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1 PREFACE

Classical statistical techniques - models and tests — for explanatory analysis can be
classified into two categories. The first one contains approaches which are easy to
interpret and to apply but are too "demanding” in terms of requirements for the
nature of the data. In this category falls every technique that lies somehow on special
assumptions regarding the dose-response shape, for example linear regression. In the
second category belong less restrictive techniques as spline models, but the price one
has to pay is the loss in simplicity; in many cases these models are very difficult to

interpret or to drawn conclusions for the data.

As a moderate solution simple and less restrictive approaches more flexible than gen-
eralized additive models have been developed. Recursive partitioning based mod-
els [68] offer a reasonable alternative. This model is tree-structured and is fitted by
splitting progressively the dataset in subgroups with respect to the maximization
of a function. Here, another framework will be studied, monotonic regression
related methods. This approach is simple and the only requirement is monotonic-
ity, which is the minimum of requirements for the first category. Furthermore, the

result is easy to interpret.

When analyzing experiments, the selection of statistical method is made regarding

the pre-defined goals of the study. It is important to know when to use which
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method. Thus monotonic approach is not always desired; only in the frame of
a certain sort of aims. This method is especially adequate when the proof of a
dose-response relationship is of interest and categorization of the predictor variables

regarding the outcome is important. These two issues are discussed below.

1.1 The dose-response relationship

With the most general sense, the term dose-response is defined as the shape of the
exposure-outcome curve, whatever that shape may be. A more strict definition places
in the dose-response term the restriction of monotonicity. Breslow’s definition [10]
is 7a relationship in which a change in amount, intensity, or duration of exposure
is associated with a change - either an increase or a decrease - in risk of a specific

outcome”. For a thorough discussion on the definition of dose-response see [38].

Under this consideration, establishing a dose-response relationship implies the proof
of monotonicity. This is related to a family of tests, the tests for trend. In epidemi-
ology the proof of a dose-response relationship is listed as one of the criteria for
inferring causality. Thus, dose-response analysis is an important issue on analyzing
experiments and the procedure followed can play a determinant role in the result of

the study.

1.2 Categorizing continuous variables

Categorizing continuous variables arises as an important task in statistical analysis,
especially in studies concerning exposure-effect problems [6]. This practice is used
sometimes for the outcome variable of an experiment, but it is more common for

explanatory variables [28]. There is a great debate among statisticians about the
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strategy that should be followed to categorize a variable given the several advantages

and disadvantages for each of the categorization techniques.

Create meaningful groups of the predictor variables regarding the outcome is de-
sirable in many studies. Consider for example a car insurance study: an insurance
company wants to test whether the accident risk is related to the age of the driver
and to state several groups with increasing fees. Categorization is also routinely
observed in medical studies, for example on deciding between several types of treat-
ment for a patient regarding high blood pressure. The fitted values from the chosen
model split the data in "risk” groups. To compare between several categorization
patterns with multiple cuts for one or more explanatory variables, the area under
the Receiver Operating Characteristics (ROC) curve can be obtained: the bigger,
the better.

While creating categories is popular and attractive, it creates many problems. Group-
ing is equivalent to introducing a sort of measurement error and leads to an inevitable
loss of power. The reduction in efficiency along with the introduction of bias are the
most common drawbacks when a continuous variable is summarized to an ordinal
one. An intuitive functional representation for the categorization of a continuous
variable to ordinal is a step function with respect to the outcome. However, whether
a step function is biologically plausible for the effect of exposure, is questionable in
many studies. The researcher has to decide a priori whether he believes that a
function with abrupt jumps fits adequately the data or not. Grouping may hide
important complexities of the exposure-effect relationship. For example, in cases
where the effect of a the exposure is observed to - let say - the upper 10% of the

exposure, grouping the data into categories will dilute and even conceal the effect.

On the other hand, categorization is attractive for many reasons. An important
one, although the least mathematically justified, is simplicity: the analysis is often

easier to perform and it is understandable by non-statisticians. Some other reasons
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for this preference are statistical. The researcher has no longer to consider some
issues as it i1s the case when modeling numerical variables: assumptions about the
shape of the dose-response curve and problems related to influential observations
(for example outliers) are sometimes difficult to deal with. Finally, if the analysis
based on categories indicates that the relationship between explanatory variable and
outcome has a simple form, the investigator has always the option to model using the
continuous form. The analysis using variables in categories is so conceptually simple
and easy to interpret, that explains its popularity despite the objections described

above.

After having decided to categorize a predictor, one has to define the cutpoints. One
common approach is based on binary splits and the corresponding cutpoint is de-
termined by the maximization of a test statistic [17, 20, 36, 43]. A binary split is
simple to interpret, but increases the impact of the disadvantages of categorization
described above. The simplicity is gained at the expense of throwing away a lot of
information. An optimal stratification of the predictor into more than two groups,
can often be more informative, especially if the shape of the dose-response relation-
ship is of interest. Multiple cut-offs lead to less biased estimates and the small loss

in power is offset by gain in simplicity.

It is not always obvious how many groups should be build and where the cutpoints
should be placed. The pattern of the response, the underlying biological mechanism
and the sample size should be taken into account. However, it is commonly observed
that arbitrary, equally spaced or equally sized cutpoits, suggested by the sample size
are used in practice. Nevertheless, rather than grouping according to the distribution
of the explanatory variable, a better strategy is to base the selection of the cutpoints
on the outcome. If there is more than one explanatory variable, the application of

a statistical model is necessary [28].

This theses deals with situations where categorization of numerical predictor vari-
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ables results as effect of the dose-response relationship. Moreover, as it actually
occurs in practice, more than one explanatory variable has to be included in the
analysis, and therefore one has to apply an appropriate statistical model. The vari-
ables may interact, and in this case the categorization can be seen as a combination

of the predictor variables in homogenous subgroups.

1.3 The order restricted statistics

The origins of order restricted statistical inference are dated back to the 50s. David
Bartholomew was one of the first researchers who started working on this topic.
Monotonic regression in its current form appeared first in the book Statistical In-
ference under order restrictions by R. Barlow, D. Bartholomew, J. Bremner, and
D. Brunk [3]. Monotonic regression became very popular in applications much
later; its utility in testing [21, 37, 39, 53] in modeling [2, 44, 55, 62] and estimating
thresholds [63] has gained a lot of attention recently. Monotonic regression has two

principal characteristics:
e The order restricted nature in estimating and testing
e The step function shape

Automatically the reader can imagine the utility of this method in modeling and
stratifying in the context outlined in the preview paragraphs: in dose-response anal-

ysis and in categorizing continuous predictor variables.

1.4 Contents overview

While quite simple as concept, monotonic regression presents some difficulties in

practice. The most important one is related to the outcome variable; many of
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the monotonic-related methods used so far for continuous response, are either not
developed or misapplied when the response is binary. The following chapters will
be strictly concerned on developing methods and ”filling gaps” regarding binary
responses. Another problem is the poor performance of asymptotics in the majority
of the monotonic-related models. In this report different uses of monotonic regression
(as test for trend, as modeling alternative, as threshold value estimation method)

are put together. Old approaches are evaluated and new developments are proposed.

In CHAPTER 2 some basics about monotonic regression will be shortly presented.
In CHAPTER 3 the monotonic test for trend and its importance in establishing
dose-response relationship are discussed. It will be proven that the asymptotic ap-
proximation for its distribution proposed by Bartholomew does not always hold and
an alternative based on permutations is presented. Within a simulation study, sev-
eral tests for trend will be compared to the monotonic test, and their performance
will be evaluated. In CHAPTER 4 monotonic regression will be studied as mod-
eling proposal and categorization method. Two new methods for backward elimina-
tion of the model in order to improve parsimony will be introduced and evaluated.
Chapter (CHAPTER 5) deals with multidimensional extensions of monotonic re-
gression and their utility in two-dimensional classification. A new multidimensional
version of the monotonic test for trend for overall a partial significance will be pre-
sented. CHAPTER 6 outlines the use of monotonic regression in threshold value
estimation problems. In this regard, two new proposals will be introduced. Finally
CHAPTER 7 gives a taste about how one can introduce monotonic regression in
Cox models to correct for time-varying effects. A help on the isotonic library in S+

is added in the Appendix.
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1.5 Data set description

MAK (Maximale Arbeitsplatz Konzentration) study.

The data are taken from the DFG study ”Chronic Bronchitis” [15]. A detailed
description of the data can be found in the monograph of the study (DFG-report,
1978 and 1981) or in [27]. Data from 5578 workers of three different plants (in

Moers, Munich and Saarbruecken) are available. The three plants had a mixture

of dust, mainly from iron, steel, foundry and engineering. Here, the data from the

plant "Munich” are analyzed (see table 1.1).

Table 1.1: The MAK study data (sample from Munich).

Variables With CBR  Without CBR | Total
Non and ex- smokers:
median(min-max)
n (%) 51(15.6%) 275(84.4%) 326
Time since 33(8-66) 23(1-55) 24(1-66)
first exposure
Inhalable dust (mg/m®) | 1.5(0.4-8) 1.4(0-15) 1.4(0-15)
Non and ex- smokers:
median(min-max)
n (%) 241(26.2%)  679(73.8%) 920
Time since 28(6-49) 24(3-51) 25(3-51)
first exposure
Inhalable dust omom® | 4.6(0.3-12.1)  1.07(0.2-15) | 1.4(0-15)

The goal of the statistical analysis has been to test whether the inhalable dust

concentration in workplace has adverse effects on the health of the workers. Apart

inhalable dust, additional factors as the time since first exposure — highly correlated
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with age — and the smoking habits need to be taken into account. The endpoint of the
study has been the chronic bronchitic reaction (CBR). In the statistical analysis of
this data, the proof of a dose-response relationship i.e. increasing risk with increasing
dust concentration was an important task in order to establish causality. In case
of evidence, the stratification of dust concentration into certain risk groups was of
great interest: according to the established risk categories the MAK commission
could take decisions to protect workers against the dust effects and to assess a

threshold limit value for dust concentration in workplace.

LI e T A Y Y O B O
o
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Figure 1.1: Example from MAK study. Isotonic regression together with smooth-

ing spline.

Just to get a taste about isotonic regression, an example is presented (figure 1.1).
The chronic bronchitic reaction probability is a function of time since first exposure.
A smooth curve (spline with 6 degrees of freedom) can be fitted to summarize
the relationship, whereas a step function (isotonic regression) is also possible. The
categorization of the variable TIME occurs as the result of this relationship which

segments the y-axis in 11 categories.
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In most of the chapters, the MAK study is used to demonstrate the methods. The
Para-Aramid study or the Acute Leukemia study are used in addition, and they are

described in the corresponding chapters.



2 MONOTONIC REGRESSION

2.1 Introduction

This chapter surveys the most important issues about monotonic regression as
introduced by Robertson et al. [49]. It concentrates only on the case of one explana-
tory variable - dose. Definitions, estimation procedures, tests and their asymptotic
distribution are summarized, and a view of the isotonic procedure as a smoother is

given.

Although we are mainly interested in the case of binary response, for the sake of
completeness the monotonic framework for the parameter # of a distribution be-
longing to the exponential family is presented. Note that under the term monotonic
regression either an increasing (isotonic) or decreasing (antitonic) trend is included.*
Without loss of generalization, an increasing trend is assumed (isotonic regression )

throughout this chapter.

!The terms ”isotonic” and "monotonic” are often used somewhat interchangeably.

18
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2.2 Exponential families

Consider the case of K dose groups D : {d = (dy,dz, ...,dx)} where the dose levels
are in increasing order and the outcome of an experiment is Yy, ¢ = 1,...,ny. The
response y = g(d) = (Yy) does not have to be specified and it can be binary, Poisson,
continuous or survival time. The distribution of Yj; can be written in the following

form

fy;0a,t) = exp(pi(0a)p2(ta) K (ys ta) + S(yita) + q(04,ta)) (2.1)

where 64 is the parameter of the distribution of Yj; for a given dose. For example
f; can be the mean of the continuous distribution, the Poisson parameter, or the
positive outcome probability of the binary response. As pq, pa2, ¢ are denoted some

functions which have continuous second derivatives and they satisfy

pi(0a) > 0,p4(ta) > 0 and ¢'(04,ta) = —0apy(0a)pa(ta) (2.2)
with respect to 6.

Considering the independent dose-sample, it is E[K(y,t4)] = 04 and V[K(Y,t4)] =
1/[p}(04)p2(ta)]. The maximum likelihood estimator of the parameter 6 is

L] P4
bs = —2 K(Yiita) (2.3)
d —

Consider now K independent dose samples from K populations belonging to ex-
ponential families with densities f(e,04,14) for every d € D. Then without any a
priori assumption about the shape of the parameter 8, the corresponding maximum
likelihood estimator is 6 = (él, éz, s éK). Given that the dose is of increasing order,

we wish to have § of non decreasing order. This is true only if all the estimates



2.3 The simple order case and isotonic estimation 20

fulfill the isotonic relationship 0, < éd-|—1- Then, if 0 is the isotonic estimator of é,
it is trivial that §* = 0. If somewhere is a violator such that éd > éd-|—1 for some d,

then an isotonic estimator of # needs to be found.

2.3 The simple order case and isotonic estimation

Definition 2.1 Consider a given function g on D. A function ¢* on D is an tso-

tonic regression of g with weights w if and only if g* is isotonic and g* minimizes

> lg(d) = F(d)]*w (2.4)

deD

over the class of all isotonic functions f on D.

For the case of an exponential family it can be shown that wy; = ngps(ts). Before
presenting an algorithm that computes the function that minimizes equation 2.4, a

graphical representation of the problem will be discussed.

2.3.1 The greatest convex minorant

Let Uy = (wy,g(d)), Wy = X% w; where w;,i € D defined as previously and
Gy = Y4, g(i)w; with d € D. The plot of Uy is called cumulative sum diagram
CSD and depends on function g. The slope of the segment joining points Uy_1, Uy
equals g(d). The supremum of all convex functions lying below the cumulative sum
diagram is the greatest convex minorant GCM of CSD. Since GCM is convex on
[0, W], it is left differentiable at each point U/. Denote now ¢g* the left derivative of
GCM. If for some d, GCM(d) lies below CSD(d) then the slope on the left and the
right of d are the same® i.e GCM(d) < CSD(d) — g*(d) = g*(d + 1).

2For simplicity two successive dose groups are denoted as d and d + 1 and not d; and d;
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Theorem 2.1 [f D is simply ordered, the left derivative g* of the greatest convex

minorant yields the isotonic regression of g.

Indeed, if f is isotonic then the following holds

Yaenlg(d) — f(d)Pwa >= Y yeplg(d) — g*(d)]Pwi + X aeply*(d) — f(d)]*wa

2.3.2 Computational Algorithms

While many computational algorithms are proposed, the most widely used one is the
Pooled Adjacent Violators Algorithm or PAVA. The background and justification for
this algorithm is related to the greatest convex minorant. Recall that a graph of
observations is isotonic if the CSD is convex, since in this case it is equal to GCM.
A violator of the isotonic assumption occurs when the slope of a segment between
g(d—1) and g(d) is smaller than the slope in the previous segment g(d—2), g(d—1). If
these two segments are replaced by a segment g(d—2), g(d) then the GCM of the new
graph is the same as the GCM of the old graph. Following this idea, the GCM can be
constructed by a sequence of estimations where adjacent line segments are replaced
by a single line segment to correct for violators of monotonicity. Alternatively to
PAVA| the Minimum Lower Set algorithm [49] can be used. This algorithm involves
averaging ¢ over suitable selected subsets of D and it is more general than PAVA.

It can be also applied for several shape restrictions, as the U-shape.

Consider again the situation of a set D : dy, ..., dx of dose groups where the dose is in
increasing order and the outcome g(d). To estimate ¢g*(d) the isotonic regression of
g(d), the PAVA as described in algorithm 1 can be applied. The algorithm assuming

a decreasing trend is similar.

We revisit the situation described in section 2.2. The isotonic maximum likelihood

estimator is the isotonic regression of 0, estimated through PAVA with weights

Wyg = Ngqg - pz(éd)-
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Algorithm 1 The Pooled Adjacent Violators Algorithm

1. If g(d) is in non-decreasing order then ¢*(d) = g(d).

2. Otherwise there is somewhere a violator such that g(d) > g(d+1)
for some d. Replace these two values by their weighted average
Av{g(d),gld + 1)} = [wag(d) + waprg(d + D]/ (s + wis1)

3. Now the elements d,d + 1 form a block called level set (LS) or
solution block. If the new set of K — 1 wvalues is isotonic, then
g (d) = g*(d+1) = Av{g(d), g(d+1)} for the violator and g*(d) =
g(d) for all other observations.

4. If the set is not isotonic repeat the procedure using the new set of

values

Example 1: The normal means

The distribution function has the exponential form:

fly;0,t) = exp{0(1/t)y — (02/2t) — (62/2t) — (In(27t)/2)} where 6 is the mean
of the distribution and ¢ the variance. Consequently S(y;t) = —y?/2t, q(0,t) =
—0%/2t — In(27t) /2, K(y;t) =y, p2(t) = 1/t and Pi(#) = 6. The isotonic estimator
of the mean 6 is obtained by applying PAVA with weights w,; = ng/t,.

Equivalently for binary response the weights are equal to ng.

2.4 Testing using isotonic estimates

2.4.1 Tests for exponential families

The following hypotheses are defined:

Ho:(91:(92:...:(9](:(90
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Hy: 0 <6y <... <0 with at least one strict inequality

Hy : No restrictions for 61, 0,, ..., 0k

D A
S i,
d=1

D

> W
d=1

Ty the test statistic that tests Hy against H; and Ti; the test statistic that tests

is the weighted mean and 0, the mean in group d. Denote as

where 65 =

Hy against H;. These two tests have the following form:

Ton = 23 walllpld5) — p(00)] +2 3 wila(@i ) — albo ta]  (25)
Ty = 23 willlpl0) — p05)] 23 wilatlo o)~ B3 00] (26

where éc*l is the isotonic estimator of 0, assessed using PAVA. These tests follow

approximately a weighted chi-square distribution:

K

P(Tor > ¢) ~ S P(1, K, w) PIXE, > d] (2.7)
=2
and
K
P(Tiy > ¢) ~ 3" P, K, w) P[X2_, > (2.8)
=2

where P(l, K, w) denote the probabilities that under Hy and given K distinct dose-
levels, the isotonic regression will build [ level sets and >; P(l, K,w) = 1. For a

more detailed description of the weights P(l, K, w) see 2.4 in [49].
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2.4.2 Binary response

Consider that Y; ~ B(p4,n4). There are several modifications of the test in equation
(2.5) for this case. In their majority they assume that the proportions approximately
follow a normal distribution with Y; = ps and 0%(Y") = po(1 — po)/n4. Then the test
> na(pa — po)’

takes the form X2 =
po(l - po)

and under Hy it is distributed as in equation 2.7.

Alternatively, the test

F?— an(ﬁ?[ - PO)2
> (pa — po)?

(2.9)

can be used. E? follows a weighted average of beta random variables with level

probabilities P(l, K, w) defined as before.

However, it is well known that the normal approximation for proportions performs
poorly and thus these two tests are not always adequate. Approximation for pro-
portions using sine and cosine transformations lead to Aresine Isotonic Test that

behaves very unpredictably [13].

One of the most popular alternatives is the Isotonic Likelithood Ratio test.

K Ase ok
R=D(pm,) — D(m,) =23 napaln(EL) + ny(1 — po)in(—LL))  (2.10)
d=1 pO 1 - pO

where the deviance D(pg,) is the function -2log(Likelihood) under the hypothesis
Hy, d = 0,1,2. This test, very popular so far, has been used in connection with
equation 2.7 following the proposal in [49]. This test will be evaluated in the next
chapter. The assumed asymptotic distribution does not hold for this test as will be

shown later.
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2.5 Isotonic regression as a smoother

The process of isotonic regression can be thought of as a smoothing technique. The
term smoothing is here somewhat excessive, since the result is far from being smooth
because of the presence of "flat spots” in an increasing regression. With smoothing
here we refer more to the fact that isotonic regression is connected to conditional
expectation and this conditioning is referred to as a smoothing process: the values of
the variables are regressed and replaced in the conditioning process by constant val-
ues, which is a smoothing operation. Under the light of this consideration, isotonic

smoother has global nature but results in locally flat averaging.

Following the proposal of Hastie and Tibshirani [29] the degrees of freedom of a
smoother are defined as the trace of the smoother matrix S. Let Bj be the subset
of successive indexes from ¢ = 1,..., K corresponding to observations ¢(d;) that are
estimated through ¢*(dy) i..e a level set and k € (1,1) with [ denoting the final

number of level sets. The smoother matrix will have the following form:

Wq

if d and j € By, for some k

Go ] 2w (2.11)

SEBk
0 otherwise

Extensions of isotonic regression to be smooth were proposed by Friedman and Tib-
shirani [19]. The idea is based on combining moving average and isotonic regression.
First the scatterplot of the observations (g(d), d) is "smoothed” by replacing ¢(d;)
by an average of the ¢g(d;) over a window of values d; around ¢g(d;). At these values,
isotonic regression is applied. It is also possible to start from isotonic regression and
to smoothing then. Combining isotonic regression with other smoothing techniques

as splines is also an alternative.



3 TESTS FOR TREND IN A 2xK
TABLE: isotonic alternatives

3.1 Introduction

Many important decisions about the classification of substances at the workplace are
based on animal experiments. Among the most important ones are those concerning
carcinogenic agents. As outlined in chapter 1, a main criterion in order to establish
causality is the proof of a dose-response relationship. This is accomplished by a

"test for trend” [25, 26].

