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Zusammenfassung

In dieser Dissertation beschreiben wir den Einweg-Quantenrechner (QCC), ein Schema zum
universellen Quantenrechnen, das allein aus Einteilchenmessungen an einem hochgradig
verschränkten Vielteilchenzustand, dem Clusterzustand, besteht. Wir beweisen die Uni-
versalität des QCC, beschreiben das zugrunde liegende Rechnermodell und zeigen, dass der
QCC fehlertolerantes Quantenrechnen erlaubt.

In Kapitel 2 zeigen wir, dass der QCC als ein Simulator quantenlogischer Netzwerke
aufgefasst werden kann. Damit beweisen wir dessen Universalität und stellen den Zusam-
menhang zum Netzwerkmodel her, welches das verbreitete Model eines Quantenrechners
darstellt. Wir weisen auch darauf hin, dass die Beschreibung des QCC als Netzwerksimu-
lator nicht in jeder Hinsicht passend ist.

In Kapitel 3 leiten wir das dem Einweg-Quantenrechner zugrunde liegende Rechnermo-
dell her. Es ist sehr verschieden vom Netzwerkmodell des Quantenrechners. Der QCC be-
sitzt keinen Quanten-Input, keinen Quanten-Output und kein Quantenregister. Unitäre
Quantengatter aus einem universellen Satz sind nicht die elementaren Bestandteile von
QCC-Quantenalgorithmen. Darüber hinaus sind die Messergebnisse aus den Einteilchen-
messungen die einzige Information, die vom QCC verarbeitet wird, und somit existiert
Informationsverarbeitung beim QCC nur auf klassischem Niveau. Dennoch arbeitet der
QCC fundamental quantenmechanisch, da er den hochverschränkten Clusterzustand als
zentrale physikalische Resource nutzt.

In Kapitel 4 zeigen wir, dass positive Fehlerschranken für das fehlertolerante Quanten-
rechnen mit dem QCC existieren. Desweiteren skizzieren wir das Konzept der Prüfsummen
im Zusammenhang mit dem QCC, das ein Element zukünfitiger praktikabler und zweck-
mäßiger Methoden für fehlertolerantes QCC-Quantenrechnen werden kann.
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Zusammenfassung/ Abstract xi

Abstract

In this thesis we describe the one-way quantum computer (QCC), a scheme of universal
quantum computation that consists entirely of one-qubit measurements on a highly entan-
gled multi-particle state, the cluster state. We prove universality of the QCC, describe the
underlying computational model and demonstrate that the QCC can be operated fault-
tolerantly.

In Chapter 2 we show that the QCC can be regarded as a simulator of quantum logic
networks. In this way, we give the universality proof and establish the link to the network
model, the common model of quantum computation. We also indicate that the description
of the QCC as a network simulator is not adequate in every respect.

In Chapter 3 we derive the computational model underlying the one-way quantum
computer, which is very different from the quantum logic network model. The QCC has no
quantum input, no quantum output and no quantum register, and the unitary gates from
some universal set are not the elementary building blocks of QCC-quantum algorithms.
Further, all information that is processed with the QCC are the outcomes of one-qubit
measurements and thus processing of information exists only at the classical level. The
QCC is nevertheless quantum mechanical as it uses a highly entangled cluster state as the
central physical resource.

In Chapter 4 we show that there exist nonzero error thresholds for fault-tolerant quan-
tum computation with the QCC. Further, we outline the concept of checksums in the
context of the QCC which may become an element in future practicable and adequate
methods for fault-tolerant QCC-computation.
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Chapter 1

Introduction

Quantum computation has come into the focus of physics and information science largely
due to Peter Shor’s discovery of a quantum algorithm for factoring large numbers [1]. This
algorithm demonstrated that a quantum computer is capable of solving a problem for whose
solution no efficient classical algorithm is known, namely to break the RSA crypto-system.
It thus became apparent that a quantum computer, once it can be built, is something that
needs to be reckoned with. The existence of the factoring algorithm also gives hope that
quantum algorithms with equal power and more universal benefit can be found. Among
the further applications of a quantum computer which have so far been envisioned are a
data base with faster access to unsorted data [2], and a universal simulator of quantum
systems [3, 4]. Shor’s algorithm, one of the early quantum algorithms being described and
certainly the most striking, may prove to be a profound trigger in leading the quantum
computer from a mere “Gedankenexperiment” to a physical device.

Physics plays a fundamental role in computation. As David Deutsch writes in [5]: “[It
is not] obvious a priori that any of the familiar recursive functions is in physical reality
computable. The reason why we find it possible to construct, say, electronic calculators,
and indeed why we can perform mental arithmetic, cannot be found in mathematics or
logic. The reason is that the laws of physics ‘happen to’ permit the existence of physical
models for arithmetic such as addition, subtraction and multiplication. If they did not,
these familiar operations would be non-computable functions. We might still know of
them and invoke them in mathematical proofs (which would presumably be called ‘non-
constructive’) but we could not perform them.”.

However, quantum computation is not merely an application of physics, in this case
quantum mechanics. As draftsmen of quantum computers and quantum algorithms we
may easily find ourselves quoting Richard Feynman: “One feels like Cavalieri must have
felt calculating the volume of a pyramid before the invention of calculus.”1. One is faced
with questions like “What feature of quantum mechanics makes the quantum computer
powerful?” and “What are the basic design principles for effective quantum algorithms?”.
Various explanations for the origin of the speedup in a quantum computer have been

1R.P. Feynman, on developing the path integral formalism, taken from: M. Kaku, Quantum Field
Theory, Oxford University Press (1993).
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proposed and construction techniques for quantum algorithms, such as period finding [1],
amplitude amplification [2, 6], and quantum random walks [7, 8] have been identified.
Nevertheless, it appears that the two questions –in which information science and physics
are intertwined– are to a large extent still open. It will certainly require elements from
both physics and information science to answer them.

Quantum information science (QI), with quantum communication, quantum computa-
tion and quantum information theory as its subfields, is at the junction between information
science and physics. Well established and cherished concepts from both these disciplines
contribute to the vocabulary of QI. For the present it very much seems, at least for quantum
computation, that the identification of the appropriate terminology is still in progress.

This thesis is about the one-way quantum computer (QCC) [9], a universal scheme of
quantum computation. Therein, the entire quantum computation consists of a spatio-
temporal pattern of one-qubit measurements on an entangled multi-qubit quantum state,
the cluster state. This state forms a universal resource for quantum computation, i.e. any
quantum circuit may be imprinted on the cluster state via the measurements. The result of
the computation is derived from all the obtained measurement outcomes. In the process of
the computation, all the entanglement of the cluster state is destroyed, and thus the state
can be used only once. Therefore we call the scheme the “one-way quantum computer”.

A proper quantum computer needs to be universal, scalable and fault-tolerant. There-
fore, a considerable part of this thesis is devoted to demonstrating that the QCC meets
these criteria. Specifically, we prove universality in Chapter 2 and fault-tolerance in Chap-
ter 4. Scalability is discussed in Section 2.2.8. The resource cluster state can be created
via a tunable Ising interaction in a single time step irrespective of the number of qubits
involved. Also, the one-qubit measurements do not become more complicated if the size
of the system is scaled up. The QCC avoids by construction all long-range qubit-selective
interactions.

The QCC does not only fulfill the above essential requirements for quantum computa-
tion. It also turns out that the QCC is based upon a computational model [10, 11] in which
the physics and the logic of quantum computation are clearly separated. This model is
described in Chapter 3. It is very different from the network model, the most widely used
model of quantum computation. To better illustrate the difference, let us first explain the
network model and how it emerged.

Before Landauer investigated the question of physical irreversibility of logical opera-
tions in the 1960’s, the commonly accepted opinion was that a computer operating at
temperature T needs to dissipate at least an amount ln2 kT of energy per elementary act
of operation processing, [12]. In the attempt [13] to prove this assertion he realized that
it is not the processing of information which requires energy dissipation, but instead the
erasure of information. Specifically, he demonstrated that the physical realization of a
logically irreversible operation generates an amount of entropy equivalent to the erased
information. Later it was realized by Charles Bennett that any computation could be
performed logically reversible [14], such that no information erasure is required.

Beyond showing that logically irreversible operations can be avoided in classical compu-
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tation, a proof of thermodynamic reversibility of the computational process requires some
physically reasonable theoretical model in which the sequence of logically reversible opera-
tions can be shown to be thermodynamically reversible. Such a model [15] was constructed
by Paul Benioff, who used a quantum system to implement reversible logic.

Benioff’s model was, in spite of the fact that a quantum system was proposed for its
realization, a classical model from the computational perspective, i.e. it could be simulated
efficiently by a Turing machine. With his ‘universal quantum simulator’ [3] Feynman
demonstrated that the use of a quantum system for a computation or a similar task may
actually be an advantage. He pointed out that, as a consequence of the fact that the
size of the state space increases exponentially with the number of particles, the simulation
of quantum systems on classical computers is generally inefficient. On the other hand,
quantum systems can be simulated efficiently by other quantum systems. David Deutsch
went a significant step further and constructed a quantum version of a Turing machine [5]
which could exert an arbitrary unitary transformation on an arbitrary state.

Deutsch also introduced the network model of quantum computation [16]. It emerged
from the combination of classical reversible networks with the unitary evolution known in
quantum mechanics. In this model, with some simplification, the process of computation
consists of the initialization, processing and readout of the quantum register, the quantum
counterpart of the register of a classical reversible computer. In the initialization, the
quantum register is prepared in some (generally fixed) quantum state, the quantum input.
Subsequently, this register state is acted upon by a unitary transformation consisting of a
sequence of quantum gates, creating the quantum output. Finally, the output is read by
measurements performed on the quantum register.

The Hilbert space of the quantum register usually comes with a natural tensor product
structure. That is, the quantum register is composed of a number of d-level subsystems.
Most commonly, two-level systems are chosen as these subsystems of the quantum register.
They are, in the context of quantum information, called quantum bits, or, in short, qubits.
The notion of the “qubit” makes the intertwining of information theory and physics very
apparent. The qubit lives in a two-dimensional Hilbert space whose basis vectors are
conveniently denoted as |0〉 and |1〉. They form the counterpart to the states of a classical
bit, 0 and 1. While the classical bit may only be in either of the two states 0 or 1, for
the quantum bit any linear combination |ψ〉 = α|0〉+ β|1〉, with α, β ∈ C, |α|2 + |β|2 = 1,
represents a legitimate state. In this way, the qubit is the merger of the concept of binary
choice from information theory with the superposition principle of quantum mechanics.
One may say that the qubit has become the mascot of quantum information.

The quantum gates are chosen from a set of gates which the quantum computer in
question must be able to perform. Such a set of gates is called universal if an arbi-
trary unitary transformation can be approximated with arbitrary accuracy by sequences
of quantum gates out of this set. Various sets of universal gates have been proposed. For
example, the set of all one-qubit rotations UR ∈ SU(2) together with the CNOT-gate∑

i,j∈{0,1} |i〉c〈i| ⊗ |i+ jmod 2〉t〈j| is universal [17]. There also exist finite universal sets of
gates. As an example, the set consisting of the Toffoli- and the Hadamard gate is universal
[18] as well as the set consisting of the CNOT-, the Hadamard- and the π/4-phase gate
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exp
(−iπ

8
σz

)
[19]. Quite interestingly, if in the latter set of gates we double the rotation

angle of the phase gate from π/4 to π/2 we change an extremely powerful set of gates into
one with rather limited capabilities. The CNOT-, the Hadamard- and the π/2-phase gate
generate the so-called Clifford group which is the normalizer of the Pauli group. Quantum
circuits consisting only of these gates can be simulated efficiently classically, as is stated
by the Gottesman-Knill theorem [21].

To mention a non-standard variant of the network model, in [22] it was shown that
universal quantum computation can be performed using Bell measurements, local unitary
transformations and certain entangled quantum states such as the Greenberger-Horne-
Zeilinger (GHZ) state. Like in teleportation, a quantum register state is read in via Bell
measurements and thereby transferred to another physical carrier. But this time it is
not Bell states which are used as the nonlocal resource in teleportation but instead more
complicated quantum states encoding quantum gates. In this way, the quantum register
state is both processed and teleported at the same time. The gate teleportation technique
has successfully been applied in many settings. For example, in [23] it was shown that
universal quantum computation is possible only using linear optical elements and photon
number measurement.

In the quantum logic network model, the physics and the logic of computation go very
much in parallel. The quantum register represents, from the viewpoint of information
theory, the processed information and, from the perspective of physics, the state of the
system. Likewise, the quantum gates represent the logical operations carried out, and at
the same time the unitary transformations according to which the quantum system evolves.

For the QCC the situation is very different. As will be explained in detail in Chapter 3,
processing of information exists only at the classical level, namely as the processing of
the one-qubit measurements. The QCC has no quantum input, no quantum output and
no quantum register, and it does not consist of quantum gates. Nevertheless, the QCC is
genuinely quantum mechanical as it uses the entangled cluster state as its central physical
resource. The QCC works by measuring a subset of the cluster state quantum correlations
in several rounds of one-qubit measurements.

It should be noted that if the QCC is used as a simulator of quantum logic networks,
the simulation of the network algorithm requires in general much fewer time steps than the
original network itself. For example, the entire Clifford part of a quantum logic network,
i.e. all the CNOT-, Hadamard- and π/2-phase gates, as well as the readout measurements
(!), can be performed simultaneously in the first measurement round, as explained in
Chapter 2. It shall be pointed out, however, that the QCC is equivalent to the network
model with regard to computational power. This can easily be seen by the facts that
one-qubit measurements are within the standard repertoire of network computation and
that the resource cluster state can be created efficiently within the network model via
conditional phase gates. Nevertheless, it may be concluded that quantum circuits which
mainly rely on unitary evolution are in general not time-optimal.

Let us now return to the initially posed question of what gives a quantum computer its
computational power. Various viewpoints are taken to elucidate this question; superposi-
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tion and interference, entanglement and measurement are all argued for being at the heart
of the quantum speedup. Deutsch [5] identifies the capability of forming state superposi-
tions as the cause for the quantum speedup, and coins the term of ‘quantum parallelism’.
Cleve, Ekert, Macchiavello and Mosca [24] find that a common pattern underpinning quan-
tum algorithms can be identified when quantum computation is viewed as a multi-particle
interference. In this picture, the computation starts with the preparation of a superposi-
tion of different classical inputs. Upon this superposition state, representing the quantum
input, unitary transformations inducing phase shifts are applied, and by a final Fourier
transformation the different computational paths are brought to interference. In this way,
superposition and interference are seen as the basic ingredients for the quantum speedup.
In the conclusion of the same paper, [24], the authors make a statement which may be read
independently of the discussion on the role of superposition and interference in quantum
computation: “We believe that the paradigm of estimating (or determining exactly) the
eigenvalues of operators on eigenstates gives helpful insight into the nature of quantum
algorithms and may prove useful in constructing new and improving existing algorithms.”

The feature that sets quantum systems apart from classical systems is epitomized by
entanglement. It has therefore been expected since the early days of quantum computation
that entanglement or the ability to generate it are responsible for the quantum speedup.
This “working hypothesis” has, for quantum computation with pure states, been given
a rigorous basis by Jozsa and Linden [25] and recently by Vidal [26]. In [25] it is shown
that, for a quantum computation to offer an exponential speedup, it requires multi-particle
entanglement across a number of subsystems (e.g. qubits) of the quantum register which
increases unboundedly with the input size. In [26] it is demonstrated that the evolution of
a pure state of n qubits can be simulated classically with resources that grow linearly with
n and exponentially with the amount of entanglement. These two works make it clear that
entanglement indeed is an important ingredient in pure state quantum computation.

Finally, it was shown that projective quantum measurements are a sufficient resource
for universal quantum computation. Specifically, in [27] (see also [28] and [29]) it was shown
that preparation of the state |0〉 and four-qubit measurements are sufficient for universal
quantum computation. Here, quantum computation gets by without unitary evolution
altogether.

Can the one-way quantum computer contribute to the debate of what the origin of
the speedup in quantum computation is? As for now, it does not come up with definite
answers, but it shades light on the matter form a different perspective. Gathering all the
facts learned in the universality proof for the QCC and the derivation of the underlying
computational model, we may say that the QCC works –as stated before– by measuring
a subset of the cluster state quantum correlation operators in one-qubit measurements.
More precisely, the cluster state is an eigenstate of these correlation operators and what
one measures is whether the corresponding eigenvalues are +1 or −1. We thus arrive at
a statement quite similar to the one in [24] quoted above. At any rate, it is precisely
the structure of these cluster state quantum correlations what requires further analysis in
trying to better understand the QCC and the implications it may have for the design of
future quantum algorithms.
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‘Quantum parallelism’ does not seem to be a sufficient explanation for why quantum
computation on the QCC is fast. For the QCC there is no superposition of classical inputs
which are processed in parallel and are finally brought to interference. The structure to
which the concept of ‘quantum parallelism’ is applied in the network model, the quantum
register, has been removed from the description of the QCC. The structures for processing
of information which emerge are classical, and could therefore hardly exhibit quantum
parallelism.

What turned out to become the QCC, started off with the question “What can one do
with ultra-cold atoms in optical lattices where one has only global control over the atom-
atom interaction?” The inability to perform qubit-selective interaction must a priori seem
as a severe limitation. Therefore, it came quite as a surprise that such a system suffices
for universal quantum computation.

With the observation that the cold controlled collisions used to generate the universal
entanglement resource simulate the Ising interaction, it became apparent that the potential
realization of the QCC is not restricted to optical lattices and that there may exist a variety
of other suitable systems. In this way, the scope has widened from a specific system to
a system class with certain general properties. A more drastic change has occurred with
the finding of the computational model underlying the QCC. Thereby, the physics and the
logic of quantum computation are divided, and the focus is shifted from physics to logic.

Nevertheless, the realization of the QCC is physical, and therefore let us conclude
this introduction with a few notes on the possible future implementation of the QCC,
recent advances in experiment and fault-tolerant quantum computation. From the present
perspective, the most promising candidate for a physical system to implement the QCC is
that of an optical lattice loaded with ultra-cold atoms. In such a device the globally
tunable Ising interaction used to generate the cluster state can be realized e.g. via state-
selective displacement of the atoms and cold controlled collisions [30] or via tunneling [31].
Measurements can in principle be performed via the techniques of Raman spectroscopy.

Towards an experimental realization of the QCC it has so far been demonstrated that an
optical lattice can be loaded with ultra-cold atoms in such a way that over extended regions
of the lattice each lattice site is occupied with exactly one atom. This is done by driving
the system from a superfluid to a Mott insulator phase [32]. Coherent state-dependent
transport of the atoms has been demonstrated over a distance of up to seven lattice sites
[33]. Further, Bose-Einstein condensates have been trapped in an optical lattice and their
evolution has been investigated in interference experiments. It was found that the matter
wave field of the Bose-Einstein condensate undergoes a periodic series of collapses and
revivals [34], attributed to the quantized structure of the matter wave field of the Bose-
Einstein condensate and the collisions between individual atoms. This experiment shows in
the passing that coherent cold controlled collisions between atoms, proposed for the creation
of cluster states, are possible. What has so far not been demonstrated experimentally
are the subsequent measurements. These need to address the qubits individually (the
operations to create the cluster state are all global), which is difficult with present set-ups in
optical lattices. Except for the measurements, all techniques required for QCC-computation
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do, though probably not with the required accuracy, exist.
What is, in fact, the accuracy required for fault-tolerant quantum computation? This

question needs to be asked not only for the QCC but for every type of a quantum computer.
A priori, the regimes of quantum computation with perfect and imperfect means are very
different. For the latter, quantum coherence will decay if the computation only is long
enough, no matter how small the error rates are. This observation may lead one to expect
that the requirements on the accuracy of elementary quantum operations become more
and more stringent with increasing size of the computation. Fortunately, this is not the
case. The degradation of quantum coherence, due to both interaction with environmental
degrees of freedom and imprecise gate operation, can be counteracted by techniques of
quantum coding and error correction [35] - [39] and, comprising these, fault-tolerant gate
operation [40] - [42]. Using these techniques, arbitrary long quantum computations can
be performed at a moderate increase in the size requirements for the quantum computer.
There exist fixed error thresholds which have to be met.

Between the accuracy of present-day technology for the manipulation of quantum sys-
tems and the accuracy required for fault-tolerant quantum computation there is a gap,
though, and this gap is not even small. Proven bounds on the error thresholds are of the
order of 10−6 [43, 44] which appears extremely hard to achieve. Experiments in quantum
information are often designed to first of all observe and verify quantum mechanical behav-
ior. To mention a few highlights, coherent oscillations have been demonstrated for qubits
in Josephson tunnel junctions [45, 46], and, in systems of trapped ions, four qubits have
been entangled [47].

Very recently, two-qubit gates have been realized in systems of trapped ions [48, 49],
with gate error probabilities down to a few percent. And the gap is narrowed from the side
of theory, too. Refinements in gate construction, syndrome extraction and -processing have
led to estimates for the error thresholds of about 10−3 [50]. The advances in experiment
and theory make the realization of a quantum computer seem much more likely today than
it appeared, say, in 1994 when Peter Shor discovered the factorization algorithm.



8 1. Introduction



Chapter 2

The one-way quantum computer

2.1 General picture of the QCC

Most of the current experiments are designed to implement sequences of highly controlled
interactions between selected particles (qubits), thereby following models of a quantum
computer as a (sequential) network of quantum logic gates [16, 17].

Here we describe a different model of universal and scalable quantum computation, the
one-way quantum computer (QCC). In our model, the entire resource for the quantum
computation is provided initially in the form of a specific entangled state, a so-called
cluster state |φ〉C of a large number of qubits. We will give a definition of cluster states
below. Information is then written onto the cluster, processed, and read out from the
cluster by one-particle measurements only. The entangled state of the cluster thereby
serves as a universal “substrate” for any quantum computation. It provides in advance all
entanglement that is involved in the subsequent quantum computation. In the process of
computation, i.e. during the rounds of one-qubit measurements, all entanglement in the
cluster state is destroyed such that the cluster state can be used only once. Therefore, we
call this scheme the one-way quantum computer.

Cluster states can be created efficiently in any system with a quantum Ising-type in-
teraction (at very low temperatures) between two-state particles in a lattice configuration.
We consider two and three-dimensional arrays, or clusters, of qubits. To create a cluster
state |φ〉C on the cluster C from a product state

⊗
a∈C |+〉a, (where σ

(a)
x |±〉a = ±|±〉a),

the Ising-interaction is switched on for an appropriately chosen finite time interval T , and
is switched off afterwards. Since the Ising Hamiltonian acts uniformly on the lattice, an
entire cluster of neighboring particles becomes entangled in a single step.

To process quantum information with the cluster C it suffices to measure its particles
in a certain order and in a certain basis, as illustrated in Fig. 2.1. This figure shows, in
a way, the physical and the logical layer of the QCC. The physical part is represented by
the entangled cluster qubits and the measurements performed on them. The cluster qubits
are displayed as dots “¯” or as arrows “↑”, “↗”, depending on the respective measured
observable (see caption). These measurements induce a quantum processing of logical
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qubits. The horizontal spatial axis on the cluster can be associated with the time axis of
the implemented quantum circuit, i.e. with the direction of the “information flow”. As
will be explained, measurements of observables σz effectively remove the respective lattice
qubit from the cluster. This property allows one to structure the cluster state on the
lattice and imprint a network-like structure on it (displayed in Fig. 2.1 in gray underlay).
More precisely, the σz-measurements project the cluster state |φ〉C into the tensor product
|µ〉C\CN

⊗ |φ̃〉CN
. Therein, |µ〉C\CN

is a product state in the computational basis, and |φ̃〉CN

the state of the so far unmeasured qubits. It is again a cluster state on a network-shaped
sub-cluster CN . On this sub-cluster quantum gates can be implemented via measurements
of observables σx, σy, and linear combinations thereof. Measurements of σx and σy are used
for “wires”, i.e. to propagate logical quantum bits across the cluster, and for CNOT gates
between two logical qubits. Observables of the form cos(ϕ)σx ± sin(ϕ)σy are measured
to realize arbitrary rotations of logical qubits. For the cluster qubits of which a linear
combination of σx and σy is measured, the measurement basis depends on the results
of measurements at other cluster qubits. This introduces a temporal order among the
measurements. The processing is finished once all qubits except a last one on each wire
have been measured. The remaining unmeasured qubits form the quantum register which
is now ready to be read out. At this point, the results of previous measurements determine
in which basis these “output” qubits need to be measured for the final readout, or, if the
readout measurements are in the σx-, σy- or σz-eigenbasis, how the readout measurements
have to be interpreted.

quantum  gate

information  flow

Figure 2.1: Simulation of a quantum logic network by measuring two-state particles on a lattice.
Before the measurements the qubits are in the cluster state |φ〉C of (2.1). Circles ¯ symbolize
measurements of σz, vertical arrows are measurements of σx, while tilted arrows refer to mea-
surements in the x-y-plane.

The purpose of this chapter is twofold. First, it is to introduce the QCC and to give
the proof for its universality. We do this by showing that the QCC may be regarded as a
simulator of network quantum computers. In this way, we clarify the relation between the
QCC and the network model which is the most widely used model of a quantum computer.
Second, we provide a number of examples for QCC-circuits which are characteristic and of
practical interest.
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Specifically, in Section 2.2 we give the universality proof for the described scheme of
computation in a complete and detailed form. We provide an analytic explanation for the
functioning of the gate simulations on the QCC in Section 2.2.6 and apply it to both the
gates of a universal set in Section 2.2.7 and to the more complicated circuits in Section 2.3.
In Section 2.2.8 we discuss the spatial, temporal and operational resources required in
QCC-computations in relation to the resources needed for the corresponding quantum logic
networks. We find that overheads are at most polynomial. In Section 2.3 we give examples
of larger gates and sub-circuits which may be of practical relevance, among them the QCC-
circuit for quantum Fourier transformation and for the n-qubit adder. In Section 2.4 we
discuss the QCC computations on finite (small) clusters. We describe a variant of the
scheme consisting of repeated steps of (re-)entangling a cluster via the Ising interaction,
alternating with rounds of one-qubit measurements. Using this modified scheme it is
possible to split long computations such that they fit piecewise on a small cluster.

2.2 Universality of the QCC
In this section we prove that the QCC is a universal quantum computer. The technique to
accomplish this is to show that any quantum logic network can be simulated efficiently on
the QCC.

2.2.1 Cluster states and their quantum correlations

Cluster states are pure quantum states of two-level systems (qubits) located on a cluster
C. This cluster is a connected subset of a simple cubic lattice Zd in d ≥ 1 dimensions. The
cluster states |φ{κ}〉C obey the set of eigenvalue equations

K(a)|φ{κ}〉C = (−1)κa|φ{κ}〉C, (2.1)

with the correlation operators

K(a) = σ(a)
x

⊗

b∈nbgh(a)

σ(b)
z . (2.2)

Therein, {κ} := {κa ∈ {0, 1}| a ∈ C} is a set of binary parameters which specify the cluster
state and nbgh(a) is the set of all neighboring lattice sites of a.

A cluster state |φ{κ}〉C is completely specified by the eigenvalue equations (2.1) since

the K(a), a ∈ C, form a complete set of |C| independent and commuting observables for
the system of qubits on the cluster C. This can most easily be seen from the fact that
K(a) is obtained from σ

(a)
x under conjugation with a unitary transformation, as shown

below (2.11). For a set of eigenvalues specified by {κ} the corresponding eigenspace is
thus one-dimensional, i.e. |φ{κ}〉C is determined modulo an irrelevant phase factor. There

are 2|C| different choices for {κ} ∈ {0, 1}|C|, and since the K(a) are hermitian operators,
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the associated common eigenstates, the cluster states, are mutually orthogonal and form
a basis in the Hilbert space of the cluster.

The discussion in this thesis will be based entirely on the eigenvalue equations (2.1)
and we will never need to work out some cluster state in any specific basis. In fact, to
write down a cluster state in its explicit form would be quite space-consuming since the
minimum number of required terms scales exponentially with the number of qubits [51],
and for computation we will be going to consider rather large cluster states. Nevertheless,
for illustration we give a few examples for cluster states of a small number of qubits. The
cluster states on a chain of 2, 3 and 4 qubits, fulfilling the eigenvalue equations (2.1) with
all κa = 0, are

|φ〉C2 =
1√
2

(|0〉1|+〉2 + |1〉1|−〉2) ,

|φ〉C3 =
1√
2

(|+〉1|0〉2|+〉3 + |−〉1|1〉2|−〉3) ,

|φ〉C4 =
1

2
|+〉1|0〉2|+〉3|0〉4 +

1

2
|+〉1|0〉2|−〉3|1〉4,

+
1

2
|−〉1|1〉2|−〉3|0〉4 +

1

2
|−〉1|1〉2|+〉3|1〉4,

(2.3)

with the notation
|0〉a := |0〉a,z = σ

(a)
z |0〉a,z,

|1〉a := |1〉a,z = −σ(a)
z |1〉a,z,

|±〉a := 1√
2
(|0〉a ± |1〉a).

(2.4)

The state |φ〉C2 is local unitary equivalent to a Bell state and |φ〉C3 to the Greenberger-
Horne-Zeilinger (GHZ) state. |φ〉C4 , however, is not equivalent to a 4-particle GHZ state.
In particular, the entanglement in |φ〉C4 cannot be destroyed by a single local operation
[51].

Ways to create a cluster state in principle are to measure all the correlation operators
K(a), a ∈ C of (2.2) on an arbitrary |C|-qubit state or to cool into the ground state of a
Hamiltonian HK = −~g∑

a∈C κaK
(a).

Another way –likely to be more suitable for realization in the lab– is as follows. First,
a product state |+〉C =

⊗
a∈C |+〉a is prepared. Second, the unitary transformation S(C),

S(C) =
∏

a,b∈C|b−a∈γd

Sab, (2.5)

is applied to the state |+〉. Often we will write S in short for S(C). In (2.5), for the
cases of dimension d = 1, 2, 3, we have γ1 = {1}, γ2 = {(1, 0)T , (0, 1)T} and γ3 =
{(1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T}, and the two-qubit transformation Sab is such that the state
|1〉a ⊗ |1〉b acquires a phase of π under its action while the remaining states |0〉a ⊗ |0〉b,
|0〉a ⊗ |1〉b and |1〉a ⊗ |0〉b acquire no phase. Thus, Sab has the form

Sab = |0〉a〈0| ⊗ 1l(b) + |1〉a〈1| ⊗ σ(b)
z , (2.6)



2.2 Universality of the QCC 13

i.e. is a conditional phase gate between a and b. Note that all operations Sab in S mutually
commute and that they can therefore be carried out at the same time. Initial individual
preparation of the cluster qubits in |+〉a∈C can also be done in parallel. Thus, the creation
of the cluster state is a two step process. The temporal resources to create the cluster state
are constant in the size of the cluster.

The state |+〉C obviously obeys the eigenvalue equations σ
(a)
x |+〉C = |+〉C ∀a ∈ C and

thus the cluster state |φ〉C generated via S obeys

|φ〉C = Sσ(a)
x S† |φ〉C , ∀a ∈ C. (2.7)

To obtain Sσ
(a)
x S†, we use the transformation relations for the stabilizer of a state under

action of a phase gate [41]. We observe that

Sabσ
(a)
x Sab† = σ

(a)
x ⊗ σ

(b)
z ,

Sabσ
(b)
x Sab† = σ

(a)
z ⊗ σ

(b)
x ,

(2.8)

and
Sabσ(c)

x Sab† = σ(c)
x , ∀c ∈ C\{a, b}. (2.9)

Further, the Pauli phase flip operators σ
(d)
z commute with all Sab, i.e.

Sabσ(d)
z Sab† = σ(d)

z , ∀d ∈ C. (2.10)

Now, from (2.8), (2.9) and (2.10) it follows that

Sσ(a)
x S† = σ(a)

x

⊗

b∈nbgh(a)

σ(b)
z . (2.11)

Thus, the state |φ〉C generated from |+〉C via the transformation S as defined in (2.5) does
indeed obey eigenvalue equations of form (2.1), with

κa = 0, ∀ a ∈ C. (2.12)

As the eigenvalues are fixed in this case, we drop them in the notation for the cluster state
|φ〉C . Cluster states specified by different sets {κa} can be obtained by applying Pauli

phase flip operators σ
(a)
z . To see this, note that

σ(a)
z K(b)σ(a)

z

†
= (−1)δa,b K(b). (2.13)

Therefore, ⊗
a∈C

(
σ(a)

z

)∆κa |φ{κa}〉C = |φ{κa+∆κa}〉C, (2.14)

where the addition for the κa is modulo 2. Cluster states with different sets {κ} are equally
suited for QCC-computation.
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Concerning a physical realization of the transformation S defined in (2.5), note that S
is generated by the Hamiltonian

H = ~g
∑

a,b∈C|b−a∈γd

1l(a) − σ
(a)
z

2

1l(b) − σ
(b)
z

2
. (2.15)

Now, to perform the required unitary transformation S the Hamiltonian H is switched on

for a time span T = π
g
. The transformation S = exp

(
−i π

~gH
)

may be written in the form

S =


 ∏

a,b∈C|b−a∈γd

e−i π
4 exp

(
i
π

4
σ(a)

z

)
exp

(
i
π

4
σ(b)

z

)



× exp


−iπ

4

∑

a,b∈C|b−a∈γd

σ(a)
z σ(b)

z


.

(2.16)

We find that the interaction part HI of the Hamiltonian H generating S is of Ising form,

HI = ~
g

4

∑

a,b∈C|b−a∈γd

σ(a)
z σ(b)

z , (2.17)

and, since the local part Hlocal of the Hamiltonian commutes with the Ising Hamiltonian
HI , the interaction S generated by H is local unitary equivalent to the unitary transfor-
mation generated by a Ising Hamiltonian.

For matter of presentation, the interaction Sab in (2.6) and, correspondingly, the local
part of the Hamiltonian H in (2.15) has been chosen in such a way that the eigenvalue
equations (2.1) take the particularly simple form with κa = 0 for all a ∈ C, irrespective of
the shape of the cluster.

To create quantum states that are useful as a resource for the QCC, i.e. cluster- or local
unitary equivalent states, all systems with a tunable Ising interaction and a local σz-type
Hamiltonian, i.e. with a Hamiltonian

H ′ =
∑
a∈C

∆Ea σ
(a)
z + ~

g(t)

4

∑

a,b∈C|b−a∈γd

σ(a)
z σ(b)

z (2.18)

are suitable, provided the coupling g(t) can be switched between zero and at least one
nonzero value.

Even this condition can be relaxed. A permanent Ising interaction instead of a globally
tunable one is sufficient, if the measurement process is much faster than the characteristic
time scale for the Ising interaction, i.e. if the measurements are stroboscopic. If it takes
the Ising interaction a time TIsing to create a cluster state |φ〉C from a product state
|+〉C, then the Ising interaction acting for a time 2TIsing performs the identity operation,
S(C)S(C) = 1l(C). Therefore, starting with a product state |+〉C at time t = 0 evolving
under permanent Ising interaction, stroboscopic measurements may be performed at times
(2k + 1)TIsing, k ∈ N.
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One possibility to create a cluster state in practice is via cold controlled collisions in
optical lattices, as described in [51]. Cold atoms representing the qubits can be arranged
on a two- or three dimensional lattice and state-dependent interaction phases may be
acquired via cold collisions between neighboring atoms [30] or via tunneling [31]. For a
suitable choice of the collision phases ϕ, ϕ = π mod 2π, the state resulting from a product
state |+〉C after interaction is a cluster state obeying the eigenvalue equations (2.1), with
the set {κa, a ∈ C} specified by the filling pattern of the lattice.

Let us, at the end of this section, briefly state which techniques will be used for the
explanation of measurement-based quantum computation on cluster states. First, note
that the operators (−1)κaK(a) in eq. (2.1) generate the stabilizer of the state |φ{κ}〉C. The
stabilizer formalism, as developed by Gottesman [42, 41] and by Calderbank et al. [52]
(see also [20]), provides a compact characterization of the cluster state. It is also useful in
understanding some of the working principles of the QCC. In the subsequent sections we
frequently perform stabilizer manipulations.

Further, some basic notions of graph theory will be useful later when we discuss the
relation between quantum algorithms and graphs in Section 3.6. Therefore let us, at this
point, establish a connection between quantum states such as the cluster state of (2.1) and
graphs. The treatment here follows that of [53], adapted to our notation.

Let us recall the definition of a graph, as given e.g. in [54]. A graph G(V,E) is a set V
of vertices connected via edges e from the set E. The information of which vertex a ∈ V is
connected to which other vertex b ∈ V is contained in a symmetric |V |× |V | matrix Γ, the
adjacency matrix. The matrix Γ is such that Γab = 1 if two vertices a and b are connected
via an edge e ∈ E, and Γab = 0 otherwise. We identify the cluster C with the vertices VC of
a graph, C = VC, and in this way establish a connection to the notion introduced earlier.

To relate graphs to quantum mechanics, the vertices of a graph can be identified with
local quantum systems, in this case qubits, and the edges with two-particle interactions, in
the present case σzσz-interactions. If one initially prepares each individual qubit a in the

state (σ
(a)
z )

κa |+〉a and subsequently switches on, for an appropriately chosen finite time
span, the interaction

HG(V,E) = ~g
∑

(a,b)∈E

1l(a) − σ
(a)
z

2

1l(b) − σ
(b)
z

2
, (2.19)

with (a, b) ∈ E denoting an edge between qubits a and b, then one obtains quantum states
that are graph code words as introduced in [53]. Henceforth we will refer to these graph
code words as graph states and use them in a context different from coding. The graph
states |φ{κ}〉G are defined by a set of eigenvalue equations which read

σ(a)
x

⊗

b∈V

(
σ(b)

z

)Γab |φ{κ}〉G = (−1)κa|φ{κ}〉G, (2.20)

with κa ∈ {0, 1} ∀ a ∈ V . Here we use G instead of V as an index for the state |φ〉 as the
set E ⊂ V × V of edges is now independent and no longer implicitly specified by V as was
the case in (2.1).



16 2. The one-way quantum computer

Note that cluster states (2.1) are a particular case of graph states (2.20). The graph
G(C, EC) which describes a cluster state is that of a square lattice in 2D and that of a
simple cubic lattice in 3D, i.e. the set EC of edges is given by

EC =
{
(a, b)| a, b ∈ C, b ∈ nbgh(a)

}
. (2.21)

2.2.2 A universal set of quantum gates

To provide something definite to discuss right from the beginning, we now give the pro-
cedures of how to realize a CNOT gate and a general one-qubit rotation via one-qubit
measurements on a cluster state. The explanation of why and how these gates work will
be given in Section 2.2.7.

(a) (b)
1 2 3 4 5 6 7

9 10 11 12 13 14 15

8
control

target

Y Y Y Y Y
Y
Y XXX X

X

X

1 2 3 4 5
_X ξ_+ ζ+η+_

CNOT gate general rotation

(c) (d) (e)

1 2 3 4 5
X X X+η_

1 2 3 4 5
X YY Y

1 2 3 4 5
X X XY

z-rotation Hadamard gate π/2-phase gate

Figure 2.2: Realization of elementary quantum gates on the QCC . Each square represents a
lattice qubit. The squares in the extreme left column marked with white circles denote the input
qubits, those in the right-most column denote the output qubits.

A CNOT gate can be realized on a cluster state of 15 qubits, as shown in Fig. 2.2. All
measurements can be performed simultaneously. The procedure to realize a CNOT gate
on a cluster with 15 qubits as displayed in Fig. 2.2 is

Procedure 1 Realization of a CNOT gate acting on a two-qubit state |ψin〉.

1. Prepare the state

|Ψin〉C15 = |ψin〉1,9 ⊗
(⊗

i∈C15\{1,9} |+〉i
)
.

2. Entangle the 15 qubits of the cluster C15 via the unitary operation S(C15).
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3. Measure all qubits of C15 except for the output qubits 7, 15 (following the labeling in
Fig. 2.2). The measurements can be performed simultaneously. Qubits 1, 9, 10, 11,
13, 14 are measured in the σx-eigenbasis and qubits 2-6, 8, 12 in the σy-eigenbasis.

Dependent on the measurement results, the following gate is thereby realized:

U ′CNOT = UΣ,CNOT CNOT (c, t), (2.22)

where the byproduct operator UΣ,CNOT has the form

UΣ,CNOT = σ
(c)
x

γ
(c)
x

σ
(t)
x

γ
(t)
x

σ
(c)
z

γ
(c)
z

σ
(t)
z

γ
(t)
z

, with

γ
(c)
x = s2 + s3 + s5 + s6

γ
(t)
x = s2 + s3 + s8 + s10 + s12 + s14

γ
(c)
z = s1 + s3 + s4 + s5 + s8 + s9 + s11 + 1

γ
(t)
z = s9 + s11 + s13.

(2.23)

Therein, the si represent the measurement outcomes si on the qubits i. The expression
(2.23) is modified if redundant cluster qubits are present and/or if the cluster state on which
the CNOT gate is realized is specified by a set {κa} different from (2.12), see Section 2.2.3.
This concludes the presentation of the CNOT gate, the proof of its functioning is given in
Section 2.2.7.

An arbitrary rotation URot ∈ SU(2) can be realized on a chain of 5 qubits. Consider a
rotation in its Euler representation

URot[ξ, η, ζ] = Ux[ζ]Uz[η]Ux[ξ], (2.24)

where the rotations about the x- and z-axis are

Ux[α] = exp
(
−iασx

2

)

Uz[α] = exp
(
−iασz

2

)
.

(2.25)

Initially, the first qubit is prepared in some state |ψin〉, which is to be rotated, and the other
qubits are prepared in |+〉. After the 5 qubits are entangled by the unitary transformation
S, the state |ψin〉 can be rotated by measuring qubits 1 to 4. At the same time, the state
is also swapped to site 5. The qubits 1 .. 4 are measured in appropriately chosen bases

Bj(ϕj) =

{ |0〉j + eiϕj |1〉j√
2

,
|0〉j − eiϕj |1〉j√

2

}
, (2.26)

whereby the measurement outcomes sj ∈ {0, 1} for j = 1 .. 4 are obtained. Here, sj = 0
means that qubit j is projected into the first state of Bj(ϕj). In (2.26) the basis states of all
possible measurement bases lie on the equator of the Bloch sphere, i.e. on the intersection
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of the Bloch sphere with the x-y-plane. Therefore, the measurement basis for qubit j can
be specified by a single parameter, the measurement angle ϕj. The measurement direction
of qubit j is the vector on the Bloch sphere which corresponds to the first state in the
measurement basis Bj(ϕj). Thus, the measurement angle ϕj is the angle between the
measurement direction at qubit j and the positive x-axis. In summary, the procedure to
realize an arbitrary rotation URot[ξ, η, ζ], specified by its Euler angles ξ, η, ζ, is this:

Procedure 2 Realization of general one-qubit rotations URot ∈ SU(2).

1. Prepare the state |Ψin〉C5 = |ψin〉1 ⊗
(⊗5

i=2 |+〉i
)
.

2. Entangle the five qubits of the cluster C5 via the unitary operation S(C5).

3. Measure qubits 1 - 4 in the following order and basis

3.1 measure qubit 1 in B1(0)
3.2 measure qubit 2 in B2 (−ξ (−1)s1)
3.3 measure qubit 3 in B3 (−η (−1)s2)
3.4 measure qubit 4 in B4 (−ζ (−1)s1+s3)

(2.27)

Via Procedure 2 the rotation U ′Rot is realized:

U ′Rot[ξ, η, ζ] = UΣ,Rot URot[ξ, η, ζ]. (2.28)

Therein, the random byproduct operator has the form

UΣ,Rot = σs2+s4
x σs1+s3

z . (2.29)

It can be corrected for at the end of the computation, as will be explained in Section 2.2.5.
There is a subgroup of rotations for which the realization procedure is somewhat simpler

than Procedure 2. These rotations form the subgroup of local operations in the Clifford
group. The Clifford group is the normalizer of the Pauli group.

Among these rotations are, for example, the Hadamard gate and the π/2-phase gate.
These gates can be realized on a chain of 5 qubits in the following way:

Procedure 3 Realization of a Hadamard- and π/2-phase gate.

1. Prepare the state |Ψin〉C5 = |ψin〉1 ⊗
(⊗5

i=2 |+〉i
)
.

2. Entangle the five qubits of the cluster C5 via the unitary operation S(C5).

3. Measure qubits 1 - 4. This can be done simultaneously. For the Hadamard gate,
measure individually the observables σ

(1)
x , σ

(2)
y , σ

(3)
y , σ

(4)
y . For the π/2-phase gate

measure σ
(1)
x , σ

(2)
x , σ

(3)
y , σ

(4)
x .
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The difference with respect to Procedure 2 for general rotations is that in Procedure 3 no
measurement bases need to be adjusted according to previous measurement results and
therefore the measurements can all be performed at the same time.

As in the cases before, the Hadamard- and the π/2-phase gate are performed only
modulo a subsequent byproduct operator which is determined by the random measurement
outcomes sk

UΣ,H = σs1+s3+s4
x σs2+s3

z

UΣ,Uz(π/2) = σs2+s4
x σs1+s2+s3+1

z .
(2.30)

Before we explain the functioning of the above gates, we would like to address the
following questions: First,“How does one manage to occupy only those lattice sites with
cluster qubits that are required for a particular circuit but leaves the remaining ones
empty?”. The answer to this question is that redundant qubits will not have to be removed
physically. It is sufficient to measure each of them in the σz-eigenbasis, as will be described
in Section 2.2.3.

Second, “How can the described procedures for gate simulation be concatenated such
that they represent a measurement based simulation of an entire circuit?”. It seems at
first sight that the described building blocks would only lead to a computational scheme
consisting of repeated steps of entangling operations and measurements. This is not the
case. As will be shown in Section 2.2.4, the three procedures stated are precisely of such
a form that the described measurement-based scheme of quantum computation can be
decomposed into them.

The third question is: “How does one deal with the randomness of the measurement
results that leads to the byproduct operators (2.23), (2.29) and (2.30)?”. The appearance
of byproduct operators may suggest that there is a need for local correction operations
to counteract these unwanted extra operators. However, there is neither a possibility for
such counter rotations within the described model of quantum computation, nor is there
a need. The scheme works with unit efficiency despite the randomness of the individual
measurement results, as will be discussed in Section 2.2.5.

2.2.3 Removing the redundant cluster qubits

A cluster state on a two-dimensional cluster of rectangular shape, say, is a resource that
allows for any computation that fits on the cluster. If one realizes a certain quantum circuit
on this cluster state, there will always be qubits on the cluster which are not needed for
its realization. Such cluster qubits we call redundant for this particular circuit.

