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1 Introduction 1

1 Introduction 

 

The most important characteristic common to all higher organisms is the capability to 

coordinate the functions of different cells types. This is accomplished by a complex 

signaling network processing incoming and outgoing signals, between different cells or 

different compartments within a cell.  

A central role plays the binding of ligands to their respective receptors and the subsequent 

intracellular transmission of this signal leading to different biochemical processes like 

proliferation, differentiation, migration, adhesion or the programmed cell death, so-called 

apoptosis. Without the exact balance of the various signaling networks neither the 

development nor the survival of a higher organism would be possible. As more and more 

signaling components and pathways are discovered nowadays, it becomes apparent that 

signaling cascades are not separated linearly. On the contrary, they are highly 

interconnected and form complex networks (Downward, 2001). Thus, the regulation of 

these signaling networks is susceptible to disturbance and deregulated signal transmission 

can cause various diseases such as cancer, diabetes, immune deficiencies or cardiovascular 

diseases as well as many other (Hanahan and Weinberg, 2000; Schlessinger, 2000; 

Shawver et al., 2002). 

The Human Genome Project has identified approximately 20% of the human genome to 

encode proteins of signaling pathways, including transmembrane proteins, guanine-

nucleotide binding proteins (G proteins), kinases, phosphatases and proteases. The 

identification of 518 putative protein kinase genes and 130 protein phosphatases (Blume-

Jensen and Hunter, 2001; Shawver et al., 2002) gives rise to the assumption that reversible 

protein phosphorylation is the central regulatory element of most cellular functions 

(Cohen, 2002a). Phosphorylation and dephosphorylation by the combined action of a 

protein kinase and a protein phosphatase can alter the activity as well as the stability of a 

protein, target it for degradation, influence its subcellular localization or change a protein’s 

affinity towards interaction partners. According to their localization and their substrate 

specificity, both protein kinases and phosphatases can be subdivided into cellular and 

transmembrane molecules and into tyrosine or serine/threonine-specific kinases and 

phosphatases. The flexibility and reversibility of protein phosphorylation in combination 

with the availability of ATP as a phosphoryl donor can explain the preference of 

eukaryotic cells for this mechanism as the most common regulatory element.  
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Two important families of membrane-bound receptors are the G-protein coupled receptors 

(GPCRs) and the Receptor tyrosine kinases (RTKs). Up to date, GPCRs represent the 

largest family of signaling molecules known. They are integral membrane proteins without 

internal enzymatic activity. After ligand binding they couple to heterotrimeric G proteins 

(Coughlin, 1994; Gutkind, 1998) which are dynamically phosphorylated and thus regulate 

the levels of intracellular second messengers. RTKs have an intrinsic tyrosine kinase 

activity and are reversibly phosphorylated upon ligand binding which leads to the 

recruitment of docking and other signaling proteins (van der Geer et al., 1994).  

Examples of counterparts of these receptors are protein tyrosine phosphatases (PTPs) for 

the RTKs and G protein coupled receptor kinases (GPKs) for the GPCRs. They control the 

activity of these receptors by dephosphorylation and thereby act as regulatory components 

in order to terminate a signal after prolonged or repeated exposure to the ligand. Another 

way to control the activity of membrane-bound receptors is the internalization of receptors 

followed by their degradations or the recycling of receptors.  

Because numerous human diseases are connected to altered GPCR and RTK signaling 

pathways, numerous efforts have been taken to elucidate their signaling pathways in order 

to develop suitable drugs for their treatment. 

 

1.1 Protein tyrosine kinases 

 

Protein tyrosine kinases are important regulators of intracellular signal transduction 

pathways mediating aspects of multicellular communication and development (Cohen, 

2002b) acting by catalyzing the transfer of the γ-phosphate of ATP to hydroxyl groups of 

tyrosines on target proteins (Hunter, 1998). Tyrosine kinases play a critical role in the 

control of many fundamental cellular processes including the cell cycle, migration, 

metabolism and survival as well as proliferation and differentiation. Among the 518 

putative kinase genes 90 tyrosine kinase genes have been identified. 58 genes encode 

transmembrane receptor tyrosine kinases (RTKs) distributed into 20 subfamilies classified 

according to their structural characteristics and 32 encode cytoplasmic non-receptor 

tyrosine kinases (NRTKs) divided into ten subfamilies. 
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1.1.1 Receptor tyrosine kinases (RTKs) 

 

RTKs are type I transmembrane proteins containing an intrinsic tyrosine kinase activity. 

They are composed of a glycosylated extracellular ligand-binding domain, a single 

transmembrane domain and a cytoplasmic domain (Hubbard and Till, 2000). The 

cytoplasmic domain contains a highly conserved protein tyrosine kinase core and 

additional regulatory sequences that are subjected to autophosphorylation and 

phosphorylation by heterologous protein kinases. The structural diversity of RTK is due to 

the presence of one or several copies of immunoglobulin-like domains, fibronectin  

type III-like domains, EGF (epidermal growth factor)-like domains, cysteine-rich domains 

or other domains within the extracellular domains (Figure 1). 

 

 

Fig. 1. Subfamilies of receptor tyrosine kinases. Abbreviations: AB, acidic box; CadhD, cadherin-like 

domain; CRD, cysteine-rich domain; DiscD, discoidin-like domain; EGFD, epidermal growth factor-like 

domain; FNIII, fibronectin type III-like domain; IgD, immunoglobulin-like domain; KrinD, kringle-like 

domain; LRD, leucine-rich domain. The symbols α and β denote distinct RTK subunits (Blume-Jensen and 

Hunter, 2001).  

 
Activation of RTKs occurs via ligand-induced dimerisation followed by 

transphosphorylation of selected tyrosine residues within the cytoplasmic domain thereby 

generating docking sites for intracellular signal transducers with phosphotyrosine 

interaction domains. 
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1.1.2 EGFR family 

 

The epidermal growth factor receptor (EGFR) family consists of four RTKs: EGFR, 

HER2/neu for which no ligand has been described so far (Goldman et al., 1990), HER3 

being kinase-inactive and HER4 (Ullrich and Schlessinger, 1990).  

The EGFR is the most prominent RTK and is the first cell surface signaling protein and 

protooncogene product to be characterized by molecular genetic methods and exhibits 

prototypical features of RTKs (Downward et al., 1984; Ullrich et al., 1984). Due to its 

functional role as a proto-oncogene in viruses, the pathophysiological effects of EGFR 

mutants and its overexpression in several types of cancer, the EGFR is implicated in cancer 

development. Examples of EGFR related cancer forms are colon (Damstrup et al., 1999), 

lung and prostate (Seth et al., 1999) as well as epithelial cancer (Dong et al., 1999).  

HER2 is the preferred dimerisation partner for the EGFR, HER3 and HER4 and shows a 

high transforming activity (Beerli et al., 1995; Graus-Porta et al., 1997). The HER2 gene 

amplification for example has been linked to breast cancer (Slamon et al., 1989). 

 

1.1.3 EGF-like ligand induced activation of RTKs 

 

Activation of the EGFR family of RTKs is generally controlled by spatial and temporal 

expression of their ligands (Peles and Yarden, 1993). So far eight ligands have been shown 

to directly activate the EGFR: EGF, transforming growth factor alpha (TGFα), heparin-

binding EGF-like growth factor (HB-EGF), amphiregulin (AR), betacellulin (BC), 

epiregulin (Epi) (Riese and Stern, 1998), cripto (Salomon et al., 1999) and epigen 

(Strachan et al., 2001). Various neuregulin (NRG) isoforms act as ligands for HER3 and 

HER4. 

Despite having distinct receptor binding specificity, all ligands share a common motif of 

30-50 amino acids in the active peptide, the so-called EGF structural unit which contains 

six conserved cysteine residues, restraining the peptide in a tertiary structure containing 

three disulfide bonded loops (Wingens et al., 2003). 

EGF-like ligands are synthesized as transmembrane precursors which are subject to 

proteolytic cleavage at the cell surface to produce the soluble and diffusible growth factors 

(Massague and Pandiella, 1993). Subsequently, the mature ligands activate RTKs of the 

EGFR family by autocrine or paracrine stimulation. In addition, several studies indicate 
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that the membrane-anchored precursors may be biologically active via juxtacrine 

stimulation (Brachmann et al., 1989; Wong et al., 1989). 

Biophysical investigations revealed a 2:2 stoichiometry for ligand-receptor complexes 

generated from stable 1:1 ligand-receptor intermediates. As recent studies support, ligand 

binding leads to conformational changes in the receptor and therefore to subsequent 

formation of various homo- and heterodimers rather than to the bridging of receptor 

monomers by ligand molecules (Jorissen et al., 2003; Schlessinger, 2002). Receptor 

dimerisation was shown to occur entirely receptor-mediated by a motif termed the 

"dimerisation-loop" which is unique to the EGFR family of RTKs since deletions or 

mutations in this motif entirely abrogate ligand-induced EGFR activation (Garrett et al., 

2002; Ogiso et al., 2002). The dimerisation arm only becomes exposed after ligand binding 

as a consequence of a domain rearrangement in the extracellular portion of the EGFR 

thereby regulating receptor function. HER2, which has no ligand of its own, has been 

shown to constitutively adopt an extended configuration with an exposed dimerisation arm 

(Cho et al., 2003; Garrett et al., 2003). Together with further biophysical studies indicating 

only weak homodimeric interaction of HER2 receptor molecules, this observation suggests 

that HER2 mainly forms heterodimers with the remaining ligand-activated EGFR family 

members (Garrett et al., 2002), thus providing an additional platform for recruitment of 

intracellular signaling pathways. Figure 2 shows an overview over the preferred binding 

specificities of the EGF-like ligands and of HER2.   

 

 
 
Fig. 2. Binding specificities of the EGF-related peptide growth factors. There are four categories of 

ligands that bind ErbB family receptors. EGF, AR and TGF  bind ErbB1; BTC, HB-EGF and EPR bind 

ErbB1 and ErbB4; NRG-1 and NRG-2 bind ErbB3 and ErbB4; and NRG-3 and NRG-4 bind ErbB4.  

ErbB2 is the preferred dimerisation partner for the other ErbB receptors. Ligand binding to ErbB1 

(EGF), ErbB3 (NRG-1) or ErbB4 (NRG-1, BTC) induces the formation of receptor homodimers and ErbB2-

containing heterodimers. ErbB3 homodimers do not signal (indicated by the X), since the receptor has 

impaired kinase activity. Only some of the possible ligand–receptor-induced combinations are indicated in 

Figure 2 for the sake of simplicity (Olayioye et al., 2000). 
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The dimerisation of EGFR family members leads to intermolecular autophosphorylation of 

cytoplasmic tyrosine residues in the activation loop of the catalytic tyrosine kinase domain 

(Schlessinger, 2002) thereby leading to an open conformation of the activation loop. This 

enables access to ATP and substrate resulting in an enhanced tyrosine kinase activity and 

the subsequent recruitment of downstream signaling molecules.  

 

1.1.4 Cytoplasmic tyrosine kinases 

 

In addition to the membrane-anchored receptor tyrosine kinase, a second class of tyrosine 

kinase exists, the cytoplasmic non-receptor tyrosine kinase (NRTKs). The 32 NRTKs 

known so far are divided into 10 subfamilies based on their kinase domain sequence: Abl, 

Ack, Csk, Fak, Fes, Frk, Jak, Src, Tec and Syk (Blume-Jensen and Hunter, 2001; Robinson 

et al., 2000). 

NRTKs lack receptor-like features such as an extracellular ligand binding domain and a 

transmembrane-spanning region. NRTKs can bind to cell surface receptors, but many are 

localized in different intracellular compartments including the cytoplasm, the nucleolus, 

mitochondria and the endoplasmic reticulum. Furthermore, they can bind to the cell 

membrane through amino-terminal modifications, such as myristoylation and 

palmitoylation (Hantschel and Superti-Furga, 2004).  

The most common theme in NRTK regulation, as in RTK function, is tyrosine 

phosphorylation. In particular, phosphorylation of tyrosines in the activation loop of 

NRTKs, which occurs via trans-autophosphorylation or phosphorylation by a number of 

other NRTKs, leads to an increased enzymatic activity, whereas phosphorylation of 

tyrosines outside of the activation loop can negatively regulate kinase activity. In addition 

to the tyrosine kinase activity, NRTKs contain domains mediating protein-protein, protein-

lipid and protein-DNA interactions (Hubbard and Till, 2000). 

With nine members, the Src family is the largest subfamily of NRTKs and consists of Blk, 

Fgr, Fyn, Hck, Lck, Lyn, Src, Yes and Yrk (Blume-Jensen and Hunter, 2001). Src family 

members participate in a variety of signaling processes, including mitogenesis, T- and B-

cell activation and cytoskeleton remodeling. Various in vivo substrates have been described 

for Src including the platelet derived growth factor receptor (PDGFR) and the EGFR, the 

NRTK focal adhesion kinase Fak, the adapter protein p130Cas, which is involved in 

integrin- and growth factor-mediated signaling and cortactin, an actin-binding protein 

essential for the proper formation of cell matrix contact sites (Hubbard and Till, 2000). 
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Regulation of Src catalytic activity has been extensively studied. Src and its family 

members contain a myristoylated amino terminus, a stretch of positively-charged residues 

that interact with phospholipid head groups, a short region with low sequence homology, a 

SH3 domain, a SH2 domain, a tyrosine kinase domain, and a short carboxy-terminal tail. 

Src exhibits two important regulatory tyrosine phosphorylation sites. Phosphorylation of 

Tyr-527 in the carboxy-terminal tail of Src by the NRTK Csk represses kinase activity. 

The importance of this phosphorylation site is emphasized in v-Src, an oncogenic variant 

of Src which is a product of the Rous sarcoma virus. Because of a carboxyterminal 

truncation, v-Src lacks the negative regulatory site Tyr-527 and is constitutively active, 

resulting in uncontrolled growth of infected cells. A second regulatory phosphorylation site 

in Src is Tyr-416, an autophosphorylation site in the activation loop. Maximum stimulation 

of kinase activity occurs when Tyr-416 is phosphorylated. Src has also been implicated in 

several human carcinomas, including breast, lung and colon cancer (Biscardi et al., 1999).  

 

1.1.5 RTK downstream signaling and protein interaction domains 

 

Ligand-induced RTK activation induces specific intracellular signal transduction 

pathways, depending on the stimulus and the cellular context. To regulate many different 

cellular processes, most proteins involved in intracellular signaling contain modular 

protein domains that specifically interact with other protein domains, lipids, and nucleic 

acids. These interaction domains either target proteins to a specific subcellular localization, 

provide means of recognition for posttranslational protein modification or chemical second 

messengers. Furthermore, they can control the conformation, activity and substrate 

specificity of enzymes (Pawson and Nash, 2003).   

The most important domains in RTK signaling are those which recognize the 

phosphorylated tyrosine itself (Schlessinger and Lemmon, 2003). Phosphotyrosine residues 

are recognized by Src homology 2 (SH2) and phosphotyrosine binding (PTB) domains 

with SH2 representing the most prevalent binding domain (Schlessinger, 2000). PTB 

domains are not restricted to bind phosphotyrosine residues, because they can also bind to 

non-phosphorylated peptide sequences.  

WW and 14-3-3 domains bind to phosphoserine, while phosphothreonine residues are 

recognized by FHA and WD40 domains. The proline-rich sequence motif PXXP represents 

an additional binding moiety which binds specifically to SH3 domains. Pleckstrin 

homology (PH), phox homology (PHOX), FERM and FYVE domains bind to 
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phosphoinositides. Figure 3 shows an overview of different interaction domains and their 

binding specificities.  

 

 

 

Fig. 3. Modular interaction domains in signal transduction. Interaction domains bind proteins, 

phospholipids, or nucleic acid. A subset of such domains is illustrated and their general binding functions are 

indicated (Pawson and Nash, 2003). 

 

A wide variety of proteins possesses both, an interaction domain and enzymatic activity. In 

addition to their SH2 domain, Src kinases have a protein kinase activity and PLC-γ a 

phospholipase C activity. But some signaling proteins exclusively consist of SH2 and SH3 

domains, such as Grb2, Crk and SHC linking activated RTKs to downstream signaling 

events such as the mitogen-activated protein kinase (MAPKs).  

The ability of RTKs to recruit and activate a wide variety of adaptor proteins provides a 

signaling platform for the cell to regulate miscellaneous biological responses. 

  

1.2 Mitogen-activated-protein-kinase (MAPK) pathways 

 

Mitogen-activated protein kinases (MAPKs) are important signal transducing enzymes in 

the pathway connecting cell surface receptors to regulatory targets within the cell. MAPKs 

phosphorylate specific serine and threonine residues of target proteins and are implicated 

in cell migration, invasion, proliferation, differentiation, transformation and survival as 



1 Introduction 9

well as in angiogenesis. At least four differently regulated subgroups of MAPKs are 

present in mammals, extracellular-regulated kinase 1/2 (ERK1/2), Jun amino-terminal 

kinase (JNK1/2/3), p38 proteins (p38 α/β/γ/δ) and ERK 5 (Chang and Karin, 2001).  

The major function of the MAPK pathway is the regulation of gene expression either by 

direct phosphorylation of transcription factors, target co-activators or co-repressors (Yang 

et al., 2003). 

The most prominent MAPK pathway is the cascade leading to activation of ERK 1/2 by 

RTKs. Upon ligand-induced activation of RTKs, the adaptor protein Grb2 is recruited. 

Grb2 associates with the RAS-GEF Sos complex thereby activating it, which in turn 

activates membrane-associated Ras, a small monomeric GTP-binding protein 

(Schlessinger, 2000).  Activated Ras interacts with several effector proteins such as the 

MAPK kinase kinase (MAPKKK) Raf-1 and PI3-K to stimulate numerous intracellular 

processes. Activated Raf-1 sequentially stimulates the MAPK kinases 1/2 (MAPKK, MEK 

1/2) by phosphorylating a key serine residue in the activation loop. In the following, MEK 

1/2   phosphorylates MAPK on threonine and tyrosine residues in regulatory TEY-motif 

leading to its activation (Robinson and Cobb, 1997). Activated MAPK phosphorylates a 

variety of cytoplasmic and membrane linked substrates. For example, it influences the 

transmembrane protein processing of ADAM17 by phosphorylation of the intracellular 

domain (Diaz-Rodriguez et al., 2002; Fan and Derynck, 1999). In addition, MAPK is 

rapidly translocated into the nucleus where it phosphorylates and activates transcription 

factors. The signaling cassette composed of MAPKKK, MAPKK, and MAPK is highly 

conserved in evolution and plays an important role in the control of metabolic processes, 

cell cycle, cell migration and cell shape as well as in cell proliferation and differentiation 

(Hunter, 2000). 

The specificity of MAPK interactions and of the effector molecules stimulated depends 

largely on the MAPK subtypes involved. In particular, extracellular signal-regulated 

kinases (ERK1/2)/MAPKs are primarily stimulated by growth factors and modulate cell 

growth and differentiation, whereas c-Jun N-terminal kinases (JNKs) and p38 MAPKs are 

most commonly activated by stress stimuli and are involved in cell growth, differentiation, 

survival, apoptosis, and cytokine production (Marinissen and Gutkind, 2001). 
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1.3 Protein kinase B (PKB)/Akt 

 

In mammals three isoforms, Akt 1, 2 and 3, of the serine/threonine kinase PKB/Akt are 

present, which are structurally closely related. They are composed of three functionally 

distinct regions, an N-terminal pleckstrin homology (PH) domain, a central catalytic 

domain and a C-terminal hydrophobic motif (HM). 

Protein kinase B is activated by the phosphoinositide 3-kinase (PI3-K) pathway. 

Generation of PIP3 and PIP(3,4)P2 is necessary for recruitment of PKB to the membrane 

surface. Activation takes place by multisite phosphorylation, but the main phosphorylation 

site is Threonine 308. The fully activated multiphosphorylated PKB then dissociates from 

the plasma membrane and targets substrates located in the cytoplasm and nucleus leading 

to the activation of genes involved in diverse cellular processes. Furthermore, deregulated 

PKB activation is known to contribute to tumor development and metastasis as well as 

chemotherapeutic resistance (Hanada et al., 2004; Nicholson and Anderson, 2002).  

 

1.4 G protein coupled receptors 

 

The cell surface superfamily of G protein coupled receptors (GPCRs) forms one of the 

largest protein family and, with more than 1000 family members, represents up to 1% of 

the total genome of mammalians (Hermans, 2003). GPCRs are involved in diverse 

physiological functions including neurotransmission, photoreception, chemoreception, 

metabolism, growth and differentiation (Fukuhara et al., 2001). A diverse array of external 

stimuli including neurotransmitters, hormones, lipids, photons, odorants, taste ligands, 

nucleotides and calcium ions can act by binding to GPCRs and therefore induce diverse 

physiological functions as shown in Figure 4. 

GPCRs can be divided into three major families, the receptors related to rhodopsin (type 

A), receptors related to the calcitonin receptor (type B) and the receptors related to 

metabotropic recptors (type C) (Gether and Kobilka, 1998). 

Based on their highly conserved protein structure, GPCRs are also called heptahelical or 

serpentine receptors as they contain a conserved structural motif of seven α-helical 

membrane-spanning regions, each consisting of 20-27 amino acids. N-terminal segments, 

the cyto- and exoloops as well as the C-terminal segment can greatly vary in size. The 

amino-terminus is exposed to the extracellular environment and is believed to play a role in 

ligand binding for there exists a weak correlation between ligand size and the N-terminal 
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segment's length. Both the C-terminus and the intracellular loops interact with intracellular 

signaling partners, such as the associated heterotrimeric G proteins, but also with a wide 

variety of proteins containing structural interacting domains including PDZ, SH3 or PTB 

domains (Bockaert et al., 2003; Ji et al., 1998).  

 

 

Fig. 4. Diversity of G protein coupled receptors (GPCRs). A wide variety of ligands, including biogenic 

amines, amino acids, ions, lipids, peptides and proteins, use GPCRs to stimulate cytoplasmic and nuclear 

targets through heterotrimeric G protein dependent and independent pathways. Such signaling pathways 

regulate key biological functions such as cell proliferation, cell survival and angiogenesis. Abbreviations: 

DAG, diacylglycerol; FSH, follicle-stimulating hormone; GEF, guanine nucleotide exchange factor; LH, 

leuteinizing hormone; LPA, lysophosphatidic acid; PAF, platelet-activating factor; PI3K,  

phosphoinositide 3-kinase; PKC, protein kinase C; PLC, phospholipase C; S1P, sphingosine-1-phosphate; 

TSH, thyroid-stimulating hormone (Marinissen and Gutkind, 2001).  

To add yet another layer of complexity, dimers or higher oligomers among identical 

GPCRs, close family members, or GPCRs from different families influence ligand binding, 

receptor activation, desensitization, trafficking and receptor signaling (Breitwieser, 2004) 

 

1.4.1 Heterotrimeric G-proteins 

 

A common biochemical characteristic of GPCRs is their interaction and activation of 

downstream signaling cascades by heterotrimeric G proteins, although some studies 
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reported G protein independent signaling through some GPCRs (Bockaert and Pin, 1999; 

Hall et al., 1999). 

Heterotrimeric G proteins are composed of a Gα subunit interacting with a Gβγ subunit. 

