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Zusammenfassung

Feldtheorien auf nichtkommutativen (NC) Radumen werden untersucht als realistische Er-
weiterungen des Standardmodells der Elementarteilchenphysik. Vor allem werden zwei
Modelle mit nicht vertauschenden operatorwertigen Koordinaten betrachtet: Kanonisch
NC Riume mit [2#, 2”] = i#*” und der k-deformierte Raum mit [Z¥, "] = ia*Z” — ia”Z".
Diese NC Raume werden auf gewohnlichen Funktionen durch Sternprodukte dargestellt.

Die deformierte Multiplikation erzwingt, dass in einer Eichtheorie auf einem NC Raum
das Eichpotential nicht Werte in einer Lie Algebra annimmt, sondern in deren Einhiillen-
den Algebra. Diese NC Eichtheorie kann jedoch so formuliert werden, dass die Frei-
heitsgrade mit denen der kommutativen Eichtheorie iibereinstimmen. Somit kann die
Eichtheorie auf der Basis jeder Lie Algebra definiert werden, sie wird rein algebraisch aus
einem Konsistenzprinzip konstruiert und hier aufgefachert in der Einhiillenden Algebra zur
zweiten Ordnung in 6 berechnet. Der Zusammenhang mit der Seiberg-Witten-Abbildung
der Stringtheorie wird ausfiihrlich diskutiert, ebenso Auswirkungen der Freiheiten dieser
Konstruktion fiir physikalische Theorien. Dieser Ansatz der Aufficherung in 6 versteht
sich als effektive Theorie. Daher wird die Quantenfeldtheorie des Standardmodells zwar
nicht im Ultravioletten abgeschirmt, das in der NC Feldtheorie notorische UV-IR Problem
wird aber a priori umgangen.

Der k-deformierte Raum ist ein NC Raum mit einer deformierten Symmetriestruktur.
Diese Symmetrie wird durch eine Hopfalgebra beschrieben und deren Eigenschaften werden
hier aus der Konsistenz mit den NC Vertauschungsbeziehungen hergeleitet. Ableitungs-
operatoren werden ausschopfend diskutiert, ebenso algebraische Vektorfelder und zwei ver-
schiedene Definitionen von Differentialformen. Neu ist die Einfithrung eines NC Differen-
tialkalkiils mit genau n Einsformen in n Dimensionen. Alle abstrakt definierten Gréfien
werden auf gewohnlichen Funktionen durch ableitungswertige Operatoren dargestellt. Es
werden Fortschritte erzielt bei der Definition eines eichinvarianten Integrals iiber dem k-
deformierten Raum, das zugleich invariant unter der deformierten Symmetrie ist.

Abschlieflend wird die Eichtheorie fiir den x-deformierten Raum konstruiert, aufgefich-
ert im Deformationsparameter bis zur zweiten Ordnung. Lagrangefunktionen und Wirkun-
gen werden berechnet. Eichfelder sind fiir Riume mit deformierter Symmetrie ableitungs-
wertig und koppeln nicht-trivial mit anderen Feldern. Diese Modelle sagen keine neuen
Teilchen vorher, sondern Wechselwirkungs-Vertices und fiir den k-deformierten Fall auch
neue Propagatoren. Die explizite Berechnung dieser Theorie fiir das Standardmodell kann
zu messbaren Korrekturen fithren, z.B. zu im Standardmodell verbotenen Zerfillen.
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Chapter 1

Introduction

Shortly after quantum mechanics was discovered and the phase space of classical mechan-
ics was found to be deformed to an algebra of noncommuting operators of position and
momentum, Heisenberg [1] tried to apply such a deformation also to coordinate spacetime
itself. This generalisation was not guided by experimental input as in the case of quantum
mechanics, which was a mathematical framework for the empirical description of atoms.
In contrast, Heisenberg hoped that noncommutative (NC) coordinates [2#,2"] ~ 6" for-
mulated in terms of operators leading to uncertainty relations Az#Az” 2 ||, could
eliminate the infamously divergent electron self-energy. In the earliest stages of the devel-
opment, of quantum electrodynamics it was recognised that these divergences persist and
fundamentally haunt any quantum field theory (QFT). At that time Snyder [2] for the first
time discussed NC coordinates (of the Lie algebra type) in a published scientific article.
However, the mathematical tools to treat such theories appropriately were not sufficiently
developed then.

Soon, renormalisation was found to be an elegant and successful way to accommodate
the QFT divergences in terms of running coupling constants, e.g. [3]. Nonetheless, renor-
malisation presupposes some higher scale where new physics sets in. This may be the
grand-unified scale or the quantum gravity scale. But again beyond a truly fundamental
scale physics should start to be prevalent, which is different from ordinary QFT. It is an
open question, which framework describes such a setting best, M-theory or spin foam mod-
els or a yet entirely unknown theory. At any rate the usual concept of spacetime should
dissolve beyond this scale and become fuzzy, leading to spacetime uncertainty relations.
It has been argued [4], that an operational definition of localisation at a Planck scale leads
to the creation of a black hole, such that spacetime becomes inaccessible and at least
operationally fuzzy beyond the Planck scale. This intuitive expectation of Planck-scale
fuzziness coincides with Heisenberg’s and Snyder’s intuition about quantising spacetime
in terms of NC coordinates.

Several developments in mathematics paved the way such that during the late eighties

and throughout the nineties of the 20" century, NC spaces have become attractive mod-
els for physics again. A key mathematical insight is contained in the Gel’fand-Naimark



theorem [5]. It states that locally compact Hausdorff spaces X and the commutative C*-
algebra Cy(X) (C(X) for a compact Hausdorff space) can be mapped into each other as
categories by a contravariant functor. This theorem provides the essential insight that a
manifold can equally well be described by (an appropriately restricted) class of functions
on the manifold. The space underneath may be ignored completely, all the important
information is contained as well in the (appropriately restricted) algebra of functions.
This point of view is actually quite close to modern physics, diffeomorphism invariance in
general relativity removes the background on which field theory is defined.

The Gel'fand-Naimark theorem allows several generalisations. Especially important is
the observation that the C*-algebra of functions need not necessarily be commutative. A
commutative C*-algebra may be deformed continuously with a small parameter and since
the Gel’fand-Naimark theorem still holds in this case, the manifold disappears, to which
the commutative C*-algebra is isomorphic. The deformed C*-algebra is not the algebra
of functions on some manifold-type space anymore, the space beneath is a NC space, i.e.
a NC algebra of coordinates. This is the setting which is described by Alain Connes’ NC
Geometry [6].

Another important mathematical development is the concept of Hopf algebras as gen-
eralisations of Lie groups and their Lie algebras [7]. The important aspect of Hopf algebras
is that they can be deformed continuously [8], [9]. Therefore they can take over the role of
groups and, acting on the algebra of functions on a deformed space, describe a deformed
symmetry. Non-trivially deformed Hopf algebras with particularly suitable properties
(quasitriangularity) for physical applications are called quantum groups [10], [11].

Deformed Hopf algebras and quantum groups have a well-defined and rich representa-
tion theory, but typically these are lattice-like structures [12], with deformed eigenfunctions
such as ¢-hypergeometric functions. The representation theory of deformed Hopf algebras
in the usual approach provides a non-perturbative description of a NC space. Similarly,
Connes’ NC geometry tries to understand generic and non-perturbative NC features.

The ansatz in this thesis is quite different from these approaches, although it would be
very interesting to understand possible overlaps. As interesting as the non-perturbative
descriptions are by themselves, the results are only partially useful from a physical per-
spective. If a NC space is supposed to be a model of the real world, then its low energy
description must be a commutative manifold, since measurements in particle physics and
astrophysics at high energies are in perfect accordance with such a description. What we
can expect to measure at best in future experiments are corrections to the commutative
description, at first or second order in a deformation parameter.

The framework of deformation quantisation, also a rather new branch of mathematics
[13], [14], [15], provides a natural setting for connecting the deformed and the undeformed
spacetime. Deformation quantisation allows to describe all properties, which essentially
make up a NC space, in a perturbative way order by order in a small, formal parameter.
To zeroth order in the parameter, the commutative setting is recaptured. The key tool of
deformation quantisation is to rewrite the deformed multiplication of the NC coordinate
algebra in terms of a x-product for the ordinary coordinate algebra, i.e. a perturbative
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formal power series of derivative operators acting on ordinary functions.

The main momentum for the research work in NC field theory in recent years came
from a setting, where such a x-product is used. It was discovered that in the low energy
limit the correlation functions of the endpoints of open strings in a background NS-NS
B-field can be described by a x-product NC field theory [16], [17], [18]. This result has
created an own area of research with a focus on NC field theories with a constant tensor of
the noncommutativity ** [19], [20]. In this NC space ordinary Lorentz symmetry a priori
is broken [21] because of the background field and there is no deformed symmetry either.

Mostly these theories have been treated in a summed-up version, i.e. the effect of the
noncommutativity is summed into a factor multiplying the vertices in the momentum-
space NC QFT. This additional factor creates new non-planar Feynman diagrams, which
do not improve the ultraviolet renormalisation behaviour, but create additional infrared
divergences [22], [23]. Especially important is that the UV and the IR divergences are
intrinsically connected, the non-perturbative and the perturbative regime cannot be sep-
arated. This property of these string inspired NC models is actually quite attractive
considering it as a theory of the quantum gravity regime. The reason is that the UV-IR
mixing reflects the fact that in general relativity two energy scales are related to a given
object, the Compton wavelength ~ % and the Schwarzschild radius ~ GyE [24].

Still, this UV-IR mixing is disappointing from the point of view of field theory ex-
tensions of the Standard Model. It shows that NC field theories are not automatically
better behaved than ordinary field theories. Of course, the reason may be that not the
most suitable NC model has been chosen. The breaking of Lorentz invariance by the con-
stant background field could be restored, if #*” transforms tensor-like. Since this results
in a general z-dependent x-product, it would be more reasonable to use an z-dependent
*-product from the outset.

Among the general z-dependent x-products, there are some special cases, for which
the corresponding NC spaces are stable under the action of a deformed symmetry struc-
ture. These special cases might have a different high-energy behaviour than the case with
constant 6*”. Indeed it has been suggested that not the noncommutativity of coordinates
will improve renormalisability, but instead the deformation and braiding of the symmetry
structure [25]. Whether this suggestion can be put into practice is an open question, but
it motivates further to focus not on the string-inspired models, but on NC models with a
deformed symmetry. One of the main topics of this thesis is therefore the in-depth dis-
cussion of the x-deformed space [26], [27], [28], a NC model with a deformed symmetry
structure.

The general philosophy followed in this thesis is that we accept the lessons learnt from
non-perturbative NC models (representations of quantum groups, NC geometry, summed-
up NC field theory). We would like to regard NC field theory as a potential extension
of ordinary QFT. The scale at which this extension sets in is not fixed by the model
itself, this requires experimental input. It is conceivable that this scale is not too far away
from currently accessible accelerator energies. But since the renormalisation behaviour
of NC field theory is not improved, we have to regard it as an effective field theory. We



expand the NC field theory at a certain order in the small deformation parameter, before
it is quantised. Because of the finite number of expansion terms, the theory is infrared
regulated a priori. It provides (power-counting) non-renormalisable higher order operators
which are exactly pinned down by the NC structure. The benefit of this #-expanded
theory is therefore not its improved high-energy behaviour, but that it can deliver precise
experimental predictions for new higher-dimensional operators and therefore new physical
effects.

This approach also avoids several complications in summed-up NC field theories. For
example, these models allow only U(n) gauge theory, although work-arounds have be
defined [29], [30]. There are no restrictions in our approach [31], [32], [33] concerning the
choice of gauge group in NC gauge field theory. However, the possibility to work with
arbitrary gauge groups requires to generalise the concept of Lie algebra gauge theories to
gauge enveloping algebras. In addition, the Standard Model gauge groups can be lifted as
a tensor product into the NC regime and there is no restriction concerning the admissible
charges of the individual representations of the NC gauge theory. In addition the theory
seems to be anomaly free [34], [35].

This reworking of the Standard Model [36] as the zeroth order of a NC gauge theory
reflects a general philosophy of our approach, which we also use in the framework of the
k-deformed space [37]. Since we do not necessarily regard the theory as a model for Planck-
scale physics, we may choose a basis in the algebras describing the NC space, based on
the requirement that the resulting theory coincides in as many respects as possible with
the commutative regime. For example, for k-space we choose the algebraic commutation
relations of the symmetry generators such that they coincide with those of the undeformed
symmetry algebra. This means that the theory can have the identical particle content like
QFT on ordinary spacetime, with ordinary spinors and vectors etc. In addition we choose
the gauge theory structures such that they coincide with the Standard Model gauge groups
[38]. Such a deformation of the symmetry Lie algebra which leaves the algebraic sector of
the symmetry invariant is always possible for semi-simple Lie algebras. This follows from
the Gerstenhaber-Whitehead theorem [39].

Therefore the NC models can be designed in such a way that they predict no new
particles, but “only” new dynamics, i.e. interaction vertices, and new kinematics, i.e.
propagators. These predictions can be fixed almost uniquely. Therefore they provide
corrections to Standard Model predictions or even predict new effects which are forbidden
in the Standard Model [40]. These new effects appear because of the NC structure which is
realised on ordinary spacetime in terms of formal power series in derivative operators [37].
In addition to the non-local x-product with its arbitrary number of derivatives on products
of functions, the deformed symmetry generators are realised by highly non-local derivative
operators'. Even more, forms, vector fields and other geometric quantities become in a
concrete way derivative-valued. Such a model has been dubbed “cogravity” by S. Majid
[41], i.e. gravity in momentum space.

Tn the expanded approach, only a finite number of derivatives appear at every order.
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This thesis is structured as follows: In the second chapter we present the x-product
formalism as a perturbative realisation of NC coordinate algebras rather than as a defor-
mation of a given Poisson structure (top-down rather than bottom-up). A focus is put on
equivalent x-products realising different ordering prescriptions of the NC algebra.

The x-product is the only ingredient necessary to formulate NC gauge theory for the
canonical NC space with a constant tensor #*”. This is the content of the third chapter.
We construct the enveloping algebra-valued gauge theory from a consistency condition
such that its degrees of freedom coincide with those of ordinary Lie algebra gauge theory.
This construction has been the content of an article [33] published jointly with B. Jurco,
S. Schraml, P. Schupp and J. Wess. The connection with the Seiberg-Witten map appear-
ing in string theory is explored, but the main focus is on expanding the fields of the NC
gauge theory for obtaining an effective Lagrangian description. The results obtained up to
second order in #* are presented here for the first time. Another important aspect is to
understand and interpret the freedom present in this constructive approach and its effect
on physical theories.

The non-perturbative properties of the x-deformed space are derived in chapter four
from consistency with the commutation relations of the NC coordinates. Several deriva-
tive operators are discussed in depth, as well as algebraic vector fields and two different
definitions of differential forms. A NC differential calculus with n one-forms on an n-
dimensional space is a conceptual novelty. All quantities defined in the abstract setting
are represented in terms of derivative operators on commutative functions, such that a
perturbative realisation becomes viable. Parts of this and parts of the sixth chapter are a
condensed and revised version of a series of articles [37], [38], [42] published together with
M. Dimitrijevi¢, L. Jonke, F. Meyer, E. Tsouchnika, J. Wess and M. Wohlgenannt.

In the fifth chapter we discuss the definition of a gauge invariant integral on x-deformed
space. We perform a detailed analysis of the action of the deformed symmetry on this
integral, aiming at a fully satisfactory definition of an action functional for x-deformed
gauge theory. The integral is formulated in the x-product language, therefore we do not
take into account non-perturbative concepts of integrals on NC spaces, such as sums over
lattice points.

In the last chapter we determine the gauge fields and Lagrangians on x-deformed
space expanded in the deformation parameter up to second order. The most important
observation is that gauge potentials become derivative-valued for spaces with deformed
symmetries, they acquire non-trivial couplings to other fields.



Chapter 2

NC spaces and x-products

2.1 NC spaces as abstract coordinate algebras

Noncommutative (NC) spaces A; are factor spaces, i.e. they are associative algebras freely
generated by n abstract coordinates * (x =1,...,n) and divided by the ideal generated
by the commutation relations:

A

BREY — 3VEM = [3F, 3] = i0™ (£), (2.1)

where 0*(%) a priori may be an arbitrary polynomial of the coordinates [43]. In other
words, Aj; is the enveloping algebra of the coordinates, i.e. arbitrary coordinate combina-
tions modulo the commutation relations (2.1)

Cl[zHr, zH2, ... ZH]]

[, 27] — i0 (2)

A; =

(2.2)

Among the polynomials which a priori might appear on the right hand side of (2.1), there
are only three possibilities which fulfil the Poincaré-Birkhoff-Witt (PBW) property. The
NC space A; possesses the PBW property, if considered as a graded algebra, the subspace
of monomials of a certain degree in the NC coordinates (with a given order) has the same
dimension as the corresponding subspace of monomials in commuting coordinates. The
grading can be thought of as counting the number of coordinates in an ordered monomial.
Therefore the monomials in PBW NC coordinates represent a basis for the polynomial
algebra, they can be mapped one-to-one to monomials of commuting coordinates.
There are three types of NC spaces with the PBW property:

Canonical NC spaces  [2#, "] = i6"",

Lie algebra spaces  [&*,3"] = iCy 3>, (2.3)
Quantum spaces i qu:;aA:” .

In the canonical case, 0" is a second rank tensor with mass' dimension (—2), C{"” are the
Lie algebra structure constants with mass dimension (—1) and R’} is the dimensionless

L As usual, we set ¢ = h = 1. We will introduce another, dimensionless A in a second.
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braid- or simply R-matrix of the quantum space with ¢ its deformation parameter. The
canonical NC space will be discussed in sections 2 and 3, while the Lie algebra-type k-
deformed space will be the topic of sections 4 and 5. Quantum or ¢-deformed spaces are
closely related to the k-deformed space, since its symmetry algebra is a contraction of the
symmetry algebra of a g-deformed space.

Symplectic structures have non-degenerate tensors 0*”(z), i.e. considered as a bilinear
form, non-degenerate 0" () means that 6*(z)z{z4 = 0 for all ] implies 5 = 0 and
vice versa. 0*(z) for the Lie algebra and quantum spaces are of course degenerate at the
origin.

The PBW theorem establishing the PBW property of Aj; requires to fix an ordering
prescription on the coordinates. There are several possible orderings for a given abstract
algebra of n coordinates, the most useful are normal ordering (NO)

(jl)i1(£2)z’2 (jl)ig (j")i‘l o (i_l)is . N_0> (jl)i1+i3+i5+...(jZ)iﬁ—... o (i,n)u—l—... +..., (2'4)
and symmetric ordering (SO), e.g.

1
g 22 (@2 + 278 = 33 o (2.5)
The ordering is a secondary structure imposed on the NC space, the commutator (2.1) is
automatically factored out of the enveloping algebra (2.2). However, for any calculation
an ordering is indispensable. It is necessary to impose an ordering to write a polynomial
element of Az in a unique way

N
f(i") = Zf/“-"“i A (2.6)
=0

With an ordering imposed, a function f(&) can be fully characterised by its expansion
coefficients f,, . ,;. Another way to understand the necessity of an ordering is to consider
the multiplication of two functions:

f(@)-9(&) — f-g(2), (2.7)
where the new polynomial f/\g a priori is an arbitrary element of the enveloping algebra of
the coordinates. In order to be an element of the NC space A;, the commutation relations
(2.1) have to be factored out again. This requires to impose an ordering.

Having defined the algebra of NC polynomials, we may generalise to all functions which
can be expanded in terms of a formal power series:

F@) =" fupop t @@ (2.8)
1=0

We assume convergence of this formal power series, being aware that serious problems
might be hidden under the carpet. For example, the definition of the x-product on all
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smooth functions is not possible. Even worse, the domain of convergence might be zero or
a set of measure zero or the set of convergent functions might be empty. The NC structure
itself is even not sufficient to determine the subalgebra of admissible functions. However,
the theory of deformation quantisation tells us [46] that it is a viable strategy to work
with formal power series expansions.

2.2 *products

The framework of deformation quantisation [13] allows to map the associative algebra of
functions on a NC space to an algebra of functions on a commutative space by means of
*-products.

The enveloping algebra of commuting coordinates is called A, = C[[z',z?,...,2"]].
Functions on commutative space are elements of A, the usual point-wise multiplication
sends - : A, x A, — A,. The two algebras A, and A; are obviously different because of
(2.1), but the point-wise multiplication can be deformed - — * : A, — A[[h]] in terms
of a formal parameter %, such that A;[[A]] is isomorphic to Az. This deformation of the
point-wise product is the x-product, it has to reproduce (2.1)

ot k¥ —x¥ *at = [aH 2V = 0" (x). (2.9)

A x-product is a deformation of a Poisson structure on a manifold. It can be expanded
as a formal power series in the parameter £

*=3 WM, withC - bilinear maps M, : A, x Ay = A, (2.10)
0

such that x: A[[A]] x A.[[h]] — A[[A]] is characterised by the following properties:

* is a deformation of the point-wise product: My(f(x),g(x)) = f(z) - g(x).

e x is a Poisson-structure M (f(x), g(x))—Mi(g(x), f(x)) = {f(z), g(x)} to first order,
i.e. it is antisymmetric, it fulfils the Jacobi-identity and the Leibniz rule.

e x is associative: f(z)x (g(x)xh(x)) = (f(z) % g(z)) * h(z).

There exists an identity, which is stable under x: f(z) = 1% f(z) = f(x) x 1.

Writing the Poisson structure as {f, g} = 0" (x)0,f(x)0,g(z), the antisymmetric tensor
6" (z) has to fulfil the Jacobi identity:

0N (2)020M () + 0" (2)050" () + 0" () 920" () = 0. (2.11)

The existence of x-products for general Poisson manifolds was only shown recently in
[15]. Deformation quantisation has been developed historically in order to deform classical
Hamiltonian mechanics to quantum mechanics, therefore the deformation parameter is
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called A. In our case, coordinate space itself is deformed. Poisson structures on coordinate
space usually arise because of background fields. It has been shown already by Peierls [47],
beautifully accounted in [48], that in a strong magnetic field the coordinates of a massless
particle restricted to the lowest Landau level have non-vanishing Poisson brackets, i.e.
they do not commute.

Without the presence of a specific background field, any deformation of a commutative
manifold is as good as any other, since the first order Poisson structure is not fixed?. We
assume that it is only necessary to conserve the point-wise product as the zeroth order in
the x-product. The first order properties of the x-product then follow from requiring that
the x-product reproduces (2.9). We will not adopt the point of view that the x-product
under consideration is a quantisation of a Poisson structure (given e.g. by a background
field), rather that it is a realisation of an a priori interesting NC structure.

There are several ways to construct a x-product. A particularly efficient way of com-
puting *-products is Weyl quantisation [50], [31]. The Fourier-transform f (k) of a function
of n commuting variables f(x!,...,z") can be associated in a unique way to an operator
W (f) of NC variables z*:

W) (&) = (27)3 / &k ™R F(K), with J(k) = (2m)% / A"z e~k f(g).
(2.12)
The exponential : e®"*« : is ordered according to the ordering prescription chosen for the
abstract algebra, e.g. symmetric ordering or normal ordering. Weyl quantisation is a
scheme independent of a specific ordering.
If the product of two Weyl quantised operators closes, it can be associated with a
deformed product of the original functions (f * g)(z):

W{(f)(@)-W(g)(&) = (QW)H//d"k d™p ek 2P f(K)G(p) = W(f * 9)().
(2.13)

The exponentials : e®"Fu :: ¢®"knu : have to be rearranged into one exponential according
to the ordering prescription.

- oy L o e
L el 1 o1y = B XukR) I (kAP HIB Ru (kD) (2.14)

The functions x,(k, p) contain the information on the NC structure and inverse Fourier
transformation allows to convert the momenta £ and p into derivatives on the functions

f(z) and g(z):
(fx9)(z) = / / d"k d"p e e P f(k)G(p)

= lim e %009 f(y)g(2) (2.15)

y—z
zZ—T

= m( lim ™" %u(9%9) £ (1)) ® 9(2))

y—=z
Z—T

2NC space like the s-deformed space preserving a deformed symmetry structure are considered prefer-
able though.
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Note that on the right hand side of (2.15) there is no ordering symbol, since inverse Fourier
transformation gives an expression in terms of commutative quantities.

In the last line, we have written the x-product in tensor notation. m denotes the
multiplication map, m : A,[[A]] ® Ag[[l]] = Az[[l]]. The x-product of two functions f(x)
and ¢(z) is a mapping to another function (f x ¢g)(z), which is again in the same algebra
of functions A,[[%]]. In most of the discussions in this thesis, we will be interested in
properties of NC spaces arising because of a deformed symmetry action with a deformed
Leibniz rule. The mathematically correct formulation of this action (involving an operation
called coproduct, explained in section 4.2) can be notationally cumbersome. Therefore we
will also write x-products in a mathematically incorrect way, suppressing the multiplication
map m and the essential property that (f x¢)(x) again is an element of A.[[A]]. Thus, we
will frequently write f(z) * g(x) instead of (f * g)(x).

The Baker-Campbell-Hausdorff (BCH)-formula provides a scheme to perform the rear-
rangement as in (2.14) for symmetric ordering®. For canonically NC spaces Weyl quantisa-
tion using the BCH-formula gives the Moyal-Weyl product, with z#x,(k, p) = %H’Wkup,,:

(f % g)(@) = lim 7?22 f(y)g(2) = m(lim e 2" %% f(y) @ g(2)). (2.16)

We use the following abbreviations for tensor products of derivatives

0 0 0 0
8—2/“, 1®8N: Z”:@, 8[1,®8U:—+

1 = nw = .
Ou®1=0, ayr | 0z

(2.17)

Differentiation w.r.t. y acts on the first and differentiation w.r.t. z acts on the second
term in the tensor product of two functions.

Note that for z-dependent *-products, the limes is performed after expanding the
exponential, therefore coordinates = explicitly appearing in the exponent of the x-product
are not differentiated.

An example of an z-dependent *-product is the BCH *-product for Lie algebra NC
spaces. It can be expanded in terms of the Lie algebra structure constants C{”:

7 %
(fxg)(z) = m(exp (%xkc;”au ® 9, + o OO (9, ®1 - 1©8,)9, ® 0, +
*£3

h
+Z2—4xAc;“ﬂcg“cg”aﬁa“®a,ay+...) f@)® g(:v)). (2.18)

2.3 The k-deformed space and its x-products
The k-deformed space is a NC space of the Lie algebra type:

(2, 87] = iCy 3, (2.19)

3The BCH product has been related to the Kontsevich x-product, cp. [52] and [53].
4The properties of the x-deformed space will be discussed in a more elaborate way in chapter 4.
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with the structure constants C}” fulfilling the Jacobi identity (2.11):
CRACYY + CIACR* + RO = 0. (2.20)
The k-deformed space has the structure constant C{* = a#6% — a”6}, therefore
24, 3Y] = ia"3” — ia" ", (2.21)

The n-dimensional Euclidean k-deformed space is characterised by a vector a* with mass-
dimension (—1). We may choose the coordinate system in such a way that the coordinate
Z" is parallel in direction to the vector a*, a* = ad¥. The n — 1 orthogonal coordinates

#',...,2" ! commute among each other, but not with £":

(2", 37] = iad?, [2",27] =0, Vi,j€{l,...,n—1}. (2.22)

The structure constants for k-deformed space with a* = ad? are C* = a(616% — 010%).
They allow to considerably simplify the expression for the symmetrically ordered BCH
*-product (2.18):

H1V1 YoV (YU3Y3 BeVE k—1_k—1gsv1 Svo Vg—1 (YHEVE
Ol Qv Clisvs | OMVs | = (_1)R-lgh=lgmagre | guie-1 Ol (2.23)

Expanding the BCH %-product up to second order in the deformation parameter 7 gives
therefore (suppressing the multiplication map m)

f@)xsog(x) = [f(x)g(x)+ i%aivj (Onf(2)059(x) = 0;f (2)Ong(x))

0 2924 (52 F(@)0,0k0 (x) — 20,0, (2)0k000(x) + 0,00 (@) (z) (2.24)

h2a?
12

7 (95 f (2)0;9(x) — 0n0; f (€)Ong (@) — On f (2)0,0;9(x) + 0; f (2)Dng(2)) + ... .

Normal ordering is the second natural ordering imposed on the k-deformed space. The
only non-commuting coordinate " (in the sense of (2.22)) can be ordered either to the
furthest left or the furthest right in any monomial. Normal ordering with all " to the left
is reproduced by the x-product x; and the opposite ordering by the x-product xz. Both
can be obtained by Weyl quantisation:

Yy—x
2=

@) gl@) = lim exp (270, (™2 1)) F(y)g(2),

@) rg(z) = lim exp (290" —1)) F)g(2). (2.25)

2.4 Conjugation and equivalent x-products

NC spaces have been defined as abstract algebras over the complex numbers. There
is an additional operation defined on the complex number field, complex conjugation
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T + 1y = x—1iy. Generalising this operation to the algebra A;, the conjugation  : A; — A;
acts as an involution

(f(@)-9@)" = g"(@) - f1(2), (2.26)

on C-numbers it acts as complex conjugation. Coordinates are defined to be hermitian
algebra elements (2#)' = 2#, this is required by the commutative limit. Conjugation will
be discussed more extensively in section 5.2.

The commutation relations (2.3) are invariant under conjugation. The imaginary phase
iin (2.3) guarantees the hermiticity of the coordinates for the canonical and the Lie algebra
NC space. The quantum space commutator is invariant under conjugation as well, since
the braid matrix is real.

However, an arbitrary function f(2) of the coordinates (2.8) with an arbitrary ordering
in general is not invariant under conjugation, even if the expansion coefficients f,, .
are real. Because of the involution property, the order of coordinates is reversed and
commuting the coordinates back into the original fixed order generates additional terms.

The symmetric ordering uniquely fixes a conjugation-invariant ordering. In the sym-
metrically ordered case, the conjugation properties of a function f (%) depend on the ex-
pansion coefficients alone, c¢p. (2.8). Thus, the symmetric ordering and therefore the
symmetric x-product are a preferable basis to work with. The symmetric x-product is
invariant under conjugation up to the involution. We denote conjugation on commutative
quantities by a bar:

f(@) xs0 g(z) = g(z) xs0 f(z) = g(z) *s0 f(z). (2.27)

Equation (2.27) can be checked using the BCH formula, e.g. for Lie algebras (2.18) and
explicitly in (2.24). We call the symmetric x-product xso a hermitian x-product, because
of its importance we drop the subscript (SO), *so = *.

Although we will work only with the symmetric x-product in physical applications,
the normal ordered x-products are interesting as well. Many constructions in x-deformed
space in the literature are worked out using the normal ordered *-products [54], [55]. In
this thesis we need them to derive a closed formula for the symmetric x-product (2.24).
For this derivation, closed expressions for a coordinate x-multiplied from the left or from
the right to an arbitrary function f(z) are needed:

! xg fz) = ale ™ f(z), f@)xp ! = 2! f(x),
2" xp f(z) = z2"f(x), f(@)*p 2" = (2" — iaz® ;) f(x),
o/ g fz) = 27f(2), f(@) xp 2! = 27e % f(x), (2.28)

" xg f(z) = (2" +iaz"d) f(z),  flz)*gpa™ = 3" f(x).

These relations immediately follow from (2.25). There are similar relations for the sym-
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metric x-product:

. a0,
o f(@) = ol (@),
f)ysad = o O f()
ko a0,
" x f(x) = (x" _ xank(eiali - 1)) f(z), (2.29)

%0, —iad,

feyran = (o= SR - D) ).

The relations (2.29) follow from (2.23) and a property of the BCH formula [52]:

. . TR T = - . .
exp(@1)-exp(d2) = exp (1+2+ 5[, B+ k—f[xl, &1, ... [#1,42] .. ]]) +O(32), (2-30)

k=2
where Bj, are the Bernoulli numbers: By =1, B; = —%, By = %, B, = —%, Bg = é and
all odd BQn—H =0:
T 2. B,z"
= ) 2.31
et —1 ; n! ( )

Recall that we have argued that the ordering in the abstract coordinate algebra is sec-
ondary, provided that there is any ordering. Therefore the x-products corresponding to
different ordering prescriptions should be equivalent. There should be a C-linear, invert-
ible operator T implementing this equivalence of x-products T: A.[[h]] — Ag[[h]]. This
operator can be expanded as a formal power series in the deformation parameter 7

T=1+)Y W, with Tj: A, — A, (2.32)

=0

such that

T(f(z) ¥ g(z)) = T(f(x))*"T(g(z)),
or  f(x)¥g(z) = T HT(f(x)"T(g(x))). (2.33)

This definition indeed specifies an equivalence relation between *-products (i.e. reflexive-
ness, symmetry, transitivity).

The equivalence classes of x-products which are quantisations of symplectic mani-
folds (i.e. their Poisson tensor is non-degenerate) are isomorphic to the second deRham-
cohomology class of the manifold, considered as a formal power series 7 [51]. Therefore all
*-products for deformations of flat R® with constant, non-degenerate tensor of the non-
commutativity #* are equivalent. In this case all x-products can be obtained by choosing
different ordering schemes. This simple observation is not true for arbitrary 6*(x) [49].
The tensor of the noncommutativity of k-deformed space however is degenerate at the
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origin; but all x-products discussed in this thesis correspond to different orderings and are
equivalent.

We implement the observation of equivalence of x-products to derive a closed symbolic
form for the symmetric x-product. To this end, equivalence operators 7' relating the x-
products *, x;, and xg (2.25) are constructed explicitly. The closed form of x has been
found on similar arguments before [57], [58].

For definiteness, we first relate x and %z, T(f x g) = T(f) x T'(g). Comparing the
expansion in 7 of different x-products (2.24) and (2.25), up to first order in %, T is given
by

T =1+ cihax?9;0, + ..., (2.34)
with a real constant c to be determined. The equivalence operator 7' depends on 7, but
not on z", since T and 9, commute. Choosing f(x) = z* in (2.33) we obtain T'(z#) = x*
and by means of (2.29)

T(a! 41 9(2)) = T(a) x T(o(x)) = T f(2)) = o/ 0O 1(p(a)). (2.35)

We may multiply (2.35) with €49 from the left on both sides and rewrite it as

—ihao, or l( —ihao,

Similarly, we obtain

oT al —ihao
T,2" = =—al— | ———— 1| T. 2.37
[ ) ] aan x an (ezhaan -1 ) ( )
On the right hand side g, acts on T as well. These two simple differential equations have
the solution oo
T = ll_I)Ial; exp (x 0,i (76_““162" 1 1)) . (2.38)

Next we determine T, T-T-! =T-1.T = 1. We expect T~ = 1 + cihaz'd; + ... and
note

il_)rru}c exp (' f1(Oyn)) - ;11_1}; exp (y'0,i f2(0m)) =

lim exp (20, (f1(0,n) + f2(8on) + f1(0en) f2(8:0))), (2.39)
as can be checked by a power series expansion. The result is
L ) e—ihaazn —1
T =1 0| —————1]) ). 2.40
i (40, (22 ) "

Similarly the operator T"(f xg) = T'(f) xr T"(g) relating the symmetric and the right-
normal ordered x-product can be calculated with the result

b in 1ha0yn B
T = ll_I)IglveXp (:vazz <7eihaaﬂ_1 1)),

- ) ; eihaazn -1
T = ll_I;lEeXp 20, W_l . (2.41)
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With the solution (2.38) the symmetric x-product can be constructed:

f@)xglw) = LmT(T(F)* T (9(2)))

yoa
22—

. ; —1ha0yn . ; —ihad.n
= ul}l_)rnxexp (mﬂawj(wﬁ — 1)) y]%%} exp (wJByj (e~thadn _ 1)) . (2.42)

Z—W
) e~ thadyn __ 1 ) e~ thadm _ 1
i ig (S - _ ig. (S = _
Jim, (exp (v0u (“—ag — )1 ) (o0 (700 (05— — 1))

Contracting all limits, this result is written in a compact way (0, = Oyn + O,n):

o o | inao.n —ila0, e % —1
fx)xg(z) = 11/1_)n;exp (xﬂay] (e . e=hdn — 1 _ihady !

