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In bunten Bildern wenig Klarheit,
Viel Irrtum und ein Fünkchen Wahrheit,
So wird der beste Trank gebraut,
Der alle Welt erquickt und auferbaut.

Johann Wolfgang von Goethe, Faust I, Lustige Person im Vorspiel auf dem Theater.

Die Vernunft muß mit ihren Prinzipien...in der einen Hand und mit dem Expe-
riment...in der anderen, an die Natur gehen, zwar um von ihr belehrt zu werden,
aber nicht in der Qualität eines Schülers, der sich alles vorsagen läßt, was der Leh-
rer will, sondern eines bestallten Richters, der die Zeugen nötigt, auf die Fragen zu
antworten, die er ihnen vorlegt.

Immanuel Kant, Kritik der reinen Vernunft.

Können wir das Universum wirklich “kennen” ? Mein Gott, es ist doch schwierig
genug, sich in Chinatown zurechtzufinden. Der springende Punkt ist doch : Gibt es
da draußen irgend etwas ? Und warum?

Woody Allen, Wie du dir, so ich mir.





Zusammenfassung

In der heutigen Kosmologie werden Inhomogenitäten und Unregelmäßigkeiten in den
relevanten Datensätzen wie etwa die Substruktur in Galaxienhaufen und die Tatsa-
che, daß verschiedene Galaxientypen unterschiedlich im Raum verteilt sind, nicht
mehr nur als zufällige Fluktuationen interpretiert, sondern für ein Verständnis der
kosmischen Materieverteilung positiv nutzbar gemacht. Die vorliegende Arbeit ent-
wickelt in diesem Sinne Maße, welche eine quantitative Beschreibung von solchen
Inhomogenitäten liefern, wendet sie sowohl auf Realdaten als auch auf numerische
Simulationen an und stellt den Zusammenhang zu physikalischen Modellen her.

Die Integralgeometrie stellt Maße zur Verfügung, die sich unter geometrischen Trans-
formationen und Mengenoperationen in einfacher Weise verhalten. Während bislang
in der Kosmologie vor allem die skalaren Minkowski–Funktionale angewandt wur-
den, um die kosmische Materieverteilung zu charakterisieren, stehen im ersten Teil
dieser Arbeit höherrangige Minkowski–Valuationen wie die Quermaßvektoren und
–tensoren im Vordergrund. Diese spiegeln die Lage, Symmetrie, Gestalt und Kon-
nektivität von Mustern wider.
Zunächst werden diese Maße für physikalische Anwendungsbereiche erschlossen. Die
Anwendungen gelten dann Galaxienhaufen (“Clustern”), deren innere Eigenschaften
auch dazu geeignet sind, die Werte der kosmologischen Parameter einzuschränken.
Mit Hilfe der Minkowski–Valuationen definieren wir eine Reihe von Strukturfunktio-
nen, die sich speziell dazu eignen, Galaxienhaufen morphologisch zu charakterisieren.
Eine Analyse von Clustern, die kosmologischen Dunkle–Materie–Simulationen ent-
stammen (dem sogenannten GIF–Projekt der “German–Israelic Foundation”), zeigt,
daß der morphologische Zustand von Galaxienhaufen zwischen verschiedenen kos-
mologischen Hintergrundmodellen unterscheiden kann. Eine weitere Analyse gilt
komplexeren Simulationen, die auch das heiße Cluster–Röntgengas berücksichtigen.
Dabei vergleichen wir nicht nur die Gas– und die Dunkle–Materie–Morphologie, son-
dern untersuchen auch den Zusammenhang mit der inneren Dynamik. In geeigneten
Räumen von globalen Clusterparametern entstehen fundamentale Abhängigkeiten
wie etwa die Fundamentalebenenrelation. Dabei können wir zeigen, daß der Abstand
von der Fundamentalebene, der die Entfernung von einem Gleichgewichtszustand an-
gibt, mit der Substruktur der Galaxienhaufen positiv korreliert ist; mithin spiegelt
die Substruktur den inneren dynamischen Zustand eines Clusters. Weiterhin wird
gezeigt, daß die Morphologie von Galaxienhaufen auch im Optischen (d.h. in der
Verteilung der Clustergalaxien) die Hintergrundkosmologie widerspiegelt. Dazu ana-
lysieren wir die Verteilung von Cluster–Galaxien, welche semianalytischen Modelle
für die GIF–Simulationen vorhersagen, und Realdaten.

Eine Grundfrage der modernen Kosmologie gilt der Art und Weise, wie die Dunkle



Materie hinter dem Vordergrund der sichtbaren Galaxien im Universum verteilt ist
(“Bias”–Problem). Wegen der Schwierigkeiten, die Dunkle Materie zu lokalisieren,
sind dabei schon Unterschiede von Interesse, die sich etwa in der räumlichen Vertei-
lung unterschiedlicher Galaxientypen finden. Der zweite Teil der Arbeit beschäftigt
sich mit einem neuen Ansatz, solche Unterschiede zu quantifizieren. Dabei versteht
man die Galaxienverteilung als Realisation eines markierten Punktprozesses, der
neben den Positionen im Raum auch innere Eigenschaften der Galaxien wie Leucht-
kräfte oder morphologische Typen erzeugt. Diese Beschreibung ermöglicht es, eine
Reihe von Größen einzuführen, mit denen man testen kann, ob eine Markensegrega-
tion vorliegt, das heißt, ob das räumliche Clustern der Galaxien von deren inneren
Eigenschaften abhängt. Solche Testgrößen – wir beziehen uns dabei hauptsächlich
auf Statistik zweiter Ordnung – zeigen, angewandt auf den Southern Sky Redshift
Survey II, signifikante Leuchtkraft– und Morphologie–Segregation an. Ein Vergleich
mit Modellen zeigt die komplexe Natur dieser Leuchtkraft–Segregation, die insbe-
sondere nicht auf die Morphologie–Dichte–Relation zurückzuführen ist.



Bemerkung: Im Vergleich zu der von der Fakultät für Physik akzeptierten Version
meiner Dissertation enthält diese Version ein paar wenige kleine Änderungen, die
jedoch in keiner Weise die Methoden und die Hauptergebnisse der Arbeit betreffen.

Remark: This version of my thesis contains a few slight changes with respect to
the version accepted by the faculty of physics, which, however, do not refer to the
methods and main results of my thesis.
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Part I

The hierarchy of Minkowski
valuations and the morphology of

cosmic structure





Chapter 1

The hierarchy of Minkowski
valuations

The shape of a thing frequently is its first property to be recognized. In astrophysics
objects like quasars or galaxy clusters are both defined and described using their
morphology. Since progress in physics often was based on a quantification of rele-
vant properties, one may ask how to perform a quantitative morphometry. In the
field of cosmology we have to characterize, e.g., the distribution of galaxies in large–
scale structure surveys, or X–ray images of galaxy clusters quantitatively. Only a
quantitative description of such data sets allows the comparison to analytical models.
The geometry of cosmological structures is one of the basic tests for theories mod-
eling structure formation in the Universe. Most theories of cosmological structure
formation assume a homogeneous and isotropic Friedmann–Lemâıtre model as back-
ground and follow perturbations of this background (Peebles 1980; Goenner 1994).
Since the collapse of overdensity regions depends on the values of the cosmological
parameters characterizing the Friedmann–Lemâıtre models, a comparison between
theories of structure formation and real observations is not only able to test the
theories, but also to constrain the values of the cosmological parameters governing
our Universe. Moreover, a number of astrophysical observations tell us, that we need
matter not (yet?) visible (Dark Matter) in order to explain, e.g., the rotation curves
of spiral galaxies, or why galaxy clusters are bound systems (Peebles 1993). Differ-
ent types of Dark Matter (Ellis 2000) have a different influence on the formation of
cosmic structure. In this line of thought the geometry of large–scale structure as well
as the morphology of overdense regions such as galaxy clusters are of large interest
in order to test common theories of structure formation, to constrain the values of
the cosmological parameters, and to illuminate the nature of the Dark Matter.
This work deals with the morphological and statistical description and analysis of
cosmic structure. In the first part only spatial information is investigated. We
characterize the morphology of point patterns and images using the hierarchy of
Minkowski valuations known from integral geometry.
The Minkowski valuations describe the shape of a pattern embedded into Euclidean
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space by mapping patterns to scalar, vector–, and tensor–valued quantities. They
are distinguished by a few simple properties which set reasonable standards for a
morphological description. All these properties state that the Minkowski valuations
transform in a well–defined way if we apply topological or geometrical operations.
Within the framework of integral geometry one can show that for each tensor rank
only a finite number of linear independent Minkowski valuations exist.
The scalar Minkowski functionals, also known as Quermaß integrals, have been in-
vestigated for a long time. They are distinguished by a strict motion invariance and
were in part analyzed, e.g., by Minkowski (1903). A milestone in their development
is marked by the characterization theorem due to Hadwiger (1957). This theorem
characterizes the space of all motion–invariant, continuous and additive function-
als. The generalization to vector–valued or motion–equivariant measures was given
by Hadwiger & Schneider (1971), followed by Schneider (1972a); Schneider (1972b)
and Hadwiger & Meier (1974). In these works, a strict one–to–one correspondence
between the scalars and the vectors was found.
Tensor–valued measures were – apart from a work by Müller (1953) – not dis-
cussed until the late nineties when McMullen (1997) raised the question of how
to characterize tensor–valued measures in general. Recently, this question could
be answered by Alesker (1999b) based upon an analysis of a wider class of scalar
descriptors (Alesker 1999a). Remarkably, there is no strict isomorphism with the
scalar and vector–valued Minkowski valuations any more. Thus, a new picture is
being established, where the well–known Quermaß integrals mark only the bottom
of a hierarchy of motion–covariant measures.
In this chapter, the hierarchy of Minkowski valuations is introduced and described
in detail. The main attention is focused on the tensors, which so far have been an-
alyzed only coarsely. In particular, we need methods to compute the higher–order
Minkowski valuations effectively. Within our general approach of covariant measures
the scalar and vector–valued Minkowski valuations naturally arise as a byproduct.
Whereas the sections 1.1–1.6 comprise a lot of technical details, some simple exam-
ples of how the Minkowski valuations work in characterizing patterns are given in
Section 1.7. The geometrical meanings of the Minkowski valuations are summarized
in Table 1.1.

1.1 Basic elements of a covariant integral geome-

try

In this section, we formally introduce the basic concepts and notions of integral
geometry.
Within the d–dimensional Euclidian space Ed, which is identified with Rd, the convex
ring Kd comprises all convex and compact point sets; a member of Kd often is called
a body. The convex ring is closed with respect to intersections: if K1, K2 ∈ Kd, then
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Figure 1.1: An illustration of motion equivariance for vector–valued functions.

also K1 ∩ K2 ∈ Kd. However, the union set K1 ∪ K2 is in general not contained
in Kd. To close Kd with respect to set unions we move to Pd, the polyconvex ring,
which covers all patterns P , which can be represented by a finite union of bodies
P =

⋃N
i=1 Ki with Ki ∈ Kd.

Other operations of interest are the scaling of a body K with a real positive number
λ: λK = {λx|x ∈ K}, and the Minkowski sum, which is defined as K1]K2 ≡ {x|x =
x1 +x2 for xi ∈ Ki}. Both Kd and Pd are closed with respect to the Minkowski sum.
This sum allows us also to introduce the parallel body Kε of K ∈ Pd:

Kε = K ] εB1(0) , (1.1.1)

where Br(x) denotes a sphere of radius r centered on x.
We are interested in functions describing patterns in Pd. We do not want to constrain
the values of these functions at this point, thus we choose a rather general approach
and consider tensors. Let Tr

d denote the space of all symmetric tensors on Rd with
rank r. Of course, T0

d can be identified with R, whereas T1
d is isomorphic to Rd . For

W1 ∈ Tr
d and W2 ∈ Ts

d the symmetric tensor product is signified by W1⊗W2 ∈ Ts+r
d ,

often we suppress the “⊗”. We also need the “Fock space”, Td ≡
⊕∞

r=0 Tr
d. Now we

consider tensor–valued functions,

φ : Pd → Td : K 7→ φ(K) ∈ Td (1.1.2)

We constrain the space of functions of this sort by three types of requirements which
set reasonable standards for a morphological description.

1. We demand continuity on Kd. Since Tr
d is isomorphic to Rαd , where αd =(

d−1+r
r

)
, Tr

d has a natural topology. Kd also can be equipped with a metric,
the Blaschke–Hausdorff metric1. However, it is not useful to demand the con-
tinuity on the whole Pd. As obvious from, e.g., two merging convex cubes, the
continuity on Pd is restrictive to a degree that even the Euler characteristic is
not continuous any more. Thus, on Kd we demand a strict continuity, whereas
on Pd we postulate conditional continuity, which refers only to convex bodies.

1The Blaschke–Hausdorff distance dB() between K1,K2 ∈ Kd is defined by dB(K1,K2) =
inf{ε|K1 ⊂ K2 ] εB1(0) and K2 ⊂ K1 ] εB1(0))}.



8 Basic elements of a covariant integral geometry

2. We only consider valuations. Valuations add up like a volume, i.e. if K1, K2 ∈
Pd:

φ(K1 ∪K2) = φ(K1) + φ(K2)− φ(K1 ∩K2) . (1.1.3)

This requirement is not only a practical standard for morphological measures,
but also useful for the mathematical theory: one can extend measures defined
on Kd to Pd by taking the r.–h.–s. of Equation (1.1.3) as a definition of the
l.–h.–s.. From a mathematical point of view, it is important to guarantee that
this extension is unique. In our case, a theorem by Groemer (1978) states that
every additive, continuous mapping f from Kd to an arbitrary R–vector space
has a unique extension to Pd. Since Tr

d can be thought of as a vector space, and
since we only consider continuous functions, the uniqueness of an extension is
ensured2. Note that each integral over the volume or the surface of P ∈ Pd

naturally fulfills the additivity.

3. Moreover, we ask for motion–covariant measures (we also speak of isometry–
covariant measures). The Euclidian motion group consists of rotations (and
inversions) and translations, we consider each class of motions separately. Each
rotation R ∈ SO(d) has a natural representation in Tr

d and Td. We demand
that

φ(RK) = Rφ(K) . (1.1.4)

In this work we consider mainly O(d)–invariant measures. For dimensions
d > 2 there is no difference between SO(d)– and O(d)–covariant continuous
valuations. However, in two dimensions, the class of SO(2)–covariant contin-
uous valuations is slightly larger than the class of O(2)–covariant continuous
valuations (Alesker 1999b).
For translations represented by a translation vector t, we require that there is
a number r ∈ N such that for all K ∈ Kd

φ(K + t) =
r∑

i=0

φr−i ti (1.1.5)

with some tensor–valued valuations φr−i. Note, that all expressions like ti have
to be understood as tensor products. We assume, that the degree of this poly-
nomial expansion is uniquely bound. In the following we focus on valuations
which map Pd into a subspace Tr

d ∈ Td, in this case the polynomial arising
in the translation formula (1.1.5) is of degree at most r. The mathematicians
speak of “polynomial valuations of degree at most r.”

The Minkowski valuations (MVs, for short) are the continuous and isometry–covariant
valuations. For the following, let Fd denote the vector space comprising all scalar

2For the scalar Minkowski functionals, Hadwiger (1957) follows an alternative way by construct-
ing the Euler characteristic directly on Pd and introducing the other functionals via the Euler
characteristic.
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Minkowski valuations, and F r
d the space of all Minkowski valuations with values in

Tr
d . In particular, Fd

0 is the space of all Minkowski functionals (MFs for the sequel).
But how many Minkowski valuations do exist and what is their geometrical mean-
ing? We start to answer this question in the next section using the formula of Steiner.

1.2 Mixed measures and the formula of Steiner

For an explicit construction of the Minkowski valuations we start with convex bodies
K and Ki, and the volume, the mass vector

M(K) ≡
∫

K

dV x , (1.2.6)

and higher–order mass tensors:

M r(K) ≡
∫

K

dV xr . (1.2.7)

Surely, these quantities fulfill the requirements listed above and are thus part of the
family of the Minkowski valuations. Note, that these quantities contain the simplest
description of a body in terms of its size and position.
Now image, the body K is growing. One possibility to model its growth is to con-
struct the parallel body Kε which again can be characterized using the hierarchy of
mass moments in Equation 1.2.7. Now it is possible to expand the mass moments of
Kε in a power series in ε:

M r(Kε) =
d+r∑
i=0

εiM r
i (K) . (1.2.8)

This can be proven in analogy to Schneider (1972a). In this expansion, tensor–valued
coefficients arise which depend only on the original body K. For r = 0 this is the
formula of Steiner3. The coefficients M r

i can be calculated from the above expansion
(1.2.8) by applying the differential operator

Di =
1

i!

di

dεi

∣∣∣∣
ε=0

(1.2.9)

to M r(Kε). A simple calculation yields that the M r
i are additive, continuous and

motion–covariant. Thus, we have found a couple of new Minkowski valuations. Of
course, M r

0 = M r. But what are the geometrical meanings of the other coefficients
M r

i ?

3In this context the case of r = 1 is special, since M1
d+1 vanishes for any dimension. The reason

basically is the system of the so–called “Hüllensätze” (Hadwiger & Meier 1974).



10 Mixed measures and the formula of Steiner

The growth of a body under parallel construction depends on the shape of the surface
of K, especially its curvature. For a smooth surface ∂K it is possible to get explicit
expressions for the coefficients M r

i . From now on till the end of the present section,
∂K is assumed to be smooth.
For an infinitesimal dε the first order contribution to M r(Kε) is

∫
∂K

dA xrdε (Schnei-
der 1999). Thus,

M r
1 =

∫
∂K

dA xr . (1.2.10)

Now we iterate equation (1.2.8) and expand M r(K ] εB1(0) ] κB1(0)) = M r(K ]
(ε + κ)B1(0)). In this way, we obtain the M r

i of a parallel body. They again can be
represented as a polynomial in κ; we get (compare Schneider 1999):

M r
i (K + κB1(0)) =

d+r−i∑
j=0

(
i + j

j

)
M r

i+jκ
j . (1.2.11)

Therefore, the M r
j for j = 2, .., (d + r) arise in the expansion of M r

1 (K + κB1(0)).
On the other hand, we can represent the surface of Kε by the Gaussian map relating
the surface ∂K of the convex body K to the surface of the unit sphere Sd−1 :

Ω : Sd−1 → ∂K, ω 7→ xK(ω) . (1.2.12)

Furthermore, we need the unique normal vector n(ω) at each point on the boundary
of K, x(ω) ∈ ∂K, labelled by ω. Since in general dA = dω sd−1(R1, .., Rd−1), where
sν(R1, .., Rd−1) is the νth elementary symmetric function4 of the principal curvature
radii Ri (i = 0, .., d− 1), we get (Schneider 1999)

M r
1 (Kε) =

∫
∂Kε

dA xr =

∫
Sd−1

dωsd−1(R
Kε
1 , .., RKε

d−1)(xKε(ω))r

=

∫
Sd−1

dω sd−1(R
K
1 + ε, .., RK

d−1 + ε)(xK(ω) + εnK(ω))r

=
r∑

j=0

d−1∑
i=0

∫
Sd−1

dω εisd−i(R
K
1 , .., RK

d−1)

(
d− 1

i

)(
r

j

)
xK(ω)jnK(ω)r−jεr−j .

It is thus possible to write all of the coefficients M r
i for i = 2, .., d + r as an integral

over the surface of K. Suppressing the indices K and the ω–dependence, we get for
i = 2, .., (d + r):

M r
i =

r∑
j=r+1−i

(
r

j

)(
d− 1

i + j − r − 1

)∫
Sd−1

dωxjnr−jsd+r−i−j . (1.2.13)

4In d dimensions, the elementary symmetric functions are functions of (d − 1) arguments and
defined via the expansion Πd−1

i=1 (Ri + ε) =
∑d−1

j=0

(
d−1

j

)
εjsd−1−j(R1, ..., Rd−1).
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Here,
(

i
j

)
= 0 for j > i or j < 0. –Thus, the M r

i are integrals over the surface of K,
weighted with the curvatures, the positions, and the local normal vectors. Under a
homogeneous scaling, they transform like

M r
i (εK) = εd−iM r

i (K). (1.2.14)

Thus, we have constructed a number of valuations M r
i ∈ F r

d ; for smooth K ∈ Kd

these valuations can be represented as integrals over K or its surface ∂K. Therefore,
these measures have simple geometrical meanings: In two dimensions, the scalar
Minkowski functionals are the surface content of the pattern, its perimeter and its
mean curvature, which is connected to the Euler characteristic via the Gauß–Bonnet
theorem. In three dimensions, we have the volume, the surface content, the inte-
grated mean curvature, and the integrated Gaussian curvature, which again yields
the Euler characteristic. The higher–order Minkowski valuations are moments of the
scalar ones. They weight the local curvatures with powers of the position and normal
vectors.
The scalar Minkowski functionals are important for the development of the further
theory: They allow us to generalize the curvature integrals we were dealing with to
non–smooth surfaces. This is possible by a move to local measures. For the following
it is useful to remind that the volume of the parallel body Kε can be expressed as a
polynomial in ε.

1.3 Local measures

So far, our discussion referred to regular surfaces only, where the surface element, the
curvature and the normal vector are uniquely defined. Now we extend our approach
to non–regular surfaces. In view of the tensors, we have to choose a slightly different
approach from (Schmalzing 1996), rather we follow (Schneider 1993). The reason is
basically, that we need a generalization of normals for non–regular surfaces.
Consider an arbitrary convex body K ∈ Kd. For each point x ∈ Rd, therefore, the
projection on K, pK(x), that is the closest point of K from x, and the unit vector
nK(x) pointing from pK(x) to x are uniquely determined. Of course, pK(x) ∈ ∂K.
The mapping

fρ
K : Kρ \K → Rd × Sd−1, x 7→ (pK(x),nK(x)) (1.3.15)

is called the support mapping5.
Now turn around this line of argumentation and consider for a given Borel set B ⊂
Rd × Sd−1 the inverse image of fρ

K , (fρ
K(B))−1. For B = {x} × Sd−1 we simply get

the normal bundle of x; as illustrated in Figure 1.2, a smaller γ ⊂ Sd−1 cuts out a
piece of the normal bundle, we speak of a generalized normal bundle: norK(B, ρ).
The dimension of the normal bundle allows us to classify different pieces of the

5In the sequel, we identify Sd−1 and the set of all normals.
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surface of K. If the surface ∂K is regular around a point x, then the generalized
normal bundle reduces to

{x + λn|λ ∈ [0, ρ]} , (1.3.16)

where n denotes the unique normal vector at x. In the case of edges, corners or other
irregularities, the generalized normal bundle degenerates. The higher the dimension
of (fρ

K)−1(x) is, the more irregular is the surface around x. This enables us to
introduce the generalized surfaces ∂νK by

Definition 1.1 Generalized surfaces. For a convex body K ∈ Kd and ν = 1, .., d,
the νth generalized surface is given by

∂νK = {x ∈ ∂K| dim((fρ
K)−1({x} × Sd−1)) ≥ ν} . (1.3.17)

S1

γ

ρ

 x
K
ρ

−1f  ({x}     ) γ

K

x

Figure 1.2: A sketch illustrating the con-
struction of generalized normal bundles.

It can be shown that the dimension
dim(∂νK) ≤ d− ν. Obviously, ∂1K =
∂K.
Now we can define local curvature
measures even for non–regular sur-
faces: the volume of norK(B, ρ) can
be expanded in powers of ρ (Schneider
1993):

V (norK(B, ρ)) =
d∑

ν=0

Vν(B, K)

(
d

ν

)
ρν

(1.3.18)
with coefficients Vν . This is a local
version of Steiner’s formula, for details
and a proof see (Schneider 1993, p.
201).
It is useful to express this result in

terms of local measures. If µd(B) denotes the Lebesgue measure of norK(B, ρ), then
we have:

µd(norK(B, ρ)) =
1

d

d−1∑
ν=0

Θν(B, K)

(
d

ν

)
ρd−ν (1.3.19)

with the generalized curvature measures Θν on the set of all Borel sets B ⊂ Rd ×
Sd−1. They allow us to introduce “curvatures” even for non–regular surfaces, and to
introduce normals on non–regular surfaces, too. So we can define normal–weighted
integrals over non–regular surfaces. Of course, these measures vanish, if the spatial
part of B, P1(B) * ∂K. The Θν can be calculated using

Θν(B, K) =
d(
d
ν

)Dd−νµd(norK(B, ρ)) , (1.3.20)
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where Dν is the differential operator given by (1.2.9). In other words, what we
are doing with corners and the other non–regular pieces of ∂K, is to sum up all
contributions arising from those normals which “span” the normal bundle.
For our applications it is useful to cast these results into a simpler form. Within the
Boolean grain model described in Chapter 2.1 typically corners and edges arise, where
two or more spheres intersect. It seems useful to combine the contributions of each
generalized surface. We can proceed analogously to Schmalzing (1996) and Mecke
(1994), but have to carry along the unit sphere Sd−1 .
Let x ∈ ∂νK denote a point on the νth generalized surface of K and n(ω) be an
arbitrary unit vector in Sd−1 with direction ω. We approximate {x}×{ω} by a series
of Borel sets Bn ⊂ Rd × Sd−1 of the form βn × σn, where βn → {x} and σn → {ω}.
Then

V ν
κ (x,n) = lim

n→∞

Dκµd(norK(Bn, ρ))

µd−ν(βn)ω(σn)
(1.3.21)

is a generalized density such that the generalization of an integral of the type∫
dωsνx

qnp (1.3.22)

equals
d∑

ν=1

∫
∂νK

∫
Sd−1

dµd−νdωd−1V ν
κ (x,n)xqnp . (1.3.23)

We can cast this result into a more convenient form if we resume all integrals over
the ∂νK into a formal density which finds the right Lebesgue measures automati-
cally (Mecke 1994; Schmalzing 1996).

1.4 The Characterization theorem

Using these generalized local curvature measures we can define further tensor–valued
valuations on the whole Kd. Let Ed denote the second–rank unit tensor in d dimen-
sions, and Ed

i its powers for i ∈ N. We introduce Minkowski valuations via

Mi,j,k,l(K) ≡ Ed
i

∫
∂K

∫
Sd−1

dΘj(ω)xknl (1.4.24)

for j = 0, .., (d− 1), and

M i,r(K) ≡ Ed
i

∫
K

dV xr . (1.4.25)

Obviously, these tensors are motion–covariant, continuous and additive. The Mi,j,k,l

are of rank (2i+k+ l) and are homogeneous functions of K of degree (j+k), whereas
the M q,r have rank (2q + r) and scale like M q,r(λK) = λrM q,r(K).
Now the question arises, whether these valuations are the only ones in Fd . Recently,
Alesker (1999b) proved a general characterization theorem:
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Theorem 1.1 Generalized Characterization theorem. If φ is a motion–covariant
and continuous valuation on Kd for d > 2, then it is a linear combination of the
Mi,j,k,l and the M q,r.

