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INTRODUCTION 1 

1. INTRODUCTION 

 

1. 1 Proteolytic enzymes and their role in cell homeostasis 

 

In all living organisms protein molecules are continuously synthesized and degraded. The 

concentration of individual cellular proteins is determined by a balance between rates of 

synthesis and degradation, which in turn is controlled by a series of regulated biochemical 

mechanisms. The rates of protein degradation can play an essential role in defining their 

cellular concentrations and may vary in different compartments depending on environment 

(Vierstra, 1993; Andersson and Aro, 1997; Adam, 2000). 

 

The key enzymes of the protein degradation machinery are designated as �peptidases� or 

�proteases�. Peptidases catalyze the hydrolysis of peptides by digestion of the specific bonds 

inside target molecule. Peptidases can be divided into two large groups according to their 

substrate specificities: endopeptidases and exopeptidases. Exopeptidases remove single or 

several amino acid residues, dipeptides or tripeptides, from N- or C-termini, and accordingly 

can be classified into mono-, di- and tripeptidases, respectively (Kenny, 1999; Rawling and 

Barret, 1999). Endopeptidases can also remove single or several amino acid residues, but in 

contrast to exopeptidases, classification of endopeptidases is based on the active proteolytic 

residues of the enzymes, not on a substrate. Endopeptidases have been divided into four major 

groups: serine, cysteine, aspartic and metallo-peptidases (Barret, 1994 and 1995; Callis, 1995; 

Kenny, 1999). 

 

Investigations of degradation processes in cells have demonstrated that protein turnover 

occurs in all organelles (mitochondria and chloroplasts) and compartments of a cell (Burgess 

et al., 1978; Brown et al., 2000; Hicke, 2001). Protein turnover is involved in various cellular 

key processes, such as in the control of the cell cycle (Pagano, 1997), gene expression (Adam, 

2000), cell differentiation (Kinoshita et al., 1995), protein targeting and sorting (Perlman and 

Halvorson, 1983; Richter et al., 1998), protein quality control (Bradshaw et al., 1998), 

programmed cell death and senescence (Huffaker, 1990; Matile et al., 1996; Hortensteiner and 

Fello, 2002). 

 

Eukaryotic cells have evolved different proteolytic systems compared to prokaryotic cells: a 

membrane-enveloped lysosomal system and selective proteolytic systems consisting of highly 
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specific proteinases residing in different cellular compartments (Rivett, 1985; Klausner and 

Sitia, 1990; Heinemeyer et al., 1991). A major selective non-lysosomal proteolytic pathway is 

mediated by an ubiquitin system (Ciechanover et al., 1980; Ciechanover, 1998; Hershko et al., 

1983). In this pathway substrate proteins are proteolyzed by a proteasome (Hershko et al., 

1983; Hershko, 1988). In various organisms the proteasome represents a highly conserved 2.6 

MDa protein complex that degrades protein substrates in an ATP-dependent fashion and 

yields small peptides and free ubiquitin. Ubiquitin is a highly conserved small polypeptide of 

76 amino acids that binds covalently to lysine residues on a target protein. Labelled proteins 

are recognized by proteases and subjected to proteolysis (Hershko, 1988; Ciechanover and 

Schwarz, 1989; Vierstra, 1993; Ciechanover, 1998; De Mot et al., 1999; Glickman, 2000). 

Two known major functions of ubiquitin are the modification of the histones H2A and H2B 

during interphase cell growth and the modification of cellular proteins for targeting them to 

proteolytic degradation (Bond et al., 1988). Biochemical and genetic evidence strongly 

supports the view that the ubiquitin system is primarily responsible for the degradation of 

heat- or stress-damaged proteins in eukaryotic cells. Previous studies have shown that 

ubiquitin synthesis is markedly accelerated in a heat-shocked cells. It is possible that ubiquitin 

acts as a signal target for proteolytic removal of abnormal proteins produced by stresses.  

 

There is no clear evidence for regulation of gene expression by ubiquitin during stress 

conditions (Parag et al., 1987; Bond et al., 1988). Also, the role of ubiquitin in lower plants 

and prokaryotes is not well known. Some archea and prokaryotes, for instance the 

archaebacterium Thermoplasma acidophilum, contain simple versions of the proteasome, 

however, in the absence of ubiquitin and the ubiquitin-conjugating system (Seemüller et al., 

1995). In plant tissues ubiquitin appears to be involved in the degradation of phytochrome 

photoreceptors. Following a brief light pulse phytochrome is converted to another form that is 

degraded 100-fold faster than the original species. During the phase of rapid degradation, 

markedly decreased levels of ubiquitin-phytochrome conjugates were observed (Shanklin et 

al., 1987; Hershko, 1988). 

 

The degradation of proteins takes place in organelles, lysosomes and in higher plants 

vacuoles. Similar to other proteolytic systems lysosomal protein degradation requires addition 

of ATP energy (Seglen and Bohley, 1992). Under nutritional or hormonal deprivations the 

number of lysosomes accelerates rapidly. Lysosomal breakdown appears to be largely non-

specific, although it has been suggested that certain proteins are targeted to lysosomes by a 
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specific amino acid sequence (Chiang and Dice, 1988; Dice, 1992). It has been shown with  

mammalian cell cultures that activation of a more selective system can take place that 

transports proteins directly into lysosomes during nutrient deprivation. This pathway is 

mediated by the heat shock cognate protein of 73 kDa (Hsc73), which binds to a molecular 

determinant in those cytosolic polypeptides that are destined for lysosomal catabolism 

(Terlecky and Dice, 1993). The transport processes also involve the recognition of proteins 

containing the specific sequence motif Lys-Phe-Glu-Arg-Gln (KFERQ) (Dice, 1992). 

Alteration of the conformation of targeted proteins occurs in an ATP-dependent step that, in 

turn, facilitates transport of the target into lysosomes. Approximately 25 - 30% of human 

cytosolic proteins contain domains that react with antibodies produced against the KFERQ 

sequence, suggesting that many proteins are targeted to lysosomes via this mechanism (Dice 

and Chiang, 1989; Olson et al., 1991; Terlecky and Dice, 1993; Vierstra, 1993). Despite its 

different localization it is assumed that ubiquitin could be involved in the utilisation of 

lysosomal proteins (Vierstra, 1993; Hershko and Ciechanover, 1998). In plants precursors of 

vacuolar proteins are transported from the endoplasmic reticulum into vacuoles where they 

are proteolytically processed to their mature forms (Hara-Nishimura et al., 1991). Some 

reports have described vacuolar processing enzymes (VPEs) that are responsible for the 

maturation of seed proteins (Kinoshita et al., 1995). Recent studies of these proteins showed 

that seed-type VPEs constitute only one pathway for processing seed storage proteins and that 

other proteolytic enzymes can also process storage proteins into chains capable of stable 

accumulation in mature seeds (Gruis et al., 2002). 

 

Chloroplasts, as photosynthetic bacteria, also contain a number of proteolytic enzymes that 

are directly or indirectly involved in protein utilisation. Among them are peptidases that 

participate in the turnover of proteins that constitute the photosynthetic machinery in higher 

plants (Melis, 1991; Murakami and Fujita, 1991). Proteases that have been identified in the 

organelle include the stroma-located members of Clp family which are well conserved from 

prokaryotes to eukaryotes (Moore and Keegstra, 1993; Schelin et al., 2002), the stromal and 

thylakoid-located processing peptidases (VanderVere et al., 1995) that dissect imported or 

translocated protein precursors, the thylakoid-bound metalloproteases FtsH (Lindahl et al., 

1996), and two lumenal components, the heat shock protease HtrA (DegP) (Itzhaki et al., 

1998) and CtpA, an enzyme involved in the C-terminal processing of the core protein of the 

photosystem II reaction centre, the D1 protein (Shestakov et al., 1994; Anbudurai et al., 

1994). 
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At present, little information is available about degradation of proteins in other cellular and 

organelles compartments. There is some evidence that mitochondria and endoplasmatic 

reticulum with its connected sectretory system have proteolytic pathways involved in the 

maturation and function of their proteins. 

 

Mitochondrial proteins as a rule show relatively long half-lives and the proteins of the outer 

membrane turn over more rapidly than those from inner membrane and matrix (Bohley, 

1996). One reason for the long half-lives of mitochondrial proteins could be the relatively low 

protease concentration in this organelle (Bohley, 1996). Proteolytic processes play an 

important role in the biogenesis of mitochondria and in quality surveillance of mitochondrial 

proteins. For instance, Oxa1p is a component of a general mitochondrial export machinery 

whose role is accompanied by two mitochondrial proteases, the matrix protease Afg3p-Rca1p 

and the intermembrane space protease Yme1p (Lemaire et al., 2000). The mitochondrial 

PIM1 protease that cooperates with molecular chaperones appears to be essential in the 

degradation of misfolded proteins that are generated during heat stress (Wagner et al., 1994). 

The proteolytic enzymes, caspases (cysteine aspartyl proteases), are found in mitochondria of 

animal cells and play a critical role in apoptosis by being involved in a cascade of cleavage 

events (Zou et al., 1997; Thornberry and Lazebnik, 1998; Kumar and Vaux, 2002). It was 

proposed that mitochondria, like the Golgi complex, sense and transduce the pro-apoptotic 

signals through caspases, which regulate different proteins participating in apoptosis (Zou et 

al., 1987; Mancini et al., 2000). 

 

Secretory proteins are synthesized in the cytosol and usually translocated into endoplasmic 

reticulum via the Sec61 translocon (Matlack et al., 1998). Translocation can proceed either 

co- or post-translationally and requires the proteins in unfolded state. Protein transport and 

maturation are inevitably prone to errors, which leads to misfolded and misassembled 

polypeptides that used to be removed by proteolytic pathways. Selective degradation of 

proteins at the endoplasmic reticulum (ER-associated degradation) is thought to proceed 

largely via the cytosolic ubiquitin-proteasome pathway (Klausner and Sitia, 1990; Mayer et 

al., 1998; Kopito and Sitia, 2000; Lee et al., 2004; Kopito, 1997). For instance, in yeast two 

ubiquitin-conjugating enzymes (UBC6 and UBC7) were found in the endoplasmatic 

reticulum. It was also shown that they are essential for ER-associated protein degradation 

(Sommer and Jentsch, 1993; Mayer et al., 1998).  
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Taken together, peptidases in both eukaryotes and prokaryotes play a crucial role in the 

following processes: 

 

1. Protein biogenesis (keeping in order major cellular functions) 

a. Proteases maintain various cell functions by removal of mistranslated or aberrant 

polypeptides expressed from defective RNAs (Goldberg and Dice, 1974; Keiller et al., 1996) 

or of post-translationally modified proteins that cannot return to their native, functional form 

(e. g. misfolded or unassembled proteins; Callis, 1995; Grune et al., 1995; Bohley, 1996; 

Missiakas and Raina, 1997). 

 

Such degradation processes mainly occur in the intracellular space and generally involve 

unspecific peptidases. The best studied group are proteases that recognize misfolded or 

mistargeted proteins and subject them to proteolytic degradation (Chuang and Blattner, 1993; 

Itzhaki et al., 1998; Clausen et al., 2002). Physiological stress, such as increased temperature 

or light intensity, often results in denaturation of proteins. The expression of heat shock 

proteins is induced under these conditions in order to diminish damage to organelles or cells. 

As molecular chaperones, some heat shock proteins can stabilize the folding intermediates 

prone to aggregation and ensure efficient refolding of native structure under normal 

conditions (Hartl, 1996; Schwarz et al., 1996). If renaturation can not be achieved by the 

chaperone function the aberrant proteins will be degraded via proteolysis. In some cases, 

peptidases carry both, molecular chaperone and proteolytic activities. For instance, the 

chaperone function of the heat shock protein DegP (HtrA) in E. coli dominates at low 

temperatures, while the proteolytic activity is activated at elevated temperatures. These 

findings illustrate that some cellular components could switch between two key pathways, 

control of protein stability and turnover (Spiess et al., 1999). 

 

b. Control of gene expression by direct or indirect interaction with transcription through 

sigma factors 

Some proteases can be involved in the regulation of sigma factors. For instance, in E. coli 

FtsH protease is responsible for specific degradation of the transcription factor σ32 (RpoH; 

Herman et al., 1995; Tomoyasu et al., 1995) and transcriptional activation of the CII protein 

(Herman et al., 1993). Clp proteases including ClpXP and ClpAP are involved in the 

degradation of transcription factors such as RpoS and λO (Gottesman et al., 1993; Becker et 

al., 1999; Hengge-Aronis, 2002). In yeast several other proteases, including homologues of 
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the Lon protease of E. coli, are involved in regulation of transcription or replication of DNA 

by binding to mitochondrial promoters (Fu et al., 1997; van Dyck et al., 1998). 

 

c. Control of protein quality 

Some proteases can regulate activation of proteins through processing, for instance, post-

translational modification of proteins by processing of apoproteins to form active mediators or 

holoproteins (Zou et al., 1997; Tang and Guest, 1999). There are two different types of 

protein processing: carboxyl-terminal processing and amino-terminal processing. Specific 

degradation of proteins with non-polar C-terminal sequences was first reported for several 

cytoplasmatic proteins in E. coli (Parsell et al., 1990; Keiler and Sauer, 1996). Later, Tsp 

(tail-specific peptidase) endopeptidase from E. coli was purified (Silber and Sauer, 1994) and 

shown to be a major periplasmatic peptidase responsible for the specific C-terminal 

degradation of proteins. Tsp peptidase is involved in the degradation of mistranslated proteins 

that carry an ssrA sequence at their C-termini, which can be specifically recognized by that 

peptidase (Hara et al., 1991; Silber et al., 1992; Lentsch, 1996; Keiler et al., 1996). The 

homologues of Tsp peptidase were identified in photosynthetic organisms (Fulda et al., 2000) 

and were later shown to be ivolved in the C-terminal processing of D1 precursor (Anbudurai 

et al., 1994). C-terminal processing of D1 is an essential event for the assembly of a 

manganese cluster, for light-mediated water oxidation and stabilization of a reaction centre of 

PSII (von Heijne et al., 1989; Anbudurai et al., 1994; Inagaki et al., 2001).  

 

Amino-terminal degradation includes two large groups of peptidases according to different 

functional properties. Recent investigations deduced a group of aminopeptidases that are 

involved in N-terminal methionine excision (Bradshaw et al., 1998), a process that often is 

essential for protein stabilization (Giglione et al., 2003) or translation (Chang et al., 1989; Li 

and Chiang, 1995). The N-end recognizing proteins that select potential proteolytic substrates 

by binding to their amino-terminal residues have also been identified as the E3 protein of the 

ubiquitin-dependent proteolytic system (Callis, 1995; Bohley, 1996; Varshavsky, 1997a,b). 

The second group includes a number of proteolytic enzymes (processing peptidase family) 

involved in protein translocation across membranes. A large fraction of proteins is 

synthesized in a compartment different from the compartment of their destination. Such 

proteins carry the presequences at their N-termini that are removed by processing enzymes in 

one or two steps, generally depending on their localization (Hageman et al., 1986; Oblong and 

Lamppa, 1992; Richter and Lamppa, 1998 and 1999). For example, proteins targeted to 
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chloroplasts or mitochondria possess a special transit peptides recognized by peptidases 

associated with the transport machinery (Perlman and Halvorson, 1983; von Heijne et al., 

1989; Dalbey, 1991; Houben et al., 2002). 

 

2. Role in adaptive response to ever changing environment  

Protein degradation play a crucial role in adaptation processes, e.g. during stress conditions 

such as light stress (Adamska et al., 1996; Porankiewicz et al., 1998; Grossman et al., 2001; 

Haussuhl et al., 2001; Lensch et al., 2001), heat shock (Lipinska et al., 1990; Spiess et al., 

1999; Diamant et al., 2001), salt tolerance (Gerth et al., 1998; Msadek et al., 1998), nutrient 

starvation (Damerau and St John, 1993; Collier and Grossman, 1994; Katoh et al., 2001) or 

treatment with chemical reagents (Adam, 1996; Andersson and Aro, 1997). Damage caused 

by stress can activate specific proteases that are essential for maintenance of physiological 

processes in living cells. Proteolysis of abnormal proteins leads ultimately to free amino acids 

that can then be reutilized for protein synthesis or metabolized otherwise. 

 

1. 2 Characterization of the protease complement of cyanobacterial cells 

 

Comparison of the number of proteolytic components has shown that cyanobacteria possess a 

set of proteases such as Clp (Eriksson and Clarke, 1996; Porankiewicz et al., 1998; Panichkin 

et al., 2001), Deg (Sokolenko et at., 2002), FtsH (Mann et al., 2000; Bailey et al., 2001), Ctp 

(Shestakov et al., 1994; Ivleva et al., 2002), Gsp (Zuther et al., 1998) and SppA (Lensch et al., 

2001) that are also represent in non-photosynthetic prokaryotes. Since cyanobacteria, together 

with a heterotrophic eukaryotic cell, are ancestors for an endosymbiotic event that led to 

chloroplasts (Herrmann 1997; Martin and Herrmann, 1998; Martin et al., 1998), this group of 

organisms can be profitably used for the investigation of proteolytic components in plant 

cells. Various studies deduced a number of prokaryotic-type peptidases also in higher plants 

(Adam et al., 2001; Sokolenko et al., 2002), however the function most of them still unknown. 

 

1.2.1 The Clp peptidase family 

 

The ATP-dependent Clp peptidases are soluble multisubunit protein complexes present in 

both, prokaryotes and eukaryotes. A typical Clp complex represents an assembly of two types 

of subunits that perform distinct functions: a multimeric proteolytically active peptidase 

moiety, designated ClpP that also exists in catalytically probably inactive versions, ClpR, and 
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chaperone-type subunits, that regulate the proteolytic activity of the peptidase complex. There 

are two regulatory ATPase subunits (ClpC and ClpX; Schirmer et al., 1996; Turgay et al., 

1998) and a chaperone (ClpB; Squires and Squires, 1992; Weaver et al., 1999). In non-

photosynthetic prokaryotes ClpR is encoded by a single gene, whereas in plants multiple 

ClpR isomers, designated ClpR1, ClpR2, ClpR3 and ClpR4, are present (Nakabayashi et al., 

1999; Adam et al., 2001).  

 

Clp subunits are involved either in the regulation of proteolysis or function as molecular 

chaperones (Squires and Squires, 1992; Schirmer et al., 1996; Gottesman et al., 1997a, b). For 

instance, in non-photosynthetic bacteria, such as Escherichia coli and Bacillus subtilis, Clp 

proteins play a critical role in stress tolerance (Gerth et al., 1998; Msadek et al., 1998) or in 

responses to nutrient starvation (Damerau and John, 1993). Clp proteins can be directly 

involved in proteolysis of misfolded or damaged proteins (Frees and Ingmer, 1999; Krüger et 

al., 2000) and are also required for crucial processes such as cell division, development of 

sporulation, genetic competence and quality control of protein translation (Jenal and Fuchs, 

1998; Msadek et al., 1998; Nanamiya et al., 1998; Turgay et al., 1998; Flynn et al., 2001). 

While most Clp regulatory subunits are part of high molecular weight Clp complexes, ClpB 

has not been found in supramolecular assemblies. It acts as a chaperone under conditions of 

salt and heat stress (Diamant et al., 2001). 

 

In the photoautotrophic organism Synechoccocus sp. PCC 7942 ClpP is involved in the 

steady-state growth and long-term acclimation to high light, cold stress and UV-B (Clarke et 

al., 1998; Porankiewicz et al., 1998), while ClpB appears to be involved in thermotolerance 

(Clarke and Eriksson, 2000). In Chlamydomonas chloroplasts ClpP peptidase appears to 

participate in proteolytic disposal of fully or partially assembled cytochrome b6f and PSII 

complexes (Majeran et al., 2000; 2001). Some experimental evidence from higher plant 

chloroplasts suggested that Clp peptidase represents a major housekeeping peptidase in the 

chloroplast stroma (Shanklin et al., 1995; Halperin et al., 2001). In tobacco chloroplasts, ClpP 

is involved in chloroplast development and required for cell survival (Shikanai et al., 2001). 

The expression analysis of Arabidopsis clp genes and their products demonstrated the 

presence of Clp peptidase not only in photosynthetic tissues but also in roots and a 

constitutive level of the proteins after various short-term stresses and during normal growth 

(Zheng et al., 2001). 
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1.2.2 The Deg peptidase family  

 

The Deg peptidase family includes a number of ATP-dependent serine peptidases that are 

widespread among bacteria and eukaryotes. The Deg family also known as the Htr family 

includes three related members HtrA (DegP), HhoA (DegQ) and HhoB (DegS). In E. coli 

HtrA is a heat stress protease that functions in a homohexameric state in the periplasm (Kim 

et al., 1999; Sassoon et al., 1999). It is responsible for the degradation of misfolded and 

abnormal proteins of the cell membrane or periplasmic compartment (Strauch and Beckwith, 

1988; Lipinska et al., 1990; Kim et al., 1999) and required for cell viability at elevated 

temperatures or under oxidative stress (Strauch et al., 1989; Lipinska et al., 1990; Skorko-

Glonek et al., 1997; 1999). HtrA also functions as a chaperone at low temperature, while its 

proteolytic activity develops at high temperatures (Spiess et al., 1999). 

 

HhoA and HhoB were initially identified in E. coli as multicopy suppressors of a lethal null 

mutation in the prc gene encoding a C-terminal processing peptidase (Bass et al., 1996). Both, 

HhoA and HtrA are soluble proteins located in the bacterial periplasmic space (Waller and 

Sauer, 1996). HhoA can rescue the temperature-sensitive phenotype of an HtrA- strain, but in 

contrast to HtrA, it is not required for cell survival at elevated temperatures (Waller and 

Sauer, 1996). Its homologue, HhoB, is a smaller and a membrane-bound protein, exposing its 

putative catalytic site to the periplasmic space (Alba et al., 2001). HhoB is involved in the 

regulation of the σE -specific anti-sigma factor RseA and extracytoplasmic stress response 

controlled by the σE protein (Ades et al., 1999; Alba et al., 2001). This observation could 

explain why HhoB is important for E. coli cells under both normal and extreme growth 

conditions (Waller and Sauer, 1996).  

 

Fourteen different genes encoding proteins related to DegP were found in the Arabidopsis 

genome (Adam et al., 2001; Sokolenko et al., 2002). Of the nine loci predicted to encode 

organellar peptidases, four are unambiguously assigned to the chloroplast where they function 

in distinct sub-locations (Adam et al. 2001). Three DegP peptidases from higher plants have 

been described recently, DegP1, DegP2 and DegP5. DegP1 and DegP5 are lumenal 

peptidases where the first one is tightly associated with thylakoid membranes (Itzhaki et al., 

1998; Lensch, 2002; Kieselbach and Funk, 2003). This peptidase is expressed constitutively, 

but its level increases in plants exposed to higher temperatures. The DegP2 peptidase (Adam 

et al., 2001) is active at the stromal face of the thylakoid membrane and has been suggested to 
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be involved in the initial step of D1 degradation (Haußühl et al., 2001). Recent proteome 

analysis of the Arabidopsis thylakoid lumen revealed three Deg peptidases (DegP1, DegP5 

and DegP8) in that compartment (Schubert et al., 2001). 

 

1.2.3 The FtsH peptidase family 

 

Bacterial FtsH is a membrane-integral ATP-dependent peptidase (Tomoyasu et al., 1993). It 

participates in various intracellular degradation processes ranging from the degradation of the 

protein translocase subunit SecY to that of the heat stress transcription factor σ32 and of the 

transcriptional activator λCII (Herman et al., 1995; Kihara et al., 1995). With one exception, 

the mitochondrial Yme1p subunit, one of the FtsH components, that spans the membrane only 

once, all the other FtsH members posses two transmembrane domains in the N-terminal 

region, which are followed by a large cytoplasmic domain (Tomoyasu et al., 1993; Langer, 

2000). Like other ATP-dependent peptidases, FtsH possesses a homodimeric or/and 

tetrameric structure (Akiyama et al., 1995). The multimeric structure is required for catalytic 

activity as was shown for AAA-ATPases (Karata et al., 1999). The N-terminal domain is 

involved in the oligomerization of the peptidase but the transmembrane organization is 

essential for proteolytic activity against integral membrane proteins (Akiyama and Ito, 2000). 

The structure and function of AAA peptidases has been well studied from yeast mitochondria. 

The proteins were found to be a key-player in the destruction of membrane proteins (for 

review see Langer, 2000). 

 

The peptidase family is encoded by four genes in Synechocystis and sixteen genes in 

Arabidopsis (Adam et al., 2001). With few exceptions (FtsH3, FtsH4, FtsH10 and FtsH11) 

most of the Arabidopsis FtsH peptidases and FtsHi subunits are located or predicted to reside 

in chloroplast membranes. Only two FtsH members were predicted to be targeted to 

mitochondria (FtsH3 and FtsH10). The chloroplast FtsH peptidase was first identified 

immunologically in spinach thylakoid membranes and expression of its gene was shown to be 

light-inducible (Lindahl et al., 1996). It was proposed that this peptidase is involved in the 

degradation of unassembled thylakoid proteins (Ostersetzer and Adam, 1997). Later, the 

involvement of FtsH in the second step of degradation of the photosystem II reaction centre 

core protein D1 was demonstrated by an in vitro approach (Lindahl et al., 2000). Inactivation 

of the Arabidopsis FtsH2 (VAR2) protein caused a variegated phenotype, suggesting that this 

protein is required for plastid differentiation to prevent partial photooxidation of developing 
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chloroplasts (Chen et al., 2000; Takechi et al., 2000). This is consistent with the recent finding 

that the FtsH2 homologue is required for the cleavage of the D1 polypeptide in vivo (Bailey et 

al., 2002).  

  

All four genes coding for FtsH peptidases were individually inactivated in Synechocystis sp. 

PCC 6803 (Bailey et al., 2001). Two mutations were lethal (FtsH1 and FtsH3), the third one, 

FtsH4, showed no obvious phenotype while the fourth one caused an altered pigmentation 

(FtsH2, slr0228::Ω). This mutant was impaired predominantly in PSI biogenesis (Mann et al., 

2000). It has also been suggested that FtsH2 is essential for controlling the turnover of the D1 

protein, similar to the FtsH2 homologue from Arabidopsis (Bailey et al., 2001). 

 

1.2.4 The Ctp family of carboxypeptidases  

 
The Ctp family of carboxypeptidases belongs to the family of C-terminal processing 

peptidases. The physiological function of these enzymes is less well understood. The Tsp 

peptidase from E. coli (Hara et al., 1991; Silber et al., 1992) is involved in the degradation of 

mis-translated proteins that are targeted for degradation by the addition of an ssrA sequence at 

their C-termini which can be specifically recognized by the Tsp peptidase (Jentsch, 1996; 

Keiler et al., 1996b). This peptidase has a characteristic PDZ domain at its C-terminus that is 

required for substrate recognition (Ponting, 1997; Beebe et al., 2000). 

 

The family of C-terminal processing peptidases of Synechocystis consists of CtpA, CtpB and 

CtpC that are homologous to the well-studied bacterial Tsp peptidase. Cyanobacterial ctp 

genes share more than 30% identity with those of E. coli and encode soluble proteins that 

reside in the periplasm (Fulda et al., 2000; Zak et al., 2001). The Arabidopsis genome carries 

three ctp genes encoding proteins that are predicted to be soluble and to be translocated into 

the chloroplast. The proteome analysis of Arabidopsis lumenal fractions showed that all three 

Ctp members are translocated into the thylakoid lumen (Schubert et al., 2001), although CtpB 

and CtpC do not show an Ala-X-Ala motif and lack the highly hydrophobic N-terminal 

domain typical for lumen-targeted proteins. The CtpA peptidase was isolated from spinach 

and its chloroplast lumenal localization was verified experimentally (Inagaki et al., 1996; 

Oelmüller et al., 1996). Evidence for an involvement of this peptidase in biogenesis of the 

photosynthetic machinery was provided by an analysis of a Synechocystis ctpA-deficient 

mutant that was unable to grow under photoautotrophic conditions (Shestakov et al., 1994) 

and was impaired in the C-terminal processing of D1. This latter step is essential for correct 
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integration of D1 into thylakoids (Diner et al., 1988). No complete inactivation has been 

achieved for the second member of the Ctp-family, ctpC, which indicates that its product is 

required for cell viability (Ivleva et al., 2002). Inactivation of ctpB did not lead to any visible 

phenotypical or physiological changes (Ivleva et al., 2002). 

 

1.2.5 The SppA peptidase family 

 

This family includes two members of different molecular mass, with the shorter version 

representing the C-terminal domain of the longer one. These proteins were given different 

names depending on the organism. In E. coli they correspond to SppA (or peptidase IV) and 

SohB (Ichihara et al., 1986; Baird et al., 1991), in B. subtilis to SppA and TepA (Bolhuis et 

al., 1999), in Synechocystis to SppA1 and SppA2 (Lensch et al., 2001). Peptidase IV in E. coli 

has been characterized as a membrane-associated protein (Regnier, 1981a,b; Pacaud, 

1982a,b). In bacteria these two peptidases have been described as signal peptide peptidases 

that are required for the processing and removal of small peptides (Regnier, 1981a,b; Pacaud, 

1982a,b; Ichihara et al., 1984; Novak and Dev, 1988; Bolhuis et al., 1999). The analysis of E. 

coli SppA by gene inactivation and by in vitro experiments using the overexpressed protein 

showed that this enzyme is required for the initial endoproteolytic cut of signal peptides. 

SohB was discovered in E. coli during a search of suppressors of mutants for the HtrA 

peptidase (Baird et al., 1991). One of the suppressor mutations was capable to complement 

the temperature-sensitive phenotype of the HtrA- strain. The corresponding gene was 

identified as sohB that encoded a periplasmic peptidase of 39 kDa (Baird et al., 1991). The 

temperature-sensitive phenotype of the htrA mutant could be caused by accumulation of toxic 

peptides which could be degraded upon overproduction of SohB. In B. subtilis TepA is a 

cytoplasmic protein (Bolhuis et al., 1999), differently from SohB of E. coli which associated 

with membranes (Baird et al., 1991). Two genes, sppA1 and sppA2, are found in the genome 

of Synechocystis and only one, the homologue to Synechocystis sppA1, in Arabidopsis 

thaliana. The latter is light-activated at both, the transcriptional and post-translational levels 

(Lensch et al., 2001). Experimental data showed that Arabidopsis SppA is a membrane-

bound, probably monotopic protein with a putative amphipatic helix interacting with the 

surface of the lipid bilayer. The protein may associates with the thylakoid membrane as a 

homotetramer (Lensch et al., 2001). 
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1.3 Cyanobacteria as models for the analysis of the photosynthetic machinery 

 

Cyanobacteria are unicellular gram-negative bacteria that, in a row with a higher plants and 

algae, can perform oxygenic photosynthesis. The presence of an oxygenic photosynthetic 

thylakoid membrane system similar to that in higher plants, fast growth, known genome 

sequences and easy transformation present these organisms as appealing models for gene 

inactivation and modification. 

 

The cyanobacterium Synechocystis sp. PCC 6803 that has been used in the present study is a 

unicellular strain from which the entire genome sequence is known (Kaneko et al., 1996). It 

has an additional advantage in that it is able to grow under photoautotrophic and 

photoheterotrophic conditions (Shestakov and Grigorjeva, 1982). This can be profitably used 

for investigation of photosynthetic genes. The Synechocystis sp. PCC 6803 genome is about 

3.57 MBp large and encodes 3168 proteins (Kaneko et al., 1996). 

 

1.3.1 Structure of cyanobacterial photosynthetic complexes 

 

In cyanobacteria, as in the higher plants and green algae, light energy is converted into the 

chemical energy by the action of different protein complexes: phycobilisome (PBS), 

photosystem II, cytochrome b6f, photosystem I and ATP synthase (Bryant, 1994) (Fig. 1). 

