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1. Introduction 
  

1.1. Mitochondrial protein translocation machineries 

 

1.1.1. Mitochondrial structure and function   

 

Mitochondria are semi-autonomous intracellular organelles of eukaryotic organisms. 

They have essential roles in the iron-sulfur cluster biogenesis (Mühlenhoff and Lill, 2000), 

and in the production of ATP (the main cellular energy-transducing molecule) by the means 

of oxidative phosphorylation (Mitchell, 1979; Schägger, 2002; Kadenbach, 2003). 

Furthermore, they perform functions related to the cell stress response and programmed cell-

death (Hengartner, 2000; Zamzami and Kroemer, 2001; Newmeyer and Ferguson-Miller, 

2003), as well as aging (Finkel and Holbrook, 2000; de Souza-Pinto and Bohr, 2002). They 

are also important for the maintenance of cellular Ca2+ homeostasis (Rizzuto et al., 1992; 

Pozzan and Rizzuto, 2000; Orrenius et al., 2003; Parekh, 2003). Moreover, oxidative 

decarboxylation of pyruvate, reactions of the citric/tricarboxylic acid cycle, certain steps of 

the urea cycle and the biosynthesis of haem and metabolites such as amino acids and lipids 

take place in mitochondria (Voet and Voet, 1995).  

Mitochondrial functions are affected in various genetically inherited diseases (Ohta, 

2003; Zeviani and Carelli, 2003). Mitochondrial morphology and abundance in the cell 

depend on the type of organism, type of cell and the metabolic/physiological state of the cell. 

Mitochondria differ in size, which ranges from less than 1 µm, to more than 10 µm. They can 

be ovoid, bean-shaped or spherical, thread-like, elongated tubules, or highly branched nets 

(Frey and Mannella, 2000). Their morphology is maintained through balanced fusion and 

fission events which take place throughout the cell cycle (Nunnari et al., 1997). Even their 

position in the cell can vary depending on the metabolic, energetic and various other cellular 

requirements and environmental conditions. They manoeuvre around through the association 

with cytoskeletal elements and linger in the vicinity of high energy consumption sites.  

It is important to note that no de novo synthesis of the organelle occurs. Instead, these 

organelles continuously grow throughout the cell cycle, and the daughter cells inherit a 

portion of them upon cell division (Yoon and McNiven, 2001). Mitochondria probably arose 

monophyletically from a single α-proteobacterial ancestor that underwent symbiotic fusion 
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with a nucleus-containing eukaryotic host resembling extant amitochondriate protists (Gray et 

al., 1999; Emelyanov, 2003). This event took place approximately 1.5-2.0 billion years ago. 

During evolution the ancestral endosymbiotic genome was significantly reduced, with most of 

the genes being lost or transferred to the nucleus of the host organism (Herrmann, 2003). 

Nowadays mitochondria contain rather small genomes (mtDNA nucleoids), that code for a 

handful of proteins and some of its RNA species, while most of the genes required for 

supporting its activity are located in the nucleus.  

Mitochondria contain two membranes: the outer membrane which is the physical 

barrier separating the mitochondrion from the cytoplasm, and the convoluted inner membrane, 

physically dividing the intermembrane space from the dense matrix (Figure 1), adapted from 

Frey and Manella, 2000).  

Due to its highly convoluted character, the inner mitochondrial membrane can 

constitute up to one third of the total cellular membrane content, carrying more than one fifth 

of the total mitochondrial protein. Two distinct inner membrane sub-regions can be 

distinguished: the inner boundary membrane closely apposed to the outer membrane, and the 

cristae membrane which represent invaginations of the inner membrane that are projecting 

into the matrix. Cristae membranes also show very rich shape variations, ranging from 

tubular, lamellar to triangle-shaped. The morphology of cristae membrane changes as well, 

with the differential mitochondrial activity (Reichert and Neupert, 2002). Outer and the inner 

membranes do not only differ in their appearance, but also in their lipid composition, 

permeability to various metabolites and integral membrane protein content, reflecting their 

different, highly specialized functions.  

 

 

Figure 1. Computer models generated from segmented 3D tomograms of a mitochondrion in 
chicken cerebellum. (A) The entire model showing all cristae in yellow, the inner boundary membrane in 
light blue, and the outer membrane in dark blue. (B) Outer membrane, inner boundary membrane and four 
representative cristae in different colors 
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.  

The inner mitochondrial membrane contains components of the respiratory chain, ATP 

synthase complex, protein translocation machineries and many metabolite transporters (in S. 

cerevisiae 35 various members of the mitochondrial carrier family are present). It is 

impermeable to polar molecules and ions, safekeeping the electrochemical proton gradient, 

created by the action of the respiratory chain. The respiratory chain components pump protons 

from the matrix into the intermembrane space, with pH and voltage differentials ensuing. In 

the matrix, pH is more basic by about 0.4-1.4 pH units than in the intermembrane space and 

the inner membrane’s surface facing the matrix is more negative than the one facing the 

intermembrane space, giving rise to a voltage gradient of about 0.14 volts. The energy of the 

described gradient is harnessed by the proton-transporting ATP synthase. This enzyme 

complex produces ATP from ADP and the inorganic phosphate, as the protons released into 

the mitochondrial matrix combine with reduced oxygen to form water.  

The outer membrane is populated with highly abundant porins (voltage-dependent 

anion channel (VDAC)) which form large aqueous channels in the lipid bilayer, components 

of the protein translocation machinery, as well as proteins determining the organelle’s 

morphology and mediating apoptosis. Due to the presence of porins, the outer membrane is 

permeable to water, inorganic ions and metabolites of molecular weight smaller than 5 kDa.  

The mitochondrial matrix is the site of a large number of metabolic processes, and 

contains the mitochondrial genome (mtDNA) and special mitochondrial ribosomes. 

Mitochondrial nucleoids are covalently closed, circular (with some exceptions in certain algae 

and ciliates, where it is linear), multi-copy, double-stranded DNA molecules attached to the 

inner membrane. They differ from nuclear DNA in base composition, higher density upon 

separation by density gradient centrifugation and absence of histones. The mitochondrial 

genetic code displays certain deviations from the universal genetic code. Mitochondrial genes 

do not follow Mendelian rules of inheritance, being characterised by the non-mendelian 

(cytosolic) inheritance (Alberts et al., 1994).  

Mitochondrial protein synthesis generally differs from the cytosolic protein synthesis 

in several aspects: (i) N-formylmethionine is the first amino acid incorporated in a 

polypeptide chain, (ii) it is sensitive to antibiotics which inhibit bacterial protein synthesis and 

(iii) its ribosomes are of the 74S sedimentation coefficient species in fungi and 60S in 

metazoans. Although capable of sustaining their own translation, mitochondria do not possess 

large enough genomes to accommodate their protein repertoire in full: mtDNA codes only for 

eight of approximately 750 mitochondrial proteins identified in yeast (Sickmann et al., 2003), 

and for 13 from more than a thousand proteins functioning in human mitochondria (Cotter et 
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al., 2004). On the whole, 20% of all cell proteins in eukaryotic cells are mitochondrial 

proteins (Model et al., 2001). 

The intermembrane space subcompartment harbours around 5% of total mitochondrial 

proteins. Among those are the proteins involved in maintenance of mitochondrial morphology 

(like Mgm1p; Herlan et al., 2003), electron transport along the respiratory chain (cytochrome 

c; Alberts et al., 1994), apoptosis (Smac, AIF, cytochrome c; Newmeyer and Ferguson-Miller, 

2003), protein translocation (small Tim proteins; Neupert, 1997), copper transport (Cox17p; 

Beers et al., 1997) and iron sulfur cluster biogenesis (Erv1p, Lange et al., 2001). 

 

1.1.2. Protein translocation in mitochondria of N. crassa and S. 
cerevisiae 

 

 1.2.2.1. Targeting of preproteins to mitochondria  

Nuclear-encoded mitochondrial precursor proteins are synthesized in the cytosol on 

free ribosomes. During synthesis, they are bound by the cytosolic chaperones of the Hsp70 

family which help to keep them in an import competent, unfolded or partially folded state. In 

mammals, mitochondrial import-stimulating factor (MSF) specifically recognizes and binds 

the signal sequences of mitochondrial precursors and stimulates their binding to mitochondria 

in an ATP dependent manner (Hachiya et al., 1994 and 1995). Although the majority of 

mitochondrial preproteins are imported posttranslationally, evidence for cotranslational 

import exists as well (Fujiki et al., 1993).  

Mitochondrial precursor proteins contain targeting and sorting sequences that 

determine the final destinations of proteins within mitochondria. Proteins destined for the 

matrix generally contain N-terminal cleavable presequences. These N-terminal extensions are 

rich in positively charged, hydrophobic and hydroxylated amino acid residues which form 

amphipathic α-helical structures and their lengths vary between ca 12 and 70 amino acid 

residues (von Heijne, 1986; von Heijne et al 1989; Roise, 1992; Roise and Schatz, 1988). 

Proteins that are to be inserted into the inner membrane display great versatility in their 

targeting signals (Table 1). Outer membrane proteins with single TMDs contain 

mitochondrial targeting information in their hydrophobic anchors and the flanking positively 

charged residues (Rapaport, 2002). The β-barrel proteins of the outer membrane possess 

internal targeting signals with no consensus sequences identified up to date.  
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The targeting signals of the intermembrane space proteins can be grouped into at least 

three classes. Class I consists of the N-terminal matrix-targeting sequences followed by the 

hydrophobic sorting sequences (bipartite presequences related to the signals of bacterial and 

eukaryotic secretory proteins), like those in cyt b2 (Glick et al., 1992a; Gärtner et al., 1995b). 

In class II, the signal is confined to an internal, highly hydrophilic part of the molecule rich in 

positively and negatively charged residues, like in cytochrome c heme lyase (CCHL, Lill et 

al., 1992; Segui-Real et al.,1993; Diekert et al., 1999). In class III, represented by the small 

Tim proteins, the targeting signal has not yet been clearly defined, but the cysteine residues 

have been shown to be important for the import and assembly of a functional complex (Lutz 

et al., 2003; Lu et al., 2004)  

There are proteins which localise to two subcompartments of mitochondria, like the 

Mcr1p which is found in the outer membrane, as well as in the intermembrane space (Hahne 

et al., 1994), or Mgm1p, with the long isoform residing in the inner membrane and the short 

one in the intermembrane space (Herlan et al., 2003). The targeting sequence of Mcr1p 

closely resembles that of the outer and the inner membrane proteins with single TMDs, and 

the one from Mgm1p consists of a presequence followed by two hydrophobic segments. 

 
Table 1 

Type of targeting signal Example Reference 
 

Cleavable presequences combined with a 

hydrophobic anchor located downstream 

 

CoxVa 
 

Gärtner et al., 1995a 

Cleavable presequences together with a 

downstream hydrophobic anchor, 

combined with a cluster of charged amino 

acids C-terminal to it 

D-LDp Rojo et al., 1998 

Internally positioned positively charged 

presequence-like stretches, often preceded 

by a TMD 

BCS1p Fölsch et al., 1996; 

Stan et al., 2003 

Bipartite presequences cyt c1 Glick et al., 1992a 

Multiple internal targeting signals 

containing charged and non-charged parts 

in proteins with modular structure* 

metabolite carriers Kübrich et al., 1998; 

Endres et al., 1999; 

Wiedemann et al., 2001 
 

* these signals, contained in each of modules and capable of functioning independently for 

each module alone, exert a concerted action in vivo for highest import efficiency 
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Presequences which reach the matrix are, in the majority of cases, cleaved off by the 

mitochondrial processing peptidase MPP (Hawlitschek et al., 1988; Gessert et al., 1994; 

Gakh, Cavadini and Isaya, 2002) with a few exceptions, like the chaperonin 10 (Rospert et al., 

1993; Jarvis et al., 1995). A single cleavage by MPP is normally sufficient for the maturation 

of most matrix and inner membrane protein precursors, with the exception of the octapeptide-

containing precursors that require two cleavages, sequentially carried out by MPP and 

mitochondrial intermediate peptidase (MIP), also localized to the matrix (Isaya et al., 1991). 

The bipartite presequences are however cleaved by the heterodimeric inner membrane 

peptidase Imp1p-Imp2p (Nunnari et al., 1993).  

 1.2.2.2. Translocases of the outer mitochondrial membrane 

The outer membrane of mitochondria contains two major protein complexes involved 

in protein translocation, membrane insertion and assembly. All mitochondrial precursor 

proteins described up to date are recognised first by the components of the TOM complex 

(translocase of the outer mitochondrial membrane; Rapaport, 2002 and Paschen and Neupert, 

2001). The TOM holo complex consists of the channel forming Tom40 subunit, three small 

Tom proteins Tom5, Tom6 and Tom7, and three receptor proteins, Tom22, Tom20 and 

Tom70 (Figure 2, Künkele et al., 1998a). When purified without the receptor subunits Tom20 

and Tom70, it is referred to as the TOM core complex, or the GIP (general import pore; 

Pfanner and Geissler, 2001). Both N. crassa and S. cerevisiae TOM complexes contain all 

these subunits.  

Receptors of the TOM complex show differential substrate recognition. Tom20 is 

designated for binding presequence-carrying precursors, while Tom70 attends to the 

mitochondrial carrier family members (Söllner et al., 1989 and 1990; Schlossmann et al., 

1994 and 1996; Brix et al., 1997; Komiya et al., 1997 and 1998). Tom22 binds all various 

kinds of precursors (van Wilpe et al., 1999) and with the help of Tom5 (Dietmeier et al., 

1997) transfers them to the Tom40 which is most probably present in six copies per GIP 

complex. A pair of Tom40 molecules builds a channel with a pore diameter of ca 22 Å 

(Künkele et al., 1998b; Schwartz et al., 1999), the size being sufficient to accomodate two α-

helices. The channel has specific substrate-binding sites as well (Rapaport et al., 1997; Hill et 

al., 1998). Aside from Tom20, the cytosolic domain of Tom22, as well as parts of Tom5, all 

contain negatively charged, succeeding binding sites for the positively charged presequences. 

This “acid chain” of negatively charged patches across the outer membrane, was proposed to 
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drive the translocation of presequence-containing substrates from the cis to the trans side of 

the TOM complex (Komiya, 1998).  

 

 

Figure 2. Import pathways in N. crassa mitochondria. 

 

Meanwhile, it has been shown that the hydrophobic interactions also take place in the 

process of translocation across the outer membrane (Brix et al., 1997 and 1999; Abe et al., 

2000; Meisinger et al., 2001). Understanding of the translocation process across the outer 

membrane has therefore seen the acid chain hypothesis being recasted as the binding chain 

hypothesis that encompasses all different types of non-covalent interactions (Pfanner and 

Geissler, 2001).  

An intriguing property of certain TOM complex members, namely Tom70 and 

Tom20, is a repetitive, degenerate motif of 34 amino acid residues, called the tetratricopeptide 

repeat (TPR) (Steger et al., 1990; Iwahashi et al., 1997; Young et al., 2003). It is present in 

the cytosol-exposed domains of these proteins. This motif is a protein interaction module, 

often arranged in tandem arrays. It is found in unrelated proteins involved in quite diverse 

cellular processes. From data collected with various TPR-containing proteins, a common 

design seems to emerge. The module is usually structured into two anti-parallel α-helices, 

such that tandem arrays of TPR motifs generate a right-handed helical structure. This 

structure forms an amphipathic channel that should accommodate complementary regions of 

the binding partner proteins. It is therefore conceivable that the TPR motif has a vital role in 
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binding incoming precursors by the mentioned mitochondrial import receptors (Abe et al., 

2000).  

At last, Tom6 and Tom7 proteins are involved in regulating the stability of the TOM 

complex (Dekker et al., 1998).  

The TOM complex is involved in transport of all nuclear-encoded mitochondrial 

proteins, regardless of their final destination within the organelle. It can insert proteins with α-

helical folds into the outer membrane. For the integration of the β-barrel outer membrane 

proteins, the TOM complex cooperates with the other oligomeric outer membrane protein 

machinery, the TOB complex (for topogenesis of mitochondrial outer membrane beta-barrel 

proteins; Paschen et al., 2003). It is also known as the SAM complex (sorting and assembly 

machinery; Wiedemann et al., 2003). Up to now, the complex has been characterized in S. 

cerevisiae only. The TOB complex consists of the channel-forming subunit Tob55 (identified 

in N. crassa and in S. cerevisiae; Paschen et al., 2003; Wiedemann et al., 2003), and Mas37 

(Gratzer et al., 1995; Hachiya et al., 1995). The latter component has been identified only in 

yeast thus far. This complex takes over the β-barrel precursor proteins from the TOM 

complex, but the mechanism of their insertion into the outer membrane is not yet resolved.  

 1.2.2.3. Translocases of the inner mitochondrial membrane 

Proteins of the inner mitochondrial membrane are of dual origin: there are some 

encoded by the nuclear genes (for instance Tim17, Tim22, Tim23, Tim50, Tim54, Oxa1, 

AAC, etc.) and others, encoded by the mtDNA (cytochrome oxidase subunits Cox I, II and 

III, F0F1-ATPase subunits 6, 8 and 9, and apocytochrome b). Furthermore, subsets of 

nuclearly encoded precursors destined for the inner membrane differ significantly in their 

targeting signals. These facts make for their divergence as substrates of different inner 

membrane translocases. 

The inner mitochondrial membrane contains three translocase complexes for insertion 

of precursor proteins encoded by the nuclear genes, all with different substrate specificities 

(for reviews see Neupert, 1997; Paschen and Neupert, 2001; Pfanner and Geissler, 2001; 

Jensen and Dunn, 2002). The TIM23 complex (for translocase of the inner mitochondrial 

membrane) has been characterised in much detail in S. cerevisiae and in N. crassa. This 

translocase is specialized for the precursor proteins which contain presequences. Substrates of 

the TIM23 translocase are destined mainly for the matrix, some for the intermembrane space 

and some for the inner membrane. The essential TIM23 translocase subunits embedded in the 

inner mitochondrial membrane are: Tim14 (Mokranjac et al., 2003b), also termed Pam18 
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(from presequence translocase-associated motor; Truscott et al., 2003), Tim17 (Kübrich et al., 

1994), the channel-forming Tim23 protein (Ryan et al., 1993; Emtage et al., 1993; Kübrich et 

al., 1994) and the Tim50 receptor subunit (Geissler et al., 2002; Yamamoto et al., 2002; 

Mokranjac et al., 2003a). The import motor of the Tim23 translocase (Neupert and Brunner, 

2002; Voos and Röttgers, 2002; Okamoto et al., 2002) is located in the matrix and it includes 

the essential subunits MIA1 (Tim16, Pam16; Kozany et al., 2004; Frazier et al., 2004), 

Tim44, mtHsp70 and Mge1 (Schneider et al., 1996; Voos et al., 1996; Horst et al., 1997). The 

only membrane-anchored component of this motor is the Tim14 protein. The transmembrane 

potential (∆ψ) and ATP are the general requirements for the productive action of the TIM23 

translocase.  

Two groups of the inner membrane proteins are exported from the matrix in a process 

mediated by the Oxa1 and Mba1 translocases, described up to date in S. cerevisiae (Bauer et 

al., 1994; Bonnefoy et al., 1994; Herrmann et al., 1997; Hell et al., 1997; Preuss et al., 2001) 

and N. crassa (Nargang et al., 2002). The first group contains some presequence-carrying 

proteins that are completely imported into the matrix from where they insert into the inner 

membrane in an export process. This pathway resembles insertion reactions of polytopic 

membrane proteins of bacterial origin and has been termed the conservative sorting pathway 

(Stuart, 2002; Herrmann and Neupert, 2003). The other group of Oxa1 and Mba1 substrates is 

composed of highly hydrophobic membrane proteins encoded by the mtDNA. During 

mitochondrial evolution transfer of their genes to the nucleus might have been prevented, 

because of their hydrophobic nature and the tendency to form unproductive aggregates in the 

cytosol. Therefore, they need to be inserted into the inner membrane co-translationally, before 

the aggregation takes effect.  

Translocases mediating protein export from the matrix, Oxa1 and Mba1, overlap in 

substrate specificity and function. However, both are capable of performing their roles 

independently. The matrix-exposed C-terminus of Oxa1 forms an α-helical coiled-coil domain 

that binds mitochondrial ribosomes (Szyrach et al., 2003) thereby tethering the precursor to 

the site of its integration into the lipid bilayer. Oxa1 is evolutionarily conserved – its 

homologues are found in mitochondria of all investigated species. Similarly, its homologues, 

YidC protein in the bacterial inner membrane and Alb3 protein in the chloroplast thylakoid 

membrane, mediate protein insertion into corresponding membranes (Kuhn et al., 2003). 

Two homologues, shown to be involved in the export translocation process coupled to 

assembly of the cytochrome oxidase, are the yeast Cox18 (Souza et al., 2000), and the Oxa2 

protein of Neurospora crassa (Funes et al., 2004). Both proteins also bear significant degree 



 

10 

of homology to the Oxa1 protein, but lack the α-helical C-terminal ribosome-binding domain 

characteristic of Oxa1.  

While the TIM23 complex inserts inner membrane proteins which contain only one 

TMD, the TIM22 complex is required for the insertion of all nuclear-encoded, inner 

membrane integral proteins characterised by multiple TMDs and the absence of the 

presequence. Metabolite carrier proteins are the major class of TIM22 substrates. They all 

reside in the inner membrane of mitochondria and have an approximate molecular mass of 30 

kDa. Their distinctive attribute is the modular structure: six α-helical TMDs are tandemly 

organised in three related modules of ~100 amino acid residues (Figure 3), adapted from 

Pebay-Peyroula et al., 2003).  

 

 
 

Figure 3. Architecture of the ADP/ATP carrier. (A) A schematic diagram of the carrier secondary 
structure. Transmembrane helices, surface helices, intermembrane space loops and matrix loops are labelled H, 
h, C or M, respectively. Inside and outside designate the matrix and the intermembrane space of mitochondria, 
respectively. (B) A ribbon diagram viewing the carrier from the side. The structure is coloured according to the 
sequence blue (N terminus) to red (C terminus). Membrane boundaries are drawn in agreement with the 
hydrophobic segments of the helices. (C) View from the “inside” (matrix). Two cardiolipins are represented in 
black as ball and sticks. (D) View from the outside (intermembrane space).  
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These tandem repeats are interrelated in different proteins, and probably have similar 

secondary structures: two transmembrane α-helices linked by an extensive hydrophilic region. 

Some members of the family have been well studied (Palmieri et al., 2000), like the 

ADP/ATP carrier, the phosphate carrier, dicarboxylate and tricarboxylate carriers, the 

ornithine transporter, the folate transporter, the aspartate-glutamate transporter, the 

oxoglutarate carrier, the uncoupling protein, and many others, while some still await 

characterisation. 

Other identified TIM22 translocase substrates include the Tim23, Tim17 and Tim22 

proteins, all with four TMDs and possibly with secondary modular structure similar to that of 

carriers. The Tim22 precursor preferentially utilises the Tom20 receptor (Kurz et al., 1999), 

but subsequently diverges from the TIM23 translocase substrates in joining the carrier import 

pathway. The Tim54 precursor also shows a peculiar behaviour on its import route, mirroring 

that of Tim22: it uses the Tom70 receptor which recognises its internal targeting signal(s), but 

then joins the pathway of the TIM23 complex substrates. In addition, Tim23 protein was 

reported to be bound by the Tim8·Tim13 complex on its journey through the intermembrane 

space when ∆ψ is dissipated (Paschen et al., 2000; Davis et al., 2000; Curran et al., 2002b; 

Jensen and Dunn, 2002). 

The TIM22 translocase encompasses several membrane-integrated subunits: Tim22 

(Sirrenberg et al., 1996; Kerscher et al., 1997), Tim54 (Kerscher et al., 1997) and its only 

non-essential and for yeast unique component Tim18 (Kerscher et al., 2000; Koehler et al., 

2000). Additional members of the TIM22 translocase reside in the mitochondrial 

intermembrane space. They are the small Tim proteins (Koehler, Merchant and Schatz, 1999). 

In yeast, there have been five members of the small Tim protein family identified. 

Homologues of Tim9 (Adam et al., 1999; Koehler et al., 1998b), Tim10 (Sirrenberg et al., 

1998), Tim8 (Davis et al., 2000; Paschen et al., 2000) and Tim13 protein (Davis et al., 2000; 

Paschen et al., 2000) are generally found in all species under investigation regarding 

mitochondrial TIM22 translocase. There exists one small Tim protein, Tim12 (Sirrenberg et 

al., 1998, Koehler et al., 1998a), which features a unique fifth cysteine residue in its primary 

sequence. The Tim9 and Tim10 proteins form one soluble heterohexameric complex in the 

intermembrane space, and Tim8 and Tim13 another, the first one being leastwise ten times 

more abundant. The main function of soluble small Tim complexes is to assist the transfer of 

the TIM22 translocase substrates across the intermembrane space from the outer to the inner 

membrane. Nonetheless, a small fraction of Tim9 and Tim10 proteins forms a 300 kDa 
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complex together with the membrane-associated Tim12 protein, and the membrane-integrated 

components of the TIM22 complex.  

All small Tim proteins contain the ‘twin CX3C’ motif, assumed to be involved in zinc 

binding. This last premise found its grounds in experimental findings that recombinant MBP-

Tim10 and -Tim12 fusion proteins bind zinc, and that the interaction between Tim10 and 

AAC is inhibited by metal chelators (Sirrenberg et al., 1998).  

In yeast, Tim9, Tim10 and Tim12 proteins are essential, and Tim8 and Tim13 are not. 

However, human Tim8 homologue has been implicated in the occurrence of a recessive X 

chromosome-linked progressive neurodegenerative disorder. This rare disease is also known 

as the deafness dystonia or Mohr-Tranebjaerg syndrome (DFN-1/MTS; Tranebjaerg et al., 

1995; Jin et al., 1996). It is caused by mutations in the DDP1 gene, resulting in a defective 

assembly of the DDP1/TIMM8a-TIMM13 complex (Koehler et al., 1999). DDP1 is a 

designation for the human Tim8 homologue (stands for deafness dystonia peptide). The 

syndrome comprises various severe and progressive impairments, like the sensorineural 

deafness, cortical blindness, mental retardation, paranoia, dysphagia and dystonia.  

Import orchestrated by the TIM22 translocase is also reliant on ∆ψ.  

The import of carrier proteins into mitochondria has been partitioned into several 

stages (Kübrich et al., 1998; Endres et al., 1999; Ryan et al., 1999). Upon their synthesis in 

the cytosol, carrier molecules reach the mitochondria bound to cytosolic chaperons Hsp70 and 

MSF. This state is known as the stage I. At the outer membrane, each carrier module recruits 

one dimer of Tom70p receptor molecules and is concomitantly released from the chaperones 

in an ATP-dependent manner (stage II). Although Tom70 is proposed to be the major receptor 

for carrier proteins, in tom70 null yeast strain the import of carriers resumes, albeit with 

considerably reduced efficiency and involving the Tom20 receptor (Steger et al., 1990). 