In the description of the QCC as a quantum logic network, the first step of each com-
putation will be to remove these redundant cluster qubits. Fortunately, the situation is
not such that we have to remove the qubits (or, more precisely, the carriers of the qubits)
physically from the lattice. To make them ineffective to the realized circuit, it suffices
to measure each of them in the σz-eigenbasis. In this way, one is left with an entangled
quantum state on the cluster CN of the unmeasured qubits and a product state on C\CN ,

|φ{κ}〉C −→ |Z〉C\CN
⊗ |φ{κ′}〉CN

, (2.31)
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with |Z〉C\CN
=

(⊗
i∈C\CN

|si〉i,z
)

and si the results of the σz-measurements. The resulting

entangled state |φ{κ′}〉CN
on the sub-cluster CN is again a cluster state obeying the set of

equations (2.1), and the measurement outcomes determine the sign factors therein. This
can be easily seen with stabilizer methods [41], [20]. Nevertheless, for completeness we give
the argument here. First, by definition we have

|Z〉C\CN
⊗|φ{κ′}〉CN

=


 ⊗

i∈C\CN

1l(i) + (−1)siσ
(i)
z

2


|φ{κ}〉C. (2.32)

Using the eigenvalue equations (2.1), we now insert a correlation operator K(a) with a ∈ CN

into the r.h.s of (2.32) between the projector and the state, and obtain

|Z〉C\CN
⊗ |φ{κ′}〉CN

= (−1)κ′aK ′(a)|Z〉C\CN
⊗ |φ{κ′}〉CN

, (2.33)

with the correlation operators

K ′(a) = σ(a)
x

⊗

c∈nbgh(a)∩CN

σ(c)
z , (2.34)

and the set {κ′a} specifying the eigenvalues

κ′a =


κa +

∑

b∈nbgh(a)∩(C\CN )

sb


 mod 2. (2.35)

As the new correlation operators K ′(a) in (2.33) only act on the cluster qubits in CN , the
states |φ{κ′}〉CN

again obey eigenvalue equations of type (2.1), i.e.

K ′(a)|φ{κ′}〉CN
= (−1)κ′a|φ{κ′}〉CN

, ∀ a ∈ CN . (2.36)

There are |CN | such eigenvalue equations for a state of |CN | qubits. Thus, the state |φ{κ′}〉CN

is specified by (2.36) up to a global phase.
From (2.35) we find that the redundant qubits have some remaining influence on the

process of computation. After they have been measured, the random measurement results
enter into the eigenvalues that specify the residual cluster state |φ{κ′}〉CN

on the cluster CN .

However, from (2.14) it follows that |φ{κ′}〉CN
is equivalent to |φ〉CN

modulo local σz rota-
tions. These can be accounted for by absorbing them into the subsequent measurements.

In this way, a QCC-computation with arbitrary {κ′a} may always be traced back to the
case of {κ′a = 0 | ∀ a ∈ CN}, and we therefore adopt the following two rules to simplify the
further discussion:

1. The redundant cluster qubits are discarded. We only consider the sub-
cluster CN .

2. We assume that κ′a = 0 for all a ∈ CN .

(2.37)
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2.2.4 Concatenation of gate simulations

A quantum circuit on the QCC is a spatial and temporal pattern of measurements on indi-
vidual qubits which have previously been entangled to form a cluster state. To better un-
derstand its functioning we would like –as in the network model of quantum computation–
to decompose the circuit into basic building blocks. These building blocks should be such
that out of them any circuit can be assembled. In explaining the QCC in a network lan-
guage, we can relate the building blocks of a quantum logic network –the quantum gates–
to building blocks of QCC-circuits. To do so, we need to prove that, in a QCC-computation,
measurement patterns representing the gates can be patched together like the quantum
gates themselves. This proof is given next.

To realize a gate g on the QCC consider a cluster C(g). This cluster has an input section
CI(g), a body CM(g) and an output section CO(g), with

CI(g) ∪ CM(g) ∪ CO(g) = C(g)

CI(g) ∩ CM(g) = ∅
CI(g) ∩ CO(g) = ∅
CM(g) ∩ CO(g) = ∅.

(2.38)

The measurement bases of the qubits in CM(g), the body of the gate g, encode g. The
general scheme for procedures to realize a gate g on a cluster C(g), for which examples
have been given with Procedures 1-3 for the CNOT gate and the rotations, is

Scheme 1 Simulation of the gate g on C(g), acting on the input state |ψ〉in.
1. Prepare the input state |ψin〉 on CI(g) and the qubits in CM(g) ∪ CO(g) individually

in the state |+〉 = |0〉x such that the quantum state of all qubits in C(g) becomes

|Ψin〉C(g) = |ψin〉CI(g) ⊗
⊗

k∈CM (g)∪CO(g)

|+〉k. (2.39)

2. Entangle |Ψin〉C(g) by the interaction

S(C(g)) =
∏

a,b∈C(g)| b−a∈γd

Sab, (2.40)

such that the resulting quantum state is |Ψε〉CN
= S(C(g))|Ψin〉C(g).

3. Measure the cluster qubits in CI(g)∪CM(g), i.e. choose measurement bases specified
by ~rk ∈ S2, k ∈ CI(g) ∪ CM(g) and obtain the random measurement results sk such
that the projector

P (CI(g)∪CM (g)) =
⊗

k∈CI(g)∪CM (g)

1l(k) + (−1)sk~rk · ~σ(k)

2
(2.41)

is applied. Thereby the state |Ψout〉C(g) is obtained.
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Putting all three steps of Scheme 1 together, the relation between |Ψin〉C(g) and |Ψout〉C(g)

is
|Ψout〉C(g) = P (CI(g)∪CM (g)) S(C(g)) |Ψin〉C(g). (2.42)

As we will show later, the state |Ψout〉C(g) has the form

|Ψout〉C(g) =


 ⊗

k∈CI(g)∪CM (g)

|sk〉k,~rk


⊗ |ψout〉CO(g), (2.43)

where |sk〉k,~rk
denotes the state of the qubit k after the observable ~rk·~σ(k) has been measured

and the measurement outcome was sk, and

|ψout〉 = UΣ,gUg|ψin〉. (2.44)

Therein, Ug is the desired unitary operation, and the byproduct operator UΣ,g is an extra
multi-local rotation that depends on the measurement results

{
sk | k ∈ CI(g) ∪ CM(g)

}
.

The byproduct operator is always in the Pauli group, i.e.

UΣ,g =
n⊗

i=1

(
σ[i]

x

)xi
(
σ[i]

z

)zi
(2.45)

modulo a possible global phase, and n is the number of logical qubits. In (2.45) the
σ[i] denote Pauli operators acting on the logical qubit i, not cluster qubit. The values
xi, zi ∈ {0, 1} are computed from the outcomes of the measurements by which the respective
gate is realized.

As will be proved in Section 2.2.6, each gate may be realized only modulo a subsequent
byproduct operator UΣ,g, The byproduct operator is random, but known from the outcomes
of the measurements which realize the gate. This knowledge is sufficient to drive the QCC-
computation deterministically, as we will demonstrate in Section 2.2.5.

Given a quantum circuit implemented on a cluster CN of qubits which is divided into
two consecutive circuits. Suppose that circuit g1 is implemented on the sub-cluster C(g1)
and the subsequent circuit g2 is implemented on the sub-cluster C(g2), such that CN =
C(g1) ∪ C(g2). There is an overlap between C(g1) and C(g2) which consists of the output
qubits of circuit 1 (identical to the input qubits of circuit 2), CO(g1) = CI(g2) = C(g1)∩C(g2).
The location of the readout quantum register is CO(g2) ⊂ C(g2).

Now compare the following two strategies. Strategy i) consists of the following steps: (1)
write input and entangle all qubits of CN ; (2) measure qubits in CN\CO(g2), to implement
the circuit except of the readout measurements. Strategy ii) consists of the steps (1) write
input and entangle the qubits on C(g1); (2) measure the qubits in C(g1)\CO(g1). This
implements the first sub-circuit and writes the intermediate output to CO(g1) = CI(g2);
(3) entangle the qubits on C(g2); (4) measure all qubits in C(g2)\CO(g2). Step 3 and 4
implement the second sub-circuit, g2, on the sub-cluster C(g2). The measurements on
C(g1)\CO(g1), represented by the projector P1 commute with the entanglement operation
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Figure 2.3: Here the exchange of the order of the measurements and the entanglement operations
is shown. The crosses “×” denote the one-qubit measurements and the horizontal lines between
adjacent cluster qubits denote the unitary transformations Sa,a+1.

restricted to C(g2), S
(C(g2)) =: S2, P1S2 = S2P1, because these two operations act on

different subsets of particles. With P2 representing the measurements on C(g2)\CO(g2) and
S1 = S(C(g1)), it follows that S2S1 = S(CN ) and P2P1 = P (CN\CO(g2)). Therefore,

P2S2P1S1 = P2P1S2S1 = P (CN\CO(g2))S(CN ). (2.46)

Thus, the two strategies are mathematically equivalent. The above argument can be it-
erated. It follows that entangling the whole cluster once and subsequently performing all
the measurements is equivalent to simulating a quantum logic network gate by gate. The
exchange of the order of operations is illustrated in Fig. 2.3.

Now, we want to specialize to the case where the quantum input is known and where
the quantum output is measured. This is the situation which interests us most in this
thesis. Examples of such a situation are Shor’s factoring algorithm [1] and Grover’s search
algorithm [2]. In both cases, the quantum input is |ψin〉 =

⊗n
i=1 |+〉i.

Let us denote the input section of the whole cluster C, comprising the input qubits of
the network simulation, as I; and the output section, comprising the qubits of the readout
quantum register, as O. As long as the quantum input is known it is sufficient to consider
the state |+〉I =

⊗
i∈I |+〉i. For different but known input states |ψin〉I one can always

find a transformation Uin such that |ψin〉I = Uin|+〉I and instead of realizing some unitary
transformation U on |ψin〉I one realizes U Uin on |+〉I .

Preparing an input state |+〉I and entangling it via S(C) with the rest of the clus-
ter C\I is the same as creating a cluster state |φ〉C on the entire cluster C = I ∪ C\I,
S(C) |+〉I ⊗ |+〉C\I = S(C) |+〉C = |φ〉C . Therefore, the entire procedure of realizing a
quantum computation on the QCC amounts to

Scheme 2 Performing a computation on the QCC.

1. Prepare a cluster state |φ{κ}〉C of sufficient size.
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2. Perform a sequence of measurements on |φ{κ}〉C and obtain the result of the compu-
tation from all the measurement outcomes.

For practical realization of a QCC-computation, Scheme 2 is advantageous over the math-
ematically equivalent sequence of gate simulations according to Scheme 1. This sequence,
in turn, may be used to explain the functioning of the QCC in network terminology.

2.2.5 Randomness of the measurement results

We will now show that the described scheme of quantum computation with the QCC works
with unit efficiency despite the randomness of the individual measurement results.

First note that a byproduct operator UΣ that acts after the final unitary gate Ug|N| does
not jeopardize the scheme. Its only effect is that the results of the readout measurements
have to be reinterpreted. The byproduct operator UΣ that acts upon the logical output
qubits 1 .. n has the form

UΣ =
n∏

i=1

(
σ[i]

x

)xi
(
σ[i]

z

)zi
, (2.47)

where xi, zi ∈ {0, 1} for 1 ≤ i ≤ n. Let the qubits on the cluster which are left unmeasured
be labeled in the same way as the readout qubits of the quantum logic network.

The qubits on the cluster which take the role of the readout qubits are, at this point,
in a state UΣ|out〉, where |out〉 is the output state of the corresponding quantum logic
network. The computation is completed by measuring each qubit in the σz-eigenbasis,
thereby obtaining the measurement results {s′i}, say. In the QCC-scheme, one measures
the state UΣ|out〉 directly, whereby outcomes {si} are obtained and the readout qubits are

projected into the state |M〉 =
∏n

i=1
1l(i)+(−1)siσ

(i)
z

2
UΣ|out〉. Depending on the byproduct

operator UΣ, the set of measurement results {s} in general has a different interpretation
from what the network readout {s′i} would have. The measurement basis is the same.
From (2.47) one obtains

|M〉 =
n∏

i=1

1l(i) + (−1)siσ
(i)
z

2
UΣ|out〉

= UΣ

(
U †Σ

n∏
i=1

1l(i) + (−1)siσ
(i)
z

2
UΣ

)
|out〉

= UΣ

n∏
i=1

1l(i) + (−1)si+xiσ
(i)
z

2
|out〉

(2.48)

From (2.48) we see that a σz-measurement on the state UΣ |out〉 with results {s} represents
the same algorithmic output as a σz-measurement of the state |out〉 with the results {s′i},
where the sets {s} and {s′i} are related by

s′i ≡ si + xi mod 2. (2.49)
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The set {s′i} represents the result of the computation. It can be calculated from the results
{si} of the σz-measurements on the “readout” cluster qubits, and the values {xi} which
are determined by the byproduct operator UΣ.

Let us now discuss the sequence of the individual gate simulations. Because of (2.44)
and the argument presented in Section 2.2.4, the quantum output |ψout〉 of a whole sequence
of unitary gates is related to the respective input via

|ψout〉 =



|N |∏
i=1

UΣ,gi
Ugi


 |ψin〉, (2.50)

where the gates gi ∈ N are labeled corresponding to the order of their action.
Thus we find that one can cope with the randomness of the measurement results pro-

vided the byproduct operators UΣ,gi
in (2.50) can be propagated forward through the

subsequent gates such that they act on the cluster qubits representing the output register.
This can be done. To propagate the byproduct operators we use the propagation relations

CNOT(c, t)σ
(t)
x = σ

(t)
x CNOT(c, t)

CNOT(c, t)σ
(c)
x = σ

(c)
x σ

(t)
x CNOT(c, t)

CNOT(c, t)σ
(t)
z = σ

(c)
z σ

(t)
z CNOT(c, t)

CNOT(c, t)σ
(c)
z = σ

(c)
z CNOT(c, t)

(2.51)

for the CNOT gate,
URot[ξ, η, ζ]σx = σxURot[ξ,−η, ζ]
URot[ξ, η, ζ]σz = σzURot[−ξ, η,−ζ] (2.52)

for general rotations URot[ξ, η, ζ] as defined in (2.24), and

Hσx = σzH
Hσz = σxH

Uz[π/2]σx = σyUz[π/2]
Uz[π/2]σz = σzUz[π/2]

(2.53)

for the Hadamard- and π/2-phase gate. The propagation relations (2.52) apply to gen-
eral rotations realized via Procedure 2 –including Hadamard- and π/2-phase gates– while
the propagation relations (2.53) apply to Hadamard- and π/2-phase gates as realized via
Procedure 3.

Note that the propagation relations (2.51) - (2.53) are such that Pauli operators are
mapped onto Pauli operators under propagation and thus the byproduct operators remain
in the Pauli group when being propagated. Further note that there is a difference between
the relations for propagation through gates which are in the Clifford group and through
those which are not. For CNOT-, Hadamard- and π/2-phase gates the byproduct operator
changes under propagation while the gate remains unchanged. This holds for all gates
in the Clifford group, because the propagation relations for Clifford gates are of the form
UgUΣ = (UgUΣU

−1
g )Ug as (2.51) and (2.53), i.e. the byproduct operator UΣ is conjugated
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under the gate, and the Clifford group by its definition as the normalizer of the Pauli group
maps Pauli operators onto Pauli operators under conjugation. The propagation relations
(2.51) and (2.53) are identical to the propagation relations for Pauli errors given in [43]. For
gates which are not in the Clifford group conjugation of the byproduct operator under the
gate would in general not work and therefore, for rotations which are not in the Clifford
group, the propagation relations are different. There, the gate is conjugated under the
byproduct operator; and thus the byproduct operator remains unchanged in propagation
while the gate is modified. In both cases, the forward propagation leaves the byproduct
operators in the Pauli group. In particular, their tensor product structure is maintained.

Let us now discuss how byproduct operator propagation affects the scheme of compu-
tation with the QCC. Using the above propagation relations, (2.50) can be rewritten in
the following way

|ψout〉 =



|N |∏
i=1

UΣ,gi
|Ω






|N |∏
i=1

U ′gi


 |ψin〉. (2.54)

Therein, UΣ,gi
|Ω are forward propagated byproduct operators resulting from the byproduct

operators UΣ,gi
of the gates gi. They accumulate to the total byproduct operator UΣ whose

effect on the result of the computation is contained in (2.49),

UΣ =

|N |∏
i=1

UΣ,gi
|Ω . (2.55)

Further, the U ′gi
are the gates modified under the propagation of the byproduct operators.

As discussed above, for gates in the Clifford group we have

U ′g = Ug, ∀ g ∈ Clifford group, (2.56)

as can be seen from (2.51) and (2.53).
Gates which are not in the Clifford group are modified by byproduct operator propa-

gation. Specifically, the general rotations (2.24) are conjugated as can be seen from (2.52).
From the structure of (2.50) we see that only the byproduct operators of gates gk earlier
than gi in the network may have an effect on Ugi

, i.e. those with k < i. To give an explicit
expression, let us define UΣ,gk

|Oi
, which are byproduct operators UΣ,gk

propagated forward
by the propagation relations (2.51) - (2.53) to the vertical cut Oi through the network, see
Fig. 2.4. A vertical cut through a network is a cut which intersects each qubit line exactly
once and does not intersect gates. The vertical cut Oi has the additional property that it
intersects the network just before the input of gate gi. The relation between a rotation U ′gi

modified by the byproduct operators and the non-modified rotation Ugi
is

U ′gi
=


 ∏

k|k<i

UΣ,gk
|Oi


Ugi


 ∏

k|k<i

UΣ,gk
|Oi



†

,

∀ Ugi
∈ SU(2).

(2.57)
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Figure 2.4: Vertical cuts. The vertical cuts intersect each qubit line exactly once but do not
intersect gates. Thus, Oi, Oj and Ω are vertical cuts, but 6O is not. The cut Oi intersects
the rotation Ux just before its input. For two of the rotations in the displayed network, the
sub-clusters on which these gates are realized are symbolically displayed in gray underlay. Via
the measurement of the cluster qubits a and b (displayed as black dots with white border), the
rotation angles of the respective rotations Ux and Uz are set.

Now that we have investigated the effect of byproduct operator propagation on the indi-
vidual gates let us return to equation (2.54). There, we find that the operations which act
on the input state |ψin〉 group into two factors. The first is composed of the modified gate
operations U ′gi

and the second of the forward propagated byproduct operators. The second
factor gives the accumulated byproduct operator UΣ and is absorbed into the result of the
computation via (2.49). It does not cause any complication.

So what remains is the first factor, and we find that the unitary evolution of the input
state |ψin〉 that is realized is composed of the modified gates U ′gi

. The QCCgates which
correspond to the gates realized in a network quantum algorithm are thus the U ′gi

, not
Ugi

. The procedures 1 - 3 in Section 2.2.2, which relate a quantum gate to a measurement
pattern, are for the operations Ugi

, though. Therefore we need to read (2.57) in reverse
and deduce Ugi

from U ′gi
. This can be done only in runtime of the algorithm. Once the

gates gk for all k < i have been realized, the byproduct operators UΣ,k are known for all
k < i. With Ugi

determined from U ′gi
via (2.57), Procedure 2 then gives the measurement

bases required for the realization of the gate gi.

For proper discussion of the temporal ordering we have to step out of the network
frame, which is done in Chapter 3. At this point it shall only be pointed out that in
case of the QCC the basic primitive are measurements. Thus, the temporal complexity
will be determined by the temporal ordering of these measurements, unlike in quantum
logic networks, where it depends on the ordering of gates. The most efficient ordering of
measurements that simulates a quantum logic network is not pre-described by the temporal
ordering of the gates in this network. For example, gates in the normalizer of the Pauli
group, the Clifford group, do not contribute to the temporal complexity of a QCC-algorithm
at all, see Section 2.2.9.

A temporal ordering among the measurements is inferred from the requirement to keep
the computation on the QCC deterministic in spite of the randomness introduced by the
measurements. This causes bases for one-qubit measurements to be adapted in accordance
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with outcomes obtained from the measurements of other qubits, which thus must have
been performed before.

2.2.6 Using quantum correlations for quantum computation

In this section we give a criterion that allows us to demonstrate the functioning of the
QCC-simulations of unitary gates in a compact way. Specifically, Theorem 1 given below
establishes a correspondence between general quantum gates and quantum correlations of
states. Using this correspondence, the explanation of QCCgates can be reduced to stabilizer
manipulations.

Before we state the theorem, let us make the notion of a measurement pattern more
precise. In a QCC-computation one can only choose the measurement bases, while the
measurement outcomes are random. This is sufficient for deterministic computation. Thus
one can perform measurements specified by a spatial and temporal pattern of measurement
bases but one cannot control into which of the two eigenstates the qubits are projected.

Definition 1 A measurement pattern M(C) on a cluster C is a set of vectors

M(C) =
{
~ra ∈ S2 | a ∈ C} , (2.58)

defining the measurement bases of the one-qubit measurements on C.

If this pattern M(C) of measurements is applied on an initial state |ΨE〉C and thereby the
set of measurement outcomes

{s}C = {sa ∈ {0, 1} | a ∈ C} (2.59)

is obtained, then the resulting state |ΨM〉C is, modulo norm factor, given by |ΨM〉C =

P
(C)
{s}(M) |ΨE〉C, where

P
(C)
{s}(M) =

⊗

k∈C

1l(k) + (−1)sk~rk · ~σ(k)

2
. (2.60)

Additionally, let us introduce some conventions for labeling. Let CI(g) and CO(g) be
such that |CI(g)| = |CO(g)| = n where n is the number of logical qubits processed by g.
Operators acting on qubits p ∈ CI(g) and q ∈ CO(g) are labeled by upper indices (CI(g), i)
and (CO(g), i′), 1 ≤ i, i′ ≤ n, respectively. The qubits p ∈ CI(g) and q ∈ CO(g) are ordered
from 1 to n in the same way as the logical qubits that they represent.

We make a distinction between the gate g and the unitary transformation U it realizes.
The gate g ∈ N does, besides specifying the unitary transformation U , also comprise the
information about the location of the gate within the network.

After these definitions and conventions we can now state the following theorem
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Theorem 1 Let C(g) = CI(g)∪CM(g)∪CO(g) with CI(g)∩CM(g) = CI(g)∩CO(g) = CM(g)∩
CO(g) = ∅ be a cluster for the simulation of a gate g, realizing the unitary transformation
U , and |φ〉C(g) the cluster state on the cluster C(g).

Suppose, the state |ψ〉C(g) = P
(CM (g))
{s} (M) |φ〉C(g) obeys the 2n eigenvalue equations

σ
(CI(g),i)
x

(
Uσ

(i)
x U †

)(CO(g))

|ψ〉C(g) = (−1)λx,i|ψ〉C(g)

σ
(CI(g),i)
z

(
Uσ

(i)
z U †

)(CO(g))

|ψ〉C(g) = (−1)λz,i|ψ〉C(g),
(2.61)

with λx,i, λz,i ∈ {0, 1} and 1 ≤ i ≤ n.
Then, on the cluster C(g) the gate g acting on an arbitrary quantum input state |ψin〉

can be realized according to Scheme 1 with the measurement directions in CM(g) described
by M(CM (g)) and the measurements of the qubits in CI(g) being σx-measurements. Thereby,
the input- and output state in the simulation of g are related via

|ψout〉 = UUΣ |ψin〉, (2.62)

where UΣ is a byproduct operator given by

UΣ =
n⊗

(CI(g)3i)=1

(σ[i]
z )si+λx,i(σ[i]

x )λz,i . (2.63)

The significance of the above theorem is that it provides a comparably simple criterion
for the functioning of gate simulations on the QCC. We can now base the explanation of the
gates directly on the eigenvalue equations (2.1) which were also used to define the cluster
states in a compact way. The quantum correlations required to explain the functioning
of the gates are derived from the basic correlations (2.2) rather easily and thus the use of
Theorem 1 makes the explanation of the gates more transparent and compact.

In the simulation of an individual quantum gate according to scheme 1, after reading
in of the input state and the entangling operation S(C(g)), but before the measurements
that realize the gate are performed, the resulting state carries the quantum input in an
encoded form. This state is in general not a cluster state. It is therefore not clear a priori
that cluster state correlations alone are sufficient to explain the functioning of the gate.
However, this is what Theorem 1 states. To prove the functioning of a gate g on the
QCC it is sufficient to demonstrate that a cluster state on C(g) exhibits certain quantum
correlations.

Before we turn to the proof of Theorem 1 let us note that the measurements described
by P

(CM (g))
{s} (M(g)), as they have full rank, project the initial cluster state |φ〉C(g) into a

tensor product state, |ψ〉C(g) = |m〉CM (g) ⊗ |ψ〉CI(g)∪CO(g). Thereof only the second factor,
|ψ〉CI(g)∪CO(g), is of interest. This state alone satisfies the eigenvalue equations (2.61), and
is uniquely determined by these equations. To see this, consider the state |ψ′〉CI(g)∪CO(g) =
U †|ψ〉CI(g)∪CO(g). It satisfies the 2n eigenvalue equations

σ
(i,CI(g))
x σ

(i,CO(g))
x |ψ′〉 = (−1)λx,i|ψ′〉,

σ
(i,CI(g))
z σ

(i,CO(g))
z |ψ′〉 = (−1)λz,i|ψ′〉, (2.64)
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where we have written in short |ψ′〉 for |ψ′〉CI(g)∪CO(g). The state |ψ′〉CI(g)∪CO(g) is uniquely
defined by the above set of commuting observables, it is a product of Bell states. Therefore,
|ψ〉CI(g)∪CO(g) is uniquely defined as well.

Proof of Theorem 1. We will discuss the functioning of the gates for two cases of
inputs. First, for all input states in the computational basis. This leaves relative phases
open which have to be determined. To fix them, we discuss second the input state with all
qubits individually in |+〉. As we will see, from these two cases it can be concluded that
the gate simulation works for all input states of the computational basis. This is sufficient
because of the linearity of the applied operations; if the gate simulations work for states
of the computational basis then they work for superpositions of such inputs as well.

Case 1: The input |ψin〉 is one of the states of the computational basis, i.e. |ψin〉 =
|z〉 :=

⊗n
i=1 |zi〉z,i with zi ∈ {0, 1}, i = 1 .. n. Then the state |Ψout(z)〉C(g) of the qubits

in C [after performing a procedure according to Scheme 1, using a measurement pattern
M(CM (g)) on the body CM(g) of the gate g, and applying σx-measurements on CI(g)] is

nO(z) |Ψout(z)〉C(g) =

P
(CI(g))
{s} (X)P

(CM (g))
{s} (M)S(C(g)) |z〉CI(g)⊗|+〉CM (g)∪CO(g),

(2.65)

with norm factors nO(z) that are nonzero for all z, as we shall show later.
The input |z〉 in (2.65) satisfies the equation

nI(z) |z〉 = P
(CI(g))
Z,z

n⊗
i=1

|+〉i, (2.66)

with P
(CI(g))
Z,z =

⊗n
i=1

1l[i]+(−1)ziσ
[i]
z

2
, and nI(z) = 1/2n/2 for all z. Now note that S(C(g)) and

P
(CI(g))
Z,z , as well as P

(CM (g))
{s} (M) and P

(CI(g))
Z,z , commute. Thus, |Ψout(z)〉C(g) can be written

as
n′O(z) |Ψout(z)〉C(g) =

= P
(CI(g))
{s} (X)P

(CI(g))
Z,z P

(CM (g))
{s} (M) |φ〉C(g)

= P
(CI(g))
{s} (X)P

(CI(g))
Z,z |ψ〉C(g),

(2.67)

where |ψ〉C(g) is specified by the eigenvalue equations (2.61) in Theorem 1.

Let us, at this point, emphasize that the projections P
(CI(g))
{s} (X) and P

(CI(g))
Z,z in (2.67)

are of very different origin. The projector P
(CI(g))
{s} (X) describes the action of the σx-

measurements on the qubits in CI(g). These measurements are part of the procedure to
realize some gate g on the cluster C(g). One has no control over the thereby obtained

measurement outcomes {s} specifying P
(CI(g))
{s} (X). In contrast, the projector P

(CI(g))
Z,z does

not correspond to measurements that are performed in reality. Instead, it is introduced
as an auxiliary construction that allows one to relate the processing of quantum inputs to
quantum correlations in cluster states. The parameters z specifying the quantum input |z〉
and thus the projector P

(CI(g))
Z,z in (2.66) can be chosen freely.
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The goal is to find for the state |Ψout(z)〉C(g) an expression involving the transformation
U acting on the input |z〉. To accomplish this, first observe that for the state on the r.h.s
of (2.67) via (2.61) the following eigenvalue equations hold

(
Uσ

[i]
z U †

)(CO)[
P

(CI(g))
{s} (X)P

(CI(g))
Z,z |ψ〉C(g)

]
=

(−1)λz,i+zi

[
P

(CI(g))
{s} (X)P

(CI(g))
Z,z |ψ〉C(g)

]
,

(2.68)

with i = 1..n.
To make use of the equations (2.68) we need to prove that P

(CI(g))
{s} (X)P

(CI(g))
Z,z |ψ〉C(g) 6= 0

for all z under the assumptions of Theorem 1.
For this, we consider the scalar C(g)〈ψ|P (CI(g))

Z,z |ψ〉C(g) and write P
(CI(g))
Z,z in the form

P
(CI(g))
Z,z =

1

2n


1l +

∑

Ik∈P (CI)\∅

⊗
i∈Ik

(−1)ziσ(i)
z


 , (2.69)

where P (CI) is the power set of CI . For each Ik we choose an i ∈ Ik and insert the respec-

tive eigenvalue equation from the upper line of (2.61) into C(g)〈ψ|
⊗

j∈Ik
σ

(j)
z |ψ〉C(g). Since

⊗
j∈Ik

σ
(j)
z and σ

(i,CI(g))
x

(
Uσ

(i)
x U †

)(CO(g))

anti-commute, C(g)〈ψ|
⊗

j∈Ik
σ

(i)
z |ψ〉C(g) = 0 for all

Ik. Thus, with (2.69), one finds C(g)〈ψ|P (CI(g))
Z,z |ψ〉C(g) = 1/2n, such that P

(CI(g))
Z,z |ψ〉C(g) 6= 0

and therefore also
P

(CI(g))
{s} (X)P

(CI(g))
Z,z |ψ〉C(g) 6= 0, (2.70)

or, in other words, n′O(z) 6= 0 for all z.

Due to the fact that the projections P
(CI(g))
Z,z and P

(CM (g))
{s} (M) are of full rank the above

state has the form

P
(CI(g))
{s} (X)P

(CI(g))
Z,z |ψ〉C(g) =

n′O(z) |s〉x,CI(g) ⊗ |m〉CM (g) ⊗ |ψout(z)〉CO(g),
(2.71)

where |s〉x,CI
=

n⊗
(CI3i)=1

|si〉x,i, and |m〉CM (g) is some product state with ‖ |m〉CM (g)‖ = 1.

Elaborating the argument that leads to (2.70) one finds that n′O(z) = 1/2n and nO(z) =
1/2n/2, but at this point the precise values of the normalization factors are not important
as long as they are nonzero.

In (2.71) only the third factor of the state on the r.h.s. is interesting, and this factor is
determined by the eigenvalue equations (2.68):

|ψout(z)〉 = eiη(z)UUΣ|z〉, (2.72)

where UΣ is given by (2.63). Now, because of (2.67) with n′O(z) 6= 0 ∀ z, a solution

(2.71) with (2.72) for the state P
(CI(g))
{s} (X)P

(CI(g))
Z,z |ψ〉C(g) is also a solution for the state

|Ψout(z)〉C(g), and one finally obtains

|Ψout(z)〉C(g) = eiη(z)|s〉x,CI(g) ⊗ |m〉CM (g) ⊗ [UUΣ|z〉]CO(g). (2.73)
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There appear no additional norm factors in (2.73) because the states on the l.h.s. and the
r.h.s. are both normalized to unity.

The solution (2.73) still allows for one free parameter, the phase factor eiη(z). Note
that, a priori, the phase factors for different z can all be different.

This concludes the discussion of case 1. We have found in (2.73) that the realized gate
acts as

Ũ = U UΣD (2.74)

where the gate D is diagonal in the computational basis and contains all the phases eiη(z).
What remains is to show that D = 1 modulo a possible global phase.

Case 2. Now the same procedure is applied for the input state |ψin〉 = |+〉 :=
⊗n

i=1 |+〉i.
Then, the state |Ψout(+)〉C(g) that results from the gate simulation is

nO(+) |Ψout(+)〉C(g) = P
(CI(g))
{s} (X)P

(CM (g))
{s} (M) |φ〉C(g), (2.75)

with a nonzero norm factor nO(+). Using the upper line of eigenvalue equations (2.61),
the state |Ψout(+)〉C(g) is found to obey the eigenvalue equations

(
Uσ[i]

x U
†)(CO(g))|Ψout(+)〉C(g) =(−1)λx,i+si|Ψout(+)〉C(g). (2.76)

The eigenvalue equations (2.76) in combination with (2.75) imply that

|Ψout(+)〉C(g) = eiχ|s〉x,CI(g) ⊗ |m〉CM (g) ⊗ [UUΣ|+〉]CO(g), (2.77)

with χ being a free parameter. Therefore, on the input state |+〉 the gate simulation acts
as

Ũ = eiχ U UΣ. (2.78)

This observation concludes the discussion of case 2.
The fact that (2.73) and (2.77) hold simultaneously imposes stringent conditions on

the phases η(z). To see this, let us evaluate the scalar product

cχ = C(g)〈Ψout(+)|UUΣ|s〉x,CI(g) ⊗ |m〉CM (g) ⊗ |+〉CO(g). (2.79)

From (2.77) it follows immediately that

cχ = e−iχ. (2.80)

On the other hand, since |+〉 = 1/2n/2
∑

z∈{0,1}n |z〉 and, by linearity,

|Ψout(+)〉 = 1/2n/2
∑

z∈{0,1}n

|Ψout(z)〉, (2.81)

from (2.73) it follows that

cχ =
1

2n

∑

z∈{0,1}n

e−iη(z). (2.82)
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The sum in (2.82) runs over 2n terms. Thus, with |e−iη(z)| = 1 for all z, it follows from
the triangle inequality that |cχ| ≤ 1. The modulus of cχ can be unity only if all e−iη(z) are
equal. As (2.80) shows, |cχ| is indeed equal to unity. Therefore, the phase factors eiη(z)

must all be the same, and with (2.80) and (2.82),

eiη(z) = eiχ, ∀ z. (2.83)

If we now insert (2.83) into (2.73) we find that the gate simulation acts upon every input
state in the computational basis, and thus upon every input state, as Ũg = eiχU UΣ.
Therein, the global phase factor eiχ has no effect. Thus we find that the gate simulation
indeed acts as stated in (2.62) and (2.63). ¤

We would like to acknowledge that a similar theorem restricted to gates in the Clifford
group has been obtained in [55].

Let us conclude this section with some comments on how to use this theorem. First,
note that Theorem 1 does not state anything about the temporal order of measurements
within a gate simulation. In particular it should be understood that it does not imply that
first the measurements on the cluster qubits in CM(g) and thereafter the measurements in
CI(g) are performed.

Instead, first all those cluster qubits q ∈ CI(g)∪CM(g) are measured whose measurement
basis is the eigenbasis of either σx or σy (remember that, after the removal of the redundant
cluster qubits as described in Section 2.2.3, we are dealing with clusters CN such that, apart
from the readout, no measurements in the σz-eigenbasis occur). Second, possibly in several
subsequent rounds, the remaining measurements are performed in bases which are chosen
according to previous measurement results.

In subsequent sections we will illustrate in a number of examples how Theorem 1 is
used to demonstrate the functioning of quantum gate simulations on the QCC, and how
the strategies for adapting the measurement bases are found.

2.2.7 Functioning of the CNOT gate and general one-qubit ro-
tations

In this section, we demonstrate that the measurement patterns which we have introduced
do indeed realize the desired quantum logic gates.

The basis for all our considerations is the set (2.1) of eigenvalue equations fulfilled by
the cluster states. Therefore let us, before we turn to the realization of the gates in the
universal set, describe how the eigenvalue equations can be manipulated. Equations (2.1)
are not the only eigenvalue equations satisfied by the cluster state. Instead, a vast number
of other eigenvalue equations can be derived from them.

The operators K(a) may for example be added, multiplied by a scalar and multiplied
with each other. In this way, a large number of eigenvalue equations can be generated from
equations (2.1). Note, however, that not all operators generated in this way are correlation
operators. Non-Hermitian operators can be generated which do not represent observables,
yet will prove to be useful for the construction of new correlation operators.
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Furthermore, if quantum correlation operator K for state |φ〉 commutes with measured
observable ~ri ·~σ(i), the correlation will still apply to the measured state. More specifically, if
the state |φ〉 satisfies the eigenvalue equation K|φ〉 = λ|φ〉 and [K,~ri ·~σ] = 0, then the state

resulting from the measurement, P
(i)
si |φ〉, where P

(i)
si = 1l(i)+(−1)si~ri·~σ(i)

2
, satisfies the same

eigenvalue equation since λ(P
(i)
si |φ〉) = (P

(i)
si K|φ〉) = K(P

(i)
si |φ〉). Thus the correlation K is

inherited to the resultant state, P
(i)
si |φ〉.

To demonstrate and explain the measurement patterns realizing certain quantum gates,
the program is as follows. First, from the set of eigenvalue equations which define the
cluster state |φ〉C(g), we derive a set of eigenvalue equations which is compatible with
the measurement pattern on CM . Then, we use these to deduce the set of eigenvalue
equations which define the state |ψ〉C(g), where the qubits in CM have been measured.
Thus we demonstrate that the assumptions for Theorem 1, that is the set of equations
(2.61), are satisfied with the appropriate unitary transformation U . Third, UΣ is obtained
from equation (2.63) as a function of the measurement results. The order of U and UΣ is
then interchanged and, in this way, the temporal ordering of the measurements becomes
apparent.

Identity gate

As a simple example, let us first consider a gate which realizes the identity operation 1l on
a single logical qubit.

For the identity gate CI , CM and CO each consist of a single qubit, so labeling the qubits
1, 2 and 3, 1 ∈ CI , 2 ∈ CM and 3 ∈ CO. The pattern M(1l) corresponds to a measurement
of qubit 2 in the σx basis.

Let |φ〉C(1l) be the cluster state on these three qubits. The state is defined by the
following set of eigenvalue equations.

σ(1)
x σ(2)

z |φ〉C(1l) =|φ〉C(1l), (2.84a)

σ(1)
z σ(2)

x σ(3)
z |φ〉C(1l) =|φ〉C(1l), (2.84b)

σ(2)
z σ(3)

x |φ〉C(1l) =|φ〉C(1l). (2.84c)

After the measurement of qubit 2, the resulting state of the cluster is

|ψ〉C(1l) = P (2)
x,s2
|φ〉C(1l), (2.85)

where s2 ∈ {0, 1}, and P
(2)
x,s2 = 1l(2)+(−1)s2σ

(2)
x

2
.

P
(2)
x,s2 and σ

(2)
x obey the following relation,

P (2)
x,s2

σ(2)
x = (−1)s2P (2)

x,s2
. (2.86)

Applying P
(2)
x,s2 to both sides of equation (2.84b), and using equation (2.86), one obtains

for |ψ〉C(1l), defined in equation (2.85),

σ(1)
z σ(3)

z |ψ〉C(1l) = (−1)s2|ψ〉C(1l). (2.87)
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Also from equations (2.84a) and (2.84c) we have

σ(1)
x σ(3)

x |φ〉C(1l) = |φ〉C(1l). (2.88)

Applying P
(2)
x,s2 to both sides of this equation gives

σ(1)
x σ(3)

x |ψ〉C(1l) = |ψ〉C(1l). (2.89)

Now, since qubits 1 and 3 represent the input and output qubits respectively, the
assumption of Theorem 1, equation (2.61), is satisfied for U = 1l. The byproduct operator
UΣ is obtained from equation (2.63), and we find that the full unitary operation realized
by the gate is Ũ = 1l σs2

x σs1
z = σs2

x σs1
z 1l.

Also note that a wire with length one (CI(H) = 1, CM(H) = ∅, CO(H) = 2), i.e.
half of the above elementary wire, implements a Hadamard transformation. As in this
construction the input- and output qubits lie on different sub-lattices of C, one on the even
and one on the odd sub-lattice, we do not use it in the universal set of gates. Nevertheless,
this realization of the Hadamard transformation can be a useful tool in gate construction.
For example, we will use it in Section 2.2.7 to construct the realization of the z-rotations
out of the realization of x-rotations.

Removing unnecessary measurements

In larger measurement patterns, whenever pairs of adjacent σx- qubits in a wire are sur-
rounded above and below by either vacant lattice sites or σz-measurements, they can be
removed from the pattern without changing the logical operation of the gate. This is sim-
ple to show in the case of a linear cluster. Consider six qubits, labelled a to f , which are
part of a longer line of qubits, prepared in a cluster state. Four of the eigenvalue equations
which define the state are

σ(a)
z σ(b)

x σ(c)
z |ψ〉C = |ψ〉C,

σ(b)
z σ(c)

x σ(d)
z |ψ〉C = |ψ〉C,

σ(c)
z σ(d)

x σ(e)
z |ψ〉C = |ψ〉C,

σ(d)
z σ(e)

x σ(f)
z |ψ〉C = |ψ〉C.

(2.90)

Suppose, a measurement pattern M on these qubits contains measurements of the
observable σx on qubits c and d. Measurements in the σx basis can be made before any
other measurements in M. If these two measurements alone are carried out, the new state
fulfills the following eigenvalue equations, derived from equation (2.90) in the usual way,

σ(a)
z σ(b)

x σ(e)
z |ψ〉C = (−1)sd|ψ〉C,

σ(b)
z σ(e)

x σ(f)
z |ψ〉C = (−1)sc |ψ〉C.

(2.91)

The resulting state is therefore a cluster state from which qubits c and d have been removed,
and b and e play the role of adjacent qubits. Thus, the two measurements have mapped
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a cluster state onto a cluster state and thus do not contribute to the logical operation
realized by M, which, in the case where both sc and sd equal 0, is completely equivalent to
the reduced measurement pattern M′, from which these adjacent σx measurements have
been removed.

One-qubit rotation around x-axis

A one-qubit rotation through an angle α about the x-axis Ux[α] = exp[−iα/2σx] is realized
on the same three qubit layout as the identity gate. Labeling the qubits 1, 2 and 3
as in the previous section, 1 = CI , 2 = CM and 3 = CO. The measurement pattern
M(Ux) consists of a measurement, on qubit 2, of the observable represented by the vector
~rxy(η) = (cos(η), sin(η), 0),

~rxy(η) · ~σ = cos η σx + sin η σy = Uz[η]σxUz[−η], (2.92)

whose eigenstates lie in the x-y-plane of the Bloch sphere at an angle of η to the x-axis.
The cluster state |φ〉C(Ux) is defined by equations (2.84). After the measurement of

M(Ux), the resulting state is |ψ〉C(Ux) = P
(2)
xy(η)|φ〉C(Ux) where P

(2)
xy(η) = 1l(2)+(−1)s2~rxy(η)·~σ(2)

2
.

To generate an eigenvalue equation whose operator commutes with ~rxy(η)·~σ we manipulate
equation (2.84c) in the following way,

σ(2)
z σ(3)

x |φ〉C(Ux) = |φ〉C(Ux) (2.93)

i.e. σ(2)
z |φ〉C(Ux) = σ(3)

x |φ〉C(Ux)

i.e. (σ(2)
z − σ(3)

x )|φ〉C(Ux) = 0

∴ exp
(−iη/2 (σ(2)

z − σ(3)
x )

) |φ〉C(Ux) = |φ〉C(Ux) (2.94)

tpgfig where the last equation is true for all η ∈ [0, 2π]. This takes a more useful form, if
we write it in terms of one-qubit rotations,

U (2)
z [η]U (3)

x [−η]|φ〉C(Ux) = |φ〉C(Ux). (2.95)

We use this, and the equation

σ(1)
z σ(2)

x σ(3)
z |φ〉C(Ux) = |φ〉C(Ux) (2.96)

to construct the subsequent eigenvalue equation. Let us denote the operator on the l.h.s.
of eigenvalue equation (2.95) as A, and the operator on the l.h.s. of (2.96) as B. With
(2.95) and (2.96) it follows that ABA−1|φ〉C(Ux) = |φ〉C(Ux), i.e.

|φ〉C(Ux) =σ(1)
z U (2)

z [η] σ(2)
x U (2)

z [−η]
U (3)

x [−η] σ(3)
z U (3)

x [η] |φ〉C(Ux).
(2.97)

Note that the operators A and B do not commute.
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=X XM(Ug) M(H Ug H)

Figure 2.5: Useful identity for the realization of the rotation Uz[α] as the sequence H Ux[α]H.

Applying Pxy(η),2 to both sides, we obtain the following eigenvalue equation for |ψ〉C(Ux),

σ(1)
z U (3)

x [−η]σ(3)
z U (3)

x [η] |ψ〉C(Ux) = (−1)s2|ψ〉C(Ux). (2.98)

In the same way as for the identity gate we also apply the projector to an eigenvalue
equation generated from equations (2.84a) and (2.84c) to obtain

|ψ〉C(Ux) = σ(1)
x σ(3)

x |ψ〉C(Ux)

= σ(1)
x U (3)

x [−η] σ(3)
x U (3)

x [η] |ψ〉C(Ux)

(2.99)

and thus we see that equation (2.61) is satisfied for U = Ux[−η] and UΣ = σs1
z σ

s2
x . Inter-

changing the order of these operators is not as trivial here as for the identity gate. When
σz is propagated through Ux[η] the sign of the angle is reversed. We thus find that the
gate operation realized by this M(Ux) in the QCC is

Ug = Ux [(−1)s1(−η)] . (2.100)

The sign of the rotation realized by this gate is a function of s1, the outcome of the
measurement on qubit 1. This is an example of the temporal ordering of measurements in
the QCC. In order to realize Ux[α] deterministically, the angle of the measurement, η, on
qubit 2 must be η = (−1)s1(−α). Therefore, this measurement can only be realized after
the measurement of qubit 1.

Rotation around z-axis

The measurement pattern for a rotation around the z-axis Uz[β] = exp[−iβ/2σz] is illus-
trated in Fig. 2.2. It requires 5 qubits for its realization.

