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GENERAL INTRODUCTION 

 
 
Reproduction is the result of male and female interaction. Although both sexes have to 

cooperate to pass on their genes to next generations and to increase their share of a 

species’ gene pool, they differ in strategies to optimize their reproductive output. 

Traditionally conflict between the sexes has been viewed to arise because males produce 

many small gametes (sperm) whereas females produce few large gametes (eggs) 

(Andersson 1994). Theoretically males can repeatedly mate with many females while 

females are limited in their opportunities to reproduce and their fitness can be 

significantly lowered by inappropriate matings (Trivers 1972). Because commonly 

females are the sex, which bears the greater cost of reproduction and reproductive error, 

they represent the limiting factor for reproduction. Therefore male-male competition over 

access to females (intrasexual selection) and female choice (intersexual selection) 

originates (Andersson 1994). 

Sexual selection defined by Darwin (1871) as “selection that arises from 

differences in mating success” at first has been seen to occur exclusively “before parents 

unite” (Darwin 1871) and subsequent studies maintained this precopulatory emphasis 

(Andersson 1994). In a pioneering paper Parker (1970) called attention to the fact that 

male contest over reproduction may continue after insemination. In promiscuous species 

males compete via their ejaculates for fertilization of a given set of ova, a phenomenon 

described as ‘sperm competition’. Postcopulatory male-male competition has 

subsequently been observed to ubiquitously occur from plants to mammals (Birkhead and 

Møller 1998).  

It took nearly 25 more years until also the idea of cryptic female choice extended 

the possibility of female choice past initiation of copulation (Eberhard 1996). Female 

controlled processes and structures enable females to selectively influence paternity of 

males with particular traits even after insemination. In particular the potential female 

ability to select sperm within her reproductive tract in order to increase her fitness 

became a focus of scientific discussion (Birkhead 1998; Birkhead 2000; Eberhard 2000; 

Kempenaers et al. 2000; Pitnick and Brown 2000). However, so far the evidence for its 
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existence is ambiguous (e.g. insects: Wilson et al. 1997, Clark et al. 1999, Stockley 1999, 

Mack et al. 2002, Nilsson et al. 2003, Bretman et al. 2004; fish: Evans et al. 2003, 

Pilastro et al. 2004; lizards: Olsson et al. 1996; birds: Birkhead et al. 2004; but see 

Stockley 1997, Birkhead et al. 1999, Cunningham and Cheng 1999).  

An extreme case of sexual conflict in the narrow sense (enhancement of 

reproductive success of one sex at the expense of fitness of the other sex (Parker 1979)) 

may occur in species where males are able to force females to copulate. This behavior is 

found in a variety of species (primates: Smuts and Smuts 1993; birds: McKinney et al. 

1983; reptiles: Olsson 1995; fish: Farr 1980; insects: Thornhill 1980). Despite extreme 

behavioral resistance, females often appear to have no control over their copulatory 

partners. Cryptic female choice may than be a mechanism, which evolved to circumvent 

precopulatory male manipulation and to assure female reproductive optimum.  

This thesis investigates male and female influences on paternity and focuses on 

evaluation of cryptic female sperm selection as a mechanism shaping male reproductive 

success. For this purpose we chose wild mallards, Anas platyrhynchos. In this duck 

species forced copulations represent a major component of the mating system (McKinney 

et al. 1978; McKinney et al. 1983), although mallards form socially monogamous pair 

bonds in autumn (Cramp 1977). Females show strong preferences for their social partner 

(Cunningham 2003) and offspring viability as well as mother productivity is significantly 

reduced when females are paired with non-preferred males (Bluhm and Gowaty 2004). 

However the possession of an intromittent organ facilitates forced copulations by extra-

pair males (McKinney and Evarts 1997), which are always heavily resisted by the female 

(McKinney and Evarts 1997; Cunningham 2003). Nonetheless these extra-pair 

copulations can result in fertilization (Burns et al. 1980; Evarts and Williams 1987). 

 

The main aims of this thesis were to investigate 

1. Evidence for cryptic female choice in wild mallard populations  

We examine levels of extra-pair paternity in wild mallard populations and 

compared it to reported frequencies of extra-pair copulations. (Chapter One) 

2. Relative importance of cryptic female sperm selection and sperm competition in 

determining male fertilization success  
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By inseminating groups of related females with a sperm mixture containing equal 

number of sperm from one brother and from one unrelated male in combination 

with measurement of sperm quality, we compare postcopulatory male and female 

influences on paternity. (Chapter Two) 

3. Potential mechanism of female influence on sperm competition 

Sperm swimming speed is an important determinant in sperm competition. We 

look at differential female influence on this male trait. (Chapter Three) 

 

Further aspects of male and female reproductive decisions were investigated during this 

study.  

Male side to reproduction: 

1. Extra-pair paternity 

Forced extra-pair copulations are well-documented in waterfowl. We report on 

the extra-pair fertilization success of this male reproductive strategy in wild 

mallard populations. (Chapter One) 

2. Trading copulation frequency against ejaculate quality 

Production of ejaculates is a timely and costly process. We examine the costs of 

frequent copulations in terms of reduced competitiveness of single ejaculates. 

(Chapter Four) 

3. Testosterone and testis size 

Testis size is correlated with sperm production in many species. We investigate if 

it is also related to production of the sex steroid testosterone, which is an 

important factor governing female mate choice and male reproductive behavior in 

mallards. (Chapter Five) 

 

Female side to reproduction: 

1. Manipulation of primary sex ratios 

If each sex provides different fitness benefits, gender of offspring will be an 

important determinant of female reproductive success. We determine primary sex 

ratios in wild mallards in general and in consecutive nesting attempts. (Chapter 

One) 
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2. Brood parasitism 

By laying eggs in foreign nests ducks can significantly increase their reproductive 

output. We quantify levels of brood parasitism in two wild mallard populations 

and relate it to nesting density as a potential constraining factor of egg dumping. 

(Chapter One) 

 

Finally the appendix provides technical information on the microsatellites used for 

paternity and maternity assessment in this study.  
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CHAPTER ONE 

 

GENETIC ANALYSIS OF SEX RATIOS, BROOD PARASITISM AND EXTRA-

PAIR PATERNITY IN MALLARDS (ANAS PLATYRHYNCHOS L.) 

 
Angelika G. Denk & Bart Kempenaers 

 

 

ABSTRACT 

Mallards, Anas platyrhynchos, are among the most common waterfowl species in the 

Northern Hemisphere. Despite their abundance and despite growing interest of behavioral 

ecologists and evolutionary biologists in key aspects of their behavior, few studies have 

used genetic tools to investigate their mating system. We studied the breeding biology of 

mallards by examining 41 clutches from two areas that differ in breeding density. We 

focus on three aspects of mallard reproductive behavior. First, adult sex ratios in mallards 

are often reported to be male-biased. In our population, the proportion of males observed 

during autumn and winter counts varied between 59% and 67%. Here we show that this 

bias is already present in the primary sex ratio: on average 60% of eggs in a clutch are 

males. Second, intra-specific brood parasitism is observed in many duck species. We 

found egg dumping in 53% of mallard clutches in a high breeding density area, whereas 

brood parasitism was entirely absent in an area with low breeding density. Third, 

although mallards are socially monogamous, forced extra-pair copulations are frequently 

observed. Using microsatellites, we estimate that a minimum of 56% of broods contained 

at least one extra-pair young. Overall, at least 14% of fertilized eggs were sired by an 

extra-pair male. Breeding density did not influence the proportion of broods with extra-

pair paternity. However, broods from the high density area contained significantly more 

extra-pair young than broods from the low density area.  
 

                                                 
  submitted to AUK, 17 November 2004 
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INTRODUCTION 

Sexual selection is an important evolutionary agent shaping morphology, mating 

behavior and life history (Andersson 1994). Individuals face strong selection to pursue 

reproductive strategies that ultimately increase their fitness. Waterfowl, in particular 

ducks (Anatinae), exhibit three notable features of their reproductive system, which 

should be closely linked to reproductive success: male-biased sex ratios at the population 

level, egg dumping by female ducks and forced extra-pair copulations. Here, we report on 

a study of free-living mallards (Anas platyrhynchos), one of the most common waterfowl 

species in the Northern Hemisphere (Cramp 1977). We use molecular tools to investigate 

primary sex ratios as well as the occurrence of intra-specific brood parasitism and extra-

pair paternity. The aim of our study is to provide a detailed description of the mating 

system of mallards and to discuss the adaptive value of individual reproductive decisions.  

 

Sex ratios 

Sex ratio manipulation is a classic example of an individual’ s reproductive decision that 

can be explained by evolutionary theory (Sheldon 1998). If daughters and sons provide 

different fitness benefits to their parents, selection should favor parents which produce 

the more profitable sex (Charnov 1982). A paradoxical situation arises in waterfowl 

populations, which are frequently observed to be male-biased (Bellrose et al. 1961; 

Gowaty 1993; Blums and Mednis 1996 and citations therein). Adult sex ratios of two to 

three or more males per female are recorded for canvasbacks (Aythya valisineria) and 

common pochard (Aythya ferina) (Rohwer and Anderson 1988; Oring and Sayler 1992). 

Also in mallards adult sex ratios with significant skews in favor of males are frequently 

reported, and it is unlikely that this can be attributed to pure sampling errors (see Fig. 1).  
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Figure 1.  Population sex ratios of wild mallards. Data (filled symbols) are obtained 

from field observations reported in (Bellrose et al. 1961; Humburg et al. 1978 

and Ferguson et al. 1981); filled circles: all data; filled squares: data restricted 

to counts in March and April; counts obtained from trapping and hunting are 

excluded due to potential bias). Open symbols show adult sex ratios observed 

in this study at Lake Starnberg and Lake Ammer (circles: October count; 

squares: January count). The triangle indicates the primary sex ratio (this 

study). The dotted line indicates the null hypothesis of parity; curved, long-

dashed lines display binomial significance levels (p=0.05, two-tailed; as 

described in Palmer (2000)). The medium-dashed line represents the mean of 

the observed adult sex ratios. 

 

This bias is particularly puzzling because many waterfowl species, including mallards, 

form socially monogamous pairs (Cramp 1977). Although alternative reproductive 

behaviors such as forced extra-pair copulations exist, observations suggest that this 

behavior is not predominantly pursued by unpaired males (Goodburn 1984; Davis 2002a; 
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Cunningham 2003). Therefore it can be assumed that unpaired males suffer reduced 

reproductive success and an overproduction of males seems to be maladaptive.  

A first step in understanding the paradox of unbalanced population sex ratios in 

species with a monogamous mating system, is to locate the origin of the bias. The 

observed bias in adult sex ratios can be caused by skewed brood (primary) sex ratios, sex-

dependent hatching success or sex-differential mortality after hatching (Bellrose et al. 

1961). Differential parental investment during rearing presumably plays only a tangential 

role in species with precocial young. So far, no information about the primary brood sex 

ratio from free-living duck populations is available. Only a few studies examined sex 

ratios in various duck species at hatching, but they failed to detect a deviation from 

50:50. However, in most of these studies clutches were artificially incubated, hatched in 

an incubator (Sowls 1955; Mendall 1958; Bellrose et al. 1961; Swennen et al. 1979) or 

were produced by ducks kept in captivity (Dubovsky 1990). Only (Blums and Mednis 

1996) determined the sex of newly hatched Northern shovelers (Anas clypeata), common 

pochards and tufted ducks (Aythya fuligula) in wild populations, but found no evidence of 

parental manipulation of brood sex ratios. In contrast, sex differential mortality after 

hatching reportedly affects more males (for mallards: Bellrose et al. 1961). This, in 

combination with a higher hunting pressure on males, should cause a female biased adult 

sex ratio (Bellrose et al. 1961). Thus, the origin of male-biased sex ratios in adult ducks 

remain obscure (Blums and Mednis 1996). Information on primary sex ratios is clearly 

needed to further investigate the adaptive value of male-biased sex ratios in waterfowl. In 

the present study we investigate whether the male-biased sex ratio observed in adult 

populations is already caused by a bias in the primary brood sex ratio. 

 

Brood parasitism 

Intraspecific brood parasitism or egg dumping is a common phenomenon in waterfowl 

(Yom-Tov 1980; Rohwer and Freeman 1989; Sayler 1992; Yom-Tov 2001). Females can 

substantially increase their reproductive output by parasitizing conspecific nests (Ahlund 

and Andersson 2001), often at negligible fitness costs to the host (Dugger and Blums 

2001; Blums and Clark 2004). Hosts may even benefits from egg dumping via increased 

offspring survival (Eadie and Lumsden 1985), or through increased inclusive fitness if 
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host and parasite are related (Andersson 2001). Clear fitness benefits for parasites in 

combination with low costs for hosts raise the question why this behavior is not more 

common and why females differ in their reproductive tactic. There is evidence that tactics 

are flexible and might change between years (Ahlund and Andersson 2001 and citations 

therein). Additionally, females might be constrained by the availability and detectability 

of nests to parasitize. Therefore the frequency of brood parasitism should be positively 

related to nesting density (Yom-Tov 2001).  

Despite abundant studies on brood parasitism in waterfowl (Rohwer and Freeman 

1989; Sayler 1992; Yom-Tov 2001) data on the frequency of egg dumping based on 

genetic markers are still scarce. Most studies are based on indirect assessment of brood 

parasitism, e.g. comparing egg size, shape and color, checking number of eggs in a nest 

and egg laying frequency, or on direct behavioral observations (e.g. Dugger and Blums 

2001; for mallards: Bengtson 1972; Titman and Lowther 1975). These methods might 

underestimate the frequency of brood parasitism. Molecular methods are essential to 

precisely assess levels of brood parasitism and its adaptive significance. Here, we 

compare the frequency of brood parasitism in two mallard populations that differ in 

breeding density. 

 

Extra-pair paternity 

The use of molecular tools revealed that extra-pair paternity occurs in nearly 90% of 

approximately 130 examined bird species (Griffith et al. 2002), but only few estimates of 

extra-pair paternity exist for waterfowl (Anserinae: Choudhury et al. 1993; Dunn et al. 

1999; Kraaijeveld et al. 2004; Larsson et al. 1995; Anatinae: Evarts and Williams 1987; 

Triggs et al. 1991; Peters et al. 2003). The percentage of waterfowl broods containing 

extra-pair young ranges from 0% in barnacle goose (Branta leucopsis; Choudhury et al. 

1993; Larsson et al. 1995) and blue duck (Hymenolaimus malocorhynchos; Triggs et al. 

1991) to 40% in black swan (Cygnus atratus; Kraaijeveld et al. 2004) and at least 48% in 

mallards (Evarts and Williams 1987).  

Forced extra-pair copulations are well-documented in waterfowl (reviewed by 

McKinney and Evarts 1998; McKinney et al. 1983). However, it remains largely 

unknown whether forced extra-pair copulations result in fertilizations and whether this 
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male behavior is a successful alternative reproductive strategy. Dunn et al. (1999) found 

that despite high percentages of extra-pair copulations (46-56 % of all attempted 

copulations) extra-pair paternity was low in Ross’  (Chen rossi) and lesser snow geese 

(Chen caerulescens) (only 2-5% of young). Potential female strategies (e.g. sperm 

ejection, cryptic sperm selection) or defenses by the social mate (e.g. forced within pair 

copulations) may counteract forced extra-pair-copulations. To assess the adaptive 

relevance of these strategies more data on extra-pair fertilization success in wild 

populations are necessary. Here we estimate the frequency of extra-pair paternity in 

mallard populations, relate it to breeding density and compare it to other studies on this 

species. 

 

 

MATERIAL AND METHODS 

Study site and nest detection 

From April-June 2001 we searched for mallard nests at Lake Starnberg (47º54’ N, 

11º18’ E) and Lake Ammer (48º00’ N, 11º08’ E), Southern Germany. At Lake Starnberg 

we focused on the Island of Roses (24 ha), a favorite waterfowl breeding ground with 

high nesting densities (mean inter-nest distance 69 m). At lake Ammer we searched along 

the shore, where the density of mallard nests was low (mean inter-nest distance 1167m).  

To increase the chances of finding nests and to facilitate capture of the female we 

distributed 40 wooden nest-boxes (dimensions: 50 cm x 30 cm x 30 cm) along the shores. 

The front side of the box could move up and down along two metal rails. The front was 

opened about two-thirds and prevented from falling down using a wooden pin. We 

attached a rope (6 m) to the pin, which enabled us to close the nest-box from a distance 

and capture the female on the nest. We established the nest-boxes on wooden artificial 

islands (1m x 1m) and on protected spots on land close to the waterline (e.g. on piers of 

boathouses). Six nest-boxes were accepted by mallards and used for breeding. Other nests 

were found by observing female and male behavior, by walking along potential breeding 

grounds and by hints from private people (e.g. two duck nests were found in the loft of an 

inhabited house).  
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Each discovered nest was visited every second day until the female started 

incubation and all eggs were warm. After the (assumed) onset of incubation or when an 

incubated nest was discovered, all eggs were collected under license and egg length and 

width were measured with a caliper; egg volume was calculated following Hoyt (1979). 

Eggs were checked for signs of a developing embryo by candling with an ORBAN 

candling lamp (Tempo Nr. 119). If a developing embryonic disc was visible, the egg was 

put in a –20ºC freezer for an hour, and then opened. If development was not recognizable 

beyond doubt, eggs were incubated for three more days in a computer-assisted motor-

incubator (SV250, J. Hemel Brutgeräte, Verl-Kaunitz, Germany) before opening. All 

embryos were stored in 70% ethanol until DNA extraction. Age of the embryos was 

estimated (Freeman and Vince 1974) and the onset of laying was estimated under the 

assumption that one egg was laid per day.  

Incubating mallards cushion the nest bowl with their own down feathers (Cramp 

1977). To establish maternity, we collected down feathers from each nest and stored them 

in 70% ethanol until DNA extraction. 

From each female FDXJKW�RQ�WKH�QHVW��1 ����ZH�WRRN�D�EORRG�VDPSOH������ O��DQG�
we measured bill length (from tip of the bill to the start of the feathers) and tarsus length 

using calipers and foot size using a ruler. All measurements were taken to the nearest 

millimeter. Blood samples were diluted in Queen’ s lysis buffer [0.01 M Tris, 0.01 M 

NaCl, 0.01 M Na-EDTA, 1% n-Lauroylsarcosine; adjusted to pH 8.0]. We marked 

females individually with a combination of two colored plastic bands (A.C. Hughes Ltd, 

Hampton Hill, UK), and attached a radio-transmitter (TW-4 single button celled tag, 

Biotrack Ltd, Wareham, UK) to the base of the tail feathers using two cable ties and a 

drop of superglue (Loctite gel, Henkel, Germany) (Giroux et al. 1990). Two ducks lost 

the transmitter before they initiated a second clutch, but they could be identified by their 

plastic bands. One female disappeared from the study area. The other six females were 

relocated using radio-tracking (receiver: TRX1000S; three-element-yagi-antenna; 

Wildlife Materials Inc., USA).  

Four out of eight females were found on a second nest and two females produced 

a third clutch (all collected). Two nests from which only feathers were collected belonged 

to the same female (based on the microsatellite analysis, see below). In spring 2002, 
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another first and replacement clutch from a new individually marked female were 

collected and included in this study. Thus, a total of eight replacement clutches from six 

different females were analyzed. 

