.7 bis 324.7 pm lang.^[119]

3. Experimenteller Teil

3.1 Analytik

Alle Arbeiten wurden in einer Atmosphäre von nachgereinigtem und getrocknetem Argon der Fa. Linde (Ag, Reinheitsgrad 4.8) an einer Vakuumapparatur vorgenommen. Die Reaktionen wurden, sofern nicht anders angegeben, in Schlenk-Rohren oder - Kolben^[136] unter Argon durchgeführt.

Die verwendeten Lösungsmittel wurden nach den Standardvorschriften^[137] getrocknet. Die deuterierten Lösungsmittel wurden vor Anwendung über Molekularsieb getrocknet, entgast und mit Argon gesättigt. Die Ausbeuten wurden nicht optimiert.

Die Kernresonanzspektren wurden nach der Fourier-Transform- Methode aufgenommen. Dafür standen die Geräte

- Jeol GSX 270 (¹H: 270.17 MHz, ¹³C: 67.94 MHz, ²⁹Si: 53.67 MHz, ³¹P: 109.37)

- Jeol GSX-400)1H: 399.78 MHz, 13C: 100.41 MHz, 29Si 79.31 MHz, 31P:161.84 MHz)

- Jeol 400e (gleiche Daten wie bei Jeol GSX-400).

zur Verfügung.

Die chemische Verschiebung für ¹H- und ¹³C-NMR–Spektren beziehen sich auf die Signale des verwendeten deuterierten Lösemittels, bezogen auf Tetramethylsilan. Bei den ³¹P-NMR-Messungen wurde als externer Standard 85%ige Phosphorsäure und für die ²⁹Si-NMR-Spektren Tetramethylsilan verwendet. Wenn nichts anderes angegeben wurde, erfolgten die Messungen bei Zimmertemperatur und im deuterierten Lösungsmittel C₆D₆. Die chemischen Verschiebungen (δ) sind in ppm angegeben, positive δ -Werte stehen für Tieffeldverschiebungen. Zur Angabe der Multiplizität der Signale werden folgende Abkürzungen verwendet: s = Singulett, d = Dublett, t = Triplett, q = Quartett, sept. = Septett, m = Multiplett, br = breites Signal. Die Kopplungskonstanten (J) sind in Hz angegeben, ihre Vorzeichen wurden nicht bestimmt. Die Aufzeichnung und Bearbeitung der Schwingunsspektren erfolgte an den Fourier-Transformation-Infrarotspektrometern Perkin Elmer 841 und Nicolet 520 FT-IR. Feststoffe wurden als Nujol-Verreibungen, Flüssigkeiten in Reinsubstanz zwischen KBr-Presslingen vermessen (soweit nicht anders angegeben). Die vom Nujol überlagerten Banden werden nicht aufgeführt. Zur Abschätzung der Intensitäten in den IR- Spektren dienten folgende Abkürzungen: vw = sehr schwach, w = schwach , m = mittel, s = stark, vs = sehr stark.

Für die Elementaranalysen stand der Analyser Elementar Vario EL der Firma Perkin Elmer zur Verfügung. Da bei den Elementaranalysen meist V_2O_5 als Katalysator zugesetzt wurde, treten wegen Carbid- und Carbonatbildung sowie Ligandenverlust meist zu kleine Kohlenstoff- und zu hohe Wasserstoffwerte auf.

Für die Bestimmung der Schmelzpunkte werden die Verbindungen unter Argon in Glaskapillaren eingeschmolzen und mit einer Apparatur der Firma Büchi (Melting Point B 540) bestimmt.

3.2 Ausgangsverbindungen:

Bis[bis(trimethylsilyl)amino]stannylen

Bis[bis(trimethylsilyl)amino]stannylen wird entsprechend einer Literaturvorschrift von *Lappert* und *Mitarbeitern* durch Umsetzung von zwei Äquivalenten Lithiumbis(trimethylsilyl)amid und Zinn(II)-chlorid in Tetrahydrofuran hergestellt.^[138]

Erdalkalkalimetall-bis[bis(trimethylsilyl)amide]

Die Transmetallierung von Bis[bis(trimethylsilyl)amino]stannylen mit Calcium, Strontium oder Barium führt nach mehrtägigem Rühren bei Zimmertemperatur in Tetrahydrofuran nach der Literaturvorschrift von *Westerhausen* und *Mitarbeitern* in 60 bis 80%igen Ausbeuten zu den Bis(tetrahydrofuran-O)erdalkalimetallbis[bis(trimethylsilyl)amiden] von Calcium, Strontium und Barium.^[139]

Triisopropylsilylphosphan

Durch Lithiierung von PH_3 bei -78°C dargestelltes (Dimethoxyethan-O,O')lithiumphosphanid wird nach Literaturvorschrift von *Westerhausen* und *Löw* in THF bei +4 °C mit der äquivalenten Menge an Triisopropylsilylchlorid umgesetzt. Nach dem Entfernen des Lösemittels und anschließender fraktionierter Vakuumdestillation erhält man Triisopropylsilylphosphan in hohen Ausbeuten.^[52]

Tri(tertbutyl)silylphosphan

(Dimethoxyethan-O,O')lithiumphosphanid wird nach einer Literaturvorschrift von *Wiberg* und *Mitarbeitern* mit der äquivalenten Menge Trifluormethansulfonsäuretri(*tert*butyl)silylester in THF umgesetzt. Nach Entfernen des Lösemittels und anschließender Aufnahme des Rückstandes in Pentan konnte Tri(*tert*butyl)silylphosphan in guten Ausbeuten isoliert werden.^[54]

Triisopropylsilyarsan

(Dimethoxyethan-O,O')lithiumarsanid, dargestellt durch Lithiierung von Arsan bei -78°C, wird in situ bei -10 °C mit der stöchiometrischen Menge an Triisopropylsilylchlorid umgesetzt. Nachdem alle im Vakuum flüchtigen Anteile entfernt worden sind, erhält man das Produkt durch Destillation bei vermindertem Druck in 80%iger Ausbeute.^{[140][134]}

Chemikalien, die aus dem Handel bezogen wurden:

Arsan, Barium, n-Butyllithium (2.5 M in Hexan), *tert*-Butyllithium (1.6 M in Pentan), Calcium, Dibutylmagnesium (1 M in Heptan), Diethylzink (1 M in Hexan), Dimethylzink (2 M in Toluol), Kalium-bis(trimethylsilyl)amid, Kaliumfluorid, Kaliumhydrogendifluorid, Lithium-bis(trimethylsilyl)amid, Natrium, Natriumbis(trimethylsilyl)amid, Strontium, Trichlorsilan, Trifluormethansulfonsäure, Triisopropylsilylchlorid, Zinn(II)chlorid.

3.3 Darstellung der Zinkphosphanide

Bis[methylzink-tri(tertbutyl)silylphosphanid] 1

2 mmol ZnMe₂ (2 M Lösung in Toluol: 1 ml) werden langsam zu 2 mmol (0.47 g) $H_2PSitBu_3$ in 10 ml auf 0 °C gekühltes Toluol getropft.. Nach drei Stunden Rühren erhält man (MeZn(μ -P(H)SitBu_3))₂ als farblosen Niederschlag.

Ausbeute: Schmelzpunkt: 580 mg (93 mmol); *93%* 174°C, gelbliche Schmelze

NMR-Daten [ppm] bei -80°C:

¹H-NMR (270.166 MHz, $[D_8]$ Tol): $\delta = -0.31$ (s, Zn<u>Me</u>), 1.12 (s, tBu).

¹³C{¹H}-NMR (67.933 MHz, [D₈]Tol): δ = -5.62 (br. s, -Zn<u>Me</u>), 23.04 (s, C_q); 30.92 (s, tBu).

³¹P{¹H}-NMR{¹H} (109.365 MHz, [D₈]Tol): δ = -232.44 (s).

³¹P-NMR (109.365 MHz, [D₈]Tol): δ = -232.44 (m, daraus berechnet: ¹J_{PH} = 257 Hz, ²J_{PP} = 60 Hz, ³J_{PH} = 5 Hz, ⁴J_{HH} = <1 Hz).

IR-Daten [Nujol, cm⁻¹]:

2308 w, 1931 vw, 1580 vw, 1466 s, 1388 m, 1365 m, 1262 s, 1097 s, 1012 vs, 931 m, 816 vs, 671 w, 641 vw, 606 w, 563 w, 501 s, 461 w.

Elementaranalyse: (berechnet für $C_{26}H_{58}P_2Si_2Zn_2 = 619.60 \text{ g mol}^{-1}$) [%]: C: 49.40 (50.39) H: 9.23 (9.43).

Bis[ethylzink-tri(tertbutyl)silylphosphanid] 2

Durch langsames Zutropfen von 2 mmol ZnEt₂ (1 M Lösung in Hexan 2 ml) zu 2 mmol (0.47 g) H₂PSitBu₃ in 10 ml auf 0 °C gekühltes Toluol erhält man nach drei Stunden Rühren [EtZn(μ -P(H)SitBu₃)]₂ als farblosen Niederschlag.

Ausbeute: Schmelzpunkt:

464.13 mg (0.71mmol); 71% 181 °C gelbliche Schmelze

NMR-Daten [ppm] bei -80°C:

¹H-NMR (270.166 MHz, [D₈]Tol): $\delta = 2.131.15$ (s, tBu). ¹³C{¹H}-NMR (67.933 MHz, [D₈]Tol): $\delta = 24.09$ (s, C_q); 31.84 (s, tBu). ³¹P{¹H}-NMR (109.365 MHz, [D₈]Tol): $\delta = -231.51$ (br. s). ³¹P-NMR (109.365 MHz, [D₈]Tol) : $\delta = -231.51$ (m, daraus berechnet: ¹J_{PH} = 232 Hz, ²J_{PP} = 56 Hz, ³J_{PH} = 4 Hz, ⁴J_{HH} = <1 Hz).

IR-Daten [Nujol, cm⁻¹]:

2304 w, 1927 w, 1477 vs, 1459 vw, 1441.6 m, 1415 w, 1386 s, 1361 m, 1356 m, 1250 m, 1222 vw, 1212 w, 1178 m, 1159 w, 1098 w, 1029 m, 1011 vs, 910 w, 879 m, 839 m, 695 vw, 668 vw, 624 m.

Elementaranalyse: (berechnet für $C_{28}H_{62}P_2Si_2Zn_2 = 647.65 \text{ g mol}^{-1}$) [%]: C: 48.63 (51.92), H: 9.12 (9.65).

Bis(methylzink-triisopropylsilylphosphanid) 3

Durch Reaktion von 2 mmol ZnMe₂ (2 M Lösung in Toluol: 1 ml) und 2 mmol (0.47 g) H₂PSiiPr₃ in 10 ml auf 0 °C gekühltes Toluol erhält man nach drei Stunden Rühren und nach Einengen der ursprünglichen Lösung (MeZn(μ -P(H)SiiPR₃))₂ als farblosen Niederschlag.

Experimenteller Teil

Ausbeute:	442 mg (0.82 mmol); 82%
Schmelzpunkt:	165 °C Farbänderung zu gelb

NMR-Daten [*ppm*] *bei* -80°*C*:

¹H-NMR (270.166 MHz, [D₈]Tol): δ = -0.35(s, Zn<u>Me</u>), 1.01 (br s, iPr). ¹³C{¹H}-NMR (67.933 MHz, [D₈]Tol): δ = -5.51 (Zn<u>Me</u>), 12:92 (<u>C</u>H); 18.84 (iPr). ³¹P{¹H}-NMR (109.365 MHz, [D₈]Tol): δ = -245.14 (br s). ³¹P-NMR (109.365 MHz, [D₈]Tol): δ = -245.14 (br d, ¹J_{PH} = ca.180 Hz , keine weiteren Berechnungen möglich)

IR-Daten [*Nujol*, *cm*⁻¹]:

2308 w, 1845 w, 1731 w, 1625 vw,1580 s, 1466 s, 1388 m, 1365 m, 1262 s, 1097 s, 1012 vs, 931 m, 816 vs, 675 w, 671 w, 641 vw, 630s, 608 w, 572 w, 505 s.451 w.

Elementaranalyse: (berechnet für $C_{20}H_{48}P_2Si_2Zn_2 = 537.46 \text{ g mol}^{-1}$) [%]: C: 45.13 (44.69), H: 8.96 (9.00)

Bis(ethylzink-triisopropylsilylphosphanid) 4

Durch Reaktion von 2 mmol ZnEt₂ (1 M Lösung in Toluol: 2 ml) und 2 mmol (0.47 g) $H_2PSiiPr_3$ in 10 ml auf 0 °C gekühltes Toluol erhält man nach drei Stunden Rühren (MeZn(μ -P(H)SiiPR₃))₂ als farblosen Niederschlag.

Ausbeute:222 mg (0.39 mmol); 39%Schmelzpunkt:171 °C Farbänderung zu gelb

NMR-Daten [ppm] bei -80°C: ¹H-NMR (270.166 MHz, [D₈]Tol): $\delta = 1.06$ (br s, iPr). ¹³C{¹H}-NMR (67.933 MHz, [D₈]Tol): $\delta = 12:56$ (s, <u>C</u>H); 18.75 (s, iPr). ³¹P{¹H}-NMR (109.365 MHz, [D₈]Tol): $\delta = -245.52$ (s). ³¹P-NMR (109.365 MHz, [D₈]Tol): δ = -244.56 (br d, ¹J_{PH} = ca.195 Hz , keine weiteren Berechnungen möglich)

IR-Daten [*Nujol*, *cm*⁻¹]:

2309 w, 1571 vs, 1560 m, 1431 vs, 1448 vs, 1402 m, 1391 vs, 1379 s, 1361 s, 1261 w, 1186 m, 1098 m, 1011 s, 932 m, 864 vw, 814 vs, 728 w, 719 vw, 694 vw, 612 m, 562 s, 545 m, 507 m, 489 m, 458 m.

Elementaranalyse: (berechnet für $C_{22}H_{52}P_2Si_2Zn_2 = 565.51 \text{ g mol}^{-1}$) [%]: C: 46.07 (46.72), H: 9.01 (9.26).

Tetrakis(methylzink-tri(tertbutyl)silylphosphanid) 5

1 mL (0.52 g) Tri(*tert*butyl)silyl-phosphanid werden in 10 ml auf 0°C gekühltes Toluol vorgelegt und mit 1.1 ml ZnMe₂ (2.0 M Lösung in Toluol: 2.2 mmol) versetzt. Nach drei Stunden Rühren bei 0°C wird die Reaktionslösung auf zwei Drittel der ursprünglichen Volumens eingeengt. Aus der

eingeengten Lösung erhält man Verbindung 5 in Form farbloser Kristalle.

Ausbeute:181 mg (0.12 mmol); 23%Zersetzungspunkt:191 °C

NMR-Daten [*ppm*] (*LM Toluol* D_8 *bei* -80°):

¹H-NMR (270.166 MHz, C_7D_8): $\delta = -0.31(s, ZnMe)$, 1.12 (s, tBu).

¹³C{¹H}-NMR (67.933 MHz, C₇D₈): $\delta = -5.62$ (br. s, -Zn<u>Me</u>), 23.04 (s, C_q); 30.92 (s, tBu).

³¹P{¹H}-NMR (109.365 MHz, C_7D_8 -80°C): $\delta = -232.44$ (s).

³¹P-NMR (109.365 MHz, C_7D_8 -80°C): δ = -232.44 (m, daraus berechnet: ¹J_{PH} = 257 Hz, ²J_{PP} = 60 Hz, ³J_{PH} = 5 Hz, ⁴J_{HH} = <1 Hz). *IR-Daten [Nujol, cm⁻¹]:* 2305 w, 1579 vs, 1557 m, 1478 vs, 1465 vs, 1448 vs, 1402 m, 1391 vs, 1377 s, 1366 s, 1307 vw, 1261 w, 1186 m, 1098 m, 1011 s, 932 m, 864 vw, 814 vs, 728 w, 719 vw, 694 vw, 612 m, 562 s, 545 m, 507 m, 489 m, 458 m, 445 vs, 420w.

Elementaranalyse(berechnet für $C_{52}H_{116}P_4Si_4Zn_4 = 1239.21 \text{ g mol}^{-1})$ [%]: C: 49.30 (50.39), H: 8.38 (9.43).

Bis[bis(tri(tertbutyl)silylphosphanyl)-µ-zinkmethyl-µ-isopropylatozinkat] 6

Zu einer Lösung von 0.5 mmol Bis(zinkmethyltri(*tert*butyl)silylphosphanid) **1** in THF, gibt man 0.25 mmol (0.02 ml) frisch destilliertes Isopropanol bei 0°C zu. Nach Beendigung der Gasentwicklung rührt man bei Raumtemperatur noch 24 Stunden. Die Reaktionslösung wird auf zwei Drittel ihres ursprünglichen Volumens

eingeengt. Durch Kühlen auf –20°C erhält man farblose Kristalle von Verbindung 6.

 Ausbeute:
 0.26 g (0.2 mmol), 83%

 Zersetzungspunkt:
 230°C

NMR-Daten [ppm]:

¹H-NMR (270.166 MHz, C₆D₆): δ = -0.27 (s, ZnC<u>H</u>₃); 1.09 (s, tBu); 1.12 (d, P<u>H</u>, ¹J_{PH} = 185.75 Hz); 1.19 (d, iPr, ³J_{CHiPr} = 6.3 Hz).

¹³C{¹H}-NMR (67.933 MHz, C₆D₆): δ = -3.18 (s, Zn<u>C</u>H₃); 26.59 (s, iPr); 29.21 (s, tBu); 68.72 (s, <u>C</u>H-O).

³¹P-NMR (109.365 MHz, C_6D_6): $\delta = -222.33$ (br s).

IR-Daten [KBr, cm^{-1}]:

2955 vs, 2939 vs, 2907 vs, 2890 vs, 2851vs, 2709 vw, 2632 vw, 2301 w, 1478 s, 1470 s, 1389 s, 1382 s, 1367 s, 1338 w, 1269 vw, 1164 m, 1131 m, 1116 vs, 1013 m, 948 vs, 819 vs, 674 m, 629 m, 607 m, 568 m, 545 s, 535 s, 510 s, 453 m.

Elementaranalyse (berechnet für C₅₆H₁₃₂O₂P₄Si₄Zn₄= 1335.44 g mol⁻¹) [%]: C: 50.03 (50.36); H: 9.90 (9.96).

Tetraethyl- hexazink tetrakis[tri(tertbutyl)silylphosphandiid] 7

In 15 mL Toluol werden 3 mmol ZnEt₂ (1 M Lösung in Hexan: 3 ml) und 2 mmol Tri(*tert*butyl)silylphosphan (1 M Lösung in Heptan: 2 ml) so lang bei Raumtemperatur gerührt, bis sich die farblose Lösung nach gelb verfärbt. Die Reaktionslösung wird auf zwei Drittel ihres ursprünglichen Volumens eingeengt. Bei 4 °C bilden sich im Laufe weniger Tage gelbe rhombenförmige Kristalle von Tetraethyl-

hexazink tetrakis[tri(tertbutyl)silylphosphandiid] 7.

Ausbeute:	0.61 g (0.43 mmol); 86%
Zersetzungspunkt:	250°C

NMR-Daten [ppm]:

¹H-NMR (270.166 MHz, C₆D₆): $\delta = 0.57$ (q, ZnC<u>H</u>₂CH₃ ³J_{H,H} = 7 Hz), 1.16 (t, ZnCH₂C<u>H</u>₃ ³J_{H,H} = 7 Hz), 1.26 (s, tBu). ¹³C{¹H}-NMR (67.933 MHz, C₆D₆): $\delta = 23.53$ (br. s, C_q); 31.45 (s, tBu). ²⁹Si{¹H}-NMR (53.674 MHz, C₆D₆): $\delta = 28.84$ (ps. t, (AA'X) |J(AX)+J(A'X)| = 18 Hz. ³¹P-NMR (109.365 MHz, C₆D₆): $\delta = -249.05$ (d, ²J_{P,P} = 90 Hz).

IR-Daten [Nujol, cm^{-1}]:

1477 vs, 1459 vw, 1441 m, 1415 w, 1386 s, 1361 m, 1356 m, 1250 m, 1222 vw, 1212 w, 1178 m, 1159 w, 1098 w, 1029 m, 1011 vs, 985 m, 952 w, 932 s, 910 w, 879 m, 839 m, 816 vs, 766 vw, 751 vw, 726 vw, 695 vw, 668 vw, 624 m, 606 s, 560 s, 499 vs, 458 m, 430 m, 387 w, 345 vw, 323 w, 289 w.

Elementaranalyse (berechnet für $C_{56}H_{128}P_4Si_4Zn_6= 1430.20 \text{ g mol}^{-1}$) [%]: C: 47.02 (47.23); H: 9.20 (9.03).

3.4 Darstellung der Erdalkalimetallzinkate

Tetrakis(tetrahydrofuran-O)-calcium-[1,3-dimethyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] 8

Synthese 1: Eine Suspension von 2 mmol ZnMe₂ (2M Lösung in Toluol: 1 ml) und 2 mmol (0.47 g) H₂PSitBu₃ in 10 ml Toluol wird durch Zugabe von 5 mL THF gelöst und mit 48 mg (1.2 mmol Calcium) versetzt. Die Reaktionsmischung wird drei Tage gerührt. Das überschüssige Erdalkalimetall wird

mittels einer GIV-Fritte entfernt und die Lösung auf 2/3 ihres ursprünglichen Volumen eingeengt. Durch Kühlen auf fünf Grad erhält man farblose Kristalle.

Synthese 2: Eine Suspension von 2 mmol ZnMe₂ (2M Lösung in Toluol: 1 mL) und 2 mmol H₂PSitBu₃ (0.47 g) in 10 mL Toluol wird durch Zugabe von 5 ml THF gelöst und unter Rühren mit 1.0 mmol Bis(tetrahydrofuran-O)-calcium-bis[bis(trimethylsilyl)amid] (1.01 g) versetzt. Die Reaktionsmischung wird drei Tage gerührt. Die flüchtigen Anteile werden im Vakuum entfernt, und das Produkt in 3 mL THF gelöst. Durch Kühlen auf fünf Grad erhält man farblose Kristalle.

Ausbeute:	Synthese 1: 0.75 g (0.80 mmol), 80%
	Synthese 2: 0.78 g (0.83 mmol), 83%
Zersetzungspunkt:	229 °C

NMR-Daten [ppm]:

¹H-NMR (270.166 MHz, C_6D_6): $\delta = -0.13$ (s, ZnCH₃), 1.20 (s, t-Bu).

¹³C{¹H}-NMR (67.933 MHz, C₆D₆): δ = -2.85 (Zn<u>C</u>H₃), 24.25 (C_q), 32.25 (t-Bu).

²⁹Si{¹H}-NMR (53.674 MHz, C₆D₆): δ = 27.33 (ps. t, (AA'X) |J(AX)+J(A`X)| = 17.03 Hz).

³¹P-NMR (109.365 MHz, C_6D_6): $\delta = -239.15$.

IR-Daten [*Nujol, cm⁻¹*]: 1495m, 1477s, 1468vs, 1446s, 1390s, 1381s, 1367s, 1352s, 1313w, 1295w, 1295w, 1295w, 1245w, 1178m, 1135m, 1124m, 1071s, 1032vs, 1013vs, 965m, 933s, 877vs, 838m, 815vs, 731m, 695m, 661s, 628s, 613s, 597vs, 566vs, 510vs, 459s, 423m, 396m, 387m, 343m, 283m.

Elementaranalyse (berechnet für $C_{42}H_{92}O_4P_2Si_2CaZn_2 = 950.1 \text{ g mol}^{-1}$) [%]: C: 54.05 (53.09); H: 9.82 (9.76).

Tetrakis(tetrahydrofuran-O)-calcium-[1,3-diethyl-2,4- bis{tri(*tert*butyl)silyl}-1,3dizinka-2,4-diphosphetan-2,4-diid] 9

Synthese 1: Eine Suspension von 2 mmol $ZnEt_2$ (1M Lösung in Hexan: 2 ml) und 2 mmol (0.47 g) H₂PSitBu₃ in10 ml Toluol wird durch Zugabe von 5 ml THF gelöst und mit 48 mg (1.2 mmol Calcium) versetzt. Die Reaktionsmischung wird drei Tage gerührt. Das

überschüssige Erdalkalimetall wird mittels einer GIV-Fritte entfernt und die Lösung zu 2/3 eingeengt. Durch Kühlen auf fünf Grad erhält man farblose Kristalle.

Synthese 2: Eine Suspension von 2 mmol ZnEt₂ (1M Lösung in Hexan: 2 ml) und 2 mmol H₂PSitBu₃ (0.47 g) in 10 mL Toluol wird durch Zugabe von 5 ml THF gelöst und unter Rühren mit 1.0 mmol Bis(tetrahydrofuran-O)-calcium-bis[bis(trimethylsilyl)amid] (1.01 g) versetzt. Die Reaktionsmischung wird drei Tage gerührt. Die flüchtigen Anteile werden im Vakuum entfernt, und das Produkt in 3 ml THF gelöst. Durch Kühlen auf fünf Grad erhält man farblose Kristalle.

Ausbeute:	1: 0.39g (0.40 mmol) 40%; 2: 0.51 g (0.53 mmol) 53%
Zersetzungspunkt:	235 °C

NMR-Daten [ppm]:

¹H-NMR (270.166 MHz, C₆D₆): $\delta = 0.79$ (q, ³J_{HH} = 7.9 Hz, ZnC<u>H</u>₂CH₃), 1.20 (s, t-Bu), 1.31 (t, ³J_{HH} = 7.9 Hz, ZnCH₂CH₃).

¹³C{¹H}-NMR (100.525 MHz, C₆D₆): $\delta = 9.60$ (Zn<u>C</u>H₂CH₃), 11.31 (ZnCH₂<u>C</u>H₃), 24.15 (C_q), 32.40 (t-Bu).

²⁹Si{¹H}-NMR (53.674 MHz, C₆D₆): δ = 27.25 (ps. t, (AA'X) |J(AX)+J(A`X)| = 14.40 Hz).

³¹P-NMR (109.365 MHz, C_6D_6): $\delta = -239.40$ (PSi).

IR-Daten [Nujol, cm⁻¹]:

1606 w, 1495 m, 1478 vs, 1444 m, 1416 w, 1389 s, 1381 s, 1366 m, 1354 m, 1314 vw, 1295 w, 1263 w, 1247 w, 1228 w, 1179 m, 1072 s, 1030 vs, 1013 s, 968 w, 933 w, 920 w, 914 w, 875 s, 839 w, 816 vs, 728 m, 694 w, 668 w, 627 w, 599 s, 566 s, 510 s, 476 m, 462 m, 422 w, 392 w, 366 w, 343 w, 310 w, 285 w.

Elementaranalyse (berechnet für $C_{44}H_{96}O_4P_2Si_2CaZn_2$ (ohne Toluol) = 978.27 g mol⁻¹) [%]:

C: 54.02 (54.02); H: 10.20 (9.89).