The measurement layout M(Uz) is similar to the rotation about the x-axis, except
for two additional σx measurements on either side of the central qubit. The simplest
way to understand this gate is regard it as the concatenation Uz[α] = H Ux[α]H. The
Hadamard transformations may be realized as wires of length one, see Section 2.2.7. Thus,
the measurement pattern of the z-rotation is that of the x-rotation plus one cluster qubit
on either side measured in the eigenbasis of σx, as displayed in Fig 2.5.

The explanation in terms of eigenvalue equations obeyed by cluster states is as follows.
Let us label the qubits 1 to 5. The cluster state |φ〉C(Uz) is defined by eigenvalue equations
of the usual form. If qubits 2 and 4 are measured in the σx basis, the resulting state
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Figure 2.6: General rotation composed of two x-rotations and a z-rotation in between (Euler
representation). In the QCC-realization pairs of adjacent cluster qubits measured in the σx-
eigenbasis may be removed from the measurement pattern.

|φ′〉C(Uz) = P
(2)
x,s2P

(4)
x,s4|φ〉C(Uz) fulfills the following set of eigenvalue equations

σ(1)
x σ(3)

x σ(5)
x |φ′〉C(Uz) = |φ′〉C(Uz), (2.101a)

σ(1)
z σ(3)

z |φ′〉C(Uz) = (−1)s2|φ′〉C(Uz), (2.101b)

σ(3)
z σ(5)

z |φ′〉C(Uz) = (−1)s4|φ′〉C(Uz). (2.101c)

This set of equations is analogous to equations (2.84), except for the different eigenvalues
and that the input and output qubits x- and z-bases have been exchanged. From here on
the analysis of the measurement pattern runs parallel to the previous section.

One finds M(Uz) realizes the operation Uz(β) if the basis of the measurement on
qubit 3 is chosen to be the eigenbasis of ~rxy((−1)s2(−β)) · ~σ, where ~rxy(η) is defined in
equation (2.92). Qubit 2 must thus be measured prior to qubit 3. The byproduct operator
for this gate is UΣ,Uz = σs2+s4

x σs1+s3
z .

Arbitrary Rotation

The arbitrary Euler rotation can be realized by combining the measurement patterns of
rotations around x- and z-axes by overlaying input and output qubits of adjacent patterns,
as described in section 2.2.4. This creates a measurement pattern of 7 qubits plus input
and output qubits, labelled as in Fig. 2.6, with measurements of σx on qubits 3, 4, 6 and 7,
and measurements in the x-y-plane at angles α, β and γ on qubits 2, 5 and 8, respectively.
The unitary operation realized by these connected measurement patterns is,

UΣURot[ξ, η, ζ] = σs7
z σ

s8
x Ux[(−1)s7(−γ)]σs3+s5

z σs4+s6
x Uz[(−1)s4(−β)]σs1

z σ
s2
x Ux[(−1)s1(−α)]

(2.102)

As we have shown above, adjacent pairs of σx measurements can be removed from the
pattern without changing the operation realized by the gate. The operation realized by
this reduced measurement pattern is obtained by setting the measurement results from
the removed qubits to zero, s3, s4, s6, s7 = 0. After relabelling the remaining qubits in the
measurement pattern 1 to 5, we obtain

UΣURot[ξ, η, ζ] = σs4
x Ux[−γ]σs3

z Uz[(−β)]σs1
z σ

s2
x Ux[(−1)s1(−α)] (2.103)
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Propagating all byproduct operators to the left hand side we find the unitary operation
realized by the measurement pattern is

URot[ξ, η, ζ] = Ux[−(−1)s1+s3γ]Uz[−(−1)s2β]Ux[−(−1)s1α] (2.104)

with byproduct operator UΣ = σs2+s4
x σs1+s3

z . One finds that, to realize a specific rotation
URot[ξ, η, ζ] = Ux[ζ]Uz[η]Ux[ξ], the angles α, β, γ specifying the measurement bases of the
qubits 2,3, and 4 are again dependent on the measurement results of other qubits. We see
that α = (−1)s1(−ξ), β = (−1)s2(−η), γ = (−1)s1+s3(−ζ). To realize a specific rotation
deterministically, qubit 2 must thus be measured before qubits 3 and 4, and qubit 3 before
qubit 4, in the bases specified in Section 2.2.2.

Hadamard- and π/2-phase gate

The Hadamard- and the π/2-phase gate have the property that under conjugation with
these gates Pauli operators are mapped onto Pauli operators,

HσxH
† = σz,

HσzH
† = σx,

(2.105)

and
Uz[π/2]σxUz[π/2]† = σy,
Uz[π/2]σzUz[π/2]† = σz,

(2.106)

from which the propagation relations (2.53) follow. Related to this property is the fact that
these two special rotations may be realized via σx- and σy-measurements. Such measure-
ment bases need not be adapted to previously obtained measurement results and therefore,
while these rotations might be realized in the same way as any other rotation, there is a
more advantageous way to do so.

To realize either of the gates we use again a cluster state of 5 qubits in a chain C(H).
Let the labeling of the qubits be as in Fig. 2.2d and e, i.e. qubit 1 is the input- and qubit
5 the output qubit.

A cluster state |φ〉C(H) obeys the two eigenvalue equations

|φ〉C(H) = K(1)K(3)K(4)|φ〉C(H)

= σ
(1)
x σ

(3)
y σ

(4)
y σ

(5)
z |φ〉C(H),

|φ〉C(H) = K(2)K(3)K(5)|φ〉C(H)

= σ
(1)
z σ

(2)
y σ

(3)
y σ

(5)
x |φ〉C(H).

(2.107)

When the qubits 2, 3 and 4 of this state are measured in the σy-eigenbasis and thereby the
measurement outcomes s2, s3, s4 ∈ {0, 1} are obtained, the resulting state |ψ〉C(H) obeys
the eigenvalue equations

σ
(1)
x σ

(5)
z |φ〉C(H) = (−1)s3+s4|φ〉C(H),

σ
(1)
z σ

(5)
x |φ〉C(H) = (−1)s2+s3|φ〉C(H).

(2.108)



40 2. The one-way quantum computer

From equation (2.105) we see that the correlations (2.108) are precisely those we need to
explain the realization of the Hadamard gate. Using Theorem 1 we find that by proce-
dure 3 with measurement of the operators σ

(1)
x , σ

(2)
y , σ

(3)
y and σ

(4)
y a Hadamard gate with a

byproduct operator as given in (2.30) is realized.
A cluster state |φ〉C(Uz [π/2]) of a chain of 5 qubits obeys the eigenvalue equations

|φ〉C(Uz [π/2]) = K(1)K(3)K(4)K(5)|φ〉C(Uz [π/2]),

= −σ(1)
x σ

(3)
y σ

(4)
x σ

(5)
y |φ〉C(Uz [π/2])

|φ〉C(Uz [π/2]) = K(2)K(4)|φ〉C(Uz [π/2])

= σ
(1)
z σ

(2)
x σ

(4)
x σ

(5)
z |φ〉C(Uz [π/2]).

(2.109)

When the qubits 2, and 4 of this state are measured in the σx- and qubit 3 is measured
in the σy-eigenbasis, with the measurement outcomes s2, s3, s4 ∈ {0, 1} obtained, the
resulting state |ψ〉C(Uz [π/2]) obeys the eigenvalue equations

σ
(1)
x σ

(5)
y |ψ〉C(Uz [π/2]) = (−1)s3+s4+1|ψ〉C(Uz [π/2]),

σ
(1)
z σ

(5)
z |ψ〉C(Uz [π/2]) = (−1)s2+s4|ψ〉C(Uz [π/2]).

(2.110)

Using Theorem 1 we find that by procedure 3 with measurement of the operators σ
(1)
x , σ

(2)
x ,

σ
(3)
y and σ

(4)
x a π/2-phase gate is realized, where the byproduct operator is given by (2.30).

The CNOT gate

A measurement pattern which realizes a CNOT gate is illustrated in Fig. 2.2. Labeling
the qubits as in Fig. 2.2, we use the same analysis as above to show that this measurement
pattern does indeed realize a CNOT gate in the QCC.

Of the cluster C(CNOT ) on which the gate is realized, qubits 1 and 9 belong to CI ,
qubits 7 and 15 belong to CO and the remaining qubits belong to CM . Let |φ〉 be a cluster
state on C(CNOT ), which obeys the set of eigenvalue equations (2.1).

From these basic eigenvalue equations there follow the equations

|φ〉 = K(1)K(3)K(4)K(5)K(7)K(8)K(13)K(15) |φ〉
= −σ(1)

x σ(3)
y σ(4)

y σ(5)
y σ(7)

x σ(8)
y σ(13)

x σ(15)
x |φ〉, (2.111a)

|φ〉 = K(2)K(3)K(5)K(6) |φ〉
= σ(1)

z σ(2)
y σ(3)

y σ(5)
y σ(6)

y σ(7)
z |φ〉, (2.111b)

|φ〉 = K(9)K(11)K(13)K(15) |φ〉
= σ(9)

x σ(11)
x σ(13)

x σ(15)
x |φ〉, (2.111c)

|φ〉 = K(5)K(6)K(8)K(10)K(12)K(14) |φ〉
= σ(5)

y σ(6)
y σ(7)

z σ(8)
y σ(9)

z σ(10)
x σ(12)

y σ(14)
x σ(15)

z |φ〉. (2.111d)

Subsequently we will often use a graphic representation of eigenvalue equations like (2.111a)
- (2.111d). Each of these equations is specified by the set of correlation centers q for which
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Figure 2.7: Pattern of correlation centers representing the eigenvalue equation (2.111a).

the basic correlation operators K(q) (2.2) enter the r.h.s. of the equation. While the
information content is the same, it is often more illustrative to display the pattern of
correlation centers than to write down the corresponding cluster state eigenvalue equation.
As an example, the pattern of correlation centers which represents the eigenvalue equation
(2.111a) is given in Fig. 2.7.

If the qubits 10, 11, 13 and 14 are measured in the σx- and the qubits 2, 3, 4, 5, 6, 8
and 12 are measured in the σy-eigenbasis, whereby the measurement results s2 - s6, s8, s10

- s14 are obtained, then the cluster state eigenvalue equations (2.111a) - (2.111d) induce
the following eigenvalue equations for the projected state |ψ〉

σ(1)
x σ(7)

x σ(15)
x |ψ〉 = (−1)1+s3+s4+s5+s8+s13|ψ〉, (2.112a)

σ(1)
z σ(7)

z |ψ〉 = (−1)s2+s3+s5+s6|ψ〉 (2.112b)

σ(9)
x σ(15)

x |ψ〉 = (−1)s11+s13|ψ〉, (2.112c)

σ(9)
z σ(7)

z σ(15)
z |ψ〉 = (−1)s5+s6+s8+s10+s12+s14|ψ〉. (2.112d)

Therein, qubits 1 and 7 represent the input and output for the control qubit and qubits
9 and 15 represent the input and output for the target qubit. Writing the CNOT unitary
operation on control and target qubits CNOT (c, t), we find

CNOT (c, t)σ(c)
x CNOT (c, t) = σ(c)

x σ(t)
x , (2.113a)

CNOT (c, t)σ(c)
z CNOT (c, t) = σ(c)

z , (2.113b)

CNOT (c, t)σ(t)
x CNOT (c, t) = σ(t)

x , (2.113c)

CNOT (c, t)σ(t)
z CNOT (c, t) = σ(c)

z σ(t)
z . (2.113d)

Comparing these equations to the eigenvalue equations (2.112a) to (2.112d), one sees that
M does indeed realize a CNOT gate. Furthermore, after reading off the operator UΣ using
equations (2.61) and (2.63) and propagating the byproduct operators through to the output
side of the CNOT gate, one finds the expressions for the byproduct operators, reported in
equation (2.23).

2.2.8 Upper bounds on resource consumption

Here we discuss the spatial, temporal and operational resources required for the QCC and
compare with resource requirements of a network quantum computer.



42 2. The one-way quantum computer

To run a specific quantum algorithm, the QCC requires a cluster of a certain size.
Therefore the QCC-spatial resources S are the number of cluster qubits in the required
cluster state |φ〉C, i.e. S = |C|. The computation is driven by one-qubit measurement
only. Thus, a single one-qubit measurement is one unit of operational resources, and the
QCC-operational resources O are defined as the total number of one-qubit measurements
involved. The operational resources O are always smaller or equal to the spatial resources
S,

O ≤ S, (2.114)

since each cluster qubit is measured at most once. As for the temporal resources, the QCC-
logical depth T is the minimum number of measurement rounds to which the measurements
can be parallelized.

Let us briefly recall the definition of these resources in the network model. The temporal
resources are specified by the network logical depth Tqln, which is the minimal number of
steps to which quantum gates and readout measurements can be parallelized. The spatial
resources Sqln count the number of logical qubits on which an algorithm runs. Finally, the
operational resources Oqln are the number of elementary operations required to carry out
an algorithm, i.e. the number of gates and measurements.

The construction kit for the simulation of quantum logic networks on the QCC shall
contain a universal set of gates, in our case the CNOT gate between arbitrary qubits
and the one qubit rotations. Already the next-neighbor CNOT with general rotations is
universal since a general CNOT can be assembled of a next-neighbor CNOT and swap gates
which can themselves be composed of next-neighbor CNOTs. However, in the following
we would like to use for the general CNOT the less cumbersome construction described in
Section 2.3.3. For this gate, the distance between logical qubits, i.e. between parallel qubit
wires, is 4. The virtue of this gate is that it can always be realized on a vertical slice of
width 6 on the cluster, no matter how far control and target qubit are separated. A slice of
width 6 means that the distance between an input qubit of the gate and the corresponding
input of the consecutive gate is 6 lattice spacings. This general CNOT gate determines
the spatial dimensions of a unit cell in the measurement patterns. The size of this unit
cell is 4× 6. The other elementary gates, the next-neighbor CNOT and the rotations are
smaller than a unit cell and therefore have to be stretched. This is easily accomplished.
The next-neighbor CNOT as displayed in Fig. 2.2a has a size of 2× 6 and is extended to
size 4 × 6 by inserting two adjacent cluster qubits into the vertical bridge connecting the
horizontal qubit lines. The general rotation as in Fig. 2.2b has width 4 and is stretched to
width 6 by inserting two cluster qubits just before the output.

Concerning the temporal resources we first observe that we can realize the gates in
the same temporal order as in the network model. To realize a general CNOT on the
QCC takes one step of measurements, to realize a general rotation takes at most three. For
the network model we do not assume that a general rotation has to be Euler-decomposed.
Rather we assume that in the network model a rotation can be realized in a single step.
Thus the temporal resources of the QCC and in the network model are related via

T ≤ 3Tqln. (2.115)
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As for the spatial resources, let us consider a rectangular cluster of height h and width
w on which the qubit wires are oriented horizontally, with the network register state prop-
agating from left to right. As the logical qubits have distance 4, the height of the cluster
has to be h = 4Sqln − 3 where Sqln is equal to the number n of logical qubits. Further, the
number of gates in the circuit is at most SqlnTqln because, in the network model, in each
step at most Sqln gates can be realized. On each vertical slice of width 6 on the cluster
there fits at least one gate such that –taking into account an extra slice of width 1 for the
readout cluster qubits– for the width holds w ≤ 6SqlnTqln +1. With S = hw one finds that

S ≤ 24Sqln
2Tqln. (2.116)

In a similar way, a bound involving the network operational resources can be obtained.
The spatial overhead S and the operational overhead O per elementary network operation
is ≤ 24Sqln if this operation is a unitary gate from the universal set described before, and
is equal to one if this operation is a readout measurement. Thus, we also have

S ≤ 24OqlnSqln,
O ≤ 24OqlnSqln.

(2.117)

The purpose of this section was to demonstrate that the scaling of spatial and temporal
resources is at worst polynomial as compared to the network model. In [10] it has been
shown that the required classical processing increases the computation time only marginally
(logarithmically in the number n of logical qubits) and thus there is no exponential overhead
in either classical or quantum resources.

The upper bounds in (2.115), (2.116) and (2.117) should not be taken for estimates. For
algorithms of practical interest the required resources usually scale much more favorably
and there do not even have to be overheads at all. This is illustrated for the temporal
complexity of Clifford circuits in Section 2.2.9 and in the examples of Section 2.3. A spatial
overhead always exists. However, this is compensated by the fact that the operational effort
to create a cluster state is independent of the cluster size.

2.2.9 Quantum circuits in the Clifford group can be realized in
one step

The measurement bases to realize the Hadamard- and the π/2-phase gate need not be
adapted since only operators σx and σy are measured. The same holds for the realization
of the CNOT gate, see Fig. 2.2. Thus, all the Hadamard-, π/2-phase- and CNOT gates of a
quantum circuit can be realized simultaneously in the first measurement round, regardless
of their location in the network. In particular, quantum circuits which consist only of
such gates, i.e. circuits in the Clifford group, can be realized in a single time step. As an
example, many circuits for coding and decoding are in the Clifford group.

The fact that quantum circuits in the Clifford group can be realized in a single time
step has previously not been known for networks. The best upper bound on the logical
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depth that was known previously scales logarithmically with the number of logical qubits
[56].

Note that, as stated by the Gottesman-Knill-Theorem [21], there is no need for fast
Clifford circuits if the quantum output is measured in a Pauli basis because these circuits
can be simulated efficiently classically. However, the purpose of this section is to point out
that the whole Clifford part of any quantum circuit can be performed in a single time step.

Here we find a first aspect of QCC-computation which is not adequately described within
the network model, and with this observation we conclude the discussion of the QCC as a
simulator of quantum logic networks.

2.3 Examples of practical interest

2.3.1 Multi-qubit swap gate

A multi-qubit swap gate is an n-qubit generalization of the two-qubit swap gate. It reverses
the order of the n qubits, interchanging qubit i with n+ 1− i, i = 1, 2, .. , N . This can be
realized in a simple way on the QCC , as shown in Fig. 2.8a. The measurement pattern M
on CM consists of a square of σx measurements, with sides of 2n − 1 cluster qubits. The
input qubits are, simultaneously with the qubits in CM , also measured in the σx-eigenbasis.

It can be verified using the methods introduced above that realizing M leads to corre-
lations between the ith input qubit and the n + 1 − i-th output qubit. Here, we discuss
the four-qubit swap as a particular example.

After the σx-measurements of the qubits in CM we obtain for the projected state
|ψ〉C(swap) the eigenvalue equations

σ(I,1)
x σ(O,4)

x |ψ〉C(swap) = (−1)λx,1|ψ〉C(swap),

σ(I,2)
x σ(O,3)

x |ψ〉C(swap) = (−1)λx,2|ψ〉C(swap),

σ(I,3)
x σ(O,2)

x |ψ〉C(swap) = (−1)λx,3|ψ〉C(swap),

σ(I,4)
x σ(O,1)

x |ψ〉C(swap) = (−1)λx,4|ψ〉C(swap),

σ(I,1)
z σ(O,4)

z |ψ〉C(swap) = (−1)λz,1|ψ〉C(swap),

σ(I,2)
z σ(O,3)

z |ψ〉C(swap) = (−1)λz,2|ψ〉C(swap),

σ(I,3)
z σ(O,2)

z |ψ〉C(swap) = (−1)λz,3|ψ〉C(swap),

σ(I,4)
z σ(O,1)

z |ψ〉C(swap) = (−1)λz,4|ψ〉C(swap).

(2.118)

Therein, the parameters λk,x, λk,z ∈ {0, 1} depend linearly on the measurement outcomes
{s(i,j)}, where i is the value of the x- and j the value of the y-coordinate of the respective
qubit site. For example, λx,1 = s(1,2) + s(2,3) + s(3,4) + s(4,5) + s(5,6) + s(6,7) mod 2.

The eigenvalue equations (2.118) can be derived from corresponding eigenvalue equa-
tions for the cluster state |φ〉C(swap) on the cluster C(swap). The required initial correla-
tions are products of the basic correlation operators (2.2). The way to obtain the equations
(2.118) is rather straightforward and therefore we omit the detailed derivations. In Fig. 2.8b
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Figure 2.8: The multi-qubit swap gate. a) measurement pattern to realize the swap gate. b)
Correlation centers for two correlations of the projected state |ψ〉C(swap) as inherited from corre-

lations of |φ〉C(swap). The correlation σ(I,1)
x σ

(O,4)
x of |ψ〉C(swap) stems from the product correlation

for |φ〉C(swap) with the centers a of basic correlation operators K(a) denoted by “◦”. The centers

of the initial correlation, which after the measurements induces the correlation σ
(I,3)
z σ

(O,2)
z of

|ψ〉C(swap), are denoted by “•”.

two examples for the composition of product correlation operators from basic correlation
operators K(a) are illustrated. The first line of (2.118),

σ(I,1)
x σ(O,4)

x |ψ〉C(swap) = (−1)λx,1|ψ〉C(swap),

for example, is derived from the eigenvalue equation

|φ〉C(swap) = K(Cx,1)|φ〉C(swap), (2.119)

with
K(Cx,1) =

∏
a∈Cx,1

K(a), (2.120)

and Cx,1 = {(I, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (O, 4)}. Evaluating the r.h.s. of
(2.120) we find that all operators σz cancel and that

K(Cx,1) =
∏

a∈Cx,1

σ(a)
x . (2.121)

It is now easy to see that after the σx measurements of the qubits in CM there remains a
strict σ

(I,1)
x σ

(O,4)
x -correlation for the state |ψ〉C(swap). A similar construction can be given to

obtain the σ
(I,1)
z σ

(O,4)
z -correlation.

With the eigenvalue equations (2.118) the assumptions of Theorem 1 are fulfilled and
thus via the described measurement pattern a unitary operation U = SWAP is realized
modulo a byproduct operator as specified in (2.63). To exchange the order of the swap gate
Uswap and the byproduct operator UΣ the byproduct operator is conjugated under Uswap,
as usual for gates in the Clifford group.
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2.3.2 Simulating multi-qubit Hamiltonians

Here we display a gate which simulates the unitary evolution with U = exp(−iH4t) of the
quantum input for the multi-particle Hamiltonian

H4 = g σ(1)
z σ(2)

z σ(3)
z σ(4)

z (2.122)

and arbitrary times t. In addition, the gate performs a swap which can be undone by a
subsequent swap gate as described in Section 2.3.1.

The procedure to realize the measurement pattern M for Hamiltonian simulation, as
shown in Fig. 2.9, requires two rounds of measurements. In the first round all the σx-
measurements are performed. In the second measurement round, of the qubit (3, 4) the
operator

~r(3,4) · ~σ = Uz[(−1)λM 2ϕ]σx U
†
z [(−1)λM 2ϕ] (2.123)

is measured, where Uz[α] = exp(−iασz/2). Therein, the angle ϕ is given by

ϕ = gt, (2.124)

and λM ∈ {0, 1}, which depends linearly on outcomes of measurements in the first round,
will be specified below.

To understand the functioning of the Hamiltonian simulator let us first discuss the state
|ψ′〉 on the cluster C(sim) after the first round of measurements. By arguments analogous
to those used in Section 2.3.1, the state |ψ′〉 obeys the following eigenvalue equations:

σ(3,4)
x σ(I,1)

x σ(O,4)
x |ψ′〉 = (−1)λx,1|ψ′〉,

σ(3,4)
x σ(I,2)

x σ(O,3)
x |ψ′〉 = (−1)λx,2|ψ′〉,

σ(3,4)
x σ(I,3)

x σ(O,2)
x |ψ′〉 = (−1)λx,3|ψ′〉,

σ(3,4)
x σ(I,4)

x σ(O,1)
x |ψ′〉 = (−1)λx,4|ψ′〉,

σ(I,1)
z σ(O,4)

z |ψ′〉 = (−1)λz,1|ψ′〉,
σ(I,2)

z σ(O,3)
z |ψ′〉 = (−1)λz,2|ψ′〉,

σ(I,3)
z σ(O,2)

z |ψ′〉 = (−1)λz,3|ψ′〉,
σ(I,4)

z σ(O,1)
z |ψ′〉 = (−1)λz,4|ψ′〉.

(2.125)

Further, the state |ψ′〉 obeys the eigenvalue equation

σ(3,4)
z σ(O,1)

z σ(O,2)
z σ(O,3)

z σ(O,4)
z |ψ′〉 = (−1)λ|ψ′〉, (2.126)

with λ ∈ {0, 1} linear in the measurement outcomes of the first round. Equation (2.126)
can be easily verified with the pattern of correlation centers displayed in Fig. 2.9b. From
(2.126) it follows that

exp
(
iθ σ(3,4)

z

)
U4[(−1)λθ] |ψ′〉 = |ψ′〉 (2.127)

for arbitrary angles θ, with

U4[α] = exp
(−iα σ(O,1)

z σ(O,2)
z σ(O,3)

z σ(O,4)
z

)
. (2.128)
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Equation (2.127) is now inserted in both the l.h.s. and r.h.s. of the equations (2.125). For
example, with the first equation from (2.125) one obtains

(−1)λx,1 |ψ′〉 =
(
Uz[2θ]σxU

†
z [2θ]

)(3,4)
σ(I,1)

x

(
U4[−(−1)λθ]σ[4]

x U
†
4 [−(−1)λθ]

)(O)

|ψ′〉. (2.129)

In the second measurement round the qubit (3, 4) is the only one left to be measured. As
can be seen from (2.129), if of the operator Uz[2θ]σxU

†
z [2θ] of qubit (3,4) is measured then

the state |ψ〉, into which the cluster qubits are projected after the second measurement
round, obeys the eigenvalue equation

(−1)λx,1+s(3,4) |ψ〉 = σ(I,1)
x

(
U4[−(−1)λθ]σ[4]

x U
†
4 [−(−1)λθ]

)(O)

|ψ〉. (2.130)

If we carry out this procedure for all equations in (2.125) we find that the state |ψ〉 that
emerges after the second measurement round obeys the eigenvalue equations

σ(I,i)
x

(
U4Uswapσ

[i]
x Uswap

†U4
†)(O) |ψ〉 = (−1)λx,i+s(3,4) |ψ〉,

σ(I,i)
z

(
U4Uswapσ

[i]
z Uswap

†U4
†)(O) |ψ〉 = (−1)λz,i |ψ〉,

(2.131)

for i = 1 .. 4 and with U4 written in short for U4[−(−1)λθ].
With the set of equations (2.131) the assumptions (2.61) of Theorem 1 are fulfilled.

With Theorem 1 it follows that the measurement pattern displayed in Fig. 2.9 realizes a
unitary transformation

Usim = U4[−(−1)λθ]UswapUΣ, (2.132)

where the byproduct operator is given by

UΣ =
4⊗

i=1

(
σ[i]

z

)s(I,i)+λx,i+s(3,4)
(
σ[i]

x

)λz,i
. (2.133)

Finally, the order of the operators has to be exchanged. Note that Uswap and U4 commute.
From (2.132) one finds

Usim = U ′ΣUswapU4[−(−1)λ+
P4

i=1 λz,i θ], (2.134)

with
U ′Σ = Uswap UΣ Uswap

†. (2.135)

Thus, in order to realize U4[ϕ] with ϕ specified in (2.124) we must choose

θ = (−1)1+λ+
P4

i=1 λz,iϕ. (2.136)

That is, in the second measurement round we measure on the qubit (3, 4) the operator
given in (2.123), where

λM =

(
1 + λ+

4∑
i=1

λz,i

)
mod 2. (2.137)
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Figure 2.9: Simulation of the Hamiltonian H4 as specified in eq. (2.122). a) measurement
pattern. b) Correlation centers for additional correlation. Shaded squares (in b)) represent
cluster qubits measured in adaptive bases.

The {λx,i}, {λz,i} and λ depend linearly on the measurement outcomes {s(i.j)} obtained in
the first measurement round.

The sub-circuit we have described in this section simulates the unitary evolution accord-
ing to a particular four-particle Hamiltonian in a two-step process of measurements. The
time for which the simulated Hamiltonian acts is encoded in the basis of the measurement
in the second round. The generalization of the simulation of the 4-particle Hamiltonian
H4, shown in Fig. 2.9, to an arbitrary number n of qubits, i.e. the simulation of the
Hamiltonian Hn =

⊗n
i=1 σ

[i]
z , is straightforward.

2.3.3 CNOT between distant qubits

The CNOT gate described in Section 2.2.7 operates on two logical qubits whose input qubits
are adjacent to each other on the cluster. However, for universal quantum computation,
one must be able to realize a CNOT gate between any two logical qubits. While this
could be achieved using a combination of the CNOT gate, introduced above, and the swap
gate, the width of the measurement pattern needed to realize this would grow linearly with
the separation of the two logical qubits. There is, however, an alternative measurement
pattern, which, at the cost of doubling the spacing between the input qubits on the cluster,
has a fixed width. The measurement pattern is illustrated in Fig. 2.10 for qubits separated
by an odd and even number of logical qubits, respectively.

This layout can be understood within the quantum logic network model. The “wires”
for the logical qubits in between the target- and the control qubit are crossed using the
measurement sub-pattern illustrated in Fig. 2.11a. However, as well as swapping the qubits,
this pattern also realizes the a controlled π-phase gate, also known as a controlled σz gate.
The quantum logic circuit realized by the whole measurement pattern, illustrated on the
left-hand side of Fig. 2.11b uses these sub-patterns to swap the positions of adjacent qubits.
This brings non-neighboring qubits together so that a CNOT operation may be performed
on them. The networks on the left and on the right of Fig. 2.11b act identically, and thus
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Figure 2.10: Measurement pattern for a CNOT gate between two logical qubits whose input
and output qubits are not neighbors. Squares in light gray denote cluster qubits measured in
the eigenbasis of σx, in dark gray of σy. Pattern (a) is for the case where the two qubits are
separated by an odd number of logical qubits. Pattern (b) is for an even numbered separation.
The patterns can be adapted to any separation by repeating the section enclosed by the dashed
line. The width of the pattern remains the same for all separations.
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Figure 2.11: The measurement pattern in a) is one of the key components of the measurement
pattern in Fig. 2.10. It performs a conditional π-phase gate and a swap gate. b) The measurement
pattern in Fig. 2.10 realizes the quantum logic circuit on the left hand side. This network is
equivalent to the one on the right hand side, where the only gate realized is the CNOT between
the two desired non-adjacent qubits.
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Figure 2.12: Controlled phase gate with additional swap.

the measurement pattern displayed in Fig. 2.10 realizes a distant CNOT gate.

2.3.4 Controlled phase gate

Here, we give an example of another two-qubit gate which can be realized without decom-
posing it into CNOTs and rotations, the controlled phase gate UCPG(θ). This gate realizes
the unitary operation

UCPG[θ] = 1l(ab) + (eiθ − 1) |11〉ab〈11|, (2.138)

applied to the two qubits a and b.
We can write this in terms of the following one- and two-qubit rotations,

UCPG[θ] = ei θ
4U (ab)

zz [−θ/2]U (a)
z [θ/2]U (b)

z [θ/2], (2.139)

where the two-qubit rotation is

U (ab)
zz [θ] = exp

(−iθ/2σ(a)
z σ(b)

z

)
. (2.140)

This representation is particularly convenient for finding the measurement pattern that
realizes the gate, since rotations Uz[θ/2] and Uzz[−θ/2] are realized on the QCC in a simple
natural way. The measurement pattern is illustrated in Fig. 2.12, in which the labelling of
the qubits is also defined.

We follow the same method as above, beginning with the eigenvalue equations of the
cluster state |φ〉C on the qubits shown. The σx-measurements can be considered first, using
the methods already illustrated in this thesis. The resultant state of the remaining qubits
|ψ′〉, after this sub-set of the measurements has been carried out, is defined by the following
set of eigenvalue equations.

σ(I,a)
x σ(1,2)

x σ(2,3)
x σ(O,b)

x |ψ′〉 = |ψ′〉, (2.141a)

σ(I,b)
x σ(1,2)

x σ(2,1)
x σ(O,a)

x |ψ′〉 = |ψ′〉, (2.141b)

σ(I,a)
z σ(O,b)

z |ψ′〉 = (−1)s(1,1)+s(2,2)+s(3,3)|ψ′〉, (2.141c)

σ(I,b)
z σ(O,a)

z |ψ′〉 = (−1)s(1,3)+s(2,2)+s(3,1)|ψ′〉, (2.141d)
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and

σ(2,1)
z σ(O,a)

z |ψ′〉 = (−1)s(3,1)|ψ′〉, (2.142a)

σ(2,3)
z σ(O,b)

z |ψ′〉 = (−1)s(3,3)|ψ′〉, (2.142b)

σ(1,2)
z σ(O,a)

z σ(O,b)
z |ψ′〉 = (−1)s(3,1)+s(2,2)+s(3,3)|ψ′〉. (2.142c)

As in section 2.2.7, eigenvalue equations are now generated which commute with the
remaining measurements in M, namely the measurements of σ

(i)
xy (αi) on qubits i ∈ {(2, 1),

(1, 2), (2, 3)}. First, we manipulate the equations (2.142) such that, for example, the
eigenvalue equation (2.142c) attains the form

U (1,2)
z [ξ]U ((O,a),(O,b))

zz

[−(−1)s(3,1)+s(2,2)+s(3,3)ξ
] |ψ′〉 = |ψ′〉. (2.143)

Similar equations containing one-qubit rotations on qubits (2, 1) and (O, a), and (2, 3) and
(O, b) are derived from the other equations of (2.142) in the same way. These equations
are inserted into both sides of the eigenvalue equations (2.141) so that, using the method
introduced above, we obtain a set of four eigenvalue equations for |ψ′〉 which induce a
set of four eigenvalue equations for the state |ψ〉 that one obtains after the remaining
measurements have been carried out.

Specifically, in the second measurement round the qubits (1, 2), (2, 1) and (2, 3) are
measured. Of these qubits one measures the observables

~ra · ~σ(a) =
(
Uz[αa]σxUz[αa]

†)(a)
, (2.144)

for a ∈ {(1, 2), (2, 1), (2, 3)} and the {αa} specified below.
The induced eigenvalue equations for the state |ψ〉 are of the form of equation (2.61),

and the unitary operation realized by the gate can be read off from them using Theorem 1.
The full unitary operation realized by the measurement pattern is

U ′U ′Σ = U
(a,b)
zz

[−(−1)s(3,1)+s(2,2)+s(3,3)α(1,2)

]
U

(a)
z

[−(−1)s(3,1)α(2,1)

]
U

(b)
z

[−(−1)s(3,3)α(2,3)

]

×U (a,b)
swap

(
σ

(a)
x

)s(1,1)+s(2,2)+s(3,3)
(
σ

(b)
x

)s(1,3)+s(2,2)+s(3,1)
(
σ

(a)
z

)s(I,a)+s(1,2)+s(2,3)

×
(
σ

(b)
z

)s(I,b)+s(2,1)+s(1,2)

(2.145)
such that after the order of the gate and the byproduct operator is reversed, U ′U ′Σ = UΣU ,
one obtains

UΣU =
(
σ

(a)
x

)s(1,3)+s(2,2)+s(3,1)
(
σ

(b)
x

)s(1,1)+s(2,2)+s(3,3)
(
σ

(a)
z

)s(2,1)+s(1,2)+s(I,b)

×
(
σ

(b)
z

)s(I,a)+s(1,2)+s(2,3)

U
(a,b)
zz

[−(−1)s(1,1)+s(2,2)+s(1,3)α(1,2)

]

×U (a)
z

[−(−1)s(2,2)+s(1,3)α(2,1)

]
U

(b)
z

[−(−1)s(1,1)+s(2,2)α(2,3)

]
U

(a,b)
swap.

(2.146)

Using (2.146) one finds the following result: To realize the controlled phase gate (2.138)
together with a swap gate, the observables (2.144) measured in the second round have to
be chosen with the angles α(2,1) = (−1)1+s(2,2)+s(1,3) θ/2, α(1,2) = (−1)s(1,1)+s(2,2)+s(1,3)θ/2
and α(2,3) = (−1)s(1,1)+s(2,2)+1 θ/2. This realizes the gate UΣUCPG[θ], where the byproduct
operator UΣ generated by the measurements may be read off from equation (2.146).
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Figure 2.13: Quantum Fourier transformation. a) Network for quantum Fourier transformation
on four qubits, taken from [59]. b) Component of the network shown in a) which performs a
conditional phase- and a swap gate. Specifically, the gate shown is UCPG[2π/2m], i.e. Um =
|0〉〈0|+ ei2π/2m |1〉〈1|.

2.3.5 Quantum Fourier transformation

To realize the quantum Fourier transform we simulate the quantum logic network given
in Fig. 2.13a. The arrangement of the gates in this network is taken from [59]. Note that
in [59] it was demonstrated that the setup to perform a quantum Fourier transformation
simplifies considerably in a situation where the output state is measured right after the
transformation. Here, however, the quantum Fourier transformation may constitute part
of a larger quantum circuit and we do not measure its output state.

As can be seen from Fig. 2.13, the quantum Fourier transform consists of Hadamard
gates and combined gates which perform a conditional phase shift and a swap. These
gates have been discussed in Sections 2.2.2 and 2.3.4. All that remains to do is put the
measurement patterns simulating these gates together, using the network-like composition
principle described in Section 2.2.4.

In this way we obtain a measurement pattern in which there are adjacent cluster qubits
in “wires” that are measured in the σx-eigenbasis. As described in Section 2.2.7, such pairs
of cluster qubits may be removed from the measurement pattern. Note, that by removing
adjacent pairs of σx-measured cluster qubits we have moved the σy-measurements of the
Hadamard transformations “into” the subsequent conditional phase gates, i.e. we removed
a cluster qubit which was not from a wire. It can be easily verified that this is an allowed
extension of the method described in Section 2.2.7. Finally, one obtains the QCC-circuit
displayed in Fig. 2.14.

In this circuit, as in all the others, the adaptive measurements are of observables

Uz[±η]σxUz[±η]†, (2.147)



2.3 Examples of practical interest 53

OutIn

(I,3)

(I,2)

(I,1)

(I,0) (O,0)

(O,1)

(O,2)

(O,3)

3 3

2

2

2 2

4

4

4

33

3 3

2

2

2

2

2

Figure 2.14: QCC-realization of a quantum Fourier transformation on four qubits. The cluster
qubits displayed as framed squares are measured in adapted bases. For the labels see text.

with η = π/4 for cluster qubits marked with “2” in Fig. 2.14, η = π/8 for qubits marked
with “3” and η = π/16 for the qubits marked with “4”. The sign factors of the angles in
(2.147) depend on the results of previous measurements.

The QCC-circuit, shown in Fig. 2.14 for the case of four qubits, is straightforwardly gen-
eralized to an arbitrary number n of logical qubits. The temporal spatial and operational
resources T, S and O are, to leading order

T = n, S,O = 2n2. (2.148)

The corresponding network resources are Tqln = 2n, Sqln = n and Oqln = n2/2. Thus, the
scaling of the QCC spatial resources is worse than in the network model, but the temporal
and operational resources scale in the same way as the corresponding resources for the
network. The QCC-simulation of the network displayed in Fig. 2.13 requires half as many
time steps and four times as many operations, albeit only one-qubit operations.

2.3.6 Multi-qubit controlled gates

In this section we describe the realization of the Toffoli phase gate and the three-qubit
controlled gate CARRY which we will both need for the construction of the QCC-adder
circuit described in Section 2.3.7.

The Toffoli phase gate is a three-qubit generalization of the two-qubit controlled phase
gate. If all three qubits are in the state |1〉, the state gains a phase of exp(iφ), while all
other logical basis states remain unchanged by the gate,

U
(c1,c2,t)
Toffoli [φ] = 1l(c1,c2,t) + (eiφ − 1) |111〉c1,c2,t〈111|. (2.149)

Like the controlled phase gate it can be represented as a product of multi-qubit rotations,

U
(c1,c2,t)
Toffoli [φ] = U (c1,c2,t)

zzz

[
φ

4

]
U (c1,c2)

zz

[
−φ

4

]
U (c1,t)

zz

[
−φ

4

]
U (c2,t)

zz

[
−φ

4

]
U (c1)

z

[
φ

4

]
U (c2)

z

[
φ

4

]
U (t)

z

[
φ

4

]
.

(2.150)

where we have dropped the global phase, and U
(c1,c2,t)
zzz [α] = exp

(
−iα/2σ

(c1)
z σ

(c2)
z σ

(t)
z

)
is a

three qubit generalized rotation. The two-qubit rotations Uzz are as defined in (2.140).
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Figure 2.15: QCC-realization of the Toffoli phase gate. a) Measurement layout to realize a
Toffoli phase gate with phase φ. The qubits marked by black boxes are simultaneously mea-
sured in adapted bases depending on previous measurement outcomes. b) Cluster state quantum
correlations for the realization of U (c1,c2)

zz [φ/4], used in the Toffoli phase gate.

The way to convert the sequence (2.150) of generalized rotations into a measurement
pattern is as in the examples before. The measurement layout for the Toffoli phase gate is
illustrated in Fig. 2.15. Each of the generalized rotations that make up the gate is directly
associated with of one of the measurements made in the eigenbasis of Uz[±φ/4]σxUz[±φ/4]†.
An initial cluster-state correlations which is used for the realization of a generalized rotation
is shown in Fig. 2.15: the rotation U

(c1,c2)
zz [φ/4] is realized via the measurement of the cluster

qubit at the lattice site (3, 1) in the appropriate basis.

The sign factors of the angles that specify the measurement bases depend on the out-
come of σx-measurements only. Thus, after all σx- measurements have been performed,
the measurement bases for the remaining qubits can be deduced and the Toffoli phase gate
is realized in a single further time-step. The measurement pattern realizes the generalized
rotations directly and is not derived from a quantum logic network.

Now we describe the realization of a four-qubit gate CARRY , which has one target
and three control qubits. It performs a phase-flip σz on the target if at least two of the
control qubits are in state |1〉 and otherwise does nothing, i.e.

UCARRY = exp


−iπ

111d∑

i=000d |w(i)≥2

|i〉c1c2c3〈i| ⊗ |1〉t〈1|

 , (2.151)

Expanding the projectors on the control qubits into products of Pauli operators one obtains
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Figure 2.16: The three qubit controlled gate. Qubits displayed as squares in light gray are
measured in the σx-eigenbasis, the qubit displayed in dark gray is measured in the σy-eigenbasis,
and the measurement bases of the qubits displayed as framed squares are adaptive.

UCARRY = e−i π
4 exp

(
−iπ

8
σ(t)

z σ(c3)
z

)

︸ ︷︷ ︸
Ui

exp
(
−iπ

8
σ(t)

z σ(c2)
z

)

︸ ︷︷ ︸
Uh

exp
(
i
π

8
σ(c3)

z

)

︸ ︷︷ ︸
Ug

exp
(
i
π

8
σ(c2)

z

)

︸ ︷︷ ︸
Uf

exp
(
i
π

8
σ(c1)

z

)

︸ ︷︷ ︸
Ue

exp
(
i
π

4
σ(t)

z

)

︸ ︷︷ ︸
Ud

exp
(
−iπ

8
σ(t)

z σ(c1)
z

)

︸ ︷︷ ︸
Uc

exp
(
−iπ

8
σ(c1)

z σ(c2)
z σ(c3)

z

)

︸ ︷︷ ︸
Ub

exp
(
i
π

8
σ(t)

z σ(c1)
z σ(c2)

z σ(c3)
z

)

︸ ︷︷ ︸
Ua

.

(2.152)
The global phase is henceforth discarded.

The unitary transformation is now subdivided into two parts,

UCARRY = Uh,i Ua−g, (2.153)

with Ua−g = UgUfUeUdUcUbUa and Uh,i = UiUh. Correspondingly, the cluster on which
UCARRY is realized is divided into two sub-clusters. On the first sub-cluster the transfor-
mations Ua to Ug are realized, on the second sub-cluster Uh,i. The measurement pattern
to realize UCARRY is displayed in Fig. 2.16. The first sub-cluster stretches from x = 0 to
x = 8, with the input at x = 0 and the intermediate output at x = 8. The qubits with
8 ≤ x ≤ 16 belong to the second sub-cluster.

Let us now explain the sub-gate Ua−g. The conversion of the sequence (2.152) of
generalized rotations is as in the previous examples. For each generalized rotation there is
one cluster qubit in CM(Ua−g) whose measurement basis specifies the respective rotation
angle. Specifically, the measurement of the cluster qubit (3, 4) sets the rotation angle of Ua,
the measurement of qubit (4, 3) sets the angle for Ub, (5, 6) sets Uc, (6, 7) sets Ud, (6, 5) sets
Ue, (6, 3) sets Uf and qubit (6, 1) sets Ug. The quantum correlations of the initial cluster
state which induce via the measurements of the cluster qubits in CM(Ua−g) the quantum
correlations associated with the generalized rotations are displayed in Fig. 2.17.
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Figure 2.17: Quantum correlations of the initial cluster state |φ〉C(Ua−g) on the cluster C(Ua−g).
These correlations induce via the σx-measurements the quantum correlations for the state |ψ′〉
which act only on the output qubits and one cluster qubit in CM (Ua−g). The pattern of correlation
centers in a) displays the correlation required to realize Ua; b) and c) display the correlations for
Ub, and Uc, respectively.

The realization of the gate requires two measurement rounds. In the first round the
standard measurements of σx and σy are performed. Note that the rotation angle of Ud

is twice as big as for the other rotations. To realize Ud of the cluster qubit (6, 7) the
observable

Uz

[
±π

2

]
σxUz

[
∓π

2

]
= ±σy (2.154)

is measured. Thus, the realization of Ud belongs to the first round of measurements.
Strictly speaking, this measurement round does not belong to the gate but to the circuit
as a whole since all standard measurements are performed simultaneously.

In the second measurement round, of the remaining qubits in CM(Ua−g) one measures
the observables

Uz

[
±π

4

]
σxUz

[
∓π

4

]
. (2.155)

The procedure to infer the sign factors in (2.155) and (2.154) is explained in Section 2.2.6.

