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Thus spake Zarathustra: 

“Ye have made your way from the worm to man, and much within you is still worm…" 

(Friedrich Nietzsche, Zarathustra’s Prologue, 1.3) 
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1 Summary 
 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder, 

mainly characterized by motor dysfunctions resulting from massive and selective loss 

of dopaminergic neurons. Mutations in the human parkin gene, which encodes an E3 

ubiquitin ligase, are the most frequent causes of hereditary PD, leading to autosomal-

recessive juvenile Parkinsonism. However, the cell biological role of Parkin and the 

molecular pathogenic mechanisms by which mutations cause PD are unclear. 

In this study, the Caenorhabditis elegans parkin ortholog, pdr-1, was identified 

and characterized in detail. PDR-1 is functionally conserved, since it physically 

associates and cooperates with enzymes of the ubiquitylation/degradation system to 

mediate ubiquitin conjugation. Strikingly, in contrast to pdr-1 loss-of-function mutants, 

the in-frame deletion mutant protein PDR-1(∆aa24-247) still interacts with its co-

enzymes, and moreover, the corresponding mutant pdr-1(lg103) is hypersensitive 

towards misfolded protein conditions. In this mutant, both cytosolic stress conferred 

by overexpression of mutant human α-synuclein, a gene linked to autosomal-

dominant forms of PD, as well as endoplasmatic reticulum (ER)-derived folding stress 

result in severe developmental defects and lethality. Although expression of pdr-1 is 

regulated by all three activators of the unfolded protein response (UPR), IRE-1, PEK-

1, and ATF-6, genetic analyses established a function of PDR-1 in parallel to IRE-1 

signalling.  

Therefore, PDR-1/Parkin plays an essential role in the regulation of different 

proteotoxic stress pathways: it contributes to the ER-specific UPR, but also 

participates in the cytosolic detoxification of protein aggregates, including α-

synuclein. The truncated protein PDR-1(∆aa24-247) seems to mediate a toxic 

misfunction by sequestering critical components of the protein folding/degradation 

machinery, which is related to the stress hypersensitivity in the pdr-1(lg103) mutant. 

In this study, an experimental animal system was established which is well suited to 

identify modifiers of toxicity and relevant compounds. Such studies might allow to 

dissect the molecular and cellular pathways involved in the pathogenesis of PD and 

to identify potential therapeutic drug targets. 
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2 Introduction 
 
2.1 Clinical Characteristics and Pathology of Parkinson’s Disease 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder 

affecting about 1-2% of the population over the age of 65 (Riess et al., 2003). The 

clinical manifestations of this disease, originally described in 1817 by James 

Parkinson in his “Essay on the Shaking Palsy”, are mainly motor dysfunctions. This 

encompasses a spectrum of core clinical features, from which today over one million 

patients suffer: rigidity (stiffness), bradykinesia (slowness of movement), tremor at 

rest (rhythmic shaking and involuntary movement) and postural instability 

(disturbance of balance) (Lang and Lozano, 1998a; Lang and Lozano, 1998b). 

However, PD is a heterogeneous disorder, as many patients also develop cognitive 

dysfunctions, including anxiety, depression and dementia (Dawson and Dawson, 

2002), or abnormalities in olfactory and visual perception (Chung et al., 2003). This 

chronic progressive disease proceeds relentlessly until the patient dies. 

 Pathologically, PD is characterized by the specific and massive loss of 

dopamine (DA) containing neurons in the Substantia Nigra pars compacta (SNpc) 

and the Locus Coeruleus (Figure 1).  

 

 
 

Figure 1. Pathology of 
Parkinson's Disease. 

Schematic representation of (A) 
the normal and (B) the diseased 
nigrostriatal pathway (in red). DA 
neurons (arrows) of the SNpc 
project into the striatum (i.e., 
putamen and caudate). The 
photographs demonstrate (A) the 
normal pigmentation of the SNpc, 
produced by neuromelanin within 
the dopaminergic neurons, as well 
as (B) an obvious depigmentation 
(i.e., loss of dark-brown pigment 
neuro-melanin) of the SNpc due to 
the marked loss of dopaminergic 
neurons (Taken from Dauer and 
Przedborski, 2003). 
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Loss of greater than 80% of these SNpc neurons leads to nigrostriatal DA deficiency, 

which is responsible for the major symptoms of PD. Although DA is synthesized only 

in a small subset of neurons, it accomplishes an exceedingly important role in the 

nervous system, as it not only controls movement, but also regulates emotional 

behaviour, cognitive functions, and memory. 

 The main neuropathological hallmark of idiopathic PD are small (5-25 µm) and 

spherical cytoplasmic, and more abundantly neuritic inclusions (Lewy bodies and 

neurites) (Goedert, 2001), originally identified by Friedrich Lewy in 1912 (Figure 2).  

 

 

Figure 2. Lewy Body 
Pathology of PD Brain. 

Immunohistochemical staining 
of Lewy bodies in 
dopaminergic neurons. Left: 
antibody against α-synuclein. 
Right: antibody against 
ubiquitin (Taken from Dauer 
and Przedborski, 2003). 
 

 

These eosinophilic, hyaline aggregates contain a variety of different aggregation-

prone proteins, as well as enzymes involved in protein folding, degradation, and 

detoxification. The major components of Lewy bodies (LBs) are α-synuclein and its 

interaction partner synphilin-1, as well as ubiquitin, Parkin, UCH-L1, proteasomal 

subunits and chaperones (Dev et al., 2003a). Interestingly, some of these 

constituents are directly associated with familial forms of PD.  

 The mechanism of LB biogenesis and their contribution to neurodegenerative 

processes are unknown. However, formation of aggresomes which are 

proteinaceous inclusions that facilitate and increase the degradation of excess 

amounts of unwanted and possibly cytotoxic proteins, is a cellular defence 

mechanism against unfolded protein stress (Garcia-Mata et al., 2002; Kopito, 2000; 

Sherman and Goldberg, 2001). Similarities between aggresomes and LBs with 

respect to structural organization, protein content, and intracellular localization have 

already been identified, and suggest that these inclusions are related and could be 

formed in similar ways (Olanow et al., 2004). 
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 The major medical approaches to treating this disease are DA replacement 

therapies by the precursor L-DOPA (levodopa) or different agonists, as well as 

medications interfering with different enzymatic steps of DA metabolism, nerve 

terminal release and re-uptake (Kitamura et al., 2002). Although, current PD 

medications alleviate most of the symptoms, efficiency over the time is limited, and 

none halt or retard degeneration of DA neurons. Thus, neuro-protective (to prevent 

cell death) or neuro-restorative (to repair neurons) therapies must be developed 

(Dawson and Dawson, 2002), but these have to be based on understanding its 

molecular and biochemical pathogenesis of PD. 

 

 

2.2 Pathogenesis of Parkinson’s Disease 

Although the mechanisms underlying pathogenesis of PD are unknown, mainly two 

cellular dysfunctions are implicated: mitochondrial respiration defects and the 

resulting oxidative stress, as well as dysfunctions in protein folding/degradation 

pathways and the consequent abnormal protein aggregation.  

 

2.2.1 Mitochondrial Dysfunction and Oxidative Stress 

Originally, mitochondrial impairment and consequent oxidative damage have been 

detected in pathological analyses of PD brains (Beal, 2003; Jenner and Olanow, 

1998). Inhibition of complex I and IV of the mitochondrial respiratory chain have been 

revealed in affected DA neurons which seem particularly vulnerable due to their high 

basal rate of oxidation (Betarbet et al., 2002; Goedert, 2001). Thereby, DA itself 

might act as an endogenous neurotoxin, as its metabolism can generate harmful 

reactive oxygen species (ROS), and some of its adducts confer cytotoxicity to nerve 

cells (Lotharius and Brundin, 2002; Lotharius and O'Malley, 2001; Nass and Blakely, 

2003). This is further supported by data from intoxication and genetic experimental 

models. Exposure to specific drugs causes a syndrome that mimics the core 

neurological symptoms and selective dopaminergic neurodegeneration, with or 

without Lewy body formation (Dauer and Przedborski, 2003). These PD mimetics, 

mostly mitochondrial complex I inhibitors, have been extensively studied in cell 

culture systems and in a variety of animal models (Reviewed by Betarbet et al., 2002; 
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Dauer and Przedborski, 2003; Shimohama et al., 2003) including primates, rodents, 

and nematodes (Braungart, 2004; Nass et al., 2002). In addition, the discovery of 

some PD-associated genes, and their analysis in cell culture systems or gene-

knockout models in mice and flies further implicated mitochondrial defects and 

oxidative stress in the pathogenesis of PD (Shen and Cookson, 2004). 

 

2.2.2 Proteasomal Dysfunction 

Studies of toxin-based PD models and the function of genes implicated in inherited 

forms of PD strongly suggested that impairment of protein degradation along with an 

age-related tendency to accumulate damaged proteins is crucial and may play a 

major role in the pathophysiology of PD (McNaught et al., 2003; McNaught and 

Olanow, 2003). The ubiquitin-proteasome dependent degradation pathway regulates 

protein turnover in the cytosol and in the nucleus of all eukaryotic cells (Figure 3).  

E1E1

E2
E1

E2
E1

substrate
E3E2

E1
E3E2E2

E1

UCH

small peptides

substrate
E3E2

E1

E4

26S26S

monomeric Ub

poly-Ub

20S20S

19S19S
+

 

igure 3. The Ubiquitin-Proteasome System.  

ting enzyme; E2, ubiquitin-conjugating enzyme; E3, 
ubiquitin protein ligase; E4, multiubiquitin-chain assembly factor; UCH, ubiquitin C-terminal hydrolase. 
For a description of the ubiquitin-proteasome system, see further text. 

F

Abbreviations: Ub, ubiquitin; E1, ubiquitin-activa
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 Thereby, short-lived as well as damaged or misfolded proteins are targeted for

destruction by conjugation to ubiquitin, mediated by a co

 

ncerted action of different 

enzymes in a sequential cascade (Pickart, 2001). First, free ubiquitin gets activated 

by an ubiquitin-activating enzyme (E1) through an ATP-dependent mechanism, and 

is transferred to an ubiquitin-conjugating enzyme (E2 or UBC). Next, an ubiquitin-

protein ligase (E3), which confers substrate specificity, mediates attachment of 

ubiquitin to an acceptor protein. Sequential rounds of ubiquitylation, in which each 

following ubiquitin moiety is linked to the previous, leads to formation of poly-

ubiquitylated substrates. Sometimes, this is mediated in conjunction with an 

additional multichain assembly factor (E4), to ensure efficient substrate multi-

ubiquitylation. Poly-ubiquitylated proteins are recognized by the associated 26S 

proteasome, and subsequently degraded (Hochstrasser, 1996). The 26S proteasome 

is a multicatalytic proteinase complex, composed of a barrel-shaped 20S core 

particle, with a proteolytic active cavity, and a 19S regulatory complex, which is 

attached at either or both ends. The 19S complex promotes recognition and binding 

of ubiquitin chains, as well as substrate unfolding and translocation into the 20S core 

proteinase (Baumeister et al., 1998; Verma and Deshaies, 2000). Thereby, 

substrates are cleaved into short peptides and poly-ubiquitin chains, which are then 

disassembled by ubiquitin C-terminal hydrolases (UCH), de-ubiquitylating enzymes, 

to regenerate free monomeric ubiquitin (Chung and Baek, 1999; Kim et al., 2003).  

 It is noteworthy that several PD associated genes are either directly involved 

in, or are turned over by the ubiquitin-proteasome dependent degradation system 

(Giasson and Lee, 2003). In addition, proteasome inhibition causes formation of 

aggresome/Lewy body-like structures and cytotoxicity in DA neurons in culture 

(McNaught et al., 2002). Moreover, it has already been shown that proteasomal 

activity is impaired in substantia nigra of sporadic PD patients. Low steady-state 

levels of proteasome activators in specifically DA neurons may render these cells 

more susceptible to proteolytic stress than other brain cells (Ciechanover and 

Brundin, 2003).  

 Furthermore, a clear link between protein folding and degradation pathways 

has already been established. Dysfunction in the ER leads to accumulation and 

consequent aggregation of misfolded proteins, thereby impairing proteasomal activity 

(Bence et al., 2001) which in turn aggravates ER stress (Paschen, 2003).  
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2 Dysfunction of the Endoplasmatic Reticulum 

The accumulation of misfolded and/or aggregated proteins in the lumen of the 

endoplasmatic reticulum (ER) activates an intracellular signalling pathway, the 

unfolded protein response (UPR) (Figure 4). This adaptive homeostatic pathway 

augments ER folding capacity by transcriptional induction of ER-resident 

chaperones, folding catalysts and protein degradation complexes, and, in addition, 

limits further accumulation of unfolded proteins in the ER by translational attenuation 

(Rutkowski and Kaufman, 2004).  

 
 

.2.3 
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Figure 4. The Unfol

The different phases of 

ded Protein Response.  

the UPR are executed by a time-dependent shift, according to duration of 
tress s

itself directly 
degradation 

complexes, to promote degradation of misfolded proteins.  

s ignals (Yoshida et al., 2003). First, the kinase PERK/PEK1 mediates translational attenuation 
by direct phosphorylation of the initiation factor eIF2α, to limit further protein synthesis. On the other 
hand, this selectively promotes translation of specific mRNAs (e.g. ATF4). Next, the transcription 
factor ATF6, activated through Golgi transport and cleavage, regulates a group of genes encoding ER-
resident molecular chaperones, in an attempt to correct the defects by refolding. Finally, IRE1 initiates 
a transcriptional activation through splicing of xbp1 mRNA. The transcription factor XBP1 
targets a set of genes encoding ER-resident chaperones, folding catalysts, and protein 
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Under normal physiological conditions, this signal transduction pathway is repressed 

by binding of the ER chaperone BiP to the luminal domains of three ER-membrane 

Unfolded proteins in the ER are retro-translocated to the cytosol and turned 

over by the ER-associated degradation pathway (ERAD) (Bonifacino and Weissman, 

1998; Kostova and Wolf, 2003; Plemper and Wolf, 1999), a process regulated by the 

UPR. Both pathways are required for the coordinated disposal of misfolded proteins 

even in the absence of acute stress (Friedlander et al., 2000; Travers et al., 2000). 

The involvement of ER stress pathways in the pathogenesis of PD was further 

substantiated, as a variety of PD mimetics, like 6-OHDA (6-hydroxydopamine) and 

MPTP/MPP+ (1-methyl-4-phenylpyridinium), specifically induce ER stress and 

activate the UPR (Ghribi et al., 2003; Holtz and O'Malley, 2003; Kheradpezhouh et 

al., 2003; Ryu et al., 2002). Furthermore, impairment of the UPR pathway increases 

sensitivity to parkinsonism-inducing toxins (Ryu et al., 2002).   

 Thus, proteolytic stress defined as a state in which levels of unwanted proteins 

(mutant, misfolded, denatured or damaged) exceed the capacity for clearance due to 

increased protein production and/or inadequate folding/proteolysis, is strongly 

implicated as a major key event in the pathogenesis of sporadic and the various 

familial forms of PD (Forman et al., 2003; McNaught and Olanow, 2003; Sherman 

and Goldberg, 2001). 

resident effectors: the protein-kinase and site-specific endoribonuclease IRE1; the 

eukaryotic translation initiation factor 2 kinase PERK/PEK; and the transcriptional 

activator ATF6 (Zhang and Kaufman, 2004). Upon accumulation of unfolded proteins 

BiP is released to encompass its chaperone function, permitting the activation of the 

UPR (Zhang and Kaufman, 2004). When the UPR is overwhelmed or fails, affected 

cells can be set on a pathological trajectory that culminates in their dysfunction and 

death (Forman et al., 2003).  
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2.3 Aetiology of Parkinson’s Disease 

While the causes of PD are largely unknown, considerable evidence suggests a 

multifactorial aetiology as a result of cumulative effects of environmental and 

complex genetic factors, with toxins and advancing age as the main risk factors 

(Shastry, 2001). Most cases of idiopathic PD appear sporadically, whereas familial 

cases are rare with a monogenic inheritance less than 5% (Cordato and Chan, 

2004). Recent studies revealed several susceptibility loci of which six certain 

monogenic forms of familial PD have already been identified (Table 1). This has 

provided some explanation for the clinical heterogeneity in this disorder: different age 

of onset from juvenile to late, transmission dominant and recessive, progression from 

very slow to rapid, differences in the clinical features, with or without LB pathology 

(Warner and Schapira, 2003). 

 

 
locus 
PARK 

position gene onset TM LB reference 

1/4 -22 α-synuclein 
middle-

late 
AD + 

(Polymeropoulos et al., 1997; 

Singleton et al., 2003) 
4q21

2 6q25-27 parkin 
early-

juvenile 
AR -* (Kitada et al., 1998) 

3 2p13 unknown late AD + (Gasser et al., 1998) 

5 4p14 UCH-L1 late AD n.d. (Leroy et al., 1998) 

6 1p35-36 PINK1 early AR n.d. (Valente et al., 2004) 

7 1p36 DJ-1 early AR n.d. (Bonifati et al., 2003) 

8 12p11.2-q13.1 
Dardarin/ 
LRRK2 

late AD + 
(Paisan-Ruiz et al., 2004; 

Zimprich et al., 2004) 

9 1p36 unknown juvenile AR n.d. (Hampshire et al., 2001) 

 
 

Table 1. Loci and Genes Linked to Hereditary PD.  

Abbreviations: TM, transmission; LB, Lewy body; AD, autosomal dominant; AR, autosomal 
recessive; n.d., not determined; *, except one case (Farrer et al., 2001).  
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2.3.1 α-synuclein 

The first rare monogenic form of autosomal-dominant PD was linked to mutations in 

the gene encoding α-synuclein. This highly abundant presynaptic protein is 

implicated in many biological processes (Lykkebo and Jensen, 2002), but the 

mechanism of mediating toxicity remains elusive (Dev et al., 2003a). α-synuclein, the 

major component of LBs, normally is a soluble monomeric protein, but displays a 

concentration-dependent tendency to polymerize into misfolded aggregates acquiring 

fibrillar structures (Goedert, 2001). Although α-synuclein aggregates have been 

shown to impair proteasomal activity (Lindersson et al., 2004; Snyder et al., 2003) a 

cytoprotective function of α-synuclein aggregation or fibril formation, by sequestering 

potentially toxic soluble forms (Xu et al., 2002), has been suggested (Tanaka et al., 

2004). However, which conformational state of α-synuclein may confer toxic 

ertain (Dev et al., 2003a).  

So far, three autosomal-dominant point mutations (Kruger et al., 1998; 

Polymeropoulos et al., 199 ranz e 00 s l as geno lications 

(Chartier-Harlin et al., 2004; Ibanez 2004; Sin et -

synuclein locus cause PD. Thus, ther a clear dosage e the 

number of supernumerary copies of α cle nc ven e vels 

mediate pathology. This has already been confirmed by transgenic animal models, 

incl ing prim , roden ell a s a ne todes der, 

2000; Giasson et al., 2002; Lakso et al., 

Neumann et al., 2002; Yamada et al., 2004). Overexpression of human α-synuclein 

caused mo sfuncti rmati f L e ctur city, 

sometimes even associated with death of DA neurons (Reviewed by Maries et al., 

2003). On the other hand, gene knock-outs of α-synuclein in mice resulted in 

resistance to MPTP intoxication (Dauer et al., 2002) but also in functional deficits of 

the dopaminergic system (Abeliovich et al., 2000). Although many 

gained by α lein s er t y , th nd 

ellular processes underlying neurotoxicity and pathogenesis of PD are still unknown 

properties remains unc

 

7; Zar t al., 2 4) a  wel mic multip

et al., 

e is 

gl on et al., 2003) of the α

ffect according to 

-synu in si e e levated protein le

ud ates ts, as w s flie nd ma  (Feany and Ben

2003; Lee et al., 2002; Masliah et al., 2000; 

toric dy ons, fo on o B-lik  stru es, and neurotoxi

insights have been 

-synuc tudies ov the pas few ears e exact molecular a

c

and have to be elucidated. 
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2.3.2 Parkin 

In contrast to rare mutations in the majority of PD associated genes, most of familial 

cases are linked to mutations in the parkin gene, causing autosomal-recessive 

juvenile parkinsonism (AR-JP) (Kitada et al., 1998). A great variety of about 100 

different mutations have been identified so far, including exon rearrangements, small 

deletions or insertions, as well as single base pair substitutions (Reviewed by 

Hedrich et al., 2004; Mata et al., 2004). Although it appears that most mutations are 

recessive and so complete loss-of-function results in the pathogenesis, rare 

heterozygous alleles have been identified, suggesting dominant negative or toxic 

gain-of-misfunction mutations in some cases (Reviewed by Ciechanover and 

Brundin, 2003; West et al., 2002). Furthermore, missense mutations or small 

deletions seem to be associated with an earlier onset and a more pronounced 

phenotype than complete loss-of-functions by large deletions (Lohmann et al., 2003). 

Parkin has been suggested to function as an E3 ubiquitin ligase (Shimura et 

al., 2000) for aggregation-prone proteins (Tsai et al., 2003). A variety of un-related 

substrate proteins have been identified, including α-Sp22, a rare modified species of 

α-synuclein (Shimura et al., 2001). Parkin-mediated ubiquitylation enhances 

proteasomal degradation of substrate proteins at least in cell culture (Reviewed by 

Kahle and Haass, 2004). Human Parkin consists of several domains (Figure 5) which 

all seem to be essential for its functional integrity as missense mutations cluster in 

each. Some familial parkin mutations interfere with its ubiquitylation activity and 

therefore inhibit its protective function (Shimura et al., 2000). 

 The extreme N-terminus of Parkin is homologous and structurally related to 

ubiquitin (Sakata et al., 2003). This ubiquitin-like domain (UBL) is thought to be 

involved in coupling to the proteasome (Sakata et al., 2003; Tsai et al., 2003), 

substrate recognition (Shimura et al., 2001), and, regulation of Parkin stability 

(Finney et al., 2003). The following unique Parkin domain (UPD) is of yet unknown 

function, although auto-ubiquitylation clusters among others in this region (Finney et 

al., 2003). Consistently, Parkin was shown to be rapidly degraded by the 26S 

proteasome (Choi et al., 2000), due to its auto-ubiquitylation activity. 
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Figure 5. Human Parkin and Associated Proteins.  

Schematic view of human Parkin protein architecture. The different domains are colour-boxed: blue: 
ubiquitin-like domain (UBL); yellow: unique parkin domain (UPD); red: C3HC4 ring-finger domains 
(RING); green: C6HC in-between ring-finger domain (IBR). Parkin associates with the proteasomal 
subunits listed via the UBL domain, and with the co-enzymes listed via the RING box structure. With 
the exception of α-Sp22, all other so far identified substrates bind to the RING box of Parkin. 
 

 The C-terminus consists of two C3HC4 zinc-finger domains (RING) separated 

 UbcH4/5 
 UbcH7/8 
 Ubc6/7 
 CHIP 
 Hsp70 

 Rpn10 
 Rpt6 

by a C

gous parkin 

f LB-like 

lusions (Ardley et al., 2003; Chung et al., 2001b; Junn 

et al., 2002; Muqit et al., 2004; Zhao et al., 2003). Therefore, Parkin has been 

6HC in-between RING finger domain (IBR). This particular arrangement, the 

RING box, defines a protein superfamily, which includes dorfin and ariadne ubiquitin 

ligases (Marin and Ferrus, 2002). It was shown that this configuration mediates 

selective target recognition and/or binding, as well as association with specific co-

enzymes of the ubiquitylation machinery. Human Parkin cooperates with E2 and E4 

enzymes involved in cytosolic protein stress response and the ERAD pathway (Imai 

et al., 2002; Shimura et al., 2001; Zhang et al., 2000), thereby enabling and 

facilitating its E3 ubiquitin ligase activity. 

 LBs were conspicuously absent in brains of patients with homozy

mutations conferring most likely complete loss-of function (Kitada et al., 1998). 

However, examination of a compound heterozygous patient carrying an in-frame 

deletion and a missense mutations with retained biochemical activity, which has been 

demonstrated to confer a toxic gain-of-function (Cookson et al., 2003), displayed LB 

pathology (Farrer et al., 2001). Interestingly, some mutations, particularly those 

located within the UBL and RING domains, cause altered protein localization and 

aggregation into large cytoplasmic and nuclear aggresome-like structures (Cookson 

et al., 2003; Gu et al., 2003). Moreover, inhibition of the proteasome as well as co-

expression of parkin and some of its substrates resulted in formation o

ubiquitin-positive cytosolic inc
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suggested to be a prerequisite for LB formation (Chung et al., 2001b; Tanaka et al., 

2004). Thus, the early and severe form of cell death that occurs in AR-JP may be 

related to the absence of LB formation and their potential protective effect (Olanow et 

al., 2004). 

parkin knock-out models have stablished in flies 

re 003; Pesah et al., 2004) and mice (Goldberg et al., 2003; Itier et al., 

003; Palacino et al., 2004; Von Coelln et al., 2004). Parkin-deficient animals are 

viable and display only subtle behavioural defects, mitochondrial dysfunctions, as 

m

ion in response to ER stress has been 

animal models may be required to elucidate its biological role. 

 A variety of already been e

(G ene et al., 2

2

well as alterations of DA metabolism. However, none of the knock-outs showed 

impairment or loss of dopaminergic neurons of the nigrostriatal pathway (Reviewed 

by Kahle and Haass, 2004). Surprisingly, none of the known Parkin substrates were 

und to accu ulate in the brains of parkin deficient mice (Goldberg et al., 2003; fo

Lorenzetti et al., 2004; Palacino et al., 2004). These data suggest either that 

redundant ubiquitylation pathways for Parkin substrates may exist, Parkin-mediated 

ubiquitylation does not target substrates for proteasomal degradation, or Parkin 

substrates identified so far are erroneous. 

 However, human Parkin has been suggested to be involved in the UPR 

pathway, although the molecular mechanism is poorly understood, especially in vivo. 

Upon increased accumulation of misfolded polypeptides, parkin expression seems to 

be induced (Imai et al., 2000). Furthermore, a specific stimulation of Parkin’s E3 

ligase activity through de-phosphorylat

demonstrated (Yamamoto et al., 2004). In addition, Parkin mediates the 

ubiquitylation of its cell death inducing unfolded target protein, Pael-R, an ER 

transmembrane protein (Imai et al., 2001), thereby directly suppressing cytotoxicity. 

The human E4 enzyme CHIP which links protein folding and degradation (Cyr et al., 

2002; Murata et al., 2003), is able to augment Parkin E3 ubiquitin ligase activity (Imai 

et al., 2002). Knock-down of parkin in cell culture systems combined with unfolded 

protein stress either caused by expression of the Parkin substrates α-synuclein or 

Pael-R, or by proteasome inhibition resulted in neurotoxicity and selective 

neurodegeneration. Co-expression of parkin ameliorated loss of DA neurons 

(Petrucelli et al., 2002; Yang et al., 2003). 

 Nevertheless, until now, functional studies on parkin have not provided a direct 

explanation for the pathogenic mechanism of mutations, suggesting that additional 
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2.3.3 Other PD-Associated Genes 

Besides parkin, two other genes have been linked to autosomal recessive forms of 

PD. Mutations in the DJ-1 gene are the se

parkin

cond most frequent cause of recessive PD 

nal ubiquitin-hydrolase UCH-L1, a neuron-

, their exact cellular and physiological 

after  mutations. DJ-1 seems to be a multifuntional protein, which exerts 

chaperone activity, senses oxidative stress, acts as an antioxidant, and, mediates 

multiple protein-protein interactions. Furthermore, it is suggested to be involved in the 

cellular response to a variety of other stresses (Bonifati et al., 2004). Only few 

mutations have been found in the PINK1 gene which encodes a putative 

mitochondrial protein kinase that has been suggested to be involved in cellular stress 

response (Shen and Cookson, 2004). This suggests that loss of either of those two 

proteins renders DA neurons more vulnerable to injury, as both have been shown to 

protect cells against proteasomal dysfunction.  

 In addition to α-synuclein, two other genes associated with autosomal 

dominant forms of familial PD have been cloned. A single mutation has been 

identified in the gene encoding the C-termi

specific de-ubiquitylating enzyme that is necessary for recycling of free ubiquitin. 

Such a mutation could possibly impair the overall efficiency of proteasomal protein 

degradation (Chung et al., 2001a). An opposing ubiquitin ligase activity of UCH-L1 

created a link to aggregation of α-synuclein (Liu et al., 2002).  However, a mouse 

UCH-L1 deletion model developed neurodegeneration, though distinct from PD 

pathology (Saigoh et al., 1999). The latest identified PD-associated gene is Dardarin 

which encodes a leucin-rich kinase (Paisan-Ruiz et al., 2004; Zimprich et al., 2004). 

However, so far nothing is known about its function or the pathogenic mechanism of 

the identified mutations. 

 To date, a number of other candidate genes have been implicated in sporadic 

and familial cases and may play a minor role in the aetiology of PD. These include 

genes responsible for DA neuron differentiation and survival, genes involved in DA 

synthesis, metabolism and function, as well as detoxification enzymes. Although 

there seems to be some convergence at the cellular level between the 

genes/proteins associated with familial PD

roles, as well as the pathogenic mechanisms of mutations are still unknown. 

 

 



Introduction   16 

2.4 The Model Organism Caenorhabditis elegans 

 

 

 at -80° 

 or in liquid nitrogen for indefinite storage. 

Originally, the invertebrate Caenorhabditis elegans (C. elegans) was selected by 

Sydney Brenner because of its rapid life cycle, fecundity, genetic tractability, and 

simple cellular complexity as a favourable, experimental model to study fundamental 

aspects of developmental and neuronal biology (Brenner, 1974). 

 C. elegans, a member of the smooth-skinned, unsegmented roundworms, is a 

small (~ 1.3 mm; Ø 80 µm), non-parasitic and free-living soil nematode, found 

abundantly in many parts of the world. At 20° C, C. elegans has a generation time of 

about 3.5 days, developing from an egg through four larval stages (L1 to L4) to the 

reproductive adult animal, with each stage separated by a molt (Figure 6).  
 

Figure 6. The Nematode 
Caenorhabditis elegans.  

Shown are all developmental 
stages of the N2 wild type strain. 
C. elegans develops from an egg 
through four larval stages (L1 to 
L4) to the reproductive adult 
animal. Scale bar 0.5 mm  

 

 

 

 

 

 

C. elegans usually has a short life-span of about 2-3 weeks (Byerly et al., 1976), but, 

at unfavourable conditions, animals can go through an alternative developmental 

stage in which a resistant dauer larval form is produced, surviving extreme conditions 

(desiccation and lack of food) for several months. In the laboratory, C. elegans can 

be easily cultured and maintained with Escherichia coli (E. coli) as a food source, on 

an agar substrate in Petri dishes, in liquid culture, or even in microtiter plates, making 

it amenable to high-throughput approaches. Moreover, stocks can be frozen

C
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 C. elegans is diploid and has five pairs of autosomal chromosomes (LG I-V) 

e 

d egg to 

and one pair of sex chromosomes (LG X). Two sexes exist (Figure 7): a self-fertilizing 

hermaphrodite (XX) which produces both sperms and oocytes; and a male (X0) 

which occasionally appears at a frequency of ~ 0.2%, as a result of spontaneous X 

chromosome loss. This hermaphroditism facilitates genetic analysis as the strains ar

normally propagated asexually, giving rise to a large number of self-progeny (>300), 

forming clones. However, males, which can be generated experimentally by heat-

shock, are capable of mating with hermaphrodites, producing mainly cross-progeny. 

C. elegans has a simple body structure and a small invariant number of 959 somatic 

cells (1031 in the male) from which the complete cell lineage, from fertilize

adult, is known. 

 

 

 

 

Figure 7. Transmission Light Microscopic Images and Schematic Body Plan of C. elegans.  

Lateral views of adult wild type (top) hermaphrodite and (bottom) male animals (Sulston and Horvitz, 
1977). 
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 The nervous system, in comparison to the complexity of the human brain that 

contains over 100 billion neurons, is extremely simple. However, the 302 neurons of 

the adult hermaphrodite, which on the basis of morphology and connectivity can be 

assigned to 118 different neuronal classes, represent most of the nerve cells 

identified in other organisms (White, 1988). Nerve cells in C. elegans are small (Ø < 

5 µm) and are largely concentrated in a nerve ring, a ventral and a smaller dorsal 

nerve cord, and a complex head sensory system. Furthermore, the chemical 

complexity of the nervous system is highly conserved, as C. elegans contains many 

of the known signalling components and neurotransmitter systems (Brownlee and 

Fairweather, 1999) found in the mammalian nervous system. 

A broad set of tools and methodologies for anatomical, behavioural, genetic, 

ansgenic, biochemical, and pharmacological manipulations have been developed. 

ue to its transparency C. elegans is perfectly suited for the analysis of in vivo 

expression patterns of genes, as well as determination of the subcellular localization 

of their products, as it can easily be transformed with reporter constructs, e.g. green 

fluorescence protein (GFP) or β-galactosidase, by microinjection or bombardment. C. 

elegans is amenable to both forward (phenotype to genotype) and reverse (genotype 

to phenotype) genetic approaches, as well as to pharmacological screens involving 

large numbers of animals. A selection of gene inactivation and deletion strategies are 

available, ranging from random, chemical mutagenesis, over targeted transposon 

insertion, to transient loss of function by double stranded RNA (dsRNA)-dependent 

gene silencing (RNAi). A large collection of more than 2.500 mutants is available of 

which many have already been experimentally characterized, resulting in a wide 

spectrum of analyzed phenotypes and behavioural patterns. The 100 megabase (Mb) 

genome which has been completely sequenced in 1998, encodes a total of about 

20.000 predicted genes of which 43% have human homologs, including numerous

isease genes (Culetto and Sattelle, 2000).  

 

sm for the detailed study of gene/protein functions, and has already 

uccessfully been used to elucidate the molecular mechanisms involved in different 

eases, including various neurodegenerative disorders (Reviewed by 

n, 2003). 

tr

D

 

d

 Given the simplicity and genetic tractability, C. elegans is a favourable model

organi

s

human dis

Driscoll and Gerstbrei
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2 im of the Work  

Many experimental PD animal models, including gene- (knock-out and transgenic) as 

well as toxin-based systems, have already been established. So far, these have 

provided some useful insights into the pathogenesis of PD, but the molecular and 

cellular mechanisms of DA cell death remain enigmatic. None of the current models 

fully recapitulates all key features, which clinically and pathologically characterize 

PD. Moreover, fly and mouse parkin knockout models generated so far, show only 

subtle phenotypes, and therefore could not provide a direct explanation for the 

pathogenic mechanism. Thus, additional model systems might be required to 

elucidate the biological role of Parkin in vivo and to dissect the 

.5 A

mechanism

the tail. In addition, the male contains 
another three pairs of DA neurons in 

s/pathways involved in the pathophysiology of PD.  

 Most of the known molecular components involved in DA signalling in 

mammals are also present in the nematode, including biosynthesis, metabolism, 

transport and re-uptake (Nass et al., 2001; Wintle and Van Tol, 2001). Indeed, DA 

has already been shown to be used as a neurotransmitter system in C. elegans, 

which is responsible for a variety of different behaviours, including locomotion and 

egg-laying. In contrast to the 100 thousands of DA neurons in mammals which are 

rather inaccessible, C. elegans has only eight putative mechanosensory neurons 

(Figure 8) containing DA (Nass and Blakely, 2003).  

 

 

Figure 8. Dopaminergic Neurons in 
C. elegans.  

Hermaphrodites contain four 
symmetrically arranged cephalic cells 
(CEPs) and two bilateral anterior 
deirids (ADEs) in the head, as well as 
two bilateral posterior deirids (PDEs) in 

the tail, as well as four DA containing 
male-specific spicule socket cells. Cells 
were visualized by GFP expression 
under the promoter of the C. elegans 
DA transporter dat-1 (Modified from 
Suo et al., 2004). 
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 exception of α-synuclein, which seems to be unique to  Furthermore, with the

vertebrates since flies also lack an obvious counterpart, all PD-associated genes are 

present in the C. elegans genome. The nematode genes are well conserved 

concerning protein sequence and architectural structure of the encoded proteins. 

Most of the PD-associated genes have single homologs, while others have multiple 

(Table 2). Moreover, genes involved in the pathways implicated in the pathogenesis 

of PD, like protein ubiquitylation/degradation (Jones et al., 2002) or the unfolded 

protein response (Ma and Hendershot, 2001) are also highly conserved from worms 

to humans. 

 

Homo sapiens Caenorhabditis  elegans 
α-synuclein no homolog 

parkin pdr-1 (K08E3.7) 
UCH-L1 F46E10.8, Y40G12A.1, Y40G12A.2 
PINK1 EEED8.9 
DJ-1 B0432.2, C49G7.11 

Dardarin/LRRK2 lrk-1 (T27C10.7) 
 

Table 2. PD-Associated Genes are Conserved in C. elegans.  

The table depicts known human PD-associated genes and their homologous C. elegans genes 
(predicted open reading frames). 
 
 
 First attempts have already been made to model degeneration of DA neurons 

 C. elegans. Overexpression of human wild type (WT) or alanine53->threonine 

mutation (A53T) from a pan-neuronal promoter (ae

 of dopaminergic neurons (Lakso et al., 

 

exposure to 6-OHDA caused membrane blebbing o

selective DA neuron degeneration (Nass et al., 200

C. elegans to MPP+ treatment and the amelioration 

has also been demonstrated (Braungart, 2004). Ho

PD-associated genes in C. elegans have not been p

Aim of this thesis was to establish an experi

with the main focus on parkin, to study its functions as well as the mechanisms of 

athogenesis on a molecular and cellular level in vivo.  

in

x-3) resulted in motor deficits as 

well as in neuronal and dendritic loss, also

2003). In addition, PD mimetics have already been administered to C. elegans. Brief 

f axons and dendrites, as well as 

2). Furthermore, susceptibility of 

of neurotoxicity by anti-PD drugs 

wever, gene knockout studies of 

erformed so far.  

mental C. elegans model for PD, 

p
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3 Results 
 
3.1 C. elegans pdr-1 is the Homolog of Human parkin 

3.1.1 Analysis of PDR-1/Parkin Proteins 

By BLAST search analysis, a single C. elegans open reading frame (ORF) K08E3.7 

with high similarity to human parkin was identified, and named pdr-1 (Parkinson’s 

Disease Related gene-1). Cloning of the corresponding cDNA by reverse 

anscriptase coupled polymerase chain reaction (RT-PCR) revealed an additional 

coding exon ognized by gene pre  amino 

acid protein, PDR-1, sharing the same characteristic do e with human 

Parkin, along with 29%/41% overall amino acid to 

50%/69% in highly conserved domains, respectively (Figure

Figure 

s taurus: 465 aa; Homo sapiens: 
465 aa. Black shading indicates sequence identity, grey shading sequence similarity. The different 
domains are colour-boxed as described in Figure 9. Asterisks indicate positions of familial PD 
missense mutations in human parkin (Mata et al., 2004). 

tr

(exon IV) not rec dictions. It encodes a 386

main structur

 sequence identity/similarity, and up 

 9).  

 

Figure 9. Domain Structure of Human Parkin and C. elegans PDR-1 Protein.  

The respective domains are colour-boxed: blue: ubiquitin-like domain (UBL); yellow: unique parkin 
domain (UPD); red: C3HC4 ring-finger domains (RING); green: C6HC in-between ring-finger domain 
(IBR). Identity and similarity values of amino acid sequences for each domain are shown. 
 
 
For sequence comparison, human and fly parkin cDNAs were amplified from the 

respective libraries, the homologous pdr-1 genes from two related nematodes of the 

genus Caenorhabditis sp. were identified, and the corresponding cDNAs were cloned 

by RT-PCR. Alignment of the sequences revealed high conservation of Parkin 

proteins, and suggests an important function across all species (Figure 10). 

 
10 (shown on next page). PDR-1/Parkin Protein Sequence Alignment.  

Length of PDR-1/Parkin proteins in amino acids (aa): Caenorhabditis elegans: 386 aa; 
Caenorhabditis briggsae: 385 aa; Caenorhabditis remanei: 387 aa; Drosophila melanogaster: 
468 aa; Mus musculus: 464 aa; Rattus norvegicus: 465 aa; Bo
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 C. elegans, C. briggsae and C. remanei PDR-1 show the same degree of 

sequence conservation to human Parkin, and about 80% sequence identity among 

each other. However, despite the already mentioned domains, bioinformatic analyses 

predicted a eukaryotic thiol (cysteine) protease active site at the extreme C-terminus 

only for vertebrate Parkin proteins. Why fly and worm Parkin proteins lack this 

domain and whether vertebrate Parkin indeed has additional function(s) is unclear. 

Nevertheless, many of the identified human familial Parkin mutations are highly 

conserved among all species, underlining their importance. Some of these affect 

important cysteine residues of the RING box, and might therefore interfere with 

folding. Others affect putative modification sites, and might therefore abrogate 

ubiquitin-linkage or phosphorylation. 

 

3.1.2 pdr-1 Gene Structure 

C. elegans pdr-1 is located on the extreme 3` end of the right arm of chromosome III 

(LGIII), in close vicinity to its adjacent genes (Figure 11). The upstream ORF cyk-4 

(K08E3.6) is located in a head-to-head orientation, whereas pdr-1 and its 

downstream gene K08E3.8 form an operon, and thus are co-transcribed from a 

single promoter (Blumenthal et al., 2002).  

 

 

 
Figure 11. Genomic Organization and Gene Structure of C. elegans pdr-1.  

Top: The gene structure and relative positions of pdr-1 and its neighbouring genes are shown. Coding 
exons are depicted as boxes, introns as lines. An arrow indicates the pdr-1/K08E3.8 operon, whereas 
the upstream gene cyk-4 (K08E3.6) is orientated into the opposite direction. pdr-1 is trans-spliced to 
splice leader SL1, the downstream gene K08E3.8 is trans-spliced to SL2. Scale bar: 1 kb. Bottom: 
Annotated view of the pdr-1 gene structure. Coding exons are indicated as boxes, introns as lines
Parts encoding the different domains are colour-boxed, as described in Figure 9. Scale bar: 0.1 kb. 

. 
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 Such transcriptional units are frequently used in C. elegans (~20% of all genes 

sociation of pdr-1 cDNA with SL1, whereas the 

ownstream genes K08E3.8 showed SL2 specific trans-splicing. As both genes are 

indeed co-transcriptionally regulated by a single promoter, the downstream gene 

ntrol in this study. 

ter and enhancer elements as well as the 

nambiguous assignment of coding sequences. C. elegans, C. briggsae, and C. 

 

pecies specific and degenerated primers. Comparison of the deduced genomic 

equences of both genes revealed conservation of pdr-1 and K08E3.8 genes and the 

are organized within an operon) as a mechanism to co-regulate genes involved in 

fundamental cellular processes. By contrast, genes that encode tissue- or cell-type 

specific proteins are never found in operons. C. elegans operons are clusters (2-8 

genes per operon) of closely spaced genes (~100bp), which are transcribed on a 

single polycistronic precursor mRNA from a promoter at the 5’ end of the gene 

cluster. This pre-mRNA is processed co-transcriptionally by 3’ end formation to 

generate monocistronic mRNAs, which are spliced in trans to short diverse splice 

leaders (SL). The first gene in an operon is always spliced to SL1, whereas the 

following ORFs are spliced to SL2 or its variants, as an unique feature of 

downstream genes (Blumenthal and Gleason, 2003). RT-PCR analyses of the trans-

splicing mechanism confirmed the as

d

K08E3.8 served as an internal co

 

3.1.3 Comparative Genomics of the pdr-1 Operon 

Comparative genomics of homologs from closely related organisms often allow the 

identification of important regulatory promo

u

remanei are estimated to have diverged about 80-100 million years ago (Stein et al., 

2003). Even though non-coding sequences have usually fully diverged within this

period of time, exon/intron structures and control elements driving expression of 

homologous genes are often conserved.  

 The genomic region spanning the entire pdr-1/K08E3.8 operon was subcloned 

from the related nematode species by a ‘PCR Walking’ strategy, using single 

circularized genomic DNA fragments as a template and a combination of designed 

s

s

operon structure (Figure 12). 
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Figure 12. Comparison of the pdr-1/K08E3.8 Gene Structure from the Genus Caenorhabditis sp. 

Exons are depicted as boxes, intron as lines, intergenic regions as dotted lines. Black: pdr-1; grey: 
K08E3.8. 
 
 
However, C. elegans introns of both genes, and in particular of K08E3.8, are much 

larger compared to the corresponding introns in the related nematodes. In particular, 

intron IV of C. elegans K08E3.8 contains two 768 bp inverted repeats, and is 

therefore unusually large (2031 bp) compared to a mean C. elegans intron size (67 

bp) (Stein et al., 2003). In addition, C. briggsae contains fewer introns in both genes, 

whereas C. remanei pdr-1 encloses more introns than in C. elegans, in line with data 

om other analyzed genes (Stein et al., 2003). 

 The identified genomic sequences were aligned using Dialign software 

fr

(http://bibiserv.techfak.uni-bielefeld.de/dialign/). Then, sequences were further 

analyzed with MatInspector (http://genomatix.gsf.de/cgi-bin/matinspector.pl) and 

TFSEARCH (http://molsun1.cbrc.aist.go.jp/research/db/TFSEARCHJ.html) software. 

Sequences from single introns that are not present in the analyzed nematodes, were 

neglected, and therefore excluded from the search for important regulatory elements. 

In silico analyses of pdr-1 promoter sequences, about 650 bp 5’ of the translational 

start could not reveal apparent TATA or CCAAT boxes in any of the analyzed 

nematode species. In contrast to human parkin promoter, which also lacks these 

otein CES-2 and the maternal gene product SKN-1 

ere detected. A complete list of all predicted transcription factor binding sites can be 

found in Tables 14-16 (see Appendix Section). 

boxes, but is driven by CpG islands, the promoter of pdr-1 is not very GC-rich in 

sequence (Asakawa et al., 2001; West et al., 2001). However, search for binding 

sites of transcriptional activators and repressors in the pdr-1 promoter revealed some 

promising candidates, for example members of the cAMP-responsive element 

binding (CREB) protein family, including ATF6. Furthermore, binding sites for C. 

elegans cell-death specification pr

w
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 Although these putative binding sites are not always fully conserved among all 

ree nematodes regarding their orientation and position, there is at least some 

partial overlap. However, these data have to be carefully interpreted, and, thus, 

 

 

nhancer or repressor elements. 

 

lthough functional correlation between genes of the same operon it not necessarily 

th

physiological relevance could not be proposed for any. In addition, it is likely that 

additional regulatory elements exist in the nematode further upstream, or probably

even downstream of the operon. Nevertheless, these data might give first insights 

into the transcriptional regulation of pdr-1 and should further help to identify key

e

3.1.4 The Downstream Gene K08E3.8 

A

presupposed, relationship between single genes from C. elegans operons have 

already been described (Blumenthal and Gleason, 2003). In order to test for a 

functional correlation of pdr-1 and its downstream gene, K08E3.8 was subjected to 

further analyses. Cloning of the K08E3.8 cDNA by RT-PCR confirmed that the exon-

intron structure of was correctly predicted by genefinder. K08E3.8, previously named 

mdt-29 as a member of the MeDiaTor gene class, shares only moderate homology 

with yet identified genes from other organisms. However, it shows similarity to human 

Q96RN5 positive cofactor 2 glutamine/Q-rich-associated protein (PCQAP), implicated 

in schizophrenia and DiGeorge/velocardiofacial syndrome (DGS/VCFS), as well as to 

S. cerevisiae CYC8, which both act as parts of transcriptional co-repressor/co-

activator complexes (Berti et al., 2001; Conlan et al., 1999).  

 K08E3.8 encodes a 441 aa protein with proline (P)- and glutamine/asparagine 

(Q/N)-rich ('prion') domains. Proteins bearing ‘prion’ domains can sometimes exist in 

at least two different physical states, mediated by conformational changes in the 

Q/N-rich domain. Prion domains are both modular and transferable to other proteins, 

on which they can confer a heritable epigenetic alteration of function. It is important 

to note that this is distinct from, though mechanistically analogous to, disease states 

associated with prion propagation and amyloidogenesis (http://www.wormbase.org/). 

In addition, K08E3.8 carries a mitochondrial energy transfer protein-signature for 

inner membrane transport. To identify conserved amino acids and important domains 

of K08E3.8, the corresponding cDNAs from the related nematode species were 

cloned by RT-PCR and analyzed (Figure 13). 

http://bibiserv.techfak.uni-bielefeld.de/dialign/
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Figure 13. K08E3.8 Protein Sequence Alignment.  

Length of K08E3.8 proteins in amino acids (aa): Caenorhabditis elegans: 442 aa; Caenorhabditis 
briggsae: 482 aa; Caenorhabditis remanei: 472 aa. Black shading indicates sequence identity, grey 
shading sequence similarity. The N-termini consist of glutamine- and proline-rich domains. The 
mitochondrial substrate carrier motif is marked by a blue box. Internal repeats are colour highlighted. 
  

The mean percent identity between orthologs from C. elegans and C. briggsae at the 

amino acid level is 75%, similar to the divergence between mouse and human 

protein pairs (Stein et al., 2003). In contrast to PDR-1, K08E3.8 protein is less 

conserved among the nematode species (~ 69% average sequence identity on 

amino acid level). Since in other organisms no definite K08E3.8 homologs have been 

identified, the biological role of K08E3.8 remains unclear. Nevertheless, its similarity 

to transcriptional co-repressor/co-activator subunits, and in addition, its association 

with the homeobox transcription factor CEH-40 in a yeast-two-hybrid system (Li et al., 

2004) and with SEL-7 in vitro (http://www.wormbase.org/), might suggest a nuclear 

role. However, the functional significance of these interactions is unknown.  

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_cdi=4892&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.wormbase.org%252F
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3.2 Expression Analysis of the pdr-1 Gene 

3.2.1 Alternative Splicing of pdr-1 

Alternative splicing has an important role in expanding protein diversity. Differential 

splicing of the parkin gene has been observed not only in different organisms, but 

also in different human tissues or cell types, and is suggested to be physiologically 

relevant (Dagata and Cavallaro, 2004; Kitada et al., 2000; Sunada et al., 1998).  

 

 
 

Figure 14. pdr-1 Splicing Variants and Protein Isoforms.  

Top: C. elegans splice variants. I: full-length pdr-1 (1158 bp); II: in-frame (∆ bp 321-784); III: out-of-
frame (∆ bp 649-740); IV: out-of-frame (45 bp insertion after position 69, 4 bp insertion after position 
215, and ∆ bp 649-740); V: out-of-frame (4 bp insertion after position 215). Bottom: C. briggsae splice 
variants. I: full-length pdr-1 (1155 bp); II: in-frame (∆ bp 301-645); III: in-frame (∆ bp 70-645); IV: out-
of-frame (∆ bp 454-645, insertion of 8 bp after position 736). Asterisks indicate premature stops, 
followed by un-translated regions (hatch boxes). Black shading depicts newly spliced coding regions, 
grey shading shift into another reading frame. Scale bar 0.1kb. 
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By RT-PCR on total RNA, five different pdr-1 splice variants were identified 

from C. elegans, and another four of the C. briggsae homolog (Figure 14). The 

cid compositions, and most 

important, different molecular architectures. Some of the nematode pdr-1 splice 

already identified parkin transcripts, others 

only 

present a subset and the total number might be far greater, but one cannot exclude 

different evolutionary conservation for some parkin splice variants, as well. 

 Alternative splicing of parkin could potentially generate a large number of 

protein isoforms that might impart different properties on the cells displaying them. 

Furthermore, the expression of the different isoforms could be differentially affected 

by mutations of the parkin gene. This might provide an explanation for the broad 

spectrum of phenotypic abnormalities observed in AR-JP patients. 

 

3.2.2 pdr-1 Transcription is Developmentally Regulated 

To analyze the temporal expression pattern of pdr-1, Northern blot analyses were 

performed using total RNA from each developmental stage of C. elegans wild type 

animals. pdr-1 transcription becomes active in embryogenesis and is maintained 

throughout all developmental stages until adulthood (Figure 15).  

  
 
 

Figure 15. pdr-1 is Developmentally Regulated. 

Northern blot analyses show co-transcriptional 
regulation of pdr-1 and K08E3.8 during all 
developmental stages, from embryogenesis (eggs) 
throughout larval stages (L1-L4) until adulthood 
(adult). pdr-1 and K08E3.8 transcript levels are 
specifically up-regulated beginning in L2 and strongly 

 L3. All transcript levels indicated are 
ung adult levels and were adjusted for 

encoded PDR-1 isoforms have different amino a

variants do not perfectly resemble the 

however are well conserved, even in humans. Minor variations between nematode 

and mammalian parkin splice variants, certainly arise from different gene structures 

and splice sites, which are highly conserved among rat, mouse and human, but 

distinct in nematodes. However, alternative splice variants detected so far, might 

re

increasing in
relative to yo
equal loading with the corresponding ama-1 level.  
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 Notably, pdr-1 as well as K08E3.8 transcript levels are specifically up-

regulated beginning at the larval L2 stage and strongly increasing at the L3 stage, 

reachi

ants of a 

o ensure proper 

expression of the reporter gene, this constructs retains the complete genomic context 

re 16). 
 

shown. Lines represent genomic sequences co
gfp fusions (Ppdr-1::gfp) contain either ~4.0 kb
respectively). In Ppdr-1::gfp::pdr-1 the gfp coding 
start to yield a N-terminal tagged GFP::PDR-1 pr

ng a maximum in the adult. These data corroborate the proposed 

transcriptional co-regulation of PDR-1 and K08E3.8, and additionally suggest 

development-specific function(s). 
 

3.2.3 pdr-1 in vivo Expression Pattern 

The parkin gene has been shown to display a widespread expression, not only in 

humans, but also in a variety of other vertebrates and invertebrates (Horowitz et al., 

2001; Huynh et al., 2001; Solano et al., 2000; Stichel et al., 2000). 

 To determine the expression pattern of C. elegans pdr-1 in vivo different green 

fluorescent protein (gfp) reporter constructs were generated. Two vari

promoter gfp construct (Ppdr-1::gfp long and short) were generated, containing either 

4.0 kb or at least 650 bp of upstream sequence, fusing the pdr-1 start codon to the 

gfp coding region (plasmids pBY1013 and pBY1909, respectively) (Figure 16). In 

addition, to identify the subcellular localization of PDR-1, a translational fusion 

construct Ppdr-1::gfp::pdr-1 (plasmid pBY1794) was generated. T

of the operon, including both genes of the transcriptional unit (Figu

 

 
 

Figure 16. pdr-1 Reporter Constructs.  

Position and extent of the gfp reporter constructs (Ppdr-1::gfp and Ppdr-1::gfp::pdr-1) relative to pdr-1 are 
ntained in the different reporter constructs. Promoter 
 or 650 bp upstream sequence (long and short, 
sequence is fused in-frame to the pdr-1 translational 
otein. 
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The engineered pdr-1 reporter constructs were microinjected into N2 wild type worms 

 obtain stable lines of transgenic animals, expressing the gfp fusions from to

extrachromosomal arrays (Figure 17).  

 
Figure 17. C. elegans pdr-1 is Ubiquitously Expressed.  

ransgenic expression of different pdr-1::gfp reporter constructs in N2 wild type animals. (A) Embryo 
xpressing gfp in almost all cells. (B) L2 larval gfp expression in pharyngeal and anal muscles (closed 

as rve cord (open arrows). (C) L3 larval gfp expression in 
 almost all tissues of adult worms. (D) Cell bodies (open 

T
e
arrows) as well in neurons of the ventral ne
hypodermal cells. (D-J) gfp expression in
arrows) and processes of head neurons. (E) Cytoplasmatic localization of GFP::PDR-1 in a neuron. 
(F) Pharyngeal muscles (closed arrow) and neurons of the head (open arrows). (G) Body-wall 
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muscles. (H) Vulval muscles (ventral view). (I) Vulval muscles (lateral view). The vulva opening is 
marked by an asterisk. (J) Gonadal gfp expression. 
Although mosaic in individual worms, gfp expression patterns were almost identical in 

all 12 independent transgenic strains examined In total, 12 independent transgenic 

lines were analyzed, six for the promoter constructs pBY1013 and pBY1909 (strains 

BR1948 and BR3187-91, respectively), as well as another six for the translational 

fusion construct pBY1794 (strains BR3045-50).  

 In vivo analysis of the gfp reporter constructs confirmed the temporal 

expression pattern of pdr-1 observed in transcriptional analyses. GFP signals were 

detected from embryogenesis (Figure 17A) throughout all developmental stages 

(Figure 17B and C) until adulthood (Figure 17D-J). GFP::PDR-1 is highly expressed 

in most neurons of the head, the tail and the nerve cords, localizing to cell bodies as 

well as to processes (Figure 17B, 17E-F). GFP staining is mostly cytoplasmic and 

mainly excluded from the nucleus (Figure 17E). Furthermore, GFP signal was 

observed in all muscle cells (Figure 17B and 17F-I), as well as in a variety of other 

tissues, like hypodermal cells (Figure 17C) and gonads (Figure 17J), as well as 

spermatheca and intestine.  

 Noteworthy, it appeared that both promoter constructs, although injected at the 

same concentration as the translational fusion construct, showed slightly stronger 

GFP signal, suggesting a regulation of PDR-1 at the protein level, most likely by 

degradation. However, PDR-1 is enriched in neurons and muscles, but present in 

almost all tissues of the animal, and so conceivably plays an important role in all 

cells. 
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3.3 Biochemical Analysis of PDR-1 Protein 

3.3.1 Yeast-Two-Hybrid Protein Interaction Studies 

To investigate the role of PDR-1, the yeast-two-hybrid system was used to screen for 

interaction partners. Full-length pdr-1 cDNA fused to the Gal4p DNA-binding domain 

(DB) was used as a bait to screen two different C. elegans Gal4p activation domain 

in a variety of biological processes. 

 

 

 

 

 

 

 

 

Figure 18. Biological Functions of Identified PDR-1 Interactors. 

Distribution of PDR-1 interactors among various biological functions. Shown are the numbers of PDR-
1 interactors identified in the yeast-two-hybrid screen that are implicated in the respective biological 
functions. Other biological functions include for example mitochondrial transport and RNA-binding. A 
complete and annotated list of all identified PDR-1 interacting clones can be found in Table 17 (see 
Appendix Section). 

(AD) cDNA libraries. To reduce false positives, high stringency screens were 

performed, selecting on expression of four different reporter gene markers. However, 

low-affinity proteins, which mediate only weak interaction, may have been missed by 

this approach. 

 In summary, three independent screens were performed, evaluating about 

150.000 transformants in total. 57 of 70 putative interactors were classified as true 

positives, which showed a significant reproducible phenotype after plasmid isolation 

and retransformation of yeast. These true positives represent 40 different genes in 

total, since for some of them 2-8 independent clones have been isolated. The 

identified PDR-1 interactors are involved 

Interestingly, many of the identified genes could be assigned to protein degradation 

pathways (Figure 18).   
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The remaining genes identified in the PDR-1 interaction screen, were dispersed 

among numerous and diverse functional categories, like gene transcription, cell 

lling pathways, or were 

.1, one clone). Cathepsins have long been thought to function 

clus

Several Cathepsins.  

Yeast Two-Hybrid studies of PDR-1 
alysis of cells 

ed 
(-), PDR-1 
ns, spotted 

ve medium 
tryptophan, 
Strength of 

ctions judged 
 increasing 

H22K11.1 
57F5.1. 

