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1  Introduction

1.1  Hematopoiesis

Hematopoiesis is the process by which mature blood cells of distinct

lineages (e.g. red, white, and lymphoid cells) are produced from

pluripotent hematopoietic stem cells (HSCs); [Scheme 1]1. To sustain

hematopoiesis through an individual’s life time, HSCs must be capable of

(i) maintenance in a non-cycling state, (ii) self-renewal to generate

additional HSCs, and (iii) production of progenitor cells with more limited

developmental potential.

Scheme 1. Hematopoiesis: Differentiation of specific lineages from a common

pluripotent stem cell.
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Progenitors commit to subsets of lineages and ultimately to single

pathways with concomitant expression of the end stage markers

representative of each cell type (Scheme 1). Hematopoiesis is dynamic

both with respect to lineage decisions and location during development.

Within the mammalian embryo the site of hematopoiesis changes from its

initial position in the yolk sac blood glands (primitive hematopoiesis) to

the fetal liver and then to the bone marrow (definitive hematopoiesis).

Although it has been considered axiomatic that HSCs which populate the

adult arise within the yolk sac and migrate to the fetal liver, recent

evidence suggests an intraembryonic origin1.

1.2  Transcription Factors involved in Hematopoiesis

Transcription factors are sequence specific DNA binding proteins

with a variety of functions that include: (i) folding of the DNA molecule,

(ii) the initiation of the DNA replication and (iii) control of gene

transcription2. Transcription factors can be classified according to the three

dimensional structure of their DNA binding motifs. Over 80% of all

transcription factors are characterized by zinc fingers, helix-turn-helix,

helix-loop-helix, leucine zipper and winged-helix motifs2. A number of

transcription factors have been identified that play a role in the

development of erythroid and myeloid lineages3-7. The central role of

transcription factors in these processes has been highlighted by gene

inactivation studies, promoter analysis and ectopic expression of lineage

restricted factors8-10. Rather than being controlled by single master

regulators, lineage-specific gene expression appears to depend on the

combination of factors in overlapping expression domains11. Various

transcription factors involved in hematopoiesis are outlined in Table 1.
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Table 1. Transcription factors involved in hematopoiesis.

Transcription factor Role in Hematopoiesis References

PU.1 essential for the development of myeloid and lymphoid lineages.
The defect in neutrophil differentiation is limited, as incomplete
maturation although delayed is observed in PU.1-/- mice. In
contrast, PU.1 down-regulation is necessary for erythroid
differentiation

12-24

Ets-1 required for NK cell development as well as proper gene
expression control in B and T lymphocytes

25-28

Fli-1 positive regulation of Fli-1 expression is linked to the (i)
induction of proliferation, (ii) inhibition of apoptotic cell death,
and (iii) inhibition of the terminal differentiation program in
erythroid progenitors. In addition Fli-1 is associated with the
induction of the megakaryocytic phenotypic, and maintenance of
normal T cell numbers

29

C/EBPa critical regulator of granulocyte differentiation. C/EBPa-/- mice
show defects in granulocyte and eosinophil development, other
lineages including monocytes/macrophages, red blood cells.
Platelets and lymphoid cells appear to develop normally

30-41

C/EBPb plays an important role in macrophage and B cell development.
In macrophages it functions primarily as a regulator of cytokine
gene expression during inflammatory responses. In addition,
increased expression has been described during neutrophilic
differentiation

42-47{Doppler,
Welte, et al.

1995 702 /id}

C/EBPg involved in B cell development and fetal liver hemopoiesis 48-50

C/EBPd upregulated during myelopoiesis. Similarly to C/EBPb , in
macrophages it functions primarily as a regulator of cytokine
gene expression during inflammatory responses

35

C/EBPe regulator of eosinophil, neutrophil, and macrophage terminal
differentiation. C/EBPe-/- mice show marked defects in
granulocyte and eosinophil  development. No C/EBPe mRNA
was detected in erythroid, megakaryocyte, basophil, B-lymphoid,
or non-hematopoietic cell lines

51-58

AML1/PEBP2b disruption of gene expression studies indicate that
AML1/PEBP2b is necessary for normal development of all
hematopoietic lineages

59;60

PLZF down-regulation of PLZF may be a necessary step for the
differentiation of early bone marrow progenitors

61

MZF-1 important role in the induction of granulopoiesis, possibly linked
to the expansion of myeloid precursors prior to terminal
differentiation

62-64

WT-1 maximal expression found in CD34+/CD33-/Lin- early
progenitor cells down-regulation of WT-1 expression is
necessary for differentiation of myeloid progenitors

65-67

mFOG-1 plays a fundamental role in the development of erythroid and
megakaryocytic lineages

68-70

HOXA10 its expression is associated with amplification of early
hematopoietic precursors and megakaryocytes. Down-regulation
of HOXA10 is important for myeloid and B-lymphoid
differentiation

71-73

HOXA5 several lines of evidence indicate that HOXA5 gene expression
positively regulates granulocytic/monocytic differentiation,
whereas its down-regulation is necessary for progression of
erythropoiesis

74
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positively regulates granulocytic/monocytic differentiation,
whereas its down-regulation is necessary for progression of
erythropoiesis

HOXA9 important role in the development of myeloid, erythroid, and B
cell progenitors

75;76

HOXB3 down regulation of HOXB3 expression, compared to
CD34+/Lin- bone marrow progenitors, is necessary for normal
lymphoid (B and T cell) development. In contrast, HOXB3 over-
expression preferentially upregulates myeloid development.

77

HOXB4 key role in the expansion of primitive bone marrow hemapoietic
cells

78;79

HOXB8 role in positive regulation of macrophage development, and
negative regulation of granulocytic development

77

other HOX genes several other genes of the HOXB (B2, B6-B9), and HOXC (C6,
C8), appear to play a role in the regulatory development of
erythropoiesis

80

EGR-1 selective upregulation of EGR-1 gene expression is associated
with differentiation along the macrophage lineage, where
maximal expression is reached in mature cells. In contrast, EGR-
1 negatively regulates granulocytic lineage development

81

c-Myb expression of c-Myb is crucial for the survival and proliferation
of early hemapoietic progenitors. In contrast, c-Myb down-
regulation is required for terminal cell differentiation.

82-84

c-Myc expression levels are high in proliferating myeloid progenitors
and its down-regulation activates the terminal differentiation
program. In contrast, forced c-Myc expression negatively
regulates the terminal differentiation program.

85;86

AP-1 (Jun/Fos) several lines of evidence suggest a role for AP-1 in the
modulation of apoptotic pathways and the functional
development of several hemopoietic lineages including the
monocyte/macrophage, granulocyte, megakaryocyte, monocyte
and erythroid lineages

87;88

GATA GATA-1 and GATA-3 play key roles in the positive regulation
of erythroid and megakaryocyte development, as well as the
negative regulation of myeloid development. In the presence of
C/EBPa , however GATA-1 induces eosinophil lineage
development. GATA-3 expression is restricted to T- and NK-
cells, and has been found to be required for T cell lineage
commitment and differentiation

89;90

STAT1 central role in differentiation along the mononuclear phagocyte
lineage, through the induction of functional genes, such as
ICAM-1 and FcgR1

91

STAT3 essential for gp130-mediated induction of proliferation,
differentiation and survival signals in response to IL-6 signalling

92

STAT4 STAT4 expression, associated with early myeloid progenitors, is
down regulated during erythroid and granulocytic differentiation

93

SCL absolutely required for the development of embryonic, fetal and
adult hemopoietic stem cells. SCL modulates cellular
differentiation both positively in erythroid, myeloid, and
megakaryocytic lineages and negatively in macrophage lineage

94;95

IRF-1 modulates gene expression in developing thymocytes, required
for lineage commitment and selection of CD8+ thymocytes

96

ICSBP positive role in differentiation of bipotential myeloid progenitors
cells towards the macrophage lineage, as well as repression of
specific genes associated with terminal granulocytic
differentiation

97;98
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cells towards the macrophage lineage, as well as repression of
specific genes associated with terminal granulocytic
differentiation

MafB specific-upregulation of MafB expression plays an important role
in the induction of the mononuclear phagocyte differentiation
program and repression of erythroid specific gene expression in
myeloid cells

99;100

E2A the earliest appearing gene thought to be responsible for
commitment to the B cell lineage

101;102

BSAP/Pax5A expressed immediately after commitment to the B cell lineage in
the bone marrow, BSAP/Pax5A continues to be expressed
throughout B cell development except in plasma cells, where it
maintains commitment to the B cell lineage

102

EBF function in the development of B cell progenitors following
commitment to the B cell lineage

103

: Adapted from Barred et al., Developmental and comparative immunology, 2001

1.3  Myelopoiesis

The coordinated production of all blood cells from a common stem

cell is a highly regulated process involving successive stages of

commitment and differentiation. The myelopoietic system includes the

hematopoietic cells derived from a common hematopoietic stem cell that

includes erythroid, granulocytic, monocytic and megakaryocytic lineages.