Tom70 protects the carrier precursors from aggregation and hands them over to the Tom40 

protein which forms a pore. The modules are inserted into the channel in stage IIIa and they 

are released from the outer membrane translocase through the action of the Tim9·Tim10 

complex. In yeast, the Tim12 protein docks the soluble Tim9·Tim10 complex with bound 

substrate to the Tim22·Tim54 complex (stage IIIb). The Tim22 protein receives the precursor 

proteins and releases them into the inner membrane (stage IV) in a process which is strictly 

dependent on the presence of ∆ψ. It is conceivable that the TIM22 translocase assembles 

carrier dimers in the inner membrane (stage V), but no proof has been offered hitherto to back 

this speculation. 
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1.2. Zinc fingers 

 

In all organisms zinc is an essential element, a fact first established for eukaryotic 

plants in 1869 (Raulin, 1869). It is the second most abundant trace metal found in eukaryotes. 

If one subtracts the amount of iron present in haemoglobin, zinc becomes the most abundant 

trace metal in humans. The adult human body contains up to 3 g of ionic zinc (Berg et al., 

1996). It occurs naturally as the divalent cation and has no redox activity under physiological 

conditions. Indispensable for growth, development and differentiation, it also exerts very 

important roles in the immune response, suppression of apoptosis, inhibition of cell 

transformation and in antioxidation.  

Over the past 60 years more than 300 different enzymes have been identified involving 

zinc in the catalytic process. In addition, there exist hundreds of proteins in which zinc 

stabilizes certain structural motifs and/or plays a regulatory role (Cox et al., 2000). Zinc is 

commonly coordinated to proteins via the thiol moieties of cysteine residues or the imidazole 

group of histidine residues, but other ligands, such as glutamate and aspartate residues, have 

also been identified (Lippard et al., 1994).  

Four different primary types of zinc sites exist: structural, catalytic, cocatalytic and the 

protein interface site (Auld, 2001). In catalytic sites zinc is coordinated by any three N, O and 

S donors and one water molecule. Predominant amino acid ligands of these sites are the 

histidine residues. Structural sites contain no bound water, and cysteine is the most common 

amino acid found in them. Cocatalytic sites comprise 2-3 closely spaced metals, two being 

bridged by a side chain of Asp, Glu or His, or by a water molecule. These sites do not contain 

cysteine residues. Zinc ligands can also be provided by interfaces of two protein subunits 

forming a complex. These sites are usually grouped together with catalytic or structural types.  

The first of many zinc-based protein motifs, termed the “zinc finger”, was identified in 

a transcription factor TFIIIA of Xenopus, less than 20 years ago (Miller et al., 1985). It is 

estimated that the zinc finger transcription factors alone encompass about 2-3% of proteins 

encoded in the human genome (Maret, 2000; Matthews et al., 2002). Zinc finger modules are 

small metal-binding domains found in nuclear hormone receptors, many gene regulatory 

proteins participating in transcriptional and translational processes, proteins involved in 

maintenance of metal ion homeostasis, peroxisomal biogenesis and signal transduction 

pathways, proteins with regulatory roles in apoptosis, proteins necessary for viral 

pathogenicity, chaperones and proteins which bind lipids (Laity et al., 2001; Saurin et al., 
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1996). They perform their functions through binding to lipids, DNA, RNA and/or other 

proteins. 

There exist numerous families of zinc finger proteins (well-characterized are currently 

fourteen) that contain multiple cysteine and/or histidine residues. Proteins are classified into 

different zinc finger families based on their different properties regarding:  

• nature and arrangement of zinc-binding sites (in the simplest example CCCC, 

CCHC or CCHH variations, with different lengths of amino acid spacers 

between zinc-coordinating cysteine and histidine residues),  

• subcellular localisation (nuclear, cytoplasmic, organellar),  

• function of the protein, and  

• protein folding patterns (most common one being the ββα fold of the classical 

zinc finger) (Wolfe et al., 1999, Berg et al., 1997).  

The most common zinc finger families are listed in Table 2. Their specific zinc-

binding patterns are indicated.  

 
Table 2 

Zinc finger family Zinc-binding motif 
 

Classical 
 

C2H2 

RING C3HC4, C3H2C3, C2THC4, C3HC2EC or C3NC4* 

LIM C2(H/C)2C3(C/H/D) 

FOG C2HC 

GATA-1 C4 

FYVE C8 or C7H 

PHD/LAP C4HC3 

PINCH C2HC4H 
 

* T = threonine, Thr; N = asparagine, Asn.   

 

New zinc-dependent protein folds are constantly being discovered owing to 

technological advances and accumulation of data on solved protein structures. Among those 

are the zinc bundle, zinc ribbon, treble clef (found in LIM, GATA and nuclear hormone 

receptor families, and a cross-braced treble clef variation, found in RING, FYVE, protein 

kinase C and PHD families), TAZ motif (four α-helices stabilized by 3 zinc ions), and 

extended V-shape fold characteristic of the DnaJ of E. coli; a few of these folds are shown in 

Figure 4 (adapted from Laity et al., 2001). 
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Figure 4. Ribbon diagrams of recently solved zinc finger structures (α helices and β strands are 
shown in magenta and cyan, respectively; Cys and His ligands are shown in yellow and green, respectively). (A) 
Zinc bundle of Rpb10 (PDB code 1EF4). (B) Zinc ribbon of L36 (PDB code 1DGE). (C) TAZ2 domain of CBP. 
(D) CR domain of DnaJ (PDB code 1EXK).  

 
The so-called small Tim (translocase of the inner mitochondrial membrane) proteins 

also constitute one putative zinc finger family, of the simple C4 type. This protein family has 

been discovered quite recently, with not so many, yet some essential members (Sirrenberg et 

al., 1998; Koehler et al., 1998a and 1998b; Adam et al., 1999, Paschen et al., 2000). 

Relatively small proteins, with their molecular weights amounting to ca. 10 kDa, they reside 

and perform their biological functions in the mitochondrial intermembrane space. 

Homologues have been identified in mitochondria of organisms throughout the eukaryotic 

kingdom, but none in prokaryotes or other organelles with protein translocation machineries.  

Peroxisomes harbour three proteins (Pex2, Pex10 and Pex12) involved in protein 

translocation that also contain a zinc-binding motif of the more complex RING type, known 

to be involved in protein scaffold organisation. In both small Tim and peroxisomal proteins 

zinc is presumbly involved in defining their final fold.  

In the last decade, one especially peculiar group of zinc fingers has emerged. Its 

members are united by the ability to have their metal-coordinating cysteine residues oxidized 

with a functional purpose, rather than by simple similarity in their zinc-binding motifs. So far, 

the bacterial proteins Hsp33 and RsrA are the sole representatives of this group of proteins. 

These proteins use specific and reversible disulfide bond formation as a functional switch 

(Paget and Buttner, 2003). The conserved heat shock protein Hsp33 is a molecular chaperone 
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with a highly sophisticated mode of regulation. On the transcriptional level, its gene is under 

heat shock control, whereas on the posttranslational level Hsp33 protein stands under 

oxidative stress control. The redox sensor in Hsp33 is a four cysteine center that coordinates 

zinc under reducing, i.e. inactivating conditions and that forms two intramolecular disulfide 

bonds under oxidizing, i.e. activating conditions. As an oxidized dimer, Hsp33 is fully active 

in refolding proteins. Its activity appears to specifically protect proteins and cells from the 

otherwise deleterious effects of the oxidative stress. RsrA is another bacterial redox-sensitive, 

zinc-containing protein. It is a σR-specific anti-σ factor, comprising seven cysteines in its 

sequence. It binds the σR factor under reducing conditions, preventing it from activating 

transcription of its target genes. Disulfide stress induces formation of one disulfide bond in 

RsrA, causing it to release σR factor which then activates transcription of more than 30 genes 

and operons. One of the gene products reduces the oxidized RsrA, thereby restoring its σR-

binding ability, and shutting off σR-dependent transcription, closing this physiological loop. 

By these means, cycling between reduced, zinc-bound and the oxidized states, featuring at 

least one disulfide bond, these zinc finger proteins are distinguished as key players in cellular 

responses to oxidative stress and in the overall thiol-disulfide redox balance. 
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1.3.  Aims of the present study 

 

The objective of this study was to establish the existence of homologues of TIM9 and 

TIM10 genes in N. crassa. This model system was then to be used to investigate the structural 

and functional features of N. crassa Tim9 and Tim10 proteins.  

For the structural analyses to commence, specific requirements had to be met. Initial 

efforts were therefore directed towards isolation and purification of the N. crassa Tim9·Tim10 

complex, in large quantities and of supreme purity. Certain properties of the purified 

Tim9·Tim10 complex that would constitute demands of any structural and for that matter also 

functional study attempt, had to be determined: its oligomeric state, potential zinc-binding 

ability, CD spectra, and functionality.  

As to the functional characterization of the complex, this study aimed at elucidating 

two crucial aspects regarding the process of translocation of precursor proteins across the 

outer mitochondrial membrane mediated by the Tim9·Tim10 complex. In particular, those 

were: (i) the mechanism of substrate recognition by the Tim9·Tim10 complex, and (ii) the 

sufficiency of the Tim9·Tim10 complex and the TOM complex for the transfer of AAC 

precursor across the outer membrane. To answer the first of two questions, a screen of peptide 

libraries covering the primary sequences of putative substrates of the Tim9·Tim10 complex 

was performed. To resolve the second dilemma, the approach made use of a reconstituted 

system of the Tim9·Tim10 complex and the TOM complex.  
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2. Material and methods 

2.1. Molecular biology methods 

 

2.1.1. PCR (polymerase chain reaction) 

DNA sequences were amplified through the polymerase chain reaction (PCR) using 

thermostable DNA polymerase, as described previously (Sambrook et al., 1989). DNA 

polymerases used were: Taq (isolated from Thermus aquaticus), and Pfu (isolated from 

Pyrococcus furiosus). Taq DNA polymerase has no proofreading ability, and therefore Pfu-

polymerase was used when the PCR product needed to be used for subsequent cloning. 

PCR mix (total volume of 100 µl) contained: 1-2 U DNA polymerase (Taq-

polymerase and/or Pfu-polymerase), 10 µl 10x PCR-buffer (1% Triton X-100, 500 mM KCl, 

15 mM MgCl2, 100 mM Tris·HCl, pH 8.8), 2 µl [10 mM] dNTPs, 2 µl [50 µM] primers and 

200 ng plasmid DNA template or 1 µg genomic DNA template.  

The following program, with different modifications regarding primer annealing 

temperatures and length of elongation, was used:   

 1) 94ºC, 5 min, nuclease inactivation and complete DNA denaturation; 

 2) 30-40 cycles of:       DNA amplification:  

 94ºC, 1 min  DNA denaturation; 

 45-65º C, 1 min  annealing of primers; 

 72ºC, 1-6 min 

  

new DNA synthesis (extension);  

duration of this step depends on 

the length of DNA fragment to be 

amplified; 

Taq-polymerase: 1 min/1 kb 

Pfu-polymerase: 2.5 min/1 kb; 

 3) 72ºC, 5-20 min completion of the last reaction. 

  

Annealing temperature for primers was calculated by arithmetically adding the number 

of A and T nucleotides (in primer’s sequence), multiplied by two, to the number of G and C 

nucleotides multiplied by 4 (and only for that part of primer which anneals with the template 

fully). Regions such as the restriction sites and possible Kozak sequences (Kozak, 1977 and 

2003) contained in them were not taken into account, since they do not anneal. For a pair of 
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primers, temperature that is 5 degrees lower than the lowest calculated annealing temperature 

of the two primers was chosen. In some cases I also tested two additional temperature values 

(± 5ºC), to avoid occurance of possible non-specific PCR products. 

   

2.1.2. DNA purification and analysis 

 

 2.1.2.1. Analytical and preparative gel electrophoresis  

DNA fragments were separated according to their molecular weight through 

electrophoresis in horizontal 0.8-3% (w/v) agarose gels; the fragments ranged in size from 

0.05 to 10 kb. Lower agarose percentage gels were used for separating larger DNA fragments, 

and higher agarose content gels for separating small DNA fragments. Agarose solutions were 

made by dissolving the desired amount of agarose in Tris-acetate-EDTA buffer (TAE), 

containing 1 mM EDTA and 40 mM Tris·acetate, pH 8.0, in a microwave oven. Ethidium 

bromide was added to a final concentration of 0.5 µg/ml (it allows visualization of DNA when 

the gel is exposed to UV light on a transilluminator). The agarose was stored at 65 ºC until 

use. 

The samples were loaded onto gels in a loading buffer containing 6% (v/v) glycerol, 

0.01% bromphenolblue and 0.01% xylencyanol. The electrophoresis was performed at RT in 

TAE buffer, with voltage set to U=60-70 mV. Commercially available molecular weight 

marker was used in each run.  

DNA fragments to be further processed were excised from the gel with a clean scalpel 

and the DNA extracted from the gel using the “Gel extraction kit” protocol (Qiagen). 

Extracted DNA was routinely stored at –20ºC. 

 

 2.1.2.2. DNA concentration measurement 

For DNA concentration measurements, the absorption of DNA solutions was 

measured at 260 nm. An OD of 1.0 corresponds to a concentration of 50 µg/ml of double 

stranded DNA, 33 µg/ml mono stranded DNA, 40 µg/ml RNA or 20 µg/ml oligonucleotides. 
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2.1.3. Cloning of DNA fragments  

 

 2.1.3.1. Enzymatic manipulation of DNA: restriction and ligation reactions 

Digestion of DNA with restriction endonucleases 

Plasmid DNA was digested with up to 5 U of specific restriction endonuclease enzyme 

for 1 µg of DNA. For preparative purposes up to 3 µg of DNA was digested in a 60 µl 

reaction volume, while for analytical ones, much smaller amounts in a 20 µl reaction volume 

were used. The buffer, incubation time (0.5-3 h) and temperature (usually 37ºC) of the 

reactions were chosen according to the manufacturer’s recommendations. The obtained 

digested fragments were analyzed by agarose gel electrophoresis. For preparative purposes, 

desired DNA fragments were extracted from gels using Qiagen’s “Gel extraction kit”, and 

used for ligation reactions.  

In those cases where plasmid DNA was cut with a single restriction enzyme, it was 

treated with calf intestinal alkaline phosphatase (CIP). This enzyme prevents vector’s 

recircularization, through removal of its 5’-phosphate groups on linearised molecules. 

Digested vector DNA (10 µg for instance) was incubated in 100 µl reaction with 10 µl 10x 

CIP buffer (10 mM ZnCl2, 10 mM MgCl2, 100 mM spermidin, 0.5 M Tris·HCl, pH 9.0) and 

0.1-0.5 units of alkaline phosphatase, for 30 min at 37ºC. The enzyme was inactivated 

through heating to 65ºC for 20 min in the presence of 5 mM EDTA, and separated from the 

DNA through agarose gel electrophoresis. DNA of interest was then extracted form the gel.  

 

Ligation 

Linearized DNA vector (50-200 ng) and a 5 fold molar excess of DNA fragment to be 

inserted, were incubated in a 10 µl reaction with 1 µl of 10x ligation buffer (10 mM MgCl2, 

5% (w/v) PEG-8000, 1 mM DTT, 1 mM ATP, 50 mM Tris·HCl, pH 7.6), and 0.5 µl (1 U) T4-

DNA ligase (Gibco-BRL). Reactions were performed at 14ºC for 16 h and 0.5-1 µl of this 

mixture was used for E. coli cells transformation. 

 

 2.1.3.2. Preparation and transformation of E. coli competent cells  

Preparation of competent cells 

A small culture, usually 25 ml of LBamp-medium, inoculated with a single colony of 

the corresponding E. coli strain (MH-1 or XL-1 Blue), was grown overnight at 37ºC under 

moderate shaking conditions. The following day, 1 l of liquid LBamp-medium was inoculated 
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with the overnight culture. The bacterial cells were grown further until they reached the 

logarithmic growth phase (OD578 ~ 0.5). Then they were incubated on ice for 30 min, 

harvested by centrifugation (4,400 x g, 5 min, 4ºC) and washed sequentially with 400 ml, 200 

ml, and 50 ml of 10% (v/v) glycerol. The competent cells were finally resuspended in 500 µl 

10% (v/v) glycerol, aliquoted, and stored at –80ºC. 

 

Transformation of competent cells through electroporation 

To 40-60 µl of E. coli competent cells 0.5-1 µl of the ligation reaction mixture was 

added on ice. The cells were transferred to an ice-cold cuvette and the cuvette introduced into 

the electroporation Gene Pulser apparatus (BioRad) (settings: U=2.5 kV, R=400 Ω, C=25µF; 

time constant obtained τ was 7-8 ms). After a brief application of high electric voltage to the 

cells, the suspension was diluted with 1 ml of LB-medium, and incubated for 30-60 min at 

37ºC under moderate shaking conditions (140 rpm), to allow cell recovery. The transformed 

cells were harvested by centrifugation (10,000 x g, 15 sec, RT) and resuspended in a small 

volume (up to 150 µl) of LB-medium. The cells were plated on LB-medium plates with 

ampicillin and incubated overnight at 37ºC. 

 

2.1.4. E. coli strains used 

Strain Genotype Reference 
 

XL1-Blue 
 

supE44, hsdR17, recA1, endA1, gyrA96, thi-1, 

relA1, lac-, F’[proAB+, lacIq lacZ∆M15, Tn10(tetr)] 

 

commercially available 

from Stratagene 

MH1 MC1061 derivative; araD139 lacX74 galU galK 

hsr hsm+ strA 

Casadaban and Cohen, 

1980 

  

2.1.5. Small and large scale isolation of plasmid DNA from E. coli 

 Small scale preparation of plasmid DNA was performed according to a published 

procedure (Birnboim and Doly, 1979), through alkaline lysis. Small volume of LB-medium 

(2-5 ml) containing the appropriate antibiotic (ampicillin in majority of cases) was inoculated 

with a single bacterial colony picked out from a Petri dish, and incubated overnight at 37ºC, 

while shaking (140 rpm). The next day bacteria were harvested by centrifugation (8,000 x g, 

30 sec, RT) and the resulting pellet resuspended in 300 µl of buffer E1 (10 mM EDTA, 50 

mM Tris·HCl, pH 8.0) containing 100 mg/ml RNase. Cell lysis followed, through the addition 

of 300 µl of buffer E2 (0.2 M NaOH, 1% SDS). Samples were mixed by inverting the tubes 5 
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times and incubated 5 min at RT. Neutralization was accomplished by adding 300 µl of buffer 

E3 (3.1 M K-acetate, pH 5.5) and mixing the samples immediately afterwards, by inverting 

the tubes 5 times. They were then centrifuged (10,000 x g, 10 min, 2ºC), the supernatant 

transferred to new tubes and the DNA was precipitated through the addition of 600 µl of 96% 

isopropanol. Samples were then centrifuged again (10,000 x g, 40 min, 2ºC), washed with 

85% cold ethanol, dried at RT, resuspended in 20-30 µl water and stored at –20ºC. 

Large scale preparation of plasmid DNA (up to 0.5 mg) was performed using a 

“Jetstar” Midi-Kit (Genomed). LB-medium (50 ml) supplemented with ampicillin (or any 

other required antibiotic) was inoculated with bacteria carrying the plasmid to be isolated, and 

incubated overnight at 37ºC, while shaking at 140 rpm. Cells were harvested the next day by 

centrifugation (3,000 x g, 10 min, RT or 4ºC) and resuspended in 4 ml of buffer E1. Cell lysis 

was performed by adding 4 ml of buffer E2 and inverting the tubes 5 times; they were left for 

5 min at RT. After neutralization by adding 4.4 ml of buffer E3, samples were centrifuged 

(17,418 x g, 10 min, 4ºC), and the supernatants immediately applied onto an anion-exchange 

column, previously equilibrated with 10 ml of buffer E4 (0.15% (v/v) Triton X-100, 0.6 M 

NaCl, 100 mM Na-acetate, pH 5.0). The column was washed with 20 ml of buffer E5 (0.8 M 

NaCl, 100 mM Na-acetate, pH 5.0) and the plasmid eluted into Corex tubes by adding 5 ml 

buffer E6 (1.25 M NaCl, 100 mM Tris·HCl, pH 8.5). DNA was precipitated through the 

addition of 3 ml of 96% isopropanol and one centrifugation step (12,000 x g, 30 min, 4ºC). It 

was then washed with 5 ml of 70% ethanol, re-centrifuged, and dried at RT. DNA was finally 

resuspended in up to 150 µl of ddH2O, and the concentration was measured, before freezing it 

at –20ºC. 

When a clone was propagated for the first time, 500 µl of the overnight culture was 

removed and added to 500 µl of sterilized solution of 50% LB medium mixed with 50% 

glycerol. It was then frozen at –80ºC, and stored as a glycerol stock for future propagation of 

the same clone. 

2.1.6. Plasmids and genomic library clones used 

Plasmid Reference 
 

pGEM4·NcAAC 
 

Endres et al., 1999 

pGEM4·AAC2 Lawson et al., 1988 

pGEM4·NcTim23 Mokranjac, PhD thesis 

pGEM4·NcTim10 This thesis 

pGEM4·NcTim10his9 This thesis 
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pGEM4·NcTim9, clones 1, 3, and 5 This thesis 

pGEM4·NcTim9his9, clones 1, 3, and 5 This thesis 

pGEM4·Su9(1-69)-DHFR Gaume et al., 1998 

pMalcRI·NcTim10, clones M2, M4, X2, X5* This thesis 

pMalcRI·NcTim9, clones 3 and 31 This thesis 

pCB1179·Pm·tim10his9, clones 11, and 19 This thesis 

pCB1179·Pm·tim10his9·1kb, clones 3 and 8 This thesis 

pQE30·NcTim10, clones M5, M6, X8, X9* This thesis 

Cosmid Reference 

pMOcosX#X20:A12 This thesis 

pMOcosX#X25:B10 This thesis 

pMOcosX#X12:C6 This thesis 

* M=MH1; X=XL-1 bacterial clones 

 

 

2.1.7. Cloning strategies  

Constructs cloned for in vitro transcription and translation of mitochondrial 

preproteins comprised of cDNAs of relevant genes inserted into pGEM4 vector (Promega). 

Constructs for raising the antibodies consisted of cDNAs inserted into pMalcRI vector (NE 

Biolabs), creating maltose-binding protein (MBP) fusion proteins. Alternatively, cDNA was 

cloned into pQE30 vector (Qiagen), creating a his-tagged version of the gene of interest. For 

the expression of proteins in N. crassa wt background, genes encoding Tim9 and Tim10 

proteins were cloned into pCB1179 vector. All plasmids were first transformed into E. coli 

XL-1 or MH1 strains for amplification and stock maintenance, and subsequently into S. 

cerevisiae or N. crassa cells.  

 

pGEM4·NcTim10 

The following primers were used: 

N-terminal primer (containing a BamHI cutting site), called BamTIM10: 

5’- AAT AAT GGA TCC ATG TTC GGA CTC GGC AGG -3’,  

C-terminal primer (containing a SalI cutting site), called TIM10Sal: 

5’- AAT AAT GTC GAC TTA CAT GCC GAA GCC ACC -3’. 

N. crassa cDNA(−) and cDNA(+) libraries (2.5 µl/50 µl PCR reaction) were used as 

templates. Three different annealing temperatures were tested till unspecific PCR products 



 

24 

were eliminated. (cDNA libraries marked plus and minus were obtained from Neurospora 

grown in the presence or absence of chloramphenicol, respectively).  

The same primers were used to screen the genomic DNA library of N. crassa (1 µl of its 

1:100 dilution/50 µl PCR reaction), and a 500 bp fragment contained in cosmids 

pMOcosX#X12:C6, X20:A12 and X25:B10 was identified.  

 

pGEM4·NcTim10his9 

The following primers were used: 

N-terminal primer, BamTIM10,  

C-terminal primer (containing a XbaI cutting site), TIM10HisXba: 

5’- TTT TTC TAG ATT AGT GAT GGT GAT GGT GGT GAT GGT GGT GCA TGC CGA 

AGC CAC CTC CAC C-3’. 

N. crassa cDNA(−) and cDNA(+) libraries were used as templates. 

 

pGEM4·NcTim9 

Region homologous to that of S. cerevisiae TIM9 gene was identified in a screen of N. crassa 

database, and primers for screening N. crassa cDNA and genomic libraries constructed. 

Positions of the starting methionine, as well as that of two introns were predicted, based upon 

the identification of the intron flanking sequences most commonly found in N. crassa, in the 

region corresponding to the tim9 N. crassa gene locus; these sequences are: G G T A77/G 

A50/C G T76/C; C T A/G A C; A56/T T52/C A G G40 (numbers indicate the incidence with 

which the nucleotide is found in genes containing introns analyzed so far).  

 

For screening the genomic N. crassa library, following primers were used: 

N-terminal primer (containing an EcoRI cutting site), EcoMDGT9ge: 

5’- CCG GAA TTC ATG GAT GGG TAA GCA AGA GAG-3’,  

C-terminal primer (containing a HindIII cutting site), ATTHindT9: 

5’- TTC CCA AGC TTT TAC CGC CTC TGC ATC TCA GC -3’.   

N. crassa genomic library (1 µl of its 1:100 dilution/50 µl PCR reaction) was used as a 

template.  

 

For screening of the cDNA(−) and cDNA(+) libraries, following primers were used: 

N-terminal primer (containing an EcoRI cutting site), EcoT9cDNA: 

5’- CCG GAA TTC AAA TCG ACA ACA ATG GAT GGG -3’,  
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C-terminal primer ATTHindT9. 

N. crassa cDNA(−) and cDNA(+) libraries (2.5 µl/50 µl PCR reaction) were used as 

templates. 

 

Upon comparison of sequenced cDNA (apprx. 300 bp) and genomic DNA (apprx. 800 bp) 

products of the PCR screens, the predictions of intron positions were verified.   

 

pMalcRI·NcTim10 

Same primers as for pGEM4·NcTim10 were used.  

 

pMalcRI·NcTim9, clones 3 and 31 

Same primers as for pGEM4·NcTim9 were used.  

 

pCB1179·Pm·tim10his9 

The following primers were used: 

N-terminal primer (containing an EcoRI cutting site), EcoTIM10P: 

5’- TTT TGA ATT CCG CTC GGG CCG TTG TCT GC -3’,  

C-terminal primer, TIM10HisXba. 

Cosmids pMOcosX#X20:A12, pMOcosX#X25:B10 and pMOcosX#X12:C6 were used as 

templates. 

 

pCB1179·Pm·tim10his9·1kb 

The following primers were used to amplify the region 1 kb downstream from the tim10 gene: 

N-terminal primer (containing a XbaI cutting site), T10Xba1kb: 

5’- TTT TCT AGA TTT TTT TGG ATT ACT GGA ACG G -3’,  

C-terminal primer (containing a SacII cutting site), T10Sac1kb: 

5’- AAA CCG CGG CAG GAT CCA CAT ACC CGG -3’. 

As templates cosmids pMOcosX#X20:A12, pMOcosX#X25:B10 and pMOcosX#X12:C6 

were used. The resulting PCR product was inserted behind tim10 promotor region and the 

tim10 gene in the plasmid pCB1179·Pm·tim10his9, using marked restriction sites. 