Many other identified PDR-1 interactors are related to the 

biquitin/proteasome-dependent protein degradation pathway. Two independent 

lones were isolated for RPT-2, a 19S regulatory subunit of the C. elegans 

roteasome (Figure 20A). The UBL domain of human Parkin has already been 

interaction with the subunits 

biquitin (Reviewed by Jentsch and Pyrowolakis, 2000; Schwartz and 

structure, different metabolism pathways, transport, signa

determined to be of complete unknown function.  

Most prominently represented were members of four distinct classes of the 

papain superfamily of cysteine (thiol) proteases (Figure 19): CPL-1, a homolog of 

human cathepsin L (ORF T03E6.7, eight clones); CPR-4, CPR-6 and F57F5.1, 

homologs of human cathepsin B (ORF F44C4.3, two clones; ORF C25B8.3, one 

clone; F57F5.1, two clones, respectively); ASP-3, a homolog of human cathepsin D 

(ORF H22K11

ex ively in the terminal degradation of proteins in the lysosomes, but recent 

findings suggested physiological functions in other compartments (Goulet et al., 

2004; Reinheckel et al., 2001). Even more interesting, age-related lysosomal 

changes and spillage of hydrolytic enzymes from lysosomes into the cytoplasm has 

been shown to correlate with necrotic cell death in neurodegeneration (Syntichaki 

and Tavernarakis, 2003). 

Figure 19. PDR-1 Interacts with 

interactions. Growth an
expressing the indicat
combinations of control 
and its associated protei
in doublets on selecti
plates (lacking leucine, 
histidine, and adenine). 
PDR-1/cathepsin intera
by growth on
concentrations: T03E6.7 > 
> C25B8.3 > F44C4.3 > F

 
 
 

u

c

p

shown to mediate coupling to the proteasome by direct 

Rpn10 and Rpt6 (Sakata et al., 2003; Tsai et al., 2003). Furthermore, PDR-1 

interacts with F52C6.2, an ubiquitin-like protein that might represent a new modifier 

homologous to u
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Hochstrasser, 2003). In addition, PDR-1 associates with F49C12.9 that contains an 

ubiquitin-associated (UBA) domain, capable of binding UBL domains as well as multi-

ubiquitin chains (Buchberger, 2002). Interestingly, CHN-1 (Hoppe et al., 2004), the C. 

elegans homolog of human E4 enzyme CHIP which regulates Parkin E3 ligase 

activity

proteasome via the 19S regulatory 
subunit RPT-2. (B) PDR-1 binds to 

egans E2 

N

yeast-two-hybrid technique was used to further analyz

is indeed able to homo-dimerize with itself, as w

12E12.1 (Figure 21A), the C. elegans homolog of fly ari  

RI

 (Imai et al., 2002), was identified as a co-enzyme of PDR-1 (Figure 20B). 

Moreover, PDR-1 specifically associates with C. elegans E2 enzymes UBC-2, UBC-

18 and UBC-15 (Figure 20C), homologs of the human E2 enzymes UbcH4/5, 

UbcH7/8, and Ubc6, which cooperate with Parkin (Imai et al., 2002; Shimura et al., 

2001; Zhang et al., 2000). However, PDR-1 does not interact with other C. elegans 

E2 enzymes UBC-14, UBC-6, or UBC-7, homologs of Ubc7 (Jones et al., 2002).  
 

 

Figure 20. PDR-1 Interacts with a 
Highly Conserved C. elegans  
Protein Degradation Machinery.  

Yeast-Two-Hybrid analysis as 
described in Figure 19. (A) PDR-1 
associates with the C. elegans 

CHN-1, homolog of the human E4 
enzyme CHIP. (C) PDR-1 specifically 
associates with C. el
enzymes UBC-18, UBC-2 and UBC-
15, but not with UBC-14, UBC-6 or 
UBC-7. 
 

G finger protein, T24D1.3, the 

e its dimerization ability. PDR-1 

ell as to hetero-dimerize with 

adne-2 another member of

 
 

As PDR-1 was found associated with the RI

T

the NG-box superfamily. Consistently, T12E12.1 itself is able to homo-dimerize 

and partially binds the same C. elegans E2 enzymes like PDR-1. The homolog of C. 

elegans UBC-18, human UbcH7/8 has already been already shown to bind to the 

human homolog of Ariadne (HHARI) (Ardley et al., 2001).  

 Since co-transcriptional regulation of pdr-1 and its downstream gene 

K08E3.8 have been confirmed, a functional relationship of both gene products was 

tested. Interestingly, PDR-1 indeed physically associates with K08E3.8 (Figure 21B). 

It is noteworthy, that also other Q/N-rich (‘prion’) domain containing proteins were 
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identified as PDR-1 interactors, PQN-32 and PQN-38 (this study), as well as PQN-95 

from an independent screen (Li et al., 2004). 

 

Figure 21. PDR-1 Dimerizes and 
Interacts with K08E3.8. 

Yeast-Two-Hybrid analysis as 
described in Figure 19. (A) Homo- 
and hetero-dimerization of PDR-1. 
PDR-1 binds to itself and to 
another RING box protein 
T12E12.1, the C. elegans homolog 
of human Ariadne-2. (B) PDR-1 
physically interacts with K08E3.8, 
suggesting a functional relationship 
between both genes from the 
operon. 

io

been confirmed by an alternative method, using the split-ubiquitin system (D. 

Dirnberger, personal communication). However, why

with each other remains elusive. Nevertheless, the 

both genes from the operon as well as the physic

indicate an interesting functional connection between P

In addition to new PDR-1 partners identified in t

protein interactions of human Parkin were shown nserved in C. 

legans. However, some interactions of human Parkin could not be demonstrated for 

. ele

ractors identified here. By 

integra

 

Both, homo-dimerization of PDR-1 as well as interact n of PDR-1 and K08E3.8 have 

 PDR-1 and K08E3.8 interact 

co-transcriptional regulation of 

al interaction of their products 

DR-1 and K08E3.8. 

his study, many of the reported 

to be highly co

e

C gans PDR-1, at least not using the yeast two-hybrid system. In yeast, PDR-1 

does not interact e.g. with HSP-1, a Hsp-70 chaperone homolog, or with UNC-59 and 

UNC-61, homologs of the human Parkin substrate CDCrel-1. 

It is worth mentioning that at least one of the newly identified PDR-1 

interactors (ORF Y39B6A.1) has also been recognized in an independent screen (Li 

et al., 2004), supporting the functional relevance of these studies. From this C. 

elegans genome-wide protein-interaction study, great data is available, including 

information about further binding partners of the PDR-1 inte

tion of the already published data (Li et al., 2004) into the novel PDR-1 

interaction data described in this study, an extended PDR-1 protein interaction map 

was established using i-View software (http://vidal.dfci.harvard.edu/). This ‘2nd level' 

interaction map enabled to detect distinct connections between different PDR-1 

interactors, resulting in a complex network.  
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So, in a first step, PDR-1 interactors were identified that share other binding 

partners, in addition to PDR-1. Interestingly, 

So, in a first step, PDR-1 interactors were identified that share other binding 

partners, in addition to PDR-1. Interestingly, more than half of all PDR-1 interactors 
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of F52C6.2 protein to substrate(s) as an E3 ligase, in a manner analogous to other 

ubiquitin-like modifiers? Other interesting candidates, like the nuclear hormone 

receptor NHR-111 (ORF F44G3.9), identified from the genome-wide screen as a 

PDR-1 interactor (Li et al., 2004), or the gene product of F29G6.3 that shows some 

homology to Y39B6A.1, associate with seven other proteins identified as binding 

partners of PDR-1. Twelve other candidate proteins not further mentioned 

of F52C6.2 protein to substrate(s) as an E3 ligase, in a manner analogous to other 

ubiquitin-like modifiers? Other interesting candidates, like the nuclear hormone 

receptor NHR-111 (ORF F44G3.9), identified from the genome-wide screen as a 

PDR-1 interactor (Li et al., 2004), or the gene product of F29G6.3 that shows some 

homology to Y39B6A.1, associate with seven other proteins identified as binding 

partners of PDR-1. Twelve other candidate proteins not further mentioned 

ast 2-4 other known PDR-1 interactors.  

Furthermore, in a second step, binding partners that are shared among all 

PDR-1 interactors, but were not found to directly interact with PDR-1, were identified. 

Apparently, among these are some additional ‘prion’ domain proteins, e.g. PQN-54 

and PQN-5 (ORFs R09B5.5 and C03A7.4, respectively) as well as ABU-10 and ABU-

11 (ORFs F35A5.3 and T01D1.6, respectively) that assoc
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more than half of all PDR-1 interactors 

ssociate with at least one other PDR-1 interactor. In particular, e.g. the gene 

product of Y39B6A.1 binds to twelve other proteins ide

Y39B6A.1 shows some similarity to human Hornerin, a 

and glutamine residues. A second gene product C39D1

interactors. Two independent clones encoding this prot

metabolism and shares homology to the Mucin 2 prec

PDR-1 interactors in this study. Even more interes

ubiquitin-like modifier F52C6.2 associates with eig

proteins. From this finding certainly, an important question arises: Does PDR-1 

imply bind to F52C6.2 protein, or additionally, does PDR-1 catalyze the conjugation 

here bind 

to at le

iate with at least 1-6 

different PDR-1 interactors. The latter are members of the activated in blocked UPR 

protein family that comprises eleven ER transmembrane proteins (Urano et al., 

2002). Interestingly, these proteins are induced in response to ER stress and protect, 

as a back-up mechanism, worms with a defective UPR against ER stress. In addition, 

other protein that bind to at least 2-5 different PDR-1 interactors are implicated in 

UPR-related biological functions, i.e. protein synthesis or ER-Golgi protein transport.  

From this evaluation, at least it is noteworthy that many PDR-1 interactors also 

interact with each other, and distinct candidates often associate with the same set of 

proteins, like the above mentioned (for the PDR-1 interaction map see Figure 22). 

 



Results  38 

 

 

Figure 

-1 
ein 

interaction data was visualized using i-View software (http://vidal.dfci.harvard.edu/

22. Extended Protein Interaction Map of PDR-1.  

To generate this protein interaction map, all known PDR-1 interactors as well as all other binding 
partners of these proteins have been integrated (Li et al., 2004, and this study). Nodes: PDR
(yellow), bait (blue) and prey (red) proteins. Lines: protein interactions. The collective prot

). 
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However, these protein interactions have to be confirmed by alternative 

methods. Nevertheless, first evaluation already revealed quite promising putative 

connections between PDR-1 and single biological functions of protein metabolism, in 

general. Such studies might indeed give important hints in order to identify multiple 

components of novel and biologically relevant PDR-1/Parkin protein complexes.  

 

3.3.2 GST-Pull Down Experiments 

To confirm the specificity of PDR-1 interactions with the C. elegans ubiquitylation 

machinery by an alternative method, glutathione S-transferase (GST)-pull down 

assays were used. GST-tagged and immobilized ubiquitylation enzymes purified from 

E. coli were incubated with in vitro translated PDR-1 labelled with 35S 

methionine/cysteine. GST-tagged E2 enzymes UBC-18 and UBC-2, as well as the 

E4 enzyme CHN-1, respectively, were able to bind and pull down radioactive PDR-1

(Figure 23).  

 

 

Figure 23. Confirmation of
PDR-1 Interactions by GST-
Pull Down Experiments. 

Recombinant proteins purified
from E. coli were bound to 
glutathione-Sepharose bead
and incubated with in vitro 
translated PDR-1 After extensive
washing under physiological
conditions, the reaction was 
analyzed by SDS-PAGE followed
by coomassie blue staining and
autoradiography. GST alone was 
used as a negative control. PDR-
1 binds the C. elegans E2 
enzymes UBC-18 and UBC-2, as 
well as the E4 enzyme CHN-1.  
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aken together, PDR-1 specifically physically associates with a conserved C. 

d by two alternative methods in this 

 

T

elegans ubiquitylation machinery, as demonstrate

study. 
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3.3.3 Expression and Purification of Recombinant PDR-1 

only 

e purified under denaturing conditions. Unfortunately, fusion of PDR-1 with a GST-

t that natively folded PDR-1 could have 

.3.4 PDR-1 Mediates E3 Ubiquitin Ligase Activity  

that belong to the 

m

assay in which self-ubiquitylation in the absence of a spe  

ubiquitin ligase itself, was performed. Therefore, the entir

was reconstituted with purified ubiquitin, E1 enzyme, C. 

or human E2 UbcH7, as well as C. elegans E4 enzyme C

itylation 
enzymes purified from E. coli. 
Reactions were analyzed by 
SDS-PAGE and subsequent 
western blotting probed with 

UBC-2 or human UbcH7) and 
the E4 enzyme CHN-1. 
 

To purify recombinant full-length PDR-1 expressed in E. coli, several approaches 

were performed. PDR-1 produced from bacteria tended to aggregate into inclusion 

bodies under a variety of different expression methods. PDR-1 protein fused to 

6xHIS-tag, either at the N-terminus (pBY1118) or at both ends (pBY1119), could 

b

tag did not enhance solubility to an exten

been purified in larger amounts.  

 In order to purify native PDR-1, a eukaryotic expression system was chosen 

since specific post-translational modification might be essential for its proper folding. 

SF9 insect cells were transfected with a recombinant Baculovirus to produce 

GST::myc::PDR-1 fusion protein. Using this expression system, small amounts of 

soluble full-length PDR-1 have been purified under native conditions. 

 

3

Self-ubiquitylation is characteristic for RING-type E3 ligases 

ubiquitin system (Lorick et al., 1999). To study the enzy atic activities of PDR-1, an 

cific substrate occurs on the

e poly-ubiquitylation system 

elegans E2 enzyme UBC-2 

HN-1 (Figure 24).  

 

Figure 24.  In vitro Self-
Ubiquitylation of PDR-1.  

GST::myc::PDR-1, expressed 
and purified from insect cells, 
was incubated with the 
combination of ubiqu

anti-myc antibody. Efficient 
self-ubiquitylation of PDR-1 
requires E1, E2 (C. elegans 
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In conjunction with the complete set of enzymes and even in concert with human E2 

enzyme UbcH7, a known binding partner of human Parkin (Shimura et al., 2001), 

ation complex and thus represents the 

o generate a PDR-1 specific antibody, two rabbits each were immunized with one of 

two synthesized peptides: peptide I (MSDEISILIQDRKTG) represents the first 15 aa 

YQRKATER) comprises 

aa 260-273 and resides between the first RING and the IBR domain.  

ogenous 

 

MG132 (100µM for 6h) which 

fr he 

GFP::PDR-1 translational fusion, which already suggest

PDR-1 protein levels. In addition, proteins that are prese

often masked by the highly abundant collagens of th

constitute a significant percentage of the total protein conte

PDR-1 could also not be detected in vivo by immunostainin

 Thus, larger scale affinity purification accompanie

antibodies is recommended to be able to detect endogenou

and perhaps in vivo.  

PDR-1 shows self-ubiquitylation (Figure 24). Although, human Parkin is able to poly-

ubiquitylate certain substrate proteins efficiently, self-ubiquitylation activity seems to 

be weaker and was demonstrated by a more sensitive approach, using I125-labelled 

ubiquitin (Shimura et al., 2000). Therefore, it is not surprising that only a minor 

fraction of ubiquitylated PDR-1 is detectable in this assay. 

 In summary, these biochemical data demonstrate that PDR-1 acts as an E3 

enzyme in a highly conserved ubiquityl

functional C. elegans ortholog of human Parkin.  

 

3.3.5 Antibody Generation and Purification 

T

and is located within the UBL domain; peptide II (QTSYSE

 Sera were tested after each bleeding in western blots on purified recombinant 

PDR-1 protein or on whole cell lysates from SF9 cells. As expected, affinity and 

specificity of the antibodies improved upon consecutive immunizations. However, first 

preliminary affinity purification on western blots using recombinant PDR-1, did not 

further advance the ability to detect PDR-1 to a satisfying extent, since ~10-100 ng 

purified protein was the minimum amount recognized. Unfortunately, end

PDR-1 was never detected in western blots on whole worm lysates, even not after

preceding treatment with the proteasome inhibitor 

stabilizes short-lived proteins. This is consistent with data om in vivo analyses of t

ed extremely low cellular 

nt only at low levels are 

e nematode cuticle that 

nt. However, endogenous 

g of worms. 

d by enrichment of the 

s PDR-1 on western blots 
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3.4 Analyses of pdr-1 Deletion Mutants 

3.4.1 Identification of Different pdr-1 Deletion Mutants 

To further investigate the in vivo function of pdr-1, deletion mutants were isolated by 

PCR-screening of UV/Trimethylpsoralen (TMP)-mutagenized C. elegans lib ries with 

pdr-1 specific primers (Figure 25). The mutants lg103 and lg101 were obtained from 

EleGene (Munich, Germany), whereas the alleles tm598 and 

ra

tm395 were provided 

by Dr. Shohei Mitani (National Bioresource Project for the nematode, Japan).  

 

 
 
 

Figure 25. Schematic View of pdr-1 Deletion Alleles.  

The gene structure and relative positions of pdr-1 and its neighbouring genes is shown. Coding exons 
are depicted as boxes, introns as lines. An arrow indicates the pdr-1/K08E3.8 operon. Position and 
extent of the rescuing construct (rescue) relative to pdr-1 is shown. The asterisk indicates the position 
of an engineered frame-shift mutation in the downstream gene of the rescuing clone. The position and 
extent of the four analyzed pdr-1 deletions, depicted by lines, is shown. Small arrows indicate the 
position of the primer pairs used to identify the pdr-1 deletions. 
  

 

To identify these mutants, ‘nested PCR’ was performed using two pairs of primers 

(PCR 1: RB2291/RB2292, external; PCR 2A: RB2293/RB2294, internal) annealing 

outside the pdr-1 coding region. Mutants bearing a pdr-1 deletion give rise to an 

accordingly shorter PCR-product compared to wild type animals (Figure 26). To 

distinguish homo- from heterozygous mutants, a second ‘nested PCR’ round was 

performed using an additional primer that is located within the deleted regions (PCR 

2B: RB2355/RB2294, in-deletion). 
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Figure 26. Identification of pdr-1 
utants.  

onfirmation of the pdr-1 
deletions by analysis of genomic 

on with 
 their 

homozygosity (wild type 2.4 kb). M: 
Marker (GeneRulerTM DNA Ladder 
Mix, MBI Fermentas, Vilnius, 
Litauen) 

 

 

This PCR reaction results in the amplification of a wild type fragment from 

heterozygous mutants, whereas homozygous mutants do not give rise to a product 

(Figure 26). To eliminate background mutations in the pdr-1 deletion mutants, strains 

were backcrossed with N2 wild type animals several times. After each crossing, 

homozygous mutants were verified by S

Deletion M

SW-PCR c

DNA. For primers used see Figure 
24. Left: PCR 2A: pdr-1 mutants 
show accordingly shorter PCR 
products than wild type (wild type: 
3.2 kb; lg103: 2.1 kb; lg101: 1.5 kb; 
tm598: 2.5 kb; tm395: 2.7 kb). 
Right: PCR 2B: The absence of a 
product in the PCR reacti
pdr-1 mutants confirms

ingle-Worm-PCR (SW-PCR) again.  

 Sequencing of these genomic PCR products from pdr-1 mutants revealed the 

exact deletion breakpoint of the alleles. The deletions lg103, tm598 and tm39

move only parts of the pdr-1 ORF, and therefore represent ‘clean’ pdr-1 alleles. In 

n eliminates the complete first exon 

e 27). 

5 

re

contrast, the deletion of allele lg101 in additio

including the translational start of the downstream gene K08E3.8, and therefore 

affects both genes from the operon (for details of deletion breakpoints and 

backcrossing of the single pdr-1 alleles see 5.5.4 in the Experimental Procedures 

Section).  

 

3.4.2 Transcriptional Analysis of pdr-1 Deletion Mutants 

To confirm that the pdr-1 single gene deletions do not affect transcription of the 

downstream gene K08E3.8, northern blot analyses of total RNA from the respective 

mutants was performed. These experiments demonstrated that the pdr-1 gene in the 

mutant allele lg103 is indeed transcribed on a truncated mRNA at amounts 

comparable to wild type level (Figur
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Transcripts.  

pdr-1(lg103) produces a 
asterisk (0.7 kb) at leve
The deletion does not af
gene K08E3.8 (1.6 kb). I
produces a hybrid transc
genes, pdr-1 and K08E3
band was detectable wit
probes. An act-1 spec
loading (also see Figure 3
 
 
 
 
 

pdr-

 and K08E3.8 specif

 deletion. In contrast to lg103, this allele produces an internally truncated 

rotein PDR-1(∆aa140-263) that still bears the intact UBL domain. 

However, the alleles lg101 and tm395 remove most of the pdr-1 ORF and 

 The allele lg101, 

 

 

 

Figure 27. Northern Blot Analysis of Mutant pdr-1 

truncated transcript marked with an 
ls comparable to wt pdr-1 (1.4 kb). 
fect transcription of the downstream 
n contrast, the deletion pdr-1(lg101) 
ript from the remaining parts of both 
.8 marked with a plus (2.0 kb). This 
h both, pdr-1 and K08E3.8 specific 
ific probe shows slightly unequal 
4 for normalized data). 

 
 
 
Importantly, transcription of the downstream gene K08E3.8 is unaffected by this 

deletion. In contrast, the allele lg101, which affects both genes of the operon, showed 

compared to wild type a longer hybrid transcript, which was detectable with both 

1 ic probes. Reverse transcription followed by polymerase chain 

reaction (RT-PCR) on total RNA of the pdr-1 mutants, resulted in the isolation of the 

respective truncated cDNAs (Figure 28).  

 The allele lg103 bears an 1132 bp deletion, fusing exon 1 of pdr-1 in-frame to 

exon 5. The corresponding mutant protein PDR-1(∆aa24-247) is internally truncated 

and only contains the intact IBR and second RING-finger domains. In tm598, 697 bp 

of the genomic pdr-1 ORF are deleted fusing parts of exons 3 and 5, also resulting in 

an in-frame

p

result in out of-frame mutations, followed by premature stops.

eliminates 1747 bp of the pdr-1/K08E3.8 ORFs, and gives rise to a protein that is 

terminated after aa 121 of PDR-1, only encoding the intact UBL domain. In tm395, 

480 bp of the genomic pdr-1 ORF are deleted, resulting in a frame-shift causing a 

premature stop. The translated polypeptide is truncated after aa 199, only 

representing the intact UBL and UPD domains.
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igure 28. A Set of Different pdr-1 Deletion Mutants.  

tly, association of 

PDR-1

F

Detailed view of the pdr-1 deletions, their splicing, and their mutant gene products. Colour-coding as 
described in Figure 9. The translated mutant proteins are listed. In-frame deletions are indicated by 
dotted lines, splicing of the out-of-frame deletion tm395 by lines. The out-of-frame deletion of the allele 
lg101 extends into the neighbouring gene K08E3.8. Early translational stops generated by the out of-
frame deletions are marked with asterisks. Un-translated exons are depicted by hatched boxes. 
 

3.4.3 Biochemical Analysis of Mutant PDR-1 Gene Product 

To test for residual biochemical activity of the internally truncated PDR-1(∆aa24-247) 

protein, interaction studies similar to that of full-length PDR-1 were performed using 

both methods the yeast two-hybrid system (compare Figures 20 and 29) and GST-

pull down assays (compare Figures 23 and 30). Truncated PDR-1(∆aa24-247) binds 

the same set of E2 and E4 enzymes like full-length PDR-1 (Figure 29A and 30) since 

it bears the intact IBR and second RING finger domains. Eviden

(∆aa24-247) with RPT-2 is disrupted (Figure 29B), as pdr-1(lg103) mutants 

lack an intact UBL domain that is essential for coupling to the proteasome (Sakata et 

al., 2003). However, truncated PDR-1(∆aa24-247) is still capable of dimerizing with 

its wild type form (Figure 29C). This interaction has been confirmed using the split-

ubiquitin system (D. Dirnberger, personal communication).  
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Figure 29. Truncated PDR-1(∆aa24-247)
Retains Residual Binding Activity.  

Growth analysis of yeast cells was performed
as described for wild type PDR-1 in Figure
20. (A) UBC-2.Truncated PDR-1(∆aa24-247) 
still binds the E2 enzyme UBC-2. (B
Association of truncated PDR-1(∆aa24-247)
with the proteasomal subunit RPT-2 is 
abrogated. (C) Truncated PDR-1(∆aa24-247) 
is still able to dimerize with its full-length
version.  
 
 
 

 

 
 

) 
 

 

 

f truncated PDR-1(∆aa24-247) were 

n of 
Truncated PDR-1(∆aa24-247) 
Protein Interactions.  

erformed as 
described for wild type PDR-1 in 

C-1

 of RING box proteins. 

urthermore, in-frame deleted pdr-1(lg103) animals give rise to a mutant protein 

DR-1(∆aa24-247) which retains association with the ubiquitylation machinery but 

lacks essential coupling to the proteasome. 

 

In addition, the yeast two-hybrid interactions o

confirmed by GST-pull down experiments (Figure 30). 

 

Figure 30. Confirmatio

Experiments were p

Figure 23. Immobilized GST-
tagged ubiquitylation enzymes 
bind and pull down truncated 
PDR-1(∆aa24-247), labelled with 
35S methionine/ cysteine. 
Truncated PDR-1(∆aa24-247) 
interacts with the C. elegans E2 
enzymes UB 8 and UBC-2, as 
well as the E4 enzyme CHN-1 as 
its wild type form. 
 
  

   

 Taken together, these data demonstrate that the RING-box structure, in 

particular the IBR and 2nd RING domain, mediates not only specific E2 and E4 

binding, but also homo- as well as hetero-dimerization

F

P
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3.4.4 Phenotypical Analysis of pdr-1(lg1

Prior to phenotypical analyses, the allele lg101

01) 

 

wild type strain, in order to eliminate putative , this 

deletion affects pdr-1 and K08E3.8, the second

 Homozygous pdr-1(lg101) mutants displa

including morphological and developmental alte

behaviours. First, pdr-1(lg101) mutants show a

shorter and thicker than wild type animals. Second, possibly due to their altered 

morphology, pdr-1(lg101) mutants are uncoordinated (Unc) and perform 30% less 

body-bends/min compared to wild type (wt: 47.6 ± 1.5; pdr-1(lg101): 33.0 ± 2.3; n = 

25; p < 0.0001). Third, pdr-1(lg101) mutants show an egg-laying defective (Egl-D) 

phenotype, which was further characterized in detail. About half of all pdr-1(lg101) 

utants died earlier because of a ‘bag-of-worm’ phenotype (wt: 0%; pdr-1(lg101): 

terioration. In line with these 

 

eggs in the uterus at later stages of the egg-laying phase

day: 30.9 ± 1.0, 3rd day: 1.8 ± 0.3; pdr-1(lg101): 1st day:

0.6; 3rd day: 13.2 ± 1.0; n = 25; all p < 0.0001). Fi

produced less progeny and thus showed ~ 40% reduced 

type (see later Table 3). First preliminary pharmacologic

(5-HT), the 5-HT re-uptake inhibitor imipramine, as w

chlorpromazine that all induce egg-laying in C. elegans,

than muscular defects underlying the Egl-D phenotype of 

 However, none of these phenotypes observed in homozygous pdr-1(lg101) 

ected in heterozygous pdr-1(lg101)/+ pdr-

excluded, since a variety of different mutations in this gene cause an embryonic 

was backcrossed nine times to the N2 

 second-site mutations. Notably

was backcrossed nine times to the N2 

 second-site mutations. Notably

 gene of the operon. 

yed a variety of different phenotypes, 

rations as well as defects in different 

 dumpy (Dpy) phenotype, appearing 

 gene of the operon. 

yed a variety of different phenotypes, 

rations as well as defects in different 

 dumpy (Dpy) phenotype, appearing 

mm

48% ± 5%; n = 100; p < 0.0001). Due to the inability to lay eggs, the progeny hatches 

and develops inside the mother, resulting in their de

48% ± 5%; n = 100; p < 0.0001). Due to the inability to lay eggs, the progeny hatches 

and develops inside the mother, resulting in their de

data, pdr-1(lg101) mutants showed a ~12h delayed start of egg-laying, a slower egg-

laying rate/h (wt: 6.8 ± 0.3; pdr-1(lg101): 3.7 ± 0.3; n = 15; p < 0.0001), and more 

 (wt: 1st day: 23.5 ± 0.7, 2nd 

15; p < 0.0001), and more 

 (wt: 1

 11.7 ± 1.0; 2nd day: 22.6 ± 

nally, pdr-1(lg101) mutants 

brood size compared to wild 

al analyses using serotonin 

ell as the DA antagonist 

 suggested neuronal, rather 

pdr-1(lg101) mutants.  

 11.7 ± 1.0; 2

mutants has been detmutants has been det , trans-heterozygous , trans-heterozygous 

1(lg101)/pdr-1(lg103) or other homozygous pdr-1 deletion alleles. Therefore, all 

characterized abnormalities of pdr-1(lg101) mutants can be attributed to a recessive 

loss-of-function of the downstream gene K08E3.8. Moreover, an effect of any of the 

four pdr-1 deletions on the closely linked upstream gene cyk-4 can almost be 

lethal phenotype (http://www.wormbase.org/

1(lg101)/pdr-1(lg103) or other homozygous pdr-1 deletion alleles. Therefore, all 

characterized abnormalities of pdr-1(lg101) mutants can be attributed to a recessive 

loss-of-function of the downstream gene K08E3.8. Moreover, an effect of any of the 

four pdr-1 deletions on the closely linked upstream gene cyk-4 can almost be 

lethal phenotype (
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3.5 Analyses of pdr-1 Mutants under ER Stress Conditions 

nosensation. In 

Homozygous pdr-1 single gene mutants are viable and display no alterations of 

morphology, development, fertility, or life-span. In addition, they show no behavioural 

defects in motility, egg-laying, defecation, chemotaxis, or mecha

addition, pdr-1 deletions do not affect dopaminergic neuron survival as judged by an 

integrated DA transporter gfp reporter gene construct Pdat-1::gfp (Nass et al., 2002). 

Since pdr-1 single gene mutants behaved like N2 wild type animals in all performed 

experiments, at least under normal growth conditions, pdr-1 mutants were subjected 

to further pharmacological analyses using different compounds.  

 

3.5.1 The pdr-1(lg103) Mutant is Sensitized to ER Stress 

Worms were treated with the reducing agents dithiothreitol (DTT) and β-

mercaptoethanol (β-ME), or with tunicamycin, a specific inhibitor of N-linked 

glycosylation, leading to accumulation of unfolded proteins in the ER (Gething and 

Sambrook, 1992). It appeared that particularly pdr-1(lg103) mutants are 

hypersensitive to ER stress conditions, resulting in severe developmental defects 

and lethality at early larval stages (Figure 31). In contrast, N2 wild type animals are 

able to cope with moderate ER stress and were unaffected.  

 

 

Figure 31. Particular pdr-1(lg103) Mutants are Hypersensitive to ER Stress.  

Photos show ER stressed worms, treated with 1.5 µg/ml tunicamycin, after three days growth from 
synchronized eggs at 20°C. Most of the N2 wild type animals reach adulthood, whereas the majority of 
ire-1(v33) and pek-1(ok275) mutant animals either arrest or die at early larval stages. pdr-1(lg103) 
animals, in contrast to other pdr-1 deletion alleles
hypersensitivity as mutants of the UPR. Scale bar: 0.5 mm. 

, show the same characteristic ER stress 
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Surprisingly, none of the other three analyzed pdr-1 deletion alleles showed a 

 and atf-

i) loss-of-function mutants are indistinguishable from wild type animals. In C. 

elegans, IRE-1 is the central regulator of the UPR, whereas PEK-1 and ATF-6 

002; Shen et al., 

2001; Urano et al., 2002). However, mutants are hypersensitive to elevated ER 

uction of the UPR. C. 

legans hsp-4 is a homolog of the mammalian ER chaperone BiP, which gets up-

regulated upon ER stress. At this concentration of tunicamycin, the overwhelming 

majority of wild type animals were resistant to elevated ER stress and matured to 

fertile adults. In contrast, almost 90% of ire-1(v33) and pek-1(ok275) mutant animals 

arrested during development and died, indicating increased stress sensitivity of 

mutants in the UPR. Notably, almost 70% of homozygous pdr-1(lg103) animals 

showed ER stress hypersensitivity, similar to ire-1 and pek-1 loss-of-function mutants 

(Figure 32). Since pdr-1(lg103) responded differently to tunicamycin treatment than 

the other C. elegans parkin alleles, it is possible that this mutation confers a 

dominant negative or gain-of-misfunction phenotype. In agreement with such a model 

t protein. To test 

comparably strong phenotype than pdr-1(lg103) (Figure 31), even not at higher 

doses of exogenous ER stress. However, this phenotype is similar to the one 

observed with mutants defective in the proper execution of the UPR pathway (Shen 

et al., 2001).  

 C. elegans encodes single homologs of each stress sensor, ire-1, pek-1 and 

atf-6, and mutants are sensitive to elevated ER stress. An intact UPR is absolutely 

required for normal development as ire-1(v33) loss-of-function mutants suffer from 

developmental defects and a reduced brood size, whereas pek-1(ok275)

6(RNA

provide redundant protection against ER stress (Calfon et al., 2

stress, as both, tunicamycin treated single mutants (Figure 31) as well as non-

stressed ire-1;pek-1, xbp-1;pek-1, or xbp-1;atf-6(RNAi) double mutants, arrest at or 

prior to larval stage L3 (Shen et al., 2001; Urano et al., 2002).  

 To quantify the effects of ER stress on pdr-1 mutants, low concentrations of 

tunicamycin [1.5 µg/ml] were chosen, as DTT and β-ME also affected growth of the 

E. coli food source. A stress inducible Phsp-4::gfp transcriptional reporter (Calfon et al., 

2002) was used in all experiments to monitor efficient ind

e

is the retained protein interaction capability of the encoded mutan

this, pdr-1 gene doses were altered by analyzing hetero- and trans-heterozygous 

mutants (Figure 32). All heterozygous pdr-1 alleles showed resistance to increased 

ER stress, comparable to wild type. 



Results  50 

 

 

 

 

 

 

nsiti

 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 32. Quantitative Analysis of the pdr-1(lg103) ER Stress Hypersensitivity. 

Each strain was allowed to lay eggs for three hours on 1.5 µg/ml tunicamycin. Progeny determined to 
be either dead or arrested at larval stages was counted after three days growth at 20° C. Only 
homozygous pdr-1(lg103) mutants are hyperse ve to tunicamycin, but transheterozygous pdr-
1(lg103)/pdr-1(tm598) animals also showed a significantly increased sensitivity. Shown are mean 
values +/- SEM, the total number of animals analyzed is listed above each column (n).  

 

Whereas homozygous pdr-1(lg103) mutants showed the highest sensitivity 

upon ER stress, the combination of the two in-frame-deletion alleles in the 

transheterozygous mutant pdr-1(lg103)/pdr-1(tm598) also resulted in significantly 

increased sensitivity. Notably, none of the other transheterozygous combinations, like 

pdr-1(lg103)/pdr-1(lg101) or pdr-1(lg103)/pdr-1(tm395), showed a significant increase 

in sensitivity, compared to respective heterozygous alleles (Figure 32).  

 

3.5.2 Rescue of the Tunicamycin Hypersensitivity 

The tunicamycin hypersensitivity of homozygous pdr-1(lg103) can be restored to wild 

type behaviour by transgenic expression of pdr-1. This rescue was achieved by 

microinjection of the cosmid K08E3, a genomic subclone containing the complete 

pdr-1 operon (pBY1500), or an engineered rescue construct (pBY1908), which 
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carries a frame-shift mutation in exon III of the downstream gene K08E3.

schematic view see Figure 25).  

In total, 14 independent lines were analyzed: five were transgenic for the 

cosmid K08E3 (BR2726-2730: pdr-1(lg103);byEx429-433), three were transgenic for

pBY1500 (BR2768-2770: pdr-1(lg103);byEx434-436), and six were transgenic for

pBY1908 (BR3136-3141: pdr-1(lg103);byEx417-422). At higher concentrations of

tunicamycin [2.5 µg/ml], almost 90% of pdr-1(lg103) showed severe developmenta

defects and lethality. Wild type animals were much more resistant to ER stress, even 

at higher doses, as only 32% died or arrested during at early larval stages. In all 

analyzed lines expressing the rescuing transgene, lethality/arrest was significantly 

reduced down to 40%, as compared to non-rescued control animals (Figure 33). 

  
 
 

Figure 33. Rescue of the pdr
ER Stress Hypersensitivity by

8 (for a 
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-1(lg103) 
 Wild 

Type Transgene.  

 expressed from 
arrays in the 

the total number of animals analyzed is 
listed above each column (n).  

 

 

, either genomic in a pdr-

a 

Wild type copies of pdr-1,
independent transgenic 
mutant background (pdr-1(lg103); 
byEx417-422[pdr-1]) significantly restored 
survival at 2.5 µg/ml tunicamycin. 
Experiments were performed as described 
in (A). Shown are mean values +/- SEM, 

 

 

 

 

 

 

Notably, the presence of one wild type copy of pdr-1

1(lg103)/+ heterozygote or from a transgenic array, was sufficient to restore viability 

and fertility (Figures 32 and 33). Furthermore, in contrast to pdr-1 loss-of-function 

alleles, in-frame deletions bearing the intact IBR and second RING finger domains, 

either were hypersensitive to ER stress or at least served as a sensitized background 
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in compound heterozygotes. These results clearly rule out a dominant negative 

function of pdr-1(lg103), but rather suggest a semi-dominant role as a gain-of-

ed. 

 First, the brood sizes of pdr-1 mutants were analyzed in detail. Homozygous 

progeny (62%) than N2 wild type 

r

as well as the transheterozygous pdr-1(lg101)/p

brood sizes (~90%) compared to wild type (Tab

observed in homozygous pdr-1(lg101) animals ca

K08E3.8 function in this allele. Conclusively, ‘cle

not significantly influence fertility, offspring produc

 Like previously published (Shen et al.,

defective in the proper execution of the UPR produc

size than wild type (57%; P < 0.0001). In contrast, pek-1(ok275) and atf-6(ok551) 

single mutants showed normal numbers of progeny (86%; P = 0.0002 and 90%; P = 

0.1032, respectively), compared to wild type (Table 3).  

 Strikingly, ire-1(v33);pdr-1(lg103) and ire-1(v33);pdr-1(tm598) double mutants 

showed a dramatically reduced brood size with r t to each single mutant (Table 

3). Specifically the tunicamycin-sensitive pdr-1 in-frame deletion alleles exacerbated 

the phenotype of ire-1 loss-of-function mutants. While the pdr-1 allele lg103 reduced 

the br

misfunction allele. The severe developmental defects and lethality observed in ER 

stressed pdr-1(lg103) mutants further suggest a role of PDR-1 in the UPR. 

 

3.5.3 pdr-1 is Involved in the UPR 

To further elucidate the function of pdr-1 in the UPR pathway, genetic interactions 

between different pdr-1 alleles and the UPR-mutants ire-1(v33), pek-1(ok275) and 

atf-6(ok551) were tested. Therefore, double mutants were generated and the brood 

sizes of the respective strains in the absence of exogenous ER stress were count

pdr-1(lg101) mutants produced significantly less 

(100%). Nonetheless, all other homozygous pd -1 alleles lg103, tm598 and tm395, 

dr-1(lg103) animals showed normal 

le 3). Thus, the reduced brood size 

n be assigned to a recessive loss of 

an’ deletions of the pdr-1 gene do 

tion or egg-laying behaviour.   

 2001), ire-1(v33) single mutants 

ed a significantly smaller brood 

espec

ood size by half (47% reduced), the allele tm598 had milder effects (29% 

reduced) on the brood size of ire-1(v33) single mutants (100%). Notably, complete 

loss of pdr-1 function in the ire-1 mutant background, i.e. in the double mutant ire-

1(v33);pdr-1(tm395), had no effect on the brood size. In contrast, the brood size of 

ire-1(v33);pdr-1(lg101) double mutants was strongly diminished (60% reduced). 
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Table 3. Genetic Interaction of pdr-1 in-frame Deletions And ire-1(v33) Loss-Of-Function.  

The table depicts mean and relative brood sizes (progeny) of all mutant pdr-1 alleles, as well as 
1(v33), pek-1(ok275), and atf-6(ok551) single and double mutants at 20° C. The total numbe

of ire-
rs of 

rood s

e (38% and 43% reduced, 

was 

decreased independent of pdr-1, behaving like pdr-1(lg101) single mutants. Previous 

b izes scored are listed (n). The brood size of each strain is listed as mean ± SEM, and in 
percent. The brood sizes of the pdr-1 single mutants were calculated relative to wild type level; brood 
sizes of the different pdr-1 double mutants were calculated relative to the level of the respective UPR-
single mutant ire-1(v33), pek-1(ok275) or atf-6(ok551). P values were calculated by t test analysis. 
   

 However, compared to wild type (100%), both single mutants pdr-1(lg101) and 

ire-1(v33) caused a strong reduction of the brood siz

respectively). Therefore, it is likely that the decreased brood size of ire-1(v33);pdr-

1(lg101) double mutants results from additive effects of both single mutants, 

independent of pdr-1. On the contrary, the strongly reduced brood size caused by the 

alleles lg103 and tm598 in the ire-1 loss-of-function background results from a 

synergistic effect, and is dependent on a pdr-1 in-frame deletion.  

 Nevertheless, the strong pdr-1 in-frame deletion allele lg103 had no effect on 

the brood sizes of other UPR-mutants, e.g. the double mutants pek-1(ok275);pdr-

1(lg103) and atf-6(ok551);pdr-1(lg103) behaved like the respective single mutants. 

Not surprising, the brood size of pek-1(ok275);pdr-1(lg101) double mutants 

 
genotype 

 
n 

    progeny 
    mean  ±  SEM 

  % relative   
brood size 

 
P value 

 
N2 wild type 
pdr-1(lg103) 

 
63
62

 
         319  ±  4 
         294  ±  6 

 
         100 
     92  ±  2 

 
- 

=
pdr-1(tm598) 
pdr-1(tm395) 
pdr-1(lg101) 

 

pek-

18
17
82

 

         301  ±  6 
         284  ±  6 
         197  ±  9 

     285  ±  7 
 

     94  ±  2 
     89  ±  2 
     62  ±  3 
     89  ±  2 
 

 0.0002 
= 0.8961 
= 0.2731 
< 0.0001 
= 0.1646 

 
pdr-1(lg101)/pdr-1(lg103) 22     

ire-1(v33) 
ire-1(v33);pdr-1(lg103) 
ire-1(v33);pdr-1(tm598) 
ire-1(v33);pdr-1(tm395) 
ire-1(v33);pdr-1(lg101) 
 

57
60
18
18
36
 

         181  ±  8 
           94  ±  7 
         127  ±  10 
         178  ±  10 
           71  ±  9 
 

         100 
     53  ±  4 
     71  ±  6 
   100  ±  6 
     40  ±  5 
 

- 
< 0.0001 
< 0.0001 
= 0.1811 
< 0.0001 

 
1(ok275) 

pek-1(ok275);pdr-1(lg103) 
pek-1(ok275);pdr-1(lg101) 
 
atf-6(ok551) 
atf-6(ok551);pdr-1(lg103) 
 

35
34
28
 

30
30

         275  ±  6 
         280  ±  7 
         208  ±  6 
 
         287  ±  7 
         311  ±  5 

         100 
   102  ±  3 
     76  ±  2 
 
         100 
   108  ±  2 

- 
= 0.7200 
< 0.0001 

 
- 

= 0.0063 
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experiments suggested that ire-1(v33) represents a complete null allele (Shen et al., 

2001, and this study). Therefore, the most obvious ex r the strong 

synergistic effects of specifically pdr-1 ns a s-of-func n, is 

that both genes act in parallel pat y  con

had no effect on pek-1 or atf-6 m t e is  ind  

fourth branch of the UPR, these r l ign  

th  pa a oubl ho r 

phenotype compared to ire-1; -1 or (RNAi) double 

m ring d l al., o e . 

S ates that p os str  

th E-1, P 1

 ether, in contra o unct  pdr-1 in-frame 

d ted  n ire nc  

results are completely in line with data from the tunicamycin-induced stress tests. 

T 0 n  phe  tm  

mutant background, while pdr-1 out-of-frame deletions tm395 and lg101 had no 

ffect, at least not pdr-1 dependent. These data support the proposed gain-of-

the position of pdr-1 in, and its regulation by the UPR, pdr-1 

e resulting mutant 

planation fo

 in-frame deletio nd ire-1 los tio

hwa s of the UPR. In trast, pdr-1 deletion alleles 

uta ions. Since ther currently no ication of a

esu ts suggest that pdr-1 may be ass ed either to

e pek-1 or atf-6 signalling thw y. ire-1;pdr-1 d e mutants s w a ildem

pek , xbp-1;pek-1, xbp-1;atf-6

utants, which all arrest du eve opment (Shen et  2001; Uran t al., 2002)

uch analysis further indic dr-1 has to be p itioned down eam of the

ree signal transducers IR E -K , and ATF-6. 

Taken tog st t  pdr-1 loss-of-f ion alleles,

eletions specifically aggrava  the phenotype of a -1 loss-of-fu tion. These

he in-frame deletion allele lg1 3 co fers a stronger notype than 598 in ire-1

e

misfunction of pdr-1 in-frame deletions. 

 

3.5.4 pdr-1 is Regulated by the UPR 

To further elucidate 

transcript levels in the UPR mutant backgrounds were analyzed by Northern blots. 

Transcript level of both genes, pdr-1 and K08E3.8, were significantly reduced in ire-

1(v33) and pek-1(ok275) loss-of-function alleles to about 50% of wild type levels. 

Interestingly, both pdr-1 and K08E3.8 mRNA levels were significantly up-regulated in 

atf-6(ok551) mutants by about 50%, compared to wild type background (Figure 34). 

Closer examination of the atf-6(ok551) deletion breakpoints, suggested that 

this mutation most likely represents a hypermorphic allele. Th

protein resembles the cleaved and activated form of the ATF-6 transcription factor 

(Yoshida et al., 2000), and might therefore be constitutively active, even under non-

stress conditions. Consistently, transcript levels of the control genes hsp-4 and xbp-1 

were reduced in ire-1(v33) as well as in pek-1(ok275) mutant background, but were 

unaffected in atf-6(ok551) mutant background (Figure 34). C. elegans ATF-6, in 
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contrast to mammalian, is not involved in induction of known UPR targets (Shen et 

al., 2001) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 34. pdr-1 Transcription is Regulated by the UPR.  

Northern blot analyses of total RNA from mutants of the UPR showed reduced transcript levels of pdr-
1 and K08E3.8 in ire-1(v33) and pek-1(ok275) mutants, but elevated levels in atf-6(ok551) mutants, 
relative to wild type. Control genes hsp-4 and xbp-1 showed a reduction of transcription rate in ire-

 in atf-6(ok551) mutants were equal to wild type. 
old induction. An act-1 specific probe was used to 

adjust for equal loading. Shown are mean values of relative transcript level +/- SEM of 3-14 

, 

were u

1(v33) and pek-1(ok275) mutants, whereas levels
Wild type levels of each transcript were set to 1.0 f

independent quantifications. 
 

 To test if pdr-1(lg103) confers endogenous ER stress and so induces the UPR 

itself, chaperone expression in vivo and in Northern blot analyses was monitored. In 

all four pdr-1 mutant backgrounds, the UPR remained un-induced but was still 

inducible by exogenous ER stress, judged by Phsp-4::gfp reporter expression. 

Consistently, transcript levels of both C. elegans BiP homologs, hsp-4 and hsp-3

naffected in all pdr-1 mutants as measured by Northern blot analyses (Figure 

34). Taken together, pdr-1 transcript levels of pdr-1 were reduced in ire-1(v33) and 

pek-1(ok275) loss-of-function alleles, and were strongly upregulated in atf-6(ok551) 

mutants. Therefore one can conclude that C. elegans parkin expression is controlled 

by all three regulators of the unfolded protein response, IRE-1, PEK-1, and ATF-6, 

and may therefore be positioned downstream of the UPR.  
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3.6 Ectopic Expression of α-synuclein in C. elegans  

Accumulation of α-synuclein in Lewy bodies is one of the hallmarks of sporadic PD 

and of its hereditary forms caused by mutations in the α-synuclein gene. Since the 

 genome does not encode an obvious homolog, human α-synuclein WT as

well as pathogenic mutations A53T and A30P were ectopically expressed in 

elegans from different endogenous promoters. First, C. elegans wild type

 for α-synuclein variants expressed from the pan-neuronal 

ere analyzed by immunofluorescence (Figure 35).  

C. 

elegans  

C. 

 animals 

transgenic unc-119 

promoter w

 
Figure 35. Ectopic Expression of Human α-synuclein in C. elegans.  

α-synuclein variants were expressed from the pan-neuronal unc-119 promoter. Photographs display 
representative examples of the specific staining patterns. Upper row: α-synuclein WT; Lower row: α-
synuclein A53T; Left: antibody α-synuclein (15G7); Middle: GFP signal in a dopaminergic neuron; 
Right: DAPI counter-staining. 
 

 Upon mosaic expression of α-synuclein WT and A53T mutation massive 

accumulation of α-synuclein was seen in a variety of neuronal cell bodies and 

processes. The neurites appeared significantly swollen, reaching diameters that 

exceed that of their somata. This might be caused by aggregation of α-synuclein into 

large cytoplasmic and dendritic inclusions. Whether these depositions indeed 

resemble aggresome/LB-like structures and result in cell death has not been 

investigated so far.  
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 However, to further analyze the effects of human α-synuclein ectopic 

α-synuclein during all 

stages of the worm. Thus, a set of transgenic lines was generated by micro-injection 

of the respective plasmids into C. elegans wild type. These strains offer great 

potential to investigate the specific effects of different α-synuclein overexpression 

conditions. 

 

3.6.1 Mutant α-Synuclein Expression Leads to Developmental Arrest and 

Lethality of pdr-1(lg103) 

To test whether there exists a genetic link between pdr-1 dysfunction and α-synuclein 

aggregation in C. elegans, α-synuclein was ectopically expressed in pdr-1 mutant 

background. This time, genomically integrated copies of human wild type α-synuclein 

and A53T mutation were expressed from the pan-neuronal aex-3 promoter (Paex-3::α-

synuclein) (Lakso et al., 2003). Whereas neuronal expression of wild type α-

nuclein A53T mutation 

loned in exactly the same way (Lakso et al., 2003), it is unlikely that this contributes 

expression in C. elegans on specific cell types and to test for dosage-dependency, a 

variety of other endogenous promoters were chosen. To examine the impact of 

human α-synuclein on particularly DA neuron integrity and survival, α-synuclein 

variants were expressed from the dat-1 promoter. Because LB formation has to be 

considered a long-lasting age-dependent phenomenon and the short life-span of C. 

elegans may vastly preclude LB formation, α-synuclein levels may have to be 

increased in order to exacerbate aggregation. Therefore, the sel-12 promoter was 

used to ensure strong and ubiquitous expression of human 

synuclein resulted in no observable phenotype, the α-sy

caused developmental defects and a temperature-sensitive lethal phenotype in pdr-

1(lg103) (Figure 36). Although α-synuclein WT and A53T mutation have not been 

c

to the observed phenotypical differences between both variants. α-synuclein WT is 

N-terminally fused to codons 1-49 of the aex-3 gene, whereas the A53T mutation is 

directly fused to the aex-3 promoter. This results, as observed in Western blots, in a 

slight difference of the molecular weights of the expressed α-synuclein proteins 

(Figure 47, see Discussion Section). 
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 Noticeably, ectopic expression of human α-synuclein in any of the different 

mutant pdr-1 backgrounds did not enhance loss of dopaminergic neurons as judged 

by the gfp expression pattern of an integrated Pdat-1::gfp marker (Figure 36). 

 

 

Figure 36. Ectopic Expression of Human α-synuclein A53T Mutation in pdr-1(lg103) Mutants 
Leads to Developmental Arrest and Lethality.  

Pictures show pdr-1(lg103) mutant animals ectopically expressing α-synuclein WT or A53T mutation 
from a pan-neuronal promoter (P::aex-3) from integrated arrays. Worms were grown from synchronized 
eggs for three days at 20° C. Ectopic expression of α-synuclein WT in pdr-1(lg103) mutant 
background showed no effect on survival/development of the animals, as almost all worms de ped 
to fertile adults. In contrast, Ectopic expression of α-synuclein A53T in pdr-1(lg103) mutant 
background resulted in a dramatic lethality/arrest, as almost all animals arrested and/or died during 
development. The enlarged sector shows a three fold magnified view on pdr-1(lg103);Is[α-syn(A53T)] 
arrested at early larval stages. Expression of α-synuclein in pdr-1 mutant background did not 
accelerate or enhance loss of dopaminergic neurons as judged by integrated co-injection marker P

velo

any pdr-1 mutant background (Figure 37). 

Expression of any α-synuclein variant in wild type animals had no effect on 

development or viability of worms.  

dat-

1::gfp. Scale bar: 0.1 mm. 
 

 At 15° C, 15% of pdr-1(lg103) mutants expressing α-synuclein A53T, arrested 

and died at early larval stages (Figure 37A). This lethal phenotype of pdr-1(lg103) 

mutants became fully penetrant by increasing temperature to 20° C (Figure 37B). In 

contrast, expression of α-synuclein A53T mutation did not cause a phenotype in 

other pdr-1 alleles, even not at 25° C (Figure 37C). Moreover, expression of wild type 

α-synuclein was inconspicuous in 
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Figure 37. Survival 
Analyses 
Mutants 

of pdr-1 
Ectopically 

Expressing α-synuclein 
WT and A53T Mutation.  

 

 

 

Ectopic expression of α-

 

The Y-axis depicts the 
percentage of 
dead/arrested animals
after 3-4 days grown from 
synchronized eggs at 
different temperatures.
Shown are mean values 
+/- SEM, the total number 
of animals analyzed is 
listed above each column 
(n). (A) Only α-synuclein 
A53T ectopically 
expressed in pdr-1(lg103) 
animals, results in weak 
but significant
lethality/arrest at 15° C. 
(B) α-synuclein A53T 
induced lethality/arrest in 
pdr-1(lg103), but not in 
other pdr-1 mutant 
animals, is dramatically 
enhanced at 20° C. (C) 

synuclein at 25° C.  
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3.6.2 Cytotoxicity Is Dependent on Levels of both Muta eins 

The incidence of PD and formation of Lewy bodies generally i

of the patients. In order to generate a PD model in a shor

elegans (lifespan generally lower than 20 days) obviously the e

synuclein have to be increased compared to the situation in hum

 Genetic tools were used to monitor the consequences o

synuclein accumulation in various pdr-1 mutant backgrounds (T
 

 

Table 4. Survival of Heterozygous pdr-1 Mutants Ectopically Expressin α-synuclein A53T.  

Analyses were performed at 20° C and as described in Figure 37. Only α-synuclein A53T expressed 
from both integrated copies, confers cytotoxicity in specifically homozygous pdr-1(lg103) mutant 
background, and, although milder, in transheterozygous mutants carrying both in-frame deletions pdr-
1(lg103)/pdr-1(tm598). Shown are mean values of lethality/arrest in percent +/- SEM, the total number 
of animals analyzed is listed (n). 
  

 Several results from these experiments are noteworthy: Firstly, only strong 

expression of α-synuclein A53T (two copies of the transgene) resulted in a strong 

phenotype in pdr-1(lg103) mutants. Secondly, similar to the results obtained after 

exposing the animals to ER stress, only a homozygous pdr-1(lg103) mutant 

background or, to some extent, a transheterozygous pdr-1(lg103)/pdr-1(tm598) 

 
genotype 

expression of  
α-synuclein A53T 

 
n 

nt Prot

ncreases with the age 

t-lived animal like C. 

xpression levels of α-

ans.  

f different levels of a-

able 4).  

mean ± SEM      
% lethality/arrest

 
N2 wild type 
 
pdr-1(lg103) 
pdr-1(tm598) 
pdr-1(lg101) 
pdr-1(tm398) 
 
pdr-1(lg103) 
pdr-1(lg103)/+ 
 
pdr-1(lg103)/+ 
pdr-1(lg103)/pdr-1(tm598) 
pdr-1(lg103)/pdr-1(lg101) 
pdr-1(lg103)/pdr-1(tm598) 
 

 
+/+ 

 
+/+ 
+/+ 
+/+ 
+/+ 

 
+/- 
+/- 

 
+/+ 
+/+ 
+/+ 
+/+ 

 
407 

 
502 
619 
345 
782 

 
384 
306 

 
258 
229 
198 
202 

      4.4  ±  0.5 **/* 
0.8  ±  0.5 
1.3  ±  0.6 

 

 
1.6  ±  0.7 

 
   99.0  ±  0.6 *** 

1.1  ±  0.4 
1.9  ±  0.7 
0.8  ±  0.3 

 
0.3  ±  0.3 
0.3  ±  0.3 

 
0.7  ±  0.4 

***  P value against α-synuclein A53T(+/+) < 0.0001  
**   P value against pdr-1(lg103)/+;α-synuclein A53T(+/+) = 0.0010 
*     P value against pdr-1(tm598);α-synuclein A53T(+/+) = 0.0308

g 
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genetic background resulted in a phenotype in α-synuclein A53T expressing worms. 

3T lethal 

henotype. In order to test this hypothesis, the consequences of α-synuclein A53T 

expression in the pdr-1(lg103);atf-6 utant ckgrou

Since the mutant allele atf-6(ok  tra ript , 

increased PDR-1 protein levels can b roposed in  gene und. 

Lethality/arrest was strongly enhanced al eady at 15°C ith respect to the pdr-

1 utant (Figure 38).  

 
 

Figure 38. Transcriptiona ent o ) 
Aggrav  Toxicity. 

pdr-1(lg ;atf-6(ok551) e muta α-
synuclein A53T mutation w a sign anced 
lethality/developmental ar  15° C. epicts 
the pe ge of dead/ d a s 
surviva ynchronized t 15  
values +/- SEM, the total ber of a ed is 
listed a each column 
 

n of either α-synuclein 

A53T or pdr-1(lg103) gain-of-misfunction, should 

3) 

 

dsRNA-mediated interference (RNAi) studies by 

feeding (Figure 39). Only weak, but not significant 

Thirdly, a single copy of the wild type pdr-1 or of the other pdr-1 alleles was sufficient 

to prevent a phenotype, even in animals that expressed two copies of α-synuclein 

A53T. 

 Previous experiments already suggested that pdr-1(lg103) might cause a gain-

of-misfunction phenotype. If this is true, then further increasing the expression level 

of this mutant should result in an aggravation of the α-synuclein A5

p

(ok551) double m ba nd was analyzed. 

ional rate of pdr-1551) enhances the nsc

e p  this tic backgro

r  w

(lg103) single m

l Enhancem f dr-1(lg103 p
ates

1 3)0 d ublo nts expressing 
 sho

rest at
ificantly enh
The Y-axis d

rcenta arreste nimals after four day
° C meanl of s eggs a . Shown are 

 num
(n).  

nimals analyz
bove 

In contrast, knock-dow

ameliorate the lethal phenotype of pdr-1(lg10

mutants ectopically expressing α-synuclein A53T 

mutation. Therefore, animals were subjected to 

reduction of lethality/arrest was observed in pdr-

1(lg103);α-synuclein A53T animals subjected to 

α-synuclein RNAi when compared to control 

animals. 
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Figure 39. α-synuclein RNAi Studies. 

pdr-1(lg103) mutants expressing α-synuclein A53T mutation were 
subjected to α-synuclein RNAi, in order to modulate cellular levels of α-
synuclein protein, and thus, cytotoxicity. Therefore, animals were fed 
with engineered E. coli producing dsRNA of either control or α-
synuclein. The Y-axis depicts the percentage of dead/arrested animals 

 

 of distinct genes, some C. elegans tissues as 

well as genes are less sensitive to dsRNA-mediated knock-

 

 However, to be sure, one ha l experiments like quantitative 

RT-PCR, in order to compare endo

 In summary, a strong neuro

mutant α-synuclein in the sensitiz

alleles of C. elegans parkin. Cytoto perature and on protein 

levels of both, human α-synuclein A53T mutation and PDR-1(∆aa24-247). 

