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1

Einleitung und Zusammenfassung

Während des letzten Jahrzehnts hat sich die Untersuchung der Bildung und Entwick-
lung großskaliger Strukturen in unserem Universum zu einem der interessantesten
Forschungszweige in der Kosmologie entwickelt (Padmanabhan 1993; Silk 1994,
Longair 1996). In engem Zusammenhang damit steht auch die Frage der Entste-
hung und Entwicklung von Galaxienhaufen, die die größten gravitativ gebundenen
Objekte im Universum sind (Rood 1981; Oort 1983; Bahcall 1988; Sarazin 1986,
1988). Da dunkle Materie vermutlich die beherrschende Rolle auf den hier angesproch-
enen großen Längenskalen spielt (Trimble 1987; Kormendy & Knapp 1987; Sciama
1993), ist der Gravitationslinseneffekt nicht nur hervorragend zur Untersuchung der
großräumigen Struktur des Universums selbst geeignet, sondern auch zum Studium
einzelner Galaxienhaufen (Blandford & Narayan 1992; Fort & Mellier 1994). In
diesem Zusammenhang bietet insbesondere der schwache Gravitationslinseneffekt die
Möglichkeit, die Verteilung der dunklen Materie zu kartieren, ohne dabei Annahmen
über ihren dynamischen Zustand machen zu müssen (Bartelmann & Schneider 1999).

Der schwache Gravitationslinseneffekt beschreibt die beobachtbare, geringfügige
Verzerrung der Bilder entfernter Hintergrundgalaxien durch eine zwischen dem
Beobachter und den Galaxien liegende Materiekonzentration (Bartelmann & Schnei-
der 1999). Dies impliziert, daß der schwache Gravitationslinseneffekt ausschließlich
von der projizierten Materie zwischen Hintergrundgalaxien und Beobachter abhängt.
Deshalb ist es möglich, durch die Analyse der verzerrten Bilder Informationen über
die “Linsen” selbst, also über die dazwischenliegende Materieverteilung zu erhalten
(Gunn 1967a,b; Blandford et al. 1991; Miralda-Escude 1991; Kaiser 1992; Schneider
et al. 1998).

Werden nun Galaxienhaufen als Linsen interpretiert, so stellt sich die Frage, ob
sie sich nicht nur durch das schwache Linsensignal detektieren lassen, welche sie auf
die Bilder der im Hintergrund verteilten Galaxien aufprägen, was letztendlich einer
Auswahl über ihre Masse gleichkäme (Fahlmann et al. 1994; Schneider 1996). Dies
wäre ein erster, wichtiger Schritt im Hinblick auf die Konstruktion einer Massen-
funktion über den Gravitationslinseneffekt, aus welcher weitere Einschränkungen
der kosmologischen Parameter, insbesondere für den Bereich höherer Rotverschie-
bungen -ut $ &T� – $ &(' , gewonnen werden könnten. Unter diesem Gesichtspunkt
wäre eine solche Gravitationslinsen-basierte Massenfunktion eine ideale Ergänzung
zu bereits bekannten Massenfunktionen, die über eine Auswahl im optischen oder
Röntgenbereich gewonnen werden, und die anderen systematischen Fehlern unter-
liegen (Frenk et al. 1990; Bartelmann & Steinmetz 1996; Cen 1997; van Haar-
lem et al. 1997). Allerdings ist es wegen der über einen großen Rotverschiebungs-
bereich erfolgenden Beiträge zum Linsensignal notwendig, die Kontamination von
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solchen massenselektierten Galaxienkatalogen aufgrund von Projektionseffekten zu
untersuchen.

Diese Überlegungen haben mich veranlaßt, im Rahmen meiner Promotion die De-
tektion und die Auswahl von Galaxienhaufen ausschließlich über ihre Masse zu unter-
suchen. Dabei wurde von mir erstmalig eine neue Auswahlmethode — die Apertur-
masse

�
ap (Schneider 1996) — angewendet, die allein auf dem schwachen Gravita-

tionslinseneffekt basiert.
Ein Vergleich mit anderen bekannten Auswahlverfahren für Galaxienhaufen, wie

z.B. dem optischen Abell-Kriterium (Abell 1958), zeigt, daß die Auswahl vermittels
des schwachen Gravitationslinseneffekts deutlich geringer durch Projektionseffekte
gestört wird, sowohl was die Vollständigkeit der erstellten Kataloge betrifft, als auch
die Anzahl der Fehldetektionen (Reblinsky & Bartelmann 1999a). Eine weitere in
diesem Zusammenhang interessante Frage ist die nach der Genauigkeit der verschie-
denen bekannten Schätzer für die Massen der detektierten Galaxienhaufen. Ich habe
den auf dem kinematischen Virialtheorem basierenden Massenschätzer mit dem über
den Gravitationslinseneffekt abgeleiteten Schätzer, der < -Statistik, verglichen, wobei
sich herausstellte, daß der Gravitationslinsen-basierte Schätzer eine erheblich geringere
Dispersion hat. Dieses Ergebnis ist von großer Bedeutung, vor allem für die ver-
schiedenen geplanten Himmelsdurchmusterungen, MEGACAM (Mellier et al. 1999)
sei hier als Beispiel genannt, in denen Objekte ausschließlich über ihr Linsensignal de-
tektiert und kartiert werden sollen.

Die bereits eingangs erwähnte Aperturmasse
�

ap ist nicht nur für die Detektion
von Galaxienhaufen unabhängig von ihrer Leuchtkraft geeignet, sondern auch für
eine Untersuchung der kosmischen Scherung, also der kohärenten Verzerrung der weit
entfernten Hintergrundgalaxien durch eine dazwischenliegende großskalige Massen-
verteilung, welche dafür letztendlich wieder selbst als eine Linse betrachtet wird, und
so eine Untersuchung der statistischen Eigenschaften des zugrundeliegenden Dichte-
feldes ermöglicht. Mit Hilfe von

�
ap habe ich die kosmische Scherung in großvolumi-

gen, hochaufgelösten kosmologischen Simulationen studiert und konnte dabei zeigen,
daß die Aperturmasse sinnvolle Aussagen über großskalige Strukturen ermöglicht.
Dabei habe ich mir zunutze gemacht, daß es sich bei der Aperturmasse ganz im
Gegensatz zu den bisher in Untersuchungen zur kosmischen Scherung herangezoge-
nen Galaxienelliptizitäten um eine rein skalare Größe handelt. Diese Eigenschaft von�

ap vereinfacht enorm die Definition der höheren Momente wie Schiefe und Kurtosis,
die, wie ich zeigen konnte, in der Tat von dem zugrundeliegenden kosmologischen Mo-
dell abhängen. Schließlich konnte ich mit Hilfe der numerischen Simulationsdaten die
auf einem semianalytischen Press-Schechter-Formalismus basierende Vermutung von
Kruse & Schneider (1999) bestätigen (Reblinsky et al. 1999), daß der Schwanz der
Verteilungsfunktion von

�
ap ein exponentielles Abklingverhalten zeigt, das durch die

schon kollabierten Halos dominiert wird, und somit ebenfalls wichtige kosmologische
Informationen enthält.

Seit geraumer Zeit wächst die Anzahl der Galaxienhaufen stetig an, für die Obser-
vationsdaten zum schwachen Gravitationslinseneffekt verfügbar sind, was ebenso für
Beobachtungen im Röntgenbereich und für den Sunyaev-Zel’dovich Effekt gilt. Für
den Röntgenbereich gilt dies insbesondere seit dem Start der eigens zu diesem Zweck
entworfenen Satelliten Chandra und XMM im letzten Jahr. Angeregt durch einen
Vorschlag meines Betreuers, M. Bartelmann, habe ich mit der Arbeit an einer neuen
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Methode begonnen, in der Beobachtungsdaten aus dem schwachen Gravitationslinsen-
effekt (das Linsenpotential v ), dem Röntgenbereich (die Röntgenleuchtkraft � x) und
aus dem Sunyaev-Zel’dovich Effekt (Temperaturdekrement wyx SZ) kombiniert werden
sollen, um die Struktur einzelner Galaxienhaufen entlang der Beobachtungssichtlinie
zu rekonstruieren.

Der Ansatz dieser Deprojektionsmethode basiert auf dem bekannten Dekonvolu-
tionsalgorithmus von Richardson und Lucy (1974), der in der optischen Astronomie
häufig für die Bildrekonstruktion eingesetzt wird. Da der Richardson-Lucy Algorith-
mus statistischer Natur ist, eignet er sich besonders für die Rekonstruktion verrauschter
Daten; allerdings ist er bisher weder im Zusammenhang mit dem Gravitationslinsen-
effekt, noch in der Kombination von Daten aus Linsen-, Röntgen-, oder Sunyaev-
Zel’dovich-Beobachtungen benutzt worden. Ausgehend von geeigneten Modellan-
nahmen, in denen alle diese drei Observablen v , � x, und wyx SZ eine funktionale
Abhängigkeit vom Gravitationspotential D entlang der Sichtlinie haben, gelang es mir,
einen sogenannten multiple-data Richardson-Lucy (MDRL)-Algorithmus abzuleiten,
der auf dem Richardson-Lucy Verfahren von Binney et al. (1990) zur Deprojektion
von elliptischen Galaxien aus photometrischen Daten beruht.

Eine erste Implementation der MDRL Deprojektionsmethode habe ich mittlerweile
erfolgreich auf synthetische Eingabedaten angewandt, die aus gasdynamischen Simula-
tionen generiert wurden (Reblinsky & Bartelmann 1999b, 2000). Die Rekonstruktions-
methode funktioniert schon für den Spezialfall der Rekonstruktion aus einem der drei
Eingabedatensätze sehr gut, und die Kombination aller drei Eingabedatensätze führt
tatsächlich zu einer nochmaligen Verbesserung.

Die vorliegende Dissertation ist wie folgt gegliedert: In den ersten beiden Kapiteln
wird der nötige theoretische Rahmen dargelegt: Das Standardbild der Strukturent-
stehung und –entwicklung in Kapitel 1 und alle wichtigen Teile der Gravitationslin-
sentheorie in Kapitel 2, insbesondere wird dort die

�
ap Statistik eingeführt. In Kapitel

3 wird die
�

ap Statistik benutzt, um die statistischen Eigenschaften der kosmischen
Scherung mit Hilfe großer, hochaufgelöster Simulationen zu untersuchen. Außerdem
wird die Anzahl der Halos, die in diesen Simulationen gefunden wurden, mit der aus
semianalytischen Abschätzungen gewonnenen Anzahl verglichen. In Kapitel 4 wird
der mögliche Einsatz der

�
ap Statistik für die massenbasierte Auswahl von Galaxien-

haufen im Hinblick auf Projektionseffekte untersucht und mit dem optischen Abell–
Kriterium verglichen. In Kapitel 5 wird dann der neue Richardson–Lucy Rekonstruk-
tionsalgorithmus abgeleitet und mit synthetischen Daten getestet. Schließlich werden
in Kapitel 6 die Hauptergebnisse dieser Arbeit zusammengefaßt und in einen kosmolo-
gischen Zusammenhang gestellt. Ferner wird ein Ausblick auf weitere Forschungspro-
jekte gegeben.
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Introduction and Summary

Over the last decade the formation and evolution of large scale structure (LSS) emerged
as one of the most interesting branches of cosmology (Padmanabhan 1993; Silk 1994;
Longair 1996). Closely related to this topic is the formation and evolution of galaxy
clusters as the largest gravitationally bound objects in the universe (Rood 1981; Oort
1983; Bahcall 1988; Sarazin 1986, 1988). Since dark matter is believed to play the
dominant role on such large scales (Trimble 1987; Kormendy & Knapp 1987; Sciama
1993), gravitational lensing is a superb tool for investigating questions related to LSS
and galaxy clusters (Blandford & Narayan 1992; Fort & Mellier 1994). In this con-
text weak gravitational lensing offers the possibility to map the dark matter compo-
nent without prior assumptions about the dynamical state of the matter (Bartelmann &
Schneider 1999).

Weak gravitational lensing describes the weak distortions of the images of faint
background galaxies caused by any intervening mass concentrations (Bartelmann &
Schneider 1999). This means that weak lensing is sensitive only to the projected matter
between the background galaxies and the observer. In this way the analysis of the dis-
torted background galaxies allows one to obtain information about the “lenses”, namely
the matter in between (Gunn 1967a,b; Blandford et al. 1991; Miralda–Escude 1991;
Kaiser 1992; Schneider et al. 1998).

Considering clusters of galaxies as lenses, the question arises as to whether it is
possible to detect these clusters solely by their weak gravitational lensing imprint on
the background population, thus in practice selecting them by mass only (Fahlmann
et al. 1994; Schneider 1996). This would be an important first step in constructing a
cluster mass function from weak lensing, which could provide additional cosmolog-
ical constraints, especially at higher redshifts of -zt{$ &T�}|i$ &(' . In this sense such
a weak–lensing–based mass function would ideally supplement mass functions con-
structed from X–ray selections or optical selections, which are hampered by different
systematic errors (Frenk et al. 1990; Bartelmann & Steinmetz 1996; Cen 1997; van
Haarlem et al. 1997). However, because of the very broad contribution to the lensing
signal in redshift space, it is necessary to address the important question of contamina-
tions introduced by projection effects into such cluster catalogues.

With this motivation in mind as part of my Ph.D. work I investigated the detection
and selection of galaxy clusters solely by their mass using for the first time a selection
method which is based on the weak lensing effect alone — the second–order aperture
mass measure

�����
proposed by Schneider in 1996.

A comparison with other common selection methods for galaxy clusters, such as
the optical Abell criterion (Abell 1958), showed that the weak-lensing-based selection
is evidently much less affected by projection effects. I was able to demonstrate that the
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selection of galaxy clusters according to their mass indeed leads to more reliable clus-
ter catalogues than optical selection, both with regards to the completeness of the cata-
logue and the number of spurious detections (Reblinsky & Bartelmann 1999a). It also
proved valuable to study different mass estimates and their reliability. Comparing the
kinematical virial theorem (VT)-based mass estimate to the weak-lensing-based mass
estimate, the < -statistics, I found that the latter has a substantially smaller dispersion.
This is an important result, especially in the light of several wide-field lensing surveys,
with MEGACAM (Mellier et al. 1999) being only one example, which try to map and
detect objects by their weak gravitational lensing effects alone.

The above-mentioned aperture mass measure
� ���

is not only a useful tool for the
detection of clusters of galaxies irrespective of their luminous properties; it can also be
used to investigate cosmic shear, i.e. the coherent distortion of faint background galax-
ies due to the intervening large scale mass distribution. Ultimately, in this case the pro-
jected density field of the LSS is considered as a lens. This is a means to investigate
the statistical properties of the underlying density field. I studied the cosmic shear as
obtained from large ray-tracing simulations of weak lensing, which in turn were com-
puted from large � -body simulations. I was able to demonstrate the usefulness of the
aperture mass measure

� ���
in the context of large scale structure. A further advan-

tage of the aperture mass measure is the fact that it is a scalar quantity, which is not the
case for the mean galaxy ellipticity commonly used to map cosmic shear. This prop-
erty of

�
ap tremendously simplifies the definition and evaluation of higher order mo-

ments like skewness and kurtosis, which do indeed, as I was able to show, depend on
the underlying cosmology. In addition, I could also demonstrate that the far tail of the
probability distribution function of

�
ap has an exponential decline dominated by the

already collapsed haloes, thus by itself containing interesting information about cos-
mology. Finally, in the course of this study the semianalytical estimates by Kruse &
Schneider (1999) for

�
ap based on Press-Schechter-type arguments could be validated

(Reblinsky et al. 1999).
The number of clusters for which a weak-lensing analysis is available is steadily

increasing, and more and more data from Sunyaev–Zel’dovich and X-ray based obser-
vations for galaxy clusters become available. This applies in particular to X-ray data
with the projected launches of Chandra and XMM in 1999. Motivated by a suggestion
of my supervisor, M. Bartelmann, I started to work on a novel deprojection method for
clusters of galaxies, in which the structure of individual clusters along the line–of–sight,
namely the 3–dimensional gravitational potential D , is reconstructed by combining data
from three sources: weak lensing (lensing potential v ), X-ray (X-ray surface brightness� x, and the Sunyaev-Zel’dovich effect (temperature decrement wyx SZ).

The ansatz for our deprojection method is based on the Richardson–Lucy (1974)
deconvolution algorithm, which is well known in optical astronomy, where it is used
for image recovery. As the Richardson–Lucy algorithm is statistical in nature, it is well
suited for the rectification of noisy data. However, it has never before been used in the
context of weak lensing, let alone a combination of lensing data with X-ray or Sunyaev-
Zel’dovich data. Exploiting the fact that all of these three observable distributions do
have, within a suitable model, a functional dependence on the gravitational potential
along the line–of–sight, a formulation for a multiple–data Richardson–Lucy (MDRL)
algorithm was derived, which is based on the earlier deprojection method for elliptical
galaxies from photometric data by Binney et al. in 1990.
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A first implementation of this MDRL deprojection method was successfully ap-
plied (Reblinsky & Bartelmann 1999b, 2000) to synthetic input data created from gas–
dynamical simulations. The reconstruction method not only works surprisingly well if
it is used for each of the three types of input data separately, where it is able to recover
all important features of the original 3-dimensional cluster, but also the combination
of the different data sets was found to improve upon the deficiencies of the single-data
reconstructions.

This dissertation is organized as follows. In the first two chapters the necessary
theoretical framework is briefly reviewed: the standard picture of structure formation
and evolution in chapter 1 and the relevant details about gravitational lensing in chap-
ter 2, where especially the

�
ap statistics is introduced. The

�
ap statistics is then used

in chapter 3 to investigate the statistical properties of cosmic shear using LSS ray trac-
ing simulations from numerical � –body data. In addition, the number of haloes com-
puted from semianalytical estimates are compared to results obtained from the ray trac-
ing simulations. In chapter 4 the possible use of the

�
ap statistic for a mass based se-

lection of clusters of galaxies is analyzed with respect to projection effects and com-
pared to the optical Abell selection criterion. Then, in chapter 5 the novel multiple–data
Richardson–Lucy cluster reconstruction algorithm is derived and tested using synthet-
ical data generated from gas-dynamical simulations. Finally, chapter 6 discusses the
main results obtained in this thesis, puts them into a broader cosmological context and
proposes future research.
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Chapter 1

Standard Cosmology and
Structure Formation

In this chapter I briefly introduce those aspects of cosmology relevant to this thesis. The
standard model of cosmology (Weinberg, 1972; Misner, Thorne and Wheeler, 1973;
Sexl and Urbantke, 1995) consists of two major parts: On large scales, i.e. regions
comparable to the Hubble volume, whose size is characterized by V J 9]\E 1{R+&(WX	o_La$ �@~ cm ti�O$X$X$Ye 9]\ Mpc 1, the Universe is assumed to be homogeneous and isotropic.
This assumption is supported by several independent observations: the isotropy of the
cosmic microwave background (CMB) (Banday A.J., Gorski K.M., Bennett C.L., et al.,
1997), of the X-ray background (Treyer M., Scharf C., Lahav O., et al., 1998), and in the
number counts of distant radio sources (Gregory P.C. & Condon J.J., 1991). Therefore
it can be described by the homogeneous and isotropic solutions of the field equations
of General Relativity, namely by the Friedmann-Lemâıtre cosmological models.

On much smaller scales, i.e. on scales of galaxies and clusters of galaxies, the Uni-
verse appears to be very lumpy. In order to understand this structure and its evolution,
we need a model for structure formation (Padmanabhan, 1993; Peebles, 1993; Kolb
and Turner, 1994; Peacock, 1999). The current picture of structure formation assumes
that structures grow via gravitational instability from initial perturbations of the mass
density. Most of the current theories model the initial seed field as a Gaussian random
field.

1.1 Friedmann–Lemaı̂tre–Robertson–Walker Models

1.1.1 Kinematics and Geometry

The metric of a space–time with homogeneous and isotropic spatial sections is de-
scribed by the maximally symmetric Robertson–Walker (RW)–metric

d � � 1 V � d � � |�� � �>�@! d � � (1.1)

1 � is the normalized Hubble constant, �N� �m� � �}�
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where ���>�@! is the cosmic scale function, while d � � is the line element of a homogeneous
and isotropic three–space. The most general form of the line element can be written as

d � � 1 d � �A������ �>��!�� d � �A���@���4� �Q�"! d � �:��� d � �A������ �>��! d � � & (1.2)

The radial function � � �>��! is linked to the spatial hypersurfaces of the Universe: it must
be either trigonometric, linear, or hyperbolic for a positive, zero, or negative curvature
constant � , respectively. Specifically,

� � �>��!A1 ���� ��� � 9]\ � � �@��� �Q� \ � � ��! �Q�¡��$Z!� �Q�¢13$Z!��|c�2! 9]\ � � �@���0£¥¤ ��|c�2! \ � �¦�c§¨�Q�¡f�$Z! (1.3)

In a homogeneous and isotropic Universe there exists a set of fundamental observers
and a cosmic time, such that the Universe appears homogeneous and isotropic in all its
properties to all fundamental observers at a given cosmic time (Gunn, 1978).

A space described by the RW-metric (1.1) is not static, but expands or contracts
with time, which is implicitly expressed by the time dependence of the cosmic scale
factor ���>�@! . The expansion of space leads to the redshifting of photons travelling from
source to observer. A photon of frequency ©Oª emitted by a fundamental observer at time� ª , and received by a second fundamental observer at the present time � E at frequency©OE is given by ©Oª©OE 1 ���>��E«!���>��ª:! � L � -4& (1.4)

Here - is the redshift, which is an observable. Therefore I will describe the time de-
pendence in terms of redshift.

1.1.2 Dynamics

The temporal evolution of the cosmic scale factor ���>�@! and the dependence of the cur-
vature constant � on the matter content is determined by Einstein’s field equations.
Einstein’s field equations ^�¬O 1 [O® ^V � x ¬O �#¯A° ¬O (1.5)

relate the Einstein tensor
^�¬O

to the stress energy tensor x ¬O for all fields present (mat-
ter, radiation, etc.) The cosmological constant ¯ was historically introduced by Ein-
stein to allow for static cosmological solutions to the field equations. In modern the-
ories the cosmological constant can be interpreted as vacuum energy density. As the
metric given in (1.1) and (1.2) is highly symmetric, Einstein’s field equations imply
that x ¬O has the form of a stress energy tensor for a homogeneous perfect fluid. Such
a perfect fluid is completely characterized by its density ±��>�b! and its pressure ²��>�b! . For
the RW-metric (1.1) and (1.2) the equations (1.5) reduce to two independent equations³n´��¶µ � 1 [O® ^� ±·| � V �� � � ¯ � � (1.6)
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and ³�¸�� µ 1d| �� ® ^ ³ ± � �C²V � µ � ¯ � � (1.7)

where (1.6) is Friedmann’s equation. Once the equation of state ²¹1�²¶�>±4! is specified,
the two differential equations (1.6) and (1.7) are sufficient for determining the complete
temporal evolution of the universe. The equation of state for ordinary matter, which is
often called dust, has ²�º ± V � , while radiation and other forms of relativistic matter
have ²¹1± V � MO� . The scale factor is chosen to be �g1dL at the present epoch ��E .

The relative expansion rate
´�"� 9]\ 13J��>�b! is called the Hubble parameter. The value

of the Hubble parameter at the present epoch ��1»� E is the Hubble constant J#�>� E !�1J�E . Since the value of the Hubble constant is still uncertain, it is usually expressed asJ`E¼1dLa$X$½e km s
9]\

Mpc
9]\

(1.8)

with eh¾ ¤ $ &(	 � LO&r$*§ . From the Hubble constant one can obtain the critical density of the
universe ± cr �OJh�E[O® ^ � ± cr t¿LO&([X[�_2La$ 9 �bÀ e � gr

cm � & (1.9)

The density ±��>��EN! � ±+E in units of the critical density ± cr is called the density parameterÁ E . Furthermore the density parameter of the vacuum energy is defined asÁÃÂ 1 ¯�OJ �E & (1.10)

Neglecting the energy density of relativistic matter the Friedmann equation (1.6) can
be recast in terms of the parameters introduced above asJ � �>�b!Ä1SJ �E ³ � 90� �>�b! Á EÅ|2� 9 � �>�@! � V �J �E � ÁÃÂ µ & (1.11)

Since J��>�ÆE«! � J`E the condition

�¢1 ³ J`EV µ � � Á E � ÁÃÂ |�LN! (1.12)

for the curvature constant � arises. Thus the geometry of the spatial hypersurface is de-
termined by the density contributions from matter,

Á E , and the cosmological constant,ÁÃÂ
: Á 1 Á E � Á Â �iL¨1GÇ closed (1.13a)Á 1 Á E � ÁÃÂ 1dL¨1GÇ flat (1.13b)Á 1 Á E � Á Â fiL¨1GÇ open & (1.13c)

Both,
Á E and

ÁÃÂ
, determine the dynamics of the universe. A universe with ±
fÈ± cr

will expand forever, while in a universe with ±q��± cr the expansion will stop, followed
by a contracting phase.
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The time dependence of the Hubble constant in the rewritten Friedmann equation
(1.11) translates by means of equation (1.4) into a redshift dependence of the density
parameter. Due to the equation of state of ordinary matter, ²»º ± V � , the evolution
of the density is determined by equations (1.6) and (1.7). Therefore the density in a
matter–dominated universe scales as ±�1± E � 90� �>�b! , which leads toÁ �Q-"!Ä1 [O® ^�OJ � �Q-"! ±+EX��L � -"! � 1 ��L � -+! � Á E��L � -"! � Á E � ��L � -"! � ��Lc| Á EÅ| ÁÃÂ ! � ÁÃÂ �

(1.14)

while the density parameter of the cosmological constant can be written asÁÃÂ �Q-"!Ä1 ¯�OJ � �Q-"! 1 ÁÃÂ��L � -"! � Á E � ��L � -"! � ��Lc| Á E | Á Â ! � Á Â & (1.15)

1.2 Cosmological Distances

In curved space–time distances are not uniquely defined. Contrary to Euclidian space,
different distance measures lead to different results. Therefore distance measure-
ment prescriptions are defined in analogy to relations between measurable quantities
in Euclidian space. In this section I define four different distances used later on: the
proper distance, the comoving distance, the angular diameter distance, and the lumi-
nosity distance. These distances are parameterized by the redshift between two events- \ and - � with - \ f�- � , and the observer is assumed to be at the origin of the coordinate
system.