 

PBS is a large membrane�external and water-soluble complex that is involved in the 

accumulation of light energy and its transfer to the photosystems of cyanobacteria. The major 

PBS components are the chromophore-bearing biliproteins: phycocyanin (PC), 

allophycocyanin (APC) and phycoerythrin (PE). The last one is not present in the 

Synechocystis 6803 strain (Glazer, 1985). Minor components of PBS are linker polypeptides 

that are involved in the regulation of PBS quaternary structure and optimization of the energy 

transfer by modifying the light absorption properties of the phycobiliproteins (de Marsac and 

Cohen-Bazire, 1977; MacColl, 1998). The core-membrane linker LCM with a molecular 

weight of about 99 kDa participates in the energy transfer from PBS to PSII. The rod-core 

linkers, LRC, attach the peripheral rods to the core of PBS. In addition, rod linkers, LR, and 

core linkers, LC, are involved in the assembly of rods and core domains of PBS, respectively. 

Still, the question about the mechanisms of energy absorption and transfer to the 

photosystems in cyanobacteria has not been clarified. A major step of energy transfer in 
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cyanobacteria includes transfer from phycocyanin of rods to allophycocyanin in the cores and 

then from APC to the photosystem via the LCM linker protein (Houmard et al., 1990; Macoll, 

1998). Also, the mechanism that provides the energy distribution from PBS between PSI and 

PSII is still not clear. In favor is the model that PBSs are mainly attached to dimer PSII 

particles and transfer energy directly PSII (Kuhl H. et al., 1999). However, recent studies in 

Spirulina cells showed that 20% of PBS are bound to PSII, while 60% of PBS transfer the 

energy to the PSI trimer and 20% are associated with PSI monomers (Rakhimberdieva et al., 

2001). 

 

 

Figure1. Schematic presentation of the thylakoid membrane of cyanobacteria (adapted 

from the Bryan, 1994) 

 

PSII is a pigment-protein complex of the thylakoid membrane of oxygenic photosynthetic 

organisms, including cyanobacteria. It catalyzes the light-induced electron transfer from water 

to plastoquinone, with associated production of molecular oxygen. PSII is a large complex 

with polypeptide species, most of which are integral membrane proteins. A number of 

extrinsic proteins is also associated to PSII. The entire set of electron transfer cofactors, 

including chlorophyll a, pheophytin a, plastoquinones, and non-heme iron, is associated with 

the D1/D2 heterodimer. These two proteins, together with the - and ß-subunits of 

cytochrome b559 and the PsbI protein, constitute the so-called reaction centre II (RCII), which 

is the smallest PSII subparticle still able to perform light-induced charge separation. Two large 

integral membrane proteins, CP43 and CP47, each coordinating a number of chlorophyll a 

molecules, and several low molecular mass (<10 kDa) polypeptides are constituents of the 
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PSII core complex, which is very similar in higher plants and cyanobacteria (Nanba and 

Satoh, 1987; Diner et al., 1991; Yu and Vermaas, 1993; Szabo et al., 2001; Kashino et al., 

2002). 

 

The cytochrome b6f complex provides the electronic connection between reaction centres of 

the PSI and of PSII and generally contributes to the transmembrane electrochemical proton 

gradient for adenosine triphosphate synthesis (Rich and Bendall, 1980; Allen, 2004). In 

cyanobacteria, the cytochrome b6f complex is located both in thylakoid and cytoplasmic 

membranes. It is involved in both photosynthetic and respiratory electron transport, acting as a 

plastoquinol-cytochrome c6-plastocyanin oxidoreductase and playing a role in electron 

transfer from PSII or NAD(P)H dehydrogenase to PSI or cytochrome oxidase, respectively.. 

In all organisms capable of oxygenic photosynthesis the cytochrome b6f complex consists of 

four major proteins and additional small subunits (Zhang et al., 2003). The 25 kDa 

cytochrome b6 protein contains two b-type (Widger et al., 1984) and one novel x-type (Kurisu 

et al., 2003) hemes, and, together with the subunit IV of 17 kDa, is homologous to 

cytochrome b of the cytochrome bc1 complex (Widger et al., 1984). Cytochrome b6 and 

subunit IV are integral membrane proteins with four and three predicted transmembrane -

helices, respectively. Cytochrome f is a 31 kDa c-type cytochrome with a covalently bound 

heme in the large lumen-exposed domain; it is anchored by a single C-terminal -helix in the 

membrane. Similarly, the Rieske iron-sulfur protein has a large hydrophilic lumenal domain 

attached to a single transmembrane -helix at the N-terminus (for reference see Kallas, 1994). 

The genome of Synechocystis contains three open reading frames, designated sll1316 (petC1), 

slr1185 (petC2), and sll1182 (petC3), encoding for three putative Rieske iron-sulfur proteins 

(Schneider et al., 2002).  

 

PSI represents a multimeric polypeptide complex, formed basically around the PsaA/B 

heterodimer that binds 90 - 120 chlorophyll a molecules (for references see Golbeck, 1994; 

Ben-Shem et al., 2003). The cyclic electron transport around photosystem I plays a role in the 

generation of ATP required for respiration of cyanobacteria and plants during dark stages 

(Howitt et al., 2001). Comparison of higher plant PSI with that of cyanobacteria showed that 

cyanobacteria do not contain the PsaG, PsaH, PsaN and PsaO proteins (Kashino et al., 2002). 

On the other hand, PsaM protein has been identified only in cyanobacteria, but not in higher 

plants. PsaM is a low molecular weight protein with a single trans-membrane helix. The 

function of this protein is still not clear (Scheller et al., 2001; Kashino et al., 2001; Knoetzel et 
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al., 2002). PSI can exist in two different forms: monomeric and trimeric. The trimeric form is 

a consequence of the association of monomeric PSI through the PsaL protein (Chitnis and 

Chitnis, 1993).  

 

The ATP synthase is a multisubunit membrane-bound protein complex, which catalyzes the 

synthesis of ATP from ADP and phosphate (Pedersen and Amzel, 1993; Frasch, 1994; 

Neisser et al., 1994; Dimroth et al., 2000). The activity of ATP synthase requires a proton 

gradient ∆pH and depends on the membrane potential ∆ψ (Kaim and Dimroth, 1999; 

Wieczorek et al., 1999; Dimroth et al., 2000). It is comprised of two subcomplexes, a 

membrane-integral part, F0, and an extrinsic appendix, F1. 

 

F1F0 ATP synthases comprise a huge family of enzymes with members found in the 

cytoplasmatic membrane of bacteria, inner membrane of mitochondria and thylakoid 

membranes. The hydrophilic F1 component of the enzymes, which catalyzes the ATP 

synthesis, is comprised of five subunits (α, β, γ, δ, and ε). The hydrophobic F0 component, 

made up of four subunits (a, b, b´ and c), forms the proton channel through the membrane (for 

references see Frasch, 1994; Robertson et al., 1989). The gene coding for ATP synthase 

subunits are generally encoded by two operons. The atp1 operon encodes the subunits a, c, b´, 

b, δ, α, γ. The atp2 operon contains the genes for subunits β and ε. The Synechocystis F1F0 

ATP synthase is also composed of nine subunits (Lill and Nelson, 1991). 

 

The cytoplasmic membrane of cyanobacteria contains some additional type of ATP synthase 

called P-type ATPase (P-ATPase), present in small amounts. It increases during light-limiting 

growth when respiration becomes more important for energy generation (Niesser et al., 1994). 

 

1.3.2 Adaptation of cyanobacteria to environmental changes 

 

One of the intriguing features of thylakoid membranes and the photosynthetic apparatus in 

general is the capability of adaptation during or following environmental changes. Peptidases 

play a crucial role in such processes. Fluctuations of various environmental factors including 

levels of specific nutrients, the intensity of the incident irradiation and temperature alters 

growth rates of phototrophic organisms. Dramatic changes in pigment content, activities of 

various metabolic processes and cell morphology may be observed under extreme conditions 

(Kehoe and Grossman, 1996; Grossman et al., 2000; He et al., 2001). 
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1.3.2.1 Light adaptation 

 
Acclimation to light regimes is one of the most essential and complex responses of 

photosynthetic organisms to varying environmental conditions. Light adaptation is often 

accompanied by changes in content of pigments and in the composition of thylakoid proteins 

(Allen, 1995; Anderson et al., 1995) with following modifications in the composition of 

antenna complexes (Lorimier et al., 1991), redistribution of excitation energy between the 

photosystems (Murakami and Fujita, 1991), changes in the composition of reaction centres or 

in CO2 fixation activity (Schmetterer, 1994; Murakami et al., 1997). 

 

Under light-limiting conditions cyanobacteria increase their concentration of 

phycobiliproteins and chlorophyll a. Increasing antenna sizes occurs by elongation of the 

phycobilisome rods and by an increase in the number of phycobilisomes per unit area of the 

thylakoid membrane. Under light-saturating conditions cyanobacteria reduce their antenna 

size and photosystem content which is accompanied with a marked decrease in the 

chlorophyll a and phycobiliprotein levels and a slight decrease in total carotenoid levels 

(Hihara et al., 1998; He et al., 2001; Havaux et al., 2002). Simultaneously, phycobilisome 

sizes and photosystem contents are reduced to avoid absorption of excess light energy.  

 

Expression analysis in Synechocystis cells showed that chlorophyll a and phycocyanin 

contents decline drastically within 3 h of acclimation to high light. These changes could 

originate from down-regulation of the genes that encode enzymes for biosynthesis of 

photosynthetic pigments: chlorophyll genes and structural components of the PBS (aps and 

cpc genes; Lorimier et al., 1991; Hihara et al., 2001) and from synthesis of proteins that are 

directly or not directly involved in the degradation of chlorophyll a and phycobiliproteins. 

Expression analysis of genes encoding PBS subunits uncovered that transcription of 

allophycocyanin genes is down-regulated by light, whereas the mRNA levels of linker 

proteins are not affected at high light regimes (Lorimier et al., 1991). Simultaneously, the 

remodeling of the PSII antenna complex is accompanied by a shortening of the PBS rods via 

detachment of external rod segments or whole rods from the PBS core. Various studies 

indicated that peptidases participate in posttranslational modification of the PBS antenna 

(Yamanaka et al., 1980).  
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Later, it was shown that Lhc-like polypeptides (HLIP; high light inducible polypeptides) 

accumulate during adaptation to light stress in plants and cyanobacteria (Adamska et al., 

1999; Funk and Vermaas, 1999; He et al., 2001). Cyanobacterial cells encode five genes 

(hliA, hliB, hliC, hliD and hemH) for polypeptides with similarity to Lhc polypeptides of 

vascular plants. Levels of all Hli polypeptides were elevated in high light and during nitrogen 

limitation (van Waasbergen et al., 2002). The transcripts of three gene, hliA, hliB, hliC, 

accumulate to high levels following exposure to sulphur deprivation and low temperature. 

Therefore, the products of these genes can be involved in the protection against different types 

of stress, including light stress. The initial accumulation of Hli polypeptides occurs during the 

phase of acclimation in which cells are unable to divide. The role of HliA protein in 

photosynthetic electron flow is unclear, although the polypeptides may be involved in the 

dissipation of excess absorbed light energy or function in a complex that shuttles chlorophylls 

to sites of degradation and/or pigment protein complex biosynthesis (He et al., 2001; Havaux 

et al., 2002). Expression studies of Synechocystis peptidase genes under acclimation to 

different light regimes showed that three genes, clpB2, ftsH1 and ftsH2, are induced within 15 

min after transfer to high levels of light and become down-regulated within next 15 h (Hihara 

et al., 2001). As it was noted before, the products of ftsH1 and ftsH2 genes were found to be 

essential for cells since no knock-out mutants for these peptidases could be obtained. FtsH2 

protein is essential for controlling the turnover of D1 protein (Bailey et al., 2002; Silva et al., 

2003).  

 

In cyanobacterial cells about 110 - 140 molecules of chlorophyll a are attached with the 

reaction centre of PSI, but only 35 - 70 molecules reside in PSII reaction center. As 

chlorophyll a is mainly associated with PSI, the acclimation to high light is accompanied by a 

decrease in PSI relative to PSII (Fujita et al., 1994, Murakami et al., 1997; McConnell et al., 

2002). Such adaptation serves to regulate the distribution of excitation energy between 

photosystems and to correct any energy imbalances (Hihara et al., 1998). Changes in 

photosystem contents are regulated by decreasing mRNA levels of genes encoding subunits of 

photosystems (Hihara et al., 1998; Hihara et al., 2001; Muramatsu and Hihara, 2003) and, 

simultaneously, by activation of proteolytic components involved in the degradation of 

photosynthetic proteins during light stress (Lindahl et al., 2000; Bailey et al., 2001; Lensch et 

al., 2001; Kanervo et al., 2003; Silva et al., 2003). Recently, it has been shown that transcript 

levels of photosystem I genes rapidly decrease to less than 10% of initial levels within 1 h 

after a shift to HL, whereas the response of PSII transcript levels was not coordinated (Hihara 

 



INTRODUCTION 19 

et al., 1998; Muramatsu and Hihara, 2003). Fast changes in the transcription of PSI genes, but 

not PSII genes, seem to be important for Synechocystis cells to regulate their photosystem 

contents in response to high light acclimation. Probably, the content of PSII can be promptly 

reduced under HL conditions due to an accelerated turnover rate of its reaction centre subunits 

(Mohamed and Jansson, 1989; Komenda et al., 2000). The turnover process of PSII includes 

the degradation of damaged D1 polypeptide, de novo synthesis of D1 and assembly of the 

heterodimeric complex with other PSII polypeptides (Melis, 1999; Komenda et al., 2000). 

There are various proteases and chaperones that are involved in D1 turnover in vivo. Two 

families of proteases are being studied: the FtsH family of Zn2+-activated nucleotide-

dependent proteases; and the HtrA (or DegP) family of serine-type proteases. Recent evidence 

showed that the HtrA family of proteases is involved in the resistance of Synechocystis to 

light stress and play a part, either directly or indirectly, in the repair of PSII in vivo (Bailey et 

al., 2001; Silva et al., 2002). Chloroplast FtsH showed light-inducible gene expression 

(Lindahl et al., 2000). It was proposed that this peptidase is involved in the degradation of 

unassembled thylakoid proteins (Ostersetzer and Adam, 1997) and, perhaps, in the second 

step of the degradation of PSII reaction center core protein D1 (Lindahl et al., 2000; Silva et 

al., 2003). 

 

1.3.2.2 Heat stress 

 

Response to elevated temperature is an environmental factor that is also studied in 

cyanobacteria. Exposure of cyanobacterial cells to temperatures exceeding 60 - 65°C even for 

10 min results in a bleached phenotype. Such alternation is the result of a breakdown of 

components of PBS (Zhao and Brand, 1989; Nishiyama et al., 1993). Higher temperatures 

bleach bilin-containing pigments fast, but also resulted in a gradual bleaching of chlorophyll 

and carotenoids. PSII has been shown to be the most sensitive thylakoid assembly to heat 

among the photosynthetic activities (Berry and Björkman, 1980). The dissociation of two of 

the four Mn atoms from the PSII complex by heat results in complete inactivation of oxygen 

evolution without significant loss of proteins (Nash et al., 1985). Therefore, the mechanism of 

photosynthetic adaptation to high temperature is related to ability to protect the PSII oxygen-

evolving complex against heat-induced inactivation. 

 

Different factors, which are regulated by growth temperature, may contribute to observed 

adaptation. Early investigations suggested that high temperature increases the level of 
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saturated fatty acids in membrane lipids and enhances the thermal stability of photosynthesis 

(Shneyour et al., 1973). Later, it has been shown that thermal stability is not only affected by 

changes in the saturation level of membrane lipids, but other factors are also responsible for 

adaptation of photosynthesis to high temperature. There is a number of heat stress proteins, 

chaperones and peptidases that are involved in the refolding or degradation of polypeptides 

misfolded by heat. One of the best studied peptidases functioning during heat stress is the 

bacterial HtrA peptidase (Strauch et al., 1989; Lipinska et al., 1990; Spiess et al., 1999). 

 

1.3.2.3 Nutrient stress 

 

One of the essential requirements to survive in natural environment is the ability to withstand 

nutrient limitation or even deprivation. Nutrient limitation, like other extreme conditions, is 

accompanied by expression of special sets of stress proteins (Hagemann et al., 1991; Fulda et 

al., 1999; Suzuki et al., 2000; Hihara et al., 2001; Görl et al., 1998). These stress proteins can 

be divided into two groups, special stress proteins that are only induced by defined stresses 

and general stress proteins, which are induced by several stresses (Hagemann et al., 1999). 

Such factors can control intercellular protein contents at transcriptional, translational and 

post-translational levels.  

 

A cyanobacterial cell that undergoes iron, nitrogen or sulfur deprivation contains less than 

half of the normal complement of thylakoid membranes (Wanner et al., 1986). During sulfur 

and nitrogen starvation the color of cultures changes from blue-green to yellow, a process 

known as a chlorosis. It is caused by degradation of phycobiliproteins. Small polypeptides of 

the Nbl-family were found to trigger proteolytic degradation of phycobiliproteins. Perhaps, 

the NblA protein can act as an activator of a specific protease that subsequently degrades PBS 

(Collier and Grossman, 1996; summarized by Grossman et al., 2001). Sulfur deprivation that 

induces phycobilisome degradation has been reported for Synechococcus cells, but not for 

Synechocystis (Richaud et al., 2001). In various studies the time course and extent of PC 

degradation varied from 50% degradation of PC per volume of culture within 60 h to 90% 

degradation within 9 h (Lau et al., 1977; Wanner et al., 1986). In contrast, cells deprived of 

phosphorus show only very limited degradation of PBS, as may be expected since PBS 

contain no phosphorus. In phosphorus-limited cells of PBS biosynthesis decreased relative to 

the rate of cell division (Grossman et al., 1993; Sauer et al., 2001). Opinion about degradation 

of chlorophyll a differs. Some studies indicate a dramatic decline of chlorophyll a, whereas 
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other investigations showed only a slightly decreasing or even constant chlorophyll a 

concentration (Allen and Smith, 1969; Wanner et al., 1986; Collier and Grossman, 1992). 

 

Iron deficiency also leads to a faster degradation of PBS and PSI proteins, with accompanying 

expression of iron-regulated genes (isiA and isiB) (Pakrasi et al., 1985; Bibby et al., 2001). In 

cells chlorophyll contents and phycobiliproteins decrease undergoing iron starvation (Trick et 

al., 1995; Sandström et al., 2002). Intercellular spaces are filled by granules of glycogen and 

thylakoids are reduced in size. This type of deficiency corresponds predominantly to a decline 

in chlorophyll content, which can be restored after one or two cell divisions in iron-containing 

media (Sherman and Sherman, 1983). 

 

In the absence of copper plastocyanin degradation is activated. In the green alga 

Chlamydomonas reinhardtii, the copper-dependent accumulation of plastocyanin is affected 

via an altered stability of the protein in copper-deficient versus copper-sufficient medium. 

Two mechanisms have been proposed to account for differential degradation of plastocyanin 

in copper-deficient cells. Copper-deficient cells contain a form of plastocyanin that is more 

susceptible to proteolysis (i.e. apoplastocyanin). Alternatively, copper-deficient cells induce a 

plastocyanin-specific protease activity in order to ensure that copper might be some available 

for other, probably indispensable, copper enzymes. Data have shown that apoplastocyanin is 

preferred substrate for proteolysis, but growth under copper deficiency is additionally 

required for the degradation of apoplastocyanin (Li and Merchant, 1995). 

 

The main aim of this thesis was to identify proteolytic components in the cyanobacterium 

Synechocystis sp. PCC 6803 which participate in response to environmental changes, such as 

light stress, heat stress and nutrient deprivation. Initial work was concerned with components 

of the Synechocystis SppA family that contributes to light adaptation. 
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2. MATERIALS AND METHODS 

 

2. 1 Materials 

 

2.1.1 Chemicals and enzymes 

 

All chemicals used in this study were of p. a. quality. They were purchased from the 

following companies: Difco Laboratories (Detroit, USA), Merck AG (Darmstadt), Serva 

Feinbiochemica (Heidelberg), Roche (Basel, Switzerland), Roth GmbH & Co. (Karlsruhe) 

and Sigma Chemical Company (Munich). 

 

Radiochemicals (α32P-dCTP, α32P-UTP, 35S-Met, 35S-Met/Cys cells labeling mix, 132I-protein 

A) were from Amersham Pharmacia Biotech (Freiburg i. Br.). Restriction endonucleases, 

DNA- and RNA-modifying enzymes, DNA-, RNA-polymerases were purchased from 

Boehringer (Mannheim), MBI Fermentas and New England Biolabs. 

 

2.1.2 Molecular weight markers 

 

RNA- and DNA-length molecular standards 

0.24 - 9.5 kb RNA Ladder from Gibco/BRL (Karlsruhe) was used as a RNA length standard. 

DNA λ EcoRI/HindIII and 1 kbp-DNA-Extension-Ladder from Gibco/BRL (Karlsruhe) were 

used as DNA length standards. 

 

Protein molecular weight standards 

The apparent molecular weight of proteins in SDS-polyacrylamide gel electrophoresis was 

determined according to SDS-7 molecular weight marker (14 - 66 kDa) from Sigma Chemical 

Company (Munich), peqGOLD protein marker (14.4 � 116 kDa) and peqGOLD prestained 

protein marker (20 - 122 kDa) from PeqLab (Biotechnologie GmbH), Multi-Colored Standard 

(4 - 250 kDa) from Invitrogen TECH-LINE (USA). 
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2.1.3 Vectors and strains 

 

Vectors 

  pGEM-T (Promega, Madison, USA)      

  pRSET5a (Rosenberg et al., 1987)  

  pVZ321, pVZ322, pVZ323, pVZ324 (Zinchenko et al., 1999)   

  pIVEX-MBP, pIVEX2.4b, pIVEX2.6d (Roche Diagnostics GmbH, Basel, 

  Switzerland) 

 

Bacterial strains 

  E.coli R751          

  E.coli DH5a (Hanahan, 1985)      

  E.coli BL21 (DE3) pLysS (Studier and Moffat, 1986)    

  E.coli M15 (Quiagen GmbH, Hilden)     

  Synechocystis sp. PCC 6803 glucose sensitive and non-motile strain (Prof. 

  Shestakov, Genetic department of Moscow State University) 

 

2.1.4 Antibodies 

 

Most antisera were used from the collection of Prof. Dr. R.G. Herrmann�s laboratory. 

Polyclonal anti-rabbit IgG peroxidase-conjugate antibodies raised in goat were obtained from 

Sigma Chemical Company (Munich). Antiserum against SppA2 was produced during this 

work (dilution 1:1.000). Antisera against phycobiliproteins (phycocyanin, allophycocyanin 

and linker proteins; 4A - 8A; dilution 1:2.000) were kindly provided by Prof. Dr. A. 

Grossman (Stanford University, USA). Antisera against subunits of PSI (PsaA, PsaB, PsaF, 

PsaC; dilution 1:1.000), PSII (D1, D2, PsbJ, CP43, CP47; dilution 1:1.000), Cyt b6f complex 

(anti-Rieske Fe/S protein; dilution 1:1.000) and ATP synthase (α- and β-subunit; dilution 

1:2.000) were selected for the work presented. 

 

2.1.5 Oligonucleotides 

 

All standard primers (T7, T3, M13) and gene-specific oligonucleotides that are listed below 

were obtained from MWG-BIOTECH (Ebersberg, Germany). 
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2.1.5.1 Primers for Escherichia coli strains 

pIVEX2.6d_fwd 5�-GAA GGC CGC TTA ATT AAA-3� 

PIVEX-MPB_fwd 5�-ATC GAA GGC AGG CCT GGC CGC-3� 

T7_fwd          5�-TAA TAC GAC TCA CTA TAG GG-3� 

 

2.1.5.2 Synechocystis gene-specific primers 

 

SppA1 and SppA2 cloning and sequencing 

sll1703fwd  5�-GGT TTC GGC TGA GGC AGA TC-3� 

sll1703rev 5�-GCC TTC GAG GTA AAC AAT GGC-3� 

sll1703complfwd  5�-GTT TGG GGA TGA TTT TGG GCT GG-3� 

sll1703complrev  5�- GAA GGC AGT AGT AAA TCC CGA CCA-3� 

slr0021_fwd 5�-TCT ATT GTT GGC GAG GGA AGC AG-3� 

slr0021_rev 5�-ATT CTT TGA CTT TTT CCA CTG CCA-3� 

 

SppA1 and SppA2 overexpression 

sll1703F_full 5�-ATT CTC GAG ATG AAG AAC TTT TTC AAC AA-3� 

sll1703R_full  5�-TTA CTG CAG TTA AGG ATT AAG AAA TGC CA-3� 

sll1703F_part  5�-ATT CTC AGC AAC AAA TGG TGG CTA GTT TC-3� 

sll1703R_part 5�-TTA CTG CAG GAT GGT ACT CGC CAA ATT AA-3� 

slr0021F_full 5�-ATT CTC GAG ATG ATT TGG CCC CCC TTC AAA-3� 

slr0021R_full 5�-TTA CTG CAG TCA TCG ATA AAG CCA GAG-3� 

slr0021F_part 5�-ATT CTC GAG TTC AAA ACC AGC ACC CGT-3� 

slr0021R_part 5�-TTA CTG CAG ATT GCC TTG CAT CTT CCT-3� 

slr0021F_comtest 5�-TAT TGT TGG CGA GGG AAG AAG CAG-3� 

slr0021R_comtest 5�-TCT TCA ATG GTA TCC AGT TCT AC-3� 

 

Overexpression of high-light inducible proteins  

HliA_fwd 5�-ATT CTC GAG ATG ACC CGT GGC TCC GC-3� 

HliA_rev 5�-TTA CTG CAG ACG ACC ATT CAT TTT TCG GC-3� 

HliD_fwd 5�-ATT CTC GAG AAT GAG TGA AGA ACT ACA ACC-3� 

HliD_fullrev 5�-TTA CTG CAG CTA GCG CAG TCC CAA CCA GGC-3� 
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Primers for analysis of gene expression 

16S_RNA fwd 5�-AAT GGA GAG TTT GAT CCT GGC T-3� 

16S_RNArev 5�-AGG TGA TCC AGC CAC ACC TTC-3� 

apcE_Synforw 5�-ATG AGT GTT AAG GCA AGT GGT-3� 

apcE_Synrev 5�-CTA ACC GCC CAC TTT TAC TAC T-3� 

cpcA_for 5�-ATG AAA ACC CCT TTA ACT G-3� 

cpcA_rev 5�-CTA GCT CAG AGC ATT GAT GG-3� 

apcA_for 5�-ATG AGT ATC GTC ACG AAA TC-3� 

apcA_rev 5�-CTA GCT CAT TTT TCC GAT AAC-3� 

sll1702_for 5�-ATG GAC GTT ACC ATT TAT CTC-3� 

sl1702_rev 5�-TTT GCG GTC AAG TTT AAT CTC-3� 

sll1704_for 5�-ATG GCA AAT CAG AAT TTT CCA-3� 

sll1704_rev 5�-ACC ACG GCA AAA TTG TGC CAT-3� 

sll1704/CMP_revers 5�-ATG GTC TAA CTC GGC GAT CGC-3� 

 

2.1.6 General buffers and solutions 

 

TE buffer     10.0 mM Tris-HCl, pH 8.0   

      1.0 mM EDTA 

 

STET buffer      8% sucrose     

      5% Triton X-100    

      50 mM EDTA     

      50 mM Tris-HCl, pH 8.0 

 

10 x TBE     1.0 M Tris     

      0.5 M boric acid    

      20.0 mM EDTA 

 

20 x SSC     3.0 M NaCl     

      0.3 M Na3-citrate x 2 H2O, pH 7.2 
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20 x SSPE     0.2 M NaH2PO4    

      3.0 M NaCl     

      20.0 mM Na2EDTA x 2H2O, pH 7.4 

 

10 x Transffer buffer     1.5 M glycin     

      0.2 M Tris-HCl, pH 8.0 

 

10 x PBS     750 mM NaCl     

      30.0 mM KCl     

      45.0 mM Na2HPO4    

      15.0 mM KH2PO4, pH 7.5 

 

50 x Denhardt solution   1% (w/v) BSA    

      1% (w/v) polyvinylpyrrolidon  

      1% (w/v) Ficoll 

 

Denaturation solution    1.5 M NaCl     

      0.5 N NaOH 

 

Neutralization solution   1.5 M NaCl     

      0.5 M Tris-HCl, pH 7.0 

 

2.1.7 Media for bacterial growth 

 

E.coli growth media 

 

LB      10 g Bacto-Trypton     

      5.0 g Yeast extract    

      10 g NaCl      

      H2O add till 1 l 

 

LBG       10 g Bacto�Ttrypton     

      5.0 g Yeast extract    

      10 g NaCl      
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      4.0 g glucose     

      H2O add till 1 l 

 

For solid media 15 g/l of agar was added. Antibiotics (100 µg/ml ampicillin, 20 µg/ml 

chloramphenicol, 40 µg/ml kanamycin or 2 µg/ml gentamycin) were added from stock 

solution after autoclaving and cooling the media down to 50°C. 

 

Antibiotic stock solutions: 

ampicillin      100 mg/ml (in 50% ethanol) 

kanamycin      100 mg/ml (in 50% ethanol) 

gentamycin      10 mg/ml (in H2O) 

chloramphenicol     25 mg/ml (in 50% ethanol) 

lincomycin     100 mg/ml (in 50% ethanol) 

 

Medium for the Synechocystis sp. PCC 6803  

 

BG-11 medium for cyanobacteria (Rippka et al. 1988). 

Macro- and microelements were added in dilution 1 : 1000 and filled with distilled water up 

to 1 L and autoclaved. When required, sterile glucose solution was added up to 5mM end 

concentration. For solid medium 1% Agar in BG-11 (Difco, Detrit, USA) was added. 

 

Macro-elements 
(1 x stock) g/l Micro-elements 

(1000 x stock) g/l 

NaNO3 1.5  H3BO3 2.86  
K2HPO4 0.04  MnCl2·x 4H2O 1.81  
MgSO4 x 7H2O 0.075  ZnSO4·x 7H2O 0.222  
CaCl2·x 2H2O 0.036  NaMoO4·x 2H2O 0.39  
Citric acid 0.006  CuSO4·x 5H2O 0.079  
Ferric ammonium 
citrate 0.006  Co(NO3)2·x 6H2O 0.049 

EDTA (disodium salt) 0.001  
Na2CO3 0.02  

 

2.1.8 Transfer membranes 

 

Hybond nitrocellulose membranes for nucleic acid transfers were purchased from Amersham 

(Braunschweig). PVDF and nitrocellulose PROTRAN membrane for protein transfers were 

obtained from Schleicher & Schuell (Dasel) or PALL (Portsmouth, England). 
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2.1.9 Plant material 

 

For biochemical analysis samples of chloroplasts, thylakoid membranes and lumen proteins 

from spinach (Spinacia oleracea), Arabidopsis thaliana L., ecotype Columbia (Col-0), and 

tobacco were kindly provided by Ms. Gabriele Burkhard. 

 

2.2 Methods 

 

Unless otherwise indicated standard molecular biology methods like DNA gel 

electrophoresis, DNA restriction analysis, DNA phenol/chloroform extraction, DNA 

ethanol/isopropanol precipitation, DNA dephosphorylation and ligation were performed 

according to Sambrook et al. (1989) or according to protocols provided by enzyme suppliers. 

DNA fragments were purified from low melting agarose gels using JETSORB Gel Extraction 

Kit (GENOMED). For sequence analysis DNA fragments were precipitated with 4.5 M of 

ammonium acetate and 6 volume of 100% ethanol. Approximately 100 ng DNA was used for 

sequence analysis. 