 

3.6.3 Blockage of the UPR is N

Mediated Cytotoxicity 

The aggravation of a muta

either be caused by blocking the E

protein that does not involve its role

two possibilities, animals expressin

treated with exogenous ER stress

neither wild type α-synuclein nor th

the ire-1(v33) mutants, not even a 40). Not surprising, 

e-1(v33) single mutants themselves showed a temperature-dependent effect as ir

after 3-4 days grown from synchronized eggs at 20° C. Shown are
mean values +/- SEM, the total number of animals analyzed is listed 
above each column (n).  
 

The most likely explanation for this is, that RNAi mediated 

knock-down was simply incomplete, and cellular levels of 

mutant proteins could not be reduced below a certain toxic 

threshold. This is in line with data from other preliminary 

RNAi knock-down studies of pdr-1, mutant pdr-1(lg103) or 

K08E3.8. Although RNAi is a great tool to reduce/eliminate 

expression

least by feeding methods (Simmer et al., 2002). 

s to perform contro

down, at

genous mRNA levels of the respective gene.  

toxic phenotype results from the expression of 

ed background of recessive gain-of-misfunction 

xicity is dependent on tem

ot Sufficient for α-Synuclein A53T 

nt α-synuclein phenotype by pdr-1(lg103) could 

R stress response or by an effect of the mutant 

 in the UPR. In order to distinguish between these 

g α-synuclein in a defective UPR background or 

 by tunicamycin, were analyzed. Expression of 

e A53T variant caused a detectable phenotype in 

t higher temperatures (Figure 
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lethality/arrest was incre with temperature being a 

critical determinant of pro

 

 

d not affect 
rvival, even not at elevated temperatures. The Y-axis depicts the percentage of dead/arrested 

nimals after three days survival of synchronized eggs at 15, 20 and 25° C. Shown are mean values 
+/- SEM, the total number of animals analyzed is listed above each column (n).  

 of exogenous ER stress on cytotoxicity of α-synuclein, 

worms overexpressing WT or A53T mutation were treated with tunicamycin. 

Consis

ased at 25°C. This is consistent 

tein folding/degradation pathways (Figure 40). 

 

 

 

 

 

 

 

Figure 40. Cytotoxicity of α-synuclein A53T Is Independent of UPR Dysfunction.  

Ectopic expression of α-synuclein WT and A53T in ire-1(v33) mutant background di
su
a

 

 To test the effects

tent with data from ire-1 mutants, animals expressing α-synuclein are not 

more sensitive to exogenous ER stress when treated with tunicamycin compared to 

wild type (Figure 41). Complete in line with the latter findings, α-synuclein expressing 

strains did not induce the UPR, as monitored by hsp-4 and xbp-1 transcript levels in 

Northern blot analyses. Consistently, the hsp-4::gfp reporter gene remained un-

induced in animals ectopically expressing human α-synuclein in wild type or in the 

pdr-1(lg103) mutant background. 
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Figure 41. α-synuclein Expressing Worms are Not 
Sensitive to Exogenous ER Stressors.  

The Y-axis depicts the percentage of dead/arrested animals 
after three days survival of synchronized eggs at 20° C plates 
containing 1.5 µg/ml tunicamycin. Shown are mean values 
+/- SEM, the total number of animals analyzed is listed above 
each column (n). 

 

 

 

 

 

 

 

 

 

 

 To test if disruption of chn-1 function would aggravate α-synuclein A53T 

mediated cytotoxicity in pdr-1(lg103) at low temperatures, animal were subjected to 

chn-1 RNAi (feeding). Knock-down of chn-1 in pdr-1(lg103) mutants ectopically 

expressing α-synuclein A53T mutation at 

15° C, enhanced toxicity weakly, but not 

significantly (Figure 42). 

 

 

Figure 42. chn-1 RNAi Studies. 

pdr-1(lg103) mutants expressing either α-synuclein 
WT or A53T mutation were subjected to chn-1 RNAi, 
in order to enhance cytotoxicity. Therefore, animals 
were fed with engineered E. coli producing dsRNA of 
either control or chn-1. The Y-axis depicts the 
percentage of dead/arrested animals after 3-4 days 
grown from synchronized eggs at 15° C. Shown are 
mean values +/- SEM, the total number of animals 
analyzed is listed above each column (n).  
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 might indeed function in the affected pathway, 

pdr-1(lg103), does not function pr (lg103);chn-1(-

/-) double mutants overexpressin

However, so far a genetic inter

though chn-1 loss-of-function mutants are not sensitive to tunicamycin treatment (T. 

Hoppe, personal communication). Taken together, these results demonstrate that the 

phenotype caused by the combination of α-synuclein A53T expression and pdr-1 

gain-of-misfunction is not mediated by impairment of an ER stress pathway. 

 

3.6.4 pdr-1(lg103) and α-synuclein 53T Mediated Toxicity is 

Independent of Oxidative and Heat Stress Pathways  

To further assign cytotoxicity mediated b ion of α-synuclein A53T in pdr-

1(lg103) mutant animals to a certain pathway, worms were tested under oxidative 

  

 

 

 

This either suggests that chn-1

or simply that RNAi, at least by feeding methods as in the case of α-synuclein and 

operly. As a follow up strategy, pdr-1

g α-synuclein should be constructed and analysed. 

action can neither be established nor excluded, 

 A

y overexpress

and heat stress conditions (Figures 43 and 44, respectively).  

Paraquat (methylviologen) was used as an endogenous inducer of oxidative 

stress. mev-1(kn-1) control mutants carry a missense mutation in a cytochrome b 

subunit of mitochondrial respiratory complex II.
 
 
 
 

Figure 43. pdr-1 Mutants and Worms
Ectopically Expressing α-synuclein are 
Not Hypersensitive to Oxidative Stress.  

Oxidative stress had no effect on viability 
and development of pdr-1 mutants or 
worms overexpressing human α-synuclein 
WT or A53T mutation. In contrast, mev-
1(kn1) sensitive control mutants arrested 
early in their development. The Y-axis 
depicts the percentage of dead/arrested
animals treated with 2mM paraquat after 
three days exposure of synchronized L1
larvae at 20° C. Shown are mean values 
+/- SEM, the total number of animals 
analyzed is listed above each column (n). 
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These mutants are hypersensitive towards increased oxidative stress, and 

thus arrest early in their development (Ishii et al., 1998). However, all pdr-1 mutants, 

as well as animals overexpressing human α-synuclein, were resistant towards 

oxidative stress, indistinguishably from wild type (Figure 43).  

In addition, the development and survival of pdr-1 mutants and animals 

overexpressing human α-synuclein after short heat stress treatments was analyzed. 

ire-1(v33) mutants showed a significantly increased lethality/arrest by 2h heat shock 

at 35°C. In contrast, all pdr-1 mutants and animals overexpressing α-synuclein were 

resistant to short heat stress treatments and showed no discernable phenotype, like 

wild type (Figure 44). 

 

r-1 Mutants and Worms 
Ectopically Expressing α-synuclein are 

mber of a

 L2/L3 larvae were heat-
2h at 35° C. The Y-axis 

above each column (n). 

n

specifically pdr-1(lg103) mutant background

cytotoxicity, resulting in developmental defects an

is independent of ER stress or the UPR and inde

pathways. Thus, these results most likely sugg

synuclein A53T mediated toxicity, corroborating a misfunction of pdr-1(lg103) in two 

distinct protein stress pathways. 

 

Figure 44. pd

Not Hypersensitive to Heat Stress. 

The total nu nimals scored is 
listed above each column (n). 
Synchronized
stressed for 
depicts the percentage of arrested/dead 
animals after two days recovery at 20° C. 
Shown are mean values +/- SEM, the total 
number of animals analyzed is listed 

 

 

 

 

 

  

 α-synuclein A53T, but not WT, in 

 causes temperature-dependent 

d lethality. The exerted cytotoxicity 

pendent of oxidative or heat stress 

est a cytosolic mechanism for α-
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4 Discussion 
 

The underlying molecular and cellular pathways that mediate PD are largely 

unkno

els may be required. In the present study, a nematode model 

was developed to investigate the biological role of the parkin gene in vivo, in order to 

 

First, the Caenorhabditis elegans protein PDR-1

human Parkin. Expression analyses revealed tha

enriched in neurons and muscles, and mainly loc

17). PDR-1 was shown in this study to interact an nzymes of the 

ubiquitin/proteasome pathway, in order to mediate E3 ubiquitin ligase activity (see 

Figure 24). Like human Parkin, PDR-1 specifically associates with E2 and E4 

enzymes (see Figures 20 and 23) involved in the cytosolic protein stress response 

and the ERAD pathway (Imai et al., 2002; Shimura et al., 2001; Zhang et al., 2000). 

Noteworthy, ubiquitylation and degradation machineries have already been reported 

to be highly conserved from nematodes to humans (Davy et al., 2001; Jones et al., 

 

se proteins may represent due to the modulatory 

wn. Mutations in human parkin have been associated with particularly severe 

recessive forms of PD. Human Parkin is involved in several cellular processes, and 

like other RING-finger containing proteins acts as an E3 ubiquitin ligase that targets 

several substrates for degradation. Until now, functional studies on parkin have not 

provided a direct explanation for the disease mechanism(s), suggesting that 

additional animal mod

gain insights into the pathogenesis of PD.  

 

 

4.1 C. elegans PDR-1 Is the Functional Equivalent of Human Parkin  

 was identified as the ortholog of 

t PDR-1 is present in all tissues but 

alizes to the cytoplasm (see Figure 

d cooperate with co-e

2002). 

 The identification of PDR-1 protein interactions with the product of the 

downstream gene K08E3.8 (see Figure 21B), as well as with several other ‘prion’ 

domain proteins identified in this and in an independent study (Li et al., 2004), 

suggest a high affinity of PDR-1/Parkin and interactors for such Q/N-rich domains 

(see Figure 22 for the PDR-1 interaction map). The C. elegans genome encodes 

about 100 predicted ‘prion’ domain proteins (PQN-), dispersed among numerous 

cellular functions. However, the
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capacity of the ‘prion’ domain that can acquire conformational changes, aggregation-

DR-1. This further substantiates the 

plication of human Parkin in the removal of aggregation-prone polypeptides, 

ne products, suggest an interesting new 

eld of research that needs to be further investigated. 

Although a variety of different proteins with diverse and un-related functions 

degradation pathways. However, whether these proteins are co-enzymes that are 

proteins (Tsai et al., 2003). Parkin substrates that have direct toxic effects include 

prone proteins, which are targeted by P

im

including polyQ proteins (Tsai et al., 2003). Although the cellular role of K08E3.8 is 

unknown, the phenotypes caused by a K08E3.8 mutation suggest an important 

function. The deletion pdr-1(lg101) eliminates codons 1-63 of K08E3.8, and therefore 

the translational start. The described phenotypes of pdr-1(lg101) mutants have been 

linked to a presumably recessive K08E3.8 loss-of-function. However, the arising 

question for the functional correlation between PDR-1 and its downstream gene 

K08E3.8, and the biological role of their interaction, cannot be answered, yet. 

Nevertheless, the developmentally regulated co-expression of pdr-1 and K08E3.8 as 

well as the physical interaction of both ge

fi

 

were identified, many novel PDR-1 interaction partners are related to protein 

associated with a specific function of PDR-1/Parkin or serve as potential substrates 

for PDR-1/Parkin mediated ubiquitylation still has to be elucidated. Each of the C. 

elegans homologs of human cathepsins, which were most prominently found in the 

PDR-1 interaction screen, might represent a candidate substrate for PDR-1 (see 

Figure 19). Age-related lysosomal damage and subsequent release of destructive 

enzymes into the cytoplasm has been linked to necrotic cell death (Syntichaki and 

Tavernarakis, 2003). Nevertheless, some of these C. elegans cathepsins were also 

found associated with 19S regulatory subunits and E1 enzymes in an independent 

screen (Li et al., 2004). Although cathepsins have long been implicated only in end-

stage protein degradation in lysosomes, potential change for substrate specificity and 

localization has been reported (Goulet et al., 2004; Reinheckel et al., 2001). Thus, 

these results might provide a possible direct functional link between lysosomal 

damage and the pathophysiology of PD.  

 Substrates of human Parkin identified so far are diverse and associated with 

numerous un-related cellular functions. Candidate Parkin substrates that are 

aggregation-prone proteins range from the ER transmembrane protein Pael-R (Imai 

et al., 2001) to cytosolic modified α-synuclein forms (Shimura et al., 2001) and polyQ 
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free, monomeric forms of α/β-tubulins (Ren et al., 2003) and cyclin E, which 

promotes apoptosis (Staropoli et al., 2003). In addition, specific synaptic proteins that 

are targeted by Parkin have been identified: the septins CDCrel-1/2 (Choi et al., 

2003; Zhang et al., 2000), synaptotagmin XI (Huynh et al., 2003), and, most recently 

identified, the dopamine transporter (Jiang et al., 2004). The aminoacyl-tRNA 

synthetase subunit p38 (Corti et al., 2003) completes the list of the diverse and un-

related Parkin substrates identified so far.  

 Why PDR-1/Parkin carry two RING fingers, while, in principle, a single one is 

sufficient for E2 binding and ubiquitin ligase activity of many E3 proteins, is unclear 

(Joazeiro and Weissman, 2000; Moynihan et al., 1999). The identified homo-

dimerization ability of PDR-1, and the binding to other RING finger proteins (see 

Figures 21A and 28C), may suggest a possible function of PDR-1/Parkin as a 

molecular scaffold for the assembly of a multisubunit complex (Dev et al., 2003b). 

 analyze the interactions of PDR-1 with 

Furthermore, this also provides a mechanistic explanation for the wide-ranged affinity 

of PDR-1/Parkin for proteins with diverse and un-related functions. Therefore, the 

simply extended interaction surface might allow association with other proteins to 

acquire possibly changes of specificities and functions. A second possibility is that 

RING box proteins may ligate also other ubiquitin-like modifiers in addition to 

ubiquitin. Since PDR-1 was found to interact with the ubiquitin-like protein F52C6.2, 

the question arises whether PDR-1 simply binds this protein or indeed catalyzes the 

conjugation of this putative UBL modifier to itself and/or to certain substrate proteins. 

Although speculative, such a linkage may also imply new un-revealed functions other 

than proteasome-dependent degradation, as it is the case for the UBLs Nedd8 

(neural precursor cell-expressed and developmentally down-regulated gene) or 

SUMO (small ubiquitin-related modifier). However, interaction of PDR-1 with either 

the SUMO- or Nedd8-specifc E2 enzymes, UBC-9 or UBC-12 respectively, could not 

be demonstrated, at least not using the yeast-two-hybrid system.  

 Nevertheless, the newly identified PDR-1 interactions have to be further 

validated and characterized. In order to

several candidate proteins, appropriate GST-fusion constructs have been generated 

for some of them (see Table 12), and first attempts to purify the corresponding 

recombinant proteins have been made. Next, protein interactions have to be 

confirmed in GST-pull down experiments, and PDR-1/Parkin mediated ubiquitylation 

has to be tested.  
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4.2 PDR-1 Is Part of the UPR Pathway 

The UPR is an intracellular signalling pathway that mediates an adaptation to ER 

stress at both transcriptional and translational levels. It augments folding and 

degradation capacity and also acts by reducing the protein load in the ER (Rutkowski 

and Kaufman, 2004). Treatment with tunicamycin, an inhibitor of N-linked 

glycosylation, results in high amounts of unfolded proteins in the ER lumen, and thus, 

tunicamycin is a potent inducer of the UPR. 

ate, cross-talk and 

Particularly one C. elegans parkin allele, pdr-1(lg103), an in-frame deletion 

resulting in a PDR-1 protein without functional UBL and RING1 domains, was 

specifically sensitive towards ER stress conditions. These animals suffered from 

severe developmental defects and lethality (see Figures 31 and 32), but were, at the 

same time, not sensitive to oxidative or heat stress (see Figures 43 and 44). The 

hypersensitivity of pdr-1(lg103) animals towards ER stress is similar to the phenotype 

of mutants defective in the proper execution of the UPR, which is required for normal 

development in C. elegans. Tunicamycin treated UPR mutants, or non-treated double 

mutants of the pathway, including ire-1;pek-1, xbp-1;pek-1, or xbp-1;atf-6(RNAi) 

animals, typically arrest at the L2/L3 larval stages due to the degeneration of the 

intestine (Shen et al., 2001; Urano et al., 2002). At L2, the C. elegans intestine 

induces high-level synthesis of secretory proteins which in the absence of proper 

UPR function make the animals more susceptible towards ER stress (Shen et al., 

2001). PDR-1 contributes to this anti-stress response, and is consequently up-

regulated in the L2/L3 larval stages (see Figure 16). 

In mammals, the UPR is mediated by two branches, one specifically induced 

by ER stress (ATF-6 and IRE-1) and one shared by different cellular stresses 

(PERK/PEK), the so called integrated stress responses (Harding et al., 2002). These 

pathways converge on the level of translational attenuation through induction of 

different kinases that phosphorylate eIF2α, like PERK/PEK. To d

feedback mechanisms have been reported within the two branches, as well as 

between them (Rutkowski and Kaufman, 2004). Because the translation attenuation 

is usually transient, the transcriptional aspect of the UPR mediated by IRE1 and 

ATF6 becomes more important in adapting cellular processes with the accumulation 

of unfolded proteins (Shen et al., 2004). Although conserved, the coordination of the 
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three pathways and their specific contribution to the metazoan ER stress response is 

s that pdr-1 may act to some extent in 

paralle

 (Tsai et al., 

2002) and turned over by the ERAD pat

unclear.  

Since pdr-1(lg103) mutants shared the ER stress hypersensitivity of UPR 

mutants, genetic interactions were tested. pdr-1(lg103) and pdr-1(tm598) specifically 

cooperate with ire-1 loss-of-function but not with pek-1 or atf-6 mutants, as shown by 

synthetic effects of ire-1(v33) and pdr-1(lg103) or pdr-1(tm598) in the respective 

double mutant (see Table 3). This suggest

l to ire-1 signalling, perhaps by directly contributing to either the pek-1 or atf-6 

pathway. In C. elegans, IRE-1 exerts nearly complete control over the induction of 

well characterized components of ER client protein processing machinery, and PEK-

1 provides redundant protection against ER stress (Shen et al., 2001). While pek-

1(ok275) represents a complete loss-of-function mutant, the deletion atf-6(ok551) 

most likely functions as a hypermorphic allele, which is constitutively active, even 

under non-stressed conditions. This is supported by the fact that atf-6(ok551) 

mutants are not sensitive to tunicamycin treatment like ire-1 or pek-1 loss-of-function 

mutants (see Figures 31 and 32). To be able to further assign PDR-1 function to 

either the PEK-1 or the ATF-6 pathway, genetic interaction of pdr-1(lg103) with a 

clear atf-6 loss-of-function has to be studied. However, un-stressed ire-1;pek-1, xbp-

1;pek-1, or xbp-1;atf-6(RNAi) double mutants arrest at early larval stages and 

therefore show an earlier/stronger phenotype than ire-1;pdr-1 double mutants, 

suggesting a position for PDR-1 downstream of these UPR transducers. 

Unfolded proteins in the ER are retro-translocated to the cytosol

hway (Ahner and Brodsky, 2004) which 

function is increased by the UPR (Kostova and Wolf, 2003). Genes active in the 

ERAD pathway are not essential under normal growth conditions, but become 

indispensable under stress or when the UPR is blocked. Similar to pdr-1(lg103), 

mutations in ERAD genes and in the recently identified C. elegans abu gene family 

(activated in blocked UPR) are synthetic let fective UPR, too, but activate 

the UPR themselves (Friedlander et al., 2000; Travers et al., 2000; Urano et al., 

2002). In contrast to pdr-1 in-frame deletions, which exacerbated the phenotype of 

un-stressed ire-1 mutants, the effects of ire-1 or xbp-1 mutants are enhanced by abu-

1(RNAi) only under stress conditions. Moreover, the UPR reporter hsp-4 is not 

induced in any of the pdr-1 mutant backgrounds, even not in pdr-1(lg103) mutants 

hal with a de

(see Figure 33). This rules out a susceptibility of worms to unfolded protein stress 
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conferred by increased steady state level of endogenous ER stress in the pdr-1 

mutants. As it is known for ERAD genes, expression of the pdr-1 gene is also 

induce

smembrane 

protein

d by the UPR. Loss of IRE-1 or PEK-1 function resulted in about half-fold 

reduction of pdr-1 transcript levels (see Figure 33). In contrast, pdr-1 transcript levels 

are elevated half-fold by the atf-6(ok551) mutation. However, as already mentioned 

this special allele most likely represents a hypermorphic allele, from which an 

otherwise only stress-induced, activated form of the transcription factor ATF-6 might 

be generated constitutively, even in the absence of stress. Consequently, this 

suggests that pdr-1 gene expression is controlled by all three pathways IRE-1, PEK-

1, and ATF-6. Nonetheless, though very unlikely, it cannot be excluded that atf-

6(ok551) mutants confer a loss-of-function. This would disprove the direct regulation 

of pdr-1 gene expression by ATF-6 signalling. If so, then, most likely IRE-1 and PEK-

1 dependent back-up mechanisms may be responsible for the enhanced pdr-1 

expression in atf-6(ok551) mutants, since cross-talk between the three UPR 

pathways is known. However, hsp-4 and xbp-1 gene expression is not enhanced in 

atf-6(ok551) mutants (see Figure 34).  

 Nevertheless, a similar back-up mechanisms has been identified for 

members of the abu gene family, although transcriptional induction was only seen in 

additionally ER stressed (tunicamycin-treated) mutants defective in the IRE-1/XBP-1 

pathway. Whether induction of abu gene expression is dependent on PEK-1 or ATF-

6, is unknown (Urano et al., 2002). ABU proteins are type I ER-tran

s similar to mammalian cell surface scavenger receptors of endothelial cells 

that bind chemically modified extracellular proteins and direct their lysosomal 

degradation. abu genes play an important role in protecting animals with a defective 

UPR against ER stress, as a back-up mechanism. Therefore, a function within the 

endomembrane system by binding to altered ER client proteins and modulating their 

intracellular fate was suggested, similar to one of the distantly related mammalian 

receptors (Urano et al., 2002). The abu gene family encodes nine relatively 

homologous proteins and two more distantly related members. Interestingly, at least 

these two (ABU-10 and ABU-11) have been detected to associate with distinct PDR-

1 interactors (Li et al., 2004), although the significance of these interactions is 

unclear. 

Earlier studies indicated an specific up-regulation of human Parkin expression 

in response to ER stress in cell culture (Imai et al., 2000), though differences 
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between astrocytic and neuronal cells have been found as well (Ledesma et al., 

2002). However, the involved pathways have not been investigated. Interestingly, a 

very recent report demonstrated the specific stimulation of Parkin E3 ubiquitin ligase 

activity through de-phosphorylation in response to ER stress (Yamamoto et al., 

2004). In summary, these collective data suggest a general role for PDR-1/Parkin in 

the UPR as well as a complex mode of regulation and modulation of PDR-1/Parkin 

function during the execution of this pathway (Figure 45).  

 

Figure 45. Regulation of 
PDR-1 By And 
Involvement In the UPR.  

Accumulating unfolded 
proteins in the ER are bound 
by HSP-4/BiP. The release 
of HSP-4 from PEK-1/PERK, 
ATF-6 and IRE-1 activates 
these signal transducers. By 
translational and 
transcriptional responses, a 
program to sustain ER 
function is set in motion. So, 

stry of stress induction is most likely very similar in C. elegans, as recently 

the su

pdr-1 gene expression is 
controlled by all three UPR 
signalling pathways PEK-1, 
ATF-6, and IRE-1. 
Furthermore, PDR-1 protein 
acts in parallel to IRE-1 
signalling, most likely 
downstream in the PEK-1 
and/or ATF-6 pathway.  

 

 

 

 

The data presented here fully correlate with the proposed model for a 

widespread involvement of ER stress and the UPR in the pathophysiology of PD 

(Forman et al., 2003; Sherman and Goldberg, 2001). For example, it was shown that 

some PD mimetics like 6-OHDA, MPP+, and rotenone specifically induce ER stress 

and activate the UPR in cultured neuronal cells. Furthermore, impairment of the UPR 

pathway increases sensitivity to parkinsonism-inducing toxins (Ryu et al., 2002). The 

biochemi

sceptibility of worms to MPP+ treatment and the amelioration of neurotoxicity by 

anti-PD drugs was demonstrated (Braungart et al., 2004). 
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a et al., 

2001). However, not only missense mutations are causative for PD, but also 

els of wild 

a

et al., 2004; Singleton et al., 2003). This has already bee c 

animal models (Reviewed by Maries et al., 2003).  

 The heat shock protein Hsp70 provides a link between

the cytosolic protein folding machinery (Auluck et al., 2002).  

prevented loss of DA neurons associated with α-synuclein 

heat shock proteins and co-chaperones have been detected

mortem tissue, suggesting a key role of molecular chapero

(Reviewed by Muchowski and Wacker, 2005). Thereby, cha

important in both refolding misfolded proteins and dire

proteasomal degradation (Cyr et al., 2002; Young et al., 2004

 Furthermore, several lines of evidence suggest a rela

and α-synuclein: a rare modified species of α-synuclein was identified as a substrate 

of Parkin E3 ligase activity (Shimura et al., 2001) and overexpression of Parkin 

ameliorated DA neuron loss in an α-synuclein transgenic fly mo el (Yang et al., 

2003). However, a physiological role and a direct explanation for the pathogenic 

mecha

 

4.3 PDR-1 Is Involved in the Cytosolic Stress Response 

Accumulation of the cytosolic protein α-synuclein in Lewy bodies is a hallmark of PD 

and mutations result in autosomal dominant familial PD. The A53T mutation 

enhances aggregation of α-synuclein by accelerated fibril formation (Conway et al., 

2000). This in turn impairs the proteolytic system (Stefanis et al., 2001) and increases 

the sensitivity of cells to proteasome inhibition (Petrucelli et al., 2002; Tanak

multiplications of the gene locus, and therefore enhanced expression lev

type α-synuclein have been associated with PD (Chartier-H rlin et al., 2004; Ibanez 

n proven in transgeni

 α-synuclein toxicity and 

Co-expression of Hsp70 

in flies. In fact, several 

 in LBs of human post-

nes in PD progression 

perones like Hsp70 are 

cting proteins towards 

).  

tionship between Parkin 

d

nism have not been determined so far. In C. elegans, overexpression of 

human α-synuclein wild type or A53T mutation from a pan-neuronal promoter (aex-3) 

resulted in motor deficits as well as in neuronal and dendritic loss, also of DA 

neurons (Lakso et al., 2003). 

 In the present study, it was shown that human α-synuclein accumulates in the 

C. elegans neurons both in the cytoplasm and in axonal processes (see Figure 35). 

Moreover, mutant α-synuclein A53T, but not its wild type form, exerts a cytotoxic 

effect specifically in pdr-1(lg103) mutant animals, resulting in severe developmental 

defects and lethality at early larval stages (see Figure 36). 
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Similar to the behaviour after tunicamycin treatment (see Figure 32), other 

1(lg103)/pdr-1(tm598) compound mutants (see Table 4). Interestingly, cytotoxicity is 

pdr-1(lg103) 

 type worms treated 

tant background that is dependent on temperature and 

homozygous pdr-1 mutants were unaffected by ectopic expression of either α-

synuclein wild type or A53T mutation (see Figure 37). It is noteworthy that the allele 

pdr-1(tm598) served also in this experiment as a sensitized background in pdr-

dependent on temperature (see Figure 37) and on genes doses of both α-synuclein 

A53T mutation and pdr-1(lg103) mutant (see Figure 38). The fact that this phenotype 

in C. elegans arises already at larval stage L2 (~2-3 days after fertilization) is 

remarkable, given that α-synuclein aggregation in mice is only toxic after months 

(Giasson et al., 2002). It is conceivable that this toxicity was only observed as a 

synthetic effect in animals harbouring both the in-frame deletion allele 

and ectopically expressed mutant α-synuclein. 

The phenotype caused by ectopic expression of α-synuclein A53T mutation in 

pdr-1(lg103) mutant background is similar to the one observed under ER stress 

conditions (compare Figures 31 and 35). In both cases, animals arrest at the same 

stage of development, in line with the temporal up-regulation of pdr-1 expression in 

specifically larval stages L2/L3 (see Figure 15). However, cytotoxic effects of mutant 

α-synuclein are not seen in tunicamycin-treated animals or in the background of 

mutants in the UPR pathway. Expression of α-synuclein in wild

with tunicamycin or in ire-1 deficient worms did not impair development or viability 

(see Figures 40 and 41). Consistently, the ER stress marker hsp-4::gfp was not up-

regulated by transgenic expression of α-synuclein in either wild type worms or pdr-

1(lg103) mutants. Thus, pdr-1(lg103) exacerbates mutant α-synuclein-induced 

toxicity in an UPR independent fashion. In addition, other cellular stress pathways 

were found to be un-affected in α-synuclein transgenic worms, too, as animals were 

not sensitive to oxidative or heat stress conditions (Figures 43 and 44). 

Taken together, α-synuclein A53T mutation, but not WT, confers cytotoxicity 

specifically in pdr-1(lg103) mu

gene doses of both mutant proteins. This suggests that pdr-1(lg103) can tolerate a 

certain threshold of aggregation-prone α-synuclein A53T mutation, but high cellular 

levels cause developmental defects and lethality. However, this toxicity is 

independent of ER, oxidative or heat stress pathways, and therefore is most likely 

mediated by a cytosolic mechanism.  
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4.4 PDR-1/Parkin Loss-Of-Function Vs. Gain-Of-Misfunction 

Mutations in the parkin gene are the most frequent cause of familial PD, and are

related to a very early-onset: before 40 years of age, average 26.1 years (Hattori and 

Mizuno, 2004). So far, about 100 various parkin mutations have been identified which 

seem to contribute to the clinical and pathological heterogeneity of the disease 

(Hedrich et al., 2004). In contrast to larger deletions, which result in complete loss of 

Parkin function, it has been proposed that missense mutations or small deletions are 

associated with a more pronounced phenotype, since patients exhibited earlier onset 

as well as expansion of the clinical features (Lohmann et al., 2003). Although it 

appears that most parkin mutations are recessive, rare heterozygous alleles have 

already been identified, suggesting dominant negative or toxic gain-of-misfunction 

mutations in some cases (Lohmann et al., 2003

 

). In contrast to the absence of LBs in 

most p

tes does not 

depen

2003; Pesah et al., 2004) or mouse (Goldberg 

arkin-proven cases, the brain of a human compound heterozygote carrying an 

in-frame deletion and a missense mutation with retained E3 ubiquitin ligase activity 

displayed LB pathology (Farrer et al., 2001). Moreover, there have been several 

recent reports of aggresome formation elicited by specific parkin mutations residing 

in the RING finger domains (Reviewed by Kahle and Haass, 2004). Thus, it would be 

very interesting to study the effects of different mutations (e.g. truncations and large 

deletions vs. specific missense mutations) on the molecular properties of Parkin in 

vivo, in order to shed light on whether different mutations indeed result in distinct 

pathological and clinical features. 

In contrast to the severeness of AR-JP in human patients, parkin-deficient 

animals showed only subtle phenotypes and no loss of dopaminergic neurons. 

Moreover, none of the proposed Parkin substrates was stabilized in parkin knock-out 

mice, implying that either the bona-fide substrates have not been identified yet, or 

that the protection/detoxification mechanism to which Parkin contribu

d on the degradation of toxic substrates. Alternatively, redundant pathways for 

the parkin-mediated ubiquitylation may exist or the loss of Parkin activity requires 

another insult, such as a toxic stimulus or cellular stressor to induce a PD-like 

syndrome (Reviewed by Kahle and Haass, 2004). In the present study, a set of four 

different C. elegans pdr-1 mutants (two loss-of-function alleles and two in-frame 

deletions) was characterized in both genetic and pharmacological analyses. Similar 

to complete loss of fly (Greene et al., 
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et al., 2003; Itier et al., 2003; Palacino et al., 2004; Von Coelln et al., 2004) parkin, 

ates the α-synuclein A53T conferred cytotoxicity 

(see F

simple knock-out mutants of the C. elegans ortholog pdr-1 are viable and not 

significant sensitive to various cellular stress conditions (see Figures 32, 37, 43 and 

44). However, homozygous pdr-1(lg103) in-frame deletion mutants are particularly 

sensitive to ER-derived and cytosolic protein folding stress, resulting in severe 

developmental defects and lethality (see Figures 32 and 37). Although the second in-

frame deletion mutant pdr-1(tm598) did not show increased protein stress sensitivity 

per se, it at least served as a sensitive allelic background for pdr-1(lg103). pdr-

1(lg103)/pdr-1(tm598) compound heterozygotes showed an augmented susceptibility 

to tunicamycin treatment and α-synuclein A53T expression, compared to the 

respective heterozygous alleles or to other transheterozygous combinations with pdr-

1 loss-of-function alleles (see Figure 32 and Table 4). The differences between pdr-1 

in-frame deletions and loss-of-function mutants become clearer by data from genetic 

interactions of pdr-1 and ire-1 mutants. Both pdr-1 in-frame deletion alleles 

exacerbated the phenotype of ire-1 loss-of-function mutants, while pdr-1 loss-of-

function had no effect on the brood size of ire-1 mutants (see Table 3). Nevertheless, 

the allele pdr-1(lg103) exhibited a stronger phenotype than pdr-1(tm598). These data 

suggest that in-frame deletions of pdr-1 result in PDR-1 misfunction, in contrast to 

complete loss-of-function alleles that were inconspicuous compared to wild type. The 

observation that the increased transcription of pdr-1(lg103) in the atf-6(ok551) 

hypermorphic background exacerb

igure 38) even at low temperatures supports a gain-of-misfunction model for 

the genetics of pdr-1(lg103).  

Both in-frame deletions pdr-1(lg103) and pdr-1(tm598) lack the UPD and the 

first RING domain (see Figure 25). The resulting truncated proteins PDR-1(∆aa24-

247), and perhaps also PDR-1(∆aa140-263) still bind specific E2 enzymes and CHN-

1, like wild type PDR-1 (compare Figures 20 to 29 and 23 to 30). However, the UBL 

domain is missing in pdr-1(lg103), whereas it remained intact in pdr-1(tm598) (see 

Figure 25). Mutant PDR-1(∆aa24-247) retained the capability to associate with its co-

enzymes of the ubiquitylation machinery, but did no longer bind to the proteasomal 

subunit RPT-2 (see Figure 29B). Interestingly, it was recently shown that the UBL 

domain regulates the stability of the Parkin (Finney et al., 2003). In line with these 

data, higher amounts of the corresponding truncated PDR-1(∆aa24-247) protein from 
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recombinant expression in SF9 insect cells compared to full-length PDR-1 was 

obtained. Therefore, an increased intracellular concentration of PDR-1(∆aa24-247) 

may confer a stronger phenotype than mutant PDR-1(∆aa140-263), encoded by pdr-

1(tm598). In contrast to complete elimination of the UBL domain, some pathogenic 

missense mutations located within the UBL decrease the stability of Parkin protein, 

leading to its rapid degradation (Henn et al., 2005). Although various pathogenic C-

terminal mutations of Parkin were found to be inactivated by misfolding and 

aggregation, N-terminal deletions of, or pathogenic missense mutations within the 

UBL domain, however, did not affect solubility (Henn et al., 2005; Winklhofer et al., 

2003). Nevertheless, it has been reported that interfering with the UBL domain, can 

also impair Parkin E3 ubiquitin ligase activity (Corti et al., 2003; Huynh et al., 2003). 

Moreover, expression of a smaller Parkin variant (∆aa1-79) that lacks the UBL 

domain has been observed to reduce overall amount of ubiquitylated proteins, 

compared to cells expressing of full-length Parkin (Henn et al., 2005).  

This suggests that such in-frame deletions of pdr-1 (and possibly other PD-

related parkin variants with similar capacities) may confer a toxic misfunction by their 

residual binding activity and/or altered regulation since essential components of the 

protein folding/degradation machinery may be sequestered and inactivated by this 

mutant. Such a blockade of the ubiquitylation and probably of the chaperone-

mediated refolding machinery renders cells sensitive towards proteotoxic stress, 

whereas mutations that eliminate or reduce expression do not confer such an effect 

(for a model see Figure 46).  

The co-chaperone and E4 enzyme CHIP provides the physical and functional 

link between chaperones and protein degradation machinery (Murata et al., 2003). 

Recently, it was shown that CHN-1 is expressed in the cytosol and binds to 

chaperones (Hoppe et al., 2004), similar to its human ortholog CHIP, which is 

involved in the chaperone/parkin mediated quality control of the ER protein Pael-R 

(Imai et al., 2002). Thus, CHN-1 might assist in regulating the cellular balance 

between folding and degradation and its titration could lead to a dramatic change in 

the folding capacity of the cytosol. Moreover, chaperones and co-chaperones have 

already been implicated as modulators of disease pathology in the 

neurodegenerative disorders by their ability to modify protein aggregates (Reviewed 

by Muchowski and Wacker, 2005; Slavotinek and Biesecker, 2001).  
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Figure 46. Working Model of pdr-1(lg103) Exerted Hypersensitivity Towards Proteotoxic Stress. 

Left: Wild type animals are able to deal with ER-derived and/or cytosolic protein stress conditions 
through efficient detoxification and proper clearance. Right: pdr-1(lg103) gain-of-misfunction mutants 
are hypersensitive to proteotoxic stress, resulting in developmental arrest and lethality. The more 
stable mutant protein PDR-1(∆aa24-247) most likely sequesters important components of the cellular 
protein folding and ubiquitylation machinery. This impairs detoxification and decreases clearance of 
misfolded proteins, and thereby, promotes their accumulation and aggregation (Abbreviations and 
colour coding as described in Figure 3). 

 

Taken together, these results suggest that studying gain-of-misfunction or 

dominant negative parkin alleles may provide further insights into the biological role 

of Parkin in addition to existing knock-out models. 
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4.5 

Morphologically v  animals 

Figure 36)  

UPR (Kauf

is the tiss  

evidenc

 

related in r, death of 

dopaminer

the brain where levels of unfolded proteins exceed 

proteasomal degradation capacity and/or when the ubiquitin/proteasome pathway is 

impaired (Chung et al., 2001a) protein aggregates are formed. When the UPR cannot 

be activated sufficiently to restore ER functioning, a self-aggravating process is 

initiated. Protein aggregates are formed, which block proteasomal function in the 

cytosol, and proteasomal inactivation then aggravates ER stress. The connection 

between proteotoxic stress in the ER and the cytosol is compatible with an important 

role of PDR-1/Parkin in both pathways. PDR-1/Parkin was shown to physically 

associate and cooperate with E2 enzymes of the cytosolic stress response as well as 

mental role of PDR-1/Parkin in the UPR and the 

cytosolic stress response might be the ancient and conserved function from 

invertebrates to vertebrates. This might be

abnormal protein aggregation, mitochondrial damage and the consequent oxidative 

The Biological Role of PDR-1/Parkin 

isible damage of dopaminergic neurons in pdr-(lg103)

treated with tunicamycin or expressing mutant α-synuclein were not observed (see 

. Instead, the early lethality which is detrimental for the animals is

consistent with death by intestinal degeneration, as seen in mutants with an impaired 

man et al., 2002). Unlike in vertebrates, in C. elegans it is the intestine that 

ue most vulnerable for protein stress (Kaufman et al., 2002). There is

e from other disease models that, despite different organs being affected by 

the mutant phenotype, the underlying mechanism and its biochemistry is highly

C. elegans and human cells (Eimer et al., 2003). Howeve

gic neurons in pdr-1(lg103) mutants in later stages or probably aged 

worms cannot be excluded. Nevertheless, one can speculate that the underlying 

molecular mechanisms that are responsible for toxicity in these different tissues 

might be highly conserved and derived from a common origin of ER dysfunction.  

In pathological states of 

those involved in the ERAD pathway (see Figures 20 and 23) (Imai et al., 2002; 

Shimura et al., 2001; Zhang et al., 2000). This is further substantiated by the severe 

developmental defects and early larval lethality of pdr-1(lg103) mutants observed in 

response to both ER dysfunction and cytosolic protein stress. The results presented 

in this study suggest that a funda

 specialized during evolution to maintain 

dopaminergic neuronal integrity.  

 Despite defects in protein folding/degradation pathways and the consequent 
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stress have also been implicated in the pathophysiology of PD. Although, many 

signalling from the ER but

 

reciprocal influences between these two essential cellular functions are known, 

primary events have to be dissected from secondary downstream effects to better 

understand the underlying mechanism that provoke neuronal cell loss. Mitochondrial 

impairment and oxidative damage have been detected in PD patients, and 

mitochondrial deficiencies were constantly observed in parkin knock-out animals. 

However, pdr-1 mutants and animals overexpressing α-synuclein are not sensitive to 

oxidative stress. Although mitochondrial damage or dysfunction in those worms was 

not analyzed in detail using functional assays or vital dyes, resistance to paraquat 

treatment suggested that mitochondria are unaffected.  

 Several reports already suggested communication between ER and 

mitochondria at least under apoptotic conditions via Ca2+ (Hacki et al., 2000; 

Nakamura et al., 2000). However, a growing body of evidence suggests that 

mitochondrial dysfunction might be a downstream event of proteotoxic stress and 

 at least is involved in the propagation of cellular injury that 

ultimately leads to neuropathology (Reviewed by Paschen, 2003). It was already 

shown that the UPR up-regulates cellular functions that are beyond the scope of 

protein folding, secretion or degradation (Shen et al., 2004). A recent report 

demonstrated a novel signalling pathway by transmission of cell stress from the ER 

to mitochondria (Hori et al., 2002). Suppression of cytosolic protein synthesis under 

ER stress had a complex effect to sustain mitochondrial properties, while impairment 

of the UPR can produce mitochondrial dysfunction. If severe ER stress is sustained 

and not alleviated, prolonged activation of the UPR induces mitochondrial stress and 

causes subsequent accumulation of ROS, in the end resulting in cell death (Haynes 

et al., 2004). Furthermore, inhibition of proteasomal function decreases mitochondrial 

protein synthesis and activity, and increases the production of reactive oxygen 

species (Sullivan et al., 2004). 

This study supports the model for a widespread involvement of ER dysfunction 

and the UPR, as well as of cytosolic protein misfolding/aggregation in the 

pathophysiology of PD and suggests that PDR-1/Parkin functions as a central 

regulator of both proteotoxic stress pathways. 
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4.6 Outlook 

The present study provides a promising tool to investigate the biological role(s) of 

Parkin and the pathophysiology of PD in vivo on a molecular and cellular level. Given 

the simplicity and genetic tractability of C. elegans, this model system might now be 

used to uncover important aspect of PDR-1/Parkin function by a combination of 

biochemical, genetic and pharmacological methods. 

 The established model can now be used to dissect the role of PDR-1/Parkin in 

and its regulation by the UPR with the genetic tools available. Since many C. elegans 

mutants deficient in known UPR/ERAD regulators or targets have been described, 

further genetic interactions can be studied directly. Double mutants of pdr-1(lg103) 

h x

 BR3205). Such experimental approaches would 

certainly reveal new genetic in

Since knock-down of pdr-1(lg103) by RNAi could not sufficiently suppress the 

ypersensitivity towards proteotoxic stress conditions, an alternative strategy was 

in vivo the toxic gain-of-misfunction mediated by pdr-

wit bp-1 and atf-6 loss-of-function mutants might help to further restrict PDR-

1/Parkin function to either PEK-1 and/or ATF-6 signalling. Additionally, double 

mutants of pdr-1(lg103) with mutants deficient in downstream genes of the UPR, like 

ERAD components and chaperones, or later induced mediators of the cell death 

machinery, might help to identify the level of genetic interaction between IRE-1 and 

PDR-1/Parkin. Moreover, the system can be used to identify novel important genetic 

modifiers of toxicity and potential therapeutic drug targets. The severe phenotype of 

pdr-1(lg103) mutants expressing α-synuclein A53T and its temperature- and dose-

dependency is perfectly suited to explore specific enhancers as well as suppressors 

of the PDR-1 ER-stress/α-synuclein induced proteotoxicity. Such screens could be 

rapidly performed in a genome-wide approach, using RNAi-feeding libraries in order 

to knock-down each single C. elegans gene in combination with tunicamycin 

treatment or α-synuclein overexpression in the pdr-1(lg103) mutant background. For 

this purpose, an appropriate strain has already been constructed into which the 

RNAi-hypersensitive rrf-3(pk1426) (Simmer et al., 2002) mutation has been 

introduced by crossing (strain

teractions and might help to gain more insights into the 

affected cellular stress pathways. In addition, this might reveal further interactions 

and feedback-mechanism between the UPR and the cytosolic stress response that 

are important to completely understand the central role of PDR-1/Parkin. 

 

h

chosen in order to confirm 
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1(lg103). Some attempts to ectopically express the corresponding in-frame deleted 

ed strains (BR2789-2792 and 

parkin

 

ORF in pdr-1 loss-of-function background, this time in order to induce proteotoxic 

stress hypersensitivity, have been made. However, micro-injection of the pdr-1(lg103) 

mutant genomic ORF (construct pBY1569) into pdr-1(lg101) mutant background did 

not result in increased hypersensitivity against tunicamycin treatment or ectopic 

expression of mutant α-synuclein in the generat

BR3236-3239, respectively). Nevertheless, this is most likely caused by mosaic 

expression along with too low cellular levels of the corresponding protein PDR-

1(∆aa24-247), as judged by the expression of the co-injection marker sel-12::gfp. To 

circumvent these experimental problems, a follow-up strategy was already initiated 

by generation of the constructs pBY1792 and pBY1793 (pdr-1 wild type and pdr-

1(lg103), respectively) which can be used to transform C. elegans by micro-particle 

bombardment. This method should result in the isolation of strains carrying 

genomically integrated copies of the transgenes, thus preventing mosaic expression 

and ensuring sufficient cellular protein levels. Alternatively, this could also be done 

using a GFP-tagged mutant PDR-1 variant, in order to be able to compare 

intracellular localization of WT and mutant protein in vivo. 

In addition, the respective pdr-1 wild type and mutant cDNAs have been 

cloned into appropriate cell culture vectors in order to test hypersensitivity/resistance 

towards proteotoxic stress conditions. Since all pdr-1 variants are expressed in 

human cells with the expected molecular weights, now, the stability of the different 

mutant PDR-1 proteins should be studied. Furthermore, the expressed proteins 

should also be used to address the question of residual E3 ligase activity of pdr-1 in-

frame deletion mutants.  

In analogy, this nematode model can also be used for rapid transgenic 

analyses of human  variants in vivo. Wild type parkin and different AR-JP 

causing mutations can be introduced into different pdr-1 mutant backgrounds to 

study the function of human Parkin and how mutations interfere with this. Differences 

in specific parkin mutations concerning their functional consequence (loss-of-function 

or toxic gain-of-function) as well as their ability to form aggresomes have already 

been identified. This model might help to explore the pathogenic mechanisms

conferred by specific parkin mutations and their contribution to the pathophysiology 

of AR-JP. In addition, this might also help to understand the mechanisms of Parkin-

mediated detoxification and its function in LB formation.  
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 In order to elucidate the mechanism of PDR-1(∆aa24-247)/α-synuclein A53T 

mediated toxicity several experiments can be performed using the presented model. 

To analyze protein levels and folding of α-synuclein variant in pdr-1 mutant 

background, first preliminary biochemical analyses have already been performed. 

However, total amounts of α-synuclein proteins variants have not been found altered 

in pdr-1(lg103) mutant background, compared to C. elegans wild type background. 

Noticeably, separation of detergent-soluble (supernatant) and -insoluble (pellet) 

protein fractions showed lower levels of only α-synuclein A53T, but not WT, in the 

pellet fraction of pdr-1(lg103) mutants compared to N2 wild type background (Figure 

47).  
 

Figure 47. Analysis of α-synuclein Protein 
Expressed in pdr-1(lg103) Mutants.  

Shown are Western blots of total worm lysates 
separated by centrifugation into detergent-soluble 
(supernatant) and -insoluble (pellet) fractions. Pellet 
fractions were solubilized using urea containing 
buffer. Western blots were stained with α-synuclein 
antibody 15G7, and GFP antibody as a loading 
control. The different
α-synuclein WT an

 molecular weights observed for 
d A53T variants, arise from 

Althou

different cloning strategies. Although lower protein 
levels for α-synuclein A53T in the pellet fraction of 
pdr-1(lg103) mutants can be seen, a coincident 
increase of α-synuclein A53T protein in the 
supernatant fraction cannot be determined due to 
protein overload. 
 

  

 

 

gh these results have to be considered preliminary and thus have to be 

verified, they support the model of a Parkin-mediated detoxification mechanism 

through cytoprotective aggresome/LB formation. Additionally, these results are 

complete in line with the suggested neurotoxic role of specifically soluble α-synuclein 

species. However, aggregate formation of α-synuclein in pdr-1 mutant background 

has to be studied in vivo, too. In order to characterize the nature and localization of 

potential inclusions on a sub-cellular and molecular level, immuno-histological and 

biochemical studies should be performed. In addition, electron microscopy should be 

considered, to ultimately characterize aggregates. 
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A variety of other remaining question should be addressed using the presented 

model. Does co-expression of specific chaperones (e.g. Hsp70) suppress 

hypersensitivity of pdr-1(lg103) mutants towards proteotoxic stress? Are pdr-1(lg103) 

mutants equally hypersensitive to expression of other known substrates of human 

Parkin? Are pdr-1 mutants or animals ectopically expressing α-synuclein affected by 

specific PD-mimetics and inhibitors of protein turnover? Are mitochondria affected in 

pdr-1 mutants or in animals overexpressing α-synuclein, and if so, due to a primary 

or a secondary event? Are the interaction partners of PDR-1, identified from the 

yeast-two hybrid screen, physiologically relevant, and if so, what are their functions? 

 Although many questions are beyond the scope of this study and remain un-

answered, the compelling model presented here will certainly help to shed light onto 

 

 

the molecular and cellular pathways involved into the pathophysiology of PD. 
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5 Experimental Procedures 
 
5.1 Microbiology Techniques  

All E. coli and S. cerevisiae strains used in this study are listed in Tables 5 and 6, 

respectively (see Materials Section). General methods were used for handling, 

cultivation, storage, etc. of E. coli and S. cerevisiae as described (Ausubel, 1987; 

Sambrook et al., 1989) and according to the manufacturer’s instructions. Preparation 

and transformation of CaCl2- or electro-competent E. coli cells, was done following 

standard procedures as described (Maniatis et al., 1982; Sambrook et al., 1989). 

Preparation and transformation of competent S. cerevisiae cells by PEG/LiAc 

methods was performed as described (Gietz and Woods, 2002; Sherman, 1991). 

 
 

5.2 DNA Techniques 

Sequencing of DNA was performed by Toplab (Martinsried) or GATC (Konstanz). 

DNA and RNA concentrations were measured by photometry or estimated from an 

appropriate gel. Agarose-gel electrophoresis was performed using standard 

methods. Restriction digestion, dephosphorylation, and ligation of DNA were 

performed following standard cloning methods (Maniatis et al., 1982; Sambrook et 

al., 1989). Polymerase chain reaction (PCR) was performed using Taq- or Pfu-

polymerase, or a mixture of both, according to the manufacturer’s instructions. Single 

parameters were adjusted for each separate reaction. All vectors used and all 

constructs generated in this study are listed in Tables 11 and 12, respectively (see 

Materials Section). All primers used in this study are listed in Table 13 (see Materials 

Section). 

 

5.2.1 DNA Preparation and Purification 

Extraction and purification of DNA fragments from agarose-gels or enzymatic 

reactions was done using extraction spin-columns following instructions of the 

manufacturer (QIAGEN, Hilden). Plasmid and cosmid preparation from E. coli was 

performed by alkaline lysis method after a modified protocol (Birnboim and Doly, 
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1979) and purified using DNA prep-columns according to the manufacturer’s 

om Phages 

on of Genomic DNA from C. elegans 

our to five plates (Ø 9 cm) with worms were washed 2-3 times with M9 buffer, 

frozen in liquid nitrogen and stored at -80° C until the DNA was prepared. Frozen 

lysisbuffer (0.2M NaCl; 0.1M Tris-HCl 

instructions (QIAGEN, Hilden).  

 

5.2.2 Plasmid Isolation from S. cerevisiae 

Cells from 3ml over night cultures were harvested and disrupted by adding 200µl 

yeast-miniprep-solution (2% TritonX-100; 1% SDS; 100mM NaCl; 10mM Tris/HCl 

pH8.0; 1mM EDTA) and an equal volume of glass beads (200-300 µm diameter) and 

subsequent vortexing for 1 min. DNA was extracted from the hydrous phase after 

addition of 200µl Phenol::CHCl3::Isoamyl (25:24:1), 2 min vortexing and 

centrifugation (5 min, 14.000 rpm). 1µl of extracted DNA was used for transformation 

of E. coli by electroporation. 

 

5.2.3 Plasmid Excision fr

In vivo excision of plasmids from C. elegans cDNA clones, supplied as λ ZAPΙΙ 

phages, was carried out using the following protocol: 200µl E. coli XL-1 blue MRF’ 

(grown o/n at 30° C in LB medium + 0.2% maltose + 10mM MgSO4; OD600 = 1) were 

co-infected with 2µl phages and 2µl helper phages for 15 min at 37° C. 3 ml LB 

medium was added for further incubation at 37° C for 2-3 h. Cells were lysed at 65-

70° C for 20 min, and pelleted by centrifugation (1000g, 15 min). 10µl of supernatant 

(stored at 4° C) was mixed with 100µl SOLR (OD600 = 1), incubated for 15 min at 37° 

C, and spread on LB plates containing ampicillin o/n at 37° C.  

 

5.2.4 Preparati

F

worm pellets worms were lysed in 500 µl of 

pH8.5; 50mM EDTA; 0.5% SDS; + 10µg proteinase K) for 30 min at 65° C. 5 µg 

RNAse A were added and slurry was incubated for further 30 min at 37° C. Genomic 

DNA was prepared using standard phenol/chloroform extraction methods. 
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5.3 RNA Techniques 

5.3.1 In vitro Transcription  

To produce dsRNA in vitro transcription was performed using T7 Megascript Kit 

ion). Reactions were carried out on 

.3.2 Preparation of RNA from C. elegans  

 worms were washed 2-3 times with M9 

 

 wor

anufacturer’s instructions (QIAGEN). 

 

abditis.  

according to the manufacturer’s instructions (Amb

1µg DNA template (for antisense RNA: PCR-product of primer RB1152/T7 on NcoI-

digested pBY1248; for sense RNA: PCR-product of primer T7/RB1153 on SalI-

digested pBY1248). After removal of the DNA template, RNA was precipitated using 

LiCl and suspended in H20. Sense and antisense RNA were mixed at same 

amounts, heated for 10 min at 70°C, and allowed to anneal for 30 min at 37°C. 

dsRNA was used for RNAi by micro-injection and soaking methods. 

 

5

Four to five plates (Ø 9 cm) with well fed

buffer, frozen in liquid nitrogen and stored at -80° C until the RNA was prepared. 

Frozen worm pellets worms were transferred into a sterile mortar and homogenized 

with a sterile pestle. 600 µl of lysisbuffer were added to the homogenized ms and 

the resulting extract was transferred to a cold 1.5 ml Eppendorf tube. The extract was 

drawn five to seven times into a 2 ml syringe carrying a needle with 0.9 mm 

diameter. To remove the worm debris the extract was centrifuged at 16000 g for ten 

minutes at 4° C. The supernatant was transferred to a new cold 1.5 ml Eppendorf 

tube and mixed with an equal volume of 70% ethanol. The RNA was purified with the 

RNeasy Mini Kit according to the m

5.3.3 RT-PCR 

RT-PCR was used to clone full-length cDNAs of various C. elegans genes. First 

strand cDNA synthesis was carried out using oligo-dT primer and reverse 

transcriptase with total RNA samples of the respective strains. All cDNAs were 

isolated by PCR on first strand cDNA, using combinations of oligo-dT and gene 

specific primers. Designed species-specific oligonucleotides were then used to 

amplify the respective pdr-1 ORFs from related species of the genus Caenorh
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5.3.4 Northern Blot Analyses 

er lane on 1.0% agarose RNA gels and blots onto 

Hybond N+ membranes were performed following standard procedures (Sambrook 

r scanner. The 

tensity of bands was determined using ImageQuant software.  

dried under 

acuum. Western blot were performed according to standard methods, using PVDF 

membranes. Proteins were detected by ponceau S staining methods and or by 

5 µg of total RNA was loaded p

et al., 1989). DNA fragments (25 ng) were labelled with α32P dCTP (~50 µCi) using 

the Megaprime labelling kit according to the manufacturer’s instructions (Amersham). 

None-incorporated radioactive nucleotides were removed using sephadex columns 

(Boehringer). ama-1 and act-1 specific probes were used as controls to adjust for 

equal loading (Johnstone and Barry, 1996; Shen et al., 2001). Blots were hybridized 

and washed at 65° C according to standard procedures (Church and Gilbert, 1984). 

For quantification of relative transcript levels, blots were exposed on a phosphor 

imager screen (Molecular Dynamics) and read with a phospho

in

 

 

5.4 Protein Techniques 

All antibodies used in this study are listed in Table 10 (see Materials Section). 

Following general protein biochemistry methods were done as described (Ausubel, 

1987; Sambrook et al., 1989) and according to the manufacturer’s instructions. 

Protein concentrations were determined by the Bradford method according to 

manufacturer’s instructions (BIO-RAD Laboratories GmbH). Proteins were separated 

by sodium-dodecyl-sulfate (SDS) or Tricin polyacrylamid-gel electrophoresis (PAGE), 

depending on the expected size of the corresponding protein. Proteins from gels 

were visualized by standard coomassie staining methods. Gels were 

v

immunoblotting.  

 

5.4.1 Yeast-Two-Hybrid Screen 

Protein interaction studies were performed using the MATCHMAKER GAL4 Two-

Hybrid System 3 according to the manufacturer’s instructions (Clontech). As a bait, 

full-length PDR-1 was fused to the GAL4 DNA-binding domain (pGBKT7) and 
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transformed into yeast AH109. C. elegans GAL4 activation domain libraries (gift of 

Robert Barstead) were used as prey. Protein interaction studies were carried out 

 pdr-1, pdr-

(lg103), ubc-2, ubc-6, ubc-7, ubc-14, ubc-15, ubc-18, chn-1, rpt-2, cpl-1, cpr-4, cpr-

, F57F5.1, H22K11.1, T12E12.1 and K08E3.8 were cloned into vectors pGBKT7 

ns in both combinations. Correct expression of the 

sion proteins, ubc-2 and ubc-18 ORFs were cloned into the 

GSTparallel-3 (Sheffield et al., 1999) vector (pBY1457 and pBY1456, respectively). 

