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1. Summary   
 

Kaposi´s sarcoma-associated herpesvirus  (KSHV) is involved in the pathogenesis of 

Kaposi´s sarcoma (KS) and some atypical B-cell lymphomas. The aim of this study was to 

investigate the influence of KSHV-infection on cellular gene expression in B-lymphocytes. In 

order to study the gene expression profile a microarray screen was performed using  B-cells 

that have been persistently infected with KSHV in vitro. A considerable number of genes 

(408) were found to be modulated more than 4-fold by KSHV infection, 275 (67.4 %) were 

downregulated whereas 133 (32.6%) were upregulated. A multitude of the downregulated 

genes encoded for B-cell surface markers and several B-cell specific transcription factors 

(PAX-5, Oct-2 and Spi-B) which was confirmed by RT-PCR and on the protein level. The 

massive loss of B-cell surface markers or “null” phenotype, was similar to tumor cells isolated 

from primary effusion lymphoma (PEL). Thus, the loss of B-cell identity is due to KSHV-

infection and not to cellular tumor-promoting events. Moreover, this study demonstrated that 

the “null” phenotype  is caused by a soluble factor(s) released from KSHV-infected B-cells. 

The downregulation of B-cell markers led to severe functional defects, as KSHV-infected B-

cells could not be activated by crosslinking of the B-cell receptor. Importantly,  KSHV-

infected cells could not be lysed by allo-reactive cytotoxic T-cells, suggesting that the “null” 

phenotype serves as a mechanism for immune escape. 
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2. Introduction 

2.1 Kaposi`s sarcoma-associated herpesvirus  
 

2.1.1 Discovery and phylogeny  
KSHV was discovered by Chang and colleagues by representational difference 

analysis as unique sequences present in more than 90% of Kaposi´s sarcoma (KS) tissues, 

obtained from patients with acquired immunodeficiency syndrome (AIDS) (Chang et al., 

1994). They found that these sequences were homologous to, however, distinct from capsid 

and tegument genes of gammaherpesviruses and appeared to define a new human herpesvirus, 

Kaposi´s sarcoma-associated herpesvirus (KSHV) or Human Herpesvirus-8 (HHV-8) (Fig.1). 

 

            
 

 
Fig. 1: Three-dimensional (3D) structure of the KSHV capsid (according to Jenner and 
Boshoff, 2002). 
A: Cryoelectron photography of the KSHV capsid. B: 3D reconstruction of the KSHV capsid. 
The capsid is an icosahedral protein shell made up of pentons and hexons (blue) and triplexes 
(green). The pentons and hexons are also visible in the photography. 

 
 

Phylogenetic analyses of molecular sequences showed that KSHV belongs to the 

gamma-2 sublineage of the Gammaherpesvirinae subfamily and  thus represents the first 

human gamma-2 herpesvirus (Moore et al., 1996). Its closest known relative on the basis of 

available sequence comparisons is Herpesvirus Saimiri (HVS), a squirrel monkey gamma-2  

herpesvirus that causes polyclonal T-cell lymphoproliferative disorders in some New World 

monkey species (Moore et al., 1996). Only KSHV, HVS and Equine Herpesvirus 2 (EHV2) 
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could be placed on the phylogenetic tree with precision, thus representing a lineage of primate 

gamma-2 viruses. Previously, McGeoch and colleagues proposed that lines of gamma-2 

herpesviruses may have originated by co-speciation of the virus and the host lineages 

(McGeoch et al., 1995). Based on this view it was concluded that KSHV and HVS have 

diverged at an ancient time, possibly simultaneously with the divergence of the Old World 

and New World primate host lineages. Gammaherpesviruses are distinguished as a subfamily 

by their lymphotropism which is supported by phylogenetic analyses based on sequence data 

(Roizmann et al., 1992, McGeoch et al., 1995). The biological behaviour of KSHV is 

consistent with its phylogenetic designation in that KSHV infects B-lymphocytes in vitro 

(Cesarman et al., 1995) and in vivo (Ambroziak et al., 1995). 
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Fig. 2: Phylogenetic trees of herpeseviruses based on a comparison of aligned amino acid 
sequences (according to Moore et al., 1996). 
A: Comparison of major capsid protein (MCP) sequence homologues from KSHV and 12 
members of the family Herpesviridae. This MCP set assigns the KSHV homologue to gamma-2 
sublineage (genus Rhadinovirus), containing HVS, EHV2 and bovine herpesvirus 4. B: 
Phylogenetic tree of gamma herpesvirus sequences based on a nine-gene set CS1 (ORFs 21-26, 
ORF 29a, -b, 31, 34) demonstrates also that KSHV is most closely related to the gamma-2 
herpesvirus sublineage. 
 

 

2.1.2 KSHV genome 
Like other herpesviruses, KSHV is a large double-stranded DNA virus that is located 

in the cellular nucleus as a closed circular episome during latency. During the lytic phase the 

virus replicates by a rolling circle mechanism and linear genomes are generated and 

packaged. During mitosis the KSHV genome is tethered through the terminal repeat (TR) 

sequences to histone H1 at the host chromatin by the KSHV-encoded latent nuclear antigen 

LANA-1 (Ballestas et al., 1999, Cotter II and Robertson, 1999, Ballestas and Kaye, 2001).  

KSHV contains a long unique region of 140 kb size which is flanked by two 20-35 kb 

terminal repeat regions of 801 bp size and high G+C content (Russo et al., 1996). Currently, 

89 genes have been identified in the long unique region, but new open reading frames (ORFs) 

are still described as previously unknown gene products from alternative reading frames or 

splicing events (Moore and Chang, 2001). 

KSHV shares structural and biological features with Epstein-Barr virus (EBV) but 

possesses none of its latent genes involved in cell immortalisation and transformation (Russo 

et al., 1996). KSHV and EBV target many of the same cellular pathways, but use different  
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strategies to achieve the same effects (Moore and Chang, 2001). Cellular genes like cyclin D2 

are induced by EBV (via latent membrane protein-1, LMP-1) but have been pirated by KSHV 

during its evolution (Arvanitakis et al., 1995). This is not unexpected because both viruses use 

B-lymphocytes as reservoirs during latency and face similar biological challenges in 

establishing persistent infections in a B-cell environment. In contrast to EBV, KSHV also 

infects endothelial cells, as demonstrated in KS tumors (Boshof et al., 1995). Moreover, 

KSHV is able to infect macrophages and epithelial cells (Blasig et al., 1997, Diamond et al., 

1998). 

It has become apparent soon after the discovery of the virus that it displays a highly 

restricted pattern of gene expression in infected cells which is one of the hallmarks of latent 

infection (Zhong  et al., 1996). Since latent KSHV genes are expressed in the majority of 

spindle and PEL cells, these genes probably play a major role in the pathogenesis of KSHV-

associated cancer. The full repertoire  of viral gene expression occurs only during lytic 

replication, when viral progenies are produced and the host cell is destroyed (Renne et al., 

1996). The study of KSHV has benefited largely from cell lines established from primary 

effusion lymphoma (PEL) (see next chapter). These cells harbour the virus in a latent form 

and can be induced to enter lytic replication by treatment with different agents like sodium 

butyrate or  phorbol-ester-12-O tetradecoylphorbol 13 acetate (TPA) (agents normally used 

for EBV to induce viral replication). A number of studies described the KSHV gene 

expression in latency and lytic replication (Zhong et al., 1996, Sarid et al, 1998, Sun et al., 

1999, Zhu et al., 1999). KSHV transcripts have been categorized into three classes based on 

their expression in uninduced and lytically induced PEL (BC-1) cells: class I (constitutive), 

class II (present in uninduced cells but upregulated by TPA), and class III (only present after 

induction). These categories of viral genes were observed in PEL cells using DNA array 

technology (Jenner et al., 2001). Latent KSHV genes detected in uninduced cells are v-FLIP 

(ORF71), v-cyclin (ORF72), LANA-1 (ORF73), K7, T1.1 (nut-1), kaposin (K12), vOx-2 

(K14) and vIRF-3 (K10.5 and 7). The latent gene products generally act in a cell-autonomous 

manner (not affecting neighbouring  cells) and target the cell cycle and apoptosis. The gene 

expression pattern of KSHV suggests that the latent genes are involved in the cell 

transformation process.   

The genes expressed during the lytic phase have been categorized in three groups 

(Jenner et al, 2001). Primary lytic genes include K4 (v-MIP-II), ORF 9 (DNA polymerase), 

ORF 74 (vGPCR/vIL-6 receptor homologue), K12 (kaposin), ORF 16 (vBCL-2), secondary 

lytic genes are K9 (vIRF-1), vIRF-2, K10.1 (potential IRF homolog), ORF 17 (protease/ 
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aasembly protein), ORF 64 (tegument protein) ORF 65 and ORF 17 (small viral capsid 

antigens) and tertiary lytic gene are K1, K8.1 (glycoprotein gp35-37), ORF 25 (major capsid 

protein) and ORF 29a (packaging protein). The genes expressed during the lytic replication 

have two broad functions: production of viral progeny and inhibition of the host antiviral 

response. The majority of genes, belonging to the latter functional group are homologous to 

host genes. The products of these genes tend to act in a non-autonomous manner (affecting 

neighbouring  cells) or by inhibiting intracellular signalling. For example, vIL-6, vMIPa and 

vGPCR are angiogenic, while K1, K3 and K5 may prevent attack by the immune cells. The 

small fraction of KSHV-infected cells in early stage KS lesions suggests that the phenotypical 

changes observed in these tumors are caused by paracrine mechanisms. 

 

               

 
 
 

Fig. 3: Map of the different type of KSHV genes (according to Jenner et al, 2001). 
Each ORF is color coded according to it´s expression pattern: latent (class I), latent/lytic 
(induced by TPA), primary lytic genes, and tertiary lytic genes.  
 
 

2.1.3 Diseases associated with KSHV 
The expression profile of KSHV points to viral proteins which are involved in cellular 

transformation (Jenner et al., 2002). KSHV has been shown to be specifically associated with 

all forms of  KS and has also been detected in most cases of primary effusion lymphoma 
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(PEL) and in the plasmablastic variant of Multicentric Castleman`s disease (MCD) (Cesarman 

et al., 1995, Soulier et al., 1995, Dupin et al., 2000).  

 

2.1.3.1  Kaposi´s sarcoma (KS) 

An important feature of  KS  is the occurrence of so-called spindle cells and the 

presence of KSHV in these cells. Recent studies based on gene expression array analysis, 

proposed that the neoplastic cells from KS are closely related to lymphatic endothelial cells 

(LECs) (Wang et al., 2004, Hong et al., 2004). KSHV also infects blood vascular endothelial 

cells (BECs) in vitro and in vivo and induces reprogramming towards LEC. Spindle cells thus 

mainly express LECs markers and only low levels of BECs markers (Weninger et al., 1999, 

Wang  et al., 2004, Hong et al., 2004).  Some of the spindle cells express proteins 

characteristic for smooth muscle cells, macrophages and dendritic cells or several of these at 

once, which on the contrary suggests that the cells most likely derive from a multipotent 

precursor cell whose progeny gives rise to hematopoietic and endothelial cells (Jenner and 

Boshoff, 2002). In early KS lesions only around 10% of spindle and endothelial cells are 

KSHV-positive, implicating that paracrine mechanisms are involved in the progression of the 

disease (Dupin et al., 1999). In late stage nodular lesions around 90% of the spindle cells 

contain KSHV, suggesting that the virus provides a growth advantage to infected cells 

(Boshoff  et al.,  1995, Sturzl et al., 1999). These observations support the hypothesis that at 

an early stage KS is a polyclonal hyperplasia  which develops only into a true clonal 

malignancy as the disease progresses. A recent report indicated that KSHV TR sequences in 

nodular lesions display all patterns of clonality (mono-, oligo-, and polyclonal), suggesting 

that the disease begins as a polyclonal hyperplasia and develops into a monoclonal tumor 

(Judde  et al., 2000). 

  

2.1.3.2 Primary effusion lymphoma (PEL) 

Soon after the discovery of KSHV in KS, Cesarman and co-workers found that KSHV 

is also specifically associated with a rare form of lymphomas, PEL. PEL normally manifests 

as malignant effusions in the pleural, pericardial or peritoneal cavities, but without significant 

tumor mass. The majority of  PEL patients are also HIV positive with advanced 

immunosupression. The pathogenesis of PEL is not fully understood. The specific association 

between PEL and KSHV suggests that the virus is pathogenetically related to the disease 

(Cesarman et al., 1995a, Pastore et al., 1995, Karcher et al., 1995, Carbone et al., 1996, Nador 

et al., 1996). This is supported by the fact that these lymphomas show very high amounts of 
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viral DNA ranging between 40 and 80 copies per cell, in contrast to KS tissues which contain 

less than one copy per cell (Cesarman et al., 1999)  In addition, cases of KSHV-positive PELs 

in HIV-negative males and females have been identified.  However, the factors and 

mechanisms leading to malignant transformation of B-cells are still unclear. Several lines of 

evidence suggest that KSHV infection may play a central role in the development of PEL. As 

mentioned above, KSHV carries several genes, which may act as oncogenes including genes 

homologues to BCL-2 (ORF16), to cellular D-type cyclins (ORF72/cyclin D) and a G-protein  

coupled receptor displaying constitutive activation (ORF74/GPCR). 

PEL has been recognized as a B-cell malignancy that is morphologically and 

histologically different from all known B-cell tumors or normal B-cells (Fig.4) . Most PELs 

are thought to originate from post-germinal centre B-cells due to the presence of 

hypermutated immunoglobulin genes and markers of a late stage of B-cell differentiation 

(Gaidano et al., 1997). Most of the cases of PEL have functional immunoglobulin (Ig) gene 

rearrangements and transcribe Ig  mRNA, but most do not express Ig protein (Cesarman et al., 

1999). The PEL tumor cells display an intermediate immunophenotype between 

immunoblasts and plasma cells (Nador et al., 1996, Carbone et al., 1996, Ansari et al., 1996). 

In most cases they express CD45, consistent with the hematopoietic cell derivation, but lack 

surface Ig and B- or T-cell associated antigens (Drexler et al., 1998). The tumor cells were 

also found to express the surface markers CD30, CD38, CD71, epithelial membrane antigen 

(EMA), CD138-syndecan-1 and MUM1/IFN regulatory factor 4, which is associated with the 

late stages of B-cell differentiation (Gaidano et al., 1997, Carbone et al., 2000). Based on 

these findings it can be concluded that PELs posses morphological features similar to 

transformed plasma cells (Jenner et al., 2003, Klein et al., 2003). PEL is also thought to be 

monoclonal due to the presence of clonal  immunoglobulin gene rearrangements (Nador et al., 

1996) and monoclonal viral TRs (Judde  et al., 2000). Recently it was shown that PEL cells 

synthesize the cytokine IL-6,  and IL-6 receptors. The application of antisense 

oligonucleotides inhibited the clonal proliferation of PEL cells, which suggests that IL-6 is an 

autocrine growth factor for these cells (Asou  et al., 1998). 

The majority of PEL cells are co-infected by both KSHV and EBV. The EBV 

infection is monoclonal in PELs, suggesting that EBV infection has preceded clonal 

expansion of tumor cells (Matolcsy, 1999). The analysis of the pattern of EBV latent gene 

expression has revealed a restricted latency with expression of EBNA1 (Horenstein et al.,  

1997). EBNA1 is a gene required for replication and maintenance of viral episomes but not 

known to be directly tumorigenic in EBV-associated malignancies (Klein et al., 1989). On the 
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other hand, it has been found that EBNA1 can induce B-cell lymphomas when expressed in 

mouse B-cells as a transgene, concluding that EBNA1 may contribute to neoplastic 

transformation in the PEL cells (Wilson et al., 1996).  However, the finding that EBV does 

not express the EBV nuclear antigens EBNA-2 and -3 and only low levels of LMP-1 makes it 

unlikely that EBV is directly driving PEL cell proliferation (Callahan et al, 1999). 

 

 

 

 

 

 

 

 

 

 

                                                

                                                                                                                                                          
 

 
 
 
Fig. 4: KSHV in primary effusion lymphoma (according to Nador and colleagues, 1996). 
Wright-Giemsa-stained air dried cytocentrifuge preparation of a KSHV-positive primary 
effusion lymphoma (PEL). The cells are considerably larger than normal benign lymphocytes 
and red blood cells. 
 

 

2.1.3.3 Multicentric Castleman´s disease (MCD) 

MCD is an unusual lymphoproliferative disorder which is more frequent in HIV-

infected individuals. MCD is closely associated with KS which has led Soulier and colleagues 

to search, and find KSHV DNA in MCD tissue (Soulier et al., 1995). KSHV was found to be 

present in all cases of MCD in AIDS patients and in approximately half of those in HIV-

negative individuals. KSHV-positive MCD constitutes a distinct subset of MCD, named 

plasmablastic MCD, which contains large plasmablastic cells, harbouring KSHV (Dupin et 

al., 1999, Katano et al., 2000, Boshoff  and Weiss, 2001). Unlike PEL cells, coinfection  by 

EBV has not been detected in MCD plasmablasts. Despite the invariable expression of 

cytoplasmic IgMλ, recent studies examining the number of KSHV TRs or immunoglobulin 

rearrangements indicate that MCD plasmablasts are polyclonal in origin (Du et al., 2001). 
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Furthermore, the lack of somatic mutations in the rearranged Ig heavy and light chain genes 

indicates that they originate from naive B-cells (Du et al., 2001, Hamoudi et al., 2004).  