The proof of this important result relies on the characterization of strictly trans-
lation–invariant and O(d)–covariant functionals given by Alesker (1999a). As men-
tioned above, for d > 2, it does not make any difference whether we require an
O(d)– or a SO(d)–covariance. However, in two dimensions, there are valuations,
which are SO(d)–, but not O(d)–covariant (Alesker 1999b). They are defined using
ñ = D(π/2)n, where D(π/2) rotates n counterclockwise with π/2:

M ′
i,j,k,l(K) =

∫
∂K

∫ 1

S
dΘi(ω)xjnkñk (1.4.26)

In the following, however, we focus on O(d)–covariant measures6.
Theorem 1.1 contains the well–known Hadwiger theorem as a subcase; it states that
in d dimensions only (d+1) linear independent scalar (i.e. strictly motion–invariant)
measures exist7. Equally, the characterization theorem (first proven by Hadwiger &
Schneider 1971 on the basis of Schneider 1971) for vector–valued valuations according
to which the vector space of motion–equivariant continuous valuations also is (d+1)–
dimensional, is a corollary from this theorem. It is remarkable, however, that, in
general, more than (d + 1) linear independent tensor valuations of rank r ≥ 2 exist.
The isomorphism between Fd

1 and Fd
0 therefore cannot be extended to higher–order

tensors. Note, however, that Theorem 1.1 only shrinks the space of continuous tensor
valuations from above; a closer analysis yields that a number of the functions M i,r

and Mi,j,k,l are dependent.
But at first it is useful to generalize Alesker’s theorem onto Pd.

Theorem 1.2 Generalized Characterization theorem on Pd. If φ is a motion–
covariant and conditional continuous valuation on Pd , then it is a linear combination
of the additive extensions of the Mi,j,k,l and the M q,r.

The proof is clear, since Groemer’s theorem ensures the unique existence of the
extensions.
As mentioned above, there are linear relations between the Mi,j,k,l and the M q,r.
Using the integral theorem of Gauß, Schneider (1999) showed that

EdM
r−2
i =

1

r − 1

r−1∑
j=r−1−i

(
r − 1

j

)(
d− 1

i + j + 1− r

)
M0,d+r+2−i−j,j,r−j (1.4.27)

6For completeness we mention the case of one dimension. Alesker (1999a) proved, that every
continuous valuation φ : K1 → R is of the form φ([a, b]) = P (a) + Q(b), where P and Q denote
continuous functions on R. If φ is a polynomial valuation of degree at most l, then P and Q can
be chosen as polynomials of degree at most l + 1.

7Only the M0,j,0,0 for j = 0, .., (d− 1) and M0,0 are scalar.
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for r ≥ 2 and i = 0, .., d + r − 2.
Alesker’s theorem ensures the uniqueness of additive, continuous, and motion–co-
variant descriptors. In this sense, the morphological description of a patterns in
terms of the MVs is complete. – So far, we showed how to calculate them for
a convex body. For patterns one has to apply additivity, or, more effectively to
proceed in a similar manner as Mecke 1994; Beisbart 1997.

1.5 Second–rank Minkowski valuations

For the following applications, we concentrate on the scalar Minkowski functionals,
their vector–valued counterparts, and on second–rank tensor valuations. In this sec-
tion the relevant second–rank tensors in two and three dimensions are listed together
with their basic relationships.
For the following it is useful to revise our conventions slightly: So far the elemen-
tary symmetric functions were always thought of as functions of the curvature radii.
Since sd−1−ν(R1, .., Rd−1) = R1 · · ·Rd−1sν(κ1, .., κd−1), where the κi = 1/Ri denote
the principal curvatures, we replace dωsν(R1, .., Rd−1) by dAsd−1−ν(κ1, .., κd−1). This
yields representations as surface integrals which is more useful since it allows us to
deal with patterns where negative curvatures arise, or where the Gaussian map is not
well–defined any more. Thus, in the following, the elementary symmetric functions
are always thought of as functions of the principal curvatures. Using this convention,
the Mi,j,k,l are written as Ed

i
∫

∂K
dAsd−1−jx

knl. Note, that their meanings remain
unchanged.
In two dimensions, we get the following second–rank tensors8

8The formula below are valid only for a convex body K with a smooth surface. For non–regular
surfaces, the elementary symmetric functions have to be replaced by the generalized curvature
measures. For patterns which are not convex one has to use additivity (1.1.3), see Mecke 1994.
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Tensors in 2 dimensions: F2
2

The mass tensor M2 = M0,2:

M2 =

∫
K

dx x2 . (1.5.28)

Tensors only containing scalar Minkowski valuations

M1,0 = E2M
0(K), M1,1,0,0 = E2M

1(K), M1,0,0,0 = E2M
2(K) .

(1.5.29)
Tensors, which are surface integrals:

M0,1,2,0 =

∫
∂K

dAx2 , M0,0,2,0 =

∫
∂K

dAκx2 , (1.5.30a)

M0,1,1,1 =

∫
∂K

dAxn , M0,0,1,1=

∫
∂K

dAκxn , (1.5.30b)

M0,1,0,2 =

∫
∂K

dAn2 , M0,0,0,2 =

∫
∂K

dAκn2 . (1.5.30c)

Linear dependencies:

M0,1,1,1 = E2M
0 , i.e.

∫
∂K

dAxinj = δij

∫
K

dV (1.5.31a)

M0,1,0,2 + M0,0,1,1 = E2M
0
1 (1.5.31b)

M0,0,0,2 = E2M
0
2 , i.e.

∫
Sd−1

dωninj=
1

2
δij

∫
∂K

dAs1 (1.5.31c)

Here, we used, that in two dimensions, s0 = 1 and s1 = κ1 ≡: κ. It turns out
that F r

d is seven–dimensional. If the surface of K is not regular, one has to use the
generalized local curvature measures such as in (1.4.24). In three dimensions, we have
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Tensors in 3 dimensions: F2
3

The mass tensor M2 = M0,2:

M2 =

∫
K

dx x2 . (1.5.32)

Tensors only containing scalar Minkowski functionals

M1,0 = E3M
0(K), M1,3−i,0,0 = E3M

i(K) for i = 1, 2, 3 . (1.5.33)

Tensors, which are surface integrals:

M0,i,2,0 =

∫
∂K

dAs2−ix
2 for i = 0, 1, 2 , (1.5.34a)

M0,i,2,0 =

∫
∂K

dAs2−ixn for i = 0, 1, 2 , (1.5.34b)

M0,i,2,0 =

∫
∂K

dAs2−in
2 for i = 0, 1, 2 . (1.5.34c)

Linear dependencies:

M0,2,1,1 = E3M
0 , i.e.

∫
∂K

dAxinj = δij

∫
K

dV , (1.5.35a)

M0,2,0,2 + 2M0,1,1,1 = E3M
0
1 , (1.5.35b)

2M0,1,0,2 + M0,0,1,1 = E3M
0
2 , (1.5.35c)

M0,0,0,2 = E3M
0
3 , i.e.

∫
Sd−1

dωninj=
1

3
δij

∫
∂K

dAs2 . (1.5.35d)
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rank abbreviation in terms of the M.. definition meaning

0

V0 M0
∫

K
dV volume

V1
1
4
M0,1,0,0

1
4

∫
∂K

dS ∼ surface content

V2
1
2π

M0,0,0,0
1
2π

∫
∂K

dSκ Euler characteristic

1

V0 M1
∫

K
dV x mass vector

V1
1
4
M0,1,1,0

1
4

∫
∂K

dSx

V2
1
2π

M0,0,1,0
1
2π

∫
∂K

dSκx Steiner point

2

V V0 M2
∫

K
dV xx mass/volume tensor

V V1
1
4
M0,1,2,0

1
4

∫
∂K

dSxx

V V2
1
4
M0,1,1,1

1
4

∫
∂K

dSxx

V V3
1
4
M0,1,0,2

1
4

∫
∂K

dSxx

V V4
1
2π

M0,1,2,0
1
2π

∫
∂K

dSxx

V V5
1
2
πM0,1,1,1

1
2π

∫
∂K

dSxx

V V6
1
2π

M0,1,0,2
1
2π

∫
∂K

dSxx

Table 1.1: A list of the two–dimensional Minkowski valuations we need.

1.6 Integral geometric results

Within the framework of integral geometry, one can derive a number of important
results, which facilitate the computation of the Minkowski valuations both for given
data and for analytical models. There is a very simple recipe to generate new integral
geometric results: write down an expression, which obeys the basic covariance prop-
erties listed above and expand it in the basis of the Minkowski valuations. In such
a way, the principal kinematic Al formulae, Crofton’s intersection formulae and the
projection formulae can be proved. For the scalar Minkowski functionals and their
vector–valued counterparts these results are well–known. However, for the higher–
order Minkowski valuations, such results were not yet proven. In Appendix A.1 some
remarks on this are listed. Details of how the Minkowski functionals are calculated
for relevant patterns can be found in the Appendices A.1 and A.1.2.
We conclude this chapter by a series of examples which show how the Minkowski
valuations work in describing different patterns and in discriminating between them.
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Figure 1.3: A number of simple patterns with their curvature centroids

1.7 The Minkowski valuations of simple patterns

Before turning to a couple of examples we show how to represent the Minkowski
valuations in a convenient form. Some of the results derived in integral geometry
assume a simpler form, when the Minkowski valuations are renormalized. Here we
adopt the V –normalization; in Table 1.1 we list all two–dimensional functionals we
need together with their meanings in two dimensions.
For a convenient graphical representation of the higher–order Minkowski valuations,
it is useful to move to curvature centroids:

pi =
Vi

Vi

(1.7.36)

for i = 0, .., d as far as Mi > 0. Usually, they lie within the convex hull of the pattern
under consideration.
For a natural representation of the tensors, we transform them into a coordinate sys-
tem centered on the corresponding curvature centroids. More precisely, the Mi,j,2,0

are calculated around M0,j,1,0, and M r,q around M1. The other tensors are trans-
lation–invariant and shown separately. To get coordinate–independent quantities we
consider their eigenvalues.
Figure 1.3 displays a series of patterns showing the effect of symmetry reduction. For
a spherically symmetric body, all curvature centroids coincide with the symmetry
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center. Even for a point–symmetric geometry, the curvature centroids are identical.
Note, however, that most of the tensors discriminate between the patterns (1) and
(2). For the axial–symmetric configuration (3) the curvature centroids fan out along
the symmetry axis. If no symmetry is present any more such as in panel (4), the
curvature centroids span a triangle; the size of the triangle can serve as measure of
the asymmetry. For patterns which consist of more than one component the cur-
vature centroids weight the components in accordance with their scalar Minkowski
functionals. In the fifth panel of Figure 1.3, p0 is attracted by the largest component
at the bottom, whereas p2 weights all components equally. Panel (6) shows why we
need higher–order Minkowski valuations for a good description of spatial data: the
patterns in panel (5) and panel (6) cannot be distinguished by means of the scalar
Minkowski functionals. However, the curvature centroids mark a difference between
both patterns.
In Figure 1.4 we show a number of cellular patterns together with their tensor
Minkowski valuations. They exemplify again the effect of symmetry reduction. The
upper right panel shows that in cases of point symmetry the tensors are necessary to
distinguish from spherical symmetry: Whereas the curvature centroids still coincide,
the tensors reveal the anisotropy of the pattern. The lower right panel illustrates the
fact, that sometimes the morphologically relevant directions can differ significantly
even for a simple connected pattern. Note, that due to the lattice geometry M0,1,0,2

(and thus also M0,0,1,1) is always parallel to one of the lattice axes.
In summary: the Minkowski valuations allow a unique description of spatial data.
They have simple geometrical meanings and are sensitive to symmetry and local
morphology. In the next chapter, we show how to apply them to cosmological data
sets.
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Figure 1.4: A couple of cellular patterns with their curvature centroids and their
Minkowski tensors. The tensors M2 and M0,i,2,0 are calculated and shown with
their corresponding curvature centroid as origin. The other tensors are translation–
invariant, thus we show them separately, the left upper tensor: M0,0,0,2, the left lower
tensor: M0,0,1,1, in the middle: M0,1,1,1, on the right: M0,1,0,2. The ellipses reflect the
ratio of the eigenvalues, only, not their absolute amounts.
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Chapter 2

Dealing with data – a step towards
physical models

Cosmological data sets comprise the positions of galaxies in large–scale structure
surveys as well as pixelized maps of, e.g., X-ray clusters such as shown in Figure 2.1.
How is it possible to reveal the geometry of such data quantitatively?
In this chapter we show how to apply Minkowski valuations to such data sets (Beis-
bart et al. 2001). The first step is to interpret them as realization of a random
process. This allows us to compare to models and to assess the significance of cer-
tain claims. In a second step, we have to associate patterns from the convex ring
with the data to start the analysis with Minkowski valuations.
We combine the overview of the methods used later on with the discussion of a few
models. The second part of the chapter is devoted to the morphological description
of galaxy clusters. On the base of the Minkowski valuations we define and test a num-
ber of robust structure functions suited to feature different aspects of substructure
to be found within galaxy clusters.

2.1 The structure of cosmological data sets

There are two basic types of cosmological data sets.

2.1.1 Fields

Cosmologically and astrophysically relevant fields like the density field or a surface
brightness can be viewed as realizations of a random function from a more mathe-
matical point of view. For an introduction to random fields see, e.g., Adler 1981.
The basic description of a random field f can be given in terms of filters like:

〈f(x)〉 , 〈f(x)f(y)〉 ,
〈∫

P

f(y)dy..

〉
, (2.1.1)
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Figure 2.1: Examples of cosmological data sets: the SSRS 2 galaxy catalogue (left
panel, for a description of the sample see Chapter 6 and da Costa et al. 1998) and
a simulated X–ray cluster (Valdarnini et al. 1999).

where 〈〉 denotes an ensemble average and P is an arbitrary domain. A special,
but simple model is a Gaussian random field, where all linear filters are Gaussian
distributed.
Real data sets do not comprise a whole realization of a field, rather they are sampled,
e.g., on pixels or voxels. Nevertheless, the picture of the random field is a useful
idealization both for the construction of models and for the case where the pixel size
is small in comparison to the scales of physical interest. – In principle, two sorts of
sampling are possible.

1. Regular sampling. The field under consideration is sampled on a regular grid.
Often, one can describe the pixelized maps themselves by a lattice model,
which describes the pixelized field in terms of (joint) occupation probabilities.
To make this type of data accessible to a MV–analysis one usually constructs
excursion sets which comprise all pixels where the field exceeds a given thresh-
old value v:

Lv =
⋃

ui≥v

ci ; (2.1.2)

the pixel cells are denoted by ci, and ui is the value of the field in this cell.

2. Irregular sampling. Sometimes the physical fields are sampled in an irregular
fashion. There are two basic possibilities of how the proper physical field
and the sampled data are related: Either the sampling is independent from
the properties of the physical field (unbiased sampling); or it depends on the
properties of the physical field itself. The cosmological bias problem of how the
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mass of visible objects is related to the mass of the underlying Dark Matter,
is an excellent example for the second case. Using the random field model, we
can test whether a given sampling is unbiased (see the Chapter 6.3).

2.1.2 Point sets

Large–scale structure surveys comprise the positions of galaxies {xi}N
i=1 found within

a sampling window D. We think of them as a realization of a point process; a point
process randomly throws points into a window. This point of view allows us to apply
a statistical description, to compare the data sets to analytical models and to ask for
the statistical significance of an observed signal (Daley & Vere-Jones 1988; Stoyan
& Stoyan 1994; Kerscher 1998). A complete description of a point process can be
given in factorial moments or joint probability densities:

%n(x1, ..,xn)dx1 · · · dxn (2.1.3)

is the probability of finding galaxies at the positions x1, ..,xn. An elegant way to
resume the whole hierarchy of n–point densities is to move to a generating func-
tional (Balian & Schaeffer 1989; White 1979). To associate patterns accessible to
the MVs with point sets, we use the following two methods:

1. We smooth the points using a Gaussian kernel to get a smooth density field
and consider as above the excursion sets; the smoothing length χ fixes the scale
of interest;

2. the Boolean grain method is applied: Here we put a ball of radius r around
each point and study the union set of all these balls within a window D using
the Minkowski valuations.
For the Boolean grain method it is in principle possible to calculate expectation
values for an arbitrary Minkowski valuation M and any point process. Starting
with the additivity and averaging over the ensemble we get for the expectation
value 〈M〉 of the Minkowski valuation M :

〈M〉 (r) =
∞∑

n=1

∫
Rd

dx1 · · ·
∫

Rd

dxn
(−1)n+1

n!

×M (Br(x1) ∩ · · · ∩Br(xn)) %n(x1, ..,xn).

(2.1.4)

The Minkowski valuations thus contain correlation functions of any order. Us-
ing the principal kinematic Al formulae, one can derive a generating functional
for the scalar Minkowski functionals (Schmalzing et al. 1999b) and the vectors
in a similar manner. For higher–order tensors, however, the general question
of a principal kinematic Al formulae has not been answered yet.
The simplest case of a point process is a Poisson process, where all n–point
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densities factorize into a product of one–point–densities. The expectation val-
ues for the scalar Minkowski functionals were calculated by Mecke & Wagner
(1991) for a general window D and the thermodynamic limit. If one replaces
the scalar Minkowski functionals Mα(D) in their formula (14) by the corre-
sponding vectors, one gets the expectation values for the vectors. In many
cases, however, a simpler reasoning yields the correct results: if the window D
is either point– or spherically symmetric, and the origin of a coordinate sys-
tem it chosen to be the symmetry center, all vectors vanish on average. For
an arbitrary origin, one gets the averaged vectors applying the transforma-
tion rule (A.1) in Appendix A and using the expectation values for the scalar
Minkowski functionals.

Both methods employ two diagnostic parameters: The smoothing length or the
radius of the Boolean grains (formally α) determines the scale we look at (scale
of resolution), whereas the density threshold or the scale of the window (β) fixes the
region of interest.

2.2 Structure functions

In the following chapter, we analyze galaxy clusters using Minkowski valuations. We
are interested in the substructure to be found within

Figure 2.2: The cluster (a GIF cluster) to
be investigated as an example. Results are
shown in Figure 2.3. Throughout this part
we show only 30% of the cluster points in
plots of this style.

the galaxy distribution, the DM, and
the X-ray emitting gas in clusters. The
challenge is to uncover substructure in
systems which are already of intrin-
sically inhomogeneous shape. Differ-
ent from large–scale structure inves-
tigations, we do not search for per-
turbations of a homogeneous back-
ground, but rather want to character-
ize smaller systems without any statis-
tical assumptions.
As an example, we investigate a two–
dimensional projection of a realistic
cluster using the Minkowski valua-
tions. The cluster is one of the GIF
clusters; it is shown in Figure 2.2; in
Chapter 3.3 details of the image con-
struction are given. We analyze the
two–dimensional DM distribution us-
ing the excursion set approach. As a

result some of the Minkowski valuations are plotted vs. density threshold in Fig-
ure 2.3. One can recognize that the curvature centroids are relatively stable, only
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small shifts occur, when small subclumps fall out of the excursion sets. On the other
hand, the eigenvalues of the tensors are quite different. This corresponds to the
visual impression, that this cluster is elongated. The scalar, vector–, and tensor–
valued Minkowski valuations thus contain very detailed information. However, for
a statistical comparison between, e.g., large cluster samples it is useful to condense
the information further. In this section we construct a number of structure functions
(SFs, for short), which feature different aspects of substructure.
We distinguish different aspects of substructure systematically. We propose the fol-
lowing four classes of aspects of substructure. Each aspect (“morphotype”) can be
quantified using one or more robust structure functions, constructed using the MVs.
Note, that substructure can only be defined with respect to a known reference state.
This reference state should be the imprint of a dynamical equilibrium. Since a the-
ory of equilibrium states for galaxy clusters has not yet been developed, we define a
number of geometrical structure functions here and test afterwards their ability to
reflect dynamical properties of clusters using numerical simulations in Chapter 3.4.
Another question arising if we compare different patterns is how to scale the different
data. This question has to be answered using the physical interest; we may want to
compare the substructure relative to the pattern scale or the substructure at a given
physical scale1.
For the definition of the robust structure functions, we assume that we have the
Minkowski valuations vµ as a function of the pattern Pα,β constructed from the data
with a resolution scale α and the size of the window β: Vµ = Vµ(Pα,β). Suppose,
furthermore, that we have measures for both the variables α and β: dµα and dµβ.
The measures are normalized in such a way, that∫

dµi = 1 (2.2.5)

for i ∈ {α, β}. Natural representations of the MVs are

Vµ(β) =

∫
dµαVµ(Pα,β) . (2.2.6)

and

Vµ(α) =

∫
dµβVµ(Pα,β) . (2.2.7)

A natural method to concentrate the morphological information contained in the
MVs is to construct an average over a special function of the Minkowski valuations
by:

〈f〉u ≡
∫

dµαdµβf(Vµ(Pα,β)) . (2.2.8)

1More precisely, there are two separate questions: a. whether to scale the smoothing length
according to the scale of the object b. how to scale the results of the MVs, which are in general
not dimensionless.
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Figure 2.3: A vector– and tensor–valued analysis of the GIF cluster shown in Fig-
ure 2.2. In the upper panels, both components of the curvature centroids are plotted
vs. density threshold. p0: solid line; p1: long dashed line, p2: short dashed line.
The x–direction is the horizontal direction in Figure 2.2. The lower panels show the
eigenvalues of two of the tensors. These results were gained using a finer grid reso-
lution than usual, namely 512× 512 pixels. The density is given in units of particles
per h−1Mpc2, the results are given in units of powers of h−1Mpc.
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For the measures µα, µβ, we have in principle the freedom of choice, but usually
we pick up one certain scale of resolution α0 and average over the window sizes:
dµαdµβ = δ(α− α0)dαθ(βmax − β)θ(β − βmin) 1

βmax−βmin
dβ or proceed the other way

round2. βmin and βmax are appropriately chosen values of, e.g., the density. This
notation covers also the case where one pair of values for α and β is distinguished as
a natural choice.
For the analysis of pixelized maps by means of the excursion set approach we use the
measure δ(α−α0)dαθ(βmax− β)θ(β− βmin) 1

βmax−βmin
dβ and the following structure

functions. They are constructed in such a way, that they become zero for spherically
symmetric, substructure–poor patterns. Here we focus on the case of two dimen-
sions; for most of the structure functions a generalization to other dimensions is
straightforward.

1. Clumpiness. An inhomogeneous pattern may consist of a number of subclumps.
Frequently, a galaxy cluster is generated by a merging of two groups which can
still be distinguished within the cluster. A natural measure at this point is
the Euler characteristic, which in the simplest case counts the components of
a pattern. Thus we define the clumpiness as

C =
√
〈(χ− 1)2〉u . (2.2.9)

If C> 0, a number of subclumps are to be expected.

2. Shape and Asymmetry. Another important question is: how does the shape
of the pattern look like? Is it roughly spherical, or are there corners, and are
the isodensity contours very crooked? – The global appearance of a pattern
is reflected by the eigenvalues of the Minkowski tensors. These quantities
mirror the symmetry of the pattern (and aspects of the shape: is the cluster
elongated?), cf. the examples in Chapter 1. We define a number of symmetry
parameters:

Xi ≡
〈

2
λi

1 − λi
d

λi
1 + λi

d

〉
u

(2.2.10)

for i = 0, .., dim(Td
r), where λi

1 and λi
d are the largest and the smallest eigen-

value of the ith tensor V Vi, respectively (these are generalizations of the axial
ratios discussed by Mohr et al. 1995b). In practice we mainly consider the
eigenvalues of the volume tensor M2 and the surface tensor M0,1,2,0, which can
be computed using the Crofton formulae (see Chapter A.1)3.
As shown in Figure 1.3, curvature centroids which do not coincide indicate the

2In our numerical analysis we approximate the integral by a sum over 101 bins.
3The isoperimetric ratio

I1 ≡
4V 2

1

πV2V0
(2.2.11)

may be another useful descriptor characterizing the global shape of a pattern. The isoperimetric
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asymmetry of a pattern. For a quantitative characterization, we consider the
triangle spanned by the curvature centroids and ask for its length of circum-
ference and its surface content4.

A0 ≡ 〈V0(4(pi))〉u , (2.2.13)

A1 ≡ 〈4V1(4(pi))〉u . (2.2.14)

If A0 > 0 or A1 > 0, the cluster under investigation is asymmetric. Note, that
these substructure measures have a dimension; thus, different clusters should
be compared carefully. Sometimes it is useful to scale these parameters to the
cluster size Rcl:

A′
0 ≡ 〈V0(4(p))〉u /R2

cl , (2.2.15)

A′
1 ≡ 〈4V1(4(p))〉u /Rcl . (2.2.16)

3. Shift of morphological properties. Although the single isodensity contours may
be spherically symmetric, the center of mass of the cluster may shift if we vary
the density threshold. This was the original idea of the centroid shift (Mohr et
al. 1993). More generally, all morphological properties may wander in space if
we regard the cluster at different values of the density threshold. Thus we follow
the path of the curvature centroids to get the following set of morphological
parameters:

si ≡
∫ umax

umin

∣∣∣∣dpi

du

∣∣∣∣ du (2.2.17)

for i = 0, .., 2. Sometimes, however, these functions do not converge fast enough
if we refine the resolution of the grid. As a more stable alternative we use5:

Si ≡
√〈

(pi − 〈pi〉u)
2〉

u
. (2.2.18)

4. Twist of morphological properties. Equally morphological relevant directions
may change, if we enlarge the window or change the density threshold. This

inequality (Fenchel 1936; Alexandrov 1937; Schmalzing et al. 1999a) states that

I1 ≥ 1 (2.2.12)

for convex bodies. The equality holds for, e.g., circles. If the isoperimetric ratio is larger than
one, the shape of the cluster gets elongated, or the isodensity curves are very crooked. However, in
practice this statistics does not work since often non–convex patterns are present within clusters.
– This statistics is related to the shapefinders (Schmalzing et al. 1999a; Sahni et al. 1998).

4In the general case of d dimensions, we take the d non–trivial MFs of the simplex spanned by
the curvature centroids 4(pi)

5This is a generalization of the centroid variation discussed by Mohr et al. (1995b).
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1. 2. 3. 4.

Figure 2.4: The basic morphotypes: Clumpiness, asymmetry and shape, shift and
twist of morphological properties.

aspect of substructure can be featured using the Minkowski tensors. We con-
centrate on the second position moments and characterize the direction of the
largest eigenvalue using the angle φi. Thus

Ti ≡
〈∣∣∣∣d|φi|

du

∣∣∣∣〉
u

(2.2.19)

for i = 1, .., dim(Td
2) characterizes the angular motion of the eigen direction

determined by the largest eigenvalue6. In practice, the eigen directions of more
or less isotropic tensors are not interesting, thus for the computation of the

Ri, we exclude the φi for values of the density threshold, where
λi
1−λi

d

λi
1+λi

d
≤ 0.2.

Moreover, we found that it is useful to exclude the very inner part of the cluster
for this sort of analysis, thus we integrate only up to 0.8umax.

2.3 Tests

It is useful to probe the performance of our structure functions before applying
them to data. Therefore, we test their robustness by statistical tests and apply the
structure functions then to a number of model clusters. These tests facilitate the
choice between the several structure functions for each morphotype, too.

2.3.1 Statistical robustness

To probe the robustness of our measures we use two different methods:

1. Poisson noise. How are the structure functions affected by random noise added
to the true points? – We take one of the GIF clusters (the cluster is constructed
as described in Subsection 3.2) and add Poisson points to the Dark Matter par-
ticles the cluster consists of within these simulations. More precisely, we have
the cluster within a spherical window with a radius7 of ∼ 3.4h−1Mpc. We

6See Mohr et al. 1995b; Fritsch 1996 for a comparison.
7h is the present day Hubble constant H0 in usual units: H0 = hkm/s

Mpc .
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Figure 2.5: An illustration of how the data may be affected by noise. On the left
hand side the full cluster within a large window, on the right hand side noise has
been added (1600 noise points per 1h−1Mpc× 1h−1Mpc – this is about 40% noise).
The cluster is one of the GIF clusters within the τCDM model at redshift z = 0.

add Poisson points and then determine the cluster and a region for boundary
corrections as outlined in Subsection 3.2. The structure functions are calcu-
lated; the whole procedure is done for hundred realizations of random noise. In
Figure 2.6 we show the mean structure functions and the 1σ bars vs. level of
noise. In general, the structure functions are very stable, even Poisson noise at
a level of fifty percent does not affect our results on average. For a smoothing of
0.2h−1Mpc, only S2 shows a significant systematic deviation from the original
clusters8.

