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Fig. Figure
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SUMMARY

In this study a new Dictyostelium STE20-like protein kinase DST2 (Dictyostelium STE20-like

kinase 2) was cloned and characterised. STE20 (Sterile 20) kinase was first identified in yeast

as a pheromone-induced serine/threonine protein kinase that acts upstream of a MAP kinase

cascade. Based on the domain structure, DST2 belongs to the GCK subfamily of STE20-like

protein kinases, which include the mammalian STE20-like kinases (MST1/2/3), oxidant stress

response  kinase  SOK-1,  and  DST1  in  Dictyostelium  discoideum  which  phosphorylates

severin, a gelsolin-like F-actin fragmenting protein. DST2 was discovered by screening of the

D. discoideum cDNA project database using DST1 as query. To confirm the existence of the

DST2  gene  and  its  expression,  Southern,  Northern  and  Western  analyses  of  DST2  were

carried out. It revealed that DST2 may have two copies in the Dictyostelium genome and that

DST2 was expressed during all stages of D. discoideum development.  In vitro kinase assays

with bacterially expressed fusion protein of full length DST2 (aa461), the catalytic domain

(aa287) and the regulatory domain (aa174) showed that autophosphorylation of DST2 occurs

on the  regulatory domain  and phosphorylates severin  in  the  presence of  a  Mn2+ or  Mg2+.

Purified catalytic domain of PKA phosphorylated the regulatory domain of DST2 and caused

an increase in the basal autophosphorylation activity of DST2, suggesting that PKA may be a

potential upstream kinase of DST2 through the phosphorylation of its regulatory domain. To

understand the function of the non-catalytic domain of DST2,  three C-terminal  truncation

constructs (aa1-421, aa1-368 and aa1-326) were used in comparison to full length DST2 in in

vitro kinase assays. Deletion of C-terminal regions revealed an inhibitory region amino acids

326-461 of DST2. Gel filtration chromatography showed that DST2 was eluted in a broad

peak ranging from approximately 63 kDa to 400 kDa, suggesting that DST2 may exist in vivo

as a monomer as well as a high molecular weight complex. The influence of phosphorylated

and  unphosphorylated  severin  on  F-actin  solutions  was  investigated  using  falling-ball

viscometry  and  fluorescence  spectroscopy.  It  turned  out  that  phosphorylation  by  DST2

inhibits  the F-actin fragmenting activity of severin,  suggesting that  DST2 may be directly

involved in actin-cytoskeleton rearrangements.

8



Zusammenfassung

In der vorliegenden Studie wird die Klonierung und Charakterisierung einer neuen STE20-

ähnlichen Proteinkinase aus  Dictyostelium discoideum beschrieben. STE20-Kinasen wurden

zuerst in Hefe gefunden und stellen eine Hauptgruppe der p21-aktivierten Proteinkinasen dar.

Die Domänenstruktur der  Dictyostelium STE20-ähnlichen Kinase DST2 zeigt,  dass sie der

GCK  Untergruppe  ("germinal  center  kinases")  zuzuordnen  ist.  Typische  Vertreter  dieser

Untergruppe  sind  die  "mammalian  STE20-like  kinases"  MST1/2/3,  die  durch  oxidativen

Stress  induzierte  humane  Kinase  SOK-1,  und  auch  DST1,  eine  homologe  Kinase  aus

Dictyostelium.  DST2  wurde  beim  Durchsuchen  der  D.  discoideum cDNA  Datenbanken

gefunden. Zunächst wurden im Rahmen dieser Doktorarbeit das entsprechende Gen mit Hilfe

von  Southern  Analysen,  sowie  die  Expression  durch  Northern  und  Western  Experimente

untersucht. Es stellte sich heraus,  dass es im  Dictyostelium Genom wohl  zwei Kopien für

DST2 gibt und dass das Protein in allen Stadien der Dictyostelium Entwicklung vorhanden ist.

In  vitro Kinase-Assays  mit  bakteriell  exprimiertem  Fusionsprotein  (gesamte  Kinase,

katalytische oder regulatorische Domäne) zeigten, dass die Autophosphorylierung von DST2

in der regulatorischen Domäne stattfindet und dass die Phosphorylierung von Severin auch

durch Mn2+ beeinflusst werden kann. DST2 ist  in vitro außerdem ein Substrat der PKA, die

DST2 in der  regulatorischen Domäne phosphoryliert  und dadurch die basale Aktivität  der

Autophosphorylierung  erhöht.  Dieser  Befund  lässt  vermuten,  dass  PKA  in  vivo

möglicherweise  stromaufwärts  der  DST2  auf  die  Regulation  dieses  Signalweges  Einfluss

nimmt. Zum besseren Verständnis der regulatorischen Domäne in DST2 wurden C-terminal

verkürzte Konstrukte hergestellt (As 1-421, As 1-368, As 1-326) und mit der Aktivität der

kompletten DST2 in in vitro Assays verglichen. Es stellte sich heraus, dass der C-Terminus

die katalytische Aktivität  der Kinase inhibiert.  In der Gelfiltration konnte kein eindeutiges

Molekulargewicht der Kinase festgestellt  werden, in der Regel wurde die Kinase in einem

breiten Peak zwischen 400,000 -  63,000 eluiert.  Diese Ergebnisse deuten darauf hin,  dass

DST2  in vivo sowohl als Monomer als auch als hochmolekularer Komplex vorliegen kann.

Durch Viskosimetrie- und Fluoreszenzmessungen konnte nachgewiesen werden, dass Severin

in seiner F-Aktin fragmentierenden Aktivität durch Phosphorylierung gehemmt wird. Dieses

Ergebnis  lässt  vermuten,  dass  DST2  möglicherweise  direkt  am dynamischen  Umbau  des

Aktin-Zytoskeletts beteiligt ist.
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CHAPTER 1

Introduction

1.1 The cytoskeleton

The  cytoskeleton  is  a  complex  network  of  protein  filaments  that  extend  throughout  the

cytoplasm. It is responsible for cell shape, cell motility, cell polarity, cytokinesis, intracellular

transport,  cytoplasmic  streaming  and  muscle  contraction. The  diverse  activities  of  the

cytoskeleton depend on three types of protein filaments: actin filaments  (about  6-8 nm in

diameter), microtubules (about 25 nm in diameter) and intermediate filaments (about 10 nm in

diameter).  It is characteristic of these filamentous systems that they are built  by reversible

assembly of monomeric, evolutionarily highly conserved subunits, namely - and -tubulin in

microtubules,  the  different  proteins  in  intermediate  filaments  and  actin  in  microfilaments

(Sandoz  et al., 1988).

Intermediate filaments stabilize the cell against mechanical stress and structure the cytoplasm

by establishing links to various binding partners (Housewart and Cleveland, 1998). However,

no direct involvement of intermediate filaments in cellular motility has been reported to date.

In  contrast,  actin  filaments  and  microtubules  interact  with  different  proteins  to  generate

different types of cellular motility. Microtubules are major organizers of the cell interior and

are vitally involved in motility events such as chromosome migration during cell  division

(Valiron  et al., 2001).

1. 2 Actin and actin binding proteins

The  microfilament  protein actin is not only the most  abundant protein in many eukaryotic

cells,  but is  also very highly conserved in evolution from human to amoeba.  The 42 kDa

globular actin monomer (G-actin) polymerizes into polar, helical filaments (F-actin). Actin

filaments have a polar structure, with two structurally different ends - a fast growing (barbed

or +) end and a slow growing (pointed or -) end (Wegner, 1976). 
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In vivo, actin polymerisation is a highly regulated process controlled both by ATP binding and

hydrolysis,  and  by  the  action  of  a  number  of  actin  binding  proteins  that  control  the

incorporation of actin monomers into existing filaments, the dynamic equilibrium between G-

and F-actin and the three-dimensional organization of the filamentous network (Schleicher et

al, 1995). For many actin-binding proteins it was shown that their activity is regulated in vitro

by Ca2+, phospholipids, phosphorylation or changes in pH. Based on their interaction with G-

or  F-actin,  they  are  placed  into  different  functional  groups.  One  distinguishes  between

proteins  that  bind actin  monomers,  fragment  and/or  cap  actin  filaments,  act  as  molecular

motors, tether actin filaments to the membrane, or crosslink actin filaments (Eichinger et al.,

1999).

The actin-based motility is driven by the assembly of actin filaments. Important regulatory

proteins in the assembly of new actin  filament networks are  the Arp2/3 complex  and the

Wiscott-Aldrich  Syndrome Protein  (WASP).  The  Arp2/3  complex  is  a  complex  of  seven

proteins, including the actin-related proteins Arp2 and Arp3. It localizes to the leading edge of

a variety of cells, binds to the sides of actin filaments and rapidly nucleates branches (Svitkina

and Borisy, 1999; Bear et al., 2002). Members of the WASP and the related Scar (Supressor

of cAMP receptor) family bind directly to the Arp2/3 complex and stimulate its ability to

promote the nucleation of new actin filaments (Machesky and Insall, 1998; Seastone  et al.,

2001).  F-actin  fragmenting  and/or  capping  proteins,  that  have  also  been  identified  as

important regulators of cell motility, are described in the next section.

1.3 F-actin fragmenting proteins

Filament  number  and  length  are  in  part  controlled  by  F-actin  fragmenting  proteins.  At

micromolar  Ca2+ concentrations  they sever  actin  filaments,  which  is  usually  followed  by

capping of  the  newly created  barbed end.  This  leads  to  a  rapid  increase  of  short  capped

filaments together with a dramatic decrease in viscosity. For several members of this family it

has  been  shown  that  uncapping  is  caused  by  polyphosphoinositides,  particularly

phosphatidylinositol 4,5-biphosphate (PIP2) (Janmey et al., 1987; Eichinger and Schleicher,

1992). In vivo this could lead to free barbed ends ready for rapid elongation (Stossel, 1989). 
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The best characterized and most important members of this group are gelsolin and villin from 

vertebrates,  severin  from  Dictyostelium  discoideum and  fragmin  from  Physarum

polycephalum (Yin  and  Stossel,  1979;  Bretscher  and  Weber,  1979;  André  et  al.,  1988;

Hasegawa et al., 1980; Schleicher et al., 1988). Gelsolin is characterized by two homologous

halves, each with threefold repeated segments of approximately 15 kDa. The 15 kDa domain

is crucial for classification and is so far present in all identified gelsolin-like proteins in three

(severin,  fragmin)  to  six  copies  (gelsolin,  villin).  Villin  contains  in  addition  a  seventh

carboxyterminal  domain,  the so-called headpiece (HP) which is  responsible  for its  F-actin

crosslinking activity (Fig. 1). 

Severin  is  an  abundant  40  kDa  cytoplasmic  protein  that  is  expressed  throughout  D.

discoideum  development  (Brown  et  al.,  1982).  Domain  analysis  showed  that  the  severin

domains  have distinct  functions.  The  first  domain is  responsible  for  the  capping activity,

whereas domains 2 and 3 contain binding sites for the sides of actin filaments and domain 1

together  with  at  least  part  of  domain  2  is  needed  for  the  F-actin  fragmenting  activity

(Eichinger et al., 1991; Eichinger and Schleicher, 1992). 

There is increasing evidence that actin fragmenting proteins might be targets in  signalling

cascades to the cytoskeleton. Gelsolin has been implicated in the phosphoinositide-mediated

F-actin uncapping of human platelets following stimulation of thrombin receptors (Hartwig et

al.,  1995). Fibroblasts  of gelsolin null  mice have excessive actin stress fibers and migrate

more slowly than wild type fibroblasts (Witke et al., 1995), while overexpression of gelsolin

in NIH 3T3 fibroblasts leads to an increase in motility (Cunningham et al., 1991). Studies in

humans  with  hereditary gelsolin-related  amyloidosis  (AGel  amyloidosis),  showed that  the

gelsolin  gene  defect  causes  altered  gelsolin-mediated  cellular  mechanisms,  which  may

contribute  to  a  bleeding  tendency in  AGel  amyloidosis patients  (Kiuru  et  al.,  2000).  In

addition to Ca2+ and poly-phosphoinositides, phosphorylation seems to play an important role

in regulating proteins from this family as well (see 1.5 last paragraph).
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severin

fragmin

gelsolin

villin
I II III IV V VI HP    

Fig. 1:  Domain organisation of severin, fragmin, gelsolin and villin.
The  domain  organisation  of  Dictyostelium severin,  Physarum fragmin  and  vertebrate  gelsolin  and  villin  is
schematically depicted. Severin and fragmin have a three-fold repeated domain structure. Gelsolin contains two
homologous halves, each with threefold repeated segments. Villin contains an additional C-terminal domain the
so-called headpiece domain (HP). Roman numerals indicate the domain number.

1.4 Actin-binding proteins as substrates for protein kinases 

To understand the signalling pathways that link external signals to the regulation of the actin

cytoskeleton, potential upstream kinases for actin-binding proteins need to be characterized.

In vitro and in vivo phosphorylation has been shown for a number of cytoskeletal proteins and

for some of these it  was shown that phosphorylation regulates their activity. A prominent

example  is  cofilin,  a  G-actin  binding  and  F-actin  fragmenting  protein,  which  has  been

identified  as  substrate  for  LIM-kinase1  (Arber  et  al.,  1998).  LIM-kinase1  (LIMK1),  a

serine/threonine  kinase,  phosphorylates  cofilin  at  Ser  3,  both  in  vitro and  in  vivo.

Phosphorylation at Ser 3 inhibits the actin binding and depolymerisation activity of cofilin. An

active form of Rac increases the activity of LIMK-1, suggesting that  LIMK-1 and cofilin

might be downstream effectors of the Rac-mediated formation of lamellipodia. LIMK-1 might

therefore be a key component  of a  signal  transduction  cascade that  connects  extracellular

stimuli to changes in cytoskeletal structure (Yang et al., 1998). Spatial and temporal aspects

of this regulatory cascade still need to be clarified. 
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1.5 STE20-like kinases

The MAPK (Mitogen Activated Protein Kinase) system is an evolutionarily highly conserved

intracellular signalling cascade and plays an essential role in many cellular processes, such as

growth,  differentiation  and  stress-related  response.  Its  core  comprises  a  module  of  three

kinases  consisting  of  a  MAPKKK (MAPK kinase  kinase),  MAPKK (MAPK kinase)  and

MAPK. STE20 (Sterile 20) is a pheromone-induced yeast serine/threonine protein kinase that

acts upstream of a MAP kinase cascade (Wu et al., 1995; Leberer et al., 1992). In response to

activated Cdc42,  it  activates  the  MAPK cascade  that  includes  STE11 (MAPKKK),  STE7

(MAPKK)  and  FUS3/KSS1  (MAPK)  (Herskowitz  et  al.,  1995).  STE20-related  protein

kinases  have  been identified in various  eukaryotes,  and have a highly conserved catalytic

domain in common with yeast STE20. Based on their structure and regulation, they can be

divided into two subfamilies. 

The  first  group,  including  yeast  STE20  and  its  mammalian  homologues,  the  PAKs  (p21

activated kinases), have a kinase domain at the carboxy terminus and a putative regulatory

domain at the amino terminus, which contains a binding site for Rac1 and Cdc42 (Manser et

al., 1994). PAKs are regulated in vivo and in vitro by the small GTP binding proteins Rac1

and Cdc42 and by phospholipids. PAKs specially regulate the JNK pathway and are involved

in regulating some of the diverse cytoskeletal changes induced by Rac and Cdc42 (Bagrodia

et al., 1995; Kyriakis et al., 1996; Benner et al., 1995; Yu et al., 1998; Bokoch et al., 1998).

They have been shown to be required for processes including neurite formation and axonal

guidance, development of cell polarity and motile responses (Daniels and Bokoch, 1999). 

The second group, the so-called GCK (Germinal Center Kinase) subfamily, has a catalytic

domain at the N-terminus and a putative regulatory domain at the C-terminus and lacks a

recognizable GTPase binding site (Sells and Chernoff, 1997). The GCKs subfamily can be

further divided into two groups based on their structure and properties. Group I GCKs are

closely related to GCK. This group consists  of GCK, GCKR (GCK-related), GLK (GCK-

like), HPK1 (Hematopoietic Progenitor Kinase-1) and NIK (Nck-Interacting Kinase) (Katz et

al., 1994; Kiefer et al., 1996; Hu et al., 1996; Su et al., 1997; Diener et al., 1997; Shi et al.,

1997;  Fu  et  al.,  1999).  Mammalian  SOK-1 (STE20-like  oxidant  stress-activated  kinase1),

MST1, 2 and 3 (mammalian STE20-like kinase 1, 2 and 3) and LOK (Lymphocyte-Oriented

Kinase),  Dictyostelium DST1 and yeast Sps1 belong to the group II GCKs (Pombo  et al.,

1996; Creasy and Chernoff,  1995a;  Creasy and Chernoff, 1995b;  Schinkmann and Blenis,

1997; Friesen et al., 1994; Eichinger et al., 1998). 
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These  enzymes  are  less  well  understood.  Although  group  II  GCKs  share  homologous

sequence, with the catalytic domain of group I GCKs, their C-terminal regulatory domains

differ significantly from those of the group I kinases (Eichinger  et al., 1998; Friesen  et al.,

1994; Schweitzer and  Philippsen, 1991).

Several  members of the GCK subfamily are  responsive to cellular  stress.  Sps1p has been

shown to become activated in response to nutrient deprivation (Friesen et al., 1994). Human

Krs-1 and Krs-2, which are identical with MST1 and MST2, are activated upon treatment of

cells with staurosporine, okadaic acid, high concentrations of sodium arsenite, and extreme

heat shock at 55°C (Taylor  et al., 1996;  Creasy and Chernoff, 1995a; Creasy and Chernoff,

1995b). Furthermore the activity human SOK-1 was shown to be induced several  fold by

oxidant stress. It most likely controls a novel stress response pathway since it is not involved

in already defined MAPK cascades (Pombo  et al., 1996). This lead to the assumption that

members  from the  GCK subfamily are  important  for  the  response  of  eukaryotic  cells  to

environmental  stresses.  Recent  results  suggest  that  some members  of  the GCK subfamily

might also be involved in the regulation of the remodelling of the actin cytoskeleton via F-

actin  fragmenting  proteins.  Severin  was  identified  as  a  substrate  for  DST1  in  vitro.

Phosphorylation  of  severin  was  strongly  reduced  in  the  presence  of  Ca2+  (Eichinger  et

al.,1998). Though there is no direct proof, several pieces of evidence suggest that severin is

also an  in vivo substrate for DST1 (unpublished results).  Furthermore, TNIK was shown to

phosphorylate gelsolin. Overexpression of wild type TNIK in NIH3T3 and Hela cells lead to

morphological changes of the cells and resulted in the disruption of F-actin structures and

inhibition of cell spreading (Fu et al., 1999). 

1.6 Dictyostelium  discoideum

Cellular slime molds were first discovered by O. Brefeld in 1869, but the modern era began

with the discovery of the new species Dictyostelium discoideum (Raper, 1935). D. discoideum

has two alternative life cycles: sexual and asexual. The asexual cycle is easier to produce in

the laboratory and is the one used for almost all experimental studies. D. discoideum feeds on

bacteria as separate amoebae and upon starvation enters a social, multicellular stage which is 

mediated  by  chemotaxis.  Chemotactically  aggregated  cells  form  a  multicellular  structure

which undergoes morphogenesis and cell-type differentiation into spore and stalk cells. 
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Development culminates in the generation of fruiting bodies, which contain resistant spores,

and can give rise to individual amoebae (Loomis et al., 1996). The life cycle of Dictyostelium

is summarized in Fig. 2. 