 

2.2.1 Sequence analysis 

 

Genome sequences were obtained from Synechocystis 

( )http://www.kazusa.or.jp/cyano/cyano.html  and Arabidopsis 

( )http://www.mips.biochem.mpg.de/proj/thal/db/index.html  data banks. Analysis of protein 

and gene homologies was performed using BLAST search on NCBI 

(http://www.ncbi.nlm.nih.gov/BLAST/) and ClustalW on EMBL 

( )http://www2.ebi.ac.uk.clustalw/ . Protein sequence analysis of peptidases was obtained from 

MEROPS database (http://merops.sanger.ac.uk/). Hydropathy plots were performed according 

to Kyte and Doolittle (1982) and the SOSUI program 

(http://sosui.proteome.bio.tuat.ac.jp/sosuiframe0.html). 

 

2.2.2 Strains and growth conditions for Synechocystis  

 

A glucose-sensitive wild-type strain of Synechocystis was obtained from the strain collection 

of the Department of Genetics, Moscow State University (Russia). Wild-type and mutant 

strains were cultivated at 30°C in standard BG-11 medium with 20 mM HEPES-NaOH, pH 

 

http://www.kazusa.or.jp/cyano/cyano.html
http://www.mips.biochem.mpg.de/proj/thal/db/index.html
http://www.ncbi.nlm.nih.gov/BLAST/
http://www2.ebi.ac.uk.clustalw/
http://sosui.proteome.bio.tuat.ac.jp/sosuiframe0.html
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7.0 (Rippka, 1988). For dim light conditions (DL; 20 µmol photons m-2 s-1) cells were grown 

at 20 µmol photons m-2 s-1 in the 50 ml flasks covered with aluminium folia. Low light (LL; 

50 µmol photons m-2 s-1) cells were grown at 50 µmol photons m-2 s-1 for at least 1 day and 

harvested at a cell density of A750 = 0.6 to 1.0. For exposure to middle light (ML; 150 µmol 

photons m-2 s-1) and high light (HL; 350 µmol photons m-2 s-1) cells were grown at 50 µmol 

photons m-2 s-1 to a cell density of an A750 = 0.6 to 0.8 and then transferred to ML or HL. 

Mutant strains were grown in medium with kanamycin (50 µg/ml), chloramphenicol (20 

µg/ml) or gentamycin (2 µg/ml). 

 

Media lacking either nitrogen (- N), sulphur (- S), phosphorus (- P), iron (- Fe) or copper (- 

Cu) were prepared by replacing the salts containing these elements with equimolar amounts 

of equivalent salts lacking the target elements (- N: ferric ammonium citrate, NaNO3 and 

Co(NO3)2 were substituted by FeCl3, NaCl and CoCl2; - S: MgSO4, ZnSO4 and CuSO4 by 

MgCl2, ZnCl2 and CuCl2; - P: K2HPO4 by KCl; - Fe: depletion of ferric ammonium citrate; - 

Cu: CuSO4 by MgSO4). For deprivation the cyanobacterial culture was diluted to a cell 

density of 0.2 at the end of the log-phase and grown until an A750 of 0.6. Cells were harvested 

by centrifugation at 2.500 x g for 15 min and resuspended in 50 ml of medium depleted of 

nitrogen, sulfur, phosphorus, iron or copper. 

 

Cells of the exponential growth phase were transferred to heat shock conditions at 42°C for 

48 h. Cold temperature treatment was performed at 17°C with different periods of cultivation 

(from 3 up to 12 days). 

 

2.2.3 Construction of knock-out mutants in Synechocystis  

 

2.2.3.1 Construction of recombinant plasmids 

 

Mutant strains were constructed using the insertion or deletion inactivation approach (Ivleva 

et al., 2000). To generate the mutants lacking peptidase-encoding genes, a 1.2-kb kanamycin 

(KmR) resistance gene cassette from the pUC4K plasmid (Amersham Pharmacia Biotech, 

Piscataway, NJ) and a 0.7-kb gentamycin (GmR) resistance gene cassette from the pSL762 

(Schweizer, 1993) were used. The mutants containing insertions in peptidase-encoded genes 

(Table 1) and those to complement mutant ∆sppA1 were constructed in cooperation with Prof. 

Dr. S.V. Shestakov (Genetic Department of Moscow State University).  
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E. coli strains DH5α , BL21 DE3 (Lys) and M15 were transformed by the CaCl2/heat shock 

method according to Cohen et al. (1972). The strain JM109 was transformed by 

electroporation as described by Sambrook et al. (1989). After transformation bacteria were 

plated on LB medium supplemented with the appropriate antibiotica and incubated overnight 

at 37°C. 

 

The part of the coding region of required gene was amplified from genomic DNA using 

synthetic primers (Section 2.1.5). PCR products were cloned into the pGEMT-Easy vector 

(Promega). The resulting plasmids were digested and ligated with the kanamycin-resistant 

cassette. These plasmids were used for transformation of Synechocystis (Section 2.2.3.2). For 

construction of the complementation mutant ∆sppA1 the conjugal transfer with the 

corresponding DNA was used (Section 2.2.3.3). 

 

Gene-targeted mutagenesis by inserting the kanamycin or gentamycin resistance gene 

cassettes into respective region was performed according to Ivleva et al. (2000). 

 

Table 1. Characteristics of peptidase genes that were inactivated in this work 
ORF Gene name Gene size (bp) Protein 

molecular 
weight (kDa) 

Restriction 
site 

Antibiotica 
resistance 

slr1641 clpB2 2619 95.92 HindIII GmR 

sll0534 clpP2 681 24.86 SmaI KmR 
sll1703 sppA1 1833 67.1 Eco81I KmR 
slr0021 sppA2 833 30.47 ClaI KmR 
sll1679 hhoA 1185 43.34 HindIII GmR 

sll1427 hhoB 1251 45.76 SmaI KmR 
slr0535 srp 1842 67.43 EcoRV KmR 
sll1343 pepN 2610 98.56 SmaI GmR 

sll0136 pepP 1326 48.51 BamHI KmR 
sll2008 prp1 1293 47.3 EcoRV KmR 
sll2009 prp2 1308 47.96 StuI GmR 

sll0055 prp3 1287 47.08 KpnI GmR 

slr1331 ymxG 1542 56.43 BamHI KmR 
sll0915 pqqE 1575 57.64 XbaI KmR 

 

2.2.3.2 Transformation of Synechocystis  

 

Transformation of Synechocystis  was carried out as described by Grigorieva and Shestakov 

(1982). Cells were grown for 3 or 5 days in liquid BG-11 medium supplemented with or 

without 5 mM glucose. Cells were harvested by centrifugation for 5 min at 5.000 x g at room 

temperature and resuspended in a small volume of BG-11. Pelleted cells were plated on solid 

BG-11 with low concentration of antibiotic with or without 5 mM glucose. Plates without 
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glucose were incubated under LL. Those plates that contained glucose were incubated under 

DL. Colonies of transformants appeared upon incubation at 30°C under different light 

conditions within 8 to 10 days. Segregation of mutant cells was carried out with several 

passages on high concentrations of antibiotica. The transformed Synechocystis cells were 

selected in the presence of increasing amounts of kanamycin (5 � 50 µg/ml), chloramphenicol 

(0.5 - 20 µg/ml) and gentamycin (0.5 - 3 µg/ml) under LL. PCR analysis of chromosomal DNA 

isolated from transformed strains was performed to monitor segregation of mutations in the 

cyanobacterial genome (Section 2.2.4.2). 

 

2.2.3.3 Conjugal transfer of plasmids into cyanobacterial cells 

 

Conjugation is a general strategy for transfer of DNA of E. coli into cyanobacterial cells using 

the broad host range conjugal apparatus of an IncP plasmid (such as R751 plasmid). Conjugal 

transfer of pVZ321 plasmids into cyanobacterial cells was performed via triparental mating 

using three parents, E. coli bearing the conjugal plasmid, E. coli bearing the cargo plasmid 

plus helper(s) and the target cyanobacteria, as described by Zinchenko et al. (1999).  

 

Cyanobacterial cells of wild-type or mutant Synechocystis strains were grown until late 

exponential growth phase (to an A750 of 1.0 � 1.5). Then the cells were collected by 

centrifugation and washed with 1 x BG-11. An overnight culture of E. coli was washed with 1 

x LB to remove antibiotica. Then 1 ml of cyanobacterial cells was mixed with E. coli (1 ml), 

which contained plasmids pVZ321 and R751, centrifuged and resuspended in 100 µl of sterile 

water. All three parents were spotted onto a nitrocellulose filter resting on a solid 

cyanobacterial medium containing a mixture of BG-11 and LB agar of 1% and 5%, 

respectively. After one day on the non-selective medium the filters were transferred to 

selective medium containing chloramphenicol (0.5 µg/ml) and kanamycin (10 µg/ml). 

 

2.2.4 DNA and RNA analysis 

 

2.2.4.1 DNA isolation from Synechocystis  

 

For isolation of chromosomal DNA Synechocystis cells from 3 � 5 ml of culture at the late 

exponential phase (A750 of 1.0) were collected, washed with 1 ml of TE buffer and 

resuspended in 270 µl STET buffer (Section 2.1.6). The cell suspensions were mixed with 15 
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µl of chloroform and the mixture was subjected to vigorous vortexing for 5 min. Then, 30 µl 

of lysozyme (20 mg/ml) was added and the cell suspension was incubated for 30 min at 37°C. 

The lysozyme-treated cells were lyzed for 50 min at 65°C after addition of 100 µl of 10% 

(w/v) SDS and further 10 min after addition of 100 µl 5 M NaCl. The lysate was 

deproteinized by chloroform extraction. DNA was precipitated with isopropanol, washed with 

70% ethanol and dissolved in sterile water. 

 

2.2.4.2 PCR analysis 

 

PCR amplification was performed with 0.1 µg of purified Synechocystis DNA according to 

the following programm: 1 cycle of 94°C denaturation for 5 min; 30 cycles at 94°C (30 s), 

54°C (30 s), and 72°C (2 min) and an elongation cycle of 10 min at 72°C using Taq 

polymerase (Qiagen). 

 

2.2.4.3 Isolation of plasmid DNA from E. coli 

 

Mini-preparations of plasmid DNA from E. coli were performed using the "boiling lysate" 

method (Sambrook et al., 1989). Bacteria of 1.5 ml fresh overnight culture were collected by 

centrifugation (10.000 x g for 5 min at RT). The bacterial pellet was resuspended in 400 µl 

STET buffer containing 1% (w/v) lysozyme and afterwards incubated for 45 sec at 95°C. The 

lysed bacteria cells and the denatured genomic DNA were centrifuged (10.000 x g for 10 min 

at RT) and removed from the supernatant plasmid solution with a sterile toothpick. Plasmid 

DNA was precipitated with 40 µl of 3 M Na-acetate (pH 5.2) and 420 µl of isopropanol for 5 

min at room temperature. After centrifugation (12.000 x g for 5 min at RT) the DNA pellet 

was washed once with 70% ethanol, centrifuged again and dried. The final pellet was 

resuspended in 100 µl 1 x TE (pH 8.0) buffer containing 20 µg/ml of RNase A and shaked for 

10 min at 50°C. DNA solutions were stored at -20°C. 

 

2.2.4.4 RNA isolation from Synechocystis  

 

Total RNA was isolated from mid log-phase liquid culture (A750 = 0.5) using TRIZOL reagent 

according to the manufacturer instructions (GibcoBRL Life technologies). Cyanobacterial 

cells were harvested by centrifugation at 4°C for 15 min at 12.000 x g. Then, the pellet was 

quickly frozen in liquid nitrogen and homogenized with 1 ml of Trizol solution. The samples 
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were incubated for 5 min at room temperature to enhance and insure complete dissociation of 

nucleoprotein complexes. An equal volume of phenol-chloroform-isoamyl alcohol mixture, 

pH 6.6 - 7.9 (Ambion) was added to Trizol-containing lysate and kept on ice for 5 min. The 

suspension was centrifuged at 12.000 x g for 5 min at 4°C and the aqueous phase containing 

RNA was transferred into the new vessel. The RNA was mixed with 1/10 aqueous phase 

volume of 3M sodium acetate by shaking for about 10 sec. It was then mixed with acid-

phenol-chloroform solution (Ambion) and incubated for 5 min at 4°C, followed by a 

centrifugation step, as described before. RNA was precipitated from the solution by adding 

500 µl isopropanol and following incubation at -20°C for 30 min. It was collected by 

centrifugation at 12.000 x g for 30 min at 4°C. The RNA pellet was washed once with 75% 

EtOH in a 1 to 1 ratio with the initial amount of TRIZOL mixed by vortexing and centrifuged 

at 3.500 x g for 5 min at 4°C. The pellet was dried for 5 - 10 minutes and dissolved in 

RNAse-free TE-buffer or 5% SDS solution by passing the solution through a pipette tip. RNA 

was incubated for 10 min at 55 - 60°C to remove secondary structures. RNA concentration 

was spectrophotometrically determined at 260 nm. 

 

2.2.4.5 Analysis of gene expression 

 

2.2.4.5.1 Northern analysis 

 

Total RNA samples (15 µg of total RNA per lane) were electrophoresed in 1.2% agarose gels 

in MOPS-buffer with 2.5 M formaldehyde (Sambrook et al., 1989). RNA marker was used for 

estimation of molecular masses. RNA was transferred to nylone membrane (Hybon-N+, 

Amersham) with 10 x SSC as previously described (Sambrook et al., 1998). 

 

The hybridization probes were synthesized by a random priming method with α-[32P]-dCTP 

(Amersham) and Klenow fragment of DNA polymerase (Pharmacia). RNA blots were 

prehybridized for 2 h at 42°C in 5 x Denhardt solution, 5 x SSC, 7% SDS, 50% deionized 

formamide, 25 mM sodium hydrophosphate buffer, pH 7.2, and 100 µg ml-1 denatured salmon 

sperm DNA (1 x SSC: 150 mM NaCl, 15 mM Na-citrate, pH 7.0). Hybridization was carried 

out overnight at 42°C. After hybridization membranes were washed twice for 10 min with 2 x 

SSC, 0.5% SDS at room temperature and once for 10 min with 0.1 x SSC, 0.1% SDS at 65°C. 
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2.2.4.5.2 RT-PCR 

 

After preparation of RNA the rests of DNA were removed by treatment with DNAse I at 37°C 

for 30 min. One-single cDNA was synthesized using 1 µg of total RNA with a RT-PCR Kit 

(Invitrogen) in a final volume of 20 µl, according to the manufacturer�s instructions. After 

denaturation of RNA for 3 min at 70°C (necessary for removing secondary structure of RNA), 

cDNA synthesis was performed for 30 min at 60°C. As a negative control for DNA presence, 

1 µg of RNA without the RT reaction was subjected to PCR amplification of 16S rRNA gene. 

 

2.2.5 Overexpression of proteins  

 

2.2.5.1 Overexpression of proteins in E. coli cells 

 

For protein overexpression in E. coli cells the full-length or partial DNA fragments of genes 

of interest were cloned into pRSET vectors (Schoepfer, 1993).  

 

Buffer A   20% sucrose       

    20.0 mM Tris-HCl, pH 8.0     

    2.0 M EDTA 

 

Buffer B   50.0 mM Tris-HCl, pH 8.0     

    20.0 mM EDTA 

 

The overexpression vector containing the relevant DNA fragment was transformed into E. 

coli BL21. The transformed cells were selected on LB ampicillin-containing plates. A single 

colony was inoculated in 3 ml LBG medium with 100 µg/ml of ampicillin and incubated 

overnight at 37°C. The overnight culture was diluted with fresh medium (1 : 100) and 

incubated at 37°C until an A600 of 0.6. One ml of culture was removed and kept on ice, as a 

control without expression. The rest of the culture was induced with 1 mM IPTG and 

incubated for 4 h at 37°C. Cells were pelleted by centrifugation (10.000 x g, for 10 min at 

4°C) and resuspended in 1 x Laemmli sample buffer. The samples were denaturated for 5 min 

at 100°C, briefly centrifuged and analyzed on PAGE. 
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The non-induced and IPTG-induced E. coli cells were fractionated into periplasma (soluble 

fraction) proteins and inclusion bodies (membrane fraction). For this, cells were sedimented, 

resuspended in 1 ml of buffer A (for 1 ml initial culture) and incubated for 10 min at 25°C. 

The cell lysates were centrifugated for 5 min at 10.000 x g. The supernatant (periplasma 

proteins) was precipitated with 4 � 5 volumes of 100% ice-cold  acetone or 1/10 volume of 

100% trichloroacetic acid, sedimented for 10 min at 15.000 x g, washed twice with 70% 

acetone, dried on air and resuspended in 50 µl of 2 x Laemmli sample buffer. 

 

2.2.5.2 Overexpression of proteins in E. coli lysates 

 

For overexpression of proteins that could not be overexpressed in E. coli cells the Rapid 

Translation System based on E. coli cell lysates (Roche Diagnostics GmbH) was used. The 

relevant DNA fragments were cloned into pIVEX vectors and the resulting plasmids were 

used for protein overexpression according to kit instruction.  

 

2.2.6 Generation of protein-specific antisera 

 

2.2.6.1 Preparation of probes for rabbit immunization 

 

Overexpressed N-terminal part of SppA2 was prepared as described in Section 2.2.5.1 and 

loaded onto a 12.5% PAA gel. After separation of proteins the gel was stained with imidazol 

solution and the band corresponding to overexpressed partial SppA2 protein was excised from 

the gel. This part of gel was rubbed between two glasses in 300 µl of 1 x PBS solution. The 

solution was vortexed for 2 min and kept at 4°C, centrifuged for 15.000 x g at 4°C for 15 min 

and supernatant was used for the injection of rabbits. For the first injection the protein extract 

was mixed with adjuvant TiterMaxTM in a ration of 1 : 1 (the maximal volume was 300 µl). 

For the second and further injections the Freund�s adjuvant was used instead TiterMaxTM. 

 

2.2.6.2 Injection of rabbits and antibody preparation 

 

The immunization of rabbits and antiserum preparation was performed according to Harlow 

and Lane (1988). Before antigen injections 5 ml of blood were taken as preimmune serum 

from each animal, to check unspecific reactions. The antigen-TiterMaxTM suspension was 

then injected, generally at three sites. After two weeks the injection with Frend�s adjuvant was 
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repeated. Serum samples were taken 10 days after the second boost. After collection the blood 

was allowed to clot for 30 min at 37°C. The clot was kept at 4°C overnight. The serum was 

separated from the clot by centrifugation at 10.000 x g for 15 min at 4°C. Na azide (0.01%) 

was added to the supernatant. The antiserum was aliquoted and stored at �20°C. 

 

2.2.6.3 Purification of antibodies 

 

2.2.6.3.1 Purification of antibodies against overexpressed protein on the membrane 

 

Purification of antisera were performed according to Lehto and Virtanen (1983). After 

electrophoretic transfer of proteins, nitrocellulose membranes were stained by Ponceaus 

solution in order to visualize the overexpessed protein. The band was excised and incubated 

in blocking buffer (Section 2.2.9.1) for 1 h at room temperature. The filter was incubated with 

an antiserum for 5 h at 4°C or 1 h at 37°C. It was then rinsed twice in 1 x PBS solution for 15 

min at room temperature. The nitrocellulose band was placed for 20 min on a piece of 

Parafilm with a small volume of elution buffer (200 - 500 µl of 0.2 M glycine, pH 2.8) in a 

humidified atmosphere within a Petri dish. The eluted antibody solution was immediately 

neutralized with 1/10 volume of 1M Tris, pH 8.0, and diluted with 1/10 volume of 10 x PBS 

and sodium azide (0.02%). The samples were stored at 4°C. 

 

To remove contaminants and suppress unspecific reaction with the nitrocellulose membranes 

the antiserum was diluted (1:1.000) and the nitrocellulose membrane was incubated with for 1 

hour in blocking buffer. 

 

2.2.6.3.2 Purification of antibodies with Protein A-Sepharose 

 

0.5 g of Protein A-Sepharose was resuspended in 5 - 6 ml of distilled water and poured onto a 

10 ml column. The column was washed twice with 10 ml of distilled water during 15 min and 

equilibrated with 10 ml of 1 x PBS buffer. The antiserum solution (2 ml) was mixed with 18 

ml of 1 x PBS and centrifuged for 15 min at 10.000 x g. Supernatant was filtrated through 0.2 

µm filter and loaded onto the column. The column was washed once with 30 ml of 1 x PBS. 

Immunoglobilins bound to Protein A-Sepharose were eluted with 10 ml of Na-citrate, pH 3.0. 

The eluate was immediately neutralized with 200 µl of 3 M Tris-HCl, pH 8.8, and 10 µl of 

each fraction were used for PAA gel electrophoresis. The fractions containing 
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immunoglobilines were combined and dialyzed to remove salts. The dialyses containing 

antibodies were filtered through a 0.2 µm filter, loaded onto a column as described previously 

and eluted with 2 ml of 0.1 M Na-citrate, pH 3.0. The samples were diluted with water and 

stored at 4°C. 

 

2.2.7 Pigment analysis of Synechocystis cells 

 

The growth of cyanobacterial strains was monitored by measuring light scattering at 750 nm 

in on UV/VIS-2401PC spectrophotometer (SHIMADZU, Japan). 

 

2.2.7.1 Determination of chlorophyll a concentrations  

 

The content of chlorophyll a was estimated according to Arnon et al. (1974). Cell suspension 

of 1 ml was centrifuged at 10.000 x g for 10 min at 4°C and the pellet was extracted with 90% 

(v/v) methanol for 1 h at �20°C, followed by centrifugation at 10.000 x g for 10 min at 4°C. 

The chlorophyll a content was calculated from the absorbance of the methanol extract at 652 

and 665 nm using the equation:  

 

 Chlorophyll (mg/ml) = 16.82 x A665 � 9.28 x A652. 

 

2.2.7.2 Determination of carotenoid concentrations  

 

Carotenoid concentrations were determined by measuring the absorbance at 470 nm and the 

concentration of chlorophyll from section 2.2.7.1:  

 

 Carotenoids (mg/ml) = (1000 x A470 � 1.91 x [Chl]) 

 

2.2.7.3 Determination of C-phycocyanin concentrations 

 

The content of phycobiliproteins was estimated according to Grossman et al. (1993). The cell 

samples were heated at 75°C for 10 min and the phycocyanin content was determined 

according to the following equation:  

 

 Phycocyanin (mg/ml) = [A620 � A750 (unheated)] � [A620 � A750 (heated)]. 
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2.2.8 Determination of cell densities 

 

The cell density of Synechocystis was estimated by measuring the absorbance of suspensions 

at 750 nm (A750) (spectrophotometer Uvikon, Kontron). The absorption spectra were analyzed 

using program �Origin� (version 5.0). Cell densities were also determined by counting 

Synechocystis cells with a Malassez cell chamber. The dependence of cell amounts from the 

absorbance of wild-type cultures is shown in Fig. 2. Determinations of pigment 

concentrations per cells were performed with cultures grown at (or diluted to) optical density 

OD750 = 0.3. 

 

Figure 2. Graphic illustrating the relation between absorbance (A750) and cell density for 
the wild-type Synechocystis strain. The cell density at different absorbance was determined 
by counting Synechocystis cells with a Malassez cell chamber.  
 

2.2.9 Protein analysis  

 

2.2.9.1 Determination of protein concentrations 

 

Protein concentrations were determined according to a modified Lowry procedure (Markwell, 

1978). For estimation of cyanobacterial proteins 1.5 ml of cell suspension were precipitated 

with 10% (w/v) trichloroacetic acid and centrifugated at 10.000 x g for 10 min at 4°C. The 

pellet was resuspended in 1 N NaOH, boiled for 30 min, cooled down and recentrifugated to 
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eliminate light-scattering material. For estimation of protein concentrations in membrane 

fractions 5 µl of membrane were resuspended in 95 µl of water and precipitated with 6 

volume of 100% cold acetone. The dry pellet was resuspended in 100 µl of water and used for 

protein determination as described before. 

 

2.2.9.2 Protein gel electrophoresis 

 

2.2.9.2.1 Gel electrophoresis according to Laemmli et al. (1970) 

 

Table 2. Pipetting scheme of PAA gels 

Solution Separating gel (end 
concentration) 

Stacking gel (end 
concentration) 

2 M Tris-HCl, pH 8.8 0.375 M - 
1M Tris-HCl, pH 6.8 - 0.125 M 
40% acrylamide (acrylamide : 
bisacrylamide � 29:1) 

depending on desired 
concentration 5% 

10% SDS 0.1% 0.1% 
80% sucrose (for gradient gels) 10 � 17.5% (gradient) - 
10% APS 0.06% 0.08% 
TEMED 0.006% 0.008% 
H2O until desired volume until desired volume 
 

10 x Laemmli buffer    0.25 M Tris-HCl, pH 8.5   

      1.92 M glycine    

      1% SDS 

 

4 x Laemmli sample buffer   0.25 M Tris-HCl, pH 6.8   

      8% SDS      

      40% glycerol     

      20% ß-mercaptoethanol   

      0.016% Bromophenol Blue 

 

2.2.9.2.2 Gel electrophoresis according to Kashino et al. (2001) 

 

This gel system was used for separation of polypeptides with molecular masses from below 5 

kDa to over 100 kDa on an 18 - 25% urea-containing denaturing gel.  
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Table 3. Composition of stock solutions for SDS-PAGE 

Stock solution Concentrations of constituents 

50% w/v PAA stock mixture for resolving gel 49.5% acrylamide, 0.5% bisacrylamide 
30% w/v PAA stock mixture for resolving gel 29.2% acrylamide, 0.8% bisacrylamide 
resolving gel buffer (pH adjusted to 6.8 by HCl) 3 M Tris, 0.65 M MES, 0.5% SDS 
reservoir buffer (no adjusted of pH required) 25 mM Tris, 192 mM glycine, 0.1% SDS 
 

 

Table 4. Gel solution mixtures for of 18 - 24% PAA gradient gels containing 6 M urea 

Solution or urea 18% AA 
mixture 

24% AA  
mixture 

Stacking gel 
mixture 

50% AA 3.6 ml 4.8 ml - 
30% AA - - 1.6 ml 
resolving gel 

buffer 
2 ml 2 ml - 

stacking gel 
buffer 

- - 1.6 ml 

urea 3.6 g 3.6 g 2.9 g 
H2O 1.9 ml 0.7 ml 2.8 ml 
10% APS 25 - 15 µl 15 - 8 µl 65 µl 
TEMED 4.5 µl 4.5 µl 9 µl 
end volume 7.5 ml 7.5 ml 7 ml 

 

The volumes of APS in the resolving gel solutions were changed depending on the 

surrounding temperature so as to polymerize the acrylamide in about 1 h. In a room of around 

10°C 25 µl for 18% AA solution and 15 µl for 24% AA were used. At 30°C 15 and 8 µl for 

18 and 24% AA were added, respectively. The running buffer was the same as in the Laemmli 

system.  

 

2.2.9.3 Staining of PAA gels 

 

2.2.9.3.1 Coomassie Brilliant Blue staining 

 

Staining solution 

  45%  methanol       

  9%  acetic acid       

  0.2% (w/v) Coomassie Brilliant Blue R 250 (Serva, Heidelberg) 
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Destaining solution 

  25%   methanol       

  7.5%   acetic acid 

 

The gel was stained for 30 min in a staining solution which was previously warmed up to 

50°C to accelerate the process. It was destained in destaining solution (also previously 

warmed to about 50°C). 

 

2.2.9.3.2 Silver staining 

 

Fixation solution 

  50%    ethanol       

  12%   acetic acid       

  0.05%    37% formaldehyde 

 

Thiosulfate solution 

  0.02% (w/v)   Na2S2O3 

 

Silver solution 

  0.2% (w/v)   AgNO3       

  5%   37% formaldehyde 

 

Developing solution 

  6% (w/v)  Na2CO3      

  0.05%   37% formaldehyde     

  4 mg/ml  Na2S2O3 

 

Stopping solution 

  50%   methanol      

  12%   acetic acid 

 

Silver staining was used for detection of low quantities of proteins in gels. The gel of 1 mm 

thickness was incubated for 1 h in fixation solution, washed three times for 20 min in 50% 

ethanol and soaked for 1 min in thiosulfate solution. Afterwards, the gel was washed three 
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times with water for 30 sec and incubated in silver solution for 20 min in darkness with 

constant agitation. The gel was then washed with water again and incubated in developing 

solution until the bands reached the desired intensity. The reaction was stopped by addition of 

stopping solution. 

 

Destaining solution for silver staining 

  1%  K3Fe(CN)6        

  1.6%  Na2S2O3 

 

The gel for destaining was briefly (15 - 30 sec) incubated in destaining solution and washed 

several times with distilled water.  

 

2.2.9.3.3 Imidazol staining 

 

  0.2 M   imidazol        

  0.3 M   zink sulfate 

 

This method was used for the quantitative detection of protein bands in a gel before protein 

transfer. The gel was shaken for 10 min in imidazol-containing buffer (0.2 M imidazol), and 

then briefly incubated in 0.3 M ZnSO4 before visualization of protein bands. The transparent 

protein bands were visible in a milk-white background of the gel. Staining was terminated by 

incubation with water. The gel was stored at 4°C until blotting.  

 

2.2.9.4. Isolation and fractionation of thylakoid membranes 

 

2.2.9.4.1 Isolation of total cellular and membrane proteins from Synechocystis 

 

Total cell extracts and membrane proteins were isolated as described in Shukla et al. (1992). 

Buffer A   50 mM HEPES-NaOH, pH 7.0    

    0.5 M sucrose       

    15 mM NaCl       

    5 mM MgCl2       

    0.001 volume of a proteinase inhibitor cocktail (Sigma) 
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Buffer B   10 mM Tricine, pH 7.5     

    6% sucrose       

    30 mM DTT        

    0.001 volume of a proteinase inhibitor cocktail (Sigma) 

 

Cells were harvested by centrifugation at 4°C, resuspended in 600 µl of buffer A and then 

broken by vortexing with glass beads (3 times for 2 min each and keeping the samples for 1 

min on ice between cycles). Unbroken cells were removed by a brief centrifugation (4.000 x g 

for 5 min at 4°C). Thylakoids were collected from supernatant by ultracentrifugation at 

45.000 x g for 30 min at 4°C. Thylakoids were washed twice in buffer A, finally resuspended 

in buffer B and immediately frozen at �70°C. 

 

2.2.9.4.2 Extraction of peripherally associated proteins  

 

For investigation of protein interactions within the membrane, thylakoid membranes were 

incubated with chaotropic salts and alkaline solutions. Thylakoids (5 µg/µl chlorophyll) were 

resuspended in HEPES-NaOH, pH 7.0, 0.5 M sucrose buffer without any additions or 

containing 2 M NaBr, 2 M NaSCN, 0.1 M Na2CO3 or 0.1 M NaOH. After incubation on ice 

for 30 min thylakoids were diluted 1 : 2 with buffer lacking salts and pelleted by 

centrifugation for 10 min at 30.000 x g. Thylakoid membranes were resuspended in 2 x 

Laemmli sample buffer and denaturated for 10 min at 80°C. Extracted polypeptides were 

collected by precipitation with 4 to 5 volumes of 100% ice-cold acetone (2 h at �20°C), dried 

and resuspended in 2 x LSB.  

 

2.2.9.4.3 Preparation of phycobilisomes  

 

Phosphate buffer:   0.75M K3PO4       

  (mixture of K2HPO4 and KH2PO4 at the molar ratio 3 : 1), pH 7.0 

 

Phycobilisomes were isolated according to Gantt et al. (1976). Cyanobacterial cells were 

broken by vortexing with glass beads (120 � 210 microns, Sigma) in 0.75 M phosphate buffer, 

pH 7.0, at room temperature. The cell extract was solubilized with 2% Triton X-100 for 20 

min at room temperature and constant rotation. Unbroken cells were removed by 

centrifugation for 10.000 x g at 30 min at 15°C and the blue-colored supernatant was loaded 
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onto a sucrose density gradient (0.25 M � 0.79 M sucrose in phosphate buffer). 

