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von der SFB-Geschäftsstelle möchte ich hier ebenfalls nicht unerwähnt lassen.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit der Entwicklung von Bayesianischen semiparametri-
schen Regressions-Modellen und deren Schätzung mit Hilfe von Markov chain Monte Carlo
(MCMC) Verfahren. Es werden Modelle mit einem strukturierten additiven Prädiktor
betrachtet. Dieser kann neben parametrisch und nichtparametrisch modellierten Effekten
auch räumliche Effekte und zufällige Effekte zur Berücksichtigung von unbeobachteter
Heterogenität sowie zeitlich oder räumlich variierende Effekte enthalten. Die am weitesten
verbreiteten univariaten und multivariaten Verteilungen für die Zielgröße können behandelt
werden.

Diese Arbeit konzentriert sich speziell auf die Modellierung metrischer Kovariablen
durch Bayesianische P-Splines. Dabei werden eindimensionale sowie zweidimensionale
Oberflächenschätzungen behandelt. Außerdem finden lokal adaptive Glättung und mögliche
Monotonie-Restriktionen an die Schätzung Berücksichtigung. Ein wesentliches Ziel ist
dabei die Entwicklung von effizienten MCMC Algorithmen für die Bayesiansche Inferenz
und deren Implementierung in einem benutzerfreundlichen Programm-Paket.

Ein weiteres Kapitel beschäftigt sich mit der Berechnung von simultanen Wahrschein-
lichkeitsaussagen über die geschätzten P-Splines. Damit kann beurteilt werden, ob eine
nichtparametrische Modellierung erforderlich ist oder eine einfachere, parametrische Mod-
ellierung ausreicht. Die in dieser Arbeit entwickelten Methoden werden auf mehrere kom-
plexe, reale Problemstellungen angewendet und erweisen sich in der Praxis als äußerst
wirkungsvolles und flexibles Instrument.

Abstract

This thesis aims at developing Bayesian semiparametric regression models and making
inference using Markov chain Monte Carlo (MCMC) simulation techniques. The focus is
on models with structured additive predictor, which may comprise parametric and non-
parametric effects as well as spatial effects and random effects to capture unobserved het-
erogeneity and spatially or temporally varying effects. The most common univariate and
multivariate response distributions are considered.

This work concentrates especially on modeling continuous covariates by Bayesian P-
splines. One-dimensional P-splines and two-dimensional surface estimations are considered.
Additionally, locally adaptive smoothing and possible monotonicity restrictions regarding
the estimations are taken into account. An important goal is to develop efficient MCMC
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algorithms for Bayesian inference, and their implementation in an easy to use software
package.

A further topic is the computation of simultaneous probability statements on the es-
timated P-spline to assess the necessity of a nonparametric estimate compared to a more
parsimonious, parametric fit. The methodology developed in this thesis is applied to sev-
eral complex real problems and proves to be a very flexible and powerful tool in statistical
practice.
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Chapter 1

Introduction

Regression analysis certainly is one of the central areas of statistical research. Nowadays,
Generalized Additive Models (GAM, Hastie and Tibshirani 1990) can be considered as
a well established tool in semi- and nonparametric regression. Many implementations in
commercial (S-PLUS, SAS) and public domain (e.g. R) software have made GAMs to
a widely used instrument in practical statistical analysis. Various extensions to GAMs
have been made in the recent years. Among the most important ones are Generalized
Additive Mixed Models (GAMM, Lin and Zhang 1999) for incorporation of unobserved
heterogeneity, and Varying Coefficient Models (VCM) by Hastie and Tibshirani (1993) to
account for interactions of covariates. Geoadditive models within a mixed model setting
have been introduced by Kammann and Wand (2003).

For modeling the non-linear parts of a GAM there exist a variety of different approaches.
While polynomials of a certain degree l are often not flexible enough for small l, estimates
become more flexible but also rather unstable for large l, especially at the boundaries. Tak-
ing into account more sophisticated methods, we may distinguish mainly two approaches
for nonparametric modeling. These are local polynomial regression and approaches based
on basis functions. A good overview over recent developments in semiparametric regression
can be found in Fahrmeir and Tutz (2001) or Ruppert, Wand and Carroll (2003). In this
thesis we will focus on basis function methods. More specifically we use a specific form of
polynomial regression splines which are parameterized in terms of B-spline basis functions
together with a penalization of adjacent parameters, also known as P-splines (Eilers and
Marx 1996).

Another key development in statistics is the rise of Markov Chain Monte Carlo methods
in the last one and a half decades. First introduced by Metropolis, Rosenbluth, Teller and
Teller (1953) and Hastings (1970) these methods had their breakthrough in statistics not
before the 1990s when increasing computer power facilitated fast computation of previously
intractable problems in Bayesian statistics. In the recent years contributions to Bayesian
statistics have gained more and more weight in the literature and Bayesian inference is
now a well established tool for complex statistical analysis. In the context of the GAMs
and their extensions mentioned above, a great number of regression parameters have to be
estimated together with additional hyperparameters, such as smoothing parameters. This
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is typical situation where MCMC methods are of great importance. Inference in this thesis
is based solely on fully Bayesian methodology via MCMC.

This thesis aims to develop a unified framework for GAMs in which a Bayesian version
of P-splines is the main building block for modeling nonparametric effects. These models
are imbedded in a very general class of models, which we call Structured Additive Regres-
sion (STAR) Models. Therein VCMs, GAMMs and other model classes well known from
the literature are included as special cases. Inference relies on fully Bayesian methodol-
ogy. Special attention has been drawn to computationally efficient implementation of the
methods and to the development of an easy to use public domain software package that
makes the methodology applicable for a wide range of problems for researchers and ap-
plied statisticians. The software developed and used in this work is available via internet
at http://www.stat.uni-muenchen.de/∼lang/bayesx/.

In this introduction we first give an overview over different approaches in spline regres-
sion. In the second subsection we explain how Bayesian P-splines can be combined with
a variety of other approaches for modeling of covariates within the framework of STAR
models.

1.1 Spline regression

Consider the classical smoothing problem

yi = f(xi) + εi, i = 1, . . . , n

where (yi, xi) is the i-th observation from the continuous variables y and x. To approximate
the unknown function f(x) we restrict ourselves to the class of spline functions. A spline
is a piecewise defined function that fulfills certain smoothness constraints at the interfaces,
the so called knots. The most widely known spline function is the sub-class of polynomial
splines, where the pieces consist of polynomials of a certain degree l.

Suppose the domain of x is partitioned by a set of knots

xmin = ξ0 < ξ1 < . . . < ξr−1 < ξr = xmax,

then a polynomial spline has the following properties:

• A spline is a polynomial of degree l in each interval [ξρ−1, ξρ], ρ = 1, . . . , r.

• A spline is l − 1 times continuous differentiable at the knots ξρ.

Defining a design matrix X, where the entry Xij is the value of the j-th basis function
evaluated at observation i, enables us to write the vector of function evaluations f =
(f(x1), . . . , f(xn))

′ as

f = Xβ.
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Here, β = (β1, . . . , βM)′ is a M -dimensional vector of regression parameters. For example,
De Boor (1978) shows that such a spline may be written in terms of a linear combination
of M = r + l B-spline basis functions

f(x) =
M∑
ρ=1

βρBρl(x),

where Bρl(x) denotes a B-spline basis of degree l. Figure 1.1 (a) illustrates 6 basis functions
of degree 2 covering the interval [0, 1], which is partitioned by 5 equidistant knots. In graphs
(b) and (c) weighted basis functions and the resulting spline function f(x) are displayed.

-0.5 -0.25  0  0.25  0.5  0.75  1  1.25  1.5

 0

 0.2

 0.4

 0.6

Basis functions

-0.5 -0.25  0  0.25  0.5  0.75  1  1.25  1.5

 0

 0.2

 0.4

Weighted basis functions

 0  0.25  0.5  0.75  1

 0.2

 0.4

 0.6

Spline f(x)

Figure 1.1: 6 B-spline basis function of degree l = 2 (5 knots at {0.0,0.25,0.5,0.75,1.0})
(a), weighted basis functions (b), and the resulting spline (c).

The crucial point of simple spline regression is selecting the number and the position of
the knots. We may distinguish three different approaches that make use of basis functions.
These are approaches based on adaptive knot selection, approaches based on roughness
penalties, and a combination of both. We will sketch the three approaches in the following
subsections.
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1.1.1 Approaches based on adaptive knot selection

Approaches based on adaptive knot selection aim at a parsimonious selection of the number
of basis functions and a careful choice of the position of the knots to obtain a smooth,
yet sufficiently flexible estimation. Such methods have been presented in a frequentist
setting for example by Friedman (1991), who introduced the software MARS (Multivariate
Adaptive Regression Splines) and Stone, Hansen, Kooperberg and Truong (1997), who
developed POLYMARS. Bayesian approaches have been considered by Smith and Kohn
(1996), Denison, Mallick and Smith (1998), Biller (2000), Biller and Fahrmeir (2001) or Di
Matteo, Genovese and Kass (2001).

MARS uses so called reflected pairs {(xj − t)+, (t − xj)+} of piecewise linear basis
functions for each input variable xj. The set of candidate functions therefore is

C = {(xj − t)+, (t− xj)+} t ∈ {x1j , . . . , xnj}
j = 1, . . . , p

A basis function hρ(x) can be any function of C or the product of one or more of them –
under the restriction that each input variable can appear at most once in a product. The
model is built in a forward procedure until some pre-specified maximum number of knots
is reached, and then the model is pruned via a backward procedure. In each step of the
forward procedure all products of a function hρ included in the existing model M with a
reflected pair in C is considered as a new basis function pair. The term of the form

βM+1hρ(x)(xj − t)+ + βM+2hρ(x)(t− xj)+, hρ ∈M,

that gives the smallest GCV value is added to M. Estimation is performed by standard
linear regression. A very similar software specially designed for classification is the routine
POLYMARS (Stone et al. 1997). The main difference is that POLYMARS works within
a multiple logistic framework and uses a quadratic approximation of the log-likelihood to
search for a new candidate function pair.

Smith and Kohn (1996) follow a Bayesian approach for the linear regression model
y = Xβ + ε, ε ∼ N(0, σ2In). They introduce an indicator vector γ with the i-th element
such that γi = 0 if βi = 0 and γi = 1 if βi 6= 0. A multivariate Gaussian

N(0, cσ2(X ′
γXγ)

−1) (1.1)

prior is assigned on βγ and p(γi = 1) = πi = 0.5 is assumed for i = 1, . . . ,M . Here
Xγ denotes the submatrix of the truncated power basis regression spline design matrix
X that corresponds to the basis functions present in the current model. βγ denotes the
corresponding subvector of β. The prior 1.1 is chosen since it is proportional to the variance
of the least squares estimate of βγ.

Smith and Kohn (1996) suggest to place a knot at every third to fifth observation, up to
a maximum of 40. The main advantage of this model formulation is that a Gibbs sampler
can be used for MCMC inference. Smith and Kohn (1997) generalize this approach to
bivariate curve fitting and Kohn, Smith and Chan (2001) refine their approach by using
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the very general class of radial basis functions. Therein, thin plate splines (compare Duchon
1977, Wood 2003) are included as a special case. Furthermore they place a hyperprior on
the probability πi and modify the mean of the prior for the regression coefficients by using
a least square estimate γ̂ instead of mean zero

βγ ∼ N(β̂γ, cσ
2(X ′

γXγ)
−1).

This is the likelihood for βγ conditional on y and γ, where the variance is scaled by a
constant c. Kohn et al. set c = n, since they consider it likely that cσ2(X ′

γXγ)
−1 remains

reasonably constant as n increases’.
The approach of Denison et al. (1998) deals with the same Gaussian model, but here

the basis functions are not spline but piecewise polynomials

yi = f(xi) + εi =
l∑

ρ=0

βρ0(xi − ξ0)
ρ
+ +

k∑
ν=1

l∑
ρ=l0

βρν(xi − ξν)
ρ
+ + εi, i = 1, . . . , n

to allow for discontinuous functions. The authors place a prior on the number and on the
position of the knots and employ a reversible jump MCMC algorithm (Green 1995) for
inference of these parameters. However, the regression parameters are treated as fixed and
are therefore not supplied with a prior distribution. Hence, estimation of the vector β is
performed via a simple least squares minimization in each step. The candidate knot set is
the set of all different observations {x1, . . . , xn}.

Biller (2000) presents a fully Bayesian approach based on natural cubic regression
splines, where he assigns either a poisson or a discrete uniform prior on the number of
knots r and a multivariate normal distribution

β|ξ, r, σ2 ∼ N(0, cIr)

on the regression coefficients. The candidate knot set is again the set of all different
observations {x1, . . . , xn}. Inference is based on a reversible jump MCMC algorithm. In
every iteration the algorithm randomly chooses between adding (birth), deleting (death)
or shifting a knot. In the birth step the new knot position is selected uniformly at random
from the candidate knots not yet in the model, the death step is defined reversely. For a
change in position of knots, first a knot ξρ to be shifted is chosen uniformly at random,
and then the new position is drawn uniformly from all candidate knots in the interval
(ξρ−1, ξρ+1). Biller and Fahrmeir (2001) generalize this approach to VCMs. In contrast to
the lastly described methods, Biller’s (2000) and Biller and Fahrmeir’s (2001) approach is
not restricted to Gaussian models, but can be applied also to binomial or Poisson data.

A very similar method, where the candidate knots are not pre-specified, but are allowed
to vary freely, is suggested by Di Matteo et al. (2001). They extend the work of Denison et
al. (1998) to a fully Bayesian approach and to non-Gaussian models. In contrast to Denison
et al. (1998) – but in accordance with Biller (2000) and Biller and Fahrmeir (2001) – they
use natural cubic smoothing splines with an unknown number r and location of knots.
However, they use the so called unit-information prior

β|ξ, r, σ ∼ N(0, nσ2(X ′
ξXξ)

−1),
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where Xξ is the natural cubic spline design matrix for the knot sequence ξ = (ξ0, . . . , ξr)
′.

The denomination unit-information is due to the fact, that the amount of information in the
prior equals the information of one observation, as represented by the Fisher information
matrix.

1.1.2 Approaches based on roughness penalties

Instead of carefully selecting knots and reducing the number of basis functions, the basic
idea of roughness penalty approaches is to guarantee enough flexibility by a relatively large
number of basis functions. In order to avoid overfitting and to reduce variability of the
estimations appropriate restrictions on the parameter vector are imposed, that shrink the
coefficients towards zero or penalize too abrupt jumps between adjacent parameters.

One of the most prominent representative of this approach are smoothing splines. This
approach can be traced back to Reinsch (1967). Other key references are Wahba (1990)
and Hastie and Tibshirani (1990). Here, the objective is to minimize the penalized least
squares criterion

PL =
n∑
i=1

(yi − f(xi))
2 + λ

∫
(f ′′(x))2dx, (1.2)

where f(x) is assumed to be a twice continuous differentiable function. The smoothing
parameter λ controls the trade-off between data fit and smoothness, which is measured in
terms of the integral over the curvature of f(x). As it turns out, the solution is a natural
cubic smoothing spline, with knots at every different observation point xi and thus with
as many regression parameters as different observations.

Another penalty based approach is presented by Shively, Kohn and Wood (1999) in
conjunction with model selection. They use an integrated Wiener process Wj as prior for
nonparametric effects

fj(xj) = φjxj + (τ 2
j )

1/2

∫ xj

0

Wj(ν)dν, j = 1, . . . , p,

which results in cubic smoothing splines for the posterior means. In addition they use
an indicator variable for each smoothing parameter τ 2

j and for each of the parameters
φj, enabling the algorithm to model an effect linearly or to drop a variable from the
model. A two-step procedure is pursued, where in the first step a data based prior for
Φ = (φ1, . . . , φp, τ

2
1 , . . . , τ

2
p )

′ in the second step, consisting of variable selection and model
averaging, is provided. The first step uses a sampling scheme developed by Wong and
Kohn (1996). The data based prior

Φj ∼ N(Φ̂j, nB
−1
j ),

in the second step is obtained from the posterior mean Φ̂ and the posterior covariance
matrix A of the full model, where B = A−1, and Φ̂j denotes the subvector of Φ̂ (the
submatrix of B) consisting of the rows (rows and columns), corresponding to component
j.
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In the popular P-spline approach (Eilers and Marx 1996, Marx and Eilers 1998) f(x)
is approximated by a linear combination of a relatively large (usually 20 to 40) number of
B-spline basis functions and smoothness is ensured by a penalty

P (λ) = λ
M∑

ρ=k+1

(∆kβρ)
2, (1.3)

based on k-th order differences of the parameter vector, which can be seen as a discrete
approximation of the penalty in (1.2). Various articles about different usages of P-splines
have been published by the authors since then. In recent papers Eilers and Marx (2003)
and Marx and Eilers (2005) present a 2-dimensional surface estimator based on tensor-
product P-splines. Figure 1.2 displays such basis functions with degree l = 3. To let the
graphic not become too complex, instead of the full basis, we show only every fourth basis
function in each direction.

 0
0.2

0.4
0.6

0.8
1

 0

0.2

0.4

0.6

0.8

1

 0
0.

1
0.

2
0.

3
0.

4
0.

5

Figure 1.2: Tensor product B-spline basis functions of degree l = 3

In both approaches, smoothing splines and P-splines, the crucial point is the selection
of the smoothing parameter λ. Traditionally the selection of λ is based on some goodness-
of-fit criterion, e.g. the GCV criterion or the AIC and minimization is performed via a
simple grid search algorithm.

In this thesis a Bayesian version of the P-spline approach of Eilers and Marx is devel-
oped and extended in several ways. The key idea is to use B-spline basis functions of a
certain degree l to approximate the unknown function f(x). The grid of knots is extended
beyond the domain of x for l knots in each direction to guarantee enough flexibility at
the boundaries. To demonstrate how the penalization works, in figure 1.3 we present a
simulated data set which is fitted using a different amount of penalization. In the Bayesian
version of P-splines we replace the penalty (1.3) by a stochastic version, namely a first
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(RW1) or second (RW2) order random walk

βρ = βρ−1 + uρ, uρ ∼ N(0, τ 2) (RW1)

βρ = 2βρ−1 − βρ−2 + uρ, uρ ∼ N(0, τ 2) (RW2)

or in an equivalent two-sided formulation

βρ =
1

2
βρ−1 +

1

2
βρ+1 + uρ, uρ ∼ N(0, τ 2/2) (RW1)

βρ = −1

6
βρ−2 +

2

3
βρ−1 +

2

3
βρ+1 −

1

6
βρ−2 + uρ, uρ ∼ N(0, τ 2/6) (RW2)

The second representation can be interpreted as a least squares fit of the 2 (respectively 4)
nearest neighbors of a coefficient βρ. Figure 1.4 illustrates this kind of penalization, figure
1.5 depicts a number of spline functions obtained from samples from the full conditional
of β drawn during the MCMC simulation. The red line represents the actual estimation
of the spline, which is taken to be the mean of a sufficiently high number of samples from
the chain. Chapter 2 of this thesis is especially dedicated to the development of Bayesian
P-splines.
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Figure 1.3: P-spline fit for different values of the smoothing parameter
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Figure 1.4: Illustration for first order (left) and second order (right) random walk penalty
on regression coefficients.

A computationally very efficient implementation of penalized regression splines is pro-
vided by the package mgcv (Wood 2001) within the public domain software R. The original
implementation is based on thin plate spline basis functions (Wood 2003) (in the latest ver-
sion, however, there are different alternatives for choosing the basis functions). Thin plate
splines can be seen as a multivariate generalization of smoothing splines. The objective is
to find a minimizer of

‖y − f‖2 + λJkp, (1.4)

where

Jkp =

∫
· · ·
∫
‖Dkf‖2dx1 . . . dxp

=

∫
· · ·
∫ ∑

ν1+...+νp=k

k!

ν1! . . . νp!

(
∂kf

∂xν11 . . . ∂x
νp
p

)2

dx1 . . . dxp (1.5)

and ν = (ν1, . . . , νp)
′ is a multi-index. Mostly, only the two dimensional case (p = 2) and

second derivatives (k = 2) is of interest, in which case 1.5 simplifies to∫ ∫ (
∂2f

∂x2
1

)2

+ 2

(
∂2f

∂x1∂x2

)2

+

(
∂2f

∂x2
2

)2

dx1dx2.

Note that for k = 2, p = 1 we retain expression (1.2) for one-dimensional smoothing splines.
It can be shown (Duchon 1977) that the minimizing function of (1.4) has the expression

f(x) =
M∑
j=1

αjφj(x) +
n∑
i=1

βiηkp(‖x− xi‖)

provided that 2k > p, where the M =

(
k+p-1

p

)
functions φj span the space of polyno-

mials in Rp. A thin plate spline basis is now the set

{φ1, . . . , φM , ηkp(‖x− x1‖), . . . , ηkp(‖x− xn‖)}.

In the following we give some examples of one and two dimensional thin plate spline bases:
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Figure 1.5: Visualization of the spline at different states of the Markov chain. The dotted
line depicts the posterior mean.

p = 1, k = 1: {1, x, |x− x1|, . . . , |x− xn|}

p = 1, k = 2: {1, x, |x− x1|3, . . . , |x− xn|3}

p = 2, k = 2: {1, x, x2, ‖x− x1‖2 log(‖x− x1‖), . . . , ‖x− xn‖2 log(‖x− xn‖)}

The default value in mgcv is the lowest value satisfying 2k > p+ 1.
The characterizing feature of Wood’s (2001) implementation is the simultaneous es-

timation of regression coefficients and smoothing parameters (compare also Wood 2000).
The models are fitted by the common iteratively re-weighted least squares algorithm for
GLMs, except that a penalized least squares problem is solved in each iteration instead of
an ordinary least squares problem. Additionally, the smoothing parameters are estimated
simultaneously by minimizing

‖W 1/2(z −Xβ̂λ)‖2

[tr(I − A)]2

with respect to λ, where z are the working observations and W is the weight matrix
from the Fisher scoring algorithm. A is the hat matrix and β̂λ the estimate of regression
coefficients given λ.

Locally adaptive splines

Locally adaptive splines are an extension of the roughness penalty approaches in the sense
that the global smoothing parameter λ is replaced by a locally varying smoothing parame-
ter. This is particularly useful for highly oscillating functions and functions with changing
curvature.

The most simple way of relaxing the assumption of a constant smoothing parameter
to a locally adaptive one is to associate a different smoothing parameter with each spline
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regression parameter, i.e. to replace uρ ∼ N(0, τ 2) by uρ ∼ N(0, τ 2/δρ), where δρ are ad-
ditional weight variables that have to be estimated. In a Bayesian approach the necessary
prior for the additional parameters may be either independent or dependent. For sim-
ple random walk models Lang, Fronk and Fahrmeir (2002) use independent IG(ν/2, ν/2)
priors on q2

ρ = 1/δρ, which leads to a t-distribution with ν degrees of freedom for the
marginal distribution of the errors. They also consider the alternative uρ ∼ N(0, exp(hρ))
of dependent first or second order random walk priors

hρ = hρ−1 + ũρ or hρ = 2hρ−1 − hρ−2 + ũρ, ũρ ∼ N(0, σ2
h).

Jerak and Lang (2005) generalize this approach to GAMs. Lang and Brezger (2004) (com-
pare Chapter 2 of this thesis) propose to assign independent Gamma G(1/2, 1/2) priors
to the weights δρ. This leads to a Cauchy distribution for the marginal distribution of the
errors.

Ruppert and Carroll (2000) use a regression spline model

f(x) = β0 + β1x+ · · ·+ βlx
l +

r∑
i=0

βl+i(x− ξi)
l
+,

of degree l ≥ 1 and define β̂ as the minimizer of

n∑
i=1

{yi − f(x)}+
r∑
j=0

λ(ξj)β
2
d+j

The estimate for the smoothing parameter vector λ = (λ(1), . . . , λ(r))′ is obtained by
minimizing the GCV criterion using a smaller set of knots and smoothing parameters
λ∗ = (λ∗(1), . . . , λ∗(r∗))′, r∗ < r, where minimizing is done separately for each λ∗(i) over
a one dimensional grid centered at the optimal value for a global smoothing parameter
(according to GCV) to avoid a full grid search. The estimate for the original λ vector
is then obtained by linear interpolation. Ruppert and Carroll also give an algorithm for
additive models.

Baladandayuthapani, Mallick and Carroll (2005) propose a fully Bayesian approach to
locally adaptive (linear) Bayesian P-splines. They assign independent Gaussian priors on
the regression parameters, with locally adaptive variances

βi ∼ N(0, σ2
j (ξj)).

The functional form of σ2(·) is again assumed to be a linear regression spline

−log(σ2(x)) = β∗0 + β∗1x+
r∗∑
i=1

β∗l+i(x− ξ∗i )+,

on the log-scale to ensure positivity of σ2(·).
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1.1.3 Hybrid Splines

A procedure that combines the idea of adaptive regression splines and traditional smoothing
splines is presented by Luo and Wahba (1997). They call their method hybrid splines to
emphasize the conflating character.

Using the fact that the minimizer of (1.2) has a representation

fλ(x) = α1φ1(x) + α2φ2(x) +
n∑
i=1

βiR(x, xi)

with certain functions φ1, φ2 and R(x, x′), they select the number of basis function by
minimizing the GCV criterion in a first step. This is done by a forward procedure, where
the basis function that gives the smallest GCV of all basis functions not yet included is
added to the model. The second step of estimating the smoothing parameter λ is performed
by the GCVPACK routine (Bates, Lindstrom, Wahba and Yandell 1987), which uses again
the GCV. As Luo and Wahba (1997) point out, the first step is the dominating one for
accounting for the bias-variance trade-off and the second one of choosing the smoothing
parameter is merely a refinement of the result. The main benefit from the second step lies
in the improved numerical stability of the procedure.

A Bayesian version of hybrid splines has been proposed recently by Dias and Gamerman
(2002). In their approach they assign priors on the number of knots r on the smoothing
parameter λ and on the variance parameter σ, but not on the spline parameters β. For
inference they make use of the reversible jump MCMC algorithm of Green (1995) to sample
from the full conditional distribution p(r, λ, σ2|y, β̂), while the estimate β̂ is obtained by
minimizing the penalized least squares criterion

PL(λ) = ‖y −Xrβ‖2 + λβ′Ωβ

given a realization (r, λ, σ2). Here, f(x) is approximated byXrβ and Ω is a r×r matrix with
entries Ωij =

∫
B′′
i (t)B

′′
j (t)dt. The authors claim that a good guess of the hyperparameters

of the priors for r and λ|r makes the procedure quite fast, however, this might not hold
for more complex functions, e.g. 2-dimensional surfaces.

1.2 P-Splines in Structured Additive Regression Mod-

els

Bayesian Generalized Linear Models (Fahrmeir and Tutz 2001) assume that, given co-
variates v and unknown parameters γ the distribution of the response y belongs to an
exponential family with mean µ = E(y|v, γ) and a linear predictor η that is linked to the
expectation of the response y by

η = v′γ = g(µ),

where g is referred to as link function.
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Table 1.1: Model classes included in STAR models as special cases. Expressions in brackets
correspond to models for longitudinal data.

Model term Predictor Notation

fixed effects . . .+ viγ [vitγ] r = i [r = (i, t)]
P-splines . . .+ f1(xij) [f1(xitj)] r = i, ψij = xij [r = (i, t), ψitj = xitj]
i.i.d. random effect . . .+ bijwitj r = (i, t), ψrj = with, fj(ψrj) = bjiwitj
VCM . . .+ g1(xij)zij r = i, ψrj = (xij, zij), fj(ψrj) = gj(xij)zij
Geoadditive . . .+ ftime(t) + fstr(sit) r = (i, t), ψrj = t and ψrj′ = sit
2 dim. surface . . .+ f1|2(xi1, xi2) r = i, ψrj = (xi1, xi2)

In presence of features often found in practical applications, such as nonlinearity of
continuous covariates, spatially or temporally correlated observation or unobserved unit
or cluster specific heterogeneity, the above linear predictor is not appropriate for a com-
prehensive regression analysis. Therefore we replace the strictly linear predictor by an
structured additive predictor

ηr = f1(ψr1) + . . .+ fp(ψrp) + v′rγ (1.6)

with a generic observation indicator r and a generic covariate notation ψ. Here, the func-
tions fj may comprise different types of functions of (not necessarily 1-dimensional) co-
variates. These may be nonlinear effects of continuous covariates, time trends and seasonal
effects, varying coefficient terms, 2-dimensional surfaces, random slopes and intercepts, and
spatially correlated random effects. Table 1.1 gives an overview of possible model terms
together with the notation to cast the term into the general notation (1.6). This model
formulation contains many regression models well known from the literature as special
cases.

In a Generalized additive model (GAM) for cross-sectional data we have an additive
predictor of the form

ηi = f1(xi1) + . . .+ fp(xip) + v′iγ (1.7)

for observation i, i = 1, . . . , n. Here, the unknown functions fj are smooth functions of
a one-dimensional continuous covariate xj, and are modeled by Bayesian P-splines in this
thesis.

Given longitudinal data at time points t ∈ {t1, t2, . . .} for individuals i, i = 1, . . . , n,
we obtain a Generalized additive mixed model (GAMM) for longitudinal data from (1.7)
by adding individual specific random effects, i.e.

ηit = f1(xit1) + . . .+ fp(xitp) + bi1wit1 + · · ·+ biqwitq + v′itγ.

Here, ηit, xit1, . . . , xitp, wit1, · · · , witq, vit are predictor and covariate values for individual i
at time t, bi1, . . . , biq are i.i.d. random intercepts (for wtij = 1) or random slopes. Random
effects are modeled by i.i.d. Gaussian priors. Note, that the assumption of the same time
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points for each individual is only for simplicity of notation and may be generalized in a
straightforward manner. GAMMs for cluster data can be written in the same general form.

The predictor for a varying coefficient model (VCM) as introduced by Hastie and Tib-
shirani (1993) is given by

ηi = g1(xi1)zi1 + . . .+ gp(xip)zip,

where the continuous covariates xij are the effect modifiers of the categorical or continuous
interaction variables zij. Note, that in this work the effect modifiers need not to be contin-
uous covariates, but may also comprise geographical locations (compare Fahrmeir, Lang,
Wolff and Bender 2003). VCMs with spatially varying effect modifiers are well known
under the synonym geographically weighted regression.

Consider the situation that we observe longitudinal data with additional geographic
information for each observation. This spatio-temporal data can be accounted for by a
space-time main effect model with the predictor

ηit = f1(xit1) + . . .+ fp(xitp) + ftime(t) + fstr(sit) + v′itγ,

see e.g. Fahrmeir and Lang (2001b). Here, ftime(t) is a possibly nonlinear time trend that
can be modeled by Bayesian P-splines, for example, and fstr(sit) is modeled by Gaussian
Markov random field, i.e. a correlated random effect for the spatial location of observation
sit, or by 2-dimensional P-splines based on the geographic coordinates of sit. Kammann
and Wand (2003) call models with predictors of this form geoadditive models.

If we are given two continuous covariates xi1 and xi2, we may model an ANOVA type
interaction model by a predictor of the form

ηi = f1(xi1) + f2(xi2) + f1|2(xi1, xi2) + · · · .

The main effects f1(xi1) and f2(xi2) are modeled by P-splines. The interaction effect
f1|2(xi1, xi2) is a 2-dimensional surface and may be modeled by tensor product P-splines.
These will be introduced and discussed in the following chapter.

Throughout this thesis our main concern is on modeling continuous covariates with
Bayesian P-splines. However, it should be emphasized that the scope of the thesis is
always to embed the developed methodology in the rich class of the above described STAR
models. This is facilitated through the implementation in the software package BayesX
(Brezger, Kneib and Lang 2003). In the applications of this work we rely on many of the
described features of STAR models.



Chapter 2

Bayesian P-Splines

In this chapter we introduce a Bayesian version of P-splines for the use as a smoothing
technique in structured additive regression models. A Bayesian approach is chosen be-
cause of its enormous flexibility regarding different extensions already mentioned in the
introduction. Furthermore, a Bayesian approach allows for simultaneous estimation of re-
gression parameters and hyperparameters, e.g. smoothing parameters. P-splines are very
attractive for several reasons. They facilitate a parsimonious yet flexible parametrization,
and guarantee numerical stability and efficient implementation.

Part I of the chapter was originally published in a paper by Lang and Brezger (2004) un-
der the title ’Bayesian P-Splines’ in the Journal of Computational and Graphical Statistics.
In this article only additive (Gaussian) models are considered. The focus is on develop-
ing Bayesian P-splines for one and two-dimensional smoothing, and for estimation of the
functional form of the effect modifier in VCMs. Additionally, locally adaptive smoothing
parameters are suggested. The employed MCMC inference methods are described in detail.

Part II consists of a preliminary version of the paper ’Generalized structured additive
regression based on Bayesian P-Splines’ by Brezger and Lang (2005) which is accepted
for publication in the Journal of Computational Statistics and Data Analysis. In this
paper the approach is generalized to non-Gaussian responses. A special emphasis lies on
the elaborated MCMC sampling schemes, which provide fast convergence of the Markov
chains. A data augmentation approach is used for binary and cumulative probit models.
Iteratively weighted least squares proposals and joint updating of regression and smoothing
parameters are presented for general exponential family responses.

In the presented version of the first article the full conditional distribution of the weights
for the locally adaptive smoothing parameter in the 2-dimensional case is corrected. The
second paper contains an additional section on a simulation study, that is not included in
the version intended for publication. Note that both contributions are slightly revised to
unify notation and to correct typos.
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ABSTRACT

P-splines are an attractive approach for modeling nonlinear smooth effects
of covariates within the additive and varying coefficient models framework.
In this paper, we first develop a Bayesian version for P-splines and general-
ize in a second step the approach in various ways. First, the assumption of
constant smoothing parameters can be replaced by allowing the smoothing
parameters to be locally adaptive. This is particularly useful in situations
with changing curvature of the underlying smooth function or with highly
oscillating functions. In a second extension one dimensional P-splines are
generalized to two dimensional surface fitting for modeling interactions be-
tween continuous covariates. In a last step the approach is extended to
situations with spatially correlated responses allowing the estimation of
geoadditive models. Inference is fully Bayesian and uses recent MCMC
techniques for drawing random samples from the posterior. In a couple
of simulation studies the performance of Bayesian P-splines is studied and
compared to other approaches in the literature. We illustrate the approach
by two complex applications on rents for flats in Munich and on human
brain mapping.

Keywords: geoadditive models, locally adaptive smoothing parameters, MCMC, sur-
face fitting, varying coefficient models
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2.1 Introduction

Consider the additive model (AM) with predictor

E(y|x) = η = γ0 + f1(x1) + · · ·+ fp(xp)

where the mean of a continuous response variable y is assumed to be the sum of smooth
functions fj.

Several proposals are available for modeling and estimating the smooth functions fj,
see e.g. Fahrmeir and Tutz (2001, Ch. 5) and Hastie, Tibshirani and Friedman (2001) for
an overview. An attractive approach, based on penalized regression splines (P-splines),
has been presented by Eilers and Marx (1996). The approach assumes that the effect f
of a covariate x can be approximated by a polynomial spline written in terms of a linear
combination of B-spline basis functions. The crucial problem with such regression splines
is the choice of the number and the position of the knots. A small number of knots may
result in a function space which is not flexible enough to capture the variability of the data.
A large number may lead to serious overfitting. Similarly, the position of the knots may
potentially have a strong influence on estimation. A remedy can be based on a roughness
penalty approach as proposed by Eilers and Marx (1996). To ensure enough flexibility
a moderate number of equally spaced knots within the domain of x is chosen. Sufficient
smoothness of the fitted curve is achieved through a difference penalty on adjacent B-spline
coefficients. A different approach focuses on a parsimonious selection of basis functions and
a careful selection of the position of the knots, see e.g. Friedman (1991).