 

pCB1179·P2·tim10his9·1kb 

To amplify a bigger promoter region of tim10 together with tim10 gene and to add a his-tag to 

it, the following primers were used: 
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N-terminal primer (containing an EcoRI cutting site), EcoTIM10P2:  

5’- GGG AGT AGA TGA ATT CAT TAT TGC -3’,  

C-terminal primer, TIM10HisXba. 

Cosmids pMOcosX#X20:A12, pMOcosX#X25:B10 and pMOcosX#X12:C6 were used as 

templates. 

Resulting PCR products were cut with corresponding enzymes and exchanged against 

Pm·tim10his9 fragment in pCB1179·Pm·tim10his9·1kb construct. 

 

pQE30·NcTim10 

Same primers as for pGEM4·NcTim10 were used.  

 

2.1.8. S. cerevisiae strains used 

Strain Genotype 
 

D273-10B 
 

ATCC 246557, Mat α, Mal (rho+) 

W303-1A/-1B Mat a/α, ade2-1 ura3-1 his3-11 trp1-1 leu2-3 leu2-112 can1-

100; isogenic with RS 190 (ATCC 208354) 

W334-a Mat a, leu2 ura3-52 

BY 4743 

 

Mat a/α, his3∆1/his3∆1 leu2∆0/leu2∆0 ura3∆0/ura3∆0 

met15/MET15∆0 lys2∆0/LYS2 

∆tom70  tom70::KANmx3, Mat a/α, his3∆1/his3∆1 leu2∆0/leu2∆0 

ura3∆0/ura3∆0 met15/MET15∆0 lys2∆0/LYS2 

EJ11-6  mrs11::HIS3 ade8 trp1 leu2 [pMRS11::URA3-CEN] 

tim10-1 (807 1B) Koehler et al., 1998 

YPH501 ade2-101 his3-∆200 leu2-∆1 ura3-52 trp1-∆63 lys2-801 

  

2.1.9. Preparation of yeast DNA 

Isolation of yeast DNA was performed as described previously by Rose et al., 1990. 

YPD-medium (5 ml) was inoculated with S. cerevisiae cells and incubated overnight at 30ºC, 

while shaking (140 rpm). Cells were harvested by centrifugation, washed with 25 ml of water, 

and resuspended in 200 µl of breaking buffer (2% Triton-X100, 1% SDS, 100 mM NaCl, 1 

mM EDTA, 10 mM Tris·HCl, pH 8.0). Phenol/chloroform/isoamyl alcohol (25:24:1) mix 

(200µl) and 0.3 g glass beads were added, and the samples vortexed for 2 min. The probes 
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were then centrifuged (36,670 x g, 5 min, RT) and the supernatant (the aqueous phase) 

transferred to new tubes. DNA was precipitated by adding 2.5 vol. of 100% ethanol. Samples 

were incubated for 10 min at –20°C, centrifuged (36,670 x g, 10 min, 2°C), and washed with 

70% ethanol. Pellets were dried at RT, resuspended in 20 µl H2O and stored at –20°C. 

2.1.10. N. crassa strains used 

Strain Description Source 
 

74-OR23-1VA 
 

wt 
 

Fungal Genetic Stock Center #2489 

TA2-1 contains tim10his9 This thesis 

TA2-14 contains tim10his9 This thesis 

TA2-14-31/2 contains tim10his9 This thesis 

 

2.1.11. Screening of N. crassa cosmid libraries 

N. crassa genomic cosmid libraries screened in this study were prepared by Dejana 

Mokranjac (Mokranjac, PhD thesis, 2004). The cosmid library pMOcosX, screened for N. 

crassa tim10 gene, comprises of 25 microtiter plates labeled pMOcosX#X1-25, each with 96 

clones of the Neurospora genomic library (clones are labeled in a way standard for any 

microtiter plate, with the plate number preceeding the number of the clone; for example 

pMOcosX#X1:A1). Every microtiter plate has a corresponding 11 x 7 cm nylon membrane, 

created through a colony-hybridization method. Shortly, the colonies are lysed in situ upon 

replicating microtiter plates onto membranes, and the cellular debris washed off, leaving 

DNA bound to the mebranes (Dembowski, PhD thesis, 2001). Furhermore, all 96 clones from 

every plate are “pooled together” into 25 cultures, 25 midi-preps of DNA are made, and a 

single dot created for each of 25 plates on one 5 x 10 cm membrane. This method for creation 

of genomic libraries is referred to as the dot-blot method (Dembowski, PhD thesis, 2001). 

This particular membrane is the first membrane screened (later on referred to as the “primary” 

one), allowing identification of membranes corresponding to specific microtiterplates 

containing the clones of interest, which are to be screened in the second round.       

In order to make a probe for screening a genomic library, PCR was performed using a 

PCR DIG (digoxigenin) Probe Synthesis Kit (Roche). Digoxigenin is a steroid, used to label 

probes in a PCR reaction. The labeled probe can then be easily detected with commercially 

available antibodies against digoxigenin. PCR reaction mixture (150 µl) contained: 110.25 µl 

ddH2O, 15 µl 10x PCR buffer with MgCl2, 15 µl 10x PCR DIG synthesis mix (dNTPs: dATP, 

dCTP, dGTP, 2mM each, and 1.3 mM dTTP and 0.7 mM DIG-11-dUTP), 3.75 µl [20 pM] 
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primer BamTIM10, 3.75 µl [20 pM] primer TIM10Sal, 2.25 µl enzyme mix and 1 µl genomic 

library as template. A control PCR with regular dNTP mix was performed as well. Conditions 

used were: initial denaturation: 94ºC for 5 min; 40 cycles of: 94ºC for 1 min, 60ºC for 1 min, 

72ºC for 1 min; and the final elongation: 72ºC for 5 min. Expected PCR product size for 

genomic tim10 clone is 500 bp, and with the label circa 600 bp. PCR product (1 µl ) was run 

on a 2% agarose gel and the expected shift in size noted. The remaining 149 µl was heated to 

94ºC for 5 min, and then cooled instantly by placing the probe in ice-cold water. It was then 

added to 35 ml (the volume is usually estimated based on the band intensity seen on 2% 

agarose gel) of standard hybridizing solution, containing 5x SSC (1x SSC: 150 mM NaCl, 15 

mM Na-citrate, pH 7.0), 50% formamide, 0.1% Na-laurylsarcosin, 0.02% SDS and 2% 

blocking reagent.  

The “primary” cosmid library membrane was preincubated for 2 h with the standard 

hybridizing solution at 42ºC, and then overnight at 42ºC with the generated probe, to allow 

for the hybridization between the digoxigenin-labeled probe and corresponding clones on the 

membrane to take place. The next day, solution with digoxigenin-labeled probe was poured 

off, and the membrane washed twice for 5 min in 2x SSC with 0.1% SDS solution at RT, and 

twice for 15 min with 0.1x SSC with 0.1% SDS solution at a higher temperature (circa 60ºC). 

Membrane was then incubated for 30 sec in P1 solution (150 mM NaCl, 0.3% Tween 20, 100 

mM maleic acid, pH7.5) at RT, 30 min in 1x blocking solution (1% (w/v) blocking reagent in 

P1 buffer) at RT, and then left for 1 h at RT with αDIG-AP conjugate (an antibody against 

digoxigenin coupled to alkaline phosphatase, whose chemiluminescent substrate is disodium 

3-(4-methoxyspiro (1,2-dioxetane-3,2'-(5'-chloro) tricycle [3,3.1.13.7]decan}-4-yl) phenyl 

phosphate (CSPD), diluted 1:10,000 in blocking solution. It was subsequently washed, twice 

for 15 min with P1 solution containing 0.03% Tween 20, and shortly twice with 10 ml of P3 

buffer (100 mM NaCl, 100 mM Tris·HCl, pH 9.5). The membrane was placed between two 

sheets of plastic folia, excess P3 solution removed, 200 µl of the substrate CSPD, in 20 ml of 

solution P3 added, and the membrane incubated for 5 min at RT. Excess substrate was 

removed, the membrane sealed completely and incubated further for 10-15 min at 37ºC. Films 

were exposed for 1, 2, 3 and 4 hours.  

To strip the membrane of the bound digoxigenin-labeled probe, it was shortly washed 

in ddH2O, twice for 15 min in 0.2% NaOH, 1% (w/v) SDS at 37ºC, and 5 min in 2x SSC. The 

membrane was then dried and stored for future use in a sealed plastic bag, or subjected 

directly to further hybridization trials. 

 



 

29 

2.1.12. Southern blot 

The agarose gel was incubated in 0.25 M HCl for 10 min to fragment the DNA 

through depurinization. It was further incubated twice for 30 min in solution Southern I (1.5 

M NaCl, 0.5 M NaOH) to denature the DNA, and then washed twice for 30 min in Southern II 

solution (1.5 M NaCl, 1 M Tris·HCl, pH 7.4). Southern blot was assembled, according to 

Southern, 1975, using nylon membranes (Pall-Gelman). Transfer buffer used was 2x SSC. 

After 12 hours the membrane was washed in 6x SSC, dried and heated for 2 h at 120ºC.     

 

2.1.13. Screening of clones through in situ colony-blotting 

Clones were striken onto Petri dishes with appropriately supplemented LB medium, 

and grown overnight at 37ºC. The next day, circularly cut nitrocellulose membranes were 

gently pressed onto the Petri dishes, and after 2 min placed onto stacks of Whatmann 3MM 

paper soaked in different solutions. Membranes were soaked first for 10 min in 10 % (w/v) 

SDS solution, followed by 5 min in Southern I (denaturation), twice for 5 min in Southern II 

(neutralization) and twice for 15 min in 2x SSC solution. They were then washed twice in 

TBS, blocked in 5 % (w/v) skimmed milk in TBS solution and immunodecorated with 

appropriate antibodies.  

 

2.2. Cell biology methods 

2.2.1. E. coli: Media and culture  

Media for E. Coli 

 
LB-medium: 0.5% (w/v) yeast extract, 1% (w/v) Bacto-Tryptone, 1% (w/v) NaCl; 

 

LBamp-medium: LB-medium supplemented with 100 µg/ml of ampicillin. 

 

Described media were used for preparing liquid cultures. To prepare plates with solid 

media, 2% (w/v) bacto-agar was added to the liquid culture solution. Bacto-agar, glucose and 

media were autoclaved separately (120ºC, 20-30 min), and the ampicillin was added after the 

media had been chilled to 50ºC. 
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2.2.2. N. crassa: Media and culture 

 

 2.2.2.1. Media and solutions for N. crassa 

Trace elements solution: 50 g citric acid x H2O, 50 g ZnSO4 x 7 H2O, 10 g Fe(NH4) 

2SO4 x 6 H2O, 2.5 g CuSO4 x 5 H2O, 0.5 g MnSO4 x 1 H2O, 0.5 g H3BO3 (water free),  0.5 g 

Na2MoO4 x 2 H2O, dissolved in 1 l of H2O. Chloroform (10 ml / 1 l) was added as a 

preservative, and the solution stored at RT. 

 

Biotin solution: 100 ml ethanol, 100 ml H2O, 20 mg biotin. It was stored at 4ºC. 

 

50x Vogel’s minimal medium (Vogel’s salts; Vogel, 1964): 150 g Na3-citrate x 5 H2O, 

250 g KH2PO4 (anhyd.), 100 g NH4NO3, 10 g MgSO4 x 7 H2O, 5 g CaCl2 x 2 H2O, 5 ml trace 

elements-solution, 2.5 ml biotin solution, in 1 l of H2O; 5 ml of chloroform was added as 

preservative, and the solution stored at RT.  

 

Minimal medium: 2% (v/v) 50x Vogel’s minimal medium, 2% (w/v) glucose. 

 

Complete medium (Vogel’s medium): 2% (v/v) 50x Vogel’s minimal medium, 1% (w/v) 

sugar, 1% (w/v) glycerol, 0.2% (w/v) yeast extract, 0.1% (w/v) caseinhydrolysat. 

 

Hygromycin stock solution: 50 mg/ml in water. It was stored at 4ºC. 

 

Novozyme 234 stock solution: 5 mg/ml in 1 M sorbitol. It was filter sterilized and 

stored in 2 ml aliquots at −80ºC. 

 

Solutions for the transformation – all were prepared fresh a day before use: 

 

Polyethylene glycol-Tris-Calcium (PTC) solution in water: 40% (w/v) PEG 4000, 50 

mM CaCl2, 50 mM Tris·HCl, pH 8.0. 

 

Sorbitol-Tris-Calcium (STC) solution: 1 M sorbitol, 50 mM CaCl2, 50 mM Tris·HCl, 

pH 8.0. 
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pH was adjusted with 10 M NaOH to 8.0, prior to autoclaving. For both PTC and STC 

solutions, filter sterilised CaCl2 was added to a final concentration of 50 mM after 

autoclaving, to prevent its precipitation.  

 

10x FGS additive (per 500 ml, in water):  2.5 g (w/v) fructose, 2.5 g (w/v) glucose, 

100 g (w/v) sorbose. 

 

Heparin stock solution: freshly made 5 mg/ml in STC; it can also be stored at −80ºC. 

 

Spermidin stock solution:    

50 mM in water. It was stored at −20ºC.  

Top (regeneration) agar: 10 ml (v/v) 50x Vogel’s minimal medium, 91 g (w/v) 

sorbitol, 14 g (w/v) agar; the mixture was filled up with water to 450 ml, sterilized and 50 ml 

of prewarmed 10x FGS solution added. It was then split into 7-8 ml aliquots in 15 ml sterile 

Falcon tubes and stored at 4ºC. The prepared agar was prewarmed to 50ºC before use. 

 

Bottom agar: 10 ml (v/v) 50x Vogel’s minimal medium, 7.5 g (w/v) agar, 440 ml 

water. It was sterilised and cooled till 50-60ºC. Prior to pouring the bottom agar into Petri 

dishes (25 ml per standard plate), 50 ml of prewarmed 10x FGS additive and 2 ml of 50 

mg/ml hygromycin stock solution (final concentration 200 µg/ml) were added. Hygromycin 

was added for the selection of strains generated in the scope of this thesis. Plates were left to 

dry and were stored at 4ºC.       

 

Solutions for the microconidition: 

 

Iodoacetic acid (IAA) stock solution: 208 mg IAA was dissolved in 10 ml of water to 

obtain a 100 mM stock solution. It was filter sterilized, and always used fresh.   

 

Synthetic crossing (SC) medium (Westergard and Mitchell, 1947): 1 g (w/v) KNO3, 0.7 

g (w/v) K2HPO4, 0.5 g (w/v) KH2PO4, 0.5 g (w/v) MgSO4 x 7 H2O, 0.1 g (w/v) NaCl, 0.1 g 

(w/v) CaCl2, 0.1 ml (v/v) trace element stock solution, 0.1 ml (v/v) biotin stock solution, 

brought to 1 l with water; pH was adjusted to 6.5 and the solution stored at 4ºC.  

This medium was used for standard crosses, with various carbon sources, 1% (w/v) 

sucrose for instance.  
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For microconidiation slants, 2% (w/v) agar and 0.5% (w/v) sucrose were dissolved in 

1:10 dilution of SC medium by heating - autoclaving for 20 min at 120ºC. When the solution 

was cooled to 50-60ºC, 1% (v/v) iodoacetic acid was added. Medium was distributed to glass 

tubes (16 x 150 mm), which were plugged with cotton, slanted and left to dry; they were 

stored up to 1 week at 4ºC. 

 

Sorbose medium: 0.03 % (w/v) glucose, 2% (v/v) Vogel’s minimal medium, 2% (w/v) 

agar, 1% (w/v) sorbose. Medium was autoclaved 15 min at 110ºC, cooled to 50-60ºC, and for 

TA2-14-32 strain hygromycin added to a final concentration of 150 µg/ml, prior to pouring 

plates.    

  

SM buffer for isolation of N. crassa mitochondria: 250 mM sucrose, 10 mM 

MOPS·KOH, pH 7.2. 

  

 2.2.2.2. Growth of N. crassa hyphae 

N. crassa hyphae were grown as described previously by Davis and Serres (1970). 

 

N. crassa silica stocks preparation  

Metal screw-capped tubes (13 x 50 mm) were filled with 4 ml of silica gel (Merck 

7733), and the silica was activated and dry-sterilized through incubation for 3 h at 180ºC.  

A culture of the strain of interest was grown for 5 days at 30ºC in 250 ml flask 

containing 40 ml of solidified medium. Skimmed milk (sterilized, 1% (w/v) in water, 10-20 

ml) was poured carefully into the flask and the culture vortexed vigorously. The suspension of 

conidia was filtered through cotton-cloth funnel into sterile tubes and centrifuged shortly 

(10,000 x g, 15 sec, RT). Most of the supernatant was poured off, and the conidia were 

resuspended in the remaining small volume of supernatant. Using a 200 µl pipette, 

approximately 100 µl of air was taken in and then a 100 µl of conidial suspension. The tip was 

inserted into the sterile silica gel and the suspension slowly released into it, while stirring to 

disperse it more evenly into the gel. This procedure was repeated one more time. Tube’s lid 

was loosely replaced and the silica stock dried in a desicator for 2-3 weeks at RT. Lid was 

then tightly closed and the stock placed at –20ºC. 
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Obtaining the conidia 

Conidia were grown in 250 ml Erlenmeyer flasks with approximately 25 ml of 

solidified complete medium (Vogel’s medium supplemented with 2% (w/v) agar). A few 

crystals of the silica gel-dried conidia, or conidia obtained from so-called primary cultures or 

A-flasks (inoculated with silica stocks of the appropriate strains), were inoculated in the 

centre of the flasks, and incubated for 6 and 3 days in the dark, respectively. This was 

followed by 3 days incubation at RT in daylight, to stimulate conidia formation. To collect 

conidia, 50 ml of sterile water was carefully poured into the Erlenmeyer, the suspension 

vortexed and after the airborne conidia in the flask had settled, the suspension poured into a 

new sterile flask. Concentration of the conidial suspension was determined by counting 

conidia using a haemocytometer under the light microscope. The conidia were stored at 4ºC 

(for 2-3 days maximally) before use. 

 

Growth of hyphae 

To isolate mitochondria from different N. crassa strains on a small scale, 1 l of liquid 

medium (containing 930 ml water, 20 ml 50x Vogel’s minimal medium (Vogel, 1964) and 40 

ml 1.4 M sucrose; all the components autoclaved separately) was inoculated with 10 ml of 

conidial suspension (108 conidia/ml). The culture was incubated for 15 h at 25ºC, aerated with 

sterile forced air and exposed to a visible and ultraviolet light source. The hyphae were 

collected by filtration.  

To obtain large quantities of mycelia, 100 l cultures (containing 2 kg (w/v) sucrose 

and 2 l (v/v) 50x Vogel’s minimal medium) were inoculated with 1 l conidia (108conidia/ml) 

and incubated for 24 h at 25ºC, under forced aeration and light and UV light exposure. The 

hyphae were collected and after wet weight determination, used for isolation of mitochondria.  

 

Growth of hyphae in minimal medium with 35S 

For the isolation of N. crassa mitochondria containing radioactively labeled proteins, 

the cultures were grown with Vogel’s salt solution, where MgSO4 was exchanged with 35S-

labeled sulfate (1.56 mCi/l culture). Additionaly, 10 mg/l of unlabeled MgSO4 was added to 

promote hyphal growth. Cultures (8 l) were grown in the isotop-laboratory, with the 

outcoming air being directed through two connected bottles filled with 1 M NaOH, in order to 

precipitate any radioactive sulfate present in this air. The subsequent growth and 

mitochondrial isolation were performed as described for non-radioactively labeled cultures. 
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 2.2.2.3. Transformation of N. crassa 

Preparation of spheroplasts 

Supplemented Vogel’s medium (150 ml) was inoculated with 1-2 x 109 conidia and 

incubated for 4-6 hours at 30ºC. The progress of germination was periodically examined, and 

when a level of 90% germination was achieved, germinated conidia were harvested in three 

50 ml tubes via centrifugation (1,935 x g, 8 min, RT). Conidia were resuspended to a final 

volume of 50 ml (in water), and the centrifugation step was repeated twice. Final pellet was 

resuspended in 10 ml of 1 M sorbitol, transferred to a sterile 250 ml flask and 4 ml of 5 mg/ml 

Novozyme 234 (cell-wall-digesting preparation from Trichoderma) in 1 M sorbitol added. 

Suspension was then incubated for 30-60 min at 30ºC, while shaking (80-100 rpm). Degree of 

spheroplasting was examined after 30 min (over-digestion decreases their viability). This was 

done by placing 5 µl of the spheroplast suspension on a slide with cover slip. Water was 

added to one side and swelling and bursting of spheroplasts were observed under the 

microscope, which confirmed the loss of cell wall. After appropriate spheroplasting efficiency 

was ascertained, spheroplast suspension was gently poured over into a 50 ml conical tube, the 

flask rinsed with 1 M sorbitol which was added to the conical tube and the volume adjusted to 

50 ml with the same sorbitol solution. Three centrifugation steps were performed, twice 

bringing the volume to 30 ml with 1 M sorbitol and once with STC solution (484 x g, 10 min, 

RT). Final pellet was resuspended in 7.5 ml of STC, 2 ml of PTC and 100 µl of DMSO, and 

mixed gently but thoroughly. Aliquots were made, and stored at –80ºC. N. crassa spheroplasts 

can be thawed and refrozen with no consequent lessening of their transformability. 

 

Transformation of N. crassa – the classical method 

An aliqout of spheroplasts was thawed and stored on ice, and 100 µl were added to a 

mixture of 1-5 µg of plasmid DNA, 2 µl spermidin and 5 µl heparin stock solution. After 30 

min incubation on ice 1 ml of PTC solution was added, the suspension mixed carefully and 

incubated for 20 min at RT. The mixture was then transferred into pre-warmed top agar 

(equilibrated in a water bath at 54ºC), and immediately poured onto plates with bottom agar. 

Regeneration agar was left to solidify and the plates were then incubated at 30ºC for 2-3 days. 

Within first 24 h at 30ºC, some transformants had already grown a few hyphae; after two days 

they were visible to the naked eye, and within three days they were ready to be isolated with a 

spear-point needle into 13 x 100 mm culture tubes with 1-2 ml of minimal medium, 

supplemented appropriately (with hygromycin for instance). They were kept for three or more 

days at 30ºC in the incubator, subcultured once or twice, and then used for inoculation of 10 x 
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75 mm tubes containing complete medium, which were utilized for the generation of stocks 

(stored as conidial cultures at −20ºC). Typically, the efficiency of transformation was 10,000 

transformants per µg of DNA used. In this way, the TA2-1 and TA2-14 strains were 

generated. To eliminate the non-transformed nuclei which accompany the transformed ones 

upon isolation, homokaryotic stable transformants were purified before use through a 

microconidiation method.  

 

Microconidiation: 

Selective induction of microconidiation in mycelia is used to obtain uninucleate 

microconidia for isolating homokaryotic derivatives. In present work it was employed to 

derive the TA2-14-32 strain, expressing equal amounts of the non-tagged and the tagged 

version of Tim10 protein. The procedure was done as described previously by Pandit and 

Maheshwari, 1993. The cultures were initiated with trace quantities of macroconidia placed in 

microconidiation slants, and kept for 7-12 days at 25 ºC in a room with day/night cycle. 

Macroconidia distinguish themselves from microconidia in size, and therefore a microscopic 

examination yields insight into microconidiation efficiency. Microconidia were harvested via 

addition of 2.5 ml sterile water to the microconidiation tubes, vortexing twice for 30-60 sec 

and filtration through a 5 µm filter (Millex®-SV, Durapor), which separated them from the 

macroconidia. Microconidia were counted by a haemocytometer and 150-200 of them plated 

on a Petri dish with sorbose medium. Plates were incubated at 34ºC for 2-3 days, and the new 

homokaryotic strains isolated by a spear-point needle. They were further grown in tubes with 

minimal medium, and later on in 10 x 75 mm tubes, as described previously for 

heterokaryotic transformants. 

 

2.2.3. Isolation of mitochondria from N. crassa hyphae 

The method was done as described by Sebald et al., 1979. Hyphae grown as described 

above were collected from an overnight culture using a filter paper-covered funnel with a 

sieve connected to a vacuum pump. For every 10 g of wet weight hyphae 15 g of quartz sand 

and 20 ml of SMP (buffer SM supplemented with 1 mM PMSF) are added to the mortar and 

ground together for 1-2 min at 4ºC. The ground material is centrifuged twice (3,000 x g, 5 

min, 4ºC) to get rid of cellular debrie, and the mitochondria sedimented (17,000 x g, 12 min, 

4ºC). They were resuspended in 30 ml of SM buffer, sedimented again, resuspended in 0.5 ml 

of SM buffer and the protein concentration determined. The mitochondria were used within 1 

h of preparation, as freezing them ruptures their outer membrane.  



 

36 

For purposes of Tim9·Tim10 complex purifications, large scale preparation of 

mitochondria were performed. Basically, the same protocol was followed, with some small 

modifications. Hyphae from a 100 l culture (1-2 kg) were mixed with SMP buffer (2 l for 

every 0.5 kg hyphae) and quartz sand (0.75 kg sand for every 0.5 kg hyphae), homogenized 

for 2 min in a blender, and passed through a mill. The mitochondria were isolated from the 

homogenate by differential centrifugation as above, but instead of two times, they were 

centrifugated just once at 17,700 x g, for 50 min. After the last centrifugation step 

mitochondria were resuspended in up to 150 ml of buffer containing 300 mM NaCl, 20 mM 

imidazole, 10 % glycerol, 50 mM MOPS·NaOH, pH 8.0, the protein concentration determined 

and 50 ml aliquots frozen at –20 or –80ºC . 

 

2.2.4. Crude isolation of mitochondria from N. crassa (“mini” 
prep) 

Hyphae from 18 ml overnight cultures were collected as described above and put into 

2 ml tubes. SMP buffer (1 ml) and some quartz sand were added. Probes were subjected to 

homogenization in a Ribolyser (Hybaid) device, for 45 sec, setting 6.5, and subsequently 

centrifuged (1,000 x g, 10 min, 4ºC). Supernatants were transferred into new 1.5 ml tubes and 

recentrifuged. From supernatants of this centrifugation step, mitochondria were isolated 

through centrifugation (16,000 x g, 10 min, 4ºC). The pelleted mitochondria were dissolved in 

a small volume of SMP buffer and analysed further.  

An alternative way was to finely grind collected mycelia (see above), in liquid 

nitrogen, with a small amount of quartz sand in a mortar. A certain amount of homogenized 

cells was transferred into two 2 ml tubes (to the 1 ml mark), which were then immersed in 

liquid nitrogen. SMP buffer (1 ml) was added to each probe and the samples shortly vortexed 

at 4ºC. A 10 min centrifugation step followed (1,000 x g). Supernatants were transferred into 

new tubes and mitochondria pelleted (10 min, 16,000 x g, 4ºC). Pellets were resuspended in 

100 µl SM buffer and protein concentration determined. Probes were then analysed further. 