Myeloid cell differentiation (Scheme 2) has been investigated on many

levels, from the cytokine signals required by each cell lineage to the

Scheme 2. Myeloid cell differentiation from a pluripotent myeloid progenitor cell into

a single lineage monocyte or granulocyte.



6

scheduled expression of distinctive myeloid cell-specific genes and the

programmed appearance of characteristic cell surface markers. By analogy

to progress in other developmental systems, such as muscle and liver cell

differentiation, it should be possible to establish a hierarchy of

differentiation signals and transcriptional processes for developing

myeloid cells. An attractive emerging concept implicates the programmed

regulation of key transcription factors at different stages of development,

coordinated by receptor-mediated signals from myeloid colony-stimulating

factors104. The development of distinct lineages like monocytes-

/macrophages, granulocytes and megakaryocytes from hematopoietic

precursor cells is controlled by a myriad of transcription factors which

regulate the expression of essential genes, including those encoding

growth factors and their receptors, enzymes, adhesion molecules, and

transcription factors themselves105. The various transcription factors which

have been implicated in myelopoiesis are PU.1, C/EBP members (a, b, d

and g), CBF, c-Myb, Ets, HOX, MZF-1, AML1/CBFb, AP-1 members etc.

Various growth factors are responsible for myelopoiesis, the most

important ones are G-CSF (granulocyte-colony stimulating factor), M-CSF

(macrophage-colony stimulating factor) and GM-CSF (granulocyte-

macrophage-colony stimulating factor).

1.4  Transcription factors PU.1, C/EBPa and c-Jun

Hematopoietic differentiation program involves activation of

transcription factors like PU.1, C/EBPa, GATA-1 and c-Jun, followed by

increased expression of colony stimulating growth factor receptors, and

maturation of the committed cells induced by transcription factors and

cytokines (Scheme 3).
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1.4.1  PU.1

PU.1 is a member of the Ets transcription family12. All Ets factors

contain a characteristic DNA binding domain of approximately 80 amino

acids18,25,106. PU.1 and the related Ets family member Spi-B form a distinct

subfamily within the larger group of Ets proteins, with very distinct

structure, patterns of expression, binding specificity, and functions that are

non-overlapping with other members of the Ets family. The PU.1 protein

consists of 272 amino acids,

with the DNA binding

domain located in the

carboxyl terminal part of

the protein, whereas the

amino terminus contains an

activation domain that has

been implicated in inter-

ac t ions  wi th  o ther

regulatory proteins107-109.

The structure of the DNA

binding domain has been

recently determined and

demonstrates a winged helix-turn-helix motif110 (Figure 1).

PU.1 shows specific patterns of hematopoietic expression. PU.1 is

expressed at highest levels in myeloid and B cells, but not in T cells20,12.

During hematopoietic development, PU.1 mRNA is expressed at low

levels in murine ES cells and human CD34+ stem cells and is specifically

upregulated during myeloid differentiation. The timing of this upregulation

coincides with the first detection of early myeloid maturation, suggesting

that this increase in expression may be an important process in myeloid

development, and inhibition of PU.1 function at this juncture can block

myeloid progenitor formation111. Studies in both primary CD34+ cells and

human leukemic cell line models suggest that PU.1 mRNA and DNA

binding activity do not increase further with subsequent myeloid

Figure 1. Crystal structure of PU.1 DNA
binding domain, bound to DNA

b4

b3
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maturation from the promyelocytic to more mature stages111,20, but these

studies do not preclude the possibility that the high levels of mRNA

observed in human monocytes is a result of subsequent final maturation

and/or activation. These expression studies suggest that regulation of PU.1

mRNA may play a significant role in the commitment of early

multipotential progenitors to the myeloid lineages, as well as in the further

differentiation and maturation of these cells.

Using retroviral transduction of PU.1 complementary DNA into

mutant hematopoietic progenitors, it has been demonstrated that differing

concentrations of the protein regulate the development of B lymphocytes

as compared to macrophages. A low concentration of PU. 1 protein

induces the B cell fate, whereas a high concentration promotes

macrophage differentiation and blocks B cell development. Conversely, a

transcriptionally weakened mutant protein (in the transactivation domain)

preferentially induces B cell generation112.

The important functional sites identified so far in the PU.1

promoter, an octamer site at bp -54, an Sp1 site at bp -39, and a site for

PU.1 itself at bp +20, are conserved in both human and mouse113. In B

cells, the octamer site plays a major role in PU.1 expression114. These

findings suggested that PU.1 is auto-regulatory in its expression. PU.1,

like other Ets factors, was first noted to bind to a sequence characterized

by a purine-rich core (GGAA), hence its name25. However, the DNA

binding specificity of PU.1 appears to be quite distinct from that of other

Ets factors.

PU.1, like other Ets proteins, interacts with other transcriptional

regulators. The various factors known, so far, to interact are PU.1

interacting protein (Pip), NF-IL6 (C/EBPd), c-Jun, TBP, RB, GATA1 and

CBP115-117,107.

Ets family members have been shown to play an important role in

several signal transduction pathways118-121. PU.1 is phosphorylated in vitro

by casein kinase II and JNK kinase, but not by ERK1 (MAP) kinase. A

recent study has shown that lipopolysaccharides (LPS) can activate casein



10

kinase II and phosphorylation of PU.1 in LPS-stimulated macrophage

lines122. The LPS stimulation of PU.1 transactivation of a reporter

construct was abolished by a serine to alanine mutation of residue 148,

suggesting that stimulation of macrophages with LPS leads to increased

phosphorylation and activity of PU.1.

Several groups have addressed the function of PU.1 on murine

development using targeted disruption of the PU.1 gene17,24. Singh et al.,

have reported that PU.1-/- embryos die in utero, usually at day E16123.

These animals demonstrated variable anemia, but no production of any

type of white blood cells, including monocytes, neutrophils, and B cells, as

might be expected based on the expression of PU.1 and its known target

genes. The concomitant failure to produce T cells in the (-/-) animals was

surprising, given that PU.1 has not been known to be expressed in this

lineage. These studies suggested that the defect was either due to a block

of a very early multi-lineage progenitor cell or that T-cell development is

dependent on the presence of macrophages and/or B cells. The PU.1

knockout mice Maki et al., yielded a phenotype with some distinct

differences124. The PU.1-/- mice in this case were viable at birth and could

be kept alive for days by housing them in a sterile environment with the

administration of antibiotics. These animals also lacked monocytes and

mature B cells, but were capable of producing B-cell progenitors. Several

days after birth, T cells and cells resembling neutrophils were detected in

the peripheral blood. In this case, the findings suggested a role for PU.1 in

B-cell and monocytic development, which is more in keeping with its

known pattern of expression and its known gene targets. Although

neutrophilic cells were observed, they were Mac-1 negative and reduced in

number, suggesting that targeting PU.1 results in a partial defect in

neutrophil development. The former knockout model suggests that PU.1

plays an important role in multipotential cells; the latter knockout model

suggests a more limited role in B-cell and myeloid development.



11

In vitro differentiation of PU.1-/- embryonic stem cells does not

produce macrophages and points to the M-CSF receptor as a major target

of PU.1 in understanding its effect on myeloid differentiation125,126.

1.4.2  C/EBPa
CCAAT/enhancer binding protein (C/EBP) transcription factors

belong to the bZIP family of proteins, which contain a basic domain

involved in DNA binding, and a leucine zipper motif involved in homo

and heterodimerization. C/EBPa  the founding member of the C/EBP

transcription factors is most abundantly expressed in adipose tissue,

placenta, liver and is also detected in a variety of other organs such as

lung, kidney, small intestine, brain and hematopoietic cells127. C/EBPa has

been shown to play a significant role in adipocyte differentiation,

regulation of both liver and adipocyte specific genes, energy metabolism

and cell proliferation128,129. C/EBPa is also expressed in early myeloid

cells130,61.

A number of granulocytic specific genes including the granulocyte-

colony stimulating factor (G-CSF) receptor, neutrophil elastase, and

myeloperoxidase genes have been shown to be regulated by

C/EBPa34,35,131. Inhibition of C/EBPa  blocks differentiation and

expression of C/EBPa induced differentiation.