The proper distance É prop �Q- \ � - � ! is the distance measured by the travel time of a
light ray propagating from a source at -�1Ê- � to an observer at -�1Ê- \ fË- � . It is
defined as d É prop 1d| V d �Ä1d| V d � ´� 9]\ 1d| V d ���Q�+Jo! 9]\ . This leads to

É prop �Q- \ � - � !Ì1 VJ�E¼Í#ÎaÏÑÐ@ÒÆÓÎaÏÑÐÆÔbÓ �Õ� 9]\ Á E � ��Lc| Á EÃ| ÁÅÂ ! � � � ÁÃÂ � 9]\ � � d �Ö& (1.16)

The comoving distance É com �Q- \ � - � ! is the distance on the spatial hypersurface�Ä1�ÆE between the world lines of the source and an observer comoving with the cosmic
flow. Due to the choice of coordinates, it is the coordinate distance between a source at- � and an observer at - \ , d É com 1 d � . Since light rays propagate with d ��1S$ , we de-
rive V d �Ä1d|c� d � from the metric, and therefore d É com 1d|¼� 9]\ V d �Ä1d| V d ���Q� ´�4! 9]\ 1V d ���Q�"�aJo! 9]\ . Thus

É com �Q- \ � - � !Ì1 VJ�EcÍ�ÎaÏÑÐ@ÒÆÓÎaÏÑÐÆÔbÓ � � Á E � � � ��L¼| Á EÃ| ÁÃÂ ! � � � ÁÅÂ � 9]\ � � d �0& (1.17)

The angular–diameter distance É ang �Q- \ � - � ! is defined as in Euclidian space. It re-
lates the physical cross section ×ÙØ of an object at - � to the angle ×«� subtended for an
observer at - \ , ×N�ÄÉ �ang 13×ÙØ . From ×ÙØ�Y®]� � �Q- � ! � �� ¤ �y�Q- \ � - � !Ú§ 1 ×N��Y® � (1.18)
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where ���Q- � ! is the scale factor at emission time and � � ¤ �y�Q- \ � - � !Ú§ is the radial coordi-
nate distance between the observer and the source it follows that

É ang �Q- \ � - � !Ì1 ³ ×ÙØ×«� µ \ � � 13���Q- � ! � � ¤ É com �Q- \ � - � !Ú§Û& (1.19)

The luminosity distance É lum �Q-X\ � - � ! is defined by the relation between the luminosityj
of an object at - � and the flux � received by the observer at - \ . This leads to the

following relation of the luminosity distance to the angular diameter distance (Ether-
ington, 1933)

É lum �Q-Y\ � - � !Ì1 ³ ���Q- \ !���Q- � !Oµ � É ang �Q-Y\ � - � !C& (1.20)

Equation (1.20) can be understood considering that photons are redshifted by���Q-X\:!Æ���Q- � ! 9]\ , their arrival times delayed by another factor ���Q-X\:!Æ���Q- � ! 9]\ , and the area
of the observer’s sphere on which the photons are distributed are grows between emis-
sion and absorption in proportion to ¤ ���Q- \ !Æ���Q- � ! 9]\ §Ü� . This accounts for a total factor
of ¤ ���Q- \ !Æ���Q- � ! 9]\ § � in the flux. This leads to a factor of ¤ ���Q- \ !Æ���Q- � ! 9]\ § � in the distance
relative to the angular diameter distance.

For an Einstein-de-Sitter (EdS)–universe, i.e. a universe with a critical density of
dust

Á EÝ1%L , ²1Þ$ and vanishing cosmological constant
ÁÃÂ

, the different distance
measures simplify toÉ prop �Q- \ � - � !ß1 W V�OJ�Enà ��L � - \ ! 90�@� � |
��L � - � ! 90�@� �aá �

(1.21a)É com �Q- \ � - � !ß1 W VJ�E à ��L � - \ ! 9]\ � � |
��L � - � ! 9]\ � � á � (1.21b)É ang �Q- \ � - � !ß1 W VJ E LL � - � à ��L � - \ ! 9]\ � � |���L � - � ! 9]\ � � á � (1.21c)É lum �Q- \ � - � !ß1 W VJ�E L � - ���L � - \ ! � & (1.21d)

1.3 Density Perturbations

As already mentioned in the preamble of this chapter, the Friedmann-Lemâıtre cos-
mological models are not able to describe the structure seen on scales of galaxies and
galaxy clusters and the evolution of this structure. Therefore the Friedmann-Lemâıtre
cosmological models have to be supplemented with a theory of structure formation.

The standard model of structure formation assumes that structure grows via gravi-
tational instability from small initial mass density perturbations at early times. It is con-
venient to discuss the fluctuations in terms of their Fourier decomposition, because the
Fourier modes do not couple. In the following I will assume that the phases of the fluc-
tuations are uncorrelated, while their amplitudes follow a Gaussian distribution. This
picture is consistent with the predictions from inflation, where it is assumed that the
initial seed field of perturbations originates from quantum fluctuations in the very early
universe, which were blown up during an inflationary phase.
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Furthermore I will confine the discussion to the so–called cold dark matter (CDM)–
scenario. In this scenario the CDM particles are assumed to be non–relativistic (there-
fore: cold) particles which only interact gravitationally or weakly. When CDM parti-
cles decouple from the radiation field they have a very small velocity dispersion, and
therefore thermal pressure forces are negligible. As opposed to hot dark matter (HDM)
particles, which have a large velocity dispersion, CDM particles do not damp structure
on small scales through free streaming. Henceforth structure in a universe dominated
by CDM particles builds in a bottom–up scenario: larger objects are formed via merg-
ing of smaller objects. The CDM–scenario has been tested extensively with � –body
simulations (Davis et al., 1985). Currently, it seems to agree best with the observational
data, while many alternative models like hot dark matter or topological defect models
(Pen U.-E., Seljak U., Turok N., 1997) are currently disfavoured by observations.

Dark matter perturbations are characterized by the density contrast×"�Qâ � �b!Ä1 ±��Qâ � �@!�|äã±��>�@!ã±��>�@! �
(1.22)

which is defined as the deviation of the density ±��Qâ � �@! from the average cosmic densityã±��>�@! . The Fourier decomposition of the density contrast can be written aså× �Õæ � �@!Ä1 Í d
� .�×+�Qâ � �b!�ç«è�éÙê � (1.23)

where the continuum limit is used.
The growth of the density perturbations is determined by the amplitude of the den-

sity contrast. Three different phases can be distinguished: the linear growth of density
perturbations in the regime ×#º L , quasi-linear theory with ×�ëßL , and the nonlin-
ear evolution for ×S�{L . I will concentrate on the linear and non–linear regime. A
description of perturbation theory appropriate for quasi–linear theory can be found in
Padmanabhan (1993).

1.3.1 Linear Growth of Density Perturbations

Consider the standard Newtonian equations for the evolution of the density ± and ve-
locity ì of a pressureless fluid under the influence of the gravitational field �í ±í � ��îdï �>±+ì�!ß1 $ � (1.24a)í ìí � � �Qì ïNî !Æì 1 | î � � (1.24b)w`� 1 �Y® ^ ±0& (1.24c)

In order to describe structure growth in the universe with mean density ã±��>�@! and cosmic
scale factor ���>�@! it is advisable to change to comoving positions â�1SðÖM*� and peculiar
velocities ñ1zì}| ´�+â and consider the density contrast (1.22) instead of the density.
Eliminating ñ and � and neglecting all non–linear terms leads to

d �«×
d � � � W ´�� d ×

d � | �OJò�E Á EWO� � ×�13$ & (1.25)
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The general solution to the linearized Eq. (1.25) is a superposition of two linear, inde-
pendent solutions ×"�Qâ � �b!Ä1SÉ�ól�>�@!�w�óÅ�QâA! � É 9 �>�@!�w 9 �QâA!C& (1.26)

In the case of an EdS–universe with
Á E`1ôL and

ÁÃÂ 1õ$ , the growing mode can be
described by ×yöäÉ�óÅ�>�b!Ãöz�Æ� ��� öä� , while É 9 �>�@! is rapidly decaying. The decaying
mode is given by ×qö÷� 9]\ öø� 9 � ��� . Assuming that all fluctuations were small at the
epoch of recombination one can assume that only the growing mode is present at recent
epochs.

For cosmological models other than the EdS–universe, solutions of (1.25) have a
more complicated structure. For a detailed discussion see Peebles (1980) and Padman-
abhan (1993).

The Power Spectrum of Density Perturbations

If the primordial density perturbations are Gaussian they are completely described by
their power spectrum ù¶ú*�Õûü! , which is defined byý å× �ÕæG! å×*þY�Õæ ) !:ÿn1÷�ÕWO®G! � ×¦;Å�ÕæÝ|�æ ) !+ù¶ú*�Õûü! � (1.27)

where
å× �Õûü! is the Fourier transform (1.23) of × , and the asterisk denotes complex con-

jugation.
The primordial density spectrum as predicted by inflation can be described by a

scale invariant power spectrum ù`�Õûü!Äöiû F & (1.28)

For H 1øL this is known as the Harrison–Zel’dovich spectrum, which I use in the fol-
lowing. For such a spectrum the growths of the horizon and the perturbations with time
have cancelling effects. Such a universe is self–similar in the sense of always appearing
the same under the magnification of the cosmological expansion.

In the absence of other physical effects each perturbation mode of the primordial
spectrum would simply scale with time in accordance with the growing mode of the
density contrast. In reality this is not the case; physical effects do change the shape of
the primordial power spectrum. This effect can be described by introducing a transfer
function xy�Õûü! ù`�Õûü!Ä1x � �Õûü!�ûs& (1.29)

For a CDM-model one possible fitting formula is given by Bond & Efstathiou (1984)ù`�Õûü!Ä1 Ø�û¤ L �i¤ � � � ��� � ! �@� � � � V�� ! � §��«§ � � � �
(1.30)

where � 1�� 9]\ û with the shape parameter � , �z1{'+&T�Ae 9]\ Mpc, ��1{�Ìe 9]\ Mpc,V 1ÊLO&65�e 9]\ Mpc, and ©�1 LO&�L«� . This approximation to the power spectrum is used
for the simulations used later on. The normalisation of the power spectrum Ø has to be
determined from observations. There exist several procedures for doing this:
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1. Normalisation to microwave background anisotropies. This normalisation
method translates the measured fluctuations in the temperature of the microwave
background into an amplitude for ù¶ú*�Õûü! . Due to the large angular scale of the
measurement (COBE measured the 	�
}� level of w�xcMNx3t¿LO&(�½_hLa$ 9� at an an-
gular scale of 5�� (Banday, 1997)) this method fixes the normalisation on these
large physical scales ( tdLa$X$X$Ye 9]\ Mpc).

2. Normalisation to the local variance of galaxy counts, pioneered by Davis & Pee-
bles (1983). Galaxies are assumed to be biased tracers of the underlying dark
matter distribution (Kaiser 1984; Bardeen et al. 1986; White et al. 1987). There-
fore, by measuring the local variance of galaxy counts within certain volumes,
and assuming an expression for the bias, the amplitude of dark matter fluctuations
can be inferred. Unfortunately, the biasing mechanism of galaxy formation is not
yet known exactly (Kauffmann, 1997), making the use of this method uncertain.

3. Normalisation to the local abundance of galaxy clusters (White et al., 1993; Eke
et al., 1996; Vianna & Liddle, 1996). As galaxy clusters are thought to form
via gravitational instability from dark matter density perturbations, their spatial
number density reflects the amplitude of dark matter fluctuations on scales of the
order of La$ Mpc e 9]\ .

Since gravitational lensing by large scale structure is most sensitive to scales compara-
ble to û 9]\E tdL«W4� Á E«e � ! Mpc, I will use the cluster normalisation throughout this work.

1.3.2 Non-linear Evolution of Density Perturbations

The above discussion is valid for the linear evolution of the density contrast, i.e. ×�º L .
At late stages of the evolution or on small scales the density contrast can be of order� × � ë L or larger. Then it is no longer possible to linearize Eqs. (1.24a) – (1.24c):
The density contrast becomes non–linear and the different Fourier modes couple. In
these cases the density contrast can no longer be described by a Gaussian random field.
Higher order moments become important and the density contrast can no longer be
completely described by the power spectrum.

In order to understand the non–linear evolution of the density field there exist two
different approaches: the numerical simulation of structure formation with � –body
simulations on the one side and semi–analytical schemes on the other side. These two
different approaches complement one another.

The numerical � –body simulations focus on the dark matter as the dominant driver
of the evolution of the universe, whereas other physical processes, most prominently
the gas dynamics of the baryons, are neglected. Furthermore, the intricate question of
finding a sound physical description for the initial conditions still is a challenging task.
Even with these difficulties � –body simulations are one of the most accurate methods
for studying structure formation. Even though simulations are computationally quite
costly, they have proven to be very valuable in calibrating, assessing, and even sug-
gesting new analytic approaches. On the other hand the semi–analytical schemes are
computationally inexpensive and concentrate on the basic principles.

From semi–analytical theory I will only describe the spherical top–hat model and
Press–Schechter (PS) theory. The spherical top–hat model is the simplest possible
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model for the formation of an object, while Press Schechter theory is a well–established
heuristic model for describing the mass function of non–linear objects at any given red-
shift.

Spherical Top-Hat Model

A rigourous discussion of the spherical top–hat model can be found in Padmanabhan
(1993) or in White (1996).

Consider a spherical region with uniform overdensity ã± s and the physical radius P
with a homogeneous density contrast ã×¥1 ã± s M]ã±�|�L . The spherical region contains the
mass

� 1ä�Y®¼ã± s P � MO� , and is assumed to be in an otherwise uniform universe. Using
Birkhoff’s theorem (Misner et al., 1973; Weinberg, 1972) stating that external matter
exerts no force on the material within a spherically symmetric region of the spacetime,
the time evolution of P is determined by

d � P
d � � 1d| ^ �P � 1¿| �Y® ^� ã±���L � ã×X!ÆP (1.31)

for a universe with vanishing vacuum energy.
Comparing Eq. (1.31) with Eq. (1.6) it can be seen that the radius of the sphere P

evolves like the cosmic scale factor for a universe with a different density, but the same
inital time and initial expansion rate.

The first integral of the evolution equation (1.31) is given byLW ³
d P
d � µ � | ^ �P 1�� � (1.32)

where � is the constant of integration. If �%�»$ the sphere will expand forever. On
the other hand, if � f $ then as P increases

´P will become zero and at later times
negative, thus describing a contraction and collapse.

Considering the case � f�$ in more detail Eq. (1.32) has the parametric solutionPz13Ø���Lc|���� � ���ü!@! � �Ì1��s���g| �@�Ü� ���ü!@! � Ø � 1 ^ � � � �
(1.33)

where Ø and � are constants related to each other as shown. The parameter � increases
with increasing � , while P increases to a maximum value before decreasing to zero.
According to Eq. (1.33) the maximum is reached for �`1S® . At this turn around point
we have d �

d � 13$ and Pz13P max.
Now we turn to the evolution of the mean density within each mass shell. Since

�
is constant for each shell, the mean density within a shell isã±�1 � ��Y®]P � 1 � ��Y®]Ø � ��Lc|���� � ���4!C! � & (1.34)

In order to work out the time evolution of the density contrast ã× ��	 � �b! we need to know
the evolution of the background density. For an EdS universe the expansion factor ���>�@!
and the density of the background ±�� is given by�gö� � ��� � ± b �>�@!Ä1 L'O® ^ � � (1.35)
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Dividing the mean density ã±���	 � �b! in Eq. (1.34) by the background density, we derive
for the mean background density contrastã±���	 � �@!± b �>�@! 1dL � ã×+��	 � �@!A1 � ��Y®]Ø � 'O® ^ ���Y���g| �@��� �ü!Æ���L¼|���� � ���ü!@! � & (1.36)

Since Ø � 1 ^ � �y� the mean density contrast is given byã×�1 RW ���g| �@��� ���ü!@!Æ�LÅ|���� � ���4! |�L (1.37)

For small � the linear evolution for the average density contrast is recovered. In this
limit ã×�t �O� �WO$ � �Ät ���' �

(1.38)

leading to ã×�1 �WO$ ³ '*�� µ � ��� & (1.39)

For an EdS–universe at Põ1 P max and ��1ø� max Eq. (1.33) can be used to determine
the constant � (Padmanabhan, 1993). Using the resulting expression we find to leading
order ã×�1 �	 ã× è ³ �� è µ � ��� ö3� EdS �>�@! (1.40)

The collapse of the sphere to Pä1S$ occurs at �m1SW*� max. At this time the extrapo-
lated linear overdensity is× Ecrit 1 ã× �ÕW*� max !Ä1 �WO$ ��L«WO®G! � ��� 1dLO&('X[X'+& (1.41)

For open models and models with a cosmological constant one determines different fit
formulae for the determination of × Ecrit (NFW).

The example presented above of a spherical collapse is quite unrealistic, because
it is unlikely that the overdense regions are homogeneous and spherically symmetric.
In a more realistic model the non–radial gravitational forces will prevent the collapse
to P 1ß$ at �o1 W*� max. Instead the particles are scattered from their radial orbits.
The collapse will stop once the system is virialized, meaning that the amount of kinetic
energy � kin of the system equals the amount of potential energy � pot.

Press–Schechter Theory

In the following I am interested in determining the mass function of gravitationally
bound objects like galaxies and clusters of galaxies in the universe. Even though
these objects are non–linear, Press & Schechter (1974) were able to give a simple
recipe to compute the number density of bound objects � � � ! d � in the mass range� � � � � d

� ! starting from a Gaussian linear density field. Here I sketch the original
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arguments given by Press & Schechter (1974). A detailed discussion of PS–theory can
be found in White (1996), Padmanabhan (1993) and several other textbooks (Peacock,
1999; Coles & Lucchin, 1995).

The basic assumption entering PS–theory is that regions of high density in the linear
field will eventually form gravitationally bound objects. Starting from a density field× � ����! filtered on spatial scale P , and assuming Gaussian statistics for the density field,
the distribution of the density fluctuations is given byù`�Õ× � � �@! d × � 1 L�ÕWO®]� � �QP � �b!b! \ � ���� �! ³ | × ��WO� � �QP � �@!*µ d × � � (1.42)

where � � �QP � �b!A1 Í d � û�ÕWO®G! � � å×�" �>�b! � �$#ä�" �QP½! (1.43)

is the rms density fluctuation on scale P at time � . # "*P denotes the Fourier transform
of a top–hat window function. There is a one to one correspondence between the filter
scale P÷1dP�� � ! and the mass

�
. The fraction of objects with mass greater than

�
is then obtained from the distribution function (1.42) asI`� � !Ä1 Í %ú'&

crit

ù`�Õ× � � -+! d × � 1 LW erfc

³ × Ecrit( WO�Ä�QP � -"! µ �
(1.44)

where erfc �>.�! is the complementary error function, and a parameterization with redshift- instead of time � is used. Press & Schechter (1974) made the assumption that this
fraction be identified with the fraction of particles which are part of a non linear lump
with a mass excceding

� 1¢�Y® ã±"� � P � MO� . A reasonable choice for × crit is the linear
overdensity at collapse of a spherical perturbation of 1.688 given in Eq. (1.41).� crit �Q-"! depends on the growing mode É�óÃ�Q- � Á E � ÁÃÂ !�Ä�QP � -"!A1S�Ä�QP � $Z!ÆÉ�óc�Q-"!C& (1.45)

Fit formulae for the computation of the growing mode É ó �Q- � Á E � Á Â ! for different cos-
mologies can be found in NFW. The mass function � � � ! is determined by simply dif-
ferentiating equation (1.44) with respect to

�
� � � !Ì1 í Ií �Ê& (1.46)

Under the preposition that high density regions will form bound objects we derive the
comoving number density � halo � � � -+!� halo � � � -+! d � 1d| à ã±� á ³ LWO® µ \ � � ³ × crit� µ ³ L� d �

d
� µ �� )! ³ | ×N�crit �Q-"!WO� � µ d

�
(1.47)

by multiplying the mass function (1.46) with WKã±4M � . In expression (1.47) an additional
factor of W is included correcting for the fact that the integral over all masses is

Í %E � � � ! d � 1 Í %E d I 1 LW � (1.48)
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even though it should be unity. This discrepancy arises because points with ×òf»× crit

can also contribute to the number density � halo if a larger filter size P \ ��P is used, i.e.
the probability for this to happen is non zero, a point neglected in the above arguments.
An alternative derivation correctly accounting for the underdense regions can be found
in Bond et al. (1991).

Once the cosmology, power spectrum
� ×�" � and the filter function # � are specified

the comoving number density � halo can be computed.
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Chapter 2

Gravitational Lensing

Here I briefly review the ideas important for weak gravitational lensing and for weak
cosmological lensing. More thorough reviews of gravitational lensing are found in
Schneider, Ehlers, and Falco (1992), Blandford & Narayan (1992), and Narayan &
Bartelmann (1996); a review concentrating on weak lensing is written by Bartelmann
& Schneider (1999).

After describing the basics of weak gravitational lensing I present the spatially fil-
tered mass measure

�
ap and its properties. The aperture mass measure

�
ap was first in-

troduced by Schneider (1996, hereafter S96). First semi–analytical investigations were
performed by Schneider et al. (1998, hereafter SvWJK).

�
ap is well suited to determine

the statistical properties of large–scale structure (LSS), but it can also be employed to
detect clusters according to their mass irrespective of their luminous properties.

These applications of
�

ap are tested in later chapters with � –body simulations.
Here the reader is acquainted with the � –body simulations used. Furthermore I discuss
the generation of shear maps from ray tracing simulations of weak lensing needed for
determining the statistical properties of LSS, the cosmic shear.

2.1 Weak Gravitational Lensing

In Einstein’s Theory of General Relativity, light propagates on null geodesics of the
space–time. Fortunately, for almost all astrophysical relevant cases, the overall geom-
etry of the universe can be described by the FLRW-metric introduced in Sec. 1.1, where
the matter inhomogeneities responsible for the lensing can be considered as local per-
turbations. Within this approximation a viable picture to describe gravitational lens-
ing is to assume that light propagates through an unperturbed space–time up to a point
close to the matter inhomogeneity acting as lens. The light deflection close to the lens is
characterized by a locally flat Minkowskian space–time weakly perturbed by the New-
tonian gravitational potential of the mass distribution of the lens. The prerequisites for
this approach are that the Newtonian potential � is small:

� � � º V � , that the peculiar
velocity * of the lens is small, *�º V , and that the lens is small compared to the Hubble
radius º V M*J�E . These conditions are satisfied in virtually all situations of astrophysi-
cal interest, e.g. for a cluster of galaxies typical velocities are of order La$ � km s 9]\ , and
typical Newtonian potentials are of order �hfiLa$ 9� V � .

The effect of space–time curvature can be described by an effective index of refrac-
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tion H , Hh1dLc| WV � �s1dL � WV � � � � & (2.1)

Since the Newtonian gravitational potential is defined such that it approaches zero at
infinity, thus leading to a negative potential, the refractive index is larger than unity:H��¿L . In this case light travels more slowly in a gravitational field � as compared to
free vacuum causing the deflection of the light rays when they pass through the gravi-
tational field. The deflection angle is the integral along the light path of the gradient of+ � H perpendicular to the light path, i.e.,,- 1¿| Í .�/ + � H d 0K1 WV � Í .1/ � d 0 & (2.2)

For all astrophysically relevant situations the deflection angle is very small. Therefore.�/ � can be integrated along the unperturbed ray instead of the deflected light ray, thus
simplifying computations. Using Eq. (2.2) the deflection angle of a point mass can
easily be computed. The Newtonian potential of the lens is�¶��� � -"!Ä1d| ^ ���� � � - � ! \ � � � (2.3)

where � is the impact parameter of the unperturbed light ray, and - indicates the distance
along the unperturbed light ray from the point of closest approach. Now the deflection
angle of a point mass is given as å2 1 � ^ �V � (2.4)

If the distances between source and lens and lens and observer are much larger than
the spatial extensions of the lens itself, it is justified to use the thin screen approxima-
tion. In this case the mass distribution ±��QðÖ! of the lens can be projected along the line–
of–sight onto the lens plane perpendicular to the line–of–sight. The lens is then char-
acterized by the surface mass density3 �54Ö!Ä1 Í ±��54 � -"! d - � (2.5)

where 4 is the two dimensional vector in the lens plane. Using the surface mass density
the deflection angle

,- is the sum of the deflections due to all mass elements in the plane,- �540!Ä1 � ^V � Í 3 �5476Õ! 4�|84 6� 4`|14 6 � � d � < ) & (2.6)

The lens equation relates the true position of the source to the positions of the im-
ages on the lens plane. In Figure 2.1 the lensing geometry of a typical lens system in
the thin screen approximation is displayed. É d, É ds, and É s denote the angular diam-
eter distances from the observer to the lens, the lens to the source, and the observer
to the source, respectively. The source plane and lens plane are perpendicular to the
line–of–sight. Then the lens equation can be read off from Fig. 2.1 as9 1 É sÉ d

4�|2É ds
,- �54Ö!C& (2.7)
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Figure 2.1: Geometrical setup of a typical gravitational lens system in the thin screen
approximation. É d, É ds, and É s denote angular diameter distances as defined in Sec.
1.2.

With angular coordinates 9 13É s ; and 4n13É d < the lens equation transforms to; 1 < | É dsÉ s

,- �QÉ>= < !Ä1 < | - � < ! � (2.8)

with - � < ! being the reduced deflection angle – i.e. the deflection angle at the observer.
Equation (2.8) relates the true position ; of the source image to an observed angular
position < .

Introducing the dimension-less surface mass density? 1 3 �QÉ d < !3
cr

with
3

cr 1 V ��Y® ^ É sÉ d É ds

�
(2.9)

and using Eq. (2.6), the reduced deflection angle reads- � < !Ì1 L®}ÍA@ Ô ? � < 6 ! < | < 6� < | < ) � � d � � ) & (2.10)
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A lens with surface mass density
3 � 3 cr for a certain source position ; produces

multiple images < . Hence,
3

cr is a characteristic value for the surface mass density and
is called critical surface mass density. The dimension-less surface mass density ? —
which is also called convergence for reasons which will become apparent later in this
section — thus can be used to distinguish between cases of weak and strong lensing.
In the strong lensing regime ? �ôL holds for some values of < which is a sufficient,
but not necessary condition for multiple images to occur. In the weak lensing regime? º L , to which I will confine the discussion in the subsequent sections.

