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Robert Frost:
On Looking Up By Chance At The Constellations

You’ll wait a long, long time for anything much
To happen in heaven beyond the floats of cloud
And the Northern Lights that run like tingling nerves.
The sun and moon get crossed, but they never touch,
Nor strike out fire from each other nor crash out loud.
The planets seem to interfere in their curves
But nothing ever happens, no harm is done.
We may as well go patiently on with our life,
And look elsewhere than to stars and moon and sun
For the shocks and changes we need to keep us sane.
It is true the longest drought will end in rain,
The longest peace in China will end in strife.
Still it wouldn’t reward the watcher to stay awake
In hopes of seeing the calm of heaven break
On his particular time and personal sight.
That calm seems certainly safe to last to-night.
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1. Abstract

Methods for detecting and characterising clusters of galaxies

The main theme of this PhD-thesis is the observation of clusters of galaxies at submillimetric wavelengths. The
Sunyaev-Zel’dovich (SZ) effect due to interaction of cosmic microwave background (CMB) photons with electrons
of the hot intra-cluster medium causes a distinct modulation in the spectrum of the CMB and is a very promising tool
for detecting clusters out to very large distances. Especially the European PLANCK-mission, a satellite dedicated
to the mapping of CMB anisotropies, will be the first experiment to routinely detect clusters of galaxies by their
SZ-signature. This thesis presents an extensive simulation of PLANCK’s SZ-capabilities, that combines all-sky
maps of the SZ-effect with a realisation of the fluctuating CMB and submillimetric emission components of the
Milky Way and of the Solar system, and takes instrumental issues such as the satellite’s point-spread function, the
frequency response, scan paths and detector noise of the receivers into account.

For isolating the weak SZ-signal in the presence of overwhelming spurious components with complicated corre-
lation properties across PLANCK’s channels, multifrequency filters based on matched and scale-adaptive filtering
have been extended to spherical topologies and applied to simulated data. These filters were shown to efficiently
amplify and extract the SZ-signal by combining spatial band-filtering and linear combination of observations at
different frequencies, where the filter shapes and the linear combination coefficients follow from the cross- and
autocorrelation properties of the sky maps, the anticipated profile of SZ clusters and the known SZ spectral de-
pendence. The characterisation of the resulting SZ-sample yielded a total number of 6× 103 detections above a
statistical significance of 3σ and the distribution of detected clusters in mass, redshift, and position on the sky.

In a related project, a method of constructing morphological distance estimators for resolved SZ cluster images
is proposed. This method measures a cluster’s SZ-morphology by wavelet decomposition. It was shown that the
spectrum of wavelet moments can be modeled by elementary functions and has characteristic properties that are non-
degenerate and indicative of cluster distance. Distance accuracies following from a maximum likelihood approach
yielded values as good as 5% for the relative deviation, and deteriorate only slightly when noise components such
as instrumental noise or CMB fluctuations were added. Other complications like cool cores of clusters and finite
instrumental resolution were shown not to affect the wavelet distance estimation method significantly.

Another line of research is the Rees-Sciama (RS) effect, which is due to gravitational interaction of CMB photons
with non-stationary potential wells. This effect was shown to be a second order gravitational lensing effect arising
in the post-Newtonian expansion of general relativity and measures the divergence of gravitomagnetic potentials
integrated along the line-of-sight. The spatial autocorrelation function of the Rees-Sciama effect was derived in per-
turbation theory and projected to yield the angular autocorrelation function while taking care of the differing time
evolution of the various terms emerging in the perturbation expansion. The RS-effect was shown to be detectable by
PLANCK as a correction to the primordial CMB power spectrum at low multipoles. Within the same perturbative
formalism, the gravitomagnetic corrections to the autocorrelation function of weak gravitational lensing observ-
ables such as cosmic shear could be determined. It was shown that those corrections are most important on the
largest scales beyond 1 Gpc, which are difficult to access observationally. For contemporary weak lensing surveys,
gravitomagnetic corrections were confirmed not play a significant role.

A byproduct of the simulation of CMB fluctuations on the basis of Gaussian random fields was a new way of gen-
erating coded mask patterns for X-ray andγ-ray imaging. Coded mask cameras observe a source by recording the
shadow cast by a mask onto a position-sensitive detector. The distribution of sources can be reconstructed from this
shadowgram by correlation techniques. By using Gaussian random fields, coded mask patterns can be specifically
tailored for a predefined point-spread function which yields significant advantages with respect to sensitivity in the
observation of extended sources while providing a moderate performance compared to traditional mask generation
schemes in the observation of point sources. Coded mask patterns encoding Gaussian point-spread functions have
been subjected to extensive ray-tracing studies where their performance has been evaluated.
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Abstract

Methoden zum Aufspüren und Charakterisieren von Galaxienhaufen

Das zentrale Thema dieser Dissertation ist die Beobachtung von Galaxienhaufen bei Millimeter-Wellenlängen. Der
Sunyaev-Zel’dovich (SZ) Effekt, der durch die Wechselwirkung der Photonen des kosmischen Mikrowellenhinter-
grundes (CMB) mit Elektronen des heißen intra-Cluster Mediums im Zentrum von Galaxienhaufen hervorgerufen
wird, verursacht eine Modulation des CMB-Spektrums und ist eine sehr vielversprechende Technik, Galaxien-
haufen bis zu sehr großen Abständen zu entdecken. Vor allem der europäische PLANCK-Satellit, der die Kartogra-
phie der CMB-Anisotropien zur Aufgabe hat, wird das erste Observatorium sein, das routinemäßig Galaxienhaufen
durch ihre SZ-Signatur aufspürt. In dieser Dissertation wird eine detaillierte Simulation der SZ-Beobachtungen mit
PLANCK beschrieben, die Himmelskarten des SZ-Effekts mit Fluktuationen des Mikrowellenhintergrundes und
Vordergrundemissionen der Milchstraße und des Sonnensystems verbindet. Instrumentelle Komplikationen wie
die Ortsauflösung der Optik, die Frequenzfenster der Radioempfänger, das Scan-Muster und das Detektorrauschen
wurden berücksichtigt.

Um das schwache SZ-Signal zu isolieren, das durch die um ein Vielfaches stärkeren Vordergründe überdeckt
ist, wurden Multifrequenz-Filter basierend auf demmatched filter-und demscale-adaptive filter-Algorithmus auf
sphärische Topologien erweitert und auf die simulierten Daten angewendet. Es wurde gezeigt, dass diese Filter das
SZ-Signal effizient verstärken und extrahieren können, was durch die Kombination von räumlichen Filtern und Lin-
earkombination verschiedener Karten geschieht. Die Filterformen und Koeffizienten der Linearkombination folgen
aus den Kreuz- und Autokorrelationseigenschaften der Himmelskarten, dem erwarteten SZ-Profil der Galaxien-
haufen und dem bekannten spektralen Verlauf des SZ-Effekts. Der resultierende SZ-Katalog, der 4× 103 Einträge
mit Signifikanzen größer als 3σ umfasst, wurde in Bezug auf die Verteilung der detektierten Galaxienhaufen in
Masse, Rotverschiebung und Position untersucht.

In einem verwandten Projekt stelle ich eine Methode vor, mittels derer der Abstand eines SZ-Galaxienhaufens
durch seine Morphologie abgeschätzt werden kann. In dieser Methode wird die Morphologie eines Galaxienhaufens
durch Wavelets analysiert. Es konnte gezeigt werden, dass das Spektrum der Wavelet-Momente durch elementare
Funktionen beschrieben werden kann und charakteristische Eigenschaften hat, die nicht-entartet sind und Indika-
toren für den Abstand des Galaxienhaufens sind. Die Genauigkeit der Abstandsmessung, die wahrscheinlichkeits-
theoretisch bestimmt wurde, ergibt Werte von 5% für die relative Abweichung, wobei sich diese Zahl nur marginal
verschlechtert, wenn Rauschkomponenten wie instrumentelles Rauschen oder CMB-Fluktuationen berücksichtigt
werden. Es konnte gezeigt werden, dass andere Komplikationen, wie abgekühlte Kerne von Galaxienhaufen oder
die endliche Ortsauflösung der Detektoren, diese Methode nicht stark beeinflussen.

Ein anderes Forschungsgebiet ist der Rees-Sciama (RS) Effekt, der durch gravitative Wechselwirkung der CMB-
Photonen mit zeitlich veränderlichen Gravitationsfeldern verursacht wird. Dieser Effekt konnte auf einen Gravita-
tionslinseneffekt zweiter Ordnung zurückgeführt werden, der in der post-Newtonschen Entwicklung der Formeln
der allgemeinen Relativitätstheorie erscheint. In dieser Darstellung misst der RS-Effekt die Divergenz der gravit-
omagnetischen Potenziale entlang der Sichtlinie. In dieser Beschreibung wurde die Autokorrelationsfunktion des
RS-Effekts in Störungsrechnung hergeleitet und projiziert, um die Winkel-Autokorrelationsfunktion zu erhalten,
während die verschiedenen Zeitentwicklungen der Terme in der Störungsreihe berücksichtigt wurden. Der RS-
Effekt sollte von PLANCK als Korrektur zur Autokorrelationsfunktion des primordialen CMB auf grossen Winkel-
skalen detektierbar sein. Innerhalb des gleichen Formalismus habe ich gravitomagnetische Korrekturen zu der
Autokorrelationsfunktion beliebiger Gravitationslinsengrößen bestimmt, die auf den größten Skalen jenseits von
1 Gpc wichtig werden sollten, allerdings Experimenten nur schwer zugänglich sind. Auf Skalen, die durch laufende
Durchmusterungen untersucht werden, spielen gravitomagnetische Korrekturen nur eine untergeordnete Rolle.

Ein Nebenprodukt der Simulationen von CMB-Fluktuationen basierend auf Gaußschen Zufallsfeldern ist eine
neue Methode, Masken für kodierte Aperturen in abbildendenden Röntgen- undγ-Kameras zu erzeugen. Bei
kodierten Aperturen wird eine Quelle durch den Schattenwurf einer Zufallsmaske auf einen ortsauflösenden De-
tektor beobachtet. Die Verteilung der Quellen kann durch Korrelationstechniken aus dem Schattenmuster rekon-
struiert werden. Unter Verwendung von Gaußschen Zufallsfeldern können kodierte Aperturen für jede gewünschte
point-spread Funktion erzeugt werden, was einen bedeutenden Vorteil in Bezug auf Sensitivität in der Beobachtung
von ausgedehnten Quellen darstellt, während ihre Leistungsfähigkeit in der Beobachtung von Punktquellen hinter
etablierten Techniken zur Erzeugung von Aperturen zurückbleibt. Diese Ergebnisse folgen aus aufwändigen nu-
merischen Simulationen, in denen die Gaußschen Zufallsfelder auf ihre Leistungsfähigkeit im Vergleich zu anderen
Aperturmustern untersucht wurde.
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2. Introduction and motivation

The last couple of decades has witnessed the evolution of cosmology from a philosophical to a sound scientific
discipline. The first observational fact was E. Hubble’s discovery of the recession velocity of galaxies, which he
found to be proportional to their distance. This suggested that space itself is expanding and not static. World models
in the framework of general relativity based on solutions of Friedmann’s equations were found by A. Einstein and
W. de Sitter which explain the universal expansion. R. Alpher, H. Bethe and G. Gamov investigated the thermal
history of an expanding Universe and realised that the early Universe was hot and dense enough to allow thermonu-
clear synthesis of light elements. Their theory was supported by measurements of the cosmic abundance of light
elements, in particular of deuterium. A further prediction of their work was the cosmic background radiation, which
was succesively detected by A. A. Penzias and R. W. Wilson.

Today, the parameters describing the homogeneous dynamics of the Universe are known on the percent level
and cosmology turned to answering the question of structure formation. Fluctuations in the sky temperature of
the cosmic microwave background suggested that the structures such as galaxies and clusters of galaxies form by
gravitational amplification from these tiny primordial seed fluctuations which was suggested by I. Novikov and
Y. B. Zel’dovich. J. Peebles proposed that most of the matter was not electromagnetically interacting (dark matter)
and that the structure formed by gravitational aggregation of this newly introduced fluid, which mended a number
of problems baryonic models of structure growth were unable to overcome. It was then proposed by J. P. Ostriker,
M. Rees and S. D. M. White that luminous objects like galaxies form inside dark matter structures by condensation
and cooling of baryons. In this thesis, Chapter3 provides a summary of the key results of cosmology, structure
formation and cluster physics.

Theories of cosmic structure formation can be tested in a number of ways. In modern cosmology the statistical
properties of the dark matter field or any tracer of it like the spatial distribution of baryons or galaxies as tracer
particles are described in terms of itsn-point correlation function. The correlation functions are observationally
accessible by various experiments. Classically, the large-scale distribution of galaxies was the first to be investigated
and continues to be a very interesting technique. In particular, it yields information about the clustering of dark
matter on small scales and the transition from linear to nonlinear structure formation, where perturbation theory
ceases to be applicable. Another observational channel is the X-ray band: Clusters of galaxies are powerful emitters
of X-ray radiation and X-ray surveys are able to determine the fluctuations of the density field by investiating its peak
statistics on the cluster separation scale. Furthermore, X-rays probe the distribution of baryons inside dark matter
halos and investigate processes like radiative cooling, feedback and metal enrichment which strongly influences the
baryonic morphology of a cluster.

All these observations are aiming at the determination of cosmological parameters related to structure formation
to a level of accuracy comparable to the parameters governing the homogeneous dynamics of the Universe. Ob-
servations of the dynamics of the large-scale structure are complemented by numerical computer simulations of
structure growth. In these models, the equations of structure formation (the equation of continuity, Euler’s equation
and Laplace’s equation) are solved for a discretised density field. Despite the fact that these simulations are very
challenging from the algorithmic and computational point of view, they yield valuable insight into dark matter dy-
namics in the nonlinear stages of structure evolution, halo formation and baryonic physics in the centres of galaxies
and clusters of galaxies. The core theme of this thesis is the derivation of observational properties of the large-scale
structure from numerical simulations. Of special interest to this thesis is the simulation of clusters of galaxies in a
new observational window: The thermal Sunyaev-Zel’dovich effect predicts that clusters of galaxies leave a trace in
the spectrum of the cosmic microwave background radiation by Compton interaction of the electrons of the hot-intra
cluster medium with photons of the microwave background. Recent advances in submillimetric receiver technology
made the detection of this small effect possible.

The major part of this thesis is dedicated to a detailed simulation of Sunyaev-Zel’dovich (SZ) observations for
the PLANCK-surveyor satellite. A short description of the instrument and an overview of PLANCK’s mission
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Introduction and motivation

objectives is given in Chapter4. PLANCK will be the first observatory to routinely detect clusters of galaxies
by their SZ-signature. The SZ-effect is a particularly promising tool for investigating clusters of galaxies because
clusters can be detected out to very large distances, possibly out to redshifts of unity as analytic estimates suggest.
Chapters5 through8 describe a very detailed simulation of PLANCK’s SZ-capabilities which includes many aspects
of cluster formation and distribution, baryonic physics and asymmetric SZ-morphologies, Galactic and ecliptic
foregrounds and many instrumental imperfections such as receiver noise, frequency response and resolution of the
optical system. The weak SZ-signal is amplified and extracted by matched and scale-adaptive filtering, which has
been extended to spherical topologies and multi-frequency observations.

In Chapter10, I propose a method of constructing morphological distance estimators for resolved SZ cluster im-
ages. This method measures a cluster’s SZ-morphology by wavelet decomposition. It is shown that the spectrum of
wavelet moments can be modeled by elementary functions and has characteristic properties that are non-degenerate
and indicative of cluster distance. Distance accuracies following from a maximum likelihood approach yielded
values as good as 5% for the relative deviation, and deteriorate only slightly when noise components such as instru-
mental noise or CMB fluctuations were added. Other complications like cool cores of clusters and finite instrumental
resolution were shown not to affect the wavelet distance estimation method significantly. This method will be of
particular use in future dedicated high-yield SZ-surveys in order to select targets for optical or X-ray follow-up
observations.

Chapter9 is more technical in nature. A central quantity in CMB data analysis tasks is the pairwise pixel co-
variance matrix, which contains information about non-isotropic and non-Gaussian noise components and is a key
quantity in map reconstruction, component separation and foreground subtraction. For usual pixel numberings in
the HEALPix tesselation of the sphere, which is commonly used in CMB data analysis, the covariance matrix has
a very complicated shape. I propose to number the pixels along a fractal, self-similar Peano-Hilbert curve that can
be constructed for all HEALPix resolutions. Using this numbering, the covariance matrix assumes a band-diagonal
shape which makes the computation of the determinant and matrix inversion possible.

A byproduct of the simulation of CMB fluctuations on the basis of Gaussian random fields was a new way of
generating coded mask pattern for X-ray andγ-ray imaging, which is described in Chapter11. Coded mask cam-
eras observe a source by recording the shadow cast by a mask onto a position-sensitive detector. The distribution
of sources can be reconstructed from this shadowgram by correlation techniques. By using Gaussian random fields,
coded mask patterns can be specifically tailored for a predefined point-spread function which yields significant ad-
vantages with respect to sensitivity in the observation of extended sources while providing a moderate performance
compared to traditional mask generation schemes in the observation of point sources. Coded mask patterns encod-
ing Gaussian point-spread functions have been subjected to extensive ray-tracing studies where their performance
has been evaluated.

Another experimental tool for investigating the correlation properties of the cosmic density field is gravitational
lensing. Gravitational interaction of photons with the large-scale structure induces tiny distortions in the images of
background galaxies which can nowadays be measured reliably. There exist mathematical tools that link the angular
correlation properties of the distorted galaxy images to the spatial correlation properties of the dark matter density
field, in particular the amplitude of the correlation function. In Chapter12 I describe a ray-tracing code for comput-
ing lensed photon geodesics on density fields following from cosmological simulations of structure formation. This
code covers many aspects of gravitational lensing and is able to derive lensing data from cosmological simulation
at a high level of authenticity.

So far, gravitational lensing has only been considered for stationary matter distributions, but the post-Newtonian
expansion of the geodesic equation to second order shows that matter streams influence photon geodesics by the
gravitomagnetic potentials they generate. The growth of structure and the formation of objects requires large coher-
ent matter streams so that it seemed natural to extend the theory of gravitational light deflection to non-stationary
situations. In Chapter13, I investigate gravitomagnetic corrections to weak gravitational lensing by streams in the
large-scale structure in perturbation theory. Detailed analysis of the geodesic equation showed that the Rees-Sciama
effect, which describes the frequency shift of photons introduced by time-varying gravitational potentials can be
consistently treated in the gravitomagnetic framework. Applying perturbation theory yielded the Rees-Sciama auto-
correlation function, which should be detectable as a correction to the autocorrelation function of CMB temperature
fluctuations on large angular scales. The core results of this thesis are summarised in Chapter14 together with a
compilation of key techniques in AppendicesA throughF.
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3. Cosmology and cosmic structure formation

Abstract

This chapter provides an introduction to the theory of cosmic structure formation, and the key concepts of modern cosmology
as relevant for this work. After summarising Friedmann-Lemaître cosmological models in Sect.3.1, the theory of cosmological
structure formation and the description of the statistical properties of the large-scale structure by means of correlation functions is
presented in Sect.3.2. Various aspects of the physics of clusters of galaxies, e.g. their formation and their properties in different
observational channels are discussed in Sect.3.3.

3.1. Friedmann-Lemaître cosmological models

3.1.1. Cosmological principles and the Robertson-Walker metric

3.1.1.1. Relativistic world models

In general relativistic world models, events are described by their world coordinates, a 4-tuple containing the time
coordinate and three spatial coordinates. The infinitesimal distance ds between two events differing in coordinates
by dxµ can be computed with the metric tensorgµν, ds2 = gµνdxµdxν. In general relativity, the metricgµν is a
dynamical field, which is determined by Einstein’s field equation (Landau & Lifshitz1975),

Rµν −
R
2
gµν ≡ Gµν =

8πG
c4

Tµν + Λgµν, with Tµν =
(
ρ +

p
c2

)
υµυν − pgµν, (3.1)

where the energy momentum tensor composed of the densityρ and pressurep of the cosmological fluids moving
with 4-velocitiesυµ acts as a source term. The Einstein-tensorGµν is formed from the Ricci tensorRµν and the Ricci
scalarR, which are contractions of the Riemann tensorRκλµν, i.e. of the second derivatives of the metricgµν. Hence,
formula3.1 is a generalised Poisson equation. In eqn.3.1, Λ denotes the cosmological constant.

3.1.1.2. Cosmological principle

In order to make an ansatz for the metric tensorgµν and to find a spherically symmetric solution of Einstein’s field
equation3.1 that describes the expansion dynamics of the Universe, the cosmological principle was introduced.
This principle requires isotropy and homogeneity:

• When averaged over sufficiently large scales, there exists a mean motion of matter and radiation in the Uni-
verse. From a frame of reference comoving with this mean motion, all averaged observables appear to be
isotropic.

• All (imaginary) observers who follow this mean motion experience the same history of the Universe and
measure the same values for all averaged observables.

3.1.1.3. Robertson-Walker line element

The spatial coordinates of an observer at rest in the comoving frame, from which the mean motion of radiation and
matter appears isotropic, are constant, dxi = 0 and hence ds2 = g00dt2. It follows from the postulate of isotropy that
clocks can be synchronised in a way that space-time components of the metric tensorg0i vanish. The line element
satisfying the cosmological postulates can be written:

ds2 = c2dt2 + gi j dxidx j , (3.2)
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Cosmology and cosmic structure formation

wheregi j are the spatial components of the metric tensor. In order to conserve homogeneity the spatial part of the
metric is only allowed to scale with a functiona(t) depending on cosmic timet, giving:

ds2 = c2dt2 − a2(t)dr2, (3.3)

where dr is the line element on spatial hypersurfaces. Introducing spherical coordinatesr = (w, θ, φ) gives the
Robertson-Walker line element for homogeneous and isotropic spaces:

ds2 = c2dt2 − a2(t)
[
dw2 + f 2

K(w)
(
dθ2 + sin2 θdφ2

)]
. (3.4)

Homogeneity requires, that the functionfK(w) is either trigonometric for positive values of the curvatureK, linear
for vanishingK or hyperbolic for negativeK:

fK(w) =


1
√

K
sin

(√
Kw

)
, K > 0, spherical,

w , K = 0, flat,
1
√
|K|

sinh
(√
|K|w

)
, K < 0, hyperbolic.

(3.5)

3.1.1.4. Redshift

Due to the expansion of the Universe, photons are redshifted during their propagation from their source to the
observer. In general, the redshiftzof an object is the fractional Doppler shift of its light resulting from radial motion
with velocityυ:

z≡
λo

λs
− 1 −→ 1+ z=

√
1+ υ/c
1− υ/c

, (3.6)

whereλs is the wavelength of the emitted andλo of the observed radiation. In cosmology, the Doppler shift is due to
emitter’s recession with the Hubble flow and thus related to the ratio of scale factorsa at the times of emission and
absorption: 1+z= ao

as
. For an observer atzo = 0 and sourcezs = z, the formula becomesa = 1/(1+z)↔ z= 1/a−1.

3.1.2. Cosmometry

3.1.2.1. Friedmann’s equations and the adiabatic equation

Solving Einstein’s field equation3.1with the Robertson-Walker metric3.4as an ansatz forgµν for a homogeneous
perfect fluid leads to Friedmann’s equations (Friedmann1922, 1924):

ȧ
a
=

√
8πG

3
ρ − K

c2

a2
+
Λ

3
and

ä
a
= −

4πG
3

(
ρ +

3p
c2

)
+
Λ

3
, (3.7)

which describe the time evolution of the scale factora(t) depending on the properties of the cosmological fluids.
The two Friedmann equations can be combined to form the adiabatic equation,

d
dt

[
a3(t) c2 ρ(t)

]
+ p(t)

d
dt

a3(t) = 0, (3.8)

which describes the time evolution of the energy content of a volume that is expanding with the Hubble flow. The
change in internal energy d

(
a3c2ρ

)
in a volume is equal to thepdV-work, i.e. the pressure times the change in

proper volume. For that reason, the adiabatic equation corresponds to the first law of thermodynamics applied to
the cosmological expansion.The Hubble functionH(t) is defined as the logarithmic derivative ofa(t):

H(t) ≡
d
dt

ln(a) =
ȧ
a
−→ H2(t) = H2

0

[
ΩR

a4(t)
+
ΩM

a3(t)
+
ΩK

a2(t)
+ ΩΛ

]
. (3.9)

The value ofH0 is one of the least accurately known cosmological parameters, but measurements of CMB anisotropies
(Spergel et al.2003) and from Cepheid variable stars in distant galaxies (the Hubble key project,Freedman et al.
2001) seem to converge to a value ofH0 = 100hkms−1 Mpc−1 with h ' 0.7. The combination

3H2
0

8πG
≡ ρcrit (3.10)
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3.1.2 Cosmometry

is the critical density of the Universe. If in a cosmological model all densities add up toρcrit, spatial hypersurfaces
are flat and the curvatureK vanishes. The energy density of all cosmological fluids (radiation 3p/c2, matterρ,
curvatureK and the cosmological constantΛ) can be expressed in units ofρcrit to yield:

ΩR =
8πGp

c2H2
0

, ΩM =
ρ

ρcrit
, ΩK =

Kc2

H2
0

, ΩΛ =
Λ

3H2
0

, etc. (3.11)

For filling in the suspiciously looking gap in the Hubble functionH for thea−1(t) term, a new fieldφQ refered to as
quintessence with the densityΩQ has been invented (Wetterich1988, Ratra & Peebles1988, Wetterich1995, Doran
& Wetterich 2003) and generalised by using a specific choice of the self-interaction potentialV(φQ) to mimick
arbitrary dependences on the scale factora. Today’s most accurate measurements of the density parameters have
been carried out by the WMAP satellite (Spergel et al.2003). Reference values are matter densityΩM = 0.27±0.04,
baryonic densityΩB = 0.044± 0.004, curvatureΩK = 0.02± 0.02 and cosmological constantΩΛ = 0.73± 0.04.
The radiation densityΩR does not play a role in cosmic dynamics after decoupling due to its fast decrease witha.

3.1.2.2. Distances in cosmology

In curved and non-stationary space-time, distances are no longer unique and different distance measurement pre-
scriptions lead to different distance measures. In general relativity, distance measures relate the positions of two
events on two separate geodesic lines, which intersect a common light cone centered on an observer (Bartelmann &
Schneider2001, Hogg1999). The proper timedP(zs, zo) is defined to be the light travel time of a signal emitted by
a source at redshiftzs to an observer atzo < zs: ddP = −cdt. Inserting the Hubble function yields ddP = −cda/(aH)
and finally:

dP(zo, zs) =
c

H0

∫ a(zo)

a(zs)
da

[
a−1ΩM + ΩK + a2ΩΛ

]− 1
2 . (3.12)

The comoving distance, which is a very important distance measure in gravitational lensing and simulations of
structure formation, is defined to be the distance on the spatial hyper-surface at timet between the world lines of
source and observer comoving with the Hubble flow. Light travels along the geodesic, ds= 0, hencecdt = −addC.
Replacing dt as before by inserting the Hubble functionH gives ddC = −cdt/a = −cda/(a2H):

dC(zo, zs) =
c

H0

∫ a(zo)

a(zs)
da

[
aΩM + a2ΩK + a4ΩΛ

]− 1
2 . (3.13)

The comoving distance with the observer atz= 0 is refered to asw(z) ≡ dC(zo, zs). Yet another distance measure is
the angular diameter distancedA(zs, zo), which relates the physical size∆L of an object at redshiftzs to its angular
size∆α as seen from an observer at redshiftzo, ∆α dA = ∆L. The angular size of a yardstick placed atzs should
decrease proportional toa(zs) fK(w(zs)), where fK(w(zs)) is the radial coordinate distance between observer and
object, anda(zs) is the scale factor at the time of light emission, which gives:

dA(zo, zs) = a(zs) fK [dC(zo, zs)] . (3.14)

Due to the factora(zs), the angular diameter distance is not additive. The luminosity distancedL(zs, zo) relates the
luminosity of a source atzs to the flux received by an observer atzo.

dL(zo, zs) =

(
a(zo)
a(zs)

)2

dA(zs, zo) =
a(zo)2

a(zs)
fK [dC(zo, zs)] . (3.15)

The luminosity distance is proportional to the angular diameter distance, which relates the physical area of a source
at zs to its apparent solid angle, as seen from the observer atzo. The energy flux is further diminished, because the
photons are redshifted byao/zs and the difference in arrival times of two photons is stretched byao/zs, giving the
final formula. The various distance measures as a function of redshiftz are compared in Fig.3.1.

From these distance measures, onlydP, dC anddL are monotonic ina andz. Furthermore, onlydC(z) anddP(z)
are additive, which follows from the relation

∫ z3

z1
da di(a) =

∫ z2

z1
da di(a)+

∫ z3

z2
da di(a). Yet another distance measure

that finds application in gravitational lensing studies is the parallax distancedX(z) (Weinberg1972, Schneider et al.
1992).
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Figure 3.1.: Distance measures in cosmology: The comoving distancedC(z) = w(z) (solid line), the proper distancedP(z)
(dashed line), the angular diameter distancedA(z) (dash-dotted line) and the luminosity distancedL(z) (dotted line).

3.1.3. Cosmic microwave background

3.1.3.1. Cosmic microwave background radiation

The cosmic microwave background (CMB) originated in the early hot phase of the Universe, when photons were
created in thermal equilibrium with electromagnetically interacting particles (Dicke et al.1965). With the Hubble
expansion, the Universe cooled adiabatically. The adiabatic index of relativistic particles isγ = 4/3 (Shapiro &
Teukolsky1983), which yields for the adiabatic expansionT ∝ V1−γ ∝ a. During the expansion, photons remained
in thermal equilibrium until the temperature was sufficiently low for the electrons to combine with protons and
α-particles to form hydrogen and helium. The photons decoupled from the matter constituents due to the rapidly
decreasing abundance of charged particles. In this way, the Universe became transparent for radiation at a redshift of
z ' 103. The photons retained their Planckian spectrum they had acquired while they were in thermal equilibrium
with the electron-positron plasma, and the temperature decreased in proportion with the scale factor. The relic
radiation was detected byPenzias & Wilson(1965) and is nowadays proved to have a black body spectrum with
TCMB = 2.725 K (Fixsen et al.1996) to very high accuracy.

The CMB shows tiny temperature anisotropies (∆T/T ' 10−5) imprinted by density perturbations present at the
time of decoupling through various mechanisms (Hu 1995, Giovannini2004). The physics governing the behaviour
of a volume element of electron-proton plasma coupled to a radiation field is an interplay between gravity and
radiation pressure. Photons released in overdense regions are redshifted because they have to climb out potential
wells and hence they are cooler than the average CMB temperature. This effect, first examined bySachs & Wolfe
(1967), probes the potential fluctuations (and hence the density fluctuations) on the surface of last scattering. On
scales smaller than the sound horizon, radiation pressure is able to provide a restoring force against the pull of
gravity. The plasma-photon fluid is thus carrying out oscillations, which are excited when the size of the perturbation
is equal to the horizon. At fixed physical scale, these oscillations are coherent, giving rise to distinct peaks in the
CMB power spectrum. On the smallest scales, density perturbations can be destroyed if the radiation pressure
exceeds the self-gravity.

Apart from these primordial CMB fluctuations, the growth of cosmic structure imprints a wealth of secondary
anisotropies, either by interaction of CMB photons with electrons (Sunyaev-Zel’dovich effects, Ostriker-Vishniac
effect) or by gravitational interaction (integrated Sachs-Wolfe effect, Rees-Sciama effect, gravitational lensing).
The study of these effects and their detectability with next-generation CMB observatories such as PLANCK is the
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Figure 3.2.: The angular power spectrumCτ(`) of the fluctuations in the cosmic microwave backgroundτ(θ), for the
ΛCDM model, withΩM = 0.3,ΩB = 0.04 andΩΛ = 0.7.

primary subject of this thesis.

3.1.3.2. Statistical description of the CMB: Gaussian random fields

Due to their Gaussianity, the CMB temperature fluctuationsτ(θ) can be decomposed into spherical harmonics
Ỳ m(θ, ϕ), which form a harmonic system of functions, because they are solutions to Laplace’s equation in spherical
coordinates:

τ`m =

∫
4π

dΩ τ(θ)Y∗`m(θ)↔ τ(θ) =
∞∑
`=0

+∑̀
m=−`

τ`mỲ m(θ) with Ỳ m =

√
2` + 1

4π

√
(` − |m|)!
(` + |m|)!

P`m(cosθ)eimϕ. (3.16)

From theτ`m-coefficients, the angular power spectrumCτ(`) can be obtained by averaging over all 2` + 1 values of
m at given multipole order̀, i.e. at fixed anguar scale∆θ ' π/`:

Cτ(`) ≡
1

2` + 1

+∑̀
m=−`

τ`mτ
∗
`m. (3.17)

Provided that the CMB fluctuations are indeed a Gaussian random field, all statistical information is contained in
Cτ(`). Current CMB data is subjected to a plethora of techniques aiming at the amplification and detection of non-
Gaussian features. Most of the analyses find the CMB to be consistent with Gaussianity (Komatsu et al.2003), but
interesting non-Gaussian features should be present, the most notable being gravitational lensing of the CMB (Hu
2000b, Hamana et al.2004).

The angular power spectrumCτ(`) as a function of inverse angular scale` ' π/∆θ of the CMB fluctuationsτ(θ)
is depicted in Fig.3.2 for aΛCDM model. By using cosmological Boltzmann codes (Seljak & Zaldarriaga1996,
Lewis et al.2000, Hu 2000a), the power spectrumCτ(`) can be computed for a given set of cosmological parameters.
By inversion, measurements ofCτ(`) are powerful probes of the cosmology, especially the geometry of the universe
in terms of the curvatureΩK . Furthermore,Cτ(`) provides important information about the statistics of fluctuations
in the matter fieldδ at early times, when the fluctuations are still linear,δ � 1.
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3.1.3.3. Cosmic neutrino background

In analogy to the CMB, there is a background of relic neutrinos from the era of nucleosynthesis in the early universe
at redshifts ofz ' 1010, that decoupled at temperatures ofkBT ' 1 MeV, because at this stage, the time scale of
leptonic interactions became larger than the expansion time scale of the Universe. The neutrinos from this cosmic
neutrino background are expected to have Fermi-Dirac spectrum with an equilibrium temperature ofTCNB = 1.95K.

3.2. Structure formation

3.2.1. Growth of density perturbations in cold dark matter models

3.2.1.1. Properties of dark matter

The current models of structure formation require the majority of matter not to couple to photons and to interact
only by gravity. The most stringent observation which requires the matter to be dark, i.e. not interacting electro-
magnetically is the formation of structure since the emergence of the CMB, apart from rotation curves of spiral
galaxies, gravitational microlensing or discrepancies of mass estimates of clusters of galaxies by application of the
virial theorem compared to sum of masses of the cluster’s member galaxies and the intra-cluster medium.

Dark matter is believed to be a yet undiscovered gravitationally interacting elementary particle, that neither carries
electromagnetic, nor strong charges, but possibly interacts by the weak nuclear force. There is a large industry of
experiments aiming at a direct detection of dark matter particles (CDMS1, DAMA 2, GENIUS3, EDELWEISS4), but
it is doubtful whether their sensitivity is sufficiently high. Dark matter interacts solely by gravity and is thought to
have a vanishing cross section for collisions with other dark matter particles, which impacts on the central structure
of gravitationally bound objects. Self-interacting dark matter influences the core structure of dark matter haloes
(Yoshida et al.2000) or could be detected by its annihilation signal (Stöhr et al.2003). At the time of their de-
coupling from weak interactions, the dark matter particles were non-relativistic, i.e. cold, which has important
implications on structure formation. The standard model of cosmological structure formation assumes the existence
of initial seed fluctuations in the dark-matter distribution, which grew by gravitational attraction. A possible mech-
anism for producing these seed fluctuation are quantum fluctuations in the early universe, which were stretched to
cosmological size by inflation.

3.2.1.2. Linear growth

Perturbations in the dark matter density fieldρ(x, t) are described by the density contrastδ(x,a):

δ(x,a) =
ρ(x,a) − 〈ρ(a)〉
〈ρ(a)〉

, (3.18)

with the average cosmic density〈ρ(a)〉 = ΩMρcrita−3. By using (relativistic) perturbation theory, it can be shown that
in the linear regime|δ| � 1 perturbations grow differently witha, depending which fluid dominates the cosmological
dynamics, as long as the Einstein-de Sitter limit is fulfilled, i.e.ΩM(a) ' 1:

δ(a) ∝

{
a2 ,a < aeq, radiation dominated era,
a ,a > aeq, matter dominated era.

(3.19)

At late times, when either the matter densityΩM has decreased sufficiently or the cosmologicalΩΛ has started
dominating the Hubble expansion, the linear growth depends on timea according to:

δ(a)
δ(1)

= a
g′(a)
g′(1)

≡ D+(a). (3.20)

1http://cdms.berkeley.edu/
2http://www.lngs.infn.it/lngs/htexts/dama/welcome.html
3http://www.mpi-hd.mpg.de/nonacc/genius.html
4http://edelweiss.in2p3.fr/indexedwe.html
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3.2.1 Growth of density perturbations in cold dark matter models
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Figure 3.3.: The growth functionD+(a) for theΛCDM model (solid line), the SCDM model (dash-dotted line) and a
low-density model withΩM = 0.3 and vanishing cosmological constantΩΛ = 0.0 (dashed line).

A phenomenological fit tog′(a) for theΩM-dominated phase of structure growth is provided byCarroll et al.(1992):

g′(a) =
5
2
ΩM(a)

[
Ω

4/7
M (a) −ΩΛ(a) +

(
1+

1
2
ΩM(a)

) (
1+

1
70
ΩΛ(a)

)]−1

. (3.21)

The growth functionD+(a) as a function of scale factora of theΛCDM model, the SCDM model and a low density
model without cosmological constantΛ is depicted in Fig.3.3.

3.2.1.3. 2-point statistics, initial conditions and the shape of Pδ(k)

The density fluctuationsδ(x) are assumed to be Gaussian, and can be completely characterised by their power
spectrumPδ(k), which is defined by:

〈δ(k)δ∗(k′)〉 = (2π)3δD(k − k′)Pδ(k), (3.22)

with the Fourier transformδ(k) =
∫

d3x δ(x) exp(−ikx). In linear perturbation theory, the density field grows
homogeneously, hence individual Fourier components evolve independently:

δ(x,a) = D+(a)δ(x) −→ δ(k,a) = D+(a)δ(k), (3.23)

as long as the wavelength of the perturbation is small compared to the comoving horizon size.dH = c/ [aH(a)], i.e.
the distance which a photon can cover since the big bang.

It is commonly assumed that the power spectrumPδ(k) is scale invariant on large scales,Pδ(k) ∝ kns with ns ' 1
(Harrison1970, Peebles & Yu1970, Zeldovich1972). On small scales, the growth of structure is suppressed by the
fast radiation driven expansion at early times. A perturbation inδ, which has the wavelengthλ = 2π/k can start
growing at the cosmic epochastart if λ is smaller than the horizon size at that epoch,λ < dH(astart). But at early
times, the expansion time scaletHubble is smaller than the collapse time scaletDM :

tHubble∝
1
√

GρR
<

1
√

GρM
∝ tDM , (3.24)

due toρR > ρM and the growth of the perturbation stalls. This suppression is effective fromastart until the epoch of
matter-radiation equalityaeq, defined byρR(aeq) = ρM(aeq), which takes place at a redshift ofz ' 24500. In total,
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fluctuations withλ < dH(aeq) are suppressed by (astart/aeq)2. Now, the timeastart is a function of the wavelength
of the fluctuation, byλ = dH(astart). In the Einstein-de Sitter regime,dH(a) is approximated byc/ (aH(a)) ' a,
which gives a suppression proportional toλ2 on scales smaller than the horizon size at the epoch of matter-radiation
equalityaeq, the numerical value of which is 0.025/(ΩMh) Hubble radii.

With the suppression of growth∝ λ2 = (2π/k)2 ∝ k−2, one obtains for the asymptotic behaviour ofPδ(k) ∝
kns−4 ' k−3 on small scales. Fitting functions, that link these two asymptotic regimes in a smooth way are obtained
by applying Boltzmann solvers to the equations of cosmic structure formation. A particularly accurate fit is provided
by Bardeen et al.(1986):

P(k) ∝ kns · T2(k) with the transfer function (3.25)

T(q) =
ln(1+ 2.34q)

2.34q

[
1+ 3.89q+ (16.1q)2 + (5.46q)3 + (6.71q)4

]− 1
4 (3.26)

The wave vectork is commonly divided by the shape parameterΓ introduced byEfstathiou et al.(1992) for CDM
models and extended to models withΩ , 1 bySugiyama(1995):

q =
k/Mpc−1h
Γ

with Γ = ΩMhexp

−ΩB ·

1+ √2h
ΩM

 . (3.27)

The normalisation of the power spectrumP(k) is given by the parameterσ8, with is defined as the variance of the
density fluctuationsδ on scales ofR= 8 Mpc:

σ2
R =

1
2π2

∫ ∞

0
dk k2W2(kR)P(k). (3.28)

Here,W(r) is a window function of top-hat shape, the Fourier-transform of which is given by:

W(x) =
3
x3

[sin(x) − xcos(x)] =
3
x

J1(x). (3.29)

The dark matter power spectrumPδ(k) of the overdensity fieldδ(x) in the adiabaticΛCDM model is shown in
Fig. 3.4 for σ8 = 0.9 andns = 1, which are used in all simulations in this thesis. The values measured by WMAP
areσ8 = 0.84± 0.04 andns = 0.93± 0.03 (Spergel et al.2003).

3.2.1.4. Velocities in the large-scale structure

The equation of continuity ˙ρ + divj requires the existence of large-scale matter flowsj = ρυ due to the formation of
objects ( ˙ρ > 0). Assuming linear perturbations in density,ρ = ρ0+δρ, and velocity,υ = δυ, the continuity equation
readsδ̇ = −div(δυ). For a harmonic perturbation with wave vectork, the velocity perturbationδυ is parallel tok:

δυ(k) = −ia
k
k2
δ̇(k) (3.30)

The time evolution of the density fieldδ is homogeneous in the linear regime, henceδ(k) = D+(a)δ(k), yielding
with the definition of the Hubble function ˙a = aH(a) and the normalisation of the growth function:

δυ(k) = −iaH(a) f (Ω)
k
k2
δ(k) (3.31)

The function f describes the dependence of the equation of continuity on cosmic time and mainly depends on the
mass densityΩM (Peebles1980, Lahav et al.1991)

f (Ω) =
d lnδ
d lna

=
d lnD(a)

d lna
' ΩM(a)0.6 (3.32)

The investigation of peculiar velocities in the local universe is a very interesting topic. Reconstructions of the
cosmic velocity field as carried out e.g. with the POTENT algorithm proposed byBertschinger & Dekel(1989,
1991) andDekel & Bertschinger(1991) are used to test whether cosmic flows are irrotational and can be derived
from a velocity potential, and yield important dynamical estimates ofΩM andσ8.
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Figure 3.4.: The linear power spectrumPδ(k) of the overdensityδ(x) in an adiabatic cold dark matter (CDM) model.

3.2.2. Numerical simulations of cosmic structure formation

In the course of the structure formation, objects with high values in the overdensity fieldδ are formed, e.g. galaxies
(δ ' 106), clusters of galaxies (δ ' 100) and superclusters (δ ' 10). Clearly, perturbation theory is not applicable
for describing the dynamics of these objects. Furthermore, the structure formation proceeds heterogeneously, i.e.
the relationδ(x,a) = D+(a)δ(x) is violated, which leads to a coupling of modesδ(k) in Fourier space. This can
easily be understood because the growth function acquires a dependency on the spatial coordinates apart from the
time variable:D+(x,a). The Fourier transform ofD+(x,a)δ(x), being a product of two functions, is a convolution,
which links modes in Fourier space with different wave vectorsk. Thirdly, non-linear processes give rise to non-
Gaussian features. This is simply due to the fact that the density fluctuation field is bounded to small valuesδ > −1,
but an upper bound does not exist. Hence, the distribution ofδ necessarily develops a non-vanishing skewness in
the course of structure formation, and the statistical description of the properties ofδ based on 2-point correlation
functions and power spectraPδ(k) fails.

In order to investigate cosmic structure formation in the non-linear regime, numerical simulations are carried out.
These codes, the most notable of which is GADGET (Springel et al.2001, Springel & Hernquist2002), numerically
solve the equations of cosmic structure formation,

ρ̇ + div(ρυ) = 0, υ̇ + (υ∇)υ = −
1
ρ
∇p− ∇Φ, ∆Φ = 4πGρ, (3.33)

by introducing particles in order to discretise the density fieldρ and the velocity fieldυ. Extensions to GADGET
include baryonic dynamics, magnetic fields and cosmic rays. Simulations carried out with GADGET are a key tool
of this thesis.

3.3. Physics of clusters of galaxies

3.3.1. Formation of clusters of galaxies

3.3.1.1. Spherical collapse

A key concept in the CDM model of cosmic structure formation by the hierarchical build-up of structure from
small scales to large scales is the formation of dark matter haloes. These are long-lived quasi-equilibrium systems
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of dark matter particles which were formed by gravitational collapse (White & Narayan1987). As a model, one
consideres a spherically symmetric density perturbation which evolves under the influence of gravity embedded
in an expanding background. In a matter dominated universe, the radiusr of the perturbation evolves with timet
according to a cycloidal solution of ¨r = −GM/r2 (Longair1998, Peacock1999):

r = A(1− cosθ) (3.34)

t = B(θ − sinθ) (3.35)

with A3 = GMB2 and the phase angleθ. The spherical perturbation will break away from the Hubble expansion and
reach a maximal radius atθ = π, t = πB. Following the time evolution further, the sphere will collapse to a point at
θ = 2π. Extrapolating linear theory to this time yieldsδ = δc ≡ 1.69. In reality, dissipation sets in and converts the
kinetic energy of the collapse, or, equivalently, the gravitational binding energy released by the collapse to random
motion of the particles. At this stage, the overdensity of the sphere at virialisation has reached a value ofδ ' 200.

The exact profile of a virialised density perturbation after gravitational collapse is governed by the dissipative
processes which cause dark matter systems to relax, e.g. two-body relaxation, dynamical friction and violent re-
laxation. From numericaln-body simulations it is found that the profiles of dark matter haloes are described by a
universal law (Navarro et al.1996):

ρ(r)
ρcrit
=

δc

x(1+ x)2
with x =

r
rs
, (3.36)

with rS = rvir/c. rvir is defined that the mean density inside a sphere of that radius is 200 times the critical density.
c is called concentration parameter:

δc =
200
3

c3

ln(1+ c) − c
1+c

. (3.37)

Luminous objects like galaxies are thought to form by cooling and condensation inside CDM haloes (White & Rees
1978).

3.3.1.2. Press-Schechter theory

According to the derivation ofPress & Schechter(1974), the number densityn(M, z)dM of haloes of massM per
unit comoving volume as a function of redshiftz is given by:

n(M, z)dM =

√
2
π

ρ̄0

M
dν
dM

exp

(
−
ν2

2

)
dM with ν ≡

δc

D+(z)σ(M)
, (3.38)

and the critical overdensityδc = 1.69, which only weakly depends on cosmology. Press-Schechter theory has
been put onto a solid mathematical foundation byBond et al.(1991): A massive object will form by gravitational
collapse, if the average overdensity in a volume containing that mass exceeds some threshold valueδc, independent
of substructure. The location, properties and number densities of these bound objects can be estimated by smoothing
the initial linear density field with a filter of characteristic lengthRf . Peaks in the filtered density field can be
assigned a massM ∼ 4

3πρ0R3
f .

In order to link the number of objects of massM to the peak statistics of a Gaussian random field smoothed on
the scaleRf , Bond et al.(1991) proceed by considering the random trajectory ofδ at a fixed point in space when
varyingRf with the initial conditionsRf = ∞ andδ = 0. The filtered field starts to develop fluctuations of increasing
amplitude as the smoothing radiusRf is decreased. If the filtered fieldδ first exceeds the threshold valueδc set by
spherical collapse theory, an object of massM(Rf ) will form. This analysis is most easily performed using a sharp
truncation ink-space as a filter. DecreasingRf corresponds to broadening thek-space filter which adds newk-space
shells, all of which are independent for a Gaussian random field. The trajectoryδ(Rf ) is then a random walk. The
probability that a random walk starting atδ = 0 exceeds the thresholdδc is then given by erfc

[
δc/

(√
2σ(M)

)]
,

whereσ(M) is the variance of the top-hat filtered fieldδ. From this result, eqn. (3.38) follows by differentiation.
As summarised inMo & White (2002), the number density of haloes of massM depends of course on the shape

of the power spectrum and its normalisationσ8. The increase ofD+(z) with cosmic time causes the threshold value
δ to decrease such that massive objects form at late times. Hence, low-mass objects form early in the cosmic mass
hierarchy from strong fluctuations in contrast to massive objects, that form at late times from weak fluctuations.

14



3.3.2 Observational properties of clusters
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Figure 3.5.: The Press-Schechter mass functionn(M, z)dM for redshiftsz = 0 (solid),z = 1 (dashed line),z = 2 (dash-
dotted line) andz= 3 (dotted line), for theΛCDM cosmology.

The formalism has been extended bySheth & Tormen(1999) to non-spherical ellipsoidal collapse to yield a
slightly modified mass functionn(M, z)dM. The Press-Schechter functionn(M, z)dM at four different redshiftsz is
given in Fig.3.5. The increase of the mass scaleM∗ at which the power law breaks with decreasing redshiftz can
easily be seen, indicating the growth of massive objects by merging of smaller objects with time. A typical value
for the number density of clustersn∗ is' 100 clusters atz= 0 in a comoving volume of (100 Mpc/h)3, with masses
M > 5× 1013M�/h.

3.3.2. Observational properties of clusters

Galaxies form associations ranging from pairs of galaxies to small groups with tens of member galaxies to large
clusters containing as many as a few thousand members. Clusters of galaxies are the largest and most massive
gravitationally bound systems in the Universe. The most massive clusters reach masses of up to 1015 M�, which
makes them massive enough to cause distorsions in the images of background galaxies due to gravitational lensing.
Mass estimates with the virial theorem applied to the motion of galaxies inside the cluster yields large discrepancies
with the mass obtained by adding up the masses of the individual galaxies and the mass of the intra-cluster medium.
This leads to the conclusion that clusters largely consist of dark matter, in fact, they are large enough to be repre-
sentative samples of the universal mass composition. In the cores of clusters of galaxies, hot intergalactic gas has
been detected, both by its X-ray emission and by is interaction with the CMB radiation. Clusters of galaxies are
laboratories for studying the non-linear phases of structure evolution, the interplay between dark matter dynamics
and gas physics, and the evolution of galaxies in the cluster environment and the interaction of active galaxies with
the intra-cluster medium.

In this section, the observational properties of clusters of galaxies as relevant to this work are summarised. Clus-
ters of galaxies appear vastly different in differing observational channels. Fig.3.6 might give a first impression:
The figure compares the column density of baryons (in units of g/cm2) with the thermal Sunyaev-Zel’dovich
map (the dimensionless thermal Comptonisationy) and the X-ray map (in units of erg/cm2 in the energy range
0.1 keV. . . 10 keV) of a simulated massive cluster (M = 2.25× 1015M�/h) at redshiftz = 0. The baryon distri-
bution and the thermal Comptonisation are very similar in size, but the baryon distribution shows a great amount
of substructure, whereas the Comptonisation map appears to be smooth. This is due to the fact that the Compton-
isation measures pressure, which is a smooth quantity because the substructure is in pressure equilibrium with the
ambient gas. The X-ray emission is concentrated to the central region of the cluster, because the X-ray emissivity
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is proportional to the density squared.

3.3.2.1. Gravitational lensing

Due to their large masses, clusters of galaxies distort the shapes of background galaxies by gravitational lensing.
They are the only cosmological objects massive enough to give rise to lensing effects that can be seen by eye.
Background galaxies appear to be stretched into impressive giant luminous arcs and arclets, which can be used
for reconstructing the mass distribution (Broadhurst et al.2004). These reconstructions are in agreement with
expectations fromn-body simulations (Navarro et al.1996, 2004). The theory of gravitational lensing and numerical
methods for ray-tracing studies on cosmologicaln-body simulations of the large-scale structure and individual
clusters of galaxies will be developed in detail in Chapter12.

3.3.2.2. Optical properties of clusters of galaxies

Historically clusters were found as overdensities in the galaxy number density by visual inspection of optical sky
survey plates. In this way,Abell et al.(1989) have compiled the classic Abell catalogue comprising 4073 entries.
They required that clusters had more than 30 member galaxies within the magnitude rangem3 to m3 + 2 (m3 being
the apparent magnitude of the third brightest cluster member) and with a nominal redshiftz≤ 0.2. The total number
of galaxies belonging to a cluster is difficult to assess, but clusters with as many as a few thousand member galaxies
have been found. A very interesting point is the density-morphology relation, which states that inside clusters of
galaxies the ratio of the numbers of elliptical to spiral galaxies is inverted relative to the field (Dressler1980, 2004).
This means that the galaxies interact heavily with the cluster.

The distributionΦ(L) of the luminositiesL of the cluster member galaxies are described by the Schechter function
(Schechter1976),

Φ(x)dx = Φ∗xα exp(−x)dx with x =
L
L∗
, (3.39)

with a characteristic luminosityL∗, or, equivalently, a characteristic absolute magnitudeM∗. Parameter values are
α = 5/4,Φ∗ = 0.012h3/Mpc3 andM∗B = −20.6. Dividing the integrated luminosity function by the integrated mass
function yields the mass-to-light ratio of clusters of galaxies. A typical value forM/L is 250M�/L�. At low masses
and luminosities, the Press-Schechter mass function and the Schechter luminosity function are not related by a fixed
mass-to-light ratioM/L. This is interpreted in a way that in low-mass haloes a mechanism is active that keeps those
systems from forming stars. Although a number of possible mechanisms has been proposed, it is still unclear what
exactly causes these low-mass systems to be devoid of stars.

3.3.2.3. X-ray emission by clusters of galaxies

Clusters of galaxies are strong emitters of X-ray radiation, which is produced as thermal bremsstrahlung by a hot
(T ' 107 K . . . 108 K) and dilute (n = 102 m−3 . . . 103 m−3) plasma situated in the core of the cluster. X-ray
luminosities reach values of up toLX = 1045 erg/s. Apart from thermal bremsstrahlung, X-ray observatories have
detected atomic lines of highly ionised metals such as Fe26+. In a relaxed cluster, the hot plasma is in dynamic
equilibrium with the dark matter, i.e. the ratioβ of the specific kinetic energyσ2

vel/2 stored in the random motion of
the dark matter particles (or, equivalently, the galaxies which act as tracer particles), which is characterised by the
velocity dispersionσ2

vel = 〈v
2
pec〉 and the thermal energy of the gas 3kBT/(2µmH),

β =
µmHσvel2

3kBT
, (3.40)

is of order unity. Hence,σvel = 106 m/s corresponds to a temperature ofT ' 108 K. In eqn. (3.40), µ ' 0.6 is
the mean atomic weight of the gas andmH denotes the mass of a hydrogen atom. If the hot plasma is in pressure
equilibrium, a determination of the massM(< r) inside the radiusr is possible (Fabricant et al.1980):

GM(< r)
r

= −
kBT
µmH

(
d lnρ
d ln r

+
d lnT
d ln r

)
(3.41)
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Figure 3.6.: A GADGET simulated cluster of galaxies of massM = 2.25× 1015M�/h at redshiftz = 0. The top panel
shows the projected baryonic matter distribution

∫
ρBdz in units of g/cm2, the centre panel the thermal Comptonisation

y =
∫

neTedz, and the bottom panel the distribution of thermal X-raysSX =
∫

n2
e

√
Tedz in units of erg/cm2 (The photon

energies were restricted to the range 0.1 keV. . . 10 keV). The (mass weighted) X-ray temperature of this cluster is
TX = 9.17 eV. Data has been kindly provided by K. Dolag.
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The temperatureT can be determined by spectroscopy, and the mass density profileρ(r) by analysing the X-ray
surface brightness mapSX(r),

SX(r) =
1
2π

∫ ∞

r
dr ′

r ′
√

r ′2 − r2
κ(r ′), (3.42)

with the emissivityκ(r) ∝ n2
e

√
T. By assuming primordial element composition and a value for the ratio of baryonic

and dark matter density, the surface brightness map, being an Abel integral, can be inverted to find the densityρ(r)
(Cavaliere1980). With the King-profile as an approximate description for the dark matter profile, by assuming
constant temperatureT and a relation between gas densityρg and dark matter densityρ, one obtains theβ-profile
(Cavaliere & Fusco-Femiano1978), which is a reasonable fit to X-ray observations (e.g. Abell 1413,Pratt &
Arnaud2002):

ρg

ρ(0)
g

=

 ρ

ρ(0)

β −→ ρg(r) = ρ
(0)
g

1+ (
r
rc

)2
3β
2

. (3.43)

Eqn. (3.43) is a very useful model and will be frequenly used in this thesis in analytic estimates concerning the
Sunyaev-Zel’dovich effect. For relaxed clusters, simple relations between massM, temperatureT and X-ray lumi-
nosityLX hold (Kaiser1986, Bryan & Norman1998). The mass-temperature relation has been confirmed by many
X-ray observations and numerical simulations (Navarro et al.1995). In spherical collapse, the velocity dispersion
is a function of mass. Assuming isothermality yields:

kBT =
GM2/3µmH

2β

(
H2(z)∆c

2G

)1/3

−→ T ∝ M2/3, (3.44)

with the (cosmology-dependent) overdensity∆c = 18π2 of a spherical top-hat perturbation that has just virialised
(Peebles1980). The bolometric X-ray luminosityLX can be obtained by integration:

LX = 6.8× 1044

(
kBT

1.0 keV

)2 √
∆cH

2(z)

(
ΩB

ΩM

)2

erg/s −→ LX ∝ T2. (3.45)

In reality, clusters are rarely in a relaxed state but exhibit a wealth of X-ray features such as cool cores, cold fronts
and X-ray cavities (Sarazin1986). Scaling relations linking the X-ray observables as derived above are equally well
applicable and very useful in estimations of Sunyaev-Zel’dovich properties of clusters of galaxies.

3.3.2.4. Thermal and kinetic Sunyaev-Zel’dovich effect

Another observational channel which is sensitive to the distribution of baryons inside clusters of galaxies is the
Sunyaev-Zel’dovich effect. CMB photons passing through a cluster will experience Compton collisions with elec-
trons of the hot ionised intra-cluster medium, causing distortions in the spectrum of the emergent radiation. This
Comptonisation of CMB photons on electrons of the ICM is referred to as the thermal Sunyaev-Zel’dovich (SZ) ef-
fect (Sunyaev & Zel’dovich1972, 1980). In the easiest interpretation, Compton scattering couples the hot reservoir
of thermal energy stored inside the ICM to the cold CMB. According to the laws of thermodynamics, there will be
a transfer of thermal energy from the hot to the cold reservoir. Because the ICM is very dilute and the Compton
interaction only weak, the relaxation time for the two reservoirs to reach the same equilibrium temperature is long,
much longer than the Hubble time. In fact, the CMB is not thermalised, but one observes only a tiny variation in
the CMB spectrum in the direction of the cluster (being of the order 10−4), because the direction dependence of
the Compton interaction removes low-energetic photons from the line-of-sight, and scatters photons with higher
energies into the line-of-sight, giving rise to the peculiar spectral signature of the SZ-effect.

In order to analyse these distortions quantitatively, the transport equation governing the effect of Compton scatter-
ing on the photon spectrum needs to be derived. The change in the photon phase space occupation numbern(ω) as
a function of photon energy~ω ≡ hν can be derived with the Kompaneets equation, which is a quantum mechanical
extension to the Fokker-Planck equation (Peacock1999):

ṅ =

(
σTne~

mec

)
1
ω2

∂

∂ω

{
ω4

[
n(n+ 1)+

kBTe

~

∂n
∂ω

]}
. (3.46)
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The optical depth of the ICM in clusters is very low so that photons can be considered to scatter once at most. In
this case, the Kompaneets equation yields a linear change in the phase space occupation numbern(ω),

∆n = y
1
ν2

∂

∂ν

(
ν4∂n
∂ν

)
with y ≡

σTkB

mec2

∫
dz neTe. (3.47)

The quantityy is the thermal Comptonisation, which measures the product of electron densityne and temperature
Te, i.e. the ICM pressure along the line-of-sight. Inserting a Planckian spectral distribution for the CMBS(x) =
S0x3/(exp(x) − 1) with the flux densityS0 = 22.9 Jy/arcmin2 yields the flux changeSY/S0 = ∆n/n:

SY(x) = yS0
x4 exp(x)

(exp(x) − 1)2

[
x

exp(x) + 1
exp(x) − 1

− 4

]
. (3.48)

Consequently, photons are redistributed in energy from the Rayleigh-Jeans part of the Planckian curve to the Wien
regime. The SZ-effect vanishes at a frequency ofx = 3.83 −→ ν = 217 GHz, which is an important tool in
SZ-observations. A very elegant approach to the spectral redistribution has been found independently (and almost
simultaneously) byEnßlin & Kaiser(2000) andSazonov & Sunyaev(2000), who describe the spectral redistribution
in terms of a convolution kernel. In this formalism, the SZ effect can be extended to relativistic electrons.