The C/EBPa promoter is autoregulatory. Murine C/EBPa promoter

has a binding site for C/EBPa132. The human C/EBPa promoter does not

conserve the C/EBPa binding site found in the murine promoter, and the

autoregulation is indirect and mediated by the action of C/EBPa on a

helix-loop-helix protein, the upstream stimulatory factor (USF)133.

Northern blot analysis of human CD34+ cells shows that C/EBPa

expression is maintained during granulocytic differentiation but is

markedly downregulated with monocytic or erythroid differentiation. In

addition mature peripheral blood neutrophils show high levels of C/EBPa
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mRNA, which is completely undetectable in adherent peripheral blood

monocytes.

As noted above, C/EBPa was the first protein noted to have the

leucine zipper motif134. The leucine zipper is a protein motif structure

common to a new class of DNA binding proteins and is directly involved

in homodimerization and heterodimerization. C/EBPa, C/EBPb , and

C/EBPd are very similar in their C-terminal basic region and leucine

zipper domains and diverge in the N-terminal transactivation domain135-138.

In addition to other members of the C/EBP family, the C/EBP

proteins can interact with a number of transcription factors, including

NF-kB and Rel proteins139,140, members of the CREB/ATF family141,142,

Sp1143, RB and members of the fos/jun zipper family144. The amino

terminal region of C/EBPa has been shown to physically interact with

TBP145. As noted above, C/EBPd has been shown to interact with PU.1146,

and PU.1 can physically interact with C/EBPb  as well (P. Auron

unpublished observation).

C/EBPa knockout mice show an interesting phenotype: homo

zygous mice die within the first few hours after birth of impaired glucose

metabolism; their viability can be extended to about 1 day with injections

of glucose. Analysis of the hematopoietic system of the knockout

embryonic and newborn mice demonstrated a significant defect in

production of granulocytic cells147. Newborn knockout (-/-) animals do not

produce any mature neutrophils, which comprise 90% of the peripheral

white blood cells of newborn heterozygote (+/-) or wild-type (+/+) mice.

Eosinophils are also not observed, but all of the other lineages, including

peripheral blood monocytes and peritoneal macrophages, red blood cells,

platelets, and lymphoid cells, appear quantitatively unaffected. Myeloid

markers (Mac-1 and Gr-1) were greatly reduced, with normal B- and T-

cell subsets. Expression of the G-CSF receptor mRNA was profoundly and

selectively reduced, whereas that of M-CSF receptor and GM-CSF

receptor a, bc, and bIL3 were all comparable to wild-type.
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These findings suggested that much of the phenotype may be due to

decreased or absent G-CSF signaling due to markedly reduced receptor

levels. However, G-CSF receptor knockout animals produce mature

granulocytes, in contrast to C/EBPa knockouts, strongly suggesting that

there must be important C/EBPa target genes in myeloid progenitors in

addition to the G-CSF receptor148.

In summary, the C/EBP proteins are differentially expressed and can

interact with themselves and other transcription factors. These studies

showed that C/EBPb (and C/EBPd) may be involved in activation of

cytokines in mature cells, whereas C/EBPa  has a major role in

granulocytic maturation through regulation of the G-CSF receptor and

other as yet not identified target genes.

1.4.3  c-Jun

AP-1 transcription factors play a major role in myelopoiesis. Proto-

oncogenes c-Jun, junB, and junD are stably induced suggesting their role

in the initiation, progression, and maintenance of the myelopoietic

differentiation program.

c-Jun belongs to the bZIP group of DNA binding proteins and is a

component of the AP-1 transcription factor complex149. c-Jun forms

homodimers or can heterodimerize with other Jun family members or with

other bZIP proteins including members of the fos and ATF/cAMP

response element-binding protein (CREB) families88.

AP-1 members have been shown to be involved in many cellular

processes including proliferation, apoptosis and stress responses. In

particular, there is evidence that c-Jun plays a role in monocytic

differentiation. c-Jun mRNA is upregulated upon monocytic

differentiation of bipotential myeloid cell lines. While stable expression of

c-Jun into myeloid cell lines results in partial differentiation150,151. For

several years it was unclear if c-Jun plays any role in the upregulation of

M-CSF receptor (M-CSFr) expression, though there are AP-1 binding sites
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in M-CSFr promoter. TPA treatment of U937 cells induces c-Jun

expression showing the role of c-Jun in myeloid differentiation.

Lately it was shown that c-Jun enhances the ability of PU.1 to

transactivate the human monocyte-specific M-CSF receptor promoter, and

it was also shown that c-Jun is a JNK independent co-activator of the PU.1

transcription factor117. C/EBPa kockout mice show high level of c-Jun

expression. This points to the fact that C/EBPa might down-regulate c-Jun

expression to drive the cells to granulocytic lineage.
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1.5  Aim of the Study

The aim of this study is to elucidate the molecular mechanisms that

decide whether a common precursor will develop and differentiate along

the granulocyte or monocyte lineage.

In particular we set out to examine how the transcription factors

PU.1 and C/EBPa are regulating the development of pluripotent myeloid

progenitor cells.
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2  Materials

2.1  Reagents

Acrylamide-Bisacrylamide Biorad GmbH, Munich, Germany

Agar Life Technologies, Paisley, Scotland

Agarose Life Technologies, Paisley, Scotland

APS Fluka, Buchs, Switzerland

Acetic acid Merck, Darmstadt, Germany

Bromphenolblue Sigma, St. Louis, U.S.A

Coomassie-Blue R-250 Life Technologies, Paisley, Scotland

DMEM PAN Biotech, Aidenbach, Germany

DTT Sigma, St. Louis, U.S.A

Ethanol Merck, Darmstadt, Germany

Ethidium bromide Sigma, St. Louis, U.S.A

Fetal bovine serum Life Technologies, Paisley, Scotland

Formaldehyde Sigma, St. Louis, U.S.A

Formamide Sigma, St. Louis, U.S.A

l-Glutamine Life Technologies, Paisley, Scotland

Glycerin Merck, Darmstadt, Germany

HEPES Sigma, St. Louis, U.S.A

IPTG Sigma, St. Louis, U.S.A

Isopropanol Merck, Darmstadt, Germany

b-Mercaptoethanol Sigma, St. Louis, U.S.A

Methanol Merck, Darmstadt, Germany

MOPS Sigma, St. Louis, U.S.A

PBS PAN Biotech, Aidenbach, Germany

Penicillin/Streptomycin Life Technologies, Paisley, Scotland

RPMI PAN Biotech, Aidenbach, Germany

Sodium chloride Merck, Darmstadt, Germany

SDS Serva, Heidelberg, Germany
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TEMED Biorad, Munich, Germany

Tris-HCl Merck, Darmstadt, Germany

Trichostatin A Sigma, St. Louis, U.S.A

Trypsin/EDTA PAN Biotech, Aidenbach, Germany

Xylencyanol Sigma, St. Louis, U.S.A

Zinc sulfate Sigma, St. Louis, U.S.A

2.2  Radioactive Substances

a-[32P]-dCTP Amersham, Braunschweig, Germany

L-35S-Methionine Amersham, Braunschweig, Germany

2.3  Enzymes

Restriction enzymes New England Bio-labs,

   Frankfurt, Germany

GIBCOBRL, Paisley, Scotland

RNasein Promega, Mannheim, Germany

2.4  Reagent Kits

MACS (CD34 positive Miltenyi Biotech, Gladbach,

cell isolation kit) Germany

Lymphoprep Nycomed, Oslo, Norway

Plasmid Isolation kit Qiagen, Hilden, Germany

Glutathione Sepharose Pharmacia, Freiburg, Germany

TNT-Reticulocyte- Promega, Mannheim, Germany

lysate-system

LipofectAMINE plus GIBCOBRL, Paisley, Scotland

Effectene Qiagen, Hilden, Germany

Biorad-protein estimation kit Biorad, Munich, Germany

Luciferase assay kit Promega, Mannheim, Germany

Fast Start DNA SYBR Roche Diagnostics, Mannheim,
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green I-Kit Germany

2.5  Standards, Markers and Ladders

Protein marker Biorad, Munich, Germany

DNA marker NEB, Frankfurt, Germany

1-kb ladder NEB, Frankfurt, Germany

100bp ladder NEB, Frankfurt, Germany

2.6  Miscellaneous

Blotting paper Schleicher and Schüll, Stuttgart, Germany

Membrane (Nitrocellulose) Amersham, Millipore

Pipet tips Star Labs (K&K labordarf), Munich,

Germany

Plastic material (tubes etc) Eppendorf, Greiner, Falcon, Munich,

Germany

Quartz Cuvette Hellma

Reaction tubes Eppendorf

X-ray film Kodak (Biomax)

Filters Millipore

Ultra centrifuge tubes Beckman

Cell culture material CoStar, Cellstar, Nunc and Greiner

2.7  Biological material

2.7.1  Bacteria

Escherichia coli DH5 alpha

Escherichia coli BL-21

2.7.2  Mammalian cell lines

293T (human kidney fibroblasts)

F9 (mouse embryonal carcinoma)
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CV1

U937 (human myeloid cell line)

U937 (Zn2+ inducible C/EBPa)

2.8  Plasmids

p(PU.1)4TK

p(mut.PU.1)4TK

p(C/EBP)2TK

pTK

pGL2

pXP2

pRL-null

pCMV5

pECE PU.1

pcDNA3.1 C/EBPa

pMSCV C/EBPa mBR

pMSCV C/EBPa DLZ

pMSCV C/EBPa (rat)

pGEX2TK-PU.1

pGEX-C/EBPa DNA binding domain

pS3H-c-Jun

2.9  Buffers

Buffers provided with the kits were used in the case of Plasmid isolation,

protein expression, RNA isolation, and Real time Polymerase chain

reaction. The other buffers used are listed below.

