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Zusammenfassung

In der Quantenfeldtheorie treten Singularitäten auf, die im Rahmen des Standardmodells
der Teilchenphysik nur unter Verwendung von Renormalisierung behoben werden können.
Ebenso findet sich im derzeitigen Standardmodell keine Möglichkeit, Gravitation zu quan-
tisieren und damit die Basis für eine vereinheitlichte Feldtheorie zu schaffen. Die Effekte,
die zu diesen Problemen mit dem Standardmodell führen, resultieren aus dem quanten-
mechanischen Verhalten im Bereich der Planck-Länge. Insbesondere der Einfluss quanten-
mechanischer Effekte auf die Struktur des Raumes legt nahe, auch den Raum selbst durch
nichtkommutative Strukturen zu beschreiben. Diese Strukturen werden explizit dadurch
beschrieben, dass die Funktionenalgebra des kommutativen Raumes durch eine Algebra
nichtkommutativer Koordinaten ersetzt wird.
Eine besondere Rolle spielen in diesem Zusammenhang Quantenräume, bei denen nicht
nur die Raumstruktur deformiert wird, sondern gleichzeitig auch die Symmetriegruppe des
Raumes abgeändert wird, sodass die Symmetrien des Raumes nicht gebrochen werden.
Die vorliegende Arbeit beschäftigt sich damit, Elemente der nichtkommutativen Analy-
sis in den kommutativen Raum zu übertragen. Im ersten Kapitel wird eine Möglichkeit
präsentiert, wie das Produkt zweier Elemente der nichtkommutativen Algebra auf die kom-
mutative Algebra übertragen werden kann. Unter der Verwendung spezieller Vektorfelder
wird ein verallgemeinertes Sternprodukt in Form einer geschlossenen Formel angegeben
werden, sodass störungsrechnerische Ansätze verallgemeinert werden können.
Auch die üblichen partiellen Ableitungen werden in der nichtkommutativen Algebra einge-
bettet. Die daraus resultierende Wirkung wird für den Fall des q−deformierten Euklidi-
schen Raumes in n Dimensionen - dargestellt auf dem entsprechenden kommutativen
Raum - explizit angegeben, ebenso wie die durch die Nichtkommutativität veränderte Leib-
nizregel.
Die nichtkommutative Algebra beinhaltet bis zu diesem Punkt noch keinen Operator, der
einer Integration entsprechen würde. Um die Algebra jedoch nicht noch mehr erweitern zu
müssen, bietet sich in diesem Fall noch eine weitere Möglichkeit an: es wird die durch die
partiellen Ableitungen induzierte Gitterstruktur des Raumes ausgenutzt, um das unbes-
timmte Integral als Summe über die Funktionswerte an allen Gitterpunkten zu beschreiben.
Für einige Quantenräume lassen sich damit gute Ergebnisse erzielen. Der anschliessend
konstruierte Hilbertraum bietet dafür die nötige mathematische Basis und die Möglichkeit,
darüberhinaus das zuvor definierte Integral als Spur eines speziellen Spurklasse-Operators
darzustellen.



ii Zusammenfassung



Contents

Zusammenfassung i

1 Introduction 1

2 ?−products 5

2.1 Introduction to ?−products . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Gauge group action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Further properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Algebras and ?−products . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Algebra generator orderings . . . . . . . . . . . . . . . . . . . . . . 10

2.4.2 Equivalence of ?−products . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Formulation of ?−products with commuting vector fields . . . . . . . . . . 11

2.5.1 Definitions and proof of associativity . . . . . . . . . . . . . . . . . 12

2.5.2 Linear transformations . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.3 Reconstruction of algebras . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Examples for ?−products in two dimensions . . . . . . . . . . . . . . . . . 15

2.6.1 a-Euclidean space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6.2 General linear vector fields . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.3 Vector fields in general spherical coordinates . . . . . . . . . . . . . 16

2.6.4 Vector fields in spherical coordinates on the unit circle . . . . . . . 17

2.7 Examples for ?−products constructed from quantum spaces . . . . . . . . 17

2.7.1 The quantum space M(soa(n)) . . . . . . . . . . . . . . . . . . . . 18

2.7.2 q-deformed Heisenberg algebra . . . . . . . . . . . . . . . . . . . . . 18

2.7.3 The Lie algebra so(3) . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7.4 The quantum space M(soq(3)) . . . . . . . . . . . . . . . . . . . . . 20

2.7.5 The quantum space M(soq(1, 3)) . . . . . . . . . . . . . . . . . . . 22

2.7.6 The quantum space M(soq(4)) . . . . . . . . . . . . . . . . . . . . . 24

2.7.7 4-dimensional q-deformed Fock space . . . . . . . . . . . . . . . . . 26

3 Leibniz rule on the n-dimensional q-deformed Euclidean space 31

3.1 ?−product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Leibniz rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



iv Contents

4 Integration on q−deformed Quantum spaces 37

4.1 Ideas and interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 1-dimensional quantum space with an explicit example . . . . . . . . . . . 39
4.3 3-dimensional Euclidean space . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 4-dimensional Euclidean space . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 q−deformed Minkowski space . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6 κ−deformed Minkowski space . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.7 n−dimensional Euclidean space . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Construction of a Hilbert space 53

A Notations 59

B Action of ∂̂+ and ∂̂0 in the Minkowski space 61

Bibliography 65

Danksagungen 68

Lebenslauf 70



List of Figures

4.1 1-dimensional lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Riemann integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



vi List of figures



Chapter 1

Introduction

One of the main problems in Quantum Field Theory (QFT) is the way how to join QFT
and General Relativity in a consistent way. It seems that for very small distances it is
impossible to study the geometry of the space. Consider a cube in space with each edge
of Planck’s length or less. Measuring simultaneously the three coordinates x, y and z of a
particle in the cube, the uncertainty relation gives big errors for the momenta and therefore
big uncertainty of the energy ∆E. The smaller the cube the bigger is the energy required to
measure its dimensions. Beyond certain energies in this way a black hole could be created.
Therefore the observation of the geometry of the space gives a different geometry, which
makes the observation useless.

A similar problem has already been known in quantum mechanics where one cannot mea-
sure some quantities simultaneously. In the language of operators this means that the two
corresponding operators do not commute. But in quantum mechanics the operators corre-
sponding to the three space coordinates commute, which leads to the black holes problem.
One way to avoid this is to assume that the coordinate operators should not commute.
Therefore coordinates cannot be measured simultaneously. This means that the commu-
tative algebra generated by the operators x̂, ŷ and ẑ, which is isomorphic to the algebra of
polynomials on R3, is replaced by a non-commutative algebra on a quantum space [35]. In
order to obtain self-adjoint operators this algebra should be a ∗-algebra.

In general deforming just the space leads to a breaking of the space-time symmetry. In
order to preserve the notion of a space-time symmetry one has to deform the symmetry
group together with the space it acts on.

From the symmetry point of view, Lie groups are of particular interest in physics. Unfor-
tunately they cannot be continuously deformed within their proper category, since they
form a countable and hence discrete set. But since they are manifolds they can be natu-
rally embedded in the category of algebras by the Gel’fand-Naimark map [17, 28], so that
the additional group structure on the manifold side is translated into a Hopf algebra on
the algebra side. Until then hardly any non-trivial example for Hopf algebras was known.
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That changed with the discovery of quantum groups [14].

Quantum groups are deformations of usual groups, but they are constructed in the way
that they are compatible with the structure of the underlying quantum space. Then it is
possible to write down free theories on non-commutative spaces as theories on commuta-
tive spaces with deformed interactions, for example a new multiplication called ?−product.
Some physical relevant examples are deformations of the rotation group [24], the Lorentz
group [8, 30, 33, 34] and the Poincaré group [31].

Another property of these deformed theories is that deformations discretise the spectra
of space-time observables [16]. Therefore it looks like the deformation puts physics on
a space-time lattice, which leads to the hope that field theories might be regularised by
themselves.

The aim of this thesis is to work out some tools for non-commutative analysis in quantum
spaces. In the first chapter, based upon a close collaboration with A. Sykora [18], we
construct a generalised Moyal-Weyl ?−product by using Hamiltonian vector fields instead
of derivatives. This ansatz leads to a closed formula for the ?−product and gives an easy
procedure for the construction of a wide class of ?−products.
Subsequent to the earlier work on representation of operators on quantum spaces [2] in
Chapter 2 we give the deformed action of derivatives on SOq(n) and additionally their
Leibniz rules in a closed formula. The results are represented on the commutative space
via the ?−product also calculated here.
Following the requirements of physics in the third chapter we construct an integral on
quantum spaces. We follow the classical construction of integrals by Riemann and use the
lattice structure induced by the non-commutative action of the derivatives. For most of the
treated examples this leads to a straightforward summation formula, also easily applicable
to computerised simulations.
The question arising from the previous chapter is whether and for which functions the
integral converges. In Chapter 4 we construct for this a Hilbert space and show that on
this space the integral converges. Furthermore we can express it in terms of a trace via a
trace-class operator.

This thesis gives a few tools for the future work with quantum groups on quantum spaces.
The ?−product constructed in the first chapter might be interesting especially in those
cases, where until now just a perturbative ?−product was available. This enables deeper
analysis of such theories, the group around Julius Wess actually works on.
On one hand the results for the q−deformed n−dimensional Euclidean space are interesting
in mathematics for the analysis of the structure of this space. On the other hand they can
be used to obtain results in a q−deformed n−dimensional Minkowski space by applying a
Wick rotation, since we found no direct way to achieve the integral in Chapter 3.
The integrals found for the other q−deformed Euclidean spaces make it possible to cal-
culate integrals of functions and therefore also for differential equations explicitly. This
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simplifies the analysis of equations and functions on these spaces.
Constructing a Hilbert space for which the integrals converge gives a clear mathematical
background for the integration defined in Chapter 3, on which further work concerning the
properties of the integral can be done.
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Chapter 2

?−products

2.1 Introduction to ?−products

In classical mechanics as well as in quantum mechanics the aim of physicists is to study
the time evolution of a system. In classical mechanics observables are smooth functions
C∞(M) on a Poisson manifold M. They form a commutative algebra. In quantum me-
chanics the set of possible states forms a Hilbert space H with self adjoint operators as
physical observables. They form a non-commutative C∗-algebra.
There are various methods to connect a Poisson manifold with a Hilbert space formula-
tion (see [1, 7]). One of them is via the so-called deformation quantisation, introduced in
[4, 5]. Instead of constructing a Hilbert space first, one just works on the algebra. Since
the product of classical observables is commutative and the one of operators of a quantum
system is not, the idea is to deform the commutative product to a non-commutative, asso-
ciative product. This deformed product has to carry over the necessary relations between
classical and quantum system, so one of its properties is that it contains the classical limit
for vanishing deformation parameter.

We start with a Poisson algebra A = C∞(M) of smooth functions on M. To deform
the point wise product on A we define a family of products depending on a deformation
parameter h :

×h : A × A → A

(f, g) → f ×h g

where ×0 would be the undeformed commutative product. Demanding the new product to
depend smoothly on the deformation parameter, we express ×h in terms of formal power
series in h. But then f ×h g is no longer in A but in A[[h]]1:

×h : A × A → A[[h]].

1A[[h]] here means the set of all formal power series in h with coefficients in the algebra A.
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By linearity this product can be extended to a product of elements in A[[h]] :

? : A[[h]] × A[[h]] → A[[h]]

Hence we can define ?-products:

Definition 1 A deformed product or ?−product in A is an associative, h−adic con-

tinuous, C bilinear product

? : A[[h]] × A[[h]] → A[[h]]

that takes the particular value on A :

f ? g =
∞∑

n=0

Bn(f, g)hn

f ? g|h=0 = fg

where Bn : A × A → A are bi-differential operators.

The condition of associativity on A which extends to A[[h]]

f ? (g ? h) = (f ? g) ? h

then goes to ∑

m+k=n

Bm(f, Bk(g, h)) =
∑

m+k=n

Bm(Bk(f, g), h). (2.1)

That leads to supplementary conditions for the differential operators Bn. For n = 1 and
n = 2 we obtain

B1(fg, h) + B1(f, g)h = B1(f, gh) + f B1(g, h) (2.2)

B2(fg, h) + B1(B1(f, g), h) + B2(f, g)h = B2(f, gh) + B1(f, B1(g, h)) + f B2(g, h).

The first of these two equations together with its cyclic permutation of f ,g and h leads on
one hand to the Leibniz rule for the antisymmetric part B−

1 (f, g) = 1
2
(B1(f, g)−B1(g, f))

of B1

B−
1 (f, gh) = B−

1 (f, g)h + gB−
1 (f, h) (2.3)

and on the other to the Jacobi identity, so B−
1 can be identified with a Poisson bracket

{. , .} on M.

Definition 2 A quantisation of a Poisson manifold M is a ?−product on A in the sense

of Def. 1 such that B−
1 = {. , .}.

This definition is based on an idea of Paul Dirac ([13]): He suggested that, in order to
quantise, one should look for an associative, non-commutative product ∗ on A and define
the commutator {f, g} := −~

2
(f ∗ g − g ∗ f).
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An example for ?−products is the so-called Moyal-Weyl product: let M = R
n with a

Poisson structure Π = Πij∂i ∧ ∂j, Πij = −Πji = const. ∈ R and for the deformation
parameter we choose h = i~

2
to reproduce quantum mechanics. Then the Moyal-Weyl

product is defined as formal power series in Π :

f ?M g := e
i~
2

Π(f, g)

=

∞∑

n=0

(i~)n

2nn!
(Πi1j1 · · ·Πinjn)(∂i1 . . . ∂inf)(∂j1 . . . ∂jn

g) (2.4)

2.2 Gauge group action

As a generalisation of coordinate transformations we now can take C[[h]]−linear maps D,
which naturally form a gauge group acting on A2:

D : A → A[[h]]

D(f) =

∞∑

n=0

Dn(f)hn

where Dn are linear differential operators. D is invertible if and only if D0 is invertible, so
we postulate D0 = 1 and obtain its inverse E

E0 = 1

En = −
n−1∑

m=0

EmDn−m forn > 0.

If we now take a product ? and a gauge transformation D, we can think of as formal
coordinate transformation, we obtain a new product in the new coordinates f ?′ g =
D(E(f) ? E(g)) (see also [23])

A[[h]] × A[[h]]
?−−−→ A[[h]]yD×D

yD

A[[h]] × A[[h]]
?′−−−→ A[[h]]

As one can immediately see the new product ?′ is also associative and a ?−product:

f ?′ g =

∞∑

n=0

Cn(f, g)hn

Cn(f, g) =
∑

m+k+l+j=n

DmBk(Elf, Ejg) (2.5)

2and because of the C[[h]]−linearity also on A[[h]]
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Now apply the gauge transformation D on the ?−product. For (2.5) we obtain at first
order (n = 1)

C1(f, g) = B1(f, g) − fD1(g) + D1(fg) − D1(f)g. (2.6)

We see that the gauge transformation only affects the symmetric part of B1, so we always
can find a gauge transformation that makes the symmetric part vanish. Hence we can treat
(up to gauge equivalence) B1 to be anti-symmetric and gauge invariant in all calculations.
The Leibniz rule for B1 up to first order in h is then

B1(fg, h) = fB1(g, h) + gB1(f, h) (2.7)

instead of (2.3). This means that B1 is a derivation with respect to both functions f and
g.