Tetrakis(tetrahydrofuran-O)-calcium-[1,3-dimethyl-2,4-bis{triisopropylsilyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] 10

Synthese 1:Eine Suspension von 2 mmol ZnMe₂ und 2 mmol H₂PSiiPr₃ in 10 ml Toluol wird durch Zugabe von 5 ml THF gelöst und mit 48 mg (1.2 mmol) Calcium versetzt. Die Reaktionsmischung wird drei Tage gerührt. Das überschüssige Erdalkalimetall wird mittels einer GIV-Fritte

entfernt und die Lösung auf 1/3 ihres ursprünglichen Volumens eingeengt. Durch Kühlen auf fünf Grad erhält man farblose, nadelförmige Kristalle.

Synthese 2: Eine Suspension von 2 mmol ZnMe₂ (2M Lösung in Toluol: 1 ml) und 2 mmol H₂PSitBu₃ (0.47 g) in 10 ml Toluol wird durch Zugabe von 5 ml THF gelöst und unter Rühren mit 1.0 mmol Bis(tetrahydrofuran-O)-calcium-bis[bis(trimethylsilyl)amid] (1.01 g) versetzt. Die Reaktionsmischung wird drei Tage gerührt. Die flüchtigen Anteile

werden im Vakuum entfernt, und das Produkt in 3 ml THF gelöst. Durch Kühlen auf fünf Grad erhält man farblose Kristalle.

Ausbeute:	Synthese 1: 0.38 g (0.44 mmol); 44%
	Synthese 2: 0.35 g (0.40 mmol); 40%
Zersetzungspunkt:	ab 60°C Farbänderung zu rot

NMR-Daten [ppm]:

¹H-NMR (270.166 MHz, C₆D₆): $\delta = -0.17$ (s, Zn<u>Me</u>), 1.01 (sep, ³J_{HH} = 7.9 Hz, C<u>H</u>), 1.08 (d, ³J_{HH} = 7.9 Hz, C<u>H</u>₃(iPr). ¹³C{¹H}-NMR (100.525 MHz, C₆D₆): $\delta = -1.7$ (ZnMe), 13.65 (<u>C</u>HMe₂), 17.51 (CH<u>Me₂</u>). ²⁹Si{¹H}-NMR (53.674 MHz, C₆D₆): $\delta = 19.92$ (ps. t, (AA'X) |J(AX)+J(A'X)| = 8.52 Hz).

³¹P-NMR (109.365 MHz, C_6D_6): $\delta = -234.81$ (PSi).

IR-Daten [*Nujol*, *cm*⁻¹]:

1460 vs, 1374 m, 1358 m, 1342 vw, 1310 vw, 1294 w, 1261 w, 1238 w, 1225 w, 1186 w, 1174 w, 1186 w, 1174 w, 1125 m, 1070 s, 1031 vs, 1012 s, 987 s, 966 w, 916 s, 880 vs, 806 w, 728 vw, 649 vs, 634 vs, 586 vs, 564 vs, 511 vs, 479 s, 447 w.

Elementaranalyse (berechnet für $C_{36}H_{80}O_4P_2Si_2CaZn_2 = 866 \text{ g mol}^{-1})$ [%]: C: 48.4 (49.9); H: 9.16 (9.3).

Tetrakis(tetrahydrofuran-O)-strontium-[1,3-dimethyl-2,4-bis{tri(tertbutyl)silyl}-1,3dizinka-2,4-diphosphetan-2,4-diid] 11

Synthese 1:Eine Suspension von 2 mmol (2 M Lösung in Toluol: 1 ml) ZnMe₂ und 2 mmol (2.2 M Lösung in Heptan: 0.31 ml) H₂PSitBu₃ in 10 ml Toluol wird durch Zugabe von 5 ml THF gelöst und unter Rühren mit 1.0 mmol Strontiumbis[bis(trimethylsilyl)amid] (1.11)g) versetzt. Die

R = tBu

Reaktionsmischung wird drei Tage gerührt. Die flüchtigen Anteile werden im Vakuum entfernt, und das Produkt in 3 mL THF gelöst. Durch Kühlen auf fünf Grad erhält man farblose Kristallnadeln.

Synthese 2: Eine Suspension von 2 mmol ZnMe₂ (2M Lösung in Toluol: 1 ml) und 2 mmol H₂PSitBu₃ in 10 ml Toluol wird durch Zugabe von 5 ml THF gelöst und unter Rühren mit 1.2 mmol, Strontium versetzt. Die Reaktionsmischung wird drei Tage gerührt. Das überschüssige Erdalkalimetall wird mittels einer GIV-Fritte entfernt und die Lösung auf 1/3 ihres ursprünglichen Volumens eingeengt. Durch Kühlen auf fünf Grad erhält man farblose Kristallnadeln von Verbindung 11.

Ausbeute:	Synthese 1: 688 mg (0.69 mmol); 69%
	Synthese 2: 412 mg (0.41 mmol); 41%
Zersetzungspunkt:	243°C

NMR-Daten [ppm]:

¹H-NMR (270.166 MHz, C_6D_6): $\delta = -0.13$ (s, ZnCH₃), 1.37 (s. tBu). $^{13}C{^{1}H}$ -NMR (100.525 MHz, C₆D₆): $\delta = -3.39$ (ZnCH₃), 24.31 (s; Cq), 32.33 (s, tBu). ²⁹Si{¹H}-NMR (53.674 MHz, C₆D₆): $\delta = 26.80$ (ps. t, (AA'X) |J(AX)+J(A`X)| = 19.07 Hz).

³¹P-NMR (109.365 MHz, C_6D_6): $\delta = -224.54$ (s; PSi).

IR-Daten [*Nujol*, *cm*⁻¹]:

1605 vw, 1495 vw, 1477 vs, 1444 w, 1382 s, 1361 w, 1312 vw, 1294 vw, 1249 vw, 1179 w, 1134 vw, 1125 vw, 1073 vw, 1033 vs, 1013 s, 932 m, 878 s, 840 w, 825 vs, 731 m, 694 w, 666 w, 599 s, 566 vs, 510 vs, 458 m, 421 vw, 387 vw, 342 vw, 309 vw.

Elementaranalyse (berechnet für $C_{42}H_{92}O_4P_2Si_2SrZn_2=997.6 \text{ g mol}^{-1}$) [%]: C: 50.54 (50.56); H: 9.32 (9.30).

Tetrakis(tetrahydrofuran-O)-strontium-[1,3-diethyl-2,4- bis{tri(*tert*butyl)silyl}-1,3dizinka-2,4-diphosphetan-2,4-diid] 12

Eine Suspension von 2 mmol ZnEt₂ (1M Lösung in Hexan: 2 ml) und 2 mmol H₂PSitBu₃ in 10 ml Toluol wird durch Zugabe von 5 ml THF gelöst und unter Rühren mit 1.2 mmol, Strontium versetzt. Die Reaktionsmischung wird drei Tage gerührt. Das überschüssige Erdalkalimetall wird mittels einer GIV-

Fritte entfernt und die Lösung auf 2/3 ihres ursprünglichen Volumens eingeengt. Durch Kühlen auf fünf Grad erhält man farblose Kristalle.

 Ausbeute:
 0.58 g (0.52 mmol); 52%

 Zersetzungsbereich:
 234 °C

NMR-Daten [ppm]:

¹H-NMR (270.166 MHz, C₆D₆): $\delta = 0.81$ (q, ZnC<u>H</u>₂CH₃), 1.16 (s, t-Bu), 1.27 (t, ZnCH₂C<u>H</u>₃),

¹³C{¹H}-NMR (100.525 MHz, C₆D₆): $\delta = 8.57$ (Zn<u>C</u>H₂CH₃), 12.31 (ZnCH₂<u>C</u>H₃), 31.87 (tBu).

²⁹Si{¹H}-NMR (53.674 MHz, C₆D₆): δ = 28.79 (ps. t, (AA'X) |J(AX)+J(A`X)| = 22.69 Hz)

³¹P-NMR (109.365 MHz, C_6D_6): $\delta = -225.73$ (s; PSi).

IR-Daten [*Nujol*, *cm*⁻¹]:

1604 vw, 1495 w, 1479 vs, 1467.5 vs, 1390 s, 1377 s, 1367 s, 1258 vw, 1185 m, 1073 vs, 1032 vs, 1007 vs, 970 s, 936 s, 888 m, 818 vs, 804 w, 728 m, 694 vw, 629 s, 614 m, 558 m, 469 s, 465 s, 416 w, 383 w, 334 vw.

Elementaranalyse (berechnet für $C_{47}H_{104}O_4P_2Si_2SrZn_2=1117.89 \text{ g mol}^{-1}$) [%]: C: 52.64 (52.64); H: 8.58 (9.37).

Tetrakis(tetrahydrofuran-O)-barium-[1,3-dimethyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] 13

Synthese 1:Eine Suspension von 2 mmol (2 M Lösung in Toluol: 1 ml) ZnMe₂ und 2 mmol (0.47 g) H₂PSitBu₃ in 10 ml Toluol wird durch Zugabe von 5 ml THF gelöst und mit 1.0 mmol (603 mg) Ba(N(SiMe)₃)₂ 2THF versetzt. Die Reaktionsmischung wird drei Tage gerührt. Die flüchtigen Anteile werden

im Vakuum entfernt, und das Produkt in 3 mL THF gelöst. Durch Kühlen auf fünf Grad erhält man farblose Kristalle von (THF)₄Ba((MeZn)₂(µ₃-PSitBu₃)₂).

Synthese 2:Eine Suspension von 2 mmol (2 M Lösung in Toluol: 1 mL) ZnMe₂ und 2 mmol (0.47 g) H₂PSitBu₃ in 10 ml Toluol wird durch Zugabe von 5 ml THF gelöst und mit 1.2 mmol (165 mg) Barium versetzt. Nach drei Tage rühren, engt man die Lösung auf 2/3 ihres ursprünglichen Volumens ein. Durch Kühlen auf fünf Grad erhält man farblose Kristalle von (THF)₄Ba((MeZn)₂(μ_3 -PSitBu₃)₂).

Ausbeute:	Synthese 1: 0.31 g (0.3 mmol) 30%
	Synthese 2: 0.22 g (0.21 mmol); 21%
Zersetzungpunkt:	222°C

NMR-Daten [ppm]:

¹H-NMR (270.166 MHz, C₆D₆): $\delta = -0.13$ (s, ZnCH₃), 1.34 (s. tBu). ¹³C{¹H}-NMR (100.525 MHz, C₆D₆): $\delta = -3.50$ (Zn<u>C</u>H₃), 24.36 (s; Cq), 32.35 (s, tBu). ²⁹Si{¹H}-NMR (53.674 MHz, C₆D₆): $\delta = 26.68$ (ps.t, (AA'X) |J(AX)+J(A'X)| = 25.03 Hz) ³¹D NP (100.265 MHz, C D), $\delta = 102.04$ (c, DC))

³¹P-NMR (109.365 MHz, C_6D_6): $\delta = -183.84$ (s; PSi).

IR-Daten [Nujol, cm⁻¹]: 1604 w, 1495 w, 1478 vs, 1442 m, 1389 m, 1381 s, 1367 w, 1352 w, 1310 vw, 1295 vw, 1249 vw, 1179 m, 1123 w, 1073 s, 1037 vs, 1013 vs, 965 w, 933 s, 916 m, 881 s, 815 vs, 726 m, 693 w, 661 w, 597 s, 567 vs, 510 vs, 480 m, 459 s, 411 vw, 397 w, 359 vw, 344 vw, 335 vw.

Elementaranalyse (berechnet für $C_{42}H_{92}O_4P_2Si_2BaZn_2$ (ohne Toluol) = 1047.34 g mol⁻¹) [%]: C: 47.10 (48.16); H: 8.47 (8.85).

Tetrakis(tetrahydrofuran-O)-barium-[1,3-diethyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] 14

Eine Suspension von 2 mmol (1 M Lösung in Hexan: 2 ml) $ZnEt_2$ und 2 mmol (0.47 g) $H_2PSitBu_3$ in 10 ml Toluol wird durch Zugabe von 5 ml THF gelöst und mit 1.0 mmol (603 mg) $Ba(N(SiMe)_3)_2$ 2THF versetzt. Die Reaktionsmischung wird drei Tage gerührt. Die flüchtigen Anteile werden im Vakuum entfernt. Im Kühlfach bei fünf

Grad erhält man die farblose Verbindung 14.

Ausbeute:< 9%</th>Zersetzungspunkt:215 °C.

NMR-Daten [ppm]:

¹H-NMR (270.166 MHz, C₆D₆): $\delta = 0.63$ (q, ³J_{HH} = 7.8 Hz, ZnC<u>H</u>₂CH₃), 1.24 (t, ³J_{HH} = 7.8 Hz, ZnCH₂CH₃), 1.31 (s, t-Bu).

¹³C{¹H}-NMR (100.525 MHz, C₆D₆): $\delta = 5.77$ (Zn<u>C</u>H₂CH₃), 11.83 (ZnCH₂<u>C</u>H₃), 25.36 (s; Cq), 30.98 (s, tBu).

²⁹Si{¹H}-NMR (53.674 MHz, C₆D₆): δ = 26.56 (ps. t, (AA'X) |J(AX)+J(A`X)| = 22.01 Hz)

³¹P{¹H}-NMR (109.365 MHz, C_6D_6): $\delta = -182.83$ (s; PSi).

IR-Daten [*in Nujol*, *cm*⁻¹]:

1590 vs, , 1478 vs, 1465 vs, 1448 vs, 1402 m, 1391 vs, 1377 s, 1366 s, 1307 vw, 1261 w, 1186 m, 1098 m, 1011 s, 932 m, 864 vw, 814 vs, 728 w, 719 vw, 694 vw, 612 m, 562 s, 545 m, 507 m, 489 m, 458 m, 445 vs, 420w.

Elementaranalyse (berechnet für $C_{44}H_{96}O_4P_2Si_2BaZn_2 = 1075.93 \text{ g mol}^{-1}$) [%]: C: 48.11 (49.14); H: 8.56 (9.00).

Bis(tetrahydrofuran-O)-magnesium-[1,3-dibuthyl-2,4-bis{tri(*tert*butyl)silyl}-1,3-dizinka-2,4-diphosphetan-2,4-diid] 15

Zu einer Lösung von 2 mmol (2 M Lösung in Heptan: 1ml)Dimethylzinkund2mmolTri(*tert*butyl)silylphosphan (2 M Lösung in Heptan:1mL) in 12 mL Toluol, gibt man nach 24 Stunden rührenbei Raumtemperatur 1mmol (1 M Lösung in Heptan:

1mL) Dibutylmagnesium. Die farblose Lösung wird nach 12 Stunden Rühren bei Raumtemperatur zu 2/3 eingeengt. Man erhält nach Lagerung bei +5°C farblose Kristalle von Bis(tetrahydrofuran-O)-magnesium-[1,3-dibutyl-2,4-bis[tri(*tert*butyl]silyl-1,3dizinka-2,4-diphosphetan-2,4-diid] 15.

NMR-Daten [ppm]:

¹H-NMR (270.166 MHz, C₆D₆): $\delta = 0.21$ (t,ZnCH₂ ³J_{HH}= 8Hz, 1.15 (t,ZnCH₂CH₂, ³J_{HH}= 7Hz), 1.28 (CH₂CH₃), 1.42 (tBu), 1.67 (THF), 4.15 (THF).

¹³C{¹H}-NMR (100.525 MHz, C₆D₆): $\delta = 24.06$ (C_q); 24.99 (CH₂, THF); 31.90 (br s, tBu); 67.63 (OCH₂, THF).

²⁹Si{¹H}-NMR (53.674 MHz, C₆D₆): $\delta = 24.36$ (pseudo t (AA'X) |J(AX)+J(A`X)| = 14Hz).

³¹P-NMR (109.365 MHz, C_6D_6): $\delta = -266.82$ (br s).

IR-Daten [Nujol, cm⁻¹]: 3010 vs, 2955 vs, 2813 vs, 1477m, 1443vs,1383vs, 1355vs, 1333w, 1318vw, 1298w, 1287w, 1247m, 1211s, 1180s, 1158w, 1122vw, 1094vw, 1057w, 1038s, 1014vs, 984m, 950m, 932vs, 914s, 871vs, 815vs, 766vw, 743vw, 722vw, 678w, 648m, 601vs, 566vs, 510vs, 459vs, 427m, 413m, 383s, 346m, 309w, 297w.

Elementaranalyse (berechnet für $C_{40}H_{88}O_2P_2Si_2MgZn_2 = 874.27 \text{ g mol}^{-1}$) [%]: C: 53.98 (54.95); H: 10.13 (10.14).

Hexakis(tetrahydrofuran-O)dibarium-oxa-bis[zinkmethyl-μ²tri(*tert*butyl)silylphosphandiidozink] 16.

Über eine Lösung von 0.5 mmol Tetrakis(tetrahydrofuran-O)-barium-[1,3-dimethyl-2,4bis[tri(*tert*butyl)]silyl-1,3-dizinka-2,4-diphosphetan-2,4diid in 10mL THF wird für 10 Minuten Luft geströmt. Nach Einengen der ursprünglichen Lösung auf 1/3 und Lagerung bei 4°C erhält man farblose Kristalle von **16**.

 Ausbeute:
 > 63 mg (0.03 mmol); 13%

 Zersetzungspunkt:
 281°C

NMR-Daten [*ppm*]:

¹H-NMR (270.166 MHz, C₆D₆): δ = -0.14 (s, ZnC<u>H</u>₃), 1.23 (s, t-Bu). ¹³C{¹H}-NMR (67.933 MHz, C₆D₆): δ = -3.41 (s, Zn<u>C</u>H₃), 24.45 (s, C_q); 31.48 (s, t-Bu). ³¹P-NMR (109.365 MHz, C₆D₆): δ = -209.58 (s).

IR-Daten [*Nujol*, *cm*⁻¹]:

2904 vs, 2872 vs, 1495w, 1479vs, 1441w, 1419vw, 1390s, 1366m, 1300vw, 1260vw, 1246vw, 1185m, 1073vs, 1005s, 965w, 934w, 867vw, 844vw, 819vs, 727vw, 694vw, 671vw, 628m, 615m, 567w, 508w, 469m, 460m.

Elementaranalyse (berechnet für $C_{74}H_{162}Ba_2P_4Si_4Zn_4O_7 = 1936.53 \text{ g mol}^{-1}$) [%]: C: 46.02 (45.90); H: 8.40 (8.43).

Bis[(Tetrahydrofuran-O)-trimethylsilylamido-*N*-barium-µ₂-di(tri(*tert*butyl)silyl-phosphandiido)-µ-zink-µ₂-zinkethanid]. 17

Zu einer Lösung von 2 mmol ZnEt₂ (1 M Lsg in Hexan: 2 mL) und 2 mmol (0.47g) Tri(*tert*butyl)silylphosphan in 15 mL Toluol, gibt man 1 mmol (603 mg) Bistetrahydrofuran-Bariumbis[bis(trimethylsilyl)amid]. Die Reaktionsmischung wird über drei Tage bei Raumtemperatur gerührt. Nach Einengen der Lösung auf 2/3 und Kühlen auf +4°C bilden sich im Laufe weniger Tage gelbe quaderförmige Kristalle von (((Me₃Si)₂N)Ba(THF)Zn₂(μ -Et)(μ ₃-PSitBu₃)₂)₂ **17**.

Ausbeute:	0.70 g (0.32 mmol); 65%
Zersetzungsbereich:	ab 180°C

NMR-Daten [*ppm*]:

¹H-NMR (270.166 MHz, C₆D₆): $\delta = 0.32$ (br. s, -SiMe₃); 0.34 (q, -CH₂-; ³J_{HH} = 7.3 Hz), 1.28 (s, tBu); 1.37 (t, CH₃; ³J_{HH} = 7.3 Hz). ¹³C{¹H}-NMR (67.933 MHz, C₆D₆): $\delta = 5.33$ (br. s, -SiMe₃ und ZnCH₂-); 5.95 (s, -CH₃); 24.04 (s, C_q); 32.05 (t, tBu ²J_{P,C}= 20 Hz). ³¹P-NMR (109.365 MHz, C₆D₆): $\delta = -244.95$ (br s).

IR-Daten [*Nujol*, *cm*⁻¹]:

1477 m, 1441 vw, 1415 vw, 1384 m, 1357 vw, 1249 s, 1179 w, 1012 s, 932 s, 876 s, 817 vs, 758 m, 665 w, 603 m, 564 m, 506 m, 479 w, 459 m.

Elementaranalyse (berechnet für C₈₆H₁₈₆O₂N₂P₄Si₈Ba₂Zn₄= 2165.2 g mol⁻¹) [%]: C: 45.43 (47.70); H: 8.62 (8.65), N: 1.45 (1.38).

Bis[(tetrahydrofuran-O)-barium-μ₂-bis(ethylzink-tri(*tert*butyl)silyphosphandiido)μ₂-zinkphosphandiid] 18

Synthese 1: 700 mg (0.32 mmol) **17** werden in Toluol suspendiert und mit 0.64 mmol $H_2PSi^tBu_3$ (1.1 M Lsg in Heptan: 0.58 ml) und 0.64 mmol ZnEt₂ (1 M Lsg in Hexan: 0.64 ml) kurz erhitzt. Farblose rhombische Kristalle von **18** werden erhalten.

 \Box \Box Synthese 2: 325 mg (0.5 mmol) von Zinkethyltri(*tert*butylsily)phosphanid **2** wird in Toluol suspendiert und mit 0.5 mmol (116.2 mg) Tri(*tert*butyl)silylphosphan, 0.5 mmol Diethylzink (1 M Lsg in Hexan: 0.5 ml) und 0.5 mmol (301 mg) Bis(tetrahydrofuran-O)-barium-bis[bis(trimethylsilyl)amid] umgesetzt und für 20 min kurz auf 80 °C erhitzt. Verbindung **18** wird als weißes Pulver isoliert.

Ausbeute:	<i>1</i> : 76 mg (0.032 mmol); < <i>10%</i> , 2:n.b
Zersetzungspunkt:	193 °C

NMR-Daten [*ppm*]:

¹H-NMR (270.166 MHz, C₆D₆): $\delta = 1.29$ (br. s, tBu), 1.34 (br. s, CH₂CH₃), 0.35 (br. s, CH₂CH₃), 1.46 (THF), 3.58 (THF). ¹³C{¹H}-NMR (67.933 MHz, C₆D₆): $\delta = 24.02$ (br.s, Cq); 31.77 (s, tBu), 32.05 (s, tBu), 32.41 (s, tBu), 25.17 (THF), 68.24 (THF).

 ${}^{31}P{}^{1}H$ -NMR (109.365 MHz, C₆D₆): $\delta = -176.78$ (s, P(BaZnBaSi), -205.54 (s, P(BaZnZnSi), -206.98 (s, P(ZnZnZnSi).

IR-Daten [Nujol, cm-1]:

1560 vw, 1541 vw, 1476 vs, 1387 s, 1251 vs, 1051 m, 1011 s, 964 m, 931 vs, 871 s, 839 vs, 756 vs, 695 vw, 666 m, 602 m, 563 m, 504 s, 458 m.

Darstellung der Alkalimetall-tri(tertbutyl)silylphosphanide

Darstellung von Kalium-tri(tertbutyl)silylphosphanid 19

Zu einer Lösung von 1.5 mmol H₂PSitBu₃ (352 mg) in Toluol und THF, gibt man die äquivalente Menge an Kalium. Das Reaktionsgemisch kocht man nun für 4h unter Rückfluss. Nach Abziehen des Lösungsmittel konnte ein weißes Pulver isoliert werden.

Ausbeute: 296.2 mg (1.1 mmol): 73%

Die spektroskopischen Daten stimmen mit den Literaturangaben überein.

DarstellungvonBis(Bis(tetrahydroduran-O-Natrium)-tri(*tert* butyl)silylphosphanid) 20

Zu einer Lösung von 1.5 mmol $H_2PSitBu_3$ (352 mg) in Toluol und THF, gibt man die äquivalente Menge an Natrium. Das Reaktionsgemisch kocht man nun für 4h unter Rückfluss, engt dann die ursprüngliche Lösung zu 2/3 ein, und erhält im Laufe

R = tBu von 3 Tagen durch Kühlen auf -25 °C Nadeln von dimeren Natrium-tri(*tert*butyl)silyllphosphanid.

Ausbeute:

375 mg (0.47 mmol); 52%

Die spektroskopischen Daten stimmen mit den Literaturangaben überein.
3.5 Darstellung der Alkalimetallzinkate

Natrium-[1,3-dimethyl-2,4-bis[tri(*tert*butyl)silyl-1,3-dizinka-2,4-diphosphetan-2,4-diid] 21

Eine Suspension von 2 mmol (0.47 g)H₂PSitBu₃ und 2 mmol ZnMe₂ (2M in Toluol: 1 mL, 2 mmol) in 10 mL Toluol wird bei 0°C in 15 mL DME gelöst und mit 2 mmol Natrium (46 mg) versetzt. Die

Reaktionsmischung wird nun langsam auf Raumtemperatur erwärmt und für 24 Stunden gerührt. Anschließend wird die Lösung zur Hälfte eingeengt und bei -20°C gelagert. Innerhalb von mehreren Tagen scheiden sich farblose Einkristalle ab.

 Ausbeute:
 237 mg (0.14 mmol); 29%

 Schmelzpunkt:
 118°C

NMR-Daten [ppm]:

¹H-NMR (270.166 MHz, C₆D₆): $\delta = 1.17$ (tBu) ¹³C{¹H}-NMR (67.933 MHz, C₆D₆): $\delta = 23.21$ (br s, C_q); 31.29 (s, tBu). ²⁹Si{¹H}-NMR (53.674 MHz, C₆D₆): $\delta = 25.41$ (pseudo t, (AA'X) |J(AX)+J(A'X)| = 24.72 Hz) ³¹P{1H}-NMR (109.365 MHz, C₆D₆): $\delta = -270.32$ (br s).

IR-Daten [*Nujol*, *cm*⁻¹]:

2220 w, 1495 vw, 1475 s, 1446 m, 1382 m, 1367 m, 1301 vw, 1279 vw, 1245 w, 1206 w, 1192 m, 1126 vs, 1114 vs, 1085 vs, 1031 s, 1012 s, 981 m, 933 m, 859 s, 840 vw, 816 s, 764 vw, 749 vw, 727 m, 694 vw, 665 vw, 647 vw, 627 vw, 597 w, 565 s, 511s, 481 m, 462 m.

Elementaranalyse (berechnet für $C_{84}H_{200}Na_4P_4Si_4Zn_4$ (ohne Toluol) = 1695.9g mol⁻¹) [%]:

C: 59.49 (59.51); H: 11.88 (11.79).

Kalium-[1,3-dimethyl-2,4-bis[tri(*tert*butyl)silyl-1,3-dizinka-2,4-diphosphetan-2,4-diid] 22

Eine Suspension von 2 mmol (0.47 g)H₂PSitBu₃ und 2 mmol ZnMe₂ (2M in Toluol: 1 mL, 2 mmol) in 10 mL Toluol wird bei 0°C in 15 mL DME gelöst und mit 2.2 mmol Kalium (86 mg) versetz.

Die Reaktionsmischung wird nun langsam auf Raumtemperatur erwärmt und für 24 Stunden gerührt. Anschließend wird die Lösung zu 2/3 eingeengt und bei -20°C gelagert. Nach längerer Lagerung und versuchter Kristallisation mit THF konnten dennoch keine Kristalle erhalten werden. Nach Abziehen des Lösemittels wird ein gelbliches Öl isoliert.