Apart from the unordered thermal motion of the ICM electrons, CMB photons may interact with the bulk motion
of baryonic matter streams inside a cluster or of the motion of the cluster as a whole relative to the CMB. The
isotropic CMB appears to have a dipolar structure from a frame of reference comoving with a baryonic flow, and
the direction dependence of the Compton scattering causes a transfer of kinetic energy of the cluster to the CMB
spectral distribution. This is known as the kinetic Sunyaev-Zel’dovich effect. The flux changeSW is given by:

SW = wS0
x4 exp(x)

(exp(x) − 1)2
with w =

σT

c

∫
dz neυr . (3.49)

In this formula,υr is the radial component of the cluster’s velocity in the CMB frame. The frequency dependence
of the thermal and kinetic SZ-effects in comparison to the Planckian CMB spectrum is given in Fig.3.7. Important
SZ-quantities are the Comptonisations integrated over the cluster face,

Y =

∫
dΩ y and W =

∫
dΩ w, (3.50)

which determine the signal strength in an SZ-observation. The SZ-effects are valuable tools to search for clusters
in CMB data. Because no photons are lost in the scattering process, and the ComptonisationsY undW decrease
only slowly with redshiftz, they are likely to yield detections out to large distances. Applied to individual objects,
the thermal SZ-effect measures pressure differences inside the ICM and may be a powerful diagnostic of plasma
dynamics.

3.3.2.5. integrated Sachs-Wolfe/Rees-Sciama effect

The growth of structure imprints additional anisotropies on the cosmic microwave background (CMB) by the time
variation of the gravitational potentials along the propagation path of a CMB photon. When transversing time-
varying potentials, the energy gains and losses a CMB photon experiences in entering and leaving potential wells
do not cancel exactly. In this way, one expects a net blueshift of CMB photons in forming voids and a net redshift in
matter-accreting clusters of galaxies. This effect is called the integrated Sachs-Wolfe (iSW) effect in the regime of
linear structure formation (Sachs & Wolfe1967) and Rees-Sciama (RS) effect (Rees & Sciama1968) if the density
perturbations grow nonlinearly. The perturbations∆T of the CMB sky temperatureTCMB can be written as:

τ ≡
∆T

TCMB
= −

2
c3

∫
dw

∂Φ

∂η
, (3.51)

where∂Φ/∂η is the derivative of the gravitational potentials with respect to conformal timeη.
The iSW/RS effect is of particular interest, since it measures the dynamics of structure formation independent

of the type and state of matter. The iSW/RS effect has been studied theoretically in individual objects (Martínez-
González et al.1990) and could be used for the investigation of cluster mergers (Rubiño-Martín et al.2004). More
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Figure 3.7.: The frequency dependence of the Sunyaev-Zeldovich flux change∆S(x) as a function of dimensionless
frequencyx = hν/(kBTCMB), for a cluster with electron temperatureTe = 10 keV, thermal Comptonisationy = 10−4, and
velocity υpec = 500 km/s. The plot shows the frequency dependence of the thermal SZ-effect (solid line), the kinetic
SZ-effect (dashed line) and the CMB black body spectrum (dash-dotted line) scaled by 5× 10−4 for comparison.

importantly, it is sensitive to mapping the large-scale structure as it highlights the sites of active structure formation
(Kaiser1982, Martínez-González & Sanz1990, Martínez-González et al.1992, 1994, Seljak1996b).

In conclusion, the various observational channels are powerful diagnostics of the cluster’s dynamics, in the bary-
onic as well as in the dark matter sector. Clusters of galaxies are by far more complicated objects than mere grav-
itationally interacting swarms of galaxies: Future experiments will open up the SZ-window which complements
X-ray observations in important respects and directly investigates the pressure distribution and deviations from hy-
drostatic equilibrium of the ICM. Gravitational lensing and the RS-effect shed light on dark matter distribution and
dark matter dynamics, whereas the kinetic SZ-effect is sensitive to baryonic streams inside clusters.
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4. PLANCK-surveyor

4.1. Introduction to the PLANCK-surveyor

The PLANCK-surveyor1,2,3 (Tauber2000) is a European space mission dedicated to the mapping of the CMB
anisotropies. It is scheduled for launch in 2007 and will be the fourth CMB observatory in a line of successful space
missions: RELIKT (Strukov et al.1992a,b), COBE (Hauser et al.1998, Wright et al.1996) and WMAP (Hinshaw
et al.2003). A core component of my thesis is the simulation of Sunyaev-Zel’dovich observations to be carried out
with PLANCK (Chapters5, 6, 7 and8), apart from the prediction of the observability of the integrated Sachs-Wolfe
effect (Chapter13).

4.2. PLANCK mission objectives

PLANCK will carry out a polarisation sensitive survey of the entire microwave sky in 9 frequency bands ranging
from 30 GHz up to 857 GHz with unprecedented angular resolution of up to 5.′0. Its scientific objectives are:

• CMB studies: PLANCK will map the CMB sky up to multipole moments exceeding` = 2000, well beyond
the third acoustic peak into the Silk damping regime. Its cartography of the microwave sky and the estima-
tion of the CMB power spectrum enable the determination of cosmological parameters (matter densityΩM,
cosmological constantΩΛ, baryon densityΩB, the spectral index of the dark matter power spectrumns at
large scales and Hubble’s constantH0) with an accuracy better than 1% (Bond et al.1997, Zaldarriaga et al.
1997). It will yield insights into the initial conditions of structure formation (White et al.1994), shed light
on the origin of primordial fluctuations along with a determination of inflation scenarios (Bond et al.1996,
Steinhardt1996), where the Gaussianity of the primordial fluctuations is an important issue, and will test for
topological defects (Kibble 1976, Coulson et al.1994). Futher areas of interest in primary CMB fluctuations
include constraints on properties of dark matter and dark energy (Dodelson et al.1996) and the production of
chemical elements after reionisation (Basu et al.2004).

• CMB polarisation: The detection of polarised CMB radiation along with the determination of power spec-
tra of the polarised components will yield important constraints on cosmic reionisation scenarios. Another
important reason for measuring the power spectra of polarised components is their power to break degenera-
cies of parameter constellations that result from the measurement of the temperature autocorrelation function
alone (Efstathiou & Bond1999).

• thermal Sunyaev-Zel’dovich effect: PLANCK is expected to detect about 104 clusters of galaxies from their
thermal SZ-signature. This cluster catalogue will reach out to very large redshifts and surpasses the classic
Abell catalogues and all X-ray catalogues by the number of entries. This catalogue will yield insights into
the cosmic evolution of clusters of galaxies which is closely linked to the parametersσ8 andΩM and the
dark-energy densityΩQ and the equation of state parameterw. It is doubtful whether PLANCK’s sensitivity
will by sufficient to determine velocities of clusters by the kientic Sunyaev-Zel’dovich effect (Aghanim et al.
2001).

1http://planck.mpa-garching.mpg.de
2http://sci.esa.int/planck
3http://astro.estec.esa.int/Planck
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PLANCK-surveyor

Figure 4.1.: The PLANCK-surveyor satellite

• gravitational lensing: The sensitivity and angular resolution of PLANCK will enable to detect deviations
from the primordial CMB power spectrum due to gravitational lensing of the CMB by the large-scale struc-
ture. Another lensing effect is the integrated Sachs-Wolfe or Rees-Sciama effect, which should be strong
enough to be detectable as a correction to the CMB power spectrum on large angular scales. Gravitational
lensing has been the subject of many investigations, for instance bySeljak(1994, 1996a), Cole & Efstathiou
(1989), Bartelmann & Schneider(2001).

• extragalactic point sources:PLANCK will yield an extensive catalogue of extragalactic point sources and
will be able to give a crude determination of their spectral properties. Possible types of point sources include
infrared (Franceschini & Andreani1995) and radio galaxies, AGNs, QSOs and blazars and inverted spec-
tra radio sources. PLANCK will complement precursing infrared observatories in studying the cosmic far
infrared background (Puget1998a,b).

• Galactic studies: PLANCK’s channels above 353 Ghz will be, due to their supreme angular resolution,
especially suited to study Galactic foregrounds. PLANCK will determine the properties and temperatures of
Galactic dust, and will examine the cloud and cirrus morphology (Boulanger1990). In the field of Galactic
synchrotron emission, it will determine spectral indices at high frequencies, will constrain the Galactic cosmic
ray distribution and map the Galactic magnetic field (Falgarone et al.1992, Tagger et al.1995).

• Solar system studies:PLANCK is expected to detect about 100-150 asteroids and comets (Cremonese et al.
2002), and will help to determine their thermal properties at low frequencies. Another sub-millimetric emis-
sion component of the Solar system to be investigated is the zodiacal light (Reach et al.2003a).

4.3. Instrument description

The PLANCK-surveyor satellite is depicted in Fig.4.1. Its optical system consists of two aluminium coated carbon
fiber mirrors arranged in an off-axis tilted Gregorian configuration that guides the radiation to a detector array.
The primary mirror is an off-axis mounted paraboloid with a diameter of 1.3 m and a focal length of 72 cm. The
secondary mirror is a hyperboloid with 80 cm diameter and a focal length of 50 cm. The total wavefront error will
be smaller than 40µm.

There will be two types of receivers onboard: The low-frequency instrument (LFI), which operates at frequencies
of 30 GHz, 44 GHz and 70 GHz, and the high-frequency instrument (HFI), for observations at frequencies between
100 GHz and 857 GHz. The LFI uses high electron mobility transistors as receivers, cooled to a temperature of
20 K. The HFI is an array of bolometers, which are cooled to a temperature of 0.1 K. Some of the HFI-channels are
equipped with polarisation filters. The sensitivity of PLANCK will suffice to record fluctuations of 2µK on angular
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scales below 10.′0. PLANCK will carry out its survey from the second Lagrangian pointL2 in the Earth-Sun system
at a distance of approximately 1.5× 106 km from Earth.
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5. Construction of all-sky thermal and kinetic
Sunyaev-Zel’dovich maps

Abstract

All-sky thermal and kinetic Sunyaev-Zel’dovich (SZ) maps are presented for assessing how well the PLANCK mission can find
and characterise clusters of galaxies, especially in the presence of primary anisotropies of the cosmic microwave background
(CMB) and various galactic and ecliptic foregrounds. The maps have been constructed from numerical simulations of structure
formation in a standardΛCDM cosmology and contain all clusters out to redshifts ofz = 1.46 with masses exceeding 5×
1013M�/h. By construction, the maps properly account for the evolution of cosmic structure, the halo-halo correlation function,
the evolving mass function, halo substructure and adiabatic gas physics. The velocities in the kinetic map correspond to the
actual density environment at the cluster positions. I characterise the SZ-cluster sample by measuring the distribution of angular
sizes, the integrated thermal and kinetic Comptonisations, the source counts in the three relevant PLANCK-channels, and give
the angular power-spectra of the SZ-sky. While my results are broadly consistent with simple estimates based on scaling relations
and spherically symmetric cluster models, some significant differences are seen which may affect the number of cluster detectable
by PLANCK.

5.1. Introduction

The Sunyaev-Zel’dovich (SZ) effects (Sunyaev & Zel’dovich1972, 1980, Birkinshaw1999, Rephaeli1995) have
evolved from physical peculiarities to valuable and sound observational tools in cosmology. The thermal SZ-effect
arises because photons of the cosmic microwave background (CMB) experience Compton-collisions with electrons
of the hot plasma inside clusters of galaxies and are spectrally redistributed. The amplitude of the modulation of the
Planckian CMB spectrum is a measure of the cluster electron column density and temperature. Alternatively, CMB
photons may gain energy by elastic Compton collisions with electrons of the intra-cluster medium (ICM) due to the
peculiar motion of the cluster relative to the CMB. This so-called kinetic SZ-effect is proportional to the peculiar
velocity weighted electron column density and directly measures the cluster’s velocity component parallel to the
line-of-sight relative to the comoving CMB frame.

The advancement in sensitivity and angular resolution of sub-millimeter and microwave receivers have allowed
high quality interferometric imaging of more than fifty clusters of galaxies by ground based telescopes (Carl-
strom et al.2002) out to redshifts of∼ 0.8, despite incomplete coverage of the Fourier plane. Apart from its
primary scientific objective, namely the cartography of the CMB with angular resolutions close to 5′, the upcoming
PLANCK mission (Mandolesi et al.1995, Tauber2000) will be an unique tool for observing clusters of galaxies
by their SZ-signature. PLANCK is expected to yield a cluster catalogue that is surpassing the classic optical Abell
catalogues or any existing X-ray catalogue in numbers as well as in depth and sky coverage.

The capability of PLANCK to detect SZ-clusters has been the subject of many recent works, pursuing analytical
(Aghanim et al.1997, Delabrouille et al.2002, Bartelmann2001, Moscardini et al.2002) as well as semianalytical
(Kay et al.2001, Hobson & McLachlan2003) and numerical approaches (Herranz et al.2002, White 2003). Their
consensus is an expected total number of a few times 104 clusters and the detectability of (sufficiently massive)
clusters out to redshifts ofz <

∼ 1. The authors differ mainly in the expected distribution of the detectable clusters in
redshiftz. Where adressed, the authors remain sceptic about the detectability of the kinetic SZ-effect.

As a result of various approximations made, there are clearly limitations in these studies: Concerning the SZ
profiles of isolated clusters, simplifying assumptions like spherical symmetry, complete ionisation and isothermality
have usually been made. Analytical treatments mostly rely onβ-profiles for modeling the spatial variation of the
Compton-y parameter. Temperature models mostly make use of scaling laws derived from spherical collapse theory
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or are taken from X-ray observations. Naturally, the halo-halo correlation function is not taken account of, neither
do the velocities correspond to the actual density environment, they are commonly drawn from a (Gaussian) velocity
distribution.

The primary application of the all-sky SZ-maps would lie in the assessment of the extent to which cluster sub-
structure and deviations from spherical symmetry, the halo-halo clustering and deviations from the scaling-laws
alter the predictions made based on analytic methods.

Additionally, the investigations mentioned above lack the inclusion of galactic foregrounds (for a comprehensive
review of foregrounds concerning PLANCK, seeBouchet & Gispert1999), the thermal emission from planets and
minor celestial bodies of the solar system, beam patterns and spatially non-uniform instrumental noise. In order
to quantify the extent to which the galactic and ecliptic foregrounds impede the SZ-observations by PLANCK, i.e.
down to which galactic latitudes clusters will be detectable, a detailed simulation is necessary. Furthermore, the
noise patterns will be highly non-uniform due to PLANCK’s scanning strategy. For investigating this issue, all-sky
maps of the thermal and kinetic SZ-effects are essential.

In my map construction, I use two numerical simulations of cosmic structure formation: The Hubble-volume
simulation, that provided a well-sampled cluster catalogue covering a large volume and secondly, a set of template
clusters resulting from a gas-dynamical simulation on much smaller scales, allowing us to extract template clusters.
For all clusters of the Hubble-volume simulation, a suitable template was chosen and after having performed a
scaling operation to improve the match it is projected onto the celestial sphere at the position requested by the
Hubble-volume catalogue. By construction, the resulting all-sky SZ-maps show halo-halo correlation even on large
angular scales, incorporate the evolution of the mass function and have the correct size distribution. In the kinetic
SZ-map, it is ensured that the cluster peculiar velocities correspond to the ambient cosmological density field.
Furthermore, the template clusters do exhibit realistic levels of substructure and departures from isothermality,
and their ensemble properties also account for scatter around the idealised scaling laws.Therefore, most of the
imperfections of traditional approaches will be remedied by my map construction process. However, there are
impediments that could not be disposed of: They include gas physics beyond adiabaticity, e.g. radiative cooling and
supernova feedback, that significantly alter the baryon distribution and temperature profiles of the ICM and hence
the SZ-amplitude, incomplete ionisation, inclusion of filamentary structures and uncollapsed objects or diffuse gas.
Another process influencing the thermal history of the ICM is reionisation, which also had to be excluded. Yet
another complication are non-thermal particle populations in clusters of galaxies that give rise to the relativistic
SZ-effect (Wright 1979, Sazonov & Sunyaev1998, Enßlin & Kaiser2000, Sazonov & Sunyaev2000).

This chapter is structured as follows: After the definition of the basic SZ quantities in Sect.5.2, the simulations
are outlined in Sect.5.3. The construction of the maps is described in detail in Sect.5.4 and the properties of the
resulting maps are compiled in Sect.5.5. Finally, the conclusions are presented in Sect.5.6.

5.2. Sunyaev-Zel’dovich definitions

Compton interactions of CMB photons with electrons of the ionised ICM give rise to the thermal and kinetic
Sunyaev-Zel’dovich effects and induce surface brightness fluctuations in the CMB sky, either because of the thermal
motion of the ICM electrons (thermal SZ) or because of the bulk motion of the cluster itself (kinetic SZ).

The relative change∆T/T in thermodynamic CMB temperature at positionθ as a function of dimensionless
frequencyx = hν/(kBTCMB) due to the thermal SZ-effect is given by eqn. (5.1):

∆T
T

(θ) = y(θ)

(
x

ex + 1
ex − 1

− 4

)
with (5.1)

y(θ) =
σTkB

mec2

∫
dl ne(θ, l)Te(θ, l), (5.2)

where the amplitudey of the thermal SZ-effect is commonly known as the thermal Comptonisation parameter. It is
proportional to the line-of-sight integral of the temperature weighted thermal electron density (c.f. eqn. (5.2)). me, c,
kB andσT denote electron mass, speed of light, Boltzmann’s constant and the Thompson cross section, respectively.
The kinetic SZ-effect arises due to the motion of the cluster relative to the CMB rest frame parallel to the line of
sight. The respective temperature change is given by:

∆T
T

(θ) = −w(θ) with w(θ) =
σT

c

∫
dl ne(θ, l)υr (θ, l). (5.3)
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5.3 Simulations

data set z range Ω/sr Nhalo shape
MS 0.0 ≤ z≤ 0.58 4π 564818 sphere
NO 0.58< z≤ 1.46 π/2 182551 northern octant shell
PO 0.58< z≤ 1.46 π/2 185209 southern octant shell

Table 5.1.: Basic characteristics of the light-cone outputs used for compiling a cluster catalogue. The columns denote
the label of the data set, the range in redshiftz, the solid angleΩ covered, the number of objectsNhalo retrieved, and the
geometrical shape.

Here,υr is the radial component of the cluster velocity, i.e. the velocity component parallel to the line-of-sight.
The convention is such that the CMB temperature is increased, if the cluster is moving towards the observer, i.e. if
υr < 0. In analogy toy, the quantityw is refered to as the kinetic Comptonisation parameter.

5.3. Simulations

Due to the SZ-clusters being detectable out to very large redshifts, due to their clustering properties on very large
angular scales, and due to the requirement of reducing cosmic variance when simulating all-sky observations as will
be performed by PLANCK, there is the need for very large simulation boxes, encompassing look-back distances
to redshifts of orderz ' 1 which corresponds to comoving scales exceeding 2 Gpc. Unfortunately, a simulation
incorporating dark matter and gas dynamics that covers cosmological scales of that size down to cluster scales and
possibly resolving cluster substructure is presently beyond computational feasibility.

For that reason, a hybrid approach is pursued by combining results from two simulations: The Hubble-volume
simulation (Jenkins et al.2001, Colberg et al.2000), and a smaller scale simulation including (adiabatic) gas physics
(White et al.2002). The analysis undertaken byBartelmann(2001) gives expected mass and redshift ranges for
detectable thermal SZ-clusters, which are covered completely by the all-sky SZ-map presented here.

The assumed cosmological model is the standardΛCDM cosmology, which has recently been supported by
observations of the WMAP satellite (Spergel et al.2003). Parameter values have been chosen asΩM = 0.3,ΩΛ =
0.7, H0 = 100hkm s−1 Mpc−1 with h = 0.7,ΩB = 0.04,ns = 1 andσ8 = 0.9.

5.3.1. Hubble-volume simulation

The Hubble-volume simulation is one of the largest simulations of cosmic structure formation carried out to date.
The simulation domain is a box of comoving side length 3 Gpc/h (for the standardΛCDM cosmology) and com-
prises 109 dark matter particles. The simulations used were carried out by the Virgo Supercomputing Consortium
using computers based at the Computing Centre of the Max-Planck-Society in Garching and at the Edinburgh par-
allel Computing Centre. The data are publicly available for download1.

The light-cone output of the Hubble-volume simulation (Evrard et al.2002) was used for compiling a cluster cat-
alogue. This ensures, that the abundance of clusters at any given redshiftz corresponds to the level of advancement
in structure formation up to this cosmic epoch. The minimal mass was set to 5× 1013M�/h, which roughly corre-
sponds to the transition mass between a rich group of galaxies and a cluster. In order to cover redshifts out to the
anticipated limit for PLANCK, light-cone outputs of differing geometry were combined: First, a sphere covering the
full solid angle of 4π was used for redshift radii ofz= 0 to z= 0.58. For redshifts exceedingz= 0.58, the northern
and southern octant data sets were added. The octant data sets span a solid angle ofπ/2 and were replicated by
rotation in order to cover the full sphere. Table5.1summarises the properties of the different output geometries. In
this way, a cluster catalogue with cluster massM, position on the skyθ, redshiftzand peculiar velocityυr projected
onto the line-of-sight was compiled, comprising a total number of 2035858 clusters. For the sky-map construction,
the positionsθ were interpreted as ecliptic coordinates, the default coordinate system for PLANCK.

Here, it should be mentioned that the combination of different outputs gives rise to boundary discontinuities, at the
surface of the central sphere as well as on the faces of the octant shells. These discontinuities do not only show up in

1http://www.mpa-garching.mpg.de/galform/virgo/hubble
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Construction of all-sky thermal and kinetic Sunyaev-Zel’dovich maps

the spatial halo distribution, but also in the velocities of clusters close to simulation box boundaries. Furthermore,
the cluster catalogues exhibit small completeness deficiencies close to the edges of the simulation domain.

5.3.2. Small scale SPH cluster simulations

A hydrodynamical simulation of cosmological structure formation (White et al.2002) constitutes the basis of the
SZ-template map construction. The simulation was performed with theGADGET code2 (Springel et al.2001) using
the ‘entropy-conserving’ formulation of SPH (Springel & Hernquist2002). The simulation, first analysed inWhite
et al. (2002), followed 2163 dark matter particles as well as 2163 gas particles in a cubical box of comoving side
length 100 Mpc/hwith periodic boundary conditions. Purely adiabatic gas physics and shock heating were included,
but radiative cooling and star formation were ignored, which however does not result in significant differences in
SZ morphology, as shown byWhite et al.(2002), but would impact on the scaling relations as demonstrated by
da Silva et al.(2001). I analyse 30 output redshifts ranging fromz = 0 out toz = 1.458. The comoving spacing
along the line-of-sight of two subsequent outputs is 100 Mpc/h. Halos were identified using a friends-of-friends
algorithm with linking lengthb = 0.164, which yields all member particles of cluster-sized groups. Then I employed
a spherical overdensity code to estimate the virial mass and radius of each cluster. I computed the massMvir inside
a sphere of radiusrvir , interior to which the average density was 200 times the critical densityρcrit = 3H(z)2/(8πG).
A lower mass threshold ofMvir ≥ 5× 1013M�/h was imposed in order to match the lower mass limit adopted for
the Hubble-volume cluster catalogue.

5.4. Sunyaev-Zel’dovich map construction

The construction of the all-sky SZ-map proceeds in three steps: First, a set of template cluster maps was derived
based on cluster data from a gas-dynamical simulation (Sect.5.4.1). Then, for each of the clusters in the cluster cat-
alogue obtained from the Hubble-volume simulation, a suitable hydrodynamical cluster template has been selected,
scaled in mass and temperature in order to better fit the cluster from the Hubble-volume catalogue (Sect.5.4.2),
and, for the kinetic sky map, boosted to the radial peculiar velocity required by the Hubble-volume simulation. The
last step is the projection onto a spherical celestial map (Sect.5.4.3). In the subsequent paragraph (Sect.5.4.4), the
completeness of the resulting SZ-maps is investigated analytically.

5.4.1. SZ-template map preparation

Square maps of the Compton-y parameter of the selected clusters were generated by SPH projection of all friends-
of-friends identified member gas particles onto a Cartesian grid with 1282 mesh points. The (comoving) side length
sof the map was adapted to the cluster size, such that the comoving resolutiong = s/128 of the grid is specific to a
given map.

If the particlep at positionrp =
(
xp, yp, zp

)
has a smoothing lengthhp, an SPH electron number densitynp, and

an SPH electron temperatureTp, the Compton-y parameter for the pixel at positionx is given by:

y(x) =
σTkB

mec2

h3
p

g2

∑
p


x+g/2∫

x−g/2

dxp

y+g/2∫
y−g/2

dyp

hp∫
−hp

dzpK

(
r
hp

)
npTp

 (5.4)

with r =
√

(xp − x)2 + (yp − y)2 + z2
p. (5.5)

Here, I assume complete ionisation and primordial element composition of the ICM for the determination of
electron number density and temperature. In this way, I produce projections along each of the three coordinate axes.
The functionK is the spherically symmetric cubic spline kernel suggested byMonaghan & Lattanzio(1985), which
was also used in the SPH simulation:

K(u) =
8
π
×


1− 6u2 + 6u3, 0 ≤ u ≤ 1/2
2(1− u)3 , 1/2 < u ≤ 1
0 , u > 1

with u = r/hp. (5.6)

2http://www.mpa-garching.mpg.de/galform/gadget/index.shtml
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5.4.1 SZ-template map preparation
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Figure 5.1.: The population of the template clusters in the mass-redshift plane. The line separates the sparsely sampled
region from the region in which a sufficient number of template clusters is available.

The fact that the kernelK has a compact supportu ∈ [0 . . . 1] greatly reduces the computational effort. Details of
the SPH projection are summarised in AppendixA.

The kinetic maps were treated in complete analogy: Maps of the Thomson optical depthτ were derived by means
of eqn. (5.7):

τ(x) = σT

h3
p

g2

∑
p


x+g/2∫

x−g/2

dxp

y+g/2∫
y−g/2

dyp

hp∫
−hp

dzpK

(
r
hp

)
np

 . (5.7)

In eqn. (5.7), the influence of velocity differences inside the clusters was omitted. At the stage of projecting the
template clusters onto the spherical map, theτ-map obtained is boosted with the peculiar line-of-sight velocityυr

in units of the speed of lightc required by the entry in the Hubble-volume catalogue in order to yield a Compton-w
amplitude.

Neglecting velocity differences inside the clusters does not seriously affect the measurement of cluster peculiar
velocities with the kinetic SZ-effect shown byNagai et al.(2003), the scatter in the velocity estimates increases
only little (50 − 100 km/s) when considering a rather narrow beam (∆θ = 1.′0 FWHM), while the kinetic SZ-
amplitude remains an unbiased estimator of the peculiar velocity. For my application purpose, the situation is even
less troublesome because of PLANCK’s wide beams (>

∼ 5.′0 (FWHM)).
In this way, a sample of 1518 individual template clusters was obtained, and maps for projections along all three

coordinate axes were derived, yielding a total of 4554 template maps for each of the two SZ-effects. Fig.5.1shows
the distribution of clusters in the mass-redshift plane. Especially at high masses, the smooth growth of clusters by
accretion can be clearly seen. Sudden jumps to larger masses are caused by the merging of low-mass clusters.

A limitation to my SZ-map construction is immediately apparent: The 4554 cluster template maps derived from
the hydro-simulation are not strictly independent, but merely show the same clusters at different redshift. Thus,
the morphological variety remains limited, but even though there is of course some variation in morphology due to
accretion and merging events. This, however, may not be a severe restriction, keeping the wide PLANCK-beams
in mind, that are unlikely to resolve cluster substructure for a large fraction of detectable clusters. In this case, the
simulation will pick up mismatches in Comptonisation relative to the value expected from the spherical collapse
model in conjunction with the Press-Schechter distribution of halo masses.
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Figure 5.2.: Distribution of the ratiosaY (circles, solid line) andaW (crosses, dashed line) that describes the impact of
the mismatch between friends-of-friends masses and virial masses on the ComptonisationsY andW.

5.4.2. Cluster selection and scaling relations

In order to select a template map for projection, the closest template cluster in the log(M)-z-plane for a given cluster
from the Hubble-volume simulation was chosen. For the sparsely sampled region of theM-z-plane to the right of
the line in Fig.5.1, a cluster from a pool containing the most massive clusters to the right of this line in the redshift
bin under consideration was drawn.

The template clusters are scaled in mass, temperature and spatial extent in order to yield a better match to the
cluster from the Hubble-volume simulation according to formulae5.8-5.10. The scaling is parameterised by the
masses of the cluster of the Hubble-volume simulationM(Hubble)

vir and the template clusterM(template)
vir :

qM =
M(Hubble)

vir

M(template)
vir

(5.8)

qR =
r1

(
M(Hubble)

vir

)r2
+ r3

r (template)
vir

(5.9)

qT =
t1

(
M(Hubble)

vir

)t2
+ t3

t1
(
M(template)

vir

)t2
+ t3

. (5.10)

The parametersr i andti , i ∈ {1,2,3}, describing the scaling in sizeqR and in temperatureqT were derived from
template data: Fits to the virial radius as a function of mass and of the mean temperature inside the virial sphere
as a function of mass were applied to the data of simulation outputs binned in five data sets. This approach leaves
the map construction independent of idealised assumptions, like the prediction of cluster temperatures from the
spherical collapse model, or from electron temperature measurements deduced from X-ray observations and keeps
the weak trend of cluster temperature with redshiftz as contained in the simulations.

Although the scaling has been constructed in order to yield the best possible match between the template cluster
and the target cluster from the Hubble-volume simulation, there are artifacts in irregular systems due to inconsis-
tencies in cluster massesM(template)

fof determined with a friends-of-friends algorithm for identifying cluster member

particles and the virial mass estimatesM(template)
vir following from applying the spherical overdensity code. After the

scaling, these mismatches may be expressed as:
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aY = qMqT M(template)
fof /M(Hubble)

vir and (5.11)

aW = qM M(template)
fof /M(Hubble)

vir . (5.12)

Fig.5.2shows the distribution of ratiosaY andaW for the entire Hubble-volume catalogue. Clearly, one recognises
large tails towards high values, because clusters have on average to be scaled to higher masses. This is due to the fact
that the hydro-simulation outlined in Sect.5.3.2does not sample the high-mass end of the Press-Schechter function
satisfatorily, simply because of its small volume. Nevertheless, the mean of the distributions is close to one, which
implies that the mismatches average out for the bulk of clusters.

5.4.3. Projection onto the celestial sphere

For storing all-sky maps the HEALPix3 tesselation of the sphere proposed byGórski et al.(2002) has been chosen.
In order to support structures as small as clusters, theNside parameter has been set to 2048, resulting in a total
number of 12N2

side = 50331648 pixels. The side length of one pixel is then approximately 1.′71, which is well
below the anticipated PLANCK beam size of 5.′0 in the highest frequency channels.

The scaled cluster maps are projected onto the spherical map by means of stereographic projection at the south
ecliptic pole of the celestial sphere. By dividing the (comoving) position vector (x, y) of a given pixel on the
template map by the comoving angular diameter distanceχ(z) at redshiftz, one obtains the coordinates (α,β) on the
tangential plane. Then, the stereographic projection formulae yield the (Cartesian) position vector (ξ, η, ζ) of this
point projected onto the unit sphere:

r = (ξ, η, ζ + 1) =

(
4α

4+ α2 + β2
,

4β
4+ α2 + β2

,
α2 + β2

4+ α2 + β2

)
. (5.13)

In order to assign a Comptonisation amplitude to a given HEALPix pixel in the projection process, a solid angle
weighted average is performed. For close-by clusters, the mesh size of the templates converted to angular units
is larger than the HEALPix pixel scale. For those clusters, the map is refined iteratively by subdivision of a pixel
into 4 smaller pixels subtending a quarter of the original solid angle until the pixel size is well below the HEALPix
pixel scale. Before projection, the template maps are smoothed with a Gaussian kernel with∆θ = 2.′0, which is
comparable to the HEALPix pixel scale. In this way, it is avoided that structures are destroyed by the combination
of multiple template map pixels into a single HEALPix pixel. This convolution does not affect the later usage for
simulations concering PLANCK: A second successive convolution with the narrowest beam results in an effective
smoothing of 5.38′, which corresponds to a decrease in angular resolution of roughly 7.5%.

Additionally, a rotation of the template map around theez-axis about a random angle is performed in order to
avoid spurious alignments of clusters. The projected pixels are then transported by Euler-rotations of the vector
(ξ, η, ζ) to the position requested by the Hubble catalogue.

5.4.4. Completeness of the all-sky SZ-maps

The angular resolution of PLANCK will not allow to spatially resolve low-mass and high-redshift clusters. There
will be a Compton-y background〈ybg〉θ due to the higher number density of low-mass clusters compared to high-
mass clusters which overcompensates their lower individual SZ-signature. Since ideally any isotropic background
could be removed, I only have to take into account the average background fluctuation level〈y2

bg〉θ which is described
by power spectrum statistics.

This section studies the influence of the background of unresolved SZ-clusters in my all-sky map of SZ-clusters
on power spectrum statistics. My simulation neglects the SZ-signal of clusters both with masses smaller than
5 × 1013M�/h and redshiftsz > 1.5. In principle, these missing clusters could be accounted for by drawing them
from a particular realisation of aPoissonian random fieldsuch that they obey the correct relative phase correlations,
i.e. that they exhibit the observed local clustering properties.

However, there are large uncertainties about the baryon fractionfB = ΩB/ΩM of low-mass halos(Mhalo < 5 ×
1013M�/h) especially at higher redshifts. Analyses of X-ray observations of 45 local clusters (z < 0.18, only 4

3http://www.eso.org/science/healpix/
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of them lie atz > 0.1) carried out byMohr et al.(1999) andArnaud & Evrard(1999) suggest a weak trend of
the cluster baryon fractionfB with cluster massM and a deviation from the universal value, which may be due to
feedback processes like galactic winds that more effectively deplete the ICM of baryons in low-mass compared to
high-mass clusters. The behaviour offB at high redshifts is very uncertain, among other reasons because the relative
importance of the different feedback processes at high redshift is yet unknown. This uncertainty is also reflected in
different cooling rates and mechanisms, governing the ionisation fraction of the electrons and the resulting SZ flux
of a particular cluster. In the following, I study the contribution to the SZ flux of clusters both with masses smaller
than 5× 1013 M�/h and redshiftsz > 1.5. Although the impact of this cluster population to the〈ybg〉-statistics
amounts to a significant fraction, this population has a negligible contribution to the more relevant〈y2

bg〉-statistics
which will be shown in the following. The unresolved cluster population is assumed to follow scaling relations
derived from the spherical collapse model. TemperatureT and halo massM are assumed to be related by

kBT
6.03 keV

=

(
M

1015M�/h

)2/3

(1+ z)

(
Ω0

Ω(z)

)1/3 (
∆c(z)
178

)1/3

(5.14)

(e.g. Eke et al.1996, Navarro et al.1995). The temperaturekBT = 6.03 keV for a cluster withM = 1015M�/h has
been adopted fromMathiesen & Evrard(2001). The density parameter at redshiftz is denoted byΩ(z), and∆c is
the mean overdensity of a virialised sphere,

∆c = 9π2
{
1+ α [Ω(z) − 1] + Ω(z)β

}
(5.15)

with (α, β) = (0.7076,0.4403) for a flat cosmology (Stöhr1999). Assuming that the total numberNe of thermal
electrons within the cluster virial radius is proportional to the virial mass yields

Ne =
1+ fH

2
fB

M
mp

, (5.16)

where fH is the hydrogen fraction of the baryonic mass (fH ≈ 0.76) andmp is the proton mass. From X-ray data
of an ensemble of 45 clusters,Mohr et al.(1999) derived fB = 0.075h−3/2. Traditionally, the number density of
dark matter haloes is described by the Press-Schechter formalism (Press & Schechter1974). The comoving Press-
Schechter mass function can be written as

nPS(M, z) =
ρ̄

√
2πD+(z)M2

(
1+

n
3

) ( M
M∗

)(n+3)/6

exp

− 1

2D2
+(z)

(
M
M∗

)(n+3)/3 , (5.17)

whereM∗ and ρ̄ are the nonlinear mass today and the mean background density at the present epoch, andD+(z)
is the linear growth factor of density perturbations, normalised to unity today,D+(0) = 1. n ≈ −1 denotes the
effective exponent of the dark matter power spectrum at the cluster scale.Sheth & Tormen(1999) recently proposed
a significantly improved analytic derivation of the mass function whileJenkins et al.(2001) measured the mass
function of dark matter haloes in numerical simulations and found a fitting formula very close to Sheth & Tormen’s,
however, being of slightly lower amplitude at high masses. Thus, the fitting formula found by Jenkins et al. was
used in my study.

The total Compton-y parameter per unit solid angle is given by

YΩ = d2
A

∫
d2θ y(θ) =

kBTe

mec2
σTNe, (5.18)

wheredA is the angular-diameter distance to the cluster. The mean background level of SZ fluctuations is given by

〈ybg〉θ(z,M0) =

∫
dz

∣∣∣∣∣dV
dz

∣∣∣∣∣ (1+ z)3
∫

M0

dM nPS(M, z)YΩ(M, z)

=

∫
dM

∫
dVYΩ(M, z)

d2N(M, z)
dM dV

, (5.19)

where dV is the cosmic volume per unit redshift and unit solid angle,nPS(M, z) is the mass function of collapsed
halos (5.17), andYΩ(M, z) is the integrated Compton-y parameter per unit solid angle from (5.18) expressed in
terms of halo massM and redshiftz. Background fluctuations are due to Poisson fluctuations in the number of
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Figure 5.3.: Comparison of the mean background level〈ybg〉θ(z,5 × 1013M�/h) (solid) and the variances〈y2
bg〉θ(z,5 ×

1013M�/h) (dashed) and〈y2
bg〉θ(z,1013M�/h) (dash-dotted). The differential curves show qualitatively the smaller impact

of low-mass and high-redshift clusters on the variance compared to the mean background of SZ fluctuations.

clusters per unit mass and volume if cluster correlations are neglected. The variance of the background fluctuations
reads

〈y2
bg〉θ(z,M0) =

∫
M0

dM
∫

dV
[
YΩ(M, z)

]2 d2N(M, z)
dM dV

. (5.20)

Fig. 5.3shows a qualitative comparison of the influence of the background of unresolved SZ-clusters on the mean
background level〈ybg〉θ(z,M0) and the variance〈y2

bg〉θ(z,M0). For studying this influence quantitatively, the ratio of
mean background levels and variances is defined via:

rmean =
〈ybg〉θ(zsim,Msim)

〈ybg〉θ(zmax,Mmin)
, (5.21)

rvar =
〈y2

bg〉θ(zsim,Msim)

〈y2
bg〉θ(zmax,Mmin)

, (5.22)

where the numerator accounts for the resolved clusters in my simulation withz < zsim = 1.5 andM > Msim =

5 × 1013M�/h while the denominator accounts for all collapsed halos contributing to the SZ-flux in my analytic
estimate (z< zmax = 20 andM > Mmin = 1× 1013M�/h). Performing these integrals yields ratios ofrmean= 40.6%
andrvar = 93.3% and thus confirms the qualitative picture of Fig.5.3. Therefore, I conclude that one can safely
neglect the effect of the background of unresolved SZ clusters on power spectrum statistics of my SZ all-sky map,
especially when considering the mentioned uncertainties infB and the ionisation fraction of electrons in low-mass
halos.

5.5. Results

This section provides various characterisations of the SZ-cluster sample and properties of the resulting map. First,
a visual impression of the SZ-maps is given in Sect.5.5.1. Distribution of the angular sizes and of the integrated
thermal and kinetic Comptonisations are presented in Sect.5.5.2and in Sect.5.5.3, respectively. The distribution of
pixel amplitudes and a discussion of the sky-averaged thermal Comptonisation is given in Sect.5.5.4. The angular
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Figure 5.4.: All-sky map of the thermal Comptonisation parametery in Mollweide projection. The shading is proportional
to arsinh(106 × y).

power-spectra in comparison to those obtained in high-resolution simulations performed byWhite et al.(2002) is
shown in Sect.5.5.5. Finally, source counts in three relevant PLANCK-channels are given in Sect.5.5.6.

In order to quantify the deviations resulting in using template SZ-maps instead of relying solely on analytical
profiles and idealised scaling relations, the distributions following from the respective approach are constrasted in
Sect.5.5.2(angular sizes), Sect.5.5.3(integrated Comptonisations) and Sect.5.5.6(source count at three selected
PLANCK-frequencies).

5.5.1. Sky views

In order to give a visual impression of the sky maps, all-sky views in Mollweide projection of the Compton-y
parameter (Fig.5.4) as well as of the Compton-w parameter (Fig.5.5) are presented. Apart from those images,
detailed maps of small regions of the SZ-sky are presented in Fig.5.6 for the thermal and in Fig.5.7 for the kinetic
SZ-effects, respectively. These detailed maps display interesting features: Clearly, cluster substructure is visible in
the maps, e.g. at position (λ, β) ' (134.◦60,45.◦25).

Secondly, massive clusters that generate a strong thermal signal, are rare, such that in drawing a peculiar velocity
from a Gaussian distribution large values are less likely to be obtained. Consequently, these clusters commonly
show only a weak kinetic signal, a nice example can be found at the position (λ, β) ' (135.◦25,44.◦75). Closeby,
the inverse example can be found at (λ, β) ' (135.◦40,44.◦50), where a low-mass cluster shows only a weak thermal
signal, but has sufficient optical depth and a high enough peculiar velocity to give rise to a strong kinetic signal.
Finally, at (λ, β) ' (135.◦90,45.◦75), there is an example of a merging cluster, with a dipolar variation of the subcluster
velocities.

The occurence of high kinetic SZ-amplitudes is a subtle point: Cluster velocities follow a Gaussian distribution
with mean consistent with zero, because the large scale structure is at rest in the comoving CMB-frame and with
a standard deviation ofσυ = 312.8 ± 0.2 km/s. This value has been measured for clusters in the Hubble-volume
catalogue and is noticably smaller compared toσυ = 400 km/s proposed byAghanim et al.(1997). As Fig. 5.8
illustrates, the velocity-distribution doesnot depend on the cluster mass, because on the scales of typical cluster
separation, linear structure formation is responsible for accelerating the clusters to their peculiar velocity. Massive
clusters are rare and thus a high peculiar velocity is seldomly drawn from the underlying Gaussian distribution.
Despite the seemingly large separation, it would be incorrect to draw the velocities independently from a Gaussian
distribution. Instead, the kinetic SZ-map ensures the consistency that the density and velocity fields have grown
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5.5.1 Sky views

Figure 5.5.: All-sky map of the kinetic Comptonisation parameterw in Mollweide projection. The shading is proportional
to arsinh(107 × w).
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Figure 5.6.: Detail of the thermal Comptonisation map: A 2◦ × 2◦ wide cut-out centered on the ecliptic coordinates
(λ, β) = (135◦,45◦) is shown. The smoothing imposed was a Gaussian kernel with∆θ = 2.′0 (FWHM). The shading
indicates the value of the thermal Comptonisationy and is proportional to arsinh(106 × y). This map resulted from a
projection on a Cartesian grid with mesh size∼ 14′′, i.e. no HEALPix pixelisation can be seen.
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Figure 5.7.: Detail of the kinetic Comptonisation map: A 2◦ × 2◦ wide cut-out centered on the same position as Fig.5.6,
i.e. at the ecliptic coordinates (λ, β) = (135◦,45◦) is shown. The smoothing imposed was a Gaussian kernel with∆θ = 2.′0
(FWHM). The kinetic Comptonisationw is indicated by the shading which is proportional to arsinh(106 × w).

from the initial Gaussian random field by linear structure formation and have the correct relative phases.
Similar to the clustering on large angular scales that the thermal SZ-map shows due to the formation of super-

clusters, the kinetic SZ-map is expected to exhibit clustering on the same angular scales. This is because in the
formation of superclusters, the velocity vectors of infalling clusters point at the dynamical centre and are thus
correlated despite the large separation.

5.5.2. Distribution of angular sizes

The distribution of cluster sizes is an important characteristic of the sky maps. For the derivation of core sizes,
two different paths have been pursued in order to contrast the ideal case, in which cluster sizes follow from the
well-known virial relations to the simulated and realistic case, in which the sizes are measured on the template maps
themselves. First, the cluster sizes are measured on the data by fitting a King-profile (Cavaliere & Fusco-Femiano
1978) to the thermal and kinetic template maps:

y (r) = y0 ·

1+  |r|
r (y)

c

2−1

(5.23)

w (r) = w0 ·

1+ (
|r|

r (w)
c

)2−1

, (5.24)

yielding the core radiir (y)
c for the thermal andr (w)

c for the kinetic map, respectively. Theβ-fits have been centered
on the pixel with the highest amplitude, and as free parameters only the central amplitudesy0 andw0 were used
apart from the core radii. The resulting radii have been averaged over all three projections of the cluster. Together
with the comoving distance of the cluster as given by the Hubble-volume catalogue and the scaling factor required
to match the size (compare Sect.5.4.2), the core radii have been converted into angular diameters.

Secondly, an angular extent has been derived from the virial radius. Template data suggests the relation

rc ' 0.12rvir (5.25)
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5.5.3 Distribution of the integrated thermal and kinetic Comptonisation
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Figure 5.8.: Mean value and variance of the (Gaussian) distribution of peculiar velocitiesυr as a function of cluster mass
M. The parameters of the distribution do not depend on mass, i.e. the mean is consistent with zero and the standard
deviation has values' 320 km/s irrespective of mass. Standard deviations for the five bins corresponding to the largest
cluster masses have been omitted due to poor statistics. The underlying data points represent 1% randomly selected entries
of the Hubble-volume catalogue.

rather than the value ofrc ' 0.07rvir advocated byLloyd-Davies et al.(2000) andKay et al.(2001). In analogy, the
angular diameter was then determined with the cluster distance given by the Hubble-volume catalogue.

In Fig. 5.9, the size distributions for the thermal as well as for the kinetic clusters are given. Clearly, most clusters
have angular diameters small compared to PLANCK’s beam, and would appear as point sources. Here, it should
be emphasised, that the HEALPix tesselation with the chosenNside-parameter does not resolve structures smaller
than 1.′71. In the process of smoothing the clusters imposed prior to projection (compare Sect.5.4.3), clusters with
diameters smaller than 2.′0 have been replaced by 2-dimensional Gaussians withσ = 2.′0. Their normalisation
corresponds to the integrated ComptonisationsY andW measured on the template maps. The smoothing is an
absolute necessity because otherwise the HEALPix map would need∼ 104 times as many pixels for supporting the
most distant and hence smallest clusters in the Hubble sample and hence∼ 104 times the storage space. A futher
point to notice is the remarkably good agreement between diameters derived from the various prescriptions.

5.5.3. Distribution of the integrated thermal and kinetic Comptonisation

The signal strength of a cluster in an SZ observation is not given by the line-of-sight Comptonisation, but rather
the Comptonisation integrated over the solid angle subtended by the cluster. These quantities are refered to as the
integrated thermal ComptonisationY and kinetic ComptonisationW and are defined as:

Y =

∫
dΩ y(θ) and W =

∫
dΩw(θ). (5.26)

For a simple model of the integrated Comptonisations as functions of cluster massM, distancez and peculiar
velocity υr it is assumed that the SZ-flux originates from inside a sphere of radiusrvir , that the baryon fraction
is equal to its universal valuefB = ΩB/ΩM, that the ICM is completely ionised and has a uniform temperature
predicted by the spherical collapse model laid down in eqn. (5.14). In this model, the actual distribution of electrons
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Figure 5.9.: The number of clustersn(θ)dθ per square degree for given angular diameterθ is shown without taking beam
convolution into account, for thermal clusters (circles, dashed line) and kinetic clusters (crosses, dash-dotted line) as
following from β-model fits to template data. For comparison, the distribution of angular diameters obtained via the virial
theorem (solid line) is also plotted.

inside the virial sphere is of no importance. Then, the integrated Comptonisations are approximated by:

Yvir

arcmin2
= 1.98

fB
h

(
Mvir

M?

) 5
3
(
dA

d?

)−2

(1+ z)

(
Ω0

Ω

) 1
3
(
∆c

178

) 1
3

, (5.27)

Wvir

arcmin2
= 0.29

fB
h

(
Mvir

M?

) (
dA

d?

)−2 (
υr

υ?

)
, (5.28)

respectively. The reference values have been chosen to beM? = 1015M�/h, d? = 100 Mpc/h andυ? = 1000 km/s.
dA is the angular diameter distance to the cluster.Ω = Ω(z) denotes the mass density at redshiftz and∆c = ∆c(z)
the overdensity of a virialised sphere, an approximate description is given by eqn. (5.15). For typical values for
mass, distance and velocity, the thermal and kinetic SZ-effects differ by approximately one order of magnitude. The
baryon fraction is set to the universal valuefB = ΩB/ΩM = 0.133 for the remainder of this chapter.

Distributions of the integrated thermal and kinetic Comptonisations are shown in Figs.5.10 and5.11, respec-
tively. The distributions have been derived from actual scaled template data in comparison to the values obtained
from (5.27) and (5.28).

Fig. 5.10shows the number of clusters per deg2 with integrated thermal ComptonisationY. It can be seen that
the approach relying on the virial theorem underestimates the number of cluster by a factor 2-3 for large integrated
Comptonisations. Alternatively, one could state that the distributions are separated at high Comptonisations by
slightly less than 0.5 dex. The reason for the significantly larger integrated Comptonisations determined from
template data is due to the fact that the template clusters were matched to the catalogue entries given by the Hubble-
volume simulation by their virial masses. In irregular clusters, there is a significant fraction of the gas located
outside the virial sphere and thus the integrated Comptonisation is systematically underestimated when applying a
spherical overdensity code to simulation data, as previously examined in Fig.5.2. In scaling the template clusters up
to the masses required by the Hubble-volume catalogue, this difference is amplified because in the sparsely sampled
region of theM-z-diagram (compare Figs.5.1 and5.2) clusters have on average to be scaled to higher masses,
which explains the offset in the distributions. A second effect is the evolution of ICM temperature. Compared
to the temperature model eqn. (5.14) based on spherical collapse theory, the plasma temperatures are smaller by
approximately 25%, i.e. the mean SPH-temperature of the particles inside the virial sphere is smaller than expected
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Figure 5.10.: The number of clustersn(Y)dY per square degree for given integrated thermal ComptonisationY derived
from template data (dashed line) in comparison to the analogous quantitiy based on virial estimates (solid line).
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Figure 5.11.:The number of clustersn(W)dW per square degree for given integrated kinetic ComptonisationW derived
from template data (dashed line) in comparison to the analogous quantitiy based on virial estimates (solid line). Here,
the scaling of the vertical axis is linear, in contrast to Fig.5.11, such that the underlying Gaussian distribution of peculiar
velocities becomes apparent.
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Figure 5.12.: Distribution of pixel amplitudes of the thermal Comptonisation parametery (circles, solid) and of the
absolute value of the kinetic Comptonisation|w| (squares, dashed). Zero values have been deliberately excluded. The figure
illustrates the occurence of clusters comparable to the HEALPix pixel scale: The thin set of lines shows an additional peak
at small Comptonisations, that vanish after convolution with a beam of∆θ = 5.′0 (FWHM), i.e. comparable to PLANCK,
as shown by the thick lines.

from spherical collapse theory and reflects the departure from isothermality: The template clusters do show a
temperature profile that declines towards the outskirts of the clusters, which decreases the integrated Comptonisation
relative to the values derived by means of the virial theorem.

Furthermore, the dependence of electron temperature on cluster mass is noticably weaker than theM2/3-scaling:
The cluster number weighted average for the exponentα in the scalingT ∝ Mα relating temperature to mass was
found to be〈α〉 = 0.624, and at the redshifts around unity, where most of the clusters reside, values as small asα =
0.605 were derived. Using this scaling, the Compton-y parameter and hence the integrated thermal Comptonisation
Y shows a significantly shallower distribution compared to the distribution relying on simple scaling arguments.

The same argument applies to the kinetic ComptonisationW, as depicted in Fig.5.11: Here a shifting of the
values to smaller kinetic Comptonisations is observed when comparing estimates following from the virial theorem
to actual simulation data. The shift of the peak of the distribution amounts to about one third dex, as explained
above for the thermal Comptonisations. Keeping theM

5
3 -scaling of the thermal SZ-effect in mind, the shift in

theW-distribution is then consistent with the shift of theY-distribution. A very illustrative demonstration how
asphericity affects the SZ-observables of a cluster is given byPuy et al.(2000).

5.5.4. Distribution of Comptonisation per pixel

Fig. 5.12shows the distribution of the pixel amplitudes of the thermal SZ-map as well as of their absolute values
in the kinetic SZ-map. Clearly, the kinetic and thermal SZ-effects are separated by approximately one order of
magnitude.

The distribution of pixel amplitudes is very broad, encompassing the largest line-of-sight Comptonisations of
y ' 1.5 × 10−4 and |w| ' 1.6 × 10−5 down to very low signals below log(y) ' −20. The distribution is bimodal,
which is a pixelisation artefact and which is caused by the replacement of faint and small clusters with a very
narrow Gaussian, the extent of which is slightly above the pixel scale, once the cluster is smaller than' 2.′0 in
diameter. These clusters are more concentrated than the King-profiles of resolved clusters. There is a caveat when
applying an expansion into spherical harmonicsY`

m(θ) to the SZ-maps: The smallest clusters are only a few pixels
in diameter. Working with the HEALPix tesselation, reliable expansion coefficients can only be obtained up to
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5.5.5 Angular power spectra of the thermal and kinetic SZ-effects

multipole moments of order̀ ' 2 × Nside, i.e. up to` ' 4096 in my case, which corresponds to angular scales
of 2.′64. The pixel scale is 1.′71 for this choice of theNside-parameter. Consequently, the small clusters will not be
contained in an expansion into spherical harmonics, as shown by the set of thick lines in Fig.5.12: Here, the map has
been decomposed ina`m-coefficients (compare eqn. (5.31)), multiplied with thea`0-coefficients of a Gaussian beam
of ∆θ = 5.′0 (FWHM) and synthesised again. Then, the resulting smoothed map does not contain small clusters,
because the decomposition into spherical harmonics has not been able to resolve structures that extend over only a
few pixels.

The mean value of the thermal Comptonisationy has been determined to be〈y〉 = 3.01× 10−7 and the pixel-to-
pixel variance isσy =

√
〈y2〉 − 〈y〉2 = 1.85× 10−6. In analogy, the value〈w〉 = 6.28× 10−9 has been derived for the

kinetic map, with varianceσw =
√
〈w2〉 − 〈w〉2 = 3.78× 10−7, i.e. the mean kinetic Comptonisation is consistent

with zero, due to the peculiar velocities following a Gaussian distribution with zero mean. The mean value of the
moduli of the pixel amplitudes of the kinetic map is〈|w|〉 = 7.65× 10−8.

The value for the mean Comptonisation〈y〉 measured on the map should account for roughly 40% of the mean
thermal Comptonisation as derived in Sect.5.4.4, due to the lower mass threshold inherent to the simulation. Keep-
ing in mind the absence of any diffuse component of the thermal Comptonisation, the value derived here is com-
patible with the value of' 10−6 given byRefregier et al.(2000) andScaramella et al.(1993), but falls short of the
value derived byWhite et al.(2002) by a factor of less than two.Myers et al.(2004) performed a cross-correlation
of WMAP-data with clusters from the APM survey and found the mean Comptonisation to be significantly larger
and to be in accordance withPersi et al.(1995), but in contradiction with expectations from CDM models.

5.5.5. Angular power spectra of the thermal and kinetic SZ-effects

In this section, the angular power spectra are given for the all-sky maps. They follow from a decomposition of the
spherical data set into spherical harmonicsYm

` (θ):

y`m =

∫
4π

dΩ y(θ) Ym
` (θ)∗, (5.29)

w`m =

∫
4π

dΩw(θ) Ym
` (θ)∗, and (5.30)

w′`m =

∫
4π

dΩ |w(θ)| Ym
` (θ)∗, (5.31)

respectively. The spherical harmonical transformw′`m has been determined from the absolute values of the kinetic
map amplitudes. The reason for doing so is the vanishing expectation value of the peculiar velocities in the comoving
frame such that for a given cluster in the thermal SZ-map, both signs of the kinetic SZ-effect are equally likely to
occur and the cross-power averages out to zero. The angular power spectra and the cross power spectrum are defined
via:

Cyy(`) =
1

2` + 1

+∑̀
m=−`

y`my
∗
`m, (5.32)

Cww(`) =
1

2` + 1

+∑̀
m=−`

w`mw
∗
`m, (5.33)

Cyw′ (`) =
1

2` + 1

+∑̀
m=−`

w′`my
∗
`m, (5.34)

with the asterisk denoting complex conjugation. The resulting power spectra are given in Fig.5.13in comparison to
the power-spectra derived byWhite et al.(2002) in simulations covering smaller angular scales. The curves match
well, and the remaining discrepancies may be explained by the fact that in the maps presented here, power is missing
on small scales due to the low-mass cutoff, whereas the simulation by White is missing power on large scales due
to the smallness of their simulation box. The bending-over of the spectra derived from my SZ-maps is also due
to the fact that the expansion in spherical harmonics cannot be computed for angular scales approaching the pixel
scale and thus does not include very small clusters of sizes comparable to the pixel size, as already discussed in
Sect.5.5.4.
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Figure 5.13.: Angular power spectra of the thermal and kinetic SZ-effect: Cyy(`) (circles, solid line),Cww(`) (crosses,
solid line) and the cross power spectrumCyw′ (`) (diamonds, solid line) are shown in comparison to the power spectra of
the thermal SZ-effect (circles, dashed line) and the kinetic SZ-effect (crosses, dashed line) obtained byWhite et al.(2002)
at smaller scales, i.e. at higher multipole order`.

If clusters were randomly positioned point-sources on the sky, the number of clusters per solid angle element
would be a Poisson-process and the resulting power spectrum should be flat, i.e.C(`) ∝ N (N ist the number
of sources), as shown bySeljak et al.(2001). Contrarily, the brightness distribution of clusters assigns additional
weight to the large angular scales and giving rise to a significant deviation in the slope of the power spectraC(`) ∝
`−γ as a function of̀ : The measured slope is 2+ γ = 1.53± 0.07 for the thermal and 2+ γ = 1.45± 0.07 for
the kinetic SZ-effect, which reflects the deviation from pure Poissonianity. In the fitting, the values for` have been
restricted to 1≤ ` ≤ 100 and the errors derived correspond to the 95% confidence intervals.

Furthermore, Fig.5.13 shows the cross-correlation between the thermal SZ-map and the absolute value of the
kinetic SZ-map. As expected, the amplitude of the cross-power spectrum is at an intermediate level compared to
autocorrelations of the thermal and kinetic SZ-maps.

5.5.6. Source counts at PLANCK frequencies

As the last point in this analysis, I address the SZ source counts, i.e. the numberN of SZ-clusters giving rise to flux
changes exceeding a certain flux thresholdSmin. The SZ flux modulation as a function of frequency is given by:

S(x) = S0

∫
dΩ

[
y g(x) − βτh(x)

]
(5.35)

= S0
[
Yg(x) −Wh(x)

]
= SY(x) − SW(x), (5.36)

whereS0 = 22.9 Jy/arcmin2 is the flux density of the CMB andY andW denote the integrated thermal and kinetic
Comptonisations. The functionsg(x) andh(x) are the flux modulations caused by the thermal and kinetic SZ-effects
for non-relativistic electron velocities:

g(x) =
x4 exp(x)

(exp(x) − 1)2

[
x

exp(x) + 1
exp(x) − 1

− 4

]
, (5.37)

h(x) =
x4 exp(x)

(exp(x) − 1)2
. (5.38)
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5.5.6 Source counts at PLANCK frequencies

1 2 3 4 5 6 7 8 9
ν0 30 GHz 44 GHz 70 GHz 100 GHz 143 GHz 217 GHz 353 GHz 545 GHz 857 GHz
∆ν 3.0 GHz 4.4 GHz 7.0 GHz 16.7 GHz 23.8 GHz 36.2 GHz 58.8 GHz 90.7 GHz 142.8 GHz
〈SY〉 -12.2 Jy -24.8 Jy -53.6 Jy -82.1 Jy -88.8 Jy -0.7 Jy 146.0 Jy 76.8 Jy 5.4 Jy
〈SW〉 6.2 Jy 13.1 Jy 30.6 Jy 55.0 Jy 86.9 Jy 110.0 Jy 69.1 Jy 15.0 Jy 0.5 Jy
∆TY -440nK -417nK -356nK -267nK -141nK -0.5 nK 38 nK 8.4 nK 0.2 nK
∆TW 226nK 220nK 204nK 179nK 138nK 76 nK 18 nK 1.6 nK 0.02nK

Table 5.2.:Characteristics of PLANCK’s LFI- and HFI-receivers: centre frequencyν, frequency window∆ν (as defined in
eqn. (5.40)), fluxes〈SY〉 and〈SW〉 (see eqn. (5.36)) generated by the respective Comptonisation ofY =W = 1 arcmin2

and the corresponding changes in antenna temperature∆TY and∆TW. Due to PLANCK’s symmetric frequency response
window, the thermal SZ-effect does not vanish entirely atν = 217 GHz.