+xjazj( —ihad, “h“a”‘l—l))f(wg(z). (2.43)

e_ihaan -1 —Zha,azn



Chapter 3

Gauge theories on canonical NC
spaces

In this chapter we discuss the construction of gauge theories on NC spaces. We restrict
our attention to NC spaces with canonical noncommutativity. This setting already reveals
many generic features of NC gauge theory.

In section 3.1 we review the construction of NC gauge theories in the framework of
covariant coordinates. The terminology of this section is inspired by the appearance of
NC gauge theory in string theory and it focuses on NC gauge theory of inner derivations.
In section 3.2 enveloping algebra-valued gauge theories are constructed from scratch for
exterior derivatives. We present a general scheme to construct gauge theories in a 6-
expanded, i.e. perturbative way. This scheme gives results identical to the well-known
Seiberg-Witten map. In section 3.3, the constructions of 3.2 are performed explicitly up
to second order in #*”. The action of NC gauge theory and the Standard Model is the
content of sections 3.5 and 3.8. In section 3.6, the freedom in the construction of enveloping
algebra-valued gauge theory is discussed in depth. The emphasis is on understanding how
the construction of actions is affected by this freedom. In section 3.7, the existence of the
enveloping algebra gauge theory is proved to all orders. Sections 3.1, 3.7 and 3.8 mostly
review results of other authors.

3.1 Covariant coordinates
NC field theory has turned into a very active field of research! since the discovery [16] and

[17] that the correlation functions on the boundary of a disc (i.e. the string world sheet)
of an open string o-model in a constant, closed and non-degenerate background B-field

S :/d2aBW8ax“eab8(,m”, (3.1)
D

! Another reason for the interest in NC field theories from string theory in recent years is due to [59].

16
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can be described by a NC field theory:

r(e(t) - Fula(t) = /a dtfixen f (3.2)

The correlation functions are time-ordered ¢; < - -- < t,, and x is the Moyal-Weyl x-product
with constant Poisson tensor *”. Since the boundaries of the string world sheet are the
end points of the open string in target space, i.e. they make up or live on a D-brane, the
world-volume of the D-brane is a NC space. Note that this description is valid only at low
energies, in the decoupling limit with zero slope

1 B ol 50 1
uy ! iz
6 2 (79 e ) — (=)™ (3.3)

Formula (3.2) can be derived from correlation functions of exponential operators

<H ePhet(tn)) — e 3 Zn>mpﬁ"“”p;"e(rnffm)g(zpn). (3.4)

This formula represents the Weyl-quantisation of n ordered exponentials (cp. section 2.2).

Seiberg and Witten [18] studied the effect of a slight perturbation of the B-field by a
U(n) gauge field strength B' = B+da with a a gauge potential (B, = B, +0,a, —0,a,).
This perturbation leads to an additional term in the action which is integrated over the
boundary of the disk:

S, = /6 dt aya()da" (1), (3.5)

Gauge invariance of the action under ,a, = J,o is in fact not automatically safeguarded
in the quantum theory. In this sense gauge invariance is respected only in the Pauli-Villars
scheme:

008, :/ dt 0,00,z"(t) = /dt o, (3.6)
aD

On the contrary, point-splitting regularisation leads to an invariant integral provided that
the gauge transformation has the form

Oaly = 0u& — iG, x & + 16 * Gy, (3.7)

with x the Moyal-Weyl x-product. Since physical results have to be independent of the
use of a particular regularisation scheme, these two settings have to be related. This is
the statement of the Seiberg-Witten map: Physical descriptions obtained via different
regularisation schemes have to be equivalent, therefore there has to be a map relating the
commutative and the NC U(n) gauge theory such that:

a,(ay) +6aty(a,) = au(a, + daay),
a(a,) +050(a,) = afa, +dpay). (3.8)

The Seiberg-Witten map states that there is a NC gauge theory which can equivalently
be described by commutative gauge theory via the identification (3.8).
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Seiberg and Witten solved the equation (3.8) by expanding the NC gauge transforma-
tion in terms of powers of # derived from the x-product, arriving at

bu(ar) = au— iﬁ’“‘{am Dy + fru} + O?),
aoa) = a-— ien*{an,am} + O, (3.9)
fura) = = 30 ({am, 0 + D) o} = 2 s f}) + O,

and then, summing up (3.9) to all orders into a differential equation for varying 0, i.e. for
different x-products arising from similar Poisson structures 6’ = 6 + 6:

0 1

Sa,(0) = 06 g u(0) = = 0Max t (Drdy + Hu)bs
0 1

A _ KA ~ _ KA A~ * ~

da,(0) = o6 W&(B) ——10 {ay ¥ O\G}, (3.10)
o 1

Sfu(0) = 66"

BV fuv(e) = —19”)‘({&,@ H (BA + DA)&u} - 2{fnua fAu})-

These are the all-orders solutions of the Seiberg-Witten map, non-trivial field redefinitions
of the gauge fields, written in terms of a varying tensor of the noncommutativity. Recall
that varying # is equivalent to adding a field strength to the field strength B’ = B + da.
The fluctuations of the D-brane are described by NC Yang-Mills theory.

There is a suitable description of this string theoretical setting in terms of the gauge
theory of NC inner derivations [60], [61], [62]. We will show now that the extra term in the
action obtained from a variation of the B-field can be described as a change of coordinates:

t — o' = 2" + 0" a,. (3.11)

The result of this analysis will be that a change of the background field B — B +da, which
serves as the Poisson tensor for the NC description of spacetime, generates translations of
the coordinates.

Suppose a Poisson structure is fixed and we consider a NC gauge transformation of a
field which transforms under a gauge transformation, e.g. from the left

Y — €% %) or infinitesimally 651 = i * 1. (3.12)

We have introduced the x-exponential function e®. This has to be interpreted as a
formal power series, where ordinary multiplication in every summand is replaced by *-
multiplication: €!* =1+ i@ — 3G * & — 2 * & * & + .... Therefore !® x ¢, ** = 1. These
*-exponentials replace finite gauge transformations in the NC regime (for the subtleties,
cp- [63]).

The field ¢ in (3.12) cannot simply be multiplied from the left with a function f with
daf = 0 without spoiling the gauge covariance (infinitesimally)

do(f*x) =if xax1) #icex f x . (3.13)
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Multiplying a field with a function can be reconstituted as a gauge covariant operation
introducing covariant functions

Df = f+9, (3.14)

which transform as
Df = exDf xe '™ or infinitesimally 6,0 f = i[a * Df]. (3.15)

The gauge potential 2 transforms as follows:

A — e x [f *e, ") + e« [Af r e, Y, (3.16)
or infinitesimally
6y = —ilf 5 &] —i[2; % 4], (3.17)

There is a gauge field strength corresponding to 2A; as well, it is defined just like
curvature in differential geometry

St = [Df D9 - D[f 1 9. (3.18)
For the case of a constant Poisson structure *” and f = z*, we obtain the covariant
coordinates:
gt — XH =gl + A" with JaA" = —i[z* * &) — i[A* * 4. (3.19)
Since
—i[zt * &l = 00,6, = A" =0"0,a — i[AF % G, (3.20)

the covariant coordinate is exactly the expression we interpreted as a translation in (3.11)
" = z#* + 60"a,. Here G, is the Yang-Mills type gauge potential as in (3.11), which
transforms as (cp. (3.7))

b, — i€ % 0,e, ¢ + el x i, ke orinf. a4, = 0,& — ia, ¥ . (3.21)
The field strength for the gauge potential a, is:
fuw = €9 % fu,xe ) with  f,, = 8., — 8,a, — ia, * a,). (3.22)
This NC Yang-Mills type field strength is related to §y,q) in the following way:
ifu 007 = F(oraoy = [2° % Ago] — [27 % Ao + [Anr § Age |- (3.23)

The first interesting aspect of covariant coordinates is exactly the relation between
(3.21) and (3.11): Gauge potentials can be introduced without having to fix a differential
calculus on the NC space first, inner derivations are sufficient. This allows to construct a
large variety of concepts on the NC space without much additional algebraic or geometric
structure. The derivative in (3.20) is an ordinary derivative originating from the x-product.



20 3.1. COVARIANT COORDINATES

For inner derivations the antisymmetrised Hochschild cohomology or Chevalley co-
homology C? = Hom(Aﬁp , Ag) of antisymmetrised p-th tensor powers of the algebra of
coordinates (multiplied with the *-product) takes over the role of the deRham cohomol-
ogy of an exterior differential calculus. There is an analogon of the deRham differential
d, on a p-"form” C € CP formulated with the Gerstenhaber bracket

(AC)(f1, - -5 for1) = F1xC(fay -y o) =CUf1rfas - o fprr) o (ZDPTIC(frs o fp) % Spra-
(3.24)

In this cohomology based on inner derivations, gauge theory can be discussed in full
analogy to the usual treatment of gauge theories in the deRham cohomology. A gauge
potential is a Chevalley one form (3.16), a field strength is a Chevalley two form, for which
the Bianchi identity following from d? = 0 is valid. Equation (3.18) can be written as

&(f,g) = (d*ﬂ)(f,g) + Qlf A Q[g, with d,F+AAF-—FAA=0. (3.25)

The second interesting aspect of covariant coordinates is the relation between (3.19)
and (3.11):

The covariantiser ® = 1 + 2 (3.14) makes the x-multiplication with a covariantised
function a gauge-invariant operation. Therefore it generates an equivalence of two situa-
tions: whether a field is multiplied with a covariantised function or not makes no difference
from the point of view of the gauge transformation. On the other hand, gauge transforma-
tions also generate translations of the NC space (3.11). Therefore gauge transformations
generate an equivalence between two different NC structures, corresponding to two dif-
ferent quantised Poisson structures. But both NC structures have their respective gauge
structure associated. Therefore the translation has to be an equivalence between two
different NC gauge structures, cp. [91]. This equivalence is implemented by an opera-
tor, which due to the correspondence between gauge transformations and translations is
exactly the covariantiser 2.

A cautionary remark concerning equivalent x-products is in order: The solution of the
Seiberg-Witten map is a flow in the space of equivalent x-products (3.10). But the setting
of section 2.4, where explicit equivalence operators between different x-products have been
constructed, is not sufficient. There the topic of gauge theory was completely ignored, the
operators T' (2.38) do not know about the gauge degrees of freedom. But if a NC space is
endowed with an additional gauge theory structure, than changing from one x-product to
another, the gauge degrees of freedom have to dragged along in a compatible way.

The construction of © as an equivalence operator between different x-structures with
their respective gauge structure associated will be sketched now. The presentation is
based on the approach of [61], constructing the Seiberg-Witten map from Poisson manifold
quantities, which are lifted into a quantum version by means of Kontsevich’s formality map.

One of the key observations concerning NC gauge theory is that even an Abelian
gauge theory in the commutative regime turns into a non-Abelian gauge theory in the NC
regime due to the x-product. If this property is to be reconstructed from Poisson manifold
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quantities, a prescription has to be be found that turns an Abelian Poisson manifold
quantity into a non-Abelian one in a suitable way.

The Poisson tensor on a Poisson manifold is a bivector which defines an analogon of
d,, i.e. a differential on functions dgf = —0"70,f0,. dyf is the Hamiltonian vector field
corresponding to f. A Poisson manifold vector field (this is an Abelian gauge potential, it is
not the analogon to the non-Abelian gauge potential A yet) is ag = a,dgx*. Similarly there
is an Abelian field strength f; = dgpay, which is a bivector field f, = —%0“” fmoMa“ AO,.

A change of coordinates for the Poisson manifold is described by a parametric de-
formation 6, with 6y = 6 and 0,0, = f,, leading to the solution §; = Oﬁ. Compare
this result to the change in the Poisson structure adding a fluctuation to the B-field:
()" = (75"

There is a generalisation of the Lie bracket, the Schouten-bracket |-, -]s (see [61]), which
allows to write 0;6; = —[ay,,0;]s. This Schouten-bracket can be integrated to a flow on
the Poisson manifold

ph = e e o (3.26)

relating two Poisson structures € (¢ = 0) and €' (t = 1). The result (3.26) follows from
e % f(t) = f(t — 1), inserting (ag + 8;) f(t) = 0, therefore 2% f(t) = f(t). The flow p
depends on the components a, of the Abelian vector field a,.

This exponentiated Abelian vector field (3.26) has exactly the right properties to regard
it as the non-Abelian Poisson manifold analogon A, of 2: A, = p} — 1.

Quantising the two equivalent Poisson structures, equivalent x-products are obtained.
Formality maps [15] associate to Poisson polyvectors (e.g. a vector or a bivector) a poly-
differential operator, which is a realisation of an operator on the NC space. The formality
quantisation of ay is

Z TL‘) Un+1 g, 97 s 70)7 (327)
n=0 )

with ag a vector and 6 the Poisson bivector, resulting in a differential operator a, (the
“Abelian” NC gauge potential). Similarly the “Abelian” NC field strength

o

with f, = d,a, is a quantised version of fy = dpay (d, as in (3.27)). The Kontsevich
formality maps allow to carry over the construction of the flow in the space of equivalent
Poisson structures (for details [61]) and to generate the non-Abelian gauge potential 2

(cp. [64]) as

n—|—1

Unir(£5,0,...,0), (3.28)

A= et 0 o —1. (3.29)

Through a, and ay, the non-Abelian NC gauge potential again is a function of the Abelian
Poisson manifold gauge potential component a,,.

Thus, we have shown the construction of the equivalence operator ® = 1 4+ 2, which
on the basis of the arguments given above is identical to the covariantiser of a function.
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The Seiberg-Witten map comes into the game, if we consider an infinitesimal gauge trans-
formation on a,, a, — a, + O,c, that does not change the Poisson structure and the
*-products. But it induces a change

ag — ag+dga, — a, — a, +d,q, (3.30)

where @ is a formality quantised version of a. Because of (3.29) it also induces a change
in 2A: it generates a NC gauge transformation on 2 such that

Ao, 40,0 = Aa, + 0aa, - (3.31)

This is exactly the Seiberg-Witten equation. The tricky bits and the complicated math-
ematics is of course hidden in Kontsevich’s formalism, which we have not even touched
upon. The power of the formality map [15], [65] which can be defined for arbitrary 6*(z),
allows to transfer all structures described in the Poisson manifold language into a fully
quantised setting. This discussion will lead us too far, we refer to the literature, [61], [62].

To summarise this section, recall that the fluctuations of the background field B can
either be interpreted as a change of the noncommutativity underlying a fixed spacetime
(i.e. a gauge transformation), or as a change of the brane configuration itself in a fixed
background, in other words a translation. More arbitrary transformations are possible for
non-constant 6*”(x), these describe a curving of the brane [66]. A remarkable feature is
that also such transformations can be implemented via NC gauge transformations, without
the specification of generators of translation. Inner derivations are entirely sufficient. The
covariant coordinates then do not have the simple form (3.11) anymore. Inner derivations
are particularly well suited to discuss settings with varying 0*(z) [67], [68], [69].

In the rest of this thesis we will not follow the train of thought of this section. We
will take into account an exterior calculus explicitly. The exterior differential calculus of
the commutative space can be transferred to the canonically NC regime, since derivatives
commute with the z-independent x-product. For spaces with deformed symmetries the
exterior differential calculus is one of the most interesting features.

3.2 Enveloping algebra-valued gauge theories

It has been shown in [33] that the results of Seiberg and Witten’s seminal paper [18],
connecting commutative and NC gauge theory, can also be obtained in a setting entirely
independent of string theory. The ansatz of [33] uses only algebraic properties of the
canonically NC space, i.e. properties of the x-product. In particular it does not use the
properties of a deformation quantisation of a Poisson structure, e.g. from a background
field.

The most important result of [33] is that no restrictions exist on the admissible gauge
groups. However, the disadvantage of this constructive setting is that no statements about
uniqueness or existence can be made a priori. However, the approach can be formalised
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and the existence of this construction can be shown by complete induction (cp. section
3.7). Uniqueness is discussed in sections 3.4 and 3.6.

We start considering this constructive approach towards NC gauge theory by fixing
the notations for infinitesimal gauge transformations on a commutative space [70]:

0oty (x) = 0 () (T*)i505 (). (3.32)

The field ¢°(z) is in a representation of an arbitrary Abelian or non-Abelian gauge group.
Our discussion uses the more general non-Abelian setting, Abelian simplifications are not
spelt out. The index i refers to the components of the representation, ¥°(z) is in addition a
function of the commutative coordinates x. A local? gauge transformation maps this field
¥°(z) by left multiplication with a z-dependent matrix to the transformed field (6,%°) (z).

i
The matrices T are the generators of the Lie algebra of the gauge group:

[T T = if™T". (3.33)

We can considerably simplify our notation by absorbing the index of the components
of the representation and by keeping the generators of the gauge Lie algebra and the
z-dependence of ¥° and a implicit, a = a,(z)T* and ¥° = °(z):

8o t° = ian)®. (3.34)

Since the generators 7'* form a Lie algebra, the commutator of two infinitesimal gauge
transformations closes:

(6005 — 6500) P’ = @By’ — Bar)® = 6_ia,g%° = Saxst’. (3.35)

A gauge transformation acts in the following way on the conjugate transpose of a
field (¢°)" (for later use we concentrate on Dirac fields 10 = (1/°)7°, with 4° the matrix
implementing conjugation as usual):

6a0 = —iOq, such that &,(p0°) = 0. (3.36)

Kinetic terms 9,1° are not gauge invariant anymore, but the derivatives can be gauged
(i.e. can be made gauge covariant) by adding a gauge potential:

(Do) = 6,((9, —iA%)¢°) = i D),
= 0,4, = dua—ilA), . (3.37)

The gauge potential transforms in the adjoint representation, like the field strength FBU,

which is constructed from the commutator of two covariant derivatives
Fﬁu = i[DB, DY) = 9,A) — 8,,A2 — i[AZ, AY,
= 0 F), = il Fy)l, (3.38)
[DY, Fp) + (D), F)\] + [DY, Fy,] = 0, Bianchi identity.

2For a, = const, a constant global transformation, the NC transformation is identical to the commu-
tative one.
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As in the commutative setting, we start to consider gauge theory on NC space based
on an infinitesimal gauge transformation. The NC space is represented on the algebra of
functions of commutative variables by a x-product (cp. section 2.2). Therefore (3.32) is
replaced by

Sxb(&) = iA(2) - (&), = Oav(x) = iA(z) * ¢(x), (3-39)

As before, the gauge transformation of the field 1 (z) is implemented by local left -
multiplication of ¢)(x) with a NC function A(z). The term local x-multiplication has to be
taken with a grain of salt, since the x-product involves an arbitrary number of derivatives
and is therefore highly non-local. Representations for which a field ¥(z) is multiplied from
the right are possible as well. Covariant derivatives, gauge potentials and field strengths
are constructed from (3.39) just as in the commutative case.

Yet there is a problem. Suppose the gauge parameter A(z) implementing the infinites-
imal gauge transformation is Lie algebra-valued, i.e. it can be written in terms of the
generators of a Lie algebra A,(z)T“. Then the z-dependent function of the NC gauge
parameter is multiplied with the x-product, therefore two gauge transformations do not
commute and in general do not close anymore as in (3.35)

(5n,00 — 0,00 )0(@) = Aa(@) # Ao(a) % () — Ao() 5 A (1) % ()
= ST TAa(0) £ Aal@)} % 6(a) (3.40)

AT T Ara(e) £ Aoa(@)] % () L B, ().

The anti-commutator {7, T°} in the gauge transformation d,,,% (x) imposes restric-
tions on the admissible gauge groups. Ouly a U(n) Lie algebra gauge theory allows to
express the anti-commutator {7°%, 7%} again in terms of the generators [18].

The only alternative is that the concept of Lie algebra gauge theories has to be gener-
alised. This is the approach followed here. Taking the commutation relations (3.33) as a
starting point, the Lie algebra and its enveloping algebra are the only mathematical ob-
jects fulfilling these relations, independently of a specific representation. The enveloping
algebra Ar of the Lie algebra is an infinite-dimensional algebra freely generated by T and
divided by the ideal generated by the commutation relations (3.33). Note that the product
of two generators is not the matrix product in a particular representation, but the tensor
product. An ordering prescription has to be specified for concrete calculations. As in the
discussion of NC coordinates in section 2.1, symmetric ordering is suitable because of the
invariance under conjugation:

1
Ap = {T,: T°T" := %{T“,T”}, e T T = D o(reten ..oty L} (3.41)

0€ES;

Obviously, the worrisome anti-commutator of (3.40) is in the enveloping algebra as well,
since Az is “large enough”. Therefore we have resolved the predicament (3.40), the
commutator of two enveloping algebra-valued gauge transformations remains enveloping
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algebra-valued. However, Ar is also “too large”. To see the problem, we expand an
enveloping algebra-valued gauge parameter in terms of the basis of Ap:

A=A + ALy TOT? i+ ALy o, s THT® T4 (3.42)
Just as A depends on an infinite number of components A” all other quantities of

a1a2...0p417
this enveloping algebra-valued gauge theory have an infinite number of components. To

show this, we introduce the other quantities of NC gauge theory explicitly.

Since the Moyal-Weyl x-product is z-independent, it commutes with derivatives and
derivatives have the ordinary Leibniz rule: 0,(f(z) x g(z)) = (0.f(z)) x g(z) + f(x) *
(0u9(z)). Therefore a covariant derivative on the canonically NC space along with a NC
gauge potential and the NC field strength are introduced as generalisations of the Lie
algebra covariant derivative, gauge potential and field strength (3.37) and (3.38):

SA(Duh) = On(0u) —iA, %) = iA% O, + Ax Ay xp =iAxDyh, (3.43)
= 00A, = A —i[A,*A]

and

F, = i[D,D,]=08,A, —9,A, —i[A,*A),
= 6AF[,LIJ = Z[A t Fuu]; (344)
[Dy* Fu]+[D,*Fal+[D,*Fy] = 0, Bianchi identity.

The behaviour of A, under gauge transformations (3.43) shows that an enveloping algebra-
valued gauge parameter directly implies an enveloping algebra-valued gauge potential and
field strength. This situation is physically untenable, since it implies an infinite number
of degrees of freedom of physical fields.

The only possibility to reduce this infinite number is to demand that all higher-order
degrees of freedom, e.g. of A7 ,, . .1» depend on the degrees of freedom up to some fixed
order. The most plausible solution is to demand that all AZ ., , ., for n > 0 depend on
the degrees of freedom present of zeroth order, the Lie algebra gauge parameter A2T%. If
such a reduction of degrees of freedom is possible, it means that the gauge theory on NC
spaces can be related to and is determined entirely by the gauge theory on commutative
space. Especially the number of degrees of freedom in this case would be identical to the
commutative case.

If this reduction is possible, a tower in the enveloping algebra is defined. Taking into
account the “size” of the enveloping algebra, the reduction from the full enveloping algebra
to the tower is severe. In contrast to the string theory setting, there is no principle to
ensure that the reduction to the commutative degrees of freedom is indeed possible. We
have to perform actual calculations.

To this end we perform an explicit construction order by order in the parameter of the
noncommutativity. The gauge parameter A = A, of course has to depend on a given Lie
algebra gauge parameter « as in (3.32), while A, depends on A, etc.



26 3.2. ENVELOPING ALGEBRA-VALUED GAUGE THEORIES

We use as a consistency condition that two consecutive gauge transformations have
to close into another one. From this consistency condition we perform the construction
of the enveloping algebra gauge theory. If the NC quantities depend on the Lie algebra
quantities only, the gauge variation d,, can be reduced to d,, since the gauge variation
can be applied to each of the Lie algebra factors in the expansion of the NC quantities
separately:

(5A16A2 - 5A25A1)1/) = 6A1 XAzq/J = (5(11 6042 - 60425a1)¢ = 6041 ><O£2¢7 (345)

if ; are the zeroth, Lie algebra components of the A;.
Applying the consistency condition, we find that the commutative gauge potential Ag
appears in the expansion of all quantities of NC gauge theory. Therefore

Aa = A[Ola Ag]a Au = AM[A?AL and FIW = PW[FO Ag]’ (346)

pv?

where the square brackets denote functional dependence. In particular, these quantities
depend on the Lie algebra quantities and an arbitrary number of derivatives on them.
Still, the functionals are supposed to be local in the sense that at any finite order in the
expansion, only a finite number of derivatives appears. To avoid notational clutter, we
will keep this functional dependence implicit.

Since A, depends on Ag explicitly, a gauge transformation of A, is not identical zero
doAp # 0, while 6,8 = 0 is still valid. We have to include terms taking this into account
in (3.45). Therefore the consistency relation for enveloping algebra-valued gauge theory
is:

(0adp — 00a)Y) = O_ifa,g1 = Oaxp¥,
& i(0aAg) * Y —i(IpAe) * Y+ Ag *k Ag*x ) — Agx Ay %0 = ilyxp* 9, (3.47)

and since this equation must be true for all fields :
idaA/B - iégAa + [Aa * A/j] = iAaX/j. (348)

This consistency condition has the virtue of being an equation of the gauge parameter A,
alone. Once we find solutions for (3.48), it is possible to solve

St = ihgy* 1, (3.49)
0oy = Ouha —i[AF ¥ Ay, etc. (3.50)

We assume that there is a “tower” in the representation of the enveloping algebra,
such that 1 is a functional of the fields ¥)° with the transformation property (3.34) and the
gauge potential Ag. These fields 1 may be in an arbitrary representation of the enveloping
algebra gauge theory, as long as the infinitesimal gauge transformation is implemented by
left x-multiplication with the gauge parameter A, (e.g. the fundamental representation).
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The consistency condition (3.48) will be the starting point for our construction of a
NC gauge theory. Since the gauge theory is driven into the enveloping algebra because of
the NC %-product, instead of (3.42) we expand A, in terms of &:

Ao =a+hA,+ A2 +.... (3.51)

The expansions (3.42) and (3.51) do not coincide. There are other suitable expansions,
e.g. in terms of the number of factors of gauge potentials Aﬁ. This expansion allows
some interesting all-orders summations [33], [73]. We will expand the x-product order by
order in the parameter of the noncommutativity, solve the resulting equation, reinsert the
solution for calculating the next order etc.

Correspondingly, v, A, and F),, are expanded in terms of &

v = Y+t + R+ (3.52)
A, = A)+hA, + WA+ ..., etc (3.53)

3.3 0-expanded solutions up to second order

The expansions (3.51), (3.52) and (3.53) are defined in such a way that (3.49) coincides
with (3.34) and (3.50) with (3.37) in zeroth order. In addition, d,8 = 0 and the x-product
to zeroth order is the point-wise product, therefore (3.48) is (3.35) to zeroth order.

We expand (3.48) to first order in f:

i(0alg = 050g) + o, Ag] + [Ag, B + [} Bllom) = iMgyp- (3-54)

Inserting the explicit form of the Moyal-Weyl x-product, (3.54) is
h
i8Ny — G5AL) + [, AL+ [AL, 8] — iAL, 5 = —%0’“’{6“&, 0,8} . (3.55)

To first order in A the NC structure contributes a term from the expansion of the x-product,
which prohibits A} equal zero. Equation (3.55) is an inhomogeneous linear equation in A}
with the solution [33]:

I

Ay = 204, 0,0} + ¢ 0[40, B0, (3.56)

That (3.56) solves (3.55) can be seen using d,3 = 0 and d, A}, = d,a —i[A), a].

For hermitian fields Ag and hermitian gauge parameters « this solution is hermitian
only for purely imaginary c. If A} is not required to be hermitian, ¢ may reach arbitrary
complex values. The part of (3.56) parametrised by c is the solution of the homogeneous
equation

(6l g — 05AL) + [0, Ag] + [A, B] — iNG, 5 =0, (3.57)
and it has to be added to any special solution of the inhomogeneous equation (3.55).
Homogeneous equations such as (3.57) appear at every order

ANF = i (6, A — 6A%) + [o, AF] + [AL, B] —iAL, 5 = 0. (3.58)
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We have introduced the shorthand AA* (cp. [92]) for the terms which appear on the left
hand side in the inhomogeneous equation (3.55) and in the homogeneous equation (3.57).
The structure of these terms on the left hand side is identical at every order £ in A.

The solution (3.56) marks the first appearance of a freedom or ambiguity in the solu-
tions of (3.48). We will defer the discussion of such ambiguities until section 3.6. For the
rest of this section we choose the special solution ¢ = 0. In a sense that will be discussed
in section 3.4, there is a class of solutions, which may be called natural solutions; ¢ = 0 is
the natural solution in first order.

To second order in 7 (3.48) reads:

1 l
AN = 2000, 00, ,008) — [As, AB] = 50 (10,04, 0,8 — {9uAb,D,}).  (3.50)
Using (3.56) with ¢ = 0, we have found the following solution for (3.59) in [33]
1
N = 500 (- 40,0, {A% BALY) — {00 {AL 45, A}

—i{ A% {AY, [0, A2]}} + 2i[0,0,x, 8, AT] (3.60)
~2(0, 43, [0, AL) + 2i[[ 42, A3, [, AT]))

Similar solutions have been found independently in [71] and [72].
Adding a particular solution of the homogeneous equation in second order

A2

a hom

1o .

= 500 A({{Ag,aAAg},anoz} +i{ A2, {4, [8,0r, AY]}} (3.61)
(AL, (B0, 3 A} + (AL, (A%, 0,000} — 2[4, D50l FL)),

the solution (3.60) can be brought to the “natural” form:

’ 1
A2 =A24+ A2, = ﬁxpxaoﬁ"c;’\ ({Ag, {0,Ay, 0ha}} + {40, {A),0,0,0}}  (3.62)

+{{42,0,4%}, 0y} } — {{FC,, A%}, s} — 2i[0,A°, ayaAa]).

K

With these solutions for A, up to second order, we determine the field ¢ (3.52) from
(3.49) up to second order. To first order in & we obtain:

APt i= 600" —iaypt = iAL Y — %eﬂ"auaaywo. (3.63)

Note the definition of the operator A,, it is defined for any ¥*: A, ¥*F = 6,4F — iap*.
Using solution (3.56) for A}, we find

1 .
Y= —SOW AL + 6" ALALYY. (3.64)
Similarly the next order,

1 1 ;
Aat? = i +iNY! = SOM M0, — SOM D00,y %0“”0”A8M8n048U8Aw0, (3.65)
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is analysed. In [33] we have found a solution, using (3.56) for A} and (3.60) for A%:
Y? o= 31—29’“’0"’\( — 4i0, AY0,0\0° + 4A) A70,05(° + 8A) 0, A Oxy°
—4A400,AN0\° — 4iA) A)A)O\y° + 4iA) A) AN 0Ny — 4iA) A AD 0\ (3.66)
+40, A) A)0\0° — 20, A0, ASY° + 4iA) AR O Ay° + 4iAD 0, A) AY°
—4i A0 0, AL ASY® + 3AD A) AR ADY® + 4A) AR AD AR° + 2A0 AR AL A 0).

uitety

Again we can add a solution of a homogeneous equation A,1? = 0 to arrive at the following
solution, which can be obtained directly using (3.56) with ¢ = 0 for A} and (3.62) for A2:

Kt v

W = —éewam(anAga,,awo+¢A2Agauaw°—ianAgAgawOﬂFO A%9,°

—iASD, AQDyUP + 2ALFS, Oy° + 245 A0 A0D° — ALASALDy)

vhKu uirkty (e ™1
1
— 5500 <26KA28AA2@/;° — 20, AS AL A% + 2§ A A3, A" (3.67)

+il[0, A%, AL, QI + 46 ADFD AQ0p0 — AD A A0 ALY 4 240 A7 A0A3¢°).

v KW K ut

The conjugate field 1/ = 1'7° is obtained by conjugation of 1, assuming that Ag is

hermitian. For example, EO =0 and @1 =l
— 1 . —0 v 0
V=00 A + 200 AV AY. (3.68)
The enveloping algebra gauge potential (3.53) is determined by expanding (3.50):

g «

1
AAL = 5, AL —i[o, ALl = 0,AL —i[A%, AL] + 59““{6M,42, d,a},

1
A A2 = 9,A2 —i[A2 A2] —i[AL AL] + 50’“’{8,114},, o,a} (3.69)

1 :
507 10,A2, DAL} + <00 (0,0,43, 0,,0].
Note the definition A, A* = §, A% —i[a, A%]. A hermitian solution for Al with Al as in
(3.56) is:
1 14
A = =20 ({45, 0,45} — {FL,. AS}), (3.70)

with F), the Lie algebra field strength (3.38). In [33] we have constructed A2 with A}, as
in (3.56) and A2 as in (3.60)
1
A2 = 00 (40,0,4%, A - 20[0,0, A%, AL + 4{AL, {4}, 0,F), 1}
+2([0:A,, Ag], O0AY] — 4{0nAq, {0, Ay, AV} + 4{AL Y, Flot)
_Z{ao'Aga {Aga [Aga Ag]}} - Z{Aga {Aga [aO'Aga Ag]}}
+4i[[A), A3], [AD, 0, AJ]] — 2i[[AD, AS], [AR, 9, AD)] (3.71)

g v

+{A%, {43, A9), [2, AQJ}} + (149, AS), (42, (A5, AL
—{AD, {42, [45, [42, A%]1}}).
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Adding solutions of the homogeneous equation A,A? = 0, we obtain a solution which can
be obtained directly using (3.56) and (3.62):

’ 1 e .
AL = 00 ({{AD 0rALY, 0,40} — (), A3}, 0,40} — 21(0,. A7, 0,0, AF)
—{ A {0, Fy, ASYY = { AL AP, 0,43} + { AL, {0,45, 00 AG )

A (A%, 8,0,A2) ) + {{A% uFL, ), AL} — {{DLEY,, A3}, A} (3.72)
—2{{Fp Fop}, AL} + 2i[0F,, 1AL — {Fly, {AL, ALY} + {FE,, {FE,, AN} )

The Lie algebra covariant derivative D2 used in this solution has been introduced in (3.37).
The gauge potential A, allows the definition of an enveloping algebra-valued covariant
derivative according to (3.43)

Dyth = Opth — 1Ay * . (3.73)

Since the derivative 0, is undeformed, we only have to add the expanded solution for A,.
In order to express the enveloping algebra-valued field strength

Foo =i[D,,Dy| = 0,As — 0, A, —i[A, ¥ A, (3.74)

in terms of Lie algebra-valued quantities, we insert (3.70) and (3.72) into (3.74). To first
order in A we obtain:

pEI T O

1 K.
Fry = =70 ({A% O5Fl,} = {DRE,, AS} — 2{F), Fi}). (3.75)

We could have used the covariant transformation behaviour §,F,, = i[Ay * F,y] to con-
struct the field strength. This reproduces only the first two terms in (3.75). The third,
fully covariant term is a specific solution for F), as in (3.74).

In second order in 7, the field strength F is calculated from A2 as in (3.72):

1 VNK
Fl = 500 (2{{A0, 0,AL, OuFS,} — 2{{F), ADY, 00Ff,} +2{AL 00 {A), 0,F),})

ko p
_Q{Ag’ aA{DngOa’ AB}} - 4{‘42’ a)\{Fp?w (91/}} - 41[8#12, aUaAFSa]
'H;{[{A?u a,,Ag}, F;?U]ﬂ A())\} - z{[{F;?m Ag}’ Fpoa]a Ag}
+Z{[Ag’ {A?u aVFgo}]’ A())\} - Z{[Aga {DgF;)J’ AB}]’ Ag}
—2i{ [AL, {Fpps Fou M, AR} + i{[AL, Fl ), {47, 0,433} (3.76)

[ [

+2[0u[A%, Fpol, 0. A3] + 2{{Du o, AV}, o} — 2{{ A}, 0.F, } Fy)

o we pKy K
+4{{F£p’ Fz?m }’ F((r))\} + Q{Fp?m {D,SFEA’ Ag}} - 2{F,?m {A?u ach?)\}}
FALES, (P, FO}) + 4i[0,F5, 0,FS] ).

While all previous results have been worked out by hand from scratch, (3.76) has been
guessed in the framework presented in the subsequent section, and checked afterwards.
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In section 3.1 we have discussed covariant coordinates and covariant functions. To
round off the presentation, we also quote briefly the results for f-expanded covariant
functions. As stated in section 3.1, the covariant coordinate X* = x* 4+ A* is determined
from

SuXPhth = ihg x XPxt), = Oudh = —i[z"* Ag] — i[4* * A. (3.77)
Since [z# ¥ Ay] = —60"0,A,, obviously A* = —0* A, with A, the all orders solution for
the gauge potential derived in this and the previous section.