 

2.2 Herpesviruses and immune response 
 

2.2.1 Natural killer  (NK) and Cytotoxic T cell (CTL) response 

Herpesviruses constitute a family of human pathogens that indefinitely persist in the 

host organism and often contribute to a variety of disease states. Viral persistence depends on 

the ability of herpesviruses to establish a latent infection within cells. This process requires 

the successful evasion of the host immune defence, which usually includes the restricted 

expression of viral genes during latency. Although such restriction lowers their overall 

antigenic profile, herpesviruses must employ additional mechanisms to ensure prolonged 

protection from host immune response. One such mechanism involves the downregulation of 

immunoregulatory proteins, such as major histocompatibility complex (MHC) class I, on the 

surface of infected cells. This serves to limit their recognition by cytotoxic T lymphocytes 

(CTLs) and dampen the inflammatory response to viral infection. Examples of human 

herpesvirus proteins that downregulate MHC class I  include the ICP47 protein of Herpes 

Simplex Virus 1 (HSV1, Ahn et al., 1996, Goldsmith et al., 1998), the vIL-10 protein of EBV 

(Salek-Ardakani et al., 2002), and the US2,-3,-6 and -11 proteins of human cytomegalovirus 

(HCMV, Ahn et al., 1997, Jun et al., 2000). The virus-specific  CD8+ CTL response is 

probably the main mediator of herpesvirus clearance. A major characteristic of the cytotoxic 

T-cells is their ability to kill target cells expressing specific MHC class I peptide complexes 

(Germain  et al., 1994, Jondal et al., 1996). They express a range of effector molecules that 

mediate defence against pathogens. Such an example is the direct cytolysis of target cells  

mediated by perforin release (Kagi  et al., 1994, Walsh et al., 1994, Lowin  et al., 1994) and 

Fas ligand (Rouvier  et al., 1993, Kagi  et al., 1995). CTLs also secrete cytokines (tumor 

necrosis factor-TNF) and interferon-γ, as well as chemokines that function to recruit and/or 

activate the immuno-effector cells such as macrophages and neutrophils (Harty et al., 1999). 

Many of the effector mechanisms employed by CTLs are also employed by other cells of the 

immune system, for example Natural Killer (NK) cells.  They are also involved in the killing 

of tumor or virally infected cells (Biron et al., 1997). In addition, NK cells express perforin 

and  Fas Ligand  and are capable of cytolysis (Harty et al., 2000, Taylor et al., 2002). 

Moreover, they release factors involved in the immune defence including TNF and the 

chemokine-macrophage inflammatory protein 1α (MIP-1α, or CCL3, Biron  et al., 2001). The 
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latter are known to have the potential of promoting defence by driving inflammatory 

processes.  NK cells spare normal cells expressing adequate amounts of MHC class I 

molecules, but kill transformed cells that have a lower level of MHC class I or that  have lost 

its expression. Thus, the altered expression of class I antigens, a common event in tumor 

transformation or following viral infection, leads to NK mediated target lysis (Garrido et al., 

1997, Salcedo et al., 1998, Ploegh et al., 1998).  

 

2.2.2 Important cytokines involved in the immune defence 

 

2.2.2.1 Interleukin 6 (IL-6) 

IL-6 is a multifunctional cytokine which is produced by both lymphoid and non- 

lymphoid cells and regulates immune response, acute-phase reaction and hematopoiesis 

(Bowcock et al., 1989, Hirano and Kishimoto, 1990).  IL-6 has been identified in virus-

infected cells and is also known as interferon-β2 (IFN-ß2; Weissenbach et al., 1980) or 

hybridoma/plasmacytoma growth factor (HPGF, IL-HP1, Aarden et al., 1985, Nordan and 

Potter, 1986a, Van Damme et al., 1987a,b, Van Snick et al., 1987). Separate studies on the 

differentiation of human B-cells into immunoglobulin secreting cells has led to its 

characterization as a B-cell differentiation factor, termed B-cell-stimulatory factor (BSF). One 

of the important features of IL-6 is the ability to control growth and proliferation of early 

hematopoietic progenitor cells and its co-stimulatory effect on thymocytes and mature T-cells, 

which shows that IL-6 may be involved in sustaining the immune response. IL-6 is 

synthesized by a larger number of cell types including monocytes and macrophages, T-cells 

and fibroblasts, and epithelial cells. 

 

2.2.2.2 Interleukin 10 (IL-10) 

IL-10 has been described first as cytokine synthesis inhibitory factor  (CSIF), which is 

produced by mouse Th2-cells and inhibits activation of and cytokine production by Th1-cells 

(Fiorentino et al., 1989). The ability of IL-10 to inhibit cytokine production by both T- and 

NK-cells was found to be indirect via an inhibition of accessory cell  (monocyte/macrophage) 

function (de Waal et al., 1991, Fiorentino et al., 1991, Ding et al ., 1992, Hsu et al., 1992). It 

was shown that IL-10 profoundly inhibits a broad spectrum of monocyte/macrophage 

functions and the expression of MHC class II and co-stimulatory molecules such as IL-12 and 

B7-1/B7-2 (CD80/CD86) (Bogdan et al., 1991, Fiorentino et al., 1991, Ding et al., 1993, 

Murphy et al., 1994). In vitro and in vivo studies with recombinant cytokine and neutralizing 
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antibodies have revealed pleiotropic activities of IL-10 on B-, T- and mast cells (Go et al., 

1990, MacNeil et al., 1990, Rousset et al., 1992, Thompson-Snipes et al., 1991). An 

inflammatory response exhibited by IL-10 deficient (IL10-/-) mice indicated that a critical in 

vivo function of IL-10 is a limitation of inflammatory response. The effect of IL-10 on 

survival, proliferation and differentiation of human B-cells has been extensively studied as 

well. IL-10 enhances the survival of normal human B-cells (depending on their activating 

stage), which correlates with an increased expression of the anti-apoptotic protein Bcl-2 (Levy 

et al., 1994, Itoh et al., 1995). IL-10 also induces the telomerase reverse transcriptase 

(hTERT) expression and upregulates telomerase activity in B-cells activated by anti-IgM (Hu 

and Insel, 1999). Moreover, it is a potential factor for proliferation of human B-cell precursor 

and mature B-cells activated by surface immunoglobulin (anti-IgM or SAC), or CD40 cross-

linking (Rousset et al., 1992, Saeland et al., 1993). 

 

2.2.3 KSHV and immune response 

KSHV elicits a humoral and cellular host immune response directed against both lytic 

and latent proteins of the virus (Brander et al., 2001). This response, even in healthy persons, 

is unable to eradicate KSHV from the organism, suggesting that KSHV, like other 

herpesviruses, possesses the ability to evade the immune response during infection. 

KSHV most often follows the general paradigm of herpesvirus infection, a latent 

phase of infection marked by a highly restricted pattern of viral gene expression in the 

majority of cells. The prevalence of KSHV-infected cells undergoing lytic (productive) 

infection both in vitro and in vivo is typically low (1-5%), with the remaining infected cells 

harbouring the virus in its latent form (Katano et al., 1997; Dittmer et al., 1998; Parravicini  et 

al., 2000). Thus, mechanisms of immune evasion upon genes expressed solely during the lytic 

cycle would protect only a small fraction of KSHV-infected cells. Conclusively, KSHV may 

require additional mechanisms of evasion that are active during latency. Several KSHV latent 

proteins have likewise been implicated in viral immune evasion: these include disruption of 

p53 by the latency-associated nuclear antigen-1 (LANA-1) (Friborg  et al., 1999) and LANA-

2 (Rivas et al., 2001), inhibition of apoptosis by viral FLIP (Sun et al., 2003, Guasparri  et al., 

2004), downregulation of the B-cell receptor by ORF K1 (Lee  et al., 1998, Lagunoff  et al., 

1999). 

Recent studies have identified several KSHV lytic proteins that exert potential 

immunoregulatory roles during lytic replication. These include inhibition of apoptosis by viral 

Bcl-2 (Sarid et al., 1997) and open reading frame (ORF) K7 (Wang et al., 2002), complement 
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deregulation by ORF4 (Spiller et al., 2003), Th2 polarization by viral MIPII (Weber et al., 

2001), and inhibition of the antiviral interferon response by interferon response factor 1 

(vIRF-1) (Gao et al., 1997, Li et al., 2000, Lin et al., 2001), vIRF-3 (Lubyova et al., 2000), 

and vIL-6 (Chatterjee et al., 2002). Furthermore, KSHV expresses two immediate-early 

proteins, MIR-1 (encoded by ORF K3) and MIR-2 (encoded by ORF K5), that downregulate 

immunoregulatory cell-surface proteins such as MHC class I and ICAM-1 and thus limiting 

their recognition by the immune cells (Coscoy et al., 2000, Coscoy et al., 2001). In line with 

these observations, CTL killing of PEL cells has been shown to be markedly diminished 

compared with that of EBV-infected Burkitt`s lymphoma cell lines, which the authors suggest 

to be a consequence of MHC class I downregulation (Brander et al., 2000).  

KS research has frequently focused on the role of cytokines in driving spindle-cell 

proliferation. Early studies performed before the discovery of KSHV have often used KS 

lesion derived cell lines, which do not harbour KSHV and are of unclear relevance to the 

tumor. In situ studies have demonstrated marked elaboration of inflammatory cytokines 

directly in tumor tissues, and considerable interest exists in both virus-encoded cytokines and 

cellular cytokines induced by KSHV infection (Fiorelli et al., 1998). Such an example is the 

vIL-6 protein, encoded by ORF K2 (Moore et al., 1996a, Neipel et al., 1997a, Nicholas et al., 

1997), which has 24.8 % amino acid identity and 62.2% amino acid similarity to human IL-6 

(hIL-6, Moore et al., 1996), particularly in the regions of interaction with the gp130 receptor, 

which is responsible for signal transduction for members of the IL-6 cytokine family. There is 

a difference between  vIL-6 and hIL-6 in terms of signal transduction, in that vIL-6 is able to 

directly activate gp130 signalling without co-receptor usage, suggesting that it has a broader 

set of target effector cells than the human cytokine (Molden et al., 1997, Hoischen et al, 2000, 

Mullberg et al., 2000). Despite these differences in receptor usage, no distinct difference has 

yet been found in downstream signalling pathways between hIL-6 and vIL-6 (Osbourn et al., 

1999). Both of them activate STAT-1, STAT-3 and STAT-5 transcription factors (Molden et 

al., 1997, Burger et al., 1998, Wan et al., 1999) and the Ras mitogen-activated protein kinase 

pathway (Osbourn et al., 1999, Wan et al., 1999). Functionally, both hIL-6 and vIL-6 induce a 

B-cell proliferation and prevent apoptosis in susceptible cell lines (Moore et al., 1996a, 

Nicholas et al., 1997, Burger et al., 1998). Despite some contradictional results, it has 

appeared that PEL cells in tissue culture are autocrine-dependent on vIL-6, hIL-10 and nerve 

growth factor, but not hIL-6, for growth and proliferation (Asou et al., 1998, Jones et al., 

1999). Human IL-6 is found to play a significant role in the maintenance of EBV-infected 

lymphoblastoid cell lines (LCL). Although vIL-6 is found to be expressed only in a portion of 
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PELs and MCD tumor cells, it may have widespread effects since it is a secreted cytokine and 

is likely to play an important role in the pathogenesis of these diseases. It has also been shown 

that vIL-6 activates the secretion of vascular endothelial growth factor (VEGF) and enforces 

an overexpression of vIL-6 in cells, which results in cellular transformation and malignant 

tumor formation (Aoki et al., 1999).  

Assuming all the studies it has appeared that KSHV recapitulates many of the 

functions of other viruses, particularly EBV. This contributes to the general understanding 

that there are fundamental properties shared among phylogenetically divergent viruses. 

Determining the extent of functional similarities, as well as dissimilarities, between KSHV 

and other viruses has led to major insights into cell-type-specific interactions, viral life cycles 

and viral disease pathogenesis. Many of the KSHV-regulatory genes can be interpreted to 

play a functional role in controlling the innate and adoptive cellular immune response. Viral 

IRF, vFLIP, vIL-6 as well as K3 and K5 proteins directly affect established immune response 

pathways. The immunoreceptor regulatory proteins, ORF K1, LAMP and ORF4, are also 

likely to have a direct impact on immune responses that are particular to B-cells. These 

immune pathways not only affect viral replication, but also regulate cell cycle control, 

apoptosis and tumor cell immune surveillance. It is understandable, then, that the primary 

functions of some KSHV “oncoproteins” such as ORF K1, vIL-6 and vIRF, are to alter host-

cell immune responses, but these proteins cause cell transformation in vitro as well. This has 

raised the possibility that cellular proteins and pathways that are normally thought of having 

an immune function, such as pRb and p53, are actually critical in preventing successful 

persistent viral infection (Moore and Chang 1998).  

 

 

2.3 B-lymphocytes 
As mentioned above,  KSHV is detected in PEL tumor cells, which are supposed to be 

of B-cell origin although lacking basically all B-cell surface markers and having a disrupted 

B-cell transcriptional program. Therefore, it is important to get some insight into the regular 

B-cell development and the transcription factors involved in it.  

 

2.3.1 B-cell development 
The development of B lymphocytes from pluripotent progenitors is a tightly regulated 

process that takes place in the fetal liver during embryogenesis and postnatally in the bone 

marrow (Bartholdy and Matthias, 2004). The B-cell maturation proceeds further in the 
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secondary lymphoid organs (Fig. 5A, B). The multiple stages of  B-cell differentiation are 

defined by phenotypic and functional changes such as the sequential rearrangement of the 

immunoglobulin heavy and light chain loci and the expression of various cell-surface 

molecules. Commitment to the B-cell lineage and subsequent rearrangement of the 

immunoglobulin (Ig) heavy chain gene is followed by the expression of the pre-B cell 

receptor (pre-BCR), which is composed of the heavy chain and the light chains λ5 and VpreB. 

Signalling through the pre-BCR leads to a transient phase of cellular proliferation and triggers 

the transition from early pre-B cells to late small pre-B cells. Recombination of κ and λ light 

chain loci is initiated at the pre-B cell stage. Successful pairing of one of the light chains with 

the heavy chain results in the surface expression of IgM, the hallmark of immature B-cells. 

IgM-expressing B-cells exit the bone marrow and complete their maturation in the spleen. 

Antigen encounter leads to an activation of mature B-cells and their differentiation into 

memory B-cells or antibody secreting plasma cells (PCs), the final mediators of the humoral 

immune response.  

The entire developmental program of B-lymphopoiesis is tightly regulated, and one of 

the most important regulatory mechanisms is the transcriptional control executed by a large 

number of cell-specific or ubiquitous factors that drive cells into the B-lineage, lead to their 

selection and differentiation or to cell death, or maintain them in a defined differentiation 

stage. Gene targeting studies have revealed that several transcription factors are essential for 

early B-cell development: Their absence leads to a block in differentiation primarily at either 

of two stages: (i) at the initiation of B-cell commitment and (ii) at the onset of VHDJH 

recombination (Fig. 5B). Successful initiation of immunoglobulin gene rearrangement is thus 

a critical checkpoint in B-lymphopoiesis. Other factors affect the function of mature 

peripheral cells and several discrete stages of  the B-cell development.  
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Fig. 5: Lineage commitment in the bone marrow (according to Bartholdy and Matthias, 
2004).  A: The position of the transcription factors on the scheme represents the stage at 
which their absence (knockout studies) leads to a developmental block. Proteins normally 
acting as inhibitors of the B-cell differentiation pathways are depicted in red. Physical 
interactions between transcription factors are indicated by double pointed blue arrows, SC-
stem cell; HSC-hematopietic stem cell; CLP-common lymphoid progenitor ; NK-natural killer 
cell .B: Murine B-cell development from pro-B stage to stage mature B-cell. 
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2.3.2. Transcription factors involved in B-cell development and maturation 
The main factors driving the maturation of an early B-cell into a plasma cell are the B-

cell transcription factors.  The process of B-cell development is an orchestra of these factors, 

acting dependently on each other in a precise hierarchical order.   

 

2.3.2.1  E2A 
Early B-cell development is regulated by E47 and E12, members of the basic helix-

loop-helix (bHLH) transcription factor family. These proteins are generated by alternative 

splicing of RNA encoded by the E2A gene (Kadesch et al., 1992). They are known to 

recognize sequences in the transcriptional control regions of most lymphoid cell-specific 

genes, either as homodimers or as heterodimers. E12 and E47 proteins are widely expressed 

and the homodimeric form of E47 is unique to B lymphocytes (Shen et al., 1995). Products of 

the E2A gene are thought to regulate transcription  of the µ, κ and Ig heavy chain genes, since 

mutation of the E2A binding sites decreases the function of the immunoglobulin gene 

enhancer (Staudt et al., 1991). It has been found that mice carrying mutations in the E12 and 

E47 proteins have no mature B-cells and contain CD43+B220+ B-cell precursor arrested prior 

to D-JH gene rearrangement (Bain et al., 1994, Zhuang et al., 1994). It has been also shown 

that mice lacking E12 alone have defects at later stages of the B-cell development, suggesting 

that E12 and E47 are partially similar but not identical in their influence on B-cell 

development (Bain et al., 1997). E2A gene products can also regulate some of their targets in 

conjunction with p300/CBP, HEB and E2-2 (bHLH proteins) (Eckner et al., 1996).  

Besides its importance in regulating early B-cell development, E2A may also play a 

role in later B-cell differentiation. The observation that E2A is upregulated in lymphoid 

germinal centre cells (Roberts et al., 1993) and that class switching to some isotypes is 

inhibited in B-cell lines that overexpress Id (inhibitor of development) (Goldfarb  et al., 

1996), suggests a role for E2A and other bHLH-family factors in the terminal differentiation 

process.  

 

2.3.2.2 Early B-cell factor-1 (EBF-1) 
EBF-1 has been first detected in pro-B, pre-B, and mature mIg+ B cells, but not in 

terminally differentiated plasma cells or T-cells (Hagman J et al., 1991, Feldhaus A et al., 

1992). The fact that both EBF-1- and E2A-deficient mice have defects at a similar stage in B 

cell development has raised the possibility that these transcription factors might act co-

operatively and regulate a common set of genes (Reya and Grosschedl, 1998). Identification 
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of putative gene targets has suggested that EBF-1 co-ordinately regulates multiple 

components of the B-cell receptor (BCR) at early stages of B-cell differentiation. In addition 

to a single site in the mb-1 promoter (Feldhaus  et al., 1992), functionally important binding 

sites for EBF have been detected in the early promoters of the ψL chain genes λ5 and VpreB1 

(Sigvardsson  et al., 1997, Martensson  et al., 1997, Persson et al., 1998), the B lymphoid 

tyrosine kinase gene blk (Akerblad  et al., 1999), and the B29 gene (Akerblad  et al., 1999). 

Binding sites for EBF have also been noted in the human CD19 promoter (Gisler et al., 1999), 

and in subsets of mouse and human Vκ promoters, which have been thought to regulate their 

activation during the early B-cell differentiation. An inhibitory role of EBF has also been 

identified. One report suggests that it can repress the Igµ intronic enhancer (Akerblad et al., 

1996). 