 

DNA extraction and preparation 

We used DNeasy® Tissue Kit (Quiagen) to extract genomic DNA from embryos and 

from the basal part of the feather’ s calamus, following the manufacturer’ s protocol. We 

extracted genomic DNA from blood samples using GFXTM Genomic Blood DNA 

Purification Kit (Amersham Pharmacia Biotech Inc., USA) also according to the 

manufacturer’ s protocol. :H�IROORZHG�D�VWDQGDUG�3&5�SURWRFRO���� O�UHDFWLRQ��XVLQJ�� O�
JHQRPLF�'1$����� P�G173������ O�RI�D����%RYLQH�6HUXP�$OEXPHQ������P0�0J&O���
10 mM 10x Mg-free buffer (Promega) and 0.25 U of Taq DNA polymerase (Promega).  

 

Sex determination and parentage analysis 

To determine the sex of the embryo we used the P2/P8 sexing primers described by 

(Griffiths et al. 1998). In the PCR profile, an annealing temperature of 48°C was used in 

25 amplification cycles. DNA of a female duck was successfully used in each PCR as a 

positive control. To further test for the reliability of the sexing primers in mallards we 

sexed 19 adult ducks of known sex (ten males, nine females). Molecular assignment was 

identical to the morphological evidence in all cases.  

For assessment of maternity and paternity we used seven polymorphic 

microsatellite markers developed for wild mallards (Denk et al. 2004). The annealing 

temperature was set at 60°C and the number of amplification cycles varied between 30 

(embryonic DNA / DNA from blood) and 35 (feather DNA). Loci, which showed a 

mismatch to the maternal genotype (see below), were rerun to prevent erroneous maternal 

exclusion. Mismatching alleles were only accepted after two runs yielded identical 

results. All amplified fragments were resolved on an ABI Prism 310 Genetic Analyzer 

(Applied Biosystems).  

Genotypes obtained from the blood of incubating females caught on the nest were 

all identical to the genotypes of feathers collected from the same nest (N=9). Thus, we 
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further assumed that feathers collected in the nest bowl stem from the incubating female 

and can be used for maternity assessment.  

To evaluate maternity we compared the genotypes of all eggs from a nest with 

those of the putative mother. Embryos that showed mismatches at more than one locus 

(range: 2-7) were considered the result of brood parasitism. In 2.3% of eggs (N=8), there 

was only one mismatch with the putative mother’ s genotype and these were considered 

the result of mutation. The exclusion probability of the set of seven microsatellite loci 

was high (p>0.999). 

Because we do not have information on the social mates of the females included 

in this study, we can only obtain minimum estimates of the frequency of extra-pair 

paternity, as follows. We first excluded all eggs that resulted from brood parasitism. 

Then, we considered a nest to contain extra-pair young if we found at least three paternal 

alleles at two or more loci among the remaining eggs. We further assumed that the two 

most common paternal alleles stemmed from the social partner. If an egg differed at two 

or more loci from the most common paternal alleles, we considered it an extra-pair 

young. In five nests the variability of alleles was too high to construct a hypothetical 

father. These clutches were included to determine the frequency of broods with extra-pair 

paternity, but were excluded from all analyses on the frequency of extra-pair paternity 

within broods.  

In total we collected 44 mallard clutches. Three nests were excluded from further 

analyses, because the genotypes of all eggs differed from those of the feather collected at 

that nest. Although it is not impossible that 100% of eggs were dumped (see results), we 

assumed that in these cases the feather did not belong to the incubating female. The 

remaining 41 clutches contained a total of 365 eggs, of which 350 (96 %) contained an 

embryo. There was no seasonal pattern in the occurrence of clutches with eggs that failed 

WR�GHYHORS��ORJLVWLF�UHJUHVVLRQ�� 2=0.35, df=1, p=0.55).  

 

Adult sex ratios 

To estimate the adult sex ratio in the mallard populations at Lake Starnberg and Lake 

Ammer, we counted adult female and male mallards once in autumn 2001 (on the 12th, 

resp. the 10th of October) and once in the following winter 2002 (on the 2nd , resp. the 3rd 
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of January). Ducks were counted from 28 observation spots at Lake Starnberg and from 

21 spots at Lake Ammer using a KOWA TSN-1 telescope (20x magnification, wide angle 

lens). We counted ducks on the water as well as those resting on land.  

To assess the impact of hunting on sex-differential mortality, we sent out 

questionnaires to all registered hunters at both lakes, but only obtained data from the 

southern half of Lake Starnberg.  

 

Statistical Analyses 

We tested the deviation of the primary sex ratio from parity using a one-sample t-test. 

The unit of analysis is the clutch, which is defined as all the eggs sired by the incubating 

female. Only the first clutch found per female was used and all clutches with more than 

two eggs were included in the analysis. Binomial tests were used to test the deviation of 

adult sex ratios from 50:50. 

In analyses with sex ratios of individual broods as dependent variable, we used 

generalized linear models (GLM) to account for the binomial structure of the data. We 

specified binomial errors and a logit link function, with number of males per clutch as 

dependent variable and clutch size as the binomial denominator. A generalized linear 

mixed model (GLMM) was used to analyze changes in the sex ratio between first and 

replacement clutches (female identity as random factor). To test effects of maternal body 

size on sex ratio, we used the first principal component (PC1), which explains 71.3% of 

variation in bill, tarsus and foot length, as response variable in a GLM. We looked at sex-

specific differences in egg size using mixed models (REML) controlling for female 

respectively date effects.   

For all statistical analyses we used SPSS (12.0.1) or Genstat 7.1.0.198 (Genstat 

2003). All tests are two-tailed.  

 

 

RESULTS 

General breeding ecology 

The total number of eggs in the nest was lower in the high density nesting area, although 

not significantly so (Table 1). However, when excluding eggs that resulted from brood 



CHAPTER ONE 

 22

parasitism, clutch size was significantly lower in the high density area (Table 1). Because 

nests in the low density area were found earlier in the season, we restricted the dataset to 

nests collected within the same time window (N=26) and obtained the same result (Table 

1). The same trend was found when statistically controlling for the seasonal decline in 

egg numbers over the entire reproductive season (GLM; eggs per nest: laydate: F1,31=-

2.96, p=0.006, breeding density: F1,31=-0.12, p=0.91; clutch size: laydate: F1,31=-1.92, 

p=0.064, breeding density: F1,31=1.85, p=0.074). Egg volume also differed between the 

two areas, but did not decrease seasonally (Table 1; GLM: laydate: F1,31=-1.07, p=0.29, 

breeding density: F1,31=2.13, p=0.041).  

Replacement clutches (N=6) were similar sized (paired t5=-0.567, p=0.60), but 

contained larger eggs (paired t5=-7.138, p=0.001) than first clutches. This pattern was 

also found when the two second replacement clutches were included (REML; clutch size: 

Wald F1=0.01, p=0.91; egg volume: Wald F1=3.91, p=0.048).  

All egg measurements were highly repeatable within females (length: r=0.99, 

F33,194=5209.9, p<0.001; width: r=0.99, F33,194=5167.5, p<0.001; volume: r=0.84, 

F33,194=36.8, p<0.001; n0=6.4). Egg volume was independent of the sex of the egg 

(REML: Wald F1=0.59, p=0.44) and did not differ between eggs belonging to the 

incubating female and those that were dumped (paired t-test: t17=-1.491, p=0.15). 

Furthermore, assumed within-pair eggs did not differ from extra-pair eggs in volume 

(paired t-test: t16=-1.315, p=0.21). 
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 High density Low density Statistical test 

Laydate 134±25 100±19 t39=3.25, p=0.002 

Number of eggs in nesta 7.8 ± 3.9 9.7 ± 2.1 t32=-0.76, p=0.46 

Clutch sizea, b 5.8 ± 3.2 9.7 ± 2.1 t32=-2.26, p=0.031 

Number of eggs in nestc 8.8 ± 4.2 9.7 ± 2.1 t24=-0.52, p=0.61 

Clutch sizeb,c  6.5 ± 3.5 9.7 ± 2.1 t24=-2.30, p=0.032 

Mean egg volume (cm3)a 46.7 ± 4.1 53.3 ± 6.4 t32=-3.17, p=0.003 

Proportion of parasitized nests 0.53 (34) 0 (7) Fisher’ s exact p=0.026 

Proportion of broods  
with EPY 

0.59 (34) 0.43 (7) Fisher’ s exact p=0.68 

Mean proportion of EPY  
per clutch 

0.13 (31) 0.06 (5) 
GLMM  

Wald F1=6.77, p=0.009 

    
a All first breeding attempts included. 
b Number of eggs belonging to the incubating female 
c Dataset restricted to 15. March 2001-14. May 2001 

 

Table 1.  Comparison of reproductive parameters of mallards breeding at high (Island of 

Roses) and low density (Lake Ammer).         
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Sex ratios 

We determined the primary sex ratio of 30 clutches (all first nests containing more than 

two eggs laid by the incubating female). On average, 60% of eggs were males (range: 0% 

(0/5)-100% (3/3)), which was significantly different from parity (one-sample t-test: 

t29=3.28, p=0.003). In six clutches there were eggs (1-4) that did not show any sign of 

embryonic development. Excluding these nests does not change the conclusions (62% 

males in N=24 nests, t23=3.01, p=0.006). No seasonal effect on sex ratios was detected 

(GLM: F1,29=0.24, p=0.63), and the sex ratio of first and replacement clutches did not 

differ (GLMM: Wald F1=2.01, p=0.16). Sex ratio was independent of clutch size (REML: 

Wald F1=1.13, p=0.29) and mean egg volume (REML: Wald F1=0.18, p=0.68), but larger 

females produced significantly more sons in their first clutch (Fig. 2).  

 

 

 

 

Figure 2.  The relationship between female size (first principle component of bill, tarsus 

and foot length) and the brood sex ratio (GLM: F1,8=10.05, p=0.019).  
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The observed primary sex ratio corresponded with the observed adult sex ratios (Fig. 1; 

Table 2). Adult mortality caused by human impact was greater for male mallards. In the 

period between 27 October 2001 and 15 January 2002, hunters shot 42 mallards at the 

southern end of Lake Starnberg, of which 35 (83%) were males (binomial test: p<0.01).  

 

 

 Lake Starnberg Lake Ammer 

October 2001 59% (241) 67% (701) 

January 2002 59% (473) 57% (1540) 

 

Table 2.  Sex ratios (% males) of adult mallard populations at Lake Starnberg and Lake 

Ammer in autumn 2001/winter 2002. Total counts are indicated in brackets 

(number of individuals). 

 

 

Intraspecific brood parasitism 

The frequency of egg dumping was markedly different in the two areas (Table 1); no 

brood parasitic eggs were found in the low breeding density area. In the high-density area 

on average 19% of eggs in a nest were dumped (range: 0-94%; Fig. 3). The percentage of 

dumped eggs in this area did not change with laying date (Spearman rank: r=-0.041, 

N=34, p=0.82). The average sex ratio of dumped eggs per nest was 43% (range: 0-100% 

males), but did not differ from parity (one-sample t-test: t17=-0.808, p=0.43) and was not 

significantly different from the sex ratios produced by the incubating females (GLM: 

F1,51=-1.32, p=0.19).  

 



CHAPTER ONE 

 26

 
 

Figure 3.  Frequency distribution of the levels of intraspecific brood parasitism in 

mallard nests from a high density area (Island of Roses, N=34 nests). No 

brood parasitism was observed in an area with low breeding density.  

 

The number of eggs produced by the incubating female did not differ between nests with 

and without parasitic eggs (with parasitic eggs: 5.5±3.5; without parasitic eggs: 6.3±3.0; 

t32=0.399, p=0.69), suggesting (a) that parasitic females did not remove eggs before 

laying their own, and (b) that females did not lay fewer eggs in response to parasitism. 

However, two females were observed incubating clutches to which they contributed little 

(1 out of 18 and 2 out of 10 eggs). Overall, only two parasitic ducks could be identified; 

both females first dumped eggs in foreign nests before starting their own clutch.  

In two mallard nests in the high density area (Island of Roses) we detected 

interspecific brood parasitism. In each nest we found two eggs of red-crested pochard 

(Netta rufina), a species which was observed to breed on the island in close proximity to 

mallards (minimum distance observed: 5m).  
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Extra-pair paternity 

Of 41 nests examined in this study, 56% (23 nests) contained at least one extra-pair 

young (EPY). Overall, 14% of 230 young were sired by extra-pair males (range: 9% 

(1/11) - 50% (7/14; Fig. 4). The proportion of nests containing extra-pair young did not 

differ between the high and low breeding density area (Table 1). However, the average 

proportion of extra-pair paternity within broods was significantly higher in clutches from 

the high breeding density area (Table 1). The proportion of extra-pair young in a clutch 

did not change over the season (Pearson correlation: r=-0.090, N=41, p=0.60).  

 

 

 

 

Figure 4.  Frequency distribution of the proportion of extra-pair young in mallard 

clutches (high and low density areas combined; N=36 clutches). 

 

Broods with or without extra-pair young did not differ in egg volume (t32=1.136, p=0.26), 

nor in sex ratio (GLM: F1,33=0.72, p=0.40). Furthermore, the sex ratio of extra-pair 
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offspring did not differ from that of their within-pair nest mates (GLMM: Wald F1=0.21, 

p=0.65).  

  

 

DISCUSSION 

This study provides basic information on the mating system of mallards based on 

microsatellite analysis of 41 nests. The focus of this study was threefold. First, we 

examined the primary sex ratio, and showed that it is already male-biased, corresponding 

to the adult sex ratio. Second, we investigated the frequency of brood parasitism, 

comparing two areas with different breeding density. In the high density area, more than 

half of the nests contained dumped eggs, whereas parasitism was absent in the low 

density area. Third, we estimated the level of extra-pair paternity: at least 56% of nests 

contained extra-pair young. Although our data underestimate the true level of extra-pair 

paternity, this is the highest level reported in waterfowl so far. 

 

Sex ratio 

In birds the significance of adaptive sex ratio manipulation is still debated (for review see 

Hasselquist and Kempenaers 2002; Komdeur and Pen 2002) and so far the mechanisms 

of sex ratio manipulation are unknown (Hasselquist and Kempenaers 2002). At the 

individual level, evidence is accumulating that birds adaptively manipulate their offspring 

sex ratio according to various factors (e.g. female condition (Nager et al. 1999; Velando 

2002), pairing status (Westerdahl et al. 2000; Ewen et al. 2001; Green 2002), paternal 

attractiveness (Burley 1981; Ellegren et al. 1996; Svensson and Nilsson 1996; Kolliker et 

al. 1999), environmental conditions (Appleby et al. 1997; Torres and Drummond 1999), 

local recruitment (Komdeur et al. 1997; Ewen et al. 2003), hatching order (Arnold et al. 

2001; Badyaev et al. 2002) and seasonal effects (Smallwood and Smallwood 1998); but 

see (Bensch et al. 1999; Saino et al. 1999; Ramsay et al. 2003; Zann and Runciman 

2003)).  

In contrast, evidence for sex ratio bias at the population level is rare and reported 

deviations from parity seem to fall within binomial sampling variation (Palmer 2000). 

Waterfowl seem to form an exception in that male-biased sex ratios at the population 
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level are frequently reported (Bellrose et al. 1961; Gowaty 1993; Blums and Mednis 1996 

and citations therein). For mallards, Figure 1 clearly shows that the observed population 

sex ratios outrange pure binomial sampling error. However, the data shown in Figure 1 

can be misleading and should be interpreted cautiously. Male and female mallards differ 

in their migratory behavior (Perdeck and Clason 1983) and females disappear from 

population counts during incubation, which could explain the observed male-biased sex 

ratios. However, close inspection of the data suggests that the male bias is present, 

irrespective of the timing of population counts. For example, population counts during 

March-April, the time of pair arrival at the breeding grounds, also show male-biased sex 

ratios (Fig. 1). Moreover, there are no counts that show a female-biased sex ratio. 

So far, the underlying mechanism leading to an excess of adult male mallards is 

unclear. Our study suggests that the primary sex ratio is already significantly male-biased 

and closely approximates the adult sex ratios. Our result contradicts a study on domestic 

strains for commercial mule duck production (Muscovy duck (Cairina moschata) x 

Peking duck (Anas platyrhynchos)), which did not find a sex ratio bias at early stages of 

incubation and reported that the unbalanced adult sex ratio is due to sex-differential 

mortality just prior to or at hatching (Batellier et al. 2004). However, mortality estimates 

were based on developing hybrid ducklings and higher mortality of female 

embryos/young ducklings may be a consequence of intergeneric crosses rather than 

reflecting a general, natural process.  

Although our study suggests that in the wild female mallards produce more male 

than female eggs, the adaptive value of this behavior remains unclear. Mallards are 

socially monogamous and forced extra-pair copulations are pursued by mated (Goodburn 

1984) as well as unmated males (Davis 2002a; Cunningham 2003), arguing against an 

alternative reproductive strategy specific for unmated males. Therefore, the production of 

a surplus of males does not seem to be adaptive. Although adult mortality might be 

higher for males (Bellrose et al. 1961; this study), adult sex ratios remain male biased. 

More studies on mallards and other waterfowl are necessary to test the generality of a 

male-biased primary sex ratio.  

Although there was no consistent seasonal change in sex ratio, or a change from 

first to replacement clutches, female mallards significantly increased egg size in their 
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repeated breeding attempts – a pattern also observed in captive mallards (Batt and Prince 

1979). Several studies show that ducklings from larger eggs are bigger at hatching 

(mallards: Batt and Prince 1979, Rhymer 1988; other waterfowl species: Dawson and 

Clark 1996; Erikstad et al. 1998; Badzinski et al. 2002; Pelayo and Clark 2003). They 

grow faster during the first critical days and weeks (Cox et al. 1998; Erikstad et al. 1998; 

Anderson and Alisauskas 2002) and have a higher survival probability (Dawson and 

Clark 1996; Cox et al. 1998). Improved locomotion, feeding efficiency, thermoregulation 

and reduced predation risk are assumed to positively influence survival of ducklings from 

large eggs (Rhymer 1988; Dawson and Clark 1996; Cox et al. 1998; Anderson and 

Alisauskas 2002). Cunningham and Russell (2000) found that female mallards even 

increase egg size according to their partner’ s attractiveness. Similarly, female mallards 

may increase egg size in later breeding attempts to increase survival chances of later born 

offspring. 

 

Brood parasitism 

Intra-specific brood parasitism is very common among Anseriformes: it is reported in 74 

species, or 70% of species breeding in the western Palearctic and North America (Yom-

Tov 2001). It can be assumed that egg dumping will be found in more Anseriformes 

species, as they will be investigated (Sayler 1992; Yom-Tov 2001).  

Using microsatellite analysis we investigated brood parasitism in two mallard 

populations differing in breeding density. We detected a high level of egg dumping in an 

area with high nesting density (53%, Table 1), and no brood parasitism in an area where 

nests are spread out. The level of brood parasitism reported here is higher than that 

previously reported for other crowded populations of mallards, based on indirect 

maternity assessment (11-21%: Titman and Lowther 1975; Deubert et al. 1983). A study 

of an Iceland mallard population found only 1% of nests with dumped eggs (Bengtson 

1972). Although breeding density was not reported, the given information suggests that it 

was low (approx. 30 nests/year at a lake of 38 km2). Other observations of dispersed 

mallard nests suggested that levels of brood parasitism are low (1% of nests: Rohwer and 

Freeman 1989). 
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Our findings support the hypothesis that brood parasitism is more common when 

nests are crowded, like in colonies or on islands (Yom-Tov 1980; Rohwer and Freeman 

1989; Yom-Tov 2001). This could be because (a) the detectability of potential host nests 

is higher and (b) nesting sites might be limited (Sayler 1992). Accordingly in wood ducks 

Semel et al. (1988) found that brood parasitism was strongly affected by visibility and 

density of nest boxes in artificial nesting structures. 