 

 

 

 

 



 

37 

2.2.5. S. cerevisiae: Culture and Media 

 

 2.2.5.1. Media for S.cerevisiae 

YP-medium: 1% yeast extract, 2% peptone, pH 5.0 (adjusted with HCl); 

 

YPD-medium: YP-medium supplemented with 2% glucose; 

 

YPG-medium: YP-medium supplemented with 3% glycerol; 

 

YPGal-medium: YP-medium supplemented with 2% galactose. 

  

SC medium: 0.17% (w/v) yeast nitrogen base, 0.5% (w/v) ammonium sulphate, 1.5 g/l 

“drop-out mix” powder (mix containing equal weight of all amino acids; for selecting one 

auxothophic marker, the corresponding amino acid was left out ), 2% glucose or 2% galactose 

or 3% glycerol as carbon source. 

 

The described media were used for preparing liquid cultures. To prepare plates with 

solid media, 2% w/v bacto-agar was added. Bacto-agar, glucose, and media were autoclaved 

separately.  

  

 2.2.5.2. S. cerevisiae growth 

S. cerevisiae growth was performed as described in Sambrook et al., (1989) in YPD 

complete medium or, when a selection on the auxotrophic marker was necessary, on SD-

medium. The cells were incubated at 30ºC, under shaking conditions. 

   

 2.2.5.3. Transformation of S. cerevisiae (lithium acetate method) 

The corresponding yeast strain was grown overnight in YPD-medium and diluted the 

next morning in 50 ml medium, to an OD578 of 0.2. Cells were grown further, till they reached 

an OD578 of 0.8. They were then transferred to a sterile centrifuge tube, and harvested by 

centrifugation (1,000 x g, 3 min, RT). After washing with 25 ml of sterile water, cells were 

harvested under the same conditions, resuspended in 1 ml 100 mM lithium acetate and 

transferred to an Eppendorf tube. Sample was centrifuged again (7,500 x g, 15 sec, RT) and 

the cells were resuspended in 400 µl 100 mM lithium acetate. For each transformation 50 µl 
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of the cell suspension was centrifuged (7,500 x g, 5 min, RT) and the supernatant removed. 

The following mixture was added to the cells in this particular order: 240 µl PEG 3350 (50% 

v/v), 36 µl 1 M lithium acetate, 5 µl single stranded salmon sperm DNA (10 mg/ml; 

previously incubated for 5 min at 95ºC), 70 µl H2O containing 0.1-10 µg of DNA to be 

transformed. The mixture was vortexed for 1 min and incubated for 30 min at 30ºC, with 

moderate shaking (350-500 rpm), followed by another 20-25 min at 42ºC. 

The cells were harvested by centrifugation (6,000-8,000 x g, 15 sec, RT), resuspended 

in a small volume of sterile water (150 µl), and spread on plates with the appropriate selective 

media. The plates were incubated for 2-4 days at 30ºC to recover transformants. 

 

2.2.6. Dilution assay 

To determine the growth characteristics of yeast strains, a dilutions assay was 

performed. The strains were grown in liquid culture to the logarithmic phase. Equal amounts 

of cells (0.5 OD578 units) from every culture were isolated, resuspended in 500 µl H2O, and a 

series of 1:10 dilutions were made; 5 µl from each dilution was spotted on agarose plates. The 

results could be seen after 2-4 days incubation at the appropriate temperature. 

 

2.2.7. Isolation of mitochondria from S. cerevisiae 

Mitochondria were isolated from S. cerevisiae cultures as described by Herrmann et 

al., 1994. Yeast cells were grown to OD578 of 0.8-1.5, harvested by centrifugation (3,000 x g, 

5 min, RT), washed with water and resuspended in a buffer containing 10 mM dithiotreitol 

(DTT), 100 mM Tris, pH unadjusted, to a concentration of 0.5 g/ml (2 ml of buffer is added 

for every gram of cell wet weight). Cell suspension was incubated for 15 min at 30ºC with 

moderate shaking, followed by the repeated centrifugation step and resuspended in 100 ml of 

1.2 M sorbitol. To digest the cell wall and obtain spheroplasts, the cells were resuspended to a 

concentration of 0.15 g/ml in zymolyase buffer (1.2 M sorbitol, 20 mM KH2PO4·KOH, pH 

7.4) and incubated with 4 mg zymolyase/g wet weight, for 30-60 min at 30ºC, under moderate 

shaking conditions. 

The efficiency of cell wall digestion (spheroplasts generation) was tested after the first 

30 minutes: 50 µl of cell suspension was diluted with 2 ml of water or with 2 ml of 1.2 M 

sorbitol. Formation of spheroplasts was complete when the OD of the water dilution 

amounted to 10-20% of the OD of the sorbitol dilution (the solution of spheroplasts in pure 
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water is clear, because spheroplasts burst under these conditions). All subsequent steps were 

performed at 4ºC. 

The spheroplasts were isolated by centrifugation (3,000 x g, 5 min, 4ºC), resuspended 

(0.15 g/ml) in buffer for homogenization (0.6 M sorbitol, 1 mM EDTA, 0.2% (w/v) BSA, 1 

mM PMSF, 10 mM Tris·HCl, pH 7.4), and dounced 10 times in a cooled douncer 

(homogenisor) on ice. Cell debris and intact cells were sedimented by a centrifugation step 

performed twice (2,000 x g, 5 min, 4ºC). The supernatant was centrifuged (17,400 x g, 12 

min, 4ºC) to pellet down mitochondria. Sedimented mitochondria were resuspended in SEM 

buffer (250 mM sucrose, 1 mM EDTA, 10 mM MOPS·KOH, pH 7.4), and separated from cell 

remnants through two centrifugation steps (2,000 x g, 5 min, 4ºC). Finally, mitochondria were 

resuspended in a small volume of the SEM buffer to a concentration of 10 mg/ml protein, 

aliquoted, frozen in liquid nitrogen, and stored at – 80ºC till use.  

 

2.2.8. Isolation of crude mitochondria from S. cerevisiae 

Cells corresponding to 20 OD units were harvested by centrifugation (3,000 x g, 5 

min, RT) and washed with water. The cells were resuspended in 300 µl SHK80 (SH buffer 

with 80 mM KCl) or SMNa100 buffer (SM buffer containing 100 mM NaCl) with 1 mM 

PMSF, and 0.3 g glass beads (diameter 0.3 mm) were added. The samples were vortexed four 

times 30 sec each, with 30 sec breaks in between (during this break the samples were 

incubated on ice). After centrifugation (1,000 x g, 3 min, 4ºC), the supernatant was transferred 

to a new tube and the protein concentration measured. The desired amount of protein (25-150 

µg) was pelleted by centrifugation (10,000 x g, 10 min, 4ºC). The crude mitochondrial pellets 

were resuspended in 25 µl 2x sample buffer, shaken for 10 min at RT, and analyzed by SDS-

PAGE. 

 

2.3. Biochemical methods 

2.3.1. Electrophoretic methods  

 

 2.3.1.1. SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) 

The proteins were separated under denaturing conditions via one-dimensional vertical 

slab SDS-polyacrylamide gel electrophoresis (SDS-PAGE), as described (Laemmli, 1970). 

The concentrations of acrylamide and bis-acrylamide in the separating gel were chosen 
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considering the molecular size of proteins to be separated. Glass plates of 160 x 140 mm and 

spacers of 1 mm thickness were used. The samples were dissolved in 25-60 µl sample buffer 

and if required, incubated at 95ºC for 3 min before loading. The electrophoresis was 

performed at 25-30 mA for 2.5 h for large gels and at 150 V for 1 h for minigels (BioRad). 

Protein molecular weight standards that contain protein bands at 116, 66, 45, 35, 25, 18 and 

14 kDa (Peqlab), and at 17, 14, 10, 8, 6 and 2.5 kDa (Pharmacia) were used.  

 

Buffers for SDS-PAGE: 

 

Stacking gel: 5% (w/v) acrylamide, 0.03% (w/v) bis-acrylamide, 0.05% (w/v) APS, 

0.25% (v/v) TEMED, 60 mM Tris·HCl, pH 6.8. 

 Separating gel: 10-16% (w/v) acrylamide, 0.07-0.3% (w/v) bis-acrylamide, 0.1% 

(w/v) SDS, 0.05% (w/v) APS, 0.05% (v/v) TEMED, 385 mM Tris·HCl, pH 8.8. 

 Bottom gel: 2% (w/v) agar in running buffer. 

 Sample buffer: 2% (w/v) SDS, 10% glycerol, 0.02% (w/v) bromphenolblue, 5% β-

mercaptoethanol, 60 mM Tris·HCl, pH 6.8. 

 Running buffer: 384 mM glycine, 0.1% (w/v) SDS, 50 mM Tris·HCl, pH 8.3.  

2.3.1.2. High Tris-urea SDS-Polyacrylamide gel electrophoresis 

 The electrophoresis was performed at  35 mA, for 2 h 40 min. 

 

 Buffers for high tris-urea SDS-PAGE: 

  

  Stacking gel: 5% (w/v) acrylamide, 0.07% (w/v) bisacrylamide, 6 M urea, 0.1% (w/v) 

SDS, 0.5% (w/v) APS, 0.25% (v/v) TEMED, 125 mM Tris·HCl, pH 6.8.  

 Separating gel: 19% (w/v) acrylamide, 0.25% (v/v) bisacrylamide, 6 M urea, 0.1% 

(w/v) SDS, 0.05% (w/v) APS, 0.25% (v/v) TEMED, 0.75 M Tris·HCl, pH 8.8. 

 Bottom gel:  as for regular SDS-PAGE 

 Sample buffer: as for regular SDS-PAGE 

 Running buffer: 50 mM Tris base, 200 mM glycin, 0.1 % SDS, pH 8.0.  

 

 2.3.1.3. Blue-Native gel electrophoresis (BNGE) 

 Blue-Native gel electrophoresis (BNGE) was used for the separation of proteins under 

non-denaturing (native) conditions as described (Schägger, 1991). Mitochondria were 
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solubilized at 4ºC in a desired buffer (20 µl) containing the appropriate amount of detergent, 

for up to 30 min in the overhead shaker. Most frequently used solubilization buffers contained 

50 mM NaCl, 1 mM PMSF, 50 mM Na-phosphate·HCl, pH 8.0, with either 0.1-1% digitonin, 

0.5-1% Triton X-100 or other detergent. A clarifying spin (20 min, 90.700 x g, 2ºC) followed. 

Glycerol was added to the protein samples to a final concentration of 10% (v/v), 3 µl (v/v) of 

10x loading dye was added, and volume of all samples adjusted to 30 µl. They were then 

loaded onto 6%-13% or 6%-16.5% acrylamide gradient gels.  

 

 Buffers for BNGE: 

 

 Acrylamide 48%/Bis-acrylamide 1.5% 

 Acrylamide 30%/Bis-acrylamide 0.2% 

 Gel buffer: 1,5 M 6-amino-n-caproic acid, 0,15 M bis Tris·HCl, pH 7.0. 

 Sample buffer: 0.5% Coomassie-Brilliant-blue G250, 50 mM 6-amino-n-caproic acid, 

10 mM bis-Tris·HCl, pH 7.0. 

 Cathode-Buffer: 50 mM Tricine, 15 mM bis-Tris, pH 7.0, with or without 0.02% 

Coomassie-Brilliant-blue G250. 

 Anode-Buffer: 50 mM bis-Tris·HCl, pH 7.0.  

  

 Gel was prepared and used the same day. Samples were usually neither heated (unless 

experiment requires otherwise), nor frozen. Electrophoresis was performed at 4ºC. In the first 

1 h of electrophoresis, the gel was run with cathode buffer containing the Coomassie blue, 

voltage set to 100 V and amperage to 15 mA. Voltage was then increased to 500 V, and after 

the blue front had migrated to two thirds of the separation distance, the cathode buffer was 

replaced by the cathode buffer without the Coomassie-Brilliant-blue. Marker proteins used are 

thyreoglobulin (660 kDa), apoferitin (440 kDa), bovine serum albumine (BSA, monomer: 66 

kDa, dimer: 132 kDa, trimer: 198 kDa) and alcohol dehydrogenase (ADH, monomer: 50 kDa, 

dimer: 100 kDa, trimer: 150 kDa). 

 

 2.3.1.4. 2D Blue-Native gel electrophoresis (BNGE) 

 The first dimension separation by BNGE was performed, protein lanes were cut out 

using a scalpel, and incubated twice for 5 minutes in 5 ml of sample buffer with β-

mercaptoethanol. Excess solution was then soaked using Whatman filter paper and the cut 

lanes positioned onto glass plates (horizontally, in the area meant for the stacking gel) to be 
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assembled for running SDS-Gel electrophoresis of the second dimension. Upon plates 

assembly, bottom gel was poured, and shortly afterwards the separating one as well. Before 

pouring the stacking gel, spacers were inserted on both sides of the lane to be subjected to the 

second dimension run, one to load mitochondria proteins dissolved in sample buffer, second 

one for the marker proteins. The stacking gel was, however, prepared with two fold the 

amount of APS and three fold the amount of TEMED used usually. Further separation of 

proteins is as for the regular SDS-PAGE.  

 

 2.3.1.5. Coomassie blue staining of SDS gels  

 After SDS-PAGE, and removal of the bottom and stacking gels, separating gel was 

stained at RT for 30 min (or longer), with a solution containing 30% (v/v) methanol, 10% 

(v/v) acetic acid, and 0.1 (w/v) Coomassie-Brilliant-blue R250. The gel was then destained 

with destaining solution (30% (v/v) methanol, 10% (v/v) acetic acid) until the protein bands 

appeared against a clear background. The protein bands-background contrast was enhanced 

through post-destain 15 minutes incubation with 7% (v/v) acetic acid solution (RT). This step 

was followed by further 10-15 minutes incubation in 50% (v/v) methanol solution in water. 

The gel was dried overnight between two gel-drying-films (Promega) or placed onto two 

sheets of Whatman paper, covered with plastic wrap and dried for 1-2 h in a gel dryer at 80ºC. 

 

 2.3.1.6. Silver staining of SDS gels  

 Silver staining of gels was performed according to the published procedure (Bloom et 

al., 1987). Separating gel was incubated for 30-60 min in a fixation solution containing 50% 

(v/v) methanol, 12% (v/v) acetic acid, and 50 µl 37% HCHO per 100 ml. It was then washed 

twice for 10 min with 50% (v/v) ethanol, once for 1 min in 0.02% (w/v) Na2S2O3 x 5H2O and 

three times for 20 sec with water. The gel was then incubated for 15 min in 0.2% (w/v) 

AgNO3 with 75 µl of 37% HCHO per 100 ml, and twice for 20 sec with water. It was finally 

developed with a solution containing 6% (w/v) Na2CO3, 2 ml 0.02% (w/v) Na2S2O3 x 5H2O 

and 50 µl 37% HCHO, for 1 to 15 minutes, depending on the desired intensity of staining. 

Subsequently, it was washed with water (20 sec), incubated for 15 min in 50 mM EDTA, 

washed once again with water and dried. The whole procedure was performed at RT, and 

solutions containing formaldehyde and silver-nitrate prepared fresh (the latter was kept in 

dark until use). 
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 2.3.1.7. Transfer of proteins to nitrocellulose/PVDF membrane (Western-

Blot)  

 Proteins separated by SDS-PAGE were transferred onto nitrocellulose membranes 

using a modified semi-dry method (Towbin, 1979; Kyhse-Anderson, 1984), whereas those 

analysed by BNGE to PVDF membranes.  

 PVDF membrane was activated before blotting through short incubation (up to 5 min) 

in methanol. It was then thoroughly washed, first with water, and then 5 min (or longer) with 

transfer buffer. Prior to blotting, separating part of the blue native gel, freed from the stacking 

and bottom gel parts, was equilibrated in blotting (transfer) buffer (20 mM Tris base (pH 

unadjusted), 150 mM glycine, 20% (v/v) methanol, 0.02% (w/v) SDS), by shaking for 15 

minutes at RT or 4ºC. The nitrocellulose membrane, on the other hand, was incubated for 

three minutes in water and subsequently in transfer buffer prior to the blotting procedure. A 

respective membrane was placed onto transfer-buffer soaked three sheets of Whatman 3MM 

filter paper lying on the graphite anode electrode, the gel placed on top. It was then covered 

with another three soaked filter papers, and finally with the cathode graphite electrode. The 

transfer was performed at 1.5 mA/cm2 for 1.5 h (for our gels of dimensions of apprx. 14 cm x 

9 cm, it translates to 200 mA for 1 h 30 min). Electrotransfer onto PVDF membranes was 

generally performed at 220 mA for 1 h, and at 4ºC.  

 To verify transfer efficiency, and to visualize and label the marker proteins’ bands, the 

nitrocellulose membranes were reversibly stained with Ponceau S solution (0.2% (w/v) 

Ponceau S in 3% (w/v) TCA), and the PVDF membranes with Coomassie solution. The 

PVDF membrane was then destained with destaining solution or simply with methanol, which 

was then removed by excessive washing with TBS buffer (150 mM NaCl, 10 mM Tris·HCl, 

pH 7.5). The membranes were then immunodecorated, or the radioactive material visualized 

by autoradiography. 

 

2.3.2. Protein concentration determination  

Protein concentrations were determined by the Bradford assay (Bradford, 1976). 

Protein solutions (1-10 µl) were diluted with 1 ml of 1:5 dilution of commercially available 

BioRad Bradford reagent and incubated for 10 min at RT. The absorbance was measured at 

595 nm using a 1 cm-path length microcuvette. Protein concentration was calculated 
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according to the standard curve, obtained using the commercially available IgG proteins 

(BioRad). 

 

2.3.3. Protein quantification by autoradiography and 
phosphorimaging 

 Dry nitrocellulose or PVDF membranes, with radiolabeled proteins blotted onto them, 

were exposed to Röntgen films (autoradiography). The films were scanned and the intensity 

of bands of interest quantified (densitometry). Alternatively, the membranes were exposed to 

phosphor imaging plates and the intensity of the bands was determined using our 

Phosphorimager (Fuji BAS 1500, TINA 2.0 software). 

 

2.3.4. Synthesis of radioactively labelled proteins in vitro 

Transcription/translation in a cell-free system 

 For in vitro synthesis of 35S labelled proteins, constructs cloned into pGEM4 

(Promega) plasmids first have to be transcribed into mRNA using SP6-RNA-polymerase 

(Melton, 1984; Sambrook, 1989). Transcription mixture (100 µl) contained: 20 µl 5x 

transcription buffer (200 mM Tris·HCl, 50 mM MgCl2, 10 mM spermidine, pH 7.5), 10 µl 0.1 

M DTT, 4 µl RNasin (40 U/µl), 20 µl 2.5 mM rNTP, 5.2 µl 2.5 mM m7G(5’)ppp(5’)G and 

10-20 µg DNA. After addition of 3 µl of SP6-Polymerase (25 U/ml) the reaction mixture was 

incubated for 1 h at 37ºC. The RNA was precipitated by adding 10 µl of 10 M LiCl and 300 

µl of absolute ethanol, centrifuged, and subsequently washed with 70% ethanol. After ethanol 

had evaporated, RNA was resuspended in H2O (supplemented with 1 µl of RNasin), aliquoted 

and kept at –80ºC. 

 Translation was performed the following way: a mix containing 25 µl RNA, 3.5 µl 

amino acid mix (without methionine), 7 µl 15 mM Mg-acetate, 12 µl 35S (10 mCi/ml) and 100 

µl rabbit reticulocyte lysate (Promega) was incubated for 1 h at 30ºC. Rection was made 5 

mM cold methionine and 250 mM sucrose, the probe was then centrifuged (90,700 x g, 1 h, 

2ºC) to pellet down ribosomes, and 12 µl aliquots of the supernatant were frozen at –80ºC. 

  

 TNT coupled reticulocyte lysate system 

 This system combines transcription and translation in the same reaction mixture. TNT 

mix (50µl) contained: 25µl TNT rabbit reticulocyte lysate (Promega), 2 µl TNT reaction 

buffer, 1 µl TNT SP6 RNA polymerase, 1 µl amino acid mix without methionine, 2 µl 35S 
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methionine (10 mCi/ml), 1 µl RNasin ribonuclease inhibitor (40 U/µl) and 2 µl DNA template 

(0.5 µg/µl). The reaction was incubated for 90 min at 30ºC, and further treatment was as 

described for the translation reaction alone. 

 

2.3.5. Import of preproteins into isolated mitochondria  

Import of radiolabelled precursor proteins into N. crassa and S. cerevisiae 

mitochondria was performed in either F5 import buffer (0.03-0.25% (w/v) BSA, 250 mM 

sucrose, 80 mM KCl, 5 mM MgCl2, 2 mM ATP, 2.5 mM NADH, 10 mM MOPS·KOH, pH 

7.2) or SI buffer (0.03% BSA (w/v), 0.6 M sorbitol, 80 mM KCl, 10 mM Mg-acetate, 2 mM 

K-phosphate, 2.5 mM MnCl2, 2 mM ATP, 2.5 mM NADH, 50 mM HEPES·KOH pH 7.2), 

respectively. EDTA was not included in the import buffers, due to the potential zinc-binding 

capacity of the Tim9 and Tim10 proteins.  

Import reactions were performed at various temperatures and time periods. In some 

cases the mitochondria and mitoplasts were protease treated before or after the import 

reaction. For removal of import receptors cytosolic domains before performing the import 

reaction, trypsin was used at a final concentration of 20 µg/ml, and the incubation was 

performed for 10 min on ice. It was then inhibited through the addition of 20x weight excess 

of soybean trypsin inhibitor, and the import performed as usual without further changes. 

Protease treatment after the import reaction was performed by incubation with proteinase K 

(PK) or trypsin for 15 min on ice. For mitochondrial protein concentrations of 1 and 0.1 

mg/ml, final protease concentrations of 250 µg/ml and 50 µg/ml, respectively, were used. 

Proteinase K was inhibited through the addition of PMSF (1 mM), and trypsin was inhibited 

as desribed above. At the end of import reactions mitochondria were sedimented (12,000 x g, 

10 min, 4ºC) and TCA precipitated or directly solubilized in sample buffer. Imported and 

bound proteins were analyzed by SDS-PAGE, autoradiography and phosphor imaging (Fuji 

BAS 1500, TINA software).  

In some import reactions, the radiolabelled precursor proteins were preincubated with 

chemical amounts of Tim9·Tim10 complex for 10 min on ice.   

To dissipate mitochondrial membrane potential prior to the import reaction, several 

different reagents were used: either 1 µM valinomycin, or 20 µM oligomycin, or 8 µM 

antimycin, or 1-50 µM CCCP, or a mixture of the first three reagents, termed the AVO mix, 

was used. All these reagents were made as 100x stock solutions in ethanol, which were kept at 

–20ºC.  
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For ATP depletion, a separate 10 min (RT) pre-incubation of both mitochondria and 

lysate with 25 U/ml of apyrase was applied.  An ATP-regenerating system included: creatin 

kinase (final concentration 1 mg/ml) and creatin phosphate (final concentration 10 mM); 

sometimes, succinate and malate (both at 2.5 mM end concentration) were added, too.   

 

2.3.6. Generation of mitoplasts (“swelling”) 

Mitochondria resuspended in SI buffer were diluted 10 times with buffer containing 1 

mM ATP (empirically shown to increase the swelling efficiency), 20 mM HEPES·KOH, pH 

7.2 and incubated on ice for 30 min. The mitoplasts were pelleted (17,400 x g, 10 min, 2ºC), 

and analysed by SDS-PAGE. To estimate the efficiency of outer membrane disruption, 

immunodecorations with antibodies against soluble proteins of the intermembrane space were 

performed. It is important to note that some intermembrane space proteins are associated with 

the inner membrane and can be extracted only by adding salt.  

 

2.3.7. Trichloroacetic acid (TCA) precipitation of proteins 

Proteins from aqueous solutions were precipitated by adding TCA to a final 

concentration of 12%. The samples were incubated for 30 min on ice or at –20ºC, and then 

centrifuged (30,000 x g, 20 min, 2ºC). The precipitated proteins were washed with acetone 

(kept at –20ºC), and re-centrifuged (30,000 x g, 10 min, 2ºC). Protein pellet was shortly dried 

at RT and dissolved in sample buffer. 

 

2.3.8. Ammonium sulphate precipitation of proteins 

Aqueous protein solutions were mixed at 4ºC with 2 volumes of saturated solution of 

ammonium sulphate, and incubated on ice for 30 min. This was followed by centrifugation 

(30,000 x g, 10 min, 4ºC). The supernatants were discarded, and the pellets containing 

precipitated proteins dissolved in the desired buffer. To denature proteins, a buffer containing 

7 M urea, 50 mM TCEP, 30 mM Tris·HCl, pH 7.5 was used.  

Saturated ammonium sulphate solution was prepared by dissolving 76.7 g of 

ammonium sulphate in 100 mM Tris·HCl pH 7.0 and chilling it to 4ºC, to allow ammonium 

sulphate crystals to sediment. 
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2.3.9. Carbonate extraction  

Carbonate extraction (Fujiki et al., 1982) was used to investigate whether a protein is 

soluble or inserted into a membrane. For this purpose, pelleted mitochondria were usually 

resuspended in 50 µl of SH (0.6 M sorbitol, 20 mM HEPES·KOH pH 7.2) or any other 

appropriate buffer, and the same volume of 0.2 M Na2CO3 (pH 11.5) was added. 

Alternatively, pelleted mitochondria were resuspended directly in 100 µl of 0.1 M Na2CO3 

(pH 11.5). The alkaline solution was incubated for 30 min on ice. That was followed by a 

centrifugation step (183,254 x g, 30 min, 2ºC). Supernatant containing soluble proteins was 

TCA precipitated, whereas the carbonate extraction pellet containing integral membrane 

proteins was resuspended directly in sample buffer for electrophoresis. The samples were then 

analyzed by SDS-PAGE. 

 

2.3.10. Expression and purification of proteins  

 

 2.3.10.1 Purification of recombinant proteins expressed in E. coli 

 Purification of recombinant maltose binding protein (MBP, MW=42 kDa) fusion 

proteins  MBP-Tim9 and MBP-Tim10 out of E. coli was done as described before (Guan et 

al., 1987). The MH1 or XL-1 Blue E. coli colony containing the MBP-fusion protein cloned 

into pMalcRI vector was innoculated for overnight growth (37ºC, 140 rpm) in up to 20 ml of 

liquid LBamp-medium. The next day, 5 ml of the overnight culture was diluted into 250 ml of 

LBamp-medium. This culture was then further incubated till it reached an OD600 of 0.5. At this 

stage, 1-2 ml were removed from the culture (uninduced-cells control), the cells were pelleted 

(10.000 x g, 15 sec, RT) and resuspended in 100 µl of sample buffer/ OD unit/ ml. The rest 

was induced by adding isopropyl-β,D-thiogalactoside (IPTG) to a final concentration of 1 

mM. Bacteria were grown further for 2-3 hours, OD600 measured again, and 1-2 ml taken for 

the induced-cells sample, which was treated as described above.  