Here, x again denotes the dimensionless frequencyx = hν/(kBTCMB). The averaged flux〈S〉ν0 at the fiducial
frequencyν0 is obtained by weighted summation with the frequency response window functionRν0(ν) and can
readily be converted to antenna temperatureTA by means of eqn. (5.39):

〈S〉ν0 =

∫
dνS(ν) Rν0(ν)∫

dνRν0(ν)
= 2

ν2
0

c2
kB TA. (5.39)

The main characteristics of PLANCK’s receivers and the conversion factors from 1 arcmin2 of thermal or kinetic
Comptonisation to fluxes in Jansky and changes in antenna temperature measured innK is given by Table5.2. For
the derivation of the values a top-hat shaped frequency response functionRν0(ν) has been assumed:

Rν0(ν) =

{
1, ν ∈ [ν0 − ∆ν, ν0 + ∆ν]
0, ν < [ν0 − ∆ν, ν0 + ∆ν]

. (5.40)

Figures5.14, 5.15and5.16show the source counts stated in number of clusters perdeg2 as a function of averaged
flux 〈S〉ν0 for PLANCK’s ν0 = 143 GHz-,ν0 = 217 GHz- andν0 = 353 GHz-channels, respectively.

The source countsN(S) are well approximated by power laws of the form:

N(〈S〉 > Smin) = N0 Sα. (5.41)

Values for the normalisationsN0 and the slopesα have been obtained by fits to the source counts for the three
relevant PLANCK-frequencies and are stated in Table5.3. In the fits, the four rightmost bins have been excluded
because of poor statistics. The parameters of the power law has been derived for the fluxes following from the
idealised case based on the virial theorem and compared to fluxes determined from template cluster data.

The slopes derived from fits to the cluster number counts are slightly steeper for the virial estimates compared to
template data (α ' −5/3 versusα ' −1.4), which again reflects the weaker dependence on cluster mass observed
in template data. Comparing data sets for different frequencies, the slopesα are of course almost identical, because
only amplitudes are changed by the choice of a different frequency band. The number of clustersN0 stays roughly
constant in the case of the kinetic SZ-effect, but reflects the distinct frequency modulation in the case of the thermal
SZ-effect. Here, it should be emphasised, that the thermal SZ-effect does not vanish entirely atν = 217 GHz due
to PLANCK’s symmetric frequency response window. The difference in numbers between the estimates based on
virial quantities to those measured on template data amounts to roughly half an order of magnitude in the kinetic
SZ-effect, but rises almost an order of magnitude at small fluxes for the thermal SZ-effect. There is however good
agreement in the number counts of thermal SZ clusters at high fluxes.

The difference in slope of the thermal versus kinetic SZ-cluster number counts is caused by theM5/3-scaling of
the thermal SZ-effect relative to the proportionality toM of the kinetic effect. Due to the difference in slope, the
effects are separated by two orders of magnitude for the largest fluxes, while this difference increases to eight orders
of magnitude for the smallest fluxes, which hints at the difficulties to be faced in detecting kinetic clusters compared
to even faint thermal detections. The slopes derived here are in good agreement with the those obtained byKay
et al.(2001)
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Figure 5.14.: Source countsN(〈S〉 > Smin) for thermal (circles) and kinetic clusters (crosses) for PLANCK’sν0 =

143 GHz channel and for fluxed measured on the scaled template clusters (dashed line) in comparison to virial fluxes
(solid line).
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Figure 5.15.: Source countsN(〈S〉 > Smin) for thermal (circles) and kinetic clusters (crosses) for PLANCK’sν0 =

217 GHz channel, the dashed and solid lines contrast the fluxes measured on the template data and those following from
virial scaling relations, respectively. For the given frequency response functionRν0(ν), the thermal SZ-effect does not
vanish entirely atν0 = 217 GHz.
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Figure 5.16.: Source countsN(〈S〉 > Smin) for thermal (circles) and kinetic clusters (crosses) for PLANCK’sν0 =

353 GHz channel, again for fluxes derived from template data (dashed line) in comparison to fluxes following from virial
scaling relations (solid line).

channel ν0 = 143 GHz ν0 = 217 GHz ν0 = 353 GHz
thermal SZ-effect, virial estimate logN0 = −1.78± 0.02 logN0 = −5.31± 0.02 logN0 = −1.42± 0.22

α = −1.67± 0.03 α = −1.67± 0.07 α = −1.66± 0.02
kinetic SZ-effect, virial estimate logN0 = −4.49± 0.01 logN0 = −4.42± 0.01 logN0 = −4.57± 0.01

α = −0.76± 0.06 α = −0.76± 0.05 α = −0.76± 0.06
thermal SZ-effect, simulation logN0 = −2.36± 0.02 logN0 = −5.31± 0.02 logN0 = −2.06± 0.02

α = −1.40± 0.03 α = −1.40± 0.06 α = −1.40± 0.03
kinetic SZ-effect, simulation logN0 = −3.95± 0.01 logN0 = −3.88± 0.01 logN0 = −4.02± 0.01

α = −0.72± 0.04 α = −0.72± 0.05 α = −0.72± 0.05

Table 5.3.:Values obtained from fits of a power law of the typeN(S) = N0 Sα to the cumulative source counts as a function
of flux exceeding the thresholdS for both SZ-effects. In the table, values obtained from virial estimates are contrasted to
values following from measurements on template data. The errors quoted denote the 95% confidence intervals.
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Construction of all-sky thermal and kinetic Sunyaev-Zel’dovich maps

5.6. Summary

All-sky maps for the thermal and kinetic Sunyaev-Zel’dovich effects are presented and their characteristics are
described in detail. The maps because of their angular resolution and the data storage format chosen (HEALPix)
especially suited for simulations for PLANCK.

• The all-sky maps of the thermal and kinetic SZ-effects presented here incorporate the correct 2-point correla-
tion function, the evolving mass function and the correct size distribution of clusters, to within the accuracy
of the underlying Hubble-volume simulation and the small-scale adiabatic gas simulations.

• The maps presented here exhibit significant cluster substructure (compare Sect.5.5.1). In spite of this, fits to
the Comptonisation maps yield angular core radii, the distribution of which are close to the expectation based
on the virial theorem (Sect.5.5.2).

• The difference in the distribution of the integrated ComptonisationsY andW (Sect.5.5.3) and source counts
N(〈S〉 > Smin) (Sect.5.5.6) between values derived from scaling relations compared to those following from
template data have been found to be substantial, which hints at possible misestimations of the number of
clusters detectable for PLANCK.

• An analytic investigation in Sect.5.4.4quantified the contribution of the cluster sample to the sky averaged
mean thermal Comptonisation〈y〉 and its varianceσy. It was found that the clusters within the boundaries in
mass (M > 5× 1013M�/h) and redshift (z< 1.48) make up' 40% of the mean Comptonisation, but account
for ∼ 98% of the variance. The value for the mean Comptonisation corresponds well to that obtained by other
authors (Sect.5.5.4).

• The power spectra (Sect.5.5.5) are compatible in amplitude and slope to the ones found byWhite et al.
(2002). On large angular scales, i.e. at small multipole`, deviations from the Poissonianity in the slope of the
power spectrum have been found.

• The velocities of the kinetic SZ-map correspond to the actual cosmological density environment, i.e. cor-
related infall velocities are observed due to the formation of superclusters, which highlights a significant
improvement in comparison to methods that draw a cluster peculiar velocity from a (Gaussian) distribution
and enables searches for the kinetic SZ-effect by considering spatial correlations with the thermal SZ-effect.
The cross correlation of the thermal with the kinetic SZ-map yields a spectrum similar in shape at intermediate
amplitudes (see Sect.5.5.5).

Despite the high level of authenticity that the all-sky SZ-maps exhibit, there are quite a few issues not being taken
account of: The baryon distribution and temperature inside the ICM is governed by processes beyond adiabatic gas
physics, for example in the form of supernova feedback and radiative cooling. Especially the latter process gives
rise to cool cores which may enhance the thermal SZ-signal. The ionisation inside the clusters was assumed to be
complete. Furthermore, the maps contain only collapsed objects and hence filamentary structures or diffuse gas are
not included. Concerning the thermal history of the ICM, reionisation had to be neglected. The kinetic map has
been constructed without taking account of velocity fluctuations inside the cluster. This does not pose a problem for
PLANCK, but needs to be remedied in high-resolution SZ-surveys to be undertaken with theAtacama Cosmology
Telescopeand theSouth Pole Telescope. Yet another imperfection is the lack of non-thermal particle populations
that cause the relativistic SZ-effect (Enßlin & Kaiser2000), whose detectability with PLANCK is still a matter of
debate.

The results of this chapter were worked out in collaboration with M. Bartelmann (ITA, Heidelberg) and C. Pfrom-
mer (MPA, Garching). V. Springel (MPA, Garching) and L. Herquist (CfA, Harvard) provided the adiabatic hydro-
dynamical simulations. A paper entitledDetecting Sunyaev-Zel’dovich clusters with PLANCK: I. Construction of
all-sky thermal and kinetic SZ-mapswhich summarises the results of this chapter has been submitted to the journal
Monthly Notices of the Royal Astronomical Societyand is available online (astro-ph/0407089).
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6. Microwave emission components of the Milky
Way and the Solar system

Abstract

In order to assess PLANCK’s SZ-capabilities in the presence of spurious signals, a simulation is presented that combines maps
of the thermal and kinetic SZ-effects with a realisation of the cosmic microwave background (CMB), in addition to Galactic fore-
grounds (synchrotron emission, free-free emission, thermal emission from dust, CO-line radiation) as well as the sub-millimetric
emission from celestial bodies of our Solar system. Additionally, observational issues such as the finite angular resolution and
spatially non-uniform instrumental noise of PLANCK’s sky maps are taken into account, yielding a set of all-sky flux maps, the
auto-correlation and cross-correlation properties of which are examined in detail.

6.1. Introduction

The Sunyaev-Zel’dovich (SZ) effect (Sunyaev & Zel’dovich1972, 1980, Rephaeli1995, Birkinshaw1999) is the
most important extragalactic source of secondary anisotropies in the CMB sky. The thermal SZ-effect is explained
by the fact that CMB photons are put in thermal contact with electrons of the hot intra-cluster medium (ICM) by
Compton-interactions which causes a transfer of energy from the ICM to the CMB. Because of the smallness of the
Thompson cross-section and of the diluteness of the ICM this transfer of thermal energy is small. In the direction
of a cluster, low-energetic photons with frequencies belowν = 217 GHz are removed from the line-of-sight. At
frequencies aboveν = 217 GHz CMB photons are scattered into the line-of-sight, causing a distinct modulation of
the CMB surface brightness as a function of observing frequency, which enables the detection of clusters of galaxies
in microwave data.

In contrast, in the kinetic effect it is the peculiar motion of a cluster along the line of sight relative to the CMB
frame that induces CMB surface brightness fluctuations. The peculiar motion of the cluster causes the CMB to be
anisotropic in the cluster frame. Due to this symmetry breaking of the scattering geometry, photons scattered into
the line-of-sight are shifted in frequency, namely to higher frequencies, if the cluster is moving towards the observer.

The PLANCK-mission will be especially suited to detect SZ-clusters due to its sensitivity, its spectroscopic ca-
pabilities, sky coverage and spatial resolution. It is expected to yield a cluster catalogue containing' 104 entries.
Extensive literature exists on the topic, but so far the influence of foregrounds and details of PLANCK’s instrumen-
tation and data aquisition have not been thoroughly addressed. In this work we aim at modelling the astrophysical
and instrumental issues connected to the observation of SZ-clusters as exhaustively as possible: A simulation is
presented that combines realistic maps of both SZ-effects with a realisation of the CMB, with four different Galactic
foreground components (thermal dust, free-free emission, synchrotron emission and emission from rotational tran-
sitions of CO molecules), with maps containing the sub-millimetric emission from planets and asteroids of the Solar
system and with instrumental noise. PLANCK’s frequency response and beam shapes are modelled conforming to
the present knowledge of PLANCK’s receivers and its optical system. In order to extract the SZ-cluster signal,
filtering schemes based on matched and scale-adaptive filtering are extended to spherical data sets.

The chapter is structured as follows: After a brief recapitulation of the SZ-effect in Sect.6.2, the PLANCK-
satellite and instrumental issues connected to the observation of CMB anisotropies are decribed in Sect.6.3. The
foreground emission components are introduced in Sect.6.4. The steps in the simulation of flux maps for the various
PLANCK-channels are described and their correlation properties are examined in Sect.6.5. A summary in Sect.6.6
concludes the chapter.

Throughout the chapter, the cosmological model assumed is the standardΛCDM cosmology, which has recently
been supported by observations of the WMAP satellite (Spergel et al.2003). Parameter values have been chosen as
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ΩM = 0.3,ΩΛ = 0.7, H0 = 100hkm s−1 Mpc−1 with h = 0.7,ΩB = 0.04,ns = 1 andσ8 = 0.9.

6.2. Sunyaev-Zel’dovich definitions

The Sunyaev-Zel’dovich effects are the most important extragalactic sources of secondary anisotropies in the CMB.
Inverse Compton scattering of CMB photons with electrons of the ionised ICM gives rise to these effects and induce
surface brightness fluctuations of the CMB sky, either because of the thermal motion of the ICM electrons (thermal
SZ-effect) or because of the bulk motion of the cluster itself relative to the comoving CMB-frame along the line-of-
sight (kinetic SZ-effect).

The relative change∆T/T in thermodynamic CMB temperature at positionθ as a function of dimensionless
frequencyx = hν/(kBTCMB) due to the thermal SZ-effect is given by:

∆T
T

(θ) = y(θ)

(
x

ex + 1
ex − 1

− 4

)
with (6.1)

y(θ) =
σTkB

mec2

∫
dl ne(θ, l)Te(θ, l), (6.2)

where the amplitudey of the thermal SZ-effect is commonly known as the thermal Comptonisation parameter, that
itself is defined as the line-of-sight integral of the temperature weighted thermal electron density.me, c, kB and
σT denote electron mass, speed of light, Boltzmann’s constant and the Thompson cross section, respectively. The
kinetic SZ-effect arises due to the motion of the cluster parallel to the line of sight relative to the CMB-frame:

∆T
T

(θ) = −w(θ) with w(θ) =
σT

c

∫
dl ne(θ, l)υr (θ, l). (6.3)

Here,υr is the radial component of the cluster’s velocity. The convention is such thatυr < 0, if the cluster is
moving towards the observer. In this case, the CMB temperature is increased. In analogy, the quantityw is refered
to as the kinetic Comptonisation. The SZ-observables are the line-of-sight Comptonisations integrated over the
solid angle subtended by the cluster. The quantitiesY andW are refered to as the integrated thermal and kinetic
Comptonisations, respectively:

Y =

∫
dΩ y(θ) = d−2

A (z)
σTkB

mec2

∫
dV neTe (6.4)

W =

∫
dΩ w(θ) = d−2

A (z)
σT

c

∫
dV neυr (6.5)

Here,dA(z) denotes the angular diameter distance of a cluster situated at redshiftz.

6.3. Submillimetric observations with PLANCK

The PLANCK-mission1,2 will perform a polarisation sensitive survey of the complete microwave sky in nine ob-
serving frequencies from the Lagrange pointL2 in the Sun-Earth system. It will observe at angular resolutions of
up to 5.′0 in the best channels and will achieve micro-Kelvin sensitivity relying on bolometric receivers (high fre-
quency instrument HFI, described inLamarre et al.2003) and on high electron mobility transistors (low frequency
instrument LFI, seeVilla et al. 2003, Bersanelli & Mandolesi2000). The main characteristics are summarised in
Table6.1.PLANCK’s beam characteristics are given Sect.6.3.1and the scanning strategy and the simulation of
spatially non-uniform detector noise is outlined in Sect.6.3.2.

6.3.1. Beam shapes

The beam shapes of PLANCK are well described by azimuthally symmetric Gaussiansb(θ) = 1
2πσ2

θ

exp
(
− θ2

2σ2
θ

)
with σθ =

∆θ
√

8 ln(2)
. Examples of PLANCK’s beams are given in Fig.6.1.The residuals from the ideal Gaussian

1http://planck.mpa-garching.mpg.de/
2http://astro.estec.esa.nl/Planck/
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6.3.2 Scanning strategy and noise-equivalent maps

1 2 3 4 5 6 7 8 9
ν0 30 GHz 44 GHz 70 GHz 100 GHz 143 GHz 217 GHz 353 GHz 545 GHz 857 GHz
∆ν 3.0 GHz 4.4 GHz 7.0 GHz 16.7 GHz 23.8 GHz 36.2 GHz 58.8 GHz 90.7 GHz 142.8 GHz
∆θ 33.′4 26.′8 13.′1 9.′2 7.′1 5.′0 5.′0 5.′0 5.′0
σN 1.01mK 0.49mK 0.29mK 5.67mK 4.89mK 6.05mK 6.80mK 3.08mK 4.49mK
〈SY〉 -12.2 Jy -24.8 Jy -53.6 Jy -82.1 Jy -88.8 Jy -0.7 Jy 146.0 Jy 76.8 Jy 5.4 Jy
〈SW〉 6.2 Jy 13.1 Jy 30.6 Jy 55.0 Jy 86.9 Jy 110.0 Jy 69.1 Jy 15.0 Jy 0.5 Jy
∆TY -440nK -417nK -356nK -267nK -141nK -0.5 nK 38 nK 8.4 nK 0.2 nK
∆TW 226nK 220nK 204nK 179nK 138nK 76 nK 18 nK 1.6 nK 0.02nK

Table 6.1.:Characteristics of PLANCK’s LFI-receivers (column 1-3) and HFI-bolometers (column 4-9): centre frequency
ν0, frequency window∆ν as defined in eqns. (6.27) and (6.28), angular resolution∆θ stated in FWHM, effective noise level
σN, fluxes〈SY〉 and〈SW〉 generated by the respective Comptonisation ofY = W = 1 arcmin2 and the corresponding
changes in antenna temperature∆TY and∆TW. Due to PLANCK’s symmetric frequency response window, the thermal
SZ-effect does not vanish entirely atν = 217 GHz.

ν = 100 GHz ν = 143 GHz ν = 217 GHz

Figure 6.1.: Beam shapes of various PLANCK channels in logarithmic colour coding. The beam patterns show interesting
features such as asymmetries and diffraction rings. The images followed from a ray-tracing simulation of PLANCK’s
optical system including diffraction on the mirrors and detector entry windows.

shape (ellipticity, higher order distortions, diffraction rings, far-side lobes, pick-up of stray-light) are expected not
to exceed the percent level and are neglected for the purpose of this work. Table6.1gives the angular resolution∆θ
in terms of FWHM of each PLANCK-channel for reference.

6.3.2. Scanning strategy and noise-equivalent maps

CMB observations by PLANCK will proceed in great circles fixed on the ecliptic poles. A single scan will start
at the North ecliptic pole, will follow a meridian to the South ecliptic pole and back to the North ecliptic pole by
following the antipodal meridian. Such a scan will last one minute and will be repeated sixty times. After that,
the rotation axis will be shifted in a precessional motion for 2.′5 (approximately half a beam diameter) and the scan
repeated. In this way, the entire sky is mapped once in 180 days.

Fourier transform of the noise time series of PLANCK’s receivers yields a noise power spectrumP( f ) of the
shape

P( f ) = σ2
N

[
1+

(
f

fknee

)−α]
, (6.6)

i.e. the noise consists of two components: a power law component in frequencyf , decribed by the spectral indexα
that assuming values 0≤ α ≤ 2 and a white noise component, smoothly joined at the frequencyfknee.

The f −α-part of the noise spectrum originates from zero point drifts of the detector gain on large time scales.
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Figure 6.2.: A sky map with the stripe pattern caused by the long-wavelengthf −α-noise withα = 1. The relative skewness
of single scan paths is caused by the non-ideal detector pointing of PLANCK.

This power law component exhibits low-frequency variations that lead to the typical stripe pattern in simulated
PLANCK-maps due to the scanning strategy (Maino et al.1999). Algorithms for destriping the maps are a current
research topic (for example, theMirage-algorithm proposed byYvon & Mayet (2004), MAPCUMBA by Doré et al.
(2001) the max-likelihood algorithm byNatoli et al.(2001), and theMadam-algorithm proposed byKeihanen et al.
(2004)), but it can be expected that the destriping can be done very efficiently such that the remaining noise largely
consists of uncorrelated pixel noise. An example of such a sky map is given in Fig.6.2.

In order to incorporate uncorrelated pixel noise into the simulation, a set of maps has been construced, where at
each pixel a number from a Gaussian distribution with widthσN has been drawn. For PLANCK’s HFI-receivers,
the rms-fluctuationsσN in antenna temperature can be calculated from the noise equivalent power NEP and the
sampling frequencyνsampling= 200 Hz via:

σN =
2 NEP

√
νsampling

kB∆ν
(HFI) (6.7)

Alternatively, for PLANCK’s LFI-receivers, the rms-fluctuationsσN in antenna temperature are given by:

σN =
√

2
Tnoise+ TCMB√
∆ν/νsampling

(LFI) (6.8)

Values forTnoise and NEP can be obtained from PLANCK’s simulation pipeline manual. The resulting effective
noise level for all PLANCK channels for a single observation of a pixel is given in Table6.1. Formulae and
respective parameters are taken from the PLANCK simulation manual, available via PLANCK’s website.

The rms-fluctuationsσN in antenna temperature have to be scaled by
√

ndet (assuming Poissonian statistics),
wherendet denotes the number of redundant receivers per channel, because they provide independent surveys of the
microwave sky.

From simulated scanning paths it is possible to derive an exposure map using thesimmission- andmultimod-
utilities. An example of such an exposure map in the vicinity of the North ecliptic pole is given in Fig.6.3. Using
the number of observationsnobs per pixel, it is possible to scale down the noise amplitudes by

√
nobs and to obtain

a realistic noise map for each channel. Here, I apply the simplification that all detectors of a given channel are
arranged collinearly. In this case, the exposure maps will have sharp transitions from well-observed regions around
the ecliptic poles to the region around the ecliptic equator. In real observations these transitions will be smoothed
out due slight displacements of the optical axes among each other which causes the effective exposure pattern to be
a superposition of rotated and distorted single-receiver exposure patterns.
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6.3.2 Scanning strategy and noise-equivalent maps

Figure 6.3.: Exposure map (side length' 70◦) of a singleν = 353 GHz-receiver at the North ecliptic pole in logarithmic
shading: The displacement of the receiver with respect to the optical axis causes the observational rings not to overlap
exactly at the pole, but gives rise to the lozenge-shaped pattern in the sky-coverage map. On average, the pixels inside the
lozenge are observed roughly 100 times, compared to∼ 20 times outside. Pixels on the edges of the lozenge are observed
a few thousand times. The best observed pixels are situated on the tips of the lozenge, where values as high as 2× 104 are
attained. The numbers correspond to the planned mission lifetime of 1 year. The faint diagonal tangential line on the left
side is caused by 2008’s being a leap year: The mapping of the entire sky would be completed in 365 days, but there is an
additional day available.
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Figure 6.4.: Sky map of the antenna temperature increase caused by dust emission in theν = 100 GHz-channel: The
shading is proportional to arsinh(TA(ν = 100 GHz)/µK). Ecliptic coordinates have been chosen. This map has been
derived from the dust-template map provided bySchlegel et al.(1998).

6.4. Foreground emission components

The observation of the CMB and of SZ-clusters is seriously impeded by various Galactic foregrounds and by the
thermal emission of celestial bodies of our Solar system. In order to describe these emission components, template
maps from microwave surveys are used.Bouchet & Gispert(1999) give a comprehensive review for the foreground
components relevant for the PLANCK mission. As foreground components, I include thermal emission from dust in
the Galactic plane (Sect.6.4.1), Galactic synchrotron (Sect.6.4.2) and free-free emission (Sect.6.4.3), line emission
from rotational transitions of carbon monoxide molecules in giant molecular clouds (Sect.6.4.4), sub-millimetric
emission from planets (Sect.6.4.5) and from minor bodies of the Solar system (Sect.6.4.6). Foreground components
omitted at this stage are discussed in Sect.6.4.7.

In this work, no attempt is made at modelling the interactions between various foreground components because
of poorly known parameters such as the spatial arrangement along the line-of-sight of the emitting and absorbing
components. Exemplarily, the reader is refered toFinkbeiner(2003), where the absorption of Galactic free-free
emission by dust is discussed.

6.4.1. Galactic dust emission

At frequencies above∼ 100 GHz, the thermal emission from dust in the disk of the Milky Way is the most prominent
feature in the microwave sky. Considerable effort has been undertaken to model the thermal emission from Galactic
dust (Schlegel et al.1997, 1998, Finkbeiner et al.1999, 2000). The thermal dust emission is restricted to low
Galactic latitudes and the thin disk is easily discernible.

The input template map (see Fig.6.4) is derived from an observation at a wavelength ofλ = 100 µm, i.e.
ν0 = 3 THz. Its amplitudesAdust are given in MJy/sr, which are extrapolated to the actual frequency channels
of PLANCK using a two-component model suggested by C. Baccigalupi (personal communication). Despite the
fact that the dust is expected to spread over a large range of temperatures, the model reproduces the thermal emission

52



6.4.2 Galactic synchrotron emission

Figure 6.5.: Sky map of the antenna temperature increase caused by synchrotron emission in theν = 100 GHz-channel
in ecliptic coordinates: The shading is proportional to arsinh(TA(ν = 100 GHz)/µK). The survey undertaken byHaslam
et al.(1982) was used to construct this template.

remarkably well. This model yields for the fluxSdust(ν):

Sdust(ν) =
f1q

(
ν
ν0

)α1
B(ν,T1) + f2

(
ν
ν0

)α2
B(ν,T2)

f1qB(ν0,T1) + f2B(ν0,T2)
Adust. (6.9)

The choice of parameters used is:f1 = 0.0363, f2 = 1 − f1, α1 = 1.67, α2 = 2.70, q = 13.0. The two dust
temperatures areT1 = 9.4 K andT2 = 16.2 K. The functionB(ν,T) denotes the Planckian emission-law:

B(ν,T) =
2h
c2

ν3

exp(hν/kBT) − 1
. (6.10)

An improvement over this dust model would be the IRIS-map3 constructed byMiville-Deschenes & Lagache
(2004), who used IRAS data for constructing sky maps showing the infrared dust emission of the Galactic disk,
infrared cirrus at high Galactic latitudes, infrared point sources and zodiacal light. Like the current dust model, the
map follows from an observation at 100 GHz, but has much better angular resolution.

6.4.2. Galactic synchrotron emission

Relativistic electrons of the interstellar medium produce synchrotron radiation by spiralling around magnetic field
lines, which impedes CMB observations most strongly at frequencies below 100 GHz. The synchrotron emission
reaches out to high Galactic latitude and is an important ingredient for modelling foreground emission in microwave
observations. An all-sky survey at an observing frequency of 408 MHz has been compiled byHaslam et al.(1981,
1982) and adopted for usage with PLANCK byGiardino et al.(2002) (see Fig.6.5). The average angular resolution
of this survey is 0.◦85 (FWHM).

Recent observations with WMAP (Bennett et al.2003) indicate that the spectral slope of the synchrotron emission
changes dramatically fromγ = −0.75 at frequencies below 22 GHz toγ = −1.25 above 22 GHz. Theoretically, this
may be explained by a momentum-dependent diffusion coefficient for cosmic ray electrons. In order to take account

3http://www.cita.utoronto.ca/ mamd/IRIS/IrisTechnical.html
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of this spectral steepening, the amplitudesAsynchroare multiplied with a prefactor in order to obtain the synchrotron
fluxes atν = 22 GHz. This value is then extrapolated to PLANCK’s observing frequencies with a spectral index of
γ = −1.25: The amplitudesAsynchro of the input map are given in units of MJy/sr, and for the fluxSsynchro(ν) one
thus obtains:

Ssynchro(ν) =

√
22 GHz

408 MHz
Asynchro

(
ν

408 MHz

)−1.25
. (6.11)

Here, the fact that the synchrotron spectral index shows significant variations across the Milky Way due to varying
magnetic field strength is ignored. Instead, a spatially constant spectral behaviour is assumed.

6.4.3. Galactic free-free emission

The Galactic ionised plasma produces free-free emission, which is an important source of contamination in CMB
observations, as recently confirmed byBennett et al.(2003) in WMAP observations. Aiming at modelling the free-
free emission at microwave frequencies, I rely on anHα-template provided byFinkbeiner(2003). Modelling of the
free-free emission component on the basis of anHα-template is feasible because both emission processes depend on
the emission measure

∫
n2

edl, wherene is the number density of electrons. This template is a composite of threeHα-
surveys and is because of its high resolution (on average 6.′0 FWHM) particularly well suited for CMB foreground
modelling. The morphology of the free-free map is very complex and the emission reaches out to intermediate
Galactic latitude.

For relatingHα-fluxes AHα
given in units of Rayleighs to the free-free signal’s antenna temperatureTfree−free

measured in Kelvin,Valls-Gabaud(1998) gives the formula:

Tfree−free(µK)
AHα

(R)
' 14.0

(
Tp

104 K

)0.317

10290 KT−1
p gff

(
ν

10 GHz

)−2
. (6.12)

Tp denotes the plasma temperature and is set to 104 K in this work. An approximation for the Gaunt factorgff
valid for microwave frequencies in the rangeνp � ν � kBT/h (νp is the plasma frequency) is given byFinkbeiner
(2003):

gff =

√
3
π

[
ln

(
(2kBTp)3/2

πe2ν
√

me

)
−

5
2
γE

]
, (6.13)

wheree andme denote electron charge and mass (in Gaussian units) andγE ' 0.57721 is Euler’s constant. The
contribution of fractionally ionised helium to the free-free emissivity as well as the absorption by interstellar dust
has been ignored because of its being only a small contribution in the first case and because of poorly known
parameters in the latter case. The antenna temperature can be converted to the free-free fluxSfree−free(ν) by means
of:

Sfree−free(ν) = 2
ν2

c2
kBTfree−free(K). (6.14)

Concerning the free-free emission, there might be the possibility of an additional free-free component uncorre-
lated with theHα-emission. This hot gas, however, should emit X-ray line radiation, which has not been observed.

6.4.4. CO-lines from giant molecular clouds

In a spiral galaxy such as the Milky Way, a large fraction of the interstellar medium is composed of molecular
hydrogen, that resides in giant molecular clouds (GMC), objects with masses of 104−106M� and sizes of 50−200 pc.
Apart from molecular hydrogen, the GMCs contain carbon monoxide (CO) molecules in significant abundance.
The rotational transitions of the CO molecule at 115 GHz and higher harmonics thereof constitute a source of
contamination for all PLANCK HFI-channels. An extensive search for atomic and molecular transition lines was
undertaken byBennett et al.(1994) with the FIRAS instrument onboard COBE.

The CO-contamination is modelled by employing a mosaic of CO-surveys assembled byDame et al.(1996,
2001). It shows the velocity-integrated intensity of the transition from the first excited state (J = 1) to the ground
state (J = 0) close to the Galactic plane (b < 5◦), and additionally comprises a few CO clouds at higher Galactic
latitude, as well as the Large Magellanic Cloud and the Andromeda galaxy M 31. Due to the composition of the
map, the angular resolution is not uniform, but the best resolution of' 7.′5 is reached for a large area around the
Galactic plane.
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6.4.4 CO-lines from giant molecular clouds

Figure 6.6.: Sky map of the antenna temperature increase caused by free-free emission in theν = 100 GHz-channel:
The shading is proportional to arsinh(TA(ν = 100 GHz)/µK). Ecliptic coordinates have been chosen. This map has been
derived from theHα-template map provided byFinkbeiner(2003).

Figure 6.7.: Sky map of the increment in antenna temperature due to CO-line emission in theν = 100 GHz-channel
in ecliptic coordinates: The shading is proportional to arsinh(TA(ν = 100 GHz)/µK). The maps shows the rotational
transition of the CO molecule from the first excited state into the ground state atν0↔1 = 115 GHz as derived byDame
et al.(2001) for a temperature ofTCO = 20 K.
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From this map, it is possible to derive the line intensities of the higher harmonics, assuming thermal equilibrium:
The frequencyν for a transition from a state of rotational quantum numberJ to a state with quantum numberJ + 1
follows from elementary quantum mechanics: The rotational energy of a CO-molecule with moment of inertiaθ
and angular momentumJ is Erot = J2/2θ = ~2 J(J + 1)/2θ. In the last step the quantum numberJ was introduced.
For the transition energy between two subsequent rotation levels, one obtains:

νJ↔J+1 = 2Qc(J + 1) = 115 GHz (J + 1), (6.15)

whereQ = h/8π2cθ is a measure of the inverse moment of inertia of the molecule andc denotes the speed of light.
Thus, the spectrum consists of equidistant lines. The relative intensities of those lines is given by the ratio of their
occupation numbersχJ:

χJ = (2J + 1) exp

(
−

Qhc
kBTCO

J(J + 1)

)
, (6.16)

i.e. the relative line intensitiesqJ↔J+1 of two consecutive lines is given by:

qJ↔J+1 =
χJ+1

χJ
=

2J + 3
2J + 1

exp

(
−

2Qhc
kBTCO

(J + 1)

)
(6.17)

χJ is detemined by a statistical weight (2J + 1) reflecting the degeneracy of angular momentum and a Boltzmann
factor. For the determination of line intensities thermal equilibrium is assumed, common estimates for the temper-
ature inside GMCs areTCO = 10− 30 K. For the purpose of this work, I chooseTCO = 20 K. From the brightness
temperatureTA one obtains the CO-fluxSCO−line(ν) by means of the following equation:

SCO−line(ν) = 2
ν2

c2
kBTA(K) p(ν − νJ↔J+1), (6.18)

where the line shapep(ν−νJ↔J+1) is assumed to be small in comparison to PLANCK’s frequency response windows
such that its actual shape (for instance, a Voigt-profile) is irrelevant. Sadly, the inclusion of other molecular and
atomic lines, e.g. O2 (424.75 GHz), C (492.23 and 809.44 GHz), H2O (556.89, 1113.3, and 1716.6 GHz), N+

(1461.1 and 2459.4 GHz), C+ (1900.5GHz), O (2060.1 GHz), Si (2311.7 GHz), and CH (2589.6 GHz), was not
feasible, although a measurement from the FIRAS experiment onboard COBE exists (Bennett et al.1994). These
sky maps have comparatively low resolution and there are numerous gaps in the data. Furthermore, there are large
variations in the abundance of the molecular species relative to carbon monoxide from pixel to pixel, so that the
modelling based on the CO-map would not be reliable.

6.4.5. Planetary submillimetric emission

Planets produce infra-red and sub-millimetric radiation by absorbing sunlight and by re-emitting this thermal load
imposed by the Sun. The investigation of the thermal properties of Mars, Jupiter and Saturn has been the target
of several space missions (Goldin et al.1997, Griffin et al.1986, to name but a few). For the description of the
submillimetric thermal emission properties of planets, an extension to the Wright & Odenwald model (Wright 1976,
Neugebauer et al.1971) was used. The orbital motion of the planets is sufficiently fast such that their movements
including their epicyclic motion relative to the Lagrangian pointL2, PLANCK’s observing position, has to be taken
into account. All planets are imaged twice in approximate half-year intervals due to PLANCK’s scanning strategy,
while showing tiny displacements from the ecliptic plane because of the Lissajous-orbit of PLANCK aroundL2 and
their orbital inclinations.

The heat balance equation for a planet or asteroid reads as:

E + F +W ≡ Pemission= Pabsorption≡ I + R, (6.19)

whereE denotes the heat loss by thermal emission (i.e. the signal for PLANCK),F the heat flux outward from the
interior of the planet,W is the heat lost by conduction to the planet’s atmosphere,I is the Solar radiation absorbed
andR is the heating of the planet caused by the back-scattering of radiation emanating from the surface of the planet
by the atmosphere. The definition of these quantities is given by eqns. (6.20) through (6.24):
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E = ε σ T4
planet, (6.20)

F = k
∂Tplanet

∂x
, (6.21)

I =
(1− A)G

r2
cos(θ∗) cos

(
2πt
τ

)
, (6.22)

R = γ
(1− A)G

r2
cos(θ∗) cos

(
2πt
τ

)
= γ Imax, and (6.23)

W = κ F. (6.24)

Here,ε is the surface emissivity of the planet,σ is the Stefan-Boltzmann constant,Tplanet is the planet’s temper-
ature,k the coefficient of heat conduction,A the planet’s bolometric albedo,G the Solar constant (i.e. the energy
flux density of Solar irradiation at the Earth’s mean distance),r the distance of the planet to the Sun in astronomical
units, τ the planet’s rotation period andθ∗ the geographical latitude of the radiation absorbing surface element.
The temperature distribution in the interior of the planet at radial positionx is controlled by the heat conduction
equation:

c
∂Tplanet

∂t
= k

∂2Tplanet

∂x2
, (6.25)

with the specific heat per unit volumec.
In the model, the heat lossR of the planet’s surface due to conduction to the planet’s atmosphere is taken to be a

constant fraction of the heat fluxF outward from the interior of the planet, the constant of proportionality beingκ,
for which I assumedκ = 0.1. Similarly, the heat gain by back-scattering radiation by the atmosphereRwas assumed
to be a constant fractionγ of the local noon Solar fluxImax, whereγ was taken to beγ = 0.01. The system of
differential eqns. (6.20) - (6.24) dependent on timet and on Solar distancer constitutes a heat conduction problem
with periodic excitation (by the planet’s rotation). Thus, the heat balance of the planets is modelled by periodic
solutions of the Laplacian heat conduction differential equations. It was solved iteratively by applying Laplace
transforms with periodic boundary conditions. The integration over the planet’s surface then yields the radiation
flux. In the calculation, I addressed rocky and gaseous planets differently with respect to their thermal properties.
Furthermore, the giant gaseous planets are known to have internal sources of heat generation, which also has been
taken account of.

The brightest point source in the microwave sky due to the planetary thermal emission is Jupiter, causing an
increase in antenna temperature ofTJupiter = 93.6 mK in the ν = 100 GHz-channel, followed by Saturn with
TSaturn = 15.0 mK. All outer planets apart from Pluto will be visible for PLANCK. Estimates show that even
Galilean satellites Ganymede, Callisto, Io and Europa and Saturn’s moon Titan are above the detection threshold
of PLANCK, but they are outshone by the stray-light from Jupiter and Saturn, respectively and for that reason not
included in my analysis.

Due to the planet’s being point sources, their fast movement and their diverse surface temperatures it is not
feasible to produce a template and extrapolate the fluxes with a common emission law to PLANCK-frequencies.
Instead, flux maps have been produced directly for each of the nine PLANCK-channels separately taking account
of the planetary motion, the solution of the heat balance equation laid down above and the finite beam-width. The
analogous holds for asteroids, that are covered by the next chapter.

6.4.6. Submillimetric emission from asteroids

Asteroids and minor bodies of the Solar system are easily observed by infrared satellites such as ISO and possibly
by sub-millimetric observatories (Müller 2001, Müller & Lagerros1999). An estimation byCremonese et al.(2002)
shows that a large number of asteroids (∼ 400) should yield signals detectable by PLANCK. The orbital motion of
all asteroids is fast enough to cause double detections at different positions in the sky separated by half a year due
to PLANCK’s scanning strategy. In contrast to planets, asteroids are not well restricted to the ecliptic plane and
appear up to ecliptic latitudes ofβ <

∼ 30◦.
The thermal emission properties of asteroids are well understood (for a comprehensive and detailed review, see

Lagerros1996a,b, 1997, 1998) such that asteroids have been used for calibrating detectors (e.g. the ISO mission,
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Figure 6.8.: Sky map of increment in antenna temperatureTA produced by planets and asteroids in theν = 30 GHz
channel at 33.′4 resolution (FWHM). The colour coding is proportional to arsinh(TA(ν = 100 GHz)/nK). The asteroids
reach ecliptic latitudes of|β| <∼ 30◦. The pronounced signals are produced by planets, which (due to PLANCK’s scanning
strategy) appear twice. The observable planets comprise (from left to right) Saturn, Mars, Uranus, Neptune and Jupiter.
The epicyclic motion of Mars is sufficiently fast to counteract the parallactic displacement such that it appears only once.

c.f. Müller & Lagerros1998, 2002) and for determining beam shapes. The thermal model used for describing
the submillimetric emission by asteroids is the same extension of the Wright & Odenwald model as for rocky
planets. However, additional features that had to be incorporated was the beamed emission due to surface roughness.
Furthermore, in the system of differential eqns. (6.20) - (6.24) termsW andR were neglected due to the absence of
atmospheres in asteroids.

Information about the diameter and albedo was derived using the HG-magnitude system in case of asteroids for
which those quantities are unknown, otherwise literature values were taken (fromMoore2000, and IAU’s Minor
Planet Centre4). For the description of the rotation period, an empirical relation that expresses the rotation period
as a function of mass was used in the cases where the rotation period is unknown. The brightest sources include
Ceres (TCeres= 19.7 µK), Pallas (TPallas = 7.2 µK), Vesta (TVesta = 6.7 µK) and Davida (TDavida = 2.1 µK). The
temperatures stated are antenna temperatures measured in theν = 100 GHz-channel at the brightness maximum.

The simulation shows that the number of detectable asteroids is overestimated byCremonese et al.(2002), who
did not take the expected observation geometry and detector response into account. Typical surface temperatures of
asteroids are of the order of 150 K, and therefore, PLANCK is observing their thermal emission in the Rayleigh-
Jeans regime. For that reason, the number of detectable asteroids increases with observing frequency. For the
sample of 5× 104 asteroids of theMinor Planet Centre’s catalogue, I find a couple of asteroids atν = 30 GHz,
a few tens of asteroids atν = 100 GHz and up to 100 asteroids in the highest frequency band atν = 857 GHz.
Approximately 1200 asteroids will have fluxes above half of PLANCK’s single-band detection limit estimated for
ideal observation conditions and thus they constitute an abundant population of point sources that possibly hampers
the detection of SZ-clusters.

The prediction of comets is very uncertain for the years 2007 through 2009: Many comets are not detected yet,
non-active comets are too faint with few exceptions and the coma thermal emission features of active comets is very
complex. For these reasons, they have been excluded from the analysis.

4http://cfa-www.harvard.edu/cfa/ps/mpc.html
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6.4.7. Future work concerning PLANCK’s foregrounds

Foreground components not considered so far include microwave point sources, such as infra-red galaxies and
microwave emitting AGNs. The emission of infra-red galaxies is associated with absorption of star light by dust
and re-emission at longer wavelengths. Galaxies with ongoing star formation can have large fractions (∼ 90%)
of their total emission at infra-red wavelengths, compared to about one third in the case of local galaxies. The
integrated emission from unresolved infra-red galaxies accounts for the cosmic infra-red background (CIB) (Puget
et al.1996, Lagache & Puget2000), the fluctuations of which are impeding SZ-observations at frequencies above
ν ' 100 GHz (Aghanim et al.2004).

Lagache(2003) andWhite & Majumdar(2003) have estimated the number counts of unresolved infra-red galaxies
at PLANCK-frequencies, which was used byAghanim et al.(2004) in order to estimate the level of fluctuation in the
PLANCK-beam. In the easiest case, the sources are uncorrelated and the fluctuations obey Poissonian statistics, but
the inclusion of correlations is expected to boost the fluctuations by a factor of∼ 1.7 (Song et al.2003). According
to Aghanim et al.(2004), the resulting fluctuations vary between a few 102 Jy/sr and 105 Jy/sr, depending on
observing channel. A proper modelling would involve a biasing scheme for populating halos, the knowledge of the
star formation history and template spectra in order to determine the K-corrections.

AGNs are another extragalactic source of submillimetric emission. Here, sychrotron emission is the radiation
generating mechanism. The spectra show a variety of functional behaviours, with spectral indicesα generally
ranging from -1 to -0.5, but sources with inverted spectraα > 0 are commonplace. This variety makes it difficult
to extrapolate fluxes to observing frequencies of CMB experiments. Two studies (Toffolatti et al.1998, Sokasian
et al.2001) have estimated the fluctuations generated by radio emitting AGNs at SZ-frequencies and found them
to amount to 103 − 104 Jy/sr. However, AGNs are known to reside in high-density environments and the proper
modelling would involve a (poorly known) biasing scheme in order to assign AGN to the dark matter halos. Apart
from that, one would have to assume spectral properties from a wide range of spectral indices and AGN activity
duty cycles. Therefore, the study of extragalactic sources has been omitted from this analysis.

Yet another source of microwave emission in the Solar system is the zodiacal light (Leinert et al.2002, Reach et al.
2003b). Modelling of this emission component is very difficult due to the Lissajous-orbit of PLANCK around the
Lagrangian pointL2. The disk of interplanetary dust is viewed under varying angles depending on the orbital period
and the integration over the spatially non-uniform emission features is very complicated.Reach et al.(2003a)
have investigated the thermal emission by interplanetary dust from measurements by ISO and have found dust
temperatures ofTzodiacal= 250− 300 K and fluxes on the level of' 103 Jy/sr, i.e. the equilibrium temperature is
separated by two orders of magnitude from the CMB temperature, which means that the intensities are suppressed
by a factor of∼ 104 due to the Rayleigh-Jeans regime of the zodiacal emission in which PLANCK is observing and
by a factor of 105 due to PLANCK’s narrow beams. From this it is concluded that the emission from zodiacal light
is unlikely to exceed values of a few∼ µJy in observations by PLANCK which compares to the fluxes generated by
faint asteroids. Thus, the zodiacal light constitutes only a weak foreground emission component at submillimetric
wavelengths and can safely be neglected.

6.5. Simulating SZ-observations by PLANCK

The simulation for assessing PLANCK’s SZ-capabilities proceeds in four steps. Firstly, all-sky maps of the thermal
and kinetic SZ-effects are prepared, the details of map-construction are given in Sect.6.5.1. Secondly, a realisa-
tion of the CMB was prepared for the assumed cosmological model (Sect.6.5.2). The amplitudes were co-added
with the Galactic and ecliptic foregrounds introduced in the previous section, subsequently degraded in resolution
with PLANCK’s beams (Sect.6.5.3). Finally, uncorrelated pixel noise as well as the emission maps comprising
planets and asteroids were added. In the last section, cross-correlation properties of the various astrophysical and
instrumental noise components are discussed (Sect.6.5.4).

At this stage it should be emphasised that I work exclusively with spherical harmonics expansion coefficientsa`m
of the flux maps. The expansion of a functiona(θ) into spherical harmonicsYm

` (θ) and the corresponding inversion
is given by:

a`m =
∫

dΩ a(θ) Ym
` (θ)∗ anda(θ) =

∞∑
`=0

+∑̀
m=−`

a`m Ym
` (θ). (6.26)

Here, dΩ denotes the differential solid angle element. For reasons of computational feasibility, I assume isotropic
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spectral properties of each emission component, i.e. the template map is only providing the amplitude of the
respective emission component, but the spectral dependences are assumed to remain the same throughout the sky.
While this is an excellent approximation for the CMB and the SZ-effects (in the non-relativistic limit), it is a
serious limitation for Galactic foregrounds, where e.g. the synchrotron spectral index or the dust temperatures show
significant spatial variations.

Adopting this approximation, the steps in constructing spherical harmonics expansion coefficients〈S`m〉ν0 of the
flux mapsS(θ, ν) for all PLANCK channels consist of deriving the expansion coefficients of the template, convert-
ing the template amplitudes to flux units, extrapolate the fluxes with a known or assumed spectral emission law to
PLANCK’s observing frequencies, to finally convolve the emission law with PLANCK’s frequency response win-
dow for computing the spherical harmonics expansion coefficients of the average measured flux〈S`m〉ν0 at nominal
frequencyν0 by using eqn. (6.27).

〈S`m〉ν0 =

∫
dν S`m(ν)Rν0(ν)∫

dν Rν0(ν)
= 2

ν2
0

c2
kBT`m. (6.27)

Here,S`m(ν) describes the spectral dependence of the emission component considered, andRν0(ν) the frequency
response of PLANCK’s receivers centered on the fiducial frequencyν0. Assuming spatial homogeneity of the
spectral behaviour of each emission component it is possible to decomposeS`m(ν) into S`m(ν) = q(ν) a`m, i.e. a
frequency dependent functionq(ν) and the spherical harmonics expansion coefficientsa`m of the template describing
the morphology. This is possible due to the fact that the decomposition eqn. (6.26) is linear. Additionally, eqn. (6.27)
gives the conversion from the averaged flux〈S`m〉ν in a PLANCK-channel to antenna temperatureT`m.

PLANCK’s frequency response functionRν0(ν) is well approximated by a top-hat function:

Rν0(ν) =

{
1, ν ∈ [ν0 − ∆ν, ν0 + ∆ν]
0, ν < [ν0 − ∆ν, ν0 + ∆ν]

(6.28)

The centre frequenciesν0 and frequency windows∆ν for PLANCK’s receivers are summarised in Table.6.1. In
this way it is possible to derive a channel-dependent prefactor relating the flux expansion coefficients〈S`m〉ν0 to
the template expansion coefficientsA`m. The superposition of the various emission components in spherical har-
monics and the determination of response-folded fluxes is most conveniently done using thealmmixer-utility of
PLANCK’s simulation package.

6.5.1. SZ-map preparation

For constructing an all-sky Sunyaev-Zel’dovich map, a hybrid approach has been pursued. Due to the SZ-clusters
being detectable out to very large redshifts, due to their clustering properties on very large angular scales, and
due to the requirement of reducing cosmic variance when simulating all-sky observations as will be performed by
PLANCK, there is the need for very large simulation boxes, encompassing redshifts ofz ' 1 which corresponds
to comoving scales exceeding 2 Gpc. Unfortunately, a simulation incorporating dark matter and gas dynamics that
covers cosmological scales of that size down to cluster scales and possibly resolving cluster substructure is beyond
computational feasibility. For that reason, two simulations have been combined: The Hubble-volume simulation
(Jenkins et al.2001, Colberg et al.2000), and a smaller scale simulation including (adiabatic) gas physics by
White et al.(2002) performed withGADGET (Springel et al.2001, Springel & Hernquist2002). Details of the map
construction and its properties are given in Sect.5.

The fluxes generated by the thermal SZ-effectSY(x) and of the kinetic SZ-effectSW(x) are given by eqns. (6.29)
and (6.30), respectively. The dimensionless frequency is defined asx = hν/(kBTCMB) and the flux density of the
CMB is given byS0 = (kbTCMB)3π3/c2/h2/5400= 22.9 Jy/arcmin2:

SY(x) = S0Y
x4 exp(x)

(exp(x) − 1)2

[
x

exp(x) + 1
exp(x) − 1

− 4

]
. (6.29)

SW(x) = S0W
x4 exp(x)

(exp(x) − 1)2
. (6.30)

Table6.1summarises the fluxesSY andSW and the corresponding changes in antenna temperatureTY andTW
for the respective Comptonisation ofY =W = 1 arcmin2 for all PLANCK-channels.
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Figure 6.9.: Frequency dependence of the thermal (thick lines) and of the kinetic SZ-flux (thin lines), for idealδ-
like frequency responses (solid lines), for a top-hat window function with a relative width of 10% corresponding
to PLANCK’s LFI-instrument and for a top-hat window function with a relative width of 16.7%, as planned for
PLANCK’s HFI-instrument. The fluxes stated correspond to the integrated Comptonisation ofY = W = 1 arcmin2.
The vertical lines indicate the centre frequencies of PLANCK’s receivers.

Fig.6.9shows how the frequency dependence of the SZ-signal is altered by PLANCK’s relatively broad frequency
response functions. The relative deviations of curves in which the frequency window has been taken into account to
the unaltered curve amounts to 5. . . 15%, depending on observation frequency.

6.5.2. CMB-map generation

The angular power spectrumC` is computed for a flatΛCDM-cosmology using theCMBfast code bySeljak &
Zaldarriaga(1996). In addition to the cosmological parameters being already given in Sect.6.1, I use adiabatic
initial conditions, set the CMB monopole toTCMB = 2.725 K (Mather et al.1999) and the primordial He-mass
fraction toXHe = 0.24. The reionisation optical depthτ was set toτ = 0.17 and the reionisation redshift was taken
to bezreion = 20 (Bennett et al.2003). The angular power spectrum of the CMB is normalised to COBE data.
With the spectrum ofC`-coefficients, a set ofa`m-coefficients was synthesised by using thesynalm code based
on synfast by Hivon et al.(1998). The factors for converting thea`m-coefficients of the CMB map showing the
thermodynamic temperature and to the corresponding fluxes for each channel were then derived by convolution of
the Planckian emission law eqn. (6.31),

SCMB(ν) = S0
x3

exp(x) − 1
, (6.31)

with PLANCK’s frequency response function eqns. (6.27) and (6.28). Again, S0 = 22.9 Jy/arcmin2 is the en-
ergy flux density of the CMB. The realisation of the CMB used in this work is given in Fig.6.10. I did not use a
constrained realisation of the CMB, where the low multipoles are the specifica`m-coefficients determined by e.g.
WMAP. At the scales where SZ-detections are expected, the fluctuations of the CMB are yet unknown and extrapo-
lated with the knowledge of the cosmological model. The filtering scheme to be used for extracing and amplifying
the SZ-signal will suppress low-` fluctuations and a specific choice ofa`m-coefficients at loẁ should not have any
influence on the cluster detection.
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Figure 6.10.: All-sky map of the CMB realisation used in this work. The amplitudes are antenna temperatures measured
in theν = 100 GHz channel in units ofµK.

6.5.3. Preparation of simulation data sets

The expansion coefficients of the flux maps are multiplied with the respective beam’sb`0-coefficients in order to
describe the finite angular resolution. After that, expansion coefficients of the pixel noise maps and those of the
planetary maps have been added. In total, three atlases consisting of nine flux〈S`m〉ν0-sets belonging to each of
PLANCK’s channels with fiducial frequencyν0 have been compiled:

• The reference data set is a combination of the CMB, the SZ-maps and the instrumental noise maps. They
should provide the cleanest detection of clusters and the measurement of their properties. Apart from the
inevitable instrumental noise, this data set only contains cosmological components. In the remainder of the
chapter, this data set will be refered to asCOS.

• The second data set adds Galactic foregrounds to the CMB, the SZ-maps and the instrumental noise map.
Here, I try to assess the extend to which Galactic foregrounds impede the SZ-observations. Thus, this data set
will be denotedGAL.

• In the third data set the emission from bodies inside the Solar system was included to the CMB, the SZ-
maps, the Galactic foregrounds and the instrumental noise. Because of the planets and asteroids being loosely
constrained to the ecliptic plane, this data set will be calledECL.

An example of a synthesised map showing the combined emission of the SZ-clusters and all Galactic and ecliptic
components including neither CMB fluctuations nor instrumental noise at a location close to the Galactic plane is
given by Fig.6.11. The observing frequency has been chosen to beν = 143 GHz, correspondingly, the map has
been smoothed with a (Gaussian) beam of∆θ = 7.′1 (FWHM).

6.5.4. PLANCK-channel correlation properties

In this section the auto- as well as the cross-correlation properties of the various foregrounds in different PLANCK-
channels are studied. The cross power specta, defined formally by eqn. (6.32) are determined by using:

C`,ν1ν2 =
1

2` + 1

+∑̀
m=−`

〈S`m〉ν1 〈S`m〉
∗
ν2

. (6.32)
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Figure 6.11.: A 50◦ × 50◦ wide composite centered on the ecliptic coordinates (λ, β) = (−85◦,0◦), i.e. close to the
Galactic centre for PLANCK’sν = 143 GHz-channel. The shading is proportional to arsinh(TA(ν = 143 GHz)/µK). The
map is smoothed with the corresponding beam of diameter∆θ = 7.′1 (FWHM). SZ-clusters are observed in absorption
in this channel and are discernible by eye even at close proximity (b <

∼ 20◦) to the Galactic plane. For clarity, the CMB
fluctuations as well as the instrumental noise have been excluded. The two point sources on the ecliptic equator are twin
detections of Jupiter.
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Figure 6.12.: Power spectra in various PLANCK-channels:ν = 30 GHz (solid),ν = 143 GHz (dashed),ν = 353 GHz
(dash-dotted) andν = 857 GHz (dotted) forCOS data set (thin line), theGAL data set (medium line) and theECL data set
(thick line).

From this definition, the auto-correlation spectra are obtained by settingν1 = ν2, i.e. C`,ν = C`,νν. The band-pass
averaged fluxes〈S`m〉ν are defined in eqn. (6.27). In Fig. 6.12, the power spectra are shown for theν = 30 GHz-,
ν = 143 GHz-,ν = 353 GHz- and theν = 847 GHz-channels. The spectra have been derived including various
Galactic and ecliptic noise components in order to study their relative influences. For visualisation purposes, the
spectra are smoothed with a moving average filter with a filter window comprising 11 bins.

Distinct acoustic peaks of the CMB are clearly visible in the cleanCOS data sets, but are overwhelmed by the
Galactic noise components. At small scales, i.e. high multipole order`, differences between theGAL andECL
data sets become apparent, the latter showing a higher amplitude. The (single) acoustic peak measurable in the
ν = 33 GHz channel is shifted to larger angular scales due to the coarse angular resolution of that particular channel.
Theν = 857 GHz-curve of theCOS data set behaves like a power law due to the fact that the CMB is observed in
the Wien-regime and is consequently strongly suppressed, such that the angular power spectrum is dominated by
uncorrelated pixel noise.

Fig. 6.13shows exemplarily a couple of cross power spectra. The cross-correlation spectra derived for theCOS
data set nicely shows the CMB power spectrum if two neighboring channels close to the CMB maximum are chosen,
but the correlation is lost in two widely separated channels. This is especially the case if one considers the two lowest
LFI-channels at angular scales which the receivers are not able to resolve. In this regime the pixel noise is still very
small and the cross-correlation spectrum drops to very small values.

In order to illustrate the complexity of spectral and morphological behaviour of the power spectra, they are given
as contour plots depending on both the observing frequencyν and the multipole order̀. Fig.6.14and6.15contrast
the auto-correlation properties of the different data sets. TheCOS data set, shown in Fig.6.14, containing nothing
but the CMB and instrumental noise apart from the SZ-contribution, shows clearly the acoustic oscillations with
the first peak at̀ ' 200 and the consecutive higher harmonics. They are most pronouced in theν = 100 GHz-
andν = 143 GHz-channels. At higher multipole moments, the power spectra are dominated by instrumental noise
which leads to a rapid (power law) incline.

Adding Galactic foregrounds yields the spectra depicted in Fig.6.15. Inclusion of Galactic foregrounds signif-
icantly complicates the picture and masks off the primary anisotropies. The spectra are dominated by large-scale
emission structures of the Milky Way, most notably the emission from thermal dust that causes the spectra to in-
crease with increasing frequencyν.
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6.5.4 PLANCK-channel correlation properties
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Figure 6.13.: Cross-correlations: The spectraC`,ν1=143 GHz,ν2=545 GHz (solid line) andC`,ν1=143 GHz,ν2=217 GHz (dashed line)
are contrasted for theCOS data set (thin lines) versus theGAL data set (thick line). Furthermore, the spectrum
C`,ν1=545 GHz,ν2=857 GHz (dash-dotted line) as well asC`,ν1=30 GHz,ν2=44 GHz (dotted line) is shown as derived from theECL
data set.
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Figure 6.14.: Auto-correlations: The power spectralC`,ν-coefficients are shown as a function of observing frequencyν

and multipole order̀ in the usual representatioǹ(` + 1)C`,ν/2π. The amplitudes are given inµK2 and the contours are
linearly spaced. Note the logarithmic scaling of the frequency axis. In the data set displayed, the CMB, both SZ-effects
and instrumental noise are included. The first three acoustic oscillation peaks are clearly visible.
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Figure 6.15.:Auto-correlations: The power spectralC`,ν-coefficients are shown as a function of observing frequencyν and
multipole order̀ in the usual representation`(` + 1)C`,ν/2π. The amplitudes are given in log(µK2) with logarithmically
equidistant contours. In the data set displayed, the CMB, both SZ-effects, all Galactic foregrounds and instrumental noise
are included.