2.3 Further properties

Since the ?-product is associative and B1 anti-symmetric, the commutator

[f ?, g] = f ? g − g ? f = 2hB1(f, g) + O(h2)

satisfies with (2.7) the Leibniz rule

[f ? g ?, h] = f ? [g ?, h] + [f ?, h] ? g (2.8)

up to all orders:

[f ? g ?, h] = (f ? g) ? h − h ? (f ? g)

= f ? (g ? h) − f ? (h ? g) + (f ? h) ? g − (h ? f) ? g

= f ? [g ?, h] + [f ?, h] ? g

Additionally the Jacobi-identity is fulfilled

[f ?, [g ?, h]] + [h ?, [f ?, g]] + [g ?, [h ?, f ]] = 0.

Up to second order this implies that B1 is a Poisson structure

{f, {g, h}} + {h, {f, g}}+ {g, {h, f}} = 0

where {f, g} = B1(f, g). So after a certain linear transformation we always can write on a
local patch of the manifold

f ? g = fg +
ih

2
Πij∂if ∂jg + · · ·

with
Πil∂lΠ

jk + Πkl∂lΠ
ij + Πjl∂lΠ

ki = 0. (2.9)

We have seen that ?-products up to second order are classified by Poisson structures on
the manifold. On the other hand, if there is a manifold with a Poisson structure {. , .}, it
is possible to construct ?-products with

f ? g = fg +
i~

2
{f, g} + · · · .
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2.4 Algebras and ?−products

Suppose we are taking RN as the manifold and parametrise it by N coordinates xi and
the antisymmetric matrix Πij = θij = const. (i, j = 1, . . . , N) fulfils the Poisson condition
(2.9). For this Poisson structure we can use (2.4) to write down a ?-product

f ? g =
∞∑

n=0

(i~)n

2nn!
θi1j1 · · · θinjn(∂i1 · · ·∂inf) (∂j1 · · ·∂jn

g) (2.10)

where f and g are functions on RN . This special case is called the Moyal-Weyl ?-product.
Since [xi ?, xj] = i~θij, the space of functions on R

N together with the ?-product forms a
representation of the algebra

A =
C <x̂1, · · · , x̂N >

R ,

where R is the ideal formed by the relation [x̂i, x̂j] = i~θij. In the following we will see
that we can do the same with other relation-defined algebras, if we fix an ordering of the
coordinates. Possibilities are Lie algebra structures like

[x̂i, x̂j] = i~Cij
kx̂

k, ~, Cij
k ∈ C

and quantum space structures as introduced in [9, 34, 39, 41]

x̂ix̂j = qRij
klx̂

kx̂l, q = e~, Rij
kl ∈ C.

Instead of considering these special relations we discuss in the following a more general
case. We assume that the algebra A is generated by N elements x̂i and relations

[x̂i, x̂j] = ˜̂c
ij
(x̂) = i~ĉij(x̂)

where we assume that the rhs. of this formula contains a parameter ~ and goes to 0, if
this parameter vanishes. Mathematically more correct we have to use a ~-adic expanded
algebra

A =
C <x̂1, · · · , x̂N > [[~]]

([x̂i, x̂j] − i~ĉij(x̂))
(2.11)

where it is possible to work with formal power series in ~. Note that this kind of algebras
all have the Poincaré-Birkhoff-Witt property since a reordering of two x̂i never affects the
polynomials of same order in ~. This means that the dimension of a subspace spanned by
monomials of a fixed degree in A is the same as the dimension of the subspace spanned
by monomials in commutative variables of the same degree. This makes it possible to
establish a vector space isomorphism between the non-commutative algebra A and the
associate commutative algebra, if only one chooses a basis in the algebra A, e.g. the
lexicographically (normal) ordered monomials.
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2.4.1 Algebra generator orderings

The first ?−product was a result of Weyl’s quantisation procedure (see [42]). Assuming
that f(qi, pj) are functions of a classical phase space C an operator is introduced by

f̂ = Ω(f) :=

∫
dn ξ dn η f̃(ξ, η)e

i
~
(q̂·ξ+p̂·η), (2.12)

where f̃ is the inverse Fourier transformed of f and the operators q̂, p̂ fulfil the canonical
commutation relations [q̂i, p̂j] = i~δij. It is possible to give the inverse of the operation
(2.12). Since the inverse operation is known one can now pull back the product of two
operators to a ordinary product on the phase space C

C ⊗ C
Ω⊗Ω−−−→ A⊗A

?

y
y·

C
Ω−−−→ A

and obtain in this way
f ? g = Ω−1(Ω(f) · Ω(g)),

which is the Moyal product on classical phase space. This quantisation procedure can also
be extended to polynomials.

The Fourier transform of a function f is

f(p) =

∫
dnx f(x)eipixi

.

For a monomial we formally obtain in RN

∫
dnx x1 · · ·xm eipixi

= (−i∂pi1
) · · · (−i∂pim

)δ(p).

The Weyl operator associated to the function f is defined by

W (f) :=

∫
dnp

(2π)n
f(p)e−ipix̂i

(2.13)

(see e.g. [26]). Hence we obtain for a monomial

W (xi1 · · ·xim) =
1

m!
∂pi1

· · ·∂pim
(pix̂

i)m

and therefore the Weyl operator really maps monomials to the corresponding symmetrical
ordered polynomial in the algebra, e.g. for three generators

W (xixjxk) =
1

3!
(x̂ix̂jx̂k + x̂ix̂kx̂j + x̂kx̂ix̂j + x̂jx̂ix̂k + x̂jx̂kx̂i + x̂kx̂jx̂i). (2.14)

A similar calculation for normal ordering leads to

N(f) =

∫
dnp

(2π)n
f(p)e−ip1x̂1 · · · e−ipnx̂n

.
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2.4.2 Equivalence of ?−products

There is an isomorphism (modulo ~) between the polynomial algebra A := CN and the

quantum space A~ := C<x̂1,...,x̂N>[[~]]
R with R being the defining relation of the quantum

space. The isomorphism µ is defined on the generators via µ(xi) = x̂i. Because it is an iso-
morphism of vector spaces, we can expand it to formal power series yielding a C[[~]]−linear
isomorphism of ~−adic vector spaces Ω : A[[~]] → A~ which we call an ordering prescrip-
tion. It is not unique. Two popular ordering prescriptions we have already given above:
the normal ordering and the symmetric or Weyl-ordering.
Using the ordering prescriptions, we can transfer the non-commutative multiplication map
m~ of A~ to A[[~]] by requiring

A[[~]]⊗̂A[[~]]
Ω⊗Ω−−−→ A~⊗̂A~ymΩ

ym~

A[[~]]
Ω−−−→ A~

to be a commutative diagram, where ⊗̂ denotes the topological tensor product. The
transfered multiplication map

mΩ := Ω−1 ◦ m~ ◦ (Ω ⊗ Ω)

is our ?−product. By this construction we easily can see that another ordering prescrip-
tion Ω′ yields another multiplication map mΩ 6= mΩ′, but the algebras are isomorphic:
(A[[~]], mΩ) ' (A[[~]], mΩ′), with Ω−1 ◦ Ω′ being an isomorphism.
In less mathematical terms the ?-product reads as

Ω(f ?Ω g) = Ω(f)Ω(g) (2.15)

for two functions f and g in A[[~]]. If we had used another ordering description Ω′, we
would obtain

f ?Ω′ g = D−1(D(f) ?Ω D(g)) (2.16)

with D = Ω−1Ω′. The choice of different ordering prescriptions is equivalent to taking a
different gauge of ?-product.

2.5 Formulation of ?−products with commuting vec-

tor fields

The ?−products in [6, 36] are given up to second order, since no closed formula could
be found. However, it is possible to generalise the results to a closed formula. For this
we replace the partial derivatives in the Moyal-Weyl formula by commuting vector fields,
since they have the same algebraic properties. Then the associativity of this ?−product
is proved and a formalism of how to obtain the desired algebra relations is found. In the
next section we show the way our ?−product works for some illustrative two-dimensional
examples.
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2.5.1 Definitions and proof of associativity

Let Xj = X i(xj)
∂

∂(xj)i be the components of a vector field X (not necessarily complete)

with different coordinates xj = ((xj)
1, . . . , (xj)

n) and fj = f(xj) formal power series in the
coordinates. We then introduce the following notation

Xjfj = X i(xj)
∂

∂(xj)i
f(xj),

where (xj)
i means the i-th component of the coordinate vector xj. With this we can write

down the Leibniz rule in a intuitive way:

X1f1g1 = (X2 + X3)f2g3|2,3→1

X l
1f1g1 = (X2 + X3)

lf2g3

∣∣
2,3→1

P (X1)f1g1 = P (X2 + X3)f2g3|2,3→1

where P is a polynomial in X. The last equation we also could write in the form

P (X1)
(

f2g3|2,3→1

)
= P (X2 + X3)f2g3|2,3→1 . (2.17)

This we expand for n commuting vector fields Xa = X i
a∂i, i.e. [Xa, Xb] = 0. Further let

σab be a constant matrix. Then we can define a ?-product via

(f ? g)|1 := eσabXa2Xb3f2g3

∣∣∣
2,3→1

. (2.18)

This ?-product is associative since

(f ? (g ? h))|1 = eσabXa2Xb3f2

(
eσcdXc4Xd5g4h5

∣∣∣
4,5→3

)∣∣∣∣
2,3→1

= eσabXa2(Xb4+Xb5)f2e
σcdXc4Xd5g4h5

∣∣∣
4,5→3;2,3→1

= eσabXa1Xb2+σabXa1Xb3eσcdXc2Xd3f1g2h3

∣∣∣
2,3→1

and

((f ? g) ? h)|1 = eσabXa1Xb2

2

(
eσcdXc3Xd4f3g4

∣∣∣
3,4→1

)
h2

∣∣∣∣
2→1

= eσab(Xa3+Xa4)Xb2eσcdXc3Xd4f3g4h2

∣∣∣
3,4,2→1

= eσabXa1Xb3+σabXa2Xb3eσcdXc1Xd2f1g2h3

∣∣∣
2,3→1

where we used the relation (2.17). The two expressions are equal since the vector fields
commute.
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For antisymmetric σ one obtains for the ?-commutator

[f ?, g] =
(
eσabXa1Xb2 − e−σabXa1Xb2

)
f1g2

∣∣∣
2→1

= 2 sinh(σabXa1Xb2)f1g2

∣∣
2→1

.

Further on we take two vector fields X1 = X and X2 = Y .

With σ12 = h, σ21 = 0 we get for an asymmetric ?−product

f ? g =
∞∑

n=0

hn

n!
(Xnf) (Y ng), (2.19)

while for σ12 = h
2
, σ21 = −h

2
we have an antisymmetric ?−product

f ? g =
∞∑

n=0

hn

2nn!

n∑

i=0

(−1)i

(
n

i

)
(Xn−iY if) (X iY n−ig). (2.20)

2.5.2 Linear transformations

In (2.16) we have seen that we can transfer one ?−product into another by a linear trans-
formation on the space of functions for two different orderings in the sense of the previous
section.
Let D be such an invertible operator and let its expansion in derivatives start with
O(0) = 1. Additionally we assume that D is of the form

D = eτ(Xa), D−1 = e−τ(Xa) (2.21)

where τ is a polynomial in the vector fields Xa. For the ?−product (2.18) we then obtain
together with (2.21)

f ?′ g = D−1(D(f) ? D(g))

= e−τ(Xa1)

(
eσabXa2Xb3eτ(Xa2)f2e

τ(Xa3)g3

∣∣∣
2,3→1

)

= e−τ(Xa2+Xa3)+σabXa2Xb3+τ(Xa2)+τ(Xa3)f2g3

∣∣∣
2,3→1

.

For τ only quadratic in the Xa (τ ab
2 is symmetric, since the vector fields commute)

τ = τ a
1 Xa + 1

2
τab
2 XaXb

we have
τ(Xa1) + τ(Xa2) − τ(Xa1 + Xa2) = −τ ab

2 Xa1Xb2

and the new ?-product becomes

f ?′ g = e(σab−τab
2

)Xa1Xb2f1g2

∣∣∣
2→1

. (2.22)
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Therefore the antisymmetric ?-product (2.20) and the asymmetric ?-product (2.19) are
related by a linear transformation in function space:

f ?′ f = eσ′abXa1Xb2f1g2

∣∣∣
2→1

= e(σab−τab
2

)Xa1Xb2f1g2

∣∣∣
2→1

=⇒ σ′ab = σab − τ ab
2 .

With σ′ being the antisymmetric matrix from above and σ the asymmetric one we obtain
explicitly τ 12

2 = τ 21
2 = h

2
, so we can write for the relation between the two ?−products

f ?′ g = e−τab
2 Xa1Xb2f ? g.

2.5.3 Reconstruction of algebras

The ?−commutator [. ?, .] of a ?−product is a Poisson tensor up to first order (see sec-
tion 2.3), so we can calculate the Poisson tensor of a given algebra quite easily from the
?−commutator relations. The algebra we want to reconstruct reads in terms of generators
as follows

[x̂i, x̂j] = hW (cij(x))

with W mapping the commutative coordinates to the algebra elements (see also equation
(2.14)). This directly leads to the Poisson structure of this algebra:

{xi, xj} = cij(x).

On the other hand for the ?-commutator of a general ?-product it holds that if it is expanded
up to first order in the following way

[f ?, g] = h{f, g} + O(h2)

= hΠ(f, g) + O(h2),

where Π is the Poisson-bivector of the Poisson structure, one directly obtains the Poisson
structure of the algebra. For the special case for the ?-products (2.18) it is given by

Π = σabXa ∧ Xb.

So if we are able to write a general Poisson bivector in this special form, we can reconstruct
the algebra relations under use of the ?-products (2.18).

Let f now be a function and Xf = {f, .} the Hamiltonian vector field associated to f .
Then the commutator of two Hamiltonian vector fields is

[Xf , Xg] = X{f,g}
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due to the Jacobi identity of the Poisson bracket. If we can find functions, not necessarily
unique, with

{fi, gj} = δij, {fi, fj} = 0, {gi, gj} = 0, (2.23)

then all commutators between the associated Hamiltonian vector fields vanish. The Split-
ting theorem for Poisson manifolds [38] tells us that this is possible in a neighbourhood of
a point if the rank of the Poisson tensor is constant around this point. Since we do not
want to find a ?-product on R

N , but a ?-product with certain commutation relations, we
can reduce RN by the set of points where the rank of the Poisson tensor jumps and we
have a good chance to find functions with the desired properties on the new manifold. In
this case we can write the Poisson tensor as

Π =
∑

i

Xfi
∧ Xgi

.

In the following we give functions fi and gi for Poisson tensors of several algebras and use
the corresponding Hamiltonian vector fields in the ?−products (2.18). We calculate the
?−algebra relations coming from the ?−product and compare them to the original algebra
relations.

2.6 Examples for ?−products in two dimensions

For these examples we just use the asymmetric ?−product (2.19) and special Hamiltonian
vector fields (which we do not justify for the moment). We obtain the ?−products for the
algebra of the two dimensional Euclidean space and calculate the ?−product for commuting
general linear Hamiltonian vector fields which includes the Manin plane. Then we treat
the case of derivatives in spherical coordinates and the same for the unit circle x2 +y2 = 1.
First we have to find two commuting Hamiltonian vector fields. Then we calculate how
powers of these vector fields act on coordinates, so we first do Xnx, Xny, Y nx and Y ny.
The results we insert into equation (2.19). With the ?−products of the coordinates it is
easy to get the according ?−commutator.