Our data suggest that mallards did not simply dump eggs in nests of their 

neighbors. In only two out of 18 nests we were able to identify the parasitic female, 

which later nested on the same island. This indicates that parasitic females either did not 

nest at all, or nested away from the colony (island). This might be an adaptive strategy, 

because females under high breeding densities suffered a significant reduction in 

reproductive output compared to females nesting alone (compare clutch size in Table 1). 

Therefore, to optimize fitness, female mallards should nest in an area of low density and 

visit crowded nesting sites for parasitism. Further investigations are needed to compare 

reproductive success of individuals breeding in high/low density areas, and to find out 

which females are parasitic. As Ahlund and Andersson (2001) suggested tactics may 

alternate between years and different reproductive strategies might be determined by age 

and experience of a female.  

 

Extra-pair paternity 

Extra-pair paternity is widespread in birds (Griffith et al. 2002) and there is evidence in 

some species that females actively seek extra-pair copulations (e.g. Kempenaers et al. 

1992; for review see Westneat and Stewart 2003). However, in waterfowl forced extra-

pair copulations are frequently observed (McKinney et al. 1983; McKinney and Evarts 

1998). In mallards these copulations are always heavily resisted by the female 

(Cunningham 2003) despite high costs (e.g. physical injuries; McKinney and Evarts 

1998). Still little information is available on the fertilization success of these forced extra-

pair copulations in mallards or in wild waterfowl populations in general (e.g. Dunn et al. 

1999). Based on microsatellite analysis we found extra-pair young in at least 56% of 

nests, which is slightly more than estimated by Evarts and Williams (1987) using 

allozymes (48 %, N=31 nests). Although extra-pair paternity was observed both under 
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high and low breeding density, the proportion of extra-pair young was significantly 

higher in the crowded situation, a phenomenon also observed in various other bird 

species (for review see Westneat and Sherman 1997). 

A minimum of 14% of all young were sired by an extra-pair male. This is less 

than expected based on the observed frequency of forced extra-pair copulations in a wild 

population, which showed a ratio of approx. 2 within-pair copulations (1.38/day) to 1 

extra-pair copulation (0.78/day) (Cunningham 1997). Some male mallards seem to 

effectively protect females from sexual coercion (Goodburn 1984; Davis 2002b), so one 

could argue that only broods with at least one extra-pair young should be considered. In 

that case, the frequency increases to 24% extra-pair young, which is still below the 

expected level based on the overall copulation ratio. A similar pattern has been observed 

in Ross’ s and lesser snow geese, where frequent forced copulations resulted in low levels 

of extra-pair paternity (Dunn et al. 1999). To understand the reasons for the low success 

of forced copulations, further studies combining behavioral observations of mated pairs 

with molecular analyses would be useful. It also remains unknown what the costs and 

benefits are of those forced extra-pair copulations that lead to fertilizations, e.g. in terms 

of offspring fitness. 
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ABSTRACT 

Postcopulatory processes might play an important role in sexual selection. In theory, 

fertilization success could be controlled by females via selection of particular sperm 

within their reproductive tract, or it could be determined by sperm competition per se. In 

practice, these two mechanisms are difficult to disentangle. To assess the relative 

importance of both mechanisms we used artificial insemination in combination with 

measurements of sperm quality (swimming speed and motility) in mallards. In this 

species, females often lack behavioral control over copulations and hence may use 

postcopulatory mechanisms to optimize their reproductive output. One important factor 

affecting female fitness may be selection of genetically compatible males. To investigate 

the influence of sperm quality and parental relatedness on paternity we artificially 

inseminated twelve groups of related females with a sperm mixture containing equal 

numbers of sperm from a brother and from an unrelated male. Paternity was independent 

of the relatedness of the siring male to the female, but was significantly affected by long-

term sperm swimming speed and motility. No interaction between relatedness and sperm 

quality on paternity was observed. These results suggest that female mallards are not able 

to select sperm on a purely genetic basis and emphasize the importance of sperm quality 

in gaining paternity.  
 

                                                 
 accepted: Behavioral Ecology, 26 April 2005 
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INTRODUCTION 

Darwin first described sexual selection as an important evolutionary force acting through 

differential reproductive success of individuals (Darwin 1871). Traditionally, this process 

was perceived to occur exclusively precopulatory (Andersson 1994). However, as a 

consequence of female promiscuity – now known to be widespread in animals (Birkhead 

and Møller 1998) - sexual selection does not stop at insemination but continues after 

copulation (Birkhead and Pizzari 2002). Initially, research focused on male-male 

competition over fertilization (sperm competition; Parker 1970). However, in recent years 

the question of whether and to what extent females are able to bias paternity in favor of a 

particular male after having copulated with several males (postcopulatory or cryptic 

female choice; Thornhill 1983; Eberhard 1996; Pitnick and Brown 2000), received 

growing attention (e.g. Birkhead 1998; Birkhead and Pizzari 2002). In particular, the 

potential ability of females to discriminate and differentially utilize sperm of different 

males within their reproductive tract, so called sperm selection or “ sperm choice”  

(Birkhead 1998), became focus of an intense scientific debate (Birkhead 2000; Eberhard 

2000; Kempenaers et al. 2000; Pitnick and Brown 2000).  

One main potential benefit to females of cryptic sperm selection is to increase the 

genetic quality of their offspring. Females could achieve this by selecting for particular 

“ good genes”  or by selecting for a genetically more compatible genome (for review see 

Zeh and Zeh 1996; Jennions and Petrie 2000; Tregenza and Wedell 2000). At the 

interspecific level numerous studies showed that conspecific sperm have a higher 

probability of fertilizing an egg than heterospecific sperm (Dziuk 1996; Jennions and 

Petrie 2000). Similarly, sperm from a male from the same race, population, or strain often 

have a higher fertilization capacity (Markow 1997; Brown and Eady 2001). On the other 

hand, inbreeding has negative fitness consequences (reviewed in Pusey and Wolf 1996; 

Keller and Waller 2002), whereas increased individual heterozygosity has positive fitness 

consequences (e.g. Amos et al. 2001; Foerster et al. 2003). Sperm selection may thus be 

driven by the costs associated with inbreeding and outbreeding. Selection of sperm based 

on sperm genotype could be a mechanism to select the genetically most compatible 

sperm, not only after copulating with two or more conspecific males (e.g. Bretman et al. 

2004), but even within a male’ s ejaculate (Marshall et al. 2003). In the following we will 
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focus on postcopulatory female sperm selection within the female reproductive tract only 

based on sperm genotype. 

Growing support for female sperm choice based on male genotype comes mainly 

from studies on invertebrates (Bishop 1996), in particular insects (e.g. Wilson et al. 1997; 

Clark et al. 1999; Stockley 1999; Mack et al. 2002; Nilsson et al. 2003; Bretman et al. 

2004). However, much of the evidence remains suggestive rather than conclusive, 

because all studies are based on natural matings. In this situation it is not possible to 

distinguish between differential sperm numbers inseminated, differential sperm uptake 

during copulation and sperm selection within the female reproductive tract after 

copulation (e.g. Mack et al. 2002, Nilsson et al. 2003, Bretman et al. 2004).  

In vertebrates, the evidence for female sperm selection based on the genotype of 

conspecific sperm is also inconclusive. Two studies in the guppy (Poecilia reticulata) 

showed directional postcopulatory sexual selection for more colourful males (Evans et al. 

2003; Pilastro et al. 2004). However, superior fertilization success of more colorful males 

can be the result of such males transferring ejaculates of superior quality (Evans et al. 

2003), and/or females accepting more sperm from more colorful males (Pilastro et al. 

2004). Whether there is further sperm selection within the female reproductive tract 

cannot be confirmed nor rejected by these studies. A similar problem applies to studies 

on sand lizards Lacerta agilis (Olsson et al. 1996; Olsson et al. 1997; Olsson et al. 2004), 

which show that genetic relatedness explains a significant part of the variation in 

fertilization success under sperm competition. However, this effect can also be attributed 

to unrelated males transferring more sperm, respectively females accepting more sperm 

from unrelated males. An experimental study in the domestic fowl (Gallus gallus 

domesticus) found that paternity success varied across females, which were inseminated 

with equal numbers of sperm from two males (Birkhead et al. 2004). It remained unclear 

whether this is the result of cryptic sperm selection or early embryo mortality. Recently 

Pizzari et al. (2004) demonstrated that female red junglefowl (Gallus gallus) retained 

fewer sperm following natural inseminations by brothers, despite the fact that in a second 

experiment male fowl were found to inseminate even more sperm into sisters than into 

unrelated females. Again it remains unclear whether females differentially ejected sperm 

or whether sperm selection took place within the female reproductive tract. Support for 
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sperm selection at the level of the egg stems from an in-vitro fertilization experiment with 

mice (Rülicke et al. 1998). This study observed non-random fertilization with respect to 

MHC haplotype. Although there is some further evidence of selective immunological 

reactions against sperm inside the mammalian reproductive tract (Cohen and Werrett 

1975; Dondero et al. 1978; review in Zeh and Zeh 1997), several other studies failed to 

detect any effect of female sperm selection (common shrew: Stockley 1997; mallard: 

Cunningham and Cheng 1999; domestic fowl: Birkhead et al. 1999).  

The above suggests that the mixed evidence for cryptic sperm selection might 

partly stem from the difficulties to disentangle female-mediated effects on the outcome of 

paternity from biases caused by sperm competition (Birkhead 1998; Birkhead 2000; 

Eberhard 2000; Kempenaers et al. 2000; Pitnick and Brown 2000). Sperm competition 

and cryptic female choice are two processes that occur simultaneously. When a female 

copulates with several males, sperm from these males will compete inside the female’ s 

reproductive tract to fertilize her ova (Parker 1970). Thus, any observed bias in paternity 

may be purely male-mediated due to differences in the amount of transferred sperm 

(Cook and Wedell 1996), variation in sperm quality (e.g. mobility, Birkhead et al. 1999) 

or size (Radwan 1996), or mating order (Birkhead and Parker 1997). To clearly 

demonstrate female sperm selection within the female reproductive tract it is essential to 

control for these effects. Earlier studies based on natural matings did not control for the 

numbers of transferred sperm (e.g. Olsson et al. 1996; Stockley 1997; Wilson et al. 1997; 

Clark et al. 1999; Mack et al. 2002; Nilsson et al. 2003) or did so only in indirect ways 

via male size and age (Stockley 1999), or via the presence of a spermatophore (Bretman 

et al. 2004). No information about individual male sperm quality was available in any of 

these studies.  

 We studied the relative importance of cryptic female choice and sperm 

competition in mallards (Anas platyrhynchos). Species like mallards are of particular 

interest for such studies, because females frequently lack behavioral (precopulatory) 

mechanisms to control the transfer of sperm. Mallards form socially monogamous pairs 

in autumn and it is assumed that females base their mate choice predominantly on 

indirect (genetic) benefits since drakes do not provide obvious direct benefits such as 

territories or help with brood care (Cunningham 1997). Although female mallards show 
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strong preference for their social partner (Bluhm and Gowaty 2004) and apparently do 

not incite, but strongly resist extra-pair copulations (Cunningham 2003), they commonly 

suffer from coerced copulations by other males (Cunningham 1997; Davis 2002). 

However, copulations with nonpreferred males lead to significant fitness reduction for 

female mallards (decreased offspring viability and mother productivity, Bluhm and 

Gowaty 2004). Unlike most bird species, drakes possess a penis-like intromittent organ, 

which allows males to deposit the ejaculate deep inside the female’ s reproductive tract. 

This should further reduce female behavioral control, because sperm ejection (Pizzari and 

Birkhead 2000) might be less likely. Therefore ducks might have evolved other 

postcopulatory mechanisms to assure fertilization by the preferred male.  

In a previous study of sperm selection in mallards, Cunningham and Cheng 

(1999) artificially inseminated ducks with a mixture of sperm from males of two different 

genotypes (white plumage and wild type). This study failed to detect consistent sperm use 

between inseminations and therefore dismissed cryptic sperm selection by female 

mallards purely based on genotype. However, in Cunningham and Cheng’ s (1999) study, 

sperm of eight different males per genotype was pooled for insemination and therefore 

females were inseminated with a mixture of sperm from 16 different males. No 

information on the representation of each single male in the insemination mixture or 

about sperm quality was available. Because both sperm density (numbers per unit of 

ejaculate volume) and quality can vary dramatically between ejaculates in this species (C. 

Stunden, pers. comm. 2001; this study), variation in composition and quality of the used 

sperm mixture might have obscured effects of female sperm choice.  

The aim of our study was to investigate the relative importance of sperm 

characteristics and cryptic female sperm selection in determining paternity. Here we 

present the results of an experiment where female mallards were artificially inseminated 

with a sperm mixture containing equal sperm numbers from one brother and from one 

unrelated male. This method allowed us to rule out effects of mating order, to control for 

the number of transferred sperm, and to measure the quality of the sperm from each male. 

We used sperm from a brother and an unrelated male, because matings between siblings 

represent an extreme case of inbreeding and reduction in heterozygosity. If mechanisms 
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to avoid inbreeding or to increase offspring heterozygosity have evolved, we expected 

them to become apparent in such an extreme case.  

Our experimental procedure allows us to make the following predictions. (1) If 

fertilization success is solely based on the number of transferred sperm, and neither 

sperm quality nor cryptic female sperm choice influences the outcome, both competing 

males should gain equal amounts of paternity. (2) If sperm quality determines 

fertilization success, the male with the highest sperm quality should gain most paternity, 

independent of his relatedness to the female. (3) If sperm selection enables female 

mallards to discriminate against sperm of closely related males in order to avoid negative 

effects of inbreeding, the unrelated male should gain most paternity. 

 

 

MATERIAL AND METHODS 

Animals  

To establish families of known relatedness, nine pairs of free-living mallards were caught 

in March 2000 at different locations around two lakes (‘Starnberger See’  

47º54’ N/11º18’ E and ‘Ammersee’  48º00’ N/11º08’ E) in Southern Germany. Pairs were 

kept in separate aviaries and allowed to breed for three months. All first and second 

clutches were collected and artificially incubated. Because only five pairs produced large 

enough families for our purposes (at least four females and one male), four more 

experimental groups were raised in 2001 from mallards of the smaller families and 

unrelated wild-caught ducks. Parentage of all ducklings was confirmed by microsatellite 

analysis (see below).  

Ducks were kept in two 10 x 6 m outdoor aviaries with a 4 m2 concrete pond each, 

and three outdoor aviaries (15 x 9, 15 x 9 and 15 x 11 m) situated at the shore of a small 

lake with two thirds of the aviaries’  area covered by lake water. During the experiments, 

the three large aviaries were divided to create a total of seven separate compartments. We 

provided the birds daily with commercial duck food (Anseres 3, Kasper Faunafood, 

Woerden, Netherlands) mixed with wheat, except during the breeding season, when we 

provided special breeding pellets (Anseres 4, Kasper Faunafood, Woerden, Netherlands). 

The birds received fresh lettuce at least three times a week. 
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Experimental Design 

We used a sperm mixture containing equal numbers of sperm from two unrelated males 

(sperm donors) to artificially inseminate four sisters of each male, that is, at each 

insemination eight females were inseminated with the same sperm mixture. We 

conducted the experiments with 12 groups of four sisters, from a total of nine genetically 

unrelated families. In total we had six different male pairings whereby three males were 

used twice in two different combinations. We performed repeated inseminations using the 

same individuals (sisters and male pairs) in identical combinations throughout the study.  

Between April and June 2002 sperm collection and inseminations took place once 

a week and inseminations were conducted when viable sperm of both males could be 

collected (at least 30% of sperm cells motile after sperm collection). In total we 

performed 224 inseminations on the 48 individual females, over a period of eight weeks 

(4.7 inseminations per female, range: 3-7; se ± 0.7). For practical reasons inseminations 

were conducted for all females on the same dates and could not be matched with 

individual egg-laying cycles.  

During the experiments females were kept isolated from males. Because aviary 

space was limited and ducks could not be housed individually we kept females in groups 

of four sisters. We kept these groups either separately or together with another, 

genetically distinct family, which was not inseminated by the same pair of males, or 

together with ducks which were not inseminated at all (16 ducks for potential 

replacement). We provided each aviary with (number of ducks + 2) nesting boxes and 

with nesting material (straw). 

 

Semen Collection and Artificial Insemination (AI) 

Sperm donors were kept isolated in small aviaries (2.4-6.1 m2, including a water tub) 

together with one female from the end of January 2002 onwards. From February until 

early June males were exposed to the sperm collection procedure (see below) at least 

once a week. To prevent copulation shortly before sperm collection the female partners 

were removed the day before each collection and returned afterwards. To increase sperm 

quality and quantity females were removed completely from the end of April onwards 

and the males were kept singly. On the evening before the day of sperm collection, food 
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was removed from the aviaries to minimize fecal contamination of ejaculates. Food was 

replaced immediately after sperm collection. 

Sperm were obtained following the massage procedure described in Lake and 

Stewart (1978). We modified this method in so far that we collected the ejaculate directly 

in a 1 ml syringe (no needle) placed at the base of the intromittent organ, where the 

ejaculate emerges before running along an open drain to the tip of the intromittent organ. 

Sperm samples of the pair of sperm donors were always taken within 30 min (maximum) 

and were inseminated within 1 hr after collection. On average we obtained an ejaculate 

size of 12.7*107 spermatozoa (range: 3.6*107-47*107; se ± 1.9*107; ejaculate volume: 50-

200 µl), which is comparable to ejaculate sizes collected by the massage procedure in 

other studies of mallards (between 5.3*107 and 10.6*107 spermatozoa in yearling and 

adult drakes respectively; Stunden et al. 1998). To prevent sperm dehydration and to 

facilitate insemination of accurate volumes (and hence sperm numbers) we used Ringer-

Lactate as sperm extender, which is suggested as avian sperm diluent by Smyth (1968) 

and has shown to effectively preserve mallard sperm motility over several hours 

(Humphrey 1972; pers. observation). Immediately after collection, the ejaculate was 

diluted circa 1:3 with Ringer-Lactate solution (Ringer-Lactat after Hartmann, Z.Nr. 1-

19.566, Mayrhofer Pharmazeutika GmbH, 4020 Linz, Austria) and this suspension was 

used in further procedures.  

The concentration of sperm in the sperm suspension was determined in three 

counts of two dilutions in an improved Neubauer counting chamber (repeatability of 

counts within ejaculates: r=0.925, n0=6, p<0.001, N=56 ejaculates; Lessells and Boag 

1987). Immediately prior to insemination we mixed the sperm suspensions so that one 

insemination volume contained equal numbers of spermatozoa from the two males. The 

required volume of each sperm suspension was taken using a pipette (with a 1 ml tip, cut 

to widen the opening) and the mixture was gently vortexed. Ducks were inseminated with 

the maximum number of sperm available per male combination, on average 3.18*107 

sperm (range: 3*106 – 1.2*108��GLOXWHG�LQ����� O�5LQJHU-Lactate. Using an 1 ml syringe 

the sperm mixture was applied approx. 8-10 cm inside the female reproductive tract 

(Knoll 1978).  
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Sperm measurements 

Sperm quality was analyzed using a Hobson Sperm Tracker (Hobson Tracking Systems 

Ltd, Sheffield, UK). We followed the protocol described by Froman and Feltmann (2000) 

using a blood-sperm suspension to keep sperm motile in the sperm swimming chamber 

over the observation period. Blood (100µl) was obtained from a non-experimental, 

unrelated female mallard (a different female for each insemination) before sperm 

collection and was diluted in 900 µl TES (50 mM N-tris-[hydroxymethyl]methyl-2-

amino-ethanesulfonic acid; Sigma Chemical Co., St. Louis, MO, USA), pH 7.4, 

containing 128 mM NaCl and 2 mM CaCl2 (TES-buffered saline)). However we found 

that substances provided with the blood plasma were sufficient to keep sperm activity 

(proportion of motile cells, sperm swimming speed) constant and an erythrocyte layer 

was not necessary (Denk and Kempenaers MS). To avoid mechanical and visual 

interference during sperm swimming measurements, blood cells were allowed to settle at 

the bottom of an Eppendorf-tube and only the clear phase of the blood-TES-buffered 

saline suspension was used in the sperm swimming chamber. The ejaculates in Ringer-

Lactate solution (see above) were further diluted 10:1 with this blood-TES-buffered 

saline solution to a final concentration of 3 million cells per ml. 