Ausbeute:	n.b
Siedepunkt:	n.b

NMR-Daten [ppm]: ¹H-NMR (270.166 MHz, C₆D₆): $\delta = 1.27$ (tBu) ¹³C{¹H}-NMR (67.933 MHz, C₆D₆): $\delta = 24.93$ (Cq), 33.54 (tBu). ³¹P-(NMR (109.365 MHz, C₆D₆): $\delta = -269.20$ (s.).

IR-Daten [in Substanz zwischen Kaliumbromid-Platten cm⁻¹]: 2977 s, 2889 s, 2858 s, 2709 w, 1544vw, 1378 s, 1379 m, 1215 vw, 1200 m, 1153 w, 1142 w, 1132, 1091 m, 1084 m, 1065 w, 1029 s, 1018 s,, 997 w, 934 m, 817 s, 726 w, 575 w, 565 w, 509 m, 468 m, 458 s, 421s, 411 m.

Elementaranalyse (berechnet für $C_{26}H_{60}K_2P_2Si_2Zn_2 = 669.82 \text{ g mol}^{-1}$) [%]: C: 49.87 (44.62); H: 9.11 (8.64).

[{(THF)₄K₂(µ-P(H)SitBu₃)}(µ₄-PSitBu₃)ZnMe]₂ 23

Eine Suspension von 1 mmol ZnMe₂ (2 M Lösung in Toluol: 0.5 mL) und 1 mmol (0.24 g) H₂PSitBu₃ in 10 ml Toluol wird durch Zugabe von 5 ml THF gelöst und mit 2.0 mmol (78 mg) Kalium, und 1 mmol (0.24 g) H₂PSitBu₃ versetzt. Die Reaktionsmischung wird für 1 h auf 40 °C erhitzt und anschließend noch für 3 h bei Raumtemperatur gerührt. Nach

Einengen der Lösung auf 2/3 und Kühlung auf -20 °C erhält man im Laufe weniger Tage Kristalle von **23**.

 Ausbeute:
 0.31g (0.16mmol); 33%

 Schmelzpunkt:
 ca. 20 °C

NMR-Daten [ppm]:

¹H-NMR (270.166 MHz, C₆D₆): δ = -1.91(d, KPH ¹J_{HP} = 154 Hz), -0.10 (s ZnMe), 1.24 (s, tBu), 1.27(s, tBu).

¹³C{¹H}-NMR (67.933 MHz, C₆D₆): δ = 23.85 (s, C_q); 24.02(s,Cq), 32.48 (s, tBu), 32.95 (s, tBu).

³¹P{1H}-NMR (109.365 MHz, C_6D_6): $\delta = -308.7$ (KPH br, s.), -260.70 (KPZn s).

³¹P-NMR (109.365 MHz, C₆D₆): δ = 308.7 (KPH d, ¹J_{PH} = 154 Hz), -260.69 (KPZn s).

IR-Daten [*Nujol*, *cm*⁻¹]:

2300 m, 1564vw, 1478 s, 1470 m, 1445 vw, 1245 vw, 1201 m, 1163 w, 1134 w, 1081 m, 1064 m, 1030 m, 1013 m,, 998 m, 934 m, 817 vs, 626.8, 615 w, 598 w, 570 w, 509 m, 470 s, 458 s.

Elementaranalyse (berechnet für $C_{89}H_{188}K_4P_4Si_4Zn_2 = 1909.85 \text{ g mol}^{-1}$) [%]: C: 51.95 (53.97); H: 9.92 (9.88).

$[(THF)(\eta^{6}-toluol)K_{2}]_{2} [(MeZn)_{4}Zn_{2}(\mu_{3}-PSitBu_{3})_{4}(\mu_{6}-O)_{2}] 24$

Zu einer farblosen Lösung von 1.5 mmol (58.7 mg) Kalium- und 1.5 mmol (350 mg) Tri(*tert*butyl)silylphosphan in einem Lösungsmittelgemisch von 10 ml Toluol und 5ml THF, gibt man 2.25 mmol ZnMe₂ (2 M Lösung in Toluol: 1.12 ml) Man lässt über das Reaktionsgemisch für 1 min. Luft strömen und rührt 5 Tage. Im HV wird die Lösung stark eingeengt. Durch Lagerung bei 4 °C erhält man im Laufe weniger Tage Kristalle von [(THF)(η^6 -Toluol)K₂]₂ [(MeZn)₄Zn₂(μ_3 -PSitBu₃)₄(μ_4 -O)₂].

 Ausbeute:
 135 mmol (280 mg); 36%

 Schmelzpunkt:
 > 300 °C

NMR-Daten [ppm]:

¹H-NMR (270.166 MHz, C₆D₆): δ = -0.33 (s, ZnMe), 1.40 (s, tBu). ¹³C{¹H}-NMR (67.933 MHz, C₆D₆): δ = 24.27 (s, C_q), 32.47 (s, t-Bu). ³¹P{¹H}-NMR (109.365 MHz, C₆D₆): δ = -248.40 (s). ³¹P-NMR (109.365 MHz, C₆D₆): δ = -248.40 (s).

IR-Daten [*Nujol*, *cm*⁻¹]:

1605 w, 1495 m, 1478 vs, 1469 vs, 1387 vs, 1366 s, 1244 s, 1198 s, 1059 vs, 1031 vs, 1006 vs, 962 vs, 934 vs, 818 vs, 742 w, 728 m, 694 m, 627 s, 611 s, 558 m, 508 s,491 s, 477 vs, 462 vs, 414 m.

Elementaranalyse (berechnet für $C_{74}H_{152}O_4K_4P_4Si_4Zn_6 = 1890.13 \text{ g mol}^{-1}$) [%]: C: 47.08 (47.02); H: 8.19 (8.10).

$[Zn(PSitBu_3)_2K_4(thf)_6]_2 \ [(MeZn)_4Zn_2(\mu_3-PSitBu_3)_4(\mu_6-O)_2] \ 25$

Zu einer farblosen Lösung von 1.0 mmol (39.1 mg) Kalium und 1.0 mmol (233.0)mg) Tri(tertbutyl)silylphosphan in einem Lösungsmittelgemisch aus 10 ml Toluol und 5 ml THF gibt man 1.0 mmol ZnMe₂ (2 M Lösung in Toluol: 0.5 ml) Nach kurzem Austausch der Luft, Inertgasatmosphäre mit wurde die Reaktionsmischung für weitere 5 Tage gerührt. Dann

wurde das Volumen der Lösung auf wenige ml eingeengt. Durch Lagerung bei 4 °C erhält man im Laufe weniger Tage wenige Kristalle von $[Zn(PSitBu_3)_2K_4(THF)_6]_2$ $[(MeZn)_4Zn_2(\mu_3-PSitBu_3)_4(\mu_4-O)_2].$

Ausbeute:

wenige Kristalle

NMR-Daten [ppm]:

¹³C{¹H}-NMR (67.933 MHz, C₆D₆): δ = 33.41 (s, tBu).

³¹P{¹H}-NMR (109.365 MHz, C₆D₆): δ = -251.0 (s, KP(SitBu₃)Zn), -246.0 (s, ZnMePSi) ³¹P-NMR (109.365 MHz, C₆D₆): δ = -251.0 (s, KP(SitBu₃)Zn), -246.0 (s, ZnMePSi).

[(THF)₃Cs₂]₂ [(MeZn)₄Zn₂(µ₃-PSitBu₃)₄(µ₆-O)₂] 26

Zu einer farblosen Lösung von 363 mg (1.0 mmol) Caesiumtri(*tert*butyl)silylphosphanid in einem Lösungsmittelgemisch von 5 ml Toluol und 10ml THF, gibt man 1.50 mmol ZnMe₂, (2 M Lösung in Toluol: 0.75 ml). Man lässt über das Reaktionsgemisch für 1 Minute Luft strömen und rührt 5 Tage. Im HV wird die Lösung stark eingeengt. Durch Lagerung bei 5 °C erhält man farblose Kristalle von **26**.

Ausbeute:	
Zersetzungspunkt:	

0.077 mmol (182 mg); *31%* >270 °C

NMR-Daten [ppm]: ¹H-NMR (270.166 MHz, C₆D₆): δ = -0.32 (s, ZnMe), 1.45 (s, tBu). ¹³C{¹H}-NMR (67.933 MHz, C₆D₆): δ = 23.27 (s, C_q), 31.92 (s, tBu). ²⁹Si{¹H}-NMR (53.674 MHz, C₆D₆): δ = 28.76 (br s). ³¹P{¹H}-NMR {¹H}(109.365 MHz, C₆D₆): δ = -242.05 (s). ³¹P-NMR (109.365 MHz, C₆D₆): δ = -242.05 (s).

IR-Daten [Nujol, cm⁻¹]:

1562 w,1478 vs, 1469 vs, 1444 m, 1388 s, 1383 s, 1365 m, 1306 m, 1245 vs, 1186 m, 1133 m, 1062 m, 1062 m, 1044 m, 1029 m, 1012 s, 985 s, 963 s, 943 s, 934 s, 815 vs, 772 w, 752 w, 736 w, 727 w, 696 w, 650 vw, 604 s, 569 s, 510 s, 473 s, 458 s.

Elementaranalyse (berechnet für $C_{76}H_{168}Cs_4P_4Si_4Zn_2 = 2370.34 \text{ g mol}^{-1}$) [%]: C: 37.72 (38.51); H: 6.46 (7.15).

Bis[(tetrahydrofuran-O)natrium-tris(ethylzink)-bis(triisopropylsilylarsandiid)] 27

Zu einer auf 0°C gekühlten Lösung von 259 mg (0.9 mmol) Natrium-triisopropylsilyl-arsanid und 239 mg (0.9 mmol) Triisopropylsilyl-arsan in 15 ml THF gibt man unter Rühren 2.7 mL Diethylzink (1M Lösung in Hexan: 2.7 mmol). Man beobachtet eine starke Gasentwicklung und einen

Farbumschlag von orange nach dunkelrot. Nach Erwärmen der Lösung auf Raumtemperatur lässt man noch für 6 Stunden rühren. Durch Einengen der ursprünglichen Lösung auf 1/3 und Lagerung bei 5 °C erhält man rote prismenförmige Kristalle.

Ausbeute:	630 mg (0.37 mmol); 83%
Zersetzungungspunkt:	211°C

NMR-Daten [ppm]:

¹H-NMR (270.166 MHz, C₆D₆): $\delta = 0.27$ (br s, 0.27 ZnCH₂CH₃), 1.09 (br.s, ZnCH₂CH₃), 1.32 (SiCH(CH₃)₂), 1.32 (br. s, SiCH(CH₃)₂, 1.51 (THF), 3.48 (THF). ¹³C{¹H}-NMR (67.933 MHz, C₆D₆): $\delta = 1.07$ (s, ZnCH₂CH₃); 3.10 (br s, ZnCH₂CH₃), 17.81 (s, SiCH(CH₃)₂,), 20.29 (s, SiCH(CH₃)₂), 23.17 (THF), 65.24 (THF).

IR-Daten [*Nujol*, *cm*⁻¹]:

2715 w, 1579 vw, 1557 vw, 1459 vs, 1412 vw, 1377 m, 1361 w, 1290 vw, 1262 w, 1156 vw, 1069 m, 1039 vs, 1015 vs, 989 vs, 948 w, 915 m, 879 vs, 800 w, 656 vs, 627 vs, 566 s, 554 s, 500 vs, 467 s, 424 w.

Elementaranalyse (berechnet für C₅₆H₁₃₀As₄Si₄Na₂Zn₆O₂ = 1685.98) [%]: C: 39.14 (39.89); H: gef:7.65 (7.77).

3.6 Kristallographischer Anhang

Die Verbindungen 5, 6, 8a, 8b, 9, 10, 11a, 12, 13, 16, 17, 18, 20, 21, 23, 24, 26, und 27 wurden von Herrn Dr. Peter Mayer am Department Chemie der Ludwig-Maximilians-Universität München an einem STOE-IPDS Diffraktometer mit Flächendetektion und einem NONIUS Kappa Diffraktometer mit CCD-Flächendetektor vermessen. Die Bestimmung der Zellparameter und die Sammlung der Datensätze der Verbindung 11b wurden von Herrn Dr. Manfred Oßberger, am Department Chemie der Universität München an einem mit CCD-Flächendetektor ausgerüsteten Vierkreisdiffraktometer P4 der Firma Siemens durchgeführt. Die Datensätze von Verbindung 7 und 15 wurden von Herrn Prof. Dr. A. Pfitzner und Herrn Dr. Manfred Zabel am Institut für Anorganische Chmie der Universität Regensburg an einem STOE IPDS Diffraktometer gemessen. Die Verbindung 25 wurde von Herrn Dr. Helmar Görls am Institut für Anorganische Chemie der Universität Jena gemessen. Die Kristalle wurden zuvor mit polyfluoriertem Polyetheröl ummantelt, auf eine Glaskapillare montiert und im Stickstoffstrom auf einem Goniometer zentriert.^[141] Alle Diffraktometer wurden mit graphitmonochromatisierter Mo-K α - Strahlung gemessen ($\lambda = 71.073$ pm) betrieben.

Das Lösen der Strukturen gelang mit den Programmsystemen SHELXTL-PLUS^[142], SIR-97^[143], und SHELXS 97^[144], die Verfeinerung gelang mit SHELXL-93^[145], SHELXL-97.^[146] Dabei wurden die Atomformfaktoren der neutralen Atome nach *Cromer* und *Mann*^[147] und für die Wasserstoffatome nach *Stewart et al.*^[148] verwendet. Die Raumgruppe wurde der Literatur^[149] entnommen. Im Folgenden sind die Einzelheiten zu den Kristalluntersuchungen wiedergegeben. Dabei bedeutet: Linearer Absorptionskoeffizient: $\mu = \Sigma \sigma_1 / V_z$; R-Werte (I > $2\sigma(I)$): $R_1 = (\Sigma || F_0| - |F_c||)/\Sigma |F_o|$; $wR_2 = {\Sigma[w(F_o^2 - F_c^2)^2]/\Sigma[w(F_o^2)^2]}^{1/2}$ mit w⁻¹ = $\sigma^2(F_o^2) + (aP)^2$; Gütefaktor s an F²: s = ${\Sigma[w(F_o^2 - F_c^2)^2]/(N_o - N_p)}^{1/2}$;

Die Molekülbilder wurden mit dem Zeichenprogrammen XP,^[124] Resview^[150] und Diamond^[151] erstellt. Atomkoordinaten und isotrope Auslenkungsparameter sind im kristallographischen Anhang aufgeführt, wobei $U_{(eq)}$ als ein Drittel der Spur des orthogonalisierten Uij-Tensors definiert ist. Wenn nicht weiter angegeben, können Einzelheiten zu den Strukturuntersuchungen wie Ortskoordinaten und Auslenkungsparameter der Atome beim Cambridge Crystallographic Data Centre unter der genannten Hinterlegungsnummer (CCDC-) angefordert werden.^[152]

	5	6
Summenformel	$C_{66}H_{140}Si_4P_4Zn_4$	$C_{56}H_{132}Si_4P_4O_2Zn_4$
Molmasse [g mol ⁻¹]	1431.61	1335.44
Messtemperatur [K]	200	200
Kristallsystem	tetragonal	triklin
Raumgruppe	<i>I</i> -42m (No.121)	$P \overline{1}$ (No.2)
a [Å]	17.3045(3)	8.9531(1)
b [Å]	17.3045(3)	4.1811(2)
c [Å]	13.0946(3)	115.2542(3)
α [°]	90	105.8432(6)
ß [°]	90	101.3277(7)
γ [°]	90	91.5961(14)
Zellvolumen [Å ³]	3921.12(13)	1820.05(5)
Z	2	1
$d_{ber} [g cm^{-3}]$	1.21237	1.218
λ [pm]	71.073	71.073
$\mu [mm^{-1}]$	1.386	1.490
F(000)	1504	720
Messbereich [°]	$3.3 < 2\theta < 27.5$	$3.3 < 2\theta < 27.5$
Gemessene Reflexe	18449	26959
Symunabh. Refl. N _o	2345 (0.043)	8223
R _{int}	0.043	0.043
Absorptionskorrektur	numerisch	numerisch
Zahl der Parameter N _p	83	324
R-Werte (alle Daten)		
R_1	0.0426	0.0692
R-Werte (I $\geq 2\sigma(I)$), Daten		
wR_2 an F^2	0.0975	0.1275
R ₁	0.0383	0.0490
Gütefaktor s an F ²	1.07	1.02
Restelektronendichte [e Å ⁻³]	-0.48/0.35	-1.02/1.06
CCDC-Nummer	277941	

Tabelle 3.6.1 Kristallographische Daten der Verbindungen 5 und 6.

Tabelle 3.6.1a Atomkoordinaten und equivalente isotrope Auslenkungsparameter für 6

	Х	У	Z	U(eq) [Å ²]
Zn1	-0.01159(5)	0.71251(3)	0.02481(3)	0.0319(1)
Zn2	-0.03819(4)	0.48101(3)	-0.10532(2)	0.0271(1)
P1	0.17173(9)	0.67893(6)	0.15250(6)	0.0267(2)
P2	0.07671(10)	0.63030(7)	-0.11692(6)	0.0303(3)
Si1	0.27617(10)	0.79035(6)	0.29117(6)	0.0264(2)
Si2	0.09627(10)	0.69718(7)	-0.23400(6)	0.0297(3)
O1	-0.1226(2)	0.56058(14)	0.00780(14)	0.0215(6)
C1	0.1088(4)	0.8339(3)	0.3512(3)	0.0387(11)
C2	-0.0102(8)	0.8747(7)	0.2919(5)	0.137(4)
C3	0.0259(8)	0.7490(5)	0.3692(7)	0.123(4)
C4	0.1611(7)	0.9102(6)	0.4439(4)	0.131(3)
C5	0.4187(4)	0.7248(3)	0.3627(2)	0.0409(11)

		Experimenteller Teil		
C6	0.3430(7)	0.6333(5)	0.3733(5)	0.101(3)
C7	0.4869(11)	0.7890(5)	0.4595(5)	0.177(4)
C8	0.5465(7)	0.6881(5)	0.3147(5)	0.097(3)
C9	0.3775(5)	0.8945(3)	0.2585(3)	0.0426(11)
C10	0.2654(8)	0.9415(5)	0.1991(6)	0.117(4)
C11	0.4938(8)	0.8572(4)	0.2007(5)	0.092(3)
C12	0.4558(11)	0.9750(5)	0.3448(4)	0.153(4)
C13	-0.1098(4)	0.7171(3)	-0.2902(3)	0.0421(12)
C14	-0.2012(6)	0.7599(5)	-0.2173(4)	0.0747(19)
C15	-0.2003(6)	0.6200(4)	-0.3499(5)	0.083(2)
C16	-0.1106(6)	0.7853(4)	-0.3537(4)	0.076(2)
C17	0.1909(5)	0.6051(3)	-0.3212(3)	0.0409(11)
C18	0.1163(6)	0.4988(3)	-0.3458(3)	0.0602(17)
C19	0.1770(8)	0.6308(4)	-0.4139(4)	0.080(2)
C20	0.3579(5)	0.5987(4)	-0.2807(4)	0.0643(17)
C21	0.2227(5)	0.8191(3)	-0.1738(3)	0.0482(14)
C22	0.2766(8)	0.8619(5)	-0.2449(5)	0.104(3)
C23	0.3652(6)	0.8053(4)	-0.1055(4)	0.0829(19)
C24	0.1370(7)	0.8941(3)	-0.1155(5)	0.083(2)
C25	-0.1431(5)	0.8240(3)	0.0378(3)	0.0455(12)
C26	-0.2824(3)	0.5518(2)	0.0071(2)	0.0238(8)
C27	-0.3723(4)	0.5827(3)	-0.0739(3)	0.0369(11)
C28	-0.3124(4)	0.6117(3)	0.0996(3)	0.0367(11)

Tabelle 3.6.2 Kristallographische Daten der Verbindungen 8a und 8b

	8a	8b
Summenformel	$C_{42}H_{92}O_4P_2Si_2CaZn_2$	$C_{49}H_{99}O_4P_2Si_2CaZn_2$
Molmasse [g mol ⁻¹]	950.15	1042.29
Messtemperatur [K]	200	200
Kristallsystem	monoklin	monoklin
Raumgruppe	$P2_{1}/c$ (No. 14)	$P2_1/c$ (No. 14)
a [Å]	27.9830(3)	13.2316(9)
b [Å]	16.5509(2)	21.4594(13)
c [Å]	24.2804(2)	20.8969(15)
α [°]	90	90
ß [°]	110.4627(6)	93.440(8)
γ [°]	90	90
Zellvolumen [Å ³]	10535.7(2)	5922.8(7)
Z	8	4
$d_{ber} [g cm^{-3}]$	1.198	1.153
λ [pm]	71.073	71.073
$\mu [mm^{-1}]$	1.148	1.027
F(000)	4112	2211
Messbereich [°]	$3.2 < 2\theta < 24.1$	$1.8 < 2\theta < 25.9$
Gemessene Reflexe	123901	41440
Symunabh. Refl. N _o	16649	11438
R _{int}	0.093	0.068
Absorptionskorrektur		
Zahl der Parameter N _p	955	496
R-Werte (alle Daten)		
R_1	0.0850	0.0900

R-Werte (I > 2σ (I)), Daten		
$wR_2 an F^2$	0.1246	0.1490
R_1	0.0479	0.0512
Gütefaktor s an F ²	1.02	0.92
Restelektronendichte [e Å ⁻³]	-0.51/0.62	-0.48, 1.34
CCDC-Nummer		

Tabelle 3.6.2a Atomkoordinaten und equivalente isotrope Auslenkungsparameter für 8a

	Х	v	Z	$U(eq) [Å^2]$
Zn1	0.07895(2)	0.33551(3)	0.41994(2)	0.0357(2)
Zn2	0.05531(2)	0.18132(3)	0.46484(2)	0.0365(2)
Cal	0.08866(3)	0.17867(5)	0.33687(3)	0.0302(3)
P1	0.13520(4)	0.22239(7)	0.45991(4)	0.0326(3)
P2	0.00929(4)	0.24438(7)	0.37343(5)	0.0322(3)
Si1	0.19946(4)	0.23571(7)	0.54528(5)	0.0366(4)
Si2	-0.06979(4)	0.28516(7)	0.36067(5)	0.0320(3)
01	0.07001(11)	0.04152(17)	0.35215(13)	0.0443(10)
O2	0.04224(11)	0.16158(19)	0.23324(12)	0.0449(10)
O3	0.11413(11)	0.30251(19)	0.30263(14)	0.0509(11)
O4	0.16159(11)	0.1230(2)	0.32073(13)	0.0501(11)
C1	0.2013(2)	0.1434(3)	0.5963(2)	0.0630(19)
C2	0.2529(2)	0.1332(3)	0.6480(2)	0.078(2)
C3	0.1888(3)	0.0652(3)	0.5615(3)	0.094(2)
C4	0.1593(2)	0.1514(4)	0.6245(3)	0.084(3)
C5	0.18891(17)	0.3344(3)	0.58406(19)	0.0465(17)
C6	0.13410(19)	0.3442(3)	0.5820(2)	0.0645(19)
C7	0.2250(2)	0.3414(3)	0.6488(2)	0.062(2)
C8	0.1993(2)	0.4093(3)	0.5519(2)	0.0659(19)
C9	0.26278(17)	0.2425(4)	0.5293(2)	0.065(2)
C10	0.2774(2)	0.1575(5)	0.5150(3)	0.113(4)
C11	0.2564(2)	0.2952(5)	0.4764(3)	0.107(3)
C12	0.30928(18)	0.2738(4)	0.5808(2)	0.080(3)
C13	-0.11553(15)	0.1910(3)	0.33984(19)	0.0407(16)
C14	-0.09257(17)	0.1195(3)	0.3812(2)	0.0529(17)
C15	-0.16936(15)	0.2074(3)	0.3410(2)	0.0555(18)
C16	-0.12202(17)	0.1614(3)	0.2777(2)	0.0524(17)
C17	-0.08868(15)	0.3633(3)	0.29587(19)	0.0406(16)
C18	-0.06022(19)	0.4434(3)	0.3163(2)	0.0576(17)
C19	-0.07285(18)	0.3336(3)	0.24470(19)	0.0539(17)
C20	-0.14632(16)	0.3830(3)	0.2702(2)	0.0575(19)
C21	-0.07341(15)	0.3360(3)	0.43184(19)	0.0411(16)
C22	-0.12204(17)	0.3878(3)	0.4208(2)	0.0554(19)
C23	-0.07421(18)	0.2718(3)	0.4775(2)	0.0551(19)
C24	-0.02703(17)	0.3897(3)	0.4622(2)	0.0542(17)
C25	0.01819(17)	0.0117(3)	0.3285(2)	0.0492(17)
C26	0.0139(2)	-0.0526(4)	0.3697(3)	0.087(3)
C27	0.0601(2)	-0.0513(4)	0.4189(3)	0.094(3)
C28	0.09809(19)	-0.0071(3)	0.4025(2)	0.0583(17)
C29	-0.01166(16)	0.1446(3)	0.2078(2)	0.0492(17)
C30	-0.02916(19)	0.1823(3)	0.1482(2)	0.0600(19)