Binding buffer (GST-Pull down)

 (NETN) 150 mM NaCl2

(with protease inhibitors) 0.5 mM EDTA

50 mM Tris
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1% NP40

5% Glycerol

Electrophoresis buffer (SDS-PAGE) 25 mM Tris, pH 8.3

250 mM Glycine

0.1 % SDS

Destaining solution 30 % Methanol

10 % Acetic acid

Staining solution 30 % Methanol

10 % Acetic acid

0.25 % Coomassie-Blue R-250

Electrophoresis buffer (Tris-Glycine) 250 mM Tris

(pH 8.3) 1.9 M Glycine

10mM EDTA

Tris-Borate buffer 0.89 M Tris

0.89 M Boric acid

0.5 M EDTA

EMSA binding buffer 20 mM HEPES

60 mM KCl

24 % Glycerol

0.5 mM DTT

0.4 mM PMSF

10 mM MgCl2

0.2 mM EDTA

Agarose gel electrophoresis loading 40 % Saccharose

dye (6x)
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0.25 %Bromophenolblue

0.25 % Xylenecyanol

SDS-PAGE gel loading dye (2x) 125 mM Tris/HCl,

pH (6.8) 4 % SDS

10 % b-Mercaptoethanol

30 % Glycerol

0.004 % Bromophenolblue

Western Stripping solution 0.1 M b-Mercaptoethanol

2 % SDS

1M Tris (pH 6.8)

TE buffer 50 mM Tris/HCl, pH 8.0

1 mM EDTA

Trypsin/EDTA solution 0.05 % Trypsin

0.02 % EDTA

in PBS

2.10  Growth media

2.10.1  Bacteria

LB (luria bertani) Medium lb medium with respective

antibiotics

2.10.11  Mammalian cell culture

293T, CV1 DMEM

10 % FBS

1 % L-Glutamine

1% Penicillin-Streptamycin

F9 DMEM (4,5 g/l Glucose)
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10 % FBS

1 % L-Glutamine

1% Penicillin-Streptamycin

U937 RPMI

10 % FBS

1 % L-Glutamine

1% Penicillin-Streptamycin

3  Methods

3.1  Transient transfection of adherent eukaryotic cells by

LipofectAMINE

The day before transfection, cells were trypsinized, counted and

plated so that they were 50-80% confluent the day of transfection.

Antibiotics were avoided at the day of transfection and during plating to

help cell growth and increased transfection efficiency. DNA was pre-

complexed to PLUS reagent: DNA was diluted in serum free medium.

PLUS reagent was mixed before adding it to the diluted medium. The

complete mixture was incubated at room temperature for 15 min.

LipofectAMINE reagent was diluted and mixed in a serum free

medium in a second tube. Pre-complexed DNA and diluted

LipofectAMINE reagent were mixed and incubated for 15 min at room

temperature. During this incubation period, cells were rinsed with serum

free medium to enable higher transfection activity. DNA-PLUS-

LipofectAMINE reagent complexes were added to each well containing

fresh medium. The complexes were gently mixed with the medium;

incubated at 37°C at 5% CO2 for 3hrs. After 3hrs of incubation medium

volume was increased to normal volume by adding medium containing

20% fetal bovine serum.
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24hrs after the transfection assay cell extracts were obtained for reporter

gene activity.

Amounts of reagents used for transfection:

DNA (mg)
PLUS reagent

(ml)

LipofectAMINE

reagent (ml)

Transfection

volume (ml)

24 well 0.4 4 1   0.25

12 well 0.7 5 2 0.5

6 well 1 6 4 1.0

60 mm 2 8 12 2.5

100 mm 4 20 30 6.5

Cell number: 1 x 104 – 24 well

 1 x 105 – 6 well

 1 x 105 – 60 mm

 2 x 105 – 100 mm

3.2  Transient transfection of eukaryotic cells (adherent and

suspension) by Effectene

Cells are plated to the density stated above the day before trans

fection. On the day of tranfection DNA was diluted in DNA condensation

buffer, buffer EC, to a total volume of 150 ml. 8 ml of enhancer were added

and vortexed for 1s. The complex is incubated at room temperature for 2-5

min and spun down shortly. 25 ml of effectene transfection reagent was

added to the DNA-enhancer mixture. The complex was vortexed for 10s,

and incubated at room temperature for 5-10 min to allow transfection-

complex formation. During this period the growth medium was gently

aspirated from the plate and cells were washed with 4 ml of PBS. 4 ml of

fresh medium with FBS and antibiotics was added (RPMI for suspension

cells and DMEM for adherent cells). Fresh medium was added to the

transfection complexes and added on to the cells. The dish was gently
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swirled to ensure the uniform distribution of the transfection complexes.

Cells were incubated in normal conditions for an appropriate time for

expression of the transfected gene.

Amount of reagents used for transfection:

Culture

format

DNA

(mg)

Enhanc

er

(ml)

Final volume of

DNA in buffer

EC (ml)

Effectene

Reagent

(ml)

Volume of

medium to

cells (ml)

Volume of

Medium to

complexes  (ml)

24 – well 0.2 1.6 60 5 350 350

6 – well 0.4 3.2 100 10 1600 600

60 mm 1.0 8.0 150 25 4000 1000

100 mm 2.0 16.0 300 60 7000 3000

Cell number:

24-well  2-8 x 104

6-well  0.9-4 x 105

60 mm dish  2-8 x 105

100 mm dish  0.5-2.5 x 106

3.3 in vitro Transcription

PU.1, C/EBPa and c-Jun were in vitro transcribed and translated,

using the TNT Reticulocyte Lysate System and with labeled [35S]

methionine. For a 50 ml reaction the following volumes were used:

TNT rabbit reticulocyte lysate 50 ml

TNT reaction buffer   2 ml

Enzyme(c-Jun SP6; C/EBPa T7; PU.1 T3)   1 ml

Amino acids (-methionine)   1 ml
35S - methioine   4 ml
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RNAsin   1 ml

plasmid DNA (~ 1mg)

dH2O

to make the final volume to 50 ml

The reagents were mixed and incubated at 30°C for 90 minutes.

3.4  GST expression of proteins fused to GST

[e.g., PU.1-GST, C/EBPa-GST, PU.1 (b3-b4)-GST, DNA binding domain

C/EBPa-GST]

DH5a bacteria carrying the PU.1-GST fusion constructs, and the

BL-21 cells carrying the C/EBPa-GST constructs were grown in Luria

bertani with the respective antibiotics. Starter cultures of 10 ml were

grown overnight and transferred to 100 ml fresh media and the bacteria

was grown at 37°C till the OD600 was 0.6. The culture was then induced

with 0.5 mM isopropyl b-D-thiogalactoside (IPTG) for 2-3hrs at 30°C.

The bacteria were pelleted at 4,000 rpm. The bacteria were suspended and

lysed in NETN buffer with the respective protease inhibitors. The cell

membrane was opened by sonication (duty cycles 40-50 / amplitude 20%,

5 times with interval of 5 min). The lysates were spun down for 30 min at

4°C at maximum speed (14,000 rpm). The supernatant was saved and

preserved at -20°C.

Meanwhile Glutathione sepharose beads were washed with PBS two

times and spun at 2.000 rpm at 4°C for 5 min. Finally the beads were

suspended in NETN buffer with low salt concentration (100mM NaCl).