Ligand binding to GPCRs alters the conformation of intracellular receptor domains and 

induces the association with heterotrimeric G proteins. This results in an exchange of GDP 

for GTP in the active site of the Gα subunit, followed by the dissociation of the 

heterotrimeric complex. Both the Gα and Gβγ subunits activate cytoplasmic or membrane 

bound effector molecules (Hermans, 2003).  

The specific and complex signaling induced by GPCRs is due to the existence of at least 

23 Gα subunits derived from 17 different genes, 6 Gβ and 12 different Gγ subunits.              

G proteins are generally referred to by their Gα subunits, which are subdivided on the basis 

of amino acid similarities in four distinct families, namely Gαs, Gαq, Gαi and Gα12 

(Hermans, 2003; Pierce et al., 2001).  

On the other hand, the number of downstream effectors is comparably limited and many            

G proteins couple to the same intracellular effectors. Effectors comprise adenylyl and 

guanylyl cyclase, calcium channels, GTPase-activating proteins (GAPs),  

guanine-nucleotide exchange-factors (GEFs), c-Src tyrosine kinase, phosphodiesterase and 

phospholipases. By this means, the signaling cascades induced by activated G proteins 

influence the level of second messengers like cyclic AMP and cyclic GMP, diacylglycerol, 

inositol (1,4,5)-triphosphate, phosphatidyl inositol (3,4,5)-triphosphate or calcium levels 

(Marinissen and Gutkind, 2001; Pierce et al., 2001) 

 

1.4.2 Mitogenic GPCR signaling 

 

Many reports suggest GPCRs to induce mitogenic responses and to be involved in the 

regulation of pathologic proliferation. Potent mitogens such as acetylcholine, angiotensin, 

bombesin, bradykinin, endothelin-1, isoproterenol, lysophosphatidic acid (LPA), 

neurotensin, prostaglandin and thrombin have been shown to induce mitogenic responses 

in tissue culture systems (Daaka, 2004).  

The discovery of the mas oncogene, whose protein product displays a heptahelical 

structure, first revealed a connection between GPCRs and cellular transformation (Young 

et al., 1986). Furthermore, several known oncogenes encode mutated forms of GPCRs or 

their associated G proteins. Activating mutation of the α1B-adrenoreceptor,  thyroid-

stimulating hormone receptors and luteinizing hormone receptors even in an agonist-
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independent manner have been detected in adenoma of the thyroid and hyperplastic 

Leydig's cells, respectively (Marinissen and Gutkind, 2001; Parma et al., 1993; Shenker et 

al., 1993). In addition, the genomes of various transforming viruses such as Kaposi's 

sarcoma-associated herpesvirus contain sequences encoding constitutive active GPCRs 

shown to induce cancer in animal models (Montaner et al., 2003). Activating mutants of 

Gα subunits encoding transforming oncogenes such as gsp, gip2 and gep are described 

(Dhanasekaran et al., 1998; Landis et al., 1989; Lyons et al., 1990; Marinissen and 

Gutkind, 2001; Radhika and Dhanasekaran, 2001; Xu et al., 1993).  

Moreover, ectopically expressed GPCRs such as muscarinic acetylcholine M1, M2, and M5 

receptors could transform fibroblasts dependent in an agonist-dependent manner, 

suggesting that endogenous GPCRs can be tumorigenic when persistently simulated by 

agonists released from tumors in an autocrine or paracrine fashion. Inhibiting the function 

of GPCRs effectively prevents tumor growth in animal models leading to the possibility to 

develop novel therapeutics for cancer intervention which act on GPCRs. 

 

1.4.3 The LPA receptors Edg 2, 4 and 7 

 

LPA is an extracellular lipid mediator produced by activated platelets or from circulating 

lysophosphatidylcholine by autotoxin and has been implicated in the regulation of both, 

physiological and pathophysiological processes (Brindley, 2004; Fang et al., 2000a; 

Moolenaar et al., 1997). LPA represents the major mitogenic activity in serum and 

numerous cellular responses to LPA have been documented including rapid cytoskeletal 

rearrangements (Gohla et al., 1998), stimulation of cell proliferation (van Corven et al., 

1989), suppression of apoptosis (Fang et al., 2000b) and induction of tumor cell migration 

and invasion (Fishman et al., 2001; Imamura et al., 1993). LPA levels are elevated in 

plasma and ascites of ovarian cancer patients (Fishman et al., 2001; Imamura et al., 1993; 

Xu et al., 1995; Xu et al., 1998) and LPA is likely to play a prominent role in the pathology 

of other types of human cancer.  

Recently, cell surface receptors for LPA and the structurally related phospholipids 

sphingosine-1-phosphate (S1P) have been identified as members of the Edg (endothelial 

cell differentiation gene) subfamily of GPCRs (Kranenburg and Moolenaar, 2001) (Pyne 

and Pyne, 2000). Four LPA receptors, Edg2 (An et al., 1997), Edg4 (An et al., 1998a; 

Contos and Chun, 2000) and Edg7 (Bandoh et al., 1999) as well as five S1P receptors, 

Edg1, Edg3, Edg5, Edg6 and Edg 8 have been described which couple to various subtypes 
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of G proteins and show distinct characteristics in ligand specificity and activation of 

intracellular signaling pathways (Takuwa et al., 2002). Very recently, a fourth LPA 

receptor GPR23 has been identified which is structurally different from the Edg receptors 

(Noguchi et al., 2003). 

The LPA receptors exhibit a high homology and are widely expressed (Figure 5). 

Overlapping expression patterns and the lack of subtype-specific agonists complicate the 

efforts to assign subtype specific physiological functions. Additionally, LPA can act 

independently of its receptors (Hooks et al., 2001). Recent studies on knock-out mice, 

however, have unveiled redundant as well as non-redundant functions for the LPA 

receptors that are essential for normal development and vascular maturation (Contos et al., 

2002; Takuwa et al., 2002).  

 

 
 
Fig. 5. Properties of lysophospholipid receptor genes. The dendrogram is based on percentage of amino 

acid identities among mouse LP receptor sequences (except lpB4, which is from rat) and shows the predicted 

evolutionary divergence of the genes. Common synonyms are indicated in parentheses, and mouse gene 

symbols are denoted with asterisks. Probable G protein partners for each of the encoded receptors are shown, 

based on receptor expression studies that indicate PTX-sensitive cellular responses (Gi/o coupling), PTX-

insensitive cytoskeletal rearrangement/ Rho activation (G12/13 coupling), or PTX-insensitive intracellular 

calcium mobilization and/or inositol phosphate production (Gq coupling) (Contos et al., 2000).  
 

According to the cellular context, LPA is shown to be involved in the modulation of 

adenylate cyclase, stimulation of phospholipase C (PLC) and subsequent Ca2+
 

mobilization, phosphorylation of the survival mediator Akt/protein kinase B (PKB) by  

PI3-K and transcriptional regulation of immediate-early genes (Kranenburg and 

Moolenaar, 2001; Moolenaar, 1999; Moolenaar et al., 1997; Pyne and Pyne, 2000). 

Additionally, LPA stimulation leads to Rho induced stress fiber formation and cell 

rounding  and activation of the Ras/MAPK pathway (Contos et al., 2000) (Figure 6). The 

latter pathway is connected to the induction of DNA synthesis and cellular proliferation.  
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Fig. 6. G protein coupled receptor signal transduction pathways activated by LPA. Lines with 

arrowheads illustrate activation paths, whereas inhibition effects are illustrated by lines with crossbars. 

Sequential arrows indicate multiple signaling steps that are not illustrated. Activation of Gi/o inhibits AC and 

thus cAMP production. This pathway also activates the Ras-MAP kinase (MAPK) cascade, which is 

primarily responsible for increased proliferation. In addition, Gi/o activates PLC via its βγ subunits, which 

results in generation of diacylglycerol (DAG) and inositol triphosphate (IP3) from phosphatidylinositol 

diphosphate (PIP2). DAG activates protein kinase C (PKC), and IP3 mobilizes [Ca2+]i. All Gi/o-mediated 

signaling is specifically inhibited by PTX. G12/13 proteins are responsible for activation of the small GTPase, 

Rho, which can be specifically inhibited by Botulinum C3 exoenzyme (C3). Activated Rho stimulates Rho 

kinases, inducing cytoskeletal and morphological changes. Rho kinases are directly inhibited by Y-27632. 

The α subunits of Gq proteins are the primary effectors of PLC activation (Contos et al., 2000).  

 

In many cellular systems, transactivation of the EGFR is reported to be mediated by LPA. 

Since LPA is one of the most potent mitogens known so far and implicated to be involved 

in the development and progression of many types of cancer, the mechanism leading to the 

LPA receptor induced activation of the Ras-MAPK pathway is of uppermost interest for 

the prevention of cancer development.  

 

1.5 EGFR signal transactivation 

 

In 1996, Daub et al. identified the EGFR as an essential element in GPCR-induced 

mitogenesis of rat fibroblasts (Daub et al., 1996). Upon treatment of cells with the G 

protein-coupled receptor agonists lysophosphatidic acid (LPA), endothelin-1 (ET-1) and 

thrombin, the EGFR and its relative HER2 were found to be rapidly tyrosine-
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phosphorylated. This transactivation of a receptor tyrosine kinase couples GPCR ligands to 

ERK 1/2 activation and induction of c-fos gene expression.  

Further investigations revealed that GPCR-EGFR crosstalk pathways are established in a 

variety of other cell types such as human keratinocytes, primary mouse astrocytes, PC12 

cells and vascular smooth muscle cells and established them as widely relevant towards the 

activation of the MAPK signal (Fischer et al., 2003; Gschwind et al., 2001; Hart, 2003). In 

addition, preincubation of COS7 cells with pertussis toxin blocked LPA-induced EGFR 

signal transactivation, implicating the involvement of Gα subunits of the Gαi/o family of G 

proteins (Daub et al., 1997). Interestingly, EGFR transactivation was also observed after 

agonist stimulation of ectopically expressed Gαq coupled bombesin receptor (BombR) or 

Gαi coupled M2 muscarinic acetylcholine receptor (M2R) indicating that various  

Gα subunits of the G proteins are involved in transactivation of the EGFR depending on 

the stimulus and the cellular context. 

Due to the rapid onset of GPCR-induced EGFR tyrosine phosphorylation and the fact that 

EGF-like ligands were not detectable in cell culture medium after G protein activation, the 

transactivation mechanism was postulated to exclusively rely on intracellular elements 

(Daub et al., 1996; Zwick et al., 1999). Different cytoplasmic tyrosine kinases,  

Ser/Thr kinases such as PKC and second messengers have been discussed as potential 

mediators of the transactivation signal. Src-family kinases have been suggested both as 

upstream and downstream mediators of GPCR induced EGFR transactivation. However, 

several studies indicated that the EGFR transactivation mechanism is subject to different 

cell type-characteristic regulatory influences. In different cellular systems EGFR activation 

was reported to involve intracellular calcium levels and the Ca2+-regulated tyrosine kinase 

Pyk2 (Eguchi et al., 1998; Keely et al., 2000; Murasawa et al., 1998; Soltoff, 1998; 

Venkatakrishnan et al., 2000; Zwick et al., 1997). 

In contradiction to a ligand-independent mechanism, it was reported that a chimeric RTK 

consisting of the ligand-binding domain of the EGFR and the transmembrane and 

intracellular portion of the PDGFR, was transactivated upon treatment of Rat1 fibroblasts 

with GPCR ligands resulting in a PDGFR-characteristic intracellular signal (Prenzel et al., 

1999). These findings suggested a critical function of the EGFR extracellular domain in the 

GPCR-EGFR cross-talk mechanism, as the PDGFR was not tyrosine phosphorylated upon 

treatment of Rat1 cells with GPCR ligands. Furthermore, a system of co-cultured cell lines 

stably expressing either the M1R or the human EGFR resulted in intercellular EGFR 

transactivation after carbachol stimulation. In addition, LPA-, carbachol- or tetra-decanoyl-

phorbol-13-acetate (TPA) induced transactivation of the EGFR and tyrosine 
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phosphorylation of SHC were completely abrogated by the diphtheria toxin mutant 

CRM197 that specifically blocks proHB-EGF function or the metalloprotease inhibitor 

batimastat (BB94) in COS7 and HEK 293 cells. Flow cytometric analysis directly 

confirmed cell-surface ectodomain shedding of proHB-EGF upon treatment with GPCR 

agonists or TPA. 

These data supported the concept of a "Triple-Membrane-Passing-Signal" (TMPS) 

mechanism of EGFR signal transactivation involving a metalloprotease activity and 

processing of the transmembrane EGF-like growth factor precursor proHB-EGF (Prenzel 

et al., 1999). In this regard, growing evidence indicated transmembrane metalloproteases 

as the key enzymes of growth factor precursor shedding. The metalloprotease inhibitor 

batimastat (BB94) was shown to inhibit bombesin- and TPA-induced transactivation of the 

EGFR in PC-3 human prostate cancer cells and to reduce high constitutive levels of EGFR 

tyrosine phosphorylation in unstarved PC3 (Prenzel et al., 1999) and SCC25 squamous cell 

carcinoma cells (Gschwind et al., 2002). Furthermore, Dong and colleagues reported that 

BB94 reduced cell proliferation and cell migration of an human mammary epithelial cell 

line by interfering with the release of EGFR ligands (Dong et al., 1999). BB94 also 

inhibited proliferation of colon and breast cancer cell lines which were known to depend 

on autocrine signaling through the EGFR. Recently, Gschwind and colleagues showed that 

LPA-induced proliferation and motility of head and neck cancer cells involves 

metalloprotease-dependent transactivation of the EGFR (Gschwind et al., 2002). Various 

studies have identified members of the ADAM subclass of metalloproteases to play a 

critical role in GPCR mediated transactivation of the EGFR (Gschwind et al., 2003; Sahin 

et al., 2004). This lead to the following updated model of the triple membrane passing 

signal mechanism of EGFR signal transactivation (Figure 7).  

Since the initial discovery of this mechanism, many studies demonstrated the broad 

relevance of said signaling mechanism within a variety of cellular systems and, 

importantly, the involvement in development and progression of pathophysiological 

processes. Moreover, EGFR function was reported to be critical for GPCR stimulated 

mitogenic signaling in several cancer cells (Castagliuolo et al., 2000; Venkatakrishnan et 

al., 2000). 
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Fig. 7. The triple-membrane-passing signal (TMPS) mechanism of EGFR transactivation. GPCR 

stimulation induces upregulation of a metalloprotease activity, therby leading to ectodomain cleavage of 

EGF-like growth factor precursors. Subsequent release of the mature growth factor stimulates EGFR kinase 

activity and transduces the GPCR signal inside the cell to stimulate characteristic EGFR downstream 

signaling pathways such as MAPK, PLC-γ, STAT or PI3K activation (Fischer et al., 2003). 

 

In addition to EGFR transactivation, other RTKs such as the insulin-like growth factor 

receptor (IGF-1R), hepatocyte growth factor receptor (Met-R), vascular endothelial cell 

growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR) and the 

Fibroblast growth factor receptor (FGFR)-1 have been shown to be activated by GPCR 

agonists (Belcheva et al., 2001; Endo et al., 2002; Fischer et al., 2004; Herrlich et al., 1998; 

Pai et al., 2003; Weiss et al., 1997).  

 

1.6 Metalloproteases 

 

Metalloproteases are important for many biological processes, ranging from cell 

proliferation, differentiation and remodelling of the extracellular matrix (ECM) to 

vascularization and cell migration. These events occur several times during organogenesis, 

in both normal development and during tumour progression. Mechanisms of 

metalloprotease action include the proteolytic cleavage of growth factors so that they 

become available to cells not in direct physical contact, degradation of the ECM enabling 

founder cells to move across tissues into nearby stroma and regulated receptor cleavage to 
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terminate migratory signaling. Most of these processes require a sensitive balance between 

the functions of matrix metalloproteases (MMPs) or metalloprotease-disintegrins 

(ADAMs) and natural tissue inhibitors of metalloproteases (TIMPs). 

Proteases of the zinc protease superfamily are classified according to the primary structure 

of their catalytic sites including carboxypeptidase, DD carboxypeptidase, gluzincin, 

inuzincin and metzincin subgroups (Hooper, 1994). The metzincins are further subdivided 

in adamalysins, astacins, matrixins and serralysins (Bode et al., 1993).  

For the hydrolytic processing of substrates, the active site of zinc metalloproteases contains 

water ions and zinc which is coordinated by three conserved histidine residues and a 

downstream methionine. The methionine constitutes a Met turn motif that loops around to 

face the consensus HEXXHXXGXXH site. The glutamic acid is believed to transfer 

hydrogen atoms and to polarize the zinc-bound water molecule for nucleophilic attack on 

the scissile peptide bond of bound substrate (Stocker and Bode, 1995).  

Many metalloproteases are synthesized as inactive precursors containing a terminal 

prodomain which keeps the metalloprotease site inactive by a cysteine switch (Becker et 

al., 1995). Besides its role as an inhibitor of the protease domain, the prodomain appears to 

be important for maturation and intracellular transport of metalloproteases (Milla et al., 

1999). The processing and activation of metalloproteases by furin, other proprotein 

convertases (PCs) or autocatalytic are proposed to occur at the trans-Golgi network 

(Anders et al., 2001; Kang et al., 2002). 

  

1.6.1 ADAMs 

 

Metalloprotease-disintegrins are transmembrane glycoproteins which take part in cell-cell 

interaction and in processing of protein ectodomains (Wolfsberg et al., 1995). They 

combine features of both cell surface adhesion molecules and metalloproteases and are 

characterized by a conserved domain structure consisting of a N-terminal signal sequence 

followed by a prodomain, metalloprotease and disintegrin domains, a cysteine-rich region 

and finally a transmembrane domain and cytoplasmic tail (Figure 8). Thus, family 

members are referred to as ADAM (a disintegrin and metalloprotease domain) or as MDCs 

(metalloprotease, disintegrin, cysteine-rich proteins). 
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Fig. 8. The topography of the ADAMs and related metalloproteases. Generalized domain structures of 

the ADAMs, SVMPs, ADAM-TS, and MMP families are shown. Note that ADAM-TS family members have 

a variable number of thrombospondin-like (TS) motifs. The MMP shown is of the gelatinase class. Other 

subclasses of MMPs lack hemopexin-like sequences and/or fibronectin type II-like sequences. The subclass 

of MT-MMPs has transmembrane domains and cytoplasmic tails in addition to the domains shown (Seals and 

Courtneidge, 2003). 

  

More than 30 ADAM cDNA sequences have been identified in organisms ranging from S. 

pombe to humans up to date (Primakoff and Myles, 2000). Although all ADAMs have a 

relatively well-conserved metalloprotease domain, only 15 contain the zinc-binding 

catalytic-site consensus sequence (HEXXH). Therefore, only 50 percent of the known 

ADAMs are predicted to be catalytically active. ADAMs have been implicated in diverse 

processes, including sperm-egg binding and fusion, membrane fusion, protein-ectodomain 

processing or shedding of cytokines, cytokine receptors, adhesion proteins and RTKs and 

growth factor precursors (Kheradmand and Werb, 2002; Schlondorff and Blobel, 1999).  

The disintegrin domain of ADAMs allows the interaction with integrin receptors, but not 

all ADAM proteases have the RGD sequence in their disintegrin loop (Blobel and White, 

1992). In contrast, the cysteine-rich and EGF-like domains are not well characterized, but 

it is believed that the cysteine rich domain supplements the binding capacity of the 

disintegrin domain. Cancer cells are shown to interact with cell surface heparin-sulfate 

proteoglycans in an in vitro binding assay with the cysteine-rich domain of ADAM12 

serving as a ligand for the cell-adhesion molecule syndecan (Iba et al., 2000; Iba et al., 

1999).  

The cytoplasmic tails of proteases of the ADAM family vary both in length and in the 

protein sequence and contain motifs like PXXP binding sites for SH3 domain-containing 

proteins or potential phosphorylation sites for serine-threonine and/or tyrosine kinases. 
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Many studies postulate that the cytoplasmic tail is involved in maturation and regulation of 

metalloprotease activity. 

The regulation of ADAM metalloprotease activity after prodomain removal is only poorly 

understood. Processing of membrane proteins by ADAMs requires both the membrane-

anchored enzyme and its substrate to be present in cis on the same cell, probably anchored 

in distinct domains of the plasma membrane through cytoskeletal interactions. Upon cell 

activation, for example by PKC agonists, increases in cytoplasmic Ca2+
 levels or tyrosine 

kinase stimulation, the attachments change and the proteases and substrates become co-

clustered and can interact (Werb and Yan, 1998). Alternatively, the signaling cascade 

could modify the cytoplasmic domains of the proteases or substrate, producing a 

conformational change that either activates the enzyme or makes the cleavage site 

available (Schlondorff and Blobel, 1999). For most processing reactions there appears to 

be a constitutive level of ectodomain shedding. Processing is necessary to make paracrine 

growth and survival factors available including EGF-like ligands allowing for the 

consistent supply of EGFR agonists.  

Tumor necrosis factor-α convertase (TACE/ADAM17) is the best characterized 

metalloprotease and has been identified as the protease responsible for the release of the 

inflammatory cytokine tumor necrosis factor (TNF)-α from its membrane-bound precursor 

proTNFα (Black et al., 1997; Moss et al., 1997). Besides TNFα, ADAM17 mediates 

cleavage of diverse integral membrane proteins like L-selectin, p75 TNF receptor (Peschon 

et al., 1998), fractalkine (Garton et al., 2001), MUC1 (Thathiah et al., 2003), β-amyliod 

precursor protein (βAPP) (Buxbaum et al., 1998), p55 TNFR, interleukin-1 receptor II (IL-

1R II) (Reddy et al., 2000), erbB4/HER4 (Rio et al., 2000), the Notch1 receptor (Brou et 

al., 2000), IL-6R (Althoff et al., 2000), growth hormone-binding protein (Zhang et al., 

2000) and cellular prion protein (Vincent et al., 2001). Studies using fibroblasts derived 

from ADAM17 knock-out mice implicated ADAM17 in the release of TGFα and other 

EGF-like ligands as well as the constitutive availability of these growth factors (Peschon et 

al., 1998; Sunnarborg et al., 2002). Mice with tace∆Zn/∆Zn null mutation die at birth with 

phenotypic defects, including failure of eyelid fusion, hair and skin defects, and 

abnormalities of lung development (Shi et al., 2003). The epithelial defects observed in 

tace∆Zn/∆Zn fetuses are similar to those reported in mice lacking the epidermal growth factor 

receptor (EGFR) (Peschon et al., 1998). Abrogation of ADAM17 function in mice leads to 

perinatal lethality which is not seen in EGFR or TGFα deficient mice, indicating that 

ADAM17 has additional substrates required for the development of important organs 

which are necessary for survival (Shi et al., 2003).  
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1.6.2 The matrix metalloproteinases (MMPs) 

 

Matrix metalloproteinases (MMPs) are closely related to the ADAM family of 

metalloproteases and play a central role in breakdown and remodeling of the extracellular 

matrix (ECM) (Shapiro, 1998). Therefore, they are essential for development, wound 

healing and are involved in the pathology of hyperproliferative diseases such as cancer and 

arthritis (Chang and Werb, 2001; Seals and Courtneidge, 2003).   