The reason why the measurements in the tilted bases may all be performed simultane-
ously in the second round can be seen as follows. Let Q↗ be the set of qubits measured in
tilted bases. The contribution UΣ,Q↗ of the cluster qubits measured in tilted bases to the
byproduct operator UΣ in (2.63) contains only a z-part but no x-part. That is, it has the
form

UΣ,Q↗ =
⊗

i∈I⊂{t,c1,c2,c3}
σ[i]

z . (2.156)

In (2.62) the byproduct operator appears “on the wrong side” of Ua−g as does the contri-
bution UΣ,Q↗ . When the order of the gate and the byproduct operator is exchanged, the
byproduct operator may modify the gate. While this is, not surprisingly, indeed the case
for the whole UΣ, it is not so for the contribution UΣ,Q↗ coming from the measurements
in the tilted bases. Because UΣ,Q↗ has only a z-part it commutes with Ua−g. Therefore,



2.3 Examples of practical interest 57

a) b)

c1

c2

c3

t

c1

c3

c2

t

8 10 12 14 16

z

zz5
4
3
2
1

6
7

c1

c3

c2

t

c1

c2

c3

t

z

z

z

8

7
6
5
4
3
2
1

10 12 14 16

Figure 2.18: Quantum correlations of the initial cluster states on C(Uh) and C(Ui). These
correlations induce, via the σx-measurements, the quantum correlations for the states |ψ′〉C(Uh)

and |ψ′〉C(Ui) that involve only the respective output qubits and one qubit in the gate body. The
pattern of correlation centers in a) displays the correlation required to realize Uh and b) the
correlation for Ui.

the results of measurements in a tilted basis do not mutually affect the choice of their
measurement bases.

The fact that hat the byproduct operator UΣ,Q↗ is indeed of form (2.156) we do not
show here explicitly. For the byproduct operator created in the measurement of qubit (3, 4)
realizing the transformation Ua it may be verified from equation (2.133) in Section 2.3.2.

The explanation of the second sub-gate, Uh,i, is analogous. Fig. 2.18 displays the
quantum correlations of the initial cluster state which, via the measurements in CM(Uh,i),
induce the required quantum correlations associated with Uh and Ui.

Two further points we would like to address in this section. The first is to note that the
whole gate UCARRY can be performed on the QCC in two measurement rounds. The first
measurement round is that of the σx-, σy- and σz-measurements which, strictly speaking,
does not belong to the gate but to the circuit as a whole. The second measurement round
is that of the simultaneous measurements in tilted measurement bases.

We have already seen that the measurements that realize the unitary transformations
Ua, .. , Ug may be realized simultaneously, and this argument may be extended to the entire
gate UCARRY . All the byproduct operators created with the measurements in tilted bases
have only a z- but no x-part. Therefore they all commute with UCARRY . Thus, to choose
the right measurement bases neither of the measurements in a tilted basis that realizes one
of the rotations Ua, .. , Ui needs to wait for another measurement in a tilted basis.

Second, note that the for UCARRY the target-input and the target-output can be inter-
changed, see Fig. 2.19. This holds because the (conditional) phase-flip on the target qubit
is its own inverse. Thus, the target qubit may travel through the gate backwards. This
property also holds for the Toffoli phase gate. We will make use of it in the construction
of the quantum adder in the next section.
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Figure 2.19: In the three-qubit controlled gate CARRY , the target qubit may travel either back
or forth.
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Figure 2.20: Quantum logic network for 4-qubit adder, c = a + b mod 24. The adder network
is taken from [60]. The two-qubit controlled gate in this network is the Tofolli phase gate as
discussed in Section 2.3.6. A straightforward simulation of this network on the QCC would result
in a quadratic scaling of spatial resources. However, the more compact realization discussed below
requires only a linear overhead.

2.3.7 Circuit for addition

The QCC-version of the quantum adder corresponds to the quantum logic network as given
in [60], see Fig. 2.20. In this thesis we use the three-qubit controlled phase gate CARRY
together with a prior and subsequent Hadamard gate on the target qubit while in [60] the
equivalent tree-qubit controlled spin-flip gate is used directly.

At first sight it appears as if the horizontal dimension of the cluster to realize the adder
circuit would grow linearly with the number of logical qubits n. This is, however, not the
case. The QCC-circuit may be formed in such a way that the horizontal size of the required
cluster is constant such that the cluster size increases only linearly with the number n of
logical qubits. To see what the QCC-realization of the quantum adder will look like, the
network displayed in Fig. 2.20 may be bent in a way displayed in Fig. 2.21.

To “bend a network” is a rather informal notion. We therefore now specify what we
mean by this. If a quantum circuit is displayed as a quantum logic network, the vertical
axis usually denotes some spatial dimension, i.e. the location of the qubit carriers, and
the horizontal axis corresponds to the sequence of steps of a quantum computation, i.e.
a logical time. As the basic blocks of quantum computation in the network model, the
universal gates, are unitary transformations generated by suitably chosen Hamiltonians,
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Figure 2.21: Quantum logic network for 4-qubit adder, bent.

the logical time becomes associated with physical time. This is, however, a peculiarity of
the network model. If on the QCC a quantum logic network is simulated, the temporal
axis is converted into an additional spatial axis. The temporal axis in a QCC-computation
emerges anew. It has no counterpart in the network model. If we modify a quantum
logic network in such a way that qubits travel from right to left, as done in Fig. 2.21, it
does not mean that we propose to use particles that travel backwards in time because we
do not need to respect the temporal axis implied by the network model. If one wants a
semi-network picture that accounts for this, one may imagine the logical qubits as traveling
through pipes on a two-dimensional surface.

The reason why we may let the auxiliary qubits travel “backwards” is the identity
displayed in Fig. 2.19. This arrangement of gates makes the circuit more compact. To
complete the description of components from which the QCC-version of the quantum adder
is built, a compact measurement pattern for the two combined CNOT gates is displayed in
Fig. 2.22. The realization of the quantum adder in the network layout of Fig. 2.21 directly
leads to the QCC-circuit for the quantum adder displayed in Fig. 2.23. Please note that
the displayed QCC-adder is for eight qubits while the networks in Figs. 2.20 and 2.21 are
only for four qubits.

For the quantum adder circuit in Fig. 2.23 we have made two further minor simplifica-
tions. The first concerns the ancilla preparation. To prepare an ancilla qubit on the cluster
in the state |+〉 means to measure the respective cluster qubit in the σx-eigenbasis (the
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a) b)

Figure 2.22: Combination of two CNOT gates (a) and its QCC-realization (b).

randomness of the measurement outcome does not jeopardize the deterministic character
of the circuit). As can be seen from the Toffoli gate and the three-qubit controlled gate
displayed in Figs. 2.15 and 2.16, the ancilla qubits are located on cluster qubits which
have only one next neighbor. As can be verified from the eigenvalue equations (2.1), to
measure a qubit of a cluster state which only has one next neighbor in the eigenbasis of
σx also has the effect of projecting this neighboring cluster qubit into an eigenstate of σz.
Such cluster qubits may be removed from the cluster as explained in Section 2.2.3. With
these neighboring qubits removed the cluster qubits on which the initial ancilla qubits were
located become disconnected from the remaining cluster and may thus be removed as well.
With the same argument, the cluster qubits carrying the ancillas in their output state, and
their next neighbors may also be removed.

Second, between the QCC-realization of the CARRY gates on the left and the subsequent
blocks of CNOT gates we have removed pairs of adjacent cluster qubits that would be
measured in the eigenbasis of σx. Why this can be done has been explained for adjacent
qubits in wires in Section 2.2.7. Here the situation is a little more involved since, like in
case of the circuit for Fourier transformation displayed in Section 2.3.5, one of the removed
qubits in each pair has more than two neighbors. But the method still works as can be
easily verified.

Let us now briefly discuss the resources required for the QCC-realization of an n-qubit
adder. As can be seen directly from the circuit displayed in Fig. 2.23 and the underlying
network shown in Fig. 2.21 with its repeating sub-structure, the adder requires a cluster
of height 8n− 5 and of constant width 38. Thus the spatial and operational resources are,
to leading order,

S = O = 304n. (2.157)

Concerning the temporal resources note that each pair of three-qubit controlled phase
gates using the same control qubits and the pair of Toffoli phase gates may be completed
at one time instant but that one pair of gates is completed after another. The reason why
the measurements in the tilted bases that complete each pair of gates may be performed
simultaneously is the same as the one given previously for the measurements in tilted bases
of a single three-qubit controlled gate. The propagation of byproduct operators is most
easily followed in the network of Fig. 2.20. The temporal complexity T of an n-qubit
QCC-adder is

T = n, (2.158)
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Figure 2.23: Quantum adding circuit for two 8-qubit states. As in all figures displaying QCC-
circuits, squares in light and dark gray represent cluster qubits measured in the σx- and σy-
eigenbasis, respectively. The measurement bases of qubits displayed as framed squares are adap-
tive.
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plus one step of σx-,σy- and σz-measurements for the entire circuit.
The corresponding network resources are to leading order Sqln = 3n and Oqln = Tqln =

8n. For the counting of the operational and temporal network resources we have assumed
that the three-qubit controlled spin-flip gate used in the addition circuit is composed of
two Toffoli gates and one CNOT gate as described in [60], and that the CNOT- and the
Toffoli gate are regarded as elementary.

Thus we find for both the network and the QCC-realization of the quantum adder
that the spatial, temporal and operational resources scale linearly with n. Therefore, the
resource overheads in one realization as compared to the other one are only constant. For
the QCC this is much better than what is indicated by the bounds (2.115), (2.116) and
(2.117), in particular for the spatial and operational resources. Equation (2.116) yields an
upper bound on S which is ∼ n3 and (2.117) gives bounds on O and S which are ∼ n2.
Thus, the quantum adder is an example for which these bounds are very loose. In general
they should not be mistaken as estimates.

If the pre-factors are compared, one finds that for the realization of a quantum adder
the QCC requires about 100 times more spatial and 38 times more operational resources,
while it is 8 times faster. However, since we compare different objects these ratios do
not mean much apart from the fact that they are constant. It may be argued that in
case of the QCC spatial resources are not as precious as they usually are, for to create
cluster states one needs a system with non-selective uniform interaction only while for
quantum logic networks one generally requires a system with selective interactions among
the qubits. Concerning the operational and temporal resources, the QCC only uses one-
qubit measurements while the corresponding network uses two- and three-qubit gates as
elementary operations.

2.4 Computation with limited spatial resources

In this section we describe how to perform QCC-computation on finite and possibly small
clusters. If the cluster that may be provided by a specific device is too small for a certain
measurement pattern it does not mean that the respective QCC-algorithm cannot be run
on this device. Instead, the QCC-computation may be split into several parts such that
each of them fits on the cluster.

To see this consider Scheme 1 for the realization of gates. Scheme 1 is applicable to
any gate or sub-circuit. It is thus possible to divide the circuit into sub-circuits each of
which fits onto the cluster. The adapted scheme is a process of repetitive re-entangling
steps alternating with rounds of measurements.

Specifically, one starts with the realization of the first sub-circuit acting on the fiducial
input state located on I1 ⊂ C. The fiducial input is, while being processed, teleported to
some subset O1 of the cluster C. The set O1 of qubits forms the intermediate output of the
first sub-circuit. These qubits remain unmeasured while all the other qubits are measured
to realize the first sub-circuit. Now the realization of the second sub-circuit begins. Its
input state has already been prepared, I2 = O1. The cluster qubits a ∈ C\O1 which have
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been measured in the realization of the first sub-circuit are now prepared individually in
the state |+〉a. This completes step 1 of Scheme 1 to realize the second sub-circuit. Step
2 is to entangle the whole cluster via the Ising interaction. In the third step all cluster
qubits except those of the intermediate output O2 are measured whereby the realization of
the second sub-circuit is completed. The intermediate output is now located on O2. For
the realization of the subsequent sub-circuits one proceeds accordingly.

An advantage of this modified procedure is that one gets by with smaller clusters. A
disadvantage is that the Clifford part of the circuit may no longer be performed in a single
time step.

2.5 Discussion

Let us, at this point, recapitulate how we have so far explained the QCC. At the end of the
universality proof we arrived at a picture very closely resembling that of a network. For
each universal gate we found a corresponding measurement pattern on a sub-cluster, and
these measurement patterns could be put together like building bricks, as the quantum
gates can. In this way, a quantum logic network could be straightforwardly imprinted on
a two-dimensional cluster state, with one spatial dimension of the cluster representing the
time axis of the network model, and the other the spatial axis of the quantum register.
Subsequently, in the search for efficient QCC-circuits we found that some rules that hold
for network circuits do not hold for their respective QCC-simulations. In this way, we
obtained a “network picture with modifications”. In the construction of the quantum
adder we found that the QCC can be regarded as a network quantum computer with the
additional feature that the logical qubits may equally run backward and forward on the
network time axis. Further, in the discussion of the Clifford part of quantum circuits we
found that the QCC can be regarded as a network quantum computer with the additional
features that some gates do not need to wait for their input to arrive before they can be
executed and that the readout quantum register is not measured last, but first. Clearly,
these extensions question the suitability of the network picture as a coherent description of
the QCC altogether. Therefore, we will introduce in the next chapter a more appropriate
computational model.

We would like to add two further remarks, one with regard to the elementary con-
stituents of the QCC, and one with regard to their composition principle. For the partic-
ular set of gate simulations used in the QCC universality proof in Section 2.2, the CNOT
gate and arbitrary one-qubit rotations, there is only a single instance in all examples of
Section 2.3 where one of these simple gates has been used as part of a more complicated
gate. It is the next-neighbor CNOT gate which has been used as part of the long-distance
CNOT described in Section 2.3.3. The observation that the universal gates occur almost
not at all is remarkable since the usefulness of a universal set of gates derives from the fact
that any circuit is composed of them.

One could say, though, that the used set of gates is not a good choice for the universal
set. In fact, in realizations of network quantum computers it is often the physics of the
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specific implementation that determines which gates are elementary. For the QCC this is
not so. The QCC may simulate, for example, general one-qubit rotations and Toffoli gates
alike. Any gate simulation may be called “elementary” with the same right as any other,
but they cannot be all elementary. The elementary constituents of the QCC are not gate
simulations.

As a consequence, the composition principle for these elements will be different from
gate composition. At first sight, if we go through the examples of Section 2.3, we find
that this is not yet reflected in the larger and more complicated constructions. For the
quantum Fourier transform and the addition circuit we have, though playing with some
tricks, ultimately imitated network composition.

However, in the smaller gates and sub-circuits such as the controlled phase gate, the
Toffoli phase gate and the gate CARRY we find something that might give rise to a new
and more appropriate composition principle. First, for the QCC it is not the one-qubit
and two-qubit operations that are particularly simple. In the Hamiltonian simulation
circuit of Section 2.3.2 we found that it is easy to realize generalized rotations exp(iϕ σ(J))

where σ(J) is a composite Pauli operator, σ(J) =
⊗

a∈J σ
(a)
ka

, ka ∈ {x, y, z}. Furthermore,
in the subsequent examples of the multi-qubit gates in Sections 2.3.4 and 2.3.6 we have
decomposed the gates into such generalized rotations rather than into known standard
gates on fewer qubits.

Any unitary transformation may be decomposed into a single unitary transformation
in the Clifford group followed by generalized rotations. So, is this a new composition
principle? With our present state of knowledge, the answer must be “Not yet.”. First,
though any transformation may be rewritten in this form, it is presently not clear how to
design quantum algorithms with these elements directly. Second, as we will see in the next
chapter, the QCC has no quantum register. However, the above decomposition uses the very
concept of applying unitary transformations to the state of a quantum register. Therefore,
the generalized rotations and their concatenation at least have to be reformulated to fit
the description of the QCC. Nevertheless, it appears that they should be reflected in what
may emerge as elementary constituents and the composition principle for the QCC.



Chapter 3

Computational model underlying the
one-way quantum computer

In Chapter 2 we have shown that universal quantum computation can be entirely built
on one-qubit measurements on a certain class of highly entangled multi-qubit states, the
cluster states [51]. In this scheme, the one-way quantum computer, the cluster state forms
a resource for quantum computation and the set of measurements forms the program.

The main point of this chapter is to show that the QCC has an independent structure
which, among other things, determines the temporal order of measurements. As we shall
show, the QCC has no quantum register and does not consist of quantum gates. The
quantities that are processed with the QCC are the outcomes of one-qubit measurements
and thus processing of information exists only at the classical level. The QCC is nevertheless
quantum mechanical as it uses a highly entangled cluster state as the central physical
resource.

3.1 Motivation for a non-network model of the QCC
In the previous section we have described the QCC in a network terminology, which has been
useful to prove the universality of the scheme. On the other hand, the cluster qubits do not
have to be measured in the order prescribed by the order of the gates in the corresponding
network. This observation indicates that the network picture does not describe the QCC in
every respect.

Suppose that in the simulation of a quantum logic network N on the QCC in a network
manner –i.e. measuring the “readout” qubits at last– the processing has reached the stage
where all but those cluster qubits have been measured which form the output register.

The accumulated byproduct operator UΣ to be applied to the logical output qubits
1, .., n is known. It has the form (2.47)

UΣ =
n∏

i=1

(
σ[i]

x

)xi
(
σ[i]

z

)zi
,
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where xi, zi ∈ {0, 1} for 1 ≤ i ≤ n. Let us now label the unmeasured qubits on the cluster
in the same way as the readout qubits on the quantum logic network are labelled.

As shown in Section 2.2.5, the output bits s′i depend in the same way on the parameter
xi of the byproduct operator and on the respective readout measurement result (2.49),

s′i ≡ si + xi mod 2.

Indeed, there is no need to distinguish between these two contributions. On the level of
the byproduct operators, the readout measurement result is translated into an additional
contribution UR to the accumulated byproduct operator, which in this way becomes the
extended byproduct operator UΣR,

UΣR = UΣUR. (3.1)

From the x-part of UΣR the result of the computation can be read off directly. In (3.1),
UR is given by

UR =
n∏

(O3k)=1

(Uk|Ω)sk , with Uk|Ω = σ(k)
x ∀k ∈ O (3.2)

Further, as in (2.55), the accumulated byproduct operator UΣ can be written as the prod-
uct of the forward propagated byproduct operators of gates gi, UΣ,gi

|Ω. Note that the
byproduct operator of a gate, (2.23), (2.29) and (2.30), can be written as the product
of byproduct operators of individual qubits times a constant byproduct operator. As
the forward propagated product of byproduct operators is the same as the product of
the individually forward propagated byproduct operators, UΣ can be written in the form
UΣ = const×∏

k∈CN\O(UΣ,k|Ω)sk , such that with (3.1) and (3.2) one obtains

UΣR = const×
∏

k∈CN

(UΣ,k|Ω)sk . (3.3)

Both contributions to the such extended byproduct operator UΣR stem from random mea-
surement results. In the way they contribute to UΣR there is no difference as to whether
these qubits stem from the QCC-representation of the network quantum input state, from
the sub-cluster of qubits for the realization of the gates or from the sub-cluster for the
QCC-representation of the readout quantum register. The distinguished role of the read-
out qubits is a remnant of the interpretation of the QCC as a quantum logic network. For
the QCC, a distinction of the above three groups of cluster qubits, input qubits, gate qubits
and output qubits, as it is suggested by the network model of quantum computation, is not
adequate. All cluster qubits contribute to the result of the QCC-computation in the same
way. As a consequence, the notions of a quantum register, of quantum input and quantum
output are not suitable for the QCC and are therefore abandoned. To find the structures
which fill their place is the main motivation for a non-network model of the QCC.



3.2 Beyond the network picture 67

3.2 Beyond the network picture

3.2.1 The sets Qt of simultaneously measurable qubits

The cluster qubits which we have chosen to take the role of the readout register, for
example, are just qubits like any other cluster qubits. It turns out that, in a more efficient
way of running the QCC, the “readout” qubits are not the last ones to be measured but
among the first. It is advantageous to forget about the network altogether and to view
the QCC as a set of one-qubit measurements on a resource quantum state, the cluster
state. These measurements have to be performed in a certain order and in a certain basis.
The classical information of how to measure subsequent qubits must all be contained
in the results of the already performed measurements. Similarly, the final result of the
computation must be contained in all the measurement outcomes together.

In the following we will adopt the strategy that every cluster qubit is measured at the
earliest possible time. This means that each qubit is measured as soon as the required
measurement results from other qubits which determine its measurement basis are known.
Let us denote by Qt the set of qubits which can be measured at the same time in the
measurement round t. So, how can the sets Qt be determined? Q0 is the set of qubits
which are measured in the first round. These are all the qubits whose observables σx, σy

or σz are measured. The measurement bases for these qubits do not depend on the results
of any previous measurements. To determine the subsequent set Q1, one looks at which
qubits can be measured with the knowledge of the measurement results from the qubits in
Q0. Next, one looks which qubits can be measured with the measurement results from the
qubits in Q0 and Q1 known. These qubits form the set Q2. In this manner one proceeds
until the whole cluster C is divided into disjoint subsets Qt.

As will become clear later, it is useful to introduce the sets Q(t) of yet-to-be mea-
sured qubits. More precisely, Q(t) is the set of qubits which remain to be measured after
measurement round No. t− 1,

Q(t) =
tmax⋃
i=t

Qi. (3.4)

Mathematically, the sets Qt are derived from a strict partial ordering in C. The strict
partial ordering, in turn, is generated by forward cones which are explained in the next
section.

3.2.2 The forward- and backward cones

Be g a gate in the network N to be simulated and k ∈ C(g) a cluster qubit that belongs to
the implementation of g. Further, be O, A and Ω three vertical cuts through the network
N . A vertical cut is such that it intersects each qubit line in a network only once and
that it does not intersect gates. O intersects N just after the gate g, i.e. the byproduct
operator UΣ,g caused by the implementation of g, as given in (2.23) and (2.29), is located
on O. Note that the byproduct operators generated on O depend on the measurement
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results obtained in course of the gate implementation via (Uk)
sk . A intersects N just be

fore the input, i.e. an operator propagated to A acts on the input register of N , and Ω
intersects N just before the output such that an operator propagated to Ω acts on the
output register of N . For an illustration of the vertical cuts see Fig 2.4 in Section 2.2.5.
We can now define the forward- and backward cones of the cluster qubits k ∈ C.

Definition 2 The forward cone fc(k) of a cluster qubit k ∈ C is the set of all those clus-
ter qubits j ∈ Q(1) whose measurement basis B(ϕj,meas) depends on the result sk of the
measurement of qubit k after the byproduct operator (Uk)

sk is propagated from O to Ω.

Definition 3 The backward cone bc(k) of a cluster qubit k ∈ C is the set of all those
cluster qubits j ∈ Q(1) whose measurement basis B(ϕj,meas) depends on the result sk of the
measurement of qubit k after the byproduct operator (Uk)

sk is propagated from O to A.
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Figure 3.1: Forward and backward cones. The measurement of a cluster qubit k for the imple-
mentation of the shown quantum logic network may, depending on the measurement outcome,
result in a byproduct operator σz (the underlying cluster and measurement pattern is not shown).
This byproduct operator is propagated forward to act upon the output register as UΣ,k|Ω. In for-
ward propagation, it flips the measurement angles of the cluster qubits m, n by whose measure-
ment one-qubit rotations are implemented. The cluster qubits m and n are thus in the forward
cone of k, m,n ∈ fc(k), while l and o are not. Similarly, i, j ∈ bc(k).

It will turn out that only the backward cones of the qubits k ∈ Q0 constitute part of
the information specifying an algorithm on the QCC, but nevertheless all the backward-
and forward cones are important objects in the scheme. Either of the sets, the set of the
forward- and that of the backward cones, separately contains the full information of the
temporal structure of a computation on the QCC.

Let us examine the definitions 2 and 3 for a particular example, the general one-qubit
rotation (2.24) as implemented by the Procedure 2 modulo a byproduct operator UΣ,Rot

as given in (2.29). The measurement result s1 of qubit 1 (cf. Fig. 2.2) modifies the
measurement angle of qubit 2, which is responsible for implementing an x-rotation Ux(ξ),
by a factor (−1)s1 . Further, it causes a byproduct operator (σz)

s1 at O. If this byproduct
operator is propagated forward from O to Ω it has no effect on qubit 2, because qubit 2 is
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behind O. The dependence on s1 of the basis in which qubit 2 has to be measured persists
and thus qubit 2 is in the forward cone of qubit 1, 2 ∈ fc(1). The situation is different if
the byproduct operator (σz)

s1 is propagated backwards from O to A: via the propagation
relation (2.52) the Euler angle ξ is modified by a factor (−1)s1 which has to be accounted
for by multiplying the measurement angle ϕ2,meas by a factor (−1)s1 , too. Thus, the factor
(−1)s1 modifies the measurement angle ϕ2,meas twice, once via the Procedure 2 and once
in backward propagation, and there is no net effect. Qubit 2 is not in the backward cone
of qubit 1, 2 6∈ bc(1).

What does it mean that a cluster qubit j is in the forward cone of another cluster
qubit k, j ∈ fc(k)? According to the definition, a byproduct operator created via the
measurement at cluster qubit k influences the measurement angle ϕj,meas at cluster qubit
j. To determine the measurement angle at j one must thus wait for the measurement
result at k to see what the byproduct operator created randomly by the measurement at k
is. If j ∈ fc(k), the measurement at qubit j is performed later than that at qubit k. This
we denote by k ≺ j

j ∈ fc(k) ⇒ k ≺ j. (3.5)

Please note that the converse of (3.5) is not true. If k ≺ j holds, still j ∈ fc(k) may not.
This can be easily verified for the example of a general rotation (2.24). There, according to
the Procedure 2 for implementing such a rotation described in Section 2.2.2, the result of
the measurement of qubit 1 enters into in which basis qubit 2 has to be measured. Hence,
2 ∈ fc(1). By (3.5), 1 ≺ 2 which means that the measurement at qubit 2 has to wait for
the result of the measurement on qubit 1. Similarly, the measurement result on qubit 2
enters in the choice of the measurement basis for the measurement on qubit 3. 3 ∈ fc(2)
and thus 2 ≺ 3. Then 1 ≺ 3 also holds as shown below in (3.6) , but 3 6∈ fc(1), since the
measurement result on qubit 1 does not influence the choice of the measurement basis for
the measurement on qubit 3.

The relation “≺” is a strict partial ordering. Suppose, that besides k ≺ j, for another
cluster qubit l one had l ∈ fc(j) and thus j ≺ l. This would mean that the measurement
at l must wait for the measurement at j, which itself had to wait for the measurement at
k. Thus, the measurement at l also had to wait for the measurement at k. Therefore the
relation “≺” is transitive,

k ≺ j ∧ j ≺ l −→ k ≺ l. (3.6)

Further, a measurement to implement a gate cannot and does not need to wait for its own
result. Therefore the relation “≺” is anti-reflexive,

¬∃j ∈ C : j ≺ j. (3.7)

Let us now cast the procedure to construct the sets of simultaneously measured qubits given
above in more precise terms. Be Qt ⊂ C the set of cluster qubits measured in measurement
round t, and Q(t) ⊂ C the set of qubits which are to be measured in the measurement
round t and all subsequent rounds, as defined in (3.4). Then, Q0 is the set of qubits which
are measured in the first round. These are the qubits of which the observables σx, σy or
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σz are measured, so that the measurement bases are not influenced by other measurement
results. Further, Q(0) = C. Now, the sequence of sets Qt can be constructed using the
following recursion relation

Qt =
{
q ∈ Q(t)|¬∃p ∈ Q(t) : p ≺ q

}
Q(t+1) = Q(t)\Qt.

(3.8)

All those qubits which have no precursors in some remaining set Q(t) and thus do not have
to wait for results of measurements of qubits in Q(t) are taken out of this set to form Qt.
The recursion proceeds until Q(tmax+1) = ∅ for some maximal value tmax of t.

Can it happen that the recursion does not terminate? That were the case if for a
number m of qubits j1, ..., jm ∈ C formed a cycle j1 ≺ j2 ≺ ... ≺ jm ≺ j1. Then, none of
the qubits j1, .., jn could ever taken out of the set. However, by transitivity (3.6) we then
had j1 ≺ j1 which contradicts anti-reflexivity (3.7). Hence, such a situation cannot occur.

Let us at the end of this section define the forward- and backward cones fc(g), bc(g) of
the gates g. In eqs. (2.23) and (2.30) we have seen that the byproduct operator caused by
the implementation of a CNOT- and the π/2-phase gate contain a constant contribution,

U0(CNOT ) = σ
(c)
z and U0(Uz[π/2]) = σz. This contributions to the respective byproduct

operators do not depend on any local variables such as the measurement results and are
thus attributed to the gate as a whole. These byproduct operators are of the same form
as those depending on the individual measurement results and can influence measurement
angles when being propagated forward or backward. Thus we define the forward- and
backward cones of gates, in analogy to those of the cluster qubits k ∈ C, as follows:

The forward cone fc(g) of a gate g ∈ N is the set of all those cluster qubits j ∈ Q(1)

of which the measurement basis B(ϕj,meas) is modified if the byproduct operator U0,g is
propagated forward from O to Ω.

The backward cone bc(g) of a gate g ∈ N is the set of all those cluster qubits j ∈ Q(1)

of which the measurement basis B(ϕj,meas) is modified if the byproduct operator U0,g is
propagated backward from O to A.

The forward- and backward cones of gates do not form part of the information repre-
senting a quantum algorithm on the QCC, they will be absorbed into the algorithm angles
and the initial value of the information flow vector Iinit introduced below. Their role for
the description of a computation on the QCC is a technical one.

3.2.3 The algorithm- and measurement angles

There are three different types of angles involved in the described scheme of quantum
computation of which the most prominent are the algorithm angles and the measurement
angles.

The algorithm angles
{
ϕj,algo, j ∈ Q(1)

}
are part of the information that specifies an

algorithm on the QCC. They are derived from the network angles
{
ϕj,qln, j ∈ Q(1)

}
,

i.e. the Euler angles of the one-qubit rotations in the quantum logic network. Further,
the algorithm angles depend on the set

{
κk, k ∈ C

}
characterizing the cluster state |φ〉C in
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(2.1), and on special properties of the measurement pattern. We see that the network angles
are absorbed into the algorithm angles. They do not constitute part of the information
specifying a QCC-algorithm.

As described before, the process of computation with the QCC comprises several mea-
surement rounds. The first round, in wich the qubits in the set Q0 are measured, is
somewhat different from the following rounds. Therein, all gates of the circuit that belong
to the Clifford group are implemented at the same time, no matter where they are located
in the corresponding quantum logic network and in which step they would be carried out
there. This results in byproduct operators scattered all over the place. These byproduct
operators are, according to the scheme described in Section 3.4.2, propagated backwards.
To account for the effect that the byproduct operators have on the algorithm angles, these
angles have to updated to the modified algorithm angles

{
ϕ′j,algo, j ∈ Q(1)

}
. The modified

algorithm angles ϕ′j,algo are calculated from the respective algorithm angles ϕj,algo and the

results obtained in the first measurement round
{
sk, k ∈ Q0

}
. In the subsequent mea-

surement rounds no further update of the modified algorithm angles occurs. Finally, each
qubit j ∈ Qt ⊂ Q(1) is measured in some measurement round t in the basis B(ϕj,meas)
where ϕj,meas denotes the measurement angle of qubit j. The measurement angle ϕj,meas

of a qubit j ∈ Qt is calculated from the modified algorithm angle, ϕ′j,algo and the results{
sk, k ∈

⋃t−1
i=0 Qi

}
of the so far obtained measurements.

Before a quantum algorithm is run on the QCC, the algorithm angles are determined
from the cluster and the properties of the algorithm. During runtime of the QCC, in the first
measurement round (t = 0), the algorithm angles are replaced by the modified algorithm
angles, i.e. only the latter are kept while the former are erased. Then, in the measurement
round t a qubit j ∈ Qt is measured in the basis determined by the measurement angle
ϕj,meas. After the measurement of qubit j both ϕ′j,algo and ϕj,meas can be erased.

Now there arises the question of how the measurement angles of the actual measure-
ments are calculated from the results of previous measurements. This question will be
answered in Section 3.4.2. The question which interests us most, of course, is: “How can
the final result of the computation be determined from all the measurement outcomes?”
It will turn out that the answers to both questions are very much related.

3.2.4 Quantities for the processing of the measurement results

The information vector

First, we define the information vector I, a 2n-component binary vector which is a function
of the quantities {xi, zi} and the results {si} of the measurements on the cluster output
register. The information vector contains the computational result. It can be read off from
the extended byproduct operator UΣR.
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Definition 4 The information vector I is given by

I =




Ix

Iz



, with Ix =




x1 + s1

x2 + s2

.

.

.
xn + sn



, Iz =




z1

z2

.

.

.
zn



. (3.9)

As can be seen from (2.49) and (3.9), Ix is a possible result of a readout measurement in
a corresponding quantum logic network. Iz is redundant. However, in Section 3.4.1 the
flow quantity I(t), the information flow vector, will be defined for which I(tmax) = I, with
tmax the index of the final computational step. For t < tmax, in I(t) both the z-part Iz(t)
and the x-part Ix(t) are required to determine the bases for the one-qubit measurements
in Qt+1. As Iz(t) is of equal importance as Ix(t) throughout the process of computation
we keep Iz in the definition of I as well.

The set of possible information vectors I forms a 2n dimensional vector space over F2,
V . Let us consider the group U local of all possible extended byproduct operators UΣR. If
we divide out the normal divisor {±1} of U local, the resulting factor group U = U local/{±1}
is isomorphic to V . From the viewpoint of physics, dividing out the normal divisor {±1}
means that we ignore a global phase. The isomorphism I which maps an I ∈ V to the
corresponding UΣR ∈ U is given by

I : V 3 I −→ UΣR =
n∏

i=1

(
σ(i)

x

)[Ix]i
(
σ(i)

z

)[Iz ]i ∈ U , (3.10)

where [Ix]i and [Iz]i are the respective components of Ix and Iz. The component-wise addi-
tion of vectors in V corresponds, via the isomorphism I, to the multiplication of byproduct
operators modulo a phase factor {±1}. The procedure to implement this product is to first
use the operator product, then bring the factors into normal order according to (3.10) and
finally drop the phase. Multiplication of vectors I ∈ V with the scalars 0,1 corresponds
to raising the byproduct operators UΣR ∈ U to the respective powers. One may switch
between the two pictures via the isomorphism (3.10). The algebraic structures involved
will be more apparent in the representation using the information vector I = I ({xi, zi, si})
than in the formulation of the operator UΣR.

Now that we have defined the information vector I in (3.9) and have seen that the
result of the computation can be directly read off from the x-part of I, we would like to
find out how I depends on the measurement outcomes

{
sk

}
and the set

{
κk

}
of binary

numbers that determine the cluster state |φ〉C in (2.1). This task is left until Section 3.4.1.
Before we can accomplish it we need some further definitions. It will turn out that the
information vector I can be written as a linear combination of the byproduct images which
are explained next.
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The byproduct images

Be Ω the “cut” through a network N which intersects the qubit lines just before its output.
This is the cut at which the extended byproduct operator UΣR is accumulated. Consider
a qubit k on the cluster C which is measured in the course of computation. Depending on
the result of the measurement on qubit k, a byproduct operator (Uk)

sk is introduced in
N at the location of the logical output qubits of the gate for whose implementation the
cluster qubit k was measured. This byproduct operator Uk can –by using the propagation
relations (2.52), (2.51) and (2.53)– propagated from where it occurred to the cut Ω. There
it appears as the forward propagated byproduct operator Uk|Ω. Now we can define the
byproduct image Fk of a cluster qubit k ∈ C. Each cluster qubit k ∈ C has a byproduct
image.

Definition 5 For each cluster qubit k ∈ C the byproduct image Fk is the vector that
corresponds via the isomorphism I−1 (3.10) to the forward propagated byproduct operator
Uk|Ω,

Fk = I−1 (Uk|Ω) . (3.11)

In the definition (3.11) of the byproduct image Fk it is mentioned only implicitly that the
image is evaluated on the cut Ω. Later in the discussion it will become apparent that we
could evaluate the byproduct image on every vertical cut O. Sometimes, if we compare to
other vertical cuts, we will explicitly write Fk|Ω for Fk.

The set of byproduct images {Fk, k ∈ C} is an important quantity for the scheme. It
represents part of the information which is needed to run a quantum algorithm with the
QCC.

In eq. (2.23) the byproduct operator for the CNOT gate as realized according to Fig. 2.2

is given. This byproduct operator contains a constant contribution U0(CNOT ) = σ
(c)
z . As

U0 does not depend on any local variables, neither on
{
sk

}
nor on

{
κk

}
, it makes no sense

to attribute it to any of the cluster qubits that were measured to realize the gate. Instead,
it is attributed to the part of the measurement pattern that implements the gate as a whole,
or –for simplicity– to the gate itself. For any gate g, U0,g can be propagated forward to
the cut Ω to act upon the “readout” qubits. There it appears as the forward propagated
byproduct operator U0,g|Ω. In analogy to the byproduct images of the cluster qubits, we
can now define the byproduct images of the gates g of the quantum logic network that is
simulated on the QCC. For any such gate g the byproduct image Fg is the vector that
corresponds to U0,g|Ω via

Fg = I−1(U0,g|Ω). (3.12)

Please note that in contrast to the byproduct images Fk of cluster qubits k ∈ C the
byproduct images Fg of gates do not form a separate part of the information specifying a
quantum algorithm on the QCC. They will be absorbed into the initialization value Iinit of
the information flow vector defined in Section 3.4.1 and they are thus only a convenient
tool in the derivation of the computational model.

Via I−1 we map the multiplication of byproduct operators, i.e. their accumulation,
onto addition modulo 2 on the level of the vectors in V . Now there arises the question
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whether other operations on the byproduct operators could be expressed in terms of the
corresponding vectors, too. Specifically, one may ask how the byproduct operator propa-
gation looks like on the level of the I ∈ V .

The propagation matrices

The answer to this question is that on the level of the vector quantities in V propagation
is described by multiplication with certain 2n× 2n-matrices C. Consider two cuts O1 and
O2 through a network which intersect each qubit line only once. Further, be the two cuts
such that they do not intersect each other and that O1 is earlier than O2. The part of
the quantum logic network between O1 and O2 is denoted by NO1→O2 . Be Ik|O1 and Ik|O2

the vectors describing a byproduct operator resulting from the measurement of qubit k,
propagated to the cuts O1 and O2, respectively. Then we have

Ik|O2 = C(NO1→O2) Ik|O1 . (3.13)

To any quantum logic network N a matrix CN can be assigned. For a network N2 ◦ N1

composed of two subnetworks N1 and N2 (of which N1 is carried out first) the propagation
matrix is equal to the product of the propagation matrices of the subnetworks

C(N2 ◦ N1) = C(N2)C(N1). (3.14)

Because of property (3.14) we only need to find the propagation matrices for the general
one-qubit rotations, the CNOT-, the Hadamard- and the π/2-phase gate. The one-qubit
rotations and the CNOT gate alone form a universal set of gates. The reason why we also
include the Hadamard- and the π/2-phase gate is that here they are treated differently from
the general rotations, as can be seen from the propagation relations (2.52) and (2.53). By
propagation through a Hadamard- or π/2-phase gate, the gate is left unchanged while
the byproduct operator changes; whereas for the propagation through a general rotation,
the rotation changes and the byproduct operator stays the same. Thus, for finding the
byproduct images the general rotations in N can be replaced by the identity. Only the
CNOT-, Hadamard and π/2-phase gates have an effect. The special treatment of the
Hadamard and the π/2-phase gate is advantageous with respect to the temporal complexity
of a computation, because if one uses the propagation relation (2.53) the implementation
of the Hadamard- and the π/2-phase gate does not need to wait for results of any previous
measurements. To sum up, to each possible N belongs a unitary operation U(N ) in the
Clifford group and a corresponding matrix C(N ), such that

I (C(N )I) = U(N ) I (I) U(N )† , ∀I ∈ V . (3.15)
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Let us now give the propagation matrices for propagation through CNOT-, Hadamard and
π/2-phase gates. The propagation matrices C are conveniently written in block form

C =




Cxx Czx

Cxz Czz



, (3.16)

where Cxx, Czx, Cxz and Czz are n× n matrices with binary-valued entries.
For the Hadamard gate H(i) on the logical qubit i one finds

[
Cxx(H

(i))
]
kl

=
[
Czz(H

(i))
]
kl

= δkl + δkiδil,[
Czx(H

(i))
]
kl

=
[
Cxz(H

(i))
]
kl

= δkiδil,
(3.17)

where e.g.
[
Cxx(H

(i))
]
kl

denotes the entry of row k and column l in Cxx. Note that the
qubit index i is not summed over in (3.17) and that the addition is modulo 2.

For the π/2-phase gate U
(i)
z (π/2) on the logical qubit i one finds
[
Cxx(U

(i)
z (π/2))

]
kl

= δkl,[
Czz(U

(i)
z (π/2))

]
kl

= δkl,[
Cxz(U

(i)
z (π/2))

]
kl

= δkiδil,[
Czx(U

(i)
z (π/2))

]
kl

= 0.

(3.18)

For the CNOT gate on control qubit c and target qubit t one finds the propagation
matrix C(CNOT(c, t)) with

[Cxx(CNOT(c, t))]kl = δkl + δktδcl,

[Czz(CNOT(c, t))]kl = δkl + δkcδtl,

Czx(CNOT(c, t)) = 0,

Cxz(CNOT(c, t)) = 0.

(3.19)

We will make use of the propagation matrices in the discussion of temporal complexity of
algorithms on the QCC in Section 3.5.1.

For the action of the propagation matrices C on the vectors I ∈ V there exist conserved
quantities. One of them, IT

x,1Iz,2 + IT
z,1Ix,2, is discussed in the next section.

Conservation of the symplectic scalar product

The symplectic scalar product

(I1, I2)S = IT
x,1Iz,2 + IT

z,1Ix,2 mod 2 (3.20)
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is conserved. For any I1, I2 ∈ V and C the identity

(I1, I2)S = (CI1, CI2)S (3.21)

holds. Let us briefly explain why the symplectic scalar product (3.20) is conserved. First,
note that the symplectic scalar product tells whether two operators I(I1), I(I2) in the
Pauli group commute or anti-commute,

I(I1)I(I2) = (−1)(I1,I2)SI(I2)I(I1). (3.22)

Relation (3.22) is the only place in this thesis where we pay attention to the sign factor
of a byproduct operator. There, the product, e.g. I(I1)I(I2), denotes the usual operator
product. However, everywhere else in this thesis a product I(I1)I(I2) denotes operator
multiplication modulo a global phase factor ±1, i.e. the product is normal ordered as in
(3.10) and the phase factor is dropped.

Using relation (3.22), the invariance (3.21) of the scalar product (3.20) is easily demon-
strated. Consider the quantity I(CI1)I(CI2) with I(CI1) = U I(I1)U

† and I(CI2) =
U I(I2)U

† as in (3.15). Then, we find

I(CI1)I(CI2) = U I(I1)U
† U I(I2)U

†

= U I(I1) I(I2)U
†

= (−1)(I1,I2)SU I(I2) I(I1)U
†

= (−1)(I1,I2)SU I(I2)U
† U I(I1)U

†

= (−1)(I1,I2)SI(CI2)I(CI1),

(3.23)

where the third line holds by (3.22). On the other hand, as we can see from (3.22) directly
that

I(CI1)I(CI2) = (−1)(CI1,CI2)SI(CI2)I(CI1). (3.24)

From (3.23) and (3.24) together it follows that (I1, I2)S = (CI1, CI2)S, as stated in (3.21).
The symplectic scalar product (3.20) will prove useful in determining the measurement

angles from previously obtained measurement results.

The cone test

The cone test is used to find out whether two measurements, which are part of some gates
of a circuit, influence each other, i.e. whether one of the measurements has to wait for the
result of the other. The cone test does not reveal which of the two measurements has to
be performed first.

Let j, k be some cluster qubits k ∈ C and j ∈ Q(1). Qubit j is not measured in the
first measurement round and thus the observable measured at qubit j is a nontrivial linear
combination of σx and σy, hence j can be in the forward and backward cones of some other
cluster qubits. We would like to find out whether j is in the forward or backward cone of
k. For this question the cone test provides a necessary and sufficient criterion. It reads

∀ k ∈ C, j ∈ Q(1) : j ∈ fc(k) ∨ j ∈ bc(k) ⇐⇒ (Fj,Fk)S = 1. (3.25)
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To check whether a qubit lies in some other qubits backward or forward cone we only need
the two byproduct images and can use the symplectic scalar product.

We further observe that

∀ j, k ∈ Q(1) : k ∈ fc(j) ⇐⇒ j ∈ bc(k). (3.26)

If we confine k to k ∈ Q(1) ⊂ C we can insert (3.26) into (3.25) such that

∀ j, k ∈ Q(1) : j ∈ fc(k) ∨ k ∈ fc(j) ⇐⇒ (Fj,Fk)S = 1. (3.27)

The expression on the l.h.s. of (3.27) is symmetric with respect to j and k. This fits in
well since the r.h.s of (3.27) is also symmetric.

Similar to (3.25) we can give a criterion for whether or not a qubit j ∈ Q(1) is in the
forward- or backward cone fc(g), bc(g) of some gate g. It reads

∀g ∈ N , j ∈ Q(1) : j ∈ fc(g) ∨ j ∈ bc(g) ⇐⇒ (Fj,Fg)S = 1. (3.28)

Proof of (3.25), (3.28) and (3.26). Considering the cone test, first note that whether
a one-qubit rotation at some position in the network is about the z-axis or a about the
x-axis can be identified by the potential byproduct operator produced when the rotation
is implemented. This can be seen by inspecting (2.24), (2.28), (2.29) and the Procedure 2
to implement a general rotation as described in Section 2.2.2. The x-rotations Ux(ξ) and
Ux(ζ) of UR(ξ, η, ζ) in (2.24) are implemented by measurements on the qubits 2 and 4 of a
5-qubit chain. As can be seen from (2.29), they contribute to the byproduct operator UΣ of
the rotation UR with σx

s2+s4 where s2 and s4 are the results of the measurements on qubits
2 and 4. Further, the rotation about the z-axis, Uz(ζ), is implemented by measurement of
qubit 3. The contribution to the byproduct operator which is thereby generated is, from
(2.29), σz

s3 . We see that x-rotations only generate byproduct operators σx and z-rotations
only generate byproduct operators σz.

A byproduct operator generated via the measurement on the cluster qubit k must be
propagated either forward or backward to possibly reach the rotation on the logical qubit
i implemented via the measurement on the cluster qubit j. Let be OK and OJ two cuts
through the network which intersect each logical qubit line only once. More specifically,
OK intersects the qubit line i just before the rotation implemented by the measurement
at cluster qubit k. OJ intersects the qubit line i just before the rotation implemented by
the measurement at cluster qubit j.

There are two cases which can occur. Either the cut OK is before the cut OJ in the
network N which we denote by OK ≤ OJ , or OJ is before the cut OK which we denote by
OJ ≤ OK . It can also be that both is true at the same time but it cannot be that neither
of the two relations hold.