This paper presents a Bayesian version of the P-splines approach by Eilers and Marx
for AM’s and extensions by replacing difference penalties with their stochastic analogues,
i.e. Gaussian (intrinsic) random walk priors which serve as smoothness priors for the un-
known regression coefficients. The approach generalizes work by Fahrmeir and Lang (2001a,
b) based on simple random walk priors. A closely related approach based on a Bayesian
version of smoothing splines can be found in Hastie and Tibshirani (2000), see also Carter
and Kohn (1994) who choose state space representations of smoothing splines for Bayesian
estimation with MCMC using the Kalman filter. Compared to smoothing splines, in a
P-splines approach a more parsimonious parametrization is possible, which is of partic-
ular advantage in a Bayesian framework where inference is based on MCMC techniques.
Other Bayesian approaches for nonparametric regression focus on adaptive knot selection
and are close in spirit to the work by Friedman (1991). Denison et al. (1998) present an
approach based on reversible jump MCMC for univariate curve fitting with continuous
response which is extended to GAMs by Biller (2000) and Mallick, Denison and Smith
(2000). A similar idea avoiding reversible jump MCMC is followed for Gaussian errors by
Smith and Kohn (1996). Hansen and Kooperberg (2002) discuss adaptive knot selection
for the very broad class of extended linear models. Di Matteo et al. (2001) present an
approach for GAMs where knots are selected on a continuous proposal distribution rather
than a discrete set of candidate knots as in the other approaches.

In further steps, we extend and generalize our approach in various ways. First, the
assumption of global smoothing parameters can be replaced by locally adaptive smoothing
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parameters to improve the estimation of functions with changing curvature. Such situa-
tions have attained considerable attention in the recent literature, see e.g. Luo and Wahba
(1997) and Ruppert and Carroll (2000). Locally adaptive smoothing parameters are incor-
porated by replacing the usual Gaussian prior for the regression parameters by a Cauchy
distribution. Such a prior has been already used in the context of dynamic models (Knorr–
Held 1999) and for edge preserving spatial smoothing (e.g. Besag and Higdon 1999).

In a second step, we generalize the P-spline approach for one dimensional curves to two
dimensional surface fitting by assuming that the unknown surface can be approximated by
the tensor product of one dimensional B-splines. Smoothness is now achieved by smooth-
ness priors common in spatial statistics, e.g. two dimensional generalizations of random
walks. Once again, global smoothing parameters may be replaced by spatially adaptive
smoothing parameters. We demonstrate the benefit of spatially adaptive smoothing para-
meters in our second application on human brain mapping. Another Bayesian approach
for bivariate curve fitting based on adaptive knot selection has been developed by Smith
and Kohn (1997).

In a last step, the classical AM is extended to additive mixed models to deal with
unobserved heterogeneity among units or clusters. A main focus is thereby on spatially
correlated random effects. Kammann and Wand (2003) call models with an additive predic-
tor composed of nonlinear functions of continuous covariates and spatial effects geoadditive
models. We will present an application of such a geoadditive model in our first data appli-
cation on rents for flats in Munich. Additive mixed models (without spatially correlated
random effects) have been considered in a Bayesian framework by Hastie and Tibshirani
(2000), geoadditive models have also been developed by Fahrmeir and Lang (2001a, b).

Bayesian inference is based on a Gibbs sampler to update the full conditionals of the re-
gression parameters and variances. Numerical efficiency is guaranteed by matrix operations
for band matrices (Rue 2001) or sparse matrices (George and Liu 1981).

Most of the methodology of this paper is implemented in BayesX a software package
for Bayesian inference based on MCMC techniques. The program is available free of charge
at http://www.stat.uni-muenchen.de/~lang/bayesx.

The rest of this paper is organized as follows: Section 2.2 describes Bayesian AMs
with P-splines and extensions. Section 2.3 gives details about MCMC inference for the
proposed models. Section 2.4 contains extensive simulation studies in order to gain more
insight into the practicability and the limitations of our approach and to compare it with
other techniques in the literature. In Section 2.5, the methods of this paper are applied to
complex data sets on rents for flats in Munich and on human brain mapping.

2.2 Bayesian AMs and extensions based on P-Splines

2.2.1 Additive models

Consider regression situations where observations (yi, xi, vi), i = 1, . . . , n, on a continuous
response y, a vector of continuous covariates x = (x1, . . . , xp)

′ and a vector of further
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covariates v = (v1, . . . , vq)
′ are given. Given covariates and unknown parameters, we

assume that the responses yi, i = 1, . . . , n, are independent and Gaussian with mean or
predictor

ηi = f1(xi1) + · · ·+ fp(xip) + v′iγ. (2.1)

and a common variance σ2 across subjects. Here f1, . . . , fp are unknown smooth functions of
the continuous covariates. The linear combination v′iγ corresponds to the usual parametric
part of the predictor.

Note that the mean levels of the unknown functions fj are not identifiable. To ensure
identifiability, the functions fj are constrained to have zero means, i.e.

1/range(xj)

∫
fj(xj)dxj = 0.

This can be incorporated into estimation via MCMC by centering the functions fj about
their means in every iteration of the sampler. To avoid, that the posterior is changed the
subtracted means are added to the intercept (included in v′iγ).

In the P-splines approach by Eilers and Marx (1996), it is assumed that the unknown
functions fj can be approximated by a spline of degree l with equally spaced knots xj,min =
ζj0 < ζj1 < · · · < ζj,rj−1 < ζjrj = xj,max within the domain of xj. It is well known that
such a spline can be written in terms of a linear combination of Mj = rj + l B-spline basis
functions Bjρ, i.e.

fj(xj) =

Mj∑
ρ=1

βjρBjρ(xj).

For the ease of notation, we assume the same number of knots M = Mj for every function
fj. The basis functions Bjρ are defined only locally in the sense that they are nonzero only
on a domain spanned by 2+ l knots. It would be beyond the scope of this paper to go into
the details of B-splines and their properties, see De Boor (1978) as a key reference. By
defining the n×M design matrices Xj, where the element in row i and column ρ is given
by Xj(i, ρ) = Bjρ(xij), we can rewrite the predictor (2.1) in matrix notation as

η = X1β1 + · · ·+Xpβp + V ′γ. (2.2)

Here βj = (βj1, . . . , βjMj
)′, j = 1, . . . , p, correspond to the vectors of unknown regression

coefficients. The matrix V is the usual design matrix of fixed effects. In a simple regression
spline approach the unknown regression coefficients are estimated using standard maximum
likelihood algorithms for linear models. To overcome the difficulties of regression splines,
already mentioned in the introduction, Eilers and Marx (1996) suggest a moderately large
number of knots (usually between 20 and 40) to ensure enough flexibility, and to define
a roughness penalty based on differences of adjacent B-Spline coefficients to guarantee
sufficient smoothness of the fitted curves. This leads to penalized likelihood estimation
where the penalized likelihood

L = l(y, β1, . . . , βp, γ)− λ1

M∑
l=k+1

(∆kβ1l)
2 − · · · − λp

M∑
l=k+1

(∆kβpl)
2 (2.3)
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is maximized with respect to the unknown regression coefficients β1, . . . , βp and γ. In (2.3)
∆k denotes the difference operator of order k. In this paper we restrict ourselves to penalties
based on first and second differences, i.e. k = 1 or k = 2. Estimation can be carried out
with backfitting (Hastie and Tibshirani 1990) or by direct maximization of the penalized
likelihood (Marx and Eilers 1998). The trade off between flexibility and smoothness is
determined by the smoothing parameters λj, j = 1, . . . , p. Typically ”optimal” smoothing
parameters are estimated via cross validation or by minimizing the AIC with respect to
the λj, j = 1, . . . , p. However, these procedures often fail in practice since no optimal
solutions for the λj can be found (see also Section 2.4.1). More severe is the fact that these
criteria fail to work if the number of smooth functions in the model is large as then the
computational effort to compute an optimal solution (if there is any) becomes intractable.
However, a computational efficient algorithm for computing the smoothing parameters has
been presented recently by Wood (2000), which seems to work at least for a moderate
number of smoothing parameters.

In a Bayesian approach unknown parameters βj, j = 1, . . . , p, and γ are considered as
random variables and have to be supplemented with appropriate prior distributions.

For the fixed effects parameters γ we assume independent diffuse priors, i.e. γj ∝ const,
j = 1, . . . , q.

Priors for the regression parameters βj of nonlinear functions are defined by replacing
the difference penalties in (2.3) by their stochastic analogues. First differences correspond
to a first order random walk and second differences to a second order random. Thus, we
obtain

βjρ = βj,ρ−1 + ujρ, or βjρ = 2βj,ρ−1 − βj,ρ−2 + ujρ (2.4)

with Gaussian errors ujρ ∼ N(0, τ 2
j ) and diffuse priors βj1 ∝ const, or βj1 and βj2 ∝ const,

for initial values, respectively. Note, that the priors in (2.4) could have been equivalently
defined by specifying the conditional distributions of a particular parameter βjρ given its
left and right neighbors. Then, the conditional means may be interpreted as locally linear
or quadratic fits at the knot positions ζjρ. The amount of smoothness is controlled by the
additional variance parameters τ 2

j , which correspond to the smoothing parameters λj in
the classical approach. The priors (2.4) can be equivalently written in the form of global
smoothness priors

βj|τ 2
j ∝ exp

(
− 1

2τ 2
j

β′jKjβj

)
(2.5)

with appropriate penalty matrix Kj. Since Kj is rank deficient with rank(Kj) = M − 1
for a first order random walk and rank(Kj) = M − 2 for a second order random walk, the
prior (2.5) is improper.

For full Bayesian inference, the unknown variance parameters τ 2
j are also considered as

random and estimated simultaneously with the unknown βj. Therefore, hyperpriors are
assigned to the variances τ 2

j (and the overall variance parameter σ2) in a further stage of
the hierarchy by highly dispersed (but proper) inverse Gamma priors p(τ 2

j ) ∼ IG(aj, bj).
The prior for τ 2

j must not be diffuse in order to obtain a proper posterior for βj, see
Hobert and Casella (1996) for the case of linear mixed models. A common choice for
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the hyperparameters is aj = 1 and a small value for bj, e.g. bj = 0.005, bj = 0.0005 or
bj = 0.00005, leading to almost diffuse priors for τ 2

j .
The amount of smoothness allowed by a particular prior specification depends (weakly)

on the scale of the responses. To avoid the problem, we standardize the vector of responses
y before estimation and retransform the results afterwards. Standardizing the responses is
also important to avoid numerical difficulties with MCMC simulations.

In some situations, the estimated nonlinear functions fj may considerably depend on
the particular choice of hyperparameters aj and bj. This may be the case for very low signal
to noise ratios or/and small sample sizes. It is therefore highly recommended to estimate
all models under consideration using a (small) number of different choices for aj and bj
to assess the dependence of results on minor changes in the model assumptions. In that
sense, the variation of hyperparameters can be used as a tool for model diagnostics. More
details on the dependency of results from the hyperparameters are given in our simulation
studies in Section 2.4.

In some applications, the assumption of global variances τ 2
j (or smoothing parameters)

may be inappropriate, e.g. when the underlying functions are highly oscillating. In such

situations, we can replace the errors ujρ ∼ N(0, τ 2
j ) in (2.4) by ujρ ∼ N(0,

τ2
j

δjρ
) where the

weights δjρ are additional hyperparameters. We assume that the weights δjρ are indepen-
dent and Gamma distributed δjρ ∼ G(1

2
, 1

2
). This implies that βjρ|βjρ−1 or βjρ|βjρ−1, βjρ−2

follow a Cauchy distribution which has heavier tails than the normal distribution.

2.2.2 Modeling interactions

The models considered so far are not appropriate for modeling interactions between co-
variates. A common way to deal with interactions are varying coefficient models (VCM)
introduced by Hastie and Tibshirani (1993). Here nonlinear terms fj(xij) are generalized
to fj(xij)zij, where zj may be a component of x or v or a further covariate. The predictor
(2.1) is replaced by

ηi = f1(xi1)zi1 + · · ·+ fp(xip)zip + v′iγ.

Covariate xj is called the effect modifier of zj because the effect of zj varies smoothly over
the range of xj. For zij ≡ 1 we obtain the AM as a special case. Estimation of VCMs
poses no further difficulties, since only the design matrices Xj in (2.2) have to be redefined
by multiplying each element in row i of Xj with zij.

VCMs are particularly useful if the interacting variable zj is categorical. Consider
now situations where both interacting covariates are continuous. In principal, interactions
between continuous covariates could be modeled via VCMs as well. Note, however, that
we model a very special kind of interaction since one of both covariates still enters linearly
into the predictor. A more flexible approach is based on (nonparametric) two dimensional
surface fitting. In this case, the interaction between two covariates xj and xs is modeled
by a two dimensional smooth surface fjs(xj, xs) leading to a predictor of the form

ηi = · · ·+ fj(xij) + fs(xis) + fjs(xij, xis) + · · · .
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Here we assume that the unknown surface can be approximated by the tensor product of
the two one dimensional B-splines, i.e.

fjs(xj, xs) =
M∑
ρ=1

M∑
ν=1

βjsρνBjρ(xj)Bsν(xs).

Similar to the one dimensional case, additional identifiability constraints have to be im-
posed on the functions fj, fs and fjs. Following Chen (1993) or Stone et al. (1997), we
impose the constraints

f̄j =
1

range(xj)

∫
fj(xj)dxj = 0

f̄s =
1

range(xs)

∫
fs(xs)dxs = 0,

f̄js(xj) =
1

range(xs)

∫
fjs(xj, xs)dxs = 0 for all distinct values of xj,

f̄js(xs) =
1

range(xj)

∫
fjs(xj, xs)dxj = 0 for all distinct values of xs, and

f̄js =
1

range(xj) · range(xs)

∫ ∫
fjs(xj, xs)dxjdxs = 0.

This is achieved in an MCMC sampling scheme by appropriately centering the func-
tions in every iteration. More specifically, we first compute the centered function f cjs by
f cjs(xij, xis) = fjs(xij, xis) − f̄js(xj) − f̄js(xs) + f̄js. In order to ensure that the posterior
is unchanged, we proceed by adding f̄js(xj) and f̄js(xs) to the respective main effects and
subtracting f̄js from the intercept. In the last step, the main effects are centered in the
same way as described above.

Priors for βjs = (βjs11, . . . , βjsMM)′ are based on spatial smoothness priors common in
spatial statistics (see e.g. Besag and Kooperberg 1995). Since there is no natural ordering
of parameters, priors have to be defined by specifying the conditional distributions of βjsρν
given neighboring parameters and the variance component τ 2

js. The most commonly used
prior specification based on the four nearest neighbors can be defined by

βjsρν |· ∼ N

(
1

4
(βjsρ−1,ν + βjsρ+1,ν + βjsρ,ν−1 + βjsρ,ν+1),

τ 2
js

4

)
(2.6)

for ρ, ν = 2, . . . ,M − 1 and appropriate changes for corners and edges. For example, for

the upper left corner we obtain βjs11|· ∼ N(1
2
(βjs12 + βjs21),

τ2
js

2
). For the left edge, we get

βjs1ν |· ∼ N(1
3
(βjs1,ν+1 + βjs1,ν−1 + βjs2,ν),

τ2
js

3
). This prior is a direct generalization of a

first order random walk in one dimension. Its conditional mean can be interpreted as a
least squares locally linear fit at knot position (ζρ, ζν) given the neighboring parameters.
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Another choice for a prior for βjs can be based on the Kronecker product Kjs = Kj ⊗Ks

of penalty matrices of the main effects, see Clayton (1996) for a justification. We prefer
(2.6) because the priors based on Kronecker products tend to overfitting (at least in the
context of spline smoothing). Note, that all priors for two dimensional smoothing can be
easily brought into the general form (2.5).

Prior (2.6) can be generalized to allow for spatially adaptive variance parameters. For
that reason, we introduce weights δ(ρν)(kl) with the requirement that δ(ρν)(kl) = δ(kl)(ρν) and
generalize (2.6) to

βjsρν |· ∼ N

 ∑
(kl)∈∂(ρν)

δ(ρν)(kl)
δ(ρν)+

βjskl,
τ 2
ρν

δ(ρν)+

 . (2.7)

Here, ∂ρν corresponds to the set of neighboring knots to ζρ, ζν and δ(ρν)+ denotes the sum of
weights

∑
(kl)∈∂(ρν)

δ(ρν)(kl). For δ(ρν)(kl) = 1, we obtain (2.6) as a special case. Introducing

hyperpriors for the weights δ(ρν)(kl) in a further stage of the hierarchy we get a smoothness
prior with spatially adaptive variances. In analogy to the one dimensional case, we assume
that the δ(ρν)(kl) are independent and Gamma distributed δ(ρν)(kl) ∼ G(1

2
, 1

2
).

2.2.3 Geoadditive models

In a number of applications responses depend not only on continuous and categorical
covariates but also on the spatial location where they have been observed. For example, in
our application on rents for flats in Munich, the monthly rent considerably depends on the
location in the city. In this and various other applications, models are needed which are
able to deal simultaneously with nonlinear effects of continuous covariates and nonlinear
spatial effects.

To consider the spatial variation of responses, we can add an additional spatial effect
fspat to the predictor (2.2) leading to geoadditive models (Kammann and Wand 2003).
Depending on the application, the spatial effect may be further split up into a spatially
correlated (structured) and an uncorrelated (unstructured) effect, i.e. fspat = fstr+funstr =
Xstrβstr + Xunstrβunstr. A rational is that a spatial effect is usually a surrogate of many
unobserved influential factors, some of them may obey a strong spatial structure while
others may exist only locally. By estimating a structured and an unstructured effect, we
aim at separating between the two kinds of influential factors. For data observed on a
regular or irregular lattice a common approach for the correlated spatial effect fstr is based
on Markov random field priors for the regression coefficients βstr, e.g. Besag, York and
Mollie (1991). Let s ∈ {1, . . . , S} denote the pixels of a lattice or regions of a geographical
map. Then, the most simple Markov random field prior for βstr = (βstr,1, . . . , βstr,S) is
defined by

βstr,s|βstr,u, u 6= s ∼ N

(∑
u∈∂s

1

Ns

βstr,u,
τ 2
str

Ns

)
, (2.8)

where Ns is the number of adjacent regions or pixels, and ∂s denotes the regions which are
neighbors of region s. Hence, prior (2.8) can be seen as a 2 dimensional extension of a first
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order random walk. More general priors than (2.8) are described in Besag et al. (1991).
The design matrix Xstr is a n × S incidence matrix whose entry in the i-th row and s-th
column is equal to one if observation i has been observed at location s and zero otherwise.

Alternatively, we could use two dimensional surface estimators as described in Section
2.2.2 to model the structured spatial effect fstr.

For the uncorrelated effect, we assume i.i.d. Gaussian random effects for βunstr, i.e.

βunstr(s) ∼ N(0, τ 2
unstr), s = 1, . . . , S. (2.9)

Formally, the priors for βstr and βunstr can both be brought into the form (2.5). For βstr,
the elements of K are given by kss = Ns, ksu = −1 if u ∈ ∂s and 0 else. For βunstr, we may
set K = I.

Again, for τ 2
str and τ 2

unstr we assume inverse Gamma priors τ 2
str ∼ IG(astr, bstr) and

τ 2
unstr ∼ IG(aunstr, bunstr).

2.3 Posterior inference via MCMC

Bayesian inference is based on the posterior of the model, which is analytically intractable.
Therefore, inference is carried out by recent Markov chain Monte Carlo (MCMC) simulation
techniques.

For the ease of notation, we subsume for the rest of this paper two dimensional surfaces
fjs into the functions fj, j = 1, . . . , p, so that a function fj may also be a two dimensional
function of covariates xj and xs. For the following let α denote the vector of all parame-
ters appearing in the model. Under usual conditional independence assumptions for the
parameters the posterior is given by

p(α) ∝ L(y, β1, . . . , βp, βstr, βunstr, γ, σ
2)

p∏
j=1

(
p(βj|τ 2

j )p(τ
2
j )
)

p(βstr|τ 2
str)p(τ

2
str)p(βunstr|τ 2

unstr)p(τ
2
unstr)p(γ)p(σ

2)

(2.10)

where L(·) denotes the likelihood which is the product of individual likelihood contribu-
tions. If a locally adaptive variance parameter is assumed for one of the smooth functions
fj, the term p(βj|τ 2

j )p(τ
2
j ) in the first line of (2.10) must be replaced by p(βj|δj, τ 2

j )p(δj)p(τ
2
j ).

Because the individual weights are assumed to be independent, the prior p(δj) is a product
of Gamma densities.

MCMC simulation is based on drawings from full conditionals of blocks of parameters
given the other parameters and the data. It can be shown that the full conditionals for
βj, j = 1, . . . , p, βstr, βunstr and γ are multivariate Gaussian. Straightforward calculations
show that the precision matrix Pj and the mean mj of βj|· are given by

Pj =
1

σ2
X ′
jXj +

1

τ 2
j

Kj, mj = P−1
j

1

σ2
X ′
j(y − η̃), (2.11)
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where η̃ is the part of the predictor associated with all remaining effects in the model.
Because of the special structure of the design matrices Xj and the penalty matrices Kj, the
posterior precisions Pj are band matrices. For a one dimensional P-spline, the bandwidth
of Pj is the maximum between the degree l of the spline and the order of the random walk.
For a two dimensional P-spline, the bandwidth is M · l + l.

Following Rue (2001), drawing random numbers from p(βj|·) is as follows: We first
compute the Cholesky decomposition Pj = LL′. We proceed by solving L′βj = z, where z
is a vector of independent standard Gaussians. It follows that βj ∼ N(0, P−1

j ). We then

compute the mean mj by solving Pjmj = 1
σ2X

′
j(y − η̃). This is achieved by first solving

Lν = 1
σ2X

′
j(y − η̃) by forward substitution followed by backward substitution L′mj = ν.

Finally, adding mj to the previously simulated βj yields βj ∼ N(mj, P
−1
j ). The algorithms

involved take advantage of the band matrix structure of the posterior precision Pj.
The precision matrix and the mean of the full conditionals for the regression coefficients

βstr and βunstr of the spatial effect fspat can be formally brought into the form (2.11). The
posterior precision matrix for βunstr is diagonal whereas the precision matrix for βstr is
usually neither a diagonal nor a band matrix but a sparse matrix. However, the regions of
a geographical map can be reordered using the reverse Cuthill-McKee algorithm (George
and Liu 1981) to obtain a band matrix. In contrast to posterior precision matrices of
P-splines, the band size usually differs from row to row. This can be exploited to further
improve the computational efficiency. In our implementation, we use the envelope method
for Cholesky decompositions of sparse matrices as described in George and Liu (1981).
Our experience shows that the speed of computations improves up to 25% by using the
envelope method rather than simple matrix operations for band matrices.

Regarding the fixed effects parameters γ, we obtain for the precision matrix and the
mean

Pγ =
1

σ2
V ′V, mγ = (V ′V )−1V ′(y − η̃).

The full conditionals for the variance parameters τ 2
j , j = 1, . . . , p, τ 2

str, τ
2
unstr and σ2 are

all inverse Gamma distributions with parameters

a′j = aj +
rank(Kj)

2
and b′j = bj +

1

2
β′jKjβj

for τ 2
j , τ

2
str and τ 2

unstr. For σ2 we obtain

a′σ = aσ +
n

2
and b′σ = b+

1

2
ε′ε

where ε is the usual vector of residuals. If for some of the functions fj locally adaptive
variances are assumed, we additionally need to compute the full conditionals for the weights
δjρ, or δ(ρν)(kl). For one dimensional P-splines with a first or second order random walk
penalty the full conditionals for the weights δjρ are Gamma distributed with parameters

a′δjρ
=
ν

2
+

1

2
and b′δjρ

=
ν

2
+
u2
jρ

2τ 2
j
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where ujρ is the error term in (2.4). Because all full conditionals involved are known
distributions, a simple Gibbs sampler can be used to successively update the parameters
of the model.

In the case of a two dimensional P-spline, the full conditionals for the weights δ(ρν)(kl)
are proportional to

p(δ(ρν)(kl)|·) ∝ p(βjs|·)p(δ(ρν)(kl))

∝

(
M2∏
i=2

λi

)1/2

δ
ν
2
−1

(ρν)(kl) exp

(
−δ(ρν)(kl)

[
ν

2
+

(βjsρν − βjskl)
2

2τ 2
js

])
(2.12)

where λi, i = 2, . . . ,M2, are the non-zero eigenvalues of Kjs(δ). We explicitly denote the
penalty matrix by Kjs(δ) to emphasize its dependency on the weights δ. Note that (2.12)
is a Gamma G(a′δ(ρν)(kl)

, b′δ(ρν)(kl)
) density with parameters

a′δ(ρν)(kl)
=
ν

2
and b′δ(ρν)(kl)

=
ν

2
+

(βjsρν − βjskl)
2

2τ 2
js

, (2.13)

multiplied by
(∏M2

i=2 λi

)1/2

. In order to sample from this distribution we employ a MH-step

and use a Gamma distribution with the parameters in (2.13) as proposal density. Therefore
the acceptance probability reduces to

α = min
{

1,

(∏M2

i=2 λ
∗
i∏M2

i=2 λi

)1/2 }
,

where the λ∗i denote the non-zero eigenvalues of the penalty matrix Kjs(δ
∗
(ρν)(kl)) resulting

from a proposed weight δ∗(ρν)(kl). Acceptance rates are usually quite high. In our imple-
mentation we use the fact that ∏M2

i=2 λ
∗
i∏M2

i=2 λi
=
|K∗

11|
|K11|

, (2.14)

where |K11| and |K∗
11| denote the determinant of the sub-matrices of Kjs(δ(ρν)(kl)) and

Kjs(δ
∗
(ρν)(kl)), respectively, where the last row and the last column is deleted. The advantage

arising from (2.14) is, that instead of an expensive computation of eigenvalues of order
O(n3), the ratio can be obtained by the computationally much more efficient Cholesky
decomposition of band matrices, which is of order O(n). Additionally, we exploit the fact
that it is sufficient to start the Cholesky decomposition in the row corresponding to the
position where a proposed new weight is located. Block updating of several weights in
one step speeds up computation considerably, since the ratio (2.14) has to be evaluated
only once per block. Since the proposal densities p(δ(ρν)(kl)) are independent no further
difficulties are imposed by sampling from a block of weights. In our application to human
brain mapping in Subsection 2.5.2 joint updating of 6 weights still yields an acceptance
rate > 50%.

A proof of (2.14) can be found in Appendix A.1.
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2.4 Simulations

In this section we present a couple of simulation studies mainly to compare the proposed
methodology with related approaches in the literature. The main focus of Section 2.4.1 lies
on functions with low or moderate curvature while Section 2.4.2 deals with the estimation
of highly oscillating functions. Finally, Section 2.4.3 compares some surface estimators
where we mainly refer to Smith and Kohn (1997) who compare their approach with the
most common surface estimators in the literature.

2.4.1 Functions with moderate curvature

The main focus of this section is on functions with low or moderate curvature. We con-
sidered three functions, a linear one (f1(x) = 1.0/1.758x), a quadratic one (f2(x) =
1.0/2.75x2 − 1.5) and a sinusoidal one (f3(x) = 1.0/0.72sin(x)). The values of x were
chosen on an equidistant grid of n = 100 design points between -3 and 3. To assess the de-
pendence of results on the curvature, we scaled the three functions such that the standard
deviations σ(fj), j = 1, 2, 3, of fj are all equal to one. For the overall variance parameter
σ2, we chose the values σ = 1, 0.5, 0.33 which corresponds to a very low, low and medium
signal to noise ratio. Figure 2.1 a) - c) shows typical data sets for the sinusoidal function f3

with the different signal to noise ratios. We simulated 250 replications for every function
and variance σ2 and applied and compared the following estimators:

• Bayesian cubic P-splines with second order random walk penalty and 20 knots. We
estimated the models with three different choices for the hyperparameters a and b of
the variance τ 2 to assess the dependence of results on the hyperparameters. We used
a = 1, b = 0.005, a = 1, b = 0.0005 and a = 1, b = 0.00005.

• Classical (cubic) P-splines with second order difference penalty and 20 knots. Es-
timation was carried out using the GAM object of S-Plus 4.0 and the P-spline
function for GAM objects provided by Brian Marx. The function is available at
http://www.stat.lsu.edu/bmarx/. The smoothing parameters were estimated by
cross validation where the optimal smoothing parameter was chosen on a geometrical
grid of 30 knots between 104 and 10−4.

• Adaptive Bayesian regression splines by Biller (2000) as an example of a competing
Bayesian approach. Estimation was carried out using the program ’bvcm’ which is
available at http://www.stat.uni-muenchen.de/sfb386/. The number of knots k are
assumed be Poisson distributed with mean k̄ restricted to the set k ∈ {4, . . . , kmax =
50}. We used k̄ = 20 which is the default in the program. Experiments with k̄ = 10
or k̄ = 30 showed no substantial differences to the findings below.

The performance of the estimators is measured by the empirical mean squared error given
by MSE(f̂) = 1/n

∑n
i=1(f(xi)− f̂(xi))

2.
Figure 2.2 displays boxplots of log(MSE) for very low (first column), low (second col-

umn) and medium (third column) signal to noise ratio (SNR), respectively. The first row
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a) medium signal to noise ratio
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c) very low signal to noise ratio
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Figure 2.1: Sinusoidal function of simulation study 1: The graphs a)-c) show typical data
sets for medium, low and very low signal to noise ratio. The true function is included in the
graphs (solid lines). Panel d) displays the classical (dashed line) and the Bayes estimator
(solid line) for a particular replication where cross validation fails.
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refers to the linear function f1, the second row to the quadratic function f2, and the third
row to the sinusoidal function f3. From left to right, the boxplots in the graphs correspond
to adaptive Bayesian regression splines, Bayesian P-splines with three different choices for
the hyperparameters and the classical approach. Additionally, Table 2.1 summarizes the
rankings of the various estimators (in terms of the MSE measure) for very low, low and
medium SNR together with average rankings averaged over all SNR’s. From Figure 2.2
and Table 2.1 we can draw the following conclusions:

• For Bayesian P-splines, the dependence of results on the hyperparameters is strongest
for the linear function f1 whereas for the quadratic and sinusoidal function it is rel-
atively small. However, inspecting the individual estimates for the linear function
f1 shows that the estimates for the different choices of hyperparameters always sug-
gest an underlying linear function but estimates become slightly more wiggled for
increasing b.

• Biller’s adaptive regression splines perform inferior compared to both P-splines ap-
proaches.

• Compared to the frequentist version, our fully Bayesian approach performs equally
well or better for quadratic function f2 and the sinusoidal function f3. Regarding the
linear function f1, the performance of Bayesian P-splines depends on the choice of the
hyperparameters. For b = 0.0005 and b = 0.00005 the Bayesian approach is superior,
for b = 0.005 it performs inferior. In general, Table 2.1 suggests that the Bayesian
approach with hyperparameters b = 0.0005 and b = 0.00005 performs superior while
with hyperparameter b = 0.005 both approaches perform roughly equal.

We sometimes observed strange results for the frequentist version of P-splines. For
a very low signal to noise ratio, approximately 3-5% of its estimates are quite unsmooth
because the cross validation score function has no global minimum or a too small smoothing
parameter was found as the optimum. For the Bayesian approaches we never observed these
problems. As an example, compare Figure 2.1 d) which shows for f3 the classical (dashed
line) and the Bayesian P-spline (solid line) for a particular replication. For higher signal
to noise ratios, however, the problem disappears.

For Bayesian P-splines, we also investigated the coverage of pointwise credible intervals.
Using MCMC simulation techniques, credible intervals are estimated by computing the
respective quantiles of the sampled function evaluations. For a nominal level of 80% the
average coverage usually varies between 81 and 86% for all models and all choices for the
hyperparameters. Taking a nominal level of 95% the average coverage varies between 95
and 97%. Only in the case of the sinusoidal function f3 and a very low signal to noise ratio
we observed with hyperparameters b = 0.0005 and b = 0.00005 average coverages slightly
below the respective nominal levels. This implies that the credible intervals obtained by
the fully Bayesian approach are rather conservative.
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f(x) = linear, signal to noise ratio: very low
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f(x) = linear, signal to noise ratio: medium
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f(x) = quadratic, signal to noise ratio: very low
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f(x) = sinusoidal, signal to noise ratio: medium
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Figure 2.2: Boxplots of log(MSE) for the various estimators of simulation study 1. The
first row refers to the linear function f1, the second row to the quadratic function f2 and
the third row to the sinusoidal function f3. The left panel corresponds to a very low SNR
(σ = 1), the medium panel to a low SNR (σ = 0.5) and the right panel to a medium
SNR (σ = 0.33). From left to right the boxplots in the respective graphs refer to Bayesian
P-splines with hyperparameters b = 0.00005, b = 0.0005, b = 0.005, Biller’s adaptive
Bayesian regression splines, and the frequentist version of P-splines.

Table 2.1: Average rankings from simulation study 1.

very low SNR low SNR medium SNR average
Classical P-splines 2.9 2.9 2.8 2.9
Bayesian P-splines (b = 0.00005) 2.5 2.1 2.1 2.3
Bayesian P-splines (b = 0.0005) 2.6 2.5 2.5 2.5
Bayesian P-splines (b = 0.005) 2.8 3.1 3.3 3.1
adaptive regression splines 4.2 4.3 4.1 4.2
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2.4.2 Highly oscillating functions

In order to compare our method for highly oscillating curves, we mainly refer to Ruppert
and Carroll (2000) who propose P-splines based on a truncated power series basis and
quadratic penalties on the regression coefficients with locally adaptive smoothing parame-
ters. In their first simulation example they used the function

f4(x) =
√
x(1− x) sin

(
2π(1 + 2(9−4j)/5)

x+ 2(9−4j)/5

)
,

whose spatial variability depends on the additional parameter j. They used j = 3 which
corresponds to low spatial variability and j = 6 which corresponds to severe spatial vari-
ability. We simulated 250 replications for both specifications and applied the following
estimators:

• Bayesian cubic P-splines with a second order random walk penalty using a global
variance and locally adaptive variances. We used both 40 and 80 knots and the same
three different choices of hyperparameters as in Section 2.4.1.

• Classical (cubic) P-splines with second order difference penalty. Similar to Bayesian
P-splines, we used both 40 and 80 knots.

• Adaptive Bayesian regression splines by Biller (2000) with k̄ = 20 as the mean
number of knots (see also Section 2.4.1.) Experiments with k̄ = 10 and k̄ = 30
showed virtually no difference.

• Multivariate adaptive regression splines (MARS) of Friedman (1991) with a maxi-
mum number 150 of basis functions.

In order to compare results, we computed log10(
√

(MSE)) as Ruppert and Carroll did.
It turned out that the dependence of the results on the three choices for the hyperparame-
ters is negligible. Therefore, the presentation of results is restricted to the choice of a = 1
and b = 0.005 for the hyperaparameters. Figure 2.3 displays boxplots of log10(

√
(MSE))

for the various estimators. Figure a) corresponds to j = 3, i.e. low spatial variability, and
Figure b) to j = 6, i.e. severe spatial variability. From left to right, the respective boxplots
refer to Bayesian P-splines with a global variance (40 and 80 knots), Bayesian P-splines
with locally adaptive variances (40 and 80 knots), adaptive Bayesian regression splines,
classical P-splines (40 and 80 knots) and MARS.

From Figure 2.3 we can draw the following conclusions:

• For j = 3, i.e. low spatial variability, our estimators with global and locally adaptive
variance perform almost equally well. If 80 knots are used we observe a slight loss in
statistical efficiency. Hence, there is (almost) no loss of statistical efficiency when a
locally adaptive estimator is used but not needed.