Ultracentrifugation was performed at 130.000 x g for 16 h at 15°C using rotor SW40. The 

fraction of intact phycobilisomes that form the lower band in the gradient was collected and 

diluted with 0.75 M phosphate buffer (in 6 - fold) and phycobilisomes were pelleted for 4 h at 

80.000 x g at 4°C. The sedimented phycobilisomes were dissolved in H2O and immediately 

frozen. 

 

2.2.9.4.4 Isolation of photosynthetic complexes from Synechocystis cells by sucrose 

gradient centrifugation 

 

SMN buffer:   0.4 mM sucrose      

    10 mM NaCl       

    50 mM MOPS, pH 7.0  

 

Isolation of photosynthetic complexes was performed according to Sun et al. (1998). Cells 

were harvested at the late exponential growth stage and resuspended in SMN solution 

containing 0.2 mM PMSF and 5 mM benzamidine. Cells were broken by vortexing with glass 

beads and thylakoids were isolated by centrifugation at 50.000 x g for 60 min. Thylakoid 

membranes (200 µg chlorophyll/ml) were incubated for 30 min at room temperature with 

1mM CaCl2 in SMN buffer. Thylakoid membranes were solubilized by addition of dodecyl-β-

D-maltoside (Sigma) to a final concentration of 1.5% and incubated for 15 min on ice. 

Insoluble material was pelleted by centrifugation at 20.000 x g for 15 min at 4°C. Solubilized 

membranes were loaded onto a 12 - 28% sucrose linear gradient in 10 mM MOPS, pH 7.0, 

0.05% dodecyl-β-D-maltoside and centrifugated at 160.000 x g for 16 h using 12-ml tubes of 

a SW40 rotor. Typically, 60% chlorophyll in thylakoids can be recovered as PSI trimers by 

this procedure. 

 

2.2.9.4.5 Isolation of photosynthetic complexes from Synechocystis cells by non-

denaturing gel electrophoresis (blue native PAGE) 

 

ACA buffer:    750 mM ε-aminocaproic acid     

    50 mM bis-Tris/HCl, pH 7.0      

    0.5 mM EDTA-Na2 
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DM in ddH2O:   10% (w/v) n-dodecyl β-D-maltoside 

 

Sample buffer:   5% (w/v) Coomassie Blue G     

    750 mM ε-aminocapronic acid 

 

Cathode buffer 1:  50 mM Tricine      

    15 mM bis-Tris/HCl, pH 7.0     

    0.02% (w/v) Coomassie G 

 

Cathode buffer 2:  50 mM Tricine      

    15 mM bis-Tris/HCl, pH 7.0     

   

Anode buffer:   50 mM bis-Tris/HCl, pH 7.0 

 

Denaturation buffer:  2% (w/v) SDS       

    66 mM DTT       

    66 mM Na2CO3 

 

Supramolecular photosynthetic complexes were isolated according to Schägger et al. (1991). 

Cells of 100 ml of Synechocystis culture were collected by centrifugation at 10.000 x g for 15 

min at 4°C and used for extraction of thylakoid membranes (Section 2.2.8.4.1). Isolated 

thylakoids were resuspended in 60 µl of ACA buffer (end concentration 1 µg/µl chlorophyll) 

and solubilized by addition of 10 µl of DM [10% (w/v) in H2O] for 15 min at 4°C under 

constant rotation. Unsolubilized material was collected by ultracentrifugation at 45.000 x g 

for 15 min at 4°C. Solubilized thylakoids were mixed with 5 µl of sample buffer. The samples 

were then loaded onto a 4 - 12% gradient gel (Table 5) and electrophoresed at 100 V and 15 

mA. After entering the separation gel electrophoresis was continued at 500 - 1000 V. When 

the front had reached half the gel distance, cathode buffer containing Coomassie Blue G was 

replaced by the same buffer without staining reagent. All solutions were pre-cooled to 4°C; 

electrophoresis was performed at 10°C. 

 

For separation of individual proteins from photosynthetic complexes SDS-denaturing gel 

electrophoresis was performed (Section 2.2.8.2.1). The gel slice was cutted out and incubated 

at room temperature in denaturation buffer for 30 min. The slice was then horizontally loaded 
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onto a denaturing 5% stacking gel and fixed with 0.5% agarose (w/v in H2O). SDS-PAGE 

was performed overnight at room temperature. 

 

 Table 5. Gel solutions for 4 - 12% non-denaturating gradient PAA gels 

Resolving gel Stacking gel Solution 4% 12% 4 % 
30% acrylamide (acrylamide 
: bisacrylamide - 30 : 0.8) 4.1 ml 9.2 ml 1.3 ml 

1 M ε-Aminocapronic acid 11.5 ml 11.5 ml 5 ml 

1 M Bis-Tris/HCl pH 7.0 1.2 ml 1.2 ml 0.5 ml 

100% glycerol - 4.6 g - 

10% APS 44 µl 44 µl 190 µl 

TEMED 11 µl 11 µl 19 µl 

H2O 6.65 ml 1.1 ml 2,9 ml 
 

2.2.9.5 Immunological detection of proteins  

 

2.2.9.5.1 Transfer of proteins onto nitrocellulose membranes 

 

Semi-dry blotting system 

Anode buffer I:  0.025 M Tris (no adjustment of pH required) 

 

Anode buffer II:  0.3 M Tris (no adjustment of pH required) 

 

Cathode buffer:  40 mM ε-aminocaproic acid     

    0.01% (w/v) SDS 

 

The proteins were transferred onto membranes using a semi-dry blotting system (PHASE 

GmbH, Lübeck). The transfer membranes and PAA gels were incubated for 10 min in anode 

buffer II prior to transfer. Three layers of Whatman paper were soaked in cathode buffer and 

placed onto the bottom (cathode part). Then the gel was placed on paper and covered with the 

transfer membrane. Gel and transfer membrane assembly was covered by two layers of 

Whatman paper soaked in anode buffer II and three layers of Whatman paper soaked in anode 

buffer I. The transfer was performed for 1.5 � 2.5 h at 0.8 mA / cm2. 
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Wet-blotting system 

 

Blotting buffer:   0.02 Tris-HCl, pH 8.0     

     0.15 M glycin  

The proteins were transferred onto membranes using a wet-blotting system (RENNER 

GMBH, Dannstadt). The transfer membranes and PAA gels were incubated for 1 min in 

blotting buffer prior to transfer. Two layers of Whatman paper were equilibrated in the 

blotting buffer and placed onto the cathode side. Then, the gel was placed on top of this paper 

and covered with the transfer membrane. Two layers of Whatman paper soaked in blotting 

buffer covered the transfer membrane. The transfer was performed for 2 h for a PAA gel of 1 

mm thickness. The membrane was kept for 10 min at 80°C. 

 

2.2.9.5.2 Staining blots with Ponceau S 

 

Ponceau S Solution:  0.2% (w/v)   Ponceau S    

    1.0%    acetic acid 

 

For the detection of proteins after transfer, the membranes were incubated in Ponceau S 

solution for 15 min at room temperature under constant agitation. The membranes were then 

rinsed in water and the position of proteins and molecular weight standards were marked. 

 

2.2.9.5.3 Western analysis using horseradish peroxidase-conjgated antibodies 

 

Blocking buffer   1 x  PBS       

    5% dry milk      

    1%  Tween 20 

 

Washing buffer  1 x  PBS       

    1%  Tween 
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Developing stocks 

 

Solution 1   2.5 mM luminol (in DSMO)     

    0.4 mM p-coumaric acid (in DMSO)    

    0.1 M Tris-HCl, pH 8.5 

 

Solution 2   5.4 mM H2O2       

    0.1 M Tris-HCl, pH 8.5 

 

After electrophoretic transfer of proteins, nitrocellulose membranes were incubated in 

blocking buffer for 1 h at room temperature. The antiserum diluted to the desired 

concentration in blocking buffer was incubated for 2 h at room temperature or overnight at 

4°C. The first antibody was removed by washing the membrane with blocking buffer four 

times for 10 min. Then, anti-rabbit IgG peroxidase conjugate antibodies (Sigma) were diluted 

in blocking buffer and incubated with the membrane for 1 h. The membrane was then washed 

four times in washing buffer. The membrane was developed in a mixture of solutions 1 and 2 

(1 : 1) by incubation for 1 min. Then the filters were exposed with X-ray films (Hyperfilm, 

Amersham Life Science, England). 

 

2.2.9.5.4 Western analysis using I125-labeled Protein A antibody 

 

The membrane with transferred proteins was incubated with antiserum diluted to the desired 

concentration in blocking buffer for 1 h at 37°C. The first antibodies were removed by 

washing the membrane twice with blocking buffer for 15 min. Then, I125-labeled Protein A 

was diluted (1 : 1000) in blocking buffer and incubated with the membrane for 1 h at 37°C. 

The membrane was then washed once in blocking buffer and once in washing buffer, each 

time for 15 min. The membrane was dried and the immunoreaction visualized by exposure of 

the membrane with X-ray films (Hyperfilm; Amersham Life Science, England) for 3 hours or 

overnight. 

 

2.2.10 Proteolysis activity assay 

 

Overexpressed SppA2 protein was added to one milliliter of sodium phosphate buffer (pH 

8.0) containing 5 mg of Azocoll protease unspecific substrate with (or without presence) of 
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different protease inhibitors (for serine type: 1 mM PMSF and 1 mM DFP; for cysteine type: 

1 mM IAA; for metalloproteases: 5 mM EDTA, pH 8.0) and incubated with shaking at 37°C. 

The absorbance was measured at 520 nm and the rate of proteolysis was expressed as the 

change in absorbance at 520 nm per milliliter. 

 

2.2.11 Protein pulse-labeling with 35S-methionine 

 

The pulse-chase labeling of the cyanobacterial cells and their thylakoids was performed as 

described in Komenda et al. (2000) with some modifications. To probe the synthesis of 

cyanobacterial proteins, pulse-labeling with 35S-methionine (>1000 Ci/mmol, Amersham, 

Freiburg) was used. Cells were grown in liquid BG-11 medium till A750 of 0.3 to 0.6 and then 

diluted with BG-11 to a chlorophyll concentration 5 µg/ml (A750 of 0.4). 35S-methionine was 

added to the medium to a final concentration of 1 µCi/ml. The culture was incubated in a 50 

ml flask for 40 min under LL and then the cells were transferred to a ML or HL or kept under 

LL. The reaction was stopped by addition of chloramphenicol (150 µg/ml) an inhibitor of 

protein synthesis, and placing samples into ice. For long-time labeling, cells were incubated 

under different stress conditions, and then an aliquot of 10 ml was diluted till A750 of 0.7. 35S-

methionine was added to the medium to a final concentration of 1 µCi/ml and cells were 

incubated for 1 hour. 

 

2.2.12 Measurements of oxygen evolution by the Clark electrode 

 

Oxygen evolution of photosynthetic membranes of Synechocystis cells was measured with a 

Clark-type electrode (Hansatech Instruments Ltd, Reutlingen, Germany). The Synechocystis 

cells (at a chlorophyll a concentration of 2.5 µg/ml) were adapted to darkness for 10 min, then 

continuously stirred at 30°C and illuminated with saturating actinic light (50 µE m-2 s-1). The 

zero point for O2 synthesis was determined by calculation of the difference between 

measurements with oxygen-free water [1 ml H2O + a few crystals of Na2S2O4, and oxygen-

saturated water (1ml)]. Using constant values of oxygen content in air-saturated water 

(Seidlell and Linke, 1965), the amount of released O2 was calculated for 1 ml of solution and 

1 cm of recorder print. The whole-cell photosynthetic activity was measured for 30 min. 
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2.2.13 Low temperature (77K) fluorescence analysis  

 

77K fluorescence was recorded using SPEX Fluorolog-2 model F212 spectrofluorometer 

(Industries, Inc., USA). Synechocystis samples grown under different light intensities were 

used. Cells were equilibrated to 2 µg of chlorophyll a (approximately A750 of 0.5) and adapted 

to the dark during 10 min. They were then rapidly frozen in liquid nitrogen. For investigation 

of energy distribution between phycobiliproteins, PSI and PSII emission spectra at excitations 

of 435 nm and 570 nm were recorded. To monitor changing quantities of pigments excitation 

spectra were recorded at an emission of 685 nm for phycobiliproteins and 735 nm for 

chlorophyll a. 
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3. RESULTS 
 

3.1 Characterization of peptidases in Synechocystis 

 

A systematic gene disruption approach was chosen for functional analysis of peptidases from 

Synechocystis sp. PCC 6803. Twenty peptidase-encoding genes were inactivated by inserting 

the kanamycin or gentamycin resistance gene cassette into the coding region or by replacing 

part of the respective coding regions with the antibiotic resistance genes. The mutant strains 

deficient in protease genes were obtained in collaboration with the laboratory of Prof. S. 

Shestakov (Department of Genetics, Moscow State University, Russia). The mutagenized 

genes are presented in the Table 1 of Section 2.2.3. The homozygous mutant strains in which 

all wild-type gene copies were replaced by the knock-out cassette were achieved after several 

rounds of selection with antibiotic (approximately 12 rounds of plating). Complete 

segregation of mutant lines was verified by a PCR approach that allows the detection of even 

a low number of the wild-type DNA copies. Description of the interrupted genes and their 

products is presented in the Table 6.  

 

TABLE 6. Characterization of mutagenized peptidase-encoding genes and their 
products in Synechocystis 
Gene Protein Protein function Peptidase 

type 
Predicted 
localization 

Homozygous 
mutant 

slr0542 ClpP1 Proteolytic Clp subunit Serine Cyt No 
sll0534 ClpP2 Proteolytic Clp subunit Serine Cyt Yes 
slr0165 ClpP3 Proteolytic Clp subunit Serine Cyt No 
slr0164 ClpR (ClpP4) Proteolytic Clp subunit Serine Cyt No 
sll0535 ClpX Non-peptidase Clp subunit - Cyt No 
sll0020 ClpC Non-peptidase Clp subunit - Cyt No 
slr0156 ClpB1 ClpB1 protein - Cyt No 
slr1641 ClpB2 ClpB2 protein - Cyt Yes 
sll1204 HtrA (DegP) Heat-shock peptidase Serine L No 
sll1679 HhoA (DegQ) Heat-shock peptidase Serine Per Yes 
sll1427 HhoB (DegS) Heat-shock peptidase Serine Mem Yes 
sll2008 Prp1 Processing peptidase Metallo- Cyt Yes 
sll2009 Prp2 Processing peptidase Metallo- Cyt Yes 
sll0055 Prp3 Processing peptidase Metallo- Cyt Yes 
slr1331 YmxG Processing peptidase Metallo- Per Yes 
sll0915 PqqE Processing peptidase Metallo- Per Yes 
sll1703 SppA1 Protease IV Serine Mem Yes 
slr0021 SppA2 Protease IV Serine Cyt Yes 
sll1343 Ape2 (PepN) Alanine AP Metallo- Cyt Yes 
sll0136 PepP Proline AP Metallo- Cyt Yes 
AP aminopeptidase, Cyt cytoplasm, Mem membrane, Per periplasm, L lumen
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Only completely segregated homozygous strains were used for functional analyses. The 

interposon mutagenesis approach did not recover fully segregated knock-out strains for seven 

genes including predominantly members of the Clp family (Table 5). Only one mutant strain, 

∆clpP2, that was not able to grow under photoautotrophic conditions, but could be cultivated 

in the presence of a carbon source (0.5% glucose), segregated fully. 

 

3.1.1 Physiological analysis of peptidase knock-out mutant strains 

 
One of the principal roles of peptidases is the regulation of intracellular processes during or 

following environmental stress. All peptidase mutants obtained were monitored for their 

acclimation abilities to various light intensities, temperature regimes and nutrient 

deprivations. The phenotypical changes were compared with there of wild-type grown under 

comparable conditions. Peptidase-deficient strains and wild-type were grown under standard 

conditions till A750 = 0.6 and then transferred to different stress regimes (see Section 2.2.2). 

Results of the phenotypical analysis of mutant strains under different stress conditions are 

summarized in the Table 7. 

 
TABLE 7. Characterization of peptidase knock-out mutants  

Visible phenotype  
Growth conditions Nutrient deprivation 

Gene Mutant Photoautotrophic 
growth 

LL HL HS -N -S -P -Fe -Cu 
Clp family 

sll0534 ∆clpP2 No B/SS - - -/F  -/F -/F - 
slr1641 ∆clpB2 Yes - G - - - - - - 

Deg family 

sll1679 ∆hhoA Yes - - B - - - G - 
sll1427 ∆hhoB Yes G/F - - - - B - - 

Processing peptidases 

sll2008 ∆prp1 Yes G/F - - - - - - - 
sll2009 ∆prp2 Yes - - B - - - - - 
sll0055 ∆prp3 Yes - - - - - - - - 
slr1331 ∆ymxG Yes G/F - - - - - - - 
sll0915 ∆pqqE Yes - - - - - - - - 
sll1703 ∆sppA1 Yes -/F B - - - - - - 
slr0021 ∆sppA2 Yes -/SS - - - - - - B 

Aminopeptidases 

sll1343 ∆ape2 Yes - - - - - - G B 
sll0136 ∆pepP Yes B/SS B B - - - - - 

B Bleached phenotype, Cu copper, F faster growth rate, Fe iron, G enhanced green pigmentation, HL high light 
HS heat stress (42°C), LL low light, N nitrogen, P phosphorus, S sulfur, SS slower growth rate, - no visible 
phenotypical modifications  
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3.1.1.1 Acclimation of cyanobacterial cells to different light intensities 

 

To analyse the acclimation of wild-type and mutant strains to different light conditions 

cyanobacterial cells were grown under LL and then transferred to HL for three days. The 

response of the wild-type cells to HL was bleaching of the cell culture and increased time of 

cell duplication. Under standard experimental conditions (LL; 30°C) wild-type strain of 

Synechocystis has a doubling time of about 12 h, while during adaptation to HL the doubling 

time increased up to 28 - 30 h. The phenotypical changes demonstrated that four peptidases, 

ClpP2, SppA1, SppA2 and PepP contributed to light acclimation since the corresponding 

knock-out mutants demonstrated an altered pigmentation phenotype for ∆sppA1, ∆sppA2 and 

∆pepP or ceased growth for ∆clpP2 upon transfer to different light intensities (Fig. 3). The 

∆clpP2 mutant was highly sensitive to light and was not able to grow under light intensities 

higher than 10 µE m-2 s-1 (Fig. 3A and B). This mutant showed a strong phenotype typical for 

photosynthetic mutants and it could grow only under heterotrophic conditions (Fig. 3A and 

B). The ∆pepP strain already showed some bleaching phenotype and slower growth rate 

under LL regime (Fig. 3C). The same sensitive phenotype (slower growth rate and bleaching) 

under standard light intensity showed ∆sppA2 mutant (Fig. 3D; see Section 3.3 below). No 

significant changes were observed phenotypically in the ∆sppA2 after exposure to HL. The 

∆sppA1 mutant bleached faster than the wild-type after transfer to HL and this phenotype was 

accompanied by a drastic drop in the growth rate (Fig. 3E).  

 

3.1.1.2 Heat stress 

 

To examine the behaviour of wild-type and peptidase knock-out strains under high 

temperature the cells were acclimated from standard temperature regime (30°C) to heat stress 

(42°C) for 48 h. Incubation of wild-type cells under 42°C for 6 h led to a bleached phenotype 

that correspond to in reduced of chlorophyll and phycobiliprotein contents (data not shown). 

The analysis of phenotypical changes and absorption spectra under heat stress showed that 

most of the peptidase strains, with the exception of three mutants, ∆pepP, ∆prp2 and ∆hhoA, 

displayed similar responses to heat stress as the wild-type. Three knock-out strains, ∆pepP, 

∆prp2 and ∆hhoA, were more sensitive to heat stress and bleached rapidly during acclimation 

to 42°C (Fig. 4). 

 



RESULTS 54 

 
 

 
Figure 3. Analysis of the phenotypical modifications and growth rates of the wild-type 
and mutant strains under different light regimes. The wild-type and mutant knock-out 
strains were grown under LL and then transferred to HL or left at LL. The changes were 
monitored for 50 h during acclimation to LL for ∆clpP2 (A and B), ∆pepP (C) and ∆sppA2 
(D) and to HL regime for ∆sppA1 (E). 
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Figure 4. Phenotypical modification of the wild-
type as well as ∆pepP, ∆prp2 and ∆hhoA strains 
under heat stress. Wild-type and mutant strains 
were grown under 30°C to an A750 of 0.6 and 
transferred to 42°C. The phenotypical changes were 
recorded 24 h after heat stress.  
 

 

3.1.1.3 Nutrient deprivation 

 
To test the influence of nutrient deprivations on the behaviour of wild-type and peptidase 

knock-out mutants the strains were shifted to medium depleted in nitrogen, iron, sulfate, 

phosphorus or copper. Cells at the exponential growth phase were collected, resuspended in 

media deficient in different microelements and grown under standard conditions for 3 to 10 

days. Wild-type cells grown in the absence of nitrogen, phosphorus or iron showed a 

bleaching phenotype after 3 days that corresponds to decline in the content of 

phycobiliproteins. However, the cells grown on sulfur or copper-lacking medium did not 

exhibit any significant changes in the pigmentation. The ∆hhoB mutant bleached more rapidly 

than the wild-type when grown in a medium depleted in phosphorus, whereas ∆hhoA and 

∆ape2 remained more green than the wild-type under iron deprivation. The ∆sppA2 and 

∆ape2 mutant strains bleached during growth in the absence of copper (Fig. 5).  

 
 
 
Figure 5. Response of the wild-type, ∆ape2 and ∆sppA2 
strains under copper deprivation. The wild-type and mutant 
strains were grown under normal conditions in a medium 
depleted in copper for 10 days.  
 
 

 

 

 

The analysis of growth of the ∆clpP2 under nutrient deprivation was difficult to perform since 

the mutant was only able to grow in the presence of glucose (Fig. 3A and B). It was 

previously observed that the presence of glucose in the growth medium partially inhibits 

phycobilisome degradation which is the first response of deprivation of nitrogen or 
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phosphorus microelements  in Synechocystis. In that case the growth rate of ∆clpP2, in 

addition to the pigmentation of the cell culture, was monitored (Fig. 6). The ∆clpP2 mutant 

grew faster than the wild-type during the first two days of nitrogen, phosphorus or iron 

starvation. However, no significant difference in growth rate to the wild-type could be noted 

during sulfur starvation (Fig. 7).  

 

 
Figure 6. Phenotypical changes of the wild-type and ∆clpP2 mutant during nutrient 
deprivations. Wild-type and ∆clpP2 mutant were grown in the glucose-containing BG-11 
medium to an A750 of 0.6 and transferred for 72 hours to the media depleted in copper (- Cu), 
iron (- Fe), nitrogen (- N), phosphorus (- P) or sulfur (- S). 
 

 

 
Figure 7. Growth rates of the wild-type and ∆clpP2 mutant during nutrient deprivation. 
The cultures were normalized to an A750 and transferred to the media lacking copper (-Cu), 
iron (-Fe), nitrogen (-N), phosphorus (-P) or sulfur (-S). Afterwards the strains were incubated 
for 72 h. The absorbance at A750 was measured every 12 h. 
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3.2 Functional analysis of the SppA peptidase family in Synechocystis  

 

BLAST search analysis revealed two homologous SppA proteins in the genome of 

Synechocystis. The sll1703 gene encodes an Arabidopsis homologue of the 64 kDa thylakoid 

membrane-associated SppA protease (Lensch et al., 2001). The slr0021 gene encodes a 

second SppA-homologue, the SppA2 protein, with a predicted molecular mass of 30 kDa. 

This gene is present only on prokaryotic genomes. Analysis of the domain structure of SppA 

proteins based on protein families database (Pfam) indicated that SppA1 consists of two 

homologous domains separated by an interdomain region (Fig. 8), whereas SppA2 contains 

only one domain in its protein structure. 

 

 
Figure 8. Domain organization of SppA proteases. Possible catalytic serine residues in 
domain 2 are indicated. 
 
SppA proteases belong to the serine type of proteases that possess serines as catalytically 

active residues. Sequence comparison of SppA proteases from E. coli, Arabidopsis and 

Synechocystis strongly suggested the localization of catalytic serines within domain 2 (Lensch 

et al., 2001) at positions Ser367, Ser401 and Ser423 for SppA1 protease and at positions Ser51, 

Ser85 and Ser107 for the SppA2 protease of Synechocystis (Figs. 8 and 9). 
 

3.2.1 Functional analysis of SppA1 protease 

 

3.2.1.1 Analysis of SppA1 protein sequence 

 

Hydrophathy analysis according to Kyte & Doolittle revealed a SppA1 is a hydrophilic 

protein with a hydrophobic domain of about 50 amino acids at the N-terminus. Inspection 

revealed a typical ARA sequence for the signal processing peptidase of position of 39 amino 

acids at the N-terminus. The Arabidopsis SppA and the Synechocystis SppA1 sequences 
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contain two possible membrane domains (I and II), predicting association of SppA1 with the 

thylakoid membrane (Fig. 10). 
 

 
Figure 9. Amino acid comparison of SppA proteins from different organisms. Identical 
amino acid residues are shadowed in red. At � Arabidopsis thaliana, Syn � Synechocystis, Ec 
� Escherichia coli. Putative catalytic active serine residues are designated by stars. The arrow 
indicates position of putative processing site.  
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Figure 10. Hydropathy plot of the Synechocystis SppA1 protein according to Kyte and 
Doolittle (1982). Amino acid positions are indicated at the bottom of the graph. The scan 
window size was 13. Hydrophobic amino acid residues are placed above the zero line. The 
possible cleavage site for transit peptide marked by red arrow. Two hydrophobic domains are 
designated I and II. 
 

3.2.1.2 Construction of ∆sppA1 and complement pVZsppA1 mutant strains 

 

The sll1703 gene encoding the SppA1 peptidase was inactivated by interposon mutagenesis in 

Synechocystis (Fig. 11). Mutagenesis of relevant open reading frame can influence the 

expression of nearby located genes. It that case the phenotype of a mutant strains can be 

caused either by depletion of the gene of interest or by site effect on expression of nearby 

located genes. To exclude the pleiotropic effect of gene disruption and to prove that the 

phenotype corresponds exclusively to the disrupted gene, a complementation analysis of the 

∆sppA1 mutant strain by an autonomously replicating plasmid pVZ321 carrying the wild-type 

sppA1 gene (Fig. 12) was performed. The pVZ321 plasmid based on RSF1010 replicon is 

able to autonomously replicate in cyanobacterial cells. Conjugal transfer of resultant 

pVZsppA1 plasmid into the ∆sppA1 strain was performed via triparental mating. Mobilization 

of plasmid pVZsppA1 into Synechocystis was performed with the E. coli strain R751. The 

transconjugants were selected on the BG11-containing plates with 25 µg ml-1 

chloramphenicol and 100 µg ml-1 kanamycin. 
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During insertion of self replicating resistance cassette the gene of interest can be 

independently expressed from the vector but can as well be integrated into genomic DNA by 

reverse recombination. The PCR approach was used to exclude possible reverse 

recombination between Synechocystis chromosomal DNA and the gene fragment cloned in 

the complementation plasmid. For this analysis, primers corresponding to further sequences 

upstream and downstream of PrAF and PrAR for amplification of entire coding region 

sll1703 were constructed. These primers cannot amplify a fragment on plasmid pVZsppA1, 

but amplify a fragment with an identical size from the DNA of ∆sppA1 strain. The DNAs 

from wild-type, ∆sppA1 and pVZsppA1 strains were used for PCR analysis. The size of the 

amplified fragment differs by 1.2 kb that corresponds to the Km resistance gene from the 

amplification product of the wild-type DNA (Fig. 13). The wild-type fragment appears as a 

3.4 kb band, whereas ∆sppA1 and pVZsppA1 fragments share the same size of 4.6 kb due to a 

1.2 kb Km resistance gene. 

 
 
Figure 11. Construction of the knock out 
vector for the sll1703 gene. The sll1703 gene 
encoding SppA1 protease was amplified from 
genomic DNA of Synechocystis with primers 
PrF and PrR. The resulting PCR product of 696 
bp was cloned into the PCR-cloning vector 
pGEM-T (Promega). The 1.2 kb KmR cassette 
excised by HincII from the pUC4K plasmid 
was inserted into the Eco81I restriction site of 
sll1703 gene. 
 
 

 
 
 
Figure 12. Construct scheme of the vector 
for the complementation analysis of the 
∆sppA1 mutant. For complementation 
analysis of the sppA1 gene the 3060 bp 
fragment, encoding the entire sll1702/sll1703 
region and part of sll1807 gene was amplified 
with primers PrAF and PrAR and cloned into 
the pGEM-T vector. The PCR product was 
excised from the vector with PvuII and 
recloned into the unique SmaI site within the 
KmR gene of vector pVZ321. 
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Figure 13. PCR analysis with DNA from 
wild-type, ∆sppA1 and pVZsppA1 strains 
to check for possible reverse 
recombination. The part of the DNA 
containing sll1703/sll1702 and slr1807 was 
amplified using sll1704_frw and 
slr1807_compl_rev primers and the 
resulting PCR products were separated 
electrophoretically in a 0.8% agarose gel.  
 
 
 
 
 

 
 
3.2.1.3 Analysis of sppA1 gene  

 
Analysis of the DNA sequence showed that the 1860 bp sll1703 gene is a member of a gene 

cluster, encoding sll1702-sll1703-sll1704, where the sll1702 and sll1703 have four 

overlapping nucleotides in their termination and starting codons, respectively. Gene sll1704 

(770 bp) that encodes a dehydrogenase chain, is located downstream of sll1703 with an 

intergenic region of 24 bp (Fig. 14).  

 

Figure 14. Physical map of the chromosome region containing the sppA1 gene. The 
sll1703/sll1702 genes are located in a gene cluster with an overlapping region of 4 bp. The 
sll1704 gene is located down-stream of the sll1703 gene at a distance 24 bp from the stop 
codon of sll1703. 
 
To check a possible polar effect of disruption of the sll1703 gene on the expression of the 

sll1704 a Northern experiment with RNA from wild-type,  ∆sppA1 and complemented mutant 

was performed. The RNAs were hybridized with a sll1704 gene-specific probe (Fig. 15). The 

sll1704 transcript of 0.85 kb was found in comparable quantity in all strains. 
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Figure 15. Analysis of sll1704 gene expression. 
RNA was extracted from cyanobacteria cells of 
wild-type, ∆sppA1 and pVZsppA1 strains grown 
under LL for 5 days till end of the exponential 
phase (A750 = 1.5), separated in an RNA-
denaturing gel and transferred onto Nylon 
membrane. (A) The membrane was hybridized 
with the radiolabelled sll1704 gene fragment of 
770 bp. (B) Hybridization with rRNA was used as 
a loading control. 
 
 
 
 
 
 
 
 

Since sll1702 and sll1703 are located in one gene cluster two different primer combinations 

were used to detect the sll1702 transcript (512 bp) levels in wild-type, ∆sppA1 and pVZsppA1. 

The sll1702F/sll1703R primer pair was used for the determination of sll1702/sll1703 

transcript of 2.5 kb and sll1702 gene-specific primers for the detection of only that of sll1702 

gene. RT-PCR did not reveal any transcript of sll1702/sll1703 that indicated independent 

transcription of sll1702 and sll1703 genes. RT-PCR analysis of expression of sll1702 

demonstrated that its expression in the wild-type and ∆sppA1 mutant was similar. 

Transcription of the 16S rRNA was used as a control (Fig. 16).  

 

 
Figure 16. RT-PCR analysis of the sll1702 gene. Total RNA was extracted from wild-type 
(lane 1), ∆sppA1 (lane 2) and pVZsppA1 (lane 3). PCR with sll1702 - specific primers was 
performed for amplification of the sll1702 transcript (Panel A) and with primers specific to 
16S rRNA gene for amplification of the 16S rRNA (Panel B).  
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3.2.1.4 Expression of the sppA1 gene under different light intensities 

 

The analysis of the ∆sppA1 mutant (see Section 3.1.1.1) indicated possible involvement of 

SppA1 in the acclimation of cyanobacterial cells to higher light intensities. The light-

dependent regulation of SppA1 was first analyzed at the gene expression level. For this, RNA 

was isolated from wild-type cells adapted to different light intensities, such as LL, ML and 

HL. The sppA1 transcripts were then detected by Northern analysis. SppA1 transcripts were 

present  under all light regimes in almost equal amounts (Fig. 17).  

