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Zusammenfassung

Diese Arbeit zeigt Fortschritte bei der experimentellen und analytischen
Methodik zur Untersuchung selbstorganisierter Quantenpunkte mit Réntgen-
beugung. Es werden zwei Themenkomplexe behandelt: Die quantitative
Bestimmung von Korrelationen in Quantenpunkt-Multischichten sowie die
Messung von Verzerrungs- und Zusammensetzungsprofilen in unbedeckten
Quantenpunkten.

Fiir die Charakterisierung der vertikalen Anordnung in sdulenartigen Sta-
peln von Quantenpunkten, die bei einem Wachstum von Multischichten zu
beobachten sind, wird eine Mefimethode in Beugungsgeometrie zusammen
mit einem statistischen Modell vorgestellt, welches eine quadratische Verbrei-
terung der Bragg-Schichten mit lateralem Impulsiibertrag vorhersagt. Das
Modell wird anhand von Ge/Si(001) Multischichten mit Zwischenschichten
verschiedener Dicke demonstriert und der analytische Ansatz bestatigt. Die
laterale Ordnung der Quantenpunkte wird iiber die Verzerrungsmodulation
im Substrat untersucht. Ein analytisches Modell fiir den kurzreichweitigen
Ordnungszerfall von Gitterlinien entlang eines durch den Oberflaichen-Bragg-
Reflex vorgegebenen Azimuths erméglicht die vollstandige Bestimmung von
Form und Korrelation der Quantenpunkte.

Die experimentelle Untersuchung von Verzerrungsfeldern und Materialzu-
sammensetzung von Quantenpunkten wird mit einem streutheoretischen An-
satz von Iso-Verzerrungsflichen zu einer Technik entwickelt, die keine funk-
tionalen Zusammenhéange tiber den gesamten strukturellen Aufbau der Quan-
tenpunkte postulieren mufl. Neben einer experimentellen Auflésung beziiglich
des Verzerrungszustandes, werden durch das Ausnutzen von Mehrfach-Streu-
prozessen bei Beugung unter streifendem Einfall und der daraus resultieren-
den erweiterten optischen Funktion eine sub-Nanometer Hohenauflosung er-
zielt. Zusammen mit der Bestimmung der Kriitmmung der Iso-Verzerrungsfla-
chen erlaubt diese Datenbasis die Darstellung des Verzerrungsfeldes im unbe-
deckten Quantenpunkt als tomographisches Bild. Zusatzlich kann mittels
Kontrastvariation an starken und schwachen Reflexen die Materialzusam-
mensetzung als Funktion der Hohe im Quantenpunkt ermittelt werden.



v

Mit der Bestimmung der Verzerrungsbilder und des vertikalen Zusammen-
setzungsprofils an verschiedenen Serien von unbedeckten InAs/GaAs(001)
Quantenpunkten gibt diese Arbeit eine Antwort auf die umstrittene Frage
nach dem bislang weitgehend unbekannten inneren Aufbau von freistehenden
Quantenpunkten. Die Interdiffusion von epitaktisch aufgebrachtem Mate-
rial und Substrat stellt sich als stark temperaturabhangig heraus. Fiir InAs
Quantenpunkte, die bei Substrattemperaturen oberhalb 500° C hergestellt
werden, besteht bereits mehr als die Halfte des Quantenpunktes aus Substrat-
material. Diese unerwartete experimentelle Tatsache wird durch atomistische
Relaxations-Rechnungen als selbstkonsistent bestatigt.
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Note to the reader

For the sake of conciseness, techniques and theories which have been de-
scribed extensively in widely available literature are not discussed in detail
in this thesis. This allows for a leaner structure and a clear focus on the
actual scientific advances which lead to this publication. For background
reading, the two following books are highly recommended:

e For an excellent discussion of grazing incidence diffraction see

H. Dosch, Critical Phenomena at Surfaces and Interfaces
(Springer, Berlin, 1992).

e For a comprehensive report on applications and physical properties of
semiconductor quantum dots see

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum
Dot Heterostructures (Wiley, Chichester, 1999)
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Introduction

The quickly evolving field of self-organized quantum dots has evoked high
hopes in the community of solid state physicists, where everything is geared
towards one word: mano. From nano-technology to self-organized quantum
dots, the focus of scientific research is shifting from properties of bulk matter
towards a world of crystalline structures whose size is of the length scale
where the quantum-mechanical nature of matter is at home and the wave-
length of a conduction band electron is no longer small compared to its host
crystal. And yet, already a cube of 10 nanometers base length may contain
more than 50000 atoms, a giant lump of matter from a molecular point of
view, but hardly detectable until the recent advent of scanning microscopies.
Visualizing a world so small that it evades even the resolution of light, was
the major achievement which paved the way for today’s scientific road map.

Self-organized quantum dots play an important role in the arena of candi-
dates for novel devices. Such islands of perfect crystallinity can be produced
in macroscopic numbers by standard techniques of epitaxial thin film growth.
Although various sources of self-organization are increasingly exploited, such
as the recently reported ion sputtering technique [1], the Stranski-Krastanow
growth mode [2] in lattice mismatched heteroepitaxial systems is the most
widely used procedure for the fabrication of quantum dot samples. The de-
posited material forms bonds to the substrate atoms and the resulting lattice
is massively strained to meet the requirements of the bulk substrate, but, at
a certain point, the growth process will become unstable as the gains of re-
grouping independently with respect to the substrate outweigh the increase
in surface energy. Nevertheless, the growth conditions may often be chosen
such that all atoms place themselves coherently with respect to the substrate,
with definite spatial relationships from layer to layer, without any formation
of dislocations. While the bottom of the arising island remains pseudomor-
phically attached to the substrate, the higher parts of the three-dimensional
structure are free to gradually relax towards their bulk state. This relaxation
introduces strain and consequently a varying local lattice parameter into the
common lattice of substrate and island.



As easy as the energetic principle which gives rise to this kind of self-
organization, as complex is the dependence of the island morphology on the
growth parameters. Similar to the seemingly simple hydrodynamic problem
of Couette flow [3] — investigated for one century and yet not fully explored
— the manifestations of self-organized growth are of a dazzling variety which
seems irreconcilable with the quest for a simple theoretical framework which
could make quantitative predictions for such systems. With the words of
H. L. Swinney [4]:

“There is no general theory to describe the behavior of systems
far beyond primary instability. In contrast to equilibrium systems,
there is no function like the free energy that can be determined
and minimized to find the state of a non-equilibrium system for
a given set of control parameters. The many attempts to find
an extremum principle for systems far from equilibrium have all
failed. Howewver, it is just this regime far from equilibrium that
is often of interest in nature and technology, where one would
like to be able to predict the behavior of, e.g. the atmosphere
and oceans, combustion, mizing and separation processes, and
biological systems.”

Therefore, for the understanding and even for the discovery of the properties
self-organized systems, the primary input is experimental. To establish a
sound basis for the development of detailed energetic and kinetic arguments
which tempt to fully explain the process of self-organization, the crystalline
structure and the statistical properties of spatial distributions have to be
known as accurately as possible.

X-ray diffraction usually does not provide the impressive visual results of
image producing techniques, but fulfills the important task of assessing the
crystalline properties of a sample with high quantitative accuracy. The most
fruitful research arises from a combination of the two approaches in real and
reciprocal space. While microscopical techniques deliver the general ideas
about the fundamental structure of a sample, x-ray diffraction contributes
the quantitative details and the crystalline status of the atomic lattice.

This thesis presents methodical advances for two different areas of char-
acterization:

(i) First, statistical properties of spatial arrangements between quantum
dots are investigated for columnar stacks of quantum dots in multi-
layered samples and single layers of islands. This thematic complex
is treated in chapter 1, where samples from the Ge/Si(001) material



system are analyzed. The quality of vertical stacking can now be eas-
ily calculated from scattering data, which has been used for analyzing
the influence of spacer thickness on vertical ordering. In addition, the
evaluation of lateral ordering is facilitated by the concept of measur-
ing diffraction from “strain lattices” as a replacement for conventional
small angle forward scattering experiments.

(ii) Second, a method is developed to map out the strain field within un-
capped islands and determine the vertical composition profile without
assuming holistic functional models for the entire structure of the dots.
Thus, images can be calculated from the x-ray data, bringing the to-
mographic power of x-rays to a size-regime that was previously thought
to be inaccessible for such methods. A detailed discussion of why this
achievement is possible — rather unusually for a scattering technique
where half the spatial information is lost due to the phase problem — is
presented in chapter 2. Using this technique, the influence of substrate
temperature on the growth process is investigated for InAs/GaAs(001)
islands.

At the time of this writing, it seems to become increasingly accepted that
interdiffusion in self-organized quantum dots is a process which is central to
growth and morphology itself [5-7], rather than just being a “real-structure”
effect which can be neglected in first order approximations. This recent
insight has important implications for the understanding of growth dynamics
as well as the electronic properties in device applications. While indirect
evidence for this revised point of view has been available for about a year prior
to the findings presented in chapter 2, these x-ray measurements constitute
the first spatially resolved determination of material composition in free-
standing islands.






Chapter 1

Ordering analysis of
self-organized quantum dots

1.1 Vertical ordering in quantum dot multi-
layers

1.1.1 Introduction

Vertical stacking of quantum dots in superlattices grown in the Stranski-
Krastanow mode is considered a promising technique for improving their
size homogeneity [8-11] which is crucial for all kinds of applications [12-14].
Quantum dot formation on non-prepatterned substrates usually results in
broad distributions of inter-dot distances and consequently of dot sizes. Due
to growth dynamics and various interactions between the dots [15,16], opti-
mally equalized kinetic and thermodynamic growth conditions can only be
achieved if all nucleation centers are distributed on equivalent positions of a
lattice. In the case of vertical stacking, a number of bilayers of substrate and
dot material are deposited in sequence, while the buried dots act as stressors
in a matrix of different lattice parameter, influencing the morphology of the
consecutively formed interfaces. Strain propagation through the spacer layer
serves as a low pass filter for the preferred nucleation sites in the next layer,
decreasing the variation in nearest neighbor distance and size [17]. Ever
since the original proposal for a self-improving lateral arrangement has been
presented [18], investigations on the optimization of this process have been
carried out [19-22], revealing the multifaceted complexity of the subject. Re-
cent theoretical studies [23,24] emphasize the importance of spacer thickness
for the final configuration after a given number of bilayers. While lateral cor-
relational properties are easily accessible by scanning microscopies [25, 26],
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the analysis of the vertical alignment of the dots traditionally requires de-
manding cross-sectional transmission microscopy recordings [18,27] which
serve as case studies for single dot columns but cannot provide sufficient
accuracy and sample size for a statistical evaluation of the horizontal dot
displacements from an average dot position.

In this chapter, an x-ray scattering analysis is presented [28], which is de-
signed to provide a quantitative estimate of the mean deviation from perfect
stacking based on a macroscopic portion of the sample’s surface. Section 1.1.2
gives details on the kinematic model describing the profile of the Bragg-
sheets [29] induced by the superstructure of the bilayers. In section 1.1.3
the experimental technique allowing for the determination of the model pa-
rameter for imperfect stacking with sufficient accuracy is described. The
experimental results of two Ge/Si(001) samples with different spacer thick-
nesses are discussed in section 1.1.4.

1.1.2 Analytical model

Horizontal deviations in the vertical stacking of quantum dots are partly
driven by deterministic factors based on the various interactions between
quantum dots. From interface to interface, strain propagation through the
spacer layers alters the initial energetic situation which growth kinetics has
to respond to [30] . The mean dot positions may thus change in a determin-
istic way which depends on the spatial configuration of the first dot layer.
The general features of column bending and other processes like merging of
different dot stacks as well as the dying out of single columns can be observed
in cross sectional TEM measurements [20, 31, 32].

From an analytic point of view, a complete treatment of the “micro-
scopic” evolution of dot columns is often not necessary. Progress in growth
techniques relies on characterization of sample series and the comparison of
meaningful parameters. Using the relative randomness of the first dot layer
on the substrate, averaging is performed over the whole ensemble of dots,
which leads to the description of the evolution of a mean column whose lat-
eral displacements are random in nature (Fig. 1.1). For the propagation of
one bilayer to the next, a Gaussian distribution of horizontal deviations from
the underlying reference dot is assumed. If the interaction between next
nearest neighbor bilayers is assumed to be negligible, the width of the lat-
eral dot distribution with respect to the lowest reference dot increases in a
random walk-like manner:

on =+/no (1.1)
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Figure 1.1: Model for the lateral deviations from an average dot position. The
half width of the spread in lateral position increases in a random
walk-like manner. The mean position of the average dot column is
pinned by the reference dot closest to the substrate.
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where n is the bilayer number starting with n = 0 and o parameterizes the
distribution of the horizontal shift from bilayer to bilayer, whose mean is
always congruent with the position of the reference dot. The concept of
a mean deviation from perfect stacking o essentially captures the average
quality of the vertical dot alignment. Figure 1.1 visualizes this description
for a 20 bilayer sample of period D.

From a kinematical viewpoint the total intensity scattered from a quan-
tum dot multilayer is the product of four factors:

(i) a pair of transmission functions [33] describing the incidence and exit
of the wave through the surface,

(ii) a dot form factor [34,35] modulating the overall intensity,
(iii) a lateral correlation term [36]
(iv) and a function describing the influence of the dot stack.

The following analysis focuses on the functional dependence of the inten-
sity on the vertical momentum transfer ¢, to the scattered x-rays. The effects
of in-plane correlations result in a constant factor for fixed lateral momen-
tum transfer ¢ and are therefore not considered. The form factor and the
transmission functions exhibit a slow variation along ¢, as compared to the
superstructure effects. Although they would be needed in a complete fit of
the scattering intensity, one can extract the parameter o from changes in the
Bragg-sheets’ half width half maxima (HWHM) in ¢, where the other terms
only provide for a monotonous background and can therefore be excluded.
Diffuse scattering of micro-roughness is estimated to be a smaller order effect
as compared to dot scattering, especially on epitaxially grown interfaces [37] .
The remaining task is the determination of the structure factor of an average
dot column.