6.6. Summary and conclusion

A simulation for assessing PLANCK’s SZ-capabilities in the presence of spurious signals is presented that com-
bines maps of the thermal and kinetic SZ-effects with a realisation of the cosmic microwave background (CMB),
in addition to Galactic foregrounds (synchrotron emission, free-free emission, thermal emission from dust, CO-line
radiation) as well as the sub-millimetric emission from celestial bodies of our Solar system. Additionally, obser-
vational issues such as the finite angular resolution and spatially non-uniform instrumental noise of PLANCK are
taken into account.

• Templates for modelling the free-free emission and the carbon monoxide-line emission have been added to
the PLANCK-simulation pipeline. The free-free template relies on anHα-survey of the Milky Way. The
spectral properties of both foregrounds are modelled with reasonable parameter choices, i.e.Tp = 104 K for
the free-free plasma temperature andTCO = 20 K for the mean temperature of giant molecular clouds.

• An extensive package for modelling the sub-millimetric emission from planet and asteroids has been imple-
mented for PLANCK, that solves the heat balance equation of each celestial body. It takes the movement of
the planets and asteroids into account, which causes, due to PLANCK’s scanning strategy, double detections
separated by approximate half-year intervals. The total number of asteroids implemented is' 1200.

• The foregrounds have been combined under proper inclusion of PLANCK’s frequency response windows in
order to yield a set of flux maps. The auto- and cross-correlation properties of those maps are investigated
in detail. Furthermore, their decomposition into spherical harmonics〈S`m〉ν serve as the basis for the filter
construction. It should be emphasised that the spectral properties of a foreground component were assumed
to be isotropic.
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7. Matched and scale-adaptive multifiltering

Abstract

In this chapter, filtering schemes based on scale-adaptive and matched filtering are extended to spherical data sets, that enable the
amplification of the weak SZ-signal in the presence of all contaminations stated above. The theory of scale-adaptive and matched
filtering in the framework of spherical maps is developed, the resulting filter kernel shapes are discussed and their functionality
is verified.

7.1. Introduction: multi-frequency optimised filtering

One challenge in the analysis of two-dimensional all-sky surveys is the extraction of sources of interest which are
superposed on a background of noise of varying morphology and spectral behaviour. In the presence of small-scale
noise the conventional method to extract sources is low-pass filtering (e.g. with a Gaussian kernel) while wavelet
analysis is most suitably applied if large scale noise fluctuations dominate. These methods, however, fail if the
characteristic scale of the background fluctuations is comparable with the scale of the signal structures. Other
methods have been proposed in order to separate different components in multifrequency CMB observations: They
include Wiener filtering (Tegmark & Efstathiou1996, Bouchet & Gispert1999, Bouchet et al.1999), maximum-
entropy methods (Hobson et al.1998, 1999), Mexican-hat wavelet analysis (Vielva et al.2001, Cayón et al.2000),
fast independent component analysis (Maino et al.2002), matched filter analysis (Tegmark & de Oliveira-Costa
1998), adaptive filtering techniques (Sanz et al.2001, Herranz et al.2002), and non-parametric Bayesian approaches
(Diego et al.2002).

However, a comparison between these methods is difficult because they all assume different priors about the spa-
tial properties and frequency dependence. Using prior knowledge about the frequency dependence and statistical
properties of several images at different channels, the maximum-entropy method and Wiener filtering are able to
separate the components of interest. Contrarily, wavelet analysis is well suited in order to detect compact sources.
A combination of these different techniques improves the quality of component separation (Vielva et al.2001).
Although component separation methods which assume a prior knowledge about the data are quite powerful, they
yield biased or even wrong results in the case of incorrect or idealised assumptions about the data. Any error
in the separation of one component propagates to the separation of the other components owing to normalisation
constraints. In particular, this is the case in non-centrally symmetric source profiles, oversimplified spectral extrap-
olations of Galactic emission surveys into other wavebands, variations of the assumed frequency dependence, or
non-Gaussian noise properties the statistics of which can not fully be characterised by power spectra. Thus, the ap-
plication of a specific component separation method is a trade-off between robustness and effectiveness with regard
to the particular problem.

Filtering techniques relying on Mexican-hat wavelets and on matched and scale-adaptive filters are single compo-
nent separation methods. They all project either spatial structure or frequency properties (within a given functional
family) of the component of interest in the presence of other components acting as background in this context. While
Mexican-hat wavelet analysis assumes Gaussian profiles superimposed on large scale variations of the background
noise, the matched and scale-adaptive filter generalises to arbitrary source profiles and noise properties which are
assumed to be locally homogeneous and isotropic (Sanz et al.2001, Herranz et al.2002).

This section generalises the matched and scale-adaptive filter techniques to global spherical topologies which
find application in all-sky surveys such as the case of PLANCK’s microwave/submillimetric survey. In addition,
optimised filters for the detection of compact sources in single frequency all-sky observations are derived in the
appendix in a more detailed fashion. The proposed method aims at simultaneously localising SZ-clusters and
measuring both their amplitudes and angular extent. It can also be applied for localising microwave point sources
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and estimating their spectral properties.
I choose the spherical filtering approach rather than tiling the sky with a set of two-dimensional flat maps for

the following reasons: On the sphere, one does not have to worry about double detections due to overlaps in
the tesselation. Secondly, my approach provides a physical interpretation of my filter shapes in harmonic space
even for the smallest multipole moments in contrast to the case of a flat map where the smallest wavenumbers are
determined by the map size. Finally, my approach circumvents projection failures of the noise properties such as
stretching effects in the case of conformal mapping which would introduce artifical non-Gaussianity in my maps
and distort profile shapes close to the map boundaries.

I pursue the concept of themulti-frequency approachrather than thecombination method(c.f. Herranz et al.2002).
In other words, I filter each channel separately while taking into account the different cross-correlations between
the different channels and the frequency dependence of the signal when constructing the optimised filters. This
method seems to be superior to thecombination methodwhich tries to find a optimised combination of the different
channels with regard to the signal-to-noise ratio of the sources and successively applies filters to the combined map.

The concept is introduced and central definitions are laid down in Sect.7.1.1. The concept of constructing filter
kernels is outlined in Sect.7.1.2. Subsequently, the matched and scale-adaptive filters are derived for expansions of
spherical data sets into spherical harmonics in Sect.7.1.3and Sect.7.1.4. Then, the numbers of merit are defined
in Sect.7.1.5. Caveats in the numerical derivation are listed in Sect.7.2.1. A discussion of filter kernel shapes
in Sect.7.2.2 for actual simulation data. The application of the filter kernels to my simulated sky maps and the
extraction of the SZ-cluster signal is described in Sect.7.2.3.

7.1.1. Assumptions and definitions

When constructing the particular filters, I assume centrally symmetric profiles of the sources to be detected. This
approximation is justified for most of the clusters of PLANCK’s sample whose angular extent will be comparable
in size to PLANCK’s beams, i.e. the instrumental beam renders them azimuthally symmetric irrespective of their
intrinsic shape. Azimuthal symmetry is no general requirement for the filters which can be generalised to detect e.g.
elliptic clusters using expansions into vector rather than scalar spherical harmonics.

I furthermore assume the background to be statistically homogeneous and isotropic, i.e. a complete characteri-
sation can be given in terms of the power spectrum. This assumption obviously fails for non-Gaussian emission
features of the Galaxy or of the exposure-weighted instrumental noise on large angular scales. However, the spher-
ical harmonics expansion of any expected compact source profile, which I aim to separate, peaks at high values of
the multipole moment due to the smallness of the clusters where the non-Gaussian influence is negligible. Thus, I
only have to require homogeneity and isotropy of the background on small scales.

In order to construct filters, I consider a set of all-sky maps of the detected scalar fieldsν(θ) for the different
frequency channels

sν(θ) = fνyν(|θ − θ0|) + nν(θ), ν = 1, . . . ,N, (7.1)

whereθ = (ϑ, ϕ) denotes a two-dimensional vector on the sphere,θ0 is the source location, andN is the number
of frequencies (respectively, the number of maps). The first term on the right-hand side represents the amplitude of
the signal caused by the thermal and kinetic SZ-effect,y(|θ − θ0|) andw(|θ − θ0|), respectively, while the second
term corresponds to the generalised noise which is composed of CMB radiation, all Galactic and ecliptic emission
components, and additional instrumental noise. The frequency dependence of the SZ-effect is described byfν in
terms of average flux,

fν ≡ 〈SY〉ν and fν ≡ 〈SW〉ν (7.2)

where〈S〉ν denotes the flux weighted by the frequency response at the fiducial frequencyν (c.f. eqn. (6.27)) andSY
andSW denote the SZ-fluxes given by eqns. (6.29) and (6.30).

I expect a multitude of clusters to be present in my all-sky maps. In order to sketch the construction of the
optimised filter, I assume an individual cluster situated at the North pole (θ0 = 0) with a characteristic angular
SZ-signalyν(θ = |θ|) = Aτν(θ), where I separate the true amplitudeA and the spatial profile normalised to unity,
τν(θ). The underlying cluster profilep(θ) is assumed to follow a generalised King-profile with an exponentλ which
is a parameter in my analysis. At each observation frequency this profile is convolved with the (Gaussian) beam of
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7.1.2 Concepts in filter construction

the respective PLANCK-channel (c.f. Sect.6.3.1) yielding:

τν(θ) =

∫
dΩ′p(θ′)bν(|θ − θ

′|) =
∞∑
`=0

τ`0, νY
0
` (cosθ), (7.3)

p(θ) =

1+ (
θ

θc

)2−λ, and τ`0, ν =

√
4π

2` + 1
b`0, νp`0. (7.4)

For the second step in eqn. (7.4) I used the convolution theorem on the sphere to be derived in AppendixB.2. The
backgroundnν(θ) is assumed to be a compensated homogeneous and isotropic random field with a cross power
spectrumC`,ν1ν2 defined by 〈

n`m,ν1
n∗`′m′,ν2

〉
= C`,ν1ν2

δ``′δmm′ , where 〈nν(θ)〉 = 0, (7.5)

n`m,ν denotes the spherical harmonics expansion coefficient of nν(θ), δ``′ denotes the Kronecker symbol, and〈·〉
corresponds to an ensemble average. Assuming ergodicity of the field under consideration allows taking spatial
averages over sufficiently large areasΩ = O(4π) instead of performing the ensemble average.

7.1.2. Concepts in filter construction

The idea of an optimised matched filter for multifrequency observations was recently proposed byHerranz et al.
(2002) for the case of a flat geometry. For each observing frequency, I aim at constructing a centrally symmetric
optimised filter functionψν(θ) operating on a sphere. Its functional behaviour induces a family of filtersψν(θ,Rν)
which differ only by a scaling parameterRν. For a particular choice of this parameter, I define the filtered field
uν(Rν,β) to be the convolution of the filter function with the observed all-sky map at frequencyν,

uν(Rν,β) =

∫
dΩ sν(θ)ψν(|θ − β|,Rν) =

∞∑
`=0

+∑̀
m=−`

u`m, νY
m
` (β) with (7.6)

u`m, ν =

√
4π

2` + 1
s̀ m, ν ψ`0, ν(Rν) . (7.7)

For the second step, the convolution theorem to be derived in AppendixB was used. The combined filtered field
is defined by

u(R1, . . . ,RN;β) =
∑
ν

uν(Rν,β). (7.8)

Taking into account the vanishing expectation value of the noise〈nν(θ)〉 = 0, the expectation value of the filtered
field at the North poleβ = 0 is given by

〈uν(Rν,0)〉 = A fν
∞∑
`=0

τ`0, ν ψ`0, ν(Rν). (7.9)

The assumption that the cross power spectrum of the signal is negligible compared to the noise power spectrum is
justified because the thermal and kinetic amplitudes are small compared to unity,Ay,w � 1. Thus, the variance of
the combined filtered field (7.8) is determined by

σ2
u(R1, . . . ,RN) =

〈
[u(R1, . . . ,RN;β) − 〈u(R1, . . . ,RN;β)〉]2

〉
=

∑
ν1,ν2

∞∑
`=0

C`, ν1ν2ψ`0, ν1(Rν1)ψ`0, ν2(Rν2). (7.10)

The optimised filter functionsψν(θ) are chosen to detect the clusters at the North pole of the sphere (to which
they have been translated). They are described by a singly peaked profile which is characterised by the scaleR(0)

ν as
given by eqn. (7.3). While the optimisedmatched filteris defined to obey the first two of the following conditions,
the optimisedscale-adaptive filteris required to obey all three conditions:
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1. The combined filtered fieldu(R(0)
1 , . . . ,R(0)

N ; 0) is an unbiased estimator of the source amplitudeA:

〈u(R(0)
1 , . . . ,R(0)

N ; 0)〉 = A. (7.11)

2. The variance ofu(R1, . . . ,RN;β) has a minimum at the scalesR(0)
1 , . . . ,R(0)

N ensuring that the combined filtered
field is an efficient estimator.

3. The expectation value of the filtered field at the source position has an extremum with respect to the the scale
R(0)
ν , implying

∂

∂R(0)
ν

〈uν(Rν,0)〉 = 0. (7.12)

7.1.3. Matched filter

For convenience, I introduce the column vectorsψ` ≡ [ψ`0, ν], F` ≡ [ fντ`0,ν], and the inversêC
−1
` of the matrix

Ĉ` ≡ [C`, ν1ν2]. In terms of spherical harmonic expansion coefficients, constraint (i) reads

∑
ν

∞∑
`=0

fντ`0, νψ`0, ν =
∞∑
`=0

F`ψ` = 1. (7.13)

Performing functional variation (with respect to the filter functionψ`) of σ2
u(R1, . . . ,RN) while incorporating the

(isoperimetric) boundary condition (7.13) through a Lagrangian multiplier yields the spherical matched filterψ`

ψ` = α Ĉ
−1
` F`, where α−1 =

∞∑
`=0

FT
` Ĉ
−1
` F`. (7.14)

In any realistic application, the cross power spectrumC`,ν1ν2 can be computed from observed data provided the cross
power spectrum of the signal is negligible. The quantitiesα, F`0, and thusψ`0 can be computed in a straightforward
manner for a specific frequency dependencefν and for a model source profileτν(θ).

7.1.4. Scale-adaptive filter on the sphere

The scale-adaptive filterψ` satisfying all three conditions is given by

ψ` = Ĉ
−1
` (αF` +G`), with G` ≡ [µ`,ν βν], and (7.15)

µ`,ν ≡ fντ`0,ν

(
2+

d lnτ`0,ν
d ln`

)
= fν

[
2τ`0,ν + `

(
τ`0,ν − τ`−1 0,ν

)]
. (7.16)

As motivated in AppendixB, the logarithmic derivative ofτ`0 with respect to the multipole order` is a shorthand
notation of the differential quotient which is only valid for̀ � 1. The quantitiesα and βν are given by the
components

α = (Â
−1

)00, βν = (Â
−1

)ν0, (7.17)

whereÂ is the (1+ N) × (1+ N) matrix with elements

A00 ≡

∞∑
`=0

FT
` Ĉ
−1
` F`, A0ν ≡

∞∑
`=0

µ`,ν

(
FT
` Ĉ
−1
`

)
ν

(7.18)

Aν0 ≡

∞∑
`=0

µ`,ν

(
Ĉ
−1
` F`

)
ν
, Aνν′ ≡

∞∑
`=0

µ`,ν µ`,ν′

(
Ĉ
−1
`

)
νν′
. (7.19)

In these equations, no summation over the indices is implied.
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7.1.5 Detection level and gain

7.1.5. Detection level and gain

As described bySanz et al.(2001), the concept of constructing an optimised filter function for source detection aims
at maximising the signal-to-noise ratioDu,

Du ≡
〈u(R1, . . . ,RN; 0)〉
σu(R1, . . . ,RN)

= A

∑∞
`=0 F`ψ`√∑∞
`=0ψ

T
`

Ĉ`ψ`

. (7.20)

Computing the dispersion of the unfiltered field on the sphere yields the signal-to-noise ratioDs of a signal on the
fluctuating background:

σ2
s =

∑
ν1,ν2

∞∑
`=0

C`, ν1ν2 ⇒ Ds =
A
σs
. (7.21)

These considerations allow introducing thegain for comparing the signal-to-noise ratios of a peak before and after
convolution with a filter function:

g ≡
Du

Ds
=

σs

σu(R1, . . . ,RN)
. (7.22)

If the noise suppression is successful, the gaing will assume values larger than one. If the filters are constructed
efficiently, they are able to reduce the dispersion (σu(R1, . . . ,RN) < σs) while simultaneously retaining the expec-
tation value of the field (7.9). Due to the additional third constraint, the scale-adaptive filter is expected to achieve
smaller gains compared to the matched filter.

7.2. Optimised SZ-filters for PLANCK

7.2.1. Numerical derivation of filter kernels

For the derivation of suitable filter kernels the source profiles are assumed to be generalised King-profiles as de-
scribed by eqn. (7.4) convolved with the respective PLANCK-beam superimposed on fluctuating background given
by template〈S`m〉ν-coefficients. The inversion of the matrix̂C` (c.f. eqns. (6.32) and (6.32)) can be performed
using either Gauss-Jordan elimination or LU decomposition, which both were found to yield reliable results. In
the derivation of the scale-adaptive filters, however, it is numerically advantageous to artificially exclude the lower
multipoles` ≤ 1 from the calculation. Due to the sub-millimetric emission of the Milky Way, the lower multipoles
are very large. Consequently, the correspondingψ`m-coefficients,̀ ≤ 1, have been set to zero, which is not a serious
intervention since the filters are designed to amplify structures at angular scales well below a degree. For consis-
tency, the multipoles below the quadrupole have been artificially removed in the derivation of the matched filters as
well.

In contrast to the PLANCK-simulation pipeline all numerical calculations presented here are carried out in terms
of fluxes measured in Jy and not in antenna temperatures for the following reason: Cross-power spectraC`,ν1ν2 given
in terms of antenna temperatures are proportional to (ν1 ν2)−2 which results in a suppression of the highest frequency
channels by a factor of almost 105 compared to the lowest frequency channels.

Furthermore, by working with fluxes instead of antenna temperatures, the filters for extracting the SZ-signal show
frequency dependences which can be understood intuitively. The frequency dependence is described by eqns. (6.29)
and (6.30). The normalisationY has been chosen to be 1 arcmin2, which corresponds to typical signal levels
detectable with PLANCK. Because of the smallness of the source profiles to be detected, the calculations were
carried out to multipole orders of`max = 4096, which ensures that the beams as well as the source profiles are well
described. In the plots in Sect.7.2.2, the filters depicted are smoothed with a moving average window comprising
eleven bins for better visualisation. Details of the numerics of the filter construction are given in AppendicesC
andB.

7.2.2. Discussion of filter kernels

7.2.2.1. Matched filter

The spherical harmonics expansion coefficientsψ`0,ν following from the matched filter algorithm are depicted in
Fig.7.1for four frequencies most relevant to SZ-observations, namely forν = 100 GHz,ν = 143 GHz,ν = 217 GHz
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Figure 7.1.: Spherical harmonics coefficientsψ`0,ν as derived with the matched filter algorithm, forν = 100 GHz (solid
line), ν = 143 GHz (dashed line),ν = 217 GHz (dash-dotted line) andν = 353 GHz (dotted line) for a dataset containing
the CMB, both SZ-effect and instrumental noise.
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Figure 7.2.: Spherical harmonics coefficientsψ`0,ν as derived with the matched filter algorithm, forν = 100 GHz (solid
line), ν = 143 GHz (dashed line),ν = 217 GHz (dash-dotted line) andν = 353 GHz (dotted line) for a dataset containing
all Galactic foregrounds in addition to the CMB, both SZ-effect and instrumental noise.
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7.2.2 Discussion of filter kernels
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Figure 7.3.: Contour plot of the spherical harmonics expansion coefficientsψ`0,ν derived with the matched filter algorithm
as a function of both the multipole moment order` and PLANCK’s observing frequencyν. The filter kernels have been
derived for a optimised detection of a generalised King-profile with (θc, λ) = (15.′0,1.0) superimposed on the fluctuating
CMB and instrumental noise. The contours are linearly spaced in arsinh(102ψ`0,ν).
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Figure 7.4.: Contour plot of the spherical harmonics expansion coefficientsψ`0,ν derived with the matched filter algorithm
as a function of both the multipole moment order` and PLANCK’s observing frequencyν. The filter kernels have been
derived for a optimised detection of a generalised King-profile with (θc, λ) = (15.′0,1.0) superimposed on the fluctuating
CMB , Galactic foregrounds and instrumental noise. The contours are linearly spaced in arsinh(102ψ`0,ν)
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andν = 353 GHz. As background noise components the cleanCOS data set (left column) and the exhaustiveGAL data
set (right column) are contrasted. The filter kernels have been derived for optimised detection of sources described
by a generalised King-profile with angular core radiiθc = 3.′0 andθc = 5.′0 and asymptotic slopeλ = 1.0.

The principle how the matched filter extracts the SZ-signal from the maps is explained by Fig.7.1: The SZ-profiles
the filter has been optimised are small structures at angular scales corresponding to multipole moments of` ' 103.
In channels belowν = 217 GHz, the clusters are observed in absorption and the fluxes are decreased. For that
reason, the filters have negative amplitudes at small angular scales for these specific frequencies. At larger scales,
the fluctuations are suppressed by linear combination of the various channels, while the filtering functions show very
similar shapes. Optimising the filters for detection of core radii of 5.′0 instead of 3.′0 result in a shift of the negative
peak at̀ ' 103 to smaller multipole orders. Instrumental noise which is important at even higher multipoles is
suppressed by the filter’s exponential decline at high` above` >

∼ 2000. The unwanted CMB fluctuations and all
Galactic contributions at scales larger than the cluster scale are suppressed by weightings with varying sign so that
the foregrounds are subtracted at the stage of forming linear combinations of the〈S`m〉ν-coefficients.

Furthermore, the contours of the matched filter kernels are given in Fig.7.1as functions of both inverse angular
scalè and observing frequencyν for differing noise contributions. The figures compare filters derived for differing
background noise compositions. The filters shown serve for the optimised detection of generalised King-profiles
with core radiusθc = 15.′0 and asymptotic slopeλ = 1.0. These (rather large) values have been chosen for visual-
isation purposes. For clarity, the contour denoting zero values has been omitted due to noisy data. In these figures
it is apparent how the filters combine the frequency information in order to achieve a suppression of the unwanted
foregrounds: At multipole moments of a few hundred, the filters exhibit changes in sign, such that the measurements
at low frequencies are subtracted from the measurements at high frequencies in the linear combination of the filtered
maps.

Fig. 7.5 illustrates the filter kernelsψν(θ) in real space for the same selection of frequencies and background
noise components as given above. The filter kernelsψν(θ) have been synthesised from theψ`0,ν-coefficients using
thealm2grid-utility of the PLANCK-simulation package. Here, the parameters of the King-profile to be detected
are (θc, λ) = (5.′0,1.0). The filter kernels are similar in shape to Mexican-hat wavelets, but show more than one
oscillation. Their action on the sky maps is to apply high-pass filtering, such that all long-wavelength modes are
eliminated. At the cluster scale, they implement a linear combination of the sky maps that aims at amplifying the SZ-
signal: The kernels derived for both theν = 100 GHz- andν = 143 GHz-channel exhibit a central depression which
is used to convert the SZ-signal to positive amplitudes. The other two channels resemble simple Gaussian kernels
which smooth the maps to a common effective angular resolution. At frequencies ofν = 217 GHz andν = 353 GHz
the most important emission feature is Galactic Dust, which is suppressed by the filter’s small amplitudes. In this
way, the weak SZ-signal is dissected.

In Fig. 7.6, filter kernels derived with both algorithms for point sources (i.e. with beam profiles of the respective
PLANCK-channels) are compared, that have been optimised for the detection of varying spectral behaviour of
the signal, in this case the thermal SZ-effect, the kinetic SZ-effect and a Planckian thermal emitter with a surface
temperatureTsurfaceof 150 K, such as an asteroid or planet. The filter kernels depicted correspond to observing
frequencies ofν = 143 GHz andν = 217 GHz. The filters clearly reflect the spectral behaviour of the emission
laws of the sources one aims at detecting: While the filter kernels designed for detecting thermal SZ-clusters reflect
the peculiar change in sign in the SZ-effect’s frequency dependence, the other two curves show the behaviour to be
expected for a Planckian emitter and the kinetic SZ-effect, respectively. Again, the better angular resolution of the
ν = 217 GHz-channel is apparent by the shifting of the curves to higher multipole order`.

7.2.2.2. Scale-adaptive filter

The spherical harmonics expansion coefficientsψ`0,ν following from the scale-adaptive filter algorithm for the fre-
quenciesν = 100 GHz,ν = 143 GHz,ν = 217 GHz andν = 353 GHz are given in the upper panel of Fig.7.7.
The left and right columns compare the filter kernels for differing noise components. Their functional shape has
a number of important features in common with the matched filters: They suppress the uncorrelated pixel noise,
which is dominant at high̀ by their exponential decline at` >

∼ 2000. Furthermore, the filters amplify the SZ-signal,
which is negative at frequencies belowν = 217 GHz, by assuming large negative values and hence converting the
SZ-signal to yield positive amplitudes. Additionally, the filters show a distinct secondary peak at` ' 2000 which
causes the kernels to be more compact after transformation to real space and enables the size measurement. A more
general observation is that the scale-adaptive filter kernel shapes are more complex and noisier in comparison to the
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Figure 7.5.: Matched filter kernelsψν(θ) in real space at SZ-frequencies, i.e. forν = 100 GHz (solid line),ν = 143 GHz
(dashed line),ν = 217 GHz (dotted line) andν = 353 GHz (dash-dotted line), for a data set including the CMB, Galactic
foregrounds and instrumental noise (thin lines) and for a data set containing all Galactic components in addition to the
CMB and instrumental noise (thick lines). The filter kernel is optimised for the detection of a generalised King-profile
with core radiusθc = 5.′0 and asymptotic slopeλ = 1.0.
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Figure 7.6.: Comparison of filter kernelψ`0,ν-coefficients derived for differing spectral dependences of the signal: thermal
SZ-effect (solid line), kinetic SZ-effect (dashed line) and a Planckian emitter with surface temperature ofTsurface= 150 K
(dash-dotted line). All sources are assumed to be point-like, i.e. they appear to have the shape of the PLANCK-beam. The
curves are given for observing frequencies ofν = 143 GHz (thin line) andν = 217 GHz (thick line) and have been derived
with the matched filter algorithm. The noise is a composite of CMB fluctuations, Galactic and ecliptic foregrounds and
instrumental noise.
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Figure 7.7.: Spherical harmonics coefficientsψ`0,ν as derived with the scale-adaptive filter algorithm, forν = 100 GHz
(solid line),ν = 143 GHz (dashed line),ν = 217 GHz (dash-dotted line) andν = 353 GHz (dotted line). The filter kernel
is optimised for the detection of generalised King-profiles with core radiiθc = 3.′0 (thin lines) andθc = 5.′0 (thick lines)
and asymptotic slopeλ = 1.0. Noise components include CMB fluctuations and instrumental noise.
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Figure 7.8.: Spherical harmonics coefficientsψ`0,ν as derived with the scale-adaptive filter algorithm, forν = 100 GHz
(solid line),ν = 143 GHz (dashed line),ν = 217 GHz (dash-dotted line) andν = 353 GHz (dotted line). The filter kernel is
optimised for the detection of generalised King-profiles with core radiiθc = 3.′0 (thin lines) andθc = 5.′0 (thick lines) and
asymptotic slopeλ = 1.0. Noise components include CMB fluctuations, Galactic foregrounds, and instrumental noise.
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Figure 7.9.: Contour plots of the spherical harmonics expansion coefficientsψ`0,ν derived with the scale-adaptive filter
algorithm as a function of both the multipole moment order` and PLANCK’s observing frequencyν are shown. The filter
kernels have been derived for a optimised detection of a generalised King-profile with (θc, λ) = (15.′0,1.0). The contours
are linearly spaced in arsinh(102ψ`0,ν). In this plot, CMB fluctuations and instrumental noise were considered in the filter
construction.
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Figure 7.10.: Contour plots of the spherical harmonics expansion coefficientsψ`0,ν derived with the scale-adaptive filter
algorithm as a function of both the multipole moment order` and PLANCK’s observing frequencyν are shown. The filter
kernels have been derived for a optimised detection of a generalised King-profile with (θc, λ) = (15.′0,1.0). The contours
are linearly spaced in arsinh(102ψ`0,ν). In this plot, Galactic foregrounds entered the filter construction, apart from CMB
fluctuations and instrumental noise.
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Figure 7.11.: Scale-adaptive filter kernelsψν(θ) in real space, forν = 100 GHz (solid line),ν = 143 GHz (dashed
line), ν = 217 GHz (dotted line) andν = 353 GHz (dash-dotted line), for a data set incorporating the CMB, Galactic
foregrounds and instrumental noise. The filter kernel is optimised for the detection of a generalised King-profile with
parameters (θc, λ) = (5.′0,1.0).

matched filter, especially at high̀.
The scale-adaptive filter makes even stronger use of the spectral information than the matched filter. Especially

the contour plots in Fig.7.7show that the scale-adaptive filter exhibits alternating signs when varying the observing
frequencyν while keeping the angular scale` fixed. In this way, the noise contributions are isolated in angular
scale and subsequently suppressed by linear combination of the maps. Furthermore, one notices a change in sign
at multipole order̀ ' 200 which is common to the frequenciesν = 100. . . 353 GHz, at which the CMB signal is
strongest. Aiming at reducing the variance of the filtered maps, the scale-adaptive filter is suppressing the〈S`m〉ν-
coefficients by assuming small values. Fig.7.11gives the filter kernelsψν(θ) in real space for selected frequencies
and background noise components. The scale-adaptive filters work similarly as the matched filters like Mexican-hat
wavelets and subject the sky maps to high pass filtering.

In Fig. 7.12, filter kernels derived with both algorithms for point sources (i.e. with beam profiles of the respective
PLANCK-channels) are compared, that have been optimised for the detection of varying spectral behaviour of
the signal, in this case the thermal SZ-effect, the kinetic SZ-effect and a Planckian thermal emitter with a surface
temperatureTsurfaceof 150 K, such as an asteroid or planet. The filter kernels depicted correspond to observing
frequencies ofν = 143 GHz andν = 217 GHz. As in the case of the matched filter, the frequency dependence of
the signal is reflected by the sign of the filter kernel at the anticipated angular scale of the profile to be detected.

7.2.3. Filter renormalisation and synthesis of likelihood maps

Once the filter kernels are derived, the filtered fieldsuν(Rν,β) can be synthesised from theu`m,ν-coefficients (defined
in eqn. (7.7)) and the resulting maps can be added in order to yield the co-added, filtered fieldu(R1, . . . ,RN,β) (see
eqn. (7.8)), which can be normalised by the level of fluctuationσu (given by eqn. (7.10)) to yield the likelihood map
D(θ). It is favourable to divide the filter kernels by the varianceσu and to apply a renormalisation:

ψ`0,ν −→ ψ′`0,ν =
ψ`0,ν√∑
`ψ

T
`

Ĉ`ψ`

. (7.23)

In this case, the filter kernels are invariant under changes in profile normalisation. With these kernels, the filtered
flux maps can be synthesised from the set of〈S`m〉ν-coefficients and the resulting maps can be co-added to yield
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Figure 7.12.:Comparison of filter kernelψ`0,ν-coefficients derived for differing spectral dependences of the signal: thermal
SZ-effect (solid line), kinetic SZ-effect (dashed line) and a Planckian emitter with surface temperature ofTsurface= 150 K
(dash-dotted line). All sources are assumed to be point-like, i.e. they appear to have the shape as the PLANCK-beam. The
curves are given for observing frequencies ofν = 143 GHz (thin line) andν = 217 GHz (thick line) and have been derived
with the scale-adaptive filter algorithm. The noise is a composite of CMB fluctuations, Galactic and ecliptic foregrounds
and instrumental noise.

the final normalised likelihood mapD(β). It is computationally advantageous, however, to interchange the last two
steps,

Du(β) =
u(β)
σu
=

1
σu

∑
ν

uν(β) (7.24)

=
∑
ν

∞∑
`=0

+∑̀
m=−`

√
4π

2` + 1
〈S`m〉ν

ψ`0,ν√∑
`ψ

T
`

Ĉ`ψ`

Ym
` (β) (7.25)

=

∞∑
`=0

+∑̀
m=−`

√
4π

2` + 1

∑
ν

〈S`m〉ν ψ
′
`0,ν

︸                             ︷︷                             ︸
≡D`m

Ym
` (β), (7.26)

and to derive theD`m-coefficients first, such that the synthesis has to be performed only once. Due to the re-
striction to axially symmetric kernels, the convolution can be carried out using thealm2map-utility rather than
totalconvolve.

Fig. 7.13gives a visual impression of the capability of the above described filtering schemes: The figure shows a
30◦ × 30◦ wide field at the ecliptic North pole at a frequency ofν = 353 GHz (at the SZ-maximum) as observed by
PLANCK, i.e. the image is smoothed to an angular resolution of∆θ = 5.′0 (FWHM) and contains the fluctuating
CMB, all Galactic and ecliptic foregrounds as well as pixel noise. Matched and scale-adaptive filter kernels were
derived for isolating point sources, i.e. for sources that appear to have profiles equal to PLANCK’s beams of the
corresponding channel. For clarity, only amplitudes exceeding a threshold value of 1.0 are shown.

For comparison, Fig.7.13shows the same detail of the input thermal SZ-map as well. It is immediately apparent
that the observation of SZ-clusters without foreground- and noise suppression is not possible and that one has to
rely on filtering schemes. As a comparison with Fig.7.13shows, the filters are clearly able to isolate the SZ-clusters
and to strongly suppress all spurious noise contributions. The matched filter, however, shows a slightly better

79



Matched and scale-adaptive multifiltering

Figure 7.13.: Upper left panel:A 30◦ × 30◦ wide field centered on the ecliptic North pole as synthesised from a data
set containing the CMB, all Galactic and ecliptic foregrounds and instrumental noise for an observing frequency ofν =

353 GHz is shown. The amplitudes are proportional to arsinh(TA(ν = 353 GHz)/µK) and the field is smoothed with the
corresponding PLANCK-beam of∆θ = 5.′0 (FWHM). Upper right panel:The same field is shown after reconstruction
from theD`m-coefficients. Here, filters derived with the matched filter algorithm optimised for detecting point sources were
employed. The amplitudes are given in detection significances and the shading scales linearly.Lower right panel:Again,
the same field is shown after synthesis from theD`m-coefficients but in this case, filters derived with the scale-adaptive
filter algorithm optimised for detecting point sources were used. The amplitudes are stated as detection significances and
the shading is linear. In thelower left panel, the corresponding field taken from the original thermal SZ-map is given for
comparison. The amplitudes are∝ arsinh(104 y).
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Figure 7.14.:Flow chart summarising all steps involved in the simulation of PLANCK-observations and the derivation of
〈S`m〉ν-coefficients (left panel) and in the filter construction and signal extraction (right panel).

performance and yields more significant peaks due to better background suppression. There are weak residuals
present in both maps due to incomplete foreground reduction. These residuals however, have small amplitudes
compared to the SZ-detections. The highest peaks exhibit detection significances amounting to 10.6σ in the case of
the matched filter and 9.1σ in the case of the scale-adaptive filter.

It should be emphasised that the filters work exceptionally well despite the fact that the Milky Way clearly is
a non-Gaussian feature, whereas Gaussianity of the fluctuating background was an important assumption in the
derivation of the filter kernels. Furthermore, the filters sucessfully separate and amplify the weak SZ-signal in the
presence of seven different noise contributions (CMB, four Galactic foregrounds, thermal emission from bodies of
the Solar system and instrumental noise) that exhibit different spectral behaviours by relying on just nine broad-band
measurements. Fig.7.14summarises all steps involved in the simulation of PLANCK-observations, filter derivation
and signal extraction.

7.3. Summary and conclusion

• In order to separate the SZ-Signal and to suppress the foreground components, the theory of matched and
scale-adaptive filtering has been extended to spherical data sets. The formulae in the context of spheri-
cal coordinates andYm

` -decomposition are analogous to those derived for Cartesian coordinate systems and
Fourier-transforms.

• The global properties of filter kernel shapes are examined as functions of observing channel, composition of
noise, parameters of the profile to be detected and spectral dependence of the signal. Transformation of the
filter kernels to real space yields functions that resemble the Mexican-hat wavelets, but show more than one
oscillation. The shape of the filter kernels can be understood intuitively: They subject the maps to high-pass
filtering while retaining structures similar in angular extent to the predefined profile size. The signal is then
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amplified by linear combination of the maps, which again is apparent in the sign of the filter kernels.

• The functionality of the filtering scheme is verified by applying them to simulated observations. It is found
that the Galactic foregrounds can be suppressed very effectively so that the SZ-cluster signals can be retrieved.
Comparing the two filters, the scale-adaptive filter performs not as good as the matched filter, which is in
accordance to the findings ofHerranz et al.(2002). It should be emphasised that for the derivation of the
filter kernels nothing but a model profile and all cross-power spectra (in PLANCK’s case a total number of
45 independentC`,ν1ν2-sets) are used.

The results of this and the preceeding chapter were worked out in collaboration with M. Bartelmann (ITA, Heidel-
berg), C. Pfrommer and R. M. Hell (both MPA, Garching). A paper entitledDetecting Sunyaev-Zel’dovich clusters
with PLANCK: II. Foreground components and optimised filtering schemeswhich summarises the results of this
and the previous chapter has been submitted to the journalMonthly Notices of the Royal Astronomical Societyand
is available online (astro-ph/0407090).
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8. Properties of PLANCK’s SZ-cluster sample

Abstract

In this chapter, the properties of the filter algorithms and of the recovered cluster sample are analysed in detail. After the
description of the simulation setup and the peak extraction (Sect.8.1), the noise properties are analysed and the distribution of
the significances of correctly identified clusters is given (Sect.8.2). Then, the number of detected cluster as a function of model
profile parameters is investigated (Sect.8.3). The population of SZ-clusters in mass and redshift and the influence of various
noise contributions, the distribution of integrated Comptonisations and the position accuracy (Sect.8.4) are the main results of
this chapter. The chapter concludes with the spatial distribution of the detected clusters (Sect.8.5) and with the distribution of
peculiar velocities (Sect.8.6). Finally, the key results are summarised and compared to other studies (Sect.8.7).

8.1. Simulation setup and peak extraction

Filter kernels following from the matched and scale-adaptive multifrequency filtering algorithm are subjected to
a thorough analysis. They are tested on two different data sets, one containing just CMB fluctuations and (non-
isotropic) instrumental noise, and a second data set, which comprises all Galactic foregrounds in addition. From
the comparison of the two data sets one will be able to quantify by how much the number of detections drop due to
Galactic foregrounds and how uniform the cluster distribution will be provided the removal of Galactic foregrounds
can be done efficiently.

8.1.1. Filter construction and synthesis of likelihood maps

Filter kernels optimised for detecting King-profilesy(θ) ∝
[
1+ (θ/θc)2

]−λ
were derived for a range of core radiiθc

and asymptotic slopesλ. Specifically, seven values ofθc,

θc = 0.′0, 1.′0, 2.′0, 4.′0, 8.′0, 16.′0, 32.′0, (8.1)

and five values ofλ,
λ = 0.6, 0.8, 1.0, 1.2, 1.4 (8.2)

were considered, keeping the large range in core radii in mind. Using different values forλ is motivated by asym-
metric clusters and in order to allow for the influence of the convolution with the instrumental beam. The sky maps
were convolved with the filter kernels, co-added, normalised to unit variance, as described in the previous chapter
and synthesised to yield likelihood maps. In the synthesis, all multipole coefficients up tò = 4096 have been
considered and the angular resolution of the resulting maps (Nside = 1024, pixel side length' 3.′4) is high enough
to resolve single likelihood peaks.

An important numerical issue of spherical harmonic transforms is the fact that the variance (measured in real
space) of a map synthesised from thea`m-coefficients is systematically smaller with increasing` than the variance
C(`) required by thea`m-coefficients on the scale∆θ ' π/`. This is compensated by an empirical function, the
so-calledpixel window, which lifts the amplitudesa`m towards increasing values of` prior to the reconstruction.
This effectively results in higher signal-to-noise ratios of the detected clusters.

8.1.2. Morphology of SZ-clusters in filtered sky-maps

Figs. 8.3 and8.4 give an impression how the morphology of a peak in the likelihood map changes if filter ker-
nels optimised for the detection of profiles with varying diameter and asymptotic behaviour are used. I picked an
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association of two clusters at a redshift ofz ' 0.1, which generates a signal strong enough to yield a significant
detection irrespective of the choice ofθc andλ. The matched filter yields larger values for the detection significance,
which is defined to be the signal-to-noise ratio of the central object, in comparison to the scale-adaptive filter for
that particular pair of clusters. Secondly, if filters optimised for large objects, i.e. largeθc and smallλ are used,
the two peaks merge in the case of the matched filter, but stay separated in case of the scale-adaptive filter. Hence
the scale-adaptive filter is more appropriate in the investigation of closeby objects. Additionally, the matched filter
seems to be more sensitive to the choice ofθc andλ. Within the range of these two parameters considered here, the
significance of the cluster detection under consideration varies by a factor of four in the case of the matched filter,
but changes only by 25% in the case of the scale-adaptive filter.

8.1.3. Peak extraction and cluster identification

It is an important point to notice that cluster positions derived from PLANCK are not very accurate. In this analysis,
the SZ-clusters are extended themselves and possibly asymmetric, they are convolved with PLANCK’s instrumental
beams in the observation and reconstructed from filtered data, where an additional convolution with a kernel is
carried out. Furthermore, the pixelisation is relatively coarse (typically a few arcmin). All these effects add up to a
position uncertainty of a few tens of arc minutes, depending on the filter kernel.

All peaks above 3σ were extracted from the synthesised likelihood maps and cross checked with a cluster cata-
logue. A peak was taken to be a detection of a cluster if its position did not deviate more than 30.′0 from the nominal
cluster position. Peaks that did not have a counterpart with integrated ComptonisationY larger than a predefined
threshold value were registered as false detections, likewise peaks were not considered that did not exceed the
threshold value of 3σ in more than two contiguous pixels. In this way, a catalogue is obtained which is essentially
free of false detections and, where the fraction of unidentified peaks amounts to 5− 7% for a realistic threshold of
Ymin = 3 × 10−4 arcmin2 (Haehnelt1997, Bartelmann2001). The cluster catalogues following from observations
with specific (θc, λ)-pairs of parameters were merged to yield summary catalogues for both filter algorithms and
both noise compositions. If more than one cluster is found in the aperture, the cluster with the largest value for the
integrated Comptonisation is assumed to generate the signal. In the merging process, I determine which choice of
(θc, λ) yielded the most significant detection for a given object.

8.2. Noise properties and peak statistics

8.2.1. Noise in the filtered and co-added maps

In this section, the statistical properties of the noise in the filtered maps is examined. The filter construction algo-
rithm gives the varianceσ of the filtered and co-added fields as a function of filter shapesψνi (`) and cross-channel
power spectraCνiν j (`) by virtue ofσ2 =

∑
`

∑
i
∑

j ψνi (`)Cνiν j (`)ψν j (`). Due to deviations from Gaussianity of many
noise components considered (especially Galactic foregrounds), it is important to verify if the variance is still a
sensible number. Fig.8.1 gives the distribution of pixel amplitudes for a combination of noise components and
filtering schemes.

Although the distribution of pixel amplitudes seems to follow a Gaussian distribution with zero mean and unit
variance in all cases, there are notable deviations from this first impression. As summarised in Table8.1, the mean
of the distributions is compatible with zero in all cases, but the standard deviation is less than unity. Furthermore,
the kurtosis of all distributions is nonzero, hence they are more outlier-prone as the normal distribution (barykurtic),
which leads to a misestimation of statistical significances of peaks based on the assumption of unit variance of the
filtered map, which the filtered map should have due to the renormalisation. This effect is strongest in the case of
the matched filter. For the derivation of these numbers, only pixels with amplitudes smaller than|d| ≤ 4σ have
been considered, such that the statistical quantities are dominated by the noise to be examined and not by the actual
signal. The distributions are slightly skewed towards positive values, which is caused by weak signals below 4σ.
The near-Gaussianity suggests that the residual noise in the filtered map is mostly caused by uncorrelated pixel
noise and filters seem to be well capable of suppressing unwanted foregrounds.

Is it important to notice that the comparatively low threshold of 3σ imposed for extracting the peaks alone would
yield a considerable number of false detections. Supposing that the variance of the filtered maps is mainly caused
by uncorrelated pixel noise which is smoothed to an angular scale of' 20′ by the instrumental beam and by the
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Figure 8.1.: Distribution of pixel amplitudesd of the filtered and co-added maps, normalised to the varianceσ predicted
in the filter kernel derivation, for a data set including CMB fluctuations and instrumental noise, filtered with the matched
filter (upper left, solid line), for a data set including Galactic foregrounds in addition (upper right, dashed line), for a data
set containing the CMB and instrumental noise, filtered with the scale-adaptive filter (lower left, dash-dotted line) and
finally a data set with CMB, instrumental noise and Galactic foregrounds, filtered with the scale-adaptive filter (lower
right, dotted line). The filters have been optimised for the detection of beam-shaped profiles.

filters causes the filtered maps to be composed of 4π(180/π)2 · 32 ' 4× 105 unconnected patches. Of these patches,
a fraction of erfc(3/

√
2) ' 10−4 naturally fluctuates above the threshold of 3σ. In this way a total number of' 400

patches have significances above 3σ. The requirement that the counterpart of the peak in the cluster catalogue
generates a Comptonisation above a (conservative) value ofYmin, i.e. that a cluster candidate is confirmed by
spectroscopy, removes these false peaks from the data sample.

8.2.2. Detection significances

The distribution of detection sigificances is given in Fig.8.2. One obtains about 103 detections at the significance
threshold which drops to a few highly significant detections exceeding 20σ. At smallσ, the scale-adaptive filter
yields more detections than the matched filter, which catches up at roughtly 5σ.

The total number of detections for each filter algorithm, for each data set and for two values of the minimally
required ComptonisationYmin for spectroscopic confirmation are compiled in Table8.2. Due to its better yield of
detections marginally above the threshold the scale-adaptive filter outperforms the matched filter by almost 30%.
The reason for the increased number of low-significance detections is the systematically higher value of the variance
of the residual noise field in the case of the scale-adaptive filter. The number of detections decreases by' 25% if
Galactic foregrounds are included, relative to the data set containing only CMB fluctuations and instrumental noise.
In a realistic observation, one can expect a total number of∼ 6 × 103 clusters of galaxies, compared to' 8 × 103

clusters if only the CMB and instrumental noise were present. When comparing the total number of detections to
analytic estimates (e.g.Aghanim et al.1997, Kay et al.2001), it is found that the number of clusters detected here
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Properties of PLANCK’s SZ-cluster sample

data set filter algorithm meanµ varianceσ skewnesss kurtosisk− 3
matched COS −0.0038± 0.0005 0.9272± 0.0003 0.0334 0.5297
matched GAL −0.0009± 0.0005 0.8902± 0.0003 0.0154 0.4232
scale-adaptive COS −0.0012± 0.0005 0.9090± 0.0004 0.0142 0.2923
scale-adaptive GAL −0.0005± 0.0005 0.9023± 0.0004 0.0076 0.3125

Table 8.1.: Statistical properties of the filtered and co-added maps, derived from the first four moments of the amplitude
distributions in Fig.8.2, for all data sets and filter algorithms. The filters have been optimised for the detection of beam-
shaped profiles. The errors given for the meanµ and standard deviationσ of the distribution of pixel amplitudes correspond
to 95% confidence intervals.
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Figure 8.2.: Distributionn(σ)dσ of the detection significancesσ, for the matched filter (solid line, circles) in comparison
to the scale-adaptive filter (dashed line, squares). The distributions are given for the clean data set including only the CMB,
both SZ-effects and instrumental noise (thick lines, closed symbols) and in comparison, the data set where all Galactic
foreground components are included in addition (thin lines, open symbols).
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8.3 Cluster detectability as a function of filter parameters

filter data set Ymin = 10−3 arcmin2 Ymin = 3× 10−4 arcmin2

matched filter COS 2402 5376
matched filter GAL 1801 4199
scale-adaptive filter COS 3234 8020
scale-adaptive filter GAL 2428 6270

Table 8.2.: Total number of detections in both data sets and with both filters, for a minimally required Comptonisation of
Ymin = 10−3 arcmin2 andYmin = 3× 10−4 arcmin2.

is smaller, by a factor of less than two.
One should keep in mind that the noise due to PLANCK’s scanning paths is highly structured on the cluster scale

and below, such that the assumption of isotropy of the noise is not valid. This has two important consequences:
Firstly, assuming a simple flux threshold in analytic estimates is not valid because the noise is not uniform on the
cluster scale and secondly the assumption of isotropy which is essential to the filter construction is violated which
affects the sensitivity of the filters.

8.3. Cluster detectability as a function of filter parameters

The way the significance of a detection of a cluster changes when the core sizeθc and the asymptotic slopeλ are var-
ied is illustrated in Fig.8.3for the matched filter and in Fig.8.4for the scale-adaptive filter. In general, the matched
filter yields significances that are almost twice as large for the specific example considered and consequently finds
more clusters above a certain detection threshold. Furthermore, the matched filter shows a stronger dependence of
the significance on the filter parametersθc andλ: The significance for the detection of the same object varies by
a factor of four in case of the matched filter but only by 25% in the case of the scale-adaptive filter. This means
that the derivation of cluster properties based on the filter parameter that yielded the most significant detection is
likely to work for the matched filter, but not for the scale-adaptive filter. It should be emphasised, however, that the
scale-adaptive filter keeps the likelihood distributions of the two objects from merging, in contrast to the matched
filter, as can be seen in the lower left part of Figs.8.3and8.4. For that reason, the scale-adaptive filter may be better
suited for the investigation of associations and pairs of SZ-clusters.

Fig. 8.5 shows the number density of detectable clusters as a function of the King-profile’s core sizeθc that
entered the filter construction. Whereas the matched filter yields most detections at small values ofθc, the scale-
adaptive filter is better suited to detect extended objects. Most of the detections are registered at core sizesθc = 8′.
Additionally, the scale-adaptive filter’s capability of detecting extended objects suffers from the inclusion of Galactic
foregrounds, which cause the total number of detections to drop by 20%. In contrast, the matched filter is able to
deliver a comparable performance for all values ofθc if Galactic foregrounds are included.

The number density of clusters as a function of the King-profile’s asymptotic slopeλ which the filters are op-
timised for is given in Fig.8.6. The number of detections following from scale-adaptive filtering is relatively
insensitive to particular choices ofλ, whereas the matched filter yields a higher number of detections in the case of
compact objects, irrespective of the noise components included in the analysis. Fig.8.7 illustrates how the number
of detections changes as a function of bothθc andλ. It should be emphasised that none of the graphs depicted in
Figs.8.5, 8.6and8.7 is corrected for double detections of objects at more than (θc, λ)-pair.

8.4. Cluster properties of the recovered SZ-sample

8.4.1. Cluster population in the mass-redshift plane

Scatter plots describing the population of detectable clusters in the mass-redshift-plane are shown in Fig8.8 for
the matched filter and in Fig.8.9 for the scale-adaptive filter. The clusters populate the log(M)-z-plane in a fairly
well defined region. There are only few detections beyond redshifts ofz = 0.8, but the shape of the detection
criterion suggests the existence of a region of low-mass low-redshift clusters which should be detectable but which
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17.11σ 18.25σ 17.23σ 16.21σ 15.46σ

16.48σ 18.67σ 18.22σ 17.42σ 16.70σ

14.91σ 16.39σ 18.93σ 18.71σ 18.29σ

12.61σ 16.19σ 17.86σ 18.54σ 18.82σ

8.42σ 12.01σ 14.17σ 15.40σ 16.32σ

5.30σ 7.54σ 9.37σ 10.68σ 11.63σ

Figure 8.3.: An association of two clusters atz ' 0.1, extracted from a map containing all Galactic compontents, CMB
fluctuations and instrumental noise with the matched multifilter. The table gives the likelihood maps and the statistical
significances of the detection of the cluster at the image centre in units ofσ, for λ = 0.6,0.8,1.0,1.2,1.4 (columns) and
θc = 1.′0,2.′0,4.′0,8.′0,16.′0,32.′0 (rows). The side length of the panels is 4◦.
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11.52σ 11.12σ 11.78σ 11.58σ 11.88σ

11.74σ 11.43σ 11.46σ 11.57σ 11.67σ

12.01σ 11.35σ 11.10σ 11.09σ 11.17σ

11.77σ 10.40σ 10.15σ 10.11σ 10.16σ

10.96σ 10.06σ 9.33σ 8.88σ 8.61σ

9.06σ 9.35σ 9.74σ 9.88σ 9.95σ

Figure 8.4.: The same association of two clusters atz ' 0.1, extracted from a map containing all Galactic compontents,
CMB fluctuations and instrumental noise with the scale-adaptive multifilter. The table gives the likelihood maps and
the statistical significances of the detection of the cluster at the image centre in units ofσ, for λ = 0.6,0.8,1.0,1.2,1.4
(columns) andθc = 1.′0,2.′0,4.′0,8.′0,16.′0,32.′0 (rows). The side length of the panels is 4◦.
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Figure 8.5.: Number densityn(θc) of clusters as a function of the filter parameter core sizeθc, for a data set including CMB
fluctuations and instrumental noise, filtered with the matched filter (circles, solid line), for a data set including Galactic
foregrounds in addition (crosses, dashed line), for a data set containing the CMB and instrumental noise, filtered with
the scale-adaptive filter (plus signs, dash-dotted line) and finally a data set with CMB, instrumental noise and Galactic
foregrounds, filtered with the scale-adaptive filter (diamonds, dotted line). The thick and thin lines denote detections and
peaks above 10−3 arcmin2 and 3× 10−4 arcmin2, respectively.
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Figure 8.6.: Number densityn(λ) of clusters as a function of the filter parameter asymptotic slopeλ, for a data set
including CMB fluctuations and instrumental noise, filtered with the matched filter (circles, solid line), for a data set
including Galactic foregrounds in addition (crosses, dashed line), for a data set containing the CMB and instrumental
noise, filtered with the scale-adaptive filter (plus signs, dash-dotted line) and finally a data set with CMB, instrumental
noise and Galactic foregrounds, filtered with the scale-adaptive filter (diamonds, dotted line). The thick and thin lines
denote detections and peaks above 10−3 arcmin2 and 3× 10−4 arcmin2, respectively.
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Figure 8.7.: Number of detectionsn(θc, λ) as a function of both filter parameters core sizeθc and asymptotic slopeλ,
for the matched filter (top row) in comparison to the scale-adaptive filter (bottom row). The figure compares the number
density following from a clean data set containing the CMB, the SZ-effects and instrumental noise (left column) with a
data set containing all Galactic components in addition (right column).n(θc, λ) is given for the minimal signal strength
Ymin = 3× 10−4 arcmin2 (upper plane) compared toYmin = 10−3 arcmin2 (lower plane).
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Figure 8.8.: Population of clusters in the log(M)-z-plane detected with the matched multifilter for the data set containing
the CMB, instrumental noise and all Galactic foregrounds. The minimal signal strength was required to beYmin =

10−3 arcmin2.

are not included in the map construction. It is difficult to predict the SZ properties of low-mass clusters because
many complications in the sector of baryonic physics come into play such as preheating, deviation from scaling
laws and incomplete ionisation, which makes it difficult to predict the number of clusters missing in my analysis.
Together with K. Dolag I am preparing an auxiliary SZ-map from a gas-dynamical constrained simulation of the
local universe that would fill in the gap and provide clusters with massesM < 5 × 1013M�/h below redshifts of
z< 0.1.

Fig. 8.10gives the marginalised distribution in redshiftz of the cluster sample. The shape of the redshift distri-
bution is determined by the competition of two effects: With increasing redshiftz the observed volume increases,
but contrariwise, the number of massive clusters decreases as described by the Press-Schechter function and the
SZ-signal becomes smaller proportional tod−2

A (z). Most of the clusters are observed at redshifts ofz ' 0.2 and the
detection limit is reached at redshifts ofz' 0.8. This applies to both filter algorithms and data sets alike.

Fig. 8.11 gives the marginalised distribution of the cluster’s logarithmic massm = log(M/(M�/h)). At high
masses, both filtering schemes detect cluster reliably, but with decreasing mass, the filter algorithms start to show
differences in their efficiency. The mass functions peak at a value of 2.5× 1014M�/h, and decrease towards smaller
values for the mass due to the decrease in number density of objects and smaller SZ-signal strenghY. Fig. 8.12
gives the distribution of the cluster’s Compton-Y parameter. The distribution is close to a power law as expected
from virial estimates (c.f. Chapter.5), but at low Comptonisations, all distributions evolve shallower, which is due
to the fact that clusters fail to generate a peak in the likelihood map exceeding the threshold value.

8.4.2. Position accuracy of PLANCK’s SZ-clusters

A histogram of the deviations between actual and reconstructed cluster position is given by Fig.8.13. The position
accuracy is given in terms of the squared angular distance∆ = θ2

arc because a uniform distribution would yield a flat
histogram. The distribution is sharply peaked towards∆ = 0 arcmin2. A fraction of 50% of all clusters are detected
within 10′ from the nominal source position, but there is a tail in the distribution towards larger angular separations.
For most of the clusters, this position accuracy is good enough for direct follow-up studies at X-ray wavelengths,
but not good enough for optical observations.
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Figure 8.9.: Population of clusters in the log(M)-z-plane detected with the scale-adaptive multifilter. Here, the detections
are given for a data set containing the CMB, instrumental noise and all Galactic foregrounds. All peaks exceed a minimial
Comptonisation ofYmin = 10−3 arcmin2.
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Figure 8.10.:Distributionn(z)dzof the detected clusters in redshiftz, for the matched filter (solid line, circles) in compar-
ison to the scale-adaptive filter (dashed line, squares). The figure compares detections in a clean data set containing the
CMB, both SZ-effects and instrumental noise (thick lines, closed symbols) to a data set with all Galactic components in
addition (thin lines, open symbols). AgainYmin was set to 3× 10−4 arcmin2.
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Figure 8.11.:Distributionn(m)dmof the detected clusters in logarithmic massm= log(M/(M�/h)), for the matched filter
(solid line, circles) in comparison to the scale-adaptive filter (dashed line, squares). Here, the distributions are given for
a data set including only the CMB, both SZ-effects and instrumental noise (thick lines, closed symbols) in comparison
to a data set containing moreover all Galactic foreground emission components (thin lines, open symbols). The minimal
Comptonisation for spectroscopic confirmation wasYmin = 3× 10−4 arcmin2.
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Figure 8.12.: Distributionn(q)dq of the logarithmic integrated Comptonisation,q = log(Y), for the matched filter (solid
line, circles) in comparison to the scale-adaptive filter (dashed line, squares). Here, the distributions are given for a data
set including only the CMB, both SZ-effects and instrumental noise (thick lines, closed symbols) in comparison to a data
set containing moreover all Galactic foreground emission components (thin lines, open symbols).
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8.5 Spatial homogeneity of PLANCK’s SZ-cluster sample
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Figure 8.13.: Distribution of the squared angular distance∆ = θ2
arc between actual and reconstructed source position on

a great circle, for the matched filter (solid line, circles) in comparison to the scale-adaptive filter (dashed line, squares).
The figure compares detections above 4σ (thin lines) with detections above 5σ for clusters detected with the parameter
θc = 8.′0. The clusters were required to generate a ComptonisationYmin exceeding 3× 10−4 arcmin2.

8.5. Spatial homogeneity of PLANCK’s SZ-cluster sample

Fig. 8.14shows the number density of clusters as a function of ecliptic latitudey ≡ cosβ. The figure states that the
PLANCK cluster sample extracted with the specific filters is highly non-uniform for low significance thresholds,
where most of the clusters are detected on a belt around the celestial sphere, but gets increasingly more uniform
with higher threshold values for the significance. This is due to the incomplete removal of low-` modes in the
filtered maps, which bears interesting analogies to thepeak-background split(White et al.1987, Cole & Kaiser
1989) in biasing schemes for linking galaxy number densities to dark matter densities: Essentially, the likelihood
maps are composed of a large number of small-scale fluctuations superimposed on a background exhibiting a large-
scale modulation. In regions of increased amplitudes due to the long-wavelength mode one observes an enhanced
abundance of peaks above a certain threshold and hence an enhanced abundance of detected objects.

As Fig. 8.15 indicates, the filtered and co-added maps do have large amplitudes for the octupole or the hex-
adecupole which are certainly not in agreement with the near-Poissonian slope ofC(`) ∝ `2 typical for a random
distribution of small sources. The incomplete removal of low-` modes shows that the assumptions about isotropy
is violated on large scales andC(`) ceases to be a fair description of the variance contained in thea`m-coefficients.
Clearly, this is a serious limitation to the spherical harmonic approach. In general, the low-` fluctuations are more
pronounced for extended objects, i.e. largeθc and smallλ, and they are stronger in the case of the matched filter
compared to the scale-adaptive filter.