                     

Fig. 2: The life cycle of Dictyostelium discoideum 

Spores germinate to give rise to individual amoebas, which feed on bacteria as a food source, and the vegetative
cells divide and multiply. Upon depletion of the food source, the cells chemotatically aggregate to form a cell
mass  that  elongates  to  form the  “first  finger”,  which  then  either  migrates  as  a  slug  or  directly  enters  the
culmination stage leading to the formation of a fruiting body consisting of the terminally differentiated  stalks
cells and the spores which can initiate another round of the cycle.

The  advantages  of  studying  Dictyostelium as  a  model  system  is  that  a  large  amount  of

genetically identical cells can be easily cultivated for biochemical analysis. A small genome of

about  34Mb  of  DNA  facilitates  the  molecular  studies  of  genes  involved  in  growth  and

development. Furthermore, a wide variety of improved genetic approaches are available to

generate mutants for studying the cytoskeleton of Dictyostelium. These include targeted gene

disruption  and  gene  replacement  by  homologous  recombination  (Manstein  et  al.,  1989),

antisense-mediated gene inactivation (Knecht and Loomis, 1987; Liu  et al.,  1992) and the

transposon tagging like mutagenesis by restriction enzyme-mediated integration (REMI) of

DNA (Kuspa and Loomis, 1992; Karakesisoglou  et al., 1999).  Dictyostelium is also a good

model system for the analysis of the actin cytoskeleton and has contributed to the general

understanding of the structure and function of cytoskeletal proteins (Schleicher and Noegel,

1992;  Noegel  and  Luna,  1995).  In  summary,  Dictyostelium is  an  excellent  experimental

system for studies of the role of the actin cytoskeleton in cell motility, chemotaxis,  signal

transduction, development and differentiation.
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1.7 Goals of the project
The goal of this project was to discover and characterise new protein kinases homologous to

DST1  in  D.  discoideum. Previous  work  showed  that  DST1  phosphorylates  the  F-actin

fragmenting protein severin (Eichinger et al.,1998). These results suggested that DST1 might

play a regulating role in the rearrangement of the actin cytoskeleton. DST2 (Dictyostelium

STE20-like kinase 2) was discovered by screening the sequences of the  D. discoideum data

bases.  DST2  is  a  serine/threonine  protein  kinase  and  highly homologous  to  DST1  (69%

similarity in the kinase domain).

The further aims of this  work were to biochemically characterise DST2, to understand its

function in terms of a possible regulatory role in the remodelling of the actin cytoskeleton, and

to investigate in which signalling pathways DST2 might be involved. 

To address these questions, the following approaches were taken :

1) DST2 was generated as active recombinant protein kinase and used for biochemical

characterisation and to test various potential substrates.

2) A  polyclonal  antiserum  was  raised  against  recombinant  DST2  and  used  in  cell

biological and biochemical studies in D. discoideum.

3) Various C-terminal  truncated DST2 constructs  were generated and characterised in

biochemical  assays  to  unravel  functionally  important  regions  in  the  C-terminal

domain.

4) Recombinant  DST2  was  used  to  study the  impact  of  phosphorylation  on  severin

activity in viscometry- and fluorescence spectroscopy assays.
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CHAPTER 2

MATERIALS AND METHODS

2.1 MATERIALS

2.1.1 Enzymes for molecular biology

Calf intestine alkaline phosphatase                    Roche
DNA polymerase 1 Roche
Lysozyme Sigma
Restriction enzymes Amersham, Boehringer, Eurogentec,

Gibco-BRL,  New  England  Biolabs,

Promega
RNase A Sigma
T4 DNA ligase Gibco-BRL, Promega
Taq polymerase Amersham
Pfu Turbo polymerase Stratagene

2.1.2 Antibodies

Anti-Actin (mAb Act1) ( Simpson et al., 1984 )
Goat anti-mouse IgG antibody, 

coupled with peroxidase

Dianova

Goat anti-mouse IgG antibody,

Conjugated with Cy3 or FITC

Dianova
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2.1.3 Protease inhibitors

Benzamidine Sigma
PEFA-block Roth
Phenylmethylsulfonylfluoride (PMSF) Serva
Protease inhibitor cocktail (p2714) Sigma

2.1.4 Antibiotics

Ampicillin Roth
Blasticidin S ICN Biomedicals
Geneticin (G418) ICN Biomedicals
Hygromycin B Cabiochem
Kanamycin Sigma
Nalidixic acid Sigma
Penicillin/Streptomycin Sigma

2.1.5 Chemical reagents

Unless otherwise stated, chemicals were obtained from Fluka, Merck, Pharmacia, Roth, Serva

or Sigma and have the purity grade of “p.a”.

Agarose (SeaKem Me) FMC Bioproducts
Bacto-agar, -peptone, -tryptone Difco
Chloroform p.a Riedel de Haen
DE52 (Diethylaminoethyl-cellulose) Whatman
Hydroxylapatite Bio-Rad
IPTG (Isopropyl--D-thiogalactose-pyranosid) Gerbu
Oligonucleotides MWG-biotech
Peptone Oxoid
Phenol Appligene
Phosphocellulose (P11) Whatman
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Proteose peptone Oxoid
Triton X-100 Pierce
Yeast extract Oxoid

2.1.6 Media

All media and buffers were made with deionized water and sterilized by autoclaving at 120oC

for 20 min. Antibiotics were added to media when cooled to about 50oC.

2.1.6.1 Media for D. discoideum culture

AX medium (pH 6.7) SM agar plates (pH 6.5)
14.3 g peptone 9 g agar
7.15 g yeast extract 10 g peptone
50 mM glucose 50 mM glucose
3.5 mM Na2HPO4 1 g yeast extract
3.5 mM KH2PO4 4 mM MgSO4

16 mM KH2PO4

5.7 mM K2HPO4

-Both media were filled up to 1 litre with dH2O.

Soerensen Phosphate buffer (pH 6.0) Salt solution
14.6 mM KH2PO4 10 mM NaCl
2 mM Na2HPO4 10 mM KCl

2.7 mM CaCl2

HL-5 medium Phosphate agar plates (pH 6.0)
10 g yeast extract 15 g Bacto agar
50 mM glucose - filled up to 1 L with Soerensen buffer
8.5 mM KH2PO4

1.25 mM Na2HPO4

-filled up to 2 L with dH2O
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2.1.6.2 Medium for E. coli culture

LB-medium (pH 7.4)

10 g Bacto-tryptone

5 g yeast extract

86 mM NaCl

-pH adjusted with NaOH and medium filled up to 1 L with dH2O.

For LB-agar plates, 1.5% (W/V) agar added into the medium and selection was provided by

introducing 50 mg/l ampicillin and/or 25 mg/l kanamycin

2.1.7 Buffers and other solutions

Those not shown here will be described in their corresponding sections under Methods.

100x Denhardt’s reagent TE buffer (pH 8.0)
2% Ficoll 400 10 mM Tris/HCl
2% polyvinylpyrrolidon 1 mM EDTA
2% Bovin serum albumin -autoclave

10 x NCP buffer (pH 8.0) 10 x TBE buffer (pH 8.3)
100 mM Tris/HCl 890 mM Tris
1.5 M NaCl 890 mM Boric acid
5 ml Tween 20 20 mM EDTA
0.02% NaN3 -autoclave
-Filled up to 1 L with dH2O

PBS (pH 7.2) Tris-Phenol (pH 8.0)
70 mM Na2HPO4 -1 vol. melted phenol was equilibrated
150 mM NaCl with 1 vol. 1 M tris/HCl, pH 8.0
30 mM KH2PO4

2.7 mM KCl
-autoclave
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2.1.8 Equipment

Axiophot microscope Zeiss
CCD camera (C5985-10) Hamamatsu
Conductivity meter (LF 537) WTW
Confocal laser scanning microcope Leica
Diavert inverse microscope Leica
Digital color video CCD camera (TK-C1380) JVC
Dounce homogenizer Braun
Eagle Eye II Stratagene
Electroporation apparatus BioRad
Fluorescence spectrophotometer

(Aminco Bowman)

Sopra

FPLC device (BioLogic) BioRad
Nuclepore filter Costar
Parr bomb Parr Instrument Company
PCR thermal cycler Biometra
PH meter Knick
Protein fraction collector Pharmacia
Rotary shaker GFL
Semi-dry protein transfer Trans-Blot SD BioRad
SMART system Pharmacia
Spectrophotometer Pharmacia
Speed-Vac concentrator Bachhofer
Stereomicroscope (MZ12) Leica
Ultrafiltration centricon Amicon
Vortex Bender & Hobein
Water baths GFL
Weighing machines Sartorius
X-ray film developing machine (Curix 60) AGFA
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2.1.9 Other materials

2.2 ml sterile tubes for freezing of cells Nunc
3 MM filter paper Whatman
4-well borosilicate glass chamber slides Nunc
24-well plates Costar
Dialysis membrane Biomol
Eppendorf tubes (0.1 ml, 0.5 ml, 1.5 ml) Eppendorf
Falcon centrifuge tubes (15ml, 30ml) Falcon
Nitrocellulose membranes (BA85) Schleicher & Schuell 
Petri dishes Greiner
Polaroid film (667) Polaroid
Polyallomer ultracentrifuge tubes 1.5 ml Beckman
Quartz cuvettes Hellma
Sterile filters (0.22 m, 0.45 m) Millipore
Tissue culture flasks Nunc
X-ray films (X-Omat) Kodak

2.1.10 Centrifuges and rotors

Centrifuges
J2-21 M/E Beckman
J6-HC Beckman
G6-SKR Beckman
Optima LE-80K ultracentrifuge Beckman
Optima TL 100 ultracentrifuge Beckman
Table-top centrifuge (5415) Eppendorf

Rotors
JA 14, JA 20, JS-4.2, Ti45, Ti 70, TLA 100.3 Beckman
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2.1.11 Computer programmes

Windows NT
Bilddatenbank system Leica
Sigma Plot 2.01 Jandel scientific
Winword 7.0 Microsoft
Macintosh
Illustrator 8.0 Adobe
NIH Image 1.60 National Institutes of Health
Photoshop 5.0 Adobe
UNIX
UWGCG package program (University 

of Wisconsin Genetics Computer Group)

2.2 Vectors and Strains

2.2.1 Vectors

The following vectors were used: pMalC2-vector (New England Biolabs), PQE30 (Qiagen).

2.2.2 Bacterial strains

The following  Escherichia coli strains were used: XL-1 Blue for cloning (Sambrook  et al.,

1989), BL21 and M15 for protein expression.

2.2.3 Cultivation of E. coli

Bacteria  were cultivated according to  standard methods  (Sambrook.  et  al.,  1989)  on agar

plates or in liquid culture (240rpm).  The cultivation temperature was 37oC. For long-term

storage, 400 l of bacterial culture were mixed with an equal amount of glycerol and stored at

–80oC.
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2.2.4 D. discoideum strains

The  wild  type  D.  discoideum strain  AX2,  which  can  be  cultivated  under  axenic

conditions, was used for this study.

2.2.5 Cultivation of D. discoideum

2.2.5.1 Growth in liquid medium (Claviez et al., 1982)

From spores or bacterial lawns on SM-agar plates, the wild type AX strain was inoculated into

AX or HL-5 medium containing the antibiotics streptomycin sulfate (400 g/ml) in order to

K. aerogenes. The generation time at 21oC and 150 rpm is about 10 hours. For large-scale

generation of cells for protein purification, cells cultivated in 4 x 2.5 l cultures up to a density

between 5 x 106 and 1.2 x 107 cells/ml were harvested after centrifugation giving normally a

yield of about 100g wet weight. As for cell biological studies, cells were allowed to grow up

to a maximum density of 5 x 106 cells/ml to avoid the stationary phase.

2.2.5.2 Growth on agar plates

Isolation of transformant clones was carried out on SM agar plates. 100 l of a suspension of

K. aerogenes in salt solution were placed on each agar plate, spread evenly together with the

Dictyostelium cells, and the plates were kept at 21oC for about 2 days. The doubling time is

around 3-4 h and the Dictyostelium colonies appeared as round clearings on the bacteria lawn.

2.2.5.3 Preservation of spores

Cells from the axenic culture were harvested by centrifugation at 300 g for 10 min, washed

once with cold Soerensen buffer and resuspended at a cell density of 2 x 108 cells/ ml. 500 l

of the cell suspension was spread out per phosphate agar plate, and the cells were able to

develop into fruiting bodies within 2-3 days. The spores were then harvested by knocking onto

the lid of the petri dish and taken up in 10 ml of cold Soerensen buffer. 1 ml aliquots were

dispensed into Nunc tubes (2.2 ml), shock-frozen in liquid nitrogen and stored at -70oC. 
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For inoculation of spores, an aliquot was thawed at  room temperature and cultured in AX

medium, whereby after 3 days at 21oC and 150 rpm, a cell density of about 5 x 106 cells/ml

was reached.

2.2.5.4 Freezing of Dictyostelium cells

For the preservation of Dictyostelium cells, axenic cultures were harvested and resuspended at

a cell density of about 5 x 107 cells/ml in ice-cold freezing medium (AX or HL-5 medium

+1%  (v/v)  penicillin–streptomycin  solution  +5%  (v/v)  DMSO),  and  distributed  as  1  ml

aliquots into Nunc tubes (2.2 ml) pre-cooled on ice. The aliquots were then placed into the

wells of a pre-cooled (4oC) brass block (10 x 9 x 5 cm) and kept at -70oC for a period of at

least 15h and subsequently stored at -70oC. To recover the cells, a frozen vial was thawed

rapidly under cold running water, the cells  washed once with cold AX medium, and then

cultivated  in  AX medium in  petri  dishes  or  24-wells  plates.  For  the transformant  clones,

growth  medium  was  changed  after  24h  and  replaced  with  medium  containing  suitable

antibiotics for selection.

2.2.5.5 Development of D. discoideum 

Wild-type Dictyostelium (AX2 cells) were cultivated on SM plates at 21°C for 24 hours. Cells

were harvested from different stages of development of Dictyostelium and used for Northern

and Western analysis.

2.3 DNA methods

2.3.1 Agarose gel electrophoresis

The separation of DNA fragments according to length was done in gels with 1% agarose in

TBE buffer. For the detection of DNA fragments, 0.05 g/ml ethidium bromide was added to

the liquid agarose. Gels were run with 50-200 V. Probes were incubated with 1/6 (v/v) sample

dye before loading. After separation, the fragments were detected with a UV illuminator and

documented with the Eagle Eye CCD camera system (Stratagene, Heidelberg).
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DNA sample buffer
40% Sucrose
0.5% SDS
0.25% Bromophenol blue
-taken up in TE buffer

2.3.2 DNA extraction from agarose gels

DNA bands were cut out of the gel with a scalpel and transferred into a sterile micro tube. The

isolation procedure was performed with the DNA extraction kit  (Qiagen) according to the

manufacturer’s manual.

2.3.3 Determination of DNA concentration

DNA concentration in agarose gels was estimated by comparing the intensity of the band with

the bands of the molecular weight marker. Alternatively, the OD260 was measured (50 g/ml

of DNA have an OD260 of 1, Sambrook et al., 1989).

2.3.4 Preparation of plasmid DNA

2.3.4.1 Isolation of plasmid DNA by the method of Homes and Quigley (1981)

An  inoculum  of  bacteria  was  taken  from  a  streak  culture  and  suspended  in  200l  of

STET/lysozyme buffer. Alternatively, 1 ml of bacteria from a fresh overnight shaking culture

was harvested using a table-top centrifuge (5000 rpm, 1 min, RT), the supernatant discarded

and the pellet resuspended in STET buffer. The suspension was boiled in a water bath for 1

min, centrifuged (14,000 rpm, 10 min, RT), and the insoluble cell debris removed using a

sterile  toothpick.  The  nucleic  acids  in  the  supernatant  were  precipitated  with  200  l  of

isopropanol for 5 min at RT and sedimented using a table-top centrifuge (14,000 rpm, 30 min,

RT). The DNA pellet was then washed with 70% ethanol, vacuum-dried with a Speed-vac

concentrator, and dissolved in 30 l of TE buffer.
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STET buffer (pH 8.0)
50 mM Tris/HCl
50 mM EDTA
5% Triton-X-100
8% Sucrose
1 mg/ml lysozyme (added prior to usage)

2.3.4.2 Isolation of plasmid DNA by the method of Qiagen

Large-scale  preparation  of  plasmid  DNA from  E.  coli was  carried  out  with  the  Midi-kit

purchased  from the  Qiagen company.  Bacteria  were  cultivated  in  150 ml  of  LB medium

containing 50 g/ml ampicillin overnight at 37oC with agitation. The cells were harvested by

centrifugation (4,000 g, 5 min, 4o C) and resuspended in 10 ml of buffer P1. For cell lysis, 10

ml of buffer P2 was introduced and the resultant mixture was gently mixed by inverting the

tube several times. After incubation for 5 min at RT, 10 ml of chilled buffer P3 was added, the

suspension mixed gently by inverting tube, and then incubated on ice for 15 min. Following

centrifugation (35,000 g, 30 min, 4o C), the sediment of proteins and cell debris was discarded,

while the supernatant containing the plasmid DNA was centrifuged for a further period of 15

min.  The  clear  supernatant  was  passed  through  a  Qiagen  tip  100  column  previously

equilibrated with 5 ml of buffer QBT. After washing twice with 10 ml each of buffer QC, the

plasmid DNA was eluted with 5 ml of buffer QF, precipitated with 0.7 vol. of isopropanol,

spun down (30,000 g, 30 min, 4oC), and the DNA pellet washed with 70% ice-cold ethanol,

air-dried and dissolved in 200 l of TE buffer. The DNA concentration was determined using

a spectrophotometer whereby an OD260 of 1.0 corresponds to 50  g of DNA. The ratio of

OD260/OD280 should be between 1.8 and 2.0.
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2.3.4.3 Phenol Extraction and Precipitation of DNA

To separate the DNA from contaminating proteins, the DNA solution was mixed with 50%

(v/v)  phenol  and  50%  (v/v)  chloroform/isoamylalcohol  (24:1).  The  mixture  was  heavily

vortexed and centrifuged at 13,000 rpm at room temperature for 5 min. The upper phase was

collected and the DNA was precipitated with ethanol. For ethanol precipitation, 10% (v/v) of

a 3 M Na-acetate solution of pH 5.2 as well as 2.5 volumes of ethanol were added to the DNA

solution. The sample was then incubated at –80oC for 1 hour. After a centrifugation of 30 min

at 13,000 rpm and 4oC, the pellet was washed with 70% ethanol, centrifuged again for 15 min

under the previous conditions and dried in a Speed Vac. The dried pellet was resuspended in a

suitable volume of H2O.

2.3.5 DNA cleavage with restriction enzymes

The cleavage was performed in a volume of 50  l.  The buffer suitable for the restriction

enzyme(s) was added and the volume adjusted with H2O. After addition of the enzyme(s), the

tube was incubated at the appropriate temperature for at least 1h. The digest was analysed on

an agarose gel.

2.3.6 Ligation of DNA into a plasmid vector

To  avoid  re-ligation  and  concatamer  formation  of  a  cut  vector,  the  vector  was

dephosphorylated with alkaline phosphatase (CIP, Calf Intestinal Phosphatase). The reaction

was performed according to manufacturer’s instructions (New England Biolabs). The vector

was purified on a gel and incubated with the corresponding insert. The reaction volume was

set to 10 l. 50 ng of vector were ligated with a threefold molar excess of insert. Ligases of

various  suppliers  were  used  (Gibco,  NEB)  together  with  the  supplied  buffers.  After  the

ligation, the DNA was extracted with phenol, precipitated with ethanol and resuspended in 5-

10 l of H20.
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2.3.7 Preparation of electroporation competent cells

1 liter LB was inoculated with 10 ml of an E. coli overnight culture and grown to an OD600 of

0.6 at 37oC under vigorous shaking. All flasks and solutions subsequently used were sterilized

and cooled  to  4oC. Proper  cooling was  essential  for  obtaining competent  cells  of  a  good

quality. Cells were spun down and resuspended in 1 l of H20. After another centrifugation, the

cells were resuspended in 500 ml of H2O, pelleted again, washed with 20 ml of 10% glycerol

and finally resuspended in 3 ml of 10% glycerol. The cells were stored at -80oC in 50  l

aliquots.