A phase summation over the stack of N dots gives the average scattering
amplitude in g| and g, normalized to the form factor of a single dot:

Fy (g.q) = Y e r-1-

stack
N-1

_ Z eiqun <eiq||z>layer e—,u(N—l—n) (12)
n=0

where the vertical positions are assumed to be perfectly correlated and x is
the lateral deviation of the reference dot for each column. A dimensionless
attenuation factor p has to be taken into account to describe the loss of
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intensity in the x-ray beam from one bilayer to the next. The averaging
is performed over all dots in one layer, resulting in an integral over the
distribution of lateral displacements P(x,n):

[e o]

N-1
Fy (g-,q) = Zeiqu"_‘m / %P (z,n) dx
n=0 I——o0
v 2
= ¢i9=Dn—pn / eae | = | qg. 1.3
; V2tno ( )

Evaluation of the integral leads to a finite sum of complex phases, which is
easily evaluated as

Fy (g q) = 3 en(ed—iaDn)

1 — eN(iqu—azqﬁ—u)

— . (1.4)

; 0202
1_ezqu oig—k

The structure factor can then be transformed to the following expression (see
Appendix A):

2
Sn (g01) = [Fn (2= 9)]

0.2 2
o2} (N-1) sin® 52 + sinh” .

2__, (1.5)

a2qﬁ +u
2

e
sin? % + sinh?
For reasons of clarity p is set to 0 in the following discussion of this result.
For 0 = 0, Eq. (1.5) reduces to the usual Laue formula for a finite grating.
Even for o # 0 the scattering intensity along the specular path at ¢ = 0
does not differ from a perfectly aligned stack. Only the diffuse scattering
at g # 0 is influenced by the lateral deviation from perfect stacking. The
functional dependence of the structure factor on g is shown in Fig. 1.2 at
different oq) for the case of a N = 20 multilayer. Three important features
of the distribution described by Eq. (1.5) can be noticed:

(i) The total thickness oscillations die out rapidly for increasing g;. While
their amplitude ASy thickness is 1 in the close vicinity of the specular
condition, it vanishes as

—azqﬁN

ASN,thickness ~2e for aq) > 1. (16)

For large N, thickness oscillations will therefore be confined to values
of oq) smaller than N 2.
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Figure 1.2: Modified Laue function for dot column scattering for different values
of og). All curves are normalized to their peak intensity. The lowest
graph for og| = 0 is equivalent to the simple Laue function resulting
from the interference of 20 bilayers. As the total thickness fringes
vanish for increasing og), the envelope gets broader and eventually
turns into a single bilayer oscillation on top of a constant background.

(ii) The relative intensity in between the main maxima is increasing with
q|- Averaging the rapid oscillation of the first term in the numerator
of Eq. (1.5) one obtains the contrast

Smaz _ Gmin B tanh? %N 02qﬁ

Spin tanh? %0'2 qﬁ

(1.7)

For small arguments, where the peak intensity has a weight of approxi-
mately N?, the contrast decreases slowly with the fourth power of og,
whereas for large values of og) it vanishes exponentially, but indepen-
dently of the number of bilayers:

S]r(’ww _ Sﬁzn (1 — io“lqﬁ) N2 for aq < ﬁ (1 8)
SN 2¢ 740 for og > 1

The contrast resulting from a N = 20 multilayer is shown in Fig. 1.3.
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Figure 1.3: Half width half maxima from Egs. (1.9) and (1.10) and contrast of

(iii)

the Bragg sheets against the intensity in between them as predicted
by Eq. (1.7). The quadratic approximation to Eq. (1.9) is seen to
be highly accurate for values of og < 0.5 but fails as the exact

expression levels off asymptotically to %

The HWHM in g, of the envelope over the thickness oscillations is in-
creasing with g until is saturates at its maximum possible value of i
of the reciprocal period of the superstructure. At this point, the func-
tional dependence of the envelope corresponds to the oscillation caused
by a single bilayer on top of a constant background. The HWHM, which
has to be evaluated with respect to the minimum intensity in between
the Bragg-sheets, can be calculated analytically as (see Appendix A)

1
AgTWHM — T arceos sech (02qﬁ + 4, (1.9)

taking again into consideration the attenuation factor p. A useful ap-
proximation for small og) reveals a quadratic increase of the HWHM
in g, with lateral momentum transfer:

qi +

(1.10)

Sl=
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Figure 1.3 shows Eq. (1.9) together with its approximation Eq. (1.10) which
deviates from the exact expression by less than 1% for og| < 0.5. The valida-
tion of Eq. (1.10) is the most convenient way to determine the parameter o
from experimental results. In comparison, Eq. (1.6) is based on a small signal
that dies out rapidly with g while Eq. (1.8) requires a complete simulation
of the g,-spectrum which introduces further unknown parameters.

1.1.3 Experimental technique

A suitable scattering geometry for the determination of the model parameter
o according to Eq. (1.10) has to provide for resolutions in g of the order of
o0 'V/N as well as a weak background allowing for a clear differentiation
of the Bragg-sheets whose contrast is given by Eq. (1.7). Here, it is best
to consider an “out of plane” measurement at constant angle of incidence
«; where the detector is rotated around the surface normal [38]. Assuming
typical diffractometer distances and wavelengths of 1.5 A, the width of the
resolution element in g can be brought down to 0.0005 A-1 using either a
triple crystal setup or a collimation path. For N = 20 multilayers the rule
of thumb given above sets a maximum observable ¢ at about 500 A. ”In-
plane” measurements [39], where incident beam, surface normal and detector
all lie in the same plane can achieve higher resolutions but create additional
difficulties, such as low maximum g for small ¢, and varying scattering depth
along a Bragg-sheet [40]. In any case, the use of synchrotron radiation is
mandatory to achieve an adequate collection of data points.

In forward scattering experiments [41-43|, which are sensitive to the elec-
tron density contrast, parasitic contributions from air scattering of specular
and primary beam are hard to minimize and often not negligible. For a
crystalline sample, measurements can be performed in the vicinity of a sur-
face Bragg peak of the spacer material separating the layers, thus exploiting
the lattice modulation induced by the self-assembled quantum dots. The
scattering geometry is sketched in Fig. 1.4. While the scattering angle 26 re-
mains fixed at its value for the silicon (hk0) reflection, non-zero values of g
with respect to the surface Bragg-peak are obtained by varying the azimuth
w around the Bragg-condition fg;. The angle of incidence «; is adjusted to
obtain a scattering depth [44] exceeding the total thickness of the superstruc-
ture. A position sensitive detector simultaneously records complete spectra
of vertical momentum transfer which is varied by the angle of exit ay.

The situation in reciprocal space is visualized in Fig. 1.5. For (001)
surfaces of diamond lattices, the strong (220) surface reflection is suitable
for this investigation. Normal to the sample surface, a crystal truncation rod
is found on the ¢,-axis, which is modulated by the transmission function.
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Figure 1.5: Part (a) shows a schematic representation of reciprocal space with
the cross-hatched area indicating the choice of the reciprocal space
map to be used for the analysis of vertical ordering. The plane of
the sample surface is spanned by g and g¢,, while g, designates the
growth direction. The Bragg-sheets, whose spacing is given by the
superlattice constant D, are clearly visible in the measured data of
sample 1 as shown in (b) (logarithmic gray scale).
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It is peaked at the critical angle of total external reflection «. and exhibits
marked oscillations of the superstructure, spaced at %’. Although the diffuse
multilayer Bragg-sheets extend in all directions around the lattice rod that
are parallel to the surface, strain asymmetries complicate the evaluation in
the radial direction denoted as g,. Hence, measurements take place in the
plane spanned by the angular direction (g in Fig. 1.5) and the surface normal
(g.). When choosing a suitable Bragg-sheet for the analysis, a compromise
has to be made between the higher intensity of lower order Bragg-sheets and
dynamical effects at low ¢, near a,, where the width of the sheets are modified
and the strong curvature of the transmission function is unfavorable for the
determination of the half widths in g,. For our measurements discussed in
the next section, the choice was made between second and third order Bragg-
sheets.

1.1.4 Results and discussion

Two samples in the Ge/Si(100)-system with 20 bilayers were investigated,
one with 300 A Si-spacers (sample 1), the other with 100 A Si in between
the dot layers (sample 2). Lateral dot sizes are estimated from TEM record-
ings [45] at about 1500 A*. X-ray experiments as described in section 1.1.3
have been performed at the TROIKA II beamline of the ESRF at a wave-
length of 1.5 A. From the measurements along ¢,, the HWHMSs have been
evaluated as a function of g| and are plotted in Figs. 1.6 and 1.7 where the
resolution elements of 0.002 A~! and 0.0025 A~ respectively are indicated
by the horizontal error bars. According to the different requirements of scat-
tering depth, the incident angles have been set to a; = 0.4° for sample 1 and
a; = 0.27° for sample 2.

Figure 1.6 shows the broadening of the third Bragg-sheet of sample 1
(thicker spacer layer) together with selected scans along ¢,. The quadratic
relationship between g and the half width predicted by Eq. (1.10) is con-
firmed within the experimental errors and a mean statistical deviation from
perfect stacking of o = 122 & 13 A is obtained from the fit of eq. Eq. (1.9).
For this case, the use of Eq. (1.10) is not a satisfactory approximation for
the whole measured range, since the maximum value of og is close to 1.

Figure 1.7 has been recorded for sample 2 (thinner spacer layer) where
the scattered intensity is found to decay much more slowly with ¢ than for
sample 1. Due to the different combination of scattering depth and spacer
thickness, the fitted value of the attenuation factor u is slightly larger than

*see Ref. 46 for an extensive discussion of the size and temperature dependence of
Ge/Si(001) islands
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Figure 1.6: Experimental results for the half width half maxima of the 3"¢ Bragg
sheet of sample 1 (300 A spacer). The insets show the intensity
profiles along g, for two selected values of g.

for the measurement on sample 1. Here, the experimental data is well ap-
proximated by Eq. (1.10) for the whole range in g that was accessible in
terms of sufficient intensity and peak contrast (cg; < 0.6). The fit results in
a statistical deviation from perfect stacking of o = 1542 A. Apart from the
broadening of the Bragg-sheets in ¢,, the insets in Figs. 1.6 and 1.7 clearly
show the reduction in contrast with g as predicted by Eq. (1.7).
Considering the lateral size of 1500 A, these results for o can be trans-
lated into relative values which indicate the percentage of a dot’s base area
that is non-congruent with the corresponding dot in the neighboring layer.
TEM-data [20] and x-ray analyses [34,47] show that the dots have square
bases aligned along the (110) and (110) directions. Scattering experiments
at the (220) reflection therefore yield the projection of the total lateral dis-
placement along one base of the square (Fig. 1.8). The distributions of the
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Figure 1.7: Experimental results for the half width half maxima of the 2" Bragg
sheet of sample 2 (100 A spacer). The insets show the intensity
profiles along g, for two selected values of g;.

displacements in the orthogonal directions x and y are Gaussian with mean 0
and standard deviation ¢ and can be considered as independent. The average
non-congruent area (Agyss) as defined in Fig. 1.8 is given by

(Aairs) = (D (|Az] +|Ay]) — |Az| |Ay]) = U\/g <2D - 0\/%) (1.11)

from which a relative deviation from perfect stacking f can be defined:

<Adz'ff> o 2 o 2
_ _ 2 %22 2. 1.12
! Adot DV DV~ ( )

For sample 1, a relative deviation from perfect stacking of 13% from layer
to layer is calculated, whereas sample 2 exhibits only 1.6% of relative lateral
deviation from one dot to the next.
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layer n layer n-1

e

Ay

D

Figure 1.8: Definition of the relative lateral deviation from perfect stacking f by
means of the average non-congruent area of two consecutive dots.

1.2 Strain modulation analysis of laterally or-
dered islands

1.2.1 Introduction

Lateral ordering effects in Ge/Si quantum dot layers have been subject to
recent theoretical considerations based on calculations of total energy [15,17,
23]. Improvements in the homogeneity of self-assembled islands are directly
linked to advances in the understanding of their correlational behavior. In
this section, a method is outlined [47] which is suitable to quantify ordering
and correlations using the concept of random positional stacking faults.
X-ray triple crystal grazing incidence diffraction (TCGID) is a high res-
olution surface sensitive method revealing lattice properties of the topmost
50-5000 A [44,48]. With the appropriate analyzer [49], lateral length scales
up to 1 pum are easily accessible. The penetration depth is minimized by
confining the angles of incidence and exit to values below the critical angle
of total external reflection .. The intensity modulation around the surface
Bragg peaks induced by the lateral structure is strongly influenced by near
surface strain fields in the Si-substrate and strongly varying lattice param-
eters in the islands. The evaluation of lateral ordering is thus most easily
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Figure 1.9: Schematic representation of the stressor-induced modulation of the
lattice parameter. The near-surface region of the substrate rather
than the dots themselves are subject to the presented x-ray analysis.
The continuous curve in the inset indicates the lattice parameter
variation along the highlighted line while the dashed line shows the
approximation applied in the analytic model using only the projected
size L.
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achieved by investigating the scattered intensity in directions parallel to the
lattice planes of the surface Bragg reflection of the substrate (angular scans
in reciprocal space). Effects due to ordering are maximized and most read-
ily interpreted from the small angle pattern around a surface Bragg peak
of silicon. Here, strain modulations in the substrate resulting from the is-
lands acting as stressors [50,51] rather than their geometric modulation are
dominant (Fig. 1.9).