C31	0.01614(19)	0.1700(4)	0.1294(2)	0.081(2)
C32	0.06156(18)	0.1695(3)	0.18511(19)	0.0517(17)
C33	0.07925(19)	0.3624(3)	0.2677(2)	0.0598(17)
C34	0.1108(3)	0.4304(4)	0.2594(4)	0.114(4)
C35	0.1648(3)	0.4040(4)	0.2864(3)	0.092(3)
C36	0.1634(2)	0.3421(4)	0.3284(3)	0.071(2)
C37	0.18472(19)	0.1379(4)	0.2782(2)	0.074(2)
C38	0.2397(2)	0.1280(5)	0.3100(3)	0.094(3)
C39	0.24369(19)	0.0659(4)	0.3539(3)	0.085(3)
C40	0.19287(17)	0.0629(3)	0.3613(2)	0.060(2)
C41	0.08642(17)	0.4550(3)	0.4195(2)	0.0534(17)
C42	0.03363(18)	0.1168(3)	0.5207(2)	0.0558(17)
Zn3	0.57047(2)	0.17226(3)	0.97264(2)	0.0395(2)
Zn4	0.59247(2)	0.33250(3)	0.93709(2)	0.0443(2)
Ca2	0.59329(3)	0.19399(5)	0.83469(4)	0.0340(3)
Р3	0.52164(4)	0.24455(7)	0.88720(5)	0.0362(3)
P4	0.64726(4)	0.21746(7)	0.96008(5)	0.0361(4)
Si3	0.44023(4)	0.27618(7)	0.86798(5)	0.0343(4)
Si4	0.71624(4)	0.22612(8)	1.04131(5)	0.0434(4)
05	0 57908(10)	0.05151(17)	0.84139(13)	0.0437(10)
06	0.66003(10)	0.14348(19)	0.80341(14)	0.0481(11)
07	0.60000(10) 0.61488(12)	0 3249(2)	0.80403(15)	0.0563(12)
08	0.54449(11)	0.1837(2)	0.73018(13)	0.0499(11)
C43	0.31119(11) 0.40597(19)	0.1057(2) 0.1904(3)	0.8931(3)	0.071(2)
C44	0.10597(19) 0.4231(2)	0.1901(3) 0.1063(3)	0.8951(3)	0.071(2) 0.080(2)
C45	0.1291(2) 0.4197(3)	0.1003(5)	0.0023(3) 0.9627(3)	0.000(2) 0.120(4)
C46	0.1197(3) 0.34595(18)	0.1902(3) 0.1917(4)	0.9027(3) 0.8631(3)	0.120(1) 0.085(3)
C40	0.3+373(10) 0.43541(18)	0.1717(4) 0.3766(4)	0.0031(3)	0.003(3)
C47	0.43341(10) 0.47155(10)	0.3700(4) 0.3782(4)	0.9082(2) 0.9717(2)	0.007(2)
C48	0.47133(19) 0.4524(2)	0.3782(4) 0.4487(3)	0.9717(2) 0.8770(3)	0.079(2) 0.098(3)
C49	0.4324(2) 0.28012(18)	0.4487(3) 0.2020(4)	0.8770(3)	0.098(3)
C51	0.30013(10) 0.41122(17)	0.3939(4) 0.2026(4)	0.9070(3) 0.7842(2)	0.070(2)
C51	0.41132(17) 0.4021(2)	0.2920(4) 0.2050(4)	0.7642(2) 0.7526(2)	0.0001(19)
C32	0.4031(2) 0.4450(2)	0.2039(4) 0.2322(4)	0.7530(3) 0.7583(3)	0.093(3)
C33	0.4439(2) 0.25002(17)	0.5552(4) 0.2252(4)	0.7383(3) 0.7621(2)	0.090(3)
C54	0.33903(17) 0.76207(18)	0.3333(4) 0.2026(4)	0.7021(2) 1.0270(2)	0.0043(19)
C55	0.70397(18)	0.3020(4)	1.0270(2)	0.000(2)
C50	0.7437(2) 0.7660(2)	0.3899(4)	1.0277(3)	0.094(3)
C57	0.7660(2)	0.2913(4)	0.9652(3)	0.094(3)
C58	0.8194(2) 0.7472(2)	0.2980(5)	1.0/08(3)	0.101(3)
C39	0.7473(2)	0.1198(4)	1.05/8(2)	0.0693(19)
C60	0.7/19(2)	0.09/9(4)	1.0119(3)	0.09/(3)
C61	0.7901(2)	0.1098(4)	1.118/(3)	0.095(3)
C62	0.7080(3)	0.0548(4)	1.0524(3)	0.104(3)
C63	0.69816(18)	0.2623(4)	1.10/8(2)	0.0600(19)
C64	0.7446(2)	0.2914(5)	1.1601(2)	0.095(3)
065	0.6732(3)	0.1941(5)	1.1306(3)	0.098(3)
C66	0.6593(2)	0.3322(4)	1.0906(3)	0.091(3)
C67	0.53027(18)	0.0162(3)	0.8366(2)	0.0571(19)
C68	0.5407(3)	-0.0419(4)	0.8857(3)	0.095(3)
C69	0.5950(3)	-0.0426(4)	0.9172(3)	0.094(3)
C70	0.61894(18)	0.0003(3)	0.8796(2)	0.0538(17)
C71	0.71347(18)	0.1452(4)	0.8382(3)	0.077(2)
C72	0.7337(2)	0.0691(4)	0.8285(3)	0.089(3)

Experimenteller Teil C73 0.7033(2) 0.0463(3) 0.7668(3) 0.069(2) C74 0.65239(17) 0.0872(3)0.7561(2)0.0531(17) C75 0.3454(4) 0.091(3) 0.6644(2)0.8026(3) C76 0.4304(5) 0.6643(4)0.7908(8) 0.253(11)C77 0.6193(5) 0.4642(6) 0.7934(7)0.232(8) C78 0.5849(3)0.3986(4)0.7933(3) 0.093(3) C79 0.50677(19) 0.7015(2)0.0600(19) 0.1236(3)C80 0.4808(3) 0.1540(4)0.6394(3) 0.093(3) C81 0.5197(3)0.2026(5)0.6285(3)0.118(3)C82 0.5493(2) 0.2388(4) 0.6859(2)0.084(3)C83 0.55331(19) 0.1032(3)1.0300(2)0.064(2)C84 0.5994(2) 0.4511(3) 0.9504(3) 0.076(2)

Tabelle 3.6.2b Atomkoordinaten und equivalente isotrope Auslenkungsparameter für 8b

	X	У	Z	$U(eq) [Å^2]$
Zn1	0.30036(4)	0.19412(2)	0.89022(2)	0.0356(2)
Zn2	0.40582(4)	0.11779(2)	0.79884(2)	0.0381(2)
Cal	0.25235(6)	0.24163(4)	0.73510(4)	0.0360(3)
P1	0.22792(8)	0.12814(5)	0.80784(5)	0.0317(3)
P2	0.42831(8)	0.22583(6)	0.82192(5)	0.0348(3)
Si1	0.14723(9)	0.04287(5)	0.83758(6)	0.0342(4)
Si2	0.57609(9)	0.26092(6)	0.86336(6)	0.0403(4)
01	0.1601(2)	0.30873(16)	0.80280(17)	0.0546(11)
O2	0.3038(3)	0.33562(16)	0.68484(17)	0.0550(12)
03	0.3052(3)	0.18719(16)	0.64266(14)	0.0513(11)
O4	0.0947(2)	0.25034(17)	0.66942(15)	0.0520(11)
C1	0.0205(3)	0.0684(2)	0.8730(3)	0.0500(17)
C2	0.0428(5)	0.0965(3)	0.9401(3)	0.075(2)
C3	-0.0296(4)	0.1204(3)	0.8325(3)	0.076(2)
C4	-0.0580(4)	0.0161(3)	0.8793(3)	0.069(2)
C5	0.1188(4)	-0.0073(2)	0.7609(3)	0.0556(17)
C6	0.0350(5)	0.0240(3)	0.7179(3)	0.085(3)
C7	0.0823(6)	-0.0742(3)	0.7739(3)	0.086(3)
C8	0.2142(5)	-0.0116(3)	0.7207(3)	0.073(3)
C9	0.2283(4)	-0.0054(2)	0.9001(2)	0.0514(17)
C10	0.2829(5)	0.0364(3)	0.9514(3)	0.077(2)
C11	0.1666(5)	-0.0534(3)	0.9366(3)	0.077(3)
C12	0.3126(4)	-0.0421(3)	0.8703(3)	0.076(3)
C13	0.5569(4)	0.3478(3)	0.8864(3)	0.0569(17)
C14	0.5214(8)	0.3854(3)	0.8281(4)	0.123(4)
C15	0.4748(6)	0.3539(4)	0.9342(4)	0.113(4)
C16	0.6521(5)	0.3808(3)	0.9148(4)	0.100(3)
C17	0.6744(3)	0.2546(3)	0.7978(3)	0.0584(18)
C18	0.6356(6)	0.2858(6)	0.7364(4)	0.159(6)
C19	0.7777(4)	0.2818(4)	0.8159(4)	0.101(3)
C20	0.6914(6)	0.1872(4)	0.7816(6)	0.154(5)
C21	0.6221(4)	0.2122(3)	0.9394(3)	0.0614(19)
C22	0.7268(5)	0.2287(5)	0.9673(4)	0.134(4)
C23	0.5522(6)	0.2220(6)	0.9937(4)	0.162(6)
C24	0.6204(11)	0.1431(4)	0.9245(5)	0.209(7)

		Experimenteller Te	11	
C25	0 2621(4)	0.2161(3)	0.9775(2)	0.0568(19)
C26	0.2021(1) 0.5009(4)	0.0500(3)	0.7775(3)	0.0500(17)
C27	0.1974(5)	0.3577(4)	0.8431(4)	0.096(3)
C28	0.1358(8)	0.3622(5)	0.8959(4)	0 126(4)
C29	0.0475(5)	0.3217(5)	0.8839(4)	0.103(3)
C30	0.0624(4)	0.2925(3)	0.8213(3)	0.073(3)
C31	0.2745(5)	0.4013(3)	0.6930(3)	0.073(2)
C32	0.3027(5)	0.4315(3)	0.6343(3)	0.077(2)
C33	0.3998(4)	0.4001(3)	0.6203(3)	0.075(3)
C34	0.3862(4)	0.3342(3)	0.6431(3)	0.0578(19)
C35	0.4063(4)	0.1687(3)	0.6300(3)	0.066(2)
C36	0.3970(6)	0.1017(3)	0.6095(3)	0.082(3)
C37	0.2976(6)	0.1009(3)	0.5731(3)	0.088(3)
C38	0.2347(5)	0.1471(3)	0.6079(3)	0.067(2)
C39	0.0822(4)	0.2968(3)	0.6186(3)	0.0605(19)
C40	-0.0107(5)	0.2778(3)	0.5795(3)	0.078(2)
C41	-0.0729(5)	0.2479(4)	0.6270(4)	0.098(3)
C42	0.0035(4)	0.2139(3)	0.6705(3)	0.075(2)
*C50	0.2151(16)	0.5201(12)	0.8397(10)	0.221(7)
*C51	0.281(2)	0.4950(7)	0.8871(13)	0.221(7)
*C52	0.3436(15)	0.5340(14)	0.9250(9)	0.221(7)
*C53	0.3400(15)	0.5981(13)	0.9156(10)	0.221(7)
*C54	0.274(2)	0.6232(7)	0.8682(13)	0.221(7)
*C55	0.2115(15)	0.5842(14)	0.8302(9)	0.221(7)
*C43	0.8478(16)	0.0729(12)	0.5709(14)	0.206(7)
*C48	0.783(2)	0.0306(13)	0.5392(9)	0.206(7)
*C49	0.938(2)	0.0747(16)	0.5258(14)	0.206(7)
*C44	0.8313(18)	0.0908(9)	0.6334(14)	0.206(7)
*C45	0.750(2)	0.0662(12)	0.6641(9)	0.206(7)
*C46	0.6852(16)	0.0238(12)	0.6324(14)	0.206(7)
*C47	0.7018(18)	0.0060(10)	0.5700(14)	0.206(7)

Tabelle 3.6.3 Kristallographische Daten der Verbindungen 9 und 10

	9	10
Summenformel	$C_{51}H_{108}O_4P_2Si_2CaZn_2$	$C_{36}H_{80}O_4P_2Si_2CaZn_2$
Molmasse [g mol ⁻¹]	1070.35	865.99
Messtemperatur [K]	200	200
Kristallsystem	monoklin	monoklin
Raumgruppe	P2 ₁ /n (No. 14)	$P2_1/n$ (No. 14)
a [Å]	12.8828(2)	22.3615(11)
b [Å]	18.7185(3)	17.3303(12)
c [Å]	25.2166(4)	12.2604(8)
α [°]	90	90
ß [°]	97.4852(14)	91.306(7)
γ [°]	90	90
Zellvolumen [Å ³]	6029.08(17)	4750.1(5)
Z	4	4
$d_{ber} [g cm^{-3}]$	1.179	1.211
λ [pm]	71.073	71.073
μ [mm ⁻¹]	1.011	1.267
F(000)	2320	1864

Messbereich [°]	$3.3 < 2\theta < 23.0$	$1.9 < 2\theta < 25.9$
Gemessene Reflexe	59822	33085, , 0.076
Symunabh. Refl. N _o	8335	8926
R _{int}	0.081	0.076
Zahl der Parameter N _p	559	424
R-Werte (alle Daten)		
R_1	0.0885	0.0807
R-Werte (I > $2\sigma(I)$), Daten		
wR_2 an F^2	0.1575	0.0879
R_1	0.0595	0.0397
Gütefaktor s an F ²	1.03	0.85
Restelektronendichte [e Å ⁻³]	-0.65/0.67	-0.47/0.51
CCDC-Nummer		

Tabelle 3.6.3a Atomkoordinaten und equivalente isotrope Auslenkungsparameter für 9

	Х	У	Z	U(eq) [Å ²]
Zn1	0.00208(5)	0.06598(4)	0.18502(3)	0.0448(2)
Zn2	-0.18619(5)	0.09468(4)	0.23221(3)	0.0491(2)
Ca	-0.02517(9)	0.25177(6)	0.20899(5)	0.0425(4)
P1	-0.14323(12)	0.13900(8)	0.14939(5)	0.0403(5)
P2	-0.01072(12)	0.11961(8)	0.27023(5)	0.0421(5)
Si1	-0.23971(12)	0.11803(9)	0.07077(6)	0.0413(5)
Si2	0.05659(14)	0.07097(8)	0.34748(6)	0.0452(5)
01	-0.1669(3)	0.3030(2)	0.24900(18)	0.0650(17)
O2	0.0657(3)	0.3481(2)	0.26341(18)	0.0610(16)
03	-0.0514(3)	0.3468(2)	0.14277(16)	0.0548(16)
O4	0.1426(4)	0.2408(3)	0.1762(2)	0.0757(19)
C1	-0.2558(6)	0.0164(4)	0.0564(3)	0.071(3)
C2	-0.322(2)	-0.0168(7)	0.0946(5)	0.274(14)
C3	-0.1607(13)	-0.0214(6)	0.0659(9)	0.280(12)
C4	-0.3142(8)	-0.0032(4)	0.0025(3)	0.101(4)
C5	-0.1681(6)	0.1623(4)	0.0161(2)	0.070(3)
C6	-0.0645(8)	0.1241(11)	0.0135(4)	0.225(11)
C7	-0.2244(6)	0.1594(4)	-0.0404(2)	0.076(3)
C8	-0.1394(17)	0.2360(7)	0.0287(4)	0.250(11)
C9	-0.3766(5)	0.1618(4)	0.0718(3)	0.077(3)
C10	-0.4268(8)	0.1393(12)	0.1174(4)	0.247(14)
C11	-0.3599(10)	0.2451(7)	0.0760(8)	0.251(11)
C12	-0.4544(6)	0.1521(5)	0.0205(3)	0.090(4)
C13	0.0270(7)	-0.0308(4)	0.3500(3)	0.077(3)
C14	-0.0919(10)	-0.0415(7)	0.3585(7)	0.202(8)
C15	0.0868(8)	-0.0702(4)	0.3970(3)	0.102(4)
C16	0.0383(17)	-0.0671(5)	0.3010(4)	0.220(10)
C17	0.2074(5)	0.0869(4)	0.3560(3)	0.066(2)
C18	0.2569(8)	0.0427(9)	0.3158(4)	0.181(7)
C19	0.2667(7)	0.0683(5)	0.4105(3)	0.108(4)
C20	0.2311(8)	0.1637(6)	0.3429(7)	0.193(8)
C21	-0.0071(7)	0.1196(5)	0.4034(3)	0.081(3)
C22	-0.1239(10)	0.1188(10)	0.3916(4)	0.204(11)
C23	0.0256(13)	0.1981(5)	0.4052(4)	0.165(7)

		Experimenteller Tei	1	
C24	0.0278(10)	0.0915(5)	0.4609(3)	0.123(5)
C25	0.0954(5)	-0.0049(4)	0.1562(3)	0.064(3)
C26	0.0660(7)	-0.0822(4)	0.1568(3)	0.084(3)
C27	-0.3128(6)	0.0497(4)	0.2554(3)	0.076(3)
C28	-0.3868(8)	0.0917(6)	0.2814(5)	0.135(5)
C29	-0.1624(8)	0.3301(7)	0.2998(4)	0.132(6)
C30	-0.2694(12)	0.3211(14)	0.3130(6)	0.292(15)
C31	-0.3350(9)	0.2959(7)	0.2756(5)	0.134(6)
C32	-0.2745(8)	0.2843(10)	0.2345(6)	0.237(9)
C33	0.0534(8)	0.4222(4)	0.2481(3)	0.091(4)
C34	0.0891(6)	0.4658(4)	0.2956(3)	0.078(3)
C35	0.1094(8)	0.4169(5)	0.3402(3)	0.098(4)
C36	0.1233(10)	0.3485(5)	0.3162(4)	0.146(5)
C37	-0.1468(6)	0.3898(4)	0.1329(3)	0.071(3)
C38	-0.1329(9)	0.4368(6)	0.0882(4)	0.125(5)
C39	-0.0255(9)	0.4370(5)	0.0813(5)	0.119(5)
C40	0.0193(6)	0.3700(4)	0.1062(3)	0.067(3)
C41	0.1629(7)	0.1968(5)	0.1323(4)	0.100(4)
C42	0.2700(9)	0.1674(6)	0.1504(7)	0.159(8)
C43	0.3225(9)	0.2171(9)	0.1865(6)	0.168(8)
C44	0.2419(7)	0.2616(6)	0.2043(5)	0.130(5)
C45	-0.4032(7)	0.2076(5)	0.4340(3)	0.080(3)
C46	-0.3442(8)	0.2643(5)	0.4502(4)	0.095(4)
C47	-0.2652(10)	0.2598(7)	0.4898(5)	0.122(6)
C48	-0.2414(11)	0.1980(9)	0.5150(4)	0.130(6)
C49	-0.3004(12)	0.1405(8)	0.5013(5)	0.122(6)
C50	-0.3815(10)	0.1429(5)	0.4610(5)	0.107(5)
C51	-0.4893(9)	0.2146(7)	0.3911(5)	0.140(6)

Tabelle 3.6.3b Atomkoordinaten und equivalente isotrope Auslenkungsparameter für 10

	X	y	Z	U(eq) [A ²]
Zn1	0.24480(2)	0.30966(2)	-0.17738(3)	0.0314(1)
Zn2	0.23635(2)	0.35725(2)	0.04122(3)	0.0333(1)
Cal	0.25449(3)	0.15716(4)	0.02793(5)	0.0257(2)
P1	0.31855(4)	0.29159(5)	-0.03773(7)	0.0289(3)
P2	0.17103(4)	0.27052(5)	-0.05107(8)	0.0284(3)
Si1	0.40813(5)	0.34149(6)	-0.05700(8)	0.0331(3)
Si2	0.07880(5)	0.31365(6)	-0.04956(9)	0.0328(3)
01	0.25390(13)	0.18766(15)	0.21925(18)	0.0428(9)
O2	0.33332(12)	0.06898(14)	0.0773(2)	0.0436(9)
03	0.18208(12)	0.06038(13)	0.0674(2)	0.0387(9)
04	0.25878(13)	0.09156(15)	-0.1420(2)	0.0463(10)
C1	0.2429(2)	0.3470(2)	-0.3308(3)	0.0506(16)
C2	0.2270(2)	0.4486(3)	0.1363(4)	0.0649(19)
C3	0.46667(18)	0.2701(2)	-0.0042(4)	0.0473(16)
C4	0.4610(2)	0.1892(3)	-0.0503(4)	0.0636(19)
C5	0.5316(2)	0.2984(3)	-0.0101(5)	0.073(2)
C6	0.41821(19)	0.3703(3)	-0.2052(3)	0.0529(17)
C7	0.4140(2)	0.3025(3)	-0.2826(3)	0.0668(19)
C8	0.4746(2)	0.4182(4)	-0.2263(4)	0.090(3)

		Experimenteller Teil		
C9	0.4195(2)	0.4314(2)	0.0294(4)	0.0490(16)
C10	0.4097(2)	0.4160(3)	0.1499(4)	0.0614(17)
C11	0.3798(2)	0.4978(2)	-0.0112(5)	0.070(2)
C12	0.02186(19)	0.2346(3)	-0.0798(4)	0.0552(17)
C13	0.0424(2)	0.1744(3)	-0.1617(5)	0.081(2)
C14	-0.0405(2)	0.2645(3)	-0.1147(5)	0.076(2)
C15	0.0657(2)	0.3974(3)	-0.1473(4)	0.0641(19)
C16	0.1061(2)	0.4652(3)	-0.1175(6)	0.096(3)
C17	0.0726(3)	0.3736(4)	-0.2665(4)	0.103(3)
C18	0.06501(19)	0.3519(2)	0.0930(4)	0.0515(17)
C19	0.0808(2)	0.2949(3)	0.1829(3)	0.0634(19)
C20	0.0021(2)	0.3858(3)	0.1079(4)	0.0673(19)
C21	0.2109(2)	0.1582(3)	0.2939(3)	0.0575(18)
C22	0.2184(3)	0.2031(5)	0.3941(4)	0.130(4)
C23	0.2647(5)	0.2567(6)	0.3750(6)	0.252(7)
C24	0.2872(3)	0.2461(3)	0.2754(4)	0.080(2)
C25	0.3544(3)	0.0004(3)	0.0263(5)	0.090(3)
C26	0.3991(4)	-0.0308(5)	0.0842(7)	0.158(4)
C27	0.4186(3)	0.0209(4)	0.1729(5)	0.089(3)
C28	0.3719(2)	0.0840(3)	0.1710(4)	0.0603(17)
C29	0.1940(2)	-0.0215(2)	0.0623(4)	0.0551(18)
C30	0.1357(3)	-0.0605(3)	0.0490(5)	0.086(3)
C31	0.0899(2)	0.0021(3)	0.0325(4)	0.071(2)
C32	0.1198(2)	0.0698(2)	0.0865(4)	0.0532(16)
C33	0.2074(2)	0.0766(3)	-0.2108(4)	0.0613(19)
C34	0.2199(4)	0.1098(6)	-0.3161(5)	0.165(5)
C35	0.2842(3)	0.1232(3)	-0.3206(4)	0.079(2)
C36	0.3090(2)	0.0994(3)	-0.2125(4)	0.071(2)

Tabelle 3.6.4 Kristallographische Daten der Verbindungen 11a und 11b

	11	111
	11a	11b
Summenformel	$C_{49}H_{100}O_4P_2Si_2SrZn_2$	$C_{42}H_{92}O_4P_2Si_2SrZn_2$
Molmasse [g mol ⁻¹]	1089.83	997.64
Messtemperatur [K]	200	193(2)
Kristallsystem	monoklin	monoklin
Raumgruppe	$P2_1/c$ (No. 14)	P2 ₁ /n (No. 14)
a [Å]	20.7882(2)	12.4531(13)
b [Å]	25.8744(2)	26.017(2)
c[Å]	22.2215(2)	17.5381(17)
α [°]	90	90
ß [°]	95.6775(3)	91.454(2)
γ ^[°]	90	90
Zellvolumen [Å ³]	11893.92(18)	5680.3
Z	8	4
$d_{ber} [g cm^{-3}]$	1.217	1.167
λ [pm]	71.073	71.073
$\mu [mm^{-1}]$	1.824	1.903
F(000)	4656	2128
Messbereich [°]	$3.2 < 2\theta < 25.0$	$2.8 < 2\theta < 46.62$
Gemessene Reflexe	127071	25515
Symunabh. Refl. No	20925,	8076

R _{int}	0.083	0.0692
Absorptionskorrektur		SADABS
Zahl der Parameter N _p	554	498
R-Werte (alle Daten)		
R_1	0.1193	0.1304
R-Werte (I > $2\sigma(I)$), Daten		
wR_2 an F^2	0.2425	0.2077
R_1	0.0819	0.0666
Gütefaktor s an F ²	1.03	1.060
Restelektronendichte [e Å ⁻³]	-0.96/1.32	-0.496/1.552
CCDC-Nummer		

Tabelle 3.6.4a Atomkoordinaten und equivalente isotrope Auslenkungsparameter für 11a

	Х	У	Z	U(eq) [Å ²]
Sr1	0.22670(3)	0.68962(3)	0.13196(3)	0.0404(2)
Zn1	0.40183(4)	0.70499(3)	0.14784(4)	0.0439(3)
Zn2	0.35376(4)	0.65843(3)	0.25421(4)	0.0460(3)
P1	0.34809(8)	0.62441(7)	0.15449(8)	0.0381(5)
P2	0.33023(9)	0.74243(7)	0.21309(9)	0.0403(6)
Si1	0.39605(8)	0.55035(7)	0.13405(9)	0.0362(5)
Si2	0.35747(9)	0.81273(7)	0.26649(9)	0.0397(6)
01	0.1597(3)	0.6536(2)	0.2117(3)	0.068(2)
O2	0.1239(2)	0.7485(2)	0.1200(3)	0.065(2)
O3	0.1589(3)	0.6271(3)	0.0639(3)	0.078(3)
O4	0.2406(3)	0.7373(3)	0.0351(3)	0.071(2)
C1	0.4884(4)	0.5603(3)	0.1304(4)	0.059(2)
C2	0.5010(5)	0.5892(4)	0.0717(4)	0.074(3)
C3	0.5183(5)	0.5938(4)	0.1826(5)	0.078(3)
C4	0.5268(5)	0.5091(4)	0.1313(4)	0.070(2)
C5	0.3808(5)	0.4996(4)	0.1961(4)	0.067(2)
C6	0.3153(5)	0.5058(4)	0.2178(5)	0.079(3)
C7	0.3880(5)	0.4430(4)	0.1774(5)	0.079(3)
C8	0.4289(6)	0.5107(5)	0.2536(5)	0.096(3)
C9	0.3572(4)	0.5274(3)	0.0556(4)	0.056(2)
C10	0.3490(5)	0.5712(4)	0.0101(4)	0.070(2)
C11	0.2873(5)	0.5087(4)	0.0622(5)	0.078(3)
C12	0.3930(5)	0.4834(4)	0.0266(4)	0.073(3)
C13	0.4332(4)	0.8000(3)	0.3238(4)	0.064(2)
C14	0.4168(6)	0.7672(5)	0.3771(5)	0.094(3)
C15	0.4841(6)	0.7684(5)	0.2926(6)	0.095(3)
C16	0.4650(5)	0.8495(4)	0.3505(5)	0.088(3)
C17	0.2844(4)	0.8303(3)	0.3115(3)	0.0487(18)
C18	0.2983(5)	0.8709(4)	0.3611(4)	0.074(3)
C19	0.2283(5)	0.8508(4)	0.2691(5)	0.078(3)
C20	0.2570(5)	0.7816(4)	0.3379(5)	0.076(3)
C21	0.3728(5)	0.8685(4)	0.2110(4)	0.067(2)
C22	0.4399(6)	0.8613(5)	0.1886(6)	0.108(4)
C23	0.3752(5)	0.9229(4)	0.2406(5)	0.083(3)
C24	0.3232(6)	0.8687(5)	0.1569(5)	0.093(3)
C25	0.1284(6)	0.6885(4)	0.2517(5)	0.082(3)