2.6.1 a-Euclidean space

The vector fields we use are X = x∂x and Y = ia∂y. With h = 1 we obtain

x ? x = x2,

x ? y = xy + iax,

y ? x = xy,

y ? y = y2

and
[x ?, y] = iax,

which is the algebra of two dimensional a-Euclidean space [11, 12].
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2.6.2 General linear vector fields

Here we use the general linear vector fields X = (a + bx)∂x and Y = (c + dy)∂y. For the
coordinates we obtain in this general linear case

x ? x = x2,

x ? y = xy + (ebd − 1)(y + c
d
)(x + a

b
),

y ? x = xy,

y ? y = y2.

The commutation relations then read

x ? y = (ebd − 1)(y + c
d
) ? (x + a

b
), b, d 6= 0.

Particular algebras we get, if we take special values for the parameters. For a, c = 0 we
obtain

a = c = 0 : [x ?, y] = (ebd − 1)y ? x,

a = 0 : [x ?, y] = (ebd − 1)(y + c
d
) ? x,

c = 0 : [x ?, y] = (ebd − 1)y ? (x + a
b
).

The first relation is exactly that of the two dimensional Heisenberg algebra, the other ones
show up a similar structure, but lead to a transformation in ones of the coordinates.
If we take b, d = 0 the ?−product of x and y has to be rewritten, since 1

b
and 1

d
are not

defined. We then obtain

b = d = 0 : [x ?, y] = ac = const.,

b = 0 : [x ?, y] = c(a + bx),

d = 0 : [x ?, y] = a(c + dy),

where the first case corresponds to the θ = const. case treated in various recent publications
[10, 22, 40] and the other cases to algebras like the a−Euclidean space.

2.6.3 Vector fields in general spherical coordinates

The vector fields X = a√
x2+y2

(x∂x + y∂y), Y = x∂y − y∂x we use in this case are the

derivatives ∂r and ∂θ in spherical coordinates x = r cos θ, y = r sin θ. The ?−product
provides

x ? x = x2 − axy
r
,

x ? y = xy + ax2

r
,

y ? x = xy − a y2

r
,

y ? y = y2 + axy
r
,

which leads to
[x ?, y] = a

√
x ? x + y ? y.
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2.6.4 Vector fields in spherical coordinates on the unit circle

Simplifying the previous case by taking the unit circle x2 + y2 = 1 we have for the vector
fields X = a(x∂x + y∂y), Y = x∂y − y∂x. We find for the coordinates

x ? x = x2 cos a − xy sin a,

x ? y = xy cos a + x2 sin a,

y ? x = xy cos a − y2 sin a,

y ? y = y2 cos a + xy sin a,

x ? x + y ? y = (x2 + y2) cos a,

x ? y − y ? x = (x2 + y2) sin a.

To compute the last two equations we only used the ?−products of the coordinates from
above. Altogether we obtain

[x ?, y] = (tan a)(x ? x + y ? y).

This algebra does not have the Poincaré-Birkhoff-Witt property for tan a = 1, so we have
to treat a as a formal parameter.

2.7 Examples for ?−products constructed from quan-

tum spaces

In the previous section we calculated ?−products by taking Hamiltonian vector fields.
We gave no justification for how the vector field looked like. In this chapter we want to
show the whole way of constructing a ?−product only with the help of the algebra relations.

First we obtain the Poisson tensor by using the algebra relations of the quantum space.
We know that the functions the needed Hamiltonian vector fields are based on have to
satisfy the equation

{f, g} = 1

with the calculated Poisson structure. With this we get the vector fields by

Xf = {f, . }.

Then we can follow the way we worked out in the previous section.

We show how this construction works for the q−deformed Heisenberg algebra. The also
treated Lie algebra so(3) is given as well as the q−deformed Euclidean spaces in three and
four dimensions. The quantum spaces with more physical relevance are the q−deformed
Minkowski space M(soq(1, 3)), the q−deformed Fock space in four dimensions and the
a−deformed n−dimensional Euclidean space we want to start with.
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2.7.1 The quantum space M(soa(n))

The quantum space we want to investigate in this section was first introduced in [25]. It is
covariant under the quantum group SOa(n) and has a nontrivial center. The reason for us
to choose it as the first example in this section is its weak deformation, which leads to con-
cise formulae for the ?−product. This space is closely related to the ?−product for the two
dimensional a-euclidean space given above. But since we are using the n−dimensional gen-
eralisation introduced in [11, 12] in the following we just call it SOa(n) covariant quantum
space or abbreviated M(soa(n)). Its algebra relations are

[x̂0, x̂i] = iax̂i for 0 < i < n − 1, (2.24)

where a ∈ R. For all generators it holds that [x̂i, x̂j] = 0. The Greek indices run from 0 to
n − 1, the Latin ones from 1 to n − 1.
As manifold we take Rn with coordinates x0 and xi and use the asymmetric ?−product
(2.19) with the two vector fields

X = xi∂i, Y = ia∂0, (2.25)

where h = 1. With this we get for the coordinates

xi ? xj = xixj,

xi ? x0 = xix0 + iaxi,

x0 ? xi = xix0,

x0 ? x0 = (x0)2

and thus for the algebra relations

[xi ?, x0] = iaxi,

which are the algebra relations (2.24).

2.7.2 q-deformed Heisenberg algebra

We consider the q-deformed Heisenberg algebra [39] in two dimensions

x̂ŷ = qŷx̂ + θ (2.26)

for which we calculate a ?-product in q = eh and θ. The algebra relations have to be written
in Weyl-ordered form to obtain the Poisson structure in the way described in section 2.5.3:
first by a general ansatz

[x̂, ŷ] = a
x̂ŷ + ŷx̂

2
+ b

for which we find a = 2 q−1
q+1

and b = 2θ
q+1

. This we have to be expanded in h. Then the
Poisson tensor Π is

Π = (xy +
θ

h
)∂x ∧ ∂y.
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We see that f = ln(xy + θ
h
) and g = ln y fulfil the requirement

{f, g} = 1

to assure the commutativity of the two vector fields. With this the Hamiltonian vector
fields become

X = Xf = {ln(xy + θ
h
), .} = y∂y − x∂x,

Y = Xg = {ln y, .} = −(x + θ
hy

)∂x.

With regard to the ?−product we calculate the action of powers of the vector fields on the
coordinates

Xn(x) = (−1)nx,

Xn(y) = y,

Y n(x) = δn0x + (−1)n(x + θ
hy

)δni, i > 1

Y n(y) = δn0y.

For the asymmetric ?−product (2.19) this yields

x ? y = xy,

y ? x = e−hxy + (e−h − 1) θ
h
.

For the antisymmetric ?−product (2.20) we obtain

x ? y = e
h
2 xy + (e+h

2 − 1) θ
h
,

y ? x = e−
h
2 xy + (e−

h
2 − 1) θ

h
.

Both ?−products therefore provide the algebra relation

x ? y = ehy ? x + (eh − 1) θ
h

which is the original algebra relation (2.26) for q = eh and θ′ = eh−1
h

.

2.7.3 The Lie algebra so(3)

We start with the algebra relations in the basis x̂+, ẑ, x̂−:

[ẑ, x̂+] = x̂+,

[ẑ, x̂−] = −x̂−, (2.27)

[x̂+, x̂−] = ẑ

for which we find the Poisson tensor

Π = 2x+z ∂z ∧ ∂+ + 2x−z ∂z ∧ ∂− + 2z2 ∂− ∧ ∂+.
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With f = ln x−, g = z we have {f, z} = 1. The Hamiltonian vector fields then become

X = Xf = ∂z − z
x−∂+,

Y = Xg = x+∂+ − x−∂−.

Hence we obtain

Xn( z ) = δn0z + δn1,

Xn(x+) = δn0x+ − δn1 z
x− − δn2 1

x− ,

Xn(x−) = δn0x−,

Y n( z ) = δn0z,

Y n(x+) = x+,

Y n(x−) = (−1)nx−

and the asymmetric ?-product (2.19) gives

z ? x+ = zx+ + hx+,

x+ ? z = x+z,

z ? x− = zx− − hx−,

x− ? z = x−z,

x+ ? x− = x+x− + hz − h2/2,

x− ? x+ = x+x−.

and therefore the ?−commutator reads as

[z ?, x+] = hx+,

[z ?, x−] = −hx−,

[x+ ?, x−] = h(z − h/2).

With z̃ = z − h
2

the correct algebra relations (2.27) are reproduced.

2.7.4 The quantum space M(soq(3))

The algebra relations in the basis adjusted to the quantum group terminology [24] which
is a generalisation of the basis x0, x± in the commutative space:

ẑx̂+ = q2x̂+ẑ,

ẑx̂− = q−2x̂−ẑ, (2.28)

[x̂−, x̂+] = (q − q−1)ẑ2.

For the Weyl ordered commutators we obtain

[ẑ, x̂+] = 2(q2−1)
q2+1

ẑx̂++x̂+ẑ
2

,

[ẑ, x̂−] = −2(q2−1)
q2+1

ẑx̂−+x̂−ẑ
2

,

[x̂−, x̂+] = (q − q−1)ẑ2
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and therefore the Poisson structure is

Π = 2zx+ ∂z∧∂+ − 2zx− ∂z∧∂− + 2z2 ∂−∧∂+.

For f = 1
2
ln x− and g = ln z the necessary {f, g} = 1 holds and the Hamiltonian vector

fields become

Xf = z∂z + z2

x−∂+,

Xg = 2(x+∂+ − x−∂−).

For the ?−product we take the generalisation

X = z∂z + αz2

x− ∂+,

Y = x+∂+ − x−∂−.

The action of potentials of the vector fields read as

Xn(x+) = δn0x+ + α2n−1 z2

x− δni, i > 0

Xn(x−) = δn0x−,

Xn(z) = z,

Y n(x+) = x+,

Y n(x−) = (−1)nx−,

Y n(z) = δn0z.

For the asymmetric ?-product (2.19) we obtain

z ? x+ = ehx+z,

x+ ? z = x+z,

z ? x− = e−hx−z,

x− ? z = x−z,

x− ? x+ = x+x−,

x+ ? x− = x+x− + α
2
(e−2h − 1)z2,

and (with z ? z = z2) the algebra relations become

z ? x+ = ehx+ ? z,

z ? x− = e−hx− ? z,

[x+ ?, x−] = α
2
(e−2h − 1)z ? z.

If we set
q = eh/2, α = − 2q2

q+q−1
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this reproduces exactly the algebra relations (2.28).

For the antisymmetric ?-product (2.20) we have

x+ ? z = e−h/2x+z,

z ? x+ = eh/2x+z,

x− ? z = eh/2x−z,

z ? x− = e−h/2x−z,

x+ ? x− = x+x− + α
2
(e−h − 1)z2,

x− ? x+ = x+x− + α
2
(eh − 1)z2,

and the algebra relations are with z ? z = z2

z ? x+ = ehx+ ? z,

z ? x− = e−hx− ? z,

[x+ ?, x−] = −α
2
(eh − e−h)z ? z.

Here we can reproduce the algebra relations (2.28), if we set

q = eh/2, α = − 2
q+q−1 .

2.7.5 The quantum space M(soq(1, 3))

The algebra of this quantum space is given in [24]:

[x̂0, x̂A] = 0

[x̂−, x̂+] = (q − q−1)(x̂3)2 − (q − q−1)x̂0x̂3 (2.29)

x̂3x̂+ = q2x̂+x̂3 + (1 − q2)x̂0x̂+

x̂3x̂− = q−2x̂−x̂3 + (1 − q−2)x̂0x̂−

The Poisson structure then reads as

Π = 2x3(x3 − x0) ∂−∧∂+ + 2x+(x3 − x0) ∂3∧∂+ + 2x−(x0 − x3) ∂3∧∂−.

Our ansatz for the functions the Hamiltonian vector fields are based on is

f = 1
2
ln x−, g = ln(x3 − x0) ⇒ {f, g} = 1

with which we obtain

Xf = x3(x3 − x0) 1
x−∂+ + (x3 − x0)∂3;

Xg = 2(x+∂+ − x−∂−).
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For the calculation we choose vector fields generalising the above ones:

X = (α(x3)2 − βx3x0) 1
x−∂+ + (x3 − x0)∂3

Y = x+∂+ − x−∂−.

Their powers act on the coordinates as follows (with i > 0):

Xnx0 = δn0x0,

Xnx3 = δn0x3 + δni(x3 − x0),

Xnx+ = δn0x+ + δni(x3 − x0)[2n−1α(x3 − x0) + (2α − β)x0] 1
x− ,

Xnx− = δn0x−,

Y nx0 = δn0x0,

Y nx3 = δn0x3,

Y nx+ = x+,

Y nx− = (−1)nx−.

For the asymmetric ?−product we find

x0 ? xi = x0xi,

xi ? x0 = xix0,

x3 ? x+ = ehx3x+ − (eh − 1)x0x+,

x+ ? x3 = x+x3,

x3 ? x− = e−hx3x− + (1 − e−h)x0x−,

x− ? x3 = x−x3,

x− ? x+ = x−x+,

x+ ? x− = x+x− + 1
2
(e−2h − 1)α(x3 − x0)2 − (e−h − 1)(2α − β)(x3 − x0)x0.

The algebra relations we obtain from these ?−products are

[x0 ?, xi] = 0,

[x− ?, x+] = −1
2
(e−2h − 1)α(x3 − x0)2 − (e−h − 1)(2α − β)(x3 − x0)x0,

x3 ? x+ = ehx+ ? x3 + (1 − eh)x0 ? x+,

x3 ? x− = e−hx− ? x3 + (1 − e−h)x0 ? x−.

Obviously we have eh = q2. We can apply the coordinate transformation x′3 = x3 − x0

that does not change the other relations. Comparing the new relation for x− and x+ to
the original one we obtain for the two remaining parameters

α = 2q2

q+q−1 , β = 5q2−1
q+q−1
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to reproduce the original algebra relations (2.29).

The antisymmetric ?−product provides

x0 ? xi = x0xi,

xi ? x0 = xix0,

x3 ? x+ = eh/2x3x+ − (eh/2 − 1)x0x+,

x+ ? x3 = e−h/2x+x3 − (e−h/2 − 1)x0x+,

x3 ? x− = e−h/2x3x− − (e−h/2 − 1)x0x−,

x− ? x3 = eh/2x−x3 − (eh/2 − 1)x0x−,

x− ? x+ = x−x+ + 1
2
(eh − 1)α(x3 − x0)2 + (eh/2 − 1)(2α − β)(x3 − x0)x0,

x+ ? x− = x+x− + 1
2
(e−h − 1)α(x3 − x0)2 + (e−h/2 − 1)(2α − β)(x3 − x0)x0.

The resulting algebra ?−relations read

[x0 ?, xi] = 0,

[x− ?, x+] = 1
2
(eh − e−h)α(x3 − x0)2 + (eh/2 − e−h/2)(2α − β)(x3 − x0)x0,

x3 ? x+ = ehx+ ? x3 + (1 − eh)x0 ? x+

x3 ? x− = e−hx− ? x3 + (1 − e−h)x0 ? x−.

We obtain again q2 = eh and with the same coordinate transformation as before the other
parameters are

α = 2
q+q−1 , β = 4+q+q−1

q+q−1

which exactly reproduce the original relations (2.29).