• For j = 6, i.e. severe spatial variability, our estimators with locally adaptive variance
clearly outperform the estimators with global variance.
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a) low spatial variability
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Figure 2.3: Simulation study 2: Boxplots of log10(
√

(MSE)) for function f4 with low
spatial variability (panel a)) and severe spatial variability (panel b)). From left to right
the boxplots in the graphs correspond to Bayesian P-splines with a global variance (40 and
80 knots), Bayesian P-splines with locally adaptive variances (40 and 80 knots), adaptive
Bayesian regression splines, classical P-splines (40 and 80 knots) and MARS.
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• For j = 3, i.e. low spatial variability Biller’s adaptive Bayesian regression splines are
slightly superior to the other approaches. Bayesian and classical P-splines perform
almost equally well.

• For j = 6, i.e. severe spatial variability, the best results are obtained by Biller’s
adaptive Bayesian regression splines followed by our Bayesian P-splines approach
with 80 knots and locally adaptive variances. Comparing Bayesian P-splines with
a global variance and classical P-splines we observe that the frequentist approach
performs superior to our Bayesian variant.

• The main reason for the poor performance of MARS is primarily because it uses
linear splines. Therefore estimates are less smooth than for the other estimators. The
crude functional form is, however, always detected. In fact, MARS was developed
for problems with many covariates and interactions and it is not too surprising that
it is less efficient for univariate problems.

To gain more insight into the differences of the various estimators, Figure 2.4 displays
the respective 10th percent worst fit (in terms of MSE) for Biller’s adaptive Bayesian re-
gression splines, Bayesian P-splines with 80 knots and locally adaptive variances, Bayesian
P-splines with 80 knots and global variance and classical P-splines with 80 knots. We see
that both P-spline estimators with a global variance (or smoothing parameter) are rela-
tively wiggled in the right part where the function is less oscillating. Classical P-splines are
more wiggled than Bayesian P-splines in this part of the function which is quite typical.
It is also typical that the adaption to the function in the highly oscillating part is better
for classical P-splines (although the very well adaption in the example is accidently). This
implies that Bayesian P-splines (with global variance) have a tendency to larger smoothing
parameters than classical P-splines in this example. We also see how Bayesian P-splines
with locally adaptive variance improve the estimator with global variance, as they are less
wiggled in the less oscillating part of the function and adapt better to the function where
it is highly oscillation. Biller’s adaptive Bayesian regression splines, however, perform even
better. Even the 10th percent worst fit shows a very well adaption to the underlying true
function.

Although a direct comparison (using the same data) with Ruppert and Carroll’s ap-
proach was not possible a rough comparison seams justified because they used exactly the
same models. For j = 3, they obtained values of approximately -1.5 for the median of
log10(

√
(MSE)), i.e. Ruppert and Carroll’s (2000) approach performs equally well as the

estimators we compared. Both their global and local penalty estimator perform equally
well in this situation. For j = 6, their local penalty estimator has superior performance
compared to their global penalty estimator with a median value of approximately -1.25 for
log10(

√
(MSE)) implying that their approach performs even superior than Biller’s adap-

tive Bayesian regression splines. Ruppert and Carroll compared their method also with
results from a simulation study by Wand (2000) who compares POLYMARS of Stone et
al. (1997), the Bayesian approach to nonparametric regression by Smith and Kohn (1996)
and penalized shrinkage. Compared to our results, the Bayesian approach by Smith and
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a) adaptive Bayesian regression splines, 10th percent worst fit
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b) Bayesian P-splines with adaptive variance, 10th percent worst fit
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c) Bayesian P-splines with global variance, 10th percent worst fit
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d) classical approach, 10th percent worst fit
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Figure 2.4: Simulation study 2: The graphs show the respective 10th percent worst fits in
terms of the MSE measure plotted in Figure 2.3 for Biller’s adaptive Bayesian regression
splines, Bayesian P-splines with 80 knots and adaptive variances, Bayesian P-splines with
80 knots and global variance and classical P-splines with 80 knots.
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Kohn (1996) performs roughly equally well than Bayesian P-splines with locally adaptive
variances while POLYMARS and penalized shrinkage perform slightly inferior.

For both simulation examples, we also computed the coverage of pointwise credible
intervals. For j = 3, i.e. low spatial variability, the average coverage for Bayesian P-splines
with global variance as well as adaptive variance are always above the nominal levels of 80
and 95 percent. For a nominal level of 80 percent the average coverage varies (depending
on the choice of the hyperparameters and the number of knots) between 83 and 84 percent
and for a nominal level of 95 percent between 96 and 97 percent. Taking j = 6, i.e. severe
spatial variability, the average coverage of the estimators is always below the nominal
level mainly because of very low coverage rates for x < 0.15. However, using P-splines
with locally adaptive variances clearly increases the average coverage. For P-splines with
40 knots the average coverage increases from 71.6 to 74.2% and from 84.5 to 87.5% for
nominal levels of 80 and 95 percent. For P-splines with 80 knots the average coverage
increases from 73.5 to 77% and from 80.5 to 90.1%.

2.4.3 Surface fitting

In our last simulation study we compare our approach for surface fitting with related
methods in the literature. We mainly refer to Smith and Kohn (1997) who compared their
Bayesian subset selection-based procedure with a variety of other approaches. Besides
their own approach they included MARS of Friedman (1991), Clive Loader’s ”locfit” (see
Cleveland and Grosse 1991), bivariate cubic thin plate splines with a single smoothing
parameter (henceforth tps), tensor product cubic smoothing splines with five smoothing
parameters, Breiman and Friedman’s (1985) additive basis fitting routine and a parametric
linear interaction model (henceforth lsp). They regarded the following three examples:

• f5(x1, x2) = 1/5 exp(−8x2
1) + 3/5 exp(−8x2

2) where x1 and x2 are distributed inde-
pendently normal with mean 0.5 and variance 0.1.

• f6(x1, x2) = x1 sin(4πx2) where x1 and x2 are distributed independently uniform on
[0, 1].

• f7(x1, x2) = x1x2 where x1 and x2 are bivariate normal with mean 0.5, variance 0.05
and correlation of 0.5.

Function f5 represents a model with main effects only, and functions f6 and f7 corre-
spond to a model with interactions. The sample size was n = 300 observations and
σ = 1/4 range(fj). We simulated 250 replications and considered the following estimators:

• Bayesian (cubic) P-splines on a 12 by 12 knots grid and the smoothness prior (2.6).
We examined the same three choices for the hyperparameters of the variance as in
the preceding subsections.

• Bayesian P-splines as described above but with main effects included. For the main
effects we used cubic P-splines with 20 knots and a second order random walk penalty
with global variance.
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• For a direct comparison with other methods, we used MARS, locfit, tps and lsp of
Smith and Kohn’s simulation study with the same estimation parameters as described
in their article.

We have also experimented with P-splines and locally adaptive variances, i.e the priors
(2.6) and (2.4) replaced by their locally adaptive variants. Because the functions under
consideration are not highly oscillating the results are more or less identical to those of
P-splines with a global variance. An exception is function f6 which is the only function
under study with moderate spatial variability. Here, the locally adaptive variants perform
slightly better.

Figure 2.5 shows boxplots of log(MSE) for the various estimators. Panel a) refers to
function f5, panel b) to function f6 and panel c) to function f7. From left to right the
boxplots refer to Bayesian P-splines without main effects, Bayesian P-splines with main
effects included, locfit, lsp, MARS and tps. Results are shown for the choice of a = 1
and b = 0.005 for hyperparameters only because for the other choices we obtained almost
identical results. We also noticed that the results for MARS, locfit, tps and lsp are very
close to Smith and Kohn’s study. For that reason, it seems justified to include also those
estimators in our comparison that have been considered in Smith and Kohn (1997) but
not here. From Figure 2.5 and the results of Smith and Kohn we draw the following
conclusions:

• Regarding function f5 the best results are obtained by the estimators with main
effects included which is not surprising because the true function consists of main
effects only. Moreover, an inspection of single estimates shows that the estimated
interaction effects are more or less zero which makes sense, too. For the functions f6

and f7 the estimators with and without main effects perform roughly equally well.

• From the comparison with other estimators we see that our approach is competitive.
For function f5 the estimator without main effects performs comparable to ’tps’ and
is among the three best in Smith and Kohn’s study. The estimators with main effects
included perform equally well (if not slightly better) than the best estimator in Smith
and Kohn’s study which is the cubic tensor product spline. For f6 our estimators are
comparable to ’tps’ which is the third best estimator in Smith and Kohn’s article.
For function f7 Smith and Kohn’s Bayesian subset selection-based procedure clearly
outperforms the other estimators in their study including the parametric linear fit
’lsp’. The performance of our estimator is once again comparable to ’tps’.

Furthermore, we investigated the coverage of pointwise credible intervals of our estima-
tors. The average coverage of all estimators is within a range of 80 to 88% for a nominal
level of 80% and within a range of 94 and 98% for a nominal level of 95% which confirms
the findings of the previous sections that the fully Bayesian approach yields rather conser-
vative credible intervals. An exception is the estimator with main effects included for f6

where the average coverage is only 68% and 83%, respectively.
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Figure 2.5: Simulation study 3: Boxplots of log(MSE) for the various surface estimators.
Panel a) corresponds to function f5, panel b) to function f6 and panel c) to function f7.
From left to right the respective boxplots refer to Bayesian P-splines without main effects,
Bayesian P-splines with main effects, the parametric linear interaction model (lsp), Clive
Loader’s ’locfit’, MARS and thin plate splines (tps).
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2.5 Applications

In this section we demonstrate the practicability of our approach with two applications.
The first application on rents for flats in Munich is an example of a geoadditive model.
The second application on human brain mapping demonstrates the usefulness of smoothing
with spatially adaptive variances.

2.5.1 Rents for flats

According to the German rental law, owners of apartments or flats can base an increase
in the amount that they charge for rent on ”average rents” for flats comparable in type,
size, equipment, quality and location in a community. To provide information about these
”average rents”, most larger cities publish ”rental guides”, which can be based on regression
analysis with rent as the dependent variable. We use data from the City of Munich,
collected in 1998 by Infratest Sozialforschung for a random sample of more than 3000 flats.
As response variable we choose

R monthly net rent per square meter in German Marks, that is the monthly rent
minus calculated or estimated utility costs.

Covariates characterizing the flat were constructed from almost 200 variables out of a
questionnaire answered by tenants of flats. In our reanalysis we use the highly significant
continuous covariates ”floor space” (F ) and ”year of construction” (Y ) and a vector v
of 25 binary covariates characterizing the quality of the flat, e.g. the kitchen and bath
equipment, the quality of the heating or the quality of the warm water system. Another
important covariate is the location L of the flat in Munich. For the official Munich ’99
rental guide, location in the city was assessed in three categories (average, good, top) by
experts. In our reanalysis we focus on a more data driven assessment of the quality of
location by including a spatial effect fspat of the location L into the predictor. So we
choose the geoadditive model with predictor

η = γ0 + f1(F ) + f2(Y ) + f12(F, Y ) + f str(L) + f(L)unstr + v′γ.

The main effects f1 and f2 of floor space and year of construction are modeled by cubic
P-splines with 20 knots and a second order random walk penalty. For the interaction we
choose a two dimensional P-spline on a grid of 12 by 12 knots with smoothness prior (2.6).
We have also experimented with P-splines and locally adaptive variances but the differences
were negligible. For the spatially structured effect f str(L) we choose the Markov random
field prior (2.8), and (2.9) for the unstructured spatial effect funstr(L).

To assess the dependence of results on the choice for the hyperparameters of variance
parameters we estimated the model with three different choices, a = 1, b = 0.005, a =
1, b = 0.0005 and a = 1, b = 0.00005. Table 2.2 compares the relative changes of estimated
posterior means for different hyperparameters with respect to the choice a = 1, b = 0.005.
The following figures are based on the first choice of a = 1 and b = 0.005.
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Figure 2.6 shows the effects of floor space and year of construction. Panels a) and
b) show the posterior means together with 80% and 95% pointwise credible intervals of
the main effects. Panel c) displays the posterior mean of the interaction term. Figure
2.6 a) shows the strong influence of floor space on rents: small flats and apartments are
considerably more expensive than larger ones, but this nonlinear effect becomes smaller
with increasing floor space. The effect of year of construction on rents in Figure b) is
more or less constant until the ’50s. It then distinctly increases until about 1990, and it
stabilizes on a high level in the ’90s. Although the interaction effect in Figure c) is not
overwhelmingly large, we clearly see that old flats built before the second world war with
a floor space below 45 square meters are cheaper than the average. On the other hand,
modern flats built after 1972 (the year of the Olympic summer games) are somewhat more
expensive than the average. Taking a look at Table 2.2, we see that both main effects are
virtually unchanged by different choices of hyperparameters whereas the interaction effect
changes considerably. There seems to be particularly doubt about the size of the effect,
not so much about the functional form. However, there is justification not to remove the
interaction effect because reestimating the model without considering the interaction effect
leads for all choices of hyperparameters to a significant increase in the deviance information
criteria DIC (Spiegelhalter, Best, Carlin and van der Linde 2002), which can be used as a
tool for model comparison in complex hierarchical Bayesian models.

Figure 2.7 a) shows a map of Munich, displaying subquarters and the posterior mean
estimates of the spatial effect fspat. Note that the correlated effects clearly exceed the
uncorrelated effects with a range approximately between -1.7 and 1.7. In contrast, the
coefficients of the uncorrelated effects have only a range between -0.5 and 0.5. As can be
seen in Table 2.2 the sensitivity of the spatial effect on the choice of hyperparameters is
relatively small.

The inclusion of a spatial effect fspat is a good opportunity to investigate empirically the
validity of the experts assessment of the quality of location. In fact, we could reestimate
the model with the experts assessment included in form of two additional dummy variables
for good and top locations. If the experts assessment is valid the extra spatial variation
measured by the spatial effect should considerably decrease. Figure 2.7 b) displays the
spatial effect when the experts assessment is included. The effects of floor space, year
of construction and the fixed effects are virtually unchanged and therefore omitted. We
observe that the remaining variation in Figure b) is smoother although there is considerable
spatial variation remaining. The reason for the small decrease is that the variation of the
uncorrelated effects remains more or less stable. The variation of the correlated random
effects, however, decreases considerably.

2.5.2 Human brain mapping

The purpose of human brain mapping is to detect regions of the brain that are activated if
a certain stimulus (e.g. visual or acoustic) is present. Detecting areas in the brain that are
responsible for the processing of certain stimuli is not only of pure scientific interest but
also important in many practical disciplines, e.g. in surgery. The realization of human brain
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Figure 2.6: Rents for flats: Effect of floor space and year of construction. Panel a) and b)
show the main effects (posterior means, 80% and 95% pointwise credible intervals). The
posterior means of the interaction effect is given in panel c).
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a) Experts assessment excluded

-1.7 0 1.7

b) experts assessment included

-1.7 0 1.7

Figure 2.7: Rents for flats: Posterior means of the spatial effect fspat. Panel a) refers to
the model that excludes the experts assessment of location, panel b) refers to the model that
includes it.
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Table 2.2: Rents for flats: Relative changes of estimated functions for different choices of
hyperparameters.

b f1(F ) f1(Y ) f12(F, Y ) spatial effect
0.005 0 0 0 0
0.0005 0.0002 0.0020 0.3600 0.0114
0.00005 0.0002 0.0066 0.7657 0.0251

mapping experiments has been considerably facilitated by the development of functional
Magnetic Resonance Imaging (fMRI) which is the first non-invasive technique in this area.
fMRI allows to determine the blood oxygenation level in the brain which can be used as a
measure of brain activity, see e.g. Lange (1996) for details. In a typical fMRI experiment,
the brain activity Y of a certain person is measured at a number of usually equidistant
time points t = 1, . . . , T . During the observation period, a kind of ON-OFF stimulus X
(e.g. visual) is periodically presented (e.g. 30s of rest, 30s of stimulus, 30s of rest,. . . ). At
each of the T time points an MRI image Yt consisting of I pixels or voxels i is measured,
i.e. Yt = (Yt1, . . . , YtI). The scientific question is now to determine which of the pixels i,
i = 1, . . . , I, is activated when the stimulus Xt is present. Unfortunately, the measurement
of the level of activation Yti is subject to a number of non-negligible interferences. Hence,
the Yti’s are measured with (considerable) noise and statistical methodology is required
to remove the noise from the data. Typically, the statistical analysis of fMRI data can
be divided into three parts. The first part consists mostly of preprocessing of the data,
e.g. motion correction. In the second step, pixelwise statistical analysis is performed to
remove a possible time trend in the data and to estimate the influence of the stimulus.
Various competing approaches are currently discussed in the vast literature on this subject,
see e.g. Gössl (2001) for an overview. The third step is concerned with spatial dependencies
between voxels, i.e. the pixelwise estimated effect of the stimulus is spatially smoothed,
mainly to overcome the multiple test problem which arises when analyzing several thousand
time series non-simultaneously. Particulary in experiments with a visual stimulus, edge
preserving spatial smoothing is required because of sudden jumps from non-activation to
activation.

In this demonstrating example, we solely focus on the second and third step. We
analyze data from a typical fMRI experiment where the level of activation of a volunteer
was measured with a delay of 3 seconds at T = 70 time points. For simplicity the analysis
is restricted to a particular horizontal slice of the brain which consists of 59 × 64 = 3776
pixels. From the 3776 pixels 826 pixels are known to lie outside the brain so that finally
a total number of 2950 time series is analyzed. A visual stimulus was presented in three
time periods of 30 seconds during the experiment. The first period was between t = 11 and
t = 30. Each of the three stimulus periods was followed by a 30 seconds lasting period of
rest. We first analyze the data pixelwise using Gaussian regression models with predictors

ηti = γ0 + f i1(t) + f i2(t)Zit, t = 1, . . . , 70, i = 1, . . . , 2950. (2.15)

Here, Zit is a delayed and continuously modified stimulus which is routinely obtained from
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Figure 2.8: Human brain mapping: The graphs display examples of the pixelwise analysis.
The left panel shows the time series Yit together with Ŷit (solid line). The middle and the
right panel display the estimated time trend and the time varying effect of the transformed
stimulus. Shown is the posterior mean, 80% and 95% pointwise credible intervals.

Xt in the preprocessing step, see Gössl (2001) for details. For f i1 and f i2 we assume Bayesian
cubic P-splines with second order random walk penalty and 20 knots. The first function
f i1 models a nonlinear trend in the data. The second function f i2 reflects a possibly time
varying effect of the stimulus. The hypothesis is that the level of activation may vary
over time, e.g. because it may take some time to get used to the experiment and to be
fully concentrated. This approach has already been followed by Gössl, Auer and Fahrmeir
(2000) who apply dynamic or state space models to estimate (2.15). Examples for the
pixelwise analysis are given in Figure 2.8 where each row corresponds to a particular
pixel. The left panel displays the unsmoothed time series Yti, t = 1, . . . , 70, together with
their reconstruction Ŷti according to (2.15). The middle and the right panel display the
corresponding estimates for the functions f i1 and f i2. Here, the posterior means together
with 80% and 95% credible intervals are shown.

In a second step, we spatially smoothed the estimated function values f̂ i2(t) at three
distinct time points t = 18, 38, 58 which correspond to the end of the three stimulus periods.
We used two dimensional P-splines on a grid of 25×25 knots with spatial smoothness prior
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Table 2.3: Human brain mapping: DIC of the six surface estimators.

t = 18 t = 38 t = 58
global variance 18117 17151 19749
spatially adaptive variance 17824 16716 19367

(2.6). Figure 2.9 shows the posterior mean of the two dimensional surfaces for t = 18 (first
row), t = 38 (second row) and t = 58 (third row). The left panel corresponds to the
estimators with a global variance and the right panel to the estimators with spatially
adaptive variances. The DIC of the six estimates can be found in Table 2.3. Obviously,
the use of spatially adaptive variances significantly reduces the DIC. Moreover, we observe
that the usage of adaptive variances leads to slightly smoother estimates in areas which
are less activated (mainly the right part of the graphs). On the other hand the peaks of
the activation areas are much more pronounced.

2.6 Conclusions

In this paper we propose a fully Bayesian approach for P-splines and present a couple of
extensions. Our approach covers additive models, varying coefficient models, geoadditive
models, two dimensional surface fitting and improved estimation of functions with chang-
ing curvature. Our implementation (included in BayesX) allows a more or less arbitrary
additive decomposition of the predictor using one or two dimensional nonlinear functions,
interactions based on varying coefficient models, spatially correlated effects based on MRF
priors or two dimensional surface estimators and i.i.d Gaussian random effects. In all cases,
the amount of smoothing is estimated simultaneously with the unknown nonlinear func-
tions. We consider this as a distinct advantage of our Bayesian approach as the estimation
of smoothing parameters is still a problem in a frequentist approach at least when the pre-
dictor contains a moderate or large number of unknown functions. The competitiveness of
our approach has been demonstrated through extensive simulation studies in Section 2.4.

There are, however, some remaining open problems. The following points will be in-
vestigated in future research:

• Although the usage of spatially adaptive variances rather than a global variance con-
siderably improves estimation of highly oscillating functions our simulation study
shows that Biller’s adaptive Bayesian regression splines perform even better. A pos-
sible idea for further improvements could be to define the knots of the spline on a
non-equidistant grid such that more knots are placed where the variability of the
data is high.

• Estimation of surfaces via MCMC is relatively slow because the bandwidth of the
posterior precision matrix is much larger than for univariate smoothers. A remedy
might be to update the parameters row- or columnwise rather than all parameters
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c) t = 58 (third stimulus period)
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Figure 2.9: Human brain mapping: The graphs show the spatially smoothed estimates of
the effect of the transformed stimulus from the pixelwise analysis for different time points.
The first row corresponds to t = 18 (first stimulus period), the second row to t = 38 (second
stimulus period) and the third row to t = 58 (third stimulus period). The left panel shows
the estimators with a global variance and the right panel with spatially adaptive variances.
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in one step. Then, the bandwidth of precision matrices of full conditionals reduces
considerably.

• Finally, we intend to extend the approach to non-Gaussian errors e.g. by using similar
sampling schemes as in Albert and Chib (1993) or Fahrmeir and Lang (2001b) for
categorical probit models or as in Fahrmeir and Lang (2001a) for generalized additive
models. First results are very promising.
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ABSTRACT

Generalized additive models (GAM) for modeling nonlinear effects of contin-
uous covariates are now well established tools for the applied statistician.
In this paper we develop Bayesian GAM’s and extensions to generalized
structured additive regression (STAR) based on one or two dimensional
P-splines as the main building block. The approach extends the work of
Part I of this chapter for Gaussian responses. Inference relies on Markov
chain Monte Carlo (MCMC) simulation techniques, and is either based on
iteratively weighted least squares (IWLS) proposals or on latent utility rep-
resentations of (multi)categorical regression models. Our approach covers
the most common univariate response distributions, e.g. the binomial, Pois-
son or gamma distribution, as well as multicategorical responses. For the
first time, we present Bayesian semiparametric inference for the widely used
multinomial logit model. As we will demonstrate through two applications
on the forest health status of trees and a space-time analysis of health in-
surance data, the approach allows realistic modeling of complex problems.
We consider the enormous flexibility and extendability of our approach as a
main advantage of Bayesian inference based on MCMC techniques compared
to more traditional approaches. Software for the methodology presented in
the paper is provided within the public domain package BayesX.

Keywords: geoadditive models, IWLS proposals, multicategorical response, struc-
tured additive predictors, surface smoothing
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2.7 Introduction

Generalized additive models (GAM) provide a powerful class of models for modeling non-
linear effects of continuous covariates in regression models with non-Gaussian responses. A
considerable number of competing approaches is now available for modeling and estimating
nonlinear functions of continuous covariates. Prominent examples are smoothing splines
(e.g. Hastie and Tibshirani 1990), local polynomials (e.g. Fan and Gijbels 1996), regression
splines with adaptive knot selection (e.g. Friedman and Silverman 1989, Friedman 1991,
Stone et al. 1997) and P-splines (Eilers and Marx 1996, Marx and Eilers 1998). Currently,
smoothing based on mixed model representations of GAM’s and extensions is extremely
popular, see Lin and Zhang (1999), Currie and Durban (2002), Wand (2003) and the book
by Ruppert et al. (2003). Indeed, the approach is very promising and has several distinct
advantages, e.g. smoothing parameters can be estimated simultaneously with the regression
functions.

Bayesian approaches are currently either based on regression splines with adaptive
knot selection (e.g. Smith and Kohn 1996, Denison et al. 1998, Biller 2000, Di Matteo et
al. 2001, Biller and Fahrmeir 2001, Hansen and Kooperberg 2002), or on smoothness priors
(Hastie and Tibshirani 2000, Fahrmeir and Lang 2001a, Fahrmeir and Lang 2001b).

In this paper, we extend the work of Part I of this chapter for Gaussian responses based
on one or two dimensional Bayesian P-splines as the main building block. Our approach
covers univariate GAM’s and extensions for the most common response distributions (bi-
nomial, Poisson, gamma) as well as models for multicategorical responses. For the first
time, we present semiparametric Bayesian inference for multinomial logit models. Infer-
ence is fully Bayesian and is based on Markov chain Monte Carlo inference techniques
(a nice introduction into MCMC can be found in Green 2001). We develop a number of
highly efficient updating schemes with iteratively weighted least squares (IWLS) used for
fitting generalized linear models as the main building block. Related algorithms have been
proposed by Gamerman (1997) and Lenk and DeSarbo (2000) for estimating Bayesian gen-
eralized linear mixed models. Compare also Rue (2001) and Knorr–Held and Rue (2002)
who develop efficient MCMC updating schemes for spatial smoothing of poisson responses.
A simple alternative are conditional prior proposals (Knorr–Held 1999) which work sur-
prisingly well in many situations. For categorical response models, alternative and in some
cases more efficient sampling schemes are based on latent utility representations of such
models, see Albert and Chib (1993), Chen and Dey (2000) and Fahrmeir and Lang (2001b)
for (multicategorical) probit models and Holmes and Held (2004) for logit models. The
advantage of such representations for MCMC inference is, that the full conditionals of
the regression coefficients are (multivariate) Gaussian and sampling schemes developed for
Gaussian responses in Part I of this chapter can be utilized with only minor changes. In all
updating schemes, numerical efficiency is guaranteed by using matrix operations for band
or sparse matrices (George and Liu 1981).

Our Bayesian approach for semiparametric regression has the following advantages
compared to existing methodology:



2.7 Introduction 49

• Extendability to more complex formulations
A main advantage of a Bayesian approach for GAM’s is its flexibility and extend-
ability to more complex formulations. Our approach can be well extended (within a
unified framework) to deal with unobserved unit- or cluster specific heterogeneity by
incorporating random intercepts or slopes into the predictor. Spatial heterogeneity
may be considered by incorporating spatial effects. We will discuss two alternatives,
Gaussian Markov random fields (e.g. Besag et al. 1991) and two dimensional P-splines
(compare Part I of this chapter). Models that can deal simultaneously with nonlinear
effects of continuous covariates as well as spatial heterogeneity are called geoadditive
models (Kammann and Wand 2003) and are of growing interest in the recent lit-
erature, see also Fahrmeir and Lang (2001a) and Fahrmeir and Lang (2001b). In
general, we will use models with a structured additive predictor (STAR) including
many well known model classes as special cases. Examples are generalized additive
mixed models, geoadditive models, dynamic models, varying coefficient models and
geographically weighted regression. The latter is well known in the geography litera-
ture (and less known to statisticians), see e.g. Fotheringham, Brunsdon and Charlton
(2002).

Our approach may also be used as a starting point for Bayesian inference in other
model classes or more specialized settings. For example Hennerfeind, Brezger and
Fahrmeir (2003) build on the inference techniques of this paper for developing geoad-
ditive survival models.

• Inference for functions of the parameters
Another important advantage of inference based on MCMC is easy prediction for
unobserved covariate combinations including credible intervals, and the availability
of inference for functions of the parameters (again including credible intervals). We
will give specific examples in our second application.

• Estimating models with a large number of parameters and observations
In Fahrmeir, Kneib and Lang (2004) we compare the relative merits of the full
Bayesian approach presented here, and empirical Bayesian inference based on mixed
model technology where the smoothing parameters are estimated via restricted max-
imum likelihood. Although the standard methodology from the literature has been
improved the algorithms are still of the order p3 where p is the total number of para-
meters. Similar problems arise if the smoothing parameters are estimated via GCV,
see Wood (2000). In our Bayesian approach based on MCMC techniques we can use
a divide and conquer strategy similar to backfitting. The difference to backfitting is,
however, that we are able to estimate the smoothing parameters simultaneously with
the regression parameters with almost negligible additional effort. We are therefore
able to handle problems with more than 1000 parameters and 200000 observations.

The methodology of this paper is included in the public domain program BayesX, a
software package for Bayesian inference. It may be downloaded including a detailed man-
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ual from http://www.stat.uni-muenchen.de/~lang/bayesx. As a particular advantage
BayesX can estimate reasonable complex models and handle fairly large data sets.

We will present examples of STAR models in two applications. In our first application
we analyze longitudinal data on the health status of beeches in northern Bavaria. Important
influential factors on the health state of trees are e.g. the age of the trees, the canopy density
at the stand, calendar time as a surrogate for changing environmental conditions, and the
location of the stand. The second application is a space-time analysis of hospital treatment
costs based on data from a German private health insurance company.

The remainder of this paper is organized as follows: The next section describes Bayesian
GAM’s based on one or two dimensional P-splines and discusses extensions to STAR mod-
els. Section 2.9 gives details about MCMC inference. Section 2.10 contains some simulation
studies in order to gain more insight into the properties of our approach. In Section 2.11
we present two applications on the health status of trees and hospital treatment costs.
Section 2.12 concludes and discusses directions for future research.

2.8 Bayesian STAR models

We first describe usual GAM’s based on Bayesian P-splines (Subsection 2.8.1). In Sub-
section 2.8.2 we include interactions into the predictor. Subsection 2.8.3 deals with unit-
or cluster specific and spatial heterogeneity. We call a predictor with one or two dimen-
sional nonlinear effects of continuous covariates, time scales, and unit- or cluster specific
and spatial heterogeneity a structured additive predictor because it still retains an additive
structure but is more flexible than the usual predictor in GAM’s. Despite the complexity of
the predictor we are able to develop a unified framework for the different priors (Subsection
2.8.4).

2.8.1 GAM’s based on Bayesian P-Splines

Suppose that observations (yi, xi, vi), i = 1, . . . , n, are given, where yi is a response variable,
xi = (xi1, . . . , xip)

′ is a vector of continuous covariates and vi = (vi1, . . . , viq)
′ are further

(mostly categorical) covariates. Generalized additive models (Hastie and Tibshirani 1990)
assume that, given xi and vi the distribution of yi belongs to an exponential family, i.e.

p(yi |xi, vi) = exp

(
yiθi − b(θi)

φ

)
c(yi, φ) (2.16)

where b(·), c(·), θi and φ determine the respective distributions. A list of the most common
distributions and their specific parameters can be found e.g. in Fahrmeir and Tutz (2001),
page 21. The mean µi = E(yi |xi, vi) is linked to a semiparametric additive predictor ηi by

µi = h(ηi), ηi = f1(xi1) + · · ·+ fp(xip) + v′iγ. (2.17)

Here, h is a known response function and f1, . . . , fp are unknown smooth functions of the
continuous covariates and v′iγ represents the strictly linear part of the predictor.
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For modeling the unknown functions fj we follow the approach of Part I of this chap-
ter and use a Bayesian version of P-splines introduced in a frequentist setting by Eilers
and Marx (1996) and Marx and Eilers (1998). The approach assumes that the unknown
functions can be approximated by a polynomial spline of degree l and with equally spaced
knots

ζj0 = xj,min < ζj1 < · · · < ζj,rj−1 < ζjrj = xj,max

over the domain of xj. The spline can be written in terms of a linear combination of
Mj = rj + l B-spline basis functions (De Boor 1978). Denoting the ρ-th basis function by
Bjρ, we obtain

fj(xj) =

Mj∑
ρ=1

βjρBjρ(xj).

By defining the n×Mj design matrices Xj with the elements in row i and column ρ given
by Xj(i, ρ) = Bjρ(xij), we can rewrite the predictor (2.17) in matrix notation as

η = X1β1 + · · ·+Xpβp + V γ. (2.18)

Here, βj = (βj1, . . . , βjMj
)′, j = 1, . . . , p, correspond to the vectors of unknown regression

coefficients. The matrix V is the usual design matrix for linear effects. To overcome the
well known difficulties involved with regression splines, Eilers and Marx (1996) suggest a
relatively large number of knots (usually between 20 to 40) to ensure enough flexibility,
and to introduce a roughness penalty on adjacent regression coefficients to regularize the
problem and avoid overfitting. In their frequentist approach they use penalties based on
squared k-th order differences. Usually first or second order differences are enough. In
our Bayesian approach, we replace first or second order differences with their stochastic
analogues, i.e. first or second order random walks defined by

βjρ = βj,ρ−1 + ujρ, or βjρ = 2βj,ρ−1 − βj,ρ−2 + ujρ (2.19)

with Gaussian errors ujρ ∼ N(0, τ 2
j ) and diffuse priors βj1 ∝ const, or βj1 and βj2 ∝ const,

for initial values, respectively. The amount of smoothness is controlled by the variance
parameter τ 2

j which corresponds to the inverse smoothing parameter in the traditional
approach. By defining an additional hyperprior for the variance parameters the amount
of smoothness can be estimated simultaneously with the regression coefficients. We assign
the conjugate prior for τ 2

j which is an inverse gamma prior with hyperparameters aj and bj,
i.e. τ 2

j ∼ IG(aj, bj). Common choices for aj and bj are aj = 1 and bj small, e.g. b = 0.005 or
bj = 0.0005. Alternatively we may set aj = bj, e.g. aj = bj = 0.001. Based on experience
from extensive simulation studies we use aj = bj = 0.001 as our standard choice. Since
the results may considerably depend on the choice of aj and bj some sort of sensitivity
analysis is strongly recommended. For instance, the models under consideration could be
re-estimated with (a small) number of different choices for aj and bj.

In some situations, a global variance parameter τ 2
j may be not appropriate, for example

if the underlying function is highly oscillating. In such cases the assumption of a global
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variance parameter τ 2
j may be relaxed by replacing the errors ujρ ∼ N(0, τ 2

j ) in (2.19) by
ujρ ∼ N(0, τ 2

j /δjρ). The weights δjρ are additional hyperparameters and assumed to follow
independent gamma distributions δjρ ∼ G(ν

2
, ν

2
). This is equivalent to a t-distribution with

ν degrees of freedom for βj (see e.g. Knorr–Held (1996) in the context of dynamic models).
As an alternative, locally adaptive dependent variances as proposed in Lang et al. (2002)
and Jerak and Lang (2005) could be used as well. Our software is capable of estimating
such models, but we do not investigate them in the following. However, estimation is
straightforward, see Part I of this chapter, Lang et al. (2002) and Jerak and Lang (2005)
for details.

2.8.2 Modeling interactions

In many situations, the simple additive predictor (2.17) may be not appropriate because of
interactions between covariates. In this section we describe interactions between categorical
and continuous covariates, and between two continuous covariates. In the next section, we
also discuss interactions between space and categorical covariates. For simplicity, we keep
the notation of the predictor as in (2.17) and assume for the rest of the section that xj is

now two dimensional, i.e. xij = (x
(1)
ij , x

(2)
ij )′.

Interactions between categorical and continuous covariates can be conveniently modeled
within the varying coefficient framework introduced by Hastie and Tibshirani (1993). Here,

the effect of covariate x
(1)
ij is assumed to vary smoothly over the range of the second covariate

x
(2)
ij , i.e.

fj(xij) = g
(
x

(2)
ij

)
x

(1)
ij . (2.20)

The covariate x
(2)
ij is called the effect modifier of x

(1)
ij . The design matrix Xj is given by

diag(x
(1)
1j , . . . , x

(1)
nj )X

(2)
j where X

(2)
j is the usual design matrix for splines composed of the

basis functions evaluated at the observations x
(2)
ij .