Recombinant GST::CHN-1 was expressed from a pGEX4T1 (Pharmacia) based 

under high stringency conditions using selective plates lacking LEU (leucine), TRP 

(tryptophan), HIS (histidine), and ADE (adenine), and supplemented with 1mM 3-

aminotriazol (3-AT) and 20 µg/ml x-α-Gal (5-Bromo-4-chloro-3-indoxyl-α-D-

galactopyranoside), according to the manufacturer’s instructions. Transformation 

efficiency was monitored by growth of different dilutions on plates lacking the aa 

required for plasmid selection, only. To evaluate identified clones, plasmids were 

isolated from yeast. These were used to re-transform yeast together with either the 

bait construct or the empty vector control. To confirm interactions 3µl yeast cells 

(OD600 = 0.25) were retested by spotting onto appropriate selective plates again. 

True positive clones were subjected to sequencing and identified by blast search 

analyses. For further yeast-two-hybrid analyses, full-length cDNAs of

1

6

and pGADT7, to test interactio

constructs were monitored by protein extraction, SDS-PAGE and western blotting 

with anti-myc and anti-HA antibodies. 

 

5.4.2 Expression and Purification of Proteins from E. coli 

To generate recombinant 6xHIS-tagged PDR-1 protein, full-length cDNA was cloned 

into vector pET28b(+) (Novagen), tagging at either (N-terminus: pBY1230; C-

terminus: pBY1229), or both termini (pBY1118). pET21a-UbcH7 (gift of Martin 

Scheffner) was used to produce human E2 enzyme UbcH7 in E. coli. For in vitro 

ubiquitylation assays chn-1 ORF was cloned into vector pET21a(+) (Novagen).To 

generate GST-fu

p

construct (Hoppe et al., 2004). 
 After induction of 500 ml BL21(pRIL) culture with 1mM IPTG for 4h at 37° C, 

cells were frozen and lysed in 40 ml lysis-buffer [10% glycerin; 500mM NaCl; 10mM 

Tris/HCl, pH8.0; + complete protease inhibitor (Boehringer)], sonified, and 
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centrifuged (16.000 rpm, 4° C, 20 min). Some proteins could be purified under native 

conditions from the supernatant. For purification of GST-fusion proteins (GST::UBC-2 

/ GST::UBC-18 / GST::CHN-1 / GST-myc::PDR-1) cleared lysates were allowed to 

bind to 500 µg of glutathione-Sepharose beads (Pharmacia). After extensive washing 

in lysis buffer + 0.1% Triton X-100, GST-fusion proteins were eluted with 10mM 

glutathione. 

 For purification of aggregated proteins from inclusion bodies under denaturing 

conditions, the pellet fraction was resuspended in buffer A [6M GuHCl; 100mM 

NaH2PO4; 10mM Tris/HCl; pH8.0], and incubated 1 h at room temperature. The 

supernatant was incubated 2 h at room temperature with pre-equilibrated (3x wash 

with buffer A + 5mM imidazole + 100 mM NaCl) Ni2+ NTA-Agarose (QIAGEN). After 

extensive washing procedure (each wash with 10 ml for 10 min, separated by 

centrifugation for 3 min at 750g: 2x buffer A + 5mM imidazole + 100 mM NaCl; 3x 

buffer B [8M urea; 100mM NaH2PO4; 10mM Tris/HCl; 100mM NaCl; pH8.0]; 2x buffer 

C (buffer B + 10 mM imidazole); 2x buffer D (buffer B + 20 mM imidazole); 1x buffer 

F (buffer B + 30 mM imidazole)), matrix was loaded in gravitation columns (Biorad) 

and bound proteins were eluted with 10 ml buffer E (buffer B + 500 mM imidazole). 

Single fractions taken contained protein samples of estimated 99% purity, as judged 

om coomassie stained gels. Prior to further analyses, some aliquots had to be 

dialyzed for 30 min against buffer B, using 0.0025 µm filters (Millipore). 

uffer (8 M urea; 5% SDS; 200mM Tris, pH6.8; 1mM 

fr

 

5.4.3 Preparation of Yeast Protein Extracts 

To prepare protein extracts for immunoblotting, S. cerevisiae was grown in the 

respective drop-out media to an OD600 of 2-5 and harvested by centrifugation. The 

cell pellet was resuspended in 1 ml cold deionised water and after addition of 150µl 

1.85M NaOH; 7.5% β-ME, lysed on ice for 15 min. To precipitate proteins 150µl 55% 

trichloracetic acid (TCA) were added and incubated on ice for 10 min. Precipitated 

proteins were pelleted by centrifugation (10 min; 14.000 rpm; 4° C), and pellet was 

resuspended in 50-100µl HU-b

EDTA; BPB; 1.5% DTT). Proteins were analyzed by SDS-PAGE, western blotting 

and detected using anti-myc or anti-HA antibodies. 
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5.4.4 Expression and Purification of Proteins from SF9 Cells 

pdr-1 and pdr-1(lg103) ORFs were cloned into a modified Baculovirus vector 

pAcUW51 (Pharmingen). The resulting constructs (pBY1898 and pBY1644, 

respectively) were co-transformed along with linearized BaculoGold DNA into SF9 

insect cells to generate recombinant viruses, according to the instruction manual of 

pellet fraction 

ere extracted using 8 M Urea buffer (HU-buffer see protein preparation from S. 

cerevisiae).  

the Baculo Gold System (Pharmingen). For protein production, 20 ml of infected SF9 

cells (3x106 cells/ml) were grown for 2 days. Cells were lysed in twice the volume of 

the cell pellet in lysis-buffer [10mM Tris pH 8; 10mM DTT or 10mM β-ME + complete 

protease inhibitors (Boehringer)] using a dounce homogenizer.  

 

5.4.5 Protein Extraction from C. elegans 

For quick analyses, whole animal lysates were prepared by resuspending washed 

worms in five volumes of SDS-PAGE sample buffer followed by 5 min boiling (to 

enhance solubilization of worms, glass-beads were added, and slurry was vortexed). 

To prepare native proteins from C. elegans, washed worm pellets were resuspended 

in native lysis buffer and cracked open by the liquid nitrogen grinding method 

followed by sonification. The soluble SDS extracted fraction was separated by 

centrifugation at 55.000 rpm for 1h at 4° C. Proteins from the insoluble 

w

 

5.4.6 In vitro Translation 

pdr-1 and pdr-1(lg103) ORFs were cloned into vector pCite-4a(+) (Novagen) 

(pBY1494 and pBY1645, respectively) to produce radioactively labelled proteins 

PDR-1 and PDR-1(∆aa24-247). In vitro transcription and translation was performed 

using 35S methionine/cysteine together with the rabbit TNT Coupled Reticulocyte 

Lysate System according to the manufacturer’s instructions (Promega). Successful in 

vitro translation was monitored by SDS-PAGE and autoradiography. 
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5.4.7 GST-Pull Down 

Lysates of radioactively labelled PDR-1 full-length and PDR-1(∆aa24-247) mutant 

version were incubated over night at 4°C on glutathione-Sepharose beads 

(Amersham) loaded with the respective GST-fusion proteins and washed at least five 

times in lysis-buffer + 0.1% Triton X-100 and 150 mM NaCl. Reactions were 

separated by SDS-PAGE and visualized by coomassie blue staining and 

autoradiography. 

 

5.4.8 In vitro Ubiquitylation 

 Purified rabbit E1 

and CHN-1 crude E. coli cell extracts 

 EP012277-KLH-MBS (aa 1-15: MSDEISILIQDRKTG); animal codes: 

A1109 (antibody RB12) and SA1110 (antibody RB13)] and immunization DE01649 

[antigen code: EP012278-KLH-MBS (aa 260-273: QTSYSEYQRKATER); animal 

) und SA1112 (antibody RB15). Sera were tested after 

Reactions were done as previously described (Koegl et al., 1999).

(Affiniti), purified GST-UBC-2 as well as UbcH7 

were used for self-ubiquitylation reactions of purified GST::myc::PDR-1. Reactions 

were separated by SDS-PAGE followed by western blotting using 9E10 anti-myc 

antibody. 

 

5.4.9 Production of Antiserum 

To generate PDR-1 specific antibodies, two rabbits each were immunized by 

Eurogentec with two different synthetic peptides as follows. Immunization DE01648 

[antigen code

S

code: SA1111 (antibody RB14

each bleeding in western blots on purified recombinant PDR-1 protein, or on whole 

cell lysates from SF9 cells or C. elegans. Affinity and specificity of the sera increased 

during ongoing immunizations. Using antibodies in 1/500 dilution 10-100ng of purified 

recombinant protein was the lowest concentration detectable on western blots with 

any of the four antibodies, as judged by distinct dilutions. 
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5.4.10 Affinity Purification of Antibodies 

rn blots. 

 

Brenner, 1974; Wood, 1988). Petri dishes with the diameters 

.5cm, 5cm and 9cm were used in this work. Animals were kept in air permeable 

basic culture methods (handling of C. 

iously described (Lewis and Fleming, 

 in Table 9 (see Materials 

ection). L4 hermaphrodites were mated with males at a ratio of 1:3 on small NGM 

gar plates. Worms were transferred to a fresh plate every 24h for four consecutive 

days, and finally removed. Progeny laid within the first 24 hours was discarded, due 

to high percentage of self progeny vs. cross progeny. The success of the crosses 

Affinity purification of antibodies was performed as described (Burke et al., 1982). 

About 100µg recombinant purified PDR-1 protein was loaded on a SDS-PAGE gel, 

western blotted and visualized by ponceau S staining. The identified band was cut 

out and incubated in 500µl sera. Antibodies were eluted from the nitrocellulose 

membrane after several washes by pH. After neutralization, antibodies were used 

undiluted on weste

 

5.5 C. elegans Methods  

5.5.1 Breeding of C. elegans 

All strains used in this study are listed in Tables 7, 8 and 9 (see Materials Section). 

The animals were maintained on NGM plates seeded with E. coli OP50 like 

previously described (

3

cardboard boxes at 15, 20 or 25°C. The 

elegans, freezing, etc.) were done like prev

1995; Stiernagel, 1999).  

 For decontamination or synchronization of C. elegans cultures, worms were 

subjected to alkaline hypochlorite treatment. Synchronized L1 larvae were spotted 

onto 9 cm plates seeded with OP50 and allowed to grow for 6 hours, 18h, 30h, 42h 

and 54h for L1, L2, L3, L4 and young adult stages, respectively. Worms were 

inspected visually before harvesting to confirm that the worms were at the correct 

stage. 

 

5.5.2 Genetic Crosses 

All strains constructed by crossings in this work are listed

S

a
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was mo ed by the amount of males in the F1nitor  generation. About ten of the 

following F1 animals were singled and their progeny (F2) was further analyzed. The 

ication of mutants are listed in Table 13 (see Materials 

to PCR tubes containing 10µl Worm Lysis 

H 8.2; 2.5 mM MgCl2; 0.45% NP-40; 0.45% 

5mg/ml proteinase K] and frozen at -80°C for at least 

d by incubation at 65°C for one hour and at 95°C 

for 10 minutes, was used as a template for the following PCR. For the identification 

.5.4 

 libraries constructed by UV/TMP (Trimethylpsoralen) treatment (Gengyo-

ndo and Mitani, 2000; Yandell et al., 1994). Size and nature of the pdr-1 deletion 

alleles (deletion breakpoints / cosmid K08E3 coordinates): lg103:

double mutant of interest, identified by SW-PCR and/or visual markers, was isolated 

in the F2 generation, and confirmed from the F3 generation. 

 

5.5.3 Worm Lysis for Single Worm PCR (SW-PCR) 

All primer used for the identif

Section). Single worms were transferred in

Buffer [50mM KCl; 1mM Tris/HCl p

Tween 20; 0.01% gelatine) + 0.

30 minutes. 0.5 µl lysate, produce

of deletion mutants from populations or single worms two rounds of PCR were 

performed, using nested primer pairs. First PCR was done with external primer pairs 

and served as a template for the following PCR. Internal primer pairs were used for 

the identification of a deletion band, and for confirming homozygosity, used in 

combination with a primer annealing inside the deletion.  

 

5 Generation and Isolation of C. elegans pdr-1 Deletion Mutants 

pdr-1(lg101) and pdr-1(lg103) mutant strains analyzed in this work were obtained 

from Claudia Rudolph (EleGene). pdr-1(tm598) and pdr-1(tm395) mutants were 

provided by Shohei Mitani (NBP-Japan). All mutants were generated by screening of 

deletion

A

 1132 bp in-frame 

17/32018); lg101:deletion (30885/30886-320  1747 bp out of-frame deletion 

(31312/31313-33059/33060); tm598: 697 bp in-frame deletion (31365/31366-

32062/32063); tm395: 480 bp out of-frame deletion (31601/31602-32081/32082). 

Prior to analysis, the mutants lg103 and lg101 were backcrossed with N2 wild type 

animals 7-9 times, respectively, the alleles tm598 and tm395 at least twice.  
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5.5.5 Transformation of C. elegans 

Transgenic animals were constructed by micro-injection as previously described  

(Mello et al., 1991). All strains constructed by micro-injection in this work are listed in 

ed constructs are described in TTable 8 (see Materials Section). The inject ables 11 

and 12 (see Materials Section). 

Expression Analyses: The promoter gfp constructs, Ppdr-1::gfp long and short 

(pBY1013 and pBY1909), were generated by insertion of either 4.0 kb or 650 bp 

fragments, immediately 5’ of the predicted initiation ATG codon of pdr-1, and ligated 

in-frame with the gfp coding sequence into C. elegans expression vectors pPD95.75 

or pPD117.01, respectively (ftp://www.ciwemb.edu/pub/FireLabInfo/FireLabVectors/). 

The translational fusion construct, Ppdr-1::gfp::pdr-1 (pBY1794), was engineered by in-

frame ligation of an 8.5 kb fragment, containing the complete genomic region of pdr-

1, into the promoter construct Ppdr-1::gfp. 25ng/µl of the gfp reporter constructs were 

co-injected with 75ng/µl pRF4, a dominant rol-6 injection marker, into N2 wild type 

animals.  

Rescue of pdr-1(lg103): Rescue plasmids were constructed by subcloning a 13707 

bp EcoRV fragment of cosmid K08E3, containing the complete operon (pBY1500). 

The engineered rescuing construct (pBY1908) was generated by insertion of 4 bp 

(GTAC) into the Acc65I restriction site and re-ligation. This created a frame-shift in 

 

exon3 of K08E3.8 after bp 191 of the coding sequence, generating a protein 

truncated after aa 63. For rescue, 5ng/µl of cosmid K08E3 or 25ng/µl of the plasmids

pBY1500 or pBY1908 were co-injected with 25ng/µl pBY1153 (sel-12::gfp) into pdr-

1(lg103) mutant animals. The amount of DNA was adjusted to a total concentration 

of 100ng/µl using plasmid pBluescriptSK.  

Overexpression of pdr-1(lg103): In order to ectopically express the ORF of the toxic 

gain-of-misfunction allele pdr-1(lg103) in pdr-1 loss-of-function mutant background, 

the construct pBY1569 was generated. This plasmid contains the complete operon of 

the pdr-1(lg103) in-frame deletion mutant, similar to pBY1500. 25ng/µl of pBY1569 

were micro-injected together with 25ng/µl pBY1153 marker into pdr-1(lg101) 

mutants. As a follow-up strategy the inserts of pBY1500 and pBY1569 were cloned 

into pBY232, which contains an unc-119 rescuing cassette. The resulting constructs 

pBY1792 and pBY1793, respectively, can be used to transform C. elegans unc-119 
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mutants by micro-particle bombardment, in order to generate integrated transgenic 

lines. 

Overexpression of α-synuclein: To generate constructs for human α-synuclein 

overexpression the ORF of the respective variant (WT, A53T and A30P) was cloned 

under were under the control of the sel-12 promoter (pBY1158, pBY1159 and 

ontrol of the pBY1160, respectively) as well as under c dat-1 promoter (pBY1168, 

pBY1169 and pBY1170, respectively). 20ng/µl of each α-synuclein construct 

together with 35ng/µl of the corresponding co-injection marker, which drives 

expression of gfp from either the sel-12 or dat-1 promoter (pBY1153 and pBY266) 

was used. The total DNA concentration was adjusted was pBluescript vector to 

100ng/µl and injected into N2 wild type animals to generate stable transgenic lines. 

 

5.5.6 Immunohistochemistry 

Fixation: C. elegans were harvested from plates and washed five times in 1x PBS at 

RT. Last washing step was performed in H2O, and worms were placed on ice. An 

equal volume of 2x MRWB buffer (160mM KCl; 40mM NaCl; 14 mM Na2EDTA; 1mM 

spermidin HCl; 0.4mM spermin; 30mM Na PIPES, pH7.4; 0.2% β-ME; 50% 

methanol) was added. 10% fresh prepared paraformaldehyde solution was added to 

a final concentration of 1% (dry paraformaldehyde was dissolved in 2 drops NaOH 

and heated in 65° C water bath for 15 min). Samples were immediately mixed and 

frozen in liquid nitrogen. 2-3 times samples were defrosted under warm water and 

quick frozen again. After last defrosting, samples were incubated on ice for 30 min.  

Reducing disulfides to -SH: Samples were washed twice in Tris Triton buffer (100mM 

Tris-HCl, pH7.4; 1% Triton X-100; 1mM EDTA), and incubated for 2h at 37°C in Tris 

triton + 1% β-ME with agitation. Worms were washed once in 10x volumes of 1X BO3 

buffer (10X BO3 buffer: 1M H3BO3; 0.5M NaOH; pH9.5) + 0.01% Triton X-100, and 

incubated in 1X BO3 buffer + 10mM DTT for 15 min at RT with agitation.  
Oxidation of -SH groups to -SO3: Samples were incubated in 1X BO3 buffer + 0.01% 

Triton X-100 + 0.3% H2O2 for 15 min at RT with agitation, and washed afterwards in 

10fold volume with 1X BO3 buffer + 0.01% Triton X-100. Next, worms were washed 

with Antibody buffer B (1x PBS; 0.1% BSA; 0.1% Triton X-100; 0.2% Na azide; 1mM 

EDTA) at least for 15 min. 
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Antibody incubation: Antibody incubation was performed in Antibody buffer A 

(identical to Antibody buffer B, except 1% BSA), washing steps in Antibody buffer B. 

20µl worm suspension was incubated with the appropriate primary antibody dilution 

in buffer A o/n at 4° C. Worms were washed 5 times in buffer B, and incubated o/n in 

buffer B.  Incubation with secondary antibody was performed o/n in buffer A. Worms 

were washed 5 times in buffer B, and incubated o/n in buffer B.  

Microscopy: 3µl stained worms were placed on 2% agarose pads, and mixed with 3µl 

solution NPG + DAPI (20mg n-propyl gallate dissolved in 0.7 ml glycerine and 0.3 ml 

H20; 100 µl solution + 10µl Tris pH9.5 + 1µl 1mg/ml DAPI (4',6'-diamidino-2-

phenylindole hydrochloride). 

 

5.5.7 RNA Interference (RNAi) 

re cloned into vector pPD129.36 (gift of Andrew For RNAi the respective cDNAs we

Fire), flanked by two T7 promoters. For RNAi by feeding HT115DE E. coli cells were 

transformed with the constructs and experiments were performed as previously 

described (Kamath et al., 2001). dsRNA production was induced with 1mM IPTG on 

plates seeded with the respective bacteria strains. L4-stage worms were placed on 

RNAi-producing plates and were allowed to produce progeny. Adults were removed 

or transferred to new RNAi-producing plates. First and third generation progeny 

grown on RNAi plates were scored a phenotype. Injection and soaking of dsRNA 

was performed as described (Fire et al., 1998). 

 

5.5.8 Assays for Developmental and Behavioural Phenotypes 

Most of the phenotypical analyses were performed according to previously described 

methods (Summarized by Hope, 1999). 

Bag-of-worms: For estimation of bagging worms, 100 L4 animals (10 per plate) were 

analyzed at 20° C. Worms were transferred to new plates every day to prevent 

overcrowding. A bag-of-worms was defined when the progeny hatched inside their 

mother. Each day bagging worms were recorded and discarded. The remaining 

worms were transferred every day to new plates and progeny was discarded. The 

experiment was stopped as soon as no further progeny was laid. 
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Body-bends: Body-bends per min were measured as previously described (Mendel 

et al., 1995). Worms were maintained and analyzed at 20°C. The wave frequency of 

the sinusoidal movement was measured over time. 25 worms were analyzed for 

three consecutive minutes. 

Brood size: Individual L4 hermaphrodites were placed onto fresh plates and 

incubated at 20°C (for analysis of cross-progeny, 3-5 males of the respective C. 

hemical avoidance:

elegans strain were used in addition). To prevent overcrowding, worms were 

transferred daily onto fresh plates for three consecutive days. The progeny was 

counted two to three days after removal of the P0.  

C  A 2 cm ring of a noxious solution (8M glycerin or NaCl, stained 

with xylencyanol) was printed onto an agar plate free of food. Animals were picked 

orms crossing the noxious ring after few minutes 

was determined. 

into the centre and the fraction of w

Chemotaxis: Chemotaxis assays were performed as previously described 

(Bargmann et al., 1993; Bargmann and Horvitz, 1991). Petri dishes were prepared by 

spotting 1 µl of either 100% ETOH (-, control spot) and 1µl of odorant (e.g. diacetyl) 

diluted in EtOH (+, odorant spot). Additionally 1µl azide was spotted onto both spots, 

to immobilize animals once they reach these spots. Staged adult worms were 

washed several times and spotted in a thin lane in the middle of the Petri dish 

between both spots. After 60-90 min the distribution of worms was analyzed, and the 

chemotaxis index calculated (number of worms at odorant spot – number of worms 

at control spot/ total number of animals). 

Defecation: Analysis of defecation was done as previously described (Thomas, 

e defecation 

en the posterior muscular contraction (pBoc) 

and the expulsion (Exp). The time between was two defecation cycles was defined 

1990). Worms were maintained and analyzed at 20°C. The length of on

cycle and the time between these cycles were measured. Length of one defecation 

cycle was defined as the duration betwe

as the duration between two consecutive expulsions. Ten consecutive defecation 

cycles were measured for each animal. 

Drug treatments: Adult worms were allowed to lay eggs for three hours at 20°C on 

NGM agar plates containing varying concentrations of DTT, ß-mercaptoethanol or 

tunicamycin (Calbiochem). Eggs were counted and progenies were studied three 
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days later (Shen et al., 2001). Synchronized L1 worms were treated with 2mM 

paraquat (Sigma) solution and survival at 20° C was studied three days later (Ishii et 

al., 1998). Mean values were calculated from different experimental groups of 3-10 

independent assays, each. 

Eggs-in-uterus: For measuring the number of eggs inside the uterus, individual 

worms were analyzed at three consecutive days of the egg-laying period. Therefore, 

staged adults were dissolved by hypochlorite treatment on the respective day in 

microtiter plates (25 worms/day). By this procedure, eggs were released from uterus 

of the worms and could easily be counted in the individual wells. 

Eggs per hour: Measurement of the egg-laying rate per hour was done as previously 

described (Trent et al., 1983). Worms were maintained and analyzed at 20°C. Single 

hermaphrodites that had reached adulthood one day before were allowed to lay eggs 

for five hours. Eggs were counted after each hour.  

Egg-laying pharmacology: Assays were performed as previously described (Desai et 

al., 1988; Trent et al., 1983; Waggoner et al., 1998; Weinshenker et al., 1995). 

Worms were treated for 60-90 min with distinct dilutions of different compounds: 

serotonin (5-HT), imipramine, or chlorpromazine. 

Heat-shock treatments: Synchronized L2 larvae grown at 20° C were heat stressed 

for 2h at 35° C and afterwards further maintained at 20° C. Development and survival 

was scored 2 days later. Mean values were calculated from different experimental 

groups of six independent assays. 

Lifespan: For the lifespan analysis, 5 to 10 adult hermaphrodites were transferred 

onto fresh plates for egg laying and removed after 3-4 hours. Animals were cultured 

at 20°C or 25° C and examined every day until death. They were scored death when 

they did no longer move in response to prodding them with a platinum pick. Each 

day, dead worms were recorded and removed from the plates. Experiments were 

started with 100 worms per genotype (10 per plate) and the wild type (N2) was 

always included as a control.  

Mechanosensation: Mechanosensation of worms was assayed as previously 

either the head or the tail. 

described (Chalfie and Sulston, 1981; Chiba and Rankin, 1990; Way and Chalfie, 

1989). Response of animals to the following stimuli was analyzed: simple tapping of 

the plate, eyelash-touch on the side of the body or prodding of worms with a pick at 
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5.6 Software and Microscopy 

Quantitative evaluation of Northern blots was performed using ImageQuant 5.0 

software (Molecular Dynamics). Sequence alignments were generated using Vector 

NTI version 6.0 (InforMax). Pictures of GFP were taken with an AxioPlan 2 

Microscope (Zeiss) using the AxioVision 3.0 software. Different software tools used 

in this study can be found at http://www.expasy.org/tools/. i-View software can be 

found at http://vidal.dfci.harvard.edu/), Dialign software at http://bibiserv.techfak.uni-

bielefeld.de/dialign/, MatInspector at http://genomatix.gsf.de/cgi-bin/matinspector.pl, 

and TFSEARCH at http://molsun1.cbrc.aist.go.jp/research/db/TFSEARCHJ.html. 

Links and general information about C. elegans can be found at 

http://elegans.swmed.edu/ and http://www.wormbase.org/. Information about C. 

elegans mutants can be found at http://biosci.umn.edu/CGC/CGChomepage.htm, 

http://shigen.lab.nig.ac.jp/c.elegans/index.jsp, http://celeganskoconsortium.omrf.org/ 

and http://www.wormbase.org/. For informations about the used C. elegans gfp 

reporter constructs see ftp://www.ciwemb.edu/pub/FireLabInfo/FireLabVectors/). 
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6 Materials 
 
If not stated otherwise, chemicals and reagents (analytical grade) were purchased 

from Merck, Sigma, Roth, Calbiochem, Fluka and Biorad. Reagents for molecular 

biology, restriction enzymes and other enzymes were purchased from MBI 

Fermentas, New England Biolabs (NEB), QIAGEN, Promega, Pharmacia, Molecular 

labs, La Roche and Boehringer Ingelheim. Media for cultivation of bacteria, yeast and 

worms were obtained from Serva, Difco and Gibco BRL. Radiolabelled chemicals 

were purchased from Amersham Pharmacia or Perkin Elmer. Secondary POD-

coupled antibodies were purchased from Dianova. 

 

 

6.1 Strains 

6.1.1 E. coli Strains 

Strains used in this study 

Strain Genotype Reference 
OP50 ura- (Brenner, 1974) 

DH5α 
endA1, hsdR17(rκ

-,mκ
+), supE44, thi, recA1, 

gyrA96, relA1, ∆(lacZYA-argF) U169, 
Φ80dlacZ∆M15 

(Hanahan, 1985; 
Woodcock et al., 
1989) 

HT115 
(DE3) 

F-, mcrA, mcrB, IN(rrnD-rrnE)1, lambda-, 
rnc14::Tn10(DE3 lysogen:lacUV5 promoter-T7 
polymerase, RNAse III minus 

(Takiff et al., 1989) 

BL 21 
DE3 
(pRIL) 

B F– ompT hsdS(rΒ
_ mΒ

–) dcm+ Tetr galλ(DE3) 
endA Hte [argU ileY leuW Camr] Stratagene 

XL1- 
Blue  
MRF’ 

∆(mcrA)183 D(mcrCB-hsdSMR-mrr)173 endA1 
supE44 thi-1 recA1 gyrA96 relA1 lacq [F´ proAB 
lacIqZ ∆M15 Tn10 (Tetr)] 

Stratagene 

SOLR 

e14–(McrA–) ∆(mcrCB-hsdSMR-mrr)171 sbcC 
recB recJ uvrC umuC::Tn5 (Kanr) lac gyrA96 
relA1 thi-1 endA1 λR [F´ proAB lacIqZ ∆M15] Su– 
(nonsuppressing) 

Stratagene 

Table 5. List of Used E. coli Strains. 
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6.1.2 S. cerevisiae Strain 

Strains used in this study 

Strain Genotype Reference 

AH109 

MATa, trp1-901, leu2-3, 112, ura3-53, his3-200, 
gal4∆, gal80∆, LYS2::GAL1UAS-GAL1TATA-HIS3, 
GAL2UAS-GAL2TATA-ADE2, URA3::GAL1UAS-
MEL1TATA-lacZ 

(James et al., 1996) 

Table 6. List of Used S. cerevisiae Strain. 

 

6.1.3 C. elegans Strains 

Some of the strains were provided by the “C. elegans Genetic Center” (CGC) at the 

University of Minnesota, USA (http://biosci.umn.edu/CGC/CGChomepage.htm), 

others from Elegene (Munich), Shohei Mitani (NBP-Japan), David Ron, Randal 

Kaufman, and Garry Wong. 

Strains used in this study 

Strain  Genotype Reference 
N2  C. elegans wild type var. Bristol CGC 
EM464 C. remanei wild type CGC 
VT847 C. briggsae wild type CGC 
NL2099 rrf-3(pk1426)II (Simmer et al., 2002) 
 pdr-1(lg101)III EleGene, Munich 
 pdr-1(lg103)III EleGene, Munich 
BR3224 pdr-1(tm395)III S. Mitani, NBP-Japan
BR3225 pdr-1(tm598)III S. Mitani, NBP-Japan
RB545 pek-1(ok275)X (Shen et al., 2001) 
 ire-1(v33)II/mnC1; pek-1(ok275)X (Shen et al., 2001) 
RB772 atf-6(ok551)X CGC 
TK22 mev-1(kn1)III (Honda et al., 1993) 
SJ4005 lin-15(n765ts); zcIs4[hsp-4::gfp;lin-15]V (Calfon et al., 2002) 
SJ30 ire-1(zc14)II; zcIs4[hsp-4::gfp]V (Calfon et al., 2002) 
SJ6 upr-1(zc6)X; zcIs4[hsp-4::gfp]V (Calfon et al., 2002) 
CL2070 N2; dvIs70[hsp-16.2::gfp] (not mapped) (Link et al., 1999) 
BY200 N2; byIs200[Pdat-1::gfp;rol-6(su1006)]V (Nass et al., 2002) 
WG3 N2; Is[Paex-3::α-syn(WT);Pdat-1::gfp] (not mapped) (Lakso et al., 2003) 
WG8 N2; Is[Paex-3::α-syn(A53T);Pdat-1::gfp]IV (Lakso et al., 2003) 

Table 7. List of all Used C. elegans Strains.  
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Strains constructed by micro-injection 

Strain Genotype DNA Marker 
BR897 N2; byEx[Punc-119::α-syn(WT);Pdat-1::gfp] pBY456 pBY266 
BR898 N2; byEx[Punc-119::α-syn(WT);Pdat-1::gfp] pBY456 pBY266 
BR899 N2; byEx[Punc-119::α-syn(WT);Pdat-1::gfp] pBY456 pBY266 
BR900 N2; byEx[Punc-119::α-syn(A53T);Pdat-1::gfp] pBY457 pBY266 
BR901 N2; byEx[Punc-119::α-syn(A53T);Pdat-1::gfp] pBY457 pBY266 
BR968 N2; byEx [Punc-119::α-syn(A30P);Pdat-1::gfp] pBY458 pBY266 
BR1846 N2; byEx170 [Pdat-1::α-syn(A30P);Pdat-1::gfp] pBY1170 pBY266 
BR1847 N2; byEx171 [Pdat-1::α-syn(A30P);Pdat-1::gfp] pBY1170 pBY266 
BR1905 N2; byEx172 [Psel-12::α-syn(WT);Psel-12::gfp] pBY1158 pBY1153 
BR1906 N2; byEx173 [Psel-12::α-syn(WT);Psel-12::gfp] pBY1158 pBY1153 
BR1907 N2; byEx174 [Psel-12::α-syn(WT);Psel-12::gfp] pBY1158 pBY1153 
BR1908 N2; byEx176 [Psel-12::α-syn(A30P);Psel-12::gfp] pBY1160 pBY1153 
BR1909 N2; byEx177 [Psel-12::α-syn(A30P);Psel-12::gfp] pBY1160 pBY1153 
BR1912 N2; byEx178 [Psel-12::α-syn(A30P);Psel-12::gfp] pBY1160 pBY1153 
BR1913 N2; byEx175[Psel-12::α-syn(WT);Psel-12::gfp] pBY1158 pBY1153 
BR1948 N2; byEx179[Ppdr-1::gfp;rol-6(su1006)] pBY1013 pRF4 
BR2317 pdr-1(lg101); byEx[PCR-RBRB850/RB1070] PCR pBY1153 
BR2318 pdr-1(lg101); byEx[PCR-RBRB850/RB1070] PCR pBY1153 
BR2319 pdr-1(lg101); byEx[PCR-RBRB850/RB1070] PCR pBY1153 
BR2320 pdr-1(lg101); byEx[PCR-RBRB850/RB1070] PCR pBY1153 
BR2321 pdr-1(lg101); byEx[PCR-RBRB850/RB1070] PCR pBY1153 
BR2322 pdr-1(lg101); byEx[PCR-RBRB850/RB1070] PCR pBY1153 
BR2323 pdr-1(lg101); byEx[PCR-RBRB850/RB1070] PCR pBY1153 
BR2324 pdr-1(lg101); byEx[PCR-RBRB850/RB1070] PCR pBY1153 
BR2325 pdr-1(lg101); byEx [K08E3] K08E3 pBY1153 
BR2326 pdr-1(lg101); byEx [K08E3] K08E3 pBY1153 
BR2327 pdr-1(lg101); byEx [K08E3] K08E3 pBY1153 
BR2726 pdr-1(lg103); byEx429[K08E3] K08E3 pBY1153 
BR2727 pdr-1(lg103); byEx430[K08E3] K08E3 pBY1153 
BR2728 pdr-1(lg103); byEx431[K08E3] K08E3 pBY1153 
BR2729 pdr-1(lg103); byEx432[K08E3] K08E3 pBY1153 
BR2730 pdr-1(lg103); byEx433[K08E3] K08E3 pBY1153 
BR2768 pdr-1(lg103);byEx434[pdr-1/K08E3.8;sel-12::gfp] pBY1500 pBY1153 
BR2769 pdr-1(lg103);byEx435[pdr-1/K08E3.8;sel-12::gfp] pBY1500 pBY1153 
BR2770 pdr-1(lg103);byEx436[pdr-1/K08E3.8;sel-12::gfp] pBY1500 pBY1153 
BR2789 pdr-1(lg101)III;byEx437[pdr-1(lg103);sel-12::gfp] pBY1569 pBY1153 
BR2790 pdr-1(lg101)III;byEx438[pdr-1(lg103);sel-12::gfp] pBY1569 pBY1153 
BR2791 pdr-1(lg101)III;byEx439[pdr-1(lg103);sel-12::gfp] pBY1569 pBY1153 
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Strain Genotype DNA Marker 
BR2792 pdr-1(lg101)III;byEx440[pdr-1(lg103);sel-12::gfp] pBY1569 pBY1153 
BR3136 pdr-1(lg103); byEx417[pdr-1;sel-12::gfp] pBY1908 pBY1153 
BR3137 pdr-1(lg103); byEx418[pdr-1;sel-12::gfp] pBY1908 pBY1153 
BR3138 pdr-1(lg103); byEx419[pdr-1;sel-12::gfp] pBY1908 pBY1153 
BR3139 pdr-1(lg103); byEx420[pdr-1;sel-12::gfp] pBY1908 pBY1153 
BR3140 pdr-1(lg103); byEx421[pdr-1;sel-12::gfp] pBY1908 pBY1153 
BR3141 pdr-1(lg103); byEx422[pdr-1;sel-12::gfp] pBY1908 pBY1153 
BR3045 N2; byEx411 [Ppdr-1::gfp::pdr-1;rol-6] pBY1794 pRF4 
BR3046 N2; byEx412 [Ppdr-1::gfp::pdr-1;rol-6] pBY1794 pRF4 
BR3047 N2; byEx413 [Ppdr-1::gfp::pdr-1;rol-6] pBY1794 pRF4 
BR3048 N2; byEx414 [Ppdr-1::gfp::pdr-1;rol-6] pBY1794 pRF4 
BR3049 N2; byEx415 [Ppdr-1::gfp::pdr-1;rol-6] pBY1794 pRF4 
BR3050 N2; byEx416 [Ppdr-1::gfp::pdr-1;rol-6] pBY1794 pRF4 
BR3187 N2; byEx[Ppdr-1::gfp;rol-6] pBY1909 pRF4 
BR3188 N2; byEx[Ppdr-1::gfp;rol-6] pBY1909 pRF4 
BR3189 N2; byEx[Ppdr-1::gfp;rol-6] pBY1909 pRF4 
BR3190 N2; byEx[Ppdr-1::gfp;rol-6] pBY1909 pRF4 
BR3191 N2; byEx[Ppdr-1::gfp;rol-6] pBY1909 pRF4 

Table 8. List of Transgenic C. elegans Strains Obtained by Micro-injection. 

  
 

Strains constructed by crossing 

Strain Genotype 
BR2429 pdr-1(lg101)III (9th outcross) 
BR2430 pdr-1(lg103)III (7th outcross) 
BR2775 ire-1(v33)II (1st outcross) 
BR2766 pdr-1(lg103)III; pek-1(ok275)X 
BR2767 pdr-1(lg101)III; pek-1(ok275)X 
BR2785 ire-1(v33)II; pdr-1(lg101)III 
BR2786 ire-1(v33)II; pdr-1(lg103)III 
BR3226 ire-1(v33)II; pdr-1(tm395)III 
BR3227 ire-1(v33)II; pdr-1(tm598)III 
BR3177 pdr-1(lg103)III; atf-6(ok551)X 
BR2763 pdr-1(lg103)III; Is[Phsp-16.2::gfp] 
BR2764 pdr-1(lg103)III; byIs200[Pdat-1::gfp]V 
BR2765 pdr-1(lg101)III; byIs200[Pdat-1::gfp]V 
BR2783 pdr-1(lg103)III; zcIs4[Phsp-4::gfp]V 
BR3143 pdr-1(lg103)III; Is[Paex-3::α-syn(WT);Pdat-1::gfp] 
BR3144 pdr-1(lg103)III; Is[Paex-3::α-syn(A53T);Pdat-1::gfp]IV 
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BR3183 pdr-1(lg101)III; Is[Paex-3::α-syn(WT);Pdat-1::gfp] 
BR3184 pdr-1(lg101)III; Is[Paex-3::α-syn(A53T);Pdat-1::gfp]IV 
BR3228 pdr-1(tm395)III; Is[Paex-3::α-syn(WT);Pdat-1::gfp] 
BR3229 pdr-1(tm395)III; Is[Paex-3::α-syn(A53T);Pdat-1::gfp]IV 
BR3230 pdr-1(tm598)III; Is[Paex-3::α-syn(WT);Pdat-1::gfp] 
BR3231 pdr-1(tm598)III; Is[Paex-3::α-syn(A53T);Pdat-1::gfp]IV 
BR3178 ire-1(v33)II; Is[Paex-3::α-syn(WT);Pdat-1::gfp] 
BR3179 ire-1(v33)II; Is[Paex-3::α-syn(A53T);Pdat-1::gfp]IV 
BR3180 Is[Paex-3::α-syn(WT);Pdat-1::gfp]; zcIs4[Phsp-4::gfp]V 
BR3181 Is[Paex-3::α-syn(A53T);Pdat-1::gfp]IV; zcIs4[Phsp-4::gfp]V 
BR3182 atf-6(ok551)X; zcIs4[Phsp-4::gfp]V 
BR3205 rrf-3(pk1426)II; pdr-1(lg103)III; Is[Paex-3::α-syn(A53T);Pdat-1::gfp]IV 
BR3233 pdr-1(lg103)III; atf-6(ok551)X; Is[Paex-3::α-syn(A53T);Pdat-1::gfp]IV 
BR3232 pdr-1(lg101)III; atf-6(ok551)X; Is[Paex-3::α-syn(A53T);Pdat-1::gfp]IV 
BR3235 pdr-1(lg103)III; Is[Paex-3::α-syn(A53T);Pdat-1::gfp]IV; zcIs4[Phsp-4::gfp]V 
BR3234 pdr-1(lg101)III; Is[Paex-3::α-syn(A53T);Pdat-1::gfp]IV; zcIs4[Phsp-4::gfp]V 
BR3236 pdr-1(lg101)III; Is[Paex-3::α-syn(A53T)]IV; byEx437[pdr-1(lg103)] 
BR3237 pdr-1(lg101)III; Is[Paex-3::α-syn(A53T)]IV; byEx438[pdr-1(lg103)] 
BR3238 pdr-1(lg101)III; Is[Paex-3::α-syn(A53T)]IV; byEx439[pdr-1(lg103)] 
BR3239 pdr-1(lg101)III; Is[Paex-3::α-syn(A53T)]IV; byEx440[pdr-1(lg103)] 
BR3242 rrf-3(pk1426)II; pdr-1(lg101)III; Is[Paex-3::α-syn(A53T);Pdat-1::gfp]IV 

Table 9. List of C. elegans Strains Obtained By Crossing. 

 

6.2 Antibodies 

Antibodies used in this study 

Name Epitope Description Reference 
9E10 c-myc mouse monoclonal Boehringer 
3F10 HA rat monoclonal Boehringer 
Z-5 GST rabbit polyclonal Santa Cruz 
1510 ubiquitin mouse monoclonal Chemicon 
83722 GFP rabbit polyclonal Clontech 
15G7 α-synuclein rat monoclonal (Kahle et al., 2000) 

Table 10. List of Used Antibodies.  
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6.3 Vectors and Constructs 

6.3.1 Vectors 

C. elegans specific vectors were obtained from Dr. Andrew Fire 

(ftp://www.ciwemb.edu/pub/FireLabInfo/FireLabVectors/), genomic cosmids were 

obtained from the Sanger Center (http://www.sanger.ac.uk/Projects/C_elegans/). 

 

Plasmids used in this study 

Name Description  Reference 
pSKII Standard cloning vector; AmpR Stratagene 
pCRScript  Vector for blunt-end cloning; AmpR Stratagene 
pGEM-T Vector for T/A-overhang cloning; AmpR Promega 
pPD95.75 Promoterless gfp vector; AmpR Fire Vector Kit 1995 
pPD117.01 Promoterless gfp vector; AmpR 

l i f d i l f i
Fire Vector Kit 1999 

pPD129.36 T7 for production of dsRNA in vitro and in 
vivo; AmpR Fire Vector Kit 1999 

pRF4 Dominant marker [rol-6(su1006)] ; AmpR (Mello et al., 1991) 
pBY1153 sel-12::gfp co-injection marker; AmpR (Wittenburg et al., 2000) 

pGBKT7 Yeast GAL4 DNA bdg. domain vector; 
KanR Clontech 

pGADT7 Yeast GAL4 activation domain vector; 
AmpR Clontech 

pET-21a(+) 6xHIS E. coli expression vector; AmpR Novagen 
pET-28b(+) 6xHIS E. coli expression vector; KanR Novagen 
pGST-
parallel 3 GST E. coli expression vector; AmpR (Sheffield et al., 1999) 

pCite-4a(+) In vitro translation vector; AmpR Novagen 
pET21-
UbcH7 

Purification of rec.UbcH7 from E. coli; 
AmpR M. Scheffner 

pBY1875 pGEX4T1 GST::CHN-1; AmpR (Hoppe et al., 2004) 

pBY1898 modified Baculovirus vector pAcUW51; 
AmpR (Lakowski et al., 2003) 

pBY1884 GST::myc-CHN-1 in pET-21a(+);AmpR (Hoppe et al., 2004) 
pBY1877 pGADT7 chn-1; AmpR (Hoppe et al., 2004) 
pG77#AL2
9

Pdat-1::gfp H. Huttner 
pBY456 Punc-119::α-syn(WT) M. Okochi 
pBY457 Punc-119::α-syn(A53T) M. Okochi 
pBY458 Punc-119::α-syn(A30P) M. Okochi 

Table 11. List of Used Plasmids. 
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6.3.2 Constructs 

Phages containing C. elegans cDNA clones were obtained from Dr. Yuji Kohara, and 

were excised by plasmid rescue method described in the experimental procedures 

section.  

  

Plasmids constructed in this study 
Name Size 

in bp R/M Vector Cloning 
size in bp Insert Cloning 

size in bp Description tags T aa, 
kDa Notes/Usage 

pBY 
1013 8570 Amp 

 pPD95.75  SphI/SalI 
4486 

PCR RB850/851 
Ce-N2 genomic 

SphI/SalI 
4084 

Ce-prk 4070bp 
Promoter 

incl AS 1-4 

intron 
GFP C  Ce-prk 4070 bp Promoter 

GFP-expression vector 

pBY 
1018 6981 Amp 

 
pBluescript 

SK II 
SacII/SalI 

2885 
PCR RB850/851 
Ce-N2 genomic 

SacII/SalI 
4090 

Ce-prk 4070bp 
Promoter    cloning vector 

pBY 
1019 3589 Amp 

 
pBluescript 

SK II 
SacII/SalI 

2885 
PCR RB853/852 
Ce-N2 genomic 

SacII/SalI 
698 

Ce-prk 3'part Promoter 
+genomicORF(AS 1-

115) 
   cloning vector 

pBY 
1020 4872 Amp 

 
pBluescript 

SK II 
SacII/SmaI 

2926 
PCR RB853/839 
Ce-N2 genomic 

SacII/SmaI 
1944 

Ce-prk 3'part Promoter 
+ fulllength-

genomicORF 
   cloning vector 

pBY 
1021 4119 Amp 

 
pBluescript 

SK II 
SpeI/SmaI 

2951 
PCR RB838/839 

Ce-N2 cDNA 
NheI/SmaI 

1172 Ce-prk cDNA    cloning vector 

pBY 
1022 11066 Kan 

LEU pDBLeu NheI/StuI 
9894 

PCR RB838/839 
Ce-N2 cDNA 

NheI/SmaI 
1172 Ce-prk cDNA Gal4DB N  60mM 3AT 

Yeast-2-Hybrid-screening vector 

pBY 
1023 9038 Amp 

 pBY1013 StuI/SalI 
8455 

RB853/852 
Ce-N2 genomic 

StuI/SaII 
583 

Ce-prk 3'part Promoter 
+genomicORF(AS 1-

115) 

intron 
GFP C  Ce-prk 4070bp Promoter + genomicORF 

(AS 1-115) GFP-expression vector 

pBY 
1037 4142 Amp 

 
pCRScript 
Amp SK + 

SrfI 
2961 

PCR RB838/839 
Ce-N2 cDNA 

blunt 
1181 Ce-prk cDNA    cloning vector 

pBY 
1038 9830 Kan 

TRP pDBTrp NheI/NotI 
8630 pBY1022-Fragment NheI/NotI 

1200 Ce-prk cDNA Gal4DB N  60 mM 3AT 
Yeast-2-Hybrid-screening vector 

pBY 
1039 11020 Kan 

LEU 
pLeu 

VlHADB 
SmaI/SacI 

9839  
PCR SE02/RB916 

pBY1022 
SmaI/SacI 

1181 Ce-prk cDNA Gal4DB C  15 mM 3AT 
Yeast-2-Hybrid-screening vector 

pBY 
1040 3998 Amp 

 pLitmus28 EcoRV 
2823 pBY1037-Fragment SmaI 

1175 Ce-prk cDNA flanked 
by T7   T7-transcription vector for 

production of Ce-prk dsRNA 

pBY 
1062 9800 Kan 

TRP pDBTrp MluI/NotI 
5304 pBY1039-Fragment MluI/NotI 

4496 Ce-prk cDNA Gal4DB C  15 mM 3AT 
Yeast-2-Hybrid-screening vector 

pBY 
1113 10278 Amp 

 pBY1023 NheI/SalI 
8503 

PCR RB853/916 
Ce-N2 genomic 

NheI/SalI 
1775 

Ce-prk 3'part Promoter 
+ fulllength-

genomicORF 

intron 
GFP C  Ce-prk 4070bp Promoter + fulllength- 

genomicORF GFP-expression vector 

pBY 
1114 10272 Amp 

 pBY1023 NheI/SmaI 
8484 

PCR RB853/916 
Ce-N2 genomic 

NheI/SmaI 
1788 

Ce-prk 3'part Promoter 
+ fulllength-

genomicORF 

intron 
GFP C  like pBY1113 

pBY 
1115 ~ 8300 Kan 

TRP pBY1062 KpnI/SmaI 
6865 pADH1001-Fragment KpnI/SmaI 

~1400 
like pBY1062 

with stronger pADH Gal4DB C  Yeast-2-Hybrid-screening vector 
with stronger ADH-promoter 

pBY 
1116 10580 Amp 

 
pBluescript 

SK II 
SmaI 
2961 

Ce-K08E3- 
fragment-I 

SnaBI/SmaI 
7619 

Ce-K08E3 subclone I 
(7619 bp)    cloning vector 

Ce-prk genomic locus subclone 

pBY 
1117 8849 Amp 

 
pBluescript 

SK II 
BamHI/SmaI 

2957bp 
Ce-K08E3- 
fragment-II 

BamHI/SmaI 
5896 

Ce-K08E3 subclone II 
(5896 bp)    cloning vector 

Ce-prk genomic locus subclone 

pBY 
1118 6496 Kan 

 pET28b(+) NheI/SacI 
5328 pBY1039-Fragment NheI/SacI 

1176 Ce-prk cDNA flanked 
by HIS 

N 
C  bacterial expression vector 

His-CePARKIN-His 

pBY 
1119 6483 Kan 

 pET28b(+) NheI/SalI 
5317 pBY1039-Fragment NheI/SalI 

1166 Ce-prk cDNA HIS N  bacterial expression vector 
His-CePARKIN 

pBY 
1120 4872 Amp 

 
pBluescript 

SK II 
SacII/SmaI 

2926 
PCR RB853/839 
Ce-N2 genomic 

SacII/SmaI 
1944 

Ce-prk 3'part Promoter 
+ fulllength-

genomicORF 
   cloning vector 

pBY 
1121 8431 Amp 

 pPD95.75 BamHI/SmaI 
4487 pBY1114-Fragment BamHI/SmaI 

3944 

Ce-prk 2212bp 
Promoter 

+ fulllength-
genomicORF 

intron 
GFP C  Ce-prk 2212bp Promoter + fulllength- 

genomicORF GFP-expression vector 

pBY 
1122 4068 Amp 

 pPD49.26 PstI/SmaI 
3396 

PCR RB1021/1022 
Ce-N2 genomic 

PstI/blunt 
672 Ce-prk 648bp Promoter    cloning vector 

short Ce-prk promoter (648 bp) 

pBY 
1123 9841 Amp 

 pPD49.26 SphI/SacI 
3276 

pBY1114-Fragment 
+ pBY622-Fragment 

 SphI/SalI 5792 
 SalI/SacI 773 

Ce-prk 4070bp 
Promoter 

+ fulllength-
genomicORF 

EGFP C  Ce-prk 4070bp Promoter + fulllength- 
genomicORF GFP-expression vector 

pBY 
1124 8000 Amp 

 pPD49.26 BamHI/SacI 
3296 

pBY1114-Fragment 
+ pBY622-Fragment 

 BamHI/SalI 
3931 

 SalI/SacI 773 

Ce-prk 2212bp 
Promoter 

+ fulllength-
genomicORF 

EGFP C  Ce-prk 2212bp Promoter + fulllength- 
genomicORF GFP-expression vector 

pBY 
1125 4374 Amp 

 
pCRScript 
Amp SK + 

SrfI 
2961 

PCR RB1033/1034 
Hs-brain cDNA 

blunt 
1413 Hs-parkin-cDNA    cloning vector 

H.sapiens parkin cDNA 

pBY 
1126 5145 Amp 

 pBY1122 SmaI/SalI 
3974 pBY1039-Fragment SmaI/SalI 

1171 Ce-prk cDNA    short Ce-prk promoter (648 bp) 
+ Ce-prk cDNA 

pBY 
1127 5373 Amp 

 pBY1122 SmaI/SalI 
3974 

PCR RB1033/1034 
Hs-brain cDNA 

SmaI/SalI 
1399 Hs-parkin-cDNA    short Ce-prk promoter (648 bp) 

+ Hs-parkin cDNA 

pBY 
1128 7475 Amp 

 pBY1122 SphI/StuI 
3506 pBY1114-Fragment SphI/StuI 

3969 
Ce-prk 4070bp 

Promoter    Ce-prk 4070bp Promoter 
cloning vector 

pBY 
1129 5621 Amp 

 pBY1122 BamHI/StuI 
3513 pBY1116-Fragment BamHI/StuI 

2108 
Ce-prk 2212bp 

Promoter    Ce-prk 2212bp Promoter 
cloning vector 

pBY 
1130 4688 Amp 

 pBY1122 XhoI/StuI 
3518 pBY1116-Fragment XhoI/StuI 

1170 
Ce-prk 1275bp 

Promoter    Ce-prk 1275bp Promoter 
cloning vector 

pBY 
1155 8552 Amp 

 pBY1126 SphI/StuI 
4583 pBY1113-Fragment SphI/StuI 

3969 
Ce-prk 4070bp 

Promoter    Ce-prk 4070bp Promoter 
+ Ce-prk cDNA 

pBY 
1156 6698 Amp 

 pBY1126 BamHI/StuI 
4590 pBY1114-Fragment BamHI/StuI 

2108 
Ce-prk 2212bp 

Promoter    Ce-prk 2212bp Promoter 
+ Ce-prk cDNA 

pBY 
1157 8780 Amp 

 pBY1128 SmaI/SalI 
7381 

PCR RB1033/1034 
Hs-brain cDNA 

SmaI/SalI 
1399 Hs-parkin cDNA    Ce-prk 4070bp Promoter 

+ Hs-parkin cDNA 
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Name Size 
in bp R/M Vector Cloning 

size in bp Insert Cloning 
size in bp Description tags T aa, 

kDa Notes/Usage 

pBY 
1158 6656 Amp 

 pBY871 MscI/NcoI 
6142 pBY456-Fragment MscI/NcoI 

514 Hs-ASN (wt) cDNA     Ce-sel12 Promoter(l) 
+ Hs-ASN (wt) cDNA  

pBY 
1159 6656 Amp 

 pBY871 MscI/NcoI 
6142 pBY457-Fragment MscI/NcoI 

514 Hs-ASN (A53T) cDNA    Ce-sel12 Promoter(l) 
+ Hs-ASN (A53T) cDNA  

pBY 
1160 6656 Amp 

 pBY871 MscI/NcoI 
6142 pBY458-Fragment MscI/NcoI 

514 Hs-ASN (A30P) cDNA    Ce-sel12 Promoter(l) 
+ Hs-ASN (A30P) cDNA  

pBY 
1167 4383 Amp 

 
pCRScript 
Amp SK + 

SrfI 
2961 

RB1048/1049 
Dm-embryo cDNA 

blunt 
1422 Dm-parkin cDNA    cloning vector 

D.melanogaster parkin cDNA 

pBY 
1168 10231 Amp 

 pPD49.26 PstI/NcoI 
3303 

pBY266-Fragment  
+ pBY456-Fragment 

PstI/MscI ??? 
MscI/NcoI 514 

Ce-DAT (T23G5.5) 
Prom. 

+ Hs-ASN (wt) cDNA 
   Ce-DAT (T23G5.5) Promoter 

+ Hs-ASN (wt) cDNA 

pBY 
1169 10231 Amp 

 pPD49.26 PstI/NcoI 
3303 

pBY266-Fragment  
+ pBY457-Fragment 

PstI/MscI ??? 
MscI/NcoI 514 

Ce-DAT (T23G5.5) 
Prom. 

+ Hs-ASN (A53T) cDNA 
   Ce-DAT (T23G5.5) Promoter 

+ Hs-ASN (A53T) cDNA 

pBY 
1170 10231 Amp 

 pPD49.26 PstI/NcoI 
3303 

pBY266-Fragment  
+ pBY458-Fragment 

PstI/MscI ??? 
MscI/NcoI 514 

Ce-DAT (T23G5.5) 
Prom. 