Case I: OK ≤ OJ .
The byproduct operator generated via the measurement at qubit k must be propagated
forward to possibly affect the measurement at qubit j. It is not possible that the result of
the measurement on qubit j has an effect on the measurement basis chosen at k.
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Let us introduce a further cut OJ ′ which is the same as OJ , except for that it intersects
the line of the logical qubit i in the network N just after the rotation implemented via the
measurement on the cluster qubit j. The potential byproduct operator which is generated
via the measurement on cluster qubit k and then propagated forward to the cuts OJ and
OJ ′ , is denoted by Uk|OJ

and Uk|OJ′ , respectively (the byproduct operators which are

actually generated are (Uk|OJ
)sk and

(
Uk|OJ′

)sk). Further, we denote the restriction of the
byproduct operators Uk|OJ

and Uk|OJ′ to the logical qubit i by [Uk|OJ
]i and

[
Uk|OJ′

]
i
. The

two cuts differ only on the logical qubit i, and there only by the side of the respective cut
on which the rotation is located. Therefore, using (2.52), it follows that Uk|OJ

= Uk|OJ′ .
Hence also

[Uk|OJ
]i =

[
Uk|OJ′

]
i
. (3.29)

If the rotation implemented via the measurement on cluster qubit j is about the x-axis, then
the measurement on qubit j has to wait for the measurement on cluster qubit k iff [Uk|OJ

]i
contains a contribution σz. The measurement on j itself produces a potential byproduct
operator

[
Uj|OJ′

]
i

= σx. Similarly, if the rotation implemented via the measurement on
j is about the z-axis then the measurement on j has to wait for the measurement on k
iff [Uk|OJ

]i contains a contribution σx. The measurement on j itself produces a potential
byproduct operator

[
Uj|OJ′

]
i
= σz.

Because of (3.29) Uk can as well be evaluated at the cut OJ ′ instead of OJ . The
byproduct operator on the intersection of qubit line i and cut OJ ′ resulting from the
measurement on qubit j can be written in the form

[
Uj|OJ′

]
i
=

(
σ(i)

x

)xj,i
(
σ(i)

z

)zj,i
with

(
xj,i

zj,i

)
=





(
0
1

)
for z-rotations

(
1
0

)
for x-rotations

. (3.30)

The byproduct operator on the intersection of qubit line i and cut OJ ′ resulting from the
measurement on qubit k reads

[
Uk|OJ′

]
i
=

(
σ(i)

x

)xk,i
(
σ(i)

z

)zk,i
. (3.31)

One can now easily check for both the cases of an x- and a z-rotation implemented by the
measurement on qubit j that the measurement of qubit j must wait for the result of the
measurement of qubit k iff

xj,izk,i + zj,ixk,i = 1 mod 2. (3.32)

Now note that the correspondence between

(
xj,i

zj,i

)
and

[
Uj|OJ′

]
i
; and between

(
xk,i

zk,i

)

and
[
Uk|OJ′

]
i

is via the restriction of the isomorphism (3.10) on qubit i. Thus, xj,i, zj,i

are just the i-components of Ix|OJ′ and Iz|OJ′ , respectively. Equivalent relations hold for
xk,i, zk,i. One finds

xj,i =
[
Ix,j|OJ′

]
i

, zj,i =
[
Iz,j|OJ′

]
i

xk,i =
[
Ix,k|OJ′

]
i
, zk,i =

[
Iz,k|OJ′

]
i

. (3.33)
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Further we observe that

[
Ix,j|OJ′

]
l
= 0,

[
Iz,j|OJ′

]
l
= 0 for all l 6= i, (3.34)

since the byproduct operator introduced by the implementation of the rotation acts, at the
cut OJ ′ , non-trivially only on the logical qubit i. Thus we can write

xj,izk,i + zj,ixk,i =
n∑

l=1

xj,lzk,l + zj,lxk,l

=
(
Ij|OJ′ , Ik|OJ′

)
S

= (Ij|Ω, Ik|Ω)S

= (Fj,Fk)S,

(3.35)

where the second line holds by the definition (3.20) and the third by (3.13) and the con-
servation (3.21) of the symplectic scalar product. Inserting (3.35) into (3.32) yields

OK ≤ OJ : j ∈ fc(k) ⇐⇒ (Fj,Fk)S = 1. (3.36)

For OK ≤ OJ , j ∈ bc(k) cannot occur, hence with (3.36),

OK ≤ OJ : j ∈ fc(k) ∨ j ∈ bc(k) ⇐⇒ (Fj,Fk)S = 1. (3.37)

Case II: OJ ≤ OK .
First we observe that j can only be in the backward cone of k, but not in the forward
cone. Thus, the byproduct operator generated via the measurement on k must be prop-
agated backwards in the network to reach the gate for whose implementation qubit j is
to be measured. The reasoning is completely analogous to case I, up to the fact that the
potential byproduct operator generated via the measurement of cluster qubit k is in this
case propagated backwards onto the cut OJ ′ . Qubit j is in the backward cone of qubit k iff
the quantity

(
Ij|OJ′ , Ik|OJ′

)
S

is equal to 1. Again, by conservation (3.21) of the symplectic
scalar product follows

OJ ≤ OK : j ∈ bc(k) ⇐⇒ (Fj,Fk)S = 1. (3.38)

For OJ ≤ OK , j ∈ fc(k) cannot occur, and therefore with (3.38),

OJ ≤ OK : j ∈ fc(k) ∨ j ∈ bc(k) ⇐⇒ (Fj,Fk)S = 1. (3.39)

Now we combine the two cases and with (3.37) and (3.39) we obtain

k ∈ C, j ∈ Q(1) : j ∈ fc(k) ∨ j ∈ bc(k) ⇐⇒ (Fj,Fk)S = 1,

which proves the cone test (3.25).
The proof of the cone test for gates (3.28) goes along the same lines, only the byproduct

operator (Uk)
sk generated via the measurement at cluster qubit k ∈ C has to be replaced

with the byproduct operator U0,g of the gate g.
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Finally, the proof the forward-backward cone relation shall be outlined. Suppose that
j ∈ fc(k). With the same methods as used in the proof of (3.25) one can derive that

j ∈ fc(k) ⇐⇒ (Ik|OJ
, Ij|OJ

)S = 1,
k ∈ bc(j) ⇐⇒ (Ik|OK

, Ij|OK
)S = 1.

(3.40)

Then, with (3.40) and the invariance (3.21) of the symplectic scalar product

j ∈ fc(k) ⇐⇒ k ∈ bc(j),

which proves (3.26).

3.2.5 To what a quantum logic network condenses

Simulating a quantum logic network on a QCC is a two-stage process. Before the genuine
computation, we feed a classical computer with the network to be simulated. It returns
the quantities needed to run the respective algorithm on the QCC. These quantities are the
sets Qt of simultaneously measurable qubits, the measurement bases of the qubits k ∈ Q0,
the algorithm angles ϕl,algo for l ∈ C\Q0, the backward cones bc(k) of the qubits k ∈ Q0,
the byproduct images Fj for j ∈ C and the initialization value Iinit of the information flow
vector I(t). Together these quantities represent the program for the QCC.

The measurement pattern representing the QCC-algorithm has both a temporal and
a spatial structure. The temporal structure is given by the sets Qt of simultaneously
measured qubits. The spatial structure consists of the bases (σx-, σy- or σz-) of the mea-
surements in the first round and of the measurement angles in the subsequent rounds.
The measurement angles can be determined only run-time, since they involve the random
outcomes of previous measurements.

3.3 Symmetry considerations

We introduce a group of symmetry transformations that have, by construction, no effect
on the computation. Nevertheless, the transformations are such that they act on the mea-
surement outcomes {sk}, the parameters {κk} and the measurement angles {ϕa,meas}; and
non-trivial conclusions can be derived form them. Among these are the characterization of
functions on the random measurement outcomes which lead to computationally meaning-
ful quantities, and constraints upon the possible temporal order of the measurements in a
QCC-computation. The reason why we discuss the symmetry transformations here is that
they make the subsequent derivation of the information vector I (3.9) as a function of the
measurement outcomes and the parameters {κ} specifying the cluster state more compact
and transparent.

Recall that, when performing a QCC-computation, one is only interested in the mea-
surement results but not in the projected quantum state P (C)|φ{κ}〉C. Therefore, it is of no
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relevance for the computation whether we leave the projected state as it is or apply some
subsequent unitary transformation Upost to it,

P (C)|φ{κ}〉C ∼= Upost P
(C)|φ{κ}〉C. (3.41)

Therein, the symbol “∼=” shall denote the equivalence of these states with respect to the
result of the computation, and P (C) denotes the projection operator representing the mea-
surement sequence of which a QCC-computation consists,

P (C) =
⊗
i∈C

1l(i) + (−1)si~ri · ~σ(i)

2
. (3.42)

The measurement outcomes {s} are random; only the measurement bases can be chosen.
They depend upon previous measurement outcomes ~ri = ~ri({sa}).

The unitary transformations Upost have no effect solely due to the fact that they are
subsequent ones. In principle, one might consider the full group of subsequent unitary
transformations on the Hilbert space of the cluster qubits. However, for our argument
it is necessary that the group of transformations operates on the following variables: the
measurement outcomes {sk| k ∈ C}, the parameters {κk| k ∈ C} and the parameters {ϑa ∈
F2| a ∈ C\Q0} which appear in the sign factors for the measurement angles, ϕa,meas =

(−1)ϑaϕa,qln. The largest group with this property that we could identify is the Pauli
group,

Upost ∈
{
σ(a)

z , σ(a)
x , ∀a ∈ C, and products thereof

}
. (3.43)

Let us now investigate how the subsequent transformations (3.43) act on the variables
{s}, {κ} and {ϑ}. For the QCC-realization of all the gates and sub-circuits developed so
far, not all directions of the Bloch sphere are used for measurements. There occur only
σz-measurements and measurements in the equator of the Bloch sphere, i.e. of operators
cosϕσx + sinϕσy. All measurements in CN\O are of the latter type and all in C\CN ∪ O
of the former.

We discuss two examples of the transformations (3.43) explicitly, and subsequently state
the table of transformations. First, let us consider the case where a qubit a ∈ C is measured
in the σz-eigenbasis. For the state after the measurement P (C)|φ{κ}〉C = P (C\a)P (a)|φ{κ}〉C
one can write

P (C\a) 1l
(a) + (−1)saσ

(a)
z

2
|φ{κ}〉C ∼= σ(a)

z P (C\a) 1l
(a) + (−1)saσ

(a)
z

2
|φ{κ}〉C. (3.44)

In the r.h.s. of eq. (3.44) the subsequent rotation is now propagated through the projectors
such that it acts directly on the state |φ{κ}〉C, i.e.

σ(a)
z P (C\a) 1l

(a) + (−1)saσ
(a)
z

2
|φ{κ}〉C = P (C\a) 1l

(a) + (−1)saσ
(a)
z

2
|φ{κ̃}〉C, (3.45)

with |φ{κ̃}〉C = σ
(a)
z |φ{κ}〉C, and thus κ̃b = κb + δab. The measurement bases and outcomes

of the QCC-computation (3.42) remain unchanged, that is ~̃ri = ~ri and s̃i = si for all
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i ∈ C. Applying the subsequent phase flip σ
(a)
z causes no change for the computation,

but transform κa → κa + 1, according to (2.14). Thus we find that for qubits a which
are measured in the σz-eigenbasis the parameter κa cannot enter into computationally
relevant quantities. However, the measurement outcome sa may, since it is not affected by
the transformation (3.44).

Second, consider a subsequent σx acting on a cluster qubit measured in the equator of
the Bloch sphere where the measurement basis is not the eigenbasis of σx or σy. Then, the
measurement direction ~ra is affected. One obtains

σ(a)
x P (CN\a) 1l

(a) + (−1)sa~ra · ~σ(a)

2
|φ{κ′}〉CN

= P (CN\a) 1l
(a) + (−1)sa~̃ra · ~σ(a)

2
|φ{κ̃}〉CN

, (3.46)

with |φ{κ̃}〉CN
=

⊗
b∈nbgh(a) σ

(b)
z |φ{κ}〉CN

and ~̃ra(ϕa) = (cos(ϕ),− sin(ϕ), 0) = ~ra(−ϕa). For

the measurement basis of qubit a is given by B (
(−1)ϑaϕa

)
, the transformation thus is

ϑa −→ ϑa + 1 mod 2, κb −→ κb + 1 mod 2, ∀b ∈ nbgh(a).
Repeating the above arguments for the remaining cases we finally obtain the following

set of symmetry transformations:

• Transformations caused by Upost = σ
(a)
z in (3.41):

∀a ∈ C\CN ∪O : κa −→ κa + 1 mod 2, (3.47a)

∀a ∈ CN\O :

{
sa −→ sa + 1 mod 2,
κa −→ κa + 1 mod 2,

(3.47b)

• Transformations caused by Upost = σ
(a)
x :

∀a ∈ C\CN ∪O : Z :

{
sa −→ sa + 1 mod 2,
κb −→ κb + 1 mod 2,

∀b ∈ nbgh(a) , (3.48a)

∀a ∈ CN\O : X : κb −→ κb + 1 mod 2, ∀b ∈ nbgh(a) , (3.48b)

Y :

{
sa −→ sa + 1 mod 2,
κb −→ κb + 1 mod 2,

∀b ∈ nbgh(a) , (3.48c)

↗:

{
ϑa −→ ϑa + 1 mod 2,
κb −→ κb + 1 mod 2,

∀b ∈ nbgh(a) . (3.48d)

Therein, “X”, “Y ”, “Z” denote σx-, σy- and σz-measurement of qubit a, respectively. The
symbol “↗” denotes a measurement of an operator in the equator of the Bloch sphere
which is neither of σx nor σy.

We now introduce the notion of computationally meaningful quantities. So far, we
have some idea of what the computational meaningful quantities should be from the phe-
nomenological viewpoint. The measurements which drive a QCC-computation produce a
pile of random bits. From this random bit stream information can be extracted which
is required to steer the QCC-computation and to identify its result. Such information is
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certainly meaningful in the colloquial sense of the word. Among the computational mean-
ingful quantities there is, of course, the final result of the quantum computation. By this
we mean the bits of information that are obtained from the read-out of the quantum reg-
ister after, if required, classical post-processing1. These bits should, if the algorithm is
deterministic, not be random. So, is it the non-randomness in value that should be the
criterion for being computationally meaningful? No. If “computationally meaningful” is
a proper notion, the measurement angles (2.26), or more precisely, the sign factor param-
eters ϑa, ∀a ∈ CN\O required to adjust the measurement angles ϕa,meas = (−1)ϑaϕa,qln

should be such quantities. The parameters ϑa can be determined only runtime from pre-
viously obtained measurement outcomes and they are completely random in their value.
Nevertheless, they are meaningful. If in the adjustment of the measurement basis for the
measurement of some qubit a no attention is payed to the value of ϑa, the QCC-computation
gets immediately off track. Therefore, non-randomness in value cannot be the appropriate
criterion. Below we will present a necessary condition for computational meaningfulness,
requiring that the defining relations of computational meaningful quantities are consistent
with the group of symmetry transformations (3.43).

Let us, at this point, emphasize that here we are concerned only with the randomness
introduced by the measurements which drive the QCC-computation. This is randomness
that can be compensated for. It is distinct from randomness inherent in probabilistic
quantum algorithms.

A computationally meaningful quantity has a defining relation. This defining relation
expresses the respective quantity as a function of the measurement outcomes {sk| k ∈ C}
and the parameters {κk| k ∈ C} which characterize the cluster state in (2.1). The readout
bits [I]m, 1 ≤ m ≤ n and the parameters ϑa, a ∈ CN\O have defining relations, which read

[Ix]m = fm
I ({sk| k ∈ C}, {κk| k ∈ C}), (3.49)

and

ϑa = fa
ϑ({sk| k ∈ C}, {κk| k ∈ C}). (3.50)

Now, we can state a necessary condition for a quantity to be computationally meaningful:

A quantity is computationally meaningful only if its defining relation
is invariant under the group of transformations (3.47, 3.48).

(3.51)

If a transformation that has by construction no effect on the computation changes a defining
relation then the belonging quantity can have no meaning.

Note that we have given a criterion for ‘computational meaningfulness’ before defining
it in a precise way. However, the above criterion must hold for any reasonable definition.
The reason why we refrain from giving a definition at this point is the following: We

1An example of where classical post-processing is required is Shor’s factoring algorithm. Even in
case of success, the bits read off from the measurement of the quantum register are random, i.e. many
computationally equivalent sets of readout measurement outcomes are possible. However, the final result
of the quantum computation is a smaller bit string which is obtained after classical post-processing of the
readout measurement outcomes.
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have not proved that the group of transformations generated by (3.47, 3.48) is the largest
that is induced by the transformations (3.41). A sensible definition of the notion of a
‘computational meaningful quantity’ is by invariance of the respective defining relation
under the largest group of transformations of type (3.47, 3.48) induced by (3.41).

To summarize the first part of this investigation, we have characterized the computa-
tionally meaningful quantities as quantities whose defining relations remain invariant under
the transformations (3.47) and (3.48). This holds in particular for the defining relations
(3.49) and (3.50) of the components of the information vector I and the parameters ϑa for
the choice of the non-Pauli measurement bases.

Let us now investigate which conclusions can be drawn from the invariance under these
transformations. We proceed in two steps. First, we consider the subgroup (3.47), (3.48a)

induced by subsequent unitary transformations σ
(c)
z , c ∈ C and σ

(b)
x , b ∈ C\CN ∪ O . As

the [I]k remain invariant under these transformations it must be possible to express them
as functions of a set of variables which are invariant themselves. As can be easily verified,
for each qubit a ∈ CN\O there exists a variable sa,

sa = κa + sa +
∑

b∈nbgh(a)∩((C\CN )∪O)

sb mod 2, (3.52)

which is invariant under the transformations (3.47), (3.48a). These variables are the only
ones that are invariant under the considered transformations, which can be seen as follows.
A priori, there are four types of variables involved, {κa, a ∈ C\CN ∪ O}, {κa, a ∈ CN\O},
{sa, a ∈ C\CN ∪ O}, {sa, a ∈ CN\O}. First, as follows from (3.47a), the parameters
{κa, a ∈ C\CN ∪O} do not appear in the invariant variables. Then it follows from (3.48b)
that among the {sa, a ∈ C\CN ∪ O} those sa can be discarded for which ∀b ∈ nbgh(a) :
b ∈ C\CN ∪O. Now, suppose an invariant variable contains one measurement outcome sa,
a ∈ CN\O. Then, via (3.47b) it can depend only on sa + κa. But if it contains κa then
because of invariance under the transformation (3.48a) it is of form (3.52). Next, suppose
the invariant variable contains no sa, a ∈ CN\O. Then, via (3.47b) it cannot depend on
either of the κa. Then, because of invariance under the transformation (3.48a) it cannot
depend on the sb, b ∈ C\CN ∪O}∩nbgh(a). There are no further quantities left upon which
the invariant variable could depend. Thus, all invariant variables contain at least one sa,
a ∈ CN\O; equation (3.52) describes a complete set of independent invariant variables.

The parameter ϑa for the choice of measurement bases also can only depend upon the
effective variables (3.52). To see this, first note that if ϑa did depend upon sa it would
render the QCC-computation probabilistic. We have not observed such a case in the so far
given circuit constructions. As we have demonstrated universality of the QCC, a situation
where some ϑa depends upon the outcome sa of the measurement of the same qubit a
can always be avoided and we thus discard it. So, if ϑa does not depend on sa, it cannot
depend upon κa either, as implied by (3.47b). Thus ϑa depends only on the variables
{sb, κb | b ∈ C\a}. As both sides of the defining relation (3.50) do not change under Pauli
transformations (3.41) restricted to qubits b ∈ C\a, by the same arguments as above for
[I]k, ϑa can only depend on the invariant variables {sb |b ∈ CN\(O ∪ a)}.
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To work with the effective variables {sa| a ∈ CN\O} instead of {sb, κb| b ∈ C} is con-
venient because the computationally meaningful quantities depend only upon them. We
will make use of the effective variables (3.52) in Section 3.4.1 when deriving the defining
relation for the information vector I. The symmetry transformations (3.47), (3.48a) act
trivially on the variables (3.52). Thus, by choosing invariant effective variables {s} we have
absorbed these symmetry transformations.

Second, let us consider the remaining symmetry transformations (3.48b) - (3.48d) in-

duced by the subsequent transformations σ
(a)
x , a ∈ CN\O and products thereof. An equiv-

alent and convenient choice for the remaining subsequent transformations (3.43) are the
basic correlation operators K(a), a ∈ CN\O, defined in (2.2),

U [J ] =
∏

a∈J⊂CN\O
K(a). (3.53)

The transformations (3.53) describe the effect of randomness introduced by the measure-
ments in the following sense: They act only on the measurement outcomes {sk | k ∈ C}
and on the measurement angles ϕa, represented by the binary variables {ϑa |a ∈ C\Q0},
but they do not act on the set of parameters {κk | k ∈ C}. For a set of fixed parameters
{κk | k ∈ C}, one may define equivalence classes of sets {sk | k ∈ C} of measurement out-
comes obtained in a QCC-computation. Two such sets {s}, {s′} are equivalent if they yield
the same computational result Ix. In doing so, one separates the randomness introduced by
the measurements from the randomness that may be inherent in the quantum algorithm.
While the former leads to the fact that different sets {s} may be obtained in different
runs of the QCC-algorithm that yield the same computational result, the latter has the
effect that there may exist numerous equivalence classes of sets {s} with nonzero total
probability. The transformations (3.53) take one around within these equivalence classes
of sets of measurement outcomes, and in this way mimic the effect of measurement-induced
randomness. The invariance condition (3.51) ensures that the randomness caused by the
measurements does not affect the logical processing.

Besides characterizing the randomness of measurement outcomes, the symmetry trans-
formations (3.53) may be used to derive severe constraints upon the possible temporal
order of measurements in a QCC-computation where all randomness of the measurement
outcomes is accounted for. To see this in a particular example, we consider a five-qubit
chain on a cluster C5 ⊂ C to implement a general one-qubit rotation. Qubits 2, 3 and 4
are measured in a non-standard basis to adjust the Euler angles of the rotation. Qubits
1 and 5 are the input- and output qubit; however, it is not specified which is which. The
transformation K(3) of (3.41) has the effect

K(3) :
ϑ3 −→ ϑ3 + 1 mod 2,
s2 −→ s2 + 1 mod 2,
s4 −→ s4 + 1 mod 2.

(3.54)

Consider the accumulated byproduct operator UΣ,C′|O, C ′ ⊂ C, at a vertical cut O after
qubits 2 and 4, i.e. the byproduct operator including the contributions from both these



86 3. Computational model underlying the one-way quantum computer

cluster qubits. Depending on what the forward direction is, an intuitive choice (from the
network perspective) for O would be after qubit 1 or before 5. Anyway, the quantities we
are going to consider are invariant under the displacement of O. Under the transformation
(3.54), the byproduct operator undergoes the change

UΣ,C′|O −→ UΣ,C′|O U2|OU4|O, (3.55)

where U2|O, U4|O are such that UΣ,2|O = (U2|O)s2 and UΣ,4|O = (U4|O)s4 . Under the trans-
formation (3.54) no measurement angle except ϕ3,meas is affected, whatever the operations
later than O in the simulated network maybe. This is only possible if

U2|OU4|O = 1l. (3.56)

Hence, U2|ΩU4|Ω = 1l. Using (3.10), one obtains F2 + F4 = ~0 mod 2, and therefore

(F2,F3)S = (F4,F3)S. (3.57)

From (3.54) also follows that the defining relation of ϑ3 depends either on s2 or s4 but not
on both. There exist only two choices

ϑ3 = s2 + f 3
ϑ({sk | k ∈ C\{2, 3, 4}}), (3.58a)

ϑ3 = s4 + f 3
ϑ({sk | k ∈ C\{2, 3, 4}}). (3.58b)

We now discuss these two choices separately.
Case 1: (3.58a) is valid. From (3.58a) follows that, by definition 2 of the forward

cone, 3 ∈ fc(2). From this follows, by construction of the relation “≺”, 2 ≺ 3. Also, via
(3.25), there follows (F2,F3)S = 1. Hence, with (3.57), (F4,F3)S = 1. And, using (3.27)
(backwards), 3 ∈ fc(4) ∨ 4 ∈ fc(3). 3 ∈ fc(4) is excluded by the case assumption (3.58a),
thus 4 ∈ fc(3) and therefore 3 ≺ 4. Putting both pieces together, we obtain 2 ≺ 3 ≺ 4.

Case 2: (3.58b) is valid. The argument is the same as in case 1, only the roles of qubit
2 and 4 are interchanged. The result is 4 ≺ 3 ≺ 2.

Therefore, out of the six possibilities that there exist in principle for the temporal
order of the measurements on the qubits 2, 3 and 4 only two can yield to deterministic
computation, namely 2 - 3 - 4 and 4 - 3 - 2. This result is in accordance with the Procedure 2
to realize an arbitrary rotation. The remaining ambiguity of the temporal order in the
measurements is caused by the fact that we have not introduced the forward direction of
the network logical time, i.e. have not specified what is “Input” and what “Output”.

So, we have not produced a new result. Rather, we have derived a known result from
basic principles. Objects like the temporal semi ordering “≺” of the measurements we
would usually derive from an underlying quantum logic network, claiming at the same
time that this network is no part of the description of the respective QCC-algorithm.
This is no contradiction since the network description is completely absorbed into the
quantities required for the processing of information with the QCC, see Section 3.2.5.
However, one may easily get the impression that, although the quantum logic network
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finally disappears from the description of a QCC-algorithm, no such description could be
obtained without a quantum logic network. Here we have given a counterexample to this
objection. We have derived the temporal order from an invariance property under the
transformations (3.53) linked to the effect of randomness in the measurement outcomes.
For the discussed example, we have asked and answered the following question: “Requiring
that the randomness introduced by the measurements does not lead to randomness in the
logical processing, what can the temporal order of measurements be?”

3.4 Computational model for the QCC
In the preceding sections we have established the notions of the sets of simultaneously
measurable qubits, backward cones, byproduct images, measurement angles and the infor-
mation vector. In this section, the computational model underlying the QCC is described
in these terms. First, we would like to give a summary of the characteristic features of the
model:

• The QCC has no quantum input and no quantum output.

• For any given quantum algorithm, the cluster C is divided into disjoint subsets Qt ⊂ C
of qubits, t = 0, 1, . . . , tmax, where Qp ∩ Qq = ∅ for p 6= q and

⋃tmax

t=0 Qt = C. These
subsets are measured one after the other in the order given by the index t. In
measurement round t the set Qt of qubits is measured.

• The classical information gained by the measurements is processed within a flow
scheme. The flow quantity is a classical 2n-component binary vector I(t), where n
is the number of logical qubits of a corresponding quantum logic network and t the
number of the measurement round.

• This vector I(t), the information flow vector, is updated after every measurement
round. That is, after the one-qubit measurements of all qubits of a set Qt have
been performed simultaneously, I(t − 1) is updated to I(t) through the results of
these measurements. In turn, I(t) determines which one-qubit observables are to be
measured of the qubits of the set Qt+1.

• The result of the computation is given by the information flow vector I(tmax) after
the last measurement round. From this quantity the readout measurement result of
the quantum register in the corresponding quantum logic network can be read off
directly without further processing.

We should make a comment on the first point. The QCC has no quantum output. Of
course, the final result of any computation –including quantum computations– is a classical
number, but for the quantum logic network the state of the output register before the
readout measurements plays a distinguished role. For the QCC this is not the case, there
are just cluster qubits measured in a certain order and basis. If, to perform a particular



88 3. Computational model underlying the one-way quantum computer

Q0 1Q 2Q 3Q

M MM

Iinit

measurement
apparatus

qubit
lattice

I(0) I(1) I(2) I(3) = I

Figure 3.2: General scheme of the quantum computer via one-qubit measurements. The sets
Qt of lattice qubits are measured one after the other. The results of earlier measurements de-
termine the measurement bases of later ones. All classical information from the measurement
results needed to steer the QCC is contained in the information flow vector I(t). After the last
measurement round tmax, I(tmax) contains the result of the computation.

algorithm on the QCC, a quantum logic network is implemented on a cluster state there
is a subset of cluster qubits which play the role of the output register. These qubits are,
however, not the final qubits to be measured, but among the first (!).

The QCC has no quantum input. This means that the quantum input state is known
and can thus be created from some standard quantum state, e.g. |00...0〉, by a circuit
preceding the main part of the computation. Shor’s algorithm where one starts with an
input state

⊗n
i=1 1/

√
2(|0〉i + |1〉i) is an example for such a situation. Other scenarios are

conceivable, e.g. where an unknown quantum input is processed and the classical result
of the computation is retransmitted to the sender of the input state; or the unmeasured
network output register state is retransmitted. These scenarios would lead only to slight
modifications in the computational model. They are, however, not in the focus of this
thesis. The reader who is interested in how to read in and process an unknown quantum
state with the QCC is referred to [9].

3.4.1 Obtaining the computational result from the measurement
outcomes

Now that we have defined the information vector I in (3.9) and have seen that the result of
the computation can be directly read off from the x-part of I, we will explain how I depends
on the measurement outcomes

{
sk

}
and the set

{
κk

}
of binary numbers that determine

the cluster state |φ〉C in (2.1). For this purpose, we will express UΣR in terms of
{
sk

}
, and
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use the isomorphism (3.10) to obtain I. We will proceed in three steps. First, we focus
on the special case of a cluster state |φ〉CN

(2.1) on a cluster CN where {κa = 0 | ∀a ∈ C}.
For this situation, we derive an expression for UΣR, the quantity from wich we can directly
read off the result of the computation. This is a somewhat unnatural expression for we
have excluded the irrelevant cluster qubits q ∈ C\CN which are measured in the eigenbasis
of σz, but have included the qubits of the output register O which are also measured in
the σz-eigenbasis. This unequal treatment is a remnant of the network model. There, the
output qubits are, of course, very important. For the QCC, however, as we have already
seen in Section 2.2.3, the “readout”- qubits q ∈ O are as redundant as any other cluster
qubits measured in the σz-eigenbasis. To account for this, in the second step we derive an
expression for UΣR for a QCC-computation on a cluster CN\O. After the influence of all
the redundant qubits has thus been eliminated, we reintroduce it in the third step. Using
a symmetry argument, we derive the expression for UΣR for the general case, i.e. for the
cluster state on the universal cluster C and for arbitrary parameters {κa | a ∈ C}. From
this expression for UΣR we deduce the information vector I via the isomorphism (3.10).

To derive I as a function of
{
sk

}
and

{
κk

}
, we need to define the following sets. C is

a universal cluster. Let O ⊂ C be the subset of the cluster which, in the simulation of a
quantum logic network on the QCC, consists of the readout qubits. Let CN ⊂ C denote
the cluster that contains only the relevant cluster qubits, i.e. those which are measured
in a direction in the equator of the Bloch sphere, and the “readout” qubits. Be Q0,z ⊂ C
the set of qubits of which the operator σz is measured. Among these sets, the following
relations hold:

CN ∪Q0,z = C
CN ∩Q0,z = O.

(3.59)

We can now start to express I in terms of
{
sk, k ∈ C} and

{
κk, k ∈ C}. Let us –in

the first step– discuss the accumulated byproduct operator UΣ for a computation on the
special cluster CN . To UΣ contribute all the byproduct operators UΣ,g that are created in
the implementation of the gates g. For all necessary cases, the general rotations (2.29), the
CNOT gate (2.23) and the special rotations Hadamard gate and π/2-phase gate (2.30),
the byproduct operators UΣ,g can be written in the form

UΣ,g =


 ∏

k∈CI(g)∪CM (g)

(Uk)
sk


U0,g. (3.60)

U0,g is constant in the measurement outcomes
{
sk, k ∈ CN\O

}
and we therefore attribute

it to the gate g as a whole rather than to a particular cluster qubit. For all rotations we
have U0,g = 1, but for the CNOT gate –if realized as depicted in Fig. 2.2– the contribution

is nontrivial as can be read off from (2.23), U0(CNOT ) = σ
(c)
z .

To determine the effect of UΣ,g on UΣ we propagate, by use of the propagation rela-
tions (2.52), (2.51) and (2.53), the byproduct operators UΣ,g forward to the cut Ω which
intersects the corresponding network N just before the output. The forward propagated
byproduct operator that results from the byproduct operator UΣ,g we denote by UΣ,g|Ω.
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In the same way, the forward propagated byproduct operator originating from Uk, the
byproduct operator generated via the measurement of qubit k, is denoted by Uk|Ω for all
k ∈ CN\O . Finally, the forward propagated byproduct operator originating from U0,g, the
byproduct operator attributed to the gate g as a whole, is denoted by U0,g|Ω. To give an
explicit expression, be O the vertical cut through a network N at the output of a gate g
and U(NO→Ω) the unitary operation in the Clifford group which corresponds to the part of
the network N with all the one-qubit rotations except for the Hadamard- and π/2-phase
gates replaced by the identity, as explained in Section 3.2.4. Then, the forward propagated
byproduct operators are given by

UΣ,g|Ω = U(NO→Ω)UΣ,g U(NO→Ω)†

Uk|Ω = U(NO→Ω)Uk U(NO→Ω)†

U0,g|Ω = U(NO→Ω)U0,g U(NO→Ω)†
(3.61)

The contribution UΣ,g|Ω from the gate g to UΣ is

UΣ,g|Ω =


 ∏

k∈CI(g)∪CM (g)

Uk|Ωsk


U0,g|Ω. (3.62)

The total byproduct operator UΣ is the product of all forward propagated byproduct
operators UΣ,g|Ω, UΣ =

∏
g∈N UΣ,g|Ω, and thus given by

UΣ =
∏
g∈N


U0,g|Ω

∏

k∈CI(g)∪CM (g)

Uk|Ωsk




=

(∏
g∈N

U0,g|Ω
) 

 ∏

k∈CN\O
Uk|Ωsk


.

(3.63)

In the second line of (3.63) we have used the facts that
⋃

g∈N CI(g) ∪ CM(g) = CN\O and
CI(g) ∩ CI(g

′) = CM(g) ∩ CM(g′) = ∅ ∀g, g′ 6= g ∈ N , CI(g) ∩ CM(g′) = ∅ ∀g, g′ ∈ N .
We now include UR as given in (3.2) to find for UΣR, using (3.1) and (3.63),

UΣR =

(∏
g∈N

U0,g|Ω
)( ∏

k∈CN

Uk|Ωsk

)
. (3.64)

This is the result of the first step.
In the second step, we remove the influence of the readout qubits q ∈ O from the

expression (3.64). As initially stated, there is no reason to treat the redundant qubits
which form the network output register O differently from the other redundant qubits. The
qubits in the readout register O are measured in the σz-eigenbasis. Such measurements
are non-adaptive and can therefore be performed in the first measurement round. Let us
now artificially split the first measurement round into two sub-rounds, such that first the



3.4 Computational model for the QCC 91

σz-measurements of the qubits k ∈ O and second the σx- and σy-measurements of the
qubits k ∈ CN\O are performed.

The outcomes of the measurements of the qubits k ∈ O, obtained in the first sub-round
of the first measurement round are individually random and uncorrelated. It is therefore
possible that all these measurement outcomes are zero,

sk = 0, ∀k ∈ O. (3.65)

For the special case of the measurement results (3.65) the extended byproduct operator
(3.64) reduces to

UΣR =

(∏
g∈N

U0,g|Ω
)

 ∏

k∈CN\O
Uk|Ωsk


 . (3.66)

Further, the measurements on the qubits of the set O project the unmeasured qubits
k ∈ CN\O into a cluster state |φ{κ}〉CN\O (2.1). With the measurement results (3.65)
obtained, the parameters κ are all zero, κk = 0, ∀k ∈ CN\O. Now, instead of creating the
state |φ{κ}〉CN\O with κk = 0, ∀k ∈ CN\O via measurements on O, one may equivalently
start the QCC-computation with this state right away. How the state |φ〉CN\O is created is
of no concern for the computation, such that the expression (3.66) for UΣR still applies. In
this way, we have derived an expression for the extended byproduct operator for the case
where no redundant qubits are present, i.e. where we use the cluster CN\O for computation,

UΣR,CN\O =

(∏
g∈N

U0,g|Ω
) 

 ∏

k∈CN\O
Uk|Ωsk


 . (3.67)

We have added the label CN\O in UΣR,CN\O to stress that this expression holds only for a
computation on CN\O. With (3.67) step two is completed.

After we have removed the influence of the subset O of the redundant qubits, in the
third step we bring the influence of all the redundant qubits in C back in. Also, we include
the effect of non-vanishing parameters κ which have so far been set equal to zero.

To do so, let us now make use of the symmetry transformations (3.47) for finding the
general expression for the information vector I. Via the isomorphism (3.10) we find for the
information vector ICN\O corresponding to UΣR,CN\O (3.67),

ICN\O =
∑

k∈CN\O
skFk +

∑
g∈N

Fg. (3.68)

Suppose, as be fore, that in a QCC-computation on the whole cluster C the first mea-
surement round is split. The σz-measurements are performed first, and the σx- and σy-
measurements second. Further suppose that one started with a cluster state |φ{κ}〉C for
which all parameters κ are zero, {κk = 0 |∀k ∈ C}. It is possible that all σz-measurements
yield the outcome zero, {sa = 0 | ∀a ∈ Q0,z}. Then, the resulting state of the unmeasured
qubits q ∈ CN\O is a cluster state |φ〉CN\O with {κq = 0 | ∀q ∈ CN\O}. Therefore, the
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formula (3.68) also applies for I, provided that one started from a cluster state |φ{κ}〉C
with property {κk = 0 |∀k ∈ C} and obtained only measurement outcomes sa = 0 in the
σz-measurements on the qubits in Q0,z. As follows from (3.52), under these assumptions
we have

sq = sq, ∀ q ∈ CN\O. (3.69)

Therefore, we can replace –for the so far considered special case– {sa} by {sa}, the set of
quantities which are invariant under the symmetry transformations (3.47), and obtain by
use of (3.52),

I =
∑

k∈CN\O
skFk +

∑

k∈CN\O

∑
j| j∈nbgh(k)∧

j∈Q0,z

sjFk +
∑

k∈CN\O
κkFk +

∑
g∈N

Fg. (3.70)

The equation (3.70) is valid for all sets of parameters {κk | k ∈ C} and measurement
results {sa | ∀a ∈ Q0,z} for I is a computationally meaningful quantity and thus has to be
invariant under the symmetry transformations (3.47). Invariance of (3.70) is guaranteed
by the construction of the sq in (3.52).

In (3.70), the second factor can be rewritten in the following way

∑

k∈CN\O

∑
j| j∈nbgh(k)∧

j∈Q0,z

sjFk =
∑

j∈CN\O

∑
k| j∈nbgh(k)∧

k∈Q0,z

skFj

=
∑

(j,k)| j∈CN\O∧
j∈nbgh(k)∧k∈Q0,z

skFj

=
∑

k∈Q0,z

∑
j| j∈nbgh(k)∧

j∈CN\O

skFj.

(3.71)

In the first line of (3.71) the labels j and k were interchanged and the relation j ∈
nbgh(k) ⇐⇒ k ∈ nbgh(j) was used. In the second and third line the order of the
products over k and j was interchanged.

We now define the forward propagated byproduct operators Uk|Ω for qubits k in the
set Q0,z\O = C\CN as

Fk =
∑

j| j∈nbgh(k)∧
j∈CN\O

Fj , ∀k ∈ Q0,z. (3.72)

In this way, we have traced back the forward propagated byproduct operators for qubits
k ∈ Q0,z to those for qubits j ∈ CN\O which are already known. Note that this includes the
qubits k′ ∈ O for which the byproduct operator Uk′|Ω has been defined in (3.2). Using the
isomorphism (3.10) also yields a definition for Fk′ , k

′ ∈ O. Both definitions are equivalent.
We insert (3.71) into (3.70) and, with the definition (3.72), we finally obtain

I =
∑

k∈C
skFk +

∑

k∈C\Q0,z

κkFk +
∑
g∈N

Fg (3.73)
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To derive the expression (3.73) for the information vector has been the primary purpose
of this section.

With the expression (3.73) at hand we are finally able to define the quantity which
carries the algorithmic information during the computational process and which has already
been mentioned on earlier occasions in this thesis, the information flow vector I(t).

Definition 6 The information flow vector I(t) is given by

I(t) =
∑

k∈
tS

i=0
Qi

sk Fk +
∑

k∈C\Q0,z

κkFk +
∑
g∈N

Fg (3.74)

The quantity I(t) is similar to I as given in (3.73), but to I(t) only contribute the byproduct

images of qubits from a subset
t⋃

i=1

Qi of C. The information flow vector I(tmax) after the

final measurement round tmax equals the information vector I,

I = I(tmax). (3.75)

As will be shown later, during all steps of the computation, except for after the final one,
the information flow vector determines the measurement bases for the cluster qubits that
are to be measured in the next round. After the final round it contains the result of
the computation. Thus, it has a meaning in every step of the computation. No further
information obtained from the measurements is needed. In this sense, the information flow
vector can be regarded as the carrier of the algorithmic information on the QCC.

2

The information flow vector has a constant part which does not depend on the mea-
surement results

{
sk

}
. This part alone forms its initialization value Iinit,

Iinit =
∑

k∈C\Q0,z

κkFk +
∑
g∈N

Fg, (3.76)

such that I(t) becomes

I(t) = Iinit +
∑

k∈
tS

i=0
Qi

sk Fk. (3.77)

From eq. (3.76) we see that the byproduct images of the gates Fg do not form an indepen-
dent part of the information specifying a quantum algorithm on the QCC. Instead, they
are absorbed into the initialization value Iinit of I(t).

The measurement bases in which the results sk are obtained –referred to implicitly in
(3.73) and (3.74)– are not fixed a priori, but must be determined during the computation.
They will be calculated using the byproduct images {Fk, k ∈ C} and I(t), as explained in

2The way we use the term “algorithmic information” has nothing to do with the –in general non-
computable– algorithmic information content of an object as it is defined in Kolmogorov complexity theory
[63].
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Sections 3.4.2 and 3.4.3. Besides the byproduct images, the algorithm angles ϕj,algo, j ∈
Q(1) are also needed to determine the appropriate measurement bases. They are related to
the network angles ϕj,qln, j ∈ Q(1) that specify the one-qubit rotations in the corresponding
quantum logic network via

ϕj,algo = (−1)ηj ϕj,qln , j ∈ Q(1), (3.78)

where ηj is given by

ηj =
∑

k| k∈C\Q0,z,

j∈bc(k)

κk +
∑

g| g∈N ,
j∈bc(g)

1. (3.79)

The pair of equations (3.78), (3.79) is, for the moment, just a definition of the algorithm
angles. It will become apparent in Sections 3.4.2 and 3.4.3 that this definition is indeed
useful.

3.4.2 Description of the model

As already listed in Section 3.2.5, a quantum algorithm on the QCC is specified by the sets
Qt of simultaneously measured qubits, the backward cones bc(k) of the qubits k ∈ Q0,
the measurement bases of the qubits k ∈ Q0, the byproduct images Fj for j ∈ C, the
algorithm angles ϕl,algo for l ∈ Q(1) and the initialization value Iinit of the information flow
vector I(t). If an algorithm is not given in this form but rather as a quantum logic network
composed of CNOT gates and one-qubit rotations, the above quantities can be derived
from the network as explained in the previous sections.

Let us summarize this step of classical pre-processing. First, the measurement pattern
is obtained –if one has no better idea– by patching together the measurement patterns
for the individual gates displayed in Fig. 2.2. This gives the measurement directions for
the qubits k ∈ Q0. The network angles ϕj,qln for the qubits j ∈ Q(1) are taken from the
quantum logic network to be simulated. To determine the sets {Qt, t = 0..tmax}, we need
the forward cones. The forward cones fc(k) for all qubits k ∈ C can be obtained using
the expressions (2.29), (2.23) for the byproduct operators and the propagation relations
(2.52), (2.51) and (2.53). From the forward cones we derive a strict partial ordering “≺”
(3.5) among the cluster qubits, and from the strict partial ordering we derive the sets
Qt ⊂ C via (3.8). The byproduct images Fk for the qubits k ∈ C\Q0,z are obtained from
their definition (3.11) once the corresponding forward propagated byproduct operators are
obtained from (3.61). The byproduct images of the qubits k ∈ Q0,z are traced back to
those in the set C\Q0,z via eq. (3.72). To determine the algorithm angles we need the
backward cones bc(k) for the qubits k ∈ Q0 and the backward cones of gates bc(g). Then,
the algorithm angles are given by (3.78), (3.79). Finally, for the initialization value Iinit

of the information flow vector we need the byproduct images Fg of the gates g which we
obtain from eq. (3.12). Iinit is set via (3.76). All the pre-processing required to extract the
listed quantities from a quantum logic network can be performed efficiently on a classical
computer, see Section 3.5.3.
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The scheme of quantum computation on the QCC comprises several measurement
rounds in which the following steps have to be performed:

1. First measurement round.

(a) Measure all qubits k ∈ Q0. Obtain measurement results {sk|k ∈ Q0}.
(b) Modify the angles ϕj,algo for the continuous gates

ϕj,algo −→ ϕ′j,algo = ϕj,algo (−1)η′j , (3.80)

with
η′j =

∑

k∈Q0|j∈bc(k)

sk (3.81)

for all j ∈ Q(1).

(c) Update the information flow vector from Iinit to I(0)

I(0) = Iinit +
∑

k∈Q0

skFk. (3.82)

2. Subsequent measurement rounds.

Perform the following three steps (2a) - (2c) for all qubit sets Qt ⊂ C\Q0 in ascending
order, beginning with Q1. In the measurement round t,

(a) Determine the measurement bases for j ∈ Qt according to

ϕj,meas = ϕ′j,algo (−1)(I(t−1),Fj)S (3.83)

(b) Perform the measurements on the qubits j ∈ Qt. Thereby obtain the measure-
ment results {sj ∈ {0, 1} | j ∈ Qt}.

(c) Update the information flow vector I

I(t) = I(t− 1) +
∑
j∈Qt

sj Fj. (3.84)

The information flow vector I(tmax) after the final measurement round tmax equals the
information vector I, as can be seen from (3.75). At the end of the computation, from I
we can directly read off the result Ix of the computation. Ix is identical to the readout of
the corresponding quantum logic network.