Multiplying a function f(z) with d,f(z) = 0 from the left to a module of the gauge
group spoils covariance. But the covariant function D(f) of f, constructed as the function
plus a covariantising function f4, reconstitutes gauge covariance

5u(D(f) % ) = ih g+ D(F) % 1. (3.78)
This implies the transformation law for f4:
bafa = —i[f 3 Aa] —i[fa ¥ Aq]- (3.79)
The solution for the covariant function is therefore up to second order:
h2
[ = D) = [+ fa= [~ B0 AL, ~ T2 ALD, ] + 0% 07 { AL, A}0,0,f + ..
(3.80)
where A, is as in (3.92). At third order we obtain for f,
1 1 -
i = 0 ALD,f + J0OT{AL ADYO,0,f + 10" 07 {A], AL}0,0 f
1 14 g 1 14 g NK.
+29“ 6° {AZ *l Ag}a,a,,f — 69“ 60 ’\AzAgAga,,&,a,\f (3.81)

/L. 14 g NK. 1 14 o K.
350" 070 (0,AY, A9)0,0,00f + 516"87 00,0, A%0,0,00] + ... .

Ignoring the terms in the last line, this third order solution seems to indicate an all-orders
solution

D(f) ~ e A
The x-exponential has been defined in (3.12) and the derivatives appearing in the expo-
nential only act on the function f. The last term in (3.81) arises due to the third order
term in the expansion of the x-product. This term can be accommodated easily using the
product *s:

sin(26"9, ® 0,)
howd, @ 9,
This product appears in many places in NC gauge theory, e.g. [64], [74], [73], and its

D(f) ~ " 0 ks £, with (f %2 9)(@) = m( @) ®9g())-

appearance can be understood because only odd powers of the x-product contribute to
the covariant function. x5 is not a x-product itself. However, even with this addition, the
first term in the last row of (3.81) does not fit into the condensed notation, the all-orders
solution for the covariant function will be even more complicated:

D(f) = """ 4 o, f 4+ O(B3). (3.82)
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3.4 Structure of f-expanded gauge theory

The solutions (3.56), (3.60) for the gauge parameter A, and (3.70), (3.71) for the gauge
potential A, have been worked out in tedious manual calculations. Thus, it has been
shown that indeed up to second order, the construction of enveloping algebra gauge theory
is possible. However, the structure of these solutions is quite in-transparent. We have
quoted the alternative solutions (3.62) and (3.72) related to the first set by solutions of
the homogeneous equations. We will now show that this second set of solutions has a rigid
structure. The following derivation has been sketched in [75], but only for A, (a different
discussion of the order by order solution is contained in [76]). This structure is derived
from the Seiberg-Witten flow equations (stated in section 3.1):

O0A,
Ooh

1
= —0"{A, 5 9,Aq). (3.83)

This differential equation (3.83) describes the change in the gauge parameter along a tra-
jectory in #-space, i.e. for varying noncommutativity ¥ (%) (in the language of equivalent
x-products). We use this flow equation for a Taylor expansion of A, around a = A%:

0A, 5 0?Aq
_ 1 242
Ay = a+BA, + R°AZ + e 2! 572 S a0+ aee - (3.84)
Therefore we obtain
1 aA v v
A, = ——0“ {A, % 0,Ao}Hh=o = ——0“ {A oy}, (3.85)
82A 0 0A, 1
2 = — @ = | — * =
A 2( o7 ) =3 a) e = 5 Gria ),
1 6A 0 0\,
—  __puv lad *
= 0" ({52 T Al + A DA +{4, 1 50
1
- —gew({A o} +{4% ) + {A°, A;}), (3.86)
and similarly
1 /03A 0%A 0? 2A
3 I a — __— pw M *
Aa 3!( o )ﬁ 0 249 (1 g ¢ ad + {4 DA} + {4 7t +
0A, 0 0A, . OA, 0 . %
F2{ R DA +2{ 5 1 0+ 2 A 9550 (3.87)
We have introduced the convenient notation:
0 7
(@) g(@) = f(2) (55 % )9(@n=0 = 50" 0, f (), g(x). (3.88)

And similarly for all higher order terms

f@)xg(@) = f(z) g(z) + hf (z) x g(z) + B f(z) %" g(z) + -+ . (3-89)
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Equations (3.86) and (3.87) depend on derivatives of A, w.r.t. fi, therefore these equations
are not solvable by themselves, but only in combination with a similar flow equation for
the NC gauge potential A,:

0A,
Oh

Taylor expanding the gauge potential in /, we want to identify the Taylor expansion
coefficients with the solutions found in section 3.3:

:—%0“”({14 0,45} — {Fus t A}). (3.90)

0A, 0?A,
_ 40 1 242 4 ... — AO T2
Ay = A, +hA, + KA, + A, T h 572 Zlh=o ... - (3.91)
Therefore we obtain
04, ,
A = o= 0 (A1 0,4} — {Fot A))
1
—_ T puv
= —0 ({4 a0} — {Fl,, AD}), (3.92)
1,0%A 1
2 _ - g — _ _puv
4= L(Z0) = (A A — (Rt A)
- —%0“”({A1 0,A%) + {40+ 9,4} + {A4°, 9,41}
—{FL,, AS} = {F}, 3 A%} — {F},, AL}). (3.93)

In summary, the result obtained from the coupled flow equations is related to the solutions
found in 3.3, identifying

O\, e 0?A, or2

on = Aa, Whi:o —2Aa, ey

94, . PA, ,

- = A, Sllee=242 (3.94)
Ox %%
%L‘z:o = *, 72 =0 = 247,

The result (3.56) (for ¢ = 0) is obviously identical to the result derived in this section for
Al. The result (3.62) can be assembled into

«

A2 = 00 ({42 (0,40, 0ra ) + (4D, (AL 0,0h0}) + {{42,0,40), Dra})

{{ UK Ag}’ 8)\01} - 21[au142, 8,/8)‘()5]) (395)
- - 9“”({A° B,AL} +{AL, 0,0} + {40+ 9,0) = — 9“” Z (AL ¥ 9,0k}
%,5,k=0
i+j+k=1

The last expression is a symbolic short hand which should be read in the following way:
recursively insert the particular solution (3.56) for A, for the x-product and (3.60) for A,
and expand. Apply partial derivatives on products according to the Leibniz rule.
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Similarly we find for A2:

A = _1—120/“’({A da} + A%+ §,a} +{A,9,A2)
+{A) F oML +{A, 1 D} + {4, 51\1})

= 0 " Z {AL ¥ 9,AF}. (3.96)
i,j,k=0
i+j+k=2
We have checked explicitly that this choice of A3 fulfils the consistency condition. There-
fore the solution of the enveloping algebra gauge potential can be written in a condensed
way, to arbitrary order:

A" = Z {AL ¥ 9,AE}. (3.97)
i,J,k=0
i+j+k=n—1

We emphasise that this result has not been proven in the constructive enveloping algebra
approach. But we have checked that the results up to third order coincide up to solutions
of homogeneous equations.

Similarly, the result (3.70) is identical to Al derived in this section and (3.72) can be
rewritten in terms of

A2 = = guv ({Al O ALY + {A% 51 0,A%} + {45,0,40}
—{F},, AS} — {5, 1 A%} — {FS,AL}) (3.98)

po puo“ v

1

= -3 gHv Z ({AZ *]3Ak}—{F:w 4 Ak}>

This formula for A2 generalises for higher order A" as well, we obtain

n—1
1
n_ _ -  puw P k1 i xJ Ak
Ap=—— 6 Zk;o ({A 9, Ak} — {Fi + A }) (3.99)
i+jtk=n—1

The two expressions (3.97) and (3.99) for A? and A” are the compactest formulation of
the n-th order in the f-expanded gauge parameter and the gauge potential, these are
what we have called the “natural” solution in the previous section. They allow a recursive
calculation to arbitrary order. However, in contrast to the approach in the previous section,
both quantities have to be solved in parallel. The ansatz using the consistency condition
(3.48) allows a solution in terms of the A, alone.

The enveloping algebra-valued field strength

F,, =0,A, —i[A, ¥ Al (3.100)
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with the transformation property
0aFpe = i[An % Fol, (3.101)

is needed as well as a recursive expression, since F ZU appears explicitly in the formal
expression (3.99). This recursive construction has not been performed in the literature so
far. To expand the field strength, we insert the result (3.99) into (3.100). To obtain a
recursion formula we need the full solution (3.99). In first order we obtain:
1 v
Fl, = 0" ({Ag,a,,Fl?(,}—{DOFO A%} — 2{FO FOU}). (3.102)

u= po? pu’ - o

The solution for the field strength F p%, to second order indicates the general solution to
arbitrary order:

1 1
1 v i i i i 1 v % _—
Fp20' = _geﬂ Z ({Au tj aVFpka} - 2{Fpu ):] Fal'cu}> + gg“ Z {Dqu]a ’k Af/}
i,5,k=0 ,5,k,1=0
i+j+k=1 i+j+k+i=1
(3.103)
We have used the x-Bianchi identity for enveloping algebra field strengths:
D,Fye +D,F,, +D,F,, =0. (3.104)

Different powers of & define a grading, therefore there are Bianchi identities for every order
in h. For example, the first order Bianchi identity reads

0, Fh, —i[AY, F),] —i[AL, F5,] — i[AY 31 Fo]+ (cycl.perm.) = 0. (3.105)

[

To obtain a closed formula to all orders, A, as in (3.99) is inserted into (3.100):

n

Fp, = 0,A7 —0,A7 —i > [AL¥ Ak

i,5,k=0
i+j+k=n
1 n—1 ' o . '
=~ 0" Y ({04l ¥ 0,48} + {4, ¥ 0,0,45) — [9,F,, ¥ AL}
i+j+k=0
—{F}, ¥ 0,48} — {0,A!, ¥ 9,AF} — {4} ¥ 9,0, A%}
+{0,F,, ¥ AL} +{F., ¥ aaAﬁ}) (3.106)

n i—1
1 v T S 3 r s .
— 0 > Y (AL oAy Y AL - [F, v ALY AL
”v-zi-,]Jf:’S:::On 7“+Ts"-g|-’tt:?_1

AL AL 1 0, ALY — (A4, ¥ ALY

po 2

4,5,k=0
i+j+k=n—1
n—1
1 v - i j 1 ]
= —— 0" > ({4 P AFL) —{DLFL, ALY - 2{F), ¥ FLY).
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In the first identity we have used (3.99) and the fact that the n-th order of the x-product
can be resolved into the (n — 1)-th order. In the second identity we have merged the two
sums into one. We have used the n-th order Bianchi identity. The idea for this derivation
came from studying Stora’s proof [93] of the existence of the enveloping algebra gauge
theory to all orders (see section 3.7).

It would be nice to have an equation similar to (3.83) and (3.90) also for a field 1,
which transforms by left multiplication with the gauge parameter. But the obvious first
guess based on formula (3.64) is not correct:

oy

1
9V _ _Zpw —
o 40 (24, %x 0,0 — 1A, x Ay x ).

The reason is that there is a certain asymmetry, because by definition A, is multiplied
to ¢ only from one side. However, we have found a setting which allows a closed flow
equation also for ¢. In this setting A, and A, are not hermitian, and therefore also less
symmetric quantities. It is possible to formulate flow equations also for non-hermitian
gauge parameters and gauge potentials (for arbitrary gauge groups):

OA 1
o — _ 124
o 20 Ay * 0\, (3.107)
and 9 .
ah” = —50‘“’(14“ x 0, A, — Flp % A,). (3.108)

These flow equations are not motivated from string theory, we have worked them out
perturbatively and have checked that they can be solved consistently up to second order.
These flow equations have solutions, which also solve the consistency equation (3.48):

1 1 o
1 _ v A0 2 v 7 k
A, = —§9u Ao, Aa__iou Z Al % O,AL,
zj:;:i’flc:il
1 n—1
AV = ——p Al W 9,AF. 1
ity k1

Similarly the following non-hermitian gauge potentials are solutions of equation (3.50):

1

1 1 o o
1 _ v 0 0 0 0 2 _ v % k % k
A, = 50" (A%9,A0 — FOAD),  AZ= i Z (AL« 0,4k — F! 5 AF),
et
1 n—1
Ay = =0 Z (AL %7 9,AE — Fl 7 AF). (3.110)
z+;',4]—,k’tc::7?71

Note that in order for these recursive solutions to be true, only the non-hermitian quantities
are recursively inserted into (3.109) and (3.110), not the hermitian ones. We have to dis-
tinguish carefully between the two recursive expressions (3.97)/(3.99) and (3.109)/(3.110).
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With this non-hermitian solutions for A, and A,, the following all-orders solution for 1)
can be constructed (checked up to second order, with strong hints that higher order terms
are correct as well):

1 14
o= ALY,
1
W = _ieﬂ” > ALK o (3.111)
it

- —%WW (10, A%0,0,1° — 24%(9, A2 00° — A° A°9,0,0° + FO, A%9,1°),

1 o
no _  __ kv 7 k
Y= =t 2: AL I Dk,
z+;,4]—,lic==7?—l

The adjoint field 1) is obtained by conjugating the result for 1, keeping in mind that A,
and A, are not hermitian in the ansatz (3.107) and (3.108).

1, el o

Pr=yn=g0 Y, it AL
The non-hermitian formulae (3.111) and (3.112) have been derived here for the first time,
to obtain a better understanding of the structure of the enveloping algebra-valued gauge
theory. We do not use these terms for the formulation of a physical theory, since they do
not provide hermitian actions.

The solutions (3.97) and (3.109) can be related to each other by adding non-hermitian

solutions of the homogeneous equation AA™ = 0, just as (3.99) can be related to (3.110)
by solutions of A,A7 = 0.

3.5 Constructing actions

There are typically two ways of constructing quantised field theory in terms of a Fock space
for particles with a finite spin or finite helicity for massless particles. The first option is
to perform quantisation in terms of a Lagrangian which is quantised either canonically
or by functional integration. The second is Wigner’s classification of particles in terms of
positive energy representations of the (universal covering of the) Poincaré group [77].

In the context of NC spaces, where the underlying symmetry of spacetime is at least
unclear, the second approach is very cumbersome and the notion of a local field might
has to be changed [78], although it can be done in some cases, e.g. for the ¢g-Minkowski
spacetime it has been performed successfully [79]. In the absence of a fully understood
notion of the underlying symmetry, it is easier to choose the first route. This applies
especially to canonical NC spacetime, in which ordinary Lorentz invariance is broken.
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In this thesis we will therefore analyse possibilities to construct Lagrangians and based
on them action functionals for a NC field theory. The quantisation of these models has been
discussed [80], [81]. What has not yet been achieved is the construction of a full-fledged
quantum field theory.

Most of all we are interested in Lagrangians which fit into the framework of NC gauge
theory. We choose among the possible Lagrangians for NC gauge theory those which
are direct generalisations of the Lagrangians of the Standard Model of particle physics.
We will omit the discussion of other interesting Lagrangians such as Born-Infeld (but the
approach would be analogous). With this restriction to Standard Model-type Lagrangians
we could of course miss out on models which might be more suited to NC spaces, cp. [100].
Also we omit pure scalar field theory, the Einstein-Hilbert Lagrangian and supersymmetric
Lagrangians. All these models by now have been discussed in the literature, e.g. [82], [83].

We focus on constructing NC generalisations of the following Lagrangians:

Yang-Mills L3, = Tr(Fp, F*)
Minimally coupled fermions £, = iny“Dfﬂbo
Minimally coupled scalars L3, = (D*¢°)T(D)¢")
Mass term for scalars L2 =m(¢%)t¢’

Potential for scalars L% . = k((¢°)T6")((¢°)1¢°)
Yukawa terms L0 = gyp0¢%y°

Tr indicates a trace over the matrix indices of the generators of the underlying non-Abelian
gauge group.

Requiring that the NC generalisations of (3.112) to (3.117) are the Standard Model
Lagrangians in zeroth order in the deformation parameter /i, the most natural approach
is to replace every commutative field by its NC analogue. It is then possible to reconnect
the NC Lagrangians to the commutative ones via the x-product and the expansions of the
enveloping algebra-valued fields:

Loy = CTr(FoFP7) —  Lyy = ETr(F,y % F7) (3.118)
Luoe = 0" Dyl —>  Lower = i x V" Dyt) (3.119)
Loos = (D) (D) — Lues = (D*¢) * (D,0) (3.120)
Lus =md'p —  Lys=mo x¢ (3.121)

Logs = k(313)(0T0) —>  Lpws = k(B! * ¢) x (o7 x ¢) (3.122)
Ly=0d) —  Ly=gblxdxy (3.123)

In the previous sections we have determined the expansions up to the second order in
h of all the fields mentioned. Therefore we only need to insert them into (3.118) up to
(3.123). The only topic not treated so far is the Higgs field ¢. We postpone the discussion
of Yukawa terms and the kinetic, mass and interaction term of the Higgs field until section
3.8. Instead we discuss here the non-Standard Model Lagrangian for massive fermions

Lop = M) — Loge = mh % 1. (3.124)
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First we consider the NC Yang-Mills Lagrangian. The zeroth order is by definition identical
to the commutative counterpart. For higher orders note that we only need the #-expansion
for I g(,, the dual field strength F77 is obtained raising the indices with a formal metric:
Fop % FP7 = g*gP Fop x Fp, (3.125)
therefore the order F,, x F*? vs. F*? x F},, is unimportant. We obtain in first order

Fpo % FP|ogy = F9 %' FO7 4 Fl O 4 FO plo —

w po pp> T ov

1 1
= SOWDLELDIF 40U (Y, F,}, P} (3.126)
1 v o 7’ v a
— 50" AL 0 (Fpp F7)} + 20" { Ay, [A), (Fpu FO7)13-

As well, we obtain the second order NC Yang-Mills Lagrangian simply by inserting the
results of the previous section:

Fpox FP| o2y =

1 14 [ Z 14 o
-39 O DD Fyy DyDAF? + 20" 6™ (DL Fy,, o, 1, D]

: 1
50" O N[DYEY, DYED,], FO7) + 0" 0 ({{FS, B}, By}, F7}
1

— LOONAL, 0y (Y B Y, 7)) + S0 0 (AL [43, (Y, FL, ), F )}
—29“ YO N A, 05 (DRF, DYF7)} — %0“”0"*{A2, (43, (DO FS, DOFO7)]}
OO AD, 3[4, 0, (FD, F)}} = —=0m 0 AL, 143, (A%, 0, (3 ) )]}
_%guvgn/\{Ag’ 8)\{A/Ou [AY, (F;?UFOW)]}} _ ;_QQMVQKA{Ag’ [A9, {Ag’ [A°, (FI?UFOpa)]}]}

1 1
+§9’“’6’“{{A2, OnAYY, 0, (Fo, FO7)} — Ee’“’&’”\{{Ag, OuASY, 0, (F, FOP7)}  (3.127)

Z. 14 IL v
— OGN AL, ALY, (AL, (FO, )]} + 070 {42, 0,43, (4D, (FS, 7))

Z’ 14 I[; v
— OO A, ({42, 0,43}, (F, FU°)]} + S-0m 0" AL, [{A%, O3 AL}, (FE, FO%°)]}

1 14 g 1 v a
— SO A, [{AD, [4, AT}, (S FO7)]} — —0m 0™ (AL, 143, A%}, 142, (FE, FO%)]}

_
16

1 1
SO0, AY, 030, (FR, FO)] — 0010, A%, 3[40, (FS,, %)

0N (AL, 143, A} 8, (F, 7)) + om0 [(DUS, D) DYFO]

1 v Lo} 1 v a
OO AL (9,43, 0, (FE O )} + G070 MBS, Bl Y, (FS 2, B 7)),

Obviously (3.126) and (3.127) are not explicitly gauge covariant. This lack of covari-
ance is cured in the action. Many of the non-covariant terms in (3.127) are of the form
9"2{ A%, 0, X} — £0°*{ A%, [A, X]}. Under an integral these non-covariant terms are rear-
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ranged into a field strength:

Tr/dx oA ({Aﬁ, HX}— %{AQ, [AR,X]}> Tr/d“T (= oA %[AR’AQD’X}

1
= §'I‘r/da: 0" M F2, X}. (3.128)
We quote two relations which have been used frequently while deriving (3.127):

o ({{43, 8,X}, Y} + X, {42,0,Y}}) =
— g ({Ag, 0,{X,Y}} + {[4°% X],8,Y} + {9,X, [ASY]}) ,

o ({{AS, 45, X1}, Y} + {X, {43, [45,Y]}}) = (3.129)
= 0 ({8, 14, {X, Y]]} + 2{[48, X, [A5, V]}).

The large number of apparently unrelated terms in (3.127) raises the question whether
there is a way to obtain higher order terms in the Lagrangian systematically. However,
it seems that no recursive relations as in 3.4 are possible for composite structures such as
Lagrangians and that there is no other way to construct these Lagrangians than by such
tedious calculations.

Next we discuss mass terms and gauge coupling terms for fermion fields ¢ transforming
from the left. Again the zeroth order coincides with the commutative Lagrangian by
definition. For higher order terms the f-expanded solutions for 1, 1 and A, are inserted.
The fermion mass term reads:

mi e losy = m (T4 90+ P+ T0yT) =m0 DL DL (3.130)
ik loge = m (G0 Y0+ YT AL G0+ PO Pl PTY! PO + 0y ) =

1 _ ) _
—m <—§9“"0”*DQDQ¢OD2D§¢° _ %euvankpgwompgw) (3.131)

In these expressions the covariant derivative is evaluated on a conjugate field as Dg@ =
00 + iwoAz. The fermionic mass Lagrangians have an interestingly clean structure, cp.
the complicated expressions for /! and 2. In these f-expanded Lagrangians terms appear
in which x-product partial derivatives get replaced by covariant derivatives and there are
higher order terms where there is a “braiding” between factors of 6#”, implemented by
field strengths: 6#6"*F, .

Similar features appear in the #-expansion of the Lagrangian describing the minimal
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coupling of matter fields to gauge potentials:

— 1o s i o
i) x V" Dytblop) = —50" Duy®y"DyDyy’ + 040 Fy Dy’ (3.132)
_ ; _ 1 -
i) * V' Dyhlogs) = —%wvan'\pgpgwoymgpgpgwo + 10" 0" DO Ry, DDy
1u1~a)\0_ 0 0 10,0 lun)\_ 0 770 010,/,0
— 300" DOy D} (F, D) — 50" 0 00" (DLE,,) DDy

— 0O FYLFY, D0 — 200 FY, FL DY’ (3.133)
In this coupling Lagrangian, a field strength which is braided with a tensor 6 appears
already in first order. In second order these terms become quite complicated. Similar
structures are present also in the Yang-Mills Lagrangian, although they are hardly recog-
nisable in the complicated expression.

The construction of an action requires the definition of an integral. Integration is in
general difficult to implement for NC spaces. It is misleading to expect that the integral
is related to summing the field values over points, since NC spaces are “pointless”. There-
fore most of the usual intuitions concerning integration have to be dropped. A detailed
discussion of integration is crucial for k-deformed spacetime, in the canonical case the
integral can be defined consistently with some minimal requirements. In particular, the
integral should have the trace property, to be able to form a gauge invariant action from
a gauge-covariant Lagrangian and to have a variational principle. Therefore we demand:

/dx f*g:/dx g*f. (3.134)

If the integral allows the application of Stokes’ theorem, we may partially integrate the
derivatives of the x-product for #*¥ = const and obtain, because of the antisymmetry of

" Jae se0m [ae 50— [ar 01— [ oo 1o

This definition of integral is sufficient for the canonical NC space. We defer the reader to
chapter 5 for further details about NC integration.

With the trace property we see immediately that an action constructed by an integral
over the fermionic Lagrangians is gauge invariant:

S = /d":v x (ivYD, —m)yp —> (3.136)
0,Sr = /d”m ( — % Mg * (14D, — m)p + i * (7D, — m)Aq *w) —0,

by definition of the covariant derivative.
The commutative Yang-Mills action is multiplied with a numerical factor —1, 1 from

12
the trace over normalised generators of the gauge group, and another % because field
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strengths are two-forms. In the NC enveloping algebra gauge theory, the trace cannot be
fixed in such a straightforward way, the choice of trace is restricted only by [84]

3= 2 e TH (AT, (3.137)

Here g is the coupling of the gauge group, p denotes a representation of the generators of
the Lie algebra, the parameters ¢, may be chosen freely as long as they fulfil (3.137). Since
the sum over generators is not performed, the numerical factor of Sy in our approach is
an as far arbitrary real constant ¢:

Sy = ETr / A"z Fy + F. (3.138)

Introducing ¢ also avoids confusing this numerical factor with other factors from the ex-
pansion of the enveloping algebra. The trace property ensures gauge invariance of the
Yang-Mills action:

SuSu = & Tr / 0" (ilAat ool % F* 4 iBpo x[Ag 1 F7]) =0,

Partial integration and the trace property lead to the following result for the 6#¥-
expanded Yang-Mills Lagrangian:

¢Tr / dz Fpp % F* ooy = ¢Tr / dz Fy, F7, (3.139)

1
¢ Tr / dz Fpe % F oy = 0" Tr / dz (2F,, F),F% — —F) F) F°7)_(3.140)

pu= ov 9 wtpo

Unfortunately, we have not been able yet to formulate the second order Yang-Mills action
in an explicitly covariant way, because of the technical complexity of the calculations. The
f-expanded fermionic mass term reads:

m/dxa*w@(m) = m/dmwwo, (3.141)

m/dxw*mo(hl) = —%G“V/dx YOFDy°, (3.142)
_ 7 — 1—

m / de ¥ xPlopey = mo" o™ / dz (G0 (DR, D" — SUOF g, P

1 —
+3—2¢0F3AF3U¢°), (3.143)
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and the minimally gauge coupled fermionic action is:

i / dz P**Dyblogey = i / dz " D%, (3.144)

. — y 1—0 71—
i [ doierDplom = 0 [ do (= PVELDW - EPELDIY),  (3145)

.= . i— i—
i [ doTarDylons = 070 [ d (= UBPELEYDIY - (0T EL FADY

1— 7
— 3V (DLEL) DD — S U0y B, B, Doy

] ue UK v
1— i
— V"V (DRFL,) DYDY’ — o0y F Fy DYy°
+;—2@79F3AF3UD2¢0) . (3.146)

3.6 Ambiguities of enveloping algebra gauge theory

Starting from the consistency condition (3.48), there is an ambiguity in the construction
of the enveloping algebra-valued gauge parameter A,; this has been remarked already in
section 3.3. Even worse, there are not only ambiguities in constructing A, order by order
in A, but also additional ambiguities in constructing fields and the gauge potential. In
this section we investigate these ambiguities thoroughly to first order and also discuss
the most interesting second order ambiguities. We will focus on understanding how these
ambiguities affect the definition of the #-expanded actions.

The freedom (3.56) has been discussed shortly in [33], along with a discussion of field
redefinition ambiguities. Freedom in the Seiberg-Witten map was discussed at length
in [71], [86] in the string-theory context. More discussion is included in [88] and [75].
However, these approaches do not discuss the meaning of the freedom for the construction
of the action (the Yang-Mills action was discussed under this aspect in [71]). All these
texts ignore the discussion of fermionic matter.

All terms which parametrise an ambiguity or freedom in constructing the enveloping
algebra gauge theory have to be solutions of the homogeneous equations:

AA" = 0,
Ao = 0, (3.147)
AGA™ = 0.

In the construction of the NC gauge parameter there are essentially two types of ambi-
guities, which we call covariant and non-covariant ambiguities. The first order ambiguity
presented in (3.56), i.e. a solution of AA! = 0:

A = 0™ [AD, 0,0, (3.148)

is of the non-covariant type, since a derivative of « is multiplied with the non-covariant
gauge potential Ag. Calling this type of terms non-covariant might be misleading, but
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this terminology is only needed in this section. Most frequently, this freedom is called a
gauge-ambiguity. A covariant term in contrast is a term, in which 0, is multiplied with
a covariant quantity F),, i.e. 6o F), = i[a, F},]:

ALber = ey {F,,0,0}+. (3.149)

In contrast to the homogeneous equations for the gauge parameter A,, the homogeneous
equations for the fields and the gauge potential allow only covariant ambiguities, with
arbitrary covariant terms F),, and F,,,:

¢1,c¢ = cwguuﬁ‘l“ﬂpo’ (3'150)
Aber = e 0" F,. (3.151)

The notation {, }. in (3.149) refers to a commutator or to an anti-commutator, depending
on the sign. So far we have not demanded that the ambiguities should fulfil additional
requirements such as hermiticity. To discuss the ambiguities without requiring hermiticity
is possible, but increases the number of possible terms enormously (cp. the terms in [71]
for a field in the adjoint representation). We will therefore demand that A” and A” are
hermitian. Fields 1™ have to be constructed from hermitian quantities. In addition, we
do not discuss terms in which indices of 8* are lowered with a metric as in [80], terms
with 6 with lowered indices are entirely different ambiguities.
The only first-order hermitian freedom for Al of the non-covariant type is:

Agt =i [AD,0,0], c €R (3.152)

To see the effect of this freedom, we plug this term into equations such as:
Sath e =GN0, (3.153)
leading to an additional term for the fermion field
P = e 0 A0 A%°,  and Qe = ¢, 0M7 AC AL, (3.154)
Similarly this freedom generates via
S0 Ayt = 9,Ay —i[A) AL, (3.155)
an additional term for the gauge potential:

AL — 89 ([0, AL) — 14D, A2, AZ]) = ier6 (3,(43.49) — AL, ALAL). - (3156)

Adding these terms up, we see that the fermionic mass Lagrangian £y% and the mini-

mally gauge coupled Lagrangian £y derived from the freedom parametrised by ¢; are
identically zero.
The field strength corresponding to (3.156) is
Fpt = ci0™[[F,

pos

Ag], A%, (3.157)
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and the trace of the corresponding Yang-Mills Lagrangian is therefore

LY = —c 9" Tr(ASASFO FOro — O F07 A% A) = . (3.158)

v’ po

The first order non-covariant hermitian freedom does not contribute to the action.

Next we consider the covariant freedom in first order. The only covariant quantity with
one index in zeroth order is the covariant derivative F B = DB. Before accepting a term
with a covariant derivative acting freely to the right as an admissible covariant ambiguity,
we have to define precisely what such a term means. First of all, the resulting ambiguity
has to be hermitian. The hermiticity of a freely acting derivative can be checked via partial
integration

X@)3, = 8,%(@) "5 —(0,%()) — X(=)d, (3.159)

Therefore allowing such a term would lead to the following hermitian solution
Ag® =i {D), 8,0} = —2ic26" 8,00, + 20" { A, 8,0}, (3.160)

because of antisymmetry of 6*~.

The problem with such a term is not its hermiticity or that we could not calculate fields
from it or gauge potentials, at least formally. The problem is that if we allow such a term
with a derivative acting freely to the right, it has to be included also into the calculation
of the consistency condition (3.48) to higher orders in A. The second order consistency
condition involving a term like (3.160) cannot be solved. Similarly, a hermitian solution
of the homogeneous equation for the gauge potential such as

AL = ics0""DYF,, + 2ics6" Fy) D). (3.161)

v pp

cannot be used, since its contribution to the equation for A2 cannot be solved. Therefore
we prohibit such derivative-valued solutions for all quantities in the canonical NC gauge
theory. In contrast, such derivative-valued quantities appear in a natural, solvable way in
k-deformed gauge theory because of the deformed symmetry3.

In contrast, a term such as

ALe = 0" {gDOFY, 0,0}, (3.162)

KT B

is hermitian and allowed and formally at first order in /. But in fact it is of order (9#¥)?
and only because of the splitting of *" into Af*” this term is first order in /. There are
circumstances in which it is sensible to take this splitting serious (e.g. in the discussion of
the renormalisation behaviour, [90]), but here we regard (3.162) as a second order term.

The only remaining hermitian covariant ambiguities are therefore solutions of the ho-
mogeneous equations (3.147) for v,

Pl = 059“”F£V7/10, (3.163)

3This was the motivation to investigate whether derivative-valued terms could appear as part of the
freedom in canonically NC gauge theory.
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and the gauge potential A,,
Ao = g0 DF) (3.164)

p* pv
That this freedom for the gauge potential is unique can be seen using the Bianchi identity.
The field strength corresponding to A}fﬁ is
Foeo = i[Dy*, D)) +i[Dy, Dy°] = —icgd" [Fy,, F,,]. (3.165)

po>

Since this field strength is a commutator, it does not contribute to the Yang-Mills La-
grangian. There are no other ambiguities than (3.165) for the field strength, since it is
strictly calculated from the gauge potential and not constructed as a solution of the trans-
formation law, compare the discussion in the previous sections. Therefore the Yang-Mills
action is not affected by the covariant ambiguities at first order, but the two ambiguities
(3.163) and (3.164) introduce an ambiguity in the fermionic action:

Sleses = / d"z (263" YO, (19D — m)y® + (c5 + )0 $0in? (DSEL, )0’ ). (3.166)

The significance of this result can be seen comparing (3.166) with the fermionic action
derived in the previous section from particular solutions of the inhomogeneous equations:

c5,C n 1 V10 .
SI\I/ICF, MF + Sl\l/fci", l?/IF = /d l‘((205 - Z)Hﬂ won?u(Z’Yppg - m)wo (3167)
d
U v, 10, v, 10,
— 20M G ES DL + (g5 + )0 0 (DY) ).
da
Choosing c5 = % and cg = —% two terms can be set to zero. We can equally well choose

any other value for d; and dy; this will be as consistent with the structure of the enveloping
algebra gauge theory.

But physics must not depend on a choice of a gauge, therefore any prediction based
on a particular value of d; is unphysical. The choice of the value of cg in the tower of the
enveloping algebra choice is in fact a gauge choice of the commutative Lie algebra gauge
theory. Typically, [33], [94], [75], this type of covariant freedom parametrised by cg is
called a field redefinition of A,. In the field redefinition perspective two constructions of
the enveloping algebra gauge theory, one before taking a field redefinition Ag — Ag + F u
and one after, may look different. But they have to be equivalent, since they do only
depend on a freedom in the Lie algebra gauge theory. This freedom leads to

Ay~ 0 (A0, B,0r  — AL ~0M{A0,0,a} + 0" {F,,0,a}. (3.168)

The covariant ambiguities are exactly such field redefinitions. We have chosen the term
“covariant ambiguity”, since ¢/° is not redefined in terms of fermionic degrees of freedom,
but by multiplication with Fg,j. From the point of view of constructing an enveloping
algebra gauge theory from the transformation behaviour, the two terms parametrised by
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cs and cg are ignored by this construction, they have to be included as an ambiguity. This
type of ambiguity is also called “covariant” in [71].

We may conclude that the only new term in the NC fermionic action at first order in

6 is .
Slimariont — L g / d" x40y Fp DOy’ (3.169)
, 2 puv
since the two other terms are proportional to a covariant ambiguity. In particular, no mass
term appears at first order in 6.

Next let us turn to the ambiguities appearing at second order. We take over the
restrictions on the ambiguities from first order: these terms have to be hermitian, not
derivative-valued and solutions of the homogeneous equations.

The non-covariant freedom in the gauge parameter AL has the following effect on the
consistency condition in second order:

ANt = —[Ag 5 B] =[x Ag™] = [AG?, Ag] — [Ag, Ag™] = [AZ, Ag™). (3.170)
This equation is solved by the following terms

) 1
A2 — Cl@uuW(_%{[auAg,Ag],aua}— 1 {143 0cal, A7), AT}

i

+i{[[A2,A2],AS],8Aa}) = 0 O[AD, A, (A7, Oxal]. (3.171)

Again this freedom does not contribute at all to the Lagrangian, since A% leads to the
additional terms in %<t

. VAR 1 i
W = a0 (= S[0,A% A0 + SASAS AL — ZASASAS A )
2
+%0W(9MA2A3A2A§¢°. (3.172)
and the gauge potential
C1 VNK Z 1
Az = e0mg (= (10,42, A0, A% + (1A%, A, A%, (FS, + 1A%}
1
— {1145, (FS, + 0.40)], A7), A3}) (3.173)

2
— om0 (i][ AL, AL [0,4% AN + (145, AD), 145, 4%), A3]).