2. Subsampling. From the large “cluster image” of ∼ 3.4h−1Mpc size, we first
subsample a certain percentage of points randomly and then treat the cluster
as usual (see Subsection 3.2), the effect is illustrated in Figure 2.7. We aver-
age over 100 realizations of the subsampling and show the averages and the
fluctuations in Figure 2.8. In general, the results are robust for all structure
functions, only for smaller smoothing lengths of, e.g., 0.05h−1Mpc, we some-
times find systematic bias effects. The fluctuations are relatively small even
for a subsampling of 50%. For the vector– and tensor–based measures, we find
the general trend, that the structure functions relying on the volume are the
most stable ones, followed by the surface– and curvature tensors.

This shows that the structure functions are stable and robust measures.

8Later on, we also need substructure functions which are normalized to the scale of the individual
cluster. Since in this case the estimate of the cluster scale is strongly affected by the noise, some
of the structure functions are, too.
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Figure 2.6: Some of the structure functions for the cluster depicted in Figure 2.5,
when Poisson points are added. We show the true structure functions for this cluster
(solid lines) and the 1σ fluctuations induced by the noise (shaded areas) vs. level of
noise.

Figure 2.7: An illustration of the subsampling. On the left hand side the full cluster,
on the right hand side only the subsampled points (50%). The cluster is one of the
GIF clusters within the OCDM model at redshift z = 0.
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Figure 2.8: Some of the structure functions for subsampling. We took the cluster
shown in Figure 2.7 and subsampled the points several times. We show the true
value of the substructure functions for the cluster (solid line) together with the 1σ
fluctuations from the subsampling. One recognizes that, on average, the subsampling
does not affect the values of the structure functions. Furthermore, in many cases the
fluctuations generated by the subsampling are rather small.
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2.3.2 Model clusters

To understand the behavior of the structure functions better, we apply them to
a number of model clusters. We simulate three–dimensional clusters and analyze
two–dimensional projected images. We consider

1. the King model, an approximation of the isothermal sphere: for this model
the points (representing, e.g., Dark Matter particles) follow the spherically
symmetric three–dimensional profile:

n(r) =
n0

(1 + r2/r2
c )
−3/2

; (2.3.20)

we cut the distribution at a radius of 10h−1Mpc and consider a core radius
rc = 0.07h−1Mpc (which is of the order or core radii of realistic clusters, see,
e.g., Bahcall 1996);

2. an elliptically distorted King model,

n(r) =
n0

(1 + (r2
1/a

2 + r2
2/b

2 + r2
3/c

2))
−3/2

(2.3.21)

viewed from one of the directions of the mayor axis; we choose a = 0.07/
√

0.7
and b = 0.07×

√
0.7, the value of c does not influence our results;

3. the superposition of two spherically symmetric King models, centered on dif-
ferent positions; for our example, we take two clumps with core radii rc1 =
0.07h−1Mpc and rc2 = 0.03h−1Mpc with equal weight and 1h−1Mpc apart
from each other.

In each case, the clusters have of the order of 100, 000 particles each. We show ex-
amples in Figure 2.9. We average over 50 realizations for each model and show the
averaged results together with the 1σ fluctuations in Figure 2.10, where we focus on
the King model (χ = 0.05h−1Mpc). The results indicate that for small smoothing
lengths the structure functions are dominated by small scale properties of the point
distribution; the spherically symmetric reference clusters cannot be distinguished
form the more realistic GIF clusters. For comparison, we also show the averaged
results for about 40 images of GIF clusters. We conclude that smoothing scales
smaller than 0.7h−1Mpc are not suited for our cluster investigations. However, at
larger smoothing scales, the GIF clusters lie clearly outside the typical fluctuations
of the model clusters. Often the structure functions are even one order of magnitude
larger for the “real” GIF clusters than for the model clusters.
In Figure 2.11 the different models are compared using the structure functions.
Whereas the King model shows mostly zero structure functions, the other two models
clearly are distinguished by significant values of the shape parameter and the axes
ratio of the tensors. The bimodal and the elliptical cluster can be distinguished by
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Figure 2.9: Realizations of different cluster models. Left panel: King model, middle
panel: elliptically distorted King model, right panel: a bimodal cluster constructed
by the superposition of two King models.

Figure 2.10: A comparison between an ensemble of 50 clusters following a King profile
(solid line with 1σ bars as fluctuations), and a number of GIF clusters (dashed line,
we took the τCDM model at z = 0.06 and had 14 clusters with 3 projections each,
see Chapter 3 for further explanation).
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Figure 2.11: A comparison between different analytical models: King model:
solid line/dark–shaded area, an elliptically distorted King model: short dashed
line/medium–shaded area, a bimodal cluster: long dashed line/bright–shaded area.
The values of the structure functions are plotted vs. the smoothing length.

means of the clumpiness, which shows the bimodality by a clumpiness close to one.
Although all reference clusters are symmetric at least with respect to a symmetry
axis, the bimodal clusters show an asymmetry parameter X0 significantly different
from zero, also the shift of morphological properties is relatively large. These values
are only due to very high values of the density threshold: by chance one of both
peaks is larger than the other one, thus for high density thresholds the centroids
wander towards this peak; since this wandering is not uniform, the symmetry pa-
rameter becomes positive. But this is not undesirable, since the symmetry obviously
is reduced for the bimodal cluster with respect to the King model.

2.4 Summary: a set of robust structure functions

To summarize the results of this chapter, we restrict ourselves to a number of ro-
bust structure functions. We select them from the above structure functions by the
following requirements:
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1. On average, the structure functions for the spherical King model should take
values of at most 15% of the realistic clusters. Again, we consider smoothing
lengths from 0.15h−1Mpc upward.

2. For a set of realistic clusters (GIF clusters, τCDM, z = 0) the structure func-
tions should on average lie outside the 3σ range for spherically symmetric clus-
ters following a King profile. We consider smoothing scales from 0.15h−1Mpc
upward.

3. Under subsampling, the structure functions should be stable, i.e. the subsam-
pling should not introduce a bias. We test this by requiring that the true value
of a structure function lies within the 1σ bars from the subsampling. We take
a fixed value of χ = 0.2h−1Mpc for the tests; for other values of χ, the effects
of subsampling are usually smaller9.

Note, that these tests are not universal since we probe only a subset of possible
spherically symmetric clusters and single simulated clusters. Rather we interpret
these tests as indicators for the robustness of the structure functions. In Figure 2.12
we illustrate the requirements.
The remaining robust structure functions are listed for the different morphotypes in
Table 2.1. For the following applications they get simpler names which abbreviate the
corresponding morphotypes and are listed in Table 2.1, too. – Some of the structure
functions have a physical dimension; when we are interested only in the relative
substructure of an object, then we divide them by a power of a typical scale to get
dimensionless quantities. Such normalized quantities are denoted with an additional
prime and marked in Table 2.1. – In the next chapter, we apply the robust structure
functions to clusters of galaxies.

9For smoothing lengths larger than 0.2h−1Mpc, the parameter X1 shows also a systematic shift.
It thus has to be interpreted with caution.
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Figure 2.12: The robust structure functions are selected from the above structure
functions by three requirements: Realistic clusters (here the GIF clusters within the
τCDM model at z = 0.06) should on average have significantly larger absolute values
of the structure functions than spherically symmetric clusters following a King model
(top panel, see the main text for further explanation, the ratio of the mean structure
functions for spherically symmetric clusters and GIF clusters: solid line; the criterion:
long–dashed line); they should be clearly distinguishable from such clusters (middle
panel, GIF clusters: short dashed line, model clusters: solid line), and a minimum
stability under subsampling should be there (the real value of the structure function:
solid line, 1σ fluctuations from 100 realizations of the subsampling: shaded area).
Here we illustrate these criteria using the clumpiness, which matches the criteria
without difficulty. For the other structure functions we proceed in the same manner.
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Morphotype Meaning of structure function Name Note

Clumpiness Euler characteristic minus one C

Shape and
Asymmetry

surface content of 4(pi) A0 dimension

perimeter of 4(pi) A1 dimension

axis ratio M2 X0

axis ratio M0,1,2,0 X1

Shift

variation of p0 S0 dimension

variation of p1 S1 dimension

variation of p2 S2 dimension

Twist shift of φi Ti

Table 2.1: A summary of all robust structure functions for all morphotypes. The
pi are the curvature centroids, 4(pi) denotes the triangle spanned by the curvature
centroids.



Chapter 3

Applications: Galaxy clusters

3.1 Clusters of galaxies and their cosmological im-

portance

Galaxy clusters play a key role in the understanding of the Universe since their dis-
covery by Wolf (1906). For instance, the Dark Matter Problem was for the first time
revealed within galaxy clusters (Zwicky 1933). Nowadays, clusters serve as tracers
of the large scale structure (Postman 1998). However, not only their distribution in
space, but also their inner properties are of cosmological interest since their intrinsic
state depends on the cosmological background model. In this line of thought, clus-
ters allow us to constrain the values of the cosmological parameters which govern
the evolution of the Universe globally1.
There are a variety of methods how to investigate clusters of galaxies. Since they
consist of several components, namely galaxies, a hot gas, which emits thermal
bremsstrahlung, and Dark Matter (DM for the sequel), they are visible both in
the optical and in the X-rays (for a more observational review see Bahcall 1996, the
X–ray–properties are discussed in Sarazin 1986, for the X-ray–properties of high–
redshift clusters see, e.g., Schindler 1999; for non–thermal X–ray emission of clus-
ters, e. g., Henriksen & Merrill 1993). The whole projected mass distribution of
some clusters is accessible via gravitational lensing (Bartelmann 1998; Bartelmann
& Schneider 1999).
Each of these methods provides us with images of clusters. A key point of under-

1The values of the cosmological parameters characterize the Friedmann models describing an
ideal, homogeneous and isotropic fluid in the framework of General Relativity. They can be defined
using the Friedmann equation for the cosmological scale factor a(t):(

da
dt

a

)2

=
8πG

3
% +

Λ
3
− Kc2

a2
(3.1.1)

with the gravitational constant G, the density of the fluid %, the cosmological constant Λ and the
curvature K. c denotes the speed of light.
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standing clusters is thus the morphology of galaxy clusters. Obviously, there are a
number of questions which come immediately into one’s mind when one looks at
these pictures. How are the X–ray–, the optical and the DM–morphology related?
What does the substructure in a cluster tell us about its dynamical state? What can
we learn from the morphology of galaxy clusters about the structure of our Universe?
– In this chapter, we quantify the cluster morphology using Minkowski functionals
and try to answer a couple of the above questions investigating both simulated and
observational clusters. Before this, however, we briefly review both theoretical pre-
dictions and observational results on the morphology of galaxy clusters.
The connection between the morphology of galaxy clusters and the cosmological
background is based upon the following reasoning (Richstone et al. 1992): The
formation and growth of cosmological structures depends significantly on the back-
ground cosmology. Especially, the value of Ωm (the mass density in units of the
critical density) plays a key role: if Ωm is low, the cosmological expansion is fast,
and structures will cease to attract matter. If we therefore live in a low–Ωm–Universe,
the clusters we observe at z ∼ 0 should be relatively old. Clusters are thus a sort
of cosmological clock. Using the spherical top–hat model, Richstone et al. (1992)
could estimate the fraction of present–day clusters which had already been existing
at a redshift z as function of the redshift.
On the other hand, clusters also show an inner dynamics which is thought of to
lead to a virial equilibrium. If we assume, that the dynamical state of a cluster
is mirrored by its morphology – a virialized cluster is commonly supposed to look
more symmetric and substructure–poor than a young one –, one gets the so–called
“cosmology–morphology” connection for galaxy clusters: in a low–Ωm–universe, the
clusters should look smoother and more relaxed than in high–Ωm–universes – at least
on average. The conclusions of Richstone et al. (1992) were strengthened by Bartel-
mann et al. (1993) who additionally used the Zel’dovich approximation (Zel’dovich
1970) to estimate the mean age of clusters in different background models. Evrard
et al. (1993) investigated this connection for the first time using cosmological N–
body simulations. So far, there was a variety of papers discussing this connection,
e.g., Mohr et al. 1995b; Mohr et al. 1995a; Valdarnini et al. 1999.
However, there are some problems about the cosmology–morphology connection.
From a theoretical perspective, the connection rests on an inconsistent description of
cluster evolution: On the one hand, the clusters are modeled without substructure
using the spherical collapse to get an estimate of the collapse time, on the other hand
the substructure is treated as the only observable imprint of the cluster evolution
and age (Böhringer, private communication). In particular, the overall evolution of
the cluster and its inner dynamics are – unrealistically – thought of as independent2.
Furthermore, it is not yet clear, what sort of equilibrium is possible within clusters

2The averaging formalism (Buchert & Ehlers 1997), which takes into account the backreaction
from inhomogeneities on the overall evolution of a domain, is the correct framework to handle such
problems; see (Kerscher et al. 2000) for an estimate of the abundance of collapsed domains.
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and may serve as a dynamical attractor.
Oberservationally, one has to ask which data to analyze and to compare to simula-
tions. Both X–ray data and optical data are available for clusters. Then, there are
a number of substructure measures which quantify relevant aspects of the morphol-
ogy. The challenge here is to reveal substructure within a system which is already
of intrinsically inhomogeneous shape. Most of the morphological descriptors used
so far were defined ad hoc and feature single aspects of substructure (Pinkney et
al. 1996): mainly, one employed the centroid–shift (Mohr et al. 1993) and elliptic-
ities (McMillian et al. 1989; Rhee & Latour 1991). They can be calculated using
a spherical harmonics analysis of the surface brightness and its (volume)–moments.
Further attempts are the Lee–Fitchett statistic (Lee 1979; Fitchett 1988) which fo-
cuses on bimodality, the Dressler–Shectman ∆, which mixes velocity and spatial
information (Dressler & Shectman 1988), and the KMM–algorithm (Ashman et al.
1994) which describes the cluster as a superposition of a few Gaussian peaks. A
spherical harmonics analysis of the estimated 2d gravitational potential (Buote &
Tsai 1995; Valdarnini et al. 1999) and a wavelet analysis were used, too (Grebenev
et al. 1995; Slezak et al. 1994; Gambera et al. 1997). Note, that many of these
substructure measures are based implicitly on an assumed equilibrium shape of a
galaxy cluster. Another problem is the question of how to identify clusters in the
right way.
In this chapter, we investigate the morphology of clusters using the methods devel-
oped in Chapter 2. We use two sets of simulations, cluster simulations by Valdarnini
et al. (1999) (V–clusters, for short) and the GIF simulations (Kauffmann et al. 1999)
as well as real data (see below). From the V–clusters, we construct X-ray images,
from all simulations we have DM–particles. For the GIF data (Kauffmann et al.
1999), additionally, we study galaxies which have been inserted into the simulated
clusters using semianalytical models of galaxy formation by Kauffmann et al. (1999),
compare also Diaferio et al. 1999.
From the physical point of view, main lines of thought are the connection between
the background cosmology and the averaged cluster morphology. We compare the
DM, the galaxy, and the gas distribution and ask, how the inner state of a cluster is
related to its morphology.
After a short description of the simulations in Section 3.2, we investigate the cosmolo-
gy–morphology connection for Dark Matter in Section 3.3 using the GIF clusters.
Section 3.3 deals with the V–clusters focusing on X–ray images and fundamen-
tal plane relations (Section 3.4). In Section 3.5 we try to establish a cosmology–
morphology connection for optical galaxy clusters using semianalytical models for
the GIF data.
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3.2 Cluster simulations and cluster images

Simulating galaxy clusters

The simulations we investigate rely on different simulation techniques and treat dif-
ferent cluster components. Whereas the GIF clusters are pure gravitational N–body
simulations, the V–clusters additionally contain a gas component. The implementa-
tion of the cosmological background is different, too.
The “Hydra” code used for the GIF simulations is a parallelized version of an AP3M
code (Couchman et al. 1995; Pearce & Couchman 1997). One Dark Matter particle
has a mass of 1.0 × 1010h−1Msolar or 1.4 × 1010h−1Msolar for low/high–Ωm models,
respectively3.
The simulation technique used by Valdarnini et al. (1999) for the V–clusters consists
of two steps: At first, a cosmological P3M code is run. In a second step, the 40 most
massive clusters found within this simulation at z = 0 are evolved a second time
using a TREESPH–code with higher resolution. The basic idea of smoothed particle
hydrodynamics (SPH) is to trace dynamical fields such as the density and velocity
field with Lagrangian particles. This method is combined with a TREE–code, where
the particles which are further away from the particle of interest are combined into
more massive particles whose multipole moments replace the exact forces (Hernquist
& Katz 1989). As output of these simulations, we get the positions of both the Dark
Matter particles and the gas particles. To identify the clusters from the cosmological
simulations, a friend of friend (FOF) algorithm was employed, the linking length was
0.2Ω0.2

m times the mean interparticle distance; for further details see (Valdarnini et
al. 1999). Note that the clusters we obtain in this way are Lagrangian, i.e. we trace
domains comoving with the fluid.

Cosmological background models and power spectra

The different cosmological models we investigate are summarized in Table 3.1, for
further details compare the original papers describing the simulations (Bartelmann
et al. 1998; Valdarnini et al. 1999). The basic differences consist in the values of
the cosmological mass parameter Ωm: we have several high–Ωm and two low–Ωm

models. According to recent observations, which found a significant contribution of
a cosmological constant using high–redshift Supernovae (Perlmutter et al. 1999), we
consider even a flat low–Ωm–universe.
Apart from the background cosmology, the power spectra expressing the initial con-
ditions are important. For the simulations investigated here, mainly Cold Dark

3Particle–particle particle–mesh (P3M) codes combine the advantages of both pure particle–
particle codes, where the forces between the different particles are added up (good force resolution)
and particle–mesh codes where the forces acting on a particle are calculated by integrating Poisson’s
equation on a grid (computational quickness). In P3M codes the force on a particle divides into a
part generated by the nearest neighbors and another part which accounts for the forces of the rest.
AP3M codes determine the scale separating these regimes adaptively respecting the local density.
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name model Ωm ΩΛ Γ h L×h/Mpc σ8

V

CDM 1.0 0.0 0.5 (200 ) 0.6

CHDM 1.0 0.0 0.5 (200 ) 0.64

ΛCDM 0.3 0.7 0.7 (200 ) 1.1

GIF

(SCDM) 1.0 0.0 0.50 0.5 85

τCDM 1.0 0.0 0.21 0.5 85

OCDM 0.3 0.0 0.21 0.7 141

(ΛCDM) 0.3 0.7 0.21 0.7 141

Table 3.1: The model parameters of the simulations investigated here. For the V–
clusters the boxsizes L of the simulation boxes are given in brackets since only the
first step of the simulations uses these cosmological boxes. Comparing the models,
we can distinguish between the effect of the power spectra (parametrized by the
shift parameter Γ and the present day r.m.s fluctuations of the density contrast σ8,
compare White et al. 1993) and the cosmological parameters.

Matter (CDM) power spectra were used; within the CHDM model, however, Hot
Dark Matter is present, too: both the GIF τCDM model and the Valdarnini CHDM
model contain a massive neutrino (the τ neutrino). It shifts the power spectrum via
the so–called shift parameter Γ in such a way that the power spectrum gets similar
to power spectra of the low–Ωm–Universes.

Cluster identification

The clusters within the GIF simulations were identified using a FOF algorithm, the
linking length was 0.2 times the mean interparticle distance (Götz et al. 1998 show
that an FOF algorithm with this linking length reproduces the Press–Schechter mass
function quite well). We have both the pure FOF–clusters and larger infall regions
around them.
For the V–clusters, cluster identification was already made after the first simulation
step using a FOF algorithm.

Cluster images

The usual output of simulations consists of the positions of artificial simulation par-
ticles. Cluster images mimicking observations in a realistic manner thus have to be
constructed by these particles. We investigate X–ray images and projected DM–
images. Moreover, we look at galaxies within clusters in Section 3.5. Details of the
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image construction are explained for each simulation separately together with the
corresponding results. For the GIF clusters, overlapping clusters are not excluded,
but investigated seperately.

3.3 The GIF clusters: the morphology–cosmology

connection

What is the morphological evolution of galaxy clusters like and is it possible to
distinguish between different cosmological background models using clusters? We
start with the GIF clusters and study the OCDM and τCDM model as examples of
a low–/high–Ωm model, respectively. We first concentrate on the main component
of galaxy clusters, the Dark Matter. Since the Dark Matter is invisible, real DM
images are not possible. However, if we project the Dark Matter particles onto
planes, we get an estimate of the projected mass density, which for real clusters can
be reconstructed using gravitational lensing (Abdelsalam et al. 1998; Schneider et
al. 2000). Thus, it is only useful to investigate two–dimensional images.

• Around the largest GIF clusters we got cluster regions of 15ah−1Mpc diameter,
where a is the cosmological scale factor. Cylinders with fixed size in proper
physical space (the radius is approximately 3.4h−1Mpc, the height approxi-
mately 6.8h−1Mpc) are cut out of the simulations. This mimicks observations
which trace matter within a spherical window in a given range of distances. The
particles are projected onto the bottom of the cylinder, the two–dimensional
images are analyzed as follows: first the center of mass for the points within
the image is constructed and a smaller window of 2.25h−1Mpc + 2χ size is
centered at this point (if this smaller window does not fit within the original
“observation”, the image is discarded; χ denotes the scale for the smoothing
to be applied later on). This smaller window consists of two parts, the inner
disk of 2.25h−1Mpc width thought of as containing the real cluster and an
annulus two times the smoothing length χ wide and allowing a sort of bound-
ary correction. From now on only points within the smaller window enter our
analysis. We determine a half–mass radius for the real cluster part and smooth
the data. For the integration over the density thresholds, we take the maxi-
mum density at the edge of the cluster part as umin in Equation 2.2.8. This
guarantees that we do not use density thresholds where the estimated density
may be affected by matter ouside the smaller window. Using an alternative
account, we determine a background in the outer regions of the small window
using similar methods as described in (Böhringer et al. 2000) and (Reiprich
1998). We do not subtract the background, but start our integration at two
times this background density. This limit is usually lower than the maximum
density at the cluster edge, especially when a large clump is falling onto the
cluster and entering the window. On the other hand, we cannot ensure that
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Figure 3.1: An illustration of our method. We first consider cylinders with a radius of
about 3.4h−1Mpc radius and a height of about 6.8h−1Mpc (upper left panel). Then,
a spherical image of 2.25h−1Mpc+2χ radius is positioned at the points (upper right
panel for χ = 0). The pure density field with 256×256 pixels can be seen in the lower
left panel, in the lower right panel, we show the projected density field smoothed with
a smoothing scale of 0.25h−1Mpc with one isodensity contour enclosing an excursion
set with the corresponding curvature centroids. The inner ellipse illustrates the sizes
of the eigenvalues and the eigendirections of the volume tensor for this excursion set.
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Figure 3.2: The averaged morphology evolution of the GIF clusters. We analyze the
two–dimensional DM distribution in proper physical space as explained in the main
text and apply the excursion set approach with a smoothing length of 0.2h−1Mpc. All
structure functions show a clear evolution and distinguish well between the different
cosmological models. τCDM: dashed line, OCDM: solid line.

we do not employ density thresholds which are significantly affected by matter
outside the smaller window. Thus we mainly employ the first method. It is
illustrated in Figure 3.1. We apply the excursion set approach and calculate
the structure functions introduced in Section 2.2.

We have an ensemble of 14 clusters, per cluster we take three orthogonal projections
as independent clusters to improve the statistics, thus we study 42 cluster images.
The clusters correspond to each other throughout the models (i.e. stem from the
same initial regions with the same initial random phases).
Results for the averaged morphological evolution can be seen in Figure 3.2 for a rela-
tively small smoothing scale of 0.20h−1Mpc, and in Figure 3.3 for a larger smoothing
length of 0.35h−1Mpc.
Already at first glance one sees a general evolution to more substructure–poor mor-
phologies with decreasing redshift. Furthermore, as theoretically expected, the high–
Ω model (τCDM) shows significantly less substructure then the low–Ω (OCDM)
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Figure 3.3: Again the morphological evolution of the GIF clusters, here at a smooth-
ing of 0.35h−1Mpc.

model. Interestingly, this effect is almost vanishing for small redshifts, but becomes
larger at higher redshifts. Thus, the morphological evolution is more important for the
cosmology–morphology connection than the morphological state at redshift z = 0.
In more detail, the effect is visible in all structure functions. Especially the clumpi-
ness and the asymmetry yield large differences. The effects are larger for larger
smoothing lengths.
Although the general trend is clear and confirms the predictions of the theory, we
still have to quantify the significance of such claims. In other words, so far we only
investigated the averaged cluster morphology, but how are the other features of the
distribution like? Since the clusters under investigation span a relatively wide mass
range, large fluctuations are to be expected which do not mirror uncertainties within
our structure functions, but rather reflect the variety of clusters “observed” within
the simulations.
To investigate this we show the binned distributions in Figure 3.4. For a more quan-
titative analysis, we employ the Kolmogorov–Smirnov test (K–S test, henceforth). It
compares two cumulative distributions D1(X) = p1(x < X) and D2(X) = p2(x < X)
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Figure 3.4: The distributions of the structure functions for the ensembles of GIF
clusters (z = 0.35,the smoothing was 0.35h−1Mpc).

using the distance

dKS = max
X∈R

{|D1(X)−D2(X)|} . (3.3.2)

Advantageously, for every observed dKS we can calculate the probability pKS(dKS)
of the null hypothesis that this value of dKS is obtained on the basis of two samples
generated from the same random process. Thus the larger dKS and therefore the
smaller pKS is, the more likely both data sets were generated by two different ran-
dom processes. As usual in such cases, we require that p(dKS) < 0.05 for significant
claims.
In Figure 3.5 we plot the p(dKS) vs. redshift for a smoothing of 0.35h−1Mpc. The
values show that at higher redshifts, a significant distinction between the different
cosmological models is possible with the clumpiness C, the asymmetry A1 and the
shift of morphological properties S1. – If we start our integration of the structure
functions in Equation (2.2.8) at two times the background density, the differences
between the models seem to become larger for low redshifts in many cases.
The Dark Matter morphology thus discriminates effectively between different cosmo-
logical background models at least for higher redshifts, although the cluster sample
is rather small.
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Figure 3.5: The results of a Kolmogorov–Smirnov test between the cosmological GIF
models. We carry out a KS–test for each structure function and each redshift. The
probability of the null hypothesis p(dKS) is plotted vs. redshift. Only values of
p(dKS) < 0.05, as indicated by the dashed horizontal line, are supposed to indicate
a significant discrimination between the different models.
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Figure 3.6: The dynamical evolution of one of the Lagrangian GIF clusters in proper
physical coordinates (i.e. in units of h−1Mpc) within the τCDM model.

