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Einleitung und Zusammenfassung

Wahrend des letzten Jahrzehnts hat sich die Untersuchung der Bildung und Entwick-
lung grof3skaliger Strukturen in unserem Universum zu einem der interessantesten
Forschungszweige in der Kosmologie entwickelt (Padmanabhan 1993; Silk 1994,
Longair 1996). In engem Zusammenhang damit steht auch die Frage der Entste-
hung und Entwicklung von Galaxienhaufen, die die grofiten gravitativ gebundenen
Objekte im Universum sind (Rood 1981; Oort 1983; Bahcall 1988; Sarazin 1986,
1988). Dadunkle Materievermutlich die beherrschende Rolle auf den hier angesproch-
enen grofden Langenskalen spielt (Trimble 1987; Kormendy & Knapp 1987; Sciama
1993), ist der Gravitationslinseneffekt nicht nur hervorragend zur Untersuchung der
grolRraumigen Struktur des Universums selbst geeignet, sondern auch zum Studium
einzelner Galaxienhaufen (Blandford & Narayan 1992; Fort & Mellier 1994). In
diesem Zusammenhang bietet insbesondere der schwache Gravitationdlinseneffekt die
Maoglichkeit, die Verteilung der dunklen Materie zu kartieren, ohne dabei Annahmen
Uber ihren dynamischen Zustand machen zu missen (Bartelmann & Schneider 1999).

Der schwache Gravitationslinseneffekt beschreibt die beobachtbare, geringfiigige
Verzerrung der Bilder entfernter Hintergrundgalaxien durch eine zwischen dem
Beobachter und den Galaxien liegende Materiekonzentration (Bartelmann & Schnei-
der 1999). Diesimpliziert, dald der schwache Gravitationslinseneffekt ausschliefdlich
von der projizierten Materie zwischen Hintergrundgal axien und Beobachter abhangt.
Deshab ist es moglich, durch die Analyse der verzerrten Bilder Informationen tber
die “Linsen” selbst, also ilber die dazwischenliegende Materieverteilung zu erhalten
(Gunn 1967a,b; Blandford et al. 1991; Miralda-Escude 1991; Kaiser 1992; Schneider
et al. 1998).

Werden nun Galaxienhaufen as Linsen interpretiert, so stellt sich die Frage, ob
sie sich nicht nur durch das schwache Linsensignal detektieren lassen, welche sie auf
die Bilder der im Hintergrund verteilten Galaxien aufpragen, was letztendlich einer
Auswahl Uber ihre Masse gleichkame (Fahimann et al. 1994; Schneider 1996). Dies
ware ein erster, wichtiger Schritt im Hinblick auf die Konstruktion einer Massen-
funktion Uber den Gravitationslinseneffekt, aus welcher weitere Einschrankungen
der kosmologischen Parameter, insbesondere fir den Bereich hdherer Rotverschie-
bungen z =~ 0.4 — 0.6, gewonnen werden konnten. Unter diesem Gesichtspunkt
ware eine solche Gravitationslinsen-basierte Massenfunktion eine ideale Erganzung
zu bereits bekannten Massenfunktionen, die Uber eine Auswahl im optischen oder
Rontgenbereich gewonnen werden, und die anderen systematischen Fehlern unter-
liegen (Frenk et al. 1990; Bartelmann & Steinmetz 1996; Cen 1997; van Haar-
lem et a. 1997). Allerdingsist es wegen der Uber einen grofden Rotverschiebungs-
bereich erfolgenden Beitrage zum Linsensignal notwendig, die Kontamination von
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solchen massensel ektierten Galaxienkatalogen aufgrund von Projektionseffekten zu
untersuchen.

Diese Uberlegungen haben mich veranlaldt, im Rahmen meiner Promotion die De-
tektion und die Auswahl von Galaxienhaufen ausschlief3ich tber ihre Masse zu unter-
suchen. Dabei wurde von mir erstmalig eine neue Auswahlmethode — die Apertur-
masse My, (Schneider 1996) — angewendet, die allein auf dem schwachen Gravita-
tionslinseneffekt basiert.

Ein Vergleich mit anderen bekannten Auswahlverfahren fir Galaxienhaufen, wie
z.B. dem optischen Abell-Kriterium (Abell 1958), zeigt, daid die Auswahl vermittels
des schwachen Gravitationslinseneffekts deutlich geringer durch Projektionseffekte
gestort wird, sowohl was die Vollstandigkeit der erstellten Kataloge betrifft, als auch
die Anzahl der Fehldetektionen (Reblinsky & Bartelmann 1999a). Eine weitere in
diesem Zusammenhang interessante Frage ist die nach der Genauigkeit der verschie-
denen bekannten Schatzer fir die Massen der detektierten Galaxienhaufen. Ich habe
den auf dem kinematischen Virialtheorem basierenden Massenschatzer mit dem Uber
den Gravitationslinseneffekt abgeleiteten Schatzer, der (-Statistik, verglichen, waobei
sich herausstellte, dal3 der Gravitationslinsen-basierte Schatzer eine erheblich geringere
Dispersion hat. Dieses Ergebnis ist von grofder Bedeutung, vor alem fir die ver-
schiedenen geplanten Himmel sdurchmusterungen, MEGACAM (Méllier et a. 1999)
sel hier als Beispiel genannt, in denen Objekte ausschliefdlich Uber ihr Linsensignal de-
tektiert und kartiert werden sollen.

Die bereits eingangs erwahnte Aperturmasse My, ist nicht nur fir die Detektion
von Galaxienhaufen unabhangig von ihrer Leuchtkraft geeignet, sondern auch fur
eine Untersuchung der kosmischen Scherung, also der koharenten Verzerrung der weit
entfernten Hintergrundgal axien durch eine dazwischenliegende grof3skalige Massen-
verteilung, welche dafiir letztendlich wieder selbst a's eine Linse betrachtet wird, und
S0 eine Untersuchung der statistischen Eigenschaften des zugrundeliegenden Dichte-
feldesermoglicht. Mit Hilfevon Mg, habeich die kosmische Scherung in grof3volumi-
gen, hochaufgelosten kosmol ogischen Simulationen studiert und konnte dabei zeigen,
dal3 die Aperturmasse sinnvolle Aussagen Uber grof3skalige Strukturen ermoglicht.
Dabei habe ich mir zunutze gemacht, dal3 es sich bei der Aperturmasse ganz im
Gegensatz zu den bisher in Untersuchungen zur kosmischen Scherung herangezoge-
nen Galaxienelliptizititen um eine rein skalare GrofRe handelt. Diese Eigenschaft von
M, vereinfacht enorm die Definition der hoheren Momente wie Schiefe und Kurtosis,
die, wieich zeigen konnte, in der Tat von dem zugrundeliegenden kosmol ogischen Mo-
dell abhangen. Schlief3lich konnteich mit Hilfe der numerischen Simul ationsdaten die
auf einem semianalytischen Press-Schechter-Formalismus basi erende Vermutung von
Kruse & Schneider (1999) bestétigen (Reblinsky et al. 1999), dal3 der Schwanz der
Verteilungsfunktion von Mg, ein exponentielles Abklingverhalten zeigt, das durch die
schon kollabierten Halos dominiert wird, und somit ebenfalls wichtige kosmol ogische
Informationen enthalt.

Seit geraumer Zeit wachst die Anzahl der Galaxienhaufen stetig an, fur die Obser-
vationsdaten zum schwachen Gravitationslinseneffekt verfugbar sind, was ebenso fur
Beobachtungen im Rontgenbereich und fir den Sunyaev-Zel’ dovich Effekt gilt. Fur
den Rontgenbereich gilt diesinsbesondere seit dem Start der eigens zu diesem Zweck
entworfenen Satelliten Chandra und XMM im letzten Jahr. Angeregt durch einen
Vorschlag meines Betreuers, M. Bartelmann, habe ich mit der Arbeit an einer neuen
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M ethode begonnen, in der Beobachtungsdaten aus dem schwachen Gravitationslinsen-
effekt (das Linsenpotential 1), dem Rontgenbereich (die Rontgenleuchtkraft Sy) und
aus dem Sunyaev-Zel’ dovich Effekt (Temperaturdekrement ATsz) kombiniert werden
sollen, um die Struktur einzelner Galaxienhaufen entlang der Beobachtungssichtlinie
zu rekonstruieren.

Der Ansatz dieser Deprojektionsmethode basiert auf dem bekannten Dekonvolu-
tionsalgorithmus von Richardson und Lucy (1974), der in der optischen Astronomie
haufig fur die Bildrekonstruktion eingesetzt wird. Da der Richardson-Lucy Algorith-
mus statistischer Natur ist, eignet er sich besondersfir die Rekonstruktion verrauschter
Daten; alerdings ist er bisher weder im Zusammenhang mit dem Gravitationslinsen-
effekt, noch in der Kombination von Daten aus Linsen-, Rontgen-, oder Sunyaev-
Z¢el’ dovich-Beabachtungen benutzt worden. Ausgehend von geeigneten Modellan-
nahmen, in denen ale diese drei Observablen 1, Sy, und ATs; eine funktionale
Abhangigkeit vom Gravitationspotential ¢ entlang der Sichtlinie haben, gelang esmir,
einen sogenannten multiple-data Richardson-Lucy (MDRL)-Algorithmus abzuleiten,
der auf dem Richardson-Lucy Verfahren von Binney et al. (1990) zur Deprojektion
von dlliptischen Galaxien aus photometrischen Daten beruht.

Eine erste Implementation der MDRL Deprojektionsmethode habeich mittlerweile
erfolgreich auf synthetische Eingabedaten angewandt, die ausgasdynamischen Simula-
tionen generiert wurden (Reblinsky & Bartelmann 1999b, 2000). Die Rekonstruktions-
methode funktioniert schon fur den Spezialfall der Rekonstruktion aus einem der drei
Eingabedatensitze sehr gut, und die Kombination aller drel Eingabedatensitze fuhrt
tatsachlich zu einer nochmaligen Verbesserung.

Dievorliegende Dissertation ist wiefolgt gegliedert: In den ersten beiden Kapiteln
wird der notige theoretische Rahmen dargelegt: Das Standardbild der Strukturent-
stehung und —entwicklung in Kapitel 1 und alle wichtigen Teile der Gravitationdlin-
sentheoriein Kapitel 2, insbesondere wird dort die Mg, Statistik eingefiihrt. In Kapitel
3 wird die My, Statistik benutzt, um die statistischen Eigenschaften der kosmischen
Scherung mit Hilfe grof3er, hochaufgeloster Simulationen zu untersuchen. Auf3erdem
wird die Anzahl der Halos, die in diesen Simulationen gefunden wurden, mit der aus
semianalytischen Abschatzungen gewonnenen Anzahl verglichen. In Kapitel 4 wird
der mogliche Einsatz der My, Statistik fur die massenbasierte Auswahl von Galaxien-
haufen im Hinblick auf Projektionseffekte untersucht und mit dem optischen Abell—
Kriterium verglichen. In Kapitel 5 wird dann der neue Richardson-Lucy Rekonstruk-
tionsal gorithmus abgel eitet und mit synthetischen Daten getestet. Schliefdlich werden
in Kapitel 6 die Hauptergebnisse dieser Arbeit zusammengefal3t und in einen kosmolo-
gischen Zusammenhang gestellt. Ferner wird ein Ausblick auf weitere Forschungspro-
jekte gegeben.






|ntroduction and Summary

Over thelast decadetheformation and evolution of large scal e structure (L SS) emerged
as one of the most interesting branches of cosmology (Padmanabhan 1993; Silk 1994;
Longair 1996). Closely related to this topic is the formation and evolution of galaxy
clusters as the largest gravitationally bound objects in the universe (Rood 1981; Oort
1983; Bahcall 1988; Sarazin 1986, 1988). Since dark matter is believed to play the
dominant role on such large scales (Trimble 1987; Kormendy & Knapp 1987; Sciama
1993), gravitational lensing is a superb tool for investigating questions related to LSS
and galaxy clusters (Blandford & Narayan 1992; Fort & Méellier 1994). In this con-
text weak gravitational lensing offers the possibility to map the dark matter compo-
nent without prior assumptions about the dynamical state of the matter (Bartelmann &
Schneider 1999).

Weak gravitational lensing describes the weak distortions of the images of faint
background galaxies caused by any intervening mass concentrations (Bartelmann &
Schneider 1999). Thismeansthat weak lensing is sensitive only to the projected matter
between the background galaxies and the observer. In thisway the analysis of the dis-
torted background galaxies allows oneto obtaininformation about the “ lenses’, namely
the matter in between (Gunn 1967a,b; Blandford et al. 1991; Miralda—Escude 1991;
Kaiser 1992; Schneider et al. 1998).

Considering clusters of galaxies as lenses, the question arises as to whether it is
possible to detect these clusters solely by their weak gravitational lensing imprint on
the background population, thus in practice selecting them by mass only (Fahlmann
et a. 1994; Schneider 1996). Thiswould be an important first step in constructing a
cluster mass function from weak lensing, which could provide additional cosmolog-
ica constraints, especialy at higher redshiftsof z ~ 0.4 — 0.6. In this sense such
a weak—ensing—based mass function would ideally supplement mass functions con-
structed from X—ray selections or optical selections, which are hampered by different
systematic errors (Frenk et al. 1990; Bartelmann & Steinmetz 1996; Cen 1997; van
Haarlem et al. 1997). However, because of the very broad contribution to the lensing
signal in redshift space, it is hecessary to address the important question of contamina-
tions introduced by projection effectsinto such cluster catalogues.

With this motivation in mind as part of my Ph.D. work | investigated the detection
and selection of galaxy clusters solely by their mass using for the first time a selection
method which is based on the weak lensing effect alone — the second—order aperture
mass measure M,;, proposed by Schneider in 1996.

A comparison with other common selection methods for galaxy clusters, such as
the optical Abell criterion (Abell 1958), showed that the weak-lensing-based selection
isevidently much less affected by projection effects. | was able to demonstrate that the
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selection of galaxy clusters according to their mass indeed leads to more reliable clus-
ter cataloguesthan optical selection, both with regards to the completeness of the cata-
logue and the number of spurious detections (Reblinsky & Bartelmann 1999a). It also
proved valuable to study different mass estimates and their reliability. Comparing the
kinematical virial theorem (VT)-based mass estimate to the weak-lensing-based mass
estimate, the (-statistics, | found that the latter has a substantially smaller dispersion.
Thisisanimportant result, especially in thelight of several wide-field lensing surveys,
with MEGACAM (Mélier et al. 1999) being only one example, which try to map and
detect objects by their weak gravitational lensing effects alone.

The above-mentioned aperture mass measure M, is not only a useful tool for the
detection of clusters of galaxiesirrespective of their luminous properties; it can also be
used to investigate cosmic shear, i.e. the coherent distortion of faint background galax-
iesdueto theintervening large scale mass distribution. Ultimately, in this casethe pro-
jected density field of the LSS is considered as alens. Thisis a means to investigate
the statistical properties of the underlying density field. | studied the cosmic shear as
obtained from large ray-tracing simulations of weak lensing, which in turn were com-
puted from large N-body simulations. | was able to demonstrate the usefulness of the
aperture mass measure M,,, in the context of large scale structure. A further advan-
tage of the aperture mass measureisthefact that it isascalar quantity, which isnot the
case for the mean galaxy ellipticity commonly used to map cosmic shear. This prop-
erty of My, tremendously simplifies the definition and evaluation of higher order mo-
ments like skewness and kurtosis, which do indeed, as | was able to show, depend on
the underlying cosmology. In addition, | could also demonstrate that the far tail of the
probability distribution function of Mg, has an exponential decline dominated by the
already collapsed haloes, thus by itself containing interesting information about cos-
mology. Finally, in the course of this study the semianalytical estimates by Kruse &
Schneider (1999) for M3, based on Press-Schechter-type arguments could be validated
(Reblinsky et al. 1999).

The number of clusters for which a weak-lensing analysisis available is steadily
increasing, and more and more datafrom Sunyaev—Zel’ dovich and X-ray based obser-
vations for galaxy clusters become available. This appliesin particular to X-ray data
with the projected launches of Chandra and XMM in 1999. Motivated by a suggestion
of my supervisor, M. Bartelmann, | started to work on anovel deprojection method for
clustersof galaxies, inwhichthe structureof individual clustersalongtheline-of—sight,
namely the 3-dimensional gravitational potential ¢, isreconstructed by combining data
from three sources: weak lensing (lensing potential 1)), X-ray (X-ray surface brightness
Sy, and the Sunyaev-Zel’ dovich effect (temperature decrement ATsy).

The ansatz for our deprojection method is based on the Richardson-Lucy (1974)
deconvolution algorithm, which is well known in optical astronomy, where it is used
for imagerecovery. Asthe Richardson—Lucy algorithmisstatistical in nature, itiswell
suited for the rectification of noisy data. However, it has never before been used in the
context of weak lensing, let al one acombination of lensing datawith X-ray or Sunyaev-
Zel’dovich data. Exploiting the fact that all of these three observable distributions do
have, within a suitable model, a functional dependence on the gravitational potential
along the line—of—sight, a formulation for a multiple-data Richardson—Lucy (MDRL)
algorithm was derived, which is based on the earlier deprojection method for elliptical
galaxies from photometric data by Binney et a. in 1990.
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A first implementation of this MDRL deprojection method was successfully ap-
plied (Reblinsky & Bartelmann 1999b, 2000) to synthetic input data created from gas—
dynamical simulations. The reconstruction method not only works surprisingly well if
it isused for each of the three types of input data separately, whereiit is able to recover
all important features of the original 3-dimensional cluster, but also the combination
of the different data sets was found to improve upon the deficiencies of the single-data
reconstructions.

This dissertation is organized as follows. In the first two chapters the necessary
theoretical framework is briefly reviewed: the standard picture of structure formation
and evolution in chapter 1 and the relevant details about gravitational lensing in chap-
ter 2, where especially the M, statisticsisintroduced. The My, statisticsis then used
in chapter 3 to investigate the statistical properties of cosmic shear using LSS ray trac-
ing simulations from numerical N-body data. In addition, the number of haloes com-
puted from semianalytical estimates are compared to results obtained from theray trac-
ing simulations. In chapter 4 the possible use of the My, statistic for a mass based se-
lection of clusters of galaxiesis analyzed with respect to projection effects and com-
paredtotheoptical Abell selection criterion. Then, in chapter 5the novel multiple-data
Richardson—L ucy cluster reconstruction algorithm is derived and tested using synthet-
ical data generated from gas-dynamical simulations. Finally, chapter 6 discusses the
main results obtained in thisthesis, putsthem into a broader cosmological context and
proposes future research.






Chapter 1

Standard Cosmology and
Structure Formation

Inthischapter | briefly introducethose aspects of cosmology relevant to thisthesis. The
standard model of cosmology (Weinberg, 1972; Misner, Thorne and Wheeler, 1973;
Sex| and Urbantke, 1995) consists of two major parts: On large scales, i.e. regions
comparable to the Hubble volume, whose size is characterized by cHj, 1= 9.25 x
10%” cm = 3000h~1Mpc?, the Universeis assumed to be homogeneous and isotropic.
This assumption is supported by several independent observations: the isotropy of the
cosmic microwave background (CMB) (Banday A.J., Gorski K.M., Bennett C.L ., et al.,
1997), of the X-ray background (Treyer M., Scharf C., Lahav O., etal., 1998), andinthe
number counts of distant radio sources (Gregory P.C. & Condon J.J., 1991). Therefore
it can be described by the homogeneous and isotropic solutions of the field equations
of General Relativity, namely by the Friedmann-Leméitre cosmological models.

On much smaller scales, i.e. on scales of galaxies and clusters of galaxies, the Uni-
verse appearsto be very lumpy. In order to understand this structure and its evolution,
we need a model for structure formation (Padmanabhan, 1993; Peebles, 1993; Kolb
and Turner, 1994; Peacock, 1999). The current picture of structure formation assumes
that structures grow via gravitational instability from initial perturbations of the mass
density. Most of the current theories model theinitial seed field as a Gaussian random
field.

1.1 Friedmann-Lemaitre-Robertson—-Walker M odels

1.1.1 Kinematicsand Geometry

The metric of a space-time with homogeneous and isotropic spatial sections is de-
scribed by the maximally symmetric Robertson—Walker (RW)—metric

ds? = ?dt? — a?(t)do? (1.1

1h isthe normalized Hubble constant, 0.5 < h < 1
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wherea(t) isthe cosmic scalefunction, whiledo? istheline element of ahomogeneous
and isotropic three—space. The most general form of the line element can be written as

do? = dw’® + fi(w) (d¢* + sin® (0) dF?) = dw* + fi (w)dw?. (1.2

Theradia function fx (w) islinked to the spatial hypersurfacesof the Universe: it must
be either trigonometric, linear, or hyperbolic for a positive, zero, or negative curvature
constant K, respectively. Specifically,

K~1/2sin (K/%w) (K >0)
fr(w) =qw (K =0) (1.3)
(—K)"Y2sinh [(-K)Y?2w] (K < 0)

In a homogeneous and isotropic Universe there exists a set of fundamental observers
and a cosmic time, such that the Universe appears homogeneous and isotropicin all its
propertiesto al fundamental observersat a given cosmic time (Gunn, 1978).

A space described by the Rw-metric (1.1) is not static, but expands or contracts
with time, which is implicitly expressed by the time dependence of the cosmic scale
factor a(t). The expansion of space leads to the redshifting of photonstravelling from
sourceto observer. A photon of frequency v, emitted by afundamental observer at time
te, and received by a second fundamental observer at the present time ¢, at frequency
vg isgiven by

ve _alto) _ (1.4)

4 a(te)

Here z is the redshift, which is an observable. Therefore | will describe the time de-
pendence in terms of redshift.

1.1.2 Dynamics

The temporal evolution of the cosmic scale factor a(t) and the dependence of the cur-
vature constant K on the matter content is determined by Einstein’'s field equations.
Einstein's field equations

871G
Gap = —5-Tap + Mas (15)

relate the Einsteintensor G, 3 to the stress energy tensor T, for all fields present (mat-
ter, radiation, etc.) The cosmological constant A was historically introduced by Ein-
stein to allow for static cosmological solutions to the field equations. In modern the-
ories the cosmological constant can be interpreted as vacuum energy density. Asthe
metric given in (1.1) and (1.2) is highly symmetric, Einstein’s field equations imply
that 77,4 has the form of a stress energy tensor for a homogeneous perfect fluid. Such
aperfect fluid is completely characterized by its density p(¢) and its pressure p(t). For
the RW-metric (1.1) and (1.2) the equations (1.5) reduce to two independent equations
(a)2 817G K& A

S 4z 1.6
s P~ a2 Ty (1.6)

a
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and

AN 3p) A

where (1.6) is Friedmann’s equation. Once the equation of state p = p(p) is specified,
thetwo differential equations(1.6) and (1.7) are sufficient for determining the complete
temporal evolution of the universe. The equation of state for ordinary matter, whichis
often called dust, has p < pc?, while radiation and other forms of relativistic matter
havep = pc?/3. The scale factor is chosento be a = 1 at the present epoch .
Therelativeexpansionrateaa™! = H () iscalled the Hubble parameter. Thevalue
of the Hubble parameter at the present epoch ¢ = ¢, is the Hubble constant H(ty) =
Hy. Sincethe value of the Hubble constant is still uncertain, it isusually expressed as

Hy =100 h kms 'Mpc™! (1.8)

with h € [0.5,1.0]. From the Hubble constant one can obtain the critical density of the
UnIVETSE Pecr

3H{ —29;,2 O
— = ~ 1. 1 —_—. .
srG - Pe 88 x 107“h o (1.9
Thedensity p(ty) = po inunitsof thecritical density p. iscalled the density parameter
Q. Furthermore the density parameter of the vacuum energy is defined as

A

= 1.1
37 (119

Qp

Neglecting the energy density of relativistic matter the Friedmann equation (1.6) can
be recast in terms of the parametersintroduced above as

2 2( -3 -2 K¢
0
Since H (ty) = H, the condition
H 2
K= (—0) (Q +Qp — 1) (112)
C

for the curvatureconstant K arises. Thusthegeometry of the spatial hypersurfaceisde-
termined by the density contributions from matter, €2, and the cosmological constant,
Qp:

Q=0+ >1 = closed (1.133)
D=0+ =1 = fla (1.13b)
D=0 +0 <1 = open. (1.13¢)

Both, Qg and ©,, determine the dynamics of the universe. A universe with p < per
will expand forever, whilein auniversewith p > p¢; the expansion will stop, followed
by a contracting phase.
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The time dependence of the Hubble constant in the rewritten Friedmann equation
(1.12) trandlates by means of equation (1.4) into a redshift dependence of the density
parameter. Due to the equation of state of ordinary matter, p < pc?, the evolution
of the density is determined by equations (1.6) and (1.7). Therefore the density in a
matter—dominated universe scales as p = ppa~3(t), which leadsto

&G (14 2)3Q
Q(2) = —=—po(l 3 =
(@) = sy + 2 = A 0+ 220 = = ) T 0
(1.14)
while the density parameter of the cosmological constant can be written as
Qp(2) A I (1.15)

T 3H2(z2)  (1+2)30% + (L +2)2(1— Qo — Qa) + Qn

1.2 Cosmological Distances

In curved space-time distances are not uniquely defined. Contrary to Euclidian space,
different distance measures lead to different results. Therefore distance measure-
ment prescriptions are defined in analogy to relations between measurable quantities
in Euclidian space. In this section | define four different distances used later on: the
proper distance, the comoving distance, the angular diameter distance, and the lumi-
nosity distance. These distances are parameterized by the redshift between two events
z1 and zo With z; < z9, and the observer isassumed to be at the origin of the coordinate
system.