The supernant was bound to the glutathione sepharose beads at 4°C over

night on a rocking platform. The protein bound beads were then washed 4

times with the wash buffer to eliminate non-specifically bound protein.

The protein bound beads were centrifuged at 2,000 rpm at 4°C for 5 min

everytime. The purified protein recovery was roughly estimated by SDS

polyacrylamide gel electrophoresis, with known concentration of BSA

loaded in the same gel.
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3.5  Co-immunoprecipitation

293T cells were transfected at a density of 1x106 in 100 mm plates.

The cells were transfected with Effectene with respective DNA´s (eg.,

PU.1, C/EBPa, C/EBPa mBR and C/EBPa  DLZ) and the empty vector

pCMV5 in different combinations. 24 hours post transfection cells were

scrapped with a cell scraper. Cells were washed with PBS and then

subjected to lysis for whole cell lysate with Co-IP buffer (50 mM Tris pH

7.5, 150 mM NaCl, 1mM EDTA, 5 % Glycerol, 1 % NP40 and protease

inhibitors).

Sample preparation – lysates were diluted in 1 ml buffer, the cells were

mixed well, and kept on ice for 30 min. It was vortexed every 10 minutes.

The lysates were spun at 14,000 rpm for 30 min at 4°C. The supernatant

were preserved at -20°C.

Preparation of Protein A sepharose beads – 50 ml of 75 % protein A beads

were diluted in 5 ml of PBS. Spun at 300 rpm for 5 min. The buffer was

removed and fresh buffer added. Respective antibodies were added to the

protein A sepharose beads. The antibody bound to the beads was

recovered after washing with the wash buffer.

Immunoprecipitation & western blot for coimmunoprecipitation– The

lysate is added to the protein A agarose beads bound to the antibody and

incubated at 4°C rotating for 120 min. Western blot analysis was

performed to find the proteins interacting with immunoprecipitated

protein.

3.6  Transductions

3.6.1  Production of retrovirus

Mouse PU.1 cDNA followed by IRES nerve growth factor receptor

truncated in the cytoplasmic domain (tNGFR) and human C/EBPa cDNA

followed by IRES EGFP were subcloned into a retroviral vector, pMSCV,

with an LTR derived from MSCV (pMSCV-PU.1-IRES-tNGFR and

pMSCV- C/EBPa-IRES-EGFP, respectively). To produce virus, plasmid



27

DNA was transfected into 293gp cells (293 cells containing the gag and

pol genes but lacking an envelope gene) along with 10A1 env expression

plasmid (pCL-10A1) by CaPO4
- co-precipitation and supernatant from the

transfected cells was collected to transduce cells.

3.6.2  Transduction of CD34+ cells

 Human umbilical cord blood samples were obtained, with informed

consent of the parents, from placentas of full-term normal newborn

infants. After isolation of mononuclear cells from cord blood by density

gradient centrifugation, CD34+ cells were obtained using magnetic bead

separation according to the manufacturer’s instructions. CD34+ cells were

prestimulated in IMDM supplemented with 10% FBS, 50 ng/ml stem cell

factor, 50 ng/ml thrombopoietin (kindly provided by KIRIN, Tokyo,

Japan), 50 ng/ml IL-6 (Peprotech, Rocky Hill, NJ), and 50 ng/ml Flt-3L

(Peprotech) for 20hrs. After replating onto recombinant fibronectin

fragment coated culture dishes (Takara Shuzo, Otsu, Japan) containing

virus supernatant and 5 mg/ml protamine sulfate (Sigma), cells were

centrifuged at 1,000x g for 30 min. Transduction was repeated with fresh

virus supernatant every 12hrs three times. At 60hr after the first

transduction, NGFR- and/or EGFP-positive cells were selected by cell

sorting on a FACS Vantage (Becton Dickinson, San Jose, CA) and

subjected to subsequent analyses. To detect the expression of tNGFR on

the cell surface, cells were stained with mouse anti-human NGFR

(CHEMICON, Temecula, CA) followed by phycoerythrin (PE)-conjugated

rabbit anti-mouse immunoglobulins (DAKO A/S, Glostrup, Denmark).

3.6.3  In vitro liquid culture

CD34+ cells transduced with either PU.1 or C/EBPa retroviruses, or

co-transduced with PU.1 and C/EBPa retrovirus were cultured in IMDM

supplemented with 10% heat-inactivated FBS and 50 ng/ml stem cell

factor, 50 ng/ml G-CSF, 50 ng/ml GM-CSF, and 50 ng/ml IL-3 (KIRIN) at
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37°C in 5% CO2. On day 10 of culture, expression of cell surface antigens

were analyzed on a FACS Vantage using PE-conjugated anti-human CD1a

(Immunotech, Marseille, France). Cells were also cytocentrifuged onto

glass slides and were stained with May-Gruenwald’s solution (Merck,

Darmstadt, Germany) followed by Giemsa’s solution (Kanto Chemical

Co., Inc. Tokyo, Japan).

3.7  Immunolocalization

U937 cells were cytocentrifuged onto glass slides, cells were fixed

with ice-cold acetone for 2 min, dried and rehydrated in PBS. Slides were

blocked in 10% FCS for 30 min at RT, washed with PBS and incubated

overnight at 4oC with primary antibodies. Cytospins were washed with

PBS and then incubated with secondary antibodies Texas red and Cy3 for

45 min. Slides were washed with PBS and mounted with anti-fade

solution.

3.8  Real time polymerase chain reaction

Quantitative Realtime PCR using the LightCyclerTM-Systems (LC)

offers real time monitoring of PCR product formation. PCR cycles, in

which the PCR product increases logarithmically can be identified and the

starting concentration of the target DNA determined. We used the Fast

Start DNA SYBR Green I-Kit (Roche Diagnostics, Mannheim, Germany)

as a mastermix. SYBR Green I Dye is a fluorescence dye, which binds to

double-stranded DNA. The fluorescence signal was recorded at the end of

each elongation phase and the increasing amounts of PCR product can be

monitored from cycle to cycle. We quantified the expression of the

transcription factor PU.1 in U937 cell line with zinc inducible expression

of C/EBPa. For each sample, we also measured the concentration of the

mRNA of the housekeeping gene G6PD to control for variances in the

cDNA synthesis step. Thus, we performed relative quantification of the
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target gene by comparing it to the concentration of the housekeeping gene

G6PD. The concentrations of the target genes and the housekeeping gene

G6PD were calculated by reference to a standard curve. For that we

serially diluted a G6PD plasmid: pGdBBX, kindly provided by A.

Hochhaus32, to 10,000fg, 1,000fg and 100fg. We formed ratios between

the target gene and the housekeeping gene G6PD (target gene/ G6PD) and

compared them to each other. Downregulation of PU.1 upon C/EBPa

induction or the downregulation of PU.1 upon zinc addition in empty

vector carrying U937 cells were shown as PU.1/G6PD ratio values directly

compared to each other at various time points from 0hrs to 8hrs after

C/EBPa induction.

PCR for PU.1 was performed according to the manufacturer’s

protocol from Search LC-Heidelberg, Germany. Amplification occurred in

a three-step cycle procedure initiated by a 10 min denaturation at 95°C to

activate the polymerase: 95°C, 0s; annealing 68°C, 10s; and extension

72°C, 16s for 35 cycles. Fluorescence of SYBR Green I was measured

after each extension step at 530 nm.

PCR for G6PD was performed using 2ml mastermix (Light Cycler

FastStart DNA Master SYBR Green I, Roche Diagnostics, Mannheim,

Germany), 2ml cDNA (from U937 Zn C/EBPa and U937 pPC18) 4mM

MgCl2, .75mM of each primer, and water to a final volume of 20ml.

Amplification occurred in a three-step cycle procedure initiated by a 10

min denaturation at 95°C to activate the polymerase: 95°C, 0s; annealing

64°C, 10s; and extension 72°C, 25s for 35 cycles. Fluorescence of SYBR

Green I was measured after each extension step at 530 nm. For

amplification of G6PD, primers were used according to Emig et al32. The

final PCR cycle is followed by a melting curve analysis to confirm the

PCR product identity and differentiate it from non-specific, e.g. primer-

dimer products. For that, the products were denatured at 95°C, annealed at

58°C, and then slowly heated up to 95°C with fluorescence measurement

at 0.2°C increments. Amplification products performed in the Light Cycler

were checked by electrophoresis on 1% ethidium bromide stained agarose
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gels. The estimated size of the amplified fragments matched the calculated

size: for PU.1: 150 bp and G6PD: 343bp.
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4  Results

4.1  C/EBPa blocks the transcriptional activity of PU.1 on a
minimal TK promoter containing PU.1 DNA binding sites
only

Within the myeloid compartment, the same committed precursor

can give rise to monocytic or granulocytic cells. This raises a question:

What are the molecular mechanisms that dictate the fate of the common

precursor to one or the other of these two diverse myeloid lineages? Since

PU.1 and C/EBPa are both expressed in myeloid progenitor cells we

asked the questions, How do cells differentiate into a specific lineage? and

Is there a direct interaction or cross talk between these two major

transcription factor?