Lagrangian clusters

From a theoretical point of view, it is also interesting to investigate the morphology
of a domain comoving with the cosmological fluid. Of course, such results cannot
be compared with observations. However, merger histories employed in numerical
simulations are comparable to our methods, compare, e.g. (Evrard et al. 1993). We
have an ensemble of 20 clusters for the τCDM and OCDM model, each; the clusters
correspond to each other in terms of the initial conditions. The Lagrangian clusters
consist of all particles found within the FOF clusters at z = 0 (see Section 3.2).
Again, we take three orthogonal projections per cluster. For an illustration we show
the evolution of a Lagrangian cluster in proper physical space within the τCDM
model in Figure 3.6.
In this case, however, we have to compare clusters of different sizes. This is illustrated
in Figure 3.7 where two two–dimensional estimates of the cluster scales averaged over
all clusters are compared between the cosmological models. The first one relies on
an estimation of a half–mass–radius, the second one is also sensitive to the outer
cluster regions: we construct the two–dimensional convex hull of all cluster points
and compute the length of its perimeter l. l/2π serves as estimate of the cluster
scale. As visible from Figure 3.7 one sees, that the OCDM clusters are on average



53

Figure 3.7: The evolution of the cluster size for the Lagrangian GIF clusters.

larger than the τCDM clusters. Possibly, this is an effect of the cluster identification.
In Figure 3.8 one can see the morphological evolution. Although there is a general
tendency to more relaxed clusters as above, the distinction between the cosmological
models is either bad or even the other way round as expected. This is in part due
to the different cluster sizes. Thus it is appropriate to scale the structure functions
with dimensions to the typical scale of each individual cluster. From Figure 3.9 we
see, that then the results point at least into the right direction.
Summarizing, one can state, that the DM evolution within the GIF–simulations
confirms that the morphology of galaxy clusters can serve as a cosmological tool
and discriminate between different cosmological models. Especially the morpholog-
ical evolution is of interest. Lagrangian clusters are not effective in discriminating
between different cosmological background models.
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Figure 3.8: The morphological evolution of the Lagrangian GIF clusters, traced by
the structure functions. The smoothing length was 0.20h−1Mpc. Only in part, the
theoretical predictions of the cosmology–cosmology connection are confirmed. For
larger smoothing scales, the results are even worse, and the τCDM clusters have even
less substructure.

Figure 3.9: The morphological evolution of the Lagrangian GIF clusters, traced by
the scaled structure functions
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3.4 The morphology of X–ray clusters and funda-

mental plane relations

But does also the X–ray gas morphology allow claims on the cosmological back-
ground? And to what extent does it reflect the intrinsic dynamical state of a cluster?
We investigate this and a couple of other questions using the V–clusters simulated
by Valdarnini et al. (1999).
The images to be analyzed with the MVs are constructed as follows:

X–ray images Since bremsstrahlung is generated by a two–particle interaction,
the X–ray emissivity is proportional to the square of the gas density:

ε ∝ %2
gasT

0.5 ; (3.4.3)

Figure 3.10: An X-ray cluster im-
age for a V–cluster (cluster 05 in
CDM at redshift z ∼ 0.05). The
cluster is sampled within a spher-
ical window of 1.5h−1Mpc radius
(logarithmic color scale).

where %gas denotes the gas density and T the tem-
perature of the X–ray emitting gas. To generate
X–ray images for the V–clusters, we assume that
the influence of temperature variations within one
cluster are negligible (which is relatively well ful-
filled, since 1. the X–ray emissivity ε is only pro-
portional to approximately T 0.5; 2. real tempera-
ture profiles of clusters are relatively flat at least
in clusters with no cooling flow, for observational
evidence see, e.g., Irwin & Bregman 2000; Irwin
et al. 1999, for our clusters see Figures 3 and 4
in Valdarnini et al. 1999; and 3. the physical
emissivity has to be convolved with the response
function of the observational device. For the
ROSAT satellite, the response–convolved emissiv-
ity is constant to a good approximation, see Tsai
& Buote 1996). The SPH particles are sampled
for an estimate of the gas density, then the three-
dimensional squared density is projected onto a
random plane. An absolute calibration of the sur-
face brightness (and the detector count rate) is

not necessary, since a constant factor drops out within the Minkowski analysis4. We
get images of 101 times 101 pixels which are centered at the peak of the surface

4This calibration is only necessary if one wants to specify the cluster on the image (in our case
the lower bound umin of the integral in Equation 2.2.8) using, e.g., the signal–to noise ratio, which
results from an interplay between the physical surface brightness and the detector performance.
Here, however, we use a different approach to specify umin. In general, the influence of umin is
relatively small since the X–ray images are sharply peaked, i.e. the integration in Equation (2.2.8)
is to a large part due to the core of the cluster.
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brightness5. The scale of the pixels always corresponds to physical 0.03h−1Mpc.
To specify what the cluster is and to probe different regions of it, we put windows,
namely spheres with radii rw around the image centers and sample only pixels within
this radius (this is in accordance with the cluster identification used by Abell 1958 in
the optical). Using this method we do not presume a spherical shape of the cluster,
rather we specify the observational window. Below, we test how large this window
should be to allow significant results. We take only windows with radii rw smaller
than 1.5h−1Mpc in agreement with Cen (1997), who found that regions larger than
2h−1Mpc are too much affected by projection effects. To emphasize a certain scale
of resolution we smooth the images and consider only pixels within the window af-
ter the smoothing. Thus, we do not apply boundary corrections accounting for the
outer parts of the cluster. – To probe the DM morphology, we project the squared
density of the DM, as if the DM behaved like the gas. Doing so we adopt the work-
ing hypothesis that the gas, which generates the X-ray luminosity, follows the DM.
We can test this working hypothesis comparing to the gas morphology (see Subsec-
tion 3.4.5). For the structure functions, we choose umin in Equation (2.2.8) as the
maximum density value on the cluster edge (i.e. the sphere around the cluster), umax

is the maximum density found for this cluster (this procedure tends to underestimate
the substructure of a cluster if a large subclump is on the border of the window, but
this case occurs very seldom. Taking umin as the minimum at the edge of the cluster
gives comparable results).
We have 39 clusters for the CDM, 35 for the ΛCDM, and 37 for the CHDM model.
Here we restrict ourselves to a smaller class of structure functions. We consider
only the morphotypes clumpiness, shape, and asymmetry and shift of morphological
properties. Within our applications, we take along C, A0 and A1, S0, S1 and S2, as
well as their dimensionless counterparts A′

i and S′j, for i = 0, 1 and j = 0, 1, 2. For
the main applications, we mostly show C, A1 and S1. We investigate cluster samples
which comprise all clusters for one model at one redshift. Unless otherwise stated,
we take one random projection per cluster to construct the cluster samples.

3.4.1 The X–ray substructure of galaxy clusters

What should be established at the very outset is: what are the structure functions on
average for the cosmological models like and is the cluster X–ray substructure able to
reveal significant differences between the three cosmological models considered here
(ΛCDM, CDM, CHDM)?
We show results where the X–ray–surface brightness was investigated with the Min-
kowski valuations after applying a small smoothing of 0.05h−1Mpc (Figure 3.11;
without this small smoothing, the results are highly sensitive to noise, for compar-
ison, Figure 3.12 shows results without a smoothing). Already at first glance, they
confirm the theoretical expectations that the low–Ωm model (i.e. the ΛCDM model)

5This was done by/in cooperation with R. Valdarnini.
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Figure 3.11: The averaged structure functions clumpiness C, asymmetry A1, and
morphological shift S1 for the V–clusters using a sampling window of 1.4h−1Mpc
scale for the gas distribution vs. redshift; to reduce the sensitivity to noise, a small
smoothing of 0.05h−1Mpc was applied. CDM: solid line; ΛCDM: long dashed line;
CHDM: short dashed line.

Figure 3.12: The averaged structure functions clumpiness, asymmetry, and morpho-
logical shift for the V–clusters using a sampling window of 1.4h−1Mpc for the gas
distribution vs. redshift; here no smoothing was applied. CDM: solid line; ΛCDM:
long dashed line; CHDM: short dashed line. Note, however, that without smoothing
the structure functions are relatively sensitive to noise.
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Figure 3.13: The same averaged substructure evolution for the clusters as in Fig-
ure 3.11, but now we artificially enlarged the cluster sample by taking three orthog-
onal projections per cluster as independent clusters. Thus, we had more than 100
clusters per model and redshift.

shows less substructure than the high–Ωm models. This can be seen from the clumpi-
ness, the symmetry and the shift parameter. These three structure functions also
show an evolution to less substructure. – Of course, there is a large variance between
the cluster morphologies within each model. In Figure 3.13 we took three orthogonal
projections per cluster and took each projection as an individual cluster; thus, we
artificially enlarged our cluster database. The results are in concordance with the
previous ones. In Figure 3.14 we additionally show the 1σ bars for the ΛCDM model.
Because of the variety of the clusters, the fluctuations are relatively large. However,
sometimes, the high–Ωm models are nearly one σ away from the ΛCDM model.
In Figure 3.15 we show the scaled symmetry parameter A′

1 and the scaled morpholog-
ical shift S′1. These structure functions quantify the amount of substructure relative
to the cluster size. The cluster scale is estimated via the half–light radius. But
obviously, within our sample, the scaled quantities do not differ on average much
from the unscaled ones. This means that the fluctuations of the cluster scales do not
influence the substructure signal.
The DM morphology (i.e. the morphology the cluster would have, if the gas followed
the DM) shows even stronger differences between the models (Figure 3.16). In par-
ticular, at z = 0 large differences are to be found.
A more effective comparison of the cosmological models can be obtained if we take
into account the whole distribution of the structure functions. A quantitative com-
parison is based on the Kolmogorov–Smirnov test (see Subsection 3.3 for further
explanation). In Table 3.2 we show the results of the K–S test. We compare each
pair of models using the gas or the DM and our structure functions at z = 0. The
results show that the CDM and the CHDM model exhibit comparable distributions
of the structure functions whereas they significantly differ from the ΛCDM model,
where Ωm = 0.3. Both the Gas and the DM are powerful for a comparison of cosmo-
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Figure 3.14: The same structure functions as in Figure 3.13, but now 1σ bars for the
ΛCDM model (long dashed line) have been added.

Figure 3.15: The scaled structure functions clumpiness A′
1 and morphological shift S′1

for the V–clusters using a sampling window of 1.4h−1Mpc for the gas distribution vs.
redshift; a small smoothing of 0.05h−1Mpc was applied. CDM: solid line; ΛCDM :
long dashed line; CHDM: short dashed line.
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Figure 3.16: Now the DM distribution is investigated with the averaged clumpiness,
asymmetry, and shift of morphological properties for the V–clusters using a sampling
window of 1.2h−1Mpc; a small smoothing of 0.05h−1Mpc was applied.

Gas, rw = 1.40h−1Mpc, z = 0

χ = 0.05h−1Mpc CDM - ΛCDM CHDM - ΛCDM CDM - CHDM

dKS pKS dKS pKS dKS pKS

C 0.57 <0.05 % 0.56 <0.05 % 0.10 99.1 %

A1 0.63 <0.05 % 0.66 <0.05 % 0.17 59.2 %

S1 0.42 0.2 % 0.42 0.3 % 0.10 98.4 %

DM, rw = 1.40h−1Mpc, z = 0

χ = 0.05h−1Mpc CDM - ΛCDM CHDM - ΛCDM CDM - CHDM

dKS pKS dKS pKS dKS pKS

C 0.42 0.2 % 0.49 <0.05 % 0.10 98.4 %

A1 0.44 0.1 % 0.63 <0.05 % 0.23 23.6 %

S1 0.42 0.2 % 0.52 <0.05 % 0.23 25.5 %

Table 3.2: K–S test for the three cosmological models at z = 0. As the Kolmogorov–
Smirnov distance dKS and the corresponding probability pKS show, the high–Ωm-
models can be distinguished from the low–Ωm model very effectively, whereas the
power spectra marking the difference between both high–Ωm models do not lead to
remarkable differences in the distributions of cluster morphology.
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Figure 3.17: Clumpiness, asymmetry, and shift of morphological properties for the
gas of the V–clusters using a sampling window of 1.4h−1Mpc, a larger smoothing of
0.15h−1Mpc was applied.

logical models, at least if only a small smoothing has been applied (χ = 0.05h−1Mpc).
In this section we concentrate on the fertility of the gas and the DM for a distinction
between cosmological models; the morphology bias for single clusters is investigated
in Section 3.4.5.
To emphasize different resolutions and to enhance the discriminatory power of the
method, we tentatively smooth the data with larger smoothing scales. As before,
after having put the cluster into a window, we smooth with a Gaussian kernel and
then cut out the part of the original sampling window. We show results for the
morphological evolution within the different cosmological models for the gas in Fig-
ure 3.17 and for the DM in Figure 3.18.
One can see that during the dynamical evolution the differences between the back-
ground models are significant for larger smoothing lengths, too. We compare sys-
tematically how different smoothing scales perform in discriminating between the
cosmological models in Figure 3.19 and carry out Kolmogorov–Smirnov tests for each
pair of background models for a couple of smoothing scales χ using our structure
functions. As results we show the Kolmogorov–Smirnov distance dKS vs. smoothing
scale χ for redshift z ∼ 0. The results indicate that the discriminatory power of the
clumpiness strongly depends on the smoothing length: for large smoothing scales, all
subclumps are mixed together, and the differences between the clusters disappear.
However, the other structure functions give still good results for higher smoothing
lengths. The behavior of the other structure functions not shown in Figure 3.19 is
similar; for the gas, the symmetry parameter A0 seems to be even more discrimina-
tory than A1.
For the DM the situation is qualitatively similar as one can see from Figure 3.20.
This figure also confirms, that the DM morphology sometimes shows stronger differ-
ences between the models than the gas morphology.
Using the same method, we systematically investigate in Figure 3.21, how the dis-
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Figure 3.18: Clumpiness, asymmetry, and shift of morphological properties for the
V–clusters using a sampling window of 1.4h−1Mpc; here the DM distribution was
investigated using a larger smoothing length of χ = 0.25h−1Mpc.

Figure 3.19: The effectiveness of the structure functions for different resolutions is
analyzed using the Kolmogorov–Smirnov test. We plot the distance dKS between
the distributions of the substructure functions vs. smoothing length χ. We consider
X–ray images from the V–simulations. CDM vs. ΛCDM: long dashed line; CDM vs.
CHDM: solid line; ΛCDM vs. CHDM: short dashed line. One sees that larger win-
dows enhance the discriminatory power of the structure functions for the clumpiness
(left panel) and the asymmetry parameter (middle panel).
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Figure 3.20: The effectiveness of the structure functions at different resolutions is
analyzed systematically using the Kolmogorov–Smirnov test for the DM. We plot
the distance dKS between the distributions of the substructure functions vs. the
smoothing length χ. CDM vs. ΛCDM: long dashed line; CDM vs. CHDM: solid line;
ΛCDM vs. CHDM: short dashed line. The size of the window was rw = 1.4h−1Mpc.

Figure 3.21: The effectiveness of the structure functions at different sizes of the
window rw is compared systematically using the Kolmogorov–Smirnov test. The
Kolmogorov–Smirnov distance dKS between the distributions of the substructure
functions is plotted vs. rw. We only consider the gas and a smoothing of 0.05h−1Mpc.
CDM vs. ΛCDM: long dashed line; CDM vs. CHDM: solid line; ΛCDM vs. CHDM:
short dashed line.
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crimination between the cosmological models is influenced by the scale of the window
rw, i.e. which parts of the clusters allow for the strongest claims regarding the cos-
mological background. For the gas and a smoothing length of 0.05h−1Mpc, a large
box is the best choice. From a physical point of view, this means that the outer clus-
ter regions, where current infall is going on, are of most importance for cosmological
purposes. It turns out that for higher smoothing lengths the influence of the box
size is decreasing. For the DM the dependence on the window scale is weaker.

3.4.2 Relationships among the substructure functions

So far, the structure functions gave qualitatively comparable results for the mean
morphological evolution. But how are the structure functions related to each other
for single clusters? There is a technical and a physical interest about this ques-
tion. Technically, it is important to know whether the structure functions feature
independent aspects of substructure. From a physical point of view, one can ask
whether the substructure functions are empirically related, and whether their re-
lationships are different for the different cosmological models. We cannot answer
these questions independently since the physical question presumes that the tech-
nical one in answered. Therefore, these questions have to be treated carefully. By
their construction, the substructure functions feature different aspects of substruc-
ture. Tentatively, we carry out Kendall’s test (a non–parametric correlation test) to
probe their mutual relationships for the gas morphology6.
For each sample (defined by one redshift and one model) we test each pair of struc-
ture functions evaluated at a fixed smoothing. Results can be seen from Figure 3.22
and 3.23; note, that a small smoothing length was employed. Figure 3.22 shows the
correlations within the classes of substructure. In general, there a highly positive
correlations between the structure functions. The two asymmetry parameters A0

and A1 are only badly connected, but this may be explained by the fact, that both
parameters are sensitive to different classes of asymmetry: merely axial symmetric
patterns are recognized as asymmetric by A1, but as symmetric by A0. However,
the correlations between the shift parameters S0 and S1 are very strong; S2 is less
correlated with the other two shift parameters. The unscaled structure functions and
their corresponding scaled counterparts are again well connected, this is, however,
not true for S2 (not shown here). Figure 3.23 shows that there are also relatively
strong correlations between the structure functions of different morphotypes, some-

6Given data points {xi, yi}N
i=1, Kendall’s τ (Kendall 1938) tests in a robust and nonparametrical

way to what extent a positive or negative correlation among the data points exists. It relies
basically on comparing the number of all concordant (sig(yi − yj) = sig(xi − xj)) and discordant
(sig(yi−yj) = −sig(xi−xj)) pairs of data points (see also Press et al. 1987). The absolute value of
τ quantifies the strength of the correlations, the sign tells us whether the correlations are positive or
negative. The probability of the null hypothesis p(τ), that a given value of τ is generated by purely
uncorrelated random points can be estimated as a function of N . Usually only τs with p(τ) < 0.05
are supposed to indicate significant correlations.



65

Figure 3.22: A systematic correlation analysis between different structure functions.
For each cosmological model (CDM: solid line; ΛCDM: long dashed line; CHDM:
short dashed line) and each redshift, we consider a pair of structure functions and
calculate Kendall’s τ . It is shown vs. redshift. Here we concentrate on correlations
within each class of substructure. In the upper row, we look at the two symmetry
parameters A0 and A1, in the middle row, the three shift parameters S0, S1 and S2 are
compared. In the row at the bottom we compare the A1 and its scaled counterpart
A′

1 as well as S1 and S′1.
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Figure 3.23: Kendall’s τ for the different structure functions as a function of the
redshift. CDM: solid line; ΛCDM: long dashed line; CHDM: short dashed line. Here
we concentrate on correlations between different types of substructure.

times they are even stronger than the correlations within one morphotype. It is,
however, not possible to answer the question, whether this is due to our sample (i.e.
mirrors physical properties) or to the definitions of the substructure functions. We
conclude, however, from these results that S2, the shift of the curvature centroid
p2, is a special measure. It is comparably weakly correlated to the other two shift
parameters, but relatively well to the clumpiness C; it mixes thus the connectivity
and the shift of morphology. Indeed, p2 jumps if subclumps fall out of the excursion
sets. These subclumps generate a large C and a large S2. – Mostly, the cosmological
models are comparable regarding the correlations of the structure functions. Fur-
thermore, there is a tendency to better correlations for higher smoothing lengths.
Altogether, the relationships between the different models let us understand why all
structure functions show a similar signal in discriminating the different models (cf.
Section 3.4.1). However, individually, the clusters should be investigated using all
kinds of structure functions.
A similar test, where we compare single clusters whose substructure has been quanti-
fied at different smoothing lengths, shows that with exception of the clumpiness and
the asymmetry A0 the structure functions are well correlated for different smoothing
scales.

3.4.3 Projection effects

“Projection effect” is an ambiguous word in the field of cluster investigations: on
the one hand the fore– and background effects which come along with the projection
are subsumed under this word. These effects were investigated by Cen (1997) in
detail. For X-ray images they turn out to be rather small since the X–ray emissivity
is proportional to %2

gas; thus, mainly the very peaks of the gas density contribute
to the X–ray images. On the other hand, there is the geometrical question of how
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χ = 0.05h−1Mpc, rw = 1.40h−1Mpc

CDM ΛCDM CHDM

Gas DM Gas DM Gas DM

C 0.639 0.331 - - - 0.371

A0 0.812 0.732 0.960 0.933 0.929 0.626

A1 0.370 0.333 0.331 0.321 0.436 0.376

S0 0.303 0.279 0.293 0.284 0.337 0.345

S1 0.295 0.268 0.317 0.269 0.329 0.355

S2 0.371 0.292 0.455 0.387 0.393 0.294

A′
0 0.808 0.697 0.973 0.976 0.919 0.629

A′
1 0.341 0.269 0.334 0.342 0.428 0.308

S′0 0.261 0.211 0.267 0.289 0.298 0.297

S′1 0.256 0.210 0.281 0.270 0.302 0.298

S′2 0.371 0.268 0.454 0.433 0.392 0.278

Table 3.3: The averaged relative fluctuations of the structure functions for the gas
and the DM at z ∼ 0.

certain substructures in three dimensions are reflected in two–dimensional projec-
tions. In this section we adopt the second point of view and ask for the variance of
cluster substructure for a single cluster, if we “observe” it from different directions
neglecting back–and foregrounds.
For each cluster the X-ray maps are calculated for three orthogonal projections (here
onto the surfaces of the simulation boxes), the structure functions are calculated and
averaged. The averages over three projections are denoted by Y, the fluctuations by
∆Y for each structure function Y. They are shown together in Figure 3.24. The rela-
tive fluctuations are averaged over each cluster ensemble (one model at one redshift)
to give

〈
∆Y/Y

〉
and listed in Table 3.3 (insofar as they can be calculated, i.e. insofar

as none of the cluster averaged structure functions equals zero). The variances are
relatively large, especially for the clumpiness and the asymmetry A0. It is clear that
the subclumps are projected onto each other. Since the gas distribution is smoother,
less subclumps exist, and the relative fluctuations are larger. The fluctuations of the
DM structure functions are slightly smaller than for the gas.
Altogether, we see that for individual clusters one projected image is not enough for
a reliable estimate of their substructure. Only the shift of morphological properties is
relatively constant for different projections. This result, however, refers to individual
clusters, for larger cluster databases these fluctuations do not matter.
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Figure 3.24: The averaged structure functions for the ΛCDM model (gas) for no
smoothing and a window of rw = 1.4h−1Mpc. The clusters are ordered according to
the mean structure functions. The variances – we show 1σ bars – were estimated
using three orthogonal projections.

3.4.4 Fundamental plane relations and the substructure of
galaxy clusters

So far, we empirically investigated the morphology of galaxy clusters conducted by
the assumption that the inner cluster state is reflected by its substructure. Now we
address the validity of this assumption.
Since a couple of years, fundamental plane relations have been of interest in the field
of cluster research. Fundamental plane relations were originally found for elliptical
galaxies (see, e.g., Bender et al. 1992) and denote the fact that elliptical galaxies
populate a plane in a three–dimensional space of global galaxy parameters. This
plane is usually interpreted in terms of a virial equilibrium (Chandrasekhar & Lee
1968).
Even clusters of galaxies lie on a plane in a number of observational phase spaces of
global cluster parameters (often referred to as “threespaces”; henceforth we speak
of “parameter spaces”). This was found by Schaeffer et al. (1993); Adami et al.
(1998b) in the optical, and by Annis (1994); Fritsch & Buchert (1999); Fujita &
Takahara (1999) for X–ray clusters. The three global cluster parameters indirectly
refer to the cluster’s mass, its scale, and its velocity dispersion or X–ray temperature
as an estimate of the kinetic energy7.
As in the case of the elliptical galaxies, the fundamental plane (FP, for short) for
clusters was interpreted in terms of a virial equilibrium. However, the straightfor-
ward application of the tensor virial theorem (Chandrasekhar & Lee 1968) to galaxy
clusters suffers from a number of systematic problems (Fritsch & Buchert 1999).

7More precisely, the global parameter space is spanned by logarithmic variables like the logarithm
of the cluster mass in typical units. A plane within this space corresponds to a powerlaw constraint
for the physical variables.
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Since the FP was defined purely in terms of observational parameters, its physical
origin was not clear, too. Fritsch & Buchert (1999) (see also Fritsch 1996) gave clues
in showing that the distance from the fundamental plane within the global parameter
space and the substructure of a galaxy cluster are correlated (although very weakly)
using the COSMOS/APM data and the ROSAT data8. Relating substructure to the
inner dynamical state of galaxy clusters, their results do not only confirm the physi-
cal origin of the FP, but also provide a “missing link” in the cosmology–morphology
connection. – In this section, we look for fundamental planes in cluster simulations
and try to relate them to our substructure measures.
For the fundamental plane relations, we concentrate on real parameters and do not
care about questions like how the cluster mass can be estimated using real observa-
tions. We focus on the following cluster parameters: the mass of the core (or “virial
mass”), the emission–weighted temperature T , the X-ray luminosity LX , the scale
of the cluster rh, and the velocity dispersion of all cluster particles, σv. Tentatively
we investigate the following three parameter spaces and thus probe three possible
planes9:

1. fundamental plane

log
(
Mvir/(1015M�h−1)

)
+β1

1 log
(
rh/(100h−1kpc)

)
+ β2

1 log
(
T/(107K)

)
= β3

1 ,
(3.4.4)

2. fundamental plane

log
(
Mvir/(10

15M�h−1)
)
+β1

2 log
(
rh/(100h−1kpc)

)
+ β2

2 log
(
LX/(1043ergs−1h−2)

)
= β3

2 ,
(3.4.5)

3. fundamental plane

log
(
Mvir/(10

15M�h−1)
)
+β1

3 log
(
rh/(100h−1kpc)

)
+ β2

3 log
(
σv/(102km s−1)

)
= β3

3 .
(3.4.6)

The cluster parameters defining the parameter spaces are estimated from the sim-
ulations as follows: The mass Mvir is the mass within the virial radius: Mvir =
4π
3

∆cρbr
3
vir, where rvir is determined from the three–dimensional matter distribu-

tion and encloses the mass M(rvir) = 4π
∫ rvir

0
drr2%(r) = 4π

3
%c∆cr

3
vir; here ∆c '

178 · Ω−0.45
m is a conventional value from the spherical collapse model10, and %c de-

notes the critical density. rh is the three–dimensional half–mass radius. T denotes

8As substructure measures they employed variations of the ellipticity, the centroid and the
orientation angle of a number of ellipses fitted to the X–ray cluster data at different scales.

9The velocity dispersion is a mass–weighted statistics, the computations of the global parameters
were made in cooperation with/by R. Valdarnini.