One of the most complete guidelines on selecting the appropriate test for trend is
the tutorial by Chuang-Stein and Agresti [12]. Among the tests presented in this
paper, the Cochran-Armitage test (CA-test) [1] appears as the most widely used.
However, it is well-known that the result of this test is associated with the score

assigned in the dose levels.

Recently the isotonic approach has gained a lot of attention on testing dose-response

relationships [21, 37, 39]. The most important reason is that applying isotonic-based

26
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tests, the result is independent of any score assignment. The previous chapter dis-
cussed this test (equation 2.5) and the different forms it can take when the response is
binary (X2, E? in section 2.7), as well as the Isotonic Likelihood Ratio R test (equa-
tion 2.10) and the corresponding large sample approximations. Other approaches
with connection to isotonic procedure have been proposed by Mancuso et al. [39];
they proposed a mixture of CA test and isotonic estimation. Peddada et al. [48]
introduced a test based on the width of the interval of the isotonic estimators, and
Gautam et al. [21] proposed an isotonic modification of the usual Pearson’s X? for

ordered contingency table.

Table 3.1: Notation used for the various test-statistics.

Dose-levels di dy ... dg | >
No of response | ¢; ¢ ... ex | E
Total ny ne .. ng | N
. E
Proportion ProP2 o PE | Po= ¢
> sing
Score 51 Sy ... Sk | S0 =%

This chapter presents a review of tests for trend, focusing on isotonic regression.
The Isotonic Likelihood Ratio test R will be discussed in detail and I will show that
the large sample approximation presented in the previous section and used in several
papers does not always hold. Furthermore, a comparative study among the most
popular tests for trend will outline the advantage on using the PAVA transformation
when testing monotonic shapes. The basis of this comparative study is a paper by
Ulm et al. [60]. They compared the Cochran-Armitage test to isotonic likelihood
ratio test. Starting from this aim, I will include in the study a rank test, the
isotonic Pearson’s X? test by Gautam [21] and a skewness correction for the Cochran-
Armitage test. Additionally, the results will be based on 10 000 permutations instead
of 1000 used in the original paper.
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The type of experiments which are considered throughout the paper can be displayed
in the form of table 3.1.

3.2 An overview of tests for trend for binary

respomnse

The Cochran-Armitage test

This test is designed to detect a linear trend in a response proportion. It is assumed

that
P(X=1)=pi=a+pPs +e,

where (3 is the slope of the regression line and s; the score assigned to dose d;. The

slope is estimated by the usual weighted least squares-method [18]

Soni(pi — po)(si — 50)'

= e = w0

N

The test due to Cochran and Armitage [1] is applied to investigate whether 8 = 0.
The usual chi-square test

k

x2=3 {(ei — E(e))? [E(lei) o fE(@)H

=1

(with F(e;) = nzﬁ) for investigating an association between the dose and the

response

rate can be decomposed into two parts:

X2 = X7

linearity

+ X2

slope*
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The statistic
_ BQZ ni(s; — 80)2

po(l —po) (3'1)

2
Xslope

is the Cochran-Armitage test or CA test, which is under (B = 0) chi-square dis-

tributed with one degree of freedom.

Tarone and Gart [58] showed that this test is a C{a) test i.e. a statistic derived
from the partial derivatives of the log-likelihood function for testing Hy against the

alternative
Hy :p; = hla+ Bd;).

The function h is an arbitrary monotone function, twice differentiable and therefore
the CA test is a test that can be applied under any monotone shape alternative and
not only for a linear one. Whereas the CA test may be robust against departures
from the linearity assumption, it is believed that in case of ordinal data this test

would be an inappropriate approach [48].

Score selection

Obviously the disadvantage of this approach is the necessity to assign scores at
the dose groups. The choice of the scores can have a substantial effect on the
result of the test, especially when the data are unbalanced i.e. n; are unequal. A
popular solution is to use midranks, the mean values of ranks if one could have
made a complete enumeration of the sample. However this approach is inadequate
for unbalanced data, since it can conceal important differences between dose levels.
Chuang-Stein and Agresti argue that the best way is to use scores that reflect the
perceived distances between doses. However, the actual dose may not be available
or not appropriate [48]. A possible guideline on selecting scores is to perform a

sensitivity analysis: to use several scores and checking if the conclusions are similar.
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To demonstrate the impact of the score selection, consider K' = 4 dose groups
with d; = (0,2.5,25,250) and 50 animals per dose group. The responders are e; =
(0,4,5,6). Assigning the index as score (s; = (1,2,3,4)) the test statistic leads to
a value of CA = 5.204 which gives a p-value of 0.023. If the actual dose levels are
used as scores, the associated test-statistic €4 = 2.321 indicates a non significant
slope (p-value =0.128). Using the log(dose + 0.01) as scores, the corresponding
test-statistic is 5.878, which is statistically significant (p-value = 0.015).

The overall X? test is independent of any score assignment and gives a value of
5.978. This indicates that Xﬁ»mamy is close to zero for the index and the log dose

score assignment. However if the doses are used as scores, the value for X7 _ . of

3.661 is too high to reject the hypothesis of linearity.

Correction for skewness

Tarone [57] introduced a correction for the CA test in case of skewness. Additionally
to scores, the result depends on the experimental design (combination of sample size
per dose-group and scores). The type I error rate can be lower or higher depending

on the design. The coefficient of skewness is

(N —2E)/N(N — 1) n;(s; — s0)*
v = : (3.2)
(N = 2)y/E(N = E)(X ni(si — s0)?)*?

The sign of this coefficient is determined by m3 = Y ni(s; — s0)?/N and depends
only on the experimental design. Tarone showed that when v > 0 the CA test is
liberal i.e. when Hj is true, the test will reject it with probability higher that 5%
whereas for v < 0 the test is conservative. For correction, he proposed to replace

the actual significance level z, by
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25 =z, + (22 = 1)/6. (3.3)

In the aforementioned example the coefficient of skewness for the different score
assignments is: for index v = 0, for dose as score v = 0.259 and for log(dose+0.01)
v = —0.127. The corrected p-values are 0.023 for index (no correction), 0.142 for
dose and 0.014 for log(dose+0.01).

The Cochran-Mantel-Haenszel test

This is a test for conditional independence between (K — 1) X 2 contingency tables.
It is a chi-square statistic with one degree of freedom. It pools information from

comparing adjacent doses against one-sided alternative.

3.2.1 Tests that treat the response as continuous

The test E? test (equation 2.9) and modifications of the ¢-test fall in this category.
Although these tests may work quite satisfactory for ordinal response, they are
inadequate for binary response; in most cases one has to assume excessively that p;

follows a normal distribution.

Rank tests

The most popular rank tests are the Jonkeere-Terpstra and the Wilcoron sum rank
test. One does not need to assign scores, but using rank tests this problem is not

bypassed, since this family of tests uses midranks as preassigned scores.

Graubart and Korn [24] discussed methods that need score pre-assignment (like the

CA test) and rank statistics concluding that rank test are not necessarily preferable.
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They argue against the 7illusory” advantages of the rank statistics and they state
that they perform poorly in case that the data are not uniformly distributed in the

dose-categories, which is true in many settings.

Consider for example the case where the two higher dose-categories differ a lot in
terms of dose concentration but they correspond to a small proportion of the sample.
The midranks will be similar for these two dose-categories and this closeness of
scores is inappropriate. However, in this paper [24] no simulation study has been
performed; they based their statements on an example. Note that isotonic regression
is not a rank test, so the advantage of tests with pre-assigned scores that Graubart
and Korn support, may not hold when compared to R test. Such a situation has

not been considered in the paper.

Tests based on a model

The most popular approach is the proportional odds model. The well-known logistic

regression model
logit(p;) = o+ Bs;

is assumed. One can test for B = 0 applying the logistic Likelihood Ratio test or
the Wald test, based on the square of the ratio of the maximum Likelihood Ratio
estimator of B Last, the score test based on the derivative of the log-likelihood at
B = 0 can be used.

The logistic regression approach is quite robust against departures from linearity
and adjustment for other predictors can be made. However, there are important
restrictions about the sample size N and n;. Further, the score assignment is still
present: the dose can enter the model either in its actual form or using scores. For
the same example as before, the Likelihood Ratio test for logistic regression results

is a p-value=0.147 when the actual dose levels are used as scores.
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The isotonic Likelihood Ratio test (R)

This test — equation (2.10) — follows a weighted Chi-square distribution (equa-
tion 2.7). The main advantage of this test in the context of analyzing animal
experiments is that no scores need to be assigned, and therefore the result
is stable. Regarding the same example analyzed so far the Isotonic Likelihood Ratio

test R=9.48 is derived, which is statistically significant with p-value < 0.001.

Algorithm 2 (Untvariate permutation test)

e Fach animal is characterized by a pair of data (d;,Y:),0o=1,.., N
with d; denoting the dose-group and Y is the status (Y = 0 without
event and Y =1 with event).

o This pair is broken up. Dose-level and status are combined per
random allocation.

o Within each permutation Hy is considered (equal risk in all dose-
groups) and it is analyzed by the Likelihood Ratio test statistic R.
That results in a set of values Ryerr, .

o The p-value is the probability that the result of a permutation is
equal to the observed value of R estimated for the data set in hand

Ry, or to exceeds it:
p —value = Pr{Ryerm > Robs} (3.4)

If this p-value is less than the predefined significance-level, Hy is to be

rejected and a dose-response relationship can be assumed.

A problem associated with this test is that the theoretical distribution does not

hold, as I will show later, in cases where the response probability is low, a situation
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not rare in carcinogenic studies. The critical values assessed by equation (2.7) are
lower that the critical values estimated by Monte Carlo methods. In this situation

the researcher should apply an exact method.

One way to give the correct p-value is to perform a permutation test. Based on the
observed margins (number of animals per dose-group and total number of events) a
large number of permutations (e.g. perm = 10 000) is analyzed. The alternative to
the permutation test is to analyze all possible combinations, applying the test to all
of them, calculating the probabilities for each combination with a test-value equal
to or greater than the observed one (=R.,) and adding all these probabilities up.
If the sum is less than the predefined significance level, Hy is to be rejected. The

probability to observe the combination (ey, €3, €3, €4, ..., €x) with 3¢, = F is

)

pler, .., ex) =

The number of all possible combinations depends on the total number of different
dose-groups K. For example with £ = 10 events and K = 5 dose-groups (the para-
aramid data) altogether 1001 combinations are possible. I strongly recommend the

use of exact critical values for small response probabilities.

Iso-chi-squared test (W)

Gautam et al. [21] proposed a modification of the usual Pearson’s chi-squared statis-
tic for a 2 x K table based on isotonic regression. Pearson’s X? test does not take
into account the order categories of the different doses. Denoting the Pearson’s

correlation coefficient with r, one can write the X? statistic as
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2 _ 2
X = maxV{sl,...,sK}NT (517 ) SI&")

Gautam proposed the following modification that restricted the test to the case of

ordered proportions:

W — maxvincreasing{sl,...,SI(}er(sl7 ceey SIX”) — max{W17 WQ} (36)

where W is the Pearson’s X? statistic calculated for table 3.1 after isotonic regres-
sion for e;/n; and W, is the Pearson’s X? statistic calculated for table 3.1 after
isotonic regression for (n; — €;)/n,;. For the distribution of the test statistic under
Hy they derived tabulated critical values for 3 < K < 10 (see Appendix). However
they suggest to use simulations for every special case and report the failure of the
approximation. Gautam et al. propose to generate a large number of 2x K contin-
gency tables keeping both margins constant, and to estimate the exact p-value as

the proportion of the W, that exceed the observed value.

3.3 Simulation Study

3.3.1 Description

Three tests are selected to be compared to the Isotonic Likelihood Ratio R test:
o A score-based test: CA test
o A rank test: Wilcoron rank sum test
o The iso-chi-squared test W by Gautam

This selection is based on the fact that the CA test and the Wilcoron are the most
popular among score-based and rank tests, whereas the W-test is a good established

test among the PAVA-based tests, and the critical values are already computed [21].
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Table 3.2: The coefficient for skewness v if K =5 and n; = 50.

score ol Correction
index 0 No

dose 0.223 | Upwards
log(dose+1) | 0.002 | No

With respect to the example presented later, 5 dose-groups with 50 animals per
group are considered. The CA test was applied using three different scores i) the
index s; =order(d;) ii) the dose s; = d; iii) the logarithmic transformation of dose,
s; =log(d; +1). All results are based on 10 000 replications. Regarding the CA test,
the coefficient for skewness has been found different from zero for the situation in

which the dose is used as score, otherwise gamma is zero or close to zero (table 3.2).

Recall that the tests used here are two-sided, to be consistent with the iso-chi-
squared test W. Further, Cochran-Armitage trend test is generally reported with
two sided p-value, in most of the publications. Isotonic regression (R test) assumes
however only one trend at a time, thus can be thought as one-sided test. Therefore
the following procedure is followed: without any a priori information about the
trend, both isotonic and antitonic regression are fitted and the maximum value of
the two Likelihood Ratio tests is taken. Using an one-sided test, the power of CA

and Wilcozon tests are potentially improved, but the R test has still greater power.

3.3.2 No dose-response assumption
a) Response probability=10%

The proportion of events is assumed to be 10%. On average 5 out of 50 animals

in each group will give a positive response. The agreement between theoretical and
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empirical distribution was good for both the CA test and the W test. All three
assignments for CA where in agreement with the chi-square distribution (one degree

of freedom).

The critical values proposed by Gautam (6.060) was not far from the result obtain
from the simulation result (6.086). In contrast, the estimated 95% critical values
for R was slightly higher than the theoretical. However in general, the empirical
distribution of the test statistics follows the theoretical one (table 3.3).

Table 3.3: Simulations under Hy (constant risk). Critical values for comparing
K = 5 dose groups with n; = 50 observations in each dose group, and
response probability 10% and 4%. In first column the result from the
theoretical distribution is depicted and in the second column the critical
value estimated from 10 000 simulations. For the W iso-chi-squared

test, the theoretical value corresponds to the approximation derived by

Gautam.
Critical value for significance level 5%
Test Theoretical Estimated
10% 4%

CA(index) 3.833  3.851

CA(dose) 3.841 3.829  3.528
CA(log(dose+1)) 3.837 3.7535

R 5.048 5.248  5.730

W 6.060 6.086 6.277

b) Response probability=4%

The same situation but with less events was considered. The response rate was 4%

i.e. 2 out of 50 animals are expected to develop the disease. Regarding CA there
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Figure 3.1: Theoretical (estimation from formula) and empirical (estimation from
permutations) cumulative distribution for the Isotonic Likelihood Ra-
tio test R (response probability 4%, n;, = 50 observations in each dose

and K =5 dose groups).

Table 3.4: Simulations under Hy assumption (constant risk). Isotonic Likelihood
Ratio (R) test: Critical values for comparing K = 8 dose groups and

sample size 400 (50 in each dose group) when the response rate is 5%,

10% and 25%. The estimation has been accomplished using 10 000

simulations.
Significance Critical values
level Theoretical Estimated
5% 10%  25%
0.05 6.088 6.526  6.355 6.200
0.01 9.640 10.142° 9.963 9.711
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is again a good agreement: the cumulative distribution curves (the empirical and
the chi-square) are shown together. In contrast, the estimated value (6.277) for W
differs from the tabulated one. The distribution of R is far lower than the theoretical
one as shown in figure 3.1. The estimated critical value for a significance level of
5% is 5.730 whereas the theoretical one is 5.048 (see table 3.3). If the response

probability is even lower than 4%, this difference is increasing.

The same scenario was repeated with now K = 8 groups and response probabilities
5%, 10%), 25%. The results are presented in table 3.4. Again, a strong disagreement
between theoretical and empirical distribution is observed. Note that in this simu-
lation study it is assumed that the number of observations is equal in each group,
situation which except for animal experiments is unlikely to occur in practice. The
calculation of the level probabilities P(l, K, w) becomes very cumbersome when the
weights in each dose level are unequal. Moreover, when more than one explanatory
variable is taken into account the Likelihood Ratio test does not follow any known

distribution.

The conclusion from this analysis is: if the number of events is small, the investigator
should better rely on the p-value estimation from the permutation’s test, as described
in algorithm 2. If the proposal of Robertson et al. [49] is followed, the test will be
too liberal for small response rate since the true critical value is higher than the

tabulated one. This gives a p-value far too small.

3.3.3 Increasing trend assumption

Under the assumption of increasing response probability, several different situations
were investigated (table 3.5). The overall response rate was either 10% or 4%. The

regression line follows sometimes steep and sometimes flat increasing pattern.

For the CA test, one of the score assignment leads to a perfect linear shape, and
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shows the best power between the three (A representations. Although many re-
searchers believe that departure from linearity do not effect the performance of the

CA test, these results will show the opposite.

The Isotonic Likelihood Ratio test presents in all situations considered the highest
power. In each case it has a power higher than the CA test even when a perfect
linear shape is established. The critical values for R used to reject the Hy are those

estimated from the simulation study (5.248 for 10% rate and 5.730 for 4%).

The W test presents a very "dispersed” power: when the regression line is steep,
this test yields a power value among the highest, and when the line is flat the power
is one of the lowest. Similar properties are observed for the Wilcozon test. Note that
in this simulation study there are not objections against the use of the Wilcozon

test, since all n; are equal.

In order to make a more general recommendation, the mean over all nine situations
may be considered. The overall power is 60.59% for the isotonic regression, followed
by Wilcoxon test using (51.17%). The log dose assignment leads to average power
of 45.35%. The lowest power can be observed using the actual dose as score. From

this analysis the use of the isotonic regression can be recommended.

3.4 Case study in tests for trend

The classification of man-made mineral fibres as carcinogenic is still under discussion
for some type of fibres. Para-aramid, constitutes a particular interesting case and
there is some controversy about its classification as carcinogenic or not [32]. Only

one animal experiment is available, and this data set is presented in table 3.6.

To establish a causal relationship between exposure to para-aramid and tumor,

the proof of a dose-response relationship (increasing effect with increasing dose) is
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Table 3.5: Simulations under H; assumption (increasing risk). Comparison of the

power under various situations considered among the CA test, the Iso-

tonic Likelihood Ratio test R, the Wilcoron and the iso-chi-squared W

test. Five groups with 50 observations per group are assumed. The

critical values used for R and W are estimated through permutations.

po | P(Y=1) Linear Power %
% | % relation CA test with score R Wil- W
with index d; log(d; + 1) coxon
10 | 2,6,10,14,18 index 74.35  66.92 72.87 92.63 87.97 84.98
10 | 6,8,10,12,14 index 31.84 24.56 30.70 40.49 30.94  28.56
4 12,3,4,5,6 index 19.94 17.74 19.57 28.22 18.66  17.57
10 | 4.8,4.9,5.8,14.9,19.8 | dose 68.74  80.59 69.41 89.61 85.03 85.62
10 | 7.4,7.4,7.9,12.4,14.9 | dose 31.67 31.99 30.99 40.53 32.26 31.51
4 10.4,0.4,1.1,7.4,10.8 dose 78.66  83.09 81.64 95.08 93.10 91.81
10 | 2.1,8.1,11.1,14.1,14.7 | log dose | 63.42 35.96  58.36  83.77 66.74 66.17
10 | 8.4,9.6,10.2,10.8,10.9 | log dose | 7.21  6.19 7.21 11.25 7.22  7.60
4 10.1,3.1,4.6,6.1,6.3 log dose | 39.84 21.44 37.42 63.76  38.62  33.53
Mean | 46.19 40.94 45.35 60.59 51.17 49.71
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Table 3.6: Data from the para-aramid study (IARC 1997). Tumor: adenoma,

bronchido-alveolar without keratinising squamous-cell carcinoma.

dose(x 10° F/m®) | 0 25 25 100 400 3
no of tumors 1 1 1 4 3 10
no of animals 137 133 132 137 92 631

important. Since it is a prior: known that the trend should be increasing, only

one-sided tests are performed.

The decision concerning the acceptance of Hy depends on the test used as good as on
the method with which the p-value is obtained. If the CA test is applied, Hy will be
rejected if the indices are used as scores. The test-statistic C'A of 3.819 is statistically
significant based on the X? distribution (p = 0.026) using 10 000 permutations (p
= 0.039) or analyzing all 1001 possible combinations (p = 0.033). If the other two
methods of assigning the scores are used, the p-values are sometimes below and
sometimes above 0.05. The result of the CA-test therefore is highly dependent on
the way the test is performed.

Applying isotonic regression the hypothesis Hy cannot be rejected. The p-value
obtained from the large sample approximation is slightly above the significance
level of 0.05 (p = 0.057). The p-value based on a sample of 10 000 randomly
selected permutations and on all possible combinations (exact) are both above 0.05

(p-value = 0.110). The results are presented in table 3.7.

This result is in line with the results from the simulation study. If the event rate is
small, the p-values obtained from the large sample approximation are misleading.
The exact p-value as well as the p-value from the permutation test are showing no

significant dose response relationship.

In order to investigate these differences in more detail some results of the isotonic
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Table 3.7: Analysing the data from the para-aramid study: results.

Dose assignment
Test index dose log(dose+1)
CA XZope 3.819  3.294 2.533
p-value
X? distribution 0.026 0.035 0.056
Permutations 0.039 0.049 0.047
exact 0.033  0.049 0.048
Isotonic R 4.779
p-value
X? distribution 0.057
10 000 permutations | 0.110
exact 0.110

regression and the CA test using the index as scores are considered. In general there
is a good agreement between both test statistics. However some of the combinations
have totally different outcomes. For example the combination (0, 0, 6, 3, 1) leads

in the CA-test based on the index as dose assignment to a non-significant value of

N

2.210 (8 = 0.006). The isotonic regression yields a value of R = 11.29 (p < 0.01).
There is also a difference to the two other methods of assigning scores. If the dose
is used, the slope switches signs and turns negative, whereas the log (dose)-method

gives a test value of = 3.481.