The reduced deflection angle can be written as the gradient2 � < !Ä1 î v�� < ! (2.11)

of an effective lensing potentialv�� < !Ì1 L®}Í ? � < ) ! + � � < | < ) � d � ) & (2.12)

This scalar potential v�� < ! can also be interpreted as the appropriately scaled, pro-
jected Newtonian potential of the lens,v�� < !Ì1 É dsÉ d É s

WV � Í ���QÉ d < � -"! d - � (2.13)

and the Laplacian of v is related to the convergence ? via the two–dimensional Poisson
equation w�v�� < !Ì1iW ? � < !C& (2.14)

Therefore the convergence ? and the deflection angle - are related by means of the
deflection potential as ? � < !Ä1 LW î>Blï - � < !Ä1 LW í 2 è �Q�"!í � è & (2.15)

Looking at angular scales on which the deflection angle is approximately constant,
the lens mapping (2.8) can locally be linearized, leading to the Jacobian matrixC � < !{1 í ;í < 1 ³ × èED | í �¦v�� < !í � è í � D µ 1 F LÅ| ? |HG0\ |IG �|IG � Lc| ? � G0\KJ (2.16a)

1 ��Lc| ? ! F L $$ LLJ | � G � F ��� � �ÕWY��! � ��� �ÕWY��!�@��� �ÕWY��! |M��� � �ÕWY��!NJ & (2.16b)

In equation (2.16a) the complex shear G}1OG \ � �5G � 1 � G � e � èQP is introduced asG \ 1 LW �>vSR \b\ |ovSR �b� ! � G � 1vSR \ � � (2.17)

where the indices � following the commas denote partial derivatives with respect to � è .
Now it becomes obvious why the dimensionless surface mass density ? is also

called convergence: The Jacobian matrix
C

describes the local distortion of images.
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The first term of equation (2.16a) describes the isotropic focussing of the light rays due
to the convergence ? at the position of an image in the lens plane. The second term in-
volving the shear G accounts for the tidal effects exerted by all the matter outside of the
light beam. Thus the convergence leads to an isotropic magnification or demagnifica-
tion, whereas the shear causes the distortion of the images, e.g. an intrinsically circular
source is mapped to an ellipse.

Gravitational lensing conserves surface brightness T , but it changes the angle � an
image subtends on the sky as compared to the undeflected source. Therefore, the mag-
nification U , i.e. the ratio between area of the image and of the source, is simply the
reciprocal of the determinant of

C
Uh1 LV �XW C & (2.18)

So the area distortions caused by the deflection are given by the determinant of the Ja-
cobian matrix of the lens mapping < |Y ;
2.1.1 Weak Cosmological Lensing

Now I briefly turn to weak cosmological lensing, which is needed in order to investi-
gate cosmic shear, the distortion of light bundles from distant sources in the universe
used to investigate the intervening mass distribution. Even though the thin screen ap-
proximation has to be dropped for investigating lensing by large–scale structure (LSS),
it is possible to define a deflection angle - in close analogy to the deflection angle (2.2)
defined in the thin screen approximation.

However, before we are in a position to define the deflection angle - for weak
cosmological lensing, one complication has to be considered. In weakly perturbed
Minkowski space, i.e. in cases where the mass inhomogeneities are well localised one
choses an unperturbed ray as reference ray. For weak cosmological lensing this con-
cept has to be generalized to large scale mass inhomogeneities as it is not obvious what
an unperturbed ray is in this case. In a universe with expanding background model the
meaning of ‘”straight” fiducial ray is not clear, because any physical fiducial ray is de-
flected by the potential gradients along its way. Therefore âc� < � ��! is interpreted such
that it is the comoving separation vector between an arbitrarily chosen fiducial ray and
a closely neighbouring light ray. So, the light ray simply is described relative to the
neighbouring, fiducial ray.

The net deflection angle at distance � from the observer between the two rays â )
and â , divided by the angular diameter distance to � , hence is- � < � ��!Ä1 � � �>��! < |oâc� < � ��!� � �>��! WV � Í[ZE d � ) � � �>�3|o� ) !� � �>��! î / � ¤T� � �>� ) ! < � � ) §Û& (2.19)

This deflection angle of a light ray starts out at the observer into the direction � relative
to the nearby fiducial ray. Absolute deflection angles cannot be measured; the relative
deflection between the two light rays is measured instead. All measurable effects of
light deflection depend on the derivatives of the deflection angle, so the choice of the
fiducial ray is not important. In analogy to the thin screen approximation (2.15) an ef-
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fective convergence ? eff is defined by?
eff � < � ��!m1 LW î\B - � < � ��!A1 LW Í ZE d � � � � �>�| � ) ! � � �>� ) !� � �>��! í �í . è í . D � ¤T� � �>� ) ! < � �c§Û&

(2.20)

This effective convergence ? eff can be used to compute lensing effects of LSS in a anal-
ogous way to the convergence ? in the thin screen approximation.

2.2 The Aperture Mass Measure ]_^a`
In this section, I briefly summarise the properties of the aperture mass, i.e., its defini-
tion, its relation to the shear, and its signal-to-noise ratio. For more details, the reader
is referred to S96 and SvWJK.

2.2.1 b ���
Statistics

The spatially filtered mass inside a circular aperture of angular radius � around the point4 in the lens plane is defined by� ��� �540!Sc61 Í d ��d ? �fec!hg�� � ejik4 � ! � (2.21)

where the continuous weight function gg� d ! vanishes for d ��� . If gg� d ! is a compen-
sated filter function,

Í BE d dKd g�� d !Ä1S$ � (2.22)

one can express
� ���

in terms of the tangential shear GAla��mn�o4�! at position mNpq4 relative
to 4 as � ��� �540!A1 Í d ��r Gsl¦��mt�o40!vu�� � m � ! � (2.23)

(Fahlmann et al. 1994; S96), whereGAla��mn�o4Ö!Ä1d|�w � à G���mKpx4Ö! � 9 �zy P á �
(2.24)

and � is the polar angle of m . The function u is related to g byu�� d !Ä1 Wd � Í[{E d d�)|d�) g�� d�) !}|}g�� d !C& (2.25)

2.2.2 Signal-to-Noise Ratio

An estimate of the shear field G , and thus of the aperture mass
� ��� �feÃ! through

Eq. (2.23), is provided by the distortions of images of faint background galaxies. The
complex ellipticity of galaxy images is defined in terms of second moments of the
surface-brightness tensor (e.g. Tyson et al. 1990; Kaiser & Squires 1993). Specifically,
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I use here the ellipticity parameter � (Schneider 1995; Seitz & Schneider 1997), which
is defined such that for sources with elliptical isophotes of axis ratio 	��zL , the modu-
lus of the source ellipticities is given as

� � Ï��ÕÓ � 1÷��L |�	Z!bM ��L � 	Z! , and the phase of the� Ï��QÓ is twice the position angle of the major axis.
The complex image ellipticity � can then be calculated in terms of the source el-

lipticity � Ï��ÕÓ and the reduced shear °� G���Ly| ? ! 9]\ by the transformation (Seitz &
Schneider 1997) �m1 � Ï��ÕÓ �#°L ��° þ � Ï��ÕÓ & (2.26)

This relation is valid only for noncritical clusters with �
º � cr. For critical clusters,
it has to be replaced by a different transformation. However, as I am mainly interested
in the weak lensing regime, the above relation is sufficient here.

It has been demonstrated (Schramm & Kayser 1995; Seitz & Schneider 1997) that
the ellipticity � of a galaxy image is an unbiased estimate of the local reduced shear,
provided that the intrinsic orientations of the sources are random� � Ï s Ó�� 13$ � (2.27)

with the average taken over an ensemble of sources. Then all average net ellipticities
reflect the gravitational tidal effects of the intervening mass distribution. In the case of
weak lensing, ? º L , one then has � � � 1 ° tjG (2.28)

by averaging (2.26) with the probability distribution of the source ellipticities. In my
application of the

� ���
statistics in Chapters 3,4 I assume a Gaussian probability dis-

tribution, ² � � � � Ï��QÓ � !Ì1 L®]� ���� Lc| �� )! � |c� 9 �� ��� �� )! F | � � Ï��ÕÓ � �� �� J & (2.29)

As for the tangential shear component GAl occurring in (2.24), a similar quantity for
the image ellipticities can be defined. Consider a galaxy image � at a position e è �4 relative to the point 4 with a complex image ellipticity � è . In analogy to (2.24) the
tangential ellipticity � l è �fe��o�o4Ö! of this galaxy is then given by�zl è �fe è �o40!Ä1¿|�w � à � è �fe è � 40! � 9 �zy P$� á �

(2.30)

where � è is the polar angle of e è .
Now the integral (2.23) can be estimated by a discrete sum over galaxy images,� ��� �540!Ä1 LH�� è �zl è �fe è �o4Ö!7u�� � e è � ! � (2.31)

where H is the number density of galaxy images. The discrete dispersion �� of the aper-
ture mass

� ��� �540! is found by squaring (2.31) and taking the expectation value in the
absence of lensing, which leads to� �� 1 �]��W¶H � � è u � � � e è � ! � (2.32)
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where � �� 1 ��� � Ï��QÓ � � � . Performing an ensemble average of Eq. (2.32) leads to the con-
tinuous dispersion �� � �� �Q�+!Ì1 ®]� ��H Í BE V dNd u � � d !C& (2.33)

Finally, the signal-to-noise ratio � at position 4 is�Å�540! � ����� �54�!�� 1 ( W� ��� è � l è �fe è �o4Ö!�u`� � e è � !¤ � è u � � � e è � !Ú§ \ � � & (2.34)

The
�����

statistics in the continous (2.23) and discretized version (2.31) together
with the signal-to-noise ratio (2.34) are the three main equations that will be put to use
in the following two Chapters 3 and 4.

2.2.3 Weight Functions

So far, the formalism for aperture mass measures and their signal-to-noise ratios is in-
dependent of the choice for the weight function g . Specialising g now, we are led to
aperture measures with different merits. Several principal choices for the filter function
have been suggested in the literature. In this thesis I will use three different choices for
the weight function.

For investigating the statistical properties of LSS in chapter 3 I used the generic
filter function for 0]1¿L from the family given in SvWJK: writing g�� d !Ì1���� d M*�+!bM d � ,
and u�� d !Ä1 � � d M*�"!bM d � , I take�¶�>.]!Ä1 R® � LÅ|o. �«� ³ L� |o. � µ �

(2.35)

and � �>.]!Ä1 '® . � ��Lc| . � ! � (2.36)

with �¶�>.]!Ä13$·1 � �>.]! for .h�zL .
Since the filter function (2.35) and (2.36) is not designed for detecting mass con-

centrations, its filter function is not optimised for achieving high signal-to-noise ratios,
leading to high noise levels in a signal-to-noise map. Schneider (1996) solved this prob-
lem by introducing the smooth, continuous weight function

gv�+�>.�!A1 ������� ������
L for $N��.òf
© \ PLLÅ| V F © \ P� �>.¹|�© \ P½! � � �Õ© \ P½! � | V J for ©"\ Pk��.òf
© � P�P � �QPS|o.]! � �>.n| 2 P½! for © � Pk��.���P &

(2.37)

In the following, the term � -statistics refers to the signal-to-noise ratio obtained from
Eq. (2.34) using the filter function gh� �>.�! , which guarantees low noise in the signal-to-
noise ratio map. The parameters 2 , � , and V are determined once © \ and © � are specified;
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see Schneider (1996). I choose © \ 1{$ &r$Y	 and © � 1 $ &([ (leading to 2 1{$ &65+L«�X� ,�}1u|¥L«[+&([X[Y5O	 , and V 1Ê$ &�L«WX�XR ) in order to achieve high signal-to-noise ratios and
evaluate the � -statistics for an aperture size of 2 arc minutes.

A third possible choice for the weight function leads to the < –statistic proposed by
Kaiser (1995) and first applied by Fahlman et al. (1994). It gives a lower bound to the
average surface mass density ? within a circle inside an annulus by measuring the dis-
tortions of background galaxy images inside the annulus. I discuss the < –statistic in
more detail in chapter 4 in the context of cluster mass estimation.

2.2.4 Analytical Work Done with b ���
The aperture mass has been considered in the framework of blank field surveys in a
variety of earlier publications. Introduced as a convenient statistics for cosmic shear,
SvWJK have calculated the rms of

� ���
as a function of angular scale, using the Pea-

cock & Dodds (1996) approximation for the non-linear evolution of the power spectrum
of density fluctuations. Like other two-point statistics, the dispersion of

� ���
is an in-

tegral over the power spectrum of the projected mass distribution, weighted by a filter
function. The filter function corresponding to

� � ���� � is very narrow and can be well
approximated by a delta function (Bartelmann & Schneider 1999). Hence,

� � ���� �Q�"! �reproduces the shape of the projected power spectrum and, depending on the cosmolog-
ical model and the redshift distribution of the sources, it reveals a broad peak at �� dL¦) .
One convenient property of the aperture mass is that the correlation function of

� ���
of

two apertures spatially separated by wg� quickly decreases and already achieves values
of La$ 9 � for wg��  WO� . This means that measurements of

� ���
from a large coherent

area can be considered independent if the apertures are densely laid out on this data
field; this is in contrast to the rms shear in apertures which is strongly correlated, and
thus must be obtained from widely separated regions on the sky.

Being a scalar quantity,
� ���

can also be used for higher-order statistical measures
of the cosmic shear. SvWJK calculated the skewness of

�����
, using Eulerian perturba-

tion theory for the evolution of the three-dimensional density contrast × . In agreement
with Bernardeau et al. (1997) they found that the skewness is a sensitive function of the
cosmic density factor

Á E , and is in this approximation independent of the normalisation
of the power spectrum.

A measurement of the dispersion of
� ���

is affected by two main sources of statis-
tical error: the intrinsic ellipticity distribution of the source galaxies, and cosmic vari-
ance. To estimate the latter, one needs to know the kurtosis of

� ���
which cannot easily

be determined analytically.
Values of

� ���
much larger than its rms probe the highly non-Gaussian regime of

the projected density field. From its definition, one sees that large values of
� ���

are
expected if the aperture is centred on a density peak with size comparable to the fil-
ter scale � . Therefore, the aperture map can be used to search for such density peaks,
presumably collapsed dark matter haloes, in blank field imaging surveys. In this way
it is possible to obtain a mass-selected sample of such haloes (S96). Simple analyti-
cal arguments in S96 suggest that dark matter haloes with an approximately isothermal
profile are detectable with a signal-to-noise ratio larger than 5 if their velocity disper-
sion exceeds  S'O$X$ km/s, assuming a number density of background sources of HL S�O$
arcmin 9 � . Indeed, this theoretical expectation was verified in the lensing investigation
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of the cluster MS1512+36 (Seitz et al. 1998b). This cluster has a velocity dispersion of
about  S'O$X$ km/s, as obtained from strong lensing modelling and from spectroscopy of
cluster members, and is detected in the weak lensing analysis with very high statistical
significance.

Assuming that the high signal-to-noise peaks of
�����

are due to collapsed dark
matter haloes, one can attempt to estimate the abundance of such peaks using ana-
lytic theory. KS1 have calculated the number density of haloes with aperture mass
larger than

� ���
, ����� � ��� � �"! , assuming (1) that dark matter haloes are distributed

in mass according to Press & Schechter (1974) theory which yields the number den-
sity of collapsed haloes as a function of halo mass and redshift (1.47), and (2) that the
azimuthally-averaged projected density profiles of these haloes can be described by the
projection of the universal halo density profile found in numerical simulations by NFW.
They found that the mass profile of haloes in the mass range �h_�La$ \b\ M k � � �La$ \�� M k

is independent of the power spectrum and the cosmological parameters, and
can be well described by a universal fit formula±���	Y!A1 �OJò�E[O® ^ ��L � -"! � Á EÁ �Q-"! × c	ZM¡	 s ��L � 	ZM¡	 s ! � (2.38)

depending on the characteristic density × c and the scale radius 	£¢ given as 	 s 1�	 � EbENM V ,
where 	 � EbE is the virial radius of a sphere with an overdensity of WO$X$g_`± cr and V is the
concentration parameter.

Á �Q-"! is determined by (1.14).
Depending on the cosmological model and on the redshift distribution of the faint

galaxies, the number density of peaks of
� ���

with a signal-to-noise ratio larger than
5 was estimated to be ¤ßLa$ per square degree, and the redshift distribution of these
haloes is strongly dependent on the behaviour of the linear growth factor for density
perturbations, and thus on

Á E . This abundance is encouraging, since it allows one to
obtain samples of haloes selected by their mass properties alone (for a first observa-
tional example, see Erben et al. 1999).

Using the same model, KS2 have calculated the probability distribution of
� ���

for
values of

� ���
much larger than its rms, assuming that this non-Gaussian tail of the

probability distribution is dominated by dark matter haloes. They found that the distri-
bution is very well described by an exponential; i.e., the tail is much broader than for
a Gaussian.

All these analytic predictions are based on a number of approximations and sim-
plifying assumptions. In Chapter 3 below I compare these analytic results with those
found in ray-tracing simulations through a cosmological mass distribution obtained
from very large � -body calculations, as described in the next section.

2.3 ¥ –body Simulations

The � -body simulations used are a set of adaptive particle-particle/particle-mesh
(AP � M) simulations. The long-range component of the gravitational force is computed
by solving Poisson’s equation on a grid. The grid calculation is supplemented with a
short range correction computed either by a direct sum over neighbouring particles, or,
in highly clustered regions, by combining a calculation on a localised refinement mesh
with a direct sum over a smaller number of much closer neighbours. The parameters
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Simulation SCDM , CDM ¯ CDM OCDM

� �a�z¦ WX	X' � WX	X' � WX	X' � WX	X' �0 �¨§z© l ¤ e 9]\ kpc] 36 36 30 30� 0.5 0.21 0.21 0.21j«ª §'¬ ¤ e 9]\ Mpc] 85 85 141 141Á E 1.0 1.0 0.3 0.3¯ E 0.0 0.0 0.7 0.0J�E [km/s/Mpc] 50 50 70 70� 0.6 0.6 0.9 0.85
 � La$ \ E e 9]\o® k
1.0 1.0 1.4 1.4

field size [ � ] 2.7 2.7 3.4 3.9

Table 2.1: Parameters of the N–body simulations.

used by the N-body simulations are given in Table 2.1, all simulations use periodic
boundary conditions.

The simulation adopts the approximation to the linear CDM power spectrum (Bond
& Efstathiou 1984) already given in Eq. (1.30). The normalisation constant, Ø , is cho-
sen by fixing �  , the rms density contrast in spheres of [Ìe 9]\ Mpc radius. It is deter-
mined following the procedure outlined by White, Efstathiou & Frenk (1993) to meet
the present-day local cluster abundance of tS[¥_}La$ 9 pGe �¯® ! � 90� for rich galaxy clus-
ters.

The simulations were run with the parallel adaptive AP � M code HYDRA (Couch-
man et al. 1995; Pearce & Couchman 1997) kindly made available by the Virgo Super-
computing Consortium (e.g. Jenkins et al. 1998). They followed WX	X' � particles using
a force law with softening length 0 �¨§z© l ëõ�O$ye 9]\ kpc at -ò1õ$ (the force is  ôLNMOW itsLNM¡	X� value at one softening length and is almost exactly Newtonian beyond two soft-
ening lengths). 0 ��§z© l was kept constant in physical coordinates over the redshift range
of interest to us here. The simulations were carried out using 128 or 256 processors on
CRAY T3D machines at the Edinburgh Parallel Computer Centre and at the Garching
Computer Centre of the Max-Planck Society. These simulations have previously been
used for studies of strong lensing by Bartelmann et al. (1998), for studies of dark matter
clustering by Jenkins et al. (1998), and for studies of the relation between galaxy for-
mation and galaxy clustering by Kauffmann et al. (1999a,b), and Diaferio et al. (1999).

2.4 Generation of Shear Maps with Ray-Tracing Simula-
tions

Simulated maps of the shear due to weak lensing by large-scale structure are made by
performing ray tracing simulations through the dark matter distribution produced by
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the above N-body simulations. The ray tracing simulations of weak lensing were com-
puted by JSW. They used a multiple lens-plane calculation that implements the discrete
recursion relations for the position of a given photon and for the Jacobian matrix of
the lens mapping at this position (Schneider & Weiss 1988; Schneider et al. 1992; see
Seitz et al. 1994 of a thorough justification for this approach). Aside from the distance
factors, the main input into the recursion relations are the shear matrices at each lens
plane. The ray tracing algorithm consists of three parts: constructing the dark matter
lens planes, computing the shear matrix on each plane, and using these to evolve the
photon trajectory from the observer to the source. The details involved at each step are
as follows:
1. The dark matter distribution between source and observer is projected onto WO$ |ò�O$
lens planes equally spaced (in comoving distance). The particle positions on each plane
are interpolated onto a grid of size WO$O�Z[ � . Since the three-dimensional mass distribu-
tion is taken from a single realisation of the evolution of the LSS, the projected mass
distributions of consecutive lens planes are correlated. In order to decorrelate them, the
projection is carried out along a randomly chosen one of the three coordinate axes; in
addition, the origin of the coordinate system in each lens plane is translated by a ran-
dom vector and the lens plane is rotated by a random angle. In this way, the projected
mass distributions of consecutive lens planes are as independent as possible, given the
restriction of only a single realisation of the 3-d matter distribution.
2. On each plane, the shear matrix is computed on a grid by Fourier transforming the
projected density and using its Fourier space relation to the shear. The inverse Fourier
transform is then used to return to real space.
3. The photons start on a regular grid on the first lens plane. Perturbations along the
line–of–sight distort this grid and are computed using the relation between deflection
angle and projected density. Once the photon positions have been obtained, the shear
matrix is interpolated onto them and the recursion relations are solved for the Jacobian
of the mapping from the H -th lens plane to the first plane.
4. Solving the recursion relations up to the source plane yields the Jacobian matrix at
these positions. Note that the ray tracing is done backwards from the observer to the
source, thus ensuring that all the photons reach the observer. The first lens plane is the
image plane and has the unperturbed photon positions. All sources are assumed to be
at a redshift of - � 1dL .

There are two kinds of resolution limitations in the ray-tracing simulations. The
first reflects the finite size and resolution of the � -body simulations, the second the use
of finite grids when computing deflection angles and shear tensors on the lens planes.
At the peak redshift of the lensing contribution, both effects give a small scale resolu-
tion of order $ &(W ) . However, since the lens efficiency is not very sharply peaked, effects
at other redshifts also enter. Thus depending on the statistical measure being used, the
small scale resolution lies in the range  3$ &(W ) |�$ &T� ) .

On large scales the finite box-size of the N-body simulations sets the upper limit on
the angular scales available. The angular size of our simulation box at -n1 L is about
3 � . Thus on scales comparable to La� , only a few sample regions are available, leading to
large fluctuations across different realisations. I therefore restrict my considerations to
apertures with radius ���÷La$ ) using one realisation for each cosmological model. For
the , CDM model, I use ten different realisations of the ray tracing simulations (i.e.,
they differ in the direction of projections, the translation and rotation of the projected
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matter distribution in the individual lens planes) to estimate the cosmic variance.
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Chapter 3

Cosmic Shear and Halo
Abundances: Analytical versus
Numerical Results

The aperture mass
�

ap introduced in the last chapter has been shown in a series of re-
cent publications to be a useful tool for detecting cosmic shear. As already pointed out
in Sec. 2.2.4 quantitative analytical predictions of

�
ap have been based on a number of

simplifying assumptions. Here I test the validity of these assumptions and the quality
of the analytic approximations, using the ray racing simulations through cosmological
density fields (Sec. 2.4) generated from � –body simulations (Sec. 2.3).

Those analytic approximations that take into account the non–linear evolution of
the matter distribution are in surprisingly good agreement with numerical results. This
is true for the root mean square (rms) value of

�
ap and also for the halo abundance,

while the predictions for the skewness, based on quasi–linear theory, show a large dis-
crepancy with numerical results.

In addition I verify that the probability distribution function of the aperture mass
obtained from the simulated shear maps decreases exponentially for

�
ap values much

larger than the rms. Finally, I give values for the kurtosis which allow to make an esti-
mate of the cosmic variance for the rms of

�
ap .

Given the good overall agreement I conclude that comparisons between observed
distributions of

�
ap values and theoretical results provide a powerful tool for testing

cosmological models.

3.1 Application of ] ^a` to Simulated Shear Maps

For each of the shear maps generated as described in the last chapter, a 2-dim. “
� ���

map” is created by simulating “observations” of
� ���

as a function of position on the
2-dim. shear maps. For the number density of the background sources a value of Hò1�O$ arcmin 9 � is assumed, while the dispersion of the intrinsic ellipticity distribution is
chosen as � � 1S$ &(W . The probability distribution function of

� ���
(PDF) and some of its

moments are then calculated for each
� ���

map and compared to the analytical model.
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Figure 3.1: The 2-dimensional distribution of
� ���

for a standard CDM (SCDM, upper
panel) and an open model (OCDM,

Á±° 13$ &(� , lower panel), with parameters given in
Table 1. The field size in both panels is 2 � .

It is most instructive to consider two different sets of simulated maps: in the first,
I neglect noise from the intrinsic ellipticity distribution of the background sources and
compute

� ���
directly from the shear values on the grid according to Eq. (2.23). This

is done either in the limit of weak lensing, i.e., (2.23) is used directly, or G l is replaced
in (2.23) by the reduced shear ° l , which is the quantity estimated from the observable
galaxy ellipticities.

In the second set of simulations ellipticities of background galaxies are introduced
according to the distribution function (2.29). The ellipticities add noise to

� ���
.

The noise-free results are the ones best compared to the analytic results, whereas
those accounting for intrinsic ellipticities yield a more realistic description of the ob-
servational situation. In the following the term “without noise” will refer to the first set
of

� ���
simulations, while the term “with noise” will be used for the second one.
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As an illustrative example, the 2-dimensional distribution of
� ���

for a standard
CDM (SCDM) and an open model (OCDM) is shown in Fig. 3.1. In both cases high
peaks in these maps correspond to haloes in the intervening matter distribution. It is
possible to construct a shear-limited sample of haloes from these maps and to determine
their abundance. This is done explicitly in Chapter 4.

Comparing the two model universes, we see that the
� ���

maps reflect the differ-
ent growth of structure in different cosmologies. The

� ���
map of the OCDM model is

dominated by many isolated peaks which correspond to already collapsed dark matter
haloes. The level of background noise coming from matter not yet collapsed is consid-
erably smaller than for the SCDM model in which the structure forms later. The peaks
in the SCDM model are less pronounced and isolated than in the open model.

3.2 The PDF of ] ^a` and its Moments

Once the 2-dimensional distribution of
� ���

is computed, it is straightforward to de-
termine the one-point probability distribution function (PDF) of

� ���
and its moments.

The PDF contains the cosmological information. The lower order moments like rms
value and skewness can be derived analytically under simplifying assumptions, but the
PDF itself cannot be calculated. Therefore, ray tracing simulations provide the only
tool for testing the precision of the analytical calculations.

Figure 3.2: The normalised PDF of
� ���

for different filter scales � and cosmologies:
SCDM (solid line), , CDM (dotted line), OCDM (dashed line) and ¯ CDM (dashed-
dotted line). The histograms are obtained from

� ���
maps without noise. Note the dif-

ferent scales on the horizontal axis.
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Figure 3.3: The rms value of
� ���

computed with the filter (2.35) versus filter scale� for different cosmologies. Lines refer to analytic values of
� � ���� � \ � � from SvWJK,

while symbols refer to rms values obtained from simulations without noise, using G l
(left panel) and ° l (right panel). The error bars in the left panel are determined from
(3.5) and (3.4). The symbols for OCDM and , CDM are slightly offset along the � -
axis for better display. The error bars in the right panel show the standard errors from
10 realisations of the , CDM model for 2,5, and 10 arcmin. They are centred on the
arithmetic mean (not on the realisation plotted).