 Cells were then harvested by centrifugation (3,000 x g, 10 min, 4ºC), washed with 

H2O, resuspended in 15 ml of column buffer (200 mM NaCl, 1 mM EDTA, 1 mM EGTA, 10 

mM β-mercaptoethanol, 1 mM PMSF, 20 mM HEPES·NaOH, pH 7.4). To degrade the cell 

walls and to obtain spheroplasts lysozyme was added to a final concentration of 1 mg/ml and 

the suspension incubated for 30 min at 0ºC, while rolling. The spheroplasts were sonicated 10 

times for 12 sec, with 48 sec breaks in between, on ice, utilizing Branson sonicator 450 

(settings: timer: hold; output control: 4; duty cycle: 80 %). A column was packed with 5-7 ml 



 

48 

of amylose resin, washed with several column volumes (CV) of water, and then with 7 CV of 

column buffer. The sonicated suspension was centrifuged (39,000 x g, 25 min, 4ºC) and the 

supernatant applied onto the equilibrated amylose column with a flow rate of 0.2 ml/min. 

Flow-through was collected, column washed with 7 CV of column buffer and the bound 

proteins eluted with up to 20 ml of elution buffer (10 mM maltose in column buffer). 

Fractions of 1 ml volume were collected, protein concentration determined and the fractions 

frozen at –80ºC until further use. 

 A slightly modified protocol was used to purify the his6Tim10 recombinant protein. Ni-

NTA (Qiagen) column was used instead of an amylose one. For cell lysis and loading the 

column, buffer A containing 300 mM NaCl, 0.01 mg/ml lysozyme, 10 mM imidazole, 10% 

glycerol, 1 mM PMSF, 50 mM Na2HPO4·NaOH, pH 8.0 was used. For washing and eluting 

the column, buffer A with 20 mM imidazole and no lysozyme, and buffer A without lysozyme 

and with 300 mM imidazole were used, respectively.   

 

 2.3.10.2 Purification of immunoglobulin G (IgG) 

Desired antiserum (4 ml) was centrifuged (20,000 x g, 20 min, 4ºC) and the white film 

of aggregated lipids that forms on the surface removed with a pipette-tip. The antiserum was 

diluted with 10 ml of buffer A (100 mM KPi, pH 8.5), filtered, and loaded onto a 5 ml Protein 

A Superose column (Amersham Pharmacia) equilibrated with buffer A. After washing the 

column with 5 CV of buffer A, bound IgGs were eluted with buffer B (100 mM citric acid, 

pH 3.0). The eluate was immediately neutralized with 2 ml of 2 M Tris·HCl, pH 8.0, dialyzed 

overnight against 5 l of H2O and lyophilized. The IgGs were resuspended in 10 mM 

MOPS·KOH, pH 7.2 to a final protein concentration of 10-50 mg/ml, aliquoted, and stored at 

–20ºC.  

 

 2.3.10.3 Purification of Tim9·Tim10 complex from N. crassa mitochondria 

Mitochondria isolated from N. crassa strain TA2-14-32 were resuspended to a final 

concentration of 10 mg/ml in solubilization buffer (300 mM NaCl, 20 mM imidazole, 10% 

glycerol, 1% TX-100, 1 mM TCEP, 1 mM PMSF, 50 mM MOPS·NaOH, pH 8.0), and 

incubated for 1 h at 4ºC, while mixing. The unsolubilized material was sedimented (15,900 x 

g, 30 min, 4ºC), the supernatant filtered through filter paper and loaded onto a Superflow Ni-

NTA agarose (Qiagen) column (2 ml Ni-NTA beads per 10 g mitochondrial protein) at a flow 

rate of 5.5 ml/min, using the Äkta-Prime unit (Pharmacia). The column was then washed with 
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6 CV of high salt wash buffer (essentially same as the solubilization buffer, but with 40 mM 

imidazole and no TX-100 and PMSF), and with 14 CV of low salt wash buffer (10 mM K+-

acetate, 40 mM imidazole, 10% glycerol, 1 mM TCEP, 50 mM Tris·acetate, pH 8.0), at a 2 

ml/min flow-rate. The column was eluted with 3-4 CV of 300 mM imidazole, 10% glycerol, 1 

mM TCEP, 25 µM Zn2+-acetate, 20 mM Tris·acetate, pH 7.5, at a flow-rate of 1 ml/min.  

Fractions containing the highest protein concentration were pooled together and 

loaded onto a 1 ml Resource Q or Q Sepharose ion-exchanger column, flow-rate 0.5 ml/min, 

using Äkta-Purifier (Pharmacia). The column was washed with 2 CV of buffer A containing 

20 mM Tris·acetate pH 7.5, 10 % glycerol, 1 mM TCEP, 25 µM Zn++-acetate, and  eluted 

with 4 CV of buffer A supplemented with 1 M K+-acetate, applying the step-gradient. Flow-

through fractions of this column contained the Tim9·Tim10 complex, while the contaminants 

eluted only with high salt elution buffer. Fractions containing Tim9·Tim10 complex were 

pooled together, dialyzed against 20 mM Tris·acetate, pH 7.5, 1 mM TCEP, 25 µM Zn++-

acetate, using 3-15 ml Slide-A-Lyzer® Cassettes (Pierce) and concentrated using omega 

Microsep® 10K or omega Macrosep® 10K centrifugal devices – concentrators (PALL). 

Protein concentration was determined, and a small amount of diluted probe analyzed for 

purity via high-Tris urea SDS-PAGE, followed by Coomassie or silver staining of the gel(s). 

Tim9·Tim10 complex was stored at 4ºC till use. 

 

2.3.11. Gel filtration 

Superdex 75 HR 10/30 column (Amersham Pharmacia) was used to perform size-

exclusion chromatography of the purified N. crassa Tim9·Tim10 complex (up to 40 µg), and 

Superose 12 HR 10/30 and Superose 6 HR 10/30 columns (both Amersham Pharmacia) for 

the separation of detergent-solubilized mitochondria (1 mg). The buffers used were: buffer A, 

containing 0.5% (w/v) digitonin, 50 mM NaCl, 10% (v/v) glycerol, 10 mM imidazole and 50 

mM Na2HPO4·NaOH, pH 8.0; buffer B, comprising 0.5% ß-dodecyl maltoside, 50 mM NaCl, 

2.5 mM MgCl2, 1 mM EDTA, 10% (v/v) glycerol, 20 mM HEPES·, pH 7.4, or buffer C: 20 

mM HEPES, 200 mM K-acetate, 10% (v/v) glycerol, 1 mM TCEP and 25 µM Zn-acetate. 

Mitochondria were solubilized at a final concentration of 0.5 mg/ml, for 30 min at 4ºC, in 

buffers A or B containing 1 mM PMSF. The unsolubilized material was pelleted (90,700 x g, 

20 min, 2ºC) and the supernatant loaded onto a Superose12 or Superose 6 size-exclusion 

chromatography column connected to the Äkta-Purifier (Pharmacia).  

Tim9·Tim10 complex was loaded in buffers A or C, but not containing detergent, nor 

PMSF. Flow rate was set to 0.2 ml/min, detergent concentration in the buffer reduced (0.05% 
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(w/v) digitonin or ß-dodecyl maltoside) and 0.25 or 0.5 ml fractions collected. They were 

TCA precipitated and submitted to SDS-PAGE, Western blot analysis and immunodecoration. 

Standard markers used were: 25 µg thyreoglobulin (660 kDa), 25 µg BSA (66 kDa), 50 µg 

alcohol dehydrogenase (50 kDa), 100 µg carboanhydrase (29 kDa) and 200 µg cytochrome c 

(12.5 kDa). All marker protein solutions were ultracentrifuged (20 min, 90,700 x g, 2ºC) prior 

to performing gel filtration runs. Following SDS-PAGE analysis, fractions containing markers 

were stained with Coomassie blue.  
 

2.3.12. Digitonin fractionation 

The method allows selective solubilization of the outer mitochondrial membrane, 

while keeping the inner one intact. Essentially, it was performed as described (Rojo, 1998), 

with minor modifications. Mitochondria (125 µg, at a final concentration of ~5 µg/µl 

mitochondrial protein), in either SM, SMK80 or SMNa300, were incubated with proteinase K 

(end concentration 250 µg/ml) in same buffers with various end concentrations of digitonin. 

As a control, PK was added to mitochondria fully solubilized with 0.1% (w/v) SDS. The 

samples were incubated for 15 min on ice, diluted with 96 µl of buffer without PK, and 

incubated further on ice for 30 min. Finally, TCA precipitation was performed. Samples were 

analyzed by SDS-PAGE, blotting and immunodecorations.  

 

2.3.13. Thin layer chromatography (TLC) for determination of 
detergent traces in protein preparations 

Glass plates coated with a thin layer of a solid adsorbent (silica, SiO2) were used. 

Samples of 15 µl buffer (1 mM TCEP, 25 µM Zn++-acetate, 20 mM Tris·acetate, pH 7.5) 

containing various detergent concentrations (0.005-1% (v/v) TX-100) were deposited onto 

plates, and the plates were left to dry. Sepharose Q elution fractions containing purified N. 

crassa Tim9·Tim10 complex (5 µl containing up to 35 µg total protein), Ni-NTA elution 

fractions containing purified Tim9·Tim10 complex used as the load for the Sepharose Q 

column (5 µl as well) and some of Ni-NTA load (15 µl corresponding to 150 µg total protein) 

were spotted onto a second TLC plate. The TLC plates were then placed for less than 1 h in a 

shallow pool (of approximately 0.5 cm) of running solution (60:39:1 of CHCl3 : methanol : 

water) in a developing chamber. When the solvent reached the top of the plates, the plates 

were removed from the developing chamber, dried, and the separated components of the 

mixtures visualized by placing the plate in iodine vapor.     



 

51 

2.3.14. Chemical cross-linking 

Cross-linking of 35S-labeled precursors of AAC, Su9(1-69)DHFR and Tim23 was 

performed by adding 100-500 µM of various cross-linkers (most frequently used was m-

maleimidobenzoyl-N-hydroxysuccinimide ester (MBS)) during incubation of the precursor 

with de-energized mitochondria in F5/0.03% (w/v) BSA buffer. After 30 min at 15°C excess 

cross-linker was quenched by the addition of glycine pH 8.8 to a final concentration of 100 

mM, mitochondria solubilised and immunoprecipitation performed. Antibodies against N. 

crassa Tim9, Tim10, Tim8 and the preimmune serum of the rabbit producing antibodies 

against Tim9 protein were used, and the outcome analysed through SDS-PAGE, blotting and 

autoradiography. 

For ascertaining the oligomeric state of the purified Tim9·Tim10 complex, cross-

linking experiments with glutaraldehyde were performed. Various amounts of the purified 

Tim9·Tim10 complex (ranging from 0.1 to 30 µg total protein per reaction) were incubated at 

25°C with different amounts of glutaraldehyde (0.03-0.1%) for different time periods (1, 3, 9 

and 30 min), in a reaction volume of 40.5 µl. Excess cross-linker was quenched as above. As 

a negative control, denatured protein complex in buffer containing 0.5% SDS was subjected 

to the same procedure. Samples were then analysed by SDS-PAGE, blotted onto a 

nitrocellulose membrane, and immunodecorated with antibodies against the histidine-tag, 

Tim9 and Tim10 proteins. 

To investigate the influence of zinc on Tim9·Tim10 complex oligomeric state 

maintenance, same experiments were performed in buffers containing either chelating 

reagents (o-Phe, EDTA and EGTA, alone or in combination, to a final concentration of up to 

10 mM each) or a sulfhydryl reagent N-ethylmaleimide (NEM), alone or in combination with 

EDTA, both used at 5 mM final concentrations.   

 

2.3.15. Screening of peptide libraries with the purified Tim9·Tim10 
complex  

 Cellulose-bound peptide libraries covering complete primary structures of S. 

cerevisiaeAAC2, N. crassa Tim17, N. crassa Tim22, N. crassa Tim23, N. crassa Flx1 and H. 

sapiens UCP1 were prepared by automated spot synthesis by Jerini AG, Berlin (Frank, 1992; 

Kramer and Schneider-Mergener, 1998). Peptides of 13 amino acid residues and with an 

overlap of 10 residues, corresponding to the sequences of indicated proteins, were C-

terminally linked to the cellulose membrane via a (β-Ala)2 spacer. Screening of peptide 
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libraries with purified Tim9·Tim10 complex was done as described before (Brix et al., 1999). 

Dry membrane was incubated once in methanol and three times in washing buffer (100 mM 

KCl, 30 mM Tris·HCl, pH 7.6) at RT for 10 min. For analysis of protein binding activity, the 

membrane was incubated with 20 ml of 150 nM solution of the isolated Tim9·Tim10complex 

in binding buffer (100 mM KCl, 5% (w/v) sucrose, 0.05% (v/v) Tween 20, 0.5% (w/v) BSA, 

and 30 mM Tris·HCl, pH 7.6) for 1 h at 25ºC, while shaking.  

After washing (3 min, RT) the peptide-bound Tim9·Tim10 proteins were transferred 

onto a polyvinylidene difluoride (PVDF) membrane using cathode buffer (75 mM Tris base, 

120 mM 6-aminohexanoic acid, and 0.01% SDS) and anode buffers AI and AII (AI 

containing 90 mM Tris base and AII containing 300 mM Tris base, pH unadjusted). Blotting 

procedure was similar to the one described above, with some differences: three Whatman 

3MM filter papers were soaked in AII and positioned onto anode graphite electrode of the 

blotting chamber, another three in AI and put on top of first three, followed by the PVDF 

membrane washed in AI. This membrane was then covered with the one containing peptide 

libraries (peptides facing the PVDF membrane) and incubated in cathode buffer, followed by 

another three filter paper sheets soaked in the cathode buffer as well, which were then covered 

with the cathode graphite electrode. Semi-dry blotting conditions used were: 1mA/cm2, 2 h 

(for our membrane dimensions of 13cm x 8cm, this translates to 104 mA). Bound Tim9 and 

Tim10 proteins were detected with antibodies against the corresponding proteins. Obtained 

data was analyzed by scanning laser densitometry and quantified utilizing TINA software.  

For regeneration of the peptide library, the membrane was washed for 10 min in 0.5% 

SDS in TBS solution, three times shortly with water, and finally twice for 10 min with TBS.  

 

2.3.16. Pull-down assay 

To demonstrate a direct interaction between the Tim9·Tim10 complex and its 

substrates, a pull-down assay was used. Eppendorf tubes to be used for this experiment were 

precoated with 0.1% BSA in 10 mM Tris·HCl pH 7.5, at RT, for 1-10 min, while shaking.  

Protein A sepharose beads were washed with up to 5 volumes of each water, 10 mM 

Tris·HCl pH 7.5, and F5/0.03% (w/v) BSA. They were then split into required number of 

tubes and antibodies against Tim9, Fis1p and Tim9 preimmune serum were added and 

incubated with Protein A Sepharose beads for 1.5 hours. Purified Tim9·Tim10 complex (90 

µg) was incubated for 30 min on ice with 3 µg of purified either AAC2 or MBP-Fis1(1-98) as 

a control protein, in F5/0.03% BSA buffer, in the presence of 1 mM ATP and 0.1% TX-100. 

Similarly, 40 µg of the Tim9·Tim10 complex were incubated for 1 min at RT with 20 µl of 
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radioactively labeled precursors of AAC2, N. crassa AAC and Su9(1-69)DHFR, in the same 

buffer. Samples were then diluted 1:150 and 1:300 with F5/0.03% (w/v) BSA/0.05% TX-100 

buffer, for non-labeled and 35S-labeled Tim9·Tim10 substrates respectively, to a final volume 

of 1.5 ml. Each probe was then split (3 x 450 µl) into tubes with Protein A Sepharose beads 

with prebound preimmune serum, Tim9 or Fis1p antibodies. From each sample 45 µl was 

kept as 10% input. Binding proceeded for 3 h at 4ºC in an overhead roller, and the beads were 

then sequentially washed with F5 with 0.03% (w/v) BSA and 0.05% TX-100, F5 with 0.05% 

TX-100 and 10 mM Tris·HCl pH 7.5 buffer, for 3 min at 4ºC. Elution was performed with 2x 

sample buffer for 3 min at 95ºC. The bound material was analyzed by SDS-PAGE and 

immunodecoration or autoradiography. 

 

2.3.17. In-gel digestion of proteins for sequencing 

The method was used to identify Tim9 protein in the purified Tim9·Tim10 complex, in 

collaboration with Dr Lutz Eichacker.  

Digestion buffer: 15 µl (25 µg/250 µl 1 mM HCl), 40 µl H2
18O, 10 µl H2O, 50 µl 0.1 

M NH4HCO3, 5 µl 1% (w/v) CaCl2, making up a total volume of 120 µl.   

        

15 µl of [1 µg/µl] Resource Q flow-through fraction, containing the purified 

Tim9·Tim10 complex, was loaded on a high Tris-urea gel and electrophoresis was performed. 

The gel was stained with Coomassie blue and washed twice for 10 min with water. The 

protein bands of interest (of molecular weights 10 and 12 kDa), and a piece of gel of the same 

size in an area not containing proteins (control), were excised with a clean scalpel, cut into 1 x 

1 mm cubes, and transferred into 1.5 ml eppendorf tubes. Gel particles were then washed for 5 

min with 100-150 µl of water, a mixture of water and CH3CN (v/v) of 1:1, and a 1:1 mixture 

of 0.1 M NH4HCO3:CH3CN (all solutions removed via vacuum application).  

The gel pieces were then shrunk with 300 µl acetonitrile, and dried in a vacuum 

centrifuge. They were further swollen in 150 µl (enough to cover them) of 10 mM DTT/0.1 M 

NH4HCO3, by incubating them for 45 min at 56ºC. The gel particles were subsequently 

washed twice with acetonitrile and the same volume of 55 mM iodoacetamid/0.1 M 

NH4HCO3 solution added (iodoacetamid was freshly weighed), and an incubation of 30 min 

at RT in dark followed. They were then shortly washed, once with 0.1 M NH4HCO3, and once 

with acetonitrile. Then they were shrunk again with acetonitrile. If necessary, the washing 

cycle was repeated, until Coomassie stain was completely removed.  



 

54 

After drying the gel particles completely, they were rehydrated in a digestion buffer at 

4ºC. After 10-15 min, some more of digestion buffer was added, because it got absorbed. 

Incubation for 45 min at 4ºC insued, the remaining supernatant removed, and replaced with 5-

10 µl of the same buffer without trypsin. The gel pieces were shaken for further 3 h or 

overnight at 37ºC.   
The peptides were then extracted from the gel. The gel pieces were incubated for 15 

min at 37ºC, while shaking, with 25 µl of 25 mM NH4HCO3 added. The gel pieces were spun 

down and 1-2 volumes of acetonitrile added. Another 15 min-incubation at 37ºC followed, 

and after the gel pieces had been spun down, the supernatant was collected; 40-50 µl of 5% 

(v/v) formic acid was added and the probe incubated for 15 min at 37ºC, with shaking. The 

gel was spun down, the supernatant not removed, and 1-2 volumes of acetonitrile added, 

followed by shaking for 15 min at 37ºC. The gel particles were spun down and the extracts 

pooled together. Sample was then dried in a speed vac centrifuge, and dissolved in 5% (v/v) 

formic acid in ddH2O, final volume 10 µl. A GC column equilibrated with 400 µl methanol 

and subsequently with 5% (v/v) formic acid was loaded with the sample, and washed with 5% 

(v/v) formic acid. It was then eluted with 1.4 µl of the 60% (v/v) methanol, 5% (v/v) formic 

acid solution. The eluate was transferred into the needle for the mass spectrometry (MS) and 

subjected to the MS analysis. The analysis was further kindly perfomed and the results 

analysed by the members of Dr Lutz Eichacker’s group. 

 

2.4. Immunological methods 

 

2.4.1. Generation of specific antibodies against N. crassa Tim9 
and Tim10 proteins in rabbits 

N. crassa intronless versions of tim9 and tim10 genes were cloned into pMalcRI 

vector, yielding MBP-tim9 and MBP-tim10 fusion constructs, which were transformed into 

MH1 and XL-1 E. coli cells. The expressed fusion proteins were purified and separated from 

remaining contaminants via SDS-PAGE. The gels were blotted and the bands, corresponding 

in size to fusion constructs, excised from the nitrocellulose membranes. Excised protein bands 

(the amount of total protein apprx. 200 µg) were dissolved in 200 µl DMSO by vortexing for 

circa 3 min. TiterMax adjuvant (200 µl) was added and the emulsion injected subcutaneously 

into rabbits in their neck area. For all subsequent injections, that took place every four weeks, 

TiterMax adjuvant was replaced with Freundsches one. The rabbits were bled 10-12 days 
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after each injection cycle except for the first one. Approximately 10-30 ml of blood was bled 

each time, and it was left at RT to coagulate, when it was centrifuged twice (5 min at 3,000xg 

and 15 min at 20,000xg, RT), and the resulting antiserum (supernatant of centrifugation) 

heated to 56ºC for 20 min. It was then aliquoted and frozen at −20ºC.  

 

2.4.2. Affinity purification of antibodies against Tim9 and Tim10 
proteins  

Since the antisera contained antibodies recognizing unrelated antigens (the so-called 

cross-reactivity), affinity purification had to be performed. For that purpose, the MBP-fusion 

proteins that served as antigens were coupled to the activated Sepharose. PD10 column 

(Amersham Pharmacia Biotech) was equilibrated with 50 ml of 0.5 M NaCl, 0.1 M NaHCO3, 

pH 8.3 (the “coupling” buffer). An amylose-column elution fraction of MBP-fusion protein 

(Tim9 or Tim10), containing not more than 9 mg of protein, was loaded onto this PD10 

column, and 0.5 ml fractions were collected. Protein concentration was determined and three 

peak fractions pooled together. CNBr-activated SepharoseTM 4B (Amersham Biosciences) 

(0.3 g) was added onto and mixed with 10 ml of 1 mM HCl, pH 2.8 poured into a glass, and 

left for 2-5 min for the sepharose to swell. The suspension was mixed again and poured onto a 

sintered glass filter, connected to a vacuum-pump for washing with 100 ml of 1 mM HCl. The 

matrix was transferred into a disposable 10 ml plastic column (Biorad), drained from HCl and 

the outlet was closed with the supplied cap. Fraction containing MBP-fusion protein was 

added, the column closed with parafilm and incubated for 1 h at RT, while gently rolling. It 

was then positioned into a standard stand, the content allowed to settle, and the outlet opened. 

Unbound material was collected, the column washed with 6 ml of coupling buffer, and 

drained completely, before adding 6 ml of 1 M ethanolamine pH 8.0. When 4 ml of 

ethanolamine buffer have passed through, the outlet was closed and the column left for 2 h at 

RT. It was drained, washed in three cycles with 6 ml of 0.5 M NaCl, 0.1 M Na-acetate, pH 4.0 

and 0.5 M NaCl, 0.1 M Tris·HCl, pH 8.0 and left overnight with 3 ml of 0.05% NaN3 in 

water.  

The day after, column was equilibrated with 10 ml of 10 mM Tris·HCl, pH 7.5, and 6 

ml of the antiserum to be affinity purified, premixed with 24 ml of 10 mM Tris·HCl, pH 7.5, 

150 µl of 200 mM PMSF, 15 µl of 1 M o-Phe and 30 µl of 1 mg/ml leupeptin, loaded onto it. 

The flow-through was reloaded twice. The column was washed with 10 ml of 10 mM 

Tris·HCl, pH 7.5, and then with 10 ml of 0.5 M NaCl, 10 mM Tris·HCl, pH 7.5.  
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For the elution, column is subjected to alternating pH through application of following 

buffers, in given order (10 ml each): 10 mM Na-citrate, pH 4.0, 100 mM glycine·HCl, pH 2.5, 

and 100 mM Na-phosphate, pH 11.5. Fractions of 1 ml are collected and neutralized 

immediately, with 200 µl 1 M Tris·HCl, pH 8.8, in the case of first two buffers, and with 100 

µl glycine, pH 2.2 in the case of the phosphate one. The column was equilibrated to alkaline 

pH with 10 ml of 10 mM Tris·HCl, pH 8.8, between the glycine and phosphate buffer 

elutions. It was washed with 10 mM Tris·HCl, pH 7.5, and left in 0.05% NaN3 at 4ºC.  

From each of the affinity purified antisera, their “load”, flow-through, wash and 

elution fractions 1-3, diluted 1:250 in 5% (w/v) skimmed milk in TBS, were checked by 

immunodecoration. From this decoration the set of elution fractions containing the desired 

purified antibody (citrate, glycin or phosphate) were identified, and all ten in that set were 

then tested as described. 

  

2.4.3. Immunodecoration  

 Proteins blotted onto nitrocellulose or PVDF membranes were visualized by 

immunodecoration. Non-specific binding sites were blocked by incubating the membrane 

with either 5% (w/v) skimmed milk in TBS buffer, 3% BSA (w/v) in TBS buffer or NET-

gelatin solution (150 mM NaCl, 5 mM EDTA, 0.05% TX-100, 0.25% (w/v) gelatine, 50 mM 

Tris·HCl, pH 7.5), at RT for 1 h. Then the membranes were incubated with specific primary 

antibody (1:200 to 1:1.000 dilutions in one of the above mentioned solutions) for 1 h at RT, or 

overnight at 4ºC. The membrane was then washed 3 times (each wash lasts 5-10 min), with 

TBS, TBS/0.05% (w/v) Triton X-100 and again with TBS, and incubated for 1 h with 

horseradish peroxidase coupled to secondary goat anti-rabbit-IgG or anti-mouse-IgG (diluted 

1:10.000 in one of the above solutions). The membrane was again washed (as already 

described) and treated with ECL reagents: luminol (2.5 mM 3-aminophtalhydrazide and 0.4 

mM p-cumaric acid in 0.1 M Tris·HCl, pH 8.5), diluted 1:1 with 0.018% (v/v) H2O2 (in 0.1 M 

Tris·HCl, pH 8.5). The luminescence reactions were detected with Röntgen films (Fuji 

NewRX). 

 

2.4.4. Immunoprecipitation and co-immunoprecipitation 

Eppendorf cups were precoated with BSA by washing them for 5 min at RT with 0.1% 

BSA in 10 mM Tris·HCl, pH 7.5. Desired amount of Protein A SepharoseTM CL-4B 

(Amersham Biosciences) beads slurry was washed with water, followed by 0.1% BSA in 10 
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mM Tris·HCl pH 7.5, and then with desired buffer. Appropriate amounts of antiseras (25-100 

µl per 25 µl of beads), and required buffers are added (so that the final volume is no less than 

500 µl), and incubates for at least 3 h at 4ºC, while rotating the cups overhead. The beads 

were then washed from the unbound antiserum.  