Experimenteller Teil

C26	0.1392(8)	0.6732(6)	0.3122(7)	0.132(5)
C27	0.1857(7)	0.6371(6)	0.3135(6)	0.112(4)
C28	0.1831(7)	0.6116(5)	0.2517(6)	0.108(4)
C29	0.1182(5)	0.8026(4)	0.1331(5)	0.085(3)
C30	0.0538(7)	0.8190(6)	0.0990(7)	0.122(5)
C31	0.0178(8)	0.7736(6)	0.0949(8)	0.137(5)
C32	0.0612(6)	0.7280(5)	0.0962(6)	0.102(4)
C33	0.1130(11)	0.5932(9)	0.0812(10)	0.184(8)
C34	0.0984(8)	0.5545(7)	0.0378(8)	0.135(5)
C35	0.1323(6)	0.5643(5)	-0.0091(6)	0.098(4)
C36	0.1669(5)	0.6163(4)	0.0025(5)	0.082(3)
C37	0.3024(8)	0.7545(6)	0.0160(8)	0.131(5)
C38	0.2842(9)	0.8089(6)	-0.0108(8)	0.133(5)
C39	0.2245(13)	0.8125(10)	-0.0217(12)	0.210(10)
C40	0.1947(8)	0.7639(6)	-0.0068(7)	0.122(5)
C41	0.4729(5)	0.7309(4)	0.1024(4)	0.069(2)
C42	0.3668(5)	0.6288(4)	0.3362(5)	0.077(3)
Sr2	0.25583(3)	1.19891(3)	0.13372(3)	0.0441(2)
Zn3	0.08717(4)	1.18407(3)	0.15194(4)	0.0489(3)
Zn4	0.16152(4)	1.22340(3)	0.26287(4)	0.0481(3)
P3	0.14405(9)	1.26392(7)	0.16666(9)	0.0432(6)
P4	0.17034(9)	1.14197(7)	0.21480(9)	0.0434(6)
Si3	0.09323(10)	1.33882(7)	0.15371(10)	0.0447(6)
Si4	0.14625(9)	1.07113(8)	0.26403(10)	0.0451(6)
05	0.3457(3)	1.1331(3)	0.1242(3)	0.077(3)
06	0.2087(3)	1.1607(3)	0.0343(3)	0.082(3)
07	0.3118(3)	1.2575(3)	0.0617(3)	0.071(3)
08	0.3406(3)	1.2349(3)	0.2117(3)	0.072(2)
C43	0.1109(5)	1.3649(4)	0.0749(5)	0.072(3)
C44	0.0685(6)	1.4103(5)	0.0502(6)	0.096(3)
C45	0.1817(6)	1.3844(6)	0.0807(6)	0.113(4)
C46	0.1069(6)	1.3243(5)	0.0281(6)	0.101(4)
C47	0.1253(5)	1.3862(4)	0.2170(5)	0.072(3)
C48	0.1958(5)	1.3798(5)	0.2354(5)	0.092(3)
C49	0.1108(6)	1.4444(4)	0.2032(5)	0.088(3)
C50	0.0924(6)	1.3734(5)	0.2776(5)	0.096(3)
C51	0.0007(4)	1.3296(4)	0.1550(4)	0.063(2)
C52	-0.0291(6)	1.3031(4)	0.0965(5)	0.089(3)
C53	-0.0157(5)	1.2937(4)	0.2042(5)	0.084(3)
C54	-0.0372(5)	1.3806(4)	0.1600(5)	0.082(3)
C55	0.0663(4)	1.0798(4)	0.3028(4)	0.065(2)
C56	0.0620(7)	1.1303(5)	0.3315(6)	0.108(4)
C57	0.0065(6)	1.0762(5)	0.2533(6)	0.107(4)
C58	0.0542(5)	1.0363(4)	0.3469(5)	0.083(3)
C59	0.1349(4)	1.0148(3)	0.2058(4)	0.060(2)
C60	0.0931(6)	1.0298(5)	0.1489(6)	0.106(4)
C61	0.1085(6)	0.9640(4)	0.2281(5)	0.090(3)
C62	0.2010(6)	0.9999(5)	0.1846(6)	0.110(4)
C63	0.2180(4)	1.0565(3)	0.3246(4)	0.059(2)
C64	0.2168(6)	1.0944(5)	0.3756(6)	0.107(4)
C65	0.2817(6)	1.0635(5)	0.2997(5)	0.093(3)
C66	0.2160(6)	1.0030(5)	0.3534(5)	0.094(3)
C67	0.4122(8)	1.1435(7)	0.1168(8)	0.143(6)

L'Appendice de la composition

$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C68	0.4450(10)	1.0924(8)	0.1233(9)	0.164(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C69	0.3979(13)	1.0562(10)	0.1189(12)	0.212(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C70	0.3405(10)	1.0789(7)	0.1294(9)	0.156(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C71	0.2249(17)	1.1152(13)	0.0119(16)	0.285(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C72	0.2008(12)	1.1172(10)	-0.0585(12)	0.209(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C73	0.1320(8)	1.1314(6)	-0.0404(7)	0.129(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C74	0.1483(8)	1.1733(7)	0.0015(8)	0.138(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C75	0.2888(9)	1.2710(7)	0.0009(8)	0.148(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C76	0.3327(12)	1.3130(9)	-0.0133(12)	0.198(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C77	0.3824(12)	1.3151(9)	0.0205(10)	0.182(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C78	0.3578(11)	1.2976(8)	0.0815(10)	0.179(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C79	0.3710(7)	1.1996(5)	0.2585(6)	0.107(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C80	0.3488(11)	1.2169(9)	0.3129(10)	0.188(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C81	0.3485(8)	1.2696(6)	0.3085(7)	0.123(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C82	0.3389(9)	1.2884(7)	0.2347(8)	0.141(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C83	0.0087(5)	1.1614(4)	0.1000(5)	0.085(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C84	0.1702(5)	1.2478(4)	0.3483(4)	0.073(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C85	0.4950(10)	0.3831(9)	0.4620(8)	0.239(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C86	0.4988(9)	0.4358(9)	0.4510(8)	0.239(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C87	0.4462(12)	0.4618(6)	0.4216(9)	0.239(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C88	0.3897(9)	0.4349(9)	0.4031(8)	0.239(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C89	0.3859(9)	0.3822(9)	0.4141(8)	0.239(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C90	0.4385(13)	0.3563(6)	0.4435(9)	0.239(3)
C920.1314(7)0.5361(7)0.4566(8)0.239(3)C930.1862(9)0.5468(6)0.4958(6)0.239(3)C940.2473(8)0.5394(7)0.4769(9)0.239(3)C950.2537(8)0.5214(7)0.4188(10)0.239(3)C960.1989(10)0.5108(6)0.3797(7)0.239(3)C970.1378(8)0.5181(7)0.3986(7)0.239(3)C980.0663(8)0.5370(10)0.4787(11)0.239(3)	C91	0.5525(13)	0.3842(11)	0.4933(12)	0.239(3)
C930.1862(9)0.5468(6)0.4958(6)0.239(3)C940.2473(8)0.5394(7)0.4769(9)0.239(3)C950.2537(8)0.5214(7)0.4188(10)0.239(3)C960.1989(10)0.5108(6)0.3797(7)0.239(3)C970.1378(8)0.5181(7)0.3986(7)0.239(3)C980.0663(8)0.5370(10)0.4787(11)0.239(3)	C92	0.1314(7)	0.5361(7)	0.4566(8)	0.239(3)
C940.2473(8)0.5394(7)0.4769(9)0.239(3)C950.2537(8)0.5214(7)0.4188(10)0.239(3)C960.1989(10)0.5108(6)0.3797(7)0.239(3)C970.1378(8)0.5181(7)0.3986(7)0.239(3)C980.0663(8)0.5370(10)0.4787(11)0.239(3)	C93	0.1862(9)	0.5468(6)	0.4958(6)	0.239(3)
C950.2537(8)0.5214(7)0.4188(10)0.239(3)C960.1989(10)0.5108(6)0.3797(7)0.239(3)C970.1378(8)0.5181(7)0.3986(7)0.239(3)C980.0663(8)0.5370(10)0.4787(11)0.239(3)	C94	0.2473(8)	0.5394(7)	0.4769(9)	0.239(3)
C960.1989(10)0.5108(6)0.3797(7)0.239(3)C970.1378(8)0.5181(7)0.3986(7)0.239(3)C980.0663(8)0.5370(10)0.4787(11)0.239(3)	C95	0.2537(8)	0.5214(7)	0.4188(10)	0.239(3)
C970.1378(8)0.5181(7)0.3986(7)0.239(3)C980.0663(8)0.5370(10)0.4787(11)0.239(3)	C96	0.1989(10)	0.5108(6)	0.3797(7)	0.239(3)
C98 0.0663(8) 0.5370(10) 0.4787(11) 0.239(3)	C97	0.1378(8)	0.5181(7)	0.3986(7)	0.239(3)
	C98	0.0663(8)	0.5370(10)	0.4787(11)	0.239(3)

*Tabelle 3.6.4*b Atomkoordinaten ($x \ 10^4$) und equivalente isotrope Auslenkungsparameter (Å² $x \ 10^3$)für **11b**

	X	V	Z	U(ea)
Sr(1)	2242.4(7)	3045.0(4)	1373.4(6)	37.3(3)
Zn(1)	-551.2(11)	2644.3(5)	1009.8(9)	61.8(5)
Zn(2)	121.9(13)	2721.1(6)	2617.2(8)	69.3(5)
P(1)	799(2)	2160.6(11)	1682.6(19)	51.7(9)
P(2)	-8(2)	3390.7(11)	1694.1(17)	43.1(8)
Si(1)	682(3)	1325.2(12)	1879(3)	83.4(15)
Si(2)	-1109(2)	4049.3(12)	1851(2)	51.1(9)
O(1)	3304(6)	3806(3)	894(5)	68(2)
O(2)	4021(6)	2575(3)	1321(5)	65(2)
O(3)	1966(6)	3033(3)	-59(4)	63(2)
O(4)	3064(8)	3351(3)	2623(5)	76(3)
C(1)	-1590(13)	2470(6)	147(9)	130(7)
C(2)	-147(15)	2652(6)	3708(8)	129(7)
C(3)	926(16)	989(5)	914(13)	133(8)
C(4)	-742(17)	1165(6)	2280(03)	330(03)
C(5)	1781(14)	1130(5)	2639(9)	92(5)

C(6)	1900(02)	1193(6)	548(9)	157(10)
C(7)	1132(17)	385(6)	1024(13)	202(11)
C(8)	0(03)	1145(11)	340(02)	470(04)
C(9)	-901(13)	580(6)	2360(18)	283(19)
C(10)	-870(04)	1436(12)	3010(03)	640(07)
C(11)	-1555(16)	1391(12)	1730(04)	580(06)
C(12)	1880(03)	1505(10)	3316(11)	320(02)
C(13)	2867(15)	1215(8)	2378(12)	189(12)
C(14)	1838(16)	582(6)	2877(13)	195(11)
C(15)	-246(12)	4631(6)	2129(12)	118(7)
C(16)	-1867(18)	4169(8)	866(11)	158(10)
C(17)	-2188(11)	3892(5)	2564(10)	92(5)
C(18)	-828(12)	5094(5)	2521(11)	138(8)
C(19)	308(14)	4797(7)	1275(13)	211(13)
C(20)	688(12)	4520(5)	2634(9)	103(5)
C(21)	-2922(15)	3725(7)	852(18)	256(17)
C(22)	-2401(13)	4736(6)	799(10)	141(7)
C(23)	-1258(15)	4093(6)	164(9)	125(6)
C(24)	-3088(11)	4280(5)	2672(9)	114(6)
C(25)	-2598(13)	3354(6)	2580(12)	155(9)
C(26)	-1452(18)	3960(8)	3383(10)	195(12)
C(27)	4184(11)	3739(5)	404(9)	95(5)
C(28)	4472(12)	4296(6)	155(11)	125(7)
C(29)	4159(12)	4607(6)	805(11)	116(6)
C(30)	3133(11)	4341(5)	1037(9)	96(5)
C(31)	4752(11)	2476(6)	1934(9)	108(6)
C(32)	5547(15)	2101(9)	1632(11)	166(10)
C(33)	5388(15)	2091(9)	793(11)	168(10)
C(34)	4365(13)	2314(7)	680(8)	109(6)
C(35)	1800(14)	2577(6)	-527(8)	108(6)
C(36)	1192(18)	2756(7)	-1231(11)	162(9)
C(37)	791(14)	3267(7)	-1097(9)	125(6)
C(38)	1519(12)	3487(6)	-416(8)	88(5)
C(39)	3961(14)	3651(7)	2775(11)	129(7)
C(40)	3690(02)	3990(10)	3348(14)	229(17)
C(41)	2900(02)	3783(9)	3805(10)	160(9)
C(42)	2545(17)	3300(7)	3318(11)	152(9)

	12	13
Summenformel	$C_{47}H_{104}O_4P_2Si_2SrZn_2$	$C_{49}H_{100}O_4P_2Si_2BaZn_2$
Molmasse [g mol ⁻¹]	1117.89	1139.54
Messtemperatur [K]	200	200
Kristallsystem	monoklin	monoklin
Raumgruppe	P2 ₁ /n (No. 14)	P2 ₁ /m (No. 11)
a [Å]	12.9308(1)	11.0096(8)
b [Å]	18.8196(2)	25.4383(13)
c [Å]	25.2335(2)	11.1798(7)
α [°]	90	90
ß [°]	97.8797(5)	104.984(8)
γ [°]	90	90
Zellvolumen [Å ³]	6082.66(9)	3024.6(3)
Z	4	2
$d_{ber} [g cm^{-3}]$	1.221	1.225
λ [pm]	71.073	71.073
$\mu [mm^{-1}]$	1.785	1.558
F(000)	2392	1152
Messbereich [°]	$3.2 < 2\theta < 26.0$	$1.9 < 2\theta < 25.9$
Gemessene Reflexe	100393	21568
Symunabh. Refl. N _o	11885	5734
R _{int}	0.085	0.072
Zahl der Parameter N _p	559	285
R-Werte (alle Daten)		
R_1	0.0953	0.1304
R-Werte (I > $2\sigma(I)$), Daten		
wR_2 an F^2	0.1394	0.1010
R ₁	0.0540	0.0431
Gütefaktor s an F^2	1.02	0.84
Restelektronendichte [e Å ⁻³]	-0.61/0.98	-0.44/0.61
CCDC-Nummer		273568

Tabelle 3.6.5 Kristallographische Daten der Verbindungen 12 und 13

Tabelle 3.6.5a Atomkoordinaten und equivalente isotrope Auslenkungsparameter für 12

	X	у	Z	U(eq) [Å ²]
Sr1	0.52599(3)	0.74718(2)	0.79055(2)	0.0374(1)
Zn1	0.50345(4)	0.93723(3)	0.81790(2)	0.0400(2)
Zn2	0.69314(4)	0.90941(3)	0.77149(2)	0.0420(2)
P1	0.64815(8)	0.86462(6)	0.85324(4)	0.0357(3)
P2	0.51858(9)	0.88749(6)	0.73206(4)	0.0372(3)
Si1	0.74238(9)	0.88124(6)	0.93289(4)	0.0342(4)
Si2	0.45132(10)	0.93083(6)	0.65316(4)	0.0374(3)
01	0.6740(3)	0.69242(19)	0.74858(14)	0.0636(12)
O2	0.5509(3)	0.64572(16)	0.86045(12)	0.0510(11)
O3	0.4281(3)	0.64688(17)	0.73215(13)	0.0592(12)
O4	0.3490(3)	0.7573(2)	0.82447(17)	0.0700(16)
C1	0.8763(4)	0.8340(3)	0.9322(2)	0.0645(19)
C2	0.9251(5)	0.8495(7)	0.8847(3)	0.175(6)
C3	0.9563(4)	0.8449(3)	0.9825(2)	0.074(2)

C4	0.8539(6)	0.7501(4)	0.9335(4)	0.112(3)
C5	0.6648(4)	0.8384(3)	0.98564(17)	0.0548(16)
C6	0.7246(4)	0.8308(3)	1.04150(17)	0.063(2)
C7	0.6131(7)	0.7712(4)	0.9677(2)	0.115(3)
C8	0.5690(5)	0.8888(4)	0.9930(3)	0.098(3)
C9	0.7642(4)	0.9815(3)	0.94961(18)	0.0553(17)
C10	0.8123(5)	0.9979(3)	1.0064(2)	0.075(2)
C11	0.8501(7)	1.0106(4)	0.9153(3)	0.120(4)
C12	0.6721(6)	1.0255(4)	0.9332(4)	0.139(4)
C13	0.4760(4)	1.0328(3)	0.64808(19)	0.0580(19)
C14	0.5900(6)	1.0473(4)	0.6414(3)	0.111(3)
C15	0.4593(7)	1.0699(3)	0.6996(3)	0.102(3)
C16	0.4107(6)	1.0693(3)	0.6009(2)	0.090(3)
C17	0.3020(4)	0.9117(3)	0.64393(19)	0.0558(17)
C18	0.2476(5)	0.9616(4)	0.6797(3)	0.095(3)
C19	0.2448(5)	0.9208(4)	0.5868(2)	0.091(3)
C20	0.2799(5)	0.8362(4)	0.6623(3)	0.101(3)
C21	0.5179(5)	0.8809(3)	0.59904(18)	0.0578(18)
C22	0.4921(6)	0.9104(4)	0.5418(2)	0.099(3)
C23	0.4845(7)	0.8033(3)	0.5971(2)	0.097(3)
C24	0.6373(5)	0.8789(4)	0.6145(2)	0.097(3)
C25	0.4074(4)	1.0057(3)	0.8467(2)	0.0594(19)
C26	0.4326(5)	1.0830(3)	0.8451(2)	0.076(2)
C27	0.8213(4)	0.9517(3)	0.7482(2)	0.0614(19)
C28	0.8915(5)	0.9036(4)	0.7224(3)	0.101(3)
C29	0.7795(6)	0.7192(6)	0.7608(4)	0.142(5)
C30	0.8358(6)	0.7014(4)	0.7183(4)	0.117(4)
C31	0.7795(8)	0.6486(8)	0.6905(4)	0.215(8)
C32	0.6714(6)	0.6542(5)	0.7004(3)	0.110(3)
C33	0.6455(4)	0.6027(3)	0.8693(2)	0.066(2)
C34	0.6314(7)	0.5543(5)	0.9128(4)	0.148(5)
C35	0.5304(7)	0.5603(4)	0.9250(4)	0.125(4)
C36	0.4811(4)	0.6239(3)	0.8975(2)	0.063(2)
C37	0.4318(7)	0.5746(3)	0.7511(2)	0.103(3)
C38	0.3996(5)	0.5275(3)	0.7065(2)	0.072(2)
C39	0.3901(6)	0.5713(3)	0.6587(2)	0.084(3)
C40	0.3795(7)	0.6440(3)	0.6774(3)	0 115(3)
C41	0.3297(5)	0.8050(4)	0.8662(3)	0 102(3)
C42	0 2248(7)	0.8333(5)	0.8504(5)	0 154(6)
C43	0 1725(7)	0 7844(7)	0.8115(5)	0 158(6)
C44	0.2498(5)	0.7339(5)	0 7987(4)	0 114(4)
C45	0.5942(4)	0.2927(4)	-0.0672(2)	0.068(2)
C46	0.6176(6)	0.2527(4)	-0.0381(3)	0.089(3)
C47	0.6995(7)	0.3556(5)	0.0001(0)	0.000(0)
C.48	0.7600(7)	0.2967(5)	0.0132(3)	0.000(0)
C.49	0.7320(6)	0.2367(4)	-0 0137(3)	0.107(-)
C50	0.6518(5)	0.2353(4)	-0 0534(3)	0.083(3)
C51	0.5010(5)	0.2806(5)	-0 1101(3)	0.000(0)
001	0.0044(0)	0.2030(3)	-0.1101(3)	0.114(3)

	15	16
Summenformel	$C_{40}H_{88}O_2P_2Si_2MgZn_2$	$C_{74}H_{162}Ba_2P_4Si_4Zn_4O_7$
Molmasse [g mol ⁻¹]	874.27	1936.53
Messtemperatur [K]	173(2)	200
Kristallsystem	orthorhombisch	orthorhombisch
Raumgruppe	Pna2 ₁ (No. 33)	Pbca (No.61)
a [Å]	33.528(2)	21.2508(4)
b [Å]	15.5126(9)	17.8454(3)
c [Å]	9.5635(6)	25.2802(5)
α[°]	90	90
ß[°]	90	90
γ [°]	90	90
Zellvolumen [Å ³]	4974.0(5)	9587.0(3)
Z	4	4
$d_{\text{ber}} [\text{g cm}^{-3}]$	1.167	1.342
λ [pm]	71.073	71.073
$\mu [mm^{-1}]$	1.118	1.953
F(000)	1896	4040
Messbereich [°]	$4.5 < 2\theta < 51.64$	$3.2 < 2\theta < 24.1$
Gemessene Reflexe	37458	63092
Symunabh. Refl. N _o	9390	7597
R _{int}	0.0926	0.132
Zahl der Parameter N _n	428	430
R-Werte (alle Daten)		
\mathbf{R}_1	0.0977	0.0814
R-Werte (I > $2\sigma(I)$), Daten		
$wR_2 an F^2$	0.1031	0.0927
\mathbf{R}_1	0.0536	0.0442
Gütefaktor s an F^2	0.870	1.03
Restelektronendichte [e Å ⁻³]	-0.424/0.799	-0.52/0.43
CCDC-Nummer		

Tabelle 3.6.6 Kristallographische Daten der Verbindungen 15 und 16

Tabelle 3.6.6a: Atomkoordinaten (x 10^4) und equivalente isotrope Auslenkungsparameter (Å² x 10^3)für **15**

	X	V	Z	U(eq)]
C(1)	3385(2)	5259(4)	5352(8)	53.4(18)
C(2)	3517(3)	5136(5)	6844(8)	79(3)
C(3)	2997(2)	4757(4)	5191(10)	71(2)
C(4)	3288(2)	6230(4)	5109(9)	65(2)
C(5)	4325(2)	5218(3)	4609(9)	56(2)
C(6)	4623(2)	5045(4)	3431(12)	76(2)
C(7)	4341(3)	6192(4)	4957(9)	72(2)
C(8)	4468(2)	4712(4)	5886(9)	71(2)
C(9)	3667(2)	5197(4)	2152(8)	52.0(18)
C(10)	3773(3)	6155(4)	1842(9)	72(2)
C(11)	3904(3)	4643(5)	1086(8)	75(2)
C(12)	3229(3)	5068(5)	1831(9)	74(2)
C(13)	4145(3)	-615(5)	4868(12)	104(4)

Experimenteller Teil				
C(14)	4213(3)	-1580(4)	4642(11)	87(3)
C(15)	3912(4)	-564(9)	6448(16)	141(5)
C(16)	4491(4)	-183(5)	5183(16)	155(7)
C(17)	3249(2)	-496(4)	3878(11)	83(3)
C(18)	3189(2)	-1458(4)	3862(11)	81(3)
C(19)	2995(4)	-177(8)	2535(15)	132(4)
C(20)	3043(4)	-77(7)	4980(02)	241(14)
C(21)	3934(5)	-311(6)	1644(10)	119(5)
C(22)	3888(3)	-1235(5)	1126(10)	81(3)
C(23)	4455(5)	-221(10)	1614(17)	152(5)
C(24)	3872(6)	355(6)	714(10)	167(7)
C(25)	2922(2)	2495(5)	1592(8)	64.5(19)
C(26)	2547(3)	2825(5)	2272(11)	81(3)
C(27)	2388(3)	2296(7)	3429(12)	96(3)
C(28)	2007(3)	2688(10)	4128(16)	152(5)
C(29)	4829(2)	2298(5)	2646(9)	66(2)
C(30)	5135(2)	2039(5)	3722(11)	84(3)
C(31)	5226(3)	2759(6)	4660(11)	90(3)
C(32)	5494(4)	3419(8)	3996(15)	131(4)
C(33)	4078(2)	2823(5)	8815(9)	66(2)
C(34)	4483(3)	3116(6)	9114(12)	94(3)
C(35)	4748(3)	2461(8)	8491(13)	127(4)
C(36)	4510(2)	1928(5)	7563(10)	76(2)
C(37)	2863.9(19)	2589(4)	7186(9)	65.1(19)
C(38)	2580(3)	1904(6)	7533(18)	140(6)
C(39)	2789(2)	1203(5)	8169(9)	73(2)
C(40)	3217(2)	1474(4)	8216(9)	61.4(19)
O(1)	4106.3(12)	2260(2)	7598(4)	47.5(10)
O(2)	3248.5(12)	2205(3)	7267(5)	51.1(11)
Mg(1)	3722.4(5)	2302.5(11)	5976(2)	34.8(4)
Si(1)	3793.9(5)	4846.8(8)	4050.2(19)	37.3(4)
Si(2)	3785.0(5)	-91.5(8)	3562(2)	40.8(4)
P(1)	3785.0(5)	3412.7(8)	4139.9(19)	37.9(4)
P(2)	3792.6(5)	1327.0(7)	3953.5(18)	37.7(4)
Zn(1)	4276.2(1)	2411.7(4)	3355.4(7)	41.6(1)
Zn(2)	3379.1(2)	2393.9(4)	2919.9(7)	44.1(1)

Tabelle 3.6.6b Atomkoordinaten und equivalente isotrope Auslenkungsparameter für 16

	X	у	Z	U(eq) [Å ²]
Ba	-0.07572(2)	0.48679(2)	0.41046(1)	0.0292(1)
Zn1	-0.05666(3)	0.41696(3)	0.53914(2)	0.0271(2)
Zn2	-0.05898(3)	0.58612(3)	0.53052(2)	0.0263(2)
P1	-0.03794(7)	0.33624(7)	0.47061(6)	0.0292(5)
P2	-0.07250(7)	0.49961(7)	0.60685(5)	0.0283(4)
Si1	-0.03692(9)	0.21472(8)	0.49172(7)	0.0362(5)
Si2	-0.16048(7)	0.49674(9)	0.65447(6)	0.0346(5)
01	-0.2023(2)	0.4460(2)	0.3977(2)	0.0653(19)
O2	-0.0846(3)	0.4136(3)	0.31583(19)	0.079(2)
O3	-0.1123(2)	0.5973(3)	0.33639(18)	0.063(2)
C1	0.0240(4)	0.1677(3)	0.4441(3)	0.054(3)
C2	0.0165(4)	0.0806(3)	0.4403(3)	0.082(4)

]	Experimenteller Teil		
C3	0.0175(4)	0.1990(4)	0.3876(3)	0.074(3)
C4	0.0921(4)	0.1848(4)	0.4625(3)	0.075(3)
C5	-0.1209(3)	0.1755(3)	0.4801(3)	0.048(3)
C6	-0.1355(4)	0.1732(4)	0.4199(3)	0.073(3)
C7	-0.1330(4)	0.0966(3)	0.5024(3)	0.073(3)
C8	-0.1710(3)	0.2273(4)	0.5035(3)	0.063(3)
C9	-0.0127(3)	0.1982(3)	0.5654(3)	0.047(2)
C10	0.0047(4)	0.1158(3)	0.5778(3)	0.071(3)
C11	0.0435(4)	0.2476(4)	0.5813(3)	0.061(3)
C12	-0.0671(4)	0.2213(4)	0.6027(3)	0.058(3)
C13	-0.2294(3)	0.4428(3)	0.6206(3)	0.044(3)
C14	-0.2335(3)	0.4617(4)	0.5616(3)	0.054(3)
C15	-0.2191(4)	0.3573(3)	0.6230(3)	0.065(3)
C16	-0.2946(3)	0.4590(4)	0.6457(3)	0.067(3)
C17	-0.1391(3)	0.4481(4)	0.7212(3)	0.052(3)
C18	-0.1035(4)	0.3746(4)	0.7120(3)	0.073(3)
C19	-0.1953(4)	0.4308(5)	0.7574(3)	0.075(3)
C20	-0.0930(4)	0.4990(5)	0.7526(3)	0.075(3)
C21	-0.1845(3)	0.6014(3)	0.6655(3)	0.046(2)
C22	-0.2187(4)	0.6325(4)	0.6170(3)	0.063(3)
C23	-0.1269(3)	0.6516(4)	0.6750(3)	0.062(3)
C24	-0.2289(4)	0.6128(4)	0.7133(3)	0.069(3)
C25	-0.2186(5)	0.3691(5)	0.3937(6)	0.149(7)
C26	-0.2821(5)	0.3607(6)	0.4008(6)	0.139(7)
C27	-0.3114(4)	0.4345(5)	0.4037(5)	0.109(5)
C28	-0.2580(3)	0.4873(4)	0.4005(4)	0.072(3)
C29	-0.0471(4)	0.3498(5)	0.3064(3)	0.078(3)
C30	-0.0441(5)	0.3383(6)	0.2495(4)	0.103(4)
C31	-0.0959(6)	0.3817(8)	0.2282(4)	0.192(8)
C32	-0.1226(6)	0.4233(9)	0.2707(4)	0.215(9)
C33	-0.1646(4)	0.6451(4)	0.3319(3)	0.063(3)
C34	-0.1512(4)	0.6997(4)	0.2887(3)	0.079(3)
C35	-0.0958(6)	0.6671(5)	0.2622(4)	0.117(6)
C36	-0.0677(6)	0.6188(8)	0.2970(4)	0.160(7)
C37	-0.1341(3)	0.6068(3)	0.4828(2)	0.040(2)

	17	18
Summenformel	$C_{86}H_{186}O_2N_2P_4Si_8Ba_2Zn_4$	$C_{95}H_{206}Si_6P_6Ba_2O_2Zn_6$
Molmasse [g mol ⁻¹]	2165.20	2402.00
Messtemperatur [K]	200	200
Kristallsystem	triklin	triklin
Raumgruppe	$P \overline{1}$ (No.2)	$P \overline{1}$ (No.2)
a [Å]	11.9419(6)	14.0097(4)
b [Å]	17.8876(11)	14.9515(4)
c[Å]	27.1171(17)	16.1550(6)
α [°]	90.325(3)	82.9256(10)
ß [°]	90.773(3)	86.9650(10)
γ [°]	105.701(3)	63.9280(10)
Zellvolumen [Å ³]	5575.6(6)	3016.44(16)
Z	2	1
$d_{ber} [g cm^{-3}]$	1.290	1.318
λ [pm]	71.073	71.073
μ [mm ⁻¹]	1.724	1.991
F(000)	2272	1250
Messbereich [°]	3.6< 20 <24.0	$3.2 < 2\theta < 25.0$
Gemessene Reflexe	28532	42396
Symunabh. Refl. N _o	11723	10587
R _{int}	0.057	0.090
Zahl der Parameter N _p	903	506
R-Werte (alle Daten)		
\mathbf{R}_1	0.1186	0.0852
R-Werte (I > $2\sigma(I)$), Daten		
wR_2 an F^2	0.2280	0.1172
R ₁	0.0963	0.0488
Gütefaktor s an F ²	1.10	1.01
Restelektronendichte [e Å ⁻³]	-1.27/1.65	-1.09/1.64
CCDC-Nummer	273569	

Tabelle 3.6.7 Kristallographische Daten der Verbindungen 17 und 18

. .