The proper distance Dprop(21, 22) IS the distance measured by the travel time of a
light ray propagating from asourceat z = zy toanobserver at z = 21 < 29. Itis
defined as dDprop = —cdt = —cdaa™' = —cda(aH)~'. Thisleadsto

<
H,

a(z1) ~1/2
/ (a_lﬁo +(1—-Q¢—Qp) + aZQA) da. (1.16)

(22)

Dprop(zlaZZ) =

The comoving distance D¢om(21, 22) is the distance on the spatial hypersurface
t = to between theworld lines of the source and an observer comoving with the cosmic
flow. Dueto the choice of coordinates, it isthe coordinate distance between a source at
22 and an observer at z1, dD¢om = dw. Sincelight rays propagate with ds = 0, we de-
rivecdt = —adw fromthe metric, and therefore dDeom = —a~!cdt = —cda(aa)™! =
cda(a?H) . Thus

a(z1)
Deom(21,22) = Hio /( ) (a0 + a2(1 — Qo — Q) +a*Qy) P da.  (117)
a(zo

The angular—diameter distance Dang(21, 22) isdefined asin Euclidian space. It re-
lates the physical cross section § A of an object at z, to the angle jw subtended for an
observer at 2, 6wD§ng = §A. From

0A ow
T () e, 22)] A’ (118
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where a(z,) isthe scalefactor at emission time and fx [w(z1, z2)] istheradial coordi-
nate distance between the observer and the source it follows that

1/2
Dang(21, 22) = (%) — a(2) fx [Deom(21, 2)]. (1.19)

The luminosity distance Dyym(z1, 22) isdefined by the relation between the luminosity
L of an object at z, and the flux S received by the observer at z;. This leads to the
following relation of the luminosity distance to the angular diameter distance (Ether-
ington, 1933)

2
Diym(z1, 22) = (a(zl)) Dang(21, 22)- (1.20)
a(z2)

Equation (1.20) can be understood considering that photons are redshifted by
a(z1)a(z2) ™1, their arrival times delayed by another factor a(z1)a(z2) !, and the area
of the observer’s sphere on which the photons are distributed are grows between emis-
sion and absorption in proportion to [a(z1 )a(z2) "!]2. This accounts for atotal factor
of [a(z1)a(z2)~1]* intheflux. Thisleadsto afactor of [a(z;)a(z2)~1]? in the distance

relative to the angular diameter distance.

For an Einstein-de-Sitter (EdS)—universe, i.e. auniverse with a critical density of
dust Qy = 1, p = 0 and vanishing cosmological constant (25, the different distance
measures simplify to

Dprop(21,22) = 3% ((1 +21) 2 - (14 z2)_3/2) : (1.21a)
Deom(z1,22) = Z_CO ((1 +2)" 2 (14 z2)—1/2) : (1.21b)
Daglen,z2) = grps (A+a) 2= (L2 2), (210
Dium(z1,22) = ;—Zﬁ (1.21d)

1.3 Density Perturbations

As already mentioned in the preamble of this chapter, the Friedmann-Lemaditre cos-
mological models are not able to describe the structure seen on scales of galaxies and
galaxy clusters and the evolution of this structure. Therefore the Friedmann-Lemaitre
cosmological models have to be supplemented with atheory of structure formation.

The standard model of structure formation assumes that structure grows via gravi-
tational instability fromsmall initial massdensity perturbationsat early times. Itiscon-
venient to discussthe fluctuationsin terms of their Fourier decomposition, because the
Fourier modes do not couple. Inthefollowing I will assume that the phases of the fluc-
tuations are uncorrelated, while their amplitudes follow a Gaussian distribution. This
picture is consistent with the predictions from inflation, where it is assumed that the
initial seed field of perturbations originates from quantum fluctuationsin the very early
universe, which were blown up during an inflationary phase.
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Furthermore| will confine the discussion to the so—called cold dark matter (CDM)—
scenario. In this scenario the CDM particles are assumed to be non—relativistic (there-
fore: cold) particleswhich only interact gravitationally or weakly. When CDM parti-
cles decouple from the radiation field they have a very small velocity dispersion, and
thereforethermal pressureforcesare negligible. Asopposed to hot dark matter (HDM)
particles, which have alarge velocity dispersion, CDM particles do not damp structure
on small scales through free streaming. Henceforth structure in a universe dominated
by CDM particles buildsin a bottom—up scenario: larger objects are formed via merg-
ing of smaller objects. The CDM—scenario has been tested extensively with N—body
simulations(Daviset a., 1985). Currently, it seemsto agree best with the observational
data, while many aternative models like hot dark matter or topological defect models
(Pen U.-E., Seljak U., Turok N., 1997) are currently disfavoured by observations.

Dark matter perturbations are characterized by the density contrast

plz,t) — p(t)
oz, t) = ————=, 1.22
(2:0) = 522 (122)
whichis defined asthe deviation of the density p(«, t) from the average cosmic density
p(t). The Fourier decomposition of the density contrast can be written as

o(k,t) = / Brd(x, t)e*®, (1.23)

where the continuum limit is used.

The growth of the density perturbationsis determined by the amplitude of the den-
sity contrast. Three different phases can be distinguished: the linear growth of density
perturbations in the regime § < 1, quasi-linear theory with 6 ~ 1, and the nonlin-
ear evolution for § > 1. | will concentrate on the linear and non-inear regime. A
description of perturbation theory appropriate for quasi—linear theory can be found in
Padmanabhan (1993).

1.3.1 Linear Growth of Density Perturbations

Consider the standard Newtonian equations for the evolution of the density p and ve-
locity v of apressureless fluid under the influence of the gravitationa field ¢

% +V-(pv) = 0, (1.24a)
?9—: +(v-V)v = —-V¢, (1.24b)
A¢p = 4nGp. (1.24c)

In order to describe structure growth in the universe with mean density p(¢) and cosmic
scalefactor a(t) it is advisable to change to comoving positionsz = r/a and peculiar
velocitiesu = v — ax and consider the density contrast (1.22) instead of the density.
Eliminating w and ¢ and neglecting all non-inear termsleads to

@5, 39,
dt2 a Ot 2a3 N

0. (1.25)
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The general solution to the linearized Eq. (1.25) is a superposition of two linear, inde-
pendent solutions

§(z,t) = Dy (t)Ay(z) + D_() A_(z). (1.26)

In the case of an EdS—universe with 3 = 1 and 2, = 0, the growing mode can be
described by § o< Dy (t) o #%/3  a, while D_(t) israpidly decaying. The decaying
modeisgivenby 6§ o« ¢t~ o a=2/3. Assuming that all fluctuations were small at the
epoch of recombination one can assume that only the growing modeis present at recent
epochs.

For cosmological models other than the EdS—universe, solutions of (1.25) have a
more complicated structure. For a detailed discussion see Peebles (1980) and Padman-
abhan (1993).

The Power Spectrum of Density Perturbations

If the primordial density perturbations are Gaussian they are completely described by
their power spectrum Pj(k), which is defined by

<3(k)8*(k')> — (21)3 6p(k — k') P5(K) , (1.27)

where § (k) isthe Fourier transform (1.23) of §, and the asterisk denotes complex con-
jugation.

The primordial density spectrum as predicted by inflation can be described by a
scaleinvariant power spectrum

P(k) < k" . (1.28)

For n = 1 thisis known as the Harrison—Zel’ dovich spectrum, which | use in the fol-
lowing. For such a spectrum the growths of the horizon and the perturbationswithtime
have cancelling effects. Such auniverseisself—similar inthe sense of alwaysappearing
the same under the magnification of the cosmological expansion.

In the absence of other physical effects each perturbation mode of the primordial
spectrum would simply scale with time in accordance with the growing mode of the
density contrast. In reality thisis not the case; physical effects do change the shape of
the primordial power spectrum. This effect can be described by introducing a transfer
function T'(k)

P(k) = T?(k)k . (1.29)
For aCDM-model one possiblefitting formulais given by Bond & Efstathiou (1984)

Ak

PO) = i aq+ 00 + (e P

(1.30)

where ¢ = T—! k with the shape parameter T, a = 6.4h~'Mpc, b = 3h~! Mpc,
¢ = 1.7h~! Mpc, and v = 1.13. This approximation to the power spectrum is used
for the ssimulations used later on. The normalisation of the power spectrum A hasto be
determined from observations. There exist several procedures for doing this:
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1. Normalisation to microwave background anisotropies. This normalisation
method trand ates the measured fluctuationsin the temperature of the microwave
background into an amplitude for Ps(k). Due to the large angular scale of the
measurement (COBE measured the rms level of AT /T = 1.3 x 105 at an an-
gular scale of 7° (Banday, 1997)) this method fixes the normalisation on these
large physical scales (=~ 1000h~! Mpc).

2. Normalisation to the local variance of galaxy counts, pioneered by Davis & Pee-
bles (1983). Galaxies are assumed to be biased tracers of the underlying dark
matter distribution (Kaiser 1984; Bardeen et al. 1986; Whiteet al. 1987). There-
fore, by measuring the local variance of galaxy counts within certain volumes,
and assuming an expression for the bias, the amplitude of dark matter fluctuations
can beinferred. Unfortunately, the biasing mechanism of galaxy formationisnot
yet known exactly (Kauffmann, 1997), making the use of this method uncertain.

3. Normalisation to the local abundance of galaxy clusters (Whiteet a., 1993; Eke
et a., 1996; Vianna & Liddle, 1996). As galaxy clusters are thought to form
via gravitational instability from dark matter density perturbations, their spatial
number density reflectsthe amplitude of dark matter fluctuations on scales of the
order of 10Mpc k1.

Since gravitational lensing by large scal e structure is most sensitive to scales compara-
bleto k, * ~ 12(2h?)Mpc, | will usethe cluster normalisation throughout this work.

1.3.2 Non-linear Evolution of Density Perturbations

Theabovediscussionisvalid for thelinear evolution of the density contrast, i.e. § < 1.
At late stages of the evolution or on small scales the density contrast can be of order
|0| ~ 1 orlarger. Then it isno longer possible to linearize Egs. (1.24a) — (1.24c):
The density contrast becomes noninear and the different Fourier modes couple. In
these casesthe density contrast can no longer be described by a Gaussian random field.
Higher order moments become important and the density contrast can no longer be
completely described by the power spectrum.

In order to understand the non-linear evolution of the density field there exist two
different approaches. the numerical ssimulation of structure formation with N—body
simulations on the one side and semi—analytical schemes on the other side. These two
different approaches complement one another.

The numerical N-body simulationsfocuson the dark matter asthe dominant driver
of the evolution of the universe, whereas other physical processes, most prominently
the gas dynamics of the baryons, are neglected. Furthermore, the intricate question of
finding a sound physical description for theinitial conditionsstill isa challenging task.
Even with these difficulties N-body simulations are one of the most accurate methods
for studying structure formation. Even though simulations are computationally quite
costly, they have proven to be very valuable in calibrating, assessing, and even sug-
gesting new analytic approaches. On the other hand the semi—analytical schemes are
computationally inexpensive and concentrate on the basic principles.

From semi—analytical theory | will only describe the spherical top—hat model and
Press-Schechter (PS) theory. The spherical top—hat model is the simplest possible
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model for the formation of an object, while Press Schechter theory isawell—established
heuristic model for describing the mass function of non-inear objectsat any given red-
shift.

Spherical Top-Hat M odel

A rigourous discussion of the spherical top—hat model can be found in Padmanabhan
(1993) or in White (1996).

Consider a spherical region with uniform overdensity s and the physical radius R
with a homogeneous density contrast § = ps/p — 1. The spherical region contains the
mass M = 4npsR3/3, and is assumed to be in an otherwise uniform universe. Using
Birkhoff's theorem (Misner et a., 1973; Weinberg, 1972) stating that external matter
exertsno force on the material within a spherically symmetric region of the spacetime,
the time evolution of R is determined by

2
Oc'it]j — Cg‘f - —47;(; p(1+3)R (1.31)
for a universe with vanishing vacuum energy.

Comparing Eqg. (1.31) with Eq. (1.6) it can be seen that the radius of the sphere R
evolveslikethe cosmic scalefactor for auniverse with adifferent density, but the same
inital time and initial expansion rate.

Thefirst integral of the evolution equation (1.31) is given by

=F

= =B, (1.32)

1 (dR\* GM
(5
where E is the constant of integration. If E > 0 the sphere will expand forever. On
the other hand, if E < 0 then as R increases R will become zero and at later times
negative, thus describing a contraction and collapse.

Considering the case £ < 0 in more detail Eq. (1.32) has the parametric solution

R=A(1—-cos(n)) , t=B(n—sin(yg) ; A*=GMB? ,  (133)

where A and B are constantsrel ated to each other as shown. The parameter 7 increases
with increasing ¢, while R increases to a maximum value before decreasing to zero.
According to Eq. (1.33) the maximum is reached for n = . At thisturn around point
we have 9 = 0 and R = Rpax.
Now we turn to the evolution of the mean density within each mass shell. Since M
is constant for each shell, the mean density within ashell is
3M 3M

P= ATR3 4w A3(1 — cos (1)) (134)

In order to work out the time evolution of the density contrast §(r, t) we need to know
the evolution of the background density. For an EdS universe the expansion factor a(t)
and the density of the background py is given by

1
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Dividing the mean density p(r, t) in Eq. (1.34) by the background density, we derive
for the mean background density contrast

p(r,t)
Po(t)

Since A® = G M B? the mean density contrast is given by

< 3M 67GB?(n — sinn)?
=1+44(rt) = A (1 —conm)? (1.36)

= 9(n—sin(n))?
5= 5 1 cos () 1 (1.37)

For small ¢ the linear evolution for the average density contrast is recovered. In this
limit

- 362 B
~ — ~ — 1.
) 50 (¥ (1.38)
leading to
3 [/6t\®

For an EdS—universeat R = Rmax and t = tmax EQ. (1.33) can be used to determine
the constant B (Padmanabhan, 1993). Using theresulting expression wefindtoleading
order

g /\23
0= =9; <t_> o aggs(t) (1.40)
i

The collapse of the sphereto R = 0 occursat t = 2tma. At thistime the extrapo-
lated linear overdensity is

Serit = 0(2tmax) = 23—0(127r)2/3 = 1.686. (1.41)

For open models and models with a cosmological constant one determines different fit
formulae for the determination of 62, (NFW).

The example presented above of a spherical collapse is quite unredlistic, because
it is unlikely that the overdense regions are homogeneous and spherically symmetric.
In amore realistic model the non—radia gravitational forces will prevent the collapse
toR = 0at = 2tma. INnstead the particles are scattered from their radial orbits.
The collapse will stop once the system isvirialized, meaning that the amount of kinetic

energy FEiin of the system equals the amount of potential energy Epot.

Press-Schechter Theory

In the following | am interested in determining the mass function of gravitationally
bound objects like galaxies and clusters of galaxies in the universe. Even though
these objects are nonHinear, Press & Schechter (1974) were able to give a simple
recipe to compute the number density of bound objects f(A)dM in the mass range
(M, M + dM) starting from a Gaussian linear density field. Here| sketch the original
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arguments given by Press & Schechter (1974). A detailed discussion of PS—theory can
be found in White (1996), Padmanabhan (1993) and several other textbooks (Peacock,
1999; Coles & Lucchin, 1995).

Thebasi ¢ assumption entering PS-theory isthat regionsof high density inthelinear
field will eventually form gravitationally bound objects. Starting from a density field
dr(x) filtered on spatial scale R, and assuming Gaussian statisticsfor the density field,
the distribution of the density fluctuationsis given by

1 62
P(éR,t)ddR = W €Xp (—m)défg, (1.42)
where
3 A
>0 - | (‘ST’;,wk(t)PW,?(m (143)

isthermsdensity fluctuation on scale R at timet. Wy, R denotes the Fourier transform
of atop—hat window function. Thereis aone to one correspondence between the filter
scale R = R(M) and the mass M. The fraction of objects with mass greater than M
is then obtained from the distribution function (1.42) as

OO 1 5((:)rit
F(M) o P(0g,z)dég 2erfc <\/§U(R, 2 ) , (1.44)
whereerfc(x) isthecomplementary error function, and aparameterization with redshift
z instead of time ¢ isused. Press & Schechter (1974) made the assumption that this
fraction be identified with the fraction of particleswhich are part of anon linear lump
with a mass excceding M = 4npa®R3/3. A reasonable choice for dgit is the linear
overdensity at collapse of aspherical perturbation of 1.688 givenin Eq. (1.41).
ogit(z) depends on the growing mode D (z, Qg, Q4)

o(R,z) = 0(R,0)D(2). (1.45)

Fit formul ae for the computation of thegrowing mode D (z, 2o, 24 ) for different cos-
mologies can be found in NFW. The mass function f (M) is determined by simply dif-
ferentiating equation (1.44) with respect to M

pony = S0

Under the preposition that high density regions will form bound objects we derive the
comoving number density Nnao(M, z)

Nhao(M, 2)dM = — (%) (%)1/2 (%) (%f—&) exp (—‘%‘ﬁ%) dM
(1.47)

(1.46)

by multiplying the mass function (1.46) with 25/M . In expression (1.47) an additional
factor of 2 isincluded correcting for the fact that the integral over all massesis

/Ooof(M)dM:/OoodF: % (1.48)
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even though it should be unity. This discrepancy arises because points with § < it
can also contribute to the number density Ny, if alarger filter size R, > Risused, i.e.
the probability for thisto happen is non zero, a point neglected in the above arguments.
An alternative derivation correctly accounting for the underdense regions can be found
inBond et al. (1991).

Once the cosmology, power spectrum |é; | and the filter function Wy, are specified
the comoving number density Nyao Can be computed.
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Chapter 2

Gravitational Lensing

Here | briefly review the ideas important for weak gravitational lensing and for weak
cosmological lensing. More thorough reviews of gravitational lensing are found in
Schneider, Ehlers, and Falco (1992), Blandford & Narayan (1992), and Narayan &
Bartelmann (1996); areview concentrating on weak lensing is written by Bartelmann
& Schneider (1999).

After describing the basics of weak gravitational lensing | present the spatially fil-
tered mass measure My, andits properties. Theaperture mass measure My, wasfirstin-
troduced by Schneider (1996, hereafter S96). First semi—analytical investigationswere
performed by Schneider et al. (1998, hereafter SYWJK). M, iswell suited to determine
the statistical properties of large—scale structure (LSS), but it can also be employed to
detect clusters according to their mass irrespective of their luminous properties.

These applications of Mg, are tested in later chapters with N—body simulations.
Herethereader isacquainted with the N—body simulationsused. Furthermorel discuss
the generation of shear maps from ray tracing simulations of weak lensing needed for
determining the statistical properties of LSS, the cosmic shear.

2.1 Weak Gravitational Lensing

In Einstein's Theory of General Relativity, light propagates on null geodesics of the
gpace-time. Fortunately, for almost all astrophysical relevant cases, the overall geom-
etry of the universe can be described by the FLRW-metricintroducedin Sec. 1.1, where
the matter inhomogeneities responsible for the lensing can be considered as local per-
turbations. Within this approximation a viable picture to describe gravitational lens-
ing isto assume that light propagates through an unperturbed space-time up to a point
closeto the matter inhomogeneity acting aslens. Thelight deflection closetothelensis
characterized by alocally flat Minkowskian space-time weakly perturbed by the New-
tonian gravitational potential of the mass distribution of the lens. The prerequisitesfor
this approach are that the Newtonian potential ¢ issmall: |¢| < ¢?, that the peculiar
velocity v of thelensissmall, v < ¢, and that thelensis small compared to the Hubble
radius < ¢/ Hy. These conditions are satisfied in virtually all situations of astrophysi-
cal interest, e.g. for acluster of galaxiestypical velocitiesare of order 10° kms™!, and
typical Newtonian potentials are of order ¢ < 1075¢2.

The effect of space-time curvature can be described by an effective index of refrac-



22 2. Gravitational Lensing

tionn,
2 2
n=1-2¢=1+ =24l (2.1)
c c

Since the Newtonian gravitational potential is defined such that it approaches zero at
infinity, thus leading to a negative potential, the refractive index is larger than unity:
n > 1. Inthis case light travels more slowly in a gravitational field ¢ as compared to
free vacuum causing the deflection of the light rays when they pass through the gravi-
tational field. The deflection angleistheintegral along the light path of the gradient of
In n perpendicular to the light path, i.e.,

2
a:—/vmmw:§/vmw. (2.2)

For all astrophysically relevant situations the deflection angleis very small. Therefore
V 1 ¢ can beintegrated a ong the unperturbed ray instead of the deflected light ray, thus
simplifying computations. Using Eq. (2.2) the deflection angle of a point mass can
easily be computed. The Newtonian potential of thelensis

GM
(b2 + Z2)1/2’
whereb istheimpact parameter of the unperturbed light ray, and z indicatesthe distance

along the unperturbed light ray from the point of closest approach. Now the deflection
angle of apoint massis given as

¢(b,z) = — (2.3)

4GM
c2

o= (2.9

If the di stances between source and lens and |ens and observer are much larger than
the spatial extensions of the lensitsalf, it is justified to use the thin screen approxima-
tion. In this case the mass distribution p(r) of the lens can be projected along the line—
of—sight onto the lens plane perpendicular to the line—of—sight. The lensis then char-
acterized by the surface mass density

EK)Z/ﬁKJN% (25)

where ¢ isthetwo dimensional vector inthe lens plane. Using the surface massdensity
the deflection angle & isthe sum of the deflectionsdueto all mass elementsin the plane

A _4G ’ C_CI !
a(0) = g [ BE—pmee (26)

The lens equation relates the true position of the source to the positions of the im-
ages on the lens plane. In Figure 2.1 the lensing geometry of atypical lens systemin
the thin screen approximation is displayed. Dy, Dys, and Ds denote the angular diam-
eter distances from the observer to the lens, the lens to the source, and the observer
to the source, respectively. The source plane and lens plane are perpendicular to the
line—of—sight. Then the lens equation can be read off from Fig. 2.1 as

Ds «
n= D—dC — Dysé(€)- (2.7)



2.1. Weak Gravitational Lensing 23

Source plane

ds

Lens plane
I

Observer

Figure 2.1: Geometrical setup of atypical gravitational lens system in the thin screen
approximation. Dy, Dgs, and Dg denote angular diameter distances as defined in Sec.
1.2.

With angular coordinatesn = D3 and ¢ = Dy6 the lens equation transformsto
B=60——a&(D40) =0 — a(f), (2.8)

with (@) being the reduced deflection angle—i.e. the deflection angle at the observer.
Equation (2.8) relates the true position 3 of the source image to an observed angular
position 6.
Introducing the dimension-less surface mass density
o E(Ddg) C2 DS

- with g =S _—S
" S “ = 47nG DyDgs’

and using Eq. (2.6), the reduced deflection angle reads

(2.9)

1 00
a(f) = ;/W Iﬁ(el)|0_0,|2d291. (2.10)
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A lenswith surface mass density 32 > Y. for a certain source position 3 produces
multipleimages . Hence, X isacharacteristic valuefor the surface mass density and
is called critical surface mass density. The dimension-less surface mass density k —
which is also called convergence for reasons which will become apparent later in this
section — thus can be used to distinguish between cases of weak and strong lensing.
In the strong lensing regime x > 1 holds for some values of 8 which is a sufficient,
but not necessary condition for multiple images to occur. In the weak lensing regime
k < 1, towhich I will confine the discussion in the subsequent sections.

The reduced deflection angle can be written as the gradient

a(8) = ViH(0) (2.11)
of an effective lensing potential
»(0) = % / #(60')In|6 — &) 40 (2.12)

This scalar potential /(@) can also be interpreted as the appropriately scaled, pro-
jected Newtonian potential of the lens,

. Dys 2
P(60 = DuD. & / #(Dyb, = (2.13)

and the Laplacian of 1) isrelated to the convergence « viathe two—dimensional Poisson
equation

A(8) = 2x(8). (2.14)

Therefore the convergence « and the deflection angle a arerelated by means of the
deflection potential as
2 00;

K(6) = %va ca(8) = (2.15)

Looking at angular scales on which the defl ection angle is approximately constant,
the lens mapping (2.8) can locally be linearized, leading to the Jacobian matrix

B (. 0?(8) [ 1=-k—m —Y2
AB) = 6 = (5” - 39i39j> B ( —y  l—k+m ) (2.169

_ ok 10}) cos (2¢)  sin(2¢)
= (=n) < 01 ) h ( sin (2¢) — cos (29) ) (2.160)

In equation (2.16a) the complex shear y = 71 + iye = |7y|€?*? isintroduced as

= %(1/),11 —P92) , Y2 =12, (2.17)

wheretheindices following the commas denote partial derivatives with respect to 6;.
Now it becomes obvious why the dimensionless surface mass density « is also
called convergence: The Jacobian matrix A describes the local distortion of images.
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Thefirst term of equation (2.16a) describestheisotropic focussing of thelight rays due
to the convergence « at the position of an image in the lens plane. The second termin-
volving the shear y accountsfor thetidal effects exerted by all the matter outside of the
light beam. Thus the convergence leads to an isotropic magnification or demagnifica-
tion, whereasthe shear causesthe distortion of theimages, e.g. anintrinsically circular
source is mapped to an ellipse.