EBF-1-deficient mice lack serum Ig and mature surface Ig+ B cells (Lin and 

Grosschedl, 1995). EBF-deficient progenitor B-cells also do not express transcripts from the 

mb-1, B29, VpreB or λ5 genes (Lin and Grosschedl, 1995). Transcripts encoding Pax-5 (see 

below) have not been detected in ebf-/- mice, suggesting that EBF is an upstream regulator of 

Pax-5 gene transcription in B-cells. In addition, a functional EBF-1 binding site has been 

identified 1121 bp upstream of the transcription start sites in the Pax-5 promoter and in 

transfection experiments it was shown that EBF-1 directly regulates Pax-5 expression 

(O´Riordan  and Grosschedl, 1999). 

Little is understood regarding the regulation of ebf gene transcription. One study has 

demonstrated that ectopically expressed E12 induces EBF-1 expression (Kee et al., 1998). 

Due to the absence of EBF-1 transcripts from the bone marrow of E2A-deficient mice, it has 

been argued that E2A-encoded proteins act upstream of EBF-1, potentially by directly 

activating its transcription  in early B-cell progenitors (Lin and Grosschedl, 1995).  

EBF-1 also plays a role in the chromatin remodelling. Some observations suggest that 

EBF-1 activates V(D)J recombination by serving as a docking site for chromatin remodelling 

complexes since expression of EBF-1 in a kidney epithelial cell line is selectively found to 

activate some, but not all endogenous IgH D-J and IgL κ/λ chain gene rearrangements 

(Romanow et al., 2000, Goebel et al., 2001). It is currently not clear how EBF-1 mediates 

these changes, but Goebel and colleagues speculate that it may recruit histone 

acetyltransferase proteins that mediate chromatin remodelling.   
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2.3.2.3 Pax-5 (BSAP, B-cell specific activator protein) 
Similar to EBF-1, Pax-5 activity is detectable in mouse and human cells representing 

early stages of the B-cell differentiation, but is absent from terminally differentiated plasma 

cells. The Pax-5 gene is alternatively spliced into four different isoforms that are differentially 

expressed during B-cell development (Zwollo et al., 1997). Except the Pax-5b isoform, most  

Pax-5 isoforms are found to be downregulated during terminal differentiation, which 

suggested the possibility that these different Pax-5 isoforms may play distinct roles in B-cell 

development. Pax-5  directly acts as a transcriptional activator of several lymphoid genes such 

as CD19, N-myc, Igα and LEF-1 (Nutt et al., 1998). It has been also shown to bind to VpreB 

and λ5 promoters (early promoters, characteristic for the immature B-cells), as well as KI and 

KII sites upstream of the J kappa genes and possibly contributes to their activation (Tian et 

al., 1997). In addition, Pax-5 is found to act as a transcriptional repressor of lineage-

inappropriate genes, including macrophage colony stimulating factor (M-CSF) receptor gene, 

and thus commits the progenitor cells to the B lymphoid lineage and maintains that 

commitment by suppressing alternative cell fates (Kee and Murre, 1998, Nutt et al., 1999, 

O´Riordan and Grosschedl, 1999, Busslinger et al., 2000, Mikkola et al., 2002). Pax-5 also 

binds to the mb-1 promoter, which is stabilized by the recruitment of the Ets proteins Fli-1, 

Ets-1 and GABPα. Other proteins are reported to functionally interact with Pax-5: c-Myb, 

which binds and activates the RAG2 promoter cooperatively with Pax-5, the runt domain 

protein CBFα/PEBP2α/AML, the TATA-binding protein (TBP), the Retinoblastoma (Rb) 

protein and PU.1, which is found to be a direct target of Pax-5 mediated repression and which 

inversely can inhibit Pax-5 transactivation (Maitra and Atchison, 2000). Other potential 

interacting partners of Pax-5 in in vitro studies are the Id helix-loop-helix proteins Id1, Id2 

and Id3, which mostly act as inhibitory factors (Roberts  et al., 2001). 

 Pax-5-deficient mice have been shown to exhibit an early block of B-cell 

differentiation at the pre-B stage (Urbanek et al., 1994). B-cells from these mice lack the 

preB-cell receptor (pre-BCR) with a consecutive block in downstream signal transduction, 

including the BLINK protein which is a signal adaptor protein, essential in BCR signalling. 

These mice with targeted disruption of Pax-5 genes lack serum Ig and cannot mount a 

humoral immune response.  

 

2.3.2.4 Spi-B  
A family of transcription factors thought to play a pivotal role in hematopoiesis are the 

Ets DNA-binding proteins, which are monomeric transcription factors binding DNA  through 
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their Ets domain (Macleod  et al., 1992, Nye  et al., 1992, Gunther et al., 1990, Leprince et al., 

1992). Based upon differences within the Ets and other domains, Ets proteins are divided into 

series of subfamilies, consisting of the Ets, PU.1, Elf-1, Fli-1, and GABPα group. The PU.1 

subgroup consists of PU.1 (Spi-1) and Spi-B. Spi-B has been cloned from a Burkitt 

lymphoma cDNA library using the human PU.1 as a probe (Winandy et al., 1995). Spi-B is 

mostly expressed in mature B- and T- lymphocytes (Ray et al., 1992, Klemsz et al., 1990, 

Hromas et al., 1993). It is closely related to PU.1 through structural homology and by its 

ability to transactivate PU.1 target genes in vitro (Ray et al., 1992, Ray-Gallet et al., 1995). 

However, in vivo it has been found that the target genes of Spi-B and PU.1 overlap only 

partially (Rao et al., 1999). Both PU.1 and Spi-B are known to be required for normal BCR 

signalling (Garett-Sinha et al., 1999), whereas Spi-B can functionally replace PU.1 in myeloid 

development, it is not able to replace it in lymphoid development (Dahl et al., 2002). Spi-B 

deficient mice exhibit defect in BCR signalling and show severe abnormalities in B-cell 

function and selective T cell-dependent humoral immune responses accompanied by a 

dramatic effect in germinal centre formation and maintenance.   

 

2.3.2.5 Oct-1, Oct-2 and Bob-1 
Protein-DNA interaction assays have identified nuclear factors that bind specific 

octamer sites, for example in the Ig heavy and light chain variable (V) gene promoters, the 

enhancer in the intron between the joining (J) and µ constant (C) region, the IgH locus and in 

promoters of various B-cell specific genes like B29 (Ig beta) and CD20. Such nuclear factors 

are Oct-1 and Oct-2. Whereas Oct-1 has been identified as an ubiquitous protein, Oct-2 is 

restricted mostly  to lymphoid cells. These factors belong to the family of POU proteins 

because of the presence of a bipartite DNA binding domain, the so-called “POU” domain. 

This domain contains helix-turn-helix motifs required for high affinity binding to DNA. 

Oct-2  is found to be expressed at low levels  in B-cells of early differentiation stages: 

pro-, pre-B cells, and at higher levels in mature B-cells. Oct-2 is found to transactivate co-

transfected reporter plasmids in an octamer site-dependent manner (Müller et al., 1988, 

Tanaka et al., 1990, Müller-Immergluck et al., 1990). These results have led to the early 

notion that the B cell-specific activity associated with the octamer site is primarily mediated 

by Oct-2 and highlighted the functional importance of these sites especially for Ig promoter 

function and B cell-specific activity. 

One protein that was detected to specifically interact with Oct-1 and-2  is OBF-1 (Oct 

Binding Factor-1, Strubin  et al., 1995, or OCA-B, Luo  et al., 1995, or Bob-1 (Gsteiger et al., 
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1995). The expression of OBF-1 is highly B-cell specific and has not been observed in most 

other cell types examined (Strubin  et al., 1995, Luo  et al., 1995, Gsteiger  et al., 1995). 

Within the B-cell lineage, OBF-1 expression is found in cells of all stages of differentiation 

(pro-, pre- and mature B cells) at constant levels (Schubart et al., 1996). By interaction with 

either Oct-1 or Oct-2, OBF-1 could be recruited to a subset of octamer sites and thereby to co-

activate gene transcription. This interaction is highly specific, as OBF-1 interacts efficiently 

with the POU domains of Oct-1 and Oct-2 in vitro, but not with other members of the Oct 

family. This led to the conclusion that this interaction has an important role in B-lymphocytes. 

 

2.3.2.6 B-lymphocyte-induced maturation protein-1 (Blimp-1) 
 Blimp-1 is a transcriptional repressor that plays a central role in the terminal 

differentiation of B-cells into plasma cells (Turner et al., 1994). Ectopic expression of  Blimp-

1 in lymphoma cell lines or in primary murine splenic  B-cells is sufficient to induce 

differentiation to Ig-secreting plasma cells (Schliephake et al., 1996, Piskurich et al., 2000). 

Studies in mice lacking Blimp-1 in mature B-cells showed severe defects in pre-plasma 

memory cells, plasma cells and Ig secretion (Shapiro-Shelef et al, 2003). Therefore, Blimp-1 

is considered the “master regulator” of plasmacytic differentiation. It was also suggested that 

repression of Blimp-1 in germinal center (GC) B-cells is important to delay plasmacytic 

differentiation and allow affinity maturation and class switch recombination (CSR) (Shaffer et 

al., 2000, Reljic et al., 2000).  

 Blimp-1 is detected in all plasma cells and is absent in early bone marrow cells, 

memory B-cells in spleen and most GC B-cells (Angelin-Duclos et al., 2000). Several B-cell 

targets of Blimp-1 have been identified. Blimp-1 represses c-myc (Lin et al., 1997), pax-5 

promoter (Lin et al., 2002) and class II transactivator (CII) promoter III, required for the 

transcription of class II major histocompatibility complex (MHC) (Piskurich et al., 2000). In 

addition, micrarrray studies in B-cells revealed several gene expression programs that are 

altered in response to Blimp-1 including: repression of proliferation genes, repression of 

genes required for GC or activated B-cells and induction of genes necessary for Ig secretion 

(Shaffer et al., 2002). 
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Aim of the study 
PEL is a B-cell malignancy which is morphologically and histologically different from 

most other B-cell tumors (Gaidano et al., 1997). Almost all investigations regarding KSHV 

and PEL are based on  PEL cell lines originating from patient material. In these tumor cells it 

is largely unknown which phenotypical changes are caused by viral infection and which by 

cellular, oncogenic processes. Moreover, PEL cells also contain EBV, so that both viruses 

might contribute to the transformation processes in doubly infected PEL cells. The aim of this 

project was thus to investigate the role of KSHV in the phenotypical changes observed in 

infected B-cells. To this aim in vitro KSHV-infected B-cells should be established and 

analysed. Subsequently, the mechanism and the biological consequences of the phenotypical 

changes should be investigated. 
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3. Materials and Methods  
 

3.1 Materials 
3.1.1 Equipment 
Centrifuge GP  Beckman                                                                  Palo Alto, USA 

Centrifuge J2-21 Beckman                                                             Palo Alto, USA 

Centrifuge Varifuge 3.0R Heraeus                                                 Hanau, Germany 

Centrifuge Minifuge RF Heraeus                                                   Hanau, Germany 

Centrifuge Labofuge T Heraeus                                                   Hanau, Germany 

Centrifuge, refrigerated and non-refrigerated Heraeus                   Hanau, Germany 

Confocal laser scanning microscope Leica                                     Bensheim, Germany 

Elisa Reader Tecan Labinstruments                                               Crailsheim, Germany 

Film developing machine Optimax Typ TR MS Laborgeräte Heidelberg, Germany 

Fluorescence/light microscope Axiovert 35 Zeiss                          Oberkochen, Germany 

Fluorescence/light microscope Axiovert 200M Zeiss                    Oberkochen, Germany 

Refridgerator (4°C) Liebherr                                                            Ochsenhausen, Germany 

Freezer (-20°C) Liebherr                                                                Ochsenhausen, Germany 

Freezer (-80°C) Forma Scientific, Inc., Marietta                           Ohio, USA 

Cryo 1°C Freezing Container Nalgene Nunc                                 Wiesbaden, Germany 

Gel dryer Bio Rad   Munich, Germany 

GelAir drying system Bio-Rad                                                       Munich, Germany 

Incubators for cell culture (37°C) Forma Scientific, Inc., 

Marietta,                                                                                          

 

Ohio, USA 

Inverted microscope TMS Nikon                                                    Düsseldorf, Germany 

Laminar Flow Hood Steril Gard II A/B3 The Baker Company,     Sanford, Maine,USA 

Magnetic stirrer with heating block Janke & Kunkel                     Staufen, Germany 

Microwave AEG                                                                             Berlin, Germany 

Overhead mixer Heidolph                                                               Schwabach, Germany 

PCR Thermal Cycler GeneAmp 2400 Perkin Elmer                      Weiterstadt, Germany 

pH Meter WTW                                                                             Weilheim, Germany 

Photometer Gene Quant II Pharmacia/LKB                                  Freiburg, Germany 

Pipettes Gilson                                                                              Villies Le Bel, France 

Eppendorf                                                                                     Hamburg, Germany 

 - 23 -  



                                                                                                                Materials and Methods 
               

Pipetting aid Technomara                                                             Zürich, Switzerland 

Electrophoresis Power supply EPS200 Amersham-Pharmacia    Freiburg, Germany 

Sonifier 450 Branson Ultrasonics Corp.                                      Danbury, USA 

Thermomixer Eppendorf                                                              Hamburg, Germany 

UV transilluminator (366 nm) Vetter                                 Wiesloch, Germany          

(254 nm) Konrad Benda                                                               Wiesloch, Germany 

Vortex mixer IKA Works, Inc.                                                     Wirmington, USA 

Water bath Julabo                                                                         Seelbach, Germany 

GFL                                                                                              Burgwedel, Germany 

  

 

 

3.1.2 Chemicals 
Acetic Acid Roth                                                                        Karlsruhe, Germany 

Acrylamide/Bisacrylamide 37,5/1 Roth                                     

(Rotiphorese Gel 30)                                                           

 

Karlsruhe, Germany 

Agarose electrophoresis grade Invitrogen                                  Karlsruhe, Germany 

Ammonium persulfate (APS) Sigma                                         Munich, Germany 

Bromophenol blue Serva                                                            Heidelberg, Germany 

Bovine serum albumin (BSA) Sigma                                         Munich, Germany 

Calcium chloride Merck                                                             Darmstadt, Germany 

Dimethylsulfoxide (DMSO) Merck                                           Darmstadt, Germany 

Dithiothreitol (DTT) Roth                                                          Karlsruhe, Germany 

dNTPs Roche Diagnostics                                                         Mannheim, Germany 

Dulbecco’s modified Eagle’s medium (DMEM) Gibco BRL   Karlsruhe, Germany 

Ethanol (EtOH) Riedel-de Haën                                                 Seelze, Germany 

Ethidium bromide Sigma                                                           Munich, Germany 

Ethylenediamintetraacetate disodium salt Roth   (EDTA)                Karlsruhe, Germany 

Ethylene glycol Sigma                                                 Munich, Germany 

Fetal calf serum (FCS) Gibco BRL                                           Karlsruhe, Germany 

Glucose Merck                                                                          Darmstadt, Germany 

Glycerol Roth                                                                            Karlsruhe, Germany 

Histogel Linaris                                                                        Wertheim-Bettingen, 

Germany 
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Hydrochloric acid (HCl) Merck                                                Darmstadt, Germany 

Interferon (IFN) - PBL Biomedical Laboratories                     Piscataway, USA 

Isopropanol Riedel-de Haën                                                     Seelze, Germany 

L-glutamine Gibco BRL                                                           Karlsruhe, Germany 

Magnesium chloride Merck                                                      Darmstadt, Germany 

Magnesium sulfate Merck                                                        Darmstadt, Germany 

2-mercaptoethanol Merck                                                         Darmstadt, Germany 

Methanol Merck                                                                       Darmstadt, Germany 

N-butyrate Sigma                                                                     Munich, Germany 

Nonidet P40 (NP-40) Fluka                                                     Seelze, Germany 

Pefabloc Roche Diagnostics                                                    Mannheim,Germany 

Penicillin-Streptomycin Gibco BRL                                        Karlsruhe, Germany 

Phenylmethylsulfonfluoride (PMSF) Roche Diagnostics        Mannheim, Germany 

Phosphate buffered saline (PBS) Dulbecco’s Gibco BRL       Karlsruhe, Germany 

Ponceau S Sigma                                                                     Munich, Germany 

Rosswell Park Memorial Institute (RPMI)1640 Gibco BRL  Karlsruhe, Germany 

Skim milk powder Merck                                                        Darmstadt, Germany 

Sodium acetate Riedel-de Haën                                               Seelze, Germany 

Sodium azide Serva                                                                 Heidelberg, Germany 

Sodium chloride Riedel-de Haën                                             Seelze, Germany 

Sodium dodecylsulfate (SDS) Merck                                      Darmstadt, Germany 

Sodium hydroxid J.T.Baker B.V.                                            Deventer, Holland 

Sorbitol Sigma                                                                         Munich, Germany 

Tetramethylethylenediamin (TEMED) Amersham-Pharmacia        Freiburg, Germany 

12-O-tetradecanoylphorbol-13-acetate (TPA) Sigma             Munich, Germany 

Tris(hydroxymethyl)aminomethan (Tris) Roth,                      Karlsruhe, Germany 

Triton X-100 Serva                                                                 Heidelberg, Germany 

Trypsin Gibco BRL                                                                Karlsruhe, Germany 

Tween 20 Merck                                                                     Darmstadt, Germany 

Western Blue- Stabilized Substrate for Promega                   Mannheim, Germany 
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3.1.3 Additional materials 
autoradiography films  Rochester, USA 

cell culture plastic ware Greiner                                             Greiner, Germany 

                                                                                       Nunc, Germany 

Falcon Becton Dickinson 

Heidelberg, Germany 

glass slides  Marienfeld Bad    

Mergentheim, Germany 

nitrocellulose  

 

Schleicher & Schuell          

Dassel, Germany 

sterile filters 0.2 and 0.4 µm Millipore 

 

 

 