Tabelle 3.6.7a Atomkoordinaten und equivalente isotrope Auslenkungsparameter für 18

	X	У	Z	U(eq) [Å ²]
Ba	0.09225(3)	0.45755(2)	0.86691(2)	0.0306(1)
Zn1	-0.12672(5)	0.73664(4)	0.85782(4)	0.0313(2)
Zn2	-0.04390(5)	0.74280(4)	0.66206(4)	0.0351(2)
Zn3	0.10624(5)	0.76574(4)	0.79392(4)	0.0343(2)
P1	-0.13147(11)	0.60469(9)	0.93511(8)	0.0287(4)
P2	-0.08678(11)	0.84838(9)	0.77794(9)	0.0314(4)
Р3	0.11214(11)	0.62672(9)	0.73449(8)	0.0285(4)
Si1	-0.25608(11)	0.57141(10)	0.88359(9)	0.0287(5)
Si2	-0.20021(12)	1.01023(10)	0.78579(10)	0.0352(5)
Si3	0.24605(12)	0.56314(10)	0.64457(9)	0.0321(5)
01	0.1760(4)	0.2674(3)	0.8317(3)	0.0640(19)
C1	-0.2501(5)	0.5748(4)	0.7622(3)	0.0381(17)
C2	-0.2973(5)	0.6829(4)	0.7206(4)	0.053(2)
C3	-0.1340(5)	0.5265(5)	0.7315(3)	0.048(2)

		Experimenteller Teil		
C4	-0.3092(5)	0.5215(5)	0.7287(4)	0.053(2)
C5	-0.2257(4)	0.4352(4)	0.9339(3)	0.0327(17)
C6	-0.1318(5)	0.3537(4)	0.8904(4)	0.048(2)
C7	-0.3217(5)	0.4105(4)	0.9343(4)	0.048(2)
C8	-0.1870(5)	0.4187(4)	1.0247(3)	0.0382(17)
C9	-0.3952(4)	0.6671(4)	0.9205(3)	0.0368(17)
C10	-0.4064(5)	0.7744(4)	0.9039(4)	0.052(2)
C11	-0.4061(5)	0.6477(4)	1.0152(4)	0.048(2)
C12	-0.4895(5)	0.6644(5)	0.8779(4)	0.053(2)
C13	-0.3201(5)	1.0435(4)	0.7135(4)	0.049(2)
C14	-0.2857(6)	1.0464(5)	0.6212(4)	0.071(3)
C15	-0.4156(5)	1.1450(4)	0.7249(5)	0.070(3)
C16	-0.3605(5)	0.9619(4)	0.7272(5)	0.062(3)
C17	-0.2432(5)	1.0301(4)	0.9010(4)	0.054(2)
C18	-0.1514(6)	0.9717(5)	0.9625(4)	0.069(3)
C19	-0.2923(7)	1.1428(4)	0.9154(5)	0.076(3)
C20	-0.3296(6)	0.9935(5)	0.9252(5)	0.073(3)
C21	-0.1189(5)	1.0843(4)	0.7449(4)	0.053(2)
C22	-0.0410(6)	1.0744(5)	0.8129(5)	0.073(3)
C23	-0.1909(6)	1.1974(4)	0.7192(5)	0.071(3)
C24	-0.0498(6)	1.0413(4)	0.6698(5)	0.069(3)
C25	0.2665(5)	0.6680(4)	0.5743(4)	0.0460(19)
C26	0.1595(5)	0.7567(4)	0.5451(4)	0.068(3)
C27	0.3216(6)	0.7146(5)	0.6226(5)	0.067(3)
C28	0.3346(6)	0.6312(5)	0.4968(4)	0.073(3)
C29	0.3741(4)	0.4797(4)	0.7102(3)	0.0337(17)
C30	0.3858(5)	0.5331(4)	0.7804(4)	0.045(2)
C31	0.4780(4)	0.4445(4)	0.6599(4)	0.049(2)
C32	0.3682(4)	0.3839(4)	0.7527(4)	0.0425(19)
C33	0.2101(5)	0.4814(4)	0.5792(3)	0.045(2)
C34	0.1282(5)	0.5479(5)	0.5096(4)	0.065(3)
C35	0.1584(5)	0.4233(5)	0.6318(4)	0.057(2)
C36	0.3076(5)	0.4047(5)	0.5337(4)	0.063(2)
C37	-0.1337(5)	0.7671(4)	0.5630(4)	0.048(2)
C38	-0.1134(6)	0.8174(6)	0.4818(4)	0.078(3)
C39	0.1998(5)	0.8093(4)	0.8493(4)	0.055(2)
C40	0.2414(6)	0.8773(5)	0.8033(5)	0.072(3)
C41	0.2771(8)	0.1934(5)	0.8656(5)	0.091(4)
C42	0.3144(8)	0.1084(6)	0.8174(6)	0.093(4)
C43	0.2381(8)	0.1393(6)	0.7480(6)	0.100(4)
C44	0.1413(7)	0.2206(6)	0.7765(6)	0.087(4)
*C45	0.5054(13)	0.9534(9)	0.5184(10)	0.102(2)
*C46	0.5863(11)	0.9419(8)	0.4610(9)	0.102(2)
*C47	0.5910(10)	1.0257(10)	0.4168(7)	0.102(2)
*C48	0.5147(12)	1.1211(8)	0.4300(8)	0.102(2)
*C49	0.4338(10)	1.1326(8)	0.4874(9)	0.102(2)
*C50	0.4291(11)	1.0487(11)	0.5316(9)	0.102(2)
*C51	0.5208(18)	0.8507(15)	0.5475(13)	0.102(2)

	7	20
Summenformel	C ₂₈ H ₆₄ P ₂ Si ₂ Zn ₃	$C_{40}H_{88}Na_2O_4P_2Si_2$
Molmasse [g mol ⁻¹]	715.02	797.22
Messtemperatur [K]	200	200
Kristallsystem	orthorhombisch	monoklin
Raumgruppe	Pbca (No.61)	$P2_1/n$ (No.14)
a [Å]	11.4576(7)	9.2696(2)
b [Å]	24.130(2)	16.2470(3)
c [Å]	26.0196(18)	16.8181(4)
α [°]	90	90
β [°]	90	90.8097(13)
γ [°]	90	90
Zellvolumen [Å ³]	7193.6(9)	2532.61(9)
Ζ	8	2
$d_{ber} [g cm^{-3}]$	1.320	1.045
λ [pm]	71.073	71.073
μ [mm ⁻¹]	2.155	0.183
F(000)	3040	880
Messbereich [°]	3.72< 20 < 51.66°	$3.8 < 2\theta < 21.0$
Gemessene Reflexe	58067	18122
Symunabh. Refl. N _o	6916	2709
R _{int}	0.0473	0.042
Zahl der Parameter N _p	316	226
R-Werte (alle Daten)		
R_1	0.0304	0.0895
R-Werte (I $\geq 2\sigma(I)$), Daten		
wR_2 an F^2	0.0654	0.1875
R_1	0.0255	0.0701
Gütefaktor s an F ²	1.020	1.03
Restelektronendichte [e Å ⁻³]	-0.280/0.636	-0.34/0.41
CCDC-Nummer	244907	

Tabelle 3.6.8 Kristallographische Daten der Verbindungen 7 und 20

.

Tabelle 3.6.8a Atomkoordinaten und equivalente isotrope Auslenkungsparameter für 18

	Х	У	Z	U(eq) [Å ²]
Р	0.58143(18)	-0.11828(8)	0.51779(9)	0.0727(6)
Si	0.54296(14)	-0.25020(7)	0.50284(7)	0.0470(5)
Na	0.6232(2)	0.01333(13)	0.41074(12)	0.0778(8)
01	0.8680(5)	0.0287(3)	0.3854(3)	0.112(2)
O2	0.5713(5)	0.0026(3)	0.2777(2)	0.1012(19)
C1	0.7097(7)	-0.3022(3)	0.4541(4)	0.083(3)
C2	0.8335(9)	-0.3059(9)	0.5082(6)	0.219(7)
C3	0.7587(8)	-0.2577(4)	0.3810(4)	0.114(3)
C4	0.6738(11)	-0.3921(4)	0.4260(7)	0.180(5)
C5	0.3733(8)	-0.2587(4)	0.4343(4)	0.094(3)
C6	0.2533(9)	-0.1999(8)	0.4642(6)	0.196(6)
C7	0.4063(9)	-0.2270(6)	0.3510(4)	0.143(4)
C8	0.3051(12)	-0.3412(7)	0.4301(7)	0.220(7)
C9	0.5082(6)	-0.3007(3)	0.6057(3)	0.0612(19)

		Experimenteller Ter	11	
C10	0.3708(8)	-0.2641(4)	0.6425(4)	0.105(3)
C11	0.6278(8)	-0.2809(5)	0.6653(4)	0.113(3)
C12	0.4893(8)	-0.3946(4)	0.6043(4)	0.106(3)
C13	0.9695(10)	-0.0371(6)	0.3869(7)	0.166(5)
C14	1.0969(8)	-0.0114(4)	0.3512(5)	0.107(3)
C15	1.0597(7)	0.0624(4)	0.3047(4)	0.096(3)
C16	0.9304(8)	0.0942(4)	0.3410(5)	0.118(3)
C17	0.6404(7)	-0.0545(5)	0.2270(4)	0.100(3)
C18	0.5391(7)	-0.0721(5)	0.1631(5)	0.119(3)
C19	0.4236(9)	-0.0101(5)	0.1687(6)	0.155(5)
C20	0.4623(7)	0.0425(5)	0.2330(4)	0.106(3)

Tabelle 3.6.9 Kristallographische Daten der Verbindungen 21 und 23

	21	23
Summenformel	$C_{98}H_{216}O_{16}Na_4Si_4P_4Zn_4,$	$C_{89}H_{188}K_4P_4Si_4Zn_2$
Molmasse [g mol ⁻¹]	2240.51	1909.85
Messtemperatur [K]	200	200
Kristallsystem	triklin	triklin
Raumgruppe	$P \overline{1}$ (No.2)	$P \overline{1}$ (No.2)
a [Å]	13.8893(3)	12.8970(5)
b [Å]	14.4785(3)	13.7618(6)
c [Å]	20.1329(6)	17.1109(8)
α [°]	108.169(1)	76.285(2)
ß [°]	90.780(1)	81.849(3)
γ [°]	115.206(1)	72.053(2)
Zellvolumen [Å ³]		2799.0(2)
Z	1	1
$d_{ber} [g cm^{-3}]$	1.085	1.085
λ [pm]	71.073	71.073
μ [mm ⁻¹]	0.833	0.722
F(000)	1212	958
Messbereich [°]	$3.1 < 2\theta < 24.1$	$3.1 < 2\theta < 23.0$
Gemessene Reflexe	31641	26412
Symunabh. Refl. N _o	10658	7655
R _{int}	0.061	0.083
Zahl der Parameter N _p	491	278
R-Werte (alle Daten)		
R ₁	0.1433	0.1547
R-Werte (I > $2\sigma(I)$), Daten		
wR_2 an F^2	0.3172	0.3153
R ₁	0.0988	0.1027
Gütefaktor s an F^2	1.03	1.05
Restelektronendichte [e Å ⁻³]	-0.48/1.10	-0.55/1.18
CCDC-Nummer		

	X	У	Ζ	$U(eq) [Å^2]$
Zn1	0.25758(7)	0.24238(8)	0.30093(5)	0.0653(4)
Zn2	0.38236(8)	0.37114(8)	0.21865(5)	0.0709(4)
P1	0.29570(18)	0.4237(2)	0.31442(14)	0.0772(10)
P2	0.43209(15)	0.27270(16)	0.27443(10)	0.0547(7)
Si1	0.1649(3)	0.4640(3)	0.2920(2)	0.1236(18)
Si2	0.45919(19)	0.13499(18)	0.20793(11)	0.0614(8)
Nal	0.4857(2)	0.4607(2)	0.39747(15)	0.0636(10)
01	0.5346(4)	0.6208(4)	0.5059(3)	0.0690(19)
O2	0.6756(5)	0.5724(5)	0.4260(3)	0.078(2)
C1	0.0635(13)	0.3535(17)	0.2044(12)	0.178(10)
C2	-0.0165(11)	0.3889(18)	0.1782(10)	0.198(12)
C3	-0.0201(12)	0.2492(19)	0.2261(12)	0.215(14)
C4	0.1151(13)	0.3214(18)	0.1485(9)	0.191(12)
C5	0.2352(14)	0.6090(15)	0.2830(12)	0.154(9)
C6	0.3300(15)	0.6847(13)	0.3411(11)	0.161(10)
C7	0.1617(18)	0.6664(19)	0.2886(15)	0.271(18)
C8	0.2736(16)	0.5973(14)	0.2126(10)	0.170(10)
C9	0.0854(12)	0.4687(16)	0.3698(11)	0.149(9)
C10	-0.0171(13)	0.4844(18)	0.3629(12)	0.207(11)
C11	0.1622(15)	0.5686(19)	0.4377(11)	0.183(11)
C12	0.0579(12)	0.3675(16)	0.3954(10)	0.172(10)
C13	0.4926(12)	0.0708(10)	0.2718(6)	0.112(6)
C14	0.4914(14)	-0.0422(10)	0.2332(7)	0.135(7)
C15	0.6143(12)	0.1586(11)	0.3157(6)	0.130(6)
C16	0.4173(10)	0.0556(9)	0.3241(5)	0.100(5)
C17	0 3368(9)	0.0269(10)	0.1341(5)	0 113(4)
C18	0.2824(9)	0.0209(10) 0.0777(12)	0.1032(6)	0 129(6)
C19	0.2469(10)	-0.0467(10)	0.1723(7)	0.138(5)
C20	0.3617(10)	-0.0564(10)	0.0762(6)	0.123(5)
C21	0.5851(8)	0 1932(9)	0.1615(5)	0.089(4)
C22	0.6690(8)	0.3018(8)	0.2094(6)	0.007(4)
C23	0.5482(10)	0.2144(11)	0.0949(6)	0.115(6)
C24	0.6374(9)	0.1167(10)	0.1352(6)	0.102(5)
C25	0.1370(7)	0.1208(8)	0.3216(6)	0.093(4)
C26	0.4041(10)	0.3980(9)	0.1270(5)	0.104(5)
C27	0.6378(8)	0.7031(7)	0.5091(5)	0.078(3)
C28	0 7145(7)	0.6556(7)	0.4944(5)	0.081(3)
C29	0.4545(9)	0.6587(9)	0.5138(6)	0.001(0) 0.093(4)
C30	0.7530(8)	0.5301(10)	0.4022(6)	0.107(5)
Na2	0.2285(3)	0.2320(3)	-0 17470(19)	0.0808(12)
03	0.2125(11)	0.0812(9)	-0.2802(7)	0 186(6)
04	0.3344(14)	0.2982(12)	-0.2559(11)	0.264(10)
05	0.3654(8)	0.2344(8)	-0.1096(7)	0.173(5)
06	0.1418(7)	0.2311(0) 0.1186(10)	-0.1111(5)	0.150(5)
07	0.2348(8)	0.3965(7)	-0.0945(5)	0.130(3) 0.137(4)
08	0.0949(11)	0.2646(10)	-0.2167(6)	0.157(+) 0.215(7)
C31	0 294(3)	0 103(3)	-0 3260(16)	0.270(13)
C32	0 330(3)	0.216(3)	-0 324(2)	0.270(13) 0.312(17)
C33	0 1760(13)	-0.0204(14)	-0 2837(9)	0 149(5)
C34	0.362(2)	0.379(2)	-0.2728(14)	0.254(12)

Tabelle 3.6.9a Atomkoordinaten und equivalente isotrope Auslenkungsparameter für 21

		Experimenteller Te	eil	
025	0.2229(15)	0.152((15)	0.0759(10)	0.1(0(()
035	0.3238(15)	0.1526(15)	-0.0758(10)	0.168(6)
C36	0.195(2)	0.119(2)	-0.0636(14)	0.230(10)
C37	0.4652(17)	0.2779(17)	-0.1150(11)	0.183(7)
C38	0.034(2)	0.079(2)	-0.1092(14)	0.252(11)
C39	0.2094(18)	0.4506(18)	-0.1304(12)	0.204(8)
C40	0.0891(18)	0.3650(18)	-0.1734(12)	0.206(8)
C41	0.3275(13)	0.4692(13)	-0.0403(9)	0.157(6)
C42	0.0100(15)	0.1961(15)	-0.2694(10)	0.175(6)
C43	0.749(2)	0.0713(18)	0.5069(11)	0.185(7)
C44	0.7806(15)	0.0212(14)	0.5377(9)	0.153(5)
C45	0.878(2)	0.0413(18)	0.5443(12)	0.205(8)
C46	0.966(2)	0.115(2)	0.5213(14)	0.236(10)
C47	0.9309(15)	0.1647(14)	0.4905(9)	0.157(6)
C48	0.8286(14)	0.1481(13)	0.4820(8)	0.147(5)
C49	0.647(2)	0.056(2)	0.4968(13)	0.246(11)

Tabelle 3.6.9b Atomkoordinaten und equivalente isotrope Auslenkungsparameter für 23

	X	у	Z	U(eq) [Å ²]
Zn	0.01412(8)	0.10803(8)	-0.03074(6)	0.0419(4)
K1	0.12606(19)	0.02428(18)	-0.27083(14)	0.0665(8)
K2	0.09902(18)	-0.25490(16)	-0.11620(13)	0.0574(8)
P1	-0.03691(17)	0.00321(17)	-0.10201(13)	0.0375(8)
P2	0.2359(3)	-0.2189(3)	-0.2858(2)	0.0807(12)
Si1	-0.2124(2)	0.0726(2)	-0.12497(16)	0.0462(9)
Si2	0.3954(2)	-0.2600(2)	-0.35464(16)	0.0508(9)
O1	0.0837(8)	0.1396(7)	-0.4208(6)	0.100(3)
O2	0.2359(8)	0.1604(8)	-0.2726(6)	0.107(3)
O3	-0.0060(6)	-0.3729(6)	-0.1560(4)	0.074(2)
O4	0.2270(6)	-0.4475(6)	-0.0466(5)	0.078(2)
C1	-0.2317(8)	0.2041(8)	-0.2034(6)	0.059(3)
C2	-0.3344(11)	0.2405(11)	-0.2480(8)	0.094(4)
C3	-0.2338(10)	0.2966(10)	-0.1647(8)	0.084(4)
C4	-0.1340(11)	0.1974(11)	-0.2655(8)	0.098(4)
C5	-0.3061(8)	0.1009(8)	-0.0277(6)	0.061(3)
C6	-0.2582(10)	0.1508(10)	0.0222(7)	0.081(3)
C7	-0.4232(10)	0.1654(10)	-0.0429(8)	0.087(4)
C8	-0.3158(13)	-0.0036(12)	0.0289(9)	0.110(5)
C9	-0.2549(9)	-0.0262(9)	-0.1691(7)	0.070(3)
C10	-0.3790(13)	-0.0003(13)	-0.1758(10)	0.118(5)
C11	-0.2185(11)	-0.1365(11)	-0.1195(8)	0.098(4)
C12	-0.1981(13)	-0.0299(12)	-0.2548(9)	0.112(5)
C13	0.3815(15)	-0.1936(15)	-0.4655(11)	0.123(5)
C14	0.306(3)	-0.229(3)	-0.500(2)	0.301(18)
C15	0.342(2)	-0.083(2)	-0.4792(17)	0.230(12)
C16	0.4888(15)	-0.2103(15)	-0.5239(11)	0.142(6)
C17	0.4907(17)	-0.2143(17)	-0.3069(13)	0.145(7)
C18	0.455(3)	-0.090(3)	-0.344(2)	0.35(2)
C19	0.605(2)	-0.225(2)	-0.3448(16)	0.213(11)
C20	0.494(3)	-0.256(3)	-0.2195(19)	0.268(15)
C21	0.4470(17)	-0.4069(16)	-0.3485(12)	0.142(6)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22	0.379(3)	-0.450(3)	-0.375(2)	0.289(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C23	0.460(3)	-0.457(3)	-0.2519(19)	0.267(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C24	0.5665(17)	-0.4455(17)	-0.3881(13)	0.160(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C25	0.0244(9)	0.2577(9)	-0.0592(7)	0.067(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*C26	0.018(3)	0.098(3)	-0.4599(18)	0.129(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*C27	0.050(3)	0.127(3)	-0.5523(18)	0.128(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C28	0.1317(16)	0.2002(15)	-0.5579(12)	0.139(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C29	0.1543(13)	0.1959(13)	-0.4731(10)	0.114(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C30	0.1714(18)	0.2706(18)	-0.2859(13)	0.155(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C31	0.241(2)	0.318(2)	-0.2495(15)	0.176(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*C32	0.336(3)	0.232(3)	-0.215(3)	0.133(16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C33	0.3520(17)	0.1497(17)	-0.2628(12)	0.148(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C34	-0.0144(14)	-0.3749(13)	-0.2399(10)	0.117(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*C35	-0.0874(19)	-0.450(2)	-0.2298(13)	0.104(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C36	-0.1529(12)	-0.4412(12)	-0.1584(9)	0.102(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C37	-0.0791(10)	-0.4261(10)	-0.1043(7)	0.081(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C38	0.2363(10)	-0.5235(10)	-0.0914(7)	0.080(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C39	0.3389(12)	-0.6150(11)	-0.0626(8)	0.096(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*C40	0.407(2)	-0.561(2)	-0.033(2)	0.077(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C41	0.3293(12)	-0.4564(12)	-0.0196(9)	0.100(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*C32	0.357(3)	0.255(3)	-0.273(3)	0.087(16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*C26	-0.016(3)	0.168(4)	-0.466(2)	0.083(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*C27	0.022(3)	0.202(3)	-0.5503(19)	0.078(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*C35	-0.124(3)	-0.377(4)	-0.247(2)	0.049(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*C40	0.378(5)	-0.586(4)	-0.001(4)	0.09(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*C42	-0.0526(18)	0.491(3)	0.5070(17)	0.131(4)
*C440.104(2)0.530(2)0.4264(13)0.131(4)*C450.1525(17)0.522(2)0.4961(16)0.131(4)*C460.099(2)0.498(2)0.5712(13)0.131(4)*C47-0.004(2)0.483(2)0.5767(13)0.131(4)*C48-0.154(3)0.455(3)0.534(2)0.131(4)	*C43	0.001(2)	0.515(3)	0.4318(14)	0.131(4)
*C450.1525(17)0.522(2)0.4961(16)0.131(4)*C460.099(2)0.498(2)0.5712(13)0.131(4)*C47-0.004(2)0.483(2)0.5767(13)0.131(4)*C48-0.154(3)0.455(3)0.534(2)0.131(4)	*C44	0.104(2)	0.530(2)	0.4264(13)	0.131(4)
*C460.099(2)0.498(2)0.5712(13)0.131(4)*C47-0.004(2)0.483(2)0.5767(13)0.131(4)*C48-0.154(3)0.455(3)0.534(2)0.131(4)	*C45	0.1525(17)	0.522(2)	0.4961(16)	0.131(4)
*C47-0.004(2)0.483(2)0.5767(13)0.131(4)*C48-0.154(3)0.455(3)0.534(2)0.131(4)	*C46	0.099(2)	0.498(2)	0.5712(13)	0.131(4)
*C48 -0.154(3) 0.455(3) 0.534(2) 0.131(4)	*C47	-0.004(2)	0.483(2)	0.5767(13)	0.131(4)
	*C48	-0.154(3)	0.455(3)	0.534(2)	0.131(4)

Tabelle 3.6.10 Kristallographische Daten der Verbindungen 24 und 25

	24	25
Summenformel	C ₈₈ H ₁₆₈ K ₄ O ₄ P ₄ Si ₄ Zn ₆ ,	$C_{148}H_{324}K_8O_{14}P_8Si_8Zn_8$
Molmasse [g mol ⁻¹]	2075.24	3636.31
Messtemperatur [K]	200	183(2)
Kristallsystem	triklin	triklin
Raumgruppe	P 1 (No.2)	$P \overline{1}$ (No.2)
a [Å]	14.0515(3)	17.3763(5)
b [Å]	15.2891(4)	18.4589(4)
c [Å]	15.4475(5)	18.5341(6)
α [°]	62.4254(9)	75.204(2)
ß [°]	69.291(1)	64.5460(10)
γ[°]	70.318(1)	84.868(2)
Zellvolumen [Å ³]	2691.0(1)	5188.3(3)
Z	1	1
$d_{ber} [g cm^{-3}]$	1.281	1.164
λ [pm]	71.073	71.073
$\mu [mm^{-1}]$	1.616	1.222