If both interacting covariates are continuous, a more flexible approach for modeling
interactions can be based on two dimensional surface fitting. Here, we concentrate on two
dimensional P-splines described in Part I of this chapter, see also Wood (2003) for a recent
approach based on thin plate splines. We assume that the unknown surface fj(xij) can be
approximated by the tensor product of one dimensional B-splines, i.e.

fj(x
(1)
ij , x

(2)
ij ) =

M1j∑
ρ=1

M2j∑
ν=1

βj,ρνBj,ρ

(
x

(1)
ij

)
Bj,ν

(
x

(2)
ij

)
. (2.21)

The design matrix Xj is now n× (M1j ·M2j) dimensional and consists of products of basis
functions. Priors for βj = (βj,11, . . . , βj,M1jM2j

)′ are based on spatial smoothness priors
common in spatial statistics (see e.g. Besag and Kooperberg 1995). Based on previous
experience, we prefer a two dimensional first order random walk constructed from the four
nearest neighbors. It is usually defined by specifying the conditional distributions of a
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parameter given its neighbors, i.e.

βjρν | · ∼ N

(
1

4
(βjρ−1,ν + βjρ+1,ν + βjρ,ν−1 + βjρ,ν+1),

τ 2
j

4

)
(2.22)

for ρ = 2, . . . ,M1j − 1, ν = 2, . . . ,M2j − 1 and appropriate changes for corners and edges.
Again, we restrict the unknown function fj to have mean zero to guarantee identifiability.

Sometimes it is desirable to decompose the effect of the two covariates x
(1)
j and x

(2)
j into

two main effects modeled by one dimensional functions and a two dimensional interaction
effect. Then, we obtain

fj(xij) = f
(1)
j

(
x

(1)
ij

)
+ f

(2)
j

(
x

(2)
ij

)
+ f

(1|2)
j

(
x

(1)
ij , x

(2)
ij

)
. (2.23)

In this case, additional identifiability constraints have to be imposed on the three functions,
see Part I of this chapter.

2.8.3 Unobserved heterogeneity

So far, we have considered only continuous and categorical covariates in the predictor. In
this section, we relax this assumption by allowing that the covariates xj in (2.17) or (2.18)
are not necessarily continuous. We still pertain the assumption of the preceding section
that covariates xj may be one or two dimensional. Based on this assumptions the models
can be considerably extended within a unified framework. We are particularly interested
in the handling of unobserved unit- or cluster specific and spatial heterogeneity. Models
that can deal with spatial heterogeneity are also called geoadditive models (Kammann and
Wand 2003).

Unit- or cluster specific heterogeneity
Suppose that covariate xj is an index variable that indicates the unit or cluster a par-

ticular observation belongs to. An example are longitudinal data where xj is an individual
index. In this case, it is common practice to introduce unit- or cluster specific i.i.d. Gaussian
random intercepts or slopes, see e.g. Diggle, Haegerty, Liang and Zeger (2002). Suppose
xj can take the values 1, . . . ,Mj. Then, an i.i.d. random intercept can be incorporated
into our framework of structured additive regression by assuming fj(m) = βjm ∼ N(0, τ 2

j ),
m = 1, . . . ,Mj. The design matrixXj is now a 0/1 incidence matrix with dimension n×Mj.

In order to introduce random slopes we assume xj =
(
x

(1)
j , x

(2)
j

)
as in Section 2.8.2. Then,

a random slope with respect to index variable x
(2)
j is defined as fj(xij) = g

(
x

(2)
ij

)
x

(1)
ij with

g
(
x

(2)
ij

)
= βjm ∼ N(0, τ 2

j ). The design matrix Xj is given by diag
(
x

(1)
1j , . . . , x

(1)
nj

)
X

(2)
j

where X
(2)
j is again a 0/1 incidence matrix. Note the close similarity between random

slopes and varying coefficient models. In fact, random slopes may be regarded as varying
coefficient terms with unit- or cluster variable x

(2)
j as the effect modifier.
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Spatial heterogeneity
To consider spatial heterogeneity, we may introduce a spatial effect fj of location xj

to the predictor. Depending on the application, the spatial effect may be further split up
into a spatially correlated (structured) and an uncorrelated (unstructured) effect, i.e. fj =
fstr + funstr. The correlated effect fstr aims at capturing spatially dependent heterogeneity
and the uncorrelated effect funstr local effects.

For data observed on a regular or irregular lattice a common approach for the correlated
spatial effect fstr is based on Markov random field (MRF) priors, see e.g. Besag et al.
(1991). Let s ∈ {1, . . . , Sj} denote the pixels of a lattice or the regions of a geographical
map. Then, the most simple Markov random field prior for fstr(s) = βstr,s is defined by

βstr,s | βstr,u, u 6= s ∼ N

(∑
u∈∂s

1

Ns

βstr,u,
τ 2
str

Ns

)
, (2.24)

where Ns is the number of adjacent regions or pixels, and ∂s denotes the regions which
are neighbors of region s. Hence, prior (2.24) can be seen as a two dimensional extension
of a first order random walk. More general priors than (2.24) are described in Besag et
al. (1991). The design matrix Xstr is a n×Sj incidence matrix whose entry in the i-th row
and s-th column is equal to one if observation i has been observed at location s and zero
otherwise.

Alternatively, the structured spatial effect fstr could be modeled by two dimensional
surface estimators as described in Section 2.8.2. In most of our applications, however, the
MRF proves to be superior in terms of model fit.

For the unstructured effect funstr we may again assume i.i.d. Gaussian random effects
with the location as the index variable.

Similar to continuous covariates and index variables we can again define varying coef-
ficient terms, now with the location index as the effect modifier, see e.g. Fahrmeir et al.
(2003) and Gamerman, Moreira and Rue (2003) for applications. Models of this kind are
known in the geography literature as geographically weighted regression (Fotheringham et
al. 2002).

2.8.4 General structure of the priors

As we have pointed out, it is always possible to express the vector of function evaluations
fj = (fj1, . . . , fjn) of a covariate effect as the matrix product of a design matrix Xj and a
vector of regression coefficients βj, i.e. fj = Xjβj. It turns out that the smoothness priors
for the regression coefficients βj can be cast into a general form as well. It is given by

βj | τ 2
j ∝

1

(τ 2
j )
rk(Kj)/2

exp

(
− 1

2τ 2
j

β′jKjβj

)
, (2.25)

where Kj is a penalty matrix which depends on the prior assumptions about smoothness
of fj and the type of covariate. E.g. for a P-spline with a first order random walk penalty
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Kj is given by

Kj =


1 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 1

 .

For an i.i.d. random effect the penalty matrix is the identity matrix, i.e. Kj = I. For the
variance parameter an inverse gamma prior (the conjugate prior) is assumed, i.e. τ 2

j ∼
IG(aj, bj).

The general structure of the priors particularly facilitates the description and imple-
mentation of MCMC inference in the next section.

2.9 Bayesian inference via MCMC

Bayesian inference is based on the posterior of the model which is given by

p(α | y) ∝ L(y, β1, τ
2
1 , . . . , βp, τ

2
p , γ)

p∏
j=1

1

(τ 2
j )
rk(Kj)/2

exp

(
− 1

2τ 2
j

β′jKjβj

) p∏
j=1

(τ 2
j )

−aj−1 exp

(
− bj
τ 2
j

)
,

where α is the vector of all parameters in the model. The likelihood L(·) is a product of
the individual likelihoods (2.16). Since the posterior is analytically intractable we make
use of Markov chain Monte Carlo (MCMC) simulation techniques. Models with Gaussian
responses are already covered in Part I of this chapter. Here, the main focus is on methods
applicable for general distributions from an exponential family. We first develop in Section
2.9.1 several sampling schemes based on iteratively weighted least squares (IWLS) used
for estimating generalized linear models (Fahrmeir and Tutz 2001). For many models with
(multi)categorical responses alternative sampling schemes can be developed by considering
their latent utility representations (Section 2.9.2). In either case, MCMC simulation is
based on drawings from full conditionals of blocks of parameters, given the rest and the
data. We use the blocks β1, . . . , βp, τ

2
1 , . . . , τ

2
p , γ.

An alternative to MCMC techniques is proposed in Fahrmeir et al. (2004). Here, mixed
model representations and inference techniques are used for estimation. The drawback is
that models with a large number of parameters and/or observations as well as multivariate
responses can not be handled by the approach.

2.9.1 Updating by iteratively weighted least squares (IWLS) pro-
posals

The basic idea is to combine Fisher scoring or IWLS (e.g. Fahrmeir and Tutz 2001) for
estimating regression parameters in generalized linear models, and the Metropolis-Hastings
algorithm. More precisely, the goal is to approximate the full conditionals of regression
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parameters βj and γ by a Gaussian distribution, obtained by accomplishing one Fisher
scoring step in every iteration of the sampler. Suppose we want to update the regression
coefficients βj of the function fj with current state βcj of the chain. Denote ηc the current
predictor based on the current regression coefficients βcj . Then, according to IWLS, a new
value βpj is proposed by drawing a random number from the multivariate Gaussian proposal
distribution q(βcj , β

p
j ) with precision matrix and mean

Pj = X ′
jW (ηc)Xj +

1

τ 2
j

Kj, mj = P−1
j X ′

jW (ηc)(ỹ(ηc)− η̃c). (2.26)

The matrix W (ηc) = diag(w1(η
c), . . . , wn(η

c)) and the vector ỹ(ηc) = (ỹ1(η
c), . . . , ỹ1(η

c))′

contain the usual weights and working observations for IWLS with w−1
i (ηci ) = b′′(θi){g′(µi)}2

and ỹ(ηci ) = ηci + (yi − µi)g
′(µi). The weights and the working observations depend on the

current predictor ηc which in turn depends on the current state βcj . The vector η̃c is the
part of the predictor associated with all remaining effects in the model. The proposed new
value βpj is accepted with probability

α(βcj , β
p
j ) =

L(y, . . . , βpj , . . . , γ
c)p(βpj | (τ 2

j )
c)q(βpj , β

c
j )

L(y, . . . , βcj , . . . , γ
c)p(βcj | (τ 2

j )
c)q(βcj , β

p
j )
. (2.27)

The computation of the likelihood L(y, . . . , βpj , . . . , γ
c) and the proposal density q(βpj , β

c
j ) is

based on the current predictor ηc where Xjβ
c
j is exchanged by Xjβ

p
j , i.e. ηc = ηc+Xj(β

p
j −

βcj ). In order to emphasize implementation aspects and details we use here and elsewhere
a pseudo code like notation. Note that the computation of q(βpj , β

c
j ) requires to recompute

Pj and mj. If the proposal is accepted we set βcj = βpj , otherwise we keep the current βcj
and exchange Xjβ

p
j in ηc by Xjβ

c
j .

A slightly different sampling scheme uses the current posterior mode approximation mc
j

rather than βcj for computing the IWLS weight matrix W and the transformed responses
ỹ in (2.26). More precisely, we first replace Xjβ

c
j in the current predictor ηc by Xjm

c
j,

i.e. ηc = ηc +Xj(m
c
j − βcj ). The vector mc

j is the mean of the proposal distribution used in
the last iteration of the sampler. We proceed by drawing a proposal βpj from the Gaussian
distribution with covariance and mean (2.26). The difference of using mc

j rather than βcj in
ηc is that the proposal is independent of the current state of the chain, i.e. q(βcj , β

p
j ) = q(βpj ).

Hence, it is not required to recompute Pj and mj when computing the proposal density
q(βpj , β

c
j ) in (2.27). The computation of the likelihood L(y, . . . , βpj , . . . , γ

c) is again based
on the current predictor ηc where Xjm

c
j is exchanged by Xjβ

p
j , i.e. ηc = ηc +Xj(β

p
j −mc

j).
If the proposal is accepted we set βcj = βpj , otherwise we keep the current βcj and exchange
Xjβ

p
j in ηc by Xjβ

c
j . The last step is to set mc

j = mj.
The advantage of the updating scheme based on the current mode approximation mc

j is
that acceptance rates are considerably higher compared to the sampling scheme based on
the current βcj . This is particularly important for updating spatial effects based on Markov
random field priors because of the usually high dimensional parameter vector βj.

It turns out that convergence to the stationary distribution can be slow for both al-
gorithms because of inappropriate starting values for the βj. As a remedy, we initialize
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the Markov chain with posterior mode estimates which are obtained from a backfitting
algorithm with fixed and usually large values for the variance parameters.

Note, that the posterior precision matrix Pj in (2.26) is a band matrix or can be at
least transformed into a matrix with band structure. For one dimensional P-splines, the
band size is max{degree of spline, order of differences}, for two dimensional P-splines the
band size is Mj · l + l, and for i.i.d. random effects the posterior precision matrix is
diagonal. For a Markov random field, the precision matrix is not a priori a band matrix
but sparse. It can be transformed into a band matrix (with differing band size in every
row) by reordering the regions using the reverse Cuthill Mc-Kee algorithm (see George
and Liu (1981) p. 58 ff). Hence, random numbers from the (high dimensional) proposal
distributions can be efficiently drawn by using matrix operations for sparse matrices, in
particular Cholesky decompositions. In our implementation we use the envelope method
for Cholesky decompositions of sparse matrices as described in George and Liu (1981), see
also Rue (2001) and Part I of this chapter.

Updating of the variance parameters τ 2
j is straightforward because their full conditionals

are inverse gamma distributions with parameters

a′j = aj +
rank(Kj)

2
and b′j = bj +

1

2
β′jKjβj. (2.28)

We finally summarize the second proposed IWLS updating scheme based on the current
mode approximations mc

j and mc
γ. The first IWLS updating scheme based on the current

βcj and γcj is very similar and therefore omitted. In what follows, the order of evaluations
is stressed because it is crucial for computational efficiency.

Sampling scheme 1 (IWLS proposals based on current mode):

For implementing the sampling scheme described below the quantities βcj , β
p
j , (τ 2

j )
c, γc,

mc
j, Xj, mj, Pj and ηc must be created and enough memory must be allocated to store

them.

1. Initialization:
Compute the posterior modes mc

j and γc for β1, . . . , βp and γ given fixed variance
parameters τ 2

j = cj, (e.g. cj = 10). The mode is computed via backfitting within
Fisher scoring. Use the posterior mode estimates as the current state βcj , γ

c of the
chain. Set (τ 2

j )
c = cj. Store the current predictor in the vector ηc.

2. For j = 1, . . . , p update βj:

• Compute the likelihood L(y, . . . , βcj , . . . , γ
c).

• Exchange Xjβ
c
j in the current predictor ηc by Xjm

c
j, i.e. ηc = ηc +Xj(m

c
j −βcj ).

• Draw a proposal βpj from the Gaussian proposal density q(βcj , β
p
j ) with mean mj

and precision matrix Pj given in (2.26).

• Exchange Xjm
c
j in the current predictor ηc by Xjβ

p
j , i.e. ηc = ηc+Xj(β

p
j −mc

j).
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• Compute the likelihood L(y, . . . , βpj , . . . , γ
c).

• Compute q(βpj , β
c
j ), q(β

c
j , β

p
j ), p(β

c
j | (τ 2

j )
c) and p(βpj | (τ 2

j )
c).

• Accept βpj as the new state of the chain βcj with probability (2.27). If the
proposal is rejected exchange Xjβ

p
j in the current predictor ηc by Xjβ

c
j , i.e. ηc =

ηc +Xj(β
c
j − βpj ).

• Set mc
j = mj.

3. Update fixed effects parameters:
Update fixed effects parameters by similar steps as for updating of βj.

4. For j = 1, . . . , p update variance parameters τ 2
j :

Variance parameters are updated by drawing from the inverse gamma full condition-
als with hyperparameters given in (2.28). Obtain (τ 2

j )
c.

Usually convergence and mixing of Markov chains is excellent with both variants of
IWLS proposals. If, however, the effect of two covariates x

(1)
j and x

(2)
j is decomposed

into main effects and a two dimensional interaction effect as in (2.23), severe convergence
problems for the variance parameter of the interaction effect are the rule. To overcome
the difficulties, we follow Knorr–Held and Rue (2002) who propose to construct a joint
proposal for the parameter vector βj and the corresponding variance parameter τ 2

j , and
to simultaneously accept/reject (βj, τ

2
j ). We illustrate the updating scheme with IWLS

proposals based on the current state of the chain βcj . We first sample (τ 2
j )
p from a proposal

distribution for τ 2
j , and subsequently draw from the IWLS proposal for the corresponding

regression parameters given the proposed (τ 2
j )
p. The proposal distribution for τ 2

j may
depend on the current state (τ 2

j )
c of the variance, but must be independent of βcj . As

suggested by Knorr–Held and Rue (2002), we construct the proposal by multiplying the
current state (τ 2

j )
c by a random variable z with density proportional to 1 + 1/z on the

interval [1/f, f ], where f > 1 is a tuning constant. The density is independent of the
regression parameters and the joint proposal for (βj, τ

2
j ) is the product of the two proposal

densities. We tune f in the burn in period to obtain acceptance probabilities of 30-60%.
The acceptance probability is given by

α(βcj , (τ
2
j )
c, βpj , (τ

2
j )
p) =

L(y, . . . , βpj , (τ
2
j )
p, . . . , γc)

L(y, . . . , βcj , (τ
2
j )
c, . . . , γc)

p(βpj | (τ 2
j )
p)p((τ 2

j )
p)

p(βcj | (τ 2
j )
c)p((τ 2

j )
c)

q(βpj , β
c
j )

q(βcj , β
p
j )
. (2.29)

Computation of the acceptance probability requires the evaluation of the normalizing con-
stant of the IWLS proposal which is given by |Pj | 0.5. The determinant of Pj can be
computed without significant additional effort as a by-product of the Cholesky decomposi-
tion. Note also that the proposal ratio of the variance parameter cancels out. Summarizing,
we obtain the following sampling scheme:
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Sampling scheme 2: IWLS proposals, update βj’s and τ 2
j ’s in one block:

1. Initialization:
Compute the posterior mode for β1, . . . , βp and γ given fixed variance parameters
τ 2
j = cj, (e.g. cj = 10). Use the posterior mode estimates as the current state βcj , γ

c

of the chain. Set (τ 2
j )
c = cj. Store the current predictor in the vector ηc.

2. For j = 1, . . . , p update βj, τ
2
j :

• Compute the likelihood L(y, . . . , βcj , (τ
2
j )
c, . . . , γc).

• Propose new τ 2
j :

Sample a random number z with density proportional to 1+1/z on the interval
[1/f, f ], f > 1. Set (τ 2

j )
p = z · (τ 2

j )
c as the proposed new value for the jth

variance parameter.

• Draw a proposal βpj from q(βcj , β
p
j ) with mean mj((τ

2
j )
p) and precision matrix

Pj((τ
2
j )
p) defined in (2.26).

• Exchange Xjβ
c
j in the current predictor ηc by Xjβ

p
j , i.e. ηc = ηc +Xj(β

p
j − βcj ).

• Compute the likelihood L(y, . . . , βpj , (τ
2
j )
p, . . . , γc).

• Compute q(βcj , β
p
j ), p(β

c
j | (τ 2

j )
c), p(βpj | (τ 2

j )
p), p((τ 2

j )
c) and p((τ 2

j )
p).

• Based on the current predictor ηc compute again Pj and mj defined in (2.26)
and use these quantities to compute q(βpj , β

c
j ).

• Accept βpj , (τ
2
j )
p with probability (2.29). If the proposals are rejected exchange

Xjβ
p
j in the current predictor ηc by Xjβ

c
j , i.e. ηc = ηc +Xj(β

c
j − βpj ).

3. Update fixed effects parameters

We conclude this section with two remarks:

• Suppressing the computation of weights:
A natural source for saving computing time is to avoid the (re)computation of the
IWLS weight matrix W (and thereby the matrix X ′WX) in every iteration of the
sampler. A possible strategy is to recompute the weights only every t-th iteration.
It is even possible to keep the weights fixed after the burn in period. Our experience
suggests that for most distributions the acceptance rates and the mixing of the chains
is almost unaffected by keeping the weights fixed.

• Multinomial logit models:
Our sampling schemes for univariate response distributions can be readily extended
to the widely used multinomial logit model. Suppose that the response is multi-
categorical with k categories, i.e. yi = (yi1, . . . , yik)

′ where yir = 1 if the r-th cate-
gory has been observed and zero otherwise. The multinomial logit model assumes
that given covariates and parameters the responses yi are multinomial distributed,
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i.e. yi |xi, vi ∼ MN(1, πi) where πi = (πi1, . . . , πik)
′. The covariates enter the model

by assuming

πir =
exp(ηir)

1 +
k−1∑
l=1

exp(ηil)

, r = 1, . . . , k − 1,

where

ηir = f1r(xi1r) + · · ·+ fpr(xipr) + v′irγr, r = 1, . . . , k − 1,

are structured additive predictors of the covariates (as described in Section 2.8.3).
Note that our formulation allows category specific covariates. For identifiability rea-
sons one category must be chosen as the reference category, without loss of generality
we use the last category, i.e. πik = 1−

∑k−1
r=1 πir. Abe (1999) (see also Hastie and Tib-

shirani (1990), Ch. 8.1) describes IWLS in combination with backfitting to estimate
a multinomial logit model with additive predictors. Here, the transformed responses

ỹir = ηir +
1

πir(1− πir)
(yir − πir)

and weights

wir = πir(1− πir)

are used for subsequent backfitting to obtain estimates of the unknown functions.
We can use the same transformed responses and weights for our IWLS propos-
als and the sampling algorithms described above readily extend to multicategorical
logit models. E.g. sampling scheme 2 successively updates parameters in the order
(β11, τ

2
11), (β12, τ

2
12),. . . , (β1p, τ

2
1p),γ1,. . . ,(βk−1,1, τ

2
k−1,1),. . . ,(βk−1,p, τ

2
k−1,p), γk−1, where

βjr, τ
2
jr correspond to the regression parameters and variance parameter of the j-th

nonlinear function fjr of category r. Again, computing time may be saved by avoiding
the computation of the weights in every iteration of the sampler.

2.9.2 Inference based on latent utility representations of cate-
gorical regression models

For models with categorical responses alternative sampling schemes based on latent utility
representations can be developed. The seminal paper by Albert and Chib (1993) develops
algorithms for probit models with ordered categorical responses. The case of probit models
with unordered multicategorical responses is dealt with e.g. in Chen and Dey (2000) or
Fahrmeir and Lang (2001b). Recently, another important data augmentation approach
for binary and multinomial logit models has been presented by Holmes and Held (2004).
The adaption of these sampling schemes to the models discussed in this paper is more
or less straightforward. We briefly illustrate the concept for binary data, i.e. yi takes
only the values 0 or 1. We first assume a probit model. Conditional on the covariates
and the parameters, yi follows a Bernoulli distribution yi ∼ B(1, µi) with conditional
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mean µi = Φ(ηi) where Φ is the cumulative distribution function of a standard normal
distribution. Introducing latent variables

Ui = ηi + εi, (2.30)

with εi ∼ N(0, 1), we define yi = 1 if Ui ≥ 0 and yi = 0 if Ui < 0. It is easy to show that
this corresponds to a binary probit model for the yi’s. The posterior of the model aug-
mented by the latent variables depends now on the extra parameters Ui. Correspondingly,
additional sampling steps for updating the Ui’s are required. Fortunately, sampling the Ui’s
is relatively easy and fast because the full conditionals are truncated normal distributions.
More specifically, Ui | · ∼ N(ηi, 1) truncated at the left by 0 if yi = 1 and truncated at the
right if yi = 0. Efficient algorithms for drawing random numbers from a truncated normal
distribution can be found in Geweke (1991) or Robert (1995). The advantage of defining a
probit model through the latent variables Ui is that the full conditionals for the regression
parameters βj (and γ) are Gaussian with precision matrix and mean given by

Pj = X ′
jXj +

1

τ 2
j

Kj, mj = P−1
j X ′

j(U − η̃).

Hence, the efficient and faster sampling schemes developed for Gaussian responses can be
used with slight modifications. Updating of βj and γ can be done exactly as described
in Part I of this chapter using the current values U c

i of the latent utilities as (pseudo)
responses.

For binary logit models, the sampling schemes become more complicated and less effi-
cient (regarding computing time). A logit model can be expressed in terms of latent utilities
by assuming εi ∼ N(0, λi) in (2.30) with λi = 4ψ2

i , where ψi follows a Kolmogorov-Smirnov
distribution (Devroye 1986). Hence, εi is a scale mixture of normal form with a marginal
logistic distribution (Andrews and Mallows (1974)). The main difference to the probit case
is that additional parameters λi must be sampled. Holmes and Held (2004) propose to joint
update Ui, λi by first drawing from the marginal distribution p(Ui | β1, . . . , βp, γ, yi) of the
U ′
is followed by drawing from p(λi |Ui, β1, . . . , βp, γ). The marginal densities of the U ′

is are
truncated logistic distributions while p(λi |Ui, β1, . . . , βp) is not of standard form. Detailed
algorithms for sampling from both distributions can be found in Holmes and Held (2004),
appendix A3 and A4. Similar to probit models the full conditionals for the regression
parameters βj are Gaussian with precision matrix and mean given by

Pj = X ′
jΛ

−1Xj +
1

τ 2
j

Kj, mj = P−1
j X ′

jΛ
−1(U − η̃) (2.31)

with weight matrix Λ = diag(λ1, . . . , λn). This updating scheme is considerably slower than
the scheme for probit models. It is also much slower than the IWLS schemes discussed in
Section 2.9.1. The reason is that drawing random numbers from p(λi |Ui, β1, . . . , βp, γ) is
based on rejection sampling and therefore time consuming. Moreover, the matrix products
X ′
jΛ

−1Xj in (2.31) must be recomputed in every iteration of the sampler. The advantage of
the updating scheme is, however, that the acceptance rates will always be unity regardless
of the number of parameters. This may be a particular advantage when estimating high
dimensional Markov random fields.
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2.9.3 Future prediction with Bayesian P-Splines

In our second application on health insurance data it is necessary to get estimates of a
function fj outside the range of xj. More specifically, we are interested in a one year
ahead prediction of a time trend. Future prediction with Bayesian P-splines is obtained
in a similar way as described in Besag, Green, Higdon and Mengersen (1995) for simple
random walks. The spline can be defined outside the range of xj by defining additional
equidistant knots and by computing the corresponding B-spline basis functions. Samples
of the additional regression parameters βj,Mj+1, βj,Mj+2, . . . are obtained by continuing the

random walks in (2.19). E.g. for a second order random walk samples β
(t)
j,Mj+1, t = 1, 2, 3, . . .

are obtained through β
(t)
j,Mj+1 ∼ N(2β

(t)
j,Mj

−β(t)
j,Mj−1, (τ

2
j )

(t)), i.e. the samples of βj,Mj
, βj,Mj−1

and τ 2
j are inserted into (2.19). Samples of additional parameters βj,Mj+2, . . . are computed

accordingly.

2.10 Simulations

We have carried out several simulation studies to gain insight into the properties of our
models and sampling schemes. We first considered usual functions (e.g. sine, linear,
quadratic etc.) of continuous covariates, similar to Section 2.4 of Part I of this chap-
ter. In turned out that our approach is competitive but surprising results did not occur.
The presentation of results is therefore omitted. Section 2.10.1 aims at demonstrating
that our sampling schemes for multinomial logit models work satisfactorily. A comparison
with other approaches in the literature for two dimensional surface estimation is given in
Section 2.10.2. In Fahrmeir et al. (2004) we carefully compare the full Bayesian approach
presented here with empirical Bayesian inference based on mixed model technology. Here,
complex models with STAR predictor are used.

2.10.1 Multinomial logit models

In order to demonstrate the practicability of our sampling schemes for multinomial logit
models, we used a three categorical model, i.e.

yi = (yi1, yi2, yi3)
′ ∼M3(ni, (πi1, πi2, πi3))

with predictors

ηi1 = f11(xi1) + f12(xi2)

and

ηi2 = f21(xi1) + f22(xi2).

For the functions we chose

f11(xi1) = cos(π · xi1/3), f12(xi2) = sin(π · (xi2 · 2− 1))
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and
f21(xi1) = xi1/3, f22(xi2) = sin(2 · π · (xi2 · 2− 1)).

The values of x1 are chosen on an equidistant grid of 100 design points between -3 and 3,
the values of x2 are chosen between 0 and 1. To assess the dependence of results on the
sample size we used ni = 5, 10, 20 corresponding to sample sizes n = 500, 1000, 2000. We
simulated 250 replications for every sample size. We are not aware of any other publicly
available software for fitting semiparametric multinomial logit models. Hence, comparisons
with competing approaches were not possible.

Estimates are based on cubic P-splines with 20 knots and second order random walk
penalty. For the hyperparameters aj and bj we tested aj = 1, bj = 0.005 and aj = bj =
0.001. Estimates for both choices are relatively similar with slightly better results for the
choice aj = bj = 0.001 which is in agreement with the findings in Fahrmeir et al. (2004).
In the following the presentation of results is restricted to the choice aj = bj = 0.001.

Figure 2.10 shows boxplots of the empirical log(MSE) for the four estimated functions.
Figures 2.11 and 2.12 display function estimates for the four functions and different sam-
ple sizes averaged over the 250 replications. Finally, Table 2.4 investigates the coverage of
pointwise credible intervals for nominal levels of 80 and 95 percent. Using MCMC simula-
tion techniques, credible intervals are estimated by computing the respective quantiles of
the sampled function evaluations. We can draw the following conclusions:

• The quality of estimates depends on the sample size with MSE’s decreasing with
increasing sample size. For n = 500 function estimates for functions f12 and par-
ticularly f22 are considerably biased. The bias decreases, however, with increasing
sample size. For n = 2000 observations all functions are estimated with negligible
bias.

• The quality of estimates depends on the curvature of the functions with increased
bias for functions with higher curvature.

• The coverage of pointwise credible intervals depends on the bias of the point esti-
mates. If the estimates are biased, as is the case for f12, f22 and n = 500, the coverage
rates are slightly below the nominal level. Otherwise, the coverage rates are close to
or above the nominal levels.
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Figure 2.10: Simulation study on multinomial logit models. The panels a)-d) show boxplots
of the empirical log(MSE) for the four functions f11, f12, f21 and f22.
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Figure 2.11: Simulation study on multinomial logit models. The left panels show func-
tion estimates for f11 averaged over the 250 replications. The right panels show function
estimates for f12. For comparison the true functions are additionally included (solid lines).
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Figure 2.12: Simulation study on multinomial logit models. The left panels show func-
tion estimates for f21 averaged over the 250 replications. The right panels show function
estimates for f22. For comparison the true functions are additionally included (solid lines).
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Table 2.4: Simulation study on multinomial logit models. Average coverage rates of point-
wise 80% and 95% credible intervals.

Average coverage 80% Average coverage 95%

n=500 f11 81 96.1
f12 79.6 94.5
f21 85 97.7
f22 78.8 93.8

n=1000 f11 82.7 96
f12 81.6 95.2
f21 87.1 97.4
f22 83.2 96.2

n=2000 f11 81 96
f12 84.1 96.7
f21 85.9 98.1
f22 83.6 96.6
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2.10.2 Two dimensional surface estimation

In this section we study the performance of two dimensional P-splines and compare them
with other approaches in the literature. We simulated data from two logit models. The
respective predictors contain only a two dimensional surface. For the first model we used

f1(x1, x2) = 1.5 · (N(µ1,Σ1, x1, x2) +N(µ2,Σ2, x1, x2)− 1.406)

whereN(µ,Σ, x1, x2) denotes a bivariate normal density with mean µ and covariance matrix
Σ evaluated at x1 and x2. We set µ1 = (0.25, 0.75)′, Σ1,11 = Σ1,22 = 0.05, Σ1,12 = Σ1,21 =
0.01, µ2 = (0.75, 0.25)′, Σ2,11 = Σ2,22 = 0.1 and Σ2,12 = Σ2,21 = 0.01. A similar function
has been used in Kohn et al. (2001). The covariates (x1, x2) were simulated uniformly over
the unit square. The sample size is n = 600 observations.

In the second model we used a function from Wood, Kohn, Shively and Jiang (2002).
It is given by

f2(x1, x2) = 1.9 · [1.35 + exp(x1) · sin(13 · (x1 − 0.6)2) · exp(−x2) · sin(7 · x2)]− 3.5,

where x1, x2 are uniformly distributed on a regular and equidistant 20 by 20 grid. The
sample size is n = 400 observations. Both functions f1 and f2 are shown in Figure 2.13.

We simulated 250 replications and applied the following estimators:

• Two dimensional Bayesian cubic P-splines on a 12 by 12 grid of inner knots (hence-
forth BP). We examined both variants of IWLS proposals and the data augmentation
scheme by Holmes and Held (2004) and obtained identical results as required. We
tested the same choices for the hyperparameters of the variance as in Section 2.10.1.
Again, the results are quite insensitive to the choice of hyperparameters but for
aj = bj = 0.001 slightly better results are obtained. In the following, the presenta-
tion is restricted to this case.

• Thin plate splines proposed by Wood (2003) (henceforth TPS).

• Smoothing splines as implemented in the software package grkpack (available at
http://lib.stat.cmu.edu), see Wang (1995).

• Loess as implemented in S-plus. The smoothing parameter is chosen by stepwise
selection with the S-plus procedure step.gam.

• Clive Loader’s locfit with fixed smoothing parameter (henceforth locfitfix).

• Clive Loader’s locfit with adaptive smoothing parameter, see Cleveland and Grosse
(1991) and Loader (1997).

Figure 2.14 shows boxplots of log(MSE) for the various estimators. Figure a) corre-
sponds to model one and Figure b) to model two. The average coverage rates of pointwise
credible intervals can be found in Table 2.5. We draw the following conclusions:
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Figure 2.13: Simulation study on two dimensional surface estimation. True functions f1

and f2 used for simulations.

• In terms of the MSE measure Bayesian P-splines are competitive. Slightly better
results are obtained with Wood’s thin plate splines.

• The coverage of pointwise credible intervals is close to or slightly above the nominal
level for BP. Acceptable coverage rates are also obtained with TPS. The coverage
rates of the other estimators are usually far below the nominal level.
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Figure 2.14: Simulation study on two dimensional surface estimation. Boxplots of
log(MSE) for the various surface estimators. From left to right the boxplots correspond to
BP, TPS, grkpack, loess, locfitfix and locfit.
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Table 2.5: Simulation study on two dimensional surface estimation. Average coverage
rates of pointwise 80% and 95% credible intervals.

Ave. coverage 80% (f1) Mean coverage 95% (f1)
BP 83% 96.6%
TPS 75.1% 92.3%

grkpack 68.4% 87.4%
loess 69.5% 88.3%

locfitfix 63.9% 81.9%
locfit 56.9% 74.5%

Ave. coverage 80% (f2) Mean coverage 95% (f2)
BP 81.9% 95.5%
TPS 80.4% 94.3%

grkpack 70.9% 87.9%
loess 77.2% 92.5%

locfitfix 72.1% 88.8%
locfit 59.4% 77.2%
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2.11 Applications

2.11.1 Longitudinal study on forest health

In this longitudinal study on the health status of trees, we analyze the influence of calendar
time t, age of trees A (in years), canopy density CP (in percent) and location L of the
stand on the defoliation degree of beeches. Data have been collected in yearly forest damage
inventories carried out in the forest district of Rothenbuch in northern Bavaria from 1983
to 2001. There are 80 observation points with occurrence of beeches spread over an area
extending about 15 km from east to west and 10 km from north to south. The degree of
defoliation is used as an indicator for the state of a tree. It is measured in three ordered
categories, with yit = 1 for ”bad” state of tree i in year t, yit = 2 for ”medium” and yit = 3
for ”good”. A detailed data description can be found in Göttlein and Pruscha (1996).