2.7.6 The quantum space M(soq(4))

The algebra relations we take for M(soq(4)) can be found in [15, 29]:

x̂1x̂2 = qx̂2x̂1,

x̂3x̂4 = qx̂4x̂3,

x̂2x̂3 = x̂3x̂2, (2.30)

x̂1x̂3 = qx̂3x̂1,

x̂2x̂4 = qx̂4x̂2,

[x̂4, x̂1] = (q − q−1)x̂2x̂3.

The Poisson tensor then reads

Π = x1x2 ∂1∧∂2 + x1x3 ∂1∧∂3 + x2x4 ∂3∧∂4 + 2x2x3 ∂4∧∂1.
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It has two Casimir functions3, so two vector fields suffice to reproduce the algebra:

f = ln x2, g = lnx4 ⇒ {f, g} = 1.

The vector fields then become

X := Xf = x4∂4 − x1∂1,

Y := Xg = −(x2∂2 + x3∂3) + 2x2x3

x4
∂1.

The powers of the two vector fields then act on the coordinates as follows (i > 0):

Xn(x1) = (−1)nx1,

Xn(x2) = δn0x2,

Xn(x3) = δn0x3,

Xn(x4) = x4,

Y n(x1) = δn0x1 − δni(−2)n x2x3

x4
,

Y n(x2) = (−1)nx2,

Y n(x3) = (−1)nx3,

Y n(x4) = δn0x4.

The asymmetric ?-product (2.19) therefore gives us

x1 ? x2 = ehx1x2,

x2 ? x1 = x1x2,

x1 ? x3 = ehx1x3,

x3 ? x1 = x1x3,

x4 ? x1 = x1x4 − (e−2h − 1)x2x3,

x1 ? x4 = x1x4,

x2 ? x3 = x2x3,

x3 ? x2 = x2x3,

x2 ? x4 = x2x4,

x4 ? x2 = e−hx2x4,

x3 ? x4 = x3x4,

x4 ? x3 = e−hx3x4

so that the algebra relations then are

x1 ? x2 = ehx2 ? x1,

x1 ? x3 = ehx3 ? x1,

x3 ? x4 = ehx4 ? x3,

x2 ? x4 = ehx4 ? x2,

x2 ? x3 = x3 ? x2,

[x4
?, x1] = (1 − e−2h)x2 ? x3.

3This means that for this special Π there are two functions fulfilling equation (2.23).
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For the antisymmetric ?-product (2.20) we do the same calculations

x1 ? x2 = eh/2x1x2,

x2 ? x1 = e−h/2x1x2,

x1 ? x3 = eh/2x1x3,

x3 ? x1 = e−h/2x1x3,

x4 ? x1 = x1x4 + (1 − e−h)x2x3,

x1 ? x4 = x1x4 + (1 − eh)x2x3,

x2 ? x3 = x2x3,

x3 ? x2 = x2x3,

x2 ? x4 = eh/2x4x2,

x4 ? x2 = e−h/2x4x2,

x3 ? x4 = eh/2x4x3,

x4 ? x3 = e−h/2x4x3

which leads to the following algebra relations

x1 ? x2 = ehx2 ? x1,

x1 ? x3 = ehx3 ? x1,

x3 ? x4 = ehx4 ? x3,

x2 ? x4 = ehx4 ? x2,

x2 ? x3 = x3 ? x2,

[x4
?, x1] = (eh − e−h)x2 ? x3.

This reproduces exactly the original algebra relations (2.30) with q = eh.

2.7.7 4-dimensional q-deformed Fock space

One finds the algebra relations for this example in [19, 20]

x̂1x̂2 = q−1x̂2x̂1,

ŷ1x̂1 = q2x̂1ŷ1 + θ,

ŷ1x̂2 = qx̂2ŷ1, (2.31)

ŷ2x̂1 = qx̂1ŷ2,

ŷ2x̂2 = q2x̂2ŷ2 + (q2 − 1)x̂1ŷ1 + θ,

ŷ1ŷ2 = qŷ2ŷ1.

Thus, the Poisson tensor is

Π = −x1x2 ∂x1
∧ ∂x2

+ x2y1 ∂y1
∧ ∂x2

+ (2x1y1 + θ) ∂y1
∧ ∂x1

+y1y2 ∂y1
∧ ∂y2

+ x1y2 ∂y2
∧ ∂x1

+ [2(x1y1 + x2y2) + θ] ∂y2
∧ ∂x2

.
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Here there are four Casimir functions of the Poisson tensor, so we have to find four functions
fulfilling (2.23) which are

f1 = − ln x1,

f2 = 1
2
ln(2x1y1 + θ),

g1 = f2 − ln x2,

g2 = 1
2
ln 2(x1y1+x2y2)+θ

2x1y1+θ
.

In this case the Hamiltonian vector fields are

X1 := Xf1
= x2∂x2

+ y2∂y2
+ (2x1y1 + θ) 1

x1
∂y1

,

Y1 := Xf2
= x1∂x1

− y1∂y1
,

X2 := Xg1
= [2(x1y1 + x2y2) + θ] 1

x2
∂y2

,

Y2 := Xg2
= x2∂x2

− y2∂y2
.

The action of its powers on the coordinates is then given by (i > 0)

Y n
1 (x1) = x1,

Y n
1 (x2) = δn0x2,

Y n
1 (y1) = (−1)ny1,

Y n
1 (y2) = δn0y2,

Y n
2 (x1) = δn0x1,

Y n
2 (x2) = x2,

Y n
2 (y1) = δn0y1,

Y n
2 (y2) = (−1)ny2

Xn
1 (x1) = δn0x1,

Xn
1 (x2) = x2,

Xn
1 (y1) = δn0y1 + δni 2n−1 2x1y1+θ

x1
,

Xn
1 (y2) = y2,

Xn
2 (x1) = δn0x1,

Xn
2 (x2) = δn0x2,

Xn
2 (y1) = δn0y1,

Xn
2 (y2) = δn0y2 + δni 2n−1 2(x1y1+x2y2)+θ

x2
.

Our ?−products (2.19) and (2.20) are just defined for two vector fields, but now we have
to handle four of them. This we do by generalising for example the asymmetric ?−product
to the following form:

f ? g =
∞∑

n,m=0

hn+m

n! m!
(Xn

1 Xm
2 f) (Y n

1 Y m
2 g) .

This fulfils the same conditions as the ones with just two Hamiltonian vector fields, since
the vector fields are Hamiltonian and the ?−product fits the definition (2.18) as can be
seen by

f ? g =

∞∑

n,m=0

hn+m

n!m!
(Xn

1 Xm
2 f)(Y n

1 Y m
2 g)
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1

=
∞∑

n,m=0

hn+m

n!m!
(Xn

1 Xm
2 ⊗ Y n

1 Y m
2 )(f, g)

2

=
∞∑

n,m=0

hn+m

n!m!
(Xn

1 ⊗ Y n
1 )(Xm

2 ⊗ Y m
2 )(f, g)

=
∞∑

n=0

hn

n!
(Xn

1 ⊗ Y n
1 )

∞∑

m=0

hm

m!
(Xm

2 ⊗ Y m
2 )(f, g)

=
∞∑

n=0

hn

n!
(X1 ⊗ Y1)

n
∞∑

m=0

hm

m!
(X2 ⊗ Y2)

m(f, g)

= eX1⊗Y1+X2⊗Y2(f, g).

In the ?−product y2?x2 we need to know the action of Xn
1 on some functions of coordinates,

so first we have to calculate (i > 0)

Xn
1 (x1y1) = δn0x1y1 + δni 2n−1(2x1y1 + θ),

Xn
1 f(x2) = f(x2),

Xn
1 f(y2) = f(y2),

⇓
Xn

1
2(x1y1+x2y2)+θ

x2
= 1

x2
Xn

1 (2(x1y1 + x2y2) + θ)

= 1
x2

[2n(2x1y1 + θ) + 2x2y2] ,

and then compute

x1 ? x2 = x1x2,

x2 ? x1 = ehx2x1,

y1 ? x2 = y1x2,

x2 ? y1 = e−hx2y1,

y1 ? y2 = y1y2,

y2 ? y1 = e−hy2y1,

y2 ? x1 = ehy2x1,

x1 ? y2 = x1y2,

y1 ? x1 = e2hx1y1 + 1
2
(e2h − 1)θ,

x1 ? y1 = x1y1,

y2 ? x2 = e2hx2y2 + (e2h − 1)x1y1 + 1
2
(e2h − 1)θ,

x2 ? y2 = x2y2.

The ?−relations of this algebra then are

x1 ? x2 = e−hx2 ? x1,

y1 ? x2 = ehx2 ? y1,

1with (a ⊗ b)(f, g) := (af) · (bg)
2we used the definition of the product on a tensor product algebra
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y1 ? y2 = ehy2 ? y1,

y2 ? x1 = ehx1 ? y2,

y1 ? x1 = e2hx1 ? y1 + 1
2
(e2h − 1)θ,

y2 ? x2 = e2hx2 ? y2 + (e2h − 1)x1 ? y1 + 1
2
(e2h − 1)θ.

To reproduce the original algebra relations (2.31) we just have to set

q = e2h, θ′ = 1
2
(e2h − 1)θ.
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Chapter 3

Leibniz rule on the n-dimensional

q-deformed Euclidean space

In classical theories it is clear how to apply mathematical operations like derivation and
integration of functions. Generalising the classical theory in the sense of deformation quan-
tisation all these prescriptions do chance.

Coming from usual quantum mechanics generalised states are power series in the commut-
ing coordinates of the system. This means that the action of operators (usually depending
on the coordinates themselves and partial derivatives) on these functions can be calculated
and interpreted quite easily.

In non-commutative geometry we therefore use formal power series in the algebra gen-
erators x̂i. As explicitly explained in [21] one has first to define a first order differential
calculus (FODC) Γ by a linear mapping d from the non-commutative algebra χ to the
FODC d : χ → Γ. Then there are unique elements ∂i(x) ∈ χ which are called the partial
derivatives such that dx =

∑
i dxi · ∂i(x). With these elements one can construct an ex-

panded algebra Aq(n) with the 2N generators x̂1, . . . , x̂n, ∂̂1, . . . , ∂̂n, where for calculations
the algebra has to be specified by the commutation relations of its generators.

The quantum space we want to treat here is the q−deformed n−dimensional Euclidean
space, which is based on the so-called Quantum Weyl algebra [21]:

x̂ix̂j = qx̂jx̂i; i < j

∂̂i∂̂j = q−1∂̂j ∂̂i; i < j

∂̂ix̂j = qx̂j ∂̂i; i 6= j (3.1)

∂̂ix̂i − q2x̂i∂̂i = 1 + (q2 − 1)
∑

j>i

x̂j ∂̂j.

Our aim is to develop the tools to construct a non-commutative field theory: the action of
the derivatives on formal power series. One can do it the easy way by shifting coordinates
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as done in [21], but that leads only to a closed formula for the action of the ∂̂i. But since
we do not want to lose information and need the whole Leibniz rule to enable the derivative
of products of functions, we have to do it the way we developed in [2, 3].
For the quantum Weyl algebra there is no ?−product given by other authors in the way we
need it here, so we first have to give it by ourselves. It enables us to compare our results
to the ones in classical theories, especially we have to prove the right classical limit for the
action of the derivatives and the Leibniz rule.

3.1 ?−product

The coordinate algebra (3.1) satisfies the Poincaré-Birkhoff-Witt property meaning that
the subspace of monomials of a fixed degree has the same dimension as its analogue in
commutative space. Therefore we can find an algebra isomorphism between the commu-
tative algebra A and the non-commutative algebra by choosing a fixed ordering of the
coordinates in the deformed algebra:

W : A → Aq

W (xm1

1 · · ·xmn
n ) = x̂m1

1 · · · x̂mn
n .

In order to treat formal power series f(x̂1 . . . x̂n) this isomorphism can be extended to an
isomorphism of algebras introducing a new product called ?-product which is defined by

W (f ? g) = W (f)W (g).

With this basic introduction we now can start to calculate the ?-product for the algebra
(3.1) along [37].

First we calculate the commutation relations fulfilled by the powers of the coordinates:

(x̂i)
mi(x̂j)

mj = qmimj (x̂j)
mj (x̂i)

mi , i < j

Then we choose a fixed ordering for this quantum space, for its simplicity the normal
ordering

(x̂1)
m1(x̂2)

m2 · · · (x̂n)mn .

Since we can expand the isomorphism W to arbitrary power series in the coordinates, it
suffices to calculate the product of two monomials in the algebra:

(x̂1)
m1(x̂2)

m2 · · · (x̂n)mn · (x̂1)
k1(x̂2)

k2 · · · (x̂n)kn =

= q
−k1

n
P

i=2

mi − k2

n
P

i=3

mi − ...− kn−1mn

(x̂1)
m1+k1(x̂2)

m2+k2 · · · (x̂n)mn+kn

= q
−

n−1
P

i=1

n
P

j=i+1

kimj

(x̂1)
m1+k1(x̂2)

m2+k2 · · · (x̂n)mn+kn
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This enables us to write down a ?−product for the monomials:

W (xm1

1 · · ·xmn

n ) · W (xk1

1 · · ·xkn

n ) = x̂m1

1 · · · x̂mn

n · x̂k1

1 · · · x̂kn

n

= q
−

n−1
P

i=1

n
P

j=i+1

kimj

x̂m1+k1

1 · · · x̂mn+kn

n = W (q
−

n−1
P

i=1

n
P

j=i+1

kimj

xm1+k1

1 · · ·xmn+kn

n )

= W ((xm1

1 · · ·xmn

n ) ? (xk1

1 · · ·xkn

n ))

For the generalisation of this formula we need to replace the specific powers of the coordi-
nates by an operator which produces these powers as it acts on the monomials or functions.
The simplest operators that fulfil the specifications are

σi := xi∂i = mi

σ′
i := x′

i∂
′
i = ki

where ∂i are the ordinary partial derivatives and ∂ ′ are derivatives only acting on coordi-
nates x′. With this we obtain the following formula generalised to arbitrary power series f
and g :

f ? g = q
−

n−1
P

i=1

n
P

j=i+1

σ′
iσj

f(x)g(x′)
∣∣∣
x′=x

.

3.2 Leibniz rule

We start the calculations with the commutation relations of the derivatives ∂̂i with the
powers of single coordinates (x̂i)

ni using (3.1). The following relations can be proved by
complete induction concerning the power of the coordinate:

∂̂i(x̂j)
mj = qmj (x̂j)

mj ∂̂i

∂̂i(x̂i)
mi = [[mi]]q2(x̂i)

mi−1 + q2mi(x̂i)
mi ∂̂i + (q2 − 1)[[mi]]q2(x̂i)

mi−1
∑

j>i

x̂j ∂̂j

Application of these formulae to a monomial leads to

∂̂i (x̂1)
m1 · · · (x̂i)

mi · · · (x̂n)mn =

= q

i−1
P

k=1

mk

[[mi]]q2 (x̂1)
m1 · · · (x̂i)

mi−1 · · · (x̂n)mn + q
mi+

n
P

k=1

mk

(x̂1)
m1 · · · (x̂n)mn ∂̂i

+ q

i−1
P

k=1

mk

(q2 − 1)[[mi]]q2 (x̂1)
m1 · · · (x̂i)

mi−1
∑

j1>i

x̂j1 ∂̂j1(x̂i+1)
mi+1 · · · (x̂n)mn .