1100 1948
$\theta < 25.1$ 1.95 < 2 θ < 27.45
27160 36680
9321 23584
0.043 0.0353
449 620
0.086 0.1465
0.1586 0.2682
0.0577 0.1027
1.05 1.023
70/0.96 -0832/1.646
279302 278847

Tabelle 3.6.11 Kristallographische Daten der Verbindungen 26 und 27

	26	27
Summenformel	C_{76} H ₁₆₈ Cs ₄ O ₈ P ₄ Si ₄ Zn ₆	C56H120AS4Si4Na2Zn6O2
Molmasse [g mol ⁻¹]	2370.34	1685.98
Messtemperatur [K]	200	183(2)
Kristallsystem	triklin	monoklin
Raumgruppe	$P \overline{1} (No 2)$	C2/c (No.15)
a [Å]	13.2359(3)	27.1706(3)
b [Å]	15.0135(3)	13.3100(2)
c [Å]	15.1417(3)	25.0432(3)
α [°]	115.2883(17)	90
ß[°]	92.8817(10)	120.9790(10)
γ [°]	104.3971(9)	90
Zellvolumen [Å ³]	2592.72(10)	7764.77(19)
Z	1	4
$d_{ber} [g cm^{-3}]$	1.518	1.442
λ [pm]	71.073	71.073
$\mu [mm^{-1}]$	2.900	3.622
F(000)	1204	3488
Messbereich [°]	$3.1 < 2\theta < 26.0$	$3.2 < 2\theta < 25.0$
Gemessene Reflexe	29111	40167
Symunabh. Refl. N _o	9999	6799
R _{int}	0.061	0.048
Zahl der Parameter N _p	460	320
R-Werte (alle Daten)		
\mathbf{R}_1	0.101	0.0782
R-Werte (I $\geq 2\sigma(I)$), Daten		
wR_2 an F^2	0.1185	0.1536
\mathbf{R}_1	0.0516	0.0608
Gütefaktor s an F^2	1.01	1.12
Restelektronendichte [e Å ⁻³]	-0.58/0.65	-0.75/0.82
CCDC-Nummer	279303	

	X	У	Z	U(eq) [Å ²]
As1	0.91514(3)	0.48567(6)	0.18196(3)	0.0377(2)
As2	0.96448(4)	0.27431(7)	0.30460(5)	0.0589(3)
Zn1	1.01492(3)	0.51693(7)	0.20281(4)	0.0407(3)
Zn2	0.88259(4)	0.38823(7)	0.24259(5)	0.0525(3)
Zn3	0.94269(5)	0.23901(8)	0.19789(6)	0.0706(4)
Si1	0.85419(10)	0.6224(2)	0.12957(11)	0.0589(8)
*Si22	0.9282(4)	0.1280(6)	0.3295(4)	0.062(3)
Na	0.92269(16)	0.3602(3)	0.08622(17)	0.0742(14)
*0	0.8740(4)	0.3245(8)	-0.0163(4)	0.120(4)
C1	0.7905(4)	0.5794(11)	0.0531(5)	0.096(5)
*C161	0.8282(9)	0.0937(16)	0.2281(9)	0.172(7)
C2	0.8066(5)	0.5355(14)	0.0078(5)	0.130(7)
*C131	0.9728(7)	-0.0549(12)	0.3957(7)	0.131(5)
C3	0.7506(5)	0.5092(12)	0.0621(6)	0.117(6)
C4	0.8957(5)	0.7148(9)	0.1089(5)	0.087(4)
C5	0.8587(7)	0.7972(12)	0.0618(7)	0.149(8)
C6	0.9465(5)	0.7659(10)	0.1656(6)	0.106(5)
C7	0.8232(4)	0.6786(8)	0.1749(5)	0.076(4)
C8	0.7761(6)	0.7586(11)	0.1374(6)	0.130(6)
C9	0.8657(5)	0.7224(9)	0.2379(5)	0.089(5)
C10	1.0277(4)	0.5651(7)	0.1351(3)	0.058(3)
C11	0.9877(4)	0.5227(9)	0.0707(4)	0.077(4)
C21	0.8092(5)	0.4029(12)	0.2389(7)	0.111(6)
C22	0.8014(9)	0.432(2)	0.2844(11)	0.245(18)
C23	0.8782(5)	0.1823(11)	0.1185(7)	0.117(6)
C24	0.8211(7)	0.2278(15)	0.0898(9)	0.170(10)
*C28	0.8322(8)	0.2476(14)	-0.0479(9)	0.151(6)
*C122	0.8744(8)	0.0430(15)	0.2612(9)	0.079(5)
*C142	0.9055(11)	-0.0025(19)	0.2303(11)	0 114(8)
*C152	0 8892(8)	0.1796(15)	0 3667(9)	0.080(5)
*C162	0.8635(10)	0.1021(17)	0.3904(11)	0 100(7)
*C172	0.9272(16)	0 256(3)	0.4288(16)	0.134(11)
*C182	0 9957(9)	0.0506(16)	0.3879(11)	0 074(6)
*C192	1.0323(10)	0.0894(19)	0.3679(11) 0.4469(11)	0.109(8)
*C251	0.8677(11)	0.3945(19)	-0.0686(11)	0.091(8)
*C261	0.8351(14)	0 337(3)	-0.1287(14)	0.123(11)
*C271	0.8412(14)	0.203(2)	-0.0985(14)	0.118(10)
*C262	0.8621(10)	0.205(2) 0.276(2)	-0.1115(11)	0.080(7)
*C272	0.8136(16)	0.270(2) 0.260(3)	-0 1160(16)	0.129(12)
*Si21	0.9387(4)	0.1549(7)	0 3555(4)	0.048(3)
*0	0.8740(4)	0.3245(8)	-0.0163(4)	0.120(4)
*C28	0.8322(8)	0.3210(0) 0.2476(14)	-0.0479(9)	0.151(6)
*C121	0.0322(0) 0.9792(10)	0.0360(16)	0.3630(11)	0.051(5)
*C131	0.9728(7)	-0.0549(12)	0.3957(7)	0.021(5) 0.131(5)
*C141	0.9817(16)	0.0519(12) 0.004(3)	0.3937(7)	0.128(12)
*C151	0.8566(12)	0.001(3)	0.3024(13)	0.093(8)
*C161	0.8282(9)	0.0937(16)	0 2281(9)	0.055(0) 0.172(7)
*C171	0.8337(15)	0.063(3)	0.3361(15)	0.172(7) 0.117(11)
*C181	0.9479(10)	0.003(3)	0.4319(12)	0.087(8)
*C191	0.9072(16)	0.190(2) 0.284(2)	0.4137(19)	0.117(14)

Tabelle 3.6.11b Atomkoordinaten und equivalente isotrope Auslenkungsparameter für 27

Experimenteller Teil						
*C201	1.0103(11)	0.217(3)	0.4774(16)	0.146(14)		
*C252	0.8995(12)	0.337(2)	-0.0521(11)	0.090(8)		

0.090(8)
4. Zusammenfassung

Untersuchungen über Erdalkalimetall- bzw. Alkalimetalltrialkylsilylpentelide wurden von *Westerhausen* und *Mitarbeitern* seit Beginn der neunziger Jahre durchgeführt. Verbindungen der schweren Erdalkalimetalle sind für gewöhnlich außerordentlich schwerlöslich in gängigen organischen Lösungsmitteln, so dass sich ihre Charakterisierung meist auf Elementaranalysen oder Folgereaktionen beschränkte. Um einerseits die Löslichkeit dieser Verbindungen zu erhöhen und andererseits eine weitere NMR-Sonde einzuführen, konzentrierte sich das Interesse vor allem auf die sperrigen trialkylsilylsubstituierten Derivate. Auch besitzen die großen Silylsubstituenten die Eigenschaft, das Molekül sterisch abzuschirmen.

Aufbauend auf die vor kurzem von *Westerhausen* und *Mitarbeiter* bei der Metallierung von Triisopropylsilylamin und Tri(*tert*butyl)silylamin mit Dimethylzink und Diethylzink in Toluol dargestellten dimeren Methyl- und Ethylzink-triisopropyl- bzw. tri(*tert*butyl)silylamide erfolgte die Darstellung der schwereren Homologen, den Phosphaniden. Durch Reaktion von Dialkylzink mit kleinen Resten und den primären Phosphanen mit sperrigen Substituenten, gelang in einer 1:1 Stöchiometrie die Darstellung der entsprechenden dimeren Phosphanide.

$$2 \text{ R'}_{3}\text{SiPH}_{2} + 2 \text{ ZnR}_{2} \xrightarrow{-2 \text{ CH}_{4}} \begin{array}{c} R \\ -2 \text{ EtH} \end{array} \xrightarrow{R_{3}\text{Si}} \begin{array}{c} R \\ R_{3}\text{Si} \end{array} \xrightarrow{R} \\ R = \text{Me}, \text{ Et} \\ R' = t\text{Bu}, i\text{Pr} \end{array}$$

Gleichung 4.1. Metallierung von Triisopropyl- und Tri(*tert*butyl)-silylphosphan mit Dialkylzinkverbindungen ZnR_2 zu den Methyl- und Ethylzink-Verbindungen **1-4**.

Eine weitere Zinkierung und somit Deprotonierung des primären Phosphans gelang durch Änderung der Stöchiometrie (*Gleichung 4.2*). Im Gegensatz zu heteroleptischen Verbindungen des Typs R-Zn-X (R = Alkyl, $X = NR'_2$, PPh₂)^[56] ist die metallierende Kraft der am Zink gebundenen Alkyl-Gruppen stark reduziert.

In Verbindung 7 wirkt das zweite Zink überbrückend. Verbindung 7 ist die erste binäre Käfigverbindung, die nur durch Abschirmung der reaktiven Seiten durch die großen sterischen Substituenten stabilisiert wird.

Gleichung 4.2: Darstellung von Tetraethyltetrakis[tri(tertbutyl)silylphosphandiido]hexazink 7.

Im Rahmen weiterer Untersuchungen zu den Zinkphosphaniden gelang uns die Abspaltung einer Alkylgruppe von dimerem Methylzink-tri(*tert*butyl)silylphosphanid mittels Alkoholyse und unter Bildung des Dimers **6** (*Gleichung 4.3*).

Gleichung 4.3: Darstellung von Bis[bis(tri(*tert*butyl)silyl-phosphanyl)- μ -zinkmethyl- μ -isopropylatozink] **6**.

Eine weitere Alkoholyse der zweiten Methylgruppe am Zinkatom wurde weder durch Änderung der Stöchiometrie noch durch Änderung der Reaktionbedingungen erhalten.

Für die Synthese neuartiger Zinkatverbindungen der Alkalimetall- und Erdalkalimetallverbindungen wurden die Zinkphosphanide in Transmetallierungs- und Metallierungreaktionen mit Alkalimetallen oder Erdalkalimetallen umgesetzt.

Die Darstellung der Erdalkalimetallphosphanylzinkate erfolgte erstens nach *Gleichung* 4.4 unter Zusatz von Donorsolventien. THF eignete sich hier für den Kristallationsprozess am Besten.

M = Ca 8, Sr 11, Ba 13

Gleichung 4.4 Darstellung der Erdalkalimetallphosphanylzinkate **8**, **11** und **13** durch Umsetzung mit den destillierten Metallen.

Eine weitere Darstellung der Erdalkalimetallphosphanylzinkate **8**, **11** und **13** erfolgte über die Metallierungsreaktion mit den Erdalkalimetall[bis(bistrimethylsilyl)amiden]. Zur Darstellung des Magnesiumphosphanylzinkats wurde Magnesiumdibutanid mit Bis[methylzink-tri(*tert*butyl)silylphosphanid] in THF umgesetzt. Isoliert wurde Bis(tetrahydrofuran-O)-magnesium-[1,3-dibutyl-2,4-bis[tri(*tert*butyl)silyl-1,3-dizinka-2,4-diphosphetan-2,4-diid] **15**, wobei ein Austausch der Methylgruppe am Zink durch eine Butylgruppe des Magnesiumbutanids zu beobachten ist. Erklärt werden kann dies durch ein Gleichgewicht, an dem ein Zinkat beteiligt ist und das durch Kristallisation bzw. Ausfällung eines Produktes verschoben werden kann (*Gleichung 4.5*). Sowohl von **8** als auch von **11** isolierten wir jeweils zwei Kristallfraktionen mit unterschiedlichen Lösungsmittelmolekülen im Kristallgitter.

Gleichung 4.5 Gleichgewicht in Lösung bei der Darstellung von Bis(tetrahydrofuran-O)magnesium-[1,3-dibutyl-2,4-bis[tri(*tert*butyl)silyl-1,3-dizinka-2,4-diphosphetan-2,4-diid] **15**

In allen Verbindungen ist das Erdalkalimetall an zwei Phosphoratome gebunden. Die koordinative Sättigung der Metalle erfolgt wie erwartet durch die Lewis-Basen. Die Zinkatome liegen jeweils in einer trigonal planaren Umgebung vor.

Durch Umsetzung von Diethylzink mit Tri(tertbutyl)silylphosphan gelangt man zum dimeren Tri(tertbutyl)silylphosphanid 2. Die Deprotonierung von 2 in THF durch die Zugabe von [(thf)₂Ba(N(SiMe₃)₂]₂ führt zu (thf)₄Ba(EtZn)₂(PSitBu₃)₂ 14. Wird die Reaktion in Toluol durchgeführt und ein Überschuss von THF vermieden, muss die Koordinationssphäre des Bariums intramolekular abgesättigt werden. So führte die Ethylzink-tri(tertbutyl)silyphosphanid 2 Reaktion von mit Bariumbis[bis(trimethylsilyl)amid] Bis[tetrahydrofuran-Oin Toluol zu trimethylsilylamido-N-barium-u2-di(tri(tertbutyl)silyl-phosphandiido-u-zink-u2zinkethanid] 17 (Abbildung 4.1).

*Abbildung 4.*1 Strukturmodell von dimerem Bis[tetrahydrofuran-O-trimethylsilylamido-*N*-barium μ_2 -di(tri(*tert*butyl)silyl-phosphandiido- μ -zink- μ_2 -zinkethanid] **17**.

Durch Änderung der Stöchiometrie und kurzzeitiges Erwärmen auf 80°C gelang uns die zweite Abspaltung der Amingruppe. Als Produkt wird das dimere Bis[tetrahydrofuran-Obarium- μ_2 -bis(ethylzink-tri(*tert*butyl)silyphosphandiido]- μ_2 -zinkphosphandiid **18** erhalten. Notwendig war auch hier wieder die Reaktionsführung in Toluol, da die Koordinationssphäre des Bariums intramolekular abgesättigt werden muss.

Zu einem interessanten Ergebnis führt die Hydrolyse von Tetrakis(tetrahydrofuran-O)barium-[1,3-dimethyl-2,4-bis[tri(*tert*butyl)silyl-1,3-dizinka-2,4-diphosphetan-2,4-diid]

13, welches dimerisiert und unter Abspaltung von Methan das Sauerstoffatom im Zentrum aufnimmt. Durch die Wechselwirkung der Zink gebundenen Alkylgruppe zum Barium erhält man Bindungslängen von 203 pm und von 307 pm für die Zn-C bzw. Ba-C-Bindung.

Im Zuge unserer Untersuchungen erweiterten wir unsere Synthese auf die Alkalimetallphosphanylzinkate. Interessanterweise bleibt der $(ZnP)_2$ -Ring der Zinkphosphanide auch hier wieder erhalten. Die Deprotonierung von 1 mit Natrium oder Kalium in 1,2-Dimethoxyethan führte zu dem Lösungsmittel getrennten Ionen-Paar $[(DME)_{3}Na]^{+}$ $[(DME)Na(\mu_{3}-PSitBu_{3})_{2}(ZnMe)_{2}]^{-}$ 21 bzw. $[(DME)_{3}K]^{+}$ $[(DME)K(\mu_{3}-PSitBu_{3})_{2}(ZnMe)_{2}]^{-}$ 21 bzw. $[(DME)_{3}K]^{+}$ PSitBu₃)₂(ZnMe)₂]⁻ 22. Ändert man die Stöchiometrie und wird die Reaktion mit einem Überschuss an Tri(*tert*butyl)silylphosphan mit Kalium in THF durchgeführt, gelangte man dem farblosen dimeren Komplex $[{(THF)_4K_2(\mu-P(H)SitBu_3)}](\mu_4$ zu $PSitBu_3)ZnMe]_2 23$ (Schema 4.1)

Schema 4.1: Darstellung der Alkalimetallphosphanylzinkate $[(dme)_3Na^+]$ $[(dme)Na(\mu_3-PSitBu_3)_2(ZnMe)_2]^-$ 21, $[(DME)_3K]^+$ $[(DMEK(\mu_3-PSitBu_3)_2(ZnMe)_2]^-$ 22 und dem dimeren $[{(THF_4K_2(\mu-P(H)SitBu_3)}(\mu_4-PSitBu_3)ZnMe]_2$ 23.

Während der Synthese und Isolation der Alkalimetall-tri(*tert*butyl)silylphosphanylzinkate sowie bei Untersuchungen bezüglich der Reaktivität wurde ihre extreme Feuchtigkeitsempfindlichkeit beobachtet. $[(DME)_3M]^+$ $[(DME)M(\mu_3-PSitBu_3)_2(ZnMe)_2]^-$ (M = K, Cs) reagiert mit Feuchtigkeit zu dem Alkalimetalloxo-tri(*tert*butyl)silylzinkat **24** und **26**. Das neuartigen und strukturstabilisierende Anion $[(MeZn)_4Zn_2(\mu_3-PSitBu_3)_4(\mu_4-O)_2]^{4-}$ (*Abbildung 4.1*) ist das einzige Sauerstoff beinhaltende Produkt, das während der Hydrolyse von den Alkalimetallphosphanylzinkaten beobachtet wird.

Abbildung 4.1: Strukturmodell des Oxo-tri(tertbutyl)silylzinkat- Anions der Alkalimetalle.

Es besteht aus einem Zn₆O₂P₄-Heterokuban- Käfig mit einem zentralen Zn₂O₂-Ring. Ein Überschuß an Wasser führt schließlich zur Zersetzung und zu einer Vielzahl unbekannter Verbindungen. Durch die hohe sterische Abschirmung können nur kleine Lewis-Basen wie THF oder Toluol an das Alkalimetall binden. Diese Komplexe zeigen, dass durch kleine Wassermengen große Käfigstrukturen entstehen können.

In Anbetracht der Ergenisse der Metallierungen mit Zinkalkylen und Triisopropylsilylphosphan bzw. Tri(*tert*butyl)silyphosphanen dehnten wir unsere Untersuchungen auf das nächst höhere homologe Pentelan aus. Durch Reaktion von Natrium-triisopropylsilylarsanid und Triisopropylsilylarsan mit Diethylzink wurde Bis[(tetrahydrofuran-O)-natrium-zinkethanid-bis-(ethylzink-triisopropylsilyl-arsandiid)]

27 quantitativ metalliert und isoliert. Die von Verbindung 27 angefertigte Röntgenstrukturanalyse zeigt wiederum den Zink-Pentel-Vierring, welcher je über eine Alkylzink-Einheit und über ein Natriumatom mit einem weiteren Zink-Arsen-Vierring verbrückt ist (*Abbildung 4.2*).

Abbildung 4.2: Strukturmodell von Bis[(tetrahydrofuran-O)-natrium-zinkethanid-bis-(ethylzink-triisopropylsilyl-arsandiid)] **27**.

Das Natriumatom koordiniert trigonal planar an As1, As2 und das Sauerstoffatom von THF. Die freien Koordinationstellen des Natriumatoms werden durch agostische Wechselwirkungen zu Alkylgruppen aufgefüllt. Die Zinkatome der Ringe sowie das überbrückenden Zink zwischen den Ringen liegen im Rahmen der Standardabweichung in einer trigonal planaren Umgebung vor.

5. Anhang

Liste der verwendeten Abkürzungen:

Chemische Verschiebung	min	Minute
Absorptionskoeffizient	ml	Milliliter
Dichte	mmol	Millimol
Wellenzahl [cm ⁻¹]	nm	Nanometer
Benzyl	NMR	Kern-Spin-Resonanz
tert-Butyl	S	Singulett
Grad Celsius	d	Dublett
Hexadeuterobenzol	t	Triplett
Dimethoxyethan	sept.	Septett
Diethylether	q	Quartett
Ethyl	m	Multiplett
Stunde	J	Kopplungskonstante
Hochvakuum	Hz	Hertz
Infrarot Spektroskopie	Ph	Phenyl
sehr schwach	pm	Picometer
schwach	ppm	Parts per million
mittel	ⁱ Pr	Isopropyl
stark	R	Rest
sehr stark	R.T.	Raumtemperatur
breit	THF	Tetrahydrofuran
Metall/molar	Ζ	Anzahl der Moleküle in der
Methyl		Elementarzelle
Milligramm		
	Chemische Verschiebung Absorptionskoeffizient Dichte Wellenzahl [cm ⁻¹] Benzyl tert-Butyl Grad Celsius Hexadeuterobenzol Dimethoxyethan Diethylether Ethyl Stunde Hochvakuum Infrarot Spektroskopie sehr schwach schwach mittel stark sehr stark breit Metall/molar	Chemische VerschiebungminAbsorptionskoeffizientmlDichtemmolWellenzahl [cm ⁻¹]nmBenzylNMRtert-ButylsGrad CelsiusdHexadeuterobenzoltDimethoxyethansept.DiethyletherqEthylmStundeJHochvakuumHzInfrarot SpektroskopiePhsehr schwachppmmittel'PrstarkR.T.starkR.T.breitTHFMetall/molarZMilligrammStunda

Publikationen:

Veröffentlichungen:

Zeitschrift für	$(EtZn)_4Zn_2(PSitBu_3)_4 - a$ homometallic phosphanediide of zinc with a
Naturforschung	novel Zn ₆ P ₄ cage, Matthias Westerhausen, Gerhard Sapelza, Manfred
	Zabel, Arno Pfitzner,
	Z. Naturforsch., 2004, 59b, 1548-1550.
Angewandte	Activation of a Zinc-bound Ethyl Group via Formation of a Zn- C_{Et} -Ba
Chemie	Moiety and Crystal Structure of $[((Me_3Si)_2N)Ba(thf)Zn_2(\mu-Et)(\mu_3-Et))$
	PSitBu ₃) ₂] ₂ with Bridging Ethyl Substituents, Matthias Westerhausen,
	Gerhard Sapelza, Peter Mayer,
	Angewandte Chemie, 2005 117, 6391-6393.

Zeitschrift	für	Synthesis	and	Char	acteriz	ation	n of	Methy	lzinc	Tri(tert-
Anorganisc	he	butyl)silylpl	osphanid	le as	well	as	Related	Sodium	and	Potassium
und Allge	emeine	Phosphanyl	zincates,	Ger	hard	Sap	belza, 1	Peter M	layer,	Matthias
Chemie		Westerhaus	en,							
		Z. Anorg. A.	llg. Chem	., 2005	5 im D	ruck				

Inorganic	Synthesis and Characterization of Novel Oxo-Centered
Chemistry	Phosphanylzincates of Potassium and Cesium with a Central $Zn_6O_2P_4$
	Double-Heterocubane Cage, Matthias Westerhausen, Gerhard Sapelza,
	Helmar Görls, and Peter Mayer.
	Inorg. Chem., im Druck.

Anhang

Lebenslauf:

Persönliche Daten:

Name:	Gerhard Sapelza
Geburtsdatum :	19.September 1978
Geburtsort:	Innichen (Bz) Italien
Familienstand:	ledig
Nationalität:	italienisch
Ausbildung:	
Seit April 2003	Promotion an der LMU München bzw. seit 01.03.2005 an der Friedrich-Schiller-Universität Jena unter der Anleitung von Prof. Dr. Matthias Westerhausen.
Nov. 1999 – März 2003	 Studium der Chemie (Diplom) an der Ludwig Maximilian Universität München . Diplomarbeit Abschluss: Diplomchemiker
Nov.1997 –Nov. 1999	Studium der Chemie (Vordiplom) an der Technischen Universität München
Sept. 1992- Juli 1997	Wissenschaftliches Lyzeum Bruneck Abschluss: Matura
Sept. 1984 – Juni 1992	Grundschule / Mittelschule Olang.

6. Literaturverzeichnis

- ^[1] W. Clegg, G. C. Forbes, A. R. Kennedy, R. E. Mulvey, S. T. Liddle, *Chem. Commun.* **2003**, 406.
- ^[2] M. A. Putzer, B. Neumüller, K. Dehnicke, Z. Anorg. Allg. Chem. 1997, 623, 539.
- ^[3] G. C. Forbes, A. R. Kennedy, R. E. Mulvey, B. A. Roberts, R. B. Rowlings, *Organometallics* 2002, 21, 5115-5121.
- ^[4] A. Haaland, K. Hedberg, P. P. Power, *Inorg. Chem.* 1984, 23, 1972 (gas phase structure); G. Margraf, H.-W. Lerner, M. Bolte, M. Wagner, Z. Anorg. Allg. Chem. 2004, 630, 217 (solid state structure).
- ^[5] G. C. Forbes, A. R. Kennedy, R. E. Mulvey, R. B. Rowlings, W. Clegg, S. T. Liddle, C. C. Wilson, *Chem. Commun.* 2000, 1759.
- ^[6] A. P. Purdy, C. F. George, *Organometallics* 1992, 11, 1955.
- ^[7] R. M. Fabicon, H. G. Richey, J. Chem. Soc., Dalton Trans. 2001, 783.
- ^[8] R. W. Saalfrank, U. Reimann, M. Göritz, F. Hampel, A. Scheurer, F. W. Heinemann, M. Büschel, J. Daub, V. Schünemann, A. X. Trautwein, *Chem. Eur. J.* 2002, *8*, 3614; H. K. Chae, J. Kim, O. D. Friedrichs, M. O'Keeffe, O. M. Yagfi, *Angew. Chem.* 2003, *115*, 4037; *Angew. Chem. Int. Ed.* 2003, *42*, 3907; H. K. Chae, D. Y. Siberio-Perez, J. Kim, Y. B. Go, M. Eddaoudi, A. J. Matzger, M. O'Keeffe, O. M. Yaghi, *Nature* 2004, *427*, 523; E. Y. Lee, S. Y. Jang, M. P. Suh, *J. Am. Chem. Soc.* 2005, *127*, 6374.
- ^[9] N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe, O. M. Yaghi, *Science* **2003**, *300*, 1127; J. L. C. Rowsell, A. R. Millward, K. S. Park, O. M. Yaghi, *J. Am. Chem. Soc.* **2004**, *126*, 5666; B. Kesanli, Y. Cui, M. R. Smith, E. W. Bittner, B. C. Brockrath, W. Lin, *Angew. Chem.* **2005**, *117*, 74; *Angew. Chem. Int. Ed.* **2005**, *44*, 72.
- ^[10] D. J. Darensbourg, J. R. Wildeson, J. C. Yarbrough, *Inorg. Chem.* 2002, *41*, 973; C. S. McCowan, M. T. Caudle, *Dalton Trans.* 2005, 238.
- ^[11] M. Corbett, B. F. Hoskins, Inorg. Nucl. Chem. Lett. 1970, 6, 261.
- ^[12]M. Masaki, S. Matsunami, T. Kimura, T. Oshima, *Bull. Chem. Soc. Jpn.* **1979**, *52*, 502-506.
 P. P. Nicholas, *J. Org. Chem.* **1979**, *44*, 2126. C. F. Lee, K. F. Chin, S. M. Peng, C. M. Che, *J. Chem. Soc., Dalton Trans.* **1993**, 467. W. T. A. Harrison, M. L. F. Phillips, A. V. Chavez,

T. M. Nenoff, J. Mat. Chem. 1999, 9, 3087. S. Memzer, J. R. Phillips, A. M. Z. Slawin, D. J. Williams, J. D. Woollins, *Dalton Trans.* 2000, 3269. C. S. McCowan, T. L. Groy, M. T. Caudle, *Inorg. Chem.* 2002, 41, 1120. D. B. Dell'Amico, F. Calderazzo, S. Farnocchi, L. Labella, F. Marchetti, *Inorg. Chem. Commun.* 2002, 5, 848. D. B. Dell'Amico, F. Calderazzo, L. Labella, F. Marchetti, *Inorg. Chim. Acta* 2003, 350, 661. M. Shu, R. Walz, B. Wu, J. Seebacher, H. Vahrenkamp, *Eur. J. Inorg. Chem.* 2003, 2502-2511. S.-L. Zheng, J.-P. Zhang, X.-M. Chen, Z.-L. Huang, Z.-Y. Lin, W.-T. Wong, *Chem. Eur. J.* 2003, 9, 3888.