We injected the sperm suspension in a pre-heated (38°C) MicroCell swimming 

chamber (50 µm depth; Conception Technologies, San Diego, USA). All observations on 

sperm motility were made at 38 °C. We chose this temperature slightly below avian body 

temperature to reduce effects of evaporation on sperm swimming behavior and to make 

long-term observations possible. We used a microscope with a 4 x bright-field objective 

under pseudo dark-field conditions using a Ph3 annular phase ring, and a total 

magnification of 48. The sperm were videotaped for 15 min after injection in the sperm 

swimming chamber, using a Sony SPT-M128 CE Black&White video camera and a 

Panasonic (NV-HS 900) Super VHS video recorder. For each ejaculate three replicates 

were recorded. With the ‘minimum track time’  set at 1.2 sec for individual sperm 

continuous observations (Froman and Feltmann 2000), we used the Hobson Sperm 

Tracker to measure straight-line velocity (VSL) and the number of tracks, a measure of 

the percentage of motile sperm in the final concentration of 3 Mio cells/ml, at four time 

intervals: 0-2 min, 4-6 min, 8-10 min and 12-14 min.  
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To obtain another, independent measure of sperm quality, sperm motility was also 

estimated visually as follows. Five minutes and 2 - 2 ½ h (identical times for both 

ejaculates in each pair) after dilution we placed a drop of sperm suspension (diluted as 

described above for the Hobson sperm tracker) in an improved Neubauer Counting 

chamber and kept it at 38 °C. We videotaped the sample under 25 times magnification 

(phase-contrast ring 100) using an Olympus BH-2 microscope under standard bright-field 

conditions. Per ejaculate we filmed three replicates for one minute each, using a Teli 

CCD color camera (CS5130OP) and a Panasonic (NV-HS 900) Super VHS video 

recorder. Two people independently assessed the percentage of motile sperm (0-100%, in 

steps of 10%). Values obtained by the two observers were highly repeatable (repeatability 

r=0.94, N=291 assessments, p<0.0001). This easy and reliable technique is also 

commonly used in AI for commercial breeding (e.g. Knoll 1978). 

To measure sperm length, we stored samples from each ejaculate in formaldehyde 

(10%; Roti®-Histofix, Carl Roth GmbH, Karlsruhe, Germany). A drop of this solution 

was placed on a slide and observed under an Olympus BH-2 microscope at 200x 

magnification (phase-contrast ring 40). We determined the overall length of sperm using 

the analytical imaging software Optimas 6.5 (Media Cybernetics, Silver Spring, USA). 

Three slides were made for each ejaculate and 20 sperm per slide were measured. 

Abnormal sperm (e.g. bent heads, heads without tails) were not found. 

 

Fertilization success 

Eggs were collected every second day and transferred to an incubator (computer-assisted 

motor-incubator SV250, J. Hemel Brutgeräte, Verl-Kaunitz, Germany). After three days 

of incubation, embryo development was checked by candling with an ORBAN candling 

lamp (Tempo Nr. 119). Developing eggs (embryo visible as a disc) were opened and the 

embryo was stored in 70% ethanol. Of 114 fertilized and developing eggs, three 

contained visibly dead embryos and two further embryos showed disturbed embryonic 

development (defunct blood vessels) when opened at day three. Four of these five 

unsuccessful embryos were sired by a brother of the focal female. Undeveloped eggs 

were left in the incubator for another three days and were then opened to look for signs of 

development or early embryonic death (e.g. circular contracted blood vessels); none of 
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these eggs showed such signs. Maternity of the fertilized eggs was confirmed by 

microsatellite analysis (see below) and showed that they belonged to 36 different 

females, in ‘clutches’  of up to four eggs following an AI event. This clutch size is much 

lower than a normal clutch size for mallard females because laying cycles of females 

were not matched to insemination events (that is, part of the ‘clutch’  was laid before 

insemination). 

Due to space limitations, we had to keep additional females, which were not 

inseminated, in the same aviaries with the focal females. Because ducks sometimes share 

nests or lay their eggs in other nests, undeveloped eggs could not be unambiguously 

attributed to individual females. Molecular assignment of maternity of undeveloped eggs 

on the basis of genetic markers is difficult (e.g. Arnold et al. 2003). Therefore we had to 

estimate fertilization success of our AI method as follows: first we took into account that 

ducks require AI every 4-5 days to keep producing fertile eggs (Smyth 1968; Lake and 

Stewart 1978). Thus, our estimate of fertilization success is based on all eggs laid up to 

four days after an insemination event. We also had to consider the presence of 

unfertilized eggs laid by non-focal females. Therefore fertilization success after AI was 

estimated from the total number of eggs laid in an aviary during the first four days after 

an insemination event multiplied by the proportion of ducks inseminated in an aviary. 

This gave the number of eggs, which could potentially have been fertilized (N = 294) and 

was used to estimate fertilization success. On average 48% of eggs laid after an 

insemination event were fertilized (range: 13 % - 100 %, see Figure 1). Because ducks 

laid eggs throughout the day, some inseminations took place after the period when the 

next day’ s egg could have been fertilized and our calculations may somewhat 

underestimate true fertilization success.  

Compared to fertilization success in clutches of free-living mallards (96%; pers. 

observation) this fertilization success of AI is rather low, but comparable to other AI 

studies. In mallards, fertilization success of 70 % has previously been achieved (Stunden 

et al. 1998), while Cunningham and Cheng (1997) reported complete failure of 11.4% of 

clutches. In Moscovy ducks (Cairina moschata; Knoll 1978), 66% fertilization success 

was achieved. However these studies used twice (Stunden et al. 1998), five times (Knoll 

1978) and twelve times (Cunningham and Cheng 1997) as much sperm as we did. Beside 
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effects of AI, reduced fertilization might be a result of sperm depletion in our study. In 

our experiment, females were inseminated once a week with only a fourth of a male’ s 

ejaculate, whereas free-living female mallards copulate on average twice a day 

(Cunningham 1997). Indeed, we found a positive relationship between the number of 

inseminated sperm and the percentage of fertilized eggs (Fig 1; GLMM: response variate: 

number of fertilized eggs on four days post insemination; binomial denominator: number 

of eggs produced by a group of females; explanatory variate: number of sperm 

inseminated; random factor: experimental group; Wald F=3.21, df=1, p=0.073). Thus, the 

number of sperm used in the AI might have been at the lower limit necessary for 

successful fertilization. Although it is possible that females do not select sperm to assure 

fertilization when sperm is limited, it seems unlikely that a sophisticated mechanism of 

sperm selection based on the amount of available sperm has evolved in a species where 

females are unlikely to ever be sperm restricted. Therefore, we fail to see a theoretical 

reason why the mechanism of female sperm selection would not operate with the sperm 

numbers used here. 

To verify whether females suffered from a lack of sperm we inspected the 

germinal disc of five eggs for signs of early development (Kosin 1944; Kosin 1945), 

which we failed to find. To exclude ambiguities we further examined the perivitelline 

membranes in a random sample of 20 undeveloped eggs from clutches which contained 

at least one fertilized egg, following the method described by Birkhead et al. (1994). 

Sperm were stained with the fluorescent Hoechst dye 33258. We searched for trapped 

sperm at three different spots of the perivitelline membrane (at 200x magnification), 

checking 5-10 % of the total membrane area. Previous observations on naturally fertilized 

eggs suggested that sperm are evenly distributed over the entire membrane (Wishart and 

Staines 1999). Furthermore, we counted the sperm on twelve naturally fertilized mallard 

eggs (from four broods) and found a higher sperm density on areas other than the 

blastodisc region (mean number of sperm / mm2 ± s.e.: blastodisc: 19±4.8; other region: 

32±7.7; REML analysis: response variate: number of sperm per mm2; fixed factor: 

membrane area (blastodisc or other region), Wald F=6.69, df=1, p=0.01; random factors: 

duck identity, p=0.041; egg identity nested in duck identity, p=0.23). In the present study 

no sperm cells were detected on any of the 20 experimental eggs. Because the probability 
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of fertilization is correlated with the number of sperm found on the membrane (Wishart 

and Staines 1999), our findings indeed suggest that the eggs failed to develop because of 

a lack of sperm, not because of early embryonic death.  

 

 

 

 

Figure 1.  Fertilization success in relation to the number of sperm artificially 

inseminated (Spearman rank correlation: r=0.42, p=0.028; N=28 insemination 

events of eight females each). Note the logarithmic scale. The solid line 

represents the regression line. See Methods for further details.  
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Parentage analysis 

To extract DNA from embryos we used DNeasy® Tissue Kit (Qiagen). Paternity was 

assigned by using seven polymorphic microsatellite-markers (APL 2, APL 11, APL 12, 

APL 14, APL 23, APL 26, APL 36; see Denk et al. 2004). In the nine unrelated males 

used in this study, we found six to 11 alleles per locus, leading to a combined exclusion 

probability of more than 99.98% (Jamieson and Taylor 1997). We followed a standard 

PCR SURWRFRO����� O�UHDFWLRQ��XVLQJ��� O�JHQRPLF�'1$������ P�G173������� O�RI�D����
Bovine Serum Albumen, 1.5 mM MgCl2, 10 mM 10x Mg-free buffer (Promega) and 

0.25 U of Taq DNA polymerase (Promega). In the PCR profile 60 °C was used as 

annealing temperature. Amplified fragments were resolved on an ABI Prism 310 Genetic 

Analyzer (Applied Biosystems). All offspring alleles were unequivocally assigned to one 

of the females and one of the two males used in an insemination. 

 

Statistical Analyses 

We calculated the repeatability (Lessells and Boag 1987) of measurements of sperm 

characteristics both within an ejaculate (measurement repeatability) and between 

ejaculates (seasonal repeatability, Table 1). All measurements of sperm characteristics 

made within the same ejaculate were highly repeatable (r=0.59-0.85, all p<0.001), 

suggesting that our methods were reliable and measurement error was low.  
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 Seasonal repeatability 

Sperm characteristics Statistic r no p 

Size F8,47=20.45 0.76 6.17 <0.001 

Swimming 

VSL (0-2 min) F8,48=2.34 0.18 6.26 0.033 

VSL (4-6 min) F8,47=2.21 0.17 6.16 0.044 

VSL (8-10 min) F8,42=2.48 0.21 5.70 0.027 

VSL (12-14 min) F8,40=2.06 0.16 5.39 0.064 

Track (0-2 min) F8,48=1.22 0.05 6.26 0.27 

Track (4-6 min) F8,47=0.84 -0.03 6.16 0.57 

Track (8-10 min) F8,42=1.21 0.04 5.70 0.32 

Track (12-14 min) F8,40=1.42 0.07 5.39 0.22 

Overall motility (5 min) F8,20=2.10 0.26 3.12 0.085 

Overall motility (2 h) F8,44=2.01 0.15 5.98 0.067 

 

Table 1.  Repeatability of sperm measurements within males across ejaculates (seasonal 

repeatability). n0: average number of repeated measures. VSL: straight-line 

velocity, Track: number of tracks recorded in 2 min, Motility: percentage motile 

cells as scored by eye (see Methods for details).  

 

We did not find significant correlations between sperm size and the other measures of 

sperm quality (REML controlling for male identity as a random factor, see below 

statistical analyses: all p > 0.1, except for VSL after 0-2 min: Wald F=3.17, df=1, p = 

0.075; motility after two hours: Wald F=3.05, p=0.081). Thus, in all models, sperm size 

and swimming performance were considered independent variables. 
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Since we performed repeated inseminations of related females our data was 

structured, with repetition at three levels, the level of the female (repeated insemination 

of each female), the family (related females) and pairs of males used for repeated 

insemination. Such structured data are best analyzed using mixed models, where the 

random term specifically models the pseudoreplication associated with the structure 

(Grafen and Hails 2002, chapter 12). Our data set was not orthogonal due to unequal 

sample size precluding the use of ANOVA. Therefore, for normally distributed 

dependent variables we used restricted maximum likelihood (REML) mixed models, 

while for analyses of proportions we used generalized linear mixed models (GLMM) 

with a binomial error. 

To analyze changes in sperm swimming traits over the 14 minutes of observation 

we used REML mixed models controlling for multiple ejaculates per male by including 

male identity as a random factor in the model. We compared the number of observed 

tracks and sperm swimming speed (VSL) at each of two consecutive time intervals (see 

Fig. 2).  

 To test the effects of relatedness and sperm quality on fertilization success we 

used GLMM models with binomial error using ‘number of eggs sired by male A’  as 

response variable and ‘clutch size’  (all fertilized eggs laid following a single 

insemination) as the binomial denominator. In these models, we accounted for repeated 

inseminations of females with sperm from the same pair of males and for relatedness of 

groups of inseminated females by including ‘female id’ , ‘family’  and ‘male pair’  as 

random effects in the models. Effects of these random factors were not strong. Random 

effects ‘female id’  and ‘family’  were not significant (all p > 0.70). Some evidence of 

significant effect was observed for ‘male pairs’  (p=0.3-0.02). Inclusion or exclusion of 

the random factors made no qualitative differences in the results. Also inclusion of the 

term ’ insemination event‘ as a random factor to control for differences among 

insemination events did not change the conclusions. 

In these GLMM models analyzing fertilization success, one of the males 

represented in each sperm mixture was randomly (male with the lower leg band number) 

assigned male A and his gain of paternity (proportion of eggs sired) was analyzed (as in 

Evans et al. 2003). In all analyses, the difference in sperm quality between male A and 
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male B was used as explanatory variable. Relatedness, sperm size and one measure of 

sperm quality (either number of tracks, VSL, or percentage motile cells) were fitted as 

fixed effects (explanatory variates) to each model. Sperm quality measurements made at 

different time intervals (see above) were analyzed in separate models.  

We initially constructed full models containing all explanatory variables. Non-

significant terms were dropped from the model until the final model only contained 

variables with p < 0.10. All eliminated terms were then re-added to the final model to 

confirm their lack of significance and these p-values are reported here. We included the 

interaction term ‘relatedness’  x ‘sperm quality measure’  in the model to test the 

hypothesis that sperm have to be of higher quality (swim faster) to be successful if the 

male is closely related to the female. Other interaction terms could not be tested due to 

low sample size. We used Genstat 6.1.0.200 (Genstat 2002) for all statistical analyses.  

 

 

RESULTS 

Sperm characteristics 

Taking each ejaculate as a datapoint (N=56) mallard sperm showed a mean VSL (± s.e.) 

of 41.77 ±������ P�VHF��UDQJH������– 88.20) and an overall percentage of motile sperm (± 

s.e.) of 48.1 % ± 3.3 (range 5 % - 88.67 %). Straight-line velocity (VSL) and number of 

recorded tracks varied significantly over the observation period (REML; VSL: Wald F= 

8.05, df=1, p < 0.001; number of tracks: Wald F=6.60, df=1, p<0.001). VSL increased 

between the first two observation periods and remained at a constant level thereafter (see 

Fig. 2). The increase in VSL was not simply caused by a reduction in the number of 

recorded tracks, because the number of tracks decreased only after 6 min (see Fig. 2). The 

average percentage of motile sperm did not change significantly between 5 min and 2 - 2 

½ h after dilution.  

 

 



CHAPTER TWO 

 50

 

 

 

 

Figure 2.  Change of sperm swimming behavior (number of tracks and straight-line 

velocity -VSL) over time (N=56 ejaculates). Changes are significant at p < 

0.05 (*) and p < 0.001 (**) based on REML analyses controlling for male 

effects (N=9 males; see text for details). Error bars indicate s.e. values. 

 

Over the course of the study (eight weeks) sperm size was highly repeatable among 

males, but the seasonal repeatability of measurements of sperm quality was much lower, 

and not always significant (see Table 1). 
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Paternity 

A male’ s fertilization success was related to long-term sperm performance. Both the 

number of tracks and VSL after 8 min or more significantly predicted paternity (Table 2, 

Fig. 3A). In general, sperm motility was the best predictor of paternity (Table 3, Fig. 3B), 

while sperm size did not affect fertilization success (Table 2 and 3). Given the absence of 

significant random effects and the large individual variation in sperm quality, we also 

present simple correlations between sperm quality measurements and fertility: VSL 8-

10min, r=0.261, p=0.028, N=73; VSL 12-14min, r=0.297, p=0.012, N=70; motility 2 

hours, r=0.373, p=0.002, N=69. 

 

 

 0-2 min 4-6 min 8-10 min  12-14 min 

Independent  
  variants Wald p Wald p Wald p Wald p 

Relatedness 0.06 0.80 0.10 0.76 0.21 0.65 0.07 0.79 

Sperm Size 0.64 0.42 0.75 0.39 1.57 0.21 1.68 0.19 

No. of tracks 2.25 0.13 3.46 0.063 6.39 0.011 5.87 0.015 

Relatedness 0.05 0.82 0.13 0.72 0.02 0.89 0.03 0.87 

Sperm Size 0.52 0.47 0.56 0.45 0.60 0.44 1.19 0.28 

VSL 2.48 0.12 1.91 0.17 4.55 0.033 6.18 0.013 

 

Table 2.  Results from GLMM-analyses of factors determining fertilization success and 

correcting for repeated measures. Four separate models were constructed for 

each measurement time (time after injection in the sperm swimming chamber). 

These models were built separately for number of tracks and straight-line 

velocity (VSL; see Methods for details). The Wald statistic is shown, which 

follows a chi-square distribution with df=1. 
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 5 min 2h 

Independent 
variants Wald F p Wald F p 

Relatedness 0.06 0.81 0.00 0.98 

Sperm Size 0.04 0.85 0.13 0.72 

Motility 0.30 0.58 8.23 0.004 

 

Table 3.  Results from GLMM-analyses of the effects of motility (the percentage motile 

cells, 5 min and 2-2 ½ h after dilution with sperm extender) on fertilization 

success, correcting for repeated measures (see Methods for details). The Wald 

statistic is shown, which follows a chi-square distribution with df=1. 
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Figure 3.  Mean percentage of eggs sired after a single insemination by a male, when 

sperm from this male showed (A) a lower or higher straight-line velocity 

(VSL at 12-14 min) (N=70 clutches) or (B) a higher or lower overall motility 

(percentage motile cells at circa 2 - 2 ½ h after dilution) than his competitor 

(N=69 clutches) or (C) when the male was a brother of the female or unrelated 

(N=73 clutches). Error bars indicate s.e. values. p-values are based on 

GLMMs (see text for details).  

 

Whether or not a male was related to the female did not have any effect on fertilization 

success (see Table 2 and 3, Fig. 3C). This remained also true if only insemination events 

were analyzed in which the ejaculates from both males showed similar VSL or 

percentage of motile cells (maximum difference: ± 4 s.e., N=26 clutches, details not 

shown). Ejaculates from three males were used in two experiments (different male pairs). 

Reducing the dataset so that each male appeared in only one comparison did not change 

the significance levels despite smaller sample size (N=49 clutches, details not shown).  

We did not find evidence that fertilization success depended on an interaction 

between sperm quality and relatedness (in all cases, p > 0.05).  