Gravitational lensing conserves surface brightness 7, but it changesthe angle w an
image subtends on the sky as compared to the undeflected source. Therefore, the mag-
nification y, i.e. the ratio between area of the image and of the source, is simply the
reciprocal of the determinant of A

_ 1
~ det A

1 (2.18)

So the area distortions caused by the deflection are given by the determinant of the Ja-
cobian matrix of the lens mapping & — 3

2.1.1 Weak Cosmological Lensing

Now | briefly turn to weak cosmological lensing, which is needed in order to investi-
gate cosmic shear, the distortion of light bundles from distant sources in the universe
used to investigate the intervening mass distribution. Even though the thin screen ap-
proximation hasto be dropped for investigating lensing by large—scal e structure (L SS),
it ispossibleto define adeflection angle a: in close analogy to the deflection angle (2.2)
defined in the thin screen approximation.

However, before we are in a position to define the deflection angle o for weak
cosmological lensing, one complication has to be considered. In weakly perturbed
Minkowski space, i.e. in cases where the mass inhomogeneities are well localised one
choses an unperturbed ray as reference ray. For weak cosmological lensing this con-
cept hasto be generalized to large scale massinhomogeneities asit is not obvious what
an unperturbed ray isinthis case. In auniverse with expanding background model the
meaning of ‘" straight” fiducial ray isnot clear, because any physical fiducial ray isde-
flected by the potential gradients along its way. Therefore (0, w) is interpreted such
that it is the comoving separation vector between an arbitrarily chosen fiducial ray and
a closely neighbouring light ray. So, the light ray simply is described relative to the
neighbouring, fiducial ray.

The net deflection angle at distance w from the observer between the two rays z’
and z, divided by the angular diameter distance to w, henceis

fr(w) c? fr(w)

Thisdeflection angle of alight ray startsout at the observer into the direction 6 relative
to the nearby fiducial ray. Absolute deflection angles cannot be measured; the relative
deflection between the two light rays is measured instead. All measurable effects of
light deflection depend on the derivatives of the deflection angle, so the choice of the
fiducial ray is not important. In analogy to the thin screen approximation (2.15) an ef-
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fective convergence ke is defined by

82
0x;0x;

f%‘eff(O,w):—Vean = / dw 2 fre(w I))f( w')

fK( ¢/ (w')0, w].

(2.20)

Thiseffective convergence k¢ can be used to computelensing effects of LSSinaanal-
ogous way to the convergence « in the thin screen approximation.

2.2 TheAperture MassMeasure M,,
In this section, | briefly summarise the properties of the aperture mass, i.e., its defini-

tion, its relation to the shear, and its signal-to-noise ratio. For more details, the reader
isreferred to S96 and SYWJXK.

221 M,, Statistics

Thespatially filtered massinsideacircular aperture of angular radius @ around the point
¢ inthelens planeis defined by

/ d?9 k() U(]9 — ¢)), (2.21)

where the continuous weight function U (99) vanishesfor ¢ > 6. If U(¥) isacompen-
sated filter function,

/ " 499 U() =0, 2.22)
0

one can express M,,, interms of the tangential shear v, (£; ¢) at position £ + ¢ relative
to¢ as

0 = [ el Qe (223)
(Fahlmann et al. 1994; S96), where

1(&:¢) = —Re (v(€ + e ™), (2.24)

and ¢ isthe polar angle of £. Thefunction @ isrelated to U by
9 9
9= / &' 9 U() — U(9). (2.25)
0

2.2.2 Signal-to-Noise Ratio

An estimate of the shear field «, and thus of the aperture mass M,,(¢) through
Eq. (2.23), is provided by the distortions of images of faint background galaxies. The
complex ellipticity of galaxy images is defined in terms of second moments of the
surface-brightnesstensor (e.g. Tyson et al. 1990; Kaiser & Squires 1993). Specifically,
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| use herethe ellipticity parameter ¢ (Schneider 1995; Seitz & Schneider 1997), which
is defined such that for sources with elliptical isophotes of axisratio r < 1, the modu-
lus of the source dllipticitiesis given as |e(®)| = (1 — r)/(1 + r), and the phase of the
) istwice the position angle of the major axis.

The complex image ellipticity e can then be calculated in terms of the source el-
lipticity e®) and the reduced shear ¢ = (1 — k)~! by the transformation (Seitz &
Schneider 1997)

€ +g
€E= —m= .
1+ g*e(s)
Thisrelation is valid only for noncritical clusters with o < o¢. For critical clusters,
it hasto be replaced by a different transformation. However, as| am mainly interested
in the weak lensing regime, the above relation is sufficient here.
It has been demonstrated (Schramm & Kayser 1995; Seitz & Schneider 1997) that
the ellipticity e of a galaxy image is an unbiased estimate of the local reduced shear,
provided that the intrinsic orientations of the sources are random

(e®y =0, (2.27)

(2.26)

with the average taken over an ensemble of sources. Then all average net dllipticities
reflect the gravitational tidal effects of the intervening mass distribution. In the case of
weak lensing, k < 1, one then has

() =g=vy (2.28)

by averaging (2.26) with the probability distribution of the source elipticities. In my
application of the M, statistics in Chapters 3,4 | assume a Gaussian probability dis-
tribution,

1 (s)2
ps(|e¥)]) = —— exp (_Q) . (2.29)

mo2 [1 — exp (—o¢ 2)] o2

Asfor the tangential shear component -y, occurring in (2.24), asimilar quantity for
the image ellipticities can be defined. Consider a galaxy image ¢ at a position 9; +
¢ relative to the point ¢ with a complex image ellipticity ¢;. In analogy to (2.24) the
tangentia dllipticity e;(9;; ) of this galaxy isthen given by

(i ¢) = —Re (ei(9; + ¢) 729, (2.30)

where ¢; isthe polar angle of ;.
Now theintegral (2.23) can be estimated by a discrete sum over galaxy images,

Mp(€) = 3 (9550 Q. @31

wheren isthe number density of galaxy images. The discrete dispersion o4 of the aper-
ture mass M, (¢) isfound by squaring (2.31) and taking the expectation value in the
absence of lensing, which leadsto

2
0h = 53 2 Q@ (9, (2.32)
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where 02 = (|(®)]?). Performing an ensemble average of Eq. (2.32) leads to the con-
tinuous dispersion o

71'0'2

4
o2() = —< / do 9 Q*(0). (2.33)

nJo

Finally, the signal-to-noiseratio S at position ¢ is

Map(C) _ @ ZZ eti (94 ¢) Q(34]) ]
oa e [N Q(8)
The M, statistics in the continous (2.23) and discretized version (2.31) together

with the signal-to-noiseratio (2.34) are the three main equationsthat will be put to use
in the following two Chapters 3 and 4.

S(¢) =

(2.34)

2.2.3 Weight Functions

So far, the formalism for aperture mass measures and their signal-to-noiseratiosisin-
dependent of the choice for the weight function U. Specialising U now, we are led to
aperture measureswith different merits. Several principal choicesfor thefilter function
have been suggested in theliterature. Inthisthesis| will usethree different choicesfor
the weight function.

For investigating the statistical properties of LSS in chapter 3 | used the generic
filter function for I = 1 from the family given in SYWJIK: writing U (9) = u(9/8) /92,
and Q(9) = q(19/6) /92, | take

u(z) = % (1-2?) (% - :c2> , (2.35)
and
o) = 2a*(1 - 27) (236)

withu(z) =0 = ¢(z) forz > 1.

Since the filter function (2.35) and (2.36) is not designed for detecting mass con-
centrations, itsfilter function is not optimised for achieving high signal-to-noiseratios,
leading to high noiselevelsin asignal-to-noisemap. Schneider (1996) solved thisprob-
lem by introducing the smooth, continuous weight function

1 for 0<z< 1R
1 V1R
_ —c for MR<z<wnR
Ust) = 1—c<\/<w—u1R)2+<u1R>2 ) e
o8 (R —1)*(z — aR) for mR<z<R

(2.37)

In the following, the term S-statistics refers to the signal-to-noise ratio obtained from
Eq. (2.34) using thefilter function Us(x), which guaranteeslow noisein the signal-to-
noiseratio map. Theparametersa, b, and ¢ aredetermined oncer, and v, are specified;
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see Schneider (1996). | choose v; = 0.05 and v, = 0.8 (leadingto @ = 0.7133,
b = —18.8875, and ¢ = 0.1239) in order to achieve high signal-to-noise ratios and
evaluate the S-statistics for an aperture size of 2 arc minutes.

A third possible choice for the weight function |eads to the (—statistic proposed by
Kaiser (1995) and first applied by Fahiman et a. (1994). It givesalower bound to the
average surface mass density x within acircle inside an annulus by measuring the dis-
tortions of background galaxy images inside the annulus. | discuss the {—statistic in
more detail in chapter 4 in the context of cluster mass estimation.

2.2.4 Analytical Work Donewith M,

The aperture mass has been considered in the framework of blank field surveysin a
variety of earlier publications. Introduced as a convenient statistics for cosmic shear,
SYWJIK have calculated the rms of M, asafunction of angular scale, using the Pea-
cock & Dodds (1996) approximation for the non-linear evol ution of the power spectrum
of density fluctuations. Like other two-point statistics, the dispersion of M, isanin-
tegral over the power spectrum of the projected mass distribution, weighted by afilter
function. The filter function corresponding to (pr) is very narrow and can be well
approximated by a delta function (Bartelmann & Schneider 1999). Hence, (Mgp(9)>
reproducesthe shape of the projected power spectrum and, depending on the cosmolog-
ical model and the redshift distribution of the sources, it revealsabroad peak at § ~ 1'.
One convenient property of the aperture massisthat the correlation function of M, of
two apertures spatially separated by Aé quickly decreases and already achievesvalues
of 1072 for A@ ~ 26. This means that measurements of M,,, from alarge coherent
area can be considered independent if the apertures are densely laid out on this data
field; thisisin contrast to the rms shear in apertures which is strongly correlated, and
thus must be obtained from widely separated regions on the sky.

Being ascalar quantity, M, can aso be used for higher-order statistical measures
of the cosmic shear. SYWJIK calculated the skewness of M,j,, using Eulerian perturba-
tion theory for the evolution of the three-dimensional density contrast 4. In agreement
with Bernardeau et al. (1997) they found that the skewnessis a sensitive function of the
cosmic density factor g, and isin thisapproximation independent of the normalisation
of the power spectrum.

A measurement of the dispersion of M, is affected by two main sources of statis-
tical error: the intrinsic elipticity distribution of the source galaxies, and cosmic vari-
ance. To estimatethe latter, one needsto know the kurtosisof A,;, which cannot easily
be determined analytically.

Values of M,, much larger than its rms probe the highly non-Gaussian regime of
the projected density field. From its definition, one sees that large values of M, are
expected if the aperture is centred on a density peak with size comparable to the fil-
ter scale §. Therefore, the aperture map can be used to search for such density peaks,
presumably collapsed dark matter haloes, in blank field imaging surveys. In this way
it is possible to obtain a mass-selected sample of such haloes (S96). Simple analyti-
cal argumentsin S96 suggest that dark matter haloes with an approximately isothermal
profile are detectable with a signal-to-noise ratio larger than 5 if their velocity disper-
sion exceeds~ 600 km/s, assuming anumber density of background sourcesof n ~ 30
arcmin~2. Indeed, thistheoretical expectation was verified in the lensing investigation
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of the cluster MS1512+36 (Seitz et al. 1998b). Thiscluster hasavelocity dispersion of
about ~ 600 km/s, asobtained from strong lensing modelling and from spectroscopy of
cluster members, and is detected in the weak lensing analysiswith very high statistical
significance.

Assuming that the high signal-to-noise peaks of M,, are due to collapsed dark
matter haloes, one can attempt to estimate the abundance of such peaks using ana-
lytic theory. KS1 have calculated the number density of haloes with aperture mass
larger than M,,, N(> M,p,0), assuming (1) that dark matter haloes are distributed
in mass according to Press & Schechter (1974) theory which yields the number den-
sity of collapsed haloes as a function of halo mass and redshift (1.47), and (2) that the
azimuthally-averaged projected density profiles of these hal oes can be described by the
projection of the universal halo density profilefound in numerical simulationsby NFW.
They found that the mass profile of haloes in the massrange 3 x 10''My < M <
10'5M, isindependent of the power spectrum and the cosmological parameters, and
can be well described by a universal fit formula

3H?2 Qo dc
) = 526 2 Q) rira iR (2:38)

depending on the characteristic density d. and the scaleradiusr; givenasrs = ro90/c,
where rqgg isthevirial radius of asphere with an overdensity of 200 x pg and c isthe
concentration parameter. Q(z) is determined by (1.14).

Depending on the cosmological model and on the redshift distribution of the faint
galaxies, the number density of peaks of M,;, with a signal-to-noise ratio larger than
5 was estimated to be 2> 10 per square degree, and the redshift distribution of these
haloes is strongly dependent on the behaviour of the linear growth factor for density
perturbations, and thus on €. This abundance is encouraging, since it allows one to
obtain samples of haloes selected by their mass properties alone (for afirst observa-
tional example, see Erben et al. 1999).

Using the same mode!, KS2 have cal cul ated the probability distribution of M, for
values of M,, much larger than its rms, assuming that this non-Gaussian tail of the
probability distribution is dominated by dark matter haloes. They found that the distri-
bution is very well described by an exponential; i.e., the tail is much broader than for
aGaussian.

All these analytic predictions are based on a number of approximations and sim-
plifying assumptions. In Chapter 3 below | compare these analytic results with those
found in ray-tracing simulations through a cosmological mass distribution obtained
from very large N-body calculations, as described in the next section.

2.3 N-body Simulations

The N-body simulations used are a set of adaptive particle-particle/particle-mesh
(AP*M) simulations. Thelong-range component of the gravitational forceis computed
by solving Poisson’s equation on a grid. The grid calculation is supplemented with a
short range correction computed either by adirect sum over neighbouring particles, or,
in highly clustered regions, by combining a calculation on alocalised refinement mesh
with adirect sum over a smaller number of much closer neighbours. The parameters
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Simulation SCDM +CDM ACDM OCDM

Npar  256°  256°  256°  256°

lot[h' kpc] 36 36 30 30
I 05 021 021 021
Lvox[h~' Mpc] 85 85 141 141

Qp 1.0 1.0 0.3 0.3
Ay 00 0.0 0.7 0.0

Hy [km/sMpc] 50 50 70 70
o5 06 0.6 0.9 0.85
mp10°% Mg 1.0 1.0 1.4 1.4

fildsize[?] 2.7 2.7 3.4 3.9

Table 2.1: Parameters of the N-body simulations.

used by the N-body simulations are given in Table 2.1, al simulations use periodic
boundary conditions.

Thesimulation adoptsthe approximationto the linear CDM power spectrum (Bond
& Efstathiou 1984) already givenin Eg. (1.30). The normalisation constant, A, ischo-
sen by fixing o3, the rms density contrast in spheres of 8 h~! Mpc radius. It is deter-
mined following the procedure outlined by White, Efstathiou & Frenk (1993) to meet
the present-day local cluster abundance of ~ 8 x 106 h% Mpc 2 for rich galaxy clus-
ters.

The simulations were run with the parallel adaptive AP*M code HY DRA (Couch-
man et al. 1995; Pearce & Couchman 1997) kindly made available by the Virgo Super-
computing Consortium (e.g. Jenkins et al. 1998). They followed 2563 particles using
aforce law with softening length Isos ~ 30 h='kpc at z = 0 (the forceis ~ 1/2 its
1/r? vaue at one softening length and is almost exactly Newtonian beyond two soft-
ening lengths). I Was kept constant in physical coordinates over the redshift range
of interest to us here. The simulationswere carried out using 128 or 256 processors on
CRAY T3D machines at the Edinburgh Parallel Computer Centre and at the Garching
Computer Centre of the Max-Planck Society. These simulations have previously been
used for studiesof strong lensing by Bartelmann et al. (1998), for studies of dark matter
clustering by Jenkins et al. (1998), and for studies of the relation between galaxy for-
mation and galaxy clustering by Kauffmann et al. (1999a,b), and Diaferio et a. (1999).

24 Generation of Shear Maps with Ray-Tracing Simula-
tions

Simulated maps of the shear due to weak lensing by large-scal e structure are made by
performing ray tracing simulations through the dark matter distribution produced by
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the above N-body simulations. The ray tracing simulations of weak lensing were com-
puted by JSW. They used amultiple lens-plane cal cul ation that implementsthe discrete
recursion relations for the position of a given photon and for the Jacobian matrix of
the lens mapping at this position (Schneider & Weiss 1988; Schneider et al. 1992; see
Seitz et al. 1994 of athorough justification for this approach). Aside from the distance
factors, the main input into the recursion relations are the shear matrices at each lens
plane. The ray tracing algorithm consists of three parts: constructing the dark matter
lens planes, computing the shear matrix on each plane, and using these to evolve the
photon trajectory from the observer to the source. The detailsinvolved at each step are
asfollows:

1. The dark matter distribution between source and observer is projected onto 20 — 30
lens planesequally spaced (in comoving distance). The particle positionson each plane
are interpolated onto agrid of size 20482. Since the three-dimensional mass distribu-
tion is taken from a single realisation of the evolution of the LSS, the projected mass
distributions of consecutivelens planesare correlated. |n order to decorrelatethem, the
projection is carried out along a randomly chosen one of the three coordinate axes; in
addition, the origin of the coordinate system in each lens plane is trandated by a ran-
dom vector and the lens plane is rotated by arandom angle. In this way, the projected
mass distributions of consecutive lens planes are as independent as possible, given the
restriction of only asingle realisation of the 3-d matter distribution.

2. On each plane, the shear matrix is computed on a grid by Fourier transforming the
projected density and using its Fourier space relation to the shear. The inverse Fourier
transform is then used to return to real space.

3. The photons start on a regular grid on the first lens plane. Perturbations along the
line—of—sight distort this grid and are computed using the relation between deflection
angle and projected density. Once the photon positions have been obtained, the shear
matrix is interpolated onto them and the recursion relations are solved for the Jacobian
of the mapping from the n-th lens plane to the first plane.

4. Solving the recursion relations up to the source plane yields the Jacobian matrix at
these positions. Note that the ray tracing is done backwards from the observer to the
source, thus ensuring that all the photons reach the observer. Thefirst lens planeisthe
image plane and has the unperturbed photon positions. All sources are assumed to be
at aredshift of zg = 1.

There are two kinds of resolution limitations in the ray-tracing simulations. The
first reflectsthefinite size and resol ution of the N-body simulations, the second the use
of finite grids when computing deflection angles and shear tensors on the lens planes.
At the peak redshift of the lensing contribution, both effects give a small scale resolu-
tion of order 0.2'. However, sincethelenséefficiency isnot very sharply peaked, effects
at other redshifts also enter. Thus depending on the statistical measure being used, the
small scaleresolution liesin the range ~ 0.2" — 0.4'.

On large scalesthe finite box-size of the N-body simulations sets the upper limit on
the angular scales available. The angular size of our simulation box at z = 1 is about
3°. Thuson scalescomparableto 1°, only afew sampleregionsareavailable, leadingto
large fluctuations across different realisations. | therefore restrict my considerationsto
apertureswith radius < 10’ using one realisation for each cosmological model. For
the 7CDM model, | use ten different realisations of the ray tracing simulations (i.e.,
they differ in the direction of projections, the translation and rotation of the projected
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matter distribution in theindividual lens planes) to estimate the cosmic variance.
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Chapter 3

Cosmic Shear and Halo
Abundances. Analytical versus
Numerical Results

The aperture mass My, introduced in the last chapter has been shown in a series of re-
cent publicationsto be auseful tool for detecting cosmic shear. Asalready pointed out
in Sec. 2.2.4 quantitative analytical predictions of Mg, have been based on anumber of
simplifying assumptions. Here | test the validity of these assumptions and the quality
of the analytic approximations, using the ray racing simulations through cosmological
density fields (Sec. 2.4) generated from N—body simulations (Sec. 2.3).

Those analytic approximations that take into account the nor-inear evolution of
the matter distribution are in surprisingly good agreement with numerical results. This
is true for the root mean square (rms) value of My, and aso for the halo abundance,
while the predictions for the skewness, based on quasi—linear theory, show alarge dis-
crepancy with numerical results.

In addition | verify that the probability distribution function of the aperture mass
obtained from the simulated shear maps decreases exponentially for Mg, values much
larger than therms. Finally, | give valuesfor the kurtosis which allow to make an esti-
mate of the cosmic variance for the rms of My, .

Given the good overall agreement | conclude that comparisons between observed
distributions of Mg, values and theoretical results provide a powerful tool for testing
cosmological models.

3.1 Application of M,, to Simulated Shear M aps

For each of the shear maps generated as described in the last chapter, a 2-dim. “ M,
map” is created by simulating “observations” of M,,;, as afunction of position on the
2-dim. shear maps. For the number density of the background sources avalue of n =
30 arcmin~? is assumed, while the dispersion of the intrinsic ellipticity distribution is
chosenaso, = 0.2. Theprobability distribution function of A/, (PDF) and someof its
moments are then cal cul ated for each M, map and compared to the analytical model.
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Figure 3.1: The 2-dimensional distribution of M,,, for astandard CDM (SCDM, upper
panel) and an open model (OCDM, Q,,, = 0.3, lower panel), with parameters givenin
Table 1. Thefield sizein both panelsis 2°.

It is most instructive to consider two different sets of simulated maps: in thefirst,
| neglect noise from theintrinsic ellipticity distribution of the background sources and
compute M, directly from the shear values on the grid according to Eq. (2.23). This
isdone either in the limit of weak lensing, i.e., (2.23) isused directly, or 4 is replaced
in (2.23) by the reduced shear g, which is the quantity estimated from the observable
galaxy dllipticities.

In the second set of simulations ellipticities of background galaxies are introduced
according to the distribution function (2.29). The ellipticities add noise to M,,,.

The noise-free results are the ones best compared to the analytic results, whereas
those accounting for intrinsic ellipticities yield a more realistic description of the ob-
servational situation. In thefollowing the term “without noise” will refer to thefirst set
of M,, simulations, while the term “with noise” will be used for the second one.
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As an illustrative example, the 2-dimensional distribution of M, for a standard
CDM (SCDM) and an open model (OCDM) is shown in Fig. 3.1. In both cases high
peaks in these maps correspond to haloes in the intervening matter distribution. It is
possibleto construct ashear-limited sample of hal oesfrom these mapsand to determine
their abundance. Thisis done explicitly in Chapter 4.

Comparing the two model universes, we see that the M,;, maps reflect the differ-
ent growth of structurein different cosmologies. The M,, map of the OCDM model is
dominated by many isolated peaks which correspond to already collapsed dark matter
haloes. Thelevel of background noise coming from matter not yet collapsed is consid-
erably smaller than for the SCDM model in which the structure forms later. The peaks
in the SCDM model are less pronounced and isolated than in the open model.

3.2 ThePDF of M,, and its Moments

Once the 2-dimensional distribution of M, is computed, it is straightforward to de-
termine the one-point probability distribution function (PDF) of A, and its moments.
The PDF contains the cosmological information. The lower order moments like rms
value and skewness can be derived analytically under simplifying assumptions, but the
PDF itself cannot be calculated. Therefore, ray tracing simulations provide the only
tool for testing the precision of the analytical calculations.

1000.000 E

-0.04 0.00 0.04 0.08-0.020 0.000 0.020 0.040
M M

ap ap

Figure 3.2: The normalised PDF of M, for different filter scales # and cosmologies:
SCDM (solid line), 7CDM (dotted line), OCDM (dashed line) and ACDM (dashed-
dotted line). The histograms are obtained from M, maps without noise. Note the dif-
ferent scales on the horizontal axis.
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Figure 3.3: The rms value of M,, computed with the filter (2.35) versus filter scale
¢ for different cosmologies. Linesrefer to analytic values of (2,)'/2 from SYWJK,
while symbols refer to rms values obtained from simulations without noise, using
(Ieft panel) and g; (right panel). The error bars in the |eft panel are determined from
(3.5) and (3.4). The symbols for OCDM and 7CDM are slightly offset along the 8-
axis for better display. The error barsin the right panel show the standard errors from
10 redlisations of the 7CDM model for 2,5, and 10 arcmin. They are centred on the
arithmetic mean (not on the realisation plotted).

The qualitative features of the PDF for different filter scales§ and for the four dif-
ferent cosmologies (Table 2.1) can be studied in Fig. 3.2. The first point to note is
that the non-Gaussian features, namely the tail of the PDF at high M, values, areless
pronounced for larger filter scales. Thisis due to the fact that the smaller filter scales
are more sensitive to the already collapsed, non-linear objects. The second feature to
note is the exponential decrease of the tail of Af,, which was aready obtained semi-
analytically in KS2. | shall discuss this feature in more detail later in this section.

| now turn to the rms value (M2))'/% of M,,. Fig. 3.3 compares the analytical
rmsvalue of M, calculated using the nonlinear power spectrum of Peacock & Dodds
(1996) to the rms values computed from the PDFs without noisefor ~; (Ieft panel) and
gt (right panel). The comparison of the latter shows that the difference between shear
and reduced shear is negligible even on filter scales as small as@ ~ 2 arcmin corre-
sponding to the highly nonlinear regime of the mass distribution.