1.2.2 Analysis and results

The investigated sample was a 20 period Ge/Si superlattice grown by molec-
ular beam epitaxy at 670° C. Each period was constituted by nominally
5.5 monolayers Ge on top of a 300 A thick Si spacer. The experiment was
carried out at the BW2 beamline at HASYLAB/DESY using a wavelength
of 1.5 A. The angle of incidence was fixed at a; = 0.15° (< o, = 0.22°) while
the angle of exit was integrated up to a. by means of a position sensitive
detector perpendicular to the sample’s surface [52]. Measurements in recip-
rocal space took place around the (220) and the (400) surface reflections of
Si, thus yielding correlational properties of the two elastically most different
directions on the Si(001) surface.

Conventional large angle x-ray diffraction data [20,21,53,54] from asym-
metric reflections does not allow for an easy separation of surface layer and
buried dots. In our grazing incidence setup the information depth is con-
stant and in angular directions the scattering intensity can be described as
a product of the structure factor and a correlational term. Atomic force mi-
croscopy data (AFM) shows that the islands can be thought of as having a
square base which is oriented along [110] and [110] [34]. The strain modula-
tion in the substrate can then be approximated by this base shape as shown
by the dashed line in the inset of Fig. 1.9. The details of the strain decay are
neglected in this approach. To take account of the spread in lateral extent
of the islands, the resulting structure factor is averaged incoherently with a
size distribution which is assumed to be log normal for convenience:

T ain L P
B sin 51q, 1., i
S(qa)—const/< e, > exp|: —2w21n (L dl, (1.13)
0

where w is the width parameter determining the full width half maximum of
the size distribution and p is 2 for the {110} directions parallel to the square
baselines and 4 for the {100} directions along the diagonal of the base area
(see Fig. 1.9) as given by the Fourier transform of a square of size L.
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reference
line

Figure 1.10: Definition of NN-distance D and disorder parameter v. Ensembles
of lattice lines are indicated by dashed lines and the distributions
associated with them indicate the increasing spatial variation of the
dots from their ideal lattice points with respect to the reference line
at the origin. The square lattice and the orientation of the pyramids
have been chosen in order to visualize the experimental result.
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Since AFM measurements indicate that inter-dot ordering is very weak,
long-range order arrangements [55] are not considered. The analysis of or-
dering is based on a random positional stacking fault argument in a local
dot lattice. Although the displacements of the dots with respect to an ar-
bitrary reference dot are two-dimensional in nature, the scattered intensity
is not sensitive to displacements perpendicular to the momentum transfer of
the chosen surface Bragg reflection. As a first approximation, the statistical
variations from the ideal lattice points can be described in terms of 1D lattice
lines with a Gaussian positional stacking fault of width 7. Subsequent fold-
ing of these positional stacking faults leads to a distribution of width vy/n
for the n-th neighbor (Fig. 1.10). Numerical simulations confirm the validity
of this one-dimensional approach for configurations where v is of the order
of D. The disorder parameter v can vary for ensembles of lattice lines in
different directions. A correlation length ¢ is defined as the distance where
this width is equal to the projected nearest neighbor distance D. With the
no-th lattice line fulfilling this condition with respect to the origin:

Vnoy = D, (1.14)

the correlation length turns out to be

D3

§:n0D 72.

(1.15)

In contrast to the disorder parameter v which describes the behavior of the
nearest neighbor lattice lines, the correlation length £ expresses the extent
of short range order.

The particular advantage of this one-dimensional approach lies in the
fact that anisotropies of disorder and the symmetry of the lattice do not
have to be assumed a priori but are obtained directly from the experimental
data. The calculation of the Patterson function of the above model leads to
the correlation factor C'(g,) describing the scattering from random positional
stacking faults [56] without an average lattice (see Appendix B):

1—exp (—37°¢2)
1+ exp (—572¢2) — 2exp (—;72¢2) cos (Dga)

C () = (1.16)

Neglecting optical factors and penetration depth effects which are con-
stant at fixed o; and oy, the total intensity is then given by

I(qa) = 1o S (¢a) C (qa) + background (1.17)
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Figure 1.11:
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Experimental results and fits from the (400) and (220) surface Bragg
reflections. The Bragg peaks at ¢, = 0 A~ are omitted for reasons
of clarity. The grey shaded graphs show the correlational term C/(q,)
and the structural term S(q,) separately as defined in the text.
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The experimental results are shown in Fig. 1.11 together with fits of
Eq. (1.17). The fit parameters are summarized in Table 1.1. The ratio of the
average nearest neighbor distances from the (400) and (220) reflections

D
1% _ 1484 0.07 (1.18)
Dy

indicates that the dots are arranged in a local square lattice. This result is
in accordance with the predictions in Refs. 15 and 23. Although the disorder
parameter 7 is found to be anisotropic, Eq. (1.15) gives a similar correlation
length for both the (10) and (11) directions.

In particulate systems where size, nearest neighbor distance and correla-
tion length are of the same order of magnitude, a simple evaluation of the
peak positions may not give the correct results. At first hand, the second
peaks in Fig. 1.11 might be explained as second correlation maxima whereas
the simulation does not allow for such an interpretation. Evaluating the
nearest neighbor distances from the peak positions gpeqr, as 27rq;eik also leads
to a square lattice but produces values for D which differ from the fitted
parameters by 30%.

In contrast to forward scattering experiments which make use of the
entire dot volume, this method is not hampered by surface contamination
because only the sub-surface crystalline properties are probed. Also, the
three-dimensional shape of the dot does not have to be taken into account.
With the presented model, ordering can be quantified regarding anisotropy,
nearest neighbor distance and correlation length.

Fit parameter (220) reﬁeq:io:q (400) reﬂes:tior?
— {110} directions — {100} directions
size of strain modulation L 1952+ 32 A 2702 + 207A
FWHM of size distribution 26 + 7% not sensitive
Disorder parameter g 1313+ 30 A 2423 + 144 A
Average NN distance D 2700 £ 47 A 4008 + 112 A
Correlation Length z 11400 + 1100 A 11000 + 2200 A

Table 1.1: Correlational properties of laterally arranged Ge/Si(001) islands in the
{110} and {100} directions
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Chapter 2

Nanometer-scale tomographical
analysis of strain and
interdiffusion in uncapped
self-organized quantum dots

2.1 Introduction

A detailed understanding of the growth process of self-assembled semicon-
ductor quantum dots [12,57—61] requires substantial knowledge about their
internal structure. So far, external shape and lateral arrangement have been
accessible by scanning microscopies [26]. Structural investigations with tech-
niques like photoluminescence and Raman scattering [62,63] are restricted to
estimates of scalar physical quantities such as maxima or averages of strain or
material composition. For a measurement of these quantities, which delivers
spatial information, some kind of resolution is needed. The resolution can
either be in real space, using a direct imaging approach as in transmission
electron microscopy (TEM) [64] or in reciprocal space as in an x-ray diffrac-
tion experiment [65] where spatial frequencies rather than spatial positions
are probed.

The strengths of real space techniques lie in their broad applicability and
the direct nature of their results. Relative drawbacks are the technologically
demanding sample preparation and the limited statistics. In an x-ray diffrac-
tion experiment, the signal of a macroscopic portion of the sample’s surface
is integrated in the detector. The limitation of this kind of signal collection
is given by the homogeneity of the dot ensemble. If the spread of a physical
quantity in the dot ensemble is comparable to the spread in a single dot,



26

CHAPTER 2. NANO-TOMOGRAPHY OF UNCAPPED QUANTUM DOTS

the statistical value of the quantity yielded by the experiment provides no
further information nor resolution.

A serious difficulty is the inaccessibility of the relative phase of the scatter-
ing process. Diffraction experiments thus usually require structural models
with only a few variable parameters which are optimized to fit the measured
data [66-70]. Apart from being a demanding task for a three-dimensional
object of a few hundred thousand atoms with variable strain and material
composition, these kinds of analyses are case studies, which are not highly
generalizable. The kaleidoscopic wealth of different manifestations of self-
assembled quantum dots and epitaxial growth phenomena [71,72] calls for a
more extensible and direct method for data evaluation.

In this chapter, a detailed account of an analytical approach for the anal-
ysis of grazing incidence diffraction is presented which leads to tomographic
images of strain fields and material composition in the dots [73,74]. The
chapter is organized as follows: In section 2.2 the concept of iso-strain scat-
tering is discussed, then the analytical formalism for the data evaluation is
presented in section 2.3. After experimental considerations in section 2.4,
results of a series of InAs/GaAs dots grown at different temperatures are
shown in section 2.5 together with the comparison of experimental results
and atomistic simulations.

2.2 Determination of strain and shape

2.2.1 Spatial distinction

In reciprocal space, the distance between two crystals is equivalent to the
reciprocal difference of their lattice parameters. Therefore, two crystallites
may be far apart in reciprocal space, even though they are spatially adjacent.
For a lattice parameter difference of a few percent, the crystallites will result
in two distinct peaks, whose half-widths can be used to analyze the size of
each crystal (Fig. 2.1).

In this simple example there is an unspecific spatial distinction: two parts
of a larger sample can be studied independently by tuning the scattering vec-
tor to the appropriate lattice parameters. As the lattice parameter difference
between the two crystallites is reduced, the peaks merge until finally no dis-
tinction is possible anymore. This corresponds to the optical analogue of
distinguishing two stars with a telescope. In this picture, the relative lattice
parameter difference % is equivalent to the smallest resolvable angle. Addi-
tionally, a takes the place of the wavelength of light and the common size R
of the crystallites corresponds to the telescope’s aperture. For a mean lattice
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Intensity

transfer Q

Figure 2.1: Tllustration of spatial distinction in hetero-epitaxial systems. Two
regions may be distinguished if their difference in lattice parameter
az — a1 and size R are big enough to allow the resulting peaks in
reciprocal space at 27ra1_1 and 2mway ! to be separated as two maxima.

parameter a, the minimum percentual difference in lattice parameter is given

by
Aa a
< a )min_cﬁ, (21)

where C is a constant of the order of 1 which depends on the particular
shape of the crystallites. Equation (2.1) clarifies the reciprocal relationship
between spatial distinction and spatial extent of the regions of equal lattice
parameter.

2.2.2 Iso-strain areas

If a nano-crystal has a lattice parameter which varies continuously from one
end to the other, it may be thought of as being composed of a distribution
of iso-strain areas [35,75,76] (Fig. 2.2). For a particular Bragg reflection Q,
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Figure 2.2: Decomposition of a strained nano-crystal into a set of iso-strain areas.
Part (a) shows the outer shape of the crystal which is decomposed
into areas of equal strain components € in part (b). The particular
choice of the Bragg point Q determines the condensation of the full
strain tensor into the scalar e. The projection of the iso-strain areas
onto the (kg,k'})—plane in (c) gives two-dimensional meshes which
fulfill the Bragg condition at different momentum transfers indicated
as Q!, Q2 and Q3 which allows for spatial distinction within the

nano-crystal.
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the iso-strain areas are defined as the iso-surfaces of the appropriate scalar
component € of the strain field € which is determined as

e=Q'eQ. (2.2)

where the hat on Q denotes a unit vector. This definition compresses the
full tensorial strain status of the nano-crystal into a scalar field by neglecting
shear strains. The cumulative effect of these shear strains on the scattering
process can be analyzed after the definition of the iso-strain area by calcu-
lating rotation matrices R(e) whose rotation angles 6(e) and rotation axes
n(e) are defined by

Qr - Jion eQda _ €
s [,

n(e) = %. (2.3)

(<),

where the subscript “ISA” denotes the integration or averaging over the entire
iso-strain area. The average Bragg conditions Qisa (€) are then located at

Qsa() = ——R(OQ

~ (1-¢R(e)Q for e<x 1. (2.4)

cosf(e) =

Considering only scattering vectors in the plane P with normal p spanned
by the incoming beam k; and Q, the projection of each iso-strain area onto
P may be viewed as a two-dimensional crystal (Fig. 2.2c). From this point
of view, each iso-strain area has a homogeneous, non-distorted lattice which
scatters around the projected Bragg point.

For distortions which are anisotropic with respect to Q and Q X p, the
projected Bragg positions Qfsx (€) are given by

QiF(e) ~ (1- ) [R(9Q - p(R()Q-p) . (2.5)

defining a new matrix R”"% (¢) such that

?éflj(f) ~(1—-e R ()Q for e< 1. (2.6)

For isotropic distortions with respect to Q and Q X P, the shear components in
the plane P will average out giving n(e) = Qxp. In this case, R”%(¢) = 1 in
Eq. (2.6) and the projected Bragg points of the iso-strain areas are associated
with momentum transfers which are scalar multiples of Q.
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2.2.3 Spatial resolution

Spatial resolution implies the determination the relative position of the two
crystallites. While there is no generic procedure to determine relative ar-
rangements for the general case, self-assembled quantum dots grown in the
Stranski-Krastanow (SK) mode are subject to boundary conditions which re-
duce the three-dimensional positional difference to a one-dimensional scalar
value. In SK systems, the stress energy that builds up during the growth
of mismatched hetero-epitaxial layers is lowered through the formation of
three-dimensional nanometer-sized islands, whose crystalline structure re-
mains coherent to the underlying substrate. This coherency demands that
the lattice parameter parallel to the surface normal is relaxed gradually from
bottom to top, leading to the decomposition into iso-strain areas as explained
in section 2.2.2.