The qualitative features of the PDF for different filter scales � and for the four dif-
ferent cosmologies (Table 2.1) can be studied in Fig. 3.2. The first point to note is
that the non-Gaussian features, namely the tail of the PDF at high

� ���
values, are less

pronounced for larger filter scales. This is due to the fact that the smaller filter scales
are more sensitive to the already collapsed, non-linear objects. The second feature to
note is the exponential decrease of the tail of

� ���
which was already obtained semi-

analytically in KS2. I shall discuss this feature in more detail later in this section.
I now turn to the rms value

� � ���� � \ � � of
� ���

. Fig. 3.3 compares the analytical
rms value of

� ���
calculated using the nonlinear power spectrum of Peacock & Dodds

(1996) to the rms values computed from the PDFs without noise for GAl (left panel) and° l (right panel). The comparison of the latter shows that the difference between shear
and reduced shear is negligible even on filter scales as small as �1 ÞW arcmin corre-
sponding to the highly nonlinear regime of the mass distribution.

In the left panel of Fig. 3.3, there is an excellent agreement between the analytic
predictions and the rms values computed from simulations for the SCDM model. There
is also good agreement for the ¯ CDM and OCDM models, especially for the larger
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apertures. The notable exception is the , CDM model, for which the simulations for
small filters deviate by a larger factor from the theoretical predictions.

When interpreting this difference between analytical calculation and simulation in
the , CDM model, one has to keep in mind that the numerical results of Fig. 3.3 are
based on a single realisation. As the cosmic variance is relatively large, it is possible
that the large deviation is due to the special choice of the realisation. This interpretation
is supported by the fact that the mean for the 10 realisations is considerable lower than
for the single realisation plotted. Furthermore, the field sizes of the simulated fields
used are too small to represent a characteristic region of the universe.

Figure 3.4: The skewness ��� of the PDF of
�����

as defined in (3.1) as a function of
filter scale � for the same cosmological models as in Fig. 3.2. The analytical skewness
(lines) from quasi-linear theory is compared to the skewness obtained from the PDF for
both, the tangential shear Gsl and the reduced shear ° l . Errors on the , CDM model are
like in Fig. 3.3.

The next higher moment of the PDF is the skewness, which is defined as���X�Q�"!�c61 � � ���� �� � ���� � � � (3.1)

for which a similar analysis can be performed as for the rms value of
� ���

. As pointed
out by Bernardeau et al. (1997), van Waerbeke et al. (1999), and JSW, the skewness
defined in analogy to (3.1) using a top-hat filter is a very sensitive probe of the cosmic
density parameter

Á E .
The dependence of the skewness on filter scale � is displayed in Fig. 3.4. Again,

I compare the skewness computed from the PDF obtained from the ray tracing sim-
ulations without noise, both using Gsl and ° l , to the skewness of

� ���
obtained using
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quasi-linear theory (SvWJK). The error bars on the skewness for the , CDM model for
2, 5, and 10 arcmin are derived from the 10 different realisations and are centred on
their arithmetic mean.

Again, the differences between the skewness obtained from simulations with GAl and° l are small, though slightly larger than for the dispersion, owing to the larger contri-
bution from high- ? regions to the skewness. This difference, which is of order a few
percent at most, has been predicted to be small in the Appendix of SvWJK.

When comparing the skewness as determined from second-order perturbation the-
ory for the density evolution to that obtained from simulations (either computed with G l
or ° l ) we see that the former underpredicts the skewness by factors of up to 2. This fail-
ure of quasi-linear theory for the prediction of higher-order moments has been demon-
strated previously (Jain & Seljak 1997; Gaztanaga & Bernardeau 1998). As the skew-
ness is only determined on scales below 10 arcmin, we are in a regime where the density
contrast is non-linear already. The skewness as calculated by Hui (1999) using the so-
called hyper-extended perturbation theory (Scoccimarro & Frieman 1999) may provide
a more accurate analytical prediction of ��� than that from second-order perturbation
theory.

Another point to note is the increase of the skewness towards smaller filter scales.
Generally speaking, such a behaviour is expected, as the non-linear structure growth
becomes more and more important for small filter scales. This increase is described in-
sufficiently by quasi-linear theory: for the two EdS universes and even for the ¯ model
on large filter scales above 5 arcmin, this increase (not the absolute value!) is predicted
satisfactorily, but the slope for the open model is larger than analytic values on all scales
displayed. This discrepancy between fully non-linear simulations and quasi-linear the-
ory can be attributed to the fact that the open model is much more dominated by already
collapsed, non-linear objects than all other models.

The highest moment I consider explicitly is the kurtosis ���
���Y�5²¥!Sc61 � � ���� �� � ���� � � |��+& (3.2)

The kurtosis is not only important by itself, but also for the determination of the error
of the rms value of

� ���
, as will be discussed. As for the skewness, the kurtosis for

the noise-free simulations for both Gsl and ° l is plotted, and the scatter for , CDM is
determined from the 10 realisations. No analytic result for � � is available; however,
using third-order perturbation theory, Bernardeau (1998) has calculated the kurtosis for
a top-hat filter.

The difference between G l and ° l becomes important for the kurtosis, at least for
the smaller filter scales, since it is even more dominated by the non-Gaussian tail of
the PDF than the skewness. The large error bars on the kurtosis are mainly due to large
cosmic variance in combination with the small fields used; thus, the current simulations
are unable to provide an accurate determination of ��� .

I now turn to the error bars on the rms values of
� ���

in Fig. 3.3. In the right
panel, they were estimated as the standard deviation from 10 different realisations for
the , CDM model. The error bars in the left panel were calculated as follows:

As shown in SvWJK, an unbiased estimator of
� � ���� � from a single aperture is
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Figure 3.5: The kurtosis ��� of the PDF of
� ���

[Eq. (3.2)] as a function of filter scale� , for the four cosmological models. The kurtosis is derived from the PDF for both,
the tangential shear Gsl and the reduced shear ° l . Errors on the , CDM model are like in
Fig. 3.3. No analytic estimate of the kurtosis has been calculated.

given by � 1 �Q®]�Y�«!Æ��#�Q�Þ|�LN!´³�è R D�µ¶ è u è u D �·l è �zl D � (3.3)

where � is the number of galaxies in the aperture, and u è is the value of the weight
function u for the � -th galaxy. The dispersion of this estimator is (SvWJK)

� � � � !Ati� � � � ���� � � � ³ 'O� ��	 ( WO� � ( W � � ���� � � µ � �
(3.4)

where the two terms in parenthesis correspond to the noise from the intrinsic ellipticity
distribution, and the Gaussian cosmic variance, respectively, whereas the term involv-
ing ��� is the excess cosmic variance due to non-Gaussianity. For a collection of � ©independent apertures, all containing the same number of galaxy images, an unbiased
estimator for

� � ���� � is the mean ¸ of
�

over these apertures, and the dispersion is��� ¸ !Ä1 �Ä� � !( � © & (3.5)

Note that this result does not assume that the density field is Gaussian. If one had
a collection of � © fields widely separated on the sky, they would be statistically in-
dependent, so that � © 1 � . In the opposite situation where a coherent area on the
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sky is available, one can lay down apertures on that field, but they will not be statisti-
cally independent. However, as was shown in SvWJK, the

� ���
values of two apertures

which touch each other (i.e., with separation twice their radii), are almost uncorrelated.
Whereas the fact that the two aperture masses in these two apertures are uncorrelated
does not imply that they are independent (which would mean that the joint probability
distribution for the values of

� ���
would factorize) – as would be the case for Gaussian

fields – I assume the statistical independence for estimating the effective number of
fields � © entering (3.5). Thus, the error bars in the left panel of Fig. 3.3 are obtained
from (3.5), assuming that the number of independent apertures is � © 1 ¤ ²¥M �ÕWO�"!Ú§Ü� ,
where ² is the side length of the simulated shear field.

In contrast, the error bars plotted in the right panel of Fig. 3.3 for the , CDM model
at the three different filter scales �21 W � 	 � La$ arcmin are based on 10 different reali-
sations of the ray-tracing simulations and allow one to obtain a rough estimate for the
error from cosmic variance. Notice that the error bars are centred on the arithmetic
mean of the 10 realisations and not on the plotted results from a single realisation.

Comparing the size of the error bars in both panels, we see that both methods give
errors of the same order of magnitude even though the errors estimated from the 10 real-
isations are smaller than the errors from the estimator of

� ����� � . There are two possible
reasons for this: first, the effective number of independent apertures is probably larger
than the estimate given above, so that the error bars on the left panel in Fig. 3.3 most
likely overestimate the true error. Second, in the calculation of the error bars in the
right panel, it was assumed that the 10 realisations are independent; but as argued in
Sec. 2.4 it is possible that the realisations are not completely independent. This would
lead to an underestimation of the cosmic variance. From Fig. 3.3 these two competing
effects cannot be quantified. It should be noted that at least on the largest scale plotted,
the contribution of the intrinsic ellipticity distribution to the error (3.5) is completely
negligible compared to the cosmic variance.

3.3 Halo Abundances

As already indicated in Sec. 2.2.4, high signal-to-noise peaks of
� ���

can be identified
with dark matter haloes, rendering the construction of a mass-limited (more correctly:
shear-limited) sample feasible. Analytically, the halo abundances can be modelled us-
ing the Press & Schechter (1974) prediction for the mass- and redshift-dependent halo
number density, and the universal density profile of NFW, while in the simulated

� ���
map all connected regions above the corresponding threshold are counted as haloes.
Here I consider haloes with signal-to-noise ratio � larger than 5, i.e., a peak in the

�����
map is counted as a halo if

� ��� � � � � 	O�\�Ù�Q�+! .
I consider two differently constructed halo abundances in the following: The first

sample is simply ����� � � � �"! , the number density of haloes with an aperture mass
larger than

� � for a given filter size � . The second sample selects peaks with
� ��� �� � within a connected, cross sectional area of ® r �l , where r l is the corresponding cross

section radius; the number density of such peaks is denoted �#��� � � � � r l � �+! . Hence,
the size of the peaks in the second sample exceeds the threshold r l ; these peaks are ex-
pected to be more robust with respect to noise coming, e.g., from the intrinsic ellipticity
distribution and measurement errors. A fixed value of r l¼1÷$ &(' arc minutes was used
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Figure 3.6: The halo number density ����� � ���+� �+! (thin symbols and thin solid curves)
and ����� � ��� � �i$ &(' ) � �+! (thick symbols and thick dashed curves) computed without
noise as a function of the filter scale � for four cosmologies as indicated in the panels.
Symbols denote results from the simulations ( ¹ from Gsl , º from ° l ) whereas the two
line types display the corresponding analytic results from KS1. A signal-to-noise ratio���
	 is used as detection threshold for the haloes. Error bars in the upper right panel
display standard errors from 10 realisations for , CDM at 2, 5, and 10 arcmin (errors
for GAl offset to the left, errors for ° l offset to the right)

corresponding to clusters with a mass of LO&r$n_oLa$ \�� e 9]\ M
k

.

In Fig. 3.6 the number density of the two halo samples as determined from the sim-
ulations without noise are compared to the results from the analytic calculation in KS1
over a range of filter scales W ) �3���dLa$ ) . The four panels in Fig. 3.6 refer to the four
cosmological models considered. The error bars for the , CDM model at 2,5, and 10
arcmin are again obtained from the 10 different realisations centred on the arithmetic
mean of the realisations.

In general, the number counts determined from simulations agree astonishingly
well with the analytical results, considering the simplifying assumptions entering the
latter. The deviations between simulations and analytical calculation for three of the
four cosmologies, namely SCDM, OCDM, and ¯ CDM, and especially for the filter
scales above 5 arcmin, are less than 10 %. The largest deviation found for these three
models is a factor of 2, for the ¯ CDM model at smallest filter scale.

The only notable exception is the , CDM model where the deviation remains above
10 % even for the largest filter scales ( ��1 La$ arcmin). This relatively bad agreement
has already been noticed for the rms value of

� ���
and is probably due to the fact that
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Figure 3.7: The same as Fig. 3.6 but with noise from intrinsic ellipticities of the sources
added. For the theoretical model this is done by convolving the values from Fig. 3.6
with a Gaussian, with the dispersion obtained from the intrinsic ellipticity distribution
(see KS1). Values from the simulations are denoted by diamonds (thin and thick sym-
bols). Tangential ellipticities now are obtained according to Eq. (2.30). A signal-to-
noise ratio ���
	 is assumed for the haloes. Error bars centred on the halo abundances
are standard errors for 7 realisations of the ellipticity distribution at 2, 5, and 10 arcmin.
Error bars in the upper right panel for , CDM are from 10 realisations for 2, 5, and 10
arcmin [error for ����� � � � �"! offset to the right, error for ����� � � � ��<ol � �+! offset to
the left].

the realisation plotted is not characteristic for the mean properties of that model, as also
indicated by the fact that the halo abundance lies above the mean of all realisations as
indicated by the error bars.

The good agreement between analytic estimates and numerical results for the halo
number density are surprising, given that (a) Press-Schechter theory does not exactly
reproduce the spatial number density of haloes when compared to N-body simulations,
and (b) the universal density profile found by NFW has been obtained by spherical aver-
aging, and therefore cannot account for the non-axisymmetry of their projected density.
Furthermore, (c) the haloes found from the simulated

� ���
are expected to be affected

by projection effects (Reblinsky & Bartelmann 1999) which are completely neglected
in the analytic estimates. Despite these effects which one might suspect to yield signif-
icant discrepancies, the analytic estimates are very accurate.

I also investigate the halo abundance in an observationally more realistic situation
in Fig. 3.7, including the noise from the intrinsic ellipticity distribution of the back-
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ground sources. The plot displays the same quantities as Fig. 3.6 except for the fact
that the halo abundances of the two different samples have been determined using the
tangential ellipticities in the case of the simulations. The analytic estimates are obtained
as in KS1. For all four cosmologies, the error bars are determined using 7 different re-
alisations of the ellipticity distribution of the background sources (2.29). The error bars
from the 10 realisations shown for , CDM are slightly sub-Poissonian, as in Fig. 3.6.
As expected from the large value of the kurtosis the error coming from the intrinsic el-
lipticity distribution is much smaller than the error coming from the cosmic variance.
On the whole, the number of detected haloes is increased in all cosmologies because,
due to the steepness of the Press–Schechter mass function for massive objects, there are
more objects just below the threshold than above it. So on average more objects will
be lifted above the threshold by noise than brought down below it.

3.4 The Tail of ]»^$`
In Fig. 3.8 I compare the PDF for

� ��� � � � as obtained from analytic calculations
(KS2) with that derived from the simulations without noise. The PDF is shown for
four filter scales �·1iW � � � ' � La$ arcmin in the range

� � � � ��� ��W � � , for which the
analytic results predict a nearly exponential behaviour. Indeed, the numerical PDF in
the non-Gaussian tail also seems to follow an exponential rather closely, with a slope
very similar to the analytic result.

In order to see how much the PDF varies between different realisations, I plot in
Fig. 3.9 the PDF for

� � � � ��� �
W � � obtained from the 10 realisations in the , CDM
model, for 3 filter radii, together with their mean and the corresponding analytic pre-
diction. For the smallest filter scale ��1¢W ) , all 10 realisations are clearly below the
analytic result, whereas for the larger filters, the realisation mean of the PDF agrees
very well with the analytic prediction.

Remembering that the analytic predictions were made by assuming that all high
values of

� ���
are coming from regions close to collapsed haloes, in addition to the as-

sumptions used for estimating the number density of
� ���

peaks (Press-Schechter halo
abundance and NFW density profile), this good agreement is somewhat surprising.
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Figure 3.8: The tail of the PDF of
� ���

for the same cosmologies as indicated in
Fig. 3.2 for different filter scales. In each panel we plot the PDF obtained from the
analytic estimate in KS2 with thin lines and that from simulations with thick lines. The
line types specifies the cosmology: SCDM (solid line), , CDM (dotted line), OCDM
(dashed line) and ¯ CDM (dashed-dotted line). The

� ���
-range is ¤ � � � W � � § , where� � 1 �_o$ &r$4L«'YM*� with �¿�÷	 for the parameter specified in the text. For comput-

ing
� � I used the fact that the dispersion of

�
ap for a number density of background

sources of H 1u�O$ arcmin 9 � and a dispersion of the intrinsic ellipticity distribution� � 13$ &(W equals �}13$ &r$4L«' .
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Figure 3.9: The tail of the PDF of
�����

for the 10 realisations (thin solid lines) of the, CDM model in comparison to the analytical result (KS2) for the tail of the PDF of� ���
(thick solid line). In addition, the mean of the 10 realisations (thick dashed line)

is plotted. The different panels are for three filter scales, 2, 5, and 10 arcmin.
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Chapter 4

Clusters of Galaxies

In this chapter I investigate � –statistics based on the
�

ap–statistics concerning its clus-
ter selection properties. One major advantage of the

�
ap–statistics is that it directly

measures mass as opposed to light or X–ray emission based methods. In particular I
address the question whether

�
ap–based selection reduces projection effects prevalent

in optically selected cluster samples.
Comparing synthetic cluster catalogues produced from � –body simulation data via

the � –statistics to reference catalogues selected by Abell’s criterion I find that the � –
statistics is more reliable in terms of completeness and spurious detections.

In addition I also investigate the mass estimates in cluster samples selected by both
luminosity and weak lensing effects. I conclude that the weak lensing based mass es-
timates are more accurate than those obtained from the virial theorem.

4.1 Properties and Detection of Clusters of Galaxies

Large galaxy surveys reveal that galaxies are not randomly distributed on the sky. Cer-
tain areas on the sky have a noticeably higher or lower than average galaxy density.
Galaxies are clustered , quantified by the galaxy–galaxy correlation function, r gg, that
behaves as r gg ë¿��	ZMO	Ìe 9]\ Mpc ! 9]\·¼  (4.1)

for galaxy seperations, $ &�LKe 9]\ Mpc f½	oføWO$Äe 9]\ Mpc. The galaxy–galaxy correla-
tion function measures the probability in excess of random of finding a galaxy at a dis-
tance 	 from another galaxy. Many galaxies are found in small groups of galaxies, and
about La$A¾ of all galaxies are found in galaxy clusters, which are gravitationally bound
and often virialzed. These galaxy clusters contain from a few tens up to a thousand clus-
ter members. Large clusters of galaxies have typical masses of 	c_qLa$ \ � M

k ëdLa$ �� gr,
and typical radii of LO&(	 Mpc ëS	·_ La$ � � cm. In addition, these galaxy surveys find that
galaxies form structures like walls and filaments.

There exist several cluster catalogues, the one most widely used being the Abell
cluster catalogue (Abell 1958). Briefly, a cluster is classified as an Abell cluster if
within the Abell radius of 	 � 1dLO&(	Ìe 9]\ Mpc from its centre, and after subtraction of the
mean background, the number count of galaxies exceeds a certain value H � . Counting
is restricted to the apparent magnitude interval ��
 � � 
 � � WY! , where 
 � denotes the



50 4. Clusters of Galaxies

apparent magnitude of the third-brightest cluster galaxy. The actual count H � is used to
assign Abell richness classes ¿ . For ¿ô1 $ , a cluster has to contain at least H � 1¿�O$
galaxies, while ¿È1dL and ¿È1SW correspond to H � �
	O$ and H � ��[O$ , respectively.

The Abell catalogue lists WY5+L«W clusters north of |¼WO$ � declination away from the
galactic plane. This widely used cluster detection and classification scheme does not
directly depend on redshift - , even though it has traditionally been used only for fairly
shallow cluster surveys. All Abell clusters lie in the redshift range $ &r$YWyë3-yë3$ &(W .

As clusters of galaxies are the largest gravitationally bound objects in the universe
and are thought to originate from the highest peaks in the initial density field, they can
constrain cosmological models.

The potential problem with using clusters of galaxies for this purpose is that even
though they can be easily identified due to their brightness, they are affected by projec-
tion effects. Various cosmologically important observables like cluster richness, veloc-
ity dispersion, and mass estimates are affected by galaxies projected onto them.

Therefore I compare here the cluster selection by the aperture mass
�

ap introduced
in Chapter 2 with that by the optical Abell criterion. I also present the contamination
with intervening matter along the line–of–sight of clusters of galaxies selected by the� –statistics. In addition I investigate the influence of projection effects on mass esti-
mates, comparing the virial theorem based mass estimate to a weak lensing based mass
estimate, namely the < –statistic. Before doing this I describe the methodology used.

4.2 Methods

4.2.1 À -body Simulation

In order to study the influence of projection effects on cluster surveys selected by op-
tical and gravitational lensing information, I need simulated data allowing to mimic as
accurately as possible the selection of clusters and the determination of their properties,
for instance their masses. At the same time, the full phase-space information is required
to assess the amount of contamination of selected clusters by intervening matter along
the line–of–sight (hereafter los) and to determine the masses of the clusters with the
virial theorem.

For this purpose, I use a large, high-resolution � -body simulation of a standard
Cold Dark Matter (SCDM) universe described in Chapter 2 with the parameters given
in Table 2.1. I select a simulation box located at a redshift of -·13$ &T�Z� L to achieve high
lensing efficiency on sources at redshifts around unity, where I assume the sources to
be throughout this chapter.

For the analysis of gravitational lensing effects of the simulated matter distribution,
namely the � - and < -statistics, the high resolution provided by the � –body simulations
is essential. Again, spatial and mass resolution must be distinguished. The spatial res-
olution is determined by the comoving force softening length, in the case of the SCDM
model 0 �¨§z© l 1¿�X'Ìe 9]\ kpc. This limitation is reduced by the high redshift of the simu-
lation box, where the force softening translates to a very small force softening angle,� �¨§z© l tdLa$ )T) . The mass resolution, which describes the effect of the finite particle num-
ber, is given by the particle mass 
 � 1dLO&r$ _nLa$ \ E e 9]\ ��k

. The finite mass resolution
introduces a white–noise component into the simulations. This is not negligible for
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the SCDM model because there a higher proportion of the particles is in voids than for
models with lower mean density.

Since I want to evaluate two different methods for detecting clusters in projection,
I first have to create a sample of true 3-dimensional (3-D) clusters or groups from the
simulation that will serve as a reference set.

I extract clusters and groups from the 3-D dark-matter simulation with a friends-
of-friends algorithm (also called group-finder, cf. Davis et al. 1985). The friends-of-
friends algorithm is based on a percolation analysis: It identifies groups and clusters in
the simulation box by linking together all particle pairs separated by less than a fraction� of the mean particle separation. Each distinct subset of connected particles is then
taken as a group or cluster. I have chosen �Å13$ &(W , but the result of group finding does
not sensitively depend on the exact choice of � .

Assuming that the clusters and groups found by the group-finder are completely
virialised, I compute their virial masses

� � EbE , defined as the mass enclosed by a sphere
with a radius 	 � EbE which contains a mean overdensity of 200 times the critical mass
density, ã±�1 WO$X$�±A� ¦ y l . For an

Á E¹1%L universe, this radius approximately separates
virialised regions from the infall regions of the haloes (Cole & Lacey 1996). Several
reference sets of “true” 3-D clusters are then formed by selecting objects with

� � EbE
above certain mass thresholds.

In order to be able to apply the � –statistics I first compute the lensing potentialv�� < !Ì1 L®zÍ @ Ô V � � ) ? � < ) ! + � � � < | < ) � !l& (4.2)

introduced in (2.12) via the dimensionless surface mass density ? with the Poisson
equation (2.14).

Boundary conditions have to be specified when solving Eq. (2.14) numerically. Pe-
riodic boundaries are adequate because of the periodicity of the simulation volume.

For numerically computing v , the projected particle positions are interpolated on
a grid of WO$O�Z[O� cells to maintain the high resolution of the � -body simulation. The
resulting surface mass density is scaled with the critical surface mass density (2.9) to
find the convergence ? . For a numerically stable and efficient method to convert ? tov , we use a fast Poisson solver (Swarztrauber 1984). The efficiency of this method
rests on the fast Fourier transform (FFT) leading to an asymptotic operation count ofÁ �ÕW�� + �|Âm�o! . The algorithm approximates the Laplacian on a grid, transforms to
Fourier space, solves the resulting tri-diagonal system of linear equations, and back-
transforms to real space. In contrast to other approaches, the approximation is made
here by discretising the equations, which can then be solved exactly by a subsequent
discrete FFT.

Having determined the deflection potential v�� < ! , the local properties of the lens,
such as the surface mass density ? and the complex shear G � G \ �3� G � , can be ex-
pressed in terms of second derivatives of v�� < ! , given in (2.17), and (2.14).

As already stated in chapter 2 the parameters 2 , � , and V of the � –statistics are deter-
mined once © \ and © � in equation (2.37) are specified; see Schneider (1996). I choose© \ 1¿$ &r$Y	 and © � 1¿$ &([ (leading to 2 1¿$ &65+L«�X� , �¥1õ|¥L«[+&([X[Y5O	 , and V 1¿$ &�L«WX�XR ) in
order to achieve high signal-to-noise ratios and evaluate the � -statistics for an aperture
size of 2 arc minutes. In addition, I assume the number density of background sources
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needed to compute the � –statistics is H�1¿�X	 arc minutes 9 � and the dispersion of the
intrinsic ellipticity distribution is � � 1S$ &(� .

4.2.2 Construction of Mock Cluster Catalogues by Optical Cluster Selec-
tion

Having dark-matter particles only, I need to populate the simulation with galaxies for
optical cluster selection. I employ the following scheme.

Galaxy luminosities
j

are drawn from a Schechter function (Schechter 1976),�¶� j !Ä1S� þ � j M j þ ! 9 ¬ �� )! ��| j M j þ ! � (4.3)

with parameters
j þ 1¿�+&65X5�_#La$ À jmk and 2 1 L taken from the CfA redshift survey

by Marzke, Huchra & Geller (1994). The formal divergence for
j Y¡$ in the number-

density integral of the luminosity function is avoided by introducing a lower luminosity
cut-off

j E�1ß$ &�L j þ . For the normalisation of the luminosity distribution, I follow
the prescription by Schechter (1976). I calculate a richness estimate by computing the
most probable value of the third-brightest absolute magnitude

� � , and then integrate
the luminosity distribution from

� � to
� � � W . Frenk et al. (1990) showed that this

yields the dimension-less normalisation factor � þ 1ô'O$ &r$ . The normalisation factor
determines the amount of luminous galaxies to be introduced into the simulation. The
total mass-to-light ratio of the 3-D clusters turns out to be

� M j 1÷�O$X$Äe � k M j k on
average, in qualitative agreement with observations.

Assuming that mass follows light in the model universe, galaxies inherit positions
and velocities from randomly selected dark-matter particles. In this sense, the con-
structed galaxy sample is unbiased both in number density and velocity.

Transforming luminosities to apparent magnitudes for higher redshifts, I account
for the û correction. If the spectral energy distribution varies with frequency © as a
power law with exponent 2 ) , the additive û correction isû�1d| W+&(	Å��L � 2 ) ! + �|Â \ E ��L � -+!l& (4.4)

I choose 2 )Ö1»|¥LO&(	 for the spectral index, which sufficiently well reflects the spectral
properties of ordinary galaxies.