Plugging these terms into the second order fermionic mass and minimally coupled La-
grangian, all contributions (in ¢? and in ¢;) drop out. Similarly the A, freedom in ¢; does
not contribute to the Yang-Mills Lagrangian. We conclude that the non-covariant freedom
Ale is irrelevant concerning Lagrangians.

Next we investigate in which sense the first order covariant ambiguities reappear as
additional ambiguities at second order. For example the ambiguity parametrised by cs:
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PYhos = s F 3,/1/)0 enters into the determining equation for v
Agp?® = GALYYS 4 da K e
C5 huv 7;05
N -0 <X A%, (FS,4°) + % AVAYFD 0. (3.174)

The inhomogeneous equation is identical to the one for 1!, since ¢ is effectively a field

redefinition. Therefore the cs-parametrised Lagrangian and action to second order are:
’iCl

Lip = 00 (DR FL,) DY’ + Dy DR (Fuv')) + G0 0™ 0k, sy’

Sk = (&) / d"z POFS, FO°,

L35 = =500 (DRWTEL, )y DYDY’ + Doy D (Dh(FS, ")
iy B, FS, DR — 07 FS, DY(FL,0°) (3.175)

+ic20" 0O FL AP DS (F YY),
- UV NK n C5\7% C5—5
Sig = 0" / 4"z ((c2 = V0O FR DY (FRW’) — TU0F, F DR
Cy—= Cy—F
+ S R, FL, DY + S0y Y, DY (Fo,u0))-

The gauge potential ambiguity proportional to cg leads in second order to

C 1 vV NK 1/
A?;’ ¢ = Cﬁieu 0 A({au(ngng)a Ag} - 5{[‘42’ (DgFB)\)]’ Ag}) . (3176)
For the minimally coupled fermion action this means in second order:
c ic VoK 10 )
Lip = 00N (DR DU(DYF)E°) + 90" (DD F, ) DRY’), (3.177)
c VK n 1-5 i3
S = o0 / A"z (= LU0y Fy, (DYFL)Y° + Suty? (DD F, ) DY)

We will analyse the effect of these ambiguities below.

In addition to the first order effects to second order quantities, there are of course also
intrinsic second order ambiguities. It has not been possible to find an exhaustive list of all
second order non-covariant and covariant ambiguities. For example, the terms in (3.61)
are together a non-covariant solution of the homogeneous equation. We have analysed the
three non-covariant ambiguities

A2 = 00 ({9,4, D,0h0} + i{0,A2, [0,0, AT},
A2 = g0 9" {9, A% [AY Oral}, (3.178)
AR = 099“”0”)‘{[A2,A2], [A° 0ya]}-

These lead to the following terms for fields ):
YT = i 0" 9, A)0, Ay,
PP = g0 (i{0,AD, ApAS YO 4 240 A) AL ASy°), (3.179)
wQ,Cg — cge,uuen)?AOAOAOAng’

[Vt Vi ™
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and for the gauge potential

AT =it ({0,0,47, 9, A%} — i{[A}, 9,47),0,A43}),

K

A = g0 (i{0,AY, AL AS IO + 240 AD AD ASy0), (3.180)
A% = 002 AD AD AR ASY®.

A rather fast calculation shows that the Lagrangians built from these fields are identically
zero. This leads us to believe that the non-covariant ambiguities are altogether irrelevant
from the point of view of Lagrangians and actions. We may concentrate on the covariant
ambiguities.

We do not want to collect encyclopedically all covariant ambiguities either, but have a
look at the Lagrangians in section 3.5. We would like to know, whether these Lagrangians
can be obtained as well by covariant ambiguities. The #-expanded fermionic action (3.144)
reads:

/da’ ¥ * (19"Dy — m)Ploe) =
0’“’9m\/dx (%@FSAF&(W”D;? - m)w o %WFSMFQU(W[)DS o mwo
4O (DLFE)DY (DY — ) — L2 1D (3.181)
— TS, FS DY — S0y (DLFS, DD — <97 L, F4,D80°).
The following covariant ambiguities are possible at second order:

2,c _ vARA 70 170 /0
w 0 = 0100”0 FuuFfe)\w’

¢2ac11 — 0119“V9KAF,SNF>(\)V1/JOa (3182)
P>er = 7:0129”V9n/\(D2F19n)D2¢0-

They lead to the following terms in the action:
Syon yp = c1o0*0™ / dz (2¢0F), F\(iv"D) — m)y° + ivOy*{DOFy,, Fo\}u°),
St = et 0 [ do (ITEQES (1D — m)u® + P DYES, F, 1),
R / d (200(DOFD,)DL(in" DL — m)? (3.183)

S UOFY, I (10D — m)y® — Gy (DIDIFS,) DL,
The covariant freedom (3.182) shows that the first three terms in (3.181), especially all
fermionic mass terms, are of the type of a field redefinition and therefore should vanish.
In contrast the last four terms in (3.181) are not affected by this freedom and can also
not arise because of a field redefinition of A, since we have argued above that derivative-
valued field redefinitions of A, have to be excluded, since they violate the enveloping
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algebra structure. However, the last term in (3.181) is identical to one of the terms which
carry over from first order covariant ambiguities (3.175). Therefore the only physically
relevant terms in the fermionic action to second order are

A . VK I—=
/dx Y% (17"D, — m)Y|o@m2) = 070 )‘/dx ( - gwoprganngwo

U, DR — {00 (DUEL,DIDR). (3.184)

From the point of view of the theory of consistent deformations (cp. [85]), the envelop-
ing algebra is a nontrivial deformation of type 1. This means that although the gauge
transformation is trivially deformed (§5, = d,), the deformation is non-trivial, it can-
not only be obtained via field redefinitions (both the Yang-Mills action and the fermionic
interaction term (3.169) are nontrivial at first and second order).

3.7 Cohomology of enveloping algebra gauge theory

In the previous section we discussed at length the freedom in constructing the enveloping
algebra-valued gauge theory and how much of it is dangerous and worrisome for physics.
Again, we have been thrown back to tedious calculations. The quite complicated terms
which appear already at second order in #*” motivate the goal goal to formulate the
enveloping algebra-valued gauge theory in terms of a more rigid mathematical language.
Indeed, shortly after the article [33] had appeared, several groups [92], [93] and [94] started
to investigate the cohomological structure of the enveloping algebra gauge theory. Here
we state the main results [75] and will see what this means for the results derived above.
We emphasise that for actual calculations, this approach is not easier or better, but it
enlightens the underlying structure.

In all the approaches stated above, the gauge parameter A, is reinterpreted as a ghost
field (see also [89]), with the exception of [94], [88], where the antifield formalism is used.
We denote the ghost field A to keep track of its role as a gauge parameter. The ghost
field of course is Grassmannian, in addition it is (non-Abelian) enveloping algebra-valued.
The introduction of the ghost field allows to rewrite the complicated consistency condition
(3.48) by means of a BRST operator

sA = iA x A. (3.185)

To summarise the notation, the BRST operator is the same as in the commutative Lie
algebra gauge theory, it is nilpotent, commutes with derivatives and has a graded Leibniz
rule:

SA = QAN sA = iAx A,
sa, = O\ —i[A), ], sA, = 0,A —i[A, * A, (3.186)

s(f-g9) = (sf)- g+ (-1)8Df-(sg),  s(fxg)=(sf)xg+(=1)%8)fx(sg),
s = 0, [s,0,] = 0.
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As in the previous section we assume that there is an expansion of A in terms of #,
A= X+), A"A™. and that the zeroth order term in # is A\. The higher orders should be
expressible in terms of Ag and A and their derivatives. Altogether A should have ghost
number one at every order A". The gauge potential A,, a functional of Ag, has ghost
number zero at every order, A, = A + > h"A”.

Representations of a Lie algebra can in a natural way be lifted to representations of
their enveloping algebra. The operator A introduced in (3.58) takes the following form:

A" = sA™ — i{A, A"} = =7, AAT = sAT —i[), AT] =TT (3.187)

where =" and T7) parametrise the inhomogeneous terms at order n. A removes the covari-
ant part of the transformation behaviour under s. The action of A on A™ is the generic
action on an odd quantity, the action on A7 the generic action on an even quantity. On
the Lie algebra quantities we observe A\ = —iA- A and Aq, = 9,A; A is an anti-derivation
with ghost-number one and it is nilpotent. Therefore AT} = AE" = 0.

Especially we see that A" = A™ 4+ A&" is again a solution of AA™ = =". The ghost
number zero quantity £ parametrises the freedom of the non-covariant or gauge type in
constructing the enveloping algebra gauge theory presented in the last chapter.

For example, the non-covariant ambiguity A = ic, 0" [Ag, 0,a] is of the form

A(ici0" A AD) = Ag (3.188)

This transfers into the ambiguity in A, = D)AS + S, where S, is a covariant ambiguity
or a field redefinition. This is exactly the result of the previous section. The three second
order non-covariant ambiguities that we investigated in section 3.6 are derived from

A(cr0"029,420,A3) = AT,
A(cs0™0"2{0,A0, AVA}) = A%, (3.189)

A(CQONVQHAA?LABAQAR) = A®.
In [75] it was argued that the ambiguities of the non-covariant type (gauge ambiguities)
are an infinitesimal version of the so-called Stora invariance of the consistency condition

A — AN=G"'"%AxG+iG ' xsG,
Ay — A =G 'xA,xG+iG % 9,G, (3.190)

where (G is an arbitrary x-invertible local functional of ghost number zero, since

sN = —G '%xsGxG 'xAxG+iG 'xAxA*xG -G 'xAxsG —iG ' xsG*xG 1 xsG
= (G *xA*xG+iG7 %5G) % (G ¥ AxG +iG ' xsG) =i\ x \'. (3.191)

Note that the minus sign of the third term in the fist line is due to ghost number one of
A. To get from the first to the second line, insert 1 = G'x G~! in the second and third
term. A, is treated analogously.
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If A™ exists Vn, i.e. if AA™ = =" is true Vn, then the enveloping algebra-valued gauge
theory can be constructed to all orders. In cohomological language, A™ exists Vn, if the
coboundary operator A maps cohomology classes A" + AE™ to a A-exact =".

The most straightforward proof, by complete induction, for the existence of the en-
veloping algebra gauge theory of non-Abelian gauge groups is due to Stora [93], we shortly
sketch the idea. At zeroth order sA = ¢A\ and assume that for s = 1,...,n — 1 it has
been shown that sA* =i), . .. A"%* A’ (the notation is identical to that of section 3.4).
Therefore at n-th order:

sA =i Y A KA =i AA i Y AT A=) A"} + BN (3.192)

r+s+t=n r+s+t=n
r#n,t#n

Since A- = s- —i{\,-}, we have to calculate A=". If A=" = 0, the enveloping algebra
gauge theory exists to all orders. Since =" has ghost number one less than A", A is defined
differently:

En — SEn—Z[)\,En] — Z (Z(SAT) *s At_iAr *s (SAt)-i-)\AT *s At_Ar*s At)\)

r+s+t=n
r£n,t£n
= - Y @A) A Y AP (AR AY) (3.193)
p+q+r+s+t=n prgtrtsti=n
pHgtr#n,t#En pFEN,T+s+Ht#EN
+ ) (AR AT AT ANN).
r+s+t=n
r#£n,t#n

Now performing some re-orderings of the summations, e.g.

— ) (APHA A == YT (APHIAN)F A Y (AP RTAT)A+ AT,

pHg+r+s+t=n pHg+r+s+t=n ptgtr=n
pHgtrEn,tEn

(3.194)
and using associativity of the x-product, one can quickly see that indeed AZ" = 0, if
AE" =(0,Vi =0,...,n — 1. To finish the proof, the construction of a homotopy operator
is needed, which shows that the cohomology of A is empty for ghost number two:

KA+ AK =1. (3.195)

The homotopy operator is the “inverse” of A and has ghost number (—1). Of course A
is not invertible because of A? = 0, but if AA™ = 2" then (KA + AK)=" = 2", with
A" = K=" if AE™ = 0.

The hands-on construction that we have performed in sections 3.2 and 3.3 was quick
and effective, because of experience with these calculations. The homotopy operator K
is a more systematic way of performing this construction [92], [87]. First observe that A
appears in =" always only as 9, A = b,,.

AA) = by, Ab, = 0. (3.196)
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A linear operator K is introduced which inverts this action
Kb, = A), KA =0. (3.197)

and therefore (KA + AK) = 1 on b, and AD. K has a graded Leibniz rule, commutes
with covariant derivatives, anti-comNmutes with s, is nilpotent on Ag and b, and has ghost
number (—1). K is obtained from K by the following definition: On monomials f (AD,D,)
of degree N in A and b, (counting all occurrences), K (A%, b,) acts as +K f(A),b,).

In the approach of [87], a scheme was given to determine AZ" = 0 in the algebra of
Ag and b,. To this end an additional condition has to be imposed. Changing the abstract
algebra, on which the operators A and K are defined from Ag and A\ to Az and b, it is
not automatically given anymore that AF),, = 0. The algebra generated by Ag and b, is
not free. The reason is that the definition 9,A = b, forgets that derivatives commute and
0,b, = 0,b, is not safeguarded anymore in the algebra generated by Ag and b,. Therefore
AF,, = 0 and [F,,,-| — i[[D,,D,],:] = 0 have to be imposed a constraints. In general
ATZ = (0 will therefore not be true, ATZ will be proportional to the constraints, e.g. at
first order

AT, = %enA[AFO BY). (3.198)

e

The solution is to enlarge the algebra by an element f,,, for which it is demanded Af,, =0
and f,, = F,,. This allows to implement the constraint. In this scheme the proof can be
carried out as well that the enveloping algebra gauge theory exists to all orders, though
more cumbersome than the above construction.

3.8 NC Standard Model and phenomenology

We have deferred the discussion of Lagrangians involving the Higgs field in section 3.5.
The new aspect of the analysis of the Higgs field is that it is sandwiched between two
fermionic fields in different representations in the Yukawa Lagrangian. From the left it
is multiplied with the left-handed component of the fermions and from the right it is
multiplied with the right-handed component. In the Standard Model, the left- and right-
handed components of the fermions transform under different representations, therefore
the Higgs field also has to transform in different ways from the left and from the right.
We have already treated fields transforming from the left and from the right (the complex
conjugate field), therefore we only have to combine the two transformations. This is also
called the hybrid Seiberg-Witten map [84]. Note that two different gauge transformations
mean two different gauge potentials A, and A/, a left transformation with A, and A, and
a right transformation with A}, and A

0o = ihgxP—idpxAl, (3.199)
¢ = ¢+ hopt+hPP2+ ..., (3.200)

1 ) 1 ]
0 = =0 A+ SO ALAL + 07 O,0N AL + (0P ARAD.  (3.201)
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Similarly the higher orders are obtained. The Yukawa Lagrangian
Ly =1*d*p, (3.202)

can be expanded as
i ~0 0 Ty 1
LLO(h) = 59““ (DpvODY(¢° 4°) + ¢0 Do DYyP). (3.203)

Note that in the first term only the derivative of the covariant derivative D)¢ = 0,¢° —
iA%¢" acts on ¢°. In contrast DiP¢° = 0,¢° + ig® AL,
The covariant derivative D,, of ¢ has to be covariant w.r.t. the transformation of both
sides:
Dyd = 0up — 1Ay x o +idpx A, (3.204)

Expanding the covariant derivative in first order we obtain:
1 .
Dudloury = 30 (F8,D46" — ALDYDNGY — L 42 439,00
—DYGOFY, + DYDPS AL — S0,0°APAY).  (3.205)
The kinetic term of the action of the Higgs field

Sucs = / d"z (D"¢)" % (D,¢), (3.206)

can be evaluated in an obvious way with these expansions, since the integral is cyclic.
Similarly we would treat the mass term

Lus = mo' * ¢, (3.207)
and the quartic potential of the Higgs field

Low = k(¢! % 6) x (6 % 6). (3.208)

We do not present the explicit form of the actions, it is obvious how to proceed, cp. [36].
The NC Higgs mechanism has been presented first in [97], in the context of the string
inspired models.

Most of the problems that appear in NC versions of the Standard Model (cp. [98]) can
be solved by the enveloping algebra gauge theory approach. We quote the results of [36],
since this work shows the power of the enveloping algebra-valued approach developed in
this thesis.

In the NC gauge theory derived from D-brane physics, it has been found that only
charges (+1), (0) and (—1) are allowed for matter fields [95], [96]. The reason is sim-
ple: the rigid NC gauge theory allows only the left (fundamental), trivial or right (anti-
fundamental) representation, corresponding to these three charges. In contrast, we have
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seen that the enveloping algebra can be constructed in such a way that it is entirely de-
termined by the Lie algebra level through the consistency condition. Therefore we may
also construct several copies of NC gauge potentials a,g"), corresponding to several copies
of NC photons, all of which are determined by one physical photon which is a Lie algebra
quantity.

The generator of U(1), which was so far kept implicit in A, = eQa, is then written
explicitly (e is the electric charge). *-Multiplying A, to a fermionic field with charge n we

obtain

Therefore, for every charge present in the Standard Model, a separate gauge potential has
to be defined in the enveloping algebra, which is subsumed in the gauge field A, = eQay,.
The quantities of the NC gauge theory become dependent on this specific charge. Thus,
for every charge n there is a field strength, covariant derivative etc.

f fﬁ = 9,0 — 8,,@&") + ieq™ [al(f’) *alM),
DIY™ = 9™ — ieg™al® 4™,
SaaV = 9,AD +ieqg™ A 1 alM], (3.210)

5™ = ieg™A® k),

It is an open question whether there have to be separate kinetic terms for every single NC
photon a{f [36].

The gauge group of the Standard Model is the tensor product U(1) ® SU(2) ® SU(3).
Treated in the context of U(n)-model building, the tensorisation of the NC analogs is very
non-trivial [99]. But the Standard Model tensor gauge group can be lifted immediately
into the NC regime, working with enveloping algebra gauge potentials V,. This gauge
potential V, is a sum of gauge potentials corresponding to the 14348 gauge bosons of the
Standard Model

3 8
Vo= gAY +9) BTy +9s ) Gl (3.211)

a=1 a=1

where Y is the generator of hyper-charge and T are the generators of the two non-Abelian
gauge groups of the Standard Model. Gauge transformations on this gauge potential are
implemented by a Standard Model gauge parameter:

3 8
a=g¢ad"Y +g Z an(Q)TgU(g) + gs Z osz(?’)TgU(?,). (3.212)
a=1 a=1

The full gauge potential and gauge parameter are used to construct the enveloping algebra
gauge theory,

1
Ay = — Za“”{vg, oat+... , (3.213)
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and .
V, =V — Z¢9W({vg, NV} —{Fo, Vol +... . (3.214)
For charged fermionic fields, a representation p has to be fixed,

?

S (Vo (VOU™) +.. . (3.215)

n n 1 v "
W = WO — S0 (o (Vi) 9™

The representations are those of the ordinary Standard Model, left handed doublets, right
handed singlets and a two-component Higgs field.

(n)

W(L) = ( Q%n) ) ) \US‘%) = “gz) ) o= ( ¢0 ) (3216)
L d(n)
R

Similarly all other NC quantities are constructed by the usual prescription presented
in section 3.3. The action of the NC Standard Model is obtained by sandwiching together
all the quantities described, according to the scheme presented in the previous sections.

The crucial observation is that new nonlinear couplings appear between the gauge
bosons, corresponding to different sectors of the Standard Model. Also neutral particles
may couple to the photon through NC effects. For all further properties of the NC Standard
Model, we refer to [36]. We finish the discussion of §-expanded canonical NC gauge theory
with an overview of the current status of experimental predictions.

This model predicts operators of higher dimension in the action which are clearly
power-counting non-renormalisable*. This is acceptable, if the theory is regarded as an
effective physical theory, presupposing other physics at some higher scale. In contrast the
truncation of the expansion at some fixed order in 6 provides an IR cut-off. Conceptually
[103] this means that at large distances spacetime is a commutative manifold (|in) and
|out)-states are defined in the ordinary sense at a large, commutative distance). At short
distances, the manifold picture of spacetime is changed, NC effects appear. The crossover
might be describable in terms of a phase transition. Note that if this phase-transition
picture is taken serious, broken Lorentz invariance of canonical NC models becomes a less
severe problem, since an inertial system is preferred from the outset. Attempts have been
made [67] to accommodate a step-function in a description of varying noncommutativity
6(z). It has been shown [34], [35] that these models are anomaly-free.

Several experimental predictions have been calculated for NC versions of the Standard
Model. Most of these phenomenological studies, e.g. [106], treat 6*” as an ether-like field
pervading spacetime in the neighbourhood of the earth. Such a “global” background field
with an explicit breaking of Lorentz invariance seems quite untenable from the perspective
of the UV-IR breaking NC QFT and indeed the calculated experimental bounds are very
high (see below). In contrast we will now focus on predictions of IR-regulated, §-expanded
models.

4Compare this ansatz to the UV-IR-plagued but renormalisable matrix-model theory of [100], [101].
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The focus in [40] and [104] is on the gauge sector, triple gauge boson vertices are calcu-
lated which are forbidden in the Standard Model. These vertices originate from combining
the different gauge potentials of the Standard Model in the tensor gauge potential V. At
first order in 0, V, acquires a self coupling of all Standard Model gauge potentials. This
leads, among many other new interactions, to the potentially measurable decay of the Z
boson into two v or two gluons. This decay is forbidden in the Standard Model because
of bosonic statistics and angular momentum conservation.

However, the pure gauge sector of NC gauge theory is not very well suited to derive
bounds on the NC scale, because of the dependence on the choice of the trace. We multi-
plied the Yang-Mills action with a free parameter ¢ in (3.137) to indicate the indeterminacy
in defining the trace. Although ongoing analysis manages to constrain further the trace
in the electroweak sector [104], this freedom limits the predictiveness of the pure gauge
sector.

Studies of #-expanded NC effects in the fermionic sector are scarce, [21], [107]. NC
corrections to masses of off-shell quarks in #-expanded QCD at one loop are discussed
in [107]. They compare the differences in the hyperfine splitting variations of Cs and
Hg atomic clocks over the year, since these two nuclei should respond differently to the
effective background field of the NC structure. They obtain a bound on the NC scale of
> 10YGeV. This result certainly rules out a low-energy ether-like NC pervading space
and time at large distances. However, this bound is not necessarily restrictive in the
IR-regulated theory and it was shown [105] that in the #-expanded theory this bound is
invalidated altogether, imposing the equations of motion on the matrix element describing
the interaction.

In [102] a lower bound on the noncommutativity has been derived based on the decay
of plasmons into neutrino - anti-neutrino pairs, which would generate an energy loss in
globular clusters. Since the NC Standard Model contains a coupling of neutral particles to
photons, a new decay channel into neutrinos becomes available. The argument for a bound
of 2 100GeV is that this new channel should not overly contribute to the known channels,
otherwise a too large neutrino flux would wash out cluster structures in a measurable way.
In [103], another bound is found considering corrections to the neutrino dipole moment
by the NC coupling of the neutrino to photons. The bound of 2 1617eV is based on
the requirement that this new contribution does not dominate the usual Penguin diagram
contributions for massive neutrinos.



Chapter 4

The r-deformed Euclidean space

The k-deformed space is introduced as a factor space, i.e. as an abstract associative
algebra A; over the complex numbers, generated freely by n coordinates Z¥, with an
ideal generated by the Lie algebra commutation relations with the structure constant
CY = a#0¥—a¥ 6. This characterisation of an abstract space is due to [43]. The definitions
introduced for a general NC space in chapter 2 apply.

The vector a* which characterises the k-deformed space can be rotated into the n-th
direction a# = ad* without loss of generality, then C{” = a(d6£6% — 6%6%). In the following,
we take this rotation of a* into the n-th direction as given. The most important formulae
for the generic case are stated in the appendix. It is reasonable to perform this rotation and
to distinguish between the coordinates parallel and orthogonal to a*, since the calculations
simplify a lot.

The k-deformed space for a* = ad¥# has a singled-out coordinate 2" which does not
commute with the coordinates orthogonal to it

(2", 27 = iad”, [#°,#7] = 0, i,j=1,2,...,n—1. (4.1)

In most discussions of k-deformed spacetime, 2™ is taken to be the time coordinate of a four-
dimensional Minkowski spacetime. This has probably historic reasons, k-spacetime has
been introduced first as the translational sector of the k-Poincaré group [26], [27], [57]. The
k-Poincaré group has been constructed [26] as a contraction limit of a g-deformed quantum
group and it consists of finite deformed symmetry transformations in four dimensions.
There is a dual [109] symmetry structure, the infinitesimal symmetry transformations in
four dimensions. Many conventions of this historic derivation still persist.

The restriction to four dimensions had already been lifted in [110]. The identification
of 2" with the direction of time is an additional and arbitrary choice from the point of
view of the abstract algebra (4.1). NC spacetime is not a metric space or even a manifold.
The metric in our setting is a prescription of how to perform summations in the algebra
Aj;. Therefore the signature of a metric a priori specifies only the signs in the contraction
of two quantities, one with upper and one with lower index. The structure of this formal
metric may be quite arbitrary, interesting analyses treat Z" as lightlike [111] or work with
non-diagonal metrics [112].

o8



4. THE K-DEFORMED EUCLIDEAN SPACE 59

In our approach z™ is an arbitrary direction of an n-dimensional Euclidean space. The
Euclidean setting is chosen for transparency of the calculus', it generalises immediately
to the Minkowski setting [38]. Therefore indices can be lowered or raised with the formal
metric g, = g*, = ¢g" = 6" at will, doubly appearing indices are summed (Einstein
convention). Greek letters run from 1,...,n and Roman letters from 1,...,n — 1.

Our definition of the x-deformed space (4.1) uses a length scale a in place of the more
common kK = é Which convention is more convenient depends on whether calculations
are performed mostly in coordinate space (as is done here, then a is more natural) or in
momentum space (as is done in many other approaches, then an inverse length or mass
scale k is more natural).

The length scale a is the small parameter of this model. Thinking of a as a fixed
and possibly experimentally testable length scale, the limiting process to commutative
quantities should better be performed with a dimensionless parameter %, a — fa (cp.
section 2.3). This parameter 7 can be taken to zero without harm. In this chapter, we
will not isolate & to avoid clutter.

As in the previous section, we consider field theory on NC space in a perturbation
expansion around the commutative field theory. In this section we construct additional
geometrical quantities for the k-deformed space such as derivatives, symmetry generators
etc. All these quantities are treated as formal power series. For example, inverting a
quantity such as z* is a priori not possible. We only use expansions as formal power
series. The scale a is used also for expansions in the abstract algebra, i.e. before taking
a representation on commutative quantities. This use of the same deformation parameter
of two very different power series expansion, one in the abstract algebra, one for the
representation on commutative space, allows to fix a commutative limit in a unique way.
We require that for all constructions the commutative quantities are recovered in the limit
a — 0. Therefore all NC quantities have to have the same (mass) dimensionality as their
commutative counterparts.

4.1 Linear derivatives on the k-deformed space

Derivatives 5u are introduced as maps on the coordinate algebra, 5;1: Az — Az [44], [45].
We demand that these derivatives

e respect the factor space, i.e. they have to be consistent with (4.1);
e are a deformation of ordinary derivatives, i.e. [0,,4"] = 6, + O(a);

e commute among themselves [5,“ d,] = 0.

These restrictions on derivatives d, are weak, there exists a large number of possible
solutions

[0y, 2] = 8% + > @ (D)’ (4.2)
J

LOtherwise signs would have to be changed according to 2" time-like or space-like.
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The symbolic notation refers to all terms of a power series expansion in the derivatives ('/it,
which are consistent with the index structure.

Under the additional condition that the commutator [é;,:%”] is at most linear in the
derivatives, there are exactly three one-parameter families of solutions éﬁl, 3ﬁ2 and éff:

[69,3"] = 14 ciad?, [0%,5"] = 1+ iacyd2, [6%,3"] = 1 + 2iad’?,
(6,47 = 0, 02, 37] = ia(1 + )07, [0, 37] = iad®,

(6,37 = iad™, [62,3"] = 0, (62,37 = iacsd®,  (4.3)
(6,27 = &, (092, 27) = 61 (1 + iac,d), [0, 29] = o7,

The real parameters ¢; are not fixed by consistency with (4.1). We prefer to work with
one particular choice in the following, éﬁlzo. For brevity, 351:0 is denoted as 9.

There is always more than one set of linear derivatives (consistent with the coordinate
algebra) on NC spaces of the Lie algebra type

(23" = iCY 3. (4.4)
If we denote the commutator of coordinates and derivatives linear in 5“ as
[0, 8] = 8% +ip 05, (4.5)
we obtain two conditions on pi* from consistency with (4.4):

nY Ko

e =0 e = R = O (4.6)

All three one-parameter sets of derivatives 3!0; (4.3) fulfil the conditions (4.6). With the
freedom indicated by the parametrisation in (4.3), we have exhausted all linear derivatives.

Commutation relations with coordinates can be generalised to Leibniz rules. Commut-
ing for example the derivative 8, with an ordered monomial f(&) using (4.3) this yields
for 9, the Leibniz rule of an ordinary derivative on commutative space:

0u(f-3) = Ouf) -9+ [ - (0u9). (4.7)
Because of this undeformed Leibniz rule the derivatives éu are a particularly suitable set

of linear derivatives. The derivative 5]- shifts every factor of £™ by ¢a. This shift can be
implemented by the operator e%»:

pFiadn (f L §) = (e:tiaénf) . (ezl:iaén’ 7) (eiiaénf(inj’ i) = f(&7, (2™ + ia)).

Therefore the Leibniz rule for 5j 1S

0;(f-9) = B;f) - 4+ (¢ ) - (8:9). (48)
Similarly we determine the Leibniz rules for (951
07 (f-9) = 07f)- g+ ((1+iacnd)es f) - (859),
B (fa) = O0F) 5+ (1 +iacid)f) - (929), (4.9)
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for éff
~ ~ ~ ~ ~ cot+l L
07 (f-9) = (07f) (1 +14ac02)g) + ((1 +iac02?) = f) - (079),
oe(f-9) = (82f)- g+((1+2<102302)f) (0249), (4.10)
and for 9
02 (f-9) = (02f)- g+ ((1+2iade + a®c;0°9)2 f) - (879),
03(f-0) = (02f)- g+ ((1+2iad® + a®c30720%) f) - (02 9) (4.11)

+iacs((1+ 2iad® + a203(§f3553)%5,ﬁ3f) - (0529)-

That there is such a variety of derivatives with linear commutation relations with the
coordinates is disturbing at first sight. But all three families ;7 can be mapped into each
other. The derivatives 9, (¢; = 0) are mapped to the derivatives 351 for arbitrary ¢; in

the following way: )
R . eiaclan -1
0t = 0;, o = ———. (4.12)

1acq
The role of the shift operators is played by the following operators, in terms of 351

1 s
_— S — e_ma" and (1 +201aa )01 = ezaan' (413)
1 + ic,a05t

The Leibniz rule (4.9) is identical to (4.8) using (4.12) and afterwards setting ¢; = 0.
The derivatives J2 can be expressed in terms of J, as well:

~ eiGCQén - 1 ~ ~ . 5 . é ~ 1
02 = ——, 077 = 0;e"* %, " = (1 +icady’) . (4.14)
iacy

The map from é“ to derivatives 5&3 reads

Ac eQiaén —1 ’L(J,Cg Ac A iad - Ac 2 . AczAca) =
o = A0k, 05 = 0;, e = (1 + 26a02 + a”c30;°0;*)2. (4.15)

n

2ia
Because of their simple Leibniz rule, the derivatives 5“ will be the preferable basis in
the algebra of derivatives to develop our formalism. The maps (4.12), (4.14) and (4.15)
allow to reformulate the entire formalism, which we will develop in the following based on
(‘it, in terms of the three one-parameter families of linear derivatives.

There is even more freedom in defining derivatives, if the condition is lifted that the
commutator (4.2) has to be linear in the derivatives. We will introduce several such
derivatives, for which we lift the condition of linearity, but impose other conditions.

We emphasise in comparison with section 3.1 that the derivatives defined in this sec-
tion are exterior derivatives. There are no elements in the algebra of functions of NC
coordinates (i.e. formal power series) that have the property: [fu(&),4"] =
Non-polynomial inverses of coordinates = are not elements of the algebra of functlons
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Nevertheless the commutator of a coordinate with a function can be written in such a
way that they appear identical to the Leibniz rules for 5”. This will be discussed shortly.
The identities (2.28) and (2.29) imply the following relations, which hold independently
of a specific ordering:

2l % f(z) = (e f(z)) %2, and 2" * f(z) = f(z) % 2" — iax* O f (2). (4.16)
Because of the properties of the x-products involving a coordinate, this is identical to

(—iax?0,) (fxg9) = ((—iax?0,)f) x g + (€% f) * ((—iaz?0y)g),
(—iaz®0p) (fxg) = ((—iaz®0k)f) x g+ f* ((—iaz*dy)g). (4.17)

Having introduced derivatives 5u, we can lift these relations into the abstract algebra. We
will show later that the NC quantities 0,, and £*0,, and the commutative quantities 0, and
2%0), can be identified:

i) = (9% f(2))27, and 2"f(3) = f(2)3" — iad*O, f (). (4.18)

The inner derivations [#, f(Z)] therefore have the Leibniz rules

f
@7, (f-9)] = [, f]9
(

9)] = [ f]-9+7F 12" 4] (4.19)

which are identical to

P —1)(f-9) = @ -1)f)-g
(—iaz*d) (f-§) = ((=iai®0y)f) - g+ f - ((—iad*dy)3). (4.20)

o

Equation (4.20) therefore allows the definition of a gauge theory of inner derivations
as in section 3.1.
Note that the inner derivations do not commute (cp. [0, 0,] = 0):

(27, (2, f(@)]] - [27, [&", f(#)]] # 0, (4.21)

in general, since [2",[27,2"]] — [27, [2", 2"]] = a?47.
This observation finishes the discussion of inner derivations in this thesis.

4.2 SO,(n) as symmetry Hopf algebra

In contrast to the canonical NC space discussed in chapter 3, the xk-deformed space Aj;
allows the definition of a symmetry action. Since x-deformed space is n-dimensional Eu-
clidean, the symmetry structure is a deformation of the n-dimensional group of rotations,
called SO,(n)

SO, (n) : Az — Aj;. (4.22)
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A symmetry is defined in our approach by generators M*™ of an abstract algebra SO, (n)
over C and the maps M* : A; — Aj;. These maps are implemented by specifying commu-
tation relations with the generators Z* of the coordinate algebra A;. These commutation
relations have to respect the factor space (4.1). In addition, to zeroth order in a they
have to coincide with those of the generators of the symmetry Lie group acting on an n-
dimensional, Euclidean commutative manifold. The commutation relations therefore have
to be

(M 3] = 6" — 525" 4+ O(a). (4.23)

It is straightforward to see that there have to be O(a) terms in [M*”, |, otherwise the
relations (4.1) would not be respected?:

e, (137, 47] — iad? )] = —iad"73" + iad" 39 # 0.

We construct the commutation relations (4.23) order by order in a. The generators of
rotations M and N' = M™ should appear at most linearly on the right hand side of the
commutators (4.23) . The only terms admissible in O(a) therefore involve the generators
of rotations (M" and N') exactly once. Higher order terms in a have to be accompanied
by derivatives because of dimensional reasons, M*™ have to have mass dimension zero (cp.
the representation of commutative orbital rotations M/} = 29, — z#0,). Also the indices
have to match on both sides of (4.23). All these conditions imply that terms of higher
order than linear in @ vanish. The unique solution which is consistent with (4.1) and which

forms a bialgebra is therefore [37]:

[M”,:i‘n] = 0,

[M"™, 3] = 67&° — 63",

[N',i"] = 2 +iaN', (4.24)
[N}, 2] = —6Y™ —jaMY.

These commutators respect the coordinate algebra relations [M*, ([£", /] — ia2?)] = 0.
The deformed generators M*” have the commutation relations of the Lie algebra of SO(n)
among themselves

[Mrs, Mtu] — 5rtMsu + 5suM7‘t _ 5ruMst . 5stM'ru’
I, KT = 6T — 5T (4.25)
NN =
We have not shown that commutation relations among the generators of rotations other

than (4.25) are not consistent with (4.1) and (4.24). But because of dimensional reasons
and because of the index structure this possibility seems quite unlikely.