 

 

 
 
Figure 17. Transcription levels of the sll1703 
(sppA1) gene in the wild-type under different light 
regimes. (A) RNA was extracted from the cells grown 
under LL, ML and HL regimes. The sppA1 transcripts 
were detected by hybridization with the radiolabelled 
1860 bp DNA fragment of the sll1703 gene. (B) The 
RNA gel was stained with EtBr for rRNA 
visualization, as a control for equal loading.  
 

 

 

 

 

3.2.1.5 Phenotypical characterization of the ∆sppA1 mutant 

 

Physiological characterization of the ∆sppA1 mutant did not show any significant difference 

in the growth under LL when compare to wild-type (see Section 3.1). To analyze the 

phenotypical modifications of wild-type, ∆sppA1 and pVZsppA1 due to different light 

intensities the cell batches grown at LL to the end of the exponential phase were diluted to an 

A750 of 0.5 and then transferred to ML and HL or kept at LL for further three days. In contrast 

to the LL ∆sppA1 mutant behaved differently from the wild-type when the cells were grown 

at ML and HL. The ∆sppA1 mutant exhibited non-bleaching after the shift to ML and 

bleached faster under HL relative to the wild-type cells (Fig. 18). 

 
Typical absorption spectra of the wild-type cells display a broad absorption peak with several 

shoulders that correspond to the Soret region of the chlorophyll a absorption spectrum (440 
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nm) and to the absorption of various carotenoid bands (above 450 nm). The red region 

displays two distinct peaks, one centered around 620 nm due to phycobilin-containing 

proteins, phycocyanin (PC) and allophycocyanin (APC), the other around 680 nm 

corresponding to chlorophyll a. The absorption spectra of thylakoids extracted from wild-type 

and mutant strains grown at various light conditions showed that the amounts of 

phycobilisomes as well as of chlorophyll a and carotenoid decreased within 3 � 4 days after 

transfer of Synechocystis cells from LL light to HL (Fig. 19). Under ML and HL the wild-type 

and pVZsppA1 strains revealed lower absorbance of the PC peak than at LL. The ∆sppA1 

strain behaved in a similar way at LL and HL. However, although a decrease in chlorophyll a 

absorption relative to that of carotenoids was observed, the PC/APC absorption peak at 620 

nm remained higher in ∆sppA1 under ML. Consequently, the ratio between the chlorophyll a 

and PC/APC absorption peaks in mutant cells grown under ML remained similar to that 

grown under LL. These observations suggest that the wild-type adapts to ML by losing more 

of its PC/APC-containing phycobiliproteins than ∆sppA1.  

 
Figure 18. Phenotypical characterization of wild-type, ∆sppA1 and pVZsppA1 strains 
upon acclimation to various light intensities. Wild-type, ∆sppA1 and pVZsppA1 were 
incubated under LL to an A750 of 0.6 and then transferred to LL, ML or HL for 3 days. The 
phenotypical changes were monitored after 3 days of light acclimation. 
 

Table 8 shows the generation time of wild-type and ∆sppA1 mutant at three light intensities, 

DL, LL and ML. It has been observed that cell division was light-limited in the 20 - 50 µE m-2 

s-1 range. The latter intensity was close to saturation since a further increase in light intensity 

by a factor of three produced only a moderate increase in growth rates for the two strains. 

That these growth conditions were not limited by CO2 availability is demonstrated by similar 

generation times observed, independently whether cultures were bubbled with CO2or not. 
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Figure 19. Absorbance spectra of thylakoids of the wild-type, ∆sppA1 and pVZsppA1 
during acclimation to different light regimes. Synechocystis cells were grown at LL to an 
A750 of 0.5. Cells were then transferred to ML or HL, or kept at LL for the next three days. 
Thylakoid membranes were isolated from cultures and adjusted to the same A750 before 
determining the spectra.  
 

TABLE 8. Doubling time of wild-type and ∆sppA1 mutant at different light intensities 

Strain and light intensity Doubling time (h) 
Cell concentration  
(number/ml) at T72

a 

wild-type (DL; 20 µE m-2 s-1) 36.3 ± 3.0 8.0 ± 0.3 x 108 

∆sppA1    (DL; 20 µE m-2 s-1) 35.6 ± 1.5 8.4 ± 0.4 x 108 

wild-type (LL; 50 µE m-2 s-1) 11.4 ± 0.9 26.0 ± 0.2 x 108 

∆sppA1    (LL; 50 µE m-2 s-1) 10.5 ± 1.8 29.5 ± 0.3 x 108 

wild-type (ML; 150 µE m-2 s-1) 10.0 ± 1.7 40.1 ± 0.1 x 108 

∆sppA1    (ML; 150 µE m-2 s-1) 9.8 ± 0.8 44.5 ± 0.3 x 108 

wild-type (HL; 350 µE m-2 s-1) 40.0 ± 0.7 17.6 ± 0.8 x 108 

∆sppA1    (HL; 350 µE m-2 s-1) 36.8 ± 0.2 24.5 ± 0.2 x 108 

wild-type (3% CO2; 50 µE m-2 s-1) 12.0 ± 0.3 21.7 ± 0.4 x 108 

∆sppA1    (3% CO2; 50 µE m-2 s-1) 11.1 ± 0.8 26.1 ± 0.7 x108 

wild-type (3% CO2; 150 µE m-2 s-1 ) 10.3 ± 1.2 38.7 ± 0.2 x 108 

∆sppA1    (3% CO2; 150 µE m-2 s-1) 9.1 ± 1.1 44.0 ± 0.1 x 108 
a T72  - time of cell growth under indicated conditions; values listed are means from at least three experiments 
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For the analysis of pigment contents in wild-type and ∆sppA1 strains during adaptation to 

different light regimes cyanobacterial cells were acclimated to LL, ML and HL for 3 days and 

the concentration of phycocyanin and chlorophyll a was measured for 3 days every 12 h. 

Measurement of the pigment concentrations per optical density of cells (A750 = 0.4) showed 

that the PC pool in the wild-type decreases when cells are adapted to ML and HL, in the 

∆sppA1 strain its amount remained constant under ML as under LL. Under HL both strains, 

wild-type and ∆sppA1, contained almost equal amount of PC (Fig. 20). 

 

 

Figure 20. Contents of chlorophyll and phycobiliproteins in wild-type and ∆sppA1 cells 
under different light regimes. Synechocystis cells were grown at LL till log-phase, diluted 
with BG-11 medium and transferred to LL, ML and HL for 3 days. The measurements were 
taken from the beginning of acclimation. Chlorophyll (A) and phycocyanin (B) concentrations 
at A750 of 0.4 were measured. 
 

The loss of phycobiliproteins in Synechocystis wild-type is well documented under nitrogen 

deprivation. To check whether SppA1 inactivation also resulted in the preservation of PBS 

under these conditions, wild-type and ∆sppA1 were grown in nitrogen-depleted medium for 3 

days (Fig. 21). The loss of PBS was visualized by the loss of the PC/APC absorbance peak in 

the 620 nm region of the spectrum. The same decrease in PC/APC absorbance was observed 

in both strains showing that SppA1 plays no role in the PBS loss under nitrogen starvation. 
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Figure 21. Phenotypical modifications and absorption spectra of wild-type and ∆sppA1 
mutant during nitrogen starvation. Wild-type cells and ∆sppA1 mutant were incubated 
under LL till A750 of 0.6 and then transferred to BG-11 medium depleted in nitrogen. The 
phenotypical changes and spectra were monitored after 3 days of deprivation.  
 

3.2.1.6 Spectroscopic characterization of the ∆sppA1 mutant 

 

To examine the correlation between changes in pigment content and absorption properties 

with modifications in the functional organization of antenna in wild-type and ∆sppA1, 77K 

fluorescence analysis was performed on cyanobacterial cells adapted for 36 h to either LL, 

ML or HL. 

 

The 77 K excitation spectra were recorded by monitoring of the emission of the PSII core at 

695 nm. The wild-type spectrum at LL displayed an excitation component in the blue region 

that corresponds to chlorophyll a from the PSII cores and a major 628 nm component that 

corresponds to those PBS antenna functionally connected to the chlorophyll a-containing PSII 

cores (Fig. 22). When compared to LL conditions, the wild-type grown at ML showed a major 

decrease in the contribution of PBS sensitization relative to chlorophyll sensitization of the 

PSII emission. In contrast, the ∆sppA1 mutant displayed a well preserved contribution of PBS  
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sensitization to PSII fluorescence at ML. Taken together, absorbance and 77K fluorescence 

data suggest that light acclimation, based on a decreased PBS content which takes place in the 

wild-type grown at ML, is prevented in the absence of SppA1. Under HL the contribution of 

PBS to the fluorescence of PSII was strongly decreased compared to that under ML in the 

mutant and resembles the low excitation contribution observed in wild-type cells placed under 

the same experimental conditions (Fig. 22). 

 

 
Figure 22. Low-temperature (77 K) fluorescence excitation spectra of wild-type and 
∆sppA1 strain at LL, ML and HL regimes. Synechocystis cells of wild-type and ∆sppA1 
were grown and adapted to ML and HL for 36 h. The excitation spectra were recorded at 
emission of 695 nm.  
 

Light intensity and CO2 concentration determine the content of phycobiliproteins in 

cyanobacterial cells. Increased light intensity, that is similar to decrease of CO2 concentration, 

leads to a reduction of phycobiliproteins in cells. To check the CO2 effect on changes in PBS 

content during light acclimation the 77K fluorescence analysis was performed with cells 

grown under LL and ML with constant CO2 bubbling for 36 h. Cells were diluted to 2 µg of 

chlorophyll per ml. The excitation of APC at 540 nm resulted in a fluorescence emission of 

phycocyanin and allophycocyanin of the PBS at 640 - 660 nm, PSII at 695 nm and PSI at 725 

nm. No changes in the emission of PBS, PSII and PSI could be observed in wild-type and 

∆sppA1 under LL (Fig. 23). However, the fluorescence of phycobilisomes not associated with 

PSI and PSII was substantially higher in ∆sppA1. The fluorescence from PBS associated with 

PSII and PSI remained the same. These data showed that SppA1 is not involved in the 

acclimation to CO2, but in the adaptation to high light intensities. 
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Figure 23. Low-temperature (77 K) fluorescence emission spectra of cells adapted to 
different light regimes. The 77 K fluorescence emission spectra of wild-type (solid line) and 
∆sppA1 mutant (dashed line) are shown after excitation of APC at 540 nm. The spectra were 
normalized to the emission peak at 725 nm. The cells were incubated under indicated light 
conditions for 36 hours.  
 

3.2.1.7 Analysis of contents of photosynthetic proteins  

 

The changes in intracellular pigment content in the wild-type and ∆sppA1 under various light 

regimes could reflect changes in the amount of thylakoid membrane per cell or changes in the 

relative content of pigment-binding proteins per thylakoid membrane area, or both. Thylakoid 

membrane proteins isolated from wild-type and ∆sppA1 grown for three days under LL, ML 

and HL were compared after SDS-PAGE (Fig. 24). Immunodetection of thylakoid proteins 

with antisera raised against the ß subunit of the ATP synthase, the PsaA/B proteins of the PSI 

reaction center, the D1 protein of PSII, the Rieske Fe/S protein of the cytochrome b/f complex 

and major core phycobilisome proteins (PC) is presented in Fig. 25. No significant differences 

in the content of ATP synthase and the cytochrome b/f complex between the two strains were 

observed at various light regimes. In contrast, the content in chlorophyll a-containing reaction 

centre proteins of PSI and PSII decreased with exposure to higher light intensities, but no 

differences in the relative contents of these protein complexes were detected between wild-

type and mutant strain.  

 

However, the content of phycobiliproteins in thylakoid membranes (Figs. 24 and 25) was 

markedly different between wild-type and ∆sppA1 when grown at ML and HL. Amount of 

PC/APC decreased substantially with increasing light regimes in the wild-type, whereas 
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∆sppA1 retained much of its PC/APC content at ML. Therefore, the ∆sppA1 is mainly altered 

in the adaptation of PBS structures to an increase in light intensities. 

 

Figure 24. Separation of thylakoid 
membrane proteins from Synechocystis 
wild-type and ∆sppA1 mutant. Thylakoid 
proteins were isolated from cyanobacterial 
cells adapted for 3 days to LL, ML or HL 
regimes and separated by 12% SDS-
PAGE. The proteins were visualized by 
silver staining. The positions of 
phycobiliproteins (PC and APC) are 
indicated by a bracket. 
 
 

Figure 25. Biochemical analysis of major 
photosynthetic complexes. Thylakoid 
membrane proteins were isolated from 
cyanobacterial cells adapted for 3 days to 
LL, ML or HL and separated by 12% SDS-
PAGE. The proteins were visualized by 
immunodetection with antisera raised 
against the β subunit of the ATP synthase, 
PsaA/B reaction centre proteins of PSI, D1 
protein of PSII, Rieske FeS protein of the 
cytochrome b/f complex or rods of PC.

 

 

3.2.1.8 Genes and expression analysis of phycobiliproteins 

 

To check the role of SppA1 in the expression of phycobiliprotein-encoding genes Northern 

experiments were performed for of apcABC and cpcBAC2C1 transcripts. The transcriptional 

organization of the allophycocyanin and phycocyanin gene clusters is summarized in Figs. 26  
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Figure 26. Northern analysis of the allophycocyanin (apc)transcripts in wild-type and 
∆sppA1 mutant under different light regimes. (A) Genetic and transcriptional organization 
of apc operon in Synechocystis. The transcript size for the apcABC operon is 1.75 kb, for the 
apcAB operon is 1.3 kb. (B) Total RNA was prepared from the wild-type cells grown under 
LL and ML and hybridized with the radiolabelled 0.5 kb DNA fragment of apcA. Arrows 
show the positions of apcABC and apcAB transcripts. Hybridization with rRNA was used as a 
quantitative control for equal loading. 

Figure 27. Northern analysis of the phycocyanin (cpc) transcripts in wild-type and 
∆sppA1 mutant under different light regimes. (A) Genetic and transcriptional organization 
of cpc-operon in Synechocystis. Two transcripts with different sizes were observed for 
cpcBAC2C1 operon for cpcBA (1.2 kb) and for cpcBAC2C1 (2.9 kb), respectively. (B) Total 
RNA was extracted from wild-type cells grown under LL and ML conditions and 
subsequently hybridized with cpcA (0.5 kb) radioactively labeled probe. Arrows show the 
positions of the cpcBA and cpcBAC2C1 transcripts. Hybridization with rRNA was used as a 
control for equal loading. 
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and 27. The RNAs of the wild-type culture grown under LL and ML conditions were 

separated electrophoretically, transferred and hybridized with the radiolabelled 0.5 kb DNA 

fragment of the apcA gene (Fig. 26) or the  0.5 kb DNA fragment of cpcA gene (Fig. 27). The 

rates of RNA expression for apc and cpc  decreased in both strains with increasing light 

intensity. The mRNA levels of biliproteins remained similar in wild-type and mutant under 

the light conditions tested. 

 
3.2.1.9 In vivo labeling of wild-type and ∆sppA1  

 

Since the ∆sppA1 mutant showed differences to wild-type in phycobiliprotein contents under 

ML regimes the rates of synthesis of the major bilin-containing proteins were monitored by 

pulse-labeling studies using L-[35S]-methionine at conditions of LL and ML (Fig. 28). The 

cells of both strains were grown under LL until the late exponential growth state. They were 

then diluted to an A750 of 0.6 and transferred to LL and ML for 36 h. For labeling 10 ml of 

cultures from different light conditions were taken every 12 hours and incubated with 35S-

methionine for 40 min. The reaction was stopped by adding cold methionine and the cells 

were used for isolation of thylakoid membranes. The proteins were separated 

electrophoretically by 10 - 17.5% gradient SDS-PA gel and Coomassie stained. The gel was 

dried and exposed with a phosphorimage plate. 

Figure 28. Analysis of 
protein translation rate in 
∆sppA1 and wild-type under 
various light regimes by 
pulse-labeling with L-[35S]-
methionine. Cells were 
adapted to LL and ML for 12, 
24 or 36 h. Cells were labeled 
with L-[35S]-methionine after 
immediate transfer to various 
light regimes for 30 min (lane 
�0.5�) and after each time 
point of incubation at ML. 
Total cellular proteins were 
separated by 10 - 17.5% 
gradient PAGE and the gel 
was fluorographed in a Fuji 
phosphorimager. The lower 
part of the panel with ATP 
synthase subunits α and β was 
used as a loading control. 
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The wild-type and ∆sppA1 strains displayed the same patterns with respect to changes in light 

regimes; there was a drop in the rate of synthesis of the major PC and APC polypeptides at 

ML versus LL in the two strains. This change occurred within the first 12 h of transfer to ML, 

with no further decrease over the next 36 h of acclimation. These data exclude that the larger 

decrease in phycobiliproteins in the wild-type when placed in ML is due to a mere 

translational regulation. The ∆sppA1 undergoes a similar down regulation of translation 

although it preserves a higher phycobiliproteins content at ML. 

 

3.2.1.10 Kinetics of phycobiliproteins degradation 

 

Figure 29 demonstrates the kinetics of decrease of the APC/PC proteins for wild-type and 

∆sppA1 under ML and HL over a 36 h period as compared to their content in LL. Thylakoid 

membranes were extracted from aliquots of cell cultures adapted to ML and HL after 12, 24 

and 36 h. Proteins were separated electrophoretically in 12% SDS-PA gels and stained with 

Coomassie Blue. The α and β subunits of the ATP synthase are presented as a loading control 

in the bottom panel of the figure. No significant changes were detected in the wild-type 

during the first 12 h of acclimation to ML. The decrease in PCα and APCα subunits became 

noticeable only after 24 h and further up to 36 h (see arrows in Fig. 29), a period that 

corresponds to the bleaching visible in the cultures. In contrast, the ∆sppA1 displayed only a 

limited decrease in the upper PC band after 24 h in ML and retained most of the PC/APC 

subunits even after 36 h exposure to ML. When exposed to HL, both strains displayed an 

extensive decrease in all PBS subunits after 36 h of acclimation. However, here again the 

protein loss remained limited during the first 24 h of exposure to HL. These data proved that 

the loss of PBS under higher light regimes is a delayed process in cyanobacterial cells that 

requires about 24 h before it can be detected.  
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Figure 29. Kinetics of phycobilisome degradation in vivo. Wild-type and ∆sppA1 were 
grown in LL till mid-log phase, then diluted with BG11 to an A750 of 0.5 (point 0) and 
transferred to ML or HL, or kept in LL for 36 h. Cells were taken after 12, 24, 36 h in ML or 
HL, and after 36 h in LL. Total proteins were extracted from cells grown to the same A750 and 
separated by electrophoresis in 12% SDS-containing gel. Proteins were visualized by 
Coomassie Blue staining. (A) The Coomassie stained cell proteins from the wild-type; (B) 
Visualization of PCα and APCα bands during acclimation to ML and HL. The upper part of 
the panel with α- and β-ATPase subunits was used as a loading control. 
 

3.2.1.11 Analysis of phycobiliproteins 

 
3.2.1.11.1 Characterization and isolation of phycobilisomes 

 
Phycobilisomes were extracted from strains as described in Section 2.2.8.4.3 of Materials and 

Methods. After centrifugation intact PBS were collected, diluted six times with 0.9 M of 

potassium phosphate buffer and pelleted by ultracentrifugation at 45.000 x g for 4 h at 4°C. 

The PBS were diluted in water and used for further spectrophotometrical analysis. Figure 30 

demonstrates the model of PBS from Synechocystis cells, the profile of phycobiliproteins after 

separation in a 0.25 � 0.79 M sucrose gradient and the PBS protein patterns after 

electrophoresis in denaturing SDS-containing gel. 
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Figure 30. Characterization of PBS from Synechocystis. (A) Schematic presentation of 
PBS from Synechocystis. APC � allophycocyanin, PC � phycocyanin, LR � rod linkers 10, 33 
and 35 kDa, RC � core rod linker of 30 kDa. (B) The extraction of PBS by 0.25 - 0.79 M 
sucrose gradient ultracentrifugation. The lower blue band corresponds to intact PBS that were 
collected and dissolved in phosphate buffer. (C) The proteins of the extracted PBS were 
separated by 10 - 17.5% gradient SDS-PAGE. The position of linker polypeptides was 
determined by Western analysis and designated in the picture by arrows at the left side. 
Molecular weight markers are indicated at the right side. 
 

To measure the ratio of allophycocyanin and phycocyanin polypeptides in phycobilisomes 

extracted from cells adapted to different light intensities, fluorescence spectra at room 

temperature (25°C) were taken from isolated PBS. Intact PBS were extracted from wild-type 

and ∆sppA1 previously adapted to LL or ML regimes for 48 h and then were diluted with 0.6 

M of sodium phosphate buffer to the end concentration of 1 µg/µl. Before measurement the 

PBSs of both strains were dissociated by incubation at room temperature for 15 min. The 

excitation spectra (450 � 800 nm) at 25°C were taken and monitoring by the emission at the 

695 nm. The fluorescence spectrum revealed two peaks at different wavelengths, a 570 nm 

peak that corresponds to APC fluorescence, and a 675 nm which corresponds to the 

fluorescence of PC (Fig. 31). During adaptation to ML, the phycocyanin content decreases 

relative to the allophycocyanin content. In the wild-type, PBS extracted from cells acclimated 

to ML showed a decrease in the 675 nm (PC) peak and an increase in APC fluorescence at 

570 nm in comparison with the emission spectrum of the wild-type PBS from LL. The 

∆sppA1 mutant did not show any significant difference in the APC/PC ratio when compared 

with that of the wild-type under LL conditions. The APC/PC fluorescence ratio from PBS 

extracted from the ∆sppA1 mutant adapted to ML remained stable (Fig. 31). 
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Figure 31. Fluorescence excitation spectra at room temperature (25°C) of 
phycobilisomes extracted from wild-type and ∆sppA1 mutant grown under LL or ML. 
Intact PBS of both strains were isolated with sucrose gradients by ultracentrifugation, 
concentrated and resuspended in 0.6 M phosphate buffer. PBS were incubated for 15 min at 
room temperature for partial dissociation. The excitation spectra were collected at an emission 
at 695 nm. 
 

3.2.1.11.2 SppA1 is involved in the light-dependent cleavage of rod linkers 

 

A decrease in PBS antenna may occur through a shortening of PBS rods, a change in the 

number of rods per PBS or in the number of PBS themselves. The amount of linker proteins 

in PBS bound to the thylakoid membranes in wild-type and mutant adapted to various light 

conditions for 3 days was therefore analysed immunologically (Fig. 32A). The amount of LR
35 

was stable in the wild-type under all light conditions, while that of LCM
99 and LR

33 strongly 

decreased upon acclimation to ML or HL. In marked contrast, these two linker proteins 

remained stable in the mutant strain at ML, and the content of both linker proteins dropped 

only at HL. These observations are consistent with the loss of membrane bound APC and PC 

observed in wild-type but not in the ∆sppA1 mutant and reflect an SppA1-driven loss in 

phycobiliproteins in Synechocystis during light acclimation to ML. 

 

Earlier studies have stated that isolated PBS are not stable in vitro and subject to rapid 

degradation. In an attempt to link these observations with the present findings, PBS from 

wild-type, pVZsppA1 and ∆sppA1 cells adapted to LL were isolated and subsequently 

incubated at 4°C in the dark and at 37°C at HL for 3 h (Fig. 32B). Degradation of the 

membrane (LCM
99) and rod (LR

33) linkers in PBS preparations was observed exclusively in the 

wild-type and pVZsppA1 strains. LCM
99 and LR

33 linker proteins were stable in the ∆sppA1 
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mutant. This demonstrated that at least two groups of linker peptides, LCM
99 and LR

33, are 

degraded in isolated PBS fractions and that PBS of ∆sppA1 mutant lacks the peptidase 

activity(-ies) that controls linker degradation in the wild-type. Taken together, the 

experimental data from in vitro isolated PBS and in vivo adapted antenna demonstrate a 

proteolytic resistance of two major PBS linker polypeptides, LCM
99 and LR

33, in the absence of 

the SppA1 peptidase. 

 

 
Figure 32. Degradation of linker polypeptides of PBS antenna. (A) Wild-type and ∆sppA1 
mutant cells were grown at LL and then transferred for the next 72 h to ML or HL. Thylakoid 
membrane proteins were separated, transferred onto nitrocellulose membranes and 
immunodetected with antisera against various linker proteins: membrane linker LCM 

99, rod 
linkers LR

35 and LR
33. Protein loading was normalized to the ß subunit of ATP synthase. (B) 

PBS were isolated from wild-type, pVZsppA1 and ∆sppA1 cells grown under LL. Isolated 
PBS were incubated at 4°C under dark (lanes 1, 3 and 5) and at 37°C under ML (lanes 2, 4 
and 6) for 3h. The reaction was stopped by placing the samples on ice. Proteins were 
separated by electrophoresis in 12% SDS-PA gels. For protein visualization the gel was 
silver-stained.  
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3.2.2 Functional analysis of SppA2 protease 

 

3.2.2.1 Analysis of SppA2 protein sequence 

 

SppA2 protein with a predicted molecular mass of 31 kDa is the second component of the 

Synechocystis SppA family. Hydropathy analysis according to Kyte and Doolittle did not 

deduce any transmembrane domains in the SppA2 sequence and predicted its localization in 

the cytoplasm (Fig. 33). Sequence analysis of SppA2 showed the absence of an Ala-X-Ala 

motif typical for recognition of protein precursors by signal processing peptidase, which tends 

to exclude a possible localization in the thylakoid lumen or periplasmatic space (Fig. 34).  

 
Figure 33. Hydropathy plot of the Synechocystis SppA2 protein according to Kyte and 
Doolittle (1982). Amino acid positions are indicated at the bottom of the graph. The scan 
window size was 13. Hydrophobic amino acid residues reside above the zero line.  
 

The analysis of potential hydrophobic domains for SppA2-1 and SppA2-2 from Pseudomonas 

aeruginosa and SppA2-2 from Agrobacterium tumefaciens predicted a possible transmembrane 

domain close to the N-terminus (Fig. 34). The previously characterized SppA2 proteins from 

E. coli and B. subtilis (Baird et al., 1991; Bolhuis et al., 1999) were also targeted to different 

cell compartments, the outer cell membrane and cytosol, respectively. Sequence analysis of 

Synechocystis SppA2 showed the presence of a hydrophobic part as a possible membrane 

anchor of 12 amino acid residues (position 110 � 122; Fig. 34). This hydrophobic part includes 

a sequence that is conservative among SppA proteases from Arabidopsis and E. coli and this 

domain has been predicted to be integrated into the membrane (Lensch et al., 2001; Baird et 

al., 1991). 
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Syn   SppA1     1  MKNFFQQMVASFFGTLAAIVVLLSLGATGLVLLFILVSAEADPVLEEKTALILDLAIPIQDTSPTLSLQQSLLGNQEEIL  
Syn  SppA2        --------------------------------------------------------------------------------    
A.tum SppA2-1      --------------------------------------------------------------------------------  
A.tum SppA2-2      --------------------------------------------------------------------------------  
P.a   SppA2-1      --------------------------------------------------------------------------------  
P.a   SppA2-2      --------------------------------------------------------------------------------  
 
Syn   SppA1    81  PLRTVVNAIEKAAEDDRIVALLIDGRRSNQVDGYANLSEVQQALIKFKQSGKKIVAYGLNYSELGYYLAATADTILINPM  
Syn   SppA2        --------------------------------------------------------------------------------  
A.tum SppA2-1      --------------------------------------------------------------------------------  
A.tum SppA2-2      --------------------------------------------------------------------------------  
P.a   SppA2-1      --------------------------------------------------------------------------------  
P.a   SppA2-2      --------------------------------------------------------------------------------  
 
Syn   SppA1    161 GGVEINGLGAQPIFFTGALAKAGIGVQTLRVGSYKGAVEPYTRENLSPENRQQQQLLLNQIWQIYLTSVANNRSLTVPQL  
Syn   SppA2        --------------------------------------------------------------------------------  
A.tum SppA2-1      --------------------------------------------------------------------------------  
A.tum SppA2-2      --------------------------------------------------------------------------------  
P.a   SppA2-1      -------------------------------------------------------MEFIAEYAGFLARTVTVLAAIIVVL  
P.a   SppA2-2      -----------------------------------------------------------------MSDEWKSETPKANDD  
 
Syn   SppA1    241 QAIASDQGLLFADIALREKLVDKVTYWDEVLAELKQAGVWINDPEKIEEQEEDKEFRKISLAEYHRLQNWETENHDQDPK  
Syn   SppA2        -------------------------------------------------------------------MIWP-FKTSTRKK  
A.tum SppA2-1      -----------------------------------MVGFLK-------------------------HLVPKRFRK-KELV  
A.tum SppA2-2      --------MDNMAIADRRRLRRKLTFWRVAAVLLLVVGAFG-----------------------LYRFFWQGPQQSAKPH  
P.a   SppA2-1      VVIVALRGRGRRGAGGHLDVQKLNDFYKDLRERVRHSVLDKASLKALR-KEE------------SKAAKQAKKHPEQKSR  
P.a   SppA2-2      KSWKLLEKAVLAGVQEQRRARRWGIFFKSLTFIYLFVVLLAFSP----------------------FGSLEKSASRSGSH  
                                                                  * 
Syn   SppA1    321 IAIVYLEGSIVNGRGTWENIG-GDRYGELLRTIRQDDDIKAVVLRINSPGGSASAADIIWREVELLQAQK---PVIISMG  
Syn   SppA2        IARIEVTGAIASGTR---------KAVLKALKTVEEKKYPALLVRIDSPGGTVVDSQEIYTKLKQLSEKI---KVVASFG  
A.tum SppA2-1      IPVVRMQGAIMAGGNQFRPALNLASYAPLLEKAFAVKDAPAVAISLNSPGGSPVQARMIYNRIRQLAEEKD-KKVLIFVE  
A.tum SppA2-2      IARIEVSGLITDNT----------ELLERLDKIAKSDNVKGLIVSISSPGGTTYGGERIFKVIRSVAEKK---PVVSDVR  
P.a   SppA2-1      VYVLDFDGDIKASAT-------EQLRHEVTAVLSMAGKDDEVVLRLESGGGMVHGYGLAASQLARIRQAG--VPLTVCVD  
P.a   SppA2-2      TALIEVKGMIADDEP-----ASADNIVTALRAAFKDEGTKGIVLRINSPGGSPVQSGYIYDEIRRLRGEHPNVKVYAVIS  
                  *                * 
Syn   SppA1    397 NVAASGGYWIATAGEKIVAQPNTVTGSIGVFSILFNVENLGDRLGLNWDEVATGELANVGSSIKPKTELELAIFQRSVDQ  
Syn   SppA2        NISASGGVYIAMGCPHIMANSGTITGSIGVILRGNNLERLLEKVGVSFKVIKSGPYKDILSFDRELLPEEQSILQALIDD  
A.tum SppA2-1      DVAASGGYMIALAGDEIIADPTSIVGSIGVVSGGFGFPEMLRKIGVERRVYTAGENKVILDPFQPEKEGDIDYLKSLQVE  
A.tum SppA2-2      TLAASAGYMIASAGDVIVAGETSITGSIGVIFQYPQLGQLMEKLGVSLQEIKSSPMKAEPSPFHEAPEEAKTMIRAMVMD  
P.a   SppA2-1      KVAASGGYMMACIGDRILSAPFAILGSIGVVAQLPNVHRLLKKHDIDFEVLTAGEYKRTLTVFGENTEKGREKFQEDLEV  
P.a   SppA2-2      DLGASGAYYIASAADQIYADKASLVGSIGVTAASFGFVGTMEKLGVERRVYTSGEHKSFLDPFQPQKPEETQFWQQVLDT  
 
Syn   SppA1    477 VYEIFLDKVGRARN--LSPTALDSVAQGRVWTGLAAQKVGLVDQLGGLQTAVNLAAAQAELGEQWQVKEYPTPRGLNSLL  
Syn   SppA2        SYGQFVSTVAAGRN--LAVEKVKEFADGRIFTGQQALELGLVDRLGTEEDARQWAAT--LAGLDPDKVELDTIEDPKPLV  
A.tum SppA2-1      IHNVFIDMVKMRRG--SKLKGDDALFSGLFWTGMRGLDLGLIDGLGDMREVLRRRYG--------TKVKLQLISGGRSLF  
A.tum SppA2-2      SYGWFVDLVADRRK--LPREEVLKLADGSIFTGRQALANKLVDTLGGEKEVRAYFETR-GVAKDLPIVEWRAPSSNSPFA  
P.a   SppA2-1      THELFKNFVAHYRP----QLNMDEIATGEVWLGQAALGKLLVDELKTSDEYLAEQAR--------ERDVYQVQFVERKSL  
P.a   SppA2-2      THKQFIDSVKKGRGDRLKVEGHPELFSGLVWSGEQALQLGLIDGLGNASYVAREVVK------EKKIEDYTVQESPFDRF  
 
Syn   SppA1    555 WNNLIHGLTETNSVVLPPFLRTNWQQLEREWAELAQFNDPQGIYARLPFSWHFLNP  
Syn   SppA2        RRLTGGDSQLQTMADNLGLTES------LKWCEFELSTS------GQP-LWLYR--  
A.tum SppA2-1      GKKVPGVNMALGLNAERLAAGA-----VSGLAEVAEEKA--------L--WSRFGL  
A.tum SppA2-2      LFSVAQIAKLLGYDDLIPFAGP------SQLGADKLFLD------GLVSVWQVEPR  
P.a   SppA2-1      QERVGLAASVVIDRVLVTWWGR--------LNQQKFWQ------------------  
P.a   SppA2-2      AKKFG-ASVAERLALWMGWQGP----------VLR---------------------  
 

Figure 34. Amino acid comparison of SppA1 and SppA2 proteases from different 
organisms. Identical amino acids residues are shadowed in red. Possible transmembrane 
domains are underlined, possible membrane anchors indicated by open boxes. Putative 
catalytic amino acid residues are marked by stars. Syn � Synechocystis, A. tum � 
Agrobacterium tumefaciens, P. a � Pseudomonas aeruginosa.  
 