+ Hs-ASN (A30P) cDNA 
   Ce-DAT (T23G5.5) Promoter 

+ Hs-ASN (A30P) cDNA 

pBY 
1171 5382 Amp 

 pBY1122 SmaI/SalI 
3974 

PCR RB1048/1049 
Dm-embryo cDNA 

SmaI/SalI 
1408 Dm-parkin cDNA    short Ce-prk promoter (648 bp) 

+ Dm-parkin cDNA 

pBY 
1172 8789 Amp 

 pBY1128 SmaI/SalI 
7381 

PCR RB1048/1049 
Dm-embryo cDNA 

SmaI/SalI 
1408 Dm-parkin cDNA    Ce-prk 4070bp Promoter 

+ Dm-parkin cDNA 

pBY 
1176 8466 Kan 

TRP pGBKT7 XhoI/StuI PCR SE02/RB916 
pBY1022 

SmaI/SalI 
1171 

Ce-prk cDNA 
cloned without stop 

Gal4DB 
myc N  

Yeast-2-Hybrid vector 
insert cloned without stop  -> see 

pBY1233 

pBY 
1177 8786 Amp 

LEU pGADT7 SmaI/SacI 
7957 

PCR RB1054/1055 
pGAD424-pal1 

blunt/SacI 
829 

Ce-pal1 cDNA 
cloned without stop 

Gal4AD 
HA N  

Yeast-2-Hybrid vector 
insert cloned without stop  -> see 

pBY1245 

pBY 
1178 7899 Kan 

TRP pGBKT7 SmaI/SalI 
7295 

PCR RB1064/916 
pBY1022 

SmaI/SalI 
604 

Ce-prk cDNA fragment 
RING-IBR-RING 

Gal4DB 
myc N  

Yeast-2-Hybrid vector 
insert cloned without stop  -> see 

pBY1237 

pBY 
1179 8178 Kan 

TRP pGBKT7 SmaI/SalI 
7295 

PCR RB1065/916 
pBY1022 

SmaI/SalI 
883 

Ce-prk cDNA fragment 
deletion-UBI 

Gal4DB 
myc N  

Yeast-2-Hybrid vector 
insert cloned without stop  -> see 

pBY1238 

pBY 
1180 7390 Amp 

 pBY1122 XhoI/StuI 
3518 pBY1116-Fragment SalI/StuI 

3872 

Ce-prk 4070bp 
Promoter 

genomic fragm. vs. PCR
   Ce-prk 4070bp Promoter exchange 

genomic fragment vs. PCR-product 

pBY 
1190 9841 Amp 

 pBY1123 
Bst1107I/Nhe

I 
6171 

pBY1116-Fragment Bst1107I/NheI 
3670 

Ce-prk 4070bp 
Promoter 

genomic fragm. vs. PCR
   Ce-prk 4070bp Promoter + fulllength- 

genomicORF GFP-expression vector 

pBY 
1191 6926 Amp 

 pBY1129 SmaI/SalI 
5527 pBY1157-Fragment SmaI/SalI 

1399 Hs-parkin cDNA    Ce-prk 2212bp Promoter 
+ Hs-parkin cDNA 

pBY 
1192 6935 Amp 

 pBY1129 SmaI/SalI 
5527 pBY1172-Fragment SmaI/SalI 

1408 Dm-parkin cDNA    Ce-prk 2212bp Promoter 
+ Dm-parkin cDNA 

pBY 
1193 4373 Amp 

 
pCRScript 
Amp SK + 

SrfI 
2961 

PCR RB1033/1034 
Hs-skeletmusc.cDNA 

blunt 
1413 

Hs-parkin cDNA 
(aus skeletal muscle) T3 -> T7   cloning vector Hs-parkin cDNA 

no polymorphism 

pBY 
1194 4373 Amp 

 
pCRScript 
Amp SK + 

SrfI 
2961 

PCR RB1033/1034 
Hs-SMART cDNA 

blunt 
1413 

Hs-park cDNA 
(aus SMART-library) T3 <- T7   cloning vector Hs-parkin cDNA 

no polymorphism 

pBY 
1195  Amp 

 
pBluescript 

SK II EcoRI/XhoI Ce-yk58h10 EcoRI/XhoI Ce-K08E3.7 cDNA    cloning vector 

pBY 
1196  Amp 

 
pBluescript 

SK II EcoRI/XhoI Ce-yk450a8 EcoRI/XhoI Ce-K08E3.7 cDNA    cloning vector 

pBY 
1197  Amp 

 
pBluescript 

SK II EcoRI/XhoI Ce-yk82e5 EcoRI/XhoI Ce-K08E3.7 cDNA    cloning vector 

pBY 
1198  Amp 

 
pBluescript 

SK II EcoRI/XhoI Ce-yk228e8 EcoRI/XhoI Ce-K08E3.7 cDNA    cloning vector 

pBY 
1199  Amp 

 
pBluescript 

SK II EcoRI/XhoI Ce-yk175e9 EcoRI/XhoI Ce-K08E3.7 cDNA    cloning vector 

pBY 
1200  Amp 

 
pBluescript 

SK II EcoRI/XhoI Ce-yk268h9 EcoRI/XhoI Ce-K08E3.7 cDNA    cloning vector 

pBY 
1205  Amp 

 
pBluescript 

SK II EcoRI/XhoI Ce-yk504f1 EcoRI/XhoI Ce-F44G4.1 cDNA    cloning vector 

pBY 
1206  Amp 

 
pBluescript 

SK II EcoRI/XhoI Ce-yk452e10 EcoRI/XhoI Ce-F44G4.1 cDNA    cloning vector 

pBY 
1229 6433 Kan 

 
pET 28b(+) 

 
NcoI/SacI 

5263 
PCR RB1152/916 

pBY1022 
NcoI/SacI 

1178 Ce-prk cDNA w/o stop HIS C 408 
46,57 

bacterial expression vector 
CePARKIN-His 

pBY 
1230 6475 Kan 

 
pET 28b(+) 

 
NdeI/SalI 

5310 
PCR RB1091/1153 

pBY1022 
NdeI/SalI 

1163 Ce-prk cDNA with stop HIS N 406 
46,28 

bacterial expression vector 
His-CePARKIN 

pBY 
1231 7548 Kan 

TRP 
pGBKT7 

 
NcoI/SalI 

7277 
PCR RB1152/1154 

pBY1116 
NcoI/SalI 

271 
Ce-prk 

Ex1+In1+Ex2 
Gal4DB 

myc N  Yeast-2-Hybrid vector 
to test with prk-interactors 

pBY 
1232 7503 Kan 

TRP 
pGBKT7 

 
NcoI/SalI 

7277 
PCR RB1152/1154 

pBY1022 
NcoI/SalI 

226 
Ce-prk 

Ex1+Ex2 (UBI-domain) 
Gal4DB 

myc N 250 
28,47 

Yeast-2-Hybrid vector 
to test with prk-interactors 

pBY 
1233 8446 Kan 

TRP pGBKT7 NcoI/SalI 
7277 

PCR RB1152/1153 
Ce-N2 mixed cDNA 

NcoI/SalI 
1169 Ce-prk cDNA I (1158bp) Gal4DB 

myc N 564 
64,49 

Yeast-2-Hybrid vector 
to test with prk-interactors 

pBY 
1234 8355 Kan 

TRP pGBKT7 NcoI/SalI 
7277 

PCR RB1152/1153 
Ce-N2 mixed cDNA 

NcoI/SalI 
1078 

Ce-prk cDNA III 
(1067bp) 

Gal4DB 
myc N 421 

47,85 
Yeast-2-Hybrid vector 

to test with prk-interactors 

pBY 
1235 8404 Kan 

TRP pGBKT7 NcoI/SalI 
7277 

PCR RB1152/1153 
Ce-N2 mixed cDNA 

NcoI/SalI 
1127 

Ce-prk cDNA IV 
(1116bp) 

Gal4DB 
myc N 264 

30,37 
Yeast-2-Hybrid vector 

to test with prk-interactors 

pBY 
1236 7981 Kan 

TRP pGBKT7 NcoI/SalI 
7277 

PCR RB1152/1153 
Ce-N2 mixed cDNA 

NcoI/SalI 
704 Ce-prk cDNA II (693bp) Gal4DB 

myc N 409 
46,91 

Yeast-2-Hybrid vector 
to test with prk-interactors 

pBY 
1237 7900 Kan 

TRP pGBKT7 SmaI/SaII 
7295 

PCR RB1064/1153 
pBY1022 

SmaI/SalI 
605 

Ce-prk cDNA fragment 
RING-IBR-RING 

Gal4DB 
myc N 382 

44,12 
Yeast-2-Hybrid vector 

to test with prk-interactors 

pBY 
1238 8179 Kan 

TRP pGBKT7 SmaI/SaII 
7295 

PCR RB1065/1153 
pBY1022 

SmaI/SalI 
884 

Ce-prk cDNA fragment 
deletion-UBI 

Gal4DB 
myc N 475 

54,54 
Yeast-2-Hybrid vector 

to test with prk-interactors 

pBY 
1239 8389 Amp 

LEU pGADT7 NdeI/SacI 
7927 

PCR RB1143/1144 
Ce-N2 cDNA 

NdeI/EcoRI 
462 

Ce-R01H2.6 cDNA 
cloned without stop 

Gal4AD 
HA N  

Yeast-2-Hybrid vector 
insert cloned without stop  -> see 

pBY1243 

pBY 
1240 8373 Amp 

LEU pGADT7 NdeI/SacI 
7927 

PCR RB1145/1146 
Ce-N2 cDNA 

NdeI/SacI 
446 

Ce-M7.1 cDNA 
cloned without stop 

Gal4AD 
HA N  

Yeast-2-Hybrid vector 
insert cloned without stop  -> see 

pBY1244 
pBY 
1243 8431 Amp 

LEU pGADT7 NdeI/EcoRI 
7968 

PCR RB1143/1166 
Ce-N2 cDNA 

NdeI/EcoRI 
463 

Ce-R01H2.6 cDNA 
cloned with stop 

Gal4AD 
HA N 313 

35,31 
Yeast-2-Hybrid vector 

to test interaction with Ce-Parkin 

pBY 
1244 8412 Amp 

LEU pGADT7 NdeI/EcoRI 
7968 

PCR RB1145/1167 
Ce-N2 cDNA 

NdeI/EcoRI 
444 

Ce-M7.1 cDNA 
cloned with stop 

Gal4AD 
HA N 307 

34,36 
Yeast-2-Hybrid vector 

to test interaction with Ce-Parkin 

pBY 
1245 8790 Amp 

LEU pGADT7 BamHI/XhoI 
7976 

PCR RB1054/1169 
pal1-Klon E und D 

BamHI/XhoI 
814 

Ce-pal1 cDNA 
cloned with stop 

Gal4AD 
HA N  cloned out of frame 

new:-> see  pBY 1407 

pBY 
1246  Amp 

 pBY1180 SmaI/NotI 
7385 pd2EGFP-1 Fragment SmaI/NotI 

872 d2EGFP d2EGFP   Ce-prk 4070bp Promoter 
+ destabilized EGFP 

pBY 
1247  Amp 

 pBY1180 SmaI/NotI 
7385 pDsRed1-N1 Fragment SmaI/NotI 

702 DsRed1 DsRed1   Ce-prk 4070bp Promoter 
+ DsRed1 



Materials  111 

Name Size 
in bp R/M Vector Cloning 

size in bp Insert Cloning 
size in bp Description tags T aa, 

kDa Notes/Usage 

pBY 
1248 3891 Amp 

 pPD129.36 NcoI/SalI 
2722 

PCR RB1152/1153 
Ce-N2 cDNA 

NcoI/SalI 
1169 Ce-prk cDNA flanked 

by T7   T7-transcription vector for 
production of Ce-prk dsRNA 

pBY 
1249  Amp 

 
pCRScript 
Amp SK + 

SrfI 
2961 

PCR RB1160/1153 
Cb-VT847 cDNA 

blunt 
1388 

Cb-prk cDNA isoform I 
fulllength (1158bp) T3 -> T7  385 

 
cloning vector 

C.briggsae parkin cDNA I (385AS) 

pBY 
1250  Amp 

 
pCRScript 
Amp SK + 

SrfI 
2961 

PCR RB1160/1153 
Cb-VT847 genomic 

DNA 
blunt Cb-prk genomicORF 

(1389bp)    cloning vector 
C.briggsae parkin genomic ORF (1389bp)

pBY 
1281  Amp 

 pET 21a(+) NdeI/SalI 
5384 

PCR RB1091/1153 
pBY1022 

NdeI/SalI 
1163 Ce-prk cDNA   44,12 bacterial expression vector 

untagged CePARKIN 

pBY 
1282  Amp 

 
pCRScript 
Amp SK + 

SrfI 
2961 

PCR RB1160/1153 
Cb-VT847 cDNA blunt 

Cb-prk cDNA isoform II 
D bp: 454-645 

+ 7bp-Ins.aus InII 
(972bp) 

T3 -> T7  151 
 

cloning vector (Insertion TCTTCCAG) 
C.briggsae parkin cDNA II ( AS 1-151) 

pBY 
1283  Amp 

 
pCRScript 
Amp SK + 

SrfI 
2961 

PCR RB1160/1153 
Cb-VT847 cDNA blunt Cb-prk cDNA isoform III 

D bp: 301-645 (814bp) T3 <- T7  270 
 

cloning vector 
C.briggsae parkin cDNA III (D AS 101-

215) 

pBY 
1284  Amp 

 
pCRScript 
Amp SK + 

SrfI 
2961 

PCR RB1160/1153 
Cb-VT847 cDNA blunt Cb-prk cDNA isoform IV 

D bp: 70-645 (582bp) T3 -> T7  193 
 

cloning vector 
C.briggsae parkin cDNA IV (D AS 24-

215) 

pBY 
1348 9180 Amp 

LEU pGADT7 KpnI/BamHI 
7523 

RB1233/916 pBY1022 
RB1234/1235 

annealed 
RB1236/1237 pGBKT7 

KpnI/SacI 1178 
SacI/AgeI 32 

AgeI/BamHI 447 
 myc 

Gal4DB C  intermediate cloning vector 

pBY 
1349 8464 Kan 

TRP pGBKT7 BsaBI/BamHI 
6263 pBY1348-Fragment BsaBI/BamHI 

2201 Ce-prk cDNA myc 
Gal4DB C 590 

67,18 
Yeast-2-Hybrid vector 

to test with prk-interactors 

pBY 
1357 7774 Kan 

TRP pGBKT7 NdeI/SalI 
7271 pBY1243-Fragment NdeI/XhoI 

503 Ce-R01H2.6 cDNA Gal4DB 
myc N 327 

37,62 
Yeast-2-Hybrid vector 

to test interaction with Ce-Parkin 

pBY 
1358 7755 Kan 

TRP pGBKT7 NdeI/SalI 
7271 pBY1244-Fragment NdeI/XhoI 

484 Ce-M7.1 cDNA Gal4DB 
myc N 321 

36,68 
Yeast-2-Hybrid vector 

to test interaction with Ce-Parkin 

pBY 
1359 8133 Kan 

TRP pGBKT7 NdeI/SalI 
7271 pBY1245-Fragment NdeI/XhoI 

862 
Ce-pal1 cDNA 

cloned with stop 
Gal4DB 

myc N  cloned out of frame 
new:-> see  pBY 1408 

pBY 
1360 9103 Amp 

LEU pGADT7 NdeI/XhoI 
7928 pBY 1233-Fragment NdeI/SalI 

1175 Ce-prk cDNA Gal4AD 
HA N 550 

62,18 
Yeast-2-Hybrid vector 

to test with prk and prk-interactors 

pBY 
1361 8664 Kan 

TRP pGBKT7 NdeI/SmaI 
7280 

PCR RB1251/1252 
Ce-N2 cDNA 

NdeI/blunt 
1384 Ce-unc59 cDNA Gal4DB 

myc  633 
72,89 

Yeast-2-Hybrid vector 
to test interaction with Ce-Parkin 

pBY 
1362 9342 Amp 

LEU pGADT7 NdeI/SmaI 
7958 

PCR RB1251/1252 
Ce-N2 cDNA 

NdeI/SmaI 
1384 Ce-unc59 cDNA Gal4AD 

HA N 619 
70,57 

Yeast-2-Hybrid vector 
to test interaction with Ce-Parkin 

pBY 
1363 8670 Kan 

TRP pGBKT7 NdeI/SmaI 
7280 

PCR RB1253/1254 
Ce-N2 cDNA 

NdeI/blunt 
1390 Ce-unc61 cDNA Gal4DB 

myc  635 
72,90 

Yeast-2-Hybrid vector 
to test interaction with Ce-Parkin 

pBY 
1364 9348 Amp 

LEU pGADT7 NdeI/SmaI 
7958 

PCR RB1253/1254 
Ce-N2 cDNA 

NdeI/SmaI 
1390 Ce-unc61 cDNA Gal4AD 

HA N 621 
70,58 

Yeast-2-Hybrid vector 
to test interaction with Ce-Parkin 

pBY 
1394 3230 Amp 

 pPD129.36 NheI/NotI 
2785 pBY456-Fragment NheI/NotI 

445 Hs-ASN (wt) cDNA flanked 
by T7   T7-transcription vector for 

production of Hs-ASN (wt) dsRNA 

pBY 
1395 8939 Amp 

LEU pGADT7 NdeI/XhoI 
7928 

PCR RB1300/1301 
Ce-N2 cDNA 

NdeI/SalI 
1010 Ce-F44C4.3 cDNA Gal4AD 

HA N 495 
54,15 

Yeast-2-Hybrid vector 
to test interaction with Ce-Parkin 

pBY 
1396 8944 Amp 

LEU pGADT7 NdeI/XhoI 
7928 

PCR RB1302/1303 
Ce-N2 cDNA 

NdeI/XhoI 
1016 Ce-T03E6.7 cDNA Gal4AD 

HA N 497 
55,77 

Yeast-2-Hybrid vector 
to test interaction with Ce-Parkin 

pBY 
1397 9070 Amp 

LEU pGADT7 NdeI/XhoI 
7928 

PCR RB1304/1305 
Ce-N2 cDNA 

NdeI/SalI 
1142 Ce-C25B8.3 cDNA Gal4AD 

HA N 539 
60,06 

Yeast-2-Hybrid vector 
to test interaction with Ce-Parkin 

pBY 
1398 9133 Amp 

LEU pGADT7 NdeI/XhoI 
7928 

PCR RB1306/1307 
Ce-N2 cDNA 

NdeI/XhoI 
1205 Ce-F57F5.1 cDNA Gal4AD 

HA N 560 
61,85 

Yeast-2-Hybrid vector 
to test interaction with Ce-Parkin 

pBY 
1399 9127 Amp 

LEU pGADT7 NdeI/XhoI 
7928 

PCR RB1308/1309 
Ce-N2 cDNA 

NdeI/SalI 
1199 Ce-H22K11.1 cDNA Gal4AD 

HA N 558 
61,07 

Yeast-2-Hybrid vector 
to test interaction with Ce-Parkin 

pBY 
1400 7686 Amp 

 
pBY1180/ 
1122 neu 

SmaI/NotI 
 

pBY 1348-Fragment 
+ pBY622-Fragment 

SmaI/AgeI 1206 
AgeI/Bsp120I 

779 

Ce-prk cDNA-myc 
+ EGFP 

myc 
EGFP C  Ce-prk bp Promoter 

+ Ce-prk cDNA + myc + EGFP 

pBY 
1401 7601 Amp 

 
pBY1180/ 
1122 neu 

SmaI/NotI 
 

pBY 1348-Fragment 
+ pd2EGFP1-Fragment

SmaI/AgeI 1206 
AgeI/NotI 864 

Ce-prk cDNA-myc 
+ d2EGFP 

myc 
d2EGFP C  

Ce-prk bp Promoter 
+ Ce-prk cDNA + myc + destabilized 

EGFP 

pBY 
1402 7516 Amp 

 
pBY1180/ 
1122 neu 

SmaI/NotI 
 

pBY 1348-Fragment 
+ pDsRed1N1-

Fragment 

SmaI/AgeI 1206 
AgeI/NotI 694 

Ce-prk cDNA-myc 
+ DsRed1 

myc 
DsRed1 C  Ce-prk bp Promoter 

+ Ce-prk cDNA + myc + DsRed1 

pBY 
1403  Amp 

Kan 
pCR 

TOPO 2.1 T/A-cloning PCR RB639/1153 
Ce-N2 cDNA T/A-cloning Ce-prk cDNA 

with SL1 splice-leader    pWS118 

pBY 
1404  Amp 

Kan 
pCR 

TOPO 2.1 T/A-cloning PCR RB1287/916 
Cr-EM464 cDNA T/A-cloning Cr-prk cDNA I 

(1161bp)    cloning vector 
C.remanei parkin cDNA I (387AS) 

pBY 
1405  Amp 

 
pCRScript 
Amp SK + 

SrfI 
2961 

PCR RB1287/916 
Cr-EM464 genomic 

DNA 

blunt 
 

Cr-prk genomic ORF 
(1495bp)    cloning vector 

C.remanei parkin genomic ORF (1495bp) 

pBY 
1406 ??? Amp 

 pPD129.36 
EcoRV/HindII

I 
 

PCR RB1238/1194 
Ce-N2 cDNA 

blunt/HindIII 
 Ce-K08E3.8 cDNA flanked 

by T7   T7-transcription vector for 
production of Ce-K08E3.8 dsRNA 

pBY 
1407 8794 Amp 

LEU pBY1245 BamHI 
8790 

Klenow fill in 
+ religation 

shift to 
correct frame Ce-pal1 cDNA Gal4AD 

HA N 447 
49,80 

Yeast-2-Hybrid vector 
to test interaction with Ce-Parkin 

pBY 
1408 8141 Kan 

TRP pBY1359 BamHI 
8133 

Klenow fill in 
+ religation 

shift to 
correct frame Ce-pal1 cDNA Gal4DB 

myc N 461 
52,11 

Yeast-2-Hybrid vector 
to test interaction with Ce-Parkin 

pBY 
1409 ??? Amp 

 pPD95.75 SphI/SmaI 
4467 pBY1400-Fragment SphI/SmaI 

      

pBY 
1414 7774 Kan 

TRP pGBKT7 NcoI/SalI 
7277 

PCR RB1152/1153 
prk-KO3 (lg103) cDNA 

NcoI/SalI 
497 

Ce-prk KO3 (lg103) 
cDNA 

Gal4DB 
myc N 340 

39,32 
Yeast2Hybrid vector 

to test with prk-interactors 

pBY 
1415 7792 Kan 

TRP pBY1349 KpnI/SacI 
7286 

PCR RB1233/1916 
prk-KO3 (lg103) cDNA 

KpnI/SacI 
506 

Ce-prk KO3 (lg103) 
cDNA 

myc 
Gal4DB C 366 

42,01 
Yeast2Hybrid vector 

to test with prk-interactors 

pBY 
1418 8281 Kan 

TRP pGBKT7 NdeI/PstI 
7261 pBY1395-Fragment NdeI/PstI 

1020 Ce-F44C4.3 cDNA Gal4DB 
myc N 509 

56,46 
Yeast-2-Hybrid vector 

to test interaction with Ce-Parkin 

pBY 
1419 8287 Kan 

TRP pGBKT7 NdeI/PstI 
7261 pBY1396-Fragment NdeI/PstI 

1026 Ce-T03E6.7 cDNA Gal4DB 
myc N 511 

58,09 
Yeast-2-Hybrid vector 

to test interaction with Ce-Parkin 

pBY 
1420 8413 Kan 

TRP pGBKT7 NdeI/PstI 
7261 pBY1397-Fragment NdeI/PstI 

1152 Ce-C25B8.3 cDNA Gal4DB 
myc N 553 

62,37 
Yeast-2-Hybrid vector 

to test interaction with Ce-Parkin 

pBY 
1421 8476 Kan 

TRP pGBKT7 NdeI/PstI 
7261 pBY1398-Fragment NdeI/PstI 

1215 Ce-F57F5.1 cDNA Gal4DB 
myc N 574 

64,16 
Yeast-2-Hybrid vector 

to test interaction with Ce-Parkin 

pBY 
1422 8621 Kan 

TRP pGBKT7 NdeI/SmaI 
7280 pBY1399-Fragment NdeI/MscI 

1341 Ce-H22K11.1 cDNA Gal4DB 
myc N 572 

63,38 
Yeast-2-Hybrid vector 

to test interaction with Ce-Parkin 

pBY 
1423 9445 Amp 

LEU pGADT7 SmaI/BamHI 
7970 

PCR RB1335/1336 
Ce-N2 cDNA 

blunt/BamHI 
1475 Ce-T12E12.1 cDNA Gal4AD 

HA N 660 
75,39 

Ce-Ariadne 2 in 
Yeast2Hybrid screening vector 

pBY 
1424 8734 Kan 

TRP pGBKT7 NcoI/BamHI 
7283 

PCR RB1335/1336 
Ce-N2 cDNA 

NcoI/BamHI 
1469 Ce-T12E12.1 cDNA Gal4DB 

myc N 658 
75,98 

Ce-Ariadne 2 in 
Yeast2Hybrid screening vector 

pBY 
1425 6861 Amp 

 pPD95.75 SalI/SmaI 
4475 

PCR RB1021/916 
Ce-N2 genomic 

XhoI/SmaI 
2386 

Ce-prk 650bp-Promoter 
+ genomic ORF no stop 

intron 
GFP C  full-length prk-GFP 

construct for injection 
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Name Size 
in bp R/M Vector Cloning 

size in bp Insert Cloning 
size in bp Description tags T aa, 

kDa Notes/Usage 

pBY 
1440  Amp 

 
pBluescript 

SK II EcoRI/XhoI Ce-yk501h4 
insert 1313bp 

EcoRI/XhoI 
1313 Ce-K08E3.7 cDNA    cloning vector 

pBY 
1441  Amp 

 
pBluescript 

SK II EcoRI/XhoI Ce-yk677c9 
Insert 1201 bp 

EcoRI/XhoI 
1301 Ce-K08E3.7 cDNA    cloning vector 

pBY 
1442  Amp 

 
pBluescript 

SK II EcoRI/XhoI Ce-yk269h2 
Insert 1392 bp 

EcoRI/XhoI 
1392 Ce-K08E3.7 cDNA    cloning vector 

pBY 
1443  Amp 

 
pBluescript 

SK II EcoRI/XhoI Ce-yk97d10 
Insert 1305 bp 

EcoRI/XhoI 
1305 Ce-K08E3.7 cDNA    cloning vector 

pBY 
1444  Amp 

 
pBluescript 

SK II EcoRI/XhoI Ce-yk191a6 
Insert 1439 bp 

EcoRI/XhoI 
1439 Ce-dur135 cDNA    cloning vector 

pBY 
1445  Amp 

 
pBluescript 

SK II EcoRI/XhoI Ce-yk253f12 
Insert 1313 bp 

EcoRI/XhoI 
1313 Ce-dur135 cDNA    cloning vector 

pBY 
1446  Amp 

 
pBluescript 

SK II EcoRI/XhoI Ce-yk146g9 
Insert 1213 bp 

EcoRI/XhoI 
1213 Ce-dur135 cDNA    cloning vector 

pBY 
1447  Amp 

 
pBluescript 

SK II EcoRI/XhoI Ce-yk102c7 
Insert 1224 bp 

EcoRI/XhoI 
1224 Ce-dur135 cDNA    cloning vector 

pBY 
1456 5500 Amp 

 
pGST- 

parallel 3 
NcoI/XhoI 

4961 
pBY1243-Fragment 

HA-R01H2.6 
NcoI/XhoI 

539 

HA-tagged 
Ce-R01H2.6 cDNA-

ORF 
HA N 395 

45,97 
bacterial expression vector: 

GST-HA-R01H2.6 

pBY 
1457 5481 Amp 

 
pGST- 

parallel 3 
NcoI/XhoI 

4961 
pBY1244-Fragment 

HA-M7.1 
NcoI/XhoI 

520 
HA-tagged 

Ce-M7.1 cDNA-ORF HA N 389 
45,02 

bacterial expression vector: 
GST-HA-M7.1 

pBY 
1458 8848 Amp 

LEU pGADT7 NdeI/XhoI 
7928 

PCR RB1420/1421 
F49C12.9 cDNA 

NdeI/XhoI 
920 

Ce-F49C12.9 
cDNA-ORF 

Gal4AD 
HA N 465 

52,39 
Yeast-2-Hybrid vector 

to test interaction with Ce-Parkin 

pBY 
1459 8518 Amp 

LEU pGADT7 NdeI/XhoI 
7928 

PCR RB1422/1423 
F52C6.2 cDNA 

NdeI/XhoI 
590 

Ce-F52C6.2 
cDNA-ORF (+85 bp) 

Gal4AD 
HA N 355 

39,25 
Yeast-2-Hybrid vector (85bp länger) 

to test interaction with Ce-Parkin 

pBY 
1460 9124 Amp 

LEU pGADT7 NdeI/XhoI 
7928 

PCR RB1424/1425 
C44B12.5 cDNA 

NdeI/XhoI 
1196 

Ce-C44B12.5 
cDNA-ORF 

Gal4AD 
HA N 557 

60,28 
Yeast-2-Hybrid vector 

to test interaction with Ce-Parkin 

pBY 
1461 9294 Amp 

LEU pGADT7 NdeI/SmaI 
7958 

PCR RB1426/1427 
F29G9.5 cDNA 

NdeI/blunt 
1336 

Ce-F29G9.5 
cDNA-ORF 

Gal4AD 
HA N 603 

67,38 
Yeast-2-Hybrid vector 

to test interaction with Ce-Parkin 

pBY 
1462 8632 Amp 

LEU pGADT7 NdeI/XhoI 
7928 

PCR RB1428/1429 
F28D1.5 cDNA 

NdeI/XhoI 
704 

Ce-F28D1.5 
cDNA-ORF 

Gal4AD 
HA N 393 

42,10 
Yeast-2-Hybrid vector 

to test interaction with Ce-Parkin 

pBY 
1465 6052 Amp 

 
pGST- 

parallel 3 
NcoI/XhoI 

4961 
pBY1395-Fragment 

HA-F44C4.3 
NcoI/XhoI 

1091 
 

Ce-F44C4.3 cDNA-ORF
GST 
HA N 577 

64,81 
bacterial expression vector: 

GST-HA-F44C4.3 

pBY 
1466 6055 Amp 

 
pGST- 

parallel 3 
BamHI/XhoI 

4967 
pBY1396-Fragment 

HA-T03E6.7 
BglII/XhoI 

1088 
HA-tagged 

Ce-T03E6.7 cDNA-ORF 
GST 
HA N 593 

67,95 
bacterial expression vector: 

GST-HA-T03E6.7 

pBY 
1467  Amp 

 
pGST- 

parallel 3 
BamHI/ 

 
pBY1397-Fragment 

HA-C25B8.3 
BglII/ 

 
 

Ce-C25B8.3 cDNA-ORF
GST 
HA N 642 

72,91 
bacterial expression vector: 

GST-HA-C25B8.3 

pBY 
1468 6202 Amp 

 
pGST- 

parallel 3 
NcoI/XhoI 

4961 
pBY1398-Fragment 

HA-F57F5.1 
NcoI/XhoI 

1241 
 

Ce-F57F5.1 cDNA-ORF 
GST 
HA N 642 

72,51 
bacterial expression vector: 

GST-HA-F57F5.1 

pBY 
1469 6393 Amp 

 
pGST- 

parallel 3 
NcoI/StuI 

5016 
pBY1399-Fragment 

HA-H22K11.1 
NcoI/MscI 

1377 

 
Ce-H22K11.1 cDNA-

ORF 

GST 
HA N 640 

71,73 
bacterial expression vector: 

GST-HA-H22K11.1 

pBY 
1470 8431 Amp 

LEU pGADT7 NdeI/XhoI 
7928 

pBY1414-Fragment 
prk-KO3-cDNA 

NdeI/SalI 
503 

Ce-parkin-KO3 
cDNA-ORF 

Gal4AD 
HA N 326 

37,00 
Yeast-2-Hybrid vector 

to test with prk-interactors 

pBY 
1484 8191 Kan 

TRP pGBKT7 NdeI/SalI 
7271 

pBY1458-Fragment 
F49C12.9 cDNA 

NdeI/XhoI 
920 

 
Ce-F49C12.9 cDNA 

Gal4DB 
myc N 479 

54,70 
Yeast-2-Hybrid vector 

to test interaction with Ce-Parkin 

pBY 
1485 7861 Kan 

TRP pGBKT7 NdeI/SalI 
7271 

pBY1459-Fragment 
F52C6.2 cDNA 

NdeI/XhoI 
590 

 
Ce-F52C6.2 cDNA 

Gal4DB 
myc N 369 

41,57 
Yeast-2-Hybrid vector 

to test interaction with Ce-Parkin 

pBY 
1486 8467 Kan 

TRP pGBKT7 NdeI/SalI 
7271 

pBY1460-Fragment 
C44B12.5 cDNA 

NdeI/XhoI 
1196 

 
Ce-C44B12.5 cDNA 

Gal4DB 
myc N 571 

62,60 
Yeast-2-Hybrid vector 

to test interaction with Ce-Parkin 

pBY 
1487 8616 Kan 

TRP pGBKT7 NdeI/SmaI 
7280 

pBY1461-Fragment 
F29G9.5 cDNA 

NdeI/SmaI 
1336 

 
Ce-F29G9.5 cDNA 

Gal4DB 
myc N 617 

69,69 
Yeast-2-Hybrid vector 

to test interaction with Ce-Parkin 

pBY 
1488 7975 Kan 

TRP pGBKT7 NdeI/SalI 
7271 

pBY1462-Fragment 
F28D1.5 cDNA 

NdeI/XhoI 
740 

 
Ce-F28D1.5 cDNA 

Gal4DB 
myc N 407 

44,42 
Yeast-2-Hybrid vector 

to test interaction with Ce-Parkin 

pBY 
1489 5917 Amp 

 
pGST- 

parallel 3 
NcoI/XhoI 

4961 
pBY1458-Fragment 

F49C12.9 cDNA 
NcoI/XhoI 

956 
HA-tagged 

Ce-F49C12.9 cDNA 
GST 
HA N 547 

63,05 
bacterial expression vector: 

GST-HA-F49C12.9 

pBY 
1490 5587 Amp 

 
pGST- 

parallel 3 
NcoI/XhoI 

4961 
pBY1459-Fragment 

F52C6.2 cDNA 
NcoI/XhoI 

626 
HA-tagged 

Ce-F52C6.2 cDNA 
GST 
HA N 437 

49,92 
bacterial expression vector: 

GST-HA-F52C6.2 

pBY 
1491 6193 Amp 

 
pGST- 

parallel 3 
NcoI/XhoI 

4961 
pBY1460-Fragment 

C44B12.5 cDNA 
NcoI/XhoI 

1232 
HA-tagged 

Ce-C44B12.5 cDNA 
GST 
HA N 639 

70,94 
bacterial expression vector: 

GST-HA-C44B12.5 

pBY 
1492 6388 Amp 

 
pGST- 

parallel 3 
NcoI/StuI 

5016 
pBY1461-Fragment 

F29G9.5 cDNA 
NcoI/SmaI 

1372 
HA-tagged 

Ce-F29G9.5 cDNA 
GST 
HA N 685 

78,04 
bacterial expression vector: 

GST-HA-F29G9.5 

pBY 
1493 5701 Amp 

 
pGST- 

parallel 3 
NcoI/XhoI 

4961 
pBY1462-Fragment 

F28D1.5 cDNA 
NcoI/XhoI 

740 
HA-tagged 

Ce-F28D1.5 cDNA 
GST 
HA N 475 

52,76 
bacterial expression vector: 

GST-HA-F28D1.5 

pBY 
1494 4869 Amp 

 pCite-4a(+) NcoI/NotI 
3657 

Fragment 
myc-Ce-parkin 

NcoI/NotI 
1212 

myc-tagged 
Ce-parkin cDNA-ORF 

myc 
 N 434 

49,50 
in vitro-translation vector: 

myc-PARKIN 

pBY 
1495 5029 Amp 

 pBY 1456 NdeI/SmaI 
5027  Klenow Fill-in 

+ 2 bp  GST 
HA N 259 

30,27 
bacterial expression vector: 

GST-HA (control) 

pBY 
1496 5836 Amp 

 pBY 1456 NdeI/XhoI 
4997 

PCR RB1671/1672 
D1022.1-cDNA 

NdeI/XhoI 
839 

S.cerevisiae Ubc6 
homolog I (41%/60%) 

GST 
HA N 520 

59,56 
bacterial expression vector: 

GST-HA-D1022.1 

pBY 
1497 5656 Amp 

 pBY 1456 NdeI/XhoI 
4997 

PCR RB1673/1674 
Y110A2AR.2-cDNA 

NdeI/XhoI 
659 

S.cerevisiae Ubc6 
homolog II (52%/68%) 

GST 
HA N 460 

52,86 
bacterial expression vector: 

GST-HA-Y110A2AR.2 

pBY 
1498 5512 Amp 

 pBY 1456 NdeI/XhoI 
4997 

PCR RB1675/1676 
Y87G2A.9-cDNA 

NdeI/XhoI 
515 

S.cerevisiae Ubc7 
homolog I (58%/75%) 

GST 
HA N 412 

47,37 
bacterial expression vector: 

GST-HA-Y87G2A.9 

pBY 
1499 5494 Amp 

 pBY 1456 NdeI/XhoI 
4997 

PCR RB1677/1678 
F58A4.10-cDNA 

NdeI/XhoI 
497 

S.cerevisiae Ubc7 
homolog II (51%/66%) 

GST 
HA N 406 

47,25 
bacterial expression vector: 

GST-HA-F58A4.10 

pBY 
1500 16668 Amp 

 
pCRScript 
Amp SK + 

SrfI 
2961 Ce-K08E3 Fragment EcoRV 

13707     Cosmid subclone 
contains genes K08E3.7 and K08E3.8 

pBY 
1524 8767 Amp 

LEU pGADT7 NdeI/XhoI 
7928 

PCR RB1671/1672 
D1022.1-cDNA 

NdeI/XhoI 
839 

S.cerevisiae Ubc6 
homolog I (41%/60%) 

Gal4AD 
HA N 438 

48,90 
Yeast-2-Hybrid vector UBC-6 

to test interaction with Ce-Parkin 

pBY 
1525 8587 Amp 

LEU pGADT7 NdeI/XhoI 
7928 

PCR RB1673/1674 
Y110A2AR.2-cDNA 

NdeI/XhoI 
659 

S.cerevisiae Ubc6 
homolog II (52%/68%) 

Gal4AD 
HA N 378 

42,20 
Yeast-2-Hybrid vector UBC-15 

to test interaction with Ce-Parkin 

pBY 
1526 8443 Amp 

LEU pGADT7 NdeI/XhoI 
7928 

PCR RB1675/1676 
Y87G2A.9-cDNA 

NdeI/XhoI 
515 

S.cerevisiae Ubc7 
homolog I (58%/75%) 

Gal4AD 
HA N 330 

36,71 
Yeast-2-Hybrid vector UBC-14 

to test interaction with Ce-Parkin 

pBY 
1527 8425 Amp 

LEU pGADT7 NdeI/XhoI 
7928 

PCR RB1677/1678 
F58A4.10-cDNA 

NdeI/XhoI 
497 

S.cerevisiae Ubc7 
homolog II (51%/66%) 

Gal4AD 
HA N 324 

36,59 
Yeast-2-Hybrid vector UBC-7 

to test interaction with Ce-Parkin 

pBY 
1528 8110 Kan 

TRP pGBKT7 NdeI/SalI 
7271 

PCR RB1671/1672 
D1022.1-cDNA 

NdeI/XhoI 
839 

S.cerevisiae Ubc6 
homolog I (41%/60%) 

Gal4DB 
myc N 452 

51,22 
Yeast-2-Hybrid vector UBC-6 

to test interaction with Ce-Parkin 

pBY 
1529 7930 Kan 

TRP pGBKT7 NdeI/SalI 
7271 

PCR RB1673/1674 
Y110A2AR.2-cDNA 

NdeI/XhoI 
659 

S.cerevisiae Ubc6 
homolog II (52%/68%) 

Gal4DB 
myc N 392 

44,51 
Yeast-2-Hybrid vector UBC-15 

to test interaction with Ce-Parkin 

pBY 
1530 7786 Kan 

TRP pGBKT7 NdeI/SalI 
7271 

PCR RB1675/1676 
Y87G2A.9-cDNA 

NdeI/XhoI 
515 

S.cerevisiae Ubc7 
homolog I (58%/75%) 

Gal4DB 
myc N 344 

39,03 
Yeast-2-Hybrid vector UBC-14 

to test interaction with Ce-Parkin 

pBY 
1531 7768 Kan 

TRP pGBKT7 NdeI/SalI 
7271 

PCR RB1677/1678 
F58A4.10-cDNA 

NdeI/XhoI 
497 

S.cerevisiae Ubc7 
homolog II (51%/66%) 

Gal4DB 
myc N 338 

38,91 
Yeast-2-Hybrid vector UBC-7 

to test interaction with Ce-Parkin 
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Name Size 
in bp R/M Vector Cloning 

size in bp Insert Cloning 
size in bp Description tags T aa, 

kDa Notes/Usage 

pBY 
1532 8933 Kan 

TRP pGBKT7 NdeI/SmaI 
7280 

pBY1233-Fragment 
prk-KO1 short 

Fragment 

NdeI/HindIII 319 
HindIII/SspI 1334

prk-KO1 ORF A 
from short transcript 

Gal4DB 
myc N 723 

80,48  

pBY 
1533 9611 Amp 

LEU pGADT7 NdeI/SmaI 
7958 

pBY1233-Fragment 
prk-KO1 short 

Fragment 

NdeI/HindIII 319 
HindIII/SspI 1334

prk-KO1 ORF A 
from short transcript 

Gal4AD 
HA N 709 

78,17  

pBY 
1534 7693 Kan 

TRP pGBKT7 NdeI/NcoI 
7298 

pBY1233-Fragment 
prk-KO1 long 

Fragment 

NdeI/HindIII 319 
HindIII/BspHI 76 

prk-KO1 ORF B 
from long transcript 

Gal4DB 
myc N 322 

36,75  

pBY 
1535 8350 Amp 

LEU pGADT7 NdeI/XhoI 
7928 pBY1534-Fragment NdeI/SalI 

422 
prk-KO1 ORF B 

from long transcript 
Gal4AD 

HA N 309 
34,66  

pBY 
1569 15534 Amp pBY1500 

StuI/Bsp1407
I 

14404 

RB853/1856 
parkin-KO3 genomic 

StuI/Bsp1407I 
498     parkin-KO3 (lg103) Cosmid subclone 

contains genes K08E3.7 and K08E3.8 

pBY 
1644  Amp 

pACUW51- 
GSTmycP

A 

BglII/NotI 
 

RB1414/1415 
parkin-KO3 cDNA 

BamHI/NotI 
516     Baculovirus expression vector 

GST-myc-PARKIN KO3 

pBY 
1645 4197 Amp pCite-4a(+) NcoI/NotI 

3657 
pBY 1644-Fragment 

myc-parkinKO3 cDNA 
NcoI/NotI 

540     in vitro translation vector 
myc-PARKIN KO3 

pBY 
1772  Amp 

 yk484g5 EcoRI/XhoI Ce-K08E3.8 cDNA Insert:      

pBY 
1773   Amp 

 yk620a8 EcoRI/XhoI Ce-K08E3.8 cDNA  fulllength    ~ 300 bp not sequenced 

pBY 
1774  Amp 

 yk600e8 EcoRI/XhoI Ce-K08E3.8 cDNA  fulllength    ~ 400 bp not sequenced 

pBY 
1775  Amp 

 yk420h7 EcoRI/XhoI Ce-C17H11.6 cDNA       

pBY 
1776  Amp 

 yk543d6 EcoRI/XhoI Ce-C17H11.6 cDNA       

pBY 
1777  Amp 

 yk81a2 EcoRI/XhoI Ce-C17H11.6 cDNA  fulllength    ~ 2000 bp not sequenced 

pBY 
1778  Amp 

 yk465b7 EcoRI/XhoI Ce-F29G9.5 cDNA  first 24 bp missing    ~ 300 bp not sequenced 

pBY 
1779  Amp 

 yk450d11 EcoRI/XhoI Ce-F29G9.5 cDNA   
first 9 bp missing    ~ 300 bp not sequenced 

pBY 
1780  Amp 

 yk162f5 EcoRI/XhoI Ce-F49C12.9 cDNA  fulllength     

pBY 
1781  Amp 

 yk63a6 EcoRI/XhoI Ce-F49C12.9 cDNA  fulllength     

pBY 
1782  Amp 

 yk102b5 EcoRI/XhoI Ce-C44B12.5 cDNA  first 192 bp missing     

pBY 
1783  Amp 

 yk93d2 EcoRI/XhoI Ce-C44B12.5 cDNA  first 191 bp missing     

pBY 
1784  Amp 

 yk31b9 EcoRI/XhoI Ce-C39D10.7 cDNA  fulllength 
contains Intron?!    ~ 2400 bp not sequenced 

pBY 
1785  Amp 

 yk73c11 EcoRI/XhoI Ce-T24D1.3 cDNA  fulllength    ~ 120 bp not sequenced 

pBY 
1786  Amp 

 yk575c10 EcoRI/XhoI Ce-F56C6.2 cDNA  first 329 bp missing     

pBY 
1787  Amp 

 yk94g9 EcoRI/XhoI Ce-F28D1.5 cDNA  first 195 bp missing     

pBY 
1788  Amp 

 yk342h3 EcoRI/XhoI Ce-T01G1.3 cDNA       

pBY 
1789  Amp 

 yk150g2 EcoRI/XhoI Ce-F57F5.1 cDNA   
first 124bp missing     

pBY 
1790  Amp 

 yk538d4 EcoRI/XhoI xbp1 cDNA      clone into pPD129.36 
for xbp-1 RNAi 

pBY 
1791  Amp 

 yk169h3 EcoRI/XhoI xbp1 cDNA      clone into pPD129.36 
for xbp-1 RNAi 

pBY 
1792 22382 Amp pBY1500 SalI/Bsp120I 

16653 pBY232-Frg SalI/NotI 
5729 

unc-119 
Rescue Fragment     

pBY 
1793 21248 Amp pBY1569 SalI/Bsp120I 

15519 pBY232-Frg SalI/NotI 
5729 

unc-119 
Rescue Fragment     

pBY 
1794 14529 Amp pPD117.01 SalI/StuI 

2324 

pBY1500 Fragment 
PCR RB1021/1022 

GFP aus pPD117.01 
PCR RB838/1856 

BsrGI/MscI 8435 
XhoI/NotI 660 
NotI/NheI 944 

NheI/BsrGI 2162 

    N-terminal gfp::pdr-1 translational fusion 

pBY 
1795 4770 Amp pBY1494 NdeI/XhoI 

3568 
HA-tag RB1741/1742 
pBY1233-Fragment 

NdeI/NcoI: 33 
NcoI/SalI: 1169 

HA-tagged Ce-parkin 
ORF HA N 404 

46,18 
in vitro-translation vector: 

HA-PARKIN 

pBY 
1802 9276 Amp 

LEU pGADT7 EcoRI/XhoI 
7948 

RB2147/1419 
 

EcoRI/SalI 
1328 K08E3.8 cDNA-ORF     

pBY 
1803 8616 Kan 

TRP pGBKT7 EcoRI/SalI 
8616 

RB2147/1419 
 

EcoRI/SalI 
1328 K08E3.8 cDNA-ORF     

pBY 
1908 16672  pBY1500 Acc65I Mutagenesis 4bp insertion 

GTAC 
after 191 bp of K08E3.8 

shift after aa1-63    Rescue construct pdr-1 
frameshift mutation in K08E3.8 

pBY 
1909   pPD117.01 4400 RB1021/1022 660 genomic pdr-1 promoter 

short GFP   pdr-1 promoter contruct Ppdr-1 

pBY 
1910 4867 Amp pBY1909 NotI/EcoRI 

3462 
RB2289/2290 

H.s.parkin ORF 
NotI/EcoRI 

1405 Human parkin cDNA    Rescue contruct Ppdr-1::human parkin 
(short promoter) 

pBY 
1911 6341 Amp pBY1456 BamHI/NotI 

 RB2196/2197 BclI/NotI 
 K08E3.8 ORF GST-HA N  bacterial expression vector: 

GST-HA-K08E3.8 

pBY 
1912 6741 Amp pET21(a)+ BamHI/NotI 

  BclI/NotI 
 K08E3.8 ORF 6xHIS N  bacterial expression vector: 

6xHIS-K08E3.8 

Table 12. List of Constructed Plasmids. 

 
 
 
 
 



114  Materials 

6.4 Oligonucleotides 

Oligonucleotides for sequencing or PCR were purchased at a desalted grade from 

Metabion GmbH (Martinsried) or HPLC-purified from Thermo Electron Corporation 

(Ulm). 

 

Oligonucleotides used in this study 
Name Sequence 5’ → 3’ Restriction sites Description 

RB639 ACG TGG ATC CGG TTT AAT TAC CCA AGT TTG AG  SL1 specific primer 

RB640 ACGTGGATCCGGTTTTAACCCAGTTACTCAAG  SL2 specific primer 

RB839-parkin-rev CCCCCCGGGTTAAATATTAAACCAATGGTCCCATTGACACTC SspI, SmaI pdr-1 cloning primer SspI before, SmaI after stop 

RB 915-Park-rev CGCCCGGGAGCTCGTCTACCTATTAAACCAATGGTCCCATTGACACTC SacI, SmaI pdr-1 cloning primer, contains stop 

RB 916-Park-rev3 CGCCCGGGAGCTCGTCGACCTATTAAACCAATGGTCCCATTGACACTC Sal I, SacI, SmaI pdr-1 cloning primer, without stop 

RB1021-Park-Prom-for GGGCTGCAGGATCCTCGAGCGAACATTGCCAGCTTCTTGCGAGC PstI, XhoI, BamHI 5´Parkin-Promoter Primer  

RB1022-Park-Prom-rev GCGGCCGCCCCGGGCTTCATGAGAGCTGAAAATTTGAC SmaI, NotI 3´Primer Parkin-Promoter 

RB1033-h/m-Park-for GCGCCCGGGCATGATAGTGTTTGTCAGGTTCAACTCCAGC SmaI human/mouse parkin cloning primer 

RB1034-hPark-rev CCCGTCGACACGTCGAACCAGTGGTCCCC SalI human parkin cloning primer 

RB1035-mPark-rev CCCGTCGACACGTCAAACCAGTGATCTCCCATGC SalI mouse parkin cloning primer 

RB1036-hPark-5´for GGAGGATTACCCAGGAGACCG   5´upstream forward Primer for nested PCR 

RB1037-hPark-3´rev GGTAGACACTGGGTATGCTCCC   3´downstream reverse Primer for nested PCR 

RB1038-mPark-5´for CGTAGGTCCTTCTCGACCCGC   5´upstream forward Primer for nested PCR 

RB1039-mPark-3´rev CCTTGAGGTTGTGCGTCCAGGG   3´downstream reverse Primer for nested PCR 

RB1048Dros-Park-for GCGCCCGGGCATGCTGGAGCTGTTGCAATTTGGAGGG   5`-forward Primer for Fly  Parkin-cDNA 

RB1049Dros-Park-rev GGCGTCGACCCGAACCAGTGGGCTCCCATGC   3`-reverse Primer for Drosophila  Parkin-cDNA 

RB1054-pal1-for GGGACCCATGGATCCCATGTCGGTCGATGTCAAGTCGG SmaI, NcoI, BamHI pal1-cDNA-forward Primer 

RB1055-pal1-rev GGGAGCTCCCTCGAGCCGAATCTTCTGTTTGTCACG SmaI, NcoI, BamHI pal1-cDNA-reverse Primer 

RB1056-D.m.Park-in-for GGACTTGCAGCTGGAAAGCG   internal Primer for Drosophila  Parkin-cDNA 

RB1057-humPark-in-for CCAGGGTCCATCTTGCTGGG   internal Primer for Homo sapiens Parkin-cDNA 

RB1064-Park-RING-for GGGGATGACCGAGTGCTGTGTTTGTGATGG   cloning of RING box domain forward primer 

RB1065-Park-delUB-for GGGGATGACAGATTCTTCAATTCTCGGAAGC   cloning of del UBL domain construct  

RB1070-Park-3ÚTR-rev GGGACTAGTGGGCCCGTACGGTATGAAATGAGCGAAATACTCAGC BsiWI, ApaI, SpeI  Cloning of  Parkin 3´UTR 

RB1087-T7-Term GCTAGTTATTGCTCAGCGG   T7-Terminator-Primer 

RB1088-pGBKT7-3`Seq GGAATTAGCTTGGCTGCAAGCG   3´-reverse Sequencing primer for pGBKT7 

RB1091-Park-for GGGGCATATGTCTGATGAAATCTCTATATTAATACAAG SmaI, NdeI  Parkin 5´forward Primer contains ATG 

RB1105-Park-C.brigg-rev1 GACTGGCAGCTGATATGATTACATCC   C.briggsae pdr-1 cloning primer 

RB1106-Park-C.brigg-for1 GGATTCACGGTCTCCTGTGTTTATCC   C.briggsae pdr-1 cloning primer 

RB1138-Cb-Park-rev2 GGGCTGCAGGAGTCAGCGACAAATCC PstI, SmaI  C.briggsae pdr-1 cloning primer 

RB1139-Cb-Park-for2 GGGCGATCCGCGAGTCAACTTCGGTGTTGG BamHI C.briggsae pdr-1 cloning primer 

RB1143-R01H2.6-for GGGCCATATGTCAGCGACACGGCGTCTTCAG NdeI Cloning of R01H2.6 ORF 

RB1144-R01H2.6-rev GGGAATTCGAGCTCAGGCCGCTTTTCGGCG SacI, EcoRI Cloning of R01H2.6 ORF 

RB1145-M7.1-for GGGCCATATGGCTCTCAAAAGAATCCAGAAG NdeI Cloning of M7.1 ORF 

RB1146-M7.1-rev GGGAATTCGAGCTCATAGCGTACTTTTGCGTCC SacI, EcoRI Cloning of M7.1 ORF 

RB1147-Cb-Park-rev3 GAGAGAACCGAGGAAGCACTCGC   C.briggsae pdr-1 cloning primer 

RB1148-Cb-Park-for3 CTTTCCATAGCTTCCGGAGACGC   C.briggsae pdr-1 cloning primer 
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RB1149-Cb-Park-rev4 GGTACACCCAGGAGTTACCACG   C.briggsae pdr-1 cloning primer 

RB1150-Cb-Park-for4 CGATGGTGAAACTGCTCCATCG   C.briggsae pdr-1 cloning primer 

RB1151-Cb-Park-for5 CTAGCTACACGTGGCATATCCTAACC   C.briggsae pdr-1 cloning primer 

RB1152-Park-for GGGGCCCATGGCTATGTCTGATGAAATCTCTATATTAATACAAG   pdr-1 forward cloning primer, contains ATG 

RB1153-Park(Stop)-rev GGGACTAGTCGACTTAATTAAACCAATGGTCCCATTGACACTC SalI, SpeI pdr-1 forward cloning primer, contains stop 

RB1154-Park-Ubi-rev GGGTCGACTACGTTGCAGGTGTCAGTGAC   pdr-1 reverse primer cloning of UBL domain 

RB1160-Cb-Parkin-ATG-for GGGGCCCATGGCTATGTCAAATGAAGTCACAGTTGTTTTACAGG   C.briggsae Parkin ATG-Start-Primer 

RB1166-R01H2.6-rev2 GGGAATTCTATTCAGGCCGCTTTTCGGCG   Cloning of R01H2.6 ORF 

RB1167-M7.1-rev2 GGGAATTCACATAGCGTACTTTTGCGTCC   Cloning of M7.1 ORF 

RB1168-H.s.-Park-rev2 GGGGTCGACTACACGTCGAACCAGTGGTCCC   human parkin cloning primer 

RB1169-pal1-rev2 GGGCTCGAGTTATAGCCGAATCTTCTGTTTGTC   pal1-cDNA-reverse Primer 

RB1170-Park-Ubi-rev2 GGGGTCGACTACGTTGCAGGTGTCAGTGAC   pdr-1 reverse primer cloning of UBL domain 

RB1180-pGADT7-rev AGATGGTGCACGATGCACAG   3' reverse sequencing primer pGADT7 

RB1193-M13-rev GGAAACAGCTATGACCATG   M13 reverse sequencing primer 

RB1194-K08E3.8-rev GGGAATTCTTACTCCATCATTTCGACGTCATC   K08E3.8 reverse cloning primer,  stop 

RB1195-gIII2382-rev GGGAATTCAATTGAATGCTCGACGAACG   gIII2382 reverse cloning primer,  stop 

RB1204-T7long GTAATACGACTCACTATAGGGC   T7 Promoter Primer 

RB1205-T3 AATTAACCCTCACTAAAGGG   T3 Promoter Primer 

RB1233-Park-for CCGGTACCCCCGGGATGTCTGATGAAATCTCTATATTAATACAAG SmaI, KpnI cloning of Parkin cDNA, contains ATG 

RB1234-myc-for CTGAGCAGAAGCTGATCTCAGAGGAGGACCTA 5' SacI overhang together with RB1235-myc-rev a c-Myc 

RB1235-myc-rev CCGGTAGGTCCTCCTCTGAGATCAGCTTCTGCTCAGAGCT 3' AgeI overhang together with RB1234-myc-for a c-Myc 

RB1236-GAL4DB-for GGGACCGGTGATGAAGCTACTGTCTTCTATCG AgeI cloning of Gal4DB, after RB1234/1235 myc 

RB1237-GAL4DB-rev GGGGATCCGATACAGTCAACTGTCTTTGACC BamHI cloning of Gal4DB 

RB1238-K08E3.8-for GGGAAGCTTATGTCAGGACAAGGACCTCCACC   K08E3.8 primer 

RB1239-C.b.-Park-rev TGTGGAAGCAGGAATTAAGGCG   C.briggsae pdr-1 cloning primer 

RB1251-unc59-cDNA for GGGGCATATGAGCAGTCGGACTGCAAATAGC   unc-59 cloning primer 

RB1252-unc59-cDNA rev GGGTTAGTTTCGATTAAACAATCCGAGACC   unc-59 cloning primer 

RB1253-unc61 cDNA for GGGCATATGTCCGACATCGAGCATAAGTTAC   unc-61 cloning primer 

RB1254-unc61 cDNA rev GGGTCACTTTCTTAACTTCTTTGACACTTTG   unc-61 cloning primer 

RB1818-K08E3.8in-for CCACAGATGATGCAACAGCAAATGG   K08E3.8 primer 

RB1819-K08E3-rev TTTGCATGGATGTACCACTTGCCGG   K08E3.8 primer 

RB1847-K08E3-for CGCGACTTCTCATTTATATACCACAGAAGCG   K08E3.8 primer 

RB1848-K08E3-rev CGTGTATCTCAAAAACGGTTGGTCCAGC   K08E3.8 primer 

RB1856-K08E3-rev GCCCACTCCAAAACTGAGATATATCCC   K08E3.8 primer 

RB1857-act-for TCACGATCATGAGACCATTCAAA   act-1 cloning primer 

RB1858-act-rev GCAAATTGTAGTGGGGTCTTCTTATG   act-1 cloning primer 

RB1859-act1/3-for ATGTGTGACGACGAGGTTGCCGC   act-1 cloning primer 

RB1860-act1/3-rev TTAGAAGCACTTGCGGTGAACGATGG   act-1 cloning primer 

RB1260-C.r.Prk-for1 CAACGAAAGGCAACTGAACGGC   C.remanei pdr-1 cloning primer 

RB1261-C.r.Prk-rev1 CAGATACATGTGATTGCATCCG   C.remanei pdr-1 cloning primer 

RB1287-C.r.Park-ATG-for GGGCCATGGCCATGCCGAATGTCGTCACAATACTTCTGC SmaI, NcoI C.remanei cloning primer, contains ATG 

RB1288-C.r.Park-rev CAGTCAAGTTCGGTTGCTGTCCC   sequencing primer C.remanei Parkin 

RB1300-F44C4.3-for GGGGCATATGAAATACCTCATTCTTGCTGC NdeI F44C4.3 cloning primer 

RB1301-F44C4.3-rev GGGGGTCGACTTAGACTTTTGGGACTCCTCCG SalI F44C4.3 cloning primer 

RB1302-T03E6.7-for GGGGCATATGAACCGATTCATTCTTCTGGC NdeI T03E6.7 cloning primer 

RB1303-T03E6.7-rev GGGGCTCGAGTTAGACCAATGGATAACTGGCC   T03E6.7 cloning primer 
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RB1304-C25B8.3-for GGGGCATATGAAGACGTTGCTCTTCCTTTCC   C25B8.3 cloning primer 

RB1305-C25B8.3-rev GGGGGTCGACTCAGATGTTGTCATCGTAGACG   C25B8.3 cloning primer 

RB1306-F57F5.1-for GGGGCATATGCCTAATTCTTATCAGCAATATTC   F57F5.1 cloning primer 

RB1307-F57F5.1-rev GGGGCTCGAGTTACAATTTTGGAATTCCTCCG   F57F5.1 cloning primer 

RB1308-H22K11.1-for GGGGCATATGTCGGGCCGCGTTTTCCTTC   H22K11.1 cloning primer 

RB1309-H22K11.1-rev GGGGGTCGACTTATTTTCCGGTTCTAGAGGTG   H22K11.1 cloning primer 

RB1311-3'RACE-rev GGCCACGCGTCGACTAGTGATATCTTTTTTTTTTTTTTTTT NotI, MluI, SalI, SpeI, 
+ EcoRV 

3' RACE reverse Primer,  
hybridizes to polyA-tail 

RB1312-5'RACE-for GGCCACGCGTCGACTAGTGATATCGGGIIGGGIIGGGIIG NotI, MluI, SalI, SpeI, 
+ EcoRV 

5'RACE forward Primer, 
homopolymeric dCTP tailed 

RB1313-RACE-universal GGCCACGCGTCGACTAGTGATATC NotI, MluI, SalI, SpeI, 
+ EcoRV 

for nested PCR of  
3' and 5' RACE products 

RB1321-C.r.-Park-for3 AATCAGAACCGCAGAATTGGG   C.remanei pdr-1 cloning primer 

RB1322-C.r.-Park-for4 ACGTTGTCCAAGATGTAATGC   C.remanei pdr-1 cloning primer 

RB1323-C.r.-Park-rev3 GTAATATTTCGTCGCTGATCC   C.remanei pdr-1 cloning primer 

RB1334-C.r.-Parkin-rev4 CCATCATCGTCATATGGTACCC   C.remanei pdr-1 cloning primer 

RB1335-T12E11.1-ATG GGGGCCCATGGACGATGAAGACATGAGCTGC NcoI, SmaI T12E12.1 cloning primer 