3.1.4 Cell lines 
 

NAME TISSUE ORIGIN 

721 EBV-transformed LCL ATCC 

BCBL-1 PEL Don Ganem, UCSF 

NKL NK cell line Eric Vivier, Mareseille, Framce 

NK92 NK cell line Eric Vivier, Marseille, France 

JB4 (HLA-A2) T cell line Cristine Falk, GSF, Munich 

234 (HLA-A24) T cell lines Cristine Falk, GSF, Munich 

Bos 4 T-cell origin Cristine Falk, GSF, Munich 

Bos 5 T-cell origin Cristine Falk, GSF, Munich 

Daudi B-cell origin Cristine Falk, GSF, Munich 

Daudi β2-m B-cell origin Cristine Falk, GSF, Munich 

K562 monocyte/macrophage origin Cristine Falk, GSF, Munich 

 

 - 26 -  



                                                                                                                Materials and Methods 
               

3.1.5 Oligonucleotides  
 

NAME FORWARD REVERSE 

BCR CAAAACTCACACATGCCCAC AGGGCTTTGTTGGAGACCTT 

CD19 CAGTCCTATGAGGATATGAGAGGAA GAAGAGCTCATTGAGTTTATTTAAGG 

CD79B ATCCTCTTCATCATCGTGCC ACGGATCACCTCATAGCACC 

CD80 GTCCTGGACTGCTCTTCCTG TGCCACATGCAGTGTAACCT 

IL-6 AAAGAGGCACTGGCAGAAAA GAGGTGCCCATGCTACATTT 

IL-10 TTACCTGGAGGAGGTGATGC TGGGGGTTGAGGTATCAGAG 

E2A TGGTAGATGCAAGGGAAACC TGAATCCACCTGAAAGAGGG 

EBF-1 GATTCCAGGTCGTGGTGTCT CCATAATCGATGGTGGGTTC 

PAX-5 CAGAACAGCCAGGTAGAGCC TCTTGTTTCCCACTTGGTCC 

OCT-2 CCTGCTCAGTTCCTGCTACC CTTGAAGCTCAGGTTGAGGG 

SPI-B GATCCCCCTGGAAGAAAAAG AGAGGGCCCCAGACATAACT 

BOB-1 CCTGAGAAAGTCAGCCAAGG CCAACTTCCCTTGCACGTAT 

BLIMP-1 CCAGCTCTCCAATCTGAAGG GATTCGGGTCAGATCTTCCA 

ACTIN GACGACATGGAGAAGATCTGG TGTGGTGGTGAAGCTGTAGC 

 

 

 

3.1.6 Molecular weight markers 
 

Gene Ruler 100 bp DNA ladder MBI Fermentas  St. Leon-Rot, Germany 

Gene Ruler DNA 1 kb ladder MBI Fermentas  St. Leon-Rot, Germany 

See blue plus 2 prestained protein standard Invitrogen, low range Karlsruhe, Germany 

 

 

3.1.7 Kits 
BCA Protein Assay Pierce  Rockford, USA 

Cell proliferation ELISA BrDU (colorimetric) immunoassay Roche 

ECL western blotting detection system Amersham-Pharmacia Freiburg, Germany 

IL6 and IL10 ELISA kits DuoSet ELISA Development System R&D Systems 

RNA midi kit Quiagen Hilden, Germany 
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RT Reaction, Superscript II H-  Invitrogen 

Qiafilter Plasmid Maxi Kit Qiagen  Hilden, Germany 

 

3.1.8 Antibodies 

3.1.8.1 Primary antibodies (All antibodies were titrated before use) 
 
 
 

NAME ORIGIN 
anti-CD19 mouse anti-human, clone HD37 DAKO 

anti-CD71, mouse anti-human, hybrodoma supernatant 

kindly provided by Walter Muranyi 

 

Heidelberg, Germany 

anti-MHC I, mouse anti-human, W6-32 ATCC 

anti-CD79b, mouse anti-human ,clone SN8 Jackson, Hamburg, Germany 

anti-CD138, mouse anti-human AL-ImmunoTools, Germany 

anti-ICAM, mouse anti-human (gp89) 

kindly provided by Cristine Falk 

GSF-Haematologikum, Munich, 

Germany 

anti-CD95, mouse anti-human Jackson, Hamburg, Germany 

anti-CD80-FITC conjugated, kindly provided by Elfriede 

Noessler 

 
GSF-Haematologikum, Munich, 
Germany 

anti-CD86-FITC conjugated, kindly provided by Elfriede 

Noessler 

 
GSF-Haematologikum, Munich, 
Germany 

anti-B220-FITC, mouse anti-human CD45RA FITC conjugated Sigma ImmunoChemicals, St. 
Luis 

anti-Pax-5, goat anti-human Santa Cruz, USA 

anti-Spi-B, goat anti-human Santa Cruz, USA 

anti Oct-2, rabbit anti-human Santa Cruz, USA 

anti-phospho STAT-1, rabbit anti-human Cell signalling 

anti-phospho STAT-2, rabbit anti-human Cell signalling 

anti-STAT 1, rabbit anti-human Cell signalling 

anti-STAT 2, rabbit anti-human Cell signalling 
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3.1.8.2 Secondary antibodies 
 

NAME ORIGIN 

goat anti-human IgG1-FITC conjugated Jackson, Hamburg, Germany 

rat anti-mouse-FITC conjugated Jackson, Hamburg, Germany 

goat anti-mouse-FITC conjugated Jackson, Hamburg, Germany 

 

peroxidase-conjugated: 

 

NAME ORIGIN 

donkey anti-goat  Jackson, Hamburg, Germany 

goat anti-rat Jackson, Hamburg, Germany 

goat anti-rabbit Jackson, Hamburg, Germany 

goat anti-mouse Jackson, Hamburg, Germany 

 

 

3.1.9 Enzymes 
AmpliTaq Gold® DNA Applied Biosystems, Foster City, CA, USA 

Polymerase 

 

3.2. Methods 
3.2.1 DNA and RNA  techniques 

3.2.1.1 Preparation of total RNA 
Cellular or tissue total RNA was prepared either with Trizol reagent (Gibco BRL) 

according to the manufacturer’s instructions. The cells were washed with PBS, lysed in 1 ml 

of Trizol reagent solution and incubated for 5 min at room temperature (RT). 0.6 ml 

chloroform-isoamylalcohol mixture (49:1) were added to the samples, mixed and incubated 

on ice for 15 min. The samples were centrifuged at 6000 rpm for 30 min. at 4 °C, the aqueous 

phase was removed and mixed with the same volume of 2-propanol. RNA was precipitated at 

4°C for 30 min (or –20 °C for 1 h) and pelleted by centrifugation at 6000 rpm for 20 min. at 4 

°C. The RNA pellet was dissolved was washed with 80% ethanol, air dried and dissolved in 

50µl DEPC-treated water. RNA concentration was determined on a spectrophotometer by 
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measuring the A260 and samples were stored at –80 °C. The quality of isolated RNA was 

determined by electrophoresis using a 1% MOPS agarose gel. 

 

3.2.1.2 Determination of RNA and DNA concentration 
The concentration and purity of the purified RNA and DNA was determined by 

measuring the optical density at 260 and 280 nm. The RNA and DNA concentration were 

calculated with the OD260nm (1 OD260nm = 50 µg/ml dsDNA or 33 µg/ml ssDNA). The 

purity was estimated with the OD260/OD280 ratio, with a ratio of between 1.6-1.9 indicating 

a low degree of protein contamination. 

 

3.2.1.3 Reverse transcription - polymerase chain reaction (RT-PCR) 
 RNA was extracted from 107 cells with Trizol (Sigma, St. Louis) as specified by the 

manufacturer. Ten micrograms of total RNA in 10µl of water and 1µg of oligo(dT)18
 primer 

were heated to 65°C for 10min and subsequently cooled to 4°C on ice. Twenty microliters of 

reaction mixture (100mM Tris-HCl [pH 8.3], 6mM MgCl2, 150mM KCl, 1mM each 

deoxynucleoside triphosphate (Roche, Penzberg), 30U of RNase inhibitor (Fermentas, 

Vilnius), 200U of superscript reverse transcriptase (Invitrogen, Carlsbad) was added, and the 

mixture was incubated at 37°C for 1.5h and 67°C for 15min. One (two) microliter of the 

reverse transcription reaction mixture was amplified with gene-specific primers in a 50µl PCR 

mixture containing 10mM Tris-HCl (pH 8.3), 1.5mM MgCl2, 0.2mM each deoxynucleoside 

triphosphate, 100ng of each primer, and 5U of Taq polymerase. Oligonucleotide primers for 

BCR, CD19, CD79b, CD80, IL-6, IL-10 and actin were used for RT-PCR (see above): 

 

Reaction mixture for RT PCR: 

2 µl 10 mM dNTPs (200 µM each) 

1 µl forward primer (100 pMol) 

1 µl reverse primer (100 pMol) 

0.5 (1) µl AmpliTaq Gold® (5U) 

0.5µl BSA 

1µl cDNA template 

44 µl H2O 
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3.2.1.4 Agarose gel electrophoresis 
Analysis of DNA fragments and plasmids was performed by agarose gel 

electrophoresis in 1x TAE. In general, agarose concentration was between 1 and 3 % in 1x 

TAE. The agarose was solubilized by heating in a microwave oven. Ethidium bromide was 

added to a final concentration of 0.25 µg/ml (2,5 µl stock to 100 ml) just before pouring 

the gel. Probes were mixed with 0.17x volume loading buffer. Gels (6.5 x 9.5 cm) were run 

horizontally at 80-120 V. PCR fragments were detected with UV light (254 nm or 366 

nm).  

 

loading buffer (6x in water) MBI Fermentas, St. Leon-Rot, Germany 

20x TAE: 800 mM Tris 

400 mM NaAc 

40 mM EDTA 

adjusted to pH 7.8 with acetic acid 

Ethidium bromide (stock): 10 mg/ml 

 

 

3.2.2 Tissue culture 

3.2.2.1 Generation of persistently KSHV-infected B-cell lines 
Peripheral blood mononuclear cells (PBMC) were isolated from EDTA-treated blood of three 

healthy individuals by Ficoll-Hypaque discontinuous gradient centrifugation (Biotest, 

Dreieich). Supernatants of BCBL-1 and 721 cells grown at very high densities (5x105 per ml) 

were used to infect PBMC as previously described {Kliche, Kremmer, et al. 1998 339 /id}. 

Supernatants were filtered through 0.4-µm filters and serially diluted with cell culture medium 

in 48-well plates. Subsequently, PBMC were added to 104 cells per well.  

 

 

3.2.2.2 Infection of KSHV- and EBV- infected B-cells with recombinant 

vaccinia virus 

KSHV- and EBV- infected B-cells were incubated for 1h, 37°C with 20 (25) µl 

vaccinia virus stock in a final volume 1ml RPMI medium. Afterwards the vaccinia-infected 

cells were diluted with 10 ml fresh RPMI medium and incubated for additional 18-24 hours. 
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3.2.2.3 Cultivation and cryoconservation  
All suspension  cell lines were cultured in RPMI 1640 supplemented with 20% fetal 

calf serum, 100 IU/ml penicillin, 100 µg/ml streptomycin and 2 mM  L-glutamine. For 

cryoconservation cells were centrifuged at 300 g for 5 min at 4°C. Subsequently, the cells 

were resuspended in 1 ml FCS/10% DMSO (4°C) with a final concentration of 0.5-1x107 

cells/ml, transferred to cryovials and cooled to –80°C in a “Cryo 1°C FreezingContainer”. 

After approximately 24 hours, the vials were transferred to liquid nitrogen for longterm 

storage. Frozen aliquots were quickly thawed at 37°C in a waterbath and washed with 10ml 

RPMI to remove the DMSO. Subsequently, cells were resuspended in complete medium and 

transferred to cell culture dishes. 

 

3.2.2.4 Immunofluorescense and confocal microscopy 
The KSHV-positive cells were dried on poly-L-lysine-coated coverslips (Marienfeld, 

Bad Mergentheim, Germany), fixed with ice-cold acetone ( 10-15 min), and blocked for 20 

min with 0.2% gelatine in PBS. After incubation for 1 h with the biotinylated monoclonal  

antibody kap5C4, directed against KSHV K12 and diluted in PBS/0.2% gelatine, the cells 

were incubated for 2 h with streptavidin-FITC-conjugated goat anti-rat IgG (Dianova, 

Hamburg) diluted 1:200 in PBS/0.2% gelatine. The cells were washed and examined using a 

Leica TCS-NT confocal microscope (Leica, Bensheim, Germany). 

 

3.2.3 Protein techniques 

3.2.3.1 SDS-PAGE 
Protein gel electrophoresis with 12 to 20% gels (80 x 50 x 1 mm) was performed using 

the Protean II system (Bio-Rad). After pouring the separation gel, the gel was overlaid with 

isopropanol to straighten the gel surface. After the polymerization the isopropanol was 

removed, the stacking gel was poured on top of the separation gel and the comb was fixed. 

After the polymerisation, the gel was assembled in the gel electrophoresis apparatus. Lysates 

or precipitated samples were resuspended in 20-50µl 2xSDS protein sample buffer and boiled 

for 5 min at 95°C. After cooling to RT, the samples were centrifuged for 2 min at 10000g 

(microcentrifuge) and loaded on the gel together with a protein standard. Separation was 

performed at a constant current of 400mA for 1-2 h. 
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Separation gel 10% 12% 

30% Acrylamide/ Bisacrylamide (37.5:1) 3.33 4 

1.5 M Tris pH 8.8 2.5 2.5 

10 % SDS 100 µl 100 µl 

H2O 4.01 ml 3.35 ml 

10 % APS 50 µl 50 µl 

TEMED 5 µl 5 µl 

Stacking gel 5% 

30 % Acrylamide/ Bisacrylamide (37.5:1) 650 µl 

0,5 M Tris pH 8.8 1.25 ml 

10 % SDS 50 µl 

H2O 3.05 ml 

10 % APS 25 µl 

TEMED 5 µl 

    

  

Electrophoresis buffer (10 x): 50 mM Tris 

384 mM glycine 

0.1% SDS 

 

 

3.2.3.2 Western blot analyis 
Proteins were blotted onto nitrocellulose membranes using the Protean II system (BA-

85 Schleicher & Schuell ). A piece of nitrocellulose membrane and two pieces of filter paper 

and two sponges of the same size as the gel were soaked with transfer buffer. A sponge, a 

piece of filter paper, the nitrocellulose membrane, the gel, another piece of filter paper and 

again a sponge were packed. Subsequently, air bubbles were removed by rolling a test tube 

over the sponge and the package was clamped into the transfer tank with the nitrocellulose 

facing the anode. Blotting was performed at constant current of 400 mA for 1-2 h. 

Subsequently, the protein transfer was controlled by staining the gel for 2 min with Ponceau 

staining solution. The membranes were labeled with a pen and washed several times with H2O 

to remove the Ponceau staining solution. Unspecific binding was blocked by incubation in 

TBST (TBS, 0.05% Tween 20), 5% skim milk powder, 0.02% NaN3 either 1 h at RT or o/n at 
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4°C. Subsequently, the membranes were incubated with the first antibody in 5-10 ml TBST 

(used also in the following washing and incubation steps) at 4°C o/n. After five washing steps 

of 15 min with approximately 200 ml buffer each, incubation with the secondary antibody 

coupled to peroxidase was performed in 15 ml buffer at RT for 1 h followed by washing 5x 

10 min in 200 ml buffer.  

The blotted proteins were detected using the ECL Western blotting detection system 

(Amersham-Pharmacia) according to the manufacturer’s instructions. The membrane was 

exposed to BIOMAX-MR autoradiography films (Kodak) for different time periods and films 

were developed using an automatic film developing machine. 

 

Transfer buffer (1l):                        Ponceau solution (100 ml):             

Tris base 5.8 g                                 Ponceau S 0.5 g Glycine 2.9 g  

SDS 0.37 g                                      Glacial acetic acid 1 ml 

Methanol 200 ml                             H2O 98.5 ml 

H2O  up to 1l                                           

 

3.2.3.3 Separation of proteins according to the molecular weight  
KSHV-positive cells were grown at a high density (5x10 5 -106 cells/ml) for 4-5 days. 

Cells were collected by centrifugation 400g for 5min and supernatant containing secreted 

cellular proteins were filtered through 0,22 µ filters (MILLEX®-GP, MILLIPOR). The filtered 

supernatants were applied to ultracentrifugation cartridges (Microsep/Filtron, 100K, 50K, 

30K, 10K) and centrifuged at 2000-3000g for 2-2.5h. The fluid passing through the separation 

filter contains the desired protein fraction, which is used further. 

 

3.2.3.4 ELISA (cytokine capture) 
KSHV and EBV-infected B-cell lines from  three donors  were kept at a high density 

(3x106/ml) in a total volume of 4 ml RPMI medium. Supernatants were collected after 48 

hours and used for IL-6 and IL-10 detection, performed by IL6 and IL10 ELISA kits (DuoSet 

ELISA, R§D Systems). 

A 96-well plate (flat bottomed) was coated with a capture antibody (mouse anti-human IL-6 

or IL-10) and incubated overnight at 4°C. After the incubation the coated wells were washed 

with buffer according to the manufacturer’s protocol The plate was blocked by addition of 

blocking buffer and incubated at RT for 1 hour. Later on the samples together with the 

standards incubated for 2 hours on the plate in a total volume of 100 µl. The cytokines were 
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detected by addition of biotinylated goat anti-human  IL-6 or IL-10 antibodies and 

streptavidin HRP antibodies and visualized by ABTS substrate solution. The optical density 

was determined by using an ELISA reader at 450 nm. 

 
3.2.3.5 Flowcytometry 

To analyze the expression of surface markers, 1×106 cells were stained with the 

directly conjugated antibodies anti-CD80-FITC, anti-IgG-FITC, anti-B220-FITC. The 

washing and antibody incubation steps were performed with FACS buffer (PBS containing 

2.5% FCS and 0.02% sodium azide). For indirect immunofluorescence, cells were incubated 

first with either anti-CD79b, anti-CD19 anti-CD71 or anti-MHC class I antibodies, and 

subsequently with a secondary, FITC-conjugated anti-mouse IgG antibody. As a negative 

control, only the secondary antibody was used in each assay. The cells were washed three 

times with PBS/3%FCS and analyzed on a Coulter Epics flowcytometer with EXPO 32 ADC 

Software. 