Remark 1. Note that in the first measurement round the byproduct operators created
by the measurements on qubits in Q0 have been propagated backwards to set the angles
{ϕ′j,algo}. There is also a scheme in which the byproduct operators caused by the mea-
surements in the initialization round are propagated forward to set the modified algorithm
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angles {ϕ′jalgo}. In that scheme, the update of the information flow vector I(t) and the rule
to determine the measurement angles ϕj,meas are the same as in the described scheme, given
by (3.83) and (3.84). What is different is the initialization and the appearance of a step of
post-processing. In the modified scheme, in eqs. (3.79) and (3.81) the backward cones bc(k)
are replaced by the respective forward cones fc(k) and Iinit is set to zero. The quantity
which was Iinit in (3.76) is computed as well but now stored as an auxiliary quantity ∆I
until the end of the computation. After the last measurement round tmax, the information
vector I then is obtained by the relation I = I(tmax) + ∆I, which requires the extra post-
processing step and extra memory during the computation. We have chosen to present the
scheme with backward propagation of byproduct operators in order to avoid this superflu-
ous post-processing. This way, the quantity I(t) which steers the computational process
directly displays the result of the computation after the final update to I(tmax).

Remark 2. This comment concerns the choice O = Ω of the cut on which the byproduct
images Fk and Fg are evaluated. In the visualization of the QCC as an implementation of
a quantum logic network the cut Ω plays a distinguished role. The byproduct operators
accumulated at Ω determine how the “readout” measurements have to be interpreted. In
the computational model underlying the QCC, however, the former readout qubits are just
qubits to be measured like any other cluster qubits. Here, the cut Ω is not distinguished.
Due to the invariance (3.21) of the symplectic scalar product (3.20) the byproduct images
Fk, which enter the expression (3.83) for the ϕk,meas directly and via (3.76) and (3.84),
can be evaluated with respect to any vertical cut O through the corresponding quantum
logic network. The information vector I which displays the result of the computation in its
x-part Ix would then be related to the information flow vector after the final measurement
round I(tmax) via I = C(NO→Ω) I(tmax). Thus, the particular vertical cutO = Ω was chosen
just to avoid an additional step of post-processing. The dependence on the cut O would
vanish altogether if one would write the n output bits of the quantum computation in the
form [Ix]i = (I|O, fi|O)S for suitably chosen {fi ∈ V , i = 1, .., n}, e.g. for the case O = Ω,
f1 = (0, .., 0; 1, 0, .., 0)T , f2 = (0, .., 0; 0, 1, 0, .., 0)T , and the other fi, i ≤ n accordingly.

3.4.3 Proof of the model

In this section it is shown that if we run the QCC according to the scheme described in
Section 3.4.2, we obtain the same result as in the corresponding quantum logic network.
This requires to prove that (a) one does indeed choose all the measurement angles correctly
and (b) obtains at the end of the computation the result Ix, the x-part of the information
vector I as given in (3.73).

To show point (b), we use (3.76), (3.82) and (3.84) and obtain for the information
vector

I =
∑

k∈C\Q0,z

κkFk +
∑
g∈N

Fg +
∑

k∈Q0

skFk +
∑

k∈Stmax
i=1 Qi

skFk

which coincides with (3.73). This ensures that we obtain the right vector I at the end of
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the computation, provided the measurement bases were chosen appropriately, as required
for (a). This is checked below.

First we observe that the measurement angle ϕj,meas and the network angle ϕj,qln are
for all j ∈ Q(1) related in the following way

ϕj,meas = (−1)ϑj ϕj,qln , (3.85)

with
ϑj =

∑

k∈C|j∈fc(k)

sk +
∑

k∈C\Q0,z |j∈fc(k)

κk +
∑

g∈N|j∈fc(g)

1 mod 2. (3.86)

Why does the pair of equations (3.85), (3.86) hold? As can be seen from the propagation
relation for rotations (2.52), the network and the measurement angle of a qubit j ∈ Q(1)

can differ only by a sign factor ±1 and can therefore always be related as in (3.85). The
first and the third sum in (3.86) follow from the definition of the forward cones of the
cluster qubits and of gates in Section 3.2.2. The measurement angle at j acquires a factor
(−1)sk if j ∈ fc(k) and a factor of (−1) for each gate g with j ∈ fc(g).

Now, we rewrite the quantity ϑj in the following way

ϑj =
∑

k∈C|j∈fc(k)

sk +
∑

k∈C\Q0,z |j∈fc(k)

κk +
∑

g∈N|j∈fc(g)

1 mod 2

=
∑

k∈C|j∈fc(k)

sk +
∑

k∈C\Q0,z |j∈fc(k)

κk +
∑

g∈N|j∈fc(g)

1 +

+2


 ∑

k∈Q0|j∈bc(k)

sk +
∑

k∈C\Q0,z |j∈bc(k)

κk +
∑

g∈N|j∈bc(g)

1


 mod 2

=
∑

k∈Q0|j∈fc(k)∨j∈bc(k)

sk

︸ ︷︷ ︸
S1

+
∑

k∈Q(1)|j∈fc(k)

sk

︸ ︷︷ ︸
S2

+
∑

k∈Q0|j∈bc(k)

sk

︸ ︷︷ ︸
S3

+ (3.87)

+
∑

k∈C\Q0,z |j∈fc(k)∨j∈bc(k)

κk

︸ ︷︷ ︸
S4

+
∑

k∈C\Q0,z |j∈bc(k)

κk

︸ ︷︷ ︸
S5

+

+
∑

g∈N|j∈fc(g)∨j∈bc(g)

1

︸ ︷︷ ︸
S6

+
∑

g∈N|j∈bc(g)

1

︸ ︷︷ ︸
S7

mod 2.

We now discuss the seven terms S1, .. , S7. All sums are evaluated modulo 2.
Term S1 of (3.87):

S1 =
∑

k∈Q0|j∈fc(k)∨j∈bc(k)

sk =
∑

k∈Q0

sk (Fk,Fj)S, (3.88)

where the last identity holds by the cone test (3.25).
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Term S2 of (3.87):
Let be j ∈ Qt and k ∈ Qi. Qubit j can only then be in the forward cone of k, j ∈ fc(k), if
i < t. Hence

S2 =
∑

k∈Q(1)|j∈fc(k)

sk

=
∑

k∈
t−1S
i=1

Qi|j∈fc(k)

sk

=
∑

k∈
t−1S
i=1

Qi

sk (Fk,Fj)S. (3.89)

In (3.89) the last line again follows by using the cone test (3.25).
Term S3 of (3.87):

S3 =
∑

k∈Q0|j∈bc(k)

sk = η′j. (3.90)

This equity follows by the definition of η′j in (3.81). Thus, the term S3 is the contribution
to ϑj coming from the first measurement round where the algorithm angles {ϕj,algo} are
changed to the modified algorithm angles {ϕ′j,algo}.

Term S4 of (3.87):

S4 =
∑

k∈C\Q0,z |j∈fc(k)∨j∈bc(k)

κk =
∑

k∈C\Q0,z

κk (Fk,Fj)S , (3.91)

which follows by the cone test (3.25).
Terms S5 + S7 of (3.87):

S5 + S7 =
∑

k∈C\Q0,z |j∈bc(k)

κk +
∑

g∈N|j∈bc(g)

1 = ηj, (3.92)

via the definition (3.79) of the ηj.
Finally, term S6 of (3.87):

S6 =
∑

g∈N|j∈fc(g)∨j∈bc(g)

1 =
∑
g∈N

(Fg,Fj)S , (3.93)

which follows by the cone criterion (3.28) for gates.
Now we combine these seven terms S1, .. , S7. By (3.87) - (3.93) we obtain

ϑj = ηj + η′j +
∑
g∈N

(Fg,Fj)S +
∑

k∈C\Q0

κk (Fk,Fj)S +
∑

k∈
t−1S
i=0

Qi

sk (Fk,Fj)S

= ηj + η′j + (I(t− 1),Fj)S. (3.94)
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The last line follows from the definition (3.74) of the information flow vector. If we consider
the relations (3.78), (3.80) and (3.85) between the angles ϕj,algo, ϕ

′
j,algo and ϕj,meas, we find

ϕj,meas = (−1)ϑj−ηj−η′jϕ′j,algo. (3.95)

Now we insert (3.94) into (3.95) and obtain

ϕj,meas = ϕ′j,algo (−1)(I(t−1),Fj)S ,

which proofs that the assignment of the measurement angles (3.83) is correct, and thereby
concludes the proof of the computational model described in Section 3.4.2.

3.5 Logical depth and temporal complexity

The logical depth has, to our knowledge, only been defined in the context of quantum logic
networks, but it can straightforwardly be generalized to the QCC. In networks one groups
gates which can be performed in parallel to layers. The logical depth of a quantum logic
network then is the minimum number of its layers. Similarly in case of the QCC, one can
group the cluster qubits which can be measured simultaneously to sets Qt. There, the
logical depth of the QCC-realization of an algorithm is the minimal number of such sets.

Since the one-qubit measurements on the cluster state mutually commute, one may be
led to think that they can always be performed all in parallel. They could, but then the
measurements would in general not drive a deterministic computation.

In the following, we will denote the logical depth in the context of the QCC by D and
the logical depth of a quantum logic network by DN .

3.5.1 D = 2 for circuits of CNOT gates and U(1)-rotations

In Section 2.2.9 we have already seen that the whole Clifford part of a circuit can be per-
formed in a single step of measurements, which is not obvious from the network perspective.
In this section we give a further example for a QCC-circuit with constant logical depth.
Specifically, we prove that the logical depth D of a circuit composed of either CNOT gates
and rotations about the x-axis or of CNOT gates and rotations about the z-axis is D = 2.
This set of circuits contains all circuits of diagonal 2-qubit gates as a special case. For
circuits of diagonal 2-qubit gates we can compare our result D = 2 to the best known
result [56] for quantum logic networks where the logical depth scales logarithmically in the
number of gates.

Here we give the proof for circuits of CNOT gates and rotations about the z-axis
Uz(α) = e−iα σz

2 . The elementary gates used are (a) the rotations about the z-axis Uz(α) =
e−iα σz

2 , and (b) the CNOT gate between neighbouring logical qubits. The realization of
the rotation Uz is depicted in Fig. 2.2. Of the CNOT gate between neighbouring qubits we
construct the swap gate between neighbouring qubits and by that the general CNOT gate,
as in Section 2.2.9. The strategy to implement the circuit is then: (1) to measure all those
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qubits on C which are to be measured in the eigenbases of σx, σz or σy; and (2) to measure
the remaining qubits, i.e. the ones which are measured in a direction in the x− y-plane.

The result that the measurements in step (1) can be performed in one step has already
been shown in Section 2.2.9. It remains to be shown that the measurements in the tilted
measurement directions of step (2) can also be performed in parallel. Let j and l be two
cluster qubits which are measured in a tilted basis in step 2 in order to implement the
rotations. Using (3.8) one finds

D > 2 =⇒ ∃ j, l ∈ Q(1) : l ≺ j (that is, Q(2) 6= ∅). (3.96)

Further holds
l ≺ j =⇒ ∃ k ∈ Q(1) : j ∈ fc(k), (3.97)

because the strict partial ordering “≺” is generated by the forward cones, i.e. l ≺ j ⇐⇒
either j ∈ fc(l), or ∃(k1, . . . kr) : k1 ∈ fc(l) ∧ {

ks ∈ fc(ks−1)| 2 ≤ s ≤ r
} ∧ j ∈ fc(kr).

Moreover, from the criterion (3.25) one derives

j ∈ fc(k) =⇒ (Fj,Fk)S = 1. (3.98)

Now, by putting the implications (3.96), (3.97) and (3.98) together we obtain

D > 2 =⇒ ∃ j, k ∈ Q(1) : (Fj,Fk)S = 1, (3.99)

which we negate to obtain

∀j, k ∈ Q(1) : (Fj,Fk)S = 0 =⇒ D ≤ 2. (3.100)

Next it is proved that (Fj,Fk)S = 0 does indeed hold for all j, k ∈ Q(1).
A measurement of a qubit at site k , which is part of the implementation of a rotation

about the z-axis (central qubit 3 in Fig. 2.2c), generates a byproduct operator (Uk)
sk =

(σz)
sk . This can be seen from equations (2.24), (2.28) and (2.29). Note that in Fig. 2.2c,

qubits 1,2,4 are measured in the σx-eigenbasis, they belong to the set Q0. Now let be i the
number of the logical qubit on which the rotation Uz(ϕk) is performed by the measurement
of cluster qubit k. Further, let O be a vertical cut through the network simulated by the
QCC. O intersects each qubit line only once. In particular, it shall intersect the qubit line
i just at the output side of the rotation Uz(ϕk). Thus, the image Fk|O of Uk on the cut O
is

Fk|O =




0

Fkz|O



, with Fkz,l = δil. (3.101)

What we see from (3.101) is that Fkx|O = 0. Be NO→Ω the part of the network N which
is located between the two cuts O and Ω. The byproduct image Fk corresponding to Uk

is then given by
Fk ≡ Fk|Ω = C(NO→Ω)Fk|O. (3.102)
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Figure 3.3: Network for a diagonal gate composed of rotations Uz and CNOT gates.

The only gates that contribute to C(NO→Ω) are the CNOT gates, as described in section
3.2.4. The propagation matrices for CNOT gates (3.19) have block-diagonal form. Hence,
using (3.14) the propagation matrix for the network NO→Ω has block-diagonal form

C(NO→Ω) =




Cxx(NO→Ω) 0

0 Czz(NO→Ω)



. (3.103)

From (3.101), (3.102) and (3.103) it follows that the x-part of the byproduct image vector
Fk vanishes for all k

[Fx]k = 0 ∀k ∈ Q(1). (3.104)

Hence by the definition of the symplectic scalar product (3.20), we obtain (Fj,Fk)S = 0
for all j, k ∈ Q(1). This proves via (3.100) D ≤ 2. The measurements to implement the
one-qubit rotations can thus all be performed at the same time. In (3.100) the case D = 1
can be easily be excluded for all interesting cases such that only D = 2 remains. This
concludes the proof of D = 2 for circuits of CNOT gates and rotations of the form e−iϕ σz

2 .
The proof for circuits of CNOT gates and rotations e−iϕ σx

2 runs analogously. Now let us
discuss the special case of circuits composed of diagonal two-qubit gates. A diagonal gate
Gd in the computational basis is of the form

Gd =




eiϕ1

eiϕ2

eiϕ3

1


 , (3.105)

modulo a possible global phase which is not relevant.

The network of rotations about the z-axis and of a CNOT gate shown in Fig. 3.3 realizes
a general diagonal two-qubit gate. In order to obtain the angles ϕ1, ϕ2 and ϕ3 specifying
the diagonal gate Gd in (3.105), one chooses the following angles for the three z-rotations
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in this network

α =
1

2
(−ϕ1 − ϕ2 + ϕ3),

β =
1

2
(−ϕ1 + ϕ2 − ϕ3),

γ =
1

2
(−ϕ1 + ϕ2 + ϕ3).

(3.106)

Thus, a circuit of diagonal two-qubit gates can also be regarded as a circuit of z-rotations
and CNOT gates. Therefore we find D = 2 for circuits of diagonal two-qubit gates on
the QCC. This result can be compared to the best known upper bound [56] for quantum
logic networks where the logical depth is of the order O(log nG) with nG the number of
two-qubit gates.

3.5.2 The logical depth D is a good measure for temporal com-
plexity

In this section, we discuss the temporal resources consumed by a QCC-computation at run-
time. Specifically, we will express the computation time as a function of the logical depth.
Note that additional temporal resources are required for the design of the QCC-circuit
which will be discussed in the next section.

The computational model described in section 3.4.2 consists of an alternating series of
measurement rounds and classical processing of the thereby obtained measurement results.
The classical processing contributes to the duration of the computation and will therefore
enter into the relation between the computation time and the logical depth. For the
computation time, this results in a correction logarithmic in the number n of logical qubits
involved, and thus the computation time is no longer the logical depth times a constant. For
all practical purposes, however, this logarithmic correction is small compared to the time
required for the genuine quantum part of the computation, consisting of the measurements.

Let ∆Q be the time required to perform the simultaneous measurements in one mea-
surement round and ∆cl the time required for the elementary steps of classical processing:
say, addition modulo 2 or multiplication of two bits. The time Tcl(t) required for classical
processing after each measurement round has two contributions. First, the time Tcl,I(t) to
update the information flow vector I(t) and second, the time Tcl,±(t) to determine the signs
of the measurement angles of all measurements in the next round. The total computation
time Tcomp is given by

Tcomp = D∆Q +
D−1∑
t=0

Tcl,I(t) + Tcl,±(t) (3.107)

The update of the information vector I(t) according to (3.84) can be done for all 2n
components in parallel. The update I(t − 1) −→ I(t) following measurement round t
requires the time that it takes to add up ‖Qt‖ bits modulo 2. As the drawing below
illustrates, Tcl,I(t) is logarithmic in ‖Qt‖.
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The number of qubits in the set Qt is bounded from above by ‖C‖ since Qt ⊂ C. Here, C
is any cluster sufficiently large to carry the network to be simulated. Thus

Tcl,I(t) ≤ ∆cl log ‖C‖. (3.108)

To determine the proper measurement angle ϕk,meas for the measurement on qubit k ∈
Qt+1 in the next measurement round requires, according to (3.83), the evaluation of the
symplectic scalar product (I(t), Fk)S. This requires 1 step for multiplication and log 2n
steps for addition modulo 2. Thus,

Tcl,± = ∆cl (log n+ 2) . (3.109)

Combining (3.107), (3.108) and (3.109), the total computation time Tcomp is bounded from
above by

Tcomp ≤ D∆Q

(
1 +

∆cl

∆Q

[log ‖C‖+ log n+ 2]

)
. (3.110)

We see that, although the computation time Tcomp is linear in the logical depth D, it
contains contributions logarithmic in the number n of logical qubits and in the cluster
size ‖C‖. These logarithmic contributions are, however, suppressed by the ratio between
the characteristic time for classical processing and the characteristic time for the von-
Neumann measurements, ∆cl/∆Q. This ratio can, in practice, be very small. Therefore,
the logarithmic corrections become important only in the limit of large clusters and large
n. As will be argued below, even in the regimes where a quantum computer is believed to
become useful, say n ≈ 105, the logarithmic corrections have only a minor influence on the
total computation time.

We now eliminate the dependence of the total computation time on the cluster size
‖C‖. For this we assume that on the QCC we simulate a quantum logic network with the
network logical depth DN . Now, we give an upper bound on ‖C‖ as a function of n and
DN . As displayed in Fig. 2.2, a single CNOT gate has height 3 and width 6 on the cluster
C. Here we do not count the output qubits of the gates since they also form the input
qubits of the gates in the next slice. As in Fig. 2.2, the rotation has height 1 and width 4, if
the output qubit is again not counted for the width. The wires for the logical qubits on the
cluster can be arranged with distance 2. Each set of parallelized gates will at most require
a slice of width 6 on the cluster. The circuit as a whole requires an additional slice of width
1 for the output. A swap gate that is composed of three CNOT gates, requires an array of
3 × 18 qubits on the cluster. If a general CNOT gate on the cluster were composed of a
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next-neighbour CNOT gate and swap gates (in practice it is not), then it would require at
most an array of [height] × [width] =[2n−1] × [18(n−2)+6] qubits. Hence, a CNOT gate
would, to leading order, consume at most 36n2 cluster qubits. Each rotation would require
at most –in the worst case where on the network it could not be performed in parallel with
other gates– a slice of width 4 on the cluster, so it consumes, to leading order, at most 8n
cluster qubits. The total number of gates in the network is bounded from above by nDN .
The simulation of each gate costs at most max(36n2, 8n) = 36n2 cluster qubits. Hence,
the size of the required cluster is bounded by

‖C‖ ≤ 36n3DN . (3.111)

If we now use the assumption about a good quantum algorithm that the logical depth
scales polynomially in the number of qubits n,

DN = c np, (3.112)

and insert (3.111) and (3.112) into (3.110), we obtain

Tcomp ≤ D∆Q

([
1 +

∆cl

∆Q

(4 + log 9c)

]
+

∆cl

∆Q

(p+ 4) log n

)
. (3.113)

From a practical point of view, we find that the logarithmic corrections –even for numbers
n of logical qubits in the range of 105– play a minor role since they are suppressed by the
ratio ∆cl/∆Q. We could plug in some typical numbers, say ∆Q = 1 µs, ∆cl = 1 ns, p = 3
and n = 105, to obtain ∆cl/∆Q (p+ 4) log n ≈ 0.12 (or ≈ 0.24 for n = 1010).

The spatial overhead ‖C‖ is polynomial in the number n of logical qubits. But, if one
adopts this more practical viewpoint one may not be satisfied by the mere result that
the spatial overhead scales polynomially, but might want to know what the scaling power
actually is. Above we found that ‖C‖ scales with the (p+3)th power of n. However, in the
above argument, we focused on the computation time where the precise value of exponent
for the spatial scaling did not play an important role, and thus have been extremely
wasteful with spatial resources. A more careful discussion yields a more favorable scaling
of the spatial overhead.

From a strict scaling point of view, we find in (3.113) that the computation time is no
longer equal to the logical depth D times a constant, but there are log n -corrections due
to the classical processing. This is, as the above numbers illustrate, of little relevance for
practical purposes. The classical processing can be parallelized to such a degree that it
increases the total computation time only marginally.

3.5.3 Temporal complexity of computing the circuit layout

The time that it takes for a classical computer (i.e. a compiler) to translate an algorithm
into a machine-specific set of operations (i.e. the machine code) is usually not regarded as
to count for the temporal complexity of that algorithm. For quantum logic networks this
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viewpoint is certainly justified because there the complexity to compute the circuit layout
is well understood and known not to exceed the complexity of the quantum logic network
itself.

A similar result needs to be established for the QCC. We must exclude the possibility
that for the QCC the algorithmic complexity of a quantum computation is shuffled from
the genuine quantum part of the computation to the classical pre-processing, and that this
classical pre-processing may be exponentially hard. As will be shown below, such a case
does not occur. All the classical pre-processing can be done in polynomial time.

To see this, we assume that the quantum algorithm on n logical qubits is given as a
sequence of ‖N‖ elementary gates. For good quantum algorithms, ‖N‖ is polynomial in
n, as is ‖C‖, the number of physical qubits in the cluster C required to run the algorithm
(see Section 3.5.2).

The layout of the measurement pattern requires to assign ‖Q0‖ measurement bases and
‖C\Q0‖ angles. Creating the pattern is for itself not a problem since it can be obtained by
patching together the measurement patterns of the elementary gates which are available
in block form. The temporal complexity for this step is thus O(‖C‖).

To obtain the byproduct images we introduce ‖N‖ vertical cuts Oi, i = 1, .., ‖N‖ to
the network, one after each gate (such that O‖N‖ = Ω) and compute the 2n× 2n-matrices
C(NOi→Ω) for i = 1, .., ‖N‖− 1, starting with i = ‖N‖− 1. The operational effort for this
is of the order O(n3‖N‖). By use of these matrices the byproduct images for cluster qubits
k ∈ C\Q0,z can now be obtained via (3.13), which requires O(n2) elementary operations
per byproduct image. The way to obtain the byproduct images Fg of the gates is the
same. For k ∈ Q0,z\O at most four byproduct images have to be added in (3.72), which
requires O(n) operations. The computation of Fk for k ∈ O is trivial. Thus, to compute
a byproduct image requires at most O(n2) operations per cluster qubit or gate such that
the complexity to compute all of them is at most O (n2(‖C‖+ ‖N‖)).

The backward- and forward cones of the cluster qubits k ∈ C are computed using the
temporal ordering of gates in a sequence representing the quantum logic network and the
cone test (3.25). The number of cone tests that have to be performed in each case is
‖N‖(‖N‖ − 1)/2 where the computational effort for each test scales like O(n). Thus, the
complexity of this step is O(n‖N‖2).

The forward cones generate the anti-reflexive semi ordering “≺”. The semi ordering
can be computed from them in O(‖C‖5) steps.

For each set Qt there have to be ‖Q(t)‖ ≤ ‖C‖ test of the relation j ≺ k, j ∈ Q(t)

performed to check whether some qubit k ∈ Q(t) is in Qt. Also, ‖Q(t)‖ qubits have to be
checked for each Qt. At most ‖C‖ sets Qt exist such that the operational effort to obtain
the these sets is O(‖C‖3).

As far as the stated upper bounds are conclusive, it looks as if the computation of
the anti-reflexive semi ordering is the toughest part. However, as elementary a relation
between the cluster qubits “≺” is, for the conversion of a quantum logic network into a
QCC-algorithm it needs not be computed. Please note that the semi ordering is finally only
needed to compute the sets Qt via (3.8). But instead of computing “≺” from the forward
cones and the sets Qt from “≺”, the sets Qt can also be computed from the forward cones
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directly. For this, please note that ∃j ∈ Qt| j ≺ k ∈ Q(t) ⇐⇒ ∃j′ ∈ Qt| k ∈ fc(j′).
The direction “⇐=” is obvious with j = j′. The opposite direction, “=⇒”, holds by an
argument analogous to the one justifying (3.97). In fact, statement “=⇒” is the same as
(3.97) with Q(1) replaced by Q(t). Thus, eq. (3.8) can be replaced by

Qt =
{
k ∈ Q(t)| ¬∃j′ ∈ Q(t) : k ∈ fc(j′)

}
. (3.114)

To set the algorithm angles via (3.78), (3.79) requires at most ‖C‖ + ‖N‖ additions per
angle and there are at most ‖C‖ such angles. Hence, in total it takes O (‖C‖(‖C‖+ ‖N‖))
operations to set them. Finally, to initialize the information flow vector via (3.76) requires
O (n(‖C‖+ ‖N‖)) operations. Thus we see that all classical processing requires only a
polynomial overhead of elementary operations and can therefore be done in polynomial
time.

3.6 Quantum algorithms and graphs

In this section we relate QCC-algorithms to graphs. We do this by considering non-universal
graph states suited for the specific algorithm in question. For the QCC, the Clifford part
of each algorithm can be removed. We show that a mathematical graph comprises all the
information that needs to be kept of the Clifford part.

While the network formulation of a quantum algorithm is given as a sequence of quan-
tum gates applied to a fiducial input state, the QCC-version of a quantum algorithm is
specified by a measurement pattern on the universal cluster state plus the structure [10]
for the processing of the measurement outcomes.

To motivate the considerations of this section, note that the measurement pattern is, in
the simplest case, just a copy of the network layout to the substrate cluster state, imprinted
by the measurements. As such it contains information about the precise location of the gate
simulations and about the way the “wires” connecting the gates are bent around. These
are all details of the realization of an algorithm but do not belong to the description of the
algorithm itself. Thus, the measurement pattern introduces a large amount of redundancy
into the description of a QCC-algorithm. This redundancy may be reduced to a large extent
by allowing for non-universal, algorithm-specific quantum resources.

Clearly, at this point one has to specify how special the algorithm-specific resource
is allowed to be. Obviously it would make no sense to take the quantum output of the
entire network as the required quantum resource and to regard the subsequent readout
measurements as the algorithm. Here, we allow for any graph state [53], (2.20) as the
quantum resource. Graph states are easy to create, e.g. via unitary networks or from
cluster states via measurements.

To allow for an algorithm-specific graph state as the quantum resource of a QCC-
computation reduces the redundancy of both the description and the realization of a quan-
tum algorithm. This can easily be seen from the material presented in Section 2.2.3. All
the cluster qubits q ∈ C\CN can be get rid of either by measuring them in the σz-eigenbasis
or equivalently by not placing them initially into their positions at all. The remaining
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state on the sub-cluster CN is again a cluster state. Hence it is also a graph state. It is less
redundant and no longer universal.

But we can go further. Not only the qubits measured in the σz-eigenbasis may be
removed from the cluster but instead all those qubits of which one of the Pauli operators
σx, σy or σz is measured, i.e. all the qubits which form the set Q0. The state of the
unmeasured qubits that emerges after the measurement of the cluster qubits in Q0 is again
(local equivalent to) a graph state.

This may be seen as follows. First note that the operators σ
(a)
x

⊗
b∈V

(
σ

(b)
z

)Γab

which

appear in (2.20) form a stabilizer of the state |φ{κ}〉G. The generator of the stabilizer
contains |C| elements for a state of |C| qubits. After all the qubits q ∈ Q0 have been
measured, the resulting state |Ψ〉C\Q0 of the |C\Q0| unmeasured qubits is again described
by a stabilizer of the form

|C\Q0|⊗
i=1

(
σ(i)

x

)Xa,i
(
σ(i)

z

)Za,i |Ψ〉C\Q0 = ±|Ψ〉C\Q0

∀a = 1 .. |C\Q0|,
(3.115)

with two |C\Q0| × |C\Q0|-matrixes X and Z, for which Xa,i, Za,i ∈ {0, 1}. The |C\Q0| ×
2|C\Q0|-compound matrix (X|Z) [52] is called the generator matrix of the stabilizer for
|Ψ〉C\Q0 . The state |Ψ〉C\Q0 is uniquely determined by the generator of its stabilizer.

The state |Ψ〉C\Q0 can thus be regarded as a [|C\Q0|, 0, d]-stabilizer code, with the
distance d not specified. This state fulfills the assumptions of Theorem 1 in [57]. The
cited theorem states that any stabilizer code over the alphabet A = Fpm is [local unitary]
equivalent to a graph code.

We now specialize to the case of our interest, A = F22 . It follows from the above
quoted theorem that the state |Ψ〉C\Q0 specified in (3.115) is local unitary equivalent
to a graph state |φ{κ}〉G(C\Q0,EC\Q0

) (2.20). That is, the state |Ψ〉C\Q0 obtained in a
QCC-computation after the first round of measurements may as well be obtained from
a graph state |φ{κ}〉G(C\Q0,EC\Q0

) via local unitary transformations; and the subsequent
measurements may be performed as usual. Alternatively, one may use the graph state
|φ{κ}〉G(C\Q0,EC\Q0

) directly, only modifying the measurement bases instead of performing
the local rotations prior to the measurements. Thus, in a QCC-computation with a special
graph state as the quantum resource and the first measurement round omitted, the way of
processing the classical information is the same as in a QCC-computation with a universal
resource and the first measurement round performed.

The graphs associated with states (3.115) are in general not unique [57]. A constructive
way to obtain graphs on C\Q0 from G(C, EC) and the measurement bases of the qubits in
Q0 has been described in [58].

Now note that the measurement of the qubits in Q0 realize the Clifford part of a
quantum circuit. The fact that we can reduce the quantum resource by these qubits
means that we can remove from each quantum algorithm its Clifford part. This represents,
in a way, an extension to the Knill-Gottesman-Theorem [21], stating that a quantum
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computation that consist only of quantum input state preparation in the computational
basis, unitary gates in the Clifford group, measurement of observables in the Pauli group,
and gates in the Clifford group conditioned on the outcomes of such measurements, may
be simulated efficiently classically and thus requires no quantum resources at all.

With only a single non-Clifford operation in the circuit, such as a one-qubit rotation
about most axes and angles, the efficient classical formalism upon which the Gottesman-
Knill theorem rests can no longer be applied. The QCC-construction, on the other hand,
is not affected by this. Each quantum network algorithm in question may be reduced by
its Clifford part. Only the non-Clifford gates require quantum resources. The price is
that the universal quantum resource, the cluster state, is changed into a non-universal,
algorithm-specific resource –a graph state (2.20)– on fewer qubits. The Clifford part of the
network algorithm specifies the corresponding graph.

In conclusion, instead of describing a quantum algorithm as a network of gates applied
to some fiducial input state, a quantum algorithm may (arguably more effectively) be
characterized by a graph specifying the quantum resource and the structure [10] for the
processing of the measurement outcomes.

3.7 Discussion

The discussion about the logical depth of certain algorithms with the QCC in Section 3.5
showed that there exist ways of information processing with the QCC which cannot be
explained adequately in network model terms. This made a computational model appro-
priately describing the QCC desirable. The computational model underlying the QCC that
we found does not seem to have much in common with the network model. It is based on
objects of a different sort which require an interpretation. In this section, we attempt to
clarify the role of the binary valued information flow vector I(t) and that of the stepwise
measured quantum state.

What is the role of the information flow vector I(t)? In every computational step
except the final one the information flow vector I(t) is completely random. So one might
ask whether it contains information at all. It does, since in every step except the last one it
tells what has to be done next. After the final computational step at time tmax the quantity
I(tmax) contains the result of the computation. Thus, the quantity I(t) has a meaning in
every computational step. For a “computational meaningful” quantity we have given a
precise criterion, the invariance of the respective defining relation under the set of symmetry
transformations (3.47, 3.48). In this way, we have also clarified the possibly puzzling
observation that a quantity might be computationally meaningful despite its random value.
The information to steer a QCC-computation and to read off the computational result is all
comprised by the information flow vector I(t). In this sense, it represents the algorithmic
information in the described scheme of quantum computation.

What is the role of the stepwise measured quantum state? To see that explicitly, let us
consider the scenario where a quantum computation is halted in the middle and continued
at a later time by another person who only knows which steps of the computation are left
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to perform but does not know what has been done so far. In analogy to a teleportation
protocol where both the result from the Bell measurement and the quantum state at the
receivers side are required to reconstruct the initial state, the halted computation can be
successfully completed only if both pieces –the intermediate information flow vector I(ti)
and the half-measured quantum state– are stored until the computation proceeds. Thus,
the quantum state cannot be neglected just because it does not appear in the formal de-
scription of the computational model. The quantum correlations in the stepwise measured
state are what basically enables the described way of quantum information processing.
However, the role of this state is a passive one. It serves as a resource that is used up
during the course of computation.

Let us at the end of this discussion come back to the role which the randomness of the
individual measurement results plays for the QCC. It may surprise that a set of classical bi-
nary numbers represents the algorithmic information in a scheme of quantum computation.
In the network model the quantum state (of the quantum register) is usually considered
to represent the processed information. For the QCC, the situation is different. There,
the randomness of the individual measurement results makes it necessary to store classical
steering information. The need to process this information has called for a novel informa-
tion carrying quantity. What, in a network-like description of the QCC, has been regarded
as a mere byproduct turns out to be the central quantity of information processing with
the QCC.
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Chapter 4

Fault-tolerant quantum computation
with the QCC

In this chapter we prove that the QCC can be operated fault-tolerantly. Further, we
describe the concept of checksums for the QCC which may become an element in future
efficient techniques for fault-tolerant QCC-computation.

We start with a brief review on fault-tolerant quantum computation in the network
model in Section 4.1. In Section 4.2 we derive the error model for the physical errors on
which we will base the subsequent investigation. We also expect this error model to be more
generally useful. In Section 4.3 we give the proof that fault-tolerant QCC-computation is
possible. The technique used is to trace back the fault-tolerance of the QCC to that of a
network quantum computer with next-neighbor and local gates [44, 64]. The purpose of
the fault-tolerance proof presented here is to demonstrate that there exist nonzero error
thresholds for the QCC. In Section 4.4 we describe how checksums arise in the context of
the QCC and how they reduce the effect of noise. We illustrate the concept of checksums
in the example of an encoded CNOT-gate for the seven qubit Steane code.

4.1 Fault-tolerant quantum computation in the net-

work model

In the realization of a quantum computer as a physical system one is, among other things,
faced with the following problem: One wants the quantum system used for computation
to be well isolated from the environment, since the interaction with environmental degrees
of freedom introduces decoherence. This would drive the quantum computer towards the
classical regime, thereby degrading its power. On the other hand, the system cannot
be so well isolated that it could not be accessed anymore by control fields to steer the
computation. In practice, any quantum computation will therefore be erroneous where
both the interaction with the environment and imperfect operation contribute to the errors.

A priori, the regimes of perfect and imperfect operation are different, however small
the error per gate cycle is. For any fixed values of the gate and memory error rate,
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the quantum register will end up close to a totally depolarized state if the computation
only is long enough. Therefore it was a great discovery from the perspective of both the
practical construction of a quantum computer and the theory of quantum computation
that quantum errors can be corrected, and further that any quantum computation can be
stabilized against the degradation of quantum coherence, provided the error rate is below
a certain threshold. Fault-tolerant quantum computation is thus possible.

Specifically, it was shown by Calderbank and Shor [35], [36], and by Steane [37, 38]
that logical qubits can be protected from errors if they are encoded in a larger number of
physical qubits. Upon these encoded qubits one repeatedly performs a recovery operation.
Therein, one measures a number of observables which reveal no information about the
encoded state but identify the possible “error” that the encoded qubit has been affected
by. It has to be taken into account that the recovery procedure may itself introduce
errors. The error is corrected in a subsequent multi-local unitary operation, conditioned on
the measured error syndrome. Fault-tolerant quantum computation is more complicated.
If the computation is performed in a sequence of steps of encoding, decoding and gate
operation, then the logical qubits are unprotected during the action of the gate, which will
lead to unrecoverable errors. Instead, the gates need to be performed on encoded qubits.
These encoded gates will also introduce errors. Therefore, the encoded gates and the error
recovery procedures have to be constructed in such a way that the errors introduced by
the gate operations and the memory errors can be identified and accounted for. Encoded
gates and recovery procedures allowing for fault-tolerant quantum computation have been
given by Shor [40] and by Gottesman [41, 42].

In these papers it was established that fault-tolerant quantum computation is possible
in principle. The requirements for the realization of a quantum computer are, nevertheless,
extremely demanding. The error thresholds obtained in proofs for fault-tolerant quantum
computation are at the level of 10−6 for both the gate- and memory error [43, 44]. However,
in simulations it was found that error thresholds may be as high as 10−3 [50, 65]. Recently
it was shown by Dür and Briegel [66], using entanglement purification, that the thresholds
for fault-tolerant quantum computation can be made to depend solely on the quality of
local operations on 25-dimensional quantum systems. High fidelity interaction between
these systems can be generated from extremely noisy interaction via purification of Bell
states followed by teleportation.

As has been shown by Kitaev [67], a two-dimensional quantum system with anyonic
excitations can be considered as a quantum computer. Unitary transformations are per-
formed by moving the excitations around another, and measurements by fusion of pairs of
anyons. This form of quantum computation is fault-tolerant by its physical nature: the
ground state of the system coincides with the protected code space and is separated from
the lowest excited states by a finite energy gap. The quantum codes naturally exhibited
by these systems are called surface codes and have been studied further e.g. in [68] and
[69]. In [68] procedures for encoding, measurement and fault-tolerant universal quantum
computation with surface codes are discussed, and an estimate for the error threshold of
about 10−4 is given. Further, it is shown that the capabilities of the system to store quan-
tum information can be related to a three-dimensional Z2-gauge theory on a lattice that
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exhibits an ordered to disordered phase transition at a non-zero critical value of the error
rate. This phase transition has been analyzed in detail in [69].

Let us now give a brief account on techniques for quantum error correction and fault-
tolerant quantum computation within the network model.

Coding and quantum error correction. The main idea is to protect quantum infor-
mation from decoherence by coding, like in the classical case. That is, via an encoding
operation Uenc one encodes a number k of qubits in a larger number n of qubits,

|ψ〉1..k ⊗ |0...0〉k+1..n −→ Uenc |ψ〉1..k ⊗ |0...0〉k+1..n = |Ψ〉1..n. (4.1)

Therein, |ψ〉1..k is the bare and |Ψ〉1..n the respective encoded state. The encoded multi-
qubit state may be decoded at the end of the storage process via the inverse of the coding
transformation, Udec = Uenc

−1. While being encoded, the protected quantum state may be
monitored in such a way that information can be obtained about which errors have occurred
without affecting the encoded information. The effect of noise accumulating over a fixed
time interval T , say, may be described by a superoperator E acting on the density operator
representing the encoded quantum state. The error channel E in its Kraus representation
[70] reads

ρ1..n −→ E(ρ1..n) =
∑

i

Eiρ1..nE
†
i , (4.2)

with the trace-preserving condition

∑
i

E†
iEi = 1l. (4.3)

Therein, the Kraus operators Ei form the set of errors E = {Ei}.
To undo the action of the error channel on the encoded data, a recovery operation R

is subsequently applied,

ρ′1..n −→ R(ρ′1..n) =
∑

s

Rsρ
′
1..nR

†
s, (4.4)

where the operators Rs are again constrained by a trace-preserving condition

∑
s

R†sRs = 1l. (4.5)

For a proper recovery operation R for the set E of errors we require that

R ◦ E(|Ψ〉〈Ψ|) = |Ψ〉〈Ψ|, (4.6)

where |Ψ〉 is an arbitrary state in the code space. That is, the recovery superoperator R
undoes E if E is acting on the code space.

Clearly, the choice of the recovery procedure depends on the set E of expected errors,
and not for every error superoperator E there will exist a procedure R to invert it. It
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may now occur that an error superoperator E ′ realized in nature is very close such a noise
superoperator E which is invertible on the code space. If we apply the recovery procedure
R after the action of E ′, we may still get a high success probability for the recovery. Higher
than if we had done nothing.

For an error channel E(E) to be correctable there exist the following conditions [39]:

〈Ψi|E†
aEb|Ψj〉 = 0 ∀i 6= j, ∀Ea, Eb ∈ E, |Ψi〉, |Ψj〉 ∈ HC , (4.7a)

〈Ψi|E†
aEb|Ψi〉 = 〈Ψj|E†

aEb|Ψj〉 ∀Ea, Eb ∈ E, |Ψi〉, |Ψj〉 ∈ HC . (4.7b)

The condition (4.7a) says that after the action of the error channel different codewords
must remain distinguishable. Condition (4.7b) ensures that during the recovery procedure
we do not learn anything about the encoded state.

The conditions (4.7) are necessary and sufficient. The proof for their necessity is as
follows: Taking the expectation value with |Ψ〉 on both sides of equation (4.6) and insert-
ing the definitions (4.2) and (4.4) of E and R, we obtain

∑
i,s |〈Ψ|RsEi|Ψ〉|2 = 1. In this

equation, we may now use the Schwartz inequality and the constraints (4.3), (4.5) to es-
timate the l.h.s., and obtain

∑
i,s |〈Ψ|RsEi|Ψ〉|2 ≤

∑
i,s〈Ψ|Ψ〉〈Ψ|E†

iR
†
sRsEi|Ψ〉 = 1. Thus,

the Schwartz inequalities must all hold as equalities. This is possible only if RsEi|Ψ〉 =
λi,s(|Ψ〉)|Ψ〉 for all Ei ∈ E, for all s and for all |Ψ〉 ∈ HC . Further, because of linearity of
Rs and Ei, the eigenvalues λi,s cannot depend on |Ψ〉, such that

RsEi|Ψ〉 = λi,s|Ψ〉, ∀Ei ∈ E, ∀ s,∀ |Ψ〉 ∈ HC . (4.8)

Now, following [39], we evaluate for two arbitrary codewords |Ψi〉, |Ψj〉 the scalar product
〈Ψi|E†

aEb|Ψj〉. We find that 〈Ψi|E†
aEb|Ψj〉 = 〈Ψi|E†

a1lEb|Ψj〉 =
∑

s〈Ψi|E†
aR

†
sRsEb|Ψj〉, with

(4.5). Therefore, using (4.8), it follows that 〈Ψi|E†
aEb|Ψj〉 = 〈Ψi|Ψj〉

∑
s λ

†
a,sλb,s, and with

αab :=
∑

s λ
†
a,sλb,s one obtains

〈Ψi|E†
aEb|Ψj〉 = αabδij (4.9)

The conditions (4.7) for reversibility of a set E of errors can be read off directly from
(4.9). For the opposite direction of the proof, i.e. that conditions (4.7) are sufficient, see
[39]. Note that in order to derive the conditions (4.7) we have required the existence of a
recovery operation, i.e. that R is a physical operation (4.4), (4.5) and acts as it is supposed
to, (4.6), but have not assumed a particular form of it.

Sometimes it is sufficient to detect errors instead of identifying them. An example for
such a situation is ancilla preparation. If an error in the ancilla is detected, then the ancilla
is discarded and prepared anew. Error detection is successful if each error Ea from a set E
is distinguishable from the identity or acts like the identity on the prepared ancilla state.
Thus the condition for error detection is as (4.7), with the error Eb replaced by the identity.

Stabilizer Codes. Let us now describe a particular class of quantum codes, the stabilizer
codes, and illustrate the functioning of the corresponding error recovery procedures. In
order to simplify the discussion, we assume that the error superoperator E is diagonal in
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the Pauli basis, i.e. that all Ei are Pauli operators Ei =
⊗n

a=1

(
σ

(a)
x

)xa
(
σ

(a)
z

)za

, xa, za ∈
{0, 1} ∀a. The error channel E then takes the form

E(|Ψ〉〈Ψ|) =
∑
Ei∈E

p(Ei)Ei |Ψ〉〈Ψ|E†
i , (4.10)

where p(Ei) is the probability for the error Ei to occur. In (4.2), the description of the
general error channel, the error probabilities p(Ei) have been absorbed in the error op-
erators Ei. For the special case of Pauli operators, we have the normalization condition
E†

iEi = 1l, ∀Ei and therefore write the error probability separately. The trace-preserving
constraint (4.3) translates into

∑
Ei∈E p(Ei) = 1.

An [n, k, d]2 stabilizer code is a quantum code encoding k qubits into n where the code
space is the common eigenspace of a set of (n− k) independent commuting operators Gl,
the generators of the code stabilizer S. Each codeword |Ψm〉 obeys the eigenvalue equations

|Ψm〉 = Gl|Ψm〉, ∀m = 0, .. , 2k − 1, ∀ l = 1, .. , n− k (4.11)

The parameter d is the distance of the code. A code with distance d can correct bd/2c
simultaneous errors from the set E. For d = 3 one usually assumes that the set E of errors
consists of all one-qubit spin-flip, phase-flip and the combined spin+phase-flip errors, E =
{σ(i)

x , σ
(i)
z , σ

(i)
y | i = 1, .. , n}. If each qubit in the encoded state decoheres due to interaction

with its own environment, which seems a reasonable assumption for data storage, then the
one-qubit errors are the most likely ones.

The generators {Gl| l = 1, .. , n− k} of the code stabilizer S are also chosen to be Pauli
operators,

Gl =
n⊗

i=1

(
σ(i)

x

)xi(Gl) (
σ(i)

z

)zi(Gl)
, xi(Gl), zi(Gl) ∈ {0, 1} ∀i = 1, .. , n. (4.12)

The stabilizer generators mutually commute, [Gl, Gm] = 0, ∀l,m = 1, .. , n − k. Further,
each of the generators does either commute or anti-commute with each error operator from
the set E. Therefore, to each error Ei there belongs a set of n−k binary numbers Syl(Ei),

EiGl = (−1)Syl(Ei)GlEi. (4.13)

They form the syndrome Sy(Ei) of the error Ei, [Sy(Ei)]l = Syl(Ei).
In the error recovery procedure R for stabilizer codes first the operators Gl generating

the code stabilizer are measured. This provides one with an error syndrome as defined
in (4.13) for the individual errors. In the second step, conditioned on this syndrome
a unitary correction operation is applied to the encoded quantum state. Formally, the
recovery procedure reads

R =
∑

Sy∈{0,1}n−k

[
U(Sy)

n−k∏

l=1

1l + (−1)SylGl

2

]
. (4.14)
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Therein, the brackets “[..]” indicate a superoperator, i.e. the sum is over superoperators,
not operators.