We use a three-categorical ordered probit model based on a latent semiparametric model
Uit = ηit + εit with predictor

ηit = f1(t) + f2(Ait) + f1|2(t, Ait) + f3(CPit) + fstr(Li). (2.32)

The calendar time trend f1(t) and the age effect f2(A) are modeled by cubic P-splines
with a second order random walk penalty. The interaction effect between calendar time
and age f1|2(t, A) is modeled by a two dimensional cubic P-splines on a 12 by 12 grid of
knots. Since canopy density is measured only in 11 different values (0%, 10%,. . . ,100%) we
use a simple second order random walk prior (i.e. a P-spline of degree 0) for f3(CP ). For
the spatial effect fstr(L) we experimented with both a two dimensional P-spline (model 1)
and a Markov random field prior (model 2). Following Fahrmeir and Lang (2001b), the
neighborhood ∂s of trees for the Markov random field includes all trees u with Euclidian
distance d(s, u) ≤ 1.2 km. In terms of the DIC (Spiegelhalter et al. 2002), the model based
on the Markov random field is preferable. An unstructured spatial effect funstr is excluded
from the predictor for the following two reasons. First, a look at the map of observation
points (see Figure 2.17) reveals some sites with only one neighbor, making the identification
of a structured and an unstructured effect difficult if not impossible. The second reason is
that for each of the 80 sites only 19 observations on the same tree are available with only
minor changes of the response category. In fact, there are only a couple of sites where all
three response categories have been observed.

The data have been already analyzed in Fahrmeir and Lang (2001b) (for the years 1983-
1997 only). Here, nonlinear functions have been modeled solely by random walk priors.
Also, the modeling of the interaction between calendar time and age is less sophisticated.

Since the results for model 1 and 2 differ only for the spatial effect, we present for the
remaining covariates only estimates based on model 2. All results are based on the choice
aj = bj = 0.001 for the hyperparameters of the variances. A sensitivity analysis revealed
that the results are robust to other choices of aj and bj. Figure 2.15 shows the nonlinear
main effects of calendar time and age of the tree as well as the effect of canopy density. The
interaction effect between calendar time and age is depicted in Figure 2.16. The spatial
effect is shown in Figure 2.17. Results based on a two dimensional P-spline can be found
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in the left panels, and for a Markov random field in the right panels. Shown are posterior
probabilities based on a nominal level of 80% (top panels) and 95% (bottom panels).

As we might have expected younger trees are in healthier state than the older ones. We
also see that trees recover after the bad years around 1986, but after 1994 health status
declines to a lower level again. The interaction effect between time and age is remarkably
strong. In the beginning of the observation period young trees are affected higher than
the average from bad environmental conditions. Thereafter, however, they recover better
than average. The distinct monotonic increase of the effect of canopy densities ≥ 30%
gives evidence that beeches get more shelter from bad environmental influences in stands
with high canopy density. The spatial effect based on the two dimensional P-spline and
the Markov random field are very similar. The Markov random field is slightly rougher (as
could have been expected). Note that the spatial effect is quite strong and therefore not
negligible.

2.11.2 Space-time analysis of health insurance data

In this section we analyze space-time data from a German private health insurance com-
pany. In a consulting case the main interest was on analyzing the dependence of treatment
costs on covariates with a special emphasis on modeling the spatio-temporal development.
The data set contains individual observations for a sample of 13.000 males (with about
160.000 observations) and 1.200 females (with about 130.000 observations) in West Ger-
many for the years 1991-1997. The variable of primary interest is the treatment cost C
in hospitals. Except some categorical covariates characterizing the insured person we ana-
lyzed the influence of the continuous covariates age (A) and calendar time (t) as well as the
influence of the district (D) where the policy holder lives. We carried out separate analysis
for men and women. We also distinguish between 3 types of health services, ”accommo-
dation”, ”treatment with operation” and ”treatment without operation”. In this demon-
strating example, we present only results for males and ”treatment with operation”. Since
the treatment costs are nonnegative and considerably skewed we assume that the costs for
individual i at time t given covariates xit are gamma distributed, i.e. Cit |xit ∼ Ga(µit, φ)
where φ is a scale parameter and the mean µit is defined as

µit = exp(ηit) = exp(γ0 + f1(t) + f2(Ait) + f3(Dit)).

For the effects of age and calendar time we assumed cubic P-splines with 20 knots and
a second order random walk penalty. To distinguish between spatially smooth and small
scale regional effects, we further split up the spatial effect f3 into a spatially structured
and a unstructured effect, i.e.

f3(Dit) = fstr(Dit) + funstr(Dit)

For the unstructured effect funstr we assume i.i.d. Gaussian random effects. For the spatially
structured effect we tested both a Markov random field prior and a two dimensional P-
spline on a 20 by 20 knots grid. Both sampling schemes 1 and 2 may be used for posterior
inference in this situation.
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The estimation of the scale parameter φ deserves special attention because MCMC in-
ference is not trivial. In analogy to the variance parameter in Gaussian response models, we
assume an inverse gamma prior with hyperparameters aφ and bφ for φ, i.e. φ ∼ IG(aφ, bφ).
Using this prior the full conditional for φ is given by

p(φ | ·) ∝
(

1

Γ(φ)φφ

)n
φaφ−1 exp(−φb′φ)

with
b′φ = bφ +

∑
i,t

(log(µit)− log(Cit) + Cit/µit).

This distribution is not of standard form. Hence, the scale parameter must be updated by
Metropolis-Hastings steps. We update φ by drawing a random number φp from an inverse
gamma proposal distribution with a variance s2 and a mean equal to the current state of
the chain φc. The variance s2 is a tuning parameter and must be chosen appropriately
to guarantee good mixing properties. We choose s2 such that the acceptance rates are
roughly between 30 and 60 percent.

It turns out that the results are unsensitive to the choice of hyperparameters aj and bj.
The presentation of results is therefore restricted to the standard choice aj = bj = 0.001
for the hyperparameters. of the variances.

Figure 2.18 shows the time trend f1 (panel a) and the age effect f2 (panel b). Shown
are the posterior means together with 80% and 95% pointwise credible intervals. The
effect for the year 1999 is future prediction explaining the growing uncertainty for the time
effect in this year. Note also the large credible intervals of the age effect for individuals of
age 90 and above. The reason are small sample sizes for these age groups. To gain more
insight into the size of the effects, panels c) and d) display the marginal effects fmarginalj

which are defined as fmarginalj (xj) = exp(γ0 + fj(xj)), i.e. the mean of treatment costs with
the values of the remaining covariates fixed such that their effect is zero. The marginal
effects (including credible intervals) can be easily estimated in a MCMC sampling scheme
by computing (and storing) fmarginalj (xj) in every iteration of the sampler from the current
value of fj(xj) and the intercept γ0. Posterior inference is then based on the samples of

fmarginalj (xj). For the ease of interpretation, a horizontal line is included in the graphs
indicating the marginal effect for fj = 0, i.e. exp(γ0) ≈ 940DM . Finally, panels e) and f)
show the first derivatives of both effects (again including credible intervals). They may be
computed by the usual formulas for derivatives of polynomial splines, see De Boor (1978).

Figure 2.19 displays the structured spatial effect fstr based on a Markov random field
prior. The posterior mean of fstr can be found in panel a), the marginal effect is depicted
in panel b). Panels c) and d) show posterior probabilities based on nominal levels of
80% and 95%. Note the large size of the spatial effect with a marginal effect ranging
from 730-1200 German marks. It is clear that it is of great interest for health insurance
companies to detect regions with large deviations of treatment costs compared to the
average. The unstructured spatial effect funstr is negligible compared to the structured
effect and therefore omitted.
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Figure 2.20 shows the respective estimates of fstr now based on two dimensional P-
splines. The time trend and age effect for this model are almost identical to the effects
displayed in Figure 2.18 and are therefore not displayed. The estimated effects are similar
but smoother (as could have been expected) and therefore easier to interpret. However, in
terms of the DIC the model based on the MRF prior is preferable.

2.12 Conclusions

This paper proposes semiparametric Bayesian inference for regression models with re-
sponses from an exponential family and with structured additive predictors. The paper
can be seen as the final in a series of articles on Bayesian semiparametric regression based
on smoothness priors, see Fahrmeir and Lang (2001a), Fahrmeir and Lang (2001b) and
Part I of this chapter. It particularly extends the methodology for Gaussian responses
in Part I of this chapter to situations with fundamentally non-Gaussian responses. Our
approach allows estimation of nonlinear effects of continuous covariates and time scales
as well as the appropriate consideration of unobserved unit- or cluster specific as well as
spatial heterogeneity. Many well known regression models from the literature appear to
be special cases of our approach, e.g. dynamic models, generalized additive mixed models,
varying coefficient models, geoadditive models or the famous and widely used BYM-model
for disease mapping (Besag et al. 1991). The proposed sampling schemes work well and
automatically for the most common response distributions. Software is provided in the
public domain package BayesX.

Our current research is mainly focused on model choice and variable selection. Presently,
model choice is based primarily on pointwise credible intervals for regression parameters
and the DIC. A first step for more sophisticated variable selection is to replace point-
wise credible intervals by simultaneous probability statements as proposed by Besag et al.
(1995) and more recently by Held (2004). For the future, we plan to develop Bayesian in-
ference techniques that allow estimation and model choice (to some extent) simultaneously.
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Figure 2.15: Forest health data. Nonlinear main effects of calendar time, age of the tree
and canopy density. Shown are the posterior means together with 95% and 80% pointwise
credible intervals.
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Figure 2.16: Forest health data. Nonlinear interaction between calendar time and age of
the tree. Shown are the posterior means.
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a) Two dimensional P-spline, nominal level 80% b) MRF, nominal level 80%

c) Two dimensional P-spline, nominal level 95% d) MRF, nominal level 95%

Figure 2.17: Forest health data. Panels a) and c) show the spatial effect based on two
dimensional P-splines. Panels b) and d) display the spatial effect based on Markov random
fields. Shown are posterior probabilities for a nominal level of 80% (top panels) and 95%
(bottom panels). Black denotes locations with strictly negative credible intervals, white
denotes locations with strictly positive credible intervals.
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Figure 2.18: Health insurance data: Time trend and age effect. Panels a) and b) show
the estimated posterior means of functions f1 and f2 together with pointwise 80% and 95%
pointwise credible intervals. Panels c) and d) depict the respective marginal effects and
panels e) and f) the first derivatives f ′1 and f ′2.
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a: MRF posterior mean

730.0 1200.0

b: MRF marginal effect
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Figure 2.19: Health insurance data: Structured spatial effect fstr based on Markov random
field priors. The posterior mean of fstr is shown in panel a) and the marginal effect in
panel b). Panels c) and d) display posterior probabilities for nominal levels of 80% and
95%. Black denotes regions with strictly positive credible intervals and white regions with
strictly negative credible intervals.
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Figure 2.20: Health insurance data: Structured spatial effect fstr based on two dimensional
P-splines. The posterior mean of fstr is shown in panel a) and the marginal effect in panel
b). Panels c) and d) display posterior probabilities for nominal levels of 80% and 95%.
Black denotes regions with strictly positive credible intervals and white regions with strictly
negative credible intervals.
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Chapter 3

Monotonic regression based on
Bayesian P-Splines

So far we have introduced Bayesian P-splines as a very flexible method for modeling non-
parametric effects in one or two dimensions within a structured additive regression frame-
work. Flexibility was even enhanced by allowing for locally adaptive smoothing parameters
in the one dimensional case as well as for two dimensional surface estimation. In this chap-
ter the goal is not to further increase, but to restrict flexibility by imposing constraints
on the shape of the functional form of nonparametric estimates. Specifically, we consider
monotonicity constraints on one dimensional P-splines. This restriction is reasonable if one
knows a priori that the relationship between a continuous covariate and the outcome is
either increasing or decreasing. In this case a restriction is useful in order to avoid unrea-
sonable results coming from noisy observations. Prior knowledged of this kind is given for
example in many applications in statistical medicine, where a dose-response relationship is
known to be monotonic. In our example, the relation between prices and sales of consumer
goods can be assumed to behave monotonic from an ecological point of view.

This chapter develops Bayesian methodology in order to impose monotonicity con-
straints on Bayesian P-splines and demonstrates their usefulness by an application to esti-
mating price response functions from store-level scanner data. Gaussian and non Gaussian
responses are considered. The content of this chapter is also available as SFB 386 dis-
cussion paper 331 under the title ’Monotonic regression based on Bayesian P-Splines: an
application to estimating price response functions from store-level scanner data’ by Brezger
and Steiner (2003). Note, that this chapter differs slightly from the original paper due to
unification of notation and correction of typos.
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ABSTRACT

Generalized additive models have become a widely used instrument for flexi-
ble regression analysis. In many practical situations, however, it is desirable
to restrict the flexibility of nonparametric estimation in order to accommo-
date a presumed monotonic relationship between a covariate and the re-
sponse variable. For example, consumers usually will buy less of a brand
if its price increases, and therefore one expects a brand’s unit sales to be
a decreasing function in own price. We follow a Bayesian approach using
penalized B-splines and incorporate the assumption of monotonicity in a
natural way by an appropriate specification of the respective prior distribu-
tions. We illustrate the methodology in an empirical application modeling
demand for a brand of orange juice and show that imposing monotonic-
ity constraints for own- and cross-item price effects improves the predictive
validity of the estimated sales response function considerably.

Keywords: Generalized Additive Model, Markov Chain Monte Carlo, Sales Promo-
tion, Own- and Cross-Item Price Effects, Asymmetric Quality Tier Competition
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3.1 Introduction

Generalized additive models (GAM) are a powerful tool for modeling possibly nonlin-
ear effects of multiple covariates. For continuous covariates, the variety of different ap-
proaches for nonlinear modeling comprises, for example, smoothing splines (e.g. Hastie
and Tibshirani 1990), regression splines (e.g. Friedman and Silverman 1989, Friedman 1991,
Stone et al. 1997), local methods (e.g. Fan and Gijbels 1996) as well as P-splines (Eilers
and Marx 1996, Marx and Eilers 1998). Bayesian nonparametric approaches make use of
adaptive knot selection (e.g. Smith and Kohn 1996, Denison et al. 1998, Biller 2000, Di
Matteo et al. 2001, Biller and Fahrmeir 2001, Hansen and Kooperberg 2002) or smoothness
priors (Hastie and Tibshirani 2000, Fahrmeir and Lang 2001a, Fahrmeir and Lang 2001b).
In Part I of Chapter 2 the frequentist P-splines of Eilers and Marx (1996) is adopted for a
Bayesian framework for additive models and in Part II of Chapter 2 this work is extended
to GAMs.

While strictly parametric modeling is too restrictive in many cases, the flexibility of
non- and semiparametric approaches may lead to implausible results on the other hand.
Clearly, the problem of overfitting can be addressed by penalization of too rough functions
or by adaptive knot selection. Much less discussed in the literature on nonparametric
estimation is, however, the important case when theory and/or empirical evidence strongly
suggest a monotonic relationship between a covariate and a response variable. For example,
consumers usually will buy less of a brand as its price increases, and therefore one expects a
brand’s unit sales or market share to decrease monotonically in price. The downward slope
of own price response functions is in accordance with economic theory (e.g. Rao 1993), and
there is strong empirical support that own-price elasticities are negative and elastic (e.g.
Tellis 1988, Hanssens, Parsons and Schultz 2001). Similarly, we generally expect cross-price
effects on competitive items (i.e., brand substitutes) to be positive or at least nonnegative,
implying that a price cut by a brand may decrease but by no means will increase the
unit sales of competitive brands (Sethuraman, Srinivasan and Kim 1999). Examples for
presumed monotonic relationships can also be found in disciplines other than business and
economics, as it is the case for many dose-response relationships in medicine. For instance,
the concentration of dust and the duration of exposition to it at working places is assumed
to affect the occurrence of certain lung diseases in a monotonic way (Ulm and Salanti 2003).
Monotonic effects are also referred to as isotonic if the respective function is nondecreasing,
and antitonic if a function is nonincreasing.

The topic of monotonic regression has already been addressed in Ulm and Salanti
(2003) and Salanti and Ulm (2003) in a frequentist setting. Dunson and Neelon (2003)
and Holmes and Heard (2003) have presented Bayesian approaches to monotonic regres-
sion. The former, however, have considered only GLMs and modeling has been based on
piecewise constant functions, while the latter have dealt with only a small number of level
sets obtained from a categorization of continuous covariates.

In this paper, we propose to use Bayesian P-splines of an arbitrary degree and enforce
monotonicity in a straightforward way by an additional restriction of the prior distribution
via indicator functions. This restriction may be imposed either for one or an arbitrary num-
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ber of the additive terms in the model, whereas other terms may be modeled unrestricted.
MCMC inference involves sampling from multivariate truncated normal distributions. This
is accomplished by an ”internal” Gibbs sampler in each iteration, i.e., we employ a short
Gibbs sampler in order to draw from the proposal density. In the non-Gaussian case, this
procedure is used to draw from an iteratively weighted least squares (IWLS) proposal den-
sity in a Metropolis-Hastings step. Our methodology is implemented in the public domain
software package BayesX (Chapter 5) and it is possible to combine monotonic regression
with all types of response distributions supported by BayesX. These are the most common
one dimensional distributions like Gaussian, Binomial, Poisson, Gamma and Negative Bi-
nomial, and multinomial logit and cumulative probit models for multivariate responses.
BayesX also supports the use of random effects to account for unobserved heterogeneity,
Gaussian Markov random field (GMRF) priors for spatial covariates, varying coefficient
terms and surface smoothing for interactions of covariates.

The remainder of the paper is organized as follows: Section 2 briefly reviews GAMs
and (Bayesian) P-splines, whereas section 3 provides details on the MCMC techniques
employed. In section 4, we apply the proposed methodology to weekly store-level scanner
data to relate unit sales of a particular brand of orange juice in a major supermarket chain
to own and competing brands’ promotional instruments. Using a log-normal model and a
Gamma model, we illustrate for both Gaussian and non-Gaussian responses that imposing
monotonicity constraints on the nonparametric terms for own-item and cross-item price ef-
fects improves the predictive validity of the estimated sales response functions considerably.
We conclude with a summary of the most important contents and key findings in section 5.

3.2 Model Assumptions

3.2.1 Generalized additive models and P-Splines

Suppose we are given n observations (yi, xi, vi), i = 1, . . . , n, where yi is a response variable,
xi = (xi1, . . . , xip)

′ is a vector of continuous covariates and vi = (vi1, . . . , viq)
′ is a vector

of additional covariates. GAMs assume that, given xi and vi, the response yi follows an
exponential family distribution (Hastie and Tibshirani 1990, Fahrmeir and Tutz 2001)

p(yi|xi, vi) = c(yi, θi) exp

{
yiθi − b(θi)

φ

}
and that the mean µi = E(yi|xi, vi) is linked to a semiparametric additive predictor ηi via
a known link function g:

g(µi) = ηi, ηi = f1(xi1) + . . .+ fp(xip) + v′iγ. (3.1)

f1, . . . , fp are unknown smooth functions of the continuous covariates and v′iγ represents
the parametric part of the predictor.
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Figure 3.1: B-spline basis functions of degree three covering the interval [a, b].

For modeling the unknown functions fj, j = 1, . . . , p, we follow Chapter 2 and propose a
Bayesian version of the P-splines approach introduced in a frequentist setting by Eilers and
Marx (1996). Accordingly, we assume that the unknown functions can be approximated
by a polynomial spline of degree l and with r + 1 equally spaced knots

xj,min = ζj0 < ζj1 < · · · < ζj,r−1 < ζjr = xj,max

over the domain of xj. The spline can be written in terms of a linear combination of
M = r + l B-spline basis functions (De Boor 1978). Figure 3.1 gives an illustration of
B-spline basis functions of degree three, which are also referred to as cubic splines. Note
that except at the boundaries each basis function overlaps with 2 · l neighboring B-splines.

Denoting the ρ-th basis function by Bjρ, we obtain

fj(xj) =
M∑
ρ=1

βjρBjρ(xj).

To keep notation simple, we assume an equal number of basis functions M for all functions
fj. By defining the n×M design matrices Xj where the element in row i and column ρ is
given by Xj(i, ρ) = Bjρ(xij), we can rewrite the predictor (3.1) in matrix notation as

η = X1β1 + · · ·+Xpβp + V γ. (3.2)

Here βj = (βj1, . . . , βjM)′, j = 1, . . . , p corresponds to the vector of unknown regression
coefficients. The matrix V is the usual design matrix for fixed effects. To overcome the
difficulties in determining the position and the number of the knots involved with regression
splines, Eilers and Marx (1996) suggest a relatively large number of knots (usually between
20 and 40) to ensure sufficient flexibility, and to introduce a roughness penalty of first or
second order differences on adjacent regression coefficients to avoid overfitting. These
penalized B-splines have also become known as P-splines. In our Bayesian approach,
we replace first or second order differences used in this frequentist approach with their
stochastic analogues, i.e., first or second order random walks defined by

βjρ = βj,ρ−1 + ujρ, or βjρ = 2βj,ρ−1 − βj,ρ−2 + ujρ (3.3)
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with Gaussian errors ujρ ∼ N(0, τ 2
j ) and diffuse priors βj1 ∝ const, or βj1 and βj2 ∝

const, for initial values, respectively. The amount of smoothness is controlled by the
variance parameter τ 2

j which corresponds to the inverse of the smoothing parameter in the
frequentist approach. The amount of smoothness can be estimated simultaneously with
the regression coefficients by defining an additional hyperprior for the variance parameters
τ 2
j .

We assign the conjugate prior for τ 2
j (and for the scale parameter σ2 in the Gaussian

case) which is an inverse Gamma distribution

τ 2
j ∼ IG(aj, bj)

with hyperparameters aj and bj. A common choice for aj and bj leading to almost diffuse
priors is aj = bj, e.g. aj = bj = 0.001, which is also our default choice. Alternatively, we
may set aj = 1 and bj small, e.g. bj = 0.005 or bj = 0.0005. We estimated all models
discussed in this paper with alternative settings for the hyperparameters. The results
proofed to be almost insensitive regarding the specific choice of hyperparameters. All
results presented in the remainder of the paper are obtained by the default choice.

Defining a penalty matrix Kk corresponding to a random walk of order k enables us to
formulate the prior for a P-spline term as a joint prior distribution for βj:

p(βj) ∝ exp

{
−0.5

1

τ 2
j

β′jK
k
j βj

}
, (3.4)

see Part I of Chapter 2 for details. For example for k = 1 we have

K1 =



1 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 2 −1

−1 1


with zero elements outside the first off-diagonals.

3.2.2 Monotonicity constraints

To obtain monotonicity, i.e., f ′j(x) ≥ 0 or f ′j(x) ≤ 0, it is sufficient to guarantee that
subsequent parameters are ordered, such that

βj1 ≤ · · · ≤ βjM or βj1 ≥ · · · ≥ βjM ,

respectively. A proof can be found in Appendix A.2. In our approach, these constraints are
imposed by introducing indicator functions to truncate the prior appropriately to obtain
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the desired support. This leads to

p(βj) = c1(βj) exp

{
−0.5

1

τ 2
j

β′jK
k
j βj

} M∏
ρ=2

1(βjρ ≥ βjρ−1) (3.5)

for nondecreasing functions (isotonic case) and

p(βj) = c1(βj) exp

{
−0.5

1

τ 2
j

β′jK
k
j βj

} M∏
ρ=2

1(βjρ ≤ βjρ−1)

for nonincreasing functions (antitonic case), respectively, where c1(βj) is a normalizing
function depending on βj.

3.2.3 Extensions

Various extensions regarding the additive predictor (3.1) are possible. In order to account
for unobserved heterogeneity between different groups or clusters of units, we may add an
unstructured group-specific random effect. Suppose we are given a grouping variable that
can take values in {1, . . . , G}. Then, we can extend (3.1) to

ηi = f1(xi1) + . . .+ fp(xip) + v′iγ + funstr(gi)

and assume
funstr(g) = bg ∼ N(0, τ 2

b ), g = 1, . . . , G, (3.6)

where funstr(gi) = funstr(g) if observation i belongs to group g. Using the penalty matrix
Kb = I, we can write (3.6) in the general form

p(bg|τ 2
b ) ∝ exp

{
−1

2
b′gK

bbg
}
.

If we would presume a spatial correlation between groups, we may additionally intro-
duce a spatial correlated GMRF. Further possible extensions are varying coefficient terms
and interactions of covariates (see Chapter 2). In the remainder, we focus on models with
random effects.

3.3 MCMC Inference

Let α be the vector of all parameters to be estimated in the model. Bayesian inference is
based on the posterior distribution

p(α|y) ∝ L(y, β1, . . . , βp, γ, bg, φ)

p∏
j=1

(
p(βj|τ 2

j )p(τ
2
j )
)

p(bg|τ 2
b )p(τ

2
b )p(γ)p(φ) (3.7)
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where L(·) consists of the product of all individual likelihood contributions. φ and p(φ)
have to be omitted for response distributions without a scale parameter. Because (3.7)
is analytically intractable in all but the most simple cases, we employ Markov Chain
Monte Carlo (MCMC) techniques to obtain estimates for the parameters of interest. More
specifically, we implement a block move, i.e. we subsequently draw from the full conditionals
p(βj|·), j = 1, . . . , p, p(γ|·) and p(bg|·) of the blocks of parameters βj, j = 1, . . . , p, γ and
bg. For Gaussian responses, these blocks can be updated by block move Gibbs sampling
steps. In binary probit and cumulative probit models, we can rely on the same sampling
scheme as building block, see Chen and Dey (2000) or Part II of Chapter 2 for details. In
all other cases, we use Metropolis-Hastings steps with iteratively weighted least squares
(IWLS) proposals. The variance parameters τ 2

1 , . . . , τ
2
p , τ

2
b (and the scale parameter σ2 in

the Gaussian case) are updated by single move Gibbs sampling steps.
For posterior inference, we discard the draws from an initial burn-in period and take

only every rth draw thereafter in order to minimize the autocorrelation of the samples.
The formulas and algorithms in the following subsections are formulated with respect to
isotonic constraints. The adjustments for antitonic constraints are straightforward.

3.3.1 Gaussian Response

For Gaussian response, the full conditional distribution for βj is given by

p(βj|·) ∝ c1(βj) exp
{
−0.5(βj −mj)

′Pj(βj −mj)
} M∏
ρ=2

1(βjρ ≥ βj,ρ−1), (3.8)

and

Pj =
1

σ2
X ′
jXj +

1

τ 2
j

Kk
j

mj =
1

σ2
P−1
j X ′

j(y − η +Xjβ
c
j )

where βcj is the current state of βj.
In order to sample from this M -dimensional truncated Gaussian distribution (3.8), we

adopt the method of Robert (1995) and run an extra (short) single move Gibbs sampler
in each MCMC iteration. The algorithm is as follows:

(i) Set β(0) = βcj .

(ii) For t = 1, . . . , T , successively draw from the one-dimensional truncated Gaussian
distributions

1. β
(t)
1 ∼ N(µ1, σ

2
1,−∞, β

(t−1)
2 )

2. β
(t)
2 ∼ N(µ2, σ

2
2, β

(t)
1 , β

(t−1)
3 )
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3. β
(t)
3 ∼ N(µ3, σ

2
3, β

(t)
2 , β

(t−1)
4 )

...

M . β
(t)
M ∼ N(µM , σ

2
M , β

(t)
M−1,∞)

where N(µ, σ2, µl, µr) denotes a Gaussian distribution with mean µ, variance σ2 and
with left truncation point µl and right truncation point µr, respectively. The trunca-
tion points in the algorithm above are the current states of the adjacent parameters.
Therefore, we have only right truncation for β

(t)
1 and left truncation for β

(t)
M . The

parameters µρ and σ2
ρ, ρ = 1, . . . ,M, are the conditional means and variances of the

(nontruncated) full conditional (3.8):

µρ =
1

pρρ

{∑
ψ<ρ

(β
(t)
ψ −mψ) · pρψ +

∑
ψ>ρ

(β
(t−1)
ψ −mψ) · pρψ

}
σ2
ρ =

1

pρρ

where mψ is the ψ-th element of mj and pρψ is the element in row ρ and column ψ
of the precision matrix Pj in (3.8). Note that the subscript j is suppressed in the
formulae above.

(iii) Take β(T ) = (β
(T )
1 , . . . , β

(T )
M )′ as a random sample from (3.8).

Usually, convergence is reached after 10-20 cycles. To reach convergence with consider-
able certainty, we set T = 100. Computation is very fast, as the mean mj and the precision
matrix Pj have to be computed only once. Moreover, mj is obtained by sparse matrix op-
erations exploiting the band structure of Pj. This involves a Cholesky decomposition and
avoids expensive matrix inversions (compare Rue 2001).

Regarding the fixed effects we obtain a normal distribution with precision matrix and
mean

Pγ =
1

σ2
V ′V, mγ = (V ′V )−1V ′(y − η + V γ)

as full conditional.
The full conditionals for the variance parameters τ 2

j , j = 1, . . . , p, τ 2
b and the scale

parameter σ2 are all inverse Gamma distributions with parameters

a′j = aj +
rank(Kj)

2
and b′j = bj +

1

2
β′jKjβj

for τ 2
j , j = 1, . . . , p, τ 2

b and

a′σ2 = aσ2 +
n

2
and b′σ2 = bσ2 +

1

2
ε′ε

for σ2, where ε is the usual vector of residuals.
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3.3.2 Non-Gaussian Response

For non-Gaussian response, the full conditional p(βj|·) is

p(βj|·) ∝
n∏
i=1

c(yi, θi) exp

{
yiθi − b(θi)

φ

}
c1(βj) exp

{
−0.5

1

τ 2
j

β′jK
k
j βj

} M∏
ρ=2

1(βjρ ≥ βj,ρ−1),

which has no longer standard form. Thus, we use a Metropolis-Hastings step with an IWLS
proposal to update βj. An IWLS proposal is obtained by a quadratic approximation of
the likelihood via Taylor expansion around the current state βcj of βj, compare Part II of
Chapter 2 or, in the mixed model context, Gamerman (1997). This leads to a truncated
multivariate Gaussian proposal

q(βj) ∝ c1(βj) exp
{
−0.5(βj −m(βcj ))

′P (βcj )(βj −m(βcj ))
} M∏
ρ=2

1(βjρ ≥ βjρ−1) (3.9)

where

P (βcj ) = X ′
jW (βcj )Xj +

1

τ 2
j

Kk
j

m(βcj ) = P (βcj )
−1X ′

jW (βcj )ỹ(β
c
j )

W (βcj ) = diag(w1, . . . , wn)

ỹ(βcj ) = (y − µ)g′(µ) +Xjβ
c
j

with w−1
i = b′′(θi){g′(µi)}2. Alternatively, we could also use the current mode of p(βj|·)

rather than βcj to perform the Taylor expansion, which would simplify the calculation of
the acceptance probability, compare Part II of Chapter 2. Generating a proposed value
βpj from (3.9) is again accomplished by an extra Gibbs sampler as described in Subsection
3.3.1. It has been our experience that convergence in the non-Gaussian case is slower than
in the Gaussian case. We therefore set the number of iterations for the single move Gibbs
sampler to T = 250 (as opposed to T = 100 for Gaussian response) to ensure convergence,
which implies that we take the 250th sample as a random sample from (3.9). The main
difference to the Gaussian sampling scheme is that this sample can only be accepted with
probability

α(βcj , β
p
j ) = min

{
1,
L(βpj )p(β

p
j )q(β

p
j , β

c
j )

L(βcj )p(β
c
j )q(β

c
j , β

p
j )

}
as the new state of βj. Note that the normalizing functions c1(·) cancel out and we have
the same acceptance probability as in the unrestricted case.

The full conditionals for the variance parameters τ 2
j , j = 1, . . . , p and τ 2

b are again
inverse Gamma distributions and therefore updated via Gibbs sampling. Fixed effects are
updated by Metropolis-Hastings steps.
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3.4 Empirical Application: Estimating price response

from store-level scanner data

3.4.1 Background

It is important for both manufacturers and retailers to know how sales respond to price
promotions. For example, if a brand’s sales response to own price cuts shows increasing
returns to scale, a firm will run deeper price discounts for the brand than in case of
decreasing returns to scale. In the following, we apply the monotonic regression approach
to estimating promotional price response functions from store-level scanner data.

It is well documented that sales promotions, especially in the form of temporary price
reductions, substantially increase sales of promoted brands (e.g. Wilkinson, Mason and
Paksoy 1982, Blattberg and Neslin 1990, Bemmaor and Mouchoux 1991, Blattberg, Bri-
esch and Fox 1995). There is also empirical evidence that a temporary price cut by a brand
may decrease sales of competitive items significantly (e.g. Mulherne and Leone 1991, Blat-
tberg and Wisniewski 1989, Bemmaor and Mouchoux 1991). Cross-item price effects,
however, are usually much lower than own-item price effects, see Hanssens et al. (2001)
for an overview of empirical findings. In addition, there is strong empirical support that
cross-promotional effects are asymmetric, implying that promoting higher-priced/higher
quality brands generates more switching from lower-priced/lower quality brands than does
the reverse (e.g. Blattberg and Wisniewski 1989, Allenby and Rossi 1991, Blattberg et
al. 1995). This phenomenon has also become known as asymmetric quality tier compe-
tition (e.g. Sivakumar and Raj 1997). Moreover, a recent meta-analysis of cross-price
elasticity estimates revealed strong neighborhood price effects, indicating that brands that
are closer to each other in price have larger cross-price effects than brands priced farther
apart (Sethuraman et al. 1999).

Despite the wealth of empirical findings on own- and cross-price effects, little was known
about the shape of the promotional price response function until recently. Most studies
addressing this issue employed strictly parametric functions, and came to different results
from model comparisons. For example, Wisniewski and Blattberg (1983) found the own-
item price effect curve to be modeled best by an s-shaped function, while Blattberg and
Wisniewski (1987) found the curve to show increasing returns with deeper price discounts.
The former, however, estimated own price response functions at the category level rather
than the individual brand level, while the latter analyzed a limited range of price discounts.
Today, multiplicative (log-log), exponential (semi-log) and log-reciprocal functional forms
are the most widely used parametric specifications to represent nonlinearities in sales re-
sponse to promotional instruments (e.g. Blattberg and Wisniewski 1989, Blattberg and
George 1991, Montgomery 1997, Kopalle, Mela and Marsh 1999, Foekens, Leeflang and
Wittink 1999, van Heerde, Leeflang and Wittink 2002). These functional forms are in-
herently monotonic (decreasing for own-price and increasing for cross-price effects) and all
use a logarithmic transformation of brand sales to normalize the distribution of the depen-
dent variable which typically is markedly skewed with promotional data (e.g Mulherne and
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Leone 1991). However, there does not seem to exist a ”best” parametric functional form
generalizable across product categories or even across brands within a category. Therefore,
nonparametric regression methods seem to be highly promising to explore the shape of the
promotional price response curve more flexibly.

van Heerde, Leeflang and Wittink (2001) proposed a kernel-based semiparametric ap-
proach in which a brand’s unit sales is modeled as a nonparametric function of own- and
cross-item price variables and a parametric function of other predictors. The model can
also accommodate flexible interaction effects between price cuts of different brands but
may suffer from the curse of dimensionality as the number of competing items increases.
van Heerde et al. (2001) obtained superior performance for the semiparametric model in
both fit and predictive validity relative to two benchmark parametric models. Their re-
sults based on store-level scanner data for three product categories (tuna, beverage and a
third packaged food product) indicate threshold and/or saturation effects for both own-
and cross-item price cuts. Threshold effects are present if consumers do not change their
purchase intentions unless a promotional price cut exceeds a certain threshold level, say,
e.g., 15% (Gupta and Cooper 1992). A common argument for the existence of saturation
effects is based on the belief that consumers can stockpile and/or consume only limited
amounts of a promoted good, e.g., due to inventory constraints or perishability (Blattberg
et al. 1995, van Heerde et al. 2001). About two-third of the nonparametric own-item and
cross-item price response curves estimated by van Heerde et al. (2001) showed a (reverse)
s-shape reflecting both threshold and saturation effects, with a wide range of different sat-
uration points across brands. Some curves revealed a (reverse) L-shape with a strong kink
at a certain level of price cut, while other curves do not show a threshold nor a satura-
tion effect. These different results across individual brands strongly support the use of
nonparametric estimators to let the data determine the shape of price response functions.
However, two own-item price response curves indicated a decrease in unit sales as price
discounts become very deep. Clearly, this nonmonotonicity is difficult to interpret from an
economic point of view. One explanation may be that consumers associate a loss in quality
with very deep price cuts, but this argument seems at least questionable with frequently
purchased consumer nondurables.