RB1336-T12E11.1-Stop CGGGATCCTTAAAAAGAAAAAGTCGTGAAGAAGTGTCTGACG BamHI T12E12.1 cloning primer 

RB1337-KO31-inDel-rev GAGTGATTCTCGAATCGTTCG   internal deletion primer T12E12.1 KO31 

RB1403-hsp16.2-for ATGTCACTTTACCACTATTTCCG   hsp-16.2 cloning primer 

RB1403-hsp16.2-rev TTATTCAGCAGATTTCTCTTCGACG   hsp-16.2 cloning primer 

RB1405-hsp3-for ATGAAGACCTTATTCTTGTTGGGC   hsp-3 cloning primer 

RB1406-hsp3-rev TTAGAGCTCGTCCTTGTCGTCAG   hsp-3 cloning primer 

RB1407-hsp4-for ATGAAAGTTTTCTCGTTGATTTTGATTGCC   hsp-4 cloning primer 

RB1408-hsp4-rev TTACAGTTCATCATGATCCTCCGATGG   hsp-4 cloning primer 

RB1409-hsp70-for ATGAGTAAGCATAACGCTGTTGG   hsp-70 cloning primer 

RB1410-hsp70-rev TTAGTCGACCTCCTCGATCGTTCC   hsp-70 cloning primer 

RB1416-C.b.-prk-for7 AACGAATGCGGTCTCATGGCG   C.briggsae pdr-1 cloning primer 

RB1417-C.r.-prk-rev5 GAGACAGAAAGAAGCTCTAGCG   C.remanei pdr-1 cloning primer 

RB1418-C.r.-prk-for5 ATGTCAGGGCAGGGACAGCAACCG   ATG-Start Primer for C.remanei K08E3.8 

RB1419-K08E3.8-rev GGGGCCATGGTCGACTCCATCATTTCGACGTCATC SalI, NcoI Cloning of K08E3.8-ORF c-terminal 

RB1420-F49C12.9-for GGGGCATATGGTTAAATTGCATTTAAAAACCACC NdeI F49C12.9 cloning primer, contains ATG 

RB1421-F49C12.9-rev GGGCTCGAGTTAATTTTGGAGATCAATAAGAAACTCC XhoI F49C12.9 cloning primer, contains Stop 

RB1422-F52C6.2-for GGGGCATATGCTGCTCTCCATCAAAACGTCG NdeI F52C6.2 cloning primer, contains ATG 

RB1423-F52C6.2-rev GGGGCTCGAGCTAACAAGATCGAGACTTGTGC XhoI F52C6.2 cloning primer, contains Stop 

RB1424-C44B12.5-for GGGGCATATGGTGCAAATCTATCGATCATC NdeI C44B12.5 cloning primer, contains ATG 

RB1425-C44B12.5-rev GGGGCTCGAGTTAATAAGCATTGGAAGCAGCAACTGG XhoI C44B12.5 cloning primer, contains Stop 

RB1426-F29G9.5-for GGGGCATATGGGGCAACAACAGTCAGGTTTCG NdeI F29G9.5 cloning primer, contains ATG 

RB1427-F29G9.5-rev GGGTTACAAATAGAGTTCTTCTGGAGC 1/2 SmaI  F29G9.5 cloning primer, contains Stop 

RB1428-F28D1.5-for GGGGCATATGGCCCTTGTCAAGCTCACTC NdeI F28D1.5 cloning primer, contains ATG 

RB1429-F28D1.5-rev GGGGCTCGAGTTAACAGAATTGAACAGTGTATGAAGC XhoI F28D1.5 cloning primer, contains Stop 

RB1430-K08E3.8-intern-for TTGACGACAGTATTGGAGACAGCG   K08E3.8 internal primer 

RB1431 Cr-K08E3.8-for ATGTCAGGGCAGGGACAGCAACCG   C.remanei K08E3.8 primer 

RB1470-K08E3.8-intern-for CCGAATGAGGAGCAAATTCGAATGG SalI K08E3.8-3' part for cloning of fulllength 

RB1471-T03E6.7-GFP-for GGGGGCATGCTACCCAAACACAAGCCATGCTCC SphI cloning of T03E6.7-fulllength GFP fusion 

RB1472-T03E6.7-GFP-rev GGGGGCTCGAGACCAATGGATAACTGGCCTTGG SalI cloning of T03E6.7-fulllength GFP fusion 

RB1473-F44C4.3-GFP-for GGGGGGCATGCTGCCTTATAGAAGTTGTCTCCATGTC SphI cloning of F44C4.3-fulllength-GFP fusion 

RB1474-F44C4.3-GFP-rev GGGGGGTCGAGGGGACTTTTGGGACTCCTCCGACAACG SalI cloning of F44C4.3-fulllength-GFP fusion 

RB1549-K08E3.8-intern-for AGTATGACGCCGCAGCAACAAC   K08E3.8 internal primer 
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RB1550-K08E3.8-intern-rev TTCTGTCGTCTTCGCATACTTTCC   K08E3.8 internal primer 

RB1616-Cb-K08E3.8-for ATGTCGGGACAAGGACCGCCATCG   ATG-Primer for C.briggsae K08E3.8 

RB1617-SP6-long CGCCAAGCTATTTAGGTGACACTATAGAA   SP6 promoter primer long 

RB1618-Cb-K08E3.8-rev TCACTCCGCCATTTCAGCGTCTTCG   Stop-rev Primer for C.briggsae K08E3.8 

RB1654-pGSTparallel-rev TTCACCGTCATCACCGAAACGC   sequencing primer pGST-parallel 3 reverse 

RB1655-ire1-OF AAGAAGATGTGACTGGGGGTGAG   ire-1 (v33) KO Primer extern forward 

RB1656-ire1-OR CGAAGAAGATAAAGTGCAACTACAGG   ire-1 (v33) KO Primer extern reverse 

RB1657-ire1-IF GATAGGACGAAGCGAGGAAGAG   ire-1 (v33) KO Primer intern forward 

RB1658-ire1-IR ATATCCATGCGACGACGATGC   ire-1 (v33) KO Primer intern reverse 

RB1659-ire1-Del IF AGATGAGAGCAACATTTCATCTATTCACATTT   ire-1 (v33) KO Primer extern forward 

RB1660-ire1-Del IR GAGGCAGGGCAGATTCTATTCCGCTGACGCTG   ire-1 (v33) KO Primer extern reverse 

RB1661-pek1-OF CCTTGGTACCATTCAACGCT   pek-1 (ok275) KO Primer extern forward 

RB1662-pek1-OR CTGAGCCATCGACAAACTCA   pek-1 (ok275) KO Primer extern reverse 

RB1663-pek1-IF ATCACCGCTACTCTGGATGG   pek-1 (ok275) KO Primer intern forward 

RB1664-pek1-IR CTGAGAAGGCAACGCTCTCT   pek-1 (ok275) KO Primer intern reverse 

RB1665-pek1-Del IF GAGATGAGTGTGTATTATATAGTTTTAGCTGGGTTC   pek-1 (ok275) KO Primer in deletion forward 

RB1666-pek1-Del IR GAGCCGTATCTCCGGGTCCACAAGACTCC   pek-1 (ok275) KO Primer in deletion reverse 

RB1671-D1022.1-for GGGGGGCATATGAGTGAGCAGTACAACACTAAAAATGC NdeI D1022.1 cloning primer 

RB1672-D1022.1-rev GGGGCTCGAGTTAAAGGGTATAGTCAAAGTTTGTTGATGCC XhoI D1022.1 cloning primer 

RB1673-Y110A2AR.2-for GGGGGGCATATGCTGAATTTGGGTCCCGGC NdeI Y110A2AR.2 cloning primer 

RB1674-Y110A2AR.2-rev GGGGCTCGAGTTAATAAGAAAAAACGGGAAAAATCGATG XhoI Y110A2AR.2 cloning primer 

RB1675-Y87G2A.9-for GGGGGGCATATGGCTGGTTACGCTTTGAAGCGG NdeI Y87G2A.9 cloning primer 

RB1676-Y87G2A.9-rev GGGGCTCGAGTTAGACTTCCGAAGCGGGAAGACAC XhoI Y87G2A.9 cloning primer 

RB1677-F58A4.10-for GGGGGGCATATGGAGCAATCCTCCCTACTTCTG NdeI F58A4.10 cloning primer 

RB1678-F58A4.10-rev GGGGCTCGAGTCATTCTTCTTGACTTCTGCGAACAC XhoI F58A4.10 cloning primer 

RB1713-F57F5.1-in-for GATAAATTGGTCGACTGTCGAATTTCCCAATTCTCCAGCCAATCG   F57F5.1 internal primer 

RB1739-Cr-K08E3.8-infor AACTTGACTGCACAGCAGCAACAG   C.remanei K08E3.8 internal cloning primer 

RB1740-Cb-K08E3.8-infor TCGAACTTAACTCCTCAGCAGCAACAT   C.briggsae K08E3.8 internal cloning primer 

RB1741-HA-for TATGTACCCATACGATGTTCCAGATTACGCTAC   HA forward 

RB1742-HA-rev CATGGTAGCGTAATCTGGTTCATCGTATGGGTACA   HA reverse 

RB1778-cln3.3-Ex-for CTCTCCCACCTCAATTTTCC   KO-Screening-Primer cln3.3 (gk118) 

RB1779-cln3.3-Ex-rev ACCAATTGCTCCACAGGAAC   KO-Screening-Primer cln3.3 (gk118) 

RB1780-cln3.3-In-for AGACACGGCAGTTTGTTGGT   KO-Screening-Primer cln3.3 (gk118) 

RB1781-cln3.3-In-rev GGGATTGATACTCCTGCTGC   KO-Screening-Primer cln3.3 (gk118) 

RB1925-T24D1.3-for GGGGAATTCATGCCATCACCAGCACGCAGGTCT   T24D1.3 cloning primer 

RB1926-T24D1.3-rev GGGCTCGAGTTATTTGGAAGTTATTCGGCGCTT   T24D1.3 cloning primer 

RB1947-Cr-K08E3.8-rev AGCTGCGATCCAACTAATGGAG   C.remanei K08E3.8 cloning primer 

RB1948-Cr-K08E3.8-for TAATGCTCCTGGATCTGTCCCAG   C.remanei K08E3.8 cloning primer 

RB1975-pek1-PF5-for CCAATTGGAGCAATACATAGGAAAC   pek-1(ok275) KO primer  

RB1976-pek1-PR2-rev CTCTTGACAGCGTACTCGTTC   pek-1(ok275) KO primer  

RB2022-prk-N-GFP-mut-for 
CAAATTTTCAGCTCTCATGAAGCATGGCACCGGTTACGTACTCTGATGAA
ATCTCTATATTAATAC 
  

mutagenesis primer  

RB2023-prk-N-GFP-mut-rev 
GTATTAATATAGAGATTTCATCAGAGTACGTAACCGGTGCCATGCTTCAT
GAGAGCTGAAAATTTG 
  

mutagenesis primer  

RB2024-prk-C-GFP-mut-for 
GTGTCAATGGGACCATTGGTTTAATGCACCGGTTACGTACTAATAACTCT
CTAAAATTCATCTTTTC 
  

mutagenesis primer  

RB2025-prk-C-GFP-mut-rev 
GAAAAGATGAATTTTAGAGAGTTATTAGTACGTAACCGGTGCATTAAACC
AATGGTCCCATTGACAC 
  

mutagenesis primer  

RB2147-K08E3.8-for GGGGAATTCATGTCAGGACAAGGACCTCCACC EcoRI cloning of K08E3.8 Start primer 



118  Materials 

Name Sequence 5’ → 3’ Restriction sites Description 

RB2172-Cr-K08E3.8-rev GCAATGGAAGTCTCAATTGAAGC   C.remanei K08E3.8 cloning primer 

RB2173-CR-for TATGGGCCTGGATCTGTGCAACC  C.remanei K08E3.8 cloning primer 

RB2174-Cb-K08E3.8-rev TCACTCCGCCATTTCAGCGTCTTCG  C.briggsae VT847  K08E3.8 cDNA Primer 

RB2175-Cr-K08E3.8-rev TTATTCAATCATTTCGACATCCTCG  C.remanei EM464  K08E3.8 cDNA Primer 

RB2176-CR-K08E3.8-for ACGTCAGAAAAAGTGGGAGGACTTGC  C.remanei EM464  K08E3.8  cDNA Primer 

RB2186-Cb-K08E3.8-for ACCACAACAACCACTTTCTCGTCCTGG   C.briggsae VT847  K08E3.8 cDNA Primer 

RB2196-K08E3.8-for GGGGGGTGATCAATGTCAGGACAAGGACCTCCACC BclI K08E3.8 cloning primer 

RB2197-K08E3.8-rev CCCGCGGCCGCCTCCATCATTTCGACGTCATC NotI K08E3.8 cloning primer 

RB2204-Cr-K08e3.8-for TAACGAGGATGTCGAAATGATTG   C.remanei K08E3.8 cloning primer 

RB2210-CR-K08e3.8-rev GGACAGATCCAGGAGCATTAAGC   C.remanei K08E3.8 cloning primer 

RB2289-Hs-parkin-for GGGGCGGCCGCATGATAGTGTTTGTCAGGTTCAACTCCACC   H.sapiens parkin  cloning primer 

RB2290-Hs-parkin-rev GGGGAATTCCTACACGTCGAACCAGTGGTCCCC   H.sapiens parkin  cloning primer 

RB2291-KO1.09 GAAAAATGCGTGAAAACCGT   pdr-1 KOs primer extern forward 

RB2292-KO1.10 CTGTGCTCCAACTAGAGGGC   pdr-1 KOs primer extern reverse 

RB2293-KO1.11 GCACATGACTGCGAGGACTA   pdr-1 KOs primer intern forward 

RB2294-KO1.12 GATGCATTTGGAGATGAGCA   pdr-1 KOs primer intern reverse 

RB2295-KO31EL TGGACGATGAAGACATGAGC   Ariadne-2 KO#31extern forward 

RB2296-KO31ER TCCACAGTACGCTACGATGC   Ariadne-2 KO#31extern reverse 

RB2297-KO31IL TGCCGGTTATGGAGATGG   Ariadne-2 KO#31 intern forward 

RB2298-KO31IR GATCCAAAACCGTTTCATGC   Ariadne-2 KO#31 intern reverse 

RB2316-atf6-OL GGCGGGAGTTTAGGAGATTC   atf-6(ok551) KO primer extern forward 

RB2317-atf6-OR AAAGGCACGGAAATTGAGAA   atf-6(ok551) KO primer extern reverse 

RB2318-atf6-IL AATGACCAGGAAATGTGGGA   atf-6(ok551) KO primer intern forward 

RB2319-atf6-IR AAGTGTCAATTGGCCAGTCC   atf-6(ok551) KO primer intern reverse 

RB2323-atf6-indel CTAAGAACTGAGAATGCCGC   atf-6(ok551) KO primer internal deletion 

RB2331-rrf3-ex-for T CGGAAACAGTTGCGAAGACG   rrf-3(pk1426) deletion primer extern forward 

RB2332-rrf3-ex-rev ATCGGAGCTTCATCTGCATC   rrf-3(pk1426) deletion primer extern reverse 

RB2333-rrf3-in-for ATGCTAAGCT CATTGGCAGC   rrf-3(pk1426) deletion primer intern forward 

RB2334-rrf3-in-rev ATCTCCGAGCCCTAGACGAATC   rrf-3(pk1426) deletion primer intern reverse 

RB2335-rrf3-indel-for TCAAGCCACA GAAGAGACTC   rrf-3(pk1426) deletion primer internal 

RB2350-HA-SalI-for GGGGGGTCGACTACCCATACGACGTACCAGATTACGCT SalI HA tag  

RB2351-K08E3.8-NotI-rev GGGGGCGGCCGCTTACTCCATCATTTCGACGTCATCAT NotI K08E3.8 reverse cloning primer 

RB2355-pdr-1 for GAGTGGTACAAGATGTGCACC   pdr-1 KO primer internal deletion 

Table 13. List of Used Primers.  
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7.1 DNA Sequences 

7.1.1 C. elegans 

7.1.1.1 pdr-1/K08E3.8 Genomic Locus 

 
LOCUS       pdr-1   12000 bp    DNA             
DEFINITION  bp 26714-38713 from cosmid K08E3 
SOURCE      N2 var. Bristol 
ORGANISM   C. elegans 
 
FEATURES             Location/Qualifiers 
     CDS             complement (1374..1580) 
                     /gene="K08E3.6 Exon VI" 
                     /product="210 bp" 
     CDS             complement (1627..2379) 
                     /gene="K08E3.6 Exon V" 
                     /product="753 bp" 
     CDS             complement (2567..2938) 
                     /gene="K08E3.6 Exon IV" 
                     /product="372 bp" 
     CDS             complement (2989..3481) 
                     /gene="K08E3.6 Exon III" 
                     /product="493 bp" 
     CDS             complement (3532..3643) 
                     /gene="K08E3.6 Exon II" 
                     /product="112 bp" 
     CDS             complement (3688..3793) 
                     /gene="K08E3.6 Exon I" 
                     /product="106 bp" 
     CDS             4101..4169 
                     /gene="pdr-1 Exon I" 
                     /product="69 bp" 
     CDS             4173..5304 
                     /gene="deletion lg103" 
                     /product="1132 bp" 
     CDS             4215..4360 
                     /gene="pdr-1 Exon II" 
                     /product="146 bp" 
     CDS             4451..4883 
                     /gene="pdr-1 Exon III" 
                     /product="433 bp" 
     CDS             4600..6346 
                     /gene="deletion lg101" 
                     /product="1747 bp" 
     CDS             4653..5349 
                     /gene="deletion tm598" 
                     /product="697 bp" 
     CDS             4889..5368 
                     /gene="deletion tm395" 
                     /product="480 bp" 
     CDS             4930..5020 
                     /gene="pdr-1 Exon IV" 
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                     /product="91 bp" 
     CDS             5300..5504 
                     /gene="pdr-1 Exon V" 
                     /product="205 bp" 
     CDS             5558..5632 
                     /gene="pdr-1 Exon VI" 
                     /product="75 bp" 
     CDS             5679..5820 
                     /gene="pdr-1 Exon VII" 
                     /product="142 bp" 
     CDS             6040..6087 
                     /gene="K08E3.8 Exon I" 
                     /product="48 bp" 
     CDS             6526..6633 
                     /gene="K08E3.8 Exon II" 
                     /product="108 bp" 
     CDS             7129..7338 
                     /gene="K08E3.8 Exon III" 
                     /product="210 bp" 
     CDS             7687..7917 
                     /gene="K08E3.8 Exon IV" 
                     /product="231 bp" 
     CDS             9949..10296 
                     /gene="K08E3.8 Exon V" 
                     /product="348 bp" 
     CDS             10740..11000 
                     /gene="K08E3.8 Exon VI" 
                     /product="261 bp" 
     CDS             11110..11226 
                     /gene="K08E3.8 Exon VII" 
                     /product="120 bp" 
 
        1 CCTACTAGTT TATCCTAATT TTGAAACAAG AATACAATGA CGTAAGCGAC GTGGTGGGAA 
       61 GCATGGAAGC AAGCAGAAAA AACTATAGTT GACATTTTCT GAAAACATCT ACCGCGACTT 
      121 CTCATTTATA TACCACAGAA GCGCAAATTC CTTAGACATT GTCTACGTAT TTGTATATAT 
      181 TTTTTCGCTA CTAAATATTT ACTCTCCGGT GGGCGAGAAG ACGAGCATTT TGATCTCAGT 
      241 CTTTGTAGTC TTCCCCAAAA AATAATTTTT TTGAAATGGT TTCTCAAGAA GATCACGATA 
      301 CTCACCGGAA ACGGAGTCAT TATCCACGAA AATATATATT CTTCCCTTGC AAACTAACTG 
      361 CAACAATGAT TTGTATACAC AGTCGGTTCT TTTTTGGAAA CGTGTCGTTC TTTCGGGAGA 
      421 GGAAAAAAGA GTATATGGAA TAGAAAAAAA ATCGTTCGTA CTTGTATTTT TGTTGCAGCG 
      481 CGGGTTACAG ATTTTTATTA TTTTTTTTGG GCGATATGTA CGATGGGCGG CGCACACAGT 
      541 TATCAGCATT TGATGCTTAT GTTTGATAAG TTTTAAGCAC GCTTAAAGCA TTACCTTCGC 
      601 CTCAGCCTCG CTGAACGTCG AAAAGCATCC CACGCTGACG TGTCGCTGTG CCATGGCTCT 
      661 CTCTGAAATG AAAACAAGAT TTCAGAAGAT AATGACAAAG AATAAATAAA AGGAAGATAG 
      721 ACAGTATGAA TAAAACGGCT ACGAAATAGC TTTGGGAAGT TAGAATAACT TTTCCCGACA 
      781 AAATGGTGGT TGCAACGAAA ACAAAGCTCA AAATTAATTT TCGCGCGCAT ACCGACCAAT 
      841 TTCGTTGTGG GACCAATTTA CGTCAGATAC TCTATGCACC TTTAACTTAA AATGCTTATT 
      901 TATTTTTTAA ATGCATTTGT AAAAGCTTTT ATTTATGTAA AAACCGAAAT TCGTCTAGAG 
      961 TATCGACAAA AATGCAGAAC AACAAGTGAG AAGAAGACGA GCAACTGCCC GTTCTCCACT 
     1021 TCTCTGCGTC TCAATTGTGC TCCGGGACCT TTTTATCGTG AAAATGCACG TTTCTTTCGA 
     1081 AAAACTGAAC TTTTTGTTGT GATCACCGAA TGTTGCTTCA CTATGGCTTT ATTAGAATTT 
     1141 GAGATTGATT GGGAATATAA ATAAATTAAC TATGAAAGAC TTTGAATACA ATAAGCAAAT 
     1201 TCATAAAACT GTTATAAAAA GTGGGCTAAT AAGCATTTAT TTTACAAATG TGCTGCTCGG 
     1261 AATCGAGTAT TATGGACGGT TGTGTAAATG AATGAGAGGA CATATTTGGT GTCGTGAGAA 
     1321 ACGGGAGAAT TAAATAAATA AAAAAATAGC TTCGAAATAA TCACGATCTC CTAATCGTGG 
     1381 AACATCGACC CCAGCAGATG AGCACCACGT GCTCGAGTCG CGTTGGCCGA CCGAGCAAGC 
     1441 AGGGGAGTGG CTGGTGATGT TGTAACTGGT CCAAGGATGC TACGATCACA GAGAGCAAAA 
     1501 TTGTCCTGAT GTCGAGCCGT TTCAATTTGA TTAGAAGCCA TGGAAACTGC AGATGTCCCT 
     1561 AGGAATCGTT GCCAATATAC CTGCAATTTT TATTTTAATC TTGAAAATAT CCTCCTGAAA 
     1621 ACTTACATCA TCAAATTCAA ATAGAGCAGT CATCGCTCGA TGGCAATCCG TGGCATCTCT 
     1681 GCCAGCTATC GCTTGGGACT GCGATTGCTT CACTGGATGA CCCATCACCG CCGGAGCCAC 
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     1741 CATCCGCGCC ATCGCTTCGC AGTTCATCTT GTTGCGACTC GATTGTGCGA TAACTTTGCG 
     1801 CCAGTGAATG AAAAGGTAGG CGAGGGTGTC TCGATTCGCT TGGGGGAGCT CACAGATCAC 
     1861 TCGATTCAGG GCGAGACGTC CATTATCTGG ATCCGTAGAG TAGAGGTTTG CAGCAACGAT 
     1921 GAGCTCTTGA CGAGACGTTC TTGGGATCAA CGGGTCTTTA AGATCTCTTA GGAACCGTTT 
     1981 CAAGGTGTCT GTGATGACCT CAACGTCGTG AAGGCCCACG TTGGGTACCG TTTTTGATCT 
     2041 CAACTCGTCC AAAAGCACAT TGACAGTTCT AACCTGCCCA GGAACGCGGT AAATACCTTC 
     2101 CTGCGTGAGT CCACGAGCCT CCAGGGCAAC CACACAATGA ATAACTGCTG CCGGGATCAT 
     2161 TGGCTTCGCA GATGTGCAAA AATCTTGAAG TCGGAACTCT CCTGCGCCCG GCTTGGCTCC 
     2221 ACGTAATGCG GATTTCGGCG TCATCATCGT CTTGGGGCGT GGTATGCACG GGAGATGAAG 
     2281 TTTGTTGCAG CAACTACGAT GGACAACCTG GTGACAGTCT CTGCATTTCA TTGATGTGGC 
     2341 GAGCTTCAGG GCTGTAGCAC ATTTGTCGCA TTTTCGCATC TGAAAATCAA AAAGGTATTA 
     2401 AAACAGTGTG GCAATTCATG TTTAACAGAA AAAATAGGAA TTCTTTGTTC AGAAATAGAT 
     2461 GTTTGCAACA TGGGGTCCGA GACGGACGCG CCTCTTCATG ATTAGCATGA TTTTCATCAC 
     2521 TACAGAGCTC ACTTTAAAGA AATTTGTTAG CATTTTTTAC ACGTACCGCT TTGATTCCTG 
     2581 CCTCTATAAA CGTGTGTGGT CTCATTGCGA TGTCACGAGT TGTTCCATTA GTCCACGCCG 
     2641 GCGTGCCACG TTTCAGGGTT CGGATATCAA GTGTGCTTTT GGTGAGAATG GCGGACGACA 
     2701 TGCCGAGGCC GATGTTATTT GTGGTTTGTC CTGGTGTTTG ATCGCATGAT GGAATACTTC 
     2761 CACAGCTCAA GCTCCTGCGG GTGAGCTGGC GGTGAAGTGA GACACGTGGC GGGTCCTGGT 
     2821 TCTGAGCTCG AGAGTTATGA ATAGTAGTGG TGGTGGTGGT AGTGGTGGTA GTTGTCATTT 
     2881 CTTGATGAGG TGTAGAACCA TCATCACGGC ATCTTTTTGG AGGTGTACCA CCCTCATTCT 
     2941 GAAAGAACAA ACGCAATTCA ACAAAAACTG TCATGTCATA ATTTTTACCG GCTCTTCATC 
     3001 TATAGTAGCT GTCATAACAC GGCTTCTGCT CCTCTTCGAA TTGGCAGCAG CAGTAATCGC 
     3061 ATGTGCTGAC GCGCTTCTCC GCTTGCCACC AACTGCGTTT CCAGCAGCTG AGCTTCTTCT 
     3121 GACCTCTCTT CCATTGCGCA AATGAATAAC TTCCTCGAAA CTGTCTCCAG TTTCATCGTA 
     3181 ATCCACCTCA CTATCGTCCT CATCGTCCTG TGTGTCCTCC ATCAAATGTG GATGCCTCTG 
     3241 CTGCACCCGT TTCGAGTATG TCCGGACCAG TGGCTCGTGA AGAAACTTGA ACTGATCGCG 
     3301 GTCTTCCTTG GTGAGACTAT TGAATATACC GTTCTTCATC GCATCTTTCA GCTGCTTTTC 
     3361 ACGAGTCTCG TAGACGTTTA GATCGAGCTT CAACGCCTTA TTTTCTTCCA TCAACGCGCG 
     3421 TAAATGTTTC TGAGTGTCTT TGACATCGAT ATCGAACATT GCCAGCTTCT TGCGAGCTTT 
     3481 TCTGAAATAA TAGTGTTTTC TAAACACGTA AACATGAAAT ATTTCACTTA CGCAAGTGCT 
     3541 TCTTCGGCCT CTCTCATATC TGCATTCAGC CGCTTTTTGG ATTCCTCGGA ATCTTTCCAC 
     3601 AGCTTGCGGA GACGCTCAAT CTCATCAATC AAATGAAACA TTCCTGAAAC ACGTCATTAA 
     3661 AATTTGAAAA TGATAATTGA AACTAACCTA TATCCTTAAT ATCGAATTGC GGTCGCTGTG 
     3721 AGTTTAGAAT CATGTTGAAA ATGTGACGCG AGTTTTCGCC GCACACCTTC TCTTTTGATG 
     3781 TACTGGACTT CATTCTAAAA TGTGGAAATG ATTAGAAAAC GAGAAACTCG CCCGAAAATA 
     3841 AGAGAAAAAT GCGTGAAAAC CGTTTCAAAT TTCGTGGAAA ACAGTTCGAA TTTGAAGCTC 
     3901 GCTGCGTTTG TCTCACACGC GACGCGACCC GCTACGCTTG CCATAGGGCG CACATGACTG 
     3961 CGAGGACTAG TGTGCACAAA AACATGGGGC TTCAAGGCCT CGACTAGTTT TTTGAATTTA 
     4021 ATGTTTAAAA CTGCAAGCAG GCCCGCTAGC AGGAAATTTT TTTGTTAATT TCTAAGTCAA 
     4081 ATTTTCAGCT CTCATGAAGC ATGTCTGATG AAATCTCTAT ATTAATACAA GATAGAAAAA 
     4141 CAGGTCAACG TAGGAATCTA ACACTTAATG TAGTGGACAT TTCAAACTTT GAATATATAC 
     4201 ATTATTTTTT TCAGATAAAT ATAACTGGAA ATATCGAAGA TCTCACAAAA GATGTGGAAA 
     4261 AGCTCACCGA AATTCCCAGC GATGAGCTGG AAGTGGTTTT CTGTGGGAAA AAGTTATCAA 
     4321 AATCAACGAT TATGAGGGAT TTGTCACTGA CACCTGCAAC GTAGGTCAAG TAAATATTTA 
     4381 CTTATATAAA TAACTGGAAT TGTTATTTAT ATAAATAACT GGAATTGTTA TTCAAATAAT 
     4441 ATTATTTCAG ACAAATCATG CTTCTCCGTC CAAAGTTCAA TAGTCACAAC GAAAACGGTG 
     4501 CTACTACTGC AAAAATAACA ACAGATTCTT CAATTCTCGG AAGCTTCTAC GTGTGGTGCA 
     4561 AAAATTGTGA CGACGTCAAG CGCGGCAAAC TGCGGGTTTA TTGCCAAAAA TGCTCGTCAA 
     4621 CCTCTGTTCT AGTCAAATCT GAACCCCAGA ACTGGTCCGA CGTTCTCAAA AGCAAGAGAA 
     4681 TACCGGCGGT CTGCGAAGAA TGCTGTACTC CAGGTCTTTT CGCTGAATTC AAGTTCAAAT 
     4741 GTCTAGCCTG CAACGATCCG GCCGCAGCTC TAACTCACGT ACGCGGAAAT TGGCAAATGA 
     4801 CCGAGTGCTG TGTTTGTGAT GGGAAGGAGA AAGTGATCTT CGACCTCGGA TGCAATCATA 
     4861 TTACATGCCA ATTCTGTTTC AGAGTGAGTA AGAATCTAAA TTTTTTGTTG AAATTGTTTA 
     4921 ATTTTAAAGG ATTATTTGCT AAGTCAACTG GAACGATTCG GTTTTGTCAA TCAGCCGCCG 
     4981 CATGGCTTCA CCATTTTCTG CCCCTATCCA GGGTGCAATA GTTCGTTCGA TTTTATCAAA 
     5041 ACCATTCAAT TTTCTGCAGT AGTGATCCTG AAAACTAATT GATAGAAACA AAAAATCTTC 
     5101 CAAAAAATAC AAATATGTTA TGTTTCCATT TTGCAAGTCT GGCATGGTTT TTTTTTTGCA 
     5161 AAAAAAACCC CCACCCGTTC TATTTAAATT TATTTTGAAA ATTTTCTCAC ATGTTTCAAT 
     5221 AGTTTTTCAA TGCCGAGAAA ATTGAAAAAA AAAGTTTTAA AGAAATTAAA CAGAACATTT 
     5281 AATTGAAAAA TAACTTCAGG AGTGGTACAA GATGTGCACC ATTTCCACAT TATGGGTCAG 
     5341 ACGTCGTACA GCGAATACCA ACGGAAAGCC ACCGAGCGAT TGATTGCCGT GGACGACAAG 
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     5401 GGTGTGACTT GCCCGAATGT CTCGTGTGGG CAGAGCTTCT TCTGGGAGCC CTATGATGAC 
     5461 GATGGAAGAT CCCAGTGTCC AGATTGTTTT TTTTCGTTTT GCAGGTATTT TGAGCTTCTA 
     5521 AATCGGAAAT TTTATCGCAA TAAATATCAT CGTTCAGAAA GTGCTTCGAA AGAAATTGTG 
     5581 TGTGCCAGAG CGAAGACGAT CTCACCCGAA CTACAATTGA CGCGACTACA AGGTGATCTC 
     5641 AGCGATTATC CACTACAAAA AACTGTAAAT TCTTCCAGAA GATGCCCAAA ATGCCACGTG 
     5701 GCAACCGAAC GGAACGGCGG ATGTGCTCAC ATTCACTGTA CCTCGTGTGG AATGGATTGG 
     5761 TGTTTCAAGT GCAAGACAGA ATGGAAGGAA GAGTGTCAAT GGGACCATTG GTTTAATTAA 
     5821 TAACTCTCTA AAATTCATCT TTTCTAGAGA TTGTACGTGT TATTCTGTAG ATTTTTACAA 
     5881 CAATTACGGT GTGTCTGAAG TTACATTGAC ATTTTTTCTC TTCAAATTTT AGATCTTTTT 
     5941 CTCAATTTTT GTTGCTGAGT ATTTCGCTCA TTTCATACCT TTTTTTAAAT GTTTTGCCAA 
     6001 ATTTCAAAGA ACACATTTCT CGCAGGGATC TCCATAGACA TGTCAGGACA AGGACCTCCA 
     6061 CCAAGTATGA CGCCGCAGCA ACAACATGTA AGATTTTTTG TGCTTTTGAA CTTGAGAGTA 
     6121 AATTTTAGTG AATTTGAGCA CATTTTACAA CCTTTTTCGG AAAAATTTCA CACTTTTCTA 
     6181 CGGCTTCATC CTTAAAACAA TTGAAGTCAA AAAATGTCTT TTTTTTAATT TTGGGAACAA 
     6241 AAAAAATTAA TGAAAATGTA CAATCACACC AACATGGAAA CATTTCTTGA GCTTCGGGAT 
     6301 ATATCTCAGT TTTGGAGTGG GCTGAAAATT ATTTTTTTCA TGAAAATTAA AAAAACAACT 
     6361 TTTTCATGAA AACAAAACTC ACCGCATTTT TTAACTGAAA TTTGAAAATT TCTCACTCAA 
     6421 ATATCCTTTA AAGTTTCATT TTAAGACGTT TTCAGAGCTT TTTTAAAACC ATATAACCAA 
     6481 ATTTTAAACT AGGAATAAAA AGATTATAAA ATAAAAACAT TTCAGATGTT AATGCAGCAG 
     6541 CAACAGCAGC AACAAATGAT GCGGCAGCAA CAAATGCAGC AACAACAAAT GCAGCAGCAA 
     6601 CGTCAACAGC AAATACAACA ACAGGCTCAA CAGGTAGTAA TATACCGTCC AATTTATCGA 
     6661 AAATTTGAAA TAGCACTTTC TGATAAATTT TTTAACGTAA AATTAAAATA TTTTATGATT 
     6721 TTTTCCGCAA ATTTCTGATC GAAATTTTTT AAAACATTAA ATTAAACAGA TTTAGCGTAT 
     6781 TTTATCGCTA AAACTAAAGA AATTTGATAG GAAACATACC ATTTCGGTTT TTTTAAATAG 
     6841 TAAATAATAA CACTACGATA CAAATAAAAA GCGCTTAAAC ATATATTATT CGGTACTTGT 
     6901 GTATTATACC CCCGCCATTT TAAAAATTAA TTTTTTAGCT TATAAAATAA AAACGTGTGG 
     6961 AATTTTAGGC TTAGGAAAAC ACCATTCCTA AGCCTAACAA GGAAAATGGG TATCACGTTT 
     7021 AATTTAAACG GATAAATTAA TGGAAATTTA ATTAATTTCT AAAATGGCGG GGGTATAATA 
     7081 CACAAGTACC TATTATTCTG TAAAATATCG ATTTACCACA ATTTTCAGCC ATACCAACGA 
     7141 GCTCGAACTC CACAAATGGT ACCACAAGGA GGCTCGCCGG GAGGTGCTCA TCTCCAAATG 
     7201 CATCCTCATC TTCAACCACA AGGACAAATG CAACCGAGAA GCCCTCTAGT TGGAGCACAG 
     7261 CTTCAGGCTC CCTCGTCGGT GCCCACTGCC GCAAATCCGA CCACTCCACA GATGATGCAA 
     7321 CAGCAAATGG GCATGAATGT ACGGGGAGAT TTCTGATAAA ACTTAGAACT ATTGAAAAAA 
     7381 TATTTGGAAA AAATTCAAAA AGGGGAAATT AGTGAGAGTT GGAAATTCGT GTTTTTGGAA 
     7441 TTTTCATTTT CTTTTCTTTT TTTTGTGGTA TTTCAGCATA TGGAATGTTC CTAGTATTTT 
     7501 AAAACTGAAA GTAAATCCCC ATTTTCCGAA CTCTACTTTC ATTCAAATTT CCGATTATTT 
     7561 TGTTCAGAAT TTTTGTTGGA AATTAAAAAA AAACCAATCT AAAACAATTG GCCGTTCAAA 
     7621 CATAAATCTC CAAATAAAAG TAATTTGTGA CAATCTTTTT TAGCTGAAAA AAAAATGTAA 
     7681 TTTCAGCAAC CAATGTCTCT TCCGCCAACA CACGTCTCAC GTCCAGGCTC AGTTGCTCCG 
     7741 CCGTCGTCGG TTCCCGTCAA TTTACAACAC ACATCTGGTG CACCCGGGCT CCCGGGCTCA 
     7801 CAAATGGAGC ATCAGTACCC AATGCATTTG CAGCCACAAC AGCAGACATT ATCAAGGCCG 
     7861 GGGTCTCAGC AAAGTCAACA TATTCAACAA CCCGGAAGCA TTCAAAGACC TGGATCGGTA 
     7921 AATTTTCGGA TTTTATTGAA AAATTTTAAA AAAACAGAGA AGAAATATAC AGTGCTTCAC 
     7981 ATAATGATAC GGCCACCCCC AAATTTTGGT ATAACTCAAA ACTGGGTTGA GATAGCAAAA 
     8041 CATAGTTTCT TGTGAAAATG TTCGCTGTAC TGGCTAACTT TCAGATAAGT ATTGGAAATA 
     8101 TACCTGAACC GTTCGTAAAA AAAGATAAAC CATTTTTTCA TGAAAAACCA TATAAAAAAA 
     8161 TCCACAAAAT GATACGGCCA CCCTTGGTTT TTGTTTTCTT TTTTCGTTTT TTTTGCAATT 
     8221 TTTTTTGCTA AACGTTAGGT TTCATGTTCG TTTGTGTTTT TACAGCTATG GGTCGTGGAA 
     8281 TAACTTTAAC TGACTACGAA AAAGGACAAA TTGTGCAAAA TTATCTCAAG GCTTCTCGGA 
     8341 TCGTCAGATT TTTCGTGATT TGAAACGTTT GAGAGATATG ATCACTCGAT ATGCTTCAAA 
     8401 TCCTGCCGCT TATTGCACCA AAAAGTCTTC TGGTCGCCCA CCACTCCTTT CTGGTAGAGA 
     8461 CAAGCGAAAA ATCGTTCGTC GAGCATTCAA TTGAACAGTG ACTTGCTCGA AAAGTAGGAG 
     8521 CGAGATGAAC CTGCCAGTGT CTGTTGAGAC CGTACGTCGT GTCCTTCGAA GTCCCAGTTT 
     8581 ATCAAAAGAC GAAAATTAAT AAAGGCTAAT TTCATTACCG AAAAACACGG CCAAAATCTT 
     8641 ATTCAGTTTG CTAAAATCAG CCAGAGAACT AACTGGAGAC AAGTGAGGAT TACGGTATGA 
     8701 TCATTCAATC TCATGTTTTG GTCTCAGATC ATCTTCAGTG GCGAGAAAAA GTTTAACTGT 
     8761 GATGGTCCTG ATGGCTACCA TGATTACTGG CACGATTTGA GAAAAGAAAA GATGAACTGA 
     8821 AACCAAAACA TGAGATTGAA TGATCATACC GTAATCCTCA CTTGTCTCCA GTTAGTTCTC 
     8881 TGGCTGATTT TAGCAAACTG AATAAGATTT TGGCCGTGTT TTTCGGTAAT GAAATTAGCC 
     8941 TTTATTAATT TTCGTCTTTT GATAAACTGG GACTTCGAAG GACACGACGT ACGGTCTCAA 
     9001 CAGACACTGG CAGGTTCATC TCGCTCCTAC TTTTCGAGCA AGTCACTGTT CAATTGAATG 
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     9061 CTCGACGAAC GATTTTTCGC TTGTCTCTAC CAGAAAGGAG TGGTGGGCGA CCAGAAGACT 
     9121 TTTTGGTGCA ATAAGCGGCA GGATTTGAAG CATATCGAGT GATCATATCT CTCAAACGTT 
     9181 TCAAATCACG AAAAATCTGA CGATCCGAGA AGCCTTGAGA TAATTTTGCA CAATTTGTCC 
     9241 TTTTTCGTAG TCAGTTAAAG TTATTCCACG ACCCATAGCT GTAAAAACAC AAACGAACAT 
     9301 GAAACCTAAC GTTTAGCAAA AAAAATTGCA AAAAAACGAA AAAAGAAAAC AAAAACGAAA 
     9361 AAAGAAAACA AAAACCAAGG GTGGCCGTAT CATTTTGTGG ATTTTTTTAT ATGGTTTTTC 
     9421 ATGAAAAAAT GGTTTATCTT TTTTTACGAA CGGTTCAGGT ATATTTCCAA TACTTATCTG 
     9481 AAAGTTAGCC AGTACAGCGA ACATTTTCAC AAGAAACTAT GTTTTGCTAT CTCAACCCAG 
     9541 TTTTGAGTTA TACCAAAATT TGGGGGTGGC CGTATCATTA TGTGGAGCAC TGTATTTATA 
     9601 AACATTTTTA AAAAATTATT CGAAAATTCT AAAAATTTTT AGAAATTTCT CGAATATTCC 
     9661 CGTATTTTAG GAGTAAAAAA AGGTTCTTTT TTGAGATTTT TCAAACGAAA TAGTGAAAAA 
     9721 ATTTCAATGA TAAACAGGAA AAAATCTTCT TTTTTTGAAA AAATTGTATT TCTTAAATAA 
     9781 AAATTACTTT ATTTGGCATT TCAAGTGAAA GTTTGATTTT TTTTCAAATT AAAATTTTTA 
     9841 TACAAAAAAA AATTCCAAAA AAGTTCAACA TTAAATTTCA ATGATTTGAA AAATAAAAAT 
     9901 AACATTTTTT CGAAAATTTA GAAAACAAAA ACCTCTCAAA ATTTTCAGGT TCTAGCTCCA 
     9961 GGTTCAATAC CTCCCGGCGG GCCAGCTTCC CAAACAGGAC CCCAATCGAT TCAAGTCTTC 
    10021 GGACCCGGCT CCGTGCAGCC ACCAGGCTCA ACACAGGCTC CGTCCTCAGT CCAACCGGCT 
    10081 TCCACATTCA ATCCAGGCTC GATTCAGGCT CCGGCAAGCC AGCAGCCGCC TGCATCAGTT 
    10141 CAACCACCGC CATCTGCAGC GTCGGGCTCA ACTGTGGCCG GTGCGCAGAG CTCCAAAGAG 
    10201 CCGCTGAAAC CGAATGAGGA GCAAATTCGA ATGGTTCAGG ATCCTGTGGA TTTGGTTCGA 
    10261 AATTTGGTGC AAAAGGATCT CAGAAATTCG TTGGTGGTAA GCTTTACAAT TTTTGTTGGA 
    10321 ATTTTGAAGA ATAGAAAAAA CTAAAGGTTT GAATAAAATT GAATGTTTAG GAAAGAATAT 
    10381 GTAAGAAAAA TTTATTTCAA ATTTTTTTTT TCAAAGCATC AATTATTTTG GTCAAACAAA 
    10441 GAAAAAGAAA AATTCACTTT TAATGGCTTT TCAGAAAAAA AAAATTGTTT TGAAATTTTT 
    10501 GACATATTTA GCTGTTGTTT AAAAATTGTT TGTTGTTTAA AAAGTTGTTG TTTTTTAAAA 
    10561 AGAAAAAATC GAAAAAAAAC CTCATCGAAA AAAAGAAAGT ATTTTGACTT GAAAACAGAG 
    10621 AAATGAAATT TCCATGTTTT TCTTGAATAA AAAACCATTT TTATATCTTT ATTCGATTAT 
    10681 TTCAGATTTT TACATAATCA ATTAATTTTT TGATTACAAA ATCGAATAAA TAAATTCAGG 
    10741 AAATGAACAA ACGCGGTGCG GAGCTTGTGC GTCAGAAACA AGAAGGAGAA GTGAACGAGG 
    10801 ATGGAAAAGC TCAGTACAGC AGAGCCACGA ACGATTTTCA TGCGGTTTGC GATGAAATTG 
    10861 ACCGTACTTT GACGACAGTA TTGGAGACAG CGAAACAATT GAGCAAACTT GACAAAGTGT 
    10921 TCTTTGATCG GAGCTCTCGA GATCTCGACG GGGAGGTTAT GGTCAATTCT GTGCAGAATT 
    10981 TTGTGGATAA TACTGAAATT GTAAGCAGGG TTCAGGCTAA AATTGTGTTT TGGTAGATGT 
    11041 TTGGACACTA ACAAATATTC GTTGCGAAGG AGGATCGTTG AAAAAAGTCA AACTTTCCTA 
    11101 ATTTTTCAGG TACAAAGAAT GTTCGACGAC ACAATTGGAA GTGTGACGTC TTCAATGGAA 
    11161 AGTATGCGAA GACGACAGAA GAAATGGGAG GATCAACACA AAAATGATGA CGTCGAAATG 
    11221 ATGGAGTAAA TATTAGTTAT TTAATGATTG TTCTATTGTT CTCAAATACA AAAAAGCGTT 
    11281 ACATTTCTGT AAAATAAAAA AGATAATTTG CATCTATTTC AGAAAATCAT TTTCTCAATG 
    11341 TTAAATCTTA TTTTTCTTAA TTTCTTGTGT GTTTTCATCG CTCAATTATC GTTTTTCTCT 
    11401 GAGAATTGAT TTTCCAATGT AAAATGAGAG ATCTTCTTGT TTAAAAATAA TAATAAAAAT 
    11461 CACTTACTTC TCTGAAATAT GCGTTTTAAT CTCTCAAAAA AATTGAGATT TGTCCGTTTT 
    11521 TCATTAATTC AGACAGTTTT CCGGTAAATC TACTTTTACA CCATTTGAAA AGGGAAATAC 
    11581 CAAATTATTA AAACAGCATA AAACAAATTT AAAAAATTTC TTCAGTTATT TTCGGTCTAT 
    11641 CTTTTTGTCA TTAAAATAGT TTTTTTCCAA AAAATGAATT TCACATTTTT AAAGAAAAAA 
    11701 TTTGAATTGA GTCAGATTTT TAAGTACGAT AATTTTTTAT TAGAAAAAAA CTAATTTTGA 
    11761 GAAGAAAATA GATATGTAAA TGGTTTAAAA TGTGTACTTT AAAATGTGAA ATTTAAAATT 
    11821 ATTACACGGC CCGGCAAGTG GTACATCCAT GCAAATGCGC TCTACTGATA ATTTGAGTGT 
    11881 AGACCAGGTT TGGGCGCGTG ATAACGAAAA AAGCTTTGGT CCAAAAAATT TAGAATTTAA 
    11941 TTTCGGACAT TTTTTATATG CATCACAAAA AAGCTGGACC AACCGTTTTT GAGATACACG 
 
 

7.1.1.2 pdr-1 cDNA ORF 

 1161 bp 
 
   1 ATGTCTGATG AAATCTCTAT ATTAATACAA GATAGAAAAA CAGGTCAACG TAGGAATCTA 
       61 ACACTTAATA TAAATATAAC TGGAAATATC GAAGATCTCA CAAAAGATGT GGAAAAGCTC 
      121 ACCGAAATTC CCAGCGATGA GCTGGAAGTG GTTTTCTGTG GGAAAAAGTT ATCAAAATCA 
      181 ACGATTATGA GGGATTTGTC ACTGACACCT GCAACACAAA TCATGCTTCT CCGTCCAAAG 
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      241 TTCAATAGTC ACAACGAAAA CGGTGCTACT ACTGCAAAAA TAACAACAGA TTCTTCAATT 
      301 CTCGGAAGCT TCTACGTGTG GTGCAAAAAT TGTGACGACG TCAAGCGCGG CAAACTGCGG 
      361 GTTTATTGCC AAAAATGCTC GTCAACCTCT GTTCTAGTCA AATCTGAACC CCAGAACTGG 
      421 TCCGACGTTC TCAAAAGCAA GAGAATACCG GCGGTCTGCG AAGAATGCTG TACTCCAGGT 
      481 CTTTTCGCTG AATTCAAGTT CAAATGTCTA GCCTGCAACG ATCCGGCCGC AGCTCTAACT 
      541 CACGTACGCG GAAATTGGCA AATGACCGAG TGCTGTGTTT GTGATGGGAA GGAGAAAGTG 
      601 ATCTTCGACC TCGGATGCAA TCATATTACA TGCCAATTCT GTTTCAGAGA TTATTTGCTA 
      661 AGTCAACTGG AACGATTCGG TTTTGTCAAT CAGCCGCCGC ATGGCTTCAC CATTTTCTGC 
      721 CCCTATCCAG GGTGCAATAG AGTGGTACAA GATGTGCACC ATTTCCACAT TATGGGTCAG 
      781 ACGTCGTACA GCGAATACCA ACGGAAAGCC ACCGAGCGAT TGATTGCCGT GGACGACAAG 
      841 GGTGTGACTT GCCCGAATGT CTCGTGTGGG CAGAGCTTCT TCTGGGAGCC CTATGATGAC 
      901 GATGGAAGAT CCCAGTGTCC AGATTGTTTT TTTTCGTTTT GCAGAAAGTG CTTCGAAAGA 
      961 AATTGTGTGT GCCAGAGCGA AGACGATCTC ACCCGAACTA CAATTGACGC GACTACAAGA 
     1021 AGATGCCCAA AATGCCACGT GGCAACCGAA CGGAACGGCG GATGTGCTCA CATTCACTGT 
     1081 ACCTCGTGTG GAATGGATTG GTGTTTCAAG TGCAAGACAG AATGGAAGGA AGAGTGTCAA 
     1141 TGGGACCATT GGTTTAATTA A 
 
 

7.1.1.3 K08E3.8 cDNA ORF 

 1326 bp 
 
        1 ATGTCAGGAC AAGGACCTCC ACCAAGTATG ACGCCGCAGC AACAACATAT GTTAATGCAG 
       61 CAGCAACAGC AGCAACAAAT GATGCGGCAG CAACAAATGC AGCAACAACA AATGCAGCAG 
      121 CAACGTCAAC AGCAAATACA ACAACAGGCT CAACAGCCAT ACCAACGAGC TCGAACTCCA 
      181 CAAATGGTAC CACAAGGAGG CTCGCCGGGA GGTGCTCATC TCCAAATGCA TCCTCATCTT 
      241 CAACCACAAG GACAAATGCA ACCGAGAAGC CCTCTAGTTG GAGCACAGCT TCAGGCTCCC 
      301 TCGTCGGTGC CCACTGCCGC AAATCCGACC ACTCCACAGA TGATGCAACA GCAAATGGGC 
      361 ATGAATCAAC CAATGTCTCT TCCGCCAACA CACGTCTCAC GTCCAGGCTC AGTTGCTCCG 
      421 CCGTCGTCGG TTCCCGTCAA TTTACAACAC ACATCTGGTG CACCCGGGCT CCCGGGCTCA 
      481 CAAATGGAGC ATCAGTACCC AATGCATTTG CAGCCACAAC AGCAGACATT ATCAAGGCCG 
      541 GGGTCTCAGC AAAGTCAACA TATTCAACAA CCCGGAAGCA TTCAAAGACC TGGATCGGTT 
      601 CTAGCTCCAG GTTCAATACC TCCCGGCGGG CCAGCTTCCC AAACAGGACC CCAATCGATT 
      661 CAAGTCTTCG GACCCGGCTC CGTGCAGCCA CCAGGCTCAA CACAGGCTCC GTCCTCAGTC 
      721 CAACCGGCTT CCACATTCAA TCCAGGCTCG ATTCAGGCTC CGGCAAGCCA GCAGCCGCCT 
      781 GCATCAGTTC AACCACCGCC ATCTGCAGCG TCGGGCTCAA CTGTGGCCGG TGCGCAGAGC 
      841 TCCAAAGAGC CGCTGAAACC GAATGAGGAG CAAATTCGAA TGGTTCAGGA TCCTGTGGAT 
      901 TTGGTTCGAA ATTTGGTGCA AAAGGATCTC AGAAATTCGT TGGTGGAAAT GAACAAACGC 
      961 GGTGCGGAGC TTGTGCGTCA GAAACAAGAA GGAGAAGTGA ACGAGGATGG AAAAGCTCAG 
     1021 TACAGCAGAG CCACGAACGA TTTTCATGCG GTTTGCGATG AAATTGACCG TACTTTGACG 
     1081 ACAGTATTGG AGACAGCGAA ACAATTGAGC AAACTTGACA AAGTGTTCTT TGATCGGAGC 
     1141 TCTCGAGATC TCGACGGGGA GGTTATGGTC AATTCTGTGC AGAATTTTGT GGATAATACT 
     1201 GAAATTGTAC AAAGAATGTT CGACGACACA ATTGGAAGTG TGACGTCTTC AATGGAAAGT 
     1261 ATGCGAAGAC GACAGAAGAA ATGGGAGGAT CAACACAAAA ATGATGACGT CGAAATGATG 
     1321 GAGTAA 
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7.1.2 C. briggsae 

7.1.2.1 pdr-1/K08E3.8 Genomic Locus 

 
LOCUS       pdr-1  7962 bp    DNA             
DEFINITION   
SOURCE      VT847 
ORGANISM   C. briggsae 
   