 

 

DISCUSSION 

Our experiment shows a clear effect of variation in sperm quality (swimming speed and 

sperm motility) on fertilization success in mallards. The degree of genetic similarity 

between parents did not influence paternity, when ducks were artificially inseminated 

with a sperm mixture of a first-degree relative and an unrelated male. This may suggest 

that female mallards were not able to select sperm purely based on the sperm’ s genotype. 

Furthermore, unlike a study on sedge warblers (Acrocephalus schoenobaenus; Marshall 

et al. 2003), the allele frequency of the successful sperm did not deviate from a 

distribution expected by chance (p = 0.29, details not shown).  

The results of the present study emphasize the importance of sperm quality for 

fertilization success (Snook 2005). In our study long-term sperm behavior was the 

important factor predicting paternity. The effect sizes of number of active sperm, sperm 
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swimming speed and overall motility increased over time and only became significant 

after eight or more minutes. Birkhead et al. (1999) also found that sperm quality 

determined paternity under sperm competition. They artificially inseminated domestic 

fowl, Gallus gallus, with a sperm mixture containing ejaculates from one male with low- 

and one with high-mobility sperm. Males with high-mobility sperm fathered the majority 

of offspring. Birkhead et al. (1999) found no female effect on variation in paternity, 

highlighting the importance of sperm competition for fertilization success.  

Although studies on insects and lizards suggest that females might be capable of 

sperm selection based on compatible sperm genotypes (Olsson et al. 1996; Wilson et al. 

1997; Clark et al. 1999; Stockley 1999; Mack et al. 2002; Nilsson et al. 2003; Bretman et 

al. 2004), our findings corroborate the conclusions from previous studies on birds and 

mammals (mallards: Cunningham and Cheng 1999; common shrew Sorex araneus: 

Stockley 1997). Even though a detailed assessment of sperm quality was missing in the 

latter two studies, no effect of sperm selection was detected, and fertilization success 

could be explained in terms of sperm competition. 

Even in the absence of female sperm selection, sperm competition per se might be 

a mechanism by which females select the “ best”  male. If ejaculate quality reflects male 

quality, females might have the majority of their offspring sired by the high quality 

males. However, there is little evidence that genetic quality translates into sperm quality. 

In a mammal (lion, Panthera leo) genetic quality (individual genetic diversity) influenced 

sperm quality (e.g. incidence of abnormal sperm; Wildt et al. 1987). In mallards, sperm 

swimming speed (VSL at 8 min or more) correlated with a measure of the carotenoid-

based beak color (Peters et al. 2004), a sexually selected trait in this species (Omland 

1996a; Omland 1996b). However, other studies failed to find a correlation between 

preferred male phenotypic traits and sperm quality in birds (Birkhead and Fletcher 1995; 

Birkhead and Petrie 1995; Birkhead et al. 1997; Pizzari et al. 2004).  

By ensuring fertilization by the faster and more motile sperm, females might also 

increase the chances that their sons will produce competitive sperm, if sperm quality is a 

heritable trait passed on by the father (sexually selected sperm hypothesis; Keller and 

Reeve 1995). An experimental study on fowl, Gallus gallus domesticus, showed that 

sperm mobility was highly heritable (Froman et al. 2002). However, the study also 
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suggested that sperm mobility may be largely under the control of an independent 

maternally inherited element (Froman et al. 2002). In that case, fertilization by the faster 

sperm would not influence the competitive ability of sons. To our knowledge nothing is 

known about the heritability of sperm quality in mallards.  

During our study, sperm quality (sperm swimming speed and motility) showed 

high variability within individual drakes (see Table 1), in agreement with observations in 

passerine species (Birkhead and Fletcher 1995) but in contrast to domestic fowl (Froman 

and Feltmann 2000; Froman et al. 1999). Variation in sperm quality between ejaculates 

might stem from difficulties to collect sperm samples from drakes, related to their penis-

like intromittent organ. Fecal contamination (although not visible in the samples used in 

our experiments) or excess lymph fluid might affect sperm behavior (pers. observation). 

An alternative explanation for variability in sperm quality is that it reflects natural 

fluctuations. Regardless, the artificial or natural fluctuation of sperm quality is not 

expected to affect the results of our study because each insemination event was analyzed 

separately. However it emphasizes the importance of careful measurement of sperm 

quality in experiments on cryptic female sperm choice. 

It is still possible that cryptic female sperm selection occurs in mallards, but that 

we were unable to demonstrate it, for the following reasons. First, one could argue that 

our experiment lacked the power to detect sperm selection because of the low sample 

size. This might be the case, but (a) the data do not show the slightest tendency for sperm 

selection based on relatedness (see Fig. 3C), and (b) despite the limited sample size, 

significant effects of sperm quality were found (see Fig. 3A, B). Thus, our results at least 

indicate that within the female reproductive tract sperm competition plays a much more 

important role in determining fertilization success than postcopulatory sperm selection by 

females. Second, a general problem with experiments such as ours arises if a bias in 

paternity due to early embryo mortality is erroneously interpreted as cryptic female 

choice. However, the results of our study are unlikely to be an effect of cryptic female 

choice favoring the unrelated male, unless early embryo mortality was more frequent 

when the unrelated male fertilized the egg and went undetected. Only this unlikely 

scenario would result in apparent equal paternity of the related and unrelated male. Third, 

it is possible that cryptic female choice occurs after natural copulations, but not after AI. 
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Maybe one or more aspects intrinsic to the AI technique (contamination of the sample, 

buffer properties, storage) compromise the sperm in such a way that cryptic female 

choice can no longer operate at the level of the sperm. Furthermore, during natural 

copulations females might obtain additional information about their partners, which 

might affect the success of different ejaculates. For example, Pizzari (2000) showed that 

female feral fowl can control paternity by selectively ejecting sperm from non-preferred 

males. Because we used a sperm mixture in our experiment, female mallards lacked the 

possibility to selectively reject sperm. Whether sperm ejection is possible in species such 

as mallards, where males have an intromittent organ and deposit the ejaculate further into 

the female reproductive tract, is unknown. If sperm ejection occurs after forced (artificial) 

insemination, it could account for the low fertilization success in this study. In chicken 

and turkeys females eject 80-90% of (artificially) inseminated sperm (Birkhead et al. 

1993 and citations therein). Moreover, natural copulations may result in the sequential 

filling of sperm storage tubules (Briskie 1996; King et al. 2002). Segregation of 

ejaculates from different males within the female reproductive tract might be an 

important prerequisite to selectively use sperm. Inseminations with mixed ejaculates 

would prevent the operation of such a mechanism. Nonetheless, despite these problems, 

AI is the only way to experimentally control for male adjustment of ejaculate size, for 

example in response to the risk of sperm competition (Cook and Wedell 1996; Pizzari et 

al. 2003), or in response to female traits like age, body size or reproductive investment 

(e.g. Wedell 1992; Shapiro et al. 1994; Cook and Gage 1995; Pizzari et al. 2003).  

In conclusion, we found that long-term sperm performance is an important 

determinant of fertilization success under direct sperm competition in this wild bird 

species. Although it is likely that offspring sired by a close relative suffer a higher risk of 

embryonic death, we did not observe evidence that sperm selection purely based on 

sperm genotype occurs within the female reproductive tract. Whether the success of 

faster and more motile sperm is a mechanism by which females ensure fertilization by the 

“ best”  male (female sperm selection favoring males producing faster sperm), or whether 

males are ahead in the intersexual conflict over fertilization, and female mallards have 

not yet developed effective mechanisms to resist forced copulations, needs further 

investigation. 
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CHAPTER THREE 

 

SPERM MOTILITY IN MALLARDS IS INFLUENCED BY THE FEMALE 

ENVIRONMENT 

 

Angelika G. Denk & Bart Kempenaers 

 

 

ABSTRACT 

Sperm motility is an important determinant of male fertilization success. Recent studies 

in various species have shown that substances present in the ovarian fluid function in 

sperm attraction or activation. However, it remains untested whether there is a general 

stimulating effect of female substances or whether such influence is individual or 

context-specific. If the latter is true, this mechanism might facilitate female sperm 

selection. We used a computer-assisted sperm motion analysis system to investigate 

sperm performance (proportion of active sperm and swimming speed) of individual male 

mallards in different female environments. For practical reasons we exposed sperm to 

female blood plasma instead of ovarian fluid. Female blood plasma generally strongly 

stimulated sperm activity and the magnitude of this effect was female-specific. Although 

sperm performance was not differentially affected by blood plasma from a sister or an 

unrelated duck, it did differ depending on the reproductive status of the female. Sperm 

swam significantly faster in plasma from non-incubating (presumably fertile) females 

than in plasma from incubating (post-fertile) females. We speculate that this differential 

stimulation is due to hormonal effects. Although we failed to demonstrate an influence of 

relatedness, our study highlights the important influence of the female environment on 

sperm performance. 
 

                                                 
  submitted to Functional Ecology, 17 November 2004 
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INTRODUCTION 

Sperm quality affects male fertilization success and thus male fitness in various species 

(e.g. Dziuk 1996; insects: Hunter and Birkhead 2002; fish: Burness et al. 2004; 

mammals: Holt et al. 1997). In birds in particular, experiments have shown that sperm 

motility - measured as sperm swimming speed, the percentage of motile sperm or sperm 

mobility (net movement of sperm) - determines fertilization success, both following an 

insemination by a single male (Froman et al. 1999), as well as in situations where sperm 

from different males compete for fertilization (Birkhead et al. 1999; Donoghue et al. 

1999; Denk et al. MS). Avian spermatozoa must be motile to migrate from the site of 

insemination (cloaca or vagina) to the area of sperm storage (uterovaginal sperm storage 

tubules; Bakst et al. 1994; Ashizawa et al. 2000). It is still unclear whether sperm become 

quiescent during storage (Ashizawa et al. 2000) or whether residence inside the storage 

tubules is maintained by constant sperm activity (Froman 2003). Although even 

immotile, dead sperm can be passively transported up the uterus to the site of fertilization 

(infundibulum; Allen and Grigg 1957), sperm motility is required again to successfully 

penetrate the egg membrane (Ashizawa et al. 2000).  

In many species, sperm motility is stimulated by substances present in the ovarian 

fluid (e.g. human: Jeon et al. 2001; arctic charr: Turner and Montgomerie 2002; domestic 

hen: Ashizawa and Wishart 1992). Among the substances that have been identified to 

stimulate sperm activity are peptides released by the egg (e.g. sea urchins: Suzuki 1995), 

steroids (e.g. ascidians: Yoshida et al. 2002), and calcium (birds: reviewed by Ashizawa 

et al. 2000). Whereas the general stimulating effect of these substances on sperm activity 

is clear, virtually nothing is known about variation in sperm stimulation depending on the 

individual female environment.  

Regulation of sperm motility might be a way by which females can determine 

male fertilization success after insemination (cryptic female sperm selection). Under 

sperm competition female identity influenced the fertilization success of a particular male 

in Drosophila (Clark, Begun and Prout 1999) and domestic fowl (Birkhead et al. 2004). It 

has been shown or suggested that the outcome of sperm competition depends on the level 

of genetic similarity between the male and the female (Olsson et al. 1996; Stockley 1999; 

Mack et al. 2002; Bretman et al. 2004; see also Blomqvist et al. 2002). Thus, females 
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might be able to select the genetically most dissimilar sperm (see Marshall et al. 2003) to 

avoid the negative consequences of inbreeding (Keller and Waller 2002) or to benefit 

from the increased heterozygosity of their offspring (e.g. Foerster et al. 2003). However, 

so far, the evidence for cryptic female sperm selection is mixed (Olsson et al. 1997; 

Wilson et al. 1997; Clark et al. 1999; Cunningham and Cheng 1999; Stockley 1999; Denk 

et al. MS), and potential mechanisms remain obscure (Zeh and Zeh 1997).  

We used a computer-assisted sperm motion analysis system to investigate the 

effect of the female environment on sperm performance in mallards (Anas 

platyrhynchos). In this species, females show strong behavioral preferences for their 

social partner (Bluhm and Gowaty 2004), but frequently suffer from copulations forced 

upon them by other males (Barash 1978; Davis 2002). Females therefore lack behavioral 

control over insemination, but might exert influence over fertilization inside their 

reproductive tract.  

In ducks, the female reproductive tract is displaced further inwards (compared to 

other birds, e.g. chicken), which makes the repeated collection of ovarian fluid without 

contamination and without hurting the bird difficult. However, not only ovarian fluid 

contains substances that influence sperm motility. Froman and Feltmann (2000) used a 

blood-buffer suspension to achieve high and constant swimming speed of rooster sperm 

(Gallus domesticus). They attributed the stimulating effect to the presence of erythrocytes 

and oxyhemoglobin. Because we observed a similar effect on sperm activity when only 

the clear phase of the blood-buffer suspension was used (this study), we postulate that 

components of the blood plasma rather than the red blood cells stimulate sperm motility 

(see discussion). Given the ease with which blood samples can be taken and the fact that 

there is exchange between the ovarian and blood system (e.g. calcium, ovarian hormones; 

Whittow 2000), we used blood plasma for a first preliminary test of sperm swimming 

performance in different female environments.  

First, we investigated whether adding female blood plasma affected sperm 

performance. Second, we tested whether differential sperm stimulation could facilitate 

sperm selection of genetically dissimilar sperm, by letting sperm of eight different males 

swim in the blood plasma of their sister and of an unrelated female. Third, we examined 

whether the effect of the blood plasma on sperm performance depends on female 
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reproductive status (fertile or post-fertile). Finally, we tested whether there are other 

consistent individual female effects on sperm swimming performance.  

 

 

MATERIAL AND METHODS 

Animals  

We used eight male and 24 female mallards that were born in captivity (2000 and 2001) 

from parents caught at Lake Starnberg (47º54’ N/11º18’ E) and Lake Ammer 

(48º00’ N/11º08’ E), Southern Germany, or Oyten/Bremen (53°04´N/8°48´E), Northern 

Germany. Kinship between all individuals was known and confirmed by microsatellite 

analysis. During autumn and winter, mallards were kept in flocks of 24-34 animals in 

four large outdoor aviaries (120-165 m2) and they were allowed to choose their mate 

freely. From February onwards, eight pairs were selected and housed individually in 

small aviaries (2.4 – 6.1 m2, including a water tub). We provided the birds daily with 

commercial duck food (Anseres 3 (maintenance) or Anseres 4 (breeding season, 

February-July), Kasper Faunafood, Woerden, Netherlands) mixed with wheat, and we 

added fresh lettuce at least three times a week. After sperm collection (see below) birds 

were rewarded with fresh mealworms.  

 

Sperm and blood collection  

Sperm was collected from mid-April until the end of May 2003, following the method 

described in Knoll (1978). To stimulate the male to copulate, a female other than the 

social partner was introduced. Immediately before intromission, drakes were removed 

from the female and the ejaculate was collected into a 50 ml falcon tube. Remaining 

ejaculate was collected from the intromittent organ using a 1ml syringe. Within five 

minutes after collection sperm samples were diluted circa 1:3 with Ringer-Lactate 

solution (Humphrey 1972; Ringer-Lactat after Hartmann, Z.Nr. 1-19.566, Mayrhofer 

Pharmazeutika GmbH, 4020 Linz, Austria).  

%HIRUH�VSHUP�FROOHFWLRQ������ O�RI�EORRG�ZDV�REWDLQHG�IURP�WKH�ULJKW�FXWDQHRXV�
ulnar vein of a female and diluted in 900 µl TES-buffered saline (50 mM N-tris-

[hydroxymethyl]methyl-2-amino-ethanesulfonic acid; Sigma Chemical Co., St. Louis, 
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MO, USA with 128 mM NaCl and 2 mM CaCl2; pH 7.4; see also Froman and Feltmann 

2000). The buffer-blood suspension was stored at room temperature and blood cells were 

allowed to settle at the bottom of a 1.5 ml Eppendorf tube for at least 45 min. Only the 

clear phase of the blood-buffer suspension (blood plasma) was used in all experiments.  

 

Sperm performance measurements 

Sperm motility was analyzed using a Hobson Sperm Tracker (Hobson Tracking Systems 

Ltd, Sheffield, UK; e.g. see also Holt et al. 1997; Froman and Feltmann 2000; Kime et al. 

2001). All observations were made with a microscope with a 4 x bright-field objective 

under pseudo dark-field conditions using a Ph3 annular phase ring, at a total 

magnification of 48.  

First we used the Hobson Sperm Tracker to determine the concentration of motile 

sperm in the ejaculate. We diluted the sperm sample with Ringer-Lactate to a final 

concentration of 3*106 motile cells/ml and kept it at 38 Û&��)LYH�PLQXWHV�EHIRUH�HDFK�
DQDO\VLV�RI�VSHUP�VZLPPLQJ�SHUIRUPDQFH���� O�RI�WKLV�VROXWLRQ�ZDV�GLOXWHG��������ZLWK�
one of two blood-buffer suspensions that were previously prepared: one from a sister and 

one from an unrelated female, or both from unrelated females (see below). This final 

sperm dilution was kept at 38Û&�XQWLO�UHFRUGLQJ��3HU�IHPDOH�EORRG�SODVPD�VDPSOH��WKUHH�
separate sperm mixtures were prepared and sperm behavior was measured once in each 

of these three replicates. 

Long-term sperm swimming performance is an important factor determining 

fertilization success in mallards (Denk et al. MS). Therefore sperm swimming was 

videotaped for 30 min after the sperm sample had been injected in a pre-heated (38 °C) 

MicroCell swimming chamber (50 µm depth; Conception Technologies, San Diego, 

USA), using a Sony SPT-M128 CE Black&White video camera mounted on the 

microscope and a Panasonic (NV-HS 900) Super VHS video recorder. Sperm was kept in 

the swimming chamber at 38 Û&��VOLJKWO\�EHORZ�DYLDQ�ERG\�WHPSHUDWXUH�����Û&���WR�
minimize effects of evaporation during the 30 min observation time. We measured the 

number of tracked sperm and straight-line velocity (VSL), which are both good 

predictors of paternity under sperm competition in mallards (Denk et al. MS), at eight 
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time intervals: 0-2 min, 4-6 min, 8-10 min, 12-14 min, 16-18 min, 20-22 min, 24-26 min 

and 28-30 min. The ‘minimum track time’  was set at 1.2 sec.  

 

Experimental design 

To examine the general effect of blood plasma on sperm swimming behavior we 

measured sperm performance (number of tracks and VSL) of eight ejaculates (one from 

each male) first in pure buffer solution and then in the buffer solution that included 

female blood plasma. For each test, blood plasma from a different female was used.  

For further experiments, we used twelve pairs of females (Nducks=24) such that 

one was a sister of an experimental drake and one was unrelated to the male. The blood 

of eight female pairs was also used to test sperm swimming performance of two to three 

different males, which were unrelated to both females. We obtained a total of 32 

ejaculates from the eight males (on average 4 ± 1.3 SD per male, range: 1-5). Sperm was 

tested alternately in the blood plasma of the two females (sister or non-relative, 

respectively two non-relatives). Equal numbers from a given ejaculate were used in both 

tests. The order was randomly assigned for the first run (by tossing a coin) and then 

alternated for the replicates within the same ejaculate, as well as across the experiments.  

For the above experiment blood was repeatedly collected from individual females 

and the reproductive status of the female (non-incubating / incubating) was recorded at 

each sampling date. Because this study took place during the reproductive season of 

mallards (April-May), we assumed that the non-incubating females were fertile (before or 

during egg-laying). Five ducks changed their reproductive status during the course of the 

study. In total, 30 blood samples were collected from 13 fertile ducks, and 34 samples 

came from 16 incubating females.  