At first sight this does not seem to be a closed formula, since the underlined part leads
to a recursive relation that might not be solvable. The first intuitive try is to calcu-
late straight along the obvious way: we try to solve an arbitrary relation of the form∑

jm>i x̂jm
∂jm

(x̂i+1)
mi+1 · · · (x̂n)mn . But this just leads us to more recursive relations of
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the same form, which obviously is no progress. If we instead reverse the summation, the
calculations become much easier to handle:

∑

jm>i

x̂jm
∂jm

(x̂i+1)
mi+1 · · · (x̂n)mn =

n−i−1∑

jm=0

x̂n−jm
∂n−jm

(x̂i+1)
mi+1 · · · (x̂n)mn .

For the new term under the summation we can find a closed formula, proved by complete
induction:

x̂n−j ∂̂n−j(x̂i+1)
mi+1 · · · (x̂n)mn

= q
2

j−1
P

k=0

mn−k

[[mn−j]]q2(x̂i+1)
mi+1 · · · (x̂n)mn

+q

j−1
P

k=0

mn−k

(x̂i+1)
mi+1 · · · (x̂n−j)

mn−j+1 · · · (x̂n)mn ∂̂n−j

+q

j−1
P

k=0

mn−k

(q2 − 1)[[mn−j]]q2

j∑

l=0

q

j−l−1
P

s=0

mn−l−s

(x̂i+1)
mi+1 · · · (x̂n−l)

mn−l+1 · · · (x̂n)mn ∂̂n−l.

With the abbreviations

P̂±(i) := P̂ (±i) ≡ (x̂1)
m1 · · · (x̂i)

mi±1 · · · (x̂n)mn

P̂ (0) := (x̂1)
m1 · · · (x̂n)mn

we obtain for the Leibniz rule for monomials on the non-commutative algebra

∂̂iP̂ (0) = q

i−1
P

k=1

mk +
n

P

k=i+1

2mk

[[mi]]q2P̂ (−i) + q
mi+

i−1
P

k=1

mk

P̂ (0)∂̂i (3.2)

+q

i−1
P

k=1

mk

(q2 − 1)[[mi]]q2

n−i−1∑

j=0

q

j−1
P

k=0

mn−k ·
[
P̂ (+(n − j),−i)∂̂n−j +

+(q2 − 1)[[mn−j]]q2

j∑

l=0

q

j−l−1
P

s=0

mn−l−s

P̂ (+(n − l),−i) ∂̂n−l

]
.

Since we found an appropriate ?−product we now can work with the commutative algebra
and introduce the Jackson derivatives

Di
qaf :=

f − f(qaxi)

(1 − qa)xi

,

where f is an arbitrary power series in the commutative space according to [3].

Equation. (3.2) now reads as
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∂iP (0) = q

i−1
P

k=1

mk+
n

P

k=i+1

2mk

Di
q2P (0) + q

mi+
i−1
P

k=1

mk

P (0)∂i

+q

i−1
P

k=1

mk

(q2 − 1)Di
q2

n−i−1∑

j=0

q

j−1
P

k=0

mn−k

xn−j ·

·
[
P (0)∂n−j + (q2 − 1)

j∑

l=0

q

j−l−1
P

s=0

mn−l−s

xn−lD
n−j
q2 P (0)∂n−l

]
.

To simplify the notation we introduce scaling operators

Li
ax̂

mi

i := (qax̂i)
mi

with the composition
Li,j

a := Li
a · · ·Li+j

a .

With this the Leibniz rule of the n-dimensional q-deformed Euclidean space represented
on the commuting n-dimensional Euclidean space reads as

∂if = Di
q2L

1,i−1
1 Li+1,n

2 f + L1,n
1 Li

1f∂i + (q2 − 1)Di
q2L

1,i−1
1

n−i−1∑

j=0

xn−j·

·
[
Ln−j+1,n

1 f∂n−j + (q2 − 1)Dn−j
q2

j∑

l=0

xn−lL
n−j+1,n
1 Ln−j+1,n−lf∂n−l

]
.

Note that we find no higher orders in the derivatives Di. The main reason is that from the
beginning we postulated a classical limit for the whole deformation and derivatives would
be contradictory to this. That also holds for every single step of the calculation, so also
in (3.2) we only insert terms with classical limit. Altogether we find terms quadratic in
derivatives Dk at the most.

For the action of the derivatives on functions we find (analogue to [2])

∂i . f(x1, . . . , xn) = Di
q2L

1,i−1
1 Li+1,n

2 f(x1, . . . , xn),

which is the same result as in [21] up to isomorphism.
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Chapter 4

Integration on q−deformed Quantum

spaces

4.1 Ideas and interpretation

The geometrical interpretation of integration is marked by the approach of Riemann. His
idea was to calculate the area under a function by summing up the rectangles determined
by the difference of two points with the according function value. To obtain the exact
value of the needed area he took the limit of the difference of the two points going to zero
which lead to the transition between the discrete sum and a continuous integration by the
postulation of continuous points. Since we want to follow this very basic construction we
start with the basics of Riemann summation. These basics we want to use in a generalised
form.
Riemann sums are defined on a closed interval I = [a, b] with a partition
a = x0 < x1 < . . . < xn = b where an arbitrary ξk ∈ [xk−1, xk]. Then the Riemann sum of
a function f : [a, b] → R is

n∑

k=1

f(ξk)(xk − xk−1).

For (xk − xk−1) → 0 the Riemann sum converges to the Riemann integral
∫

I
f(x) dx.

The proper way to extend the Riemann integral to infinite integration limits is to write it
as an infinite sum of proper integrals:

lim
a→−∞

∫ b

a

f(x) dx =

∫ b

−∞
f(x) dx =

∫ b

a0

f(x) dx +

∫ a0

a−1

f(x) dx + ...

where b > a0 > a−1 > . . .. This integral only converges, if f decreases fast enough in
infinity like every physical relevant function. We now express the single integral in terms
of Riemann sums: ∫ ai

ai−1

f(x) dx = lim
∆→0

n∑

ki=1

f(ξki
)(xki

− xki−1)
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with ∆ := (xki
− xki−1), ai−1 < x0 < . . . < ai and ξki

∈ [xki−1, xki
] arbitrary, so we can

always choose the left limit of the interval [xki−1, xki
], and still the formula holds:

∫ ai

ai−1

f(x) dx = lim
∆→0

n∑

ki=1

f(xki
)(xki

− xki−1).

With this the improper integral reads as

∫ b

−∞
f(x) dx =

0∑

i=−∞

∫ ai

ai−1

f(x) dx = lim
∆→0

0∑

i=−∞

n∑

ki=1

f(xki
)(xki

− xki−1).

This double summation we replace by summation over all single partition points renamed:

0∑

i=−∞

n∑

ki=1

f(xki
)(xki

− xki−1) =

0∑

i=−∞
f(xi)(xi − xi−1).

With this we now have for the integral with ∆i := |xi − xi−1|
∫ b

−∞
f(x) dx = lim

∆i→0

0∑

i=−∞
f(xi)∆i.

In an analogous way we can extend this integral also to an infinite upper limit:

∫ ∞

−∞
f(x) dx = lim

∆i→0

∞∑

i=−∞
f(xi)∆i.

For a quantised space with an induced lattice there is usually a way to express all xi by
a starting point and the lattice. Therefore we also find such an expression for ∆i, which
does not vanish for a lattice, so we can drop out the limit. This simplifies the calculations
a lot.

In our case of quantum spaces there is indeed a lattice structure induced by the action of
the derivatives (see [2]). This structure suggests that the integral can be written as a kind
of Riemann sum as in the classical case [27].
The ansatz for our integral therefore is close to the Riemann sum. In one dimension it
reads as

J(f) =

+∞∑

n=−∞
f(xn)ρn

where ρn is the weight of the integral.

For obtaining the initially unknown parameters xn and ρn in this equation we do not
need many conditions: it suffices to postulate translation invariance for the integral and
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ask for the Riemann integral being the classical limit of our integral. The translation in-
variance of the integral J(∂ .f) = 0 gives us the arguments xn in detail and also the weight
ρn up to a constant c. We denote by ∂. the already deformed action on the commutative
space, which includes the ?−structure according to [2, 3]. This works best for lattice struc-
tures of the form f(xn)− f(xn+1), which we get for all q−deformed Euclidean spaces. The
remaining constant c is determined by the condition of the right classical limit for q → 1.

4.2 1-dimensional quantum space with an explicit ex-

ample

To clarify our approach we take a look at a simple algebra for which we assume to know
a ?-product. The commutation relation for the partial derivative ∂̂ and the coordinate x̂
here reads as

∂̂x̂ = 1 + q2x̂∂̂

which directly leads to ∂ . x = 1. But we want to know the action of ∂̂ on formal power
series of x̂, so we need the Leibniz rule for arbitrary powers of the coordinate

∂̂x̂n = [[n]]q2 x̂n−1 + q2nx̂n∂̂.

Using this we get for the action in commutative space

∂ . f = [[n]]q2x−1f =
(1 − L2)f

(1 − q2)x
, (4.1)

where La is a scaling operator: Laf(x) := f(qax) and f is a formal power series as usual.
This scaling is characteristic for the lattice Γn

Γn =
{
xn|xn = (L2)

nx0 = q2nx0; n ∈ Z
}

.

It consists of points xn, defined by an initial point x0 and the scaling operator L2 :

2q  x 0 q  x4
0

2n
q   x 0

2(n+1)
q       x 0

x0q   x0
−2

Figure 4.1: Lattice induced by (4.1)

According to the previous statements we define the integral as sum over the functions
values of all points with an unknown weight ρn:

J(f) =
+∞∑

n=−∞
f((L2)

nx0)ρn.

Using the translation invariance we obtain for the integral of the derivative

J(∂ . f) =

+∞∑

n=−∞

f(q2nx0) − f(q2n+2x0)

(1 − q2)q2nx0
ρn

!
= 0 ⇒ ρn = q2n · c (4.2)
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with c = const.
The last constraint is the postulation of the classical limit of this integral being the Riemann
integral. For this we calculate the difference between to lattice points:

∆xn = |xn+1 − xn| = (1 − q2)q2nx0, 1 ≥ |q| ∈ C.

We can see immediately that our integral formula is a modified Riemann sum: every
summand is the product of the length of the interval with the function’s value at the left
point of the interval (see figure 4.2), but this time with a specific weight modifying the
usual Riemann sum. For obtaining an ordinary Riemann integral in the classical limit we

xn−1 xn+1 xn+2xn
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�����
�����
����� f

Figure 4.2: Geometrical interpretation of the integral

have to show that for our integral ∆xn
q→1−→ 0 for any n, which is obviously fulfilled in

the one-dimensional example. ∆xn provides the missing summation independent constant
factor we need for the classical limit. For this example we find for c = (1− q2)x0 which we
insert in equation (4.2).
The new integral in the first example then reads as

J(f) = (1 − q2)x0

+∞∑

n=−∞
q2nf(q2nx0).

But if we take a closer look at the above formula for the integral, we see that for q → 1
we only cover the positive half line (or the negative half line, depending on the sign of x0).
Therefore we have to add the same term also for negative (positive) x0

J(f) = (1 − q2)x0

+∞∑

n=−∞
q2n
(
f(q2nx0) + f(−q2nx0)

)
. (4.3)

An explicit example for the new integral is the calculation of the integral of the Gaussian
distribution over the whole 1-dimensional space. We take the power series expansion of
the function:

f(x) = 1√
2π

e−
1
2

x2

= 1√
2π

∞∑

i=0

(−1)i2−i

i!
x2i
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with which the integral reads as

J(f) = (1 − q2)x0

+∞∑

n=−∞
q2n 1√

2π

∞∑

i=0

(−1)i2−i

i!

(
q4nix2i

0 + q4ni(−x0)
2i
)
.

After some calculation we obtain

J(f) = 2√
2π

+∞∑

n=−∞
(1 − q2)x0q

2n

︸ ︷︷ ︸
∆xn

e−
1
2
(q2nx0)2

︸ ︷︷ ︸
f(xn)

.

Now we want to compare this result to the result in commutative space by taking the
classical limit of ∆xn, which vanishes for q → 1, so we here have the transition to the
Riemann integral:

q→1−→ 2√
2π

∫ ∞

0

f(x) dx = 1

as expected from the classical limit, if we choose x0 = 0.

In an analogous way the quantum spaces discussed in [2, 3] provide a lattice structure
in almost the same way. This suggests that a similar ansatz for the integral might also
work in the same way.

4.3 3-dimensional Euclidean space

The ansatz we work with is analogue to that in the previous one-dimensional case, but
takes into account that there is a 3-dimensional lattice and all 3 dimensions do influence
the weight:

J(f) =

+∞∑

i,j,k=−∞
f(qαix+

0 , qβjx3
0, q

γkx−
0 )ρijk.

First we plug in the translation invariance according to the action of the derivatives cal-
culated in [2]

∂− . f = −q−1D+
q4f ,

∂3 . f = D3
q2f(q2x+) ,

∂+ . f = −qD−
q4f(q2x3) − qλx+(D3

q2)2f

with λ = q − q−1. We use the notations explicitly set in appendix A, namely we list only
the scaled arguments of the function and the derivatives DA

qi are the Jackson derivatives.

The first result for the weight and the powers of the function’s arguments we obtain from



42 4. Integration on q−deformed Quantum spaces

the action of ∂3, since this is the simplest one

J(∂3 . f) =

+∞∑

i,j,k=−∞

q−βjρijk

(1 − q2)x3
0

(
f(qαi+2x+

0 , qβjx3
0, q

γkx−
0 ) − f(qαi+2x+

0 , qβj+2x3
0, q

γkx−
0 )
)

!
= 0.

Performing the summation over j first we see that the integral only vanishes, if we have

ρijk = qβjρik and β = 2 .

Inserting the action of ∂− we obtain by first summing over i

ρik = q4iρk.

Calculation with respect to the derivative ∂+ gives an anomaly: the sum splits up into two
terms with incompatible powers of the coordinates

J(∂+ . f) =

= − q
(1−q4)x−

0

+∞∑

i,j,k=−∞
q−γk

(
f(q4ix+

0 , q2j+2x3
0, q

γkx−
0 ) − f(q4ix+

0 , q2j+2x3
0, q

γk+4x−
0 )
)

ρijk

+ x+

0

(1−q2)(x3
0)

2

+∞∑

i,j,k=−∞
q2(4i−j)ρk

(
f(q4ix+

0 , q2jx3
0, q

γkx−
0 ) − f(q4ix+

0 , q2j+2x3
0, q

γkx−
0 )

−q−2f(q4ix+
0 , q2j+2x3

0, q
γkx−

0 ) + q−2f(q4ix+
0 , q2j+4x3

0, q
γkx−

0 )
)

.

These two terms can not cancel each other, so they have to vanish separately to ensure the
translation invariance. Fortunately the second of these terms vanishes by itself, because
we have an infinite sum and the terms cancel recursively, so we obtain one condition for
the weight as usual, leading to (with c = const.)

ρk = q4k · c.

For the right classical limit we are doing the obvious calculations of the difference of two
arbitrary lattice points in all directions, which leads to

∆x+
i = (1 − q4)q4ix+

0 ,

∆x3
j = (1 − q2)q2jx3

0, (4.4)

∆x−
k = (1 − q4)q4kx−

0 .