- ^[13] A. Waheed, R. A. Jones, J. McCarty, X. Yang, *Dalton Trans.* 2004, 3840.
- ^[14] M. A. Malik, P. O'Brien, M. Motevalli, A. C. Jones, *Inorg. Chem.* 1997, 36, 5076.
- ^[15] A. D. Bond, D. J. Linton, P. Schooler, A. E. H. Wheatley, J. Chem. Soc. Dalton Trans. 2001, 3173.
- ^[16] J. Lewinski, W. Marciniak, J. Lipkowski, I. Justyniak, J. Am. Chem. Soc. 2003, 125, 12698.
- ^[17] E. Frankland, J. Chem. Soc. 2, **1848-9**, 263.
- ^[18] Ch. Elschenbroich, A. Salzer, *Organometallchemie*, 3. Auflage, **1993**, Teubner, Stuttgart.
- ^[19] Holleman, Wiberg, *Lehrbuch der Anorganischen Chemie*, 91. Auflage, **1985**, de Gruyter, Berlin.
- ^[20] A. Freund, *Lieb. Ann. Chem.* **1861**, *118*, 1.
- ^[21] G. Wagner, A. Saytzeff, Lieb. Ann. Chem. 1875, 175, 361.
- ^[22] D. Pawlow, Lieb. Ann. Chem. 1877, 188, 130.
- ^[23] S. Reformatzky, Ber. Dt. Chem. Ges. 1887, 20, 1210.
- ^[24] P. Knochel, P. Jones, Organozinc Reagents A Practical Approach, University Press, Oxford, 1999.
- ^[25] H. Vahrenkamp, Chemie in unserer Zeit, 1988, 22. Jahrg. Nr. 3, 73.
- ^[26] N. Sträter, W. N. Lipscomp, T. Klabunde, B. Krebs, Angew. Chem. Int. Ed. Engl. 1996, 35, 2024.
- ^[27] J. E. Coleman, Annu. Rev. Biophys. Biomol. Struct. 1992, 21, 441.
- ^[28] V. Grignard, Ann. Chim. 1901, 24, 433.
- ^[29] K. Ziegler, H. Friotzheim-Kühlhorn, K. Hafner, Chem. Ber. 1956, 89, 434.
- ^[30] J.J. Eisch, R.B. King, *Organometallic Synthesis*, Vol. 2, Academic Press, New York, *198*, 101:" The derivatives of calcium, strontium, and barium have received only sporadic

attention, but recently refined preparative methods may signal promissing developments, espesially fort he potentially useful organocalcium reagents."

- ^[31] N. Wiberg, A. F. Holleman, E. Wiberg (Hrsg.): *Lehrbuch der anorganischen Chemie /Holleman-Wiberg*, Walter de Gruyter, Berlin, New York, 101 Aufl. 1995, 1123; K.Nützel, E. Müller, O. Bayer, H. Meerwein, K. Ziegler (Hrsg.): *Methoden der organischen Chemie* (Houben-Weyl), Bd. XIII/2a, 4. Aufl., Georg Thieme Verlag, Stuttgart 1973.
- ^[32] H. Tani, N. Oguni, Polym. Lett. 7, 1969, 769; N. Oguni, H. Tani, J. Polym. Sci. 11, 1973, 573.
- ^[33] Alexander Kneifel, Dissertation München, 2005
- ^[34] N. Wiberg, E. Kühnel, K. Schurz, H. Borrmann, A. Simon, J. Naturforsch, 1988, 43b, 1075.
- ^[35] G. Reber, J. Riede, N. Wiberg, K. Schurz, G. Müller, Z. Naturforsch, 1989, 44b, 786.
- ^[36] N. Wiberg, K. Amelunxen, H.-W. Lerner, H. Schuster, H. Nöth, I. Krossing, M. Schmidt-Amelunxen, T. Seifert, *J. Organomet. Chem.* **1997**, *542*, 1.
- ^[37] E. Frankland, *Proc. Roy. Soc.* 8 **1856-7**, 502.
- ^[38] E. Frankland, *Jahresber.* **1867**, 419.
- ^[39] M.F. Lappert, P.P. Power, A.R. Sanger, R.C. Srivastava: *Metal and Metalloid Amides: Syntheses, Structures, and physical and chemical Properties*; Ellis Horwood, Chichester 1980, 545.
- ^[40] A. Haaland, K. Hedberg, P.P. Power, *Inorg. Chem.* 1984 23, 1972. P.P. Power, K. Ruhlandt-Senge, S.C. Shoner, *Inorg. Chem.* 1991 30 5013. W.S. Rees, D.M. Green, W. Hesse, *Polyhedron*, 1992, 11, 1697. M.A. Putzer, A. Dashti-Mommertz, B. Neumüller, K. Dehnicke, *Z. Anorg. Allg. Chem.* 1998, 624, 263. W.S. Rees, O. Just, H. Schumann, R. Weimann, *Polyhedron*, 1998, 17, 1001. H. Schumann, J. Gottfriedsen, S. Dechert, F. Girgsdies, *Z. Anorg. Allg. Chem.* 2000, 626, 747.
- ^[41] M. M. Olmstead, W. J. Grigsby, D. R. Chacon, T. Hascall, P. P. Power, *Inorg. Chim. Acta*, 1996, 251, 273; M. Westerhausen, T. Bollwein, A. Pfitzner, T. Nilges, H.-J. Deiseroth, *Inorg. Chim. Acta* 2001, 312, 239.
- ^[42] H. Schuster, *Dissertation München*, **1991**, 6.
- ^[43] T. Bollwein, Dissertation München, 2001, 23.
- ^[44] K. Issleib, H. –O. Fröhlich, Chem. Ber. 1962, 95, 375.

- ^[45] J. G. Noltes, Recl. Trav. Chim. Pays-Bas 1965, 84, 782.
- ^[46] A. M. Arif, A. H. Cowley, R. A. Jones, S. U. Koschmieder, J. Chem. Soc., Chem. Commun. 1987 1319.
- ^[47] Subhash C. Goel, Michael Y. Chiang, William E. Buhro J. Am Chem. Soc. 1990, 112, 5636.
- ^[48] B. Rademacher, W. Schwarz und M. Westerhausen Z. anorg. Allg. Chemie. 1995, 621 287.
- ^[49] Matthias Westerhausen, Tobias Bollwein, Marcus Warchold und Heinrich Nöth, Z. Anorg. Allg. Chem. 2001, 627, 1141.
- ^[50] H. Bürger, U. Götze, J. Organomet. Chem. 1968, 12, 451.
- ^[51] M. Westerhausen, R. Löw, W. Schwarz J. Organomet. Chem., 1996, 513, 213.
- ^[52] M. Westerhausen, C. Birg, H. Nöth, T. Seifert, J. Knizek Eur. J. Inorg. Chem. 1999, 2209.
- ^[53] N. Wiberg, H. Schuster, *Chem. Ber.* 1991, *124*, 93. N. Wiberg, A. Wörner, H.-W. Lerner, K. Karaghiosoff, D. Fenske, G. Baum, A. Dransfeld, P. v. R. Schleyer, *Eur. J. Inorg. Chem.*, 1998, 833.
- ^[54] G. Becker, B. Eschbach, O. Mundt, M. Reti, E. Niecke, K. Issberner, M. Nieger, V. Thelen, H. Nöth, R. Waldhör, M. Schmidt, Z. Anorg. Allg. Chem. 1998, 624, 469.
- ^[55] R. A. Jones, S. U. Koschmieder, C. M. Nunn, *Inorg. Chem.* **1987**, *26*, 3610.
- ^[56] G. Becker, H.-M. Hartmann, W. Schwarz, Z. Anorg. Allg. Chem. 1989, 577, 9
- ^[57] M. Driess, H. Pritzkow, Z. Anorg. Allg. Chem. 1996, 622, 1524
- ^[58] M. Westerhausen, G. Sapelza, P. Mayer, Angew. Chem. 2005, 117, in press; Angew. Chem. Int. Ed. 2005, 44, in press.
- ^[59] M. A. Matchett, M. Y. Chiang, W. E. Buhro, *Inorg. Chem.* **1994**, *33*, 1109.
- ^[60] S. C. Goel, M. Y. Chiang, W. E. Buhro, J. Am. Chem. Soc. 1990, 112 5636;.
- ^[61] S. C. Goel, M. Y. Chiang, D. J. Rauscher, W. E. Buhro, J. Am. Chem. Soc 1993, 115, 160
- ^[62] J. G. Noltes, J. Boersma, J. Organomet. Chem. 1968, 12, 425; J. Boersma, J. G. Noltes, J. Organomet. Chem. 1968, 13, 291.
- ^[63] S. Moorhouse, G. Wilkinson, J Organomet. Chem. 1973, 52, C5; S. Moorhouse, G. Wilkinson, J. Chem. Soc., Dalton Trans. 1974, 2187; D. M. Heinekey, S. R. Stobart, Inorg. Chem. 1978, 17, 1463; M. Westerhausen, B. Rademacher, W. Poll, J. Organomet. Chem. 1991, 421, 175
- ^[64] J. F. Janik, R. A. Baldwin, R.L. Wells, W. T. Pennington, G. L. Schimek, A. L. Rheingold, L. M. Liable-Sands, *Organometallics*, **1996**, *15*, 5385.

- ^[65] M.Westerhausen, G. Lang, W. Schwarz, *Chem. Ber.* **1996**, *129*, 1035; M. Westerhausen, M. Hartmann, W. Schwarz, *Inorg. Chem.* **1996**, *35*, 2421.
- ^[66] M.M. Olmstead, W.J. Grigsby, D.R. Chacon, T. Hascall, P.P. Power, *Inorg. Chim. Acta*, 1996, 251, 273.
- ^[67] H. Schmidbaur, G. Jonas, Angew. Chem. Int. Ed. Engl. 6, 449 (1967); H. Schmidbaur, G. Jonas, Chem. Ber. 1968, 101, 1271.
- ^[68] O. Fuhr, D. Fenske, Z. Anorg. Allg. Chem. 1999, 625, 1229.
- ^[69] M. Westerhausen, M. Wieneke, K. Doderer, W. Schwarz, Z. Naturforsch. 1996, 51b, 1439.
- ^[70] M. G. Davidson, A. J. Edwards, M. A. Paver, P. R. Raithby, C. A. Russell, A. Steiner, K. L. Verhorevoort, D. S. Wright, J. Chem. Soc., Chem Commun. 1995, 1989.
- [^{71]} M. Driess, R. Barmeyer, C. Monsé, K. Merz, Angew. Chem. 2001, 113, 2366; Angew. Chem. Int. Ed. 2001, 40, 2308.
- ^[72] W. Tochtermann, Angew. Chem. 1966, 78, 355; Angew. Chem. Int. Ed. Engl. 1966, 5, 351.
- ^[73] F. Hein, E.Petzchner, K. Wagler, F. A. Segitz, Z. anorg. allg. Chem 1924, 141, 161.
- ^[74] H. Gilman, L. A. Woods, J. Am. Chem. Soc. 1945, 67, 520
- ^[75] H. Gilman, A. H. Haubein, G. O'Donnell, L. A. Woods, J. Am. Chem. Soc. 1945, 67,922.
- ^[76] Y. Kawakami, Y. Yasuda, T. Tsuruta, Bull. Chem. Soc. Japan 1971, 44, 1164.
- [77] F. Kaufmann, A. Geraudelle, B. Kaempf, F. Schué, A. Deluzarche, A. Maillard, J. Organomet. Chem. 1970, 24, 13.
- ^[78] F. Kaufmann, S. Alev, A. Collet F. Schué, B. Kaempf, A. Deluzarche, *Europ. Polym. J.* 1976, 12, 209.
- ^[79] Y. Kobuke, T. Fueno, J. Furukawa, J. Polym. Sci., Part A-1, **1970**, *8*, 2979.
- ^[80] M. Westerhausen, Z. Anorg. Allg. Chem. **1992**, 618, 131.
- ^[81] E. Rijnberg, J. T. B. H. Jastrzebski, J. Boersma, H. Kooijman, A. L. Spek, G. van Koten, J. Organomet. Chem. 1997, 541, 181.
- ^[82] D. C. Bradley, M. B. Hursthouse, A. A. Ibrahim, K. M. Abdul Malik, M. Motevalli, R.Möseler, H. Powell, J. D. Runnacles, A. C. Sullivan, *Polyhedron* **1990**, *9*, 2959.
- ^[83] W. Tochtermann, Angew. Chem. 1966, 78, 355; Angew. Chem. Int. Ed. Engl. 1966, 5, 351.
- ^[84] M. Westerhausen, C. Gückel, T. Habereder, M. Vogt, M. Warchold, H. Nöth, Organometallics, 2001, 20, 893.

- ^[85] T. P. Hanusa, *Polyhedron* 1990, *9*, 1345. T. P. Hanusa, *Chem. Rev.* 1993, *93*, 1023. T. P. Hanusa, *Coord. Chem. Rev.* 2000, *210*, 329. M. Westerhausen, *Angew. Chem. Int. Ed.* 2001, *40*, 2975. J. S. Alexander, K. Ruhlandt-Senge, *Eur. J. Inorg. Chem.* 2002, 2761.
- ^[86] P. Ehrlich, H.J. Seifert, in Brauer, G (Ed.): *Handbuch der Präparativen AnorganischenChemie*, Vol. 2, 3. Ed., F. Enke, Stuttgart, **1978**; 917. J. Evers, A. Weiss, E. Kaldis, J.Muheim, *J. Less-Common Met.* **1973**, *30*, 83. E. Kaldis, J. Muheim, J. Evers, A. Weiss, *J. Less-Common Met.* **1973**, 31, 169.
- ^[87] M. Westerhausen, Trends Organomet. Chem. 1997, 2, 89.
- ^[88] M.Westerhausen, M. Krofta, A. Pfitzner, *Inorg. Chem.* 1999, 38, 598.
- ^[89] M. Westerhausen, G. Lang, W. Schwarz, *Chem. Ber.* 1996, *129*, 1035; M.Westerhausen, M. Hartmann, W. Schwarz, *Inorg. Chem.* 1996, *35*, 2421.
- ^[90] M. Westerhausen, W. Schwarz, B. Rademacher, Z. Anorg. Allg. Chem. 1995, 621, 287.
- ^[91] Matthias Westerhausen, Gerhard Sapelza, Manfred Zabel, Arno Pfitzner, Z. Naturforschung.2004, 59b, 1548.
- ^[92] Christian Gückel, *Dissertation München*, 2001.
- ^[93] M. Westerhausen, G. Lang, W. Schwarz, *Chem. Ber.* **1996**, *129*, 1035.
- ^[94] B.A. Vaartstra, J.C. Huffman, W.E. Streib, K. G. Caulton, *Inorg. Chem.* **1991**, *30*, 121.
- ^[95] M. Westerhausen, M. H. Digeser, H. Nöth, J. Knizek, Z. Anorg. Allg. Chem. 1998, 624, 215.
- ^[96] M. Westerhausen, C. Birg, M. Krofta, P. Mayer, T. Seifert, H. Nöth, Z. Anorg. Allg. Chem. 2000, 626, 1073.
- ^[97] M. Westerhausen, M.H. Digeser, M.Krofta, N. Wiberg, H. Nöth, J. Knizek, W. Ponikwar, T. Seifert, *Eur. J. Inorg. Chem.* **1999**, *38*, 743.
- ^[98] M. Westerhausen, A. Pfitzner, J. Organomet. Chem. 1995, 487, 178.
- ^[99] M. Westerhausen, W. Schwarz, Z. Anorg. Allg. Chem. 1994, 620, 304.
- ^[100] E.Hey, L. M. Engelhardt, C.L. Raston, A.H. White, Angew. Chem. 1987, 99, 61.
- [101] E.Hey, L. M. Engelhardt, C.L. Raston, A.H. White, *Angew. Chem.Int. Ed. Engl.* 1987, 26, 81.
- ^[102] D. L. Schulz, B. J. Hinds, C. L. Stern, T. J. Marks, *Inorg. Chem.* 1993, 32, 249.
- ^[103] M. Melnik, J. Skorsepa, K. Györryova`, C. E. Holloway, J. Organomet. Chem. 1995, 503, 1
- ^[104] C. Eaborn, J. D. Smith, Coord. Chem. Rev. 1996, 154, 125.

- ^[105] A. Almenningen, T. U. Helgaker, A. Haaland, S. Samdal, *Acta Chem. Scand. Ser. A* **1982**, *36*, 159.
- ^[106] M. Westerhausen, M. H. Digeser, H. Nöth, T. Seifert, A. Pfitzner, J. Am. Chem. Soc. 1998, 17, 3375.
- ^[107] Matthias Westerhausen, Christian Gückel, Peter Mayer, Angew. Chem. 2001, 113, 2736.
- ^[108] D. C. Green, U. Englich, K. Ruhlandt-Senge, Angew. Chem. 1999, 111, 365; Angew. Chem.
 Int. E. 1999, 38, 354.
- [109] H. M. M. Shearer, C. B. Spencer, J. Chem. Soc., Chem. Commun. 1966, 194; M.Shearer, C.
 B. Spencer, Acta Crystallogr., Sect. A, 1982, B36, 2046.
- ^[110] M. M. Olmstead, P. P. Power, S. C. Shoner, J. Am. Chem. Soc. 1991, 113, 3379.
- ^[111] D. C. Green, U. Englich, K. Ruhlandt-Senge, *Angew. Chem.* **1999**, *111*, 365-367; *Angew. Chem. Int. Ed.* **1999**, *38*, 354.
- ^[112] K. Izod, S. T. Liddle, W. Clegg, J. Am. Chem. Soc. 2003, 125, 7534.
- ^[113] M. G. Gardiner, C. L. Raston, H. Viebrock, Chem. Commun. 1996, 1795.
- ^[114] S. Harder, M. Lutz, A. W. G. Straub, *Organometallics* **1997**, *16*, 107. S. Harder, M. Lutz, *Organometallics* **1997**, *16*, 225.
- ^[115] H. Schumann, S. Schutte, H.-J. Kroth, D. Lentz, Angew. Chem. Int. Ed. 2004, 43, 6208.
- [¹¹⁶] M. G. Davidson, A. J. Edwards, M. A. Paver, P. R. Raithby, C. A. Russell, A. Steiner, K. L. Verhorevoort, D. S. Wright, *J. Chem. Soc., Chem. Commun.* 1995, 1989. M. Westerhausen, T. Bollwein, A. Pfitzner, T. Nilges, H.-J. Deiseroth, *Inorg. Chim. Acta* 2001, *312*, 239.
- ^[117] H. Gilman, L. A. Woods, J. Am. Chem. Soc. 1945, 67, 520.
- ^[118] R. E. Mulvey, *Chem. Commun.* **2001**, 1049.
- ^[119] G. Fritz, P. Scheer, Chem. Rev. 2000, 100, 3341
- ^[120] K. Niedeck, B. Neumüller, Z. Anorg. Allg. Chem. 1993, 619, 885; A.R. Bartlett, M.M. Olmstead, P.P. Power, G.A. Sigel, Inorg. Chem. 1987, 26, 1941; R.E.Mulvey, K. Wade, D.R. Armstrong, G. T. Walker, R. Snaith, W. Clegg, D. Reed, Polyhedron 1987, 6, 987; G. Becker, B. Eschbach, D. Käshammer, O. Mundt, Z. Anorg. Allg. Chem. 1994, 620, 29; R. A. Jones, S. U. Koschmieder, C. M. Nunn, Inorg. Chem. 1987, 26, 3610; G. Becker, H.-M. Hartmann, W. Schwarz, Z. Anorg. Allg. Chem. 1989, 577, 9.
- [121] E. Hey, F. J. Weller, J. Chem. Soc., Chem. Commun. 1988, 782; G. Becker, B. Eschbach,
 D. Käshammer, O. Mundt, Z. Anorg. Allg. Chem. 1994 620, 29; G. Becker, H.-M.

Hartmann, W. Schwarz, Z. Anorg. Allg. Chem. 1989, 577, 9; E. Hey, C. L. Raston, B. W.
Skelton, A. H. White, J. Organomet. Chem. 1989, 362, 1; F. Uhlig, S. Gremler, M. Dargatz,
M. Scheer, E. Hermann, Z. Anorg. Allg. Chem. 1991, 606, 105; F. Uhlig, R.
Hummeltenberg, J. Organomet. Chem. 1993, 452, C9; M. Driess, H. Pritzkow, Z. Anorg.
Allg. Chem. 1996, 622, 1524; E. Hey, P. B. Hitchcock, M. F. Lappert, A. K. Rai, J.
Organomet. Chem. 1987, 325; E. Hey-Hawkins, E. Sattler, J. Chem. Soc., Chem. Commun.
1992, 775.

- ^[122] K. Izod, Adv. Inorg. Chem. 2000, 50, 33; U. Englich, K. Hassler, K. Ruhland-Senge, F. Uhlig, Inorg. Chem., 1998, 37, 3532.
- ^[123] N. Wiberg, A. Wörner, D. Fenske, H. Knizek, K. Polborn, *Angew. Chem.* 2000, *112*, 1908;
 Angew. Chem. Int. Ed. Engl 2000, *39*, 1838.
- ^[124]G. Becker, G. Ditten, K. Hübler, K. Merz, N. Niemeyer, N. Seidler, M. Westerhausen, Z. Zheng, (N. Auner, J. Weis, Hrsg): Organosilicon Chemistry II- From Molecules to Materials, VCH Weinheim 1996.
- ^[125]G. Fritz, W. Hölderlich, Z. Anorg. Allg. Chem. 1976, 422, 104; P. B. Hitchcock, M. F. Lappert, P. P. Power, S. J. Smith J. Chem. Soc., Chem. Commun. 1984, 1669; F. Uhlig, R. Kummeltenberg J. Organomet. Chem. 1993, 452, 9; E. Hey, C. L. Raston, B. W. Skelton, A. H. White, J. Organomet. Chem. 1989, 362, 1.
- ^[126] M. Driess, H. Pritzkow, M. Skipinski, U. Winkler, Organometallics, 1997, 16, 5108.
- ^[127] M. Westerhausen, S. Weinrich, B. Schmid, S. Schneiderbauer, M. Suter, H. Nöth, H. Piotrowski, *Z. Anorg. Allg. Chem.* **2003**, *629*, 625.
- ^[128] Rainer Kränzle, *Dissertation München*, 2005.
- ^[129] R. E. Mulvey, *Chem. Soc. Rev.* 1998, 27, 339-346; M. Driess, R. E. Mulvey, M. Westerhausen in M. Driess, H. Nöth (Ed.): *Molecular Clusters of the Main Group Elements*, Wiley-VCH, Weinheim, 2004.
- ^[130] G. W. Rabe, H. Heise, G. P. A. Yap, L. M. Liable-Sands, I. A. Guzei, A. Rheingold, *Inorg. Chem.* **1998**, *37*, 4235.
- ^[131] M. Westerhausen, M. Wienecke, W. Schwarz, J. Organomet. Chem. 1999, 572, 249.
- ^[132] M. Westerhausen N. Makropoulos, H. Piotrowski, M. Warchhold, H. Nöth, J. Organomet. Chem. 2000, 70, 614.

- ^[133] M. Westerhausen, C. Gueckel, H. Piotrowski, M. Vogt, Z. Anorg. Allg. Chem. 2002, 628(4), 735.
- ^[134] Carsten von Hänisch, Birgitt Rolli, Z. Anorg. Allg. Chem. 2004, 630, 1987.
- ^[135] A. Belforte, F. Calderazzo, A. Morbillo, G. Pelizzi, D. Vitali, *Inorg. Chem.* 1984, 23, 1504.
- ^[136] D. F. Shriver, *Manipulation of Air-Sensitive Compounds*, McGraw-Hill, New York, 1969.
- ^[137] D. Perrin, W. Amarego, P. Perrin: *Purrification of laboratory chemicals*, 2te Ed., Pergamon Press, New York, **1981**.
- ^[138] D. H. Harris, M. F. Lappert, J. Chem. Soc., Chem. Commun. 1974, 895.
- ^[139] M. Westerhausen, Inorg. Chem. 1991, 30, 96.
- ^[140] G. Becker, D. Käshammer, O. Mundt, M. Westerhausen, W. A. Herrmann (Hrsg), *Synthetic Methods of Organometallic and Inorganic Chemistry* **1996**, *3*, 189.
- [^{141]} A) T. Kottke, D. Stalke, J. Appl. Crystallogr. 1993, 26, 615; D. Stalke, Chem. Soc. Rev. 1998, 27, 171.
- ^[142] SHELXTL Plus, Siemens Analytical X-Ray Instruments, Inc., 1989.
- [143] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna: SIR-97: a new tool for crystal structuredetermination and refinement *J. Appl. Crystallogr.* 1999, *32*, 115.
- ^[144] G. M. Sheldrick.SHELXS-97. University of Göttingen, Germany, 1997.
- ^[145] G. M. Sheldrick, SHELXL-93, Universität Goettingen, 1993.
- ^[146] G. M. Sheldrick SHELXL-97, Universität Göttingen, 1997.
- ^[147] D. T. Cromer, J. B. Mann, Acta Crystallogr. **1968**, 24, 321.
- ^[148] R. F. Stewart, E. R. Davidson, W. T. Simpson, J. Chem. Phys. 1965, 42, 3175.
- ^[149] T. Hahn (Ed.), *International Tables for Crystallography*, Vol. A, Space Group Symmetry, 2nd Ed., D. Reidel, Dordrecht, 1984.
- ^[150] Resview-Programmsystem, H. Schwenk-Kircher, Universität München 1997.
- ^[151] Programmsystem *Diamond 2.1c*, Crystal Impact GmR, Author Klaus Brandenburg, **1996/1999**.
- ^[152] Die kristallographische Daten für die Strukturen sind im Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, U. K. [Fax: +44-1223-336033; e-mail: deposit @ccdc.cam.ac.uk; www: http://www.ccdc.cam/ac.uk] kostenlos unter Angabe der Hinterlegungsnummer anzufordern.