2Starting from an orbital representation M = A"é,, - @“5‘,,, these commutation relations close, but
this orbital M*¥ does not lead to a bialgebra.
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Although the algebra of rotations is undeformed (4.25), the action on coordinates is
deformed (4.24). Therefore we call the algebra generated by M*™ the algebra of SO,(n)
rotations. The Gerstenhaber-Whitehead theorem [39] states that (the enveloping algebras
of) semi-simple Lie algebras are rigid with respect to deformations of their algebraic struc-
ture. A nontrivial deformation can take place however w.r.t. the Hopf structure, to which
the commutation relations with the coordinates conceptually belong [113]. A remark is in
order concerning our notation: the generators of SO,(n) M*™ are infinitesimal deformed
rotations. Therefore the Lie algebra so(n) is deformed. However, only the enveloping
algebra of the Lie algebras can be deformed consistently, we should use U,(so(n)). The
notation SO,(n) should be considered as an abbreviation.

Consistency with the coordinate algebra Aj; leads directly to the so called bicrossprod-
uct basis of the x-deformed Euclidean algebra, first defined in [28]. The bicrossproduct
basis is singled out by (4.25) in contrast to the so called classical basis which has been
obtained contracting the g-anti-de Sitter Hopf algebra SO,(3,2) [26]. The classical and
the bicrossproduct basis are related by a nonlinear change of variables. For all further con-
structions, consistency with (4.1) and (4.25) is the crucial touchstone. Note that we have
chosen a particular point of view w.r.t. the k-deformed case, ignoring the fact that the
coordinate algebra can be treated as the translational sector of the xk-deformed Euclidean
group (this is the Hopf algebra dual to the x-deformed Euclidean algebra). Instead, only
the infinitesimal generators of the dual x-deformed algebra SO, (n) are taken as generators
of a deformed symmetry.

In (4.8) we have generalised commutation relations [d,,4"] to Leibniz rules. Similarly
we want to construct the action of the generators of rotation on products of functions.
With a slight abuse of terminology we dub their action Leibniz rule as well. We find that
their action cannot be written in terms of M* alone, their action involves the derivatives
Oy

N (Feg) = () g+ f- (1), (4.26)
N (f-9) = (N'f)-g+ (e f)- (N'g) —ia(9;f) - (M7g) .
The equations (4.8) and (4.26) are the coproducts of the derivatives and generators of

rotations:

Ad, = 6, ®14+1Q0,,
Aéz = éz Q1+ eiaé" &® éz',
AM™ = M™Q1+1QM™, (4.27)
AN = Ni®@l1 +ei“‘§" ® Nt — iaéj ® M .
The notion of coproduct can sensibly be used in this context since the generators of the
k-deformed symmetry are elements of a Hopf algebra SO,(n). A Hopf algebra [114] is an
algebra, at the same time a coalgebra and equipped with an additional operation called

the antipode, such that all operations are compatible. A Hopf algebra is characterised by
the specification of five operations on elements of a vector space (in this case over C).
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The operations constituting an algebra are familiar, but we rephrase them in an unfa-
miliar, Hopf algebra language. The multiplication m of vector space elements or the prod-
uct is a homomorphism m : SO,(n)®S0,(n) — SO,(n) with m(WRV) = W-V € SO,(n)
if W,V € SO,(n). This simply means that the product of two algebra elements has to
close in the algebra. The unit 7 is a homomorphism 7 : C — SO,(n) defining a unit ele-
ment in the algebra which behaves like a complex number (m(W ®7n) = m(n®@ W) = W).

The concept of coalgebra is in an abstract sense dual to the concept of an algebra.
For a coalgebra two operations on vector space elements have to be specified: the coprod-
uct A(W) and the counit €(WW). The coproduct A : SO4(n) — SO.(n) ® SO,(n) is a
homomorphism of complex algebras and coassociative:

(ARDAW) = (1@ A)AW), YW € SO,(n). (4.28)

As can be seen from (4.27), the coproduct of SO,(n) is obviously not cocommutative.

In the language of representations, the coproduct specifies how a coalgebra element
W € SO,(n) acts on products of representations (if V' and W are modules of SO,(n),
then V@ W is a SO,(n) ® SO, (n)-module).

The counit is a homomorphism of complex algebras € : SO,(n) — C and fulfils

(eRAW)=COIW=2W=2WRC=(1®e¢AW), VYW e SO,(n),  (4.29)

where ~ denotes the fact that the tensor product with a complex number is the same as
multiplication with that number. The counit describes the action of the coalgebra on the
zero-dimensional representation.

For a bialgebra, the algebra aspects and the coalgebra aspects have to be compatible,
e.g. AW -V)=AW)-A(V). This compatibility condition involves an (obvious) twist
operation, which has not been denoted here. The condition has been checked explicitly for
(4.27). In addition it is required that An =n®mn, n(e) =1 and e(W) @ (V) = e(W - V).

For a Hopf algebra, the antipode S(W) which is an anti-homomorphism has to be
defined such that it is compatible with all other operations:

m((S® )AW)) = n(e(W)). (4.30)

The antipode is the analog of the inverse element of groups; in the language of repre-
sentations, it states the action on the dual representation.
For SO,(n) the counit and the antipode are:

A .

e(N*

€d,) =0,  S(3n) = —bn,
6(((;2) = 0, S( Az) = éie—zaan’
(M) = 0, S(M™) = —M'*, (4.31)
) (N

Il
)

Y

For groups the inverse of the inverse is the identity and the dual of the dual representation
is again the original one. Applying the antipode twice, this is obviously not necessarily
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the case for a deformed Hopf algebra such as SO,4(n). We obtain S>(W) = W for W # N'
and for N
S*(N') = N* +ia(n —1)0; # N'. (4.32)

We have introduced M* in (4.24) as the generators of SO,(n) rotations. Since the
coproduct (4.27) involves derivatives, we can consistently deform - as a Hopf algebra
- only the Lie algebra of the inhomogeneous SO(n), the Euclidean group. The Hopf
algebra SO, (n) is the symmetry structure obtained from deforming the Lie algebra of the
Euclidean group.

We prefer to work in a basis, in which the commutation relations of all generators of
SO,(n) are the same as in the undeformed inhomogeneous SO(n). Therefore the genera-
tors are M* but not the derivatives é“ introduced in (4.3) as a minimal, linear deforma-
tion of commutative partial derivatives. These éu are a module of SO,(n) rotations, i.e.
they are consistent with (4.25) under

[M7%,8,) = 0,  [M"*,8;] =50, — 80,
1= eQiaén .

These commutation relations are deformed in comparison with the commutation relations
of the ordinary inhomogeneous SO(n). The commutation relations (4.33) therefore enforce
the definition of other derivatives, called Dirac derivatives, as generators of translations in
SOqy(n).

The algebra of SO,(n) rotations is undeformed, therefore the action on the index part
of vector and spinors is as usual (see below). However, the action of M* on z#-dependent
functions and on the densities of a vector or a spinor is deformed. The deformed action on
functions and on vector/spinor densities is described by a deformed representation of the
orbital rotations M%" = 2”0, — 2#0,. Represented in terms of Z* and 3N, this deformed
orbital rotation reads:

) e2z’aén -1

Mgrsb = isér - jTésa Ngrb = iZT — Anéi + %Azékék (4.34)

We remark that the other sets of linear derivatives éfj (4.3) are modules of SO,(n)
rotations as well, e.g. for 521 we obtain:
[M",6¢] = 0, [M”,éj.l] = 879 — 6508, (4.35)

N2 .
L ad)® it gnap v iadpap

[N,09] = OF'(1+iaci0g), [N, 05 = ot o
Similarly the module properties of 552 and 553 can be determined. The orbital part of the
generators of rotations can be rewritten in terms of 5,? as well, using (4.12), (4.14) and
(4.15).

SO,(n) is a Hopf algebra over C, the definition of the conjugation ' defined in section
2.4 on A; can be generalised to SO4(n). For the moment we only announce that this
generalisation is possible, details are spelt out in section 5.2.
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4.3 Invariants and Dirac derivative

The lowest order polynomial in the coordinates which is invariant under SO,(n) rotations
is not £#Z* but

I, = itz" —da(n — 1)2". (4.36)
This is a familiar result [28], the polynomial (4.36) is not invariant in the sense [N, I] = 0,
but

[N',I,] = 2iaz"M" + a®(n — 2)N?,
[M™,I,] = o. (4.37)
The polynomial (4.36) can meaningfully be interpreted as an invariant, since another
invariant (in the sense of (4.37)) is obtained multiplying it with any SO, (n)-invariant
expression from the right.
Equation (4.36) is the lowest order invariant in the coordinates alone. The Laplace

operator [ is the lowest order invariant constructed from derivatives® and it is invariant
under SO,(n) rotations in the usual sense [26], [27]:

A

2 : \Ti rrs =
5(1 —cos(ad,)), with [N, 0] =0, [M"™,0=0. (4.38)

0= ékéke_iaé" + 2

All functions [ f (aQIfI) of the Laplace operator are invariant as well, have the proper
dimensionality and are consistent with the commutative limit O = 0,0, + O(a).
The Dirac operator D is defined as the invariant under

[N, D] + [n*, D] =0, [M™, D] + [m", D] = 0, (4.39)

where n' and m™ are the generators of rotations on spinorial degrees of freedom:
1 1 A () rs 1 S AT

with Euclidean y-matrices {7, ~7*} = 26*. The components of the Dirac operator D =
v D, are called Dirac derivatives [115], [116]. These derivatives transform linearly under
SO, (n) rotations:

[N',D,] = D, [N, D;] = —6YD,,
[M™,D,] = 0, [M™, D;] = 6:D, — 6:D;. (4.41)

Suppose there is a solution f)u of (4.41), then Du f (aQQ) with an arbitrary function of the
Laplace operator is a solution as well. A solution of (4.41) expressed in terms of 0, is:

_ 1 : 3 Z'_aA A —iadp 2=
D, = (ESInFaan)+ ~Okdre ) F(a?0)),
D; = 9,7 f(a’0). (4.42)

3We represent the Laplace operator and the Dirac derivative in terms of 5,“ they can equally well be
represented using I’
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The simplest solution of (4.41) is the one with f(a®C]) = 1. We choose this solution D,
to be the Dirac derivative, it is a nonlinear derivative in the sense of (4.2):

[Dn,iz] = iaﬁi,

A~ n SRS a?
2
7 = 5;'.(—mDn+W)—51(1—mDn—%D), (4.43)

.—.
o
o

Its coproduct is given by

AD, = D,® eiadn | giadn ® D, + iaﬁiei“é" ® Di,

AD; = D;®@e " +1® D;. (4.44)

The map (4.42) from D, to 8, can be inverted, using the identities (found independently
in [117]):

e = _jgD, + /1 - a2D,D, =1— iaD, — %ﬁ,
Jiadn iaD, +1/1 — a2f)“f)u 14 iaD, — %j (4.45)
1-— Gijﬁj 1-— (I,2D_7'Dj - .

We obtain the map inverse to (4.42)
) Ui (—iaDy + /1 —a2D,D Yn (1—iab, — 0 (4.46)
= ——In| - — =——In(1-— - — i
n — iaD, a’D,D, - 1aDn — 3 ,
. D; . A A D; 2,
8j = = <’iCLDn + 1-— GQDMDM> — &~ =~ (1 + ZCI,D a D) .
1-— GQDka 1-—- GQDka 2

The Dirac and the linear derivative are different bases in the abstract algebra of derivatives,
which are modules of SO,(n) and consistent with the coordinate algebra A;. We could
construct maps D — (')cl as well.

The Dirac derivative D“ together with M#, the generators of SO, (n) rotations, form
the particular k-deformed Fuclidean Hopf algebra which is undeformed in the algebra
sector, (4.25) and (4.41). The deformation is purely in the coalgebra sector, (4.27) and
(4.44). We will refer to this special basis of SO, (n) in the following as the SO,(n). Recall
that it is not unique (4.42). We now quote once more all relations of the full SO,(n),
without using GAM as a shorthand. The algebra relations are undeformed,

[Mul/’Mn)\] — 5,unMu)\ + 61/)\M;m _ 6uAMUfi _ 51/1;Mu/\’
[M* D)) = 6*D, —6&{D,,
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while the coalgebra is deformed

AMTS — Mrs®1+1®MTS’

. .. iaﬁn—i-\/l—a?ﬁuﬁ“ ..
AN' = N'®1+ ® N*

1-— a2ﬁij

. ﬁ . — o
S - <iaDn +4/1- aQDuDM> ® M™,
1-— CLZD]'D]'
. . . A iaD, + y/1-— an)uﬁu
AD, = D,® (—iaDn +14/1— aQD“DM> +

1-— azﬁjﬁj

D — X
tig——F (zaD +4/1— aQDNDN> ® Dy, (4.47)
1-— a2D D;
ADi=12®(mmVHh—ﬁﬂﬁ0+l®Q.

Together with the counit and the antipode of the Dirac derivative

R R R o ialA)n—I—\/l—a?lA)uf)u
G(Dn) = O, S(Dn) = —Dn + iaDlDl

® D,

bl

1-— (J,ZEklA)k
i A _iaDy +/1—a?D,D,
6(Dj) = 0, S(D]) = _Dj ENg ) (448)
1-— CLQDka

and the property 52(15“) = ﬁu, all operations of the Euclidean Hopf algebra SO,(n)

generated by M* and D, have been defined.
The antipode of the Laplace operator is S(0J) = [, its commutator with coordinates
[(0,2"] = 2D,, (4.49)

and its coproduct

O(f-9) = @Of) - (e7%g) + (¢4 f) - (Dg) +
+2(D; mﬁ)(Dm»+j«1—é@wh-«1— “id)g). (4.50)

The square of the Dirac derivative is not the Laplace operator, but

2
D,D, =01 - GZEI), (4.51)

~ 2 ~
0= ¥(1 —\1-aD,D,). (4.52)

and therefore
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The relation (4.51) can potentially be very troublesome. It implies that the Dirac derivative
used as the derivative operator in physical equations of motion has a non-trivial pole
structure. The mass of a particle would be equivocal. However, having in mind the caveats

below equations (4.38) and (4.42) we could rescale the Dirac derivative ﬁ; =7 Da’;ﬁ and
s
the Laplace operator [ = - 52@ such that ﬁLﬁL — [I'. Alternatively, we could rescale
a7 °
only the Dirac derivative ﬁl’j = —Px__ such that D, Dy = .

Ji-eln’

We will find in section 4.6, that the (antipode of) ﬁL appears naturally in the context
of frame one-forms. Attractive as these derivatives lA)L and DZ operators may be, they are
very complicated to handle technically. The (square-root of the) Laplace operator in the
denominator can only be analysed perturbatively, it seems to be impossible to formulate
a closed expression for the coproduct of ﬁL or DZ. We postpone the analysis of these
derivatives to future research.

There are also further invariants, such as in four-dimensional k-Minkowski spacetime
the Pauli-Lubanski vector, which has been discussed in [27] and in [108] in the bicrossprod-
uct basis. From (4.27) and (4.41) the generalisation of the Pauli-Lubanski vector in n = 2m
Euclidean dimensions can be deduced:

A n— 2
”rQ = W 1%.% ”72 _ ;o —
i+l T M1 ph2i—1 7Y B1eph2—19 1 — D,UDW t= 17 T ) ’
24 2i+1 Bn—28n—1 T
Wi opisia €y oo MPZHZAL M2 D) (4.53)

All other invariants should be identical to their undeformed counterparts, if we exchange
ordinary with the Dirac derivatives, since the algebra sector in the basis of SO, (n) gener-
ated by M* is undeformed.

4.4 k-deformed transformations of fields

This action of symmetry generators on products of functions has to be discussed more
carefully, since this issue lies at the heart of deformed field theory. We analyse in this
section the notion of a transformed field and the properties of a covariant field equation.

A scalar field on commutative space transforming invariantly under a symmetry is
defined by:

¢'(a') = o), (4.54)
4.55

if 52 = ¢@) > ¢ ).

For example, let € be a finite translation: z# — z# = z# 4 ¢*. Taylor expanding ¢'(z') in
terms of z, the transformation law can be rewritten as

5.p(z) = ¢'(x) — d(z) = —e"9,8(z) + O(€%) (4.56)
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Rotations and other transformations are treated analogously. If the field is in addition in
a non-scalar representation of the symmetry group, e.g. a spinor or a tensor field, it has
additional degrees of freedom, these have to be transformed accordingly.

We now show that the covariance condition (4.55) cannot be generalised in a straight-
forward way to NC spaces. We have introduced fields as formal power series in the abstract
coordinate algebra in 2.1:

Z > Bt @@ (4.57)

(Nl I ,Iin)

Fields are elements of A3, therefore they can be added, they can be multiplied by complex
numbers and they can be multiplied. In addition this algebra of fields is acted upon by
the symmetry Hopf algebra, it induces maps SO,(n) : A; — Aj; through the symmetry
generators with a deformed coproduct. The action of a symmetry generator on a coordinate
is in Hopf algebra notation written as M 1> 3. This notation means that all terms of a
commutation relation [M w3 = ..., where M*™ acts to the right, are omitted:

i =gt + N> 3" =5 + ¢ (N'3") | (4.58)

We prefer the notation using brackets instead of >. The nontrivial commutation relation of
N* with a coordinate (4.47) forbids to write expressions involving products of transformed
coordinates:

PP = (1 + ¢ NYi* (14 ¢NYH2 # (1 + ¢NYi s

Therefore ¢/ (') # (1+¢N") 3.2, D it yopin) ot (T (8™ 2. Instead of ¢(2) =

¢'(#') we use the following definition to compare the transformed and the untransformed
field

3(2) = (1 +aN)¢'(2), (4.59)

it defines a scalar field transforming covariantly under the symmetry generated by the
rotation N!. Similarly the covariance of a field under a translation is treated

(14 €'D,)d'(z) = d(&). (4.60)

Having defined the transformation behaviour of a scalar field, k-covariant field equa-
tions can be defined. They are implemented by acting on the covariant field with a
derivative operator which itself is invariant under SO,(n) transformations. For example,
the Laplace operator (4.38) defines the Laplace equation for a covariant field

(@ + m2> 3(2) = 0. (4.61)
This is an adequate covariant field equation, since

(1+ &N (El+m2) §(3) = (|j+m2)( 1+ 6N (3) = (ﬂ+m2) 3(2).  (4.62)
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Physical fields with additional spacetime degrees of freedom have to be transformed
according to the representation that they belong to. Since the algebraic properties of
the SO,(n) are undeformed, the representations of the symmetry algebra (to which the
physical fields belong) are the same as for the commutative theory. Vector fields can be
defined in analogy to the Dirac derivative, as well as tensor and spinor fields*. Therefore
the particle content of a field theory on k-deformed space is identical to that of the com-
mutative theory. This was the reason why we emphasised to choose a basis of SO,(n)
with an undeformed algebra sector.

The transformation behaviour of fields with additional structure, e.g. of a spinor field,
can be written in the following way:

(1 +aNYPL(2) = (1+ N )optp(@), (4.63)

where N Slpin is a representation of N acting on the coordinate independent (spinorial) part
of 1. The generalisation to vector fields or tensor fields is obvious.

In chapter 6, we will formulate gauge theories by means of covariant derivatives, con-
structed from the Dirac derivative. This will render the theory covariant, provided Duq/S(:ﬁ)
transforms appropriately:

(1+¢N")D,¢'(z) replaces ﬁLé'(i’) (4.64)
Therefore

(1+aN)D,d' (1) = Du(1+eN)¢'(@)+alN', D¢ (i)

= D,é(%) + a(6rD; — 8,Dy)p(3). (4.65)
It is possible to define a Euclidean Dirac equation with the Dirac derivative :
(m*f)A . m) B(2) =0, (4.66)
which is covariant in the same sense as (4.62):
(1+ ') (i Dy = mpo ) ¥, = (1+ @, )ap (9 D = mpe ) (3).  (4.67)

The transformation law of the derivative of a scalar field is used to define the transfor-
mation law of a vector field V,:

(1+ elNl)V;(gz) = V(%) + el(agvl - 5@17”). (4.68)

Gauge potentials will be introduced as vector fields Vu with gauge degrees of freedom, which
transform like the Dirac derivative under SO,(n). Thus, the gauge-covariant derivative

D,=D,—iV,, (4.69)

is covariant under k-deformed rotations.

4Spinors are usually defined as representations of the spin covering group. This structure has not been
defined yet for the deformed symmetry Hopf algebra, therefore we have to warn that this loose definition
might have some yet unknown problems.
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4.5 Vector-like transforming one-forms

A crucial ingredient of a geometric approach towards the k-deformed space is the exterior
differential, denoted by d. In order to find a representation of d, a working definition of a
one-form is needed.

The expected properties of d are:

e nilpotency: d? = 0;

e application of d to a coordinate gives a one-form [d, 2#] = £¥;
e invariance under SO,(n): [M”,d] =0, [Nl, d] =0;

e undeformed Leibniz rule: d(f - §) = (df) - § + f - dg.

Demanding invariance of d under SO,(n), a natural ansatz is that the Dirac derivative
15” is the convenient derivative dual to a set of vector-like transforming one-forms é“,
d= E“DH:

(7, 60 = §hr — gEr, [N E0] = gl gingn, (4.70)

The nilpotency of d> = 0 can be achieved requiring that one-forms é“ commute with
derivatives and anti-commute among themselves {€¥, £} = 0.

Demanding that the commutator of d with a coordinate is a one-form, [d, 2#] = {?“ is
a sufficient condition for an undeformed Leibniz rule of d.

If we add the condition that the commutators [{?", #¥] close in the space of one-forms
alone, there is no differential calculus consisting of n one-forms fulfilling all these conditions
simultaneously. Under this additional condition, a familiar result (e.g. [118]) states that
the basis of one-forms is (n + 1)-dimensional.

There have been hints towards this result in our discussion of the Dirac operator
(4.43). Tts commutator with the coordinates [D,, ] is an infinite power series in the Dirac
derivative alone, but it is linear adding the Laplace operator [J. The (n + 1)-dimensional
set of derivatives (D,, [J) is the dual of the (n + 1)-dimensional set of one-forms (@u’ (Z)
introduced in [118]

2

1

d = dz Dy+d2’ D, — %5 0, [d, 3] = dz",
[z, i = o, [z, 3" = 0, 6,2" = —dz", (4.71)
[dz",3] = iadz, [d7,4']= —iaddz +a209,  [6,3)] = —dz .

It is a general observation in NC geometry [119] that the set of linear (bicovariant) one-
forms on a particular space has one element more than in the commutative setting. In this
case it is acceptable at first sight since for a — 0, d — d.,.,. But several problems remain.
Only n one-forms can be obtained by applying d to the coordinates. A gauge theory with
gauge potentials as one-forms would result in an additional degree of freedom in the gauge
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potentials. The cohomology of the differential calculus has an entirely different structure
than in the commutative case.

We will therefore follow a different strategy and demand as a central condition that
there are only n one-forms on the NC spacetime. Of course we will not get this condition
for free, there will be a trade-off of the kind that the one-forms &* will have derivative-
valued commutation relations with the coordinates.

The one-forms f“ are characterised by their commutation relations with the coordi-
nates:

& =d,#] = [("D,,#]=
= [€",8)D, + & (iaD, + 87" (—iaDy +\/1 - @?D,D,))  (4.72)
+[€,3")D; + €6 ( — iaD,, + /1 — a2D,D,,).

To calculate the commutator [é“, "] we have made a general ansatz with derivative-valued
commutators [£#, 2] involving all terms compatible with the index structure. For example,
up to second order a general ansatz reads («, (3, v are constants to be determined):

(€, 3" |o@) = (a+ §)a2§”Dn +va*& Dy,
L 1. - = o n
[é-z’ xn] |O(a2) = (ﬁ + §)a2an2 - ’7“262Dn-
The solution to this ansatz is derived requiring that the commutators [f“, "] are compat-

ible with (4.1). Invariance under SO,(n) rotations does not add further constraints and
we find the unique solution:

1—+V1—a2D,D,

(64, 3] = ia(6""E" — 6"E™) + (E* Dy, + £ Dy — 6" € D,) — (4.73)
D,\D,
In components, (4.73) reads:
A n PO | 1—a2D,D
n,An — nDn_ k:D . 4 0,
) = (@D, Dy
A zan1—V1—a2D,D
Vit = (EDy+ Dy
7] = @D+ &by
A . A . ~ ~ A A ]_ - ]. - GQDO'DO'
€", 2] = & +(£"D; +€°D,,) —— ) (4.74)




4. THE K-DEFORMED EUCLIDEAN SPACE 75

To derive (4.73), we have used the following formulae:

[D,D,,3"] = 2D,\/1—a2D,D,,

[\/1-a2D,D,,i"] = —a*D,, (4.75)
1—+/1-aD,D, 1—+v1—a2D,D,\2 »
(e = (YR,
Dy D, DD,

. 1—v/1-a2D, D 2
As an aside note that 0o —a_ 1

DDy 2 a2

The reduction of the number of one—forn;s from (n+1) to n has the drawback that the
commutator (4.73) is highly nonlinear in the Dirac derivative. But be aware that it was
not clear from the outset that (4.72) can be solved at all.

It is possible to generalise one of the conditions for the differential calculus, the unde-
formed Leibniz rule [d, #] = #. We define commutation relations between a second set of
one-forms £ and coordinates £, consistent with (4.1) and (4.25). For these one-forms Iz
the application of d to a coordinate does not return the one-form, but a derivative-valued
expression

€D, + 8D;,3"] = [d,3”] = (d2)" = & - f(Dy, D;) (4.76)
with a suitable function of the Dirac derivative f(D,, D,D,).
The most general solution for (4.76) is

~ ~ 1
d, {ij — é—l/ + CI é—l/ _ _ _ 1 ,
[ | (\/ 1—a?D,D, )

[€,3] = ia(6""g — §"€") + (1 — &) (§" Dy + €D, — 6"€°D,)

1—+v1-a2D,D,

DyDj

CL2

g V 1-— CL2D)\D)\’
for an arbitrary constant ¢’. The solution (4.73) corresponding to ¢ = 0 will be used
exclusively in the following.

We have not been able to calculate the coproduct of the f“ so far. Therefore we are
not able to calculate the action of d on a general z-dependent one-form «,(Z)&H:

da = d(a,(#)€") = & (D, (@))e" # (Do (2))€"E". (4.78)

However, a general one-form may be defined in such a way that é“ stands to the left of
the coefficient function:

¢ &D (4.77)

da = d(E#ay, (&) = €€4(D, 0, (2)). (4.79)

Still it is interesting to see whether there are one-forms which allow an action of d as in
(4.78), independent of the order. This motivates the introduction of a second basis of
one-forms, which we call frame.
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4.6 Frame one-forms

We have defined the one-forms {-:“ based on their vector-like transformation behaviour
under SO,(n). Alternatively we can define one-forms &*, called frame one-forms in the
spirit of [119], starting from the condition that they should commute with coordinates
[W*, 2¥] = 0 and therefore with all functions. We make the ansatz

én = (j}ngl (Dn; blﬁl) + (I)ijgg(Dn, blbl), (480)
E = 0 Dihy(Do, DY) + o Doy DyDy) + &9 D Dihs(Dy, DLDY),
with functions of the Dirac derivative with appropriate index structure and expand (4.73).
Since we assume that @* commute with the coordinates, we can eliminate them from the

result of this expansion. Thus, we are left with commutation relations between functions
of derivatives g, and h, with the coordinates. Because of the commutators (4.43) and

. 9./
a’a:n = 1—a D D ;
[9 ] 3D J
. 09, . 09, =~ . - -
(g0, 37] = ag iaD; + 8DgD D; (—mDn +4/1 - a2DuDu> , (4.81)
n 1

we obtain coupled differential equations for g, and h,. With the abbreviations

1 1-4/1-a2D,D,

Clz ; C2: ’

\/1—a2ﬁ“ﬁ“ Dy Do
Cg = —iaﬁn + \/ 1-— GQDuDu,
these differential equations are
0 . A .0 dg1
agln = (¢1Dn, — h1D;D;)(1Co, walg)ln +2 8D Cs =iahi + (g1 + hD n)C2,
892 ~ A A . 8g2 0
— = (goD,, — ho — h3D;D; ,  ta——+2 5 = iahs + (g2 + h3Dy) (o,
oD, (92 2 3L/; J)Cl@ oD, 8D C3 3 ( g2 3 )C2
8h1 ~ . ahl ahl
— = (D, + , a—— + 2 = 2h1(o,
oD, ( 1 91)C1C2 D, 8D]DJ Cs 1<2
Ohs . . Ohs Ohs
— = hy D, , 0—— + 2——— = ho(,
D, 2DnC1Co oD, " 2ab.D, (3 = halo
Ohs A . Ohs Ohs
—— = (hsD, + , 10—— + 2——= = 2hs3(s.
oD, ( 3 gQ)ClC2 oD, 6Dij (3 3(2
In addition we obtain the identities
0 1
2 _ 1,2
8D C2 DG, DD, 5, AjCz 2@@2;
. 0 ._ . _
_Zaglgiia C3 L= ZGCICS la

oD, oD,
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The unique solution of these differential equations is:
A A a? . a2
g = (1+ DijC2C§1)552a 92 = (ia + DnCZ)ECZC?,_l,

. ~ a? 1 a’ a? 9.1
hy = (—ia— DnCZ)ECQCs ) hy = ECQ, hs = ECQC?, . (4.82)

Writing d in terms of the frame one-forms @w* we obtain

2
d = éD, ( "Dy — il Dy DiCy ! +aijg;1) %@
_ ((2) D @A]DJ - ia(:]nDllA)l . )a_21 -V 1A_Aa2DUDU . (483)
—iaD, +1/1—a2D,D, DD
We simplify this result using the Laplace operator 0 and the derivatives éu
~T 1 . A ’iCL A A 7’&‘0;’\ ~iA 1
d= (w (a sm(aan) — Ealale a") + w’8j> T_zlj . (484)

To determine the transformation behaviour of &* under SO,(n)-rotations, we first

consider the derivative operators dual to @*. The factor —5— is an invariant under

1-220)
SO, (n)-rotations by itself. We define ’
9 3 a L. A WA A —iad

0; = 0;, O = . sin(ady,) — 5(’3 T/ (4.85)

By means of (4.33) we determine the transformation behaviour of 5“
(M7%,9;) = 50, — 830,
(7,0, =0,
INLO) = —6'9,\/1 — 02,8, — 1a6'0,0, + iad; 0, (4.86)
[NL8,] = 8y(iady +\/1— a28,8,).

The derivatives 5ﬂ form a module under SO,(n) and [Nl,gugu] = 0. Comparing with

(4.45) we find:
idd ma +\/1—a268

1-— (Lzakak

¢ = iad, + /1 — a2d,0,, (4.87)

and the coproducts are

0i(f-5) = 0i(F) 5+ (" f)- B0 A
On(F-3) = Ba(f)- (e7%g) + (O f) - (Bud) — ia(Bef) - (e ™ Dyg).  (4.88)
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For compactness, we have used (4 87) to write (4.88). The Dirac derivative D, and 5 are
closely related, we find 8 8 = D D Therefore the Laplace operator [J can be written

in terms of au as [ = Z(1—4/1— a28,ﬁu). Thus, we can write (4.84) purely in terms of
w* and 5M:

2
1+ 1/1 — 29,0,

Comparing with (4.78), we can evaluate the action of the differential d on a one-form with
an arbitrary ordering of the one-forms w.r.t. the coefficient functions

d= (aﬂén + aﬂ'é}) (4.89)

20, < 20,
1+ \/ 1-— CL25,\5)\
(4.90)

From (4.86) and the requirement that d is an invariant, we can determine the transforma-

tion behaviour of @w*:

[Mrsjdjn] — [Mrs w]] _ 57"3(1)5 55](2)1"

INLo" = a'\/1 - a28,0, + ia(d', — &), (4.91)
[NY o] = —89a™\/1 — 62,0, + ia(0'0; — &7 ).

The frame one-forms form a module under SO,(n) rotations.

The commutation relations between derivatives 0, and coordinates are

[5 An] . q [5 n _ia'ggsgsgn‘f‘\/m
K ny

"] = ia0;, " = T ,
1-— a28k8k
~ , - _ —iad, +\/1—a255
0, = &, [0, 2] = —iad; __ (4.92)
1-— a28k8k

Taking into account the factor ———=2—— in the commutator with the coordinates
tng in 14+4/1-a28,8, ’

we define 0, = 20 __ 45 the derivatives dual to wh, d= @*9,.

1+4/1-a28,8,
An interesting observation is that 5u are the antipodes of the Dirac derivative 5u =

) i N = : 9, _ 8Dy .
S(D,). Since S(O) = O, we obtain that d, = 1_;‘;& = 1_%;@). We are not yet in the
position to understand potential benefits of this observation.

2

Usin Y e
& 1+4/1—-a%8,0,

= 14+ 25,3, we obtain the commutation relations of 3, with
4 9uOy n



4. THE K-DEFORMED EUCLIDEAN SPACE 79

coordinates:
o, | a (1 — iad, — §8,3,)(1+ 8,3,

0" = Lo,01+%0,0,)(1+ = )

[0;,2"] 2 i( 4 “”)( 1+ 90,0, — a?0,0; )
‘ ] a? a? 1 —iad, — ﬁauall
9;,4 = 0M(1+ 4 8,8,) + 500, — 5 L,
[0, "] i 4 H w) 277 14 28,9, — a28,9,
N . 1a 1 -+ %671 — %51/61/

[B,,37] = —Eéz(l L 75,0, >, (4.93)
[B,, 4" = U+faay(br — 000+ (1 58,801+ 55.0," )

" 1 OO (1+ 20,0,)2(1 + (40,0,)? + % (3,0, — 0x05)

These complicated commutators are the price we have to pay for the fact that frame one-
forms commute with all functions. It seems impossible to calculate Leibniz rules for 9,
from (4.93).

4.7 Vector fields

Vector fields that have the same transformation properties as derivatives under SO, (n)
are a necessary ingredient for the definition of gauge theories. This has been argued for
in section 4.4. Here we derive the properties of several vector fields under symmetry
transformations, treating them as elements of an abstract algebra, not as Z-dependent
densities. Therefore derivatives are not evaluated on flu in terms of the coproduct.

We assume that the vector fields appear linearly on the right hand side of the com-
mutation relations with the symmetry generators (we made the same assumption for one
forms). The vector fields have to form a module of SO,(n).

Vector fields corresponding to the vector-like transforming Dirac derivative which fulfil
these requirements are easily constructed:

[M™.V,] = 0, [MT,Vi] = 6TV — 65V,
[Nl’ V'Il] - Vla [Nl: ‘/);] = _55‘771; (494)

these vector fields V, are a module of SO,(n) rotations.

It is more difficult to construct vector fields with transformation properties analogous
to the other derivatives defined in previous sections. Although the derivatives 8, are not
treated as conceptually fundamental objects, they establish the contact with the commu-
tative regime, since they are very similar to ordinary derivatives, cp. section 4.8. This
motivates the definition of vector fields A, whose transformation behaviour corresponds
to that of d,.