MMPs were historically divided into collagenases, gelatinases, stromelysins and 

matrilysins on the basis of their specificity for ECM components. However, a sequential 

numbering system for the more than 20 known human MMPs has been adapted and the 

MMPs are now classified according to their structure (Nagase and Woessner, 1999). There 

are eight distinct classes of MMPs: five are secreted and three are membrane-type MMPs 

(MT-MMPs). All MMPs are synthesized as prepro-enzymes and secreted as inactive pro-

MMPs in most cases. The prodomain has a conserved unique PRCG(V/N)PD sequence. 

The cysteine within this sequence coordinates the catalytic zinc to maintain the latency of 

pro-MMPs. The catalytic domains of MMPs have an additional structural zinc ion and 2-3 

calcium ions, which are required for the stability and the expression of enzymatic activity. 

The gelatinases MMP-2 and MMP-9 have three repeats of fibronectin-type II domain 

inserted in the catalytic domain. 

These repeats interact with collagens and gelatins. Most of the MMPs are activated outside 

the cell by other activated MMPs or furin-like serine proteases. Endogenous inhibitors 

such as α-macroglobulins and tissue inhibitors of metalloproteinases (TIMPs) tightly 

control the proteolytic activities of MMPs. Many reports identified TIMPs to inhibit cell 

invasion in vitro, tumorigenesis, metastasis in vivo and angiogenesis (Gomez et al., 1997). 

The expression of many MMPs is transcriptionally regulated by growth factors, hormones, 

cytokines and cellular transformation (Brinckerhoff and Matrisian, 2002). Furthermore, 

substrates of MMPs as well as of ADAMs are EGF-like growth factors like HB-EGF 

which leads to the assumption that MMPs are also involved in EGFR signal transactivation 

(Roelle et al., 2003; Suzuki et al., 1997; Yu et al., 2002). 
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1.7 Molecular oncology  

 

In normal cells cell division, survival and death are in balance promoting homeostasis. It is 

a general phenomenon in normal as well as transformed cells that signaling pathways are 

not freestanding entities but parts of larger signaling networks. Therefore, products of 

proto-oncogenes and tumor suppressor genes interact in overlapping pathways and 

dysfunction of the tightly controlled equilibrium leads to cancer.  

Cancer development is a multistage process involving genetic alterations that drive the 

progressive transformation of normal human cells into highly malignant derivatives 

(Hanahan and Weinberg, 2000). The genomes of tumor cells can be altered at multiple 

sites from subtle changes such as point mutations to severe changes in chromosome 

complement (Blume-Jensen and Hunter, 2001). Furthermore, cancer is the most common 

genetic disease: one in three people in the western world will develop cancer and one in 

five will die from it. Therefore, it is essential to elucidate the mechanisms behind the 

transformation of normal cells to cancer cells and the conversion of normal tissue into 

malignant tumors.  

Observations of human cancers and animal models suggest that tumor development 

proceeds via a process formally analogous to Darwinian evolution, in which a succession 

of genetic changes, each conferring one or another type of growth advantage, leads to the 

progressive conversion of normal human cells into cancer cells. The vast catalog of cancer 

cell genotypes is a manifestation of six essential alterations in cell physiology that 

collectively dictate malignant growth and which are now recognized as the six hallmarks 

of cancer: self-sufficiency in growth signals, insensitivity to growth-inhibitory (anti-

growth) signals, evasion of programmed cell death (apoptosis), limitless replicative 

potential, sustained angiogenesis, and tissue invasion and metastasis. It is assumed that 

these six properties are shared by most, if not all types of human tumors (Hanahan and 

Weinberg, 2000). 

Breast cancer belongs to the most frequent tumor types in women. HER2 overexpression 

or increased activity has been shown to be a genetic marker for a severe type of breast 

cancer with a poor diagnosis (Pegram et al., 1998; Slamon and Clark, 1988; Slamon et al., 

1987; Slamon et al., 1989).  In some carcinomas of the breast, overexpression of the EGFR 

was detected (Nicholson et al., 1991). Kidney cancer on the other hand, is more common 

in men and one of the most frequent tumors of the urogenital tract. Until today, the most 

effective treatment remains the complete removal of the affected organ and thus a severely 

impaired quality of life for the patient (Vogelzang and Stadler, 1998). Hence, there is a 
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strong need to identify novel intervention targets and to design patient-tailored therapies 

for prevention and treatment of these tumors. In order to reverse or at least contain tumor 

spreading it is of utmost importance to understand the molecular mechanisms underlying 

cancer development and progression.  

Benign tumors grow locally restricted, but the normal organization of the affected tissue 

gradually becomes disrupted by the increasing number of dividing cells. As the dividing 

cancer cells extend through the basement membrane into the surrounding stroma, 

malignancy begins. Invasion stimulatory pathways depend on the activation of G proteins, 

PI3-K and the Rac and Rho family of small GTPases. Proteolysis plays a role for the 

breakdown of extracellular matrix as well as cleavage of pro-invasive fragments from cell 

surface glycoproteins. As the dividing cancer cells extend into blood vessels, tumors 

undergo metastasis by spreading from the primary site to more distant sites in the body 

making cancer much more difficult to cure. 

 

1.8 Aim of the study 

 

Deregulation of both GPCR and EGFR signaling systems has been recognized as a major 

cause of hyperproliferative diseases. In addition, a pathway connecting these two classes of 

receptors has recently been discovered which entailed an arising research interest on this 

mechanism. 

The aim of this study was to elucidate the mechanisms underlying the EGF receptor 

transactivation signal induced by GPCR ligands as well as the pathophysiological role of 

this mechanism in breast and kidney cancer cells. 

A special interest of this study was the involvement of a certain class of GPCRs, the LPA 

receptors. LPA is one of the most potent mitogenic stimuli and therefore it is of great 

interest for tumor therapy to enlighten by which means LPA acts as a mitogen. It was 

necessary to establish appropriate model systems to study the direct influence of a single 

receptor on the transactivation signal as well as the biological responses.  

Another part of the study focused on the involvement of a certain metalloprotease, 

ADAM10, in the transactivation mechanism. This was performed in a model system which 

is known to involve ADAM10 in Thrombin induced EGFR transactivation. 

Since the signaling pathway connecting the GPCR to the metalloprotease was still 

unknown, multiple efforts have been taken to shed light on the molecular mechanism 

connecting these two parts of the pathway. GPCRs couple to heterotrimeric G proteins 
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which consist of a Gα and a Gβγ subunit. The involvement of these subunits was examined 

in different cellular systems.  
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2 Materials and Methods 

 

2.1 Materials 

 

2.1.1 Laboratory chemicals and biochemicals 

 

Acrylamide       Serva, Heidelberg 
Agar        Difco, Detroit, USA 
Agarose       BRL, Eggenstein 
AG1478      Alexis, Grünberg    
Ampicillin      Roche, Mannheim 
Aprotinin      Sigma, Taufkirchen 
APS (Ammonium peroxodisulfate)    Bio-Rad, München 
ATP (Adenosine 3’-triphosphate)    Pharmacia, Freiburg 
Batimastat (BB94)     British Biotech, Oxford, UK 
Bisacrylamide      Roth, Karlsruhe 
Bromphenol blue      Sigma, Taufkirchen 
BSA (Bovine serum albumin)    Sigma, Taufkirchen 
CHAPS      Sigma, Taufkirchen 
Coomassie G250      Serva, Heidelberg 
Deoxynucleotides (dG/A/T/CTP)    Roche, Mannheim 
Dideoxynucleotides (ddG/A/T/CTP)   Pharmacia, Freiburg 
Diphtheria toxin CRM mutant   List Biological Lab., CA, USA 
DTT (Dithiothreitol)      Sigma, Taufkirchen 
Ethidium bromide      Sigma, Taufkirchen 
Fibronectin       Calbiochem, Bad Soden 
Heparin       Sigma, Taufkirchen 
HEPES (N-(2-Hydroxyethyl)piperazine-N'-  Serva, Heidelberg 
(2-ethanesulfonic acid)) 
IPTG (Isopropyl β-D-1-thiogalactopyranoside)  Biomol, Hamburg 
Ki16425      Kirin Laboratories, Tokyo 
L-Glutamine       Gibco, Eggenstein 
Lipofectamine®      Invitrogen, USA 
Lipofectamine 2000     Invitrogen, USA 
Lysozym      Sigma, Taufkirchen 
LY 294002      Alexis, Grünberg 
MBP (Myelin basic protein)     Sigma, Taufkirchen 
Mineral oil       Sigma, Taufkirchen 
Na-DOC (Sodium-desoxycholat)   Sigma, Taufkirchen 
Oligofectamine®     Invitrogen, USA 
PMSF (Phenylmethanesulfonyl fluoride)   Sigma, Taufkirchen 
Polybrene (Hexadimethrine bromide)   Sigma, Taufkirchen 
Ponceau S       Sigma, Taufkirchen 
PP1        Calbiochem, Bad Soden 
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PP2       Calbiochem, Bad Soden 
PTX (Pertussis toxin)     List Biological Lab., CA, USA 
Scintillation cocktail (Rotiszint®ecoplus)   Roth, Karlsruhe   
SDS (Sodium dodecyl sulfate)    Roth, Karlsruhe 
Sodium azide       Serva, Heidelberg 
Sodium fluoride      Sigma, Taufkirchen 
Sodium orthovanadate     Aldrich, Steinheim 
TEMED (N,N,N',N'-Tetramethylethylenediamine)  Serva, Heidelberg 
Triton X-100       Serva, Heidelberg 
Tween 20, 40      Sigma, Taufkirchen 
Tyrphostin AG1478      Alexis, Grünberg 
Wortmannin      Sigma, Taufkirchen 
Xylencyanol       
 

All other chemicals were purchased from Merck (Darmstadt). 
 

2.1.2 Enzymes 

 

AMV reverse transcriptase    Roche, Mannheim 
Alkaline Phosphatase (CIAP)   Roche, Mannheim 
LA-Taq-DNA Polymerase    Takara, Japan 
Pfu-DNA Polymerase     Roche, Mannheim 
Restriction Endonucleases     Pharmacia, Freiburg 

Roche, Mannheim 
NEB, Frankfurt/ Main 
MBI Fermentas, St. Leon-Rot 

T4-DNA Ligase      Roche, Mannheim 
T7-DNA Polymerase      Pharmacia, Freiburg 
Taq-DNA Polymerase     Roche, Mannheim 

Takara, Japan 
Trypsin       Gibco, Eggenstein 
 

2.1.3 Radiochemicals 

 

[γ-32P] ATP   >5000 Ci/mmol 

[α-33P] dATP   2500 Ci/mmol 
 
All radiochemicals were obtained from PerkinElmer Life Sciences, Köln. 
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2.1.4 "Kits" and other materials 

 

Cell culture materials     Greiner, Solingen 
Nunclon, Dänemark 
Falcon, U.K. 

Cellulose nitrate 0.45 µm     Schleicher & Schüll, Dassel 
Concanavalin A-Sepharose® 4B   Sigma, Taufkirchen 
ECL Kit       PerkinElmer, Köln 
Glutathione-Sepharose     Pharmacia, Freiburg 
Hyperfilm MP      Amersham, USA 
Micro BCA Protein Assay Kit    Pierce, Sankt Augustin 
Parafilm       Dynatech, Denkendorf 
Polyprep® Chromatography columns   Biorad, München 
Protein A-Sepharose      Pharmacia, Freiburg 
Protein G-Sepharose      Pharmacia, Freiburg 
PuReTaq Ready-To-Go PCR Beads    Amersham Biosciences, Piscataway, NJ 
QIAquick Gel Extraction Kit (50)    Qiagen, Hilden 
QIAquick PCR Purification Kit    Qiagen, Hilden 
QIAGEN Plasmid Maxi Kit     Qiagen, Hilden 
Random-Primed DNA Labeling Kit    Pharmacia, Freiburg 
RNeasy Mini Kit      Qiagen, Hilden 
Sephadex G-50 (DNA Quality)    Pharmacia, Freiburg 
Sterile filter 0.22 µm, cellulose acetate   Nalge Company, USA 
Sterile filter 0.45 µm, cellulose acetate   Nalge Company, USA 
TOP10/P3 One Shot™      Invitrogen, USA 
Transwells       Schubert & Weiss, Munich 
Whatman 3MM      Whatman, USA 
 

2.1.5 Growth factors and ligands 

 

EGF (murine)      Toyoba, Japan  
LPA       Sigma, Karlsruhe 
Sphingosine 1-phosphate    UBI, Lake Placid  
Thrombin      Sigma, Karlsruhe 
 
All other growth factors and ligands were purchased from Sigma. 
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2.1.6 Media and buffers 

 

2.1.6.1 Media for E. coli bacteria 

 

LB-Medium   1.0 % Tryptone 

0.5 % Yeast extract 
1.0 % NaCl 
pH 7.2 
 

2xYT-Medium  1.6 % Tryptone 
1.0 % Yeast extract 
1.0 % NaCl 
pH 7.2 

 

When necessary the following antibiotics were added to the media after autoclavation: 
 

Ampicillin   100 µg/ml or 50µg/ml for 1/2 Amp/Tet selection 
Kanamycin   100 µg/ml 
Chloramphenicol  30 µg/ml 
Tetracyclin  10 µg/ml 
 

LB-plates additionally contained 1.5 % agar. 

 

2.1.6.2 Cell culture media 

 

All cell culture media and additives are from Gibco (Eggenstein), fetal calf serum (FCS) was 

purchased from Sigma and Gibco. 

Dulbecco's modified eagle medium (DMEM) supplemented with 4.5 mg/ml glucose, 2 mM L-

glutamine, 1 mM sodium pyruvate. 

Eagle's minimum essential medium (MEM) supplemented with 2 mM L-glutamine, 0.1 mM 

non-essential amino acids and 1 mM sodium pyruvate. 

RPMI 1640 medium supplemented with 2 mM L-glutamine and 1 mM sodium pyruvayte. 

Nutrient mixture F12 (HAM) supplemented with 2 mM L-glutamine and DMEM 

supplemented with 4.5 mg/ml glucose, 2 mM L-glutamine, 1 mM sodium pyruvate mixed 1:1. 

Freeze medium containing 90 % heat-inactivated FCS and 10 % DMSO. 
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2.1.7 Stock solutions and buffers 

 

Anode buffer     0.2 M Tris/ HCl, pH 8.9 

 
BBS (2x)      50 mM BES 

280 mM NaCl 
1.5 mM Na2HPO4
pH 6.96 (NaOH) 
 

Cathode buffer     0.1 M Tris/ HCl, pH 8.25 
0.1 M Tricine 
0.1 % (w/v) SDS 

 
CHAPS lysis buffer    50 mM HEPES, pH 7.5 
      150 mM NaCl 
      1 mM EDTA 
      10 % Glycerol 
      10 mM Na4P2O7
      10 mM CHAPS 

2 mM VaO5
10 mM NaF 
1 mM PMSF 
100 µg/l Aprotinin 

 
DNA loading buffer (6x)    0.25 % Bromphenol blue 

0.25 % Xylencyanol 
30.0 % Glycerol 
100.0 mM EDTA, pH 8.0 

 
HBS (2x)      46 mM HEPES, pH 7.5 

274 mM NaCl 
1.5 mM Na2HPO4
pH 7.0 
 

HNTG (1x)     20 mM HEPES, pH 7.5 
      150 mM NaCl 
      0.1 % Triton X-100 
      10 % Glycerin 
      10 mM Na4P2O7 
 
Gel buffer     3.0 M Tris/ HCl, pH 8.45 
      0.3 % (w/v) SDS 
   
Gluthation Elution buffer   50 mM Tris/ HCl, pH 8.0 

10 mM DTT 
15 Mm Glutathion, reduced 
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Laemmli buffer (2x)     187.5 mM Tris/ HCl, pH 6.8 
6.0 % SDS 
30.0 % Glycerol 
0.01 % Bromphenol blue 
5.0 % ß-Mercaptoethanol 
 

NET (1x)      150.0 mM NaCl 
5 mM EDTA 
50 mM Tris/HCl, pH 7.4  
0.05 % Triton X-100 
 

PBS (1x)     13.7 mM NaCl 
2.7 mM KCl 
80.9 mM Na2HPO4
1.5 mM KH2PO4, pH 7.4 (HCl) 

 
RIPA lysis buffer    1 % NP40 
      1 % Na-DOC 

0.1 % SDS 
150 mM NaCl 
10 mM NaPO4, pH 7.2 
2 mM EDTA 
5 mM β-Glycerophosphat 
4 mM VaO5
10 mM NaF 
1 mM PMSF 
100 µg/l Aprotinin 
1mM DTT 

 
RIPA rescue buffer    10 mM NaPO4, pH 7.2 

1 mM NaF 
20 mM NaCl 
5 mM β-Glycerophosphat 
2 mM VaO5
1 mM PMSF 
100 µg/l Aprotinin 
1mM DTT 

 
RSP-buffer     1x PBS 
      0.5 mM EDTA 
      100 µg/l Aprotinin 

1 mM PMSF 
0.5 mM DTT     

      
SD-Transblot      50.0 mM Tris/ HCl, pH 7.5 

40.0 mM Glycine 
20.0 % Methanol 
0.004 % SDS 
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Schagger sample buffer   4.0 % (w/v) SDS 
12.0 % (w/v) Glycerol 
50 mM Tris/ HCl, pH 6.8 
2.0 % (w/v) β-Mercaptoethanol 
0.01 % (w/v) Serva Blue G  

 
“Strip” buffer      62.5 mM Tris/ HCl, pH 6.8 

2.0 % SDS 
100 mM ß-Mercaptoethanol 
 

TAE (10x)      400 mM Tris/Acetate 
10 mM EDTA 
pH 8.0 (Acetic acid) 
 

TE10/0.1      10.0 mM Tris/ HCl, pH 8.0 
0.1 mM EDTA pH 8.0 

 
Tris-Glycine-SDS (10x)    248.0 mM Tris/ HCl, pH 7.5 

1918.0 mM Glycine 
1.0 % SDS 

 
Triton X-100 lysis buffer   50 mM HEPES, pH 7.5 
      150 mM NaCl 
      1 mM EDTA 
      10 % Glycerin 
      1 % Triton X-100 

10 mM Na4P2O7 
2 mM VaO5
10 mM NaF 
1 mM PMSF 
100 µg/l Aprotinin   

 

2.1.8 Bacteria strains (E. coli) 

 

E. coli   Description       Origin/ Reference 
 
DH5aF’  F’/endA1 hsd17 (rk-mk-) supE44 recA1   Genentech, 

gyrA (Nal)  thi-1 (lacZYA-argF)    San Francisco, USA 
 
TOP10/P3 F- mcrA ∆(mrr-hsdRMS-mcrBC) ф80lacZ∆M15 Invitrogen, USA 

∆lacX74 deoR recA1 araD139 ∆(ara-leu)7697     
galU galK rpsL endA1 nupG 
P3: KanR AmpR (am) TetR (am) 

 



2 Materials and Methods 33

2.1.9 Cell lines 

 

Cell Line  Description       Origin/ Reference 
 
A498 Human kidney carcinoma cell line    Sugen Inc., CA, 

USA 
BT20 Human mammary adenocarcinoma   ATCC HTB-19 
BT549 Human mammary ductal carcinoma   ATCC HTB-122 
COS7 African green monkey, SV 40 transformed kidney Genentech, 
 Fibroblasts       San Francisco, USA 
HEK293  Human embryonic kidney fibroblasts, transformed  ATCC CRL-1573 

with adenovirus Typ V DNA 
HEK293EBNA Human embryonic kidney fibroblasts expressing  Invitrogen, USA 
 EBNA1 
HS 578T Human mammary carcinoma    ECACC HTB-126 
MDA-MB 231 Human mammary carcinoma    ATCC HTB-26 
NIH 3T3 Mouse fibroblasts, Clone 7     C. Sherr 
McA-RH7777 Rat hepatoma cell line     ATCC CRL-1601 
Phoenix E, A  Retrovirus producer cell lines for the generation of  Nolan, Stanford,  

helper free ecotropic and amphotropic retroviruses, USA 
based on HEK-293 

Rat1 Rat fibroblasts      Genentech,  
San Francisco, USA 

SCC9 Human squamous cell carcinoma of the tongue  ATCC CRL-1629 
 

All other cell lines were obtained from the American Type Culture Collection (ATCC, 

Manassas, USA) and grown as recommended by the supplier. 

 

2.1.10  Antibodies 

 

The following antibodies were used in immunoprecipitation experiments or as primary 

antibodies in immunoblot analysis. 

 
 
Antibody   Description/ Immunogen     Origin/ Reference 
 
ADAM10/Kuz Rabbit, polyclonal/ AA732-748 of human   Chemicon, Hofheim 
   ADAM10 
ADAM10 MP  Rabbit, polyclonal/ metalloprotease domain of This study 
   human ADAM10        
ADAM12 Extra Rabbit, polyclonal/ extracellular domain of   This study 
   human ADAM12 
ADAM15 Peptide Rabbit, polyclonal / AA189-208 of human  S. Hart 
   ADAM15 
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ADAM17 (19027) Rabbit, polyclonal / AA807-823 of human   Chemicon, Hofheim 
   ADAM17 
Akt1/2   Rabbit, polyclonal/ AA 345-480 of human Akt1  Santa Cruz, USA 
P-Akt/PKB   Rabbit, polyclonal/ phospho-Akt (Ser-473);  NEB 
   Recognizes p-Akt of human, rabbit and rat origin 
Edg2    Rabbit polyclonal/ AA    Kamya Biomedical, 
   recognizes the cytoplasmic domain of human and  USA 

rat Edg2    
EGFR    Sheep, polyclonal/ part of cytoplasmic domain  UBI, Lake Placid 

of the human EGFR 
EGFR (108.1)  Mouse, monoclonal/ ectodomain of the human  (Daub et al., 1997) 

EGFR 
EGFR Cuba  Mouse monoclonal/ ectodomain of the human Habana, Cuba 
   EGFR, IOR-R3 
ERK2 (C-14)  Rabbit, polyclonal/ peptide at C-terminus of rat  Santa Cruz, USA 

ERK2 
ERK2 (K-23)   Rabbit, polyclonal/ peptide from sub-domain XI  Santa Cruz, USA 

of rat ERK2 
P-ERK   Rabbit, polyclonal; recognizes phospho-p44/p42  NEB, Frankurt/M. 