3.2.2.2 Overexpression of SppA2 protein 
 

To obtain an antiserum against SppA2 protein two different constructions were performed. 

Full-length (830 bp) and truncate (650 bp) fragment of the sppA2 gene were amplified by 

PCR with primer pairs with introduced restriction sites for XhoI and PstI restriction 

endonucleases (slr0021_full_F, slr0021_full_R, slr0021_part_F and slr0021_part_R, 

respectively; Fig. 35A). The sppA2 gene fragments were cloned into the PstI/XhoI sites of 

pRSTE5α and pIVEX2.4b overexpression vectors. The constructs were analyzed by 
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restriction (Fig. 35B). The correct plasmids were amplified by T7 forward and reverse primers 

and the resulting PCR fragments were used for sequence analysis (data not shown).  

 
Figure 35. Scheme of construction 
of pRSET5α and pIVEX2.4b 
recombinant plasmids used for 
SppA2 overexpression. (A) The 
truncated form of the sppA2 gene 
(650 bp) was amplified by 
slr0021_part_F and slr0021_part_R 
primers and cloned into pRSET5α 
vector. The full-length sppA2 gene of 
830 bp was amplified by 
slr0021_full_F and slr0021_full_R 
primers and cloned into pIVEX2.4b 
vector that contains a His-tag site. (B) 
Results of restriction analysis of 
recombinant pRSET5α and 
pIVEX2.4b vectors. The recombinant 
plasmids were digested by XhoI and 
PstI and used for sequence analysis. 
The λ DNA HindIII/EcoRI marker is 
indicated at the left. 

 

The overexpression procedure for pRSET5α-sppA2 (truncated) construct was carried out as 

described in Section 2.2.5.1. After transformation of E. coli BL21 (D3Lys) cells with 

pRSET5α-sppA2 plasmid and induction with 1 mM IPTG for 3 h the overexpressed 

polypeptide with its molecular weight of about 23 kDa was detected (Fig. 36A). After 

separation of the E. coli proteins into soluble and insoluble protein fractions the truncated 

overexpressed SppA2 was found in inclusion bodies (data not shown). 

 

Overexpression of the full-length sppA2 gene cloned into pIVEX2.4b vector occurred in 

protein lysates of E. coli provided by Rapid Translation Systems from Roche (Section 

2.2.5.2). The reaction device contains two compartments (reaction and feeding compartments) 

separated by a semipermeable membrane. The overexpression reaction took place in 1 ml of 

reaction compartment of the reaction device. At the same time, newly synthesized proteins are 

constantly diluted via diffusion through the semipermeable membrane into 10 ml of the 

feeding compartment, to prevent a potentially inhibitory reaction by the overexpressed 

product. The reaction was performed at 30°C for 24 h in the reaction compartment. Aliquots 

of the overexpressed product from the reaction and feeding compartments were used for 

Western analysis with anti-His antiserum (Fig. 36B). 
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Figure 36. Overexpression of a full-length 
and truncated SppA2 protein. (A) 
Overexpression was carried out in E. coli 
strain BL21 (DE3Lys) which was 
transformed with the expression vector 
pRSET5α containing the truncated sppA2 
gene. Expression was induced by addition of 
1mM IPTG for 3 h at 37°C. Accumulation of 
expressed protein was monitored by SDS-
PAGE. Arrow indicates the overexpressed 
truncated SppA2 protein with a molecular 
weight of 23 kDa. The molecular weight 
marker is shown at the right side (B) 
Expression of full-length SppA2 in vitro. The 
protein expression mixture was prepared 
according to instructions of Roche. Protein 
synthesis was carried out for 24 h at 30°C. 
The 29 kDa full-length SppA2 protein from 
the reaction compartment and feeding 
compartment were determined by Western 
analysis with anti-His antibody. 

 

3.2.2.3 Analysis of proteolytic activity of SppA2 

 

Proteolytic assays with Azocoll were used for investigation of the proteolytic activity of 

SppA2 protease. The full-length SppA2 protein was overexpressed in E. coli lysates using the 

Roche overexpression system. The lysate containing the SppA2 protein was added to 1 ml of 

sodium phosphate buffer (pH 7.5) containing 5 mg of Azocoll, a non-specific protease 

substrate, and incubated under constant shaking and illumination at 37°C for 24 h. 

 

Table 9. Colorimetric assay of SppA2 protease in the presence of various inhibitors 

Addition Concentration Relative activity % 

None - 100 

DFP 2 mM 0 

PMSF 2 mM 0 

IAA 5 mM 65 ± 8.15 

EDTA 5 mM 73.6 ± 3.6 

The data presented are from three determinations and the error bars represent the mean standard error. 
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Different protease inhibitors, 10 mM DFP, 10 mM PMSF, 1 mM EDTA or 1 mM IAA, were 

used to determine the nature of SppA2 activity. Azocoll in sodium phosphate buffer was used 

for background subtraction. The absorption of a supernatant was measured at 520 nm (Table 

9). The activity of SppA2 protease (taken as 100%) was partially inhibited by IAA and EDTA 

but fully inhibited by DFP and PMSF. 

 

3.2.2.4 Localization of the SppA2 protein 

 

3.2.2.2.4.1 Intracellular localization of the SppA2 protein  

 

To examine the localization of SppA2 protein in Synechocystis cells a polyclonal antiserum 

raised against the truncated overexpressed SppA2 protein were used. For detection of the 

sppA2 gene product proteins from the wild-type were extracted (Section 2.2.9.4.1) and 

fractionated into membrane and soluble fractions. After transfer of proteins into nitrocellulose 

membrane SppA2 and D1 proteins were immunologically detected. Immunodetection of D1 

protein (a component of PSII reaction center) was used as a control for thylakoid-enriched 

fraction. Western analysis demonstrated association of the SppA2 protein with the membrane 

fraction (Fig. 37). 

Figure 37. Localization of SppA2 in Synechocystis cells. Wild-type cells were fractionated 
into total cellular protein extract (Ce), membrane (M) and cytoplasma (Cyt) proteins. After 
separation of proteins on SDS-PAGE and transfer onto nitrocellulose membrane they were 
immunodecorated with antisera raised against SppA2 and D1 proteins. Immunoreaction with 
antisera against D1 protein was used as a control for thylakoid-enriched fraction. 
 

3.2.2.4.2 Association of SppA2 protein with membrane structures 

 

To determine the association of SppA2 protein with the membranes, isolated thylakoids were 

concentrated in HM buffer to 200 µg of chlorophyll/ml and treated by chaotropic salts (2 M 

NaBr, 2 M NaSCN) or alkaline solutions (0.1 M Na2CO3 and 0.1 N NaOH; Section 2.2.9.4.2). 
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After incubation on ice for 30 min the thylakoids were recovered by centrifugation and 

analyzed by SDS-PAGE and Western analysis with antisera against SppA2 and the β subunit 

of ATP synthase, used as a control for peripheral proteins. Chaotropic salts disturb 

hydrophobic interactions between proteins and membrane lipids. Alkaline solutions able to 

destabilize ionic interactions lead to a partial removal of proteins from the membrane. 

Differently from the predictions SppA2 protein showed a strong stable association with the 

membrane fraction. SppA2 was partially released from thylakoids only after the treatment 

with strong reagents such as NaSCN or NaOH, but not with Na2CO3 and NaBr. The same 

membrane treatments released the β subunit of ATP synthase that is a part of CF1 and 

peripherally associated with the membrane-integrate CF0 moiety of the ATP synthase 

complex (Fig. 38). These data suggest that SppA2 is not peripherally attached but a 

membrane-associated component. 

 

Figure 38. Nature of the membrane association of SppA2. Isolated membranes from wild-
type cells were incubated on ice for 30 min with chaotropic salts (2 M NaBr and 2 M NaSCN) 
or alkaline solutions (0.1 N NaOH and 0.1 M Na2CO3), or with incubation buffer (as a 
control). After extraction thylakoids were recovered by centrifugation, analyzed by SDS-
PAGE and Western analysis with antisera against SppA2 and the ß subunit of ATP synthase 
(P � pellet, S � soluble fraction). 
 

3.2.2.4.3 Localization of SppA2 in a high molecular weight membrane complex 

 

Since SppA2 showed association with membranes, its possible association within or 

localization in some homo- or heteromeric complex was investigated by isopycnic 

centrifugation of solubilized membranes on a sucrose gradient. The membranes extracted 

from the wild-type cells grown at 30°C under LL were separated on the sucrose gradient 

(Section 2.2.9.4.4). The proteins from the gradient were fractionated and separated by 

denaturing SDS-PAGE. The position of the major photosynthetic complexes was determined 
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by immunoreaction with antisera raised against D1 protein (PSII), PsaD (PSI) and 

phycocyanin, the major rod protein of PBS. Immunodetection showed that SppA2 was a part 

of a supramolecular complex that did not migrate with one of photosynthetic complexes, but 

migrated between the monomeric and trimeric forms of PSI (Fig. 39). These data 

demonstrated that SppA2 protein represents part of a novel high molecular weight complex in 

the membranes. 

 

 
Figure 39. Isolation of photosynthetic complexes from wild-type Synechocystis cells on 
sucrose gradients. Thylakoid membranes from wild-type were solubilized with 2% of n-
dodecyl-ß-D-maltoside and separated on a linear 12 to 24% MOPS-containing sucrose 
gradient. Fractions of 0.3-ml were collected for analysis of photosynthetic complexes and 
SppA2 using antisera directed against SppA2, D1 (PSII), PsaD (PSI) and phycocyanin 
proteins of phycobilisome rods. 
 

Possible association of SppA2 with SppA1 protein was analyzed in sppA1-deficient cells. 

Photosynthetic complexes were separated from ∆sppA1 and migration of the SppA2-

containing complex was determined immunologically. No migration shift of the complex 

could be observed in thylakoid membranes extracted from the ∆sppA1 that argues for no 

physical association of both proteins at least under solubilization conditions used (data not 

shown). 

 

3.2.2.4.4 Isolation of photosynthetic complexes by non-denaturing �blue-native� PAGE 

 

Possible association of SppA2 with photosynthetic complexes was also analyzed by non-

denaturing �blue native� gel electrophoresis (Section 2.2.9.4.5). Thylakoid membranes from 
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wild-type cells were isolated and resuspended in ACA-buffer (end concentration of 

chlorophyll 0.336 µg/µl). Thylakoid membrane proteins containing 30 µg of chlorophyll were 

solubilized with 1, 1.5 and 2% of n-dodecyl-ß-D-maltoside. Solubilized proteins were loaded 

onto 4 - 12% non-denaturing �blue-native� PAGE (Fig. 40A). Best solubilization was 

achieved with 2% of n-dodecyl-ß-D-maltoside and, after separation, protein complexes were 

visualized by Coomassie Blue staining of the gel (Fig. 40B). The position of each complex 

was determined by immunoreaction with antisera raised against components of PSI (PsaD), 

PSII (CP47) and ATP synthase (α subunit). 

 

 

 
Figure 40. Isolation of photosynthetic complexes from wild-type Synechocystis cells by 
non-denaturing 4 � 12% �blue native� gel electrophoresis. (A) Thylakoids from the wild-
type were solubilized with different concentrations of n-dodecyl-ß-D-maltoside (1, 1.5 and 
2%) and used for isolation of major photosynthetic complexes by non-denaturing �blue 
native� gel electrophoresis. (B) Protein complexes were visualized by Coomassie Blue 
staining. 
 

To identify protein complexes and to resolve their composition, the protein complexes from 

�blue native� gel lanes were separated in a second dimension by denaturing SDS-PAGE and 

silver-stained (Fig. 41). Proteins were identified by Western analysis with antisera raised 

against components of PSI (PsaD and PsaA/B), PSII (CP47) and ATP synthase (α subunit). 

 



RESULTS 86 

 

 

 

 

Figure 41. Separation of membrane 
complexes from wild-type Synechocystis cells 
by two-dimensional BN/SDS-PAGE. 
Thylakoid membranes were isolated from wild-
type cells. The major photosynthetic complexes 
were isolated by non-denaturing blue native gel 
electrophoresis. The proteins from 
photosynthetic complexes were separated in the 
second dimension by denaturing 12% SDS-
PAGE. Proteins were visualized by silver 
staining. 
 

 

 

 

The localization of SppA2 was determined in the second-dimension gel with anti-SppA2 

antiserum. The protein of 29 kDa corresponding to SppA2 was identified in the wild-type but 

not in ∆sppA2 (data not shown). The SppA2 complex migrated close to the monomeric forms 

of PSI and PSII. Position of PSI and PSII complexes was detected with antisera raised against 

PsaD and CP47, respectively. No co-localization of SppA2 complex with cytochrome b/f 

complex and ATP synthase complex could be observed as well (Fig. 42). 

 

 

Figure 42. Localization of SppA2 
protein in Synechocystis cells by non-
denaturing 4 � 12% �blue native� gel 
electrophoresis. Thylakoid membranes 
(0.5 mg/ml chlorophyll) from wild-type 
were solubilized with 2% n-dodecyl-ß-
D-maltoside. Proteins were analyzed by 
4 � 12% native gel in the first 
dimension and by 12.5% SDS-PAGE in 
the second. For identification of SppA2 
and proteins of PSI and PSII complexes 
the separated proteins were 
immunoreacted with antibodies against 
SppA2, CP47 (PSII) and PsaD (PSI). 
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3.2.2.5 Expression analysis of SppA2 
 

3.2.2.5.1 Expression of sppA2 gene during different light regimes 

 

Previous studies of the SppA family from Arabidopsis has shown that the gene expression of 

SppA protease is light-regulated, however, expression of Synechocystis sppA1 gene was not 

induced by light. Since SppA2 shares protein homology to SppA1 and also showed a light-

dependent phenotype the expression of the sppA2 gene was tested under different light 

regimes. For this, wild-type cells were adapted to DL, LL, ML and HL regimes for 56 h. The 

isolated RNAs were separated on MOPS-containing agarose gels and quantified by staining 

with EtBr solution. The filter with the transferred RNAs was used for Northern analysis with 

sppA2 gene specific probes labeled with dCTP. Gene expression analysis showed that the 

amount of sppA2 transcript of 930 bp accumulated during increased light intensities (Fig. 43). 

 

Figure 43. Expression of slr0021 (sppA2) 
gene in wild-type under different light 
regimes. Wild-type RNA was extracted from 
cyanobacterial cells grown under different light 
regimes (DL, LL, ML and HL) and used for 
Northern analysis with sppA2 probe labeled 
with 32P-dCTP. The RNA gel was stained with 
EtBr for visualization of rRNA as a control for 
equal loading. 

 

 

3.2.2.5.2 SppA2 protein levels under various stress conditions 

 

To analyze the correlation between transcription and translation levels the amount of SppA2 

in the wild-type cells under different light conditions was detected by immunoreaction with 

antibodies raised against SppA2 protein. Synechocystis cells were grown under LL and then 

transferred to ML and HL regimes for 52 h. Thylakoid membranes were separated on 

denaturing 12% SDS-PAGE and transferred onto nitrocellulose membranes. The 

immunoreaction was performed with secondary antibodies coupled to 125I-labeled Protein A 

(Section 2.2.8.5.4). In contrast with sppA2 gene expression the amount of SppA2 strongly 

decreased in cells upon transfer to higher light. During acclimation to ML approximately 40% 

of the protein was still present, while under HL the protein disappeared completely after 3 

days of exposure to HL (Fig. 44A). In order to analyze whether the amount of SppA2 protein 

was also affected in sppA1-deficient cells adapted to high light intensities thylakoid proteins 
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were extracted from ∆sppA1 and immunoreacted with antisera against SppA2 protein. In 

contrast to the wild-type SppA2 protein remained stable in the ∆sppA1 mutant cells even after 

acclimation to HL and the accumulation of the protein in ∆sppA1 thylakoids was proportional 

to an increase of sppA2 gene expression under ML and HL (Fig. 44A). To examine whether 

degradation of SppA2 protein is only specific for HL or also other stress conditions as well 

cyanobacterial cells were acclimated parallel to LL and HL to nitrogen deprivation, heat and 

cold stress (Fig. 44B). SppA2 was stable under all tested stress conditions, with exception of 

HL, proving specific involvement of SppA2 in acclimation upon changes of light intensities. 

 

Figure 44. Analysis of SppA2 in 
wild-type and ∆sppA1 cells. (A) 
Wild-type and ∆sppA1 cells were 
adapted to LL, ML and HL for 52 h. 
Thylakoid membrane proteins were 
separated by denaturing 12.5% SDS-
PAGE. The SppA2 protein was 
immunodetected with an SppA2 
antiserum using 125I-labeled protein A. 
Immunoreaction with antisera against 
Rieske was used as a control for equal 
loading. (B) Accumulation of SppA2 
protein under various stress conditions. 
Wild-type cells were grown under 
standard regimes to an A750 of 0.5 and 
then transferred for HL, nitrogen 
starvation (- N), heat stress (HS) and 
cold stress (CS). SppA2 was 
immunologically detected in thylakoid 
membranes extracted from adapted 

cells. 
 

 

3.2.2.5.3 Kinetics of SppA2 degradation upon HL exposure and its acclimation during 

 recovery from HL to LL 

 

To define the kinetics of SppA2 degradation upon acclimation from LL to HL cells grown 

under LL were transferred for 1, 2, 3, 12, 24 and 36 h to HL. Thylakoid membrane proteins 

were then extracted and used for Western analysis with antisera raised against SppA2. The 

protein was stable within the first 2 h of exposure to HL and reduced up to 60% within the 

third hour. After 36 h exposure to light stress only about 5 to 10% of protein was left. The 

behavior of SppA2 protein during the change from HL to LL was tested by reverse adaptation 
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of HL-acclimated cells to LL for 0.5, 2, 4, 6, 8, 12, 24 and 36 h. Under these conditions, the 

level of SppA2 protease reached its maximum after 4 h of exposure to LL (Fig. 45A and B). 

This level was maintained up to 8 h and then it declined to a steady state. The results suggest 

that SppA2 plays a role during cell recovery from HL to LL and may be involved in the 

degradation of proteins required for photoprotection under HL which are then rapidly 

degraded upon adaptation back to LL. In both acclimation experiments from LL to HL and 

back the β subunit of the ATP synthase complex was used as a control. No changes in the 

level of this protein were observed under the chosen conditions.  

 

Figure 45. Kinetics of SppA2 
degradation and accumulation 
from LL to HL and recovery to 
LL. (A) Wild-type cells were 
grown under LL and transferred to 
HL for 1, 2, 3, 12, 24 and 36 h. (B) 
After 36 h of acclimation to HL 
the adapted cells were transferred 
back to LL for various periods 
(0.5, 2, 4, 6, 8, 10, 24 and 36 h). 
The extracted membrane proteins 
were immunoreacted with SppA2 
antiserum. The β subunit of ATP 
synthase was used as a control for 
equal loading. 
 

3.2.2.6 Construction of sppA2-depleted and complemented mutant strains  

 

To continue the functional analysis of the SppA protease family in Synechocystis, a reverse 

genetic approach has been chosen to understand the function of the sppA2 gene product. 

Computer analysis showed that SppA2 is encoded by the slr0021 gene of 830 bp. SppA2 is 

located between two open reading frames slr0020 and sll0002 which are most probably not 

organized in a gene cluster (Fig. 46A). 

 

A fragment of the Synechocystis slr0021 gene (777 bp) was amplified from genomic DNA 

with slr0021_F and slr0021_R primers and cloned into pGEM-T vector (Promega, UK). The 

Km resistance gene was excised of the pUC4K plasmid by HincII and then inserted into the 

ClaI site located in the middle part of sppA2 (Fig. 46B). The correct plasmid was used for 

transformation of Synechocystis cells. The DNA from wild-type and ∆sppA2 strains was used 

for PCR analysis with gene-specific primer pairs. The size of the amplified fragments differs 
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by 1.2 kb that correspond to the Km resistance gene from the amplification product of the 

wild-type DNA (Fig. 46C). The wild-type fragment appears as a 0.83 kb band, whereas the 

∆sppA2 fragment has a size of 2.1 kb due to 1.2 kb Km resistance gene. 

 
Figure 46. Construction of the pGEM-T ∆sppA2 plasmid and PCR analysis of the 
Synechocystis ∆sppA2 strain. (A) Chromosomal localization of the sppA2 gene. (B) 
Construct of the interrupted sppA2 gene used for transformation of Synechocystis. The 777 bp 
fragment of gene slr0021 was amplified by PCR using slr0021_F and slr0021_R primers 
which are indicated as Pr_F and Pr_R, respectively. Inactivation of sppA2 was performed by 
insertion of KmR-gene into internal ClaI site of the fragment. (C) PCR analysis of ∆sppA2 
insertion segregated to homozygosity. The wild-type fragment appears as a 0.83 kb band, 
whereas the ∆sppA2 fragment has a size of 2.1 kb due to the 1.2 kb Km resistance cassette. 
The last line represents the 1 kb DNA ladder marker. 
 

Mutagenesis of the desired open reading frame can influence the expression of closely located 

genes. In that case the phenotype of a mutant strains can be caused either by depletion of gene 

of interest or by site effect on some other genes. To exclude the last possibility and to prove 

that the phenotype corresponds exclusively to the disrupted gene a complementation analysis 

of the mutant strain by a self replicating plasmid that carries the wild-type copy of the 

interrupted gene has been performed. To confirm the correctness of sppA2 gene targeting the 

complementation strain pVZsppA2 of the ∆sppA2 mutant was generated (see Section 2.2.3). 

The slr0021 gene with 5�-untranslated region of 100 bp was amplified using the primers 

slr0021F_XhoI_com and slr0021R_HindIII_com and cloned into pVZ322 plasmid containing 



RESULTS 91 

two resistance genes, Km and Gm. The fragment was inserted into HindIII/XhoI sites inside of 

the KmR �gene that led to inactivation of that, transcription of the GmR �gene was not affected. 

The scheme of the construct and its cloning is shown in Fig. 47A. Clones resistant to 

gentamycin and sensitive to kanamycin were selected for further analysis. 

Figure 47. Construction scheme of the complementation strain for the ∆sppA2 mutant. 
(A) Fragment of the Synechocystis DNA containing the sppA2 gene was used for 
complementation analysis of ∆sppA2 mutant cells. The DNA fragment containing slr0021 
gene with the 5�-untranslated region was amplified by PCR with primers slr0021_HindIII and 
slr0021_XhoI. PCR fragment of 1033 bp with introduced restriction sites. The PCR fragment 
of 1033 bp was digested with HindIII and XhoI and cloned into pVZ321 vector. (B) The PCR 
analysis of wild-type, ∆sppA2 and pVZsppA2 strains for possible reverse recombination. The 
part of DNA containing the slr0021 gene was amplified using primers slr0021F_comtest and 
slr0021R_comtest and the resulting PCR products were separated by 0.8% agarose gel 
electrophoresis. The position of the 1 kb ladder marker is indicated at the left. 
 

During transfer of self replicating plasmid containing the relevant gene the last one can be 

independently expressed from the vector but can be as well integrate into genomic DNA by 

reverse recombination. The PCR approach was used to exclude possible reverse 

recombination between Synechocystis chromosomal DNA and the gene fragment cloned into 

complementation plasmid. For this analysis the primers corresponding to sequences further 

upstream and downstream of slr0021F_XhoI_com and slr0021R_HindIII_com for 

amplification of the entire coding region slr0021 were designed. These primers do not 

amplify the fragment on the plasmid pVZsppA2 but amplify the fragment with an identical 

size from the ∆sppA2 strain. The DNA from wild-type, the ∆sppA2 and pVZsppA2 strains 
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were used for PCR analysis. The size of amplified fragment differs by 1.2 kb that correspond 

to the Km-resistance gene from the amplification product on wild-type DNA (Fig. 47B). The 

wild-type fragment appears as a 830 bp band, whereas the ∆sppA2 and pVZsppA2 fragments 

possess the same size of 2150 bp. 

 

3.2.2.7 Phenotypical characterization of the ∆sppA2 mutant strain 

 

The analysis of the sppA2-deficient strain (Section 3.1.1.1) had demonstrated a slower growth 

rate and bleaching phenotype under standard growth conditions. However, further adaptation 

to HL did not show any significant difference in growth rate of ∆sppA2 in comparison to the 

wild-type (Fig. 48). To analyze the phenotypical modifications of wild-type and ∆sppA2 

under different light intensities cells grown at LL to the end of the exponential phase were 

diluted to an A750 of 0.4 and then transferred to HL or kept at LL for 46 h. Phenotypical 

analysis revealed that the ∆sppA2 exhibited bleaching of culture even when grown under LL 

but showed less pigment loss in comparison with the wild-type under HL (Fig. 49A). Such 

changes could be due to differences in pigment content. However, analysis of absorption 

spectra of wild-type and ∆sppA2 showed that both strains decreased chlorophyll a, 

phycobiliproteins and carotenoids contents in the same way after transfer to HL (Fig. 46B). 

Pigment contents were examined in wild-type and ∆sppA2 strain grown under LL and HL. 

This demonstrated that ∆sppA2 had less C-phycocyanin under LL, but more of it under HL. 

Such differences in ratio between chlorophyll a and phycobiliproteins could be responsible 

for the bleached phenotype of the mutant strain under LL and enhanced pigmentation of 

mutant cells under HL (Table 10).  

 
Figure 48. Growth rate of wild-type and ∆sppA2 strain under LL and HL. The cells were 
grown at LL (right panel) diluted to an A750 of 0.4 and transferred to HL (left panel) or kept at 
LL for 42 h.  
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A. B.

 
Figure 49. Characterization of wild-type and ∆sppA2 under different light regimes. Cells 
of both strains were adapted to LL and HL regimes. Phenotypical modification (A) and 
absorption spectra (B) were collected after 52 h of exposure to different light intensities.  
 

 

Table 10. Pigment contents in wild-type and ∆sppA2 strains adapted to different light 
intensities 
Pigments WT LL ∆sppA2 LL WT HL ∆sppA2 HL 

Chlorophyll a (µg/ml) 27.5 ± 2.1 29.7 ± 2.0 24 ±1.5 28 ± 2.1 

Phycocyanin (µg/ml) 43.9 ± 4.8 30.3 ± 1.41 20.3 ± 1.88 25.2 ± 0.9 

Carotenoid (µg/ml) 0.95 ± 0.05 0.3 ± 0.09 0.57 ± 0.031 0.2 ± 0.07 

Both strains were grown under LL conditions to an A750 of 0.5 at LL or HL. The pigment concentrations were 
measured after 52 h of incubation. The data presented are from four determinations.  
 
3.2.2.8 Analysis of protein synthesis in ∆sppA2 under LL and HL regimes 

 

Since the SppA2-deficient mutant showed a slower growth rate than wild-type under LL and 

no differences upon adaptation to HL an analysis of protein synthesis rate was performed. For 

this, the cells of wild-type and ∆sppA2 cells were labeled with S35-methionine for 40 min in 

DL and then transferred to the LL and HL for 3 h. The thylakoid membranes were extracted 

from the cells taken after every 1 h of labeling and separated on the SDS-PAGE (Fig. 50). The 
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analysis did not reveal any significant difference in protein synthesis of ∆sppA2 strain in 

comparison with wild-type under both growth conditions.  

 

Figure 50. Pulse-labeling of 
proteins with S35-methionine 
under different light regimes. 
The cells of wild-type and 
∆sppA2 mutant were incubated 
with S35-methionine for 40 min 
under DL, then the cells were 
transferred to LL and HL for 1, 
2 and 3 h. After labeling the 
cells were centrifuged, 
denaturated in sample buffer 
and the proteins separated by 10 
- 17.5% sucrose containing 
SDS-PAGE. The gel was dried 
and exposed overnight. The 
position of molecular weight 
marker is indicated at the left. 
The positions of proteins from 
photosystem I (PsaA/B; PsaF 
and PsaD) and photosystem II 
(CP47, CP43, D1 and D2) were 
detected by Western analysis 
and shown at the right. 

 
 
3.2.2.9 Biochemical analysis of ∆sppA2 thylakoid proteins under LL and HL regimes 
 

The steady state level of proteins in wild-type and ∆sppA2 mutant after adaptation to different 

light intensities was examined. The cells grown under LL were transferred to HL for 72 h. 

Thylakoid membrane proteins were separated on denaturing 10 - 17.5 % SDS-PAGE and 

stained by silver. The protein stained analysis showed higher content of phycobiliproteins and 

other proteins in molecular weight range of 36 and 45 kDa in the ∆sppA2 samples in 

comparison to the wild-type (Fig. 51). 
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Figure 51. Protein profile of wild-type 
and ∆sppA2 mutant acclimated to LL and 
HL. Wild-type and ∆sppA2 strains were 
adapted under LL and HL for 36 h. 
Thylakoid proteins were separated by 10 - 
17.5% SDS-PAGE. Proteins were 
revealed by silver staining. The position 
of main proteins of ATP synthase (ß 
subunit), photosystem I (PsaA/B), 
photosystem II (D1, D2 and CP47) and 
phycobiliproteins were detected by 
Western analysis and shown at the right of 
figure. Molecular weight in kDa is 
indicated at the left. 
 

 

 

 

To check the content of the major photosynthetic complexes in the ∆sppA2 mutant in 

comparison to Synechocystis wild-type, thylakoid proteins extracted from cells adapted to LL 

and HL were tested with antisera against various photosynthetic proteins. In wild-type 

cyanobacterial cells general response to HL acclimation exhibited the reduction of PBS and 

degradation of PSII and PSI complexes. No differences in protein amounts from all 

photosynthetic complexes were observed in the ∆sppA2 mutant compare to the wild-type (Fig. 