 

Statistical analyses 

Repeatabilities (Lessells and Boag 1987) of the three replicate measurements of the 

number of tracks and VSL at every time interval varied between 0.48 and 0.79 (all 

p<0.001), suggesting that our methods were reliable and measurement error was low (see 

also Denk et al. MS). However, as previously observed (Denk et al. MS), the between-
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ejaculate repeatabilities (same male, seasonal effect) are much lower (r=-0.04-0.32, 

0.56>p>0.026).  

To test whether there was a general influence of female blood plasma on sperm 

performance, we compared the number of tracks and VSL for sperm that was diluted in 

either pure buffer or in the blood-buffer solution using paired t-tests. To analyze the 

influence of male-female relatedness and female reproductive status on sperm 

performance we applied restricted maximum likelihood (REML) models with either 

number of tracks or VSL (averaged over the three replicates) as the dependent variable. 

As explanatory variables, we included the fixed effects relatedness (sister or unrelated), 

reproductive status (fertile or post-fertile), and order (whether a female was the first or 

the second to be tested). To control for multiple ejaculates per male we included male 

identity as a random factor in the model. Because of the varying ejaculate quality and 

because each ejaculate was used with a pair of females, we also included the term 

ejaculate identity in the random structure. Likewise, we added female identity as random 

factor, because the blood plasma of individual females was used with the sperm of up to 

four males. Each male-female pairing was unique and the interaction term with time 

interval was used to create a repeated measurement structure in the model. Repeating the 

analyses using the number of tracks and VSL averaged over the eight time intervals 

simplified the models, but did not change the conclusions (not shown). We initially 

constructed full models containing all explanatory variables. We then dropped non-

significant terms from the model until the final model only contained variables with p < 

0.10. Finally we re-added all eliminated terms to the final model to confirm their lack of 

significance. These p-values are reported here. To test whether there are consistent 

individual female effects on sperm performance, we compared the deviance generated by 

the final models with and without female identity in the random structure.  

We used SPSS 11.5.0 (2002) for paired t-tests and Genstat 7.1.0.198 (Genstat 

2003) for all other statistical analyses. 
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RESULTS 

Effects of female blood plasma on sperm performance 

A paired comparison of sperm performance diluted (10:1) in either pure TES-buffer or in 

the clear phase of the blood-buffer suspension clearly shows a stimulating effect of some 

component(s) of the blood plasma on sperm performance (Fig. 1). On average, as well as 

at each time interval, significantly more sperm were active in buffer with blood plasma 

than in the pure buffer (number of tracks averaged over the eight time intervals: paired 

t7=3.41, p=0.011; each time interval separately: t7=2.94 - 3.82, all p<0.05). In the absence 

of blood plasma, the number of tracks decreased by 68% within the first six minutes. In 

contrast, with blood plasma, the number of tracks decreased by 69 % over the entire 

observation period of 30 min. Overall, the number of tracks was about three times as high 

after adding blood plasma than in pure buffer. Similarly, adding female plasma had a 

positive effect on sperm swimming speed (VSL), increasing it about fivefold (Fig. 1; 

VSL averaged over the eight time intervals: paired t7=7.57, p<0.001; each time interval 

separately: t7=6.30 - 8.07, all p<0.001). In the presence of blood plasma, only a slight 

decrease in VSL (about 40%) was observed over the 30 min period, while in its absence a 

deceleration of 72% was observed already during the first six minutes. 
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Figure 1.  Average ± standard error of (A) number of tracks and (B) sperm swimming 

speed (VSL) of eight ejaculates from eight different males. Ejaculates were 

diluted either with pure buffer (open circles) or buffer plus blood plasma 

(filled circles). 
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Effects of relatedness and female reproductive status 

Neither the number of active sperm cells (tracks), nor sperm swimming speed (VSL) was 

differentially affected by the blood plasma of a sister versus an unrelated female (Table 1, 

Figs 2 and 3). However, female reproductive status significantly influenced sperm 

swimming speed (Table 1, Figs 2 and 3). Sperm swam 14% faster in blood plasma from 

non-incubating (fertile) ducks than in plasma from incubating (post-fertile) females (Fig. 

2). This effect was not attributable to an increase or decrease in the number of motile 

sperm, which did not differ between fertile and post-fertile ducks (Fig. 3).  

 

 No. of tracks VSL 

Independent factors Wald p Wald p 

Relatedness 0.23 0.631 2.54 0.111 

Reproductive status 0.14 0.707 23.44 <0.001 

Order effect  23.49 <0.001 0.72 0.395 

Random factors �GHYLDQFH p �GHYLDQFH p 

Female 67.32 <0.001 34.06 <0.001 

Male 2.23 0.14 0 1 

Ejaculate 657.7 <0.001 255.3 <0.001 

Male/Female x Time 
Interaction  

568.54 <0.001 189.42 <0.001 

 

Table 1.  Influence of female blood plasma characteristics on sperm swimming 

performance. Results from REML-analyses with the number of motile sperm 

(tracks) and sperm swimming speed (VSL) as the dependent variables. For the 

fixed factors the Wald statistic is shown; for the random factors the change in 

deviance after excluding the factor from the final model is shown. Both are 

tested using a chi-square distribution with one degree of freedom. See Methods 

for further details. 
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Figure 2.  Effects of (A) relatedness (open circle: sister, filled circle: non-relative) and 

(B) female reproductive status (open circle: incubating, filled circle: fertile) on 

the average (± SE) sperm swimming speed (VSL) of 32 ejaculates (from eight 

different males) diluted in TES-buffer with female blood plasma. 
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Figure 3.  Factors influencing sperm performance (number of tracks and swimming 

speed, VSL). Shown are the predicted means +/- SE from the final models of 

the REML-analyses (see Methods for details). (A) Effect of relatedness. (B) 

Effect of the reproductive stage of the female. (C) Temporal order of 

measurement (averages over three replicates, 30 min difference between first 

and second). *** p<0.001. 
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Note that the number of tracks, but not sperm swimming speed, was affected by the order 

of the experiment: more sperm were active in the blood plasma of the first duck to be 

used in a test (Table 1, Fig. 3).  

 

Effects of female identity 

We found a strong general female effect on sperm activity while controlling for the fixed 

factors relatedness, reproductive status and experimental order (Table 1). This suggests 

that females exert an individual, differential stimulating influence on sperm performance.  

 

 

DISCUSSION 

This study examined the effects of individual female environments on sperm 

performance in a swimming chamber test. In general, female blood plasma stimulated 

sperm performance so that (1) a higher proportion of the sperm were active, (2) the sperm 

remained active over a longer period of time and (3) the sperm swam faster, compared to 

the performance in a standard buffer solution. Further experiments showed that this 

stimulating effect is (a) female-specific, (b) independent of the relatedness between the 

male (sperm) and the female and (c) stronger in fertile than in non-fertile females.  

Our study thus shows that some unknown component(s) in the blood plasma can 

stimulate sperm and keep sperm cells active over a prolonged time period. Similarly, in 

humans supplementation with just blood serum increases sperm motility parameters 

(Delamirande and Gagnon 1991). However no effect of blood serum on sperm quality 

was detected in bovine (Verberckmoes et al. 2004) and canine sperm (Rijsselaere et al. 

2004).  

Focusing on birds, our results are similar to those of Froman and Feltmann (2000) 

on chicken in that the effect was not just transient, but rather resulted in a sustained 

sperm activity with only a slight decline over the 30 min time interval (15 min in case of 

Froman and Feltmann (2000)). However, the difference between our study and the one of 

Froman and Feltmann (2000) is that they used whole blood, including red blood cells. 

They ascribed the effect on sperm performance to the oxyhemoglobin of the erythrocytes, 
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which may facilitate mitochondrial respiration and therefore provide an energy source for 

sperm cells. Although we cannot exclude that such an oxygen-dependent process 

occurred in Froman and Feltmann’ s (2000) study, we clearly show that the blood plasma 

per se is sufficient to stimulate the sperm.  

The two studies also differ in another way. We found differences in sperm activity 

levels already during the first two minutes after injection into the swimming chamber, 

whereas Froman and Feltmann (2000) observed identical sperm swimming speeds 

immediately after injection, followed by a dramatic decline in swimming speed in pure 

TES, but not in the buffer-blood suspension. This might be due to the different 

experimental protocols: Froman and Feltmann (2000) injected the sperm suspension 

immediately after dilution, whereas we diluted sperm five minutes prior to injection, 

which might have allowed the sperm to adapt to the physiological conditions of the buffer 

(with or without blood plasma). Comparing the behavior of rooster and mallard sperm 

relative to the time of dilution shows remarkably identical patterns: 5-7 min after dilution 

the VSL of roostHU�VSHUP�ZDV��� P�VHF�LQ�7(6-RQO\�YHUVXV��� P�VHF�LQ�7(6�SOXV�EORRG�
(Froman and Feltmann 2000)��IRU�PDOODUG�VSHUP�WKH�FRUUHVSRQGLQJ�ILJXUHV�DUH��� P�VHF�
DQG��� P�VHF��WKLV�VWXG\���7KLV�VXJJHVWV�WKDW�WKH�VWLPXODWLQJ�HIIHFW�RI�WKH�EORRG�LV�Gue to 

a physiological effect caused by some substance(s) in the plasma, rather than an effect 

specific to the conditions in the sperm swimming chamber.  

Our experiments show that the female physiological environment affects sperm 

performance. We further consider two issues. First, we discuss the advantages and 

relevance of using blood plasma instead of ovarian fluid. Obviously, sperm naturally 

interacts with the oviductal environment, not with the blood plasma. Secondly, we 

speculate which substances in the plasma might be responsible for the observed effects.   

Although blood plasma imperfectly resembles the conditions that sperm 

experience in the female reproductive tract, many female-specific components are present 

both in blood plasma and in ovarian fluid. Studies in cattle show a tight relationship 

between concentrations of lactate, glucose, urea and ammonia in blood plasma and 

oviductal fluid (Kenny et al. 2002), and also similar concentrations of ions (calcium, 

magnesium, sodium) were found (Kenny et al. 2002). In other studies and species 

calcium, magnesium and potassium were reported in both fluids albeit in different 
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concentrations (see citations in Kenny et al. 2002). Moreover, transfer of steroid 

hormones (e.g. progesterone; Stefanczyk-Krzymowska et al. 2002), peptide hormones 

(e.g. oxytocin, relaxin, insulin), and prostaglandines between the reproductive and the 

blood system has been found in various mammalian species (Leese 1988; Menezo and 

Guerin 1997; Einer-Jensen and Hunter 2000 and citations therein). Also in birds a close 

anatomical linkage exists between the reproductive and blood system (e.g. Freedman and 

Sturkie 1963; Gilbert, Reynolds and Lorenz 1968). Calcium for eggshell formation is 

provided by the blood system and ovarian hormones (e.g. progesterone, estrogens) are 

present both in the oviduct and blood plasma (Whittow 2000). Although there might be 

differences in the concentration of these components, blood plasma represents an 

individual “ fingerprint”  with many substances also present in the ovarian fluid (Jeon et al. 

2001). Therefore, we suggest that female blood plasma is a good substitute for ovarian 

fluid, at least for a first preliminary test of the influence of female physiology on sperm 

performance.  

The use of blood plasma has several advantages. Firstly, blood samples can be 

taken easily and without any contamination. Particularly in ducks, it is difficult to collect 

samples of ovarian fluid without harming the animal and without pollution by contents of 

the cloaca. Secondly, blood plasma can be taken at any time, even during egg laying. 

Thirdly, blood can be collected repeatedly from the same individual. Earlier studies in 

domestic hens, which used fluid of the ovarian pockets, had to sacrifice the animals to 

collect the fluid (Ashizawa and Wishart 1992).  

We observed that the stimulating effect of blood plasma on sperm swimming 

speed was higher when the plasma came from a fertile duck (before or during egg-laying) 

than from a post-fertile, incubating duck. During egg-laying circulating calcium-levels 

peak in birds in general (Whittow 2000). In mallards, serum calcium content during egg 

laying (0.219 mg/ml) is twice as high as during incubation (0.103 mg/ml; Fairbrother et 

al. 1990). Because calcium is one of the major sperm activating factors in birds 

(Ashizawa et al. 2000), the elevated calcium concentration could potentially cause the 

observed effect. However, this is unlikely in our experiment, because the blood plasma is 

100-fold diluted in Ringer-Lactate buffer, which in itself contains high levels of calcium 

(0.072 mg/ml). Thus, variation in calcium content in the blood plasma is only going to 
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have a marginal effect on the total calcium concentration in the buffer solution. The same 

is true for the other ions like sodium.  

We suggest that female hormones might be responsible for the stimulating effect 

of sperm performance. Female hormones are not present in the buffer solution, but were 

added by the dilution with female blood. Changes in the hormonal constitution of female 

birds, in particular ducks, before and during incubation are well documented (Whittow 

2000). In mallards, prolactin levels increase, whereas progesterone drops dramatically 

with the onset of incubation (Hall 1991). Although to our knowledge no effect of female 

hormones on sperm activity in birds has been documented, a sperm stimulating quality of 

progesterone has been reported for mammalian sperm (e.g. Jaiswal et al. 1999, but see 

Jeon et al. 2001; Wang et al. 2001). Further experimental investigations are needed to 

validate the potential sperm activating influence of hormones, particularly those that are 

elevated during the fertile period of females.  

The relatedness between the female and the male did not bias sperm performance. 

Therefore, differential sperm activation based on genetic similarity seems less likely as a 

mechanism of cryptic female sperm selection in mallards, at least via substances that are 

also found in the blood plasma. This corroborates earlier experimental studies, which 

failed to show female sperm selection based on sperm genotype in this species 

(Cunningham and Cheng 1999; Denk et al. MS).  

Even though female blood plasma did not provide a discriminating environment 

for sperm selection based on relatedness, there were general differences between females 

in their sperm activating properties. Further detailed research has to be conducted to a) 

validate the use of blood plasma as a substitute of oviduct fluid and b) to identify factors 

in the female blood plasma, which are responsible for differential sperm stimulation (e.g. 

hormones, serum proteins, glucose or ATP content).  

Although we are aware of the limitations of our study, our results show that 

component(s) present in the female blood plasma have properties that mediate sperm 

performance and differ between females. Sperm motility may not be an absolute male 

trait, but rather be shaped by the interplay with the female environment. Further 

experimental studies and the application of a more adequate substrate (ovarian fluid) are 
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needed to validate our findings and to further investigate mechanisms and consequences 

of female influence on sperm performance. 
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ABSTRACT 

Behavioral observations and genetic evidence reveal that in many bird species females 

copulate with multiple partners. In such cases, male competition over fertilization 

continues even after copulation. The outcome of sperm competition depends both on the 

number of transferred sperm and on sperm quality. However, males are not unlimited in 

their ability to deliver optimal ejaculates and trade-offs exist between ejaculate frequency 

and quality. Here we report that sexual abstinence significantly increases sperm 

concentration and swimming speed in ejaculates of wild mallards (Anas platyrhynchos 

L.). Increased competitiveness of ejaculates due to infrequent copulations may be 

particularly beneficial for unpaired mallard drakes, which are commonly observed in 

male-biased populations of this socially monogamous duck species. These males are 

known to engage in forced extra-pair copulations and our study suggests that they may 

have a competitive advantage over paired males.  

 

 

 
 

                                                 
  submitted to The Condor, 15 January 2004 
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INTRODUCTION 

When a female copulates with several males, sperm from these males will compete 

within the female’ s reproductive tract to fertilize her ova (Parker 1970). If sperm 

competition is a raffle the number of transferred sperm will influence a male’ s 

fertilization success (Parker 1990). Indeed, there is evidence that sperm production is 

greater in species where sperm competition is more intense (Birkhead and Møller 1992, 

Parker et al. 1997) and individuals adjust the amount of transferred sperm according to 

the risk of sperm competition (Parker et al. 1997, Evans et al. 2003, Pizzari et al. 2003). 

However, not only sheer numbers, but also sperm quality determines fertilization success: 

males with more mobile or faster swimming sperm obtain more paternity than their 

opponents in direct competition with equal sperm numbers (domestic fowl Gallus gallus 

(Birkhead et al. 1999); turkey (Donoghue et al. 1999); mallard Anas platyrhynchos (Denk 

et al. MS).  

The production of ejaculates costs time and energy and males cannot produce 

limitless numbers of sperm (e.g. Dewsbury 1982; review in Wedell et al. 2002). Thus, the 

frequency of ejaculation can have a nontrivial impact on sperm number and quality and 

hence on the competitive ability of a male’ s ejaculate. Some studies on mammals have 

found negative associations between copulation rate and sperm numbers per ejaculate 

(e.g. Bencheikh 1995; Preston et al. 2001; Nizza et al. 2003) or sperm quality (motility 

and swimming speed: Bencheikh 1995; Thwaites 1995; Ambriz et al. 2002).  

In birds, few studies have investigated the relationship between copulation 

frequency and sperm quality, and the results are mixed. In zebra finches (Taeniopygia 

guttata), Birkhead et al. (1995) found that sperm motility and swimming speed were 

negatively influenced by ejaculation frequency. Contrary, in domestic chicken, 

individuals with a frequent ejaculation treatment had only marginally reduced sperm 

concentrations, and their sperm motility was higher than in birds with low ejaculation 

frequency (Fan et al. 2004). However this effect was only observed during the first two 

weeks of a four-week experiment and no significant difference was found during the last 

two weeks (Fan et al. 2004).  

Although in general, frequent copulations seem to reduce sperm concentration 

and sperm quality in a single ejaculate, the total amount of sperm inseminated via 
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frequent copulations may still be higher (weekly sperm production: Bencheikh 1995; Fan 

et al. 2004). Therefore, two different male sperm allocation strategies are conceivable. (1) 

Males may pursue frequent copulations with an overall high sperm output at the 

expenditure of the quality and competitive ability of a single ejaculate. This strategy 

might be typical for paired males. (2) Males may focus on rare copulation events, but at 

these single occasions they might be disproportionately successful due to superior 

ejaculates. This strategy may be used by unpaired males or by paired males that perform 

extra-pair copulations outside the fertile period of their social mate.  

Mallards are a socially monogamous species, but wild populations are typically 

male-biased and several drakes remain unpaired (Bellrose et al. 1961; Denk and 

Kempenaers MS). Extra-pair copulations are the only possibility for these males to 

reproduce. Unpaired and paired males are equally likely to attempt forced extra-pair 

copulations (captive mallards: Davis (2002); wild population: Cunningham (2003)) and 

the percentage of nests containing extra-pair young is high (an estimated 48-56%: Evarts 

and Williams (1987); Denk and Kempenaers MS). If copulation frequency negatively 

influences ejaculate quality, unpaired males may have a competitive advantage over 

paired males in gaining extra-pair paternity. 

We investigated the impact of ejaculation frequency on sperm competitive ability, 

by examining ejaculates of individual mallard drakes when their social partner was 

present (opportunity to copulate at a natural frequency) and after removal of their mate 

(only one ejaculate per week). We here report how ejaculate characteristics changed with 

treatment.  

 

 

MATERIAL AND METHODS 

The drakes used in this experiment (N=5 yearlings and N=4 two-year olds) were direct 

descendants of free-living mallards, but were hatched and raised in captivity (see Denk 

et. al MS). Before the experiment (August 2001 – January 2002), birds were kept in large 

outdoor aviaries (120-165 m2) in mixed flocks of equal sex ratios (24-34 animals), and 

allowed free mate-choice during autumn. From the end of January onwards, nine 

unrelated males were isolated with their female partner in small aviaries (2.4-6.1 m2, 
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including a water tub). From 24 April 2002 onwards, males were kept singly in the same 

aviary. 

The animals were not disturbed, except for feeding and cleaning of the aviaries, 

and for sperm collection (see below). During the breeding season ducks were fed 

commercial duck food particularly aligned for nutritious needs during reproduction 

(Anseres 4, Kasper Faunafood, Woerden, Netherlands) mixed with wheat. At least three 

times a week ducks received fresh lettuce and fresh mealworms were given as a reward 

after sperm collection.  