10For the spherical collapse in an Einstein–de Sitter background model, the overdensity of the
perturbation at collapse time is approximately 180 (Coles & Lucchin 1994).
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z ∼ 0 CDM - ΛCDM CDM - CHDM CHDM - ΛCDM

dKS pKS dKS pKS dKS pKS

Mvir 0.185 0.512 0.237 0.205 0.336 0.026

rh 0.286 0.079 0.425 0.001 0.469 < 10−3

T 0.219 0.300 0.218 0.289 0.154 0.754

LX 0.897 < 10−3 0.270 0.105 0.890 < 10−3

σv 0.221 0.289 0.100 0.987 0.231 0.256

Table 3.4: The distributions of the global cluster parameters are compared between
the cosmological models using a K–S test. Values of pKS < 0.05 indicate that two
distributions of parameters are likely to be incompatible.

the emission–weighted temperature of the gas, computed by its thermal energy den-
sity assuming an ideal gas. The bolometric X–ray luminosity LX is estimated as∫

dV ( %gas

µmp
)2Λc, where %g denotes the gas density, µ = 0.6 is the mean molecular

weight and Λc the cooling function, where the local temperature enters. A standard
SPH estimator has been applied (Navarro et al. 1995); only the particles within r200

contribute to LX .
First, we look how large the differences between the distributions of all relevant pa-
rameters are for the different cosmological models using a K–S test in Table 3.4.
Additionally, the distributions at redshift z = 0 are shown in Figure 3.25. The re-
sults indicate that, except for the radius rh and the luminosities, the distributions
are compatible with each other. For the luminosity, there seems to be a systematic
effect due to the cosmology, only the high–Ωm models are consistent with each other.
Regarding the half–mass radius, the CHDM model is distinguishable from the other
models. For higher redshifts, most distributions become different. These results are
useful later on, when we ask whether the fundamental planes are consistent with
each other for the different cosmological models.
After these preliminaries, the fundamental planes were fitted using all galaxy clus-
ters for each model. For each redshift, background model and parameter space, the
best fundamental plane is searched using an orthogonal distance regression11. The
quadratic scatter σ2

fp ≡ 1
Ncl

∑Ncl

i=1 d2
i is minimized, where di denotes the distance of

the ith cluster from the plane within the parameter space. From Figure 3.26 the
evolution of the FP–parameters for two of the FPs can be seen. The exponents de-
termining the FP seem to converge for all models for redshift z = 0. This supports
the hypothesis that the fundamental plane is a global characteristic forming in every
background cosmology. Since we do not have uncertainties within the measurements,
we cannot draw physical error bars; however, it seems that the fundamental planes

11In part, we used the package ODRPACK, see Boggs et al. 1987; Boggs et al. 1989.
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Figure 3.25: The distributions of the global cluster parameters for all cosmological
models at z = 0. CDM: solid line; ΛCDM: dotted line; CHDM: short dashed line.
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Figure 3.26: The exponents determining the fundamental planes together with their
errors; since we do not have measurement–like errors, the 95% confidence regions
visible in the plots are calculated assuming the goodness of the fit. CDM: solid line;
ΛCDM: long dashed line; CHDM: short dashed line.

are consistent within the error bars. We show the 95% confidence regions in Fig-
ure 3.26, as usual in such a case, the errors are calculated using the covariance matrix
and thereby assuming the goodness of the fit.
In Figure 3.27 we show the mean scatter around the fundamental planes as a func-
tion of redshift. The fundamental planes FP1 and FP2 clearly show the theoretically
expected behavior, since the scatter goes down for lower redshifts, i.e. the clusters
approach the plane indicating the dynamical equilibrium. This evolution is visible
within all models. The third fundamental plane however does not show such a clear
evolution to an equilibrium state. The reasons for this behavior will be explained
below.
Note, that the scatters around the fundamental planes are comparable for all of the
cosmological models. Thus, the pure scatter around the fundamental planes could
not serve as a diagnostic tool for the distinction between different cosmological mod-
els.
We test this further and compare the distributions which the cosmological models
show for the distances from the fundamental planes using a K–S test. From Table 3.5
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Figure 3.27: The mean quadratic scatter around the fundamental planes vs. redshift
for all cosmological models (solid line: CDM; long dashed line: ΛCDM; short dashed
line: CHDM). For technical reasons (a very strong outlier in the CHDM data) we
consider the CHDM FP2 only for redshifts z < 0.36. In general, we do not remove
outliers, but since for one cluster in the CHDM, the determination of LX and a couple
of other parameters leads into problems, we do not consider the CHDM model at
z > 0.36.

we see that for most of the redshifts investigated, the distributions are consistent with
each other. Only the ΛCDM and the CDM model are sometimes incompatible for
the first and the second FP. For the third FP, the CDM model can be distinguished
form the other ones. But the FP3 has to be interpreted with care. Altogether, this
shows that we really need the substructure if we want to relate the inner states of
galaxy clusters to the cosmological parameters.
But to what extent does the morphology of a cluster mirror its inner dynamical
state? What is the connection between the cluster substructure and its distance
from an equilibrium?
In Table 3.6 we ask whether the averaged structure functions (for the whole sample)
and the mean scatter around the fundamental plane are correlated during redshift
evolution. Again we use Kendall’s τ ; the results indicate that the mean cluster
morphology and the mean scatter around the fundamental plane are well correlated
except for the third fundamental plane, where sometimes (especially for the CHDM
model) even significant anticorrelations occur.
In Figure 3.28 we give a visual impression of the fundamental planes. We fit a sec-
ond fundamental plane to the data under the constraint that this plane is orthogonal
to the first one (see Fujita & Takahara 1999). A new Cartesian coordinate system
{x, y, z} is chosen in order to let the best fitting plane coincide with the x− y–plane
and the best fitting orthogonal plane with the y− z–plane. As one can see from Fig-
ure 3.28, seen from edge–on (third column), the fundamental plane is distinguished
by a small scatter. Seen from face–on (first column), the morphology of the whole
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FP 1 CDM - ΛCDM CDM - CHDM CHDM - ΛDM

dKS pKS dKS pKS dKS pKS

0.21 0.172 0.603 0.281 0.081 0.307 0.053

0.15 0.085 0.999 0.141 0.817 0.134 0.882

0.10 0.429 0.001 0.230 0.233 0.228 0.271

0.04 0.304 0.052 0.211 0.325 0.144 0.817

0 0.275 0.100 0.271 0.102 0.176 0.590

FP 2 CDM - ΛCDM CDM - CHDM CHDM - ΛDM

dKS pKS dKS pKS dKS pKS

0.21 0.186 0.502 0.130 0.881 0.287 0.083

0.15 0.319 0.036 0.196 0.417 0.236 0.236

0.10 0.116 0.952 0.151 0.744 0.183 0.539

0.04 0.196 0.438 0.214 0.310 0.136 0.869

0 0.196 0.433 0.148 0.764 0.179 0.567

FP 3 CDM - ΛCDM CDM - CHDM CHDM - ΛDM

dKS pKS dKS pKS dKS pKS

0.21 0.152 0.755 0.174 0.572 0.208 0.377

0.15 0.344 0.019 0.315 0.035 0.192 0.480

0.10 0.295 0.065 0.304 0.047 0.154 0.754

0.04 0.383 0.006 0.356 0.012 0.202 0.415

0 0.383 0.006 0.267 0.112 0.222 0.301

Table 3.5: K–S tests for the distributions of the distances from the three fundamental
planes among all models.



75

model FP C A1 S1

χ = 0.05 τ p τ p τ p

CDM 1 0.50 0.061 0.44 0.095 0.50 0.061

CDM 2 0.61 0.022 0.56 0.037 0.61 0.022

CDM 3 0.56 0.037 0.50 0.061 0.56 0.037

ΛCDM 1 0.56 0.037 0.67 0.012 0.61 0.022

ΛCDM 2 0.78 0.004 0.89 0.001 0.83 0.002

ΛCDM 3 0.22 0.404 0.33 0.211 0.39 0.144

CHDM 1 0.52 0.099 0.52 0.099 0.43 0.176

CHDM 2 0.43 0.176 0.43 0.176 0.52 0.099

CHDM 3 -0.90 0.004 -0.90 0.004 -0.81 0.011

Table 3.6: Correlation of the mean substructure functions (evaluated with a smooth-
ing length of χ = 0.05h−1Mpc) and the mean quadratic scatter around the funda-
mental planes. The size of the window size is 1.4h−1Mpc.

plane resembles a band, the plane is not populated homogeneously, rather the clus-
ters fan out along a line. This is true for all fundamental planes, especially for the
third parameter space, and confirms results by Fujita & Takahara (1999), who found
in a different threespace a morphology they call the “fundamental band”.
The fact that FP3 nearly degenerates into a line allows us to understand the evo-
lution of the scatter (Figure 3.27) in more detail: the “distance” from the FP is
no longer well–defined, and the scatter as depicted in Figure 3.27 gets meaningless.
Probably the parameters M , rh and σv evolve to form a one–parameter family.
To explore the structure of the fundamental planes further, we investigate the scat-
ter around the fundamental planes and the orthogonal planes in Figure 3.29. For
the first two types of fundamental planes, both scatters decrease in a similar way
resulting in a band that becomes thinner and narrower. The ratio of the scatters
is increasing slightly, as visible from Figure 3.30. On the other hand, for the third
fundamental plane, the scatters around the planes are relatively close to each other,
and the evolution can be described as a collapse of the fundamental plane (for the
ΛCDM and the CHDM models). Therefore, the notion of a plane gets meaningless
in this case, the distance from the FP is no well–defined quantity any more, and the
relation to substructure is different. – These results indicate, that we should also try
to fit a line to our cluster data (see below).
So far we focused on the mean distance from the fundamental plane and the mean
structure functions for the whole ensemble. But how reliably does the substructure
reflect the dynamical state for individual clusters? Using the fundamental plane, we
can try to answer this question. To “measure” the dynamical state of a cluster, we
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Figure 3.28: The fundamental planes. We consider the three FPs as defined in
Equations (3.4.4)–(3.4.6). The coordinate axes x, y and z are defined in such a way,
that the FP coincides with the x− y plane.
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Figure 3.29: The scatters around the fundamental plane and the best fitting orthogo-
nal planes. CDM: solid line; ΛCDM : long dashed line; CHDM: short dashed line.For
technical reasons, we consider the CHDM model from z ∼ 0.27 on, only.

Figure 3.30: The ratio r of the scatter σOP (around the orthogonal plane) and the
scatter σFP (around the fundamental plane) for the different background models:
CDM: solid line; ΛCDM : long dashed line; CHDM: short dashed line.
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calculate its distances from the FPs within the parameter spaces. We then correlate
the FP–distance with the morphological structure functions (gas, for one random
plane per cluster) using Kendall’s τ . Note, that only τs for which the probability
of the null hypothesis p(τ) < 0.05 are supposed to indicate significant correlations.
Results for low–redshift clusters are shown in Table 3.7. These results clearly confirm
the connection between the substructure and the fundamental planes FP2 and also
FP1. A number of positive correlations can be seen, which extend to both relevant
fundamental planes and to all aspects of substructure. Thus, we establish the con-
nection found by Fritsch & Buchert (1999) also for simulated X–ray clusters.
A closer analysis yields that even at higher redshifts, positive correlations between
cluster substructure and inner cluster state can be seen. Note, that this is the-
oretically expected for higher redshifts, too, even if the scatter around the FP is
much larger, since we do not ask for the existence of a fundamental plane, but
for the deviations from a fundamental plane. In Figure 3.31, we visualize the re-
sults showing an evolutionary track of the τ (we show all τs where p(τ) < 0.05 for
one of the eleven structure functions under investigation with smoothing lengths of
0.05, 0.1, .., 0.3h−1Mpc). In detail, the distance from the second fundamental plane
seems to be well correlated to substructure for all models and a number of redshifts.
The distances from the first fundamental plane are reflected by morphology for the
ΛCDM model, only. The physical nature of the third fundamental plane could not
be confirmed for higher redshifts; a mixture of positive and negative correlations is
to be found. Together with the visual impression of FP3, we explain this by the fact
that this plane is the most probable and earliest one to collapse into a line.
In summa, we established a connection between substructure and dynamical state
(measured within the second parameter space) for simulated X–ray clusters; but the
statistical evidence for the results is not very strong. Below we test the performance
of a number of different substructure measures, which prove to be worse and some-
times give anti–correlations. One critical point are projection effects; as outlined in
Section 3.4.3, the substructure depends significantly on the direction the cluster is
observed from; here we simply used one random plane per cluster thus mimicking
real observations. We can strengthen our results by comparing the distances from
the FPs with the averaged substructure quantities (averaged over three orthogonal
projections). This is done in Table 3.7. Some of the correlations are clearly confirmed
there, others are added. Especially the clumpiness seems to be well correlated with
the distance from the FPs.
In Table 3.8 we show correlations between the DM morphology and the distance
from the fundamental plane, the results are comparable with the ones of the gas
morphology. We focus on the first two threespaces and do not consider the third FP.

There is another possibility to strengthen our claim regarding the connection be-
tween substructure and fundamental plane relations: We divide our samples into
substructure–poor (p) and –rich (r) clusters with the aid of one of our structure
functions, fit a plane in the parameter space for each subsample and ask which sub-
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model z FP rw χ SF τ p

CDM 0 2 1.4 0.1 C 0.337 0.003

CDM 0 2 1.4 0.1 S1 0.274 0.014

CDM 0 2 1.4 0.15 C 0.276 0.013

CDM 0 2 1.4 0.15 S1 0.306 0.006

ΛCDM 0 1 1.4 0.15 C 0.236 0.046

ΛCDM 0.04 2 1.4 0.05 C 0.380 0.001

ΛCDM 0.04 2 1.4 0.05 A1 0.240 0.042

ΛCDM 0.04 2 1.4 0.15 C 0.323 0.006

ΛCDM 0 2 1.4 0.15 C 0.236 0.046

CHDM 0.05 2 1.4 0.05 S1 0.285 0.013

CHDM 0.05 2 1.4 0.1 C 0.292 0.011

CHDM 0.05 2 1.4 0.1 A1 0.273 0.017

CHDM 0.05 2 1.4 0.1 S1 0.309 0.007

CHDM 0.05 2 1.4 0.15 A1 0.270 0.019

CHDM 0.05 2 1.4 0.15 S1 0.372 0.001

CDM 0.05 2 1.4 0.05 C 0.239 0.032

CDM 0.05 2 1.4 0.05 S1 0.271 0.015

CDM 0.05 2 1.4 0.1 S1 0.239 0.032

ΛCDM 0.04 1 1.4 0.1 C 0.266 0.025

ΛCDM 0.04 1 1.4 0.15 C 0.321 0.007

ΛCDM 0.04 2 1.4 0.1 C 0.274 0.021

ΛCDM 0.04 2 1.4 0.15 C 0.278 0.019

ΛCDM 0 2 1.4 0.15 C 0.291 0.014

CHDM 0.05 2 1.4 0.05 C 0.317 0.006

CHDM 0.05 2 1.4 0.05 S1 0.327 0.004

CHDM 0.05 2 1.4 0.1 C 0.321 0.005

CHDM 0.05 2 1.4 0.1 A1 0.225 0.050

CHDM 0.05 2 1.4 0.1 S1 0.360 0.002

CHDM 0.05 2 1.4 0.15 A1 0.246 0.032

CHDM 0.05 2 1.4 0.15 S1 0.369 0.001

Table 3.7: Results for a correlation analysis distance from the fundamental plane vs.
gas morphology for the first two of the fundamental planes. We list all significant
correlations (pKS < 0.05) for the structure functions C, A1 and S1 for smoothing
lengths of χ = 0.05, 0.1, 0.15h−1Mpc. Above the double line, one projection per
cluster is considered, beneath we take averaged structure functions (for each cluster
we average over three orthogonal projections).
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model z FP rw χ SF τ p

ΛCDM 0.04 2 1.4 0.1 C 0.235 0.047

ΛCDM 0.04 2 1.4 0.1 A1 0.244 0.039

ΛCDM 0.04 2 1.4 0.15 C 0.252 0.033

CHDM 0.05 1 1.4 0.05 C 0.247 0.032

CHDM 0.05 1 1.4 0.1 S1 0.234 0.041

CHDM 0.05 2 1.4 0.05 S1 0.225 0.050

CHDM 0.05 2 1.4 0.1 C 0.228 0.047

CHDM 0.05 2 1.4 0.1 A1 0.261 0.023

CHDM 0.05 2 1.4 0.1 S1 0.282 0.014

CHDM 0.05 2 1.4 0.15 A1 0.249 0.030

CHDM 0.05 2 1.4 0.15 S1 0.231 0.044

CHDM 0 2 1.4 0.05 C 0.245 0.033

CHDM 0 2 1.4 0.05 A1 0.285 0.013

CHDM 0 2 1.4 0.05 S1 0.231 0.044

CHDM 0 2 1.4 0.1 A1 0.297 0.010

CHDM 0 2 1.4 0.15 A1 0.261 0.023

Table 3.8: Results from a correlation analysis distance from the fundamental plane
(FP1 and FP2) vs. DM morphology. As in Tables 3.7, we consider only small
redshifts as indicated in the table and the structure functions C, A1 and S1.
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Figure 3.31: A summary of all significant correlations of substructure with the FP–
distance using Kendall’s τ for the whole redshift evolution of all models. Note,
that for the CHDM model only redshifts z < 0.36 were considered. We consider C,
A0, A1, S0, S1, S2 and the rescaled A′

0, A′
1, S′0, S′1 and S′2 for smoothing lengths of

0.05, 0.1, .., 0.3h−1Mpc.
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model sample FP Ncl β1 β2 β3 mean scatter×1000

(z ∼ 0) A1(χ = 0.10h−1Mpc) dividing the samples is 0.0108h−1Mpc

CDM p 1 13 −2.57 0.01 −1.23 0.613

CDM r 1 26 −1.47 −0.78 −0.95 0.542

CDM w 1 39 −1.68 −0.71 −1.05 0.689

CDM p 2 13 −1.80 −0.23 −0.79 0.400

CDM r 2 26 −1.64 −0.34 −0.75 0.535

CDM w 2 39 −1.62 −0.31 −0.71 0.570

ΛCDM p 1 22 −1.89 −0.52 −1.13 0.411

ΛCDM r 1 13 −1.59 −0.31 −0.81 0.493

ΛCDM w 1 35 −1.62 −0.56 −0.97 0.601

ΛCDM p 2 22 −1.83 −0.23 −1.05 0.275

ΛCDM r 2 13 −1.58 −0.27 −0.94 0.308

ΛCDM w 2 35 −1.60 −0.29 −0.97 0.343

CHDM p 1 17 −1.51 −0.61 −0.90 0.223

CHDM r 1 20 −1.80 −0.72 −1.21 0.529

CHDM w 1 37 −1.66 −0.69 −1.07 0.426

CHDM p 2 17 −1.60 −0.29 −0.75 0.360

CHDM r 2 20 −1.91 −0.33 −1.01 0.418

CHDM w 2 37 −1.78 −0.31 −0.90 0.424

Table 3.9: Fittings of the fundamental planes for all cosmological models. Each
sample (one background model at one redshift) is divided into two subsamples using
the structure function A1. Then the fundamental plane is fitted within the three-
space. We look whether the scatter around the FP is smaller for the sample with
the substructure–poor clusters (p) than for the sample with the substructure–rich
clusters (r).
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model sort of FP χ p

CDM 1 0.00 0.636

CDM 1 0.05 0.706

CDM 1 0.10 0.545

CDM 2 0.00 0.773

CDM 2 0.05 1.000

CDM 2 0.10 0.864

ΛCDM 1 0.00 0.864

ΛCDM 1 0.05 0.941

ΛCDM 1 0.10 0.909

ΛCDM 2 0.00 0.682

ΛCDM 2 0.05 0.529

ΛCDM 2 0.10 0.591

CHDM 1 0.00 0.455

CHDM 1 0.05 0.824

CHDM 1 0.10 0.818

CHDM 2 0.00 0.909

CHDM 2 0.05 1.000

CHDM 2 0.10 0.818

Table 3.10: Metastatistics for the divisions of the samples. We divide each sample
(one model at one redshift) according to each substructure function for three different
smoothing lengths and fit the fundamental planes for all models at the two smallest
redshifts (z = 0 and z ∼ 0.05). Then we average over the redshifts and the type
of structure functions to summarize the behavior of the fundamental planes. p is
the fraction of samples, where the substructure–poor clusters define the fundamental
plane better than the substructure–poor clusters. p ∼ 0.5 does not indicate anything
relevant, only high ps show that the f–sample fixes the FP better than the r sample.
One observers that especially for the second fundamental plane, the substructure
mirrors the cluster inner dynamical state quite well.
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sort of FP sort of sf p

1 C 0.533

1 A0 0.533

1 A1 0.733

1 S0 0.833

1 S1 0.611

1 S2 0.889

1 A′
0 0.800

1 A′
1 0.667

1 S′0 0.833

1 S′1 0.778

1 S′2 0.867

sort of FP sort of sf p

2 C 0.800

2 A0 0.533

2 A1 0.933

2 S0 0.778

2 S1 0.778

2 S2 0.778

2 A′
0 0.667

2 A′
1 0.889

2 S′0 0.833

2 S′1 0.722

2 S′2 1.000

Table 3.11: As in Table 3.10 we show the statistic from fitting the fundamental
planes within the f and e–f sample. Here we compare the power of the substructure
functions. Since there are many indications for the fact that the fundamental plane
in the third threespace is not well–established, we omit it and refer only to our first
two threespaces. The clumpiness and the shift of morphological properties is, e.g.,
more interesting for the cluster shape than the shape of cluster.

sample fixes the FP better than the other one (i.e. reduces the mean scatter more).
This is in the spirit of Fritsch & Buchert (1999) where an empirical plane is distin-
guished from the fundamental plane defined by the substructure–poor clusters only.
Since we want to compare different models whose structure functions are different on
average, we take the same cut for all of the models; for each substructure function
dividing the sample, we determine the cut in such a way, that for all models both the
substructure–rich and the substructure–poor subsample have at least eight clusters.
A problem about this method is that often the best fitting parameters for the smaller
subsamples are not compatible with the fundamental plane parameters found for the
whole sample (called w). This is, at least in part, caused by the small numbers of
clusters within the subsamples; we do not exclude such problematic fits.
As an example we show some results for FP1 and FP2 in Table 3.9. Since we have
a number of structure functions, and the smoothing length is a free parameter, too,
there are a number of possible divisions of the samples. To get an overview, we
carry out a sort of metastatistics where we compute the ratios of those sample divi-
sions which result in scatters as theoretically expected (namely the scatter around
the fundamental plane is smaller for the substructure–poor clusters), to all sample
divisions. Results can be seen from Table 3.10. These results show that especially
the second fundamental plane is better fixed within the threespace for the CDM
and the CHDM model. As already expected, the first plane is weakly correlated to



85

substructure for the ΛCDM model. Comparing different χs, we see, that for higher
χ better results are obtained. Therefore, to feature the dynamical state of a cluster,
a higher smoothing length is useful.
In Table 3.11 we test the performance of the structure functions for the first two FPs.
It turns out that, for instance, S′2 divides the sample in a way that is illuminating
the dynamical properties of the clusters. To summarize the results, one can say,
that the divisions of the samples confirm our previous results: the distance from an
equilibrium is mirrored by substructure especially for the second parameter space.

A fundamental band?

Since we could show that in some parameter spaces band–like structures are form-
ing, which become in part narrower throughout the dynamical evolution, it seems
promising to fit the data also using a line; physically this means that the clusters
form a one–parameter family. Again, we probe the link between morphology and
dynamics.
We investigate the spaces of global parameters listed above and look at the following
fundamental lines (FLs for the sequel):

1. fundamental line
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After having minimized the scatter around the lines to get the best fit for each
model and each redshift, we trace the evolution of the scatter in Figure 3.32. Now
the scatter decreases during the evolution for the first and third parameter space12.
We show the best fitting lines in Figure 3.33 where the z–axis is orientated parallel
to the fundamental line. The ranges in x– and y–direction mirror the length of the

12Note that during the whole discussion of the fundamental planes and lines statistical outliers
have not been removed. Since statistical outliers tend to have a large influence on orthogonal
distance fitting, it may be the case that one or the other fundamental plane is distorted by one
or more outliers; for the most cases, however, a visual inspection shows that we are fitting the FP
acceptably.
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Figure 3.32: The scatter around the fundamental lines vs. redshift. CDM: solid line;
ΛCDM : long dashed line; CHDM: short dashed line.

fundamental line along the z–axis. If the distribution of clusters collapses into a
point within the x− y plane, and the clusters are scattered isotropically around the
line, the concept of a fundamental line is justified.
The results show that, especially within the third parameter space, a fundamental
line is given, whereas in the other two parameter spaces a preferred direction still
indicates the presence of a plane–like structure. A visual analysis of the redshift
evolution shows that in the first threespace, a plane is formed which is collapsing,
especially for the CDM and CHDM model. In the second threespace, a band is
forming quite recently, whereas in the third threespace the distribution is plane-like
at intermediate redshifts (z ∼ 0.5) and is contracting then into a line. In Figure 3.34
we show the parameters γj

i determining the fundamental lines. They all seem to con-
verge to compatible values for all models; only in the case of the second fundamental
band where the luminosity enters, the ΛCDM model is very different from the other
models. This, however, can be explained by the fact, that the ΛCDM–luminosities
are incompatible with the luminosities of the other models (see Figure 3.25 and Ta-
ble 3.4). Moreover, for higher redshifts the fitting is influenced remarkably by one
outlier for the ΛCDM model.
In Table 3.12 we ask whether the distribution of the distances around the funda-
mental lines can distinguish the cosmological background models. The results of a
K–S test clearly indicate that this is not the case. This is similar to the case of
the fundamental plane, where the clusters were distributed around the fundamental
plane in a similar manner within all cosmological models (see Table 3.5).
Now we want to answer the question, whether there is a connection between the
cluster substructure and its dynamical state measured using the distance from the
fundamental line. This would indicate that the fundamental line really corresponds
to a sort of equilibrium state the cluster is reaching. A first test is again a compari-
son of the dynamical evolution of the averaged structure functions and the averaged
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Figure 3.33: The fundamental lines. The FLs coincide with the z–axis.
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Figure 3.34: The exponents determining the fundamental lines vs. redshift. As
usual: CDM: solid line; ΛCDM : long dashed line; CHDM: short dashed line. For
technical reasons, we omit one of the redshifts for the CHDM model.
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FL 1 CDM - ΛCDM CDM - CHDM CHDM - ΛDM

z ∼ 0 dKS pKS dKS pKS dKS pKS

0.04 0.103 0.984 0.195 0.421 0.176 0.590

0 0.270 0.114 0.252 0.154 0.201 0.420

FL 2 CDM - ΛCDM CDM - CHDM CHDM - ΛDM

z ∼ 0 dKS pKS dKS pKS dKS pKS

0.04 0.213 0.332 0.198 0.408 0.288 0.082

0 0.287 0.077 0.198 0.408 0.237 0.230

FL 3 CDM - ΛCDM CDM - CHDM CHDM - ΛDM

z ∼ 0 dKS pKS dKS pKS dKS pKS

0.04 0.215 0.320 0.143 0.798 0.195 0.460

0 0.246 0.183 0.112 0.960 0.212 0.351

Table 3.12: K–S tests of whether the distributions of the distances from the three
fundamental lines differ between the cosmological models. Almost no significant
results are to be found, even for higher redshifts. The scatter around the fundamental
lines is thus comparable for all models.

model FL C A1 S1

χ = 0.05 τ p τ p τ p

CDM 1 0.61 0.022 0.56 0.037 0.61 0.022

CDM 2 0.67 0.012 0.61 0.022 0.67 0.012

CDM 3 0.67 0.012 0.61 0.022 0.67 0.012

ΛCDM 1 0.83 0.002 0.94 0.000 1.00 0.000

ΛCDM 2 0.61 0.022 0.72 0.007 0.78 0.004

ΛCDM 3 0.72 0.007 0.83 0.002 0.78 0.004

CHDM 1 0.52 0.099 0.52 0.099 0.43 0.176

CHDM 2 0.14 0.652 0.14 0.652 0.05 0.881

CHDM 3 0.33 0.293 0.33 0.293 0.43 0.176

Table 3.13: Correlations (Kendall’s τ) between the averaged substructure and
the mean quadratic scatter around the fundamental line for a smoothing of χ =
0.05h−1Mpc and rw = 1.4h−1Mpc.
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scatter around the fundamental line. Kendall’s τ and the corresponding p(τ) can be
found in Table 3.13. They show that, especially for the ΛCDM and the CDM model,
the connection between the substructure and the deviations from the fundamental
line are good. For the CHDM model, however, there are no significant correlations.
To complement this result, we ask whether the substructure of an individual cluster
and its distance from the fundamental line are correlated. Results of a Kendall’s test
can be seen from Figure 3.35, where we trace the evolution of the correlation coeffi-
cients by marking all positive correlations found with one of our structure functions.
Again, we take into account smoothing lengths of 0.05, 0.1, .., 0.3h−1Mpc and all of
our eleven structure functions. As already the visual inspection of the global param-
eter space showed, for the second phase space, the fundamental line is not a good
concept. This is confirmed by the behavior of the correlation coefficients which are
more or less randomly distributed, some positive, some negative. For the first and
also the third threespace, however, besides a small fraction of negative τs, one can
see a number of positive correlations confirming the link between the substructure
and the inner cluster state.
As mentioned above, the hypothesis of a connection between substructure and dy-
namical equilibrium (here measured by the distance from a fundamental line) can
also be tested by dividing the samples according to their substructure functions. We
show results of metastatistics in Table 3.14. Altogether they confirm the physical
picture of the substructure for the first and third threespace. To summarize this
subsection on fundamental relationships or fundamental structures (these labels may
serve as a generic term for fundamental planes and lines or bands) one can state the
following:

• Fundamental relationships can be observed within three phase spaces of global
cluster parameters: the clusters form band–like structures in these spaces,
which can be fitted using either a plane or a line.