In the left panel of Fig. 3.3, thereis an excellent agreement between the analytic
predictions and the rmsval ues computed from simul ationsfor the SCDM model. There
is also good agreement for the ACDM and OCDM models, especialy for the larger
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apertures. The notable exception is the 7TCDM model, for which the simulations for
small filters deviate by alarger factor from the theoretical predictions.

When interpreting this difference between analytical calculation and simulationin
the 7CDM modé, one has to keep in mind that the numerical results of Fig. 3.3 are
based on a single realisation. Asthe cosmic varianceis relatively large, it is possible
that thelarge deviationisdueto the special choice of therealisation. Thisinterpretation
is supported by the fact that the mean for the 10 redlisationsis considerable lower than
for the single realisation plotted. Furthermore, the field sizes of the simulated fields
used are too small to represent a characteristic region of the universe.
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Figure 3.4: The skewness S3 of the PDF of M, as defined in (3.1) as a function of
filter scale 8 for the same cosmological modelsasin Fig. 3.2. The analytical skewness
(lines) from quasi-linear theory iscompared to the skewness obtained from the PDF for
both, the tangential shear +; and the reduced shear g;. Errors on the 7TCDM model are
likein Fig. 3.3.

The next higher moment of the PDF is the skewness, which is defined as
(M)
(Mz,)*
for which asimilar analysis can be performed as for the rms value of M,;,. As pointed
out by Bernardeau et a. (1997), van Waerbeke et al. (1999), and JSW, the skewness
defined in analogy to (3.1) using atop-hat filter isavery sensitive probe of the cosmic
density parameter Q.

The dependence of the skewness on filter scale § is displayed in Fig. 3.4. Again,
| compare the skewness computed from the PDF obtained from the ray tracing ssim-
ulations without noise, both using ~; and g;, to the skewness of M, obtained using

S3(0) :=

(3.1)
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quasi-linear theory (SYWJK). The error bars on the skewnessfor the 7CDM model for
2, 5, and 10 arcmin are derived from the 10 different realisations and are centred on
their arithmetic mean.

Again, thedifferences between the skewness obtai ned from simul ationswith -y, and
g; are small, though dightly larger than for the dispersion, owing to the larger contri-
bution from high-x regions to the skewness. This difference, which is of order afew
percent at most, has been predicted to be small in the Appendix of SYWJIK.

When comparing the skewness as determined from second-order perturbation the-
ory for thedensity evolutionto that obtained from simulations (either computed with ~;
or g¢) we seethat the former underpredictsthe skewness by factorsof upto 2. Thisfail-
ure of quasi-linear theory for the prediction of higher-order moments has been demon-
strated previously (Jain & Seljak 1997; Gaztanaga & Bernardeau 1998). As the skew-
nessisonly determined on scalesbelow 10 arcmin, wearein aregimewherethe density
contrast is non-linear already. The skewness as calculated by Hui (1999) using the so-
called hyper-extended perturbation theory (Scoccimarro & Frieman 1999) may provide
amore accurate analytical prediction of S3 than that from second-order perturbation
theory.

Another point to note is the increase of the skewness towards smaller filter scales.
Generally speaking, such a behaviour is expected, as the non-linear structure growth
becomes more and moreimportant for small filter scales. Thisincreaseisdescribed in-
sufficiently by quasi-linear theory: for the two EdS universesand even for the A model
on largefilter scalesabove 5 arcmin, thisincrease (not the absolute value!) is predicted
satisfactorily, but theslopefor the open model islarger than analyticvalueson all scales
displayed. Thisdiscrepancy between fully non-linear simulations and quasi-linear the-
ory can be attributed to the fact that the open model is much more dominated by already
collapsed, non-linear objects than all other models.

The highest moment | consider explicitly isthe kurtosis S

(Msp)
(M3,)?

54(0) = - 3. (3.2

The kurtosisis not only important by itself, but also for the determination of the error
of the rms value of M,,, aswill be discussed. As for the skewness, the kurtosis for
the noise-free simulations for both «; and ¢; is plotted, and the scatter for TCDM is
determined from the 10 realisations. No analytic result for S, is available; however,
using third-order perturbation theory, Bernardeau (1998) has cal culated the kurtosisfor
atop-hat filter.

The difference between ~; and g, becomes important for the kurtosis, at least for
the smaller filter scales, since it is even more dominated by the non-Gaussian tail of
the PDF than the skewness. Thelarge error bars on the kurtosis are mainly dueto large
cosmic variancein combinationwith the small fieldsused; thus, the current simulations
are unable to provide an accurate determination of Sy.

| now turn to the error bars on the rms values of M,, in Fig. 3.3. In the right
panel, they were estimated as the standard deviation from 10 different realisations for
the 7CDM model. The error bars in the |eft panel were calculated as follows:

As shown in SYWJK, an unbiased estimator of (M) from a single aperture is
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Figure 3.5: Thekurtosis S, of the PDF of M, [Eq. (3.2)] asafunction of filter scale
0, for the four cosmological models. The kurtosis is derived from the PDF for both,
the tangential shear ~; and the reduced shear g;. Errorson the 7CDM model arelikein
Fig. 3.3. No analytic estimate of the kurtosis has been cal cul ated.

given by

(m6%)?

N
m Z Qi Qj €ti €t5 (3-3)

i,J 71

M =

where N is the number of galaxiesin the aperture, and @; is the value of the weight
function @ for the i-th galaxy. The dispersion of this estimator is (SYWJIK)

602 2
o’ (M) ~ Sy(MZ,)* + (W + \/§<M§p>2> : (3.4)
where the two termsin parenthesis correspond to the noise from theintrinsic ellipticity
distribution, and the Gaussian cosmic variance, respectively, whereas the term involv-
ing S is the excess cosmic variance due to non-Gaussianity. For a collection of Ny
independent apertures, al containing the same number of galaxy images, an unbiased
estimator for (M2 isthe mean M of M over these apertures, and the dispersion is

(3.5)

Note that this result does not assume that the density field is Gaussian. If one had
a collection of Nt fields widely separated on the sky, they would be statistically in-
dependent, so that Ny = N. In the opposite situation where a coherent area on the
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sky is available, one can lay down apertures on that field, but they will not be statisti-
cally independent. However, aswas shownin SYWJK, the My, values of two apertures
which touch each other (i.e., with separation twicetheir radii), are almost uncorrel ated.
Whereas the fact that the two aperture masses in these two apertures are uncorrelated
does not imply that they are independent (which would mean that the joint probability
distribution for the values of M, would factorize) —aswould be the case for Gaussian
fields — | assume the statistical independence for estimating the effective number of
fields N entering (3.5). Thus, the error barsin the left panel of Fig. 3.3 are obtained
from (3.5), assuming that the number of independent aperturesis Ny = [©/(26)]?,
where © is the side length of the simulated shear field.

In contrast, the error bars plotted in the right panel of Fig. 3.3 for the 7CDM model
at the three different filter scales @ = 2, 5,10 arcmin are based on 10 different reali-
sations of the ray-tracing simulations and allow one to obtain arough estimate for the
error from cosmic variance. Notice that the error bars are centred on the arithmetic
mean of the 10 realisations and not on the plotted results from a single realisation.

Comparing the size of the error barsin both panels, we see that both methods give
errorsof the same order of magnitude even though the errors estimated fromthe 10 real -
isations are smaller than the errorsfrom the estimator of (M,;,). Therearetwo possible
reasonsfor this: first, the effective number of independent aperturesis probably larger
than the estimate given above, so that the error bars on the left panel in Fig. 3.3 most
likely overestimate the true error. Second, in the calculation of the error bars in the
right panel, it was assumed that the 10 realisations are independent; but as argued in
Sec. 2.4 it is possible that the realisations are not completely independent. Thiswould
lead to an underestimation of the cosmic variance. From Fig. 3.3 these two competing
effects cannot be quantified. It should be noted that at least on the largest scale plotted,
the contribution of the intrinsic elipticity distribution to the error (3.5) is completely
negligible compared to the cosmic variance.

3.3 Halo Abundances

As already indicated in Sec. 2.2.4, high signal-to-noise peaks of M, can be identified
with dark matter hal oes, rendering the construction of a mass-limited (more correctly:
shear-limited) sample feasible. Analytically, the halo abundances can be modelled us-
ing the Press & Schechter (1974) prediction for the mass- and redshift-dependent halo
number density, and the universal density profile of NFW, while in the smulated M,
map all connected regions above the corresponding threshold are counted as hal oes.
Here | consider haloeswith signal-to-noiseratio S larger than 5, i.e., apeak in the M,
map is counted as ahalo if M, > M5 = 50.(0).

| consider two differently constructed halo abundancesin the following: The first
sampleis simply N(> M5, 6), the number density of haloes with an aperture mass
larger than M5 for agiven filter size §. The second sample selects peaks with M, >
M within aconnected, crosssectional areaof w¢2, where &, isthe corresponding cross
section radius; the number density of such peaksisdenoted N (> M3, > &, 6). Hence,
the size of the peaksin the second sample exceeds the threshold &, ; these peaks are ex-
pected to be more robust with respect to noise coming, e.g., fromtheintrinsic ellipticity
distribution and measurement errors. A fixed value of & = 0.6 arc minutes was used
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Figure3.6: Thehalo number density N (> M,y 6) (thin symbolsand thin solid curves)
and N (> M,,,> 0.6',0) (thick symbols and thick dashed curves) computed without
noise as afunction of thefilter scale § for four cosmol ogies as indicated in the panels.
Symbols denote results from the simulations (¢ from «y;, A from g;) whereas the two
line types display the corresponding analytic resultsfrom KS1. A signal-to-noiseratio
S > 5 isused as detection threshold for the haloes. Error bars in the upper right panel
display standard errors from 10 realisations for rCDM at 2, 5, and 10 arcmin (errors
for «; offset to the left, errorsfor g offset to the right)

corresponding to clusters with amass of 1.0 x 101°A~! M.

InFig. 3.6 the number density of the two halo samples as determined from the sim-
ulations without noise are compared to the results from the analytic calculation in KS1
over arange of filter scales2’ < # < 10'. The four panelsin Fig. 3.6 refer to the four
cosmological models considered. The error bars for the 7CDM model at 2,5, and 10
arcmin are again obtained from the 10 different realisations centred on the arithmetic
mean of the realisations.

In general, the number counts determined from simulations agree astonishingly
well with the analytical results, considering the simplifying assumptions entering the
latter. The deviations between simulations and analytical calculation for three of the
four cosmologies, namely SCDM, OCDM, and ACDM, and especialy for the filter
scales above 5 arcmin, are less than 10 %. The largest deviation found for these three
modelsis afactor of 2, for the ACDM model at smallest filter scale.

The only notable exceptionisthe 7CDM model where the deviation remains above
10 % even for the largest filter scales (& = 10 arcmin). Thisrelatively bad agreement
has already been noticed for the rms value of A, and is probably due to the fact that
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Figure3.7: ThesameasFig. 3.6 but with noisefromintrinsic ellipticities of the sources
added. For the theoretical model this is done by convolving the values from Fig. 3.6
with a Gaussian, with the dispersion obtained from the intrinsic ellipticity distribution
(see KS1). Values from the simulations are denoted by diamonds (thin and thick sym-
bols). Tangential ellipticities now are obtained according to Eq. (2.30). A signal-to-
noiseratio S > 5 isassumed for the haloes. Error bars centred on the halo abundances
arestandard errorsfor 7 realisations of the ellipticity distribution at 2, 5, and 10 arcmin.
Error barsin the upper right panel for 7CDM are from 10 realisations for 2, 5, and 10
arcmin [error for N(> M5, ) offset to theright, error for N(> Ms, > (i, 0) offset to
the l€ft].

therealisation plotted isnot characteristic for the mean properties of that model, asalso
indicated by the fact that the halo abundance lies above the mean of all realisations as
indicated by the error bars.

The good agreement between analytic estimates and numerical resultsfor the halo
number density are surprising, given that () Press-Schechter theory does not exactly
reproduce the spatial number density of haloeswhen compared to N-body simulations,
and (b) theuniversal density profilefound by NFW hasbeen obtained by spherical aver-
aging, and therefore cannot account for the non-axisymmetry of their projected density.
Furthermore, () the haloes found from the simulated M, are expected to be affected
by projection effects (Reblinsky & Bartelmann 1999) which are completely neglected
inthe analytic estimates. Despite these effects which one might suspect to yield signif-
icant discrepancies, the analytic estimates are very accurate.

| dlso investigate the halo abundance in an observationally more realistic situation
in Fig. 3.7, including the noise from the intrinsic elipticity distribution of the back-
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ground sources. The plot displays the same quantities as Fig. 3.6 except for the fact
that the halo abundances of the two different samples have been determined using the
tangential ellipticitiesinthe case of thesimulations. Theanalytic estimatesare obtained
asin KSL1. For all four cosmologies, the error bars are determined using 7 different re-
aisationsof the ellipticity distribution of the background sources (2.29). Theerror bars
from the 10 realisations shown for TCDM are dlightly sub-Poissonian, asin Fig. 3.6.
As expected from the large value of the kurtosisthe error coming from theintrinsic el-
lipticity distribution is much smaller than the error coming from the cosmic variance.
On the whole, the number of detected haloesisincreased in all cosmologies because,
dueto the steepness of the Press—Schechter massfunction for massive objects, thereare
more objects just below the threshold than above it. So on average more objects will
be lifted above the threshold by noise than brought down below it.

3.4 TheTail of M,

In Fig. 3.8 | compare the PDF for M,, > Mj as obtained from analytic calculations
(KS2) with that derived from the simulations without noise. The PDF is shown for
four filter scales = 2,4, 6,10 arcminin therange M5 < M,, < 2Mj5, for which the
analytic results predict a nearly exponential behaviour. Indeed, the numerical PDFin
the non-Gaussian tail also seemsto follow an exponential rather closely, with a lope
very similar to the analytic result.

In order to see how much the PDF varies between different realisations, | plot in
Fig. 3.9thePDFfor M5 < M,, < 2M; obtained fromthe 10 realisationsintherCDM
model, for 3 filter radii, together with their mean and the corresponding analytic pre-
diction. For the smallest filter scale # = 2/, all 10 realisations are clearly below the
analytic result, whereas for the larger filters, the realisation mean of the PDF agrees
very well with the analytic prediction.

Remembering that the analytic predictions were made by assuming that all high
values of M, are coming from regions close to collapsed haloes, in addition to the as-
sumptions used for estimating the number density of M, peaks (Press-Schechter halo
abundance and NFW density profile), this good agreement is somewhat surprising.
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Figure 3.8: The tail of the PDF of M,, for the same cosmologies as indicated in
Fig. 3.2 for different filter scales. In each panel we plot the PDF obtained from the
analytic estimatein KS2 with thin lines and that from simulationswith thick lines. The
line types specifies the cosmology: SCDM (solid line), 7CDM (dotted line), OCDM
(dashed line) and ACDM (dashed-dotted line). The M,,-range is [Ms, 2Ms], where
M = S x 0.016/6 with S > 5 for the parameter specified in the text. For comput-
ing M5 | used the fact that the dispersion of Mg, for a number density of background
sources of n = 30 arcmin—? and a dispersion of the intrinsic ellipticity distribution
oe = 0.2 equalso = 0.016.
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Figure 3.9: The tail of the PDF of M, for the 10 redlisations (thin solid lines) of the
7CDM model in comparison to the analytical result (KS2) for the tail of the PDF of
M, (thick solid line). In addition, the mean of the 10 realisations (thick dashed line)
isplotted. The different panels are for threefilter scales, 2, 5, and 10 arcmin.
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Chapter 4

Clusters of Galaxies

Inthischapter | investigate S—statistics based on the My,—statistics concerning itsclus-
ter selection properties. One major advantage of the Ma—statistics is that it directly
measures mass as opposed to light or X—ray emission based methods. In particular |
address the question whether M,—based selection reduces projection effects prevalent
in optically selected cluster samples.

Comparing synthetic cluster cataloguesproduced from N—body simulationdatavia
the S—statistics to reference catal ogues selected by Abell’s criterion | find that the S—
statistics is more reliable in terms of completeness and spurious detections.

Inaddition | also investigate the mass estimatesin cluster samples selected by both
luminosity and weak lensing effects. | conclude that the weak lensing based mass es-
timates are more accurate than those obtained from the virial theorem.

4.1 Propertiesand Detection of Clustersof Galaxies

Large galaxy surveysreveal that galaxies are not randomly distributed on the sky. Cer-
tain areas on the sky have a noticeably higher or lower than average galaxy density.
Galaxies are clustered , quantified by the galaxy—galaxy correlation function, £qg, that
behaves as

€gg =~ (r/5 hilMpc)*l-S 4.2

for galaxy seperations, 0.1 'Mpc < r < 20k~ 'Mpc. The galaxy—galaxy correla-
tion function measures the probability in excess of random of finding agalaxy at adis-
tance r from another galaxy. Many galaxiesare found in small groups of galaxies, and
about 10% of all galaxiesare found in galaxy clusters, which are gravitationally bound
and oftenvirialzed. Thesegalaxy clusterscontain fromafew tensup to athousand clus-
ter members. Large clusters of galaxies have typical massesof 5 x 10 Mg, ~ 10%8r,
and typical radii of 1.5 Mpc ~ 5 x 102°cm. In addition, these galaxy surveysfind that
galaxies form structures like walls and filaments.

There exist severa cluster catalogues, the one most widely used being the Abell
cluster catalogue (Abell 1958). Briefly, a cluster is classified as an Abell cluster if
withinthe Abell radiusof r, = 1.5 h~! Mpcfromitscentre, and after subtraction of the
mean background, the number count of galaxies exceeds a certain value n,. Counting
is restricted to the apparent magnitude interval (ms, ms + 2), where ms denotes the
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apparent magnitude of the third-brightest cluster galaxy. The actual count n, isusedto
assign Abell richness classes R. For R = 0, acluster hasto contain at least n, = 30
galaxies, whileR = 1 and R = 2 correspond to n, > 50 and n, > 80, respectively.

The Abell catalogue lists 2712 clusters north of —20° declination away from the
galactic plane. Thiswidely used cluster detection and classification scheme does not
directly depend on redshift z, even though it has traditionally been used only for fairly
shallow cluster surveys. All Abell clustersliein the redshift range 0.02 ~ z ~ 0.2.

As clusters of galaxies are the largest gravitationally bound objectsin the universe
and are thought to originate from the highest peaksin theinitial density field, they can
constrain cosmological models.

The potential problem with using clusters of galaxies for this purpose is that even
though they can be easily identified dueto their brightness, they are affected by projec-
tion effects. Various cosmologically important observableslike cluster richness, veloc-
ity dispersion, and mass estimates are affected by galaxies projected onto them.

Therefore | compare here the cluster selection by the aperture mass Mg, introduced
in Chapter 2 with that by the optical Abell criterion. | also present the contamination
with intervening matter along the line—of—sight of clusters of galaxies selected by the
S—statistics. In addition | investigate the influence of projection effects on mass esti-
mates, comparing the virial theorem based mass estimate to aweak lensing based mass
estimate, namely the (—statistic. Before doing this | describe the methodology used.

4.2 Methods

4.2.1 N-body Simulation

In order to study the influence of projection effects on cluster surveys selected by op-
tical and gravitational lensing information, | need simulated data allowing to mimic as
accurately as possible the selection of clustersand the determination of their properties,
for instancetheir masses. At the sametime, thefull phase-spaceinformationisrequired
to assess the amount of contamination of selected clusters by intervening matter along
the line—of—sight (hereafter los) and to determine the masses of the clusters with the
virial theorem.

For this purpose, | use a large, high-resolution N-body simulation of a standard
Cold Dark Matter (SCDM) universe described in Chapter 2 with the parameters given
inTable2.1. | select asimulation box located at aredshift of z = 0.431 to achieve high
lensing efficiency on sources at redshifts around unity, where | assume the sources to
be throughout this chapter.

For the analysis of gravitational |ensing effects of the simul ated matter distribution,
namely the S- and {-statistics, the high resolution provided by the N—body simulations
isessential. Again, spatial and mass resolution must be distinguished. The spatial res-
olution is determined by the comoving force softening length, in the case of the SCDM
model Igr; = 36 =1 kpc. Thislimitation is reduced by the high redshift of the simu-
lation box, where the force softening translates to a very small force softening angle,
Osot; =~ 10". The mass resol ution, which describes the effect of the finite particle num-
ber, isgiven by the particlemassm,, = 1.0 x 10'° h=! M. Thefinite massresolution
introduces a white—noise component into the simulations. This is not negligible for
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the SCDM model because there a higher proportion of the particlesisin voidsthan for
models with lower mean density.

Since | want to evaluate two different methods for detecting clustersin projection,
| first have to create a sample of true 3-dimensional (3-D) clusters or groups from the
simulation that will serve as areference set.

| extract clusters and groups from the 3-D dark-matter simulation with a friends-
of-friends algorithm (also called group-finder, cf. Davis et al. 1985). The friends-of-
friends algorithmis based on apercolation analysis: It identifies groups and clustersin
the simulation box by linking together all particle pairs separated by lessthan afraction
b of the mean particle separation. Each distinct subset of connected particles is then
taken asagroup or cluster. | have chosen b = 0.2, but the result of group finding does
not sensitively depend on the exact choice of b.

Assuming that the clusters and groups found by the group-finder are completely
virialised, | computetheir virial masses My, defined asthe mass enclosed by a sphere
with a radius ro99 Which contains a mean overdensity of 200 times the critical mass
density, p = 200 p.it. FOr an ¢ = 1 universe, this radius approximately separates
virialised regions from the infall regions of the haloes (Cole & Lacey 1996). Severa
reference sets of “true” 3-D clusters are then formed by selecting objects with My
above certain mass thresholds.

In order to be able to apply the S—statistics | first compute the lensing potential

Y(@) == [ d*0'k(0')In(|0 —0')) . (4.2)
T JR2
introduced in (2.12) via the dimensionless surface mass density « with the Poisson
equation (2.14).

Boundary conditions haveto be specified when solving Eq. (2.14) numerically. Pe-
riodic boundaries are adequate because of the periodicity of the simulation volume.

For numerically computing %, the projected particle positions are interpolated on
agrid of 20482 cells to maintain the high resolution of the N-body simulation. The
resulting surface mass density is scaled with the critical surface mass density (2.9) to
find the convergence . For anumerically stable and efficient method to convert & to
1, we use a fast Poisson solver (Swarztrauber 1984). The efficiency of this method
rests on the fast Fourier transform (FFT) leading to an asymptotic operation count of
O(2 N log N). The algorithm approximates the Laplacian on a grid, transforms to
Fourier space, solves the resulting tri-diagonal system of linear equations, and back-
transforms to real space. In contrast to other approaches, the approximation is made
here by discretising the equations, which can then be solved exactly by a subsequent
discrete FFT.

Having determined the deflection potential (@), the local properties of the lens,
such as the surface mass density x and the complex shear v = ~1 + iys, can be ex-
pressed in terms of second derivatives of (@), given in (2.17), and (2.14).

Asalready stated in chapter 2 the parametersa, b, and c of the S—statisticsare deter-
mined once v, and v, in equation (2.37) are specified; see Schneider (1996). | choose
vy = 0.056 and vy = 0.8 (leadingto oo = 0.7133, b = —18.8875, and ¢ = 0.1239) in
order to achieve high signal-to-noiseratios and eval uate the S-statistics for an aperture
size of 2 arc minutes. In addition, | assume the number density of background sources
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needed to compute the S—statisticsisn = 35 arc minutes 2 and the dispersion of the
intrinsic elipticity distributioniso, = 0.3.

4.2.2 Construction of Mock Cluster Cataloguesby Optical Cluster Selec-
tion

Having dark-matter particles only, | need to populate the simulation with galaxies for
optical cluster selection. | employ the following scheme.
Galaxy luminosities L are drawn from a Schechter function (Schechter 1976),

¢(L) = N, (L/L*)_a exp (_L/L*) ’ (4.3

with parameters L, = 3.77 x 10° L and o = 1 taken from the CfA redshift survey
by Marzke, Huchra& Geller (1994). Theformal divergence for L — 0 in the number-
density integral of the luminosity functionisavoided by introducing alower luminosity
cut-off Ly = 0.1 L,. For the normalisation of the luminosity distribution, | follow
the prescription by Schechter (1976). | calculate arichness estimate by computing the
most probable value of the third-brightest absolute magnitude M3, and then integrate
the luminosity distribution from M3 to M3 + 2. Frenk et al. (1990) showed that this
yields the dimension-less normalisation factor N, = 60.0. The normalisation factor
determines the amount of luminous galaxiesto be introduced into the simulation. The
total mass-to-light ratio of the 3-D clusters turns out to be M/L = 300 h My /Lg on
average, in qualitative agreement with observations.

Assuming that mass follows light in the model universe, galaxies inherit positions
and velocities from randomly selected dark-matter particles. In this sense, the con-
structed galaxy sample is unbiased both in number density and velocity.

Transforming luminosities to apparent magnitudes for higher redshifts, | account
for the k correction. If the spectral energy distribution varies with frequency v as a
power law with exponent o, the additive k correctionis

k=-25(1+a') log;p(1+ 2) . (4.4)

| choose o = —1.5 for the spectral index, which sufficiently well reflects the spectral
properties of ordinary galaxies.