All other situations where both tests differ are similar. The proportion of events
follows more or less an umbrella- or a U-shape. The risk is high in the middle
dose groups and low at both ends or vice versa. Isotonic regression amalgamates
the highest or lowest dose group together with the dose-groups in the middle which

leads to an increased risk in the higher dose groups. Linear regression analysis
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however leads to a more or less horizontal line ignoring an increase in the lower
and middle dose groups. To summarize the results obtained in connection with the
para-aramid example the CA-test seems highly vulnerable. It seems that the use of
the dose as scores is not a good idea especially when the dose of the highest group

is far from the rest.

3.5 Extensions: Adjustment for dose-induced

mortality

In carcinogenicity studies, the size of the sample can change during the study due
to mortality. This fact is sometimes of interest and the time to death is also taken
into account, which can be thought as a confounding factor. At the end of the study
the remaining animals are sacrificed and for each animal the dose level d;, the status
Y = 0,1 and the time to death ¢; are obtained. The cause of mortality can either

occur from the tumor or as treatment effect (high doses may be more toxic).
Consider the notation of table 3.8 where the data are givenin¢ = 1, ..., T' time-strata:

E
Additionally note F;; = ntiﬁt' the expected value in each cell. Usually the test
t.

Zo=Ta/Va (3.7)

B, (N,—E,) N,
N, N, N1

with TG == Zzlil Sz(EZ - Ez) and VC? = Z?:l

is used (or modifications of this test). Asymptotically, it is normal distributed.
Procedures based on life time tables and stratified logistic regression are possible.
The following sections focus though to modifications for CA test and I will present

survival adjustment for the isotonic tests.
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Table 3.8: Notation used for survival adjustment in 2xK tables.

Dose-levels dy ds e di >
> sy

Score 81 S9 .. SKE S0 = =5
Time strata 1 €11 €12 .. 61K El.
animals at risk | nqy N12 e MK Ny
Time strata t en €49 e EK I
animals at risk | ng Nto e MR N,

. b
proportions Ei/Ny E3/Ny .. Eg/Ng|po= NG

3.5.1 The Poly-3 test

In the usual Cochran-Armitage test all time strata collapse in one (T'=1) and Zg

can be accordingly calculated [12]. To adjust for survival times the weights

1 tumor present at death
ik = (3.8)

(tik/tmaz)”  else
are defined.

Weights are assigned in a way which gives more weight to observations with events

than to censored ones. For each dose group k& the weights are defined as

g
=1

For every dose-group Y-8 = Q, p, = Ei/Q, pb = E/Q, ar, = Q3 /ng, ugy =
i — PpSlik and wp = 3=y ngw/n;. The Poly — 3 test is:
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K K K K
D apisk — (D arsi) (D aiph)/ D ai
POly 3= k=1 k=1 k=1 k=1

(3.10)

K

\l C[kZ:: apsy — (g: a;si)?/ Z a;

k=1

with ' = ZZ(qu — uk)Q/(N — [().

3.5.2 The survival adjusted isotonic Likelihood Ratio test

The usual likelihood ratio test R can be modified to adjust for survival time. One has
to estimate the survival adjusted isotonic proportions pj, by substituting the weights
ni in PAVA by ;. from equation 3.9. The survival adjusted Isotonic Likelihood
Ratio test Rg is:

K Al *!
p L—p
Rs =23 |Quptin(Z) 1+ 001 — (A= E5 | (3.11)
k=1 Po L —pb
The critical values are assessed by a permutation procedure similar to those for
binary response described in algorithm 2. Following the same idea, the test derived
by Gautam will take into account mortality if the Qs are used. For a thorough

discussion on the several methods for survival adjustment see [4, 39].

3.5.3 Case study: Example for survival adjustment

The data used to demonstrate the methods are taken from a clinical study (EMIAT).
This is a randomized trial aimed to compare active drug with placebo. Since no
effect has been found for the drug regarding the survival time, the hole sample has
been used to identify prognostic factors. The dataset includes the predictor variable

LVEF (left ventricular ejection fraction). The outcome variable was death (all causes
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Table 3.9: Data from the EMIAT study. The response is all causes death.

mean LVEF | 19.873 28597  34.222 38484  46.436  62.933 | >

Deaths 51 37 28 14 14 15 159
Patients 197 216 202 190 172 195 1172
Mortality 0.077 0.081 0.074 0.139 0.171 0.259 po=0.136
weight Q 165.373  177.890 171.613 159.340 154.652 175.519 | 1004.384

isotonic p 0.077 0.078 0.078 0.139 0.171 0.259

Table 3.10: EMIAT: The influence of left ventricular ejection fraction in mortality.

Results from isotonic regression and poly-3 test.

Dose assignment
Test index dose™ log(dose)™*
CA Poly —3 | 2.238  2.369 4.765
p-value 0.013  0.009 <0.001
Isotonic Rg 37.494
p-value <0.001

mortality). The maximum survival time was 808 days. The LVEF percentage is

antitonic related to mortality. A summary of the data set is depicted in table 3.9:

The results regarding Poly-3 test vary according to the scores (presented in ta-

ble 3.10). Using Rg test, the Hy is rejected at 0.001 level.

3.6 Further discussion on tests for trend

The transformation of the dose in the CA-test using different score assignments

can lead to totally different conclusions. Graubart and Korn [24] also explored
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this problem in analyzing a study which investigated the association between some
organ malformation (yes/no) and alcohol consumption of the mother. The con-
sumption was categorized in 6 groups depending on the average drinks per day.
They compared three scoring systems: midpoints, midranks and equally spaced
ranks. The corresponding p-values differ dramatically between 0.017 (midpoints)
and 0.286 (midranks). In conclusion the authors recommended assigning reasonable

scores whenever possible.

Isotonic regression is also applied to this data: the test statistic £ = 6.102 gives a
p-value less than 0.001. This result is independent of any score assignment. The
only assumption for this approach is the monotonicity of the response. But this
assumption is also required for many other tests, the CA-test included. There is no
additional assumption needed about the form of the relationship. Any monotonic
transformation of the x-axes, in our example the dose-levels, leads to identical re-
sults. The power of this approach is higher than that of the optimal C'A-test. The
p-value for the isotonic regression can be obtained in using the weighted X? distribu-
tion. In situations with enough events per dose-groups, in the examples considered
at least 5 events per group, the empirical distribution of the proposed test statistics
follows approximately the theoretical one. Only in cases with a lower event rate or

with highly unbalanced data a permutation test or simulations are recommended.

There are two options. First to generate permutations on a random base. About
10 000 replications seem sufficient to give p-values of adequate resolution. The other
option is to consider all possible permutations, calculate the probability to observe
this permutation and to add all probabilities for combinations with an equal test-

statistics or a more extreme one (equivalent to Fisher’s exact test).

Many researchers have been interested so far on evaluating tests for trend. Collings
et al. [13] performed a comparative study between the CA test and the isotonic

X2 test (section 2.4.2) using its theoretical distribution (equation 2.7) to assess p-
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values. They concluded that i) the large sample approximation holds for both tests
ii) the isotonic X? test presents little advantage in power compared to CA test iii)
the power of isotonic X? test is significantly higher than the CA test’s when the
monotonicity assumption is violated by a downturn at a higher dose or eventually

an umbrella shape.

Whereas points ii) and iii) are true in general, the aforementioned results should
be considered under the following light: i) the conclusion about the adequacy of
the large sample approximation was based on a simulation study where the lower
response probability was po = 10%. This probability is too high — especially when
analyzing carcinogenic agents — and as it is outlined in this chapter problems occur
with response probabilities with less that po = 5%. Additionally, throughout the
simulation study conducted by Collings et al. [13] the parameter K (number of
dose groups) was maximally 5. With K > 6 the calculation of the critical value is
practically impossible as mentioned in this paper. The authors in [13] argue that
the isotonic X? test performs better than CA test for small sample size, but they did
not present any specific results about this conclusion. Finally, a simulation study
was presented for the Aresine Isotonic Test (section 2.4.2), and they show that this

is a test which should never be used!

One can find a comprehensive review of the different order restrictions in Pedadda
et al. [48]. They developed a nonparametric test based on the width of the interval
between highest and lowest proportion. They defined

k
i = matp<; {7211_1 : } (3.12)
Zj:l Uz
and the test statistic
Zso = pp — P (3.13)

where the critical value is estimated through bootstrap. Although the lack of theo-

retical distribution, this tests is rather easy to apply and it can be extended to test
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for simple tree order, downturn at higher dose and umbrella shape. They proved
through a simulation study that this test is in general more powerful than C'A and
the gain in power is substantial when the shape presents serious departure from the

liner shape (steep shape).

Mancuso et al. [39] proposed an isotonic version of the C'A test which increases the
power while controlling the type I error. This is simply the usual CA formula, where
the isotonic estimators are used instead of the observed proportions. Bootstrap

methods are used to assess the theoretical distribution of this test.

ni(p; —p)°

po(1 — po)
weighted chi-square distribution to infer. They also considered two-sided test by

Leuraud and Benichou [37] used the isotonic test X? = Y5 and the

taking the largest of the test values when increasing and decreasing trend is assumed.
They compared this test to a t-test based on contrasts, to the Mantel-Haensel test
and to the normal distributed Dosimeci-Benichou DB test. They conclude that
the DB test presents the best results regarding power and type I error, they find
the isotonic regression to be too powerful and the Mantel extension too erroneous,

whereas the t-test presented medium performance.



4 REDUCED MONOTONIC
REGRESSION

4.1 Reducing the number of solution blocks: why

and how

Chapter 2 described how PAVA detects violators of the monotonicity assumption
and builds the solution blocks by amalgamating adjacent observations together un-
til there are no more violators. The changepoints that resulted from PAVA are
estimated to eliminate violators and they don’t necessarily correspond to sig-
nificant change in the response. Moreover, it has been shown that the use of
isotonic regression overfits somewhat the data whereas a model with fewer solution

blocks fits better [2].

Thus some of the resulting solution blocks could be pooled together, especially
these with few elements or those whose estimated values do not differ a lot from
their neighboring blocks. Once the isotonic regression is fitted, the solution blocks

that do not improve significantly the fit can be eliminated. Several proposals are

51
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possible regarding the elimination procedure in order to improve the parsimony of

the model.

An intuitive approach would be to compare all isotonic proportions — one by one — to
identify those that do not differ significantly. Obviously, the researcher who applies
this approach is called to control somehow the expense of the type I error which
occurs from multiple comparisons [5, 8]. This is called the Family wise Error (FWE).
For correction, Bonferonni inequalities are usually used [66]. In this chapter two
alternative approaches are introduced. The first is of my own design and it is based
on a sequence of Fisher tests. In the second method, I use the closure principal to
eliminate the model. Both approaches reduce the isotonic model and control the

FWE when the response is binary.

4.2 Method A: Elimination using a sequence of

Fisher tests

4.2.1 Estimation

In order to compute the eliminated isotonic regression, two steps have to be con-
sidered: First, which solution blocks can be pooled together and, second, when the
pooling procedure should stop. Several methods can be applied to answer these

questions.

M. Schell [55] proposes an F-test when the response is continuous. The idea has
been to calculate tests for the pairs of all sequential solution blocks, to select and
eliminate the "weakest” change point that corresponds to the highest p-value. This
idea cannot be appropriately extended for binary outcome variable, since in order

to extract the F-distribution, one has to assume normal distribution for the pro-
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portions. When the response is binary, P. Bacchetti [2] reduces the partial fitted
functions in the additive isotonic model by comparing the change in the likelihood

to a considered but ad hoc amount.

For binary response, I propose a reducing procedure based on Fisher’s test for con-
tingency tables: to identify the solution blocks that do not differ, one has to look
at all 2 x 2 tables for the sequential solution blocks. The ”pairs” that are not
proven to differ significantly, are pooled together. The procedure stops, when all
pivotal tables give significant p-values. To clarify the elimination procedure, the
backward algorithm used to reduce the degrees of freedom in an one-dimensional

isotonic regression is described.

Let the isotonic regression summarize the dose in L risk groups and estimated pro-
portions py,7 = 1,..., L and n; observations falling at the [th solution block. The aim
of the elimination procedure is to reduce the number of groups to S solution blocks
(S < L) with respect to the outcome. The algorithm for elimination is described in

algorithm 3.

Algorithm 3 (Backward Elimination’s procedure)

1. Construct all L—1 contingency tables for the adjacent solution blocks
and calculate I — 1 exact Fisher tests and their corresponding p-
values

2. If all p-values < &*, where ¢* is a predefined significance level, then
stop. FElse, go to step 3

3. From the set of block-pairs resulting in a p-value > &* select the one

with the greatest p-value and pool it. Now the solution blocks are

reduced by one. Go to step 1.
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Obviously the reduced isotonic regression depends on the choice of ¢*. For e*=1 the
reduced isotonic regression is identical to the isotonic solution blocks whereas for

¢*=0 one gets a single solution block.

The use of ¢*=0.05 in the backward elimination will not yield an overall 0.05-level
test as usual i.e. if the Hy assumption of constant risk holds, the elimination proce-
dure will yield more than a single solution block with probability greater than 5%.
This is not surprising since the elimination procedure is based on a maximal selected

p-value and we face a multiple comparisons problem [34].

[sotonic framework is poorly supported by asymptotic theory, especially in the case
for binary response. The lack of theoretical solution forces us to use simulations
to assess the value for ¢* that will yield to a significance level of 5%. We have to
simulate random noise data (no association between dose and response) and then to
assess in each data set the isotonic estimators and their reduced equivalents using
¢*=0. In each replication the p-value from the last Fisher test when only two solution
blocks remain to pool is retained. Then the corrected ¢ is the 5 percent value from
the distribution of all those "end” p-values. A similar approach has been used in [55]
in order to correct the significance level in the F-test used to reduce a continuous

response regression.

The elimination procedure can be extended to more sophisticated isotonic models
as the additive one [2, 44]. In [2], an additive model for binary response is fitted
and the need to reduce the degrees of freedom in the isotonic partial fitted func-
tions is discussed. But the elimination procedure is accomplished by comparing the
loss in the fit to an arbitrary amount. The reduced isotonic regression could be
used instead, although that would potentially increase the computational complex-
ity. Another application of reduced isotonic regression can be in isotonic-surfaces

models, described in chapter 5.



Chapter 4: REDUCED MONOTONIC REGRESSION 55

4.2.2 Simulation study: Estimation of the corrected
significance level in the backward elimination

procedure

Design

A simulation study is conducted to explore the parameters that can influence e¢*.
Different values for sample size (N = 100, 200, 300, 600, 900) and positive response
probability (p = 0.02,0.05,0.10,0.15,0.25) were studied. The desired significance
level was set to the nominal value ¢ = 0.05. The algorithm described in the previous
section was applied to 5000 samples from random noise data with predictor X; ~

U[0,1] and response Y; ~ B(pg, N). The results are depicted in table 4.1.

Table 4.1: Estimation of ¢* based on 5000 simulations for different sample size and

response rate. The overall significance level was 5%.

N
Po 100 200 300 600 900

0.02 | 0.0398 0.0218 0.0120 0.0117 0.0093
0.05 | 0.0188 0.0129 0.0097 0.0071 0.0066
0.10 | 0.0126 0.0089 0.0074 0.0064 0.0053
0.15 ] 0.0103 0.0080 0.0074 0.0059 0.0057
0.25 | 0.0101 0.0077 0.0077 0.0055 0.0043

Results

The estimated ¢* decreases as long as the sample size and the response rate increase.
While the decrease is sharp for small pg, it flattens out with greater response rate.
For this simulation study, it is assumed that the predictor variable X has no dupli-
cates. The corrected significance level £* is slightly larger if there are any ties, and

it becomes clearly greater if the variable X is categorical. For example, with sample
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size 100 and event rate 10% the estimated e* is 0.0227 when X is in 4 categories
i.e. about the double of the value when X is used as continuous (tabulated value
0.0126 in table 4.1). Moreover, when the iterative algorithm for isotonic matrix
data is used instead of PAVA (see chapter 5), the values in table 4.1 no longer hold.
Thus, it is not useful to estimate an approximate formula for £*, although that could
potentially facilitate the elimination procedure, but simulations to estimate it for

every specific data set are recommended.

4.3 Method B: Elimination using the closed test

procedure

4.3.1 The closure principal

Another method to reduce the number of solution blocks and to control the increase
of type [ error can be accomplished via ”closed testing”. The problem of elimination
can be formulated as follows: consider that isotonic regression resulted in [ solution

blocks determined by a set of cutpoints C = {¢;,{ = 1,..., L — 1} and let the events

!

e = ZK out of n; observations falling in the [th solution block and let p; be
=1

the estimated isotonic proportions. With the notation ¢[+1], ¢[+2] are denoted the

greater cutpoint right next to ¢, the second greater and so on.

Given that the homogeneity is rejected for the L solution blocks by an omnibus test
such as the Isotonic Likelihood Ratio test R, one can conclude that the risk in the
last solution block is significantly higher than the risk in the first solution block. In
the meanwhile, there can be one or more ”jumps” in the risk to identify at some

cutpoints in C.

A possible approach is to proceed backward following an "edge to interior” pro-
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P1,P2,P3,Pa

/

P2 P | k=4

/\

Psp1 | k=2

>/

Figure 4.1: Example for closed testing.

cedure: start by considering the two marginal cutpoints ¢; and ¢z_; and test the

subsets that they define. That is equivalent to testing the hypotheses:

Hypipr=ps=..=pr (4.1)

H1,L—1 *hh = P2 =pP3 = ... = PL—1 (4-2)

In the next step each of the above two hypotheses is also split into two new hypothe-
ses l.e. Hyp gives Hypy 1 py =ps =...=pr_y and Hyp : ps = py = ... = pr. The
distinct resulting hypotheses are of course three, and split in their turn produce four
new hypotheses. The procedure goes on until all H;;;;, i.e. all hypotheses about

pairs of the neighboring solution blocks are generated.

Consider the example in figure 4.1 where L = 4. Once the omnibus hypothesis for
(p1,p2, p3, pa) is rejected using the R test, the hypothesis H; 5 for homogeneity in
(p1,p2,ps ) and Hy 4 for (pa, ps, ps) are tested. Then the offsprings of Hy 5 and H» 4
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are to be tested. Every time that a non significant result is obtain, the tested set

forms a block by pooling the observation.

Clearly the FWE increases with the number of tested hypotheses. A good control
to this expense can be accomplished by considering a closed family of hypotheses.
In the constructed family of nested hypotheses, not all of these hypotheses are to be
tested: Hyp is tested if and only if the hypothesis Hyy11 N Hiyq 1 is rejected.
The arrows in the figure 4.1 note the conditional testing. For later use, in every layer
we correspond a value k£ which equal to the number of parameters tested within every

hypothesis. In the layer right after the omnibus hypothesis we assign & = L.

In its simple concept, the closed testing procedure can be summarized as follows:
start testing 4 ;—; and H;j. For each hypothesis that has to be rejected proceed
with the test of its offspring hypotheses. If H;j is not rejected, retain every hy-
pothesis Hyp jr where I, k" are all possible combinations of the cutpoints between [
and k. Each hypothesis H; is tested using the isotonic R test in equation 2.10 (the

alternative hypothesis is always the isotonic transformation).

The algorithm described above consist the basis of every closed procedure. Modi-
fication are imposed by the several ways to test the composite hypothesis. Every
different method leads to a new closed testing approach. The resulting approaches
differ in terms of power. In the next section I will present an approach appropriate

for our goal.

4.3.2 Implementation of closed testing for eliminating the

solution blocks

Consider the hypothesis of proportions from cutpoint [ to k:

Hl,k b =P+ = - = Pr[-1] = Pk (4-3)
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for the homogeneity of successive risks. The set containing the original hypothesis
(Il = 1,k = L) and a hypothesis about two or more disjoint subsets of successive
risks is the closure H . of the set of all hypotheses H of the form 4.3. The closure
‘H. can be formed by taking the intersections of all H. The closure principal states
that a hypothesis H;; can be rejected at level @ if it has been rejected at level a
given that all hypotheses that "contain” H;; have been rejected at level a. This

principal yields powerful procedures.

Algorithm 4 ( Closed elimination procedure )

o Form all nested hypotheses of the isotonic proportions.

o Test the hypothesis Hyy @ pr = py1) = ... = Pr—1] = P using the R
isotonic test, where the p-value is estimated using permutations.

o Retain every hypothesis implied by any other hypothesis that has not be
rejected

o Reject any hypothesis that is tested and rejected at level ap = M

o Reject any hypothesis that is tested and rejected at level a and any of
the followings holds:

— the complementary hypothesis has been rejected at the corresponding

fraction of the pre-defined overall significance level a

— the complementary hypothesis does not concern successive propor-

tions

For the case of dose-response relationship, a procedure to implement the closure
principal has been proposed by Rom et al [50]. The idea was on the one hand to
allocate portions of a to the different horizontal levels of the hypothesis schema
and on the other hand to exploit an idea of Marcus et al. [40]: in a closed testing

procedure the rejection of a hypothesis about a set of proportions depends on the



4.4 Selecting between full monotonic and reduced model 60

rejection of the hypothesis about the complement of this set. The procedure, modi-
fied for the current setting is as presented in algorithm 4. The value k takes a value
equal to the number of proportions tested and the first two nested hypothesis are
tested at a; = a. Condition 3 ensures the important logical property of coherence (a
hypothesis H; is accepted if and only if one of the hypothesis that contains H; is ac-
cepted). The second condition controls the error for the multiplicative effect whereas
the last condition protects from the additive effect. The procedure will provide the
dispensable cutpoints and controls the family-wise error. A formal description of
the closure and proofs for the family-wise error control can be found in [7] and [40].
Modifications based on other approaches as for example the Bonferroni-Holm min

P-value [30] or the Westfall -Young Bootstrap method [65] are also possible.