Mitochondrial protein samples to be co-immunoprecipitated (final protein 

concentration 2.5 mg/ml) were dissolved in lysis buffer (0.05% BSA, 0.5% digitonin, 50 mM 

NaCl, 1 mM PMSF, 25 µM Zn-acetate and 50 mM Na-phosphate·HCl, pH 8.0), and incubated 

1 h at 4ºC while gently shaking. Mitochondria with radioactively imported and cross-linked 

proteins were solubilized at a final protein concentration 2 mg/ml in 100 mM NaCl, 2 mM 

PMSF, 1% SDS, 50 mM Na-phosphate·HCl, pH 8.0, and incubated for 15 min at RT, while 

vigorously shaking. The latter samples were subsequently diluted 20 times with a TBS buffer 

that contains 0.2% TX-100. After a clarifying spin (90.700xg, 20 min, 2ºC), the supernatants 

were added to antibodies pre-coupled to Protein A Sepharose beads.  The samples were 

incubated further at 4ºC for additional 3 h, while rotating overhead, the beads were then 

washed with 500 µl lysis buffer with no PMSF, then with lysis buffer with decreasing amount 

of detergent (0.1% digitonin, 0.05% TX-100) and no BSA, and finally with 500 µl of 10 mM 

Tris·HCl pH 7.4 (3 min each wash, rotating overhead, 4ºC). Bound proteins were eluted with 

2x Laemmli sample buffer via incubation for 3 min at 95ºC or 10 min at 56ºC, and analyzed 

by SDS-PAGE. 
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3. Results 
 

3.1. Identification of the N. crassa tim9 and tim10 genes 

3.1.1. Identification of the N. crassa tim10 gene  

 
The amino acid sequence of the N. crassa Tim10 protein was determined based on a 

BLAST search using the sequence of the S. cerevisiae Tim10 protein as a query.  
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Figure 5. The tim10 gene of N. crassa. (A) Structure of the N.crassa tim10 gene. (B) Protein 
sequence alignment. The sequences of N. crassa Tim10 protein with homologues from other organisms are 
presented (Nc, Neurospora crassa; Sc, Saccharomyces cerevisiae; At, Arabidopsis thaliana; Dm, Drosophila 
melanogaster). Identical residues occurring in all organisms are indicated in darker violet, 75% similar in light 
blue and 50% similar in pink. 



 

59 

Primers were constructed based on sequences obtained from the data base 

(http://www.broad.mit.edu/annotation/fungi/ neurospora/), and the intronless version of the 

tim10 gene of around 300 bp was PCR-amplified using N. crassa cDNA(−) library as a 

template. When cDNA(+) library was used as the template, yield of the PCR product was 

much smaller.  

Using these same primers, the N. crassa genomic library was screened and a 500 bp 

PCR product was obtained. Another PCR reaction, with the same primers and digoxigenin-

labeled uracyl nucleotides was performed. A digoxigenin-labeled product of slightly increased 

molecular weight (circa 600 bp) was obtained. This probe was used to screen the N. crassa 

cosmid library (pMOcosX) and three cosmids containing the tim10 gene were identified: 

X20:A12, X25:B10 and X12:C6.  

Using these cosmids as templates, the tim10 gene was amplified by PCR, inserted into 

pCB1179 vector and sequenced. This revealed that the gene is interrupted by one intron (gene 

structure is given in Figure 5A). The DNA sequence was deposited in the Genebank 

(GENBANK accession number AF343077). The N. crassa Tim10 protein comprises 90 

amino acid residues and has 44% identity to the yeast Tim10p (Figure 5B).  

The intronless version of the gene was further cloned into pGEM4 vector for the 

synthesis of radioactively labelled Tim10 precursor. Moreover, his- and MBP-tagged Tim10 

proteins were expressed in E.coli, purified and injected as antigens into rabbits. Serum 

obtained from the rabbit injected with MBP-Tim10 fusion construct was found to decorate 

Tim10 in the mitochondrial preparations isolated from the N. crassa mycelium. 

 

3.1.2. Identification of the N. crassa tim9 gene 

 
In the early stages of this study, the full genome sequence of N. crassa was not yet 

available. Thus, the initial BLAST searches performed with the sequence of Tim9 protein 

from yeast as bait were unsuccessful in identifying the sequence of the N. crassa Tim9 

protein. To tackle this task, other approaches were attempted.  

The 35S-labeled N. crassa wild type mitochondria were isolated, solubilised in buffers 

containing different detergents, and a coimmunoprecipitation with an antibody against Tim10 

protein was performed (Figure 6). Upon solubilization with TX-100, a wide range of proteins 

of variable molecular weight coimmunoprecipitated with the Tim10 protein. The pattern of 

protein bands was however indistinguishable for the preimmune and the Tim10 antisera, aside 

from the intensity gain of the band equal in size to Tim10 protein.The two most prominent 
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protein bands were detected by autoradiography in probes solubilized with SDS (control), one 

of 10 kDa and the other of 20 kDa, presumed to correspond to the Tim10 protein, and a 

protein of 20 kDa of unknown function, rich in histidine residues. The unspecific cross-

reactions of the Tim10 antiserum imposed serious obstacles to identifying the Tim9 protein 

via this aproach. 

 

 

Figure 6. Coimmunoprecipitation of the 35S-labeled wt N. crassa mitochondria. Antibodies against 
Tim10 protein and the corresponding preimmune serum were used (RT, room temperature; PIS, preimmune 
serum). Marked temperatures describe conditions used for elution; all probes were first eluted at RT, followed by 
elution at 50ºC.  

 

As an alternative method to identify the Tim9 protein, a heterokaryotic strain 

comprising the histidine-tagged version of Tim10 protein in addition to the wild type protein 

was constructed (for details see section 3.3). The TA2-1 transformant was selected for further 

experiments among a range of different transformants. Mitochondria isolated from this strain 

were solubilized in the sodium-phosphate buffer containing 1% TX-100, and a pull-down 

assay with the Ni-NTA beads was performed. The bound fractions contained the Tim10 

protein migrating at 10 kDa, and the Tim10his9 protein at 12 kDa. No additional band in the 

small molecular weight range that would correspond to the Tim9 protein was detected (Figure 

7, lane 1). Similar results were obtained when mitochondria were solubilized in various other 

buffers (data not shown), or when the Ni-NTA elution fractions of the aforementioned 

purification were run on the long high-Tris urea gel with better resolution of the low 

molecular weight range (data not shown).  

To exclude the possibility that the Tim9 protein migrates together with the Tim10his9 

protein on high-Tris urea gels, the Ni-NTA purification procedure was modified, by adding 
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one elution step with 8 M urea, prior to the elution with imidazole. Urea denatures the 

proteins, but it does not destabilize the interaction of the histidine tag with the column matrix. 

This allowed the dissociation of all proteins without a histidine-tag from the column. No band 

of about 12 kDa, which would correspond to a protein released by urea was detected (Figure 

7, lane 2).  

 

 

Figure 7. Purification of the Tim10·Tim10his9 complex. Elution of the Ni-NTA columns was preformed 
under native (control, lane 1), and denaturing conditions (lane2). After elution with 8 M urea, the same Ni-NTA 
column was subjected to the elution with 300 mM imidazole (lane 3). 

 

To test whether the N. crassa Tim9 protein is “hidden” on the gels by co-migrating 

with the Tim10 protein, the 10 kDa protein band was digested with trypsin and the tryptic 

fragments were sequenced. Indeed, several peptides, not belonging to the Tim10 protein, were 

identified (data not shown). Combining the sequences of these peptides yielded a stretch of 

amino acid residues long enough to perform a BLAST search of the meanwhile extended 

database of N. crassa genome. 

The segment identified in this search, allowed the identification of a DNA sequence 

corresponding to the region of the alleged tim9 gene. Inspection of a larger DNA segment 

around the identified region allowed the construction of the primers for tim9 exons, making an 

educated guess regarding the position of introns. Simultaneous screens of the N. crassa cDNA 

and genomic libraries produced the PCR products of the expected size which confirmed the 

presumed gene organization of tim9. Meantime, sequencing of the N. crassa genome was 
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concluded, and based on comparison of the tim9 cDNA to the corresponding region on the 

chromosome the existence of the two introns was confirmed (Figure 8A). The N. crassa tim9 

gene encodes a protein of 88 amino acid residues which is 40% identical to the yeast Tim9p 

(Figure 8B). The gene sequence was deposited in the Genebank (GENBANK accession 

number AY141127). 
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Figure 8. tim9 gene of N. crassa. (A) Structure of N.crassa tim9 gene.  (B) Protein sequence 
alignment of N. crassa Tim9 with homologues from other organisms. (Nc, Neurospora crassa; Sc, 
Saccharomyces cerevisiae; At, Arabidopsis thaliana). Identical residues occurring in all organisms are indicated 
in darker violet and 50% similar in pink. 

 

The coding sequence of the tim9 gene was cloned into pGEM4 vector for the 

production of radioactively labelled Tim9 protein, and into pMalcRI plasmid for the 

expression of MBP-fusion proteins, used for the generation of antibodies. Import of 

radioactively labelled Tim9 and Tim10 proteins showed no dependency on ATP, 

transmembrane potential, and the common import receptors (data not shown).  
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3.1.3. Tim9 is an essential protein in N. crassa 

 

Since TIM9 was shown to be an essential gene in yeast (Koehler et al., 1998b; Adam 

et al., 1999), our research collaborator Frank Nargang and his coworkers used the sheltered 

repeat-induced point mutation (RIP) procedure to generate the tim9 mutants in N. crassa. The 

product of the procedure was a heterokaryotic strain with the tim9 gene in one type of nucleus 

inactivated by RIP, and a wild type copy of the gene in the other (Figure 9A).  

 

 

Figure 9. (A) Sheltered heterokaryon containing the tim9RIP mutant. The box depictes the 
heterokaryon, circles represent genetically distinct nuclei which make up the heterokaryon. Nucleus 1 contains 
only the nonfunctional RIPed version of tim9, whereas nucleus 2 contains a wt copy of the gene. (B) Level of 
Tim9 protein is decreased in cultures where the nucleus containing the RIPed gene is 
increased in number. The sheltered heterokaryon (panel A) and an acriflavine resistant control strain (Host 
III) were grown in the presence of acriflavine and tryptophan and mitochondria were isolated. Mitochondrial 
proteins were separated by SDS-PAGE and blotted to nitrocellulose. The blot was decorated with antibodies 
against the indicated proteins. (C) Scoring of single colonies from the heterokaryotic strain decribed 
in A. (ade, adenine; trp, tryptofan). 

 

Growth of the heterokaryon in the presence of acriflavine and tryptophan resulted in 

the RIPed nucleus gaining numerical superiority, since it provided the drug resistance and the 

addition of tryptophan attended to its nutritional requirements. Under these conditions the 

cells showed a slowed growth rate. The level of Tim9 protein was drastically decreased in the 

mitochondria of the heterokaryotic strain, whereas the level of the Tim10 protein was slightly 

reduced in these cells (Figure 9B). 

In order to determine whether tim9 is an essential gene in N. crassa, conidiaspores 

produced by the heterokaryon were streaked onto medium containing all nutritional 
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requirements of both nuclei in the strain (Figure 9A). Testing of nutritional requirements of 

individual colonies produced from these conidia disclosed the tim9RIP nucleus as inviable 

(Figure 9C). To confirm that the effects of RIP are to be attributed to the tim9 gene, the 

sheltered heterokaryon was transformed with a bleomycin resistance plasmid containing a 

wild type copy of the tim9 gene. Viable tryptophan-requiring homokaryotic strains were 

recovered (data not shown). Therefore, tim9 is an essential gene in N. crassa.  

The tim10 gene has proven an unsuitable candidate for the RIP mutagenesis because 

of the proximity of tim10 to a potential tRNA-synthetase gene and the size of the duplication 

required to act as a RIP substrate. 

  

3.2. The Tim9 and Tim10 proteins form a heterooligomeric complex in 

the intermembrane space of mitochondria  

 
To investigate the subcellular localization of the N. crassa Tim9 and Tim10 proteins, 

subcellular fractionation by differential centrifugation of cellular homogenate was performed. 

Both proteins were found to be exclusively localised in the mitochondria (data not shown). 

Their intramitochondrial location was further examined via the digitonin fractionation 

procedure (Hartl et al., 1986).  

 

 

Figure 10. Tim9 and Tim10 localize to the mitochondrial intermembrane space. 
Mitochondria were subfractionated in the presence of PK (0.25 µg/µl) by adding increasing amounts of the 
detergent (0.025-0.4%). The samples were TCA precipitated and analysed by SDS-PAGE and 
immunodecoration with the antibodies against indicated proteins (F26, typical N-terminal fragment of Tom40, 
indicative of opening of the outer membrane). 
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The isolated mitochondria of N. crassa were treated with increasing amounts of the 

mild detergent digitonin. Upon this treatment solubilization of the outer membrane occurred 

first, followed by that of the inner membrane. Fractionation was performed in the presence of 

proteinase K to monitor for the degree of accessibility of various proteins. The degradation of 

both Tim9 and Tim10 proteins occurred at the same digitonin concentrations as that of one 

representative of the intermembrane space proteins, like CCHL, and of the N- and C-termini 

of Tom40 which are also in the intermembrane space (Künkele et al., 1998) (Figure 10). This 

indicates that Tim9 and Tim10 proteins of N. crassa reside in the mitochondrial 

intermembrane space. A proteinase K-resistant core structure observed in both Tim9 and 

Tim10 proteins is suggestive of a tight fold of this domain (Figure 10).  

 

 

Figure 11. Analysis of the Tim9·Tim10 complex by BNGE. Mitochondria were solubilized in a buffer 
containing 0.5 % (w/v) digitonin and subjected to analysis via BNGE (with the marked amount of total 
mitochondrial protein loaded per lane), and immunodecoration with antibodies against either Tim9 or Tim10 
protein. Molecular weight of ADH used as a marker protein is indicated on the righthand side. 

 

To ascertain the oligomeric state of the Tim9 and Tim10 proteins, mitochondria were 

solubilized in a buffer containing either 0.5% digitonin or 0.5% ß-dodecyl maltoside (DDM), 

and subjected to the analysis by blue native gel electrophoresis (BNGE). Both proteins were 

present in a 70-80 kDa complex as revealed by the decoration with antibodies against both 

Tim9 and Tim10 proteins (Figure 11). 
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Figure 12 Analysis of the Tim9·Tim10 complex by size exclusion chromatography over a 
Superose 6 gel-filtration column. Mitochondria were lysed in a buffer containing 0.5% DDM and subjected 
to a gel filtration trial. Elution peaks of marker proteins are indicated as their respective molecular masses.   

 

Size exclusion chromatography of the solubilized mitochondria confirmed that both 

proteins constitute the 70 kDa complex (Figure 12). To further affirm that the two proteins do 

indeed make up the same complex, the mitochondria were solubilized in a buffer containing 

0.5% digitonin, and the coimmunoprecipitation with antibodies against both proteins was 

performed. Antibodies against the Tim9 protein efficiently precipitated both Tim9 and Tim10 

proteins. Similarly, the antibodies against the Tim10 protein immunoprecipitated the Tim9 

and Tim10 proteins (Figure 13). On the other hand, they were not immunoprecipitated by 

antibodies against the inner membrane protein Tim23 or the membrane associated matrix 

protein Tim44 (not shown). Antibodies against the Tim22 protein precipitated a negligible 

amount of Tim9 and Tim10 proteins under the conditions used (Figure 13). It seems as if the 

small Tim proteins of N. crassa do not associate stably with the Tim22·Tim54 complex. In 

conclusion, N. crassa Tim9 and Tim10 proteins interact to form a heteromeric complex in the 

intermembrane space. 

 

 

Figure 13. Analysis of the Tim9·Tim10 complex by coimmunoprecipitation. Mitochondria 
(75µg/lane) were solubilised in a buffer containing 1% digitonin, and added to protein A Sepharose beads with 
prebound antibodies raised against indicated proteins. Proteins that were not bound (supernatant, S) and that 
were bound (pellet, P) were analysed by SDS-PAGE and immunodecorated with indicated antibodies.    
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3.3. Isolation of the Tim9·Tim10 complex 

 
For the purification of the Tim9·Tim10 complex, we inserted a sequence encoding  the 

Tim10 protein tagged with nine histidine residues under the control of its endogenous 

promotor into the pCB1179 plasmid. The expression construct was then transformed into wild 

type N. crassa strain 74A. This procedure yielded heterokaryotic transformants, all expressing 

a nanohistidinyl-tagged version of the Tim10 protein, in addition to the wild-type protein. 

These two versions of the Tim10 protein were present in different ratios in different strains, 

and hence, transformants were examined for expression levels of the tagged vs. the untagged 

protein. Two heterokaryonic strains (TA2-1 and TA2-14) with the favourable expression of 

the Tim10his9 protein were chosen among a large number of transformants. These two strains 

were further subjected to a microconidiation procedure and from all the homokaryonic strains 

originating from these microconidia the TA2-14-3 strain was selected. This strain is a 

homokaryon expressing roughly equal amounts of the Tim10 and Tim10his9 proteins. It grew 

comparably to the parental wild type strain (data not shown). Mitochondria isolated from the 

mycelium of this strain were used to purify the Tim9·Tim10 complex, combining metal-

affinity and ion-exchange chromatography technics.  

To optimize the Ni-NTA purification procedure, following parameters were tested: 

sodium phosphate, Tris, potassium acetate, HEPES and MOPS buffers, various pH values, 

different imidazole, zinc and salt concentrations in washing buffers, and different reducing 

agents. Protein yields and the purity of the Tim9·Tim10 complex released from mitochondria 

by solubilization with Triton X-100 to those obtained upon disruption of the mitochondrial 

membrane integrity through sonication were also compared. Although both methods produced 

complexes of comparable purity, the yield was significantly higher when TX-100 was used. 

The optimal conditions, established and used from then on, are noted in the “Material and 

methods” section. 

A large scale purification procedure was also established. Different amounts of the 

loaded protein with respect to column volume were evaluated and subsequently set at 5 g of 

total protein per 1 ml of the Ni-NTA column matrix. To minimize the possibility of protein 

degradation during purification steps, flow rate was increased to 5.5 ml/min. This reduced the 

time required for the loading of the solubilized material but still allowed for complete protein 

binding as determined by analysis of the flow-through fractions Because of a higher column 

pressure resulting from the increased flow rate, it was necessary to use the Superflow matrix, 
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which endures pressures up to 1 MPa, instead of the conventional Ni-NTA Agarose (both 

from Qiagen). 

 

 

 
 

Figure 14. Purification of the Tim9·Tim10 complex. (A) Tim9·Tim10 complex was isolated from TA2-
14-3 N.crassa mitochondria lysed in sodium phosphate buffer containing 1% (v/v) Triton X-100. The solubilized 
material was subjected to metal-affinity chromatography; fractions 5-8 from the Ni-NTA column were loaded 
onto a Resource Q ion-exchange chromatography column. Samples of the entire purification procedure were 
analysed by high Tris urea SDS-PAGE, and the gel was stained with Coomassie Blue. (lmw, low molecular 
weight marker; mmw, mini molecular weight marker; MW molecular weight). (B) Tim9·Tim10 complex 
isolated over a Ni-NTA column in MOPS buffer, was loaded onto a Q Sepharose ion exchanger; the respective 
fractions were analysed by high Tris urea PAGE, and the gel was stained with silver nitrate. (C) Proteins of 
fraction three of the Resource Q ion-exchanger were analysed by SDS-PAGE and immunodecoration with 
antibodies against Tim9 and Tim10. 
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The Tim9·Tim10 complex eluted from the Ni-NTA column contained several 

contaminating proteins (Figure 14A). Therefore, we went on to investigate possibilities for 

segregating the complex from these protein contaminants. The size exclusion chromatography 

turned out to be an undependable tool. The loss in protein amount due to weak, yet 

undeniably present, unspecific interactions of the Tim9·Tim10 complex with the gel filtration 

column’s matrices, overshaddowed the overall modest improvements gained in purity-level. 

The ion exchange chromatography was tested next. Fractions eluted from a Ni-NTA column 

were pooled together and subjected to either cation- or anion-exchange chromatographies 

(Figure 14A). The cation-exchange chromatography was found to be inadequate, since the 

Tim9·Tim10 complex could not be eluted with high salt buffers at all pH values tested (pH 6-

10, at half-unit increments). The anion-exchangers, on the contrary, showed excellent 

potential for improving the Tim9·Tim10 complex purification procedure. When using the pH 

values from 6.0 till 8.0, the complex was in the flow-through of the anion-exchange column, 

while the contaminants remained bound. The only exception was pH 6.0, where some 

contaminants were also found in the flow-through. At pH values equal to and higher than 9.0, 

Tim9·Tim10 complex was bound to the ion-exchanger. However, for all subsequent 

purifications more physiological pH values were selected, closer to that of the mitochondrial 

intermembrane space (pH 7.5-8.0). Replacing the Resource Q with Q Sepharose anion 

exchanger enabled me to substantially decrease both protein amount losses, caused by 

unspecific binding to the ion-exchanger matrix, and the amount of contaminating proteins 

(compare A to B in Figure 14). 

The protein bands of the purified complex were identified by mass spectroscopy (data 

not shown) and immunodecoration (Figure 14C).  

To essay whether there are some residual TX-100 traces in the samples containing the 

Tim9·Tim10 complex, I have performed a thin-layer chromatography (TLC) of these probes. 

Every step of the purification procedure was monitored via this method, which can detect TX-

100 concentrations as low as 0.005% (v/v). Minor amounts of TX-100 were found in the 

washing fractions of the Ni-NTA column. In the Q Sepharose flow-through fractions, dialysed 

against buffers without TX-100, the detergent was completely eliminated (data not shown). 

To syllogise, N. crassa Tim9 and Tim10 proteins are the sole constituents of the purified 

complex. 
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3.4. Structural organization of the purified Tim9·Tim10 complex 

 

To prove the authenticity of the Tim9·Tim10 complex purified from mitochondria 

expressing Tim10his9, it was compared to the complex set free from the wild type 

mitochondria. Both complexes displayed an apparent molecular weight of 70-80 kDa when 

analyzed by BNGE (Figure 15). The identical results were obtained using antibodies against 

Tim9 and Tim10 proteins, confirming that the 70-80 kDa complex contains both proteins. 

Thus, the purified complex possesses the same composition as the native one.  

 
 

 

Figure 15. N. crassa Tim9 and Tim10 proteins form a hetero-hexamer. Mitochondria solubilized in 
0.5% digitonin and the purified Tim9·Tim10 complex were analyzed by blue native gel electrophoresis, followed 
by immunodecoration with antibodies against Tim9.  

 

To study the oligomeric organization of the purified Tim9·Tim10 complex, the 

chemical cross-linking assay was used. The purified complex was incubated with 

glutaraldehyde, and the cross-linking products analyzed by high-tris urea/SDS-PAGE and 

immunostaining with antibodies against either Tim9 or Tim10 proteins (Figure 16).  

In the absence of glutaraldehyde, the Tim9 and Tim10 proteins were found to be 

monomers. The bands corresponding to the oligomeric species (dimer to hexamer) were 

observed when the complex was treated with the cross-linker (Figure 16A). As a control, no 

cross-linking adducts were observed when the cross-linking was performed in the presence of 

0.5% SDS (Figure 16B). Upon decoration with the antibodies against the Tim10 protein, at 

least two different X-linking species of a dimer product could be more readily observed 

(Figure 16A, right panel). The same bands were observed upon decorations with the antibody 



 

71 

against the histidine-tag (data not shown). Thus, the cross-linking adduct corresponding to the 

higher molecular weight dimer contains the Tim10his9 protein. This suggests that this variation 

of the Tim10 protein is also a part of the oligomeric structure. 

In conclusion, the isolated Tim9·Tim10 complex is a heterohexamer of an 

approximate molecular weight of 70-80 kDa, equivalent in size and oligomeric state to the 

native complex. 

 
A 

 
B 

 

Figure 16. The Tim9 and Tim10 proteins form a heterohexamer. (A) The purified Tim9·Tim10 
complex was incubated with glutaraldehyde, at indicated concentrations, for indicated time periods. Cross-linked 
products were analyzed by SDS-PAGE, followed by immunodecoration with antibodies against Tim9. (M, 
monomer; H, hexamer). (B) The purified complex was treated as above; in some of the samples, as control, the 
same X-linking procedure was performed in the presence of 0.5% SDS. After high Tris-urea PAGE, the 
immunodecoration was performed using antibodies against Tim10. 
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3.5. Initial trials for the crystallisation of the Tim9·Tim10 complex 

 
One of the initial goals was to obtain a three-dimensional structure of the Tim9·Tim10 

complex. To investigate the disposition of the complex to form ordered crystals, we have 

attempted to measure circular dichroism (CD) spectra of the purified complex. However, the 

complex adhered to the glass of the cuvette of the CD spectropolarimeter and subsequently 

partially aggregated. Therefore, we were unable to obtain any conclusive data on the 

secondary structure of the purified Tim9·Tim10 complex. Nevertheless, we probed the ability 

of the pure fractions of the isolated Tim9·Tim10 complex to crystalise. Using the hanging 

drop vapour diffusion crystallisation method (Crystal ScreenTM kit, Hampton Research, CA) 

we tested various crystallisation conditions. As none of the tested crystallisation conditions 

yielded crystals of the Tim9·Tim10 complex, we abandoned this line of research. 

 

3.6. The influence of zinc on the integrity of the purified Tim9·Tim10 

complex  

 

It was previously reported that the yeast Tim10p as a recombinant MBP-Tim10p 

fusion protein binds Zn2+ (Sirrenberg et al., 1998). To determine if Zn2+ is genuinly essential 

for the oligomeric state of the purified N. crassa Tim9·Tim10 complex, the ability of the 

complex to refold in the presence of reducing reagents or metal chelators was examined. The 

treated samples were analysed using BNGE technique. When incubated at low temperatures, 

the complex proved stable in the presence of metal chelator EDTA or the reducing agent 

TCEP (Figure 17A). When it was heated to 95°C for 10 min in the presence or absence of 

EDTA and left to cool on ice, it refolded to its native structure. In contrast, the presence of the 

reducing reagent TCEP during the procedure led to its dissociation, demonstrated by the 

disappearance of the bands corresponding to the complex and detection of the monomeric 

Tim9 and Tim10 proteins (Figure 17A).  

As a control, dimerization of the cytosolic domain of the yeast Tom70p which 

contains three cysteine residues was analysed. The dimer resumed its native conformation 

after heat denaturation in the presence of both EDTA and TCEP (Figure 17B). Thus, the 

observed effect of the reducing agent on the stability of the Tim9·Tim10 complex is not a 

common feature of every protein containing multiple cysteine residues. These results argue 

that the complex purified from mitochondria isolated under non-reducing conditions does not 
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require Zn2+ for the maintenance of its oligomeric structure. The cysteine residues are rather 

engaged in the formation of the disulfide bonds.  

 

 

Figure 17. Oligomeric structure of the purified Tim9·Tim10 complex depends on redox 
conditions. (A) Purified Tim9·Tim10 complex was incubated for 10 min at either 0°C or 95°C in the absence 
or presence of EDTA (2 mM) or TCEP (1 mM). The samples were kept on ice for further 10 min, and were then 
analyzed by BNGE followed by blotting and immunodecoration with antibodies against Tim10. (B) Purified 
cytosolic domain of Tom70p was treated as described in A, and the resultant corresponding membrane 
immunodecorated with antibodies against Tom70p.   