2.3.8 Electroporation of E. coli

For transformation, electroporation competent E. coli cells were thawed on ice. 50 l of cells

were mixed with 1-5 l of DNA or the ligation mixture resolubilized in dH2O, and placed in a

pre-chilled electroporation cuvette (Eurogentec; 2 mm gap between electrodes). After a pulse

of 2.5 kV, 200  and 25 F, 1 ml of SOC medium (Sambrook et al., 1989) was immediately

added and the cells regenerated at 37oC for 45 min with agitation. 1, 10 and 100 l of cells

were  plated  out  on  LB  agar  plates  containing  50  g/ml  of  ampicillin  or  25  g/ml  of

kanamycin and incubated overnight at 37oC.

SOC medium
2% Bacto-tryptone
0.5% Yeast extract
10 mM NaCl
2.5 mM KCl
10 mM MgCl2

10 mM MgSO4

20 mM Glucose
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2.3.9 Screening for positive E.coli transformants

To isolate  E. coli colonies carrying the desired DNA fragment, colonies were selected and

mini  preparations  of  plasmid  DNA  were  performed  followed  by  restriction  analysis  to

determine  the  correct  orientation  of  the DNA insert.  Finally the authenticity of  the  DNA

sequence was verified by sequencing (Toplab, Martinsried).

2.3.10 E. coli permanent cultures

Important transformants were preserved as permanent cultures. An inoculum of bacteria was

resuspended in 1 ml of LB medium containing 7% of DMSO. The cells were shock frozen in

liquid nitrogen and stored at -70oC.

2.3.11 Transformation of D. discoideum

Recombinant gene expression in  D. discoideum was regulated by a plasmid harbouring the

Dictyostelium actin  15  promoter  (A15P)  and  actin  8  terminator  (A8T)  sequences.  The

presence of an appropriate antibiotic resistance cassette on the expression plasmid allowed for

selection of transformants with geneticin or blasticidin.

For  transformation,  Dictyostelium cells  cultivated to a density of 2-3 x  106 cells/ml  were

harvested by centrifugation (300 g, 5 min, 4oC), washed once with cold Soerensen buffer,

followed  by  washing  twice  with  ice-cold  electroporation  buffer  and  the  cells  finally

resuspended in chilled electroporation buffer at a density of 1 x 108 cells/ml. 500 l of the cell

suspension  were  mixed  with  15-30  g  of  the  desired  plasmid  DNA  in  a  pre-chilled

electroporation cuvette (4 mm gap between electrodes). After a pulse at 1.0 kV and 3 F with

the  aid  of  an  electroporation  device  (Gene  Pulser,  Biorad),  the  cells  were  immediately

transferred to a petri dish and incubated at RT for 10 min, after which CaCl2 and MgCl2 were

added to final concentration of 1 mM each and the cells incubated for an additional 15 min at

RT with gentle agitation. Finally, the cells were diluted with HL-5 medium to a density of 1 x

106 cells/ml and allowed to recover at 21oC for 24 h before selection pressure was added.
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Electroporation buffer (pH 6.1)

50 mM sucrose

10 mM KH2PO4

-pH was adjusted with KOH solution, and the buffer sterilized by filtration

2.3.12 Polymerase chain reaction (PCR)

The amplification of DNA fragments was carried out by “polymerase chain reaction”. For

PCR  (colony  screening),  Taq polymerase  (Boehringer)  and  Pfu  Turbo  polymerase

(Boehringer) were used. The reactions contained 2 mM MgCl2, 200 M dNTPs, 0.5 M 5’-

and 3’- primer and 1/250 vol of Taq-polymerase. cDNA, genomic DNA and plasmid DNA

were used as templates. Prior to amplification, the DNA was denaturated for 5 min at 95oC.

The denaturation was followed by 25 amplification cycles: 95oC, 1 min; 50-65oC (depending

on the annealing temperature of the primers used), 1 min; 72oC 1 min-3 min (depending on

the length of the fragment to be amplified). The last elongation step was at 72oC, for 3 min.

Based on the number of guanine and pyrimidine nucleotides, the annealing temperature (Tm)

of  a  oligonucleotide  primer  could  be  calculated according to  the formula  of  Suggs  et  al.

(1981) : 4(G+C) +2(A+T) – 10 = Tm (oC). Preparative PCR was carried out with the Expand

high  fidelity  PCR  system  from  Boehringer  Mannheim.  The  reactions  were  carried  out

according to the supplier’s instructions.

2.3.13 Purification of PCR products

For cloning purposes, the PCR products were purified using the QIAquick PCR purification

kit (Qiagen) following the manufacturer’s protocol. Buffers used were provided by the kit and

all centrifugation steps were done at 14,000 rpm at RT using a table-top microcentrifuge. 5

vol. PB buffer were added to 1 vol. of the PCR reaction and mixed. The sample was applied

to a QIAquick spin column and centrifuged for 1 min to bind DNA to the column while the

flow-through collected in 2 ml collection tube was discarded. DNA was washed with 0.75 ml

of PE buffer by centrifuging for 1 min. Residual ethanol was removed by centrifuging for an

extra 1 min. The spin column was then placed in a clean 1.5 ml eppendorf tube and the DNA

eluted by the addition of 50 l of dH2O to the column and centrifuging for 1 min. The purified

DNA was subsequently used for restriction digest for 2-6 h and finally purified from agarose

gel with the aid of the QIAquick gel extraction kit from Qiagen.
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2.3.14 Oligonucleotides (Primers)

DST2-Nt 5’- CGC GGA TCC ATG TCA ACG CTC AAT GTA CC-3’
DST2-Ct 5’-GCG CTG CAG CTA CTA CTT TGA TTT CTT TTC ATC-3’
DST2-Ntreg 5’-CGC GGA TCC GAA CAA GAT ATA ATC ATC AAT-3’
DST2-CtCat 5’-GCG CTG CAG ATC TAT TAA TGG TAC CAA GAG TG-3’
DST2-Ct326 5’-GCG CTG CAG CTA CTA TCC TCT ATT ATC ATC AGA ATC-3’
DST2-Ct368 5’-GCG CTG CAG CTA CTA ATT AAA TAC AAC TGT ATC ATA AG-3’
DST2-Ct421 5’-GCG CTG CAG CTA CTA CTC TAA GGA ATA ACT AGA G-3’
Av09uni1 5’-CGC GGA TCC AGT TAG AAA GAT TCA TAG AG- 3’
Av09rev1 5’-CGC GGA TCC AAT TTC TTG AAT GAC TTC-3’
Av09uni2 5’-GCA AAA TTC AGG TGG TGA AG-3’
Av09rev2 5’-CGC GGA TCC ATA AGA ATT CTT ATT ATC AG-3’

DST2-Nt/DST2-Ct: used for the complete construct of DST2

DST2-Nt/DST2-Ctcat: used for the catalytic domain of DST2

DST2-NtReg/DST2-Ct: used for the regulatory domain of DST2

DST2-Nt/DST2-Ct326: used for the c-terminal truncation construct of DST2 (1-326)

DST2-Nt/DST2-Ct368: used for the c-terminal truncation construct of DST2 (1-368)

DST2-Nt/DST2-Ct421: used for the c-terminal truncation construct of DST2 (1-421)

Av09uni1: used for sequencing

Av09rev1: used for sequencing

Av09uni2: used for sequencing

Av09rev2: used for sequencing

2.3.15 Southern Blotting

Dictyostelium genomic DNA was digested with various restriction enzymes and separated on

0.7% agarose gel (30 V, for 24 h). DNA was denatured in 0.5 M NaOH for 20 min and the gel

was rinsed briefly with H2O. The gel was submerged in neutralization solution ( 1 M Tris, pH

7.5 for 20 min) and equilibrated with 20 x SSC buffer for 20 min. DNA was blotted from the

gel by capillary transfer to the membrane (nitrocellulose filter; Schleicher & Schuell) using 20

x SSC buffer. The membrane was rinsed with 6 x SSC buffer, baked at 80°C for 1.5 h, rinsed

with hybridization buffer and hybridized with 32P-labelled sample overnight. 
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The membrane was rinsed 3 times with 2 x SSC/ 0.1% SDS- buffer at 37°C for 10 min and

rinsed again with wash buffer at 37°C for 1 h.

20 X SSC (pH 7.5)

3 M NaCl

0.4% Na-citrate

2.3.16 Northern blotting

For  isolation  of  RNA,  cells  were  lysed  with  1%  SDS  in  the  presence  of  0.1%

diethylpyrocarbonate.  The  RNA  was  further  purified  by  several  phenol/chloroform

extractions. RNA was separated on 0.8% agarose gels in the presence of 6% formaldehyde,

transferred to nitrocellulose filters  (Schleicher & Schuell)  and probed with nick-translated

DNA in 50% formamide, 2 x SSC, 1% sarkosyl, 4 mM EDTA, 0.1% sodium dedocyl sulfate,

4x Denhardt’s solution and 0.12M phosphate buffer, pH 6.8, at 37°C for 16 to 18 h.

2.4 Analysis of DST2 with biochemical methods

2.4.1 SDS-Polyacrylamide gel electrophorosis (SDS-PAGE)

Protein  mixtures  were  separated  by discontinuous  SDS-PAGE (Laemmli,  1970).  For  this

purpose, 10-15% resolving gels with 3% stacking gels were used (7.5 x 10 x 0.05 cm). The

stacking gel deposits the polypeptides to the same starting level at the surface of the resolving

gel,  and subsequently the  SDS-polypeptides  complexes  are  separated  in  the  resolving gel

according to size under uniform voltage and pH. Prior to SDS-PAGE, 1/3 vol. 3 x SDS gel

loading  buffer  was  added  to  the  protein  samples  to  be  separated  and  boiled  for  3  min.

Electrophoresis was carried out at a constant voltage of 150 V, after which the gel could be

stained with Coomassie Blue dye and destained for direct observation of the protein bands, or

protein from the gel could be blotted onto nitrocellulose membranes and detected indirectly

via  antibodies.  As  standard,  a  mixture  of  proteins  of  defined  molecular  masses  was

electrophoresed.
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Stacking gel

125 mM Tris/glycine (pH6.8)
0.1% SDS
3.3% acrylamide: bisacrylamide (30:0.8)
per 16 ml:
240 l 20% ammonium persulfate (APS)
8 l TEMED

Resolving gel
380 mM Tris/glycine (pH 8.8)
0.1% SDS
10-15% acrylamide :bisacrylamide (30:0.8)
per 42 ml :
480 l 20% APS
12 l TEMED

10x SDS-PAGE running buffers (pH 8.3)
250 mM Tris
1.9 M Glycine
1% SDS

3xSDS gel loading buffer
150 mM Tris/HCl (pH 6.8)
30% Glycerol
6% SDS
15% -mercaptoethanol
0.3% bromophenol blue
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2.4.2 Coomassie Blue staining of proteins

Following SDS-PAGE, gels were stained in Coomassie Blue solution for at least 30 min with

agitation, after which the unbound dye was removed by shaking in a destaining solution.

Coomassie Blue solution

0.1% Coomassie Brillant Blue R250

50% methanol

12% glacial acetic acid

-solution filtered via a Whatman filter

Destaining solution

10% ethanol

7%   glacial acetic acid

2.4.3 Drying of SDS-PAGE gels

For  permanent  recording,  SDS-polyacrylamide  gels  after  Coomassie  Blue  staining  were

washed in water with agitation with a couple of changes of water to remove the destaining

solution. The gels were then shaken in a drying solution for 20 min, after which each gel was

placed between 2 dialysis membranes pre-wetted in the drying solution and then air-dried

overnight.

Drying solution for polyacrylamide gels

24% ethanol

5%    glycerol

2.4.4 Western blotting

Following separation of protein by SDS-PAGE, the proteins were transferred from gels onto

nitrocellulose membranes (Schleicher & Schuell BA85) according to the modified protocol of 

Towbin et al. (1979) with the aid of a protein transfer apparatus (Trans-Blot SD, BioRad).  
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In  this  “semi-dry” method,  the  gel  and  its  attached  nitrocellulose  filter  were  sandwiched

between pieces of Whatman 3MM filter paper which had been soaked in transfer buffer and

protein transfer was carried out at RT at 12 V for 40 min, after which the nitrocellulose filter

was blocked overnight at 4oC in 5% (W/v) milk powder in 1 x NCP buffer (without sodium

azide) and incubated with primary antibody (polyclonal antibody raised against the regulatory

domain of DST2 1:500-1:1000 in NCP buffer) for 1 h. After washing several times with NCP

buffer,  the membrane was incubated with a secondary antibody (diluted 1:10,000 in NCP

buffer)  for  1h.  For  the  experimental  purposes,  goat  anti-mouse  IgG  conjugated  with

peroxidase (Dianova) was used as the secondary antibody. Finally, the membrane was washed

a few times with NCP buffer and protein bands were detected via chemiluminescence, by

incubating the membrane in enhanced chemiluminescence reagents (ECL, Amersham) for 1

min, and then exposed to X-ray films (X-omat AR5, Kodak).

Transfer buffer

25 mM Tris/HCl (pH 8.5)
190 mM Glycine
20% Methanol
0.02% SDS

20x NCP buffer (pH 7.2)
48.4 g Tris
348 g NaCl
20 ml Tween 20
-Filled up to 2 l with dH2O.

Chemiluminescence reagents (light sensitive)
200 l Luminol (250 mM in DMSO; Luminol: 3-amino-phthalazinedione)
89 l p-Coumaric acid (90 mM in DMSO)
2 ml Tris/HCl (1M, pH 8.5)
-Filled up to 20 ml with dH2O.
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2.4.5 Bradford assay

Protein  quantification  was  performed  according  to  the  method  of  Bradford  (1976).  In

principle, the Coomassie brilliant blue G250 dye interacts primarily with arginine residues of

proteins and causes a shift in the absorbance peak from 465 nm to 595 nm. Bovine serum

albumin was used to make a standard colour response curve from which the concentration of

protein samples could be determined.

2.4.6 Preparation of actin from rabbit skeletal muscle

Actin  was  prepared  from  rabbit  skeletal  muscle  according  to  the  methods  described  by

Spudich and Watt (1971) as well as by Pardee and Spudich (1982). The back and upper thigh

muscles of a freshly bled rabbit were sliced into pieces and extracted with high-salt extraction

buffer  for  10 min  with agitation.  The mixture was centrifuged (4,000 g,  10 min) and re-

extracted to remove myosin, after which the sediment was resuspended in water and the pH

adjusted to between 8.2 and 8.5 with 1 M Na2CO3 solution. Following centrifugation (4,000 g,

10 min), the supernatant was discarded and the process repeated until swelling of the sediment

was observed. The sediment was then washed with cold acetone, dried overnight, extracted

once with chloroform and dried again. Finally, the acetone powder was stored at –20oC for

subsequent actin preparation.

10 g of muscle acetone powder were extracted with 200 ml of G-buffer at 0oC for 30 min,

filtered through a nylon net and re-extracted at 0oC for 10 min. The filtrate was centrifuged

(3,000 g, 30 min, 4oC) and the actin in the supernatant allowed to polymerise for 2 h at 4oC

after  addition  of  KCl  (50  mM),  MgCl2 (2  mM)  and  ATP  (1  mM).  For  removal  of

tropomyosin, solid KCl was then slowly introduced until a final concentration of 0.8 M was

reached, and the actin filaments were then sedimented by centrifugation (150,000 g, 3 h, 4oC).

For depolymerisation, the F-actin pellet was dialyzed against several changes of G-buffer and

further purified using a Sephacryl S300 gel filtration column (2.5 x 45 cm, Pharmacia). From

its optical density at 290 nm, the G-actin concentration could be calculated easily from the

ratio of OD290/0.65, whereby 26,000 is the extinction coefficient value of actin at 290 nm

(Wegner, 1976). The G-actin prepared could be stored at 4oC for up to 3 weeks for active

applications.

38



Extraction buffer

0.5 M KCl
0.1 M K2HPO4

 

G-buffer (pH 8.0)
2 mM Tris/ HCl
0.2 mM CaCl2

0.2 mM ATP
0.02% NaN3

0.5 mM DTT

2.4.7 Protein purification

2.4.7.1 Purification of Histidine- tagged constructs 

Proteins with an affinity tag of six consecutive histidine residues (the 6x His-tag protein) were

purified using the Ni-NTA system (nickel-nitrilotriacetic  acid,  Qiagen).  The 6x His tag is

much smaller (0.84 kDa) than most other affinity tags and is uncharged at physiological pH.

Qiagen Ni-NTA products use the four chelating sites of NTA to bind nickel ions more tightly

than alternative metal-chelating purification systems that have only three sites available for

interaction with metal ions. The presence of an additional chelation site prevents nickel-ion

leaching  resulting  in  greater  binding  capacity,  and  also  minimizes  non-specific  binding

leading to purer protein preparations.
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The catalytic domain of DST2 (amino acid 1-287) was amplified by PCR using DST2-Nt

(5’-CGC GGA TCC ATG TCA ACG CTC AAT GTA CC-3’) and DST2-Ctcat (5‘- GCG

CTG CAG ATC TAT TAA TGG TAC CAA GAG TG- 3‘) and digested with BamHI and

PstI,  and  then  inserted  into  pQE30  vector  (Qiagen).  The  His-tagged  fusion  protein  was

expressed in M15 cells. For large prep, 1 L LB-medium was inoculated with a grown 10 ml

culture of the construct, grown for another 1-2 h at 37oC  and 240 rpm and induced with 0.3

mM IPTG. Expression was carried out for 2 h at 37oC  and 240 rpm. Cells were harvested (10

min, 5000 rpm, sorvall rotor GSA, 4oC). Expressed proteins were purified according to the

Qiagen protocol.

2.4.7.2 Purification of maltose-binding-protein (MBP) tagged constructs

In the protein fusion and purification system, the cloned gene is inserted into a pMAL vector

(NEB) down stream from the malE-gene, which encodes maltose-binding protein (MBP). This

results  in  the  expression  of  an  MBP-fusion  protein.  The  technique  uses  the  strong  tac-

promoter and the translation initiation signals of MBP to express large amounts of the fusion

protein. The fusion protein is then purified by one-step affinity purification for MBP. pMAL-

c2  vector  has  an  exact  deletion  of  the  malE  signal  sequence,  resulting  in  cytoplasmic

expression of the fusion protein. Between malE sequence and the polylinker there is a spacer

sequence coding for 10 asparagine residues. This spacer insulates MBP from the protein of

interest, increasing the chances that a particular fusion will bind tightly to the amylose resin.

The  N-terminal  catalytic  domain  (amino  acid  1-287),  the  C-terminal  regulatory  domain

(amino acid 288-461) and the full-length cDNA of DST2 were amplified using primers DST2-

Nt and DST2-Ctcat, DST2-Ntreg and DST2-Ct, DST2-Nt and DST2-Ct, respectively, and cut

with  BamHI  and  Pst1,  and  were inserted  into  pMAL-c2 vector  (NEB).  Maltose  binding

protein-tagged  fusion  proteins  were  expressed  in  M15  pREP4 cells. The  recombinant

proteins were  purified with the protocol described in the NEB catalogue. 1L LB (including

0.2% glucose)  was  inoculated  with  a  grown 10 ml  culture  of  cells  containing the  fusion

plasmid.  Glucose is  necessary in the growth medium to repress the maltose genes  on the

chromosome of the E. coli host. Cells were grown to A600 ~ 0.7 at 37oC and induced with 0.3

mM  IPTG.  Expression  was  carried  out  at  37oC  for  2  hours.  Cells  were  harvested  by

centrifugation at 4000xg for 20 min and the supernatant was discarded. 
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The pellet was re-suspended in 50 ml column buffer. Samples were frozen at -20oC overnight

and thawed in ice-water. Cells were sonicated and debris was spun down ( 9000 x g for 30

min).  Amylose resin  column was  washed with  8 column volumes  of  column buffer.  The

supernatant of the centrifugation was loaded on the amylose resin column and the column was

washed with 12 volumes of column buffer. Fusion proteins were eluted with column buffer +

10 mM maltose. 