Similarly, detection significances near the detection threshold are inaccurate due to the long-wavelength modes.
A way to remedy this would be to introduce local estimates of the mean and variance, for example by considering
the average and the standard deviation of the amplitudes in an aperture with a few degrees in radius. One must keep
in mind that in the filtered map, the signal is strong and likely to affect these two values.

Fig. 8.16for example shows all-sky maps of the filtered and co-added data, where the filter kernels are optimised
for the detection of extremely extended signals. The particular (pathological) choice of the King-profile parameters
wasθc = 32.′0 andλ = 0.6. The likelihood map reconstructed with the matched filter shows strong long-wavelength
variations of mainly octupolar structure, where the amplitude of this artefact amounts to roughtly 1σ. The extraction
of peaks from this map would yield a spatially highly non-uniform data sample. Compared to that, the scale-adaptive
filter is doing much better: The likelihood map does not show large-scale variations as strong as in the case of the
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Figure 8.14.: Numbern(y)dy of clusters as a function of ecliptic latitudey = cosβ, for the matched filter (solid line) in
comparison to the scale-adaptive filter (dashed line). The figure compares the number of detected clusters as a function
of ecliptic latitude for detection significances> 4.2σ (circles, thin lines),> 4.8σ (squares, medium lines) and> 6.0σ
(diamonds, thick lines).
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Figure 8.15.:Power spectraC(`) of the filtered and co-added maps, where the filter kernels are derived for the parameters
(θc, λ) = (4.′0,1.0), for the matched filter and the COS data set (red line), for the matched filter and the GAL data set (green
line), for the scale-adaptive filter and the COS data set (blue line) and for the scale-adaptive filter and the GAL data set
(yellow line).
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8.6 Distribution of peculiar velocities

Figure 8.16.: Low-` fluctuations in an all-sky map filtered with the matched filter (left panel) and for the scale-adaptive
filter (right panel). The filter kernels have been derived for detecting King-profiles with (pathological) values (θc, λ) =
(32.′0,0.6).

matched filter and the peaks are situated on much flatter background. In order to avoid numerical difficulties it is
advisable to discard multipoles below` <

∼ 10 altogether.

8.6. Distribution of peculiar velocities

In this section, I give the distribution of peculiar velocities in PLANCK’s SZ-cluster sample, which is an important
guide for kinetic SZ-follow ups. As Fig.8.17indicates, the distribution of peculiar velocities are well approximated
by a Gaussian with zero mean and standard deviationσvel ' 300 km/s. For a dedicated search for the kinetic
SZ-effect in PLANCK’s SZ-cluster sample, velocities are drawn from this distribution, hence cluster bulk motions
up to 300 km/s can be expected in 68% of all cases and velocities in excess of 1000 km/s only for 11 to 16 objects,
depending on the filtering scheme.

8.7. Summary and conclusion

The properties of the likelihood maps and of the cluster catalogues following from applying matched and scale-
adaptive filtering to the simulated flux maps are characterised in detail. According to my simulation, PLANCK can
detect a number of' 6000 clusters of galaxies in a realistic observation with Galactic foregrounds (compared to
over 8000 clusters if only the CMB and instrumental noise were present), which does not confirm the high numbers
claimed by analytic estimates.

• The noise properties of the filtered and co-added maps was examined in detail. It was found that the noise is
very close to Gaussian after filtering, despite the fact that the initial flux maps had considerable anisotropic
non-Gaussian features and despite the fact that the noise is highly structured and anisotropic on the cluster
scale. Quantitatively, the variance of the filtered maps is smaller compared to the prediction based on the
cross- and autocorrelation functions of the maps convolved with the filter. This discrepancy, which amounts to
' 10% is due to numerics, but has the effect that significances of peaks are slightly underestimated.The cluster
detectability as a function of filter parameters showed that the matched filter performs better on compact
objects, where its delivered significance depends strongly on the choice ofλ. The scale-adaptive filter works
well on extended objects and is relatively insensitive toλ.

• The physical properties of the detected SZ-cluster sample made in terms of massM, redshiftzand integrated
ComptonisationY: The cluster population in the mass-redshift plane is fairly well defined, and the marginali-
sation over the mass resulted most of the clusters being detected at redshifts ofz' 0.2, where the distribution
starts decreasing to values ofz' 0.8, where no clusters are detected. The distribution of detected SZ-clusters
in massM confirmed that the high-mass end of the Press-Schechter function is well sampled, that most of the
clusters detected have masses' 2.5× 1014M�/h and that clusters of lower mass are increasingly difficult to
detect.
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Figure 8.17.:Numbern(υpec)dυpecof clusters, for the matched filter (solid line, circles) in comparison to the scale-adaptive
filter (dashed line, squares). Again, the detections in a data set containing the CMB, both SZ-effects and instrumental noise
(thick lines, closed symbols) are compared to a data set containing all Galactic foregrounds in addition (thin lines, open
symbols).

• The position accuracy is better than 10′ in half of the cases, which is sufficient for X-ray follow-up studies,
but the distribution exhibits a tail towards high discrepancies between the cluster position and the position of
the peak in the likelihood map.

• The investigation of the spatial distribution, especially in ecliptic latitude showed that the distribution of
clusters gets increasingly uniform with increasing detection threshold. This is due to the fact that the filtered
and co-added maps exhibit long-wavelength variations due to insufficient filtering at low multipoles.

The simulation as presented in the last chapters has a number of shortcomings that may affect the SZ-sensitivity:

• It was assumed for reasons of computational feasibiliy that all Galactic foregrounds had isotropic spectral
properties. While this is an excellent approximation for the CMB, Galactic components can be expected
to exhibit spatially varying spectral properties. For example, the spectral index of the Galactic synchrotron
emission is likely to change with the propeties of the population of relativisitic electrons and the magnetic
field and the spectrum of thermal dust changes with the dust temperature. The filter construction as it is
would be applicable to those cases as well despite the fact that at fixed angular scaleπ/`, the cross power
spectrumCνiν j (`) between frequenciesνi andν j ceases to be a good description of the variance contained in
theaνiν j (`m)-coefficients.

• I did not include ICM physics beyond adiabaticity. Cooling processes in the centres of clusters give rise to
cool cores, which can be shown to boost the line-of-sight Comptonisationy by a factor of∼ 2 − 3. The
volume fraction occupied by such a cool core is very small compared to the entire cluster and hence the total
integrated ComptonisationY does not change significantly. For a low-resolution observatory like PLANCK,
the primary observable isY, and for that reason, SZ-observations carried out with PLANCK should not be
affected by cool cores. A further complication is the existence of non-thermal particle populations in the ICM,
but their contribution to the SZ-flux modulation is very small.

• There is a serious issue concerning completeness. The population of detections in theM-z suggests that low-
mass clusters at redshiftsz < 0.1 should be detectable by PLANCK. This particular region of theM-z-plane
is not covered by the SZ-map construction, but PLANCK would certainly add detections in this particular
region of theM-z-plane.
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8.7 Summary and conclusion

• Extragalactic point sources were excluded from the analysis due to poorly known spectra and clustering
properties. In the simplest case of homogeneously distributed sources, there is a Poisson fluctuation in the
number of point sources inside the beam area, which causes an additional noise component with power
spectrumC(`) ∝ `2 similar to uncorrelated pixel noise. If these sources have similar spectral properties,
they could be efficiently suppressed by the linear combination of observations at different frequencies.

• I did to attempt to simulate effects arising in the map making process and complications due to the 1/ f -noise.
So far it has not been investigated how well small structures can be reconstructed from time-ordered data
streams. The map-making algorithms are chiefly optimised to yield good reconstructions of the CMB fluctu-
ations by recursively minimising the noise, but to my knowledge the reconstruction of compact objects like
SZ-clusters or minor planets has not been simulated for these algorithms. At the cluster scale, the dominating
noise component is uncorrelated pixel noise, so that the contamination by 1/ f -noise does not play a role on
these scales.

• Gaps in the data are a serious issue for the filtering schemes: Blank patches in the observed sky cause the
power spectraCν1ν2(`) at different multipole order̀ to be coupled due to convolution with the sky window
function. This is due to the fact that theỲ m(θ, φ)-basis ceases to be an orthonormal system if the integra-
tion can not be carried out over the entire surface of the celestial sphere. Because the linear combination
coefficients are determined separately for each multipole moment` from the inverse of the covariance matrix
Cν1ν2(`), correlations between the covariance matrices at differing` are likely to yield an insufficient reduction
of foregrounds.

• Galactic templates, especially the carbon monoxide map and the free-free map, are restricted to relatively
low values in` and do not extend to high multipoles covered by PLANCK. For that reason, foreground
subtraction at high values of` is likely to be more complicated in real data. Furthermore, one should keep
in mind that the frequencies above 100 GHz are a yet uncharted territory and although the existence of an
unknown Galactic emission component seems unlikely, the extrapolation of fluxes by two to three orders of
magnitude in frequency may fail.

Comparing my simulation to other works is difficult because competing papers concentrate mostly on single
aspects of SZ-observations with PLANCK, partly employ different cosmological models or use outdated infor-
mation about PLANCK sensitivities and mission characteristics. The earliest works addressing SZ-observations
with PLANCK use cluster number densities from a Press-Schechter-type mass function, determine the integrated
ComptonisationY from the cluster massM with a fixed baryon fractionΩB/ΩM and temperatures following from
spherical collapse theory. Analytic estimates of PLANCK’s SZ-capabilities have been the subject of many pa-
pers, e.g.Aghanim et al.(1997) andKay et al.(2001), who impose (different) flux thresholds and, in the case of
Bartelmann(2001), require the Comptonisation to exceed the fluctuations of the Comptonisation background by a
certain value. These analyses estimate the number of detectable clusters to range between 104 and 4× 104 and draw
important conclusions for X-ray and lensing follow-up studies.

The very interesting papers written bySanz et al.(2001) and Herranz et al.(2002), who developed the con-
cept of matched and scale-adaptive multifiltering based on an extremal principle for flat topologies and Fourier-
decomposition as the harmonic system, concentrate mainly on filter construction. They employ analytic SZ-profiles
and use simplified models for the instrumental noise. Their work constitutes the basis of my analysis, which incor-
porates quite a number of improvements ranging from baryonic physics, foreground components and instrumental
imperfections. (Herranz et al.2002) advocate a number of' 104 clusters to be detectable by PLANCK. Compared
to this number, my analysis falls short by a factor of two.

A serious competitor is the paper byGeisbüsch et al.(2004). The filter scheme employed in the paper by Geis-
büsch et al. is the powerful harmonic-space maximum entropy method introduced byStolyarov et al.(2002). Its
computational demand is much higher than matched and scale-adaptive filtering: In fact, the computations presented
in this work can be run on a notebook-class computer. The-SZ signal they put into the simulation is determined from
idealised scaling relations and uses spherically symmetric analytic profiles. Furthermore, this method is optimised
for component separation rather than the detection of individual objects. In addition, instrumentation issues such as
non-isotropic detector noise are not properly incorporated into the simulation and their modelling of Galactic fore-
grounds is not in concordance with WMAP observations (seeBennett et al.2003). They find a total number of up to
1.5× 104 clusters depending on the power spectrum normalisationσ8 and theM-T-relation, and their distribution
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Properties of PLANCK’s SZ-cluster sample

in redshiftz is quite similiar in shape compared to mine - neither of us finds high-redshift clusters beyondz = 1.
A grand result is their extraction of the SZ power spectrum, which my analysis due to its focus on the detection of
individual peaks is not able to deliver. It should be kept in mind, however, that the component separation method,
despite its prowess, assumes prior approximate knowledge of the emission component’s power spectra, which are
only partially available at HFI frequencies aboveν = 100 GHz.

In conclusion, the simulation presented in the last four chapters demonstrates the abilities of PLANCK with
respect to detecting Sunyaev-Zel’dovich clusters of galaxies even in the presence of anisotropic non-Gaussian noise
components with complicated spectral dependences. Despite the fact that the high number of detections claimed
by analytical estimates need to be adjusted, it was shown that the numerical tools for analysing the cross- and
autocorrelation properties of all PLANCK channels and for filtering the data work reliably up to the high multipoles
of ` = 4096 considered here. The PLANCK catalogue of SZ-clusters of galaxies will surpass X-ray catalogues (e.g.
the REFLEX catalogue compiled byBöhringer et al.2004, on the basis of ROSAT data) in numbers as it reaches
deeper in redshift and is able to detect low-mass systems. It will contribute to the determination of cosmological
parameters related to structure formation and shed light on baryonic physics inside clusters of galaxies.

100



9. A Peano-Hilbert partition for HEALPix
tesselated spheres

Abstract

A Peano-Hilbert partition for HEALPix tesselated spheres is proposed that makes quantities such as the pairwise pixel covariance
matrix algorithmically accessible. For pixel numbering schemes based on Peano-Hilbert partitions geometrically nearby pixels
are likewise related in the pixel numbering. When focusing on relatively short-range correlations on scales of a few beam
diameters up to scales where the 1/ f -noise becomes dominant, the covariance matrix can be brought to band diagonal shape by
using pixel numbering schemes based on Peano-Hilbert partitions.

9.1. Motivation

The central quantity in many all-sky CMB data analysis tasks such as map-making (related to PLANCK, see see
Natoli et al.2001, Doré et al.2001, Keihanen et al.2004), foreground subtraction and estimation of power spectra
(Efstathiou2004) is the covariance matrix, which is defined as the expectation value of the product of the amplitudes
ai anda j in pixels i and j: Ai j ≡ 〈aia j〉. This matrix contains information about the signal, unwanted Galactic
foregrounds and, most importantly, about non-isotropic, correlated and non-Gaussian noise components such as
1/ f -noise. Sadly, despite its usefulness,Ai j has many unwanted properties thay defy its algorithmical access:

• The matrixAi j can be very large. In the case of the PLANCK-surveyor with its superior angular resolution,
all-sky maps comprise as many as 5× 107 pixels, thus, the covariance matrix (being symmetric,Ai j = A ji )
has approximately 1.25× 1015 entries, which require a storage space of about 9000 terabytes, or 9 petabytes.

• In many applications one is interested in the correlation properties described byAi j on relatively small angular
scales, ranging from few beam diameters to scales where the 1/ f -noise becomes dominant. By discarding
correlations linking pixels on larger angular scales,Ai j becomes infested with zeros, but retains despite of its
sparseness a complicated shape and is by no means easy to handle.

In this chapter, I propose a partition of a spherical surface based on a space filling Peano-Hilbert curve specifically
tailored for the HEALPix tesselation that reduces the difficulties outlined above. The paper is structured as follows:
In Sect.9.2, properties of the HEALPix tesselation are summarised. In Sect.9.3, I introduce Peano-Hilbert partitions
and investigate their properties in Sect.9.4. The key results are summarised in Sect.9.5.

9.2. HEALPix tesselation

HEALPix1 is a pixelisation of the sphere introduced byGorski et al.(2004). HEALPix has three important proper-
ties, which are illustrated in Fig.9.1 and which form the acronymhierarchicalequalarea iso-latitudepixelisation
of the sphere.

• All pixels are of the same size, hence integrations can be carried out very efficiently.

• In HEALPix, the sphere is tesselated with twelve base pixels, that are iteratively subdivided into four smaller
pixels. Due to this hierarchical ordering, maps can be easily up- and downsampled in resolution.

1http://www.eso.org/science/healpix
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A Peano-Hilbert partition for HEALPix tesselated spheres

Figure 9.1.: The twelve basis pixels (left panel) and the first order (48 pixels) and second order (192 pixels) refinements
(centre and right panel, respectively) of the dodecaedric tesselation of the sphere used in HEALPix. The illustration above
was taken from the HEALPix manual.

• The pixels are arranged in rings of constant latitude. This enables spherical harmonic transforms,

τ`m =

∫
dΩτ(θ)Y∗`m(θ)↔ τ(θ) =

∑
`

∑̀
m=−`

τ`mỲ m(θ), with (9.1)

Ỳ m(θ) =

√
2` + 1

4π

√
(` − |m|)!
(` + |m|)!

P`m(cosθ) exp(imφ) (9.2)

to be computed easily: At fixed latitudeθ, theỲ m-decomposition reduces to a Fourier transform, for which
very fast numerical algorithms are available.

The pixels may be numbered according to two distinct schemes, the first of which numbers pixels in rings at
constant latitude, such that the dφ-integration in the spherical harmonics transform can be carried out easily. The
second numbering scheme takes account of the nested, hierarchical ordering, and allows for cross-referencing pixels
on maps with different resolution. HEALPix was successfully employed in the analysis of CMB maps, most notably
of COBE and WMAP, and has been chosen as the default pixelisation to be used for PLANCK data analysis as well.

9.3. Peano-Hilbert curves for HEALPix

Despite the usefulness of the HEALPix tesselation for spherical harmonical transform, the covariance matrixAi j

has a complicated shape in both HEALPix numberings. In order to make matrix manipulations ofAi j possible, a
new pixel numbering scheme based on fractal, self-similar Peano-Hilbert partitions is proposed. A similar approach
has been taken byDennis(2003), who constructed a Peano-Hilbert curve running through all faces of a cube for
the purpose of load balancing a parallelised global atmospheric modelling code. For HEALPix, however, one needs
to construct a Peano-Hilbert curve for the dodecaedric base symmetry of HEALPix, where almost all pixels have
eight neighbours, but certain pixels (eight in total) at the position where polar base pixels meet equatorial base
pixels have just seven neighbours. The curve should be continuous and should link neighboring pixels such that the
off-diagonals of the covariance matrix have non-zero entries.

A possible Peano-Hilbert curve for HEALPix is shown in Fig.9.2, where the zeroth order curve always links
pixels on the North pole with pixels on the South pole via a pixel on the equator. The curve can be iteratively refined
into four subpixels with theLindenmayer-rules graphically depicted in Fig.9.2. This particular Lindenmayer-system
uses three distinct base pixels, which are an effective left turn, a right turn and a straigt passage through a pixel. The
resulting Peano-Hilbert numbering is shown in Fig.9.3. Clearly, the fractal nature of the Peano-Hilbert partition
can be seen.
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9.3 Peano-Hilbert curves for HEALPix

Figure 9.2.: Peano-Hilbert zeroth order curve (red), second order curve (blue) and third order curve (yellow) for the
dodecaedric tesselation used in HEALPix (left panel), and the Lindenmayer rules for recursive refinement of the three
basis pixels (right panel).

Figure 9.3.: A large HEALPix map (Nside= 128) with the Peano-Hilbert partition. The shading reflects the pixel number.
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Figure 9.4.: Shape of covariance matrices for correlationsC(θarc) proportional toθ−1
arc whereθarc denotes the separation

between two pixels measured along a great circle, for the Peano-Hilbert partition (left panel), the nested numbering scheme
(centre panel) and the ring numbering scheme (right panel). These images followed from sky maps withNside = 8 −→
Npix = 768.

9.4. Properties of the Peano-Hilbert ordering

The most important question is the performance of the Peano-Hilbert partition in comparison to the two existing
HEALPix numbering schemes with respect to locality. In Fig.9.4, the covariance matrix is plotted for each of
the respective pixel numbering schemes for correlations that decrease with the inverse of the angular separation
θarc between two pixels, measured along a great circle. An example for such a correlation is the troublesome 1/ f -
noise. The Peano-Hilbert partition shows a good performance in comparision to the nested scheme: high correlation
amplitudes are predominantly found in the vicinity of the diagonal, with few islands at large distances away from the
diagonal. The nested scheme, being intrinsically fractal as well, exhibits broad stripes of large correlation amplitudes
parallel to the diagonal. Finally, the ring scheme shows a large number of fine stripes parallel to the diagonal, at
even larger distances. From this it can be concluded that the Peano-Hilbert partition is the pixel numbering of choice
when manipulating the pairwise pixel covariance matrix.

Fig. 9.5 analyses the qualitative findings of Fig.9.4 in a more quantitative manner. In order to compare the
locality of the Peano-Hilbert partition with the (fractal) nested numbering scheme, a numerical experiment has
been performed, whereN = 104 pairs of points on the sphere with fixed angular separationθarc were randomly
generated: Two vectorse1 ande2 situated on the unit sphere withe1 = (0,0,1) pointing to the North pole ande2 =

(sinθarc,0, cosθarc) with angular separationθarc from e1 on theφ = 0 meridian were rotated in three successive Euler
rotations around thez-axis, thex-axis and again around thez-axis for randomly drawn anglesα, β, γ ∈ [0 . . . 2π]. In
this way, randomly positioned pairsei of points on the unit sphere with fixed angular separation can be produced:

e′i =

 cosγ sinγ 0
− sinγ cosγ 0

0 0 1


 1 0 0

0 cosβ sinβ
0 − sinβ cosβ


 cosα sinα 0
− sinα cosα 0

0 0 1

 ei with i ∈ {1,2} . (9.3)

For resulting pairs of points, the logarithmic separation∆ in pixel number in the nested numbering scheme and
along the Peano-Hilbert curve was computed and the distribution of separationsp(∆)d∆ was examined. As Fig.9.5
suggests, the distribution of∆ peaks at slightly smaller values of∆, although the difference between the two curves
is not large. Similarly, Fig.9.6shows the distributionp(∆, θarc)d∆ as a function of both∆ andθarc. Especially at large
angular separationsθarc, the distribution of∆ shows a peculiar increase at large∆ in case of the nested numbering,
which is reduced in the Peano-Hilbert numbering. This hints at the fact that on large scales the Peano-Hilbert curve
has better properties with respect to locality than the nested numbering scheme.
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Figure 9.5.: Distribution p(∆)d∆ of logarithmic difference in pixel number∆ for a given separation along a great circle
θarc, of the Peano numbering scheme (thick lines) in comparison to the nested numbering scheme (thin lines). Distributions
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9.5. Summary

A new pixel numbering scheme for the HEALPix tesselation of the sphere is proposed, which is based on a frac-
tal Peano-Hilbert curve. It could be shown that the pairwise pixel covariance matrix acquires an approximate
band-diagonal shape in this numbering, if long-range correlations are discarded. In this respect, the Peano-Hilbert
numbering is superior to the two existing numbering schemes, because efficient algorithms for manipulating band-
diagonal matrices exist such that computing the determinant or deriving the inverse of the covariance matrix be-
comes feasible, even for the large number of pixels of contemporary CMB observatories.
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10. Redshift estimation of clusters by wavelet
decomposition of their SZ-morphology

Abstract

A method for estimating redshifts of galaxy clusters based solely on resolved Sunyaev-Zel’dovich (SZ) images is proposed.
Given a high resolution SZ-cluster image (with FWHM of∼ 1′), the method indirectly measures its structure related parameters
(amplitude, size, etc.) by fitting a model function to the higher order wavelet momenents of the cluster’s SZ-morphology.
The applicability and accuracy of the wavelet method is assessed by applying it to maps of a set of clusters extracted from
hydrodynamical simulations of cosmic structure formation. The parameters, derived by a fit to the spectrum of wavelet moments
as a function of scale, are found to show a dependence on redshiftz that is of the typex(z) = x1 exp(−z/x2) + x3, where the
monotony of this functional behaviour and the non-degeneracy of those parameters allow inversion and estimation of the redshift
z. The average attainable accuracy in thez-estimation relative to 1+ z is ∼ 4 − 5% out toz ' 1.2, which is comparable to
photometric redshifts. For single-frequency SZ-interferometers, where the ambient fluctuating CMB is the main noise source,
the accuracy of the method drops slightly to〈∆ z/(1+ z)〉 ∼ 6− 7%. Other complications addressed include instrumental noise,
cold cores and systematic trends in baryon fraction with cluster mass.

10.1. Introduction

Inverse Compton scattering of cosmic microwave background (CMB) photons off thermal electrons within the hot
intra-cluster medium (ICM) of galaxy clusters produce fluctuations in the surface brightness of the CMB, an effect
known as the thermal Sunyaev-Zel’dovich (SZ) effect (e.g.Sunyaev & Zel’dovich1972, 1980, Rephaeli1995).
Imaging clusters of galaxies through their SZ-signature has, until recently, been a very challenging undertaking.
To date, the development of detectors and new techniques have allowed high quality interferometric imaging of
more than fifty clusters of galaxies (Carlstrom et al.2002), despite incomplete coverage of the Fourier plane. In
the foreseeable future, the availability of detectors in the microwave regime with angular resolutions surpassing 1′

and sensitivities belowµK (e.g., theSouth Pole Telescope, described in detail inCarlstrom et al.2002), will probe
the hot plasma in galaxy clusters out to large redshifts providing SZ-based wide field galaxy cluster catalogues and
yielding a multitude of information about cluster formationand the cosmological model (Birkinshaw1999).

In particular, the abundance of clusters as a function of redshift has been shown to be a very sensitive probe of
the cosmological model (Eke et al.1998, Henry2000). The near independence of the line-of-sight SZ-amplitude
on cluster redshift makes the SZ-effect the main tool for detecting galaxy clusters at high redshifts, 0.5 <

∼ z <
∼ 2 (the

upper limit depends on cosmology quite sensitively). This range of redshifts is especially important for probing the
nature of the dark energy of the universe, since during this era it is expected to evolve rapidly until it eventually
dominates over the other cosmological fluids. In order to obtain precise constraints on cosmological models it is
essential to have accurate measurements of the redshift distribution of galaxy clusters (seeHaiman et al.2001).

Normally, one determines the distance to the cluster by photometric or spectroscopic observations of the clus-
ter member galaxies. Unfortunately, this is a very challenging and time consuming task, in particular, when one
considers the very large number of mostly high redshift clusters expected to be observed with sensitive future SZ-
instruments – The PLANCK satellite alone is expected to detect about 104 clusters (Bartelmann2001). In order to
replace photometric follow-ups I aim at inferring the distance to a cluster from SZ-data alone for a future generation
of experiments with increased angular resolution of about 1′.

Theoretically, the cold dark matter (CDM) hierarchical clustering paradigm predicts a universal profile for dark
matter halos that depends only on two parameters: core radius and density (Navarro et al.1995). In addition,
the same theory provides a very simple recipe for the mass accretion history of a certain halo as a function of its
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formation and observation redshift (Wechsler et al.2002, van den Bosch2002, Zhao et al.2003). Using these
relations together with simple assumptions like hydrostatic equilibrium and isothermality, one can expect that in the
framework of the spherical collapse model the observable SZ-flux and apparent size should provide measures of the
cluster’s mass and distance.

Indeed, using scaling relations,Diego et al.(2003) have demonstrated the viability of determining reliablemor-
phological redshiftsand examined different SZ-observables with respect to their distance sensitivity. Among those
observables, they showed that the cluster apparent size and central amplitude are promising distance indicators,
once their degeneracy is broken.

The main goal of this work is to derive redshifts of clusters based solely on their resolved SZ-images by modeling
the evolution of their structural parameters with redshift from the data set itself. This phenomenological approach
does not depend on a priori assumptions about scaling relations that are valid only for spherically symmetric and
relaxed systems.

Specifically, the structural morphology of the cluster’s pressure profile in an SZ-observation is characterised by
wavelet analysis.1 I am able to show that there is a simple relation between the distribution of moments over various
scales in wavelet space and the cluster properties which can be described with simple phenomenological functions.
Furthermore, the parameters of these functions are shown to follow a well defined and simple redshift dependence.
Wavelet analysis has been chosen because it maintains the scale and positional information of cluster morphology,
hence, it makes isolation and suppression of various unwanted contributions to theobserved signal possible while
it reliably upholds the underlying behaviour. We note however, that Fourier space analysis could in principle yield
very similar results.

Hydrodynamically simulated clusters are used to demonstrate the method and to set limits on the redshift uncer-
tainty expected in this approach. The simulated clusters used in the analysis are close to virialisation, e.g. merging
systems are excluded. Under this restriction, both the relation between the observed quantity and the cluster physi-
cal parameters as well as the structural parameters are well defined. In addition, simulated clusters ignore radiative
and feedback processes, the effect of which is discussed later in the paper.

In the observational application, the evolution of the structural parameters following from wavelet decomposi-
tion could be calibrated from a (relatively small) training set of high quality SZ-clusters with known (photomet-
ric/spectroscopic) redshifts.

Our method relies crucially on the availability of resolved SZ-cluster images. Therefore, throughout the paper I
assume an instrumental resolution of 1′, where massive clusters should be resolved even at the largest redshifts con-
sidered here. Indeed, future instruments such as the South Pole Telescope2 (Carlstrom et al.2002) or the Atacama
Cosmology Telescope3 are designed to yield observations of up to 104 galaxy clusters with masses>∼ 1014M�(1 µK
sensitivity) and≈ 1′ resolution.

This article is organised as follows: After basic definitions concerning the SZ-effect in Sect.10.2and wavelets in
Sect.10.3, the simulations are outlined in Sect.10.4. The capability of wavelets with respect to distance estimation is
examined in Sect.10.5. Possible systematics are addressed in Sect.10.6. A summary of the techniques in Sect.10.7
and of the results in Sect.10.8concludes the article.

10.2. Sunyaev-Zel’dovich definitions

The SZ-effect has been described in detail by many authors (for a comprehensive review, seeBirkinshaw1999);
here I briefly review its main aspects. The SZ-effect arises because CMB photons experience Compton-scattering
off electrons of the diffuse intra-cluster plasma. The CMB spectrum is modulated as photons areredistributed from
the low-frequency part of the spectrum below 217 GHz to higher frequencies. The change in thermodynamic CMB
temperature due to the thermal SZ-effect is

∆T
T

(φ) = y(φ)

(
x

ex + 1
ex − 1

− 4

)
' −2y(φ) for x� 1, (10.1)

1There are also various ways of characterising the cluster’s density profile in an SZ-observation that are more or less susceptible to noise, for
instance the fitting of aβ-profile(Cavaliere & Fusco-Femiano1978) to the electron density.

2http://astro.uchicago.edu/spt/
3http://www.hep.upenn.edu/~angelica/act/act.html
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10.3 Wavelets

wherex = hν/kBTCMB is the dimensionless frequency. In the Rayleigh-Jeans limit (x � 1), the change in temper-
ature is asymptotically equal to−2y(φ). The SZ-amplitude at locationφ, which is known as the Comptonisation
parametery(φ), is defined as the line-of-sight integral of the temperature-weighted thermal electron density:

y(φ) =
σTkB

mec2

∫
dl ne(φ, l)Te(φ, l). (10.2)

whereme, c andkB denote electron mass, speed of light and Boltzmann’s constant, respectively.Te(φ, l) andne(φ, l)
are electron temperature and electron number density at positionφ and distancel.

10.3. Wavelets

10.3.1. Wavelet definitions

During the last decade, wavelet analysis has become a popular tool in various data analysis and image processing
applications. The main appeal of wavelet functional bases stems from their simultaneous localisation of a signal
in both the wavenumber and position domain, where they make orthogonal and complete projections on modes
belonging to both spaces possible. In particular, the discrete wavelet families, by virtue of their constituting a
complete basis, provide a unique and fast decomposition of the images into wavelet expansion coefficients. Statistics
in terms of theqth moments of the distribution of wavelet coefficients as a function of scale compresses the signal
contained in an image into a small number of parameters and yields information surpassing that derived in traditional
Fourier analysis. A particularly nice example of wavelets applied in an astrophysical context is given in the paper
by Pierpaoli et al.(2004), who proposed wavelet-based method to construct SZ-images from multifrequency CMB
data.

FollowingDaubechies & Bates(1993) andMuzy et al.(1993), the wavelet transform of a 2-dimensional image is
defined as a convolution of the functiony(x) to be analysed with the waveletψσ (|x − µ|):

χ(µ, σ) =
∫

d2x y(x) · ψσ (|x − µ|) . (10.3)

High values forχ(µ, σ) are obtained in case of a match between the features ofy(x) and the waveletψσ(x) at
positionµ and scaleσ. From the wavelet expansion coefficientsχ(µ, σ) on scaleσ at locationµ one obtains the
wavelet momentsXq(σ) by integration over all displacementsµ:

Xq(σ) =
∫

d2µ |χ (µ, σ)|q . (10.4)

The exponentq ∈ N defines the order of the wavelet momentXq(σ). Values forq equal or larger than 2 allow noise
suppression. The logarithm lnX(σ,q) of the wavelet moment as a function of logarithmic scale lnσ constitutes
the wavelet spectrum. TheXq(σ)-statistic is the main tool used in this study for characterising the morphology of
SZ-clusters.

10.3.2. Application of wavelets to a cluster profile

10.3.2.1. Analytic wavelet transform of a cluster y-profile

In order to illustrate my idea of determining cluster sizes via wavelet decomposition, the wavelet transform of a
King profile, which is known to describe the SZ-morphology of clusters to first order, is performed. As an analysing
wavelet, the Mexican-hat wavelet was chosen for simplicity.

It is favourable to compute the convolution in the definition ofχ(µ, σ) in the Fourier domain. By virtue of
eqn. (10.5),

χ(µ, σ) =
∫

d2x y(x) ψσ (x − µ) = (2π)2
∫

d2k Y(k) Ψσ(−k) exp(ikµ), (10.5)

the convolution reduces to a mere multiplication of the Fourier transformsY(k) andΨσ(k) of the imagey(x) and
the waveletψσ(x), respectively. Restricting the order of the wavelet moment toq = 2 and inserting the convolution
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theorem (10.5) into the definition (10.4) yields:

X2(σ) = (2π)4
∫

d2µ

∣∣∣∣∣∫ d2k Y(k)Ψσ(−k) exp(ikµ)
∣∣∣∣∣2 = (2π)6

∫
d2k |Y(k)|2 |Ψσ(k)|2 , (10.6)

where the replacement|Ψσ(−k)|2 = |Ψσ(k)|2 holds for real wavelets.
The Mexican-hat wavelet is defined as the negative Laplacian of a Gaussian:

ψMH(x) = ψMH(x) = −∇2
x

[
1

2πσ2
exp

(
−

x2

2σ2

)]
, (10.7)

whereof the Fourier transformΨMH(k) is derived by twofold partial integration:

ΨMH(k) =

∫
d2x

(2π)2
ψMH(x) exp(−ikx) (10.8)

=
1

(2π)2σ6

∫
rdr(2σ2 − r2) exp

(
−

r2

2σ2

)
J0(kr) (10.9)

=
k2

(2π)2
· exp

(
−

k2σ2

2

)
, (10.10)

where the azimuthal symmetry and the definition of the zeroth order Bessel function of the first kind, 2πJ0(kr) =∫ 2π

0
dφexp(ikr cosφ) was used in the first step. Thus, the Fourier transform of the wavelet,Ψσ(k), is given by the

Hankel transform of the Laplacian of a Gaussian.
For the determination ofY(k), I assume that the projected thermal electron density can be described by a spher-

ically symmetric King profile, i.e. aβ-model (Cavaliere & Fusco-Femiano1978) with β = 1, core radiusrc and
central value of the Comptonisation parametery0:

y(x) = y(r) = y0

1+ (
r
rc

)2−1

. (10.11)

Then, the Fourier transform is easily computed:

Y(k) =
∫

d2x
(2π)2

y(x) exp(−ikx) =
y0r2

c

2π

∫
dr

r
r2
c + r2

J0(kr) =
y0r2

c

2π
· K0(krc), (10.12)

where in eqn. (10.12) the definition of the zeroth order modified Bessel function of the second kindK0(krc) was
inserted.

Substituting eqns. (10.10) and (10.12) into eqn. (10.6) and exploiting the azimuthal symmetryof the functionsy(x)
andψ(x) yields an analytic integral forX2(σ):

X2(σ) = 2πy2
0r4

c

∫ ∞

0
dk k5 exp

(
−σ2k2

)
K2

0(krc). (10.13)

After evaluation of the integral in eqn. (10.13), the wavelet transform of theβ-profile reads as follows:

X2(σ) =
π3/2y2

0

2r2
c

α6 · G
3,1
2,3

(
α2

∣∣∣−2 1
2

0 0 0

)
, (10.14)

whereα = rc/σ has been substituted. The functionG is Meijer’s G-function, the exact definition of which is given
by Gradshteyn & Ryzhik(1994). It is an interesting consistency to note that apart from the normalisation, the
functional shape of eqn. (10.14) only depends onα, i.e. on the core radiusrc expressed in units of the wavelet scale
σ.
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10.3.2 Application of wavelets to a cluster profile

10.3.2.2. Analogous result for the analytic wavelet transform in 1-d

The analogous computation of the wavelet transform of aβ-profile with the Mexican-hat wavelet in one dimension
yields forX2(σ):

X2(σ) = πy2
0r2

∫ ∞

0
dk k4 exp(−σ2k2 − 2rk). (10.15)

This integral cen be evaluated by completing the square in the exponent to yield:

X2(α) =
πy2

0

8r3
α5

[√
π erfcx(α)P(α) − Q(α)

]
, with (10.16)

P(α) = 4α4 + 12α2 + 3 and (10.17)

Q(α) = 4α3 + 10α (10.18)

where againα = r/σ has been substituted. erfcx(α) is the scaled complementary error function:

erfcx(α) = exp
(
α2

)
·

(
1−

2
√
π

∫ α

0
dt exp

(
−t2

))
. (10.19)

The functional shape and the asymptotic behaviour of these formulae correspond well to the 2-d case discussed
above.

10.3.2.3. Asymptotics of the analytical wavelet transform

The asymptotic behavior ofX2(σ) at the limit ofσ � rc can be explored by substituting the expressions given in
eqns. (10.11) and (10.7) into eqn. (10.5), and exchanging, bypartial integration, the function on which the Laplacian
operates. In the limit of interest the Gaussian can be replaced by a Dirac-δ distribution. Substituting all of this into
eqn. (10.4) yields that limσ→0 X2(σ) is proportional toy2

0 and independent ofσ, i.e. the normalisation of the wavelet
spectrum measures the square of the central Comptonisation parametery0:

X2(σ) =
32π
15
·
y2

0

r2
c

for σ � rc. (10.20)

In the opposite limit, i.e.rc � σ, one can use the fact that the King-profile is highly peaked at the center and that it
is convolved with a Mexican-hat wavelet guaranteeing the convergence of the integral in eqn. (10.13) at∞. In the
limit of rc → 0 this integral is dominated by the value atk = 0. Therefore, one can approximate the King-profile
with a Dirac-δ distribution and show that asymptotically the limrc→0 X2(σ) is proportional toσ−6:

X2(σ) ∝
y2

0r4
c

σ6
for σ � rc. (10.21)

The sensitivity of the wavelet spectrumX2(σ) on cluster sizerc is illustrated by Fig.10.5. The wavelet spectrum
is constant forσ � rc, has anrc-dependent break and drops off asymptotically∝ σ−6 for σ � rc. Naturally, the
scaleσ at which the transition from one asymptotic regime to the other occurs, is determined by the value ofrc, i.e.
the cluster size.

Motivated by this example, the wavelet momentsXq(σ) obtained from real data (Sect.10.5.3) will be fitted with
a power law with an exponential cutoff, where the cutoff indicates the cluster size and the amplitude is proportional
to some power of the central Comptonisation parametery0.

10.3.2.4. Finite instrumental resolution

The influence of finite instrumental resolution can easily be incorporated by an additional factor|B(k)|2 in eqn. (10.6):

X2(σ) = (2π)6
∫

d2k |Y(k)|2 |Ψσ(k)|2 |B(k)|2 , (10.22)
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Figure 10.1.:Sensitivity of the wavelet spectrum on the cluster size: The second order wavelet momentsX2(σ) are shown
as a function ofσ for various core sizesrc = 0.5 (solid), rc = 1 (dashed),rc = 2 (dotted) andrc = 4 (dash-dotted). The
curves have been normalised to their asymptotic values forσ→ 0.

where B(k) is the Fourier transform of the (azimuthally symmetric) beam profileb(x), which is for simplicity
assumed to be of Gaussian shape with FWHM=

√
8 ln(2) · σb:

B(k) =

∫
d2x

(2π)2
b(x) exp(−ikx) with (10.23)

b(x) =
1

2πσ2
b

exp

− x2

2σ2
b

 . (10.24)

This effectively replacesσ in eqn. (10.14) by the harmonic mean
√
σ2 + σ2

b, which limits the range of accessible
wavelet scales toσ > σb.

10.3.3. Analogy to power spectra in Fourier analysis

By interpreting the wavelet spectrum in eqn. (10.6) as the variance of the fluctuations on the scaleσ, one may draw
an analogy to Fourier decomposition:

var
[
y(x)

]
= X2(σ) = (2π)4

∫
d2k P(k) |Ψσ(k)|2 , (10.25)

whereP(k) = (2π)2〈|Y(k)|2〉 is the Fourier power spectrum. The waveletψ(x) now adopts the role of a filter function
on scaleσ. This filter function reads in real space in the case of the Mexican hat wavelet:

ψMH(x) =
2σ2 − x2

2πσ6
· exp

(
−

x2

2σ2

)
. (10.26)

Therefore, my method is equivalent to considering power spectral analysis of filtered fields and higher order Fourier
space moments.
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10.4 Simulations

10.4. Simulations

The accuracy in the determination of redshiftz was assessed by examining the performance on numerical simula-
tions: First, simulations of cosmological structure formation including gas physics have been carried out in order to
model the evolution of clusters (Sect.10.4.1). Subsequently, maps of the Compton-y parameter have been produced
by using an interpolation kernel with an adaptive smoothing length for projecting the Compton-y parameter along
the line-of-sight (Sect.10.4.2). By applying selection criteria favouring virialised systems a cluster sample was
compiled (Sect.10.4.3). Finally, aiming at realistic single frequency SZ-observations, we simulated the ambient
CMB fluctuations that act as the primary source of noise (Sect.10.4.4) and combined the resulting realisations of
the CMB with the cluster maps (Sect.10.4.5).

The assumed cosmological model is the standardΛCDM cosmology, which has recently been supported by the
WMAP satellite (Bennett et al.2003, Spergel et al.2003). Parameter values have been chosen asΩM = 0.3,
ΩΛ = 0.7, H0 = 100hkms−1 Mpc−1 with h = 0.7,ΩB = 0.04,ns = 1 andσ8 = 0.9.

10.4.1. SPH cluster simulations

A simulation of cosmological structure formation kindly provided by V. Springel and L. Hernquist (Springel &
Hernquist2002, White et al.2002) constitutes the basis of my analysis. In a cubical box of comoving side length
100 Mpc/h with periodic boundary conditions a smoothed particle hydrodynamic (SPH) simulation comprising
2163 dark matter particles as well as 2163 gas particles was run and snapshots were saved at 23 redshifts ranging
from z = 0.102 out toz = 1.114. The comoving spacing along the line-of-sight of two subsequent boxes is
100 Mpc/h. Purely adiabatic gas physics and shock heating were included, but radiative cooling and star formation
were ignored, which however does not result in significant differences in SZ-morphology, as shown byWhite et al.
(2002) but impacts on the scaling relations as demonstrated byda Silva et al.(2001).

Overdensities are identified using a friends-of-friends algorithm with the linking lengthb = 0.164, which yields
all member particles of a cluster in conjunction with a spherical overdensity code, from which virial quantities are
estimated. I computed the massMvir inside a sphere of radiusrvir , interior to which the average density was 200
times the critical densityρcrit = 3H2

0/(8πG). The angle subtended by twice the virial radius is denoted asθvir . I
imposed a lower mass threshold ofMvir ≥ 5 · 1013M�/h.

The simulation used here seems to be appropriate for assessing the redshift estimation accuracy for a number
of reasons: It provides a large number of suitable systems, so that the influence of morphological variety can be
studied, and the clusters are very well resolved with respect to their baryonic profiles. Furthermore, the cluster’s
evolution has been modelled taking account of their cosmological environment.

A justified objection might be that the simulation is biased toward low-mass systems, because high-mass systems
form less frequently and especially in small simulation boxes, the high-mass end of the Press-Schechter function
is sampled insufficiently. This shortcoming could be remedied by using simulations of single objects, but in this
case it would have been difficult to accumulate sufficient statistics, or by using even larger simulation boxes while
upholding the mass resolution, which rapidly becomes computationally unfeasible.

10.4.2. SZ-map preparation

Square maps of the Compton-y parameter of the selected clusters were generated by SPH projection of all member
gas particles onto a cubical grid with 1282 mesh points. The (comoving) side lengths of the map was adapted to
the cluster size, such that the comoving resolutiong = s/128 of the grid is specific to a given map. Examples of
Sunyaev-Zel’dovich maps are given in Fig.10.2.

If the particlep at positionrp =
(
xp, yp, zp

)
has a smoothing lengthhp, an SPH electron number density estimate

np, and an SPH electron temperatureTp, the Compton-y parameter at the pixel at positionx is given by:

y(x) =
σTkB

mec2

h3
p

g2

∑
p


x+g/2∫

x−g/2

dxp

y+g/2∫
y−g/2

dyp

hp∫
−hp

dzpK

(
r
hp

)
· npTp

 (10.27)

with r =
√

(xp − x)2 + (yp − y)2 + z2
p. (10.28)
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Figure 10.2.:Picture book of Sunyaev-Zel’dovich clusters: The left column shows clusters at high redshifts ofz' 0.8, in
comparison to clusters at low redshifts ofz= 0.174 in the right column. The columns contrast different morphologies in an
exemplary fashion: relaxed systems (upper row), elongated clusters (centre row) and clusters in the phase of minor merging
or mass accretion (bottom row). The grey scale denotes the amplitude ofy(x)′ = log

[
1+ 105 · y(x)

]
and the contours have

a logarithmically equidistant spacing of 0.1 dex, i.e. the lowest contour denotes a common value ofy = 2.5 · 10−6. All of
the clusters depicted above meet the selection criteria discussed in Sect.10.4.3.
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10.4.3 Cluster selection

Here, I assumed complete ionisation and primordial element composition of the ICM for the determination of
electron number density and temperature. In this way I produced projections along each of the three coordinate
axes. The functionw is the spherically symmetric cubic spline kernel suggested byMonaghan & Lattanzio(1985),
which was also used in the SPH simulation. Details of the SPH projection can be found in AppendixA:

K(u) =
8
π
·


1− 6u2 + 6u3, 0 ≤ u ≤ 1/2
2(1− u)3 , 1/2 < u ≤ 1
0 , u > 1

with u = r/hp. (10.29)

10.4.3. Cluster selection

Clearly, the wavelet redshift estimation relies on the clusters not being in the state of violent merging, such that the
cluster observables, namely the apparent size and integrated SZ-flux are linked via scaling relations. Secondly, the
wavelet analysis derives a single parameter describing the extension of the cluster from the break in the spectrum
Xq(σ) of wavelet parameters and hence elongated clusters should be excluded from the analysis, because in those
systems, the extension can not be measured unambiguously. Consequently, apart from the minimal mass ofMmin =

5 · 1013M�/h, that translates into a minimally required line-of-sight Comptonisation amplitudeymin, clusters have
been selected in order to show neither double cores nor pronounced substructure. From the resulting sample, 10
clusters were selected randomly from each redshift bin. In this sample, the ellipticity and the residual deviation
from aβ-profile was measured, in order to provide a solid quantification:

• The SZ-morphology is required not to be too elongated. By fitting a 2-dimensionalβ-modelyβ(x) to the SZ-
profileydata(x), values for the semi-axesrx andry are derived. 90% of the clusters within the selected sample

have axis ratiosq = ry/rx smaller than 0.8 and ellipticitiese=
√

r2
x − r2

y/rx below 0.6.

• Residual deviations from the canonicalβ-profile ought to be small. Therms-deviationv of the cluster from
the best-fittingβ-profile,

v =

√〈(
ydata(x) − yβ(x)

yβ(x)

)2〉
x

, (10.30)

was smaller than 25% for 90% of my cluster data sample.

The 10 selected clusters from each of the 23 redshift bins, yielding with the three orthogonal projections of each
cluster a total number of 690 maps with which the accuracy of the wavelet method inestimating redshifts was
assessed. The distributions of the ellipticitiese and the integrated residualsv are shownin Fig.10.3. The same
distributions were derived for the smoothed cluster maps, were the effects offinite instrumental resolution have been
incorporated. As Fig.10.3suggests, the beam does not have amajor impact on the morphological properties of most
of the cluster sample, which is due to its narrowness of only 1′(FWHM).

10.4.4. CMB map generation

CMB anisotropies are assumed to be a particular realisation of aGaussian random field. Aiming at simulating
a realisation of the CMB on a square, flat map, I take temperature fluctuationsθ(φ) relative to the average CMB
temperature of〈T〉 = 2.726K to be the independent random field,

θ(φ) ≡
T(φ) − 〈T〉
〈T〉

. (10.31)

The flat, two-dimensional power spectrumPθ(`) is defined via:〈
Θ(`)Θ∗(`′)

〉
≡ (2π)−2δD(` − `′)Pθ(|`|), (10.32)

whereΘ(`) denotes the Fourier transform ofθ(φ). The simulation of the CMB temperature fluctuations on a flat
square map now consists of the following two steps:
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Figure 10.3.: Selection criteria: distribution of residual deviationsv from the best-fittingβ-profile for unsmoothed (solid,
circles) and smoothed (dashed, diamonds) maps. The second set of lines shows the distribution of the ellipticiese with
(dash-dotted, squares) and without smoothing (dotted, crosses).

• The angular power spectrumC` is computed for the flatΛCDM-Universe using theCMBfast code bySeljak
& Zaldarriaga(1996). In addition to the cosmological parameters being already described in Sect.10.4, I use
adiabatic initial conditions and set the primordial He-mass fraction toXHe = 0.24 and the Thomson optical
depth toτ = 0.17 (Spergel et al.2003). The angular power spectrum of the CMB is normalised to COBE
data. Since the SZ-effect distorts the CMB only on small angular scales, the flat sky approximation` � 1 is
fulfilled and it is appropriate to replace the spherical harmonics with plane waves.Hu (2000b) has shown that
the 2-dimensional flat power spectrumPθ(`) is approximately equal to its angular analogue:C` ' Pθ(`).

• Then, Gaussian random variables are generated on a complex two-dimensional grid in Fourier space with
varianceσ2(`) = Pθ(`) according to the absolute value of their wave vectors`. Inverse Fourier transform
brings the elementary waves to interference and yields a realisation of the temperature anisotropiesθ(φ).

10.4.5. Simulated single-frequency SZ-observations

For SZ-clusters observed with a single-frequency interferometer (e.g., the CBI experiment,Halverson et al.2002)1,
it isimportant to examine the applicability of theXq(σ)-statistic. For the purpose of this chapter, it suffices to
consider observations at small frequenciesν. Thus, the Compton-y maps are combined with realisations of the
CMBfluctuations by using eqn. (10.1) in the Rayleigh-Jeans limit,

T(φ) =
[
1− 2y(φ)

]
[1+ θ(φ)] 〈T〉. (10.33)

Fig. 10.4shows the Compton-y map of a nearby cluster of 2.2 · 1014M�/h at redshiftz = 0.102 combined with
a patch of the CMB constructed by the algorithm described above. In this map, the average CMB temperature〈T〉
was subtracted. In order to mimic observations, the resulting combined maps are smoothed with a Gaussian beam
with FWHM of

√
8 ln(2) · σb = 1′.

In the case of multi-frequency SZ-observations the SZ-signature can be easily distinguished from the CMB signal.
Therefore, for these cases the CMB background is ignored and not included in the simulated cluster SZ-images.
Nevertheless, finite instrumental resolution was taken care of and the SZ-maps were convolved with a Gaussian

1http://www.astro.caltech.edu/~tjp/CBI/

116

http://www.astro.caltech.edu/~tjp/CBI/


10.5 Analysis
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Figure 10.4.: Simulated temperature map of the CMB combined with a foreground SZ-cluster atz = 0.102 with virial
quantitiesMvir = 2.2 · 1014M�/h, rvir = 1.47 Mpc/h andkBTvir = 1.52 keV. At the cluster centre, the SZ-temperature
decrement amounts to−1.8 mK and the CMB temperature fluctuation with the highest amplitude is equal to 0.23 mK. A
total of 30 linearly spaced isothermals are drawn. In this case, the comoving scale 1 Mpc/h corresponds to 11.5′.

kernel of
√

8 ln(2)·σb = 1′ (FWHM). This approach is optimistic considering instrumental noise and point sources,
that distort the SZ-frequency dependence and provide additional flux at the SZ-decrement frequencies. While the
second effect primarily diminishes the SZ-detectability, it too generates noise similar to instrumental noise due to the
Poisson fluctuation of the number of sources within an aperture. A detailed discussion can be found in Sect.10.5.8.

The beam width was assumed to be 1 arcmin (FWHM), which is a reasonable choice considering the design
values of currently planned dedicated SZ-telesopes. These experiments are able to marginally resolve clusters out
to redshifts ofz= 0.7: At these distances, the beam size (in terms of standard deviation) becomes comparable to the
core sizes of the least massive clusters considered here. At the largest redshifts ofz' 1.1 examined in this chapter,
the beam is approximately twice as large as the cluster core.

10.5. Analysis

In this section, the analysis is explained step by step: After introducing the wavelet families (Sect.10.5.1), the
wavelet spectrum and the parameters deduced from it are described (Sect.10.5.2and Sect.10.5.3). The correlations
of the wavelet spectral parameters with physical quantities are discussed (Sect.10.5.4). The measurement princi-
ple and the breaking of degeneracy is illustrated in Sect.10.5.5. Successively, the intercorrelation of the wavelet
parameters and the shape of the parameter space is explored by principal component analysis (Sect.10.5.6). Then,
gauge functions for modelling the redshift dependence of the parameters are proposed (Sect.10.5.7). Several issues
for observers are discussed in Sect.10.5.8, for instance the influence of instrumental noise (Sect.10.5.8.1), the in-
fluence of primary CMB fluctuations on the wavelet spectrum and their suppression (Sect.10.5.8.2), and the impact
of sub-millimetric point sources on the wavelet estimation technique (Sect.10.5.8.3). Finally, the redshift of the
clusters are estimated by maximum likelihood techniques (Sect.10.5.9).

10.5.1. Wavelet basis functions

In the analysis a wide range of wavelets with different functional shapes was employed, although thesymletwavelet
basis introduced byDaubechies & Bates(1993) yielded particularly good results. Due to their symmetry and
peakiness,symletsare seemingly especially suited for analysing SZ-morphologies, because they do not impose
a strong smoothing on the image in determining the wavelet momentsXq(σ). Other wavelet families that found
application in my analysis were Daubechies’ wavelets, coiflets and biorthogonal wavelets. Fig.10.5compares the
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Figure 10.5.: The wavelet basis functionsψ(x) chosen for the analysis: symletsym2(solid), Daubechies’ waveletdb4
(dashed), coifletcoif1 (dotted) and the biorthogonal waveletbior1.3 (dash-dotted).

functional shape of the different wavelet families.
The analysis proceeds by measuring the wavelet moments on smoothed comoving maps of the Compton-y pa-

rameter following the definition in Sect.10.3. The scaleσ of the resulting wavelet spectrum is then converted to
angular units. Because my SZ-maps are computed on a grid of 1282 mesh points with adaptively chosen side length
for each cluster, the dynamical range of the wavelet spectra always comprises approximately two decades. However,
this is no fundamental limitation of this approach because the maps are featureless below the smoothing scale of 1′

(FWHM).

10.5.2. Measurement of wavelet quantities

In order to derive the actual flux decrement or, equivalently, the decrement in antenna temperature from the line-
of-sight Compton-y amplitude, its value at each pixel needs to be multiplied with the solid angle it subtends. For
the conversion, a standardΛCDM-cosmology was assumed, the parameters of which have already been given in
Sect.10.4. Thus, the pixel amplitudes were modified according to:

y(x) −→ y(φ) = y(x) · 4 arctan2
[

g

2w(z)

]
, (10.34)

wherew(z) is the comoving distance in the model cosmology andg denotes the comoving size of a single pixel.
It should be emphasised that the wavelet coefficientsχ(µ, σ) are evaluated on a comoving grid, which has been
adapted to the cluster size before converting the wavelet scaleσ to angular units. This, however, should not pose a
problem for real observations, provided the sampling scale is of the same order of magnitude as the angular scale of
the finest pixels.

In order to obtain dimensionless quantities, the unit of the waveletψσ(x) has been set to inverse steradians, such
that the wavelet expansion coefficientsχ(µ, σ) and the wavelet momentsXq(σ) are dimensionless, irrespective of
q. For numerical convenience, the pixel amplitudes in the combined SZ-maps have been multiplied with 1012.

The summation in the definition of the wavelet momentXq(σ) in eqn. (10.4) discards the information about the
positionµ at which the wavelet expansion coefficientχ(µ, σ) is evaluated. Consequently, the position of a cluster
inside the observing frame does not influence the wavelet decomposition.
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Figure 10.6.:The spectrum of wavelet moments, together with the fitting formula (10.35) for increasing wavelet moment
orderq: q = 2 (squares),q = 3 (circles, solid),q = 4 (stars, dashed),q = 5 (diamonds, dotted) andq = 6 (crosses,
dash-dotted) for a single cluster. The wavelet momentsXq(σ) followed from wavelet expansion with thesym2-wavelet.

10.5.3. Wavelet spectrum of SZ-cluster maps

Due to the lack of any analytical generalisation of eqn. (10.14) for q , 2, deviations of the Compton-y map from a
King profile and wavelets other than the simple Mexican hat, I decided to explore phenomenological functions for
describing the wavelet spectrum. The simplicity of the shape of the wavelet spectrum shown in Fig.10.6 implies
that the model function,

ln Xq(σ) ' a+ sln (σ/σ0) − σ/c, (10.35)

is able to extract all apparently contained information, i.e. the spectrum is described by means of three quantities:
the amplitudea, the slopes and a break atc. The parameterσ0 has been included in eqn. (10.35) in order to obtain
a formula that is dimensionally correct, although it does not yield any new information and this specific degree of
freedom is already described by the variablea.

The usage of eqn. (10.35) implicitly discards information about asphericity and effectively determines an average
of the cluster’s extension along its major axes. The problem would be significantly complicated by including
asymmetry and considering vectorial nature ofσ (seeZaroubi et al.1998, 2001).

Because the cutoff parameterc is of great importance to my analysis, it needs to be derived reliably. Thus,
the order of wavelet momentsq was restricted toq ≥ 3, because largerq-values facilitate the determination of
c. From Fig.10.6 it is obvious that an increase inq suppresses the value ofXq(σ) at small scalesσ such that
the curve develops a maximum in the vicinity ofc. Additionally, by the choice of large values forq, the wavelet
expansion coefficientsχ(µ, σ) dominated by CMB noise are suppressed relative to those obtained in the central part
of the cluster and consequently higher order wavelet momentsXq(σ) provide a cleaner measurement. The range of
sensibleq-values is restricted by the fact that for increasingq the momentXq(σ) is successively dominated by the
largest wavelet expansion coefficientχ(µ, σ) and does no longer contain information of the structure to be analysed.
In order to stabilise the fitting procedure I interpolate in between the wavelet momentsXq(σ). This is justified
because I expect a smooth variation of the wavelet spectrum according to Sect.10.3.2.1.

10.5.4. Correlations with physical quantities

The parameters derived from the fit to the spectrum of wavelet coefficients have a physical interpretation. As shown
in Sect.10.3.2.1, the wavelet spectrum breaks at the cluster scale. Therefore, one expects a correlation between the
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Figure 10.7.: Wavelet measured cluster sizec versus angular extensionθvir for increasing wavelet moment orderq: q = 3
(circles) andq = 6 (crosses) without including CMB fluctuations. Thec-values have been determinedwith thesym2-
wavelet.

angular size of the clusterθvir and thecutoff c, as found in Fig.10.7. Increasing weighting exponentsq shift the
regression line to smaller values ofc, which can be understood by the fact that larger values ofq suppress small
wavelet expansion coefficients arising at the outskirts of the cluster, which in turn leads to a break in the wavelet
spectrum at smaller scales.

Similarly, theamplitude a determined by the fit is proportional to the integrated Compton-y flux,

Y =

∫
d2φ y(φ) =

kTvir

mec2

σT

dA(z)2

1+ fH
2

fB
Mvir

mp
, (10.36)

as illustrated by Fig.10.8. Here, fb denotes the baryon fraction,fH the hydrogen fraction, which determines the
elemental composition and has been set to the primordial value of 0.76, andmp is the proton mass.dA(z) is the
angular diameter distance.

The normalisationa of the wavelet momentsXq(σ) shows a steeper dependence on the integrated Comptonisation
parameterY for larger choices ofq, which is explained by the following argument: The amplitudea(q) reflects
the normalisation of the wavelet momentsXq(σ). The integral in eqn. (10.4) is dominated by the largest wavelet
expansion coefficientχ(µ, σ), taken to theqth power. On the other hand, the wavelet expansion coefficientsχ(µ, σ)
are proportional to integrated ComptonisationY, resulting in observed relation ln

[
Xq(σ)

]
∝ a ∝ q · ln(Y). In

summary, Fig.10.9 shows the wavelet spectra for three comparable clusters situated at different redshift taking
instrumental smoothing into account. The figure illustrates, how the amplitude and the break of the spectrum
decrease with increasing redshifts.