In contrast to van Heerde et al. (2001), Kalyanam and Shively (1998) proposed a
stochastic spline regression approach (Wahba 1978) in the context of a hierarchical Bayes
model (Wong and Kohn 1996) and found much stronger irregularities in own-price response
for some of the brands (tuna, margarine) examined. Especially, although overall downward
sloping, the respective curves show local upturns and downturns with spikes at certain price
points resulting in less smooth and nonmonotonic shapes. Kalyanam and Shively (1998)
illustrated that these nonmonotonicities may be associated with odd pricing or a complex
convolution of odd pricing with other effects like, e.g., the existence of segments with
distinct reservation prices. Odd pricing refers to the practice of setting prices ending in
odd numbers or just below a round number (e.g., 0.99 cents instead of 1.00 dollar). On the
other hand, the curve plots also revealed that the estimates at the very strongest local sales
peaks were based only on one or a few data points (see, e.g., the results for the Starkist
brand in Kalyanam and Shively 1998, p. 26). Kalyanam and Shively (1998) themselves
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point out that in case of an insufficient number of data points, the estimated functions
may show irregularities where none exist. This problem also applies to another tuna brand
(Bumble Bee) where the estimated curve indicated a (monotonic) increase in unit sales
with increasing own-price beyond a certain price point (i.e., for higher price levels). This
latter irregularity is not in accordance with economic theory and, as a consequence, would
suggest an optimal price at infinity.

Besides the problem of inaccurate estimation due to sparse data in some cases, the
findings of Kalyanam and Shively (1998) agree with those of van Heerde et al. (2001)
with respect to the existence of threshold effects for several brands, i.e., flat own-price
response around prices at the upper bound of the range of observed prices. In comparison
to a parametric semilog specification, Kalyanam and Shively (1998) obtained a superior
fit of their spline model in terms of adjusted R2 values for each of the brands analyzed.
Unfortunately, no model validation results were reported.

The monotonic nonparametric regression approach as proposed in this paper is our an-
swer to resolve the problem whether nonmonotonic effects indeed exist when theory and/or
empirical experience would rather suggest not. Our perspective is that an unconstrained
estimation allowing for nonmonotonicities should be preferred only if it outperforms a con-
strained estimation in validation samples. Otherwise, nonmonotonic effects are likely to
represent an artefact caused by sparse data or merely by too much flexibility of the non-
parametric estimator. Importantly, imposing monotonicity constraints does not preclude
the estimation of irregular pricing effects like steps and kinks at certain price points or
threshold and saturation effects at the extremes of the observed price/price cut ranges.

3.4.2 An Illustration

For illustration, we use weekly store-level scanner data from Dominick’s Finer Foods, a
major supermarket chain in the Chicago metropolitan area. The data set includes unit
sales, retail price and a deal code indicating the use of an in-store display for 11 brands
of refrigerated orange juice (64 oz). The sample covers individual brand sales in 81 stores
(s = 1, . . . , 81) of the chain over a time span of 89 weeks (t = 1, . . . , 89). Table 3.1 provides
summary statistics pooled across the stores for average weekly prices, market shares and
unit sales of the brands.

As table 3.1 reveals, the brands can be classified into three price-quality tiers: the
premium brands (made from freshly squeezed oranges), the national brands (reconstituted
from frozen orange juice concentrate) and the store brand (Dominick’s private label brand).
The differences in quality across the tiers are well represented by higher (lower) average
prices for higher (lower) quality tier brands. Average weekly prices and market shares of
all brands vary considerably reflecting the frequent use of promotions.

We now illustrate the usefulness of imposing monotonicity constraints to estimate price
response functions considering as example the brand Florida Gold. We focus on two
distributional models, namely a log-normal model
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salesst ∼ LN(ηst, σ
2),

which can be equivalently written in terms of the assumption of a Gaussian distribution
for the natural logarithm of the response as

log(salesst) ∼ N(ηst, σ
2),

and a Gamma model
salesst ∼ G(exp(ηst), ν),

where salesst denotes the unit sales of Florida Gold in store s and week t. Note that the
exponential function is the so called natural link function for a Gamma model. The scale
parameter ν is supplied with a Gamma prior with parameters aν = 0.001, bν = 0.001 and
estimated in a Metropolis-Hastings step.

As mentioned above, the use of a log-normal model is the standard approach in mar-
keting to relate brand sales to promotional instruments. The Gamma model, on the other
hand, provides high flexibility with respect to the shape of the distribution (e.g., it can take
on a highly skewed distribution) and is used to demonstrate the applicability of our method
in the non-Gaussian case. Like Kalyanam and Shively (1998) and van Heerde et al. (2001),
we choose a semiparametric additive predictor to model sales response: with nonparamet-
ric terms for own- and cross-price effects as well as weekly effects, and parametric terms
for own and competitive display and store-specific effects. According to economic theory
and the empirical findings discussed in section 3.1, we expect the unit sales of Florida Gold
to be an antitonic function in own promotional price and an isotonic function in compet-
itive items’ promotional prices rather than to show a nonmonotonic shape, respectively.
Specifically, we estimate three variants of the semiparametric additive predictor for both
the log-normal and the Gamma model:

η
(1)
st = fRW1

1 antitonic(pricest) + fRW1
2 isotonic(price premiumst) + fRW1

3 isotonic(price nationalst)

+ fRW1
4 isotonic(price Dominicksst) + fRW2

5 (week) + frandom(store)

+ displayst + display premiumst + display nationalst + display Dominicksst

η
(2)
st = fRW2

1 antitonic(pricest) + fRW2
2 isotonic(price premiumst) + fRW2

3 isotonic(price nationalst)

+ fRW2
4 isotonic(price Dominicksst) + fRW2

5 (week) + frandom(store)

+ displayst + display premiumst + display nationalst + display Dominicksst

and

η
(3)
st = fRW2

1 (pricest) + fRW2
2 (price premiumst) + fRW2

3 (price nationalst)

+ fRW2
4 (price Dominicksst) + fRW2

5 (week) + frandom(store)

+ displayst + display premiumst + display nationalst + display Dominicksst
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The three variants differ in the specification of the unknown smooth functions f1 to f4

for own- and cross-price effects. These are estimated either by P-splines with monotonicity
constraints, with first order random walk prior (η(1)) or second order random walk prior
(η(2)), respectively, or by unconstrained P-splines with second order random walk prior
(η(3)) as a reference. The choice of the reference specification is based on a study conducted
in Part I of Chapter 2 where superior results for P-splines with second order rather than first
order random walk priors in the unrestricted case are reported. price denotes Florida Gold’s
actual price in store s and week t, and display is an indicator variable representing the usage
(1) or nonusage (0) of an in-store display for Florida Gold in store s and week t. Similar
to Blattberg and George (1991), we capture cross price effects in a more parsimonious way
through the use of competitive variables at the tier level rather than the individual brand
level: price premiumst and price nationalst indicate the minimum price for competing
brands within the premium brand and the national brand tier in store s and week t,
respectively, whereas price Dominicksst is the actual price of Dominick’s private label
brand in store s and week t. It is important to note that the price of Florida Gold (which
itself is a national brand) is excluded from computing price nationalst. Accordingly, the
indicator variables display premiumst and display nationalst take the value ’1’ if a display
is used for at least one brand within the respective tier in store s and week t, and ’0’
otherwise. display Dominicksst is the corresponding fixed effect for the private label
brand.

The week covariate is incorporated to capture seasonal and missing variable (e.g., man-
ufacturer advertising) effects, and the store covariate to accommodate differences in base
sales of Florida Gold across the stores, e.g., due to their spatial location. The effect of
week is modeled as a P-spline with second order random walk prior and store is incor-
porated as a random effect. We use cubic splines with 20 knots for all P-spline terms,
except for the week effect, where we use 40 knots to be able to account for possibly strong
time variability. The specification with 40 knots for the time effect, however, is still much
less costly in terms of degrees of freedom lost than if we were to use weekly indicator
variables. Finally, the hyperparameters σ2 and ν are supplied with inverse Gamma priors
σ2 ∼ IG(0.001, 0.001) and ν ∼ IG(0.001, 0.001), respectively, and are estimated simulta-
neously with the regression parameters. The resulting models are referred to as LN1-LN3
for the log-normal variants and G1-G3 for the Gamma model variants in the following.
With regard to the sampling process, we store every 10th sample of a Markov chain of
length 10,000 (after the burn-in period) to obtain 1,000 draws for each parameter and take
the means as parameter estimates.

3.4.3 Model evaluation and interpretation of results

We evaluate the different models in terms of the Average Mean Squared Error (AMSE)
in validation samples (also compare van Heerde et al. 2001). Specifically, we randomly
split the data into nine equally-sized subsets and performed nine-fold cross-validation. For
each subset, we fitted the respective model to the remaining eight subsets making up the
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estimation sample and calculated the squared prediction errors of the fitted model when
applied to the observations in this holdout subset (Efron and Tibshirani 1998). Let n
denote the number of observations of the entire data set, and k(i) the holdout subset

containing observation i. Let further ŝales
−k(i)
i indicate the fitted value of observation i

computed from the estimation sample without subset k(i), then the AMSE of prediction
is:

AMSE =
1

n

n∑
i=1

(
salesi − ŝales

−k(i)
i

)2
.

Because we are interested in unit sales rather than log unit sales of Florida Gold, con-
ditional mean predictions from the estimated log-normal models were obtained as follows
(Goldberger 1968, Greene 1997):

ŝales
−k(i)
st =

1

1000

1000∑
k=1

exp{ηstk + σ2
k/2}, (3.10)

where ηstk is the additive predictor for store s, week t and stored iteration k and σ2
k denotes

the residual variance of the respective log-normal model in iteration k. For the Gamma
model, no correction factor σ2

k/2 is required for the conditional mean predictions.
The validation results are displayed in table 3.2. Under both the log-normal and the

Gamma distribution, the models with monotonicity constraints (LN1, LN2, G1, G2) clearly
outperform the respective model without monotonicity constraints (LN3, G3). Interest-
ingly, whereas in the unrestricted case the log-normal model (LN3) yields a smaller AMSE
compared to the Gamma model (G3), the restricted Gamma models G1 and G2 provided
the highest predictive validity. Furthermore, the differences between restricted models with
first order and second order random walk priors for the nonparametric terms are virtually
negligible. These results indicate that imposing monotonicity constraints on own- and
cross-item price effects can substantially improve the predictive validity of a sales response
model.

Figures 3.2 and 3.3 show the nonparametrically estimated own- and cross price effects
for Florida Gold resulting from the log-normal models (LN1-LN3) and the Gamma models
(G1-G3), respectively. Shown are the posterior means as well as 80% and 95% pointwise
credible intervals. To ensure identifiability, the functions are centered to have mean zero,
i.e. 1/range(xj)

∫
fj(xj) dxj = 0. The subtracted means are added to an intercept term,

which is not displayed here. As can be seen, the effects are very similar for corresponding
model versions (LN1|G1, LN2|G2 and LN3|G3), except for the own price effect which re-
veals a stronger increase in unit sales for very low prices under the Gamma distribution.
Probably, this difference in own-price response is responsible for the higher predictive va-
lidity of the Gamma models. As already indicated by the AMSE values, there is also not
much difference in own- and cross-price effects between the restricted Gamma models G1
and G2. We therefore focus in the following on Gamma model G2, the model with the high-
est predictive validity, for interpretation of results. Importantly, the unrestricted models
LN3 and G3 which are inferior in predictive validity show strong local nonmonotonicities
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in both own- and cross price effects which indicates too much flexibility (strong overfitting)
of an unconstrained estimation.

Our results are similar to the findings of van Heerde et al. (2001) with respect to the
shape of price response functions. Specifically, the own price response curve for Florida
Gold shows a reverse s-shape with an additional increase in sales for extremely low prices.
This strong sales spike can be attributed to an odd pricing effect at 99 cents, the lowest
observed price of Florida Gold (compare table 3.1). The cross-price response curve with
respect to the premium tier brands reveals a reverse L-shape and a threshold effect for
competitive prices over two dollars. In other words, only if one of the premium brands
is priced lower than two dollars, unit sales of Florida Gold significantly decrease and
consumers switch up to the low-priced premium brand. The cross price effect with respect
to the national brand tier (the tier of Florida Gold) is s-shaped but by far less strong
than the premium tier effect, which contradicts the hypothesis that brands which are
priced closer to each other (like Florida Gold and the other national brands) are more
competitive than brands priced farther apart (like Florida Gold and the premium brands).
Finally, the cross price effect of Dominick’s private label brand on Florida Gold’s sales is
almost negligible. Comparing the three cross price effects in magnitude, our results confirm
previous empirical findings of asymmetric quality tier competition. Specifically, a price cut
by a premium brand may draw substantial sales from Florida Gold, whereas a price cut
by a private label brand does not. As expected, the own-price effect is much stronger than
each of the cross-price effects.

Tables 3.3 and 3.4 provide parameter estimates for the display effects and the corre-
sponding multiplier effects (Leeflang, Wittink, Wedel and Naert 2000). The multiplier
effects are obtained from the transformation

1

1000

1000∑
k=1

exp{γjk}, j = 1, . . . , 4.

Shown are the posterior means, posterior standard deviations and the corresponding 2.5%
and 97.5% quantiles, respectively. Multipliers with values larger (smaller) than 1 indicate
a positive (negative) effect on unit sales of Florida Gold. γ1k denotes the own display
effect of Florida Gold, and γ2k to γ4k refer to the tier-specific competitive display effects.
k denotes the kth stored sample for the respective parameter. Except for the cross display
effect of Dominick’s private label brand, the display multipliers show the expected impact.
For example, if a display is used for Florida Gold, its unit sales increase on average by a
factor of 1.36, whereas a display for a premium brand causes a decrease in Florida Gold’s
unit sales of about 11% on average. The display effect with respect to the brands in the
national tier (except Florida Gold) is not significant. One possible explanation for the
positive cross display effect of Dominick’s private label could be that promotion activities
of Dominick’s for its own store brand are especially distinct and not only stimulate own
brand sales but also sales of some other brands in the category. As expected, the own
display effect is much stronger than competitive display effects.

Finally, figure 3.4 shows estimated results for the store-specific random effect. The store
effect is portrayed with a spatial map which represents the store locations of Dominick’s
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Finer Foods in the Chicago metropolitan area. There is a noticeable difference in base
sales across stores, with an apparent drop from the coastline in the east, where we have a
high concentration of stores, to the interior region in the west. We found (weak) positive
correlations between the store effect and the percentage of the population under age nine
(0.28) and the percentage of households with three or more members (0.24). Hence, one
possible explanation for the east-west drop of base sales may be that more households with
little children live in the east part of the Chicago area, and people buy more orange juice
there because they are concerned with their childrens health. We abstain from depicting
the estimated effect for the time covariate week, because it does not reveal any seasonal
pattern nor a trend.

3.5 Discussion

We proposed a methodology to incorporate specific prior knowledge of a monotonic rela-
tionship between a response variable and one or more continuous covariates into (Bayesian)
generalized additive models. Unlike other approaches to monotonic regression, our method
offers the possibility of nonparametric monotonic modeling by penalized splines of arbitrary
degree. Sampling is accomplished by block updates of nonparametric effects. An internal
Gibbs sampler is employed for drawing random numbers from truncated multivariate nor-
mal densities. Convergence of the internal Gibbs sampler is fast in the Gaussian case, but
might be improved for other response distributions. Our approach can also accommodate
additional covariates modeled by appropriate other specifications, like fixed effects, unre-
stricted P-splines, random effects or spatial effects as well as varying coefficient terms and
interactions of covariates. We illustrated the methodology and its practical relevance in
an empirical application estimating sales response for a brand of refrigerated orange juice
from store-level scanner data. Our results show that imposing monotonicity constraints
for own- and cross-item price effects can considerably improve the predictive validity of
a sales response model. The methodology is implemented in the public domain software
package BayesX.
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Table 3.2: Evaluation of models in terms of AMSE.

Model specification log-normal Gamma
η
(1)
st (restricted/RW1) 49930.6 49576.6

η
(2)
st (restricted/RW2) 50045.7 49369.7

η
(3)
st (unrestricted) 50799.5 52200.3

Table 3.3: Estimation results for the display effects (Model G2).

effect posterior mean 2.5%-quantile 97.5%-quantile
γ1 (display) 0.30 (0.04) 0.24 0.38
γ2 (display premium) -0.12 (0.04) -0.19 -0.05
γ3 (display national) -0.02 (0.05) -0.11 0.08
γ4 (display Dominicks) 0.07 (0.03) 0.00 0.14

Table 3.4: Estimation results for the display multiplier effects (Model G2).

effect posterior mean 2.5%-quantile 97.5%-quantile
γ1 (display) 1.36 (0.05) 1.27 1.45
γ2 (display premium) 0.89 (0.03) 0.83 0.95
γ3 (display national) 0.98 (0.05) 0.90 1.08
γ4 (display Dominicks) 1.07 (0.04) 1.00 1.15
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Figure 3.2: Estimated curves for own-price (price) and tier-specific cross-price
(price premium, price national, price Dominicks) effects on unit sales of Florida Gold.
Columns 1-3 show the effects for the models LN1-LN3. Shown are the posterior means as
well as 80% and 95% pointwise credible intervals.
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Figure 3.3: Estimated curves for own-price (price) and tier-specific cross-price
(price premium, price national, price Dominicks) effects on unit sales of Florida Gold.
Columns 1-3 show the effects for the models G1-G3. Shown are the posterior means as
well as 80% and 95% pointwise credible intervals.
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Chapter 4

Simultaneous probability statements
for Bayesian P-Splines

In Chapters 2 and 3 the focus was on modeling of effects of continuous covariates by
Bayesian P-splines within structured additive regression models. However, a swelling model
complexity as induced by the popularity of hierarchical Bayesian models brings along an
increased demand for diagnostic tools for model selection to keep the results interpretable.
In the preceding chapters we mainly used the Deviance Information Criterion (DIC) for
model comparison. In addition, only pointwise credible intervals for the regression parame-
ters and the resulting function evaluated at the observation points are available as interval
estimates so far. However, for more elaborated model diagnostics simultaneous probability
statements are desirable.

In this chapter we aim at computing simultaneous probability statements by two dif-
ferent methods, one based on the highest posterior density region and another based on
simultaneous credible intervals. We derive conditions on the regression parameters of P-
splines that result in a constant, linear or more generally a polynomial fit, which facilitates
us to make statements on the probability for or against the suitability of a polynomial fit
of a certain degree instead of a nonparametric P-spline.
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Simultaneous probability statements for Bayesian
P-Splines

Andreas Brezger and Stefan Lang
Department of Statistics

University of Munich
Ludwigstr. 33, 80539 Munich

Germany

ABSTRACT

P-splines are a popular approach for fitting nonlinear effects of continuous
covariates in semiparametric regression models. Recently, a Bayesian ver-
sion for P-splines has been developed on the basis of Markov chain Monte
Carlo simulation techniques for inference. In this work we adopt and gen-
eralize the concept of Bayesian contour probabilities to Bayesian P-splines
within a generalized additive models framework. More specifically, we aim
at computing the maximum credible level (sometimes called Bayesian p-
value) for which a particular parameter vector of interest lies within the
corresponding highest posterior density (HPD) region. We are particularly
interested in parameter vectors that correspond to a constant, linear or more
generally a polynomial fit. As an alternative to HPD regions simultaneous
credible intervals could be used to define pseudo contour probabilities. Ef-
ficient algorithms for computing contour and pseudo contour probabilities
are developed. The performance of the approach is assessed through simu-
lation studies and applications to data for the Munich rental guide and on
undernutrition in Zambia and Tanzania.

4.1 Introduction

Consider the additive model

yi = ηi + εi = f1(xi1) + · · ·+ fp(xip) + εi, i = 1, . . . , n, (4.1)

where the mean of a continuous response variable yi is the sum of nonlinear but sufficiently
smooth functions f1, . . . , fp of the covariates xi = (xi1, . . . , xip)

′.
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Currently one of the most popular approaches for estimating the functions fj is based
on P(enalized)-splines as proposed by Eilers and Marx (1996), see also Marx and Eilers
(1998) and Eilers and Marx (2004). The approach assumes that the unknown functions fj
can be approximated by a spline of degree l with equally spaced knots xj,min = ζj0 < ζj1 <
· · · < ζj,r−1 < ζjr = xj,max within the domain of xj. The spline can be written in terms of
a linear combination of r + l B-spline basis functions Bjρ, i.e.

fj(xj) =
r+l∑
ρ=1

βjρBjρ(xj). (4.2)

By defining the design matrices Xj, where the element in row i and column ρ is given by
Xj(i, ρ) = Bjρ(xij), we can rewrite the predictor in (4.1) in matrix notation as

η = X1β1 + · · ·+Xpβp.

Eilers and Marx (1996) suggest a moderately large number of knots (usually between 20
and 40) to ensure enough flexibility, and to define a roughness penalty based on squared
differences of adjacent B-spline coefficients to guarantee sufficient smoothness of the fitted
curves. In Chapter 2 a Bayesian version of P-splines is developed which is based on
stochastic analogues of difference penalties as priors for the regression coefficients. More
specifically, first or second order random walks are used as smoothness prior, i.e.

βjρ = βj,ρ−1 + ujρ, or βjρ = 2βj,ρ−1 − βj,ρ−2 + ujρ (4.3)

with Gaussian errors ujρ ∼ N(0, τ 2
j ) and diffuse priors βj1 ∝ const, or βj1 and βj2 ∝ const,

for initial values, respectively. The priors (4.3) can be equivalently written in the form of
a global smoothness priors

βj|τ 2
j ∝ exp

(
− 1

2τ 2
j

β′jKjβj

)
with appropriate penalty matrix Kj. In a further stage of the hierarchy, inverse Gamma
hyperpriors p(τ 2

j ) ∼ IG(aj, bj) are assigned to the variances τ 2
j (and the overall variance

parameter σ2). Bayesian inference for the regression and variance parameters can be based
on MCMC simulation. For Gaussian responses, as primarily considered in this paper, a
Gibbs sampler can be used to successively update the parameters β1, . . . , βp, τ

2
1 , . . . , τ

2
p , see

Chapter 2 for details.
Currently, interval estimates are limited to pointwise credible intervals for the regression

parameters βj and the functions fj evaluated at the observations. The primary goal of this
paper is to develop techniques for obtaining simultaneous probability statements about the
regression parameters and as a result about the unknown functions. More specifically,
we aim at computing the maximum credible level (sometimes called Bayesian p-value)
for which a particular parameter vector of interest lies within the corresponding highest
posterior density (HPD) region. We are particularly interested in parameter vectors that
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correspond to a constant, linear or more generally a polynomial fit. Since the functions fj
are centered around zero, a constant fit corresponds to βj = 0, i.e. the particular covariate
has no effect on the conditional mean of the response variable. The final goal is to assist the
analyst in the model building process towards more parsimonious models. For instance,
if the contour probability for a linear fit is small but relatively high for a quadratic fit, a
more parsimonious model with a parametric linear fit could be used.

The plan of the paper is as follows:

• In Section 4.2.1 we review ideas recently proposed by Held (2004) for estimating and
computing contour probabilities or Bayesian p-values. As an alternative to HPD
regions, simultaneous credible intervals as proposed by Besag et al. (1995) could be
used to define pseudo contour probabilities.

• We derive in Section 4.2.2 conditions on the regression parameters that lead to a
constant, linear or in general a polynomial fit and develop efficient algorithms for
computing the corresponding (pseudo) contour probabilities. So far, algorithms and
software are restricted to models with Gaussian responses and models where latent
Gaussian responses can be obtained through data augmentation. The latter is pos-
sible for most categorical regression models, see Albert and Chib (1993) for probit
models and Holmes and Held (2004) for logit models.

• The performance of the different approaches is assessed through simulation studies
(Section 4.3). We finally present in Section 4.4 applications to data for the Munich
rental guide and on undernutrition in Zambia and Tanzania.

4.2 Contour probabilities for P-Splines

In order to keep the notation as simple as possible the development in this section is
presented for a particular covariate x with regression parameters β. Hence the index j in
(4.2) and everywhere else is suppressed.

4.2.1 Contour probabilities

Suppose we are interested in simultaneous posterior probability statements for a particular
parameter vector β = β∗. The posterior contour probability P (β∗ | y) of β∗ is defined as 1
minus the content of the HPD region of p(β | y) which just covers β∗, i.e.

P (β∗ | y) = P{p(β | y) ≤ p(β∗ | y) | y}, (4.4)

see Box and Tiao (1973) and Held (2004). Note that p(β | y) is treated here as a random
variable. In the following we briefly review concepts for estimating the probability (4.4)
from posterior samples β(t), t = 1, . . . , T obtained via MCMC simulation.
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Held (2004) proposes to estimate (4.4) by

̂P (β∗ | y) =
1

T

T∑
t=1

1{p(β(t) | y) ≤ p(β∗ | y)}, (4.5)

i.e. the proportion of the MCMC samples for which the posterior density is smaller than
the density of the point of interest β∗.

Unfortunately the functional form of the marginal density p(β | y) is unknown (otherwise
MCMC would not be necessary) and we have to employ some method of density estimation

to obtain estimates ̂p(β(t) | y), t = 1, . . . , T , and ̂p(β∗ | y). For (latent) Gaussian responses
the full conditionals p(β | ·), i.e. the conditional densities of β given the data and the
remaining parameters, are available and an approach based on Rao-Blackwellization seems
natural (Held 2004), since the Rao-Blackwell estimate is more efficient than any other
density estimate based on β(1), . . . , β(T ) and no smoothing parameter is involved. Estimates
for the marginal density p(β | y) can be obtained using the Rao-Blackwell theorem

p̂(β | y) =
1

T

T∑
v=1

p(β |α(v)
− , y), (4.6)

where α
(v)
− comprises all model parameters excluding β and hence p(β |α(v)

− , y) denotes the
full conditional density of β. As an alternative to the mean in (4.6) Held (2004) suggests
to use the median, i.e.

P̂ (β | y) = med1≤v≤T

{
p(β |α(v)

− , y)
}
. (4.7)

As an advantage, the estimated contour probabilities are invariant to monotonic transfor-
mations of p(β | y) in (4.4). For instance, one could replace p(β |α(v)

− , y) in (4.7) by the log
density, i.e.

log(P̂ (β | y)) = med1≤v≤T

{
log(p(β |α(v)

− , y))
}
. (4.8)

Usually, this is computationally more favorable than using the density directly (see Sub-
section 4.2.3) and also more robust against extreme samples.

Summarizing, the contour probability (4.4) is estimated by replacing the marginal den-
sities with (4.6), (4.7), or (4.8) if log densities are used. Using (4.8), for instance, we
obtain

̂P (β∗ | y) =
1

T

T∑
t=1

1
{
med1≤v≤T

{
log(p(β(t) |α(v)

− , y))
}
≤ med1≤v≤T

{
log(p(β∗ |α(v)

− , y))
}}

(4.9)

Pseudo contour probabilities based on credible intervals

As an alternative to the definition of contour probabilities via HPD regions, we could
base the definition on simultaneous credible intervals for the parameter β∗ of interest.
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For instance, Besag et al. (1995) propose to define a simultaneous credible interval as the
hyperrectangular defined by

[β[T+1−t∗]
ρ , β[t∗]

ρ ] ρ = 1, . . . , r + l, (4.10)

where β
[t]
ρ denotes the ordered samples of the parameter βρ. The index t∗ is the smallest

integer such that the hyperrectangular (4.10) contains at least 100α percent of the samples
β(1), . . . , β(T ) if α is the desired level of the credible interval.

The (pseudo) contour probability P (β∗ | y) for β∗ can now be defined as 1 minus the
smallest credible level, for which β∗ is contained in the corresponding credible interval.

4.2.2 Contour probabilities for P-Splines

In the context of P-splines, we are particularly interested in parameters β = β∗ that lead
to a constant, linear or in general a polynomial fit. Since P-splines are centered around
zero a constant fit corresponds to β∗ = 0, i.e. the corresponding covariate is excluded from
the predictor. In this section we determine conditions on the regression parameters that
lead to a polynomial fit rather than a piecewise polynomial as is generally the case.

It can be shown that a spline f(x) reduces to a polynomial of degree s ≤ l if the
(s+ 1)-th differences of the regression parameters are zero, i.e.

∆s+1βρ = 0, ρ = s+ 2, . . . , r + l, (4.11)

or in matrix notation

Ds+1β = 0,

where Ds+1 is a difference matrix of order s+ 1. A proof can be found in Appendix A.3.

In order to compute (pseudo) contour probabilities the full conditional of Dsβ must be
computed. The full conditional of β is multivariate Gaussian

β |α−, y ∼ N(m,P−1) (4.12)

with

P =
1

σ2
X ′X +

1

τj
K, m = P−1 1

σ2
X ′(y − η̃).

Here, η̃ is the part of the predictor associated with all remaining effects in the model. Thus
Dsβ =: β̃ is also multivariate Gaussian

β̃ |α−, y ∼ N(m̃, P̃−1), (4.13)

with m̃ = Dsm and P̃ = DsP
−1D′

s. Note that for the special case s = 0, i.e. Ds = I, we
recover (4.12) as full conditional for Dsβ.
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4.2.3 Computational aspects

This section is concerned with computational aspects of the estimator (4.9). We will
distinguish the two cases s = 0 and s > 0.

In the case s = 0 we have to evaluate

log(p(β(t) |α(v)
− , y)) =

1

2
log(|P (v)|)− 1

2
(β(t) −m(v))′P (v)(β(t) −m(v)) (4.14)

for t, v = 1, . . . , T in order to estimate (4.9). Here, P (v) is the posterior precision matrix
evaluated at the v-th sample of τ 2 and σ2 and m(v) is the posterior mean evaluated at the
v-th sample of P , σ2 and η̃. It is useful to decompose the quadratic form in (4.14) by

(β(t) −m(v))′P (v)(β(t) −m(v)) =
1

(σ2)(v)
(β(t))′X ′Xβ(t) +

1

(τ 2)(v)
(β(t))′Kβ(t) + (m(v))′P (v)m(v) − 2(m(v))′P (v)β(t),

This shows that (4.9) can be evaluated by computing and storing the samples log(|P (t)|),
(β(t))′X ′Xβ(t), (β(t))′Kβ(t), (m(t))′P (t)m(t) and (m(v))′P (v)β(t). Except (m(v))′P (v)β(t) these
quantities are obtained as a by product of the MCMC simulation run. For t ≤ v, t, v =
1, . . . , T it is also possible to store (m(v))′P (v)β(t). For t > v the quantity (m(v))′P (v)β(t)

must be computed after MCMC simulation. This is facilitated by storing (m(v))′P (v) after
every iteration of the MCMC sampler.

The case s > 0 is computationally more demanding. In this case the log densities

log(p(β̃(t) |α(v)
− , y)) =

1

2
log(|P̃ (v)|)− 1

2
(β̃(t) − m̃(v))′P̃ (v)(β̃(t) − m̃(v))

must be computed. Evaluation of the quadratic form yields

(β̃(t) − m̃(v))′P̃ (v)(β̃(t) − m̃(v)) = (β̃(t))′P̃ (v)β̃(t) + (m̃(v))′P̃ (v)m̃(v) − 2(m̃(v))′P̃ (v)β̃(t).

Hence the quantities log(|P̃ (v)|) and (m̃(v))′P̃ (v)m̃(v) can be computed as a by product of the
MCMC sampler and stored in every iteration. However, the quantities (β̃(t))′P̃ (v)β̃(t) and
(m̃(v))′P̃ (v)β̃(t) can only be stored for t ≤ v. For t > v both quantities must be computed
after the MCMC run.

Now we can compute medv

{
log(p(β̃(t)|α(v)

− , y))
}

for all t in two ways which differ in

the order of evaluations:
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Algorithm 1:

For t = 1, . . . , T :

1. For v = 1, . . . , T :

(a) If t > v:
Compute P̃ (v) and with it the quantities (β̃(t))′P̃ (v)β̃(t) and (m̃(v))′P̃ (v)β̃(t).

(b) Compute log(p(β̃(t)|α(v)
− , y)).

2. Compute medv

{
log(p(β̃(t)|α(v)

− , y))
}

.

This algorithm is very time consuming, because P̃ (v) has to be computed T (T − 1)/2
times.

The second algorithm is:

Algorithm 2:

1. For v = 1, . . . , T :

(a) Compute P̃ (v).

(b) For t = 1, . . . , T :

If t ≤ v: Compute log(p(β̃(t) |α(v)
− , y)) based on the stored quantities.

If t > v:
Compute first (β(t))′P̃ (v)β(t) and (m̃(v))′P̃ (v)β̃(t) and then log(p(β̃(t) |α(v)

− , y)).

2. For v = 1, . . . , T : Compute medv

{
log(p(β̃(t) |α(v)

− , y))
}

.

The drawback of this algorithm is that it takes an enormous amount of memory space,
because we have to create a T × T matrix to store all values log(p(β̃(t) |α(v)

− , y)), t, v =
1, . . . , T , before computing the median. A remedy is to take only every k-th sample to

estimate ̂p(β̃(t)|y), but the memory requirement is still extraordinarily high.
As an alternative to the direct computation of the medians, we propose to use the

method of stochastic approximation as described in Tierney (1983). The advantage is, that
the quantiles can be estimated by a very space-efficient recursive procedure. Throughout
this work we use Algorithm 2 together with stochastic approximation of quantiles to avoid
extensive use of memory space.

4.3 Simulations

We realized an extensive simulation study in order to compare the performance of contour
and pseudo contour probabilities. We investigated the functions

yi = 1 + k · sin(2πxi) + εi, k = 0.0, 1.0, 1.5, (4.15)
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and
yi = 1 + xi + k · sin(2πxi) + εi, k = 0.0, 1.0, 1.5. (4.16)

For x we chose 100 equidistant design points in the interval [0, 1] and generated data
sets with 250 replications of each of the models (4.15) and (4.16) with εi ∼ N(0, 0.5). This
corresponds to a signal to noise ratio (SNR) of 0.0, 1.0 and 2.25 for k = 0, 1.0, 1.5 and
model (4.15) and a SNR of approximately 0.17, 0.53 and 1.47 for k = 0, 1.0, 1.5 and model
(4.16), respectively. We used an IG(0.001,0.001) prior for the scale parameter σ2 and the
variance parameter τ 2. Figures 4.1 and 4.2 display the simulated functions as well as a
typical replication from the generated response for k = 0, 1.0, 1.5.

We compare the results in terms of the ’p-values’ obtained from contour probabilities
based on the median and the mean of the log-density, and from pseudo contour prob-
abilities. Figure 4.3 shows boxplots of p-values for model (4.15). Note that ∆sβ = 0
corresponds to a constant fit (i.e. no effect) for both, s = 0 and s = 1. The results for
model (4.16) exhibit mainly the same behavior and are displayed in Figure 4.4. The results
of both models can be summarized as follows:

• No effect (SNR=0.0)
As we could have expected, for a signal to noise ratio of 0.0 the contour probabilities
are close to one for all difference orders considered, i.e. p-values give no evidence of
any influence of the covariate at all. Pseudo contour probabilities do not suggest the
existence of an influence of the covariate either, though they are considerably lower
than the contour probabilities.