Volume-limited cluster catalogues are then obtained after projecting particle posi-
tions onto planes along the three orthogonal axes of the simulation box. Groups and
clusters in projection are identified with a 2-D version of the friends-of-friends algo-
rithm.

| then apply the optical Abell criterion (Abell 1958) to select galaxy clusters. | also
straightforwardly apply Abell’s criterionto three-dimensional clustersin order to assess
the influence of projection effects on richness-class estimates.

For the background subtraction, | follow Frenk et al. (1990). In order to estimate
the background, i.e. the contamination by foreground and background galaxiesin the
simulation box, | assume that the number of galaxies contributing to the contamination
is proportional to the volume projected onto the cluster. In this case, | expect 8 back-
ground galaxieswithinacylinder of volume Vo = mrilpex. Therefore, acluster with
richnessclassR = 1 hasto encompassat | east 58 gal axiesin the appropriate magnitude
interval; 8 background galaxies in addition to the 50 genuine cluster members.
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Since observed column densities towards galaxy clusters will be considerably
larger than assumed here, and since the conditionsin realistic observationsare less con-
trolled than here, projection effects could even be larger in reality.

4.2.3 Detection of Dark-Matter Concentrations through Weak Gravita-
tional Lensing

The (-Statistics

A special choice of the weight function for Mg, leads to the ¢-statistics proposed by
Kaiser (1995) and first applied by Fahiman et a. (1994). It givesalower bound to the
average surface mass density x within acircle inside an annulus by measuring the dis-
tortions of background galaxy imagesinside the annulus. The {-statisticswill be used
in Sec. 4.5 for constraining the masses of clusters detected through their S-statistics.
The piece-wise constant weight function for the (-statistics reads (Schneider 1996)

1
— for 0<z< 2y
LY )
Ulz)=q -~ < : (4.5)
w(RQ—x%) for z1<z <R
0 for R<z< o

Inserting this weight function into Eq. (2.23) yields

_ 1 r2 T2 d?r
m¢(0) = ((r1,m2) = . /r1 T—Q%(T) ) (4.6)
where r isthe distance vector between the point under consideration and @, and r; and
ry > 71 are the bounding radii of an annulus around Z. It can then be shown that
¢(r1,72) isrelated to the mean convergence % (r1, r2) in the annulus by

C(r1,r2) = E(r1) — R(ri,72) (4.7)

% (r1) being themean convergenceinthecirclewithradiusr; around z. In other words,
the (-statistics constrains the average convergence in a circular aperture through the
tangential shear in an annulus surrounding the aperture. Since x(r1,r2) > 0, {(r1,72)
provides alower bound to the mean surface mass density enclosed by r; .

Asmentioned before, it ispossibleto usetheimage ellipticitiese of the background
galaxies as unbiased estimates of the tangential shear, ¢; = ;. Therefore, theintegral
in (4.6) can be approximated as a discrete sum over galaxy images,

N .
C(’I"l,’l"g) ~ - —2 . (48)

In thisstudy, | want to obtain alower bound to thetotal cluster masses. For amean-
ingful application of the {-statistics, it isimportant to include the compl ete cluster into
the measurement. This can be achieved following Bartelmann (1995). If | apply the
¢-statisticsto anested set of annuli with radii 7;, 1 < i < n, then the {-statisticsfor an
annuluswith r; < r; reads

Ci,j = K; — Ri,j . (49)
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where &; = R(r;) and &;; = R(r;,7;). On the other hand, the mass M;; in such an
annulus is the product of surface mass density timesthe area,

Mi,j = Ai,j Kij (410)
where the area of the annulusis

Aij=m (7"J2 — 7“12) . (4.12)
The crucia point is now that the mass contained within a circle of radius R is always
the sum of the masses contained in annuli with outer radii r; < R, irrespective of how
the areais decomposed into such rings. Keeping thisin mind, Egs. (4.9) and (4.10) can
be combined into asystem of (n — 1) linear equations with n unknownsmy,, where the
my, denote the massesin adjacent rings My, _1 .

The fact that there is one equation less than the number of unknowns reflects the
scaling invariance of the surface mass density . Assuming that the outermost annulus
does not contain any significant convergence, i.e. M,_;, = 0, | finally arrive at the
following set of equations for the masses M; enclosed by radii ;-

A
Mj = (1 + f) my — Al,jCl,j (412)
where m is shorthand for

A1 Qi — Arp—1€1n—1
Al,n - Al,nfl

Of course, alower bound to thetotal cluster mass could also be obtained by placing
an annulus around the entire cluster and applying the {-statistics to that annulus only
rather than to a set of nested annuli. The present approach has two advantages; first,
it yields a profile of k which alows to assess the location of the outer cluster bound-
ary, for which | found that R = 1.8k~ 'Mpc is an appropriate choice. Second, it uses
galaxy ellipticity measurementsin all annuli rather than the outermost only, thus reduc-
ing the noise. However, the errorsin the M; are correlated at successive radii, making
an immediate interpretation of the significance at any given radius | ess transparent.

4.3 Completenessof Cluster Catalogues

| am now in a position to investigate completeness and homogeneity of cluster cata-
logues constructed with the S-statistics as opposed to the optical Abell criterion. To
this end, | create two different samples of 2-D clusters by applying both methods to
simulated data projected along the z-, y-, and z-axes. | then compare these 2-D clus-
ters with the reference set of 3-D clusters.

To assessthe quality of the constructed 2-D catal ogues, | use several reference sets
of 3-D clusterswith different massranges. Looking at different mass rangesinstead of
cluster richness estimates is motivated by two reasons. First, the physical quantities of
primary interest are the masses. Furthermore, this kind of comparison is more suitable
for the S-statistics, which does not depend on the distribution of luminous gal axies but
of the dark matter only. Thisway of addressing projection effectsin cluster catalogues
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3-D clusters R>0 R>0
Massrangein10'* h~' Mz det. spur. det. det.  spur. det.
1.32-3.50 53% 50% 66% 82%
1.03-3.50 27% 50% 56% 69%
0.82-3.50 17% 50% 41% 64%
0.55-3.50 13% 25% 36% 40%
0.10-3.50 13% 6% 32% 29%

Table4.1: Completeness and homogeneity of optically selected, synthetic cluster cata-
logues constructed by Abell’s criterion. For five massrangesof 3-D clusters, the detec-
tion rate (det.) and the spurious detection rate (spur. det.) is shown for cluster richness
R > 0and R > 0. The detection rate gives the percentage of 3-D clusters correctly
identified by Abell’s criterion. The spurious detection rate is the fraction of detected
clusterswhich do not correspond to true 3-D clusters within the mass range considered
. Further explanation is given in the text.

differs from previous studies (e.g. Cen 1997; van Haarlem et al. 1997), which focused
on theinfluence of projection effects on the richness estimate of Abell catalogues.

The results for the Abell-selected cluster catalogues are summarised in Table 4.1
and Fig. 4.1. Thefirst column of Table 4.1 lists the mass range of the 3-D cluster ref-
erence set. The next two columns show the fraction of 3-D clusters correctly detected
by Abell’s criterion, and the fraction of 2-D objects which do not correspond to 3-D
clusterswithin the chosen massrange, respectively. Thefraction of detected clustersis
given with respect to the 3-D clusters in the given mass range, while the spurious de-
tections are given relative to the total number of 2-D detections. The last two columns
show the same information for a larger sample of Abell clusters also including clus-
ters of richnessclass’R = 0. Figure 4.1 illustrates the information of Table 4.1 asa
histogram.

Thefirst mass range considered in Table 4.1, (1.32 — 3.5) x 10 A1 M, reflects
the masses expected for Abell clusterswith richnessclass’R > 0. Looking at absolute
numbers, | find that the total number of 2-D clusters with R > 0 in the Abell cata-
logue is very similar to the number of 3-D objects in this mass range (in Fig. 4.1, the
corresponding bars are comparably long). However, as Table 4.1 shows, only 53% of
the 3-D clusters from the reference set can be found in the 2-D sample of R > 0 clus-
ters. On the other hand, a high percentage (50%) of the 2-D Abell clusters does not
correspond to a true 3-D abject. This means that not only half of the 3-D clustersin
this mass range are missed by Abell’s criterion, but also alot of spurious 2-D objects
arefound. Thisis due to two competing effects occurring in projection. Intrinsically
rich clusters may disappear in the background, while the richness class of poor clusters
can be enhanced by small groups and field galaxies collected along the line—of—sight.
In the above case these two effects approximately cancel, so that the total numbers are
approximately correct.

These results are consistent with the findings of Frenk et al. (1990) for projection
effectsin CDM-likeuniverseswith different biasing parametersb. Comparing Tab. 2in
their paper withtheresultsfor Abell R = 1 clusters, | find similar projection effectsfor
themodel universe and their CDM-like universeswith biasing parameters betweenb =
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Mass Range
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Figure 4.1: Performance of Abell’s criterion in identifying clusters in different mass
ranges (cf. Table 4.1). The hatched barsillustrate the number of 3-D clusters for each
mass range, the solid and dotted bars the number of Abell clusters with R > 0 and
R > 0, respectively. The overlap between hatched and empty barsillustrates the frac-
tion of correct detections, and the fraction of spurious detections by Abell’s criterion
correspondsto therest of the empty bars. The fraction of correctly identified 3-D clus-
tersand the fraction of spurious detections both increase for more massive cluster sam-
ples.

2.5andb = 1.6. A direct comparisonisdifficult because of the different normalisations
of their model universe and mine. Furthermore, the redshift dependence of the biasing
parameter b is not known, further complicating a detailed comparison.

For 2-D galaxy clusters with richness class R = 0, the fraction of detected 3-D
clustersis dightly increased from 53% to 66%. At the same time, the number of spu-
rious 2-D clusters, i.e. clusters which cannot be linked to 3-D objects in the reference
set, isincreased by more than 30%. A detailed analysis of the line-of—sight structure
of these clusters reveals that this large number of spurious detectionsis partly due to
the additive projection of poorer groups corresponding to lower-mass 3-D objects. This
increasein the number of both detections and spurious detections reflects the enhance-
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ment or reduction of cluster richness classes due to projection.

Extending the reference set of 3-D clusters to lower masses substantiates this as-
sumption. The number of spurious detections declines quite steeply from over 80%
for the mass range of (1.32 — 3.5) x 10** h~! M, to below 30% for a lower mass
threshold of 0.1 x 10'* A~! M, which is more than one order of magnitude smaller
than the lower massthreshold for R > 0 clusters. Therefore, many of the 2-D clusters
detected by Abell’s criterion do indeed correspond to true 3-D objects, but in very dif-
ferent mass ranges. This clearly indicates that for the model universe a change of the
richness estimate due to projection is likely. But still the number of truly spurious de-
tections, i.e. detections of 2-D objects which cannot be connected with any 3-D object,
remains quite high even in the broadest mass range.

Turning to the performance of the S-statistics in constructing a complete and ho-
mogeneous catalogue, Table 4.2 and Fig. 4.2 display the results of the S-statisticsin a
manner analogous to Table 4.1 and Fig. 4.1 for Abell’s criterion. Again, the first col-
umn contains the mass range of theinvestigated 3-D reference set, while the following
columns display the percentage of detected 3-D clustersand of spuriously detected 2-D
objects above a certain S-value. The analysisis performed for objects detected above
different signal-to-noise thresholds.
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3-D clusters S>5 S >4.5 S >4 S >35 S>3
Massrangein 10'*h~1 M. det. spur. det. det. spur. det. det. spur. det. det. spur. det. det. spur. det.
1.32-3.50 60% 50% 60% 68% 100% 65% 100% 80%
1.03-3.50 43% 27% 60% 3% 76% 46% 93% 63%
0.82-3.50 33% 11% 48% 24% 64% 32% 91% 47%
0.55-3.50 18% 6% 28% 10% 37% 21% 61% 28% 81% 32%
0.10-3.50 14% 6% 22% % 30% 16% 46% 29% 90% 22%

Table4.2: Completenessand homogeneity of acatal ogue constructed with the S-statistics based on aweak gravitational lensing analysisof distorted
images of background sources. The percentage of detections (det.) and spurious detections (spur. det.) is given for different S-values. For further

explanation, see Table 4.1 and the text.
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Figure 4.2: Performance of the S-statistics in identifying clusters in different mass
ranges(cf. Table4.2). Seethecaption of Fig. 4.1 for the meaning of the overlappingand
non-overlapping parts of the bars. The different line types are for different S thresh-
olds, asindicated in the plot. Withincreasing S, the fraction of spurious detectionsand
the completeness are both reduced.

Thefirst S-thresholdinvestigated in detail is.S > 5. Thisvalue has been advocated
intheliterature, e.g. by Schneider & Kneib (1998), asasignal-to-noiseratio promising
significant detections. In comparison to the optical Abell criterion, the S-statistics has
asimilar detection rate for Abell R > 0 like objects (53% with Abell’s criterion com-
pared to 60% with the S-statistics). The number of spuriously detected objects (50%)
isidentical to that for Abell’s criterion in the highest mass range.

The differences between the two methods show up when detections and spurious
detections at mass ranges with a lower mass threshold are considered. Looking at the
detection rate of spurious 2-D objects, | see amuch steeper declineasin the Abdll case.
For alower mass threshold of 1.03 x 10 h~! M, only 27% of the S-detected clus-
ters do not correspond to 3-D clusters of the reference set, whereas more than half of
the Abell clustersin that mass range are spurious detections. For an even lower mass
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Mass Range
(10"h-My) | ——— R20 e Sz4

0.10-3.50 | ZZZZZZIZZZZZZZI T |

0.55-3.50 . | |

0.82-3.50 Y, DO
1.03-3.50 124 00
1.32-3.50 Az

Figure 4.3: Comparison of the performances of the S-statisticsand Abell’s criterionin
identifying clustersin different mass ranges. See the caption of Fig. 4.1 for the mean-
ing of the overlapping and non-overlapping parts of the bars. The solid and dotted bars
are for Abdll-clusterswith R > 0 and S-selected clusters with S > 4, respectively.
Evidently, the S-statistics performs better in all mass ranges in terms of spurious de-
tections, and completenessis generally also larger.

threshold of 0.82 x 10'* h~! M, the rate of spurious detections falls to only 11%,
which clearly indicates that alarge number of suspected spurious detectionsin reality
corresponds to 3-dimensional matter concentrations of lower mass.

If I reduce the S-threshold for significant detectionsto e.g. S > 4.5 or even below,
the detection rate of 3-D clusters increases, which means that the S-cluster catalogue
becomes more complete. However, the trade-off for the completenessis ahigher num-
ber of spurious detections, belonging to lower-mass 3-D mass concentrations. For an
S-threshold of 4.0, | am able to construct a catalogue containing all massive Abell-
like clusters at the expense of also detecting many less massive 3-D objects. Figure4.3
compares the performance of Abell’s criterion with R > 0 and the S-statistics with
S > 4. It showsthat S-selected cluster samples contain fewer spurious detections and
are generally more complete than Abell-selected samples.



4.3. Completeness of Cluster Catalogues 61

A crucia point in the application of the S-statisticsistheidentification of peaksin
the S-map. Following Schneider (1996), | use a circular aperture for the S-statistics,
whichleadsto anincreased sensitivity for round objects. However, some of the S-maps
for the smulation data show extended, non-circular areas with significant S-signals.
Several of these structures contain more than one peak coming from within aplateau of
high S (seeFig. 4.4). Itisimportant to properly categorisethese structuresas belonging
to asingle 3-D object and to not count them twice. An example of such asituationis
shownin Fig. 4.4. The contour plot shows a blow-up of the S-map around two peaks
which amost overlap in the lower-resolution S-map of the whole simulation box (see
the mark in Fig. 4.5). These two peaks in the S-map correspond to one of the most
massive clusters in the smulation. Thisisreflected in the high S = 7.6 of the higher
peak, while the second peak has S = 3.6. On the other hand, the sample also contains
examples of 3-D clusters projected onto each other showing only a single featureless
peak. Therefore, | concludethat the morphological information contained in the S-map
islow. Both cases of S-signalswill be discussed in more detail in Sec. 4.4.
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Figure 4.4: S-map for the rectangular section in Fig. 4.5 showing the double-peak
structure of the map in more detail. Contours are spaced by AS = 1. The structure
features two maxima, but corresponds to a single 3-D cluster.

Summarising the quantitative results from both cluster detection methods, | can
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say that the S-statistics leads to better results than Abell’s criterion. The catalogues
constructed with the S-statistics are more complete and suffer less from spurious de-
tections, at least in the sense that most peaks correspond to true 3-D objects. The
S-statistics evidently produces fewer truly spurious detections than Abell’s criterion.
However, | note that it is not possible to obtain a complete catal ogue by counting only
peaks with a high signal-to-noise value S > 5. Thereis no strict correlation between
the height of a signal in the S-statistics and the mass of identified 3-dimensional ob-
jects.
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Figure 4.5 Projection of true 3-D clusters/groups (squares) along the z-axis onto the
full zy-plane of the simulation box, and comparison with Abell clusters identified
in projection (2-D-Abell clusters, circles), and mass-selected clusters identified with
the S-statistics (diamonds). 3-D clusters with masses in the range of (0.10-3.5) x
104 ! Mg, 2-D clusterswith R > 0 (Abell), and S > 3.0 (M,,) are shown. Filled
symbols refer to clusters with masses > 0.55 x 1014 A~! Mg, R > 0and S > 3.5.
(The offset between close symbolsis deliberate to facilitate reading; it does not reflect
the accuracy of measuring cluster positions.)
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4.4 Structure of Representative Clusters

To achieve a deeper understanding of projection effects, | study the structure of
archetypical clustersor groups aong the line—of—sight. The main emphasisin this sec-
tion will be on clusters selected by the S-statistics. A detailed discussion of the struc-
ture of Abell selected clusters along the line—of—sight for both real space and velocity
space can befound, e.g., in Cen (1997) and van Haarlem et a. (1997).

Even though this section will concentrate on clusters detected by the S-statistics,
in some cases also Abell-selected clusters will be discussed if the S-selected clusters
also satisfy Abell’s criterion. As Fig. 4.5 shows for one of the three projection direc-
tions, thisis the case for a lot of S-selected objects, i.e. there is considerable over-
lap between the two selection methods. Abell’s criterion detects the visible light from
galaxies, while the S-statistics is sensitive to the underlying distribution of dark mat-
ter, making it possible to construct a“ mass-selected” sample of clusters, as opposed to
“flux-limited” sampleswhich are obtained by observing luminous galaxies. Sincethis
study is performed under the supposition that both selection methods detect the same
physical objects, | have to assume that luminous galaxies are good tracers of the dark
matter distribution. Thisis secured by the assumption used to popul ate the simulation
that light follows mass.

For a more detailed analysis, the S-selected clusters will be subdivided into three
classes according to the S-threshold employed. The first class considered are clusters
detected with S > 5, the next class contains clusterswith 5 > S > 4, and thelast class
clustersor groupswith4 > S > 3. Thedivision into classes according to signal-to-
noise values allows an investigation of systematic differences of projection effectsin
the different classes.

It is expected from theory that higher-mass clusters lead to larger valuesin the S-
map. Such atrend was found in Sec. 4.3, but there is no sharp correlation between the
masses of detected 3-D clusters and the threshold imposed on the S-statistics. Thiscan
be explained in terms of the intervening matter along the line—of—sight. Lower-mass
3-D objects are more prone to projection effectsin the sense that the intervening mat-
ter makes up a more substantial fraction of their mass. Therefore, projection effects
become more important for clusterswith lower S. In the case of clusterswith intrinsi-
cally lower masses, less intervening matter is needed to alter the signa in the S-map.

441 S-Statistics: S > 5

Asdiscussed in Sec. 4.3, there is a good correspondence between S > 5 clusters and
massive 3-D-clusters. Investigating the line—of—sight structure of these 2-D-clusters, |
can generally state that nearly all of them show ahigh, pronounced peak in the position
histogram at the position of thetrue 3-D cluster. Even though the amount of contamina-
tion with intervening matter in this group is only moderate, some velocity histograms
deviate significantly from a Gaussian shape.

Thecluster givenin Sec. 4.3 asan examplefor acluster exhibiting adoubl e-peaked
S-map (see Fig. 4.4) clearly belongs into this class, since the main peak has S = 7.3,
while the nearby second peak hasonly S = 3.6. The structure along the line-of—sight
in both real space and velocity space is shown in Fig. 4.6. The position histogram is
characterised by adominant peak at the position of the corresponding 3-D cluster which
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hasamassof M3_p = 3.4 x 10'* h~1 M. Theamount of dark matter along theline—
of—sight is moderate with only two small clumps 40 A~ Mpc and 65 h~! Mpc behind
the main clump, which both have masses smaller than 1013 b= M. Although the 3-
D cluster has Abell richness class R = 0, the projected cluster satisfiesthe 2-D Abell
criterion for R = 1, indicating an inflation of richness class. The velocity dispersion
o3_p = 775kms~! of the3-D cluster isreducedtooo_p = 676 kms~! in projection,
hinting at an asymmetric velocity ellipsoid of the 3-D cluster.

r L L L BRI 8OO0 F T T T
4t 3 : ]
1.5X1O C i 6000; -
2 1.0x10 " [ 1 = r ]
> . 1= 4000: ]
5.0x10° [ . 2000 [ .
Ok el M O: P RTINSl o = SR | I L T
0 200 40 60 80 0 4000 8000
X in Mpc/h V in km/s
- T T T K} . . T ~ .‘:o x'.
) 1. . ) I ° f'.‘. ) 1. o* ° ’i
20 40 60 80
LOS in Mpc/h
R BT . ST
§- 15 L .‘{;.'.‘ - : L el ‘E:‘..x .‘ T RS S i
0 2000 4000 6000 8000 10000
V in km/s

Figure 4.6: Structure of alarge 3-D cluster with moderate contamination, detected as
adouble peak with S = 7.3 and S = 3.6 (cf. Fig. 4.4). Itisalso an Abell R = 1 clus-
ter, both in projection and in 3-D. The upper left panel displays the histogram of the
dark matter distribution in real space along the line—-of—sight, and the upper right panel
showsthe corresponding velocity histogram. Thetwo lower panels show the dark mat-
ter distribution along acylinder of radius 1.5 »~! Mpcin real space (along the line-of—
sight) and in velocity space. For better display in both lower panels, arandom fraction
of the dark matter particlesis omitted.

Although the cluster is only moderately affected by projection effects, the los ve-
locity histogram strongly deviates from a Gaussian, which is aso true for the velocity
distribution of the 3-D-cluster alone. The deviation from Gaussianity, as measured by
higher order moments of the distribution like the skewness S and the curtosis K, is
S3_p = —0.62 and K3 _p = 0.47 for the 3-D-cluster as opposedto S, p = 1.57 and
Ko_p = 3.31 in projection. The substantial increase of skewness and curtosisin pro-
jection emphasises the influence of projection effectsin velocity space. Together with
the decrease of the velacity dispersion and the increase of richness classin projection,
this hints at the presence of non-virialised sub-clumpsin the vicinity of the main clus-
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ter. Yet, this detection correspondsto a very massive 3-D cluster. More examples are
giveninFigs. A.1and A.2 in the Appendix.

442 S-Statistics. 5> S >4

The next sample of S-detected clusters has lower signal-to-noise; but, as has been
shown in Sec. 4.3, the mass-sel ected cluster catal ogue becomes more completeif these
clustersareincluded. Most of them correspond to true 3-D clusters. Even though these
detections are significant and contain some massive clusters, their amount of contami-
nation in relation to their main 3-D cluster is generally larger than for clusters detected
with larger S. One typical example of this class is shown in Fig. 4.7, two more are
giveninFigs. A.3 and A.4in the Appendix.
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Figure 4.7: Structure of amoderately contaminated 3-D cluster with S = 4.7. Seethe
caption of Fig. 4.6 for adescription of the panels.

The cluster in Fig. 4.7 isahigh-mass cluster with M3_p = 1.5 x 10" h~1 M, a
clump nearby, and a second mass clump 30 = Mpc away. It isdetected at S = 4.7.
The velocity dispersion of the projected cluster isbroadened fromos_p = 697kms*
to oo p = 865kms!, and the projected velocity distribution has a bimodal shape.
The higher-order moments of the velocity distribution indicate this through skewness
and curtosisin projection (Se—p = 1.85 and Ko_p = 3.27), comparedto 3-D (S3_p =
0.18 and K3_p = —0.40). The cluster satisfies Abell’s criterion with richness class
R = 0, both in projection and in 3-D.
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443 S-Statistics: 4 >S5 >3

Thelast class considered contains clusterswith S between 3 and 4. Thisclassismainly
discussed for reasons of completeness. Clusters identified with such signal-to-noise
correspond to lower-mass objects making projection effects along the line—of—sight
more important. This can be seen looking at the three examples in Fig. 4.8 and in
Figs. A.5and A.6.
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Figure 4.8: Line-of—sight structure of a highly contaminated cluster. This cluster is
detected at S = 3.2. See the caption of Fig. 4.6 for a description of the panels.

Thepeak with .S = 3.2 correspondingto the cluster showninFig. 4.8isduetoa3-D
cluster with arather low massonly, M3_p = 5.9 x 103 =1 M. Compared to thelow
3-D cluster mass, thereisahigh amount of intervening matter with several mass clumps
along theline-of—sight. Because of this substantial contamination, the projected veloc-
ity dispersion isoverestimated; oo_p = 669kms~! comparedto oz_p = 364kms!
for the 3-D cluster. The velocity histogram has a second peak at the high-velocity tail
of the distribution. The higher-order moments of the velocity distribution of the 3-D
cluster (S3_p = —0.05 and K3_p = —0.07) change by alarge amount when looking
at the projected velocity distribution (Se—p = 1.12 and Ko—p = 2.43). Thisreflects
the large influence the intervening matter exerts on observation.