 

 
3.2.4 Functional assays 

3.2.4.1 CTL and NK killing assay 
KSHV- and EBV- infected target cells were collected by centrifugation 1500 rpm for 

6 min and resuspended in 100µl 10% FCS. This cell suspension was labelled with 5mCi 

[Cr51] for 1h 30 min at 37°C and 6% CO2 . After the incubation  the labelled cells were 

washed 2 times with RPMI 1640/10%FCS medium and resuspended in 4ml total volume of  

fresh medium. Cells were counted using Neubauer chamber and brought to a concentration of 

2000 cells/50µl. 

The  effector NK92, HLA-A2 and HLA-A24 T-cells  were distributed in 96-well 

plates (V bottom). These cells were incubated with the labelled KSHV-positive and EBV-

positive target cells at effector : target ratio of 20:1-2,5:1 in a final volume of 100µl. 

Subsequently, the cell killing assay was performed for 4h at 37°C. After the incubation, 100µl 

of supernatant were collected from each well and counted in a γ-counter to determine the 

[51Cr]-release. The percentage specific lysis was calculated by : 
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                                     experimental lysis – spontaneous lysis   

                                  maximal lysis – spontaneous lysis 
specific lysis (%) = X 100 

 

 

The spontaneous release (Spont) was determined by incubating 50µl labelled targets 

with 50µl RPMI. The maximal release (max) was determined by adding 10µl Triton X and 

50µl RPMI/10%FCS to 50µl labelled target cells. As positive controls for the NK killing, 

K562, Bos-5 and Daudi cells, as positive controls for the CTL reaction, Daudi-β-2 m cells and 

as negative controls Bos-5 and Bos-4 cells were used. 
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4. Results  

4.1 Generation of persistently KSHV-infected B lymphocytes 
To investigate how the cellular gene expression is altered by KSHV, persistently 

KSHV-infected B-cell lines were generated by infecting peripheral blood mononuclear cells 

(PBMC) from three independent healthy individuals. PBMCs were isolated by Ficoll density 

gradient separation and subsequently infected simultaneously either with KSHV and EBV or 

EBV alone as previously described (Kliche et al., 1998). As a source of KSHV and EBV, 

supernatants from the KSHV-positive cell line BCBL-1 and the EBV-positive cell line 721 

were used. The presence of KSHV in B-lymphocytes was confirmed by immunofluorescence 

staining for the latent KSHV protein kaposin A (Fig.6) and Western blot analysis (Fig.7). The 

KSHV-positive cells were negative for EBV (data not shown).  
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Fig. 6: Generation of persistently KSHV-infected  B-cells. 
PBMCs  were isolated from three different healthy individuals and infected with KSHV. 
Immunofluorescence staining for detection of  KSHV was performed. Antibody against the latent 
KSHV protein kaposin A (green) and propidium iodide for nuclear staining (red) were used. 
Control staining with a secondary FITC-conjugated antibody was performed in parallel.  
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4.2.1 Alterations of cellular gene expression in KSHV-infected B-cells 
Significantly down- or upregulated cellular genes are summarized in Table 1. Among 

the most upregulated genes were granzyme A, S100 calcium binding protein, caveolin, 

interleukin-10 and  interleukin 6 receptor. Granzyme A is a cytotoxic T-lymphocyte-associated 

serine esterase which facilitates the migration of T-and NK-cells and is involved in the 

regulation of B-cell proliferation. S100 belongs to the family of calcium binding proteins 

which are significantly expressed in tumor and high proliferating cells. Caveolin is a main 

protein which participates in the formation of the lipid rafts in the cell membrane. IL-10 is 

known to inhibit cytokine production by both T- and NK-cells and the expression of MHC 

class II and co-stimulatory molecules such as IL-12 and B7-1/B7-2. It also affects the 

survival, proliferation and differentiation of human B-cells. The IL-6 receptor is plasma 

membrane receptor , responsible for binding IL-6.  

Surprisingly, a multitude of surface molecules including CD19, CD22, CD79a/b (mb-1) 

and B-cell receptor (BCR) were found to be downregulated. These are molecules which are 

mainly expressed in B-cells and are essential for the regular function of B-lymphocytes.  
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KSHV-signal KSHV+signal fold change gene

 

 
 
 
 
 
 

5,9 1745,85
4,05 767,1 38,35 G protein-coupled receptor 25
10,7 472 23,6 integrin, alpha 6
5,3 388,4 19,42 immunoglobulin superfamily, member 4
17,7 288,05 14,4 Notch homolog 2 (Drosophila)
0,9 284,7 14,24 integrin, alpha 6
27,8 388,4 13,97 immunoglobulin superfamily, member 4
15,4 277,2 13,86 ELK3, ETS-domain protein (SRF accessory protein 2)
35,2 480,1
22,4 262 11,7 melanoma antigen, family A, 1 (directs expression of antigen MZ2-E)
21,2 215,05 10,14
4,6 173,05 8,65 B cell RAG associated protein
10,8 169

18,25 163,15 8,16 chemokine (C-C motif) receptor 2
33,7 271,45 8,05 BCL2-associated athanogene 3
5,15 149,85 7,49 G protein-coupled receptor 37 (endothelin receptor type B-like)

52,85 330,7 6,26 G protein-coupled receptor, family C, group 5, member D
17 116,75 5,84 caveolin 1, caveolae protein, 22kD
2,4 115,25
8,8 108,7 5,43 G protein-coupled receptor 56
6,6 103,15 5,16 G protein-coupled receptor 48

87,29 granzyme A (granzyme 1, cytotoxic T-lymphocyte-associated serine esterase 3)

13,64 S100 calcium binding protein A10 (annexin II ligand, calpactin I)

caveolin 1, caveolae protein, 22kD

8,45 interleukin 10

5,76 interleukin 6 receptor

-11,06 CD22 antigen

-14,16 CD79A antigen (immunoglobulin-associated alpha)
-19,16 CD19 antigen

-194,49 immunoglobulin heavy constant gamma 3 (G3m marker)

 
 

 

 

 

 

 

 

 

 

 

    
 
 
 

159,3 16,5 -7,97 tumor necrosis factor receptor superfamily, member 7
160,85 9,3 -8,04 paired immunoglobulin-like receptor alpha
569,05 51,95 -10,95 interleukin 2 receptor, gamma (severe combined immunodeficiency)
221,2 5,65
230,5 20,7 -11,14 integrin, beta 2 (antigen CD18 (p95)
223,6 16,7 -11,18 Fc fragment of IgG, low affinity IIb, receptor for (CD32)
233,65 6 -11,68 major histocompatibility complex, class II, DO beta
268,75 22,5 -11,94 G protein-coupled receptor 2
317,8 22,45
383,2 19,75
392,15 2,7 -19,61 Fc fragment of IgE, low affinity II, receptor for (CD23A)
476,85 22,9 -20,82 T cell receptor alpha locus
622,7 29,8 -20,9 CD83 antigen (activated B lymphocytes, immunoglobulin superfamily)
440,15 14,65 -22,01 Epstein-Barr virus induced gene 2 (lymphocyte-specific G protein-coupled receptor)
595,9 23,45 -25,41 T cell receptor alpha locus
530,1 15,65 -26,5 integrin, beta 7

,7 8,05 -26,59 Fc fragment of IgE, low affinity II, receptor for (CD23A)
,15 13,05 -26,81 leukocyte membrane antigen

746,4 11,15 -37,32 CDW52 antigen (CAMPATH-1 antigen)
1625,9 23,8 -68,32 major histocompatibility complex, class II, DQ beta 1

3977,35 20,45

531
536

 

 

 
 
 
 
 
 
Table 1: Altered expression of cellular genes in KSHV-infected B-cells. 
The column “KSHV- signal” shows the mean expression level of cellular genes in EBV-infected 
B-cells analysed in duplicates. The KSHV+ signal represents the mean expression level of cellular 
genes in KSHV-infected B-cells analysed in duplicates. The differences in the gene expression 
level between KSHV+ and EBV+ cells is presented as fold change in the third column. The table 
summarizes the genes which expression is significantly changed  in the range of –5 to –200 and 5 
to 90 fold. The genes of  interest are depicted in red.  
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4.3 Confirmation of the microarray data 

4.3.1 Transcriptional downregulation of B-cell surface markers after 

KSHV-infection 
To validate the microarray data the expression of some B-cell specific surface markers 

was tested by RT-PCR (Fig.9).  In all KSHV-positive cell lines no BCR, CD19, CD79 and 

B7-1(CD80) transcripts  were detected.   

 

 

Fig. 9: Transcriptional downregulation of B-cell markers in B-cells infected with KSHV. 
Total RNA was isolated from the KSHV+ and the EBV+ cell lines. RT-PCR was performed using
specific primers for BCR, CD19, CD79, B7-1(CD80) and actin. The results showed that no PCR
product was detected in the KSHV+ samples. 

actin  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4.3.2 Downregulation of B-cell surface markers on protein level after 

KSHV-infection 
The expression of  the B-cell markers BCR, CD19, CD79 and the co-stimulatory 

molecule B7-1 (CD80) was also tested on protein level by FACS analysis. This analysis  

confirmed the complete downregulation in KSHV-infected B-cells in comparison to EBV-

infected B-cells (Fig.10). In contrast, the transferrin receptor (CD71) as well as MHC class I 

were still present on the KSHV-positive B-cells. The PEL cell line BCBL (KSHV+) showed a  
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similar downregulation of  B-cell surface markers, indicating that KSHV-infected B-cells 

develop a similar phenotype as the PEL tumor cells (Fig. 10). In addition, the results indicated 

that KSHV is responsible for the phenotype of PEL tumor cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10: Downregulation of B-cell markers in KSHV-positive B-cells  on  protein level. 
A FACS analysis was performed using  FITC-conjugated antibodies against the BCR, CD79 and 
B220. The expression of CD19, CD71 and MHC class I was tested using unconjugated 
antibodies or hybridoma supernatants and secondary FITC-conjugated anti-mouse IgG 
antibodies. The dotted peaks represent the control stained with a FITC-conjugated secondary 
antibody and the filled peaks represent the expression level of the surface molecules. 
 

 

 
 
4.3.3 IL-6 and IL-10 are highly secreted  from B-cells infected with KSHV 
In vivo IL-10 and IL-6 were found to be upregulated in patients with KS and PEL. Their 

expression was tested on both transcriptional as well as protein level. Both IL-6 and IL-10 

transcripts were determined to be significantly upregulated in KSHV-infected cells (Fig 11B). 
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In addition, cell culture supernatants from  KSHV+ and EBV+ B-cells were collected after 2 

days and tested for secreted IL-6 and IL-10 by ELISA.  
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Fig. 11: IL-6 and IL-10 are upregulated on the mRNA and protein level in cells infected 
with KSHV. 
A: ELISA assay for determining the concentration of secreted IL-6 and IL-10. B: RT-PCR 
analysis showing increased levels of both of the cytokines in KSHV-infected B-cells.  
 

 

As shown in Figure 11 A,  the concentration of both cytokines was significantly 

increased in KSHV+ B-cells. The concentration of secreted IL-10 was between 600-800 

pg/ml, which is approximately 15 to 20-fold higher than in EBV-infected B-cells  (20-50 

pg/ml). The secreted amount of IL-6 was detected to be in the range of 250-600 pg/ml in 

KSHV+ (5 to 12-fold higher) and  below 50 pg/ml in the control EBV + B-cells. Based on 
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these results it was concluded that KSHV causes an increased secretion of IL-10 and IL-6 

similar to  PEL cells. 

 
4.4 Downregulation of B-cell transcription factors in B-cells infected with 

KSHV 
The presented results showed that KSHV-infected cells have a unique phenotype 

(“null” phenotype), characterized by a complete downregulation of basically all B-cell 

markers similar to PEL cells. Since B-cell development is driven mainly by B-cell 

transcription factors, their expression was tested by reverse transcription polymerase chain 

reaction (RT-PCR) in KSHV-positive cell lines. In the microarray screen the transcription 

factor Spi-B was found to be downregulated approximately 20-fold (-19.83x). To test the 

expression of  other main B-cell transcription factors including E2A, EBF-1, Pax-5, Oct-2, 

Bob-1 and Blimp-1 in KSHV-infected cells, a RT-PCR analysis was performed. The results 

indicated that the B-cell factors E2A, EBF-1 and Pax-5, which appear in the early stages of 

the B-cell development, were not transcriptionally modulated. Spi-B, Oct-2 and Bob-1, which 

are highly expressed in  mature B-cells, were downregulated in KSHV-positive cells (Fig. 

12). Blimp-1, which is a transcriptional repressor of Pax-5 and takes part in the transition to 

the plasma-cell stage of the B-cell differentiation, was transcriptionally upregulated. 

Interestingly, Pax-5 was not detected on the protein level in KSHV-infected B-cells, 

indicating that it might be posttranscriptionally downregulated by a different mechanism 

(Fig.13).  

 In summary, it was concluded that in KSHV-infected cells the downregulation of 

surface markers is related to an altered expression of several B-cell transcription factors.  
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Fig. 12: Downregulation of specific B-cell transcription factors in KSHV-positive cells on 
the transcriptional level.  

Total RNA was isolated from all three donors (d1, d2 and d3) with a following cDNA  synthesis. 
RT PCR was performed  using specific primers for the B-cell transcription factors. As a loading 
control RT-PCR for actin was performed. As a negative control (c-) PCR reaction mixture without  
template cDNA was used and as a positive control (c+) human cDNA library was used. 
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Fig. 13: Downrgulation of Pax-5, Oct-2 and Spi-B on the protein level. 
Cell lysates from all three donors (d1, d2 and d3) and the controls (c- or BCBL-1 and c+ or Burkit 
lymphoma B-cell line DG75) were collected and subjected to SDS-PAGE. The Western blot for 
detection of Pax-5, Oct-2 and Spi-B was performed using the following antibodies: goat anti-
human anti-Pax-5, rabbit anti-human anti-Oct-2 and goat anti-human anti-Spi-B antibodies. In 
parallel, as a control Western blot for detection of actin was performed using a rabbit anti-human 
anti-actin antibody. 
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4.5 Expression of the syndecan (CD138) plasma cell marker on KSHV-

infected B-cells 
 The downregulation of Pax-5 and the upregulation of Blimp-1 suggested that KSHV-

infected B-cells have developed a plasma cell-like phenotype.  Therefore, they were tested for  

the expression of CD138 (syndecan) surface protein, which is a marker for plasma cell stage 

of the B-cell differentiation. The FACS analysis showed the presence of this protein in all 

KSHV-positive cell lines, confirming their plasma cell-like phenotype (Fig.14).  
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-5 is downregulated due to protein degradation. To test this possibility, 

lls were treated with the specific proteasome inhibitor MG132  and 

or Pax-5 expression by Western blot analysis (Fig. 15). The results 

as not expressed after blocking the proteasome, suggesting that the 

d via the cellular proteasome system.  
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Fig. 15: Pax-5  is not detected after blocking the proteasome pathway. 
KSHV-positive B-cells were treated with different concentrations of the proteasome inhibitor 
MG132, as indicated, and incubated for 3,5 hours. The cells were lysed in 1% NP40 lysis buffer 
and the cell lysates were subjected to SDS-PAGE on a 12% gel. After blotting onto nitrocellulose  
membrane Pax-5 was detected by a polyclonal anti-Pax-5 antibody. As a positive control for the 
western blot EBV-positive cells from the same donor were used. 
 

 

 

4.7 A soluble factor(s) released from KSHV-positive B-cells is responsible 

for the downregulation of B-cell markers 
The results presented above indicated that the “null” phenotype  is most probably due 

to an altered B-cell transcriptional program. The persistently KSHV-infected B-cells used in 

this approach were generated via an infection of PBMCs with supernatant  from the PEL cell 

line BCBL-1 (as described above). To test if a soluble cellular or viral factor is involved in the 

induction of the “null” phenotype, EBV-positive 721 lymphoblastoid cells were incubated 

with supernatant derived from the three KSHV-positive B-lymphocytes. Supernatants (SN) of 

cell lines from three different donors were collected on the 2nd, 3rd and 4th day after the 

KSHV-positive B-cells have been seeded and subsequently added to the 721 cells. After two 

days of incubation the cells were checked for expression of the CD19 marker (Fig.16). CD19 

was downregulated by all three KSHV-positive supernatants. This was the first hint that a 

factor(s) present in cellular supernatant is involved in the downregulation of B-cell markers in 

cells infected with KSHV. This factor could be the virus itself, a viral protein or a cellular 

factor induced by the virus. 
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Fig. 16: Downregulation of the B-cell specific marker CD19 in presence of KSHV 
supernatant. 
KSHV-positive cells from three donors  were adjusted to a density  0.5x106 cells/ml and 
supernatants (SN) were collected on the 2nd, 3rd  and 4th day. An EBV-transformed 
lymphoblastoid cell line 721 was incubated for two days with the KSHV-positive supernatant 
using a dilution of 1:2 in fresh medium. After the incubation cells were stained with an anti-
CD19 antibody and analysed by FACS. The filled curves represent the expression of CD19 after 
the addition of supernatant from KSHV+ cells, the non-filled peaks represent the expression of 
CD19 in untreated cells and the dotted peaks represent the negative control or cells stained only 
with a FITC-conjugated secondary antibody. The altered CD19 expression was reproducible in 
two independent experiments. 

 

 

4.7.1 Characterization of the soluble factor responsible  for the 

downregulation of B-cell surface markers 
To test if KSHV viral particles present in the supernatant are responsible for the 

downregulation of CD19 and the other B-cell markers, or rather a soluble viral or cellular 

protein, supernatants were fractionated into two fractions >100kd and <100kd by  

ultrafiltration. The results presented in figure 17 clearly showed that CD19 was  
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downregulated when supernatant containing proteins <100kd was used. This suggested that 

the factor(s) is a secreted molecule, rather than the virus itself. This factor(s) is secreted only 

from KSHV-infected cells, as an altered CD19 expression was not detected in  supernatants 

from EBV-infected cells (Fig.17). 
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Fig. 17: The downregulation of CD19  is due to a soluble  factor  secreted from KSHV-
infected cells. 
The supernatants from the KSHV+ cells was centrifuged at 2500g, 2.5h, using ultrafiltration 
columns (Microsep/Filtron 100K). The EBV-transformed lymphoblastoid cell line 721 was 
incubated for two days with either ultrafiltrated or non-separated supernatant from KSHV-positive 
B-cells or with supernatant from EBV-positive B-cells. After the incubation the cells were stained 
with an anti-CD19 antibody and analysed by FACS. The filled peaks represent the CD19 
expression after addition of KSHV-positive supernatant. The non-filled peaks represent the 
expression of CD19 in untreated cells and the dotted peaks represent the negative control or cells 
stained only with a FITC-conjugated secondary antibody. 
 