Column buffer

20 mM Tris/HCl (pH 7.4)
200 mM NaCl
1 mM EDTA
1 mM Azide
1 mM DTT (or -mercaptoethanol)

2.4.8 Low shear viscometry

Low shear viscometry was performed after 20 min of incubation at  25oC in a falling ball

viscometer  (MacLean-Fletcher  and  Pollard,  1980).  The  reaction  mixture  (160  l)  usually

contained 0.5 mg/ml rabbit  skeletal  muscle actin, and polymerisation was inhibited by the

addition of G-actin to buffered MgCl2 (final concentration: 2 mM MgCl2, 10 mM imidazole,

pH 7.2, 1 mM ATP, 0.2 mM CaCl2, or 1 mM EGTA). The data shown are the average values

of duplicate experiments.

2.4.9 Severing activity of severin measured by fluorescence spectroscopy

Pyrene-labelled actin (8  M) was polymerised for 15 min in G-buffer (2 mM Tris/HCl, pH

8.0, 0.2 mM CaCl2, 0.2 mM ATP, 0.01% NaN3, 0.5 mM DTT, 2 mM MgCl2) for use in the

fluorescence measurements carried out with an Aminco Bowman luminescence spectrometer

(Sopra GmbH, Buettelborn, FRG). All measurements were done in a sample volume of 800 l

at 25oC with an excitation wavelength of 365 nm and an emission wavelength of 386 nm in G-

buffer  and  at  a  final  actin  concentration  of  0.8  M. The  slow depolymerisation  of  actin

filaments is dramatically increased if severing activity raises the number of pointed ends. 
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Individual experiments were performed in duplicates. Measured relative fluorescence values

were plotted against time and the slopes of these plots were calculated in the linear range of

fluorescence decrease which were subsequently plotted versus increasing concentration of the

severin.

2.4.10 Inhibition of actin depolymerisation analysed by fluorescence spectroscopy

Inhibition of actin depolymerisation was examined with the aid of pyrene-labelled G-actin (8

M) using a luminescence spectrometer (Sopra GmbH) in a final reaction volume of 800 l at

25oC. Highly active construct of DST2 (1-326) was incubated with severin or without severin

in  the  kinase  buffer  (20  mM  Tris/HCl,  pH  7.5,  1  mM  dithiothreitol,  10  mM  -

glycerolphosphate, 10 mM MgCl2 containing 0.1 mM ATP) for 20 min and pyrene-labelled

G-actin was added. All measurements were performed at an excitation wavelength of 365 nm

and an emission wavelength of 386 nm, and the fluorescence units were subsequently plotted

against time. Data were confirmed with duplicate experiments. Measured relative fluorescence

values were plotted against time and the slopes of these plots were calculated in the linear

range  of  fluorescence  decrease,  which  were  subsequently  plotted  versus  increasing

concentration of severin. 

2.4.11 In vitro kinase assay

Kinase reaction with purified recombinant DST2 was performed in kinase buffer (20 mM

Tris/HCl, pH 7.5, 1 mM DTT, 10 mM -glycerol triphosphate, 10 mM MgCl2) and 0.1mM

ATP ( 2-5µCi of 32 P-ATP). The reaction was incubated for 10 - 30 min for 30oC. Reactions

were terminated by the addition of 3 x SDS sample buffer and boiling for 5 min. A portion of

the sample (15) was separated on a 12% SDS-polyacrylamide gel. The gel was then fixed

and autoradiographed.
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Chapter 3

RESULTS

3.1 Molecular Characterisation of DST2

3.1.1 Sequence analysis 

DST2  was  discovered  by  screening  the  sequences  of  the  D.  discoideum cDNA  project

database in Tsukuba, Japan (website:  http://www.csm.biol.tsukuba.ac.jp/cDNAproject.html)

using DST1 as query. The genomic sequence of DST2 was amplified by PCR, cloned into the

pQE30-vector and sequenced.  Analysis of the genomic structure of the DST2 gene showed

that it is composed of five exons separated by four introns and  spans a genomic region of

approximately 1.8kb. Introns are usually very small  and AT-rich in  D. discoideum.  These

features are also apparent in the four DST2 introns which have sizes of 77, 119, 77 and 175bp,

respectively.  The sequences  of all  exon/intron  borders  follow the consensus 'GT-AG' rule

(Fig. 3). 

The  full  length  cDNA  clone  of  DST2 was  kindly provided by  the  D. discoideum cDNA

project  in Tsukuba. The cDNA contains an open reading frame  of 1383bp that  encodes a

protein of 461 amino acids with a predicted molecular mass of 52 kDa. Motif searches and

sequence  comparison  showed  that  DST2 consists  of  a  287-amino  acid  N-terminal  kinase

domain and a 174-amino acid C-terminal regulatory domain. Database searches revealed that

DST2 is a member of the STE20 (sterile 20) or PAK (p21 activated kinase) family of protein

kinases. DST2 displays high homology throughout the kinase domain and contains the amino

acid sequence GTPYFWMAPEV in the kinase domain (Fig. 4). This sequence motif, the so-

called PAK signature is  characteristic for the PAK /  STE20 family of protein kinases and is

critical for kinase activity of STE20 (Wu et al., 1995). 
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1 ACGCGTCCGA AATAAATCAA AAAGAAAATG TCAACGCTCA ATGTACCAAA AGAGACAATG
61 AGTAGAAAAG ACCCAGAAAA GTTTTTCACT ATTGTTGAGA AATTGGGTGA AGGGT  AAGTG  
121 AAATCTATTT TAAATTTTTT TTTTTTTTTT TTTTTTTTGC TCTGTTCTAA CACAATAATA
181 ATAAATAT  AG  TTCATATGGT TCAGTATATA AAGCAATTAA TATTTCAACA GGAATTGTTG
241 TTGCCATTAA AAAGGTATCA GTCGACAATG ATCTTGAAGA TATGGAAAAG GAAATCAGCT
301 TTATGAAACA ATGTAAGAGT CCATACATTG TAACTTACTA TGCAAGCTTT AGAAAAGAAA
361 ATGAAGTTTG GGT  ACATATA  TATATATATA AATATTTCTA ACATTAATAT ACATTTATTT
421 ATTTTATATA TATTAATATT TTAAAAATTT ATTTCTTTTT TTTAAAAAAA AAAAAAAAAA
481 AAAAAATT  AG  ATTGTTATGG AACATTGTGG AGCAGGATCA GTATGTGATG CAATGAAAAT
541 TACAGATAAG ACATTATCAG AGGATCAAAT TGCAGTTGTT AGTAGGGATG TTTTACAAGG
601 TTTAGCATAT TTACATTCAG TTAGAAAGAT TCATAGAGAT ATTAAAGCAG GTAACATTTT
661 AATGAATCAT AAAGGTGAAT CGAAATTAGC AGATTTCGGT GTTAGTGGTC AATTATCAGA
721 TACAATGGCA AAACGTCAAA CTGTAATCGG TACCCCATTT TGGATGGCTC CTGAAGTCAT
781 TCAAGAAATT GGTTATGATT ATAAAGT  ATG  TAATTTATTT ATAGATAATA TATATATATA
841 TATATTTTAT TTTTTATTAA TTTGATATTA TTATTATTAT AGGCAGATAT TTGGTCATAT
901 GGTATTACAT GTATTGAAAT GGCAGAATCA AAACCACCAT TATTTAATGT TCATCCAATG
961 AGAGTCATAT TTATGATTCC AAATCCATCA AGACCACCAC CAAAATTAAC AGAACCAGAG
1021 AAATGGTCAC CAGAATTCAA TGACTTTTTA GCAAAATGTT TAACAAGAAA ACCAGAATTA
1081 AGACCTTCCG CTGAGGAATT ATTAAAACAT CCATTCATTA CAAAAGCAAA ATCACATTCA
1141 CTCTTGGTAC CATTAATAGA TGAACAAGAT ATAATCATCA ATGAAAAAGG TAGAGAAGTC
1201 GCTTTAGGTA TTGAACAAAG AGATGAAGAA GAGGAAGATG AAGATGAAGA TTCTGAAGAT
1261 TCTGATGATA ATAGAGT  AAT  ATTATCATTA TCATTATTAT TATTATTATT ATTATTATTA
1321 TTATTATTAT TATTATTATT ATTATTATTA TTATTATTAT TATTATTATT ATTATTATTA
1382 TTATTATTAT TATTATTATT ATTTATATAA TAAACTAATT TATTTATTTT TTATTTTTAT
1441 TTTATTTT  AG  GGAACTATGG TTAGAGCGAA ACCAAGATCA ATGCAAAATT CAGGTGGTGA
1501 AGATAATGAT GAAGAATATG ATACAGGTAC AATGGTTATT ACTGATAATA AGAATTCTTA
1561 TGATACAGTT GTATTTAATA ATGATGATGA AGATAGTGGA ACAATGAAAT TAAAGAATAC
1621 AATGCCTTCA AATAAAAAGA ATTTTGTACC AGATTATATG AATCAATTTA AAAAGAGTGA
1681 TGATGATGTC ACCAATGTTC CTTTAAGTGA TAAATACTCT AGTTATTCCT TAGAGGAATT
1741 AAAGAAAATG TTGGCTGAAT TAGAAATTGA AAGAGAAAAA GAAGTTCAAA AAACACTTGA
1801 AAAATTTTCA ATTAATCGTC AAGCTTTATT AGCTGTAATT GATGAAAAGA AATCAAAGTA
1861 GTAGTA

Fig. 3 Genomic sequence of DST2.
The gene consists of five exons and four short introns (77, 119, 77 and 175bp, respectively). Intron sequences are
underlined and consensus sequences for 5’ (GT) and the 3’ splice site (AG) are shown in bold. The start and stop
codons are indicated in italic. Numbering of nucleotides is indicated on the left side.

44



1 MSTLNVPKET MSRKDPEKFF TIVEKLGEGS YGSVYKAINI STGIVVAIKK VSVDNDLEDM
61 EKEISFMKQC KSPYIVTYYA SFRKENEVWI VMEHCGAGSV CDAMKITDKT LSEDQIAVVS
121 RDVLQGLAYL HSVRKIHRDI KAGNILMNHK GESKLADFGV SGQLSDTMAK RQTVI  GTPFW  
181 MAPEV  IQEIG  YDYKADIWSY GITCIEMAES KPPLFNVHPM RVIFMIPNPS RPPPKLTEPE
241 KWSPEFNDFL AKCLTRKPEL RPSAEELLKH PFITKAKSHS LLVPLIDEQD IIINEKGREV
301 ALGIEQRDEE EEDEDEDSED SDDNRGTMVR AKPRSMQNSG GEDNDEEYDT GTMVITDNKN
361 SYDTVVFNND DEDSGTMKLK NTMPSNKKNF VPDYMNQFKK SDDDVTNVPL SDKYSSYSLE
421 ELKKMLAELE IEREKEVQKT LEKFSINRQA LLAVIDEKKS K

Fig. 4 Deduced amino acid sequence of DST2 in standard single-letter code.
The sequence is composed of two domains, an N-terminal kinase domain (aa 1-287) and a C-terminal domain of
predicted regulatory function (aa 288-461). The kinase domain is underlined. The STE20- or PAK signature is
shaded. Numbering of amino acids is indicated on the left side.

3.1.2 Sequence comparison with STE20-like protein kinases

The STE20-like protein kinase family can be divided into two subfamilies  based on their

domain structure and regulation. The PAK / STE20 subfamily contains a C-terminal catalytic

domain and an N-terminal binding site for the small G proteins Cdc42 and Rac1, which are

considered to be key regulatory molecules linking surface receptors to the organization of the

actin cytoskeleton (Herskowitz et al., 1995; Hall et al., 1998). In contrast, the kinases of the

second subfamily, the GCK subfamily, have an N-terminal kinase domain and a C-terminal

regulatory domain that does not have a recognizable GTPase binding site.  However,  both

subfamilies are highly conserved throughout the catalytic domain. 

Sequence analysis showed that the overall structure of DST2 more closely resembles the GCK

subfamily of the STE20-like kinase family. We aligned the amino acid sequence of the DST2

kinase domain with other members of the GCK subfamily (Fig. 5). 

Fig. 5. Sequence alignment of DST2 with other members of the GCK subfamily. 
The alignment of the predicted amino acid sequence of the DST2 kinase domain with the corresponding domains
of  MST1, MST2, SOK1, MST3, DST1, MST3b, GCK, TNIK is shown. The sequence alignment was done with
the program Clustal from the UWGCG program package. The conserved Lysine (K) of the catalytic domains,
which is crucial for ATP binding, is indicated in red. The PAK / STE20 signature sequence is indicated in blue.
Amino acids which are conserved in six or more of the proteins are highlighted in yellow. The abbreviations used
are: Dd, D. discoideum; Hs, Homo sapiens.
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DST2 (Dd)  DPEKFFTIVE KLGEGSYGSV YKAINISTGI VVAIKKVSV. ..DNDLEDME
MST1 (Hs)  QPEEVFDVLE KLGEGSYGSV YKAIHKETGQ IVAIKQVPV. ..ESDLQEII
MST2 (Hs)  QPEEVFDVLE KLGEGSYGSV FKAIHKESGQ VVAIKQVPV. ..ESDLQEII
SOK1 (Hs)  DPEELFTKLD RIGKGSFGEV YKGIDNHTKE VVAIKIIDLE EAEDEIEDIQ
MST3 (Hs)  DPEELFTKLE KIGKGSFGEV FKGIDNRTQK VVAIKIIDLE EAEDEIEDIQ
DST1 (Dd)  DPEELYVRQE KIGKGSFGEV FKGINKKTNE TIAIKTIDLE DAEDEIEDIQ
MST3B(Hs)  DPEELFTKLE KIGKGSFGEV FKGIDNRTQK VVAIKIIDLE EAEDEIEDIQ
GCK  (Hs)  DPRDRFELLQ RVGAGTYGDV YKARDTVTSE LAAVKIVKLD PG.DDISSLQ
TNIK (Hs)  DPAGIFELVE LVGNGTYGQV YKGRHVKTGQ LAAIKVMDVT GDEE..EEIK

DST2 (Dd)  KEISFMKQ.C KSPYIVTYYA SFRK...... ENEVWIVMEH CGAGSVCDAM
MST1 (Hs)  KEISIMQQ.C DSPHVVKYYG SYFK...... NTDLWIVMEY CGAGSVSDII
MST2 (Hs)  KEISIMQQ.C DSPYVVKYYG SYFK...... NTDLWIVMEY CGAGSVSDII
SOK1 (Hs)  QEITVLSQ.C DSPYITRYFG SYLK...... STKLWIIMEY LGGGSALDLL
MST3 (Hs)  QEITVLSQ.C DSPYVTKYYG SYLK...... DTKLWIIMEY LGGGSALDLL
DST1 (Dd)  QEINVLSQ.C ESPFVTKYFG SFLK...... GSKLWIIMEY LAGGSVLDLM
MST3B(Hs)  QEITVLSQ.C DSPYVTKYYG SYLK...... DTKLWIIMEY LGGGSALDLL
GCK  (Hs)  QEITILRE.C RHPNVVAYIG SYLR...... NDRLWICMEF CGGGSLQEIY
TNIK (Hs)  QEINMLKKYS HHRNIATYYG AFIKKNPPGM DDQLWLVMEF CGAGSVTDLI
DST2 (Dd)  KITDK.TLSE DQIAVVSRDV LQGLAYLHSV RKIHRDIKAG NILMNHKGES
MST1 (Hs)  RLRNK.TLTE DEIATILQST LKGLEYLHFM RKIHRDIKAG NILLNTEGHA
MST2 (Hs)  RLRNK.TLIE DEIATILKST LKGLEYLHFM RKIHRDIKAG NILLNTEGHA
SOK1 (Hs)  K  PG PLEE TYIATILREI LKGLDYLHSE RKIHRDIKAA NVLLSEQGDV
MST3 (Hs)  E..PG.PLDE TQIATILREI LKGLDYLHSE KKIHRDIKAA NVLLSEHGEV
DST1 (Dd)  K..PG.PFDE GYIAIILREL LKGLEYLHSE GKIHRDIKAA NVLLSASGDV
MST3B(Hs)  E..PG.PLDE TQIATILREI LKGLDYLHSE KKIHRDIKAA NVLLSEHGEV
GCK  (Hs)  HAT..GPLEE RQIAYVCREC RQGLHHLHSQ GKIHRDIKGA NLLLTLQGDV
TNIK (Hs)  KNTKGNTLKE EWIAYICREI LRGLSHLHQH KVIHRDIKGQ NVLLTENAEV
DST2 (Dd)  KLADFGVSGQ LSDTMAKRQT VIGTPFWMAP EVI.....QE IGYDYKADIW
MST1 (Hs)  KLADFGVAGQ LTDTMAKRNT VIGTPFWMAP EVI.....QE IGYNCVADIW
MST2 (Hs)  KLADFGVAGQ LTDTMAKRNT VIGTPFWMAP EVI.....QE IGYNCVADIW
SOK1 (Hs)  KLADFGVAGQ LTDTQIKRNT FVGTPYWMAP EVI     KQ SAYDFKADIW
MST3 (Hs)  KLADFGVAGQ LTDTQIKRNT FVGTPFWMAP EVI.....KQ SAYDSKADIW
DST1 (Dd)  KLADFGVSGQ LTDQMTKRNT FVGTPFWMAP EVI.....KQ TGYDSKADIW
MST3B(Hs)  KLADFGVAGQ LTDTQIKRNT FVGTPFWMAP EVI.....KQ SAYDSKADIW
GCK  (Hs)  KLADFGVSGE LTASVAKRRS FIGTPYWMAP EVAAVE..RK GGYNELCDVW
TNIK (Hs)  KLVDFGVSAQ LDRTVGRRNT FIGTPYWMAP EVIACDENPD ATYDFKSDLW
DST2 (Dd)  SYGITCIEMA ESKPPLFNVH PMRVIFMIPN PSRPPPKLTE PEKWSPEFND
MST1 (Hs)  SLGITAIEMA EGKPPYADIH PMRAIFMI.. PTNPPPTFRK PELWSDNFTD
MST2 (Hs)  SLGITSIEMA EGKPPYADIH PMRAIFMI.. PTNPPPTFRK PELWSDDFTD
SOK1 (Hs)  SLGITAIELA KGEPPNSDLH PMRVLFLI   PKNSPPTLE   GQHSKPFKE
MST3 (Hs)  SLGITAIELA RGEPPHSELH PMKVLFLI.. PKNNPPTLE. .GNYSKPLKE
DST1 (Dd)  SMGITALEMA KGEPPRADLH PMRALFLI.. PKDPPPTLE. .GNFSKGFKE
MST3B(Hs)  SLGITAIELA RGEPPHSELH PMKVLFLI.. PKNNPPTLE. .GNYSKPLKE
GCK  (Hs)  ALGITAIELG ELQPPLFHLH PMRALMLMSK SSFQPPKLRD KTRWTQNFHH
TNIK (Hs)  SLGITAIEMA EGAPPLCDMH PMRALFLI.. PRNPAPRL.K SKKWSKKFQS
DST2 (Dd)  FLAKCLTRKP ELRPSAEELL KHPFI.TKAK SHSLLVPLID 
MST1 (Hs)  FVKQCLVKSP EQRATATQLL QHPFV.RSAK GVSILRDLIN 
MST2 (Hs)  FVKKCLVKNP EQRATATQLL QHPFI.KNAK PVSILRDLIT
SOK1 (Hs)  FVEACLNKDP RFRPTAKELL KHKFITRYTK KTSFLTELID
MST3 (Hs)  FVEACLNKEP SFRPTAKELL KHKFILRNAK KTSYLTELID
DST1 (Dd)  FCALCLNKDP NQRPTAKDLL KHKFI.KAAK KTSSLTDLIE 
MST3B(Hs)  FVEACLNKEP SFRPTAKELL KHKFILRNAK KTSYLTELID 
GCK  (Hs)  FLKLALTKNP KKRPTAEKLL QHPFTTQQL. PRALLTQLLD 
TNIK (Hs)  FIESCLVKNH SQRPATEQLM KHPFIRDQPN ERQVRIQLKD
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The alignment  clearly showed that  the DST2 kinase domain  is  highly homologous to  the

kinase domains of MST1 (Hs), MST2 (Hs), SOK1 (Hs), MST3 (Hs), DST1 (Dd), MST3b

(Hs), GCK (HS) and TNIK (Hs). These proteins share a similar structure and have 79, 76, 70,