52). However, ∆sppA2 mutant contained slightly more of phycobiliproteins under HL.  

 

 
Figure 52. Western analysis of wild-type and 
∆sppA2 mutant adapted to LL and HL. 
Thylakoid proteins from wild-type and ∆sppA2 
mutant were separated on the 12% SDS-PAGE, 
transferred onto nitrocellulose membrane and 
incubated with antisera against proteins of ATP 
synthase (ß subunit), photosystem I (PsaA/B), 
photosystem II (D1, D2 and CP47) and 
phycobiliproteins 
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3.2.2.10 Characterization of wild-type and ∆sppA2 strains after recovery from HL to LL 

 

Physiological analysis revealed that the ∆sppA2 strain exhibited bleaching of cells and a 

slower growth rate even under standard light conditions. The detection of SppA2 under LL 

but not under HL proved that this protease is important for LL and recovery from HL to LL. 

These data suggest that SppA2 can be involved in turnover of proteins essential under HL but 

not required under LL conditions.  

 

Photoprotection mechanism of cyanobacteria evolves different ways including the synthesis 

and recruitment of enzymes essential under stress conditions with followed degradation of 

that after recovery to the standard conditions. One group of proteins that accumulate upon 

exposure to HL (as well as under other stress conditions, e.g. cold stress, sulfur and nitrogen 

deprivation) is the HLIP (high light inducible proteins; He et al., 2001). These low molecular 

weight polypeptides are requires for survival and acclimation of cells to the absorption of 

excess of light energy, and perhaps could bind and store free chlorophyll specifically when 

cells are absorbing excess excitation (Havaux et al., 2003). Accumulation of HLIP occurred 

within 1 h of transfer to HL with maximum peak in abundance over 24 h of light stress and 

accompanied by decreasing of photosynthetic activities of cells. All HLIP proteins are rapidly 

degraded during first the hours of recovery of cells from excess excitation (He et al., 2001).  

 

To check whether SppA2 could be involved in the recovery step, wild-type and ∆sppA2 

strains were characterized after exposure to LL and HL, and after recovery of HL treated cells 

to LL.  

 

3.2.2.10.1 Photosynthetic activity of cells under different light regimes 

 

The photosynthetic activity of the cells was estimated by measuring the O2 evolution under 

different light regimes with the Clark electrode. Cells of wild-type and ∆sppA2 strains grown 

at LL were exposed to HL for 24 h and then after transferred back to LL for further 24 h. The 

samples for O2 measurements were taken and diluted to a chlorophyll a concentration of 2 

µg/ml. As shown in Fig. 53, photosynthetic O2 evolution in mutant cells was lower than that 

measured in the wild-type already under LL. However, the strains adapted to HL showed 

roughly identical activity of O2 evolution. Measuring the O2 evolution after recovery from HL 
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to LL showed that both strains could restore photosynthetic activities to LL level, however, in 

mutant cells this process occurred slower as in wild-type. 

 

Figure 53. Effect of 
different light intensities 
on photosynthetic O2 
evolution in wild-type 
and ∆sppA2 strains. For 
the measurements cells 
of both strains from 
different light regimes 
were concentrated till 

ncentration 
of 2 µg/ml. Net O2 
evolut

chlorophyll co

 

ion of cells was 
measured with white 
light of photon flux 
density 50 µmol m-2 s-1. 
 
 

3.2.10.2 Biochemical analysis of ∆sppA2 thylakoid proteins under LL and HL regimes 

 

Figure 54 shows comparison of thylakoid membrane proteins from wild-type and ∆sppA2 

strains grown under LL, HL and recovery from HL to LL regimes. The separation of proteins 

on denaturing SDS-PAGE and following silver staining revealed accumulation of unknown 

low molecular weight polypeptides in the ∆sppA2 as well as in the wild-type under HL. 

However, in contrast to the wild-type these polypeptides remained stable in the mutant strain 

after recovery from HL to the LL. The accumulation of polypeptides with molecular masses 

between 4 and 6 kDa was observed only under HL in the wild-type cells that assumed the 

light-inducible expression of these proteins.  

 Figure 54. Separation of thylakoid 
membrane polypeptides from wild-
type and ∆sppA2 strains grown at 
different light regimes. Cells of both 
strains were grown at LL, transferred to 
the HL and then cells were recovered 
back to LL for 24 h (Rec). Proteins were 
revealed by silver staining. Arrows 
indicate the positions of two unknown 
polypeptides, which are absent in wild-
type cells after recovery from HL to LL. 
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4. DISCUSSION 

 

4.1 Comparison of the protease complement in cyanobacteria and Arabidopsis 

chloroplast 

 
Peptidases, protein kinases, protein phosphatases and chaperones are major regulatory key 

players in structuring, adapting and maintaining cells under everchanging or even harmful 

conditions. A set of 62 genes that encodes the entire peptidase complement of Synechocystis 

has been identified in the genome database of that bacterium (Kaneko et al., 1996; Sokolenko 

et al., 2002). The impact of peptidases for cellular homeostasis becomes apparent especially 

after impairing proteolytic processes which can lead to drastic alterations in cellular 

physiology (Kirschner, 1994; Kopito and Sitia, 2000). It is therefore not surprising that work 

in the genomic era has uncovered a relatively high number of such enzymes and that 

autotrophic and heterotrophic organisms, despite differences in cell structure and life form, 

share a basic set of peptidases due to common phylogenetic roots.  

 

Chloroplasts are proposed to derive from an endosymbiotic event between a cyanobacterial 

and a heterotrophic eukaryotic cell. During the evolution of the resulting plant cell, the 

genetic potentials of these cell conglomerates were massively rearranged to yield an 

integrated, compartmentalized genetic system (summarized by Herrmann 1997; Race et al. 

1999; Herrmann and Westhoff, 2001). This genomic restructuring included an intracellular 

translocation of genes, especially from the organelles to the nucleus. It is therefore not too 

surprising that the proteolytic systems in plastids and mitochondria, although predominantly 

of nuclear/cytoplasmic origin, relate to those of the respective ancestors, a cyanobacterial-like 

cell in the former, an α-proteobacterial-like cell in the latter case (Gray et al. 2001), and hence 

they can at least in part be derived from eubacterial genomic data.  

 

The analysis of the gene complements for peptidases in Synechocystis and in chloroplasts 

revealed a high homology of their proteolytic machinery. The functional and structural 

analysis of bacterial peptidases showed that some of them represent homo- or heteromeric 

complexes (Clp, FtsHi and Deg peptidases) of proteolytically, non-proteolytically active 

and/or regulatory subunits. Although, the exact number of such isoforms in cyanobacteria and 

Arabidopsis is not known, it is possible to calculate the number of peptidase subunits, the 

homologues that lost their catalytic domains (ClpR and FtsH), and the regulatory subunits that 

are necessary for activity of a complex. Based on computational and experimental analyses, at 
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least 49 chloroplast peptidase subunits and their homologous components of bacterial origin 

were identified in Arabidopsis thaliana, used as a model with a fully sequenced nuclear 

genome. This number is close to that found in the Synechocystis genome, which encodes 62 

genes for peptidase subunits. This is an intriguing feature of the chloroplast degradation 

machinery, given the fact that some additional non-cyanobacterial or even non-bacterial 

peptidases are present in the organelle (e.g. the stromal processing peptidase: VanderVere et 

al., 1995; Lon: Adam et al., 2001; aspartyl peptidases: A. Sokolenko, unpublished data). 

Obviously, some of the metabolic functions found in cyanobacteria and controlled by 

bacterial-type peptidases were either transferred to the nucleo-cytoplasmic compartment in 

Arabidopsis or simply lost, as in the case of the genes controlling the biogenesis of pili, cell 

walls, or cyanophycin aggregates. The Arabidopsis genome lacks some peptidase genes that 

are found in Synechocystis, such as the D-Ala-D-Ala carboxypeptidases. However, the 

remarkable complexity of the peptidase complement in the chloroplast, which probably 

exceeds 49 polypeptides subunits, is probably caused by new regulatory functions as a 

consequence of endosymbiosis. Among these is the need to ensure protein import into the 

organelle from the nucleo-cytoplasmic compartment. Remarkably enough, the family of 

peptidases that is expected to serve this function, i.e. processing peptidases, shows a 

significant reduction in number in Arabidopsis. Another chloroplast-based regulation that 

requires specific proteolytic function is the delivery of nuclear-encoded protein factors, which 

provide fine-tuning of chloroplast gene expression. This set of proteins has been estimated to 

comprise approximately several hundred members (Herrmann, 1997; Rochaix, 2001; 

Herrmann and Westhoff, 2001) that act at the post-transcriptional level on specific chloroplast 

transcript targets. Because of their regulatory function, they are most likely present in limiting 

amounts (Green-Willms et al., 2001) and therefore are probably short-lived proteins that 

mobilize specific peptidases. The peptidases involved in the specific degradation of these 

proteins are unknown. 

 

The characterization of the Arabidopsis peptidase families of cyanobacterial origin showed 

that, in many cases, these originate in gene duplications that are likely to reflect evolutionary 

divergence in substrate specificity and final subcellular localization. Three peptidase families 

show a particularly high number of such genes: (1) the Clp family which has 8 members in 

Synechocystis, but up to 15 chloroplast-located subunits in Arabidopsis (Table 11), (2) the 

Deg family, which possesses only 3 members in Synechocystis, but 14 in Arabidopsis, with 

about 6 members for each type of organelle and 2 members in the cytoplasm (Table 12), and 

http://www.springerlink.com/media/ege9fdfcf31ypj416a9g/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/ege9fdfcf31ypj416a9g/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/ege9fdfcf31ypj416a9g/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/ege9fdfcf31ypj416a9g/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/ege9fdfcf31ypj416a9g/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/ege9fdfcf31ypj416a9g/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
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(3) the FtsH family with 4 genes in Synechocystis (encoding only FtsH subunits), but at least 

12 (FtsH) chloroplast members (Table 13).  

 

Table 11. Characterization of the Clp protease family in Synechocystis and Arabidopsis 
Homologous components from A. thaliana. Gene  Protein Protein 

function 
Peptidase type Predicted 

localiza-
tion  Gene number 

 

Predicted      

localization 

Identity  

to Sync 
% 

slr0542 ClpP1 Proteolytic Clp 
subunit 
 
 
 
 

Serine Cyt 

sll0534 ClpP2 Proteolytic Clp 
subunit 

Serine Cyt 

pClpP (ClpP1)a 
At5g23140 (ClpP2)a 
At1g66670 (ClpP3)a 
At5g45390 (ClpP4)a 
At1g02560 (ClpP5)a 
 
At1g11750 (ClpP6)a 

 

C, Sc 
C, Mc 

C, Sc 

C, Sc 

C, Sc 

 
C, Sc 

 

46 
52  
51 
46 
62 
 
39 
 

slr0165 ClpP3 proteolytic Clp 
subunit 

Serine Cyt At1g12410 (ClpR2)a C, Sc 44 

slr0164 ClpR 
(ClpP4) 

Clp subunit Serine Cyt At1g49970 (ClpR1)a 
At1g09130 (ClpR3)a 
At4g17040 (ClpR4)a 

C, Sc 

C, Sc 

C, S 
 

37 
41 
28 
 

sll0535 ClpX Non-peptidase 
Clp subunit  

- Cyt At5g53350 (ClpX1)a 
At5g49840 (ClpX2)a 
At1g33360 (ClpX3) 

M, Mat 
M, Mat 
M, Mat 
 

43 
38 
42 
 

sll0020 ClpC Non-peptidase 
Clp subunit 

- Cyt At5g50920 (ClpC1)a 
At3g48870 (ClpC2)a 

At5g51070 (ClpD)a   
At3g45450  (ClpF)b    

C, S 
C, S 
C, Sc 

Cyt 
 

77 
77 
44 
46 
 

slr0156 ClpB1 ClpB protein - Cyt 
     
slr1641 ClpB2 ClpB protein - Cyt 

At2g25030 (ClpZ)b 

 

At1g74310 (ClpB1)b 

At2g25140 (ClpB2)b 

At5g15450 (ClpB3)b 

At4g14670 (ClpB4)b 

Cyt 
 
Cyt 
Cyt 
C/Cyt 
Cyt 

42 
 
51 
61 
65 

48 
Non-cyanobacterial homologous Clp subunits        
- - - - - At4g25370 (ClpS1)b      

At4g12060 (ClpS2)b     
6728865 (Clp-like 1)b     
At3g53270 (Clp-like 2)b  

C, Sc   
C, S  
Cyt  
Cyt 

- 
- 
- 
- 

 

a proteins annotated in Adam et al. (2001) 
b proteins annotated in Peltier et al. (2001) 
c identity score indicates the highest alignment to one of Synechocystis homologue 
 
Abbreviations: C, chloroplast; S, chloroplast stroma; M, mitochondria; Mat, mitochondrial matrix; Cyt, 
cytoplasm; A. thaliana, Arabidopsis thaliana; Syn., Synechocystis 
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Table 12. Characterization of the Deg protease family in Synechocystis and Arabidopsis  
Homologous components from A. thaliana. Gene  Protein Protein 

function 
Peptidase 
type 

Probable 
localization 

Gene number Probable  
localisation  

Identity 
to Synb % 

slr1204 HtrA 
(DegP) 

Heat-shock 
peptidase 

Serine L 

sll1679 HhoA 
(DegQ) 
 
 
 
 
 
 
 
 
 
 

Heat-shock 
peptidase 

Serine Periplasmb 

sll1427 HhoB 
(DegS) 

Heat-shock 
peptidase 

Serine Mem 

At5g36950 (DegP10)a 

At3g27925 (DegP1)a 

At2g47940 (DegP2)a 

At1g65630 (DegP3)a 

At1g65640 (DegP4)a 

At4g18370 (DegP5)a 

At1g51150 (DegP6)a 

At3g03380 (DegP7)a 

At5g39830 (DegP8)a 

At5g40200 (DegP9)a 

At5g40560 (DegP13)a 

At5g27660(DegP14) 
At3g16540 (DegP11)a 

 
At3g16550 (DegP12)a 

 

M, Mat 
C, TML

c 

C, TMS
c 

M, Mat 
M, Mem 
C, Lc 

M/C 
Cyt 
C, Lc 

C/N 
ER/P 
C/M 
M, Mem 
 
M, Mat 
 

17 
30 
18 
16 
17 
22 
13 
13 
24 
18 
13 
15 
15 
 
12 
 

 
 

Table 13. Characterization of FtsHi family in Synechocystis and Arabidopsis 
Homologous components from A. thaliana. 

Gene 
 Protein Protein function Peptidase 

type 
Probable 
localization Gene number 

 
Probable 
localization 

Identity  
to Synb % 

slr1390 FtsH1 Cell division 
protein FtsH Metallo- Membrane At3g02450 (FtsHi3) C, Mem  28 

slr0228 FtsH2 

Cell division 
protein FtsH 
 
 
 
 

Metallo- 
Membrane 
 
 

At2g30950 (FtsH2)a 
At5g15250 (FtsH6)a 
At1g06430 (FtsH8)a 

At5g53170 (FtsH11) 
At5g15250 (FtsH12) 
At5g64580 (FtsHi4) 

C, Memc 

C, Mem  
C, Mem  
C/Others 
C, Mem 
C, Mem   

60 
55 
58 
55 
55 
30 

slr1604 FtsH3 Cell division 
protein FtsH Metallo- Membrane 

At1g50250 (FtsH1)a 
At2g29080 (FtsH3)a 

At2g26140 (FtsH4) 
At5g42270 (FtsH5)a 

At4g23940 (FtsHi1) 
At3g16290 (FtsHi2) 

C, Memc 
M, Mem  
Others 
C, Mem 
C, Mem  
C, Mem  

60 
36 
38 
61 
30 
30 

sll1463 FtsH4 Cell division 
protein FtsH Metallo- Membrane 

At3g47060 (FtsH7)a 
At5g58870 (FtsH9) 
At1g07510 (FtsH10) 

C, Mem    
C, Mem     
M, Mem     

40 
39 
39 

 
a proteins annotated in Adam et al. (2001) 
b identity score indicates the highest alignment to one of Synechocystis homologue 
c the localisation of these proteins was proven experimentally (see the text) 

 
Abbreviations: C, chloroplast; TMS, thylakoid membrane protein associated from stroma side; TML, thylakoid 
membrane protein associated from lumenal side; S, chloroplast stroma; L, thylakoid lumen; M, mitochondria; 
Mat, mitochondrial matrix; Mem, membrane; Cyt, cytoplasm; N, nucleus; PM, plasma membrane; ER, 
endoplasmic reticulum; A. thaliana, Arabidopsis thaliana; Syn, Synechocystis 
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In contrast, other peptidase families have fewer members in the chloroplast than in 

cyanobacteria, e.g. processing peptidases with 18 cyanobacterial components and only 8 

plastid members, or aminopeptidases with 25 in Synechocystis and 9 chloroplast components 

(Tables 14 and 15). It is tempting to relate the opposite variation in the sizes of these 

peptidase families between chloroplasts and cyanobacteria to physiological changes. The high 

number of processing peptidases and aminopeptidases in a prokaryote-like Synechocystis may 

reflect its critical dependence on secretory pathways for sensing and adapting to environment. 

In contrast, the chloroplast appears to have no secretory protein pathway directed to the 

cytoplasm but has become an intracellular entity mainly devoted to photosynthesis, with a 

substantial development of its inner, photosynthetic membrane and metabolite exchange 

systems. The organelle contains approximately ten times more thylakoid membranes per unit 

volume than a cyanobacterium. This expansion and divaricating of the thylakoid membranes 

may explain in part why chloroplasts need a larger set of managing peptidases for membrane-

associated proteins, as is the case for the members of the FtsH, Deg and Clp families. 

 

An important finding is that the large numbers of paralogues in most peptidase families of 

bacterial origin are not a matter of functional redundancy (Sokolenko et al., 2002). This 

finding is at variance with the general view on most Arabidopsis multigenic families, whose 

members are thought to be able to substitute each other. In the case of peptidases, it was noted 

that several homologous components confined to one compartment - as is the case for various 

ClpP and FtsH products - cannot functionally replace each other. In other instances, related 

components are addressed to different subcellular compartments in Synechocystis, like 

lumenal HtrA versus periplasm, i.e. HhoA and membrane-intrinsic HhoB. In Arabidopsis, the 

situation is sometimes even more complicated, as for the Deg family. Its members are located 

in different organelles and subcompartments. Based on sequence prediction programs, it was 

found that most peptidases of cyanobacterial origin in plants are confined to the chloroplast, 

with a few exceptions, like the soluble processing metallo-peptidases, which are excluded 

from the chloroplast but are present in mitochondria and cytoplasm. At first glance, this latter 

observation is paradoxical in view of the cyanobacterial origin of the chloroplast. However, 

the low sequence conservation between the Arabidopsis mitochondrial members of the 

soluble processing metallo-peptidase family and those in Synechocystis raises the possibility 

that plastids have acquired this type of peptidase gene by lateral gene transfer from an α-

proteobacterial source that was the ancestor of mitochondria (Gray et al., 2001). One should 

also wonder about the possible presence of new Arabidopsis 

http://www.springerlink.com/media/ege9fdfcf31ypj416a9g/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
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Table 14. Characterization of processing peptidases from Synechocystis and Arabidopsis 
Homologous components from A. thaliana Gene 

 
Protein Protein function Peptidase 

type 
Predicted 
localization 

Gene 
number 

Predicted 
localization 

Identity to 
Synb % 

Ctp family       
slr0008 CtpA Carboxyl-terminal 

processing peptidase 
Serine Pera At3g57680 

At4g17740 
C, La 

C, La 
30  
36 

slr0257 CtpB Carboxyl-terminal 
processing peptidase 

Serine Pera - - - 

slr1751 CtpC Carboxyl-terminal 
processing peptidase 

Serine Pera At5g46390 C, La 28 

Soluble processing metallo-peptidases 
sll2008 Prp1 Processing peptidase Metallo- Cyt At5g56730 

At3g02090  
Cyt 
M, Mata 

15 
20 

sll2009 Prp2 Processing peptidase Metallo- Cyt - - - 
sll0055 Prp3 Processing peptidase Metallo- Cyt At3g16480 

At1g51980 
Cyt 
M, Mata 

18 
18 

slr1331 YmxG Processing peptidase Mettalo- Pera - - - 
sll0915 PqqE Processing peptidase Metallo- Pera - - - 
Transmembrane processing metallo-proteases 
sll0528 - Hypothetical Metallo- Mem - - - 
slr1821 - - Metallo- Mem At1g05140 

At2g32480 
C, Mem 
C, Mem 

39 
40 

Leader peptidases 
sll0716 LepB1 Leader peptidase I Serine Cyt At1g06870 C, Mem 24 
slr1377 LepB2 Leader peptidase I Serine Cyt - - - 
slr1366 LspA Leader peptidase II Aspartic Mem not present in higher plants         - 

                                                      
slr0807 Gcp Putative glycopepti-

dase 
Aetallo- Cyt At2g45270 

At4g22720 
C/M 
Cyt 

27 
28 

SppA peptidase family 
sll1703 SppA1 Protease IV Serine Mem At1g73990 C, TMa 29 
slr0021 SppA2 Protease IV Serine Cyt not present in higher plants         - 
Prepilin peptidase family    
slr1120 HofD Prepilin peptidase Aspartic Mem 
sll0146 - Non-peptidase - Mem 

not present in higher plants          - 

 
a the localization of these proteins was proven experimentally (see the text) 
b identity score indicates the highest alignment to one of Synechocystis homologue 

 

Abbreviations: C, chloroplast; Mem, membrane; Mat, matrix; TM, thylakoid membrane; Cyt, cytoplasm; n.d., not 
done; A. thaliana, Arabidopsis thaliana; Syn, Synechocystis 
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Table 15. Characterization of aminopeptidases from Synechocystis and Arabidopsis 
Homologous components from A. thaliana Gene Protein Protein  

function 
Peptidase 
 type  

Predicted 
localization Gene number Probable 

localization 
Identity 
to Synb % 

sll1343 Ape2 Alanine AP Metallo- Cyt not present in higher plants                  - 
slr1939 HtpX AP Metallo-  Mem not present in higher plants                  - 
sll1280 - AP Metallo- Me At3g27110  

At5g51740  
At4g01320 

C, S 
M, Mat 
Cyt, Mem 

46 
15 
18 

sll2001 Lep Leucine AP Metallo-  Cyt At2g24200 
At4g30920 
At4g30910 

Cyt 
Cyt 
Cyt 

45 
45 
44 

slr0031 - Glycyl-AP Metallo- Cyt not present in higher plants                  - 
slr0918 PepM Methionyl 

AP A 
Metallo-  Cyt At2g45240 (MAP1A) 

At1g13270 (MAP1B)  
At3g25740 (MAP1C) 
At4g37040 (MAP1D) 
At2g44180 (MAP2A) 
At3g59990 (MAP2B) 

Cyta 
C, Sa 
C and Ma 
C and Ma 
Cyta 
Cyta 

30 
43 
35 
46 
46 
39 

slr0786 PepM Methionyl AP B Metallo- Cyt - -                    - 
sll0555 - Methionyl AP C Metallo- Cyt - -                    - 
sll0136 PepP Methionyl-AP Metallo- Cyt At1g09300 

At4g29500 
Cyt 
C, S 

29 
20 

sll0422 - Asparaginase Threonine Cyt At3g16150 
At5g08100 
At4g00590 
At5g61540 

Cyt 
Cyt 
Cyt/M 
Secr 

29 
27 
18 
20 

slr1653 Ama N-acyl-L-
amynoacyl-
hydrolase 

Metallo- Cyt At1g51760  
At5g56650  
At1g51780  
At5g56660  

Secr, Mem   
Secr, Mem   
ER, Mem     
ER               

35 
35 
33 
35 

sll0100 - Hydrolase Metallo- Cyt At3g02875 Secr 34 
slr1269 Ggt Gamma 

glutamyl-
transferase 

Threonine Cyt At4g39650  
At4g39640 
At4g29210 
At5g61540 

Secr 
Secr 
Cyt 
Secr 

26 
25 
23 
15 

slr0878 - Hypothetical Metallo- Cyt 
slr0993 NlpD - Metallo- Cyt 

not present in higher plants                   - 
not present in higher plants                   - 

sll0757 
 

PurF Glutamine 
aminotransferase 

Cysteine Cyt At4g34740  
At2g16570 
At4g38880 

C, S 
C, S 
C, S 

42 
42 
41 

sll0236 - CP A Metallo- Cyt not present in higher plants                   - 
slr1924 - D-Ala-D-Ala CP Serine Cyt 
slr0646 DacB CP Serine Cyt 
slr0804 DacB CP Serine Cyt 

not present in higher plants                   - 
not present in higher plants                   - 
not present in higher plants                   - 
not present in higher plants                   - 

sll1369 - CP Serine Cyt not present in higher plants                   - 
slr1679 - Dipeptidase Metallo- Cyt not present in higher plants                   - 
slr0535 Spr Tripeptidyl-

peptidase  
Metallo- 
 

Mem At3g14067b 
At5g67360b 

Secr 
Secr 

19 
19 

slr0825 - OP Serine Cyt At5g36210 C, S 44 
 

a localisation of these proteins was proven experimentally (see the text) 
b these sequences are given as an example of the cucumusin type peptidases that shows low identity score (up to 

19%) to Spr peptidase; the family include about 45 members and all of them are targeted to secretory pathway 

 
Abbreviations: C, chloroplast, S, chloroplast stroma; L, thylakoid lumen; M, mitochondria; Mat, mitochondrial 
matrix; Mem, membrane; Cyt, cytoplasm; ER, endoplasmic reticulum; Secr, secretory; A. thaliana, Arabidopsis 
thaliana; Syn, Synechocystis; AP, aminopeptidase; OP, oligopeptidase; CP, carboxypeptidase 
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chloroplast-specific peptidases not present in Synechocystis. Such candidates could be the 

thylakoid-processing peptidase known as thylakoid-processing enzyme (Chaal et al., 1998), 

stromal-processing peptidase (CPE: VanderVere et al., 1995; Koussevitzky et al., 1998) and 

two bacterial Lon homologues that are predicted to be chloroplast-located components (Adam 

et al., 2001). Preliminary analysis of the Arabidopsis database revealed some examples of 

aspartate peptidases of eukaryotic origin that are not present in the cyanobacterial genome and 

might have been targeted to the chloroplast (A. Sokolenko, unpublished data). Further 

experimental analysis of this peptidase group is required. The continuously appearing data on 

substrate-specificity and mechanisms of peptidases from different organisms will aid in 

obtaining a more complete view of the diversity, divergence and interaction of the various 

peptidases, including their evolution. 

 

A systematic gene disruption approach was chosen to individually inactivate, by customary 

transformation strategies, the majority of the cyanobacterial genes encoding peptidase 

subunits that are related to chloroplast enzymes (Shestakov and Reaston, 1987; Thiel, 1994). 

The set of genes in the Synechocystis genome that codes for proteolytic enzymes was 

determined and searched for their homologues in the Arabidopsis genome in order to gain 

insight into the function, intracellular location and evolution of plastid peptidases. Afterwards, 

the deduced cyanobacterial peptidase genes were grouped into families of homologous 

enzymes (Tables 8 - 12) and then various genes were inactivated for this study (Table 5; 

Section 3.1).  

 

Each cell of Synechocystis contains about 12 identical copies of the chromosome and, thus, 

genes can be randomly inactivated to some extent with (or without) detectable changes in 

phenotype. The ability of Synechocystis cells for the photoheterotrophic growth provided the 

opportunity for screening of mutants previously not obtained in other organisms. It allowed a 

distinction to be made between those peptidases that are required for cell viability and those 

that can be functionally complemented by other peptidases or are involved in stress 

acclimation processes. Those essential for cell survival in Synechocystis are members of the 

Clp family (ClpP1, ClpP3, ClpR, ClpC, ClpX and ClpB1), several FtsH components (FtsH1 

and FtsH3), HtrA, LepB1 and CtpC (Bailey et al., 2001; Ivleva et al., 2002; Sokolenko et al., 

2002; also see Tables 8, 9, 10 and 11). Many of the homologous peptidases within each gene 

family exert a distinct intracellular function. Inactivation of the plastid-encoded ClpP, the 

homologue of Arabidopsis ClpP1, did not lead to a homoplastomic mutant, neither in tobacco 

http://www.springerlink.com/media/ege9fdfcf31ypj416a9g/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/ege9fdfcf31ypj416a9g/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/ege9fdfcf31ypj416a9g/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/ege9fdfcf31ypj416a9g/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
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(Shikanai et al., 2001), nor in Chlamydomonas (Huang et al., 1994). Two cyanobacterial 

peptidases, ClpP2 and CtpA, are critical for the function of the photosynthetic machinery 

since after knock-out of corresponding genes, the cells were not able to grow under 

phototrophic conditions (Shestakov et al., 1994; Panichkin et al., 2001; Sokolenko et al., 

2002). Whereas the essential function of CtpA in the maturation of subunit D1 of the PSII 

reaction center has long been acknowledged (Shestakov et al., 1994), the function of ClpP2 in 

photosynthesis remains to be studied. Only two fully homozygous knock-out mutants were 

obtained after insertional inactivation of hhoA and hhoB from Deg family in this work. 

Although fully segregated HtrA mutant could apparent be obtained by another group, which 

showed the resistance of Synechocystis cells to light stress (Silva et al., 2002), no full 

segregation of the knock-out strain was reached for HtrA under the chosen experimental 

conditions (Sokolenko et al., 2002). Such distinction might reflect differences of specific 

strains. Therefore, from this work was observed that htrA gene is also essential for cell 

viability, as are clpC, clpX and clpB1. Two genes encoding metallo-aminopeptidases, the 

alanine (Ape2) and methionine (PepP) aminopeptidases in Synechocystis were successfully 

inactivated. The presence of four genes encoding methionine aminopeptidases in 

Synechocystis probably explains the non-lethal phenotype of the knock-out strains, which is at 

variance with the results from gene inactivation of this enzyme in E. coli (Chang et al., 1989) 

and yeast (Li and Chang, 1995). 

 

4.2 Role of peptidases in the adaptation of thylakoid membranes to environmental stress 

 

One of the principal roles of peptidases is the regulation of intracellular processes during or 

following environmental changes. Changes in light quality and intensity, temperature or 

nutrient supply generally lead to a reorganization of cell morphology, metabolism and even 

membrane structure. Cyanobacterial cells starved in nutrients or exposed to high levels of 

light accumulate low levels of thylakoid membranes and phycobilisomes and show a decline 

in photosystem II activity (Collier and Grossman, 1992; de Marsac and Houmard, 1993; 

Grossman et al., 2001). These modifications result from intracellular responses that include 

down-regulation of gene expression, changes in the rate of protein synthesis and proteolytic 

disposal of altered or temporarily functional proteins. It is well known from bacterial studies 

that peptidases are involved not only in posttranslational degradation of proteins but also in 

the control of gene expression through their interaction with transcription factors (for a review 

see Adam, 2000). 

http://www.springerlink.com/media/ege9fdfcf31ypj416a9g/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/ege9fdfcf31ypj416a9g/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/ege9fdfcf31ypj416a9g/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/ege9fdfcf31ypj416a9g/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/ege9fdfcf31ypj416a9g/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/D089TKTWQJ4H2AG4RYE0/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/D089TKTWQJ4H2AG4RYE0/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/D089TKTWQJ4H2AG4RYE0/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/D089TKTWQJ4H2AG4RYE0/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html


DISCUSSION 107 

4.2.1 Light stress 

 

Cyanobacteria and higher plants have evolved mechanisms that ensure their adaptation to 

high levels of light (Lorimier et al., 1991; Murakami and Fujita, 1991). Expression studies of 

Synechocystis peptidase genes under acclimation to different light regimes showed that three 

genes, clpB2, ftsH1 and ftsH2, are induced within 15 min after transfer to high levels of light 

and become down-regulated within the next 15 h (Hihara et al., 2001). 