4.4 Selecting between full monotonic and reduced

model

4.4.1 An approach based on bootstrap

Another crucial point in reduced isotonic regression is whether the reduced simpler
model or its parent isotonic one should be used. The method presented here is
general and can be used independently of the method applied to reduce the model
(method A or method B).

Up to now, no distribution theory is available, thus one can use the AIC criterion
to choose between simple and more complex models. Alternatively, one can apply
a sort of parametric bootstrap [16]. The term "parametric” refers here to the idea
that the data set in hand is assumed to be extracted from L populations whose
distributions F; are known, although here the underlying model (the reduced iso-

tonic regression) is not parametric. To be more precise, it is claimed that under
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the assumption that the reduced model is the correct one, the reduced pjs is an
estimator for the parameter 7 of the binomial distribution F; ~ B(m,n;). Following
the notation of Efron [16] the measured function of interest for a bootstrap data
set % is 0(ax*) = R(2™) = Dreguced(2™) — Disotonic(x™) with D denoting the deviance.
The procedure is detailed described in algorithm 5.

Algorithm 5 (Compare reduced to isotonic model )

1. Extract B simulated data sets % from the distribution I : B(p},n).

2. In each a7 assess the isolonic and the reduced model and the corre-
sponding deviances.

3. Assess 0(27) = Dl cgucea, — Disoronic, Jor 7 =1,..., B.

4. If the 95% interval of 0(x%)s contains the observed value from the
original sample 0(xp) = D50 — DE5 . prefer the reduced

model to the isotonic model, since the observed improvement in

the likelihood for the isotonic model can be expected by its higher

number of solution blocks.

4.4.2 Simulation study: Comparison of full isotonic and

reduced isotonic regression

Design

A Timited simulation study is attempted in order to explore the benefits of using
reduced isotonic regression instead of full isotonic model. To reduce the model, only
the method A based on Fisher’s test is applied. Two criteria were used: first, the

number of solution blocks L as a measure of model complexity (L,.q and Ly,y). Sec-
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ond, as a measure of the model fit, while several criteria are possible, the coefficient

of determination R* as defined in [28, 45] for binary response models is used here:

s _ R?, B 1_€—LR/n
N R2 - 1_€—D0/n

max

(4.4)

where LR is the difference in the deviance between the reduced and the full model
and Dy the deviance for the null model. This measures the ”variation explained by
the model”. The better model is the one with the greater R? and the less complexity
i.e. less L. Reduced isotonic regression decreases the model complexity, but it is also
expected to reduce 2. With this simulation study we investigate if the decrease in

the complexity is worth the loss in fit.

2

max®

Three parameters have been studied: regression shape, sample size and R Four

regression lines have been analyzed:

a) linear LIN: logit(p) = a X

b) quadratic QUA: logit(p) = a X?

¢) hockey-stick HOK: logit(p) = ¢ + aX - I{x>median(x)} and
d) step function STE: logit(p) = ¢+ a - Iixsmedian(x)}

where [{conditiony 1s an index that takes the value 1 if condition is satisfied and 0
otherwise. I simulate these functions under sample size N=100, 300, 500. In each
shape the parameter @ has been determined such that the maximum coefficient of
determination would be R? = 0.3, 0.5, 0.7. That is actually equivalent to different

assumptions about the positive response probability (about py = 4%, 11%, 29%

respectively).
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Results

Regarding the complexity of the model, the number of Ly, increased with sample
size and RZ (range of mean value: 3.23-14.34). The same trend was observed for
the number of the reduced L,.q4, but the variation was not very important (range of
mean value 1.23-3.88). The elimination procedure reduces the number of solution
blocks at about one third of the starting isotonic solution blocks. It is important to

note that the fraction L,.q/L s, becomes smaller with increasing sample size.
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Figure 4.2: Results from simulation study: comparing monotonic regression and
reduced monotonic regression regarding the relative loss in the fit as

function of the sample size.

Figure 4.2 presents the results regarding the change in B2, On the x-axis is R,
R?uli_ RZed)
_ Ri@”

model is used. Recall that it is optimal to have Rfcu” and R?_; as similar as possible,

and on y-axis is the relative "loss” in the fit (= when the reduced
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i.e. small loss in the fit.

The difference between the coefficients of determination for the two models become
smaller with increasing sample size. However, the influence of the maximum value
of the coefficient is very important, or the response probability. While for smaller
R?  the isotonic model has considerably better fit than the reduced model, its ad-

vantage is not important when R? =0.7 (the reduced model reduces the coefficient
of determination R? only by 7%). Regarding the different underlying shapes, the
linear regression presents clearly the worst tolerance on reducing the model, whereas

the results of HOK and STE where the best for every R?

max®

These findings, together with the results about the reduction of the model com-
plexity, enables us to conclude that when R% s at least 0.5 and the investigator

believes that the regression line is segmented, reduced i1sotonic regresston con-

trols quite successfully the trade off between model complexity and fit.

4.5 Case study in reduced monotonic regression

In the MAK study (table 1.1) instead of handling the variables dust and time sep-
arately, a ”cumulative exposure” variable has been defined as their product. This
new variable has been used as the unique predictor and the subsample for smok-
ers have been analyzed. Modeling separately the effects of dust exposure and time
requires either additive modeling or high dimensional smoothing leading to a more

sophisticated model that will be described in the next section.

The isotonic regression for CBR probability depending on cumulative exposure (in
mg/m?®years) and the reduced isotonic regression is presented in figure 4.3 together
with pointwise confidence bands which are constructed by applying bootstrap under
the assumption that the reduced isotonic regression is true. A smoothing spline with

6 degrees of freedom is also plotted. Its shape is in line with the reduced isotonic
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regression. The ¢* value for the elimination procedure was estimated to be 0.0058,
according to 10 000 permutations as described in section 4.2.1. The deviances for

the fitted models are presented in table 4.2.

First the significance of the predictor was assessed by comparing the deviancies,
which results to the Likelihood Ratio test R. The large sample approximation of
the test proposed in [49] returns a p-value of 3.1x107*. Additionally, a permutation
test has been applied to assess significance. For this purpose 10 000 data sets have
been extracted from the original one by permuting the endpoint variable. In each
permuted data set the isotonic regression has been fitted and the achieved change in
the deviance has been estimated. Then, the value of the observed Likelihood Ratio
is compared to the 95th quantile of the empirical distribution, as estimated from

the permutations. The permutation test results to a p-value of less than 0.001.

©

e ——  Reduced isotonic regression (Fisher method)
——~ |sotonic regression

0 . Bootstrap Cl

S —— Spline, df=6

Risk

0 50 100 150 200 250
Cumulative exposure

Figure 4.3: Full isotonic and reduced regression using a sequence of Fisher’s test
for the sample from Munich (smokers). The 95% confidence bands

corresponds to the reduced isotonic regression.

The next step in the analysis is to choose between the isotonic model and its re-



4.5 Case study in reduced monotonic regression 66

Table 4.2: Deviancies and degrees of freedom of models applied in data set from

Munich (smokers).

Model df Deviance AIC
Hy 1 1058.17  1059.17
Full isotonic | 11 983.06 1005.06
Reduced 4 988.33  996.33

duced version. First, the Akaike’s information criterion is used. According to it,
the reduced model fits better than the isotonic one (AIC reduced= 996.33, AIC
isotonic= 1005.06). For the same purpose, a simulation study is conducted. Under
the assumption that the reduced model is the true one, 10 000 simulated data sets
are extracted. Then, one has to check if the observed difference in the deviance be-
tween reduced and isotonic model lies within the 95% confidence interval estimated
from the simulations. There were 5532 data sets out of 10 000 resulting in a larger
difference in the deviance than the observed one (988.33-983.06=5.27). That means
that even if the reduced model is the correct model, such a large improvement in fit

is likely to result from the greater complexity of the isotonic model.

The isotonic model is reduced using algorithm 4. After reducing the small solution
blocks (those containing less than 1% of the sample), the procedure starts with the
proportions p; = (0.066,0.095,0.212,0.222,0.355,0.357,0.563) and frequencies n; =
(76,42,85,415,203,28,71). Testing Hy¢ and Hyr with R gives p-values < 0.001.
The adjusted significance level is 0.05, thus the procedure goes on with testing H 5,
H; 6 and Hs 7. For this layer ay = 0.036 and all three hypotheses are rejected. It is
interesting to state the test for hypothesis H; 4. The significance level is a;=0.021
and the p-value 0.049. The hypothesis is rejected at a but not at az. Thus its
rejection depend on the rejection of the complementary hypothesis HQOA. However,

HY, does not concern successive means, thus Hy 4 is rejected.
?
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Figure 4.4: Reducing the isotonic model for Munich (smokers) using two different

approaches.

The procedure goes on by rejecting every hypothesis at the corresponding signifi-
cance levels until the fifth (and last) layer by testing all proportions two by two.
The significance level is 0.0143. Hypothesis H; 5 gives p-value 0.393 and can not be
rejected, thus p; and p; are pooled together. The p-values for H;5 and Hs 4 were
0.072 and 0.514, thus these hypothesis are retained. All proportions from p; to p4
form a block. Hys is rejected (p-value<0.001) and Hsg is retained. Testing Heg 7
gives a p-value 0.028. The complementary Hg7 = H, 5 has been rejected at level
ar = 0.036, and so is Hg 7. Finally the following solution blocks and frequencies
are obtained: 0.193 (618), 0.355 (231), 0.563 (71). Reducing the model using the
two different methods described in this chapter gives similar result as outlined in
figure 4.4. I believe that these two methods are equivalent and would give similar
results, as it is the case in this application. However a comparative simulation study
remains to be done in order to conclude about the equivalence or not between these

two reducing approaches.



5 MULTIDIMENSIONAL
MONOTONIC MODELS

5.1 The multiple regression setting

By now, only problems related to one explanatory variable have been discussed.
In this chapter isotonic regression for multiple regression data will be introduced.
Traditionally two approaches are used when more than one predictor variable is
taken into account: either to assume that the predictors contribute additively to the
outcome (additive model), or to fit a general regression surface. This second option
is not very popular among biostatisticians, since using standard techniques to fit
the surface (as for example a bivariate kernel smoother) causes problems either with

the estimation or the interpretation of the result [29].

Assume order restrictions regarding the effect of more than one explanatory vari-
able or of a subset of them. Without loss of generality all predictor variables are
expected to have an increasing effect to the outcome. The methodology described
in this chapter can be easily modified to handle situations where different trends are

assumed among the variables.

68
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Two multivariate approaches are possible: the additive isotonic model and the
isotonic-surfaces model. First, the additive isotonic model, as established by Bac-
chetti [2] and Morton-Joneset al. [44] is presented. This model, unlike isotonic-

surfaces model, has been extensively described in terms of its statistical properties.

This chapter focuses on the alternative model, the isotonic-surfaces model. This
is easy to apply and interpret, unlike the majority of surface models. This approach
is based on a proposal by Robertson [49]. Starting from his idea I will outline the
limitations and advantages of this approach and I will discuss some special properties
of the estimation algorithm. Further I will explain how to implement the reducing
procedure highlighted in the previous section to improve parsimony of the isotonic-
surfaces model. Finally, I will introduce a multivariate version of the isotonic test
for trend presented in chapter 3 for overall and partial significance based on this

model.

Setting: Consider N observations on an outcome (or dependent variable) Y de-
noted by y = (y1, 2, ..., yn)’ measured at N designed vectors x' = (1, T2, ..., Tip),
assuming P predictor (or independent) variables X;, j = 1,..., P. Modeling the
dependence of Y on Xi, ..., Xy has three principal goals:

o to describe for learning more about the process that produces the outcome,
e to infer i.e. assess the relative contribution of each variable,

e to classify for binary response problems.

5.2 Additive isotonic model

The additive isotonic model starts from the assumption that the risk (response)
does not decrease as long as any of the predictors increases, and extends GAM

(Generalized Additive Models) [29] by letting isotonic transformation act like a



5.2 Additive isotonic model 70

”smoother”. The local scoring algorithm usually used in GAM is replaced here by
PAVA and the contribution to the risk of each isotonic variable is a non decreasing
step function. The additive isotonic model with P isotonic predictors takes the
following form:
p
h(pi) = Z}@(%‘) (5.1)
=
where h is a link function and ¢* denotes a P-dimensional isotonic function ¢* =

(@7, D5, .er &5). The estimation proceeds via the backfitting algorithm [29]. To clar-
ify that, the procedure is shortly presented in algorithm 6:

Algorithm 6 (Backfitting for additive tsotonic models)

1. Initialize &~ = (qAbZ*)) to be y;/w; for all p =1,.... P, where w; are
weights.

2. Set p =1 and estimate ¢(x;,) holding ¢} fized for k # p using
PAVA.

3. Repeat step 2 for allp =1, ..., P and at the end assess the deviance
for the first loop

4. Repeat 2 and 3 until the change in the deviance for two successive

loops becomes very small.

The estimation of ¢7 in step 2 uses PAVA as follows: The observations are pooled
together to "correct” for violators as described in algorithm 1 and builds L solution

blocks denoted by I, & =1,..., L. Then qg; can be found from the equation:

Doy =Y wilh(d) + 3. (5.2)

1€l 1€l t#p
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The binary response problem revisited

In this case it is y; = p; the response probability, the link function A is the logit (or
more seldom the probit) and w; = n; the number of observations. Equation (5.2)

takes the form

cxp(Y_ &y + D7)

S nip = e (5.3)
ieiy L+exp(Y oy + 07
1€l t#£p

Semi-parametric model

The model described in equation 5.1 is non-parametric in nature. However, it is
often the case that some of the covariates need to enter the model linearly. The
additive isotonic model can be transformed to a semi-parametric model of the form
of equation 5.4 where k isotonic predictor variables and s linear predictor variables

are assumed:
k

hip) =3 &(xi) + Z Bixi;. (5.4)

j=1 —
Recall that the degrees of freedom of each isotonic term are equal to the
number of solution blocks i.e. the "steps” in to which the isotonic transforma-
tion ends up. Once the model is formulated, the Isotonic Likelihood Ratio test can
be used to infer about the explanatory variables and to test the accuracy of the
transformation. The large sample approximation described by Robertson et al.[49]
does not hold here, so permutations need to be applied again in finding the empirical
distribution of the test. The procedure would be similar to this described in sec-
tion 5.4.2 for the isotonic-surfaces model. Additive isotonic models can prove to be
a useful tool for exploratory analysis, since they speed up the checking of variables

as possible predictors by rejecting those in whom the best isotonic transformation

performs poorly.
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5.3 The isotonic-surfaces model

As already discussed, isotonic regression shows characteristics of a scatterplot smoother.
This consideration arises the question: how can isotonic regression be extended to
"smooth” a plot when one sets restrictions over multiple axes? In other words, fol-
lowing the same logical pattern as in the univariate case, how can isotonic estimates

be produced in a three-dimensional (or even higher) plot?

Before addressing this point, let us state some necessary definitions and considera-
tions. Consider for simplicity only two dimensions, i.e. two explanatory variables
(P = 2) Xi, Xy and each variable has N; and Ny ordered distinct values. The
outcome variable is the response probability p;;. Imagine the data in the form of a

matrix M (equation 5.5) with dimension Ny x Ns.

p1i Pz o P
p P22 0 Dan .
M = ‘21 2 2‘ ! Variable 1 (5.5)
| PNat PNaz PN
Variable 2

Cell (7,7) contains the outcome p;; of the individual corresponding to the i-th ob-

servation for the first variable and the j-th observation for the second one.

Definition 5.1 (Partial order for matrix) A matriz M is isotonic with respect
to the partial order if and only if the elements p;; of M fulfill the restrictions p;; < py
for every 1 < k and 5 <.

This setting can be easily extended to more than two dimensions. For three di-
mensions the data are in the form of an array. The definition of an isotonic array
comes in analogy to the isotonic matrix: the estimated proportions should be in

non-decreasing order over rows, columns and layers.
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In contrast to model 5.1, the predictors here do not contribute additively to the
response, but they rather interact. The model in the case of partial order for P

explanatory variables takes the form:
Pi = (I)*(XZ) = (I)*(l’ﬂ,l'ig, ...,J}Z'p) (56)

where ®* is the isotonic transformation over P dimensions and z;, the ¢-th observa-

tion for the p-th predictor variable.

5.3.1 Estimation algorithm

Let us return to matrix (5.5). To assess the isotonic estimates pj; an optimization
procedure is needed, assuming order restrictions for two predictors. That can be
accomplished by applying the [terative Algorithm for Partial Order (IAPO). This
is a version of PAVA algorithm which can be roughly thought as follows: The data
are iteratively "projected” in every dimension and the PAVA procedure is applied

till convergence is reached.

Algorithm 7 (The Iterative Algorithm for Partial Order)

1. Let M*' denote the isotonic regression of M over rows. Lel R' =
(M** — M) be the first set of row increments.
2. Let M**' denote the isotonic regression over columns of M + R

Call C* = M — (M + R") the first set of column increments.
3. At the beginning of the n-th cycle M™" is obtained by isotonizing

M + C™ 1 over rows. The n-th sel of row increments is defined by
Nezxt, obtain M*" by isotonizing M + R" over columns.




5.3 The isotonic-surfaces model 74

Theorem 5.1 (Convergence for the Iterative Algorithm for Partial Order)
Both M™™ and M™**" converge to the isotonic regression M™*** with respect to the par-

tial order.

The result of a two dimensional isotonic regression can be visualized as a surface
that is non decreasing as long as any of the predictors increases. The algorithm
combines both explanatory variables in L constant risk groups (the level sets or
solution blocks), and therefore each step in the response variable corresponds to a

specified bivariate group for the predictor variables.

Computational problems related to the Iterative Algorithm for Partial
Order

Theorem 5.1, that assures convergence, would not necessarily hold if the data array
has a lot of zero-weighted cells, since in this case the individual row and column
isotonic regressions would not be uniquely determined. In order to illustrate this,
consider the following example taken from the MAK study: The entries in the
data matrix are the event probabilities as a result of the exposure time in total
inhalable dust and its concentration. An extract of the data matrix (events/number

of exposed) is presented in table 5.1.

The column smoothing and the row smoothing do not result in a common iso-
tonic matrix. This problem may be avoided by using a procedure proposed in [49]:
(1) remove the zero-weight cells and disregard all orderings which involve these
cells (2) carry out the row-column isotonic regression (3) insert any values in the
zero-weight cells. However this alternative is not always efficient. Applying this pro-
cedure to the matrix there is no way to fill in the cells with the appropriate values
(table 5.2). One efficient approach in order to avoid this problem is, before starting

the isotonic regression procedure to eliminate the zero weighted cells by grouping.
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Table 5.1: Extract of the original data matrix, example of no convergence (original

data).

years

mg

— | 3540 40-45  45-50

m
556 | 0 0 0
6-6,5 | 1/1 0 0
6,57| 0 1/1 0
775 0 0 0
758 0 0 0
885| 0 0 0
859 | 0 /2 2/4
995 | 0 0 0

Table 5.2: Extract of the isotonic matrix, example of no convergence (isotonic es-

timation).

years

2913540 4045 45-50

m
5,5-6 | na na na
6-6.5 1 na na
6,5-7 | na 0.475 na
7-7,5 | na na na
7,5-8 | na na na
8-8,5| na 0.5 0.5
8,5-9 | na na na
9-9.5 | na na na
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An other, more complicated algorithm described by Gebhard [22] can be also used

to estimate isotonic surfaces.

5.3.2 Advantages and limitations of the isotonic-surfaces

model

The monotonic-surfaces model captures interactions between the explanatory vari-
ables, a feature that the additive isotonic model does not provide. Another advan-
tage of model 5.6 compared to model 5.1 is connected to the implementation of
the reducing procedures described in the previous chapter, and the procedure for
selecting thresholds: they are easier and straightforward to implement in an isotonic

surface model.

Theoretically, the algorithm for isotonic-surfaces can be extended to more than two
variables. For a third factor in 7-ordered levels the result would be a sequence of
T-isotonic surfaces each of them lying above the previous one or touching each other.
However, in practice if more than three isotonic predictors need to be included in the
model, the use of this approach is not recommended due to its great computational
complexity. As outlined in the previous section, a main problem arising from this
algorithm is that the convergence is not guaranteed in case the data contains many
zero-weighted cells. Therefore the predictor variables need to be in pre-selected
groups. It is expected that their choice can affect somewhat the results because
of the decrease in the number of the candidate changepoint locations. However, if
the categories are selected at a base of many and thin quantiles, the influence is

minimized and it can even vanish.
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5.4 Multidimensional extension of the isotonic

test for trend

5.4.1 Test for isotonic matrix: an asymptotic-based

proposal

The estimation approach described in 5.3.1 is appropriate for every response type
y belonging to the exponential family described in 2.2. A test — described in [49] —
that can be used to infer for the predictor variables is shortly described here. The
approach used in the univariate analysis can be extended to take additional possible
explanatory variables into account. The following test can be used if one is interested
in the effect of a single covariate in case where two predictor variables are included

in the model:

Consider a R x ' matrix whose entries are estimated parameters (one parameter)

for the exponential family. The usual model with interaction, is
Yijk = 0 + a; + b + ¢ij + e

where 1 = 1,2, ... R, j=1,2,....C, k =1,2,...,w;;, and w;; the weight of each cell.
The distribution parameter is denoted with 6, a; = 6,;.. — 0... the residual of the
i-th row mean, b; = 0; — 0. the residuals of the j-th column mean, and ¢;; the
difference between the parameter estimated at cells and the overall parameter. Let
07 be the isotonic estimation of §; , assessed using the PAV algorithm. Suppose

that the column variable has a given isotonic effect to the response.