Changing the selected strain state by adjusting the total momentum
transfer Q to a different QISY (€) thus corresponds to a change in height
above the sample’s surface (Fig. 2.3). Assuming the height above the surface
h(e) to be a monotonic function of the strain state ¢ and rewriting Eq. (2.1)

A A i A 7 A
radius strain to resolution
substrate
______________________ Ae ARy <
PR B ﬂ
AR
> > —
R(h) e(h) AR"™(€)

Figure 2.3: Schematic functional dependence of strain, height and resolution in
islands grown in the SK mode. Radius R and strain to substrate € are
required to calculate the local minimum height difference Ah™™ to
resolve two parts of the nano-structure. In the particular case shown
in the figure, the heights h; and ho are resolvable since their height
difference Ah exceeds the mean local minimum value of ART™.
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in reciprocal space coordinates as

2
R(e)Q

gives an expression for the minimum resolvable height difference in the crys-
tallite:

Ae =~ C for e 1 (2.7)

2w
R(€)Q

The above resolution element has three important features: first, the
proportionality to h'(e) is equivalent to an inverse proportionality to the
strain gradient € (h), i.e. the faster the lattice parameter changes with height,
the better is the resolution. Regarding the material properties of hetero-
epitaxial systems, this corresponds to better resolutions for higher lattice
mismatches. Second, the resolution element is inversely proportional to the
lateral size of the iso-strain areas. Third, the resolution is better for larger Q).
In summary, spatial resolution can be achieved for large enough nano-crystals
with high enough lattice mismatch with respect to the substrate such that

AR™™(e) x5 K (e) Ae = C R (€)

(2.8)

Ah(e) < H, (2.9)

where H is the total height of the nano-crystal.

2.2.4 Iso-strain scattering

Let us suppose the projections of the iso-strain areas on P have shape func-
tions f,_(z,, z,) where z, is the coordinate of the radial axis along Q and z,
is measured along the angular direction perpendicular to it. The resulting
third axis parallel to p is written as x,. Without restricting the general va-
lidity, these projections can be assumed to be rectangular meshes with the
primitive lattice vectors along z, and z,. In this section, only momentum
transfers with zero components normal to P (g, = 0) are considered for which
the three-dimensional shape of the iso-strain areas is irrelevant. For the re-
ciprocal coordinates ¢, and g, relative to the Bragg-point Q of the substrate,
the phase sum of all lattice points integrated over all iso-strain areas stacked
along p is

F (g, qa) = / dz, Z e!(@Far)zny (22) gidaTna (=2)

(nr,nq)
€eQ(zz)
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with

an,a (xz) = (nr,a + 5r,a(xz))ar,a($z)
Qz.) = {(nr,na) € N fo, (0, (22) , 2, (22)) >0}, (2.10)

where a,,(,) is the real space lattice parameter parallel to z,, and 6, ,(z,)
designates the required shift to adjust the origin of the lattice at a specified
z, (see Fig. 2.4). Since only the values of x, are relevant for the following
argument, this simple model even holds for the case of varying anisotropies.
For calculations in reciprocal space, an effective reciprocal lattice parameter
gq = 2ma'v/h? + k2 + 2 is used, where h,k and [ are the indices pertaining
to the reflection Q.

Here, a subtle problem arises when trying to rewrite this phase sum in
continuous coordinates: the origin of the coordinate system in real space

O (n+1)-th layer
@ n-th layer

Figure 2.4: Determination of offsets in lattice origins for the discrete phase sum
of two different iso-strain areas. For two subsequent layers n and n+1
with different lattice parameters, the origins of the lattices O and O’
are subject to positional shifts §, and §, in the angular and radial
directions z, and z,. The functional dependence of the radial shift
ér strongly influences the intensity distribution in reciprocal space.
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must be chosen and kept fixed for the whole calculation while discrete lattice
points are still used. The reason for this stems from the fact that the value
of z, in Eq. (2.10) not only influences the position of the Bragg-condition
along g, for the corresponding iso-strain area, but also introduces a phase
shift which depends on the alignment of lattice points in subsequent lattice
planes. This information will be lost when neglecting the quantization of
the lattice and has to be added to the integrals as a phase function ¢(z,)
which is dependent on the origin of the discrete coordinates. Although ¢(z,)
is determined by 6,.(z,) alone, the determination of both é,(z,) and d,(x,)
allows us to extend our result to all reflections parallel to P without going
back to Eq. (2.10).

If there exists a line of coherence parallel to p along which the lattice
points of different x, are stacked with zero shifts, the origin for z, and z,
is most conveniently chosen on this line, as 6, ,(x,) will then vanish for all
values of z, and ¢(z,) will be unity throughout the whole crystal. For the
case of nano-structures which are axially symmetric with respect to p, a
symmetry argument shows that the line of coherence must coincide with the
line of symmetry.

The sum in Eq. (2.10) may thus be approximated by a convolution of
the form factor ﬁ’wz (@r, qa) of the iso-strain area at x, with a delta function
around the appropriate Bragg peak at gq(z,) — @ along ¢, multiplied by the
phase factor ¢(x,):

F(gr, qa) = / de, / Py (4, 4) $(2.)5 (u — 4, + (90(22) — Q) du
with
F. (¢, q2) = // fo, (T, Tg) T = Tia%e Ay di,. (2.11)

In order to simplify Eq. (2.11), it has to be noted that for a selected
reciprocal coordinate ¢ the integral over z, will have relevant contributions
only in a certain range Az, around the position 22 where the Bragg-condition
is fulfilled. Taking eq. (2.7) into account and assuming gq(z,) to be a
monotonic function, the upper and lower limits for Az, are given by

= gg (sl = C )

R(z?)
d -1
~ 224 C 27:) 9a (2.12)
R(z2) dg, ar=9q(z?)
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which gives an estimate for Ax,:

2 de -
Az, ~
N O R a0) (d)

(2.13)

z,=xz9

If spatial resolution can be achieved as explained in section 2.2.3, the range
given by Az, will be a subset of the entire range of the integration given by
the size of the nano-structure.

Two approximations can now be made with respect to the relevant range
of integration:

First, the shape function of the projected iso-strain area can be considered
constant in Az, which is strictly valid if the relative variation of R(z,) in
Az, is small compared to R(z?):

_1 dR
R(29) dz. |, _,0

z

Az, <L (2.14)

Tn that case, the index z, on F in eq. (2.11) should be renamed to z?.
Second, the reciprocal lattice parameter can be approximated as a linear
function throughout Ax,:

ga(z:) = gq(a2) + go(2) (. — 22). (2.15)

In addition, the expression can be further simplified by restricting the analy-
sis to structures which have a line of vertical coherence by choosing the origin
for x, and z, at the line of symmetry. As discussed above, we can then set
¢(z,) = 1. The scattering amplitude for these approximations is obtained as

F(¢°,q.) = /Fzg (¢ — 9a(z)) + Q + gq(29)z., ¢a) dz.. (2.16)

If the relevant range of integration Az, lies wholly within the nano-
structure, the bounds of the z, integration in Eq. (2.16) may be extended to
infinity whereby the constant offset in the first argument becomes arbitrary
and can be omitted. The resulting simplified expression is written as

F(¢, 40) = (glp(e2) / Fog (u, ga) du. (2.17)

Rewriting the integral in Eq. (2.17) in terms of the real-space shape func-
tion fo leads to

F(¢0, 4a) = (gq(z?)) / fao (0,24) €97 da,. (2.18)
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Figure 2.5: Calculation of iso-strain scattering from the real space shape function
of the iso-strain areas. (a) For a cross section with the origin chosen at
the line of coherence of the nano-structure, the functional dependence
of iso-strain scattering in the angular direction g, can be calculated
from the linear section at x, = 0. For convex cross-sections without
holes, the section is a constant interval. The iso-strain form-factor
F(gq) in (b) is calculated as the Fourier transform of f(0, z,) and thus
shows a Si%—behavior. The length D of the section can be derived
from the width of the central maximum.
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In summary, the angular scattering amplitude is given by the one-dimensional
Fourier-transform of the linear section through the shape function perpendic-
ular to Q and p (see Fig. 2.5). If the sections are single contiguous intervals
of length Dq(z?), the remaining integral can be calculated as

_, sin 3¢, Dq(z?)

: (2.19)
34a

F(q},4a) = (9q(2%))
The scattering intensity is thus proportional to the inverse square of the re-
ciprocal lattice parameter gradient and falls of as g~ 2 along g,. In summary,
the lateral form factor of iso-strain scattering along g, is determined exclu-
sively by the section length of the two-dimensional projection of the iso-strain
area along z, and is independent of the actual shape of the projection.

2.3 Height resolution for nano-crystals above
a surface

2.3.1 Four-process scattering

In scattering geometries of grazing incidence or exit where the angles of
incidence (o;) and exit (o) are comparable to the critical angle of total
external reflection (a.), the Born approximation is no longer accurate and
refraction effects have to be taken into account [77]. For a plain surface, the
structure factor of the sample is modulated by the product of the transmission
functions

2sin oy s

(2.20)

tis(@ar) sin q; s + /sin® a; ; — sin”
describing the changes in field strength as the beam enters and exits the
sample through the surface. For strained nano-structures on top of the sur-
face, the optical part of the scattering process additionally includes multiple
scattering between the surface and the nano-structures above it.

Since strain-driven island formation in the Stranski-Krastanow growth
mode leads to nano-structures which are coherent at the substrate interface
but with continuously relaxing lattice parameter towards the top, the lattice
parameter values in the island are nowhere present in the substrate, apart
from very small distortions. By selecting a total momentum transfer which
corresponds to a certain lattice parameter in the island, one excludes Bragg
scattering contributions from the substrate. In first order perturbation the-
ory, the surface acts like a mirror, doubling the incoming and the diffracted
beam as shown in Fig. 2.6.
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Figure 2.6: Four scattering processes from first order perturbation theory. Part
(a) shows a side view of the four processes which interfere coherently
and give rise to a generalized optical function for grazing incidence
diffraction. The process labeled as (1) is the direct Bragg-reflection
at the iso-strain area selected by the total momentum transfer Q.
Process (2) employs two ordinary reflections from the surface before
and after Bragg reflections at grazing angles of a; and ay respec-
tively. The actual Bragg-scattering is denoted by a circle. Process
(3) and (4) each involve one of those substrate reflections. The three
dimensional beam paths are shown in part (b). The total momen-
tum transfer Q which is parallel to the surface requires the diffracted
beams to be deflected out of the plane of incidence.
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In the following calculations involving surface reflections we fix the recip-
rocal coordinates ¢, at an arbitrary ¢° and g, at 0 and consider the depen-
dence of the structure factor on the angles of incidence (a;) and exit (o)
which was set aside in section 2.2. Each scattering process has a different
vertical momentum transfer ¢, dependent on the angles of incidence and exit
for the Bragg scattering process. Furthermore, each resulting structure fac-
tor F%(q,) has a different relative amplitude which is given by the product
of all reflectivities r involved in the particular scattering sequence. The total
scattering amplitude Fioai(y, of) then results as

Foalai,ap) = F*(gz1) + r(c)r(ap) F*(gz2) +
(i) F*(qz3) + r(af) F*(qz4)

with g1 = k(o + o)
qz2 = k(_az - Oéf)
%3 = k(—oi+ay)
z4 = k(a’i - Oéf),

(2.21)

where k is the length of the wave vector of the incoming beam.

2.3.2 Vertical structure factor in iso-strain scattering

Equation (2.21) is valid for arbitrary nano-structures above a plain surface.
Including the phase factor %% for a finite ¢, in Eq. (2.16) leads to an
expression which is more general than Eq. (2.17):

F(¢%, as @) = (gq(a?)) e / Frog (u, gg) €9 gy (2.22)

By writing out the Fourier transforms Eq. (2.22) becomes

gQ(m(z)), ¢

F(q),9a,q:) = (gb(azg))—le"qz“‘g /fzg <,4z T ) e dr,.  (2.23)

Generalizing the notion of sections as in Eq. (2.19) to Dq(z?,z,) so as
to include an arbitrary angular distance from the line of vertical coherence,
yields an expression for the structure factor for non-zero g,:

g sin %anQ (22, q. (9q (=))™)

1
54a

F(q?,4a,4:) = (gq(z2)) " €
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Figure 2.7: Dependence of the structure factor on ¢,. The range in g, where the
structure factor is finite is determined by the product of the lateral
size R and the reciprocal lattice parameter gradient g’. The figure
shows the intensity resulting from the structure factor for a circular
cross section. In an idealized iso-strain scattering model, the vertical
structure factor traces the lateral shape (see text) which, for a circular
cross section yields an intensity distribution proportional to 1 — ¢2.
In a realistic situation the iso-strain integration cannot be extended
to infinity and a vertical cutoff on either side of the iso-strain-area
is introduced. Two such cutoffs are shown as the dotted and dashed
lines.

The g,-dependence of the structure factor at ¢, = 0 is thus proportional to
the variation along x, of the shape function’s section length parallel to z,:

z — 7 2T qZ
F (qz) = F(q?,O, Qz) = (géQ(x(z))) Ll : DQ .Z'(z), ) . (2'25)
gQ('/L'z)

Figure 2.7 pictures this relationship for a circular cross-section. Equation (2.25)

shows that F*(q,) will be zero above a maximum value ¢%™ which is given

by the maximum lateral extent 2™ (R in Fig. 2.7) and the reciprocal

a

lattice parameter gradient at 2% (¢’ in Fig. 2.7):

) (2:20



40

CHAPTER 2. NANO-TOMOGRAPHY OF UNCAPPED QUANTUM DOTS

Close to the lower and upper limit in z, of the nano-structure where the
iso-strain approximations fail, F'(¢,) will be smoothed out, especially near

0,mazx

q; above which it will still yield non-zero values.

2.3.3 Generalized optical functions

Now we restrict the calculation to cases where the iso-strain areas are suffi-
ciently large and the weighted projection of the shape function along z, is
varying slowly enough at small g, to neglect the shape-dependence of F(q,)
at angles of incidence and exit which are comparable to a,. For cross-sections
with smooth outlines near z, = 0 this leads to

F*(q,) ~ €% for ¢, ~ ka, (2.27)
and is strictly correct when
1 dF*(qg.) _ 1 dDq(zf,¢:)

ko, =
F=(0) dg. |- Dq(z?,0)  dg.

ka, <1 (2.28)
q=0

is fulfilled. If either the angle of incidence (a;) or the angle of exit (ay) is
larger than o, the term with ¢ becomes dominant as the other three terms
scale with the reflectivity of the substrate.