From February until mid of April drakes were trained for sperm collection to 

familiarize them with regular capture and handling for artificial sperm collection. We 

obtained sperm by following the massage procedure described in Lake and Stewart 

(1978). We collected sperm in a 1ml syringe at the base of the intromittent organ, where 

the sperm is ejaculated. To minimize fecal contamination of ejaculates we removed food 

the evening before the day of sperm collection. Food was replaced immediately after 

sperm collection and served as additional reward.  

Sperm was collected for analyses (a) in two consecutive weeks in April when the 

social partner was still present and (b) after female removal on a weekly basis until early 

June. During the first phase of sperm collection, females were removed one day before 

sperm collection to prevent copulation shortly before artificial stimulation, and returned 

immediately after sperm collection. Because we used the ejaculates for artificial 

inseminations, we considered only ejaculates containing at least 30% motile sperm (N=56 

ejaculates) for further analysis. In 22 cases we failed to obtain an ejaculate or sperm were 

immotile. This was independent of the presence of the drake’ s social partner (7 out of 20 

sperm collections (35%) failed when the female was present, whereas 15 out of 58 (26%) 

failed in her absence; Fisher’ s exact test: p=0.59). Sperm number and quality was 

determined as described in Denk et al. (MS). Briefly, sperm concentration was 

determined by counting three replicates of two sperm dilutions in an improved Neubauer 

counting chamber (repeatability r=0.93, n0=6, p<0.001, N=56 ejaculates). Sperm quality 

was analyzed using a computer-assisted sperm motion analysis system (Hobson Sperm 

Tracker; Hobson Tracking Systems Ltd, Sheffield, UK). As sperm diluent we used 

Ringer-Lactate solution (Ringer-Lactat after Hartmann, Z.Nr. 1-19.566, Mayrhofer 
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Pharmazeutika GmbH, 4020 Linz, Austria) (Humphrey 1972). For measurement of sperm 

quality, semen was diluted 10:1 with a TES-buffered saline solution containing blood 

plasma of an unrelated female to a final concentration of 3 million cells per ml. Sperm 

swimming in a MicroCell swimming chamber (50 µm depth; Conception Technologies, 

San Diego, USA) was videotaped for 15 min and in 2 min intervals straight line velocity 

(VSL) was measured (measurement repeatability r=0.74-0.85, n0=3, N=56 ejaculates, all 

p<0.001).  

To test the effects of isolation from the social partner on ejaculate characteristics 

(sperm concentration, sperm swimming speed), we used mixed models with male identity 

as a random factor. To test seasonal effects, date was included as a covariate. For sperm 

swimming speed each of four time intervals (0-2min, 4-6min, 8-10min, 12-14min) was 

analyzed separately. Male age was included in the initial models, but did not explain 

variation in sperm numbers or quality; age is therefore not mentioned further. We used 

Genstat 7.1.0.198. (Genstat 2003) for all statistical analyses.  

 

 

RESULTS 

Both sperm concentration and swimming speed were significantly higher when males 

were kept isolated from their social partner and natural copulations were prevented (Figs 

1 and 2, Table 1). When males delivered only one ejaculate per week after artificial 

stimulation, sperm concentrations were more than twice as high as in ejaculates obtained 

by the same method when natural copulations were possible during the week before 

sperm collection (Fig. 1). Straight-line velocity of swimming sperm also increased 

significantly after natural copulations were prevented (Fig. 2; Table 1). No seasonal trend 

in sperm concentration and swimming speed was observed (Table 1); only in ejaculates 

of the isolated males a seasonal decline in long-term swimming speed (VSL 12-14 min) 

was observed (N=42 ejaculates; REML: Wald F1=5.7, p=0.02).  
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Figure 1.  Removal of the social partner increases sperm concentration in mallard 

ejaculates (paired t-test, N=9 males, t=2.8, p=0.02). Shown are mean and 

standard error. 
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Figure 2.  Removal of the social partner increases sperm swimming speed (VSL) at all 

four observation intervals. Unfilled symbols indicate “ male plus female 

partner” ; filled symbols indicate “ male isolated” . Means predicted by the 

REML model (solid lines) are shown for illustration. For statistical details, see 

Table 1. 
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 Female effect Seasonal effect 

 Ejaculate characteristic Wald F p Wald F p 

 Sperm concentration 13.0 <0.001 0.1 0.79 

 Sperm swimming speed (VSL) 

 VSL 0-2 min 7.9  0.005 1.2 0.31 

 VSL 4-6 min 19.6 <0.001 0.9 0.49 

 VSL 8-10 min 9.9 0.002 1.2 0.28 

 VSL 12-14 min 8.4 0.004 1.5 0.15 

 

Table 1.  Influence of the presence of the social mate on ejaculate characteristics in nine 

mallards (N=56 ejaculates). The Wald statistic is shown, which follows a chi-

square distribution with df=1. 

 

 

DISCUSSION 

Ejaculate quality, measured as sperm concentration and sperm swimming speed, 

increased in mallard drakes after we removed their social mate. Both traits, which are 

known to be important determinants of success in sperm competition, thus depended on 

the copulation behavior of the male rather than being a constant male attribute.  

Although we sporadically observed copulations in the aviaries, we did not collect 

data on copulation frequencies for all birds. We nevertheless assume that the changes in 

ejaculate quality were a direct consequence of a change in copulation frequency after 

female removal. However, we cannot exclude that the changes are caused by a male’ s 

“ decision”  to invest more in sperm production after the “ loss”  of his social mate. This 

seems unlikely, because spermatogenesis itself takes too much time (e.g. 12.8 days in 

Japanese quail Coturnix coturnix japonica (Lin and Jones 1992)). Therefore, changes in 
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sperm concentration resulting from a decision to upregulate spermatogenesis would not 

be detectable within nine days as observed in our study.  

One could also argue that removing a duck from the aviary might have lowered 

social stress and resulted in increased sperm quality. However, this seems unlikely 

because males were kept together with their freely chosen social mate and neither 

aggressive behavior nor other signs of social stress were detected (e.g. missing feathers). 

Similarly, increased food availability appears unlikely to have caused elevated ejaculate 

quality, because ducks were always provided food ad libitum and malnutrition seems to 

have no effect on semen quality, at least in mammals (Thwaites 1995).  

Ejaculation frequency can limit the amount and quality of transferred sperm due 

to short-term effects like depletion of the male’ s sperm store (Birkhead 1991). This was 

observed in zebra finches, following several ejaculations in rapid succession (Birkhead et 

al. 1995). Birkhead et al. (1995) also reported a gradation of sperm quality within the 

seminal glomera, such that sperm motility increased towards the region nearest to the 

cloaca. This gradient was attributed to a maturation and sorting process.  

Lack of maturation time might also account for the long-term decline in sperm 

motility after an extended period of frequent copulations (see also Ambriz et al. (2002)). 

In birds sperm are still immotile, when they are released from the seminiferous 

epithelium (Ashizawa and Sano 1990). Maturation of avian sperm is envisioned to occur 

at the passage of the efferent ducts, where also sperm concentration increases due to 

absorption of the seminiferous tubule fluid (Whittow 2000). If ejaculations occur at a 

high frequency, this passage and residence time within the drake’ s sperm store in the 

ducti deferentes might be reduced. Therefore sperm release may take place before sperm 

maturation and concentration are fully completed. 

Limitations on sperm production can have severe effects on male reproductive 

success in wild populations. Preston et al. (2001) showed that copulation rates in a wild 

population of male soay sheep (Ovis aries) are negatively associated with sperm numbers 

per ejaculate. Thus, during sperm competition sperm of dominant, frequently copulating 

males can be outnumbered by sperm transferred in ejaculates of behaviorally subordinate 

males with intact sperm reserves (Preston et al. 2001). While copulation frequencies of 
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dominant males increase during the reproductive season, male limitation on ejaculate 

production accounts for the decline in the proportion of lambs sired by these males.  

Similarly the success of paired and unpaired mallard drakes may be influenced by 

copulation frequency. By observing a wild population of mallards, Cunningham (1997) 

estimated that pair copulations occur at a rate of 1.38 per day, whereas forced extra-pair 

copulations are half as frequent (0.78 per day). If these extra-pair copulations are pursued 

by paired and unpaired males at the same rate (Cunningham 2003), it can be assumed that 

on average paired males copulate more than four times as frequent than unpaired males. 

Because unpaired males copulate at a lower frequency they may deliver ejaculates of 

superior competitiveness compared with frequently copulating males and might be 

disproportionately successful in sperm competition at these rare occasions. Further 

observational and genetic analyses of paternity in wild mallard populations will be 

necessary to evaluate this hypothesis.  
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ABSTRACT 

The steroid hormone testosterone mediates the expression of many secondary sexual 

characters including behaviors, which influence male reproductive success. Testes are 

one of the major sources of androgens, in particular of testosterone. Although a positive 

relationship between testes size and testosterone levels could be hypothesized, it has 

rarely been tested intraspecifically. We investigated this link in mallards using a double-

antibody radio-immuno-assay (RIA) to measure hormone levels and x-rays to determine 

testes size. Here we report a positive correlation between both traits in a group of 13 

drakes during the reproductive season. Although the evolutionary causalities leading to 

this correlation are unclear, this relationship may have important implications for female 

mate choice. Female mallards prefer to mate with males with high spring testosterone 

levels. These males may better guard the female against forced extra-pair copulations, but 

females may also indirectly select for males with larger testes and hence a greater ability 

of sperm production.   
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INTRODUCTION 

The testes fulfill two important functions within the male body: spermatogenesis takes 

place in the seminiferous tubules of the testes (Whittow 2000) and the production of 

androgens (e.g. secretion of testosterone (T)) occurs in the Leydig cells of the interstitial 

tissue (Lofts and Murton 1973). Both gonadal functions strongly affect male reproductive 

success through male-male competition and mate choice. 

Sperm production and hence number of sperm transferred to the female is an 

important factor affecting fertilization success in situations of sperm competition (Parker 

1990). If testes size reflects sperm producing ability, as for example shown in domestic 

fowl (Gallus domesticus; de Reviers and Williams 1984), one can expect that gonadal 

size increases with increasing intensity of sperm competition. Indeed, interspecific 

comparative studies in various taxa support this prediction (e.g. birds: Møller 1991; 

specifically waterfowl: Coker et al. 2002; primates: Harcourt et al. 1981, Harcourt et al. 

1995; frogs: Byrne et al. 2002; fish: Stockley et al. 1997; butterflies: Gage 1994). 

Intraspecific variation in testes size also positively correlates with sperm competition 

intensity (Hosken and Ward 2001; Brown and Brown 2003) and success in obtaining 

paternity (Preston et al. 2003; Schulte-Hostedde and Millar 2004).  

Production of the sex steroid T influences male mating success (Andersson 1994) 

since T regulates the expression of many secondary sexual characters and sexual behavior 

(Wingfield et al. 2001). Because of immune-suppressive properties of T, traits influenced 

by this sex steroid may honestly reflect male quality (superior immune system), an idea 

formulated in the immunocompetence handicap hypothesis (Folstad and Karter 1992). 

Although the general validity of this concept requires further (experimental) studies 

(Roberts et al. 2004), it is clear that some sexually selected signals are T-dependent (e.g. 

Peters et al. 2000; Gonzalez et al. 2001).  

An interspecific analysis across 116 bird species revealed a positive association 

between T levels and testes size (Garamszegi et al. 2004), but only little information 

exists on the intraspecific level. In free-living red-winged blackbirds, testes size did not 

correlate with levels of circulating T, nor was there evidence for a relationship between 

testes size and parasite infection (Weatherhead et al. 1993). Some studies indirectly 

linked testes size with T levels taking size of secondary sexual traits and levels of parasite 
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infection as indirect measures of circulating sex steroids. In greenfinches (Carduelis 

chloris), males with larger testes had a brighter yellow plumage and were more likely to 

be infected by haematozoan parasites (Merila and Sheldon 1999). Although variation in 

plumage brightness is not necessarily caused by variation in T levels, both variables may 

be correlated and the results of Merila and Sheldon (1999) could be interpreted as males 

with larger testes signaling phenotypic quality at the cost of reduced immunocompetence 

caused by high T levels. However, in roosters a negative relationship between testes size 

and the intensity of helminth infections was observed (Zuk et al. 1990), leaving 

conclusions of links between testes size and T levels ambiguous.  

 The aim of this study was to investigate whether an intraspecific correlation 

between testes size and circulating T levels exists. As a model species we chose mallards, 

a socially monogamous duck species that exhibits frequent extra-pair copulations 

(McKinney et al. 1983; McKinney and Evarts 1998). Levels of extra-pair fertilization are 

high (Evarts and Williams 1987; Denk and Kempenaers MS) and selection should thus 

favor high levels of sperm production. In mallards females show strong preferences for 

males with higher T levels (Klint 1985; Schmedemann and Haase 1985; Klint et al. 1989; 

Davis 2002b). A tradeoff between T-dependent male signals and immune investment may 

exist in this species, because a nonpathogenic immune challenge caused a substantial 

decline in T levels (Peters et al. 2004a). Therefore, if high levels of T constitute a high 

cost in this species, testes size, which can be selected to maximize sperm production, and 

T secretion might be decoupled. Alternatively, if both traits are linked, T-dependent traits 

may not only represent an honest signal of immune competence, but also indicate high 

levels of sperm production.  

 

 

MATERIAL AND METHODS 

Drakes were direct descendants of five pairs of wild mallards (caught at Lake Starnberg 

(47º54’ N, 11º18’ E) and Lake Ammer (48º00’ N, 11º08’ E), Southern Germany). All 

individuals used in this study were yearlings, which we had hatched and raised in 

captivity (see Denk et. al MS). Kinship of the drakes was known and confirmed by 
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microsatellite analysis (see Denk et al. MS). We used on average 2.6 males per family 

(range: 1–5).  

Until the beginning of the breeding season (March 2001) we kept mallards in two 

mixed-sex flocks to allow normal sexual maturation (aviary size: 120 m2 and 405 m2). At 

the start of the reproductive season, we separated males and females in adjacent aviaries, 

so that visual and acoustic contact remained possible. We kept the males in two groups: 

30 individuals in an aviary of 150 m2 and 15 individuals in an aviary of 52 m2. Ducks 

were habituated to human presence in the aviaries and to regular capture. We provided ad 

libitum commercial duck food particularly designed for nutritious needs during 

reproduction (Anseres 4, Kasper Faunafood, Woerden, Netherlands) mixed with wheat. 

At least three times a week ducks received fresh lettuce.   

We collected blood samples from nine males in the first group (7 May 2001), and 

from four males in the second group (8 May 2001). Blood was taken between 12:30 and 

15:30, when plasma T levels show their daily peak during the reproductive season in 

mallards (Balthazart and Hendrick 1979). Immediately after blood collection we 

centrifuged blood samples for 3 min at 2000 g. After transfer to the lab, we centrifuged 

the samples for another 5 min at 13000 g before we separated blood plasma from blood 

cells and stored it at –70Û&�XQWLO�DQDO\VLV��9HW0HG/DERU��/XGZLJVEXUJ��*HUPDQ\��
determined T concentration using a direct double-antibody radioimmuno-assay (RIA; 

DSL-4100, Diagnostic Systems Laboratories; for details see Peters et al. 2004a).  

After blood collection we measured beak length (from tip of the beak to the start 

of the feathers) and width, head length and tarsus length using calipers, and foot size 

using a ruler. We took all measurements to the nearest millimeter and weighed all birds to 

the nearest gram (balance: Sartorius AG Göttingen). 

One-two days after blood collection (8 and 10 May) a veterinary (Dr. Fries, 

Pöcking, Germany) x-rayed (62 kV, 0.05 sec) the drakes from the dorsal side. We 

measured testis length and width on the x-ray images using calipers (left and right testis; 

to the nearest 0.1 mm). We calculated testis volume using the equation  

    9 ������ ��D2 * b  
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where a is length and b is width (assuming an ellipsoid testis shape; see Møller 1991). 

We used the mean specific gravity of bird testes (1.087 g cm-3; Møller 1991) to estimate 

testis mass.  

To analyze the relation between testes size (testes mass) and levels of circulating 

T, we used mixed models (REML). There was some indication of a family effect on T-

level (oneway ANOVA: F4,8=4.93, p=0.027). Therefore we controlled for family effects 

by including family identity as a random factor in the model, even though the change in 

deviance after including/excluding it from the model was not significant (p=0.15). We 

also included aviary as a random factor; this effect was not significant (p=0.86) and we 

excluded it from the final model.  

To control for allometric effects of testes size we used “ relative testes mass”  

calculated as total testes mass (sum of right and left testis) divided by body mass. We 

repeated the analysis with absolute total testes mass as the dependent variable, and body 

mass as a covariate. Both methods yielded similar results, so we only report the latter. 

The relationships between total testes mass and body condition respectively structural 

size were analyzed in the same way. As a measure of structural size we used the first 

principal component (PC1) explaining 83.6 % of variation in bill length and width, head, 

tarsus and foot length. For REMLs and principal component analysis we used Genstat 

7.1.0.198 (Genstat 2003); we performed all other statistical analyses with SPSS (12.0.1). 

All tests are two-tailed.  

 

 

RESULTS 

Testes exhibited significant asymmetry, with the left testis being larger than the right one 

in all 13 individuals (Table 1). Size of left and right testis was positively correlated 

(Table 1). Testes mass was not associated with body mass (REML: Wald F1=0.02, 

p=0.89) or structural size (REML: Wald F1=0.01, p=0.92). Plasma levels of T were 

positively correlated with total testes mass (REML: Wald F1=5.17, p=0.023; Figure 1), 

while controlled for body size (REML: Wald F1=8.67, p=0.003).  
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Testis Left Right paired t-test Pearson correlation 

length [cm] 5.0±7.4 4.3±8.5 t=7.52, p<0.001 r=0.93, p<0.001 

width [cm] 2.4±0.3 2.3±0.3 t=2.52, p=0.027 r=0.91, p<0.001 

volume [cm3] 15.5±6.7 12.4±6.3 t=5.96, p<0.001 r=0.91, p<0.001 

mass [gram]    16.6±7.2   13.3±6.8 t=6.02, p<0.001 r=0.96, p<0.001 

 

Table 1.  Measurements of left and right testes in 13 mallard drakes during the 

reproductive season. 

 

 

 

 

Figure 1.  Levels of testosterone in blood plasma increase with relative testis mass. 
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DISCUSSION 

This study shows a positive correlation between relative testes size and plasma levels of 

circulating T in a group of male mallards during the reproductive season. A similar 

positive relationship was shown in a comparative study across 116 bird species 

(Garamszegi et al. 2004). Species with smaller relative testes size have lower peak 

plasma T levels compared with species with larger relative testes size. Here we show that 

this relationship also exists at the intraspecific level. However the causality remains 

unclear. High T levels may regulate testes size, as they influence the secretion of 

gonadotropin-releasing hormones (Wingfield and Moore 1987) and are found to prevent 

testicular regression (Lofts and Murton 1973). Alternatively larger testes may simply 

contain more hormone producing tissue (Leydig cells) and therefore produce more 

androgens.  

Garamszegi et al.’ s (2004) comparative analysis suggested that peak testosterone 

level, level of extra-pair paternity and relative testes mass coevolved. They hypothesized 

that the most likely evolutionary scenario is that testes mass primarily evolved to allow 

intense sperm competition and increased T production was secondly favored for 

defending females against threats of extra-pair copulations. Although our study does not 

allow to evaluate this, we discuss potential implications of a correlation between testes 

size and T levels in mallards. 