Volume-limited cluster catalogues are then obtained after projecting particle posi-
tions onto planes along the three orthogonal axes of the simulation box. Groups and
clusters in projection are identified with a 2-D version of the friends-of-friends algo-
rithm.

I then apply the optical Abell criterion (Abell 1958) to select galaxy clusters. I also
straightforwardly apply Abell’s criterion to three-dimensional clusters in order to assess
the influence of projection effects on richness-class estimates.

For the background subtraction, I follow Frenk et al. (1990). In order to estimate
the background, i.e. the contamination by foreground and background galaxies in the
simulation box, I assume that the number of galaxies contributing to the contamination
is proportional to the volume projected onto the cluster. In this case, I expect 8 back-
ground galaxies within a cylinder of volume Ã ��¦ §zÄ 13®t	X�Î 0 ª §�¬ . Therefore, a cluster with
richness class ¿ 1dL has to encompass at least 58 galaxies in the appropriate magnitude
interval; 8 background galaxies in addition to the 50 genuine cluster members.
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Since observed column densities towards galaxy clusters will be considerably
larger than assumed here, and since the conditions in realistic observations are less con-
trolled than here, projection effects could even be larger in reality.

4.2.3 Detection of Dark-Matter Concentrations through Weak Gravita-
tional Lensing

The < -Statistics

A special choice of the weight function for
�

ap leads to the < -statistics proposed by
Kaiser (1995) and first applied by Fahlman et al. (1994). It gives a lower bound to the
average surface mass density ? within a circle inside an annulus by measuring the dis-
tortions of background galaxy images inside the annulus. The < -statistics will be used
in Sec. 4.5 for constraining the masses of clusters detected through their � -statistics.
The piece-wise constant weight function for the < -statistics reads (Schneider 1996)

g U �>.]!Ä1 ������ �����
L®�. � \ for $>��.òf�. \| L®Ä�QP � |o. � \ ! for . \ ��. f�P$ for Pk��.hfjÅ & (4.5)

Inserting this weight function into Eq. (2.23) yields
 U � < ! � <Ö��	 \ � 	 � !Ä1 L® 	O��	 �� |�	 �\ Í[ÆÆÔÆ@Ò
V �Ç		 � GAl¦�Qð�! � (4.6)

where ð is the distance vector between the point under consideration and < , and 	 \ and	 � �È	 \ are the bounding radii of an annulus around É. . It can then be shown that<0��	 \ � 	 � ! is related to the mean convergence ã? ��	 \ � 	 � ! in the annulus by<0��	 \ � 	 � !Ä1÷ã? ��	 \ !¶|ã? ��	 \ � 	 � ! � (4.7)ã? ��	Y\:! being the mean convergence in the circle with radius 	X\ around â . In other words,
the < -statistics constrains the average convergence in a circular aperture through the
tangential shear in an annulus surrounding the aperture. Since ã? ��	X\ � 	 � !l��$ , <Ö��	X\ � 	 � !
provides a lower bound to the mean surface mass density enclosed by 	 \ .

As mentioned before, it is possible to use the image ellipticities � of the background
galaxies as unbiased estimates of the tangential shear, �·lmt�GAl . Therefore, the integral
in (4.6) can be approximated as a discrete sum over galaxy images,

<Ö��	X\ � 	 � !Ät LW 	 ��� ³� è ¶ \ �·l è	 �è & (4.8)

In this study, I want to obtain a lower bound to the total cluster masses. For a mean-
ingful application of the < -statistics, it is important to include the complete cluster into
the measurement. This can be achieved following Bartelmann (1995). If I apply the< -statistics to a nested set of annuli with radii 	 è , L¥f��mf�H , then the < -statistics for an
annulus with 	 è fÊ	 D reads < è R D 1»ã? è |�ã? è R D & (4.9)
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where ã? è � ã? ��	 è ! and ã? èED � ã? ��	 è � 	 D ! . On the other hand, the mass
� èED in such an

annulus is the product of surface mass density times the area,� è R D 13Ø è R D ã? è R D � (4.10)

where the area of the annulus is Ø è R D 13®���	 �D |�	 �è !l& (4.11)

The crucial point is now that the mass contained within a circle of radius P is always
the sum of the masses contained in annuli with outer radii 	 D f�P , irrespective of how
the area is decomposed into such rings. Keeping this in mind, Eqs. (4.9) and (4.10) can
be combined into a system of �>H·|òLN! linear equations with H unknowns 
M" , where the
M" denote the masses in adjacent rings

� " 9]\ R " .
The fact that there is one equation less than the number of unknowns reflects the

scaling invariance of the surface mass density ? . Assuming that the outermost annulus
does not contain any significant convergence, i.e.

� F 9]\ R F�1 $ , I finally arrive at the
following set of equations for the masses

� D enclosed by radii 	 D :� D 1¿��L � Ø \ R DØ \ !s
 \ |2Ø \ R D < \ R D (4.12)

where 
 \ is shorthand for
 \ � Ø \ Ø \ R F < \ R F·|2Ø \ R F 9]\ < \ R F 9]\Ø \ R F·|2Ø \ R F 9]\ & (4.13)

Of course, a lower bound to the total cluster mass could also be obtained by placing
an annulus around the entire cluster and applying the < -statistics to that annulus only
rather than to a set of nested annuli. The present approach has two advantages; first,
it yields a profile of ? which allows to assess the location of the outer cluster bound-
ary, for which I found that P 1 LO&([Xe 9]\ Mpc is an appropriate choice. Second, it uses
galaxy ellipticity measurements in all annuli rather than the outermost only, thus reduc-
ing the noise. However, the errors in the

� D are correlated at successive radii, making
an immediate interpretation of the significance at any given radius less transparent.

4.3 Completeness of Cluster Catalogues

I am now in a position to investigate completeness and homogeneity of cluster cata-
logues constructed with the � -statistics as opposed to the optical Abell criterion. To
this end, I create two different samples of 2-D clusters by applying both methods to
simulated data projected along the . -, / -, and - -axes. I then compare these 2-D clus-
ters with the reference set of 3-D clusters.

To assess the quality of the constructed 2-D catalogues, I use several reference sets
of 3-D clusters with different mass ranges. Looking at different mass ranges instead of
cluster richness estimates is motivated by two reasons. First, the physical quantities of
primary interest are the masses. Furthermore, this kind of comparison is more suitable
for the � -statistics, which does not depend on the distribution of luminous galaxies but
of the dark matter only. This way of addressing projection effects in cluster catalogues
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3-D clusters ¿Þ��$ ¿ ��$
Mass range in La$ \ � e 9]\ � k

det. spur. det. det. spur. det.

1.32 – 3.50 53% 50% 66% 82%

1.03 – 3.50 27% 50% 56% 69%

0.82 – 3.50 17% 50% 44% 64%

0.55 – 3.50 13% 25% 36% 40%

0.10 – 3.50 13% 6% 32% 29%

Table 4.1: Completeness and homogeneity of optically selected, synthetic cluster cata-
logues constructed by Abell’s criterion. For five mass ranges of 3-D clusters, the detec-
tion rate (det.) and the spurious detection rate (spur. det.) is shown for cluster richness¿u�¿$ and ¿u�¿$ . The detection rate gives the percentage of 3-D clusters correctly
identified by Abell’s criterion. The spurious detection rate is the fraction of detected
clusters which do not correspond to true 3-D clusters within the mass range considered
. Further explanation is given in the text.

differs from previous studies (e.g. Cen 1997; van Haarlem et al. 1997), which focused
on the influence of projection effects on the richness estimate of Abell catalogues.

The results for the Abell-selected cluster catalogues are summarised in Table 4.1
and Fig. 4.1. The first column of Table 4.1 lists the mass range of the 3-D cluster ref-
erence set. The next two columns show the fraction of 3-D clusters correctly detected
by Abell’s criterion, and the fraction of 2-D objects which do not correspond to 3-D
clusters within the chosen mass range, respectively. The fraction of detected clusters is
given with respect to the 3-D clusters in the given mass range, while the spurious de-
tections are given relative to the total number of 2-D detections. The last two columns
show the same information for a larger sample of Abell clusters also including clus-
ters of richness class ¿ 1Þ$ . Figure 4.1 illustrates the information of Table 4.1 as a
histogram.

The first mass range considered in Table 4.1, ��LO&(�XWÃ|}�+&(	Y!¶_ÝLa$ \ � e 9]\ �#k
, reflects

the masses expected for Abell clusters with richness class ¿Ë�
$ . Looking at absolute
numbers, I find that the total number of 2-D clusters with ¿ �ô$ in the Abell cata-
logue is very similar to the number of 3-D objects in this mass range (in Fig. 4.1, the
corresponding bars are comparably long). However, as Table 4.1 shows, only 	X�Ë¾ of
the 3-D clusters from the reference set can be found in the 2-D sample of ¿Þ��$ clus-
ters. On the other hand, a high percentage ( 	O$A¾ ) of the 2-D Abell clusters does not
correspond to a true 3-D object. This means that not only half of the 3-D clusters in
this mass range are missed by Abell’s criterion, but also a lot of spurious 2-D objects
are found. This is due to two competing effects occurring in projection. Intrinsically
rich clusters may disappear in the background, while the richness class of poor clusters
can be enhanced by small groups and field galaxies collected along the line–of–sight.
In the above case these two effects approximately cancel, so that the total numbers are
approximately correct.

These results are consistent with the findings of Frenk et al. (1990) for projection
effects in CDM-like universes with different biasing parameters � . Comparing Tab. 2 in
their paper with the results for Abell ¿ 1dL clusters, I find similar projection effects for
the model universe and their CDM-like universes with biasing parameters between �Å1
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Figure 4.1: Performance of Abell’s criterion in identifying clusters in different mass
ranges (cf. Table 4.1). The hatched bars illustrate the number of 3-D clusters for each
mass range, the solid and dotted bars the number of Abell clusters with ¿ �ô$ and¿Ë�
$ , respectively. The overlap between hatched and empty bars illustrates the frac-
tion of correct detections, and the fraction of spurious detections by Abell’s criterion
corresponds to the rest of the empty bars. The fraction of correctly identified 3-D clus-
ters and the fraction of spurious detections both increase for more massive cluster sam-
ples.W+&(	 and �Å1dLO&(' . A direct comparison is difficult because of the different normalisations
of their model universe and mine. Furthermore, the redshift dependence of the biasing
parameter � is not known, further complicating a detailed comparison.

For 2-D galaxy clusters with richness class ¿ 1 $ , the fraction of detected 3-D
clusters is slightly increased from 53% to 66%. At the same time, the number of spu-
rious 2-D clusters, i.e. clusters which cannot be linked to 3-D objects in the reference
set, is increased by more than �O$A¾ . A detailed analysis of the line–of–sight structure
of these clusters reveals that this large number of spurious detections is partly due to
the additive projection of poorer groups corresponding to lower-mass 3-D objects. This
increase in the number of both detections and spurious detections reflects the enhance-
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ment or reduction of cluster richness classes due to projection.
Extending the reference set of 3-D clusters to lower masses substantiates this as-

sumption. The number of spurious detections declines quite steeply from over [O$A¾
for the mass range of ��LO&(�XWs|i�+&(	Y!�_SLa$ \ � e 9]\ �#k

to below �O$A¾ for a lower mass
threshold of $ &�Lg_�La$ \ � e 9]\ � k

, which is more than one order of magnitude smaller
than the lower mass threshold for ¿Ë��$ clusters. Therefore, many of the 2-D clusters
detected by Abell’s criterion do indeed correspond to true 3-D objects, but in very dif-
ferent mass ranges. This clearly indicates that for the model universe a change of the
richness estimate due to projection is likely. But still the number of truly spurious de-
tections, i.e. detections of 2-D objects which cannot be connected with any 3-D object,
remains quite high even in the broadest mass range.

Turning to the performance of the � -statistics in constructing a complete and ho-
mogeneous catalogue, Table 4.2 and Fig. 4.2 display the results of the � -statistics in a
manner analogous to Table 4.1 and Fig. 4.1 for Abell’s criterion. Again, the first col-
umn contains the mass range of the investigated 3-D reference set, while the following
columns display the percentage of detected 3-D clusters and of spuriously detected 2-D
objects above a certain � -value. The analysis is performed for objects detected above
different signal-to-noise thresholds.
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Figure 4.2: Performance of the Ú -statistics in identifying clusters in different mass
ranges (cf. Table 4.2). See the caption of Fig. 4.1 for the meaning of the overlapping and
non-overlapping parts of the bars. The different line types are for different Ú thresh-
olds, as indicated in the plot. With increasing Ú , the fraction of spurious detections and
the completeness are both reduced.

The first Ú -threshold investigated in detail is ÚÊÛÝÜ . This value has been advocated
in the literature, e.g. by Schneider & Kneib (1998), as a signal-to-noise ratio promising
significant detections. In comparison to the optical Abell criterion, the Ú -statistics has
a similar detection rate for Abell ÞàßÝá like objects ( Ü|âËã with Abell’s criterion com-
pared to ä�áAã with the Ú -statistics). The number of spuriously detected objects ( Ü�áAã )
is identical to that for Abell’s criterion in the highest mass range.

The differences between the two methods show up when detections and spurious
detections at mass ranges with a lower mass threshold are considered. Looking at the
detection rate of spurious 2-D objects, I see a much steeper decline as in the Abell case.
For a lower mass threshold of å�æEáËâèç�åXá�é5ê�ëtìíéïî[ð , only ñËò|ã of the Ú -detected clus-
ters do not correspond to 3-D clusters of the reference set, whereas more than half of
the Abell clusters in that mass range are spurious detections. For an even lower mass
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Figure 4.3: Comparison of the performances of the Ú -statistics and Abell’s criterion in
identifying clusters in different mass ranges. See the caption of Fig. 4.1 for the mean-
ing of the overlapping and non-overlapping parts of the bars. The solid and dotted bars
are for Abell-clusters with ÞóÛôá and Ú -selected clusters with ÚôÛöõ , respectively.
Evidently, the Ú -statistics performs better in all mass ranges in terms of spurious de-
tections, and completeness is generally also larger.

threshold of á)æø÷|ñ�ç�åXá é5ê ë ìíé î[ð , the rate of spurious detections falls to only å|å$ã ,
which clearly indicates that a large number of suspected spurious detections in reality
corresponds to 3-dimensional matter concentrations of lower mass.

If I reduce the Ú -threshold for significant detections to e.g. Ú}ÛÊõ7æøÜ or even below,
the detection rate of 3-D clusters increases, which means that the Ú -cluster catalogue
becomes more complete. However, the trade-off for the completeness is a higher num-
ber of spurious detections, belonging to lower-mass 3-D mass concentrations. For anÚ -threshold of õ7æEá , I am able to construct a catalogue containing all massive Abell-
like clusters at the expense of also detecting many less massive 3-D objects. Figure 4.3
compares the performance of Abell’s criterion with ÞùÛ»á and the Ú -statistics withÚ}ÛÊõ . It shows that Ú -selected cluster samples contain fewer spurious detections and
are generally more complete than Abell-selected samples.
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A crucial point in the application of the Ú -statistics is the identification of peaks in
the Ú -map. Following Schneider (1996), I use a circular aperture for the Ú -statistics,
which leads to an increased sensitivity for round objects. However, some of the Ú -maps
for the simulation data show extended, non-circular areas with significant Ú -signals.
Several of these structures contain more than one peak coming from within a plateau of
high Ú (see Fig. 4.4). It is important to properly categorise these structures as belonging
to a single 3-D object and to not count them twice. An example of such a situation is
shown in Fig. 4.4. The contour plot shows a blow-up of the Ú -map around two peaks
which almost overlap in the lower-resolution Ú -map of the whole simulation box (see
the mark in Fig. 4.5). These two peaks in the Ú -map correspond to one of the most
massive clusters in the simulation. This is reflected in the high ÚOú½òsæøä of the higher
peak, while the second peak has Ú8úûâ�æøä . On the other hand, the sample also contains
examples of 3-D clusters projected onto each other showing only a single featureless
peak. Therefore, I conclude that the morphological information contained in the Ú -map
is low. Both cases of Ú -signals will be discussed in more detail in Sec. 4.4.

Figure 4.4: Ú -map for the rectangular section in Fig. 4.5 showing the double-peak
structure of the map in more detail. Contours are spaced by üKÚkúýå . The structure
features two maxima, but corresponds to a single 3-D cluster.

Summarising the quantitative results from both cluster detection methods, I can
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say that the Ú -statistics leads to better results than Abell’s criterion. The catalogues
constructed with the Ú -statistics are more complete and suffer less from spurious de-
tections, at least in the sense that most peaks correspond to true 3-D objects. TheÚ -statistics evidently produces fewer truly spurious detections than Abell’s criterion.
However, I note that it is not possible to obtain a complete catalogue by counting only
peaks with a high signal-to-noise value Ú�ÛþÜ . There is no strict correlation between
the height of a signal in the Ú -statistics and the mass of identified 3-dimensional ob-
jects.

Figure 4.5: Projection of true 3-D clusters/groups (squares) along the ÿ -axis onto the
full ��� -plane of the simulation box, and comparison with Abell clusters identified
in projection (2-D-Abell clusters, circles), and mass-selected clusters identified with
the Ú -statistics (diamonds). 3-D clusters with masses in the range of �fá)æ åXá - â�æøÜ��MçåXá é5ê ë ìíé î8ð , 2-D clusters with Þ ÛÝá (Abell), and Ú}ÛOâ�æEá ( î��	� ) are shown. Filled
symbols refer to clusters with masses Ûxá)æøÜ|Ü çOåXá�é5ê ëtìíéïî[ð , Þ ß á and Ú½Û â�æøÜ .
(The offset between close symbols is deliberate to facilitate reading; it does not reflect
the accuracy of measuring cluster positions.)
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4.4 Structure of Representative Clusters

To achieve a deeper understanding of projection effects, I study the structure of
archetypical clusters or groups along the line–of–sight. The main emphasis in this sec-
tion will be on clusters selected by the Ú -statistics. A detailed discussion of the struc-
ture of Abell selected clusters along the line–of–sight for both real space and velocity
space can be found, e.g., in Cen (1997) and van Haarlem et al. (1997).

Even though this section will concentrate on clusters detected by the Ú -statistics,
in some cases also Abell-selected clusters will be discussed if the Ú -selected clusters
also satisfy Abell’s criterion. As Fig. 4.5 shows for one of the three projection direc-
tions, this is the case for a lot of Ú -selected objects, i.e. there is considerable over-
lap between the two selection methods. Abell’s criterion detects the visible light from
galaxies, while the Ú -statistics is sensitive to the underlying distribution of dark mat-
ter, making it possible to construct a “mass-selected” sample of clusters, as opposed to
“flux-limited” samples which are obtained by observing luminous galaxies. Since this
study is performed under the supposition that both selection methods detect the same
physical objects, I have to assume that luminous galaxies are good tracers of the dark
matter distribution. This is secured by the assumption used to populate the simulation
that light follows mass.

For a more detailed analysis, the Ú -selected clusters will be subdivided into three
classes according to the Ú -threshold employed. The first class considered are clusters
detected with Ú}ÛOÜ , the next class contains clusters with Ü�ßjÚ}ÛÊõ , and the last class
clusters or groups with õ1ßxÚ Û â . The division into classes according to signal-to-
noise values allows an investigation of systematic differences of projection effects in
the different classes.

It is expected from theory that higher-mass clusters lead to larger values in the Ú -
map. Such a trend was found in Sec. 4.3, but there is no sharp correlation between the
masses of detected 3-D clusters and the threshold imposed on the Ú -statistics. This can
be explained in terms of the intervening matter along the line–of–sight. Lower-mass
3-D objects are more prone to projection effects in the sense that the intervening mat-
ter makes up a more substantial fraction of their mass. Therefore, projection effects
become more important for clusters with lower Ú . In the case of clusters with intrinsi-
cally lower masses, less intervening matter is needed to alter the signal in the Ú -map.

4.4.1 
 -Statistics: 
���
As discussed in Sec. 4.3, there is a good correspondence between Ú�Û Ü clusters and
massive 3-D-clusters. Investigating the line–of–sight structure of these 2-D-clusters, I
can generally state that nearly all of them show a high, pronounced peak in the position
histogram at the position of the true 3-D cluster. Even though the amount of contamina-
tion with intervening matter in this group is only moderate, some velocity histograms
deviate significantly from a Gaussian shape.

The cluster given in Sec. 4.3 as an example for a cluster exhibiting a double-peakedÚ -map (see Fig. 4.4) clearly belongs into this class, since the main peak has ÚÊúkòsæøâ ,
while the nearby second peak has only Ú�ú�â�æøä . The structure along the line–of–sight
in both real space and velocity space is shown in Fig. 4.6. The position histogram is
characterised by a dominant peak at the position of the corresponding 3-D cluster which
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has a mass of î�� ì�� úûâ�æ õ çèåXá é5ê ë ìíé î[ð . The amount of dark matter along the line–
of–sight is moderate with only two small clumps õËá ëíìíé Mpc and ä|Ühëtìíé Mpc behind
the main clump, which both have masses smaller than åXá é � ë ìíé î8ð . Although the 3-
D cluster has Abell richness class Þ ú�á , the projected cluster satisfies the 2-D Abell
criterion for Þýú å , indicating an inflation of richness class. The velocity dispersion� � ì�� ú�ò|ò�Ü������ ìíé of the 3-D cluster is reduced to ��� ì�� úûäËò�ä������ ìíé in projection,
hinting at an asymmetric velocity ellipsoid of the 3-D cluster.

Figure 4.6: Structure of a large 3-D cluster with moderate contamination, detected as
a double peak with Ú�ú�òsæøâ and Ú�úûâ�æøä (cf. Fig. 4.4). It is also an Abell Þôú å clus-
ter, both in projection and in 3-D. The upper left panel displays the histogram of the
dark matter distribution in real space along the line–of–sight, and the upper right panel
shows the corresponding velocity histogram. The two lower panels show the dark mat-
ter distribution along a cylinder of radius å�æøÜhëtìíé Mpc in real space (along the line–of–
sight) and in velocity space. For better display in both lower panels, a random fraction
of the dark matter particles is omitted.

Although the cluster is only moderately affected by projection effects, the los ve-
locity histogram strongly deviates from a Gaussian, which is also true for the velocity
distribution of the 3-D-cluster alone. The deviation from Gaussianity, as measured by
higher order moments of the distribution like the skewness � and the curtosis � , is� � ì�� ú���á)æøä|ñ and � � ì�� úûá)æ õsò for the 3-D-cluster as opposed to � � ì�� ú½å�æøÜËò and� � ì�� ú â�æøâ)å in projection. The substantial increase of skewness and curtosis in pro-
jection emphasises the influence of projection effects in velocity space. Together with
the decrease of the velocity dispersion and the increase of richness class in projection,
this hints at the presence of non-virialised sub-clumps in the vicinity of the main clus-
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ter. Yet, this detection corresponds to a very massive 3-D cluster. More examples are
given in Figs. A.1 and A.2 in the Appendix.

4.4.2 
 -Statistics: ! "
���#
The next sample of Ú -detected clusters has lower signal-to-noise; but, as has been
shown in Sec. 4.3, the mass-selected cluster catalogue becomes more complete if these
clusters are included. Most of them correspond to true 3-D clusters. Even though these
detections are significant and contain some massive clusters, their amount of contami-
nation in relation to their main 3-D cluster is generally larger than for clusters detected
with larger Ú . One typical example of this class is shown in Fig. 4.7, two more are
given in Figs. A.3 and A.4 in the Appendix.

Figure 4.7: Structure of a moderately contaminated 3-D cluster with Ú�ú�õ7æ�ò . See the
caption of Fig. 4.6 for a description of the panels.

The cluster in Fig. 4.7 is a high-mass cluster with î�� ì�� ú å�æøÜNç�åXá�é5ê ëtìíéïî[ð , a
clump nearby, and a second mass clump â�á ë ìíé Mpc away. It is detected at Ú�ú õ7æ�ò .
The velocity dispersion of the projected cluster is broadened from � � ì�� úûä%$Ëò&�'�(��ìíé
to � � ì�� ú_÷|ä|Ü��'�(��ìíé , and the projected velocity distribution has a bimodal shape.
The higher-order moments of the velocity distribution indicate this through skewness
and curtosis in projection ( � � ì�� ú å�æø÷|Ü and � � ì�� ú�â�æøñËò ), compared to 3-D ( �)� ì�� úá)æ åa÷ and �*� ì�� ú+��á)æ õËá ). The cluster satisfies Abell’s criterion with richness classÞöúûá , both in projection and in 3-D.
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4.4.3 
 -Statistics: #, "
��.-
The last class considered contains clusters with Ú between 3 and 4. This class is mainly
discussed for reasons of completeness. Clusters identified with such signal-to-noise
correspond to lower-mass objects making projection effects along the line–of–sight
more important. This can be seen looking at the three examples in Fig. 4.8 and in
Figs. A.5 and A.6.

Figure 4.8: Line–of–sight structure of a highly contaminated cluster. This cluster is
detected at Ú�úûâ�æøñ . See the caption of Fig. 4.6 for a description of the panels.

The peak with Ú�úûâ�æøñ corresponding to the cluster shown in Fig. 4.8 is due to a 3-D
cluster with a rather low mass only, î�� ì�� úûÜ�æ/$ ç åXá�é � ëíìíéïî8ð . Compared to the low
3-D cluster mass, there is a high amount of intervening matter with several mass clumps
along the line–of–sight. Because of this substantial contamination, the projected veloc-
ity dispersion is overestimated; � � ì�� ú�ä|ä%$��'���Xìíé compared to � � ì�� úûâ|ä£õ0�'�(��ìíé
for the 3-D cluster. The velocity histogram has a second peak at the high-velocity tail
of the distribution. The higher-order moments of the velocity distribution of the 3-D
cluster ( �)� ì�� ú���á)æEáËÜ and �1� ì�� ú���á)æEáAò ) change by a large amount when looking
at the projected velocity distribution ( � � ì�� ú å�æ åañ and � � ì�� úqñ�æ õAâ ). This reflects
the large influence the intervening matter exerts on observation.

4.5 Mass Estimates

The previous two sections put emphasis on the completeness of catalogues constructed
with two different selection criteria, Abell’s criterion and the Ú -statistics based on weak



4.5. Mass Estimates 67

gravitational lensing. Furthermore, I investigated the structure of some detected clus-
ters along the line–of–sight. Of course, both kinds of information are important when
deriving statistical information from such catalogues. A third very important test for
cosmological theories are the different mass estimates and their relationship with each
other. A mass estimate closely related to the optical selection derives from the vir-
ial theorem. As a gravitational-lensing based mass estimate, I choose the 2 -statistics,
which is closely related to the Ú -statistics as demonstrated in Sec. 4.2.3.