Inserting this approximation into Eq. (2.21) and factorizing out e
the total amplitude is obtained as

ik(oitoy)zd

th (ai,af) = F* (k:(a, -+ Oéf))eik(aﬁ_af) X

otal

(1 + T(ai)r(af)e—%k(a,-wLaf)zg + r(ai)e—%kaiwg + T(af)e%kafzg) ) (2‘29)

By factorizing the parentheses in Eq. (2.29) one can now separate the depen-
dencies on «o; and oy which are found to be identical. This relationship can
thus be expressed as

Fiala,ap) = F*(k(a; + ay)) t7%(ay, 22) 17y, 22)

otal

with tP(a,2) = 1+ r(a)e 2o, (2.30)

The functional form of the total amplitude F{,,, is now analogous to the
case of a flat surface with F'* derived in section 2.3.2 assuming the role of
the structure factor and 5 as a generalized optical function in place of
the transmission function, with ¢* including the effects of the four-process
scattering (fps). Indeed, for z = 0 one finds that

t*%(a,0) = 1 + r(a) = t(a) (2.31)
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is the same function as in Eq. (2.20).
For a discussion of the scattered intensity the absolute square of ¢ ig
analyzed:
I™(a,2) = [t™(a,2)
(1+ r(a)e %) (1+r*(a)e**?)
= 1+ r(a))+ 2R (r()) cos 2kaz + 2S3(r(a)) sin 2kaz.

| 2

(2.32)
At this point it is convenient to continue with the reduced coordinates
o
&=—; Z = kaez. (2.33)
Qc

Since « is of the order of o, which is typically a few mrad, the reflectivity
and the transmittivity are usually written as

a—+va2—1
a+var-1
2a

ta) = ——F—m, 2.34
@) a++va2—1 (2.54)
not taking roughness effects into account. Due to the square root in Eq. (2.34)
there are two regimes for & < 1 and & > 1 which have to be dealt with
separately.

For @ < 1 in Eq. (2.34), it is convenient to separate real and imaginary
parts by taking (—i) out of the square roots in 7:

r(@) = (262 —1) +i (2am) . (2.35)

r@) =

Evidently, |r(&)|*> = 1 and therefore
I™(&,2) =2+ 2 (24% — 1) cos 242 + 44V/1 — &2 sin242. (2.36)

mazx,l

The angle of maximum intensity & in Eq. (2.36) is implicitly given by

(see Appendix C)

~max,l

~maz,l 2
a K

= cos@ z. (2.37)
For the case of an iso-strain area where the Bragg-scattering only occurs at
a certain height above the sample’s surface, one can measure the maximum
and determine the height 2z from

1 o™ 1

Z = ——————— arccos
kamaz,l Q.

(2.38)
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Beyond the critical angle (& > 1), the generalized optical function is a
harmonic oscillation of period 22 whose amplitude decays as &' on top of a

background which asymptotically decays towards unity as &%

262 —1—2avaz —1 +2€v—\/&2—1

262 — 1+ 2ava2 -1 a—+vazt—1

The position of the first maximum of the oscillatory part a™3®? thus also
gives the height 2z of the iso-strain area,
7

2= —". 2.40

kamaw,Q ( )

Figure 2.8 shows how the maximum of the classic transmission function

at 2 = 0 at & = 1 shifts to lower & for larger 2. As the sharp transmission

I™(4,2) =1+ cos2z4.  (2.39)
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Figure 2.8: Generalized optical functions for various reduced heights zZ. The
sharp maximum at Z = 0 is seen to move to smaller angles & for
increasing 2, at the same time assuming a broader and symmetric
shape. Near 2 = § the intensity is modulated to zero. The oscilla-
tory behavior in the range & > 1 which becomes apparent for 2 > 1
is due to the intuitive 'mirror effect’ of an iso-strain area above a
reflecting surface.
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peak is smoothed and broadened, a minimum starts to form at & > 1 moving
towards lower angles together with the first pronounced maximum. In fact, at
& = 1, where a strong maximum is expected for traditional grazing incidence
diffraction, the absolute square of the generalized optical function

I™5(1,2) = 2(1 + cos 23) (2.41)

falls to zero for z =

[MIE]

2.4 Experimental considerations

In order to combine the analytical techniques described in sections 2.2 and
2.3, a grazing incidence and exit scattering geometry [38,78] is most appropri-
ate (Fig. 2.9). In this case, the total momentum transfer lies predominantly
in the plane of the sample’s surface. The direction p which can be thought
of as the stacking direction for the projected iso-strain areas is then parallel
to the surface normal, i.e. the direction in which stress in heteroepitaxial
systems can be relieved by means of strain. For centro-symmetrical islands,

detector

Figure 2.9: Scattering geometry for grazing incidence and exit. Both the angle of
incidence «; and the angle of exit o are close to the critical angle of
total external reflection c. Diffraction takes place on lattice planes
which are perpendicular to the sample’s surface. The intensity is
measured by a position sensitive detector which records as-spectra.
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this configuration has the added advantage that the line of symmetry is also
parallel to p and can be taken as the origin for the lateral coordinates x, and
z4. Furthermore, for angles of incidence and exit below the critical angle of
total external reflection, the penetration depth of the evanescent x-ray beam
below the surface is of the order of 5-10 nm [79], maximizing the relative
scattering power of the dots with respect to the substrate.

The applicability of the presented analytical methods is limited by the
size and strain gradient of the islands and their functional dependencies on
the height above the surface. If the lateral size R becomes too small, the fun-
damental requirement of spatial distinction described in section 2.2.1 breaks
down. Likewise, if the strain gradient ¢’ is too small, the insufficient spread-
ing in reciprocal space will prohibit the differentiation of spatial regions. For
a given height H of the island, these prerequisites can be commonly expressed
as a rule of thumb:

n=RgH>1. (2.42)

The dimensionless system constant 7 thus quantifies the goodness of the iso-
strain approximation. For a typical system of lateral size 50 nm, exhibiting a
lattice parameter difference of 5% along a height of 10 nm and a measurement
at a total momentum transfer of 4 Afl, 1 has a numerical value of 100.

For too small R, the system enters the size-regime of atomic defects which
has its own methods for the analytical treatment of the scattering inten-
sity [80]. For too small ¢’ at large R, the strain effects are best treated as
corrections to the strainless case. While the values of R and H are fixed for
a particular system, the numerical value of ¢’ can be increased by choosing
a higher order reflection.

The determination of heights with Eq. (2.38) has different accuracies for
small and large values of 2. While the deviation of the first pronounced
maximum is substantial for values of Z > 0.2, for values smaller than that, a
highly accurate knowledge of the critical angle o, and a good resolution in oy
is required. Equation (2.40) on the other hand, shows a reciprocal behaviour
to Eq. (2.38) where the accuracy is high for small Z and low for large 2.
However, the rapidly decaying amplitude of the oscillatory part in Eq. (2.39)
and the decaying structure factor derived in section 2.3.2 are unfavorable for
the experimental determination of this maximum.

Realistic iso-strain areas will not be flat but curved. Although this fact
does not constitute a problem for the iso-strain scattering formalism pre-
sented in section 2.2.4, the determination of height in section 2.3.3 is based
on a single height z above the surface. If the vertical extent introduced by
the curvature is small compared to the height 2z of the iso-strain area under
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consideration, it can be neglected. However, also for substantial curvatures,
the shift of the first pronounced maximum of the generalized optical function
in Eq. (2.32) describes a mean weighted height of the iso-strain area.

All calculations in sections 2.2 and 2.3 neglect the variation of lateral
size R and strain gradient ¢’ within the relevant range of integration Az, as
defined in Eq. (2.13). In general, these assumptions may not be very well
fulfilled, with values for Az, up to 0.5 still describing realistic situations.
These deviations from the idealizations leading to Egs. (2.19) and (2.38)
result in an averaging over the parameters R and ¢’. Thus, even while the
scatterered intensity may not be closely traced by the theoretical curves, the
main features will stand out and mean values of R, ¢’ and z can be obtained.

A different approach, which makes use of finite element calculations of
the entire dot in order to simulate the scattering intensity [66] is less analytic
but more synthetic. This method has the advantage of being applicable to
any vertical and lateral concentration profile, but gives relatively little insight
into the interdependence between real space structure and scattered intensity
distribution. The approach presented here, on the other hand, provides a
physical understanding of the relationship of strain-related phenomena in
real and reciprocal space.

2.5 Results and Discussion

2.5.1 Synopsis of iso-strain scattering

Figure 2.10 recapitulates the essential ideas presented in sections 2.2 and 2.3
without focusing on the technical ascpects of the derivation: By identifying
key features of the x-ray intensity distribution in reciprocal space, one can
directly reconstruct the geometry as well as the distribution of local lattice
parameter and material composition. Thus, a transformation of scattering
data from quantum dots to nanometer-scale tomographic images is achieved.
This transformation from reciprocal space to real space is possible for the
presented class of nano-structures, provided that two fundamental conditions
regarding the resolution of strain and height are fulfilled:

(i) If the lattice parameter varies monotonically by a few percent across
the extent of a crystallite whose dimensions are of the order of 10 nm
(Fig. 2.10a), the intensity distribution will be spread out over a fairly
large region of reciprocal space about the substrate reflection. Thus,
one may think of the intensity at each point as attributed to a region of
constant lattice parameter, i.e. to a slice through the quantum dot at a
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Schematic representation of the methodical approach of iso-strain
scattering. Part (a) shows the scattering processes for a particular
region of constant lateral lattice parameter at a height z above the
substrate (the vertical lines indicate lattice planes). The diffrac-
tion processes deflect the beam out of the plane of the paper, while
reflection processes alone cannot change the azimuth of beam prop-
agation. Angles of incidence (o;) and exit (af) as well as lattice
distortions are greatly exaggerated. The color scale of the dot corre-
sponds to a distribution of lattice parameters. A simulated intensity
distribution for a section through reciprocal space close to a surface
Bragg-reflection (hkO0) is shown in (b). The color scale indicates the
origin of the scattered intensity in (a). The dependence of lateral
extent on lattice parameter is reflected in the width of the central
maximum and the positional variation of the side maxima as de-
noted by the white lines. Part (c) shows the simulated af-spectrum
corresponding to the iso-strain area at the selected height z (a. is
the critical angle of total external reflection). The numerical value
of z is calculated from the maximum position ofer.
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certain height interval. This pseudo-resolution introduced by the vari-
ation of lattice parameter effectively decomposes the scattering from
the dot into the contributions from its iso-strain areas (Fig. 2.10b).

(ii) The dots must be free-standing: the presence of a free surface around
the dots serves as a reference level against which the mean height of
the iso-strain areas within the dots can be evaluated. At very small
angles of incidence (o;) and exit (o) close to the critical angle of total
external reflection (a.), the surface serves as a beam multiplier, giving
rise to the four different scattering processes shown in Fig. 2.10a. The
diffraction process, which takes place at the iso-strain area, selected by
the total momentum transfer, may be combined with the two additional
reflection processes before and /or after diffraction. The coherent sum of
these four amplitude terms causes distinct features in the spectra along
the exit angle (o), from which the mean height above the substrate
can be directly calculated with sub-nm accuracy (Fig. 2.10c).

2.5.2 Samples

Two sample series A and B with varying growth temperature and a single
specimen C were available for experimental investigations. Chronologically,
sample C served as the testbed for the applicability of the methodic approach,
while series A and B were grown subsequently to study the origin of the
unusual material composition found as a results of the analysis of sample C.
Sample labels and growth temperatures are summarized in table 2.1.
Samples in series A* were grown by solid source molecular beam epitaxy
(MBE) on semi-insulating GaAs(001) substrates. First a 200 nm GaAs buffer
layer and AlAs/GaAs (2 nm/10 nm) short period superlattice were grown
to obtain a smooth growth surface. This was followed by a 150 nm GaAs
layer grown at 600° C. The sample temperature was then reduced to the
InAs island growth temperature (450° C to 530° C) as determined by using a
pyrometer. Once at growth temperature, the InAs islands were formed using
alternating beam epitaxy (ABE). Island formation was monitored by reflec-
tion high energy electron diffraction (RHEED). Immediately after formation
of the InAs islands the substrate temperature was reduced. As shown by
atomic force microscopy, the chosen growth conditions lead to rotationally
symmetric quantum dots, with a random lateral arrangement of dot posi-
tions. Dislocations are not expected for this range of growth parameters.

*series A was grown by W. Schoenfield (group of P. Petroff) at the Materials Depart-
ment at the University of California in Santa Barbara, CA 93106, USA
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temperature series A series B series C
530° C Al B1 C
500° C A2 B2

475° C A3 B3

450° C A4 B4

Table 2.1: List of investigated sample series. All samples were grown by MBE
and show uncapped InAs islands on GaAs(001) substrates. Sample C
is a specimen from a series without temperature variation.

Samples in series B* were grown under similar conditions as a reference
for series A. Contrary to the procedure used for series A, the total coverage
of InAs was not determined by the 2D-3D growth transition [16,81], but
was nominally set at a fixed value of 2.3 monolayers for all samples. Both
in series A as well as in series B, the dot density was strongly tempera-
ture dependent [82] increasing by one order of magnitude from 10! cm 2 at
530° C to 10" cm™2 at 450° C. As shown by atomic force microscopy [26],
these growth conditions lead to rotationally symmetric quantum dots, with
a random lateral arrangement of dot positions.