On the right hand side of (4.33) appears a complicated expression in terms of 5“. The
task is to construct the transformation law of a vector field fl“ that agrees with (4.33),
when flu is re-substituted with éu- We make the choice that derivatives are always to the
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left of the vector field 121“ in nonlinear expressions such as the vector field analog of (4.33).
The problem can be solved in a power series expansion in a. It leads to a recursion formula
with the solution [120]:

~ A

[M™ A;] = 6TA, — 63A,, [M"™ A,] =0,

Qiaén R

PN 1—e 10 A 4 10,4 - A a
[NY, 4] = &WA" — géfajAj + 5( L A; + 0iA))
—(5,5 aA tan (aTn) (énéjAj — é]é]An) (495)

[NV A, = A

The square of the vector field corresponding to the Dirac derivative is an invariant
[M’“’, V,\V)\] = 0. To form an invariant out of the vector field flu, we have to define a
vector field fulu with transformation laws in which the derivatives are to the right of the
vector field fvlu. We demand

[M”, A)\A)\] = 0, and [Nl, A)‘A)\] =0. (496)

From (4.95) we construct the transformation laws for A, such that (4.96) is fulfilled and

)

such that A, are a module of SO,(n) rotations:

v v

M, A] = 6TA, — 63 A,, [M7, A,] =0,

a v aén A v A v A 1 a aén
)y o 2iadn _ 1 v a aé ~ A v 1 a aaA ~ A
(N A, g~ A tan (55)0,05 + 24, (a,% 7o (5 )) aid;

Comparing (4.95) and (4.97), we see that A, transforms with the derivatives on the
right hand side. But it transforms in a different way than AL, the conjugate of A,. The
order of derivatives and vector fields in AL is simply reversed in comparison with (4.95):

[MTS’AH = 5:’@ - 55141’ [MTS’AL] =0,

~ 1= g . g A
I Aty sl 1At T i
[N, Aj] = 51141; 2500, - 5(51-14]-8] E(Az'al + Azaz)
A A A o,
5 (A1d;0, — A} ]aj)%tan (5% (4.98)

[N'A) = Al
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Because of the different transformation behaviour /ulL # flu. The dual of flL is flL,
[NV, flL/vlL] = [M"s, ALAL] = 0, its transformation behaviour is obtained by conjugation of
(4.97).

The vector fields A, A,, flL and AL can be obtained from the vector field V, by a
derivative-valued map é,, = €,,(0)

A

V, = éuwA,, A, = (Y. (4.99)

We know the transformation properties of V,, A, and 8,,, (4.94), (4.95) and (4.33). We
expand these in powers of a, at zeroth order we assume that Vu| O@0) = Au| O(a0) 2T€ the
same vector field. This leads to a solvable recursion formula in a [120]:

L sgia i ad\ O
e = —sin(ad,) + e (5 - tan (1)) L,
a0n 2 4, 270,
. 5
énj = ~ g~iadn tan (%)8]-
n
- 1— —iadp aA
€m = (e—zaan_.eiA)A—l, (4.100)
1a0, On
1 e iaén
él' = 7A6l',
! 1a0y, !

To find the inverse of the matrix €,,, we have to take care to single out the right partial
derivatives. The result is:

1y = gy [ ) g 4.101
€ m = (O,) — e by (4.101)

—1ia0y,
~ L —ia n An —iady, —mén
1 —iady 3¢ o tan(3e) (6 Wn — e 1) A
(6 )l] = 7Z’aén 1(5“ + " e_ma‘n_l la],
‘ - F(a“) ( fiaén )
> 1 - 5\ Ok O . s .
F(au) = _ sin(aan) (1 e—zaan) kAk ¢ a n)e—za(')n (1 e—zaan)
1a0; 202

The vector field /vl“ is defined by the transformation behaviour that was derived from
(4.96). As the derivatives are on the right of A, we make the ansatz A, = V,(¢;,}) and
insert it into (4.96):

v

Aufiu = Vp(éil)pu(éil)uuvu =V,V,, (4.102)
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therefore we conclude that

(é_l)pu = Eou- (4.103)

The formulae for AL and fl}; are obtained by conjugation.

In the same manner we determine vector fields Zm corresponding to 5,“ the derivative

dual to the frame one-forms up to the factor : izﬁ. The calculation is much simpler and

4
we obtain:

(M7, 4] = 6TA, —63A,, (M5, A,] =0,
INLA] = —6'/1—a20,0,A, + iad; A, — iadld,A,, (4.104)

[Nl,}lvn] = <ia5n +4/1- a25N5“)AVl.

From (4.104) we could read off immediately the transformation behaviour of ZL, but

comparing with /ulu, which can be obtained from the invariant

~ ~ ~

(M™%, A,A,] =0, and [N',A,A,]=0, (4.105)

we find that EL = f‘im the vector field AVM is self-conjugate:

(a7, &) = GTAL - G2 AL a7, Aj) =0,
[NLA] = —6LAT\/1— a20,0, + iaAjd; — iadl A%D,, (4.106)

[N, Al = AVZT (iagn +14/1—- 025;1511)-

There is also a transformation matrix e, from Vu to A, (respectively A, = ;ﬁ/) :

Zp = g;wvua A/L = Vugm}; (4107)
which is
5 N _iaDy, + /1 —a2D,D,
nn = 1, en; = —taD); ,

1-— CLZﬁkﬁk

_ . _ N . iaDn—i-\/l—a?DuﬁM
em = idaDy,  €;=0d&;1/1—a*D,D,+d*D;D, .(4.108)

1-— CLZﬁkﬁk
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The inverse matrix V,, = Al (e1) uv With (€71)5,6,, = 0y, 1s

aQDka iaﬁn +4v1— a2ﬁ,\ﬁ,\ —14 azgkgk —iagn +14/1-— a25>\5>\
/i —aD,D, 1—a2D,D, /1~ 3,3, 1 — 29,0, ’
iaf)j iaf)n +vV1- azf))\D)\ _ z'agj
J1-a2D,D,  1—a*DiDy V1 -a2d,0,
1 —iaf)l —iagl —iagn +4/1-= a25>\5,\
(6 )ln = = ’

Ji-@DD, J1-w3,8,  1-a*%d

(571)nn = 1+

(4.109)

4.8 *-representations

In chapter 2 we have discussed that the algebra Aj; of functions on coordinate space can
be mapped isomorphically to an algebra of functions defined on commutative space A,[[%]]
by means of a x-product. In section 4.4 we have discussed the generators of symmetry
transformations éw M"s and N' on the abstract coordinate algebra. In this section we show
that the deformed action of symmetry algebras on abstract spaces and the representation
of an abstract space on an ordinary function space can be combined.

We construct representations M**, D* € SO(n)[[ah]] of the abstract generators of
rotations and derivatives on the algebra of function A.[[4]], such that they constitute maps
SO(n)[[ah]] : Az[[R]] — Ag[[R]]. This will be done in such a way that the Hopf algebraic
properties can be realised purely by nonlinear operators on functions of commutative
spacetime. The realisation of the antipode of the Hopf algebra will be discussed in the
subsequent chapter.

These representations will use only ordinary coordinates xz* and ordinary derivatives
Oy = %. The same approach with similar results has been pursued by several groups
[55], [56], [112], [54], [121], [122].

First we consider the derivatives éu (4.3). We want to construct a “x-representation”

A

b, — I, (4.110)

such that 9; is a map of the space of functions of commuting variables into itself, 9, :
Az[[R]] = A[[A]]. To zeroth order in (ha = a), 8% has to coincide with the ordinary 9,.
The crucial condition is that the x-representation d; has to fulfil the deformed Leibniz
rules

Op(f(z) xg(z)) = (0,f(x))*g(x)+ f(z) * (F9(x)),
05 (f(z)xg(x)) = (8 f(x))*g(x)+ (% f(x)) * (059(x)) - (4.111)
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Note that formulae like (4.111) motivate the notation f(x)x g(z), cp. section 2.2. In a
mathematically correct way, we should use the coproduct symbol, e.g.:

AT} (f % 9)(x) = (9; f(2)) * g(x) + (€% f(2)) » (95 9(x)) -

If the proper definition is kept in mind, the notation (4.111) is more intuitive in our
opinion.

Equation (4.111) has to be valid for all x-products representing different ordering pre-
scriptions on the abstract algebra. Therefore the x-representation 9 may have different
forms depending on the actual x-product.

For the symmetric x-product we find that®

Opf(z) = Onf(z),

0 flz) = 9 1), (4.112)

100y,

fulfils (4.111). This x-representation can be derived in a perturbation expansion on sym-
metrised monomials multiplied with the x-product. However, it is easier to derive it using
the x-product of a coordinate with a function z#x f(z) in (2.29). Rewriting this x-product
symbolically as z** f(z), relations such as

07,2 f (x) = o™ f(x) — 2™ f(z) = iad} f (x), (4.113)

have to be fulfilled for arbitrary f(z), therefore [0, 2*"] = iad;. This equation results in
differential equations for 9;, whose unique solution consistent with the commutative limit
is (4.112). This scheme allows to efficiently calculate x-representations.

x-representations of N* — N* M" — N*'$ and of D, — Dy, have to fulfil the Leibniz
rules

M (f(z) xg(z)) = (M f(2))*g(x) + f(z) * (M"g(z)),
N (f(z)xg(z)) = (N'f(2))*g(z) + (€% f(2)) » (N*'g(x))
—ia (05 f(x)) % (M*g(x)) ,
Dy (f(x)xg(z)) = (Dyf(x))* (e g(x)) + (" f(x)) * (Drg())
+ia (D;eiaa’zf(x)) * (D;g(:v)), (4.114)
D;(f(z)xg(z)) = (Djf(x))* (e “%g(x)) + f(z) x (Djg(x))-

If the -representations can be constructed such that these coproducts are fulfilled®, the
algebra of functions of commutative variables with the x-product as multiplication is a

This form has been given first in [123].
6In addition, the antipode has to be fixed. This issue will be discussed in chapter 5.
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module of the a-Euclidean Hopf algebra SO,(n). The solution is

. ] iaan_l iaan_l_' 871
z'0, —2"0; + :cza,ﬁueT - xuauaie 1a0? = )f(il?),

Nif — N*f(z) =

~ o~

M™f — M f(z) = (2°0, —2"0s)f(x),

Dof — D f(z) = (2sin(a8n)—ﬁ@k&c(cos(aaﬂ)—l)) (@), (4.115)
A . e—iaan -1
D;f — Djf(z) = 8j(T)f($)a

— cos(ady))

Of = 0@) = .0, 2w s

For other x-products, the x-representations differ from (4.115). For the left ordered normal
*-product (xz) we find:

o, f(z) = 0Onf(z),
i f(z) = 0, f(a),
N f(z) = (x% sin(ad,) — 2" + igmlakakem@n) f(z),
M f(x) = (2°0, —a"0s) f(x), (4.116)
Dirfw) = (Ssintadn) + Fooe ) 1),
Di* f(z) = 0;f(z),
O f(z) = (—%(cos(a@n)—1)+8k8kei“8"> f(z).

The result for the right ordered x-product (xg) is:

O f(x) = Onf(2),
o7 (@) = Ouf(a), |
N*Rlf(g) = (x121—,a(e2w3n 1)~ 20— iark 00, + 5 00 ) (),
M*R™ f(z) = (2°0, —2"0s) f(x), (4.117)
Drf(x) = (% sin(ad,) + %akake_ia8"> f(z),
Di*f(z) = O " f(x),
O f(x) = (—%(cos(aan) - 1)+ Bkakei“3"> f(x).

The representations (4.115), (4.116) and (4.117) represent the same abstract SO,(n) on
different *-products, i.e. they are representations compatible with different orderings.
Especially their commutation relations are those of the abstract algebra. We have noted
in section 2.4 that the symmetric and the normal-ordered x-products are equivalent and
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that they can be related with the equivalence operator T. Therefore we can also relate
the different x-representations [49], e.g.

* _ —1 qx*
ar = TT'OT

. ) —tadyn __ 1 eiaan -1
o ajezaan - Z]JI_ISE exp <ylaml (ei — 1)) . 8]..7 .

—13a0n
li ig, (1% _4 (4.118)
Zl_I)Ile exp | 0, ciabn ] , .

which can be checked explicitly.
In section 4.1 we have defined three one-parameter sets of linear derivatives 9;i. For
the symmetric x-product their representation in terms of ordinary derivatives reads

vt eiaclan -1 ror eiaan -1

0, f(r) = Tf(ﬂf)a 07 f(x) = 0 100, f(z),

osa) = i) 0 £ (@) = B C =L () (a.119)
n T = iacy ’ : o a0, o
res €2ia8n -1 iac;; eiaan -1 9 res eiaan -1

0, f(r) = %id + 5 akak( iad, ) flz), 0;%f(x)= ain(x).

Although these x-representations differ from each other, the x-representations of the Dirac
derivative, the Laplace operator and the generators of rotations in terms of commutative
0, and z” are unique (up to representations on different x-products). This is independent
of which intermediate representation 52’ is chosen, since there is effectively only one set of
derivatives.

4.9 Representation of forms and volume form

In this section we represent the one-forms {;:“ on *-product spaces A,[[f]] as well, g“ —
&, We assume that the £ can be written as formal power series of the commutative
derivatives 0,, being at most linear in the commutative one-forms dz*. These commute
with J, and functions, while they anti-commute among themselves.

The starting point is the commutator (4.73), a power series expansion in the derivatives.
The most general ansatz to solve (4.73), compatible with the index structure, is:

g*n = dﬁEn@l (8181, (')n) + d.’Ekak@Q(aiai, 8n),

The scheme used to calculate the x-representation of a derivative operator from its com-
mutator with a coordinate in (4.113) can also be used to calculate the x-representations
of forms. We collect the terms proportional to different one-forms dz* and different com-



4. THE K-DEFORMED EUCLIDEAN SPACE 87

binations of derivatives, and use

0(0;0;)
0f(9:0;, 0p)
0(0n)

We obtain an over-determined system of equations which can be solved consistently. With
the abbreviation

1
= 4.121
! 1+ 62682 (cos(ad,) — 1) ( )
we obtain
2i | ,
i =7 fo= —5 sin(ad,)y? fy = —ﬁ(cos(aan) — 1),
e, = (1 + cos(ady,) — agak (cos(ady,) — ))72, ey = % sin(ad,)v?, (4.122)
or
& = (dx"(l + cos(ady) — aggk (cos(ady) — 1) + dz* Q?k sin(a@n))qﬂ, (4.123)
®4 - . aﬂau n22(9] . k2aka] 2
&9 = (dxj(l + 2,0, (cos(ady) — 1)) — dz 3, sin(ady,) — dz o (cos(ady,) — 1))7 .

The more general differential calculus (4.77) has a particularly snnple solution for
¢’ = 1. The one-forms §“ for ¢ = 1 have the following *-representation £*:

_ 8, i 1

o _ dz" + d.’I,‘l— 1 — ¢~ %on , 4.124
¢ ( 3n( )> (cos(a8 )—1) ( )
. 8,0; o . 1

o= | —dzt = (cos(ad,) — 1) + da" L (1 — e 0n .
6 ( 6n8n( ( ) ) 8n( )> 1+ —MQ(,)Z (cos(aB ) 1)

It is interesting to note that for this specific set of differentials E * with ¢ =1 we obtain
a *-representation, in which gj is not proportional to dz’.

The result (4.73) allows to determine the commutation relations of higher-order forms
with the coordinates. We can determine them for two-forms, three-forms etc. up to n-
forms. Since we know that the £ anti-commute among themselves, the dimension of the set
of j-forms is ( ) This is the ordinary exterior calculus of commutative spacetime, allowing
the apphcatlon of all tools of deRham cohomology, especially the Hodge-*. Specifically,
there is only one n-form, which should be a NC analog of the volume form. The volume
form £'€2...€" has particularly simple commutation properties. From (4.73) and (4.75)

8. i = nélé .. D, V;—D“ DoDy (4.125)
AN

we determine
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The vector-like transformation behaviour of é" (4.70) implies that j-forms transform as
j-tensors and that the volume form (£!...£™) is an invariant under SO,(n) rotations:

[MP, €. €M = 0. (4.126)
The representation of (51 .. é”) on functions multiplied with the x-product is:
dzt Adz? A--- Ada”

(£'¢*...¢")" = 5. (4.127)
(1 + Q%?%ﬁ(cos(aan) — 1))

The x-representation of a frame one-form is just the ordinary commutative one-form,
since it commutes with all xz-dependent functions and all derivatives. Similarly the frame
volume form is just the commutative volume form:

wh = dzt, (Wh...w")*=dzt Ad2® A--- Ada™ =d"z. (4.128)

The volume form constructed from the frame one-forms is not an SO, (n)-invariant. From
(4.91) we obtain:

(M &Y. o™ =0, [N, oL o™ = —ia(n — 1)@t .. .o",. (4.129)

That the commutative volume form dz” transforms non-trivially under SO, (n) (4.129) is
a crucial observation for the following chapter.



Chapter 5

r-deformed field theory and
integration

5.1 Variational principle

In section 4.4 we have defined the notion of a field covariant under the generators of
the deformed symmetry. We have also defined invariant derivative operators, such as the
Laplace operator and the Dirac operator and based on them field equations in the abstract
algebra.

Using the x-representation introduced in section 4.8 we obtain field equations on func-
tions of commutative variables, multiplied with the x-product. Examples are the deformed
massive Laplace equation

2(1 — cos(a0,
(O* + m?) ¢(z) = <8N8M ( a282( ) + m2> d(x) =0 (5.1)
and the deformed massive Dirac equation
N . nfl . Bjj e tadn _q
(ny D; — m) P(z) = (fy (E sin(ady,) + W(cos(aan) — 1)) + z*yjajTan - m)@b(z) =0.
(5.2)

Because of the suitably chosen abstract algebraic definition of derivative operators, these
equations are by definition covariant under the x-deformed symmetry transformations. In
this chapter these field equations will be derived by means of a variational principle, the
Hamiltonian principle of extremal action. This necessitates the definition of an action that
can be varied and from which these field equations can be derived. The formulation of an
action functional is expected to be the most direct way towards path integral quantisation
and therefore towards a quantum field theory on x-deformed space.

Yet the formulation of the Lagrangian formalism and of an action functional presup-
poses the existence of an integral with suitable properties. For the k-deformed space, a
definition with only minimal desirable properties is much less straightforward then in the
canonically NC space. Therefore the subsequent arguments are given in great detail.

89
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Algebraically an integral is a linear map of the algebra into the number field on which
it is defined:

/ Ay — C, (5.3)

/(01@2 + CQQ%) =C /T,E + CQ/QE, V’l/AJ,é € .Ag‘;, c; € C. (54)

In addition we would like to demand the trace property:

[is= [ é. (5.5)

The trace property implies that the integral is cyclic f 1&(/3)2 = f @faﬁ It seems to be
impossible to define gauge-invariant quantities from gauge-covariant ones without the
trace property. Also the variational principle seems to require the trace property.

A purely algebraic definition of the integral is not sufficient for our purposes. The
integral on the abstract algebra has to be realised in terms of an integral over commutative
space, e.g. the Lebesgue integral. Therefore we need a definition of the integral in the x-
product formalism. The realisation of the algebraic integral (5.3) in the *-product setting
allows to perform integration explicitly. Such an integral will certainly be linear (5.4).

An essential property of the integral is that it allows the use of Stokes’ theorem, i.e.
that it allows partial integration. We will assume that all total derivatives vanish, thereby
increasing the number of constraints mentioned in chapter 2, concerning the space of
functions of commuting variables, on which the theory is defined.

Provided that all derivatives of the expanded x-product could be eliminated by partial
integration at every finite order:

[ @@ ole) " [ do vi@)sw) = [ @ s,

the x-product reduces to point-wise multiplication, which of course has the trace property
(5.5).

It is possible to eliminate with such an ansatz the Moyal-Weyl x-product (3.135) , but
not an arbitrary, x-dependent x-product. When we partially integrate an z-dependent
*-product, new, non-vanishing terms appear, e.g. for k-deformed space in first order in a:

/ a"z " (G (@) (0,6(2) — (£90,9(2)) (0a(2)))

P2 L@ (p(@)(@) - (0= DEw@)E). (56)

The additional terms appear since the explicit coordinate z7 in the x-product has to be
differentiated as well under partial integration.

It has been shown in the framework of deformation quantisation of Poisson manifolds
[124] that it is always possible to define a measure function p(z) such that the integral
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of two functions multiplied with the x-product is cyclic. This has been shown in [125] in
a constructive way for quantum spaces. The measure for the k-deformed space has been
discussed first in [37] and then in [69] from the deformation quantisation perspective. For
an z-dependent x-product 677 (z) the measure function p(z) has to fulfil the condition:

9, (u(z)67° (z)) = 0. (5.7)
For k-deformed space (5.7) entails the following conditions on u(x):
9, (p(z)a(80z” — 622°)) =0 = Opu(z) =0, 2/ 0;u(z) = —(n — Du(z). (5.8)

Examples of measures p(z) fulfilling (5.8) are
n—1 N1 n—1 o 7(n§1) n—1 . 7@
m@=(17)  mw@= (X)) " me@= (Y @) ° vkeN
i=1 i=1 i=1
(5.9)
If u(x) is given, the integral over the x-product of two functions has the trace property:

[ @ (@) (6(@) +6(a) = [ @0 o) (6(0) 5 0(2)) = [ 0 o) v@)o@). (.10

Note that p(z) is not x-multiplied with the other functions under the integral, it is part
of the volume element.

The measure pu(z) allows to eliminate any one of the x-products from the *-product
of several functions, because of associativity. This allows to cyclically permute under the
integral an arbitrary number of x-multiplied functions

/d% u(z) (¢1(x)*---*1/)k(x)):/d"x,u(x) (0 (@) %01 (2) % - %1 (2). (5.11)

Thus, any function can be brought to the furthest left or furthest right of a multiple
*-product. This allows a formulation of the variational principle. Varying a product of
several functions under the integral, we cyclically permute the function to be varied to one
side, eliminate one of the x-products and finally perform the variation:

0 " xo(z) % C(z)) = _ 0 () ) (€ (2) % 1z
o [ 0 s @) = o [ 4 ) 60 €+ 0(0)
= ux) C(z) *x¢(z). (5.12)

5.2 Hermitian derivative operators

Conjugation can be defined on A; and also on its symmetry Hopf algebra SO,(n) as a
formal involution  : A3 — Az and T : SO, (n) — SO,4(n) . Since A; and SO,(n) are
constructed from vector spaces over C, it is important to discuss the effect of complex
conjugating the underlying number field. We demand that
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e Conjugation has to be consistent with the algebraic structure, i.e. ([V, W]—U)! =0,
if [V, W] -U =0.

e Conjugation has to send a complex number to its complex conjugate.

e Conjugation is an involution, i.e. applied on products of elements of A; and SO,(n),
conjugation reverses the order (VW) = WiVt

We call an operator hermitian if it fulfils VI = V. Since all elements of the abstract
A; and SO,(n) have a well-defined commutative limit, they need to behave as their
commutative counterparts under conjugation. Especially coordinates should be hermitian
and derivatives anti-hermitian. These conditions are fulfilled for the following conjugated
operators:

A~

F= g (én)T = —0p,
—ia0n iadl Aty _ ~
)= ( )= (66@)—f%a
(

0)" = —0;,

1 —ia0 f
( sin( aa + 8k8ke ”) =-D,,
a

(M)t = (2°0, —i"79,)" = (8] (&°)T — Dl (&")") = — ", (5.13)
R 6210,8" 1 R ia ~ ~
NHT = #+ 9yi" — — 0,01
( ) —21a T o Lot 2 KOk
2iad .
n 1 A A A A A N
= @ T anh — B8, + iad, — iad, = —N.
21a 2

Thus, formal conjugation can be defined consistently in the abstract algebra. But we also
need the conjugation behaviour of the x-representations of the abstract algebra elements.
These derivative operators should not only be formally conjugated, but in a concrete
sense, using hermitian conjugation. Hermitian conjugation should be implemented by
partial integration under the integral (cp. the definition of a hermitian operator in wave
mechanics)'. We we call a derivative operator V* hermitian if

[asnvsvo= [aauvies, (5.14)

under partial integration. A quick look at the partial integration of the two simplest
derivative operators 0, and 9; shows that although 8): = —0,, we obtain that 0} = —0j,
but

efiaan -1

e pdx@¢) = [dwpd (@)™ [dop— 00
1a0y,
eza(')n —-1

A /d"wa*w /d"xau — . (3.15)

LThe notion of selfadjointness requires a very careful definition of the domain of the operators. This
topic goes beyond the discussion in this thesis.
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The derivative 97 is not anti-hermitian, since 9; also acts on the measure p. The Dirac
derivatives D} are not anti-hermitian by this definition either.

The solution to this problem is familiar from three-dimensional quantum mechanics of
a central potential. Here the radial momentum (in spherical coordinates) p, = i% is not
a hermitian operator, it has to be rescaled because of the spherical measure y = 72 sin 6.
The hermitian radial momentum is

pr = z% + pr, with p, = —. (5.16)

Mimicking this trick, we perform a rescaling of the derivative 9;

< -
8j—>6j=8j+pj=8j+%. (517)

It inherits from u the properties:
2'0pj = —p; and d,p; = 0. (5.18)

For the choices of p presented in (5.9), we would obtain:

(5.19)

1 n—1 af n—1 (27)k1
pi(p) = — 2

Pyt pj(pa) = — ST i pi(ps) = — 2 S

However, it is not necessary in any application to specify a particular form neither for u
nor for p;. The derivative 0, is not rescaled since 0, p = 0.
With the rescaled derivative d;, anti-hermitian derivative operators can be constructed

such as 8;-‘:
- eman -1

07 = (0; + pj)W (5.20)
This derivative operator 5]* is anti-hermitian in the sense of (5.14):
/d” b (9; + .)eiaani_ld)_ /d” (8; + .)ewani_llb b (5.21)
vH 77 P iad, = TG TP a0y, ' '
Similarly, D7, is rescaled:
i - efiaan -1
D — Dj=(0;+p;) Ziad,
- 1 1
D — D;= o (O + pr) (O + pr)(cos(ady) — 1) + . sin(ady). (5.22)

n

These D; are also anti-hermitian in the sense of (5.14).

The rescaling with p; is an algebraically consistent operation, since p; is a function of
the coordinates and coordinates commute among each other. Therefore the commutator
[0 + pj), a*] = 0% is unchanged and due to antisymmetry also [(0; + i), (9; + p;)] = 0.
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In [37] we have argued that the rescaling leaves the algebra of commutative quantities
invariant. This rescaling can formally be lifted into the abstract algebra and does not
change the commutation relations of the abstract quantities. For this to be true, the
representation of all operators M** — M** and z* — #** has to be changed as well:

- ez’af)n -1 o eiaan -1 B ez’aan -1 e ez’aan —1—=1iad
N ! = .TlanT + xlajﬁjT — x"@lW - xjf?jal ’L'aaQ n’
n n n
M*rs = 25 N'r _ wrgs’
e kgk 100,
T = T =T —X a_n(m_l)’ (523)
= j?j — ¥

We have introduced the notation * # for a derivative multiplied from the left to a function.
We find that [M*, 5]*] = [M*,0;] etc. and we can lift this rescaling into the abstract
algebra.

Unfortunately, there is still one problem, i.e. that N* is not hermitian under this
definition. This problem arises from the term in N* proportional to z/ @5;. Under partial
integration with y a term proportional to z’ 8j55 could be partially integrated in a proper
way, because of the properties of y. The additional term p; spoils the hermiticity.

We do not discuss in this section how N* acts on d"x (4.129). Without going into
details (cp. the next section), we state that including the action on d"z does not solve
any of the problems presented in the rest of this section.

The disturbing term arises because of the derivative representation of £*". Therefore
let us look more carefully at the hermiticity of coordinates. If we treat the coordinates
as rescaled derivative operators, whose hermiticity is checked by partial integration, we
obtain

/d”xu E*(.I?l(ﬁ) EEN /d”x,u xle_;g%a qﬁ:/d”xu ¥k ¢,

—, —ta0, )

[ ia@e) 25 [eap (064 (00— Di(grg)e). 620

While */ is a hermitian coordinate as expected (z*/ is not rescaled, it depends on 9,
only), , the coordinate Z*" obviously cannot be treated in the above way as a derivative
operator. Of course, the ansatz treating z** as a derivative operator is questionable from
the outset and its limitations become obvious here. We have to introduce a more careful
notation.

Coordinates are x-multiplied to a function, so far we have always treated x-multiplication
from the left. Let us also take into account x-multiplication from the right:

—3a0,

fl@)e*! = f(x)*l'l:xlmf(x)a
(x" Y f’“( —tad, 1)) (@), (5.25)

f@z™ = f(z)*a" g —
—iax" O f ().

@) = (e f@)zT, 2T () = f(a)z

3
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We observe that

Fd

g =g (5.26)

where the bar means complex conjugation (conjugating complex numbers, not operators).
Interpreting the left multiplication of a coordinate as a left action, we can use the
associativity of the x-product and obtain:

[aeniee) = [awnins) = [awuix (@
_ /dnw@*xu)w:/dnw(@*xu)qﬁ (5.27)
= /d"x L (E(x‘*f“))qﬁ = /d”xu (W)cb

The first three identities are simple re-formulations according to definitions. The last
identity is due to (5.26). The same manipulations can be performed for Z**.

We may try to generalise the interpretation of right multiplication of coordinates as
right action to the right action of an arbitrary operator. Throughout this thesis we have
only considered left actions of operators. Derivatives have been defined as acting from the
left on functions, as do generators of rotation etc.

In a nutshell, the right action of operators in the abstract algebra (this is also called
the opposite algebra) can be obtained by reinterpreting the defining commutators, for
example

(&%, 0jr] = 0,

(£, éjR] = —’iaéjR, (5.28)
etc. The concept of the opposite algebra can be given a very concrete meaning in terms
of x-representations. Just as we have defined the left x-representations in section 4.8 from
commutators with ac_*)“, we can define right x-representations from the commutators of the
opposite algebra using 2 %1, This gives a *x-representation of the right action which only
has to be complexr conjugated afterwards to obtain a formula for all operators considered

so far:
[ uv (7o) = [ @)o= [aauvTie (5.20)

The same is valid for all rescaled operators VES

This interpretation is perfectly viable and gives consistent results for all operators.
However, while this interpretation is natural for the coordinates using the associativity of
the x-product, it is entirely ad hoc for all operators. It is not clear how to get technically
from the left action on ¢ to the right action on . Certainly this cannot be done by
partial integration because of the problems stated above. It is also not an option to treat
the composite operator N* in such a way that the part of the derivative representation
stemming from z*" according to (5.27), while all other derivatives are partially integrated.
Ignoring the origin in the abstract algebra, we are unable to distinguish which derivative
belongs to the representation of one part of a composite operator and which to another.

All the approaches discussed so far are unsatisfactory. Brute force partial integration
does not work for z*® and N*, considered as derivative operators. Using the associativity
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of the x-product to conjugate the coordinates has the disadvantage that operators such
as N*' have to remember their abstract algebraic structure. Finally right action is a
possible definition for hermitian conjugation, but here the concept of partial integration
is completely given up on.

To summarise, with a cyclic integral involving u, the integral cannot be defined such
that N* has acceptable properties under conjugation. Especially, it looks as if we cannot
define the integral in an invariant way. N* does not commute with p under partial
integration, it also does not commute with the volume element (see below); the effects do
not cancel.

In the subsequent sections we will discuss another approach, using Hopf algebraic
language. The antipode operation is closely related to conjugation, but algebraically more
appropriate. This approach will have a different drawback, since the integral thus defined
is not cyclic, at least not at face value. So far we have not been able to combine the
two features of symmetry-invariance and gauge-invariance. The difficulties to combine
gauge-invariance and invariance under symmetry transformations haunt the construction
of many NC field theoretical models [127].

Before turning to this alternative approach we finish the derivation of equations of
motion from the cyclic action. An action for a spinor field 1) with the rescaled anti-
hermitian Dirac operator is:

S = /d":v 1 E* (in D} — m)ip. (5.30)

Varying with respect to 1; we obtain an equation of motion involving the rescaled Dirac
derivative D} and the measure function:

u(iy* D% — m) = 0. (5.31)
Commuting a factor of ,u_% with the Dirac derivative, the rescaling is eliminated:
D5 (n2¢) = u"2 D3o. (5.32)

Therefore by a redefinition of 1[; = ,u_%dj, which also means @E = /f%E we can obtain an
action with the rescaling and the measure function eliminated:

S= / d™z 3 (iy* D5 — m), (5.33)

Performing the redefinition ) = ,u_%dJ after the removal of the one x-product with u, the
action (5.33) is equivalent to (5.30). It would be inconsistent or at least inconvenient if the
equivalence of these two actions depends on the order in which the two operations partial
integration and field redefinition is performed. Therefore we have checked (up to second
order) that it is also true that

[eautien = [@ou(ein i) = [easeg (5.34)
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where first the two factors of ,u_% are extracted from under the x-product and then the

partial integration is performed. We have used that under partial integration (without p)
the x-product gives

2

/d”xf*g:/d"x (f(l—i—%a(n—1)8n+;—4(4(n—1)—3(n—1)2)824—...)9), (5.35)

The action (5.33) gives after variation w.r.t. 1 the equation of motion
(iv* D} — m)t = 0. (5.36)

This is the result that we expected in (5.2). This equation of motion does not involve any
remnant of the x-product with 1, neither any remnant of the integral of the action. It is
the classical Dirac equation with a nonlinearly deformed Dirac derivative. This equation
of motion can be used to define the propagator for a fermionic quantum field by Fourier
transformation.

5.3 Integration of forms

In this and the next section we present an attempt based on algebraic/geometric con-
siderations to solve the not yet fully satisfactory integral of the previous section. We do
not claim that this approach is better than the previous one. In fact in its current shape
it has a very serious disadvantage for physical applications, since it does not allow the
formulation of gauge invariant actions.

In this ansatz, action integrals are formulated as inner products of forms. In commu-
tative physics, actions are often written in terms of the inner product of two differential
r-forms 1) and ¢, using the Hodge-* operator (note the different symbols for the x-product
and the Hodge-*). In an n-dimensional commutative manifold the Hodge-* is defined on

an r-form? |
6= G’ Ao N2, (5.37)

as

Vdet g P

*p = mﬂ%...me AN EARERRAY E (5.38)

Here ¢ is the metric defined on the commutative manifold. Recall the identities x1 =
Vdetg d"z and **w = (—1)"™ "w. The inner product of two r-forms is the integral over
the full spacetime times a measure:

(0, 6) = / W Ao = [ dre/detg . d. (5.39)

r!

All actions considered so far such as the Yang-Mills action and the minimally coupled
massive fermionic action can be formulated in the language of forms.

2Conventions are according to [126].
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In this geometric setting, gauge potentials are components of the connection on the
associated vector bundle of a principle bundle. Locally, gauge potentials are Lie algebra-
valued one-forms A° = iAzdx“. The field strength F) Ify are components of a Lie algebra-
valued two-form, F® = dA® + A° A A% = iF} da# A dz, fulfilling the Bianchi identity
dFP+ FONA"+ AP A FO =0.

To be more specific, the Yang-Mills action is of the form:

(F,F% = Tr /(iFl?,,d:U“ Adz”) A x(iFy,dz” A da”)

1
= —§Tr/d"ac\/detg Fp Fo. (5.40)

Similarly the minimally coupled massive fermionic action can be rewritten as the inner
product of spinor fields, which are forms of degree 0. The Dirac derivative is the sum of
two Dirac operators acting on the two spin bundles which together make up the exterior
bundle. The intricacies of the exact definition are however not important, since the k-
deformed space in our ansatz is considered to be flat. It is therefore sufficient to treat
spinor fields as fields of form degree zero.

Analogously, we want to formulate NC field theories in the language of forms. Accord-
ing to the prescription given in section 3.5, we can try to replace all point-wise products
with *-products. We see from equation (5.40) that this not enough. We also need a
suitable definition of differential forms which can be combined into a volume form. For
example in the Yang-Mills action, one of the two two-forms has to be commuted through
the field-components F’ 3,/ in order to be combined into a volume form. Frame one-forms
@ have been defined in section 4.6 such that they commute with functions, they can be
identified with the commutative one-forms @* — w* = dz*.

This means that the NC Yang-Mills action may be written in the following way, com-
muting the frame one-forms to the furthest left:

(F,F) = Tr/(iFWw“w”) A (1 Fppw’w?)
1
= —§Tr/w’“ cwhm Fyy ok (y/det gF™). (5.41)

The Hodge-* applied to the field strength tensor is proportional to y/det g. The authors
of [68] have found that y/det g can be identified with the measure p of section 5.1. The
measure u is the Pfaffian of the NC structure, given by

1

_1 v 2n—1M2n
= et (@ CL) =~ (ORI o (@R, (5.42)

Since z*CY” is degenerate at the origin and not invertible there, the origin has to be
excluded for defining u. Defining [69] in the abstract algebra a radius 7 in the (n — 1)-

. . A~ —1 Asas . . ~d A A .
dimensional subspace as 7 = /> . | &%, then the derivations #/0; and 9, have ordinary

Leibniz rules (cp. (4.20)). These derivations are identical to the commutative 779, and 9,
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(cp. section 4.8). These commutative derivations can be used to construct a commutative
metric

;_A

g=r" Y (dz*)? + (dz™)? = (dIn7)? + dQ2_, + (dz")?, (5.43)

i=1

with dQ2_, the (n—2)-dimensional spherical volume element. Therefore \/det g =7~ =
1. Note that in spite of this preference for us, we will continue to use only the properties
(5.8) for characterising p.