Then the isotonic effect of the row variable is tested. The idea is that if the row
variable has no significant increasing trend, then the isotonic estimation of the row
margins 7 will not differ significantly from the overall mean 0.

This is equivalent to the following hypothesis:
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Hy:a1=a;=...—=ar =10
versus
Hi: (a1, as,...,ag) is isotonic with respect to a quasi order over 1,2...., R.

Denoting ag, = (65 — 0,05 —0._,...05 —0_ ) and ag, = (0,0,...,0) then analo-

gously to the test in the univariable approach the following test is defined:

_ O wy(0r, —0..)°

O w0 — 0.7+ (B — 0:5)7
N-R-C

This test statistic should approximately follow the weighted Chi-square distribution

To1 (5.7)

in equation 2.7. It can be used when the response is binomial, considering that

the proportion follows approximately the normal distribution having mean p;; and

po(1 — po)
iy

proportions are around 50%. So I propose a more adequate approach: when the

variance . This is a very common approximation but it holds only if the
response is binary and when the predictor variables are more that two a test can be

accomplished via permutations.

5.4.2 Multiple permutations test

The significance of any predictor included in a model My, ,—1 .. p with P predictor
variables can be assessed by the Likelihood Ratio (LLR) test. To infer for the subset
of S out of P variables X;, X;411,..., X g, the change in the deviance is assessed

when the variables X; ;s are excluded from the model:

LR = Deviance(Mx, ,g(jj+1,...j+5}) — Deviance(Mx, ,=1,...p)-. (5.8)

The first part of the difference may contain no variables at all (null deviance) and the
test assesses the overall adequacy of the model. Otherwise, the tested significance

is partial.
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In generalized linear models context, the LR test follows a chi-square distribution
with S degrees of freedom. For isotonic-based models, there is no known large
sample approximation for the distribution of LR test, so again permutations have

to be used to calculate the critical values for both overall and partial significance.

For instance, the partial significance will include only one variable X;. The criti-
cal value of the LR test can then be assessed via conditional permutations. The
term ”conditional” refers — say in a two-dimensional case — to the following: given
the events distribution to the solution blocks of one predictor X; to be true (the
likelihood estimated, say, at the columns), the probability to have the observed dis-
tribution at the cells is estimated (overall likelihood for the model Mx, x,).

Algorithm 8 (Conditional permutations for partial significance)

Each response Y; = 0,1 corresponds to a vector x' = (x4, ...,2%).
To test the effect of the j-th predictor adjusted for the remaining P — 1
predictors:

e Split the vector X' al the j-th variable
o Create a data set x3 by randomly combining

(Yi, @y, iy 2y, s 2p) and @5

o Compute tsotonic regression and the corresponding Likelithood Ratio
test LR(x})

e Repeat steps (2) and (3) B times where B is at least 5000. The
critical value is estimated as:

c-value(j,B)=(1-a)% quantile of (LR(x7), LR(x}), ..., LR(x7%))

Of course one can test all predictors at once if so desired by randomly combining

Y; to x* and then following the same procedure as described above. As in the
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univariate case, one can construct confidence surfaces for the estimates, applying
parametric simulations under Hy or H;. The width of these intervals can yield useful
information. In cases where a non significant result is obtained, confidence bands
can help us to distinguish between statistical and substantial consistency in the risk.
In case of significant result, one can simulate under the assumption that the isotonic
estimates are true. That would be equivalent with a test Tis (see chapter 2): the fit

of the isotonic transformation is assessed, compared to any other possible shape.

5.4.3 Comments on multivariate tests for trend

Several proposals have been made so far in the literature regarding multivariate
tests for trend. The Mantel-extension test can be modified to handle more than
one categorical variable, but it is expected to present the same drawbacks as in
the univariate case. The logistic regression offers an alternative, but the linearity
assumption remains a constraint. The T-contrast test and Dosemeci-Benichou test
described in [37] can be extended to more than one variable, but as mentioned in

the paper, more work remains to be done on this area.

Regarding isotonic regression I proposed a test based on the isotonic-surface model
to deal with more than one explanatory variable. It is a Likelihood Ratio test where
the critical value is computed using permutations, and can be overall (testing all
variables included in the model) or partial (assessing the influence of a variable

adjusted for the others).

The main problem remains the restriction to maximal three predictors to be used.
Another equivalent approach can be accomplished by applying additive isotonic
models and thereafter the same overall and partial permutation procedure. A com-
parative study of these multivariate tests could provide useful information. However,
it is believed that the main characteristics of each test as discussed in chapter 3 re-

main the same, independently of the number of variables taken into account.
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5.5 Reducing the isotonic-surfaces model

Although the closed testing procedure could also have been used, within this chapter
the approach based on Fisher’s sequence is discussed (algorithm 3 in page 53). Each
solution block is compared to its neighboring using the Fisher test, and the solution
blocks that do not differ a lot are pooled together until the estimated ¢ level is
achieved. The estimation of ¢* as well as the procedure applied to choose between

the isotonic and reduced model are as described for the univariate case.

At this point some important remarks about reducing multidimensional isotonic
regression need to be made. Consider an outcome variable of length N and two
scenarios about the explanatory variable: in the first case, (i) one explanatory vari-
able is assumed with K distinct observations whereas in the second case (ii) two
explanatory variables in also K" but biwvariate groups are assumed i.e. the dimension
of the data matrix is K. Clearly, the IAPO (algorithm 7) will result in more solution
blocks that the univariate PAVA (algorithm 1).

Recall then that the estimation of ¢* depends on the number of starting comparisons
i.e. the number of isotonic level sets: the more pivotal tables are analyzed, the
smaller value for ¢* we get. Thus, it is obvious that when algorithm 7 (IAPO) for
partial order is used instead of algorithm 1 (PAVA) on the estimation of ¢*, the
obtained values will be much lower that these displayed in table 4.1, for

the same number of starting isotonic groups.

The elimination procedure can be implemented in the additive model as well. In [2],
an additive model for binary response is fitted and the need to reduce the degrees
of freedom in the isotonic partial fitted functions is discussed. But the elimination
is accomplished by comparing the loss in the fit to an arbitrary adhoc amount,

and the estimation has been accomplished without backfitting. Alternatively, the

*

step 2 in algorithm 6, page
P g g

reduced isotonic regression could be used to estimate ¢
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70), although that would potentially increase the computational complexity. It is
intuitively simpler to combine the elimination procedure with an isotonic-surfaces

model.

In analogy to the univariate case, reduced isotonic surface can be very useful, lead-

ing to a "compromising” choice between goodness of fit and model complexity.

The reduced multidimensional isotonic regression model yields a simple
and interpretable classification of the P predictor variables in P-variate

groups with respect to the outcome variable by detecting cutpoints under

the assumption of monotonicity.

5.6 Extension of the additive isotonic model for

interactions

The surfaces-model is useful in cases where the predictors are suspected to inter-
act. For the additive isotonic model, no proposal is available by now about how

interactions can be included in the model.

A simple but approximate approach is to examine the residuals for interactions. A
natural step is to plot the residuals and to scan them: smoothing the scatterplot on
the use of an isotonic-surface can alert for the presence of interactions. That can

also be seen as a first step in a backfitting algorithm for fitting the model:

h(pi) = &1(X1) + @3(X2) + ¢5( X1, X2)

For the case of binary response one can use the deviance residuals

Yi ng — Y
)+ (ni — yi)log(———=)]"/*
g p; nz(l _pi)

where + is the sign of the quantity y; — n;p;.

6(yi, p}) = £2[yilog(
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Table 5.3: The deviance of isotonic and reduced models.

Model Deviance
H, 1058.17
Isotonic (Time) 1008.65
Isotonic (Dust) 1025.65
Isotonic (Dust and Time) 959.87
Reduced isotonic 976.45

5.7 Case study in multivariate analysis

On analyzing the MAK study, the time since first exposure (in years) was also taken
into account, and a two dimensional model (5.6) was fitted for the smokers. The
amount of dust was categorized in 17 quantiles and the time since first exposure in
10 quantiles. As noted in the methodology part, this choice can affect the results.
It would be more adequate to construct more that 17 quantiles, but the data are

not that precise. The result of isotonic regression is depicted in figure 5.1.

The permutations procedure was applied to perform an overall test for the model
and conditional permutations as described in section 5.3 to assess the statistical
significance for the effect of dust given the effect of time. For the overall test (dust
and time) the p-value for the observed value T5;=98.30 (see table 5.3) was less than
0.001 based on 5000 permutations. The conditional test for the improvement in
the fit after entering the dust in the model (1008.65-959.87=48.78) resulted in a
p-value = 0.002.

Since the result is significant given the effect of time, one has to simulate under the
isotonic estimates, to assess the confidence surfaces. The result (figure 5.2) shows
the width between the lower and upper surface: it is not very wide except perhaps

the dust groups 0.2 — 0.352¢ and the last one.

m
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03 05 08 10

C1 Width

Figure 5.2: The width of the confidence surfaces simulated under the isotonic es-

timates.

The final number of bivariate solution blocks was 40. In figure 5.1 note that some of
the solution blocks contain very few information and while some ”jumps” are high,
some others are not and it is expected that their contribution to the likelihood may
not be important. On fitting the reduced model, simulations were used to assess the
¢*-level. On this purpose 5000 random permutations of the response variable were
produced as if it was independent on the explanatory variables (17x10= 170 pairs).
In each permutation the isotonic and reduced isotonic regression were fitted. Then
to get the e* that leads to 0.05-significance test, we picked the 250th smallest p-value
when only two solution blocks remain. The estimated value ¢* for 5% singificance

level was 0.00038. Figure 5.3 presents the reduced model.

The change in the deviance between isotonic and reduced model is 16.59 (Table 5.3).
The number of solution blocks has been reduced from 40 (isotonic) to 3 (reduced

isotonic). The cutpoints for dust in the reduced model were at concentrations 0.9,

4.5,5.5 and 5.8 4.
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The additive isotonic model was also applied to the data. The model has deviance
999.94 and summarizes the dust in three groups (cutpoints: 4.5 and 7.4 =¢), and
time in 4 groups i.e. 12 solution blocks (figure 5.4) in total.

Table 5.4: Several criteria to compare isotonic-surface, reduced-surface and addi-

tive isotonic model.

Model Deviance LS AIC BIC R?

Isotonic surface 959.87 40 1039.87 1096.36 0.148
Reduced surface 976.45 3 98245  986.69 0.085
Additive isotonic 999.94 12 1025.94 1040.89 0.061

CART 990.50 3 990.50 1000.74 0.104

Table 5.4 gives a comparison of the three models: isotonic, reduced isotonic and
additive isotonic using Akaike’s Information Criterion (AIC), Bayesian Information
Criterion (BIC=Deviance+1p - log(n)) and the coefficient of determination (R?).
Reduced isotonic regression controls better the trade off between fit and model
complexity. Recall that our proposal is rather adequate for stratification and thus
it would be relevant to compare the different models using ROC curves. The area
under the curve was 0.658 for additive model, 0.690 for the isotonic surface and

0.677 for the reduced surface.

Under the light of this consideration a classification tree [68] is also applied to the
data. The results are presented in table 5.5 and they correspond to a final tree with
three terminal nodes, which has been selected after cross-validation. The predictors
were combined in 3 groups. The result is roughly similar to the one obtained by
applying the reduced-surface model. Note that the group with higher risk in the
classification tree is defined by time > 16.5 and total dust > 4.8. This high risk
group is also to be seen in the reduced-surface model (see figure 5.3) where the
estimated proportion is 0.421 (0.431 for tree model). The dust cutpoint of about

574 is also present in the additive model.
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Table 5.5: The final classification tree in numbers.

Node Covariate Deviance Deviance n proportion
reduction

I(root) Time < 16.5 1058.17 43.7 920

2% Time > 16.5 169.50 243 0.111

3 Dust < 4.8 844.80 23.8 677

4* T< 16.5 & D< 4.8 481.90 429 0.249

5* T< 16.5 & D>4.8  339.10 248 0.431

The final deviance of the tree model is 990.50 with 3 degrees of freedom. According
to all three criteria (AIC, BIC, R?) the CART model is better than the isotonic

surface and the additive model but not better than the reduced surface model.



6 THRESHOLD VALUE
ESTIMATION

6.1 Introduction

The estimation of threshold limit values (TLV) is an important task in many medical
areas. An obvious example is occupational medicine. If a chemical compound or any
other substance in the workplace is known to have adverse effects on the health of the
employees the existence of a TVL and its estimation is of great concern. A similar
problem is faced in the clinical context with the question who should be treated,
- e.g. beyond which blood pressure value one should prescribe antihypertensives.
The goal of the MAK study considered within this paper was to assess a TVL for
total dust concentration in the working area in order to prevent chronic bronchitic
reaction. There is still a great debate about how thresholds should be assessed.
The MAK study is a representative example. The estimated values have been first
reported in [15], criticized by McLaughlin et al. in [42] and finally justified by the
additional contribution of Ulm and Salanti in [63].

The existence of a threshold value corresponds to several regression shapes [14]. The

90
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most popular are the "hockey stick” and the logistic shape. Assuming a threshold
value 7, the "hockey stick” shape corresponds to a linear increase beyond the thresh-
old, whereas the logit model assumes an increase in the logit scale of the endpoint.
Before 7 no effect is assumed. However, it is more plausible to assume a background
parameter A corresponding to the baseline risk rather than of no risk. The model

takes the form

Py =14 reT (6.1)
Adple—71), x>7

where the function f is the identity function for the "hockey stick” shape or the
logit function for the logit shape. The model can be extended to more than one

covariate.

Newer developments are connected to isotonic regression. A Likelihood Ratio test
for detecting thresholds within an isotonic-surface regression model has been pro-
posed in [62]. Additionally, in a later paper an additive isotonic model has been
applied [63] and compared to the previous approach. The principal motivation in
using isotonic regression in assessing a TVL is to relax the linearity assumption in
the model (6.1). A step function is used instead, to represent the increase in the
risk. This approach has been revised and compared to other methods in [35] where
a generalized additive model has been used to fit the data, but no objective statis-
tical strategy has been proposed on estimating the threshold. The maximal allowed
concentration for the compound of interest has been estimated as the value that

corresponds to an arbitrary amount of increase in the risk.

This chapter discusses three methods based on isotonic regression for estimating
thresholds: one introduced by Ulm and two new proposals. The first - referred
to as method 1 - has been proposed in [62]. This method will be compared to

method 2 in a simulation study. This is an alternative approach based on re-
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duced isotonic regression introduced in chapter 4. Finally another new method
(method 3) which makes use of the closed testing principal is outlined. The per-

formance of the proposed methodology will be shown, presenting an application

from the MAK study [15].

6.2 Methods

6.2.1 Formulation of the problem

On estimating thresholds in a dose-response relationship between a continuous — or
ordinal — explanatory variable and an outcome, there are two main steps. These

consist on testing the following hypothesis:
Step 1 H..: A threshold value exists
Step 2 Hj,.: The threshold value is located at T = x;

As complementary hypothesis of the first assumption (H".: no threshold exists)
usually the linear dose-response shape is excessively set. This can be tested by
fitting a generalized additive model and applying a non-parametric test for linearity.

An alternative is to assume and test whether
T = min=1,. N{Ti}.

That means that the threshold is located at the first observation. There is some con-
troversy about testing hypothesis H.,. Cox, for example, argues that the question
whether a threshold exists or not can not be answered by means of statistical meth-
ods [14, 64]. He stated that assuming a threshold is plausible in many toxicological
studies, and even in cases where there is no biological justification, this assumption
can have practical value. Thus, the point is not to find out if a threshold truly exists

and to test this assumption, but rather to estimate it and test its location. The final
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decision about threshold problems is usually taken on a biological, ethical and polit-
ical basis. Statistical methods are only tools that can eventually direct the process.
This chapter is only concerned with the statistical issues regarding threshold value

estimation.

6.2.2 How to approach the threshold value problem

A usual approach in estimating thresholds, is first to select a subset of "suspicious”
x; values (or all x; if possible), and then to fit a model of equation (6.1) at each
of these points. Several criteria can be applied to test H.. and Hj,.. For example,
the AIC criterion can be used: the point x; which yields the lower AIC is selected
as threshold and H., is not rejected if this AIC is lower than the one estimated
from linear regression. Instead of AIC other criteria can be used, as for example
the deviance. To determine the set of "suspicious” threshold locations a flexible
model is fitted - usually a generalized additive one. Then, one has to screen the
GAM graph and take a "neighborhood” about a point where an increase in the risk
seems to occur. These approaches, as shortly described here or slightly modified,
are widely used. However it is obvious that they are intuitive and at some points

arbitrary.

In contrast, two model-based proposals have been published on this topic [47, 61].
Both are well developed in terms of their statistical properties. Pastor and Gual-
lar [47] proposed a general approach based on logistic regression where a changepoint
occurs, changing the regression shape from linear to quadratic. The model param-
eters and the changepoint are estimated iteratively by an algorithm similar to the
iterative least squares algorithm described in [41]. To infer for the changepoints and
coefficients (testing the observed values i.e. Hy : 7 = 7), they use the chi-square
distributed Likelihood Ratio statistic. They justified this approach in a simula-

tion study, even though this approximation holds only under the assumption that a
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changepoint truly exists (defined case), as they note in their paper.

To estimate the threshold value Ulm [61] fits changepoint models setting 7 = x;
for all ¢ = 1,..., N and obtains N values for the Likelihood Ratio test LR;. The
maximum value of all these tests indicates the location of the threshold. Then to
test Ho : 7 < mun{x;} against Hy : 7 > min{x,;} he compared the models with and
without threshold. This LR test follows an one-sided chi-square distribution, as he

proved in a simulation study.

It is important to note that in case of estimating thresholds not only one model
should be applied but more than one approach has to yield a threshold in order
to conclude its existence and position. Different approaches can offer different and
contradictory results [56, 64], thus there is not a unique and formal approach on
estimating thresholds, but the decision about H., and Hj,. should be taken after
applying a variety of approaches. External validation of the selected models can
also provide useful information, since there are cases where the data can be fitted
by a variety of models (considering a threshold or not) where all of them may fit

well.

6.2.3 How to estimate thresholds using isotonic regression:

two new alternative approaches

As already noticed, isotonic regression model is a changepoint model and there-
fore its use on TVL problems is straightforward. On searching for thresholds the

following steps need to be taken.

1. Prove dose-response relationship: This is a trivial but important step. A

test for trend — for example the isotonic R in equation 2.10 — has to be applied.

2. Reject the linearity assumption: The generalized linear model should

be compared to the isotonic one (or the reduced) and check out which of
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these two models fits better. Given the non parametric nature of the isotonic
regression, bootstrap methods will be used to assess the p-value. If the linearity
assumption is not rejected, then no threshold can be assumed and H., is to
be rejected. Otherwise, the possibility for threshold value existence is open.
However, that does not mean that a threshold truly exists, since there is a

variety of shapes that have no threshold without being linear.

3. Find a set of ”suspicious” threshold value locations: This can be (i) the
set of the cutpoints estimated by fitting isotonic regression (”iso-cutpoints”) or
(i1) a subset of the "iso-cutpoints” selected by applying the reducing procedure
described in algorithm 3 ("red-cutpoints”).

4. Select the threshold: Among the possible candidates for threshold, the true
threshold value location has to be found. This can be a) the "iso-cutpoint”
that corresponds to an important change in the deviance (see paragraph The

one-sided chi-squared pooling procedure) or b) the first "red-cutpoint”.

The scheme proposed above is conditional in terms of performance: the power of
each step is bounded by the power of the previous steps. Tests for trend and their
properties under several circumstances have been studied in chapter 3. This chapter
is not concerned with evaluating the linearity assumption. The parametric bootstrap
used rejecting H., will be shortly described in the application. Steps two and three
are the subject of this chapter.

The fact that PAVA provides a small set of cutpoints without any a priori infor-
mation about their location, simplifies the TVL detection procedure in testing the
changepoints one by one, and sets the requirements to a minimum of monotonicity.
However these changepoints are selected in order to efface the violators and it is not
necessary that they correspond to an important increase in the risk. Regarding this,

two methods will be used concerning steps 3 and 4:
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e method 1 combining (i) isotonic regression and (a) the "one-sided chi-

squared pooling procedure”

e method 2 combining (ii) reduced isotonic regression and (b) selecting as

threshold the first reduced cutpoint.

Recall that the reduced version of isotonic regression incorporates an elimination of

the cutpoints strictly to those which define a significant increase in the response.

The whole model can be thought of as an extension of the traditional "hockey-
stick” threshold model (6.1) where the estimation for the first level set defines the
background risk A and the first cutpoint for the dose defines the threshold 7. After

T the increasing part f(x — 7) can be a step function or constant.

Given the nonparametric nature of the procedure, to estimate confidence intervals for
the threshold, one has to apply bias corrected and accelerated bootstrap confidence
intervals [11, 16], where the accelerator ac is estimated applying jackknife. If x, is
a subsample of the original data set x leaving the i-th observation outside, 7(; the
estimated threshold and () = >N 7(iy/N, then

_ il =)

6{(70) — 7 )?}*/*
If b is a bootstrap sample of the original data set and 7(b) the estimated threshold,

ac

the bias corrector estimated by B bootstrap samples is

> Lpy<r
Z0 = (I)_l b B
The (1 — a)% confidence interval is
Cly = (7(b)ay, 7()a,)

20+ Zue 20 + Z1—ac
—® = o
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where z, is the a-th normal quantile. For an example see table 6.3.