• The exponents determining the fundamental relationships are compatible with
each other for the different cosmological background models.

• There is a complex dynamical behavior of the clusters in the global parameter
spaces: In the first parameter space a bandlike plane exists. In the second
space there is a plane; in the third space a plane which existed at a redshift of
z ∼ 0.4 collapsed to form a band (ΛCDM , CHDM).

• During the dynamical evolution the scatter around the fundamental structures
FP1, FP2, FL1, and FL3 is decreasing.

• There is no significant evolution of the FP–exponents governing the fundamen-
tal structures at low/intermediate redshifts.

• In most cases, the pure scatter around the fundamental structures cannot dis-
tinguish between the cosmological models.
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Figure 3.35: A summary of significant correlations of morphology with the FL–
distances using Kendall’s τ for the whole redshift evolution of all models. Here we
take into account all significant correlations with one of our substructure measures
for the X–ray images using smoothing lengths of 0.05, 0.1, .., 0.3h−1Mpc. We consider
C, A0, A1, S0, S1, S2, and the rescaled A′

0, A′
1, S′0, S′1, and S′2.
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model sort of FP χ p

CDM 1 0.00 1.000

CDM 1 0.05 0.647

CDM 1 0.10 0.773

CDM 2 0.00 0.545

CDM 2 0.05 0.471

CDM 2 0.10 0.409

CDM 3 0.00 0.864

CDM 3 0.05 0.882

CDM 3 0.10 0.818

ΛCDM 1 0.00 1.000

ΛCDM 1 0.05 0.941

ΛCDM 1 0.10 0.727

ΛCDM 2 0.00 0.727

ΛCDM 2 0.05 0.588

ΛCDM 2 0.10 0.591

ΛCDM 3 0.00 0.773

ΛCDM 3 0.05 0.765

ΛCDM 3 0.10 0.545

CHDM 1 0.00 0.773

CHDM 1 0.05 0.471

CHDM 1 0.10 0.545

CHDM 2 0.00 0.318

CHDM 2 0.05 0.353

CHDM 2 0.10 0.455

CHDM 3 0.00 0.591

CHDM 3 0.05 0.824

CHDM 3 0.10 0.818

Table 3.14: A metastatistics for the performance of the substructure–poor and
substructure–rich samples in fixing the fundamental lines. As above in Table 3.10,
the whole cluster sample for each model and two redshifts was divided according to
one of our structure functions evaluated at a certain smoothing length. p is the frac-
tion of cases, where the p sample has lower scatter than the r sample as theoretically
expected. The results show that for the first and especially the third threespace, the
substructure traces the dynamical cluster state quite well.
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• During dynamical evolution the average cluster substructure and the average
scatter around the fundamental plane are correlated for most cosmological
models.

• One can try to correlate the morphology and the distance from the fundamental
structures which in some cases gives good results. Linking the morphologies
of the fundamental structures, the evolution of the scatter and the relation
to substructure gives a consistent picture for the cluster evolution: in the
second parameter space a plane exists at z = 0, in the first space, a band–
like structure indicates an equilibrium. In the third parameter space, there is
weak evidence for positive correlations between morphology and distance from
a line. We interpret these relationships, which are connected to substructure,
as a physical equilibrium.

Comparison with power ratios

We compare these results to another quantification of cluster substructure, the power
ratios introduced by Buote & Tsai (1995), see also Buote & Tsai 1996; Valdarnini
et al. 1999. These measures are based on a spherical harmonics analysis of the
gravitational potential estimated via the surface brightness13. We ask whether they
reflect the dynamical state of a cluster at z = 0. Results of a correlation analysis
for the distance from the fundamental plane/line are shown in Table 3.15 and in
Table 3.16, respectively. We tested both three orthogonal projections for each cluster
and the power ratios averaged over the three orthogonal directions. The results are
rather insignificant, for the fundamental plane, we get no positive correlations, but
a number of negative correlations for the third cluster phase space. Also for the
fundamental line we get more negative than positive correlations. Altogether, the
Minkowski valuations seem to be better in establishing the link between substructure
and dynamical state.

3.4.5 Gas and Dark Matter distribution

But how are the Dark Matter and the gas related to each other? One example is given
in Figure 3.36, where we show both the DM and the gas for one individual cluster.
To conclude the investigation of the V–clusters, we try to answer that question in a
statistical sense. The X–ray and the gas images were constructed as described above.
Since we want to have statistical claims on the behavior of gas and DM, we construct
for each cosmological model a sample by taking three orthogonal images per cluster
as independent pictures. We analyze the gas images and the DM images separately
and show scatter plots for all cosmological models in Figure 3.37. Obviously, there
is a large scatter in the data, but there is a global trend, that the DM is more

13We got the power rations for our clusters by Valdarnini et al. (1999). They were computed for
spherical images with a radius of 1.5h−1Mpc centered at the center of mass of the images.
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model FP rw sort of proj. sort of PR τ p

ΛCDM (z ∼ 0) 2 1.5 1 1 -0.249 0.035

ΛCDM (z ∼ 0) 2 1.5 2 1 -0.240 0.042

ΛCDM (z ∼ 0) 2 1.5 3 1 -0.240 0.042

ΛCDM (z ∼ 0) 3 1.5 0 1 -0.271 0.022

ΛCDM (z ∼ 0) 3 1.5 1 1 -0.266 0.025

ΛCDM (z ∼ 0) 3 1.5 2 1 -0.271 0.022

ΛCDM (z ∼ 0) 3 1.5 3 1 -0.277 0.019

CHDM (z ∼ 0) 3 1.5 1 4 -0.272 0.018

CHDM (z ∼ 0) 3 1.5 2 4 -0.252 0.028

CHDM (z ∼ 0) 3 1.5 2 5 -0.246 0.032

Table 3.15: The significant correlations of the power ratios with the distance from
the FP.

model FP rw sort of proj sort of PR τ p

ΛCDM (z ∼ 0) 3 1.5 0 1 -0.257 0.030

ΛCDM (z ∼ 0) 3 1.5 1 3 0.254 0.032

CDM (z ∼ 0) 1 1.5 2 2 0.257 0.021

CDM (z ∼ 0) 2 1.5 1 3 -0.220 0.049

CDM (z ∼ 0) 3 1.5 0 2 -0.342 0.002

CDM (z ∼ 0) 3 1.5 1 2 -0.380 0.001

CDM (z ∼ 0) 3 1.5 3 2 -0.273 0.014

Table 3.16: Here the power ratios were correlated with the distance from the funda-
mental line. We list all significant correlations found within all of our data. We use
cluster images from three orthogonal projections labelled by 0, 1, 2. We also averaged
the power ratios over the three projections (labelled by 3).
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Figure 3.36: The cluster 05 in the CDM model at z ∼ 0.05. An X-ray image
constructed by the gas particles (left panel) and an image constructed by the DM
(logarithmic color scale).

substructure–rich, at least at this smoothing scale. One can interpret these diagrams
as a sort of phase diagrams. Using an orthogonal distance regression we fit a line to
our data, but a caveat is appropriate insofar as the scatter is very large and the fit
is probably influenced by outliers. We show the best fitting slopes for a number of
different smoothing lengths in Figure 3.38 and add as a different measure the averaged
ratio of C(DM)

C(gas)
for each cosmological model. These results show systematically, that

the DM has a higher clumpiness than the gas. – It is difficult to obtain similar results
for the other structure functions, since the fittings are often influenced by outliers,
and the averaged ratios by clusters with very small structure functions.

3.5 A morphology–cosmology connection for op-

tical galaxy clusters?

In this section we investigate optical galaxy clusters with the aid of the Minkowski
valuations. Since galaxy clusters typically consist of the order of 30 − 300 galax-
ies (Bahcall 1996), single points may bear important information, therefore, an inves-
tigation with the Boolean grain method which is more sensitive to local information
than the excursion set approach is appropriate.
We first illustrate our method with the aid of the real cluster Cl 0016+161 observed
by Belloni & Röser (1996). They give the angular positions and spectral properties
of galaxies in a field of 3.5′ × 3.5′ size and brighter than R = 23.5mag. A galaxy
is considered as cluster member, if its redshift lies within a fixed redshift range
dependent on the morphological type. Roughly following Belloni & Röser (1996),
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Figure 3.37: The structure function C for the gas and the DM for all cosmological
models. Each points represents one image, in each case a smoothing with 0.05h−1Mpc
was applied. Often structure functions coincide at one data point.

Figure 3.38: The slope of the best fitting line in a scatter plot C(Gas) vs. C(DM).

In the left panel we show the ratio of C(Gas)
C(DM)

, averaged over the whole cluster sample.
As usual CDM: solid line; ΛCDM : long dashed line; CHDM: short dashed line.
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Figure 3.39: The positions of the galaxies for the cluster Cl 0016+161 (left panel)
and an illustration of the Boolean grain method (right panel).

the redshift range is 0.525 < z < 0.575 for the elliptical and A+E galaxies, and
0.515 < z < 0.585 for spirals and irregulars. We consider only those galaxies, whose
morphological type could be determined (cf. Table 5 in Belloni & Röser 1996). In
Figure 3.39 we show the positions of the cluster galaxies. To apply the Boolean grain
method, we put spherical windows of different radii around the center of mass of the
points and compute the Minkowski valuations for the intersection of the union set of
all Boolean grains and the spherical window. For a statistical comparison, we simu-
late 100 realizations of an inhomogeneous, but spherically symmetric Poisson process
following the same density profile as the observed cluster Cl 0016+161. The radial
galaxy number density profile for Cl 0016+161 is estimated by collecting the galaxies
in bins around the center of mass. We tested several binnings which qualitatively
gave similar results. Then we simulate a spherically symmetric Poisson processes
characterized by the same radial profile (Stoyan & Stoyan 1994). This serves as a
non–parametric spherically symmetric reference model to compare the real data to.
Results can be seen from Figure 3.40. By definition of our reference model, the
curves for the volume V0 vs. radius are similar for the real cluster and the Poisson
model. Also the other scalar Minkowski functionals are roughly consistent within
the 1σ fluctuations. However, the curvature centroids reveal that this cluster is in-
compatible with a spherically symmetric Poisson process around its center of mass:
the y–component of all curvature centroids lies outside the 1σ variations of the Pois-
son model. This shows that the higher–order Minkowski functionals contain more
detailed information than their scalar counterparts. They also uncover the direc-
tion where the substructure is to be found. We now turn to the question whether
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Figure 3.40: A comparison of the cluster Cl 0016+161 (solid line) and a spherically
symmetric Poisson process (dashed line, the shaded areas indicate the 1σ fluctua-
tions) using the Boolean grain method. We put a spherical window of 69′′ on the
points and investigate the union set of the Boolean grains. The radius of the Boolean
grains r is given in units of arcseconds. The Minkowski functionals and the curvature
centroids are given in units of powers of arcseconds, too.
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a cosmology–morphology connection can be found for optical galaxy clusters within
the GIF–simulations.

Cluster galaxies in simulations. From numerical simulations we get cluster
galaxies using the “semianalytical models” discussed, e.g., by Kauffmann et al.
(1999); Diaferio et al. (1999). The basic idea behind this sort of models is to follow
merger histories in order to get stable galaxies and to insert some global properties
of the galaxies like morphological type and luminosity using well–established scaling
relations. Of course, there are a number of cautions to be kept in mind with such
semianalytical models, but after all they supply galaxies for N–body simulations.
For all clusters in the simulations with masses M200 larger than 1014M�h−1 we have
all galaxies within r200 around the cluster center; M200 is the integrated mass of all
cluster parts where the mass density exceeds 200 times the critical density and r200

is the scale corresponding to M200.
We investigate two models, one high–Ωm model (τCDM) and one low–Ωm model
(ΛCDM)14. We have 80 clusters for the ΛCDM model and 57 clusters for the τCDM
model at z = 0. The galaxies are only complete up to magnitudes MV < −17.5 +
5 log(h), thus we only consider galaxies with magnitudes smaller than this bound in
the V –band.
To estimate the cluster scales we compute the radius which contains half of the
galaxies around the center of mass (“half–galaxy radius”) and a parameter from the
convex hull of the points. The first radius refers to the core of the cluster. We find
that on average the half–galaxy radius is larger for the ΛCDM model, whereas the
other radius is within the τCDM model. As an estimate of the cluster scale, we
prefer the half–galaxy radius, since it is more stable than the other estimates.
For the Boolean grain method we proceed as described in Chapter 2.1; the window
is chosen large enough to contain the whole cluster with all Boolean grains. We vary
the radius of the Boolean grains from 0 to 1h−1Mpc. We sum over one hundred bins
within this range to get the shift parameters15 si and Si for i = 0, 1, 2, as well as
the asymmetry parameters Aj for j = 0, 1 and the axis ratios Xk for k = 0, .., 6.
Results are shown in Table 3.17. There is a clear evidence that the ΛCDM clusters
have less substructure than the τCDM clusters. This shows that there is also a
cosmology–morphology connection for optical galaxy clusters. The application of
a K–S test shows that indeed the differences between the models are significant.
Only the shift and asymmetry parameters reveal significant differences between both
cosmological background models. The anisotropy parameters are only marginally
different between the models. These results could be confirmed using the excursion
set approach. Two structure functions are shown for different smoothing lengths in

14Because of technical reasons, only these models were accessible.
15For technical reasons, we neglect the shift parameters for the centroid p0, since it is dominated

by fluctuations due to the Monte Carlo integration. Also the asymmetry parameters may be affected
by this.
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Figure 3.41: Two clusters in the optical from the GIF–simulations for the ΛCDM
and the τCDM clusters each, at redshift z = 0. We show only the galaxies with
MV < −17.5 + 5 log(h), where MV is the absolute magnitude in the V –band.
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ΛCDM τCDM K–S test

average r.m.s. average r.m.s. dKS p(dKS)

s1 0.778 0.268 0.943 0.239 0.38 < 0.1%

s2 16.418 17.472 18.414 19.441 0.15 42.1%

S1 0.126 0.062 0.141 0.050 0.24 3.6%

S2 0.595 0.418 0.655 0.380 0.22 6.0%

X0 0.834 0.176 0.827 0.189 0.09 94.5%

X1 0.637 0.304 0.625 0.268 0.11 77.1%

X3 0.160 0.063 0.165 0.076 0.09 93.7%

X4 0.669 0.279 0.677 0.240 0.15 43.4%

X5 0.160 0.063 0.165 0.076 0.09 93.7%

A0 0.056 0.050 0.066 0.041 0.28 0.9%

A1 1.629 0.764 1.802 0.635 0.33 0.1%

s′1 1.143 0.389 1.637 0.524 0.46 < 0.1%

s′2 20.964 15.642 27.390 19.760 0.23 5.6%

S′1 0.186 0.091 0.249 0.120 0.29 0.5%

S′2 0.816 0.407 1.066 0.429 0.33 0.1%

A′
0 0.115 0.079 0.190 0.108 0.39 < 0.1%

A′
1 2.337 0.807 3.047 0.881 0.40 < 0.1%

Table 3.17: A comparison of the ΛCDM and the τCDM model using optical galaxy
clusters and the Boolean grain method. The first two columns show the mean struc-
ture functions together with their r.m.s. fluctuations. The other columns contain the
result of a K–S test. The meanings of the tensors behind the anisotropy parameters
Xi are listed in Table 1.1.
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Figure 3.42: Two structure functions comparing the optical galaxy clusters for the
excursion set approach. We show the values of the structure functions vs. the
smoothing length χ.

Figure 3.42. Note, however, that, if we rescale the structure functions by the radius
of the convex hull, the results become insignificant, or point into the wrong direction.

3.6 Summary and outlook

The Minkowski valuations provide an elegant framework to characterize the mor-
phology of patterns. They are based on a solid mathematical ground and can be
characterized axiomatically. The mathematical theory of integral geometry provides
a number of results which allow for an effective computation of the Minkowski valu-
ations. Based upon the hierarchy of Minkowski valuations, we constructed a number
of structure functions which are well–suited to characterize different aspects of the
substructure found in galaxy clusters.
Using these tools we could show that the morphology of galaxy clusters can effectively
discriminate between different cosmological background models within cosmological
simulations. The Dark Matter distribution as well as the X–ray images of clusters
and the distribution of the cluster galaxies permit us to constrain the values of the
cosmological parameters.
Furthermore, we investigated the relation between the inner dynamical state of a
cluster and its substructure. To measure the intrinsic cluster state we used the con-
cept of fundamental plane relations, which hold in certain spaces of global cluster
parameters. Our results indicate that, at least for some fundamental plane relations,
the distance from the fundamental plane is mirrored by the substructure.
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The measures developed in this part, however, are not only suitable for cluster inves-
tigations, but also for the morphometry of cosmic structure on larger scales. Homo-
geneity and isotropy are principles which govern our understanding of the Universe.
They enter most of the cosmological models, and even a number of statistics for the
cosmic structure such as usual estimates of the two–point correlation function (Pee-
bles 1980; Kerscher 1999) presuppose homogeneity and isotropy. With the aid of the
Minkowski valuations, especially the higher–order ones, one can test to what extent
and from which scale on those assumptions are fulfilled (scale of homogeneity).
In the second part of this work we turn indeed to the large–scale structure, but from
a different point of view. We consider the spatial information given by the positions
of galaxies together with their intrinsic properties.
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Part II

Mark correlations and the bias
problem





Introduction

Illuminating the Universe nowadays means in particular to illuminate the nature
of the Dark Matter which is thought of as filling the Universe as its main compo-
nent. For the cosmologist Dark Matter comes up in the fields of statistics and the
theories of structure formation. The main questions are: How is the Dark Matter
distributed? And what is its imprint on the formation of cosmic structures such as
galaxy clusters?
The efforts of the following chapters are loosely connected to the first of these ques-
tions. Since the Dark Matter is not directly observable, one usually investigates the
distribution of the luminous matter such as galaxies and tries to fill the gap between
luminous and Dark Matter using biasing schemes. One particular issue in this con-
text is the question of whether certain classes of objects trace the distribution of the
Dark Matter reliably. There was a long–standing debate on whether different classes
of objects, galaxies of different morphological types or luminosities, e.g., are differ-
ently distributed on the sky, in other words whether they are biased with respect to
each other. Therefore, the big bias problem of how the Dark Matter is related to the
luminous one is being translated into a number of small bias problems of whether
the distribution of certain objects is biased towards the distribution of other objects.
Indeed, one observed that in series of volume–limited samples the clustering proper-
ties change slightly; in particular, the amplitude of the two–point correlation function
grows when deeper samples are investigated (Park et al. 1994). This observation
was usually interpreted as an imprint of luminosity segregation: Since deeper volume–
limited samples (given a fixed flux limit of the detector) trace only the more luminous
galaxies, a peculiar distribution of the brightest galaxies would change the amplitude
of the correlation function. However, Pietronero and coworkers gave an alternative
explanation of why the clustering strength was growing for deeper samples (Sylos
Labini et al. 1998): if the Matter distribution in the Universe is a fractal, the no-
tion of homogeneity on which an estimation of the two–point correlation function is
based on becomes meaningless. Pietronero and coworkers showed that for a fractal
distribution the “scale of nonlinearity” (often referred to as “correlation length”,
see Gaite et al. 1999 for an interpretation) grows linearly with the sample depth.
More generally, one does not need to believe that the Universe is a fractal to question
the standard argument, since any inhomogeneity in the data (eventually generated
by evolution effects) renders the usual approach problematic.
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So there was a degeneracy between claims on luminosity segregation and fractality
(or more generally inhomogeneity on large scales).
Additionally, there were a couple of other investigations asking whether the clustering
of galaxies depends on their intrinsic properties. The empirical investigations mainly
probed two directions. The first direction investigated the large–scale distribution of
galaxies. As main tool two–point statistics such as the two–point correlation func-
tion were used; they were calculated for different subsamples determined by intrinsic
properties of the galaxies, see, e.g., Binggeli et al. 1990; Hermit et al. 1996; Davis et
al. 1988; Einasto 1991a; Einasto 1991b for morphology segregation, and Hamilton
1988; Davis et al. 1988; Benoist et al. 1996 for luminosity segregation. To avoid
the degeneracy with claims of fractality, at least partly one constrained to one fixed
volume.
Sometimes also higher–order and non–standard statistics were employed to test
for luminosity and morphology segregation, for instance the void probability func-
tion (Maurogordato & Lachièze–Rey 1987), the skewness (Benoist et al. 1999), and a
multifractal analysis (Domı́nguez-Tenreiro & Mart́ınez 1989); see also (Domı́nguez-
Tenreiro et al. 1994). Tully (1988) and White et al. (1988) investigated the distri-
bution of distances for different galaxy classes. Santiago & Strauss (1992) focused
on the local densities dependent on morphology. Most of these works compare sta-
tistical descriptors for different subsamples, but do not develop specific measures to
confirm or to characterize an eventual segregation more closely. Only Börner et
al. (1989) introduced a scheme where correlation functions were weighted with the
luminosity. Alimi et al. (1988) focused on ratios of correlation functions to overcome
the normalization problem.
To summarize the results of these works, one found luminosity segregation for a
number of samples in the sense that bright galaxies cluster more strongly than the
dim ones. The analysis often was not scale–dependent, but some authors claim to
have found luminosity segregation even at large scales of ∼ 10h−1Mpc, see, e.g., Mo
et al. 1992. Morphology segregation was discovered in a couple of catalogues, too.
A second direction of research focused on galaxy clusters and looked at the dis-
tribution of the galaxies of different types within the clusters, see, e.g. Giovanelli
et al. 1986; Andreon 1994; Andreon 1996; Caon & Einasto 1995; Adami et al.
1998a; Giuricin et al. 1988. Luminosity segregation in clusters was investigated,
too (Capelato et al. 1980; Adami et al. 1998a; Magtesyan & Movsesyan 1995).
This line of research was mainly directed by the well–known morphology–density
relation (Dressler 1980) which states that in clusters elliptical galaxies prefer the
high–density regions (compare also Postman & Geller 1984).
However, a unifying framework for all these investigations was missing so far. Most
of the work done within this area of research applied usual point process statistics
to a couple of subsamples or used ad–hoc defined measures. Statistics which con-
centrate on the interplay of the spatial clustering and the inner properties of the
galaxies have not yet been developed. Another weak point was the analysis of errors:
almost none of the cited works quantifies the statistical errors to be expected in such
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an analysis. Therefore, the claims on luminosity segregation have to be handled
carefully. Regarding the question of how the claimed luminosity segregation looks
like, no quantitative study was done.
These difficulties shall be addressed in the present part under recourse to mathemat-
ical theory. We raise the question of luminosity/morphology segregation in the more
general context of mark correlations. We discuss this in the mathematical framework
of marked point processes. Marked point processes generate random point sets where
the points bear intrinsic properties. The mathematical theory allows us to introduce
simple test quantities which ask whether there is an interplay between the spatial
clustering of the points and their intrinsic properties. A mathematical treatment
has many advantages; especially it allows us to break the degeneracy between claims
of luminosity segregation and fractality. It also enables us to asses the statistical
significance of claims regarding luminosity segregation. We can define unbiased es-
timators for our test quantities and furthermore compare with analytical models.
In Chapter 4 the basic concepts constituting the theory of marked point processes
are developed. We also clarify the notion of mark segregation there. A number of
statistical test quantities is introduced in Chapter 5. We concentrate on two–point
properties, but mention higher–order statistics, too. In Chapter 6 we ask for lu-
minosity and morphology segregation within real data. We investigate the SSRS 2
galaxy catalogue. To understand the signals of luminosity segregation found at a
high level of significance, we compare with different models in Section 6.3. In Chap-
ter 7 we show that marked point processes are an appropriate framework to model
the bias16.

16Part of the results presented in this part were published in (Beisbart & Kerscher 2000).
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Chapter 4

Marked point processes and their
description

Suppose one is given the positions and some intrinsic properties of objects within
a well–defined sample. Usually a good ansatz to analyze such data is to inter-
pret them as a realization of a random process. Random processes which produce
points in space together with their intrinsic properties are called marked point pro-
cesses. In this chapter we provide an introduction into marked point processes. We
develop the basic concepts (Section 4.1) and clarify the notion of mark segrega-
tion (Section 4.2). The mathematical foundations were developed by Stoyan (1984)
and Stoyan & Stoyan (1994), where also some mark–weighted correlation functions
were proposed.