45 MassEstimates

The previoustwo sections put emphasis on the compl eteness of catal ogues constructed
with two different selection criteria, Abell’s criterion and the S-stati stics based on weak
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gravitational lensing. Furthermore, | investigated the structure of some detected clus-
ters along the line—of—sight. Of course, both kinds of information are important when
deriving statistical information from such catalogues. A third very important test for
cosmological theories are the different mass estimates and their relationship with each
other. A mass estimate closely related to the optical selection derives from the vir-
ial theorem. As a gravitational-lensing based mass estimate, | choose the {-statistics,
which is closely related to the S-statistics as demonstrated in Sec. 4.2.3.

Under the assumption that clusters of galaxies are bound self-gravitating systems
in dynamical equilibrium, the total cluster mass can be estimated viathe virial theorem
(Binney & Tremaine 1987; Sarazin 1986),

Rg (v?)

G 7
where R¢ isthe gravitationa radius of the cluster relating the system’s massto its po-
tential energy. Gunn & Gott (1972) showed that this radius is approximately given by
900, the radius of a sphere containing an overdensity of 200 p..it. For the clusters of
my study, aradius of Rg = 0.75 k! Mpc is agood approximation. Observationally,
only thelosvelocity dispersion o) can be measured. Assuming isotropic orbits, thetwo
quantities are related by (v?) = 3oﬁ.

When calculating the radial velocities from simulated data, the Hubble flow hasto
be added to the peculiar velocities of the ssimulation. Since the simulation data are at
high redshift, the dependence on redshift of the cosmological parametersalso hasto be
taken into account. Therefore, the radial velocities are given by

Mtot =

(4.14)

o = a(z) o + a(z) o) = a(t) [H(z) ) + 1], (4.15)

with the expansion factor
a(z) = (14 2)71 (4.16)

and the Hubble parameter
H(z) = Hy(1+2)%2. (4.17)

Apart fromthevalidity of thevirial theorem, thevirial massestimate depends solely
on acorrect estimate of the velocity dispersion o). Sincethevelocity dispersionisvery
sensitive to field galaxies and small sub-clumps projected onto the main clusters, it is
important to remove these from the sample. | convolve the velocity histogram with a
4000 km s~ ! wide top-hat filter to reject interlopers, i.e. galaxies with relative veloci-
ties greater than 4000 km s~ ! from the peak of the convolved histogram are removed. |
further employ the so-called 3o-clipping procedure proposed by Yahil & Vidal (1977)
which has widely been applied to observational samples. It can be summarised asfol-
lows:

1. compute the mean radial velocity;

2. remove the galaxy which deviates most from the mean of the sample and re-
determine the mean without this galaxy;
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3. if theremoved galaxy deviatesfrom the new mean by morethan 3¢, itisremoved
from the sample;

4. repeat the procedure until the last tested galaxy remainsin the sample.
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Figure4.9: Comparison of thevirial massestimate M~y to thetruecluster mass Ms_p.
Both panels of thisfigure display theratio My /M;_p asafunction of thetrue cluster
mass Ms5_p. Intheleft panel, the velocity dispersions before 3o clipping are used to
compute the virial-theorem based mass estimate, while in the right panel, the velocity
dispersions after 3o clipping are used. In both panels, the open circlesreferto R = 0
clustersand thefilled circlesto R = 1 clusters.

Figure 4.9 displaysthe correlation of the virial mass estimate with the true mass of
the corresponding 3-D cluster. Theleft and right panelsshow theratio of thevirial mass
with the 3-D cluster mass as a function of the 3-D mass before and after 3o clipping,
respectively.

Thefirst thing to notice isthat the masses of clusterswithrichnessclassR > 0 are
less severely overestimated than masses of clusterswith lower richness. Thisholdstrue
for the mass estimates before and after 3o-clipping for both the mean and the median,
as can be seen in Table 4.3. The second thing readily seenin Fig. 4.9 and Table 4.3 is
the large dispersion of the underlying distribution. This dispersionis smaller for clus-
ters with higher richness class than for clusters with the lowest richness class R = 0
considered. | aso notethat thisdispersionis hardly affected by the 3o-clipping proce-
dure. Theonly effect of the clipping procedureisto reducethe average of the estimated
cluster masses irrespective of therichnessclass. A third trend to be seenin Fig. 4.9is
that the overestimation of the massisgenerally more severefor 3-D clusterswith lower
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Table 4.3: Comparison of statistical parameters for the ratio Myt /Ms_p and
M¢/M3_p for different sub-samples of masses estimated via the velocity dispersion
and the ¢-statistics.

sample mean median standard deviation
complete optical sample before 3¢ clipping  4.90 3.52 191
Abéll cluster R = 1 before 3o clipping 3.84 1.86 1.10
Abéll cluster R = 0 before 3o clipping 5.44 3.73 2.67
complete optical sample after 3o clipping 453 3.39 201
Abell cluster R = 1 after 3o clipping 3.58 1.86 1.18
Abell cluster R = 0 after 3o clipping 5.01 3.67 2.80
complete lensing sample 127 1.05 0.34
S>5 123 113 0.34
5>8>4 132 102 0.31

mass. For the most massive clustersin the sample (M3 _p < 2.0 x 104 =1 M), the
continuation of this trend in some cases leads to an underestimation of the masses, as
can be seen in the right-hand side of each panel in Fig. 4.9. The 3¢ clipping procedure
failsto correct for the mass overestimates. When comparing Fig. 4.9 and Table 4.3 to
Fig. 15 of Cen (1997), one has to keep in mind the different selection procedure for
clusters or groups of galaxiesin both studies, but on the whole the results are consis-
tent.

The behaviour described above can largely be attributed to the influence of projec-
tion effects on the velocity dispersion. Generally, the inclusion of field galaxies and
unvirialised sub-clumps broadens the distribution and leads to distributions which de-
viate significantly from Gaussian shape, asillustrated by the examplesin Sec. 4.4. The
clipping procedure is successful when the amount of contamination along the line-of—
sightislow or moderate, but the algorithm failsto remove larger sub-clumps projected
onto the main cluster which can significantly broaden the distribution, sometimeseven
making it bimodal. In some cases it is possible that the clipping procedure removes
galaxies belonging to the 3-D cluster, thus contributing to an underestimation of the
mass.

Even though | expect from the studies of Frenk et al. (1990) and van Haarlem et
a. (1997) that the high-velocity tail of the velocity distribution is severely overesti-
mated, the effect on the mass estimate is most pronounced for galaxy clusters with
lower mass. Thisisdueto thefact that they are more easily overestimated with respect
to their true dispersion.

The ¢-statistics as compared to Abell’s criterion leads to smaller overestimates of
the 3-D cluster massesas shownin Fig. 4.10. Interpreting the quantitative results of the
¢ -statistics mass estimate, one has to keep in mind two competing effects. On the one
hand, the (-statistics, like every gravitational-lensing based method, measures all the
mass al ong the line—of—sight to the cluster; on the other hand, it gives alower bound to
the cluster mass. In combination, these two competing effects lead to fairly moderate
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Figure 4.10: Comparison of the (-statistics mass estimate to the true cluster mass
M;_p. Diamonds and circles refer to clusters identified withaS > 5and S > 4,
respectively. Clusters detected at lower S are excluded because of their high contami-
nation.

mass overestimates, as can be seen in Table 4.3. This also explains the difference to
the lensing mass estimates given in the paper by Cen (1997). There, all masses along
the line—of—sight are added up under the assumption of a perfect lensing reconstruction
method with an otherwise calibrated mass-sheet degeneracy.

The other interesting feature in Fig. 4.10 and Table 4.3 isthe low dispersion of the
underlying distribution. This dispersion does not depend sensitively on the S-value at
which the clusters are detected. (Clusters detected with S < 4 where excluded here
because of their large contamination.) The dispersion is typically less than a third of
the dispersion in the Abell samples.

As for clusters detected with Abell’s criterion, masses of small 3-D clusters are
more strongly overestimated than for more massive 3-D clusters. This is due to the
fact that the proportion of contaminating matter to the 3-D cluster mass is higher for
less massive 3-D objects than for the extremely massive objects. For the intermediate-
mass objects, the fact that the ¢-statistics only gives lower bounds to the masses par-
tially outweighsthis effect. There, the masses are even slightly underestimated.

Investigating the rel ationship between vel ocity-based mass estimates and the gravi-
tational lensing based ¢ -statisticsin Fig. 4.11, | seethat the (-statisticsgiveson average
smaller estimates of the 3-D cluster masses than the virial theorem. Again | stress that
thisis due to the fact that the (-statistics is derived under the assumption of an empty
outer annulus, restricting it to estimate lower bounds to the masses. The dispersion be-
tween the ratio of ¢-statistics mass to virial mass is large, which is mainly due to the
large underlying dispersion in the virial mass estimate.
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Figure 4.11: Comparison of the (-statistics mass estimate to the viria mass estimate
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Chapter 5

Cluster Deprojection

Inthefollowing | proposean algorithm for the deprojection of observed cluster images.
This agorithm is based on the Richardson-L ucy agorithm for the rectification of ob-
served distributions, and it combines multiple sets of observable data from clusters of
galaxies — weak lensing (lensing potential 1), X—ray (X—ray surface brightness Sy),
and Sunyaev—Z€l’ dovich (temperature decrement ATsz) data— to obtain information
on the structure along the line—of—sight, namely the 3-dim. gravitational potential .
The combination of multiple data sets allows one to exploit the different dependences
of the various observabl e distributions on the gravitational potential along the line-of—
sight (los).

For deriving my multiple—data Richardson-Lucy deprojection algorithm | first de-
scribethe mathematical background of the general Richardson-L ucy (hereafter RL) ap-
proach, then | specify ageometrical model for the cluster that is suitable for deriving a
RL-type deprojection equation for the gravitational potential ¢, and finally | show how
the three above—-mentioned observable distributions can be incorporated into this de-
projection procedure. In addition, | discuss strategies for implementing the algorithm
into computer programs, study their respective numerical stability, and assesstheir per-
formance by applying them to synthetic cluster data from gas—dynamical simulations.
Intheend, | givean outlook on the suitability of thealgorithm for practical applications
to true observational data.

5.1 Richardson—Lucy Algorithm

The question of how to deproject observed cluster imagesis a prime example for so-
called inverse problems, which often arise in astronomy. Inverse problems in astro-
nomical research reflect the fact that it isin general not possibleto directly measurethe
guantities of interest due to the large distances between observers and studied objects.
Furthermore, the theoretical understanding of the relevant physical phenomenais of-
ten so limited or the problem is so complex, that it is not possible to derive appropriate
models from first principles.

Most inverse praoblemsin astronomy can be cast into the form of a Fredholm inte-
gral equation of thefirst kind,

wmzjﬁwpmox, (5.1)
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where ¢(¢) is the function of interest, 1/(z) is the function accessible through obser-
vation, and the integral kernel P(x|¢) reflects the measurement process. In genera, ¢
and 1 represent probability density functions, which implies that they and the kernel
P(z|¢) obey the normalization and non-negativity constraints:

/ Ya)de = 1,  ad  z) >0, (5.29)
[ocra =1, ad 9020 (5.20)
[Paiod = 1. ad P o0, (5.20)

where P(z|¢)dz is the probability — presumed to be known — that z’ will fall in the
interval (z, z + dz) whenit isknown that ¢’ = ¢.

Thenaive approach, to solvetheintegral equation (5.1) directly, in most cases|eads
to very poor results. The reason for thisis that the observed distribution () is not
exactly known, instead it is a measured quantity ¢/ having sampling errors. Often the
estimates ¢ for 1) are not continuous and also violate the non—negativity constraint
(5.2a). For solving theintegral equation directly, thisisavery unfavourable condition
asthefunction () isgeneraly smoother than ¢(¢) dueto the folding with the kernel
P(z|¢). Thus, solving for ¢(¢) greatly magnifies the statistical fluctuations present in
i(x), which is an observed quantity, thus being hampered by measurement errors.

Richardson (1972) and Lucy (1974, 1994) recognized that the problem is statis-
tical in nature and proposed an iterative inversion algorithm. Their algorithm can be
derived via Bayes theorem for conditional probabilities: Let Q(¢|z)d( be the (“in-
verse”) probability that ¢’ € (¢, ¢ + d¢) when it is known that the measured quantity
isz = z’. The probability that 2’ € (z,z + dz) and ¢’ € (¢, ¢ + d{) isthen given by
(z)dz x Q(¢|z)d¢. Onthe other hand for ¢! € (¢, + d¢) andz’ € (z,z + dz) to
occur, the probability is ¢(¢)d¢ P(z|¢)dz. Equating these two expressions leads to

Q(¢lz)y(x) = P(z[¢) (<), (5.3)
which can be solved for Q(¢|z),

Q) PlC) o) P(=[C)
d(@) [P’

wherewe have used Eq. (5.1) to substitutefor ¢). Noticethat Eq. (5.4) issimply Bayes
theorem for conditional probabilities. Going back to Eq. (5.3), we can aso integrate
over z, employ the normalization condition Eq. (5.2c) for thekernel P(z|¢) andfinaly
obtain

Q(¢lz) =

(5.4)

/ P(2)Q((|z) d (5.5)

which formally resembles the inverse of the integral equation (5.1), if Q({|z) isiden-
tified with the reciprocal kernel.

Equation (5.5) may not be used to calculate the desired quantity ¢(¢), since the
reciprocal kernel Q((|z) itself isafunctional of ¢ through Eq. (5.4). Since, however,
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theintegral kernel P(z|¢) isassumed to be known, Bayes' theorem (5.4) and the iden-
tity (5.5) suggest aniterative solution of Eq. (5.1) for ¢(¢): Startingwith anintial guess
¢o for ¢, an estimatefor Q(¢|z) iscalculated viaEq. (5.4), and thisisin turn combined
with the observed sample zﬁ(x) to obtain an improved estimate for the theoretical dis-
tribution ¢(¢) viaEq. (5.5).

The iterative algorithm thus consists of the following two steps.

/ Hn(O)P(z]C)C, (5.69)

ben@) = 6.0 [ i((“) P(z|¢)de. (5.60)

Yn(z)

Theiteratively constructed functions ¢,, satisfy the constraints (5.2b): From Eqg. (5.6b)
it followsthat ¢, < 0if ¢g < 0. The normalization constraint is fulfilled, as one can
proof by integrating Eq. (5.6b) with respect to ¢ and using the normalizations of the
probabilities Q, (¢|z)d¢ and 4, dz.

Ideally we would like an iterative algorithm to converge to the exact solution, and
from Eq. (5.6) it can be seen that the above scheme converges if 4, () is sufficiently
closeto 1/7(35) for al points z, except for those in a set of zero measure. However, this
inherent convergence criterionismuch to strong for practical purposeswheres) () may
be contaminated by non-negligible measurement errors. Looking again at the two cou-
pled equations (5.6a) and (5.6b), we see that deviationsof 1) /1y, fromunity on alength
scalelarge compared to that of P(z|() areremoved in essentially oneiteration, whereas
deviations on a small length scale are mostly averaged out when folded with P(z|¢),
and result only in small correctionsto ¢,,. Thus the algorithm has the property of first
fitting the large—scal e differences between the given initial guess and the true solution,
whileit fits the small—scale fluctuations only in later iteration steps. Under the reason-
ableassumption that the small scalefluctuationsare morelikely to be caused by statisti-
cal errorsin ), thisbehaviour of the RL algorithmisindeed highly desirable. It ensures
that the RL procedure very quickely resultsin an approximate solution in which most
of the significant information in the observed 4 is already recovered. But one has to
keep in mind that there is no obvious convergence criterion for recovering the large—
scalefluctuations only; in general it is not easy to say when one startsto fit small-scale
statistical fluctuations. Thus, for the algorithm to work, one has to know and to control
the errorsin the measured data very well.

It is possible to establish arelationship between the iterative algorithm introduced
above and a corresponding maximum-likelihood method. This was done by Lucy in
1974, of which | hereonly quotethemainresult. It can be shownthat whentheintegrals
in Eq. (5.6) are approximated by sums, i.e. ¢(z) — ¢;, and when only thefraction e of
the correction to ¢,, isactually applied, the scheme converges for n — oo to asolution
of the corresponding maximum likelihood (ML) problem, provided that e issufficiently
small. Lucy aso demonstrated that the ML solution is, in general, unique, and that the
direct solution isidentical to the corresponding ML-problem, if it does not violate the
constraint ¢; < 0.
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X=x

Figure 5.1: Display of the relation between cluster coordinates (X,Y, Z) and ob-
server’s coordinates (z, y, z) assuming axial symmetry.

5.2 Richardson-Lucy Algorithm: The Axisymmetric Case

Consider acluster of galaxies covered by asystem of cartesian coordinates (X, Y, Z).
We are interested in recovering the distribution of some physical quantity ¢(X,Y, Z),
which we assume to have axial symmetry with respect to the Z-axis of the cluster co-
ordinate system:

#(X,Y,Z) = $(R, Z) with  R?=X2%2+Y2 (5.7)

Furthermore, we assumethat the projection of ¢ isobserved as some quantity 1, where
the observer’s coordinate system (z, y, z) isinclined by anangles, andinwhichz = X
and z is the line—of—sight (see Fig.5.1). The transformation between cluster coordi-
nates (X, Y, Z) and observer’s coordinates (z, y, z) is thus given by

X = z, (5.89)
Y = wycos(i) — zsin (i), (5.8b)
Z = ysin (i) + zcos (1), (5.8¢c)

and the observed projection 1 is given as the los integral over ¢,

M%wz/%MM%w%ﬂ%%m- (5.9)

If we want to apply the RL-algorithm to recover ¢ from 1, we first have to bring
the fundamental losintegral (5.9) into the form of Eq. (5.1),

¢mm=/M/wmmew&m. (5.10)
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where P(z,y|R, Z) has to be normalized to unity. In order to derive the kernel
P(z,y|R, Z) we start with the following identity for ¢,

#(R,Z) = /0 ~ dR? / 4z #(R', Z"\6(R?> — R?)6(Z — Z"), (5.11)

which weinsert into Eq. (5.9) and obtain

v = [ [TaR? dRa,p.2) - R
« / T A2 SR, 202wy, 2) — 2. (5.12)

Next, we smplify 6(Z — Z') by substituting the coordinate transformation (5.8c)
for Z and applying a computational rule for §-functions 1. Here we have

7' —ysini

flzs) = ysini +zgcosi—Z' =0 = z, = , (5.13)

CoS 1

provided that cos ¢ # 0. Here and in the following we can restrict the discussion to the
inclination anglesin therange of 0 < |i| < 7/2, leading to non-zero, positive values
for cosi. Together with f'(z) = cos4 and the corresponding substitution (5.7), (5.8)
for R(z,y,z) wearrive at

¢($ay):/ooodR'2/idZ’/O;dz PR, Z')

Ccos?

70— ysini
><<5[z2+(ycosi—zcosi)2—R'2] 5[z—ﬂ]. (5.14)

cos?

Finally, integration of the second é-function over z yields

P(z,y) =7 /O - dR" /_ c:dz'¢(}?,',z')

8 §[(ycosi — (Z' — ysini) tani)? — (R? — z?)]

, , (5.15)
T COS1?
whichisin the desired form of Eg. (5.10). We can identify the kernel
S — 7t N2 R2 2
Pla,y|R, 2) = Wasi ~Ztan () = (7 )] (5.16)
T COS1?
and find that it is properly normalized:
/ da:/ dy P(z,y|R,Z) = 1. (5.17)

Having the explicit expression (5.16) for the kernel P(z,y|R, Z), we could now
start to apply the RL-scheme for recovering ¢(R, Z) from an observed 4 (x,y) by

B(f(z)) =3, % where f' = %gf) Thefunction f(x) isaredl, differentiable function with

f(zs) = 0. Theroots zs are real and simple.
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meansof Egs. (5.6a,b). However, sincethe probability kernel P(z,y|R, Z) containsa
d-function, which is notoriously difficult to deal with in the context of discretized grid-
data, | have chosen to reformulate the main Egs. (5.64a,b) for this special axisymetric
case.

For the first integral of the iterative scheme the formulation (5.15) of the integral
using the probability kernel P(z,y|R, Z) isnot necessary. Instead, thisintegral can be
evaluated as a simple integral along the line-of—sight,

n(,y) = / " e gu(Riz,y,2), Z(a,y, 7)), (5.18)

where the coordinate transformation (5.8c) is used to evaluate the integration along z.
Theintegra (5.18) isanalytically equivaent to theintegral (5.15), but not numerically.
The approach using the probability kernel P(z,y|R, Z) asintheintegral (5.6a), which
was used in Binney et al. (1990), involves the —functions. For my purpose, | found
the approach given in (5.15) to be numerically extremely unstable, and therefore | em-
ployed the direct approach stated in (5.18).

The second step (5.6b) in the iterative RL-scheme reads in our case

@;ﬂf / /d% IR, Z). (5.19)

For this second integral the evaluation of the probablllty kernel P(z,y|R, Z) cannot
be avoided. However, it is possible to eliminate the §-function by again applying the
samerule asbeforeto §(f (y)) and by subsequently integrating over y.

For the quadratic equation

2
1) = (2L - Ztani) - (B2 —2?) 20 (5.20
we find the two roots
Y+ = cosi(Z tani + (R? — x2)1/2), (5.21)

which for afixed pair of cluster coordinates (R, Z) describe an ellipsein the observer’'s
sky. Since

F = (L) = )= V2, (522)
COS 1?7 \COS? COS?
we obtain after integration over y
Pnt1(R, Z) [iﬁ(w e | Pley)
dz . 23
¢n(R, Z) 277/ "/’n(x Y+) * Yn(z,y-) (23

The integration over z in Eq. (5.23) islimited to afiniterange [— R, +R]. Thusit
is convenient to introduce a new variablet via

z(t) = Rcost = z(—m)=-R and z(0)=R. (5.24)

Utilizing that

VR2 — 22 = R\/1 — cos?t = —R sint for te[-m,0], (5.25)
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we arrive at our final result, namely a formulation for the second integral in the RL-
scheme without §-functions:

dn+1(R, Z) Rcost Zsini £+ Rsintcos
$ni1(R.Z) o Z ) (5.26)

on(R, Z) W(Rcost, Z sini + Rsintcosi)

Please note that the integral (5.26) describes a full elipse on the sky. The dif-
ference between Eq. (5.26) and the Appendix of Binney et a. (1990) is, that Eq.
(5.26) uses the full information of the dlipse, while Binney et al. (1990), use only
half of it. This formulation has the advantage that no assumptions on the data are
made, i.e. thelatter are not assumed to be symmetrical along any of the projection axes.

5.3 Observables Sensitiveto the LOS-Structure

Asaready stated in the introduction of this chapter, the overall goal isto combine mul-
tiple data sets within the Richardson-L ucy algorithm to deproject cluster images. For
observed distributions— denoted as 1) in the previous sections — | now discuss con-
crete observables, namely the weak lensing potential, the X—ray surface brightness and
the SZ temperature decrement. For employing the Richardson—Lucy algorithm, it is
important to connect the observabl esto thetheoretical distribution ¢. | choosethegrav-
itational potential ¢ astheoretical distribution. In principleit is possible to choose the
density p as theoretical distribution, but the gravitational potential ¢ possesses better
symmetry properties than the density p. Therefore substructure has less impact on the
potential than on the density better fullfilling the symmetry assumptions made deriving
the kernel P(z,y|R, Z).

5.3.1 Lensing Potential

Hereafter, 1) shall exclusively denote the lensing potential introduced in Chapter 2. In
Eqg. (2.13) thedependence of thelensing potential onthe 3-dim. gravitiational potential
w isgiven asthelosintegral

o
vay)x [ ok 2)d (5:27)
—0o0
With current observational techniques the lensing potential of clusters can be deter-

mined up to aradius of < 1.5 Mpc from the center.

5.3.2 X-ray Emissivity

When X—ray telescopes became available after 1966, it was discovered that clusters of
galaxies are powerful X—ray emitters. They have luminositiesin the range of (10%% —
10%5) erg s~1, making them the most luminous X—ray emittersin the sky. The source
of X-ray emission in clustersis extended rather than point-like, and the X—ray spectra
are best explained by thermal bremsstrahlung (free—free radiation) from the hot, dilute
plasmawith temperaturesin the range (107 — 10®) K and densitiesof ~ 10=* — 1073
particles per cm?.
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For the present purpose it is sufficient to include continuum emission only. Semi-
classical derivations of free—free emission can be found in standard textbooks, e.g. in
Rybicki & Lightman (1979) and in Shu (1991). The emissivity at a frequency v asso-
ciated with electrons accelerated by ions of charge Z in a plasma with temperature T’
isgiven by

. 257eb 21 \/? 72 —1/2 hv 598
Jv = W (—k> nenigff(za Ta V)T €xp (_k_T>7 ( . )
wheren; and n. arethenumber densitiesof ionsand electrons, respectively. The Gaunt
factor g (Z, T, v) correctsfor quantum—mechanical effectsand for the effect of distant
collisions. It isaslowly varying function of frequency and temperature, and can be set
to unity for nearly all frequencies and temperatures of practical interest. For a com-
pletely ionized gas mixture with amass ratio of 75% hydrogen and 25% helium, i.e. a
gaswith amean mass per particlem = 10~2* g, thethermal bremsstrahlung at position
x intheenergy range £, < E < Eyis

3me

jx(@; Fay Bp) = 5.53 x 10 2 ergem 35!