69, 69, 68, 66 and 65% amino acid similarities  in the catalytic domains, respectively. These

proteins have a highly conserved catalytic domain in common but differ in their C-terminal

regulatory domain,  which does not  contain any identifiable sequence motifs.  Interestingly,

DST2 is more closely related to human MST1 and MST2 (79% and 76% similarity I in the

catalytic domain, respectively) than to  D. discoideum DST1 (with only 69%) (Fig. 6A). To

further  clarify  the  relationships  between  these  protein  kinases  and  DST2,  we  calculated

multiple sequence alignments of the catalytic domains. The derived evolutionary tree is split

into two main branches, one formed by MST1, MST2, DST2, GCK and TNIK, the other one

by MST3, MST3b, DST1 and SOK-1 (Fig. 6B)

         A
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Fig. 6. Topology of DST2 (A) and evolutionary tree of the GCK subfamily (B).
A:  The  structures  of  DST2  and  eight  GCK subfamily  members  are  schematically  depicted.  The  sequence
similarities of the catalytic domains were calculated relative to the catalytic domain of DST2. B: Evolutionary
tree of GCK subfamily members. A multiple sequence alignment of the catalytic domains of GCK subfamily
members was calculated with the program Clustal of the UWGCG package (University of Wisconsin Genetic
Computer Group). The alignment was used to construct a phylogenetic tree with the programs Protdist and Kitch
of  PHYLIP  (Phylogeny  Inference  Package),  version  3.5c,  by  Joseph  Felsenstein  from  the  University  of
Washington, Dd, D. discoideum; Hs, Homo sapiens.
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3.1.3 Southern analysis of DST2

To investigate whether the DST2 gene exists as a single copy in the Dictyostelium genome,

genomic DNA of AX2 cells was digested with different restriction enzymes and the digested

DNA fragments  were  hybridized  with  radioactively labeled  full  length  genomic  DNA of

DST2. Under stringent conditions we detected two bands in the SacI digest, two in the XbaI

digest, four bands in the EcoRI digest and three bands in the AccI digest (Fig. 7). There are no

SacI and XbaI sites in the genomic DNA of DST2, yet 2 fragments were found after digestion

with SacI or XbaI. The strong band in the SacI digest and the weaker one in the XbaI digest in

the range of 50kb represent sheared undigested genomic DNA and are therefore not taken into

account. Furthermore, after cutting with EcoRI four large fragments (app. 15, 8, 5 and 3kb)

were detectable, even though we expected only two large and one small fragment (ca. 0.5kb).

The small fragment of 0.5kb most likely escaped detection. Three bands were detected with

AccI, although only one AccI site exists. The same band pattern was obtained when using a

260bp  fragment  derived  from  the  regulatory region  of  DST2  for  hybridisation  (data  not

shown).  Taken  together,  these  data  indicate  the  presence  of  two  copies  of  DST2  in  the

Dictyostelium genome.  

                 A
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Fig. 7 Southern blot analysis of DST2.
A: Genomic DNA of AX2 cells was digested with SacI, XbaI, EcoRI, or AccI. The fragments were separated in a
0.8% agarose gel and blotted onto nitrocellulose. DST2 specific fragments were detected with the full length 32P-
labeled 1.8 kb DST2 genomic DNA. The detected bands are marked with differently coloured arrows (red: SacI;
yellow: XbaI; blue: EcoRI; green: AccI). Sizes of the DNA marker are shown on the left side. B: Schematic
representation of AccI and EcoRI restriction sites in the genomic DNA of DST2. The positions of the start, stop
codon and of the restriction sites are shown.

3.1.4. Northern analysis of DST2

There are two distinct phases in the life cycle of  D. discoideum, growth and development

(Bonner et al., 1967; Loomis et al., 1975). Amoebae continue to grow as long as a bacterial

substrate is available. Development is initiated when the bacterial food supply is exhausted.

Then amoebae aggregate by chemotaxis and pass through various morphogenetic stages (Fig.

8A). Developmental regulation has been demonstrated for a number of D. discoideum genes.

To  determine  whether  DST2  transcription  is  regulated  during  development,  we  have

performed Northern Blot analysis. Total RNA from different stages of development of  D.

discoideum strain  AX2 was isolated,  separated,  blotted onto nitrocellulose and hybridized

with radioactively labeled full length cDNA of DST2.  Under high stringency conditions, a

single 1.5kb mRNA of DST2 was detected. We found that the DST2 transcript is expressed

throughout development, but  strongly upregulated at 12h of development.  To confirm  these

results, the blot was reprobed using severin and Contact site A probes (Fig. 8B). As expected,

severin was expressed at t0 and throughout development, while mRNA level of Contact site A,

a plasma membrane glycoprotein required for cell adhesion during aggregation, was found

highest at 9h and began to fall at 12h of development, confirming published results (André et

al., 1988; Siu et al., 1988). These results clearly show that DST2 transcript is accumulated at

12 h of the development of Dictyostelium, at the time when amoebae enter the slug stage. 
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Fig. 8 Northern analysis of DST2
A: Morphological stages in the development of D. discoideum. The time course of development is for standard
conditions as described by Sussman (1996). B: Total RNA from different stages of development (indicated in
hours) was probed with a radioactively labeled cDNA fragment coding full length of DST2. Severin and Contact
site A were used as positive controls.
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3.2 Biochemical and cell biological characterization of DST2

3.2.1 Expression and purification of recombinant DST2

Full  length DST2 (MBP-DST2),  the catalytic domain (MBP-DST2-cat) and the regulatory

domain (MBP-DST2-reg) were expressed as maltose binding protein (MBP)-tagged fusion

proteins. After opening the bacteria, the recombinant proteins were found soluble and purified

using affinity chromatography. Recombinant MBP-DST2 showed a molecular mass of about

95 kDa, MBP-DST2-cat of about 80 kDa and MBP-DST2-reg of about 70 kDa (Fig. 9A, C,

E).  Expression  and  purification  worked  very well  for  MBP-DST-reg,  while  considerable

degradation was observed in the case of MBP-DST2 and, less pronounced, MBP-DST2-cat.

The purified recombinant proteins were used for the generation of polyclonal antisera as well

as for the investigation of their catalytic activity in in vitro assays (see 3.2.3). The full length

proteins as well as the degradation products were also seen in immunoblots using the obtained

polyclonal  antisera  (Fig.  9  B,  D).  The  polyclonal  antiserum  against  MBP-DST2-reg  was

superior and used for further investigations. However, the affinity and specificity of the anti

MBP-DST2-reg antibodies was not sufficient for immunoprecipitation of native DST2 from

whole Dictyostelium cell homogenates.
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Fig. 9 Purification of recombinant full length, regulatory and catalytic domains of DST2.
A: Full length recombinant DST2 was expressed as MBP-tagged fusion protein (ca. 95 kDa). B: Immunoblotting
analysis of recombinant DST2 using a polyclonal antiserum against the regulatory domain. C: The recombinant
catalytic domain of DST2 showed a molecular mass of about 80 kDa. Crude extract (1), insoluble matter (2),
purified recombinant catalytic domain (3). D: Immunobldtting analysis of recombinant catalytic domain using a
polyclonal  antiserum against  the catalytic  domain.  E:  The  regulatory domain was expressed as  MBP-tagged
fusion protein (ca. 70 kDa). F: The recombinant regulatory domain was detected using a polyclonal antiserum
against the regulatory domain. 

53



3.2.2 Western analysis of DST2

The expression of DST2 in AX2 wild type cells was examined using western blot analysis. A

polyclonal antiserum (SA7652), raised against the regulatory domain of DST2, recognized a

protein of about 63 kDa during all stages of development. The amount of protein was lower at

t0 and  t6 and  increased  until  t21 (Fig.  10).  The  deduced  amino  acid  sequence  predicted  a

molecular mass of 52 kDa for DST2. Compared to that, we observed a much higher apparent

molecular mass of 63 kDa. This could be due to either post-translational modifications or

reduced  mobility  of  the  polypeptide  in  SDS-PAGE.  Similar  differences  in  apparent  and

calculated molecular mass were reported for the related kinases MST1, MST2 and DST1.

MST1 and 2 have an estimated molecular mass of 61 and 63 kDa in SDS-PAGE while the

predicted molecular mass is 55.6 kDa for MST1 and 56.3 kDa for MST2 (Taylor et al., 1996).

DST1  also  showed  an  apparent  molecular  mass  of  62  kDa  in  SDS-PAGE,  whereas  the

calculated molecular mass is about 53 kDa (Eichinger et al., 1998).

         

       
Fig. 10 Expression of DST2 in AX wild type cells and Western blot analysis.
A: Wild-type Dictyostelium AX2 cells were cultivated on SM plates at 21°C for 21 hours. Cells were harvested
from different developmental stages and total cell homogenates were separated on 12% SDS-PAGE and stained
with Coomassie Blue. B: Western blot analysis using an antiserum against the regulatory domain of DST2 as
primary antibody. Time of development in hours is indicated above the gel and blot, respectively.
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3.2.3 In vitro kinase assays with recombinant DST2 constructs

Bacterially  expressed  fusion  proteins  of  MBP  and  full  length  DST2  (MBP-DST2),  the

catalytic domain (MBP-DST2-cat) and the regulatory domain (MBP-DST2-reg) were used in

in vitro kinase assays either alone or with myelin basic protein (MBP’) as substrate. As shown

in Fig. 11, MBP-DST2 was able to phosphorylate itself (lane 1) and MBP’ (lane 2). However,

MBP-DST2-cat (lanes 3 and 4) and MBP-DST2-reg (lanes 5 and 6) did not show any kinase

activity. The loss of catalytic activity of the recombinant catalytic domain was unexpected and

could be due to a protein-folding problem. 

Since full  length recombinant  DST2 protein was tagged with maltose binding protein,  we

examined whether maltose binding protein might be phosphorylated by DST2 or have any

effect on kinase activity. As shown in Fig. 12, MBP was not phosphorylated by MBP-DST2

and no difference in the autophosphorylation of DST2 was seen in the presence of MBP (lane

1,  lane 2), while MBP-DST2 still  phosphorylated MBP’ (lane 3).  These results show that

added MBP is not phosphorylated by MBP-DST2 and does not influence the catalytic activity

of  MBP-DST2.  MBP-DST2  phosphorylated  itself,  but  it  was  not  clear  where  the

autophosphorylation occurs.  To find out  which domain of DST2 is  phosphorylated during

autophosphorylation, the recombinant regulatory and catalytic domains of DST2 were used as

potential  substrates in  the  in  vitro kinase assay. While  the regulatory domain was heavily

phosphorylated  by MBP-DST2 (lane  4),  we observed no  phosphorylation  of  the  catalytic

domain (lane 5), indicating that the phosphorylation site(s) of autophosphorylation are located

on the regulatory domain. 

In addition to MBP’, we tested several additional potential substrates of MBP-DST2 in  in

vitro kinase assays. H1 and  -casein turned out to be poor substrates for MBP-DST2 (data

not shown). We also tested  Dictyostelium severin as a potential  substrate for MBP-DST2,

because previously it was shown that severin was very efficiently phosphorylated by DST1

(Eichinger et al., 1998) and found that severin is also a very good substrate for MBP-DST2

(Fig. 13). All further kinase assays were carried out with either no substrate or using MBP’ or

severin as a substrate. 

To address the question whether autophosphorylation on the regulatory domain could regulate

the kinase activity, we incubated MBP-DST2 in the presence of  32P-ATP for 0 or 20 min

followed by the addition of severin as a substrate. 
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Pre-incubation of DST2 with 32P-ATP led to a strong increase in the autophoshorylation level,

however, the phosphorylation level on severin was not changed. These results suggest that

autophosphorylation of DST2 does not increase its kinase activity (Fig. 13).

       

          A

                      

                          

       

           B                      

                       

Fig. 11  In vitro kinase assays with recombinant MBP-DST2, MBP-DST2-cat and MBP-DST2-reg in the
presence or absence of MBP’.
A: Purified recombinant MBP-DST2, MBP-DST2-cat and MBP-DST2-reg were subjected to an in vitro kinase
assay alone (lanes 1, 3, 5) or with myelin basic Protein (MBP’) (lanes 2, 4, 6). The positions of MBP-DST2 and
MBP’ are indicated. B: The corresponding DST2 constructs are schematically depicted.

56



                                                

95
70

MBP-DST2
MBP-DST2-reg

MBP'

2 3 4 5
kDa

20

1

Fig. 12 In vitro kinase assays with MBP-DST2 alone or in the presence of MBP, MBP’, MBP-DST2-reg or
MBP-DST2-cat.
Full length MBP-DST2 was subjected to the in vitro kinase assay alone (1), or in the presence of either maltose
binding  protein  (MBP,  2),  myelin  basic  protein  (MBP’,  3),  MBP-DST2-reg  (4)  or  MBP-DST2-cat  (5)  as
substrates. The positions of MBP-DST2,  MBP-DST2-reg and MBP’ are indicated on the right and sizes for
molecular mass markers on the left.
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Fig. 13 The influence of autophosphorylation on the catalytic activity of MBP-DST2.
MBP-DST2 was incubated in the presence of 32P-ATP for 0 or 20 min at 30oC followed by the addition of 1g
severin  for  an  additional  5  min.  The  reaction  products  were  separated  by  SDS-PAGE  and  subjected  to
autoradiography. The positions of MBP-DST2 and severin are indicated.
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3.2.3.1 The influence of Mn2+ and Mg2+ on DST2 kinase activity

Recently,  Schinkmann  and Blenis  reported  that  mammalian  STE20-like  kinase  3,  MST3,

prefers Mn2+ over Mg2+ as a divalent cation. In  in vitro kinase assays they showed that the

catalytic activity of MST3 was consistently 20-50 fold higher  in the presence of Mn2+ as

compared with Mg2+,  whereas MST3 activity did not change upon raising the intercellular

Ca2+ or cAMP concentration (Schinkmann and Blenis, 1997). Mn2+ is also the most potent

divalent cation activator of autophosphorylation for the tyrosine kinases of the insulin and

epidermal growth factor receptors (White et al., 1984; Carpenter et al., 1978).

To determine the role of Mn2+ versus Mg2+ for DST2,  MBP-DST2 activity was examined

using either  Mg2+ or  Mn2+ in  an  in  vitro kinase  assay with  either  MBP’  or  severin  as  a

substrate  (Fig.14).  Interestingly,  under  these  conditions,  MBP-DST2 catalytic activity was

found to be much higher (~10 fold) in the presence of Mn2+ as compared to Mg2+, suggesting

that DST2 prefers Mn2+ as a cofactor. Similarly, the autophosphorylation activity was elevated

in  the  presence of  Mn2+.  The  weaker  bands  seen  in  the  assay with  Mn2+ are  degradation

products of recombinant MBP-DST2. 

To determine whether the kinase activity of DST2 is dependent on the Mn2+ concentrations,

MBP-DST2 activity was tested using a range of Mn2+ concentrations.  In vitro kinase assays

were performed using the indicated Mn2+ concentrations with severin as a substrate. As shown

in  Fig.15,  severin  was  phosphorylated  strongly  by  MBP-DST2  with  rising  Mn2+

concentrations. In order to phosphorylate severin the Mn2+ concentration had to be at least

0.5mM  and  phosphorylation  strongly  increased  with  increasing  Mn2+ concentration.

Phosphorylated severin was cut  out,  eluted  and subjected  to  mass  spectrometry.  The data

indicate that severin contains several phosphorylation sites, which all seem to be located in the

third domain, between residues 260-315 (data not shown). Interestingly, previous data showed

that domain 2+3 of severin is also a substrate for DST1 (Eichinger et al., 1998).
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Fig. 14 Regulation of MBP-DST2 kinase activity by divalent cations.
MBP-DST2 was used in the  in vitro kinase assay with MBP’(lane 1) or severin (lane2) as substrates in the
presence of Mn2+ (10mM) or Mg2+ (10mM).  The reactions were subjected to SDS-PAGE and visualized by
autoradiography. Positions of DST2, MBP’ and severin are indicated. 

                                   

                                    

Fig. 15 MBP-DST2 kinase activity in the presence of increasing concentrations of Mn2+.
MBP-DST2 was used in  the  in  vitro kinase assay with different  concentrations  of  Mn2+ using severin as  a
substrate. The Mn2+ concentration is indicated in mM on top and the position of molecular mass markers on the
left. Positions of DST2 and severin are indicated.
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3.2.3.2 PKA is a potential upstream kinase of DST2

Protein kinase A (PKA) is a mediator of the actions of hormones and neurotransmitters that

activate adenylcyclase via heterotrimeric G-proteins thereby increasing the intracellular cyclic

AMP level (Taylor et al., 1990; Walsh and Van Patten, 1994). Recently, it has been reported,

that MST3b, a human brain specific STE20-like kinase which activates the  p42/44 MAPK

signalling pathway, is negatively regulated by PKA (Zhou et al., 2000). This result suggested

that  PKA might act  as a potential  upstream kinase for the GCK subfamily of STE20-like

protein kinases. To address the question whether PKA can phosphorylate and regulate DST2,

MBP-DST2, MBP-DST2-reg and PKA were subjected to in vitro kinase assays alone and in

different combinations in the presence of either 10mM Mg2+ or 10mM Mn2+ (Fig. 16). In the

presence  of  10mM  Mn2+,  the  addition  of  PKA  induced  a  strong  increase  in  the  basal

autophosphorylation activity of MBP-DST2 (Fig. 16B, lanes 1, 2). No increase in activity was

seen in the presence of Mg2+ (Fig. 16A, lanes 1, 2). PKA showed autophosphorylation activity

and  the  recombinant  regulatory  domain  of  DST2,  MBP-DST2-reg,  was  effectively

phosphorylated  by  PKA  (Fig.  16  A,  B,  lanes  3,  4).  MBP-DST2-reg  alone  was  not

phosphorylated (data not shown). This result suggested that PKA may be a potential upstream

regulating kinase for DST2 through the phosphorylation of its regulatory domain.  