The one-sided chi-squared pooling procedure

This method has been recently proposed [62] in order to estimate thresholds in
isotonic regression framework. For the rest of this work I will refer to it as the
threshold procedure or method 1. In assessing a TVL the constant risk categories
corresponding to the isotonic predictor of interest are lumped together starting now

from the two lowest groups. The loss in the fit
LBrhers = Dy — Dy (6.2)

(where D; denotes the Deviance corresponding to [ = L, L —1, ..., 1 the isotonic level
sets) is analyzed. As long as the fit does not decrease significantly the categories are

pooled together. If not, the cutpoint between the categories is used as a threshold.

This method can be thought of as a variable selection procedure, were one has to
choose between two different representations (or different degrees of freedom) of the
same predictor to include in the model. Since the degrees of freedom for each term
are the number of level sets (and they differ by one), the change in the deviance (6.2)
should follow a one-sided X? distribution with one degree of freedom. Another cri-
terion that can be used here is the Akaike’s information criterion. The procedure
will be the same as before, but now the AIC will indicate a "gap” in the goodness
of fit and consequently the threshold value location.

An important problem rising from method 1 is related to the appropriate test
statistic in order to define more clearly what exactly ”a large change in the likeli-
hood” is. Simulations have shown that the Likelihood Ratio test (equation 6.2) is
not X7 distributed.
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6.3 Simulation study

6.3.1 Evaluating the chi-square approximation in the

pooling procedure

First the adequacy of the one-sided chi-square approximation in the pooling proce-

dure in method 1 will be evaluated.

Grouped data:

Simulated data sets have been generated assuming that the response is linearly
dependent on the dose (p; = o + Bx;), where p; denotes the response probability
and x; the dose. Five dose groups are assumed, i.e. the dose is ordinal. Method 1 is
applied for several o, § and number of observations per dose group. Figure 6.1 shows
that the X7 approximation is not always consistent. For the first three poolings, the
empirical distribution of the change in the deviance is shown together with the one-
sided chi-square cumulative distribution. For more than three poolings, the curve is

moving downwards.

For small slopes, the approximation holds quite good (figure 6.2). When the slope
is high, the disagreement is quite substantial. The distribution was not much in-
fluenced by the intercept a. Note that it is quite complicated to find the theoreti-
cal distribution of the test in equation (6.2): the main problem above the unequal
weights is that the distributions corresponding to test for k and k£ —1 level sets Ty 4

and Ty y—1 are not independent.

Continuous data:

The simulation study is repeated, keeping the sample size constant but now the
predictor is not used as continuous. The one-sided chi-square distribution is proved
inadequate almost in every situation (figure not shown). For the sake of example,

the critical value for slope 0.02 was 7.14 instead of 2.71.
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Figure 6.1: Change in the deviance (equation 6.2) while pooling (slope=0.02, 5
dose groups, sample size 250). As Di-Dj is denoted the change in the
deviance between the model pooling information until the j-th group

and the model pooling information until the i-th group.

6.3.2 Evaluate the two approaches on estimating thresholds

using isotonic regression
Simulation study assumptions and set up

Both method 1 and method 2 are evaluated within this simulation study. Assume
that the dose-response is proven based on a test for trend. However, the elimination
procedures for both methods (either point (i) in step 4 for method 1 or algorithm 3
for method 2) can return to a single level set (ideally with probability not greater
than 5%) despite the significance of the dose response relationship. In this case no
threshold can be estimated even if the test for trend is significant and the linearity

assumption is rejected. Thus both procedures will be evaluated as "test for trend” (a-
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Figure 6.2: The first pooling (D2-D1) distribution assuming different slopes (5 dose
groups, sample size 250).

case Hy,: constant risk against Hy,: increasing trend), where hypothesis Hy, is
rejected when the algorithm returns at least two level sets. In this context, their

behavior will be described by estimating the power and the of type I error.

The capability of the methods to detect thresholds (b-case Hgy: no threshold against
Hyp: threshold) will be investigated. Given that both approaches end up with at
least two level sets, a threshold value can always be estimated. Hence, the accuracy
of both approaches will be evaluated in threshold value existence situations (to
measure the power), but also in cases that correspond to dose-response relationship

where no threshold is assumed (to measure the error).

Only grouped data are considered. Regarding this decision additional remarks need
to be made here. When the assessed threshold is placed in the lowest dose-group, the
answer about the existence and location of the threshold is not clear. The threshold

may be placed somewhere between the upper and lower dose concentrations of the
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first group and H., can not be rejected unless this dose group corresponds to zero

exposure. Exactly this situation is considered in this simulation study.

Four shapes of regression lines have been studied (Figure 6.3): a flat constant func-
tion (A), a linear regression line (B), and two types of segmented increasing line (C
and D). Each of these regression lines has been considered under the assumption of
5 dose groups. Equal number of observations per dose group that varies between 50
and 250 are assumed. For each combination of regression parameters and sample
size, 10 000 simulations have been analyzed. The estimation of the elimination’s level
¢* for method 2 has been performed using 1000 simulations. For every regression

shape 20 parameter combinations (sample size and slope) have been analyzed.
Shape A:

This regression type corresponds to the absence of a dose response relationship.
Under this assumption the error of type I can be estimated, considering the elimi-
nation’s procedures as a test for trend. That means that method 2 and method 1
are expected to result in a single level set with probability about 95%. The event
rate of the underlying function was assumed to be 0.05, 0.10, 0.15, 0.20.

Shape B:

This regression type corresponds to a linear increasing dose-response relationship, so
the power of each elimination procedure as test for trend can be estimated. Higher
power corresponds to greater proportion of non constant estimated regression lines.
However, no threshold existence is assumed, so a sort of "error of type I” as TVL
detection method (b-case) can be described for both approaches. The regression

line starts with event rate 20% and increases with slopes 0.02, 0.05, 0.10 and 0.15.

Shape C:

The third type represents a segmented regression line assuming a threshold. The

baseline constant risk is assumed to be 20% and afterwards the risk increases lin-
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Shape A: No dose-response

/ Shape B: Linear increase

Shape C: Segmented line with threshold

Shape D: Segmented line without threshold

Figure 6.3: Shapes for dose-response studied in simulation study.

early with slopes 0.02, 0.05, 0.10, 0.15. Different cutpoint locations have been also
examined. Next to the power of the elimination procedures as test, the TVL detec-
tion capability of the methods can be estimated. As a measure, the probability to

get the correct threshold given that an increasing trend has been assessed.
Shape D:

The last type of regression is also a segmented line but assumes no threshold: first
linear increasing trend and then constant risk. Several considerations have been
made again regarding the slope of the increasing part (0.02, 0.05, 0.10, 0.15). The
power of the test under that shape and the behavior of the threshold procedure can

be estimated.

Notation:
Both method 1 and method 2 will be evaluated under two considerations. First,
considered as tests for trend, where the non dose-response assumption Hy, is rejected

when the method results in more than one level set. The power, (shapes B-D) and
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the type I error, (shape A) will be assessed (second column in table 6.1). Second,
both procedures will be considered as threshold value estimation procedures. In this
case their capability to reject hypothesis Hgp: no threshold existence will assess the
power, when a threshold exists (shape C) and the type I error, when there is no
threshold (shapes B and D). See column 3 in table 6.1.

Table 6.1: Simulation’s study for threshold value estimation.

Regression type Testing dose-response (a-case) Estimating the threshold (b-case)

A) Error, I -

B) Power, Errory 1
C) Power, Power,
D) Power, Errory 1

6.3.3 Results

Shape A:

For method 1, the type [ error, is about 8% and its small variation regarding sample
size and event rate is minimal, except for N=>50 and event rate 5% (figure 6.4).
Regarding method 2 the error, of type I is not to be tested, since the elimination

procedure is so designed as to control it. In the following remarks about the power,

of method 2 as test, the reader should keep that in mind.

Shape B:

As expected, in cases of small slopes the power, for both procedures is low. For
example for slope 0.02 it lies in a range of 30%-70% depending on the sample size.
However, the power increases very fast with increasing slope and both method 1

and method 2 have a good power for slopes greater that 5%. In figure 6.5 the
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power of method 1 procedure is depicted. Regarding method 2 the variation of

power is similar.
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Figure 6.4: Method 1 for shape A corresponding to constant event rate - The

type I error,,.

Focusing on cases where the power is at least 70%, the assignment of thresholds in
the several dose groups has been examined. The method 1 procedure tends to select
as threshold the dose that corresponds to an increase of about 7% from the starting
group. For slopes 10% and 15%, the first level set has been estimated as threshold,
for every sample size. The thresholds assessed according to method 2 do not seem
to follow any special pattern for small slopes (2%): every cutpoint has more or less
the same probabilities to be selected as threshold. However, for slopes higher than
5% or greater sample size, the first groups are more likely to be selected as threshold
though less successfully than method 1 procedure, i.e. method 1 concludes to no

threshold result faster (regarding sample size and slope) than method 2.

Shape C:

Power here presents the same characteristics as in shape B. Figure 6.6 presents
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Figure 6.5: Method 1 for shape B corresponding to linear increase - The power,.

the results for method 2 only, since the figure for method 1 does not present
remarkable differences. In this case, the success in estimating the threshold is of
interest. The correct threshold position lies in the second level set. The probability
to assess the correct level set as threshold (power;) given that more than one level
sets have been obtained is presented in figure 6.7 for method 1 and figure 6.8 for
method 2. The results about the power, described in figure 6.6 affects somewhat
the capability of both procedures to detect the correct threshold.

For small slope and sample size the success of assessing the correct threshold is not
satisfactory but increases rapidly as long as the power, of the methods as test for
trend increases: The power, of the methods increases sharply with the slope and
secondarily with the sample size in an almost linear way. It is remarkable that the
probability to assess no threshold (estimated threshold: the first level set) has been
very low and almost identical for every sample size and slope for method 1 whereas

for method 2 it decreases with the sample size. Additionally, figures 6.7 and 6.8



6.3 Simulation study 106

e |
-1  pEmEEmEmEmeT
i
S
7
S
LS
VS
@ | S
pic S
Y
Vs
/ /
S
® 2
gl
=i
—— N=50
e - N=100
--- N=150
——- N=200
< | - N=250
o
N
o
T T T T T T T
0.02 0.04 0.06 0.08 0.10 0.12 0.14

Slope

Figure 6.6: Method 2 for shape C corresponding to a segmented line with thresh-
old - The power,.

present the probability to assess the third level set as threshold, since it is observed
an important tendency of both methods to assign thresholds to the adjacent group
that corresponds to a higher dose value category. This probability, important in

cases of low power,, decreases with the increase in slope.

Figure 6.9 compares the two methods in their success to assess the correct threshold.
The reduced isotonic regression behaves better with smaller slopes and sample size,
but in general the results are similar. The mean power, for method 2 is 58.4% and
for method 1 57.2%. Regarding the probability to get no threshold when one truly
exists, the reduced isotonic regression presents the advantage that the increase in
the slope can decrease the chances to estimate no threshold (figure 6.10): the error
for method 2 presents variation with sample size whereas for method 1 remains
about 5%. The mean error probabilities were 4.3% for method 2 and 5.2% for
method 1.
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Figure 6.7: Shape C: The probability to assess the correct threshold (power;) using
method 1. The true threshold location is in the second dose-group.

The last step in our simulation study for shape C consists of setting a different
threshold value location (figure 6.11). Now it is after the third dose group that
the risk increases. A slope of 10% is assumed for the increasing segment. Both
methods improve their behavior for small sample size but no improvement can be
seen when the sample size is 150 per dose group or greater. The probability to assess

no threshold becomes clearly smaller.

Shape D:
In the third case the power, seems to increase roughly linearly with "the hight of

the step” in risk after the first dose group. Due again to their similarities with
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Figure 6.8: Shape C: The probability to assess the correct threshold (power;) using
method 2. The true threshold location is in the second dose-group.

method 2, [ present only the result from method 1 (figure 6.12). The capability
of the procedure to assess thresholds depends again on its power, as test. The
first group has the greatest probability to be selected as threshold, which is in
agreement with the underlying regression shape. Unlike the A shape, here the
method 2 presents better results (19 out of 20 combinations ended up to a no
threshold existence result) than method 1 (16 out of 20 combinations) in supplying

evidence against the threshold existence.
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Figure 6.9: Shape C: Comparing method 1 regression and method 2 regarding
the probability to assess the correct threshold-power,. The bars in each
sample size panel correspond to slopes 0.02, 0.05, 0.10 and 0.15.

6.3.4 Comments on simulations

To summarize the results, when a TVL truly exists both procedures will detect it
correctly when the increase in the risk is sufficiently high (at least 5%). In the case
where a small increase is expected, one should keep in mind that both procedures
tend to estimate thresholds higher than the true one. Note that the type I error for

method 2 can be substantially reduced by increasing the sample size.

In case that no TVL exists and the dose-response relationship is not strong (slope
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Figure 6.10: Shape C: Comparing method 1 and method 2 regarding the prob-
ability to assess no threshold when one exists (type I errory). The
bars in each sample size panel correspond to slopes 0.02, 0.05, 0.10

and 0.15. The horizontal line is drawn at the nominal level 5%.

less than 5%), both approaches will probably return a threshold. Hence the esti-
mation of TVL does not necessarily justify its existence. In our simulation study
the non TVL existence assumption has been linked to the selection of the first dose
group as threshold. That is valid only if the dose is zero in the first group. In
case that the exposure in the first dose group is not zero but a range of values (i.e.
1—10%), assigning a threshold there would simply mean that the true threshold

lies somewhere between these values. The "no threshold value existence” conclusion
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Figure 6.11: Shape C: Probabilities for method 1 and method 2 to assess a
changepoint as threshold, when its true position is in the 2nd and

3rd level set (regression slope=0.1).

cannot be assessed. A solution to this problem could be to use the dose in contin-
uous form. Categorizing a continuous variable to an ordinal can highly affect the
result, since a priori assumptions as the selection of cutpoints and the number of
observations per group can produce bias regarding the TVL estimation. For this
reason the use of continuous dose is recommended, and accordingly an example is

presented in the following section.
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Figure 6.12: Method 1 for shape D corresponding to a segmented line without
threshold - The power,.

6.4 Adapting the closed testing procedure for

estimating thresholds

An alternative on selecting the set of threshold value ”candidate locations” among
the isotonic cutpoints, is to applying a closed elimination procedure (method 3).
We have already discussed how that can be accomplished by applying algorithm 4
(see chapter 4). In this case the main concern of the closed testing procedure is
to estimate a minimum concentration above which the risk presents a significant
increase and not to proceed in a complete re-estimation of the regression line. So,
the primary focus is rather to answer the following questions:

1. After the first cutpoint, is there evidence for significant increase in the risk?

2. If not, given a hierarchy of changepoints, which is the lowest one that corresponds

to a significant increase in the risk?
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Note that the algorithm 4 presents the inconvenient of slightly low power. An option
to increase the power is to use level a instead of portions of a at every layer and
to use conditional testing to correct the additive increase in family-wise error. Rom
et al. [50] proposed to make the one part of the regression line conditional on the
other one. Since the beginning of the dose-response is more important for threshold
estimation, we want a procedure where testing between higher dose is conditional on
rejecting on lower doses. That can be accomplished through conditionality: every
Tvertical” hypothesis is conditional on the rejection of the previous hypothesis and
every “horizontal” hypothesis is conditional on the retain of its previous hypothesis.
Considering the schema in figure 6.13 and the notation used previews chapter 4 |

propose the following algorithm.

Algorithm 9 (Closed testing for threshold estimation)

1. Every hypothesis H j, and its offsprings are conditional on hypothests
Hy o withl! <k <1<k, i.e. it istested only if the hypothesis Hy j
s retain

2. Retain every hypothesis implied by any other hypothesis that has not
be rejected

3. Reject any hypothesis that is tested and rejected at a = 0.05

The procedure starts by testing Hiys. If we retain then we test H,4 (rejection :
threshold = ¢3, no-rejection = no dose-response relationship). If we reject H; 5 then
we test Hy o (rejection: threshold=e¢; non-rejection: continue by testing Hs3). Now
by testing H; 3 in case of rejection we conclude that the threshold is at ¢; and if we
do not reject, we continue by testing Hs4. Finally, by rejection we have threshold

at ¢3 and by retain no-response relationship.
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Figure 6.13: Example for closed testing on threshold value estimation.

When the conditioning occurs "horizontally” (red arrows) additional to the vertical
restriction (black arrows) the power increases. Consider for example that Hy 4 is true
and each nested hypothesis is rejected at 5% level. Then only with vertical restriction
the power for the example 4.1 is 0.95% 4+ 0.95% - 0.05% 4 0.9520.05 + 0.95%0.05 = 0.862
whereas for the structure in picture 6.13 the power is 0.95% 4+ 0.95? - 0.05 = 0.947.
However if this approach is followed, no additional information may be obtained

about the shape of the dose-response relationship after the threshold.

6.5 Case study in threshold value estimation

This section goes further with the example presented in section 4.5. The dose-
response relationship has been proven, so the procedure goes to the next step: to
reject linearity (see section 6.2.3). Parametric bootstrap will be used. The overall

response probability is kept constant, and the relationship is assumed to be linear.
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Random data (1000) are produced under this assumption and at each replication
the change of deviance between the linear and the isotonic model is estimated. The
observed change in deviance is D(linear)-D(isotonic)=37.65, which lies outside the
range of values estimated by parametric bootstrap (7.47-34.71). Thus, the linearity

assumption has to be rejected.

Method 1 was applied to the data. The changes in deviance when adjacent level
sets were pooled together are presented in table 6.2. Then, the loss in the fit was
compared to 2.71 (:X12,90%)- The pooling of the first three level sets causes a
significant decrease in the likelihood, consequently a minimum value for threshold

at concentration 6.9774year was assessed.

Table 6.2: Results from method 1.

Cutpoint Pooling to  Deviance

cutpoint
1st 1.01 983.06
2nd 5.04 983.76
3rd 6.97 984.08
4th 10.05 991.87

Then, method 2 was applied to the data. The threshold was estimated at 6.97 74 year.

The corresponding background risk was 7.6%. The bootstrap bias corrected and ac-

celerated confidence intervals are presented in table 6.3.

The isotonic level sets have been analyzed with the closed testing procedure (algo-
rithm 9) i.e. method 3. The nested hypothesis Hy g, Hy 5, Hy 4, H1 3, are tested and
all rejected at level 5%. Hypothesis Hy o results in p-value=0.392, thus we proceed
with testing H, 3 which is also rejected, the same for Hs4. The p-value for Hy s is
less than 0.001, thus the estimated threshold is at the fourth isotonic cutpoint i.e.

in 10.05mg/m>years cumulative exposure.
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Table 6.3: Bootstrap confidence limits for the estimated threshold using
method 2.

threshold 7 6.97 mg/m?

Z [T(b)<7' 389
(20, @) (-0.28,0.01)
Cl, [4.95-10.01]

6.6 Conclusions

The present chapter investigated the use of isotonic regression in threshold limit
value problems. Isotonic regression possesses useful features that facilitate the

changepoint detection. In total three methods have been proposed in order to assess

the TVL.

Method 1 is based on the Likelihood Ratio test, it is straightforward but has its
disadvantages. The assumed Chi-square approximation for the distribution of the
Likelihood Ratio test while adjacent level sets are pooled, does not always hold.
Alternatively one can use bootstrap methods to infer at each pooling, but that
would make the method quite cumbersome. The method based on reduced isotonic
model (method 2) presents a satisfactory efficacy on finding the correct threshold,

once a dose-response relationship is proven.

The properties of these two methods have been investigated within a simulation
study. In case that the trend is not intensive, the true threshold can also be at
the level set right before the estimated i.e. in the previous isotonic cutpoint. The
overall elimination procedure could also be considered as a test for trend where the
consistency of risk is rejected when at least two level sets have been finally obtained.
From this point of view, reduced isotonic regression presents a good control of the

trade off between error I (that is controlled to be 5%) and power.
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Additionally I proposed as alternative method 3. This is based on a modification of
the closed testing procedure which is expected to increase the power of the overall
testing. The conditional pattern implies that the lower end of the dose range is
more important that the higher end, which is true for the threshold value estimation

setting.

Modifications of the proposed methodologies are possible. L. Hothorn [31] sug-
gests a procedure based on odds ratios. He argues that when one wants to detect
an important increase in the risk, the use of confidence intervals is more accurate
than comparing p-values. This idea can lead to a modification of the pooling pro-
cedure applied in isotonic level sets and the backward elimination in the reduced
isotonic regression. In all three method 1, method 2 and method 3, instead to
use p-values, the confidence intervals for the level sets odd ratios could indicate a

significant increase in the risk.

The presented methods can be incorporated in more sophisticated models, as the
generalized additive model. All three algorithms described here can be applied
in multivariate modeling, either in isotonic-surfaces models where the level sets
correspond to combinations of the predictors, or in additive isotonic models where
the partial fit can be the object of reduction. Details and examples are presented

in [53] and [63].

In general, when estimating thresholds, I suggest the use of bootstrap methods to
evaluate the accuracy of the estimation, by checking their confidence limits. Addi-
tionally, modeling the data using smoothing splines or fractional polynomials would
be useful in revealing the true shape of the relationship and avoid misinterpretations.
However, concluding for or against the existence of a threshold value is not a simple
statistical question. The biological plausibility and strong a-priori medical assump-
tions need to be taken into account. In practice, for agents considered as health

hazard a TVL is almost always assumed except for those who are carcinogenic.



7 MONOTONIC REGRESSION
IN SURVIVAL ANALYSIS

7.1 Introduction and background

The Cox model is by far the most popular procedure for analyzing survival data.
Consider the case where P predictors X : Xy, Xy, ..., Xp, have been identified to
affect significantly the survival probability. The Cox model specifies the hazard for

an individual 7 as

A(1]X) = Ao(1)eX. (7.1)

A key assumption of this model is that the ratio of two hazards is independent of time
(proportional hazards model or PH model), i.e. the impact of each predictor included
in the model does not change during the observation period and therefore the relative
risk RR regarding two levels z;, x; of an explanatory variable is exp(B(x; — ;)) at

any time. However this assumption may not hold for some variables included in

118
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the model. A possible reason is that the coefficient 3; and therefore the RR are
functions of time 8 = f(t) and RR = exp(B(t)(x; — x;)).