To address this question we used a minimal TK promoter with

multimerized PU.1 binding sites [p(PU.1)4TK] only. This minimal

promoter was transactivated six fold upon transfection of 293T cells with

an expression plasmid of PU.1. The reporter gene expression was

determined 24 hrs after transfection. Cotransfection of a C/EBPa express

ion plasmid in the same experiment resulted in a four fold decrease of

PU.1´s transactivation capacity (Fig. 2A). As a control, co-transfection of

PU.1 and C/EBPa did not affect the activity of a minimal TK promoter

with mutated PU.1 binding sites. In further control experiments we

transfected 293T cells with a reporter construct of TK promoter with

multimerized C/EBP binding sites and a C/EBPa expression plasmid,

transactivating the promoter by 11 fold. There was no change in protein

expression of PU.1 upon co-transfection with the C/EBPa expression

plasmid as observed by western blot for PU.1 from transfected 293T cells,

ensuring that both the proteins expressed in transfected 293T cells. To

check if C/EBPa downregulates a transcription factor in a non-specific

fashion, we transfected 293T cells with expression plasmids of Gal4-
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VP16, C/EBPa  and the reporter construct Gal4-luc. Gal4-VP16

transactivates Gal4-luc by 10 folds. C/EBPa does not downregulate the

transcriptional activation of Gal4-VP16 in a non-specific fashion under

the same conditions.

4.2  C/EBPa physically interacts with PU.1

To find out whether there is a direct protein-protein interaction

between C/EBPa  and PU.1, we used GST purified GST-PU.1 and

incubated it with in vitro translated C/EBPa. An interaction between PU.1

and C/EBPa was observed. This interaction was resistant to the effect of

chaotropic agents like DTT and a change in ionic strength during the

incubation reaction (Fig. 2B ). Even in the lowest concentration of

C/EBPa, we observed an interaction of C/EBPa and PU.1. C/EBPa did

not bind to GST or the beads alone. Given the observed interaction

between C/EBPa and PU.1, the intranuclear location of these proteins was

examined. U937 cells were cytocentrifuged and labeled with PU.1 and/or

C/EBPa antibodies, respectively. The secondary antibodies were Texas

red for PU.1 and Cy-3 (green) for C/EBPa. A diffuse nuclear staining was

observed. The overlay shows that both proteins co-localize in the nucleus

(yellow) (Fig. 3). Immuno-localization studies point to a strong interaction

between PU.1 and C/EBPa.

4.3  C/EBPa inhibits c-Jun co-activation of PU.1

To understand the molecular significance of the interaction between

PU.1 and C/EBPa, and in addition, to understand if the co-activator of

PU.1, c-Jun, has any role in the interaction of PU.1 and C/EBPa, we used

F9 cells and performed transient transfections with expression plasmids of

PU.1, C/EBPa  and c-Jun. Using a minimal promoter TK with

multimerized PU.1 binding sites only [p(PU.1)4TK], we observed that
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PU.1 transactivated p(PU.1)4TK by six fold in F9 cells (Fig. 4A). F9 cells

do not express c-Jun (c-Jun expression was checked by Real time

polymerase chain reaction). When cotransfected with the expression

plasmids of c-Jun and PU.1 a strong synergistic transactivation of around

40 fold as described before was observed152. Co-transfection of C/EBPa

in the same experiment totally blocked PU.1´s transactivation capacity of

the p(PU.1)4TK promoter and also the co-activation of PU.1 by c-Jun

(Fig. 4A). As a control, F9 cells were transfected with expression

plasmids of Gal4-VP16, C/EBPa, and reporter construct Gal4-luciferase,

similar to the previously stated experiment. C/EBPa  does not

downregulate the transactivation of Gal4-VP16 in a non-specific fashion

under the same conditions.

4.4  C/EBPa displaces c-Jun from binding to PU.1 in vitro

As shown above C/EBPa inhibits c-Jun co-activation of PU.1, c-jun

has been shown to interact strongly with PU.1. We observed C/EBPa´s

interaction with PU.1. To answer the question: What is the role of c-Jun in

the context of the protein-protein interaction between C/EBPa and PU.1

complex, we performed GST pull down experiments; 35S-labelled in vitro

translated c-Jun and C/EBPa were incubated with GST-PU.1. c-Jun

strongly binds to PU.1 and C/EBPa also binds to PU.1 strongly, but when

both factors were incubated with PU.1, C/EBPa competed with c-Jun for

the binding to PU.1 (Fig. 4B). This result suggest that C/EBPa and c-Jun

interact with PU.1 through the same domain. It was shown earlier152 that

c-Jun binds to the b3-b4 region of PU.1, therefore we checked if C/EBPa

also interacted with PU.1 in the b3-b4 region of the DNA binding domain.

This was indeed the case (Fig. 4C). C/EBPd has been shown to interact

with PU.1 via its DNA binding domain. Due to a very high sequence

similarity of C/EBPa and C/EBPd, we would expect that DNA binding

domain of C/EBPa interacts with PU.1 (Fig. 4D).. Indeed, incubation of
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35S-labelled in vitro translated PU.1 with the GST-DNA binding domain

of C/EBPab showed that C/EBPa  interacts with PU.1 via its DNA

binding domain (Fig. 4D).

4.5  C/EBPa interacts with PU.1 via its leucine zipper in the
DNA binding domain

To answer the question if both the proteins interact in vivo, we

transfected 293T cells with expression plasmids of PU.1, C/EBPa ,

C/EBPaDLZ and C/EBPamBR using lipofectamine. The use of mutants

of C/EBPa in the DNA binding domain would further narrow down the

region in the DNA binding domain responsible for interaction with PU.1.

Whole cell lysates were immunoprecipitated with either rabbit-IgG or

rabbit anti-PU.1 polyclonal antibody. C/EBPa was detected by western

blotting with C/EBPa  rabbit polyclonal antibody only in PU.1

immunoprecipitates (Fig. 5A). In the control IgG immunoprecipitate no

C/EBPa  was detected. The blot was stripped and blotted for PU.1

expression (Fig. 5B). Expression of C/EBPa and its mutants were checked

by western blotting for C/EBPa (Fig. 5C). C/EBPa could not interact

with PU.1 when the leucine zipper in its DNA binding domain was

deleted, suggesting that C/EBPa interacts with PU.1 via its leucine zipper

in the DNA binding domain. This interaction of C/EBPa with PU.1 is

similar to that of C/EBPd, because C/EBPd also interacts with PU.1 via its

leucine zipper in the DNA binding domain. This shows the conservation

of interaction domains between different transcription factors of the same

family, in this case C/EBPa and C/EBPd of the C/EBP family.

To address the question of whether C/EBPa can interact with the

activation domain of PU.1, 293T cells were transfected with a Gal4-

luciferase reporter construct containing a minimal promoter with Gal4

DNA binding sites only, and expression plasmids of C/EBPa and PU.1

activation domain fused to the DNA binding domain of Gal4 (PU.1-Gal4).
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PU.1-Gal4 transactivates the Gal4-luciferase reporter 4.5 fold and this

transactivation was blocked by C/EBPa , C/EBPa  does not non-

specifically inhibit the transactivation of Gal4-VP16 in transactivating

Gal4-luc reporter construct. These results indicate atleast more than one

functional interaction of C/EBPa with PU.1; further investigations are

required to define the interaction of C/EBPa with the activation domain of

PU.1. However, there are alternative interpretations for the above data

e.g., C/EBPa  could quench more of the co-activators (CBP/p300)

recruited by PU.1 activation domain and thereby a decrease in the

transactivation capacity of PU.1 when co-transfected with C/EBPa (Fig.

6) without physically interacting with PU.1.

4.6  C/EBPa does not recruit TSA-sensitive co-repressors in
downregulating PU.1´s transcriptional activity

To investigate whether C/EBPa is recruiting co-repressors to down-

regulate PU.1´s transactivation capacity, we transfected F9 cells with the

TK promoter containing PU.1 binding sites and expression plasmids of

PU.1, and C/EBPa. We found that C/EBPa blocks the activity of PU.1

transactivating the minimal TK promoter with PU.1 binding sites.