 
Furthermore, determination of zinc content in the purified Tim9·Tim10 complex by 

atomic absorption spectrometry revealed substoichiometrical zinc to protein ratio of 0.20-0.24 

(data not shown). Of note, the complex was purified in the presence of zinc in all buffers 

employed. These results might indicate that the complex formation and/or maintenance do not 

require zinc. We can not exclude however the possibility that the zinc-comprising complex of 

Tim9 and Tim10 proteins can not be purified using the histidine affinity tag approach. 

The cross-linking experiments of the purified Tim9·Tim10 complex were repeated in 

the presence of a cysteine-derivatizing reagent N-ethylmaleimide (NEM) and/or different 

metal chelators (EDTA, EGTA, o-Phe). These treatments did not affect the formation of the 

covalently linked hexameric species.  

Taken together, these results suggest that the integrity of the Tim9·Tim10 hetero-

hexamer does not depend on the coordinative binding of metal ions. 
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3.7. The purified Tim9·Tim10 complex is functional in binding its 

substrate proteins 

 

Studies of the yeast Tim9p and Tim10p proteins suggested that they are generally 

involved in import of the carrier proteins into the mitochondrial inner membrane (Sirrenberg 

et al., 1998; Koehler et al., 1998a and 1998b). To assert the functionality of the purified N. 

crassa Tim9·Tim10 complex, its ability to interact with its physiological substrate, the 

precursor of ADP/ATP carrier (AAC), was examined. For that purpose, the ability of excess 

amounts of the purified complex to compete the in vitro import of radiolabelled precursors of 

AAC2p, and of control pSu9(1-69)DHFR proteins, was tested. The Tim9·Tim10 complex of 

N. crassa inhibited the import of the carrier protein almost entirely, while the import of the 

matrix-destined protein was not affected (Figure 18A). A slight increase in the import of 

pSu9(1-69)DHFR precursor in the presence of N. crassa Tim9·Tim10 complex did not result 

from the partial loss of the outer membrane integrity, since the intermembrane space proteins 

D-lactate dehydrogenase and the Tim13p protein were not degraded by the added protease, 

demonstrated through immunodecorations (data not shown).  

The Tom70p protein was found to be the main receptor for the AAC precursor. In the 

absence of the Tom70p receptor, AAC2p is imported via a considerably less efficient bypass 

pathway (Hines et al., 1990). Therefore, the significant inhibition in the AAC import observed 

in our experiments could have resulted from the possible interaction of the N. crassa 

Tim9·Tim10 complex with the Tom70p receptor. Furthermore, the addition of the purified 

antibodies against N. crassa Tom70 protein to the isolated N. crassa mitochondria prior to the 

in vitro import significantly reduced the import of the radioactively labelled AAC2p 

precursor, but neither of the yeast Tim13p nor the N. crassa Tim10 proteins (data not shown). 

However, import into isolated yeast mitochondria from a strain lacking this receptor protein 

was also competed by the N. crassa Tim9·Tim10 complex (Figure 18B). 

Additional evidence for a direct interaction between the N. crassa Tim9·Tim10 

complex and its substrate came from the immunoprecipitation experiments. Significant 

amounts of the in vitro synthesized, radioactively labelled AAC protein, preincubated with the 

N. crassa Tim9·Tim10 complex, were immunoprecipitated with the antibody against the N. 

crassa Tim9 protein (data not shown). No specific precipitation of control protein pSu9(1-

69)DHFR was observed. Moreover, upon incubation of the complex with a mixture of porin 

and AAC2p isolated from yeast cells (Panneels, 2003), the antibodies against N. crassa Tim9 
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protein specifically precipitated the AAC2p protein, but not porin (Figure 19 and data not 

shown). 

 

Figure 18. The purified Tim9·Tim10 complex externally added to mitochondria inhibits import of 
the AAC precursor in vitro. (A) Indicated amounts of purified Tim9·Tim10 complex were incubated for 10 
min at 0°C with radiolabeled AAC precursor, and as a control, pSu9-DHFR. These mixtures were then added to 
import buffer containing 40 µg of wild type mitochondria. After incubation for 10 min at 25°C proteinase K was 
added. Imported proteins were analyzed by SDS–PAGE. The amount of import in the absence of added 
Tim9·Tim10 complex was taken as 100%. (B) Mitochondria from wild type and from a Tom70p null strain were 
incubated either with purified Tim9·Tim10 complex or mock treated for 2 min at 0°C (lanes +/-Tim9·Tim10). 
They were then added to import buffer containing radiolabeled AAC, and as a control, pSu9-DHFR. After 
incubation for 5 or 20 min, mitochondria were reisolated, resuspended in SH buffer and kept on ice. One half of 
each sample was then treated with proteinase K (+PK) and the other left untreated (-PK). Imported proteins were 
analyzed by SDS–PAGE. (p, precursor; m, mature form). 
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When the Tim9·Tim10 complex was omitted from the reaction mixture, and when the 

preimmune serum or an antibody against an unrelated protein Fis1p was used, the 

immunoprecipitation did not surpass background levels (Figure 19 and data not shown). To 

summarise these results, the purified Tim9·Tim10 complex specifically recognizes its 

physiological substrates. 

 

Figure 19. The purified Tim9·Tim10 complex binds the AAC precursor. Purified Tim9·Tim10 
complex was incubated with a mixture of porin and AAC2p for 30 min at 4°C. The mixture was then split into 
three aliquots which were added to protein A-coupled sepharose beads containing prebound antibodies from 
preimmune serum or antibodies against either N. crassa Tim9 or S. cerevisiae Fis1p. After incubation for 3 hr at 
4°C, the beads were pelleted and proteins in the pellets were subjected to SDS-PAGE, blotting and 
immunodecoration with antibodies against AAC2p. The amount of added AAC2p was taken as 100%. 

 

3.8. Identification of the sequences in protein substrates recognised 

by the Tim9·Tim10 complex   

 

Next, we wanted to determine what sequences the N. crassa Tim9·Tim10 complex can 

bind within its various substrates. Previously, it was suggested that the complex recognizes a 

conserved sequence motif found in each of the three intermembrane space loops of the carrier 

proteins (Sirrenberg et al., 1998; Endres et al., 1999). Alternatively, it was proposed that the 

S. cerevisiae Tim9p·Tim10p complex could function as a chaperone in the intermembrane 

space by binding the exposed hydrophobic sequences of the unfolded precursor proteins 

(Koehler, 1999).  

To map the exact substrate regions to which N. crassa Tim9·Tim10 complex binds, 

peptide libraries of the following proteins were screened: AAC2p from S. cerevisiae, Tim17, 

Tim22, Tim23 and FLX1 proteins (a homologue of the yeast FLX1, a carrier-type FAD-

transporter) from N. crassa, and the human UCP1 (uncoupler protein) (Figure 20).  
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Figure 20. Substrate recognition by the Tim9·Tim10 complex. A peptide library on a cellulose 
membrane, corresponding to the indicated proteins and control peptides, was incubated with purified 
Tim9·Tim10 complex. Bound proteins were blotted to PVDF membranes and decorated with antibodies against 
Tim9. Binding was quantified by scanning densitometry of three independent experiments. The intensity of the 
strongest spot from each experiment was set to 100. Below each peptide, it is indicated whether its sequence 
covers a transmembrane domain (TMD), a loop or if its sequence stretches over both types of structure.   
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These librarires commonly comprise of 13mer peptides covering the whole primary 

sequence of a given protein, with 10 residues-overlaps. The yeast carrier was chosen to allow 

the comparison with experiments performed with the yeast small Tim proteins (Curran et al., 

2002a). The radioactively labelled precursor of S. cerevisiae AAC2p was efficiently imported 

into the isolated N. crassa mitochondria (data not shown), supporting combining of 

translocons of different taxonomic groups as feasible. Control peptides covering 

transmembrane domains of various non-mitochondrial proteins were also included in the 

screen (origin and sequences of control peptides are given in Figure 20). All peptides were 

spotted onto one membrane allowing direct comparison of different proteins.  

Analysis of the binding sequences of the N. crassa Tim9·Tim10 complex revealed a 

strong general inclination towards peptides corresponding to transmembrane domains (TMD) 

and their flanking regions. Among the analyzed proteins, the highest affinity was observed 

towards the AAC2p protein (Figure 20). The strongest interaction was with the peptides 

covering parts of its fourth TMD, followed by the TMDs 1, 3 and 5.  

Binding to Tim22 protein was relatively weak and it occurred mainly in regions 

covering its TMDs, rather than the intermembrane space loops. Interaction of the Tim9·Tim10 

complex with the human Ucp1 was less restricted to TMDs, yet the highest affinity observed 

was still towards the putative TMDs 1 and 2.  

One unexpected finding of the screen was the significant binding of the complex to 

two segments of the N. crassa Tim23 protein (Figure 20). A possible interaction of the yeast 

Tim9p and Tim10p proteins with the yeast Tim23p protein is still under debate (Leuenberger 

et al., 1999; Davis et al., 2000). Peptides covering segments of the N. crassa Tim23 protein 

identified in the screen to be bound by the purified Tim9·Tim10 complex with considerable 

affinity were the putative intermembrane space domain (peptides 24-27, residues 70-91) and 

the interface between the intermembrane space domain and the first predicted TMD (peptides 

33-37, residues 97-121) (Figure 20). Both regions are highly conserved in the Tim23 proteins 

from different organisms (Figure 21). 

Binding to the hydrophobic non-mitochondrial control peptides was weak (Figure 20). 

Moreover, from 20 peptides displaying the highest affinity in both AAC2p (Figure 22) and 

FLX1 (data not shown), nineteen comprised at least one charged residue within their 

sequence. The Tim9·Tim10 complex displayed the highest affinity prevalently towards 

peptides covering interface regions between the membrane spanning segments and the soluble 

loops (Figure 22) and not those covering midsections of the putative TMDs.  
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Figure 21. Protein sequence alignment of Tim23 proteins from different organisms. Identical 
residues occurring in all organisms are indicated in darker violet, 75% similar in light blue and 50% similar in 
pink (An, Aspergillus nidulans; Nc, Neurospora crassa; Sp, Saccharomyces pombe; Sc, Saccharomyces 
cerevisiae). The segments to which Tim9·Tim10 complex binds with highest affinity cover amino acid residues 
70-91 and 97-121 in N. crassa Tim23 protein.   

 

Among AAC2p-derived peptides, N. crassa Tim9·Tim10 complex demonstrated the 

highest binding towards a segment covering a part of an intermembrane space loop and the 

beginning of the fifth TMD. A peptide covering the same region in the phosphate carrier was 

found to be among several internal segments that interact with Tom receptors and was the 

only peptide to interact with the purified Tim22p (Brix et al., 1999; Kovermann et al., 2002). 
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Throughout the mitochondrial carrier family, amino acid sequences related to this stretch are 

found to be conserved (Nelson et al., 1998). 

Hence, it ensues that hydrophobicity is not a crucial parameter for substrate 

recognition by the Tim9·Tim10 complex. Segments to which Tim9·Tim10 complex 

preferentially binds are instead characterised by the comprisal of at least one polar residue and 

cover transition regions between transmembrane domains and the neighbouring loops. 
 
Peptides AAC2 
 
No.  Sequence        %     No.  Sequence        %     No.  Sequence       % 
 
1. MSSNAQVKTPLPP   0 
2. NAQVKTPLPPAPA   0 
3. VKTPLPPAPAPKK   0 
4. PLPPAPAPKKESN   0 
5. PAPAPKKESNFLI   0 
6. APKKESNFLIDFL  51 
7. KESNFLIDFLMGG  45 
8. NFLIDFLMGGVSA  50 
9. IDFLMGGVSAAVA  19 
10. LMGGVSAAVAKTA   2 
11. GVSAAVAKTAASP  19 
12. AAVAKTAASPIER   0 
13. AKTAASPIERVKL   0 
14. AASPIERVKLLIQ   0 
15. PIERVKLLIQNQD   7 
16. RVKLLIQNQDEML   0 
17. LLIQNQDEMLKQG   0 
18. QNQDEMLKQGTLD   0 
19. DEMLKQGTLDRKY   0 
20. LKQGTLDRKYAGI   0 
21. GTLDRKYAGILDC  25 
22. DRKYAGILDCFKR   4 
23. YAGILDCFKRTAT  21 
24. ILDCFKRTATQEG  25 
25. CFKRTATQEGVIS   0 
26. RTATQEGVISFWR  14 
27. TQEGVISFWRGNT  12 
28. GVISFWRGNTANV   8 
29. SFWRGNTANVIRY  11 
30. RGNTANVIRYFPT  11 
31. TANVIRYFPTQAL   9 
32. VIRYFPTQALNFA  13 
33. YFPTQALNFAFKD  47 
34. TQALNFAFKDKIK   0 
35. LNFAFKDKIKAMF   0 

36. AFKDKIKAMFGFK   0 
37. DKIKAMFGFKKEE   1 
38. KAMFGFKKEEGYA   6 
39. FGFKKEEGYAKWF   6 
40. KKEEGYAKWFAGN   0 
41. EGYAKWFAGNLAS  15 
42. AKWFAGNLASGGA   5 
43. FAGNLASGGAAGA   0 
44. NLASGGAAGALSL   0 
45. SGGAAGALSLLFV  15 
46. AAGALSLLFVYSL  24 
47. ALSLLFVYSLDYA  23 
48. LLFVYSLDYARTR  39 
49. VYSLDYARTRLAA  27 
50. LDYARTRLAADSK   8 
51. ARTRLAADSKSSK   0 
52. RLAADSKSSKKGG   0 
53. ADSKSSKKGGARQ   0 
54. KSSKKGGARQFNG   0 
55. KKGGARQFNGLID   0 
56. GARQFNGLIDVYK  24 
57. QFNGLIDVYKKTL  13 
58. GLIDVYKKTLKSD  11 
59. DVYKKTLKSDGVA   4 
60. KKTLKSDGVAGLY   0 
61. LKSDGVAGLYRGF  11 
62. DGVAGLYRGFLPS  57 
63. AGLYRGFLPSVVG  17 
64. YRGFLPSVVGIVV  27 
65. FLPSVVGIVVYRG  43 
66. SVVGIVVYRGLYF  43 
67. GIVVYRGLYFGMY  30 
68. VYRGLYFGMYDSL  47 
69. GLYFGMYDSLKPL  45 
70. FGMYDSLKPLLLT  59 

71. YDSLKPLLLTGSL  45 
72. LKPLLLTGSLEGS  12 
73. LLLTGSLEGSFLA  91 
74. TGSLEGSFLASFL  40 
75. LEGSFLASFLLGW  41 
76. SFLASFLLGWVVT  45 
77. ASFLLGWVVTTGA   8 
78. LLGWVVTTGASTC   7 
79. WVVTTGASTCSYP   0 
80. TTGASTCSYPLDT   0 
81. ASTCSYPLDTVRR  11 
82. CSYPLDTVRRRMM   1 
83. PLDTVRRRMMMTS   0 
84. TVRRRMMMTSGQA   5 
85. RRMMMTSGQAVKY   0 
86. MMTSGQAVKYDGA   0 
87. SGQAVKYDGAFDC  47 
88. AVKYDGAFDCLRK  34 
89. YDGAFDCLRKIVA  43 
90. AFDCLRKIVAAEG  24 
91. CLRKIVAAEGVGS   2 
92. KIVAAEGVGSLFK   0 
93. AAEGVGSLFKGCG   0 
94. GVGSLFKGCGANI   0 
95. SLFKGCGANILRG   0 
96. KGCGANILRGVAG   0 
97. GANILRGVAGAGV   0 
98. ILRGVAGAGVISM   0 
99. GVAGAGVISMYDQ   0 
100. GAGVISMYDQLQM   0 
101. VISMYDQLQMILF   9 
102. MYDQLQMILFGKK   1 
103. DQLQMILFGKKFK   0 

   
Figure 22. Binding of the N. crassa Tim9·Tim10 complex to the peptide library covering AAC2p. 
The sequences of 103 peptides covering primary structure of AAC2p are presented; amino acid residues 
belonging to the transmembrane domains are underlined and bold. Intensity of binding to each peptide is given 
in percentages; binding levels higher than 30% of the maximal value are indicated by bigger digits. 

 



 

81 

3.9. Tim23 protein is a substrate of the Tim9·Tim10 complex in N. 

crassa 

 

To substantiate the proposed interaction of the Tim9·Tim10 complex with the Tim23 

precursor protein, we used the chemical cross-linking approach. When the radiolabelled 

precursor of Tim23 was incubated with de-energized mitochondria, an import intermediate 

was formed. It was accessible to external protease, but partially translocated into the 

intermembrane space, thereby being equivalent to the well defined stage III intermediate of 

the AAC precursor (Pfanner and Neupert, 1987). Under these conditions, the addition of the 

bifunctional cross-linking reagent m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) 

resulted in the formation of the distinct cross-linking adducts that specifically 

immunoprecipitated with the antibodies against Tim9, Tim10 and Tim8 proteins (Figure 23). 

The precursor bound to mitochondria was degraded by the externally added proteinase K, as 

opposed to the cross-linking adduct which was inaccessible to it.  

 

Figure 23. The Tim23 protein is in the vicinity of Tim9, Tim10 and Tim8 proteins on its 
mitochondrial translocation pathway. The radiolabelled Tim23 precursor was incubated with de-energized 
mitochondria in the presence or absence of the chemical cross-linker MBS for 30 min at 15°C. Reactions were 
then quenched by the addition of glycine (pH 8.8) to a final concentration f 100 mM, and one half of the sample 
was treated with proteinase K. The mitochondria of all four samples were pelleted and subjected to SDS-PAGE. 
Another sample treated with MBS but not with PK (+MBS, -PK) was subjected to immunoprecipitation with 
antibodies against the indicated TIM proteins or with preimmune serum. The immunoprecipitates were 
solubilized in sample buffer and analyzed by SDS-PAGE and autoradiography.  

 

These results indicate that the Tim23 precursor molecules associated with the 

Tim9·Tim10 complex were translocated across the outer mitochondrial membrane. Thus, 

while crossing the intermembrane space on its way into the inner membrane the precursor of 

N.  crassa Tim23 protein interacts with both Tim9·Tim10 and Tim8·Tim13 complexes.  

 

 



 

82 

3.10. The TOM core complex and the Tim9·Tim10 complex are 

sufficient for the import of the ADP/ATP carrier across the outer 

membrane of mitochondria   

 

The most competent way to certify the utter sufficiency of certain components in a 

particular translocation process across biological membranes in vitro is to use the 

reconstituted system. We employed the reconstituted in vitro system to examine if some as yet 

unknown components in the internal compartments of mitochondria are required for 

translocating the AAC precursor across the mitochondrial outer membrane. Detergent 

solutions of the purified TOM core complex (Ahting et al., 1999) and E. coli lipids were 

combined, the detergent was removed by polystyrene beads and thereby the proteoliposomes 

were formed. In certain cases, the enzyme lactate dehydrogenase (LDH) was also enclosed in 

the vesicles and its activity was used to essay the pore forming ability of the reconstituted 

TOM complex. When the substrates of LDH, NADH and pyruvate, were added to vesicles 

containing either the reconstituted TOM core complex or porin (a control pore forming 

protein), free influx of the externally added LDH-substrates was observed (data not shown) 

(Künkele et al., 1998a). The Tim9·Tim10 complex was added to some of the reconstitution 

reactions, resulting in its enclosure within the proteoliposomes. In Figure 24A the protein 

composition of the lipid vesicles containing the TOM core complex alone or in combination 

with the enclosed Tim9·Tim10 complex is depicted.  

Translocation of the radiolabelled carrier precursor across the membranes of 

proteoliposomes was assessed through resistance to the externally added protease. Some 

unspecific association of the AAC protein with the pure lipid vesicles was observed, due to 

overall hydrophobic nature of the carrier protein (Figure 24B, lanes marked -PK). With the 

TOM core or the Tim9·Tim10 complex reconstituted into vesicles separately, the amount of 

the protease-protected carrier protein was negligible (Figure 24B, lanes 2 and 8, respectively). 

However, the amount of protected material increased by about four fold to levels similar to 

those observed with intact mitochondria, when vesicles containing both the TOM complex 

and the Tim9·Tim10 complex were used (Figure 24B, lanes 4 and 12). The specificity of this 

observation was supported by several control experiments:  

i. import of the carrier precursor was competed out with the externally added 

Tim9·Tim10 complex (Figure 24B, lane 6);  
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ii. complete degradation of the imported AAC precursor by proteinase K (PK) occurred 

upon solubilization of the proteoliposomes by Triton-X100 (not shown);  

iii. the degree of protection of the AAC precursor against PK was of the background level 

(data not shown), when porin was reconstituted into lipid vesicles containing the 

enclosed Tim9·Tim10 complex.  

In conclusion, the TOM core complex and the Tim9·Tim10 complex meet all the 

requirements for the productive transfer of the ADP/ATP carrier across the outer membrane 

of mitochondria.  
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Figure 24. Translocation of the AAC precursor into proteoliposomes containing the TOM core 
complex and the Tim9·Tim10 complex. (A) Proteins of proteoliposomes containing either only the TOM 
core complex (TOM) or in addition Tim9·Tim10 complex (TOM+Tim9/10) were analyzed by SDS-PAGE and 
silver staining. (B) Import of AAC into proteoliposomes containing TOM core complex and Tim9·Tim10 
complex. Radiolabeled AAC precursor was incubated with proteoliposomes (50 µg lipids) in the absence (lanes 
1-4, and 7-10) or presence (lanes 5-6) of externally added Tim9·Tim10 complex. The following proteoliposomes 
were used: lanes 1-2, liposomes containing TOM core complex; lanes 3-6, liposomes containing TOM complex 
and enclosed Tim9·Tim10 complex; lanes 7-8, liposomes containing enclosed Tim9·Tim10 complex; and lanes 
9-10, liposomes without reconstituted proteins. Import of AAC precursor into intact mitochondria in the absence 
(+∆Ψ, lanes 11−12) or presence (-∆Ψ, lanes 13-14) of valinomycin is shown for comparison. After import, 
vesicles and mitochondria were reisolated by centrifugation, resuspended in buffer and halved. One half was left 
untreated (-PK) while the other was treated with 50 µg/ml proteinase K (+PK). The samples were precipitated 
with TCA and subjected to SDS–PAGE and autoradiography (upper panel). The proportions of bound AAC 
precursor which were resistant to proteinase K treatment were determined (lower panel). (C) Import of pSu9-
DHFR into proteoliposomes containing TOM core complex and Tim9·Tim10 complex. Radiolabeled pSu9-
DHFR precursor was incubated with proteoliposomes or with mitochondria as described above (p, precursor; m, 
the mature form). (D) AAC precursor interacts simultaneously with TOM and Tim9·Tim10 complexes. 
Radiolabeled AAC precursor was incubated for 30 min at 25°C with proteoliposomes containing the TOM core 
and the Tim9·Tim10 complexes. After the import reaction, proteolipisomes were treated with proteinase K and 
re-isolated. Vesicles were solubilized in digitonin (1%) and immunoprecipitation was performed. Precipitated 
proteins were analyzed by SDS-PAGE, blotting and autoradiography (35S-AAC) and immunodecoration with the 
antibodies indicated at the left side. 
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4. Discussion 
 

Members of the mitochondrial protein translocation machinery have been identified 

and subjected to detailed studies in yeast, Neurospora, higher plants and mammals. 

Homologues of TIM9 and TIM10 genes have been identified in genomes of all investigated 

eukaryotic organisms (Bauer et al., 1999; Kayingo et al., 2000), yet only in S. cerevisiae they 

have been the subject of elaborate research. In this study, we have identified and isolated the 

Tim9 and Tim10 mitochondrial intermembrane space proteins of N. crassa and investigated 

their structural and functional properties. Their role in the translocation of precursors of the 

mitochondrial metabolite carrier family members across the mitochondrial outer membrane 

was the major focus of this study. We identified the specific segments within the sequences of 

substrates of the Tim9·Tim10 complex which are recognised by this complex, and defined the 

minimal machinery sufficient for the translocation of its major substrate, the ADP/ATP carrier 

(AAC), across the mitochondrial outer membrane. These data allowed us to propose a 

working model for the translocation of carrier proteins across the outer membrane.  

 

4.1. Structural organization of the N. crassa Tim9·Tim10 complex  

 
The Tim9 and Tim10 proteins of N. crassa, identified in the scope of this study, are 

soluble proteins of the mitochondrial intermembrane space, organised in an oligomeric 

complex of around 70-80 kDa. To characterise it more closely, we isolated and purified the 

complex of Tim9 and Tim10 proteins from the intermembrane space of N. crassa 

mitochondria. Chemical cross-linking experiments elucidated the 70 kDa oligomer as a 

hexamer. Such mode of oligomeric organisation of small Tim proteins is conserved, which 

infers its importance for the fulfilment of their function. A complex similar to the 

Tim9·Tim10 complex of N. crassa has also been characterised in yeast (Sirrenberg et al., 

1998; Koehler et al., 1998; Adam et al., 1999). Furthermore, a 70 kDa complex comprising 

Tim9 and Tim10a proteins has recently been identified in human mitochondria as well 

(Mühlenbein et al., 2004). All these 70 kDa complexes are most probably composed of three 

Tim9 and three Tim10 molecules, as experimentally verified with the yeast components 

(Luciano et al., 2001; Curran et al., 2002a; Vial et al., 2002). The other two members of the 

conserved family of small Tim proteins in N. crassa, Tim8 and Tim13, pair exclusively with 

each other, constituting another hetero-oligomeric 70 kDa complex in the intermembrane 
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space (Hoppins et al., 2004). Yeast and human counterparts of these two proteins are also 

characterised by a similar mode of structural arrangement (Leuenberger et al., 1999; Koehler 

et al., 1999; Paschen et al., 2000; Rothbauer et al., 2001).   

 

 

 

 

 

 

 

Figure 25. Hypothetical model of the 
secondary structure of the Tim10 protein. 
(Program used to predict the secondary structure of 
the Tim10 protein can be found on the web site: 
http://www.expasy.org/tools/#secondary). 

 

The purified Tim9·Tim10 complex seems to be quite stable under variety of different 

conditions, like high salt concentrations, sonication, and relatively high detergent amounts, 

and even to be able to refold into a hexamer upon exposure to extreme temperatures (95ºC). 

This, together with the relatively simple secondary structure predictions for the small Tim 

proteins (Figure 25), and the potential stabilization of the ensuing 3D structure through zinc 

binding, led us to attempt to obtain crystals and solve the crystal structure of the Tim9·Tim10 

complex. Attempts to confirm the secondary structure predictions through CD spectrometry 

failed due to the unspecific adherence to equipment and consequential aggregation of the 

Tim9 and Tim10 proteins. Also, under all different conditions of crystallization screens which 

we tested, we did not observe crystal formation.  