Fig. 16 Phosphorylation of DST2 by PKA.
In vitro kinase assay were carried out either in the presence of 10mM Mg2+ (A) or in the presence of 10mM Mn2+

(B). MBP-DST2 was either subjected to phosphorylation alone (lanes 1) or in the presence of purified catalytic
subunit of PKA (lanes 2). The catalytic subunit of PKA was either phosphorylated alone (lanes 3), or in the
presence of the regulatory domain of DST2, MBP-DST2-reg (lanes 4). The positions of MBP-DST2, PKA and
MBP-DST2-reg are indicated.
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3.2.4  Expression,  purification  and  biochemical  characterisation  of  recombinant  C-

terminally truncated DST2 constructs

The catalytic domain of DST2 is highly homologous with the kinase domains of the GCK

subfamily. However, the putative regulatory domain of DST2 has no significant similarities to

other  known proteins.  To  understand  its  function,  C-terminally  truncated  constructs  were

created. In addition to the previously described construct MBP-DST2-cat (see Fig. 11), the

catalytic domain of DST2, we generated three additional deletion constructs within the DST2

carboxyl terminus by PCR. These code for MBP-DST2(1-421), MBP-DST2(1-368) and MBP-

DST2(1-326) and end at the indicated amino acid of DST2. The corresponding products were

expressed in E. coli and purified as maltose binding proteins (see 2.4.7.2). Their purification

is shown in Fig. 17. Immunoblots with an antibody against the regulatory domain of DST2

showed that most of the additional bands in the eluted fractions are degradation products (data

not shown).
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Fig. 17 Purification of C-terminally truncated constructs of DST2.
Three C-terminally truncated constructs were generated via PCR, inserted into the pMal-vector, and expressed.
The recombinant DST2 deletion constructs were purified by affinity chromatography with an amylose resin. A:
MBP-DST2(1-421), B: MBP-DST2(1-368), C: MBP-DST2(1-326). The positions of the purified constructs are
indicated by an arrow. The fraction size was 0.5  ml and the fraction numbers  are  give above the gel.  The
positions of the molecular mass markers are indicated on the left. 
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3.2.5.1 In vitro kinase assays with C-terminally truncated constructs of DST2

For MST1, MST2 and SOK-1, all members of the GCK subfamily, it was shown that the

putative regulatory domain apparently has an inhibitory function, because its removal resulted

in an increase in protein kinase activity (Pombo et al., 1996; Creasy et al., 1996). Since MST1

is the protein kinase with the highest homology to DST2 we decided to map the potential

inhibitory region of DST2 and generated three C-terminal deletion constructs, MBP-DST2 (1-

421), MBP-DST2 (1-368) and MBP-DST2 (1-326). These were used in comparison to full

length DST2 (MBP-DST2) in an in vitro kinase assay with or without MBP’ as a substrate.

MBP-DST2 (1-421), the deletion construct lacking the last 40 amino acids of DST2 showed

an app. 2 fold increase in kinase activity. A further deletion of an additional 53 amino acids in

MBP-DST2(1-368) resulted in an app. 10 fold increase in kinase activity, and a deletion of 42

amino acids more MBP-DST2(1-326) increased the activity by another factor of 5. We also

detected an increase in the autophosphorylation levels of the truncated constructs. This result

suggests  that  within  amino  acids  326-461  of  DST2  an  inhibitory  region  is  present  that

negatively  regulates  its  kinase  activity  (Fig.  18).  Surprisingly,  deletion  of  the  complete

regulatory domain (MBP-DST2-cat, comprising aa 1-287 of DST2) resulted in a complete

loss  of  catalytic  activity  (see  Fig.  11).  This  could  be  either  due  to  folding  problems  or,

alternatively, part of the regulatory domain is needed for the catalytic activity of DST2. 
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B

Fig. 18 The C-terminal regulatory domain of DST2 inhibits its catalytic activity.
A: Three C-terminal deletion constructs, MBP-DST2(1-421), MBP-DST2(1-368), MBP-DST2(1-326) were used
in comparison to full length DST2 (MBP-DST2) in an in vitro kinase assay with (right four lanes) or without (left
four lanes) MBP’ as a substrate. The identities of the constructs used in the kinase assay are indicated above the
gel, the positions of the molecular mass markers is given on the left and the position of MBP’ on the right. B:
Schematic presentation of full length MBP-tagged DST2 and the deletion constructs. The corresponding catalytic
activity is indicated on the right. The catalytic domain of DST2 (MBP-DST2-cat ; aa1-287) did not show kinase
activity (see Fig. 11).

3.2.6 DST2 is present as a high molecular weight complex in AX2 homogenate

It has been suggested that members of the GCK family may oligomerize (Pombo et al., 1995).

Sequence comparisons of the regulatory domain of DST2 with the corresponding domain of

the other kinases in the GCK family did not reveal significant sequence similarity to most of

these kinases. MST1, which dimerizes or may exist as a multimer (Creasy et al., 1996), was

the  only  family  member,  which  displayed  some  sequence  similarity  with  the  regulatory

domain of DST2. 

Gel filtration chromatography was used to investigate whether endogenous DST2 may exist as

a  high  molecular  weight  complex.  The  soluble  fraction  of  wild  type  Dictyostelium cells

(100,000xg supernatant) was subjected to gel filtration chromatography using a Superose 12 

column. The eluted fractions were analyzed by immunoblotting with a polyclonal antiserum

raised against the regulatory domain of DST2. 
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DST2 was eluted in a broad peak ranging from approximately 63 kDa to 400 kDa, suggesting

that DST2 may exist in vivo as a monomer as well as a high molecular weight complex (Fig.

19). The composition of this complex is not clear at present.

                           

                         

                                                              

Fig. 19 Endogenous DST2 exists in a high molecular weight complex.
D. discoideum cells were lysed, total cell homogenate was centrifuged at 100,000xg and the soluble fraction
subjected  to  gel  filtration  chromatography  using  a  Superose  12  column.  Fractions  were  analyzed  by
immunoblotting  with  a  polyclonal  antiserum against  the  regulatory  domain  of  DST2.  The  positions  of  the
calibration markers and the fraction numbers are indicated.

3.2.7 Phosphorylation by DST2 inhibits the severing activity of severin

We found that severin was phosphorylated by DST2 in Mn2+ dependent manner. However, it

was  not  clear,  whether  phosphorylation  regulates  the  activity  of  severin.  To  address  this

question, the influence of phosphorylated and unphosphorylated severin on F-actin solutions

was investigated using falling-ball viscometry (see 2.4.8) and fluorescence spectroscopy (see

2.4.9). The recombinant construct MBP-DST2 (1-326), which showed the highest catalytic

activity, was  used in  these assays. In the  low shear  falling-ball  viscometry assay, severin

phosphorylated by DST2 did not decrease the viscosity of F-actin, whereas unphosphorylated

severin was found to reduce the viscosity as expected (data not shown). We also measured the

fluorescence decrease of pyrene-labeled F-actin in a dilution induced depolymerisation assay

in the presence of either phosphorylated or unphosphorylated severin. In this assay F-actin

fragmenting proteins create additional pointed ends which results in a faster depolymerisation

of the pyren-labeled F-actin. 
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We found that increasing concentrations of unphosphorylated severin resulted in an increasing

decrease  in  fluorescence  while  identical  concentrations  of  phosphorylated  severin  only

moderately influenced the fluorescence decrease in comparison to the control (Fig. 20). This

result  strongly  suggested  that  phosphorylation  by  DST2  inhibits  the  F-actin  fragmenting

activity of severin.

                       

Fig. 20 Dilution induced depolymerisation of pyrene-lebaled F-actin in the presence of phosphorylated or
unphosphorylated severin.
Severin was incubated with or without MBP-DST2 (1-326) in kinase buffer for 20 min at room temperature.
These samples were then used in the dilution induced depolymerisation assay with pyrene-labeled F-actin. The
rate of fluorescence decrease of pyrene-labeled F-actin with phosphorylated or unphosphorylated severin was
measured. The measured relative fluorescence values were plotted against time and the slopes of these plots were
calculated and plotted versus severin concentration.
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Chapter 4

Discussion

4.1 DST2 is a new member of the STE20-like protein kinase family

We screened the sequences of the  D. discoideum cDNA project database in Tsukuba, Japan

(Tsukuba  website:  http://www.csm.biol.tsukuba.ac.jp/cDNAproject.html),  using  DST1

(Dictyostelium STE20-like kinase  1) as query and discovered a cDNA clone coding for a

highly homologous protein kinase. Pending the identification of a physiological function, this

kinase was named DST2 (Dictyostelium STE20-like kinase 2). The 1.5 kilobase cDNA insert

contained an open reading frame coding for a protein of 461 amino acids with a predicted

molecular mass of 52 kDa.  Based on sequence homologies, DST2 was identified as a new

member of the GCK subfamily of STE20-like kinases with an N-terminal catalytic 287-amino

acids and a C-terminal regulatory domain 174-amino acids.  DST2 displays 69% amino acid

similarity to the kinase domain of DST1. DST1 is activated by osmotic stress, phosphorylates

the F-actin fragmenting protein severin and is most closely related to human SOK1, which is

activated by oxidant stress (Pombo et al., 1996; Eichinger et al., 1998; unpublished results).

Further sequence comparisons showed that DST2 is most closely related to human MST1 with

79% amino acid similarity in the kinase. 

The strong similarity of DST2 and MST1 over their  entire length suggests  that  these two

protein kinases are orthologues and might have similar or identical  in vivo function. MST1

dimerizes and exists in a high molecular weight complex. Its catalytic activity is inhibited by

the regulatory domain. MST1 is activated upon treatment of cells with staurosporine, okadaic

acid, high concentrations of sodium arsenite, and extreme heat shock at 55°C (Creasy and

Chernoff,  1995;  Creasy  et  al.,  1996;  Taylor  et  al.,  1996). Furthermore,  it  was found that

MST1  is  specifically  cleaved  by  a  caspase-3  like  activity  during  apoptosis,  induced  by

CD95/Fas.  Mutational  analysis  indicated that  the caspase recognition and cleavage site  in

MST1 is DEMD, which is similar to the consensus sequence for caspase 3 (DEVD) (Graves

et al., 1998). Interestingly, DST2 contains the sequence motif DEQD at the border between

the N-terminal kinase domain and the C-terminal regulatory domain (Fig. 21). 
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Little is known about apoptosis in  Dictyostelium and it remains to be determined, whether

DST2 could be a subject for specific proteolysis in this process.

DST2(Dd)  ~~~~~~~~~~ ~~~~~~MSTL NVPKETMSRK DPEKFFTIVE KLGEGSYGSV
MST1(HS)   ~~~~~~METV QLRNPPRRQL KKLDEDSLTK QPEEVFDVLE KLGEGSYGSV

             *     *  **  *  ** **********
DST2(Dd) YKAINISTGI VVAIKKVSVD NDLEDMEKEI SFMKQCKSPY IVTYYASFRK
MST1(Hs) YKAIHKETGQ IVAIKQVPVE SDLQEIIKEI SIMQQCDSPH VVKYYGSYFK

****   **  **** ***   * ** *** * * ** **  * ** *  *
DST2(Dd) ENEVWIVMEH CGAGSVCDAM KITDKTLSED QIAVVSRDVL QGLAYLHSVR
MST1(Hs)  NTDLWIVMEY CGAGSVSDII RLRNKTLTED EIATILQSTL KGLEYLHFMR

    ***** ****** *  *  *** **  **      *  ** ***  *
DST2(Dd) KIHRDIKAGN ILMNHKGESK LADFGVSGQL SDTMAKRQTV IGTPFWMAPE
MST1(Hs) KIHRDIKAGN ILLNTEGHAK LADFGVAGQL TDTMAKRNTV IGTPFWMAPE

********** ** *  *  * ****** ***  ****** ** **********
DST2(Dd) VIQEIGYDYK ADIWSYGITC IEMAESKPPL FNVHPMRVIF MIPNPSRPPP
MST1(Hs) VIQEIGYNCV ADIWSLGITA IEMAEGKPPY ADIHPMRAIF MI..PTNPPP

******* ***** *** ***** ***    **** ** **  *  ***
DST2(Dd) KLTEPEKWSP EFNDFLAKCL TRKPELRPSA EELLKHPFIT KAKSHSLLVP
MST1(Hs) TFRKPELWSD NFTDFVKQCL VKSPEQRATA TQLLQHPFVR SAKGVSILRD

    ** **  * **   **    **    *   ** ***   **  ***  
DST2(Dd) LIDEQDIIIN EKGREVALGI EQRDEEEEDE DEDSEDSDDN RGTMVRAKPR
MST1(Hs) LINEA.MDVK LKRQE..... SQQREVDQDD EENSEEDEMD SGTMVRAVGD

** *       *  *  *  *   *  * **     ******   
DST2(Dd) SMQNSGGEDN DEEYDTGTMV ITDN..KNSY DTVVFNNDD. .EDSGTMKLK
MST1(Hs) EMGTVRVAST MTD.GANTMI EHDDTLPSQL GTMVINAEDE EEE.GTMKRR

 *              **   *       * * *  *  *  ****
DST2(Dd) NTMPSNKKNF VPDYMNQFKK SDDDVTN... .......... .... VPLSD
MST1(Hs) DETMQPAKPS FLEYFEQ.KE KENQINSFGK SVPGPLKN.. SSDWKIPQDG

       *        * *
DST2(Dd) KY...SSYSL EELKKMLAEL EIEREKEVQK TLEKFSINRQ ALLAVIDEKK
MST1(Hs) DYEFLKSWTV EDLQKRLLAL DPMMEQEIEE IRQKYQSKRQ PILDAIEAKK

 *    * * * * *  *     * *          **  **  *  **
DST2(Dd) SK
MST1(Hs) RRQQNF

    

Fig. 21. Sequence alignment of Dictyostelium DST2 and human MST1.
The sequence alignment was done with the program Clustal from UWGCG program package. Identical residues
are indicated by a star.  Pseudo-consensus sequence for caspase 3 DEVD in MST1 and DEQD in DST2 are
shaded in grey. 
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4.2. DST2 is autophosphorylated and activated in Mn2+ dependent manner

We used MBP-tagged recombinant  DST2 in  in  vitro kinase  assays and found that  DST2

possesses unusual cofactor requirements. The ability to phosphorylate itself and exogenous

substrates was consistently more than 10-fold higher in the presence of Mn2+ versus Mg2+  .

The  increase  of  DST2  activity  observed  in  response  to  increasing  Mn2+  concentration

suggested that  besides formation of the substrate MnATP, also binding of free Mn2+ to a

distinct  site  on DST2 might  be required  for  full  kinase  activity. Mn2+ is  the  most  potent

divalent cation activator of autophosphorylation for the tyrosine kinases of the insulin and

epidermal growth factor receptors (White et al., 1984; Carpenter et al., 1978). Recently, it was

shown that mammalian STE20-like kinase 3 (MST3), a close homologue of MST1, MST2

and DST2, also prefers Mn2+ to Mg2+ as a cofactor. MST3 catalytic activity was found to be

20-50 fold higher in the presence of Mn2+ compared with Mg2+  (Schinkmann  et al., 1997).

However, the physiological role of Mn2+ in the activation of DST2 and MST3 needs to be

elucidated.

4.3 Regulation of DST2 activity

The protein kinase activity of PAKs can be stimulated by binding of activated GTP-bound

Cdc42 and Rac (Manser et al., 1994). Accumulated data suggest that PAK kinase activity is

repressed  by  an  intramolecular  interaction  between  the  regulatory and  catalytic  domains.

Binding of GTP-bound Cdc42 or Rac disrupts this interaction resulting in a stimulation of

kinase activity (Bagrodia and Cerione, 1999). 

For  members  of  the  GCK subfamily  the  putative  regulatory role  of  the  C-terminal  non-

catalytic domain is not clear. In the case of MST1, MST2, and SOK-1 it apparently has an

inhibitory function because its removal resulted in an increase in kinase activity (Pombo et al.,

1996; Creasy  et al., 1996). Furthermore, it has been shown that the C-terminal domains of

MST1 and MST2 mediate homo- and heterodimerization (Creasy  et al., 1996). In order to

investigate the role of the putative regulatory domain of DST2 we performed a series of C-

terminal deletions and also looked for potential upstream effectors. The C-terminal deletion

results showed that DST2 contains a region between amino acids 326-461 that inhibits its

catalytic activity (3.2.5).
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There are several possible mechanisms by which this  region may regulate kinase activity.

Firstly, an inhibitory protein may bind to this region, as has been suggested for the related

GCK (Pombo et al., 1995). Inactivation of the inhibitory molecule would in turn activate the

kinase. Our in vitro kinase assay results argue against this scenario. Secondly, similar to the

PAKs, the C-terminal domain  per se might inhibit the catalytic activity. Our results support

this model since several C-terminal deletions of DST2 were found to be much more active

than the full length molecule (Fig. 22). If this model is correct we are faced with the question

how the inhibitory role of the regulatory domain might be overcome in vivo. One possibility is

regulation by autophosphorylation and in in vitro kinase assays we found that the regulatory

domain  was  phosphorylated  by  full  length  DST2,  suggesting  that  there  might  be  a

pseudosubstrate  site  within  this  domain.  However,  no  change  in  activity  was  observed.

Another possibility is activation through an upstream effector. We found that the regulatory

domain contains several potential phosphorylation sites for PKA, it was phosphorylated by

PKA in vitro and phosphorylation of recombinant DST2 by PKA significantly increased its

activity (3.2.3.2). Taken together, these data support a model, in which phosphorylation of the

regulatory  domain  by  either  PKA  or  another  as  yet  unknown  protein  kinase,  triggers  a

conformational change that leads to activation of DST2.

        
Fig. 22 Schematic representation of human PAK1 regulation.
Depiction of the Cdc42/Rac stimulated activation of PAK. The binding of Cdc42/Rac reverses an autoinhibitory
intramolecular interaction. The following domains or sequence motifs are indicated. P1, P2, P3, P4: potential
SH3 (Src-homology 3) binding motifs; PB: P21-binding domain; CP: cool-pix-binding region; STDK: serine-
threonine kinase domain (adapted from Bagrodia and Cerione, 1999).
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4.4. DST2 exists as a high molecular weight complex

In gel  filtration  chromatography (3.2.6),  DST2 was eluted  in  a  broad peak ranging  from

approximately 63 kDa to 400 kDa, suggesting  that  DST2 may be part of a high molecular

weight complex in vivo. However, the composition of this complex is not clear at all. It could

be either composed of DST2 only or of DST2 plus additional proteins. Human MST1, which

is  the  closest  homologue  to  DST2  and  the  only  group  II  GCK  subfamily  member  with

similarity to the regulatory domain of DST2, homodimerizes and seems to be associated with

additional proteins (Creasy  et al., 1996). Therefore, we favor a model in which also in  D.

discoideum a DST2 dimer is associated with additional proteins. Purification of native DST2

kinase from D. discoideum should give insight into the composition and the stoichiometry of

the  proposed  complex.  The  functional  significance  of  complex  formation  of  MST1  and

possibly DST2 and other kinases of the GCK subfamily is not clear. For some protein kinases

dimerization seems to be important for recognition by an effector molecule or phosphorylation

specificity.  One  such  example  is  the monomeric  cGMP-dependent  protein  kinase,  which

phosphorylated histone and peptides, whereas only the dimer phosphorylated vimentin,  the

protein suspected to be the real in vivo substrate (MacMillan-Crow and Lincoln, 1994).

4.5. Binding partners of PAK family kinases

Recently,  several  PAK-binding  proteins  were  identified.  These  PAK binding  partners  are

p50Cool-1,  p85Cool-1/Pix,  Cool-2/Pix,  which  contain  SH3  (src-homology),  DH  (Dbl-

homology) and PH (Pleckstrin-homology) domains  (Manser  et  al.,  1998).  The  binding of

Cool/Pix to PAK seems to activate PAK either by cooperating with the binding of activated

Cdc42 or Rac or by altering PAK confirmation (Bagrodia and Cerione, 1999). 

Some of the group I GCKs might be downstream effectors of TNF (tumor necrosis factor).