KT \'"? / ne \2 Eq By
X (@) (cm—3) [exp (_k_T> — exp (—k—T>:| , (5.29)
where the electron density n,, in this caseis given by

ne = 0.52%‘5. (5.30)

The observable X—ray surface brightness received at the 2—dim. position ¢ isthe line—
of—sight integral of the X—ray emissivity j,

1 .
Sx(¢; Eay Ep) = Il 428 /JX(Ra Z; Ey, Ep)di, (5.31)

where the factor (1 + z)® accounts for the redshifting of the photons and the ratio be-
tween luminosity distance and angular diameter distance.

Assuming a hydrostatic gas distribution, it is possible to relate the observed X—ay
surface brightness Sy to the 3-dim. gravitational potential ¢ by the Euler equation

VP = —pgVo(R, Z), (5.32)
where the gas pressure P obeys the ideal equation of state
P =py L= (5.33)
Pyas,0

Therefore we obtain for a hydrostatic gas distribution a dependence on the potential ¢
of theform
m
Pgas(R; Z) = pgaso X exp [—k—T (<P(R, Z) — wo)]- (5.34)
Since the hydrostatic gas distribution is isothermal, the temperature 7" is independent
of position, and we thus arrive at the following relationship between observed X—ray

surface brightness Sy (z, y) and the 3-dim. gravitational potential ¢(R, Z):

Sx(z,y) x /00 exp [—2(,0'(R, Z)] dz. (5.35)

—0oQ
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5.3.3 Sunyaev—Zel’dovich Effect

The Compton scattering of thermal electronsin clusters of galaxies on the cosmic mi-
crowave background (CMB) radiation field, which is called the Sunyaev—Zel’ dovich
effect (Sunyaev & Zd’dovich, 1970, 1972, 1980), is one of the most important astro-
physical processesin alow—energy environment, where only small energy transfersoc-
cur, with observabl e consequences. In essence, the Sunyaev—Z€l’ dovich (hereafter SZ)
effect isaperturbation of the spectrum of the cosmic microwave background asits pho-
tons passthrough the hot gas of clusters of galaxies. Oneimportant property of the SZ-
effectis, that for agiven lineintegral of pressurethrough the cluster gas, the effect does
not depend on redshift. The SZ—effect is a very important cosmological probe, which
can be used to study the evolution and structure of the Universe. In conjunction with
information at other wavelengths, particularly X—rays, it can be used to estimate the
Hubble constant (Silk & White 1978; Birkinshaw 1999).

Thefrequency shift leadsto an apparent deficit inintensity at low frequenciesof the
CMB spectrum, and an increase at higher frequencies. Here | assume that the temper-
ature decrement ATs; at certain frequencies can be measured. The temperature decre-
ment as a function of redshift, expressed in terms of the R—J brightness temperature
(Try = (\2/2K)I), isgiven as

T
et —1

2
ATsy = ( ) e’ (z coth g — 4) yTeme, (5.36)

where y is the Comptoni zation parameter

Y = / ( ’“T;) (o7ne) di, (5.37)

MeC

and z = hv/kTcme. The first term of the componization parameter y describes the
effect on asingle electron, while the second term gives the probability. As opposed to
the X—ray case which depends on n27/2, the SZ—effect dependson n, T o pT', which
is proportional to the pressure P, thus providing additional constraints on the cluster.
Asin the X—ray case ahydrostatic gas distribution is assumed. The mixture of of 75%
hydrogen and 25% again leads to an electron density n, = 0.52 pgas/ . Thereforethe
temperature decrement depends on the gravitational potentia in the following way

o

ATsz(z,y) oc/ exp (—¢'(R, Z))dz. (5.38)

—0o0

It is worthwile noting that for both, the X-ray surface brightness Sy and the SZ—
temperature decrement ATsz, the dependance on the quantity of interest, the 3-dim.
gravitational potentia ¢, is exponential, requiring great care in the numerical imple-
mentation.

5.34 Multiple-Data Richardson—L ucy Deprojection

Now | propose the multiple data Richardson-Lucy deprojection (MDRL) algorithm.
The combination of different data sets can be achieved in three separate steps. Thefirst
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step of the algorithm is to compute the three losintegrals
i) = [ Zdwn<R<w,y,z),z<x,y,z>), (5.3%)
Senlz,y) = /_:dzexp(—2¢n<R<w,y,z),z«v,y,z))), (5.39)
Mzaley) = [ deexp(-pn(R(@2.2), 2(00,2), (6399

resultingin iterated input data,,, Sx, and ATsz. Inthe second step we definethe three
integrals

Fu(R,Z) = / ful,9)P(z,y| R, Z) dady, (5.409)
Gu(R,Z) = / gn(2,9)P(z,y|R, Z) dudly, (5.40b)
Ho(R,Z) = / ha(2,y) Pz, y|R, Z) dody, (5.400)

where f,,, g, and h,, are defined as

P Sy ATy
=-— 5 On= S ;o hp = A .
Un z,n TSZ,n

fn (5.41)

Here ), Sy, and AT'sz denote the observed input distributions.

In the second step above thethreeintegrals—for the lensing potential 1) theintegral
(5.40a), for the X—ray surface brightness Sy integral (5.40b), and for the SZ temperature
decrement ATs; theintegral (5.40c) — correspond to theintegral (5.6b) of Richardson—
Lucy'siterative inversion algorithm, while the equations (5.39a) — (5.39c¢) correspond
to the integral (5.6a) of the inversion algorithm.

In order for the multiple—data Richardson—Lucy algorithm to work the results of
the integrations have to be combined after every iteration step as

Ontl = @n [aFn + 8 (1 — %lnGn) —I—'y(l — lan)] . (5.42)

«, #, andy areweighting factorswith a4+ 3+~ = 1, which can be used to determinethe
relative weight put on the respective input data. By means of these weighting factors,
it is possible to recover the case of having just one set of measured data.

As aready mentioned in section (5.3) for the X—ray case and the SZ—case the de-
pendence on the gravitational potential ¢ isexponential. Thusit is necessary for these
two cases to take the logarithm of the integrals (5.40b) and (5.40c) in order to recon-
struct the gravitational potential. The factor 1/2 for the X—ray integral G,, arises due
to the fact that the X—ray surface brightness depends on the electron density n2 and not
Te.-

Equation (5.42) completes the multiple—data Richardson-L ucy deprojection ago-
rithm, thus constituting the third step. In terms of the iterative inversion algorithm of
section 5.1 this step corresponds to the evaluation of the full equation (5.6b).
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54 Implementation of the Multiple-Data Richardson—L ucy
Deprojection

The implementation of the program follows closely the formulation of the MDRL—
algorithm given in the last section. For the algorithm, two different types of integrals
need to be evaluated. After reading the observed dataand assuming an initial guessfor
the gravitational potential the iteration cycle is entered. The first step in the iteration
cycleisto integrate the gravitational potential ¢ accordingto Egs. (5.39a) — (5.39¢), to
obtaintheiterated v, Sx,n, ahd ATsz ,,. Now theresultsof thisfirst integration can be
used to compute the integrals (5.40a) — (5.40c) that constitute the second integration.
Thelast step of the iteration cycle isto compute the new estimate for the gravitational
potential 11 from Eq. (5.42). Thisnew, improved estimate of the gravitational po-
tential is used to reenter the iteration cycle. Thewhole algorithmis stopped after afew
iterations; usually 7 — 8 iterations lead to satisfactory resultsfor the potential.

Both, the input data 1y, Sx0, ATsz,o and the gravitational potential ¢ are repre-
sented as discretized dataon arectangular grid. The observed datais assumed to cover
afinite datafield (zmin, Zmax) X (Ymin, Ymax), @nd the reconstructed potential thus cov-
ers a corresponding field (Rmin, Rmax) X (Zmin, Zmax), in cluster coordinates (R, Z).
For the necessary first and second integrations | found the most stable solution to be
afinite difference scheme (NAG, Mark 17, Routine DO1GAF), where the integral be-
tween two successive points is calculated using a four—point formula centered on the
interval concerned. For thefirst and thelast interval s four—point forward and backward
difference formulage, respectively, are used.

For thefirst integralsof theiterative scheme (5.39a) — (5.39¢) | implemented astan-
dard line—-of—sight integral in the formulation of Eq. (5.18). As expected, preliminary
tests with the equivalent formulation (5.15) viathe integral kernel P(z,y|R, Z) asin
Binney et a. (1990), did not |lead to satisfactory results.

| evaluate the line—of—sight integral by first rotating the discretized gravitational
potential before computing an integral along the z—axis.

The second integration (5.40a) — (5.40c) yielding F,,, G, and H,, is performed
on an ellipse asin formula (5.26), that was derived for the axisymetric casein Sec 5.2.
For easier reference we explicitly write down the corresponding integral for thelensing
case:

1 0 4)(Rcost,Zsini + Rsintcosi)
F,(R,Z) = — dt d . 5.43
n(B,Z) 27 ;/_W (R cost,Zsini + Rsintcosi) (543)

From Eq. (5.43) we see that for each given point in the (R, Z) plane the fraction &/w
hasto be integrated over an ellipse

z(t) \ _ [ Rcost 7T
( y(t) ) - ( Zsini +Rcosisint ) t € [0, 2n] (5.44)

that is shifted along they axisby Z sin 4 and contracted in the y-direction by afactor of
cosi. Dueto thefinite range of valuesfor x and y we are faced with the problem that
some parts of the ellipse, and thus of our integration path, may not be covered by the
input data. Thisis most likely the case if both R and | Z| take medium to large values.
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Even worse, if either R or Z becomes very large, then the full ellipse will be outside
the input range for z and y.

Therefore one either hasto exclude all ellipseswith such large (R, Z)—coordinates
or one has to define appropriate “boundary” conditions, i.e. valuesfor theratio 1 /Un,
Sy /Sx,n and ATs /ATsz ,, have to be specified for points (z,y) outside of the data
field (Zmin, ZTmax) X (Ymin, Ymax)- | tested in some detail the following three possible
choices:

1. Assume a smooth expansion of the values of the ratio observed / iterated data
sets, eg. forz > zmax ad y > Ymax Fn(z,y) = Fr(Tmax, Ymax), Gn(z,y) =
G (Tmax, Ymax), and Hy (z,y) = Hyp(Tmax, Ymax) -

2. Assumeaperfect reconstruction, i.e. theratio observed/ iterated data sets equals
unity: F,(z,y) = Gn(z,y) = Hy(z,y) = 1forz > zma Or z < zmin and
Y 2 Ymax O Y < Ymin.

3. Assumerotational symmetry for thevaluesof theratios. Thiscan beachieved by
computing thedistanceto the center of thedatafield and averaging over all values
for the corresponding circlewhich areinsidethedatafield. However thismethod
is computationally relatively expensive, and the results obtained are poor.

Experimenting with these three different boundary conditions and various sizes of
the input field, | found that this boundary problem has no significant influence on the
quality of the reconstruction achieved for the central part of the potential. A typical
example of this problemisgivenin Fig. 5.2, where alensing based reconstruction of
the gravitational potential from agas—dynamical simulation (see next section) isshown
for the three different boundary conditions listed above. It is obvious from Fig. 5.2

Figure5.2: Gravitational potential of acluster from agas—dynamical simulation recon-
structed from lensing data.using different boundary conditionsin the second integration
of the axisymmetric RL algorithm. The enumeration of the boundary conditionsis as
in Sec. 5.4.

that the conditionsNo.2 and 3 introduce unphysical numerical artefactsfor large values
of R that have nothing to do with the true potential. Furthermore, condition No.3 is
computationally relatively expensive. Thus| have decided to exclusively use boundary
condition number No.1 in the remainder of this chapter.

Taking the logarithm for the X—ay and the SZ—casein Eq. (5.42), which is dueto
the exponential dependence in the two cases on the gravitational potential, is numeri-
cally a very unstable operation. Small deviationsin computing the ratio Sx/ Sx,n and
ATsz/ ATsz , are magnified by taking the logarithm, thus preventing convergence of
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the algorithm. In order to avoid this problem | employed a cut—off criterion for thera-
tio. Thisisdoneat the expense of aslower convergence, but asthe algorithm converges
very quickely and is computationally inexpensive this does not pose a serious problem.

5.5 Deprojection of Cluster Images from Gas-Dynamical
Simulations

Having put the Multiple-Data Richardson-L ucy algorithm together, the next important
step is to explore how this agorithm behaves, when it is applied to observed data. In
particular, we haveto assessthe key property of the MDRL algorithm, namely the qual-
ity of the reconstructed gravitational potential achievable for agiven set of input data.
Therefore we have to apply the method first to input data for which we know the true
gravitational potential. For this purpose we use clusters from gas-dynamical simula-
tionskindly provided by Klaus Dolag, to construct observed imagesfor thelensing po-
tential 1, the X-ray surface brightness Sy, and the SZ-temperature decrement ATsz,
reconstruct the gravitational potential ¢PR-, and compareit to thetrue grav. potential
 calculated directly from the simulation data. The gas—dynamical simulationsinclude
information on the dark—matter distribution, the gas distribution and the temperature of
the cluster. They were created using a GRAPE-MSPH code that combinesthe gravita-
tional interaction of the dark matter component with the hydrodynamics of a gaseous
component. In addition, the code includes the magnetohydrodynamic equations fol-
lowing the evolution of the magnetic fields. A detailed description of the program and
the simulations can be found in Dolag et al. (1999).

The cluster simulationswere run using a COBE—normalized CDM power spectrum
with aHubble parameter Hy = 50 km s~ Mpc™!, and Qy= 1.0, Q4 = 0.0. Theviria
mass of the cluster used is My ~ 2.4 x 10'5h~! M, which resides in a volume
of roughly V = (5h=! Mpc)3. The simulations contain approximately 5 x 10* dark—
matter particles and a so the same number of gas particles. The dark—matter particles
have a mass of mgm =~ 1.6 x 10'h™! Mg = 20 X mgas. The masses of the DM
and gas particles provide an estimate for the resolution limit of the smulations. For
the purpose of mimicking “observed data sets’ within current observational limits, the
above resolution is completely sufficient.

The gas and DM distributions of single clusters from the simulations are then used
to compute the true gravitational potential of the cluster, from which then the observed
lensing (Eq. (5.27)), X-ray (Eg. (5.35)), and SZ-data (Eq. (5.38)) are deduced, which
in turn serve as input for the MDRL algorithm. Figure 5.3 shows three typical input
setscreated from the gas—dynamical cluster simulation of asingle, very massivesample
cluster. From the left to the right the lensing potential 1), the X-ray surface brightness
Sx in the energy band 2 keV to 12 keV, and the temperature decrement ATsz at an
assumed frequency of 10 GHz are displayed.

Before turning to the multiple data RL -reconstruction of the potentia ¢, we haveto
investigate how well the algorithm works for each of the three different types of input
dataseparately. Thismeanswefirst consider only the case where ¢ isdeprojected from
either lensing, X-ray, or SZ-data alone, and then compare the findings.

We start by looking at different initial guesses for the gravitational potentia ¢y,
which are used in the first iteration cycle. |deally the algorithm should not depend on
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Figure 5.3: Input data sets created from the cluster simulation data. Left panel: lens-
ing potential +, contours at (—4, —3.5, -3, —2.5,—2) x 10~%. Middle panel: X-ray
surface brightness Sy, contours at (5.75,5.8,5.85,5.9,5.95) x 107°. Right panel:
SZ-temperature decrement AT'sz, contoursat (—1.78, —1.77, —1.76, —1.75, —1.74) x
1072

the choice of theinitial guess, thereforetwo extreme casesfor theinitial guessaretested
and the results are shown in Fig. 5.4. On theleft of Fig. 5.4 | use a NFW potential as
initial guess, which resemblesthe original profile rather closely, especially concerning
the curvature of the potential. On the right of Fig. 5.4 | use a plane asinitial guess,
which makes only minimal assumptions about the potential. Fig. 5.4 showsthe recon-
structed gravitational potential ¢ after 8 iterations for lensing data only, but the results
for X—ray and Sunyaev—Zel’ dovich dataare very similar. Comparing the reconstructed
potentialsin the lower panels obtained from these completely different initial guesses
we clearly see that both initial guesses lead to qualitatively very similar results. The
main difference isthat the potential reconstructed with the NFW profile asinitial guess
is steeper in the inner part as opposed to the potential obtained from the plane asinitial
guess. This can be attributed to the fact that the smallest ellipses with (R, Z) coordi-
nates close to zero are not taken into account due to numerical reasons. Thisis due
to the fact that the finite difference formula requireses at least four points on the €l-
lipse. Thisexplainsthe differencesin the inner part of the reconstructed potentials. In
addition, the potential reconstructed from the NFW profile shows less “artefacts’ for
large (R, Z)—coordinates. Even though the “bump” for large Z—coordinates and R—
coordinates is less pronounced for the potential reconstructed from the NFW profile
than for the one reconstructed from the plane, the behaviour for these large values of
(R, Z) isintroduced by the fact that the data field used for theintegration isfinite. As
large (R, Z)—coordinates constitute the boundaries these differences are not relevant
for assessing the quality of the reconstruction. For the reconstruction the behaviour in
the central 1.5~ Mpc of the cluster is much more important. In this sense the differ-
ences found for the two choices of initial guesses are negligible.

The evolution of the reconstructed gravitational potential ¢,, with the number of
iteration steps n is exemplified in Fig. 5.5. Again, the discussion is confined to the
lensing case with an inclination angle of i« = 30°, and 8 iteration steps. The poten-
tial obtained from the X—ray and SZ case evolves in a qualitatively similar way. The
initial guessin this case is a plane shown in the upper left panel, while the lower right
panel shows the original potential obtained directly from the simulated cluster. Fig.
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Figure5.4: Comparison of two different initial guesses g (upper panels) for the recon-
struction of the gravitational potentia ¢. Thelower two panels show the reconstructed
potential MPRL from lensing data after 8 iterationsfor aninclination angle of 5 = 30°.

5.5 demonstrates that the algorithm converges extremely fast, even for an initial guess
making only minimal a priori assumptions about the cluster potential. Already after
the second iteration the potential isin the correct order of magnitude and has acquired
the characteristic features of the true cluster potential. In addition, we noticethat ¢,, is
hardly altered in the last two steps, indicating that the algorithm has converged in the
sense that most of the large—scale information is recovered. The two main differences
between the reconstructed potential from the last step, g, and the true cluster potential

¢ is the presense of two “dents” in g at (R = 1h~! Mpc,Z = +2h~! Mpc), and
several small “wiggles’ at the flanks of the potential for R = 0. | found that the size of

the“dents’ can be correlated with thefinite range of the “ observed data”, hinting again

at the inherent problems with the finiteness of the boundaries as discussed in Sec. 5.4.

The“wiggles’ reflecting the property of thealgorithmtofit small scalefluctuationslast,

arein this case probably caused by numerical discretization effects, and thus reflect an

unwanted property of the algorithm. This numerical noise can be suppressed by using

a smoothing procedure after every iteration step.
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Figure 5.5: Display of the iterated gravitational potential ,, after different iteration
steps n. The reconstruction is performed for the lensing potential . The upper |eft

panel showstheinitial guess g, whilethelower right panel displaystheoriginal cluster
potential .
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In order to gain abetter understanding on how the algorithm convergesfor thethree
different types of input data, it isinstructive to look at the integrals F;, (5.40a) to H,,
(5.40c). For fixed (R, Z) these integrals determine the multiplicative factors that ad-
vance g, to ¢, 1 vViaEg. (5.42), and, asalready mentioned, good convergence requires
that these integrals approach unity. Thevauesof F,,, G,,, and H,, after thelast step of
Fig. 5.5 are plotted in Fig. 5.6. We see that the convergence after 8 iterations is al-

Figure 5.6: Theintegrals F;, (lensing; 5.40a), G,, (X-ray; 5.40b), and H,, (SZ; 5.40c)
from the second step of the reconstruction algorithm. The same cluster data as in
Fig. 5.5wasused (i = 30°; 8 iterations).

ready excellent over the full range of (R, Z) valuesfor all integrals. The X-ray and SZ
integrals G,, and H,, both overestimate unity by the same amount and feature a sm-
ilar shape, reflecting the fact that they have a similar dependence on the potential ¢,
whereas the lensing integral F;, deviates more strongly from unity to both larger and
smaller values, indicating a different convergence behaviour. The main difference is
the fact that the integral F;, for small values of R and large values of Z is below unity
thus, lowering the potential in this range.

We finish the discussion of the reconstruction from single data sources by compar-
inginFig. 5.7 thetrue, original gravitational potential ¢ to the resultsof the reconstruc-
tions using the lensing potential, the X—ray surface brightness and the SZ temperature
decrement alone as input data for the MDRL algorithm. By this the amount of infor-
mation on the 3-dim. structure can be determined that is already present in each of the
single data sets. Looking at the surface plots of Fig. 5.7 one sees that all three types
of input data give qualitatively very similar results. The lensing reconstruction is su-
perimposed by numerical noise, whichis also present in the X—ray and SZ case, abeit
much less pronounced.

A more detailed comparison of the three reconstructed and the reference potential
ispossibleif surface cutssuch asin Fig. 5.8 are studied. For the cutsthrough the central
part of the cluster we generally see agood agreement of the three reconstructions with
the original potential. The agreement becomes worse for larger radial coordinates as
displayedintheright panel of Fig. 5.8 for thecut through (R = 1/2Rmax, Z). Wedso
notice that the difference between the X—ray and the SZ case is negligible, reflecting
their very similar dependence on the gravitational potential.

Compared with the lensing potential 1 both, the X—ray and the SZ datagive avery
good reconstruction of the inner parts of the potential (R, | Z| < 0.5h~! Mpc) whichis
especially true for the cut along the Z—axis, where the match is nearly perfect. Apart
from the fact that the numerical noise in the lensing potential is more pronouced, we
also seethat the potential isshifted slightly with respect to the original potential and the
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Figure5.7: Comparison of thetrue, original gravitational potential ¢ (upper left panel)
to reconstructions obtained by the lensing potential 1) alone (upper right panel), by
the X-ray surface brightness Sy alone (lower left panel), and by the SZ temperature

decrement ATs; (lower |eft panel) alone. The potential isshownin cluster coordinates
(R, Z).

reconstructions obtained from X-ray and SZ data. This shift does not pose a problem
asit is possible to align the potential with the other two reconstructions by adding a
constant value. Moreimportant, in contrast to the X-ray and SZ-case the curvature and

the overall shape of the lensing reconstruction is closer to the true potential even for
larger radial coordinates R ~ 1h~! Mpc.

Finally, we are in a position to combine all input data sets for a true multiple-data
reconstruction, thus allowing a better reconstruction of the gravitational potentia .
For the present example | chose to combine all three data sets with a weight factor of
1/3. Theresultsof thereconstruction areshownin Fig. 5.9. Inthe upper panel we com-
paretwo cuts of theresult of the reconstruction obtained after 8 iterationswith the orig-
inal potential and the reconstructions computed for the single data sets, respectively.
Especially for the cut ¢(R, Z = 0) we do see an improvement over the use of just
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Figure 5.8: Comparison of three different cuts through the true, original gravitational
potential ¢ and the three single-data reconstructions displayed in Fig. 5.7.

one single data set: The combined reconstruction is more reliable even for values of
R > 1h~! Mpc. Thisis aclear improvement over the reconstructions obtained from
X—ray and SZ dataalone. The shift in the potential present for the reconstruction from
lensing datais not present for the reconstruction from the combined data sets. The full
surface plots of the original potential and the combined reconstruction demonstrates
that the multiple data set reconstruction is able to recover all important features.

At thispoint it isworthwileto assessthe quality of the reconstruction in aquantita-
tiveway. For thispurposeitisinstructivetolook at therelative errors between the orig-
inal gravitational potential yerig and the reconstructed one ¢rec, Which is computed as
|@orig — Prec| /| ¢orig|- Theresult for theinner part of the potentia, i.e. R € (0,1.0)h~*
Mpcand Z € (—1.0,1.0)h~! Mpc, isdisplayed in Fig. 5.10. In the different panels
of thisfiguretherelative errors between the original and the reconstructed potential for
lensing data (upper |eft panel), X—ray data (upper right panel), and Sunyaev-Zel’ dovich
data (lower left panel) are shown; in addition, the result for the combination of all three
datatypesisgiven in the lower right panel.

For al four reconstructionswe seethat the deviation over large parts of the potential
islessthan 5%. When looking at the lensing reconstructionin more detail, we note that
inthiscasethe zonewith an error margin of lessthan 5% isrelatively wide, especially in
the Z—direction. Asaready noted before, both, the X—ray and the Sunyaev—Zel’ dovich
reconstruction, show very similar features, which is also reflected in Fig. 5.10. Both
cases give excellent reconstructionsin the center with coordinate values (R, Z) of less
than0.5h ! Mpc, but the quality of the reconstructionin the outer partsisnot asgood as
in the lensing case. This confirmsthe theoretical expectation, that the datafrom X-ray
and SZ measurements, which have their main contributions coming from the cluster
core, are less affected by projection effects, nicely complementing the weak lensing
data, which isonly sensitive to the gravitating matter.