 

 

4.7.2 A soluble factor(s) present in PEL effusion fluid downregulates B-cell 

markers   
To ensure that the change of CD19 expression after KSHV-infection is also present in 

vivo, a pleural effusion fluid from an HIV-1 positive patient with PEL was used. The effusion 

fluid was filtrated through filters with 0.4µm cut-off and cells were incubated with the PEL 

fluid for 2 and 4 days. The FACS data showed a similar downregulation of CD19 by PEL 

fluid as in the cells incubated with supernatant from KSHV-positive B-cells (Fig.18 A, B). 

These results indicated that the downregulation of CD19 is due to a soluble factor secreted 

from KSHV-infected cells, which is also present in PEL fluid. 
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Fig. 18: Downregulation of CD19 in the presence of PEL effusion. 
PEL effusion from a patient with both KS and PEL was added to 721 cells and to one of the 
KSHV-EBV+ donor and incubated for 2 (A) and 4 (B) days. Subsequently, a FACS analysis for 
CD19 was performed and compared to cells incubated with medium. The filled peaks represent the 
expression of CD19 after incubation with PEL fluid, the non-filled peaks represent the expression 
of CD19 in untreated cells and the dotted peaks represent the negative control  or cells stained only 
with a FITC-conjugated secondary antibody. 
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4.7.3 Altered morphology  induced in B-cells by PEL effusion fluid 
The downregulation of CD19 by supernatants of KSHV-infected cells and PEL 

effusion fluid was accompanied by a change of morphology (Fig.19). B-cells incubated with 

PEL effusion fluid grew as single, non-clustered and completely round cells without the 

protrusions which are characteristic for EBV-transformed B-cells. The control cells were 

cultured in a control pleural effusion fluid from a patient with heart disease and did not 

change their phenotype.  
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Fig. 19: Altered phenotype of EBV-positive B-cells in the presence of PEL effusion fluid. 
Microscopical  pictures of EBV-positive cells treated with either medium (control), a control 
effusion  fluid  or a PEL effusion fluid. Additionaly, KSHV-positive B-cells from one of the 
donors are indicated. 
 
 

Taken together these results strongly support the hypothesis that the development of 

the “null” phenotype is caused by a factor secreted in the PEL effusion and into the cell 

culture supernatant by KSHV-positive B-cells.  
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4.7.4 IL-10 is not involved in the downregulation of B-cell markers 
IL-10 is one of the soluble factors secreted by KSHV-infected B-cells (see 4.3.3). As 

shown in figure 11, KSHV-positive cells secrete approximately 15 to 20-fold more IL-10 in 

comparison to B-cells transformed by EBV. Therefore, we checked if IL-10 would affect the 

expression of CD19 and respectively the other B-cell markers. For this purpose EBV-positive 

B-cells were grown in the presence of recombinant human IL-10 for 2 days. Subsequently, the 

cells were analysed for the expression of CD19 by FACS analysis. The result showed that IL-

10 did not have a significant effect on the expression of CD19 (Fig.20). At high IL-10 

concentrations, a small shift towards a lower CD19 expression was observed. However, the 

concentration of the recombinant human IL-10 used in the experiment was considerably 

higher than the concentration in supernatants of KSHV-infected B-cells (0.6-0.8 pg/ml) (Fig. 

20). Based on these results, it was concluded that  physiological concentrations of IL-10  do 

not modulate the expression of B-cell surface markers. 
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Fig. 20: IL-10  has no effect on CD19 expression. 
Recombinant human IL-10 was added in increasing concentrations (0.01-0.2 ng/ml) to EBV-
transformed B-cells. The filled peaks represent the expression of CD19 after incubation of EBV- 
positive cells with IL-10, as analysed by FACS. The filled peaks represent the expression of CD19 
after incubation with recombinant hIL-10, the non-filled peaks represent the expression of CD19 
in untreated cells and the dotted peaks represent the negative control or cells stained only with a 
FITC-conjugated secondary antibody. 
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4.7.5 The KSHV homologue of the cellular chemokine MIP-II (vMIP-II) is 

not involved in downregulation of CD19 
 KSHV encodes several viral gene products that are homologous to chemokines. The 

KSHV ORFs K6 (vMIP-1/vMIP-1a/cCCL-1), K4 (vMIP-II/vMIP-1b/vCCL-2) and K4.1 

(vMIP-III/vBCK/vCCL3) encode chemokines with homology to cellular CC chemokines such 

as MIP-1α and RANTES. In contrast to cellular chemokines, the viral MIPs, which are 

secreted from latently infected PEL cells, are highly angiogenic and possess 

immunoregulatory functions. Therefore, we checked if the addition of recombinant vMIP-II 

could affect the expression of B-cell surface molecules by incubating EBV-transformed B-

cells for two days with recombinant vMIP-II. The expression of CD19 was subsequently 

checked by FACS analysis. The results presented in figure 21 clearly showed no significant 

downregulation of CD19 after the addition of recombinant vMIP-II. These data concluded 

that vMIP-II is not directly involved in the downregulation of B-cell markers.   
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Fig. 21: vMIP-II is not involved in the downregulation of CD19. 
Recombinant vMIP-II was added in increasing concentrations (0.01-10µg/ml) to the control EBV- 
positive (KSHV-negative) B-cells. The expression of CD19 (grey peaks) was checked after 2 days 
by FACS analysis. The filled peaks represent the expression of CD19 after incubation with 
recombinant vMIP-II, the non-filled peaks represent the expression of CD19 in untreated cells and 
the dotted peaks represent the negative control or cells stained only with a FITC-conjugated 
secondary antibody. 
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4.7.6 Recombinant vIL-6 does not cause a downregulation of CD19 
In addition to IL-10 and vMIP-II, PEL cells secrete the viral homologue of cellular IL-

6 (vIL-6). The effect of vIL-6 on CD19 expression was tested by incubating EBV-

transformed B-cells for two days with recombinant vIL-6. The expression level of CD19 was 

subsequently tested by FACS analysis. The results presented in figure 22 showed no 

significant downregulation of CD19 after the addition of recombinant vIL-6. Based on these 

results it was concluded that the vIL-6 is not directly involved in the downregulation of B-cell 

markers.   
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Fig. 22: The viral homologue of IL-6 does not change the expression of CD19. 
Recombinant vIL-6 was added in increasing concentrations (0.1-1ng/ml) to EBV-positive (KSHV- 
negative) B-cells . The expression of CD19 (grey peaks) was tested after 2 days by FACS analysis.  
The filled peaks represent the expression of CD19 after incubation with recombinant vIL-6, the 
non-filled peaks represent the expression of CD19 in untreated cells and the dotted peaks represent 
the negative control or cells stained only with a FITC-conjugated secondary antibody. 
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4.8 Functional characterization of KSHV-infected cells. 
 
4.8.1 KSHV-infected cells cannot be activated by the crosslinking of CD19 

 This study clearly showed that KSHV-infected B-cells lose their B-cell phenotype as 

they lack most of the B-cell markers. The next question was thus weather this downregulation 

is correlated with a functional impairment. For this purpose, the KSHV-positive and the EBV-

positive B-cells were treated with an anti-CD19 and a secondary antibody to crosslink the 

CD19 receptor. Upon crosslinking of CD19, normal B-cells are activated and express co-

stimulatory molecules like B7-2 (CD86). As shown in Fig.23, the EBV-infected B-cells could 

be activated via CD19 crosslinking and showed an  increased expression of B7-2. The KSHV-

positive cells, however, could not be activated, which correlates with the downregulation of 

CD19. 
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Fig. 23: KSHV-positive cells cannot be stimulated by crosslinking of
KSHV-positive and EBV-positive cells were incubated with anti-CD
concentrations (2.5-10µg/ml) at 37°C. After 24 hours, cells were stained
FITC-conjugated anti-B7-2 antibody and analysed by FACS.  The expre
stimulated in KSHV-positive cells even if increasing concentrations 
antibody were used. 
                                                                                                 

4.8.2 Blockade of the IFN signalling pathway in KSHV
The microarray analysis indicated a downregulation of

signalling in KSHV-infected cells including MxA (-35,44), MxB (
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IRF-5 (-2,62) (Fig. 24). To test if KSHV-positive cells can be stimulated by IFN, they were 

incubated with IFNα for different periods of time (Fig.25 A). After IFN stimulation, the Jak/ 

Stat signal transduction pathway is activated by the phosphorylation of Stat-1 and Stat-2 

proteins.  As shown in figure 25, Stat-1 and Stat-2 were phosphorylated after 15 and 25 min in 

response to IFNα in both KSHV-infected and EBV-infected B-cells. However, MxA was not 

upregulated  in KSHV-infected B-cells after IFNα stimulation (Fig.25 B).These results led to 

the conclusion that IFN signalling is blocked downstream of Stat-1/Stat-2 in KSHV-infected 

B-cells. 
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Fig. 24: Impaired expression of IFN regulated genes. 
Genes, which expression is downregulated after KSHV- or EBV-infection, are depicted in red, in 
contrast, the upregulated genes  are depicted in green. 
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EBV+ cells (43% vs. 37%) of the second donor, suggesting that for this donor stimulatory NK 

cell ligands are not downregulated in KSHV-positive B-cells.  

These data suggested that B-cells infected with KSHV cannot completely evade the innate 

immune system. 
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Fig. 26: Differential NK lysis of KSHV-infected B-cells originating from three independent 
individuals. 
KSHV-positive and EBV-positive B-cells from three donors were diluted at concentration of 106 

cells/100µl and labelled with [51Cr] for 1.5 hours. Subsequently the labelled target cells were 
washed with cell culture medium to remove the rest of the radioactivity. The target cells were 
diluted at a concentration 2x10 3 /50µl and added to the NK cell line NK92. The NK92 cells were 
diluted at a ratio of 10:1-1.2:1. The target and effector cells were incubated for 4 hours. After the 
incubation supernatants were collected, dried (overnight) and measured for [51Cr] release.  

 

 

4.8.4 Impaired lysis of KSHV-infected B-cells by allo-reactive cytotoxic T-

cells (CTL) 
 Two different T-cell clones JB4 and 234 recognizing two disctinct haplotypes of the 

HLA-A, HLA-A2 and HLA-A24,  were used to test CTL recognition. KSHV+ and EBV+ 

cells from each donor were labelled with [51Cr] and incubated with the CTL cell lines. The 

first and the third donor carried the HLA-A2 haplotype, as the CTL clone JB4 recognized the 

EBV-positive cells of these donors. The second donor carried the HLA-A24 haplotype, as the 

EBV-positive cells were recognized by the 234 CTL clone. The results indicated consequently 

that the cells infected by KSHV could  not be recognized and lysed by the CTLs (Fig.27). The 

specific lysis of KSHV-positive B-cells was at a background level for all three donors. The 

control EBV-infected cells, in contrast, were efficiently lysed (68-85%). In summary, the data 

indicated that the CTL lysis of KSHV-infected cells was completely abolished in all donors, 
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in contrast to NK lysis. This indicates that cells infected by KSHV differ in their efficiency to 

evade the innate or adoptive immune system.  
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Fig. 27: Complete abolishment of  CTL-mediated lysis of KSHV-infected B-cells.    
The KSHV-positive and EBV-positive B-cells from the three donors were diluted at a 
concentration 106 cells/100µl and labelled with [51Cr] for 1.5 hours. Subsequently, the labelled 
target cells were washed with cell culture medium to remove the rest of the radioactivity. The 
target cells were diluted at a concentration 2x103/50µl and added to the cytotoxic T-cells. The 
CTLs were diluted at a  ratio of 10:1-1.2:1. After 4 hours, supernatants were collected and dried 
overnight. Subsequently, the [51Cr] release was measured.  

 

 

4.8.5 Sustained immune escape of KSHV-infected cells after IFN 

stimulation 
Cytotoxic T-cells that recognize and kill virus-infected or tumor cells are restricted by 

MHC class I molecules expressed on the target cells. The KSHV-positive cells from the three 

donors express MHC class I, however to a lower extent than the control EBV-infected cells 

(Fig.10).  To test whether the MHC class I downregulation is involved in the immune escape 

of  cells infected by KSHV, the cells were stimulated with IFNα and IFNγ. In both cases 

MHC class I expression was increased after stimulation (Fig. 28 ). The stimulated KSHV-

positive cells were tested  for lysis by the alloreactive CTL cell lines JB4 and 234 in a 

chromium release cytotoxic assay. The results showed that the IFN stimulation did not have 

any effect on the lysis of KSHV-infected B-cells (Fig.29). This suggested that the immune 

 - 60 -  



                                                                                                                                           Results 
               

escape of KSHV-infected cells from the CTLs is probably not dependent on MHC class I, but 

rather on other mechanisms. 
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Fig. 28: Increased expression of MHC class I in KSHV+ cells  after IFNα stimulation. 
The KSHV+ cells were treated with 1000U/ml IFNα. After 20 hours of incubation the cells were 
stained with anti-MHC class I and FITC-conjugated secondary antibody. The filled peaks 
represent the expression of  MHC class I after IFN stimulation, the non-filled peaks represent the 
expression of MHC class I in untreated cells and the dotted peaks represent the negative control or 
cells stained only with FITC-conjugated secondary antibody. 
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Fig. 29: IFN stimulation did not reconstitute the CTL-mediated killing of KSHV-infected B-
cells. 
The CTL killing assay was performed with IFNα-induced KSHV-infected B-cells. The specific 
cytotoxic lysis was tested using a chromium release assay. 

 
 

 

4.8.6 Downregulation of co-stimulatory molecules and CD95 in KSHV-

infected B-cells 
The recognition by CTLs does not only depend on the recognition of a foreign peptide 

in the context of MHC class I, but also on the expression of co-stimulatory molecules such as 

B7-1 (CD80), B7-2 (CD86) and ICAM. Therefore, the expression of these molecules was 

tested in the cells infected by KSHV. The co-stimulatory molecules and as well as the Fas 

receptor CD95 were downregulated in KSHV-positive cells as detected by FACS (Fig. 30). 

This suggested that the immune escape of  the KSHV-positive cells could be changed by the 

downregulation of co-stimulatory molecules or the downregulation of CD95. 
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in parallel with a control vaccinia infection. The cells were tested for the expression of B7-1 

and B7-2 by FACS analysis (Fig.31). As an additional control EBV-transformed B-cells were 

infected with recombinant vaccinia virus expressing B7-1 and B7-2 (Fig. 31). Subsequently, 

the cells were incubated with HLA-A2 and HLA-A24 restricted alloreactive T-cells and the 

cytotoxicity was measured in a [51Cr] release assay. The results clearly showed that KSHV-

positive B-cells were not lysed after reconstitution of the co-stimulatory molecules, although 

their expression was significantly increased from 1% to 40-50% and even higher than in the 

control cells (Fig. 32). There was no significant difference in the CTL lysis of the control 

EBV cells after infection with recombinant vaccinia virus expressing B7-1 and B7-2. The 

infection with the control vaccinia virus (vT7) resulted in an increased spontaneous release, 

which explains the decrease in the specific lysis. The results led to the conclusion that  

KSHV-infected cells are resistant to CTL-mediated killing neither by downregulation of 

MHC class I nor by co-stimulatory molecules. (Fig.30).  
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Fig. 31: Expression of B7-1 and B7-2 co-stimulatory molecules after infection with 
recombinant vaccinia virus. 
Infection of KSHV- and EBV-positive B-cells with recombinant vaccinia virus expressing B7-1 
and B7-2 constructs and control vaccinia virus. The filled peaks represent the expression of B7-1 
and B7-2 after infection, the non-filled peaks represent the expression of B/-1 and B7-2 in 
untreated cells and the dotted peaks represent the negative control or cells stained only with a 
FITC-conjugated secondary antibody. 
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Fig. 32: The impaired CTL lysis of KSHV-infected B-cells is not restored by reconstituting 
B7-1 and B7-2 co-stimulatory molecules.  
Cytotoxic assay of KSHV+ and EBV+ B lymphocytes infected with recombinant vacccinia virus 
expressing  B7-1 and B7-2 and control vaccinia virus. KSHV-infected cells were not lysed by the 
CTLs as they showed no difference in [51Cr] after infection with recombinant vaccinia virus. 
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5. Discussion 
Kaposi´s sarcoma-associated virus (KSHV) is thought to be related to KS and atypical 

B-cell lymphomas (PEL and MCD). In KSHV-positive PELs it is largely unknown which 

phenotypical changes are caused by the viral infection and which by cellular oncogenic 

processes. Most PEL cells also contain EBV, so that both viruses might contribute to the 

transformation processes in doubly infected PELs. Therefore, it was interesting to investigate 

the role of KSHV in B-cell transformation. The present work showed that the KSHV-infected 

B-cells develop a “null” phenotype, which is observed similarly in the KSHV+ PEL cells. 

Additionally, this study presented for the first time that a soluble factor(s) released from the 

KSHV-infected cells is related to the “null” phenotype. Furthermore, the investigations of 

persistently KSHV-infected B-cells demonstrated that these cells could escape the adoptive 

immune response by a complete abolishment of CTL-mediated lysis.  

 

5.1 Generation of persistently KSHV-infected B-cells 
It was previously shown that KSHV infects normal B-cells only in the presence of 

EBV (Kliche et al., 1998). Surprisingly, the infected B-cells from the different healthy donors 

were only KSHV-positive although in previous experiments they could only be infected in the 

presence of both KSHV and EBV. This shows that EBV is not mandatory to promote 

infection as previously reported (Kliche et al., 1998). The role of EBV in dually infected cells 

is currently unclear, but a synergistic effect of both viruses is not excluded as EBV is detected 

in most cases of PEL (Horenstein et al., 1997, Carbone et al., 2000, Fassone et al., 2000). 

However, EBV is probably not predominant in the transformation process, as its  transforming 

latent protein LMP-1 is not expressed in PEL cells, although the EBV genome is present and  

maintained by another latent protein EBNA-1. The model system used in the present study 

might then be preferable, since the infected cells are only KSHV-positive.  