The classical limit then is

lim
q→1

(∆x+
i · ∆x3

j · ∆x−
k ) = lim

q→1

(
q2(i+j+2k)(1 − q2)(1 − q4)2 x+

0 x3
0x

−
0

)
= 0 (4.5)
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for all i, j, k ∈ N which is expected to get the Riemann integral in the classical case. The
summand independent constant in this case is C = (1 − q2)(1 − q4)2x+

0 x3
0x

−
0 , so that for

the whole integral we obtain

J(f) = (1 − q2)(1 − q4)2x+
0 x3

0x
−
0

+∞∑

i,j,k=−∞
q2(2i+j+2k)f̃(q4ix+

0 , q2jx3
0, q

4kx−
0 ),

where we denote by f̃ the sum

f̃(x1, . . . , xn) = f(x1, . . . , xn) + f(−x1, x2, . . . , xn) + . . . + f(−x1, . . . ,−xn) (4.6)

including all possible configurations of signs of the arguments.

4.4 4-dimensional Euclidean space

In analogy to the previous quantum space we take as the ansatz for the integral

J(f) =

+∞∑

i,j,k,l=−∞
f(qαix1

0, q
βjx2

0, q
γkx3

0, q
δlx4

0) ρijkl. (4.7)

The actions of the derivatives we need for assuring the translation invariance are [2]:

∂1 . f = q−1D4
q2f(qx2, qx3) ,

∂2 . f = D3
q2f(qx1, q2x4) − qλx2D1

q2D4
q2f(q−1x1, qx2, qx3) ,

∂3 . f = D2
q2f(qx1, q2x4) − qλx3D1

q2D4
q2f(q−1x1, qx2, qx3) ,

∂4 . f = qD1
q2 [f + qλ(x2D2

q2 + x3D3
q2)f(q2x4) + λ2x4D4

q2f ]

−q−1λx4D2
q−2D3

q−2f(q2x1, qx2, qx3, q2x4)

−λ2x2x3((D1
q2)2D4

q2f)(q−2x1, qx2, qx3) .

We start the determination of the weight with the simplest action ∂1 . f

J(∂1 . f)
!
= 0 ⇒ δ = 2, ρijkl = q2lρijk.

Then we take the action of ∂2 which gives us a similar problem as we had it in the
3-dimensional case: the sum splits up into two incompatible sums which have to vanish
separately. This time none of these two terms vanishes by itself so we obtain two conditions
for the weight out of one condition of translation invariance:

J(∂2 . f)
!
= 0 ⇒

{
γ = 2, ρijk = q2kρij

α = 2, ρijk = q2iρjk

}
⇒ ρijk = q2(i+k)ρj.

With the action of ∂3 we obtain one last condition for the weight:

J(∂3 . f)
!
= 0 ⇒ β = 2, ρj = q2j · c.
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Since we did not use the action of ∂4 for determining the weight, we can now use it to check
our results: inserting ∂4 . f into (4.7) gives that all terms cancel recursively as expected.

Calculating the difference of two arbitrary lattice points we obtain

∆x1
i = (1 − q2)q2ix1

0

∆x2
j = (1 − q2)q2jx2

0

∆x3
k = (1 − q2)q2kx3

0

∆x4
l = (1 − q4)q4lx4

0.

The classical limit for the volume element is then

lim
q→1

(
q2(i+j+k+2l)(1 − q2)3(1 − q4)x1

0x
2
0x

3
0x

4
0

)
= 0 ∀i, j, k, l ∈ N

as wanted for the Riemann integral being the classical limit of our integral. The whole
integral then with (4.6) reads as

J(f) = (1 − q2)4x1
0x

2
0x

3
0x

4
0

+∞∑

i,j,k,l=−∞
q2(i+j+k+l)f̃(q2ix1

0, q
2jx2

0, q
2kx3

0, q
2lx4

0)

with f̃ again the sum over all possible combinations of signs in the arguments of f.

4.5 q−deformed Minkowski space

The actions on the Minkowski space are more complicated than on the Euclidean spaces
[2, 3]. Therefore we need a lot of preparing calculations in order to understand which
scaling operators characterise the lattice of this quantum space.
As proved in [3] one can switch between the two differential calculi of a quantum space
by using another ordering of the coordinates and therefore another ?-product and some
linear transformations. This means that we can choose the differential calculus with eas-
ier expressions for our calculations, because the changing between the different orderings
concerns all coordinate dependent terms in the same way and does not change the lattice
structure itself. We start by writing down explicitly all the basic derivative operators, the
so-called New Jackson derivatives (see appendix A and [2]) to find the lattice structure
they impose

(D3
1,q)

k,lf :=
k∑

m=0

(−1)k−m
(

k+l−m−1
l−1

)
((1 − q2)x3)m−k−l 1

m!
∂m

∂(x3)m f

−(−1)k

l−1∑

m=0

(
k+l−m−1

k

)
((1 − q2)x3)m−k−lq−2m 1

m!
∂m

∂(x3)m f(q2x3),
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(D3
2,q)

k,lf := −( λ
λ+

x̃3)−k
l−1∑

m=0

(x3 − q2y−)m−lq−2m 1
m!

∂m

∂ym
−

f(q2y−)

−
k−1∑

m=0

( λ
λ+

x̃3)m−k

[
m∑

i=0

(−1)m−i
(

m+l−i−1
l−1

)
((1 − q2)y−)i−m−l 1

i!
∂i

∂yi
−

f(y−)

−(−1)m

l−1∑

i=0

(
m+l−i−1

m

)
((1 − q2)y−)i−m−lq−2i 1

i!
∂i

∂yi
−

f(q2y−)

]
.

To get the explicit form of (D3
3,q)

k,l
i,jf we have to calculate first

D
(k,m)

q−2,1f =
m∑

s=0

(−1)m−s
(

m+k−s−1
k−1

)
(x3 − q−2x3)s−m−k 1

s!
∂s

∂(x3)s f

−(−1)m

k−1∑

s=0

(
m+k−s−1

m

)
(x3 − q−2x3)s−m−kq2s 1

s!
∂s

∂(x3)s f(q−2x3),

D
(k,m)
y+/y−,1f =

m∑

s=0

(−1)m−s
(

m+k−s−1
k−1

)
(x3 − y+

y−
x3)s−m−k 1

s!
∂s

∂(x3)s f

−(−1)m
k−1∑

s=0

(
m+k−s−1

m

)
(x3 − y+

y−
x3)s−m−k 1

s!
∂s

∂(
y+

y−
x3)s

f( y+

y−
x3).

For the last of the New Jackson derivatives we obtain explicitly

(D3
3,q)

k,l
i,jf := −(x3 − q2y+)−l( λ

λ+
x̃3)−i(x3 − q2y−)−j

k−1∑

m=0

(− λ
λ+

x̃3)m−k 1
m!

∂
∂ym

+

f(y+)

− ( λ
λ+

x̃3)−i(x3q2y−)−j
l−1∑

m=0

(x3 − q2y+)m−l ·

·
[

m∑

s=0

(−1)m−s
(m+k−s−1

k−1

)
((q2 − 1)y+)s−m−kq−2s 1

s!
∂s

∂ys
+

f(q2y+)

−(−1)m
k−1∑

s=0

(m+k−s−1
m

)
((q2 − 1)y+)s−m−k 1

s!
∂s

∂ys
+

f(y+)

]

− (x3 − q2y−)−j
i−1∑

m=0

( λ
λ+

x̃3)m−i ·

·
[

m∑

s=0

(−1)m−s
(
m+l−s−1

l−1

)
(y− − q2y+)s−m−l(−2 λ

λ+
x̃3)−s−k·

·
(

s∑

t=0

(−1)s−t
(s+k−t−1

k−1

)
(−2 λ

λ+
x̃3)t 1

t!
∂t

∂yt
−

f(y−) −(−1)s
k−1∑

t=0

(s+k−t−1
s

)
(−2 λ

λ+
x̃3)t 1

t!
∂t

∂yt
+

f(y+)

)
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−(−1)m
l−1∑

s=0

(
m+l−s−1

m

)
(y−−q2y+)s−m−l((q2 − 1)y+)−s−k(−1)s ·

·
(

s∑

t=0

(−1)t
(s+k−t−1

k−1

)
((q2−1)y+)tq−2t 1

t!
∂t

∂yt
+

f(q2y+) −
k−1∑

t=0

(s+k−t−1
s

)
((q2−1)y+)t 1

t!
∂t

∂yt
+

f(y+)

)]

−
j−1∑

m=0

(x3 − q2y−)m−j ·

·
[

m∑

s=0

(−1)m−s
(
m+i−s−1

i−1

)
((q2 − 1)y−)s−m−i

s∑

t=0

(−1)s−t
(
s+l−t−1

l−1

)
(−2q2 λ

λ+
x̃3)t−s−l ·

·
(

t∑

u=0

(−1)t−u
(
t+k−u−1

k−1

)
(q2y− − y+)u−t−kq−2u 1

u!
∂u

∂yu
−

f(q2y−)

−(−1)t
k−1∑

u=0

(t+k−u−1
t

)
(q2y− − y+)u−t−k 1

u!
∂u

∂yu
+

f(y+)

)

−
m∑

s=0

(−1)m−s
(
m+i−s−1

i−1

)
((q2 − 1)y−)s−m−i

l−1∑

t=0

(
s+l−t−1

s

)
(−2q2 λ

λ+
x̃3)t−s−l ·

·
(

t∑

u=0

(−1)t−u
(
t+k−u−1

k−1

)
((q2 − 1)y+)u−t−kq−2u 1

u!
∂u

∂yu
+

f(q2y+)

−(−1)t
k−1∑

u=0

(t+k−u−1
t

)
((q2 − 1)y+)u−t−k 1

u!
∂u

∂yu
+

f(y+)

)

−(−1)m
i−1∑

s=0

(m+i−s−1
m

)
((q2 − 1)y−)s−m−i

s∑

t=0

(−1)s−t
(s+l−t−1

l−1

)
(y− − q2y+)t−s−l ·

·
(

t∑

u=0

(−1)t−u
(t+k−u−1

k−1

)
(−2 λ

λ+
x̃3)u−t−k 1

u!
∂u

∂yu
−

f(y−)

−(−1)t
k−1∑

u=0

(t+k−u−1
t

)
(−2 λ

λ+
x̃3)u−t−k 1

u!
∂u

∂yu
+

f(y+)

)

−
i−1∑

s=0

(m+i−s−1
m

)
((q2 − 1)y−)s−m−i

l−1∑

t=0

(s+l−t−1
s

)
(y− − q2y+)t−s−l ·

(
t∑

u=0

(−1)t−u
(t+k−u−1

k−1

)
((q2 − 1)y+)u−t−kq−2u 1

u!
∂u

∂yu
+

f(q2y+)

−(−1)t
k−1∑

u=0

(
t+k−u−1

t

)
((q2 − 1)y+)u−t−k 1

u!
∂u

∂yu
+

f(y+)

)]
.

The abbreviations and notations can be found in appendix A, some of them also in [2, 3].
Now we can write down the actions of the derivatives explicitly and therefore get the lattice
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structure of the q−deformed Minkowski space. In this section we just write down the two

simple cases of
ˆ̃
∂3 . f and ∂̂− . f to show the problems appearing here and giving just the

interpretation of the results of the two other derivatives ∂̂+ . f and ∂̂0 . f. The explicit
actions for these can be found in appendix B.

ˆ̃
∂3 . f =

∞∑

k=0

αk
+

∑

0≤i+j≤k

(M−)ki,j(~x) · (4.8)

·
[
−( λ

λ+
q2j x̃3)−i

i∑

m=0

(x̃3
j − q2ỹ

j
−)m−i−1q−2m 1

m!
∂m

∂(ỹj

−

)m
f(q2x+, ỹ

j
−)

−
i−1∑

m=0

( λ
λ+

q2jx̃3)m−i((1 − q2)ỹj
−)−m−i−1 ·

·
(

m∑

s=0

(−1)m−s
(m+i−s

i

)
((1 − q2)ỹj

−)s 1
s!

∂s

∂(ỹj

−

)s
f(q2x+, ỹ

j
−)

−(−1)m
i∑

s=0

(m+i−s
m

)
((1 − q2)ỹj

−)sq−2s 1
s!

∂s

∂(ỹj

−

)s
f(q2x+, q2ỹ

j
−)

)]
,

∂̂− . f = − q−1

1−q2 (x
+)−1(f − f(q2x+)) (4.9)

− λ
λ+

∞∑

k=0

αk
+

∑

0≤i+j≤k

(M+)ki,j(~x)x− (x̃3
j+1 − y−)i+1 ·

·
i∑

m=0

[
(x̃3

j+1 − q2ỹ
j+1
− )m−i−1q−2m 1

m!
∂m

∂(ỹj+1

−

)m
f(q2x+, q2(j+1)x̃3, q2ỹ

j+1
− )

+( λ
λ+

q2(j+1)x̃3)m((1 − q2)ỹj+1
− )−m−i−1 ·

·
(

m∑

s=0

(−1)m−s
(
m+i−s

i

)
((1 − q2)ỹj+1

− )s 1
s!

∂s

∂(ỹj+1

−

)s
f(q2x+, q2(j+1)x̃3, ỹ

j+1
− )

−(−1)m
i∑

s=0

(m+i−s
m

)
((1 − q2)ỹj+1

− )sq−2s 1
s!

∂s

∂(ỹj+1

−

)s
f(q2x+, q2(j+1)x̃3, q2ỹ

j+1
− )

)]

+q−2 1
λ+

∞∑

k=0

αk
+

∑

0≤i+j≤k

(M−)ki,j(~x) q2j x̃3

q2x+ ( λ
λ+

q2j x̃3)−i ·

·
[

i∑

m=0

(x̃3
j − q2ỹ

j
−)m−i−1q−2m 1

m!
∂m

∂(ỹj

−

)m
(f(q2x+, q2j x̃3, q2ỹ

j
−) − f(q4x+, q2j x̃3, q2ỹ

j
−))

+

i−1∑

m=0

(−1)m( λ
λ+

q2jx̃3)m−i−1((1 − q2)ỹj
−)−m−i−1 ·

·
(

m∑

s=0

(−1)s
(m+i−s

i

)
((1−q2)ỹj

−)s 1
s!

∂s

∂(ỹj

−

)s
(f(q2x+, q2j x̃3, q2ỹ

j
−) − f(q4x+, q2j x̃3, q2ỹ

j
−))
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−
i∑

s=0

(m+i−1
m

)
((1−q2)ỹj

−)sq−2s 1
s!

∂s

∂(ỹj

−

)s
(f(q2x+, q2j x̃3, q2ỹ

j
−) − f(q4x+, q2j x̃3, q2ỹ

j
−))

)]
.

Looking for the usual lattice structure necessary for our ansatz for the integral we are
almost lost in this space: equation (4.8) gives us no structure of the form f(x) − f(qαx)
and all the other actions give back this structure only in a few terms.
These regular terms give for (4.9) the scalar operator L+

2 , in equation (B.1) we find L3̃
2 and

L−
2 and in equation (B.2) the scaling operators are L+

2 , L3̃
2 and L−

2 . For these terms it does
not matter that the coordinate x3 is replaced by ỹk

+ in some terms, but in others by ỹk
−,

since they still cancel each other. The summation causing the cancelling does affect other
coordinates while the substitution remains the same in the affected term. Considering only
these terms we would get the postulated translation invariance of the integral.
The irregular terms do not show any structure that would be compatible with the postu-
lation of translation invariance, because they do not cancel each other, no matter which
summation we try first. Although we also tried some variations we could not find one for
which our ansatz for the integral works.