Trichostatin A (TSA) was shown to be an inhibitor of a class of co-

repressors. The transcription factor ETV6 (Tel) recruits these co-

repressors and represses the promoter activity of Gal4-luciferase. Addition

of TSA releases this repression as it is seen in the transfection of 293T

cells with Gal4-Tel. In a similar experiment where the transactivation

block of PU.1 by C/EBPa is seen, addition of TSA did not release the

repression. These data suggest that repression of PU.1´s activity by

C/EBPa  is not mediated by the recruitment of TSA-sensitive co-

repressors (Fig. 7).
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4.7  C/EBPa downregulates PU.1 expression in myeloid U937
cells

We investigated if C/EBPa blocks the expression of PU.1 target

genes. As PU.1 is autoregulatory in its expression113, PU.1 itself is a target

gene of PU.1. We therefore performed quantitative real time PCR using

Real time Light Cycler technology (Roche) to determine the expression of

PU.1 gene in the U937 cell line with Zn-inducible expression of

C/EBPa153. Ectopic expression of C/EBPa in U937 bipotential myeloid

cells resulted in differentiation of cells towards the neutrophil lineage.

Induction of C/EBPa expression upon stimulation with Zn was observed

by western blot analysis for C/EBPa. To correct for the variances in the

cDNA synthesis step, PU.1 expression was set in relation to the G6PD

housekeeping gene by calculating the ratios for PU.1/G6PD. C/EBPa was

expressed maximally after 6 hrs of Zn induction, and five time points of

zinc induction were included to check for PU.1 expression. PU.1

expression was downregulated four fold after 8 hrs. In the control there

was only a minimal change in PU.1 expression upon induction with zinc

in U937 cells carrying the empty vector pPC18 (Fig. 8A). The data are

consistent with the model that expression of PU.1 is downregulated after

blocking of PU.1 function by C/EBPa. We extrapolated this observation

to promoter studies. 293T cells were transfected with human PU.1

promoter with luciferase activity and expression plasmids of PU.1 and

C/EBPa. PU.1 transactivated the promoter by about 5 folds. C/EBPa

alone transactivated the promoter by 2 folds. pGL2 was used as a control.

C/EBPa blocked the transactivation of PU.1 promoter by PU.1 (Fig. 8B).

4.8  C/EBPa inhibits PU.1 induced dendritic cell development

It was previously shown that the enforced expression of C/EBPa in

a human bipotential myeloid progenitor cell line induces granulocytic
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differentiation and blocks monocytic differentiation153. On the other hand,

PU.1 has been demonstrated to instruct transformed chicken multipotent

hematopoietic progenitors to differentiate along the myeloid lineage8. In

human CD34+ hematopoietic progenitor cells, however, enforced

expression of PU.1 promotes dendritic cell differentiation with

characteristics of Langerhans cells, specified dendritic cells that reside in

the epidermis154. To investigate biological significance of function

blocking of PU.1 by C/EBPa, we retrovirally expressed PU.1 and C/EBPa

in human CD34+ hematopoietic progenitor cells. In contrast to mock

control in which both granulocytic and monocytic cells differentiated (Fig.

9A), single transduction of PU.1 and C/EBPa predominantly promoted

differentiation of CD1a+ dendritic cells (Figs. 9B ,E and F ) and

granulocytes (Fig. 9C), respectively. PU.1 transduced cells were positive

for CD1a, HLA-DR, CD80 and CD86 (Fig. 9F) suggesting that PU.1

specifically enhanced the dendritic cell expression.  In the latter case of

C/EBPa transduction, terminal differentiation of neutrophils was markedly

enhanced compared to mock control. Lineage specific differentiation

markers were observed by FACS analysis of the surface antigens CD14

and CD15. Then, we coexpressed PU.1 and C/EBPa  in CD34+

hematopoietic progenitor cells. In accordance with our mechanistic data of

C/EBPa  blocking PU.1´s transcriptional activity, C/EBPa  blocked

dendritic cell differentiation by PU.1, and instead induced granulocytic

differentiation (Fig. 9D and E).
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5  DISCUSSION

According to the current view of hematopoiesis, all blood cell types

derive from a common pluripotent stem cell. In the adult organism the

stem cells are found in the bone marrow where they divide to produce

more stem cells (self renewal) and various progenitor cells committed to a

single lineage which terminally differentiate to morphologically and

functionally distinct erythroid, myeloid, or lymphoid cells. Within the

myeloid compartment the same committed precursor can give rise to

monocytic or granulocytic cells. This raises a question: What are the

molecular mechanisms that dictate the fate of the common precursor to

one or the other of these two diverse myeloid lineages?

 The two transcription factors PU.1 and C/EBPa play a major role in

myelopoiesis. Both factors have been shown to synergize on various

promoters including M-CSF receptor promoter and neutrophil elastase

promoter. Both factors are expressed in bipotential myeloid cell, and

therefore we were interested in knowing if there is any protein-protein

interaction between these transcription factors and consequently if there is

any functional significance of this interaction in lineage commitment.

Although it was shown earlier that PU.1 and C/EBPa synergize on

promoters with both PU.1 and C/EBPa binding sites like the M-CSF, G-

CSF and GM-CSF receptor promoters, it had not been reported that

C/EBPa can block or downregulate the promoter activity of PU.1. The

present work shows that the transcription factor C/EBPa is capable of

functionally blocking PU.1 ability to transactivate a promoter with PU.1

binding sites. C/EBPa blocked PU.1 ability to transactivate the M-CSF

receptor promoter with PU.1 binding sites alone. We also investigated if

there are any protein-protein interaction between PU.1 and C/EBPa. Our

results show that there is indeed an interaction between the two proteins

and the interaction sites responsible for this interaction were mapped: the

leucine zipper in the DNA binding domain of C/EBPa interacts with the
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b3-b4 region of the DNA binding domain of PU.1. Various studies have

reported that the transcription factors GATA-1, C/EBPd, c-Jun and AML-

1 interact with this b3-b4 domain of PU.1. It has previously been shown

that the transcription factor c-Jun is a JNK independent co-activator of

PU.1, physically interacting with PU.1 in the b3-b4 region resulting in an

increased M-CSF receptor expression. We show that as a consequence of

the interaction of C/EBPa with PU.1 in the b3-b4 region the co-activator

c-Jun is displaced from binding to PU.1 and PU.1 function is inhibited.

Investigating further the role of C/EBPa as a regulatory switch in

hematopoietic cells, we used the bipotential U937 cells where it was

shown that enforced expression of C/EBPa differentiates the cells along

the granulocytic lineage153. Furthermore the induction of the granulocytic

pathway results in up-regulation of C/EBPa . We investigated the

expression of the monocytic specific factor PU.1 upon induction of U937

cells towards granulocytic lineage i.e., we looked for PU.1 expression in

U937 cells with conditional ectopic expression of C/EBPa. PU.1 is auto-

regulatory in its expression in myeloid cells. We observed that C/EBPa

down-regulates PU.1 expression upon conditional ectopic induction of

C/EBPa. It was further shown that C/EBPa blocks PU.1 transactivation of

the human PU.1 promoter. Our data suggest that C/EBPa might block

PU.1 transactivation capacity and thereby the ability of PU.1 to increase its

own expression. It is interesting to note that a similar phenomenon of

inhibiting PU.1 activity was observed with the transcription factor GATA-

1. GATA-1 is capable of suppressing the myeloid phenotype without

interfering with PU.1 gene expression, but instead was capable of

inhibiting the activity of the PU.1 protein in a dose-dependent manner155.

This inhibition was independent of the ability of GATA-1 to bind DNA,

suggesting that it is mediated by protein-protein interaction. PU.1 interacts

with GATA via PU.1 ETS domain. A similar interaction has been shown

with a C/EBP family member C/EBPd: C/EBPd interacts with PU.1 via

the leucine zipper of the DNA binding domain. This region of C/EBP

interacting with PU.1 might be of great importance for the commitment of



53

cells to granulocytes. It should further be noted that mutations have been

detected in the DNA binding domain of C/EBPa  in acute myeloid

leukemia separately by two different groups40, suggesting its importance in

lineage commitment to granulocytes and in leukemia.

Repression of transcriptional activity by transcription factors has

been attributed to the recruitment of co-repressors. Transcriptional

repressors interacting with transcription factors reduce or repress the

transactivation capacity. To rule out the possibility of such a phenomenon;

i.e. C/EBPa recruiting co-repressors to PU.1 and blocking its function, we

used a repressor inhibitor to release the repression by C/EBPa .