Under the assumption that clusters of galaxies are bound self-gravitating systems
in dynamical equilibrium, the total cluster mass can be estimated via the virial theorem
(Binney & Tremaine 1987; Sarazin 1986),î4365	3«ú 798;:=< �?>@ A (4.14)

where
798

is the gravitational radius of the cluster relating the system’s mass to its po-
tential energy. Gunn & Gott (1972) showed that this radius is approximately given byB �DCDC , the radius of a sphere containing an overdensity of ñ�á|áFEHGJI=K 3 . For the clusters of
my study, a radius of

798 ú á)æ�ò�Ühëtìíé Mpc is a good approximation. Observationally,
only the los velocity dispersion �&L can be measured. Assuming isotropic orbits, the two
quantities are related by

:=< � > úûâ � � L .
When calculating the radial velocities from simulated data, the Hubble flow has to

be added to the peculiar velocities of the simulation. Since the simulation data are at
high redshift, the dependence on redshift of the cosmological parameters also has to be
taken into account. Therefore, the radial velocities are given by< L úNMO �fÿ'�P� LRQ O �fÿP�1M� L ú O �=ST�VU WX�fÿP�P� LFQ M� LZY A (4.15)

with the expansion factor O �fÿP�«ú��zå Q ÿP� ìíé (4.16)

and the Hubble parameter WX�fÿP��ú[W C �zå Q ÿP� �T\ � æ (4.17)

Apart from the validity of the virial theorem, the virial mass estimate depends solely
on a correct estimate of the velocity dispersion � L . Since the velocity dispersion is very
sensitive to field galaxies and small sub-clumps projected onto the main clusters, it is
important to remove these from the sample. I convolve the velocity histogram with aõËá|á|áF������ìíé wide top-hat filter to reject interlopers, i.e. galaxies with relative veloci-
ties greater than õËá|á|áF������ìíé from the peak of the convolved histogram are removed. I
further employ the so-called â � -clipping procedure proposed by Yahil & Vidal (1977)
which has widely been applied to observational samples. It can be summarised as fol-
lows:

1. compute the mean radial velocity;

2. remove the galaxy which deviates most from the mean of the sample and re-
determine the mean without this galaxy;
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3. if the removed galaxy deviates from the new mean by more than â � , it is removed
from the sample;

4. repeat the procedure until the last tested galaxy remains in the sample.

Figure 4.9: Comparison of the virial mass estimate î4]V^ to the true cluster mass î � ì�� .
Both panels of this figure display the ratio î ]V^&_ î�� ì�� as a function of the true cluster
mass î�� ì�� . In the left panel, the velocity dispersions before â � clipping are used to
compute the virial-theorem based mass estimate, while in the right panel, the velocity
dispersions after â � clipping are used. In both panels, the open circles refer to Þ´ú á
clusters and the filled circles to Þ ú å clusters.

Figure 4.9 displays the correlation of the virial mass estimate with the true mass of
the corresponding 3-D cluster. The left and right panels show the ratio of the virial mass
with the 3-D cluster mass as a function of the 3-D mass before and after â � clipping,
respectively.

The first thing to notice is that the masses of clusters with richness class Þ ßOá are
less severely overestimated than masses of clusters with lower richness. This holds true
for the mass estimates before and after â � -clipping for both the mean and the median,
as can be seen in Table 4.3. The second thing readily seen in Fig. 4.9 and Table 4.3 is
the large dispersion of the underlying distribution. This dispersion is smaller for clus-
ters with higher richness class than for clusters with the lowest richness class Þ�úöá
considered. I also note that this dispersion is hardly affected by the â � -clipping proce-
dure. The only effect of the clipping procedure is to reduce the average of the estimated
cluster masses irrespective of the richness class. A third trend to be seen in Fig. 4.9 is
that the overestimation of the mass is generally more severe for 3-D clusters with lower
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Table 4.3: Comparison of statistical parameters for the ratio î ]`^&_ î�� ì�� andî�a _ î�� ì�� for different sub-samples of masses estimated via the velocity dispersion
and the 2 -statistics.

sample mean median standard deviation

complete optical sample before â � clipping 4.90 3.52 1.91

Abell cluster Þôú å before â � clipping 3.84 1.86 1.10

Abell cluster Þôú�á before â � clipping 5.44 3.73 2.67

complete optical sample after â � clipping 4.53 3.39 2.01

Abell cluster Þôú å after â � clipping 3.58 1.86 1.18

Abell cluster Þôú�á after â � clipping 5.01 3.67 2.80

complete lensing sample 1.27 1.05 0.34ÚÝÛOÜ 1.23 1.13 0.34ÜNÛjÚ}ÛÊõ 1.32 1.02 0.31

mass. For the most massive clusters in the sample ( î � ì���b ñ�æEá çLåXá�é5ê ëtìíéïî ð ), the
continuation of this trend in some cases leads to an underestimation of the masses, as
can be seen in the right-hand side of each panel in Fig. 4.9. The â � clipping procedure
fails to correct for the mass overestimates. When comparing Fig. 4.9 and Table 4.3 to
Fig. 15 of Cen (1997), one has to keep in mind the different selection procedure for
clusters or groups of galaxies in both studies, but on the whole the results are consis-
tent.

The behaviour described above can largely be attributed to the influence of projec-
tion effects on the velocity dispersion. Generally, the inclusion of field galaxies and
unvirialised sub-clumps broadens the distribution and leads to distributions which de-
viate significantly from Gaussian shape, as illustrated by the examples in Sec. 4.4. The
clipping procedure is successful when the amount of contamination along the line–of–
sight is low or moderate, but the algorithm fails to remove larger sub-clumps projected
onto the main cluster which can significantly broaden the distribution, sometimes even
making it bimodal. In some cases it is possible that the clipping procedure removes
galaxies belonging to the 3-D cluster, thus contributing to an underestimation of the
mass.

Even though I expect from the studies of Frenk et al. (1990) and van Haarlem et
al. (1997) that the high-velocity tail of the velocity distribution is severely overesti-
mated, the effect on the mass estimate is most pronounced for galaxy clusters with
lower mass. This is due to the fact that they are more easily overestimated with respect
to their true dispersion.

The 2 -statistics as compared to Abell’s criterion leads to smaller overestimates of
the 3-D cluster masses as shown in Fig. 4.10. Interpreting the quantitative results of the2 -statistics mass estimate, one has to keep in mind two competing effects: On the one
hand, the 2 -statistics, like every gravitational-lensing based method, measures all the
mass along the line–of–sight to the cluster; on the other hand, it gives a lower bound to
the cluster mass. In combination, these two competing effects lead to fairly moderate
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Figure 4.10: Comparison of the 2 -statistics mass estimate to the true cluster massî�� ì�� . Diamonds and circles refer to clusters identified with a Ú_Û Ü and Ú»Û_õ ,
respectively. Clusters detected at lower Ú are excluded because of their high contami-
nation.

mass overestimates, as can be seen in Table 4.3. This also explains the difference to
the lensing mass estimates given in the paper by Cen (1997). There, all masses along
the line–of–sight are added up under the assumption of a perfect lensing reconstruction
method with an otherwise calibrated mass-sheet degeneracy.

The other interesting feature in Fig. 4.10 and Table 4.3 is the low dispersion of the
underlying distribution. This dispersion does not depend sensitively on the Ú -value at
which the clusters are detected. (Clusters detected with Údcôõ where excluded here
because of their large contamination.) The dispersion is typically less than a third of
the dispersion in the Abell samples.

As for clusters detected with Abell’s criterion, masses of small 3-D clusters are
more strongly overestimated than for more massive 3-D clusters. This is due to the
fact that the proportion of contaminating matter to the 3-D cluster mass is higher for
less massive 3-D objects than for the extremely massive objects. For the intermediate-
mass objects, the fact that the 2 -statistics only gives lower bounds to the masses par-
tially outweighs this effect. There, the masses are even slightly underestimated.

Investigating the relationship between velocity-based mass estimates and the gravi-
tational lensing based 2 -statistics in Fig. 4.11, I see that the 2 -statistics gives on average
smaller estimates of the 3-D cluster masses than the virial theorem. Again I stress that
this is due to the fact that the 2 -statistics is derived under the assumption of an empty
outer annulus, restricting it to estimate lower bounds to the masses. The dispersion be-
tween the ratio of 2 -statistics mass to virial mass is large, which is mainly due to the
large underlying dispersion in the virial mass estimate.
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Figure 4.11: Comparison of the 2 -statistics mass estimate to the virial mass estimateî ]`^ . Only such clusters are included which are detected with both methods, Abell’s
criterion and Ú -statistics. Only clusters with ÚÊßÊõ are considered.
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Chapter 5

Cluster Deprojection

In the following I propose an algorithm for the deprojection of observed cluster images.
This algorithm is based on the Richardson-Lucy algorithm for the rectification of ob-
served distributions, and it combines multiple sets of observable data from clusters of
galaxies — weak lensing (lensing potential e ), X–ray (X–ray surface brightness Ú x),
and Sunyaev–Zel’dovich (temperature decrement ügf SZ) data — to obtain information
on the structure along the line–of–sight, namely the 3-dim. gravitational potential h .
The combination of multiple data sets allows one to exploit the different dependences
of the various observable distributions on the gravitational potential along the line–of–
sight (los).

For deriving my multiple–data Richardson-Lucy deprojection algorithm I first de-
scribe the mathematical background of the general Richardson-Lucy (hereafter RL) ap-
proach, then I specify a geometrical model for the cluster that is suitable for deriving a
RL-type deprojection equation for the gravitational potential h , and finally I show how
the three above–mentioned observable distributions can be incorporated into this de-
projection procedure. In addition, I discuss strategies for implementing the algorithm
into computer programs, study their respective numerical stability, and assess their per-
formance by applying them to synthetic cluster data from gas–dynamical simulations.
In the end, I give an outlook on the suitability of the algorithm for practical applications
to true observational data.

5.1 Richardson–Lucy Algorithm

The question of how to deproject observed cluster images is a prime example for so-
called inverse problems, which often arise in astronomy. Inverse problems in astro-
nomical research reflect the fact that it is in general not possible to directly measure the
quantities of interest due to the large distances between observers and studied objects.
Furthermore, the theoretical understanding of the relevant physical phenomena is of-
ten so limited or the problem is so complex, that it is not possible to derive appropriate
models from first principles.

Most inverse problems in astronomy can be cast into the form of a Fredholm inte-
gral equation of the first kind,e1�=�V� ú ikj �l2P�nmo�=�0p 2P� d 2 A (5.1)
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where
j �l2P� is the function of interest, e*�=�V� is the function accessible through obser-

vation, and the integral kernel mq�=�Fp 2P� reflects the measurement process. In general,
j

and e represent probability density functions, which implies that they and the kernelmo�=�0p 2P� obey the normalization and non-negativity constraints:i e*�=�r� d � ú å A and e*�=�r�±ÛÝá A (5.2a)isj �l2'� d 2 ú å A and
j �l2P�IÛÝá A (5.2b)i mo�=�Fp 2'� d 2 ú å A and mo�=�Fp 2'�IÛÝá A (5.2c)

where mo�=�0p 2P� d � is the probability – presumed to be known – that ��t will fall in the
interval �=� A � Q d �r� when it is known that 2 t úu2 .

The naive approach, to solve the integral equation (5.1) directly, in most cases leads
to very poor results. The reason for this is that the observed distribution e*�=�V� is not
exactly known, instead it is a measured quantity ve having sampling errors. Often the
estimates ve for e are not continuous and also violate the non–negativity constraint
(5.2a). For solving the integral equation directly, this is a very unfavourable condition
as the function e1�=�V� is generally smoother than

j �l2P� due to the folding with the kernelmo�=�0p 2P� . Thus, solving for
j �l2'� greatly magnifies the statistical fluctuations present inve*�=�r� , which is an observed quantity, thus being hampered by measurement errors.

Richardson (1972) and Lucy (1974, 1994) recognized that the problem is statis-
tical in nature and proposed an iterative inversion algorithm. Their algorithm can be
derived via Bayes’ theorem for conditional probabilities: Let wx�l2`p �V� d 2 be the (“in-
verse”) probability that 2�tFyz�l2 A 2 Q d 2P� when it is known that the measured quantity
is � ú{� t . The probability that � t y|�=� A � Q d �r� and 2 t y|�l2 A 2 Q d 2'� is then given bye*�=�r� d �Hç}wo�l2�p �r� d 2 . On the other hand for 2%t�y��l2 A 2 Q d 2'� and ��tFy��=� A � Q d �V� to
occur, the probability is

j �l2'� d 2�mo�=�0p 2P� d � . Equating these two expressions leads towx�l2`p �V�Ze1�=�V�«ú{mo�=�Fp 2'� j �l2'� A (5.3)

which can be solved for wo�l2�p �V� ,
wx�l2`p �V�hú j �l2'�nmo�=�Fp 2'�e*�=�V� ú j �l2P�nmo�=�0p 2P�~ j �l2P�nmq�=�Fp 2P� d 2 A (5.4)

where we have used Eq. (5.1) to substitute for e . Notice that Eq. (5.4) is simply Bayes’
theorem for conditional probabilities. Going back to Eq. (5.3), we can also integrate
over � , employ the normalization condition Eq. (5.2c) for the kernel mo�=�0p 2P� and finally
obtain j �l2'� ú i e1�=�V�Dwo�l2�p �V� d � A (5.5)

which formally resembles the inverse of the integral equation (5.1), if wx�l2`p �V� is iden-
tified with the reciprocal kernel.

Equation (5.5) may not be used to calculate the desired quantity
j �l2P� , since the

reciprocal kernel wo�l2�p �r� itself is a functional of
j

through Eq. (5.4). Since, however,
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the integral kernel mq�=�Fp 2P� is assumed to be known, Bayes’ theorem (5.4) and the iden-
tity (5.5) suggest an iterative solution of Eq. (5.1) for

j �l2P� : Starting with an intial guessj C for
j

, an estimate for wo�l2�p �r� is calculated via Eq. (5.4), and this is in turn combined
with the observed sample ve1�=�V� to obtain an improved estimate for the theoretical dis-
tribution

j �l2P� via Eq. (5.5).

The iterative algorithm thus consists of the following two steps:

eF�`�=�V� ú i j �V�l2'�nmo�=�Fp 2'� d 2 A (5.6a)j ��� é �l2P� ú j � �l2'� i ve1�=�V�eF�`�=�V� mo�=�Fp 2'� d � æ (5.6b)

The iteratively constructed functions
j � satisfy the constraints (5.2b): From Eq. (5.6b)

it follows that
j ����á if

j C ��á . The normalization constraint is fulfilled, as one can
proof by integrating Eq. (5.6b) with respect to 2 and using the normalizations of the
probabilities w � �l2`p �V� d 2 and ve � d � .

Ideally we would like an iterative algorithm to converge to the exact solution, and
from Eq. (5.6) it can be seen that the above scheme converges if e � �=�r� is sufficiently
close to ve1�=�r� for all points � , except for those in a set of zero measure. However, this
inherent convergence criterion is much to strong for practical purposes where ve9�=�V� may
be contaminated by non-negligible measurement errors. Looking again at the two cou-
pled equations (5.6a) and (5.6b), we see that deviations of ve _ e � from unity on a length
scale large compared to that of mo�=�0p 2P� are removed in essentially one iteration, whereas
deviations on a small length scale are mostly averaged out when folded with mq�=�Fp 2P� ,
and result only in small corrections to

j � . Thus the algorithm has the property of first
fitting the large–scale differences between the given initial guess and the true solution,
while it fits the small–scale fluctuations only in later iteration steps. Under the reason-
able assumption that the small scale fluctuations are more likely to be caused by statisti-
cal errors in ve , this behaviour of the RL algorithm is indeed highly desirable. It ensures
that the RL procedure very quickely results in an approximate solution in which most
of the significant information in the observed ve is already recovered. But one has to
keep in mind that there is no obvious convergence criterion for recovering the large–
scale fluctuations only; in general it is not easy to say when one starts to fit small–scale
statistical fluctuations. Thus, for the algorithm to work, one has to know and to control
the errors in the measured data very well.

It is possible to establish a relationship between the iterative algorithm introduced
above and a corresponding maximum–likelihood method. This was done by Lucy in
1974, of which I here only quote the main result. It can be shown that when the integrals
in Eq. (5.6) are approximated by sums, i.e.

j �=�V��� j'�
, and when only the fraction � of

the correction to
j � is actually applied, the scheme converges for �,� Å to a solution

of the corresponding maximum likelihood (ML) problem, provided that � is sufficiently
small. Lucy also demonstrated that the ML solution is, in general, unique, and that the
direct solution is identical to the corresponding ML-problem, if it does not violate the
constraint

j'� �Oá .
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Figure 5.1: Display of the relation between cluster coordinates �=� AT��A�� � and ob-
server’s coordinates �=� A � A ÿP� assuming axial symmetry.

5.2 Richardson-Lucy Algorithm: The Axisymmetric Case

Consider a cluster of galaxies covered by a system of cartesian coordinates �=� AT��A�� � .
We are interested in recovering the distribution of some physical quantity

j �=� AT��A�� � ,
which we assume to have axial symmetry with respect to the � -axis of the cluster co-
ordinate system:j �=� AT��A�� ��� j � 7 A�� � with

7 � ú[� � Q � � æ (5.7)

Furthermore, we assume that the projection of
j

is observed as some quantity e , where
the observer’s coordinate system �=� A � A ÿ'� is inclined by an angle � , and in which � ú��
and ÿ is the line–of–sight (see Fig.5.1 ). The transformation between cluster coordi-
nates �=� AT��A�� � and observer’s coordinates �=� A � A ÿP� is thus given by� ú � A (5.8a)� ú ���������=�n�F��ÿ������ �=�n� A (5.8b)� ú ���T�¡� �=�n� Q ÿ��������=�n� A (5.8c)

and the observed projection e is given as the los integral over
j

,e*�=� A �¢��ú i d ÿ j � 7 �=� A � A ÿP� A�� �=� A � A ÿP�D�oæ (5.9)

If we want to apply the RL-algorithm to recover
j

from e , we first have to bring
the fundamental los integral (5.9) into the form of Eq. (5.1),e*�=� A �¢�«ú i d

7 i
d � mo�=� A �rp 7 A�� � j � 7 A�� �oæ (5.10)
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where mo�=� A �rp 7 A�� � has to be normalized to unity. In order to derive the kernelmo�=� A �rp 7 A�� � we start with the following identity for
j

,j � 7 A�� � ú i¤£C d
7 t � i�£ì £ d � t j � 7 t A�� t �	¥'� 7 � � 7 t � �	¥P� � � � t � A (5.11)

which we insert into Eq. (5.9) and obtain

e*�=� A �¦�«ú i £ì £ d ÿ i £C d
7 t � ¥'U 7 � �=� A � A ÿP�0� 7 t � Yç i £ì £ d � t j � 7 t A�� t �	¥PU � �=� A � A ÿP��� � t Y æ (5.12)

Next, we simplify ¥P� � � � t§� by substituting the coordinate transformation (5.8c)
for � and applying a computational rule for ¥ -functions 1. Here we have¨ �fÿª©�� ú[�«�T���«� Q ÿ¬©������¦�&� � t®ú�á ¯ ÿ¬©Iú � t��}�«�T���«�������� A (5.13)

provided that �����¦�±°ú�á . Here and in the following we can restrict the discussion to the
inclination angles in the range of á²�³p ��p)c�´ _ ñ , leading to non-zero, positive values
for ������� . Together with

¨ t �fÿP��úµ������� and the corresponding substitution (5.7), (5.8)
for

7 �=� A � A ÿP� we arrive at

e*�=� A �¦�«ú i £C d
7 t � i £ì £ d � t i £ì £ d ÿ j � 7 t A�� t ������¦�ç!¥·¶�� � Q �=�«�����¦����ÿ������¦�	� � � 7 t ��¸ ¥q¹fÿ � � t �4���T�¡�«������¦� º æ (5.14)

Finally, integration of the second ¥ -function over ÿ yields

e*�=� A �¦�«ú{´ i¤£C d
7 t � iX£ì £ d � t j � 7 t A�� t �ç ¥&»=�¼�«�����¦�&�(� � t'�½�«�T���«�	�P¾T¿%�À�n� � �z� 7 t � �½� � �ZÁ´9������� A (5.15)

which is in the desired form of Eq. (5.10). We can identify the kernel

mo�=� A �rp 7 A�� � ú ¥PU§�4ÂG 5DÃ?Ä � � ¾T¿%�g�=�n�T� � ��� 7 � �½� � � Y´9�����¦� A (5.16)

and find that it is properly normalized:i¤£ì £ d � i¤£ì £ d ��mq�=� A �)p 7 A�� �«ú å�æ (5.17)

Having the explicit expression (5.16) for the kernel mo�=� A �)p 7 A�� � , we could now
start to apply the RL-scheme for recovering

j � 7 A�� � from an observed ve1�=� A �¦� by

1 Å?Æ¡Ç'Æ§È�ÉlÉ�Ê,Ë
s Ì	ÍÏÎÑÐ%Î s ÒÓ ÔDÕ ÍÏÎ s Ò Ó , where ÇªÖHÊ d

Ô ÍÏÎ Òd Î . The function Ç'Æ§È�É is a real, differentiable function withÇ'Æ§È
s
É�ÊØ× . The roots È s are real and simple.
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means of Eqs. (5.6 a,b). However, since the probability kernel mo�=� A �)p 7 A�� � contains a¥ -function, which is notoriously difficult to deal with in the context of discretized grid-
data, I have chosen to reformulate the main Eqs. (5.6 a,b) for this special axisymetric
case.

For the first integral of the iterative scheme the formulation (5.15) of the integral
using the probability kernel mo�=� A �)p 7 A�� � is not necessary. Instead, this integral can be
evaluated as a simple integral along the line–of–sight,e � �=� A �¦� ú i £ì £ d ÿ j � � 7 �=� A � A ÿP� A�� �=� A � A ÿP�D� A (5.18)

where the coordinate transformation (5.8c) is used to evaluate the integration along ÿ .
The integral (5.18) is analytically equivalent to the integral (5.15), but not numerically.
The approach using the probability kernel mo�=� A �)p 7 A�� � as in the integral (5.6a), which
was used in Binney et al. (1990), involves the ¥ –functions. For my purpose, I found
the approach given in (5.15) to be numerically extremely unstable, and therefore I em-
ployed the direct approach stated in (5.18).

The second step (5.6b) in the iterative RL-scheme reads in our casej �%� é � 7 A�� �j � � 7 A�� � ú i d � i d � ve*�=� A �¦�e � �=� A �¢� mo�=� A �)p 7 A�� �oæ (5.19)

For this second integral the evaluation of the probability kernel mo�=� A �)p 7 A�� � cannot
be avoided. However, it is possible to eliminate the ¥ -function by again applying the
same rule as before to ¥'� ¨ �=�¢�D� and by subsequently integrating over � .

For the quadratic equation¨ �=�¢�húÚÙ �������� � � ¾T¿%�;�ÜÛ � ��� 7 � �4� � � ú�á (5.20)

we find the two roots �HÝHú�������� Ù � ¾T¿%�;�VÞ�� 7 � �½� � � é \ � Û A (5.21)

which for a fixed pair of cluster coordinates � 7 A�� � describe an ellipse in the observer’s
sky. Since¨ t �=�¦� ú ñ������� Ù ������¦� � � ¾T¿%�ß� Û ¯ ¨ t �=� Ý � úuÞ ñ�����¢��à 7 � �½� � A (5.22)

we obtain after integration over �j ��� é � 7 A�� �j � � 7 A�� � ú åñ�´ i d � åá 7 � �½� � ¹ ve*�=� A � � �e � �=� A � � � Q ve1�=� A � ì �e � �=� A � ì �ªº æ (5.23)

The integration over � in Eq. (5.23) is limited to a finite range Uâ� 7 A Q 7 Y . Thus it
is convenient to introduce a new variable S via�F�=SD� ú 7 �����¦S ¯ �F�	�À´R� ú"� 7 and ���fáH��ú 7 æ (5.24)

Utilizing that

à 7 � �4� � ú 7 à åÀ������� � Shú�� 7 �T���«S for S«y�Uâ�À´ A á Y A (5.25)
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we arrive at our final result, namely a formulation for the second integral in the RL-
scheme without ¥ -functions:j �%� é � 7 A�� �j �`� 7 A�� � ú åñ�´�ã Ý i Cì¦ä d S ve1� 7 �����¦S A�� �����«�`Þ 7 �T�¡�«S'�������n�e1� 7 �����¦S A�� �����«�`Þ 7 �T�¡�«S'�������n� æ (5.26)

Please note that the integral (5.26) describes a full ellipse on the sky. The dif-
ference between Eq. (5.26) and the Appendix of Binney et al. (1990) is, that Eq.
(5.26) uses the full information of the ellipse, while Binney et al. (1990), use only
half of it. This formulation has the advantage that no assumptions on the data are
made, i.e. the latter are not assumed to be symmetrical along any of the projection axes.

5.3 Observables Sensitive to the LOS–Structure

As already stated in the introduction of this chapter, the overall goal is to combine mul-
tiple data sets within the Richardson–Lucy algorithm to deproject cluster images. For
observed distributions — denoted as e in the previous sections — I now discuss con-
crete observables, namely the weak lensing potential, the X–ray surface brightness and
the SZ temperature decrement. For employing the Richardson–Lucy algorithm, it is
important to connect the observables to the theoretical distribution

j
. I choose the grav-

itational potential h as theoretical distribution. In principle it is possible to choose the
density E as theoretical distribution, but the gravitational potential h possesses better
symmetry properties than the density E . Therefore substructure has less impact on the
potential than on the density better fullfilling the symmetry assumptions made deriving
the kernel mo�=� A �)p 7 A�� � .
5.3.1 Lensing Potential

Hereafter, e shall exclusively denote the lensing potential introduced in Chapter 2. In
Eq. (2.13) the dependence of the lensing potential on the 3-dim. gravitiational potentialh is given as the los integral e1�=� A �¦��å i�£ì £ h�� 7 A�� � d ÿ7æ (5.27)

With current observational techniques the lensing potential of clusters can be deter-
mined up to a radius of �ûå�æøÜ Mpc from the center.