Finally, for sample Cf, a nominal total of 1.9 monolayers of InAs was
deposited at a substrate temperature of 530° C. In and As were deposited
alternatingly: the In shutter was opened for 4 s, followed by a growth inter-
ruption of 2 s under an As beam equivalent pressure of 1-107° Torr. One
such cycle resulted in a deposition of 0.15 monolayers of InAs. The transition
from 2D to 3D growth was observed in situ by RHEED at 1.7 monolayers.
Transmission electron microscopy investigations on sample C clearly showed
no evidence for dislocations, as expected for these growth parameters.

2.5.3 Results of iso-strain scattering

All measurements have been performed at the TROIKA II beamline at the
European Synchrotron Radiation Facility (ESRF) in Grenoble at a wave-
length of 1.5 A. Here, results are shown from measurements between the
(220)-reflections of GaAs and InAs, where three-dimensional mappings of re-
ciprocal space are performed (Fig. 2.11). To this end, a position sensitive

*series B was grown by M. Arzberger (group of G. Abstreiter) at the Walter Schottky
Institut at the Technische Universitdt Miinchen, Am Coulombwall, D-85748 Garching
fsample C was grown by J. Garcfa at the UCSB (see series A)
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GaAs (220)

« InAs (220)
(000)

Figure 2.11: Three-dimensional mapping of reciprocal space between the (220)
surface reflections of GaAs and InAs. The coordinate system is
formed by two reciprocal coordinates ¢, (radial) and g, (angular)
which are parallel to the real space coordinates z, and z, shown
in Fig. 2.9 and the angle of exit . The three-dimensional map
is composed of two-dimensional maps in the (gq, of)-plane for dif-
ferent values of ¢,. In qualitative terms, ¢, is a measure of lattice
parameter, g, shows effects of lateral shape while the aj-direction
reveals height and curvature of the iso-strain areas.

detector (see Fig. 2.8) records a-spectra in angular scans along ¢, which are
repeated at successive radial positions ¢,. Each value of g, corresponds to
a different strain state. Given that the iso-strain approximations presented
in section 2.2 are valid (see section 2.4), only the close vicinity of the se-
lected iso-strain area contributes to the scattering intensity at this point.
The scattering from this tiny portion of the near-surface parts of the sample
is detectable due to the diffraction condition which effectively blinds out all
other strain states. The electromagnetic field was additionally constrained
to the near-surface region by choosing an incident angle of 0.2°, well below
the critical angle of total external reflection at 0.28°. The figures in the
exemplary discussion of the analysis are taken from sample Al.

Each angular scan of a three-dimensional mapping results in a two-dimen-
sional reciprocal space map (RSM) as those shown in Fig. 2.12. The analysis
of the scattering intensity proceeds by evaluating three different aspects of
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Figure 2.12: Four exemplary two-dimensional reciprocal space maps in the

(¢a, af)-plane (sample Al). The collection of 16 such maps con-
stitutes the three-dimensional map of reciprocal space between the
two reflections of GaAs and InAs. The four maps display increasing
values of g, which corresponds to a decreasing lattice parameter dif-
ference between the selected iso-strain area and the substrate. The
difference in percent is given in parentheses after the value of g,.
Clearly visible features are the narrowing of the central maximum
at ay < a. with decreasing lattice parameter difference correspond-
ing to an increase in the lateral size of the dot towards the substrate
and the increase of the ay-position of the global maximum which
indicates lower heights for decreasing strain.
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Figure 2.13: Visualization of the three-step analysis of the reciprocal space map
shown in Fig. 2.12d. The lateral size of the strain state selected by
gr is extracted from the intensity distribution along the horizontal
slice (step 1). Analysis of the vertical slice yields the mean height
of the iso-strain area above the substrate (step 2). The radius of
curvature is extracted from the dependence of the half widths in ¢,
on z—i (step 3).

the RSMs for each radial position ¢, which are visualized in Fig. 2.13. An
exemplary evaluation of the RSM in Fig. 2.12d is shown in Fig. 2.14. First,
the angular variation of the scattering intensity integrated for a; up to o,
(Fig. 2.14a, step 1 in Fig. 2.13) is fitted using Eq. (2.19) yielding the lateral
size of the iso-strain area. In the present case of axially symmetric islands,
this corresponds to the radius of the circular projection of the iso-strain area.
Second, the mean height of the iso-strain area above the surface is determined
from the position of the first pronounced maximum of the scattering intensity
along oy (Fig. 2.14b, step 2 in Fig. 2.13). To improve statistics, for each value
of oy the RSM is integrated along g, in the range of the central maximum.
The numerical value of the height z is calculated using Eq. (2.38). In order
to obtain an estimate for the curvature of the iso-strain areas, the half-width
of the central maximum along g, is plotted as a function of a; (Fig. 2.14c,
step 3 in Fig. 2.13). The variation in curvature due to the lateral shape as
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Figure 2.14: Results of the three-step analysis of the reciprocal space map shown
in Fig. 2.12d. Part (a) shows the determination of lateral size using
the ®2Z Jaw of Eq. (2.19) (step 1 in Fig. 2.13). Allowing for a
size distribution of a few percent, the functional dependence is well
followed. The height of the iso-strain area is determined in (b). The
position of the optical maximum at &™** differs from 1 as would be
expected for grazing incidence diffraction on planar surfaces. The
actual height is then calculated from Eq. (2.38) (step 2 in Fig. 2.13).
The curvature fit is displayed in (c). Here, the half widths of the
central maximum for different values of o are fitted with a hollow
sphere of variable radius of curvature (step 3 in Fig. 2.13).
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given by Eq. (2.24) typically accounts to less than 20% of the total change
in half-width and has to be substracted. The remaining variation in half-
width is compared to that of a hollow spherical segment with the base radius
taken from the first step. The radius of curvature is then varied to achieve an
optimum correspondence with the experimental data. This last step is not
generalizable for arbitrary shapes but depends on the actual shape model.

Figure 2.15 shows the experimental ay-dependencies and the calculated
generalized optical functions using Eq. (2.32). The optical functions are seen
to dominate the low part of the ay-spectrum while the intensities for larger
values of oy can only be explained by including the vertical structure factor
from Eq. (2.24) together with corrections for size distribution and curvature.
However, the essential information — the height of the iso-strain area — is
extracted from the first maximum alone, eliminating the need for complex
fitting procedures.

Until recently, the picture of island formation in Stranski-Krastanow
growth was restricted to the epitaxially deposited phase forming islands with-
out interdiffusion taking place. Recent experiments [83-86], however, suggest
that this picture may be too simple and growth parameters such as tempera-
ture, flux rates and flux ratios [87—-89] are of crucial importance. Information
on the chemical composition within the islands can be obtained by compar-
ing the intensities from radial scans along ¢, for a pair of strong and weak
reflections [90], such as (400) and (200) in the zinc-blende structure of InAs
and GaAs. The difference of the atomic numbers of Ga and As is 2 while
In has 16 more electrons than As. Since the scattering intensity for the
(200)-reflection in the zinc-blende structure scales as the difference of the
atomic form factors, which in turn are roughly proportional to the number
of electrons, the InAs (200)-reflection will be about 64 times stronger than
the GaAs (200)-reflection. This contrast can be used to determine the con-
centrations of Ga and In in alloys. The measured quantity is the intensity
ratio from the (400) and (200) reflections

2
C1n (@) Fimds + €Ga(dr) FGans

CIn(QT)FIzr?%s + cGa(qT)Féggxs

p(g) = (2.43)

where cr,(g,) and cgq(g-) are the average concentrations of In and Ga for
the particular iso-strain area selected by ¢, and Fég%f/o?n 4, are the structure
factors of InAs an GaAs at the (400) and (200) reflections. Together with the
constraint cr,(g-) + cga(¢-) = 1, Eq. (2.43) can be resolved for cr,(g.). The
calculation is straightforward but due to the complex nature of the structure
factors the final result is a long expression and is derived in Appendix D.

The experimental curves are displayed in Fig. 2.16.
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Figure 2.15: Comparison of experimental af-spectra with corresponding calcu-

lations of the generalized optical functions. The height determined
from the experimental spectra in (a) is used as the single parameter
for the calculation of the theoretical optical functions in (b) which
are drawn with the same vertical offsets as in (a). The qualita-
tive features are well reproduced, a detailed functional conformity,
however, cannot be expected due to the non-planar nature of the
iso-strain areas, especially for smaller values of ¢.. The thick lines
connect the positions of the first pronounced maxima which are the
basis of the height calculation as shown in Fig. 2.14b. Further no-
ticeable matching features are the dip in intensity which develops
at larger heights around the critical angle and the occurrence of a
broad second maximum which moves towards lower angles for larger
heights.
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Figure 2.16: Radial intensity distributions along g, for a strong (400) and a weak
(200) reflection. Instead of g, the corresponding strain with respect
to GaAs is chosen as the axis to make both reflections comparable.
The material composition of each iso-strain area is determined by
the intensity ratio of both curves. The fact that the (200) intensity
is getting weaker with respect to the (400) curve for smaller lattice

parameter differences to the substrate shows immediately that the
Ga content is larger at the bottom of the islands.

The generalized optical function derived in Eq. (2.32) not only influences
the intensity distribution along o but through an indirect mechanism also
that along q,. For one fixed g,, i.e. one particular iso-strain area, the influence
of o; and oy factorize. The analysis of the ay-spectra as shown in Fig. 2.15
is therefore independent of the particular value of «;. However, different
values of ¢, correspond to different heights z. Hence, the optical function
varies along the radial direction. If the value of o; is below the critical angle
of the substrate a., there may be a certain height z and a corresponding
radial position ¢, where the optical function has its maximum exactly at «;.
Around that g,, the intensity will be enhanced and may even lead to a local
maximum. Such a maximum can be easily mistaken as a prevalent strain
state in the strain distribution, hence care has to be taken to single out the
optical effects. The maxima in Fig. 2.16 thus carry little useful information
and a successful measurement requires extreme accuracy in the adjustment of
the angles of incidence for both reflections. Figure 2.17 shows the dependence
of the functional form of the radial scan on the value of o;. As «; approaches
Q., the maximum induced by the optical function of «; vanishes entirely.
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Figure 2.17: Measured radial scans along ¢, for various values of «; showing
an indirect influence of the generalized optical function defined in
Eq. (2.32). Both «o; and ay are constant for each scan. As the
angle of incidence «; is decreased, the local maxima connected by
the thick line shift to smaller values of g.. This behavior can be
explained as an interaction of the optical functions of ; and ay.

The final result of the analysis for series A is displayed in Fig. 2.18 where
lateral size R, height z, radius of curvature Rg, and the concentration of
Ga cgq are plotted as functions of lattice parameter difference with respect
to the GaAs substrate. Since all of these functions are monotonic, a unique
relationship can be established between any of theses quantities. As seen in
atomic force microscopy measurements (AFM), the samples grown at 475° C
and 450° C exhibit large relaxed clumps in addition to the small coherent
islands which are the principal objects of interest. Beyond a certain strain,
the scattering intensity is dominated by the relaxed chunks and the contri-
bution of the coherent islands is no longer resolvable. The maximum strains
reported in Fig. 2.18 were chosen at discontinuities of the height functions
which in both cases exhibit a small interval of negative slope beyond those
values of ¢,.
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Figure 2.18: Results for lateral size, height, curvature and composition as func-
tions of strain relative to the GaAs substrate for all four samples of
series A discussed in the text. The curves for 475° C and 450° C are
incomplete due to large relaxed clusters which prohibit any evalu-
ation for larger strain states. Lateral size in (a) and height in (b)
are seen to decrease with temperature while retaining similar func-
tional dependencies on strain. Also, radius of curvature in (c) and
Ga concentration in (d) show a monotonic decrease with decreasing
temperature.
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The fact that the heights for the samples grown at 530° C and 500° C
saturate at a strain which corresponds to the lattice parameter of InAs, shows
that the tops of these islands are covered with pure InAs. The lateral sizes
decrease with decreasing temperature [91] and are compatible with AFM
pictures. As the most important result, the Ga-concentration in the dots is
increasing markedly with increasing growth temperature.

Finally, the information contained in the four graphs of Fig. 2.18 can
be used to draw real space tomographic images of the islands. Figure 2.19
show the strain and Ga-distributions for samples A1 and A2 grown at 530° C
and 500° C where complete data sets are available. It has to be noted that
the images do not show iso-concentration areas but iso-strain areas with
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Figure 2.19: Tomographic images for samples Al and A2 grown at 530° C (a)
and 500° C (b). The color coding ranges from 0% lattice parameter
difference at the bottom of the islands to 7% strain with respect to
GaAs at the top. The Ga concentration is displayed as a function of
height on the right side of each image. The dots grown at 500° C are
markedly smaller than those grown at 530° C and show a reduced
Ga concentration.
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their mean Ga-concentration displayed on their right side. The atomistic
calculations presented in section 2.5.4 show that starting with planar iso-
concentration areas, the experimentally found curvatures of the iso-strain
areas can be fully explained.

The results from series B are qualitatively similar to those of series A,
but differ in two respects:

(i) Contrary to samples A3 and A4, no large dislocated islands are found
for the corresponding samples B3 and B4. The whole range in recipro-
cal space between GaAs and InAs shows the continuous characteristics
of a single type of islands which are coherent to the substrate. Hence,
the entire dot and not just the lower part of the islands are analyzable
with iso-strain scattering.

(ii) The heights of the iso-strain areas of samples B2, B3 and B4 cannot
be successfully evaluated using Eq. (2.38). This is due to two factors:

(a) Since samples B2, B3 and B4 do not display side maxima as in the
predicted intensity distribution proportional to % (see Fig. 2.5),
the size distribution in these samples is appreciable and broadens
the range of heights for each iso-strain area.

(b) The fixed total InAs coverage of 2.3 monolayers seems to result in
too large island densities [92] for temperatures smaller than 530° C
to be evaluated with the formalism presented in section 2.3. In
these cases, the uncovered area is too small for Eq. (2.28) to hold.
In addition, the specific form of inter-dot correlations would have
to be considered.