(Thr-202/ Tyr-204) MAPK 
Gαi/o/t/z (C-20)  Rabbit, polyclonal/ peptide at carboxy terminus of Santa Cruz, USA  

Gαz of rat origin; recognizes mouse, rat and human  
Gαi/o/t/z

Gαi2 (T-19))  Rabbit, polyclonal/ divergent domain of human Santa Cruz, USA 
  Gαi2; recognizes mouse, rat and human Gαi2
Gαq (E-17)  Rabbit, polyclonal/ peptide of AA 13-29 of mouse Santa Cruz, USA 
  Gαq; recognizes mouse, rat and human Gαq
Gα12 (S-20)  Rabbit, polyclonal/ peptide of AA 2-21 of mouse Santa Cruz, USA 
  Gα12; recognizes mouse, rat and human Gα12    
Gα13 (A-20)  Rabbit, polyclonal/ peptide of AA 2-21of mouse Santa Cruz, USA 
  Gαq13; recognizes mouse, rat and human Gα13
Gβ1 (C-16)  Rabbit, polyclonal/ divergent domain of human Santa Cruz, USA 
   Gβ1; recognizes mouse, rat and human Gβ1
Gγ2 (A-16)  Rabbit, polyclonal/ amino terminus of bovine Gγ2; Santa Cruz, USA 
   Broad mammalian reactivity 
GFP  mouse, monoclonal; recognizes the green   G. Gerisch 
  Fluorescent protein (GFP) 
HA    Mouse, monoclonal; recognizes the influenza  Babco, CA, USA 

hemagglutinin epitope (HA)     
SHC    Mouse, monoclonal      Santa Cruz 
SHC    Rabbit, polyclonal/ 220 AA at C-terminus of  (Daub et al., 1997) 

human SHC 
P-Tyr (4G10)   Mouse, monoclonal; recognizes phospho-   UBI, Lake Placid 

(3)-tyrosine residues 
 
For western blot secondary antibodies conjugated with horseradish peroxidase (HRP) were 

utilized. 
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Antibody     Dilution     Origin 
 
Goat anti-mouse    1 : 10,000     Sigma, Karlsruhe 
Goat anti-sheep    1 : 25,000     Dianova, Hamburg 
Goat anti-rabbit    1 : 25,000     BioRad, München 
 

2.1.11  Plasmids and oligonucleotides 

 

2.1.11.1 Primary vectors 

 

Vector   Description      Origin/ Reference 

 
pcDNA1  Mammalian expression vector,   Invitrogen, USA 

SupF gene, ColE1/M13 origin,  
CMV/T7 promoter, SV40 origin   

pcDNA3  Mammalian expression vector, Ampr,  Invitrogen, USA 
CMV promotor, BGH pA,    
high copy number plasmid 

pCEFL   modified pcDNA3, CMV promoter   S. Gutkind 
replaced by EF-1 

pLXSN   Expression vector for retroviral gene  Clontech, Palo Alto, USA 
transfer, Ampr, Neor, origin from pBR322, 
5’-LTR and 3’-LTR from MoMuLV, 
SV40 promotor 

pLXSN-ESK   Modified pLXSN vector with multipe  J. Ruhe 
cloning site from pBluescript 

pRK5    Expression vector, Ampr, CMV   Genentech, 
promoter, SV 40 poly A, high  San Francisco, USA 
copy number plasmid 

pCEP4   Mammalian expression vector, CMV  Invitrogen, USA 
   promoter, SV40 pA, OriP, EBNA-1 gene 
   (complementary strand), Ampr,  

pUC origin, TK promoter, Hygromycinr,  

TK pA       
pCDM8  Mammalian high copy expression Vector, Invitrogen, USA 
   SupF gene, pMBI origin from pBR322,  

M13 origin, CMV/T7 promoter,  
SV40 origin 

pGEX5x-3  Bacterial expression vector for GST-fusion Amersham, USA 
   proteins, pBR322 origin, tac promo ter,  

Ampr,, lac Iq gene, protease recognition  
sites 

pBABEpuro  Expression vector for retroviral gene  C. Marshall 
   transfer, Ampr, Puror, pBS origin,      
   SV40  promoter 
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pRetroSuper  Mammalian expression vector, also  (Brummelkamp et al., 2002)
   suitable for retroviral gene transfer,  

H1-RNA promoter for RNA transcription  
under control of PolIII, PGK promoter,  
Puror, Ampr 

pcdef3   Mammalian expression vector, Ampr,   E. Goetzl 
   Neor, EF1a promoter, BGH pA,  
   SV40 promoter       
pRC/CMV2  CMV/T7 promoter, BGH pA, f1 origin, Invitrogen, USA 
   SV40 promoter, , Ampr, Neor,  

ColE1 origin 
 

2.1.11.2 Constructs 

 

Vector     Description     Reference 
 
pGEX-5x3-ADAM10,MP  cDNA of human ADAM10,  This study 

metalloprotease domain,  
AA 214-455 in pGEX5x-3 

pCEP4-ADAM12E-GST  cDNA of human ADAM12,  This study,  
     extracellular domain, AA 1-708 S. Hart 
     in pCEP4; C-terminal GST tag 
pcDNA3-hADAM10-HA   cDNA of human ADAM10   A. Gschwind 

in pcDNA3; C-terminal HA-tag 
pRetroSuper- ADAM10si  Expression of a RNA oligomer This study  

targeting the 3’ UTR of human  
ADAM10 in pSuper.retro 

 pcDNA1-Gαi2 wt   cDNA of Gαi2 wt in pcDNA1 M. Fauré  
 pcDNA1-Gαi2 Q→L    cDNA of Gαi2 (Q205→L) in   M. Fauré 

pcDNA1 
pcDNA3 –Gα13 wt-HA  cDNA of Gα13 wt in pcDNA3; S. Gutkind 

      C-terminal HA-tag 
pcDNA3- Gα13 Q→L-HA  cDNA of Gα13 (Q226→L) in  S. Gutkind 
     pcDNA3; C-terminal HA-tag 

 pCEFL Gα12 wt   cDNA of Gα12 wt in pcDNA3 S. Gutkind 
 pCEFL  Gα12 Q→L   cDNA of Gα12 (Q229→L) in  S. Gutkind 
      pCEFL 
 pCEFL Gαq wt-HA   cDNA of Gαq wt in pCEFL;  S. Gutkind 
      C-terminal HA-tag 
 pCEFL  Gαq Q→L-HA  cDNA of Gαq (Q   →L) in  S. Gutkind 
      pCEFL; C-terminal HA-tag 

pcDNA3-Edg2   cDNA of human Edg2 in  This study 
     pcDNA3 

 pRC-CMV2-Edg2   cDNA of  Edg2 in pRC-CMV2 E. Goetzl 
pcDNA3-Edg4   cDNA of human Edg4 in  This study 
     pcDNA3 

 pdef3-Edg4    cDNA of Edg4 in pcdef3  E. Goetzl 
pcDNA3-Edg7   cDNA of human Edg7 in  This study 
     pcDNA3 
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2.1.11.3 Important oligonucleotides  

 

Name   Sequence        

 
Cloning of ADAM10MP into pGEX5x-3 
 
ADAM10MP 3’ GCGCTCGAGTCCTCCGCCAGATCCAACAAAACAGTTG  
ADAM10MP 5’ CGCCTCGAGGCCACCATGAATGGTCCAGAACTTCTGAGG 
 
Cloning of ADAM12E + GST into pCEP4 
 
ADAM12ex1  AGAGATATCGCCACCGCCGGCGACGATGGCAGTG 
ADAM12ex2  AGATCTAGAGGAGGATTGGTTATCTGCTTGCCGGATGG 
 
GST 3’  GCCAGATCTTTACAGATCCGATTTTGGAGGATG 
GST 5’  GCGGATCCTCCCCTATACTAGGTTATTGG 
 
Cloning of ADAM10siRNA into pRetroSuper 

    
AD10(2)a  GATCCCCACTTGGCTCTCAATAAACTTTCAAGAGAAGTTTATT 

GAGAGCCAAGTTTTTTGGAAA 
AD10(2)b  AGCTTTTCCAAAAAACTTGGCTCTCAATAAACTTCTCTTGAAA 

GTTTATTGAGAGCCAAGTGGG 
 
Subcloning of Gα subunits into pLXSN/pBABEpuro 
 
Alphai2forwEcoRI GCGAATTCGCCACCATGGGCTGCACCGTGAGCGC  
Alphai2revEcoRI CGGAATTCTCAGAAGAGGCCACAGTCCTT 
AlphaqforwBamHI GCGGATCCGCCACCATGACTCTGGAGTCCATCATGGC 
AlphaqrevBamHI CGGGATCCTTAGACCAGATTGTACTCCTTCAG 
Alpha13forwBamHI GCGGATCCGCCACCATGGCGGACTTCCTGCCGTCG 
Alpha13revBamHI CGGGATCCTCACTGCAGCATGAGCTGCTT 
 
Cloning of Edg2, 4 and 7 into pcDNA3 
 
Edg2 BamHI 3’ GCGGGATCCGCCACCATGGCTGCCATCTCTACTT   
Edg2 ApaI 5’  GCGGGGCCCCTAAACCACAGAGTGGTCATT   
Edg4 BamHI 3’ GCGGGATCCGCCACCATGGTCATCATGGGCCAGT   
Edg4 ApaI 5’  GCGGGGCCCCTAAAGGGTGGAGTCCATC  
Edg7 BamHI 3’ GCGGGATCCGCCACCATGAATGAGTGTCACTATGACA  
Edg7 ApaI 5’  GCGGGGCCCTTAGGAAGTGCTTTTATTGCAG   
 
RT-PCR primers for Edg2, 4 and 7 and rat actin 
 
hEdg2aRT  TCTTCTGGGCCATTTTCAAC    
hEdg2bRT  TGCCTAAAGGTGGCGCTCAT    
hEdg4aRT  CCTACCTCTTCCTCATGTTC     
hEdg4bRT  TAAAGGGTGGAGTCCATCAG     
hEdg7aRT  GGAATTGCCTCTGCAACATCT     
hEdg7bRT  GAGTAGATGATGGGGTCCA     
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rat-beta-actina  TACAACCTCCTTGCAGCTCC     
rat-beta-actinb  GGATCTTCATGAGGTAGTCTGTC    
   

2.1.11.4 siRNA nucleotides 

 

siRNA   Sequence  
      
gl2   CGUACGCGGAAUACUUCGAdTdT 
   
ADAM10   UGAAGAGGGACACUUCCCUdTdT 

GUUGCCUCCUCCUAAACCAdTdT 
 
ADAM15   CUCCAUCUGUUCUCCUGACdTdT 

AUUGCCAGCUGCGCCCGUCdTdT 
 
ADAM17   GUUUGCUUGGCACACCUUdTdT 

GUAAGGCCCAGGAGUGUUdTdT 
 
  
siRNAs (Dharmacon Research, Lafayette, CO, USA) were described earlier (Fischer, 2004). 

 

2.2 Methods in molecular biology 

 

2.2.1  Plasmid preparation for analytical purpose 

 

Small amounts of plasmid DNA were prepared as described previously (Lee and Rasheed, 

1990). 

 

2.2.2 Plasmid preparation in preparative scale 

 

For transfection experiments of mammalian cells DNA of high quality was prepared using 

Qiagen Maxi-Kits (Qiagen, Hilden) according to the manufacturer’s recommendations. 
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2.2.3 Enzymatic manipulation of DNA 

 

2.2.3.1 Digestion of DNA samples with restriction endonucleases 

 

Restriction endonuclease cleavage was accomplished by incubating the enzyme(s) with the 

DNA in appropriate reaction conditions. The amounts of enzyme and DNA, the buffer and 

ionic concentrations, and the temperature and duration of the reaction were adjusted to the 

specific application according to the manufacturer's recommendations. 

 

2.2.3.2 Dephosphorylation of 5'-termini with calf intestine alkaline phosphatase (CIAP) 

 

Dephosphorylation of 5'-termini of vector DNA in order to prevent self-ligation of vector 

termini. CIAP catalyzes the hydrolysis of 5'-phosphate residues from DNA, RNA, and ribo- 

and deoxyribonucleoside triphosphates. The dephosphorylated products possess 5'-hydroxyl 

termini. 

For dephosphorylation 1-20 pmol DNA termini were dissolved in 44 µL deionized water,  

5 µL 10x CIAP buffer (500 mM Tris/HCl pH 8.0, 1 mM EDTA pH 8.5) and 1 µL CIAP (1 

U/µL). The reaction was incubated 30 min at 37° C and stopped by heating at 85° C for  

15 minutes. 

 

2.2.3.3 DNA insert ligation into vector DNA 

 

T4 DNA Ligase catalyzes the formation of a phosphodiester bond between juxtaposed  

5'-phosphate and 3'-hydroxyl termini in duplex DNA. T4 DNA Ligase thereby joins 

doublestranded DNA with cohesive or blunt termini. 

The digested, dephosphorylated and purified vector DNA (200 ng), the foreign DNA insert,  

1 µL 10x T4 DNA Ligase buffer (0.66 M Tris/HCl pH 7.5,  50 mM MgCl2, 50 mM DTT, 10 

mM ATP) and 1 µL T4 DNA Ligase (2 U for sticky ends and 4 U for blunt ends) were added 

to a total volume of 10 µL. The reaction was incubated at 15° C overnight. T4 DNA Ligase 

was inactivated by heating the reaction mixture at 65° C for 10 min. The resulting ligation 

reaction mixture was directly used for bacterial transformation. 
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2.2.4 Agarose gel electrophoresis 

 

Agarose gel electrophoresis is a simple and highly effective method for separating, 

identifying, and purifying 0.5- to 25 kb DNA fragments. 1-2 % horizontal agarose gels with 

1x TAE electrophoresis buffer were used for separation. The voltage was typically set to  

1-10 V/cm gel length. Gels were stained by covering the gel in a dilute solution of ethidium 

bromide (0.5 µg/ml in water) and gently agitating for 30 min and destained by shaking in 

water for an additional 30 min. 

 

2.2.4.1 Isolation of DNA fragments using low melting temperature agarose gels 

 

Following preparative gel electrophoresis using low melting temperature agarose, the gel slice 

containing the band of interest was removed from the gel. This agarose slice was then melted 

and subjected to isolation using the QIAquick Gel Extraction Kit (Qiagen, Hilden). 

 

2.2.5 Introduction of plasmid DNA into E.coli cells 

 

2.2.5.1 Preparation of competent E. coli bacteria 

 

Competent cells were made according to the procedure described before (Chung and Miller, 

1988). For long-term storage competent cells were directly frozen at -70° C. Transformation 

frequency ranged between 106
 and 107

 colonies/µg DNA. 

 

2.2.5.2 Transformation of competent E. coli bacteria 

 

100 µL competent cells were added to 10 µL ligation mix and 20 µL 5x KCM (500 mM KCl, 

150 mM CaCl2, 250 mM MgCl2) in 70 µL H2O and incubated on ice for 20 min. Upon 

incubation at room temperature for 10 min, 1 ml LB medium was added and incubated for 1 h 

at 37° C with mild shaking to allow expression of the antibiotic resistance gene. 

Transformants were selected on appropriate LB-plates. 
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2.2.6 Enzymatic amplification of DNA by polymerase chain reaction (PCR) 

 

The polymerase chain reaction (PCR) is a rapid procedure for in vitro enzymatic amplification 

of a specific segment of DNA (Mullis and Faloona, 1987). A multitude of applications have 

been developed including direct cloning from cDNA, in vitro mutagenesis and engineering of 

DNA, genetic fingerprinting of forensic samples, assays for the presence of infectious agents 

and analysis of allelic sequence variations. For long and accurate cDNA amplification 

LATaq™ polymerase (TaKaRa) and Pfu DNA polymerase (Fermentas) were used according 

to the manufacturer’s recommendations: 

 
0.5 µL template cDNA 
2.0 µL "sense" oligonucleotide, 10 pmol/µL 
2.0 µL "antisense" oligonucleotide, 10 pmol/µL 
5.0 µL  10x LA PCR buffer II (without MgCl2) 
5.0 µL  25 mM  MgCl2 
8.0 µL  dNTP-Mix, 2.5 mM each 
0.5 µL  LA-Taq™ (5 U/µL) 
 
add to 50 µL H2O 

 
or  0.5 µL template cDNA 

2.0 µL "sense" oligonucleotide, 10 pmol/µL 
2.0 µL "antisense" oligonucleotide, 10 pmol/µL 
5.0 µL  10x Pfu-buffer with  MgSO4
4.0 µL  dNTP-Mix, 2.5 mM each 
0.5 µL  Pfu DNA Polymerase (2.5 U/µl) 
 
add to 50 µL H2O 

 
PCR reactions were performed in an automated thermal cycler („Progene“, Techne). The 

following standard protocol was adjusted to the specific application: 

 
initial denaturation:   3 min    94° C 
amplification 20-35 cycles:   1 min     94° C (denaturation) 

1 min     50-65° C (hybridization) 
1 min respective  
2 min/ kb product   72° C (extension) 

final extension:    7 min     72° C 
 

10 µL from each reaction were electrophoresed on an agarose gel appropriate for the PCR 

product size expected. PCR products were subjected to isolation using the PCR purification 

kit (Qiagen). 
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2.2.7 RT-PCR analysis 

 

Expression of Edg2, 4 and 7 was confirmed by RT-PCR analysis. RNA isolated using RNeasy 

Mini Kit (Qiagen, Hilden) was reverse transcribed using AMV Reverse Transcriptase (Roche, 

Mannheim). 2-10 µg RNA and 1 µl random primer in a volume of 10 µl were incubated for2 

min at 68°C, followed by 10 min RT. After addition of 0.5 µl RNase inhibitor, 4 µl 5x AMV 

RT buffer and 4 µl dNTPs (2.5 mM each) and 1µl AMV RT the volume was adjusted to 20 

µl. The reaction mix was incubated at 42°C for 1h.  

PuReTaq Ready-To-Go PCR Beads (Amersham Biosciences, Piscataway, NJ) and 1µl RT-

PCR products were used for PCR amplification according to the manufacturer’s 

recommendations. PCR products were subjected to electrophoresis on 1.5-2% agarose gels 

and DNA was visualized by ethidium bromide staining. 

 

2.2.8 DNA sequencing 

 

DNA sequencing was performed according to the “Big Dye Terminator Cycle Sequencing 

Protocol” (ABI). The following mix was subjected to a sequencing-PCR run: 

 

0.5 µg    DNA of interest 
10.0 pmol   oligonucleotide 
4.0 µL    Terminator Ready Reaction Mix 
add to 20 µL   H2O 
 

25 cycles:    30 sec    94° C 
15 sec    45-60° C (annealing temperature) 
4 min    60° C 
 

The sequencing products were purified by sodium acetate/ EtOH precipitation, dissolved in  

20 µL template suppression reagent, denatured for 2 min at 90° C and analyzed on a           

310-Genetic Analyzer (ABI Prism). 

 

2.2.9 cDNA array hybridization 

 

Filters spotted with genes of interest (cloned into pBluescript SKII+) were a generous gift 

from A. Roidl. cDNA probes of the cell lines under varying conditions were generated by  
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T. Knyazeva according to standard molecular biology methods. Labeling of 3–5 µL of cDNA 

was performed by P. Knyazev with the Megaprime kit (Amersham) in the presence of  

50 µCi [α-32P]dATP. The prehybridization solution was replaced from filters by the 

hybridization solution containing 5x SSC, 0.5% (v/v) SDS, 100 µg/mL baker’s yeast tRNA 

(Roche), and the labelled cDNA probe (2–5 x 106
 cpm/mL) and incubated at 68° C for 16 h. 

Filters were washed under stringent conditions. A phosphorimager system (Fuji BAS 1000; 

Fuji) was used to quantify the hybridization signals. Average values for each slot were 

calculated using the formula: A = (AB - B) x 100/B; [A, final volume; AB, intensity of each 

slot signal (pixel/mm2); B, background (pixel/mm2)]. 

 

2.3 Methods in mammalian cell culture 

 

2.3.1 General cell culture techniques 

 

Cell lines were grown in a humidified 93 % air, 7 % CO2 incubator (Heraeus, B5060 Ek/CO2) 

at 37° C and routinely assayed for mycoplasma contamination using a bisbenzimide staining 

kit (Sigma, Karlsruhe). Before seeding, cells were counted with a Coulter Counter (Coulter 

Electronics). Cells were cultured in the medium recommended by the manufacturer. The 

following cell lines required special media additives: 

 

SCC9   Dulbecco's modified Eagle's medium (DMEM)/ Ham's F12 medium 1:1 

containing 0.5 mM sodium pyruvate, 2 mM L-glutamine, 400 mg/L 

Hydrocortisone and 10 % FCS. 

MCF10A Dulbecco's modified Eagle's medium (DMEM)/ Ham's F12 1:1 containing     

0.5 mM sodium pyruvate, 5 % horse serum, 80 U/L Insulin, 1 mg/ml 

Hydrocortisone, 500 µg/ml Choleratoxine, 100 mg/ml EGF. 

BT20, A498  Eagle's minimum essential medium (MEM) containing 10 % FCS, 1 mM 

sodium pyruvate, 2 mM L-glutamine and  0.1 mM non-essential amino acids. 

BT549  RPMI 1640 containing 10 % FCS, 2 mM L-glutamine and 2.67 U/L Insulin. 

HS578T Dulbecco's modified Eagle medium (DMEM) containing 10 % FCS, 1 mM 

sodium pyruvate, 2 mM L-glutamine and 10µg/ml Insulin. 
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2.3.2 Transfection of cultured cell lines 

 

2.3.2.1 Transfection of cells with calcium phosphate 

 

HEK-293T and EBNA cells in six-well dishes were transfected transiently at about 70% 

confluency with a total of 2 µg DNA by using a modified calcium phosphate precipitation 

method as described previously (Chen and Okayama, 1987). In this protocol, a calcium 

phosphate-DNA complex is formed gradually in the medium during incubation with cells. 

The transfection mix of DNA and CaCl2 in water was prepared as follows: 

 

Dish    6-well    6 cm    10 cm 

Area    10 cm2
   21 cm2

   57 cm2

Volume of medium  1 ml    2 ml    4 ml 
DNA in H2Obidest  2 µg in 90 µL   5 µg in 180 µL  10 µg in 360 µL 
2.5 M CaCl2   10 µL    20 µL    40 µL 
2 x BBS (pH 6.96)  100 µL   200 µL   400 µL 
Total volume   200 µL   400 µL   800 µL 
 

To initiate the precipitation reaction the indicated volume of 2x BBS was added and mixed by 

vortexing. The reaction was incubated for 10 min at room temperature before being added to 

each well. Plates were placed in a humidified container at 3% CO2 overnight. One day after 

transfection, cells were serum-starved for 24 hours in standard cell culture medium without 

FCS. Transfection efficiency was determined by LacZ staining after transfection of a LacZ-

containing expression plasmid. For transfection of Phoenix cells HBS was used instead of 

BBS. 

 

2.3.2.2 Transfection of COS7 cells with Lipofectamine®  

 

COS7 cells were transiently transfected using Lipofectamine® (Gibco-BRL) essentially as 

described (Daub et al., 1997). For transfections in 6-well dishes, 90 µl of serum-free medium 

containing 10 µL of Lipofectamine and 1.5 µg of total plasmid DNA in 100 µl serum-free 

medium were mixed. After 20 min the transfection mixture was added to 800 µl serum-free 

medium per well.  

After 4 h the transfection mixture was replaced by normal growth medium and 20 h later, 

cells were washed and cultured for a further 24 h in serum-free medium until lysis. 
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2.3.2.3 Transfection of A498 cells with Lipofectamine 2000® 

 

A498 cells were transiently transfected using Lipofectamine 2000® (Gibco-BRL) essentially 

according to the manufacturer's recommendations. For transfections in 6-well dishes, 2 µg of 

total plasmid DNA were diluted into 250 µl of serum-free medium. 5 µl Lipofectamine 2000® 

(Gibco-BRL) were also diluted into 250µl of serum-free medium and allowed to incubate at 

room temperature for 5-10 min. After mixing of DNA and transfection reagent, the mixture 

was added to 2 ml of antibiotic-free, but serum containing medium per well. After 4 h the 

transfection mixture was removed and fresh media containing serum was added. After 20 h, 

cells were washed and cultured for a further 48 h in serum-free medium until lysis. 