FEATURES             Location/Qualifiers 
     CDS             complement (1..198) 
                     /gene="K08E3.6 Exon VI" 
                     /product="198 bp" 
     CDS             complement (249..1001) 
                     /gene="K08E3.6 Exon V" 
                     /product="753 bp" 
     CDS             complement (1079..1444) 
                     /gene="K08E3.6 Exon IV" 
                     /product="366 bp" 
     CDS             complement (1628..2118) 
                     /gene="K08E3.6 Exon III" 
                     /product="491 bp" 
     CDS             complement (2171..2282) 
                     /gene="K08E3.6 Exon II" 
                     /product="112 bp" 
     CDS             complement (2329..2434) 
                     /gene="K08E3.6 Exon I" 
                     /product="106 bp" 
     CDS             2714..2782 
                     /gene="pdr-1 Exon I" 
                     /product="69 bp" 
     CDS             2827..3402 
                     /gene="pdr-1 Exon II" 
                     /product="576 bp" 
     CDS             3467..3557 
                     /gene="pdr-1 Exon III" 
                     /product="91 bp" 
     CDS             3610..3889 
                     /gene="pdr-1 Exon IV" 
                     /product="280 bp" 
     CDS             3960..4101 
                     /gene="pdr-1 Exon V" 
                     /product="142 bp" 
     CDS             4364..4411 
                     /gene="K08E3.8 Exon I" 
                     /product="48 bp" 
     CDS             4464..4571 
                     /gene="K08E3.8 Exon II" 
                     /product="108 bp" 
     CDS             4623..4832 
                     /gene="K08E3.8 Exon III" 
                     /product="210 bp" 
     CDS             4899..5846 
                     /gene="K08E3.8 Exon IV" 
                     /product="948 bp" 
     CDS             5895..6026 
                     /gene="K08E3.8 Exon V" 
                     /product="132 bp" 
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        1 TCAATCATGG AATATTGGTC CCAAAAGATG GGCTCCACGG TTCCGCGTGG CCAGGGCGGA 
       61 ACGAGCCAGA AGAGGTGTGG CAGGAGAAGT TGTGACCGGT CCCAGAATAC TCCGGTCACA 
      121 AAGAGCCACA GATTCATTTC GAGCAGTTTC GATTTGAAGT GAAGCAGTGG ACGTTCCCAG 
      181 GAATCGTTGC CAGTACACCT AAAAAGAATA CTTTGATATT CAAAAAACTA TATAGAATAC 
      241 TGGCTTACAT CATCAAATTC GAAGAGAGCT GTGATCGCTC TATGACAATC CTGCATATCA 
      301 CGACCAGCTA CGGCCTGAGA CTGGGATTGC TTTATTGGGT GTCCCATAAC CGCTGGAGCC 
      361 ACCATCCGAG CCATCGCTTC ACAATTCATT TTGTTCCGAC TGCATTGAGC GATAACTTTT 
      421 CGCCAGTGGA TGAAAAGATA AGCCAGAGTG TCACGGTTCG CCTGTGGGAG TTCGCAAATC 
      481 ACTCGGTTCA ATGCGAGTCT GCCGTTGTCT GGATCCGTAG AATATAAGTT CGAAGCGGCG 
      541 ATCAACTCCT GACGAGATGT TCTCGGAATC AGCGGGTCCT TAAGATCTCT CAAGAATCTT 
      601 TTCAGAGTGT CTGTAATCAC TTCGACATCG TGAAGTGCTA CATTCGGGAC AGTCTTCGAT 
      661 CTCAATTCAT CAAGGAGCAA CGCTACAGTT CTCGTTTGAC CTGGTACACG GTAAATTCCT 
      721 TCTTGGGTCA AACCGCGAGC TTCGAGAGCG ACAACACAAT GAATAATAGC GGCTGGAATC 
      781 ATTGGCTTGG CGGCAGTACA AAAATCTTGT AGACGGAATT CTCCAGCGCC AGTTTTCGCT 
      841 CCACGACCAG CCGACTTCGG AGTCATCATT GTTTTCGGAC GAGGTATACA TGGAAGATGG 
      901 AGCTTGCTGC AGCAGTTTCT GTGAACCACT TGATGGCAAT CTCTGCACTT CATCGAAGTT 
      961 GCAAGCTTCA GCGCAGTTCC ACACTTGTCG CATCTTCTCA TCTGAAAAAA GTATCCTTTC 
     1021 AGGTCTGATT CCTTCTTGCT ATGATTTTAT GATTCAGTGT TTAAATCCTG AAACTCACCG 
     1081 CCTTAATTCC TGCTTCCACA AACGAATGCG GTCTCATGGC GATATCTCGG GTGGCTCCAG 
     1141 TAGTCCATGC GGGTGTTCCA CGCTTCAATG TACGAATGTC GAGTGTGCTT TTGGTCAGAA 
     1201 TCGCAGACGA CATTCCCATT CCGTTGTTGT TCGTAGTTTG GCCAGGAGTA TGATCACACG 
     1261 ACGGCACACT TCCAACGCTC AGACTTCTCC TAGTAAGTTG TCGGTGCACT GATATACGGG 
     1321 GCTGTCTAGA ATTCTGAATG GTCGTGGTGG TAGTAGTCGT GGTTGTCGTG GTAACTTCTG 
     1381 GGTGTAGCGA TGGTGAAACT GCTCCATCGT CGCGATAGCG TTTCGGTGGA GTGCTTCCTT 
     1441 CGTTCTGAAA CTTATTATGT TGTTTATTAT TAGACTGCGC TGACTACTGT AGTCGAGTCA 
     1501 TTATGAATTT TCCTCTGCTC AGATATCATT TTCTACAACA TGGGGTTGAG ACGGACGCGC 
     1561 CTCTTCATGA TTAGCATGAT TCTCATCACT GCAGAAACCA AAATCATATG AAAAATGAAT 
     1621 CACTTACTGG CTCCTCGTCT ATAGTCGCAG CCATCACACG GCTTCTGCTT CGCTTTGAAT 
     1681 TGGCAGCAGC AGTCGTGGCA TGAGCTGATG CACTTCTTCT TTTGGAAGTT CCAGCCATGT 
     1741 TACCAGCAGC GGACGATCTT CTAACTTCCC TCCCACTTCT CAACGCGTAA CATTCATCGA 
     1801 AACTATCCCC GGTGACATCG TAATCCACTT CACTGTCGCC ATCTTCGTCC TGCGTCTCTT 
     1861 CCATCAAATG GGGATGCCTC TGTTGTACCC GTTTCGAGTA TGTGCGAACC AATGGTTCGT 
     1921 GGAGGAACTG GAACTGATCC CGATCCTCTT TGGTGAGACT GTTGAAAATG CCATTCTTCA 
     1981 TTGCCTCTTT CAGCTGCTTC TCTCGAGTCT CGTAGACATT CAGATCCAGC TTCAACGCCT 
     2041 TATTTTCTTC CATCAAGGCG CGCATGTGCT TCTGAGTATC TTTCACATCA ATGTCAAACA 
     2101 TTGCCAGCTT CTTGCGAGCT TTTCTGAAAA AGAAACATTA TGTGTGAATA GAATGTTGAG 
     2161 TTTGACATAC GCGAGTGCTT CCTCGGTCTC TCGCATTTCA CTGTTAAGAC GTTTCTTCGA 
     2221 TTCTTCTGAC TCTTTCCATA GCTTCCGGAG ACGCTCAATT TCGTCAATGA GATGAAAAAT 
     2281 TCCTAAAAAT TCCACTAGTC TCTATATTCA TTTAGAAACT CAACATACCT ATGTCCTTAA 
     2341 TATCGAATCG CGATTTTTGT GAGTTGATGA TCATATTGTA CATTTGTCGC GAGTTGTCGC 
     2401 CGCATAGCTT TTCTTTTGAA GTACTAGACT TCATTCTGCA ATTTAGAAAC CAATTAGAAA 
     2461 TACAGGTTTA ACAATCAGCG ATCAATATAA AAGTAGAAAA TGTGGAAAAC GTAGCGAGAA 
     2521 ACAGTTTTCC GGATTTGAAA CTCGCTGAAT TTTGAGAGCC GCGTCGCGAC CGCAACGCTT 
     2581 CGCCATGAGG CGCGGCAGCA ACAATGGCCT AGGTCTTGCG GCAGATTACT AGTCCCTCAC 
     2641 AATGTCTTTT TGATTTCAAC TTTTTTCACA ATATTTTTCG AATTTTCAGT TTTTTTAAAT 
     2701 GTTTTTTTCA GGTATGTCAA ATGAAGTCAC AGTTGTTTTA CAGGACAGGA AGACTGGTCA 
     2761 ACGACGAAAC TATACAATAA ACGTACGAAT TTCCATAATG AGCTAATAAA AAATTTGAAA 
     2821 TCTCAGGTTA ACAACAATGA AAACATACTG GAGTTGACAA AAAGCGTAGA AAAGATTACA 
     2881 AAGATTCCAA GTGAAGAGTT AGAAGTGGTG TTTTGTGGAA AGAAACTTTC AAAATCGACA 
     2941 ATTATGAAGG ATTTGTCGCT GACTCCTGCA ACACAGATAA TGTTACTTCG ACCAAATTCC 
     3001 GTTGTAAAAA CAGCAACTTC AAGTTCAAAG TTCCAAACAA CTGATTCCTC GATTCTAGGA 
     3061 AGTTTTTATG TCTGGTGCAA AAGTTGTGAC GACGTTCGAA GAGGAAAACT TCGCGTTTAT 
     3121 TGTCAGAACT GCGAGTCAAC TTCGGTGTTG GTAAAGGCAG AACCACAGAA CTGGATGGAT 
     3181 GTTCTGAAAA GCAAAAGAAT ACCAGTGACA TGTGAGAACT GTTGTCGACC TGGACTTTAT 
     3241 GCAGAGTTCA AATTCAAATG CCTCACTTGT AACGATTTAG CCGCAGCGTT AACTCATGTT 
     3301 CGAGGAAACT GGCAGATGGC GGAATGCTGT ATTTGTGATG GAAAAGAGAA AATCATTTTT 
     3361 GATCTAGGAT GTAATCATAT CAGCTGCCAG TCTTGTTTCA AAGTATGCAA CATATAAATT 
     3421 GACTAAATTG ACTATTTGAC TATTGCCCAA TTAAAATTTG TTTTAGGATT ACCTTCTGAG 
     3481 CACTCTCCAA GAATTCCATT TCAAAAACCG CCCGCCGTAC GGATTCACGG TCTCCTGTGT 
     3541 TTATCCAGAA TGCAATCGTA CGTTTTTGTG ATAACTACTG TCATCTAAAA CAGTCGAGCT 
     3601 AGTCTTCAGG AGTAGTCCAA GACGTTCACC ATTTTCATGT GATGGGTCAA TCCTCATACA 
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     3661 GTGAGTATCA ACGAAAGGCC ACCGAAAGGC TTATTGCAAT CGACGATGAA GGTGTTACAT 
     3721 GCCCAAACCC TTCGTGTGGA CAAAGCTTTT TCTGGGAACC CTACGATGAT GACGGAAGAT 
     3781 CGCAATGTCC GGATTGTTTT TACACGTTTT GCAGAAAGTG TACTGAAAGA GATTGTGTTT 
     3841 GCCAAAGTGA AGACGACCTG ACAAGAACAA CTATTGAAGC GACTACCAGG TATTCCAAAT 
     3901 TTGAATTCTA CCAAGTTATA AAAAAAATTT GAATTCTACC CAGCTATACT CTTTTACAGA 
     3961 CGATGCCCAA AGTGCAACGT GGCAACAGAA CGCAACGGCG GGTGTGCTCA TATCCATTGC 
     4021 ACATCGTGCG GAATGGATTG GTGCTTCAAG TGTGTCACAG AGTGGAAAGA GGAATGTCAA 
     4081 TGGGACCATT GGTTTAACTG ATTCTGGCAA TTTTGTATAT TGTATAGTGT TAATTGTAAA 
     4141 TATCTAGCTA CACGTGGCAT ATCCTAACCA TGTTCTTATC WGCAATATCG GTTCTATTCT 
     4201 ATTGATTACG GTAATTATGA ATATAGTGCC ATTAAAGTGC TTGCAATTTT GTTTTCAATA 
     4261 TTTTAAATCT TCTAGAGTTT GTATCTCTCA TTATCTTTGC AATTACGTCT CACTCATTAA 
     4321 CCTTGATAAT TATCACTTCA GTTCAACTAC GAGAACAGCC GAAATGTCGG GACAAGGACC 
     4381 GCCATCGAAC TTAACTCCTC AGCAGCAACA TGTAATGTCT TGAACCTTCT CTTCAAATAT 
     4441 TCTGACGAAT AATCAGTTTG TAGATGATTA TGCAGCAGCA GCAACAACAA CAAATGATGC 
     4501 GACAACAACA GATTCAACAA CAGCAATTGC ACCAAAGACA GTTGCAACAA CAGCAAGCGC 
     4561 AACAGCAGCA GGTAATAATA TTGAAATGAC GGATTTCATT ACCTTTTTTG CAAGACTTTC 
     4621 AGTCGTATCA ACGTTCTCGA ACACCACAGA TGCAACAGCA TCCAGGCGGA GGATCACCAG 
     4681 GATCACACCT CCAGATGCAT CCACATCTGC AATCACAGGG GCATATGCAG CCTAGATCCC 
     4741 CACTTGTCGG ACAACATCAT CCAGCACCCG GAAGTATCCC ACCTGGAAAT CCAGCGACAC 
     4801 CACAAATGAT GCAGCAGCAA ATGGGAATGA ATGTAAGGGT TTATTATCCT GTTGATAGCA 
     4861 AATCTCGAAA AAAATATTTA AAAAAAAAAC AATTTCAGCA ACCAATGTCA CTCCCTGCGC 
     4921 CGCATGTGTC CCGCCCGGGA TCTGTTGCAC CACCAGCATC AGTTCCACCA AACATGCACA 
     4981 CTGGTCCTTC GAGCAATCAA ATGGATCAAA TGGGAGGCCA ATCGCAATAT TCACATCATC 
     5041 TCCAACCACA ACAACCACTT TCTCGTCCTG GATCTCAACA AAGTCACATT GCTGGTGGTC 
     5101 ACGGCGGACC CCACTCTGTT CAACAACCAG GTAGCATTCA AAGACCAGGA TCTGTGCTTG 
     5161 CTCCTGGATC TATTCAACAG CCAGGATCAC TTCTTGCTCC GGGATCCATG CACCAACCGG 
     5221 GGTCTGTTCA GCAACCAGGT TCTCTCGGGG CTCCCCTATC ACATACTGGT GCTGGAGGAC 
     5281 CTCAATCCGT TCAAGGCTAC GGTCCAGGAT CTGTTCAACC GCCTGGCTCA GCCCAAGCAC 
     5341 CATCATCAGT TCAACCCGGT TCCACTTTTG CTCCAGGATC TCTGCAAGCT CCAGCCAGCC 
     5401 AACAACCACC TGCTTCCATC CAACCACCAC CATCAGCTGC ATCTGGATCT GTCGCCGGAC 
     5461 CAGCAAGTGC TGCTCCAGCT AAAGTGGAGC CATTGAAGCC AAATGAAGAG CAAATAAGAA 
     5521 TGGTTCAAGA TCCAGTTGAT TTAGTTCGAA ACTTGGTACA AAAGGATCTA AGAATGTCTG 
     5581 TAGTAGAAAT GAACAAGCGT GGTGCCGAGT TGCTGCATCA AAAAGAGGAA GGAGCTATCA 
     5641 AGGAAGAAGA TAGACAACAG TACAAGCGAG CTACAAATGA TTTCCATGCT GTTTGTGATG 
     5701 AAATTGACAG AACGCTGACG ACAATTATGG AAACTGCTAA ACAAATAACG AAACTCGACA 
     5761 AAGTGTTCCA GGATAGAACA TCGAAAGAAA TCGACGGTGA AGCCATGGTC AACTCTGTGC 
     5821 AGAAATTTGT TGACGAAACT GGCATAGTAA GCATTGATGC ATGATTCATT TTGTTTCTAT 
     5881 ATTTCAAGTT TCAGGTTCAA AAAATGTTCG ATGACACAGT CAACAGCGTT ACTAGCACTA 
     5941 TGGAGAAAAT GCGTCGCCGT CAGAAGAAGT GGAAAGATCA ACAACAGCAA CAAGAAAATG 
     6001 CCGAAGACGC TGAAATGGCG GAGTGATGTG TGTTATTATT GAATCTCTAA TTATATCTTG 
     6061 TGTGGGAGGT TGTCTTTCAT TCTGATCTTC ATATTCTGAT TTATTTATAT AAATTTATAT 
     6121 TTTCAATCAT TCATGTACTT GTGAATAAAG TTTTATTAAA TTGTGGCAGT TTGCATTGCT 
     6181 TTCCGAGTCA ACTCTTTTGA TTCCAAAATG TCGGCTGCTG TGAATTCTCC CAATAAGCTT 
     6241 GATAGTTCGT TTCTGAAAGA GAAACCGATG TATAAGAATT AAAAGTTTTG AAAAAAGAAT 
     6301 TCACCGTTCA CTTCTACCCA ATTCTTCGAT GGGATCCAAA TTGCCGGATA TCACTATTAC 
     6361 TTCCATCTGA AATAACAATT TAGGAATTTA GAAGGATTAT ACTGGTACAA ATAAAATCGG 
     6421 AGCAGTGGAA GAGGAACACT GGTGGCCGTG TCCAAAAGTA CCAGAACGAA AAATACAGTA 
     6481 AACAAGAAAT GTTTTCATTT TCCAGATTTT TTTAAATCGA CTTTCACTGA TTCTTGTCGG 
     6541 GTTTTCTGTT AATTTTCCTC AAACATAAAA TTTTTTGATA GTGAAAAATT TGACTGAAAA 
     6601 CACTCGTAAA AACGAGTAAC AAAATACGGA AAAAATATTT TAGGTTACGG TAGTTTTCGT 
     6661 TGTGAGACCT TCCACAGCTC CGATTTTTTG TACCAGCAAA ATAAAGTTAT TTCATACCAA 
     6721 TTTTCTAATC TGATCTGGAA TATGTCCAAG TGATTTCGCA ACGAAAACAA ATAGAATATC 
     6781 TTCTGGCAAC TCGAGTGGTT TATTCTGATA ACAGACTTCC TTTTCTTCAC TTTTCATCAG 
     6841 AATCTCGTGC ATTTCCGGAG GTGGAACTTC GGTTACATTG AAGAAAACAG TTGGTACAAT 
     6901 AGAATAAACA TGCTTCGGTA GGGATAAAAC CATTTGAGGA TCCTTCCACG TCATCAGACT 
     6961 CATATCCAGG TACGTTGCAC CCGGAAGCAC AGCTCGAAGA TTCAGAAGAA GAGAGTCGGA 
     7021 CGCAGATGCA AAAAGACAAA ATCTCCTCGA CATTTTTAGA TTTCGAAGGA TCTTGTTGAT 
     7081 GACGTTGGAA GGAGTAGCTA CAGAAGGATC GAAGGACACT GAAACAGAGT TTAGATGAGC 
     7141 AGTACACATC GATGTGCACA TCTGAAAAAA AATGTGTTAA AGATTACTGT AGAATACAAT 
     7201 TACAAACCGT TGCAACTGAC TTCTCTTGAC ACAATAAATG AGATCTATAA ATTGCAAAAA 
     7261 GTAATGTGCT TCCAATCAAT TCTTTCTGTT TCTTCTCGTT TTGCTTCAAT TGCGACTTCC 
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     7321 ATCGTTTTCT ATGTGGTTTC AGAGCGTTCA ACAAATCCCC ACTTCTCAAT CGATAATCAC 
     7381 ATAGACGACG ATCATTCGCC AGTACTTGTT CATTTTCACG AATCAGATTG GTTAACTGAA 
     7441 AATAGGTCAT CACATCAAAT TTCAAAAAAA ATTGGAACGC TTCACGAATT TGCGTGTCAT 
     7501 CCTTGCGCAG GGGCCATGCT AGTCTTCTCT GTATTGTTCC AACACAGGTC CTGGGCGACG 
     7561 GAGGACGCGC CGATGAATTG GGTACAGGGG AAGGGCGCCG GTATGGGGCA TATACGGGAC 
     7621 ATATGGGGCA CACCGCCGCC GCAAAGCATC TCCTCGCCTG GCTTGCTGGC ACTCGATGAA 
     7681 ATGAACTAAA ACGTTGGTTG GGGGTTCCTA GAAGTATCAG TTAAGTTCTA TTGTGATGTG 
     7741 ATTTTGTTCA GGTCTTCCGA TTTCGTACTT TTCCTTTATT ATTCCATATT ATTTTATATT 
     7801 TTGAACGACA TATTACTGAT TTTTCGAAAC TCATTGTTTT TGTTTTGAAA AAGACTTATG 
     7861 GCAGTTTCTA TTTAAATTTG ATATGCAAAT TCATATTTTA AAAATACAAT CAAAAACAGA 
     7921 AGAAATGGGA AAAAATCGCT AAAAATTGTT TTGTTTTCAT TT 
 
 

7.1.2.2 pdr-1 cDNA ORF 

 1158 bp 
 
   1 ATGTCAAATG AAGTCACAGT TGTTTTACAG GACAGGAAGA CTGGTCAACG ACGAAACTAT 
       61 ACAATAAACG TTAACAACAA TGAAAACATA CTGGAGTTGA CAAAAAGCGT AGAAAAGATT 
      121 ACAAAGATTC CAAGTGAAGA GTTAGAAGTG GTGTTTTGTG GAAAGAAACT TTCAAAATCG 
      181 ACAATTATGA AGGATTTGTC GCTGACTCCT GCAACACAGA TAATGTTACT TCGACCAAAT 
      241 TCCGTTGTAA AAACAGCAAC TTCAAGTTCA AAGTTCCAAA CAACTGATTC CTCGATTCTA 
      301 GGAAGTTTTT ATGTCTGGTG CAAAAGTTGT GACGACGTTC GAAGAGGAAA ACTTCGCGTT 
      361 TATTGTCAGA ACTGCGAGTC AACTTCGGTG TTGGTAAAGG CAGAACCACA GAACTGGATG 
      421 GATGTTCTGA AAAGCAAAAG AATACCAGTG ACATGTGAGA ACTGTTGTCG ACCTGGACTT 
      481 TATGCAGAGT TCAAATTCAA ATGCCTCACT TGTAACGATT TAGCCGCAGC GTTAACTCAT 
      541 GTTCGAGGAA ACTGGCAGAT GGCGGAATGC TGTATTTGTG ATGGAAAAGA GAAAATCATT 
      601 TTTGATCTAG GATGTAATCA TATCAGCTGC CAGTCTTGTT TCAAAGATTA CCTTCTGAGC 
      661 ACTCTCCAAG AATTCCATTT CAAAAACCGC CCGCCGTACG GATTCACGGT CTCCTGTGTT 
      721 TATCCAGAAT GCAATCGAGT AGTCCAAGAC GTTCACCATT TTCATGTGAT GGGTCAATCC 
      781 TCATACAGTG AGTATCAACG AAAGGCCACC GAAAGGCTTA TTGCAATCGA CGATGAAGGT 
      841 GTTACATGCC CAAACCCTTC GTGTGGACAA AGCTTTTTCT GGGAACCCTA CGATGATGAC 
      901 GGAAGATCGC AATGTCCGGA TTGTTTTTAC ACGTTTTGCA GAAAGTGTAC TGAAAGAGAT 
      961 TGTGTTTGCC AAAGTGAAGA CGACCTGACA AGAACAACTA TTGAAGCGAC TACCAGACGA 
     1021 TGCCCAAAGT GCAACGTGGC AACAGAACGC AACGGCGGGT GTGCTCATAT CCATTGCACA 
     1081 TCGTGCGGAA TGGATTGGTG CTTCAAGTGT GTCACAGAGT GGAAAGAGGA ATGTCAATGG 
     1141 GACCATTGGT TTAACTGA 
 
 

7.1.2.3 K08E3.8 cDNA ORF 

 1461 bp 
 
   1 ATGTCGGGAC AAGGACCGCC ATCGAACTTA ACTCCTCAGC AGCAACATTT TGTAGATGAT 
       61 TATGCAGCAG CAGCAACAAC AACAAATGAT GCGACAACAA CAGATTCAAC AACAGCAATT 
      121 GCACCAAAGA CAGTTGCAAC AACAGCAAGC GCAACAGCAG CAGACTTTCA GTCGTATCAA 
      181 CGTTCTCGAA CACCACAGAT GCAACAGCAT CCAGGCGGAG GATCACCAGG ATCACACCTC 
      241 CAGATGCATC CACATCTGCA GTCACAGGGG CATATGCAGC CTAGATCCCC ACTTGTCGGA 
      301 CAACATCATC CAGCACCCGG AAGTATCCCA CCTGGAAATC CAGCGACACC ACAAATGATG 
      361 CAGCAGCAAA TGGGAATGAA TCAACCAATG TCACTCCCTG CGCCGCATGT GTCCCGCCCG 
      421 GGATCTGTTG CACCACCAGC ATCAGTTCCA CCAAACATGC ACACTGGTCC TTCGAGCAAT 
      481 CAAATGGATC AAATGGGAGG CCAATCGCAA TATTCACATC ATCTCCAACC ACAACAACCA 
      541 CTTTCTCGTC CTGGATCTCA ACAAAGTCAC ATTGCTGGTG GTCACGGCGG ACCCCACTCT 
      601 GTTCAACAAC CAGGTAGCAT TCAAAGACCA GGATCTGTGC TTGCTCCTGG ATCTATTCAA 
      661 CAGCCAGGAT CACTTCTTGC TCCGGGATCC ATGCACCAAC CGGGGTCTGT TCAGCAACCA 
      721 GGTTCTCTCG GGGCTCCCCT ATCACATACT GGTGCTGGAG GACCTCAATC CGTTCAAGGC 
      781 TACGGTCCAG GATCTGTTCA ACCGCCTGGC TCAGCCCAAG CACCATCATC AGTTCAACCC 
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      841 GGTTCCACTT TTGCTCCAGG ATCTCTGCAA GCTCCAGCCA GCCAACAACC ACCTGCTTCC 
      901 ATCCAACCAC CACCATCAGC TGCATCTGGA TCTGTCGCCG GACCAGCAAG TGCTGCTCCA 
      961 GCTAAAGTGG AGCCATTGAA GCCAAATGAA GAGCAAATAA GAATGGTTCA AGATCCAGTT 
     1021 GATTTAGTTC GAAACTTGGT ACAAAAGGAT CTAAGAATGT CTGTAGTAGA AATGAACAAG 
     1081 CGTGGTGCCG AGTTGCTGCA TCAAAAAGAG GAAGGAGCTA TCAAGGAAGA AGATGGACAA 
     1141 CAGTACAAGC GAGCTACAAA TGATTTCCAT GCTGTTTGTG ATGAAATTGA CAGAACGCTG 
     1201 ACGACAATTA TGGAAACTGC TAAACAAATA ACGAAACTCG ACAAAGTGTT CCAGGATAGA 
     1261 ACATCGAAAG AAATCGACGG TGAAGCCATG GTCAACTCTG TGCAGAAATT TGTTGACGAA 
     1321 ACTGGCATAG TTCAAAAAAT GTTCGATGAC ACAGTCAACA ACGTTACTAG CACTATGGAG 
     1381 AAAATGCGTC GCCGTCAGAA GAAGTGGAAA GATCAACAAC AGCAACAAGA AAATGCCGAA 
     1441 GACGCTGAAA TGGCGGAGTG A 
 
 

7.1.3 C. remanei 

7.1.3.1 pdr-1/K08E3.8 Genomic Locus 

 
LOCUS       pdr-1     5589 bp    DNA            
DEFINITION   
SOURCE      EM464 
ORGANISM   C. remanei 
             
FEATURES             Location/Qualifiers 
     CDS             complement (1..370) 
                     /gene="K08E3.6 Exon III" 
                     /product=">370 bp" 
     CDS             complement (418..529) 
                     /gene="K08E3.6 Exon II" 
                     /product="112 bp" 
     CDS             complement (576..681) 
                     /gene="K08E3.6 Exon I" 
                     /product="106 bp" 
     CDS             959..1027 
                     /gene="pdr-1 Exon I" 
                     /product="69 bp" 
     CDS             1069..1214 
                     /gene="pdr-1 Exon II" 
                     /product="146 bp" 
     CDS             1260..1484 
                     /gene="pdr-1 Exon III" 
                     /product="225 bp" 
     CDS             1528..1738 
                     /gene="pdr-1 Exon IV" 
                     /product="211 bp" 
     CDS             1785..1875 
                     /gene="pdr-1 Exon V" 
                     /product="91 bp" 
     CDS             1926..2130 
                     /gene="pdr-1 Exon VI" 
                     /product="205 bp" 
     CDS             2179..2253 
                     /gene="pdr-1 Exon VII" 
                     /product="75 bp" 
     CDS             2307..2448 
                     /gene="pdr-1 Exon VIII" 
                     /product="142 bp" 
     CDS             2722..2769 
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                     /gene="K08E3.8 Exon I" 
                     /product="48 bp" 
     CDS             2811..2919 
                     /gene="K08E3.8 Exon II" 
                     /product="109 bp" 
     CDS             2961..3181 
                     /gene="K08E3.8 Exon III" 
                     /product="221 bp" 
     CDS             3229..3495 
                     /gene="K08E3.8 Exon IV" 
                     /product="267 bp" 
     CDS             3542..3919 
                     /gene="K08E3.8 Exon V" 
                     /product="378 bp" 
     CDS             3966..4226 
                     /gene="K08E3.8 Exon VI" 
                     /product="261 bp" 
     CDS             4274..4405 
                     /gene="K08E3.8 Exon VII" 
                     /product="132 bp" 
 
        1 AGATCTTCTA ACTTCTCTAC CGTTTCGTAG AGTATATACT TCTTCAAAAC TGTCTCCAGT 
       61 TACGTCATAA TCAACCTCAC TATCGTCTTC CTCGTCCTGT GTTTCCTCCA TCAAATGTGG 
      121 ATGTCTTTGT TGCACCCGTT TCGAGTATGT TCGAACTAGT GGTTCATGAA GAAACTGAAA 
      181 CTGGTCACGG TCCTCCTTAG TGAGACTGTT GAAAATTCCA TTTTTCATAG CATCTTTAAG 
      241 CTGTTTCTCG CGAGTCTCAT ATACGTTCAG ATCCAGTTTC AAAGCCTTGT TTTCCTCCAT 
      301 CAATGCGCGC ATGTGCTTCT GAGTATCTTT CACATCGATG TCAAACATCG CCAACTTCTT 
      361 TCGAGCTTTT CTAAAACTTG TGGTTGTAAA TATTCAATTA AAGAAACTGT TACGTACGCT 
      421 AGAGCTTCTT CTGTCTCTCG CATCTCTATA TTCAACCGTT TTTTTGATTC TTCCGACTCT 
      481 TTCCATAGCT TCCGGAGCCG TTCAATTTCA TCGATTAGAT GGAACATTCC TGAAATACGA 
      541 CATTTGTTCA AAATACATAT TGTTTATTCA CCAACCAATA TCTTTAATAT CGAACCGTGA 
      601 TTTTTGTGAG TTGATGATCA TATTGTACAT TTGCCGCGAA TTTTCGCCGC ATAACTTTTC 
      661 TTTTGAAGTA CTSGACTTCA TTCTGAAACA AGAAATAATT GAAAAATTAC GATAGAATAG 
      721 TTAAAATAAT TATGAAAAGA TTTCGTGGAA AGCGATAACG GTTTCGGAAT TTGAAATTCC 
      781 CTGCTTTTGT TTTGCCGCAC CGCGACACGC ATCGCAGTCC GTAGAGCGCA ACTGAAAGTG 
      841 GGGGACTAAA CTTTTCCAGC GAATGTTAGT CCCCGCAAGC AAACTGTATT TTTCTCTCGC 
      901 ACTCCCCACT CTCTCGCCGC CGAGCCAAAT TCCACTTTTC TGGTGAACAA CTTAAGGTAT 
      961 GCCGAATGTC GTCACAATAC TTCTGCAAGA CAGAAAAATG GATCAGCGAC GAAATATTAC 
     1021 TTTAAACGTA GGTTCCGCAA ACAATCATGA ACACGAAACG CATTTCAGGT TGATAATAAT 
     1081 GAAAATATTG CCGAACTTAT GAAGAATGTA GAAAAGTTAA CGAATATTCC CAGTGAAGAG 
     1141 TTGGAAGTGG TTTTTTGTGG AAAGAAGCTA GCCAAATCAA CGTTTATGAA AGATCTATCG 
     1201 TTAACCCCAG CAACGTAACG CAGTTCAGTA AATTCAATTG TTTAATTTAG CTTTTTCAGA 
     1261 CAAATCATGT TTCTGCGACC CAAAAATCTT GTTCAGCTGA CAAATTCGAA ATTTGATAGT 
     1321 AACAACAAAA TTACCGACAC ATCTATTTTA GGAAGCTTTT ATGTCTGGTG CAAGAAATGT 
     1381 GATGACGTTC AGCGAGGGAA ACTTCGAGTT TATTGCCAGA ACTGTGCATC TACCTCTGTT 
     1441 TTGGTTAAAT CAGAACCGCA GAATTGGGTA GATGTTTTAA AAAGGTTGGC AGCAAGTTTG 
     1501 AAACGGTTTT CATATATGTT TCCACAGCAA GAGGATACAA GTTACATGTG AAAATTGCTT 
     1561 TGCTCCGGGA CTTTTCGCTG ATTTCAAATT CAAGTGCCTC AAGTGTAATG ATTTGGCCGC 
     1621 CGCTTTAACA CACGTACGAG GAAATTGGCA AATGACAGAG TGCTGTGTCT GTGATGGAAA 
     1681 AGATAAAGTT GTAATTGATC TCGGATGCAA TCACATTATC TGTCAAAACT GTTTCAAAGT 
     1741 GAGTCAATTT CCATTCATGA GAGATATTCC TATGTAGTTC ACAGGAATAC TTACTCAGTA 
     1801 CGTTAGAAGA GTTTCGTTTC ACCAACCGTC CGCCTTATGG GTTCACTACT TCATGCGTCT 
     1861 ATCCAGGTTG TAATCGTATG TTTTCACAAA ATTTTTGAGA TCGAAACAAG TAAATCAGAT 
     1921 TTCAGGAGTT GTGAAAGACG TTCATCATTT TCATATCATG GGACAATCAT CATACAGTGA 
     1981 ATATCAACGA AAGGCAACTG AACGGCTTAT TTCCATTGAT GATGAAGGAG TTACATGTCC 
     2041 CAATGCTGCA TGTGGACAAA GCTTTTTCTG GGAACCATAT GACGATGATG GGAGATCTCA 
     2101 ATGCCCAGAT TGTTTTTTCA CTTTTTGTAG GTGAGTTACT CCACCAAAAT ATAAATTGTG 
     2161 TTATCTGAGT TCTTTCAGAA AATGTACGGA ACGAGAGTGT ACATGTCAAA GTGATGATGA 
     2221 TTTGACAAAA ATAACAATTG ATGCAACAAC TAGGTAAGTT TATAGACGCT GATGATTTTT 
     2281 TTTAAATATT ATATAGTTAA TTTTAGACGT TGTCCAAGAT GTAATGCAGC AACCGAAAGG 
     2341 AACGGTGGAT GCGCCCACAT TCACTGCACT TCATGTGGCA TGGATTGGTG CTTCAAATGT 
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     2401 GTCACCGAGT GGAAAGAAGA ATGTCAATGG GACCACTGGT TCAATTGAAC AAATTTCAGT 
     2461 TCTTTTTTGT TCATAGCAAA TTTTGTAGGC TTTAATTGTA AAAATTTAGC TTCAAACTCA 
     2521 CAATTTTTAC CCATTTTTAT TTGTACAACA GCTTGAATCT ACTCAATTCG TTGAATTACG 
     2581 CTTGAAATCT TGAAGTGCCT TAAAAATCGT TTCACTTGTT AATTTTGTTT TAACAGAGTT 
     2641 TTTCACTCTT TTGATATATC AGTTACTTGT GATCAAAAAA AATATATATT TTTACAAGTT 
     2701 TACAGAACTA TTAAGCAAAA TATGTCAGGG CAGGGACAGC AACCGAACTT GACTGCACAG 
     2761 CAGCAACAGG TTTGAAATAC TTCTTTCATC ATTTTCTAAC GAATTAATAG TTTCCAGATG 
     2821 ATTATTCAAC AACAACAGCA GCATATGATG AGACAGCAAC ATATGCAACA ACAGCAAATG 
     2881 CATCAGAGAC AGATGCAGCA ACAAGTGCAG TCCACGGGGG TTAGTTTAAA AATCATAAAC 
     2941 AGGTAAATAG GTTTTCAAAG ATTTTCAGCA GTTTCAACGT GCTCGGACAC CACAGATGCA 
     3001 ACAACACGCT CCAGGTGGAT CACCTGGAGG GTCTCATCTT CAGATGCATC CACATCTTCA 
     3061 ACCTCCAGGT CATATGCAGC CTAGATCTCC ATTAGTTGGA TCGCAGCTTA ATGCTCCTGG 
     3121 ATCTGTCCCA GCTGGCAACC CAGCCACGCC ACAAATGATG CATCAACAAA TGGGAATGAA 
     3181 TGTATGTGAA TCCGATTTTT CTGAATGAAG AAAACTCTCC CATTACAGCA ACCGATGTCT 
     3241 CTTCCTGCAC CTCATATCTC GCGTCCAGCA TCTGTTGCCC CTCCTGCATC AGTTCCACCT 
     3301 AATCTGCAAA CCACAGGAGG GGGACCACCA AGCAACCAGA TGGATTCAAT GGGTGGTCAA 
     3361 CCACAATATC CACTGCATCT CCAACCACAA CAAACACCAT CTCGTCCAGG GTCTCAACAA 
     3421 GGACAGCATG TTAATAATTC TCATGGTGGT CCACAGTCTG TGCAACAACC GACGAGTATT 
     3481 CAAAGACCTG GATCGGTAAA CTAATTGAAA CATGTCGGTT ATTTTAAAGC TACAGTTACA 
     3541 GGTTCTTGCC CCAGGATCTA TCCAACAACC AGAATCACTC GGGGCCCCTC CGTCGAATAG 
     3601 TGTCATTGGT GGCCCACAAT CTGTTCAAGG CTATGGGCCT GGATCTGTGC AACCACCTGG 
     3661 ATCAGCACAA GCACCTTCGT CTGCTCAACC GGGATCAGCT TTTGCTCCAG GATCAATTCA 
     3721 AGCACCAGCT AGCCAGCAGC CTCCTTCTTC TATTCAACCT CCGCCTTCTG CGGCATCAAG 
     3781 CTCTGCGGTT GGTGGAGCCA CTGCTGCGCA AAATAGTAAG GAGCCATTGA AACCAAATGA 
     3841 GGAACAAATC AGAATGGTGC AAGATCCAGT AGATTTAGTA CGCAATTTAG TTCAAAAGGA 
     3901 TTTGAGAAAT TCGGTGGTGG TAAGTTTTTC TTTTATATTT CTGGTTTTCG TAAAACTTAT 
     3961 TTCAGGAAAT GAACAAGCGT GGTGCTGACC TTGTGAGGCA AAGAGAAGAA AAAAATGTGA 
     4021 ATGAAAGTGA CAGAGCACAA TTCAAGCGGG CAGCTAATGA CTTTCATGCT GTTTGCGATG 
     4081 AAATTGACCG TACACTAACT ACAGTTATGG AGACTGCCAA ACAATTGATC AAACTTGAAA 
     4141 AAGTGTTCAT GGACCGAAAC TCAAAAGAAC TTGATGGAGA ACTTATGGTG AACTCTGTTC 
     4201 AATCATTCGT CGATAACACT GATATTGTAA GACATACAAA AACTATCATT TCGACAATTT 
     4261 CGCGATTTTG CAGGTTCAAA AAATGTTTGA CGAAACAATC GGCGGTGTAA CAGCTTCAAT 
     4321 GGAAAAAATG CGGAGACGTC AGAAAAAGTG GGAGGACTTG CAAAAAGAAA CACAAAATAA 
     4381 CGAGGATGTC GAAATGATTG AATAATTGTC CAGTTCACTG ATTTCGATCA ACTGCTAACC 
     4441 TAACTCAATT TCCATTCAAA AAATTTCTTT TCACTGCTCA GTTTTAAGTT ATTTTCTATT 
     4501 CTTACTTTAT TTCATAATAT GTTTATGATT GAATAATTGC CCAGTTCATT GATTTCCACC 
     4561 AACTGCTAAC CTAACTAAAT TTCCATTCAA AACGTTGCTT TCCACTGTTC GCTTTTAAAT 
     4621 TATTTTCTCT TCATATTTTA TTTCATATTG TGTTTATTCT GGGACAAATT TCCTCTACTA 
     4681 TAAATGTTAT TCAACATGAA TCCAGTTTCA AGTGGATGTT GCCATTTGCA TAGCTTTTCT 
     4741 TGACAACTCT TTTGATTCCA AGATATCGGC TGCTGTGAAT TCTCCCAGAA GACTTGCAAG 
     4801 CTCGTTCCTA AATTTATATT ATGTCGGGAT ATTCCGTCTA ACAAAATATG TACCTTTCAG 
     4861 TTTTTTCGGC ATCATCAATA GGATCCAAGT TGCTAGAAAC AACAATAACT TCCATCTGAA 
     4921 ACAATGTCAC CAATAATTAT AAAAAAATCT CCAAAATTTA CCAATTTTTT AATCTGATCC 
     4981 GGTATATGAC TGATACTCTT TGCAACRAAA ACAAATAAGA TGTCATYTGG TAGCTCATAT 
     5041 GACTTATTGT GATAACAAAC TTCTCTTTCC TCGCTTTTCA TYAAAATCTC GTACATTTCC 
     5101 GGTGGTGGAG CTTCAGTTAT ATTGAAGAAA ACAGTTGGAA CAATTGAGTA AATATGTTTC 
     5161 GRAAGTAATA GTGACATCTG TGAATCTTTC CACGTMACCC TGCTCATATC AAGATACGTG 
     5221 GCACTCGGTA AGACTGTCCG TAAATTAAGA AGAAGAGATT CAGATGAGCT AATGAATAAA 
     5281 CAGAACTTTC TTGATGTTTT CAGATTACGA ATAATCCTGT TTATCACATT GGAAGGCGTA 
     5341 GCAACAGATG AATCAAATGG AACGGAAATT GAATTCAGAT GAGATGAACA CATGGAAATA 
     5401 CACATYTGAA ATTCAAAGGG ATTCAAGTGA CTYTTCGTCG AAACTTACGG ATGAAACTGT 
     5461 TTTCTCTTGA CACAATAAAT GAGATCTATG AATGGAAAAW AGCGAGAGTG TTTCCAATCA 
     5521 GTTCGTTTTG TTTTTTCWSA WTCTGCTTCA ATTGAGACTT CCATTGCTTT CGGAGTGTTC 
     5581 CAAAGCAGT 
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7.1.3.2 pdr-1 cDNA ORF 

 1164 bp 
 
        1 ATGCCGAATG TCGTCACAAT ACTTCTGCAA GACAGAAAAA TGGATCAGCG ACGAAATATT 
       61 ACTTTAAACG TTGATAATAA TGAAAATATT GCCGAACTTA TGAAGAATGT AGAAAAGTTA 
      121 ACGAATATTC CCAGTGAAGA GTTGGAAGTG GTTTTTTGTG GAAAGAAGCT AGCCAAATCA 
      181 ACGTTTATGA AAGATCTATC GTTAACCCCA GCAACACAAA TCATGTTTCT GCGACCCAAA 
      241 AATCTTGTTC AGCTGACAAA TTCGAAATTT GATAGTAACA ACAAAATTAC CGACACATCT 
      301 ATTTTAGGAA GCTTTTATGT CTGGTGCAAG AAATGTGATG ACGTTCAGCG AGGGAAACTT 
      361 CGAGTTTATT GCCAGAACTG TGCATCTACC TCTGTTTTGG TTAAATCAGA ACCGCAGAAT 
      421 TGGGTAGATG TTTTAAAAAG CAAGAGGATA CAAGTTACAT GTGAAAATTG CTTTGCTCCG 
      481 GGACTTTTCG CTGATTTCAA RTTCAAGTGC CTCAAGTGTA ATGATTTGGC CGCCGCTTTA         
 541 ACACACGTWC GAGGAAATTG GCAAATGACA GAGTGCTGTG TYTGTGATGG AAAAGATAAA 
      601 GTTGTAATTG ATCTCGGATG CAATCACATT ATCTGTCAAA ACTGTTTCAA AGAATACTTA 
      661 CTCAGTACGT TAGAAGAGTT TCGTTTCACC AACCGTCCGC CTTATGGGTT CACTACTTCA 
      721 TGCGTCTATC CAGGTTGTAA TCGAGTTGTG AAAGACGTTC ATCATTTTCA TATCATGGGR 
      781 CAATCATCAT ACAGTGAATA TCAACGAAAG GCAACTGAAC GGCTTATTTC CATTGATGAT 
      841 GARGGAGTGA CATGCCCCAA TGCTGCATGT GGACAAAGCT TTTTCTGGGA ACCATATGAC 
      901 GATGATGGGA GATCTCAATG CCCAGATTGT TTTTTCACTT TTTGTAGAAA ATGTACGGAA 
      961 CGAGAGTGTA CATGTCAAAG TGATGATGAT TTGACAAAAA TAACAATTGA TGCAACAACT 
     1021 AGACGTTGTC CAAGATGTAA TGCAGCAACC GAAAGGAACG GTGGATGCGC CCACATTCAC 
     1081 TGCACTTCAT GTGGCATGGA TTGGTGCTTC AAATGTGTCA CCGAGTGGAA AGAAGAATGT 
     1141 CAATGGGACC ACTGGTTCAA TTGA 
 
 

7.1.3.3 K08E3.8 cDNA ORF 

 1413 bp 
 
   1 ATGTCAGGGC AGGGACAGCA ACCGAACTTG ACTGCACAGC AGCAACAGTT CCAGATGATT 
       61 ATTCAACAAC AACAGCAGCA TATGATGAGA CAGCAACATA TGCAACAACA GCAAATGCAT 
      121 CAGAGACAGA TGCAGCAACA AGTGCAGTCC ACGGGGATTT TTCAGCAGTT TCAACGTGCT 
      181 CGGACACCAC AGATGCAACA ACACGCTCCA GGTGGATCAC CTGGAGGGTC TCATCTTCAG 
      241 ATGCATCCAC ATCTTCAACC TCCAGGTCAT ATGCAGCCTA GATCTCCATT AGTTGGATCG 
      301 CAGCTTAATG CTCCTGGATC TGTCCCAGCT GGCAACCCAG CCACACCACA AATGATGCAT 
      361 CAACAAATGG GAATGAATCA ACCGATGTCT CTTCCTGCAC CTCATATCTC GCGTCCAGCA 
      421 TCTGTTGCCC CTCCTGCATC AGTTCCACCT AACCTGCAAA CCACAGGAGG TGGACCACCA 
      481 AGCAACCAGA TGGATTCAAT GGGTGGTCAA CCACAATATC CACTGCATCT CCAACCACAA 
      541 CAAACACCAT CTCGTCCAGG GTCTCAACAA GGACAGCATG TTAATAATTC TCATGGTGGT 
      601 CCACAGTCTG TGCAACAACC GACGAGTATT CAAAGACCTG GATCGGTTCT TGCCCCAGGA 
      661 TCYATCCAAC AACCAGAATC ACTCGGGCCC CCTACGTCGA ATAGTGTCAT TGGTGGCCCA 
      721 CAATCTGTTC AAGGCTATGG GCCTGGATCT GTGCAACCAC CTGGATCAGC ACAAGCACCT 
      781 TTGTCTGCTC AACCGGGATC AGCTTTTGCT CCAGGATCAA TTCAAGCACC AGCTAGCCAG 
      841 CAGCCTCCTT CTTCAATTCA ACCTCCGCCT TCTGCGGCAT CAAGCTCTGC GGTTGGTGGA 
      901 GCCACTGCTG CGCAAAATAG TAAGGAGCCA TTGAAACCAA ATGAGGAACA AATCAGAATG 
      961 GTGCAAGATC CAGTAGATTT AGTACGCAAT TTAGTTCAAA AGGATTTGAG AAATTCGGTG 
     1021 GTGGAAATGA ACAAGCGTGG TGCTGACCTT GTGAGGCAAA GAGAAGAAAA AAATGTGAAT 
     1081 GAAAGTGACA GAGCACAATT CAAGCGGGCA GCTAATGACT TTCATGCTGT TTGCGATGAA 
     1141 ATTGACCGTA CACTAACTAC AGTTATGGAG ACTGCCAAAC AATTGATCAA ACTTGAAAAA 
     1201 GTGTTCATGG ACCGAAACTC AAAAGAACTT GATGGAGAAC TTATGGTGAA CTCTGTTCAA 
     1261 TCATTCGTCG ATAACACTGA TATTGTTCAA AAAATGTTTG ACGAAACAAT CGGCGGTGTA 
     1321 ACAGCTTCAA TGGAAAAAAT GCGGAGACGT CAGAAAAAGT GGGAGGACTT GCAAAAAGAA 
     1381 AAACAAAATA ACGAGGATGT CGAAATGATT GAATAA 
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7.2 Prediction of pdr-1 Transcription Regulators 

The identified sequences immediately 5’ of the pdr-1 translational start from the three 

nematode species were searched for binding sites of transcription factors using 

MatInspector (Quandt et al., 1995). 

 

List of Regulatory sites in the C. elegans pdr-1 Promoter 
Position 

   Family/matrix Further Information Opt. 
from -

 to 
anchor 

Str
. 

Core 
sim. 

Matrix 
sim. Sequence 

  V$HOXF/HOX1-3.01 Hox-1.3, vertebrate homeobox protein 0.83 2 - 18 10 (-) 1.000 0.882 aaaacactATTAtttca 

  V$FKHD/FREAC4.01 Fork head related activator-4 (FOXD1) 0.78 8 - 24 16 (-) 1.000 0.780 gtttagaaAACActatt 

  V$MEF2/MEF2.05 MEF2 0.96 10 - 32 21 (+) 1.000 0.961 tagtgttttcTAAAcacgtaaac 

  V$FKHD/FREAC2.01 Fork head related activator-2 (FOXF2) 0.84 14 - 30 22 (+) 1.000 0.878 gttttcTAAAcacgtaa 

  V$EBOR/XBP1.01 X-box-binding protein 1 0.86 18 - 32 25 (-) 1.000 0.895 gtttACGTgtttaga 

  V$VBPF/VBP.01 PAR-type chicken vitellogenin promoter-binding protein 0.86 21 - 31 26 (-) 1.000 0.870 tTTACgtgttt 

  V$FKHD/FREAC2.01 Fork head related activator-2 (FOXF2) 0.84 22 - 38 30 (+) 1.000 0.974 aacacgTAAAcatgaaa 

  N$CEDS/CES2.01 cell-death specification 2, bZIP factor involved in 
programmed cell death in C.elegans 

0.77 45 - 55 50 (-) 1.000 0.873 cttgcGTAAgt 

  V$VBPF/VBP.01 PAR-type chicken vitellogenin promoter-binding protein 0.86 46 - 56 51 (+) 1.000 0.870 cTTACgcaagt 

  V$TTFF/TTF1.01 Thyroid transcription factor-1 (TTF1) binding site 0.92 47 - 61 54 (+) 1.000 0.922 ttacgCAAGtgcttc 

  V$NKXH/HMX3.01 H6 homeodomain HMX3/Nkx5.1 transcription factor 0.89 49 - 61 55 (+) 1.000 0.891 acgcAAGTgcttc 

  V$GATA/GATA1.03 GATA-binding factor 1 0.95 71 - 83 77 (-) 1.000 0.952 tgcaGATAtgaga 

  V$OCT1/OCT1.02 Octamer-binding factor 1  0.82 73 - 87 80 (-) 1.000 0.853 tgaATGCagatatga 

  V$STAT/STAT6.01 STAT6: signal transducer and activator of transcription 6 0.84 96 -
 114 

105 (+) 1.000 0.937 ttggaTTCCtcggaatctt 

  V$BCL6/BCL6.01 POZ/zinc finger protein, transcriptional repressor, 
translocations observed in diffuse large cell lymphoma 

0.76 98 -
 114 

106 (+) 1.000 0.791 ggaTTCCtcggaatctt 

  V$WHZF/WHN.01 Winged helix protein, involved in hair keratinization and 
thymus epithelium differentiation 

0.95 128 -
 138 

133 (+) 1.000 0.965 gagACGCtcaa 

  V$PAX5/PAX5.02 B-cell-specific activating protein 0.75 121 -
 149 

135 (-) 1.000 0.750 gattgatgagattgAGCGtctccgcaagc 

  V$HOXF/HOXA9.01 Member of the vertebrate HOX - cluster of homeobox 
factors 

0.87 136 -
 152 

144 (-) 1.000 0.922 tttGATTgatgagattg 

  V$HOXT/MEIS1_HOXA9.01 Homeobox protein MEIS1 binding site 0.79 139 -
 151 

145 (-) 1.000 0.830 tTGATtgatgaga 

  V$PBXC/PBX1_MEIS1.02 Binding site for a Pbx1/Meis1 heterodimer 0.77 138 -
 154 

146 (-) 1.000 0.774 cattTGATtgatgagat 

  V$PBXF/PBX1.01 Homeo domain factor Pbx-1 0.78 141 -
 153 

147 (+) 1.000 0.997 tcatCAATcaaat 

  V$AREB/AREB6.04 AREB6 (Atp1a1 regulatory element binding factor 6) 0.98 151 -
 163 

157 (-) 1.000 0.983 ggaatGTTTcatt 

  V$PAX2/PAX2.01 Zebrafish PAX2 paired domain protein 0.78 149 -
 171 

160 (+) 1.000 0.805 caaatgaaacattcctgAAACac 

  V$TEAF/TEF1.01 TEF-1 related muscle factor 0.84 156 -
 168 

162 (+) 1.000 0.922 aaCATTcctgaaa 

  V$STAT/STAT.01 Signal transducers and activators of transcription 0.87 155 -
 173 

164 (-) 1.000 0.911 acgtgtttcaGGAAtgttt 

  V$AREB/AREB6.04 AREB6 (Atp1a1 regulatory element binding factor 6) 0.98 162 -
 174 

168 (-) 1.000 0.981 gacgtGTTTcagg 

  V$EBOR/XBP1.01 X-box-binding protein 1 0.86 163 -
 177 

170 (-) 1.000 0.943 aatgACGTgtttcag 

  V$CREB/ATF6.02 Activating transcription factor 6, member of b-zip family, 
induced by ER stress 

0.85 161 -
 181 

171 (-) 1.000 0.977 ttttaatGACGtgtttcagga 

  V$PDX1/ISL1.01 Pancreatic and intestinal lim-homeodomain factor 0.82 167 -
 187 

177 (-) 1.000 0.876 ttcaaatttTAATgacgtgtt 

  V$CHRF/CHR.01 Cell cycle gene homology region (CDE/CHR tandem 
elements regulate cell cycle dependent repression) 

0.92 179 -
 191 

185 (+) 1.000 0.926 aaatTTGAaaatg 

  N$CSKN/SKN1.02 maternal gene product, similar to bZIP proteins 0.99 185 -
 197 

191 (-) 1.000 0.993 aattATCAttttc 

  V$GATA/GATA2.01 GATA-binding factor 2 0.92 187 -
 199 

193 (+) 1.000 0.923 aaatGATAattga 

  V$OCT1/OCT1.06 Octamer-binding factor 1 0.80 186 -
 200 

193 (+) 1.000 0.900 aaaatgatAATTgaa 

  V$HOMS/S8.01 Binding site for S8 type homeodomains 0.97 192 -
 200 

196 (-) 1.000 0.997 ttcaATTAt 

  V$NKXH/DLX3.01 Distal-less 3 homeodomain transcription factor 0.91 190 -
 202 

196 (+) 1.000 0.958 tgaTAATtgaaac 
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Position 
   Family/matrix Further Information Opt. 

from -
 to 

anchor 

Str
. 

Core 
sim. 

Matrix 
sim. Sequence 

  V$IRFF/ISRE.01 Interferon-stimulated response element 0.81 190 -
 204 

197 (+) 1.000 0.879 tgataattGAAActa 

  V$CART/CART1.01 Cart-1 (cartilage homeoprotein 1) 0.84 191 -
 207 

199 (+) 1.000 0.856 gaTAATtgaaactaacc 

  V$HOXF/PTX1.01 Pituitary Homeobox 1 (Ptx1) 0.79 195 -
 211 

203 (-) 1.000 0.831 tataggTTAGtttcaat 

  I$DHOM/FTZ.01 fushi tarazu, involved in body segmentation of the 
drosophila embryo 

0.81 213 -
 225 

219 (-) 1.000 0.837 ttcgatATTAagg 

  V$NKXH/NKX25.02 Homeo domain factor Nkx-2.5/Csx, tinman homolog low 
affinity sites 

0.88 213 -
 225 

219 (+) 1.000 0.884 cctTAATatcgaa 

  V$HOXF/PTX1.01 Pituitary Homeobox 1 (Ptx1) 0.79 237 -
 253 

245 (+) 1.000 0.820 gtgagtTTAGaatcatg 

  I$DHSF/HSF.03 heat shock factor (Drosophila) 0.75 245 -
 265 

255 (+) 1.000 0.772 AGAAtcatgttgaaaatgtga 

  V$CREB/CREB.04 cAMP-response element binding protein 0.87 257 -
 277 

267 (+) 1.000 0.911 aaaatgTGACgcgagttttcg 

  V$WHZF/WHN.01 Winged helix protein, involved in hair keratinization and 
thymus epithelium differentiation 

0.95 262 -
 272 

267 (+) 1.000 0.962 gtgACGCgagt 

  I$DDVL/DL.02 Dorsal, protein for dorso-ventral axis formation, 
homologous to vertebrate c-rel 

0.91 269 -
 279 

274 (+) 1.000 0.925 gagtTTTCgcc 

  V$E2FF/E2F.01 E2F, involved in cell cycle regulation, interacts with Rb p107 
protein 

0.74 269 -
 283 

276 (-) 1.000 0.763 gtgcggcGAAAactc 

  V$HOXF/CRX.01 Cone-rod homeobox-containing transcription factor / otx-
like homeobox gene 

0.94 325 -
 341 

333 (+) 1.000 0.955 aaatgATTAgaaaacga 

  V$IRFF/ISRE.01 Interferon-stimulated response element 0.81 334 -
 348 

341 (+) 1.000 0.867 gaaaacgaGAAActc 

  V$E2FF/E2F.02 E2F, involved in cell cycle regulation, interacts with Rb p107 
protein 

0.84 346 -
 360 

353 (+) 1.000 0.849 ctcgcccGAAAataa 

  V$EVI1/EVI1.02 Ecotropic viral integration site 1 encoded factor 0.83 350 -
 366 

358 (+) 1.000 0.837 cccgaaaatAAGAgaaa 

  I$DDVL/DL.02 Dorsal, protein for dorso-ventral axis formation, 
homologous to vertebrate c-rel 

0.91 360 -
 370 

365 (-) 1.000 0.943 cattTTTCtct 

  V$PAX6/PAX6.01 Pax-6 paired domain binding site 0.75 360 -
 378 

369 (-) 1.000 0.834 ttttcACGCatttttctct 

  V$AHRR/AHRARNT.02 Aryl hydrocarbon / Arnt heterodimers, fixed core 0.77 360 -
 382 

371 (+) 1.000 0.779 agagaaaaatGCGTgaaaaccgt 

  V$E2FF/E2F.02 E2F, involved in cell cycle regulation, interacts with Rb p107 
protein 

0.84 367 -
 381 

374 (+) 1.000 0.909 aatgcgtGAAAaccg 

  I$DDVL/DL.02 Dorsal, protein for dorso-ventral axis formation, 
homologous to vertebrate c-rel 

0.91 371 -
 381 

376 (-) 1.000 0.959 cggtTTTCacg 

  V$VMYB/VMYB.02 v-Myb 0.90 376 -
 386 

381 (-) 1.000 0.927 tgaAACGgttt 

  V$AREB/AREB6.04 AREB6 (Atp1a1 regulatory element binding factor 6) 0.98 376 -
 388 

382 (+) 1.000 0.985 aaaccGTTTcaaa 

  V$CHRF/CHR.01 Cell cycle gene homology region (CDE/CHR tandem 
elements regulate cell cycle dependent repression) 

0.92 379 -
 391 

385 (-) 1.000 0.956 aaatTTGAaacgg 

  V$IRFF/IRF2.01 Interferon regulatory factor 2 0.80 379 -
 393 

386 (-) 1.000 0.818 cgaaatttGAAAcgg 

  I$DSTA/STAT.01 signal transducers and activators of transcription 0.82 387 -
 401 

394 (-) 1.000 0.963 gttttccacGAAAtt 

  V$STAT/STAT.01 Signal transducers and activators of transcription 0.87 385 -
 403 

394 (+) 1.000 0.922 caaatttcgtGGAAaacag 

  V$NFAT/NFAT.01 Nuclear factor of activated T-cells 0.97 392 -
 402 

397 (+) 1.000 0.971 cgtgGAAAaca 

  V$CHRF/CHR.01 Cell cycle gene homology region (CDE/CHR tandem 
elements regulate cell cycle dependent repression) 

0.92 407 -
 419 

413 (+) 1.000 0.937 gaatTTGAagctc 

  I$DHAR/HAIRY.01 Hairy, transcriptional repressor 0.88 432 -
 442 

437 (+) 1.000 0.948 tcaCACGcgac 

  V$AHRR/AHR.01 Aryl hydrocarbon / dioxin receptor 0.80 427 -
 449 

438 (-) 1.000 0.816 gggtcgcgtcGCGTgtgagacaa 

  V$WHZF/WHN.01 Winged helix protein, involved in hair keratinization and 
thymus epithelium differentiation 

0.95 438 -
 448 

443 (+) 1.000 0.961 gcgACGCgacc 

  V$ZF5F/ZF5.01 Zinc finger / POZ domain transcription factor 0.95 464 -
 474 

469 (-) 1.000 0.962 atgtGCGCcct 

  V$HESF/HES1.01 Drosophila hairy and enhancer of split homologue 1 (HES-1) 0.92 465 -
 479 

472 (-) 1.000 0.950 cagtcatGTGCgccc 

  V$MITF/MIT.01 MIT (microphthalmia transcription factor) and TFE3 0.81 464 -
 482 

473 (-) 1.000 0.847 tcgcagtCATGtgcgccct 

  V$MOKF/MOK2.01 Ribonucleoprotein associated zinc finger protein MOK-2 
(mouse) 

0.74 509 -
 529 

519 (-) 1.000 0.746 aaactagtcgaggCCTTgaag 

  V$CHRF/CHR.01 Cell cycle gene homology region (CDE/CHR tandem 
elements regulate cell cycle dependent repression) 

0.92 527 -
 539 

533 (+) 1.000 0.942 ttttTTGAattta 

  V$PDX1/ISL1.01 Pancreatic and intestinal lim-homeodomain factor 0.82 529 -
 549 

539 (+) 1.000 0.886 ttttgaattTAATgtttaaaa 

  V$FKHD/FREAC2.01 Fork head related activator-2 (FOXF2) 0.84 536 -
 552 

544 (-) 1.000 0.890 cagtttTAAAcattaaa 

  V$MEF2/MEF2.05 MEF2 0.96 534 -
 556 

545 (-) 1.000 0.986 cttgcagtttTAAAcattaaatt 

  V$TBPF/MTATA.01 Muscle TATA box  0.84 540 -
 556 

548 (+) 1.000 0.876 atgttTAAAactgcaag 
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  I$DE74/E74A.01 E74A early ecdysone-inducible gene in onset of Drosophila 
metamorphosis 

0.88 564 -
 578 

571 (+) 1.000 0.887 gctagcaGGAAattt 

  V$ETSF/ETS1.01 c-Ets-1 binding site  0.92 565 -
 581 

573 (+) 1.000 0.927 ctagcAGGAaatttttt 

  I$DBRC/BRCZ1.01 Broad-Complex Z1 Zinc Finger isoform 0.88 576 -
 592 

584 (-) 1.000 0.905 agaaattaACAAaaaaa 

  V$OCT1/OCT1.06 Octamer-binding factor 1 0.80 578 -
 592 

585 (+) 1.000 0.874 tttttgttAATTtct 

  V$NKXH/DLX3.01 Distal-less 3 homeodomain transcription factor 0.91 582 -
 594 

588 (+) 1.000 0.924 tgtTAATttctaa 

  V$HNF1/HNF1.01 Hepatic nuclear factor 1 0.78 582 -
 598 

590 (+) 1.000 0.847 tGTTAatttctaagtca 

  V$AP1F/TCF11MAFG.01 TCF11/MafG heterodimers, binding to subclass of AP1 sites 0.81 583 -
 603 

593 (-) 1.000 0.839 aaattTGACttagaaattaac 

  I$DTLL/TLL.01 Drosophila gap gene tailless, involved in embryonic 
segmentation 

0.93 591 -
 599 

595 (+) 1.000 0.939 ctaagTCAA 

 

Table 14. List of Putative Transcription Factor Binding Sites in the C. elegans pdr-1 Promoter. 