The measure y/det g = 1 appears as part of the action of the Hodge-*

1

#(1Fpowfw?) = m

Fape?, W W (5.44)

3...Un

If u should play the role of a measure as in section 5.1, it should multiply the volume
element. It can be extracted from within the x-product because of the properties of pu,
10, = —(n — 1), O,pu = 0, but this leaves additional derivatives 8, acting on the two
factors of the field strength. We expand up to second order (for two arbitrary r-forms v
and ¢):

Yx(ud) = o+ s p(OuiaI0s — wI0,0n6) — o (n — Vudud

a2

— g 1O T 0,000 — 27 0,0,a*04Du + 2720040} 0)

2

+“Z(n — 1) (0242706 — 27 0;0,10, ) (5.45)
2 n = Dm0+ (= 1026 — (0 = s+

Under an integral allowing partial integration, the derivatives 0, can be combined into
one derivative operator (9, commutes with the x-product and p), which we call K:

[ v u) = [@ou v (K0). (5.46)

Up to second order we find:

ia a*(n—1)(n—2) a?

_ o _ 2 Y 1o
K = 1+ 5 (n—1)0, o0; 12(n 1)0; +
ia a? n—1 —5a0, \n—1
= (+50—50h—)" = (m) (5.47)

Why we have dared to identify an expansion up to second order with an all orders expres-
sion might be surprising at this stage. Continuing the formulation of the action in terms
of forms we will rediscover this derivative operator from an entirely different argument.

Thus, we have constructed an expression of the action, in which the measure function
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appears naturally, outside of the x-product (using w?...w" = d"z):
(F,F) = Tr/(iF,ww“w”) * * (1 Fppw’w?)

= Tr/(iFWw“wy) * (ﬁFaﬁeaﬂ%“%w"?’ cw™) (5.48)

—
= 5T [ B (KP) = 3T [ dap B (KF®),

since u allows to eliminate one x-product. Note that the derivative factors that appeared
when we defined the forms £** do not contribute to this definition of the form. The volume
form £*1...&*" defined at the end of chapter 4.9 involved a derivative operator W.
-7
This derivative operator was the reason to introduce the frame one-forms and the derivative
operator was alloted in 9, dual to w* in d= 0,w". Therefore these derivatives are not a

problem provided that the frame one-forms are used.

5.4 Invariance of the integral over forms

The definition of the integral in section 5.1 is based on the measure p defined as part of
the volume element. This definition is motivated to achieve the trace property, invariance
under SO,(n) rotations has not been a guiding principle in the construction.

Therefore we will now focus on formulating an integral, such that it is SO, (n)-invariant
by definition. Since SO,(n) is a Hopf algebra, we have to adapt the notion of invariance
used in the context of integrals invariant under symmetry groups. Invariance can be
formulated in such a way that the action of an operator V on the integral is the same
as the action of V on the trivial one-dimensional representation C. This means that an
invariant action transforms like a complex number.

With this notion of invariance, we can construct an action from fields which are mod-
ules of SO,(n) from the inner product introduced in the previous section. If the field
zﬁ transforms under M #_ then the dual space, i.e. the linear form mapping 1& into the
complex numbers, has to transform under the antipode S (M #). The condition that the
antipode of an arbitrary Hopf algebra has to fulfil is

m(S®1)A =ne, and m(1® S)A = ne. (5.49)

Here m denotes the multiplication of two factors of a tensor product, 7 is the unit embed-
ding C into SO,(n), A the coproduct, and e the counit (cp. section 4.2). This condition
states the following: assume that an element of SO,(n) acts on a tensor product of func-
tions (equivalently forms) according to the coproduct. Regarding one of the two factors
of the tensor product as a dual space, the action on this factor in the tensor product is
dualised with the antipode. Multiplying the resulting expression, the product transforms
like a trivial one-dimensional representation would transform. In other words, the product
would be invariant.
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We can therefore prove the invariance of an action integral under SO,(n). We have to
verify that (we choose the convention that the dual space is the factor on the right hand
side of the inner product)

(M*4p, §) = (b, S(M™) ). (5.50)

Writing the inner product for two r-forms ¢y and ¢ explicitly, we obtain the condition that
(with the Hodge-dual form on the right in the inner product):

[ s« eo) = [ wxs@rm ), (5.51)

Note that in (5.51) the volume element d"z is still split up among the forms ¥ and ¢. In
the following, we want to check explicitly that this condition is fulfilled for our choice of
inner product. We can perform this check by partial integration.

First we repeat the definition of the antipode on derivatives and generators of SO, (n):

S(éj) _ —e_iaé"éj, S(é ) = _ém S(ez’aén) _ e—ia(’:‘n,
S(D;) = —e“nD, S(D,) = =Dy + iaD;D;en, (5.52)
S(M”) = —M", ( = —Nle —iadn _ zaMlkake’i“é“ —ia(n — 1)31671'“5".

The antipode of the coordinates z* € Aj; is not defined. In the approach of this thesis
the coordinates are not regarded as finite translations, i.e. as elements of the x-deformed
Euclidean/Poincaré group, the dual Hopf algebra of SO,(n). The coordinates in our
definition therefore do not have a coproduct, but the commutation relations of z# with
an arbitrary function can be considered formally as a coproduct (this leads to the same
result for the antipode as in the framework of the k-deformed group):

¥f@) = (e f(@), — W@l g =0,

ian(f) = f(i")fﬁn + (mfkékf(:%)), — "®1-1®3" —iat"d, @1 = 0,
S(@l) = iled, (5.53)
S@E") = " - iadpi® = 3" — iai* o), — ia(n —1).

We stress that these relations have to be taken with a grain of salt. We will use this Hopf
algebraic discussion of the coordinates only in this chapter.

The two operators which worried us in section 5.2, N' and ", are the ones whose
antipode involve factors proportional to (n — 1). The problem gets more obvious in the
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*-representation:

S(a*) _ S(a.eiaani_l) — _a.e_main_l S(a ) -0 S(eiaan) _ efia()n
J - J iad, - J —iad, n) — (3] s
e_iaan -1 eia,an 1
DY) = . —_P.
S(Dj) S(9; il ) = -9, o
1. Ok Ok 1. Ok Ok
* _ = 1 _ 1 .
S(Dy,) S(a sin(ad,) + a0, (cos(ady,) — 1)) - sin(ady) + N (cos(ady) — 1),
S(M*™) = §(x°8, —2"8,) = —z°8, + 2", (5.54)
1y = ! eman;l —z" emani_l ! eleon — ok e — 1 —iad,
S(N™) = S<$ On B "0 iao, + z' 0,0k 59, " OO ad? )
. _ 1 e*iaan + 1 n e*’iaan _ 1 ) e*’iaan _ 1 _ k e*’iaan _ 1 + Zaan
= —z'0, 5 +z 817—@'(18” +x 8195197_28" ko o)} a0
e—iaan 1
—1
+(n—1)9, o

The *-representations S(V*) are actually the x-representations S(V)*, we have calculated
them from (5.52).

The *-representations S(V)* are almost identical to the the result of partially inte-
grating V* under an integral fulfilling Stokes’ law. The result S(V)* is therefore almost
identical to the result of conjugating V* — V* (by partial integration). The difference is
that the antipode does not involve complex conjugation of i — —i. Of course, for this
partial integration we have to employ the integral definition involving the measure p and
the rescaling 0; — 5j = 0; + p;.

We give an example:

_ . ~e—z’a3n_1~ ~ B ~€z’a0n_1~
/M (Dﬂ/))*(ﬁ = /N (ajT.@le) *QS—/Mﬁ*(—ajwﬂs)
= [uis (= Djend) = [wix(sD3). (5.55)
Although with this definition we can treat in a satisfactory way almost all operators,

N* and again do not fit into this framework. The problematic piece is the factor
proportional to (n — 1):

e—iaan -1

SV ~ (0 =D

2
=(n—1)(—mal—%anal+...). (5.56)
Although we obtain a factor proportional to (n — 1) from partially integrating N* (from
the term proportional to z79;)

e "% — 1 +1dad, ia a?
1002 =(n=1)(=50~ 500 +...),  (557)

N 2h (- 1),

this is not the right term for S(Nl)*. Changing the definition of y or the rescaling p; to
account for the additional terms does not work, since this would spoil the behaviour of
other operators under partial integration.
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The only handle that we have to obtain new terms proportional to (n — 1) to fix the
antipode S(N')*, is to introduce a derivative operator which acts on the coordinate z™,
i.e. an asymmetrically acting operator K, which is a power series in the derivatives 0, (it
does not depend on coordinates 2* or on 0;). We define K such that for all V € SO,(n)
the following equation is valid, for two r-forms ¥ and ¢

[urdyed = [uix(k(s079)) (5.58)

To simplify the calculation, we eliminate on both sides the measure, the x-product and
the rescaling V* — V* by the field redefinition ¢ = u_%qb according to the prescription in
section 5.2:

Jororo = [o(k(s07)9)). (559

Note that ,u_% commutes with K. The result of the calculation does not depend on whether
this redefinition is performed or not.
The equation that K has to satisfy is therefore

P | ! e _ 1 e _ 1 4 jqd),
K (—ra N L L riad)
[ ( v —1a0), )] (n =10, On, * ia0?
0K —iad, ,ia0,e "0n 4 ¢—iadn _ 1
— = —(n-1 . K, (5.60
90, (n=1) =1 1002 ) K, (5.60)
_’La:an n—1
K = _
< c(e—man _ 1)

The solution is unique up to a complex multiplicative factor ¢ which we fix ¢ = 1, such
that K =1+ O(a), i.e. a well-behaved commutative limit.

This operator K is the same derivative operator that we have guessed as the remnant
of extracting the measure p from one of the two factors of the x-product. This means that
by constructing an action in terms of differential forms with the Hodge-* we have found
an action which is at the same time invariant under all V € SO,(n)

Vi, ) = (&, 5(V)9),

since
/ (1}* (Tﬁul_"urw’“ .. .w’“)> * *(QNS,,l___,,rw“l .. .w"r) —
= [ o7 (SO 5 (B o)),
5 N 1 B €YLVr -
& [ 1 (P G o)) o (K st ) =
— 7, 1 M1 W KS ]}* 7 €V1-:‘:LUT7:I>1---N7L Pr 41 Un
=K (/llblll...urﬁw W) ( ( )(d)m...wmw ) )),
1 V1 r ot
‘I’/ (V*(%l...urﬁw“l---w’”))(K(aﬁul...wﬁw“’“...w“n)) = (5.61)

Vi...Up

1 € 1ol 1
= /(djﬂl---ur ﬁw“l e w“T) (KS(V*) (qul...ur T‘!(M7+uwﬂr+ . wﬂn)) .

n—r)!
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The same is valid for the coordinates in the ad-hoc definition (5.53)

/ (&7m) (K ) = / B(ES@ETM). (5.62)

The last step in the derivation of an invariant integral is to extract from formulae such
as (5.61) the one-forms w* and to combine them into the volume form. We have to be
careful in performing this step, since N* acts non-trivially on the frame one-forms (4.129).
We derive the final result in two steps: first we treat the special case of the inner product
of two functions, i.e. two zero-forms. The Hodge dual of a function is proportional to the
volume form d"z. According to (4.129) d"z = @'...&" transforms as

[N, @b .. oM = —ia(n — 1)d,.
On the other hand
S(Nl) — _Nleiadn _ ia]\;[lkake’i“é" —ia(n — 1)3le_iaé”. (5.63)
Since [M7*,&Y. .. o™ = 0 and [9,,,&"] = 0, we obtain
S(NHYG...om =@ ... " (= Ntemiadn _ jq NG e—iadn), (5.64)
The term appearing at the right hand side of (5.64) is
_NHemiadn _ g Ak gremiotn — N (5.65)

where the bar denotes complex conjugation. Therefore we can equivalently rewrite (5.61)
for the case in which 1 and ¢ are two complex valued zero-forms:

[ @) @a) = [ () (k@ an) = [ (Ksehe a)
- —/d"x " (KW)). (5.66)

The same steps can be repeated, if ¢ and ¢ are r-forms. We may commute w* with the
coefficient functions (we regard the case, in which w' is in the first factor, the other case
is analogous):

V1 ..lp

1 €
l » . n Hrt1-e-fin
/ (N* (w’“ . w” ﬁw,ul---ﬂr)) (Kw“ +. .(A)u 7"!(n7-+——17")!¢1j1""/7')
1 l €
» . ” n pa4-1.hn
— / (wul W F(N* Yy ooy — Ga(r — 1)61*1/)N1___W)> (Kw# 1wt mqsul...m)

= [ (V) () —iatr =1) [ @ @) (K L

L 1 Mr l x| Mr MUn GUI.};I:TH---Nn
_/(w e ) (KSOV e ety ) (5.67)
pl Hb ri(n —7)!

'((_N*l)¢u1---ur + ia((n —1)—(n— r))al*e—ia@n ¢V1-.-Vr))

= / A"z Ppy.pyy (K (= NP7 +da(r — 1) / Az Py, (KO0 g1 07).
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Partially integrating the term proportionally to (r — 1), the result for complex valued
forms is:

[ (0 ) (KF) = = [0 vy, (KETm). (568)

This identity is valid by partial integration and taking into account the action on the
volume element and the commutation relation with K. From an abstract definition of
inner product we have derived a hermitian representation of N*\. More importantly, the
identity (5.68) shows that the action defined in terms of forms is invariant under N*.

All other operators M*™® and the derivatives D7 and 07 (no tilde) can be treated
analogously. The discussion of these operators is straightforward since they commute with
K and with the volume element d"z and they be partially integrated without harm (since
w has been eliminated).

We have achieved the definition of an invariant integral as an inner product of two
r-forms. This definition leads to an integral where the x-product between the two r-forms
is removed, but which has a derivative operator K acting on the Hodge-dualised form.
Under the resulting integral, all symmetry generators are hermitian by partial integration.

However, the integral just defined is obviously not cyclic, since from the outset we
have discussed an asymmetric setting: the x-product is not commutative and therefore it
matters whether the Hodge-dual form is in the first or in the second place of the inner
product. For the Hopf algebra setting, this however is essential: the order in the inner
product must not be reversible, since the module space and its second dual space, i.e. the
dual of the dual space, are not identical. We recall the result of section 4.2 that the square
of the antipode is not the identity:

S?(N?) = N* + ia(n — 1)9; # N°.

The generator N* acts in different ways on a space and its second dual. Therefore it is
clear that in formulae such as (5.61) we cannot simply partially integrate once more to
obtain the action on the second dual space. The construction of the bidual space has to
be redone from scratch. We will not perform the calculations once more, but they result
in an expression in which we have to partially integrate (1) and ¢ arbitrary r-forms)

[ (s () = [w(xsv). (5.69)

This indeed gives the correct result for the algebraic expression of the square of the an-
tipode. Because of this property, derivative operators such as K generally occur for traces
for general Hopf algebras [114]. The integral defined with such an operator is called the
quantum trace.

Note that the definition of this integral presupposes the interpretation of an integral
as an inner product. The integral over a field [ ¢(z) cannot sensibly analysed in this way,
especially the question of its invariance is not well posed.
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We have not been able yet to fully understand the usefulness of the quantum trace.
Variation in principle is possible with this definition of integral, since the action can be
varied w.r.t. one of the coefficient functions of the forms. In addition, the derivative
operator K can be partially integrated onto the other form:

[ (o)) = [ (o )ty s (5.70)

It is not clear how to define the products of several fields in this language. Most
importantly, a priori the quantum trace does not allow to formulate gauge invariant actions
from gauge covariant Lagrangians, since it is not cyclic. We believe that it may be possible
to formulate a gauge-covariantised version of the quantum trace (see section 6.4, so far we
have not been able to find a satisfactory solution).

The upshot of the discussion of this section is that we have to choose between formu-
lations of the integral which are either not invariant under symmetry transformations (at
least at face value) or not gauge invariant (at least at face value).



Chapter 6

r-deformed gauge theory

In this chapter, we will discuss gauge theory for k-deformed space, generalising the results
found for canonical NC space. Since the discussion of chapter 3 has been in-depth, we
will be brief here and emphasise only new features. Those properties of NC gauge theory
which arise only because of the x-product can be formulated immediately for arbitrary Lie
algebra NC spaces, this will be the content of the first section. The truly new feature is
that gauge potentials become derivative-valued. For discussing this issue, we specialise to
gauging the Dirac derivatives on k-deformed space. In this chapter we will also discuss how
to build actions on k-deformed space and we will gauge other derivatives to understand
generic features of derivative-valued gauge potentials.

6.1 Gauge theories on Lie algebra NC spaces

Every Lie algebra NC space with symmetric ordering can be represented in terms of the
BCH *-product. Expanding the BCH *-product in terms of the structure constants C4"”

h h?
fxg(x) = m ( exp (%:&Cﬁ”@u ®0, + ExACQ"’Cg”(aU ®1-1®09,)0,®0, +

i\ s
+5oCsrcr ey 8g5u®5gau+...)f(y)®g(z)) . (6.1)

Y,2—T

the enveloping algebra gauge theory is treated in analogy to the discussion in section 3.3.
We expand the gauge parameter A, and all other elements of the gauge theory as formal
power series in the dimensionless expansion parameter A of the x-product!. The gauge
parameter A, is a tower in the enveloping algebra that coincides to zeroth order with the
Lie algebra gauge parameter:

Ao =a+ AL+ FPAZ + - . (6.2)
We start from the consistency condition

z’éa/\ﬂ - iég/\a + [Aa * Ag] = iAaxB- (63)

IFor k-deformed space we replace a — ha.

107
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At first order in A, the consistency condition is almost identical to the consistency
condition for constant 6" (compare (3.55)):
. . ih y
AN = iba g —idpAg+[a, Agl=[8, Ag] = Al g = =l 3" B] = =2 C{"{ 9,0, 0,8} (6.4)
The shorthand for the first order of the x-product expansion: f ' g = %x)‘Cﬁ\wau fo,g
has been defined in section 3.4. We obtain a solution of (6.4) replacing in (3.56) 6* =
Y

1
Al = _Zx*cg‘“{Ag, o,a}. (6.5)

a

This is the usual hermitian solution, we shortly discuss the freedom at the end of this
section.

Also in higher orders in 7 certain terms in the solution of the consistency conditions
are analogous to the canonical NC space, replacing 0" with x’\C/’\W. We will call such
terms A¥%. All terms analogous to the canonical case in AX are of order k in the explicit
appearance of coordinates z. All terms in A¥ with explicit z-dependence of order j < k
have no analogon in the canonical case.

Such new terms appear at second order in h:

AN? = i0, NG — i0pAZ + [, A3] — [B,A2] = A%, 5 =
kS
: 12
_%xAcf”({auA}x, 8,8} — {8, A}, 0ua}) — [Aqs Agl-

1
@ T O O 10,050, 0,0, 5] — 752" CLCL ([aga”a, 0,8] — [0,0,5, a,,a])(ﬁ.ﬁ)

The terms quadratic in the explicit z-dependence are solved by terms A%’ (3.60):

1 v K
A(219 = ﬁx/’xdcg Ca/\ ({A;Ou {a/Ag, ohalt} + {Az, {Ag, 0,0 \a}}

+{{A4°,0,4%}, 050} } — {{F°,, A%}, Bra} — 2i[9, A°, 6,,(9)\04]). (6.7)

K

There is a new term proportional to 11—2 from the second order of the BCH expansion of

the symmetric x-product. In addition, there is a term in which a derivative is acting on
AL
1 . Lo
O, AL = —Z:c)‘Cf\‘ ({&,AZ,&,Q} + {Ag,@a&,a}) — ZC’(’; {Afu o,a}. (6.8)
The last term is not present in the canonical case. Explicitly using the Jacobi identity

CrClr + CerCy? + CL7Co# = 0 the hermitian solution for the consistency condition

including these additional terms is:
1 K g Vv N
AL =AY — aCCl ({Ag{Ag, d,0}} — 2i[0, A°, 6,,04]). (6.9)

Similarly, we obtain at third order in A terms which are linear, quadratic and cubic in
explicit = (the cubic terms are A3).
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We use (6.5) and (6.9) to construct a field ¢ in a representation of the gauge enveloping
algebra, transforming from the left. This field ¢ is a functional of the fields ¢° and A7, it
can be expanded in h:

=9y’ +hpt + B2 4 (6.10)

The defining equation for v is to first order
1
Salt = ALY +ianpt — 53:’\0/‘\“/8”(34 o,°, (6.11)
and second order in 7

1 1
0’ = MG il o — Do CL N, 0,90 — S O D, 0,9 (6.12)
1

i K v o
—gx’\ac O CP?9,0,00 0,0,1° + T

P8 (8,0,0 0,4° — Dy 0,0,0° ).

The terms analogous to the canonical case (0* — z*C") are called ¢*’.
The first order solution is:

1 1
Y=yl = -2 UL + (o O AL AN (6.13)
In second order, terms linear in explicit x arise from the BCH x-product and the action
of derivatives on explicit z-dependent first order solutions:

1 1
0,0y = —7CM AN 0,0} +... Dput = —S O AN+ (6.14)

Working with the hermitian solution for A¥ we obtain:

1
U= g OO (2i0, ALU° — 2iA50,0,0° — ASALO — 3ASASD
—2400, A% + 340 A2 A0y — 240 A0 A 0). (6.15)

uitotty uitvito

We have used 1%’ (3.67):

W9 = —2afa OO (0. AL + i ALALD, ON° — 0. AL AL + iF 5, AN

—iA%0, A0y + 2i ADFD 03 + 240 A2 A0, ° — A° A°A°8A¢°>

|7 (Vi i ue vt K
1 v . .
— 552" 27 CACl (2anAgaAA2w° — 20, A% AL A% + 25 A° A3, A%°
+il[0x A}, AY], AN + 4iADF ASy® — ADAQAD ADy® + 2A2A2A3A§¢0).
The adjoint field v is obtained by conjugation.
Still we need to discuss the ambiguities of the construction. We could start to discuss
the ambiguities systematically order by order as in section 3.6. For the main part, the
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analysis would provide the same ambiguities like for the canonically NC space. For exam-
ple, there will be the usual first order non-covariant ambiguity Ay = ic;z*CL"[A, d,a].
There is an additional freedom for Lie algebras, since in the expansion of A2 there are
terms proportional to a linear appearance of x. These terms do not have a counterpart in
the canonical case.

Instead of a cumbersome systematic analysis, we use the lessons learnt in section 3.7.
The non-covariant or gauge ambiguities are of the form A,£? with A- = §, - —i[a, -]
Demanding that the ambiguities should be hermitian, there are two possible non-covariant
ambiguities:

Aa£2’612 = Aacux"’”Cg"Cff”{aaAg, AB}
C1aT*CI7 O ({0,000, A%} + {0, A%, B, + i{[B,r, A%, A),
Aa£2,613 — Aaclgxno,gaogu{Aga [A?u AS]} (616)

= 32" CL Oy ({050, [A), A]} + 2{A47, [Oucr, A)]}).

v

These two new non-covariant ambiguities in a? and linear in z exhaust all hermitian
ambiguities because of the Jacobi identity.

6.2 Gauge theory and deformed symmetries

In k-deformed space, there is not only a deformed product between fields (x-product), but
in addition nonlinear symmetry generators act in a deformed way on products of functions.
Since the coproduct of symmetry generators is cooked up such that it respects the x-
product, it is clear that NC gauge theory (realized by *-multiplying a gauge parameter
to a field) is consistent with a deformed symmetry. However, a priori it is not clear that
this deformed action is consistent with an explicitly #-expanded enveloping algebra-valued
gauge theory.
Gauge transformations induce a map

b — Y =+ 6 = P+ iAg K. (6.17)

The enveloping algebra gauge parameter A, depends on «, Ag and their derivatives. The
solution of the consistency condition, expanded in Lie algebra quantities, has to transform
properly under the deformed symmetry. We check that it indeed does by discussing the
transformation behaviour of the consistency condition (6.3) and of the defining equations
(e.g. (6.17)). If these equations transform in a covariant way, the quantities derived from
them will transform covariantly as well.

The symmetry generators act with a deformed coproduct on the right hand side of
(6.17). We show that a field acted upon by a symmetry generator still fulfils (6.3). The
rotation N* acts on the field 1/ as follows:

=1 — gN"y, (6.18)
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The inner degrees of freedom (in the gauge group) of 1 and A, do not transform.
Applying first a gauge transformation (6.17) and second a rotation we obtain '

=P+ il %) — (¢ N*) — i N (A % ). (6.19)

The result of first rotating ¢ and afterwards performing a gauge transformation (6.17)
is called v '
V" =) — (N*h) 4+ ihg % h — i N (Ag % ). (6.20)

The two transformations commute:

v =y
el le (6.21)
v 5 P=9

The gauge transformation (6.19) can be written as a gauge transformation on Y
o) = ihg %0 + ihg * (e N*1)) — it N* (A % ). (6.22)

If the gauge transformation on the rotated field P is again an enveloping algebra-valued
gauge transformation, it has to fulfil the consistency condition (6.3). Using (6.17) and
(4.114) and computing dgd,1 from (6.20) we obtain:

(6500 — 6a0s) = (i(5ﬁf\a —0alg) — (AaxAg — Ag *Aa)> * 1)
—eN* (10500 — Galg) = (Mo * Ag = Agx Aa) ) %00
—¢i% (i(éﬂAa — Galg) — (Mg xAg — Ag% Aa)) « e N*ip (6.23)
+ia0; ( (65A0 — dalg) — (Aax Mg — Ag *Aa)) x e M.

The consistency condition (6.3) is fulfilled on the individual components and therefore
gauge transformations on the rotated field ¢ are again enveloping algebra-valued. Thus,
the multiplicative structure of the enveloping algebra-valued gauge theory is covariant
under deformed rotations.

Derivatives have to be defined in such a way that they are both covariant under gauge
transformations and under deformed SO,(n) rotations. Since we have introduced the
Dirac derivative D, in section 4.2 such that it fulfils the requirement of covariance under
SO, (n) rotations, it is a suitable candidate for a derivative. We discuss general issues of
the covariant derivative for clarity first in the abstract algebra.

To fulfil the second requirement and render the Dirac derivative covariant under gauge
transformations, we proceed as in ordinary commutative gauge theory. The derivative of
a field D,ﬂ/} has a different transformation property under gauge transformations than the
field w Therefore we add as usual a gauge potential V to obtain a derivative, which is
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both covariant under SO,(n) and under gauge transformations. This covariant derivative
is denoted D,:

Db = (D, — iV,), such that 6,000 = iAaD,h, if  Gath = ihg1). (6.24)

In order to determine how the gauge potential \A/“ transforms under gauge transformations,
we have to express the previous equation without the field ¥ on the right hand side. But
there is a difficulty, which can be seen writing (6.24) with brackets:

03V = D, (M) — A(Dyp) — iV, (Ah) + iAy (V,2)). (6.25)
Since the Dirac derivative Du has a nontrivial Leibniz rule, in components

Di(h )= A(D; ) = (Dih) e, (6.26)
Do(A Y= AD, ) = (DyA) e . +((e“% —1)A) D, - +ia(D;e"™A) D;-,
we can not reduce the first two terms of (6.25) to (D,A) and therefore
6,V # DA — [V, Al.

Equation (6.25) together with the identities (6.26) can only accommodate gauge po-
tentials Vu if we define them as being derivative-valued. This means: If a derivative-valued
gauge potential Vu = A,\Cﬁ‘”é,, (Cl’)“ some complex constants) is multiplied from the right
hand side with another field, the derivatives are evaluated on the field Vu¢ = A, Py (B,1)).
If the gauge potential is multiplied from the right with products of fields, the (deformed)
coproduct has to be used.

The two components VJ and V,, have to be treated separately because of their different
coproducts. First we examine the simpler case VJ Using (6.26) we introduce the physical
gauge potentials /Alj

‘A/vj — Ajefiaén’ that is ‘A/'] . qﬁ — Aj . efiaén,&_ (627)

The shift operator acting to the right constitutes a new interaction. Since the gauge
potential flj is accompanied with this derivative-valued operator, 1 is shifted by e~iadn ip
all terms on the left and right hand side of (6.25). Therefore e‘iaénzﬁ can be eliminated
altogether. Thus, the physical gauge potential /ij has the following behaviour under gauge
transformations: A
63 A; = DjA —iA;e A +iAA;. (6.28)
The Leibniz rule of the Dirac derivative D,, is more complicated than the one for ﬁj,
therefore the gauge potential Vn is suitably split Vn into several distinct parts. Because of
(6.26) a splitting of V,, into three different pieces (not three different degrees of freedom)
is convenient?: )
Voo = Ay e7 . 4 AL \D; - + A, 3D, - (6.29)

2Later we find that it is more convenient to split the definition of V,, into five pieces for practical
calculations.
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With the help of the definition (6.29) we can rewrite (6.25), carefully keeping track of the
Leibniz rules of D,:

Sidns = Dok —iApse A +ikAyy — id DA — iAuaDd,

’

63 AL, = iaD;e A —iAl JA +iAAL 4+ aA, 3Dje A,

’

§iAns = (€% —1)A —id, 3¢ A 4+ iRA, ;. (6.30)

The equations for fln,l and 121%’2 do not close, the three relations (6.30) have to be solved
in parallel. The additional index j in AZZ,Q signals that this j explicitly appears in the
defining equation for AZZ,Q

Before we solve these relations, some conceptual issues need to be discussed. The gauge
potential Vu has been defined as a vector field transforming vector-like under SO,(n), like
the Dirac derivative. In section 4.7 we have shown that vector fields corresponding to
the Dirac derivative can be defined easily. The problem arises comparing the defining
equations (6.28) and (6.30). Transforming for example [N, (ﬁf\)] #+ D, A, we see that
we do not obtain the vector index structure of the derivative on A that might have been
expected. Since V is a vector field, the first expectation would have been that Au is a
vector-like transforming field as well. This need not be the case, since we have seen in
many examples, that a composite operator may have linear transformation propertles (e.g.
the Dirac derivative can be expanded in terms of 9 ), While the components (e.g. d ) have
a complicated, nonlinear transformation behaviour.

Of course, we expect a well-defined transformation behaviour of the fields A, defined
here, but it is probably not the best strategy to derive it from the defining equations
(6.28) and (6.30). We defer a discussion of the transformation of the physical field for
later research, this topic can certainly be discussed easier in the generic k-deformed space.

In addition it may be asked whether the particular derivative operators acting to the
right are stable under additional gauge transformations. To analyse this question, we
perform a second gauge transformation on Vu (we only treat VJ) Concretely we perform
a second gauge transformation on both sides of
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and obtain

((51\15 6A25A1) )&"‘z( A
D;((63,A2 — 63 A1)@E
/ Ay)

—iV;(63, A0 — 63, A1)0 0

+iD; (Ao (A1v)) — iAo Dy (Arep) + Vi (Ao(Ard)) — AsV;(Ase))

—iD, (]\1([\212)) + A Dj(Ayt)) — Aj(Al(f\zl/A))) + AV (Agd))

—i(63, V3) (Rat)) + (53, V) (Aawd) + iRa (85, V)t — iha (65, V5) )
= Dj(AIXQ b) — JA\1><21A)]'1/A1 VA ><21/AJ+Z'/A\1><2‘A/]'1/AJ

Thus, it has been shown that two consecutive gauge transformations close on a gauge
potential multiplied from the right with a field. Therefore the derivative operator acting
to the right is left unchanged. For Vn, the analysis is analogous and the result identical.

In addition note that the coproducts of the derivative operators appearing on the right
close in the derivative operators present after one gauge transformation: the shift operator
of V has a group-like coproduct Ae~ia0n — ¢=iodn g e’iaé", applied on arbitrary functions
to the right, no new derivative dependence appears. For Vn, an arbitrary number of
coproducts of the three derivatives Dn, D and e~ is again expressible by these three
operators alone.

6.3 Gauge potentials expanded up to second order

First we examine the vector field component V;. According to (6.27), it acts with a shift
operator to the right:

Vih = Ajei@ngh — Vi kip = A; x e 190y, (6.32)

The gauge potential A; is the enveloping algebra-valued, physical degree of freedom and
terms with derivatives acting to the right must not be counted doubly. In addition, the -
multiplication between A; and a field on the right is of course not expanded in determining
the enveloping algebra gauge potential A;.

We expand the x-representation of ﬁj (4.43), with the replacement a — fa:

e—ihaan -1

A,. (6.33)
The enveloping algebra gauge potential which in zeroth order is the Lie algebra gauge

potential A)
Aj= A0+ hA; + BPA  + ... (6.34)
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is constructed as a solution of the following equation:

efihaan -1 )
6 dj = 0j—————No —iA; % e PN, +iA, x Aj. (6.35)
—ia0,
We solve this equation order by order in 7 to determine the dependence of V; on Ag, in
first order in A:

SaAl = 0;AL — 2 5 Onds0 — aAldha — A}, AL + x)‘C“”{auAg,@,,a}. (6.36)
Already in first order, there are terms different from the canonical case (compare section
3.3):

J By

A = ——a A9 — 2445, A0} + xAC“”({FO A0} — {4, 0,40}
= _EanAg— Z{An,Ag}—i-A}". (6.37)

A;” again is a shorthand for the part of Ajl- analogous to the canonical case, replacing 6*”
with 2*C}{” (3.70). Also recall that C}" is proportional to a, all terms in A} are a-linear.
For A?, we have to solve the defining equation:

a? ia ia?
(5aA§ = ——6~82a — —aj(')nAl + 8-A2 + —A982a — aAl-a o — aAqanAi — aA? * 0,
z[AO A2] — [A(J)- AL — A A a] i[A}, AL] —i[Af 5 o] —i[A7,a).  (6.38)

A hermitian solution of (6.38) is

2
a2 = A “_ananAM—a {A0, A% — —[6 A A°]+—{A {An, 471}

_la SO} (200 ({FSy, ASY = (A}, 0,A7)) = [0aAD, F})] = [(0nAS + 0,49), 0, A7)

By

uyo

AFu A —{AL {44, 0043} 1 +{F {40, A)Y)) - (6.39)

IO

(20
+— ACY ([0, F;, AD] — [0n A7, 0,A9))
CI, )\Cul’(

C“”({{ WAO} A7y = {4, 0.A0% ATy + {{F), AV}, AL}

By

—{{A3, 0,40}, A0} + {8,450, A%}, AT} + 2{FY, A0}, AT} ).
We conclude that it is possible to expand the gauge potential A; in the enveloping algebra
up to second order. There are no hints that equation (6.35) could not be solved to all
orders, although we do not yet have an all-orders scheme available like in the canonical
case.
The coproduct of D} in turn has made it necessary to split the gauge potential V,, into
several parts (6.29). The splitting is only a tool, important for explicit calculations. After
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determining the distinct parts of Vi perturbatively, they have to be joined together into
one expression.

Expanding the Dirac derivative D,, — Dy in terms of the classical partial derivatives
Oy, we see that Dy is made up of two different derivative operators, one proportional to
OrOk, and another a function of d, alone. This motivates a further splitting in comparison
with (6.29). We find that the most suitable choice for efficiently calculating V;, is to split it
into a sum of five physical gauge potentials A...E, each with different derivatives acting
to the right:

~ o A A . A PN A ~os ) 1
Voo = An,Aajajema" AL g0 0 L Al e O 4 A - ~sin(a 0n) - +Ancos(ad,) -
. —ia0n __ 1
Vn *x: = A A * 0; 8J a (cos(aan) — 1) . +A3L,]B% *Gje_Ta -+ (640)

) 1
FAnex e -+ Aup x - sin(ady) - +An  cos(ady) -

To evaluate an expression of the gauge potential multiplied on the right with a field order
by order in A, the derivative operators acting to the right need to be expanded as well.
For calculating the physical degrees of freedom A, 1 these derivative are not used, neither
are contributions included from the *-product which stands to the right in (6.40). There
is no double counting: AZZ(C derives from the part of D} proportional to 0;0;, A,p and
A g from the part proportional to sin(aé ). A“C carries upper index jj indicating the
sum over the n — 1 undeformed directions. Similarly, A g has one additional upper index
J summed over with the index in 0; acting to the rlght

The defining equations for A, ;, I = A...E are not independent, since the derivatives
in V,, x (As * ) act according to non-trivial Leibniz rules. The defining equations for A,
and A, ¢ depend on A, », and A, p and A, xr mutually depend on each other. We obtain:

1a

SoAns = E(e“’mf’" — DAy —iApp* ™Ay +ihg * Ap s,
) ethadn _ q o . ethadn _ 1
60414';/,]3 = a? TAa - Z[A%,B ’; Aa] - 22An,A * a] WAO”
0 AT = - 32 ——0,;0;(1 — cos(lady))Ag — iAV x e Ay + Mg * A
. 20,0; o e~ thadn _ 1

_ZAn,A 2 282 (1 — cos(haa ))Aa — ZA%,]B * aj Taan/\a, (641)
dadnp = (cos(had,) — 1)Ay — iAnp * cos(had,) Ay + iAo *x Anp

+iA, g * asin(had,)A,,

SaAng = % sin(hady)Aa — iAn g * cos(had,)Aa + iAo x Apg
1
—1A,p* . sin(had,)A,.