It is striking that pseudo contour probabilities show a noticeable difference between
difference orders s = 0 and s = 1, though both correspond to the probability for
no effect of the covariate. Held (2004) reports severe underestimation for s = 0 and
conjures that this comes from strong correlations between successive parameters.
Since the correlation decreases when considering first differences of the parameters
instead of the parameters directly the problem becomes less distinctive. This may
explain the big differences between s = 0 and s = 1.

• Very low to low signal to noise ratio (SNR=0.17, 0.53, 1.0)
For the very low and low signal to noise ratios (0.17, 0.53 in model 4.16, 1.0 in
model 4.15) the p-values clearly decrease for all difference orders smaller than 4,
i.e. the posterior probabilities for a (at least) cubic effect increase. However, neither
contour probabilities nor pseudo contour probabilities give clear cut results and hence
further investigation is advisable. An exception are p-values from pseudo contour
probabilities based on 0-th order differences. Here, pseudo contour probabilities
exhibit mainly very low p-values. However, this may be due to the underestimation
mentioned by Held (2004).

• Medium signal to noise ratio (SNR=1.47, 2.25)
For medium signal to noise ratios (1.47 in model 4.16, 2.25 in model 4.15) the con-
tour probabilities for parametric fits with polynomials of degree smaller than three
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Figure 4.1: True functions for model (4.15) (a) and a typical replication of y for k =
0, 1.0, 1.5 (b)-(d).
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(i.e. difference order smaller than 4) are very small, suggesting that a more flexible
modeling is needed. However, the need of a polynomial of degree higher than 3 is
rather unlikely a posteriori. This is in perfect agreement with the data, since a sine
curve can be approximated by a polynomial of degree 3 without major deviations
(compare Figure 4.5). Pseudo contour probabilities, on the other hand, perform very
poorly for difference orders higher than 1.

• Contour probabilities versus pseudo contour probabilities
It turns out that p-values based on pseudo contour probabilities are apparently
smaller than that obtained from the contour probabilities for very low signal to
noise ratios. This is in accordance with findings of Held (2004) who reported severe
underestimation of p-values especially in the case of difference order s = 0, but also
- to a smaller degree - when considering first differences.

In contrast, pseudo contour probabilities behave rather conservative regarding higher
differences compared to contour probabilities. For a SNR of 2.25 p-values in favor of a
parametrization by polynomials of a degree higher than quadratic are still reasonably
close to one.

• Contour probabilities based on the median/mean of log-density
Estimated p-values may differ considerably regarding on which definition they are
based. In our simulation study we compared p-values based on the median or on the
mean of the log-density, respectively. We found p-values based on the mean of the
log-density to be noticeably higher than the ones based on the median.

We conclude that pseudo contour probabilities seem to underestimate the p-values
regarding the decision whether a covariate has an effect on the response or not, whereas for
the decision for modeling an effect linearly (or by a polynomial of higher degree) they seem
to behave too conservative. Contour probabilities seem to give the most reasonable results.
However, it is difficult to base model selection solely on contour probabilities in cases when
the obtained p-values lie in a medium range (i.e. between 0.1 and 0.4, approximately).
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Figure 4.3: Boxplots of p-values obtained from contour probabilities based on the median
(top), contour probabilities based on the mean of the log-density (middle), and pseudo
contour probabilities (bottom) for different SNRs and difference orders (model 4.15). Dif-
ference order s = 0 and s = 1 corresponds to no effect, s = 2 (3, 4) corresponds to a linear
(quadratic, cubic) effect.
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Figure 4.4: Boxplots of p-values obtained from contour probabilities based on the median
(top), contour probabilities based on the mean of the log-density (middle), and pseudo
contour probabilities (bottom) for different SNRs and difference orders (model 4.16). Dif-
ference order s = 0 and s = 1 corresponds to no effect, s = 2 (3, 4) corresponds to a linear
(quadratic, cubic) effect.
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4.4 Applications

In this section we illustrate the performance of the previously described model selection
tools by applications to complex data sets. First, we reanalyze data from the official
Munich rental guide of the year 2003 using the model developed by Fahrmeir, Biller,
Brezger, Gieger, Hennerfeind, Jerak and Schmid (2003). We omit a detailed description
of the data at this point and refer the reader back to Chapter 2, where we deal with data
from the munich rental guide from 1999. Here, mostly the same covariates are involved
compared to the analysis in Chapter 2.

Our second example investigates undernutrition of children in Zambia and Tanzania
and is based on data already analyzed by Kandala, Lang, Klasen and Fahrmeir (2001).
We give a brief description of the data in Subsection 4.4.2.

4.4.1 Rental guide

Compared to the model considered in Chapter 2 the official munich rental guide 2003 does
not contain a nonparametric interaction effect nor a structured or unstructured random ef-
fect for spatial heterogeneity. Instead, dummy variables according to an experts assessment
of the locations of flats in munich in three categories (average, good, top) are included.
Thus, our model has a semiparametric predictor of the form

η = γ0 + f1(F ) + f2(Y ) + γ′x,

where F denotes the floor space in square meters, Y denotes the year of construction and
γ contains all covariates to be modeled parametrically, e.g. the quality of the kitchen and
bath equipment, location of the flat, etc. (compare Chapter 2). Since we aim at deciding
whether the nonparametric modeling of the continuous covariates F and Y could possibly
replaced by a more parsimonious polynomial fit, we do not compare the results for the
fixed effects to the results of Fahrmeir et al. (2003).

By visual inspection, the nonparametric effects as depicted in Figure 4.6 seem justified
and one presumes that they can not be adequately modeled by low degree polynomials.
Table 4.1 displays the p-values obtained from contour probabilities and pseudo contour
probabilities. Obviously, there is strong evidence for the need of nonparametric effects for
F and Y regarding contour probabilities, as all p-values are either exactly or at least near
zero. However, pseudo contour probabilities only suggest a linear effect of both covariates.
Therefore we additionally estimate the model with only fixed effects included, i.e. we model
F and Y linearly. Comparison of the DIC (Table 4.2) shows that the semiparametric model
clearly outperforms the parametric model suggested by pseudo contour probabilities.

Figure 4.7 depicts the linear and nonparametric estimates for F and Y together with
the partial residuals

rF = y − η̂−F and rY = y − η̂−Y ,

where η̂−F , η̂−Y is the estimated predictor with the estimated effect of F and Y , respec-
tively, excluded. Figure 4.8 displays the mean and the standard deviation of the partial
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Figure 4.6: Nonparametric effects of F and Y for IG(0.001,0.001) priors on τ 2
F , τ 2

Y and σ2.

residuals. Note, that for F the data is rounded to integer values to compute means and
standard deviations. A comparison between the figures for the linear and the nonparamet-
ric model gives further evidence for the superiority of the semiparametric model, since the
nonparametric estimates show a clearly better adaptation to the partial residuals.
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Figure 4.8: Estimated function (solid line), mean (symbol ’x’) and mean ± standard
deviation of partial residuals (symbol ’-’) for F (left panel) and Y (right panel). Shown
are the results for the parametric (top) and the nonparametric fit (bottom).
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Table 4.1: Contour probabilities based on median, mean of log-density and mean of density
and pseudo contour probabilities for the effects of F and Y with IG(0.001,0.001) priors on
τ 2
F , τ 2

Y and σ2.

difference order 0 1 2 3 4
degree of polynomial const const linear quadratic cubic

F (based on median) 0.0 0.0 0.0 0.01 0.03
F (based on mean of log-density) 0.0 0.0 0.0 0.01 0.04
F (pseudo contour probabilities) 0.0 0.0 0.46 0.94 1.0

Y (based on median) 0.0 0.02 0.01 0.11 0.12
Y (based on mean of log-density) 0.01 0.03 0.03 0.17 0.19
Y (pseudo contour probabilities) 0.0 0.0 0.70 0.99 0.99

Table 4.2: Deviance, effective degrees of freedom (pD) and DIC for the parametric and
the semiparametric model using IG(0.001,0.001) priors on τ 2

F , τ 2
Y (in the semiparametric

model) and σ2.

Deviance D(θ̄) pD DIC
parametric model 12629.7 26.0 12681.7
semiparametric model 12400.0 41.8 12483.6
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4.4.2 Undernutrition in Zambia and Tanzania

The Demographic Health Surveys (DHS) of Tanzania and Zambia, both conducted in 1992,
draw a representative sample of women in reproductive age in the two countries. Thereafter
they administer a questionnaire and an anthropometric assessment of themselves and their
children that where born within the previous five years. The data contains 6299 cases
in Zambia and 8138 cases in Tanzania. Kandala et al. (2001) use this data to explore
determinants of undernutrition measured through stunting, which is insufficient height for
age, indicating chronic undernutrition. Stunting for a child i is determined by a Z-score

Zi =
AIi −MAI

σR
,

where AI refers to the childs height at a certain age, MAI refers to the median of a
reference population, and σR denotes the standard deviation of the reference population.

Kandala et al. (2001) estimate separate additive models for each country with a pre-
dictor

η = γ0 + f1(bmi) + f2(agc) + fspat(d) + γ′x,

where the mothers body mass index bmi and the age of the child agc are modeled non-
parametrically with Bayesian P-splines. The expression fspat(d) denotes the spatial effect
associated with the district d the child lives in, and is modeled as sum of a structured
and an unstructured random effect for Zambia. For Tanzania they exclude the unstruc-
tured effect from the model. The fixed effects γ include categorical variables concerning
the education and employment situation of the mother, the gender of the child and the
characteristic of the area (urban or rural), where the child resides. For more details on the
analysis we refer the reader to Kandala et al. (2001).

Here, our aim is to investigate whether the nonparametric modeling of bmi and agc is
necessary by employing contour probabilities and pseudo contour probabilities. Moreover,
we compare different models in terms of the DIC. In a first attempt, we use the model
developed by Kandala et al. (2001) and model both continuous covariates, bmi and agc,
nonparametrically by P-splines. Based on the contour probabilities for the nonparametric
effects obtained from this model, we investigate a number of different model specifications,
where bmi and agc are modeled nonparametrically, or parametrically with polynomials
of different degrees. Following Kandala et al. (2001), spatial heterogeneity is captured by
adding an unstructured and a structured random effect for Zambia and a structured random
effect for Tanzania and the remaining covariates are modeled parametrically throughout
our analysis. The models under consideration are:
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η1 = γ0 + f1(bmi) + f2(agc) + fspat(d) + γ′x
η2 = γ0 + f1(bmi) + β1agc+ β2agc

2 + fspat(d) + γ′x
η3 = γ0 + f1(bmi) + β1agc+ β2agc

2 + β3agc
3 + fspat(d) + γ′x

η4 = γ0 + + f2(agc) + fspat(d) + γ′x
η5 = γ0 + + β1agc+ β2agc

2 + fspat(d) + γ′x
η6 = γ0 + + β1agc+ β2agc

2 + β3agc
3 + fspat(d) + γ′x

η7 = γ0 + α1bmi + f2(agc) + fspat(d) + γ′x
η8 = γ0 + α1bmi + β1agc+ β2agc

2 + fspat(d) + γ′x
η9 = γ0 + α1bmi + β1agc+ β2agc

2 + β3agc
3 + fspat(d) + γ′x

η10 = γ0 + α1bmi+ α2bmi
2 + f2(agc) + fspat(d) + γ′x

η11 = γ0 + α1bmi+ α2bmi
2 + β1agc+ β2agc

2 + fspat(d) + γ′x
η12 = γ0 + α1bmi+ α2bmi

2 + β1agc+ β2agc
2 + β3agc

3 + fspat(d) + γ′x

Table 4.3 shows the resulting contour probabilities and pseudo contour probabilities,
respectively. In Table 4.4 values for the deviance, the effective degrees of freedom (pD)
and the DIC are displayed. Models are ordered according to the DIC.

The best fit in terms of the DIC is achieved by model 7. The models 1, 9 and 10
perform almost equally well, however, the deviance is considerably smaller for the higher
parameterized models 1, 7 and 10. Excluding bmi from the model does not give a satisfying
fit (though the contour probability tends to favor this). Comparing the models with a
linear effect for bmi (models 7, 8, 9) to those with a quadratic effect (models 10, 11, 12),
there are no apparent differences, indicating that linear modeling is sufficient. For agc a
quadratic fit does not perform very well. On the other hand, the differences between cubic
and nonparametric modeling of agc are almost negligible. This means that nonparametric
modeling could be replaced by parametric modeling using a polynomial of degree 3 without
appreciable loss in terms of model fit.

The findings based on the DIC are in agreement with the low p-values obtained from
contour probabilities based on the median or on the log-density for difference order 3 and
lower for the effect of agc. Pseudo contour probabilities suggest a linear effect and therefore
clearly contradict the results from the DIC. The p-values based on contour probabilities
in favor of ’no effect’ of bmi are in a medium region and allow no clear decision, though
the DIC clearly prefers the linear fit. Pseudo contour probabilities allow no clear decision
either since the p-value for difference order s = 0 pleads for an effect, whereas the p-value
for s = 1 tends towards ’no effect’.

In Figure 4.9 we compare the nonparametric, the linear and the quadratic fit for agc,
and the nonparametric, the quadratic and the cubic effect for bmi. The depicted effects
correspond to the best model in terms of DIC that includes the corresponding type of
modeling of an effect. Here we see that the functional form of the two effects can indeed
satisfactorily be modeled by a quadratic and a cubic term, respectively.

The results for Tanzania are reported in Tables 4.5 and 4.6. A comparison of parametric
and nonparametric estimations is displayed in Figure 4.10. The main differences compared
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to the results for Zambia are a more curved estimation of the effect of bmi and an additional
local maximum of the effect of agc at in the interval [25, 30]. However, while a quadratic
fit for bmi (models 10, 11, 12) only slightly improves the model in terms of DIC compared
to a linear fit (models 7, 8, 9), we observe a more distinct improvement when using a
nonparametric fit for agc (models 1, 4, 7, 10) instead of a cubic fit (models 3, 6, 9, 12). This
is confirmed by the obtained contour probabilities (based on the median and the mean of
the log-density), which are somewhat smaller for difference order s = 1 for bmi and clearly
smaller for 4th differences for agc. Figure 4.10 shows that a cubic fit totally misses the
local maximum exhibited by the nonparametric estimate. Pseudo contour probabilities are
smaller than for Zambia, too, but still fail to give results agreeing with that obtained from
contour probabilities and the DIC.

4.5 Conclusion

We applied contour probabilities and pseudo contour probabilities in order to decide
whether nonparametric modeling of continuous covariates is necessary or if parametric
modeling by polynomials of small degree is sufficient. In a simulation study we found con-
tour probabilities to perform clearly superior compared to pseudo contour probabilities.
In two applications we highlight that contour probabilities qualify as a helpful instrument
for model selection. We conclude that contour probabilities give useful hints for a careful
model selection, but seem to behave somewhat conservative regarding the possible model fit
in terms of the DIC. Therefore, we recommend not to rely solely on them, but to take into
account other model selection tools as for example the DIC, especially when the resulting
contour probabilities are not close to 0 or 1.

Estimating Bayesian p-values for general distributions from an exponential family is
computationally much more expensive since the marginal distributions are no longer avail-
able by Rao-Blackwellization. Instead an approach of Chib and Jeliazkov (2001) could be
used. This might be a challenge for future research.
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Table 4.3: Contour probabilities for the effects of bmi and agc in Zambia. Displayed are
the results for model 1.

difference order 0 1 2 3 4
degree of polynomial const const linear quadratic cubic

bmi (based on median) 0.29 0.38 1.0 1.0 1.0
bmi (based on mean of log-density) 0.30 0.42 1.0 1.0 1.0
bmi (pseudo contour probabilities) 0.0 0.45 1.0 1.0 1.0

agc (based on median) 0.0 0.0 0.0 0.09 0.84
agc (based on mean of log-density) 0.0 0.0 0.0 0.12 0.87
agc (pseudo contour probabilities) 0.0 0.0 0.83 1.0 1.0

Table 4.4: Deviance, effective degrees of freedom (pD) and DIC for models 1-12 for Zambia
using IG(0.001,0.001) priors on τ 2

bmi, τ
2
agc and σ2.

Deviance D(θ̄) pD DIC
Model 7 12640.5 46.7 12733.9
Model 10 12640 47.5 12735
Model 9 12651.5 42.7 12736.9
Model 1 12639.1 49.4 12737.9
Model 12 12650.9 43.9 12738.7
Model 3 12650.9 45.3 12741.5
Model 4 12663 46.6 12756.2
Model 6 12676.5 42.6 12761.7
Model 8 12696.3 41.6 12779.5
Model 11 12695.2 42.5 12780.2
Model 2 12694.3 44.0 12782.3
Model 5 12722 41.1 12804.2
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Figure 4.9: Effects of bmi (left panel) and agc (right panel) in Zambia for different model
specifications. In the two lower panels the solid line corresponds to the parametric fit, the
dotted curve displays the spline estimate.
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Table 4.5: Contour probabilities for the effects of bmi and agc in Tanzania. Displayed are
the results for model 1.

difference order 0 1 2 3 4
degree of polynomial const const linear quadratic cubic

bmi (based on median) 0.33 0.14 0.79 0.93 0.93
bmi (based on mean of log-density) 0.42 0.25 0.86 0.97 0.97
bmi (pseudo contour probabilities) 0.02 0.04 0.89 0.84 0.97

agc (based on median) 0.0 0.0 0.0 0.0 0.09
agc (based on mean of log-density) 0.0 0.0 0.0 0.01 0.20
agc (pseudo contour probabilities) 0.0 0.0 0.60 0.77 0.99

Table 4.6: Deviance, effective degrees of freedom (pD) and DIC for models 1-12 for Tan-
zania using IG(0.001,0.001) priors on τ 2

bmi, τ
2
agc and σ2.

Deviance D(θ̄) pD DIC
Model 1 15477.8 39.0 15555.8
Model 10 15489.3 35.0 15559.3
Model 7 15494.7 34.2 15563.1
Model 3 15521.2 32.8 15586.8
Model 12 15431.4 28.9 15589.6
Model 9 15537 27.9 15592.8
Model 4 15539.9 33.3 15606.5
Model 6 15583.4 27.0 15638.4
Model 2 15601 32.0 15665
Model 11 15612.5 27.8 15668.1
Model 8 15618.8 26.9 15672.6
Model 5 15671.8 25.9 15723.6
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Figure 4.10: Effects of bmi (left panel) and agc (right panel) in Tanzania for different
model specifications. In the two lower panels the solid line corresponds to the parametric
fit, the dotted curve displays the spline estimate.
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Chapter 5

BayesX: Analyzing Bayesian
structured additive regression models

One of the main concerns of this work is not only to develop methodology for fitting
Bayesian P-splines as a building block within a very general model class, but also to
efficiently implement this methodology in an easy to use public domain software. All
models discussed so far are implemented in the software BayesX, a program for Bayesian
inference. Therefore, in this last chapter we describe the usage and the capabilities of
BayesX, available via internet at http://www.stat.uni-muenchen.de/~lang/bayesx/.
Although BayesX is not restricted to MCMC methods, we focus on such methods in this
chapter, since in this work we solely rely on simulation based inference.

This chapter consists of the SFB 386 discussion paper 332 entitled ’BayesX: Analyz-
ing Bayesian structured additive regression models’ by Brezger, Lang and Kneib (2003).
The article is intended to give the user an overview over the methodology implemented in
BayesX and to give a basic introduction into practical working with the program. This
is achieved by explaining the philosophy of the program and providing concrete exam-
ples consisting of executable commands for performing the analysis of a data set on un-
dernutrition in countries of Zambia and Malawi. The data is shipped along with the
software and was originally analyzed by Kandala et al. (2001). Therefore, the focus lies
on performing the estimation and not on interpretation of the results. The article en-
ables the user to do first steps with the program. Note that slight modifications regard-
ing the notation have been made at some places to achieve consistency with the other
chapters. A more detailed extensive user manual (Brezger et al. 2003) is available at
http://www.stat.uni-muenchen.de/~lang/bayesx/manual.pdf.
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BayesX: Analyzing Bayesian structured additive
regression models

Andreas Brezger, Thomas Kneib and Stefan Lang
Department of Statistics

University of Munich
Ludwigstr. 33, 80539 Munich

Germany

SUMMARY

There has been much recent interest in Bayesian inference for generalized
additive and related models. The increasing popularity of Bayesian meth-
ods for these and other model classes is mainly caused by the introduc-
tion of Markov chain Monte Carlo (MCMC) simulation techniques which
allow realistic modeling of complex problems. This paper describes the
capabilities of the public domain software BayesX for estimating regres-
sion models with structured additive predictor based on MCMC inference.
The program extends the capabilities of existing software for semiparamet-
ric regression like S-plus, SAS or R. Many model classes well known from
the literature are special cases of the models supported by BayesX. Ex-
amples are generalized additive (mixed) models, dynamic models, varying
coefficient models, geoadditive models, geographically weighted regression
and models for space-time regression. BayesX supports the most common
distributions for the response variable. For univariate responses these are
Gaussian, Binomial, Poisson, Gamma and negative Binomial. For multicat-
egorical responses, both multinomial logit and probit models for unordered
categories of the response as well as cumulative threshold models for or-
dered categories can be estimated. Moreover, BayesX allows the estimation
of complex continuous time survival and hazard rate models.

5.1 Introduction

BayesX is a public domain software package developed during the last seven years at
the Department of Statistics, University of Munich. The program comprises a number
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of powerful features and tools for full and empirical Bayesian inference. Functions for
handling and manipulating data sets and geographical maps, and for visualizing results
are added for convenient use.

In this paper, we describe a powerful tool for estimating regression models with struc-
tured additive predictor (see Section 5.2) based on recent MCMC simulation techniques.
This paper may primarily serve as a starting point for getting an overview about the capa-
bilities of this tool and as a guideline through the more detailed description in the BayesX
manual, see Brezger et al. (2003). Besides the regression tool described in this paper, the
current version of BayesX contains an alternative approach for inference based on mixed
model methodology (Fahrmeir et al. (2004) and Ruppert et al. (2003)), and also allows for
estimating Bayesian dags (Fronk and Giudici (2000) and Fronk (2002)).

The next section provides a brief introduction to the methodological background. In
Section 5.3 we give an overview about the general usage of BayesX and show how Bayesian
structured additive regression models are estimated. A complex example about childhood
undernutrition in Zambia is discussed in Section 5.4. Instructions for downloading the
program and recommendations for further reading are given in the concluding Section 5.5.

5.2 Methodological background

The model class supported by BayesX is based on the framework of Bayesian generalized
linear models (GLM), e.g. Fahrmeir and Tutz (2001)). GLM’s assume that, given covariates
u and unknown parameters γ, the distribution of the response variable y belongs to an
exponential family with mean µ = E(y |u, γ) linked to a linear predictor η by

µ = h(η) η = u′γ. (5.1)

Here h is a known response function, and γ are unknown regression parameters. BayesX
is, however, able to estimate much more flexible models with structured additive predictor
(see Part II of Chapter 2 and Fahrmeir et al. (2004))

ηr = f1(ψr1) + · · ·+ fp(ψrp) + u′rγ, (5.2)

where r is a generic observation index, ψrj denote generic covariates of different types and
dimension, and fj are (not necessarily smooth) functions of the covariates. The functions fj
comprise usual nonlinear effects of continuous covariates, time trends and seasonal effects,
two-dimensional surfaces, varying coefficient terms, i.i.d. random intercepts and slopes,
spatially correlated effects, and geographically weighted regression. In order to demonstrate
the generality of the model class supported by BayesX we point out some special cases of
(5.2) well known from the literature:

• Generalized additive model (GAM) for cross-sectional data
A GAM (Hastie and Tibshirani (1990)) is obtained if the ψj, j = 1, . . . , p, are uni-
variate and continuous and fj are smooth functions. In BayesX the functions fj are
modeled either by random walk priors or P-splines, see Fahrmeir and Lang (2001a)
and Chapter 2 for the methodological background.
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• Generalized additive mixed model (GAMM)
Consider longitudinal data for individuals i = 1, . . . , n, observed at time points
t ∈ {t1, t2, . . . }. For notational simplicity we assume the same time points for
every individual, but generalizations to individual-specific time points are obvious.
A GAMM extends a GAM by introducing individual-specific random effects, i.e.

ηit = f1(xit1) + · · ·+ fk(xitk) + b1iwit1 + · · ·+ bqiwitq + u′itγ,

where ηit, xit1, . . . , xitk, wit1, . . . , witq, uit are predictor and covariate values for individ-
ual i at time t and bi = (b1i, . . . , bqi) is a vector of q i.i.d. random intercepts (if witj = 1)
or random slopes. The random effects components are modeled by i.i.d. Gaussian
priors, see e.g. Clayton (1996). GAMM’s can be subsumed into (5.2) by defining
r = (i, t), ψrj = xitj, j = 1, . . . , k, ψr,k+h = with, and fk+h(ψr,k+h) = bhiwith,
h = 1, . . . , q. Similarly, GAMM’s for cluster data can be written in the general
form (5.2).

• Geoadditive models
In many situations additional geographic information for the observations in the data
set is available. As an example compare our demonstrating example in Section 5.4
on the determinants of childhood undernutrition in Zambia. Here, the district where
the mother of a child lives may be used as an indicator for regional differences in the
health status of children. A reasonable predictor for such data is

ηr = f1(xr1) + · · ·+ fk(xrk) + fspat(sr) + u′r, γ (5.3)

where fspat is an additional spatially correlated effect of the location sr an observation
pertains to. Models with a predictor that contains a spatial effect are also called
geoadditive models, see Kammann and Wand (2003). In BayesX, the spatial effect
may be modeled by Markov random fields (Besag et al. 1991) or two-dimensional
P-splines (Chapter 2).

• Varying coefficient model (VCM) - geographically weighted regression
A VCM as proposed by Hastie and Tibshirani (1993) is defined by

ηr = g1(xr1)zr1 + · · ·+ gp(xrp)zrp,

where the effect modifiers xrj are continuous covariates or time scales and the interact-
ing variables zrj are either continuous or categorical. This model can be cast into (5.2)
by ψrj = (xrj, zrj) and defining the special function fj(ψrj) = fj(xrj, zrj) = gj(xrj)zrj.
Note that in BayesX the effect modifiers are not necessarily restricted to be contin-
uous variables as in Hastie and Tibshirani (1993). E.g. the geographical location
may be used as effect modifier as well, see Fahrmeir et al. (2003) for an example.
VCM’s with spatially varying regression coefficients are well known in the geography
literature as geographically weighted regression, see e.g. Fotheringham et al. (2002).
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• ANOVA type interaction model
Suppose xr and zr are two continuous covariates. Then, the effect of xr and zr may
be modeled by a predictor of the form

ηr = f1(xr) + f2(zr) + f1|2(xr, zr) + . . . ,

see e.g. Chen (1993). The functions f1 and f2 are the main effects of the two covariates
and f1|2 is a two-dimensional interaction surface which can be modeled e.g. by two-
dimensional P-splines (Chapter 2). The interaction can be cast into the form (5.2)
by defining ψr1 = xr, ψr2 = zr and ψr3 = (xr, zr).

All regression models discussed above and arbitrary combinations can be estimated
with BayesX in a Bayesian framework based on recent MCMC simulation techniques. The
software provides a variety of different smoothness priors whose applicability depends on
the type of covariate and the prior assumptions on smoothness. For continuous covariates
BayesX supports random walk priors (Fahrmeir and Lang 2001a) and Bayesian P-splines
(Part I of Chapter 2). For spatial effects a variety of Markov random field priors (Besag et
al. 1991) and two-dimensional P-splines (Part II of Chapter 2) are available. Unobserved
unit- or cluster specific heterogeneity may be considered by introducing random intercepts
or slopes. Interactions may be modeled via varying coefficient terms or two-dimensional
P-splines.

At first sight it may look strange to use one general notation for nonlinear functions of
continuous covariates, i.i.d. random intercepts and slopes, and spatially correlated effects
as in (5.2). However, the unified treatment of the different components in our model is
justified because the priors for the different types of effects can be cast into a general form.
The vector of function evaluations fj = (fj(x1j), . . . , fj(xnj))

′ of an unknown function fj
can be written as the product of a design matrix Xj and a vector of unknown parameters
βj, i.e.

fj = Xjβj. (5.4)

Then, we obtain the predictor (5.2) in matrix notation as

η = X1β1 + · · ·+Xpβp + Uγ, (5.5)

where U corresponds to the usual design matrix for fixed effects. A prior for a function fj
is now defined by specifying a suitable design matrix Xj and a prior distribution for the
vector βj of unknown parameters. The general form of the prior for βj is

p(βj|τ 2
j ) ∝ exp

(
− 1

2τ 2
j

β′jKjβj

)
, (5.6)

where Kj is a penalty matrix that shrinks parameters towards zero, or penalizes too abrupt
jumps between neighboring parameters. In most cases Kj will be rank deficient and there-
fore the prior for βj is partially improper. Specific examples for Xj and Kj are given in
Fahrmeir and Lang (2001a) and Chapter 2. The general form of the priors allows rather
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general and unified estimation procedures, see particularly Part II of Chapter 2. As a
side effect the implementation and description of these procedures is considerably facili-
tated. The variance parameter τ 2

j in (5.6) is equivalent to the inverse smoothing parameter
in a frequentist approach and controls the trade off between flexibility and smoothness.
Weakly informative inverse Gamma hyperprior τ 2

j ∼ IG(aj, bj) are assigned to τ 2
j , with

aj = bj = 0.001 as a standard option.
BayesX supports the most common distributions for the response variable. Possible

choices for univariate responses are Gaussian, Binomial, Poisson, Gamma and negative
Binomial. For multicategorical responses, both multinomial logit and probit models for
unordered categories of the response as well as cumulative threshold models for ordered
categories are available. Note that models for categorical responses may also be used
for estimating discrete time survival and competing risk models, see Fahrmeir and Tutz
(2001), Ch. 9. The Poisson distribution allows the estimation of piecewise exponential
survival models, see e.g. Ibrahim, Chen and Sinha (2001). Furthermore, extensions of
continuous time Cox models have been added recently.

The goodness of fit is assessed by the deviance, deviance residuals, the deviance infor-
mation criterion DIC (Spiegelhalter et al. 2002) and leverage statistics.

The methodology for univariate responses is described in full detail in Fahrmeir and
Lang (2001a) and Chapter 2. Count data regression is covered in Fahrmeir and Osuna
(2003). Models with multicategorical responses are dealt with in Fahrmeir and Lang
(2001b) and Part II of Chapter 2. Survival models are treated in Hennerfeind et al. (2003)
and Fahrmeir and Hennerfeind (2003). A thorough (and for most practical purposes suf-
ficient) introduction into the regression models supported by the program is provided in
the BayesX manual (Brezger et al. (2003), Ch. 7).

5.3 Usage of BayesX

After having started BayesX, a main window divided into four sub-windows appears on the
screen. These are a command window for entering and executing code, an output window
for displaying results, a review window for easy access to past commands, and an object
browser that displays all objects currently available.

BayesX is object oriented although the concept is limited, i.e. inheritance and other
concepts of object oriented languages like C++ or S-plus are not supported. For every
object type a number of object-specific methods may be applied to a particular object.
To estimate Bayesian regression models we need a dataset object to incorporate, handle
and manipulate data, a bayesreg object to estimate semiparametric regression models, and
a graph object to visualize estimation results. If spatial effects are to be estimated, we
additionally need map objects. Map objects serve as auxiliary objects for bayesreg objects
and are used to read the boundary information of geographical maps and to compute the
neighborhood matrix and weights associated with the neighbors. The syntax for generating
a new object in BayesX is
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> objecttype objectname

where objecttype is the type of the object, e.g. dataset, and objectname is the arbitrarily
chosen name of the new object. In the following subsections we give an overview about
the most important methods of the object types required to estimate Bayesian structured
additive regression models.

5.3.1 dataset objects

Data (in form of external ASCII files) are read into BayesX with the infile command.
The general syntax is:

> objectname.infile [varlist] [, options] using filename

Here, varlist denotes a list of variable names separated by blanks (or tabs), and filename
is the name (including full path) of the external ASCII file storing the data. The variable
list may be omitted if the first line of the file already contains the variable names. BayesX
assumes that the variables are stored column wise, that is one column per variable. Two
options may be passed, the missing option to indicate missing values and the maxobs

option for reading in large data sets. Specifying for example ’missing = M’ defines the
letter ’M’ as an indicator for a missing value. The default values are a period ’.’ or
’NA’ (which remain valid indicators for missing values even if an additional indicator is
defined). The maxobs option may be used to speed up the reading of large data sets. Its
usage is strongly recommended if the number of observations exceeds 10000. For instance,
’maxobs=100000’ indicates that the data set has 100000 or less observations. Having read
in the data, the data set may be inspected by double clicking on the respective object in
the object browser.

Besides the infile command many more methods for handling and manipulating data
are available, e.g. the generate command to create new variables, the drop command to
drop observations and variables or the descriptive command to obtain summary statistics
for the variables.

5.3.2 map objects

The boundary information of a geographical map containing connected regions is read into
BayesX using the infile command of map objects. The current version supports two
file formats, boundary files and graph files. A boundary file stores the boundaries of every
region in form of closed polygons. Having read in a boundary file, BayesX automatically
computes the neighbors and associated weights of each region. By double clicking on the
respective object in the object browser the map may be inspected visually. A graph file
simply stores the nodes N and edges E of a graph G = (N,E), which is a convenient way
of representing the neighborhood structure of a geographical map. The nodes of the graph
correspond to the region codes. The neighborhood structure is represented by the edges
of the graph. Weights associated with the edges may be given in a graph file as well. For
the detailed structure of boundary and graph files we refer to the BayesX manual, Ch. 5.
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Examples of boundary and graph files for different countries and regions are available at
the BayesX homepage, see Section 5.5 for the internet address. The syntax for reading
boundary or graph files is

> objectname.infile [, weightdef= wd] [graph] using filename

where option ’weigthdef’ specifies how the weights associated with each pair of neigh-
bors are computed. Currently, there are three weight specifications available, ’weightdef
= adjacency’, ’weightdef = centroid’ and ’weightdef = combnd’. If ’weightdef =

adjacency’ is specified, the weights for each pair of neighbors are set equal to one. Speci-
fying ’weightdef=centroid’ results in weights inverse proportional to the distance of the
centroids of neighboring regions and ’weightdef=combnd’ results in weights proportional
to the length of the common boundary. If ’graph’ is specified as an additional option
BayesX expects a graph file rather than a boundary file.

5.3.3 bayesreg objects

Bayesian regression models are estimated using the regress command of bayesreg objects.
The general syntax is

> objectname.regress model [weight weightvar] [if expression] [, options] using

dataset

Executing this command estimates the regression model specified in model using the
data specified in dataset, where dataset is the name of a dataset object created previously.
An if statement may be included to analyze only a part of the data and a weight variable
weightvar to estimate weighted regression models. Options may be passed to specify the
response distribution, details of the MCMC algorithm (for example the number of iterations
or the thinning parameter), etc. The syntax of models is:

depvar = term1 + term2 + · · ·+ termr

Here, ’depvar’ specifies the dependent variable in the model and term1,. . . ,termr de-
fine the way the covariates influence the response variable. The different terms must be
separated by ’+’ signs. In the following we give some examples. An overview about the
capabilities of BayesX is given in Table 5.1. Table 5.2 shows how interactions between
covariates are specified. More details can be found in the BayesX manual Ch. 8.

Suppose we want to model the effect of three covariates X1, X2 and X3 on the response
variable Y. Traditionally a strictly linear predictor is assumed which can be specified in
BayesX by:

Y = X1 + X2 + X3

Note that a constant intercept is automatically included into the models and must not
be specified. If we assume possibly nonlinear effects of the continuous variables X1 and
X2, for instance quadratic P-splines with second order random walk smoothness priors, we
obtain:

Y = X1(psplinerw2,degree=2) + X2(psplinerw2,degree=2) + X3
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The second argument in the model formula above is optional. If omitted, a cubic spline
will be estimated by default. Moreover, some more optional arguments may be passed,
e.g. to define the number of knots. For details we refer to the BayesX manual.