The influence of instrumental smoothing on the wavelet parameters can be summarised as follows: In the case of
supressed noise, the amplitudea, being a measurement ofY should be still reliably measureable in contrast to e.g.
isophotal flux or related quantities, despite the fact that it is systematically smaller due to the instrumental beam.
The angular size, however, expressed by the cutoff c, increases with increasing smoothing, but can still serve as a
measure for cluster size even in cases where the size of the instrumental beam becomes comparable to the cluster
core. In addition, this behaviour is supported by Fig.10.10, where a weak deviation from proportionality towards
larger values ofc is easily visible. Nevertheless, the value ofc is not significantly deteriorated by the instrumental
smoothing.

Finally, theslopes is purely a measure of instrumental smoothing: Placing the same cluster at different redshifts
would result in a blurred image of the more distant one. Keeping in mind that there is a close analogy between
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Figure 10.8.: Wavelet amplitudea as a function of integrated Comptonisation parameterY for different weighting ex-
ponentsq: q = 3 (circles) andq = 6 (crosses), again without taking CMB fluctuations into account. As the analysing
wavelet, thesym2-wavelet was chosen.
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Figure 10.9.: Wavelet spectraX4(σ) of three clusters at redshiftsz = 0.365 (circles, thick lines),z = 0.580 (squares,
medium lines) andz= 0.826 (diamonds, thin lines), where instrumental smoothing has been ignored (open symbols, solid
lines) and properly taken account of (closed symbols, dashed lines). The spectra have been derived with thesym3-wavelet
as the analysing wavelet.
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Redshift estimation of clusters by wavelet decomposition of their SZ-morphology

wavelet- and Fourier-transforms (as explained in Sect.10.3.3), the wavelet momentXq(σ) as a function ofσ can
be interpreted as the variance of the wavelet-filtered field. The instrumental beam introduces an additional filtering
to the Compton-y map (compare Sect.10.3.2.4) and would cause the Fourier spectrum to drop at smaller values of
the wave vectork, because the instrumental beam constitutes effectively a low-pass filter that is erasing structures
smaller than its extension. Comparing clusters at different redshifts, it is clear that the drop in power happens at
smaller scales in the case of the more distant cluster. Then the slopes, defined as d lnXq(σ)/d lnσ for σ � rc,
is larger in the case of a unresolved cluster compared to a resolved cluster. This measure of the influence of finite
instrumental smoothing varies only by a factor of two in slope over the redshift and mass range considered here, but
nevertheless serves as an indicator of cluster distance. It should be emphasised, that thes-parameter does not try to
extract information from scales that are inaccessible due to instrumental smoothing. Wavelet analysis of maps that
are poor in features over a certain range of scales generically results in power laws forXq(σ) for these scales.

10.5.5. Measurement principle

Now, it is necessary to illustrate how a measurement of the total ComptonisationY and of the angular sizeθvir

suffices to derive a distance estimate. For that purpose, clusters are placed at unit distance and the distance de-
pendences of the wavelet amplitudea and the the cutoff c are removed by the following formulae, sincea is a
logarithmic measure of flux inside an solid angle elementY andc is a logarithmic measure of of angular extension
θvir :

a0 = a(z) + 2 · ln (da(z)) (10.37)

c0 = c(z) + ln (da(z)) . (10.38)

By applying simple scaling arguments, one expects the ratioa0/c0 to be equal to 5: From the wavelet amplitude
a one obtainsa0 ∝ ln

(
Y · dA(z)2

)
∝ ln (Mvir · Tvir). Furthermore, from the spherical collapse model follows, that

Tvir ∝ M2/3
vir (Navarro et al.1995), which yields, together withMvir ∝ r3

vir , the relationa0 ∝ ln
(
r5
vir

)
. Substituting

c0 ∝ ln (rvir) gives the final resulta0/c0 = 5.
Fig. 10.10nicely illustrates how the degeneracy is broken and how a simple measurement of flux and angular

extension suffices in order to derive a distance estimate: A crude fit to the distance corrected wavelet amplitudea0 as
a function of distance corrected wavelet cutoff parameterc0 yields a slope of approximately 5.8, which corresponds
well to the slope of∼ 5 expected from the theoretical consideration outlined above. If, hypothetically, the ratio
a0/c0 was equal to 2, the measurements of flux and angular size would be completely degenerate and would not
yield any distance information. This case corresponds to disks of equal surface brightness, where measurements of
flux and angular size are completely degenerate and do not yield any distance information at all. It should be noted,
that by adopting the usual scaling relations, one introduces a systematic error in slope that can amount to' 20%
error.

10.5.6. Principal component analysis

In order to rate the extent to which the parameters derived in the fit to the spectrum of wavelet moments are inde-
pendent, a principal component analysis (PCA, see e.g.Deeming1964) was performed. The PCA is determining
a transformation to a new orthogonal coordinate system in parameter space spanned bya, c and s, such that the
variance along the first axis is maximised.

The first eigenvector of the matrix that describes the change of basis by the PCA readsxPCA = (0.65,0.70,0.32)
which has been derived for the spectral parameters forq = 3 and with thesym2-wavelet as the analysing wavelet.
The values similar in magnitude suggest that the variation in the data set is contained in all three parametersa, c
ands.

As can be read off from table10.1, the parameter space is tightly constrained and all three parameters are interre-
lated, such that the data points form a narrow ray in parameter space. This result holds irrespective of the choice of
q, although the scatter increases with higher choices forq. The values in table10.1have been determined without
considering CMB fluctuations. Given the physical interpretation of the wavelet amplitudea and the cutoff c, it is
obvious that the tight correlation can be traced back to the self-similarity of clusters and the cluster scaling relations
linking Tvir , Mvir and rvir that follow from the spherical collapse model. The scaling relations for SZ-quantities
derived byda Silva et al.(2003) support this view. This shows together with Sect.10.5.4and Sect.10.5.5that both
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Figure 10.10.:Distance corrected wavelet amplitudea0 = a(z) + 2 · ln (dA(z)) as a function of distance corrected wavelet
cutoff parameterc0 = c(z) + ln (dA(z)). The values have been determined in fits to the wavelet spectrumX3(σ), that has
been derived with thesym2-wavelet as the analysing wavelet.

q = 3 q = 4 q = 5 q = 6
1st principal component 95.6% 94.2% 92.8% 91.5%
2nd principal component 2.7% 4.2% 5.5% 6.7%

Table 10.1.: Result of the PCA. The variance explained by the first and second principal component as a function of
wavelet orderq. Here, no CMB fluctuations were included.
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Figure 10.11.:Dependence of the wavelet cutoff parameterc on redshiftzwithout considering CMB fluctuations forq = 3
(circles, solid) andq = 6 (crosses, dash-dotted). The analysing wavelet was thesym2-wavelet.

parameter variable i = 1 i = 2 i = 3
amplitude a 10.5837 0.6475 -1.9570
cutoff [arcmin] c 0.5124 0.5165 0.3809
slope s 1.3423 0.4144 1.3803

Table 10.2.: Fitting values for the gauge functions defined in eqn. (10.39) for the cluster sample at hand and thesym2-
wavelet basis. The order of the wavelet momentXq(σ) has been set toq = 3. The values have been derived without taking
CMB fluctuations into account.

the cutoff cand the amplitudea are functions ofMvir . By only considering systems close to virialisation I thus expect
a fundamental narrow ray in parameter space which can be described by a single principal component.

10.5.7. Redshift dependence of the wavelet parameters

The parametersa andc are expected to decrease with increasing redshiftz, the reason for which is quite apparent:
The angular diameterθvir and the integrated ComptonisationY decreases because of the increasing angular diam-
eter distancedA(z) that entersθvir linearly andY quadratically. Furthermore, clusters accrete matter during their
formation history and thus are on average more massive at later times, i.e. at smaller redshiftsz (see, e.g.,Wechsler
et al.2002, van den Bosch2002, Zhao et al.2003). From the physical point of view, the dependence ofa andc on
redshiftz is far from trivial, and therefore, their functional behaviour is described by an empirical approach. Among
others, the exponential function provides a good fit to the data, as illustrated by Figs.10.11and10.12:

x(z) = x1 exp

(
−

z
x2

)
+ x3, wherex ∈ {a, c, s} . (10.39)

The optimised parametersxi , i ∈ {1,2,3}, for x ∈ {a, c, s} in the gauge functions eqn. (10.39) are given in table10.2
for the caseq = 3. It should be emphasised thatthe parameters stated are only valid for image analysis with thesym2-
wavelet, where the maps have been smoothed with a Gaussian kernel with 1′ (FWHM) and the considered cluster
sample, which is defined by the selection criteria laid down in Sect.10.4.3and the minimal mass of 5· 1013M�/h.
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Figure 10.12.: Dependence of the wavelet amplitude parametera on redshiftz without including CMB fluctuations for
q = 3 (circles, solid) andq = 6 (crosses, dash-dotted). The quantities have been determined with thesym2-wavelet.

10.5.8. Noise contributions and their suppression

10.5.8.1. Influence of instrumental noise

The extent to which the wavelet spectra are affected by instrumental noise is a very important issue: Even though
experiments like the ACT aim at achieving noise levels as low asσT ' 2 − 5 µK per 3 arcmin2-pixel (depending
on the channel,Kosowsky2004), instrumental noise nevertheless impacts on the shape of the wavelet spectra.
Fig. 10.13shows the distorted wavelet spectrum for two different wavelet families on SZ-maps where uncorrelated
pixel noise at a level equivalent to (a pessimistic value of)σT = 10µK per square arcminute has been added.

Instrumental noise can be characterised by an approximate power-law component in the spectrum of wavelet
coefficientsXq(σ). The influence of the noise on the wavelet spectrum is small and can be suppressed by either
choosing largeq or by employing a smoothly varying wavelet, for instance, a member of thesymletfamily instead
of a peaked wavelet, such as thecoiflet. Furthermore, the instrumental noise does not cause a significant deviation
of the model parametersa, c ands once the detection of the cluster is sufficiently reliable, i.e. exceeds a value of
10σ which is the case even for the least massive clusters in my sample out to redshifts ofz = 0.8. At even higher
redshifts, wavelet analysis will be seriously impeded by instrumental noise.

10.5.8.2. Influence of CMB fluctuations

Clusters at high redshiftzare characterised by their small angular scale on which the underlying CMB is represented
by a smooth gradient due to Silk damping (Silk 1968). In this case the wavelet analysis produces the same results
irrespective of the CMB noise owing to the distinct morphological feature of the cluster on top of the smooth
CMB gradient. Once clusters at lower redshifts reach angular sizes comparable to characteristic scales of CMB
fluctuations, the wavelet analysis has to be made more sophisticated. This complication in the wavelet analysis arises
because wavelets are primarily suited for determining morphological features rather than solely singling out high
amplitude characteristics. Because the angular scale of the clusters ranges between 10′ and 1′, which corresponds
to multipole orders of̀ ' 103 . . . 104, it suffices to consider the Silk damping tail of the angular power spectrum
of the CMB. In the wavelet spectrumXq(σ) this translates into an additional approximate power-law component
XCMB

q (σ), as can be seen from Fig.10.14:

ln XCMB
q (σ) ' aCMB + sCMB lnσ . (10.40)
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Figure 10.13.: Changes to the wavelet spectrum of a single cluster (situated atz = 0.49) caused by instrumental noise:
unperturbed wavelet spectrum of the SZ-cluster (circles, solid), of pure instrumental noise (squares, dash-dotted) and of
the combined map (diamonds, dashed). Data points were derived from simulated data and the joining line in the case of the
unperturbed wavelet spectrum theresult of the fitting functions described by eqn. (10.35). The order of the wavelet moment
is q = 6. As analysing wavelets, thesym3-wavelet (thick lines, closed symbols) and thecoif1-wavelet are compared (thin
lines, open symbols).

This is due to the discrete sampling of the wavelet moments as well as the inherent statistics of the wavelet spectra
of orderq which can be interpreted as suitably weightedq-point correlation functions in Fourier analysis (compare
Sect.10.3.3).

Fig. 10.15shows the probability distribution functionp(sCMB)dsCMB of the slopessCMB following from linear fits
to the wavelet momentsXq(σ) for the range ofq′s considered here. Again, thesym2-wavelet was chosen as the
analysing wavelet. The slopessCMB are not well confined, keeping the vast range of angular scales in mind, which
in turn will make it difficult to subtract the CMB-contribution to the wavelet spectrum of the combined map.

In order to disentangle the contributions from the CMB noise from those of the cluster, one may pursue different
approaches: Among others, CMB fluctuations underneath the cluster can be reconstructed with spline polynomials
and successively subtracted. Here, I have masked the cluster and fitted 5th-order polynomials to the remaining data
points. Because they-maps and the realisations of the CMB are to leading order combined linearly and because
the CMB is a smoothly varying field, it is possible to reconstruct the CMB fluctuations from the environment of
the cluster and interpolate to the cluster centre. The reconstructed CMB field can be subtracted from the inital
image and by applying wavelet decomposition to the cleaned field one obtains a wavelet spectrum, from which the
parametersa, c ands can be reliably derived.

An important question common to the suppression of the CMB and instrumental noise is the choice of a cluster
mask region, either for reconstructing the ambient CMB fluctuations with polynomials or for reducing the contribu-
tion of pixel noise (which is proportional to the map area) to the wavelet spectrum. As soon as the cluster is detected
at sufficient significance levels, it should be possible to choose the cluster mask region according to a preliminary
determination of the cluster size. Choosing too large a mask region results in higher amplitudes ofXq(σ) at large
angular scalesσ, but the parameters of the model functiona andc are relatively insensitive toXq(σ) at largeσ.
Furthermore, it would introduce a systematic trend in measurements ofa andc, which could be taken account of by
altering the functions that model the redshift dependence of those parameters.
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Figure 10.14.:Changes to the wavelet spectrum of a single cluster caused by the fluctuating CMB: unperturbed wavelet
spectrum of the SZ-cluster (circles, solid), of the pure CMB (squares, dash-dotted) and of the combined map (diamonds,
dashed). Data points were derived from simulated data and the joining line in the case of the unperturbed wavelet spectrum
the result of the fitting functions described by eqn. (10.35). The order of the wavelet moment isq = 6 (thick) andq = 4
(thin). Again, the analysing wavelet is thesym2-wavelet.
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Figure 10.15.:Distributions of the power-law slopessCMB of CMB wavelet spectra as a function of wavelet moment order:
q = 3 (circles, solid),q = 4 (stars, dashed),q = 5 (diamonds, dotted),q = 6 (crosses, dash-dotted). For the analysing
wavelet, the symletsym2was chosen.
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10.5.8.3. Influence of point sources

Yet another impediment to SZ-observations are point sources such as infra-red galaxies and microwave emitting
AGNs. They influence SZ-observations in two ways: Firstly, the integrated flux of microwave sources inside the in-
strument’s beam distorts the SZ-flux modulation and diminishes the signal at SZ-decrement frequencies. Secondly,
the Poisson fluctuation in the number of sources inside the beam leads to an additional noise component. While
the first effect concerns the detectability of SZ-clusters, the second effect influences the wavelet analysis in a way
similar to instrumental noise.

The integrated emission from unresolved infra-red galaxies make up the cosmic infra-red background (CIB)
(Puget et al.1996, Lagache & Puget2000), the fluctuations of which are become important at frequencies above
ν ' 100 GHz (Aghanim et al.2004). Lagache(2003) andWhite & Majumdar(2003) have estimated the number
counts of unresolved infra-red galaxies at SZ-frequencies. In the easiest case, the sources are uncorrelated and the
fluctuations obey Poissonian statistics, but the inclusion of correlations is expected to boost the fluctuations by a
factor of∼ 1.7 (Song et al.2003). According toAghanim et al.(2004), the resulting fluctuations vary between a few
102 Jy/sr and 105 Jy/sr. A proper modelling would involve a biasing scheme for populating halos, the knowledge
of the star formation history and template spectra in order to determine the K-corrections.

In AGNs, the situation is notably more complex: The spectra show a variety of functional behaviours, with spectral
indicesα generally ranging from -1 to -0.5, but sources with inverted spectraα > 0 are commonplace. This variety
makes it difficult to extrapolate fluxes to observing frequencies of CMB experiments. Two studies (Toffolatti et al.
1998, Sokasian et al.2001) have estimated the fluctuations generated by radio emitting AGNs at SZ-frequencies
and found them to amount to 103 − 104 Jy/sr. However, AGNs are known to reside in high-density environments
and the proper modelling would involve a biasing scheme in order to assign AGN to the dark matter halos. Apart
from that, one would have to assume spectral properties from a wide range of spectral indices and AGN activity
duty cycles.

Given the poor experimental constraints no attempt is made at modelling the influence of point sources on wavelet
spectra. The additional noise component due to fluctuating number of point sources can be expected to influence
wavelet spectra in a way simliar to instrumental noise and therefore, all proposed methods of suppression are
applicable to this case as well.

10.5.9. Redshift estimation

In order to assess the accuracy of the redshift measurement, a maximum likelihood estimation is performed. The
likelihood function is defined as:

L(z) =
1

(2π)3/2σaσcσs
exp

− ∑
x∈{a,c,s}

1
N

N∑
i=1

(xi − x(z))2

2σ2
x

 , (10.41)

and was evaluated for each bin separately, i.e. the indexi enumerates clusters within the redshift bin under consider-
ation.N = 30 denotes the number of clusters within a single redshift bin. From the position of the maximum inL(z)
the most probable redshift estimatez was derived and the accuracy of the estimate followed from the corresponded
to the 1-σ confidence intervals, i.e. the accuracy is determined by the range in redshiftz enclosing 68% of the
estimates. The function was found to be symmetric about the maximum value and hence the mean width is stated
as the estimation accuracy. Fig.10.16shows the estimated redshift versus the real redshift for the cluster sample
derived by using all of the three parametersa, c ands. In comparision, the error bars have become larger by a factor
of ' 1.5 when including the fluctuating CMB, as illustrated by Fig.10.17. The measurement is unbiased and the
error relative to 1+ z rises slightly with increasing redshiftz.

The results for different analysing wavelets as a function of wavelet moment orderq are summarised in tables10.3
and10.4. Clearly, the method starts to fail at redshifts exceeding>

∼ 1, when the angular diameter distancedA(z)
develops a plateau and does not cause clusters to appear smaller. The average attainable accuracy is stated relative
to 1+ z in order to facilitate comparison to photometric redshifts. The accuracy slightly degrades with increasing
q, which is due to suppression of small wavelet expansion coefficients especially at small scales and the resulting
inaccuracy of the fitting formula eqn. (10.35) used to extract the spectral parametersa, c and s from the wavelet
spectrum.

Inclusion of the CMB in order to test the applicability of determining morphological redshifts in the case of
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Figure 10.16.: Redshift determination and error estimation from all three parametersa, c and s that followed from
wavelet analysis with thesym2-wavelet. The upper panel shows the estimated redshiftzest and its error∆z and the lower
panel shows the relative accuracy∆z/(1 + z), both as a function of redshiftzreal. Here, CMB fluctuations were not taken
into account. The value of the wavelet moments was set to beq = 3.

wavelet family wavelet q = 3 q = 4 q = 5 q = 6
symlet sym2 4.1% 4.4% 4.7% 4.8%
symlet sym3 4.3% 4.8% 5.1% 5.2%
Daubechies’ db4 5.2% 5.3% 5.4% 5.4%
Daubechies’ db5 5.5% 5.0% 4.9% 4.8%
coiflet coif1 4.2% 4.4% 4.8% 5.0%
biorthogonal bior1.3 5.5% 5.4% 5.4% 5.4%

Table 10.3.:Averaged accuracy of the redshift-determination relative to 1+ zbased on three parameters derived from the
wavelet spectrum of orderq without the noise contribution from the fluctuating CMB.
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Figure 10.17.: Redshift determination and error estimation from all three parametersa, c and s resulting from wavelet
decomposition of the combined maps (i.e. with CMB) using thesym2-wavelet. In the upper panel, the estimated redshift
zest and its error∆z is shown a function of real redshiftzreal. In comparison, the relative accuracy∆z/(1+ z) as a function
of zreal is shown in the lower panel. Again, the order of the wavelet moments was taken to beq = 3.
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10.6 Systematics

wavelet family wavelet q = 3 q = 4 q = 5 q = 6
symlet sym2 6.2% 6.3% 6.2% 6.3%
symlet sym3 6.7% 6.5% 6.4% 7.2%
Daubechies’ db4 6.9% 6.8% 6.9% 6.9%
Daubechies’ db5 7.6% 7.4% 7.3% 7.2%
coiflet coif1 6.1% 5.9% 6.0% 6.8%
biorthogonal bior1.3 7.5% 7.4% 7.2% 7.3%

Table 10.4.:Averaged accuracy of the redshift-determination relative to 1+ zbased on three parameters derived from the
wavelet spectrum of orderq with the noise contribution CMB caused by fluctuations in the CMB.

single-frequency interferometers results in a deterioration of the redshift estimation accuracy of a factor close to
1.5, which is caused by imperfections of the CMB removal by 5th-order spline polynomials.

It should be kept in mind that the given accuracy estimates depend on the proprties of the selected cluster sample.
Especially the insufficient sampling of the high-mass end of the Press-Schechter function can be expected to play a
significant role and leads to an systematic underestimation of the redshift accuracy.

10.6. Systematics

SZ-clusters would be self-similar and would perfectly follow scaling relations provided several requirements are
fulfilled: (i) virial equilibrium (T ∝ M2/3), (ii ) structural identity, expressed in equal form factors, (iii ) a universal
baryon fraction and (iv) the absence of heating and cooling processes. Each of these assumptions may be challenged
and leads to deviations from the self-similar scaling relations. While the first two points are included in the numerical
simulation and are limited by the selection criteria, they increase the scatter in the relations between virial quantities,
or equally, the wavelet parametersa, c ands. Systematic trends caused by tilted scaling relations (see Sect.10.6.1)
and the formation of cool cores (formerly refered to as cooling flows) (Sect.10.6.2) as well as the necessity of
preselecting clusters (Sect.10.6.3) need to be addressed separately.

10.6.1. Influence of tilted scaling relations

Analyses of X-ray observations carried out byArnaud & Evrard(1999) andMohr et al.(1999) suggest a weak trend
of the clusters baryon fraction with cluster massM and a deviation from the universal valuefB = Ωb/Ωm, which is
due to feedback processes like galactic winds that more effectively deplete the ICM of baryons in low temperature
clusters compared to high temperature clusters.

The dependence especially of the wavelet parametera, which is a logarithmic measure of the SZ-fluxY would be
increased in more massive clusters and would thus increase the scatter ina of a cluster sample at a given redshift.
The quoted analyses of X-ray data find the baryon fraction to show a relative variation amounting to' 10% at fixed
temperature, i.e. at fixed depth of the potential well for a sample of local clusters. Apart from the the systematic
component, that can in principle be removed, once high quality X-ray data will improve the understanding of this
phenomenon and allows proper modelling, the stochastic contribution can only be constrained to be at most of equal
relative influence to∆Y/Y as the scatter in morphology.

The baryon fraction is estimated from X-ray observations that sample the gas at the cluster core, whereas SZ-
effect will be sensitive to the gas at much larger scales. Therefore, since the observed trend is probably due the
complicated hydrodynamic andfeedback processes at the cluster center, the trend is expected to be much weaker on
the scales probed by the SZ effect.

10.6.2. Cool cores of clusters

In order to estimate the accuracy of the method outlined above, so far I only used adiabatic hydrodynamical simula-
tions which lack of cooling processes. Thus I need to address the influence of cool cores of clusters on our proposed
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Redshift estimation of clusters by wavelet decomposition of their SZ-morphology

method. After an analytical investigation following Sect.10.3.2.1I compare clusters with and without cool cores
and show how the morphological changes in cool core clusters impacts on the wavelet spectra.

10.6.2.1. Analytical wavelet transform of cool core clusters

Instead of a single King profile I assume that the SZ-emission of a cool core cluster can be described by a double
King profile for reasons of analytical feasibility:

y(x) = y(r) =
2∑

i=1

yi

1+ (
r
r i

)2−1

, (10.42)

where the second term describes the additional enhancement owing to the cool core. Deprojecting this two-
dimensionalprofile by means ofPfrommer & Enßlin(2004) yields:

pe(R) = ne(R) kBTe(R) =
mec2

σT

2∑
i=1

yi

πr i

B
(

1
2 ,

3
2

)
(
1+ R2/r2

i

)3/2
, (10.43)

whereR denotes the three-dimensional radius andB(a,b) denotes theβ-function (Abramowitz & Stegun1965).
Thus I obtain for the ratio of the central values of the Comptonisation parametersyi

y2

y1
=

p2 r2

p1 r1
∼

1
2
, (10.44)

where I inserted typical values for cool core clusters,p2/p1 ∼ 3 andr2/r1 ∼ 1/6. The second order wavelet moment
of cool core clusters can be obtained in analogy to the non-cool core case:

XCF
2 (σ) = 2π

∫
dk k5 exp(−k2σ2)

∣∣∣y1r2
1K0(kr1) + y2r2

2K0(kr2)
∣∣∣2 . (10.45)

This second order wavelet moment shows an increasing amplitude and a decreasing cutoff parameter compared
to the one without a cool core.

10.6.2.2. Numerical analysis

In order to scrutinise these findings I apply the method to adiabatically simulated clusters to which I add an enhanced
emission to mimic the SZ-emission of the cool core. In Fig.10.18the resulting spectra of wavelet moments are
shown together with the fitting formula eqn. (10.35) for increasing wavelet moment orderq.

It can clearly be seen in Fig.10.18 that the enhanced emission due to the cool core yields a slightly higher
amplitude of the wavelet spectrum on small scales. Extracting information from the wavelet spectrumby means of
eqn. (10.35) reveals slightly higher values for the amplitudea and smaller values forthe cutoff c on the percent level.
However, this influence is minimised when considering finite instrumental resolution particularly for high redshift
clusters. In any case, if a prominent cool core is sufficiently well resolved it could be masked and replaced by an
interpolation in between the mask boundaries.

10.6.3. Wavelet analysis of unselected clusters

It is an important issue to quantify the deterioration of the wavelet method when applied to clusters of arbitrary
morphologies. In merging systems, for instance, one observes a doubly peaked wavelet spectrum, where the peak
at largeσ reflects the angular size of the merger system itself, whereas the second peak at smallerσ corresponds
to the merging objects. In these systems, the model function eqn. (10.35) does not yield a good fit to the spectrum
of wavelet coefficientsXq(σ) and hence fails to extract sensible values for the parametersa, c and s. Similarly,
pronounced substructure causes deviations from the wavelet spectrum and yield additional power on scales smaller
than the cluster scale. In these cases, the model function (c.f. eqn. (10.35)) does not necessarily provide a fit to the
wavelet spectrumXq(σ) and it cannot be expected that the wavelet quantitiesa andc reflect cluster properties such
asY.
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Figure 10.18.:The influence of cool cores to the spectrum of wavelet moments, together with the fitting formula (10.35)
for increasing wavelet moment orderq: q = 2 (squares),q = 3 (circles, solid), andq = 4 (diamonds, dashed) for a
single cluster without instrumental smoothing. Open symbols are values derived from the simulated non-cool core cluster,
whereas filled symbols denote the corresponding cool core cluster.
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Figure 10.19.:Distance corrected wavelet amplitudea0 = a(z) + 2 · ln(dA(z)) as a function of distance corrected wavelet
cutoff c0 = c(z)+ ln(dA(z)) for the selected clusters (circles) and all clusters (crosses) extracted from the simulation outputs.
The wavelet momentsXq(σ) were considered forq = 4 and as the analysing wavelet, thesym3-wavelet was employed.
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Redshift estimation of clusters by wavelet decomposition of their SZ-morphology

In Fig. 10.19, the distance corrected wavelet amplitudea0 = a(z) + 2 · ln(dA(z)) is given as a function of distance
corrected wavelet cutoff c0 = c(z)+ ln(dA(z)), for all clusters resulting from the simulation (in total 3957 maps) and,
in comparison, for the selected subsample. The wavelet parameters were derived from a fit to the spectrumXq(σ)
of orderq = 4 with thesym3-wavelet as the analysing wavelet. While in Fig.10.10the data points follow a narrow
track alonga ∝ c5, this is not observed in Fig.10.19. Especially for clusters at small wavelet cutoffsc, the scatter in
wavelet amplitudea is doubled and data points fall below the region convered by the selected subsample. This might
be hinting toward clusters exhibiting substructure, because in these cases the sizes are systematically underestimated
by the fit to wavelet spectrumXq(σ). Furthermore, a strong scatter in cutoff c is introduced. Given these significant
deteriorations that only partially can be compensated by changes in the redshift models eqn. (10.39), the redshift
estimation accuracy is significantly affected.

10.7. Redshift estimation in a nutshell

This section shall provide a short summary of how to apply my method to an SZ-survey for estimating redshifts
provided a temperature map of a patch on the sky with resolved images of clusters.

• Once a cluster candidate has been localised at a particular position of the map this cluster and its ambient
field has to be cut out. If the number of grid points amounts below 642 sampling points, the mesh should be
refined by interpolation in order to reach dynamical range of approximately two decades. This is important
in order to provide a sufficiently broad range of scales to be probed by the wavelet decomposition.

• The wavelet spectrum of the map is obtained by wavelet transforming the map preferentially using thesymlet
basis functions (compare Sect.10.3.1). The morphological information contained within the wavelet spectrum
can be extracted by means of the model function of eqn. (10.35). In the case of single-frequency observa-
tions the ambient CMB field cannot be separated from the SZ-signal of a cluster. The method described in
Sect.10.5.8.2might be applied in order to reconstruct the wavelet spectrum of the pure SZ-cluster signal.

• The redshift dependence of the wavelet parameters (amplitudea, cutoff c, and slopes) follows the functional
form of eqn. (10.39). However, the single model parameters depend on the definitions of the particular
wavelets and the details of the survey, including different sources of noise and the cluster detection criteria.
The most promising way of determining the parameters of the gauge functions laid down in eqn. (10.39) would
be to derive them from a training set of clusters with known (photometric) redshifts. The final redshift estimate
of the cluster is most conveniently determined by means of maximum likelihood analysis, as described by
eqn. (10.41).

10.8. Summary

In this chapter, a method of estimating the redshift of a cluster based on the wavelet decomposition of its resolved
SZ-morphology is presented. From a fit to the spectrum of wavelet moments three spectral parameters are derived,
that in turn are non-degenerate and indicative of cluster distance. These parameters are utilized, through a maximum
likelihood technique, for estimating the cluster’s redshift. In the maximum likelihood technique, empirical gauge
functions describing the wavelet parameter’sz-dependence are used.

First, the method was tested on a simple analytical case: The spectrum of Mexican-hat wavelet moments can be
derived analytically for a King-profile, which is known to describe the Compton-y amplitude of clusters well. The
spectrum of wavelet coefficients as a function of wavelet scaleσ, exhibits a break at the cluster scalerc and may
thus serve as a measure of the cluster’s size. Additionally, the asymptotic behaviour of the wavelet spectrum in the
limit of σ � rc andσ � rc can be understood. The derivation of wavelet moments of orderq = 2 is analogous
to considering the Fourier power spectrum of the Compton-y map, filtered with Fourier transformed wavelet. The
shape of the spectrum of wavelet moments of orderq = 2 from the analytic calculation is consistent with one
obtained by applying wavelet decomposition to simulated SZ-cluster maps.

The method was then applied to set of numerically simulated SZ-clusters with 1′ (FWHM) resolution – compa-
rable to the resolution of future SZ-experiments. The sample comprises 690 cluster maps distributed in 23 redshift
bins, which is a comparably large cluster sample. The clusters are chosen such that they are not in a merging state
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and their SZ-image is not too elongated, two criteria that favour clusters close to virialisation. Additionally, in
order tosimulate single-frequency observations, the cluster maps were combined with realisations of the CMB that
constitute the main source of noise.

The method was tested for a range of wavelet functions (e.g.,symlet, coiflet, Daubechies, biorthogonal). The
average attainable accuracy in estimating redshifts is found to be almost independent of the specific functional form
used, although thesymletbasis yielded the best results. However, the method could benefit from improvements
concerning the choice of the wavelet basis. For instance, one could try to construct an optimised wavelet specifically
for β-profiles, that yields maximised wavelet coefficientsχ(µ, σ).

As expected, there is only a weak change in accuracy with respect to the orderq of the chosen wavelet moment
Xq(σ). This, however, is most likely to change when applying the wavelet analysis to noisy images, because for
increasing choices ofq, uncorrelated noise is suppressed relative to the cluster’s signal and concentrating on higher
values forq should provide a more robust measurement of the set of structural parametersa, c ands. The increment
of q itself is limited by numerics – this is the case when the wavelet momentXq(σ) is dominated by the largest
wavelet expansion coefficientχ(µ, σ), and does not reflect anymore the dependence on the wavelet scaleσ. In this
limit, the wavelet spectrum would exhibit a generic power law behaviour:Xq(σ) ∝ σγ(q) for largeq. The structural
parametersa, c andswere found to depend on redshiftzby a simple exponential (eqn. (10.39)). The free parameters
in this equation can be determined from a (relatively small) sample of SZ-cluster images with known redshift.

The accuracy of determining cluster distances has been assessed by maximum likelihood estimation. The method
yields accuracies of 4−5% relative to 1+z, which is competitive with photometric redshifts, but reaches out to larger
distances. At redshifts exceedingz >

∼ 1, the accuracy is expected to degrade because the angular diameter distance
dA(z) starts to level off and thus sets the limit of applicability. For single frequency data, the CMB fluctuations
can be removed with a simple polynomial reconstruction approach; the accuracy in the redshift estimation is then
decreased to 6− 7%.

In this work I have considered two major systematic effects that might degrade the accuracy of the method.
The first is the varying baryon fraction with cluster mass, which has been studied only for local cluster samples.
While the systematic trend could in principle be corrected for, the stochastic contribution will always add to the
uncertainty of the distance determination. Another systematic is the influence of cool cores at the cluster’s centre.
In this casewe have been able to show that the uncertainty it adds to the redshift estimate is very small, mainly
because the volumeoccupied by the cool core region is limited to the cluster’s core.

Although the result in the distance estimation is stated in terms of redshift, it should be emphasised that a specific
cosmology is assumed, which is needed for converting the observables, namely the wavelet parameters, to a distance
estimate. The distances following from the analysis have been expressed as redshifts because of their elementary
interpretation, but the implicit assumption of an underlying cosmology should be kept in mind when comparing to
e.g. photometric redshifts. For that reason, the precision of the method presented is limited by the accuracy to which
the cosmological parameters are known. Apart from being a distance indicator, the redshift also plays the role of an
evolutionary parameter.

Comparing this work to the pioneering paper byDiego et al.(2003), my expectations concerning the accuracy of
morphological redshifts are even more optimistic: Without fittingβ-profiles to the observational data, it is possible
to describe the cluster’s SZ-morphology by solely relying on wavelet decomposition. Also, I describe the spectrum
of wavelet moments with a small set of structural parameters, that have a lucid physical interpretation, provide
a non-degenerate distance measurement and enable redshift determination owing to their monotonic decline with
redshift. The most important difference is that, the redshift dependence of the structural parameters is calibrated with
the data set itself without relying onprior and simplifying assumptions. In spite of the small number of observables
considered here,the accuracy in the redshift estimation of this method is doubled, in comparison withDiego et al.
(2003), even for a single frequency experiment.

The results of this chapter were derived in collaboration with S. Zaroubi (Kapteyn Institute, Groningen) and
C. Pfrommer (Max-Planck-Institute for Astrophysics, Garching). A resulting paper entitledRedshift estimation
of clusters by wavelet decomposition of their Sunyaev-Zel’dovich morphologyhas been submitted to the journal
Monthly Notices of the Royal Astronomical Societyand is available online (preprint astro-ph/0310613).
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11. Coded mask imaging of extended sources
with Gaussian random fields

Abstract

A novel method for generating coded mask patterns based on Gaussian random fields (GRF) is proposed. In contrast to tradi-
tional algorithms based on cyclic difference sets, it is possible to construct mask patterns that encode a predefined point spread
function (PSF). The viability of this approach and the reproducibility of the PSFs is examined, together with studies on the
mean transparency, pixel-to-pixel variance and PSF deterioration due to partial shadowing. Sensitivity considerations suggest
the construction of thresholded realisations of Gaussian random fields (TGRF) which were subjected to the same analyses. Spe-
cial emphasis is given to ray-tracing simulations of the pattern’s performance under finite photon statistics in the observation of
point sources as well as of extended sources in comparison to random masks and the pattern employed in the wide field imager
onboard BeppoSAX. A key result is that in contrast to traditional mask generation schemes, coded masks based on GRFs are
able to identify extended sources at accessible photon statistics. Apart from simulating on-axis observations with varying lev-
els of signal and background photon counts, partial shadowing of the mask pattern in the case of off-axis observations and the
corresponding field-of-view is assessed.

11.1. Introduction

In X-ray astronomy, focusing of radiation is so far feasible only for photon energies up to about 10 keV through
grazing incidence reflection. Applied in Wolter-type mirrors, this method can provide a very good angular resolu-
tion, i.e. down to 0.′′5 in the case of Chandra1 and 4′′ − 12′′ for XMM-Newton2. The collecting area is maximised
through the use of nested mirrors. The field-of-view (FOV) is limited by the grazing incidence condition set by the
diffractive index of the mirror material to<∼ 1◦. At energies higher than 10 keV, focusing is technologically very
hard to archieve. A workaround are coded mask imagers, where a position sensitive detector records the shadow
of a mask pattern cast by the sources under investigation. The arrangement of sources can be reconstructed by
cross-correlating the recorded shadowgram with the mask pattern.

Coded masks have by now found a widespread use in high energy astrophysics and there is a large number of suc-
cessful missions such as BeppoSAX3, currently flying intruments like INTEGRAL4 and HETE-25, and ambitious
future projects, for instance the recently launched SWIFT-satellite6.

In this chapter, I propose coded mask patterns based on Gaussian random fields, because they enable the con-
struction of a coded mask device for predefined imaging characteristics, i.e. for a given PSF. The shape of the PSF
can be tuned to match the anticipated source profile. A beautiful example of a naturally occurring Gaussian random
field is the pattern of fluctuations in the cosmic microwave background (CMB). Analyses of WMAP data carried out
among others byCayón et al.(2001) andKomatsu et al.(2003) find the CMB consistent with Gaussian primordial
fluctuations and have set upper limits on non-Gaussianity.

After a recapitulation of coded mask imaging and existing mask pattern generation schemes in Sect.11.2, GRFs
are introduced in Sect.11.3. The feasibility of GRFs in coded mask imagers is examined in Sect.11.4with special

1http://cxc.harvard.edu/
2http://xmm.vilspa.esa.es/
3http://bepposax.gsfc.nasa.gov/bepposax/index.html
4http://astro.estec.esa.nl/SA-general/Projects/Integral/
5http://space.mit.edu/HETE/
6http://swift.gsfc.nasa.gov/
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Coded mask imaging of extended sources with Gaussian random fields

Figure 11.1.: Principle of coded mask imaging: The shadow cast by the coded mask is recorded by a position sensitive
detector. The coded mask depicted is that of the IBIS instrument onboard INTEGRAL.

emphasis on the performance of GRFs in realistic scenarios, i.e. under finite photon statistics and in the observation
of extended sources (Sect.11.5). A summary of the key results in Sect.11.6concludes the chapter.

11.2. Coded mask imaging

Coded mask cameras observe a source by recording the shadow cast by the mask onto the detector. The mask
pattern is described by the position dependent transparencyψ(x). A shifted shadowgramψ(x− d tan(θ)) is observed
if the radiation incides under an angleθ with respect to the optical axis. The distance between the coded mask and
the detector is denoted byd. The correlation functiona(x), defined as

a(x) = ψ(x− d tanθ) ⊗ ψ(x) = 〈ψ(x− d tanθ + λ)ψ(λ)〉λ, (11.1)

peaks atx0 = d tanθ, from which the angle of incidenceθ = arctan(x0/d) can be inferred. The PSFc(x), defined as
the correlation function at normal incidence (θ = 0◦), i.e. the auto-correlation function, reads

c(x) = ψ(x) ⊗ ψ(x) = 〈ψ(x+ λ)ψ(λ)〉λ. (11.2)

The influence of imperfections of the detector can be modelled by convolution ofψ(x) with suitable kernels describ-
ing the positional detector response (see, e.g.Schäfer & Kawai2003). Techniques for analysing coded mask data
have been summarised bySkinner et al.(1987) andCaroli et al.(1987). A nice illustration of the imaging principle
of coded mask cameras is given by Fig.11.1.

Random mask patterns as used in the HETE-2 satellite (in ’t Zand et al.1994) consist of white noise. They are
not ideal imagers, because their auto-correlation possess sidelobes and are not perfectly flat. Aiming atδ-like PSFs,
mask patterns based on cyclic difference sets have been introduced byGunson & Polychronopulos(1976). As
pointed out byFenimore & Cannon(1978), these uniformly redundant arrays (URA) provide even sampling at all
spatial scales. URA patterns are less susceptible to noise compared to truly random arrays and their auto-correlation
function is aδ-spike with perfectly flat sidelobes in case of complete imaging. In this chapter, I propose a method
for constructing coded mask pattern encoding arbitrary PSFs. While the traditional masks are optimised for the
observation of point sources, the PSFs of masks based on GRFs can be adjusted to the source profile of extended
sources and make the observation of extended sources such as extended structures in the Milky Way possible.

11.3. Gaussian random fields

11.3.1. Definitions

The statistical properties of a GRF are homogeneous and isotropic and the phases of different Fourier modes are
mutually uncorrelated and random. A consequence of the central limit theorem is then that the amplitudes follow
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11.3.2 Algorithm

a Gaussian distribution. Due to all correlations above the two-point level being either vanishing in the case of
odd moments or being expressible in terms of two-point functions for even moments, the statistics of amplitude
fluctuations in a GRF is completely described by its power spectrumP(k) (see eqn. (11.4)).

Because the imaging characteristics of coded mask imagers are described by the PSF, which is defined to be the
auto-correlation function of their mask pattern, i.e. by their power spectrum in case of isotropic PSFs, GRFs provide
a tool for generating mask patterns with predefined imaging characteristics.The theory of structure formation in
cosmology and the description of the cosmic microwave background makes extensive use of GRFs (c.f.Peacock
1999, Longair1998). Their application is commonplace in generating initial conditions for simulations of cosmic
structure formation and in constructing mock CMB fields for simulating sub-millimetric observations.

11.3.2. Algorithm

Starting from the PSFc(x), the Fourier transformC(k) is derived:

C(k) = F [c(x)] =
∫

d2x
(2π)2

c(x) exp(−ikx). (11.3)

The power spectrumP(k) is defined as the Fourier-transformC(k) of the auto-correlation functionc(x). In more
than one dimension, an average of the Fourier transformC(k) of the statistically isotropic random fieldc(x) over all
directions of the wave vectork at fixed lengthk = |k| needs to be performed:

P(k) = 〈|C(k)|〉|k|=k. (11.4)

All elementary waves exp(ikx) with wave vectors in thek-space shell[|k| , |k + ∆k|] contribute to the variance
σ2

k = P(k) required by the power spectrum on scalek = |k|. In discretising, the amplitudesΨ(k) are set such that
their quadratic sum

∑
k∈[|k|,|k+∆k|] |Ψ(k)|2 matchesσ2

k with the only exceptionΨ(k = 0), which is set to zero in order
to ensure a vanishing expectation value of the realisationψ(x). The normal modes exp(ikx) are modified by a phase
factor exp(2πiq), whereq ∈ [0,1) is a uniformly distributed random number. By inverse Fourier transform, the
normal modesΨ(k) are brought to interference which finally results in the realisation, the real part of which is
denoted byψ(x):

ψ(x) = <
(
F −1 [Ψ(k)]

)
= <

(∫
d2kΨ(k) exp(ikx + 2πiq)

)
. (11.5)

Alternatively, one may require the additional symmetryΨ(−k) = Ψ∗(k) in Fourier space (the complex conjugation
is denoted by the asterisk), which forces the realisation to be purely real. The flow chart eqn. (11.6) summarises all
steps:

C(k)
〈...〉|k|=k
−−−−−−→ P(k)

·exp(2πiq)
−−−−−−−→ Ψ(k)

F

x yF −1

c(x) ψ(x).

(11.6)

Due to the periodic boundary conditions imposed by the Fourier transform, the resulting realisations of the Gaus-
sian random field have cyclic boundaries, which is a desirable feature for coded mask patterns. For reasons of
numerical accuracy, it is strongly recommended to use shells ink-space with varying thickness∆k ∝ |k|−1, such that
approximately the same number of discretised modes contributes to the variance required by the power spectrum
P(k).

11.3.3. Choice of the PSF

Although the algorithm outlined in Sect.11.3.2is capable of generating random fieldsψ(x) encoding any isotropic
PSFc(x), PSFs should be shaped like Lorenzian functionscL(x) or Gaussian functionscG(x). The parameterσx

describes the spatial extent:
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Coded mask imaging of extended sources with Gaussian random fields

cL(x) =
σ2

x

x2 + σ2
x
, (11.7)

cG(x) = exp

(
−

x2

2σ2
x

)
. (11.8)

The normalisation has been chosen such that the maximum correlation strength atx = 0 is set to one. In the
realisationψ(x), the variableσx, that parameterises the PSF can be interpreted as a correlation length.Skinner &
Grindlay(1993) have pursued a related idea and have suggested coded masks with two spatial scales. In contrast,
the realisations considered here have an entire spectrum of length scales.

11.3.4. Scaling applied to the Gaussian random fields

If one aims at employing GRFs in coded mask imagers, the field has to be scaled such that it assumes values ranging
from ψ(x) = 0 (opaqueness) to full transparency (ψ(x) = 1). This scaling ensures that the full dynamical range
between is used and the modulation of the shadowgram as strong as possible. Hence, the sensitivity is maximised.
One could think of two different linear transformations, the most intuitive being:

ψ(x) −→ ψ?(x) =
ψ(x) −min {ψ(x)}

max{ψ(x)} −min {ψ(x)}
. (11.9)

With the symmetry condition max{ψ(x)} = −min {ψ(x)} being fulfilled, the mean transparency〈ψ? (x)〉 is equal to
1/2: The mean〈ψ (x)〉 = 0 vanishes by construction, because each normal mode cos(kx) has a vanishing expectation
value. In general, the realisationψ(x) will not fulfill the above mentioned symmetry condition.

Instead, the scaling

ψ(x) −→ ψ′(x) =
1
2

[
ψ(x)

max{|ψ(x)|}
+ 1

]
(11.10)

ensures〈ψ′〉 = 1/2 and will be used in the remainder of the chapter. It should be noted that none of the above
scalings strictly conserves Gaussianity, because each particular realisation is scaled by its maximal amplitude and
consequently, high amplitudes do not appear any more in an ensemble of realisations.

Now that the mean transparency〈ψ′〉 is fixed, the absolute flux from a source can be inferred from the number
of measured photons. The scaling eqn. (11.9) may be taken advantage of in designing a mask that blocks a larger
or smaller fraction of photons than the generic fraction of 1/2: In anticipation of Sect.11.4.3, in the case of a
realisation of a GRF encoding a Gaussian PSFcG(x) with σx = 8 pixels, the probability densityp

(
〈ψ?〉

)
d〈ψ?〉

of the mean transparencyt = 〈ψ?〉 is described by a Gaussian distribution with meanµt = 0.504± 0.082 and
standard deviationσt = 0.028± 0.006 at 95% confidence. When constructing realisations of Gaussian fields for
coded mask instruments, one obtains patterns with transparencies〈ψ?〉 ∈

[
µt − σt, µt + σt

]
with a probability of

erf(1/
√

2) ' 0.6827.

11.3.5. Gaussian random fields for circular apertures

For coded-mask experiments with a circular aperture it is possible to construct GRFs with azimuthal symme-
try, in the same way as hexagonal uniformaly redundant arrays (HURA) are an adaptation of the URA patterns
to circular apertures (Finger & Prince1985). Instead of constructing a GRF with plane waves as the solutions
of Laplace’s equation4ψ(x) =

(
∂2

x + ∂
2
y

)
ψ(x) = 0 in Cartesian coordinates (x = (x, y)) with boundary condi-

tions ψ(x = −L) = 0 = ψ(x = L) (2L denotes the pattern’s side length) one would resort to solving4ψ(r) =(
∂2

r + 1/r∂r + 1/r2∂2
φ

)
ψ(r) = 0 in polar coordinates (r = (r, φ)) with the boundary conditionψ(r = R) = 0∀φ, where

the radius of the aperture is denoted asR. ψ is easily found as the solution to Bessel’s differential equation and reads
as:

ψ`m(r, φ) = Jm [r · Zm(`)] · exp(imφ), (11.11)

where the numbers̀andm are only allowed to assume integer values.Zm(`) is the`th zero of the Bessel function
Jm. In Fig.11.2, three solutions are depicted for (`,m) = (2,2), (̀ ,m) = (2,3) and (̀ ,m) = (3,4). In reality, it might
be cumbersome to construct a GRF on the basis of the normal modes given by eqn. (11.11) due to Bessel function’s
complicated orthonormality relations.
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Figure 11.2.: Normal modesψ`m(r, φ) used for constructing GRFs for circular apertures, for (`,m) = (2,2) (left panel),
(`,m) = (2,3) (centre panel) and (`,m) = (3,4) (right panel).

11.4. Results

In order to provide a visual impression, two GRFs encoding the above stated PSF with their auto-correlation func-
tions are presented (Sect.11.4.1). Subsequently, the reproducibility of the chosen PSF (Sect.11.4.2), the pixel-to-
pixel variance (Sect.11.4.3), the Gaussianity of the distribution of pixel amplitudes (Sect.11.4.4) and the shape
of the PSF under partial shadowing (Sect.11.4.5) are examined. Finally, thresholded GRFs are introduced and the
deterioration of the PSF of such thresholded realisations (Sect.11.4.6) is addressed.

11.4.1. Visual impression

Following the above prescription, 100 realisations of GRFs encoding Gaussian and Lorenzian PSFs of different
widthsσx were generated on a 2-dimensional square grid with 2562 mesh cells. Figs.11.3and11.4show a real-
isation of the GRF and its auto-correlation function for a Gaussian and a Lorenzian PSF, respectively. In order to
facilitate comparison, the widths of the PSFs have been chosen to be the same:σx = 8 pixels. The random fields are
scaled to mean values of 1/2 (by means of eqn. (11.10)) and the central correlation strength in the auto-correlation
functions is equal to 1. The contours have a linear spacing of 0.1. The auto-correlation functions have the symmetry
property thatψ(x)⊗ψ(x) = ψ(−x)⊗ψ(−x). In the derivation of auto-correlation and cross-correlation functions, the
balanced correlation scheme was used. The correlation functions were derived for ideal detectors, i.e. finite position
resolution or similar imperfections were neglected.

In comparing the realisations in Figs.11.3and11.4one notices the larger abundance of small scale structures
in the realisation encoding the Lorenzian PSFcL(x) in comparision to the realisation derived for the Gaussain PSF
cG(x). This can be explained by the fact that the power spectrumPL(k) declines∝ exp(−k) and thus much slower
than the power spectrumPG(k) ∝ exp(−k2). Both realisations have been derived with the same random seed, i.e.
the relative phases are identical and one immediately recognises similar structures inψG(x) andψL(x).

11.4.2. Reproducibility of the PSF

An important issue is the reproducibility of a chosen PSFc(x) in realisations generated with differing random seeds.
This can be assessed by determining the auto-correlations of the scaled GRFsψ′(x) for all realisations within the
data sample. In Fig.11.5the Gaussian target PSFcG(x) and the auto-correlation functionsψ′G(x) ⊗ ψ′G(x) following
from two realisationsψ(x) are shown. The error bars denote the sample variance derived from 100 realisations of
ψG(x) following from different random seeds. The width of the PSF was chosen asσx = 8

√
2 pixels for better

visibility. Fig. 11.6shows the analogous for the Lorenzian target PSFcL(x) with σx = 8
√

2 pixels.
As Figs.11.5and11.6illustrate, the functional shape of the target PSFc(x) can be reproduced with high reliability

and the ratio of the peak-height to the correlation noise is' 40. However, there are minor imaging artefacts, namely
very weak sidelobes: This is readily explained by the fact that the Fourier transform of a well localised PSF in real
space is extended and affected by the cutoff at the Nyquist frequencykNyquist, which induces a sin(kNyquistx)/x-like
modulation. Consequently, the sidelobes are suppressed in PSFs with largeσx. The Lorenzian PSF is a bad choice
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Figure 11.3.: A realisation of a GRFψG(x) (upper panel) for the Gaussian PSFcG(x) and the auto-correlation function
ψG(x) ⊗ ψG(x) (lower panel).
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Figure 11.4.: A realisation of a GRFψL(x) (upper panel) for the Lorenzian PSFcL(x) and the auto-correlation function
ψL(x) ⊗ ψL(x) (lower panel).
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11.4.2 Reproducibility of the PSF
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Figure 11.5.: Cross section along thex-axis through the central part of the auto-correlation functionψ′G(x) ⊗ ψ′G(x) for
two different realisationsψ′G(x) (dashed) and the Gaussian target curvecG(x) (solid).

−60 −40 −20 0 20 40 60
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

PSfrag replacements

pixel coordinate x

au
to

-c
or

re
la

tio
n

fu
nc

tio
n
ψ
′ L
⊗
ψ
′ L

Figure 11.6.:Cross section along thex-axis through the central part of the auto-correlation functionψ′L(x)⊗ψ′L(x) for two
different realisationsψ′L(x) (dashed) and the Lorenzian target curvecL(x) (solid).
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Coded mask imaging of extended sources with Gaussian random fields

PSF width mean transparency variance standard deviation
σx 〈ψ′〉 〈ψ′2〉 − 〈ψ′〉2

√
〈ψ′2〉 − 〈ψ′〉2

2
√

2 1/2 0.013± 0.002 0.116± 0.009
4 1/2 0.014± 0.002 0.121± 0.010

4
√

2 1/2 0.016± 0.003 0.128± 0.012
8 1/2 0.018± 0.003 0.135± 0.013

Table 11.1.:The mean transparencies〈ψ′〉, the variance〈ψ′2〉 − 〈ψ′〉2 and the standard deviation
√
〈ψ′2〉 − 〈ψ′〉2 together

with their respective uncertainties (1σ) for a set of GRFs encoding Gaussian PSFs with differing widthσx.

in comparison to the Gaussian PSF, because its Fourier transformC(k) ∝ exp(−k) decays slower and is consequently
more affected by the cutoff atkNyquist. Interpretingσx as the correlation length of the GRF, it is clear that in the limit
of very narrow PSFsσx assumes very small values, i.e. the amplitudesψ(x) for neighbouring pixels start loosing
their correlation. This, however, does not correspond to white noise masks because the amplitude distribution is still
Gaussian (c.f. Sect.11.4.4) and not bimodal, as in the case of white noise masks. Due to the high confidence with
which a chosen PSF is reproduced, the number of realisations to be examined is very small. On the contrary, relying
on truly random patterns, the number of necessary realisations with the accompanying tests may be very high: For
HETE-2, where such a random pattern is used, 105 realisations had to be generated that were subjected to certain
boundary conditions (seein ’t Zand et al.1994).

11.4.3. Pixel-to-pixel variance

In sensitivity considerations carried out byin ’t Zand et al.(1994) for purely random masks, i.e. masks consisting
of either transparent (ψ′(x) = 1) or opaque (ψ′(x) = 0) pixels, optimised mean transparency〈ψ′〉 and standard
deviation

√
〈ψ′2〉 − 〈ψ′〉2 are derived to be equal to 1/2. In that way, the variance and therefore the modulation of the

signal is maximised. For the GRFs considered here, the variance and hence the modulation of the shadowgram is
noticably smaller. In Table11.1, the mean transparencies〈ψ′〉, the variance〈ψ′2〉 − 〈ψ′〉2 and the standard deviation√
〈ψ′2〉 − 〈ψ′〉2 together with their respective uncertainties for a set of GRFs encoding Gaussian PSFs with differing

widthσx are summarised.
One would expect that with increasing PSF widthσx the variance decreases, which would be explained by the fact

that the variance is given by a weighted integration over the power spectrumP(k). For increased position resolution,
i.e. a narrow PSFc(x), a wide power spectrumP(k) is needed, which in turn would lead to a high variance.

This simple argument however, does not straightforwardly apply to the scaled realisations at hand: As laid down in
eqn. (11.10), the fieldψ(x) is modified by a factor depending on the maximal value|ψ(x)| of the particular realisation.
The occurence of a high amplitude is following a Gaussian distribution with variance∝

∫
d2k P(k). This means,

that in the case of narrow PSFsc(x), i.e. for wide power spectraP(k), the fieldψ(x) is more likely to assume large
amplitudes (compareCartwright & Longuet-Higgins1956). The latter effect is of great importance and causes the
surprising result that the measured variances inψ′(x) are larger for extended PSFs.

Comparing coded masks based on GRFs with purely random fields, the modulation of the shadowgram decreases
by a factor∼ 3 . . . 4. Therefore, the sensitivity is expected to be weaker. While the above consideration is only valid
for the observation of point sources, sensitivity is most likely to be gained in the observation of extended sources.
For those sources, it is possible to adjust the PSF to the expected source intensity profile. In this case, modulations
below the scale of the object to be observed are discarded - this corresponds to applying Wiener filtering to the
recorded shadowgram prior to source reconstruction.

11.4.4. Distribution of the pixel amplitudes

As Fig.11.7illustrates, the pixel amplitudesψ (x) follow a Gaussian distribution, irrespective of the encoded PSF,

p
(
ψ′

)
dψ′ =

1
√

2πσψ
exp

−
(
ψ′ − µψ

)2

2σ2
ψ

 dψ′, (11.12)
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11.4.5 Partial shadowing
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Figure 11.7.: Probability densityp (ψ′) dψ′ of the pixel amplitudesψ′ (x) (circles) and the best-fitting Gaussian for a
particular realisation of a GRF. The error bars are Poissonian errors.

as a consequence of the central limit theorem (seeKendall & Stuart(1958)). The mean and variance of that particular
realisation have been determined to beµψ = 0.5000± 0.001 andσψ = 0.1277± 0.0007 at 95% confidence. For
illustrative purposes, a Gaussian PSF withσx = 2

√
2 pixels has been chosen.

Again, it should be emphasised that the scaling eqn. (11.10), while being reasonable from the physical point of
view, is not conserving Gaussianity. This is for the application at hand not a serious limitation, because the variance
of the distributionp (ψ′) dψ′ is small compared to 1.

11.4.5. Partial shadowing

It is interesting to see how partial shadowing affects shape and amplitude of the auto-correlation function. If a
source is observed at large off-axis angles, the shadowgram cast by the coded mask onto the detector is incomplete
and reconstruction artefacts emerge in the correlation function. In order to examine the extent to which the PSF
suffers from partial shadowing, the amplitudesψG(x) in a margin amounting to a fraction of 25%, 50% and 75% of
the total area have been set to zero and the cross-correlation functionψG(x) ⊗ ψshadow

G (x) has been determined with
the full coded mask.

As Fig. 11.8 shows for a Gaussian PSF withσx = 8 pixels, the PSF drops in central amplitude according the
unshadowed area, but otherwise its shape remains unaltered. A second observation is that the amplitude of the
sidelobes is unaffected by the partial shadowing.

The reconstructed PSFψ′G(x) ⊗ ψshadow
G (x) for the case of radiation from a source situated at large angles away

from the optical axis, where only 1/32 of the mask has been imaged onto the detector is depicted in Fig.11.9. Even
though a tiny part of the mask amounting to' 3% has been imaged, the correlation peak is clearly recognisable and
its peak value is a factor' 4 above the correlation noise.

11.4.6. Thresholded realisations

Due to possible technical complications in attempting to build a coded mask pattern based on a GRF with quasi-
contiuous opaqueness, thresholded realisations are considered. A second argument in favour of thresholded real-
isations would be their achromatic properties, because the mask has to be constructed from the fieldψ′(x) for a
specific photon distribution in order to assure the maximal modulation of the shadowgram cast onto the detector.
Yet another argument in favour of thresholded realisations of GRFs is their better sensitivity, because they imprint a
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Figure 11.8.:Cross-correlation functionψ′G(x)⊗ψshadow
G (x) and the respectively expected PSFc(x) with a shadowed margin

corresponding to 25% (dashed, squares), 50% (dotted, diamonds) and 75% (dash-dotted, crosses) of the total area and, for
comparison, the PSF for full imaging (solid, circles).
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Figure 11.9.:Reconstructed auto-correlation functionψ′G(x)⊗ψshadow
G (x) for a shadowgram of which only' 3% have been

imaged onto the detector.
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11.5 Ray-tracing simulations including finite photon statistics

−127 −64 0 64 128
−127

−64

0

64

128

PSfrag replacements

pixel coordinate x

pi
xe

lc
oo

rd
in

at
e

y

−127 −64 0 64 128
−127

−64

0

64

128

PSfrag replacements

pixel coordinate x

pi
xe

lc
oo

rd
in

at
e

y

Figure 11.10.: A thresholded realisationψ(t)
G (x) of a GRFψG(x) (upper panel) for the Gaussian PSFcG(x) and the auto-

correlation functionψ(t)
G (x) ⊗ ψ(t)

G (x) (lower panel).

stronger modulation of the shadowgram compared to smoothly varying GRFs.
In thresholded realisations, mask elements are taken to be transparent, if the valueψ(x) of the realisation is greater

than zero, conversely, for valuesψ(x) < 0 the mask element is set to be opaque. An example for a thresholded
realisation of a GRF and its PSF is given in Fig.11.10.