 

5.2 Gene expression profiling  of KSHV-infected B-lymphocytes 
Microarray analyses enables the analysis of a multitude of genes at a genome-wide 

scale. This technology has been used to analyse the effects of a number of viral infections 

including cytomegalovirus (Zhu et al., 1998). Here, an investigation of the cellular gene 

expression after KSHV-infection of B-cells was performed using a microarray analysis 

(collaboration with the Scottish GTI, UK). The gene expression was investigated in cell lines 

from two donors, which led to a higher validity of the results. In a total of 24000 genes a 

considerable number of genes (408 or 1.7%) were found to be modulated more than 4-fold in 
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KSHV-positive cells, 275 (67.4 %) were downregulated whereas 133 (32.6%) genes were 

found to be upregulated. The downregulation of gene expression was detected up to 

approximately –200-fold. Between the upregulated genes were: granzyme A (87.29), Notch 

homolog 2 (14.4), S100 calcium binding protein A10 (13.64), interleukin 10 (8.45) and 

interleukin 6 receptor (5.76) (Table 1). Proteins belonging to calcium binding proteins 

(calpain, S100 A10-calpactin) are significantly expressed in highly proliferating (tumor) 

tissues (Hsieh et al., 2003, Kanamori  et al., 2004), as well as some lymphomas (Yao  et al., 

2001) and are recognized as potential tumor markers. IL-10 and IL-6 are synthesized from 

non-Hodgkin lymphoma cells (Aydin  et al., 2002), EBV-transformed lymphoblastoid cells 

(Bende et al., 1992, Pistillo  et al., 1994, Wroblewski  et al.,2002) and AIDS-related 

lymphomas (Foussat et al., 1999, Fassone et al., 2000) and may be involved in autocrine 

loops. Surprisingly, Granzyme A was highly upregulated in KSHV-positive B-cells. 

Granzymes A and B together with perforins are cytolitic molecules found in acidic granules 

of NK and CTLs (Hayes et al., 1989, Peters et al., 1991, Shi et al., 1992). Recently granzyme 

A was also detected in polymorphonuclear neutrophils (Hochegger et al, 2004). The role of 

Granzyme A in the pathogenesis of KSHV-associated diseases is currently unknown. The fact 

that it induces other cytokines such as IL-6, IL-8 and TNFα (Sower et al., 1996) suggests that 

Granzyme A might be involved in autocrine or paracrine loops in KSHV-infected B-cells.  

  

5.3 B-cell surface markers are downregulated by KSHV-infection 
Our results revealed that a significant number of B-cell surface molecules (B-cell 

receptor, CD19, CD79 and B7-1) were downregulated in KSHV-infected B-cells (Table 1). 

The B-cell markers tested in our study  appear during the regular B-cell development and are 

still present in mature B-cells. Therefore, it was impossible to classify the B-cell stage of 

KSHV-infected cells by these markers. The only evidence that these were mature B-cells was 

the presence of CD71 (transferrin receptor) and MHC class I. Assuming the results we 

hypothesized that  the persistently KSHV-infected B-cells have developed a similar 

phenotype like the PEL KSHV+/EBV- cell line (BCBL-1), used as a source for KSHV 

(Fig.10). Thus, persistently KSHV-infected B-cells develop a “null” phenotype, characterized 

by a loss of surface molecules similar to PEL tumor cells (Fig.33). PEL cells are known to be 

generally negative for T- and B-cell immunomarkers (except for CD138), but they are 

genotypically B-cells with rearranged immunoglobulin genes (Drexler et al, 1998, Klein et al., 

2003, Hamoudi et al., 2004). Due to gene expression profile and the expression of CD138, 

PEL cells has been classified as cells with a plasmablastic phenotype similar to Hodgkin´s 
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lymphoma cells (Arguello et al., 2003). In accordance with previously published results it was 

concluded that KSHV-infected B-cells develop a phenotype, representing a stage between an 

antigen-selected Germinal Center (GC) B-cell and a terminally differentiated plasma cell.  

Most of the studies on KSHV are performed using immortalized lymphoma cell lines, 

established from malignant pleural effusion, ascitic fluid or peripheral blood of patients with 

AIDS- and non-AIDS-associated PEL (Arvanitakis et al., 1996, Drexler et al., 1998, Carbone 

et al., 2000). Therefore, in PEL cells it is unknown if  the phenotypic changes are caused by 

KSHV itself or by the cellular processes of tumor transformation. More complicated, KSHV-

negative PEL cells exist as well (Hisamoto et al., 2003, Nonami et al., 2004). The generation 

of KSHV-infected cells was performed in conditions where the only transforming factor 

present was KSHV and (or) EBV. Consequently, the transformation of normal B-cells into 

“null”-phenotype-cells is due only to the KSHV-infection. In this work it was present for the 

first time that KSHV itself is able to transform B-cells into PEL-like cells, developing a 

unique phenotype different from EBV-transformation. The EBV-transformed B-cells are 

considered to have mature activated-B cell phenotype (latency III) (Rochford  et al., 1993). In 

addition, EBV-infected tumors are presumed to arise when virus-induced B-cell development 

towards memory B-cells is not controlled (Thorley-Lawson and Babcock, 1999, Kieff and 

Rickinson, 2001). In terms of morphology, EBV-transformed B-cells express most of the B-

cell markers and co-stimulatory molecules which were downregulated in the KSHV-infected 

B-cells. Thus, it can be concluded that KSHV and EBV differ in both mechanisms of 

transformation of B-cells as well as the resulting cellular phenotype. 

 - 69 -  



                                                                                                                                     Discussion 
               

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

KSHV 

KSHV- 
 B-cell 

KSHV+ 
 B-cell  

 
 
 
 
 
 
 
Fig. 33: Development of “null“ phenotype of a B-cell after KSHV-infection. 
This phenotype is characterized by complete loss of surface molecules. 
 

 

5.4 Upregulation of  IL-6 and IL-10 after KSHV-infection 
Among the upregulated genes in KSHV-infected cells were the genes encoding for IL-

6 and IL-10 (Fig.11 B). This indicates that also in this regard there is a similar phenotype in 

persistently KSHV-infected B-cells and PEL tumor cells. In PEL lymphomas IL-6 and IL-10 

are important autocrine factors for growth and proliferation of cells (Asou  et al., 1998, Jones 

et al., 1999, Foussat  et al., 1999, Fassone et al., 2000). Extensively studied in the KSHV field 

is IL-6, which is generally acknowledged as the major growth factor for PEL cells. 

Neutralizing antibodies against IL-6 cause a delay of tumor cell death in vivo (in SCID mice) 

and in vitro (Asou et al., 1998, Foussat  et al., 1999). This delay was significant but 

incomplete due to the viral IL-6 as a co-activator of IL-6-dependent cell lines (Moore et al., 

1996, Molden et al., 1997). Nevertheless, the role of cellular IL-6 in tumor progression 

appears to be more important as of vIL-6, as Asou and colleagues showed an inhibition of 

cellular growth in vitro when using human IL-6 antisense oligonucleotides, but not when vIL-

6 antisense oligonucleotides were used (Asou et al.,1998).  A similar inhibition was observed 
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by Drexler and colleagues with monoclonal antibodies against the IL-6 receptor (Drexler et 

al., 1999). Moreover, IL-6 was found to stimulate KSHV replication directly by inducing the 

immediate early gene ORF50 (transcriptional activator) in the BCBL-1 cell line (Song et al., 

2002). Several latent and lytic viral proteins were shown to contribute to the increased 

expression of IL-6 in in vitro studies, including vFLIP  (An  et al., 2003), LANA-1 (An  et al., 

2002) and vIL-6 (Mori  et al., 2000). IL-10 acts similarly as IL-6 in cellular proliferation. 

Production of large quantities of human IL-10 occurs frequently in AIDS-related Burkitt´s 

lymphoma (BL) and correlates with latent EBV-infection in the tumor cell line (Benjamin  et 

al., 1992). A pathogenic role for IL-10 in PEL and AIDS-BL is suggested by the observation 

that IL-10 neutralizing antibodies and antisense oligonucleotides inhibit proliferation of 

lymphoma cells (Jones et al., 1999, Fassone et al., 2000). During B-cell development IL-10 

has an immunoregulatory function and enhances cell viability and proliferation, 

immunoglobulin secretion and MHC class II expression. The fact that IL-10 is upregulated in 

KSHV-positive B-cells and that it has an inhibitory role on co-stimulatory molecules (B7-1, 

ICAM) in monocytes, suggests that it has a causative effect in KSHV-positive cells. Based on 

the functions of IL-6 and IL-10 in B-cell development (especially IL-6), it can be 

hypothesized that their increased production by KSHV-infected B-cells contributes also to 

their phenotype. 

 

5.5  Disrupted transcriptional program in KSHV-infected B-cells 
The “null” phenotype developed by the KSHV-positive cells is characterized by a 

massive loss of B-cell surface molecules. Therefore, it is rather unlikely  that one viral protein 

is responsible for their downregulation. It was shown that the “null” phenotype is caused by a 

downregulation at the transcriptional level. In the normal B-cell differentiation the expression 

of specific B-cell markers and signal transduction molecules (PKC-δ, -ξ, BLNK, Bruton 

Tyrosin Kinase-[BTK]) is strictly controlled by B-cell specific transcription factors. The 

results revealed that in B-cells several B-cell specific transcription factors were indeed 

downregulated after KSHV-infection  (Pax-5 [BSAP], Oct-2, Spi-B and Bob-1). As indicated 

by RT-PCR (Fig. 12), all the transcription factors following Pax-5 in the hierarchical order in 

which they are expressed in mature B-cells (Oct-2, Spi-B, Bob-1) were found to be 

downregulated. In the regular B-cell development there is a cascade of B-cell specific 

transcription factors which sequentially activate each other by binding to the promoter of the 

next factor. This could be a reason that the factors downstream of Pax-5 are downregulated. 

Promoter studies show that Pax-5 is not the only factor regulating Oct-2, Spi-B or Bob-1, but 
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Pax-5 binding sites are present in all of them. As already mentioned,  Pax-5 is one of the 

factors which is essential in forming the B-cell phenotype. Conditional Pax-5 inactivation 

leads to loss of the B-cell phenotype and  previously committed pro-B cells regained the 

capacity to differentiate into macrophages in vitro and to reconstitute T-cell development in 

vivo in RAG-/- mice (Mikkola et al., 2002). Interestingly, Pax-5 was not detected on the 

protein level in the KSHV-infected cells (Fig. 13). Since it is known that CD19 is a direct 

target of Pax-5, this explains its downregulation in KSHV-infected cells (Kozmik et al., 1992, 

Nutt et al., 1998). This finding suggested that the blockade of B-cell specific transcriptional 

factors in KSHV-infected B-cells originates in the downregulation of Pax-5. 

 

               

X X X X 

     

 
Fig. 34: Diagram of the transcription factors required during commitment to the B-cell 
lineage (according to Kee and Murre, 2001). 
The blockade of Pax-5 expression in the intermediate step between mature B-cells and plasma 
cells determines a phenotype characterized with a loss of B-cell surface markers. 

 

5.6 Downregulation of Pax-5 and the development of  a “null” phenotype 
 

5.6.1 Protein degradation 

A possible reason for the downregulation of Pax-5 could be its degradation by the 

cellular proteasome, which is a normal process in the regulation of protein levels of a 

multitude of cellular proteins including MHC class I (Rock et al., 2002) and E2A (Kho et al., 

1997). Treatment of KSHV-infected cells with the proteasome inhibitor MG132 did not lead 

to a reconstitution of Pax-5 (Fig.15). This experiment does not completely exclude that the 

protein is not degraded, as a protein degradation could also involve viral proteases, similar as 

in the case of p53 (Weidman et al., 2001), octamer-binding protein-1 (Oct-1) and cyclin-AMP 
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responsive element-binding protein (CREB)(Kliewer et al 1990), which are cleaved and 

degraded by a viral protease of poliovirus. KSHV possesses two proteins, K3 and K5, which 

have ubiquitin-ligase activity and which were found to degrade MHC class I (Ishido et al., 

2000) and ICAM and B7-2 (Coscoy and Ganem, 2001) in an in vitro system via 

ubiquitination, independent from the host proteasome ubiquitination system.  It is not likely 

that K3 or K5 are directly involved in Pax-5 degradation as they are associated with the 

plasma membrane and Pax-5 is located in the cellular nucleus. Moreover, K3 and K5 are 

expressed during the lytic phase whereas the KSHV-positive cells are latently infected.  

An alternative way of downregulation of cellular proteins is mRNA instability or 

degradation of mRNA by a viral protein. Similar event was shown in the case of MHC class I 

mRNA, which is downregulated  by the Bovine-herpesvirus-1 (BHV-1) (Gopinath et al., 

2002). Herpes simplex virus, for example, is well known for suppressing the host-cell protein 

synthesis. It causes a marked reduction in the level of the specific mRNA from cellular genes: 

beta actin, fibronectin, glucose-transporter-1, docking protein (Becker et al., 1993). A cellular 

shut-off  was reported recently in the case of KSHV infection concerning the  lytical cycle of 

the virus (Glaunsinger  et al., 2004). This shut-off was found to be mediated by the viral shut-

off exonuclease protein (SOX, ORF 37), which promotes degradation of cellular mRNAs 

(Glaunsinger et al., 2004). Interestingly, the authors found that the only protein able to escape 

the shut-off was IL-6. However, this could not be applied in the present system as the 

persistently KSHV-infected B-cells are latently infected and lytical viral replication in PEL 

cells is in 1-5% of the cells. Moreover, the results presented in this study showed that Pax-5 

was detected on mRNA level, which excludes the possibility of mRNA degradadtion. 

 

5.6.2 Relation between Pax-5 downregulation, Blimp-1 upregulation and “null” 

phenotype 

During B-cell development the Pax-5 expression is blocked on the transcriptional 

level. One transcriptional inhibitor of Pax-5 is Blimp-1, which  is responsible for the stage in 

which mature B-cells develop into plasma cells by transcriptional downregulation of Pax-5 

(Lin et al., 2002). In  KSHV-infected B-cells an upregulation of Blimp-1 was detected by RT-

PCR (Fig.12), which led to the hypothesis that KSHV causes (directly or indirectly) an 

upregulation of Blimp-1 with a following downregulation of Pax-5 and drives the cells to 

develop a plasma cell-like phenotype. In the present study cannot be postulated that the 

altered protein expression of Pax-5 is a direct consequence from Blimp-1 upregulation, as 

Pax-5 was not transcriptionally downregulated. Therefore, in a KSHV-infection another 
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mechanism might occur. Based on these data could be speculated that KSHV mimics the 

natural processes of B-cell differentiation and drives normal B-cells to develop a plasma cell-

like “null” phenotype, by upregulation of Blimp-1 and consecutive downregulation of Pax-5. 

The role of Pax-5 in the transition into the plasma cell stage is supported by some reports  

showing that overexpression of Pax-5 inhibits an efficient plasma-cell formation, suggesting 

that the downregulation of Pax-5 may be a prerequisite for terminal differentiation (Usui  et 

al., 1997).  

Other factors driving the B-cell differentiation are  IL-6 and IRF-4. KSHV  has two 

homologues of these genes, vIL-6 and vIFN-3. The vIL-6 is secreted from PELs and detected 

in the range of approximately 300 to 2300 pg/ml in the sera of PEL patients (Aoki et al., 

2001). vIL-6 mimics a number of hIL-6 activities  including stimulation of IL-6 dependent B- 

cell growth (Burger et al., 1998) and activation of signalling pathways (Molden J et al., 1997). 

In contrast to cellular IL-6, vIL-6 does not require co-receptor usage for binding the hIL-6 

receptor, which makes it a possible candidate responsible for phenotypic changes. IRF-4 was 

slightly increased in the microarray analysis, which in comparison to other upregulated genes  

was not considerable. The viral homologue of IRF-4, vIRF-3 or LANA-2, was shown to be 

involved in the IFN response and is thus rather unlikely to be directly involved in the 

phenotypic changes (see below). 

The “null” phenotype is morphologically and histologically  different to most known 

B-cell tumors (Jaffe et al., 1996).  Hodgkin´s lymphoma cells and Reed-Sternberg cells have  

similar phenotypic features, as they also lack B-cell markers, such as CD20, the B-cell 

receptor and CD79, and are thought to originate from germinal centre or post-germinal centre 

B-cells (Thomas et al., 2004). These cells also lack the immunoglobulin-specific transcription 

factors BOB-1, Oct-2 and PU.1 (Re et al., 2001, Torlakovic et al., 2001). Controversial data, 

however, have been reported for Pax-5. Whereas some reports show that Pax-5 is expressed in 

most cases of Hodgkin´s lymphoma (Schwering et al., 2003), other showed  the opposite, i.e. 

a downregulation of Pax-5 (Hertel et al., 2002). Hodgkin´s lymphoma is a different 

malignancy with unknown etiology. Although it is clearly related to EBV-infection, the virus 

is present only in 40-60% of the cases (Morrison et al., 2004). In the present study, it is shown 

that the agent causing the “null” phenotype of B-cells is KSHV. Possibly, however,  KSHV 

uses analogous way to induce the “null” phenotype, similarly as in Hodgkin´s disease.  

Based on the data presented in this work and the reported data can be concluded that 

the development of the unique “null” phenotype after KSHV-infection is a consequence of the 

mimicry of the regular B-cell development and the key molecule switching on this process is 
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Pax-5.  It is not clear if the cellular factors or their viral homologues are involved in this 

process, or this is a combined effect. Here still could be asked the question why the plasma 

cell-like phenotype is important for the infection. We hypothesize  that probably the B-cells 

are the reservoir of latent KSHV-infection and the development of long-live plasma cell-like 

B-cells is a self-protection from the innate or adoptive cellular immunity.  