Mallards show high levels of extra-pair paternity (Evarts and Williams 1987; 

Denk and Kempenaers MS), suggesting that sperm competition is intense. Success in 

sperm competition is partly determined by the numbers of inseminated sperm (Parker 

1990). Maximizing sperm numbers can be achieved by increasing the testes size, but also 

variation in T-levels may influence sperm numbers, because T in synergy with FSH 

(follicle-stimulating hormone) promotes sperm production (Wingfield and Moore 1987; 

McLachlan et al. 1996; Kirby and Froman 2000).  

Fertilization success under sperm competition also depends on sperm quality (in 

mallards, see Denk et al. MS), which may also be influenced by T levels. This can 

happen in two ways. First, high T levels may down-regulate the immune system (Folstad 

and Karter 1992), thereby reducing autoimmune reactions against own sperm (Folstad 

and Skarstein 1997; Hillgarth et al. 1997). Second, T reduces the immune defense against 
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parasites (Folstad and Karter 1992, but also see Roberts et al. 2004). This can be crucial 

under sperm competition, because even infections with non-gonadal parasites negatively 

affect ejaculate quality (e.g. nematode infection in arctic charr (Salvelinus alpinus): 

Liljedal et al. 1999; further citations see Folstad and Skarstein 1997). Therefore only 

males with high parasite resistance may be able to afford high levels of circulating T 

without reducing sperm quality and hence ejaculate competitiveness.  

High levels of extra-pair paternity also mean challenges for males at the 

behavioral level. Males have to guard and defend their social mate, and might also 

increase their fitness by pursuing extra-pair copulations themselves. Both behaviors are T 

dependent. In mallards, males with high levels of T are better at defending their social 

mate (Davis 2002a), and forced copulation behavior is positively correlated with T levels 

(Davis 2002b). During pair formation in autumn (Williams 1983), females prefer drakes 

that have high T levels in spring (Davis 2002a), probably because they benefit through 

increased protection against forced copulation attempts by other males (Davis 2002a). 

However, assuming a positive correlation between T levels and testes size, females may 

also benefit because their males will have a higher sperm producing ability. This may be 

advantageous for females in two ways: first they may ensure fertilization by their mate 

(even after forced copulations) and reduce the risk of sperm depletion. Second, if testes 

size is a paternally inherited trait, females would produce sons that have a reproductive 

advantage. Also other cues (yellow bill), which indicate the male’ s future reproductive 

quality (sperm quality) (Peters et al. 2004b), were found to be important for mate choice 

in autumn (Omland 1996a, 1996b).  

In waterfowl species, a positive correlation between the occurrence of extra-pair 

paternity and testes size has been reported (Coker et al. 2002). This correlation is seen as 

evidence for increased sperm production driven by selection via sperm competition. 

However, also T levels may be under selection in scenarios of increased extra-pair 

paternity and as our study shows these T levels also correlate with testes size.  
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SUMMARY 

 

This study examines male and female influence on reproductive success in mallards 

(Anas platyrhynchos).  

 

Chapter One investigates three notable features of the breeding system in wild mallard 

populations (Lake Starnberg and Lake Ammer, Southern Germany) based on 

microsatellite analysis of 41 clutches. First, adult populations are male biased, although 

mallards form social monogamous pairs and unpaired males may suffer reduced 

reproductive success. We show that this male surplus is already prevalent at egg laying 

(60% males). Second, egg dumping is a common female strategy in waterfowl and 

increases reproductive output of parasitic females. We report on high levels of brood 

parasitism in a mallard population with high nesting density (53%) whereas no egg 

dumping was observed under low nesting density. Finally, forced extra-pair copulations 

are commonly pursued by drakes. We assess the level of extra-pair paternity (56% of 

broods containing extra-pair young), which so far is the highest reported in waterfowl. 

However extra-pair fertilization was lower than expected from rates of extra-pair 

copulations described in literature. 

 

Chapter Two experimentally examines the relevance of postcopulatory female control of 

male fertilization success in comparison to sperm competition. By artificially 

inseminating groups of four sisters with a sperm mixture containing equal sperm numbers 

of one brother and one unrelated male we did not observe any effect of parental 

relatedness on gain of paternity. However male reproductive success was significantly 

influenced by long-term sperm performance (sperm motility, sperm swimming speed).  

 

Chapter Three investigates whether the female environment differentially influences 

sperm activity (concentration of motile sperm, sperm swimming speed). To test sperm 

activity in different female environment we measured sperm swimming in buffer and 

added female blood plasma. Again no effect of genetic relatedness was observed, but 

female reproductive status significantly influenced the amount of motile sperm and sperm 
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swimming speed. Furthermore we observed a strong individual female effect on sperm 

activity. 

 

Chapter Four discusses the relationship between frequent copulations and ejaculate 

quality (sperm concentration, sperm swimming speed). After males were prevented to 

copulate with their social partner, sperm concentration and sperm velocity increased 

significantly. Therefore number of copulations trade against competitiveness of single 

ejaculates.  

 

Chapter Five describes the positive relationship of testis size and circulating levels of 

testosterone in mallard drakes during the reproductive season. 
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CONCLUSION AND OUTLOOK 

 

We found that extra-pair fertilizations in free-living mallards are less common than 

expected based on previously reported copulation frequencies. This could be the result of 

counteracting strategies of the social male (e.g. forced within-pair copulations) or be due 

to cryptic female choice. This study provides evidence that cryptic female sperm 

selection within the female reproductive tract purely based on sperm genotype (selection 

criterion: relatedness) is less important in determining paternity success than sperm 

competition. It remains to be investigated whether females can use additional cues 

obtained during natural matings to select sperm and/or whether they use other 

mechanisms to bias male fertilization success in their interest (e.g. sperm ejection, 

differential utilization of separated ejaculates). Moreover it remains to be evaluated to 

what extent selecting sperm via sperm competition per se is beneficial to female mallards 

(sexually selected sperm hypothesis).  

 

This study highlights the importance of sperm quality (motility and swimming speed) for 

the gain of paternity in a competitive situation. However we also show that sperm 

swimming speed is not simply a male characteristic but is also shaped by the female 

environment. How this female-mediated effect affects male reproductive success and 

whether this can serve as a female mechanism to select sperm (based on other attributes 

than genetic relatedness) warrants further research.  

 

Competitiveness of ejaculates (sperm concentration, swimming speed) was also 

influenced by the male reproductive behavior (copulation frequency). Potential 

alternative reproductive strategies of paired males (frequent copulations, reduced 

ejaculate quality) and unpaired drakes (rare copulations, superior ejaculate quality) may 

help to understand the paradoxical existence of a significant male surplus in primary and 

adult sex ratios in a socially monogamous species. Paternity analyses in wild populations 

will be necessary to further evaluate the existence and relative success of different 

reproductive strategies. 
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Finally we observed a positive correlation between levels of circulating testosterone (T) 

and testis size during the reproductive season. As shown for many species, testes size 

generally correlates with sperm production. Because females prefer to mate with males of 

higher spring T-levels during the pairing season in autumn, we suppose that females at 

the same time select males capable of higher sperm production.  
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APPENDIX 

 

SEVEN POLYMORPHIC MICROSATELLITE LOCI FOR PATERNITY 

ASSESSMENT IN THE MALLARD (ANAS PLATYRHYNCHOS L.) 

 

 

A. Denk, B. Gautschi, K. Carter & B. Kempenaers 

 

 

 

 

 

ABSTRACT 

We describe seven polymorphic microsatellite loci for the mallard (Anas platyrhynchos). 

The microsatellites presented here are highly polymorphic with on average 12 alleles in a 

sample of 15 presumably unrelated individuals. Therefore they enable detailed parentage 

analysis in wild mallard populations, and can be used to answer many intriguing 

questions in behavioral ecology and evolutionary biology. 

 

 

 

 
 

                                                 
  Molecular Ecology Notes 4(3): 506-508. (2004). 
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INTRODUCTION 

Wild mallards recently became the target of growing interest in behavioral ecology and 

evolutionary biology for several reasons. First, in this seasonally sexually dimorphic 

species males exhibit conspicuous traits like the yellow bill, which became subject of 

recent observational and experimental studies. Omland (1996a; 1996b) showed that 

females base their mate preference on multiple male ornaments, in particular on the bill. 

Peters et al. (2004) correlated bill color with measures of immunocompetence and sperm 

quality, suggesting that it is an honest signal of male quality or condition. However, how 

these traits translate into actual reproductive success of male mallards is still unclear and 

deserves further study. The second remarkable feature of this species is that although 

mallards form stable socially monogamous pairs, females face frequent forced 

copulations by other males. This behavior is particularly interesting for studies on sperm 

competition and female strategies to bias paternity in their own interest (e.g. cryptic 

female sperm choice). However, only few data on parentage (e.g. levels of extra-pair 

paternity) in wild mallard populations are available yet (only one study, using 8 allozyme 

loci with a low general exclusion probability (p=0.539; Evarts and Williams 1987)). 

Finally, ducks are among those species where intra- and interspecific brood parasitism is 

common (Dugger and Blums 2001; Poysa 2003; Semel and Sherman 1992; Semel et al. 

1988; Wilson 1990), but precise data for mallards are lacking. Studies on paternity and 

maternity greatly benefit from the use of microsatellite markers. These became available 

only very recently for the Peking duck, a domestic form of Anas platyrhynchos (Maak et 

al. 2000; Maak et al. 2003). However these markers show relatively little polymorphism 

(7 markers, number of alleles NA=1-5, mean HE=0.45, N=32 individuals, Maak et al. 

2000; 18 markers, NA=1-6, mean HE=0.49, N=40 individuals, Maak et al. 2003), which 

restricts their use for parentage analysis. Here we report on the isolation of seven 

additional highly polymorphic microsatellite markers, which were developed particularly 

for parentage analysis in the wild mallard.  
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MATERIAL AND METHODS 

A blood sample was collected from a single mallard, born in captivity from parents 

caught at Lake Starnberg (47º54’ N/11º18’ E), Southern Germany. The sample was stored 

in Queen’ s Lysis buffer (0.01 M Tris, 0.01 M NaCl, 0.01 M Na-EDTA, 1% n-

Lauroylsarcosine; adjusted to pH8) and genomic DNA was extracted with the GFXTM 

Genomic Blood DNA Purification Kit (Amersham Pharmacia Biotech Inc., USA) 

according to the manufacturer’ s protocol. An enriched library was made by ECOGENICS 

GmbH (Zurich, Switzerland) from size-selected genomic DNA ligated into TSPAD-

linker (Tenzer et al. 1999). The genomic library was enriched by magnetic bead selection 

with biotin-labelled (CA)20 and (GA)20 oligonucleotide repeats (Gautschi et al. 2000a; 

Gautschi et al. 2000b). Of 768 recombinant colonies, 133 gave a positive signal after 

hybridization. Plasmids of 37 clones were sequenced and primers were designed for 7 

microsatellite loci, which were tested for polymorphism. We confirmed that none of the 

newly isolated microsatellites was identical to the loci isolated for the Peking duck 

previously (Maak et al. 2000; Maak et al. 2003).  

We assayed variation among 15 presumably unrelated individual mallards, caught 

at 15 different locations at Lake Starnberg (approx. 65 km2) and Lake Ammer 

(48º00’ N/11º08’ E; approx. 60 km2), Southern Germany. Genomic DNA was extracted as 

described above. To assess the level of polymorphism we performed polymerase chain 

reaction (PCR) amplifications in D���� /�UHDFWLRQ�YROXPH�FRQWDLQLQJ�10 ng genomic 

'1$������ P�G173������� /�RI�D����%RYLQH�6HUXP�$OEXPHQ������P0�0J&O2, 10 mM 

10 x Mg-IUHH�EXIIHU��3URPHJD������ 0�RI�HDFK�IRUZDUG�DQG�UHYHUVH�SULPHU�DQG�����XQLWV�
of Taq DNA polymerase (Promega). Forward primers were labeled with fluorescent dyes 

(Apl2 – TET, Apl11 – NED, Apl12 – 6-FAM, Apl14 – TET, Apl23 – NED, Apl26 – 6-

FAM, Apl36 – PET; Applied Biosystems). We used the following PCR profile on a 

GeneAmp® PCR System 2700 (Applied Biosystems): initial denaturation at 95 °C for 5 

min followed by 30 cycles with 95°C for 30 sec, annealing temperature 60 °C (all primer 

pairs) for 30 sec and 72°C for 30 sec. After the last cycle, elongation at 72 °C was 

prolonged for 8 min. Amplified fragments were resolved on an ABI Prism 310 Genetic 

Analyzer (Applied Biosystems). Expected and observed heterozygosity were determined 
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and exact tests for departure from Hardy-Weinberg equilibrium (HWE) were performed 

using GENEPOP on the web (http://wbiomed.curtin.edu.au/genepop/).  

 

 

RESULTS 

All seven microsatellite loci show high levels of polymorphism (NA=10-14, mean 

HE=0.86, mean HO=0.77, Table 1). Only one marker (Apl23) significantly deviated from 

HWE (p<0.05). Linkage could not be excluded for Apl11-Apl14, Apl12-Apl23 and 

Apl14-Apl23 (0.001<p<0.05). However, when the analysis was repeated with a different 

set of individuals (N=15), replacing nine individuals by their social partner, no linkage 

disequilibrium was observed (p>0.05). Across all seven loci the general exclusion 

probability is p>0.999 (Jamieson and Taylor 1997). Even if only one parent is known, the 

exclusion probability remains high (p=0.998). Thus, the highly polymorphic loci 

presented here substantially expand the available marker set developed for the domestic 

Peking duck (Maak et al. 2000; Maak et al. 2003) and should be valuable for applications 

in population genetic studies, and in particular for studies on paternity (e.g. extra-pair 

paternity studies) and maternity (brood parasitism).  
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LOCUS 
Repeat motif based 
on sequence clone 

Primer sequence (5’ -3’ ) Ta (ºC) 
No. of 
alleles 

Size- 
Range (bp) 

HO HE 
Accession 
no. 

Apl2 
(CA)15GA(CA)32 

AAA(CAA)4 
F: GATTCAACCTTAGCTATCAGTCTCC 
R: CGCTCTTGGCAAATGTCC 

60 12 96-140 0.93 0.90 AY498540 

Apl11 (GA)25 
F: AACTACAGGGCACCTTATTTCC 
R: TTGCATCAGGGTCTGTATTTTC 

60 13 92-136 0.87 0.87 AY498541 

Apl12 (GA)27 
F: AGTTGACCCTAATGTCAGCATC 
R: AAGAGACACTGAGAAGTGCTATTG 

60 10 112-155 0.73 0.80 AY498542 

Apl14 
(CA)6CG(CA)4TA 
(CA)4TA(CA)10 

F: CCTTTTCCAAGGGGCTACAC 
R: CTCTTCCCCAAAACGTCATC 

60 14 117-175 0.87 0.90 AY498543 

Apl23 
(TG)13(TC)3(TG)2TC
CG(TG)3TCTN(TG)7

CG(TG)2(TC)3TG 

F: GAAGAGGCAGTGGCAACG 
R: GCTGAGATGCTCCCAGGAC 

60 11 141-265 0.53 0.84 AY498544 

Apl26 (CA)11(GA)9 
F: AACAGGGATAACATGAGAAGTGG 
R: TGAGCAGCTGTCTGGTATCTATTC 

60 11 138-156 0.73 0.88 AY498545 

Apl36 

(CA)13GA(CA)3(GA)
2(CA)2GA(CA)10GA 
(CA)7GA(CA)2TA 
(CA)5 

F: ATGCTTTGCTGTTGGAGAGC 
R: TCCACTGGGTGCAAACAAG 

60 13 146-229 0.73 0.85 AY498546 

 

F, forward primer; R, reverse primer; Ta, optimal annealing temperature; HO, observed heterozygosity; HE, expected heterozygosity.  
 

Table 1.  Characterization of seven microsatellite loci from Anas platyrhynchos (N=15 individuals genotyped)
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1992 Dr. Heel śche Studienstiftung 
1993-1998 fellow of the Konrad-Adenauer-Stiftung e.V. (KAS) 
1998, June fellow of the graduate program of the Cusanuswerk 
1999, July - 2002, Sep.  fellow of the graduate program of the KAS 
2002, Jan. – 2004, July “ e-fellow”  scholarship 
 
WORKING EXPERIENCE: 
1994, Oct.-Dec.  Landcare Research New Zealand Limited, Hamilton, NZ 
Practical assistant Conservation program to recover a population of  
 North Island Kokako, an endemic forest bird species 



CURRICULUM VITAE 

 133

 
1995, Jan.-Apr. Institute of Ecosystem Studies, Millbrooke, NY, USA  
Practical assistant Project: Cladoceran dynamics and the Recruitment of 

Larval Morone spp. in the Hudson River Estuary 
  

1995, Jun.-Jul. Department of Biophysics and Physical Biochemistry  
Practical assistant University of Regensburg, Germany  
 Project: in vivo-function of the chaperone Hsp90 
 
1995, Aug. Institute for Limnology, Austrian Academy of Science,  
Practical assistant  Lunz, Austria   

Project: drift of Ephemeroptera-larvae in a mountain 
river  

 
1996, Mar.-Apr. MPI for Limnology, Plön, Germany 
Practical assistant Project: coexistence-experiments of Daphnia-Taxa and 

their Hybrids in Mesocosms (plankton towers) 
 
1998, Nov. – 1999, Dec. Department of Evolutionary Biology, University of 
Research assistant  Konstanz, Germany 

Projects: phylogeny and evolution of parental care in the 
Tilapiine; revision of the origin of tetrapods by 
sequencing the complete mitochondrial genomes of the 
South-American and Australian lungfish  

 
 
 
 
PUBLICATIONS 
 
Spaak P, Denk A, Boersma M   Spatial and temporal patterns of sexual reproduction in a  
& Weider LJ, 2004   hybrid Daphnia species complex  
Journal of Plankton Research 26(6): 625-635. 
 
Peters A, Delhey K, Denk A   Tradeoffs between immune investment and sexual  
& Kempenaers B, 2004. signaling in male mallards 
American Naturalist 164(1): 51-59. 
 
Peters A, Denk A, Delhey K   Carotenoid-based bill colour as an indicator of  
& Kempenaers B, 2004.  immunocompetence and sperm performance in male 

mallards  
Journal of Evolutionary Biology 17(5): 1111-1120. 
 
Denk A, Gautschi B, Carter K   Seven polymorphic microsatellite loci for paternity  
& Kempenaers B, 2004.  assessment in the mallard (Anas platyrhynchos)  
Molecular Ecology Notes 4(3): 506-508. 
 



CURRICULUM VITAE 

 134

Brinkmann H, Denk A, Joss JJ  Complete mitochondrial genome sequences of the South 
& Meyer A  American and the Australian lungfishes: testing of the  
Journal of Molecular Evolution.  phylogenetic performance of mitochondrial data sets for  
In press. phylogenetic problems in tetrapod relationships 
 
 
 
Denk A, Brinkmann H, Zitzler J,  Lepidosiren paradoxa mitochondrion, complete genome 
Joss JJ & Meyer A  (Genebank accession no: NC_003342) 
Entrez Nucleotides database 
 
Denk A, Brinkmann H, Zitzler J,  Neoceratodus forsteri mitochondrion, complete genome 
Joss JJ & Meyer A  (Genebank accession no: NC_003127) 
Entrez Nucleotides database 
 
Denk A, Gautschi B, Carter K   Anas platyrhynchos, seven microsatellite loci 
& Kempenaers B (Genebank accession no: AY498540-AY498546) 
Entrez Nucleotides database 



 

135 

 
 
 
 
 
 
 
 
 

 

ERKLÄRUNG 

 
 
 

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst und keine 

anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. 