In each individual run of the recovery procedure we obtain a set of measurement out-
comes {sl ∈ {0, 1}| l = 1, .. , n−k} where sl describes the eigenvalue (−1)sl obtained in the
measurement of Gl. A posteriori, that is knowing the measurement results, the recovery
procedure may be described as a series of projections. Let us now investigate how these
projections act on each term Ei |Ψ〉〈Ψ|E†

i in the l.h.s. of (4.10):

(
n−k∏

l=1

1l + (−1)slGl

2

)
Ei|Ψ〉 = Ei

(
n−k∏

l=1

1l + (−1)sl+Syl(Ei)Gl

2

)
|Ψ〉

=

(
n−k∏

l=1

1 + (−1)sl+Syl(Ei)

2

)
Ei|Ψ〉.

(4.15)

Therefore, under the action of the projections only those error operators Ei persist for
which sl = Syl(Ei), ∀l = 1, .. , n − k. All other error operators are annihilated. We see
that the syndrome defined as an algebraic property of the errors in (4.13) can be measured.
This measurement, as an irreversible quantum process, changes the encoded state in such a
way that errors Ei of a subset of E(Sy) ⊂ E are made to happen while the other errors are
eliminated. This process is known as error discretization. For successful error correction
all errors in the remaining set E(Sy), which are indistinguishable by the syndrome, are
required to act identically on the code space. The condition (4.7) in stabilizer form thus
reads [41],

∀Ei, Ej ∈ E : (∃Gl ∈ S s.th. [Gl, EiEj] 6= 0) ∨ EiEj ∈ S (4.16)

The notion of “error discretization” is particular illustrative if we describe decoherence
as a unitary process acting on the pure state of the encoded quantum information and
that of an environment. This unitary operation on a larger Hilbert space may deviate
slightly from the identity operation on the “data register” times whatever operation on the
environment, and entangle the quantum “data” state with the environmental degrees of
freedom. In this picture, Pauli errors appear formally if we expand this unitary evolution
in a basis of Pauli operators. This way, we obtain errors in linear combination where
the coefficients associated with the individual errors may vary continuously. Now, under
the action of the stabilizer measurement this continuous set of errors in superposition is
mapped onto a much smaller one. After the projection there may still appear errors in
linear combination, but only such ones which act identically on the code. Thus, from the
initially continuous set there remains effectively only a single error. This single discrete
error is chosen by the measurements at random, but it can be identified from the syndrome
represented by the measurement outcomes.

In this thesis, we have chosen to describe the noise by a superoperator (4.2) in the Kraus
representation, acting on quantum system without the environment. Such a description
may always be obtained from the former if one traces over the environmental degrees of
freedom. In the Kraus representation (4.2) of the error channel the set E of errors is
discrete right from the beginning, as in the sum (4.2) there may appear at most 4n errors
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Ei. In the description chosen here the projective measurements select errors from a discrete
set rather than inducing a discretization.

Vector space formulation for stabilizer codes. Let us state a further formulation
of the error correction condition (4.7) using vectors in V(F2) [52]. In this language, the
error correction condition for stabilizer codes, and the conditions for fault-tolerant error
recovery and fault-tolerant quantum gates discussed subsequently can all be stated in a
compact form.

Note that phase factors in front of error operators Ei have no physical effect, for if we
transform Ek −→ eiϕkEk, the error superoperator E (4.2) remains unchanged. Further, the
bits of the error syndrome Sy(Ek) of an error Ek are specified by whether the operators
Ek and Gl commute or anti-commute. This property is not changed by additional phases
of either the errors or the stabilizer generators. Therefore, Pauli error operators which
are equal up to a phase are grouped into equivalence classes. These equivalence classes
themselves form a group, which is isomorphic to a vector space V(F2). The isomorphism
is the same as the one (3.10) introduced in Section 3.2.4 to relate the byproduct images to
the forward propagated byproduct operators,

I : V(F2) 3 FE
i −→ Ei =

n∏
a=1

(
σ(a)

x

)[FE
i,x]

a
(
σ(a)

z

)[FE
i,z ]

a . (4.17)

The vectors in V(F2) onto which we map the errors Ei under I−1 we call the error images
FE

i . We distinguish them from the byproduct images Fi corresponding to the forward
propagated byproduct operators by the upper index “E”. The fact that the error images
FE

i and the byproduct images Fi employ the same mathematical structures and are given
similar names is no coincidence, as we shall see below.

We may also apply the isomorphism I−1 to the code stabilizer S, in particular to
its generators Gl. In this way, we obtain the generator matrix G [52] of the code. The
generator matrix G has 2n columns and n− k rows, and consists of an x- and a z-block,

G = (XG|ZG). (4.18)

Each row in G encodes a generator Gl of the stabilizer, (I−1Gl)
T . The x-part of G is for

Pauli operators σx and the z-part is for Pauli operators σz. In both blocks, XG and ZG, the
column index labels the qubits. Specifically, with the definition (4.12) of Gl, we identify

[XG]l,i = xi(Gl), [ZG]l,i = zi(Gl), ∀l = 1, .. , n− k, ∀i = 1, .. , n. (4.19)

With these specifications, the Pauli operator formulation (4.16) of the condition (4.7) can
now be translated straightforwardly into a vector space formulation,

∀Ei, Ej ∈ E : Sy(FE
i ) + Sy(FE

j ) 6= 0 ∨ FE
i + FE

j ∈ I−1(S). (4.20)

Therein, all addition is modulo 2 and the syndrome Sy(FE
i ) of the error Ei is, in accordance

with (4.13), given by
Sy(FE

i ) = (ZG|XG) FE
i . (4.21)
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Figure 4.1: Stabilizer measurement circuit for the Steane code. Only the sub-circuit for the
measurement of the first three generators of (4.22) are shown. To measure all six generators, the
displayed circuit has to be repeated twice. Performing the circuit just once also results in an
encoded Hadamard transformation. The stabilizer measurement requires ancilla qubits, which
are each prepared in an eigenstate of σx and measured in the σx-eigenbasis. The circuit shown is
not fault-tolerant.

The condition (4.20) is of quite general form. We will obtain the same type of condition
for quantum error correction with imperfect operations, and very similar conditions for
fault-tolerant gates on encoded qubits and for their simulation on the QCC. What will
change is the set E of considered errors.

For illustration, let us give the generator matrix of the 7-qubit Steane code [37], which
encodes one qubit in seven and corrects all the one-qubit errors. The generator matrix is

G[7,1,3] =




0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 1 1 0 0 1 1 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 1 0 1 0 1 0 1



. (4.22)

For example, the generator G1 corresponding to the first row of the generator matrix in
(4.22) is

G1 = σ(4)
x σ(5)

x σ(6)
x σ(7)

x . (4.23)

The elementary cell of the network for error identification in the Steane code is displayed
in Fig. 4.1. The shown circuit is for the illustration of stabilizer measurement only. It is
not yet fault-tolerant, because it introduces more severe errors than it corrects for. The
circuit needs to be applied twice in a row to measure the entire syndrome. In the first three
measurements the generators involving Pauli spin-flip operators σx are measured, checking
for σz-errors. The subsequent Hadamard transformations convert the so far undetected
σx-errors into σz-errors which are subsequently detected in the second application of the
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circuit. The Hadamard transformations also rotate the code space, and therefore have to be
counteracted by a second step of local Hadamard transformations after the second half of
syndrome measurements. The conditional spin- and phase-flips which restore the encoded
state to the code space are not shown. They can be omitted anyway. It is sufficient to keep
track of the error by forward propagation in an efficient classical computation running in
parallel with the quantum computation [43] and adapt the subsequent non-Clifford gates
accordingly. This has the advantage that it reduces the number of operations, and thereby
also the errors.

Error thresholds and code concatenation. A reasonably realistic model for an error
channel is the multi-local SU(2)-invariant channel

Elocal,n[ε1] =
n⊗

a=1

T (a)
1 [ε1], (4.24)

where
T (a)

1 [ε1](ρ) = (1− ε1)ρ+
ε1
3

∑
i=x,y,z

σ
(a)
i ρ σ

(a)
i . (4.25)

If the error superoperator Elocal,n[ε1] is expanded into a basis of Pauli operators one finds
that all 4n possible Pauli errors occur. No code could correct for that. However, some errors
are more likely than others. The probability for no error to occur is O(1), the probability
for a single one-qubit error is O(ε1), for two independent one-qubit errors O(ε1

2), and so
on. Thus, if the error probability ε1 is small, ε1 ¿ 1, then it is almost certain that at most
one error occurs. These errors can be corrected for if a suitable code with distance 3 is
used. If a two- or more-qubit error occurs then the error recovery procedure will most likely
fail because the syndrome is misinterpreted. The probability for damage of the encoded
qubit is thus O(ε1

2) whereas for the unprotected qubit it is O(ε1). Therefore, if ε1 is below
a certain threshold, the error probability with coding will be smaller than without coding.

In such a situation, the code may be concatenated [41, 71]. That is, each qubit in the
code is encoded again, and this procedure may be iterated several times. Let the probability
for failure, i.e. for two or more errors, be c ε1

2 to leading order. If a second level of coding
is used, the code will fail if two blocks of the first-level encoding are corrupted, and the
probability for that is c (c ε1

2)
2
. If N levels of concatenation are used, the probability for

failure is pN = (c ε1)
2N

/c and thus gets small very rapidly if c ε1 < 1. At the same time the
code size increases to nN .

Error recovery with imperfect means. The error recovery procedure R needs to
satisfy two requirements. First, it needs to act as the identity on the code space, i.e. the

encoded Pauli operators X
(a)
, Z

(a)
, for all a = 1, .. , k need to be mapped onto themselves,

and the stabilizer operators need to be mapped onto stabilizer operators. Second, the
procedureR needs to correct for errors. Among them are the errors which occur during data
storage. But these are not the only errors. As we can see from the error identification circuit
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displayed in Fig. 4.1, quantum error correction is itself a small quantum computation, and
errors may be introduced by imprecise gate operation.

So, what happens if the operations intended to correct errors are erroneous themselves?
Do they not introduce more errors than they correct for? For the circuit displayed in
Fig. 4.1 this is indeed the case. However, with a careful –and more complex– design it can
be achieved that the recovery procedure identifies all the errors, those which occur during
data storage and those it introduces itself, and thereby becomes fault-tolerant.

We shall give a detailed model for errors, due to both decoherence and imperfect op-
eration, further below, but let us –as we deal here with errors introduced by imperfect
operations– briefly sketch such a model now. Each imperfect gate operation may be mod-
eled by the perfect gate preceded or succeeded by an error channel [50]. If the gate acts on
more than one qubit, the error channel should not be a product of local channels as e.g.
the local SU(2)-invariant channel (4.24) but instead contain genuine multi-qubit errors to
lowest order in the error rate. For simplicity, we assume again that the corresponding error
superoperator is diagonal in the Pauli basis. In this way, we can speak of Pauli-errors, some
of them being local and some multi-local, and discuss each of these errors separately.

As in any quantum computation, in an error recovery procedure errors propagate, and
for the propagation of errors in the Pauli group hold the same propagation relations as
for the byproduct operators, (2.51), (2.52), (2.53) and (2.48). Specifically, if such an error
propagates through a gate in the normalizer of the Pauli group, it is conjugated under that
gate, and thereby remains in the Pauli group. If a Pauli error operator propagates through
the measurement of an observable in the Pauli group, it flips the measured eigenvalue
λl = ±1 if it anti-commutes with the measured observable or otherwise leaves it unchanged.

To track the errors through the circuit and to identify the signature they leave in the
error syndrome, we consider the circuit of all the participating qubits. That is, the n data
qubits and further na ancilla qubits for the ancilla state preparation and -verification and
for the syndrome measurement. The forward propagation of each Pauli operator is followed
in a classical computation from the location where it occurs to a vertical cut Ω after the
recovery procedure. That is, for errors on the data qubits the errors are propagated into
the domain of the subsequent storage errors, and errors which affect the ancilla qubits are
propagated ante the ancilla measurements.

Due to the non-trivial error propagation, we distinguish between physical and logical
errors. The physical errors Ei are caused by a physical process at a certain location in the
circuit, and the logical errors are the equivalent forward propagated errors Ei|Ω restricted
to the data qubits.

We now collect the errors which need to be identified by the syndrome measurement.
These are the storage errors in between the current and the previous syndrome measure-
ment Ea ∈ ET , the errors in the current recovery procedure which affect the current
syndrome, Eb ∈ ER,1, and the errors of the previous recovery procedure which did not af-
fect the previous syndrome, Ec ∈ ER,0. The recovery procedure thus needs to be designed
to correct for the set of errors

ER = {Ea |Ea ∈ ET } ∪ {Ec |Ec ∈ ER,0} ∪ {Eb |Eb ∈ ER,1}. (4.26)
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To each error Ei in ER there belongs an error image

FE
i = I−1(Ei|Ω), ∀Ei ∈ ER. (4.27)

Also, to each error Ei in ER there belongs a syndrome Sy(Ei), which is nontrivial by
definition and can, for a given circuit, easily worked out in a classical computation.

The condition for fault-tolerance of the recovery procedure is, with some simplification,
that all errors in the set ER need to be identifiable by the error syndrome up to equivalence.
The simplification is that some errors only need to be detected, not identified. Specifically,
recovery procedures usually invoke certain ancilla states. These ancillas can be verified
before they interact with the data. If they are found to be erroneous they may just be
discarded and prepared anew. Therefore, to check the ancilla states error detection with a
non-trivial syndrome is sufficient. To take account of this fact we split the syndrome space
into two subspaces,

Sy = Sy1 ⊕ Sy2. (4.28)

Sy1(Ei) is the vector of syndrome bits of an error Ei obtainable by measurement before
an operation invoking the data qubits is performed. Practically, this is ancilla verification.
Sy2(Ei) is the vector of syndrome bits of an error Ei obtainable only after the encoded
quantum data has been operated on.

Let us define the set E1
R of errors which can be detected by the ancilla verification

syndrome,

E1
R = {Ei ∈ ER|Sy1(Ei) 6= 0}. (4.29)

The condition for fault-tolerance of the recovery procedure R is

∀Ei, Ej ∈ ER\E1
R : Sy2(Ei) + Sy2(Ej) 6= 0 ∨ FE

i + FE
j ∈ I−1(S). (4.30)

The error recovery procedure is fault-tolerant if all those errors which cannot be detected
by a non-trivial syndrome in the ancilla preparation can be identified up to equivalence by
the remaining part of the syndrome.

Note that the condition (4.30) for fault-tolerance of an error recovery procedure based
on a stabilizer code takes the same form as the condition (4.20) for a stabilizer code to
correct errors from a set E. Only the set of errors is a different one, and the definitions of
the error image and the syndrome are extensions of their former counterparts.

To practically construct a proper error recovery procedure it is suitable to divide it
into smaller parts such as ancilla preparation, ancilla verification (measurement of Sy1),
syndrome extraction, i.e. interaction between data and ancilla, syndrome measurement
(part of Sy2), and verification of the syndrome measurement [72] (remaining part of Sy2).
Examples for fault-tolerant error recovery procedures are presented e.g. in [20].

Fault-tolerant quantum computation. To prevent a quantum computation from er-
rors requires coding, and one needs to find a universal set of gates which operates on
encoded qubits. Further, these encoded gates must be fault-tolerant. That is, they need
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to be able to correct for or to identify just the errors they introduce (a precise form of this
statement is given below).

In such a situation, if the probability of failure of each bare gate from a universal set,
including wire, is bound by η, then the probability of failure for the corresponding fault-
tolerant encoded gates will be O(η2). Then, for small enough η the encoded gates will
perform better than the bare ones, and again code concatenation may be used to make the
gate error probability arbitrarily small.

For any fixed value of the gate error probability, however small, the quantum com-
putation will end up close to the totally mixed state if the computation is long enough.
However, concatenated codes may be used with the number of coding levels adapted to
the length of the computation. Fortunately, the increase in the code block size is mod-
erate with increasing duration of the computational process, and error thresholds can be
obtained for fault-tolerant quantum computation.

Proven error thresholds are of the order of η = 10−6 [44], but computer simulations
suggest that the actual values may be significantly higher [65, 50]. As an example, in [50]
a constraint on the common value of the one- and two-qubit gate error and the value of
the memory error rate has been obtained. For the case that syndrome measurements are
as fast as the unitary gates, and for suitable codes, values of 10−3 for both the gate- and
the memory error probability per gate cycle are consistent with this constraint.

Let us return to the conditions which need to be obeyed by a fault-tolerant gate on
encoded qubits. First, as an encoded gate, it needs to preserve the code space. Second,
it needs to be fault tolerant. An encoded circuit will consist of encoded gates, and in
between each gate and its successor gate for each encoded qubit there is an error recovery
procedure. This means in turn that, before and after each encoded gate, for every in- and
outgoing encoded qubit there is an error recovery step. The errors belonging to a gate
need to be identified up to equivalence by the error recovery procedure(s) after the gate.
So let us summarize these errors. They are the errors introduced by the encoded gate, the
errors introduced by the recovery procedure(s) just before the gate which did have a trivial
syndrome there, and the errors introduced in the recovery procedure(s) just after the gate
which have a nontrivial syndrome. These errors form, in analogy to (4.26), the error set
EG of the encoded gate G. As in the case of error recovery, the syndrome Sy may have two
parts, one for error detection, Sy1, and one for error identification, Sy2, Sy = Sy1 ⊕ Sy2.
In analogy to the case of error recovery, we may identify for each error Ei ∈ EG a syndrome
Sy(Ei) and an error image FE

i , and define the set E1
G = {Ei ∈ EG|Sy1(Ei) 6= 0}. The

fault-tolerance condition for the encoded gate G then is

∀Ei, Ej ∈ EG\E1
G : Sy2(Ei) + Sy2(Ej) 6= 0 ∨ FE

i + FE
j ∈ I−1(S), (4.31)

which is of the same form as the fault-tolerance condition (4.30) for an error recovery
procedure.

As quantum codes were first introduced for coding, they are designed to correct errors
with low weight which are the most likely errors in data storage. For example, codes with
distance three, such as the Steane code, correct all one-qubit errors. As for encoded gates
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the same codes are used, a sufficient condition for fault-tolerance of these gates is that each
physical error may lead to at most one logical error (or bd/2c errors) [41]. In this way,
the condition (4.31) on a set of errors is converted into a condition on individual errors,
which is a lot more manageable and helpful in the design of fault-tolerant gates. Circuits
for fault-tolerant quantum computation can be found e.g. in [20, 41, 42, 43, 44].

Fault-tolerance is an important question for any type of a quantum computer. There-
fore, in Section 4.3 we will give a proof for the fault-tolerance of the QCC. The proof is
based on a theorem by Aharonov and Ben-Or [44], stating that fault-tolerant quantum
computation is possible in quantum logic networks of qubits with local and next-neighbor
gates only, even if the qubits are arranged in one dimension. We will trace back the QCC on
a two-dimensional cluster state to such a device.

A characteristic feature of the scheme for fault-tolerant quantum computation envi-
sioned by Aharonov and Ben-Or is that it completely avoids measurement except for the
final readout. To simulate such a device on a quantum computer which entirely consist
of measurements is probably as counter-intuitive as can be. We have nevertheless chosen
this approach because it simplifies the fault-tolerance proof for the QCC. Adequate and
efficient methods for QCC-fault-tolerant computation cannot be expected to arise from this
procedure. For such, see Section 4.4.

In preparation for the fault-tolerance proof in Section 4.3, let us now restate some
definitions and conventions for objects introduced in [44] and quote a theorem stated
therein. In [44], the quantum computation is regarded as a succession of layers gti of perfect
quantum gates alternating with error superoperators Eti , acting on the density operator
representing the state of the quantum register, ρfinal = Et ◦ gt ◦ Et−1 ◦ gt−1 ◦ ... ◦ E1 ◦ g1 ρinit.
Each Eti comprises a number of individual errors, each of which occurs at a location A.
A set (q1, q2, ... , ql, t) is a location Alt,t in the quantum circuit Q if the qubits q1, q2, ... , ql
participate in the same gate at time t, and no other qubit participates. The list of times
and places where faults have occurred (in a specific run of the computation), is called a
fault path. The error model with which the discussion of fault-tolerance in [44] starts is

Error model 1 The errors in the network are probabilistic local errors acting in between
the gates. The noise superoperator at time step t, that is after the layer t of gates has been
applied, takes the form

E(t) = EA1,t(t)⊗ EA2,t(t)⊗ ...⊗ EAlt,t
(t). (4.32)

There, Ai,t(t) runs over all possible locations at time t, and for each of the associated
superoperators

‖EAi,t(t)− 1l‖ ≤ η. (4.33)

A suitable norm ‖ · ‖ for superoperators T in (4.33) should satisfy the properties

‖T ρ‖ ≤ ‖T ‖‖ρ‖, (4.34a)

‖T T ′‖ ≤ ‖T ‖‖T ′‖, (4.34b)

‖T ⊗ T ′‖ = ‖T ‖‖T ′‖, (4.34c)

‖TPhy‖ = 1, (4.34d)
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where TPhy is any physically allowed superoperator. Such norms exist. An example is the
diamond norm [73].

The initial error model 1 is further generalized in [44] to allow for exponentially decaying
correlations in both space and time. Specifically, it is required that the probability p for a
fault path which contains k locations is bounded by some constant times the probability
for this fault path in error model 1,

p(fault path with k errors) ≤ cηk(1− η)v−k, (4.35)

where v is the number of locations in the circuit.
The theorem stated below is formulated for this more general type of noise, which

contains model 1 as a special case. The noise that we obtain in the simulation of quantum
logic networks on the QCC will, under assumptions specified in the next section, be exactly
as in model 1.

A quantum computer is said to have no geometry, if any subset of qubits in it may
interact in quantum gates; and it is said to have a geometry if the qubits are arranged on
a d-dimensional lattice and only neighboring qubits are allowed to perform gates on. With
the above notions introduced, we now quote from [44] the following theorem:

Threshold theorem for d-dimensional circuits
Let ε > 0. Let d ≥ 1. Let G ′, G ′′ be two universal sets of quantum gates.
There exists a threshold η′′ > 0, and constants c1, c2, c3, c4 such that the
following holds. Let Q′ be a d-dimensional quantum circuit, with n qubits,
which operates t time steps, uses s gates from G ′, and has v locations. There
exists a d-dimensional quantum circuit Q′′ which operates on c1n logc2

(
v
ε

)
qubits, for time c3t logc2

(
v
ε

)
, and uses c4s logc2

(
v
ε

)
gates from G ′′∪{SWAP}

such that in the presence of general noise with error rate η < η′′c , Q
′′ computes

a function which is ε-close to that computed by Q′.

(4.36)

In Section 4.3 we will prove the fault-tolerance of the QCC by showing that, with the error
model described in Section 4.2, the QCC on a two-dimensional cluster state can simulate
one-dimensional quantum circuits with errors specified by the error model 1.

4.2 The error model for the QCC
In this section we will introduce the model of physical errors in a QCC-computation upon
which we base the following discussions of fault-tolerant computation with the QCC. The
error modell 2 of the physical errors –which is the result of this section– takes the form
of an error channel sandwiched between a perfect cluster state and perfect measurements.
The subsequent assumptions are to keep the form of the error channel simple.

Among the ways to introduce an error model the following two seem extremal. Either,
one might postulate it right away. Or, to the contrary, one may base the discussion of
errors on a specific physical system, say, ultra-cold atoms in an optical lattice. To provide
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a starting point, in this thesis we have chosen an intermediate approach. We show that
the error model 2 is valid if the required cluster state is created via the Ising interaction
in a model system with properties defined below.

Perhaps the most important advantage of the construction in Section 2.4, i.e. to divide
a quantum computation into sub-circuits and realize each sub-circuit on a smaller cluster,
is that in this way decoherence can be controlled. If a single large cluster is used, the
computation might reach certain cluster qubits only after a long time such that the cluster
would have already decohered significantly and it is not clear how error-correction could
help in such a situation. This might, for any error rate, limit the duration of a computation.
On the other hand, if the computation is split, then the size of the sub-circuits may be
adjusted such that each of them can be performed within a time T and in this way, each
cluster qubit is, before being measured, exposed to a bounded amount of decoherence
specified by T .

We base our model on the following assumptions for the physical errors:

A1 The cluster state is created from a product state |+〉C = ⊗a∈C|+〉a via Ising interaction

S
(C)
I = exp


−iπ

4

∑

(a,b)∈EC

σ(a)
z σ(b)

z


 , (4.37)

followed by multi-local rotations which adjust the local bases

U
(C)
C =

⊗
a∈C

exp
(
i
π

4
deg(a)σ(a)

z

)
. (4.38)

Therein, deg(a) denotes the degree of the vertex a. U
(C)
C S

(C)
I is identical to S(C).

In the process of computation errors arise due to erroneous preparation of the state |+〉C,
erroneous Ising interaction and subsequent basis correction, decoherence due to interaction
with environmental degrees of freedom, and erroneous measurements. The individual error
processes are modeled as follows:

A2 a) Decoherence is modeled by a multi-local depolarizing channel (4.25),

ρC −→ T (C)
1 [pD] ρC =

⊗
a∈C

T (a)
1 [pD] ρC. (4.39)

Therein, pD is the characteristic error probability associated with decoherence.

b) The one-qubit measurements are modeled by perfect one-qubit measurements
preceded by a local depolarizing channel,

P
(C)
Phy = P (C) ◦ T (C)

1 [pM ]. (4.40)

Therein, pM is the characteristic error probability associated with the measure-
ment. Similarly, the operations for basis adjustment (4.38) are modeled by the
perfect operation followed by a depolarizing channel with error probability pC ,

U
(C)
C,Phy = T (C)

1 [pC ] ◦
[
U

(C)
C

]
. (4.41)
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c) The erroneous Ising interaction and the erroneous preparation of the state |+〉C,
i.e. the globally tunable operations, are modeled as controlled by classical fields,
whose parameters vary according to given distributions. The superoperator
describing the erroneous operation is obtained by averaging over a sample of
transformations with varying control parameters.

Below we show that, under the assumptions A1 and A2, we obtain the following set of
elementary errors:

Ephy =
{
σ(a)

x , σ(a)
y , σ(a)

z , σ(b)
z σ(c)

z | a, b, c ∈ C, c ∈ nbgh(b)
}
. (4.42)

A3 The elementary errors of Ephy are stochastically independent.

Assumption A3 may seem the most restrictive one; in particular as we have an eye on cold
controlled collisions in optical lattices, which are, at present, one of the most promising
candidates for the realization of the QCC. There, e.g. the strength and duration of the
interaction is controlled by a single global parameter. Its control can, of course, not be
perfect. Therefore, in individual runs of the process, the conditional interaction phases
acquired by pairs of neighboring qubits will vary. But, as the control parameter is global,
the phases will be correlated. They are either all precise, all too small or all too large. In
this way, we are faced with classically correlated errors. The same problem arises in the
preparation of the initial state |+〉C, if it is created from the ground state of the system
via a simultaneous multi-local (global) Hadamard transformation. Therefore, it has to
be investigated how the correlations in the noise introduced by the imperfect operations
affect the fault-tolerance of the QCC. At present one statement can be made: Classical
correlations among inequivalent Pauli errors Ei, Ej, i.e. Ei|φ〉C 6= Ej|φ〉C , have no effect
at all to a QCC-computation. See Appendix A.

Let us further comment on the assumptions A2/c). There we start with a more detailed
and complicated model for the errors of the Ising interaction and the preparation of the
initial |+〉C state than the one used to describe decoherence and imperfect measurement.
Eventually, we will present a similar superoperator describing the respective error processes,
but it seems saver not to write down one ad hoc.

The over-rotation applied to the state |+〉C in the initial step of preparation in an
individual run may be described by

U
(C)
P [{~αj}] =

⊗
i∈C

U
(i)
P [~αi], (4.43)

with

U
(i)
P [~αi] = cosαi1l

(i) + i sinαi
~αi

αi

· ~σ(i). (4.44)

The over-rotation is now averaged over with an underlying probability distribution p({~αi})
and the noise introduced in the preparation of |+〉C is described by the superoperator

T (C)
P =

∫
d3 ~α1...d

3~α|C| p({~αj})
[
U

(C)
P [{~αi}]

]
. (4.45)
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The brackets [·], like the outer ones in
[
U

(C)
P [{~αi}]

]
denote that the object in between is to

be understood as a superoperator. The trace-preserving property of T (C)
P is guaranteed by

the constraint
∫
d3 ~α1...d

3~α|C| p({~αi}) = 1.

The transformation generated by the Ising Hamiltonian HI =
∑

(a,b)∈EC ~gab(t)
σ

(a)
z

2
σ

(b)
z

2

takes, for the specific set {ϕab :=
∫ T

0
gab(t) dt, ∀(a, b) ∈ EC} of interaction phases, the form

U
(C)
I [{∆ϕab}] = exp


−i

∑

(a,b)∈EC

∆ϕab
σ

(a)
z

2

σ
(b)
z

2


S

(C)
I , (4.46)

where S
(C)
I is the perfect transformation (4.37), and the deviating interaction phases ∆ϕab

are given by

∆ϕab =

∫ T

0

gab(t)dt − π. (4.47)

These phases are distributed according to a probability density p′({∆ϕab}). The superop-

erator T (C)
I,2 describing the deviation from the ideal Ising interaction then is

T (C)
I,2 =

∫ 
 ∏

(a,b)∈EC

d∆ϕab


 p′({∆ϕcd})


exp


−i

∑

(e,f)∈EC

∆ϕef
σ

(e)
z

2

σ
(f)
z

2





 . (4.48)

Again, the brackets [·] indicate that the object in between is understood as a superoperator,
not as an operator.

The process of computation in the presence of noise is now described by the sequence

ρfinal =
[
P (C)]◦T (C)

1 [pM ]◦T (C)
1 [pD]◦T (C)

1 [pC ]◦
[
U

(C)
C

]
◦T (C)

I,2 ◦
[
S

(C)
I

]
◦T (C)

P (|+〉C〈+|) . (4.49)

As can be seen in (4.49), the operations which act first on the product state |+〉C〈+| are

the local rotations
⊗

i∈C U
(i)
P [~αi] (4.43). We now note that σ

(i)
x operators are absorbed by

the state |+〉C, σ(i)
x |+〉C = |+〉C, for all i ∈ C. Therefore, the rotations U

(i)
P [~αi] (4.44) may

be replaced by the rotations

Ũ
(j)
P [~αj] =

(
cosαj + i sinαj

αj,x

αj

)
1l(j) + i sinαj

(
αj,z + iαj,y

αj

)
σ(j)

z , (4.50)

which act equivalently on the state |+〉C,
⊗

i∈C Ũ
(i)
P [~αi] |+〉C =

⊗
i∈C U

(i)
P [~αi] |+〉C. Conse-

quently, T (C)
P may be replaced by

T̃ (C)
P =

∫
d3 ~α1...d

3~α|C| p({~αj})
[⊗

i∈C
Ũ

(i)
P [~αi]

]
. (4.51)

The rotations Ũ
(j)
P [~αj] contain only operators 1l(j) and σ

(j)
z . Therefore, T̃ (C)

P , commutes

with T (C)
I,2 , S

(C)
I and U

(C)
C , which also commute mutually. We can thus exchange the order
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of these operations,
[
U

(C)
C

]
◦ T (C)

I,2 ◦
[
S

(C)
I

]
◦ T̃ (C)

P = T̃ (C)
P ◦ T (C)

I,2 ◦
[
U

(C)
C

]
◦

[
S

(C)
I

]
, and, noting

that U
(C)
C S

(C)
I = S(C), write the computational process as

ρfinal =
[
P (C)] ◦ T (C)

1 [pM ] ◦ T (C)
1 [pD] ◦ T (C)

1 [pC ] ◦ T̃ (C)
P ◦ T (C)

I,2 (|φ〉C〈φ|). (4.52)

So far, we see that we have independent one-qubit errors caused by decoherence, local
rotation and imperfect measurement, as expressed by T (C)

1 [pD], T (C)
1 [pC ], and T (C)

1 [pM ],

respectively. With T̃ (C)
P , we encounter further one-qubit errors which are, depending on

the probability distribution p({~αi}), potentially classically correlated. And we have one

type of two-qubit errors, namely σ
(a)
z σ

(b)
z -errors on next neighboring qubits. Also these

errors may, depending on the form of the probability distribution p′({∆ϕab}), be classically
correlated.

The next step is to invoke assumption A3 requiring that the potentially classically
correlated errors are, in fact, uncorrelated. For relaxation see Appendix A. We require

p({~αi}) =
∏
i∈C

pi(~αi), (4.53a)

p′({∆ϕab}) =
∏

(a,b)∈EC

p′i(∆ϕab). (4.53b)

Using (4.53a) in (4.51), we obtain for the local errors become T̃ (C)
P =

⊗
i∈C T̃ (i)

P , with

T̃ (i)
P =

∫
d3 ~αi p(~αi)

[
Ũ

(i)
P [~αi]

]
. (4.54)

For any distribution p(~αi), there exists a probability pP such that

T (i)
1 [pP ] = E (i)

1 ◦ T̃ (i)
P , (4.55)

where E (i)
1 is a physical one-qubit operation and T (i)

1 [pP ] is the SU(2)-invariant depolarizing

one-qubit channel (4.25) with error probability pP . We majorize the error channel T̃ (i)
P by

T (i)
1 [pP ] with the smallest value for pP . That is, in the sequence (4.52) we replace the T̃ (i)

P

by T (i)
1 [pP ], thereby introducing more noise. If the additional local noise

⊗
i∈C E (i) turned

out to improve the computation it might just be applied actively before the measurement
sequence.

With this replacement, we have three local depolarizing channels T (C)
1 [pM ] ◦ T (C)

1 [pD] ◦
T (C)

1 [pC ] ◦ T (C)
1 [pP ] acting in a row, and we may replace them by a single local depolarizing

channel

T (C)
1 [p1] := T (C)

1 [pM ] ◦ T (C)
1 [pD] ◦ T (C)

1 [pC ] ◦ T (C)
1 [pP ]. (4.56)

Therein, p1 is the characteristic error probability for one qubit errors. To leading order, p1

is the sum of the individual one-qubit error probabilities.
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Besides the SU(2)-invariant one-qubit errors described by (4.56) there is one other type

of errors, namely the σ
(a)
z σ

(b)
z -error on next-neighboring qubits. The corresponding error

channel is
T (C)

I,2 [p2] =
⊗

(a,b)∈EC

T (a,b)
I,2 [p2], (4.57)

with

T (a,b)
I,2 [p2](ρ) = (1− p2)ρ+ p2 σ

(a)
z σ(b)

z ρ σ(a)
z σ(b)

z . (4.58)

In (4.58) we have assumed that all error probabilities are equal, qab = p2, for all (a, b) ∈
EC, b ∈ nbgh(a) ⊂ C. Thus, we finally obtain

Error model 2 QCC-computation in the presence of errors specified by the assumptions
A1, A2 and A3 may be described by a noisy channel of independent one- and two-qubit
errors applied to a perfect cluster state, followed by perfect measurements.

ρC,out =

[⊗
a∈C

P (a)

]
◦ T (C)

1 [p1] ◦ T (C)
I,2 [p2]

(
|φ〉C〈φ|

)
. (4.59)

Therein, the error channel T (C)
1 [p1] is a tensor product of local depolarizing channels (4.25)

with probability p1 for an individual error, and T (C)
I,2 [p2], defined in (4.57), is a channel of

independent σzσz-errors on next neighboring qubits, with error probability p2.

4.3 Fault-tolerance of the QCC
Fault-tolerant quantum computation has been discussed in detail within the network model
[40, 41, 43, 44, 64, 71]. Therefore it appears that the shortest way to obtain a result about
fault-tolerance of the QCC is to show that an imperfect QCC can simulate a quantum logic
network with a certain gate- and memory error efficiently. It is important that uncorrelated
physical errors in a QCC-computation lead to uncorrelated logical errors in the simulated
network because such errors can be handled.

For networks without geometry, i.e. with no restriction of the interaction to neigh-
boring qubits, one would need to provide QCC gate simulations for nonlocal gates whose
error does not increase with distance. This does not seem to be the most straightforward
thing to do. We chose instead to simulate one-dimensional networks (i.e. with local and
next-neighbor gates only) on the QCC, which is a simpler task. Fault-tolerance of a one-
dimensional network quantum computer has been proven in [64] and [44]. We base our
proof of QCC-fault-tolerance on the respective Theorem [44] for one-dimensional networks
stated in (4.36). All that needs to be shown is that the QCC can simulate one-dimensional
networks below their error thresholds for fault-tolerant quantum computation. One does
not need to worry about constructions for fault-tolerant gates on encoded qubits; all this
is taken care of by the network proof [44]. The theorem which guarantees fault-tolerance
of the QCC is



130 4. Fault-tolerant quantum computation with the QCC

���
���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���

�����
�����
�����
�����
�����

���
���
���
���

���
���
���
���
���

���
���
���
���

	�	�	
	�	�	
	�	�	
	�	�	
	�	�	


�


�


�


�

���
���
���
���

���
���
���
���


�
�


�
�


�
�


�
�


�����
�����
�����
�����

���
���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���

�����
�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

 � 
 � 
 � 
 � 

!�!�!
!�!�!
!�!�!
!�!�!

"�"�"
"�"�"
"�"�"
"�"�"

#�#�#
#�#�#
#�#�#
#�#�#

$�$�$
$�$�$
$�$�$
$�$�$

%�%�%
%�%�%
%�%�%
%�%�%

&�&
&�&
&�&
&�&

'�'�'
'�'�'
'�'�'
'�'�'

(�(�(
(�(�(
(�(�(
(�(�(

)�)�)
)�)�)
)�)�)
)�)�)

*�*
*�*
*�*
*�*

+�+�+
+�+�+
+�+�+
+�+�+

,�,�,
,�,�,
,�,�,
,�,�,

-�-
-�-
-�-
-�-

.�.
.�.
.�.
.�.

/�/
/�/
/�/
/�/

0�0
0�0
0�0
0�0

1�1�1
1�1�1
1�1�1
1�1�1
1�1�1

2�2�2
2�2�2
2�2�2
2�2�2

3�3�3
3�3�3
3�3�3
3�3�3
3�3�3

4�4
4�4
4�4
4�4

5�5�5
5�5�5
5�5�5
5�5�5
5�5�5

6�6�6
6�6�6
6�6�6
6�6�6

7�7�7
7�7�7
7�7�7
7�7�7

8�8�8
8�8�8
8�8�8
8�8�8

9�9
9�9
9�9
9�9

:�:
:�:
:�:
:�:

;�;�;
;�;�;
;�;�;
;�;�;

<�<�<
<�<�<
<�<�<
<�<�<

=�=
=�=
=�=
=�=

>�>
>�>
>�>
>�>

?�?�?
?�?�?
?�?�?
?�?�?

@�@
@�@
@�@
@�@

A�A
A�A
A�A
A�A

B�B
B�B
B�B
B�B

C�C�C
C�C�C
C�C�C
C�C�C
C�C�C

D�D
D�D
D�D
D�D

E�E�E
E�E�E
E�E�E
E�E�E
E�E�E

F�F�F
F�F�F
F�F�F
F�F�F

G�G
G�G
G�G
G�G
G�G

H�H
H�H
H�H
H�H

I�I�I
I�I�I
I�I�I
I�I�I

J�J�J
J�J�J
J�J�J
J�J�J

K�K
K�K
K�K
K�K

L�L
L�L
L�L
L�L

M�M�M
M�M�M
M�M�M
M�M�M

N�N�N
N�N�N
N�N�N
N�N�N

O�O
O�O
O�O
O�O

P�P
P�P
P�P
P�P

Q�Q
Q�Q
Q�Q
Q�Q

R�R
R�R
R�R
R�R

S�S
S�S
S�S
S�S

T�T
T�T
T�T
T�T

U�U
U�U
U�U
U�U

V�V
V�V
V�V
V�V

W�W
W�W
W�W
W�W

X�X
X�X
X�X
X�X

Y�Y
Y�Y
Y�Y
Y�Y

Z�Z
Z�Z
Z�Z
Z�Z

[�[�[
[�[�[
[�[�[
[�[�[

\�\
\�\
\�\
\�\

]�]
]�]
]�]
]�]

^�^
^�^
^�^
^�^

_�_�_
_�_�_
_�_�_
_�_�_
_�_�_

`�`
`�`
`�`
`�`

a�a�a
a�a�a
a�a�a
a�a�a
a�a�a

b�b�b
b�b�b
b�b�b
b�b�b

c�c�c
c�c�c
c�c�c
c�c�c
c�c�c

d�d
d�d
d�d
d�d

e�e�e
e�e�e
e�e�e
e�e�e

f�f
f�f
f�f
f�f

g�g�g
g�g�g
g�g�g
g�g�g

h�h
h�h
h�h
h�h

i�i�i
i�i�i
i�i�i
i�i�i
i�i�i

j�j�j
j�j�j
j�j�j
j�j�j

k�k�k
k�k�k
k�k�k
k�k�k
k�k�k

l�l
l�l
l�l
l�l

m�m�m
m�m�m
m�m�m
m�m�m

n�n
n�n
n�n
n�n

o�o
o�o
o�o
o�o

p�p
p�p
p�p
p�p

q�q
q�q
q�q
q�q

r�r
r�r
r�r
r�r

s�s
s�s
s�s
s�s

t�t
t�t
t�t
t�t

u�u
u�u
u�u
u�u

v�v
v�v
v�v
v�v

w�w�w
w�w�w
w�w�w
w�w�w

x�x
x�x
x�x
x�x

y�y
y�y
y�y
y�y

z�z
z�z
z�z
z�z

{�{�{
{�{�{
{�{�{
{�{�{

|�|
|�|
|�|
|�|

}�}
}�}
}�}
}�}

~�~
~�~
~�~
~�~

�����
�����
�����
�����
�����

���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

c)

d)a) b)

Figure 4.2: Set of QCC gate simulations for a one-dimensional network. a) CNOT, b) x-rotation,
c) wire, d) SWAP gate. The z-rotation is not shown, see text.

Theorem 2 There exist finite error thresholds pcrit
1 , pcrit

2 > 0 such that the QCC with error
model 2 is fault-tolerant if p1 < pcrit

1 and p2 < pcrit
2 .

Proof. We proceed along similar lines as in Section 2.2.4 where we have shown that the
QCC may be viewed as a succession of gate simulations. Here, with the presence of noise,
we demonstrate that an imperfect QCC-simulation of a network quantum computer may
be viewed as the simulation of an imperfect network.

The proof consists of two steps. First, we show that all the locations of the individual
physical errors can be grouped into error location sets Ik such that the errors in one
location set affect only the functioning of the QCC-simulation of a single gate. In this way,
the sets of error locations can be assigned to the gates, Ik −→ I(gk). Second, we show
that the errors located in I(g) lead to an error ηg of the gate g such that any bound on the
gate error, ηg ≤ η′′c may be matched if the error probabilities p1, p2 of the physical error
are sufficiently small but positive. Then, the QCC can simulate one-dimensional network
quantum computers in the fault-tolerant regime.

Step 1. A physical error has the potential to affect a gate only if a qubit on which this
error has support is measured for the realization of this gate. That is, an error Ei may
affect the gate g if it has support on C(g)\CO(g). As the clusters overlap, errors which are
located on CO(g) are at the same time located on the input zone CI(g

′) of the sub-cluster
for a subsequent gate, and are counted as affecting the latter. This criterion allows one
to assign the site errors unambiguously to the gates. But we have also bond errors, i.e.
errors which have support on two cluster qubits. Among these errors there are some which
potentially affect two consecutive gates. However, such an error may be relocated in a way
that it affects only a single gate, as is explained below.

For illustration, let us first display in Fig. 4.2 the QCC-realizations for a number of gates
from a possible universal set G ′′, consisting of x- and z-rotations and the CNOT gate, plus
the SWAP gate. The realization of the rotation about the z-axis, which is not shown, is
analogous to that of the x-rotation. The only difference is that the cluster qubit by whose
measurement the rotation angle is set is one site further to the right.

We are not restricted in the choice of the universal gate set G ′′, and the specific choice
plays no role for the proof. However, there is a constraint that needs to be respected in
the construction of the respective QCC-gate simulations. Specifically, the vertical distance
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between the qubit wires on the cluster needs to be grater than two. For convenience
of the gate set displayed in Fig. 4.2, we have chosen distance of four. The reason for
this requirement is the following. First note that the cluster qubits measured in the σz-
eigenbasis which are neighbors of cluster qubits measured in the equator of the Bloch
sphere, even though they are not needed for the computation, have an impact once they
are present. This may be easily verified from equation (3.52). The measurement outcome
obtained on such a qubit enters into the byproduct operator of a gate simulation in the
same way as the measurement outcome from the neighboring cluster qubit measured in
the equator of the Bloch sphere. We may therefore call the cluster qubits of which σz is
measured and which are neighbors of cluster qubits measured in the equator of the Bloch
sphere the qubits of the “insulating layer”. The cluster qubits outside the insulating layer
have no impact on the computation, and they do not even have to be measured. The qubits
of the insulating layer are shown in the measurement patterns of the gate simulations in
Fig. 4.2. For the block shaped gates displayed in Fig. 4.2 with their simple composition
rule the assignment of an insulating layer qubit to a gate simulation is unambiguous. Each
qubit in the insulating layer belongs to exactly one gate simulation. As the measurement
outcomes obtained from insulating layer qubits enter into the byproduct operator of the
simulated gates these qubits are also sensitive to errors. Leading order physical errors, i.e.
one qubit- and next-neighbor two-qubit errors must not cause logical errors in two parallel
gates. This is guaranteed if we chose distance four, see Fig. 4.3a.