4.6 κ−deformed Minkowski space

The κ−deformed Minkowski space shows a less complicated deformation structure that its
q−deformed analogue. Since a ?−product for this space is already known the only relations
for the construction of our integral are [12]:

[∂̂n, x̂i] = 0

[∂̂n, x̂n] = ηn
n

[∂̂i, x̂
j] = ηj

i (4.10)

[∂̂i, x̂
n] = −iaηnn∂̂i.

Here are i, j = 0, . . . , n − 1 and µ, ν = 0, . . . , n. The metric of this space is ηµν =
diag(1,−1, . . . ,−1). We do not insert the components of the metric, because then one
could easily switch to the Euclidean space.

Because we want to treat this space in the same way as the other ones we need to calculate
the action of the derivatives explicitly in any argument. We have

∂̂n(x̂i)m = (x̂i)∂̂n

∂̂n(x̂n)m = mηn
m(x̂n)m−1 + (x̂n)m∂̂n

∂̂i(x̂
j)m = mηj

i (x̂
j)m−1 + (x̂j)m∂̂i

∂̂i(x̂
n)m = (x̂n − iaηnn)m∂̂i

!
= (˜̂x

n
)m∂̂i.

For the whole monomial it is

∂̂i(x̂
0)k0 · · · (x̂n)kn = kiη

i
i(x̂

0)k0 · · · (x̂i)ki−1 · · · (x̂n)kn + (x̂0)k0 · · · (˜̂xn
)kn ∂̂i

∂̂n(x̂0)k0 · · · (x̂n)kn = knη
n
n(x̂0)k0 · · · (x̂n)kn−1 + (x̂0)k0 · · · (x̂n)kn ∂̂n.
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Then we obtain for the action in the commutative space

∂i . f = ηi
i∂if

∂n . f = ηn
n∂nf (4.11)

which are just the ordinary derivatives on commutative space. This is surprising, because
this might lead to an ordinary integration for an element of a general function space be-
cause of the weak deformation of this space.

Nevertheless there is a deformation which shows up, if we apply the derivative on a product
of functions. For this we first introduce a coordinate transformation we will need in the
following:

x̂n → ˜̂x
n

= x̂n − iaηnn.

This can be interpreted as first order of the more general transformation

x̂n → ˜̂x
n

= e−iaηnn ∂̂n x̂n.

Applied to an arbitrary power series in all coordinates we obtain

f → f(˜̂x
n
) = e−iaηnn ∂̂nf(x̂n)

!
= f̃(x̂).

With these transformations we find for the action of the derivatives on a product of func-
tions1 or Leibniz rule

∂n . (f · g) = (ηn
n∂nf) · g + f · (ηn

n∂ng)

∂i . (f · g) = (ηi
i∂if) · g + f̃(x) · (ηi

i∂ig) (4.12)

as we expect it from the results of [12]. This means that we just obtain a lattice structure,
if we let the derivative act on a product of functions, but not on a single function of the
function space.

Therefore one takes a closer look on the product of two functions the action of which
provides a lattice structure. Then there would be two possibilities for an ansatz of the
integral: the scalar operator should act only on the first function as induced by the Hopf
structure or it acts on the product of functions.

In the first case the ansatz would be

J(f · g) =

∞∑

k=−∞
ρk T k(f) · g

1We commute the coordinates step by step with the derivatives as done for one function.
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where T : f → f̃ , T = e−iaηnn∂n . Now inserting the action ∂i.(f ·g) we get incompatible
(in the sense of not-cancelling) terms, since in the first term we find a partial derivative of
f and in the second term a derivative of g which cannot cancel in general:

J(∂i . (f · g)) = ηi
i

∞∑

k=−∞
ρk[(e

−iakηnn∂n∂if) · g + (e−ia(k+1)ηnn∂nf) · (∂ig)].

The second ansatz is

J(f · g) =

∞∑

k=−∞
ρk T k(f · g).

To calculate this we first need to know how T k acts on a product of functions:

e−iakηnn∂n(f · g) =
∞∑

l=0

1
l!
(−iakηnn)l

l∑

j=0

(
l
j

)
(∂l−j

n f)(∂j
ng).

With this we have

J(∂i . (f · g)) =

∞∑

l=0

(−iaηnn)l

l!

l∑

j=0

(
l
j

) ∞∑

k=−∞
klρk[(∂

l−j
n ∂if)(∂j

ng) + (∂l−j
n e−iaηnn∂nf)(∂j

n∂ig)]

and again there is no way to make the two terms with the derivatives cancel in general.
This means that also this weaker deformed Minkowski space can not be treated by the
ansatz we make for the integral.

4.7 n−dimensional Euclidean space

The action of derivatives we have to deal with in this most general Euclidean case we
calculated in chapter 3. For completeness we give it here again:

∂i . f = Di
q2L

1,i−1
1 Li+1,n

2 f

= 1
1−q2 (xi)

−1
[
f(qx1, .., qxi−1,xi, q

2xi+1, .., q
2xn) − f(qx1, .., qxi−1,q

2xi, q
2xi+1, .., q

2xn)
]
.

We see at once that this action leads to a q2−scaling in all coordinates, so our ansatz for
the integral is quite simple this time:

J(f) =

n∑

i=1

+∞∑

ki=−∞
f(q2k1x0

1, . . . , q
2knx0

n)ρk1...kn
,

where the x0
i are fixed values of the according coordinates.
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To check our integral formula we insert ∂j . f :

J(∂j . f) =
n∑

i=1

+∞∑

ki=−∞
ρk1..kn

1
1−q2 (q

2kjx0
j)

−1 ·

·
[
f(q2k1+1x0

1, ., q
2kj−1+1x0

j−1,q
2kjxj, q

2kj+1+2x0
j+1, ., q

2kn+2x0
n) −

−f(q2k1+1x0
1, ., q

2kj−1+1x0
j−1,q

2kj+2x0
j , q

2kj+1+2x0
j+1, ., q

2kn+2x0
n)
]

!
= 0.

First we take the sum along kj to get the property of ρk1...kn
= ρk1

· . . . · ρkn
· c. We

find ρj = q2kj to fulfil the translation invariance and since this formula is not restricted
concerning j it also works for any other j, so altogether we find

ρk1...kn
= q2(k1+...+kn) · c.

To determine c we come back to the classical limit of the integral and calculate the difference
between two lattice points in xj direction to be

∆(xj)kj
= |(xj)kj+1 − (xj)kj

| = (1 − q2)qkjx0
j .

Since every direction enters the formula for c to assure the classical limit, we get this factor
for every direction. The obtained volume element obviously vanishes for q → 1, therefore
we obtain c = (1 − q2)nq2(k1+...+kn)x0

1 · . . . · x0
n and thus

ρk1...kn
= (1 − q2)nq2(k1+...+kn)x0

1 · . . . · x0
n.

Together with the summation over all possible signs in the arguments the integral for the
n−dimensional q−deformed Euclidean space reads

J(f) = (1 − q2)nx0
1 · . . . · x0

n

n∑

i=1

+∞∑

ki=−∞
q2(k1+...+kn)f̃(q2k1x0

1, . . . q
2knx0

n).
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Chapter 5

Construction of a Hilbert space

In this section we construct a Hilbert space for the integral we defined in the previous
chapter. This enables us to express the integral in terms of a trace of a trace-class operator.
For this we take the one-dimensional integral (4.3)

J(f) = (1 − q2)x0

+∞∑

n=−∞
q2n(f(q2nx0) + f(−q2nx0)), q ≤ 1, x0 ≥ 0

but the procedure also works for higher dimensional spaces in the according generalisation.

A Hilbert space is a Banach space with associated norm defined by an inner (scalar)
product [32]. Therefore the way to construct a Hilbert space is to build a normed space.
A Banach space is a complete metric space and if the norm is defined via an inner (scalar)
product, we obtain a Hilbert space.

First of all we have to find a space of functions, for which the integral converges. This
space will be infinite dimensional. For f to be an element of this space we demand

Λ2 := {f ; J(|f |2) < ∞}.

The scalar product of f, g ∈ Λ2 can be defined as follows

〈f, g〉J := J(f̄ g). (5.1)

Accordingly the norm is
‖f‖J :=

√
〈f, f〉J =

√
J(|f |2). (5.2)

To show that this is a proper definition of a norm, we have to prove that

‖λf‖J = |λ| · ‖f‖J , λ ∈ C, f ∈ Λ2 (5.3)

‖f + g‖J ≤ ‖f‖J + ‖g‖J , f, g ∈ Λ2 (Minkowski inequality) (5.4)

‖f‖J = 0 ⇒ f = 0. (5.5)
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We start with (5.2). Using (5.3) we obtain

‖λf‖J =
√

J(|λf |2) =
√

J(|λ|2 · |f |2)

=

√√√√(1 − q2)x0

+∞∑

n=−∞
q2n|λ|2(|f(q2nx0)|2 + |f(−q2nx0)|2)

= |λ|

√√√√(1 − q2)x0

+∞∑

n=−∞
q2n(|f(q2nx0)|2 + |f(−q2nx0)|2)

= |λ| ·
√

J(|f |2) = |λ| · ‖f‖J .

Now we show that the scalar product 〈f, g〉J converges absolutely and additionally gives
the Hölder inequality. We find the following estimate for the absolute value of the partial
sum of the corresponding series

|1 − q2|x0

[ n∑

k=−n

|qkf̄(q2kx0)| · |qkg(q2kx0)| +
n∑

k=−n

|qkf̄(−q2kx0)| · |qkg(−q2kx0)|
]

≤ |1 − q2|x0

√√√√
n∑

k=−n

q2k(|f(q2kx0)|2 + |f(−q2kx0)|2) ·

√√√√
n∑

k=−n

q2k(|g(q2kx0)|2 + |g(−q2kx0)|2)

≤ |1 − q2|x0

√√√√
∞∑

k=−∞
q2k(|f(q2kx0)|2 + |f(−q2kx0)|2) ·

√√√√
∞∑

k=−∞
q2k(|g(q2kx0)|2 + |g(−q2kx0)|2)

=
√

J(|f |2) ·
√

J(|g|2) < ∞, (5.6)

where for the first inequality we used the usual Cauchy-Schwarz inequality in the form

n∑

k=−n

akbk +
n∑

k=−n

a′
kb

′
k ≤

√√√√
n∑

k=−n

(a2
k + a′2

k )

√√√√
n∑

k=−n

(b2
k + b′2k ).

The inequality (5.6) holds for any n ∈ Z, because the last two lines are independent of
n and therefore do not change, even if we take the limit n → ∞ for the whole estimate.
Since the lhs. is equal to J(f̄ g) in this limit, it is absolutely convergent and we obtain the
Hölder inequality

J(f̄g) ≤
√

J(|f |2) ·
√

J(|g|2). (5.7)

We use this result to prove the Minkowski inequality. Defining h := |f + g| leads to
‖h‖J = ‖f + g‖J . With this we find

J(|f+g|·h) ≤ J(|fh|+|gh|) = J(|fh|)+J(|gh|)
(5.7)

≤
√

J(|f |2)
√

J(|h|2)+
√

J(|g|2)
√

J(|h|2).
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The lhs. of this equation we can rewrite with the definition of h

J(|f + g| · h) = J(|f + g|2) = ‖f + g‖2
J ,

while the rhs. is

(‖f‖J + ‖g‖J) · ‖h‖J = (‖f‖J + ‖g‖J) · ‖f + g‖J .

Altogether this leads to the Minkowski inequality

‖f + g‖J ≤ ‖f‖J + ‖g‖J.

The last equation to be proved is (5.5). Since for ‖f‖J =
√

J(|f |2) = 0 we know that

0 = J(|f |2) = (1 − q2)x0

∞∑

n=−∞
q2n[|f(q2nx0)|2 + |f(−q2nx0)|2].

All terms summed up here are positive. Now take f 6= 0. Then we have J(|f |2) > 0 which
contradicts the assumption ‖f‖J = 0. Therefore equation (5.5) holds.

On a normed space constructed this way a metric is induced naturally:

dJ(f, g) := ‖f − g‖J . (5.8)

The axioms to be shown are

dJ(f, g) ≥ 0, f, g, h ∈ Λ2 (5.9)

dJ(f, g) = dJ(g, f), (5.10)

dJ(f, h) ≤ dJ(f, g) + dJ(g, h), (5.11)

dJ(f, g) = 0 ⇔ f = g. (5.12)

The first axiom follows from the fact that in J(|f − g|2) all summands are positive and
therefore also ‖f − g‖J = dJ(f, g).
Also (5.10) is easy to see by

dJ(f, g) = ‖f − g‖J =
√

J(|f − g|2) =
√

J(|g − f |2) = ‖g − f‖J = dJ(g, f).

For the proof of (5.11) we calculate

dJ(f, h) = ‖f − h‖J = ‖(f − g) + (g − h)‖J ≤ ‖f − g‖J + ‖g − h‖J = dJ(f, g) + dJ(g, h),

where we used (5.4).
The last axiom (5.12) we prove by

dJ(f, g) = ‖f − g‖J = 0
(5.5)⇒ f − g = 0,

f − g = 0 ⇒ ‖f − g‖J = ‖0‖J = 0 ⇒ dJ(f, g) = 0.
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Up to now we showed that Λ2 is a normed and metric space for the definitions (5.2) and
(5.8). We show in the following that every Cauchy sequence converges on this space. With
this it becomes a Hilbert space, since we constructed the norm (5.2) via the inner product
(5.1).

For this we recall the definition of a Cauchy sequence:

Definition: A sequence (xn)n∈N on a metric space is a Cauchy sequence, if

∀ε > 0 ∃N(ε) ∈ N ∀n, m ≥ N(ε) : ‖xn − xm‖ ≤ ε.

In the following we take the completeness of C for granted, hence it holds for any Cauchy
sequence (fn(x))n∈N that fn(x)

n→∞−→ f(x).
For a Cauchy sequence (fn)n∈N in Λ2 we know from the definition of Cauchy sequences
that

∀ε > 0 ∃N(ε) ∈ N : ‖fn − fm‖J ≤ ε ∀n, m ≥ N(ε).

Especially for the partial sums it holds ∀n, m ≥ N(ε), ∀M ∈ N

(
(1 − q2)x0

M∑

k=−M

q2k
[
|fn(xk) − fm(xk)|2 + |fn(−xk) − fm(−xk)|2

] )1/2

≤ ‖fn − fm‖J ≤ ε.

We now take the limit m → ∞ and obtain ∀n ≥ N(ε), ∀M ∈ N

(
(1 − q2)x0

M∑

k=−M

q2k
[
|fn(xk) − f(xk)|2 + |fn(−xk) − f(−xk)|2

] )1/2

≤ ε,

since we defined (fn(x))n∈N to be a Cauchy sequence in C. Since this inequality holds for
any M, we have

(
(1 − q2)x0

∞∑

k=−∞
q2k
[
|fn(xk) − f(xk)|2 + |fn(−xk) − f(−xk)|2

] )1/2

≤ ε ∀n ≥ N(ε).

Rewriting this in terms of the norm we obtain

‖fn − f‖J ≤ ε, ∀n ≥ N(ε),

which says that the Cauchy sequence (fn)n∈N converges with the limit f.

We now come to the construction of a trace formula for our integral. The integral consists
of two parts: the one with positive arguments of the function and the the other one with
negative components. Therefore we can split up Λ2 into the part Λ2

+ with only functions
with positive arguments f(qαx0) and Λ2

− consisting just of functions f(−qαx0). Then the
integral J can be written as

J(f) = J+(f) + J−(f)
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with

J+(f) = (1 − q2)x0

∞∑

n=−∞
q2nf(q2nx0)

and

J−(f) = (1 − q2)x0

∞∑

n=−∞
q2nf(−q2nx0).