 

2.3.2.4 RNA interference 

 

Transfection of pRetroSuper-ADAM10si encoding for siRNA duplexes (Dharmacon 

Research, Lafayette, CO) for targeting endogenous ADAM10 or siRNA dublexes 

(Dharmacon Research, Lafayette, CO) targeting ADAM10, 15 and 17 was carried out using 

Lipofectamine® 2000 (Invitrogen, USA) and 2 µg DNA or 5-10 µg siRNA dublexes, 

respectively, per 6-well plate as previously described (Brummelkamp et al., 2002; Tuschl et 

al., 1999). Transfected A498 cells were serum starved and assayed 3 days after transfection. 

Specific silencing of targeted genes was confirmed by western blot (ADAM10 Kuz/ADAM10 

MP). Alternatively, cells were infected as described below. 

 

2.3.3 Retroviral gene transfer in cell lines 

 

The ecotropic packaging cell line Phoenix (Nolan, Stanford, USA) was transfected with 

pLXSN retroviral expression plasmids (Clontech, Palo Alto, CA) encoding wildtype and 

Q→L mutants of  Gα subunits as well as pRetroSuper-ADAM10si by the calcium phosphate/ 

chloroquine method as described previously (Kinsella and Nolan, 1996). 24 h after 

transfection the viral supernatant was collected and used to infect NIH3T3 and Rat1 as well as 

A498 cells (5x 104 cells/6-well plate). 4 to 12 h later, retroviral supernatant was replaced with 

fresh medium. Selection for stable expression was started 48 h post infection with the 

respective antibiotic.  
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2.4 Protein analytical methods 

 

2.4.1 Lysis of eucaryotic cells  

 

Prior to lysis, cells grown to 80% confluence were treated with inhibitors and agonists as 

indicated in the Figure legends. Cells were washed with cold PBS and then lysed for 10 min 

on ice in Triton X-100 lysis buffer. Lysates were precleared by centrifugation at 13000 rpm 

for 10 min at 4° C. For the solubilisation of Gα subunits RIPA lysis buffer was used. The 

solubilisation of Edg-receptors required CHAPS lysis buffer. 

 

2.4.2 Determination of protein concentration in cell lysates 

 

The „Micro BCA Protein Assay Kit” (Pierce, Sankt Augustin) was used according to the 

manufacturer’s recommendations. For samples containing glycerol the BioRad Protein Assay 

(BioRad Laboratories GMBH, Munich) was used according to the manufacturer's 

recommendations. 

 

2.4.3 Immunprecipitation and Isolation of Glycoproteins 

 

An equal volume of HNTG buffer was added to the precleared cell lysates that have been 

adjusted for equal protein concentration. Proteins of interest were immunoprecipitated using 

the respective antibodies and 30 µL of protein A-Sepharose for 4 h at 4° C. Glycoproteins 

werde isolated using 20 µl of Concanavalin A-Sepharose. Proteins bound to the respective 

Separose were washed three times and subsequently removed from the Sepharose by the 

addition of 35 µl Laemmli and heat denaturation. 

GST-tagged proteins werde immunoprecipitated using Gluthation-Sepharose beads with a 

binding capacity of 8 mg Protein per ml. For preparative quantities one ml of Glutathion-

Sepharose was used and incubated for 12 h overnight. The protein was eluted using 

Glutathion elution buffer. 
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2.4.4 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

 

SDS-PAGE was conducted as described previously (Sambrook, 1990). The following proteins 

were used as molecular weight standards: 

 

Protein   MW (kD)    Protein   MW (kD) 

Myosin   205.0     Ovalbumin   42.7 
ß-Galactosidase  116.25    Carboanhydrase  29.0 
Phosphorylase b  97.4     Trypsin-Inhibitor  21.5 
BSA    66.2     Lysozym   14.4  
 

2.4.4.1 Detection of low-molecular weight proteins 

 

The detection of low-molecular weight proteins by a Tricine-SDS Gel electrophoresis was 

essentially performed as previously described (Schagger and von Jagow, 1987). This method 

has a good resolution for small protein although utilizing 10 % agarose gels.  

 

2.4.4.2 Colloidal Coomassie staining 

 

Protein samples intended for further analysis by mass spectrometry methods were in-gel 

stained with a Roti®-Blue (Roth, Karlsruhe) colloidal Coomassie staining as recommended by 

the manufacturer. 

   

2.4.5 Transfer of proteins on nitrocellulose membranes 

 

For immunoblot analysis proteins were transferred to nitrocellulose membranes (Gershoni and 

Palade, 1982) for 2 h at 0.8 mA/cm2
 using a "Semidry”-Blot device in the presence of 

Transblot-SD buffer. Following transfer proteins were stained with Ponceau S (2 g/l in 2% 

TCA) in order to visualize and mark standard protein bands. The membrane was destained in 

water. 
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2.4.6 Immunoblot detection 

 

After electroblotting the transferred proteins are bound to the surface of the nitrocellulose 

membrane, providing access for reaction with immunodetection reagents. Remaining binding 

sites were blocked by immersing the membrane in 1x NET, 0.25 % gelatine for at least 4 h. 

The membrane was then probed with primary antibody (typically overnight at 4° C). 

Antibodies were diluted 1:500 to 1:2000 in NET, 0.25 % gelatin. The membrane was washed 

3x 20 min in 1x NET, 0.25 % gelatin, incubated for 1 h with secondary antibody and washed 

again as before. Antibody-antigen complexes were identified using horseradish peroxidase 

coupled to the secondary anti-IgG antibody. Luminescent substrates were used to visualize 

peroxidase activity. Signals were detected with X-ray films or a digital camera unit. 

Membranes were stripped of bound antibody by shaking in strip-buffer for 1 h at 50° C. 

Stripped membranes were blocked and reprobed with different primary antibody to confirm 

equal protein loading. 

 

2.5 Generation of polyclonal antibodies 

 

2.5.1 Large scale expression of GST-fusion proteins 

 

Bacteria were transformed with the pGEX-5x3-ADAM10MP. Two or three colonies were 

inoculated into 100 ml LB-media with 50 µg/ml ampicillin and grown overnight at 37° C. 

This culture was diluted into 1 L LB-media containing antibiotic and allowed to grow at 37° 

C to an OD600 of 0.4 to 0.5. The expression of the target gene was then induced by the 

addition of 1 ml 0.2 M IPTG to a final concentration of 0.2 mM. After 4 to 5 hours bacteria 

were harvested and centrifuged at 6000 rpm and the pellet was resuspended in 18 ml ice-cold 

RSP-buffer. Bacteria were lysed by sonication at 70 %, 3 times for 1 min on ice. Triton X-100 

was added to a final concentration of 1%. The mixture was the incubated on ice for 5 min 

followed by centrifugation for 5 min at 10000 g at 4° C. The supernatant was incubated with  

1 ml Glutathione-Sepharose beads o/n at 4° C. The beads were washed three times with ice-

cold PBS and then transferred to a BioRad column (BioRad, Munich). The protein was eluted 

with 10 ml elution buffer. Fractions of 1 ml were collected and tested for the presence of the 

protein by SDS-PAGE analysis. Fractions containing the protein were dialyzed against PBS 
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containing 10 % glycerol and protein concentration was measured using BioRad Protein 

Assay (BioRad Laboratories GmbH, Munich). 

For insoluble proteins the pellet from the last step was resuspended in 10 ml 1.5 %  

N-Lauroysarcosine containing 25 mM Triethanoloamine and 1 mM EDTA and incubated for 

1 h at 4° C. After centrifugation the supernatant was also incubated with 1 ml Glutathione-

Sepharose-beads as described above.  

HEK293-EBNA cells were transfected with pCEP4-ADAM12E-GST using the Calcium-

phosphate method as described. After 48 h cells were selected using 1 µm/ml Hygromycin. 

The supernatant was harvested every 2 days for a period of 3 weeks. After centrifugation at 

maximum speed the supernatant was incubated with 1 ml Glutathione-Sepharose beads 

overnight at 4° C. Then, the beads were washed three times with ice-cold PBS and transferred 

to a BioRad column. Elution and dialysis was performed as indicated above. Addititonally, 

cells were lysed using Triton X-100 lysis buffer and then also incubated with 1 ml 

Glutathione-Sepharose beads overnight at 4° C and purification of the protein was performed 

as previously described. 

 

2.5.2 Immunisation of rabbits 

 

Chinchilla and New Zealand rabbits were immunized with 0.5 mg of protein in a 1:1 emulsion 

with Freund's Adjuvans complete (Sigma, Karlsruhe) to a final volume of 2 ml. At day 0, 2 ml 

of preimmune serum were drawn from the ear vein of the rabbit. Two weeks later, a second 

injection of 0.5 mg protein in a 1:1 emulsion with Freund's Adjuvans incomplete (Sigma, 

Karlsruhe) was performed. After two weeks a first test bleed was drawn from the ear vein and 

checked for antibody production. Four to six weeks after the second injection a third injection 

in Freund' Adjuvans incomplete followed. The rabbit was bleed out 14 days after the last 

injection.  

The serum was kept at room temperature for 1 h and then at 4° C overnight. Afterwards, the 

serum was centrifuged at 2000 rpm for 10 min and the supernatant was collected. A second 

centrifugation step at 9000 rpm for 10 min followed and again the supernatant was removed. 

Both supernatants were combined and sodium azide was added to a final concentration of 

0.02 %. The serum was aliquoted and stored at -20° C. 
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2.6 Biochemical and cell biological assays 

 

2.6.1 Stimulation of cells 

 

Cells were seeded in cell culture dishes of appropriate size and grown overnight to about 80% 

confluence. After serum-starvation for 24 or 48 h cells were treated with inhibitors and 

agonists as indicated in the Figure legends, washed with cold PBS and then lysed for 10 min 

on ice. 

2.6.2 Erk 1/2 and Akt/PKB phosphorylation 

 

For determination of Erk 1/2 and Akt phosphorylation, approximately 20 µg of whole cell 

lysate protein/lane was resolved by SDS-PAGE and immunoblotted using rabbit polyclonal 

phospho-specific Erk/MAPK antibody. Akt phosphorylation was detected by protein 

immunoblotting using rabbit polyclonal anti-phospho-Akt antibody. Quantification of  

Erk 1/2 was performed using the Luminescent Image Analyis System (Fuji). After 

quantification of Erk 1/2 phosphorylation, membranes were stripped of immunoglobulin and 

reprobed using rabbit polyclonal anti-Erk 1/2 or rabbit polyclonal anti-Akt antibody to 

confirm equal protein loading. 

 

2.6.3 Erk/MAPK activity 

 

Endogenous Erk 2 was immunoprecipitated from lysates obtained from six-well dishes using 

0.4 µg of anti-Erk 2 antibody. Precipitates were washed three times with HNTG buffer, and 

washed once with kinase buffer (20 mM HEPES, pH 7.5, 10 mM MgCl2, 1 mM dithiothreitol, 

200 µM sodium orthovanadate). Kinase reactions were performed in 30 µL of kinase buffer 

supplemented with 0.5 mg/ml myelin basic protein, 50 µM ATP and 1 µCi of [γ-32P]ATP for 

10 min at room temperature. Reactions were stopped by addition of 30 µL of Laemmli buffer 

and subjected to gel electrophoresis on 15 % gels. Labelled MBP was quantificated using a 

Phosphoimager (Fuji). 
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2.6.4 Focus formation assay 

 

NIH3T3 and Rat1 cells were infected with different Gα-subunits and their oncogenic variant 

using the packaging cell line Phoenix E (Kinsella and Nolan, 1996). Ras-infected cells were 

utilized as a positive control. The cells were stimulated with 10 µg/ml LPA every other day. 

Cells were cultured for 2-3 weeks until foci were visible and subsequently fixed and stained 

with crystal violet. (0.5 % crystal violet, 20 % methanol).  

 

2.6.5 Proliferation assay 

 

In a 96-well flat bottom plate (Nunc, Naperville, Ill.) approximately 2,000 cells/100 µl of cell 

suspension were seeded. Upon serum-starvation for 24 h cells were incubated with inhibitors 

and growth factors for the indicated times. MTT, a tetrazolium dye (3-[4,5-dimethylthiazol-2-

y1]-2,5-diphenyltetrazolium bromide; thiazolyl blue, Sigma, St. Louis, MO) was added to 

each well to a final concentration of 1 mg/ml MTT. Plates were incubated in the presence of 

MTT for 4 h. Mitochondrial dehydrogenase activity reduces the yellow MTT dye to a purple 

formazan, which is solubilized (DMSO, acidic acid, SDS)  and absorbance was read at  

570 nm on an micro-plate reader. 

A non-toxic alternative to MTT is Alamar Blue™ (Biosource, Camarilla, CA, USA). 

According to the manufacturer's recommendations, 10 µl of Alamar Blue™ are added to each 

well and absorbance at 590 nm can be read out after different times, because the cells are not 

affected. 

 

2.6.6 In vitro wound closure 

 

The assay was performed as previously described (Fishman et al., 2001) with some 

modifications. Confluent monolayers of kidney and breast cancer cells were wounded with a 

uniform scratch, the medium was removed and cells were washed twice with PBS. Medium 

without FCS was added and cells were subjected to 20 min preincubation with DMSO 

(control), 250 nM AG1478, 10 µM batimastat or 10 nM Ki16425 before ligand treatment. 

Cells were permitted to migrate into the area of clearing for 8-24 h. Wound closure was 

monitored by visual examination using a Zeiss microscope. 
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2.6.7 Migration of cancer cells 

 

Cell migration assays of A498 kidney cancer and MDA-MB 231 breast cancer cells were 

performed using Transwells (Sieuwerts et al., 1997). Serum free medium containing LPA as a 

chemoattractant was added to the lower well of a chamber.  1x105 cells in exponential growth 

were harvested and then preincubated with the respective inhibitor for 20 min and added to 

the upper well of the chamber in serum free medium. The chambers were incubated for 6-24 h 

in a humidified 7 % CO2, 37° C incubator. Finally, the cells that have migrated to the lower 

surface of the membrane were stained with crystal violet and counted under the microscope. 

Alternatively, cells migrated to the lower surface were fixed with methanol and stained with 

crystal violet. The stained cells were solubilized in 10 % acetic acid, and the absorbance at 

570 nm was measured in a micro-plate reader.  

 

2.7 Statistical analysis 

 

Student's t-test was used to compare data between two groups. Values are expressed as mean 

± standard deviation (s. d.) of at least triplicate samples. P<0.05 was considered statistically 

significant.
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3 Results 

 

The EGFR signaling pathway is known to be involved in the regulation of various cellular 

processes and is a key player in hyperproliferative diseases such as cancer (Zwick et al., 2001; 

Zwick et al., 1999).  

Furthermore, a novel pathway linking GPCRs to the EGFR signal pathway has been 

discovered involving the shedding of EGF-like ligands by a metalloprotease (Daub et al., 

1996; Prenzel et al., 1999). 

The aim of the study was to elucidate the relevance of the EGFR signal transactivation by 

GPCR agonists in the development and progession of cancer. The focus of the investigation 

was to analyze the pathway activating the metalloprotease by GPCR ligands.  

 

3.1 ADAM-specific antibodies 

 

The development of new tools for the investigation of the EGFR transactivation signal was of 

primary interest. Antibodies specifically blocking the metalloprotease function of ADAM 

proteins can be helpful in the investigation of the role of the metalloprotease in the EGFR 

transactivation pathway and may lead to the design of novel therapeutics. 

The metalloprotease domains of different ADAM proteins were expressed in the mammalian 

cell line HEK293, but it was soon recognized that the metalloprotease domain itself is neither 

correctly processed nor stably secreted. These findings were confirmed by the study of 

Schlondorff et al. who found that the prodomain of ADAM proteins is necessary for correct 

processing and intracellular maturation of ADAM proteins (Schlondorff et al., 2000).  

Therefore, the metalloprotease domain of ADAMs which is not heavily glycosylated was 

bacterially expressed. The complete extracellular fragment of ADAM proteins including the 

prodomain was expressed in the mammalian cell line HEK293EBNA.   

 

3.1.1 ADAM10,MP antibody 

 

The metalloprotease domain of ADAM10 fused to an N-terminal GST-tag was successfully 

expressed in the bacterial expression system DH5α and purified using GSH-Sepharose beads. 
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The beads with the bound protein were then used to immunize a Chinchilla rabbit. The 

resulting antibody serum was tested for its specificity (Figure 9). 

 

 
 
Fig. 9. Specificity test of ADAM10,MP polyclonal serum. Equal amounts of lysate from HEK293 cells 

overexpressing Mock control, Erk2-HA control, ADAM10wt-HA, the mutants ADAM10,E→A-HA and 

ADAM10A→F-HA were immunoblotted (IB) with HA-tag antibody and ADAM10,MP polyclonal serum, 

respectively. 

 

The antibody revealed not to be specific in immunoprecipitation experiments as N-terminal 

sequencing and MALDI-TOF analysis of the respective bands proved (data not shown), but it 

was a useful tool for immunoblot analysis. However, this antibody was not suitable for the 

detection of point mutations in the metalloprotease region of ADAM10 as all mutants are 

equally well recognized. 

 

3.1.2 ADAM12 antibody 

 

The complete extracellular fragment of ADAM12 fused to an N-terminal GST-tag was 

expressed in HEK293EBNA cells. As the secretion of the soluble fragment was insufficient, 

both the secreted protein and the protein from the cell lysate were purified using  

GSH-Sepharose beads and used for immunization of a New Zealand rabbit. Subsequently, the 

serum was tested for its specificity (Figure 10). 
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Fig. 10. Specificity test of ADAM12E polyclonal serum. Equal amounts of lysate from HEK293 cells 

overexpressing ADAM12-HA were submitted to immunoblot (IB) analysis with HA-tag antibody and 

ADAM12E polyclonal serum as indicated. Additionally, immunoprecipitation (IP) with equal amounts of lysates 

was performed using 3 µl HA antibody and the indicated amounts of ADAM12E polyclonal serum and 

subsequently immunoblotted (IB) with HA-tag antibody and ADAM12E polyclonal serum, respectively. 

 

ADAM12E antibody serum was able to detect overexpressed ADAM12 both in immunoblot 

analysis and in immunoprecipitation experiments. In immunoprecipitation analysis, the active 

form of ADAM12 could also be visualized. Futrther experiments demonstrated that 

endogenous expression of ADAM12 can only be demonstrated if the protein level is 

comparably high (data not shown). 

 

3.2 Reconstituted LPA receptor expression in McA-RH7777 cells 

 

LPA is the strongest mitogenic factor present in serum and is believed to be involved in the 

development and progession of different cancer types including breast, ovarian, colon and 

prostate cancer (Fang et al., 2000a; Fishman et al., 2001; Goetzl et al., 1999; Kue et al., 2002; 

Shida et al., 2003). Therefore, it was of utmost interest to study the functions of the  

LPA receptors and their involvement in the transactivation of the EGFR signaling pathway. 
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3.2.1 Stable expression of LPA receptors in McA-RH7777 cells 

 

The McA-RH7777 cell line is known to be deficient of any expression of the LPA receptors 

Edg2, 4 and 7 (Im et al., 2000). Thus, it represents an ideal model system for analyzing 

differential functions of the three LPA receptors of the Edg receptor family. In this study, 

polyclonal cell lines stably expressing the LPA receptors Edg2, 4 and 7 were established. 

Expression of the LPA receptors was determined by RT-PCR (Figure 11). 

 

 
 
Fig. 11. RT-PCR analysis of the polyclonal McA-RH7777 cell lines stably expressing Edg 2, 4 and 7. Equal 

amounts of total RNA isolated from McA-RH7777 cells stably expressing the respective receptor or Mock-

control were subjected to RT-PCR analysis. PCR products were amplified using PuReTaq Ready-to-Go PCR 

beads with the respective primers for 35 cycles. Actin mRNA levels demonstrate equal loading. 

 

While the expression level of Edg2 was comparably high in both polyclonal cell lines (Edg2 

and Edg 2G), only the Egd4 but not the Edg4G cell line expressed the Edg4 gene product. The 

expression of Edg7 was comparably weak. Additionally, Figure 11 clearly illustrates that the  

McA-RH7777 cell line was deficient of Edg2, Edg4 and Edg7 mRNA expression. 

 

3.2.2 Expression profile of different ADAM proteins in McA-RH7777 cells 

 

Previous studies revelaed the involvement of ADAM proteins in EGFR signal transactivation 

in various cell lines (Gschwind et al., 2003; Schafer et al., 2004b). Hence, it was important to 

demonstrate the expression of members of this protein family in McA-RH7777 cells. 
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Fig. 12. Expression of ADAM proteins in McA-RH7777 cells.  Equal amounts of lysates from HEK293 cells 

overexpressing Mock control or the respective ADAM construct as well as lysates from the different polyclonal 

McA-RH7777 cell lines were subjected to immunoblot (IB) analysis and probed with the respective antibody as 

indicated.  

 

As shown in Figure 12, expression of ADAM10 and ADAM17 in McA-RH7777 cells was not 

detected in immunoblot analysis. Expression of ADAM12 and ADAM15 could not be 

verified in McA-RH7777 cell lines. ADAM15 and ADAM12 antibodies were specifically 

raised against human ADAMs but due to sequence homology they were suspected to be cross-

reactive with the respective rat protein. 

 

3.2.3 EGFR transactivation can not be restored in cells stably expressing Edg 2, 

4 or 7 

 

Reconstituted expression of LPA receptors in McA-RH7777 cells leads to functional 

signaling of the LPA receptors (An et al., 1998a; An et al., 1997; Bandoh et al., 1999). In the 

context of this study, one important question was if expression of the LPA receptors was able 

to establish a pathway linking LPA stimulation of the LPA receptors to the activation of the 
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EGFR signaling pathway. Hence, McA-RH7777 cells stably expressing the LPA receptors 

Edg2, 4 or 7 were stimulated with LPA and assayed for EGFR activation. In addition, the 

cells were preincubated with known inhibitors of the TMPS pathway as well as the PI3K 

pathway. 

  

 
 
Fig. 13. EGFR phosphorylation induced by LPA stimulation and its inhibition.  McARH7777 cells stably 

expressing Mock control, Edg2 or Edg2G, Edg4 or Edg7 were starved for 24 h and pretreated with either DMSO 

(20 min) as a control or the following inhibitors: PTX (125 ng/ml, 18h), PP1 (20µM, 20 min), LY294,002  

(100 µM, 20 min), BB94 (10 µM, 20 min), Heparin (100 ng/ml, 20 min), AG1478 (250 nM, 20 min) or the 

EGFR blocking antibody Cuba (20µg/ml, 30 min). Afterwards, cells were stimulated with 10 µM LPA or  

3 ng/ml EGF for 3min. Equal amounts of lysate were immunoprecipitated (IP) with EGFR 108 monoclonal 

antibody and immunoblotted (IB) with anti-phosphotyrosine (PY) antibody. Reprobing with EGFR antibody 

ensured equal loading. 