An important issue is the degradation of the PSFψ(t)
G (x) ⊗ ψ(t)

G (x) imposed by the thresholding. As Fig.11.11
illustrates, the resulting auto-correlation function is pointy and its kurtosis is larger than zero (leptokurtic). This
results from the fact that small scale power is added by the thresholding: In order to construct a step transition,
more small-scale Fourier modes are needed, which leads to an additive power law contribution∝ k−2 in the power
spectrumP(k), such that the power spectrum acquires Lorenzian wings. The point spread functionψ(t)

G (x) ⊗ ψ(t)
G (x),

being the inverse Fourier transform ofP(k), can then be approximated by two decaying branches of an exponential,
which readily explains the pointiness. The target Gaussian PSFcG(x) with σx = 8

√
2 pixels is shown for com-

parison. Again, the error of the auto-correlation function is estimated by determining the sample variance in 100
realisations.

The size distribution of the patches as a function of threshold value can be described by means of the Press-
Schechter theory well known in cosmology.Press & Schechter(1974), Bond et al.(1991) andMo & White (2002)
provide the mathematical foundation.

11.5. Ray-tracing simulations including finite photon statistics

Extensive ray-tracing simulations were performed describing the imaging of point sources with a finite number
of photons (Sect.11.5.1), and the attainable sensitivity in such an observation was assessed (Sect.11.5.2). The
analogous was carried out for the observation of extended sources (Sect.11.5.3). Finally, the size of the field-of-
view in the case of GRFs compared to traditional masks is examined (Sect.11.5.4). In the following, coded mask
patterns based on Gaussian random fields are compared to purely random mask patterns and the mask pattern used
in the WFI-instrument onboardBeppoSAX.
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Figure 11.11.: Deterioration of the auto-correlation functionψ(t)
G (x) ⊗ ψ(t)

G (x) from two thresholded realisationsψ(t)
G (x)

(dashed) in comparison to the initial Gaussian PSFcG(x) (solid).

11.5.1. Simulation setup

In the following, the performance of the coded mask is examined as a function of photon statistics. The statistical
significanceσ of a simulated observation is defined to be

σ =
Nsource√

Nbg
, (11.13)

whereNsourceandNbg denote the source and background count rates, respectively. Here it should be emphasised,
thatσ, Nsource and Nbg always refer to the number of actually detected photons which makes a difference when
considering the coded mask employed in BeppoSAX’s WFI instrument, in which the average transparency is not
equal to 1/2.

Observations were simulated by randomly choosing 2Nsourcehomogeneously distributed photon impact positions
x across the mask face. In order to emulate the random process of photons penetrating the mask, a homogeneously
distributed random numberr from the intervalr ∈ [0 . . . 1] was drawn for each photon, and compared to the value
ψ(x) of the GRF at the same positionx. In the caser > ψ(x) the photon was assumed to be able to penetrate the
mask, whereas in the caser ≤ ψ(x) the photon was taken to be absorbed by the mask. For BeppoSAX’s mask
pattern, which has an average transparency of 1/3, a total number of 3Nsourcephotons was simulated.

For the background, which was assumed to be homogeneous,Nbg photon impact positions were determined and
the count rates in the corresponding pixels were increased accordingly. Background count rates were fixed to a
value ofNbg = 104 photons, which are typical for an instrument like WFI in a 100 second exposure.

The resulting fieldψ(sim) containing the number of photons that struck a certain pixel was then correlated with
the original mask patternψ, again using balanced correlation. In the next step, the highest peak was localised
in the correlated data fieldψ(sim) ⊗ ψ and its significanceΣ was determined by comparing the peak heightamax =

max{ψ(sim)⊗ψ} to the level of fluctuationsσ2
ψ = 〈

(
ψ(sim) ⊗ ψ

)2
〉 in the field. If the peak had a significanceΣ = amax/σψ

exceeding 3 and was located at a position which deviated less than half a PSF width from the nominal position, the
simulated detection was taken to be successful. A particular realisation of a Gaussian random field was exposed
to 100 simulated photon distributions from which the detection probabilityp (i.e. the occurence of a≥ 3σψ-peak
located at the correct position) and the false detection probabilityq (i.e. the occurence of a≥ 3σψ-peak at a wrong
position) was derived. The sample variance in comparing 100 realisations of Gaussian random fields was used to
derive errors onp andq. For the purpose of this work, the detector efficiency and position response were assumed
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11.5.2 Point source sensitivity of a set of Gaussian random fields
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Figure 11.12.: Point source sensitivity in on-axis observations of a set of GRFs: The detection probabilityp(σ) (solid
lines, closed symbols) and the false detection probabilityq(σ) (dashed lines, open symbols) are plotted as functions of
statistical significanceσ for PSF widthsσx = 2 (squares),σx = 2

√
2 (circles),σx = 4 (triangles) andσx = 4

√
2

(diamonds), in comparison to purely random masks (dotted line, stars) and BeppoSAX-WFI pattern (dash-dotted line,
crosses). In contrast to the ensemble of GRFs it is not possible to state an ensemble variance forp(σ) andq(σ) in the case
of BeppoSAX’s pattern. The data points have been slightly displaced for better visibility.

to be ideal.

11.5.2. Point source sensitivity of a set of Gaussian random fields

Fig. 11.12shows the detection probabilityp and the false detection probabilityq as a function of photon statistics,
expressed in terms of statistical significanceσ for GRFs, a purely random mask and BeppoSAX’s URA pattern.
The source was assumed to lie on the optical axis, i.e. the mask pattern is imaged completely onto the detector.
Common to all mask patterns is the fact thatp rises with statistical significance, and thatq drops accordingly.
But while reliable observations can be done using the BeppoSAX-pattern or random patterns even at low photon
statistics of 2− 3σ, the patterns based on GRFs require high photon fluxes. For them, observations are feasible
starting from' 9σ. The reason why GRFs are less sensitive to the traditional mask pattern is the fact that they
imprint a weaker modulation of the shadowgram. Furthermore, one immediately notices the trend that the patterns
are more sensitive for wider PSF widths due to the increase in variance of the mask pattern with increasing PSF
width. Thus, position resolution is traded for sensitivity.

Fig. 11.13shows the analogous results for an off-axis observation in which only half of the mask pattern has been
imaged onto the detector. The result corresponds to the findings for the case of normal incidence, butp(σ) andq(σ)
are shifted to higher values ofσ, which is due to the fact, that only half of the photons actually reach the detector
and that the reconstruction has to cope with the decreased signal. Again, one attains higher sensitivities for wider
PSFs in the case of patterns based on GRFs.

Common to all figures is the fact, that the curvesp(σ) andq(σ) are not adding up to one, which is caused by
the combined criterion where apart from the correct peak position a minimal peak height above the correlation
background is required, which is often not fulfilled in the cases of low photon statistics.

11.5.3. Sensitivity in observations of extended sources

In addition, suitable simulations were carried out in order to assess the performance of GRFs in the observation of
extended sources, such as supernova remnants, structures in the Milky Way and clusters of galaxies. Typical sizes
of those sources range between arcminutes and a degree. For simplicity, the source was assumed to be described by
a Gaussian profile with extensionσprofile = 2 pixels. The shadowgram recorded in observations of extended sources
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Figure 11.13.:Point source sensitivity in off-axis observations (50% obscuration) of a set of GRFs: The detection prob-
ability p(σ) (solid lines, closed symbols) and the false detection probabilityq(σ) (dashed lines, open symbols) are given
for PSF widthsσx = 2 (squares),σx = 2

√
2 (circles),σx = 4 (triangles) andσx = 4

√
2 (diamonds), in comparison to

purely random masks (dotted line, stars) and BeppoSAX’s WFI pattern (dash-dotted line, crosses).

are superpositions of slightly displaced point source shadowgrams, where the relative intensities follow from the
source profile. Consequently, the imaging of extended sources is simulated by convolving the mask pattern with
the source profile prior to the ray-tracing. Despite that, the image reconstruction has been carried out with the
unconvolved mask pattern.

Fig. 11.14gives the dependence of the detection probabilityp and the correspondingq on the photon counting
statisticσ. In the observation of extended sources, the patterns based on GRFs are superior to the traditional
approaches: While reliable detections can be achieved starting fromσ >

∼ 10 (for σx = 4
√

2) up toσ >
∼ 20 (for

σx = 2), the performance of the traditional masks is notably worse. At the examined levels of photons statistics,
the detection probabilityp stays close to zero and shows but a shallow increase withσ in the case of BeppoSAX’s
URA pattern.

The good performance of the GRFs, and their decreasing performance with correlation length, i.e. PSF widthσx

is of course to be traced back to the fact, that mask patterns with large structures are less affected by the convolution
with the source profile than mask patterns exhibiting small structures; in the extreme case of random masks or
BeppoSAX’s pattern, the structures are washed out and consequently, the modulation of the shadowgram is very
weak. This can be circumvent, however, by tuning the angular size of a mask pixel to match the angular size of the
source to be observed.

11.5.4. Field-of-view in the observation of point sources

Now, the size of the field-of-view, i.e. the minimal fraction of the mask pattern required to be imaged onto the
detector in order to yield a significant detection peak is investigated. For that purpose, the point source detection
probability p and the false detection probabilityq are considered to be functions of the obscurationQ, which
is defined as the fraction of the mask area imaged onto the detector. The number of background photons was kept
fixed to beNbg = 104, while the number of source photonsNsourcewas diminished by this factor ofQ prior to the ray-
tracing. Their number was fixed to yield a significance ofσ = 20 for Q = 1, i.e. for the case of complete imaging.
The background photons were assumed to be homogeneously distributed. The simulation and the derivation of the
values forp(Q) andq(Q) were carried out in complete analogy to Sect.11.5.2.

The results are depicted in Fig.11.15: While the traditional patterns show a good performance and have a high
detection probabilityp(Q) for values ofQ >

∼ 0.1 (BeppoSAX’s pattern) andQ >
∼ 0.2 (random mask), the GRFs fall

behind significantly in performance. Imaging is only possible in the cases where a fraction of at leastQ = 0.5 . . . 0.6
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Figure 11.14.: Sensitivity in on-axis observations of extended sources of a set of GRFs: The detection probabilityp(σ)
(solid lines, closed symbols) are given along the false detection probabilityq(σ) (dashed lines, open symbols) for PSF
widths ofσx = 2 (squares),σx = 2

√
2 (circles),σx = 4 (triangles) andσx = 4

√
2 (diamonds), in comparison to purely

random masks (dotted line, stars) and BeppoSAX’s WFI pattern (dash-dotted line, crosses).

of the mask has been imaged onto the detector, resulting in a decrease of the field-of-view of about a factor of 3. . . 5,
which renders the usage of GRFs very unlikely in survey missions. Again, the GRF patterns encoding wide PSFs
are more sensitive and yield larger fields-of-view than GRFs with narrow PSFs.

11.6. Summary and outlook

In this article, a new algorithm for generating coded masks is presented that allows the construction of a mask with
defined imaging properties, i.e. point spread functions.

• The viability of constructing a coded mask for a predefined PSF as a realisation of a GRF has been shown. For
realisations generated with differing random seeds, the shape of the PSF is reproducible with high accuracy.
Due to the reproducibility of the PSF, the parameter space is greatly reduced and the necessity of running
extensive Monte-Carlo simulations is alleviated.

• The generation of 2-dimensional URA patterns requires the number of pixels in each direction to be incom-
mensurable, i.e. they are not allowed to have a common divisor. While twin prime numbers exist, mask
patterns generated that way are almost, but not quite square (Miyamoto 1977, Proctor et al.1979). Coded
masks based on GRFs may have any side length and any ratio of side lengths. Additionally, sizes chosen
equal to 2n, n ∈ N enable the usage of fast Fourier transforms. Realisations of GRFs have cyclic boundary
conditions which is a desirable feature for coded mask imagers.

• The average transparency of coded mask patterns based on scaled GRFs is equal to 1/2, irrespective of the
PSF they encode. The pixel amplitudes of a realisation are Gaussianly distributed as a consequence of the
central limit theorem. The pixel-to-pixel variance, however, is smaller in the case of GRFs compared to purely
random fields, which results in a weaker modulation of the shadowgram and hence the sensitivity is expected
to be smaller. The variance shows the trend of decreasing with increasing PSF width, which is caused by the
scaling with the maximal values of the realisation.

• Coded masks based on GRFs are chromatic in contrast to purely random fields: The mask pattern has to be
designed for a specific spectral distribution of photons due to semi-transparent mask elements. Any mismatch
in the photon spectrum of a source under observation would result in a less pronounced modulation of the
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Figure 11.15.: Decrease of the field-of-view: The source detection probabilityp(Q) (solid lines, closed symbols) and
the false detection probabilityq(Q) (dashed lines, open symbols) as functions of the obscurationQ are shown for a set of
Gaussian random fields for varying PSF width:σx = 2 (squares),σx = 2

√
2 (circles),σx = 4 (triangles) andσx = 4

√
2

(diamonds). In comparison, a purely random mask (dotted line, stars) and BeppoSAX’s WFI pattern (dash-dotted line,
crosses) are considered.

shadowgram, which in turn affects the sensitivity of the coded mask imager. A possible workaround is
the usage of thresholded Gaussian random fields, that show pointy auto-correlation functions in contrast
to smooth target PSFs. Another advantage is their enhanced sensitivity due to the stronger modulation of
the shadowgram. The properties of thresholded realisations, however, show a large sample variance which
requires selections with suitable criteria after construction.

• Ray-tracing simulations including finite photons statistics and background noise show, that the sensitivity of
GRFs falls behind that of purely random masks and URA patterns like the one employed in BeppoSAX by a
factor of 2. . . 3 in the observation ofpoint sources, depending on PSF width. For GRFs, the sensitivity was
found to depend exponentially on PSF width, one is trading sensitivity for position resolution.

• The sensitivity of patterns based on GRFs is significantly better in the observation ofextended sourcesbecause
their comparably large structures are less affected by the convolution with the source profile than traditional
masks that possess pronounced structures on small scales.

• Finally, the size of the field-of-view of GRFs in comparison to traditional masks is examined. It is found that
reliable imaging can only performed with GRFs, if a large fraction of the mask is imaged onto the detector.
In contrast, purely random masks and especially BeppoSAX’s URA pattern enable imaging at large off-axis
angles. Comparing the resulting fields-of-view for the preset number of photons shows, that the field-of-view
of patterns based on GRFs are smaller by a factor of 3. . . 5 (depending on PSF width).

Although the shortcomings of Gaussian random fields with respect to point source sensitivity, chromaticity and
localisation accuracy make their usage in observing point sources doubtful, they may find application in obser-
vations of extended sources, while simultaneously providing a moderate performance in the observation of point
sources. Coded mask patterns on the basis of GRFs may be aesthetically pleasing because they utilise an abstract
cosmological concept for a technological application.

A paper entitledCoded mask imaging of extended sources with Gaussian random fieldswhich summarises the
contents of this chapter has been submitted to the journalMonthly Notices of the Royal Astronomical Societyand
is available online (preprint astro-ph/0407286).
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12. Gravitational Lensing

12.1. Introduction

Gravitational light deflection (Einstein1911, 1916, 1936) has evolved since its first observational confirmation
during a solar eclipse in 1919 (Dyson et al.1920) which was a grand confirmation of Einstein’s theory of relativity,
to a sound tool in astronomy and cosmology. Of special interest to this thesis is the gravitational light deflection on
the cosmological large scale structure which can be observed by tiny distortions of images of distant galaxies. In this
chapter, the theory of gravitational light deflection is developed (Sect.12.2), with special emphasis on gravitational
light deflection of the large scale structure. In Sect.12.3, a code is described, that can perform ray-tracing studies
of gravitational light deflection on numerical simulations of cosmic structure formation.

12.2. Gravitational light deflection

12.2.1. Light deflection from Fermat’s principle

The equation for the propagation of light through arbitrary space times is given by the geodesic equation (Misner
et al. 1973). The Minkowski metric of special relativity is assumed to be weakly perturbed by the gravitational
potentialΦ. In this case, the line element ds reads:

(ds)2 = (1+
2
c2
Φ)c2dt2 − (1−

2
c2
Φ)dx2 (12.1)

For a geodesic, the line element ds vanishes:

ds= 0 −→ (1+
2
c2
Φ)d2t = (1−

2
c2
Φ)dx2. (12.2)

From this, an effective index of refractionneff can be derived:

|dx|
dt
= c′ =

c
neff

with neff ≡ 1−
2Φ
c2

> 1, (12.3)

i.e. light travels slower in potential wells. This immediately gives the time delay of a light ray transversing a
gravitational field, commonly referred to as the Shapiro delay:

dt =
∣∣∣∣∣dx
c′

∣∣∣∣∣ = neff
|dx|
c
−→ ∆t = −

2
c3

∫
|dx| Φ (12.4)

The photon trajectory can be parameterised byx(s) in terms of an affine parameters, chosen such that|dx/ds| = 1,
with the initial pointxi and the final pointx f . The local tangent to the photon trajectory is defined bye ≡ dx/ds.
Fermat’s principle now states that the path actually taken by the photon minimises the run time

∫
neffd |x|:

δ

∫ x f

xi

ds

√
dx2

ds2
neff (x(s)) = 0 (12.5)

Carrying out the variation for the specific choice ofs yields:

∇n− e(e∇n) −
de
ds

n = 0 −→
de
ds
=
∇⊥n

n
= ∇⊥ ln n ' −∇⊥

(
2Φ
c2

)
(12.6)
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Here, the perpendicular gradient is defined by∇⊥ ≡ ∇−e(e∇). The deflection angleα is easily obtained as difference
between the initial and final tangents:

de
ds
= −

2
c2
∇⊥Φ −→ α̂ = ef − ei =

2
c2

∫
ds∇⊥Φ (12.7)

In cosmological applications, the deflection angle ˆα is very small (below 1.′0, such that the integration can be
carried out along a straight line in the neighbourhood of the deflecting mass instead of the lensing geodesic, which
corresponds to the Born approximation in atomic and nuclear physics. Hence, the change of direction of a light
ray is taken to happen instantaneously and the distribution of masses giving rise to a gravitational deflection can
be considered to be collapsed onto a surface mass densityκ(θ). The lensing potentialψ(θ), which replaces the
gravitational potentialΦ in this limit, can be obtained by solving the two-dimensional Laplace equation∆ψ(θ) =
2κ(θ), where the natural logarithm is now the Green-function for the Laplacian, and the deflection angle is given by
α(θ) = ∇ψ(θ):

ψ(θ) =
1
π

∫
d2θ′κ(θ′) ln

∣∣∣θ − θ′∣∣∣ with κ(θ) =

(
c2

4πG
Ds

DdDds

)−1 ∫
dzρ(ξ, z). (12.8)

12.2.2. Cosmological weak lensing

12.2.2.1. Imaging by a cosmological lens: the lens equation

The lens equation can be read off from Fig.12.1:

η =
Ds

Dd
ξ − Ddsα̂(ξ), (12.9)

where theD’s denote the angular diameter distances. Introducing angular variablesη = Dsβ andξ = Ddθ yields
the lens equation

β = θ −
Dds

Ds
α̂(θ) ≡ θ −α, (12.10)

i.e. a source at true positionθ can be seen by an observer at positionθ. The reduced deflection angleα is given by
the gradient∇⊥ψ of the lensing potentialψ. The distortion of galaxy images is given by the Jacobian of the optical
mapping:

J =
∂β

∂θ
=

(
δi j −

∂2ψ(θ)
∂θi∂θ j

)
=

(
1− κ − γ1 −γ2

−γ2 1− κ + γ1

)
(12.11)

with the convergenceκ and the two components of shearγ1 andγ2, which manifest themselves in the distortion of
galaxy images.

12.2.2.2. Weak lensing observables

The shape of (elliptical) galaxies can be described by the complex ellipticity,

ε ≡
Qxx − Qyy + 2iQxy

Qxx + Qyy + 2
√

QxxQyy − Q2
xy

, (12.12)

which is built from the second momentsQi j of the brightness distributionI (θ), centered on̄θ,

Qi j =

∫
d2θ I (θ)(θi − θ̄i)(θ j − θ̄ j)∫

d2θ I (θ)
, (12.13)

with (i, j) ∈ {x, y}. Gravitational lensing distorts the apparent shape of background galaxies. The transformation
between the (complex) source ellipticityε′ and the image ellipticityε is given by:

ε =
ε′ + g

1+ g∗ε′
for |g| ≤ 1 and ε =

1+ (ε′)∗g
(ε′)∗ − g∗

for |g| > 1. (12.14)
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12.2.3 Applications of weak lensing in cosmology

ξ
η

θβ

α

sourcelensobserver

Figure 12.1.: Geometry of a gravitational lensing system. The distance to the lens is denoted byDd, the distance to the
source byDs and the distance from the lens to the source byDds.

with the reduced shearg, being of the orderg ' 10−2 in typical weak lensing applications:

g(θ) =
γ(θ)

1− κ(θ)
. (12.15)

12.2.3. Applications of weak lensing in cosmology

12.2.3.1. Inversion of shear maps

A primary application of weak lensing data is the reconstruction of cluster mass maps. The distortion of images of
background galaxies can be used to determine the tidal gravitational field of a cluster. The original algorithm by
Kaiser & Squires(1993) has been improved and extended by a number of authors, most notably bySchneider &
Seitz(1995) andSeitz & Schneider(1995, 1996, 1997). The shear fieldγ(θ) can be obtained by convolution of the
surface mass densityκ(θ) with the kernelD:

γ(θ) =
1
π

∫
d2θ′D(θ − θ′) κ(θ′) withD(θ) =

θ2
2 − θ

2
1 − 2iθ1θ2

|θ|4
= −

1
(θ1 − iθ2)2

(12.16)

This equation can be inverted in Fourier space, which yields a convolution relation linking the shear field to the
surface mass density up to an overall additive constantκ0. Complications that arise include boundary artifacts,
violation of the weak lensing assumption and random distribution of lensed galaxies which causes additional shot
noise to error estimators.

12.2.3.2. Cosmic shear

The weak distortion of the images of background galaxies due to lensing on the large-scale structure is commonly
referred to as cosmic shear. It has been discovered almost simultaneously by several groups (Bacon et al.2000,
Kaiser2000, van Waerbeke et al.2000, Wittman et al.2000). From the angular 2-point correlation functionCκ(`)
of a weak lensing quantity, e.g. the weak lensing convergenceκ, the normalisationσ8 of the dark matter power
spectrumPδ(k) can be determined with Limber’s equation (Bartelmann & Schneider2001):

Cκ(`) =
9H4

0Ω
2
M

4c4

∫ wH

0
dw

W̄2(w)
a2(w)

Pδ

(
`

fK(w)
, w

)
, with W̄(w) =

∫ wH

w

dw′G(w)
fK(w′ − w)

fK(w′)
. (12.17)

In this equation,G(w) denotes the distance distribution of the background sources to be imaged,wH is the horizon
size out to which the integration dw along the line-of-sight is extended, andfK(w) takes care of the geometry of the
universe.
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12.3. Ray-tracing simulations on the large-scale structure

12.3.1. A ray-tracing code for cosmological n-body simulations: leica.c

For ray-tracing studies on cosmological density fields, one needs to solve the transport equation numerically in an
efficient way:

d2

dw2
x + Kx = −

2
c2
∇⊥Φ(x), (12.18)

wherex is the position of the light ray,w the comoving distance to the observer,K the spatial curvature andΦ the
gravitational potential. This is reached by discretising the density field into so-called lens planes along the radial
comoving variablew (Schneider et al.1992, Jain et al.2000). In this approximation, the smooth lensing geodesic
is replaced by a series of straight lines and the Born approximation is used for determining the deflection on each
lens plane. The matter contentδ(x) in each slice of thickness∆w at distancewi is projected onto the lens planes
perpendicular tow to yield the surface mass densityδproj

i (x, wi):

δ
proj
i (x, wi) =

∫ wi+
∆w
2

wi−
∆w
2

dw δ(x). −→ ∆ψi(x) =
8πG
3c2

δ
proj
i (x) (12.19)

From the projected overdensity fieldδproj
i (x), the lensing potentialψi(x) is most conveniently obtained by solving

Laplace’s equation in Fourier space.
The (angular) positionθi of the light ray on the planei can be determined from the angleθi−1 and the perpendicular

gradient of the lensing potential on the planei − 1:

θi = θi−1 −
fK(wi − wi−1)
a(wi−1) fK(wi)

∇⊥ψi−1 with the initial angleθ0 (12.20)

The gradient has to be evaluated at the spatial position of the ray on the (i − 1)th plane, i.e. atxi−1 = fK(wi−1)θi−1. In
this equation,fK(w) is the angular diameter distance, which is defined as:

fK(w) =


1
√

K
sin(
√

Kw) ,ΩK > 0, spherical,

w ,ΩK = 0, flat,
1
√
|K|

sinh(
√
|K|w),ΩK < 0, hyperbolic.

(12.21)

K denotes the curvature of spatial hypersurfaces,ΩK = ΩM + ΩΛ − 1 andK = (H0/c)2ΩK . The shear of light rays
is evaluated by computing the evolution of Jacobian matrixJ on each lens planei:

Ji = Ji−1 −
fK(wi−1) fK(wi − wi−1)

a(wi−1) fK(wi)
Ui−1 · Ji−1 with circular initial beams,J0 =

(
1 0
0 1

)
(12.22)

The quantity analogous to the lensing potential gradient∇⊥ψ(x) is the tidal matrixU, which contains the second
derivatives of the gravitational potential:

Ui =

 ∂2ψi

∂x2
∂2ψi

∂x∂y
∂2ψi

∂y∂x
∂2ψi

∂y2

 (12.23)

The final Jacobi-matrixJ can be easily decomposed via

J = Jn =

(
1− κ − γ1 −γ2 + ω
−γ2 − ω 1− κ + γ1

)
, (12.24)

to yield the convergenceκ, the two components of the shearγ1,2 to formγ =
√
γ2

1 + γ
2
2 and the rotation of the light

bundleω. From the inverse determinant ofJ, the magnificationµ = (detJ)−1 can be determined. As explained in
Sect.12.2.2.2, the distortion of galaxy images, which is described by their ellipticityε and phase angleϕ, can be
derived from the reduced shearg.
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12.3.2 Features

12.3.2. Features

• The code can compute weak lensing geodesics in arbitrary cosmologies, which are described in terms of the
fluid densitiesΩM,ΩK ,ΩQ andΩΛ with their respective equation of state.

• Sinceleica.c works in comoving coordinates, it is especially suited for weak lensing studies modelled on
cosmologicaln-body simulations, that are commonly carried out in the Lagrangian frame of reference.

• leica.c determines not only the shear fieldγ, but determines the actual change of galaxy ellipticities im-
printed on the natural distribution of phase angles (which are uniformly distributed) and ellipticitiesε,

p(ε)dε =
1

√
2πσε

exp

(
−
ε2

2σ2
ε

)
dε, (12.25)

which follow a Gaussian distribution withσε ' 0.2. From this data, it can determine tangential ellipticities
relative to the centre of an aperture and derive apterture mass measures (Kaiser1995, Schneider & Bartelmann
1997) with the most common radial weighting functions.

• The code takes account of the distributionp(z)dz of faint blue galaxies in redshiftz (Ellis 1997) that are
commonly selected in weak lensing surveys; and determines target redshifts for each ray from a suitably
transformedΓ-distribution,

p(z)dz=

[
1
β
Γ

(
3
β

)]−1

z2 exp(−zβ)dz (12.26)

with β = 3
2 and mean redshift〈z〉 = Γ(4/β)/Γ(3/β) = 3/2.

• It can carry out line-of-sight integrations of scalar quantities along the weak lensing geodesics, while simulta-
neously taking care of the change in solid angle due to the focusing and defocusing effect of overdensities and
underdense regions, respectively. The change in solid angle is equal to the lensing magnificationµ−1 = detJ,
whereJ is the Jacobian of the weak lensing mapping.

• leica.c can deal with gravitomagnetic corrections to weak lensing. Furthermore, it can determine line-
of-sight integrations of the divergence div⊥A = dAx/dx + dAy/dy of the gravitomagnetic fieldA for the
Rees-Sciama effect and of rot⊥A = dAy/dx− dAx/dy for the gravitational Faraday rotation (see Chapter13).

• The code features several improvements with respect to interpolation and numerical derivatives compared to
the code byHamana & Mellier(2001), using bilinear interpolations and derivatives computed using the mean
of the left and right differential quotients. It outperforms the code byHamana & Mellier(2001) in speed
reaching up to 106 rays per minute on a 1.1 GHz G4 processor. For extensive lensing studies, an OpenMP1

parallelised version is being written.

Examples of convergence fieldsκ(θ) and shear fieldsγ(θ) derived with theleica.c code for a cosmological
n-body simulation are given in Fig.12.2. The output density field was projected ontoN = 30 lens planes, ranging
in redshift fromz = 0.016 out toz = 1.421 with comoving spacing of∆w = 100 Mpc. The lensing potential was
determined on a Cartesian grid with 10242 mesh points. Target redshifts have been drawn independently for each ray
from the generic distribution. A detailed view of the two shear componentsγ1(θ) andγ2(θ) is shown in Fig.12.3.
In this case, a single lens plane atz = 0.016 was imaged by rays with identical target redshifts ofz = 0.1. The
+- and×-shaped shear pattern induced by the clusters can clearly be seen. The functionality of the code has been
verified by tests on analytical cluster profiles, where the outputs are close (relative deviation<

∼ 10−3) to theoretical
expectations.

12.4. Summary and conclusion

A primary field of application will be ray-tracing studies of the Rees-Sciama effect (see Chapter13) and the inves-
tigation of weak lensing properties of filaments.For the visualisation, Francesco Pace (ITA, Heidelberg) provided
mass sheets from a cosmologicaln-body simulation carried out with GADGET.

1http://www.openmp.org
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Figure 12.2.: Weak lensing convergenceκ(θ) (left panel) and reduced shearg(θ) (right panel) in linear shading. The end
points of rays are drawn from the generic redshift distribution of faint blue galaxies.

−20 −15 −10 −5 0 5 10 15 20

−20

−15

−10

−5

0

5

10

15

20
PSfrag replacements

x-axis [deg]

y-
ax

is
[d

eg
]

−20 −15 −10 −5 0 5 10 15 20

−20

−15

−10

−5

0

5

10

15

20
PSfrag replacements

x-axis [deg]

y-
ax

is
[d

eg
]

Figure 12.3.: Weak lensing shear fieldsγ1(θ) = γ+(θ) (left panel) andγ2(θ) = γ×(θ) (right panel) in linear shading, for a
single lens plane atz= 0.016 (corresponding tow = 50 Mpc) and with all target redshifts fixed toz= 0.1.
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13. Gravitomagnetic lensing and the integrated
Sachs-Wolfe/Rees-Sciama effect

Abstract

Dark matter currents in the large-scale structure give rise to gravitomagnetic terms in the metric, which affect the light propa-
gation. Corrections to the weak lensing power spectrum due to these gravitomagnetic potentials are evaluated by perturbation
theory. A connection between gravitomagnetic lensing and the integrated Sachs-Wolfe (iSW) effect is drawn, which can be
described by a line-of-sight integration over the divergence of the gravitomagnetic vector potential. This allows the power spec-
trum of the iSW-effect to be derived within the framework of the same formalism as derived for gravitomagnetic lensing and
reduces the iSW-effect to a second order lensing phenomenon. The three-dimensional power spectra are projected by means
of a generalised Limber-equation to yield the angular power spectra. While gravitomagnetic corrections to the weak lensing
spectrum are negligible at observationally accessible scales, the angular power spectrum of the iSW-effect should be detectable
as a correction to the CMB spectrum up to multipoles of` ' 100 with the PLANCK-satellite.

13.1. Introduction

Cosmological weak lensing (Bartelmann & Schneider2001) has evolved to be a valuable tool in cosmology. Weak
lensing surveys have contributed significantly to the determination of the dark matter power spectrum and to the
estimation of its amplitudeσ8 (Schneider et al.1998, van Waerbeke et al.2000) by the measurement of cosmic
shear and have enabled the reconstruction of the dark matter distribution in rich clusters of galaxies (e.g.Kaiser &
Squires1993, Seitz et al.1996, Ménard et al.2003).

So far, only static matter distributions have been considered but from the solution to Maxwell’s equations in the
framework of general relativity it follows that gravitomagnetic potentials generated by moving masses should alter
the predictions for light deflection (Schneider et al.1992). While gravitomagnetic corrections to lensing are small,
being of orderυ/c, whereυ is the velocity of the deflecting mass, they may contribute to the weak cosmological
lensing: The cluster peculiar velocities following from a cosmologicalN-body simulation like the Hubble-volume
simulation (Colberg et al.2000, Jenkins et al.2001) are well described by a Gaussian distribution with zero mean
and a standard deviation ofσυ ' 300 km/s, which is a fraction of 10−3 of the speed of light. Thus, relativistic effects
influence the lensing signal appreciably in<∼ 1% of all clusters. In filaments (Colberg et al.2004) where matter is
funneled towards the clusters, velocities are even higher: Infall velocities up to a few 103 km/s have been measured.

The integrated Sachs-Wolfe (iSW) effect, or Rees-Sciama (RS) effect (Sachs & Wolfe1967, Rees & Sciama1968)
arises if CMB photons encounter time-varying gravitational potentials on their passage from the last-scattering
surface to the observer. When transversing time-varying potentials, the energy gains and losses a CMB photon
experiences in entering and leaving potential wells do not cancel exactly. In this way, one expects a net blueshift of
CMB photons in forming voids and a net redshift in matter-accreting clusters of galaxies.

The iSW/RS effect has been studied theoretically in individual objects (Martínez-González et al.1990) and can be
used for the investigation of cluster mergers (Rubiño-Martín et al.2004). More importantly, it is sensitive to mapping
the large-scale structure as it highlights the sites of active structure formation (Kaiser1982, Martínez-González &
Sanz1990, Martínez-González et al.1992, 1994, Seljak1996b). Furthermore, the iSW-effect may turn out to be a
powerful probe for dark energy’s influence on structure formation (Crittenden & Turok1996), when combined with
other tracers of structure. A numerical approach has been undertaken byTuluie & Laguna(1995a,b), who followed
photons through a cosmologicaln-body simulation and carried out the line-of-sight integration numerically.

The aim of this paper is to determine the corrections to the power spectra of weak lensing quantities caused by
gravitomagnetic terms and to derive the iSW power spectrum, both by applying perturbation theory. In comparison
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to preceeding treatments bySeljak (1996b) andCooray(2002), the novel approach taken to determine the iSW
power spectrum is by relating it to the gravitomagnetic terms in considered in lensing. Gravitomagnetic corrections
to lensing have indeed been observed byFomalont & Kopeikin(2003) in imaging radio waves from a quasar on
Jupiter, which is an outstanding archivement in VLBI astrometry. Gravitomagnetic corrections to lensing in the
large-scale structure would only be detectable by theirn-point statistics or by topological measures like Minkowski
functionals, that would be especially sensitive to the effect’s intrinsic non-Gaussianity. Concerning the iSW-effect,
there are a quite a few reports on its detection in WMAP data in cross correlation with various populations of tracer
objects (Afshordi et al.2004, Fosalba et al.2003, Boughn & Crittenden2004, Nolta et al.2004, Hirata et al.2004),
but so far it has not been possible to derive values for single multipoles based on CMB data alone.

The paper is structured as follows: After a compilation of key formulae and the derivation of Limber’s equation
for vector fields in Sect.13.2, the power spectrum of weak gravitational lensing is considered and the correction
terms due to gravitomagnetic potentials are worked out by perturbation theory in Sect.13.3. Then, the iSW-effect
is related to gravitomagnetic lensing and its power spectrum is subsequently derived in a perturbative approach in
Sect.13.4. The results are summarised in Sect.13.5.

13.2. Key formulae

The assumed cosmological model is the standardΛCDM cosmology, which has recently been supported by obser-
vations of the WMAP satellite1 (Spergel et al.2003). Parameter values have been chosen asΩM = 0.3,ΩΛ = 0.7,
H0 = 100hkm s−1 Mpc−1 with h = 0.7,ΩB = 0.04,ns = 1 andσ8 = 0.9.

13.2.1. Structure formation

The cosmic density fieldρ given in terms of the dimensionless density perturbationδ = (ρ − 〈ρ〉)/〈ρ〉, where〈ρ〉
is the average density of matter. The 2-point correlation properties of the overdensity fieldδ are described by the
power spectrumP(k):

〈δ(k)δ∗(k′)〉 = (2π)3δD(k − k′)P(k), where (13.1)

δ(k) =
∫

d3x
(2π)3

δ(x) exp(−ikx) (13.2)

is the Fourier transform of the overdensity fieldδ. The normalisation of the power spectrumP(k) is given by the
parameterσ8, i.e. the variance ofδ on scales ofR= 8 Mpc/h:

σ2
R =

1
2π2

∫ ∞

0
dk k2W2(kR)P(k). (13.3)

Here,W is a window function of top-hat shape, the Fourier-transform of which is given by:

W(x) =
3
x3

[sin(x) − xcos(x)] =
3
x

J1(x). (13.4)

The shape of the power spectrumP(k) ∝ kns · T2(k) is well approximated by the transfer functionsT(k) suggested
by Bardeen et al.(1986). They read in case of adiabatic initial conditions:

T(q) =
ln(1+ 2.34q)

2.34q

[
1+ 3.89q+ (16.1q)2 + (5.46q)3 + (6.71q)4

]− 1
4 (13.5)

The wave vectork is commonly divided by the shape parameterΓ introduced byEfstathiou et al.(1992) for CDM
models and extended to models withΩM , 1 bySugiyama(1995):

q =
k/Mpc−1h
Γ

with Γ = ΩMhexp

−ΩB ·

1+ √2h
ΩM

 . (13.6)

1http://map.gsfc.nasa.gov/
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13.2.2 Dark matter currents

In linear structure formation, each Fourier-mode grows independently and at the same rate. The time dependence
of the overdensity fieldδ can be described by the growth functionD(a):

δ(a) = δ0D(a) with D(a) = a
d′(a)
d′(1)

. (13.7)

The shape ofd′(a) is well approximated by the formula suggested byCarroll et al.(1992):

d′(a) =
5
2
ΩM(a)

[
Ω

4/7
M (a) −ΩΛ(a) +

(
1+
ΩM(a)

2

) (
1+
ΩΛ(a)

70

)]−1

. (13.8)

13.2.2. Dark matter currents

The continuity equation ˙ρ = −div(ρυ) requires the existence of large-scale coherent matter streamsj = ρυ super-
imposed on the Hubble flow due to the formation of structure. In Fourier space, the relation between density and
velocity reads in the Eulerian frame:

υ(k) = −iaH(a) f (Ω)
k
k2
δ(k) = −iȧ f(Ω)

k
k2
δ(k). (13.9)

The 1/k-dependence causes cosmological velocities to come predominantly from perturbations on larger scales
in comparison to those that dominate the density field.H(a) = d ln(a)/dt is Hubble’s function. The functionf
describes the dependence of the equation of continuity on cosmic time and is a function of the mass densityΩM

(Peebles1980, Lahav et al.1991):

f (Ω) =
d lnδ
d lna

=
d lnD(a)

d lna
' ΩM(a)0.6 (13.10)

In analogy to eqn. (13.7), time evolution of of dark matter current velocities in the comoving frame is described by
G(a),

G(a) =
g′(a)
g′(1)

with g′(a) ≡ H(a) f (Ω). (13.11)

The theory of peculiar velocity fields is reviewed in detail inDekel(1994) andStrauss & Willick(1995).
In general, the effects considered here are sensitive to density weighted velocities. The Fourier transform of vector

fieldsq(x) = δ(x)υ(x) can be derived with the convolution theorem:

q(k) =
∫

d3x
(2π)3

q(x) exp(−ikx) =
1
2

∫
d3p

(2π)3

[
υ(p)δ(k − p) + υ(k − p)δ(p)

]
, (13.12)

where the integrand has been symmetrised in eqn. (13.12).

13.2.3. Limber’s equation for vector fields

For the derivation of the angular power spectrum of the gravitomagnetic corrections to weak cosmological lensing
or that of the iSW-effect, a variant of Limber’s equation is necessary that is able to deal with projections of vector
fieldsq(x) instead of scalar fields. The derivation presented here is generalised fromVishniac(1987). Consider a
vector fieldq(x) and its Fourier transformq(k):

q(x) =
∫

d3k q(k) exp(ikx) (13.13)

Any effect κ in question is assumed to measure a projection ofq(x) on the line-of-sight, wheree is a unit tangent
vector on the photon geodesic.W(w) is a general weighing function dependent on the comoving distancew which
describes its redshift dependence and is later to be replaced by e.g. the lensing efficiency function:

κ =

∫ wmax

0
dwW(w)

[
e · q

]
=

∫ wmax

0
dwW(w)

[
e · q(k)

] ∫
d3k exp(ikx) (13.14)
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The decomposition of the projected fieldκ(θ) into spherical harmonicsỲ m(θ) is:

κ(θ) =
∞∑
`=0

+∑̀
m=−`

κ`mỲ m(θ)↔ κ`m =

∫
4π

dΩ κ(θ)Y∗`m(θ) with (13.15)

Ỳ m(θ) =

√
2` + 1

4π

√
(` − |m|)!
(` + |m|)!

P`m (cosθ) exp(imφ) . (13.16)

In the random phase approximation, one obtains for the variance〈|κ`m|
2〉 of κ(θ) in two directionse1 ande2:

〈|κ`m|
2〉 =

∫ wmax

0
dw1W(w1)

∫
4π

dΩ1Ỳ m(θ1)
∫ wmax

0
dw2W(w2)

∫
4π

dΩ2Y∗`m(θ2)
∫

d3kexp(ike1w1) exp(−ike2w2)〈
[
e1q(k)

] [
e2q∗(k)

]
〉.

(13.17)
According to the cosmological principle, there is no preferred orientation, which allows to replace〈|a`m|

2〉 with its
average value over allm for a given`:

Cκ(`) =
1

2` + 1

+∑̀
m=−`

〈|κ`m|
2〉. (13.18)

The vector fieldq(k) can be separated into components parallel and perpendicular to the line-of-sighte:

q = q‖ + q⊥ with q‖ = e · (q · e) andq⊥ = q− q‖ = e× (q× e). (13.19)

For the projectionse · q⊥ = 0 ande× q‖ = 0 are valid. Eqn. (13.17) is further simplified by choosing the coordinate
system in a way that thez-coordinate is parallel to the wave vector,ez ‖ k. Introducing spherical coordinates (θ, φ)
and puttingx = cosθ on obtains:

q‖
k
k
= xq‖ andq⊥

k
k
=
√

1− x2 exp(−iφ)q⊥ (13.20)

Furthermore, with exp(ikew) = exp(ikxw), the expression for the correlator is separated into:

〈q(k)q∗(k)〉 = x1x2〈q‖(k)q∗‖(k)〉 +
√

1− x2
1e−iφ1

√
1− x2

2eiφ2〈q⊥(k)q∗⊥(k)〉. (13.21)

With these simplifications, the integrals over the azimuthal anglesφ1 andφ2 can be carried out. Inserting the

orthonormality relation
∫ 2π

0
dφexp

[
i(n−m)φ

]
= 2πδmn reduces the summation overm to a single term, which is

m = 0 for the components parallel to the line-of-sight and|m| = 1 for the components perpendicular to the line-of-
sight. The final expression for the power spectrumCκ(`) is now split into the two orthogonal projections:

Cκ(`) = C‖κ(`) +C⊥κ (`). (13.22)

13.2.3.1. Components parallel to the line-of-sight C‖κ(`)

For the power spectrumC‖κ(`) of the components ofq‖ parallel to the line-of-sight, one obtains:

C‖κ(`) = 4π
∫

dkk2
∫ wmax

0
dw1W(w1)

∫ wmax

0
dw2W(w2)

∫ +1

−1
dx1 exp(ikx1w1)

∫ +1

+1
dx2 exp(−ikx2w2) [x1P`0(x1)x2P`0(x2)] 〈q‖(k, w1)q∗‖(k, w2)〉.

(13.23)
The dx1- and dx2-integrations can be performed by taking advantage of the connection between Bessel functions
and Legendre polynomials (Watson1952, Abramowitz & Stegun1965):

J`(z) =
1

2i`

∫ +1

−1
dx P̀ (x) exp(izx), (13.24)

which can be can be generalised to give:∫ +1

−1
dx xnP`(x) exp(izx) =

1
in

dn

dzn
J`(z). (13.25)

Inserting formula (13.25) for n = 1 yields the final result:

C‖κ(`) = 2π
∫

dk
∫ wmax

0
dw1W(w1)

∫ wmax

0
dw2W(w2)

[
d

dw1
J`(kw1)

] [
d

dw2
J`(kw2)

]
〈q‖(k, w1)q∗‖(k, w2)〉. (13.26)
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13.2.3.2. Components perpendicular to the line-of-sight C⊥κ (`)

After reducing the summation to|m| = 1, the power spectrumC⊥κ (`) of the components ofq⊥ perpendicular to the
line-of-sight reads:

C⊥κ (`) =
4π

2`(` + 1)

∫
dk k2

∫ wmax

0
dw1W(w1)

∫ wmax

0
dw2W(w2)

∫ +1

−1
dx1 exp(ikx1w1)

∫ +1

+1
dx2 exp(−ikx2w2)

[√
1− x2

1P`1(x1)
√

1− x2
2P`1(x2)

]
〈q⊥(k, w1)q∗⊥(k, w2)〉. (13.27)

The integration over the polar anglesx1 andx2 is slightly more complicated than the previous case. Inserting the
definition of the associated Legendre polynomialsP`m for m= 1 gives another factor of

√
1− x2:

P`m(x) = (−1)m(1− x2)
m
2

dmP`(x)
dxm

→ P`1(x) = −
√

1− x2 dP`(x)
dx

. (13.28)

The derivative of the Legendre polynomial can be replaced via

(1− x2)
d
dx

P`(x) = ` [P`−1(x) − xP̀ (x)] , (13.29)

and the integration be carried out by inserting relation (13.25). Then, the two Bessel functions can be combined by
using the Bessel function’s derivative relation:

d
dz

[
z`J`(z)

]
= z`J`−1(z)→

J`(z)
z
=

1
`

[
J`−1 −

d
dz

J`(z)

]
, (13.30)

which yields the formula: ∫ +1

−1
dx
√

1− x2P`1(x) exp(izx) = `(` + 1)
J`(z)

z
. (13.31)

This relation allows the final result to be written as:

C⊥κ (`) = 2π`(` + 1)
∫

dk
∫ wmax

0
dw1W(w1)

∫ wmax

0
dw2W(w2)

[
J`(kw1)
w1

J`(kw2)
w2

]
〈q⊥(k, w1)q∗⊥(k, w2)〉. (13.32)

13.3. Gravitomagnetic lensing

13.3.1. Definitions

Light propagation through a slowly moving perfect fluid can be described by an effective refractive indexneff

(Schneider et al.1992):

neff = 1−
2
c2
Φ +

4
c3

A · e, (13.33)

whereΦ is the scalar potential andA are the gravitomagnetic vector potentials.edenotes a unit tangent vector along
the photon geodesic. In this approximation, the metric takes account of the matter densityρ and the matter current
densitiesj = ρυ (i.e. terms of orderυ/c), but neglects the stressesTi j = ρυiυ j + pδi j . The smallness of these terms
(being of orderυ2/c2) makes them unobservable, but they would be sensitive to the velocity tensorυiυ j , i.e. to
shear flows, velocity dispersions and turbulence.

In the near zone of a system of slowly moving bodies the retardation can be neglected; in this case the expressions
for Φ andA are given as solutions to Laplace’s equation:

∆Φ(r) = 4πGρ(r) ↔ Φ(r) = −G
∫

d3r ′
ρ(r′)
|r − r′|

(13.34)

∆A(r) = 4πGj(r) ↔ A(r) = −G
∫

d3r ′
j(r′)
|r − r′|

. (13.35)

The dark matter fluxj is defined as the momentum densityj ≡ ρυ.
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An expression for de/dw, i.e. the change in propagation direction, follows from the variational principleδ
∫

ds neff =

0. s denotes an affine parameter. The deflection angleα, being defined asα = einitial − efinal can be obtained by
integration:

α =
2
c2

∫
ds∇⊥Φ −

4
c3

∫
dse× rotA. (13.36)

The derivative perpendicular to the line-of-sight is defined via∇⊥Φ ≡ ∇Φ− e(e· ∇Φ). The first contribution toα in
eqn. (13.36) corresponds to the attractiong towards the deflecting mass viag = −∇Φ. The microscopic picture of
photon interaction with a gravitomagnetic field is illustrated in AppendixF.

The second term, however, is due to the gravitomagnetic fields generated by the matter current densitiesj. This
contribution is related to the dragging of inertial frames which gives rise to the precession of orbiting spinning
tops in the particular case of rotation of the field-generating body (Lense-Thirring precession, to be measured by
Gravity Probe B2). This formalism has been applied to various astrophysical systems, namely byIbanez(1983) to
gravitational light deflection of a rotating galaxy and bySereno(2003), who considered light deflection on rotating
stars. Furthermore, corrections to the deflection angle in galactic microlensing due to moving lenses have been
evaluated byHeyrovsky(2004).

13.3.2. Gravitomagnetic lensing by the large-scale structure

Adopting the Born-approximation, which states that the gravitational light deflection is weak such that the integral
in eqn. (13.36) can be evaluated along a straight line instead of the photon geodesic itself, it can be seen that
gravitational lensing is insensitive to derivatives of the potentials along the line-of-sight. Working out the deflection
anglesα and the tidal matrixψi j = ∂αi/∂x j while neglecting derivatives along the line-of-sight yields formulae
analogous to the case of static lensing, but with the gravitational potentialΦ replaced byΦ− 2

c A‖. Thus, the sources
of gravitational light deflection are the matter distributionδ and the component of the matter fluxj‖ parallel to the
line-of-sight. The gravitational light deflection is stronger, if an object is moving towards the observer, because the
photon stays in the interaction potential for a longer period of time, and vice versa.

With the source termδ + 2
c j‖, one obtains for the lensing convergenceκ up to the comoving distancew:

κ(θ, w) =
3H2

0Ω0

2c2

∫ w

0
dw′

fK(w′) fK(wmax− w
′)

fK(wmax)a(w′)

(
δ +

2
c

j‖

)
. (13.37)

where fK(w) = w, if spatial hypersurfaces are flat, which is the case forΩM + ΩΛ = 1. The redshift distribution of
lensed population of background sources such as faint blue galaxies is described by the distributionp(z)dz, being
recast in comoving distance,Z(w)dw = p(z)dz. Then, the average influencēZ(w) of the lever arms of the optical
path for a given configuration of source and lens is given by:

Z̄(w) =
∫ wmax

w

dw′ Z(w′)
fK(w′ − w)

fK(w′)
. (13.38)

In this work, I assume the generic distribution in redshiftz for faint blue galaxies (c.f.Ellis 1997),

p(z)dz= p0z2 exp(−zβ) with
1
p0
=

1
β
Γ

(
3
β

)
. (13.39)

with mean redshift〈z〉 = Γ(4/β)/Γ(3/β) ' 1.5 and most likely redshiftzmax = (2/β)1/β ' 1.21 for β = 3/2. For the
average convergence ¯κ, the final result reads:

κ̄(θ) =
∫ wmax

0
dw Z(w)κ(θ, w) =

3H2
0Ω0

2c2

∫ wmax

0
dw Z̄(w)

fK(w)
a(w)

(
δ +

2
c

j‖

)
.

For Z̄(w), the phenomenological fitting formula

Z̄(w) ' Z0 exp

− 1

1−
[
log(w/w0)

]b
 , (13.40)

2http://www.gravityprobeb.com
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13.3.3 Perturbative treatement
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Figure 13.1.: The redshift weighting function̄Z(w) (c.f. eqn. (13.38), rendered as a dashed line), and the fitting for-
mula (13.40) (solid line) in comparison. The maximum relative deviation between the properly evaluated function and the
fitting formula is <

∼ 3%.

with Z0 = 1.441, b = 3.186 andw0 = 2314 Mpc/h is used, which yields excellent agreement with the properly
evaluated function, as shown by Fig.13.1. The fitting formula alleviates the need of numerically carrying out the
integration in eqn. (13.38) when projecting the dark matter power spectrum.

13.3.3. Perturbative treatement

When considering gravitomagnetic corrections to gravitational lensing, the source termδ of static lensing has to
be replaced byq‖ = (1 + 2

cv‖)δ. It should be emphasised, that the fluctuations in a weak lensing shear field are
predominantly caused by modes ink-space, that are propagating perpendicularly to the line-of-sight (Blandford
et al.1991). Evaluating the correlator〈q⊥(k, w1)q∗⊥(k, w2)〉 yields apart from the dominating 2-point term,

〈q⊥(k, w1)q⊥(k, w2)〉2pt = D(w1)D(w2)〈δ(k)δ∗(k)〉, (13.41)

contributions of 3- and 4-point terms. The 2-point term stated in eqn. (13.41) is of order unity and is the basis of
the conventional theory of static gravitational lensing. In the perturbative treatment, the coupling ofk-modes in
nonlinear structure growth is neglected, integrations are implicitly taken to be restricted to quasi-linear scales.

13.3.3.1. 3-point term

The 3-point term〈q⊥(k, w1)q∗⊥(k, w2)〉3pt consists of four contributions and is of orderυ/c compared to the 2-point
term (c.f. eqn. (13.41)):

〈q⊥(k, w1)q∗⊥(k, w2)〉3pt =
1
c

∫
d3p

(2π)3

{
(13.42)

〈δ(−k, w1)υ⊥(p, w2)δ(k − p, w2)〉 + 〈δ(−k, w1)υ⊥(k − p, w2)δ(p, w2)〉+

〈δ(k, w2)υ⊥(−p, w1)δ(p− k, w1)〉 + 〈δ(k, w2)υ⊥(p− k, w1)δ(−p, w1)〉

}
Here, the relationsδ∗(k) = δ(−k) andυ∗(k) = υ(−k) were inserted, which hold for real fields. By using this fact,
the condition

∑
i ki = 0 is fulfilled which allows the 3-point correlators in eqn. (13.42) to be reduced to products of
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2-point correlators by virtue of the formulae derived in AppendixE. This yields four terms of the type〈υ⊥δ〉〈δδ〉/c
and two contributions〈υ⊥δ〉2/c2 of second order.

The correlation function can then be projected onto a plane perpendicular to wave vectork: The component of the
velocity in the celestial plane is given byυ⊥ = k × (υ × k)/k2 and henceυ⊥ = υ sinθ = υ

√
1− x2, with x = cosθ,

whereθ is the angle of separation betweenp andk. In doing this, the contributions of the type〈υ⊥δ〉2/c2 vanish
because they contain a multiplicative term〈δ(k)υ(k)〉, which is a vector field collinear tok. The remaining terms
can be combined to give:

(2π)3〈q⊥(k, w1)q∗⊥(k, w2)〉3pt =
4π
c

D(w1)D(w2)
[
g′(w1) + g′(w2)

]
∫

p2dp
∫ +1

−1
dx
√

1− x2

{
P(|p|)P(|p− k|)M(p,p− k)

[
1
|p|
+

p

|p− k|2

]

+P(|k|)
[
M(k,−p)

P(|p|)
|p|
+ M(k,p− k)

p

|p− k|2
P(|p− k|)

] }
(13.43)

In the integrand of eqn. (13.43), the replacement|p− k|2 = k2 − 2kpx+ p2 can be inserted. Additionally, the time
evolution of the velocity-density cross correlation function,

〈υ⊥(k, w1)δ∗(k, w2)〉 = g′(w1)D(w2)〈υ⊥(k)δ∗(k)〉, (13.44)

was inserted. The functionM(p,p′) is defined as:

M(p,p′) =
10
7
+

pp′

pp′

(
p
p′
+

p′

p

)
+

4
7

(
pp′

pp′

)2

. (13.45)

It should be emphasised, that this 3-point correlator does not take account of the evolution of non-Gaussian
features in the correlation function〈δ(k1)δ(k2)δ(k3)〉 and their influence on lensing determined byJain & Seljak
(1997), Bernardeau(1997) andTakada & Jain(2003a,b), which strongly affects weak lensing quantities on small
angular scales. A detailed derivation of this 3-point correlation function is given in Appendix.E.

13.3.3.2. 4-point term

The last contribution to the weak lensing power spectrum evoked by gravitomagnetic corrections is the 4-point term
〈q⊥(k, w1)q∗⊥(k, w2)〉4pt, which is of orderυ2/c2 and thus strongly suppressed. The derivation of the term is easy
prey: It can be done in complete analogy to that of the Ostriker-Vishniac effect (Ostriker & Vishniac1986, Vishniac
1987), where any optical depth depending on redshift needs to be replaced by the appropriate weighting function
(c.f. Sect.13.4.6) and conversions from dark matter densities into baryonic densites are to be discarded.

The derivation evolves cross-terms between the velocity and density fields, perhaps the most elegant way of
reducing it to a sum of 2-point correlations is given byMa & Fry (2002), using a result fromMonin & Yaglom
(1965a,b):

(2π)3〈qi(k)q∗j (k)〉4pt ≡ Pi j
qq(|k|) ' (13.46)

4
c2

∫
d3p

(2π)3

∫
d3p′

(2π)3
(2π)3δD(k − p− p′) ×

 pi∣∣∣pi
∣∣∣ p j∣∣∣p j

∣∣∣Pυυ(|p|)Pδδ(
∣∣∣p′∣∣∣) + pi∣∣∣pi

∣∣∣ p′ j∣∣∣p′ j ∣∣∣Pδυ(|p|)Pδυ(
∣∣∣p′∣∣∣) ,

where the irreducible 4-point correlationPδυδυ(k) has been neglected.
Following Ma & Fry (2002), the projection to be carried out is (2π)3〈q⊥(k)q∗⊥(k)〉4pt = 2

∑
i j eiejP

i j
qq(|k|), whereei

andej are unit vectors along the lines-of-sight. The expression forPi j
qq(|k|) is given by eqn. (13.3.3.2). In neglecting

the irreducible 4-point term one obtains:

(2π)3〈q⊥(k)q∗⊥(k)〉4pt =
1
c2

∫
d3p

(2π)3

{
(1− x2)Pδδ(|k − p|)Pυυ(|p|) −

(1− x2)p
|k − p|

Pδυ(|k − p|)Pδυ(|p|)
}

(13.47)
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Figure 13.2.:Three-dimensional power spectrum〈q⊥(k)q∗⊥(k)〉 including dark matter currents perpendicular to the line-of-
sight, split up into the 2-point contribution (solid line), the 3-point contribution (dashed line) and the 4-point contribution
(dash-dotted line). Additionally, the 4-point term of the currents parallel to the line-of-sight〈q‖(k)q∗

‖
(k)〉 is drawn (dotted

line). The power spectra are given for the present epoch, i.e.a = 1 andz= 0.

Inserting the time-evolution of the density-velocity and velocity-velocity cross correlation terms,

〈υ⊥(k, w1)υ∗⊥(k, w2)〉 = g′(w1)g′(w2)〈υ⊥(k)υ∗⊥(k)〉, (13.48)

〈υ⊥(k, w1)δ∗(k, w2)〉 = g′(w1)D(w2)〈υ⊥(k)δ∗(k)〉, (13.49)

yields the final result:

(2π)3〈q⊥(k, w1)q∗⊥(k, w2)〉4pt =
8π
c2

D(w1)D(w2)g′(w1)g′(w2)
∫

dp
∫ +1

−1
dxP(|k-p|)P(|p|)

k(1− x2)(k− 2xp)
k2 − 2xkp+ p2

. (13.50)

13.3.4. Corrections to the power spectrum

The three-dimensional power spectra〈q⊥(k)q∗⊥(k)〉 of the matter currents parallel to the line-of-sight is shown in
Fig.13.2for the variousn-point contributions. Compared to the dominating 2-point term, the 3-point term is smaller
by more than two orders of magnitude on small scales, but it becomes important on large spatial scales beyond 1 Gpc
where it levels out. On these large scales, however, limitations due to cosmic variance and insufficient sampling
due to galactic foregrounds cast doubt on its detectability. The leveling on large spatial scales of the 3-point term
is due to the fact, that for smallk all powers inp in eqn. (13.43) add up to zero, which results in a flat curve for
〈q⊥(k)q∗⊥(k)〉3pt. In comparison to the 3-point term, the 4-point term is smaller by another three orders of magnitude,
but in shape it very much resembles the 2-point term and its influence on the weak lensing power spectrum is safely
negligible.