Therefore, only for sample B1 grown at 530° C a tomographic image can
be drawn (Fig. 2.20), the functional dependencies of size and composition on
the relative lattice parameter difference with respect to GaAs are shown in
Fig. 2.21 for all samples of series B.

Figure 2.22 shows the results for sample C, which, although from a dif-
ferent series, is very similar to samples A1 and B1, indicating that for size
and composition, temperature is a dominant growth parameter.

These findings confirm and add a spatially resolved strain mapping to
previous results on inter-diffusion where the In content is enriched [7, 83,
93] or reduced [84,94,95|, depending on the composition of the epitaxially
deposited material. Preliminary Rutherford Back Scattering experiments
indicate that Ga diffuses no deeper than 15 nm into the substrate. Possibly,
the actual value is much lower. Ga may thus be transported into the dot
by surface kinetics [96,97]. Although the mechanism of Ga-incorporation



60 CHAPTER 2. NANO-TOMOGRAPHY OF UNCAPPED QUANTUM DOTS

10 - I || 3
0% 1% 2% 4% 5% 6% 7% 1

] —— —
S 6F 530°C
-ﬁ) C ]
5 4F E
<= r ]
2F =

0 -10 -5 0 5 10 0% 50% 100%
nm Ga concentration

Figure 2.20: Tomographic image for sample Bl.
land size, the result is qualitatively similar to that of sample Al

in Fig. 2.19

a) |5
g 530° C
o
= 1
= 10 500° C
v
.E o
£ 475°C
S5
£ 450°C
s
Q
=
0

76 -5 4 3 2 -1 0
strain with respect to GaAs in %

o
~

Ga concentration in %

—_
(=1
S

80
60
40
20

Apart from the smaller is-

6 5 4 3 2 -1 0
strain with respect to GaAs in %

Figure 2.21: Results for lateral size and composition as functions of strain rela-
tive to the GaAs substrate for series B. Contrary to series A (see
Fig. 2.18), the whole lattice parameter range between GaAs and
InAs can be evaluated. Besides the systematic decrease in size, (a)
also shows a change in shape between the various temperatures.
Likewise, the composition in (b) shows a systematic behavior, with
decreasing Ga content for decreasing growth temperature.
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Figure 2.22: Tomographic image for sample C. The result is qualitatively similar
to that of sample Al in Fig. 2.19

into the islands is still unclear, these measurements shed light on the related
temperature dependence and diffusion profiles.

2.5.4 Atomistic calculations of strain relaxation

Finite element calculations have long been in use for simulating strain and
stress in crystalline structures [98]. With the investigation of smaller and
smaller nano-structures, the atomistic nature of matter can no longer be
neglected. Especially in hetero-epitaxial systems with a lattice parameter
mismatch of a few percent and only a few hundred thousand atoms form-
ing a single nano-structure, the continuum approximations may break down,
giving incorrect results in highly stressed regions. The granularity of matter
comes even more into play for nano-crystallites with heterogeneous compo-
sition: For structures with a diameter of the order of 10 unit cells, the sub-
stitutional incorporation of foreign atoms cannot be accurately described by
continuously varying coefficients of elasticity for a bulk crystal with the local
material composition. An atomistic approach is therefore more suitable* [99].

Although the full quantum mechanical treatment of an atomic lattice is
a formidable task far beyond the capabilities of today’s computers, classical
many-body interatomic potentials [100] have been constructed to give excel-
lent results for first-order elastic constants in GaAs and InAs [101]. Using
a conjugate gradient method [102] to find the closest local potential energy
minimum for a set of atoms, the relaxed spatial configuration can be deter-

*The calculations presented in this section are the result of a DAAD collaboration with
K. Nordlund at the University of Helsinki, Finland
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mined for modelled nano-structures which are initially out of equilibrium®*.
Relaxing an uncapped nano-structure which is a few tens of nanometers
across, requires a substantial substrate for which the island acts as a stres-
sor. Therefore, a few million atoms need to be included in order to obtain a
realistic model. Computing devices operating at 50 MFlop/s are capable of
processing one such calculation in a time span of typically 20 hours.

Usually, calculations of strain fields are compared to experimental results
of diffuse scattering [99]. Since the results presented in section 2.5 lead to real-
space structural models, a much more direct self-consistency check between
theory and experiment can be made: The experimentally determined outer
shape together with the associated Ga concentration profiles for samples A1,
A2 and C are taken as input data for a rotationally symmetric atomistic
construction of the island with all unit cells chosen to be of the size of GaAs.
To be self-consistent, the strain field in the relaxed island must then match
the tomographic images of the experimental evaluation.

One missing link in the experimental method is the lateral composition
profile of Ga. Recent findings of Liu et al. [94] show that for buried [103]
Ing 5Gag5As quantum dots grown at 510° C, significant lateral compositional
inhomogeneity occurs, where most of the In is concentrated in an inverted
cone with the tip at the bottom of the dot. If such an In distribution can be
generalized to include other In,Ga; ,As quantum dot systems and even be
explained as a property of free-standing islands, the resulting strain states
should be compatible with the results of section 2.5. However, in our case of
pure InAs deposition, the corresponding atomistic calculation which is shown
in Fig. 2.23 contradicts the experimental results in Fig. 2.19.

Assuming a laterally homogeneous Ga-profile leads to the strain distri-
butions shown in the right hand side of Fig. 2.24 where the experimentally
found strain fields are compared with the outcome of the atomistic calcu-
lations for series A and C. The good qualitative agreement between each
corresponding pair of images shows that the assumption of a laterally con-
stant composition is in accordance with the experiment. The jagged nature
of the iso-strain areas together with the appearance of surface effects in the
simulated strain fields are due to the statistical nature of the dot composition.
The strain relaxation simulations are carried out with one particular random
configuration of In and Ga atoms having the correct depth dependence in the
concentrations. In the x-ray experiments, at least 10° such islands — all with
different configurations — contribute to the detected intensity. However, the

*Here, an adaptive conjugate gradient described in Ref. 99 has been used to minimize
the potential energy, which reduces the required floating point operations to one third of
that of conventional conjugate gradient methods.
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Figure 2.23: Atomistic strain calculation for sample A1l with “inverted cone”-In
profile as suggested by Ref. [94]. The color scale shows the strain
in the [110] direction with respect to the GaAs substrate. The
apparent “resolution element” comprises several atoms to achieve
a smooth transition of colors. The laterally averaged vertical Ga
concentration is the same as that of sample A1l. These results are
in contradiction to Fig. 2.19

quantitative range of strain with respect to the GaAs substrate as well as the
curvature of the iso-strain areas are both reproduced in the theoretical simu-
lation. It has to be noted that the introduction of curvature is not an artefact
of the initial assumptions, since the composition in the atomistic model has
planar iso-surfaces. For practical purposes, the now available information on
strain and composition can thus be regarded as complete.
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Figure 2.24: Atomistic calculations of strain fields compared to experimental im-
ages. Series A and C have been simulated starting from an atom-
istic reconstruction of the islands with a lattice parameter of GaAs
throughout the dot and shape and vertical Ga-profile taken from
Fig. 2.19 and Fig. 2.22. The lateral distribution of Ga has been
assumed to be constant. Reasonable agreement is achieved for the
quantitative range of strain with respect to the GaAs substrate and
the curvature of the iso-strain areas which is not present in the
iso-surfaces of the material composition of the atomic model. (a)
and (b) show the comparisons for the samples of series A grown at
530° C and 500° C, in part (c) sample C is displayed. The left hand
side of each pair of images is the experimental result, while the right
hand side shows the corresponding atomistic calculation.
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Modified Laue formula for
vertically stacked quantum dots

Starting from Eq. (1.4), a suitable exponential term is factorized out in both
numerator and denominator to obtain the functional form of sines:

1 — eN(iqu—crzqﬁ—,u)
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The structure factor, which is the absolute square of Fy(q.,q) is thus
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The mixed terms cancel and the expression of Eq. (1.5)

: 2 q.ND : 202q3N
o2 (N-1) S 5 + sinh® ==

Sy (¢:,91) = (A.3)

sin? % + sinh? @
remains.

The half width of the principle maxima are most easily evaluated by
considering the approximated envelope function of Eq. (A.3)

B p
Ie:) = sin? 2 4 p
o’qy + p

- (A.4)

with p = sinh
For the calculation of the half width, the numerator, which is constant in ¢,,
can be chosen arbitrarily as p to simplify the intermediate steps. Eq. (A.4) is
increasingly inaccurate for very small oq,, where the half widths go to zero.
This effect can be incorporated into the constant p, whose numerical value
is of secondary interest. One maximum of Eq. (A.4) is

fmam =1 at q. = 0 (A5)
and the first consecutive minimum for positive g, is

p 27
min — 7 | _ t =
f a ==

e (A.6)

Hence, the half width Aq”" M ig the value of g, where f assumes the average
value of f,.;, and fez:

min max 1 1 2
f (agiwiy — Smin T Jmas :_< P ): P (A7)
2 2\1+p) 20 +p)
Inserting f from Eq. (A.4) gives an equation from which AgZWHM can be
determined:
p 1+2p
X HWHM = . (A8)
Sm2qufD+p 2(1+p)
The remaining task is to resolve Eq. (A.8) for AgZ/WHM,

2 1+2p 1+2p
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p is now inserted from Eq. (A.4) and transformed to a simple expression with
a single trigonometrical function on both sides:

- 1.2 02g2+ - 12 02¢2+
Gin? AgHWHM ) _ sinh® Z4&TE _ sinh® Z4TE
T2 T Tiomn € cosh (%2 1)
5(cosho®Z +p—1) 1 . 1
cosh (02¢2 + ) 2 cosh (022 +p) )’
(A.10)
which can be rewritten as
AgHWHM ) 1
1 — 2sin®* —= =
2 cosh (02¢2 + )
1
cos AgIWHM D — (A.11)

cosh (02¢2 + )

Using the notion of secans hyperbolicus, the resulting expression appears
especially simple

cos AgITM D = sech (02 + p) (A.12)
and can be resolved for g,:
1
AgHWHEM T arceos sech (0°q2 + ) (A.13)

which is the same as Eq. (1.9).
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Appendix B

Random positional stacking
faults in a one-dimensional
lattice

The derivation* leading to Eq. (1.16) starts from the assumption that the
nearest neighbor has a spatial distribution of

1 _a?

= N e 7’ (B.1)

around its regular lattice position, with v as the disorder parameter of the
system. The spatial distribution of the n-th neighbor with respect to the
same reference point is obtained by subsequent folding of f; with itself:

fi(z)

fa(z) = fi(z) ® fi(z) - @ fi(z)

(. 7

i
n times

1 _o?
= e n?, B.2
V2Tny (B:2)

which corresponds to a y/n-fold increase in half width, but retains the same
functional form as for the nearest neighbor.

If pi(x) is defined as the delta-function describing the spatial deviation of
the i-th point of the actual lattice, the convolution p;(z) ® p;(—z) gives the
difference of the distance between the i-th and j-th lattice points from the
nominal value prescribed by the perfect lattice. For the homogeneous system

*A short form of this derivation is reported in Ref. 56 for random positional stacking
faults of lattice planes



70

APPENDIX B. RANDOM STACKING FAULTS

described by Eq. (B.1), the average for the ensemble of all lattice points with
the same distance 7 — j is equivalent to fj;,_j:

(pi(z) ® pj(_x)>i—j:const = fii-ii(@)- (B.3)

The density function p(z) of the entire lattice — modulo the structure
factor of a single lattice point — is given by

Zp, ® 6(z —iD), (B.4)

where D is the lattice constant. To calculate the scattering intensity for p,
the Patterson function* P(z) is calculated:

P(z) = p(z)®p(-x)

_ ZZ pi(x) ® 6(z — iD)] [p;(—2) ® 6(z + jD)]
_ ZZ pi(z) ® pj(—z)] ® [(z —iD) ® 6(z + jD)]
= Z Z pi(z) ® p;()] ® o[z — (i — §) D). (B-5)

n  i—j=n

The second sum in the last step of Eq. (B.5) is equivalent to a statistical
averaging for the ensemble of lattice points with n periods apart. Hence,
after Eq. (B.3) is inserted, the Patterson function can be rewritten as a
single sum:

P(z) = wa ) ® 6(z — nD)

76_%2(85.’13—7117. B.6
2 Tty e oo

The structure factor S(q) is now readily calculated as
S(q) = F{P(x)}

= ) emathh?® x gianD, (B.7)

*The Patterson function is the autocorrelation function [104] of the density function
and is related to the scattering intensity by a simple Fourier transform. This intermediate
step allows for the introduction of statistical averaging before applying a Fourier transform.



71

Now, the sum in Eq. (B.7) is split into two sums running from zero to infinity.
Since the 0-th term is counted twice it has to be subtracted. The resulting
geometric series can be evaluated analytically as

S(g) = Y e i iad)n +Ze (3@ +iaD)n _ 4

1 1
1 —exp (—%q272 + iqD) * 1 —exp (—%q272 — z'qD)

_ L exp (~3¢™7") (B.8)

1+ exp (—3¢>7%) — 2exp (—54%7?) cos (¢D)

yielding the expression in Eq. (1.16).