 

The basal phosphorylation of the EGFR was elevated in the McA-RH7777 cell lines stably 

expressing Edg2 and 4, but LPA stimulation did not lead to an increase in EGFR activation. 

Therefore, no inhibition of the EGFR activation was detectable, either. Blocking PI3K 

functionwith the inhibitor LY294,002, however, resulted in increased EGFR phosphorylation 

suggesting that PI3K activity blocks EGFR activation. 
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3.2.4 Restored Erk phosphorylation upon Stimulation with LPA 

 

It was further analyzed if the restored expression of the LPA receptors was able to mediate 

signaling to known downstream targets of the LPA receptors. Among them, the MAPK 

pathway is of primary interest since it activates DNA synthesis and induces cell proliferation 

(Contos et al., 2000). The influence of LPA stimulation on the activation state of the MAPK 

Erk 1/2 was determined by immunoblot analysis (Figure 14).  

 

 
 
Fig. 14. Erk 1/2 phosphorylation induced by LPA stimulation and its inhibition. McARH7777 cells stably 

expressing Mock control, Edg2 or Edg2G, Edg4 or Edg7 were starved for 24 h and pretreated with either DMSO 

(20 min) as a control or the following inhibitors: PTX (125 ng/ml, 18h), PP1 (20µM, 20 min), LY294,002  

(100 µM, 20 min), BB94 (10 µM, 20 min), Heparin (100 ng/ml, 20 min), AG1478 (250 nM, 20 min) or the 

EGFR blocking antibody Cuba (20µg/ml, 30 min). Subsequently, cells were stimulated with 10 µM LPA or  

3 ng/ml EGF for 7 min. Equal amounts of total lysate were immunoblotted (IB) with activation state specific Erk 

antibody followed by reprobing with Erk 1/2 antibody to ensure equal loading. 

 

In Edg2 overexpressing McA-RH7777 cells, LPA stimulation strongly activated Erk 1/2. This 

effect showed to be weaker in Edg4 and Edg7 polyclonal cells, but expression of these 

receptors was comparatively low with respect to the Edg2 overexpressing McA-RH7777 cell 

lines.  

The activation of Erk 1/2 was sensitive to treatment by Pertussis toxin (PTX) which 

specifically inhibits Gαi/o subunits, confirming previous studies that demonstrate LPA 
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mediated signaling to be typically coupled to Gαi/o subunits (Takuwa et al., 2002). Neither the 

src kinase inhibitor PP1 nor the PI3K inhibitor LY294,002 affected the LPA induced Erk 1/2 

activation proving that both kinases were not involved in the activation of Erk 1/2 in this 

cellular context. Interestingly, the metalloprotease inhibitor Batimastat (BB94) and the EGFR 

inhibitor AG1478 as well as the HB-EGF and Pro-Amphiregulin inhibitor Heparin lead to 

abrogation of the LPA induced Erk 1/2 activation, suggesting the involvement of a TMPS 

pathway in activation of the MAPK Erk 1/2, although activation of the EFGR itself could not 

be demonstrated (Figure 13). Inhibition of the EGFR with the blocking antibody Cuba did 

also not influence EGFR phosphorylation, which could have proven the direct involvement of 

the EGFr binding domain. This antibody, however, was specifically designed against the 

human EGFR and might not be functional for rat EGFR.  

 

3.2.5 Akt activation upon stimulation with LPA 

 

In order to analyze whether a separate pathway bypassing the EGFR was activated upon LPA 

stimulation, the activation of the protein kinase PKB/Akt upon stimulation with LPA was 

examined (Figure 15). 

 

 
 
Fig. 15. Akt-activation induced by LPA stimulation and its inhibition. McARH7777 cells stably expressing 

Mock control, Edg2 or Edg2G, Edg4 or Edg7 were starved for 24 h and pretreated with either DMSO (20 min) 

as a control or the following inhibitors: PTX (100 ng/ml, 18h), PP1 (20µM, 20 min), LY294002 (100 µM, 20 
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min), BB94 (10 µM, 20 min), Heparin (100 ng/ml, 20 min), AG1478 (250 nM, 20 min) or the EGFR blocking 

antibody Cuba (20µg/ml, 30 min). Afterwards, cells were stimulated with 10µM LPA or 5ng/ml EGF as a 

control for 7 min. Equal amounts of total lysate were immunoblotted (IB) with activation state specific Akt 

antibody followed by reprobing with an Akt antibody to ensure equal loading.  
 

The basal level of active Akt 1/2 was slightly enhanced, but no specific Akt activation due to 

stimulation with LPA was detected. 

Summarizing the results obtained in McA-RH7777 cells, the expression of LPA receptors, 

especially of Edg2, lead to LPA mediated activation of the MAPK pathway by an Akt 1/2, src 

kinase family and PI3K independendent. However, activation of Erk 1/2 was metalloprotease 

and EGF-like ligand dependent. Additionally, blocking EGFR function with the specific 

inhibtor AG1478 abrogated Erk 1/2 activation suggesting the involvement of the TMPS 

pathway, although the activation of the EGFR itself could not be demonstrated. 

 

3.3 EGFR transactivation in A498 

 
Kidney cancer is one of the most frequent tumors of the urogenital tract. Until today, the most 

effective treatment remains the complete removal of the affected organ (Vogelzang and 

Stadler, 1998). Hence, there is a strong need to identify novel intervention targets for 

prevention and treatment of these tumors. 

Both LPA and Thrombin stimulation have been demonstrated to induce EGFR signal 

transactivation in the kidney carcinoma cell line A498 (Figure 16, (Hart, 2004; Schafer et al., 

2004a). While the EFGR transactivation induced by LPA is mediated predominantly by 

ADAM17, Thrombin induced EGFR transactivation is known to be exclusively mediated by 

ADAM10 (Hart, 2004; Schafer et al., 2004a).  

Therefore, this cell line was selected to study the combined action of two different stimuli as 

well as the specific influence of the metalloprotease ADAM10 on the EGFR signal 

transactivation pathway. 
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Fig. 16. EGFR transactivation induced by LPA and Thrombin stimulation. A498 cells were starved for 48 h 

and subsequently stimulated with 10 µM LPA, 2 U/ml Thrombin or 3 ng/ml EGF for 3 min. Equal amounts of 

lysates were immunoprecipitated with EGFR108 antibody and immunoblotted with phosphotyrosine specific 

antibody. Subsequent reprobing with EGFR antibody verified equal loading. 

 

3.3.1 LPA and Thombin induced EGFR transactivation in A498  

 

Further analysis of the two TMPS pathways activated by LPA and Thrombin demonstrated 

that the two stimuli utilize different pathway which converge at the EGFR. 

LPA as well as Thrombin mediated EGFR transactivation was abrogated with BB94, a broad 

spectrum metalloprotease inhibitor, as well as the EGFR inhibitor AG1478 (Figures 17 and 

18). In A498 cells, the LPA receptor involved in LPA mediated signaling did not couple to 

Gαi/o subunits, because the Gαi/o specific inhibitor Pertussis toxin (PTX) did not inhibit the 

EGFR signal transactivation by LPA. 

 

 
 
Fig. 17. Inhibition of LPA induced EGFR transactivation.  A498 cells were starved for 48 h and preincubated 

with BB94 (5µM, 20 min), AG1478 (250 nM, 20 min), PP2 (20 µM, 20min) or PTX (125 ng/ml, 18 h). 

Subsequently, cells were stimulated with 10 µM LPA or 3 ng/ml EGF for 3 min. Equal amounts of lysated were 

immunoprecipitated with EGFR108 antibody and immunoblotted with phosphotyrosine specific antibody. 

Subsequent reprobing with EGFR antibody verified equal loading. Equal amounts of the same lysate were 

immunoblotted with activation state specific antibodies against Erk 1/2 and subsequently reprobed with Erk 

antibody to ensure equal loading. 



3 Results 63

Additionally, the src kinase inhibitor PP2 was able to reduce the LPA and EGF induced 

EGFR activation by approximately 50 % implying a role for src kinase in the TMPS pathway 

upstream of the EGFR (Figure 17). 

Diphtheria toxin mutant Crm and Heparin, inhibitors of the EGF-like ligand HB-EGF and 

pro-Amphiregulin, did not inhibit Thrombin mediated EGFR signal transactivation (Figure 

18). Therefore, neither pro-Amphiregulin nor HB-EGF were involved in this pathway. Since 

it has been demonstrated that LPA mediated GPCR-EGFR crosstalk involves HB-EGF (Hart, 

2004; Schafer et al., 2004a), the two stimuli activated different metalloproteases and induced 

the shedding of different EGF-like ligands. 

 

 
 
Fig. 18. Inhibition of Thrombin induced EGFR transactivation. A498 cells were starved for 48 h and 

preincubated with Diphtheria toxin mutant Crm (10 µg/ml, 20 min), Heparin (100 ng/ml, 20min) or BB94 (5µM, 

20 min). Subsequently, cells were stimulated with 2 U/ml Thrombin or 3 ng/ml EGF for 3 min. Equal amounts 

of lysates were immunoprecipitated (IP) with EGFR108 antibody and immunoblotted (IB) with PY specific 

antibody. Subsequent reprobing with EGFR antibody verified equal loading. Equal amounts of the same lysate 

were immunoblotted with activation state specific antibodies against Erk 1/2 and subsequently reprobed with Erk 

antibody to ensure equal loading. 

 

3.3.2 Effects of double stimulation of EGFR transactivation in A498 cells  

 

Obviously, two essentially independent pathways resulting in EGFR Phosphorylation were 

activated in A498 cells. Hence, combined stimulation with the two different stimuli LPA and 

Thrombin was suggested to proportionally increase the EGFR transactivation signal. 

Figure 19 demonstrates that LPA induced EGFR signal transactivation was Gαi/o independent, 

but HB-EGF dependent, while Thrombin induced TMPS pathway was Gαi/o dependent, but  

HB-EGF independent as inhibition with PTX, Heparin and Diphtheria toxin mutant Crm 
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proved. Therefore, both pathways only converged at the EGFR. Hence, the EGFR surface 

expression might be the only limiting factor in double stimulation of EGFR signal 

transactivation, but the signal intensity was proportionally increased when both stimuli were 

applied at once, verifiying that the amount of EGFR on the cell surface was not a limiting 

factor. 

 

 
 

Fig. 19. Double stimulation of EGFR transactivation by LPA and Thrombin stimulation. A498 cells were 

starved for 48 h and preincubated with PTX (125 ng/ml, 18 h or 20 min, respectively), Crm (10 µg/ml, 20 min), 

or Heparin (100 ng/ml, 20min). Subsequently, cells were stimulated with 10 µM LPA, 2 U/ml Thrombin, a 

combination of both or 3 ng/ml EGF for 3 min. Equal amounts of lysates were immunoprecipitated (IP) with 

EGFR 108 antibody and immunoblotted (IB) with phosphotyrosine (PY) specific antibody. Subsequent 

reprobing with EGFR antibody verified equal loading.  
 

3.3.3 The effect of ADAM10,MP polyclonal antibody on Thrombin induced 

EGFR transactivation in A498 cells  

 
It is known that Thrombin induced EGFR signal transactivation is mediated exclusively by 

ADAM10, but the role of the metalloprotease activity of ADAM10 in the shedding of EGF-

like ligands had to be further analyzed. Thus, it was studied whether the polyclonal antibody 

serum ADAM10,MP, binding to the metalloprotease domain of ADAM10, inhibited the 

Thrombin induced EGFR activation. 
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Fig. 20. Blocking EGFR transactivation by preincubation with ADAM10MP polyclonal serum. A498 cells 

were starved for 48h and then preincubated with the indicated amounts of ADAM10,MP polyclonal serum. 

Afterwards, cells were stimulated with 3 ng/ml EGF and 2 U/ml Thrombin (A) or 10 µM LPA (B) for 3 min. 

Equal amounts of lysates were immunoprecipitated (IP) with monoclonal EGFR 108 antibody and submitted to 

immunoblot  (IB) analysis with Py specific antibodies. Sebsequent reprobing with EGFR antibody ensured equal 

loading.  Additionally, equal amounts of total lysates were immunoblotted with p-Erk antibody and reprobed 

with Erk antibody to verify equal loading.  

 

Figure 20 demonstrates that the preincubation of A498 cells with ADAM10,MP polyclonal 

serum lead to abrogation of the ADAM10 mediated EGFR signal transactivation induced by 

Thrombin stimulation, but it did not abrogate the activation of the downstream mediator  

Erk 1/2. In addition, the preimmune serum used as a control also diminished EGFR activation, 

proving that this inhibition was an unspecific effect of the serum. The LPA induced EGFR 

transactivation was also inhibited by ADAM10,MP and preimmune serum revealing that this 

inhibition was not a specific property of ADAM10,MP antibodies. 

 

3.3.4 Transactivation is reduced by transient transfection of ADAM10 Si-RNA  

 

A recently discovered method to confirm the involvement of ADAM10 in the Thrombin 

mediated EGFR transactivation in A498 cells is the downregulation of ADAM10 expression 

by small interfering RNAs (siRNAs) (Brummelkamp et al., 2002). Hence, a retroviral 

construct expressing siRNAs against the 3'UTR of ADAM10 was designed and tested in 

transient expression in A498 cells (Figure 21). Targeting a region outside the coding sequence 

of ADAM10 allowed ectopic expression of different ADAM10 constructs. 
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Fig. 21. The expression of ADAM10 is reduced by expression of ADAM10siRNAs. A498 cells were 

transfected with pRetroSuper-ADAM10siRNA. 48 h post-transfection cells were lysed and equal amounts of 

lysate were immunoblotted with ADAM10 antibody. 

 

The expression of ADAM10 in the transfected A498 cells was strongly reduced.  

Subsequently, the effect of ADAM10siRNA on the Thrombin induced EGFR signal 

transactivation was evaluated in order to confirm previous results with synthetic siRNAs 

(Hart, 2004). As shown in Figure 22, the reduction of ADAM10 expression by the expression 

of the pRetroSuper-ADAM10siRNA construct lead to abrogation of the Thrombin induced 

EGFR signal as well as inactivation of the downstream target Erk 1/2.  

 

 
 
Fig. 22. Expression of ADAM10siRNA leads to abrogation of EGFR signal transactivation. A498 cells were 

transfected with pRetroSuper-ADAM10siRNA. Transfected cells were starved for 48 h and then stimulated with 

2 U/ml Thrombin or 3 ng/ml EGF for 3 min. Equal amounts of lysates were immunoprecipitated (IP) with EGFR 

108 antibody and immunoblotted (IB) with phosphotyrosine (PY) specific antibody. Subsequent reprobing with 

EGFR antibody verified equal loading. Equal amounts of the same lysate were immunoblotted (IB) with 

activation state specific antibodies against Erk 1/2 and subsequently reprobed with Erk antibody to ensure equal 

loading. 

 



3 Results 67

3.3.5 Generation of stably expressing ADAM10siRNA A498 cells 

 
In order to study the influence of different mutants of ADAM10 lacking either the 

metalloprotease domain or the cytoplasmic tail on the EGFR signal transactivation,  

A498 cells were infected either with the pRetroSuper-ADAM10siRNA construct or control 

vector and selected for stable expression with 1 µg/ml Puromycin. After two weeks, colonies 

were picked and monoclonal cell lines were established. These cell lines were tested for the 

expression of ADAM10. Most of the monoclonal cell lines expressing ADAM10 siRNAs 

exhibited a significantly reduced level of ADAM10 expression (Figure 23).  

 

 
 
Fig. 23. The expression levels of ADAM 10 and ADAM17 in A498 cells stably expressing pRetroSuper-

ADAM10siRNA.  A498 cells were infected three times every four hours with retroviral supernatant from 

PhoenixA cells transfected with pRetroSuper-ADAM10siRNA. 24 h post-infection, cells were split and selected 

for expression of ADAM10siRNA with 1µg/ml Puromycin.  Two weeks later, single cell colonies were picked. 

Equal amounts of lysate from the monoclonal cell lines were purified using ConcanavalinA-Spepharose and 

immunoblotted (IB) with ADAM 10 and ADAM17 antibodies, respectively. 

 

However, the downregulation of ADAM10 was not specific as the expression of ADAM17 

was deregulated in a similar fashion (Figure 23). Therefore, these cell lines could not be used 

for studying the specific influence of ADAM10 downregulation.   
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3.3.6 Ki16425 inhibits LPA induced EGFR transactivation and in vitro wound 

closure in A498 cells 

 

Recently, a functional antagonist for the LPA receptors, Ki16425, with a preference for the 

Edg 2 and Edg7 receptor was discovered. Short term action of LPA such as Ca2+-influx and 

cAMP production, but also long term action including migration and DNA synthesis could be 

abrogated by Ki16425 (Ohta et al., 2003; Yamada et al., 2004) 

Preincubation of A498 cells with the LPA receptor antagonist Ki16425 completely abrogated 

LPA induced EGFR signal transactivation (Figure 24). 

 

 
 

Fig. 24. LPA receptor inhibitor Ki16425 abrogates Thrombin induced EGFR signal transactivation in 

A498 cells.  A498 cells were starved for 48 h. Cells were preincubated with DMSO as control or 10 nM Ki16425 

for 20 min. Subsequently, the cells were stimulated with 10 µM LPA for 3 min. Equal amounts of lysate were 

immunoprecipitates with EGFR 108 antibody and immunoblotted (IB) with phosphotyrosine (PY) specific 

antibody. Subsequent reprobing with EGFR antibody verified equal loading. 

 

For the first time, it was unambiguously demonstrated that the G protein coupled receptor was 

directly involved in EGFR signal transactivation. Thus, the LPA mediated transactivation was 

not independent the LPA receptors in A498 cells, but critically relied on the function of the 

LPA receptors. 

LPA induces in vitro wound closure and migration in A498 cells (Schafer, 2004). In addition, 

this study analyzed the direct involvement of the LPA receptors in the LPA mediated wound 

closure and chemotaxis in A498 cells. For this purpose, A498 cells were grown to confluency 

and starved for 48 h. After applying a uniform scratch, cells were preincubated with  

LPA receptor inhibitor Ki16425 or inhibitors of the EGFR transactivation pathway and 

subsequently stimulated with LPA. The cells were allowed to migrate into the wound for 14 h.  

While LPA induced complete wound closure within 14 h, Thrombin stimulation did not lead 

to wound closure in A498 cells. Inhibition with the LPA receptor inhibitor Ki16425 
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completely abrogated LPA induced wound closure, while the inhibitors of the TMPS pathway 

only lead to a reduction in wound closure. Therefore, Ki16425 is the more potent inhibitor of 

LPA induced wound closure, suggesting that the LPA receptors additionally activate a second 

pathway evoking wound closure (Figure 25). LPA was even a more potent stimulus than 

serum for wound closure and chemotaxis (Figure 25).  

 

 
 

Fig. 25. The influence of Ki16425, BB94 and AG1478 on the LPA induced wound closure in A498 cells. 

A498 cells were grown to confluency and starved for 48 h. A uniform scratch was applied using a pipette tip. 

Subsequently, cells were preincubated with 100 nM Ki16425, 5 µM BB94, 250 nM AG1478 or DMSO as a 

control for 20 min and then stimulated with LPA (10 µM), EGF (3 ng/ml) or serum (10 %). Cells were allowed 

to migrate into the wound for 14 h. 
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3.4 EGFR signal transactivation by LPA in breast cancer cells 

 
Breast cancer belongs to the most frequent tumor types in women. The overexpression of 

HER2 which is the preferred binding partner for the EGFR is a marker for the aggressiveness 

of breast cancer tumors. (Pegram et al., 1998; Slamon and Clark, 1988; Slamon et al., 1987; 

Slamon et al., 1989).  In some carcinomas of the breast, overexpression of the EGFR was 

additionally detected (Nicholson et al., 1991). LPA is a potent mitogenic stimulus and has 

been previously implicated in the proliferation and migration of human breast cancer (Goetzl 

et al., 1999; Sliva et al., 2000) 

Therefore, it was of great interest whether transactivation of the EGFR signal by the GPCR 

ligand LPA leads to the aggressive behavior of breast cancer.  

 

3.4.1 Expression of LPA receptors, ADAM proteins and EGF-like ligands in 

breast cell lines  

 

Analysis by cDNA arrays detected an upregulated expression of the LPA receptors in various 

breast cancer cells.  
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Fig. 26. Relative expression of LPA receptors in various breast cell lines as detected by cDNA array 

analysis. On the left are two normal breast cell lines HBL 100 and MCF10A followed by different breast cancer 

cell lines.  
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The normal breast epithelial cell line MCF10A was chosen as control cell line. None of the 

normal breast cell lines exhibited high expression of LPA receptors. The weakly invasive 

adenocarcinoma cell line BT20 expressed all LPA receptors at a low level and served as an 

additional control. On the contrary, the invasive carcinoma cell lines MDA-MB 231, HS578T 

and the invasive ductal carcinoma cell line BT549 highly expressed Edg2, but Edg4 and Edg7 

transcripts were hardly detectable. Therefore, these three cell lines were suitable systems to 

study the influence of a single LPA receptor, namely Edg2 (Figure 26). 

Expression of the gene products of different ADAM proteins were also demonstrated in 

cDNA array analysis (Figure 27). 
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Fig. 27. Expression levels of ADAM proteins in the selected cell lines. Depicted are the relative mRNA 

expression levels of ADAM10, 12, 15 and 17 in selected breast cell lines.  

 

ADAM10 and ADAM17 expression was also detected in immunoblot analysis of the selected 

cell lines. Except for HS578T, all cells strongly expressed ADAM10. ADAM17 was 

expressed by all cell lines to a similar extent (Figure 28). 
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Fig. 28. Detection of ADAM10 and 17 in immunoblot analysis. Equal amounts of lysate from 24 h starved 

cella and cell in normal growth were immunoblotted (IB) with ADAM10 and ADAM17 antibody, respectively. 

 

The expression of EGF-like ligands and the EGFR receptor itself revealed an exceptionally 

high expression of the EGFR in the BT20 cell line and high levels of Amphiregulin in 

MCF10A and MDA-MD 231 cells. BT 20 expressed only low levels of all EGF-like ligands  

(Figure 29). 
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Fig. 29. Expression levels of the EGFR and its ligands in the selected breast cell lines as detected by cDNA 

array analysis. Depicted are relative mRNA expression levels of the EGFR, Amphiregulin, Betacellulin, HB-

EGF and EGF in the indicated breast cell lines.  
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3.4.2 Transactivation of breast cell lines by LPA 

 

The ability to induce EGFR signal transactivation by LPA stimulation was examined in the 

selected cell lines (Figure 30). In addition, the possibility to inhibit basal EGFR and Erk 1/2 

activity with the known inhibitors of the TMPS pathway, Batimastat and AG1478, was 

investigated.  

LPA activated the TMPS pathway both in the normal and the highly invasive breast cancer 

cell lines BT549 and MDA-MB 231. In BT20, the EGFR exhibited high basal 

phosphorylation and no additional induction upon stimulation with LPA was observed. The 

basal EGFR phosphorylation was not blocked by inhibition with Batimastat. On the contrary, 

the EGFR signal transactivation by LPA in MCF10A, BT549 and MDA-MB 231 cells as well 

as the EGFR phosphorylation in normal cells was abrogated by inhibition with Batimastat 

(Figure 30). 