5.3.2 X–ray Emissivity

When X–ray telescopes became available after 1966, it was discovered that clusters of
galaxies are powerful X–ray emitters. They have luminosities in the range of �zåXá�ê � �åXá�êTæ¬� erg s ìíé , making them the most luminous X–ray emitters in the sky. The source
of X-ray emission in clusters is extended rather than point–like, and the X–ray spectra
are best explained by thermal bremsstrahlung (free–free radiation) from the hot, dilute
plasma with temperatures in the range �zåXá�ç��ÊåXá%è?� K and densities of é åXá ì\ê �ÊåXá ì �
particles per cm � .
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For the present purpose it is sufficient to include continuum emission only. Semi-
classical derivations of free–free emission can be found in standard textbooks, e.g. in
Rybicki & Lightman (1979) and in Shu (1991). The emissivity at a frequency ê asso-
ciated with electrons accelerated by ions of charge � in a plasma with temperature f
is given byëíì ú ñ æ ´)îíïâªð!ñ�ò �!ó ñ�´âªð!ñ�ôFõ é \ � � � � ñ �rÄ6ö%÷ ÷¦� �ÀA f A ê��Üf ìíé \ �)ø�ù'ú ó � ë�êôPfoõ A (5.28)

where � Ä and �)ñ are the number densities of ions and electrons, respectively. The Gaunt
factor ö%÷ ÷¦� �ÀA f A ê�� corrects for quantum–mechanical effects and for the effect of distant
collisions. It is a slowly varying function of frequency and temperature, and can be set
to unity for nearly all frequencies and temperatures of practical interest. For a com-
pletely ionized gas mixture with a mass ratio of ò�ÜËã hydrogen and ñ|ÜËã helium, i.e. a
gas with a mean mass per particle ûð ú åXá ì � ê g, the thermal bremsstrahlung at positionü in the energy range ý a ��ý³��ý b isë

x � ü«þ ý a A ý b � úûÜ�æøÜ|â>ç1åXá ì � ê erg cm ì � s ìíéç ó ôPfkeV õ é \ � Ù �)ñ
cm ì � Û � ¹ ø�ù'ú ó � ý aôPf õ � ø�ù'ú ó � ý bôPf õ º A (5.29)

where the electron density �)ñ in this case is given by�)ñSúûá)æøÜ|ñ E gasûð æ (5.30)

The observable X–ray surface brightness received at the 2–dim. position ÿ is the line–
of–sight integral of the X–ray emissivity

ë
x,Ú x �Jÿ þ ý a A ý b � ú åõ�´��zå Q ÿP� � i ë

x � 7 A�� þ ý a A ý b � d � A (5.31)

where the factor �zå Q ÿP� � accounts for the redshifting of the photons and the ratio be-
tween luminosity distance and angular diameter distance.

Assuming a hydrostatic gas distribution, it is possible to relate the observed X–ray
surface brightness Ú x to the 3-dim. gravitational potential h by the Euler equation� m ú"�;E gas

� h�� 7 A�� � A (5.32)

where the gas pressure m obeys the ideal equation of statem ú�m C E gasE gas � C æ (5.33)

Therefore we obtain for a hydrostatic gas distribution a dependence on the potential h
of the form E gas � 7 A�� � ú�E gas � C ç ø�ù'ú ¶ � ûðôPf Ù h�� 7 A�� �F��h C Û ¸ æ (5.34)

Since the hydrostatic gas distribution is isothermal, the temperature f is independent
of position, and we thus arrive at the following relationship between observed X–ray
surface brightness Ú x �=� A �¦� and the 3-dim. gravitational potential h�� 7 A�� � :Ú x �=� A �¦��å i £ì £ ø�ù'ú ¶ � ñ�h t � 7 A�� � ¸ d ÿ7æ (5.35)
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5.3.3 Sunyaev–Zel’dovich Effect

The Compton scattering of thermal electrons in clusters of galaxies on the cosmic mi-
crowave background (CMB) radiation field, which is called the Sunyaev–Zel’dovich
effect (Sunyaev & Zel’dovich, 1970, 1972, 1980), is one of the most important astro-
physical processes in a low–energy environment, where only small energy transfers oc-
cur, with observable consequences. In essence, the Sunyaev–Zel’dovich (hereafter SZ)
effect is a perturbation of the spectrum of the cosmic microwave background as its pho-
tons pass through the hot gas of clusters of galaxies. One important property of the SZ-
effect is, that for a given line integral of pressure through the cluster gas, the effect does
not depend on redshift. The SZ–effect is a very important cosmological probe, which
can be used to study the evolution and structure of the Universe. In conjunction with
information at other wavelengths, particularly X–rays, it can be used to estimate the
Hubble constant (Silk & White 1978; Birkinshaw 1999).

The frequency shift leads to an apparent deficit in intensity at low frequencies of the
CMB spectrum, and an increase at higher frequencies. Here I assume that the temper-
ature decrement ügf SZ at certain frequencies can be measured. The temperature decre-
ment as a function of redshift, expressed in terms of the R–J brightness temperature
( f RJ ú���� � _ ñ%ô¦��� ), is given asügf SZ ú ó �î�� �Ýå¢õ � î � Ù �±���%¾
	 � ñ ��õ Û ��f CMB A (5.36)

where � is the Comptonization parameter

�Nú i ó ôPf ñð!ñTò � õ � ��� �)ñ�� d � A (5.37)

and �ûú ë�ê _ ôPf CMB. The first term of the componization parameter � describes the
effect on a single electron, while the second term gives the probability. As opposed to
the X–ray case which depends on � �ñ f é \ � , the SZ–effect depends on �)ñDf�å�E�f , which
is proportional to the pressure m , thus providing additional constraints on the cluster.
As in the X–ray case a hydrostatic gas distribution is assumed. The mixture of of ò�ÜËã
hydrogen and ñ|ÜËã again leads to an electron density � ñ ú�á)æøÜ|ñ�E gas _ ûð . Therefore the
temperature decrement depends on the gravitational potential in the following wayügf SZ �=� A �¦��å i £ì £ ø�ù�ú �	�±h t � 7 A�� �D� d ÿ7æ (5.38)

It is worthwile noting that for both, the X-ray surface brightness Ú x and the SZ–
temperature decrement ügf SZ, the dependance on the quantity of interest, the 3-dim.
gravitational potential h , is exponential, requiring great care in the numerical imple-
mentation.

5.3.4 Multiple–Data Richardson–Lucy Deprojection

Now I propose the multiple data Richardson–Lucy deprojection (MDRL) algorithm.
The combination of different data sets can be achieved in three separate steps. The first
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step of the algorithm is to compute the three los integralse � �=� A �¦� ú i¤£ì £ d ÿPh � � 7 �=� A � A ÿ'� A�� �=� A � A ÿ'�D� A (5.39a)Ú x � � �=� A �¦� ú i £ì £ d ÿ ø�ù�ú �	� ñ�h � � 7 �=� A � A ÿ'� A�� �=� A � A ÿ'�D�D� A (5.39b)ü f SZ � ���=� A �¦� ú i £ì £ d ÿ ø�ù�ú �	�±hR�V� 7 �=� A � A ÿ'� A�� �=� A � A ÿ'�D�D� A (5.39c)

resulting in iterated input data e � , Ú x, and ügf SZ. In the second step we define the three
integrals  � � 7 A�� � ú i ¨ � �=� A �¢�nmq�=� A �)p 7 A�� � d � d � A (5.40a)@ � � 7 A�� � ú i ö � �=� A �¦�nmo�=� A �rp 7 A�� � d � d � A (5.40b)W � � 7 A�� � ú i ë � �=� A �¦�nmo�=� A �)p 7 A�� � d � d � A (5.40c)

where
¨ � , ö � and ë � are defined as¨ ��ú vee � þ öª�Nú vÚ �Ú � � � þ ë¢�>ú vügf SZügf SZ � � æ (5.41)

Here ve , vÚ x, and vügf SZ denote the observed input distributions.
In the second step above the three integrals – for the lensing potential e the integral

(5.40a), for the X–ray surface brightness Ú x integral (5.40b), and for the SZ temperature
decrement ü f SZ the integral (5.40c) – correspond to the integral (5.6b) of Richardson–
Lucy’s iterative inversion algorithm, while the equations (5.39a) – (5.39c) correspond
to the integral (5.6a) of the inversion algorithm.

In order for the multiple–data Richardson–Lucy algorithm to work the results of
the integrations have to be combined after every iteration step as

h ��� é ú h ��¹��  � Q�� ó åÀ� åñ ��� @ � õ Q�� ó åÀ� ��� W � õ º æ (5.42)� , � , and � are weighting factors with � Q���Q�� úkå , which can be used to determine the
relative weight put on the respective input data. By means of these weighting factors,
it is possible to recover the case of having just one set of measured data.

As already mentioned in section (5.3) for the X–ray case and the SZ–case the de-
pendence on the gravitational potential h is exponential. Thus it is necessary for these
two cases to take the logarithm of the integrals (5.40b) and (5.40c) in order to recon-
struct the gravitational potential. The factor å _ ñ for the X–ray integral

@ � arises due
to the fact that the X–ray surface brightness depends on the electron density � �ñ and not�)ñ .

Equation (5.42) completes the multiple–data Richardson–Lucy deprojection algo-
rithm, thus constituting the third step. In terms of the iterative inversion algorithm of
section 5.1 this step corresponds to the evaluation of the full equation (5.6b).
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5.4 Implementation of the Multiple–Data Richardson–Lucy
Deprojection

The implementation of the program follows closely the formulation of the MDRL–
algorithm given in the last section. For the algorithm, two different types of integrals
need to be evaluated. After reading the observed data and assuming an initial guess for
the gravitational potential the iteration cycle is entered. The first step in the iteration
cycle is to integrate the gravitational potential h according to Eqs. (5.39a) – (5.39c), to
obtain the iterated e � , Ú x � � , and ügf SZ � � . Now the results of this first integration can be
used to compute the integrals (5.40a) – (5.40c) that constitute the second integration.
The last step of the iteration cycle is to compute the new estimate for the gravitational
potential h �%� é from Eq. (5.42). This new, improved estimate of the gravitational po-
tential is used to reenter the iteration cycle. The whole algorithm is stopped after a few
iterations; usually 7 – 8 iterations lead to satisfactory results for the potential.

Both, the input data e C , Ú x � C , ügf SZ � C and the gravitational potential h are repre-
sented as discretized data on a rectangular grid. The observed data is assumed to cover
a finite data field �=� min A � max ��ç4�=� min A � max � , and the reconstructed potential thus cov-
ers a corresponding field � 7 min A 7 max � ç�� � min A�� max � , in cluster coordinates � 7 A�� � .
For the necessary first and second integrations I found the most stable solution to be
a finite difference scheme (NAG, Mark 17, Routine D01GAF), where the integral be-
tween two successive points is calculated using a four–point formula centered on the
interval concerned. For the first and the last intervals four–point forward and backward
difference formulae, respectively, are used.

For the first integrals of the iterative scheme (5.39a) – (5.39c) I implemented a stan-
dard line–of–sight integral in the formulation of Eq. (5.18). As expected, preliminary
tests with the equivalent formulation (5.15) via the integral kernel mo�=� A �)p 7 A�� � as in
Binney et al. (1990), did not lead to satisfactory results.

I evaluate the line–of–sight integral by first rotating the discretized gravitational
potential before computing an integral along the ÿ –axis.

The second integration (5.40a) – (5.40c) yielding
 � ,

@ � , and W � is performed
on an ellipse as in formula (5.26), that was derived for the axisymetric case in Sec 5.2.
For easier reference we explicitly write down the corresponding integral for the lensing
case:  � � 7 A�� � ú åñ�´ ã Ý i Cì¦ä d S ve*� 7 �����¦S A�� �T� � �`Þ 7 �T� � S������¦�n�e*� 7 �����¦S A�� �T� � �`Þ 7 �T� � S������¦�n� æ (5.43)

From Eq. (5.43) we see that for each given point in the � 7 A�� � plane the fraction ve _ e
has to be integrated over an ellipse� �F�=SD��V�=ST��� ú � 7 �����¦S� �T� � � Þ 7 �����¦�H�T� � S�� S;y4U á A ñ�´ Y (5.44)

that is shifted along the � axis by � �T� � � and contracted in the � -direction by a factor of�����¦� . Due to the finite range of values for � and � we are faced with the problem that
some parts of the ellipse, and thus of our integration path, may not be covered by the
input data. This is most likely the case if both

7
and p � p take medium to large values.
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Even worse, if either
7

or � becomes very large, then the full ellipse will be outside
the input range for � and � .

Therefore one either has to exclude all ellipses with such large � 7 A�� � –coordinates
or one has to define appropriate “boundary” conditions, i.e. values for the ratio ve _ e � ,vÚ x _ Ú x � � and vügf SZ _ ügf SZ � � have to be specified for points �=� A �¢� outside of the data
field �=� min A � max � ç[�=� min A � max � . I tested in some detail the following three possible
choices:

1. Assume a smooth expansion of the values of the ratio observed / iterated data
sets, e.g. for �OÛ"� max and �8Û"� max

 � �=� A �¢� ú  � �=� max A � max � , @ � �=� A �¦� ú@ � �=� max A � max � , and W � �=� A �¢��ú�W � �=� max A � max � .
2. Assume a perfect reconstruction, i.e. the ratio observed / iterated data sets equals

unity:
 � �=� A �¦��ú @ � �=� A �¦��ú W � �=� A �¢��ú å for ��Ûd� max or �u�d� min and��Û¤� max or � �¤� min.

3. Assume rotational symmetry for the values of the ratios. This can be achieved by
computing the distance to the center of the data field and averaging over all values
for the corresponding circle which are inside the data field. However this method
is computationally relatively expensive, and the results obtained are poor.

Experimenting with these three different boundary conditions and various sizes of
the input field, I found that this boundary problem has no significant influence on the
quality of the reconstruction achieved for the central part of the potential. A typical
example of this problem is given in Fig. 5.2, where a lensing based reconstruction of
the gravitational potential from a gas–dynamical simulation (see next section) is shown
for the three different boundary conditions listed above. It is obvious from Fig. 5.2

Figure 5.2: Gravitational potential of a cluster from a gas–dynamical simulation recon-
structed from lensing data using different boundary conditions in the second integration
of the axisymmetric RL algorithm. The enumeration of the boundary conditions is as
in Sec. 5.4.

that the conditions No.2 and 3 introduce unphysical numerical artefacts for large values
of
7

that have nothing to do with the true potential. Furthermore, condition No.3 is
computationally relatively expensive. Thus I have decided to exclusively use boundary
condition number No.1 in the remainder of this chapter.

Taking the logarithm for the X–ray and the SZ–case in Eq. (5.42), which is due to
the exponential dependence in the two cases on the gravitational potential, is numeri-
cally a very unstable operation. Small deviations in computing the ratio vÚ x _ Ú x � � andvügf SZ _ ügf SZ � � are magnified by taking the logarithm, thus preventing convergence of
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the algorithm. In order to avoid this problem I employed a cut–off criterion for the ra-
tio. This is done at the expense of a slower convergence, but as the algorithm converges
very quickely and is computationally inexpensive this does not pose a serious problem.

5.5 Deprojection of Cluster Images from Gas–Dynamical
Simulations

Having put the Multiple–Data Richardson-Lucy algorithm together, the next important
step is to explore how this algorithm behaves, when it is applied to observed data. In
particular, we have to assess the key property of the MDRL algorithm, namely the qual-
ity of the reconstructed gravitational potential achievable for a given set of input data.
Therefore we have to apply the method first to input data for which we know the true
gravitational potential. For this purpose we use clusters from gas–dynamical simula-
tions kindly provided by Klaus Dolag, to construct observed images for the lensing po-
tential e , the X-ray surface brightness Ú x, and the SZ-temperature decrement ü f SZ,
reconstruct the gravitational potential h MDRL, and compare it to the true grav. potentialh calculated directly from the simulation data. The gas–dynamical simulations include
information on the dark–matter distribution, the gas distribution and the temperature of
the cluster. They were created using a GRAPE-MSPH code that combines the gravita-
tional interaction of the dark matter component with the hydrodynamics of a gaseous
component. In addition, the code includes the magnetohydrodynamic equations fol-
lowing the evolution of the magnetic fields. A detailed description of the program and
the simulations can be found in Dolag et al. (1999).

The cluster simulations were run using a COBE–normalized CDM power spectrum
with a Hubble parameter W C úûÜ�á km s ìíé Mpc ìíé , and � C = 1.0, ���Mú�á)æEá . The virial
mass of the cluster used is î �DCDC é�ñ�æ õ�ç�åXá�éÜæ$ëtìíé M ð , which resides in a volume
of roughly  .é³��Ü|ë ìíé Mpc � � . The simulations contain approximately ÜNç8åXá ê dark–
matter particles and also the same number of gas particles. The dark–matter particles
have a mass of ð dm é å�æøä�çûåXá�é·éoëtìíé M ð ú ñ�á�çXð gas. The masses of the DM
and gas particles provide an estimate for the resolution limit of the simulations. For
the purpose of mimicking “observed data sets” within current observational limits, the
above resolution is completely sufficient.

The gas and DM distributions of single clusters from the simulations are then used
to compute the true gravitational potential of the cluster, from which then the observed
lensing (Eq. (5.27)), X-ray (Eq. (5.35)), and SZ-data (Eq. (5.38)) are deduced, which
in turn serve as input for the MDRL algorithm. Figure 5.3 shows three typical input
sets created from the gas–dynamical cluster simulation of a single, very massive sample
cluster. From the left to the right the lensing potential e , the X-ray surface brightnessÚ X in the energy band 2 keV to 12 keV, and the temperature decrement ügf SZ at an
assumed frequency of 10 GHz are displayed.

Before turning to the multiple data RL-reconstruction of the potential h , we have to
investigate how well the algorithm works for each of the three different types of input
data separately. This means we first consider only the case where h is deprojected from
either lensing, X-ray, or SZ-data alone, and then compare the findings.

We start by looking at different initial guesses for the gravitational potential h C ,
which are used in the first iteration cycle. Ideally the algorithm should not depend on
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Figure 5.3: Input data sets created from the cluster simulation data. Left panel: lens-
ing potential e , contours at �	��õ A � â�æøÜ A � â A � ñ�æøÜ A � ñ���çjåXá�ì è . Middle panel: X-ray
surface brightness Ú x, contours at ��Ü�æ�ò�Ü A Ü�æø÷ A Ü�æø÷|Ü A Ü)æ/$ A Ü�æ $|ÜH�HçkåXá�ì�æ . Right panel:
SZ-temperature decrement ügf SZ, contours at �	� å�æ�ò�÷ A � å�æ�ò|ò A � å�æ�ò�ä A � å�æ�ò|Ü A � å�æ�ò¡õ'�7çåXá�ì � .
the choice of the initial guess, therefore two extreme cases for the initial guess are tested
and the results are shown in Fig. 5.4. On the left of Fig. 5.4 I use a NFW potential as
initial guess, which resembles the original profile rather closely, especially concerning
the curvature of the potential. On the right of Fig. 5.4 I use a plane as initial guess,
which makes only minimal assumptions about the potential. Fig. 5.4 shows the recon-
structed gravitational potential h after 8 iterations for lensing data only, but the results
for X–ray and Sunyaev–Zel’dovich data are very similar. Comparing the reconstructed
potentials in the lower panels obtained from these completely different initial guesses
we clearly see that both initial guesses lead to qualitatively very similar results. The
main difference is that the potential reconstructed with the NFW profile as initial guess
is steeper in the inner part as opposed to the potential obtained from the plane as initial
guess. This can be attributed to the fact that the smallest ellipses with � 7 A�� � coordi-
nates close to zero are not taken into account due to numerical reasons. This is due
to the fact that the finite difference formula requireses at least four points on the el-
lipse. This explains the differences in the inner part of the reconstructed potentials. In
addition, the potential reconstructed from the NFW profile shows less “artefacts” for
large � 7 A�� � –coordinates. Even though the “bump” for large � –coordinates and

7
–

coordinates is less pronounced for the potential reconstructed from the NFW profile
than for the one reconstructed from the plane, the behaviour for these large values of� 7 A�� � is introduced by the fact that the data field used for the integration is finite. As
large � 7 A�� � –coordinates constitute the boundaries these differences are not relevant
for assessing the quality of the reconstruction. For the reconstruction the behaviour in
the central å�æøÜ|ë ìíé Mpc of the cluster is much more important. In this sense the differ-
ences found for the two choices of initial guesses are negligible.

The evolution of the reconstructed gravitational potential h � with the number of
iteration steps � is exemplified in Fig. 5.5. Again, the discussion is confined to the
lensing case with an inclination angle of ��ú â�á"! , and 8 iteration steps. The poten-
tial obtained from the X–ray and SZ case evolves in a qualitatively similar way. The
initial guess in this case is a plane shown in the upper left panel, while the lower right
panel shows the original potential obtained directly from the simulated cluster. Fig.
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Figure 5.4: Comparison of two different initial guesses h C (upper panels) for the recon-
struction of the gravitational potential h . The lower two panels show the reconstructed
potential h MDRL from lensing data after 8 iterations for an inclination angle of �vúûâ�á"! .
5.5 demonstrates that the algorithm converges extremely fast, even for an initial guess
making only minimal a priori assumptions about the cluster potential. Already after
the second iteration the potential is in the correct order of magnitude and has acquired
the characteristic features of the true cluster potential. In addition, we notice that hR� is
hardly altered in the last two steps, indicating that the algorithm has converged in the
sense that most of the large–scale information is recovered. The two main differences
between the reconstructed potential from the last step, h è , and the true cluster potentialh is the presense of two “dents” in h è at (

7 ú åaëíìíé Mpc A�� ú Þ ñ|ëtìíé Mpc), and
several small “wiggles” at the flanks of the potential for

7 ú�á . I found that the size of
the “dents” can be correlated with the finite range of the “observed data”, hinting again
at the inherent problems with the finiteness of the boundaries as discussed in Sec. 5.4.
The “wiggles” reflecting the property of the algorithm to fit small scale fluctuations last,
are in this case probably caused by numerical discretization effects, and thus reflect an
unwanted property of the algorithm. This numerical noise can be suppressed by using
a smoothing procedure after every iteration step.



88 5. Cluster Deprojection

Figure 5.5: Display of the iterated gravitational potential h � after different iteration
steps � . The reconstruction is performed for the lensing potential e . The upper left
panel shows the initial guess h C , while the lower right panel displays the original cluster
potential h .
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In order to gain a better understanding on how the algorithm converges for the three
different types of input data, it is instructive to look at the integrals

 � (5.40a) to W �
(5.40c). For fixed � 7 A�� � these integrals determine the multiplicative factors that ad-
vance h � to h �%� é via Eq. (5.42), and, as already mentioned, good convergence requires
that these integrals approach unity. The values of

 � ,
@ � , and W·� after the last step of

Fig. 5.5 are plotted in Fig. 5.6. We see that the convergence after 8 iterations is al-

Figure 5.6: The integrals
 � (lensing; 5.40a),

@ � (X-ray; 5.40b), and W � (SZ; 5.40c)
from the second step of the reconstruction algorithm. The same cluster data as in
Fig. 5.5 was used ( �vúûâ�á"! ; 8 iterations).

ready excellent over the full range of � 7 A�� � values for all integrals. The X-ray and SZ
integrals

@ � and W·� both overestimate unity by the same amount and feature a sim-
ilar shape, reflecting the fact that they have a similar dependence on the potential h ,
whereas the lensing integral

 � deviates more strongly from unity to both larger and
smaller values, indicating a different convergence behaviour. The main difference is
the fact that the integral

 � for small values of
7

and large values of � is below unity
thus, lowering the potential in this range.

We finish the discussion of the reconstruction from single data sources by compar-
ing in Fig. 5.7 the true, original gravitational potential h to the results of the reconstruc-
tions using the lensing potential, the X–ray surface brightness and the SZ temperature
decrement alone as input data for the MDRL algorithm. By this the amount of infor-
mation on the 3-dim. structure can be determined that is already present in each of the
single data sets. Looking at the surface plots of Fig. 5.7 one sees that all three types
of input data give qualitatively very similar results. The lensing reconstruction is su-
perimposed by numerical noise, which is also present in the X–ray and SZ case, albeit
much less pronounced.

A more detailed comparison of the three reconstructed and the reference potential
is possible if surface cuts such as in Fig. 5.8 are studied. For the cuts through the central
part of the cluster we generally see a good agreement of the three reconstructions with
the original potential. The agreement becomes worse for larger radial coordinates as
displayed in the right panel of Fig. 5.8 for the cut through h�� 7 ú å _ ñ 7 max A�� � . We also
notice that the difference between the X–ray and the SZ case is negligible, reflecting
their very similar dependence on the gravitational potential.

Compared with the lensing potential e both, the X–ray and the SZ data give a very
good reconstruction of the inner parts of the potential (

7 A p � p��Oá)æøÜ|ë ìíé Mpc) which is
especially true for the cut along the � –axis, where the match is nearly perfect. Apart
from the fact that the numerical noise in the lensing potential is more pronouced, we
also see that the potential is shifted slightly with respect to the original potential and the
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Figure 5.7: Comparison of the true, original gravitational potential h (upper left panel)
to reconstructions obtained by the lensing potential e alone (upper right panel), by
the X-ray surface brightness Ú x alone (lower left panel), and by the SZ temperature
decrement ü f SZ (lower left panel) alone. The potential is shown in cluster coordinates� 7 A�� � .
reconstructions obtained from X-ray and SZ data. This shift does not pose a problem
as it is possible to align the potential with the other two reconstructions by adding a
constant value. More important, in contrast to the X-ray and SZ-case the curvature and
the overall shape of the lensing reconstruction is closer to the true potential even for
larger radial coordinates

7 é åaë ìíé Mpc.

Finally, we are in a position to combine all input data sets for a true multiple–data
reconstruction, thus allowing a better reconstruction of the gravitational potential h .
For the present example I chose to combine all three data sets with a weight factor ofå _ â . The results of the reconstruction are shown in Fig. 5.9. In the upper panel we com-
pare two cuts of the result of the reconstruction obtained after 8 iterations with the orig-
inal potential and the reconstructions computed for the single data sets, respectively.
Especially for the cut h�� 7 A�� ú áH� we do see an improvement over the use of just
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Figure 5.8: Comparison of three different cuts through the true, original gravitational
potential h and the three single-data reconstructions displayed in Fig. 5.7.

one single data set: The combined reconstruction is more reliable even for values of7 ßqåaëíìíé Mpc. This is a clear improvement over the reconstructions obtained from
X–ray and SZ data alone. The shift in the potential present for the reconstruction from
lensing data is not present for the reconstruction from the combined data sets. The full
surface plots of the original potential and the combined reconstruction demonstrates
that the multiple data set reconstruction is able to recover all important features.

At this point it is worthwile to assess the quality of the reconstruction in a quantita-
tive way. For this purpose it is instructive to look at the relative errors between the orig-
inal gravitational potential h orig and the reconstructed one h rec, which is computed asp h orig �!h rec p _ p h orig p . The result for the inner part of the potential, i.e.

7 y��fá A å�æEáH�zë ìíé
Mpc and � y"�	� å�æEá A å�æEáH�zëíìíé Mpc, is displayed in Fig. 5.10. In the different panels
of this figure the relative errors between the original and the reconstructed potential for
lensing data (upper left panel), X–ray data (upper right panel), and Sunyaev–Zel’dovich
data (lower left panel) are shown; in addition, the result for the combination of all three
data types is given in the lower right panel.