13.3.5. Projected lensing power spectra

The final expression for〈q⊥(k)q∗⊥(k)〉 can be projected by means of eqn. (13.32) to yield the angular power spectrum
of any lensing quantity, for example the convergenceκ. The distance weighting function to be employed can be read
off from eqn. (13.40):

WL(w) =
3H2

0Ω0

2c2

fK(w)
a(w)

∫ wmax

w

dw′Z(w′)
fK(w′ − w)

fK(w′)
. (13.51)
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By substitutingy = kw, the distance weightingWL(w) can be combined with the time evolution of the correlators to
yield the functions

ϕ`(k)2pt =

[∫ ymax

0
dyWL

(
y

k

) Jl(y)
y

D(y)

]2

, (13.52)

ϕ`(k)3pt =

∫ ymax

0
dyWL

(
y

k

) Jl(y)
y

D(y)G(y)
∫ ymax

0
dyWL

(
y

k

) Jl(y)
y

D(y), (13.53)

ϕ`(k)4pt =

[∫ ymax

0
dyWL

(
y

k

) Jl(y)
y

D(y)G(y)

]2

, (13.54)

which carry out the projection of the 3-dimensional power spectrum〈q⊥(k)q∗⊥(k)〉 to the angular power spectrum
Cκ(`) by convolution:

Cκ(`) = 2π`(` + 1)
∫

dk 〈q⊥(k)q∗⊥(k)〉 × ϕ`(k), (13.55)

where the associativity of the time-evolution enables the 3-fold integration in eqn. (13.32) to be reduced to a 2-fold
integration. Numerical issues connected to the integration ofJ`-weighted functions are discussed in Appendix.D.

The functionsϕ`(k)2pt, ϕ`(k)3pt andϕ`(k)4pt are shown in Fig.13.3. Clearly, the fluctuations on a certain angular
scale described by the angular power spectrumC(`) are dominated by spatial fluctuations with a certain wave vector
k, which leads the peak of the functionϕ`(k) to shift with increasing̀ . The projection kernelsϕ`(k) for the different
n-point correlation functions show the common feature of rising fast at smallk, but their decays at largek vary
appreciably, because the increasing influence of the time evolution of the velocitiesG(w) makes the functions to drop
faster with increasing values ofk. In this way, the observed asymptotic behaviour isϕ`(k2pt) ∝ k−2 for the 2-point
projector, but theϕ`(k3pt) andϕ`(k4pt) exhibit faster decays that are not described by a mere power law. Evaluating
the functions (13.52), (13.53) and (13.54) requires accuate numerical integration overJ`(y)-weighted integrands,
which rapidly oscillate at large values ofy. Details of this numerical integration are explained in AppendixD.

The angular power spectrum of the weak lensing convergenceCκ(`) and its corrections due to gravitomagnetic
terms is depicted in Fig.13.4. Even at the largest angular scales considered here, the functionϕ`(k) peaks at values
of k at which the corrections of the 3-point term are negligible. The detection of corrections to the weak lensing
power spectrum due to gravitomagnetic terms requires the measurement of weak lensing shear on very large angular
scales, which is beyond feasibility with current technology. On large angular scales, cosmic variance additionally
limits the observability of gravitomagnetic lensing.

13.4. Integrated Sachs-Wolfe effect

13.4.1. Definitions

The growth of structure imprints additional anisotropies on the cosmic microwave background (CMB) by the time
variation of the gravitational potentials along the propagation path of a CMB photon. This effect is called the inte-
grated Sachs-Wolfe (iSW) effect in the regime of linear structure formation (Sachs & Wolfe1967, Hu & Sugiyama
1994) and Rees-Sciama effect (Rees & Sciama1968, Seljak1996b, Cooray2002) if the density perturbations grow
nonlinearly. The perturbations∆T of the sky temperatureT can be written as:

τ ≡
∆T
T
= −

2
c3

∫
dw

∂Φ

∂η
, (13.56)

where∂Φ/∂η is the derivative of the gravitational potentials with respect to conformal timeη. Similar to gravito-
magnetic lensing discussed in Sect.13.3.1(c.f. eqns. (13.33) and (13.36)), the effect is of the order 1/c3.

13.4.2. Connection to the gravitomagnetic potentials

Using the definition ofΦ(r) and the equation of continuity, ˙ρ + divj, wherej = ρυ is the matter current density, one
obtains for the time derivative ofΦ:

∂

∂η
Φ(r, η) = −G

∫
d3r ′

ρ̇(r′)
|r − r′|

= G
∫

d3r ′
∇′ · j(r′)
|r − r′|

. (13.57)
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Figure 13.3.: Contributionϕ`(k) of the 2-point terms (thick lines), 3-point terms (medium lines) and 4-point terms (thin
lines) to the angular power spectrumCκ(`) of the weak lensing convergenceκ as a function of wave vectork, for ` = 100
(solid line),` = 300 (dashed line),̀ = 1000 (dash-dotted line) and̀= 3000 (dotted line). The curves are normalised to
unity.
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Integration by parts with respect to d3r ′ yields:

G
∫

d3r ′
∇′ · j(r′)
|r − r′|

= −G
∫

d3r ′j(r′) · ∇′
1

|r − r′|
. (13.58)

With the identity

∇′
1

|r − r′|
= −∇

1
|r − r′|

, (13.59)

the derivative with respect to the primed coordinate can be replaced by a derivative with respect to the unprimed
one. In the last steps, the∇-operator can be drawn in front of the integral and the definition ofA (c.f. eqn. (13.35))
be inserted to yield:

G
∫

d3r ′j(r′) · ∇
1

|r − r′|
= −∇ ·

(
−G

∫
d3r ′

j(r′)
|r − r′|

)
= −divA. (13.60)

Thus, the final result reads:
∂

∂η
Φ(r, t) = −divA→ τ =

2
c3

∫
dw divA. (13.61)

Eqn. (13.61) has a lucid interpretation: The formation of objects such as clusters of galaxies requires the matter
fluxes j to converge and to accumulate matter ( ˙ρ > 0). Consequently, potential wells deepen and give rise to
the iSW-effect in regions where divA does not vanish. The iSW-effect measures the rate of change of a potential
with respect to conformal time, or equivalently, the divergence of the vector potentialA, which is proportional to
the accretion rate in the Lagrangian frame. The microscopic picture of gravitomagnetic interaction of a photon is
developed in Appendix.F.

13.4.3. Putting the Sachs-Wolfe effect in a cosmological context

In order to relate the statistical properties of the iSW temperature fluctuationsτ(θ) to those of the matter streams
j(r), the auxiliary vector fieldχ(θ) is introduced, which is defined as the negative gradient of the iSW temperature
fluctuationτ(θ):

χ(θ) ≡ −∇τ(θ), (13.62)

i.e. χ(θ) points along the steepest descent in temperature from hot to cold patches in an iSW field. Inserting
eqn. (13.61) into the defining equation forχ(θ) and converting the derivation with respect to the angular variableθ
into a derivation with respect to the comoving variabler by using∇θ = fK(w)∇, enables interchanging integration
and differentiation:

χ(θ) =
2
c3

∫
dw fK(w) ∇ (divA) =

2
c3

∫
dw fK(w) ∆A. (13.63)

Additionally, the replacement∇ (divA) = ∆A is inserted, which is valid if rot rotA = 0. This is fulfilled in vorticity-
free velocity fields, rotj = 0. In linear theory, initial vorticity perturbations are damped and after a sufficiently long
time, the linear velocity field should be completely irrotational. Even in the regime of quasi- or nonlinear structure
formation, Kelvin’s circulation theorem forces the flow to remain irrotational and described by a velocity potential
until dissipative processes on smallest scales give rise to vortical flows.

Inserting Laplace’s equation in the comoving frame,∆A = 4πGa2〈ρ〉(δυ) with the source termj = δυ, allows
to replace Newton’s constantG and the ambient mass density〈ρ〉 by usingρcrit = 3H2

0/(8πG), 〈ρ〉0 = Ω0ρcrit and
〈ρ〉 = 〈ρ〉0/a3:

χ(θ) =
2
c3

∫
dw fK(w)

4πG〈ρ〉
a

j =
3H2

0Ω0

c2

∫
dw

fK(w)
a(w)

j
c

. (13.64)

The structural similarity of eqn. (13.64) with the weak lensing convergence eqn. (13.40) is striking.
Now, the 2-point correlation of the iSW temperature gradient fieldχ(θ) is related to the matter flux densityj(r).

For the derivation of the correlation functionCτ(`) of the temperature fieldτ(θ) itself, one rewrites eqn. (13.62) in
Fourier space, yielding:

χ(θ) =
∫

d2` χ(`) exp(i` · θ)→ χ(`) = i`τ(`) (13.65)
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Figure 13.5.: Flow chart with correspondent quantities in gravitational lensing (left column) and the integrated Sachs-
Wolfe effect (right column). The quantity analogous to the iSW temperature fluctuationτ(θ) in weak gravitational lensing
is the deflection angleα(θ).

The expansion into Fourier modes rather than spherical harmonics is permissible, becauseτ is expected to show
fluctuations on small angular scales, so thatτ can be considered on a plane locally tangential to the celestial sphere.
Squaring immediately gives:

Cχ(`) = `
2Cτ(`) ' `(` + 1)Cτ(`), (13.66)

where the last step is a valid approximation for small angular scales. The complementarity of gravitational lensing
and the iSW-effect and the lensing counterparts of iSW quantities are illustrated in the flow chart Fig.13.5.

The validity of the assumption of vorticity-free flows used in the derivation above could in principle be tested by
measuring the gravitational Faraday rotation, i.e. the rotation of the plane of polarisation of a photon transversing a
gravitational field. This signature unique to vortical matter streams, although it is likely to be a very small effect on
e.g. galactic scales. The theory of gravitational Faraday rotation is developed in papers byPiran & Safier(1985),
Nouri-Zonoz(1999) andSereno(2004).

13.4.4. Perturbative treatment

In the following, I adopt the approximation that the rate of change of a potential is constant during the photon
passage and that the accretion geometry does not change significantly. In this approximation, the component dAz/dz
of divA is cancelled by the integration in eqn. (13.61) and makes the iSW effect to measure the components of
divA perpendicular to the line-of-sight, i.e.τ ∝ div⊥A = dAx/dx + dAy/dy. Consequently, the matter fluxes
q⊥(x) = j⊥(x)/c = δ(x)υ⊥(x)/c perpendicular to the line-of-sight primarily give rise to the iSW-effect. Accordingly,
the fluctuations in the CMB due to the Rees-Sciama effect, being sensitive to the components of the matter flux
perpendicular to the line-of-sight, are dominated by the components ofk-modes parallel to the line of sight.

Power spectra of the form〈q‖(k)q∗
‖
(k)〉 have been considered by many authors in the derivation of the Ostriker-

Vishniac effect (e.g.Vishniac1987, Jaffe & Kamionkowski1998). In order to obtain the projection onto the line-
of-sight, (2π)3〈q‖(k)q∗

‖
(k)〉4pt =

∑
i j

ki

|ki |
k j

|k j |
Pi j

qq(|k|), has to be carried out, which can be interpreted as the quadratic

form k̂T P̃k̂ with a unit vector̂k and the matrixP̃ = Pi j
qq (compare eqn.13.3.3.2). The matrixP̃ introducing the scalar

productk̂T P̃k̂ is positive definite, due to the reality of the density and velocity fields.

(2π)3〈q‖(k)q∗‖(k)〉4pt =
4
c2

∫
d3p

(2π)3
x2Pδδ(|k − p|)Pυυ(|p|) +

(k− px)x
|k − p|

Pδυ(|k − p|)Pδυ(|p|) (13.67)

The scalar productpk is again equal topkx, wherex is the cosine of the angle of separation. Inserting the velocity-
density and velocity-velocity cross correlation functions with their proper time evolution,

〈υ‖(k, w1)δ∗(k, w2)〉 = g′(w1)D(w2)〈υ‖(k)δ∗(k)〉, (13.68)

〈υ‖(k, w1)υ∗‖(k, w2)〉 = g′(w1)g′(w2)〈υ‖(k)υ∗‖(k)〉, (13.69)

171



Gravitomagnetic lensing and the integrated Sachs-Wolfe/Rees-Sciama effect

yields the final result:

(2π)3〈q‖(k, w1)q‖(k, w2)〉4pt = D(w1)D(w2)g′(w1)g′(w2)
2π
c2

∫
dp

∫ +1

−1
dxP(|k − p|)P(|p|)

kx(kx− 2px2 + p)
k2 − 2xkp+ p2

.

(13.70)

13.4.5. Power spectrum of dark matter currents

The three-dimensional power spectrum〈q‖(k)q∗
‖
(k)〉 of the matter currents perpendicular to the line-of-sight is given

in Fig. 13.2. Its amplitude is by a factor of 4 smaller than the power spectrum〈q⊥(k)q∗⊥(k)〉, because the iSW-effect
measures the streamsδυ in contrast to gravitomagnetic lensing, where the source terms read (1+ 2υ/c)δ. Despite
the fact that different projections are considered, the shape and asymptotic forms of〈q‖(k)q∗

‖
(k)〉 and〈q⊥(k)q∗⊥(k)〉

are very similar.

13.4.6. integrated Sachs-Wolfe angular power spectrum

Fig. 13.7shows the angular power spectraCτ(`) of the iSW-effectτ(θ) andCχ(`) of the iSW temperature gradient
χ(θ) which have been obtained by applying the projection formula (13.26) to the spectrum〈q‖(k)q∗

‖
(k)〉 with the

weighing function

WiSW(w) =
3H2

0Ω0

c2

fK(w)
a(w)

, (13.71)

which can be read off from eqn. (13.64). The redshift-weightings and the time-evolution of the density and velocity
fields can be combined, which yields the function (13.72) after substitutingy = kw,

ψ`(k)4pt =

[∫ ymax

0
dyWiSW

(
y

k

) dJl(y)
dy

D(y)G(y)

]2

(13.72)

which mediates between the 3-dimensional power spectrum〈q‖(k)q∗
‖
(k)〉 and the angular power spectrumCτ(`) by

convolution:

Cτ(`) = 2π
∫

dk 〈q‖(k)q∗‖(k)〉 × ψ`(k). (13.73)

Again, the 3-fold integration in eqn. (13.26) is reduced to a 2-fold integration. The shape of the functionψ`(k) is
depicted in Fig.13.6for various values of̀ . In contrast to the functionϕ`(k) used in the projection of the lensing
power spectra, the functionψ`(k) is symmetric about its peak, which is caused by the replacement ofJ`(y)/y with
the derivative dJ`(y)/dy. The fast variability is again due to the strong influence of the velocity time evolution
G(y).Details concerning numerics of the integration in eqn.13.72which involves a rapidly oscillating function are
discussed in AppendixD.

The angular power spectrumCτ(`) of the iSW temperature fluctuationsτ(θ) along with the primary CMB fluctu-
ations and the limiting PLANCK-sensitivity is depicted in Fig.13.7. The angular power spectrum has an amplitude
of ' 3 × 10−11 K2 at small` and shows but little variation with the multipole order`. The amplitude agrees well
with the result fromSeljak(1996b), but the decline of the power spectrum on large angular scales could not be
confirmed, which is due to the fact that for large angles, the Bessel functionsJl(x) are a poor approximation to the
Legendre polynomialsP`(x). The position of the peak in the projection kernelψ`(k) suggests that on the largest
scales considered here, the angular spectrumCτ(`) is dominated by fluctuations at the maximum ofP(k) on scales
atk−1 ' 10 Mpc. With increasing multipole order`, the peak inψ`(k) shifts only slowly towards higher values ofk,
which explains the small variation ofCχ(`) = `(` + 1)Cτ(`).

The channel averaged PLANCK-sensitivy is described by (Knox 1995, Tegmark & Efstathiou1996):

Cnoise(`) =
4πσ2

Npix
exp

[
θ2

b`(` + 1)
]
, (13.74)

whereNpix ' 5.03×107 is the number of pixels andθb the FWHM extension of the PLANCK-beam. For the average
amplitude of the noiseσeff per solid angle subtended by a single pixel I use the quadratic harmonic mean over all
six HFI-channels:

1

σ2
eff

=

6∑
i=1

1

σ2
i

−→ σeff = 13.42µK. (13.75)
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Figure 13.6.: Contributionψ`(k) of the 4-point term to the angular power spectrumCτ(`) of the iSW temperature fluctu-
ationsτ as a function of wave vectork, for ` = 100 (solid line),̀ = 300 (dashed line),̀ = 1000 (dash-dotted line) and
` = 3000 (dotted line). The curves have been normalised to a peak value of unity.

The sensitiviy considerations suggest that the iSW-effect is well above the noise level of the combined PLANCK
HFI-channels, so that the power spectrum ofCτ(`) should be observable for angular scales` <

∼ 200 as a contribution
to the primary CMB fluctuationsCCMB(`), which in Fig.13.7 have been computed using theCMBfast code by
Seljak & Zaldarriaga(1996)).

13.5. Summary

The scope of this paper is to derive the corrections to the power spectrum of weak gravitational lensing due to
gravitomagnetic terms in the metric by perturbation theory. Within the same formalism, the power spectrum of the
iSW-effect can be determined as well.

• The iSW-effect and gravitomagnetic lensing measure the evolution of velocities and densities in the large-
scale structure and are sensitive to the cosmological parametersΩM andσ8. Applied to single objects like
clusters, where the above described formalism equally applies, the iSW-effect would allow to measure the
cosmological evolution of merger rates and dark matter accretion strengths (van den Bosch2002, Wechsler
et al.2002, Zhao et al.2003).

• Gravitomagnetic lensing would test general relativity on the largest scales (Mpc - Gpc) to second order, and
could help decide in favour of or against other metric theories of gravity. It should be emphasised that in the
current theoretical description of structure formation or in current numerical simulations the motion of bodies
is described by classical mechanics, i.e. instantaneous propagation of potentials and no relativistic increase
of inertial mass with velocity, but the interaction of light with matter should be treated in the framework of
the post-Newtonian limits of general relativity.

• Gravitomagnetic terms influence the weak lensing power spectrum most notably on large spatial and angular
scales, which are difficult to access experimentally. Furthermore, cosmic variance and galactic foregrounds
prevent accurate measurements on the scales in question, i.e.>

∼ Gpc/h and above. The small gravitomagnetic
corrections could be amplified by cross correlation with the kinetic Sunyaev-Zel’dovich effect (Sunyaev &
Zel’dovich1972), once future CMB telescopes will provide accurate measurements of line-of-sight velocities
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Figure 13.7.: Angular power spectrumC∆T(`) = T2
CMBCτ(`) of the iSW temperature fluctuationsτ(θ) (dashed line). The

CMB power spectrumCCMB(`) for theΛCDM cosmology (solid line) and the limiting PLANCK-sensitiviesCnoise(`) for
angular resolutions∆θ = 5.′0 (dash-dotted line) and∆θ = 9.′1 (dotted line) are depicted for comparison.

or with the velocity information from optical galaxy surveys. For current weak lensing surveys, gravitomag-
netic corrections to cosmic shear do not play a significant role.

• The iSW-effect is described by a line-of-sight integration over the divergence of the gravitomagnetic poten-
tials. By this argument, the iSW-effect is reduced to a second order lensing effect. Every iSW quantity has
a correspondence in weak gravitational lensing and the derivation of the power spectrumCτ(`) proceeds in
complete analogy to that of any weak lensing quantity, for instance that of the convergenceCκ(`). The most
important difference of the derivation presented here to the ones carried out bySeljak (1996b) or Cooray
(2002) is that my derivation explicily pays tribute to the lensing nature of the iSW-effect.

• Gravitomagnetic lensing and the iSW-effect are complementary in measuring the matter flows parallel and
perpendicular to the line-of-sight. The picture emerging is that (subject to the approximations made) in
gravitational light deflection (including the gravitomagnetic termAz), the photon’sk-vector is rotated but
its normalisation is conserved. Contrarily, the components ofA transverse to the line-of-sight change the
normalisation of thek-vector, i.e. the photon’s energy, but leave the direction ofk invariant.

• Both effects, gravitomagnetic lensing and the iSW-effect, are achromatic which makes them only accessible
by their n-point statistics. Furthermore, the iSW-effect needs to be separated from other achromatic CMB
structures such as the kinetic Sunyaev-Zel’dovich effect and the Ostriker-Vishniac effect. The derivation
predicts iSW temperature fluctuations of∆T = τTCMB ' 5.4 µK on large angular scales, which is within
reach of future CMB experiments like the European PLANCK-mission.

• The gradientχ(θ) of the iSW temperature fluctuation fieldτ(θ) should directly map regions of large matter
flows, e.g. filaments and clusters with high peculiar velocities, but it can be expected to be very susceptible to
noise due to the differentiation required in obtainingχ(θ) from τ(θ), which is reflected by the fact that ratio
of the angular power spectraCχ(`)/Cτ(`) is proportional tò (` + 1).

The verification of the theoretical approach by a ray-tracing simulation of photons through a cosmologicaln-
body simulation will be the subject of future research. The non-Gaussian features the iSW-effect and gravitational
lensing exhibit and the mode-coupling in nonlinear structure growth are unaccessible to perturbation theory and are
important on small scales. The novel approach to the iSW-effect presented here should allow a much improved
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precision in the numerical treatment, because inaccuracies in interpolating the scalar potential’s time derivative
∂Φ/∂η for each integration time step and in integrating a rapidly oscillating function inherent the direct approach
(e.g.Tuluie & Laguna1995a,b) are alleviated.

The results of this chapter were derived in collaboration with M. Bartelmann (ITA, Heidelberg). A resulting paper
entitled Gravitational lensing in the second post-Newtonian approximation: Gravitomagnetic potentials and the
integrated Sachs-Wolfe effectwill be submitted to the journalMontly Notices of the Royal Astronomical Society.
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14. Summary and outlook

The main subject of this thesis is the simulation of observations of cluster of galaxies for the European PLANCK-
satellite. PLANCK will be able to detect clusters of galaxies by their thermal Sunyaev-Zel’dovich signature in sub-
millimetric data and will open a new observational window for investigating structure growth and baryonic physics
inside clusters of galaxies. In Chapter5, I present all-sky maps of the thermal and kinetic Sunyaev-Zel’dovich
effects which was constructed from numerical data by combining template clusters extracted from a high-resolution
hydrodynamical simulation and a cluster catalogue following from a large-volume dark matter simulation. By con-
struction, the map correctly shows the clustering properties on large spatial scales, deviation from canonical scaling
relations and asymmetric and non-analytic temperature and density profiles of the individual clusters of galaxies. In
the kinetic Sunyaev-Zel’dovich map, the peculiar velocities correspond to the local density field. The comparison
to estimates of the Sunyaev-Zel’dovich signal strengths following from virial arguments showed that the number of
clusters detectable with PLANCK is likely to be overestimated.

These maps were combined with various Galactic and ecliptic foregrounds. Specifically, I considered synchrotron
radiation, free-free emission, infrared emission by thermal dust, line transition produced in rotational transitions of
carbon monoxide molecules and the thermal radiation of planets and asteroids of the Solar system. I combined the
Sunyaev-Zel’dovich maps with these foreground maps and with a realisation of the fluctuating CMB while taking
care of the different spectral properties of the respective emission components and convolved the individual spectra
with PLANCK’s frequency response functions. The maps were successively convolved with PLANCK’s respective
point-spread functions, yielding antenna temperature maps for all nine PLANCK channels. In order to simulate the
finite sensitivity of PLANCK’s receivers, I generated noise maps that incorporate the spatial highly-non uniform
exposure pattern due to PLANCK’s scanning strategy, which were successively added. In Chapter6 I describe
the simulation in detail and investigate the complicated cross- and autocorrelation properties which have special
relevance to filtering and component separation.

In Chapter7, I describe an approach how the weak Sunyaev-Zel’dovich signal can be amplified and extracted by
matched and scale-adaptive filtering. These filter schemes are particularly appealing because they are based on a
variational principle. The algorithms require filter kernels to minimise the variance of a data set with the condition
that the amplitude of the filtered field is an unbiased estimator of the underlying signal and that the amplitude
of the filtered field is maximal if the spatial scale of the filter corresponds to the spatial extension of the signal.
These filtering schemes were extended to multifrequency observations and to spherical topologies. In collaboration
with C. Pfrommer I could derive formulae that yield filter kernels for a given signal profile, for a specific spectral
behaviour of the signal, and for the angular cross- and autocorrelation function of the spurious components. I derived
filter kernels numerically for the simulated PLANCK antenna temperature maps and verified their functionality.

The characterisation of the PLANCK Sunyaev-Zel’dovich cluster sample is the subject of Chapter8. It was
shown that the SZ-cluster sample derived in this work, which contains 6× 103 entries above 3σ does not live
up to the high expectations claimed by analytic estimates. But the SZ-sample was shown to be clean and not to
contain spurious detections on a significant level. The redshift range probed by PLANCK is restricted to redshifts
smaller thanz < 0.8, which is due to the highly structured noise on small scales. The sample was analysed in
detail and the distributions of mass, redshift and detection significance are given. The spatial distribution was
demonstrated to be spatially non-uniform on a significant level, irrespective of the filtering scheme, which is due
to the improper removal of long-wavelength modes. The linearity of the filters was proved and position accuracies
were demonstrated to be too coarse for direct follow-up studies in the X-ray band or in optical wavelengths.

The SZ-cluster catalogue of PLANCK will exceed classic X-ray catalogues with respect to number of detec-
tions and will complement our view of the baryonic processes inside clusters of galaxies. Furthermore, aspects
of structure formation ranging from dark energy parameters, especially the dark energy densityΩQ, its equation
of state parameterwQ, the shape of the power spectrum on Mpc scales and its normalisationσ8 will be a high-
light application of PLANCK’s SZ sample. The simulation presented here surpasses in detail every simulation of
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SZ observations with PLANCK carried out so far and covers all important aspects of cluster physics, foreground
contamination, observation and instrumental imperfections, filtering and peak extraction.

In a supplementary project aiming at PLANCK data analysis algorithms I worked out a new pixel numbering
scheme for the HEALPix tesselation commonly used in analyses of CMB data. A core quantity in many CMB
data analysis tasks is the pairwise pixel covariance matrix. Common pixel numbering schemes face the difficulty
that the covariance matrix does not have a simple shape and is difficult to access algorithmically and numerically.
Basic matrix manipulations like inversion and computation of the determinant are very difficult to carry out, keeping
the vast number of pixels of current and future CMB experiments in mind. In Chapter9, I propose to use a pixel
numbering based on a fractal, self-similar Peano-Hilbert curve that runs through all pixels on the sphere. If pixels
were numbered successively along this curve, the pairwise pixel covariance matrix would assume a band-diagonal
shape if correlations on large angular separations are neglected. For band diagonal matrices, fast and efficient
algorithms for computing e.g. determinants and inverses exist. I tested the locality of the spherical Peano-Hilbert
curve and investigated the shape of the covariance matrix for typical shapes of the correlation function and found its
properties with respect to locality to be superior to the two existing pixel numbering schemes. It is planned to add
the Peano-numbering to the HEALPix software package.

Aiming at future high-resolution CMB observations I analysed the morphology of simulated SZ-maps of clusters
of galaxies with wavelets. It was found that the spectrum of wavelet coefficients can be described with elementary
functions that have certain characteristics which are non-degenerate indicators of redshift. These morphological
redshifts will be particularly useful for future SZ surveys that are expected to detect thousands of clusters in order
to select targets for e.g. X-ray follow up observations. A detailed analysis in Chapter10 examined the redshift
estimation based on wavelet decomposition and found the relative accuracy in the distance estimation to be accurate
to a few percent out to redshifts of unity. Adding noise contributions such as instrumental noise at reasonable levels
and CMB fluctuations in order to simulate monochromatic observations proved the method to be very robust. Other
complications like finite instrumental resolution, cool cores of clusters and systematic deviations from the universal
baryon fraction that significantly alter the SZ-morphology of a cluster or impact on the SZ-scaling relations were
shown to be controllable. Morphological redshift estimators will be of particular use for dedicated high-yield SZ
observatories in order to select targets for optical or X-ray follow-up observations.

The statistical description of the CMB based on Gaussian random fields leaded to an unexpected application of
this cosmological key concept to X-ray andγ-ray imaging in high energy astronomy. Imaging of highly energetic
radiation by refractive or reflective optics is far from easy. Imaging at these high photon energies is commonly
achieved by coded mask imaging, where the shadow cast of a mask consisting of randomly placed open elements
is registered by a position sensitive detector. By using correlation techniques, it is possible to reconstruct the
distribution of sources inside the field-of-view from the shadowgram, which is a superposition of the intensity
distributions imaged by each individual pinhole. In Chapter11, I propose to use Gaussian random fields as coded
mask patterns, because they can be constructed to encode a specific functional shape of the point-spread function. I
investigated the properties of Gaussian random fields in coded mask imagers in extensive photon ray-tracing studies
and found the Gaussian random fields to perform well in the observation of extended sources which are unaccessible
to traditional coded mask instruments and to yield a moderate performance in the observation of point sources.

Apart from the interaction of photons with the electrons of the intra-cluster medium I studied their gravitational
interaction with clusters of galaxies and with the cosmic large-scale structure in Chapter13. I was able to explain the
integrated Sachs-Wolfe/Rees-Sciama effect, which predicts a frequency shift of photons transversing time-variable
gravitational wells to be a second-order gravitational lensing effect emerging in the post-Newtonian expansion of
general relativity. In this approximation, the Rees-Sciama effect measures the divergence of the gravitomagnetic
vector potential integrated along the line-of-sight. By using this access, I could show interesting analogies between
gravitational lensing quantities and Rees-Sciama quantities and point out many analogies in the respective formulae.
I derived the angular autocorrelation function of the Rees-Sciama temperature fluctuations in the quasilinear regime
in perturbation theory by using the gravitomagnetic formalism. The angular power spectrum was found to be
detectable by PLANCK as a correction to the primordial CMB power spectrum at low multipoles. The Rees-
Sciama effect on these scales will be an important diagnostic for dark matter clustering as it probes the transition
from the linear into the nonlinear regime of structure formation.

By using the same tools, I addressed gravitomagnetic corrections to weak gravitational lensing of the large scale
structure arising due to large-scale matter streams. The corrections evolved three- and four-point correlators of
the density and velocity fields with their respective time evolution, which were reduced to products of two-point
functions by perturbation theory in the limit of quasilinear growth. As in the case of the Rees-Sciama effect, I derived

178



a projection formula analogous to Limber’s equation that is able to deal with vectorial fields in order to compute the
angular power spectra from the three dimensional correlation functions. The corrections to weak lensing quantities
were shown to be important on large spatial and angular scales, which are difficult to access observationally. For
current weak lensing surveys, gravitomagnetic corrections play only a minor role.

In Chapter12 I describe a code that I implemented for studying weak lensing on simulated cosmological density
fields. This code computes the deflection and shear a light ray experiences when transversing a cosmological volume
and has a number of improvements over competing ray-tracing codes with respect to functionality, performance and
accuracy. It will certainly be interesting to investigate the Rees-Sciama effect and gravitomagnetic corrections to
weak gravitational lensing onn-body simulations of cosmic structure formation and to access the fully nonlinear
growth of structure where interesting non-Gaussian features in the density field evolve and Fourier modes of the
density field are coupled, which is inaccessible to perturbation theory. The code is extended to derive the Rees-
Sciama signal as a line-of-sight integration of the divergence of the gravitomagnetic vector potential, which is likely
to have computational advantages over the traditional, direct approach. Furthermore, the code can compute the
gravitational Faraday rotation, i.e. the rotation of the plane of polarisation due to vortical matter streams which
evolve in the late phase of structure formation due to dissipative processes.

Now that physical cosmology has reached the stage at which the parameters governing the Hubble expansion and
the geometry of the homogeneous universe are determined on the percent level, the CDM paradigm of gravitational
structure growth needs to be tested. The interaction of photons with the emerging large-scale structure by various
mechanisms is able to shed light on the shape of the dark matter power spectrumP(k), its normalisationσ8 and
the parameters describing dark energy, which starts to influence structure growth only in recent cosmic history.
Among the most promising observational channels are the thermal Sunyaev-Zel’dovich effect and the Rees-Sciama
effect, which were shown to be detectable by PLANCK and which will be particularly useful to break remaining
degeneracies between cosmological parameters, to yield important constraints on the parameters and mechanism of
structure growth and halo formation.
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A. Numerical evaluation of SPH-projections

SPH (smooth particle hydrodynamics, originally developed byLucy 1977, Gingold & Monaghan1977, Monaghan
1992, for solving hydrodynamical problems in stellar models) approximates continuous density fields by discrete
distributions of point particles. In contrast to algorithms that solve the hydrodynamical equations on grids, SPH
has the benefit of adapting its resolution to the local density, i.e. dense regions are well sampled by a large number
of particles and vice versa. In the SPH formalism, continuous fieldsA(x) (e.g the hydrodynamical quantities) are
represented by their valuesAi at discrete particle positionsr i = (xi , yi , zi) with local spatial resolutionhi . This
smoothing lengthhi is adaptive and is chosen to be the distance of theNth closest particle, whereN ' 30.

Figure A.1.: Derivation of line-of-sight quantities from an SPH-simulation.

In order to construct Cartesian mapsa(x) of line-of-sight integrated quantities from (cosmological) SPH simula-
tions, one needs to employ an interpolation scheme. The line-of-sight integration of any quantityA(x) at the pixel
at positionx = (x, y, z) is determined as the average of integration of all lines-of-sight passing through the pixel,
which is equal to the volume integral of the kernel-weighted quantityAi above a given pixel divided by the pixel
area (compare Fig.A.1):

a(x) =
1
g2

∑
i

h3
i


x+g/2∫

x−g/2

dxi

y+g/2∫
y−g/2

dyi

hi∫
−hi

dzi K

(
r
hi

)
· Ai

 with r =
√

(xi − x)2 + (yi − y)2 + z2
i , (A.1)

where the summation is extended over all particles of the simulation.g denotes the mesh size of the underlying
Cartesian grid. The functionK is the spherically symmetric cubic spline kernel suggested byMonaghan & Lattanzio
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Numerical evaluation of SPH-projections

(1985), which is commonly used in SPH simulations:

K(u) =
8
π
·


1− 6u2 + 6u3, 0 ≤ u ≤ 1/2
2(1− u)3 , 1/2 < u ≤ 1
0 , u > 1

with u = r/hi . (A.2)

The fact that the kernelK is defined on a compact supportu ∈ [0 . . . 1] greatly reduces the computational effort. The
dz-integration of this cubic spline kernel can be carried out analytically, while taking care of the piecewise definition
of K . This yields for the outer region, 1/2 ≤ ρ ≤ 1, whereρ2 ≡ x2 + y2:∫ √ 1

4−ρ
2

0
dzK

(√
ρ2 + z2

)
=

21ρ2
√

1− ρ2

4
−

3
√
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2
−
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4
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√
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2 − (A.3)

3ρ2 ln(
√
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3
2
ρ2 ln(ρ2) +

3
8
ρ4 ln(ρ2),

and for the inner region, 0< ρ ≤ 1/2:∫ √1−ρ2

√
1
4−ρ

2
dzK

(√
ρ2 + z2

)
=

√
1− 4ρ2

8
−

13ρ2
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√
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8
ρ4 ln(ρ2) +

21ρ2
√

1− ρ2

4
−

3
√

1− ρ2

2
−

3
4
ρ4 ln(

√
1− ρ2 + 1)+

2(1− ρ2)
3
2 − 3ρ2 ln(

√
1− ρ2 + 1)− 3ρ2 ln(2)+ 3ρ2 ln(

√
1− 4ρ2 + 1).

The dx- and dy-integrations need to be carried out numerically: For this task, Gauss-quadrature with a moderate
number of sampling points (typically five sampling points in one dimension) has proven to yield results that recover
the normalisation of the kernel with an accuracy of' 10−5. The performance is around 106 particles per minute on
a 1.1 GHz G4 processor.

Another choice for the SPH-kernel that is continuous in the unit interval is the function:

K(u) = K0 exp

(
−

1
1− u2

)
with K0 ' 2.267116739, (A.5)

but for this function one would need to carry out the dz-integration numerically as well, which would be too time
consuming. By chance coincidence, this function yields an excellent fit to the weak lensing radial weighting function
(see Sect.13.3.2).
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Figure A.2.: The cubic spline SPH-kernel (eqn. (A.2), solid line) and the alternative kernel (eqn. (A.5), dashed line).
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B. Derivation of spherical matched and
scale-adaptive filter kernels

This appendix presents the derivation of optimised filters for single frequency all-sky observations and serves as a
detailed supplement to Chapter.7, where optimised filters for multi-frequency observations were derived.

B.1. Assumptions and definitions

In order to construct filters, I consider an all-sky map of the detected scalar fields(θ)

s(θ) = y(|θ − θ0|) + n(θ), (B.1)

whereθ = (ϑ, ϕ) denotes a two-dimensional vector on the sphere andθ0 is the source location. The first term of
the right-hand side represents the amplitude of the sources to be detected, while the second term corresponds to
the generalised noise present in the map which is composed of any detected features other than the desired signal
including for instance instrumental noise. The statistical properties of the noise are assumed to be characterised by
its power spectrum

〈
n`mn∗`′m′

〉
= C`δ``′δmm′ . In order to sketch the construction of the optimised filter, I assume an

individual cluster situated at the North pole (θ0 = 0) with a characteristic angular SZ-signaly(θ = |θ|) = Aτ(θ),
separating the amplitudeA from the profileτ(θ).

I adapt the following convention for the expansion of the fielda(θ) into spherical harmonicsYm
` (θ) and its expan-

sion coefficientsa`m,

a(θ) =
∞∑
`=0

+∑̀
m=−`

a`mYm
` (θ) anda`m =

∫
dΩa(θ)Ym

` (θ)∗, (B.2)

where the asterisk denotes the complex conjugate and dΩ = d(cosϑ) dϕ denotes the differential solid angle element.
The backgroundnν(θ) is assumed to be a homogeneous and isotropic random field with vanishing mean, which is
characterised by the power spectrumC` defined by〈

n`mn∗`′m′
〉
= C`δ``′δmm′ , with 〈n(θ)〉 = 0. (B.3)

n`m denote the spherical harmonics expansion coefficients ofn(θ), δ``′ is the Kronecker symbol, and〈 〉 corresponds
to an ensemble average. Assuming ergodicity of the field under consideration allows taking spatial averages over
sufficiently large areasΩ = O(4π) instead of performing the ensemble average.

B.2. Convolution theorem on the sphere

Filtering a scalar field on the sphere with an arbitrary, asymmetric kernel requires the specification of the convolution
path as well as the orientation of the filter kernel at each position on the sphere in order to apply any convolution
algorithm (Wandelt & Górski2001). Because of the simplifying restriction to axially symmetric filter kernels, I give
the theorem for the convolution of two functions, one of which is assumed to be axially symmetric. The filtered
field u(β) is obtained by convolution of the axially symmetric filter functionψ(θ) with the scalar field on the sphere
s(θ),

u(β) =
∫

dΩ s(θ)ψ(|θ − β|). (B.4)

185



Derivation of spherical matched and scale-adaptive filter kernels

Expansion of these two scalar fields into spherical harmonics yields

s(θ) =
∞∑
`=0

+∑̀
m=−`

s̀ m Ym
` (θ), andψ(θ) =

∞∑
`=0

+∑̀
m=−`

ψ`m Ym
` (θ) =

∞∑
`=0

√
2` + 1

4π
ψ`0 P`(cosθ). (B.5)

The last step assumes axial symmetry. In this case, only modes withm = 0 are contributing. For proceeding, the
addition theorem for Legendre polynomialsP`(x) (Arfken & Weber1995) is used in substitutingγ = |θ − β|:

P`(cosγ) =
4π

2` + 1

+∑̀
m=−`

Ym
` (θ) Ym∗

` (β). (B.6)

Combining these equations and applying the completeness relation yields the convolution relation for an axially
symmetric filter kernel,

u(β) =
∞∑
`=0

+∑̀
m=−`

u`mYm
` (β), with u`m =

√
4π

2` + 1
s̀ mψ`0 . (B.7)

B.3. Concepts of optimised filtering on the sphere

The idea of optimised matched filters was proposed byTegmark & de Oliveira-Costa(1998), and generalised to
scale-adaptive filters bySanz et al.(2001) for a flat topology. The construction of a axially symmetric optimised
filter functionψ(θ) for the amplification and detection of signal profiles differing only in size but not in shape implies
a family of filtersψ(θ/R) introducing a scaling parameterR. Decomposing the family of filter functionsψ(θ/R) into
spherical harmonics yields

ψ
(
θ

R

)
= R2

∞∑
`=0

√
2` + 1

4π
ψ`0(R) P`(cosθ), (B.8)

ψ`0(R) =
1
R2

∫
d2θ

√
2` + 1

4π
ψ

(
θ

R

)
P`(cosθ), (B.9)

while allowing for central symmetry of the filter function. For a particular choice ofR the filtered fieldu(R,β) is
obtained by convolution (c.f. Appendix.B.2):

u(R,β) =
∞∑
`=0

+∑̀
m=−`

u`mYm
` (β), and u`m =

√
4π

2` + 1
s̀ mψ`0(R) . (B.10)

Taking into account the vanishing expectation value of the noise〈nν(θ)〉 = 0, the expectation value of the filtered
field at the North poleβ = 0 is given by

〈u(R,0)〉 = A
∞∑
`=0

τ`0ψ`0(R). (B.11)

Assuming that the power spectrum of the signal is negligible compared to the noise power spectrum, which is
certainly the case in noise-dominated CMB measurements, the variance of the filtered field is given by

σ2
u(R) =

〈
[u(R,β) − 〈u(R,β)〉]2

〉
=

∞∑
`=0

C` ψ
2
`0(R). (B.12)

While the optimisedmatched filterin the case of single frequency observations is defined to obey the first two of
the following conditions, the optimisedscale-adaptive filteris required to obey all three conditions:

1. The filtered fieldu(R,0) is an unbiased estimator of the source amplitudeA at the true source position, i.e.
〈u(R,0)〉 = A.
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2. The variance ofu(R,β) has a minimum at the scaleRensuring that the filtered field is an efficient estimator.

3. The expectation value of the filtered field at the source position has an extremum with respect to the scaleR,
implying

∂

∂R
〈u(R,0)〉 = 0. (B.13)

B.3.1. Matched filter

In order to derive the matched filter, constraint (1) can be rewritten yielding

∞∑
`=0

τ`0ψ`0 = 1. (B.14)

Performing functional variation (with respect to the filter functionψ) of σ2
u(R) while incorporating the constraint

(B.14) through a Lagrangian multiplier yields the spherical matched filter:

ψ`0 = α
τ`0
C`

, where α−1 =

∞∑
`=0

τ2
`0

C`
. (B.15)

In any realistic application, the power spectrumC` can be estimated from the observed data provided the power
spectrum of the signal is negligible. The quantitiesα, τ`0, and thus the filter kernelψ`0 can be straightforwardly
computed for any model source profileτ(θ).

B.3.2. Scale-adaptive filter

The next step consists of reformulating constraint (3) in order to find a convenient representation for the application
of functional variation. The expansion coefficient of the family of filter functionsψ(θ/R) of eqn. (B.8) can be
rewritten yielding

ψ`0(R) =
1
R2

∫
d2θ ψ

(
θ

R

)
Y0
` (θ) =

∫
d2βψ(β)Y0

` (Rβ), (B.16)

whereβ ≡ θ/R. In general, this substitution isnot valid, because d2θ = sinθ dθ dφ. In the case of localised source
profiles, the angleθ is small for non-vanishing values ofψ justifying the approximation sinθ ≈ θ. The same
argument also applies for the boundaries of integration. With the aid of eqn. (B.11), condition (B.13) reads

∂

∂R
〈u(R,0)〉 =

∞∑
`=0

τ`0
∂ψ`0(R)
∂R

= 0. (B.17)

Using eqn. (B.16), the derivative now acts on the Legendre polynomialP`,

∞∑
`=0

√
2` + 1

4π
τ`0

∫
d2βψ(β)P′`(cosRβ) β sinRβ = 0. (B.18)

Using the derivative relation of the Legendre polynomials (Arfken & Weber1995),

P′`(x) =
` + 1
1− x2

[x P̀ (x) − P`+1(x)], (B.19)

one obtains
∞∑
`=0

√
2` + 1

4π
(` + 1)τ`0

∫
d2βψ(β)

Rβ
sinRβ

×
[
cosRβP`(cosRβ) − P`+1(cosRβ)

]
= 0. (B.20)

In this case, the angleθ is small for non-vanishing values ofψ justifying the approximations sinRβ ≈ Rβ and
cosRβ ≈ 1. Substituting back, d2β = d2θ/R2, introducingx ≡ cosθ = cosRβ, and inserting the inversion of
eqn. (B.16), namely

ψ(β) =
∞∑
`′=0

ψ`′0(R)Y0
`′0(Rβ), (B.21)
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one arrives at

∞∑
`′,`=0

√
2` + 1

4π

√
2`′ + 1

4π
(` + 1)τ`0ψ`′0(R) ×

2π
R2

∫
dx P̀ ′ (x)[P`(x) − P`+1(x)] = 0. (B.22)

Applying the orthogonality relation for the Legendre polynomials,∫ +1

−1
dx P̀ (x)P`′ (x) =

2
2` + 1

δ``′ , (B.23)

and using the small angle approximation in the second term of eqn. (B.22) with the same argument as given above,
yields the final result

∞∑
`=0

ψ`0(R)[τ`0 + `(τ`0 − τ`−1,0)] = 0. (B.24)

Replacing the differential quotient with the corresponding derivative is a valid approximation for` � 1. Thus,
eqn. (B.24) can be recast in shorthand notation yielding

∞∑
`=0

ψ`0(R)τ`0

[
2+

d lnτ`0
d ln`

]
= 0. (B.25)

This result could have been obtained independently by attaching the tangential plane to the North pole and applying
Fourier decomposition of the filter functionψ and the source profileτ. For that reason, it is not surprising that the
functional form of this condition on the sphere agrees with that obtained bySanz et al.(2001) for a flat topology
in two dimensions. The becomes invalid for large angular scales, because then the multipoles are of comparable or
larger size than any reasonable tangential plane, thus eqn. (B.24)is an important generalisation of eqn. (B.25) valid
for Fourier decompositions.

Performing functional variation (with respect to the filter functionψ) of σ2
u(R) while interlacing the constraints

(B.14) and (B.25) through a pair of Lagrangian multipliers yields the spherical scale-adaptive filter,

ψ`0 =
τ`0

C` ∆

[
2b+ c− (2a+ b)

d lnτ`0
d ln`

]
, (B.26)

∆ = ac− b2, (B.27)

a =

∞∑
`=0

τ2
`0

C`
, (B.28)

b =

∞∑
`=0

τ`0
C`

dτ`0
d`

, (B.29)

c =

∞∑
`=0

C−1
`

(
dτ`0
d ln`

)2

. (B.30)

As before in the case of the matched filter, the power spectrumC` can be derived from observed data provided
the power spectrum of the signal is negligible. Assuming a model source profileτ(θ), the quantitiesτ`0, a, b, c, and
finally ψ`0 can be computed in a straightforward way. The derivative ofτ`0 with respect to the multipole order` is
a shorthand notation of the differential quotient in eqn. (B.24).
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C. Integration of Legendre- P` weighted functions

For the derivation of filter kernels (see Chapter7), the Legendre-transform of aβ-profile p(θ) is needed:

p`0 = 2π
∫ π

0
sinθdθ p(θ)

√
2` + 1

4π
P`(cosθ) = 2π

N−1∑
i=0

∫ zi+1

zi

sinθdθ p(θ)

√
2` + 1

4π
P`(cosθ), (C.1)

0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

PSfrag replacements

polar angle θ

pr
ofi

le
s

p+
,−

(θ
)a

nd
L

eg
en

dr
e-

P
`
(c

os
θ
)

Figure C.1.: The symmetric functionp+(θ) (thick solid line) and its antisymmetric counterpartp−(θ) (thin solid line),
along with the even Legendre polynomialP`=12(cosθ) (dashed line) and the odd polynomialP`=11(cosθ) (dash-dotted
line).

As in the case of Bessel functions (AppendixD), the integrand is rapidly oscillating such that is it favourable
to split up the integration. Here,zi denotes theith zero of the Legendre polynomialP`(cosθ) with the integration
boundaries,z0 = cosθi = 1 andzN = cosθ f = −1. The integration can be accelerated by using the symmetry
properties of the Legendre polynomialsP`(θ): P`(θ) = P`(−θ) for even` andP`(θ) = −P`(−θ) for odd `. This
suggests to form a symmetric and an antisymmetric combination,

p+(θ) =
1
2

[
p(θ) + p(π − θ)

]
, and p−(θ) =

1
2

[
p(θ) − p(π − θ)

]
, respectively. (C.2)

Carrying out the integration while inserting the symmetry relations, one obtains for the non-zero contributions:

p`m =


p+`0 = 2π

∫ π/2

0
sinθdθ p+(θ)

√
2`+1
4π P`(cosθ), ` even

p−`0 = 2π
∫ π/2

0
sinθdθ p−(θ)

√
2`+1
4π P`(cosθ), ` odd

(C.3)

which are depicted in Fig.C.1. In this way, the integrand is always even and hence the integration range can
be reduced to[0 . . . π/2] instead of[0 . . . π]. Consequently, the integrand needs to be evaluated on half as many
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Integration of Legendre-P` weighted functions

sampling points, or, the numerical accuracy can be increased by distributing the initial number of sampling points
in an interval of half the initial size.
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D. Integration of Bessel- J` weighted functions

D.1. Approximation formulae

In Chapter13, numerical integrations overJ`-weighted functions need to be carried out. Complications arise be-
cause of the large values of` considered, which causes the integrands to oscillate rapidly, and because of the large
range in the integration variable. The latter property of the integral requires many evaluations of the Bessel-J`
functions and their derivatives, which can be sped up by using the following two approximations:

J`(x) =


1

2``! x` , x� 1,√
2
πx cos

(
x− π

4(2` + 1)
)
, x� 1

(D.1)

d
dx

J`(x) =


1

2`(`−1)! x
`−1 , x� 1,

−

√
2
πx

[
1
x cos

(
x− π

4(2` + 1)
)
+ sin

(
x− π

4(2` + 1)
)]
, x� 1

(D.2)

These approximations, which are depicted in Fig.D.1, yield excellent fits to to the Bessel function.
In the range where the the Bessel functionsJ`(x) and their derivatives dJ`(x)/dx need to be properly evaluated, an

exerpt taken from theCMBfast code written bySeljak & Zaldarriaga(1996) was used. Their description expresses
Bessel functions as series of cot- and sec-functions (as derived in the excellent book byWatson1952), and uses the
recurrence relation of Bessel functions only up to order` = 5. The derivative can be determined via

d
dx

[
x`J`(x)

]
= x`J`1(x) −→

d
dx

J`(x) = J`−1(x) −
`

x
J`(x). (D.3)

Standard descriptions based on spline interpolations fail to deliver the required numerical accuracy at high order`,
especially when considering the derivative dJ`(x)/dx.

D.2. Numerical integration

When integrating rapidly oscillating functionsg(x)J`(x), it is advisable to split up the numerical integration:∫ xf

xi

dx g(x)J`(x) =
N−1∑
i=0

∫ zi+1

zi

dx g(x)J`(x), (D.4)

wherezi denotes theith zero of the Bessel functionJ`(x) and, naturally,z0 = xi andzN = xf . The zeros of the
Bessel-J`(x) function have to be evaluated numerically for smallx (for instance, by bisection), and coincide with
the zeros of the approximating cos-function for largex.

In the case of the derivative dJ`(x)/dx, integration by parts is not feasible because the functiong(x) to be integrated
is only given numerically and determining the derivative by differencing is likely to pick up noise. The determination
of the zeros of dJ`(x)/dx can only be carried out numerically, even for large argumentsx, but one can take advantage
of the fact that a zero of dJ`(x)/dx is always located between two successive zeros ofJ`(x), which serve as starting
values for the bisection. Further numerical accuracy can be gained if two successive cycles are differenced before
adding up all contributions. For the numerical integration in between the zeros, Gaussian quadrature or Romberg
integration have proven to be reliable.
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Figure D.1.: The Bessel functionJ`(x) (upper panel) and its derivative dJ`(x)/dx (lower panel) for̀ = 5 (solid line) and
the approximations used for smallx (dashed line) and largex (dash-dotted line).
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E. Decomposition of mixed 3-point correlators of
density and velocity fields

The determination of corrections to the 2-point correlation function of gravitational lensing including gravitomag-
netic terms (as carried out in Chapter13) requires the computation of 3-point and 4-point correlators. In this
appendix, it is shown how the 3-point correlation function can be reduced to products of 2-point correlators by
means of perturbation theory. In order to evaluate the 3-point correlation function〈δ(k1)υ(k2)δ(k3)〉 in perturbation
theory, the density- and velocity fields are decomposed into linear termsδ(1), υ(1) and small perturbationsδ(2), υ(2):

δ(k) = δ(1)(k) + δ(2)(k) and υ(k) = υ(1)(k) + υ(2)(k). (E.1)

As shown byFry (1984), the second order density perturbation can be written as:

δ(2)(k) =
∫

d3p
(2π)3

∫
d3p′

(2π)3
(2π)3δD(p+ p′ − k)M(p,q)δ(p)δ(p′) =

∫
d3p

(2π)3
M(p, k − p)δ(1)(p)δ(1)(k − p), (E.2)

with the functionM(p,p′) being defined as:

M(p,p′) =
10
7
+

pp′

pp′

(
p
p′
+

p′

p

)
+

4
7

(
pp′

pp′

)2

. (E.3)

Clearly, the functionM is symmetric,M(p,p′) = M(p′,p) and has the properties thatM(−p,−p′) = M(p,p′) and
M(−p,p′) = M(p,−p′). For the first order perturbation of the velocity field, one obtains:

υ(2)(k) = −iH (a) f (Ω)
k
k2
δ(2)(k). (E.4)

The 3-point correlation function〈δ(k1)υ(k2)δ(k3)〉 can now be expanded to yield to second order:

〈δ(k1)υ(k2)δ(k3)〉 ' 〈δ(1)(k1)υ(1)(k2)δ(2)(k3)〉 + 〈δ(1)(k1)υ(2)(k2)δ(1)(k3)〉 + 〈δ(2)(k1)υ(1)(k2)δ(1)(k3)〉 (E.5)

with the first order term〈δ(1)(k1)υ(1)(k1)δ(1)(k1)〉 vanishing due toυ(1)(k) ∝ δ(1)(k) for truly Gaussian random fields.
If the perturbation is contained in the density fieldδ, inserting eqn. (E.2) into the correlator yields:

〈δ(1)(k1)υ(1)(k2)δ(2)(k3)〉 =
∫

d3p
(2π)3

∫
d3p′

(2π)3
(2π)3δD(p+ p′ − k3)M(p,p′)〈δ(k1) δ(p)〉〈δ(p′)︸      ︷︷      ︸ υ(k2)〉. (E.6)

Similarly, if the perturbation is the velocity-fieldυ, one obtains:

〈δ(1)(k1)υ(2)(k2)δ(1)(k3)〉 =
∫

d3p
(2π)3

∫
d3p′

(2π)3
(2π)3δD(p+ p′ − k2)M(p,p′)〈δ(k1) υ(p)〉〈υ(p′)︸       ︷︷       ︸ δ(k3)〉. (E.7)

Collecting these results for the mixed 3-point correlator of density and velocity fields in question yields for the first
order expansion of〈δ(k1)υ(k2)δ(k3)〉 in perturbation theory:

〈δ(1)(k1)υ(1)(k2)δ(2)(k3)〉 = M(k1, k2)Pδδ(|k1|)Pδυ(|k2|), (E.8)

〈δ(1)(k1)υ(2)(k2)δ(1)(k3)〉 = M(k1, k3)Pδυ(|k1|)Pδυ(|k3|), (E.9)

〈δ(2)(k1)υ(1)(k2)δ(1)(k3)〉 = M(k2, k3)Pδδ(|k2|)Pδυ(|k3|), (E.10)

if the condition
∑3

i=1 ki = 0 is fulfilled. Hence, in first order perturbation theory, the 3-point correlation function
can be decomposed into products of the density-density and density-velocity correlation functions, which are of the
orderυ/c (eqns.E.8andE.10), and into the square of the density-velocity cross correlation, which is of orderυ2/c2

(eqn.E.9).
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F. Propagation of photons through
gravitomagnetic fields

This appendix provides a detailed derivation of the action of gravitomagnetic potentials on photons and serves as a
supplement to Chapter13. The microscopic picture of photon propagation in the presence of general gravitational
fields has been the subject of many treatises, e.g. (Misner et al.1973, d’Inverno1992, Pyne & Birkinshaw1993,
Frittelli 2003), but this appendix summarises the main results in a condensed from that has been implemented in
Chapter13.

The metricgab is assumed to be weakly perturbed byγab on a Minkowski backgroundηab:

(ds)2 = gabdxadxb = (ηab + γab)dxadxb = (1+ 2Φ)c2dt2 − 8c A · dx dt − (1− 2Φ)dx · dx. (F.1)

The scalar potentialΦ and the gravitomagnetic vector potentialA are given in the slow motion, near-zone approxi-
mation as solutions to Poisson’s equation with matter densityρ and matter current densityj = ρυ:

∆Φ(x, t) = 4πGρ(x, t) −→ Φ(x, t) = −G
∫

ρ(x′, t)
|x − x′|

d3x′, (F.2)

∆A(x, t) = 4πGj(x, t) −→ A(x, t) = −G
∫

j(x′, t)
|x − x′|

d3x′. (F.3)

The photon trajectory is described byxa(s). At each point the tangent is given byua = dxa/ds= (u0,u). The path
shall be parametrised by the Euclidean arc length d`2 = dx · dx, in this case the photon trajectory can be written as
xa(`) = (t(`), x(`)) with tangentu0 = dt/d` ande= dx/d`, which is normalised bye2 = 1. Using these coordinates,
the condition that the photon’s wave-vector needs to be situated on the forward light cone (the null condition) reads:

uaua = 0 −→ (1+ 2Φ)c2(u0)2 + 8c e · A u0 − (1− 2Φ) = 0. (F.4)

Hence, if the photon transverses a potential it experiences a frequency shift, whose approximate value is given by
the time-component ofu:

cu0 = 1− 2(Φ − 2e · A/c) . (F.5)

In this equation, the gravitomagnetic correction to lensing can be read off, which replaces the gravitational scalar
potentialΦ byΦ − 2

c A‖. For the spatial part, the equation of geodesic transport,

d
d`

ua + Γa
bcu

buc − µa0 = 0 (F.6)

has to be solved.µ denotes a free parameter, reflecting the freedom in choice of the parametrisation. For the spatial
componentsui , the geodesic equation reads:

d
d`

ui + Γi
00(u

0)2 + 2Γi
0 ju

ju0 + Γi
jku juk − µa0 = 0 (F.7)

For weak perturbationsγab, the Christoffel-symbolsΓa
bc can be linearised:

Γa
bc =

1
2
ηcd [

had,b + hbd,a − hab,d
]

(F.8)

With the above defined potentialsΦ andA and the ansatz (F.1) for the metric one derives the expressions:

Γi
00 = 4cȦi + c2Φ,i , (F.9)

Γi
0 j = 2c

[
Ai, j − A j,i

]
− δi j Φ̇, and (F.10)

Γi
jk = δ jkΦ,i − δikΦ, j − δi jΦ,k, (F.11)
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Propagation of photons through gravitomagnetic fields

where ,i ≡ ∂/∂xi and˙ ≡ ∂/∂t. By ignoring Ȧ and settingΦ̇ = Ai,i = divA, which follows from the continuity
equation ˙ρ + c divj = 0, one obtains:

d
d`

ui = c2Φ,i(u
0)2 + 2

[
2c(Ai, j − A j,i) − δi j Ai,i

]
u ju0. (F.12)

With the replacementu j
[
Ai, j − A j,i

]
= − [erot A] i , the final expression for the tangent is derived:

d
d`

e= 2∇Φ − 4e rotA − (2e∇Φ + µ) e. (F.13)

In gravitational lensing, the norm of the wave-vectore is conserved,e2 = const, hence12
∂
∂`

e2 = e · ∂
∂`

e = 0. After
multiplying eqn (F.13) with e, the left side can be set to zero and the resulting equation solved forµ. Re-insertingµ
in eqn. (F.13) gives:

∂

∂`
e= −2[∇Φ − e(e∇Φ) − 2u × rotA] = −2[∇⊥Φ − 2u × rotA] . (F.14)

In the last step, the perpendicular gradient∇⊥ ≡ ∇ − e(e∇) has been inserted. This equation is an expression for the
change of direction of a photon transversing a gravitomagnetic field. For the change in wavelengthλ, its relation to
the affine parameterµ derived byPyne & Birkinshaw(1993) can be used:

d
d`

ln λ = µ, (F.15)

which immediately yields the formula for the integrated Sachs-Wolfe/Rees-Sciama effect:

∆λ

λ
=
λobs− λsource

λsource
= −2

∫ obs

source
d`

∂

∂t
Φ = 2

∫ obs

source
d` divA. (F.16)
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