 

 

 
Fig. 30. LPA induces EGFR signal transactivation in MCF10A, BT549 and MDA-MB 231, but not in 

BT20 cells. Cells were starved for 24 h and after preincubation with DMSO as control, 5 µM BB94 or 250 nM 

AG1478 for 20 min and stimulated with 10 µM LPA or 3 ng/ml EGF for 3 min. Additionally, cells in normal 
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growth were incubated with 5 µM BB94 or 250 nM AG1478 for 20 min. Equal amounts of lysates were 

immunoprecipitated (IP) with EGFR 108 antibody and immunoblotted (IB) with phosphotyrosine (PY) specific 

antibody. Subsequent reprobing with EGFR antibody verified equal loading. Equal amounts of the same lysates 

were immunoblotted (IB) with activation state specific antibodies against Erk 1/2 and subsequently reprobed 

with Erk antibody to ensure equal loading. 

 
 

3.4.3 Array data of breast cancer cells  

 

In order to identify crucial players in the transactivation pathway and to further characterize 

these breast cell lines, cDNA array analysis was conducted with the selected breast cell lines 

after serum deprivation and stimulation with LPA as well as cells in normal growth inhibited 

with the broad spectrum metalloprotease inhibitor BB94 for 6 h. 

Dr. Pjotr Knyazev, visiting Professor in the Department of Molecular Biology at the MPIB, 

had previously shown by cDNA array analysis that the LPA receptor Edg2 is overexpressed 

in a large variety of breast cancer cell lines and appeared to be coregulated with several 

metalloproteases. The data obtained from Dr. Knyazevs cDNA array experiments provided 

evidence for a connection of Edg2 with the invasive potential of breast cancer cells and the 

EGFR signal transactivation mechanism, because the LPA receptor Edg2 was observed to be 

coregulated with metalloproteases which are known to be involved in the TMPS pathway in 

breast cancer cells as shown in Figure 31. Edg2 was observed to be in one closely related 

cluster of genes with similar regulation of expression as the metalloproteases ADAM12 and 

MMP14, the metalloprotease inhibitors TIMP1, 2 and 3 and the EGF-like ligand HB-EGF 

(Knyazev, unpublished results).   
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Fig. 31. cDNA array analysis: Cluster I of genes with similarly regulated genes.  MCF10A, BT20, HS578T, 

BT549 and MDA-MB 231 cells were either starved for 24 h and simulated with 10 µM LPAor 3 ng/ml EGF for 

6 h or grown for 24 h and inhibited with 10 µM BB94, control cells were treated with DMSO for 6 h. cDNA 

from these cells was prepared, labeled with α[33P]dATP and hybridized on array filters as described. Data 

obtained from these filters was normalized and subjected to Cluster analysis. Genes depicted in red were highly 

expressed while genes shown in green exhibited an extremely low expression. The correlation factor of this 

cluster was 0.72. 

 

In the highly invasive cell lines HS578T, BT549 and MDA-M 231 these genes were highly 

expressed, while the weakly invasive cell line BT20 exhibited lower expression of these 

genes. The normal breast cell lines exhibited an intermediate expression pattern.  

 

3.4.3.1 The EGFR clusters with HER2 

 

The EGFR itself did not cluster with the other components of the TMPS pathway. Instead, it 

was detected in a separate cluster together with HER2 as shown in Figure 32.  
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Fig. 32. cDNA array analysis: Cluster II of genes with similarly regulated genes.  MCF10A, BT20, HS578T, 

BT549 and MDA-MB 231 cells were either starved for 24 h and simulated with 10 µM LPA or 3 ng/ml EGF for 

6 h or grown for 24 h and inhibited with 10 µM BB94, control cells were treated with DMSO for 6 h. cDNA 

from these cells was prepared, labeled with α[33P]dATP and hybridized on array filters as described. Data 

obtained from these filters was normalized and subjected to Cluster analysis. Genes depicted in red were highly 

expressed while genes shown in green exhibited an extremely low expression. The correlation factor of this 

cluster was 0.79. 

 

While the expression of the EGFR and HER2 was normal to low in the normal breast 

epithelial cell line MCF10A and the highly invasive cell lines HS578T, BT549 and  

MDA-MB 231, the weakly invasive cell line BT20 revealed an exceptionally high expression 

of the EFGR and HER2, which explained the high basal activity of the EGFR. From these 

results, it was concluded that the overall expression pattern correlated with the transactivation 

behavior of the breast cells. LPA was able to induce EGFR signal transactivation in BT549, 

MDA-MB 231 and MCF10A cells with with a low basal EGFR expression and high 

expression of other components of the TMPS pathway, whereas in BT20 cells with an inverse 

gene expression pattern LPA did not induce GPCR-EGFR crosstalk. 
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3.4.3.2 The influence of LPA stimulation and BB94 inhibition on the gene expression 

pattern 

 

The stimulation of starved breast cancer cells as well as inhibition of breast cancer cells in 

normal growth with the broad spectrum metalloprotease inhibitor Batimastat for 6 hours did 

not lead to changes in the gene expression pattern of more than 4 fold as determined in dot 

blot analysis (data not shown) which was the cut-off limit for significant up- or 

downregulation in the studied system. Further analysis with longer stimulation and inhibition 

might reveal more significant changes in the gene expression after LPA stimulation or 

metalloprotease inhibition. 

 

3.4.4 Blocking LPA induced transactivation in breast cells with Ki16425 

 

The discovery of a fairly specific inhibitor for the Edg receptors (Ohta et al., 2003; Yamada et 

al., 2004) allowed to study the direct involvement of the LPA receptors in the EGFR signal 

transactivation.  

The inhibitor Ki16425 strongly decreased LPA induced EGFR signal transactivation in 

MCF10A and MDA-MD231 cells (Figure 33), again clearly demonstrating that the  

LPA receptor Edg2 is directly involved in the EGFR transactivation pathway. Interestingly, 

lower concentrations (10 nM) of the inhibitor yielded stronger inhibition in short term 

experiments. As Sphingosine-1-phosphate also binds to Edg2, the Sphingosine-1-phosphate 

induced transactivation of the EGFR signal was also diminished by preincubation with 

Ki16425. However, other families of GPCRs such as the Thrombin receptor were not 

inhibited by the LPA receptor antagonist Ki16425 proving the specificity of this inhibitor 

(Figure 33). 
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Fig. 33. Low concentrations of Ki16425 can abrogate LPA induced EGFR signal transactivation in breast 

cells. MDA-MB 231 (A) and MCF10A cells (B) were starved for 24 h and after 20 min preincubation with 

Ki16425 (10 and 100 nM as indicated) stimulated with 10 µM LPA, 10 µM Sphingosine-1-phosphate, 2 U/ml 

Thrombin or 3 ng/ml EGF for 3 min. Equal amounts of lysate were immunoprecipitated (IP) with EGFR 108 

antibody and immunoblotted (IB) with PY-specific antibody followed by reprobing with EGFR antibody to 

verify equal loading. 

 

3.4.5 LPA induced wound closure in breast cancer cells 

 

LPA or EGF stimulation did not induce wound closure in the normal breast epithelial cell line 

MCF10A (data not shown), while LPA induces complete wound healing within 12-14 hours 

both in BT549 and MDA-MB 231 cell lines (Figures 34 and 35).  

Contrarywise, EGF as well as Thrombin had hardly any effect on the wound healing behavior. 

The wound healing was completely abrogated by inhibition with LPA receptor inhibitor 

Ki16425 (Figures 34 and 35). Inhibitors of TMPS pathway BB94 as well as AG1478 could in 

comparison to Ki16425 only reduce wound healing (Figure 36). Thus, it had to be concluded 

that a second pathway leading to wound closure is activated by the LPA receptor Edg2. These 

results clearly show that wound closure is only partly mediated by the transactivation pathway 

in BT549 cells. 
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Fig. 34. Ki16425 abrogates LPA induced wound closure in BT549 cells. BT549 cells were grown to 

confluency and starved for 24 h. A uniform scratch was applied using a pipette tip. Subsequently, cells were 

preincubated with 100 nM Ki16425, 5 µM BB94, 250 nM AG1478 or DMSO as a control for 20 min and then 

stimulated with LPA (10 µM), EGF (3 ng/ml) or serum (10 %). Cells were allowed to migrate into the wound for 

14 h. 

 

 
 
Fig. 35. Ki16425 inhibits LPA induced wound closure in MDA-MB 231 cells. MDA-MB 231 cells were 

grown to confluency and starved for 24 h. A uniform scratch was applied using a pipette tip. Subsequently, cells 

were preincubated with 100 nM Ki16425 or DMSO as a control for 20 min and then stimulated with LPA (10 

µM) or EGF (3 ng/ml) or serum (10 %). Cells were allowed to migrate into the wound for 12 h. 
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Fig. 36. The influence of Ki16425, BB94 and AG1478 on the LPA mediated wound closure in BT549 cells. 

BT549 cells were grown to confluency and starved for 24 h. A uniform scratch was applied using a pipette tip. 

Subsequently, cells were preincubated with 100 nM Ki16425, 5 µM BB94, 250 nM AG1478 or DMSO as a 

control for 20 min and then stimulated with LPA (10 µM), Thrombin (2 U/ml) or EGF (3 ng/ml). Cells were 

allowed to migrate into the wound for 12 h. 

 

3.5 The involvement of G protein subunits 

 

While many studies report Gα subunits to be involved in oncogenic signaling (Dhanasekaran 

et al., 1998; Gudermann et al., 2000; Neves et al., 2002), comparably little is known about the 

signaling events induced by Gβγ subunits (Jones et al., 2004). 

The fact that Pertussis toxin abrogates EGFR signal transactivation in many cell lines leads to 

the assumption that Gα subunits, in particular Gαi/o subunits, are involved in the mediation of 

the EGFR signal transactivation (Gschwind et al., 2003; Hart, 2004). The finding that 

constitutively active mutants of Gα subunits encode transforming oncogenes such as gsp, gip2 

and gep (Dhanasekaran et al., 1998; Landis et al., 1989; Lyons et al., 1990; Marinissen and 

Gutkind, 2001; Radhika and Dhanasekaran, 2001; Xu et al., 1993) reinforces the suggestion 

that Gα subunits are key regulators of the EGFR signal transactivation.  
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3.5.1 Overexpression of Gα-subunits 

 

LPA receptors are described to predominanatly couple to Gαi/o subunits, while Thrombin 

receptors often couple to Gα12 and Gα13 subunits (Neves et al., 2002). In contrast, the 

Carbachol receptors are mainly associated with Gαq or Gα11 subunits (Luo et al., 2001). For 

these reasons the following combinations of GPCR ligands and Gα subunits were studied 

(Figure 37). Presumably, the constitutively active mutants of Gα subunits activate the EGFR 

signaling pathway independent from ligand stimulation.  

 

 
 
Fig. 37. Overexpression of different Gα subunits and their activating mutants in COS7 cells. COS7 cells 

were transfected with Gαi2, Gαq, Gα12 and Gα13 subunits as well as the corresponding Gα Q→L mutants. 24 h 

post-transfection, cells were serum-starved for 20 h and subsequently stimulated with 10 µM LPA, 3 ng/ml EGF 

or 100 µM PV, respectively. Equal amounts of cell lysates were immunoprecipitated (IP) with EGFR 108 

antibody and immunoblotted (IB) with PY antibody. Reprobing with EGFR antibody verifies equal loading.  

 

A strongly enhanced EGFR activation was not induced by the expression of any of the  

Gα subunits or their oncogenic mutants. Stimulation with the corresponding stimuli did not 

result in enhanced activation of the EGFR signal (Figure 37). Therefore, the Gα subunits 

affected the EGFR signal transactivation pathway neither in a ligand-dependent nor 

independent fashion. 
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Further analysis of the expression of Gαi2 subunit and its oncongenic variant demonstrated 

that the expression of both subunits lead to increased basal levels of EGFR phosphorylation, 

but merely a slight enhancement after LPA stimulation (Figure 38).  

 

 
 
Fig. 38. Overexpression of Gαi2 subunits in COS7 cells.  COS7 cells were transfected with Mock control, 

Gai2wt or Gαi2Q→L subunit expressing constructs. Cells were starved for 24 h and after preincubation with 

BB94 (5µM, 20 min) or AG1478 (250 nM, 20 min) stimulated with LPA (10µM) or EGF (3ng/ml) for  

3 min. Equal amounts of lysates were immuonprecipitated (IP) with EGFR specific monoclonal antibody and 

immunoblotted (IB) with PY-specific antibody followed by reprobing with anti-EGFR antibody to ensure equal 

loading. Equal amounts of the same lysates were immunoblotted (IB) with P-Erk specific antibody followed by 

reprobing with anti-Erk antibody. 

 

3.5.2 Overexpression of Gβγ subunits  

 

A large variety of Gβ and Gγ subunits are expressed in mammals (Jones et al., 2004). Gβγ 

subunits are suggested to play an important role in the Gi mediated activation of the MAPK 

Erk 1/2 (Crespo et al., 1994; Faure et al., 1994). Additionally, it was discovered that Gβ and 

Gγ are only well expressed in combination, since only the Gβγ dimer is sufficiently stable 

(Luttrell et al., 1997). 

The Gβ1γ2 subunit was tested for its ability to enhance EGFR signal transactivation as well as 

Erk 1/2 activation when overexpressed in various cell lines. Expression of different Gβ1 and 

Gγ2 constructs was examined in COS7 cells as shown in Figure 39.  
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Fig. 39. Gβ1γ2 overexpression in COS7 cells.  COS7 cells were transfected with either Mock control, Gβ1, Gγ2 

or Gβ1 and Gγ2 subunit expressing constructs. Equal amounts of lysates were subjected to SDS-PAGE analysis 

followed by Western blot analysis. Expression of Gβ1 and Gγ2 was detected by Gβ1 and Gγ2 specific antibodies. 

 

The expression of Gβ1 and Gγ2 was well detected (Figure39). These constructs were used for 

further experiments to study the actions of Gβ1γ2 as presented in the following. 

 

3.5.2.1 Influence of Gβγ-subunit overexpression on the EGFR transactivation in 

different cell lines 

 
 
Gβ1 and Gγ2 were coexpressed in Rat1, SCC9, COS7 and HEK239 cells. The ability of the 

Gβ1γ2 subunit to induce activation of the EGFR and the MAPK Erk 1/2 was determined by 

immunoblot analysis as demonstrated in Figures 40 and 41.  

In HEK293 cells, Gβ1 was able to induce Erk 1/2 activation to a comparable extent as 

stimulation with LPA. Gγ2 expression, however, was not be detected (Figure 40).  

 

 
 

Fig. 41. Gβ1γ2 overexpression in HEK293 cells.  HEK293 cells were transfected with either Mock control, Gβ1, 

Gγ2 or Gβ1 and Gγ2 subunit expressing constructs. Cells were starved for 24 h and equal amounts of lyates were 

immunoblotted (IB) with P-Erk specific antibody followed by reprobing with anti-Erk antibody. Expression of 

Gβ1 and Gγ2 was detected by Gβ1 and Gγ2 specific antibodies. 
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Fig. 40. Influence of Gβγ subunits on the EGFR signal transactivation in various cell lines. Rat1 (A), SCC9 

(B) and COS7 (C) cells were transfected with either Mock control, Gβ1, Gγ2 or Gβ1 and Gγ2 subunit expressing 

constructs. Cells were starved for 24h and stimulated with LPA (10µM) or EGF (3ng/ml) for 3 min. Equal 

amounts of lysates were immuonprecipitated (IP) with EGFR specific monoclonal antibody and immunoblotted 

(IB) with PY-specific antibody followed by reprobing with anti-EGFR antibody to ensure equal loading. Equal 

amounts of the same lysates were immunoblotted (IB) with P-Erk specific antibody followed by reprobing with 

anti-Erk antibody. 

 

In Rat1 cells, overexpression of Gβ1γ2 increased EGFR phosphorylation as well as Erk 1/2 

activation (Figure 41). 

Neither in SCC9 nor in COS7 cells, an elevated EGFR or Erk 1/2 activity was demonstrated 

(Figure 41). Therefore, the action of the Gβ1γ2 subunit seemed to be limited to the cellular 

context of Rat1 and HEK293 (Figure 40) and was predominantly mediated by the Gβ1 

subunit. The activation of the EGFR and Erk1/2 is due to the overexpression of Gβ1γ2 and is 

ligand independent. 
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4 Discussion 

 

Crosstalk between members of different receptor families has been recognized to be a  

well-established concept in signal transduction. Signaling networks are essential in the control 

of a variety of cellular processes. GPCRs as well as RTKs belong to the most prominent cell 

surface proteins regulating the cell's response to environmental signals.   

Aberrant signaling of RTKs is known to be crucially involved in the development and 

progression of hyperproliferative diseases such as cancer (Blume-Jensen and Hunter, 2001). 

Constitutive activation of RTKs originates from gene amplification, overexpression, 

activating mutations or autocrine stimulation of the receptors by growth factors (Zwick et al., 

2001). On the other hand, deregulated GPCR signaling by autocrine production of GPCR 

agonists or activating mutations has been frequently associated with different types of human 

cancer (Marinissen and Gutkind, 2001; Moody et al., 2003). Considering the 

pathophysiological significance of both GPCR mediated and direct EGFR signaling, the 

discovery of a pathway connecting these receptors gave rise to extensive studies of said 

pathway.  

This study demonstrated the direct involvement of LPA receptors in the EGFR signal 

transactivation in different cellular contexts. It was demonstrated that the LPA receptors 

activate more that one pathway leading to wound closure. Furthermore, the pathway linking 

GPCR stimulation to the activation of the involved metalloprotease was investigated. 

 

4.1 Reconstituted LPA receptor Edg2 expression in McA-RH7777 cells 

activates a TMPS like mechanism 

 

In order to study the role of LPA receptors in the EGFR transactivation pathway and to assign 

subtype specific action of the LPA receptors Edg2, 4 and 7, a LPA receptor deficient dell line 

was transfected with Edg2, Edg4 or Edg7. Previously, it was shown that ectopic expression of 

Edg2, 4 and 7 in the LPA receptor deficient rat hepatoma cell line MCA-RH7777 leads to 

functional LPA receptor signaling such as intracellular calcium mobilization (An et al., 

1998b). 
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The basal phosphorylation of the EGFR was elevated in the McA-RH7777 cell lines stably 

expressing Edg2 and 4, but LPA stimulation did not lead to significant EGFR activation 

(Figure 13). In Edg2 overexpressing McA-RH7777 cells, LPA stimulation restored Erk 1/2 

activation (Figure 14). The activation of Erk 1/2 was sensitive to treatment by Pertussis toxin 

(PTX), which specifically inhibits Gαi/o subunits, confirming previous studies which 

suggested LPA mediated signaling to be often coupled to Gαi subunits (Takuwa et al., 2002). 

Erk 1/2 activation was independent of src kinase and PI3K function. Interestingly, the 

metalloprotease inhibitor Batimastat and the EGFR inhibitor AG1478 as well as the HB-EGF 

and Pro-Amphiregulin inhibitor Heparin lead to abrogation of the LPA induced Erk 1/2 

activation. Akt 1/2 was also not activated subsequent to LPA stimulation (Figure 15). 

Summarizing the above, the LPA receptors, especially Edg2, activated the MAPK pathway by 

a src family kinase, Akt 1/2 and PI3K independendent, but metalloprotease and EGF-like 

ligand dependent pathway. Although EGFR activation could not be detected, Erk 1/2 

activation was inhibited by the EGFR specific inhibitor AG1478. On the basis of these 

findings, the involvement of a TMPS pathway leading to the activation of Erk 1/2 was 

suggested, although the activation of the EFGR itself could not be demonstrated (Figure 13).  

Two possible explanations for this phenomenon were the following. Either the AG1478 was 

not as specific for the EGFR in rat cells as in human cells hinting at the involvement of a 

closely related receptor tyrosine kinase or a comparably weak activation of the EGFR was 

able induce signaling to Erk 1/2 in McA-RH7777 cells. This hypothesis seemed more 

plausible since also inhibition of the shedding of ligands specifically activating the EGFR 

abrogated Erk 1/2 activation. 

 

4.2 LPA receptor Edg2 function is essential for EGFR signal 

transactivation 

 

Recently, the LPA receptor specific inhibitor Ki16425 was discovered, which is functional 

both in inhibiting short term functions of LPA receptors and long-term actions of LPA 

stimulation such as DNA synthesis and migration (Ohta et al., 2003; Yamada et al., 2004).  

Previous studies reported that LPA and autotaxin stimulated cell motility of neoplastic and 

non-neoplastic cells through Edg2 can be inhibited by Ki16425 (Hama et al., 2004). On the 

contrary, some studies suggested receptor-independent actions for LPA (Hooks et al., 2001). 
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Hence, it was necessary to confirm that the LPA receptors were directly involved in the LPA 

induced transactivation of the EGFR. 

This study clearly demonstrated that in kidney cancer and breast cells Ki16425 abrogated 

LPA induced EGFR signal transactivation and therefore proved, for the first time, the direct 

involvement of LPA receptors, especially Edg2, in the EGFR signal transactivation pathway 

(Figure 24 and Figure 33). 

 

4.3 LPA activates two distinct pathways leading to wound closure 

 

Various studies support the assumption that the EGFR acts as a central integrator of diverse 

GPCR signals (Carpenter, 1999; Gschwind et al., 2001).  

Wound healing is a complex process featuring cell growth and motility as well as chemotaxis. 

Previous reports have shown that LPA enhances in vitro wound closure and invasion in 

ovarian cancer cells (Xu et al., 1995). Additionally, it was observed that LPA stimulates 

closure of wounded monolayers of human endothelial cells (Lee et al., 2000). In vivo data in 

bladder showed that wound healing is mediated by the EGFR and HER2 via processing of 

EGF, TGFα or amphiregulin (Bindels et al., 2002). Metalloproteinase-dependent EGF-like 

ligand shedding has been reported to mediate EGFR transactivation and migration of vascular 

smooth muscle cells (Eguchi et al., 2003). In colon cancer EGFR transactivation by 

Prostaglandin E2 regulates cell migration and invasion (Buchanan et al., 2003). Furthermore, 

it was suggested that LPA is a critical factor regulating motility of pancreatic cancer cells 

(Yamada et al., 2004) and the invasion of ovarian cancer cells (Fishman et al., 2001). Other 

studies indicated the involvement of HB-EGF contributing to migration of prostate cancer 

cells (Madarame et al., 2003) and the modulation of invasion of metastatic breast cancer cells 

by amphiregulin (Kondapaka et al., 1997). The metalloprotease ADAM17/TACE was 

identified as a key element of GPCR-EGFR crosstalk promoting cancer cell motility 

(Gschwind et al., 2003). Recently, the involvement of ADAM 15 in the migration of 

mesangial cells was demonstrated (Martin et al., 2002). The TMPS pathway is believed to 

play a crucial role in the regulation in cell motility and wound closure. 

Here, we present data supporting that GPCR-induced EGFR signal transactivation is one 

pathway leading to wound closure in kidney and breast cancer cells. The LPA receptor itself 

as well as metalloprotease and EGFR function were demonstrated to be involved in the 

migratory behavior of A498, BT549 and MDA-MB 231 cells after LPA stimulation  
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(Figure 25, Figures 34-36). In agreement with these results, Price et al. showed that the breast 

cancer cell line MDA-MB 231 reacts with a potent chemotactic response but not with a 

proliferative response to EGF (Price et al., 1999).  