When looking at the results of the combined reconstruction an improvement over
the single data reconstructions is obvious. Here the region with error margins of less
than 5% is the largest.

Depending on the quality of the data at hand and a priori knowledge of the possibly
different levels of noise present in the data, it is possible to adjust the weighting of the
different data sets. Thisisalso useful when oneisinterested in alimited region of the
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Figure 5.9: Result of the reconstruction obtained by combining all data sets shown
in Fig. 5.7, each with a weighting of 1/3. The upper panel shows two different cuts
through the resulting potential comparing the original potential with the results ob-
tained for the combined data set and the results for the single data sets from Fig 5.8.
Thelower panel comparesthe ariginal potential to the potential reconstructed with the
combined data sets as surface plot.

cluster which might be represented more accurately by a certain observable, like e.g.
the cluster center which significantly contributes to the X—ray and SZ data. In sum-
mary, the combination of data sets can be expected to give improved results, with the
astronomer being ableto control the reconstruction process by means of the weight fac-
tors.

5.6 x2-based Determination of Inclination Angles

Clearly in addition to a quantitative assessment of the quality of the reconstruction a
systematic procedure for determining the input parametersfor the MDRL algorithmiis
highly desirable.
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Figure5.10: Therelative error betweenthe original gravitational potentia ¢ (R, Z) and
the reconstructed potential computed as |@orig — @rec|/|¢orig|- The central part of the
potential isdisplayed: R € (0,1.0)h * Mpcand Z € (—1.0,1.0)h~! Mpc. There-
constructionsshown are run with the same parametersasin Fig. 5.8. Upper right panel:
lensing data only. Upper left panel: X—ay data only. Lower left panel: Sunyaev—
Zel'dovichdataonly. Lower right panel: Combination of all threedatatypes. Contours
mark deviations of (0.05,0.1,0.15,0.2).

As explained in Sec. 5.2 the MDRL-algorithm in its current formulation needs to
be provided with the inclination angle i asinput parameter and a choice for the weight
factors «, 8 and ~y for the three different contributions has to be made. Once all these
parameters have been specified, the MDRL algorithmusyieldsareconstructed estimate
©rec fOr the potential, which in turn determines the best estimates ), Sy, and ATsz for
the observed input distributions 4 (lensing potential), Sy (X-ray surface brightness),
and ATsz (Sunyaev-Zel’ dovich temperature decrement).
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Theideais now to minimize an appropriate x? function, e.g.

Ny - - 5 - - F
=3 (¥ —Uf(ﬁi))Q 4 5 —(;?(&))2 L (Alx —UéTsz(ﬁz'))Z’ (5.45)
i=1 GL X Sz

to obtain the best parameters within the framework of the model assumptions underly-
ing the presented MDRL algorithm. Here N, would the number of grid points, withthe
i-th grid point given by avector 5_; in the zy-plane onto which the observables are pro-
jected. The desired quantitative assessment of the qualitity of the reconstruction could
then be given in terms of a subsequent goodness-of-fit (GoF) eval uation, which would
tell us how likely the reconstruction within thismodel is for the best set of parameters
found before.

Thisideaisillustrated in the following using the cluster examplefrom Sec. 5.5. We
recall that thetrue 3-dimensional gravitational cluster potential ¢ (R, Z) isobserved un-
der anangleof : = 30°, and assumethat we do not know the proper anglei in advance.
For setting up the x? statistics we compute a series of single data and multiple data re-
constructions with various values for the angles  and the weight factors. We then use
Eq. (5.45) to evaluate the corresponding x? function, and obtain a x? value for every
set of input parameters.

The minimum over all the x? values then indicates the best choice for the inclina-
tion angle s and the weight factors. According to our qualitative analysisfrom Sec. 5.5
we would expect that the inclination angle ¢ indeed should be very close to the true
value.

Work on the quantitative estimation of the inclination angle and the weight factors
«a, # and y using the approach sketched aboveis currently in progress.
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Chapter 6

Conclusions and Outlook

Themain objectiveof thisthesiswastheinvestigation of projection effectsin clustersof
galaxies, whichinfluence the amount of cosmological information that can be extracted
with weak-lensing methods. In this context | first studied how the statistics of cosmic
shear measurements can be utilized to find dark matter haloes from their shear prop-
erties, before turning to the question of the significance of projection effects for clus-
ter catal ogues sel ected through the coherent image distortion patternsimposed on faint
galaxies in their background. For both purposes the new weak-lensing-based estima-
tor Mg, recently introduced by Schneider (1996), was used to gain information about
clustersof galaxiesand the LSSinto which clusters of galaxies are embedded. A ques-
tion closely related to projection effectsisthe reconstruction of the true, 3-dimensional
shape of individual clusters. This can be achieved by a deprojection of the observable,
2-dimensional cluster imagesthrough combining lensing-based datawith additional in-
formation from X—rays and the Sunyaev—Zel’ dovich effect. In the following I discuss
the results obtai ned within the present thesis before providing an outl ook for future the-
oretical aswell as observationa work.

6.1 Discussion of Results

With the goal of investigating the LSS and its evolution in mind, | used ray-tracing
simulations through N -body-generated cosmic density distributions to study the sta-
tistical properties of the aperture mass M, as a statistics for cosmic shear measure-
ments and for finding dark matter haloes from their shear properties. In particular, |
compared results from these simulations with the available analytic results and found
inmost casesavery good agreement, except for the skewnesswhich istheleast accurate
of these predictions. Whereas all other predictions tested here are based on manifestly
non-linear results (like the Press-Schechter hal o abundance and the Peacock & Dodds
(1996) power spectrum), the skewness was estimated analytically by using second-
order Eulerian perturbation theory which, on the scales considered, is not very accu-
rate.

Comparing the results from the ray tracing simulations with analytic studies, | ob-
tain the following main results:

1. Thermsof M, isaccurately described by analytic resultsif the fully non-linear
prescription of the power spectrum of density fluctuationsis used.
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2. The statistical error of this rmsis dominated by cosmic variance, which in turn
depends on the kurtosis of M,,. Thiskurtosisturns out to be unexpectedly large
even on angular scalesof ~ 10, implying the need for many more measurements
of M,,, than expected for a Gaussian field, for agiven accuracy of the estimated
projected power spectrum.

3. The skewnessisonly approximately described by analytic considerations based
on second-order perturbation theory.

4. The predicted abundance of dark matter hal oes detectable at given statistical sig-
nificanceisvery well approximated by the semi-anal ytic theory which combines
the Press-Schechter number density of haloes with the universal density profile
of Navarro, Frenk & White.

5. Similarly, the functional form of the probability distribution of M, for values
much higher than the rms (i.e., in the non-Gaussian tail) is found to closely fol-
low an exponential form, of similar slope and amplitude as predicted by analytic
theory which needs to assume that such high values originate due to collapsed
hal oes.

Thus, on the whole, | find that the analytical estimates for the statistical properties
of M, are surprisingly accurate, but also that our simulations are not sufficiently large
for an accurate estimate of the higher-order statistical measures, owingto thefinite size
of the simulation box in combination with the large effect of cosmic variance.

Asdiscussed in SYWJIK, KS1, KS2, van Waerbeke et al. (1999) and Bartelmann &
Schneider (1999), the aperture massis a useful cosmic shear measure which will even-
tually allow oneto constrain cosmological parameters, completely independent of any
assumption on the relation between mass and light. For this purpose, the predictions
from cosmology must be known precisely, and my results here indicate that analytic
estimates are relatively accurate. Unfortunately, | found alarge cosmic variance; e.g.,
in the estimate of the variance of the rms value of M,,,, the kurtosis enters and it de-
creases only rather slowly with increasing filter scale.

Having established that the second-order aperture-mass statistics M, is particu-
larly suitable for investigating cosmic shear and that it is suitable for detecting dark
matter haloes, which in this context are defined operationally as something visible as a
suffieciently high peak inan S—map, itisalsoimportant to look at clustersof galaxiesas
actual 3-dimensional objects. In the next part of my thesis| thereforeinvestigated, us-
ing simulated cluster data, for the first time whether mass-sel ected galaxy cluster sam-
ples constructed with the aperture mass measure M, are more reliable than samples
constructed via Abell’s criterion. As mentioned in the introduction, image distortions
tracethe gravitational tidal field of alensrather than itsmass, and itisin that sensethat
| speak of “mass-selected” cluster samples. | also compared the performance of clus-
ter mass estimators based on cluster-galaxy kinematics and gravitational lensing. The
results can be summarised as follows.

As dready found in previous studies, Abell clusters are severely affected by pro-
jection effects. This not only concerns the selection of Abell clusters, but also mass
estimates based on galaxy kinematics and the virial theorem, indicating that the veloc-
ity dispersionis also hampered by projection effects. A second reason for thefailureis
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thefact that the assumption of dynamical equilibriumisnot justified in at |east some of
the clusters. The projection effects are worse for clusters and groups of lower richness
class.

Clusters detected with a high significance S of M, are less affected by projec-
tion effects than typical Abell-selected clusters. Like Abell cluster samples, the mass-
selected cluster samples are generally incomplete: Samples of clusters detected above
acertain S threshold typically do not encompass all three-dimensional clusters present
in the simulation; some clusters have lower S. However, the completeness of the sam-
ples can be increased by lowering the S threshold. | thereforeinvestigated the effect of
varying the S threshold on the samples. Completeness of ~ 100% can be achieved for
massive three-dimensional cluster samples (M > 10'* =1 M) by varying S > 4.
Then, the samples also contain a substantial fraction of spurious detections, most of
which correspond to real clusters with smaller masses. Generally, there is a trade-off
between completeness and the contamination by spurious detections. More complete
cluster samples are more heavily contaminated by spurious clusters, and the balance
can be adapted choosing the S threshold. It should be noted that the exact thresholds
on S depend somewhat on the choice of the weight function entering the definition of
S (cf. the discussion in Chapter 3).

While qualitatively the same trend is also observed in Abell-selected cluster sam-
ples, the S-statistics generally performs significantly better than Abell’s criterion:
Higher completeness can typically be achieved with alower fraction of spurious detec-
tions. For instance, cluster samples detected at S > 4 contain al of the most massive
clustersin the simulation and 65% spurious detections, while Abell sampleswith rich-
ness R > 0 encompass only about two-thirds of the most massive clusters and 82%
spurious detections.

L ensing-based mass estimates are significantly more accurate than mass estimates
based on cluster-galaxy kinematics and the virial theorem. Virial masses are typically
biased high because line-of—sight vel ocity distributionsare broadened by projection ef -
fects. Lensing also adds up massin front of and behind the clusters, but the biasisless
severe. The standard deviation from the true (three-dimensional) mass of the lensing
mass estimate is smaller by afactor of three or more than that of the virial mass esti-
mates. It should, however, be noticed that the accuracy of lensing-based mass estimates
depends on the depth of the background-galaxy sample and other observational effects.
While the mass estimates based on the { statistics are accurate to within =~ 30% in the
simulations, they may well be less accurate under realistic observational conditions.

The study underestimates proj ection effects because of the limited size of the sim-
ulation volume. This affects both the optical and the lensing-based cluster selection.
Yet it appears that selection of clusters by mass yields more reliable cluster samples
than optical cluster selection, and, more importantly, the quality of the samples can be
controlled by an objective criterion, namely the signal-to-noisethreshold imposed. The
study has shown that selection of clusters by means of gravitational lensing techniques
can be adapted such that the resulting samples are superior to Abell-selected samples
in terms of completeness, spurious detections, and the quality of mass estimates.

After studying the sel ection of clustersof galaxiesand therel ated projection effects,
it was an interesting question whether it is possible to obtain an improved reconstruc-
tion of the structure of individual clusters along the line—of—sight by combining obser-
vational data from different sources. In this thesis | was able to device an agorithm
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based on the Richardson—Lucy deconvolution algorithm that uses lensing, X—ray and
Sunyaev—Z€l’ dovich datato gain information about the 3-dim. structure of acluster of
galaxies. My first implementation of this multiple-data Richardson-Lucy MDRL al-
gorithm was applied to synthetic clusters generated in gas—dynamical simulations, and
| found it to work stably and efficiently:

Starting from earlier work of Binney et a. (1990) on deprojection of eliptical
galaxies from photometric data, an integral kernel for an axisymmetric cluster model
was derived and integral expressions for the n-th projected distribution 4, (z,y) and
the n-th iterative estimate ¢,,(R, Z) to the true potential ¢(R, Z) were obtained, that
are suitable for numerical evaluation. In particular, | found that the simple line-of—
sight integral for v, iseasier to evaluate and numerically more stable as the expression
givenin Binney et a. (1990), and thus isto be preferred.

It was shown that the three observables of interest, the lensing potential ), the X-
ray luminosity Sx, and the Sunyeav—Zel’ dovichtemperaturedecrement A7sz canal be
written asfunctionals of the gravitational potential ¢(R, Z) assumnig hydrostatic equi-
librium and an isothermal gasdistribution. Thelensing potential 1 by itself isgiven di-
rectly asasimpleline-of—sight integral over ¢(R, Z), whereas Sy and ATsz both have
an exponentia dependenceon ¢(R, Z) mediated through the el ectron density withinan
isothermal hydrostatic intracluster gas model. Sy is here assumed to result in contin-
uum bremsstrahlung of the gas distribution, and AT'sz is due to Compton scattering of
CMB photons passing through the hot cluster gas.

In the practical implementation of the MDRL agorithm into a computer program
afew important observations were made. The evaluation of the n-th iterative estimate
on(R, Z) requiresintegrationsover ellipses on the projection plane, wherethe size and
the relativelocation of the ellipseisdetermined by the current pair of (R, Z) values. In
the X-ray and SZ case the logarithmic dependence on the projected quantities requires
the use of cut-off criteria to minimize the magnification of small deviations between
observed and reconstructed projected data.

A first application of the MDRL method to a cluster from gas-dynamical simula-
tions showed that the approach already workswell for single data reconstructionsfrom
1, Sx, or ATsz. The agorithm is very insensitive to the initial guess provided for ¢;
gualitatively no significant difference in the reconstructed potentials obtained from a
very simple constant value function or the realistic NFW model potential chosen asini-
tial guesses were found. As expected theoretically, the X-ray and SZ reconstructions,
which have their main contributions coming from the cluster core and are | ess affected
by projection effects, give a better description of the core region, whereas the lensing
potential that isonly sensitiveto the dark matter distribution, but more proneto projec-
tion effects, better reproduces the overall shape of the potential. Finaly, | found that a
combination of all three data sets within amultiple data reconstruction improves upon
thesingledataresults: theinner regionisdescribed aswell asinthe X-ray and SZ case,
the shift in the lensing reconstruction in this region is completely suppressed, and the
descriptionfor larger (R, Z) radii lacking in the X-ray and SZ-caseis compensated for
by the lensing data.

| believe that this multiple data Richardson—L ucy reconstruction method will be a
valuable and widely applicable tool.
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6.2 Future Prospects

The prospects and challenges can be divided into further studies of constructing and
defining dark matter halo sampleson the one side, and additional work on the deprojec-
tion of individual clusters on the other side. While for theretrieval of the cluster mass
function from lensing a lot of theoretical work is needed, the deprojection of cluster
imagesisin astage whereit can, and should be applied to observational data.

My study of weak-lensing-based mass estimates and the semi-anal ytic approxima-
tions given by Kruse & Schneider (1999a,b) raise the question whether a cluster mass
function can be obtained from weak |lensing whichisbased on no selection criteriaother
than the lensing signal itself. Knowledge of the cluster mass function and its evolu-
tion provides awealth of cosmological information. Especially, since lensing is most
sensitive to clusters at moderately high redshift (z ~ 0.4 — 0.6), alensing-based clus-
ter mass function would nicely complement information on the mass function obtained
from X-ray selected cluster samples. What is more, lensing-based mass estimates do
not rely on any assumptions on the composition and physical state of the cluster mat-
ter, in contrast to X-ray mass estimates. In addition, lensing-based cluster detections
only require sufficiently deep imaging of wide fieldsin optical or near-infrared wave
bands, and detection algorithms can then be applied in astraightforward manner. It can
therefore be expected that reliable, mass-selected cluster samples at moderate to high
redshifts can be constructed in the near future from upcoming deep, wide-field surveys
with astraightforward, well-controlled algorithm, and that the accuracy of cluster mass
estimateswill generally be substantially improved.

However, before weak-lensing-detected clusters can be used for thistype of analy-
sis, extensive numerical studies need to be performed because weak lensing provides
information about the projected masses from avery broad redshift range, rendering the
inference of the mass of an object avery delicate undertaking. It istherefore extremely
important to investigate and model the propertiesof noisearisinginwesak lensing. First
steps into this direction were made by Jain & van Waerbeke (1999), who included an
analytic model for the noise from the intrinsic ellipticities of the background sources.
A lot of work remainsto be done here; e.g. the redshift distribution of the sources needs
to be taken into account, and it will be of great interest to investigate the influence of
the clustering of the background sources.

It can be expected that the first successful application of the aperture masswill be
thedefinition of asampleof hal oesdefined intermsof their lensing propertiesonly, with
afirst example given by Erben et a. (1999). The combination of cosmic shear infor-
mation and CM B measurements can be extremely useful, as shown by Hu & Tegmark
(1999), increasing the precision of the determination of cosmological parameters sub-
stantially over each of the two individual methods. Their study was based solely on
the dispersion of cosmic shear, i.e., on second-order statistics. It is to be expected that
asimilar combination of CMB results with the PDF of M,,, will yield even more pre-
cise parameter estimates. A detailed study of this combination is expected to be very
valuable, but requires alarger grid of cosmological N-body simulations.

A further interesting project is an extension of the investigation of cosmic shear to
larger angular scales. Based on the finding that even for the small field sizes | investi-
gated so far the tail of M, containsinformation on already collapsed haloes, it will be
rewarding to apply maximum-likelihood methods to larger fields, which should allow
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one to discriminate between different cosmological models.

Finally, a streamlined and extended implementation of the multiple data
Richardson—Lucy cluster reconstruction algorithm is planned, in which the expe-
riences gained in the present work will be incorporated, and which will allow the
treatment of true observational data. This revised algorithm will utilise more realistic
assumptions about the cluster itself, which becomes possible with the new generation
of X-ray telescopes with their higher resolution and more accurate information on the
temperature gradient in the intracluster plasma. Furthermore, | plan to add maximum-
entropy regularisation to the algorithm, which has the advantage of providing a
well-defined convergence criterion.

But first and foremost, the cluster deprojection algorithm shall be applied to ob-
served data sets, thus hel ping to shed light on such important issues as determinations
of cluster mass and baryon fractions, the structure of cluster-galaxy orbits, and the cos-
mological interpretation of galaxy clusters.

Relevant data will soon become available in substantial quantities. For example,
agroup around J.P. Kneib (OMP, F) plansto undertake a detailed optical survey of X-
ray selected clustersin order to study their mass distribution. Thisgroup also proposed
to complement the X-ray datawith deep multi-colour imaging which allows for weak-
lensing analyses of the clusters. The cluster deprojection algorithm will be very well
suited for constraining thethree-dimensional distribution of the clustersfrom combined
lensing and X-ray data. In addition, the target runs from Chandra will observe some
clustersfor which weak-lensing analyses already exist, which can then be used in con-
junction with the Chandra observations. Dedicated surveys will also produce ample
Sunyaev-Z€l’ dovich data sets in the near future. It is now the timeto finally combine
all available sortsof cluster datato consistently reconstruct the three-dimensional grav-
itational potential underlying all of them.

In that respect, it is also of great interest to compare the cluster deprojection with
that proposed by Zaroubi et al. (1998), which is based on the Fourier slice theorem, to
assess the strengths and weaknesses of both algorithms and to optimise them.



101

Appendix A

Structure of Further
Representative Clusters

Here | give afew more examples of line-of-sight structures of S-selected galaxy clus-
ters here.

A.l S-Statistics: S > 5

A second examplefor acluster with high S isgiveninFig. A.1. Thecluster is detected
at S = 9.6. Theparticledistributionin real spaceisbroad and dominated by amassive
3-D cluster with amass of 2.1 x 104 h=! M. This cluster is detected as an Abell
cluster in projection, but the main 3-D cluster by itself already passes the luminosity
threshold of a3-D Abell cluster. In contrast to thefirst example, the velocity dispersion
is hardly affected by projection. The 3-D cluster has a velocity dispersion of o3_p =
884km s~ !, while the dispersion of the projected cluster isoy_p = 779kms . The
higher-order momentsindicate avelocity distribution close to Gaussian shape for both
the 3-D cluster (S3—p = 0.01, K3_p = —0.04) and the projected cluster (So_p =
0.09, Ko_p = —0.37). All thisrevealsafairly relaxed cluster with low contamination.

Almost all other clustersinthisclass show similar position and vel ocity histograms.
The only exceptions are the 2-D clusters corresponding to less massive 3-D clusters.
For one of these clusterswith relatively high S = 7.9, the structureisgiveninFig. A.2.
Even though the position histogram is dominated by a 3-D cluster, the distribution for
thiscluster isbroad, and thereis alarge amount of intervening matter with at least four
smaller clumps with masses of order M = 10'3 h~! M. Qualitatively, the los ve-
locity histogram looks artificially broadened by these clumps, and in fact the veloc-
ity dispersion (03 p = 651kms~1) issignificantly increased in projection (o2 p =
860kms~1!). The higher-order moments are also strongly affected by this interven-
ing matter (S3_p = —0.05 and K3_p = —0.64 comparedto Sy_p = 1.19 and
Ko—p = 0.87). Thiscluster isdetected as’R = 1 Abell cluster although it corresponds
onlytoaR = 0 cluster in 3-D.
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Figure A.1: Structure of amassive 3-D cluster detected with S = 9.6. See the caption
of Fig. 4.6 for a description of the panels.

A.2 S-Statistics: 5 > S >4

Figure A.3 showsacluster with S = 4.7. It isapparently only mildly contaminated by
aclump 30 = Mpc from the main clump, which is a high-mass object with M3_p =
2.3 x 10" h~! M. The projected velocity dispersion is almost unaffected (oo_p =
650kms—! comparedto o3_p = 635 km s~ '), and shows a bimodal feature, whichis
also reflected by the curtosis of the projected cluster, £, p = 0.51, while the velocity
distribution of the 3-D cluster has anegative curtosisof K3_p = —0.22. Similarly, the
skewness changesfrom Sy _p = —0.44 t0 S3_p = —0.03. Thecluster isdetected asa
2-D Abdll cluster withrichnessclassR = 1, whiletherichness class of the 3-D cluster
isR = 0. Therefore, the richness classisinflated due to projection. Even though this
cluster shows some projection effects, the corresponding 3-D cluster is massive and
therefore clusterslike that should be included in a mass-limited sample.

The last example for this classis shown in Fig. A.4. Here, the S-map has a peak
with § = 4.4. The position histogram shows a very broad peak with a secondary
maximum on top of the main peak. The corresponding 3-D cluster has a high mass,
M3 p = 3.4 x 10" h~! M. The projected velocity distribution is only moder-
ately skewed with So_pp = 0.22 compared to the skewness of the main cluster alone,
S3_p = 0.17. However, the curtosis of the projected peak, £o_p = 0.38, even
changes sign when compared to the 3-D cluster, £3_p = —0.27. Thiscluster satisfies
Abéll’s criterion in projection, but the main peak has alower richness class, R = 0.
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Figure A.2: Structure of alessmassive 3-D cluster whosesizeisincreased in projection
due to matter concentrations along the line-of-sight. See the caption of Fig. 4.6 for a
description of the panels.

A.3 S-Statistics: 4 > S > 3

Another example for alow-S cluster detected at S = 3.4 isdisplayed in Fig. A.5.
This detection also corresponds to a 3-D cluster with Mz_p = 6.6 x 103 A~ ! M.
Again, the velocity distribution of this cluster is largely atered by the considerable
amount of intervening matter. The velocity dispersion itself isinflated from o3_p =
504kms~ ! tooy_p = 1134kms~'. Thisis reflected by the curtosis, which changes
fromK3_p = —0.02t0 Ko_p = —0.5, whiletheskewnesschangesfromS;_p = 0.18
toSs_p = —0.94. Bothlow-S examplesareneither 2-D Abell clustersnor do they pass
the selection criteriafor Abell clustersin 3-D.

Thelast examplein Fig. A.6 with S = 3.75 does not correspond to a3-D cluster or
group with mass exceeding Ms;_p = 10'3 h~! M. Instead, one sees alarge amount
of contaminating matter and smaller sub-clumps. This material is responsible for the
signal in the S map. The velocity distribution is characterised by three peakswith dis-
persionoe_p = 1235kms™!, skewnessS,_p = —0.30, and curtosis Ko_p = —1.39.
Obviously, the contamination along the line-of-sight is large enough to lead to the de-
tection of an Abell cluster with richness classR = 0.
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Figure A.3: Structure of a moderately contaminated 3-D cluster witha S = 4.7. See
the caption of Fig. 4.6 for a description of the panels.
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Figure A.4: Structure of amoderately contaminated 3-D cluster with S = 4.4. Seethe
caption of Fig. 4.6 for adescription of the panels.
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Figure A.5: Structure of moderately large 3-D group with S between 3and 4. The 3-D
object is contaminated by projection along the line-of-sight, leading to an increased S
of 3.4. Seethe caption of Fig. 4.6 for adescription of the panels.
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