Binding of TNF to the TNF receptor recruits TRAF2 (TNF receptor-associated factor 2) and it

was found that GCK and GCLK can be associated in vivo with TRAF2. This result suggested

that GCK and GCKR may be important effectors for TRAF2 (Pombo et al., 1995; Yuasa et

al., 1998; Arch et al., 1998). So far no binding partners have been identified for the Group II

GCK subfamily, to which DST2 belongs to. 
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However,  it  was  found  that  the  Group  II  GCK  subfamily  can  be  activated  by  different

environmental  stresses.  MST1  and  MST2  can  be  activated  by  treatment  of  cells  with

staurosporine, okadaic acid, high concentrations of sodium arsenite, and extreme heat shock at

55°C  (Creasy  et  al.,  1996).  MST1  could  also  be  activated  in  vitro by  phosphatase  2A

suggesting that MST1 might be activated by dephosphorylation (Taylor et al., 1996). SOK1 is

strongly  activated  by  oxidant  stress  and  also  by  ischemic  injury  (Pombo  et  al.,  1996;

Schinkmann and Blenis, 1997). Nothing is known about environmental conditions that might

trigger activation of DST2. However, its pronounced similarity to human MST1 suggests a

possible  role  of  DST2  in  an  as  yet  unknown stress  response  pathway in  D.  discoideum.

Knock-out experiments as well as treatment of cells with various stresses in combination with

in vivo labelling and immunoprecipitation should provide insight into the physiological role of

DST2. 

4.6. Signalling to the cytoskeleton

Several  members  of  the  PAK  family  have  recently  been  implicated  in  cytoskeletal

reorganization or the regulation of cytoskeletal proteins. PAK1 kinase activity is essential for

disassembly of  focal  adhesion  (Frost  et  al.,  1998).  LIMK1 (LIM-motif-containing protein

kinase) phosphorylates the actin-depolymerizing factor cofilin and serves as a target for PAK1

(Edwards  et al.,1999).  MIHCK from  Dictyostelium and its homologue from  Acanthamoeba

phosphorylate  the  heavy  chain  of  some  of  the  myosinI  isozymes  on  a  single  serine  or

threonine residue and thereby stimulate their actin-activated MgATPase activity 30 to 50 fold

(Lee and Côté, 1995; Brzeska and Korn, 1996). Cloning of the corresponding genes revealed

that MIHCK is a member of the PAK family and closely related to mammalian PAK and yeast

Ste20p molecules (Lee et al., 1996; Brzeska  et al., 1996). In gel overlay assays and affinity

chromatography  experiments  MIHCK  from  Dictyostelium interacted  with  GTPS-labeled

Rac1 and Cdc42, which probably bind to a conserved PBD commonly found in the N-terminal

regulatory domain of true PAKs. Interestingly, in  the presence of active Rac1 and Cdc42

autophosphorylation of MIHCK increased from 1 up to 9 moles of phosphate per mol of

kinase  concomitant  with  an  approximately  10-fold  stimulation  of  the  rate  of  myosin  ID

phosphorylation.  These  results  suggest  that  MIHCK  directly  links  Cdc42/Rac  signalling

pathways to motile processes driven by myosin I molecules (Lee et al., 1996). 
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The role of GCK subfamily members in signalling to the cytoskeleton is less clear. Recently it

was  shown that  overexpression  of  either  wild  type MST1 or  a  truncated  mutant  induced

morphological  changes (Graves  et  al.,  1998).  DST1 was found to phosphorylate the actin

fragmenting  protein  severin  (Eichinger  et  al.,  1998).  In  vitro TNIK could  phosphorylate

gelsolin, the mammalian severin homologue and overexpression of wild type TNIK resulted

in the disruption of F-actin structure and the inhibition of cell spreading. (Fu et al., 1999).

Here we showed that native severin was also a substrate for DST2 in vitro (3.2.3.1). Severin is

a Ca2+- activated actin-binding protein that nucleates actin assembly, fragments F-actin and

caps the newly created barbed end. It consists of three highly conserved domains. Domain 1 of

severin  is  responsible  for  F-actin  capping,  domains  1/2  cooperate  in  F-actin  fragmenting

whereas  domains  2/3  possess  two  F-actin  binding  sites  (Eichinger  et  al.,  1992).

Phosphorylation of severin by DST2 resulted in an inhibition of severin’s F-actin fragmenting

activity (see 3.2.7),  suggesting that  DST2 may play a role in  the remodeling of the actin

cytoskeleton. Mass spectrometry data suggested that all phosphorylation sites on severin seem

to be in the third domain, between residues 260-315. Phoshorylation of domain 3 might lead

to a conformational change and thus inhibit the F-actin fragmenting activity of severin. 

Several  recent  findings indicate  that  PKA  functions  in  regulating  STE20-like  kinases.

Functional connections between PKA and PAKs have been demonstrated in the regulation of

oocyte maturation in Xenopus and chemotaxis in Dictyostelium (Faure et al., 1999; Chung et

al., 1999). MST3b was directly phosphorylated and inhibited by PKA  in vivo and  in vitro

(Zhou et al., 2000). We have shown (3.2.3.2) that exposure of DST2 in in vitro kinase assays

to the  purified  catalytic subunit  of  PKA resulted  in the phosphorylation of the regulatory

domain and we also observed a strong increase in the basal autophosphorylation activity of

DST2. 

Taken together our data suggest that PKA might be a potential upstream regulatory kinase for

DST2 which in turn might phosphorylate and regulate the F-actin fragmenting protein severin.

The inhibition of severin’s F-actin fragmenting activity might play a role in the reorganization

of  the  actin  cytoskeleton.  Further  studies  are  needed  in  order  to  unravel  upstream  and

downstream components of signalling via DST2.
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4.7. Future prospects

To learn more about the in vivo function of DST2, the following studies need to be done in the

future:

1. Disruption of the Dictyostelium DST2 gene by homologous recombination.

2. Identification of possible binding partners of DST2 using the yeast two-hybrid system.

3. Expression of GFP-DST2 fusion proteins to investigate the intracellular localisation.

4. Production of better polyclonal and/or monoclonal antibodies against DST2.

5. Purification and characterisation of endogenous DST2 using affinity chromatography.

6. In  vivo labelling  experiments  with  cells  treated  with  various  stresses  followed  by

immunoprecipitation of DST2 and/or severin.

73



Chapter 5

References

André, E., Lottspeich, F., Schleicher, M. and Noegel, A. (1988) Severin, gelsolin, and villin

share a homologous sequence in regions presumed to contain F-actin severing domains.  J.

Biol. Chem. 15, 722-727

Arber,  S., Barbayannis, F.  A., Hanser,  H., Schneider,  C., Stanyon,  C.  A., Bernard,  O. and

Caroni P. (1998)  Regulation of actin dynamics through phosphorylation of cofilin by LIM-

Kinase. Nature. 393, 805-809

Arch, R.  H., Gedrich, R.  W. and Thompson, C.  B. (1998) Tumor necrosis factor receptor-

associated factors (TRAFs)--a family of adapter proteins that regulates life and death. Genes.

Dev. 12, 2821-2830

Bagrodia, S., Derijard,  B., Davis,  R. J. and Cerione, R. A. (1995) Cdc42 and PAK-mediated

signalling leads to Jun kinase and p38 mitogen-activated protein kinase activation.  J. Biol.

Chem. 270, 27995-27998

Bagrodia, S. and Cerione, R. A. (1999) PAK to the future. Trends in Cell Biol. 9, 350-355.

Bear, J. E., Svitkina, T. M., Krause, M., Schafer, D. A., Loureiro, J. J., Strasser, G. A., Maly,

I.  V.,  Chaga, O.  Y.,  Cooper, J.  A.,  Borisy, G.  G.  and Gertler, F.  B. (2002)  Antagonism

between Ena/VASP Proteins and Actin Filament Capping Regulates Fibroblast Motility. Cell

109, 509-521

Benner, G. E., Dennis, P. B., and Masaracchia, R. A. (1995) Activation of an S6/H4 kinase

(PAK 65) from human placenta by intramolecular and intermolecular autophosphorylation.

J. Biol. Chem. 270, 21121-21128

74



Bokoch, G. M., Reilly, A. M., Daniels, R. H., King, C. C., Olivera, A., Spiegel, S. and Knaus,

U.  G.  (1998)  A  GTPase-independent  mechanism  of  p21-activated  kinase  activation.

Regulation by sphigosine and other biologically active lipids. J. Biol. Chem. 273, 8137-8144

Bonner, J. T. (1967) The cellular silm molds, Princeton university

Bradford, M. M (1976) A rapid and sensitive method for the quantification of microgram

quantities of protein utilizing the principle of protein dye-binding. Anal. Biochem. 72:248-254

Bretscher, A. and Weber, K. (1979) Villin: the major microfilament-associated protein of the

intestinal microvillus. Proc Natl. Acad. Sci. U S A 76, 2321-2325

Brown,  S.  S.,  Yamamoto,  K.  and  Spudich,  J.  A.  (1982)  A  40,000-dalton  protein  from

Dictyostelium discoideum affects assembly properties of actin in a Ca2+-dependent manner. J.

Cell. Biol. 93, 205-210

Brzeska, H. and Korn, E. D. (1996) Regulation of class I and class II myosins by heavy chain

phosphorylation. J. Biol. Chem. 271, 16983-16986

Brzeska, H., Szczepanowska, J., Hoey, J. and Korn, E.  D. (1996)  The catalytic domain of

acanthamoeba myosin I heavy chain kinase.  II. Expression of active catalytic domain and

sequence homology to p21-activated kinase (PAK). J. Biol. Chem. 271, 27056-27062

Caron, E. (2002) Regulation of Wiskott-Aldrich syndrome protein and related molecules.

Curr Opin Cell Biol. 14, 82-7.

Carpenter, G.,  King, L. Jr.  and Cohen, S. (1978)  Epidermal  growth  factor  stimulates

phosphorylation in membrane preparations in vitro. Nature 276, 409-410

Chung, C. Y., and Firtel, R. A. (1999) PAKa, a putative PAK family member, is required for

cytokinesis and the regulation of the cytoskeleton in  Dictyostelium discoideum cells during

chemotaxis. J. Biol. Chem. 147, 559-576

75



Claviez, M., Pagh, K., Maruta, H., Baltes, W., Fisher, P. and Gerisch, G. (1982). Electron

microscopic mapping of monoclonal antibodies on the tail region of  Dictyostelium myosin.

EMBO J. 1, 1017-1022

Creasy, C. L. and  Chernoff, J. (1995a) Cloning and charaterisation of a human protein kinase

with homology to STE20. J. Biol. Chem. 37, 21695-21700.

Creasy, C. L and Chernoff, J. (1995b) Cloning and  of a member of the MST sunfamily of

STE`20-like kinases. Gene. 167, 303-306.

Creasy, C. L., Ambrose, D. M. and Chernoff, J. (1996) The STE20-like protein kinase, MST1,

dimerizes and contains an inhibitory domain.  J. Biol. Chem. 271, 21049-21053

Cunningham, C. C., Stossel, T. P. and Kwiatkowski, D. J. (1991) Enhanced motility in NIH

3T3 fibroblasts that overexpress gelsolin.  Science 251, 1233-1236

Daniels, R. H. and Bokoch, G. M. (1999) p21-activated protein kinase: a crucial component of

morphological signalling?  Trends Biochem Sci 24, 350-355.

Diener, K., Wang, X. S., Chen, C., Meyer, C. F., Keesler, G., Zukowski, M., Tan, T. H. and

Yao, Z (1997)  Activation of the c-Jun N-terminal kinase pathway by a novel protein kinase

related to human germinal center kinase. Proc. Natl. Acad. Sci. U. S. A. 94, 9687-9692

Edwards, D. C., Sanders, L. C., Bokoch, G. M. and Gill, G. N. (1999) Activation of LIM-

kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics.  Nat.

Cell. Biol.1, 253-259.

Eichinger,  L.,  Noegel,  A.  A.  and  Schliecher,  M.  (1990)  Ca2(+)-binding  proteins  as

components of the cytoskeleton. Adv. Exp. Med. Biol. 269, 99-102.

Eichinger,  L., Noegel, A. A. and Schleicher,  M. (1991)  Domain structure in actin-binding

proteins: expression and functional  of truncated severin. J. Cell. Biol. 112, 665-676

76



Eichinger, L. and Schliecher, M. (1992)  Characterisation of actin- and lipid-binding domains

in severin, a Ca(2+)-dependent F-actin fragmenting protein. Biochemistry. 31, 4779-4787

Eichinger,  L.,  Bomblies,  L.,  Vandekerckhove.,  Schleicher,  M. and Gettemans,  J  (1996) A

novel type of protein kinase phosphorylates actin in the actin fragmin complex. EMBO. J. 15,

5547-5556

Eichinger,  L.,  Baehler,  M.,  Diez,  M.,  Eckerskorn,  C.  and  Schleicher,  M.  (1998)

Characterisation  and  cloning  of  a  Dictyostelium STE20-like  protein  kinase  that

phosphorylates the actin binding protein severin.  J. Biol. Chem. 273, 12952-12959

Eichinger, L., Lee, S. S. and Schleicher, M. (1999) Dictyostelium as model system for studies

of the actin cytoskeleton by molecular genetics Micro Res and Tech. 47, 124-134

Every, D. and  Ashworth, J. M. (1975) Rates of degradation and synthesis of glycosidases de

novo  during growth and differentiation of the  Dictyostelium discoideum.  Biochem. J. 148,

169-177

Faure, S., Vigneron, S., Galas, S., Brassac, T., Delsert, C. and Morin N. (1999) Control of

G2/M transition in  Xenopus by a member of the p21-activated kinase (PAK) family; a link

between protein kinase A and PAK signalling pathways? J. Biol. Chem. 274, 3573-3579

Franke,  J.  and  Sussman,  M.  (1971)  Synthesis  of  uridine  diphosphate  glucose

pyrophosphorylase during the development of Dictyostelium discoideum. J. Biol. Chem. 326,

6381-6388

Frost, J. A., Khokhlatchev. A, Stippec, S., White, M. A. and Cobb, M. H. (1998) Differential

effects of PAK1-activating mutations reveal activity-dependent and -independent effects on

cytoskeletal regulation. J. Biol. Chem. 273, 28191-28198.

Friesen, H., Lunz, R., Doyle, S. and Segall, J. (1994) Mutation of the SPS1-encoded protein

kinase of  Saccharomyces cerevisiae leads to defects in transcription and morphology during

spore formation. Genes Dev. 8, 2162-2175

77



Fu, C. A., Shen, M., Huang, B. C. B., Lasaga, J., Payan, D. G. and Luo, Y. (1999) TNIK, a

novel member of the germinal center kinase family that activates the c-Jun N-terminal kinase

pathway and regulates the cytoskeleton. J. Biol. Chem. 274, 30729-30737.

Garrity, P.  A.,  Rao,  Y.,  Salecker,  I.,  McGlade,  J.,  Pawson,  T.  and Zipursky, S.  L (1996)

Drosophila photoreceptor  axon  guidance  and  targeting  requires  the  dreadlocks  SH2/SH3

adapter protein. Cell 85, 639-650

Gettemans, J., De Ville, Y., Waelkens, E. and Vandekerckhove, J. (1995) The actin-binding

properties of the Physarum actin-binding complex. Regulation by calcium, phospholipids and

by phosphorylation. J. Biol. Chem. 270, 2644-2651

Graves, J. D., Gotoh, Y., Draves, K. E., Ambrose, D., Chenoff, J., Clark, E. A. and Krebs, E.

G. (1998) Caspase-mediated activation and induction of apoptosis by the mammalian STE20-

like kinase MST1, EMBO. J. 17, 2224-2234.

Gurdon, J. B. (1974) The control of gene expression in animal development. Clarendon Press,

Oxford

Hall, A. (1998) Rho GTPases and the actin cytoskeleton. Science.  279, 509-514

Hartwig, J. H., Bokoch, G. M., Carpenter, C. L., Janmey, P. A., Taylor, L. A., Toker, A. and

Stossel, T.  P. (1995)  Thrombin  receptor  ligation  and  activated  Rac  uncap  actin  filament

barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell.  82,

643-53

Hasegawa, T., Takahashi, S., Hayashi, H. and Hatano, S. (1980) Fragmin : A calcium ion

sensitive regulatory factor on the formation of actin filaments. Biochemisty 19, 2677-2683

Herskowitz, I. (1995) MAP kinase pathways in yeast: for mating and more. Cell. 80, 187-197

Hinssen, H. (1981) An actin modulating protein from Physarum polycephalum.  Eur. J. Cell.

Biol. 23, 225-240

78



Holmes, D. S and Quigley, M. (1981) A rapid boiling method for the preparation of bacterial

plasmids. Anal. Biochem. 114, 193-197

Housewart, M. and Cleveland, D. (1998) Intermediate filaments and their associated proteins:

multiple dynamic personalities. Curr. Opin. Cell Biol. 10, 93-101

Howe, A. K. and Juliano, R. L. (2000)  Regulation of anchorge-dependent signal transduction

by protein kinase A and p21-activated kinase Nat. Cell. Biol. 2, 593-600

Hu, M. C. T., Qie, W. R., Wang, X., Meyer, C. F. and Tan, T. H (1996)  Human HPK1, a

novel human hematopoietic progenitor kinase that activates the JNK/SAPK kinase cascade.

Genes Dev. 10, 2251-2264

Janmy, P. A., Iida, K., Yin, H. L. and Stossel, T. P. (1987) Polyphosphoinositide micelles and

polyphosphoinositide-containing vesicles dissociate endogenous gelsolin-actin complexes and

promote actin assembly from the fast-growing end of actin filaments blocked by gelsolin. J.

Bio. Chem. 262, 12228-12236.

Janmey,  P.  A.  and  Stossel,  T.  P.  (1989) Gelsolin-polyphosphoinositide  interaction.  Full

expression  of  gelsolin-inhibiting function  by polyphosphoinositides  in  vesicular  form and

inactivation by dilution, aggregation, or masking of the inositol head group. J. Biol.  Chem.

264, 4825-4831

Karakesisoglou, I., Janssen, K.  P., Eichinger, L., Noegel, A.  A. and Schleicher, M. (1999)

Identification of a suppressor of the Dictyostelium profilin-minus phenotype as a CD36/LIMP-

II homologue. J. Cell. Biol. 145, 167-181

Katz, P., Whalen, G. and Kehrl, J. H. (1994) Differential expression of a novel protein kinase

in human B lymphocytes. Preferential localization in the germinal center. J. Biol. Chem. 269,

16802-16809

Kiefer, F.,  Tibbles, L. A., Anafi, M., Janssen, A., Zanke, B. W.,  Lassam, N., Pawson, T.,

Woodgett, J. R. and Iscove, N. R. (1996) HPK1, a hematopoietic protein kinase activating the

SAPK/JNK pathway. EMBO J. 15, 7013-7025

79



Kiuru, S., Javela, K., Somer,  H. and Kekomaki, R. (2000) Altered platelet shape change in

hereditary gelsolin Asp187Asn-related amyloidosis. Thromb. Haemost 83, 491-495.

Knecht, D. A. and Loomis, W. F. (1987) Antisense RNA inactivation of myosin heavy chain

gene expression in Dictyostelium discoideum. Science 236, 1081-1086

Korn, E. D., Carlier, M-F. and Pantaloni, D. (1987) Actin polymerization and ATP hydrolysis.

Science 238, 638-644

Kuspa, A.  and Loomis, W.  F. (1992)  Tagging  developmental  genes  in  Dictyostelium by

restriction enzyme-mediated integration of plasmid DNA. Proc. Natl. Acad. Sci. U S A  89,

8803-8807

Kwiatkowski, D. J., Stossel,  T. P., Orkin, S. H., Mole, J. E., Colten, H. R. and Yin, H. L.

(1986) Plasma  and  cytoplasmic  gelsolins  are  encoded  by  a  single  gene  and  contain  a

duplicated actin-binding domain. Nature. 323, 1986, 455-9

Kwiatkowski, D. J. (1999) Functions of gelsolin: motility, signalling, apoptosis, cancer. Curr.