In the following we treat the case of Λ2
+, since the arguments and calculation for Λ2

− are
completely analogue and we can can reconstruct Λ2 out of it.

We take a function f ∈ Λ2
+ and an orthonormal system gk of Λ2

+ with

gk(xl) =
1√

(1 − q2)x0 ql
δkl

where xl are coordinates of the Euclidean space. For the following operator we want to
show that it is trace-class1. We assume

Tf : Λ2
+ → Λ2

+

g 7→ fϕ · g

with a weight ϕ(xk) = (1− q2)x0 q2k. Then we insert this operator into the usual definition
of a trace and obtain

trTf =

+∞∑

k=−∞
〈gk, Tfgk〉 =

+∞∑

k=−∞
〈gk, fϕ · gk〉 = 2

=
+∞∑

k=−∞
〈gk, f(xk)ϕ(xk)gk〉 =

+∞∑

k=−∞
f(xk)ϕ(xk)〈gk, gk〉 =

+∞∑

k=−∞
f(xk)ϕ(xk) =

=

+∞∑

k=−∞
(1 − q2)x0 q2kf(q2kx0) = J+(f) < ∞.

Since trTf < ∞ it holds that Tf is a trace-class operator, so we get that J(f) can be
expressed in terms of the trace.

1A trace-class operator is defined to be a positive operator u on a Hilbert space H for which ‖u‖1 :=∑
ej∈H

〈ej , uej〉 < +∞ with ej the elements of the orthonormal system of H. This ensures that the trace

we want to define converges. See also [28].
2Here only the term where we insert xk contributes, since gk(xl) = 0 for k 6= l.
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Appendix A

Notations

(1) We use the q−numbers taken from [21]:

[[n]]qA =
1 − qnA

1 − qA
.

Acting on the coordinate x̂ we also can write

[[n]]qA(x̂)n =
1 − (LA)n

1 − qA
(x̂)n =

(x̂)n − (qAx̂)n

1 − qA

with LA the scaling operator defined in chapter 3.

(2) Since our formulae would become very complex we only write down explicitly the
arguments of the functions that are scaled or transformed:

f(qAx−) ≡ f(x+, x̃3, x3, qAx−).

(3) The ordinary Jackson derivatives are [21]:

DA
qi :=

f(xA) − f(qixA)

(1 − qi)xA
.

(4) For some repetitive expressions in the coordinates we introduced the following short
cuts:

x̃3
j := x0 + q2jx̃3

y± := x0 + 2q±1

λ+
x̃3

ỹj
± := y±|x̃3→q2j x̃3 = x0 + 2q±1

λ+
q2jx̃3
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(5) For the q−deformed Minkowski space we use the following polynomials

(M±)k
i,j(~x) =

(
k
i

)
λj

+(a±(q2jx̃3))i(x+x−)jSk−i,j(x
0, x̃3)

(M+−)k,l
i,j,u(~x) =

(
k
i

)(
l
j

)
λu

+(a+(q2ux̃3))k−i(a−(q2ux̃3))l−j(x+x−)uSi+j,u(x
0, x̃3)

where we used a±(x̃3) = q±1x̃3(q±1x̃3 + λ+x0) and the sum

Si,j(x
0, x̃3) =

{
1, i = j∑j

p1=0

∑p1

p2=0 · · ·
∑pi−j−1

pi−j=0

∏i−j
l=1 a+(x0, q2plx̃3)

taken from [37].

(6) To cover all quadrants with the integral we need to sum over all possible combinations
of signs in the argument of the function f, so we define

f̃(x1, x2, . . . , xn) := f(x1, . . . , xn)+

(1 “−”-sign) +f(−x1, x2, . . . , xn) + . . . + f(x1, x2, . . . ,−xn)+

(2 “−”-signs) +f(−x1,−x2, . . . , xn) + . . . + f(x1, . . . ,−xn−1,−xn)+

+ . . .+

(1 “+”-sign) +f(x1,−x2, . . . ,−xn) + . . . + f(−x1, . . . ,−xn−1, xn)+

(0 “+”-signs) +f(−x1,−x2, . . . ,−xn).

(7) The New Jackson derivatives [2, 3] read

D(k1,...,kl)
a1,...,al

f(x) = −
l∑

i=1

(
l∏

j=i+1

(x − ajx)−kj)

ki−1∑

m=0

(x − aix)m−ki

(
D

(k1,...,ki−1,m)
a1/ai,...,ai−1/ai,1

f
)

(aix)

where ai 6= 1 and

D
(k1,...,kl)
a1,...,al−1,1f(x) =

kl∑

m=0

(−1)kl−m
(

kl+kl−1−m−1
kl−1−1

)
(x − al−1x)m−kl−kl−1D

(k1,...,kl−2,m)
a1,...,al−2,1 f(x)

−(−1)kl

kl−1−1∑

m=0

(
kl+kl−1−m−1

kl

)
(x − al−1x)m−kl−kl−1

(
D

(k1,...,kl−2,m)

a1/al−1,...,al−2/al−1,1f
)

(al−1x).

With this formula one reduces the order of the derivative order by order up to

D
(k)
1 f(x) = 1

k!
∂k

∂xk f(x).
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Action of ∂̂+ and ∂̂0 in the Minkowski

space

The action we want to consider is

∂̂+ . f = −q

∞∑

k=0

αk
+

∑

0≤i+j≤k

{
ĝ1 (f(q2jx̃3, q2ỹj

−) − f(q2jx̃3, q2ỹj
−, q2x−))

+ĝ2 (f(q2jx̃3, ỹj
−) − f(q2jx̃3, ỹj

−, q2x−))

+ĝ3 (f(q2jx̃3, ỹj
+) − f(q2j+2x̃3, ỹj

+))

+ĝ4 (f(q2jx̃3, q2ỹj
+) − f(q2j+2x̃3, q2ỹj

+))
}

−q λ
λ+

∑

0≤k+l≤∞
αk+l

+

k∑

i=0

l∑

j=0

∑

0≤u≤i+j

(M+−)k,l
i,j,u(~x) · (B.1)

·
{
ĥ1f(q2ux̃3, ỹu

+) + ĥ2f(q2ux̃3, q2ỹu
+) + ĥ3f(q2ux̃3, ỹu

−) + ĥ4f(q2ux̃3, q2ỹu
−)
}

− λ
λ+

∑

0≤k+l≤∞
αk+l+1

+

k∑

i=0

l+1∑

j=0

∑

0≤u≤i+j

(M+−)k,l+1
i,j,u (~x)x+ ·

·
{
ĥ5f(q2ux̃3, ỹu

+) + ĥ6f(q2ux̃3, q2ỹu
+) + ĥ7f(q2ux̃3, ỹu

−) + ĥ8f(q2ux̃3, q2ỹu
−)
}

where the ĥA and ĝB denote operators consisting of sums of functions of the coordinates
multiplied with derivatives. Those terms do not affect the lattice structure, so we can
abbreviate them. The ĝB are used to shorten the terms of usual form f − f(qixk) whereas
the ĥA are used for terms without that recursive structure. The other abbreviations we
used can be found in appendix A.
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For the action of ∂̂0 we find with the same convention for the abbreviations ĝ and ĥ:

∂̂0 . f =
∞∑

k=0

αk
+

∑

0≤i+j≤k

(M+)ki,j(~x) ·
[
ĝ1(f(q2j x̃3, ỹ

j
+) − f(q2j+2x̃3, ỹ

j
+)) (B.2)

+ĝ2(f(q2j x̃3, q2ỹ
j
+) − f(q2j+2x̃3, q2ỹ

j
+))

+ĝ3(f(q2j x̃3, ỹ
j
+) − f(q2j+2x̃3, ỹ

j
+) − f(q2x+, q2j x̃3, ỹ

j
+) + f(q2x+, q2j+2x̃3, ỹ

j
+))

+ĝ4(f(q2j x̃3, q2ỹ
j
+) − f(q2j+2x̃3, q2ỹ

j
+) − f(q2x+, q2j x̃3, q2ỹ

j
+) + f(q2x+, q2j+2x̃3, q2ỹ

j
+))

+ĝ5(f(q2j x̃3, q2ỹ
j
+) − f(q2jx̃3, q2ỹ

j
+, q2x−))

+ĝ6(f(q2j x̃3, ỹ
j
+) − f(q2jx̃3, ỹ

j
+, q2x−))

− q2 λ
λ+

∑

0≤k+l<∞
αk+l

+

k∑

i=0

l∑

j=0

∑

0≤u≤i+j

(M+−)k,l
i,j,u(~x) ·

·
[
ĝ7(f(q2ux̃3, ỹu

+) − f(q2x+, q2ux̃3, ỹu
+)) + ĝ8(f(q2ux̃3, q2ỹu

+) − f(q2x+, q2ux̃3, q2ỹu
+))
]

+ 1
λ+

∑

0≤k+l<∞
αk+l+1

+

k∑

i=0

l+1∑

j=0

∑

0≤u≤i+j

(M+−)k,l+1
i,j,u (~x) ·

·
[
ĝ9(f(q2ux̃3, ỹu

+) − f(q2x+, q2ux̃3, ỹu
+)) + ĝ10(f(q2ux̃3, q2ỹu

+) − f(q2x+, q2ux̃3, q2ỹu
+))
]

− q λ
λ+

∞∑

k=0

αk
+

∑

0≤i+j≤k

(M−)ki,j(~x) ·
[
ĝ11(f(q2jx̃3, q2ỹ

j
−) − f(q2x+, q2j x̃3, q2ỹ

j
−))

+ĝ12(f(q2jx̃3, ỹ
j
−) − f(q2x+, q2j x̃3, ỹ

j
−))

+ĝ13(f(q2jx̃3, q2ỹ
j
−)−f(q2x+, q2j x̃3, q2ỹ

j
−)−f(q2j x̃3, q2ỹ

j
−, q

2x−)+f(q2x+, q2j x̃3, q2ỹ
j
−, q

2x−))

+ĝ14(f(q2jx̃3, ỹ
j
−) − f(q2x+, q2j x̃3, ỹ

j
−) − f(q2jx̃3, ỹ

j
−, q2x−) + f(q2x+, q2j x̃3, ỹ

j
−, q2x−))

]

− q2 λ
λ+

∑

0≤k+l<∞
αk+l

+

k∑

i=0

l∑

j=0

∑

0≤u≤i+j

(M+−)k,l
i,j,u(~x) ·

·
[
ĝ15(f(q2ux̃3, ỹu

−) − f(q2x+, q2ux̃3, ỹu
−)) + ĝ16(f(q2ux̃3, q2ỹu

−) − f(q2x+, q2ux̃3, q2ỹu
−))
]

+ 1
λ+

∑

0≤k+l<∞
αk+l+1

+

k∑

i=0

l+1∑

j=0

∑

0≤u≤i+j

(M+−)k,l+1
i,j,u (~x) ·

·
[
ĝ17(f(q2ux̃3, ỹu

−) − f(q2x+, q2ux̃3, ỹu
−)) + ĝ18(f(q2ux̃3, q2ỹu

−) − f(q2x+, q2ux̃3, q2ỹu
−))
]

− q2 λ
λ+

∑

0≤k+l<∞
αk+l

+

k∑

i=0

l∑

j=0

∑

0≤u≤i+j

(M+−)k,l
i,j,u(~x) ·

·
[
ĥ1f(q2ux̃3, ỹu

+) + ĥ2f(q2ux̃3, q2ỹu
+) + ĥ3f(q2ux̃3, ỹu

−) + ĥ4f(q2ux̃3, q2ỹu
−)
]

+ β
λ+

∑

0≤k+l<∞
αk+l+1

+

k+1∑

i=0

l∑

j=0

∑

0≤u≤i+j

(M+−)k+1,l
i,j,u (~x) ·
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·
[
ĥ5f(q2ux̃3, ỹu

+) + ĥ6f(q2ux̃3, q2ỹu
+) + ĥ7f(q2ux̃3, ỹu

−) + ĥ8f(q2ux̃3, q2ỹu
−)
]

+ 1
λ+

∑

0≤k+l<∞
αk+l+1

+

k∑

i=0

l+1∑

j=0

∑

0≤u≤i+j

(M+−)k,l+1
i,j,u (~x) ·

·
[
ĥ9f(q2ux̃3, ỹu

+) + ĥ10f(q2ux̃3, q2ỹu
+) + ĥ11f(q2ux̃3, ỹu

−) + ĥ12f(q2ux̃3, q2ỹu
−)
]
.
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variants on Mθ, (2004), hep-th/0409012.

[23] M. Kontsevich, Deformation quantization of Poisson manifolds, I, (1997), q-
alg/9709040.

[24] A. Lorek, W. Weich, and J. Wess, Non-commutative Euclidean and Minkowski

structures, Z. Phys. C, 76 (1997), p. 375.

[25] J. Lukierski, A. Nowicki, H. Ruegg, and V. N. Tolstoy, Q-Deformation of

Poincaré algebra, Phys. Lett., B264 (1991), p. 331.

[26] J. Madore, S. Schraml, P. Schupp, and J. Wess, Gauge theory on noncom-

mutative spaces, Eur. Phys. J., C16 (2000), pp. 161–167, hep-th/0001203.

[27] G. Münster and M. Walzl, Lattice gauge theory : a short primer, in Zuoz Pro-
ceedings: Phenomenology of Gauge Interactions, 2000, hep-lat/0012005.



BIBLIOGRAPHY 67

[28] G. J. Murphy, C*-Algebras and Operator Theory, Academic Press, Inc., San Diego,
USA, 1990.

[29] H. Ocampo, SOq(4) quantum mechanics, Z. Phys. C, 70 (1996), p. 525.

[30] O. Ogievetskii, W. B. Schmidke, J. Wess, and B. Zumino, Six generator

q-deformed Lorentz algebra, Lett. Math. Phys., 23 (1991), p. 233.
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zögern bereit erklärt hat, das Zweitgutachten zu übernehmen.
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2002 - 2004 Promotionsstipendium des Max-Planck-Instituts für Physik München


	Zusammenfassung
	Introduction
	 -products
	Introduction to -products
	Gauge group action
	Further properties
	Algebras and -products
	Algebra generator orderings
	Equivalence of -products

	Formulation of -products with commuting vector fields
	Definitions and proof of associativity
	Linear transformations
	Reconstruction of algebras

	Examples for -products in two dimensions
	a-Euclidean space
	General linear vector fields
	Vector fields in general spherical coordinates
	Vector fields in spherical coordinates on the unit circle

	Examples for -products constructed from quantum spaces
	The quantum space M(soa(n))
	q-deformed Heisenberg algebra
	The Lie algebra so(3)
	The quantum space M(soq(3))
	The quantum space M(soq(1,3))
	The quantum space M(soq(4))
	4-dimensional q-deformed Fock space 


	Leibniz rule on the n-dimensional q-deformed Euclidean space
	-product
	Leibniz rule

	Integration on q-deformed Quantum spaces
	Ideas and interpretation
	1-dimensional quantum space with an explicit example
	3-dimensional Euclidean space
	4-dimensional Euclidean space
	q-deformed Minkowski space
	-deformed Minkowski space
	n-dimensional Euclidean space

	Construction of a Hilbert space
	Notations
	Action of "705E+ and "705E0 in the Minkowski space
	Bibliography
	Danksagungen
	Lebenslauf