4.1 Basic theory of marked point processes

To begin with, we have N data points {(Xi, Mi)}N
i=1 with positions Xi ∈ D ⊂ Rd

within the sample geometry D and marks Mi ∈ M. The marks have to represent
intrinsic properties of the objects, one may think of the luminosity Li of a galaxy
or its mass. Discrete marks such as the morphological type or vector–valued marks
such as the velocity or an orientation are possible, too; thus, we do not specify the
mark space M further. It is, however, useful at this point to restrict ourselves to
real properties of galaxies; apparent qualities such as the redshift or the apparent
magnitude are discussed later on.
Marked point processes, on the other hand, are defined via statistical ensembles and
described via moments or probability densities. Of course, the pure points {Xi}N

i=1

as well as the marks {Mi}N
i=1 can be thought of and characterized as realizations of

separate point processes each. The spatial part of the marked point process can be
described using the hierarchy of moments, such as the one–point density %S(x). In
many cases it is appropriate to assume homogeneity of the point process; then the
mean density % can be estimated using the ratio N

|D| , where |D| is the volume of the
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sample D. Higher–order statistics are based on the n–point probabilities of finding n
points within the volumes dV1, dV2,.. and dVn centered at x1, x2,.. and xn, respec-
tively: dp = %Sn(x1,x2, ..,xn)dV1dV2..dVn. For a homogeneous and isotropic point
process these quantities depend only on the differences of these positions, especially
%S2 (x1,x2) = %S2 (r), where r = |x2 − x1|.
Usual descriptors for the pure mark distribution are the (one–point) probability of
finding the mark of a given point within the range1 [m, m + dm]: dp = %M1 (m)dm.
Unlike the spatial point process the mark distribution cannot be thought of as ho-
mogeneous in the most cases. Thus, not only the mark mean

m =

∫
R

dm m%M1 (m) , (4.1.1)

but also higher moments such as the mark variance

V(m) =

∫
R

dm (m−m)2 %M1 (m) (4.1.2)

and the skewness and kurtosis may be of interest. Using our empirical data set and
assuming that it is a fair sample with respect to the marks2, we can estimate the
mark mean and mark variance by

1

N

N∑
i=1

Mi and
1

N − 1

 N∑
i=1

M2
i −N

(
N∑

i=1

Mi

)2
 , (4.1.3)

respectively. – Since point processes are defined via statistical ensembles, it is in
principle possible that even non–trivial joint higher–order probabilities exist; more
formally, e.g., the joint two–point probability density of finding two marks m1 and
m2 at two galaxies within one realization of the point process, %M2 (m1, m2), may not
factorize to give %M1 (m1)%

M
1 (m2). In this case, however, it would not be possible to

estimate the one–point properties of the pure mark distribution using one sample.
From a physical point of view, it does not seem to be useful to assume that there
exist different realizations with different mark properties. Formally, we can always
shrink the ensemble in such a way that intrinsic mark correlations are not present.
Thus, unless otherwise stated, we adopt the assumption that

%M2 (m1, m2) = %M1 (m1)%
M
1 (m2) (4.1.4)

1To simplify the formalism, we write down all formulae for the case of continuous marks mi ∈ R.
It is straightforward to generalize this to the case of discrete or vector–valued marks. We also
simplify our notation and speak somehow loosely of “finding a mark m” instead of “finding a mark
within the range [m,m + dm]” and similarity of “finding a point at position x” instead of “finding
a point within a volume dV centered on x.”

2I.e., the mark properties do not vary in space in a statistical sense, see below for further
explanation.
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and in a similar manner for higher–order quantities3.
However, not only the distribution of the marks and the spatial clustering of the
points, but also their interplay and their relations are of interest. Therefore, we have
to move to joint space–mark probabilities.

Joint one–point measures Let therefore

%S,M
1 ((x1, m1)) dV1dm1 (4.1.5)

denote the probability of finding a point at position x1 with mark m1. If we integrate
%S,M

1 over the whole mark space, we get the spatial probability density. We define a
“mark–fair marked point process” via the factorization of the one–point density:

%S,M
1 ((x1, m1)) = %S1 (x1)%

M
1 (m1) . (4.1.6)

This assumption states that each region in space in principle shows the same mark
distribution. It neither presumes that the spatial distribution of the points is homoge-
neous, nor rules out that, e.g., in the central regions of clusters the mark distribution
is biased; it only postulates that the properties of the mark distribution are super-
venient on the spatial distribution of the points, i.e. systematic differences in the
mark distribution are always accompanied and caused by a special spatial clustering.
From a physical point of view, it is useful to adopt the assumption (4.1.6) even in
cases where we do not presume spatial homogeneity4.
A homogeneous marked point process (at the one–point level) is defined via

%S,M
1 ((x1, m1)) = %%M1 (m1) . (4.1.7)

where % is a constant in space and estimated via N
|D| .

Joint two–point measures Now consider the probability that we find two galax-
ies at positions x1 and x2 with marks m1 and m2, respectively:

dp = %S,M
2 ((x1, m1), (x2, m2)) dV1dV2dm1dm2 . (4.1.8)

3Note, however, that there is a subtlety regarding the definition of the point process: so far, we
did not specify whether the point process generates data within the whole space or only a part of
it. In the first case, the assumption of intrinsic mark correlations does not seem to be useful, since
other realizations of the point process are not accessible. On the other hand, one may understand
different parts of space as different realizations of one point process. In this case the assumption of
no intrinsic mark correlation is too strong, since it may be the case that, e.g. the Galactic south
shows higher luminosities than the Galactic north. In other words, a large–scale inhomogeneity
within the marks could generate intrinsic mark correlation, if we model two regions of space as
independent realizations of one marked point process.

4Note, however, that in special cases, where we have, e.g., different cluster observations which are
centered on the center of mass for each cluster and which are thought of as independent realizations
of a marked point process, the assumption of mark–fairness may be problematic, e.g., when some
of the galaxies which determine the center of mass are neglected later on.
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The normalization of this two–point density is∫
D

∫
D

∫
M

∫
M

dV1dV2dm1dm2%
S,M
2 ((x1, m1), (x2, m2)) = E(N(N − 1)) ≡ N2(D) ,

(4.1.9)

where E denotes the expectation value and N the counting measure5 for the window
D.
If we integrate over mark space, the pure spatial two–point density is regained:

%S2 (x1,x2) =

∫
M

∫
M

%S,M
2 ((x1, m1), (x2, m2)) dm1dm2 . (4.1.10)

If the spatial part of the marked point process is homogeneous and isotropic, then
%S2 (x1,x2) is only a function of the distance r = |x2 − x1|. – Equally, if we integrate
twice over our sampling window D, we get (up to a constant) the probability density
of finding two marks m1 and m2 at two points within our sample:

N2(D)%M2,D(m1, m2) =

∫
D

∫
D

%S,M
2 ((x1, m1), (x2, m2)) dV1dV2 . (4.1.11)

%M2,D(m1, m2) in principle depends on the sample; for |D| → ∞ it is supposed to
converge to %M1 (m1)%

M
1 (m2). We call a window D “mark–fair at the two–point

level”, if
%M2,D(m1, m2) = N2(D)%M1 (m1)%

M
1 (m2) . (4.1.12)

Intuitively, this means, that the sample is large enough to contain typical pairs with
marks m1 and m2 for the whole mark range.
For our purposes it is now useful to introduce conditional mark probability densities.
We define

M2(m1, m2|x1,x2) ≡

{
%S,M
2 ((x1,m1),(x2,m2))

%S2 (x1,x2)
if %S2 (x1,x2) 6= 0 ,

0 otherwise.
(4.1.13)

M2(m1, m2|x1,x2)dm1dm2 gives the probability to find marks m1 and m2 at galaxies
sitting at x1 and x2, respectively, under the condition that there are galaxies located
at these positions6.
For a homogeneous and isotropic marked point process (at the two–point level) we
require that %S,M

2 ((x1, m1), (x2, m2)) and thus also M2(m1, m2|x1,x2) are functions

5The counting measure counts the number of points within a fixed part of space (Daley &
Vere-Jones 1988).

6Note, that the notation is somehow imprecise: since we require that m1 is associated to the
galaxy at x1 and correspondingly m2 to the galaxy at x2, we should write: M2(m1|x1 ,m2|x2 |x1,x2).
For simplicity, however, we drop the subscript. The probability of finding a pair of galax-
ies with marks m1 and m2 located at x1 and x2, given that there is such a pair, is thus
2M2(m1|x1 ,m2|x2 |x1,x2) for m1 6= m2.
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of the galaxy separation r = |x2 − x1|, only. For our data analysis, we assume
homogeneity and isotropy at the two–point level7.
Now we can turn around this line of argument and ask for the opposite probability
density of finding two galaxies at x1 and x2 within our sample given that these
galaxies have the marks m1 and m2, respectively; it is given by

S2(x1,x2|m1, m2) ≡

{
%S,M
2 ((x1,m1),(x2,m2))

%M1 (m1)%M1 (m2)
if %M1 (m1)%

M
1 (m2) 6= 0 ,

0 otherwise.
(4.1.14)

S2(x1,x2|m1, m2) and M(m1, m2|x1,x2) are connected via Bayes’ theorem:

S2(x1,x2|m1, m2)%
M
1 (m1)%

M
1 (m2) = M(m1, m2|x1,x2)%

S
2 (x1,x2) . (4.1.15)

Higher–order properties The n–point joint probability densities %S,M
n ((x1, m1),

(x2, m2), .., (xn, mn)) can be introduced as above. Again it is useful to factorize them
into a conditional part and the pure spatial n–point density.

4.2 Mark segregation

Using these tools we can define mark segregation. The intuition behind all forth-
coming definitions is that the spatial clustering depends on the marks, or vice versa.
Mark segregation at the one–point level is simply the opposite of mark–fairness. It
thus states that

%S,M
1 ((x1, m1)) 6= %S1 (x1)%

M
1 (m1) . (4.2.16)

As discussed above, the assumption of no mark–fairness is not appropriate from a
physical point of view. Thus mark–segregation at the one–point level is not to be
expected and we adopt assumption (4.1.6) rather than (4.2.16). Note, that even
work that compares the density distributions of different morphological classes such
as (Santiago & Strauss 1992) does not test mark–segregation at the one–point level,
since the local density is always estimated using more than one point.
However, at the two–point level mark–segregation is highly relevant. We speak of
mark–independent clustering at the two–point level, if the factorization

N2(D)%S,M
2 ((x1, m1), (x2, m2)) = %M2 (m1, m2)%

S
2 (x1,x2) (4.2.17)

is valid; since we always adopt assumption (4.1.4), we can write

N2(D)%S,M
2 ((x1, m1), (x2, m2)) = %M1 (m1)%

M
1 (m2)%

S
2 (x1,x2) , (4.2.18)

7More precisely, we assume that M2(m1,m2|x1,x2) is a function of m1, m2, and r = |x2 − x1|,
only. We do not need any further assumptions. Therefore, our assumptions are weaker than the
presumptions behind the standard analysis, where the mean density enters via the estimation of
the two–point correlation function ξ, defined via %S(x1,x2) = %2(1 + ξ(r)).
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too. If, on the contrary, %S,M
2 ((x1, m1), (x2, m2)) does not factorize, we speak of mark

segregation. In this case, the typical marks on pairs vary with the characteristics of
the pair such as the pair separation. Note, that mark segregation at the two–point
level is more than the opposite of mark fairness. Mark fairness refers to the whole
sample, whereas mark segregation requires local information, e.g., on pairs with a
given separation.
Mark segregation can also be characterized using the conditional mark probabil-
ity density. If M2(m1, m2|r) is a function of both marks m1 and m2, merely, we
have mark–independent clustering. If, on the other hand, it is varying with r, we
have mark segregation. Mark segregation is also visible in S2(x1,x2|m1, m2): if
it is varying with the marks, then mark segregation exists, otherwise it is simply
%S2 (x1,x2), independent of the marks. For our purposes, however, it turns out that
M2(m1, m2|x1x2) is the most useful quantity.

Higher–order mark–segregation. The issue of mark segregation can be re-
discussed at every statistical order. Note that it is possible that mark segregation
does not appear until the nth order. Therefore, mark–independent clustering at the
two–point level does not rule out mark segregation at higher orders. But of course it
is appropriate to start from the second order, if we test empirical datasets on mark
correlations.



Chapter 5

Statistical test quantities

The quantities employed for the definition of mark segregation are functions of several
variables. For tests on mark segregation they are thus not appropriate. In this
chapter we introduce a number of test quantities which are easy to handle and
interpret (Sections 5.1 and 5.2). We illustrate their properties in Section 5.3 with
an analytical example where the marks are constructed from a Poisson point process
using the spatial distribution of the points.

5.1 Two–point quantities

The general idea to construct comprehensive test quantities is to integrate the condi-
tional mark probability density M2 (m1, m2|x1,x2) over mark space weighting with
functions of the marks. The results are mark–weighted correlation functions. We
define a conditional mark average via

〈f(m1, m2)〉M2 (r) ≡
∫

M

∫
M

dm1dm2f(m1, m2)M2 (m1, m2|r) , (5.1.1)

where f(m1, m2) stands for any function of two marks. An analogous definition is
possible at any statistical order.
The following weight functions are useful at the two–point level.

1. The mean mark:

km(r) ≡ 1

m

〈
1

2
(m1 + m2)

〉
M2

. (5.1.2)

If this function is varying with r, mark segregation is present. E.g., if km(r) > 1
at certain scales, galaxies with relative high marks tend to cluster at this scale.

2. The mark product can be introduced via:

kmm(r) ≡ 1

m2 〈m1m2〉M2 . (5.1.3)
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Again if kmm varies with the pair separation r, mark segregation is present.
Empirically, it is found that the behavior of km and kmm is qualitatively similar.

3. The mark variogram is defined via:

γ(r) ≡ 1

V(m)

〈
1

2
(m1 −m2)

2

〉
M2

. (5.1.4)

It is discussed, e.g., by Wälder & Stoyan (1997). A variogram γ(r) which is
not equal to one at a scale r indicates mark segregation.

4. Another useful statistics is the mark covariance:

cov(r) ≡ 1

V(m)

(
〈m1m2〉M2 − 〈m1〉2M2

)
. (5.1.5)

Deviations from zero supply evidence for mark segregation. The sign of the
covariance tells us whether galaxies with high marks cluster exceptionally
strongly with high–mark galaxies (cov(r) > 0) or with low–mark galaxies
(cov(r) < 0).

5. The second–order weightings of the marks discussed so far mixed the properties
of both marks; sometimes, however, it is useful to look at merely one mark. In
this line of thought

var(r) ≡ 1

V(m)

〈
(m1 − 〈m1〉M2)

2〉
M2 . (5.1.6)

quantifies the fluctuations of the marks of galaxies which are members of a
pair with separation r in relation to the variance of the marks within the
whole sample. We have, that

var(r) = γ(r) + cov(r) . (5.1.7)

6. Even higher–order statistics in mark space may be useful. The next two
weighted correlation functions are the mark skewness and the mark kurtosis:

skew(r) ≡ 2 〈m1〉3M2 − 3 〈m1〉M2 〈m2
1〉M2 + 〈m3

1〉M2

S3 (V(m)var(r))
3
2

, (5.1.8)

where S3 is the skewness of the whole mark distribution and

kurt(r) ≡ −3 〈m1〉4M2 + 6 〈m1〉2M2 〈m2
1〉M2 − 4 〈m1〉M2 〈m3

1〉M2 + 〈m4
1〉M2

S4 (V(m)var(r))2 ,

(5.1.9)
where S4 is the (Pearson) kurtosis of the whole sample. Mark segregation is
present when these functions are varying with r.
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7. Another statistics is Isham’s correlation coefficient (Isham 1985)

cor(r) ≡ cov(r)

var(r)
. (5.1.10)

So far we focused on continuous marks; for most discrete marks similar definitions
apply. However, for discrete marks which can not be mapped onto numbers such as
morphological types we use conditional cross correlation functions. For the definition
let {tα}A

α=1 denote the discrete labels or types. The conditional cross correlation
functions are defined as

Cαβ(r) ≡ 〈fαβ(m1, m2)〉M2 (5.1.11)

with α, β ∈ {1, .., A} and the symmetric weight functions

fαβ(r) ≡ δm1tαδm2tβ + (1− δαβ)δm2tαδm1tβ , (5.1.12)

where δij denotes the Kronecker delta. Clearly,

A∑
α=1

A∑
β=α

Cαβ(r) = 1 . (5.1.13)

If mark segregation is present, these functions vary with r. For M2(m1, m2|r) =
%M1 (m1)%

M
1 (m2) the conditional mark correlation functions simply become (1 −

δαβ)qαqβ, where qα denotes the averaged fraction of galaxies with mark α.
It is also possible to construct discrete types from continuous marks through a bin-
ning. Such methods are related to common techniques where a sample is divided into
several subsamples defined by mark ranges. Note, however, that even in this case,
our method has advantages: First, we directly estimate the ratio of two correlation
functions; usually one estimates two correlation functions and divides them; from
a technical point of view, our approach is better. Secondly, we even look at cross
correlations.
The division of the sample according to mark properties can be useful in many
cases. However, the division of a sample often is ad hoc and not physically justi-
fied. It makes the sample and thus also the statistical significance of certain claims
smaller; and, furthermore, even if mark segregation is present, it may not be the
case, that significant mark segregation can be detected due to the artificial division
of the sample. Thus, we suggest first to use our mark–weighted correlation func-
tions. After mark segregation has been detected, a closer analysis with conditional
cross–correlation functions with the binned marks may be useful.

Estimating mark–weighted correlation functions. Estimators for the mark–
weighted correlation functions should both be unbiased and have a small variance.
Different from the case of pure correlation functions, the mark–weighted correlation
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functions can be estimated without boundary corrections without introducing a sig-
nificant bias. The reason is mainly that mark–weighted correlation functions contain
only conditional probability densities. The issue of how to estimate such two–point
mark correlation functions is discussed in Beisbart & Kerscher 2000. Here we use the
following estimators. For the mark mean, kmm and the conditional cross correlation
functions we take

〈̂f〉M2(r) =

∑N
i=1

∑N
i6=j=1 1l(−∆r/2,r−∆r/2 ](|Xi −Xj|)f(m1, m2)∑N

i=1

∑N
i6=j=1 1l(−∆r/2,r−∆r/2 ]

. (5.1.14)

as an estimator. For the variance and covariance, the denominator is reduced by one
as usual. The mark skewness and kurtosis are estimated in a similar fashion using
the k–statistics.
To quantify the statistical uncertainties we randomly reshuffle the marks of the
points. This generates the realization of a marked point process with the same
spatial clustering, but with no mark segregation. We repeat this procedure several
times and compare the original mark correlation functions with the averaged results
for the reshuffled marks. We plot the one–sigma region for the reshuffled marks and
the real estimate of the mark correlation functions in a single diagram to assess the
statistical significance of our claims. Possible physical errors are discussed below.

5.2 Higher–order quantities

Since it may be the case that mark segregation does not show up until the nth
statistical order, it is useful also to have higher–order test quantities. Although
we do not use the following functions in this work, we introduce here a number of
higher–order test quantities.

nth order. First, one can focus on one statistical order and ask for possible mark
correlations. For this we need weighting functions fn which are in general functions
of n marks, and an average over the mark space at the n–point level defined by:

〈fn(m1, ..,mn)〉Mn ≡
∫

M
dm1 · · ·

∫
M

dmnf(m1, ..,mn)Mn(m1, ..,mn|x1, ..,xn) ,

(5.2.15)
where for the case of homogeneity Mn(m1, ..,mn|x1, ..,xn) only depends on the dis-
tances between the points. The following functions are useful generalizations of the
functions discussed above.

1. The mean mark:

kn
m(r) ≡ 1

m

〈
1

n

(
n∑

i=1

mi

)〉
Mn

. (5.2.16)
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2. The mark product:

kn
mm(r) ≡ 1

mn 〈Π
n
i=1mi〉Mn . (5.2.17)

3. Using the well–known clustering–expansion, one can also generalize the mark
covariance.

4. The mark variance

var(r) ≡ 1

V(m)

〈
(m1 − 〈m1〉Mn)2〉

Mn . (5.2.18)

quantifies the fluctuations of the marks. Analogously, a mark skewness and a
mark kurtosis can be introduced at the nth order.

Mixing all statistical orders. A mark–weighted J–function (van Lieshout &
Baddeley 1996; van Lieshout & Baddeley 2000; Kerscher et al. 1998) can be defined.
Within the Boolean grain method it is also possible to choose the radius of the
Boolean grain according to inner properties of the objects represented by the points.
The application of the Minkowski valuations results in mark–weighted Minkowski
valuations.

5.3 Mark–weighted correlations for

geometrical marks

In this section we illustrate the performance of the mark correlation functions using
an analytical model. The base of this model is a Poisson point process; the marks for
the points are constructed using the spatial clustering of the points in the following
way: for each point, the number of neighbors N(R) within a sphere with radius R
around the point serves as the mark. Clearly, in this model mark segregation is
built in by definition. The behavior of the mark variogram and kmm was discussed
by Wälder & Stoyan (1997), who calculated analytically the expectation values for
these quantities.
In Figures 5.1 and 5.2 we show results of a simulation together with some analytical
expectation values for the two–point quantities proposed in Section 5.1. We consid-
ered a Poisson process within a box [−R, 1 + R]d, where d is the spatial dimension,
marks were assigned to the points using the number of neighbors as indicated above.
To avoid a bias in the mark distribution due to the boundaries, we only consider
the points within the unit box for our further investigations. The mark correlation
functions were calculated using the estimator without boundary corrections. We
consider the case of three dimensions and average over 5000 realizations to get the
one–sigma fluctuations.
The results in Figure 5.1 show a strong signal for mark segregation in most of our
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Figure 5.1: The mark–weighted correlation functions for a marked Poisson point
process. The mark of a point at xi is the number N(R) of neighbors within a
sphere of radius R around xi. Apart from the mark variance all mark–weighted
correlation functions show mark segregation. The solid lines represent the results
from a simulation in the unit box with a density of 1000 points and a radius of
R = 0.1. The shaded areas are the 1σ ranges from these simulations. For the cases
where analytical expectation values could be derived we show them with a long–
dashed line. The dotted lines show the case of no mark segregation. We do not show
the mark kurtosis, since its fluctuations are too large to allow definite claims.
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test quantities. In more detail, the mean mark km is enhanced for points sitting on
pairs with separations smaller than R. One can prove that

km(r) =

{
1+m

m
for r ≤ R ,

1 for r > R .
(5.3.19)

The result for kmm is qualitatively very similar to km (this is valid also for higher
moments like m3).
However, the mark variance does not show mark segregation. Indeed, one can prove,
that var equals strictly one for r > 0. This is an artifact of a Poisson process,
where the presence of a pair does not enhance the probability of finding further
points around them. The covariance shows a clear signal for mark segregation. Its
positive sign tells us that, at small scales, points with higher marks cluster more
strongly than the other points. This is clear since points with a high mark have by
definition more neighbors than expected by the mean density: thus they cluster more
strongly. A similar explanation is valid for the mark variogram γ: Points which are
close together have at least a few of their neighbors with a distance smaller than R
in common, thus these points tend to have similar values of the marks. The mark
skewness shows a signal for mark segregation, too, which, however, has not yet been
predicted theoretically. Note, that for radii r > 2R no mark segregation is present
any more for all of the test quantities. It is an advantage of our analysis that it
unfolds the mark clustering in a scale–dependent way.
The conditional cross–correlation functions show a clear signal of mark segregation,
too. They confirm our explanation that the points with higher marks cluster more
strongly for scales smaller than r < 2R.
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Figure 5.2: The conditional cross correlation functions for the marked Poisson pro-
cess. For each realization of the marked point process, the sample was divided
according to the values of the marks with respect to the median. Cll are the correla-
tions among points with the larger marks, Csl cross correlations between points with
large and the small marks, and accordingly Css the correlations among the points
with small marks.



Chapter 6

Luminosity and morphology
segregation in the SSRS 2 galaxy
catalogue

The test quantities illustrated so far are now applied to real data, the Southern Sky
Redshift Survey 2 (SSRS 2, for short, see da Costa et al. 1998). We address lu-
minosity segregation in Section 6.1 and morphology segregation in Section 6.2 and
interpret the observed signals in the light of two models, the random field model and
the two–species model (Section 6.3).
The SSRS 2 galaxy catalogue contains more than 5000 galaxies in the southern part
of the celestial hemisphere. It covers more than 1.7 sr of the sky and includes,
apart from angular positions and redshifts, also morphological classifications and
magnitudes within the B–band. The completeness is more than 99% for magnitudes
< 15.5mag. We show the galaxies within a volume–limited subsample of the cata-
logue1 together with their morphologies and luminosities in Figure 6.1. The visual
impression tells us that the early–type galaxies are more clustered than the late–type
galaxies. But is there really significant morphology or luminosity segregation within
the SSRS 2 catalogue?

6.1 Luminosity segregation

We start with a volume–limited sample of 100h−1Mpc depth with 1179 galaxies.
The redshifts were converted into real distances ri, first simply applying Hubble’s
law. The luminosities Li are estimated using the distance ri of the galaxy and its
magnitude magi via Li = r2

i 10−0.4magi . Note that an absolute calibration of the lu-
minosities is not necessary in our case.
Results for the mark–weighted two–point correlation functions are shown in Fig-

1The volume–limited subsamples were constructed by M. Kerscher. He also did the K–
corrections and the conversion into luminosity distances used later on.
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Figure 6.1: The SSRS 2 galaxy catalogue. We show a volume–limited sample of
100h−1Mpc depth. For the left panel, the radius of a circle representing a galaxy
is proportional to its luminosity. In the left panel, filled circles indicate early–type
galaxies, the empty circles late–type galaxies. The magnitudes are K–corrected, the
distance is the luminosity distance for an Einstein–de Sitter universe.

ure 6.2. A clear signal for luminosity segregation is evident in all of the test quan-
tities. Our scale–dependent analysis shows that the luminosity segregation extends
to scales up to ∼ 15h−1Mpc. Furthermore our claims are statistically significant as
can be seen from the 1σ bars for the randomized marks.
In more detail, km (not shown) and kmm are positive for distances up to ∼ 10h−1Mpc.
This tells us that the luminous galaxies tend to cluster more strongly than the dim
ones. This confirms earlier results (Park et al. 1994; Benoist et al. 1996), but
now in a statistically significant way. The signal of var and the very weak signal of
the covariance escaped previous analysis, since these quantities rely on higher–order
statistics of the marks. The signal of var means that the luminosity variations are
enhanced on small scales, too; galaxies which are sitting on a pair have on average
more fluctuating luminosities than isolated galaxies. In part, this effect may be due
to galaxy clusters, where galaxies of different sizes and therefore luminosities are
close together. But note, that the signal extends to scales of ∼ 14h−1Mpc, thus, it
cannot be simply caused by clusters of galaxies. Unfortunately, the skewness and the
kurtosis (not shown) do not yield significant indications for luminosity segregation.
The reason is that higher–order quantities have higher variances. – We tested also
different binnings, and found that the results are stable.
To strengthen our results and to probe the effect of the K–corrections(Benoist et al.
1996), we also investigate a volume–limited sample of again 100h−1Mpc, where the
distances were estimated using the luminosity distance for the case of an Einstein–de
Sitter universe (now we have 1320 galaxies). Results are shown in Figure 6.3. They
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Figure 6.2: Some of the mark–weighted correlation functions for the SSRS 2 cata-
logue. The solid lines are the results for the mark correlation functions, the dashed
lines and the shaded areas indicate the expectation values and the 1σ fluctuations
for the same data, but with randomized marks. The dotted lines marks the case of
no mark segregation
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Figure 6.3: Some of the mark–weighted correlation functions for the SSRS 2 catalogue
(here we use K–corrected magnitudes and luminosity distances). The solid l

confirm in general the clear signal for luminosity segregation, although the signal is
going down at larger scales.
To investigate more closely which galaxies are responsible for the luminosity segre-
gation present in the SSRS 2 catalogue we divide our sample (with the K–corrected
luminosities) further. First, we estimate the conditional cross–correlation functions.
We divide our sample into three subsamples according to luminosity. The cuts are
chosen in such a way that the subsamples are (roughly) equally large. The results in
Figure 6.4 confirm the significant luminosity segregation and show that the bright
galaxies cluster more strongly than the dim ones.
So far, we only discussed the statistical errors, but there are further uncertainties to
be expected. In particular the peculiar velocities of the galaxies do not only affect the
redshifts of the galaxies, but also the estimate of the luminosity. Uncertainties within
the measurement of the redshift may have the same effect, but are much smaller.
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In Beisbart & Kerscher 2000, however, it is shown that such errors do not affect our
results. Random peculiar velocities are given to the points in accordance with the
pairwise velocity dispersion observed in the SSRS 2 galaxy catalogue (Marzke et al.
1995). On average, the results for our test quantities do not change. Even if the
statistical errors and the physical uncertainties are added up, a significant signal for
luminosity segregation is still recognizable.