The application of the Cox model requires validation of the proportional hazards
assumption. In this direction, several tests have been proposed so far to check the
predictors for time-dependency. In case of evidence, the usual PH model needs

transformation, in order to include the dynamic structures.

Many graphical approaches have been proposed in order to check for proportional-
ity. Although the judgment is rather subjective, they can be used as a first guide.
Consider again a predictor in categories, a first intuitive way is to check the Kaplan-
Meier curves for parallelism. If that is true, proportionality is rather likely to be
fullfield. The equivalent multivariate approach would be to fit a Cox model strati-
fied for the factor of interest and plot the survival curves for the mean value of the
other predictors. The resulting curves should be parallel but also in agreement with
the survival curves estimated non-parametrically (for example the Altschuler-Nelson

estimates).

Another more sophisticated graphical analysis of PH assumption can be performed
by plotting the log minus log survival functions against time for each level of the
predictor 1. If the proportionality assumption holds, the two curves should be paral-
lel. To assess the survival function in each level of the predictor one has to fit again
a stratified Cox model. Alternatively one can use the cumulative Schoenfeld residu-
als. Under the proportional hazard assumption each curve should be a random walk
starting and ending at 0 (Brownian bridge). All graphical approaches described
above present difficulties of visualizing the actual pattern of time-dependency and

to reveal the consequences of the underlying violation of proportional hazards.

Alternatively, one can split the data in subgroups that correspond to pre-selected

'That is because: S(t) = So(t)eﬂx — Si(t) = Sk — In(S(t)) = RRIn(Sk(t)) —
In(—In(S;(¥))) = In(RR) + In(—In(Sk(1)))
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time intervals. In each data set a Cox model is fitted and the coefficients obtained
are compared to the confidence interval of the overall coefficient. Moreover, in case
of violation, the pattern of interval-coefficients can roughly indicate the form of the
time dependency. The time-intervals are usually selected to include enough events,

but no further cut-off criteria can be established.

The most accurate approach is to apply time-varying coefficients model for example
[29] where the coefficient 3 is allowed to be a function of time B(t) It provides a test
for proportional hazards and a modeling alternative in case of violation. As special
part of this approach, the Grambsch and Therneau test is defined which is based
on scaled Schoenfeld residuals. Regarding this approach, a new proposal will be
presented in this chapter: the incorporation of isotonic regression in the Grambsch

and Therneau test to improve power

The principal motivation for using isotonic regression in modeling time variation
in Cox model, is that it provides a changepoint model regarding time. Therefore,
optimal cutpoints can be assessed to split time in intervals within which the effect of
the variable of interest remains constant. That is an important task in many clinical
studies. Isotonic regression, as already highlighted, provides unbiased estimators for

changepoints without any additional requirements.

This chapter focuses on combining the benefits from isotonic regression and the
flexibility of the varying-coefficients approach. The first part deals with an isotonic
version of the Grambsch and Therneau test [23, 59]. Further, I will present how
one can use the isotonic smoother to model the function B(t) in a time-varying
Cox model. The gain of introducing isotonic regression in testing and modeling
PH departures will be outlined and a simulation study will be performed to assess
the properties of the approach. Finally I will present an application to a data set

containing children with acute lymphoblastic leukemia.
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Notation:

D denotes the total number of events and ¢ the random variable for the survival
time. By ¢;, 7 = 1,..., J we denote the unique failure times with d; > 0 individuals
failing at ¢; and R; the observations having ¢ > ¢;.

7.2 The time-varying coefficients Cox Model

As pointed out in the introduction one easily expressed alternative to proportional
hazards is provided by applying models with a time-dependent coefficient. That is
simply an extension of the Cox model where the time consistency assumption on
B = (Bpyp = 1,..., P) is relaxed and is allowed to be a function of time ,(t) =
Bop + B1,pf5(t). Model (7.1) takes the following form:

A1) = Mo(t)ePDX (7.2)

where B(t) is the vector (81(1), B2(t), ..., Bp(t)). If the predictor is a binary variable,
Bp(t) measures the difference in log(relative risk) between the two groups as a func-
tion of time. The advantage of this approach is twofold: On one hand it offers a
straightforward way to investigate time-dependent structures, by testing for 5y, = 0.
On the other hand, in case of PH rejection, it provides automatically an alternative

model that fits adequately the data.

In case that all coefficients in 3 vary (B = B(t) = (B1(1), P2(t), ..., Bp(t))") the usual
partial likelihood of the model takes the form:

1‘—][ erp(Yid, XiB(1;))

L(Br(1), Ba(t), ., Bp(t) 1 R, exp(X,B(1;))]%

(7.3)

where X is the covariate vector corresponding to [th failure at time j.
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For one predictor p a function f, is used so that Bp(t) = Bo+ B, f,(1). The adequacy
of this approach depends clearly on the choice of function f,. There are several
proposals about how to estimate the appropriate function f,. Two methods that
can be used - smoothing splines and fractional polynomials - are shortly presented
in section 7.3.1 together with a new method using isotonic regression. But first,
approaches will be presented related to Schoenfeld residuals, that are used to test

proportional hazards.

7.3 Detecting PH departures under order

restriction

Assume that if there is any PH violation, it follows a monotonic pattern. Starting
from a time-varying Cox model (7.2), the Schoenfeld residuals provide a useful tool
in detecting time-variation for the predictors of interest. That can be accomplished

either graphically, or by applying a specific test as outlined below.

7.3.1 Smoothing Schoenfeld residuals scatterplot

The Schoenfeld residuals are defined at each unique failure times. In absence of ties
they are equal to the difference between the observed covariate vector for an event

at time t;,7 = 1,...,J and its expected value.

~ ZIERJ Xl@BXl

fj = XJ‘ — E(X]|R]) — 7:]‘ = XJ‘ ZIGRJ eBXl (74)

In the presence of P covariates, the Schoenfeld residuals 7 can be presented as a

J x P matrix.
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Assume that for each variable p we have one estimated coefficient for each event
time i.e. 3,;. Grambsch and Therneau [23] showed that if 5, is the coefficient from
an ordinary PH Cox model, then

E(r5;) + B = Bpi(t) (7.5)

where r* = VB_IT are the scaled Schoenfeld residuals and Vj is the variance matrix
for the estimated coefficients 3. This suggests to plot 77, + 3, versus time, to reveal
the functional form of time variation. In case that the PH assumption holds, the
residuals should form approximately a horizontal line at the constant coeflicient 3,

from model (7.1). One can used any kind of smoother for this purpose.

A popular choice are natural cubic splines. The principal idea is to split the time-
axis by selecting an appropriate number of nodes and to fit piecewise polynomials.
The choice of number of nodes (which determines the degrees of freedom) can affect
the result, and no specific functional form is given. Fractional polynomials [51, 54]
provide an interesting alternative, and result in a functional estimation of the time
variation, but again one has to choose a set of exponents and maximal number of

components.

The isotonic smoother provides an alternative to standard smoothers. It requires a
monotonic trend, which is true for many prognostic factors. For example, consider a
long-time therapy in which younger people respond better, but its prognostic value
decreases with age. Additional considerations as for example the number of nodes
need not be taken. The main advantage is that it detects jumps in risk for the time
axis. Without any a priori information, the procedure returns some cutpoints, and
segments the observational time in homogenous groups. The risk within each group

is considered to be constant.
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7.3.2 Grambsch and Therneau test and its 1sotonic version

Next to this graphical approach, Grambsch and Therneau introduced a version of
the score test based on the weighted Schoenfeld residuals. Assume that all P pre-
dictor variables are time-dependent. The coefficient for the p variable has the time-
depended form S3,(t) = Bo, + B1,(f,(t) — f,) where f, is the mean of f,(¢) over time.
Then, the PH hypothesis implies that Hy : 5y, = 0.

Using matrix notation the test statistic takes the following form

(F— ')

Tlestpy = —
GTtestpn dzag(VB)D S(t; —1)?

(7.6)

where Vj is the variance-covariance matrix for the estimated coefficients 3. Each
one of the resulting values corresponds to a variable and tests for time-dependency.
This test is approximately y? distributed with one degree of freedom for each tested

coeflicient.

This test can be thought of as a generalization of the least-squares statistic for
estimating 3(¢) given equation (7.5). Under the assumption of monotonic trend,
one can substitute the function f(¢) by the isotonic function is(?): if 1s(3,(1)) is a

consistent estimator of 3,(¢) then

is(r;j) + Bp & By (7'7)

where i5(r7;) is the residual matrix divided in blocks that correspond to time inter-
vals. Substituting r* by the isotonic estimation ¢s(r*) in equation 7.6 results to an

isotonic version of the G'T test.

Note that the idea to use piecewise constant and non overlapping time intervals to

estimate f(?) was first proposed by O’Quigley and Pessione [46]. However, as noted
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in their paper, the investigator has to choose the partition of the time axis. Although
the authors introduce some useful guidelines, the choice of the cutpoints remains
rather subjective. Applying isotonic regression this disadvantage is bypassed. In
section 7.5 the performance of isotonic transformation in the residuals is assessed

and compared to the standard Grambsch and Therneau test.

7.4 Fitting the generalized additive model using

isotonic smoothing techniques

Fitting smoothing splines in estimating S(¢) within the Cox model requires maxi-
mization of the penalized partial likelihood function. The result is a natural cubic
spline, having nodes at each failure time point. The oscillation of the fitted spline in-
creases as the penalty parameter decreases. This parameter need to be pre-specified
and defines the degrees of freedom. With fractional polynomials, one has to fit a
stratified Cox model where the unique failure time points ¢;,5 = 1,..., k determine
the strata. At each such strata the corresponding covariate values are attributed and
the new observational time is set to ¢;1; —?;. Using then X and f(t)X as predictors,

the stratified Cox model applied in the new data set will provide B(t)

With step functions modeling time-varying effects is easier. Once the time-intervals
are estimated the varying coefficients model (7.2) shall be estimated. Assuming that
PAVA returns m time cutpoints regarding the effect of a variable, the time-varying

coeflicient for this variable takes the form:

B(t)=PBo+ arly, (1) + agly,(t) + . + an Iy, (1) (7.8)

I (t)— 0 ift<:t]‘
b 1ife>t;
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The functional form of () has to be introduced in the model in order to estimate
& = (o, ag, ..., ). Standard likelihood based methods are applied for this purpose.
Thereafter the usual Score test or the Likelihood Ratio test with m degrees of
freedom can be applied to compare the PH model to the dynamic model, by testing

all time-specific coefficients to be zero:

Hy:04=...=a, = 0. (7.9)

The parameter «; measures the increase (or decrease) in the risk from time ¢,_; to

time ¢; on a logit scale.

It is very often the case that the time axis seems oversegmented. Some of the
observed cutpoints do not correspond to an important increase (or decrease) in risk.
One has to proceed to a backward elimination of the level sets. First the time groups
containing few events (less than 10% of the total number of events) are deleted. Once
these groups are eliminated, the likelihood ratio test can be applied to test one by
one the coefficients a; = 0 in order to define the neighboring level sets that do
not differ significantly. The deletion of a coefficient a; and its time-interval Iy, is
equivalent to its union to the previous interval. The elimination proceeds by such
time-interval unions, re-fits the Cox model and stops when all a; are found to be

significant. The (1 — a)% confidence band for a time varying predictor is expressed

by

Clo=P3+ /X%, _, ,diag(ZV;2') (7.10)

where Vj is the large sample variance-covariance matrix for 3 = (Bo, a1y 2y ey Qi)

When more than one covariate is time-varying, the backfitting strategy is applied
to fit the model. The general idea is to fit the time-varying coefficients allowing

variation at one variable at time while the rest covariates remain time-independent

BN = (B 4 =0, B B
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where f(t) is a step function. The likelihood ratio test will assess the gain in the
fit i.e will test a;=! = 0. In case of evidence f(t) is retained. In the next step all

coefficients are reestimated, allowing now variation for the first two variables

6#:2(7’[) = ( ét:2 + d?zzfl (t)v 6(?22 + &Zfzzf?(t)v ceey 3’;5:2)

where only fi(t) is estimated from the previews step and held constant in step 2.
The procedure goes on like that updating in each iteration only the coefficients.

Such loops are repeated until a small change in the likelihood is achieved.

7.5 Simulation study

A simulation study was conducted to explore the properties of the new proposal
for testing proportional hazards applying the isotonic version of Grambsch and Th-
erneau test (7.6). This section focuses on revealing the advantages of the isotonic
GT test against the conventional test. When forming assumptions about the func-
tional form of the regression, I tried to be as consistent as possible with situations

frequently observed in clinical studies. The simulations are designed to avoid ties.

Only the case of a simple binary predictor is considered. One proportional and three
non proportional hazard models are analyzed. In the baseline group the covariate

—4
has been set X = 0 and the hazard —€ —. The treatment group has X =1 and

1+e
—445(t
hazard Lief;;(t)' Each group contains 100 observations.

To generate the data sets, I proceed separately in each group (treatment or baseline)
as follows: starting from time=1 the number of failures is calculated using the hazard
function. For the observations remaining at risk, the number censored observations
is calculated, as a random binary process. The procedure is repeated for time=2
and stops when no more observations remain at risk. The censoring probability used

here was 0.5%. To model dynamic structures that decrease with time the following



7.5 Simulation study 128

FP FP
GT GT
I sotonic I sotonic
o 0w 4 @ o 10 o » 4 ® o 10
Power (linear shape) Power (flat quadratic shape)
FP FP
GT GT
Isotonic Isotonic
6 éO 40 éO E;O 160 0 10 éO 3“0 4;0 50
Power (Step function) Type | error (constant)

Figure 7.1: Simulations study for survival data. Compare in terms of power (first
three figures) and type [ error (last figure) the Grambsch and Therneau
test (GT test), the fractional polynomials test and the isotonic version

of GT test.

scenarios are made:
Linear: a decreasing linear time-dependency where (1) = —0.02¢ + 1.

Quadratic: where 3(t) = —0.04¢ — 0.004¢2 — 1 representing a decreasing umbrella
shape

1.5 <24

Step function: having shift at t=24 and B(¢) = :
0 t>24
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Constant: (¢) = 1 for estimating the properties in case where the PH assumption

is not violated.

Simulations under the first three functions will give information about the power
of the compared tests, whereas with the constant function the type I error will be
assessed. Three test are compared: a) a test based on fractional polynomials model
described in [9] b) the GT test (7.6) assuming linear transformation for time and c)

the isotonic version of GT test (7.5). The results are presented in figure 7.1.

The isotonic test presents the best power for all non-constant functions, whereas
the conventional GT test gives the lowest power. For every shape the power from
fractional polynomial is lower that this from isotonic regression. One would expect
that this advantage of the isotonic test is eliminated in case of a non-monotonic
function. The more flexible approach as the fractional polynomials should present
a better performance in case of the flat quadratic function. This is not the case,
as outlined in figure 7.1: isotonic regression gives higher power for this shape as it
gives for a step function. However, the price one has to pay for the increasing power

in the isotonic test is a higher type I error.

7.6 Case Study in time-varying Cox model

The data set used to illustrate the above approaches contains 141 observations from
children having acute leukemia (ALL). The endpoint was overall survival time. The
probability to die within a period of 7 days to about 10 years follow up, has been
found to be dependent upon the following binary variables:

- Remission after the first induction (REMI, 1: yes )

- ALL relapse after the first Chemotherapy (RELP, 1: yes )

- The size of massive spleen below the rib (MSPS, 1: > 1 c¢cm )

- White blood cell count (WBC, 1: > 60.6 10?/L )
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Survival time is measured in years. The main of the study was to estimate if there
is a time variation in the effect of MSPS, and in case of evidence to describe this
variation. The sample is characterized by a high event rate (122/141), and the value

of deviance in absence of any predictor is estimated to be 1037.59.

The Cox PH model with forward LR selection has been applied and table 7.1 shows
the estimated coefficients. Time variation in the predictive value of MSPS has been
tested applying Grambsch and Therneau test, Kaplan-Meier curves (figure 7.6) and
smoothing the Schoenfeld residuals using splines, fractional polynomials and iso-

tonic regression (figure 7.3).

Table 7.1: Acute lymphoblastic leukemia study: The PH Cox model. The deviance
1s 957.08 with 5 degrees fo freedom.

Variables Coefficients SE p-value

RELP 0.507 0.219  0.021
REMI -0.991 0.387  0.010
MSPS 0.549 0.203  0.007
WBC 0.785 0.232  0.000
CONTS -0.974 0.362  0.007

These different methods are more or less in agreement: there is a dynamic effect
for MSPS. The Grambsch and Therneau test results in a test value 3.930 and the
corresponding p-value is 0.047. Fitting the varying coefficients model using splines,
the constant predictor lies out of the confidence bands for more than 10% of the total
number of events (figure not shown). There is a decreasing positive prognostic value
for MSPS. Children that do not have massive spleen have better prognosis that
decreases progressively, and after about four years the direction of the prognosis
changes. This conclusion is quite strange and against any biological plausibility.

However a possible explanation could be the following: perhaps many children get
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Cumulative survival

Survival time (years)

Figure 7.2: Kaplan-Meier cumulative survival curves for MSPS.

a very intensive chemotherapy that is effective against the tumor but is also too
burdensome. So, it may cause a preliminary death to many children. But once a
child overcomes that crucial period and does not relapse, it has the best chances to

survive.

By isotonizing the Schoenfeld residuals (figure 7.3) the appropriate time-cutpoints
are revealed. The confidence intervals correspond to fractional polynomials. How-
ever some of the resulting steps contain very few events and therefore do not offer a
lot of information while increasing the degrees of freedom. Each group is restricted
to contain at least 10% of the total number of events. After elimination of those

groups, model 7.8 can be written for the resulting time-cutpoints:

B(t) = Bo+ ay - L1es(t) + as - Iss(t). (7.11)

The time-stratified Cox model can now be fitted again to estimate whether some
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Figure 7.3: Smoothing the scaled Schoenfeld residuals for MSPS.

of the [,(t) variables are non significant predictors and to delete them. Recall that
any coefficient « that is found to be non significant corresponds in a union of the
above defined time-level sets (table 7.2). Note that p-value correction has to be
considered because of the multiple comparisons i.e. a = 1 —+/0.95, ¢ the number of

time-segments.

Both time-interval variables [ g, [352 are significant. The fitted function with the

corresponding confidence bands are presented in figure 7.4. The dynamic form 3(t)

for MSPS is:
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Busps(t) = 157 — 118 - I gs(t) — 2.85 - I3.55(2). (7.12)

Table 7.2: Elimination of the time level sets for MSPS dynamic coefficient.

Coefficient Deviance p-value

Bo 957.08 0.0000
o 928.59 0.0000
o2 915.64 0.0013

The final achieved deviance have been estimated 915.64, that yields an overall LR
test for PH of 41.44 (p < 0.001). Finally the model containing all the significant

predictors and their time dependent effects is:

h(t) = ho(t)e’t®)
where
p(t,x)=0.490 - RELP —1.105 - REMI+
+[1.568 — 1.184 - [1 98(t) — 2.851 - I359(t)] - MSPS + 0.235 - WBC — 0.604 - CONTS

7.7 Extensions

One can imagine implementations of isotonic regression in several approaches re-
garding survival settings. John O’Quigley [46] for example introduced a test for
proportional hazards based on the model: A(t) = )\O(t)exp[(g + \Ilé)’X] The matrix
v = diag(;/?l, I 72)]3) is a score matrix determined by the user. Obviously if § = 0
the proportional hazards model is recovered. The model is fitted using the stratified
Likelihood, where arbitrary time cutpoints define the strata, and a sort of score test
is applied to test for § = 0. Isotonic regression can be easily introduced into this

context and improve the performance of this approach.
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Figure 7.4: Isotonic fit for time-dependent coefficient for MSPS.

Another assumption undertaken by the Cox model is that each variable enters the
model linearly, assumption that may also be violated. This case entails that both
coefficient and RR depend on the variable (8 = (X)), RR = exp(p(x;) — p(x;))).
The adequacy of the linear form of a predictor in the Cox model can be visualized by
smoothing the martingale residuals plotted against the predictor. If the shape seems
not linear, the predictor has to be transformed. An approach similar to this used

for modeling time variation can be applied to model properly non linear predictors.

An alternative approach that uses step functions in modeling dynamic structures is

accomplished with CART [67]. The main advantage provided is that the time-



Chapter 7: MONOTONIC REGRESSION IN SURVIVAL ANALYSIS 135

cutpoints are not prespecified, but the pruning parameter has to be calculated

through cross validation. The PAVA algorithm can modify the splitting criteria,

to include monotonicity restrains if so required.



8 SUMMARY

8.1 Summary

Categorizing continuous variables arises as an important task in statistical analysis,
especially in analyzing dose-response relationships. Creating meaningful groups of
the predictor variables regarding the outcome variable is desirable in many settings,
especially if the form of the relationship is unknown. However it is not always obvious
how many groups should be build and where the cutpoints should be placed. Usually
more than one explanatory variable has to be included in the analysis, and therefore
one has to apply an appropriate statistical model. For this purpose we need a simple
approach to model the data without many requirements. Another important issue
in statistical analysis and especially in toxicology studies is proving a dose response
relationship: increasing response probability with increasing predictor variable. This
theses deals with cases where categorization of numerical or categorical predictor

variables results as an effect of the dose-response relationship.

[sotonic regression is an alternative proposal when one wishes to establish a dose-
response relationship, categorize continuous variables and estimate threshold values.

The only assumption for this approach is the monotonicity in the response variable.