Opin. Cell Biol. 11, 103

Kyriakis, J. M. and Avruch, J. (1996) Sounding the alarm: protein kinase cascades activated

by stress and inflammation. J. Biol. Chem. 271, 24313-24316

 

Lammli,  UK.  (1970)  Clevage  of  structure  proteins  during  assembly  of  the  head  of

bacteriophage T4. Nature 227; 680-685

Leberer, E., Dignard, D., Harcus, D., Thomas, D. Y. and Whitway, M (1992)  The protein

kinase homologue STE20p is required to link the yeast pheromone response G-protein beta

gamma subunits to downstream signalling components. EMBO J. 11, 4815-4824

Lee, S. F. and Côté, G. P. (1995) Purification and of a Dictyostelium protein kinase required

for actin activation of the Mg2+ ATPase activity of Dictyostelium myosin ID. J. Biol. Chem.

270, 11776-11782 

80



Lee, S.  F,  Egelhoff, T.  T.,  Mahasneh, A.  and Cote, G.  P. (1996)  Cloning  and   of  a

Dictyostelium myosin I heavy chain kinase activated by Cdc42 and Rac. J. Biol. Chem. 271,

27044-27048

Liu, T., Williams, J.  G. and Clarke, M. (1992) Inducible expression of calmodulin antisense

RNA in Dictyostelium cells inhibits the completion of cytokinesis. Mol. Biol. Cell. 3,  1403-

1413

Loomis, W. F. (1975) Dictyostelium discoideum : A developmental system, Academic press,

New York

Loomis,  W.  F (1996)  Genetic  networks  that  regulate  development  in  Dictyostelium cells.

Microbiol. Rev. 60, 135-150

Machesky. L. M., Reeves, E.,  Wientjes, F., Mattheyse, F., Grogan, A., Totty, N., Burlingame,

A.L.,  Hsuan,J.  J.  and  Segel,  A.W.  (1997)  Mammalian  actin-related  protein  2/3  complex

localizes to regions of lamellipodial protrusion and is composed of evolutionarily conserved

proteins. Biochem. J. 328, 105-112 

Machesky, L. M. and  Insall, R. H. (1998)  Scar1 and the related Wiskott-Aldrich syndrome

protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex.  Curr. Biol. 8,

1347-1356

MacMillan-Crow, L. A. and Lincoln, T. M. (1994) High-affinity binding and localization of

the cyclic GMP-dependent protein kinase with the intermediate  filament protein vimentin.

Biochemistry 33, 8035-8043

Manser, E., Leung, T., Salihuddin, H., Zhao, Z. S. and Lim, L. (1994) A brain serine/threonine

protein kinase activated by Cdc42 and Rac1. Nature. 367, 40-46

Manser, E., Loo, T. H., Koh, C. G., Zhao, Z. S., Chen, X. Q., Tan, L., Tan, I., Leung, T. and

Lim, L. (1998)  PAK kinases are directly coupled to the PIX family of nucleotide exchange

factors. Mol. Cell. 1, 183-92

81



Manstein, D.  J.,  Titus, M.  A.,  De Lozanne, A.  and Spudich, J.  A. Gene  replacement  in

Dictyostelium: generation of myosin null mutants. EMBO.  J.  8, 923-32

Maruta,  H.  and  Isenberg,  G.  (1983)  Ca2+ dependent  actin-binding  phosphoprotein  in

Physarum polycephalum. J. Biol. Chem. 258, 10151-10158.

McGrath,  J.  L.,  Osborn,  E.  A.,  Tardy,  Y.  S.,  Dewey,  C.  F.  and  Hartwig,  J.  H.  (2000)

Regulation of the actin cycle in vivo by actin filament severing. PNAS. 12, 6532-6537

McLean-Fletcher,  S.  and  Pollard,  T.  D.  (1980)  Visometric  analysis  of  the  gelation  of

Acanthamoeba extracts and purification of two gelation factors. J. Cell. Biol. 85, 414-428

Mischak, H.,  Seitz, T.,  Janosch, P.,  Eulitz, M., Steen, H., Schellerer, M.,  Philipp, A. and

Kolch, W. (1996) Negative regulation of Raf-1 by phosphorylation of serine 621. Mol Cell

Biol. 16, 5409-18

Mueller,  K. and  Gerisch, G. (1978) A specific glycoprotein as the target site of adhesion

blocking Fab in aggregating Dictyostelium cells. Nature 274, 445-449

Mullins, R.D., Stafford, W.F. and Pollard, T. D. (1997) Structure, subunit topology, and actin-

binding activity of the Arp2/3 complex from Acanthamoeba. J. Cell. Biol. 136, 331-343

Murray, B. A., Yee, L. D. and Loomis, W. F. (1981) Immunological analysis of glycoprotein

(contact sites A) involved in intercellular adhesion of Dictyostelium discoideum. J. Suparmol.

Struct. Cell. Biochem. 17, 197-211

Noegel, A. A. and Luna, E. J. (1995) The Dictyostelium cytoskeleton. Experientia 51, 1135-

1143

Pardee, J. D. and Spudich, J. A. (1982) Purification of muscle actin.  Meth. Enzym. 85: 164-

181

82



Paul, A., Wilson, S., Belham, C. M., Robinson, C. J., Scott, P. H., gould, G. W. and Plevin, R.

(1997)  Stress-activated protein kinases: activation, regulation and function. Cell. Signal. 9,

403-410

Pombo, C. M., Kehrl, J. H., Sanchez, I. Katz, P., Avruch, J., Zon, L. I., Woodget, J. R., Force,

T.  and  Kyriakis,  J.  M.  (1995)  Activation  of  the  SAPK  pathway  by  the  human  STE20

homologue germinal center kinase. Nature 377, 750-754

Pombo, C. M., Bonventre, J. V., Molner, A., Kyriakis, J. and Force, T. (1996) Activation of a

human STE20-like kinase by oxidant stress defines a novel response pathway EMBO. J. 15,

4537-4546

Pope, B., Way, M., Matsudaira, P. T. and Weeds, A. (1994)  of the F-actin binding domains of

villin:  classification of F-actin binding proteins into two groups according to their binding

sites on actin. FEBS Lett, 338, 58-62

Pringault, E., Arpin, M., Garcia, A., Finidori, J. and Louvard D. (1986) A human villin cDNA

clone to investigate the differentiation of intestinal and kidney cells in vivo and in culture.

EMBO J  5, 3119-24

Pruyne D, Evangelista M, Yang C, Bi E, Zigmond S, Bretscher A, Boone C. (2002) Role of

Formins in Actin Assembly: Nucleation and Barbed End Association. Science in Press

Qian,  Z.,  Lin,  C.,  Espinosa,  R.,  LeBeau,  M.  and  Rosner,  R.  (2001)  Cloning  and

characterization of MST4, a novel STE20-like kinase. J. Biol. Chem 276, 22439-22445

 

Raper, K. B (1935)  Dictyostelium discoideum, a new species of slim mold decaying forest

leaves. J. Agric. Res. 50, 133-147

Robinson, M. J. and Cobb, M. H. (1997)  Mitogen-activated protein kinase pathways.  Curr.

Opin. Cell Biol. 9, 180-186

Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989) Molecular cloning: a laboratory manual.

Cold Spring Harbor Laboratory Press.

83



Sandoz, D., Chailley, B., Boisvieux-Ulrich, E.,  Lemullois, M., Laine, M.  C. and Bautista-

Harris, G. (1988) Organization and functions of cytoskeleton in metazoan ciliated cells. Biol

Cell 63, 183-93.

Saxena, M., Williams, S. and Mustelin, T. (1999) Crosstalk between cAMP-dependent kinase

and MAP kinase through a protein tyrosine phosphatase. Nat. Cell. Biol, 1, 305-311

Schinkmann, K. and Blenis, J. (1997) Cloning and characterisation of a human STE20-like

protein kinase with unusual cofactor requirements.  J. Biol. Chem 272, 28695-28703

Schleicher, M., Andre, E., Hartmann, H. and Noegel, A. A. (1988) Actin-binding proteins are 

Conserved from slime molds to man. Dev Genet  9, 521-530

Schleicher, M. and Noegel, A. A. (1992) Dynamics of the Dictyostelium cytoskeleton during

chemotaxis. New. Biol. 4, 461-472

Schleicher,  M., Andre, B.,  Andreoli, C.,  Eichinger, L.,  Haugwitz, M.,  Hofmann, A.,

Karakesisoglou, J., Stockelhuber, M. and Noegel, A. A. (1995) Structure/function studies on

cytoskeletal proteins in Dictyostelium amoebae as a paradigm. FEBS. Lett. 369, 38-42

Schmidt,  A.  and Hall,  M.N.  (1998).  Signalling to  the  actin  cytoskeleton.  Ann.  Rev.  Cell.

Devel. Biol. 14, 305-338 

Schoenwaelder,  S.  M.  and  Burridge,  K.  (1999)  Bidirectional  signalling  between  the

cytoskeleton and integrins. Curr. Opin. Cell boil. 11, 274-286

Schweitzer, B. and  Philippsen,  P. (1991)  CDC15,  an  essential  cell  cycle  gene  in

Saccharomyces cerevisiae, encodes a protein kinase domain. Yeast 7, 265-73.

Seastone, D. J., Harris, E., Temesvari, L.  A., Bear, J.  E., Saxe, C. L. and Cardelli, J. (2001)

The  WASp-like  protein  scar  regulates  macropinocytosis,  phagocytosis  and  endosomal

membrane flow in Dictyostelium. J. Cell. Sci. 114, 2673-2683.

84



Sells,  M.  A.  and  Chernoff,  J.  (1997)  Human  p21-activated  kinase  (Pak1)  regulates  actin

organization in mammalian cells. Curr Biol. 7, 202-210.

Shi,  C.  S.  and  Kehrl,  J.  H.  (1997) Activation  of  stress-activated  protein  kinase/c-Jun  N-

terminal kinase, but not NF-kappaB, by the tumor necrosis factor (TNF) receptor 1 through a

TNF receptor-associated factor 2- and germinal center kinase related-dependent pathway. J.

Biol. Chem. 272, 32102-32107

Simpson, P. A., Spudich, J. A. and Parham, P. (1984) Monoclonal antibodies prepared against

Dictyostelium actin :  and interaction with actin. J. Cell Biol. 99: 287-295

Siu, C. H, Lam, T.  Y, Wong, L.  M. (1988) Expression of the contact site A glycoprotein in

Dictyostelium discoideum: quantitation and developmental regulation. Biochim Biophys Acta.

968, 283-290.

Spudich,  J.  A.  and  Watt,  S.  (1971)  The  regulation  of  rabbit  societal  muscle  contraction.

Biochemical studies on the interaction of tropomyosin-troponin complex with actin  and the

proteolytic fragments of myosin. J. Biol. Chem. 246: 4866-4871

Stossel, T. P (1989) From signal to pseudopod. How cells control cytoplasmic actin assembly.

J. Biol. Chem. 264, 18261-18264

Su, Y. C., Han, J., Xu, S., Cobb, M. and Skolink, E. Y (1997) NIK is a new STE20-related

kinase that binds NCK and MEKK1 and activates the SAPK/JNK cascade via a conserved

regulatory domain. EMBO J. 16, 1279-1290

Svitkina,  T.  M.  and   Borisy,  G.  G.  (1999)  Arp2/3  complex  and  actin  depolymerizing

factor/cofilin  in  dendritic  organization  and  treadmilling  of  actin  filament  array  in

lamellipodia. J. Cell. Biol. 145, 1009-26

Taylor, S.  S.,  Buechler, J.  A. and Yonemoto, W. (1990)  cAMP-dependent  protein kinase:

framework for adiverse family of regulatory enzymes. Annu. Rev. Biochem.  59, 971-1005

Taylor, L.  K., Wang, H.  C. and Erikson, R.  L. (1996) Newly identified  stress-responsive

protein kinases, Krs-1 and Krs-2. Proc. Natl. Acad. Sci. U S A. 93, 10099-10104.

85



Thomas,  D.  A.  and  Wright,  B.  E.  (1976) Glycogen  phosphorylase  in  Dictyostelium

discoideum. II. Synthesis and degradation during differentiation.  J. Biol. Chem. 251, 1258-

1263

T'Jampens, D., Meerschaert, K., Constantin, B., Bailey, J., Cook, L. J., De Corte, V., De Mol,

H., Goethals, M., Van Damme, J., Vandekerckhove, J. and Gettemans, J. (1997) Molecular

cloning,  over-expression,  developmental  regulation  and  immunolocalization  of  fragmin,  a

gelsolin-related  actin-binding protein  from  Physarum polycephalum plasmodia. J  Cell  Sci

110, 1215-26

Towbin,  H.,  Staehelin,  T.  and Gordon, J.  (1979) Electrophoretic  transfer of proteins from

polyacrylamide gels to nitrocellulose sheets:  procedure and some applications.  Proc. Natl.

Acad. Sci. USA 76:4350-4354

Tung, R. M. and Blenis, J. (1997) A novel human SPS1/STE20 homologue, KHS, activates

Jun N-terminal kinase. Oncogene 14, 653-659

Yang, N.,  Higuchi, O.,  Ohashi, K.,  Nagata, K.,  Wada, A.,  Kangawa, K.,  Nishida, E.  and

Mizuno, K. (1998) Cofilin phosphorylation by LIM-kinase1 and its role in Rac-mediated actin

Recognitation. Nature. 393, 809-812.

Valiron, O., Caudron, N. and  Job D. (2001)  Microtubule dynamics. Cell Mol Life Sci 258,

2069-2084.

Vardar, D., Chishti,  A. H., Frank,  B. S., Luna,  E. J., Noegel,  A. A., Oh,  S. W., Schleicher,

M. and McKnight, C. J. (2002) Villin-type headpiece domains show a wide range of F-actin-

binding affinities. Cell. Motil. Cytoskeleton. 52, 9-21.

Vossler, M. R., Yao, H., York, R. D., Pan, M. G. and Stork, P. J. (1997) cAMP activates MAP

kinase and Elk-1 through a B-Raf- and Rap1-dependent pathway. Cell, 89, 73-82

Walsh, D.  A.  and Van Patten, S.  M.  (1994)  Multiple  pathway signal  transduction by the

cAMP-dependent protein kinase FASEB J.  8, 1227-36

86



Watts, D. J. (1984) Protein synthesis during development and differentiation in the cellular

slime mould Dictyostelium discoideum.  Biochem. J. 220, 1-14

Way, M. and Weeds, A. G. (1988) Nucleotide sequence of pig plasma gelsolin. Comparison

of  protein  sequence  with  human  gelsolin  and  other  actin-severing  proteins  shows  strong

homologies and evidence for large internal repeats. J. Mol. Biol. 203, 1127-33

Wegner, A. (1976) Head-to-tail polymerization of actin. J. Mol. Biol. 108, 139-150

White, M. F., Haring, H. U., Kasuga, M. and Kahn, C. R. (1984) Kinetic properties and sites

of autophosphorylation of the partially purified insulin receptor from hepatoma cells. J. Biol.

Chem. 259, 255-264

Witke, W., Sharpe, A. H., Hartwig, J.  H., Azuma, T., Stossel, T. P. and Kwiatkowski, D. J.

(1995)  Hemostatic,  inflammatory,  and  fibroblast  responses  are  blunted  in  mice  lacking

gelsolin. Cell. 81, 41-51

Wu, C., Whiteway, M., Thomas, D. Y. and Leberer, E. (1995) Molecular characterisation of

STE20p, a potential mitogen-activated protein or extracellular signal-regulated kinase kinase

(MEK) kinase kinase from Saccharomyces cerevisiae. J. Biol. Chem. 270, 15984-15992 

Yao, Z., Zhou, G., Wang, X. S., Brown, A., Diener, K., Gan, H., and Tan, T. H. (1999)  A

novel  human STE20-related protein  kinase,  HGK, that  specifically activates  the  c-Jun  N-

terminal kinase signalling pathway. J. Biol. Chem. 274, 2118-2125

Yin, H. L., and Stossel, T. P. (1979) Control of cytoplasmic actin gel-sol transformation by

gelsolin, a calcium-dependent protein. Nature. 218, 583-586

Yin, H. L., Janmey, P. A. and Schleicher, M. (1990)  Severin is a gelsolin prototype. FEBS.

Lett, 264, 78-80

Yu, F-X., Johnston, T. C., Sudhof, T. C. and Yin, H. L. (1990) gCap39, a calcium ion- and

polyphosphoinositide-regulated actin capping protein. Science. 250, 1413-1415

87



Yu, J. S., Chen, W. J., Ni, M. H., Chan, W. H. and Yang, S. D. (1998) Identification of the

regulatory autophosphorylation site of autophosphorylation-dependent  protein kinase (auto-

kinase). Evidence that auto-kinase belongs to a member of the p21-activated kinase family.

Biochem. J. 334, 121-131

Yuasa, T., Ohno, S., Kehrl, J. H. and Kyriakis, J. M. (1998) Tumor necrosis factor signalling

to stress-activated protein kinase (SAPK)/Jun NH2-terminal kinase (JNK) and p38. Germinal

center kinase couples TRAF2 to mitogen-activated protein kinase/ERK kinase kinase 1 and

SAPK while receptor interacting protein associates with a mitogen-activated protein kinase

kinase kinase upstream of MKK6 and p38. J. Biol. Chem. 273, 22681-22692

Zhou,  T-H.,  Ling, K.,  Guo,  J.,  Zhou,  H.,  Wu,  Y-L., Jing,  Q.,  Ma,  L. and Pei,  G.  (2000)

Identification of a human brain-specific isoform of mammalian STE20-like kinase 3 that is

regulated by cAMP-dependent protein kinase. J. Biol. Chem. 275, 2513-2519

88



CURRICULUM VITAE

Name : Hyun-Ju Son

Experience:

Molecular Biolgist, Adolf Butenandt Institute, Muenchen, Germany, 5/99 – Present

Currently enrolled in program leading to a Ph.D in Biology. Area of concentration is in actin

cytoskeleton with special focus on the study of a kinase involved in cytoskeleton remodelling.

Research  Associate,  KRIBB (Korean  Research  Institute  of  Bioscience  & Biotechnology),

Taejon, Daeduck Research Park, South Korea, 1997-1999

As a research associate, worked on a project concerning tumor suppressor p53 and telomerase

to find out which signalling molecules are involved in suppressing telomerase activity during

differentiation in order to develop an anti-cancer drug.

Internship, Harvard medical school, Boston, USA, 1997

Was  a  member  of  research  staff  carrying  out  cloning  and  characterisation  of  cdk5/p35

associated protein involved in neuronal differentiation.

Graduate student, German Cancer Research Center, Heidelberg, Germany, 1996 

Worked on a project about genomic analysis and gene regulation of the keratinocyte lipid

binding protein which was over expressed during tumour development.

Education:
M.S. Biology, Ruprecht-karls University, Heidelberg, Germany, 1996 

Major: Molecular biology and Biochemistry 

Grade Average: 1.6 (scale 1.0-4.0; 1.0 is best, 4.0 is worst)

B.A. Biology, Dongguk University, Seoul, South Korea, 1990

Fellowships: Dongguk University Fellowship, 1985-1989

                      Doctoral student Grant, Ludwig Maximilians University, 1999- Present

Languages: Fluency in English, German and Korean.

89



ACKNOWLEDGEMENTS

I am very grateful to Prof. Dr. Charles N. David from the Zoological Institute, LMU, for his
care of my thesis.

I would like to thank Prof. Dr. Michael Schleicher for the wonderful opportunity to work in

his group and for his guidance and support throughout my doctorate work.

Especially,  I  would  like  to  express  my  gratitude  to  Dr.  Ludwig  Eichinger  from  the

Biochemstry Institute, University Köln, for his interest in my work and for his valuable advice

and support concerning it.

I  would  also  like  to  thank  Prof.  Dr.  Angelika  Noegel  for  her  interest  in  my  work  and

generosity in sharing things from her lab.

My appreciation to Prof. Dr. Manfred Schliwa for his support and generosity in sharing things
from his lab.

I would like to especially thank Dr. Ralph Gräf for his helpful suggestions and the technical

expertise he offered during my work.

90