For all four reconstructions we see that the deviation over large parts of the potential
is less than ÜËã . When looking at the lensing reconstruction in more detail, we note that
in this case the zone with an error margin of less than ÜËã is relatively wide, especially in
the � –direction. As already noted before, both, the X–ray and the Sunyaev–Zel’dovich
reconstruction, show very similar features, which is also reflected in Fig. 5.10. Both
cases give excellent reconstructions in the center with coordinate values � 7 A�� � of less
than á)æøÜ|ëíìíé Mpc, but the quality of the reconstruction in the outer parts is not as good as
in the lensing case. This confirms the theoretical expectation, that the data from X-ray
and SZ measurements, which have their main contributions coming from the cluster
core, are less affected by projection effects, nicely complementing the weak lensing
data, which is only sensitive to the gravitating matter.

When looking at the results of the combined reconstruction an improvement over
the single data reconstructions is obvious. Here the region with error margins of less
than ÜËã is the largest.

Depending on the quality of the data at hand and a priori knowledge of the possibly
different levels of noise present in the data, it is possible to adjust the weighting of the
different data sets. This is also useful when one is interested in a limited region of the
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Figure 5.9: Result of the reconstruction obtained by combining all data sets shown
in Fig. 5.7, each with a weighting of å _ â . The upper panel shows two different cuts
through the resulting potential comparing the original potential with the results ob-
tained for the combined data set and the results for the single data sets from Fig 5.8.
The lower panel compares the original potential to the potential reconstructed with the
combined data sets as surface plot.

cluster which might be represented more accurately by a certain observable, like e.g.
the cluster center which significantly contributes to the X–ray and SZ data. In sum-
mary, the combination of data sets can be expected to give improved results, with the
astronomer being able to control the reconstruction process by means of the weight fac-
tors.

5.6 #%$ –based Determination of Inclination Angle &
Clearly in addition to a quantitative assessment of the quality of the reconstruction a
systematic procedure for determining the input parameters for the MDRL algorithm is
highly desirable.
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Figure 5.10: The relative error between the original gravitational potential h�� 7 A�� � and
the reconstructed potential computed as p h orig �(h rec p _ p h orig p . The central part of the
potential is displayed:

7 y �fá A å�æEáH�zë ìíé Mpc and � y��	� å�æEá A å�æEáH�zë ìíé Mpc. The re-
constructions shown are run with the same parameters as in Fig. 5.8. Upper right panel:
lensing data only. Upper left panel: X–ray data only. Lower left panel: Sunyaev–
Zel’dovich data only. Lower right panel: Combination of all three data types. Contours
mark deviations of �fá)æEáËÜ A á)æ å A á)æ åaÜ A á7æøñH� .

As explained in Sec. 5.2 the MDRL-algorithm in its current formulation needs to
be provided with the inclination angle � as input parameter and a choice for the weight
factors � , � and � for the three different contributions has to be made. Once all these
parameters have been specified, the MDRL algorithmus yields a reconstructed estimateh rec for the potential, which in turn determines the best estimates e , Ú x, and ügf SZ for
the observed input distributions ve (lensing potential), vÚ x (X-ray surface brightness),
and ü vf SZ (Sunyaev-Zel’dovich temperature decrement).
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The idea is now to minimize an appropriate + � function, e.g.

+ � ú-,/.ã Ä�0 é � veX�½e*� É1 Ä �D� �� �
GL

Q � vÚ X �1Ú X � É1 Ä �D� �� �
X

Q ��ü vf SZ �1ügf SZ � É1 Ä �D� �� �
SZ

A (5.45)

to obtain the best parameters within the framework of the model assumptions underly-
ing the presented MDRL algorithm. Here 243 would the number of grid points, with the� -th grid point given by a vector É1 Ä in the ��� -plane onto which the observables are pro-
jected. The desired quantitative assessment of the qualitity of the reconstruction could
then be given in terms of a subsequent goodness-of-fit (GoF) evaluation, which would
tell us how likely the reconstruction within this model is for the best set of parameters
found before.

This idea is illustrated in the following using the cluster example from Sec. 5.5. We
recall that the true 3-dimensional gravitational cluster potential h�� 7 A�� � is observed un-
der an angle of �vú�â�á ! , and assume that we do not know the proper angle � in advance.
For setting up the + � statistics we compute a series of single data and multiple data re-
constructions with various values for the angles � and the weight factors. We then use
Eq. (5.45) to evaluate the corresponding + � function, and obtain a + � value for every
set of input parameters.

The minimum over all the + � values then indicates the best choice for the inclina-
tion angle � and the weight factors. According to our qualitative analysis from Sec. 5.5
we would expect that the inclination angle � indeed should be very close to the true
value.

Work on the quantitative estimation of the inclination angle and the weight factors� , � and � using the approach sketched above is currently in progress.
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Chapter 6

Conclusions and Outlook

The main objective of this thesis was the investigation of projection effects in clusters of
galaxies, which influence the amount of cosmological information that can be extracted
with weak-lensing methods. In this context I first studied how the statistics of cosmic
shear measurements can be utilized to find dark matter haloes from their shear prop-
erties, before turning to the question of the significance of projection effects for clus-
ter catalogues selected through the coherent image distortion patterns imposed on faint
galaxies in their background. For both purposes the new weak-lensing-based estima-
tor î ap, recently introduced by Schneider (1996), was used to gain information about
clusters of galaxies and the LSS into which clusters of galaxies are embedded. A ques-
tion closely related to projection effects is the reconstruction of the true, 3-dimensional
shape of individual clusters. This can be achieved by a deprojection of the observable,
2-dimensional cluster images through combining lensing-based data with additional in-
formation from X–rays and the Sunyaev–Zel’dovich effect. In the following I discuss
the results obtained within the present thesis before providing an outlook for future the-
oretical as well as observational work.

6.1 Discussion of Results

With the goal of investigating the LSS and its evolution in mind, I used ray-tracing
simulations through 2 -body-generated cosmic density distributions to study the sta-
tistical properties of the aperture mass î��	� as a statistics for cosmic shear measure-
ments and for finding dark matter haloes from their shear properties. In particular, I
compared results from these simulations with the available analytic results and found
in most cases a very good agreement, except for the skewness which is the least accurate
of these predictions. Whereas all other predictions tested here are based on manifestly
non-linear results (like the Press-Schechter halo abundance and the Peacock & Dodds
(1996) power spectrum), the skewness was estimated analytically by using second-
order Eulerian perturbation theory which, on the scales considered, is not very accu-
rate.

Comparing the results from the ray tracing simulations with analytic studies, I ob-
tain the following main results:

1. The rms of î��	� is accurately described by analytic results if the fully non-linear
prescription of the power spectrum of density fluctuations is used.
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2. The statistical error of this rms is dominated by cosmic variance, which in turn
depends on the kurtosis of î��	� . This kurtosis turns out to be unexpectedly large
even on angular scales of 5 åXá t , implying the need for many more measurements
of î��	� than expected for a Gaussian field, for a given accuracy of the estimated
projected power spectrum.

3. The skewness is only approximately described by analytic considerations based
on second-order perturbation theory.

4. The predicted abundance of dark matter haloes detectable at given statistical sig-
nificance is very well approximated by the semi-analytic theory which combines
the Press-Schechter number density of haloes with the universal density profile
of Navarro, Frenk & White.

5. Similarly, the functional form of the probability distribution of î��	� for values
much higher than the rms (i.e., in the non-Gaussian tail) is found to closely fol-
low an exponential form, of similar slope and amplitude as predicted by analytic
theory which needs to assume that such high values originate due to collapsed
haloes.

Thus, on the whole, I find that the analytical estimates for the statistical properties
of î �	� are surprisingly accurate, but also that our simulations are not sufficiently large
for an accurate estimate of the higher-order statistical measures, owing to the finite size
of the simulation box in combination with the large effect of cosmic variance.

As discussed in SvWJK, KS1, KS2, van Waerbeke et al. (1999) and Bartelmann &
Schneider (1999), the aperture mass is a useful cosmic shear measure which will even-
tually allow one to constrain cosmological parameters, completely independent of any
assumption on the relation between mass and light. For this purpose, the predictions
from cosmology must be known precisely, and my results here indicate that analytic
estimates are relatively accurate. Unfortunately, I found a large cosmic variance; e.g.,
in the estimate of the variance of the rms value of î��	� , the kurtosis enters and it de-
creases only rather slowly with increasing filter scale.

Having established that the second-order aperture-mass statistics î��	� is particu-
larly suitable for investigating cosmic shear and that it is suitable for detecting dark
matter haloes, which in this context are defined operationally as something visible as a
suffieciently high peak in an Ú –map, it is also important to look at clusters of galaxies as
actual 3–dimensional objects. In the next part of my thesis I therefore investigated, us-
ing simulated cluster data, for the first time whether mass-selected galaxy cluster sam-
ples constructed with the aperture mass measure î ap are more reliable than samples
constructed via Abell’s criterion. As mentioned in the introduction, image distortions
trace the gravitational tidal field of a lens rather than its mass, and it is in that sense that
I speak of “mass-selected” cluster samples. I also compared the performance of clus-
ter mass estimators based on cluster-galaxy kinematics and gravitational lensing. The
results can be summarised as follows.

As already found in previous studies, Abell clusters are severely affected by pro-
jection effects. This not only concerns the selection of Abell clusters, but also mass
estimates based on galaxy kinematics and the virial theorem, indicating that the veloc-
ity dispersion is also hampered by projection effects. A second reason for the failure is
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the fact that the assumption of dynamical equilibrium is not justified in at least some of
the clusters. The projection effects are worse for clusters and groups of lower richness
class.

Clusters detected with a high significance Ú of î��	� are less affected by projec-
tion effects than typical Abell-selected clusters. Like Abell cluster samples, the mass-
selected cluster samples are generally incomplete: Samples of clusters detected above
a certain Ú threshold typically do not encompass all three-dimensional clusters present
in the simulation; some clusters have lower Ú . However, the completeness of the sam-
ples can be increased by lowering the Ú threshold. I therefore investigated the effect of
varying the Ú threshold on the samples. Completeness of é åXá|áAã can be achieved for
massive three-dimensional cluster samples ( î 6ýåXá�é5ê ëíìíéïî8ð ) by varying Ú76àõ .
Then, the samples also contain a substantial fraction of spurious detections, most of
which correspond to real clusters with smaller masses. Generally, there is a trade-off
between completeness and the contamination by spurious detections. More complete
cluster samples are more heavily contaminated by spurious clusters, and the balance
can be adapted choosing the Ú threshold. It should be noted that the exact thresholds
on Ú depend somewhat on the choice of the weight function entering the definition ofÚ (cf. the discussion in Chapter 3).

While qualitatively the same trend is also observed in Abell-selected cluster sam-
ples, the Ú -statistics generally performs significantly better than Abell’s criterion:
Higher completeness can typically be achieved with a lower fraction of spurious detec-
tions. For instance, cluster samples detected at Ú�Û�õ contain all of the most massive
clusters in the simulation and 65% spurious detections, while Abell samples with rich-
ness Þ Ûôá encompass only about two-thirds of the most massive clusters and 82%
spurious detections.

Lensing-based mass estimates are significantly more accurate than mass estimates
based on cluster-galaxy kinematics and the virial theorem. Virial masses are typically
biased high because line–of–sight velocity distributions are broadened by projection ef-
fects. Lensing also adds up mass in front of and behind the clusters, but the bias is less
severe. The standard deviation from the true (three-dimensional) mass of the lensing
mass estimate is smaller by a factor of three or more than that of the virial mass esti-
mates. It should, however, be noticed that the accuracy of lensing-based mass estimates
depends on the depth of the background-galaxy sample and other observational effects.
While the mass estimates based on the 2 statistics are accurate to within éûâ�áAã in the
simulations, they may well be less accurate under realistic observational conditions.

The study underestimates projection effects because of the limited size of the sim-
ulation volume. This affects both the optical and the lensing-based cluster selection.
Yet it appears that selection of clusters by mass yields more reliable cluster samples
than optical cluster selection, and, more importantly, the quality of the samples can be
controlled by an objective criterion, namely the signal-to-noise threshold imposed. The
study has shown that selection of clusters by means of gravitational lensing techniques
can be adapted such that the resulting samples are superior to Abell-selected samples
in terms of completeness, spurious detections, and the quality of mass estimates.

After studying the selection of clusters of galaxies and the related projection effects,
it was an interesting question whether it is possible to obtain an improved reconstruc-
tion of the structure of individual clusters along the line–of–sight by combining obser-
vational data from different sources. In this thesis I was able to device an algorithm
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based on the Richardson–Lucy deconvolution algorithm that uses lensing, X–ray and
Sunyaev–Zel’dovich data to gain information about the 3-dim. structure of a cluster of
galaxies. My first implementation of this multiple–data Richardson–Lucy MDRL al-
gorithm was applied to synthetic clusters generated in gas–dynamical simulations, and
I found it to work stably and efficiently:

Starting from earlier work of Binney et al. (1990) on deprojection of elliptical
galaxies from photometric data, an integral kernel for an axisymmetric cluster model
was derived and integral expressions for the � -th projected distribution e � �=� A �¢� and
the � -th iterative estimate

j � � 7 A�� � to the true potential
j � 7 A�� � were obtained, that

are suitable for numerical evaluation. In particular, I found that the simple line–of–
sight integral for e � is easier to evaluate and numerically more stable as the expression
given in Binney et al. (1990), and thus is to be preferred.

It was shown that the three observables of interest, the lensing potential e , the X-
ray luminosity Ú x, and the Sunyeav–Zel’dovich temperature decrement ügf SZ can all be
written as functionals of the gravitational potential

j � 7 A�� � assumnig hydrostatic equi-
librium and an isothermal gas distribution. The lensing potential e by itself is given di-
rectly as a simple line–of–sight integral over

j � 7 A�� � , whereas Ú x and ügf SZ both have
an exponential dependence on

j � 7 A�� � mediated through the electron density within an
isothermal hydrostatic intracluster gas model. Ú x is here assumed to result in contin-
uum bremsstrahlung of the gas distribution, and ü f SZ is due to Compton scattering of
CMB photons passing through the hot cluster gas.

In the practical implementation of the MDRL algorithm into a computer program
a few important observations were made. The evaluation of the � -th iterative estimatej �`� 7 A�� � requires integrations over ellipses on the projection plane, where the size and
the relative location of the ellipse is determined by the current pair of � 7 A�� � values. In
the X-ray and SZ case the logarithmic dependence on the projected quantities requires
the use of cut-off criteria to minimize the magnification of small deviations between
observed and reconstructed projected data.

A first application of the MDRL method to a cluster from gas–dynamical simula-
tions showed that the approach already works well for single data reconstructions frome , Ú x, or ügf SZ. The algorithm is very insensitive to the initial guess provided for

j
;

qualitatively no significant difference in the reconstructed potentials obtained from a
very simple constant value function or the realistic NFW model potential chosen as ini-
tial guesses were found. As expected theoretically, the X-ray and SZ reconstructions,
which have their main contributions coming from the cluster core and are less affected
by projection effects, give a better description of the core region, whereas the lensing
potential that is only sensitive to the dark matter distribution, but more prone to projec-
tion effects, better reproduces the overall shape of the potential. Finally, I found that a
combination of all three data sets within a multiple data reconstruction improves upon
the single data results: the inner region is described as well as in the X-ray and SZ case,
the shift in the lensing reconstruction in this region is completely suppressed, and the
description for larger � 7 A�� � radii lacking in the X-ray and SZ-case is compensated for
by the lensing data.

I believe that this multiple data Richardson–Lucy reconstruction method will be a
valuable and widely applicable tool.
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6.2 Future Prospects

The prospects and challenges can be divided into further studies of constructing and
defining dark matter halo samples on the one side, and additional work on the deprojec-
tion of individual clusters on the other side. While for the retrieval of the cluster mass
function from lensing a lot of theoretical work is needed, the deprojection of cluster
images is in a stage where it can, and should be applied to observational data.

My study of weak-lensing-based mass estimates and the semi-analytic approxima-
tions given by Kruse & Schneider (1999a,b) raise the question whether a cluster mass
function can be obtained from weak lensing which is based on no selection criteria other
than the lensing signal itself. Knowledge of the cluster mass function and its evolu-
tion provides a wealth of cosmological information. Especially, since lensing is most
sensitive to clusters at moderately high redshift ( ÿgéûá)æ õ ��á)æøä ), a lensing-based clus-
ter mass function would nicely complement information on the mass function obtained
from X-ray selected cluster samples. What is more, lensing-based mass estimates do
not rely on any assumptions on the composition and physical state of the cluster mat-
ter, in contrast to X-ray mass estimates. In addition, lensing-based cluster detections
only require sufficiently deep imaging of wide fields in optical or near-infrared wave
bands, and detection algorithms can then be applied in a straightforward manner. It can
therefore be expected that reliable, mass-selected cluster samples at moderate to high
redshifts can be constructed in the near future from upcoming deep, wide-field surveys
with a straightforward, well-controlled algorithm, and that the accuracy of cluster mass
estimates will generally be substantially improved.

However, before weak-lensing-detected clusters can be used for this type of analy-
sis, extensive numerical studies need to be performed because weak lensing provides
information about the projected masses from a very broad redshift range, rendering the
inference of the mass of an object a very delicate undertaking. It is therefore extremely
important to investigate and model the properties of noise arising in weak lensing. First
steps into this direction were made by Jain & van Waerbeke (1999), who included an
analytic model for the noise from the intrinsic ellipticities of the background sources.
A lot of work remains to be done here; e.g. the redshift distribution of the sources needs
to be taken into account, and it will be of great interest to investigate the influence of
the clustering of the background sources.

It can be expected that the first successful application of the aperture mass will be
the definition of a sample of haloes defined in terms of their lensing properties only, with
a first example given by Erben et al. (1999). The combination of cosmic shear infor-
mation and CMB measurements can be extremely useful, as shown by Hu & Tegmark
(1999), increasing the precision of the determination of cosmological parameters sub-
stantially over each of the two individual methods. Their study was based solely on
the dispersion of cosmic shear, i.e., on second-order statistics. It is to be expected that
a similar combination of CMB results with the PDF of î��	� will yield even more pre-
cise parameter estimates. A detailed study of this combination is expected to be very
valuable, but requires a larger grid of cosmological N-body simulations.

A further interesting project is an extension of the investigation of cosmic shear to
larger angular scales. Based on the finding that even for the small field sizes I investi-
gated so far the tail of î��	� contains information on already collapsed haloes, it will be
rewarding to apply maximum-likelihood methods to larger fields, which should allow
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one to discriminate between different cosmological models.
Finally, a streamlined and extended implementation of the multiple data

Richardson–Lucy cluster reconstruction algorithm is planned, in which the expe-
riences gained in the present work will be incorporated, and which will allow the
treatment of true observational data. This revised algorithm will utilise more realistic
assumptions about the cluster itself, which becomes possible with the new generation
of X-ray telescopes with their higher resolution and more accurate information on the
temperature gradient in the intracluster plasma. Furthermore, I plan to add maximum-
entropy regularisation to the algorithm, which has the advantage of providing a
well-defined convergence criterion.

But first and foremost, the cluster deprojection algorithm shall be applied to ob-
served data sets, thus helping to shed light on such important issues as determinations
of cluster mass and baryon fractions, the structure of cluster-galaxy orbits, and the cos-
mological interpretation of galaxy clusters.

Relevant data will soon become available in substantial quantities. For example,
a group around J.P. Kneib (OMP, F) plans to undertake a detailed optical survey of X-
ray selected clusters in order to study their mass distribution. This group also proposed
to complement the X-ray data with deep multi-colour imaging which allows for weak-
lensing analyses of the clusters. The cluster deprojection algorithm will be very well
suited for constraining the three-dimensional distribution of the clusters from combined
lensing and X-ray data. In addition, the target runs from Chandra will observe some
clusters for which weak-lensing analyses already exist, which can then be used in con-
junction with the Chandra observations. Dedicated surveys will also produce ample
Sunyaev-Zel’dovich data sets in the near future. It is now the time to finally combine
all available sorts of cluster data to consistently reconstruct the three-dimensional grav-
itational potential underlying all of them.

In that respect, it is also of great interest to compare the cluster deprojection with
that proposed by Zaroubi et al. (1998), which is based on the Fourier slice theorem, to
assess the strengths and weaknesses of both algorithms and to optimise them.
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Appendix A

Structure of Further
Representative Clusters

Here I give a few more examples of line-of-sight structures of Ú -selected galaxy clus-
ters here.

A.1 8 -Statistics: 8:9<;
A second example for a cluster with high Ú is given in Fig. A.1. The cluster is detected
at Ú�ú{$�æøä . The particle distribution in real space is broad and dominated by a massive
3-D cluster with a mass of ñ�æ å�çjåXá�é5ê�ëtìíéïî[ð . This cluster is detected as an Abell
cluster in projection, but the main 3-D cluster by itself already passes the luminosity
threshold of a 3-D Abell cluster. In contrast to the first example, the velocity dispersion
is hardly affected by projection. The 3-D cluster has a velocity dispersion of � � ì�� ú÷|÷£õ0����� ìíé , while the dispersion of the projected cluster is ��� ì�� úkò|ò�$������ ìíé . The
higher-order moments indicate a velocity distribution close to Gaussian shape for both
the 3-D cluster ( �)� ì�� ú_á)æEá7å , �1� ì�� ú ��á)æEá�õ ) and the projected cluster ( � � ì�� úá)æEá�$ , � � ì�� ú���á)æøâËò ). All this reveals a fairly relaxed cluster with low contamination.

Almost all other clusters in this class show similar position and velocity histograms.
The only exceptions are the 2-D clusters corresponding to less massive 3-D clusters.
For one of these clusters with relatively high Ú�ú�òsæ/$ , the structure is given in Fig. A.2.
Even though the position histogram is dominated by a 3-D cluster, the distribution for
this cluster is broad, and there is a large amount of intervening matter with at least four
smaller clumps with masses of order î ú åXá é � ë ìíé î[ð . Qualitatively, the los ve-
locity histogram looks artificially broadened by these clumps, and in fact the veloc-
ity dispersion ( � � ì�� úqä|Ü)åV�'�(��ìíé ) is significantly increased in projection ( � � ì�� ú÷|ä�áF����� ìíé ). The higher-order moments are also strongly affected by this interven-
ing matter ( �)� ì�� ú � á)æEáËÜ and �1� ì�� ú ��á)æøä£õ compared to � � ì�� ú å�æ åí$ and� � ì�� ú�á)æø÷Ëò ). This cluster is detected as Þöúkå Abell cluster although it corresponds
only to a Þôú�á cluster in 3-D.
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Figure A.1: Structure of a massive 3-D cluster detected with Ú�ú{$�æøä . See the caption
of Fig. 4.6 for a description of the panels.

A.2 8 -Statistics: ;>=?8@9BA
Figure A.3 shows a cluster with Ú�ú�õ7æ�ò . It is apparently only mildly contaminated by
a clump â�á ëíìíé Mpc from the main clump, which is a high-mass object with î�� ì�� úñ�æøâ ç}åXá�é5ê ëtìíéî ð . The projected velocity dispersion is almost unaffected ( � � ì�� úä|Ü�áF����� ìíé compared to � � ì�� úûä|â|Ü������ ìíé ), and shows a bimodal feature, which is
also reflected by the curtosis of the projected cluster, � � ì�� ú�á)æøÜ)å , while the velocity
distribution of the 3-D cluster has a negative curtosis of �1� ì�� ú ��á)æøñ|ñ . Similarly, the
skewness changes from � � ì�� ú ��á)æ õ|õ to �)� ì�� ú���á)æEáËâ . The cluster is detected as a
2-D Abell cluster with richness class Þöú å , while the richness class of the 3-D cluster
is Þ ú�á . Therefore, the richness class is inflated due to projection. Even though this
cluster shows some projection effects, the corresponding 3-D cluster is massive and
therefore clusters like that should be included in a mass-limited sample.

The last example for this class is shown in Fig. A.4. Here, the Ú -map has a peak
with Ú ú õ7æ õ . The position histogram shows a very broad peak with a secondary
maximum on top of the main peak. The corresponding 3-D cluster has a high mass,î � ì�� ú â�æ õÊçþåXá�é5ê�ëtìíéïî ð . The projected velocity distribution is only moder-
ately skewed with � � ì�� úká)æøñ|ñ compared to the skewness of the main cluster alone,�)� ì�� ú á)æ å$ò . However, the curtosis of the projected peak, � � ì�� ú á)æøâ|÷ , even
changes sign when compared to the 3-D cluster, �1� ì�� ú"��á)æøñËò . This cluster satisfies
Abell’s criterion in projection, but the main peak has a lower richness class, Þöúûá .



A.3. C -Statistics: DFEGCIHGJ 103

Figure A.2: Structure of a less massive 3-D cluster whose size is increased in projection
due to matter concentrations along the line-of-sight. See the caption of Fig. 4.6 for a
description of the panels.

A.3 8 -Statistics: AK=?8@9?L
Another example for a low- Ú cluster detected at Ú ú â�æ õ is displayed in Fig. A.5.
This detection also corresponds to a 3-D cluster with î�� ì�� ú»ä�æøä çÝåXá�é � ëtìíéïî[ð .
Again, the velocity distribution of this cluster is largely altered by the considerable
amount of intervening matter. The velocity dispersion itself is inflated from � � ì�� úÜ�á�õ0������ìíé to ��� ì�� úöå|åaâ£õ0������ìíé . This is reflected by the curtosis, which changes
from �1� ì�� ú"��á)æEáËñ to � � ì�� ú"��á)æøÜ , while the skewness changes from �)� ì�� úûá)æ åa÷
to � � ì�� ú"��á)æ/$£õ . Both low- Ú examples are neither 2-D Abell clusters nor do they pass
the selection criteria for Abell clusters in 3-D.

The last example in Fig. A.6 with Ú�úûâ�æ�ò�Ü does not correspond to a 3-D cluster or
group with mass exceeding î�� ì�� úöåXá�é � ëtìíéïî[ð . Instead, one sees a large amount
of contaminating matter and smaller sub-clumps. This material is responsible for the
signal in the Ú map. The velocity distribution is characterised by three peaks with dis-
persion ��� ì�� ú åañ|â|Ü������ ìíé , skewness � � ì�� ú"��á)æøâ�á , and curtosis � � ì�� ú"� å�æøâ%$ .
Obviously, the contamination along the line-of-sight is large enough to lead to the de-
tection of an Abell cluster with richness class Þ ú�á .
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Figure A.3: Structure of a moderately contaminated 3-D cluster with a Ú�úxõ7æ�ò . See
the caption of Fig. 4.6 for a description of the panels.

Figure A.4: Structure of a moderately contaminated 3-D cluster with Ú�ú�õ7æ õ . See the
caption of Fig. 4.6 for a description of the panels.
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Figure A.5: Structure of moderately large 3-D group with Ú between 3 and 4. The 3-D
object is contaminated by projection along the line-of-sight, leading to an increased Ú
of â�æ õ . See the caption of Fig. 4.6 for a description of the panels.
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Figure A.6: Structure of a spuriously detected object which does not correspond to a
3-D cluster. The high contamination along the line-of-sight leads to ÚÊú â�æø÷ . See the
caption of Fig. 4.6 for a description of the panels.
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