It is important to note that this approach holds for a two-dimensional
rectangular lattice with lattice constants (D,, D,) with a Gaussian nearest-
neighbor distribution and arbitrary error ellipse whose principle axes 7, and
7, are aligned with the two-dimensional coordinate system (z,y) of the lat-
tice. The Patterson function in Eq. (B.6) can be written as

Z Z o ( '"'“’w W) ® 6(z —nDq,y —mD,),  (B.9)

™/ Inz2 + Imly

since in all steps leading to Eq. (B.6), z can be replaced by a two dimensional
vector (z,y). The resulting structure factor

5@ 9) = F{P(z,y)}

_ § :6—%(q§|n|7§+45|m|7§) « itanDatigynDy (B.10)

n

separates into two expressions of type Eq. (B.7):

S(: 4y) = S2(¢a) Sy(ay) (B.11)

Since Eq. (B.11) cannot be applied to lattices with a four-dimensional symme-
try and an ordering anisotropy, the one-dimensional “lattice line” approach
is more general, though only approximate. As the system presented in sec-
tion 1.2.2 shows no anisotropy in v, it could a posterior: be described by the
fully two-dimensional Eq. (B.11).
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Appendix C

Maximum of the generalized
optical function

Starting from the expression for grazing angles below the critical angle of
total reflection (&) in Eq. (2.36)

I(&) = 2+2(2&4° — 1) cos 242 + 461 — &2 sin 243, (C.1)

the angle of maximum intensity is determined by calculating the null of the
derivative of Eq. (C.1):

dI(&)

W - 4& cos 226 — 22 (26% — 1) sin 224 +
&

24(—26
+ (2\/1 —a&+ 23%) sin 254 + 426+/1 — 62 cos 256
—

— 44 (1 +3/1= @2) cos 256 —

[2 24% — 1
V1—a2

= 4a (1+2\/1—d2) cos22¢ —

+ 22 (28° — 1)] sin 226

2(26% — 1) (
2 =) (1451 a?) sin 226
V- a2

242 — 1)
— 2 (1 4 3/1= d?) [207 cos 256 — P =D 22&] . (C2
N (©2)



74

APPENDIX C. MAXIMUM OF THE GENERALIZED OPTICAL FUNCTION

The first bracket in Eq. (C.2) cannot become zero for 2 > 0, a possible null
Qmaz Of the second bracket is determined by

22— 1
Climas =1 G956, — 0. (C.3)

/1 — A2
1 Qg

Since ez < 1, Guee = cosu is a valid substitution, which is now applied
for all instances of &4, outside of trigonometric functions:

20 maz COS 220 maz —

. (2cos’u—1) . . .
2COSUCOS 220 mae — —————85IN 220,40 = 0
V1 —cos2u
R cos2u . ..
2 cos U oS 220 may — — Sin 220mae = 0. (C.4)
sinu
Since sinu = 0 corresponds to Gje; = 1, which is not considered here,

Eq. (C.4) can be multiplied by sin u.
28In U4 cos U €OS 22 maz — COS 2U SIN 2200, = 0
sin 2u coS 228 maz — COS 2USIN 220mqr = 0
sin (2u — 22&mqz) = 0. (C.5)

The only null of Eq. (C.5), which will produce real values for G, is found
for a vanishing argument of the sine:

2u — 220mar = 0, (C.6)
which, after reinsertion of the definition of u gives
arccos & — Zymgr = 0
Omaz = COS 20mazx- (C.7)

This is the same expression as in Eq. (2.37).*

*The proof that the smallest solution for &q, in Eq. (C.7) is always a maximum, is
lengthy and does not provide much further insight.
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Calculation of the material
composition of a binary alloy
from the ratio of two reflections

The aim of contrast variation is to extract the material composition of a
binary alloy of constituents A and B from a strong (S) and a weak (W)
reflection. For the weak reflection, the contribution from materials A and
B may often be of different orders of magnitude. However, in the case of
weak reflections the imaginary and the real part of the structure factors
may become equally important, disallowing the neglection of the usually
smaller imaginary part. The measured quantity p is the ratio of the observed
intensities I° and IV at equivalent points in reciprocal space.

IS‘
With the complex structure factors defined as
S/w _ S/w . S/W
Xa/B = Xa/Bw T X4/Bg (D.2)

for both materials A and B and reflections S and W and c4 and cp being the
concentrations of A and B, the intensity ratio p is given by

2
caxi + cBxB
caxi +cBxy

with cq +cp = 1. (D.3)

To reduce Eq. (D.3) to one unknown variable, cg is eliminated:

2
ca (X3 — X3) + X3
ca(XW —xX%)+x¥%
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which suggests the introduction of difference structure factors Ax® and Ax"
defined as

S/W S/W S/W . S/W
AXS/W _ XA/ _ XB/ _ AX;}E/ + ZXg/
. S/w s/w S/w
with AX%//% = XA{ER/% — XB/,%/%' (D.5)

The resulting expression for g is then expanded into complex notation and
the absolute square is calculated.

calAx5 + x% ?
caDXW + x¥

(caldx + x5m) +1 (cadDXS + x5 s) |

(calx + XI]/SKER) +i (calxy + X%V,%)

(caldxf +x50)” + (calx§ +x50)°
(caDxl + X W)+ (caDXY +x¥s)?

& |AXS]" + 2ea (DX m + AxEXS o) + X3
A IAXY P+ 2ca (AXTXT g + AXT X o) + IXE

I

(D.6)

The fraction in Eq. (D.6) is now resolved into a second order polynomial* in
CA,

ch (p A" - \AXSIQ) + 2ca [PR(AXY X5 ) — R(AX®, xB)] +
+ (P~ E) =0, (D7)
and resolved for c4:

1
pIAXY P —|AxS)?

ca — pR(IAXY  XE) + R(AX5, x3) —

\/(pWAXW,ngV) — R(AXS, x5)" = 4(p A7 = 1AxS) (0 IXE1* = Ix3I)

(D.8)

*(.,.) denotes the complex scalar product
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Scattering coherence in
disordered lattice coherent
systems

The limits of the applicability of the Babinet principle [105] to diffraction
experiments on self-organized nano-structures may sometimes not be imme-
diately evident. Originally, the Babinet-principle has been formulated for
optics and is often used in the context of small angle x-ray scattering. By
analogy, the small angle pattern around a Bragg reflection can be interpreted
by invoking the equivalence of regions with swapped electron densities. Holes
in a lattice matrix will effectively produce the same small angle scattering as
if there were no matrix and a corresponding lattice in the place of the holes.

However, the attempt to discuss the effects of lattice coherence in the
framework of the Babinet principle will not lead to correct results. The
Babinet principle deals with alternating regions of locally constant electron
density, ignoring any globally constant scattering potential. Approximating
an atomic lattice by a constant electron density for a diffraction experiment
is highly inaccurate and effectively implies a neglection of the diffraction pro-
cess itself. The point of view is thus changed to that of a forward scattering
experiment. While the small angle pattern can nonetheless be successfully
evaluated, any conclusions regarding the Bragg-peaks themselves are inher-
ently wrong.

A typical misconception of this kind is the assumption that ensembles
of free-standing nano-structures which are coherent to the substrate, but
otherwise not perfectly ordered, should scatter coherently. The argument
asserts, that since equivalent holes in a lattice matrix would result in sharp
Bragg-peaks with broad small angle patterns around them, by virtue of the
Babinet principle this must also be true for the free-standing case. The
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following calculation explicitly shows that this conclusion is incorrect.
Consider a one-dimensional arrangement of N “islands” consisting of M
atoms with lattice parameter a. The islands are spaced at random positions
Pn @ Where p,, are integers with p, —p, 1 > M. (see Fig. E.1). The extension
to a two-dimensional quadratic lattice is straightforward.
The structure factor of this model is given by

N-1M-1

— Z Z eid(prat+ma) (E.1)

n=0 m=0

The “form factor” part of the islands splits off and produces an ordinary
Laue term, while the further exact treatment of the sum over n can only be
carried out numerically.

1— equa

Flo) = T Z elPne, (E.2)

In case of a perfectly periodic arrangement with p, = Pn, Eq. (E.2) reduces
to

1— eiqMa 1— eiqPNa

Fperiodic (Q) =

(E.3)

- X -
1 — eiga 1 — eiqPa )

leading to dominant superstructure Bragg-peaks of half-width (Pa) ! and
maximum intensity (PMN)2 The total intensity below each Bragg-peak

Poa pia p2a psa
M x M x M x M x

TT..... 'Y X B ) 000 -0 000 -0

| |

—| -

N x

Figure E.1: One-dimensional model for the calculation of coherence effects in
quantum dot systems. N islands consisting of M atoms with lattice
parameter g are spaced at integer multiples p of the lattice parameter.
The positions of the islands are varied in integer steps of a with a
Gaussian random variable of standard deviation o.
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thus scales as (M N)2. This is indeed a case of coherent inter-island interfer-
ence with a small angle pattern of the dot form factor around each peak.

For totally random p,,, averaged for an ensemble of such systems, the sum
over n yields v/N by a random walk argument for the vector diagram of the
sum in complex space.

1— eiqMa

Frandom(q) = VN (E.4)

1 — etae
giving Bragg-peaks of half-width (Ma)~! and maximum intensity N M?. The
total intensity below each Bragg-peak thus scales as N which indicates an
incoherent scattering of the islands.

For intermediate situations, Eq. (B.8) is a suitable replacement for the
scattering intensity of the sum over n in Eq. (E.2). In this case, there will
be broad superstructure reflections whose intensities decay with a Gaussian
characteristics along q.
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Appendix F

Angle of exit in the w2lv
geometry

The w2lv diffractometer geometry as used at the TROIKA II beamline in-
volves four circles. Two circles a and w rotate the sample, two circles § and v
move the detector, both sets of circles being independent of each other* (see
Fig. F.1). In each set of circles, one axis is fixed in space (a and §, resp.),
while the other is rotated together with the first (w and +, resp.). For graz-
ing incidence diffraction experiments, it is most convenient to use the fixed
axis a of the sample to adjust the angle of incidence. The azimuth of the
sample can then be changed by varying w without the need to continously
readjust o to keep a constant penetration depth. The §-axis of the detector
will thus vary the angle of exit, while v is used to set the scattering angle for
the diffraction process.

Alignment and data collection in grazing incidence diffraction measure-
ments are greatly facilitated by the use of a position sensitive detector (PSD)
whose angular variation is set up to be along the angle of exit (i.e. along
9) for v = 0. This angular variation has to be considered as a separate axis
(8 on which none of the other axes are dependent. For the experiments pre-
sented in section 2.5, an accurate knowledge of oy is mandatory. The w2lv
diffractometer geometry, however, has the side effect that the angle of exit
depends on the positions of v and § in a non-trivial way, with the PSD-axis
B introducing an additional complication. For the reasons discussed in sec-
tion 2.3.3, re-gauging the zero for oy using the transmission maximum at the
Bragg-angle is not advisable for samples with free-standing nano-structures.

For the calculation of the total rotation matrix with respect to the sample

*For this reason, the diffractometer geometry is also called the s2d2-geometry (two
circles for the sample, two for the detector)
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fixed
i) , O A
detector o
) - .
circles s
B ’Y ........................
‘..4.
o
)
dependent

Figure F.1: Circles in the w21lv diffractometer geometry. The two sets of circles
for sample and detector are independent of each other. Each set
consists of one fixed and one dependent axis.

surface, the coordinate system at § = v = 8 = 0 is chosen with the z-axis
pointing towards the detector and the z-axis parallel to the surface normal
of the sample. For the calculation, the three-dimensional rotation matrices
around the z and y axis are required:

cosf 0 —sinb
RY(0) = 0 1 0
sinf 0 cosf

cosf —sinf 0
R*(#) = | sinf cosf O (F.1)
0 0 1

The rotation of the detector can be described as a product of cartesian
rotation matrices of all circles, if all relevant axes can be arranged in such
a sequence that for any single matrix the corresponding axis is independent
on on any matrices on the right. This can be shown geometrically, but
the key argument is highly intuitive: any dependencies on axes that are
treated later on in the calculation chain are irrelevant. For the w21v geometry
the correct total matrix R(6,~, 5, a) to rotate the detector from its initial
position z = 1,y = z = 0 to an angular configuration (,~, §) with the angle
of incidence set at « is given by

R(6,7,6,a) = RY(6 — a).R*(7).R¥(S) (F.2)
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The v-axis is fixed with respect to the PSD-axis 5 and neither the ¢ nor the
a-axis are dependent on v or 8. Since the a-axis coincides with the §-axis,
for which it effectively sets the zero position, both axes can be combined into
a single rotation matrix around y with a rotation angle of § — a.

The total rotation matrix is calculated explicitely as

E(éﬁ ’77 /87 a) =

cosy cos(d — a) sin f—
cos fsin(d — )

cos 3 cosy cos(d — a)— N
sin Asin(é — ) cos(d — o) siny
cos B sinvy cos 7y sin 3 siny

cos(d — ) sin S+
cos B cosysin(d — )

cos B cos(§ — a)—

sinysin(d — ) cosysin Ssin(d — «)

(F.3)
The vector d(4,, 3, ) for the rotated detector is thus given by

1

R(6,7,8,2). | 0
0

d(s,7,5,a)

cos 3 cos 7y cos(d — a) — sin S sin(d — «)
= cos B siny . (F.4)
cos(0 — a) sin § 4 cos B cosysin(d — )

Together with the projection of d(d,~, 8, @) on the plane of the sample sur-
face, which — by definition — coincides with the xz-plane

. cos 3 cosy cos(d — a) — sin Bsin(d — «)
dr (8,7, B, a) = cos 3 sin~y , (F.5)
0

the angle of exit can be calculated as

d(5’ ’77 B? a)'dproj((S? 7) /B’ a)
|dPri (6,7, 8, a)l

COs Olf((s,’}/, Ba Ot) =

= \/cos2 Bsin? y + (cos B cosy cos(§ — o) — sin asin(d — a))’.
(F.6)

It is often of experimental interest to determine the position 5 on the de-
tector, for which the angle of exit is zero. Noting that positive angles of
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exit correspond to configurations where the z-component of d(4,, 3,a) in
Eq. (F.4) is positive, the inequality
tan (a — 0) s ™

for —5 <1<y (F.7)

tan g >
cos y 2

can be derived. At v = 7, a pole in the diffractometer geometry prevents

arbitrary changes in the angle of exit.
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