6.2 Morphology segregation

We test for morphology segregation using the 100h−1Mpc volume–limited sample
with the corrected luminosities. Since the determinations of the morphological types
are affected by uncertainties, it is useful to have large morphological classes, only.
From the T–types we construct early– and late–type galaxies (T–type ≤ 0 and T–
type ≥ 1), where the early–type galaxies comprise mainly elliptical galaxies, whereas
late–type galaxies are spirals and SOs. Galaxies without classification are discarded2.

Results are shown in Figure 6.5. There is a significant signal for morphology segre-
gation. The early–type galaxies are more strongly clustered than the other galaxies
on average at the expense of the late–type galaxies. The cross correlations show a
significant signal, too.

6.3 Understanding mark segregation

After having shown that there is a significant luminosity and morphology segregation
within the SSRS 2 galaxy catalogue, we want to understand the physical meaning
of the signal. We do so by comparing to analytical models. The first one, the
random field model, is inspired by mathematical theory, the second one extends the
well–known morphology density relation found by Dressler (1980) to larger scales
(“two–species model”).

6.3.1 The random field model

The random field model is not simply a particular model, but covers a large class of
models. Within this class, the marks on the points trace a random field independent
of the points. More precisely, we have a purely spatial point process and a random
field f independent of the point process. For each realization of the point process
{xi}N

i=1, the marks mi are assigned to the points according to

mi = f(xi) , (6.3.1)

2In our case, only one galaxy lacks classification.
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Figure 6.4: The conditional cross correlation functions for the SSRS 2 catalogue
according to luminosity.
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Figure 6.5: The conditional cross correlation functions for the SSRS 2 catalogue
according to morphology.
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where f is a realization of the random field. If f has autocorrelations, then mark
segregation will be found. To put it in other words, if the random field model is
valid, we can sample a luminosity field by the galaxies in an unbiased way (see
Chapter 2.1). If the random field model is not applicable, our sampling does not
trace the true luminosity field. In this context, the random field model is applied in
geostatistics (Cressie 1991).
Wälder & Stoyan (1996) derived a constraint equation for the mark variogram γ for
the case of the random field model. They assume homogeneity and isotropy. In this
case the mean mark and the mark variance are given by

m = E (f(0)) and V(m) = E (f(0)f(0))− E (f(0))2 , (6.3.2)

respectively, where E indicates the ensemble average for the random field. Further-
more, the mark variogram and kmm can be calculated via

V(m)γ(r) =
1

2
E
(
(f(0)− f(r))2

)
= E

(
f(0)2 − f(0)f(r)

)
and (6.3.3)

kmm(r) =
1

m2 E (f(0)f(r)) , (6.3.4)

respectively. Here, r denotes any point at a distance r from the origin. Obviously,
there is an analytical connection between the mark variogram and kmm for this model:

V(m)γ(r) = V(m) + m2 −m2kmm(r) . (6.3.5)

In Figure 6.6 we test this constraint equation empirically for the SSRS 2 data in
comparing the right hand side of Equation 6.3.5 to its left hand side. As one can see,
the random field model is completely out of discussion. The galaxies in the SSRS
2 catalogue thus do not simply trace an independent luminosity field, but rather
interact with the spatial clustering of the points. This is also physically expected
and has consequences for the modeling of the bias.

6.3.2 The two–species model

Since both luminosity and morphology segregation are present in the SSRS 2 galaxy
catalogue, we can ask whether both kinds of segregation are connected with each
other. For instance, one could try to explain the luminosity segregation in terms of
the morphology segregation in the following way: The elliptical galaxies are more
clustered than the spiral ones; since the luminosity is differently distributed for both
morphological types, this causes a luminosity–dependent clustering.
We generalize this idea in terms of a two–species model – a homogeneous and isotropic
marked point process with mean spatial density %. Within this model there exist two
subpopulations or species (labelled e and l) of galaxies. Their relative fractions are
qi, their mean marks are mi for i ∈ {e, l}. Within each subpopulation we have spatial
two–point densities %2q2

i gi(r); the cross correlations (more precisely the probability
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Figure 6.6: A comparison between γ for the SSRS 2 catalogue (solid line) and the
prediction of the random field model (dashed line). We used the sample without the
K–corrections.

density of finding one galaxy of type e at x1 and another galaxy of type l at x2,
where r = |x1−x2|) are denoted by %2qeqlgel(r). No intrinsic mark correlations exist
for each subpopulation. Thus, the two–species model is a simple model, where mark
correlations are generated by the interplay of two subpopulations which themselves
show no mark segregation.
Using this model, we can easily calculate kmm and the other test quantities used so
far. For instance, we get for kmm:

kmm(r) =
1

g(r)

(
m2

eq
2
ege(r) + 2memlqeqlgel(r) + m2

l q
2
l gl(r)

)
, (6.3.6)

where

g(r) = q2
ege(r) + 2qeqlgel(r) + q2

l gl(r) . (6.3.7)

Now we can take mi, qi and the functions g· as fitting parameters and try to repro-
duce our test quantities using this model. This procedure may be appropriate if we
do not know the species generating the luminosity segregation exactly. In our case,
however, where the morphological types are known, it is more intelligent to estimate
the mi, qi and the functions g· from the data and to compare with the observed test
quantities.
This is done in Figure 6.8, where we compare the km and var for the two-species
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Figure 6.7: The distribution of the luminosities (in arbitrary units) for the early–type
galaxies (solid line) and the late–type galaxies (dotted line).

model and the real data3. Since the luminosity distributions are very similar for
both the early type and the late type galaxies (see Figure 6.7), the theoretical pre-
diction of the two–species model is very close to one. The real observed luminosity
segregation thus can not be explained in terms of the two–species model. This means
in particular that the luminosity segregation observed within the data is more than
an effect of the morphology–density relation (Dressler 1980).
We can strengthen this conclusion by looking at the early–type and the late–type
galaxies separately. For each type of galaxy we calculate the mark correlation func-
tions. Some results are compared in Figure 6.9. One can see that for both subclasses
there is still significant luminosity segregation. This again falsifies the two–species
model, since within this model, no mark correlations are expected if one restricts
oneself to one galaxy type.

The other way round? Although the luminosity segregation is not generated
by morphology segregation in the sense of the two–species model, it may be the
case that luminosity segregation causes morphology segregation. Although this hy-
pothesis seems rather unlikely since the luminosities seem to be similar for both
morphological types (see Figure 6.7), we test this hypothesis by comparing subsam-
ples of our catalogue defined by luminosity and divide the SSRS 2 according to the

3The g· were calculated by M. Kerscher using the Ohser estimator (Kerscher 1999).
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Figure 6.8: The predictions of the two–species model for the luminosity segregation
(dashed line) together with the real observations (solid line). Since the predictions
of the two–species model are very close to one, we show them in the inset. As above,
the shaded area is the 1σ–region from randomized marks; the dotted line indicates
the case of no mark segregation.

Figure 6.9: The luminosity correlation function km(r), but now only for the early–
type galaxies (left panel) and the late–type galaxies (right panel).
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Figure 6.10: The conditional cross correlation function Cll(r) (late–type late–type),
but now only for the luminous galaxies (left panel) and the dim galaxies (right panel).

luminosity median4. Both subsamples are investigated using the conditional cross
correlation functions. Results can be seen from Figure 6.10; in both subsamples a
significant signal for morphology segregation can be seen. We thus conclude that
both types of marks (the luminosity and the morphology) are irreducible to each
other: Neither of them can be explained with the aid of the other one in the spirit
of the two–species model.

4Note, however, that this division is somehow arbitrary and may obscure a possible physical
division of the sample.
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A framework for the bias
description

Marked point processes provide a useful framework for modeling and describing the
bias. We exemplify this by showing to what extent volume– and flux–limited samples
trace the true physical correlations (Section 7.1). We summarize our results and give
further prospects in Section 7.2.

7.1 Volume– and flux–limited samples

For the following it is useful to consider a number of marks for each galaxy. Formally
we construct a compound mark m consisting of the line–of–sight peculiar velocity u
and the luminosity L of a galaxy: m = (u, L). For simplicity, we constrain ourselves
to the case of an Euclidian geometry; generalizations to curved spaces are possible.
We focus on one– and two–point properties.
Let %S,M

1 (x, u, L) denote the one–point probability density for finding a galaxy with
luminosity L and line–of–sight peculiar velocity u at proper position x with distance
r = |x|. It is useful to parameterize the positions by two angular coordinates,
e.g. right ascension α and declination δ, and distance r. What is happening if we
observe the window D in a magnitude–limited way or if we construct volume–limited
samples?
At this point it is useful to introduce secondary or apparent qualities, which do not
merely reflect intrinsic properties of the objects under consideration, but rather are
generated by the interplay of the observational limitations and the true physical
properties. In this line of thought we move to redshift space and introduce the
estimated distance r′ and the estimated luminosity L′. Formally, we have a mapping
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between the true and the apparent qualities:

χ :


r

α

δ

L

u

 7→


r′

α′

δ′

L′

u′

 =



(H0r + u) /H ′
0

α

δ(
r+ u

H0′

)2

(r)2
L

u

 (7.1.1)

where H0 is the value of the present–day Hubble constant1, and H ′
0 the assumed

Hubble constant. The secondary qualities are assumed to be a realization of a second
point process. We have a mapping between both point processes which maps each
realization of the original point process to the secondary one. Mostly, no estimate
of the peculiar velocity is accessible. Thus we have to integrate over the peculiar
velocity. This generates a degeneracy. Since the values of the angles α and δ are not
affected by the transformation to redshift space, we do not consider them from now
on. For the joint one–point densities we have that

p(r, L, u)drr2dLdu = p(r′, L′, u′)dr′(r′)2dL′du′ . (7.1.2)

– Within a flux–limited sample with flux limit φl, one observes all galaxies i with
Li > 4πφlr

2
i . The observed joint one–point probability density is thus

%S,M,′
1 (r′, L′)dr′(r′)2dL′ =

∫
R

du′p(r′, L′, u′)dr′(r′)2dL′ =∫
R

dup(r, L, u)θ(L− φl4πr2)drr2dL , (7.1.3)

where (r, L, u) = χ−1(r′, L′, u′). Although u = u′, the transformation depends on
the value of u. – To avoid inhomogeneous selection criteria, one usually moves to
volume–limited subsamples: one chooses a luminosity L′l and a limiting depth r′l in
such a way that φl < L′l/(r

′
l)

2. Only galaxies with r′ < r′l and L′ > L′l are admitted
to the sample. For the one–point densities this means:

%S,M,′
L′l,r

′
l,1

(x′, L′) = θ(r′l − r′)θ(L′l − L′)%S,M,′
1 (r′, L′) . (7.1.4)

Equations (7.1.3) and (7.1.4) show, that even if the original point process is mark–
fair, i.e. the one–point joint probability factorizes, this does not need to be the case
for the derived point process. For usual geometries of large–scale structure surveys,
for each shell more galaxies are scattered into the shell from larger radii than from
smaller ones. On average, these galaxies must have larger luminosities to be observed

1Relativistic distance–redshift relations as well light–cone effects can easily be included within
this formalism.
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within the flux–limited sample. Since we underestimate their luminosities via their
apparent distances, this can result in a bias.
Similar considerations apply to higher–order quantities. To simplify the following
formulae, we assume as an idealization that the peculiar velocities are not relevant,
i.e. the probability density for the peculiar velocity factorizes out and is simply
δD(u), where δD denotes the Dirac delta. In this case, r = r′ and L = L′, we have
only to handle the bias due to the flux limit. For a homogeneous and isotropic point
process, the spatial two–point quantities estimated are then simply:∫

%SLl,rl,2
(x1,x2) =

∫
dL1

∫
dL2%

S,M
2 ((m1,x1), (x2, m2)) . (7.1.5)

In general, %SLl,rl,2
equals the true two–point density only if no mark segregation

is present. Having a model for the mark–segregation, we can show, how volume–
limited subsamples are biased. Similarly, one can try to predict how mark segregation
influences estimates of the angular correlation function (Gardini et al. 1999). –
Mappings between point processes are thus a useful framework to handle the bias in
large–scale structure surveys.

7.2 Summary and outlook

Marked point processes are a useful framework to handle mark segregation and the
bias problem. This framework allowed us to clarify the notion of mark segregation
at any statistical order and to introduce test quantities, with the aid of which we
can test whether mark correlations are to be found within empirical data sets. The
mathematical theory is a solid foundation for further constructions. In particular, we
can define estimators and ask the question of their (ratio–)unbiasedness. Moreover,
we can assess the statistical significance of claims regarding mark segregation. Even
from a technical point of view, our method has many advantages: All measures can
be applied to one sample, it is no longer necessary to construct subsamples via the
marks. Our analysis is scale–dependent and furthermore in principle also applicable
to inhomogeneous point sets.
Applying these measures to the SSRS 2 galaxy catalogue, we showed that there are
both significant luminosity and morphology segregation. The theoretical framework
allowed us to ask a further question: what is the observed mark segregation like?
The random field model is completely unable to fit the data, even a two–species
model that explains the luminosity segregation in terms of a morphology–dependent
clustering, is not compatible with the data.
This shows that a number of things remain to be done. A main line of thought may
be the search for realistic models. A first step could be to calculate our test quanti-
ties for the Gaussian peak formalism (Bardeen et al. 1986). Also the application to
semianalytical models would be interesting. Mark correlation functions could also
be a tool to uncover the structure of microwave background maps, compare Heavens
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& Sheth 1999. It seems also fruitful to model the bias in terms of mark correlations,
since mark correlations put an intermediate step in between the pure clustering of
points and a realization of a random field (the density).
From a more observational point, the physical picture of luminosity segregation has
to be complemented. So far, various tools have been used to look for mark segrega-
tion, but the variety of tools obscured the view on the physical things going on. An
application of the mark correlation functions showed, that in the PSCz survey no sig-
nificant luminosity segregation can be detected (Beisbart & Kerscher 2000; Szapudi
et al. 2000). Further samples have to be investigated to get a complete picture of
how the clustering varies with the inner properties of the galaxies. Such a complete
picture could deepen our understanding on the processes enlightening the galaxies.
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Appendix A

Some more words on Minkowski
valuations

The general transformation rules for the second–rank tensors under translations (rep-
resented by a translation vector t) are:

M2(t + A) = M2(A) + 2tM1(A) + ttM0(A) ,

Mi,j,0,2(t + A) = Mi,j,0,2(t + A) + 2tMi,j,0,1(A) + ttMi,j,0,0(A) ,

Mi,j,1,1(t + A) = Mi,j,1,1(A) ,

Mi,j,2,0(t + A) = Mi,j,2,0(A) (A.1)

for i ∈ N and j = 0, .., (d− 1).

A.1 The Crofton formulae and the computation

on a grid

A.1.1 The Crofton formulae

The characterization theorem is the core of integral geometry and allows us to get
a number of integral geometric formulae. The recipe for deriving such formulae is
very simple: write down a motion–equivariant, continuous and additive functional
and expand it in one of the bases for the Minkowski valuations.
One set of such formulae are the Crofton formulae. If we intersect a pattern with
an i–dimensional hyperplane Ei and sum up the Minkowski valuations M of all such
intersections, we get again a Minkowski valuation:∫

dEiM(A ∩ Ei) . (A.2)
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To write down and to prove the Crofton formulae it is convenient to change the basis
of the Minkowski valuations. We define:

W q,r ≡ W q,r ,

Wi,j,k,l ≡
1

(j + 1)
(

d
j+1

)Mi,j,k,l .
(A.3)

For the scalar Minkowski functionals, the Crofton formulae read (see, e.g., Hadwiger
1957): ∫

dEiWk(A ∩ Ei) = ddkiWi+k−d(A) (A.4)

for d − k ≥ i ≥ 0, where Wk denotes the i–dimensional Minkowski functional; the
coefficients ddki are given by

ddki = aid
k!i!ωkωiω2d−i−k

(k + i− d)!d!ωd−kωd−iωk+i−d

(A.5)

with

aid =

(
d

i

)
ωd−1...ωd−i

ω1...ωi

for i = 1, ..., d− 1; a0d = 1, add =
1

ωd

, (A.6)

and ων denoting the volume of the ν–dimensional unit ball. For i < d − k, the
integral vanishes. A similar formula holds for the vectors, too (Hadwiger & Schnei-
der 1971). Formulae of the Crofton type for tensors have not been investigated so
far. To calculate the coefficients within these formulae, it is a convenient strategy to
consider A + t, where t is a translation, and to use the transformation rules for the
tensors. This connects them with the coefficients dd,k,i arising in the original Crofton
formulae. Here we list some of Crofton’s formulae for the two–dimensional case:

Crofton formulae for second–rank tensors in 2 dimensions.∫
dE1W

2(A ∩ E1) = πW 2(A)∫
dE1W0,0,2,0(A ∩ E1) = 2πW0,1,2,0(A)

(A.7)

A.1.2 A grid formalism

Now we discuss how one can develop a grid formalism for higher–order Minkowski
valuations (see Schmalzing & Buchert 1997 for the scalar Minkowski functionals).
It allows us to estimate the Minkowski valuations of excursion sets very effectively1

1The software was developed on the basis of programs by J. Schmalzing.
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Combining Crofton’s formulae and an estimator for the Euler characteristic (Adler
1981; Schmalzing & Buchert 1997), we get for the scalar Minkowski functionals

Wν(A) =
ν∑

j=0

(−1)jad−ν ωd

ωd−ν

ν!(d− ν)!

d!

∑
Eν∈Lν

d

Nj(A ∩ Eν) , (A.8)

where Nj(A ∩ Eν) is the number of j–dimensional lattice cells within A ∩ Eν . The
integration over all planes has been replaced by a summation over planes related to
the lattice. Now there are two possibilities: Either we take hyperplanes from the
dual or the real lattice. In each case one can perform the sum over the hyperplanes
analytically by leading back the Nj(A ∩ Eν) to numbers of lattice cells etc. within
A: Ni(A).
In the first case, where we sum up over dual hyperplanes, A ∩ Eν in general does
not consist of lattice cells of the original grid, but of shifted cells. However, we can
perform the summation. An i–dimensional lattice cell I (of the original lattice)
contains all points x which can be written as x = rI +

∑i
k=1 αke

I
k, where r is

an appropriately chosen lattice point, {eI
k}i

k=1 is a collection of i different vectors
spanning the lattice and αk ∈ [0, a). On the other side, a dual ν–dimensional lattice
plane E can be described as the set of points y for which y = rE +

∑ν
k=1 βke

E
k +

0.5
∑d−ν

k=1 ẽE
k , where again rE constitutes a lattice point, and the {eE

k , ẽE
k } are a

partition of the lattice vectors. The αE
k run from −∞ to ∞. To get an intersection

of a lattice cell and a dual hyperplane, obviously, (d−ν) of the αI
k have to be fixed at

0.5. This means, in particular, that intersections are only possible, if i ≥ d− ν. The
dimension of the intersection is then i − (d − ν). That means, that j–dimensional
intersections arise whenever a (d− ν + j)–dimensional grid cell and a ν–dimensional
hyperplane intersect. But how often does a given (d − ν + j)–dimensional grid cell
I generate a j–dimensional intersection, whenever it intersects with ν–dimensional
hyperplanes? Well, as we saw, (d− ν) of the i = (d− ν + j) αI

k have to be fixed at
0.5. We have

(
d−ν+j
d−ν

)
possibilities to fix the αI

k, thus, altogether, each (d − ν + j)–

dimensional grid cell I generates
(

d−ν+j
d−ν

)
=
(

d−ν+j
j

)
j–dimensional formations by

intersections with ν–dimensional planes. Thus, we have as a result:∑
Eν∈Lν

d

Nj(A ∩ Eν) =

(
d− ν + j

j

)
Nd−ν+j(A) . (A.9)

If we cut with real lattice planes, the counting argument is simpler and goes as
follows: Each j–dimensional lattice cell of A∩Eν is also a j–dimensional cell within
A. It occurs as an intersection only if j ≤ ν; for a fixed j–dimensional lattice cell I
within A there are

(
d−j
ν−j

)
ν–dimensional planes intersecting with I. Thus, we have:

∑
Eν∈Lν

d

Nj(A ∩ Eν) =

(
d− j

ν − j

)
Nj(A) . (A.10)



146 Computational details for the Minkowski functionals

For the higher–order Minkowski valuations, we have to carry along the positions of
the cells arising within Crofton’s formula. Thus, instead of the pure numbers of cells,
we have to insert the sums of their positions. The precise weighting scheme is always
based on an estimator of the Euler characteristic and the corresponding higher–order
valuations for lower–dimensional lattice cells within A ∩ Eν . In the case of the dual
lattice planes, one can show that the centers of the j–dimensional cells, x

(j)
a , equal

the centers of the (d − j + ν)–dimensional cells within A, x
(d−j+ν)
a , which generate

the former cells by intersection with a ν–dimensional hyperplane, are the same. For
the case of the real planes, obviously, we have to replace the Nj(A) by the sum over
the centers of all j–dimensional cells. Therefore, the relevant formulae are:

∑
Eν∈Lν

d

Nj∑
a=1

x(j)
a (A ∩ Eν) =

(
d− ν + j

j

)Nd−ν+j∑
a=1

x(d−ν+j)
a (A) . (A.11)

and ∑
Eν∈Lν

d

Nj∑
a=1

x(j)
a (A ∩ Eν) =

(
d− j

ν − j

) Nj∑
a=1

x(j)
a (A) . (A.12)

For tensors one has to be more cautious. It turns out, that there is no appropriate
estimator for the tensor

∫
dSκxx for two–dimensional patterns. For bonds part of

A∩E1 the correct weighting is 1
2
(x1x1 +x2x2), where x1 and x2 mark the endpoints

of the bond. Points part of A∩E0 are weighted by their squared position, of course.
Note, that this reasoning refers to cells within A∩Eν , to link it back to cells within
A one has to average over all possible Eν which hit a fixed cell of A.

A.2 Computational details for the Minkowski

functionals

Here, we summarize some details on how to compute the Minkowski functionals. We
focus on patterns arising when the Boolean grain method is applied to point sets,
and on cellular complexes in two dimensions2.

Two dimensions The basic elements which allow us to compute the tensors both
for a Boolean grain model and for a cellular complex are straight lines, part of
circles and corners. In the following these elements are thought of to be part of a
convex body K and treated separately. We have Θ1(B) = d

dε
µ(norK(B, ε)) |ε=0 and

Θ0(B) = d2

dε2
µ(norK(B, ε)) |ε=0. As Borel sets B, we consider sets of the form dS×ω,

where dS is part of the surface part of K under consideration and dω ⊂ S1.

2The software for the Boolean grain method was developed on the basis of programs by
J. Schmalzing and M. Kerscher.
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1. Consider a straight part of a surface ∂K linking x and y. Let l be l = |y − x|
and n the normal of ∂K pointing towards ω0. Then µ(norK(B, ε)) = εdl, if
(x, ω0) ∈ B, and using Equation (1.3.20) we get:

Θ1 = dldωδ(ω − ω0) , (A.13a)

Θ0 = 0 . (A.13b)

Thus, we get for a straight line part of ∂K connecting x and y (see the sketch
in Figure A.1) the contributions listed in Table A.1.

2. Now we are interested in a piece of a circle of radius R centered on x, linking
two points x1 and x2. It is convenient to introduce a local coordinate system
with polar coordinates centered at x with the local basis vectors er and eϕ. x1

and x2 can then be written as x+Rer(1) and x+Rer(2), respectively; the local
normals coincide with er in this coordinate system. We need furthermore the
eϕ (see Figure A.1) and the opening angle ∆ϕ. We parameterize the surface
by the angle ϕ, for a small piece of the surface we get

µ(norK(B, ε)) =
1

2
(R + ε)2

∫
P2(B)

dω1ldϕ(ω) , (A.14)

where again P2(B) is the projection of B onto S1. Therefore, we get for the
generalized curvature measures:

Θ1 = Rdϕdωδ(ω − ϕ) , (A.15a)

Θ0 = dϕdωδ(ω − ϕ) . (A.15b)

If we integrate these contributions over the relevant part of the circle, we get
the terms listed in Table A.2.

3. Now we consider a corner of a convex body. Let x denote the position vector
of the corner, er(1) and er(2) the normal vectors of the adjacent surfaces.
Again, it is convenient to introduce polar coordinates centered at the corner.
The generalized normal bundle is the sector of a circle; when we look at an
infinitesimal piece of the surface dϕ, we get

µ(norK(B, ε)) =
1

2
ε2

∫
P2(B)

dω1ldϕ(ω) (A.16)

The application of the differential operators yields that

Θ1 = 0 , (A.17a)

Θ0 = drδ(x− r)dωθ(ϕ2 − ω)θ(ω − ϕ1) . (A.17b)
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x

y
ω0

n
1.

x

eϕ
er

er

eϕ

(1)(2)

2.

x
∆ϕ

(2)

(1)

e
eϕ

e

r

r

eϕ

3.

Figure A.1: Here we show the 2d–geometry of straight lines, circles and corners
⊂ ∂K and introduce the notations used in Tables A.1, A.2 and A.3. ∆ϕ is always
the angle between the normals er(1) and er(2).

Here, θ denotes the step function3. The contributions of a whole corner are
specified in Table A.3.

These formulae apply to parts of a body where its surface is convex. For intersec-
tions, one has to subtract contributions from the intersection point. Only intersection
points at the surface of the pattern contribute (Mecke 1994). For an estimate of the
Minkowski valuations in two dimensions, only intersections of two bodies are taken
into account.

3The step function is defined as

θ(x) ≡

{
0 if x < 0,

1 if x ≥ 0 .
(A.18)
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1. straight line

M0,1,0,0 |x− y|

M0,1,1,0 |x− y|1
2
(x + y)

M0,1,2,0 |x− y|1
3
(xx + yy + xy)

M0,1,1,1 |x− y|1
2
(n(x + y))

M0,1,0,2 |x− y|nn

M0,0,k,l 0

Table A.1: Contributions to the Quermaß tensors from a straight line. The notations
are explained in Figure A.1.

2. part of a circle

M0,1,0,0 ∆ϕR

M0,1,1,0 xR∆ϕ + R2(eϕ(1)− eϕ(2))

M0,1,2,0 R∆ϕxx + 2R2x(eϕ(1)− eϕ(2)) + R3 1
2
(eϕ(1)er(1)− eϕ(2)er(2) + ∆ϕE2)

M0,1,1,1 Rx (eϕ(1)− eϕ(2)) + 1
2
R2 (eϕ(1)er(1)− eϕ(2)er(2) + ∆ϕE2)

M0,1,0,2
R
2

(er(1)eϕ(1)− eϕ(2)er(2) + ∆ϕE2)

M0,0,k,l
1
R
M0,0,i,j

Table A.2: Contributions to the Quermaß tensors. The notations are explained in
Figure A.1.

3. corner

M0,1,i,j 0

M0,0,0,0 ∆ϕ

M0,0,1,0 ∆ϕx

M0,0,2,0 ∆ϕxx

M0,0,1,1 x (eϕ(1)− eϕ(2))

M0,0,0,2
1
2
(eϕ(1)er(1)− eϕ(2)er(2) + ∆ϕE2)

Table A.3: Contributions of a corner to the Quermaß tensors. The notations are
explained in Figure A.1.
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in fröhlichen Teerunden Ausdruck findet.
Allen, welche mich während meiner Promotion unterstützt haben, bin ich dankbar
verbunden. Beispielhaft seien hier nur meine Eltern erwähnt.