136
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The isotonic regression summarizes the description of n observations to [ categories
(level sets or solution blocks) by automatically splitting the predictor in constant risk
groups. The result is always a step function, and therefore the isotonic regression
can be used to fit a changepoint model. The Pooled Adjacent Violators Algorithm
(PAVA) is used to fit the data.

In relation to model fitting and testing, some problems arise when the response is
binary, and in the present work the difficulties are highlighted and some proposals
to solve them are given. Regarding isotonic regression and binary response, the
isotonic test for trend, the reduced isotonic model, multidimensional isotonic models

and methods to assess threshold limit values are discussed.

The isotonic framework provides a reliable test for trend which unlike other widely
used tests (the Cochran-Armitage test for example) is independent of any monotonic
transformation of the dose variable and does not assume a linear shape. However the
proposed large sample approximation (a weighted chi-square distribution) does not
hold when the overall response probability is less than 5% and thus exact methods
are proposed in order to assess the correct p-value. In a simulation study it has been
shown that the isotonic likelihood ratio test is more powerful than the Cochran-

Armitage test, the Wilcoxon test and the Iso-chi-squared test.

The model resulting from PAVA can become more parsimonious if the level sets
which correspond to a non significant change for the response variable are eliminated.
This model is called reduced isotonic regression. That can be accomplished by two
means: a sequence of Fisher tests for the adjacent 2 x 2 tables or the application of
a variation of a ”"closed testing” procedure. The correction for multiple comparisons
is made for the first method by an a-priori estimation of the overall significance level
in a permutation procedure. In the second method the control for the expense of
the type I error is effected by the closure principal. To select between full isotonic

and reduced model, a procedure based on parametric bootstrap is proposed. A
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2

simulation study proved that when the maximal coefficient of determination k2

for the analyzed data set is at least 50% and the data can be represented by a
step function, the reduced monotonic regression controls successfully the trade off

between model complexity and goodness of fit.

When more than one predictor is to be taken into account an additive isotonic
model can be applied. Alternatively, an isotonic-surfaces model is proposed. This
can be estimated by an iterative version of the Pooled Adjacent Violators Algorithm.
The result is a sequence of surfaces which is monotonic in every dimension. This
approach models interaction and categorizes the predictors in "multivariate” groups
by combining them regarding restrictions to the outcome variable. This approach
is very useful since, unlike the additive model, it can be easily combined with the
reducing procedures to give a simple and interpretable model. However, for practical

reasons a maximum of three predictors can be taken into account.

A special aspect in analyzing dose-response relationships for a compound known to
have harmful health effects, is to estimate a threshold limit value (TVL). On this
regard a "hockey stick” threshold model is usually used. As alternative the use of
a step function model by fitting the data using isotonic regression is proposed. A
set of candidate threshold values is returned, and some threshold value estimation
procedures are studied here. One of them starts from the isotonic model and applies
the likelihood ratio test to detect the threshold value (method 1). Method 2 is
based on the reduced isotonic regression. The performance of these two approaches
is outlined in a simulation study under different scenarios and their properties are
explored with categorical predictors. It is concluded that these methods possess
a satisfactory power to reject the constant risk assumption, when a dose-response
relationship exists as well as to estimate the actual threshold. Some limitations
regarding the sample size and the force of trend are also discussed. A third method
has also been presented. This modifies the closed testing procedure for the special

case of thresholds, by setting one end of the regression line conditional to the other.
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All three threshold value estimation methods can be combined with the isotonic-
surfaces model to provide thresholds, taking into account interactions between the

predictor variables.

The use of isotonic regression and its reduced version can also be extended to other
settings. The capability of isotonic regression to be implemented in several models
is outlined by describing how isotonic regression can model and test time-varying
effects in Cox regression. The monotonic variation in the impact of a predictor
included in the model during an observational period can be represented by a step
function. An estimation of the time-dependent effect in the extended Cox model
is presented based on isotonic regression framework. Smoothing the Schoenfeld
residuals plotted against time applying PAVA, can reveal the changepoints without
any a priori information about their location. The corresponding step function is
then introduced in the model. The power of the Grambsch and Therneau test (which
tests for time-variation in the effect of the predictors) can be improved if the isotonic
transformation for the Schoenfeld residuals is used. Although this test appears to
increase the type I error, its power is higher compared to conventional Grambsch

and Therneau test and tests based on fractional polynomials.

In summary it arises that isotonic framework is characterized by simplicity and
stability. The main drawback underlying its application is the lack of asymptotic
support in testing. This can make the use of isotonic models cumbersome since

exact or bootstrap methods need to be used.
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8.2 Zusammenfassung

Die Kategorisierung von stetigen Merkmalen erweist sich als eine sehr wichtige Auf-
gabe innerhalb statistischer Analysen, ganz besonders in der Analyse von Dosis-
Wirkungs-Beziehungen. Es ist in vielen Situationen winschenswert, sinnvolle Grup-
pen innerhalb der Pradiktorvariablen zu finden und zu bilden. Dennoch bleibt oft
die Frage, wieviele Gruppen gebildet werden sollen und wo genau die jeweiligen
Grenzwerte liegen sollen. Wird mehr als eine erklarende Variable in die Analyse
eingeschlossen, muss ein passendes statistisches Modell gefunden und angewendet
werden. Winschenswert ware ein moglichtst einfacher Ansatz zur Modellierung der

Daten, der wenige Voraussetzungen erfordert.

Ein wichtiges Problem in der statistischen Analyse, besonders in toxikologischen
Studien, ist der Nachweis von Dosis-Wirkungs Beziehung, d.h. wenn mit einem
Ansteigen der erklarenden Variablen auch eine Steigung der Wahrscheinlichkeit fur
das Auftreten der Zielgrosse einhergeht. Diese Doktorarbeit behandelt Situationen,
bei denen die Kategorisierung von stetigen oder kategorialen Variablen als Ergebnis

der Analyse von Dosis-Wirkungs-Beziehung (DWZ) einhergeht.

[sotone Regression liefert einen alternativen Ansatz, um eine Dosis-Wirkungs-Bezie-
hung nachzuweisen, stetige Merkmale zu kategorisieren und Grenzwerte zu schatzen.
Die einzige Voraussetzung bei diesem Ansatz ist die Monotonie in der Zielgrosse.
Die isotone Regression fasst n verschiedene Beobachtungen in [ verschiedene Blocke
zusammen, indem sie die Pradiktoren in Gruppen mit jeweils konstantem Risiko ein-
teilt. Da das Resultat eine Treppenfunktion ist, kann die isotone Regression benutzt
werden, um Schwellenwerte zu erkennen. Der Pool Adjacent Violators Algorithmus

(PAVA) setzt diesen nicht-parametrischen Ansatz um.

Bei binarer Zielgrosse entstehen hier Probleme beziiglich der Modellschatzung und

der Modelltests. Ein Hauptaugenmerk dieser Arbeit liegt auf der genauen Unter-
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suchung dieser Probleme und bietet teilweise Losungsvorschlage an. Bezuglich der
[sotonen Regression mit binarer Zielgrosse werden mehrere Gebiete genauer disku-
tiert: das reduzierte isotone Modell, das multidimensionale isotone Modell und

Methoden zur Bewertung von Schwellenwerten.

Der isotone Ansatz liefert auch einen Trendtest, der, im Gegensatz zu anderen
Trendtests (wie z.B. der Cochran-Armitage Test), unbeeinflusst von monotonen
Transformationen der Dosisvariable ist und auch keinen linearen Zusammenhang
voraussetzt. Die vorgeschlagene asymptotische Verteilung (eine gewichtete Chi-
Quadrat Verteilung) liegt nicht vor, wenn die Wahrscheinlichkeit fiir das Auftreten
der Zielgrosse unter 5% sinkt. Hier sind exakte Methoden erforderlich, die einen
genauen P-Wert bestimmen. In einer Simulationsstudie konnte gezeigt werden,
dass dieser isotone Likelihood-Quotienten-Test eine grossere Power besitzt als der

Cochran-Armitage-Test, der Wilcoxon Test und der Iso-Chi-Quadrat-Test.

Das isotone Modell kann noch vereinfacht werden, indem die Blocke, die einen nicht-
signifikanten Einfluss haben, zusammengefasst werden. Hierzu wurden zwei ver-
schiedene Methoden verglichen: einer Sequenz von exakten Fisher-Tests fir die be-
nachbarten Blocke sowie eine Variante eines ”closed testing” Prozesses. Die Korrek-
tur fir multiple Vergleiche des P-Wertes wird bei der ersten Methode durch eine a-
priori Schatzung des Gesamtsignifikanzniveaus mittels eines Permutationsverfahrens
erreicht. Bei der zweiten Methode ist die Kontrolle des Fehlers erster Art durch das
Einschliessungsverfahren beeinflusst. Um letztendlich zwischen dem vollen Mod-
ell und seinem reduzierten Aquivalent zu entscheiden, wurde ein parametrisches
Bootstrap-Verfahren vorgeschlagen. In einer Simulationsstudie zeigte sich, wenn
der maximale Koeffizient k2 fiir die Daten mindestens 50% betragen soll und
die Daten durch eine Treppenfunktion dargestellt werden konnen, dann stellt die

reduzierte isotone Regression einen guten Kompromiss zwischen hoher Modellkom-

plexitat und Gute dar.
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Wurde mehr als eine Pradiktorvariable berticksichtigt, dann kann ein additives
Modell verwendet werden. Alternativ hierzu wurde ein "isotone-Flache”-Modell
vorgeschlagen. Dieses kann mittels einer iterativen Version des PAVA geschatzt wer-
den und resultiert in einer Sequenz von Flachen, die in jeder Dimension monoton
sind. Es werden hierbei Interaktionen modelliert und die Pradiktoren in multidimen-
sionale Gruppen bezuglich bestimmter Einschrankungen der Zielgrosse unterteilt.
Dieser Ansatz ist sehr elegant, da er, im Gegensatz zum additiven Modell, leicht
mit dem Reduzierungsverfahren kombiniert werden kann, und so einfache und leicht
interpretierbare Modelle liefert. Aus praktischen Griinden konnen hierbei jedoch

nur bis zu maximal drei Pradiktorvariablen in das Modell genommen werden.

Die Schatzung von Schwellenwerten fir Stoffe, die sich bekanntermassen negativ
auf die Gesundheit auswirken, ist von grosster Bedeutung in der Epidemiologie. In
diesem Zusammenhang wird normalerweise ein "hockey stick”-Schwellenwertmodell
angewandt. Alternativ wurde ein Modell vorgeschlagen, das auf dem Resultat einer
isotonen Regression, also einer Treppenfunktion, basiert. Es gilt aus einer Reihe
von Schwellenwerten einen Wert auszuwahlen. Verschiedene Schatzer wurden un-
tersucht. Eine Methode setzt beim isotonen Modell an und fithrt einen Likelihood-
Quotienten-Test durch. Die zweite Methode basiert auf der reduzierten isotonen
Regression. Die Leistung der beiden Algorithmen wurde in einer Simulationsstudie
kurz dargestellt. Die Eigenschaften wurden hierzu in verschiedenen Situationen
mit kategorialen Einflussgrossen untersucht. Falls eine Dosis-Wirkungs-Beziehung
vorliegt, erweisen sich diese zwei Methoden als ausreichend machtig, um die Hy-
pothese 7das Risiko andert sich nicht” zu verwerfen. Sie sind zufriedenstellend
bezuglich ihrer Fahigkeit, den Schwellenwert zu schatzen. Einige Einschrankungen,
entstehend aus der Stichprobengrosse und dem Einfluss des Trends, wurden ebenso
diskutiert. Als dritte Methode wurde eine Modifikation der "closed testing” Ver-
fahren vorgeschlagen. Dabei stellt sie ein Ende der Regressionslinie in Abhangigkeit

zum anderen Ende dar. Alle drei Schwellenwertschatzer konnen mit dem "isotone-
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Flache”-Modell kombiniert werden, unter Berticksichtigung von Interaktion zwischen

den Finflussgrossen.

Die Implementierung der isotonen Regression in verschiedene Modelle wird ex-
emplarisch hervorgehoben in einer Anwendung der isotonen Regression im Cox-
Modell mit zeitveranderlichen Effekten. Die monotone Variation des Einflusses
eines Pradiktors tiber eine bestimmte Zeitperiode kann durch eine Treppenfunktion
dargestellt werden. Eine Schatzung der zeitabhangigen Effekte im erweiterten Cox-
Modell, basierend auf isotoner Regression, wurde beschrieben. Werden geglattete
Schoenfeld-Residuen gegen die Zeit in einem Diagramm eingetragen, unter Zuhilfe-
nahme von PAVA, konnen auch ohne a-priori Informationen tiber ihre Lage, Grenz-
werte gefunden werden. Die Power des Grambsch-Therneau Tests zu Untersuchung
der Veranderung des Einflusses eines Pradiktors uber die Zeit, kann verbessert wer-
den, wenn die Schoenfeld-Residuen mittels PAVA transformiert werden. Obwohl
dieser Test scheinbar den Fehler erster Art erhoht, ist seine Power hoher im Ver-

gleich zu herkommlichen Grambsch-Therneau-Test sowie zu Tests, die auf frak-

tionalen Polynomen basieren.

Abschliessend bleibt zu sagen, dass sich meiner Meinung nach die Analyse mittels
isotoner Methoden durch Einfachheit und Stabilitat auszeichnet. IThr Hauptnachteil
liegt in dem Mangel an asymptotischen Hilfestellungen beim Testen. Dies kann
die Verwendung von isotonen Modellen erschweren, da dann exakte oder bootstrap

Methoden verwendet werden miissen.



A APPENDIX: Software

implementation in S+

This chapter provides help on the isotonic library isotonic.S.library. This
library contains original functions in S+ language, except for ccaddir.cov pro-
grammed by Morton-Jones for additive isotonic models. This library is available in

my personal web-page.

Chapter 2: MONOTONIC REGRESSION

The data set Munich contains the variables CBR, ZEIT1,GESAMT, RAUCH: event, time
since first exposure, total dust concentration and smoking habits. The data set Mu.r
is the subset for smokers. The basic generic function is isotone.simple.order.fun
having arguments the observed proportions, the weights and the trend option (in-

creasing or decreasing).

> attach(Mu.r)

> y_table(ZEIT1,CBR) [, 2]

> w_table(ZEIT1)

> isot.TIME_isotone.simple.order.fun(y/w,w,trend="1I")
>

isot.TIME_rep(isot.TIME,w)

144
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The isotonic plot in figure 1.1 has been made applying:
> plot(ZEIT1,isot.TIME, type="1")

Chapter 3: TESTS FOR TREND IN BINARY
RESPONSE

Analysis of the para-aramid data (section3.4)

The function CA.test calculates the Cochran-Armitage test and returns the test
statistic and the p-value (two sided) according to the chi-square distribution with

correction for skewness.

>ni<-c(137, 133, 132, 137, 92)
>pi<-c(1,1,1,4,4)/ni

>CA<-CA.test(pi,ni, score=1:5) # the index as score
>CA$gamma

[1] 0.02309635 # the coefficient of skewness

The function isoR.fun assesses the isotonic likelihood ratio test . Select trend="D"

for decreasing trend.

> isoR.fun(pi,ni,trend="I")

[1] 6.471335
Equivalently the iso-chi-squared test:

> gautamiso.test(pi,ni)
$statistic:

[1] 7.083767

$rejectHO:

[1] 1
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The value $rejectH0 is 1 for rejecting Hy and it is assessed according to approxi-
mations due to Gautam (see table at the end of Appendix).
A p-value estimated by 10 000 simulations can be calculated for every tests statistic

applying the function exact.p.value.fun:

> exact.p.value.fun(pi,ni,CA.test,1:5)
[1] 0.0182

The function poly3.fun calculates the Poly-3 test. On analyzing the example in
section 3.5.3:

> attach(EMIAT)

> Poly3(Y=ACM, time=follow, X=LVEF6, score=c(6:1))
$statistic:

[1] 2.237923

$p.value:

[1] 0.01261305

Chapter 4: REDUCED MONOTONIC
REGRESSION

Analysis of MAK study using cumulative exposure (section 4.5)

The reduced isotonic regression using Fisher’s test (see section 4.2.1) can be obtained
by uniisoRED.fun. This function returns the isotonic and the reduced isotonic
estimators, estimation for ¢, a test for trend based on 10 000 permutations and a

graph. Regarding the example analyzed in this chapter the function

> cumRES <- uniisoRED.fun(response = CBR, predictor = cumex,

data = Mu.r, reapplic = 10, test = F, graph = F)
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gives the output:

Univariable Isotonic Regression
Likelihood functions

-2log(Likelihood) for HO: 1058.17193971207
-2log(Likelihood) for Isotonic regression: 983.057208460027
-2log(Likelihood) for reduced regression: 988.327637917929
sls

0.0238
p-value for HO: 0.00009999

whereas cumRES$out is a database containing the estimated values. The func-
tion unicompareRI.fun(reduced.object, sls, reapplic) isused to compare the
reduced model to its isotonic, having as arguments, the output of the function
uniisoRED.fun, the ¢* (s1ls) and the number of bootstrap samples used (reapplic).
The elimination based on closed procedure has been made on the use of closed.test

function

> out <- as.data.frame(cumRES$out)
> attach(out)
> pi <- sort(unique(isotonic.pi))
> ni <- table(isotonic.pi)
> out <- as.data.frame(cumRES$out)
> attach(out)
> pi <- sort(unique(isotonic.pi))
> ni <- table(isotonic.pi)
> reduced.pi.closed <- closedtest.fun(pi, ni)
> reduced.pi.closed

pfin nfin

0.19327542 618
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0.35497835 231
0.56337606 71

Chapter 5: MULTIDIMENSIONAL
MONOTONIC MODELS

Analysis of MAK study using CBR and ZEIT1 (section 5.7)

The variables qgesamt and gzeit correspond to grouped variables total dust and
time since first exposure. Two dimensional isotonic estimates can be curried out by

applying the function:

> d2Mu.r<-d2.isotRED.fun(response=CBR, predictorl=qgesamt, predictor2
=qzeit, plot = T, Likelihood = T, reduced = T, w, dataset)

The function automatically assesses the correct £* or it can be defined with the
argument sls, or by applying the function SLS.fun. The result contains the iso-
tonic and the reduced fitted values fitted.iso, fitted.red. Global and partial

significance in a two dimensional model can be assessed by the function:

> test<-d2.isotest.fun(d2isotREDoutput=d2Mu.r, response=CBR,
predictor=qgesamt, predictor2=qzeit, reapplic=5000, HOsimulations = T,
plot = T, CIbands = T, conditional = F, CIbandsHl1= F, dataset)

> test

[1] 0.00019996

To compare the reduced model to the full isotonic the function
> compareRI.fun(d2.isotREDoutput=d2Mu.r, reapplic=5000)

can be applied.
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The additive isotonic model is computed by the function ccaddir. cov (programmed

by Morton-Jones)

> AIMmodel <- ccaddir.cov (X=cbind(GESAMT,ZEIT), w=rep(1,920), Y=CBR,
Z=RAUCH)

I added the function

> AIMtest.fun(predictor=GESAMT, response=CBR, predictor2=ZEIT1,
linterm=RAUCH, Mcdata=5000)

which assesses the conditional significance for one predictor included in the model.

Chapter 6: THRESHOLD VALUE ESTIMATION

Searching for threshold in MAK study (section 6.5)

The approach for estimating thresholds referred to as method 1 is implemented in

uniisoTHRES. fun

> method1<—uniisoTHRES.fun(response=CBR, predictor=cumex, data=Mu.r)
> method1$threshold
[1] 5.04

The function AIMthres. fun assesses a threshold value using method 1 in the partial

fitted function for the first variable included in the model. For example:

> AIMthresh.fun(AIM=AIMmodel, data=Mu.r, response=CBR,
threshold.variable = 1, 1pred=RAUCH)

where the arguments are: ccaddir.cov function output, the data set, the response
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variable, the position of the variable for which the threshold should be estimated,

and eventually the linear predictor included in the semiparametric model.

The function BCCI.fun estimates bootstrap corrected and accelerated confidence

intervals.

> BCCI.fun <- function(xdata, boot = 1000, theta.function = theta,

measure = '"threshold locations", a = 0.95, graph = F)

The user need to specify the number of bootstrap samples (boot) and the data set

(xdata) which has in the first column the response variable and then the predictor.

Chapter 7: MONOTONIC REGRESSION IN
SURVIVAL ANALYSIS

Analysis of Acute Leukemia Study (section 7.6)

The Cox model allowing isotonic time variation for MSPS has been fitted by:
> Cox.isomodel <- cox.isph(data, Trend=c(NA,NA,"D" ,NA,NA))

The data have to be in the following order: survival time, status, covariates.

> Cox.isomodel$sres #returns the Schoenfeld residuals for all
covariates and the weighted isotonic estimation of Schoenfeld residuals
(only for time-varying variables)

> Cox.isomodel$newdata # the starting data base where at the end is
added time contrast for the time-varying variables

> Cox.isomodel$time.breaks # returns the time cutpoints

The function my.cox.zph assesses the isotonic test for time variation based on

Schoenfeld residuals (equation 7.6). This function has been used in the simulation
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study in section 7.5.

Table A.1: Approximate critical values for significance level a=0.2, 0.1, 0.5, 0.01
for the iso-chi-squared statistic W. (derived by S. Gautam [21])

.05

.01

o
O 0 =1 O Ot e W

2.50
2.99
3.32
3.57
3.80
4.02
4.17
4.33

3.67
4.27
4.67
4.99
5.26
5.48
5.69
5.85

4.91
5.59
6.06
6.38
6.70
6.97
7.17
7.35

7.96
8.61
9.17
9.62
9.96
10.23
10.60
10.87
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