 

4.2. Zinc binding and the redox state of Tim9 and Tim10 proteins 

 

The mitochondrial intermembrane space is considered to be in a complete redox 

equilibrium with the reducing cytoplasm. Therefore, the small Tim proteins were also 

assumed to be in a reduced state. Due to the presence of two CX3C motives in their primary 

sequence, which are conserved in all identified small Tim proteins (Sirrenberg et al., 1998; 

Koehler et al., 1998; Adam et al., 1999, Koehler et al., 1999; Leuenberger et al., 1999; 

Paschen et al., 2000; Mühlenbein et al., 2004), they were suggested to bind zinc. 
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However, although we included zinc in all steps of the purification procedure, only 

substoichiometric zinc to protein ratios in the purified N. crassa Tim9·Tim10 complex were 

measured. Moreover, formation of their hexameric cross-linking species was neither affected 

by the treatment with a variety of metal chelators, nor with the cysteine alkylating reagents. 

We observed the inhibition of refolding of the complex into hexameric structures in the 

presence of a reducing reagent after the heat-treatment. These data strongly pointed towards 

the possibility that the cysteines of the purified Tim9·Tim10 complex were in an oxidized 

state. This however, might also be the result of an inability to reverse their oxidation which 

could have occurred during the mitochondrial isolation procedure, despite the presence of the 

reducing reagent throughout the subsequent purification procedure of the Tim9·Tim10 

complex. 

In recent publications (Curran et al., 2002a; Curran et al., 2002b; Lu et al., 2004a; Lu 

et al., 2004b), the same four cysteine residues of the purified yeast recombinant 

Tim9p·Tim10p and Tim8p·Tim13p complexes have been found to be involved in 

intramolecular disulfide bond formation. In short, the authors purified the recombinant 

Tim9p·Tim10p and Tim8p·Tim13p complexes and employed the thiol-trapping method for 

ascertaining the redox status of the cysteins of small Tim proteins. When the cysteine residues 

were reduced, they were available for the alkylation reaction to take place, and they therefore 

showed decreased electrophoretic mobility. The used alkylating reagent (4-acetamido-4’-

maleimidylstilbene-2,2’-disulfonic acid, AMS) adds 0.5 kDa to the molecular weight of each 

thiol group (which amounts to 2 kDa per small Tim protein). As controls, they pretreated 

some samples with either hydrogen peroxide or a reducing reagent. They found the subunits 

of their purified complexes to migrate as the same molecular weight species as the proteins 

from the hydrogen peroxide-pretreated control sample. Moreover, one other research group 

(Lu et al., 2004a) has even shown that once oxidized, cysteines of the Tim9p and Tim10p 

proteins are buried in the structure beyond the reach of a reducing reagent, i.e., they are no 

longer eligible for reduction. They argued that both reduced and oxidized forms of the 

Tim9p·Tim10p complex have a certain physiological relevance, and that in vivo, the structure 

of the complex may be redox dependent. In the reducing environment of the cytoplasm, and 

on their route to mitochondria, yeast small Tims are reduced and largely unstructured. Upon 

their import into mitochondria, intramolecular bonds are proposed to be formed, which induce 

conformational changes of monomeric Tim proteins into assembly-competent forms. So far, 

there have been no reports of the purified zinc-containing native complexes of the small Tim 

proteins, from yeast and Neurospora (Curran et al., 2002a, Vasiljev et al., 2004). The purified 
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complexes of the recombinant yeast small Tim proteins without a tag or with a GST tag, from 

the groups of Koehler (Curran et al., 2002a and 2002b) and Tokatlidis (Lu et al., 2004a and 

2004b), did not demonstrate any zinc-binding either.  

For the yeast Tim13p protein, Lutz et al. (2003) have on the other hand shown that it 

is largely reduced in vivo. This time, the aforementioned thiol-trapping approach was applied 

to yeast spheroplasts isolated under nitrogen atmosphere. Virtually all endogenous Tim13p 

was found to be modified by the AMS reagent, and hence to be in a reduced state. However, a 

counterclaim has recently been made from Lu et al. (2004b), as they reported the small Tim 

proteins to be fully oxidized in the TCA-precipitated whole yeast cell extracts.  

Zinc-binding trials with the MBP-fusion proteins of yeast small Tim proteins have 

shown that the zinc ions were found bound to small Tim proteins only when the zinc was 

present throughout the purification procedure (Sirrenberg et al., 1998; Rothbauer et al., 2001; 

Lutz et al., 2003). 

Taken together, the question whether the small Tim proteins are zinc-binding proteins 

is still an open one. Aside from the small Tim proteins, there exist no other zinc fingers of the 

C4 type characterised by similar spacings of exactly three amino acid residues in both metal-

chelating pairs of cysteines. Zinc finger proteins that exceptionally contain one CX3C motif 

are extremely rare (for instance ribosomal protein L24E (Grishin, 2001)). The overwhelming 

majority of the zinc finger proteins are characterised by the CX2C patterns, or with numbers 

of residues in the intercysteine spacer exceeding three. The reported dissociation constants Kd 

for eukaryotic structural zinc-binding domains are quite consistent, regardless of whether the 

site comprises CCHH, CCHC or CCCC pattern. They all fall into the range of 10-11 to 10-9 M 

for naturally occurring zinc sites (Payne et al., 2003). This means that most zinc finger 

proteins bind their zinc ions relatively tightly, and that once folded they are very stable 

(Luciano et al., 2001). There exists a special group of bacterial zinc finger proteins, like 

Hsp33 and RsrA (Paget and Buttner, 2003), which use specific and reversible disulfide bond 

formation as functional switches. For these two proteins, it has been shown that both the zinc-

bound reduced and the zinc-free oxidized forms have distinct roles in the cell. In Hsp33, the 

C4 motif, which tightly binds one Zn2+ ion, blocks the dimerization surface of this protein, 

keeping the protein in its inactive, monomeric state. It has been empirically shown that zinc 

ion enhances the proteolytic stability of this protein and that the zinc-loaded protein can be 

activated through hydrogen peroxide treatment much faster than the zinc-free reduced Hsp33 

protein. In small Tim proteins, zinc also stabilises the reduced state against proteolysis, 

without significantly affecting the secondary structure (Lu et al., 2004a). Ultimately, zinc 
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increases the reactivity of the cysteine residues in Hsp33 by as yet unknown means, whereas 

in RsrA zinc has been shown to protect the cysteines from oxidation. Clearly, more 

experiments are required to resolve the question of the classification of small Tim proteins as 

actual zinc finger proteins.  

 

4.3. Import of small Tim proteins across the outer membrane 

 

The import of Tim9 and Tim10 precursors into mitochondrial intermembrane space 

was also investigated in the course of this study. The results of experiments concerning import 

requirements of small Tim proteins of N. crassa corroborated that, for their import, they do 

not require (i) the known import receptors, (ii) ATP, and (iii) the transmembrane potential 

across the inner mitochondrial membrane.  

These results are in accordance with the general observations regarding the import of 

proteins into the intermembrane space. The yeast small Tim proteins were imported in vitro 

into mitochondria isolated from ∆tom20 and ∆tom70 strains as efficiently as into wt yeast 

mitochondria (Kurz et al., 1999; Lutz et al., 2003). Removal of these receptors through 

trypsin-treatment of isolated yeast mitochondria prior to the import, does not affect their 

import into the intermembrane space (Kurz et al., 1999; Lutz et al., 2003).  

Import of the radioactively labelled small Tim proteins into mitochondria tends to 

show an overall low efficiency. This might be the result of their improper partial folding 

outside the mitochondria. Lutz et al. (2003) have proposed that zinc acquisition might 

stabilize the folding on the trans side of the TOM complex and trap the small Tim proteins in 

the intermembrane space, thereby providing the driving force for their translocation across the 

outer membrane. This model is in agreement with the general observation, that in zinc finger 

proteins, zinc binding results in the folding and the enhanced rigidity of the protein (Berg and 

Godwin, 1997). However, not all metalloproteins have their folding coupled to their cofactor 

acquisition. One extreme example are the blue copper proteins (Nar et al., 1992), completely 

folded even in the absence of metal. Their metal-binding sites are fully preorganized and the 

metal binds with little structural change.  

Somewhat similar mechanism of import into the intermembrane space was reported 

for the apocytochrome c (Diekert et al., 2001). Previously, it was believed that this protein 

might undergo spontaneous insertion into lipid bilayers (Snel et al., 1994), since it interacts 

with negatively charged phospholipids at the outer surface of the mitochondrial outer 
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membrane, and does not exert requirements for the import receptors either (Mayer et al., 

1995). In a reconstituted system containing the proteoliposomes with the TOM complex and 

with the enclosed antibodies against apocytochrome c in them, it was shown that this 

precursor did indeed use the TOM pore. Surprisingly, saturating the TOM complex with a 

matrix-destined precursor did not affect translocation of the apocytochrome c across the 

membrane of such vesicles (Diekert et al., 2001). The authors proposed a model where the 

acquisition of haem by the apocytochrome c in a process mediated by the cytochrome c heme 

lyase (CCHL) provides the driving force which shifts the equilibrium towards the imported 

species, i.e. the holocytochrome c.  

For CCHL itself, trans side receptors have not yet been identified. This intermembrane 

space protein also does not require ATP, transmembrane potential and import receptors for 

import, and it also does not carry a charged presequence (Lill et al., 1992). Its import signal is 

rather located in the third quarter of the protein sequence (Diekert et al., 1999). It was 

suggested that association of CCHL with either alleged components of the intermembrane 

space, high affinity binding sites within Tom40p, or the surface of the inner mitochondrial 

membrane, provides the requisite means for its translocation across the outer membrane.  

Lu et al. (2004b) advocate another mechanism for the import of the small Tim proteins 

across the mitochondrial outer membrane. Their model relies on the oxidative folding of small 

Tim proteins in the mitochondria. It involves import of the subunits in a cysteine-reduced and 

unfolded state, followed by the folding into an assembly-competent structure maintained by 

the intramolecular disulfide bonding, and assembly of the oxidised, zinc-devoid subunits into 

a functional complex. An enzyme in the intermembrane space, Erv1p (Lange et al., 2001), 

might be responsible for the disulfide bond formation in small Tim proteins. 

In conclusion, the driving force for the import of small Tim proteins could be the 

interaction with a protein in the intermembrane space which (i) delivers the zinc ion to them, 

or (ii) introduces the disulfide bond formation in them, thereby promoting their folding.   

    

4.4. Function of the small Tim proteins 

 
The yeast Tim10p and Tim12p proteins were initially identified as suppressors of a 

defect in mitochondrial RNA splicing (Jarosch et al., 1995 and 1997). Later on, it was 

established that these essential proteins, together with the Tim9p protein, are all involved in 

the import of the metabolite carrier precursor proteins (Sirrenberg et al., 1998; Koehler et al., 

1998; Adam et al., 1999). The ADP/ATP carrier (AAC) is the most abundant member of the 
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carrier family. Detailed in vitro import studies of its import pathway revealed that AAC could 

be arrested at several distinct stages during import (Kübrich et al., 1998; Endres et al., 1999; 

Ryan et al., 1999). Addition of the AAC preprotein (stage I) to isolated mitochondria in the 

absence of ATP leads to its arrest at the outer membrane (termed stage II) where it is bound to 

the receptor Tom70p. Each of the modules of the AAC recruits one Tom70p dimer 

(Wiedemann et al., 2001). The AAC precursor can then be chased across the outer membrane 

by the addition of ATP. In the absence of the transmembrane potential across the inner 

mitochondrial membrane, it is arrested at the inner face of the TOM machinery (stage III). 

Recently, it has been shown that the carrier inserts into the TOM pore in a loop conformation 

(Wiedemann et al., 2001), in stage IIIa. It is subsequently released from the TOM complex 

into the intermembrane space in an event mediated by the Tim9p·Tim10p complex (stage IIIb, 

Koehler et al., 1998; Adam et al., 1999). This, however, still does not imply that a soluble 

AAC-Tim9·Tim10 import intermediate exists. The complex of small Tim proteins might 

insure that the AAC does not aggregate in the transition through the intermembrane space 

compartment, thereby exerting chaperone-like behaviour (Vial et al., 2002). The transition 

from stage II to stage IIIa, and from IIIa to IIIb requires a fully functional Tim9p·Tim10p 

complex (Truscott et al., 2002). In the fully energized mitochondria, the  AAC is inserted into 

the inner membrane through the action of the TIM22 translocase with the involvement of the 

Tim12p protein (stage IV, Sirrenberg et al., 1996; Kerscher et al., 1997 and 2000; Koehler et 

al., 1998 and 2000), where it assembles into its dimeric form (stage V).  

 

4.4.1. N. crassa Tim9·Tim10 complex - the mode of substrate 
recognition 

 

The ability of Tim9p and Tim10p proteins to facilitate the translocation of the carrier 

proteins across membranes (Kübrich et al., 1998; Endres et al., 1999; Ryan et al., 1999), 

brought up a question of the nature of the interactions of the Tim9p·Tim10p complex with 

their various substrates. It was suggested that the complex recognizes a conserved, carrier-

signature sequence motif found in each of the three matrix loops of carrier proteins 

(Sirrenberg et al., 1998; Endres et al., 1999). However, some of the substrates of the 

Tim9·Tim10 complexes lack sequence similarity to the carrier proteins, making the sequence-

specific recognition an unlikely option. Alternatively, it was proposed that the Tim9p·Tim10p 

complex could function as a chaperone in the intermembrane space by binding exposed 
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hydrophobic sequences of unfolded precursor proteins (Koehler, 1999). Conventional 

chaperones which might fulfil such a role have not been found in the mitochondrial 

intermembrane space.  

Other studies support the view of the small Tim proteins as chaperons. A recombinant 

Tim9p·Tim10p complex was reported to have a moderate general chaperone activity (Vial et 

al., 2002). In another study, screen of a library of peptides covering the ADP/ATP carrier with 

the yeast Tim9p·Tim10p complex was performed (Curran et al., 2002a). In the latter study, it 

was published that the Tim9p·Tim10p complex interacts preferentially with peptides covering 

membrane spanning domains of AAC2p.  

This data was however obtained in the yeast system only, and the study analyzed 

binding to just one substrate protein, so it was left an open question whether these findings 

can be extrapolated to other substrates and to the Tim9·Tim10 complexes of other species. 

 

 
 

Figure 26. Model of the mitochondrial import of the carrier precursor facilitated by the 
Tim9·Tim10 complex of N. crassa 

 

To address this question, we have screened a library of peptides covering a variety of 

precursor proteins of the mitochondrial inner membrane using the native N. crassa 

Tim9·Tim10 complex. The complex exerted the highest affinity of binding towards peptides 

concomitantly comprising residues of both transmembrane domains and the loops between 
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them. Advantages of overwhelming binding to such regions over exclusive binding to the 

membrane-spanning segments are evident. Such mode of binding allows the trapping of 

segments which emerge into the intermembrane space from the TOM complex, while most of 

the precursor is still protected from this aqueous environment by remaining in the TOM 

complex. In this manner, the transmembrane domains are able to undergo transfer from the 

TOM to the Tim9·Tim10 complex without having their hydrophobic stretches exposed to the 

intermembrane space (Figure 26).  

Furthermore, the model of the carrier translocation involving a soluble intermembrane 

space intermediate can be considered unlikely for following reasons. Up to date no such 

soluble import intermediate of Tim9p·Tim10p and AAC2p has been identified in and isolated 

from the mitochondrial intermembrane space. This further suggests that a translocation 

contact site might form, where the outer and inner membrane come together and allow the 

carrier precursor to slip from the TOM pore into the Tim22p protein channel (Kovermann et 

al., 2002). This proposition is consistent with the N. crassa Tim9·Tim10 recognition pattern 

and binding to the parts of the carrier protein which are also left unconcealed when the carrier 

is finally integrated into the lipid bilayer of the inner membrane (Pebay-Peyroula et al., 2003). 

These segments are most probably concealed during import as well, by being buried inside the 

TOM channel and/or the TIM22 translocase. Binding to domains along the ends of the 

hydrophobic segments of the carrier would in this way prevent any retrograde movement 

along its import pathway, simultaneously supporting the vectorial progress towards the 

completion of import. 

  

4.4.2. Tim23 - a novel Tim9·Tim10 complex substrate in N. crassa  

 

The Tim23p protein inserts into the inner membrane with the help of the membrane-

embedded TIM22 complex (Kerscher et al., 1997; Kaldi et al., 1998; Leuenberger et al., 

1999). Upon in vitro import of the Tim23p precursor into the isolated de-energised 

mitochondria, the major cross-linking species of the Tim23p precursors to Tim8p and Tim13p 

proteins form, and very little if any, cross-linking products to the Tim9p and Tim10p proteins 

(Leuenberger et al., 1999; Paschen et al., 2000). Interestingly, a weak interaction of the 

Tim9p·Tim10p complex with the COOH-terminal hydrophobic domain of Tim23p was 

reported from another research team. They suggested that the Tim9p·Tim10p complex might 

play an important role in the import of Tim23p precursor (Davis et al., 2000; Jensen and 

Dunn, 2002). In this study, the Tim23 protein was identified as another substrate of the N. 
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crassa Tim9·Tim10 complex. Results of both our peptide screen and the cross-linking 

experiments in N. crassa revealed the existence of an interaction between Tim23 and the 

native Tim9·Tim10 complex. This interaction of the Tim23 precursor with the Tim9·Tim10 

complex might occur concomitantly with its interaction with the Tim8·Tim13 complex, or at a 

later stage of its import pathway.  

In the peptide screens made by Koehler group using the yeast model system, it was 

suggested that peptides representing Tim23p were bound by the Tim8p·Tim13p complex, but 

not the Tim9p·Tim10p complex (Curran et al., 2002a; Curran et al., 2002b). A plausible 

explanation of these differences between Neurospora and yeast might be the absence of 

Tim12p in N. crassa. An essential protein in yeast, it facilitates the transfer of the substrate 

proteins from the Tim9p·Tim10p to the TIM22 complex (Koehler et al., 1998a; Sirrenberg et 

al., 1998), but it has not been found in any organism other than S. cerevisiae. In N. crassa a 

similar function may be fulfilled by the Tim9·Tim10 complex itself. 

 

4.4.3. The minimal machinery for the translocation of AAC across 
membranes  

 
Recent studies have indicated the demand for Tim9p and Tim10p proteins in the 

process of the carrier preprotein release from the TOM complex and its insertion into the 

inner membrane (Luciano et al., 2001; Truscott et al., 2002). Yet, the explicit facts of whether 

they accomplish the precursor transfer across the outer membrane with the help of additional, 

yet unknown component(s) or whether the Tim9p·Tim10p complex and the TOM complex are 

sufficient for mediating this process were not dealt with. To address this issue, we 

reconstituted the TOM core complex into lipid vesicles with the purified N. crassa 

Tim9·Tim10 complex entrapped, and performed import of the ADP/ATP carrier precursor.  

Following this line of research, we made several observations. First, the TOM core 

complex (lacking import receptors) can facilitate the transfer of the AAC precursor to the 

internal side of the outer membrane. Whereas in the absence of the Tim9·Tim10 complex 

parts of the AAC precursor molecule are still exposed to the cytosol, the presence of a 

functional Tim9·Tim10 complex at the internal side of the outer membrane was sufficient to 

pull the AAC precursor further across the outer membrane. Evidently, the TOM core complex 

and the Tim9·Tim10 complex form the minimal machinery for the translocation of the 

ADP/ATP carrier across the mitochondrial outer membrane. 
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The observation that the AAC is found still associated with the receptors Tom70p and 

Tom20p when the function of Tim10p protein is impaired, support our conclusion 

(Wiedemann et al., 2001; Truscott et al., 2002). In other words, whereas the initial insertion 

of AAC into the import channel is independent of the Tim9p·Tim10p complex, completion of 

the translocation process across the outer membrane, including the release from the TOM 

complex, requires a functional Tim9p·Tim10p complex. It appears that neither proteins in the 

mitochondrial inner membrane or the intermembrane space, nor structural elements like the 

import contact sites are required for this translocation step. Rather, the interaction of the small 

Tim proteins with the incoming precursor is sufficient to prevent its retrograde sliding out of 

the translocation machinery and to ensure a vectorial movement along the import pathway.  

 

4.4.4. Potential involvement of the small Tim proteins in the 
biogenesis of the β-barrel proteins 

 

Recently, certain reports have been published suggesting an additional, though non-

essential function of the small Tim proteins, both in N. crassa and S. cerevisiae. Their role in 

the biogenesis of β-barrel proteins of the mitochondrial outer membrane has been reported 

(Hoppins et al., 2004; Wiedemann et al., 2004).  

Hoppins et al. (2004) have isolated tim8 and tim13 mutants in N. crassa and have 

shown that mitochondria lacking the Tim8·Tim13 complex were mildly impaired in the 

import of Tom40 and porin, which are both β-barrel proteins. Their cross-linking studies 

demonstrated the existence of an interaction between Tom40 precursor and the Tim8·Tim13 

complex. The reported cross-linking products formed exclusively in the initial import stages. 

Also, formation of an early assembly intermediate of the Tom40 precursor was slower in the 

mitochondria lacking the Tim8·Tim13 complex, than in the wild type mitochondria. 

Wiedemann et al. (2004) investigated the yeast mitochondria with defects in small Tim 

proteins and also found them impaired in the early stages of the Tom40p assembly pathway. 

Deficiency in the Tim9p·Tim10p complex seemed to have a more profound effect on the 

biogenesis of the mitochondrial β-barrel proteins, than the one of the impaired Tim8p·Tim13p 

complex. 

 However, all the observed effects were very moderate. Furthermore, the endogenous 

levels of β-barrel proteins of the mitochondrial outer membrane were not affected. There were 

also no phenotypic repercussions observed.  
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Using our reconstituted system, we could not detect any protease protected porin 

species upon its incubation with the proteoliposomes with the Tim9·Tim10 complex 

entrapped. This was not surprising since the TOB complex was not present in our trials. 

Nevertheless, this system might prove useful for acquiring further insights into the biogenesis 

of β-barrel proteins of the mitochondrial outer membrane. 
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5. Summary 
 

Mitochondria are essential cellular organelles of eukaryotic organisms, which import 

most of their proteinaceous constituents from the cytoplasm. Two mitochondrial membranes 

contain different translocation machineries which are involved in the import and proper 

sorting of mitochondrial precursor proteins. The TIM22 translocase in the inner mitochondrial 

membrane mediates the import of polytopic proteins into this membrane. In addition to the 

membrane integrated components Tim22 and Tim54, the TIM22 translocase possesses 

components in the intermembrane space, termed Tim9 and Tim10. 

In the present study, the tim9 and tim10 genes of the TIM22 translocase of N. crassa 

were identified. The structural and functional characteristics of the corresponding gene 

products, the Tim9 and Tim10 proteins, were examined. Tim9 was demonstrated to be an 

essential protein. The Tim9 and Tim10 proteins were shown to build a 70-80 kDa 

heterohexameric complex in the mitochondrial intermembrane space. The isolated 

Tim9·Tim10 complex had the same oligomeric structure as the native one, and it proved fully 

functional in interacting in vitro with its physiological substrate, the ADP/ATP carrier (AAC).  

Peptide library screens were performed to determine the structural determinants of the 

substrates that are recognised by the Tim9·Tim10 complex. Efficient binding to the regions 

covering residues of the hydrophobic membrane spanning domains and of the connecting 

hydrophilic loops was observed. In this way, Tim9 and Tim10 proteins interact with their 

substrates, while the hydrophobic regions of the substrates are still present in the TOM 

complex and thereby protected from the aqueous environment of the intermembrane space 

compartment. Furthermore, when enclosed into proteoliposomes containing the reconstituted 

TOM complex, Tim9·Tim10 complex specifically promoted the translocation of the AAC 

precursor. Hence, the Tim9·Tim10 complex and the TOM complex are both necessary and 

sufficient to facilitate translocation of carrier proteins across the outer mitochondrial 

membrane. Finally, peptide screens and chemical cross-linking experiments were used to 

identify the precursor of N. crassa Tim23 protein as a novel substrate of the Tim9·Tim10 

complex. 
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6. Abbreviations 
 

AAC ADP/ATP carrier 

Ac acetate 

ADH alcohol dehydrogenase 

ADP adenosine diphosphate 

amp ampicillin 

APS ammonium peroxodisulfate 

ATP adenosine triphosphate 

ATPase adenosine triphosphatase 

β-ME β-mercaptoethanol 

BSA bovine serum albumin 

BNG(E) blue native gel (electrophoresis) 

Ci Curie 

CCCP carbonyl cyanide m-chlorphenylhydrazone 

CCHL cytochrome c haem lyase 

cDNA complementary DNA 

CIP calf intestinal alkaline phosphatase 

CNBr cyanogen bromide 

CSPD 3-(4-methoxyspiro (1,2-dioxetane-3,2'-(5'-chloro) tricycle 

[3,3.1.13.7]decan}-4-yl) phenyl phosphate, disodium salt 

CV column volume 

DDM n-dodecyl-β-maltopyranosid 

DHFR dihydrofolate reductase 

DMSO dimethylsulfoxid 

dNTP deoxyribonucleoside triphosphate 

DNA desoxyribonucleic acid 

DTT dithiotreitol 

∆ψ membrane potential 

E. coli Escherichia coli 

EDTA ethylendiamine tetraacetate 

ER endoplasmatic reticulum 

GIP general import pore 

HEPES N-2 hydroxyl piperazine-N`-2-ethane sulphonic acid 
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Hsp heat shock protein 

IgG immunoglobulin G 

IM inner membrane 

IMS intermembrane space 

IP immunoprecipitation 

IPTG isopropyl-β,D-thiogalactopyranoside 

KAN kanamycin 

kDa kilodalton 

LB Luria Bertani 

m7G(5`)ppp(5`)G 7-methylguanosine triphospate 

MBP maltose-binding protein 

MBS m-maleimidobenzoyl-N-hydroxysuccinimide ester 

MOPS N-morpholinopropane sulphonic acid 

MPP mitochondrial processing peptidase 

MSF mitochondrial import stimulating factor 

MTS matrix targeting signal 

MW molecular weight 

N- amino- 

N. crassa Neurospora crassa 

NADH nicotine amide adenine dinucleotide 

NADPH nicotine amide adenine dinucleotide phosphate 

Ni-NTA nickel-nitrilotriacetic acid 

ODx optical density at x nm 

OM outer membrane 

OMVs outer membrane vesicles 

PAGE polyacrylamide gel electrophoresis 

PAS Protein A Sepharose 

PCR polymerase chain reaction 

PEG polyethylene glycol 

PIS preimmune serum 

PK Proteinase K 

PMSF phenylmethylsulfonyfluoride 

PVDF polyvinylidene difluoride 

RIP repeat-induced point mutation 
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RNase ribonuclease 

RNasin ribonuclease inhibitor 

RT room temperature 

S. cerevisiae Saccharomyces cerevisiae 

SDS sodium dodecyl sulfate 

STI soybean trypsin inhibitor 

TBS Tris-buffered saline 

TCA trichloroacetic acid 

TCEP Tris-(2-carboxyethyl) phopshine 

TEMED N,N,N‘,N‘-tetramethylene diamine 

TIM translocase of the inner mitochondrial membrane 

TLC thin layer chromatography 

TOM translocase of the outer mitochondrial membrane 

Tris tris-(hydroxymethyl)-aminomethane 

TX-100 Triton X-100 

Vol. volumes 

v/v volume per volume 

w/v weight per weight  

wt wild type 
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