It is, however, impossible to avoid that elementary physical errors affect two consecutive
gates. Namely there is one case, displayed Fig. 4.3b, where a bond error affects an input
qubit of a gate g2 and its left neighbor which belongs to the realization of the preceding
gate g1. Let us denote the qubit in C(g1)\CO(g1) as qubit a, and the qubit in C(g2)\CO(g2)

as qubit b. The discussed bond error E then is E = σ
(a)
z σ

(b)
z . As the correlation operator

K(a) is absorbed by the cluster state, K(a)|φ〉C = |φ〉C , (2.1), the error E ′ = EK(a) is
equivalent to E, E ′ ∼= E. The error E ′ has only support on C(g1)\CO(g1) and hence only
affects the gate g1. In this way, each bond error can be assigned unambiguously to exactly
one gate. Remark: Despite the fact that the error E ′ is formally a four-qubit error, we
continue to count it as a bond error, labeled by the bond (a, b). The reason for this is that
it has an error probability of p2 characteristic for bond errors. The fact that it acts on
four qubits instead of on two qubits is of no concern to the proof. The requirement which
needs to be obeyed is that the error E ′ is located only on C(g1)\CO(g1), which it is. We
will come back to this point at the relevant passage of the proof below eq. (4.73). The
need to call site- and bond-errors by distinct names is caused only by the fact that they
occur with different probabilities p1 and p2, respectively.

The set of errors locations I(g) belonging to the simulation of a gate g thus consists
of the set of locations Isite(g) for site errors and of the set of locations Ibond(g) for bond
errors. The σz-errors on qubits which are subsequently measured in the eigenbasis of σz

do not affect the computation, and the bond errors, except for the relocated ones, are all
σzσz. Therefore, only those edges in EC(g) belong to Ibond(g) for which at least one end
vertex is not in the insulating layer. This is true for the relocated errors, too. The set
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Figure 4.3: a) Distance four is chosen to avoid a two-qubit error in parallel gates caused by an
elementary physical one- or two qubit error. b) A physical error which affects two consecutive
gates. Such errors cannot be avoided, but they can be handled.

Isite(g) is given by C(g)\CO(g) for all gates g.

Step 2. We now consider a gate simulation on a cluster C(g) with imperfect means. In
such a gate simulation first an input state

ρin,C(g) =
[
S(C(g))

] (
ρlog

in,CI(g) ⊗ |+〉C(g)\CI(g)〈+|
)

(4.60)

is prepared, where ρlog
in is the state of the quantum register. Second, this state is acted

upon by the noise super operator Tg, and third the perfect measurements

Pg({~ra, sa}) =
⊗

a∈C(g)\CO(g)

P (a)(~ra, sa) (4.61)

are performed, where {~ra, sa} was used in short for {~ra, sa | a ∈ C(g)\CO(g)}. The quantum
state resulting from this procedure is

ρout,C(g) = [Pg({~ra, sa})] ◦ Tg

(
ρin,C(g)

)
. (4.62)

The noise superoperator Tg is of the form

Tg =


 ∏

i∈I(g)

Ti


 . (4.63)

In the error model 2 the physical errors are associated with the vertices and with the bonds
in C(g). The set I(g) is labeling the physical error locations. For each i ∈ I(g) there is

an error superoperator Ti associated with it. Ti = T (ai)
1 [p1], if i labels a one-qubit error

at site ai ∈ C(g)\CO(g), and Ti = T (a,b)i

I,2 [p2], if i labels an ordinary bond error at bond
(a, b)i ∈ EC(g). We now expand the errors into a Pauli basis, and obtain

Tg

(
ρin,C(g)

)
=

∑

{ei|i∈I(g)}
p({ei})E({ei}) ρin,C(g)E({ei})†, (4.64)
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with

p({ei}) =
∏

i∈I(g)

pi(ei), E({ei}) =
∏

j∈I(g)

Ej(ej). (4.65)

To label each individual error operator we require a further index, ei. For example, if i is
a site error, then we have four individual Pauli errors Ei(ei): Ei(0) = 1l(ai), Ei(1) = σ

(i)
x ,

Ei(2) = σ
(i)
y and Ei(3) = σ

(i)
z . The corresponding error probabilities are pi(0) = 1 − p1

and pi(1) = pi(2) = pi(3) = p1/3. Equivalently, if Ti is a bond error on (a, b)i, then

Ei(0) = 1l(a,b)i and Ei(1) = σ
(ai)
z σ

(bi)
z (for an ordinary bond error only). The respective

error probabilities are pi(0) = 1− p2, pi(1) = p2.

Now, in eq. (4.62) we exchange the order of the noise superoperator and the projections,

ρout,C(g) =
∑

{ei|i∈I}
p({ei})E({ei})P̃g({ei})ρin,C(g)P̃g({ei})E({ei})†. (4.66)

where

P̃g({~ra, sa}, {ei}) = E({ei})†

 ⊗

a∈C(g)\CO(g)

P (a)(~ra, sa)


E({ei}). (4.67)

P̃g({~ra, sa}, {ei}) is a projector onto qubit a like Pg({~ra, sa}) is. Just the sets {~ra} and
{sa} may differ. Thus, in the same way as Pg({~ra, sa}) projects |Ψin〉C(g) into

Pg({~ra, sa})|Ψout〉C(g) = |{~ra, sa}〉C(g)\CO(g) ⊗ (U({~ra, sa})|ψin〉)CO(g) , (4.68)

the multi-local projector P̃g({~ra, sa}, {ei}) projects the state |Ψin〉C(g) into

P̃g({~ra, sa}, {ei})|Ψout〉C(g) = |{~ra, sa}, {ei}〉C(g)\CO(g)⊗(U({~ra, sa}, {ei}) |ψin〉)CO(g) . (4.69)

Thus, we eventually obtain for the output state ρout

ρout =
∑

{ei| i∈I(g)}
p({ei})E({ei})P̃gE({ei})† ⊗

(
U({~ra, sa}, {ei})ρlog

in U({~ra, sa}, {ei})†
)
CO(g)

= Pg({~ra, sa}) ⊗
∑

{ei| i∈I(g)}
p({ei})

(
U({~ra, sa}, {ei})ρlog

in U({~ra, sa}, {ei})†.
)
CO(g)

(4.70)
Therein, Pg({~ra, sa}) denotes the density operator of the qubits in C(g)\CO(g) after apply-
ing the operator Pg({~ra, sa}) describing the measurements on these qubits.

With (4.70), we find that the noisy channel Tg =
∏

i∈I(g) Ti on the physical qubits in

the location of the gate g is converted into noise on the logical qubits in the state ρlog
in . The

imperfect gate simulation amounts to the simulation of an imperfect gate.

Let us now rewrite the unitary transformation U({~ra, sa}, {ei}) in (4.70) in a way that
is suitable for the remaining part of the proof. For brevity, we omit the set of variables
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{~ra, sa} labeling the unitary transformations, and henceforth denote U({~ra, sa}, {ei}) as
U({e1, e2, ..., e|I(g)|}).

U({e1, e2, ..., e|I(g)|}) = U({e1, e2, ..., e|I(g)|})U({0, e2, ..., e|I(g)|})−1

U({0, e2, ..., e|I(g)|})U({0, 0, e3, ..., e|I(g)|})−1...
U({0, ..., 0, e|I(g)|})U({0, ..., 0})−1 U({0, ..., 0}).

(4.71)

Therein, we define

UΣ,i({ei, ..., e|I(g)|}) := U({0, ..., 0, ei, ei+1, ..., e|I(g)|})U({0, ..., 0, ei+1, ..., e|I(g)|})−1, (4.72)

such that

U({e1, e2, ..., e|I(g)|}) =


 ∏

i∈I(g)

UΣ,i({ei, ..., e|I(g)|})

U({0, ..., 0}). (4.73)

The temporal ordering in the product in (4.73) is as in (4.71). Let us, at this point,
briefly discuss whether the four-qubit relocated bond errors cause any trouble. As shown
in (4.70), the errors ei, i ∈ I(g), affect the logical processing because the transformation
U({~ra, sa}, {ei}) applied to the register state ρlog

in depends on them. This is the case re-
gardless of whether ei is a site- or bond error, ordinary or relocated. As we shall see
in eq. (4.91), for the fault-tolerance proof it is only relevant that the transformations
UΣ,i({ei, ..., e|I(g)|}), defined in (4.72) on the basis of the transformations U({~ra, sa}, {ei}),
are unitary for all sets of errors {e1, ..., e|I(g)|}, and are thus physical operations.

To quantify the gate error we need an operator norm. In reference to theorem (4.36),
in this proof we will use a norm ‖ · ‖ which obeys the relations (4.34), such as the diamond
norm [73]. Throughout the proof we will make use of these special norm properties, and
two further properties which are derived thereof and the basic properties that a norm
satisfies by definition [74],

‖T ‖ ≥ 0, where ‖T ‖ = 0 ⇐⇒ T = 0, (4.74a)

‖λT ‖ = |λ| ‖T ‖, (4.74b)

‖Tr + Ts‖ ≤ ‖Tr‖+ ‖Ts‖. (4.74c)

First, if TU corresponds to a unitary transformation, then

‖T − TU‖ =
∥∥T ◦ TU

−1 − 1l
∥∥ . (4.75)

This holds because, with (4.34b) and (4.34d), ‖T − TU‖ = ‖(T ◦ TU
−1 − 1l) ◦ TU‖ ≤ ‖T ◦

TU
−1−1l‖ ‖TU‖ = ‖T ◦TU

−1−1l‖. In the same way but opposite direction, ‖T ◦TU
−1−1l‖ ≤

‖T − TU‖. From both inequalities there follows (4.75).
Second, for sets I with a finite number of elements, the following inequality holds.

∥∥∥∥∥
∏
i∈I

Ti − 1l

∥∥∥∥∥ ≤
∑
i∈I

‖Ti − 1l‖ . (4.76)
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For |I| = 2, note that ‖T2T1 − 1l‖ = ‖T2T1 − T1 + T1 − 1l‖ ≤ ‖(T2 − 1l)T1‖ + ‖T1 − 1l‖ ≤
‖T2 − 1l‖+ ‖T1 − 1l‖. Now, (4.76) follows by induction.

Having these notions introduced, we now prove that any bound η′′c on the gate errors can
be matched with constant nonzero bounds on the physical errors in a QCC gate simulation.
The error of the simulated gate g is

ηg =

∥∥∥∥∥∥


 ∑

{ei| i∈I(g)}
p({ei})

[
U({e1, e2, ..., e|I(g)|})

]

− [

U({0, ..., 0})]
∥∥∥∥∥∥
. (4.77)

Substituting (4.73) into (4.77), and using (4.75), we obtain

ηg =

∥∥∥∥∥∥


 ∑

{ei}| i∈I(g)

p({ei})

 ∏

i∈I(g)

UΣ,i({ei, ..., e|I(g)|})




− [

1l
]
∥∥∥∥∥∥
. (4.78)

For better illustration, we do the proof first for the Clifford gates where it is technically
easier. However, the essence of the proof is covered by the case of Clifford gates already.
There, a simplification arises because for simulations of Clifford gates the unitary trans-
formations UΣ,i({ei, ..., e|I(g)|}, {~ra, sa}) are, in fact, the byproduct operators introduced
earlier. They are elements of the Pauli group, and depend solely on the error parameter ei

but neither on ej for j 6= i, nor on {~ra, sa}),
UΣ,i({ei, ..., e|I(g)|}, {~ra, sa}) = UΣ,i(ei), (for Clifford gates). (4.79)

The logical errors UΣ,i(ei) induced by the physical errors Ei(ei) are all independent, and,
with (4.65),

∑

{ei}| i∈I(g)

p({ei})

 ∏

j∈I(g)

UΣ,j(ej)


 =

∏

i∈I(g)

∑
ei

pi(ei)
[
UΣ,i(ei)

]
. (4.80)

We now insert (4.80) into (4.78) and obtain, using (4.76),

ηg ≤
∑

i∈I(g)

∥∥∥∥∥

(∑
ei

pi(ei)
[
UΣ,i(ei)

]
)
− [

1l
]
∥∥∥∥∥ . (4.81)

To discuss this expression further let us split the sum in two parts I(g) = Isite(g)∪Ibond(g),
one for the errors on sites, i ∈ Isite(g), and one for the errors on bonds, i ∈ Ibond(g). For
the site errors we have, with (4.25) and (4.74b), and with UΣ,i(0) = 1l for all i ∈ I(g),

∑

i∈Isite(g)

∥∥∥∥∥

(
3∑

ei=0

pi(ei)
[
UΣ,i(ei)

]
)
− [

1l
]
∥∥∥∥∥ = p1

∑

i∈Isite(g)

∥∥∥∥∥

(
1

3

3∑
ei=1

[
UΣ,i(ei)

]
)
− [

1l
]
∥∥∥∥∥

≤ 2p1|Isite(g)|.
(4.82)
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By an analogous argument, the contribution from to the gate error bound coming from
the bond errors is

∑

i∈Ibond(g)

∥∥∥∥∥

(
1∑

ei=0

pi(ei)
[
UΣ,i(ei)

]
)
− [

1l
]
∥∥∥∥∥ ≤ 2p2|Ibond(g)|. (4.83)

Combining (4.82) and (4.83) with (4.81) we obtain

ηg ≤ 2p1 |Isite(g)|+ 2p2 |Ibond(g)|. (4.84)

Note that the obtained upper bound (4.84) on the gate error ηg is linear in the probabilities
p1, p2 of the individual one- and two-qubit errors. Thus, for any threshold value η′′c of the
gate error there exist values for the physical error probabilities p1, p2 such that ηg(p1, p2) ≤
η′′c . Further, the obtained upper bound on the gate error is linear in the size |Isite(g)|,
|Ibond(g)| of the error location corresponding to the sub-cluster C(g) on which the gate g
is realized.

Let us now restate the proof for the general case. We define

ηg[k] =

∥∥∥∥∥∥


 ∑

{ei| i≥k}

|I(g)|∏

i=k

p(ei)



|I(g)|∏

j=k

UΣ,j({ej, ... , e|I(g)|})




− [

1l
]
∥∥∥∥∥∥
. (4.85)

Note that ηg[1] = ηg. Further holds the inequality

ηg[k]− ηg[k + 1] ≤ 2pk, (4.86)

where pk is the error probability for the kth error channel,

pk =
∑
ek>0

pk(ek) = 1− pk(0). (4.87)

Proof of (4.86). The difference ηg[k]−ηg[k+1] may be bounded from above in the following
way

ηg[k]− ηg[k + 1] =

∥∥∥∥∥∥


 ∑

{ei| i≥k}

|I(g)|∏

i=k

p(ei)



|I(g)|∏

j=k

UΣ,j({ej, ... , e|I(g)|})




− [

1l
]
∥∥∥∥∥∥
− ηg[k + 1],

which is just the definition. Into the r.h.s of the above equation we insert a zero,

ηg[k]− ηg[k + 1] =

∥∥∥∥∥∥


 ∑

{ei| i≥k}

|I(g)|∏

i=k

p(ei)



|I(g)|∏

j=k

UΣ,j({ej, ... , e|I(g)|})




−

−

 ∑

{ei| i≥k+1}

|I(g)|∏

i=k+1

p(ei)



|I(g)|∏

j=k+1

UΣ,j({ej, ... , e|I(g)|})




 +

+


 ∑

{ei| i≥k+1}

|I(g)|∏

i=k+1

p(ei)



|I(g)|∏

j=k+1

UΣ,j({ej, ... , e|I(g)|})




− [

1l
]
∥∥∥∥∥∥
−

−ηg[k + 1]. (4.88)
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In (4.88), we now pair the first and the second two terms in the norm together and use the
triangle inequality (4.74c). The summand arising from the latter two terms is ηg[k + 1],
and thus cancels. The remaining term we rewrite as

ηg[k]− ηg[k + 1] ≤
∥∥∥∥∥∥

∑

{ei| i≥k+1}

(∑
ek

pk(ek)
[
UΣ,k({ek, ... , e|I(g)|})

]− [
1l
]
)

|I(g)|∏

i=k+1

p(ei)



|I(g)|∏

j=k+1

UΣ,j({ej, ... , e|I(g)|})



∥∥∥∥∥∥
(4.89)

In (4.89) we may us again (4.74c), and (4.74b), to obtain

ηg[k]− ηg[k + 1] ≤
∑

{ei|i≥k+1}

|I(g)|∏

i=k+1

p(ei)

∥∥∥∥∥
∑
ek

pk(ek)
[
UΣ,k({ek, ... , e|I(g)|})

]−[
1l
]
∥∥∥∥∥ (4.90)

Let us now discuss the expression within the norm in (4.90), subsequently denoted in short
as ‖∆Tk‖. The total error probability pk for the physical error at the location k is given
by (4.87). Since UΣ,k(0) = 1l, the identity appears twice in the expression for ‖∆Tk‖ and
the two terms largely cancel,

‖∆Tk‖ =

∥∥∥∥∥
∑
ek

pk(ek)
[
UΣ,k({ek, ... , e|I(g)|})

]− [
1l
]
∥∥∥∥∥

=

∥∥∥∥∥

(∑
ek>0

pk(ek)
[
UΣ,k({ek, ... , e|I(g)|})

]
)
− pk

[
1l
]
∥∥∥∥∥

= pk

∥∥∥∥∥

(∑
ek>0

pk(ek)

pk

[
UΣ,k({ek, .., e|I(g)|})

]
)
− [

1l
]
∥∥∥∥∥

≤ pk

(∑
ek>0

pk(ek)

pk

∥∥[
UΣ,k({ek, ... , e|I(g)|})

]∥∥ +
∥∥[

1l
]∥∥

)
(4.91)

= 2pk. (4.92)

To obtain (4.91) we have used the triangle inequality (4.74c). For (4.92), we have inserted
(4.87) in (4.91), and further have used (4.34d). If we insert (4.92) into (4.90), we obtain

ηg[k]− ηg[k + 1] ≤ 2pk

∑

{ei|i≥k+1}

|I(g)|∏

i=k+1

p(ei), (4.93)

and thus ηg[k]− ηg[k + 1] ≤ 2pk, which proves (4.86).
From the definition of ηg[k] (4.85) one obtains for ηg[|I(g)|] the bound ηg[|I(g)|] ≤

2p|I(g)|, and hence by induction for the gate error ηg = ηg[1],

ηg ≤ 2
∑

i∈I(g)

pi. (4.94)
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In the model 2 for the physical errors we have two types of errors, site errors T (ai)[p1],

i ∈ Isite(g), and bond errors T (a,b)j

I,2 [p2], j ∈ Ibond(g). The respective error probabilities are
pi = p1 for all i ∈ Isite(g), and pj = p2 for all i ∈ Ibond(g), such that we finally obtain for
the gate error

ηg ≤ 2p1|Isite(g)|+ 2p2|Ibond(g)|, (4.95)

in accordance with (4.84).
To simulate all gates g ∈ G ′′ ∪ {SWAP} with a gate error ηg ≤ η′′c it is sufficient to

require that

2p1|Isite(g)|+ 2p2|Ibond(g)| ≤ η′′c , ∀ g ∈ G ′′ ∪ {SWAP}. (4.96)

The set of gates G ′′ ∪ {SWAP} is finite, and therefore the condition (4.96) can be obeyed
with positive p1, p2 for all nonzero η′′c . Thus, the QCC can simulate a one-dimensional
quantum computer [44] with gate error threshold η′′c . As the one-dimensional quantum
computer is fault-tolerant by the theorem quoted in (4.36), the QCC is fault-tolerant,
too. There exist positive error thresholds for fault-tolerant quantum computation with the
one-way quantum computer. ¤

4.4 Checksums

Let us for illustration state the bounds (4.95) on the gate errors for the set or gates
displayed in Fig. 4.2. They read ηCNOT ≤ 82p1 + 130p2, ηwire = ηRot ≤ 38p1 + 56p2, and
ηSWAP ≤ 76p1 + 114p2. Thus, the thresholds for QCC-fault-tolerance are more stringent
than the respective network thresholds by a factor of approximately 102. Already the error
thresholds for one-dimensional networks appear to be rather small [64, 44]. Therefore, to
simulate network quantum computers with next-neighbor interactions seems impractical for
fault-tolerant quantum computation with the QCC. Instead, it appears rewarding to look
for methods of error identification that the QCC provides naturally. A concept for a fault-
tolerant QCC which may be capable of improving the error thresholds rather substantially
is the use of quantum correlations to obtain checksums of measurement outcomes.

4.4.1 A first example

For certain gates and sub-circuits it occurs that there exist multiple ways to infer the
byproduct operator from the outcomes of the measurements which implement this gate or
sub-circuit. An example for such a situation is the multi-qubit swap gate as redisplayed in
Fig. 4.4. There, the byproduct operator UΣ, swap is of the form (2.63) and has a z-part

U
[1,z]
Σ,swap =

(
σ[1]

z

)γ1,z
, (4.97)

with
γ1,z =

∑
a∈Jupper

sa mod 2. (4.98)
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Figure 4.4: Checksums for error identification. In a), the cluster qubits whose measurement
outcomes contribute to the σ[1]

z -part of the byproduct operator UΣ,swap are marked by dots “•”.
In b) an alternative choice of such cluster qubits is shown. As there are two ways to infer the
σ

[1]
z -contribution to the byproduct operator, the consistency condition (4.101) holds. The cluster

qubits whose measurement outcome contributes to this checksum are displayed in c).

The set Jupper over which the summation index in (4.98) runs consists of all those cluster
qubits which are marked by a dot “•” in Fig. 4.4 a.

Alternatively, one may infer the σ
[1]
z -contribution to the byproduct operator UΣ,swap

from the measurement outcomes of cluster qubits a ∈ Jlower, which are marked by dots in
Fig. 4.4 b, i.e.

γ1,z =
∑

a∈Jlower

sa mod 2. (4.99)

Both expressions for γ1,z, (4.98) and (4.99) must agree for all possible sets of measurement
outcomes,

∑
a∈Jupper

sa mod 2 =
∑

a∈Jlower
sa mod 2, such that, with the definition

Jcs = Jupper ∪ Jlower\ (Jupper ∩ Jlower) (4.100)

the consistency condition ∑
a∈Jcs

sa = 0 mod 2 (4.101)

must hold. If it does not hold in an experimental realization of the gate, then an error
must have occurred in the implementation procedure. The expression on the l.h.s. of eq.
(4.101) is called a checksum. If the measurement pattern to realize a gate is designed
carefully, then there exists a set of independent checksums for this gate, providing an error
syndrome. If the set of checksums is sufficiently large, a possible error can be identified
from the thereby provided error syndrome.

The consistency condition (4.101) can be inferred directly from the quantum correla-
tions (2.1) defining a cluster state. Let us consider a gate operation in a procedure ac-
cording to Scheme 1 described in Section 2.2.4, i.e. preparation of the state |ψin〉CI(swap) ⊗
|+〉CM (swap)∪CO(swap), entangling this state via the Ising interaction, thereby obtaining the

state |ΨE〉C(swap), and performing the σx-measurements P
(CI(swap)∪CM (swap))
X on the cluster

CI(swap) ∪ CM(swap), obtaining |Ψout〉C(swap) = |m〉CI(swap)∪CM (swap) ⊗ |ψout〉CO(swap). The
state |ΨE〉C(swap) is not a cluster state as it depends on the quantum input |ψin〉. It does,
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however, still fulfill the cluster state eigenvalue equations (2.1) for all those sites a which
do not belong to the input set CI(swap),

K(a)|ΨE〉C(swap) = |ΨE〉C(swap), ∀a ∈ CM(swap) ∪ CO(swap). (4.102)

Now note that the set Jcs (4.100) does not contain qubits in CI(swap), such that all
cluster state correlations K(a) with a ∈ Jcs remain valid for |ΨE〉C(swap). Further, we observe
that ∏

a∈Jcs

K(a) =
⊗
a∈Jcs

σ(a)
x . (4.103)

All the σz-contributions to the r.h.s. of (4.103) cancel. With (2.1) and (4.103) one finds

⊗
a∈Jcs

σ(a)
x |ΨE〉C(swap) = |ΨE〉C(swap). (4.104)

This implies for the state |Ψout〉C(swap) = n−1
P P

(CI(swap)∪CM (swap))
X |ΨE〉C(swap), nP being a non-

zero norm factor, that

|Ψout〉C(swap) = n−1
P P

(CI(swap)∪CM (swap))
X

(⊗
a∈Jcs

σ(a)
x

)
|ΨE〉C(swap)

= (−1)
P

a∈Jcs
san−1

P P
(CI(swap)∪CM (swap))
X |ΨE〉C(swap)

= (−1)
P

a∈Jcs
sa|Ψout〉C(swap).

(4.105)

As |Ψout〉C(swap) 6= 0, the constraint
∑

a∈Jcs
sa = 0 mod 2, (4.101), must hold. This is a first

example of a checksum.

4.4.2 The encoded CNOT gate on the Steane code

In Fig. 4.5 CNOT gate on encoded qubits is shown, where the seven-qubit Steane code
is used to encode the logical qubits. The code has twelve stabilizer generators for the
two encoded qubits, and in addition there exist 24 checksums. One of the checksums are
shown in Fig. 4.5. As has been shown in [75], under the idealized assumption that the
subsequent measurements of the stabilizer are perfect, the displayed encoded CNOT gate
operates fault-tolerantly. That is, using both the checksums obtained from the outcomes
of the measurements which implement the gate and the outcomes of the code stabilizer
measurements, all possible errors can be identified up to equivalence on the code.

To investigate the realistic case where errors occur in the measurement of the code stabi-
lizer as well, it requires a measurement pattern which performs the stabilizer measurement
on the QCC. To date, no such measurement pattern has been tested in combination with
an encoded gate. To construct a universal set of fault-tolerant encoded quantum gates for
the QCC is a subject of further study.

Let us briefly explain the functioning of the encoded CNOT gate. Consider a cluster
state |φ〉C(+) on a cluster C(+) as shown in Fig. 4.5. The state |Ψout〉C(+) obtained after the
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measurement of the qubits in CM(+) in the bases indicated in Fig. 4.5 obeys the eigenvalue
equations

σ(I,ci)
z σ(O,ci)

z |Ψout〉C(+) = ±|Ψout〉C(+), (4.106a)

σ(I,ci)
x σ(O,ci)

x σ(O,ti)
x |Ψout〉C(+) = ±|Ψout〉C(+), (4.106b)

σ(I,ti)
z σ(O,ci)

z σ(O,ti)
z |Ψout〉C(+) = ±|Ψout〉C(+), (4.106c)

σ(I,ti)
x σ(O,ti)

x |Ψout〉C(+) = ±|Ψout〉C(+). (4.106d)

Therein, the labels ci, ti denote the ith control- and target qubit, respectively, and the
labels I, O indicate whether the respective cluster qubit is from CI(+) or CO(+).

From the eigenvalue equations (4.106) it follows via Theorem 1 that the measurement
pattern implements, modulo a byproduct operator, a bitwise CNOT from control to target.
For the seven-qubit Steane code the encoded CNOT operation is transversal, the bitwise
CNOT-operations on the bare qubits result in an encoded CNOT operation on the encoded
qubits.

Let us conclude with a general remark. We found in this section that the checksums sup-
plement the code stabilizer measurements in error identification for fault-tolerant quantum
computation. For the QCC, the sub-circuits for fault-tolerant code stabilizer measurement
will be realized as specific measurement patterns on the cluster, and therefore the outcomes
of the stabilizer measurements will again appear as checksums. Further, the defining rela-
tions of the readout bits of a quantum computation, given by the components of the x-part
of I in (3.73), have the structure of checksums. Thus, we find that the checksums –derived
from the quantum correlations of the cluster state– are at work everywhere in the QCC.
Some are used to infer the computational result and others to stabilize the computation.
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Figure 4.5: CNOT gate on qubits encoded with the seven-qubit Steane code. Squares in light
and dark gray denote cluster qubits measured in the eigenbasis of σx and σy, respectively. The
full circles “•” denote the correlation centers of the initial cluster state quantum correlation which
leads, after measurement of the qubits in CM (+), to eq. (4.106b) for qubit c2. The circles “◦”
denote the correlation centers for the cluster state correlation which yields to eq. (4.106a) for the
qubit c4. The filled boxes denote the correlation centers for one of the checksums.



Chapter 5

Conclusion and outlook

In this thesis we have described the one-way quantum computer, a scheme of quantum
computation that consists entirely of one-qubit measurements on a highly entangled multi-
particle state. This multi-particle state, the cluster state, is a universal resource for quan-
tum computation and provides in advance all the entanglement needed in the computa-
tional process. Each quantum circuit can be imprinted on the cluster by the one-qubit
measurements.

A proper quantum computer needs to be universal, scalable and fault-tolerant. For the
QCC, we have proven universality in Chapter 2 and fault-tolerance in Chapter 4. Scaling has
been discussed in Section 2.2.8. A quantum algorithm which is polynomial in its temporal,
spatial and operational resources within the network picture is polynomial on the QCC as
well. The scaling capabilities of the class of systems suitable for the implementation of
the QCC are very promising. Specifically, the resource cluster state can be created by the
homogeneous Ising interaction, and in this way the operational effort to create the quantum
resource is independent of the system size. Furthermore, the one-qubit measurements that
are used to imprint the quantum circuit on the cluster remain one-qubit measurements no
matter what size the system is scaled up to. The QCC avoids by construction the difficult
task of performing long-range particle-selective interactions. Nevertheless, one should not
underestimate the experimental difficulties that may arise in an experimental realization
of the QCC.

The QCC does not only fulfill the essential requirements. We have also found that the
QCC is based on a computational model different from the network model of quantum
computation. This model is described in Chapter 3. The formal description of the QCC is
based on primitive quantities of which the most important are the sets Qt ⊂ C of cluster
qubits defining the temporal ordering of measurements on the cluster state, and the binary
valued information flow vector I(t) which is the carrier of the algorithmic information.

The QCC has no quantum input, no quantum output and no quantum register, and
the unitary gates from some universal set are not the elementary building blocks of QCC-
quantum algorithms. All that is processed with the QCC are the outcomes of one-qubit
measurements and thus processing of information exists only at the classical level. The
byproduct operators, which were regarded as a mere byproduct in the network description
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of the QCC, caused by the randomness of the measurement outcomes and the need to
account for it, turn out to be the central objects for information processing with the QCC.

Despite the classical nature of information processing, the QCC is genuinely quantum
mechanical as it uses a highly entangled cluster state as the central physical resource. What
enables the QCC are the quantum correlations exhibited by the cluster state. A QCC-
computation proceeds by measuring a subset of these correlations in local measurements.

In Chapter 4 we have shown that there exist nonzero error thresholds for fault-tolerant
computation with the QCC. The technique used was to trace back QCC-fault-tolerance to
the fault-tolerance of a network quantum computer with next-neighbor and local gates only.
The fault-tolerance of such a device has been established previously [44, 64]. However, what
makes the proof conceptually simple, on the other hand makes the according realization
hard: the obtained error thresholds are extremely small. To simulate one-dimensional
quantum computers (which use next-neighbor and local gates only) on the QCC is no
practicable way of making the QCC fault-tolerant. As a first step towards better bounds,
the concept of checksums has been introduced to the QCC [75]. The checksums use cluster-
state quantum correlations for error detection and identification, and may become an
element in more efficient techniques for fault-tolerant quantum computation with the QCC.

For the future, a self-evident task is to figure out feasible and adequate methods for
fault-tolerant QCC-computation and finally to come up with better error thresholds. An
advantage of the QCC over mainly unitary quantum logic networks is that operations can
be parallelized to a larger degree, such that i.e. circuits for code stabilizer measurements
are executed in a single time step. Fast error correction or -identification is critical for
fault-tolerant quantum computation. Additionally, in appropriately designed circuits the
number of checksums is enlarged beyond those provided by the code stabilizer (if a stabilizer
code is used) and in this way the means for identification of errors are improved. A
disadvantage of the QCC as compared to a network quantum computer is that it has an
overhead in the number of required quantum systems and is therefore more prone to error.
It is presently an open question which of the effects –faster feedback and more capability for
error identification, or higher sensitivity to physical errors– dominates. For the universal
QCC, which was introduced as a simulator of quantum logic networks in Chapter 2, a
network-independent formulation has been given in Chapter 3. The same task stands out
for the fault-tolerant version of the QCC.

Returning to universal computation with perfect means one may ask whether the de-
scription of the QCC, with the computational model as derived in Chapter 3, is complete.
Despite all the facts that we have collected about cluster state quantum correlations, the
quantum part of the QCC, which is hidden behind the formal model of information process-
ing, is what requires a better understanding. We may approach this part of the QCC from
both the perspectives of physics and computer science, and find that there are many ques-
tions in this context which we cannot answer presently. A physicist may ask, for instance,
what condition the quantum correlations of a resource quantum state need to obey such
that universal quantum computation by one-particle measurements is possible. The cluster
state may be created from a product state via the Ising Interaction. What about states
that can be created, say, with the Heisenberg interaction?
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From the perspective of computer science one may ask how to design quantum al-
gorithms in the QCC-scheme directly, instead of translating existing network algorithms.
Presently, we do not know this for the general case. Nevertheless, we identified some
elements for circuit construction that may be used advantageously in future algorithmic
methods. In Section 2.3, for example, we decomposed circuits into generalized rotations
instead of into gates on a small number of qubits. For the QCC, the generalized rotations
are simple, no matter on how many qubits they act. They are, however, still unitary gates
applied to a quantum register - which in Section 3.1 was found not to be a suitable con-
struct for the QCC. Further, we showed in Section 3.6 that from every quantum algorithm
its Clifford part can be removed and only the remainder requires quantum resources, pro-
vided by an algorithm-specific graph state. These observations may, among others, provide
starting points for investigations aiming at new tools for quantum algorithms. A well devel-
oped model for computation, such as the quantum logic network model, provides efficient
algorithmic techniques and an intuition for what makes computation fast. For the one-way
quantum computer we do not have this tool box and intuition yet.

The computational model of the QCC as derived in Chapter 3, the search for new
construction techniques for quantum algorithms, and the investigation of the cluster state
quantum correlations are all paths that lead one to address the question: “If the quantum
gates are removed from the description of the QCC altogether, what replaces them as its
elementary building blocks?”. From the viewpoint of resources, one may regard the one-
qubit measurements as the constituents. This can, however, not be the whole answer,
since it helps little in understanding the structure of QCC-algorithms. The elements of the
QCC –as those of any model of computation– have to come with a composition principle.

We have stated earlier that the QCC separates the logic and the physics of quantum com-
putation. On the other hand, the above raised question about the elementary constituents
of the QCC is motivated from both the computer science and the physics perspective, and
–as we have argued– also its answer will involve elements from both constituting sciences
of the field of quantum information. In this way, the one-way quantum computer gives
physics and computer science an object of joint study.
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Appendix A

QCC-computation in the presence of
classically correlated noise

In Section 4.2 we based the error model 2 on uncorrelated physical errors, which is a rea-
sonable assumption to start with. However, the fact that the resource cluster state can
be created in a constant number of steps independent of the cluster size –which is a great
advantage– brings about the side effect that errors in the elementary interactions by which
the cluster state is created are, for many physical settings, classically correlated. Therefore
it needs to be investigated how classical correlations in the noise affect QCC-computation.
In this appendix we demonstrate that, under the only assumption that the given mea-
surement pattern realizes a QCC-computation, classical correlations of inequivalent Pauli
product errors Ei, Ej, Ei|φ〉C 6= Ej|φ〉C , have no effect on the result of the quantum
computation.

We start our discussion with a more detailed version of (3.42). Taking into account the
adaption of measurement bases in the process of computation explicitly, the sequence of
projections is

P (C)({si}) =
⊗

a∈C\Q0

(
σ(a)

x

)ϑa({si,κi}) 1l(a) + (−1)sa~ra · ~σ(a)

2

(
σ(a)

x

)ϑa({si,κi})⊗

b∈Q0

1l + (−1)sb~rb · ~σ(b)

2
.

(A.1)
Herein, the vectors ~ra, a ∈ C, are assumed fixed, and the adaption of measurement bases is
taken care of by conditional conjugation under σ

(a)
x . As can be easily verified, the projectors

P (C)({si}) have the properties

P (C)({si})P (C)({s′i}) = δ(({si}, ({s′i})P (C)({si}). (A.2a)∑

{si}
P (C)({si}) = 1l(C). (A.2b)

The probability to find the set of measurement outcomes {si} in a QCC-computation is

p({si}) = C〈φ|P (C)({si})|φ〉C. (A.3)
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More interesting than the probability for a specific set of measurement outcomes are, of
course, the probability p(R) for finding a certain computational result R and the success
probability of an algorithm psucc. p(R) is the sum of all probabilities p({si}) with Ix({si}) =
R, i.e.

p(R) = C〈φ|P (C)(R)|φ〉C, (A.4)

with
P (C)(R) =

∑

{si}∈{0,1}|C| |Ix({si})=R

P (C)({si}). (A.5)

The success probability of an algorithm is given by the sum of all the probabilities p(R)
where R represents a valid outcome of the algorithm, R ∈ SOL,

psucc =
∑

R∈SOL

p(R). (A.6)

The set SOL may contain more than one solution R. Shor’s algorithm [1] is an example.
If the computation proceeds in the presence of noise, we describe this noise –as in error

model 2– by an error channel E (C) acting on a perfect cluster state, followed by perfect
measurements. The probability to find the result R in the quantum computation then is,
analogous to (A.3) , p(R) = Tr

(
P (C)(R) E (C)(|φ〉C〈φ|)

)
. We expand the noise superoperator

E (C) sandwiched between the perfect cluster state and the perfect measurements in error
model 2 in a basis spanned by (products of) Pauli operators, Ei, Ej,

E (C)(ρ) =
∑
i,j

cijEiρEj, (A.7)

where
∑

i cii = 1. Therein, two Pauli errors Ei, Ej are called equivalent, Ei
∼= Ej, iff

they act identically on the cluster state, Ei|φ〉C = Ej|φ〉C . With (A.7), the probability to
obtain the computational result R in the presence of noise becomes

p(R) =
∑
i,j

cij C〈φ|Ej P
(C)(R)Ei|φ〉C. (A.8)

If the errors ei of the generating set Ephy (4.42) are stochastically independent Pauli errors,
then cij = 0 for all i 6= j. This special form of (A.8), which corresponds to the case that
has been discussed in Section 4.2, is a consequence of the fact that the stochastically
independent error channels (4.56), (4.58) have this property, and inherit it to the product
errors composed of them. The form of the cii is further simplified due to the fact that the
errors from the generating set are assumed to be stochastically independent in Section 4.2.

Here we discuss classical correlations of Pauli errors. Their immediate effect is that cij
may be nonzero for all possible values of the error labels i, j. To illustrate this fact, let
us briefly consider a situation where the error arises due to imperfect control over a single
global tuning parameter for local or short-range interactions. The global tuning parameter
leads to classical correlations between the errors. A specific example is a cluster state
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where the errors occur solely due to erroneous Ising interaction. There, the global tuning
parameter is the interaction time.

To discuss examples like this more explicitly, assume that the error superoperator E (C)

in error model 2 sandwiched between the perfect cluster state and the perfect measurements
takes the form

E (C)(ρC) =

∫
dτ p(τ)


 ∏

ei∈EPhy

e−iτei


 ρC


 ∏

ei∈EPhy

eiτei


 , (A.9)

where the errors ei ∈ EPhy all commute. We now expand the products in (A.9) and insert
the result into p(R) = Tr

(
P (C)(R) E (C)(|φ〉C〈φ|)

)
. In this way, we find the probability p(R)

of obtaining the result R in the quantum computation

p(R) =
∑

{E}L∈P (EPhy)

{E}R∈P (EPhy)

c({E}L, {E}R) C〈φ|

 ∏

ei∈{E}L

ei


P (C)(R)


 ∏

ek∈{E}R

ek


 |φ〉C, (A.10)

where P (EPhy) denotes the power set of the generating set of errors EPhy, and

c({E}L, {E}R) =

∫
dτ p(τ) i|{E}R|−|{E}L| (sin τ)|{E}L|+|{E}R| (cos τ)2|EPhy|−|{E}L|−|{E}R| .

(A.11)
As a consequence of the classical correlation between the errors ei ∈ EPhy, in (A.10) we
find the double-sum structure of (A.8). However, many of these classical correlations have
no effect to the QCC-computation, as stated by the following lemma:

Lemma 1 Assume that a QCC-algorithm is run on a cluster state with proper adjustment
of the measurement bases and method to extract the computational result. Then, for all
computational results R and all inequivalent multi-local Pauli errors, Ei, Ej 6∼= Ei,

C〈φ|Ej P
(C)(R)Ei|φ〉C = 0. (A.12)

Therein, proper adjustment of the measurement bases requires that the defining relations
(3.50) for the sign factors of the measurement angles obey the invariance property (3.51)
and a proper method to extract the computational result is one where the defining relations
(3.49) for the readout bits [Ix]m obey the same invariance property (3.51). Practically, this
means that for a quantum algorithm of which there exists a network version, the perfect
implementation on the QCC as compared to a perfect network realization does not introduce
additional randomness into the quantum algorithm. The probability distribution of the
computational results is exactly the same for the network- and the QCC-version.

A consequence of lemma 1 and the fact that in (A.8) each Ej may be substituted by
an equivalent error E ′

j, E
′
j
∼= Ej is that the probability p(R) may always be written as

p(R) =
∑

i

p̃i C〈φ|Ei P
(C)(R)Ei|φ〉C. (A.13)
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A hallmark of classical correlations in the noise are “off-diagonal” terms EiρEj in the
expression (A.7) for E (C)(ρ). However, for the purpose of QCC-computation these terms
are irrelevant. For any error channel E (C) we may find a computationally equivalent error
channel Ẽ (C) which is diagonal in a Pauli basis, Ẽ (C)(|φ〉C〈φ|) =

∑
i p̃iEi|φ〉C〈φ|Ei. In other

words, if we consider the density operator describing the state on the cluster C before the
perfect measurements and expand it into a basis spanned by the cluster states, then, for
QCC-computation, we may discard the off-diagonal part of this density operator.

Proof of Lemma 1. First we prove the identity

K(a)P (C)(R) = P (C)(R)K(a), ∀a ∈ C, ∀R. (A.14)

To see why K(a) and P (C) commute, consider a single term P (C)({si}) in the sum (A.5) for
P (C)(R). One finds

K(a)


 ⊗

b∈C\Q0

(
σ(b)

x

)ϑb({si,κi}) 1l(b)+(−1)sb~rb ·~σ(b)

2

(
σ(b)

x

)ϑb({si,κi})⊗
c∈Q0

1l(c)+(−1)sc~rc ·~σ(c)

2




=


 ⊗

b∈C\Q0

(
σ(b)

x

)ϑ′b({si,κi}) 1l(b)+(−1)s′b~rb ·~σ(b)

2

(
σ(b)

x

)ϑ′b({si,κi})⊗
c∈Q0

1l(c)+(−1)s′c~rc ·~σ(c)

2


K(a).

(A.15)
Let us discuss in some detail what happens when we propagate the cluster state correlation

operator through the projector P (C)({si}). First, the conditional spin flips
(
σ

(b)
x

)ϑb({si,κi})

remain unaffected. They may commute or anti-commute with K(a), but as they come in
pairs there is no net sign factor. In propagation through the projections P (b) for b ∈ C\Q0,
the vector ~ra is reflected about the xz-plane (ra,y −→ r′a,y = −ra,y). This is accounted

for by conjugating ~ra · ~σ(a) with σ
(a)
x once more, ϑa −→ ϑ′a = ϑa + 1. For all b ∈ nbgh(a)

the measurement result is flipped, sb −→ s′b = sb + 1 mod 2. For the qubits in Q0,
the measurement directions remain unaffected, and the measurement results flip if the
respective measured observable anti-commutes with K(a). The transformations ϑa −→
ϑ′a = ϑa + 1, a ∈ C\Q0 and sb −→ s′b = sb + 1, b ∈ nbgh(a) ⊂ C caused by propagation of a
correlation operator we have encountered before as the invariance transformations of type
(3.41) induced by the subsequent unitary transformations (3.53).

Now, via the condition (3.51) we require that the defining relation (3.50) for the ϑb,
b ∈ C\Q0, is invariant under the these transformations, i.e.

ϑ′b({si}) = ϑb({s′i}). (A.16)
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We may thus replace the r.h.s. in (A.15) by

K(a)P (C)({si})

=


 ⊗

b∈C\Q0

(
σ(b)

x

)ϑb({s′i,κi}) 1l(b)+(−1)s′b~rb ·~σ(b)

2

(
σ(b)

x

)ϑb({s′i,κi})⊗
c∈Q0

1l(c)+(−1)s′c~rc ·~σ(c)

2


K(a)

= P (C)({s′i})K(a).
(A.17)

Via condition (3.51) we also require that the defining relations (3.49) for the bits of the
computational result are invariant under the transformations sb −→ s′b, which yields

[Ix]
′
m({sb}) = [Ix]m({s′b}) = [Ix]m({sb}), ∀m = 1..n. (A.18)

The individual bits [Ix]m = Rm of the computational result are scalars under the above
transformation.

Thus, under conjugation with K(a), each term of the sum P (C)(R) is mapped onto
another or the same term in P (C)(R). The mapping is reversible, and thus the action of
K(c) onto P (C)(R) merely amounts to a permutation of summands,

K(a)


 ∑

{si}∈{0,1}|C|
P (C)({si})


 =


 ∑

{si}∈{0,1}|C|
P (C)({s′i})


K(a),

=


 ∑

{s′i}∈{0,1}|C|
P (C)({s′i})


K(a),

(A.19)

which proofs (A.14).
Now consider a single term in the expansion (A.8), C〈φ|Ej P

(C)(R)Ei|φ〉C,
C〈φ|Ej P

(C)Ei|φ〉C = C〈φ|E ′
j P

(C)(R)E ′
i|φ〉C, (A.20)

where E ′
i
∼= Ei and E ′

j
∼= Ej. In particular, E ′

i, E
′
j are chosen to be products of Pauli phase

flip operators σ
(a)
z only. The Pauli spin flip operators σ

(a)
x have been removed by multipli-

cation of Ei, Ej with correlation operators K(a). The error operators E ′
i, E

′
j equivalent to

Ei, Ej are in this way uniquely defined, and Ei
∼= Ej ⇐⇒ E ′

i = E ′
j.

If E ′
i 6= E ′

j, then there exists a qubit, now called qubit a, for which there is a σ
(a)
z -factor

only in one of the errors E ′
i or E ′

j. Then it follows that

C〈φ|E ′
j P

(C)(R)E ′
i|φ〉C = C〈φ|K(a)E ′

j P
(C)(R)E ′

i K
(a)|φ〉C

= −C〈φ|E ′
j K

(a) P (C)(R)K(a)E ′
i|φ〉C

= −C〈φ|E ′
j P

(C)(R)E ′
i|φ〉C

= 0. (A.21)

Therein, the second line is true because K(a) anti-commutes with σ
(a)
z , and the third line

because of (A.14). Inserting (A.21) into (A.20) one obtains (A.12), proving Lemma 1. ¤
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