Suppose now that we observe an additional variable L which provides information about
the geographical location an observation pertains to. A spatial effect based on a Markov
random field prior is added by:

Y = X1(psplinerw2,degree=2) + X2(psplinerw2,degree=2) + X3 +

L(spatial,map=m)

The option ’map’ specifies the map object that contains the boundaries of the regions
and the neighborhood information required to estimate a spatial effect.

The distribution of the response is specified by adding the option ’family’ to the options
list. For instance, ’family=gaussian’ defines the responses to be Gaussian. Other valid
specifications are found in Table 5.3.

Table 5.1: Overview over different model terms in BayesX.

Prior/Effect Syntax example Description
Linear effect X1 Linear effect of X1.
First or second or-
der random walk

X1(rw1)
X1(rw2)

Nonlinear effect of X1.

P-spline X1(psplinerw1)
X1(psplinerw2)

Nonlinear effect of X1.

Seasonal prior X1(season,period=12) Time varying seasonal effect of X1 with period 12.
Markov random
field

X1(spatial,map=m) Spatial effect of X1 where X1 indicates the region
an observation pertains to. The boundary infor-
mation and the neighborhood structure is stored
in the map object ’m’.

Two-dimensional
P-spline

X1(geospline,map=m) Spatial effect of X1. Estimates a two-dimensional
P-spline based on the centroids of the regions. The
centroids are stored in the map object ’m’.

Random intercept X1(random) I.i.d. Gaussian (random) effect of the group indi-
cator X1, e.g. X1 may be an individuum indicator
when analyzing longitudinal data.

Baseline in Cox
models

X1(baseline) Nonlinear shape of the baseline effect λ0(X1) of a
Cox model. log(λ0(X1)) is modeled by a P-spline
with second order penalty.

5.3.4 graph objects

graph objects are used to visualize data and estimation results obtained by other objects
in BayesX. Currently graph objects may be used to draw scatter plots between variables
(method ’plot’), or to draw and color geographical maps stored in map objects (method
’drawmap’). We illustrate the usage of graph objects with method ’drawmap’ which is used
to color the regions of a map according to some numerical characteristics. The syntax is:



144 5. BayesX

Table 5.2: Possible interaction terms in BayesX.

Type of interaction Syntax example Description
Varying coefficient term X1*X2(rw1)

X1*X2(rw2)
X1*X2(psplinerw1)
X1*X2(psplinerw2)

Effect of X1 varies smoothly over the
range of the continuous covariate X2.

Random slope X1*X2(random) The regression coefficient of X1 varies
with respect to the unit- or cluster in-
dex variable X2.

Geographically weighted
regression

X1*X2(spatial,map=m) Effect of X1 varies geographically. Co-
variate X2 indicates the region an ob-
servation pertains to.

Two-dimensional
surface

X1*X2(pspline2dimrw1) Two-dimensional surface for the con-
tinuous covariates X1 and X2.

> objectname.drawmap plotvar regionvar [if expression] , map=mapname [options] using
dataset

Method ’drawmap’ draws the map stored in the map object ’mapname’ and prints the
graph either on the screen or stores it as a postscript file (if option ’outfile’ is specified).
The regions with regioncode ’regionvar’ are colored according to the values of the variable
’plotvar’. The variables ’plotvar’ and ’regionvar’ are supposed to be stored in the dataset
object ’dataset’. Several options are available for customizing the graph, e.g. for changing
from grey scale to color scale or storing the map as a postscript file, see the BayesX manual
Ch. 6. A typical graph obtained with method ’drawmap’ is given in Figure 5.2.

5.4 A complex example: childhood undernutrition in

Zambia

In this example we demonstrate the usage of BayesX by an analysis of data on undernu-
trition of children in Zambia. This data set has already been analyzed in Kandala et al.
(2001). Here, we apply the same model as developed in their paper. Since our focus is on
demonstrating how a regression model can be specified and estimated using BayesX we do
not discuss or interpret the estimation results.

Undernutrition among children is usually determined by assessing the anthropometric
status of a child relative to a reference standard. In our example undernutrition is measured
through stunting or insufficient height for age, indicating chronic undernutrition. Stunting
for a child i is determined using a Z-score which is defined as

Zi =
AIi −MAI

σ
,

where AI refers to the child‘s anthropometric indicator (height at a certain age in our
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Table 5.3: Response distributions in BayesX.

Family Link Description
gaussian identity Gaussian responses. Details about MCMC inference in Part I of

Chapter 2.
binomial logit Binomial responses. Inference is based on conditional prior or

IWLS proposals, see Fahrmeir and Lang (2001a) and Part II of
Chapter 2.

bernoullilogit logit Models with binary responses and logit link. Estimation is based
on latent utility representations, see Holmes and Held (2004).

binomialprobit probit Models with binary responses and probit link. Estimation is
based on latent utility representations, see Albert and Chib
(1993).

multinomial logit Multinomial logit model, see Part II of Chapter 2.
multinomialprobit probit Multinomial probit model. Estimation is based on latent utility

representations, see Fahrmeir and Lang (2001b).
cumprobit probit Cumulative threshold model for ordered responses with three

categories. Estimation is based on latent utility representations,
see Fahrmeir and Lang (2001b).

poisson log Poisson distribution. Inference is based on conditional prior or
IWLS proposals, see Fahrmeir and Lang (2001a) and Part II of
Chapter 2.

negbin log Negative Binomial responses. Details in Fahrmeir and Osuna
(2003).

gamma log Gamma distribution. Inference is based on conditional prior or
IWLS proposals, see Fahrmeir and Lang (2001a) and Part II of
Chapter 2.

cox – Cox model. Details in Hennerfeind et al. (2003) and Fahrmeir
and Hennerfeind (2003).

example), MAI refers to the median of the reference population and σ refers to the standard
deviation of the reference population.

The main interest is on modeling the dependence of undernutrition on covariates in-
cluding the age of the child, the body mass index of the child‘s mother, the district the
child lives in and some further categorical covariates. Table 5.4 gives a description of the
variables used in our model.

The data is analyzed in largely five steps: We first read in the data into BayesX using
a dataset object. Since we want to estimate a spatial effect of the district in which the child
lives, we need the boundaries of the districts to compute the neighborhood information of
the map of Zambia. Therefore, we create a map object which contains the required infor-
mation in the second step. A regression model is estimated in the third step followed by
visualizing results. Since our analysis is based on MCMC techniques it is important to in-
vestigate the sampling paths and the autocorrelation functions of the estimated parameters
in a last step.

In the following, we assume that the data set and the map of Zambia are stored in
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Table 5.4: Variables in the data set on childhood undernutrition.

Variable Description

hazstd Standardized Z-score of stunting.
bmi Body mass index of the mother.
agc Age of the child.
district District where the child lives.
rcw Mother‘s employment status with categories ”working” (= 1) and ”not

working” (= −1).
edu1
edu2

Mother‘s educational status with categories ”complete primary but incom-
plete secondary” (edu1 = 1), ”complete secondary or higher” (edu2 = 1)
and ”no education or incomplete primary” (edu1 = edu2 = −1).

tpr Locality of the domicile with categories ”urban” (= 1) and ”rural” (= −1).
sex Gender of the child with categories ”male” (= 1) and ”female” (= −1).

c:\data\zambia.raw and c:\data\mapzambia.raw, respectively.

1. Reading data set information

To read the data into BayesX, we create a dataset object and use the infile command of
dataset objects:

> dataset d

> d.infile using c:\data\zambia.raw

2. Compute neighborhood information

The neighborhood information of the map of Zambia is computed and stored in BayesX
by creating a map object and using the infile command:

> map m

> m.infile using c:\data\mapzambia.raw

Having read in the boundary information, BayesX automatically computes the neigh-
borhood matrix of the map. In our example, two regions are assumed to be neighbors if
they share a common boundary.

3. Regression analysis

Kandala et al. (2001) estimated a Gaussian regression model with predictor

η = γ0 + γ1rcw + γ2edu1 + γ3edu2 + γ4tpr + γ5sex+ f1(bmi) + f2(agc)+

fstr(district) + funstr(district)
(5.7)
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The two continuous covariates bmi and agc are assumed to have a possibly nonlinear effect
on the Z-score and are therefore modeled nonparametrically (as cubic P-splines with second
order random walk prior in our example). The spatial effect of the district is split up into
a spatially correlated part fstr(district) and an uncorrelated part funstr(district). The
former is modeled by a Markov random field prior, where the neighborhood matrix and
possible weights associated with the neighbors are obtained from the map object m. The
latter is modeled by an i.i.d. Gaussian effect.

We now estimate model (5.7) using bayesreg objects. We create a bayesreg object and
estimate the model using the regress command:

> bayesreg b

> b.regress hazstd = rcw + edu1 + edu2 + tpr + sex + bmi(psplinerw2)

+ agc(psplinerw2) + district(spatial,map=m) + district(random),

family=gaussian iterations=12000 burnin=2000 step=10 predict using d

The options iterations, burnin and step define the number of iterations, the burn in
period and the thinning parameter of the MCMC simulation run. Specifying step=10 as
above forces BayesX to store only every 10th sampled parameter which leads to a random
sample of length 1000 for every parameter in our example.

If option predict is specified, samples of the deviance, the effective number of para-
meters pD and the deviance information criterion DIC of the model are computed and
stored, see Spiegelhalter et al. (2002). In addition, estimates for the additive predictor and
the posterior expectations are computed for every observation.

On a 2.4 GHz personal computer estimation of the model is carried out in about 1
minute and 5 seconds.

After estimation, results for each effect are written to an external ASCII file. These files
contain the posterior mean and median, the posterior 2.5%, 10%, 90% and 97.5% quantiles
and the corresponding 95% and 80% posterior probabilities of the estimated effects. For
example, the beginning of the file for the effect of bmi looks like this:

intnr bmi pmean pqu2p5 pqu10 pmed pqu90 pqu97p5 pcat95 pcat80
1 12.8 -0.284065 -0.660801 -0.51678 -0.283909 -0.0585753 0.085998 0 -1
2 13.15 -0.276772 -0.609989 -0.483848 -0.275156 -0.070517 0.0572406 0 -1
3 14.01 -0.258674 -0.515628 -0.416837 -0.257793 -0.10009 -0.00289024 -1 -1

The numbers 1 and -1 for the variables pcat95 and pcat80 indicate that the corre-
sponding credible intervals are either strictly positive or negative. Zero indicates credible
intervals containing zero.

4. Visualizing estimation results

Estimation results for nonlinear effects of bmi and agc and the spatial effect of the district
are best summarized by visualization. BayesX automatically creates appropriate plots of
the effects and stores the graphs as postscript files. The file names are given in the output
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Figure 5.1: Example on childhood undernutrition: Effect of the body mass index of the
child‘s mother and of the age of the child together with pointwise 80% and 95% credible
intervals.

window for each effect. Figures 5.1 and 5.2 show the content of these files. Moreover, a
batch-file is created that contains all commands necessary to reproduce the plots. The
advantage is that additional options may be added by the user to customize the graphs
(e.g. to change the title or axis labels).

It is also possible to visualize effects on the screen immediately after estimation. For
the nonlinear effects of the two continuous covariates such plots are obtained by executing
the commands

> b.plotnonp 1

and

> b.plotnonp 3

The numbers following the plotnonp command depend on the order in which the model
terms have been specified. They are supplied in the output window after estimation.

Results for spatial effects are best visualized by drawing the respective map and coloring
the regions of the map according to some characteristic of the posterior, e.g. the posterior
mean. For instance, the structured spatial effect is visualized by typing

> b.drawmap 5, color

The additional option ’color’ forces BayesX to use colors instead of grey shades for
visualization.

5. Post estimation commands

In addition to the regress command, bayesreg objects provide some post estimation com-
mands to get sampled parameters or to compute autocorrelation functions of sampled
parameters. For example
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-0.304985 0 0.22614

Figure 5.2: Example on childhood undernutrition: Structured spatial effect.

> b.getsample

stores sampled parameters in ASCII files and plots the sampling paths. The resulting
graphs are stored in postscript format leading e.g. to the plots shown in Figure 5.3 for
the scale parameter and the intercept. To avoid too large files, the samples are typically
partitioned into several files.

Autocorrelation functions may be drawn e.g. by typing

> b.plotautocor , maxlag=150

where ’maxlag’ specifies the maximum lag number. The default is ’maxlag=250’. Ex-
ecuting the plotautocor command also stores the autocorrelation functions in an ASCII
file. Figure 5.4 shows the autocorrelation function for the scale parameter and the inter-
cept.

5.5 Download and recommendations for further read-

ing

The latest version of BayesX including a detailed 200 pages manual is available at
http://www.stat.uni-muenchen.de/~lang/bayesx/.
The BayesX homepage also contains all files required to reproduce the results presented

in the example on childhood undernutrition in Zambia. In addition, a more detailed tutorial
based on the Zambia data set is available, click on Tutorials at the homepage. Finally,
to download the boundary and graph files for a number of countries and regions, click on
Maps.

For users not familiar with MCMC simulation techniques, it is strongly recommended
to read at least one of the introductions into MCMC. A very nice and thorough introduc-
tion is given in Green (2001). To get an overview about the methodology BayesX is based
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Figure 5.3: Example on childhood undernutrition: Sampling paths for the scale parameter
and the intercept.
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Figure 5.4: Example on childhood undernutrition: Autocorrelation functions for the scale
parameter and the intercept.
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on, we consider it sufficient to read Chapter 7 of the manual. More details may be found
in the references cited therein and in this paper. First steps with BayesX can be done with
the example of this paper and the tutorial on childhood undernutrition in Zambia.
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Appendix A

Proofs

A.1 Proof of equation (2.14)

The penalty matrix for a 2-dimensional P-spline prior with locally adaptive variances can
be written in terms of

K = (D̃′
1D̃

′
2)∆

(
D̃1

D̃2

)
.

Here, D̃1 = I ⊗ D1 and D̃2 = D1 ⊗ I, and D1 denotes a first order difference matrix of
dimension M × (M − 1). The diagonal matrix ∆ contains in its i-th diagonal element the

weight δ(ρν)(kl) that is associated with the difference formed by the i-th row of

(
D̃1

D̃2

)
.

The spectral decomposition of K gives

K = ΓΛΓ′ = (Γ1Γ2)

(
Λ11 0
0 0

)(
Γ′

1

Γ′
2

)
= Γ1Λ11Γ

′
1.

Here, let K and Γ be partitioned as

K =

(
K11 K12

K21 k22

)
, and Γ = (Γ1Γ2) =

(
Γ11 Γ12

Γ21 γ22

)
,

where k22 and γ22 are scalars and Γ2 is a column vector. The matrix Γ1 contains the

eigenvectors of K corresponding to the non-zero eigenvalues of K and |Λ11| =
∏M2−1

i=1 λi
is the product of the non-zero eigenvalues of K. Furthermore, Γ is orthonormal and
Γ′Γ = ΓΓ′ = I, i.e. Γ−1 = Γ′.

For a proof of (2.14) the following statements are required:

(i) |K11| = |Γ11|2|Λ11|.
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Proof:

Since (
K11 0
0 0

)
=

(
I 0
0 0

)
K

(
I 0
0 0

)
=

(
I 0
0 0

)
Γ1Λ11Γ

′
1

(
I 0
0 0

)
=

(
Γ11

0

)
Λ11 (Γ′

110)

it follows that
K11 = Γ11Λ11Γ

′
11

and therefore

|K11| = |Γ11Λ11Γ
′
11| = |Γ11||Λ11||Γ′

11| = |Γ11|2|Λ11|.

(ii) |K11| > 0.

Proof:

Since |Λ11| > 0, it is sufficient to show that |Γ11| > 0. Since I = ΓΓ′ = Γ1Γ
′
1 + Γ2Γ

′
2

it holds that
rg(Γ1Γ

′
1 + Γ2Γ

′
2)︸ ︷︷ ︸

=M2

≤ rg(Γ1Γ
′
1) + rg(Γ2Γ

′
2)︸ ︷︷ ︸

=1

.

It follows that
M2 − 1 ≤ rg(Γ1Γ

′
1) = rg(Γ1) ≤M2 − 1

and hence
rg(Γ1) = M2 − 1.

The rows of Γ1 are a generating system of RM2−1. Since the column-sums of Γ1 are
zero it follows

−
M2−1∑
i=1

γi = γM2 ,

where γi, i = 1, . . . ,M2, denote the rows of Γ1. Therefore the rows of Γ11 are a
generating system of RM2−1 and hence

rg(Γ11) = M2 − 1,

which implies that |Γ11| > 0.

(iii) |Γ11|2 = γ2
22.

Proof:

Since |Γ11| > 0, it holds that

|Γ| = |Γ11|(γ22 − Γ21Γ
−1
11 Γ12) =

1

γ22

|Γ11|. (A.1)
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The second equality can be derived from the fact that if A is a non-singular quadratic
matrix and

A =

(
A11 A21

A12 A22

)
, and A−1 = B =

(
B11 B21

B12 B22

)
then

A−1
22 = B22 −B21B

−1
11 B12,

where

B = Γ and A = Γ−1 = Γ′ =

(
Γ′

11 Γ′
21

Γ′
12 γ22

)
.

From (A.1) it follows

|Γ11|2 = γ2
22|Γ|2 = γ2

22

since the orthonormality of Γ implies |Γ|2=1.

(iv) γ22 = 1/M .

Proof:

The row-sums of K equal zero, i.e.

K(1, . . . , 1)′ = Γ1Λ11Γ
′
1(1, . . . , 1)′ = 0.

Since the columns of Γ1Λ11 are linearly independent, it follows that Γ′
1(1, . . . , 1)′ = 0.

This means that the elements of each column of Γ1 sum up to zero and therefore any
vector with constant elements is orthogonal to all columns of Γ1. Since Γ2 must be
orthogonal to all columns of Γ1, i.e. Γ′

1Γ2 = 0, and additionally fulfill Γ′
2Γ2 = 1, it

follows that Γ2 = (1/M, . . . , 1/M)′ and thus γ22 = 1/M .

Now, combining (i), (iii) and (iv) gives

|Λ11| = M2|K11|,

and statement (2.14) follows immediately.

A.2 Conditions for Monotonicity

To ensure that f ′j(x) ≥ 0 or f ′j(x) ≤ 0, it is sufficient to guarantee that subsequent
parameters are ordered, such that

βj1 ≤ · · · ≤ βjM or βj1 ≥ · · · ≥ βjM , (A.2)

respectively.
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Proof: Letting the superscript l− 1 denote basis functions of degree l− 1, we can write
f ′j(x) in terms of

f ′j(x) =
1

h

M∑
ρ=1

βjρ
(
Bl−1
jρ (x)−Bl−1

j,ρ+1(x)
)

=
1

h

M∑
ρ=2

(βjρ − βj,ρ−1)B
l−1
jρ (x), (A.3)

where h denotes the distance between two adjacent knots. The second equivalence in (A.3)
holds, because Bl−1

j1 (x) = 0 and Bl−1
j,M+1(x) = 0 for x ∈ [xj,min, xj,max]. Since h > 0 and

Bl−1
jρ (x) ≥ 0, it follows that f ′j(x) ≥ 0 if βjρ − βj,ρ−1 ≥ 0 for all ρ ∈ {2, . . . ,M}. Corre-

spondingly, from βjρ − βj,ρ−1 ≤ 0 for all ρ ∈ {2, . . . ,M} it follows that f ′j(x) ≤ 0.

A.3 Proof of equation (4.11)

For a proof of (4.11) we exploit the fact that the B-spline basis functions in (4.2) for
representing the spline can be computed as differences of truncated power functions (e.g.
Eilers and Marx 2004), i.e.

Bρ(x) = −1l+1∆l+1t(x, ρ)/(hll!), ρ = 1, . . . , r + l (A.4)

where h is the distance between two neighboring knots and t(x, ρ) := (x − (ζ0 + ρh))l+ is
the truncated power function that corresponds to the knot ζρ = ζ0 + ρh.

Assume first that s = 0, which corresponds to a constant fit. Then we get

(hll!)

−1l+1
f(x) =

(hll!)

−1l+1

r+l∑
ρ=1

Bρ(x)βρ =
r+l∑
ρ=1

∆∆lt(x, ρ)βρ =
r+l∑
ρ=1

∆lt(x, ρ)βρ−
r+l∑
ρ=1

∆lt(x, ρ−1)βρ

Rearranging the two sums by combining the respective ρ-th summand of the first sum and
the (ρ+ 1)-th summand of the second sum yields

(hll!)

−1l+1
f(x) = −

r+l−1∑
ρ=1

∆lt(x, ρ)∆βρ+1 + ∆lt(x, r + l)βr+l −∆lt(x, 0)β1. (A.5)

Provided that ∆βρ = 0, the summands in the first term are all zero. The second term in
(A.5) is zero within the range [xmin, xmax] of x because the polynomial part of t(x, r + l)
starts at xmax. In the third term the truncated power function t(x, 0) is a polynomial of
degree l within the range of x. Since the l-th difference of a polynomial of degree l is a
constant (compare, e.g. Schlittgen and Streitberg, p. 39f), the spline f(x) reduces to a
constant as claimed in (4.11).
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For an arbitrary degree s ≤ l the proof is based on analogous arguments. Using again
relationship (A.4) we get

(hll!)

−1l+1
f(x) =

r+l∑
ρ=1

∆s+1∆l−st(x, ρ)βρ

= a1

r+l∑
ρ=1

∆l−st(x, ρ)βρ + · · ·+ as+2

r+l∑
ρ=1

∆l−st(x, ρ− (s+ 1))βρ

(A.6)

with constants a1, . . . , as+2 given by

aj = (−1)s+j
(
s+ 1

j − 1

)
, j = 1, . . . , s+ 2.

Combining the ρ-th summand of the first sum, (ρ+ 1)-th summand of the second sum, to
the (ρ+ s+ 1)-th summand of the (s+ 2)-th sum, ρ = 1, . . . , r + l − s− 1, we obtain

(hll!)

−1l+1
f(x) = (−1)s+1

r+l−s−1∑
ρ=1

∆l−st(x, ρ)∆s+1βρ+s+1 +R1 +R2 (A.7)

with

R1 = a1

(
∆l−st(x, r + l − s)βr+l−s + · · ·+ ∆l−st(x, r + l)βr+l

)
+ · · ·+ as+1∆

l−st(x, r + l)βr+l−s

and

R2 = a2∆
l−st(x, 0)β1 + · · ·+ as+2

(
∆l−st(x,−s)β1 + · · ·+ ∆l−st(x, 0)βs+1

)
.

Provided that ∆s+1βρ = 0, the sum in (A.7) is zero. The expression R1 is zero within
the range [xmin, xmax] of x. Since the (l − s)-th difference of a polynomial of degree l is
a polynomial of degree s (compare Schlittgen and Streitberg, p. 39f) all differences of the
truncated power functions appearing in R2 are polynomials of degree l−s within the range
of x. Hence R2, and therefore the spline f(x), is a polynomial of degree s.



158 A. Proofs



Bibliography

Abe, M. (1999), A generalized additive model for discrete–choice data, Journal of Business
& Economic Statistics, 17, 271–284.

Albert, J. and Chib, S. (1993), Bayesian analysis of binary and polychotomous response
data, Journal of the American Statistical Association, 88, 669–679.

Allenby, G.M. and Rossi, P.E. (1991), Quality Perceptions and Asymmetric Switching
Between Brands, Marketing Science, 10(3), 185–204.

Andrews, D.F. and Mallows, C.L. (1974), Scale mixtures of normal distributions, Journal
of the Royal Statistical Society B, 36, 99–102.

Baladandayuthapani, V., Mallick, B.K. and Carroll, R.J. (2005), Spatially Adaptive
Bayesian Penalized Regression Splines (P-splines), Journal of Computational and
Graphical Statistics, to appear.

Bates, D., Lindstrom, M., Wahba, G. and Yandell, B. (1987), GCVPACK – Routines for
Generalized Cross-Validation, Communication in Statistics, Part B – Simulation and
Computation, 16, 263–297.

Biller, C. (2000), Adaptive Bayesian Regression Splines in Semiparametric Generalized
Linear Models, Journal of Computational and Graphical Statistics, 9, 122–140.

Biller, C. and Fahrmeir, L. (2001), Bayesian Varying–coefficient Models using Adaptive
Regression Splines, Statistical Modeling, 1(3), 195–211.

Bemmaor, A.C. and Mouchoux, D. (1991), Measuring the Short–Term Effect of In–Store
Promotion and Retail Advertising on Brand Sales: A Factorial Experiment, Journal
of Marketing Research, 28(2), 202–214.

Besag, J. E., Green, P. J., Higdon, D. and Mengersen, K. (1995), Bayesian computation
and stochastic systems (with discussion), Statistical Science, 10, 3–66.

Besag, J. E., and Higdon, D. (1999), Bayesian Analysis of Agricultural Field Experiments,
Journal of the Royal Statistical Society B, 61, 691–746.



160 BIBLIOGRAPHY

Besag, J. and Kooperberg, C. (1995), On conditional and intrinsic autoregressions, Bio-
metrika, 82, 733–746.

Besag, J., York, J. and Mollie, A. (1991), Bayesian image restoration with two applications
in spatial statistics (with discussion), Annals of the Institute of Statistical Mathemat-
ics, 43, 1–59.

Blattberg, R.C. and Neslin, S.A. (1990), Sales Promotion: Concepts, Methods, and Strate-
gies, Englewood Cliffs, New Jersey.

Blattberg, R.C. and George, E.I. (1991), Shrinkage Estimation of Price and Promotional
Elasticities, Journal of the American Statistical Association, 86(414), 304–315.

Blattberg, R.C., Briesch, R. and Fox, E.J. (1995), How Promotions Work, Marketing
Science, 14(3)(Part 2), G122–G132.

Blattberg, R.C. and Wisniewski, K.J. (1987), How Retail Price Promotions Work, Mar-
keting Working Paper 42, University of Chicago.

Blattberg, R.C. and Wisniewski, K.J. (1989), Price–Induced Patterns of Competition,
Marketing Science, 8(4), 291–309.

Box, G.E.P. and Tiao, G.C. (1973): Bayesian Inference in Statistical Analysis. Reading,
MA: Addision-Wiley. Reprint by Wiley in 1992 in the Wiley Classics Library Edition.

Breiman, L. and Friedman, J. (1985), Estimating Optimal Transformations for Multiple
Regression and Correlation, Journal of the American Statistical Association, 80, 580–
598.

Brezger, A., Kneib, T. and Lang, S. (2003), BayesX manual. Available at:
http://www.stat.uni-muenchen.de/~lang/bayesx/manual.pdf

Brezger, A. and Lang, S. (2005), Generalized structured additive regression based on
Bayesian P–splines, Computational Statistics and Data Analysis, to appear.

Brezger, A., Lang, S. and Kneib, T. (2003), BayesX: Analysing Bayesian Semiparametric
Regression Models. SFB 386 Discussion paper 332, Department of Statistics, Univer-
sity of Munich.

Brezger, A. and Steiner, W.J. (2003), Monotonic regression based on Bayesian P–splines:
an application to estimating price response functions from store–level scanner data.
SFB 386 Discussion paper 331, Department of Statistics, University of Munich.

Carter, C. and Kohn, R. (1994), On Gibbs Sampling for State Space Models, Biometrika,
81, 541–553.

Chen, Z. (1993), Fitting multivariate regression functions by interaction spline models,
Journal of the Royal Statistical Society B, 55, 473–491.



BIBLIOGRAPHY 161

Chen, M. H. and Dey, D. K. (2000), Bayesian analysis for correlated ordinal data models.
In: Dey, D. K., Ghosh, S. K. and Mallick, B. K. (2000), Generalized linear models: A
Bayesian perspective. Marcel Dekker, New York.

Chib, S., and Jeliazkov, I. (2001), Marginal likelihood from the Metropolis-Hastings output,
Journal of the American Statistical Association, 96, 270-281.

Clayton, D. (1996), Generalized linear mixed models. In: Gilks, W.R., Richardson, S.
and Spiegelhalter, D.J.: Markov Chain Monte Carlo in Practice. Chapman and Hall,
London.

Cleveland, W. and Grosse, E. (1991), Computational methods for local regression, Statistics
and Computing, 1991, 1, 47–62.

Currie, I. and Durban, M. (2002), Flexible smoothing with P–splines: a unified approach,
Statistical Modelling, 4, 333–349.

De Boor, C. (1978), A Practical Guide to Splines, Springer, New York.

Denison, D.G.T., Mallick, B.K. and Smith, A.F.M. (1998), Automatic Bayesian curve
fitting, Journal of the Royal Statistical Society B, 60, 333–350.

Devroye, L. (1986), Non–uniform random variate generation. Springer–Verlag, New York.

Dias, R. and Gamerman, D. (2002), A Bayesian approach to hybrid splines non-parametric
regression, Journal of Statistical Computation and Simulation, 72(4), 285–297.

Diggle, P.J., Haegerty, P., Liang, K.Y. and Zeger, S.L. (2002), Analysis of longitudinal
data, Clarendon Press, Oxford.

Di Matteo, I., Genovese, C.R. and Kass, R.E. (2001), Bayesian curve–fitting with free–knot
splines, Biometrika, 88, 1055–1071.

Duchon, J. (1977), Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In:
Construction Theory of Functions of Several Variables. Springer, Berlin.

Dunson, D.B. and Neelon, B. (2003), Bayesian Inference on Order Constrained Parameters
in Generalized Linear Models, Biometrics, 59(2), 286–295.

Efron, B. and Tibshirani, R.J. (1998), An Introduction to the Bootstrap, Chapman and
Hall/CRC, Boca Raton.

Eilers, P.H.C. and Marx, B.D. (1996), Flexible smoothing using B–splines and penalized
likelihood (with comments and rejoinder), Statistical Science, 11(2), 89–121.

Eilers, P.H.C. and Marx, B.D. (2003), Multivariate calibration with temperature interac-
tion using two-dimensional penalized signal regression, Chemometrics and Intelligent
Laboratory Systems, 66, 159–174.



162 BIBLIOGRAPHY

Eilers, P.H.C. and Marx, B.D. (2004), Splines, Knots and Penalties. Technical report.
Available at http://www.stat.lsu.edu/bmarx/.

Fahrmeir, L., Biller, C., Brezger, A., Gieger, C., Hennerfeind, A., Jerak, A. and Schmid,
V. (2003), Teil 2: Statistische Analyse der Nettomieten, Gutachten zur Erstellung des
Mietspiegels für München c© 2003, Landeshauptstadt München, Sozialreferat – Amt
für Wohnungswesen, in German.

Fahrmeir, L. and Hennerfeind, A. (2003), Nonparametric Bayesian hazard rate models
based on penalized splines. SFB 386 Discussion paper 361, University of Munich.

Fahrmeir, L., Kneib, T. and Lang, S. (2004), Penalized additive regression for space-time
data: a Bayesian perspective. Revised for Statistica Sinica.

Fahrmeir, L. and Lang, S. (2001a), Bayesian Inference for Generalized Additive Mixed
Models Based on Markov Random Field Priors, Journal of the Royal Statistical Society
C (Applied Statistics), 50, 201–220.

Fahrmeir, L. and Lang, S. (2001b), Bayesian Semiparametric Regression Analysis of Mul-
ticategorical Time–Space Data, Annals of the Institute of Statistical Mathematics, 53,
10–30.

Fahrmeir, L., Lang, S., Wolff, J. and Bender, S. (2003), Semiparametric Bayesian time–
space analysis of unemployment duration, Journal of the German Statistical Society,
87, 281–307.

Fahrmeir, L. and Osuna, L. (2003), Structured count data regression. SFB 386 Discussion
paper 334, University of Munich.

Fahrmeir, L. and Tutz, G. (2001), Multivariate Statistical Modelling based on Generalized
Linear Models, Springer, New York.

Fan, J. and Gijbels, I. (1996), Local Polynomial Modelling and Its Applications, Chapman
and Hall, London.

Foekens, E.W., Leeflang, P.S.H. and Wittink, D.R. (1999), Varying Parameter Models to
Accomodate Dynamic Promotion Effects, Journal of Econometrics, 89, 249–268.

Fotheringham, A.S., Brunsdon, C. and Charlton, M.E. (2002), Geographically weighted
regression: The analysis of spatially varying relationships. Chichester: Wiley.

Friedman, J. H. (1991), Multivariate Adaptive Regression Splines (with discussion), Annals
of Statistics, 19, 1–141.

Friedman, J. H. and Silverman, B. L. (1989), Flexible Parsimonious Smoothing and Addi-
tive Modeling (with discussion), Technometrics, 31, 3–39.



BIBLIOGRAPHY 163

Fronk, E.M. (2002), Model Selection for dags via RJMCMC for the discrete and mixed
case. SFB 386 Discussion Paper 271, Department of Statistics, University of Munich.

Fronk, E.M. and Giudici, P. (2000), Markov chain Monte Carlo model selection for dag
models. SFB 386 Discussion paper 221, Department of Statistics, University of Mu-
nich.

Gamerman, D. (1997), Efficient sampling from the posterior distribution in generalized
linear models, Statistics and Computing, 7, 57–68.

Gamerman, D., Moreira, A.R.B., and Rue, H. (2003), Space–varying regression models:
specifications and simulation, Computational Statistics and Data Analysis, 42, 513–
533.

George, A. and Liu, J.W. (1981), Computer solution of large sparse positive definite sys-
tems. Prentice–Hall.

Geweke, J. (1991), Efficient Simulation From the Multivariate Normal and Student–t Dis-
tribution Subject to Linear Constraints, in: Computing Science and Statistics: Pro-
ceedings of the Twenty–Third Symposium on the Interface, 571–578, Alexandria.
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seit Jan. 2001 vollbeschäftigter wissenschaftlicher Mitarbeiter im Son-
derforschungsbereich 386 ”Statistische Analyse diskreter
Strukturen” bei Prof. Dr. L. Fahrmeir am Institut für Sta-
tistik der Ludwig–Maximilians–Universität München


	Introduction
	Spline regression
	Approaches based on adaptive knot selection
	Approaches based on roughness penalties
	Hybrid Splines

	P-Splines in Structured Additive Regression Models

	Bayesian P-Splines
	Introduction
	Bayesian AMs and extensions based on P-Splines
	Additive models
	Modeling interactions
	Geoadditive models

	Posterior inference via MCMC
	Simulations
	Functions with moderate curvature
	Highly oscillating functions
	Surface fitting

	Applications
	Rents for flats
	Human brain mapping

	Conclusions
	Introduction
	Bayesian STAR models
	GAM's based on Bayesian P-Splines
	Modeling interactions
	Unobserved heterogeneity
	General structure of the priors

	Bayesian inference via MCMC
	Updating by iteratively weighted least squares (IWLS) proposals
	Inference based on latent utility representations of categorical regression models
	Future prediction with Bayesian P-Splines

	Simulations
	Multinomial logit models
	Two dimensional surface estimation

	Applications
	Longitudinal study on forest health
	Space-time analysis of health insurance data

	Conclusions

	Monotonic regression
	Introduction
	Model Assumptions
	Generalized additive models and P-Splines
	Monotonicity constraints
	Extensions

	MCMC Inference
	Gaussian Response
	Non-Gaussian Response

	Empirical Application
	Background
	An Illustration
	Model evaluation and interpretation of results

	Discussion

	Simultaneous probability statements for Bayesian P-Splines
	Introduction
	Contour probabilities for P-Splines
	Contour probabilities
	Contour probabilities for P-Splines
	Computational aspects

	Simulations
	Applications
	Rental guide
	Undernutrition in Zambia and Tanzania

	Conclusion

	BayesX
	Introduction
	Methodological background
	Usage of BayesX
	dataset objects
	map objects
	bayesreg objects
	graph objects

	A complex example: childhood undernutrition in Zambia
	Download and recommendations for further reading

	Proofs
	Proof of equation (2.14)
	Conditions for Monotonicity
	Proof of equation (4.11)