 

5.7 A soluble factor released from KSHV-infected cells is responsible for the 

“null” phenotype 
A typical characteristic of  PEL is growth in body cavities. This gave raise to the 

hypothesis that there is a correlation between  the “null” phenotype and the liquid 

environment (PEL effusion or cell culture supernatant) in which the cells grow. The liquid 

environment contains viral particles and secreted cellular and viral proteins. The results 

presented here showed that addition of a supernatant from KSHV-positive B-cells to EBV-

transformed B-cells led to downregulation of CD19 (Fig. 16). The separation of viral particles 

from the soluble proteins by ultrafiltration showed that the factor(s) causing  the “null” 

phenotype is a secreted protein. The downregulation was not detected if supernatants from 

EBV-transformed B-cells was used, confirming that the soluble factor is exclusively produced 

by KSHV-infected B-cells. The  downregulation of CD19 was also detected with PEL 

effusion. This effect was accompanied by a change of the morphology of cells, incubated with 

the effusion fluid. EBV-transformed B-cells have a typical morphology characterized by 

growth in big clusters and cellular protrusions. When these cells are grown in PEL effusion 

for 2 or 4 days their morphology was similar as in  KSHV-transformed PEL cells including 

smooth surface, absence of protrusions and less cellular conglomerates. The typical smooth 

shape and growth as single cells is probably due to the loss of surface receptors, co-

stimulatory and adhesion molecules. The EBV-transformed B-cells are a convenient model 

for studying the morphological changes caused by KSHV. It is rather unlikely that EBV takes 

part in these changes, as the KSHV-infected B-cells, generated in this study, are in fact EBV- 

negative. 

In this study it is presented for the first time that KSHV-infection is responsible for the 

“null” phenotype of PEL tumor cells and that the liquid environment in which these cells 

grow is essential for the development of this phenotype. In addition to this, recent reports 

indicated that KSHV-infected solid immunoblastic lymphomas express B-cell associated 

antigens (CD20 and CD79a) and immunoglobulin more often than PELs (Chadburn et al., 

2004, Carbone et al., 2005).  
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5.8 IL-10, vMIPII and vIL-6 do not have an effect on the development of  

“null” phenotype  
 

5.8.1 IL-10 

A wide spectrum of cytokines and soluble cellular proteins is secreted from PEL cells 

including IL-6, IL-6 soluble receptor, IL-10, oncostatin M (OSM) (Drexler et al., 1999). In 

most cases these proteins have been found to be significantly higher than the levels produced 

by Burkitt or other non-Hodgkin´s lymphoma cell lines. In the present study,  the levels of IL-

6 and IL-10 secreted by KSHV-infected cells were approximately 15 to 20-fold higher than 

those secreted by EBV-transformed cells (Fig.11). As already mentioned, the main function of 

IL-6 and IL-10 is to support cellular growth and proliferation. IL-10 also possesses an 

inhibitory effect on co-stimulatory molecules (B7-1/B7-2), chemokines (MIP-I, MIP-II) in 

macrophage/monocyte cells  or TNF in T-cells. (Moore et al., 2001). Therefore, we examined 

whether IL-10 participates in the downregulation of surface markers in KSHV-infected B-

cells. As shown in figure 20, a downregulation of CD19 was not detected in the presence of 

recombinant human IL-10 even if used in high concentrations. This suggests that  IL-10 is 

probably not involved in the development of  the “null” phenotype and has a distinct role in  

other processes, e.g. immune escape by inhibition of  Th1-response.  

 

5.8.2 vMIP-II 

The viral homologues  of MIPs (see above) are chemokine-like proteins expressed 

during the lytic phase of viral infection which are biologically active in immunosuppressed 

KS patients (Boshoff et al., 1997, Benelli et al., 2000).  The vMIP-II protein binds to the 

CCR3 chemokine receptor and results in a potent inhibition of HIV entry and the activation 

and chemotaxis of eosinophils (Boshoff et al., 1997). Both vMIPs induce angiogenesis in 

chicken embryos. Since nothing was known about an effect of the secreted viral chemokines 

on cellular phenotype, we tested if recombinant vMIP-II could cause a change of the 

expression of surface markers. A significant change of the expression of CD19 was not 

detected, excluding a role of vMIP-II in the development of the “null” phenotype (Fig.21). 

 

5.8.3 vIL-6 

 Significant amounts of vIL-6 are secreted from PEL cells (Asou et al., 1998). vIL-6 

antisense oligonucleotides were found to decrease the clonal growth of these cells (Asou et 

al., 1998). It was not known whether vIL-6 induces phenotypic changes in B-cells. As a 
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homologue of hIL-6 it shares some similar functions (see above) and based on that can be 

hypothesizes that vIL-6 participates in the development of mature B-cells into plasma cells. 

Therefore, the influence of the vIL-6 on CD19 expression was checked. As shown in figure 

22, a significant downregulation was not detected, which suggests that vIL-6 is not  involved 

in phenotypic changes. 

Since neither IL-10, vMIP-II nor vIL-6 had an  influence on the B-cell phenotype, the 

question which induces “null phenotype” is still open and will be investigated in future 

studies. 

 

 

5.9 Functional characterisation of KSHV-infected B-cells 
 

5.9.1 Impaired signal transduction pathways 

The data from the microarray analysis showed that cells infected with KSHV lose 

most of the characteristic features of  mature B-cell and develop a “null“ phenotype. These 

cells also lack important signal transduction molecules delivering the signal to downstream 

events. For instance, the signalling from the B-cell receptor (BCR) in a normal B-lymphocyte 

includes kinases as PKC beta 1 which is significantly downregulated in the KSHV-positive B-

cells (-20.19x). PKC beta is specifically required for the activation of NFkB by BCR in 

normal B-cells (Su et al., 2002). NFkB is also downregulated in KSHV-infected B-cells (-

3.27x). In addition, the signal from the BCR requires CD19 (Tedder et al., 1994) which is 

downregulated –19.16x in KSHV-infected B-cells. The Bruton tyrosin kinase (Btk) which  is 

requisite for the regular B-cell development and which is dependent on signals from both 

BCR and CD19 is similarly downregulated (-12.91x). The crosslinking of the BCR in normal 

B-cells leads to a cellular activation with an increased expression of co-stimulatory molecules 

B7-1 (CD80) and B7-2 (CD86) (Kozono et al., 1998). The KSHV-infected B-cells could not 

be activated via crosslinking of CD19, as the expression of B7-2 was not increased (Fig. 23). 

This confirms that KSHV-infected B-cells are generally impaired in BCR signal transduction . 

  

5.9.2 Blockade of the IFN signalling pathway in KSHV-infected B-cells 

Inhibition of IFN signalling is a common event during viral infection. Viruses may 

either block IFNα/β or IFNγ pathways or both. KSHV is known to encode four homologues 

of the IRF family (vIRF-1, vIRF-2, vIRF-3, vIRF-4) that repress transcriptional responses to 

IFNα/β and IFNγ (Gao et al., 1997, Zimring et al., 1998). vIRF-1 does not appear to act at the 
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level of IFN signalling, but rather inhibits the function of the IFN-inducible cellular factor 

IRF-1. In the present study, KSHV-infected B-cells stimulated with IRFα responded with a 

phosphorylation of  Stat-1 and Stat-2, despite their slight transcriptional downregulation in the 

microarray analysis (Stat-1 -5.16x, Stat-2 -1.31x) (Fig. 25). Interestingly, downstream 

proteins of the IFN signalling pathway were significantly downregulated in KSHV-infected 

cells, e.g. the GTPases MxA (-35.44x) and Mx-B (-8.35x), known  as the best-characterized 

IFN-inducible gene products with antiviral activity  (Aebi  et al., 1989, Staeheli  et al., 1993). 

This implies that the blockade in the IFN signalling is downstream of Stat-1-Stat-2. 

 Cells that constitutively express the human MxA protein show a high degree of 

antiviral activity and are resistant to several members of the Orthomyxoviridae including 

influenza A and C viruses and also other viruses such as Thogoto virus (Arnheiter et al., 1996; 

Frese et al., 1995, Haller et al., 1998, Marschall et al., 2000). Naranatt and colleagues showed 

a similar downregulation of Mx-1 in the BJAB B-cell line infected with KSHV (Naranatt et 

al., 2004). In contrast, the authors found that Mx-1 expression is increased in KSHV-infected 

primary endothelial cells. Thus, they hypothesized that the Mx-1 modulation is cell-type 

specific.  

Besides vIRF-1, KSHV encodes other IRF homologues that disrupt the host antiviral 

response: vIRF-2 (Burysek et al., 1999, Burysek and Pitha, 2001) and vIRF-3 (LANA-2, 

Lubyova et al., 2000). The vIRF-2 is constitutively expressed in PEL cells and is known to 

associate specifically with cellular IRFs and p300 (Burysec et al., 1999). Moreover, it binds 

double-stranded RNA-activated protein kinase (PKR) and inhibits its activity and also blocks 

the phosphorylation of the eukaryotic translation initiation factor 2 by PKR (Burysek et al., 

2001). LANA-2 which is a latently expressed nuclear protein binds to p53 (Rivas et al., 2001). 

It was recently found to directly interact with the cellular interferon regulatory factor (IRF) 

IRF-3, IRF-7 and the transcriptional co-activator CBP/p300 in stably transfected B-cells 

(Lubyova et al., 2004). In addition, it stimulates the IRF-3- and IRF-7-mediated activation of 

type I interferon (IFNα and IFNβ) promoters and the synthesis of biologically active type I 

interferons. In persistently KSHV-infected B-cells IRF7 was significantly downregulated (-

10.61x), so that it is rather unlikely that LANA-2 interacts with IRF-7 and causes an 

activation of type I IFN promoters. However, the involvement of LANA-2 in  IFN signalling 

is not excluded, taking into account the fact that it is B-cell specific. As another latent KSHV 

protein, LANA-1 was also found to upregulate IFN-inducible cellular genes in stably 

transfected B-cells, although the IFN genes themselves were not induced by LANA-1 (Renne  

et al., 2001). Such genes were Staf-50, Evi5, STAT1 (ISGF-3 -subunit), IFI 6-16, MxA, IFI 9-
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27, IFNα, IFNβ1, IFNγ. In the microarray screen MxA, IFI-6-16 and Stat-1 were 

downregulated (MxA -35.44x, IFI-6-16 -3.11x, Stat-1 -5.16x) in persistently KSHV-infected 

B-cells which  is controversial to the data presented by Renne and colleagues. This is most 

likely due to the fact that in the present study KSHV-infected B-cells were used, whereas 

Renne and colleagues investigated stably transfected B-cells, constitutively expressing 

LANA-1. Moreover, the results presented in this study indicated that MxA is not induced 

after IFN stimulation (collaboration in the laboratory), although Stat-1 and Stat-2 were 

phosphorylated (Fig. 25 A, B). Thus, IFN signalling is impaired but at a downstream level.                      

 

5.9.3 Innate and adoptive immune response to KSHV-infected B-cells 
 

5.9.3.1 NK-cell lysis 

The presented data indicated that at least some KSHV-infected cells could be 

recognized and lysed by NK-cells (Fig. 26). The specific lysis of  KSHV-infected B-cells 

from two donors was decreased in comparison to the EBV-infected B-cells. However, there 

was not a significant difference in the NK lysis between KSHV-positive  and EBV-positive 

B-cells of the third donor. This could be due to various quantitative expression of NK-cell 

ligands on the B-cells. A variable sensitivity of different PELs to lymphokine activated killer 

(LAK) cell-mediated lysis was shown also by Suscovich and colleagues (Suscovich et al., 

2004). The authors suggested that this is a consequence from the different expression of co-

stimulatory molecules or other cell line-specific factors on the target cells. Sirianni and 

colleagues have shown an efficient  lysis of PEL cells by PBMCs or purified NK cells from 

normal blood donors (Sirianni MC et al., 2002). This study examined only the ability of one 

PEL cell line to be lysed by NK cells and did not discuss possible variations. They also 

showed a decreased NK lysis if PBMCs from AIDS patients with progressing KS were used. 

The decreased sensitivity of the PBMCs was restored after disease regression and clearance of 

KSHV from the peripheral blood. In the present study, instead of PBMCs an NK cell line 

NK92 was used and it was investigated whether KSHV-infected B-cells can be lysed. 

Persistently KSHV-infected B-cells could be recognized and lysed by NK92 cells but to a 

lower extent than B-cells transformed by EBV. NK-cells discriminate between normal cells 

and cells that do not express adequate amounts of MHC I molecules (Morreta A et al., 2001). 

The expression of MHC class I on EBV-transformed B-cells (Salek-Ardakani et al., 2002) and 

PELs is downregulated in comparison to normal B-lymphocytes which explains why they are 

recognized and lysed by NK-cells. KSHV expresses two proteins, K3 and K5, that down-

regulate MHC class I and co-activation molecules, enabling productively infected cells to 
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escape both CTL and NK cell responses (Coscoy and Ganem, 2000, Rimessi  et al., 2001). 

However, it unclear  if K3 and K5 are directly involved in the MHC class I downregulation, 

as they belong to the lytic KSHV genes and the B-cells used in the current study are latently 

infected.  

 

5.9.3.2 CTL recognition  

  Furthermore, the influence of MHC class I downregilation on the lysis by CTL was 

investigated. The results showed that the CTL-mediated cell lysis of KSHV- infected B-cells 

was completely abolished in contrast to NK-mediated lysis (Fig. 27). Similar studies were 

performed recently by Brander and colleagues who examined T-cell activation by PEL cells 

(Brander et al., 2000, Sirianni et al., 2002). They confirmed that PELs display lower MHC 

class I surface expression in comparison to EBV-infected cells. The lower MHC I surface 

expression was reflected by an increased peptide concentration required for T-cell recognition 

and the resistance of PEL cells to CTLs directed against intracellular antigens. The expression 

of MHC class I on persistently KSHV-infected B-cells and on PEL cells (BCBL-1) was lower 

in comparison to the EBV-infected cells, but MHC class I was present on the cell surface. 

Thus, it was doubtful  whether MHC class I expression itself determines the CTL evasion of 

KSHV-infected B-cells. Our hypothesis that reduced MHC class I expression is not 

responsible for immune escape was confirmed by IFN stimulation of the persistently KSHV-

infected B-cells. As shown in figure 28, the expression of MHC class I on KSHV-positive 

cells was increased after IFN stimulation, however the cells were still not recognized by the 

alloreactive CTLs (Fig. 25 B). By CTL analysis with different PEL target cells, Suscovich  

and colleagues proposed that CTL recognition and activation rather than target cell lysis 

might be impaired (Suscovich et al.,  2004) and that immunoregulatory factors other than 

MHC class I could be modulated on PEL cells and  be a reason for the abolished CTL-

mediated recognition.  

 In addition to MHC class I and the T-cell receptor, in the CTL-mediated recognition 

are also involved co-stimulatory molecules such as B7-1, B7-2 and ICAM. A complete 

downregulation of these molecules was detected in KSHV-infected B-cells (Fig.30). The 

death receptor CD95 which is an important ligand for the CTL-mediated killing of virally 

infected or transformed  cells (Linkermann  et al., 2003) was also downregulated (Fig. 30). 

The target cells require a close cell-to-cell contact to generate a death-signal via this receptor. 

The introduction of B7-1 and B7-2 molecules by recombinant vaccinia virus into KSHV-

infected cells did not reconstitute the CTL-mediated lysis, although the expression was even 
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higher than the physiological expression in EBV-transformed cells (Fig. 31, 32). This led to 

the hypothesis that  KSHV-infected  B-cells have developed a major  resistance to CTL-

mediated apoptosis. This resistance can be a consequence of a more general mechanism such 

as the downregulation of the CD95/Fas ligand.  

 

 

 

Conclusions and perspectives 
 The present work showed that B-cells can be transformed in vitro by KSHV and 

develop similar phenotypic and functional features as PEL tumor cells. This phenotype is 

caused by a soluble factor (s) secreted by the KSHV-infected B-cells. The identification of the 

secreted factor would give the possibility to develop new therapeutic approaches, for example 

by specific neutralizing antibodies. Since an introduction of co-stimulatory molecules was not 

sufficient to reconstitute the CTL-mediated lysis, one of the steps could the investigation 

whether the downregulation of Fas ligand and the secretion of high levels of Granzyme A is 

responsible for the CTL esacape.  
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7. Abbreviations                                                          
                                                                   
                                                                 
AIDS                                                   acquired immune deficiency syndrom 
BEC blood vascular endothelial cells 
BCR B-cell receptor 
BCBL-1                                               Body cavity-based lymphoma cell line 1 
bp                                                        base pairs 
CTL cytotoxic T lymphocytes 
DNA    deoxyribonucleic acid 
BSAP B-cell specific activator protein 
dNTP     deoxynucleoside triphosphate 
EBF-1 Early B-cell factor-1 
EBV                     Epstein-Barr virus 
EBNA EBV nuclear antigen 
EH2    Equine Herpesvirus 2 
ELISA       enzyme-linked immunosorbent assay 
et al.                                                     et alli (Lat. = and others)  
FCS      fetal calf serum 
Fig. figure 
FACS Fluorescence-activated cell sorting 
FITC fluoresceine isothyocianate 
FLIP Fas-associated death domain-like IL-1 beta-converting 

enzyme-inhibitory protein 
g gram 
g gravitation constant 
GPCR G-protein-coupled receptor 
h hours 
HCMV human cytomegalovirus 
HLA Human Leukocyte Antigen 
HLH helix-loop-helix 
HHV-8 human herpesvirus-8 
HIV human immunodeficiency virus 
HVS herpesvirus Saimiri 
ICAM intercellular adhesion molecule 1 
IL interleukin 
IFN interferon 
IRF interferon regulatory factor 
Ig immunoglobulin 
kd kilodaltons 
µ micro (10-6) 
KS Kaposi´s sarcoma 
KSHV Kaposi´s sarcoma associated herpesvirus 
LEC lymphatic endothelial cells 
LCL lymphoblastoid cell line 
LANA-1 Latency-Associated Nuclear Antigen-1 
LMP-1 latent membrane protein-1 
m milli (10-3) 
MHC  major histocompatibility complex 
MCD multicentric Castleman´s disease 
min minute(s) 
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MIP macrophage inflammatory protein 
MOPS 3-(N-Morpholino) propanesulfonic acid 
mRNA Messenger RNA 
n nano (10-9) 
NK natural killers 
OBF-1 octamer-binding factor-1 
ORF open reading frame 
p pico (10-12) 
Pax-5 paired box protein 5 
PAGE polyacrylamide gel electrophoresis 
PBMC peripheral blood mononuclear cells 
PBS phosphate buffered saline 
PCR polymerase chain reaction 
PEL primary effusion lymphoma 
RNA ribonucleic acid 
rpm revolutions per minute 
RPMI Rosswell Park Memorial Institute 
RT room temperature 
RT reverse transcription 
s second 
TAE Tris-Acetate-EDTA 
TBST Tris buffered saline with Tween 20 
TEMED N, N, N`, N`-tetramethylenediamine 
TPA 12-0-tetradecanoylphorbol-13-acetate 
TR terminal repeat 
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