The Lie algebra gauge potential A)) is the zeroth order of A ;, AY ;=0 VI # E. This
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can be seen from the dimensionality of the equations. The expansion
Ay =A +R(AL p+ Arp+ Arc+ AL+ ALE) +. .., (6.42)
can be solved order by order. To first order in i we obtain:

SuAny = —ilApa,al, Sadpt = iadjo — (A%, o,
5. AL = %aja-a —i[AL#, o] — iALL 050, boALy = —i[ALpal,  (6.43)
Sadpe = Onlq —ilAng, o —i[A}, Ag] —i[A} 1 o] —id, O .

The equations (6.43) have the solutions (with A, as in (6.5)):

1,5 . 1jj _ o
AiA = 0, AH{B = zaAQ, Anfé = EajA‘; AOAO A}L’D =0,

7777

Mg = O (R, A%} — (40,0,40)) = A, (6.44)

The equations for A2 n are:

2 _ _a_2 T A2
baAp s = 5 Ona — i[ A7 4, 0,
. 2 . .
Sa AL = _¢ — Ondjcx + iad; AL —i[A%, o) — A, AL — (A o] — 2iA2 050,
Su ALY = EajajAl (A, o) — i[AE " o] —i[ANE AL — aALH 0,0

—iA2 ,0;0;00 — EA;’fBajana — AL+ Oy — iAEOAL — 1AL 0,0,
2
Sa A2y = —%anana i[A2 ., 0] + ia® A%, (6.45)
2
0 AiE = anAi - %ananana - Z[Ai,Ea ] Z[An E> Al] - Z[AO AZ]

—i[AQ ¥ AL — [A}]E L] —i[AY ¥ o] + %Aganana — iAi,Dana.
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Using A2 as in (6.9), we obtain the following result for A? :

2
A2 — _a’_AO
n,A 2 n’
; a? ia? ia ”
AL =~ oA+ T, ALY+ Ly (S, AN} — {42, 0,40} ),
2,55 m2uuo 0a2000“2Auu 0 A07 A0 0 407 A0
AP = ZoOM (A7, 0,AD) + SASIAY, AS) + T O ({{EL, ATYADY + {{0,45 AN AL} )
-
ia Y
+ T O ({0l ALY — (A0, 0,0,A%) + 2,0, A5 + 20,40, 43
2 -2
A2, = —%anAng%AgAg, (6.46)
2 a’ o, ta’ 040 , 8 00 40 @ 0 40 40
Ay = =200, + S0, ALY + A0, AL + S AL ADAY

1 g v . .
58O Cl (= 2i[0, S, A%+ 2i[0, A%, 0,4%] + {40, {FD,,, A4}

—{AD, {AD,0,A0}} + {FB,, {43, AS}}) + A2°.

With these solutions for V;, and V; to first and second order we calculate the field
strengths F,, = i[D,,D,], they are derivative-valued again. We consider separately the
two cases F;; and F;, of course F,, = 0. The separation of the derivatives

Ej * - = E] * e—2ia6n . (647)
leads to the physical field strength:
Ej = D:A] — D;(Az — ’LAZ * €7iaanAj + ZA] * 67ia6"Ai. (648)

We have explicitly checked that this derivative-valued field strength F;; (6.47) fulfils the
Bianchi identity DyF;;+ (cycl.)= 0, acting with the covariant derivative on (6.48)>.
The first order in A is obtained inserting the solution for A;:
a!
F% = m)‘Cﬁf (i{F;?z:

—iadp Fy) — a{AD, F}}. (6.49)

1 1
0 0 70 0 0 0
F} + 7 {DMFS, AL} — {45, 0,F5})

i)

Now we include the derivative action of F;; to the right, i.e. in first order in 7 the term
—2iaF£-8n. The x-product which is standing to the right of F;; is not expanded, of course.
We can combine the derivative-valued term with the terms in (6.49) into

Fij = Ff — 2aFD) — iaD) F;) (6.50)

n-ij°

We see that we can successfully rewrite all derivatives acting to the right into covariant
derivatives. The terms without covariant derivatives to the right are the sum of a term
analogous to the case 8 = const and a fully covariant term.

3We have not checked explicitly the Bianchi identity with n as part of the index structure.
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In general relativity, the commutator of two covariant derivatives is the curvature plus
a term with a covariant derivative acting to the right, the torsion. General relativity uses
only the torsion-less Levi-Civita connections, demanding explicitly that torsion vanishes.
A similar situation arises in k-deformed gauge theory. However, there is an infinite number
of torsion-like terms (we have only looked at first order in (6.50)). We can impose the same
condition as in general relativity and extract from F;; the curvature term F;;, demanding
that all torsion-like terms explicitly vanish. Of course the curvature term Fj; is itself
enveloping algebra-valued and has contributions from all orders in A.

However, the splitting into curvature- and torsion-like terms is not trivial. The cur-
vature and the torsion term (at first order) are hermitian taken together, but not the
curvature term without the torsion (Fé-a is hermitian by itself):

. 0 0 . OFO _ . ﬁFO . DOFO part. int. . FODO . 0 0
—21aF;; D}, — iaD) Fj; = 2iaD, Fy; + iaD, Fy; "——" —2iaF;D,, — iaD, Fy, (6.51)
in contrast to
—iaDYF)} = iaD) F}). (6.52)

While the splitting of F;; into curvature- and torsion-terms is a promising ansatz, the full
Einstein-Cartan field strength F;; could be investigated as well. We will not formulate this
theory, since at present we are not able to formulate it properly in a Lagrangian setting.

The second order field strength FZ% has already a quite rich structure. We have not
managed to calculate the z-linear terms F%-‘@(wl) so far, since the number of contributions
is very large. The z?-dependent terms are analogous to the canonical case. The terms in
FZ% which do not depend explicitly on = are:

F2| = —7—a288F0 a0, { A% F? %A()&FO
ij|0@o) = 19 On0n a0 { Ay, Fii} + 6 (A, OnFij]
5ia® 0 0 5a” 0 40 0 a’ 0 0 A0

We have not managed to calculate the x-linear terms F£-|@($1) so far, since the number of
contributions is very large.
The terms with derivatives acting to the right hand side are the following

—20’Fj0,0, — 2iaFj0, = —2a°F) DYDY — 2a°(DIF)DY — 2iak; DY (6.54)
—2ia” (0, AY) — 2ia® (0, F)) A — 2a° A) L AD + 2aF A,

which we can combine with (6.53):

2
0 Ta

2 2 170 0 Y0 2 0 0 010 0
f:ij‘o(ﬂﬂo) =—2a E]ann —2a (DnEJ)Dn - ﬁDnDnﬂj

There will also be a torsion term linear in explicit  at second order in a.
The field strength involving an n-index F,;

by = i((Da = V) (D; = iV5) = (D; = iV;) (Do = iV2)), (6.55)
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can technically be treated in the best way performing the splitting according to (6.40).

Therefore we also introduce field strengths F,;a, ..., Fnjr, such that
Fnj = Fujax DiDjy - +FEgx Die 9 . 4 Fjcx e %0 .
1 ) .
+F,p* (5 sin(ady,)e"" - ) + Fjm * (cos(ady,)e 0 ). (6.56)

The individual components can be calculated from the following equations:

FnjA = —%(ei“a" — 1)AJ — D;AnA — GApa % eiaa"Aj + ZAJ *6_ia6nAnA,
Ffy = —ia(DjA;) — (D;Akg) — 2iA,, * (Dje % Aj) — iAfp x Aj +iA;x e "0 Aky,
ia ] - * Ty ia . *
F. = —§D;D,‘;em8"Aj — (D} AEE) — iAny * (D;Dye' Aj) — iAly x (DjA))
—i(Ang ke 10 Ag) +i(Aj K e ATR), (6.57)

Fojp = (cos(ad,) —1)A; — D} App — 1A,p * cos(adn) A;

—iaAng *sin(ad,)A; + iA; * e 0 g .
1 1
FnjE = - sin(af)n)Aj — D;An]E — ’LAn]D) * — sin(a(?n)Aj
a a
—1Apg % cos(al,)A; +iA; % e 0 A o

The result is to first order in A:

Fojalo@ = 0, Frslo@ = —iaky;,
1a a
F,’ffd@(a) = _EakFlgj - E{Ag’Flgj}a Fujplow =0,
1a a
Foelo@ = _5871}?7?]' - 5{142’177?]-} (6.58)

! 1 1
+ar O (P FY Y + DRFY, A%} - 1{A% 0,F} ).
Finally, we combine the different parts of F,;;, I = A, ... into one expression. Adding
the terms with derivatives on the right hand side and linear in & we obtain the following
expression:

1a 10 a a
Frj = Fof — Eaanj + EakFI?j - §{A2, Fp}+ §{A2, o}

—iak,);0, + iaFy;0 (6.59)

0 - 1a . ia
= Foj —iaFy;Dy — 5 DuFyj + iaFi Dy + S Dy,

Again there are curvature terms and torsion terms. Following the approach mentioned
above, we ignore the torsion terms.

The second order terms for ]-",%j have not been calculated yet because of the large
number of contributions.
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6.4 Gauging other derivatives

In the previous section we have gauged the Dirac derivative lA),L. For physical applica-
tions, this is the right choice of derivative operator because of its transformation property
under SO,(n) rotations. However, studying enveloping algebra-valued gauge potentials
corresponding to derivatives 3u, we may learn also more about the structure of the Dirac
gauge potential, since the two derivatives are related by a change of basis (4.46). This
study is the content of this section. Since the ansatz is identical to the previous section,
we concentrate on the results. The gauge potential corresponding to 8, will be called v,,
the physical gauge potential without derivatives acting to the right A4,,.

The derivative 3n is the simplest derivative which can be defined on the x-deformed
spacetime, because it has an undeformed Leibniz rule and its x-representation 9, is just the
commutative 0,. Gauging 0, by expanding the enveloping algebra-valued gauge potential
Vn, we therefore expect a particularly simple expression. In particular, v,, will be different
from a gauge potential for a derivative in the case §*” = const only w.r.t. the higher orders
in the BCH x-product. Because of the undeformed Leibniz rule v, = A4,, and

Sadn = Opa — i[An * Ad), (6.60)

with the following first and second order solutions:

1 v
-’4711 = Z:C)‘Cf\t ({Fp(t)n’ AB} - {Aga 81/‘42}) = A}LO’
A2 = AP f—zxkogaog"([aaan, A% - [9,4°,0,A°)) (6.61)

I
+5,7 CX G ({AG {Fns AV} + {Fn {45, AU} — {40, {40, 0,40 1}).-

In first order, A, coincides with the gauge potential found in the canonical case. There
are new terms in second order, linear in the explicit z-dependence. The solution (6.61)
is a generic result for an arbitrary Lie algebra space, provided that an exterior derivative

with undeformed Leibniz rule can be defined on it.
The gauge potential v; corresponding to J; = 0; et:jg_l has to be split into two com-

n

ponents (cp. the discussion of D}), because of its nontrivial Leibniz rule:

Vj*-z jl*-+A(j)2*8;-‘- . (662)
This splitting leads to the two equations

5&-/4]'1 = a;Aa - i[Ajl H Aa] - iA(j)Q *a;an (663)
da A2 = (eiaa“ —1)Aq —iA(jy2 * e A, + Ay x Agyz - (6.64)

We solve these two defining equations separately. A(;)2 does not depend on the index j at
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all, it has the following first, second and third order solution

1 .40 2 a’ 0 ia’ 040 |+ 41
A(])Q - ZaAn, A(J)2 - _EanAn + TAnAn + ZU/An,
s 3 3 3 -3
Ay = —20,0,4% — 09,4249 — L 429,40 + L 42404°
6 6 3 6
2
a v
-5 ({aann, AD} — {A°,0,0,4°} — 2F°, 9, A% — QauAganAg)
. 2
ia y .
ot OB (AL AS, i1+ {45, {0,40, A0} ) + i (6.65)
-3 3 3 -3
- —%ananAg - %anAgAg - %AganAg + %AgAgAg

2

The second component of v;, A4;1, has been calculated up to second order:

ia’ 140 0,1 0 .1 40 a’® 1|+ 42
+—(AnAn+AnAn+An* An) — S Oudl +ia AL

o 0, %r 40 40 10
Ajl - gaJAn—i_Z{AnvA]}—i_AJv

A2 = _%QanajAg + gan{Aﬁ, A} + %[anfl?a Al
I 0,0, 4% + 22 A0 A0+ a0 a2
O (110D, A% ~ 110,49, 0,49 + %{@Fﬁm A} - %{AZ’ 00, A}
R A + 500, AL A + 50, AL, AD + T F0, AL + 10, ALEY,

a a a
a

@ 0 407 201 _ ST 0 401 40

wjr v

F)lA), AD) (6.66)

14

35 (10,49, AL A0} + 2 {{0,45, 40}, AY)
_ % r19.49 A0 401 _ &
24{{89AH’AI/}7ATL} 24

The commutative derivative 0,, is a very suitable basis for the gauge theory because
of the undeformed Leibniz rule. It also does not act on the explicit z-dependence of
expanded solutions, #*C§" ~ z", it acts only on the Lie algebra fields A%. Therefore
we may immediately conclude that products of covariant derivatives D, = 0, — iA,, are
covariant under gauge transformations as well:

0 407 40 a 0 407 A0 0 20
[Py, AR, A%+ 2 {{1AD, A%, A%}, AD}) + 420

g’ n

Dy * Dp = (O — 1An) * (On — 1An) = 02 — 10 Ap — 2iAn0p — Ap * An. (6.67)

The gauge potential A, is only sensitive to the noncommutativity due to the x-product.
This motivates an attempt to rewrite the complicated expansions of enveloping algebra-
valued gauge potentials derived in this and the previous section in terms of x-multiplied
functions of D,,.
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So far this strategy is quite speculative, we have not been able to derive results beyond
second non-trivial order. Future research has to show whether this programme can be put
into practice. However, it is clear that we may formally covariantise derivative operators

like the shift operator et — eiaDn

S . This implies a covariant shift operator:

Sa (9P 5t} = iAg x (9P 5 4)). (6.68)

Expanding the exponential, we may check that this identity holds order by order. Similarly,
we may gauge other derivative operators which only involve 0,. In section 5.3 the operator
K = ( —iady )nf1 has been defined, which is the result of extracting p(z) from under the

e—1%adn _1
*-product. We replace 0,, by D,, and see that K can be gauge covariantised:
_iaDn n—1 . —iG,Dn n—1
(Sa ((e—ia'Din — 1) * ’(p) = ZAa * (m) * w (669)
* *

We may ask whether this gauge covariantised operator is the solution for the problem of
formulating a simultaneously gauge- and symmetry-covariant integral. While we believe
that (6.69) indeed solves the problem of the missing gauge covariance of K, it seems
that we are losing at the same time the essential property of K. We introduced it such
that commuting N* through K results in the antipode S(N*). We are not aware, how
to accommodate this covariantised factor (6.69) without having to cope with an infinite
number of x-multiplied gauge potentials. Of course we could always limit ourselves to
discuss only expansions in a, but still the underlying structure should be rigid.

Another important structure arises, if we compare (6.65) with (6.61). Since (6.64) is
an exponentiated version of (6.60) involving only derivatives 0, it is reasonable to expect
that (6.65) can be formulated as an exponentiated version of A, (6.61) as well. However,
this exponentiation involves both the physical gauge potential and the derivatives. The
derivatives must not act to the right. We may multiply the inverse shift operator from the
right to subtract the freely acting derivatives

A(j)2 * = ’L'(eia(anii‘An) * e 1a0n _ 1)- , (670)

where A, is the gauge potential corresponding to 0,. Note that an expression similar to
(6.70) appeared in section 3.1 as the gauge potential for covariant coordinates. This object
has been derived in (3.29) as the quantisation of the flow in the Poisson manifold which
turns an Abelian gauge potential into a non-Abelian one. We expand (6.70) to verify its
structure:

o . 2 ia)?
el —idn) =it _ (1 + 100, + aA, — %(an —iAn)3 + tia)®

a’? ia®
(1 —4ad, — —0? + —0> +...
(1—iad, 5 o5 + c o +...)
a? ia? a?
= 1+aAd,+ EAn * A, + 7(anAn) + EAR * A, * Ay, (6.71)
-3 -3 3
+%An *x (OnAn) + %((%An) * Ap — %(8n8nAn) e
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We see that up to third order, the terms of (6.71) coincide with those of (6.65).
The combined gauge potential v; is v; x - = vj1 x - + v()2 * dj-. Using the explicit
expressions (6.70) and (6.66) and adding 07 we obtain the covariant derivative

Dy = 85 - —ivj % - = €O —iAn) y greTiadn . gy, . (6.72)

The formula (6.72) seems to be a good starting point for generalising the transformation
behaviour of derivatives 9; (4.33) to the transformation behaviour of covariant derivatives
D,. The simplest relation to check would be the generalisation of the transformation

Nt ot =0r, = [N D=0 (6.73)

Note that we have already discussed in section 4.7 the transformation behaviour of
vector fields. But there we assumed that vector fields appear linearly in the transformation
formulae. Presupposing that formula (6.72) is not only a pathological coincidence, we
would have to analyse a transformation behaviour, where the vector fields A, appear
non-linearly on the right hand side. This question is still under research.

Functions of the NC gauge potential A, appear also for the covariant coordinates of
the k-deformed space, cp. section 3.1. The gauge potentials A% are calculated from

0o Ay = —i[z" 3 Aa] — 1[AF % Aql. (6.74)

For z-dependent *-products it is more difficult to calculate the potential, A¥ # 22CL" A,
Although in the x-deformed case [z7 * A,] = —iax?0,A, and [z" * A,] = —iaz*OxA,, the
explicit z-dependence carries over to the potential and [z” A% , ¥ A,] # 2”[AL , 5 Ay]. This

is a similar effect like the one for covariant functions for canonical NC space. Up to third
order we find:

X' =al+ A = 27(1—aA) — a4, + AOAO—aA + = (A1A0+AOA + A% %! AY)
_a

— A% A%A° 4 —[a A A%+ O(aY) (6.75)

6 n-"mn-"n

. . ia®
X"=2"+ A" = 2" —iaz®AY —iaz® A}l +

’“{A Ay +0(a®) . (6.76)
The covariant coordinate X7 has an interesting structure. The first three orders seem to
indicate the following expansion:

X7 = gie A 4+ O(a?). (6.77)

We have to include higher order terms, since the last term in the third order expansion
(6.75), which arises due to the second order BCH x-product, is not covered by the symbolic
notation (6.77). The covariant coordinate X™ has a complicated structure already at
second order, there is a symmetrisation {A% A%}.
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As a final application of these speculative considerations we analyse possible relations
between covariant derivatives D, found in this chapter and the covariant derivatives D,
corresponding to the Dirac derivative Dj.

This is necessary not only for aesthetic reasons, but because of assumptions made in
section 6.3. We have chosen the Dirac derivative as the basis for the physical generators
of translations. However, among the derivatives acting to the right in the definitions of
the gauge potentials V,,, there are also shift operators e 19 expressed in terms of 0,.

We assumed that the field strength corresponding to the commutator of two Dirac
covariant derivatives F,, = i[D, * D,| can be split into a curvature-like term and an
(infinite) power series of torsion terms. We have shown that this splitting works to first
order. But the infinite series of torsion terms should of course be expressed in terms of
the covariant Dirac derivative.

While ordinary shift operators e %% can be written in terms of Dirac derivatives
according to the formula (4.45)

=100 — —iaD, + \/1- a2ﬁul§u,

we have to verify the corresponding statement for covariant derivatives. We have to check
that the following identity is true:

e, ""Pr = —iaD, + /1 — a?D,, x D,|,, (6.78)

*

where D, = 0, — 14, and D, = D; —1V},. We have checked this identity up to the second
(nontrivial) order, i.e. the third order in a of (6.78).

Whether the speculations of this section about the possibility of rewriting formal ex-
pressions valid for the xk-deformed space in a gauged way can be put into practice is not
clear yet. Certainly it would be an attractive strategy to be able to replace ordinary deriva-
tives by covariant derivatives everywhere (using x-exponentials). In some cases this may
be possible, in particular concerning all derivative operators involving only 0,. But still
this approach is probably very limited, since for all formulae involving other derivatives,
we need at least a strategy to coherently symmetrise different vector fields.

6.5 k-deformed gauge theories and the action

With the results of sections 6.1 and 6.3 we have almost all ingredients available to construct
an action functional with the help of the integral defined in section 5, using the measure
function p(z). The Lagrangians which we would like to consider are the same that have
been discussed in section 3.5, but here the derivative is the Dirac derivative:

Yang-Mills  Lyy = &Tx(F % ™), (6.79)
Minimally coupled fermions — Lyep = i) % ¥*D,10, (6.80)

Fermion masses  Lyp = my x 1, (6.81)
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and the action functionals

Sy = cIr / d"z p(z) (F = F*), (6.82)
Sucr = i / d"x pu(z) ¥ * "D, (6.83)
Sur = m / d"z p(z) ¥ x Y, (6.84)

Still it has to be checked that the integral formalism developed in sections 5.1 and 5.2
is compatible with the gauge theory setting.

First of all, the introduction of the measure function made it necessary to redefine all
derivatives D — D; in such a way that they are hermitian w.r.t. p(z):

/d%umw%@o*mﬁxwux

with D* = (0;+pj) __“;a" L and D}, = Lsin(ad,) + -5 (0;+ p;)?(1 — cos(ady)). An obvious
questlon is how this redefinition of 0; — (9;+ pJ) affects the gauge theory that we have just
defined. Using the defining equations for p;, z¥0xp; = —p; and d,p; = 0 it is immediate
to see that

eia(')n -1 ) eiaan -1
ij(f(fv) *g(z)) = ("% f(z)) * (PjWg(l"))a (6.85)
and therefore
0 (f(z) x g(2)) = (9; f(x)) * g(z) + (€% f(z)) * (8} (2)). (6.86)

The redefinition factor p; can always be brought to the second term in a coproduct, since
coordinates = (p; is an z-dependent function) do not have a coproduct. Therefore the
factor p; redefines only the derivatives acting to the right in a derivative-valued gauge
potential. The gauge potential V; is not redefined at all, while V}, has redefined derivatives
acting to the right in comparison with (3.11):

Vor = Ap e +A%,2D; A Dy (6.87)

The field strength is also redefined only through the derivatives acting to the right. There-
fore the redefinition D}, — 15; is entirely harmless for the presented setting of gauge
theories.

In addition we have to analyse whether the equations of motions of the gauge theory,
which are derived from the action, have the proper classical limit. The measure u(x)
allows us to vary the Lagrangian (w.r.t. v or A,,) and to derive the equations of motion
of the enveloping algebra-valued fields ¢ and A,, e.g.

u(x)in* Dy = 0 (6.89)

The equations of motion are multiplied with the measure p = p(z). For field theories
without gauge degrees of freedom we have chosen a rescaling of the fermionic fields by ,u’%
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that eliminated the measure function from the equations of motion. With the new gauge
degrees of freedom, this recipe is not as straightforward. Rescaling ¢ — (;F%W ) is not
gauge covariant operation, in general 0,1" # iA,xv)', if ¢ is transforming as 6,9 = 1A, *).
The reason is that extracting ,u_% from one of the factors of the x-product, new derivatives
0, acting on A, and ' remain.

How this problem can be circumvented is not clear yet. A possible ansatz uses p(X),
the gauge-covariantised version of u, with all ordinary coordinates replaced by covariant
coordinates (6.77). One may use that y is proportional to (z/)~) and obtain

w(X) ~ p(emVaAn ), (6.89)

With such gauge covariantised measures p may be eliminated from the equation of motion.
The covariant coordinates give a contribution at first order in a only. The commutative
limit is rescued.

The equations of motion for the gauge potential cannot be brought to the classical
form by rescaling A, with ,u_%. A, appears in the minimally coupled Lagrangian and in
the Yang-Mills Lagrangian, to the powers two, three and four. The covariantised measure
1(X) has to be inserted by hand into the Yang-Mills action. How these gauged redefinitions
really work in practice has not been understood yet in a satisfactory manner.

Thus, the following results for the fermionic action and the Yang-Mills action have to
be used with a caveat: they may be correct only up to additional covariant derivatives
Op — 1Ap, which may stem from a redefinition of y through covariant coordinates or from
a gauged quantum trace K. In addition, at second order, new couplings might appear for
the fermionic kinetic term, if a definition of the Dirac derivative is used which is different
than the minimal one (4.52).

Expanded in a, the Lagrangian of minimally coupled massive fermions reads

1 P I} . i vV 1po, 10
'CMCF, MCF|(’)(a) = 555 05 D2¢0 DS(Z’Y“D,(i - m)"/JO - 555 Czl/) lbO’Y“F,?ppgwo

0— a—
+ 500 DRI — S0y DI DY, (6.90)
while the Yang-Mills Lagrangian is

' 0
Loilow = 5a*CLTr (DSFDIED, + 2 {AD, (9, +D5)(F¥ FY,)}

o uv

i F (S, FO, 1Y) (6.91)

up

it (DY(FOFY,) — {DSF™, FL}).

Note that the fermion mass Lagrangian is identical to the canonical case under 6 —
z*C%”, while new terms appear for the minimally coupled Lagrangian and the Yang-Mills
Lagrangian.

Using the integral, we obtain the action (the Yang-Mills action is multiplied with a
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constant ¢ indicating the ambivalence of the trace):

Swow = — [ €' ua) P CLTEL, (6.92)
Sucrlo@ = —% /d”x w(z) 27 CP° (EOFSUVND;%ﬁO + 200y* F) DIy°)
+5 [ @ u(o) @PDLDLC — G DIDR) (6.93)
Swlow = et [ ula) (= FFOELEL, + 2P W ELES)
—iacTr / d"z p(z) <D2(F0“VF,SV) — 2(DOF), ng). (6.94)

Concerning the ambiguities of the enveloping algebra construction, we should treat
several terms of these actions as unphysical field redefinitions. For example, as discussed
in section 3.6, only one of the z-linear terms of the fermionic action survives this ambiguity
analysis. In contrast, it seems that the new z-independent terms are not due to ambigu-
ities. Since these terms in (6.93) are contracted with the y-matrices, these terms cannot
be obtained from redefining 1/°. We have not been able yet to finally decide whether a
redefinition of Ag in terms of two covariant derivatives acting to the right is allowed by
the enveloping algebra structure of the gauge potentials (cp. the discussion in 3.6), but it
seems quite unlikely that this is the case.

Therefore we dare to declare that the new z-independent terms in the self-coupling
of gauge bosons and in the coupling of fermions to gauge bosons are true new physical
interaction terms. These new interaction terms have quite a different structure than those
in the canonical spacetime. Therefore, they may lead to new predictions.

The construction of a Standard Model on k-deformed along the lines of section 3.8
would be an obvious next step. However, the open questions in properly defining an
integral, which is at the same time gauge-invariant and invariant under symmetry trans-
formations, have to be discussed in advance. The reason is that the solution of these
questions, e.g. by introducing a covariantised quantum trace or a covariantised measure,
could result in additional interaction terms already at first order in a.



Appendix A

The generic x-deformed space

In this appendix we state generalisations of the most important formulae of the main
body of the text to the more general commutation relations of k-deformed space, where
the vector of noncommutativity a* is not aligned with the n-th direction:

[z# % 2¥] = iax” — ia”zh. (A1)

In this appendix, all formulae are valid for arbitrary signature of the spacetime, for non-
Euclidean spacetime a* can be space-, light- or time-like. For this case the symmetric
*x-product (2.43) takes the form

f(x)xg(x) = %1:;1% exp (m”ﬁyu <‘9_"“A8zA e_:agtg(f:z"_) - e_il:';aay: L 1) (A.2)
oo (St S )
since the structure constants C{* = a0} — a”0} fulfil
ChrClevClsrs | O = (—1)F a1 a” .. a1 O (A.3)

We have guessed formula (A.2) from analogy with (2.43). The crucial input for such a
formula is that products of the structure constants simplify as in (A.3). We have checked
the validity of this guess up to second order.

It is possible to derive from (A.2) closed expressions for the symmetric x-product
between an arbitrary function and one coordinate, analogously to (A.3):

1a%0,, pxaﬁa( 10”0,
eiaﬂag -1 —a G’Hag eia536 -1

2’ x f(x) = (m”

—1a%0, %0, —1a70
flx)yxaf = (x” ———— —qa’ a( ———
e—ta o _ 1 aﬂag e—tia Os 1

These formulae follow from the properties of the BCH formula.
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Linear derivatives can also be formulated on the generic k-deformed space. There are
three possibilities for such linear derivatives. In contrast to the case a* = ad* there is
no additional parametric freedom, if a covariant ansatz is made [0, 2"] = 0}, + ic,a"0, +

ica’ 0, + ic;),(il'ja)‘a)\:

0,,8] = 8% +ia"d,,

[04,37] = 64(1 —ia*dy), (A.5)
0,,2"] = o, + i’y + inu,n""aPd,.
While the derivatives éu and 9, correspond to py = a"6¥ and pi’ = —a’8} respectively

(4.6), 5,L corresponds to p” = a*d¥ +n,,m"" a?; because of the symmetry of the metric n*”,
(4.6) is fulfilled also for 0,. These linear derivatives can be mapped into each other in the
following way:

3 o . . g .

0, = —F—, Oy = Oy + =Mupn™ a0, 0. A6
W 1+ iavd, U U 277up77 KON ( )
The commutation relations (A.5) can be generalised to Leibniz rules:

~

W(f9) = Ouf) 9+ ((1+ia"0)f) - (,9).
u(f-9) = (0uf) - (1—1a"0,)9) + f - (3.9), (A7)
0u(f+9) = (Buf) g+ (1 +13a"8,)f) - (0u9) + imupa®n™ (B f) - (0r9).

These linear derivatives can also be represented in terms of ordinary derivatives d,
on the algebra of functions multiplied with the symmetric x-product (A.2). The linear
derivatives d,, corresponding to p)” = a*d§ have the x-representation

ez’a" oy __ 1

_— A.
ia’\a,\ ’ ( 8)

;= 0,

leading to the Leibniz rule expressed in terms of ordinary derivatives

eia"ay -1 eia”ay -1

O @)% 9(2)) = (90— (@) 9(@) + (7 F(2)) % (8 —0(a)). (A9

The linear derivatives 0, corresponding to p}” = —a”d% have the x-representation

efia"(),, -1

—ia"(%\ ’

o =0, (A.10)

leading to the Leibniz rule expressed in terms of ordinary derivatives

0 (@)% 9(0) = (0, r L @))% (" g(a)) + F(@) % (0,5 er (o))
H H —ia)‘a,\ # —z'a/\a,\ )
(A.11)
That this is true can be checked (4.113), using (A.4). The derivative 9, can be expressed
in terms of commutative derivatives using (A.6) and (A.8).
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In addition, we can define generators of rotations on the generic xk-deformed space via
their commutation relations with the coordinates. We obtain the result:

[]\2/”", ] = P — PP + ia” MM — ja? M**,
[Mpa, Mn)\] — npAM(m + nanMp)\ _ npnMa)\ _ na)\Mpn. (A12)

The derivatives 8, are a module of M*° (d, and 8, as well) with commutation relations:

9 3 3 3 . 04 3 : pA oA i o o 3 L EAA
[M*?,0,] = 5an’\8,\—5l’jn”’\8,\+m 0,m O\ —ia”d,m ’\8,\—5((55& —0,a”)0kn A0x. (A.13)

Therefore the coproduct of the generators of rotations is:
MP(f-g) = (MPf)- g+ f- (M) + (1a?drf) - (M*§) — (ia®Orf) - (M?*§). (A.14)
The orbital part of the generators of rotations can be expressed in terms of z# and dy:

M = ipna)‘a\ — i‘”n’“’)‘a\ - %(a”ﬁ:" - a"i‘”)é,m“’\é,\. (A.15)

orb

That this representation of the orbital part fulfils the Leibniz rule, can be seen using the
following identification, cp. (A.4):

f(@)3" = 28 f(2) + ia 21O f (2) — iah 220y f (&) (A.16)

The Dirac derivative for the generic k-deformed space can be derived, using the most
general ansatz compatible with the index structure:

DIJ = éuf(é)\g,\, a”é,i) + a“g(é;ﬁ}, a“é,i), (Al?)

with the solution:

- (% + %nupapéﬂn“’\@

D - ., with [M*®,D,|=6"D,—6°D,. A.18
g 1+ ia*d, [ W =0 wer (A.18)

Note that although a* in (A.18) carries a vector index, it is not rotated, it is a fixed vector.
Again the shift operators can be expressed in terms of the Dirac operator alone:

1 A a*nee - A - -
——— = 1—14a"D, — O = —ia"D, + /1 — a*nera*D,n* D,, (A.19)
1+ 1iav0, 2
R 1+ muf)y _ @i mmaat ia”f)y + \/1 — a"‘nn)‘a)‘f)un“”f)u
141”0, = 2 =

1+ af’a”ﬁpf)g - af’np(,a‘ff)anaﬁﬁg 14+ al’a‘fﬁpﬁg - a/’npaa‘fﬁanaﬁf)ﬂ.

The commutation relations of the Dirac derivative with a coordinate are:

[D,,3"] = o (- ia* Dy + \/1 - a“nn,\a’\f)“nﬂ”f)y) +ia”D,, (A.20)
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while the coproduct of the Dirac derivative reads

P s 1 A
Du(f-9) = (Duf) ———%9+ (1 +1ia"0,)[) - (Dng)
1+1av0,
S WA KA O . CNA 7 Oy R
+ (i@ 0™ ) - ———5-9 — (ia"O\f) - ———=9- (A.21)
1+ 1a¥0, 1+ 7a¥0,
The Klein-Gordon operator is
3 KA R R
B = OO e e B = o (A.22)
1+ ia%0,

Again the square of the Dirac derivative can be expressed in terms of the Klein-Gordon
operator

R atn,a”

D™D, =01 —

atnya”

),

O0=1- \/1 — a*neaa* Dy D,.  (A.23)

The x-representations of all these operators can be obtained by inserting the expressions
(A.4) and (A.8). For example the Laplace operator and the Dirac derivative are

2(1 — cos(a”d,))
0o = 9,79, )
ull aa? 0,0y
_a h‘/a . v
e % —1 ok 2(1 — cos(a”d,))
DY = 9,———— 4+ —09,n*%0 ) A.24
s G » + g el 98 aka*0,,0y ( )
The antipodes of the most important operators are:
R 9
S(au) = - 'u A
1+1a¥0,
. R R s N o N
S(D,) = —D,+ L 2L (A.25)
1+ iav0,
. . ) d . d 8, —a”d
1+ 4av0, 1+ 7av0, 1+4a¥0,

The counits are trivial.
There is also a straightforward generalisation of the commutation relations of the
vector-like transforming one-forms £* with coordinates:

. . . . . o 1 \/1 — a"nnAa)‘Dun“”Dy
[£F, 3] = ia"E” — ia"E" + (€MD, + €D, — " £*D)) X R . (A.26)
DanaﬂDﬂ

All formulae in this appendix correspond to those for a* = ad¥, replacing the derivatives
05=" with 0.
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