619 bp inspected, 83 matches found. 

 

List of Regulatory sites in the C. briggsae pdr-1 Promoter 
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Sequence 

  I$DSTA/STAT.01 signal transducers and activators of transcription 0.82 1 - 15 8 (-) 1.000 0.823 tctttttcaGAAAag 

  V$IRFF/IRF3.01 Interferon regulatory factor 3 (IRF-3) 0.85 6 - 20 13 (+) 1.000 0.940 ctgaaaaaGAAAcat 

  V$FKHD/HNF3B.01 Hepatocyte Nuclear Factor 3beta (FOXA2) 0.95 8 - 24 16 (+) 1.000 0.968 gaaaaagaAACAttatg 

  V$AREB/AREB6.04 AREB6 (Atp1a1 regulatory element binding factor 6) 0.98 11 - 23 17 (-) 1.000 0.983 ataatGTTTcttt 

  V$TALE/TGIF.01 TG-interacting factor belonging to TALE class of homeodomain 
factors 

1.00 43 - 49 46 (-) 1.000 1.000 tGTCAaa 

  V$HEAT/HSF1.01 Heat shock factor 1 0.93 99 -
 109 

104 (-) 1.000 0.936 AGAAraatcga 

  V$OCT1/OCT1.01 Octamer-binding factor 1 0.77 110 -
 124 

117 (-) 1.000 0.780 gcTATGgaaagagtc 

  V$CLOX/CDPCR3.01 cut-like homeodomain protein 0.75 117 -
 133 

125 (-) 1.000 0.797 tctccggaagctATGGa 

  V$ETSF/CETS1P54.01 c-Ets-1(p54) 0.94 118 -
 134 

126 (-) 1.000 0.970 gtctcCGGAagctatgg 

  I$DE74/E74A.01 E74A early ecdysone-inducible gene in onset of Drosophila 
metamorphosis 

0.88 121 -
 135 

128 (-) 1.000 0.893 cgtctccGGAAgcta 

  V$WHZF/WHN.01 Winged helix protein, involved in hair keratinization and thymus 
epithelium differentiation 

0.95 130 -
 140 

135 (+) 1.000 0.965 gagACGCtcaa 

  V$CREB/ATF.01 activating transcription factor 0.90 134 -
 154 

144 (-) 1.000 0.909 tctcatTGACgaaattgagcg 

  V$HMTB/MTBF.01 muscle-specific Mt binding site 0.90 158 -
 166 

162 (-) 1.000 0.901 aggaATTTt 

  V$STAT/STAT.01 Signal transducers and activators of transcription 0.87 157 -
 175 

166 (-) 1.000 0.892 ggaatttttaGGAAttttt 

  V$BCL6/BCL6.01 POZ/zinc finger protein, transcriptional repressor, translocations 
observed in diffuse large cell lymphoma 

0.76 159 -
 175 

167 (+) 1.000 0.840 aaaTTCCtaaaaattcc 

  V$MEF2/AMEF2.01 Myocyte enhancer factor 0.80 158 -
 180 

169 (+) 1.000 0.829 aaaattccTAAAaattccactag 

  V$HMTB/MTBF.01 muscle-specific Mt binding site 0.90 168 -
 176 

172 (-) 1.000 0.922 tggaATTTt 

  I$DHOM/FTZ.01 fushi tarazu, involved in body segmentation of the drosophila 
embryo 

0.81 217 -
 229 

223 (-) 1.000 0.837 ttcgatATTAagg 

  V$NKXH/NKX25.02 Homeo domain factor Nkx-2.5/Csx, tinman homolog low affinity 
sites 

0.88 217 -
 229 

223 (+) 1.000 0.884 cctTAATatcgaa 

  V$CDEF/CDE.01 Cell cycle-dependent element, CDF-1 binding site (CDE/CHR 
tandem elements regulate cell cycle dependent repression) 

0.87 227 -
 239 

233 (+) 1.000 0.929 gaatCGCGatttt 

  V$E2FF/E2F.02 E2F, involved in cell cycle regulation, interacts with Rb p107 
protein 

0.84 261 -
 275 

268 (-) 1.000 0.909 ctcgcgaCAAAtgta 

  V$CDEF/CDE.01 Cell cycle-dependent element, CDF-1 binding site (CDE/CHR 
tandem elements regulate cell cycle dependent repression) 

0.87 266 -
 278 

272 (+) 1.000 0.875 ttgtCGCGagttg 

  V$EVI1/EVI1.01 Ecotropic viral integration site 1 encoded factor 0.72 285 -
 301 

293 (-) 1.000 0.724 tcaaAAGAaaagctatg 

  V$CEBP/CEBPB.01 CCAAT/enhancer binding protein beta 0.94 312 -
 330 

321 (+) 1.000 0.946 ttcattctGCAAtttagaa 

  V$PAX2/PAX2.01 Zebrafish PAX2 paired domain protein 0.78 312 -
 334 

323 (+) 1.000 0.791 ttcattctgcaatttagAAACca 

  V$PCAT/CAAT.01 cellular and viral CCAAT box 0.90 328 - 333 (+) 1.000 0.929 gaaaCCAAtta 
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 338 

  V$ECAT/NFY.02 Nuclear factor Y (Y-box binding factor) 0.91 327 -
 341 

334 (+) 1.000 0.952 agaaaCCAAttagaa 

  V$HOMS/S8.01 Binding site for S8 type homeodomains 0.97 331 -
 339 

335 (+) 1.000 0.999 accaATTAg 

  V$NKXH/MSX.01 Homeodomain proteins MSX-1 and MSX-2 0.97 329 -
 341 

335 (-) 1.000 1.000 ttcTAATtggttt 

  V$PLZF/PLZF.01 Promyelocytic leukemia zink finger (TF with nine Krueppel-like 
zink fingers) 

0.86 340 -
 354 

347 (+) 1.000 0.882 aaaTACAggtttaac 

  V$PBXF/PBX1.01 Homeo domain factor Pbx-1 0.78 350 -
 362 

356 (+) 1.000 0.790 ttaaCAATcagcg 

  V$SORY/SOX5.01 Sox-5 0.87 349 -
 365 

357 (+) 1.000 0.986 tttaaCAATcagcgatc 

  V$CLOX/CDP.02 transcriptional repressor CDP 0.81 354 -
 370 

362 (-) 1.000 0.810 atattgATCGctgattg 

  V$CLOX/CDPCR3HD.01 cut-like homeodomain protein 0.94 358 -
 374 

366 (-) 1.000 0.978 ttttatattGATCgctg 

  V$CDXF/CDX2.01 Cdx-2 mammalian caudal related intestinal transcr. factor 0.84 362 -
 380 

371 (-) 1.000 0.858 ttctactTTTAtattgatc 

  V$TBPF/TATA.01 cellular and viral TATA box elements 0.90 365 -
 381 

373 (+) 1.000 0.967 caataTAAAagtagaaa 

  I$DSUH/SUH.01 Suppressor of Hairless, linked to notch pathway 0.83 381 -
 393 

387 (+) 1.000 0.865 aatGTGGaaaacg 

  V$NFAT/NFAT.01 Nuclear factor of activated T-cells 0.97 383 -
 393 

388 (+) 1.000 0.972 tgtgGAAAacg 

  V$E2FF/E2F.02 E2F, involved in cell cycle regulation, interacts with Rb p107 
protein 

0.84 393 -
 407 

400 (+) 1.000 0.909 gtagcgaGAAAcagt 

  V$AREB/AREB6.04 AREB6 (Atp1a1 regulatory element binding factor 6) 0.98 397 -
 409 

403 (-) 1.000 0.994 aaactGTTTctcg 

  V$ETSF/ELK1.02 Elk-1 0.92 402 -
 418 

410 (-) 1.000 0.940 aaatccGGAAaactgtt 

  V$E2FF/E2F.01 E2F, involved in cell cycle regulation, interacts with Rb p107 
protein 

0.74 404 -
 418 

411 (-) 1.000 0.749 aaatccgGAAAactg 

  I$DE74/E74A.01 E74A early ecdysone-inducible gene in onset of Drosophila 
metamorphosis 

0.88 405 -
 419 

412 (-) 1.000 0.941 caaatccGGAAaact 

  V$PAX2/PAX2.01 Zebrafish PAX2 paired domain protein 0.78 403 -
 425 

414 (+) 1.000 0.822 acagttttccggatttgAAACtc 

  V$IRFF/ISRE.01 Interferon-stimulated response element 0.81 411 -
 425 

418 (+) 1.000 0.829 ccggatttGAAActc 

  V$CHRF/CHR.01 Cell cycle gene homology region (CDE/CHR tandem elements 
regulate cell cycle dependent repression) 

0.92 413 -
 425 

419 (+) 1.000 0.951 ggatTTGAaactc 

  V$WHZF/WHN.01 Winged helix protein, involved in hair keratinization and thymus 
epithelium differentiation 

0.95 439 -
 449 

444 (-) 1.000 0.951 gcgACGCggct 

  V$XBBF/RFX1.02 X-box binding protein RFX1 0.90 443 -
 461 

452 (+) 1.000 0.943 gcgtcgcgaccGCAAcgct 

  V$ZBPF/ZF9.01 Core promoter-binding protein (CPBP) with 3 Krueppel-type zinc 
fingers 

0.87 467 -
 481 

474 (-) 1.000 0.897 gctgCCGCgcctcat 

  V$XBBF/RFX1.02 X-box binding protein RFX1 0.90 469 -
 487 

478 (+) 1.000 0.932 gaggcgcggcaGCAAcaat 

  V$SORY/SOX5.01 Sox-5 0.87 479 -
 495 

487 (+) 1.000 0.983 agcaaCAATggcctagg 

  B$SIGF/SIGMAP54.01 Subgroup of bacterial promoters specifically recognized by sigma 
p54 Polymerase subunit 

0.85 484 -
 504 

494 (+) 1.000 0.856 caaTGGCctaggtcttgcggc 

  I$DHOM/DFD.01 Deformed, homeotic gene in drosophila development 0.99 502 -
 514 

508 (-) 1.000 0.997 ctagTAATctgcc 

  V$HNF6/HNF6.01 Liver enriched Cut - Homeodomain transcription factor HNF6 
(ONECUT) 

0.82 526 -
 540 

533 (-) 1.000 0.835 tgaaaTCAAaaagac 

  V$MYT1/MYT1.02 MyT1 zinc finger transcription factor involved in primary 
neurogenesis 

0.88 535 -
 547 

541 (-) 1.000 0.891 aaaAAGTtgaaat 

  B$CRBS/CRP.01 CRP binding site, cAMP - dependent catabolite repression in 
bacteria 

0.71 533 -
 559 

546 (-) 1.000 0.770 aaaatatTGTGaaaaaagttgaaatca 

  V$IRFF/IRF1.01 Interferon regulatory factor 1 0.86 563 -
 577 

570 (-) 1.000 0.895 aaaaaactGAAAatt 

  I$DCAD/CAD.01 Drosophila homeodomain protein caudal, vertebrate homolog cdx 0.98 572 -
 582 

577 (+) 1.000 0.982 ttttTTTAaat 

  V$HOXF/EN1.01 Homeobox protein engrailed (en-1) 0.77 572 -
 588 

580 (+) 1.000 0.771 ttttTTTAaatgttttt 

  V$FKHD/HFH2.01 HNF-3/Fkh Homolog 2 (FOXD3) 0.93 577 -
 593 

585 (-) 1.000 0.975 ctgaaaaaAACAtttaa 

Table 15. List of Putative Transcription Factor Binding Sites in the C. briggsae pdr-1 Promoter. 

595 bp inspected, 60 matches found. 
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  V$VMYB/VMYB.02 v-Myb 0.90 17 - 27 22 (-) 1.000 0.925 cgaAACGgtag 

  V$PAX1/PAX1.01 Pax1 paired domain protein, expressed in the developing 
vertebral column of mouse embryos 

0.61 20 - 38 29 (+) 1.000 0.643 CCGTttcgtagagtatata 

  V$NKXH/NKX31.01 Prostate-specific homeodomain protein NKX3.1 0.84 33 - 45 39 (-) 1.000 0.868 gaagAAGTatata 

  V$E4FF/E4F.01 GLI-Krueppel-related transcription factor, regulator of 
adenovirus E4 promoter 

0.82 56 - 68 62 (-) 1.000 0.977 atgACGTaactgg 

  N$CEDS/CES2.01 cell-death specification 2, bZIP factor involved in 
programmed cell death in C.elegans 

0.77 58 - 68 63 (-) 1.000 0.902 atgacGTAAct 

  V$CREB/CREB.01 cAMP-responsive element binding protein 0.86 53 - 73 63 (-) 1.000 0.988 tgattaTGACgtaactggaga 

  V$VBPF/VBP.01 PAR-type chicken vitellogenin promoter-binding protein 0.86 59 - 69 64 (+) 1.000 0.987 gTTACgtcata 

  O$RPOA/DTYPEPA.01 PolyA signal of D-type LTRs  0.78 107 -
 127 

117 (+) 1.000 0.797 tCCATcaaatgtggatgtctt 

  V$LEFF/LEF1.01 TCF/LEF-1, involved in the Wnt signal transduction pathway 0.86 120 -
 136 

128 (-) 1.000 0.928 ggtgcaaCAAAgacatc 

  V$VMYB/VMYB.02 v-Myb 0.90 133 -
 143 

138 (-) 1.000 0.905 cgaAACGggtg 

  I$DKNI/KNI.01 Drosophila gap gene knirps, involved in embryonic 
segmentation 

0.91 143 -
 155 

149 (+) 1.000 0.919 gagtatGTTCgaa 

  V$HAML/AML3.01 Runt-related transcription factor 2 / CBFA1 (core-binding 
factor, runt domain, alpha subunit 1) 

0.84 155 -
 169 

162 (+) 1.000 0.863 actaGTGGttcatga 

  V$PAX2/PAX2.01 Zebrafish PAX2 paired domain protein 0.78 155 -
 177 

166 (+) 1.000 0.800 actagtggttcatgaagAAACtg 

  V$IRFF/IRF3.01 Interferon regulatory factor 3 (IRF-3) 0.85 169 -
 183 

176 (+) 1.000 0.982 aagaaactGAAActg 

  V$HMTB/MTBF.01 muscle-specific Mt binding site 0.90 212 -
 220 

216 (-) 1.000 0.922 tggaATTTt 

  V$OCT1/OCT1.01 Octamer-binding factor 1 0.77 217 -
 231 

224 (-) 1.000 0.785 gcTATGaaaaatgga 

  V$TBPF/ATATA.01 Avian C-type LTR TATA box  0.81 230 -
 246 

238 (+) 1.000 0.835 gcatcttTAAGctgttt 

  V$AREB/AREB6.04 AREB6 (Atp1a1 regulatory element binding factor 6) 0.98 238 -
 250 

244 (+) 1.000 0.994 aagctGTTTctcg 

  V$E2FF/E2F.02 E2F, involved in cell cycle regulation, interacts with Rb p107 
protein 

0.84 240 -
 254 

247 (-) 1.000 0.909 ctcgcgaGAAAcagc 

  V$SRFF/SRF.01 Serum response factor 0.66 252 -
 270 

261 (-) 1.000 0.702 ctgaacgTATAtgagactc 

  V$CHRF/CHR.01 Cell cycle gene homology region (CDE/CHR tandem 
elements regulate cell cycle dependent repression) 

0.92 274 -
 286 

280 (-) 1.000 0.925 ggctTTGAaactg 

  V$LEFF/LEF1.02 TCF/LEF-1, involved in the Wnt signal transduction pathway 0.94 273 -
 289 

281 (+) 1.000 0.977 ccagtttCAAAgccttg 

  V$MOKF/MOK2.01 Ribonucleoprotein associated zinc finger protein MOK-2 
(mouse) 

0.74 272 -
 292 

282 (+) 1.000 0.754 tccagtttcaaagCCTTgttt 

  V$FKHD/FKHRL1.01 Fkh-domain factor FKHRL1 (FOXO)  0.83 283 -
 299 

291 (-) 1.000 0.886 tggaggaaAACAaggct 

  V$NFAT/NFAT.01 Nuclear factor of activated T-cells 0.97 288 -
 298 

293 (-) 1.000 0.976 ggagGAAAaca 

  V$ZF5F/ZF5.01 Zinc finger / POZ domain transcription factor 0.95 303 -
 313 

308 (+) 1.000 0.950 atgcGCGCatg 

  V$MITF/MIT.01 MIT (microphthalmia transcription factor) and TFE3 0.81 303 -
 321 

312 (+) 1.000 0.863 atgcgcgCATGtgcttctg 

  V$CLOX/CDP.02 transcriptional repressor CDP 0.81 328 -
 344 

336 (+) 1.000 0.842 tttcacATCGatgtcaa 

  V$TALE/TGIF.01 TG-interacting factor belonging to TALE class of 
homeodomain factors 

1.00 339 -
 345 

342 (+) 1.000 1.000 tGTCAaa 

  V$PBXC/PBX1_MEIS1.03 Binding site for a Pbx1/Meis1 heterodimer 0.76 335 -
 351 

343 (-) 1.000 0.814 gcgatgttTGACatcga 

  V$BARB/BARBIE.01 barbiturate-inducible element 0.88 351 -
 365 

358 (-) 1.000 0.895 ctcgAAAGaagttgg 

  V$E2FF/E2F.02 E2F, involved in cell cycle regulation, interacts with Rb p107 
protein 

0.84 355 -
 369 

362 (-) 1.000 0.849 aaagctcGAAAgaag 

  V$BCL6/BCL6.02 POZ/zinc finger protein, transcriptional repressor, 
translocations observed in diffuse large cell lymphoma 

0.77 364 -
 380 

372 (-) 1.000 0.775 caagtttTAGAaaagct 

  V$TBPF/MTATA.01 Muscle TATA box  0.84 367 -
 383 

375 (+) 1.000 0.851 ttttcTAAAacttgtgg 

  V$MYT1/MYT1.02 MyT1 zinc finger transcription factor involved in primary 
neurogenesis 

0.88 370 -
 382 

376 (-) 1.000 0.895 cacAAGTtttaga 

  V$HAML/AML3.01 Runt-related transcription factor 2 / CBFA1 (core-binding 
factor, runt domain, alpha subunit 1) 

0.84 376 -
 390 

383 (+) 1.000 0.887 acttGTGGttgtaaa 

  V$LTUP/TAACC.01 Lentiviral TATA upstream element 0.71 376 -
 398 

387 (-) 1.000 0.734 attgaatatttacAACCacaagt 

  V$FKHD/FREAC3.01 Fork head related activator-3 (FOXC1) 0.84 381 -
 397 

389 (+) 1.000 0.877 tggttGTAAatattcaa 

  V$PIT1/PIT1.01 Pit1, GHF-1 pituitary specific pou domain transcription factor 0.86 388 -
 398 

393 (+) 1.000 0.891 aaatATTCaat 

  V$CART/XVENT2.01 Xenopus homeodomain factor Xvent-2; early BMP signaling 
response 

0.82 386 -
 402 

394 (-) 1.000 0.838 ttTAATtgaatatttac 
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  V$HNF6/HNF6.01 Liver enriched Cut - Homeodomain transcription factor HNF6 
(ONECUT) 

0.82 389 -
 403 

396 (+) 1.000 0.820 aatatTCAAttaaag 

  V$HOMS/S8.01 Binding site for S8 type homeodomains 0.97 393 -
 401 

397 (+) 1.000 0.999 ttcaATTAa 

  V$NKXH/MSX.01 Homeodomain proteins MSX-1 and MSX-2 0.97 391 -
 403 

397 (-) 1.000 0.995 cttTAATtgaata 

  V$HOXF/EN1.01 Homeobox protein engrailed (en-1) 0.77 390 -
 406 

398 (-) 1.000 0.871 tttcTTTAattgaatat 

  V$RBIT/BRIGHT.01 Bright, B cell regulator of IgH transcription  0.92 392 -
 404 

398 (+) 1.000 0.958 attcaATTAaaga 

  N$CEDS/CES2.01 cell-death specification 2, bZIP factor involved in 
programmed cell death in C.elegans 

0.77 408 -
 418 

413 (-) 1.000 0.851 cgtacGTAAca 

  V$CREB/CREBP1.01 cAMP-responsive element binding protein 1 0.80 404 -
 424 

414 (+) 1.000 0.879 aaactgttACGTacgctagag 

  V$VBPF/VBP.01 PAR-type chicken vitellogenin promoter-binding protein 0.86 409 -
 419 

414 (+) 1.000 0.933 gTTACgtacgc 

  V$HIFF/HIF1.01 Hypoxia induced factor-1 (HIF-1) 0.87 409 -
 421 

415 (-) 1.000 0.875 tagcgtACGTaac 

  V$VMYB/VMYB.01 v-Myb 0.90 454 -
 464 

459 (-) 1.000 0.936 aaaAACGgttg 

  V$ETSF/ELK1.02 Elk-1 0.92 465 -
 481 

473 (-) 1.000 0.921 agagtcGGAAgaatcaa 

  V$OCT1/OCT1.01 Octamer-binding factor 1 0.77 476 -
 490 

483 (-) 1.000 0.780 gcTATGgaaagagtc 

  V$CLOX/CDPCR3.01 cut-like homeodomain protein 0.75 483 -
 499 

491 (-) 1.000 0.797 gctccggaagctATGGa 

  V$ETSF/CETS1P54.01 c-Ets-1(p54) 0.94 484 -
 500 

492 (-) 1.000 0.970 ggctcCGGAagctatgg 

  I$DE74/E74A.01 E74A early ecdysone-inducible gene in onset of Drosophila 
metamorphosis 

0.88 487 -
 501 

494 (-) 1.000 0.896 cggctccGGAAgcta 

  V$VMYB/VMYB.02 v-Myb 0.90 496 -
 506 

501 (-) 1.000 0.922 ttgAACGgctc 

  V$IRFF/IRF7.01 Interferon regulatory factor 7 (IRF-7) 0.86 498 -
 512 

505 (-) 1.000 0.879 atGAAAttgaacggc 

  I$PRDH/PRD_HD.01 Drosophila paired homeodomain 0.70 502 -
 522 

512 (+) 1.000 0.851 ttcaatttcatcGATTagatg 

  V$CLOX/CDP.02 transcriptional repressor CDP 0.81 506 -
 522 

514 (-) 1.000 0.962 catctaATCGatgaaat 

  V$TEAF/TEF1.01 TEF-1 related muscle factor 0.84 524 -
 536 

530 (+) 1.000 0.922 aaCATTcctgaaa 

  V$STAT/STAT.01 Signal transducers and activators of transcription 0.87 523 -
 541 

532 (-) 1.000 0.911 tcgtatttcaGGAAtgttc 

  I$DKNI/KNI.01 Drosophila gap gene knirps, involved in embryonic 
segmentation 

0.91 541 -
 553 

547 (+) 1.000 0.914 acatttGTTCaaa 

  V$SORY/SOX5.01 Sox-5 0.87 552 -
 568 

560 (-) 1.000 0.996 ataaaCAATatgtattt 

  V$FKHD/HFH8.01 HNF-3/Fkh Homolog-8 (FOXF1) 0.92 557 -
 573 

565 (-) 1.000 0.975 ggtgaatAAACaatatg 

  V$FAST/FAST1.01 FAST-1 SMAD interacting protein 0.81 559 -
 573 

566 (+) 1.000 0.916 tattgttTATTcacc 

  V$PIT1/PIT1.01 Pit1, GHF-1 pituitary specific pou domain transcription factor 0.86 563 -
 573 

568 (+) 1.000 0.862 gtttATTCacc 

  V$ECAT/NFY.03 Nuclear factor Y (Y-box binding factor) 0.80 567 -
 581 

574 (+) 1.000 0.808 attcaCCAAccaata 

  V$PCAT/ACAAT.01 Avian C-type LTR CCAAT box  0.86 572 -
 582 

577 (+) 1.000 0.895 ccaaCCAAtat 

  V$ECAT/NFY.02 Nuclear factor Y (Y-box binding factor) 0.91 571 -
 585 

578 (+) 1.000 0.934 accaaCCAAtatctt 

  V$GATA/GATA1.01 GATA-binding factor 1 0.96 575 -
 587 

581 (-) 1.000 0.960 taaaGATAttggt 

  V$SATB/SATB1.01 
Special AT-rich sequence-binding protein 1, predominantly 
expressed in thymocytes, binds to matrix attachment 
regions (MARs) 

0.93 
577 -
 593 585 (+) 1.000 0.954 caatatcttTAATatcg 

  V$GFI1/GfI1B.01 Growth factor independence 1 zinc finger protein Gfi-1B 0.86 592 -
 606 

599 (-) 1.000 0.929 aaaAATCacggttcg 

  V$HOXT/MEIS1_HOXA9.01 Homeobox protein MEIS1 binding site 0.79 598 -
 610 

604 (+) 1.000 0.839 gTGATttttgtga 

  I$DHUB/HB.02 Hunchback, early maternal and zygotic zinc finger gene, 
activated by bicoid 

0.98 599 -
 611 

605 (-) 1.000 0.981 ctcacAAAAatca 

  V$E2FF/E2F.02 E2F, involved in cell cycle regulation, interacts with Rb p107 
protein 

0.84 627 -
 641 

634 (-) 1.000 0.927 ttcgcggCAAAtgta 

  V$E2FF/E2F.03 E2F, involved in cell cycle regulation, interacts with Rb p107 
protein 

0.78 632 -
 646 

639 (+) 1.000 0.818 ttgcCGCGaattttc 

  V$SORY/HMGIY.01 
HMGI(Y) high-mobility-group protein I (Y), architectural 
transcription factor organizing the framework of a nuclear 
protein-DNA transcriptional complex 

0.92 
634 -
 650 642 (+) 1.000 0.977 gccgcgAATTttcgccg 

  I$DDVL/DL.02 Dorsal, protein for dorso-ventral axis formation, homologous 
to vertebrate c-rel 

0.91 639 -
 649 

644 (+) 1.000 0.925 gaatTTTCgcc 

  V$E2FF/E2F.01 E2F, involved in cell cycle regulation, interacts with Rb p107 
protein 

0.74 639 -
 653 

646 (-) 1.000 0.777 atgcggcGAAAattc 
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Position 
   Family/matrix Further Information Opt. 

from -
 to 

anchor 
Str. 

Core 
sim. 

Matrix 
sim. Sequence 

  V$MYT1/MYT1.02 MyT1 zinc finger transcription factor involved in primary 
neurogenesis 

0.88 649 -
 661 

655 (-) 1.000 0.894 gaaAAGTtatgcg 

  V$EVI1/EVI1.01 Ecotropic viral integration site 1 encoded factor 0.72 651 -
 667 

659 (-) 1.000 0.724 tcaaAAGAaaagttatg 

  V$HOMS/S8.01 Binding site for S8 type homeodomains 0.97 696 -
 704 

700 (-) 1.000 0.997 ttcaATTAt 

  V$NKXH/DLX3.01 Distal-less 3 homeodomain transcription factor 0.91 694 -
 706 

700 (+) 1.000 0.949 aaaTAATtgaaaa 

  V$BRNF/BRN3.01 POU transcription factor Brn-3 0.78 693 -
 709 

701 (+) 1.000 0.800 gaaATAAttgaaaaatt 

  V$CART/XVENT2.01 Xenopus homeodomain factor Xvent-2; early BMP signaling 
response 

0.82 696 -
 712 

704 (-) 1.000 0.917 cgTAATttttcaattat 

  V$NKXH/NKX25.02 Homeo domain factor Nkx-2.5/Csx, tinman homolog low 
affinity sites 

0.88 701 -
 713 

707 (-) 1.000 0.895 tcgTAATttttca 

  V$PAX4/PAX4.01 Pax-4 homeodomain binding site, together with PAX-6 
involved in pancreatic development 

0.97 702 -
 712 

707 (+) 1.000 0.980 gaaaAATTacg 

  V$OCT1/OCT1.06 Octamer-binding factor 1 0.80 703 -
 717 

710 (-) 1.000 0.897 tctatcgtAATTttt 

  N$CEDS/CES2.01 cell-death specification 2, bZIP factor involved in 
programmed cell death in C.elegans 

0.77 706 -
 716 

711 (-) 1.000 0.773 ctatcGTAAtt 

  I$PRDH/PAX6_HD.01 Drosophila PAX6 P3 homeodomain binding site 0.78 717 -
 737 

727 (+) 1.000 0.825 aatagttaaaataATTAtgaa 

  I$DHOM/FTZ.01 fushi tarazu, involved in body segmentation of the 
drosophila embryo 

0.81 724 -
 736 

730 (+) 1.000 0.823 aaaataATTAtga 

  V$HOMS/S8.01 Binding site for S8 type homeodomains 0.97 726 -
 734 

730 (+) 1.000 0.990 aataATTAt 

  V$HOXF/HOX1-3.01 Hox-1.3, vertebrate homeobox protein 0.83 723 -
 739 

731 (-) 1.000 0.904 ttttcataATTAtttta 

  V$NKXH/DLX1.01 DLX-1, -2, and -5 binding sites 0.91 725 -
 737 

731 (+) 1.000 0.982 aaatAATTatgaa 

  V$OCT1/OCT1.04 Octamer-binding factor 1 0.80 730 -
 744 

737 (+) 1.000 0.814 atTATGaaaagattt 

  I$DSTA/STAT.01 signal transducers and activators of transcription 0.82 740 -
 754 

747 (-) 1.000 0.960 gctttccacGAAAtc 

  V$STAT/STAT.01 Signal transducers and activators of transcription 0.87 738 -
 756 

747 (+) 1.000 0.922 aagatttcgtGGAAagcga 

  V$GATA/LMO2COM.02 complex of Lmo2 bound to Tal-1, E2A proteins, and GATA-1, 
half-site 2 

0.96 751 -
 763 

757 (+) 1.000 0.974 aagcGATAacggt 

  V$E2TF/E2.02 Papilloma virus regulator E2 0.87 750 -
 766 

758 (+) 1.000 0.901 aaagcgataaCGGTttc 

  V$VMYB/VMYB.02 v-Myb 0.90 755 -
 765 

760 (+) 1.000 0.977 gatAACGgttt 

  I$DELF/ELF1.01 Drosophila Elf-1 (NTF-1), vertebrate homolog CP2 (human, 
mouse) 

0.91 755 -
 771 

763 (+) 1.000 0.924 gataacgGTTTcggaat 

  V$AREB/AREB6.04 AREB6 (Atp1a1 regulatory element binding factor 6) 0.98 757 -
 769 

763 (+) 1.000 0.988 taacgGTTTcgga 

  V$HMTB/MTBF.01 muscle-specific Mt binding site 0.90 766 -
 774 

770 (+) 1.000 0.931 cggaATTTg 

  V$PAX2/PAX2.01 Zebrafish PAX2 paired domain protein 0.78 760 -
 782 

771 (-) 1.000 0.786 gggaatttcaaattccgAAACcg 

  V$IRFF/IRF3.01 Interferon regulatory factor 3 (IRF-3) 0.85 766 -
 780 

773 (+) 1.000 0.865 cggaatttGAAAttc 

  V$CHRF/CHR.01 Cell cycle gene homology region (CDE/CHR tandem 
elements regulate cell cycle dependent repression) 

0.92 768 -
 780 

774 (+) 1.000 0.959 gaatTTGAaattc 

  V$NFKB/NFKAPPAB.02 NF-kappaB 0.81 770 -
 784 

777 (-) 1.000 0.871 caGGGAatttcaaat 

  V$IKRS/IK3.01 Ikaros 3, potential regulator of lymphocyte differentiation 0.84 774 -
 786 

780 (-) 1.000 0.877 agcagGGAAtttc 

  V$BARB/BARBIE.01 barbiturate-inducible element 0.88 778 -
 792 

785 (-) 1.000 0.885 aacaAAAGcagggaa 

  V$GKLF/GKLF.01 Gut-enriched Krueppel-like factor 0.91 779 -
 793 

786 (-) 1.000 0.934 aaacaaaagcAGGGa 

  V$E2FF/E2F.02 E2F, involved in cell cycle regulation, interacts with Rb p107 
protein 

0.84 788 -
 802 

795 (-) 1.000 0.927 ggtgcggCAAAacaa 

  V$CDEF/CDE.01 Cell cycle-dependent element, CDF-1 binding site (CDE/CHR 
tandem elements regulate cell cycle dependent repression) 

0.87 797 -
 809 

803 (-) 1.000 0.874 gtgtCGCGgtgcg 

  I$DHAR/HAIRY.01 Hairy, transcriptional repressor 0.88 804 -
 814 

809 (+) 1.000 0.882 cgaCACGcatc 

  V$AHRR/AHRARNT.01 Aryl hydrocarbon receptor / Arnt heterodimers 0.92 799 -
 821 

810 (-) 1.000 0.924 ggactgcgatgCGTGtcgcggtg 

  V$PAX5/PAX9.01 Zebrafish PAX9 binding sites  0.78 803 -
 831 

817 (+) 1.000 0.804 gcgacaCGCAtcgcagtccgtagagcgca 

  V$CMYB/CMYB.01 c-Myb, important in hematopoesis, cellular equivalent to 
avian myoblastosis virus oncogene v-myb 

0.99 827 -
 835 

831 (-) 1.000 0.990 caGTTGcgc 

  V$IRFF/IRF3.01 Interferon regulatory factor 3 (IRF-3) 0.85 827 -
 841 

834 (+) 1.000 0.852 gcgcaactGAAAgtg 

  V$NKXH/HMX3.01 H6 homeodomain HMX3/Nkx5.1 transcription factor 0.89 833 -
 845 

839 (+) 1.000 0.911 ctgaAAGTggggg 

  V$MYT1/MYT1.02 MyT1 zinc finger transcription factor involved in primary 
neurogenesis 

0.88 845 -
 857 

851 (-) 1.000 0.990 gaaAAGTttagtc 
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Position 
   Family/matrix Further Information Opt. 

from -
 to 

anchor 
Str. 

Core 
sim. 

Matrix 
sim. Sequence 

  V$E2FF/E2F.01 E2F, involved in cell cycle regulation, interacts with Rb p107 
protein 

0.74 850 -
 864 

857 (-) 1.000 0.805 ttcgctgGAAAagtt 

  V$STAT/STAT6.01 STAT6: signal transducer and activator of transcription 6 0.84 850 -
 868 

859 (+) 1.000 0.876 aacttTTCCagcgaatgtt 

  V$MZF1/MZF1.01 MZF1 0.98 871 -
 877 

874 (-) 1.000 0.985 gcGGGGa 

  V$PLZF/PLZF.01 Promyelocytic leukemia zink finger (TF with nine Krueppel-
like zink fingers) 

0.86 878 -
 892 

885 (-) 1.000 0.918 aaaTACAgtttgctt 

  I$DDVL/DL.02 Dorsal, protein for dorso-ventral axis formation, homologous 
to vertebrate c-rel 

0.91 888 -
 898 

893 (+) 1.000 0.947 tattTTTCtct 

  V$E2FF/E2F.01 E2F, involved in cell cycle regulation, interacts with Rb p107 
protein 

0.74 888 -
 902 

895 (-) 1.000 0.808 tgcgagaGAAAaata 

  V$MZF1/MZF1.01 MZF1 0.98 904 -
 910 

907 (-) 1.000 1.000 gtGGGGa 

  V$E2FF/E2F.02 E2F, involved in cell cycle regulation, interacts with Rb p107 
protein 

0.84 920 -
 934 

927 (+) 1.000 0.849 gccgagcCAAAttcc 

  V$MYOF/MYOGNF1.01 Myogenin / nuclear factor 1 or related factors 0.71 913 -
 941 

927 (-) 1.000 0.750 gaaaagtggaatTTGGctcggcggcgaga 

  V$HMTB/MTBF.01 muscle-specific Mt binding site 0.90 927 -
 935 

931 (-) 1.000 0.953 tggaATTTg 

  V$MYT1/MYT1.01 MyT1 zinc finger transcription factor involved in primary 
neurogenesis 

0.75 929 -
 941 

935 (-) 1.000 0.756 gaaAAGTggaatt 

  V$E2FF/E2F.01 E2F, involved in cell cycle regulation, interacts with Rb p107 
protein 

0.74 934 -
 948 

941 (-) 1.000 0.770 ttcaccaGAAAagtg 

  V$FKHD/FKHRL1.01 Fkh-domain factor FKHRL1 (FOXO)  0.83 939 -
 955 

947 (+) 1.000 0.872 ttctggtgAACAactta 

 

Table 16. List of Putative Transcription Factor Binding Sites in the C. remanei pdr-1 Promoter. 

959 bp inspected, 132 matches found. 
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7.3 Identified PDR-1 Interaction Partners 

For the three independent Yeast-Two-Hybrid screens performed in this study, GAL4-

activation domain C. elegans cDNA libraries (RB1 and RB3) were used. 

 

PDR-1 interaction partners identified in this study 
 orthologs, homologs  

cl
on

e 

gene name ORF  
(bp/aa) 

insert 
size 
(bp) 

domains predicted 
biochemical function involved in predicted 

localization 
C. elegans S. cerevisiae H. sapiens 

 
 
Clones from 1st Yeast-Two-Hybrid Screen (pYS-I) 

a F29G6.3 (A) 5787 
1929 

198-
5787 

ATP/GTP binding motif A 
(P-loop), YLP motif 

gametogenesis, 
osmoregulation     H11E01.3     

b F44C4.3 
cpr-4 

1005 
335 48-1005 

cysteine protease 
papain family, thiol 

protease 

protease, hydrolase 
(other than proteasomal) 

protein 
degradation 

cytoplasmic 
soluble CPR-5   Cathepsin B 

c F28D1.5 699 
233 

74- 
699 

Zinc finger (C2H2-type) 
thaumatin-like (sweet-

tasting) 

arabidopsis 
pathogenesis cell stress   F28D1.3     

d C55B7.2 
gly-2 

2007 
669 

449-
2007 

alpha-1,3(6)-mannosyl- 
glycoprotein 

beta-1,6-N-acetyl- 
glucosaminyltransferase 

protein 
modification       MGAT5 

e F29G9.5 
rpt-2 

1329 
443 

3- 
1329 

AAA ATPase domain, 
ATP/GTP binding motif A 

proteasome subunit, 
hydrolase, ATPase 

protein 
degradation ER, nucleus   Rpt2p 

PSMC1, 
regul. 

subunit #4 

h T27E9.1 900 
300 

full- 
length 

Mitochondrial Carrier 
Family 

ADP/ATP carrier protein 

active transporter, 
secondary 

small molecule 
transport, apoptosis 

mitochondrial 
in membrane 

T01B11.4, 
K01H12.2 Pet9p ANT2 

i K04H4.1 
clb-2, emb-9 

5274 
1744 

3882-
5274 

type IV collagen 
(alpha1-collagen) 

structural protein, 
extracellular matrix cell structure basement 

membrane 
LET-2, MEC-5, 
BLI-2, SQT-3   COL4A2,5 

 
 
Clones from 2nd Yeast-Two-Hybrid Screen (pYS-II) 

1 F57F4.3 
gfi-1 

6459 
2153 

1325-
2686 ET module family   vesicle transport 

Secr. vesicles 
peripheral 
membrane 

F57F4.4   Mucin  

2 T03E6.7 
cpl-1 

1011 
337 

375-
1011 

cysteine protease 
papain family, thiol 

protease 

protease, hydrolase 
(other than proteasomal) 

protein 
degradation 

extracellular 
matrix 

F41E6.6, 
R09F10.1   Cathepsin L 

3 T03E6.7 
cpl-1 

1011 
337 

207-
1011 

cysteine protease 
papain family, thiol 

protease 

protease, hydrolase 
(other than proteasomal) 

protein 
degradation 

extracellular 
matrix 

F41E6.6, 
R09F10.1   Cathepsin L 

4 C44B12.5 1191 
397 

306-
1191 transmembrane domain unknown     C44B12.1   TFIID 

subunit4 

5 C44B12.5 1191 
397 

285-
1191 transmembrane domain unknown     C44B12.1     

6 F26H11.2 5133 
1713 

4332-
5133 

PHD zincfinger, DDT 
domain 

DNA-binding (A+T-hook) 

unknown 
HMG-I and HMG-Y 

transcriptional 
regulation nucleus     FALZ 

7 T03E6.7 
cpl-1 

1011 
337 

360-
1011 

cysteine protease  
papain family, thiol 

protease 

protease, hydrolase 
(other than proteasomal) 

protein 
degradation 

extracellular 
matrix 

F41E6.6, 
R09F10.1   Cathepsin L 

8 C02B10.1 1257 
419 

520-
1257 

isovaleryl-CoA 
dehydrogease 

acyl-CoA 
oxidoreductase 

lipid, fatty-acid & 
sterol metabolism mitochondria   Pox1p IVD 

10 F52C6.2 333 
110 

full- 
length 

domain related to 
ubiquitin protein modification     F52C6.1,.3,.4 NEDD-8 NEDD-8 

11 W04A8.7 
taf-1 

5379 
1792 

3381-
5379 

Bromodomain, CCHC 
cytochrome C heme 

binding 

transcription factor, 
DNA-binding protein Pol-II transcription nuclear   TFIID subunit TAF2A 

12 C04F6.1 
vit-5 

4809 
1603 

4127- 
4530 vitellogenin family 170 kDa yolk protein progeny 

nutrition 
cytoplasmic 
in particles VIT-4,-3,-2   TECTA 

15 Y94H6A.7 1395 
465   put. paralog of 

Y94H6A.D         Ltp1p  ACP1 

16 T03E6.7 
cpl-1 

1011 
337 

452-
1011 

cysteine protease 
papain family, thiol 

protease 

protease, hydrolase 
(other than proteasomal) 

protein 
degradation 

extracellular 
matrix 

F41E6.6, 
R09F10.1   Cathepsin L 

17 F29C12.1 
pqn-32 

1776 
592 

570-
1776 

DB module family 
Q/N-rich (Prion) domain unknown     C49F8.3    M.m. RPTN 

18 F42C5.7 
grl-4 

633 
210 

297- 
750 

Ground-like (Grl) domain 
protein secretion motif hedgehog-related protein  extracellular 

soluble     Trithorax 
homolog2 

19 K04D7.1 975 
325 

full- 
length 

G-protein beta WD-40 
repeat 

Beta-transducin family 

translation factor 
guanine nucleotide bdg 

aa-metabolism, 
protein synthesis, 
Pol-II transcription 

cytoplasmic   Asc1p RACK1 

21 C39D10.7 3558 
1185 

971-
3558 

chitin-binding 
Peritrophin-A domain unknown   extracellular     Mucin-2 

precursor 
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 orthologs, homologs  

cl
on

e 

gene name ORF  
(bp/aa) 

insert 
size 
(bp) 

domains predicted 
biochemical function involved in predicted 

localization 
C. elegans S. cerevisiae H. sapiens 

22 C25B8.3 
cpr-6 

1137 
379 

371-
1137 

cysteine protease 
papain family, thiol 

protease 

protease, hydrolase 
(other than proteasomal) 

protein 
degradation 

cytoplasmic 
soluble CPR-5   Cathepsin B 

23 T01G1.3 3114 
1083   

G-protein beta WD-40  
Yesat transport prot. 

WEB1 

component of COPII 
coat 

of secretory vesicles 

ER to Golgi 
transport 

Secr. vesicles 
peripheral 
membrane 

  Sec31p SEC31B 

24 ZK632.11 1359 
453 

full- 
length 

ZincFinger CCHC 
Proline rich (PSP) unknown nucleic acid 

binding   Y34D9A.7   DKFZP434 

25 C39D10.7 3393 
1131 

2355-
3393 

chitin-binding 
Peritrophin-A domain unknown chitin 

metabolism extracellular       

 
 
Clones from 3rd Yeast-Two-Hybrid Screen (pYS-III) 

1 B0336.7a 1506 
501 

60- 
1506 

Prenyl group binding site 
(CAAX box), C2H2 finger unknown     Y54G11A.14     

3 C25F6.3 3252 
1084 

1854-
3252 

4Fe-4S binding domain 
Transmembrane domain 

Dihydropyrimidine 
dehydrogenase 

de novo pyrimidine 
biosynthesis     Ura3p DPYD 

5 T03E6.7 
cpl-1 

1011 
337 

114-
1011 

cysteine protease 
papain family, thiol 

protease 

protease, hydrolase 
(other than proteasomal) 

protein 
degradation 

extracellular 
matrix 

F41E6.6, 
R09F10.1   Cathepsin L 

6 T03E6.7 
cpl-1 

1011 
337 

375-
1011 

cysteine protease 
papain family, thiol 

protease 

protease, hydrolase 
(other than proteasomal) 

protein 
degradation 

extracellular 
matrix 

F41E6.6, 
R09F10.1   Cathepsin L 

7 F37C4.5 1668 
556 

282-
1668   unknown     ZK1055.7, 

ZK1055.6     

8 T24D1.3 1047 
349 

full- 
length ZF RING finger (C3HC4) unknown regulation of 

apoptosis   T24D1.5, 
C34F11.1   LOC51283 

10 F57F5.1 1200 
400 

193-
1200 

cysteine protease 
papain family, thiol 

protease 

protease, hydrolase 
(other than proteasomal) 

protein 
degradation 

cytoplasmic 
soluble CPR-6,-5,-4   Cathepsin B 

11 F57F5.1 1200 
400 

302-
1200 

cysteine protease 
papain family, thiol 

protease 

protease, hydrolase 
(other than proteasomal) 

protein 
degradation 

cytoplasmic 
soluble CPR-6,-5,-4   Cathepsin B 

13 M01E11.7 
isoform A 

3333 
1112 

1115-
3333 

SH2-Src homology 
domain 

PTB (Phosphotyrosine-
bdg.) 

  intracellular 
signaling   Y48G1C.F   Tensin 

14 F57F5.1 1200 
400 

193-
1200 

cysteine protease 
papain family, thiol 

protease 

protease, hydrolase 
(other than proteasomal) 

protein 
degradation 

cytoplasmic 
soluble     Cathepsin B 

15 F10C1.7 
ifb-2 

1647 
549 

full- 
length 

intermediate filament 
protein 
IF-tail 

structural protein cell structure cytoskeletal IFA-1,IFB-1 
F10C1.2B   LMNA 

16 Y39B6A.1 2205 
735 

1092-
2205 HMW kininogen             

17 F25B5.7 
isoform A 

1683 
561 

179-
1683 

RNA-binding, RNP-1 
motif 

PTB-associated 

Polypyrimidine tract-
binding- 

associated splicing factor 
mRNA splicing nucleus   Pab1p SFPQ 

19 K12G11.3 1047 
349 

full- 
length Zinc-binding alcohol deyhdrogenase,

oxidoreductase metabolism cytoplasmic   Adh3p ADH4 

21 T03E6.7 
cpl-1 

1011 
337 

360-
1011 

cysteine protease 
papain family, thiol 

protease 

protease, hydrolase 
(other than proteasomal) 

protein 
degradation 

extracellular 
matrix 

F41E6.6, 
R09F10.1   Cathepsin L 

23 F44C4.3 
cpr-4 

1005 
335 

302-
1005 

cysteine protease 
papain family, thiol 

protease 

protease, hydrolase 
(other than proteasomal) 

protein 
degradation 

cytoplasmic 
soluble CPR-5   Cathepsin B 

24 T03E6.7 
cpl-1 

1011 
337 87-1001 

cysteine protease 
papain family, thiol 

protease 

protease, hydrolase 
(other than proteasomal) 

protein 
degradation 

extracellular 
matrix 

F41E6.6, 
R09F10.1   Cathepsin L 

25 T03E6.7 
cpl-1 

1011 
337 

369-
1011 

cysteine protease 
papain family, thiol 

protease 

protease, hydrolase 
(other than proteasomal) 

protein 
degradation 

extracellular 
matrix 

F41E6.6, 
R09F10.1   Cathepsin L 

26 F15G9.4a/b 
him-4 

15594 
5198 

14143-
15594 

Immunglobulin domain, 
Ca2+ -binding EGF-like 

DNA-associated 
(direct or indirect) recombination nuclear 

membrane?     Hemicentin 

27 F23H11.1 
bra-2 

642 
214 12-642 MYND finger protein 

ZincFinger 

BMP receptor-
associated 
molecule 

    BRA-1   BRAM1 

28 H22K11.1 
asp-3 

1194 
398 

433-
1194 aspartyl (acidic) protease protease, hydrolase 

(other than proteasomal) 
protein 

degradation 
soluble 

cytoplasmic ASP-4 Pep4p Cathepsin D 

29 T03E6.7 
cpl-1 

1011 
337 96-1011 

cysteine protease 
papain family, thiol 

protease 

protease, hydrolase 
(other than proteasomal) 

protein 
degradation 

extracellular 
matrix 

F41E6.6, 
R09F10.1   Cathepsin L 

30 F49C12.9 915 
305 

full- 
length 

UBA / TS-N domain 
(ubiquitin associated) unknown     F15C11.2b     

31 F44B9.7 
pqn-38 

1401 
466 

182-
1401 

ATP/GTP binding site 
motif A 
(P-loop) 

unknown 
Q/N-rich (Prion) domain     ZC487.4   

salivery 
prolin rich 

protein 

33 F57F5.1 1200 
400 

193-
1200 

cysteine protease 
papain family, thiol 

protease 

protease, hydrolase 
(other than proteasomal) 

protein 
degradation 

cytoplasmic 
soluble CPR-6,-5,-4   Cathepsin B 

34 C07A12.3 
nhr-35 

1629 
542 

542-
1629 

DNA-binding domain, 
Zinc finger C4-type 

nuclear hormone 
receptor, 

transcription factor 

Pol II transcription 
signal transduction nuclear NHR-64/-49, 

T23H4.2   HNF4A 

35 F29G9.5 
rpt-2 

1329 
443 63-1329 AAA ATPase domain, 

ATP/GTP binding motif A 
proteasome subunit, 
hydrolase, ATPase 

protein 
degradation ER, nucleus regulatory 

subunit P45 Rpt2p PSMC1 

36 T03E6.7 
cpl-1 

1011 
337 87-1011 

cysteine protease 
papain family, thiol 

protease 

protease, hydrolase 
(other than proteasomal) 

protein 
degradation 

extracellular 
matrix 

F41E6.6, 
R09F10.1   Cathepsin L 

37 F15G9.4a/b 
him-4 

15594 
5198 

14143-
15594 

Immunglobulin domain, 
Ca2+ -binding EGF-like 

DNA-associated 
(direct or indirect) recombination nuclear 

membrane?     Hemicentin 

Table 17. Clones of the PDR-1 Yeast-Two-Hybrid Protein Interaction Screen. 
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7.4 List of C. elegans Genes and Human Homologs 

gene ORF name/description homolog 
act-1 T04C12.6 Actin, (loading control) Actin 

abu- 11 genes activated in blocked UPR family Keratin-associat. 

aex-3 C02H7.3 Aboc, Expulsion defective DENN 

ama-1 F36A4.7 amanitin resistant (loading control) RNA pol II 

asp-3 H22K11.1 aspartyl protease cathepsin D 

atf-6 F45E6.2 activating transcription factor ATF6α 
ces-2 ZK909.4 cell-death specification D-site-bdg protein 

chn-1 T09B4.10 C-term of Hsp70-interacting protein CHIP 

cpl-1 T03E6.7 cathepsin L family cathepsin L 

cpr-4 F44C4.3 cysteine protease related cathepsin B 

cpr-6 C25B8.3 cysteine protease related cathepsin B 

cyk-4 K08E3.6 cytokinesis defective GAP 

dat-1 T23G5.5 dopamine (DA) transporter DAT-1 

hsp-1 F26D10.3 heat-shock protein (cytosol) Hsp-70 

hsp-3 C15H9.6 heat-shock protein (ER) Grp78/BiP 

hsp-4 F43E2.8 heat-shock protein (ER) Grp78/BiP 

hsp-16.2 Y46H3A.3 heat-shock protein (cytosol) Hsp20 

hsp-70 C12C8.1 heat-shock protein (cytosol) Hsp-70 

ire-1 C41C4.4 IRE1 kinase related IRE1 

mdt-29 K08E3.8 MeDiaTor gene class protein PQCAP 

mev-1 T07C4.7 methylviologen sensitive cytochrome b 

nhr-111 F44G3.9 nuclear hormone receptor  

pdr-1 K08E3.7 Parkinson’s disease related gene 1 Parkin 

pek-1 F46C3.1 human PERK kinase homolog PERK 

pqn-  > 100 genes Q/N-rich ‘prion’ domain genes diverse  

rol-6 T01B7.7 roller, helically twisted collagen 

rpt-2 F29G9.5 proteasome regulatory particle 
ATPase-like 19S subunit 4 

rrf-3 F10B5.7 RNA-dependent RNA polymerase 
family RdRP 

sel-7 K04G11.2 suppressor/enhancer of lin-12 novel 

sel-12 F35H12.3 suppressor/enhancer of lin-12 Presenilin 1 

skn-1 T19E7.2 skinhead NRF1 
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gene ORF name/description homolog 
ubc-2 M7.1 ubiquitin-conjugating enzyme UbcH4/5 

ubc-6 D1022.1 ubiquitin-conjugating enzyme Ubc6 

ubc-7 F58A4.10 ubiquitin-conjugating enzyme Ubc7 

ubc-9 F29B9.6 ubiquitin-conjugating enzyme (SUMO) Ubc9 

ubc-12 R09B3.4 ubiquitin-conjugating enzyme (Nedd8) Ubc12 

ubc-14 Y87G2A.9 ubiquitin-conjugating enzyme Ubc7 

ubc-15 Y110A2AR.2 ubiquitin-conjugating enzyme Ubc6 

ubc-18 R01H2.6 ubiquitin-conjugating enzyme UbcH7/8 

unc-59 W09C5.2 uncoordinated CDCrel-1 

unc-61 Y50E8A.4 uncoordinated CDCrel-1 

unc-119 M142.1 uncoordinated HRG4 

upr-1 uncloned unfolded protein response abnormal ? 

xbp-1 R74.3 X-box binding protein XBP1 

Table 18. List of C. elegans Genes and Human Homologs. 

Listed and explained are all C. elegans gene names mentioned in this study. The gene names are 
given, according to the genetic nomenclature for Caenorhanditis elegans either on the basis of a 
mutant phenotype or on the basis of the predicted gene product. The corresponding C. elegans ORFs 
as well as the human homologs are listed. 
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7.7 Abbreviations 

 
°C degree celcius 
3-AT 3-aminotriazol 
5-HT serotonin 
6-OHDA 6-hydroxydopamine 
6xHIS hexa-histidine epitope tag 
19S regulatory subunit complex of the 26S proteasome 
20S core particle of the 26S proteasome 
26S 26S proteasome, multicatalytic proteinase complex 

β-ME β-mercaptoethanol 
∆ deletion 
µg microgram 
µl microlitre 
µM micromolar 
A30P α-synuclein pathogenic mutation, alanine30->proline 
A53T α-synuclein pathogenic mutation, alanine53->threonine 
aa amino acid 
AD autosomal dominant 
ADEs C. elegans anterior deirids (DA containing neurons) 
AR autosomal recessive 
AR-JP autosomal-recessive juvenile parkinsonism 
ATP adenosine triphosphate 
B. taurus Bos taurus 
bp base pair 
BSA bovine serum albumine 
C. briggsae Caenorhabditis briggsae 

C. elegans Caenorhabditis elegans 

C. remanei Caenorhabditis remanei 
cDNA complementary deoxyribonucleic acid 
CNS central nervous system 
CEPs C. elegans cephalic cells (DA containing neurons) 
D. melanogaster Drosophila melanogaster 
DA dopamine 
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DAPI 4',6'-diamidino-2-phenylindole hydrochloride 
DNA deoxyribonucleic acid 
Dpy dumpy (C. elegans mutant phenotype) 
ds double stranded 
DTT dithiothreitol 
E1 ubiquitin-activating enzyme 
E2 ubiquitin-conjugating enzyme 
E3 ubiquitin-protein ligase 
E4 multiubiquitin chain assembly factor 
E. coli Escherichia coli 
EDTA ethylenediaminetetraacetic acid  
Egl-D egg-laying defective (C. elegans mutant phenotype) 
ER endoplasmatic reticulum 
ERAD ER-associated degradation 
GFP green fluorescent protein  
GST glutathione S-transferase 
H. sapiens Homo sapiens 
HA hemagglutinin epitope tag 
HSP heat-shock protein (chaperone) 
IBR C6HC in-between RING-finger domain 
IPTG isopropyl-β-D-thiogalactopyranoside 
kb kilobase 
L1-4 C. elegans larval stages 1-4 
LBs Lewy bodies 
L-DOPA levodopa 
M. musculus Mus musculus 
Mb megabase 
ml millilitre 
mM millimolar 
MPTP/MPP+ 1-methyl-4-phenylpyridinium 
mRNA messenger ribonucleic acid 
myc c-myc epitope tag 
n number 
n.d. not determined 
NGM nematode growth media 
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nt nucleotide 
NPG n-propyl gallate 
OP50 Escherichia coli strain, food source for C. elegans 
ORF open reading frame 

PCR polymerase chain reaction 
PD Parkinsons’s disease 
PDEs C. elegans posterior deirids (DA containing neurons) 
PDR-1 Parkinson’s disease related protein 1 
R. norvegicus Rattus norvegicus 
RING C3HC4 zinc finger domain (really interesting new gene) 
RNA ribonucleic acid 
RNAi RNA interference 
ROS reactive oxygen species 
rpm rounds per minute 
RT-PCR reverse transcriptase polymerase chain reaction 
S. cerevisiae Saccharomyces cerevisiae 
SDS sodium dodecyl sulphate 
SEM standard error of the mean 
SL splice leader 
SNpc Substantia Nigra pars compacta 
SW-PCR single worm-PCR 
TCA trichloracetic acid 
TM transmission 
TMP trimethylpsoralen 
Ub ubiquitin 
UBA ubiquitin-associated domain 
UBC ubiquitin-conjugation enzyme, E2 
UBL ubiquitin-like 
UCH ubiquitin C-terminal hydrolase 
Unc uncoordinated (C. elegans mutant phenotype) 
UPD unique Parkin domain 
UPR unfolded protein response 
UTR untranslated region 
WT wild type 

x-α-Gal 5-Bromo-4-chloro-3-indoxyl-α-D-galactopyranoside 
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