The LPA receptor inhibitor Ki15425 completely abrogate the chemotactic behavior of kidney 

and breast cells while the inhibition of the TMPS pathway only reduced wound closure 

(Figures 25 and 36). From these results, it was concluded that two different pathways are 

activated upon LPA stimulation, both resulting in chemotaxis. In contrast, Thrombin 

stimulation did not induce wound closure in A498, and BT549 cells even though it is able to 

activate the EGFR (Figure 25, Figure 36).  

Taken together, the results of this study indicated that LPA induced chemotaxis of A498, 

BT549 and MDA-MB-231 cells was regulated by both EGFR independent and dependent 

signaling pathways. Therefore, the Triple-Membrane-Passing signal (TMPS) mechanism of 

EGFR signal transactivation provides only one molecular explanation how GPCR ligands 

regulate chemotaxis and wound closure in breast and kidney cancer cells. 

 

4.4 Combination of LPA and Thrombin leads to enhanced EGFR signal 

transactivation in A498 cells 

 

LPA was previously described to induce EGFR tyrosine phosphorylation in several model 

systems including Rat1 (Daub et al., 1996), HEK293 (Della Rocca et al., 1999), PC-12 (Kim 

et al., 2000), Swiss 3T3 (Gohla et al., 1998), HaCaT and COS7 (Daub et al., 1997). Three 

LPA receptors of the Edg receptor family with differences in G protein-coupling are 

described.  

In A498 cells, LPA stimulated EGFR signal transactivation was not inhibited by PTX  

(Figure 16) suggesting predominantly PTX-insensitive G protein subunits to be involved. On 

the contrary, the Thrombin mediated EGFR signal transactivation was PTX-sensitive and 

therefore was assigned to the Gαi/o family (Figure 19). 

While LPA induced EGFR signal transactivation was mediated by ADAM17 and HB-EGF, 

GPCR-EGFR crosstalk stimulated by Thrombin involved ADAM10 and an EGF-like ligand 

different from HB-EGF, since Heparin was not able to block the TMPS pathway (Figure 18). 

Additionally, this study demonstrated that LPA mediated GPCR-EGFR crosstalk involved a 

src kinase activity upstream of the EGFR (Figure 17). This confirmed previous findings that 
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Src kinase was involved in GPCR-EGFR cross communication (Guerrero et al., 2004) and 

regulated downstream signaling via Erk1/2 and PI3-K/Akt (Das et al., 2004). 

This study proved that both transactivation pathways converge only at the EGFR. In double 

stimulation experiments with LPA and Thrombin, a proportionally increased EGFR signal 

was detected, indicating that the amount of EGFR on the cell surface was not limiting in this 

experiment (Figure 19). To verify the involvement of preclustering of the metalloprotease 

with the GPCR and/or the EGF-like ligand additional lipid raft experiments will be necessary 

in the future. 

 

4.5 Thrombin mediated EGFR signal transactivation is abrogated by 

deregulation of ADAM10 

 

Metalloprotease mediated ectodomain shedding of growth factor precursors in vivo is not yet 

completely understood. Growing evidence suggested the involvement of several members of 

the ADAM family of zinc-dependent proteases in the processing of EGF-like precursors 

(Werb and Yan, 1998). ADAM9 is implicated in the shedding of proHB-EGF by TPA in 

Vero-H cells (Izumi et al., 1998), while LPA-induced proHB-EGF cleavage in the same cell 

system is independent of ADAM9 (Umata et al., 2001). The severe phenotype of mice lacking 

ADAM17 suggests an essential role for this metalloprotease in the processing of proTGFα 

and possibly other EGFR ligands in normal development. Absence of functional ADAM17 

results in impaired basal cleavage of proAR and proHB-EGF in murine fibroblasts (Merlos-

Suarez et al., 2001; Sunnarborg et al., 2002). Recently, Lemjabbar et al. described ADAM17 

to be the responsible sheddase of proAR in the lung cancer cell line NCI-H-292 after 

incubation of the cells with tobacco smoke (Lemjabbar et al., 2003). Recent reports implicate 

ADAM10 (Lemjabbar and Basbaum, 2002; Yan et al., 2002) and ADAM12 (Asakura et al., 

2002) in proHB-EGF-dependent EGFR signal transactivation in MDA-MB 231 cells. The 

detailed regulation of the metalloprotease's specificity remains unclear. Erk has been shown to 

bind and phosphorylate the cytoplasmic tail of ADAM17 at threonine 735 in response to TPA 

stimulation (Diaz-Rodriguez et al., 2002). Experiments with chimeras of TGFα and APP 

propose that the secondary structure of the juxtamembrane region is the important recognition 

element for the sheddase (Arribas et al., 1997).  

This study provided further support for ADAM10 playing a key role in Thrombin induced 

transactivation of the EGFR in A498 cells since the deregulation of ADAM10 by the 
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expression of ADAM10siRNAs lead to abrogation of Thrombin induced EGFR signal 

transactivation (Figures 21 and 22). In order to examine the role of different domains of 

ADAM10 in the activation of the catalytic domain and the shedding of EGF-like ligands, 

A498 cells stably expressing an ADAM10siRNA construct were established. Interestingly, 

long-term silencing of ADAM10 with a siRNA construct targeting the 3'UTR of ADAM10 

also lead to downregulation of ADAM17 expression which made it impossible to ascribe the 

observed effects to the single action of ADAM10 (Figure 23). This finding was in conformity 

with recent findings that long-term siRNA silencing can lead to off-target effects, especially 

downregulation of closely related family members (Scherr and Eder, 2004). 

 

4.6 Inhibitory antibodies against ADAM proteins 

 

Antibodies are potent therapeutics in cancer treatment whereas low molecular weight 

compounds are often less specific and lead to side effects during therapy. The monoclonal 

antibody Trastuzumab targeting HER2 in combination with conventional chemotherapy leads 

to increased survival rates of breast cancer patients (Finn and Slamon, 2003; Ropero et al., 

2004). Acute myeloid leukemia (AML) cell growth can be inhibited by mono-specific and  

bi-specific anti-CD33 x anti-CD64 antibodies (Balaian and Ball, 2004). Recently, a 

monoclonal antibody against the EGF-like ligand cripto was identified to react with various 

cancer, but not normal cells thus providing a novel target for antibody-based immunotherapy 

(Xing et al., 2004). 

In this study, specific antibody sera against ADAM10 and ADAM12 were generated (Figures 

9 and 10). In A498 cells, Thrombin induced EGFR signal transactivation is mediated 

exclusively by ADAM10, while ADAM17 mediated transactivation is induced by LPA (Hart, 

2004; Schafer, 2004; Schafer et al., 2004a).  

Hence, the ADAM10,MP polyclonal serum was tested for its ability to interfere with 

Thrombin mediated EGFR signal transactivation in this cellular context. The serum was able 

to block the GPCR-EGFR cross communication, but this effect could not be assigned to a 

specific binding of ADAM10,MP antibodies as the antibody also interfered with LPA induced 

activation of ADAM17 (Figure 20). Additionally, the preimmune serum showed a similar 

effect. Therefore, the inhibition of the TMPS pathways leading to EGFR signal 

transactivation was unspecifically blocked by serum components. 
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Once a cell line is discovered, in which transactivation of the EGFR stimulated by one agent 

is solely mediated by ADAM12, the ADAM12 serum can be tested for its inhibition 

properties. 

 

4.7 cDNA array analysis of breast cancer cells  

 

cDNA array analysis is a potent method to identify proteins involved in cancer development. 

Normal and cancer samples can be directly compared and abnormal gene expression can be 

detected. Especially for breast cancer it is studied whether gene chip analysis can help to 

predict treatment success (Hampton, 2004). But this method can be used on any type of 

cancer for which important tumor markers are identified. 

LPA was able to induce GPCR-EGFR cross communication in both normal and highly 

invasive breast cancer cell lines examined suggesting that EGFR signal transactivation plays 

an important role in transformed and non-transformed cells (Figure 30). Mammary epithelial 

cells revealed a comparably weak GPCR-induced stimulation of EGFR phosphorylation 

which was attributed to the low EGFR expression level in normal and highly invasive breast 

cancer cell lines as detected in the cDNA array analysis (Figure 32).  

Knyazev has previously shown by cDNA array analysis that the LPA receptor Edg2 is 

overexpressed in a large variety of breast cancer cell lines (Figure 26).  

The data from this cDNA array analysis provided further evidence for the correlation of Edg2 

with the invasive potential of breast cancer cells and the EGFR signal transactivation 

mechanism, because the LPA receptor Edg2 was observed to cluster with proteins which are 

suggested to be involved in the TMPS pathway in breast cancer cells. Edg2 was part of one 

closely related cluster of genes with similar regulation of expression together with the 

metalloproteases ADAM12 and MMP14, the metalloprotease inhibitors TIMP1, 2 and 3 and 

the EGFR ligand HB-EGF (Figure 31).   

The normal breast epithelial cell line MCF10A and the highly invasive cell lines HS578T, 

BT549 and MDA-MB 231 expressed normal to low amounts of the EGFR and HER2, while 

the weakly invasive cell line BT20 exhibited extremely high expression of the EFGR and 

HER2, which explained the high basal activity of the EGFR in these cells.  

The expression pattern correlated with the transactivation behavior: BT20 with a high basal 

EGFR expression and low expression of other components of the TMPS pathway did not 
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induce GPCR-EGFR crosstalk upon LPA stimulation. On the contrary, LPA induced EGFR 

signal transactivation in the other cell lines exhibiting an inverse gene expression pattern. 

The comparison of the gene expression pattern of LPA-stimulated and non-stimulated starved 

breast cancer cells as well as breast cancer cells in normal growth inhibited with the broad 

spectrum metalloprotease inhibitor Batimastat or DMSO as control did not exhibit major 

changes in the gene expression pattern determined in dot blot analysis (data not shown). From 

these results, it was concluded that persistent stimulation with GPCR agonists or repression of 

metalloprotease activity did not alter the gene expression of TMPS pathway related 

components in the investigated time frame of six hours. On the other hand, normal and breast 

cancer cells were clearly separated on the basis of their gene expression pattern. As 

overexpression of components of the TMPS pathway correlates with the invasive potential of 

BT549, HS578T and MDA-MB 231 cells, the GPCR-EGFR crosstalk is presumably involved 

in the invasive behavior of breast cancer cells.  

 

4.8 The involvement of G protein subunits in the TMPS pathway 

 

Many studies suggest Gα subunits to be involved in oncogenic signaling (Dhanasekaran et al., 

1998; Gudermann et al., 2000; Neves et al., 2002). Constitutively active mutants of Gα 

subunits encode transforming oncogenes such as gsp, gip2 and gep (Dhanasekaran et al., 

1998; Landis et al., 1989; Lyons et al., 1990; Marinissen and Gutkind, 2001; Radhika and 

Dhanasekaran, 2001; Xu et al., 1993) suggesting  that Gα subunits are key regulators of the 

EGFR signal transactivation. 

As Pertussis toxin (PTX) abrogates EGFR signal transactivation in many cell lines, it is 

presumed that Gα subunits, especially Gαi/o subunits, are involved in the EGFR signal 

transactivation (Gschwind et al., 2003; Hart, 2004).   

While many studies focus on the Gα subunits, comparably little is known about the signaling 

events induced by Gβγ subunits (Jones et al., 2004). Gβγ subunits are implicated in 

intracellular calcium mobilization, stimulation of PI3K and cyclic AMP production. 

This study investigated the involvement of G protein subunits in the TMPS pathway. 

Overexpression of Gαi2, Gaq, Gα12 and Gα13 subunits as well as their constitutively active 

mutants did not significantly enhance EGFR signal transactivation in COS7 cells. Neither 

ligand-dependent nor independent EGFR signal transactivation was observed for any of the 
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studied Gα subunits (Figure 37 and Figure 38), but as there exist at least 23 Gα subunits 

derived from 17 different genes the number of possibilities are extremely high.  

Gβγ subunits are suggested to play an important role in the Gi mediated activation of the 

MAPK Erk 1/2 (Crespo et al., 1994; Faure et al., 1994). In mammals, 6 Gβ and 12 different 

Gγ subunits are expressed.  

Among these, this study focused on the actions of the Gβ1γ2 subunit in the EGFR signal 

transactivation. Coexpression of Gβ1 and Gγ2 was performed, because it was discovered that 

only the Gβγ dimer is sufficiently stable (Luttrell et al., 1997). Overexpression of the Gβ1γ2 

subunit was able to activate the EGFR and the downstream target Erk 1/2 in a ligand-

independent manner in Rat1 and HEK293 cells (Figures 40 and 41). In SCC9 and COS7 cells 

EGFR activation due to Gβ1γ2 overexpression could not be observed. Therefore, the Gβ1γ2 

subunit was able to mediate EGFR signal transactivation and subsequent Erk 1/2 activation in 

the cellular context of Rat1 and HEK293 cells (Figure 40 and Figure 41).  

 

4.9 Perspectives 

 

Given the importance of EGFR signaling pathways in pathophysiological disease, the factors 

leading to the EGFR signal transactivation, especially the pathway resulting in the activation 

of the metalloprotease have to be elucidated.  

The mechanism leading to the specificity of the ADAM proteins for different EGF-like 

ligands requires further analysis as the same ADAM has varying specificity in different cell 

lines. One possible strategy might be to identify intracellular binding partners of ADAM 

protein using a membrane-based yeast two hybrid screen or pull-down assays.  

It was shown that the β2-adrenergic receptor co-immunoprecipitates with the EGFR receptor 

in stimulated COS7 cells suggesting the formation of a macromolecular complex containing 

other elements of the TMPS pathway (Maudsley et al., 2000).  This preclustering of GPCRs 

with ADAM metalloproteases and EGF-like ligands could be an explanation for the variation 

in specificity of the metalloprotease depending on the stimulus, even though other  

EGF-like ligands are present. Lipid raft experiments as well as FRET (Fluorescence 

Resonance Energy Transfer) or BRET (Bioluminescence Resonance Energy Transfer) 

analysis are further options to verify this hypothesis. In addition, it needs to be clarified if the 

activity of the metalloprotease is regulated by phosphorylation events.  
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A broad spectrum siRNA screening can help to further elucidate the role Gα and Gβγ subunits 

in the EGFR signal transactivation pathway. Additionally, it would be interesting to study the 

involvement of other second messengers such as Ca2+-influx. Further, the role of the recently 

described GPCR oligomerization in the EGFR signal transactivation pathway is of great 

interest (Breitwieser, 2004).  

As stimulation of the LPA receptors does not solely lead to the transactivation of the EGFR 

signal pathway, the importance of both independent pathways in cancer cell development 

have to be further and differentially analyzed. If there is a shift mechanism leading to an 

increase in signal transduction via the EGFR, this mechanism needs to be identified.  

Specific inhibition of single components of the TMPS using low molecular weight inhibitors 

or blocking antibodies can help to gain new insights into the physiological role of this 

pathway and will provide novel therapeutic targets for disease intervention. 

Hardly any in vivo data exists that provides support for the relevance of the EGFR signal 

transactivation pathway. Further, in vivo studies of the EGFR transactivation pathways can 

substantiate the data collected in in vitro studies and prove the relevance of the EGFR signal 

transactivation pathway. EGFR knockout mice have a similar phenotype like TACE knockout 

mice (Hansen et al., 1997). Furthermore, it was demonstrated that TACE regulates TGFα 

ligand availability in vivo (Peschon et al., 1998). HB-EGF knockout mice which mostly die 

early have enlarged, dysfunctional hearts and poorly differentiated lungs (Jackson et al., 

2003). An ADAM 10-deficient mouse displays multiple defects of the central nervous system, 

the somites and the cardiovascular system (Hartmann et al., 2002). Triple null mice lacking 

EGF, amphiregulin, and TGFα are growth retarded and showed intestinal defects (Troyer et 

al., 2001). Mice deficient for three LPA receptors show dysmorphism of the head, 

semilethality due to defective suckling behaviour and generation of a small fraction of pups 

with frontal haematoma (Contos et al., 2002). Further analysis of the EGFR pathway in these 

knock out mice can confirm the existing in vitro data and will give rise to the validation of 

targets of anti-tumor therapy and lead to the development of novel intervention therapies.  
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5 Summary 

 

The most important results from this study were the following: 
 

Reconstitution of LPA receptor expression in McA-RH7777 lead to Erk 1/2 activation 

induced by LPA stimulation depending on a metalloprotease, an EGF-like ligand and RTK 

activity, but was independent of PI3K and src kinase function. Therfore, the activation of a 

TMPS-like pathway was suggested although the direct involvement of the EGFR could not be 

demonstrated. 
 

In A498 cells, the amount of EGFR on the cell surface was not a limiting factor in the EGFR 

transactivation pathway as double stimulation of two independent pathways converging at the 

EGFR was not limited. The involvement of ADAM 10 in Thrombin mediated EGFR signal 

transactivation could be demonstrated by expression of a siRNA construct in A98 cells. 
 

In invasive breast cancer cells Edg2 was upregulated and for the examined breast derived 

cells Edg2 possessed a gene regulation which was similar to the metalloproteases MMP14 

and ADAM12 as well as the metalloprotease inhibitors TIMP1, 2 and 3 and the EGF-like 

ligand HB-EGF.  These genes were observed in one closely related cluster in cDNA array 

analysis. The gene regulation of the EGFR is part of the same cluster as its preferred 

dimerisation partner HER2. However, they were found in a cluster separate from the other 

components of the TMPS pathway. The EGFR expression levels were inversely correlated to 

the invasive potential of these breast cancer cells. 
 

For the first time, the direct involvement of the LPA receptor Edg2 in the EGFR signal 

transactivation pathway was demonstrated both for breast and kidney cancer cells with the 

LPA receptor inhibtor Ki16425. LPA induced wound closure in these cells was not 

exclusively mediated by the EGFR transactivation pathway as the direct inhibition of the LPA 

receptor Edg2 completely abrogated wound closure, while in comparison the broad spectrum 

metalloprotease inhibitor BB94 and the EGFR inhibitor AG1478 merely lead to reduced 

wound closure. 
 

While overexpression of the Gβ1γ2 subunit ligand-independently activated the EGFR signal 

transactivation pathway in a certain cellular context, the Gα subunits and their oncogenic 

mutants did not activate the TMPS pathway neither ligand dependent nor independent. 
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Ab        Antibody 
ADAM       A disintegrin and metalloprotease domain 
Amp       Ampicilline 
Ampr        Ampicilline resistence 
APS        Ammoniumpersulfate 
AR        Amphiregulin 
ATP        Adenosintriphosphate 
bp        Base pairs 
BSA        Bovine serum albumin 
°C        Degree celsius 
cAMP        Cyclic adenosinmonophosphate 
Ca2+

        Calcium Ions 
CaM Kinase       Ca2+-calmodulin-dependent kinase 
c-fos        Cellular homologue to v-fos (FBJ murine 

osteosarcoma viral oncogene) 
c-jun   Cellular homologue to v-jun (avian 

sarcoma virus 17 oncogene) 
DAG        Diacylglycerol 
DMEM       Dulbecco's modified eagle medium 
DN        Dominant negative 
DMSO       Dimethylsulfoxide 
DNA        Desoxyribonukleic acid 
dsDNA       Dooble-stranded DNA 
DTT        Dithiothreitol 
ECL        Enhanced chemiluminescence 
EDTA        Ethlendiamintetraacetate 
EGF        Epidermal growth factor 
EGFR        Epidermal growth factor receptor 
EGTA        Ethylene glycol-bis(2-aminoethyl)- 

N,N,N',N'-tetraacetic acid 
ERK        Extracellular signal-regulated kinase 
FAK        Focal adhesion kinase 
FCS        Fetal calf serum 
FGF        Fibroblast growth factor 
FGFR        Fibroblast growth factor receptor 
Fig        Figure 
g        Gramm 
Gab1        Grb2-associated binder-1 
Gab2        Grb2-associated binder-2 
GDP        Guanosindiphosphate 
GPCR        G protein-coupled receptor 
Grb2        Growth factor receptor binding protein 2 
GST        Glutathion-S-transferase 
GTP        Guanosintriphosphate 
h        Hour 
HA        Hemagglutinin 
HB-EGF       Heparin-binding EGF-like growth factor 
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H2Obidest       Twice-destilled, deionised Water 
HEPES       N-(2-Hydroxyethyl)-piperazin-N‘-2- 

Ethansulfonic acid 
HER        Human EGFR-related 
HNSCC       Head and neck squamous cell carcinoma 
Ig        Immunglobulin 
IP        Immunoprecipitation 
IP3        Inositol-1,4,5-trisphosphate 
IPTG        Isopropyl-ß-thiogalactopyranoside 
JNK        c-Jun N-terminal kinase 
kb        Kilobase 
kDa        Kilodalton 
l        Liter 
LPA        Lysophosphatydic acid 
µ        Micro 
m        Milli 
M        Molar 
MAP        Mitogen-activated protein 
MAPK       MAP kinase 
MBP        Myelin basic protein 
MEK       MAPK/ERK Kinase 
min        Minute 
MMP        Matrix metalloprotease 
n        Nano 
OD        Optical density 
p.a.       Per analysis 
PBS        Phosphate-buffered saline 
PCR        Polymerase chain reaction 
PDGF        Platelet-derived growth factor 
PEG        Polyethylenglycole 
PI 3K        Phosphatidylinositol 3-kinase 
PIP2        Phosphatidylinositol-4,5-diphosphate 
PKC        Protein kinase C 
PLC        Phospholipase C 
PMSF        Phenylmethylsulfonyl-fluoride 
PNPP        p-Nitrophenyl-phosphate 
PTX        Pertussis toxin 
PY        Phospho-tyrosine 
Raf        Homologue to v-raf (murine sarcoma viral 

oncogene) 
Ras   Homologue to v-ras (rat sarcoma viral 

oncogene) 
RNA        Ribonucleic acid 
rpm        Rotations per minute 
RT        Room temperature 
RTK        Receptor tyrosine kinase 
SAPK        Stress-activated protein kinase 
S. D.        Standard deviation 
SDS        Natriumdodecylsulfate 
SDS-PAGE       SDS polyacrylamide gel electrophoresis 
sec       Second 
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SH2, 3       domain Src homology 2, 3 domain 
SHP-2        SH2-containing PTP-2 
Sos        Son of sevenless 
src   Homologue to v-src (sarcoma viral 

oncogene) 
TACE        TNFα-converting enzyme 
TCA        Trichloroacetic acid 
TGFα        Transforming growth factor alpha 
TEMED       N, N, N‘, N‘-Tetramethyletylendiamine 
Tet       Tetracycline 
TNFα                  Τumor necrosis factor alpha 
TPA        12-O-Tetradecanoyl-phorbol-13-acetate 
Tris        Tris(hydroxymethyl)aminomethan 
Tween 20       Polyoxyethylensorbitanmonolaureate 
U        Enzymatic activity unit 
o/n        Overnight 
UV        Ultraviolett 
V        Volt 
Vol        Volume 
wt        Wild type 
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