 

In this study the analysis of knock-out strains of Synechocystis revealed that ClpB2 is 

involved in the acclimation to light stress, since deletion of the corresponding gene led to a 

non-bleaching phenotype under high light intensities. It was also observed that four 

peptidases, ClpP2, SppA1, SppA2 and PepP, contribute to light acclimation, because the 

corresponding knock-out mutants demonstrated an altered pigmentation phenotype for 

∆sppA1, ∆sppA2 and ∆pepP or ceased growth for ∆clpP2 upon transfer to higher light 

intensities (Panichkin et al., 2001; Sokolenko et al., 2002). Further experiments showed that 

∆sppA1 is defective in the cleavage of phycobilisome antenna linker proteins, which is 

required for reducing the antenna size at high light intensities (Pojidaeva et al., 2004). It was 

further found that SppA2 protease is involved in the degradation of low molecular weight 

polypeptides accumulating under HL during recovery of cells from HL to LL (Pojidaeva and 

Sokolenko, manuscript in preparation). An altered phenotype was found for ∆pepP under LL 

and HL regimes. Major phenotypic changes encompassed slower cell growth and enhanced 

pigmentation. Since this peptidase might be involved in the N-terminal processing of the 

initiator methionine, ∆pepP should express a set of defective proteins. Experiments with S35-

methionine revealed a number of proteins whose translation level was decreased in mutant 

cells (Svetanović, 2003). Sequence analysis should help for identification of possible 

substrates for PepP protease or for PepP-regulated factors that could influence protein 

translation.  

 

4.2.2 Heat stress 

 

The major response to heat stress is borne out by the induction of heat stress proteins, 

chaperones and peptidases that are involved in the refolding or degradation of misfolded 

polypeptides. One of the best studied peptidases functioning during heat stress is the bacterial 

HtrA peptidase (Strauch et al., 1989; Lipinska et al., 1990; Spiess et al., 1999). The 

http://www.springerlink.com/media/D089TKTWQJ4H2AG4RYE0/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/D089TKTWQJ4H2AG4RYE0/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/D089TKTWQJ4H2AG4RYE0/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/D089TKTWQJ4H2AG4RYE0/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/D089TKTWQJ4H2AG4RYE0/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/D089TKTWQJ4H2AG4RYE0/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/D089TKTWQJ4H2AG4RYE0/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
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Synechocystis htrA gene was recently inactivated and in contrast to non-photosynthetic 

bacteria ∆htrA showed a strong phenotype of photosynthesis. It was predicted to play a part in 

the repair of PSII (Silvia et al., 2003). Our studies showed that the periplasmic HhoA 

peptidase, a HtrA homologue, is probably involved in temperature acclimation of 

Synechocystis cells, since the cyanobacterial hhoA mutant bleached rapidly upon transfer to 

higher temperature. Two other knock-out strains, ∆pepP and ∆prp2, were sensitive to heat 

stress and bleached upon transfer to higher temperatures. The role of the PepP aminopeptidase 

in heat-stress acclimation could be explained by its role in the posttranslational modification 

of proteins, including those that are highly expressed during heat stress. The role of Prp2 in 

heat stress remains unclear. 

 

4.2.3 Nutrient stress 

 

Nutrient and co-factor deprivation, for instance nitrogen, sulfur, phosphorus, iron, or copper, 

represents another source of environmental stress. Among the best studied degradation 

processes in cyanobacteria in response to nutrient deprivation are the degradation of (1) 

phycobilisomes in the absence of nitrogen or phosphorus (Collier and Grossman, 1992; Sauer 

et al., 2001) and (2) plastocyanin in the absence of copper (Li and Merchant, 1995). Sulfur 

deprivation was also reported to induce phycobilisome degradation in Synechococcus, but not 

in Synechocystis (Richaud et al., 2001), which suggests some differences in signaling 

pathways between these two organisms. Iron deficiency also leads to a faster degradation of 

phycobilisomes and photosystem I proteins (Guikema and Sherman, 1983) and to the 

expression of iron-regulated genes that help cells to survive (Burnap et al., 1993; Bibby et al., 

2001; Boekema et al., 2001). It was previously reported that the family of nbl genes controls 

the adaptation of the cyanobacterial cell to various nutrient deprivations (summarized by 

Grossman et al., 2001), but little information is yet available about the identification of 

peptidases involved in stress-induced degradation processes.  

 

The non-photoautotrophic and hyper-light-sensitive ∆clpP2 strain that depends upon glucose 

for growth grew faster than the wild-type during the first two days of nitrogen, phosphorus 

and iron starvation. However, it showed no difference in growth rate to wild-type during 

sulfur starvation, a nutrient stress that does not cause phycobilisome degradation in 

Synechocystis sp. PCC 6803 (Richaud et al., 2001). These observations suggest that ClpP2 

could be involved in phycobilisome degradation during nutrient stress. All other peptidase 

http://www.springerlink.com/media/D089TKTWQJ4H2AG4RYE0/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
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http://www.springerlink.com/media/D089TKTWQJ4H2AG4RYE0/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/D089TKTWQJ4H2AG4RYE0/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/D089TKTWQJ4H2AG4RYE0/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/D089TKTWQJ4H2AG4RYE0/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/D089TKTWQJ4H2AG4RYE0/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/D089TKTWQJ4H2AG4RYE0/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/D089TKTWQJ4H2AG4RYE0/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
http://www.springerlink.com/media/D089TKTWQJ4H2AG4RYE0/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
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knock-out lines which were investigated were photoautotrophic strains and their phenotypes 

could be studied in the absence of glucose. Mutant ∆hhoB bleached more rapidly than the 

wild-type when grown in a medium depleted in phosphorus, whereas ∆hhoA and ∆ape2 

remained greener than the wild-type under iron deprivation. Ape2 is likely to participate also 

in the response to copper deficiency, together with SppA2, since the corresponding knock-out 

strains bleached when grown in the absence of copper. The processing Gcp peptidase is 

involved in salt-stress response and may also participate in cyanophycin degradation in 

Synechocystis cells (Zuther et al., 1998). 

 

4.3 The SppA protease family 

 

4.3.1 Characterization of SppA1  

 

Generation of a collection of targeted peptidase mutants from Synechocystis has revealed four 

components that are involved in light acclimation of cyanobacterial cells (Sokolenko et al., 

2002). One of these components, the SppA1 peptidase, is an integral membrane 

endopeptidase in bacteria that degrades processed presequences of exported proteins (Novak 

and Dev, 1988; Bolhuis et al., 1999). It was recently identified as a thylakoid membrane 

associated protein in Arabidopsis that showed light induction both at the transcriptional, 

translational and possibly post-translational levels (Lensch et al., 2001). Cyanobacteria, as all 

other bacterial organisms, express two SppA homologues, SppA1 and SppA2 (Sokolenko et 

al., 2002).  

 

The sll1703 gene, encoding a homologous thylakoid membrane-associated SppA peptidase 

from Arabidopsis, was inactivated by site-directed mutagenesis in Synechocystis sp. PCC 

6803 (this work; Sokolenko et al., 2002). Analysis of the DNA sequence showed that the 

sll1703 gene with a size of 1860 bp could be a member of the gene cluster sll1702-sll1703-

sll1704. Since the transcription levels of sll1702 and sll1704 genes were not affected after 

interruption of sll1703 gene, this suggests that these genes are not organized in one operon. 

This remains to be verified. 

http://www.springerlink.com/media/D089TKTWQJ4H2AG4RYE0/Contributions/8/H/0/G/8H0G58D7YDVPGM92_html/fulltext.html
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4.3.1.1 Topology of SppA1 

 

Since antisera against SppA1 were not obtained it is possible only to speculate about the 

topology and localization of this protein in the cyanobacterial cell. From a comparison of the 

localization for Arabidopsis SppA, which is integrated in thylakoid membranes, and E. coli 

SppA, which anchors in the plasma membrane, Synechocystis SppA1 can be predicted as well 

as a membrane-integrated protein (Lensch et al., 2001). Indeed, the amino acid sequence 

deduced from the sppA1 gene indicates that SppA1 is a protein of 610 amino acid residues 

with two hydrophobic stretches at the N-terminal part (domain I is defined by amino acid 

residues 385 � 405 and domain II � 421 � 434; Fig. 31), where one of them, by analogy with 

Arabidopsis, SppA (Lensch et al., 2001), could interact with the lipid bilayer. Comparison of 

sequences of SppA1 from various species also revealed a putative cleavage site for a signal 

peptidase (at position 39 of Synechocystis SppA1) that can remove the transit peptide from the 

protein. The SppA1 protease from Synechocystis displays 27% identity to Arabidopsis SppA 

and 34% to E. coli SppA. Highest conservation was found in the C-terminal part of protein 

that also contains the serine residues deduced as possible catalytic amino acid residues 

(Lensch et al., 2001). According to studies of catalytic domains of serine-type protease 

(Slilaty and Vu, 1991; Paetzel and Dalbey, 1997) those serine residues involved in catalysis 

should be found close to histidine or lysine residues to form the so-called catalytic dyad. 

Based on the results of Arabidopsis SppA three possible catalytic serines have been indicated 

(S367, S401 and S423).  

 

4.3.1.2 The ∆sppA1 mutant lost part of its light acclimation properties 

 

Under the chosen experimental conditions the wild-type strain of Synechocystis has a 

doubling time of about 11 h when grown at 50 µE m-2 s-1 under white light. The switch to 150 

µE m-2 s-1 (saturating light) produces only a modest increase in generation time, by about 

10%. This generation time is not limited by CO2 availability since bubbling CO2 into the 

culture does not change the rate of cell division under LL and ML regimes. However, this 

transition from a close-to-saturating light to saturating light was accompanied by a marked 

bleaching of the cultures that became visible after 24 h exposure to the new light regime and 

slowly developed over the next 48 h. This delay in bleaching was observed for initial cell 

densities of either 0.1 or 0.5 A750 as well as in cultures that were either kept at constant cell 

density by a daily dilution up to an A750 of 1. The 40% decrease in phycobilins and 
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chlorophyll after 3 days under 150 µE m-2 s-1 was accounted for by the loss of a significant 

proportion of the PC and APC phycobiliproteins and of the photosystem I and II chlorophyll-

binding proteins. The former change reflects an acclimation of Synechocystis to increasing 

light intensities that has been previously attributed to a changes in the expression of genes 

encoding phycobiliproteins (de Lorimier et al., 1991; Lichtle et al., 1996). 

 

The ∆sppA1 mutant grows at similar rates as the wild-type - even a little faster under 50 µE 

m-2 s-1 and 150 µE m-2 s-1. In that respect it is similar to other genetically modified 

cyanobacterial strains that were previously reported to have increased growth rates compared 

to wild-type (Lomax et al., 1987; Emlyn-Jones et al., 1999). When cultures of the ∆sppA1 

mutant were exposed to 50/150 µE m-2 s-1 light transition, the same changes were observed in 

chlorophyll and photosystem contents and the same drop in synthesis of the major 

phycobiliproteins as in the wild-type. However, the mere comparison of the cultures showed 

that the pronounced bleaching observed with the wild-type was no longer seen with the 

mutant. Although a minor part of this difference can be ascribed to the higher pigment/cell 

content and higher cell density reached by the mutant cultures, the major contribution came 

from the better preservation of phycobiliproteins in ∆sppA1 grown at 150 µE m-2 s-1. The 

higher content in peripheral antenna in the mutant was documented both at the protein level, 

relative to other photosynthetic proteins, and by a higher PBS sensitization of PSII 

fluorescence emission at 77K. Because the two strains showed a similar down regulation of 

phycobiliprotein synthesis at 150 µE m-2 s-1, it was concluded that the higher amount of 

phycobiliproteins in the mutant is due to a hampered degradation process in the ∆sppA1 

strain.  

 

In contrast with light of 150 µE m-2 s-1 the mutant was more sensitive to light of 350 µE m-2 

s-1 than the wild-type as demonstrated by its stronger bleaching, more pronounced drop in 

cell growth and larger decrease in chlorophyll content. Such behavior can be explained by an 

inability of ∆sppA1 to properly down-regulate photosynthesis through a down-sizing of its 

phycobilisome antenna: excess light excitation of PSII will then cause strong photodamage 

leading to protein degradation (Ownby et al., 1979). However, SppA1 could also control the 

activity of other peptidases or proteins involved in photoprotection of thylakoid membranes 

(this situation will be discussed later).  
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4.3.1.3 ∆sppA1 does not undergo the cleavage of the LR
33 and LCM

99 linker proteins after 

exposure to increasing light intensities 

 

The participation of SppA1 in the degradation of phycobiliproteins when reaching light 

intensities immediately above saturation is specific to this acclimation process. The loss in 

phycobiliproteins and PBS due to other changes in environmental conditions, such as nitrogen 

deprivation or deprivation in S, P, Fe and Cu (Grossman et al., 1993; Richaud et al., 2001) 

remained unaltered in ∆sppA1 (Pojidaeva et al., 2004). PBS degradation responses are thus 

controlled by different proteases depending on the environmental stimulus. They differ both 

in amplitude and kinetics, with nitrogen depletion leading to a rather rapid decrease of up to 

90% of PBS (Li and Sherman, 2002) while the drop in intracellular phycobiliproteins reported 

here, upon acclimation to saturating light, is a delayed process and does not exceed 40%. 

During nitrogen deprivation cell division and synthesis of phycobiliproteins stop, while pre-

existing phycobiliproteins are degraded. Therefore, there is a net loss in phycobiliproteins. 

During light acclimation the synthesis of new phycobiliproteins is decreased and the content 

in pre-existing phycobiliproteins also declines due to a limited and specific degradation 

process. However, since the cell cultures continue to grow, there is still a relative increase in 

phycobiliproteins per unit volume although the content per cell decreases. It has been noted 

that the degradation of LHCII antenna upon acclimation of the chloroplast to high light 

conditions is also a slow process, with 30% degradation only, observed after three days of 

acclimation to high light intensities (Yang et al., 1998).  

 

It was previously demonstrated that linker proteins could be degraded in vitro within isolated 

PBS by some co-isolated proteolytic enzyme(s) (Reuter and Nickel-Reuter, 1993). In this 

work this observation was confirmed. There was a selective loss of LR
33 and LCM

99 linker 

proteins in PBS isolated from the wild-type, when incubated at 37°C for three hours. 

However, this linker degradation was no longer observed when using PBS isolated from 

∆sppA1. This points to an acclimation process at saturating light regimes that is caused by a 

linker-targeted and SppA1-mediated degradation process. That linker proteins were degraded 

in vitro under ML, whereas they remained stable in the dark, demonstrated that the protease 

can be activated by light most likely by some conformational changes. It is relevant to note 

that an extensive degradation of rod linker LR
33, but not of the membrane linker, was also 

reported during nitrogen starvation (Li and Sherman, 2002), a process that does not require 
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SppA1. This means that PBS may undergo similar modifications of their structure during 

degradation through different regulatory mechanisms.  

 

Proteolysis of PBS encompasses a diversity of phenomena from extensive degradation of all 

PBS subunits, as observed during nitrogen starvation, to some limited modifications in their 

supramolecular structure due to the selective action of endopeptidases. From this work in 

vitro experiments suggest that such a fine-tuned regulation in antenna organization should 

start with the cleavage of the distal linker protein LR
33 and the membrane linker LCM

99. 

Decreased energy transfer from PBS to PSII at saturating light intensities can occur through 

shortening of the PBS rods via a detachment of the external rod segments, of whole rods from 

PBS cores, or/and through a decreased ratio of PBS to PSII per photosynthetic membrane due 

to their detachment from the membrane leading ultimately to their degradation in the 

cytoplasm. Degradation of LR
33 and LCM

99 can account for both a shortening and a release of 

PBS from the membranes. The former process should be driven by the loss of LR 
33-PC that 

represents the distal chains of the rods. Present work has shown that this loss is controlled by 

SppA1, an observation which is consistent with previous reports showing that the regulation 

of LR
33 accumulation is not primarily due to transcriptional changes but rather to a control at 

the translational or post-translational levels (de Lorimier et al., 1991). The release of PBS 

from the membranes probably involves the other linker, LCM, which participates in 

assembling the PBS structure in an energy transfer-competent position towards photosystem 

II (Glazer, 1988). LCM linker represents a chimeric protein with a heterogeneous domain 

structure. The C-terminal part of this protein contains three repeat domains (REP1 � 3) which 

show high homology to conserved domains of the rod and rod-core linker polypeptides and 

provides the binding domains that interact with the APC trimer. Sequencing of a 23 kDa 

peptide that was associated with an APC (αAPßAP) subcomplex showed that it originated from 

the C-terminal part of this membrane linker (Gottschalk et al., 1994) that carried only the last 

REP domain. This crucial experiment demonstrates that there is a peptidase able to cleave the 

C-terminal sequence of the LCM linker that is tightly interacting with APC. Since there are two 

copies of LCM per PBS structure, each APC trimeric cylinder could potentially be detached, 

leading to a complete dissociation of PBS from the thylakoid membrane. Thus, one would 

expect that degradation of LCM should lead to a decrease in the whole cell content of 

assembled PBS, an observation which was indeed reported for some cyanobacteria during 

light acclimation (Raps et al., 1985).  
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PBS linker proteins were protected from degradation in the ∆sppA1 strain under ML. 

This is in favour of SppA1 being the peptidase co-isolated with PBS that cleaves the 

linkers. However, we can not exclude an indirect role of SppA. For instance, it could 

control the susceptibility of the PBS structure to another peptidase or regulate the 

expression of this PBS-targeted peptidase. The study of other intracellular targets for 

SppA1 should provide a better view of the regulatory function of thylakoid bound 

peptidases in cyanobacteria. 

 

4.3.2 Characterization of SppA2 component 

 

4.3.2.1 SppA2 is a serine-type protease 

 

SppA2 protease belongs to the SppA family that includes serine type proteases (Lensch et al., 

2001). Although biochemical studies on purified protease IV (SppA1 homologue) from E. 

coli showed their proteolytic activity against substrates as azocoll, synthetic polypeptides and 

α-casein (Regnier, 1981; Pacaud, 1982a; Palmer and John, 1987) the actual correspondence 

of these purified enzymes to SppA1 and SppA2 from cyanobacteria or higher plants has 

never been proven. The SppA1-containing high molecular complex from Arabidopsis was 

proteolytically active against the non-specific substrate gelatin (Lensch et al., 2001). The 

proteolytic assay with overexpressed in vitro SppA2 protein demonstrated that SppA2 is a 

serine-type protease and can hydrolyze the unspecific substrate azocoll. The proteolytic 

activity against azocoll was slow and observed only after 12 h of incubation. Typical serine-

type inhibitors, DFP and PMSF, inhibited SppA2-mediated activity and these data 

corresponded to biochemical studies of Pacaud (1982b) for protease V (SppA2 homologue). 

Analysis of the SppA2 sequence revealed three serines in positions 51, 85 and 107 as 

possible catalytically active amino acids as it was proposed for SppAs from E. coli and 

Arabidopsis thaliana (Lensch et al., 2001). 

 

4.3.2.2 SppA2 is a component of a membrane-associated high molecular weight complex 

 

The second component of the SppA family, SppA2 protease, was found only in the genomes 

of prokaryotic organisms. In all cases SppA2 has molecular weight of about 30 kDa, that is 

half of the size of SppA1, and shares 22% identity to the C-terminus of SppA1 (Lensch et al., 

2001). Studies of SppA2 in non-photosynthetic organisms showed that this protein is targeted 
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to the soluble compartment in B. subtilis or into the cytoplasmic inner membrane in E. coli 

(Bair et al., 1991; Bolhuis et al., 1999). Further, Arabidopsis SppA1 protease showed strong 

association with thylakoid membranes. Despite of predictions of Synechocystis SppA2 

protease in the soluble compartment biochemical topological studies proved that it is either a 

monotopic membrane protein similar to SppA1 Arabidopsis or that it is strongly associated 

with some other membrane component(s). Treatment of the membrane with chaotropic salts 

and alkaline solutions could only partially (in case of NaOH) release the protein proving its 

strong interaction with the lipid bilayer. Comparative analysis of Synechocystis SppA2 with 

its homologoues from Pseudomonas and Agrobacterium and SppA1 proteases from E. coli 

and Arabidopsis showed the presence of a hydrophobic region (110 � 122 amino acids 

residues) which could partisipate in association of SppA2 with membranes or with another 

membrane-associated protein(s). Association of SppA2 with thylakoid membranes was 

strengthened by recent proteome analysis of periplasma and outer membrane proteins from 

Synechocystis that did not detect SppA2 protease in the latter subfractions (Huang et al., 

2002; Huang et al., 2004). Further analysis of membrane topology showed that SppA2 forms 

a high molecular weight complex in the membrane which is not associated with the major 

photosynthetic complexes such as PSI, PSII, cytochrome b/f complex and ATP synthase. 

Two different approaches were chosen for determining the nature of the association of 

SppA2 with membranes: �blue native� PAGE and sucrose gradient ultracentrifugation of 

partially solubilized membranes. Isolation of thylakoid protein complexes by �blue native� 

PAGE excluded a possible co-migration of SppA2 with ATP synthase and cytochrome b/f 

complex and revealed more or less co-migration with the monomer forms of PSI and PSII. 

Sucrose gradient centrifugation allowed a better resolution of the photosynthetic complexes 

and showed that, indeed, the SppA2-containing complex is located between the monomer 

forms of PSI and PSII but is not a constituent part of these complexes. Previous work on 

protease V from E. coli (SppA2 homologue) demonstrated that this protein with a molecular 

weight of 24 kDa forms a complex of 130 kDa in the cytoplasma membrane (Pacaud, 

1982b). The complex organization of SppA1 had also been previously demonstrated in E. 

coli (Pacaud, 1982b; Ichihara et al., 1986) and in Arabidopsis thaliana (Lensch et al., 2001). 

In all cases SppA complexes possess a homotetrameric structure. On �blue native� PAGE the 

SppA2-containing complex appears as a complex of 260 kDa, that is, twice the size of the 

homotetramer of SppA2. This suggests the presence of some other protein(s) in the SppA2-

containing complex or the complex could represented by duplication of SppA2 tetramer as it 

was previously suggested for SppA1 from E. coli (Pacaud, 1982b; Ichihara et al., 1986).  
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The homology of SppA1 and SppA2 and their regulation by changes in light intensity 

proposed also their physical interaction in the cell. Analysis of the SppA2 complex in the 

mutant strain deficient in the sppA1 gene did not show any modification in mobility of the 

SppA2 complex. This suggests that SppA1 and SppA2 are not constituents of the same 

multimeric protein complex in the membranes or the complex of both components is not 

stable under the chosen solubilization conditions. 
 

4.3.2.3 SppA2 degrades small polypeptides accumulating under HL after recovery from 

HL to LL 

 

In this, work it was observed that the ∆sppA2 mutant showed a slower growth rate, bleached 

phenotype and lower O2 production in cells grown under LL and after recovery from HL to 

LL in comparison with the wild-type. However, no differences in behaviour of both strains 

were detected under HL. Protein analysis revealed accumulation of low molecular weight 

polypeptides under HL that retained stable in the ∆sppA2 mutant in contrast to those of the 

wild-type. The degradation of SppA2 protein during HL and its accumulation during 

recovery from HL to LL suggested that it could be involved in the specific degradation of 

low molecular weight polypeptides taking part in adaptive response of cyanobacteria to 

elevated light intensities. The photoprotection mechanisms of cyanobacteria operates in 

different ways including the synthesis and recruitment of enzymes essential under stress 

conditions with their following degradation after recovery to standard conditions (Mohamed 

and Jansson, 1991; He et al., 2001; Havaux et al., 2003). Previous studies revealed at least 

two groups of low molecular weight polypeptides that can be involved in cell survival under 

light stress: Nbl proteins (non-bleached polypeptides; Collier and Grossman, 1994; Schwarz 

and Grossman, 1998) and HLIP (high light inducible proteins; Montane and Kloppstech, 

2000; He et al., 2001; Havaux et al., 2003). Expression of nbl genes as well as of hli genes 

depends on light intensity, temperature and nutrient conditions (e.g. sulfur and nitrogen 

deprivation, cold stress; Collier and Grossman, 1992; Salem and van Waasbergen, 2004; van 

Waasbergen et al., 2002;). It is interesting that the expression of HLIP is also controlled by 

Nbl proteins. NblS was found to control the expression of a number of photosynthesis-related 

genes, including hliA, under HL, red-light, blue-light and UV-A light and also to control the 

expression of the nblA gene, the product of which is involved in the degradation of PBS 

during nitrogen and sulfur starvation (van Waasbergen et al., 2002). A possible effect of 

sppA2 interruption on NblR and NblS was excluded since accumulation of NblA1 and NblA2 
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proteins was not affected in ∆sppA2 under nitrogen-limiting and light-elevated conditions 

(Pojidaeva E., unpublished data).  

 

This study proposes that HLIPs could be a substrates for the SppA2 protease. Initial 

accumulation of HLIP occurs during the phase of acclimation to HL in which wild-type cells 

are unable to divide (6 � 10 h) and lose approximately 50% of their capacity for PSII activity. 

The binding of chlorophyll and/or chlorophyll intermediates could protect the cyanobacteria 

from a potentially phototoxic effect of these free pigments. HLIPs are rapidly degraded 

during the first hours (1 � 3 h) of recovery of cells from excitation excess (He et al., 2001). 

However, the disappearance of these proteins proceeds re-greening of the cells and 

restoration PSII activity (van Waasbergen et al., 2002). In wild-type cells SppA2 protein was 

detected only within first 12 h of HL. It then completely disappeared within 48 h. The 

accumulation of newly synthesized protein was observed within 2 h during the recovery 

phase from HL to LL that proposed the involvement of SppA2 in the expression or 

degradation of HLIP proteins under LL. High expression of HLIP was detected under 

different stress conditions (nutrient deprivation, heat and light stresses; He et al., 2001; van 

Waasbergen et al., 2002; Salem and van Waasbergen, 2004). However, accumulation of 

SppA2 dropped exclusively under HL and not under other stress conditions. These results 

suggest that other components and mechanisms could be involved in the degradation of HLIP 

under other stress regimes as well. 

 

4.3.2.4 Accumulation of SppA2 is regulated by SppA1 protease 

 

A novel and striking finding of this study is the light-activated expression of sppA2 gene at 

one side and light-activated turnover of SppA2 protein on the other side. Similar to sppA1 in 

Arabidopsis thaliana (Lensch et al., 2001), but not to Synechocystis (Pojidaeva et al., 2004), 

sppA2 transcript was increased when the cells were transferred to higher light regimes. At the 

same time protein accumulation decreased substantially with a half-life time of 3 h upon HL 

exposure. Protein recovery from HL to LL was reached within first 2 h with its maximum 

level between 6 and 8 h after transfer from HL to LL. These data demonstrated that SppA2 is 

a short-lived protein under HL required probably only under LL or after recovery to LL in 

cyanobacterial cells. As it was mentioned before, the activity of SppA1 protease correlated 

with different light intensities and is involved in the acclimation of linker proteins of 

phycobilisome antenna to acclimation to higher light regimes (Pojidaeva et al., 2004). 
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Decrease of SppA2 protein during acclimation to HL is correlated with the presence of 

SppA1 protease. No drop in protein amount upon transfer to HL could be observed in the 

∆sppA1 mutant strain. Therefore, SppA2 protease is another substrate for the SppA1 protease 

or a SppA1-regulated protease under HL. Although the functions and direct substrates of 

SppA1 and SppA2 are not yet clarified, this study show an interplay and net regulation 

between the two members of SppA family. 



SUMMARY 119 

5. SUMMARY 

 

A set of 62 genes that encode the entire peptidase complement of Synechocystis sp. PCC 6803 

has been identified in the genome database of that cyanobacterium. Sequence comparisons 

with the Arabidopsis thaliana genome uncovered the homologous chloroplast components 

inherited from their cyanobacterial ancestor. A systematic gene disruption approach was 

chosen to individually inactivate, by customary transformation strategies, the majority of the 

Synechocystis sp. PCC 6803 genes encoding peptidase subunits that are related to the 

Arabidopsis thaliana chloroplast enzymes. This allowed classification of the peptidases that 

are required for cell viability or are involved in specific stress responses.  

 

1. General analysis of various peptidase knock-out mutants: Using the knock-out strategy it 

was found that the members of the Clp family (ClpP1, ClpP3, ClpR, ClpC, ClpX and ClpB1) 

are essential for cell viability since corresponding fully segregated knock-out strains could not 

be obtained. Only clpP2 and clpB2 genes were successfully inactivated in this study. ClpP2 is 

critical for the function of the photosynthetic machinery since after knock-out of the gene the 

cells were not able to grow under phototrophic conditions. The work also demonstrated that 

ClpP2 could be involved in phycobilisome degradation during nutrient deprivation and is 

required for temperature acclimation.  

 

Only two knock-out strains (∆hhoA and ∆hhoB) from the Deg family segregated fully. 

Physiological analysis revealed that HhoA and HhoB differ in their functions in 

Synechocystis. HhoA is essential under heat stress and iron deprivation, whereas the product 

of the hhoB gene could be important under phosphorus deprivation. The non-successful 

inactivation of the htrA gene suggests that this gene is essential for cell viability. Other 

peptidases, such as Prp2, SppA1, SppA2, Ape2 and PepP, are also involved in the acclimation 

to environmental stresses. SppA1, SppA2 and PepP contribute to light acclimation. PepP 

takes as well part in acclimation to high temperature. Probably, this protease plays a role in 

the posttranslational modification of proteins, including those that are highly expressed during 

light and heat stress. Ape2 likely participates in responses to iron and copper deficiency.  

 

2. Analysis of the SppA family: Two genes, sppA1 and sppA2, are found in the genome of 

Synechocystis sp. PCC 6803 that encode the serine-type proteases SppA1 and SppA2, 
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respectively. Inactivation of the corresponding genes showed that both proteins are required 

for light adaptation of cyanobacterial cells. 

 

Upon acclimation of ∆sppA1 from 50 to 150 µE m-2 s-1 light intensities most of the 

phycobilisome content was preserved, whereas the wild-type developed a bleached phenotype 

due to the loss of about 40% of its phycobiliproteins. In the ∆sppA1 strain cleavage of the 

LR
33 and LCM

99 linker proteins does not occur in medium light. Thus, a major contribution to 

light acclimation in cyanobacteria rests on a SppA1-mediated cleavage of phycobilisome 

linker proteins that besides changes in gene expression of the major phycobiliproteins, 

contributes a mechanism responsible for a reduced content in phycobilisome antenna upon 

acclimation to higher light intensity.  

 

The second member of SppA protease family, the SppA2 protein, is present in the genome of 

Synechocystis sp. PCC 6803, but not in Arabidopsis thaliana. SppA2 represents a protein half 

of the size of SppA1 and shows domain homology to the C-terminal part of SppA1. The in 

vitro proteolytic assay with the non-specific protease substrate azocoll revealed a serine-type 

activity of the overexpressed full-length SppA2 protein. SppA2 is a membrane associated 

protease that forms a high molecular weight complex of 260 kDa in cyanobacterial 

membranes. Similar to sppA from higher plants the expression of sppA2 (slr0021) in 

Synechocystis is enhanced at higher light. By contrast, SppA2 protein showed a strong 

reduction down to zero levels in cyanobacterial cells that were exposed to high light for two 

days. The data demonstrated that SppA2 is rapidly degraded with a half-life of 3 h under high 

light. The degradation of SppA2 is specific to light and not to other stress conditions, like 

nutrient deprivation, heat or cold stresses. SppA2 protease accumulated under high light in the 

mutant strain deficient in sppA1 gene encoding SppA1 protease. This demonstrates that 

SppA2 protease expression or degradation is regulated by SppA1 protease or SppA1-

controlled proteases in a light-dependent manner.  
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