Trichostatin A (TSA) is a HDAC inhibitor and it releases repression

induced by HDAC’s. In transient transfection assays C/EBPa blocked

PU.1´s activity even in the presence of TSA, suggesting that there are no

co-repressors involved in blocking PU.1´s function by C/EBPa.

It has previously been shown that PU.1 is important and essential

for the development of monocytes. DeKoter et al. have also shown that

the activation domain of PU.1 is essential to drive the cells to monocytes.

We observed that C/EBPa is functionally interacting with the activation

domain of PU.1. Further investigation on this interaction and its possible

role in lineage commitment is required. Interaction of C/EBPa with the

activation domain of PU.1 might disrupt possible protein-protein

interactions, important for the PU.1 induced differentiation program. One

of the candidates is CBP/p300, a co-activator of PU.1, which binds to the

transactivation domain of PU.1. Inhibition of such an interaction by

C / E B P a  would further block PU.1´s activity to induce

monocytes/dendritic cells and enhance C/EBPa´s capacity to induce

granulocytes. One could then speculate that C/EBPa might compete with

the co-activator p300/CBP for binding to PU.1 thereby reducing the

transactivation capacity of PU.1.

With regard to the instructive ability of C/EBP transcription factors

to drive granulocytic differentiation, most of the evidence has been based

on the experiments using cell lines. It has been shown earlier that the
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C/EBPa gene is activated at the stage of myeloid commitment and is

specifically expressed in granulocytic cells. Increased levels of C/EBPa

expressed from an inducible promoter construct directed differentiation

along the granulocytic pathway, as determined by morphological criteria.

These data suggest the role of C/EBPa as a molecular switch during early

hematopoietic developmental events that direct cells to the granulocytic

pathway. C/EBPa blocked monocytic differentiation of these human

bipotential myeloid progenitor cells. During TPA stimulation of

monocytic development endogenous C/EBPa was down-regulated and

this down-regulation is required for differentiation along the monocytic

pathway153. Ectopic expression of C/EBPa represses PU.1 expression in

bi-potential U937 myeloid cells.

To prove the biological meanings of the functional inhibition of

PU.1 by C/EBPa, CD34+ hematopoietic progenitor cells were transduced

with PU.1 and/or C/EBPa. We present here the first evidence that the

C/EBPa transcription factor drives the granulocytic differentiation of

primary hematopoietic cells. CD34+ cells transduced with C/EBPa

preferentially developed eosinophills. C/EBP transcription factors have

been implicated in the development of eosinophills in cooperation with

GATA-1. Our data suggest that C/EBP overload is enough to drive

eosinophilic commitment of myeloid progenitor cells. Neutrophilic

differentiation and maturation is markedly enhanced with wild type

C/EBP. This finding confirms the previous observation that enforced

expression of C/EBPa in a bipotential human myeloid cell line promotes

neutrophilic differentiation. PU.1 is expressed throughout the myeloid

lineage and is a master regulator involved in the development and function

of all myeloid progenies. On the other hand, C/EBP family transcription

factors have been shown to cooperate with PU.1 in transactivating

promoters specific to granulocytes and/or macrophages. CD34+ cells

transduced with PU.1 promoted dendritic cell (DC) development. Mice

with targeted disruption of the PU.1 gene reportedly lack the major

population of myeloid DCs. DC development induced by PU.1 imitates
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that induced by TNFa. TNFa activates c-Jun N-terminal kinase which

then phosphorylates and activates c-Jun, a PU.1 co-activator. Thus, it is

possible that the downstream target of TNFa is PU.1 in terms of induction

of DC development. In this context, C/EBP might act as a negative

regulator by displacing c-Jun from binding to PU.1. Another possibility is

that NFkB activated by TNFa cooperates with PU.1.

PU.1 and C/EBP binding sites are located in close proximity on

most of the promoters specific to granulocytes and/or macrophages and

these two factors synergistically transactivate these promoters. On the

other hand, we show here that C/EBPa physically interacts with PU.1 on

the promoter with PU.1 binding site only, and displaces c-Jun, a co-

activator of PU.1 from binding to PU.1, resulting in the suppression of

PU.1 transactivation. We expect this kind of interaction to happen during

commitment of pluripotent myeloid progenitor cells.  PU.1 drives

dendritic cell development while C/EBPa  direct cells towards

granulocytes. In accordance with our model, when the cells were co-

transduced with PU.1 and C/EBPa, C/EBPa  inhibited PU.1-induced

dendritic cell lineage commitment. Myeloid progenitors in the CD34+ cell

fraction are mostly pluripotent in their differentiation potential and can

give rise to bipotential granulocyte/macrophage progenitors, eosinophils

and Langerhans cells. Our biological data demonstrate that C/EBPa

blocks PU.1-induced dendritic cell commitment in pluripotent myeloid

progenitors. Altogether, our data indicate that C/EBPa drives granulocytic

differentiation of myeloid progenitors by suppressing myeloid derived

dendritic cell differentiation by blocking PU.1 function. DCs are major

target cells for therapeutic approaches to allergy, autoimmune disease,

infectious disease, and cancer. We propose that modulating transcription

factors in myeloid progenitor cells would be a new approach to

manipulate DC development and effector functions in vivo. Our approach

will provide useful information to therapeutic manipulation of the immune

system (Figure 10).
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In conclusion these results demonstrate a novel mechanism by which

function of a lineage-specific transcription factor is inhibited by another

lineage-restricted factor through direct protein-protein interactions. These

findings not only contribute to understand the mechanisms involved in

lineage commitment but also throw light on how protein-protein

interactions participate in hematopoietic differentiation and leukemo-

genesis.
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6  Summary

Several transcription factors have been shown to play a role in

myelopoiesis. PU.1, an ets-family transcription factor, is required for the

development of both myeloid and lymphoid lineages while the

transcription factor CCAAT/enhancer binding protein family member

C/EBPa is essential for granulocytic development. We present here the

first evidence that C/EBPa blocks the function of PU.1. PU.1 and C/EBPa

interact physically and co-localize in myeloid cells. As a consequence of

this interaction C/EBPa can inhibit the function of PU.1 to activate a

minimal promoter containing only PU.1 DNA binding sites. We further

demonstrate that the leucine zipper in the DNA binding domain of

C/EBPa interacts with the b3/b4 region in the DNA binding domain of

PU.1, and as a result displaces the PU.1 co-activator c-Jun. Finally,

C/EBPa blocks PU.1 induced dendritic cell development from CD34+

human cord blood cells. The functional blocking of PU.1 by C/EBPa

could be the mechanism by which C/EBPa inhibits the cell fates specified

by PU.1, and directs cell development to the granulocytic lineage.
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Zussamenfassung

Verschiedene Transkriptionsfaktoren spielen eine Rolle in der

Entwicklung myeloischer Zellen. PU.1, ein Transkriptionsfaktor aus der

ETS-Familie, ist sowohl für die Entwicklung lymphatischer als auch für

die Entwicklung myeloischer Zellen von Bedeutung. Der Transkriptions

faktor C/EBPa, ein an den CCAAT-Enhancer bindendes Protein, ist

hingegen wesentlich verantwortlich für die Entwicklung von

Granulozyten. Wir stellen hier den ersten Nachweis dafür vor, dass

C/EBPa die Funktion von PU.1 blockiert. PU.1 und C/EBPa können

einander binden und sind in myeloischen Zellen kolokalisiert. Wenn

C/EBPa  PU.1 bindet, kann PU.1 einen minimalen Promotor mit

Bindungsstelle für PU.1 nicht mehr aktivieren. Wir zeigen, dass der

Leuzin-Zipper in der DNA-bindenden Domäne von C/EBPa mit der

b3/b4-Region in der DNA-bindenden Domäne von PU.1 interagieren

kann. Dadurch wird der Koaktivator von PU.1, c-jun, aus seiner Bindung

mit PU.1 verdrängt. C/EBPa hemmt PU.1 nicht, indem es Korepressoren

rekrutiert. Vielmehr vermindert C/EBPa die Expression von PU.1 in U-

937-Zellen mit induzierbarem C/EBPa, indem es den autoregulatorischen

Effekt PU.1 auf den PU.1-Promotor hemmt.

Ausserdem blockiert C/EBPa die durch PU.1 bedingte Entwicklung

dendritischer Zellen aus CD34+ menschlichen Nabel blutzellen. Diese

funktionelle Blockade von PU.1 durch C/EBPa  könnte einer der

Mechanismen sein, mit denen C/EBPa den durch PU.1 determinierten

Weg der Zelldifferenzierung hemmt und sich Zellen unter dem Einfluss

von C/EBPa zu Granulozyten entwickeln.
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