Supersilyltriel-Clusterverbindungen $R_m^*E_n$ ($R^* = SitBu_3$; E = Al, Ga, In, Tl)

Thomas Blank

2000

Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München

Supersilyltriel-Clusterverbindungen $R_m^*E_n$ (R* = SitBu₃; E = Al, Ga, In, Tl)

Thomas Blank

aus

München

2000

<u>Erklärung</u>

Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 von Prof. Dr. Nils Wiberg betreut.

Ehrenwörtliche Versicherung

Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet.

München, am 30.11.2000

Thomas Blank

(Unterschrift des Autors)

Dissertation eingereicht am: 30.11.2000

1. Gutachter: Prof. Dr. N. Wiberg

2. Gutachter: Prof. Dr. H. Nöth

Tag der mündlichen Prüfung am: 21.12.2000

Meinen Eltern

149 _

Anfang und Ende aller Musik.

Die Experimente zur vorliegenden Arbeit wurden in der Zeit vom April 1998 bis zum Dezember 2000 im Institut für Anorganische Chemie der Ludwig-Maximilians-Universität München unter Anleitung von

Prof. Dr. Nils Wiberg

durchgeführt. Ihm möchte ich an dieser Stelle für die wissenschaftliche Förderung und sein außergewöhnlich großes Interesse an meiner Forschung bedanken.

Ganz besonders möchte ich mich bei den Kollegen und Kolleginnen meines Arbeitskreises bedanken. Allen voran Dr. Gerd Fischer für die zahlreichen Gespräche auch jenseits der Chemie, Dr. Hans-Wolfram Lerner für seine Anregungen sowie für seine Motivation, wenn mal wieder nichts lief, Dr. Wolfgang Niedermayer und Walter Hochmuth für die geistigen Gespräche, aber auch Dr. Susanne Wagner, Dr. Angie Wörner Dr. Kerstin Amelunxen, Dr. Harald Auer, sowie meinem F-Praktikanten Christian Hellriegel für die Mitarbeit.

Ganz besonderer Dank gilt allen die durch Messung und Berechnung mehrerer Röntgenstrukturanalysen einen entscheidenden Beitrag zum Gelingen dieser Arbeit beigetragen haben, nämlich Herrn Prof. Dr. Fenske, Herrn Prof. Dr. H. Nöth, Herrn Prof. Dr. H. Schnöckel, Herrn Prof. Dr. G. Linti sowie bei Dr. Tassilo Habereder, Dr. Jörg Knizek, Dr. Ingo Krossing, Dr. Kurt Polborn, Dr. Werner Ponikwar, Dr. Andreas Purath, Dr. Elke Baum, Evelyn Möllhausen und Marcus Warchhold sowie bei Herrn Prof. Dr. G. Linti und Dr. Gregor Stößer für einige DFT-Rechnungen.

Ebenfalls bedanken möchte ich mich für die enge wissenschaftliche Zusammenarbeit mit Herrn Prof. Dr. H. Schnöckel und Herrn Prof. Dr. G. Linti sowie deren Mitarbeitern, insbesondere jedoch bei Alexander Donchev und Alexander Rodig.

Weiterhin bedanken möchte ich mich bei allen anderen, die am Zustandekommen dieser Arbeit beteiligt waren: P. Mayer, Dr. habil. K. Karaghiosoff für die Messung "unzähliger" NMR-Spektren, Herrn Prof. Dr. W. Kaim und Dr. Brigitte Schwederski für die Durchführung von ESR-Messungen, Frau Ewald für die Aufnahme von Massenspektren, Frau Käser und Frau Ullmann für die C, H, N-Analysen sowie Frau Hanatschek und Frau Kiesewetter für die Infrarotspektren und natürlich Frau Mayer, ohne die so manche Publikation nicht so schnell fertiggestellt worden wäre.

Nicht zuletzt danke ich den Mitgliedern der Arbeitskreise der Professoren W. Beck, T. M. Klapötke, P. Klüfers, I.-P. Lorenz, H. Nöth, M. Westerhausen für die angenehme Zeit.

Für die Freundschaft und vorallem für die außerchemischen Gespräche möchte ich mich natürlich bei meinem Freundeskreis sowie Kommilitonen sehr bedanken, insbesondere bei Tobias Demisch, Ingo Prahl, Florian v. Schaabner.

An dieser Stelle möchte ich mich herzlich bei meinen Eltern bedanken, ohne die das alles sowieso nie geklappt hätte.

Verzeichnis der verwendeten Abkürzungen

Abb.	Abbildung
ber.	berechnet
nBu	<i>n</i> -butyl
tBu	tertbutyl
d	Tag(e)
Δ	Wärmezufuhr
DEPT	Distortionless Enhanced by Polarization Transfer
EI	Elektronen-Stoß-Ionisation
ESR	Electron Spin Resonance
Et	Ethyl
Et ₂ O	Diethylether
gef.	gefunden
ĥ	Stunden
Hal	Halogen
hν	Bestrahlung mit Licht
HV	Hochvakuum
Hz	Hertz
INEPT	Insensitive Nuclei Enhanced by Polarisation Transfer
Lit.	Literatur
Μ	Metall
M^+	Molekül-Kation
m*	metastabiler Peak
Me	Methyl
min	Minuten
M _r	relative Molekülmasse
m/z	relative Masseneinheiten
MS	Massenspektrum
nm	Nanometer
NMR	Nuclear Magnetic Resonance
ÖV	Ölpumpenvakuum
ORTEP	Oakridge Thermal Ellipsoide Plot
Ph	Phenyl
pm	Picometer
ppm	parts per million
R	Organylrest
R*	Si <i>t</i> Bu ₃
rel. Int.	relative Intensität
RT	Raumtemperatur
Smp.	Schmelzpunkt
Sdp.	Siedepunkt
S.	siehe
Tab.	Tabelle
THF	Tetrahydrofuran
UV	Ultraviolett
V	Versuch
vgl.	vergleiche
Zers.	Zersetzung

Inhaltsverzeichnis

A	Einleitung	1
B	Allgemeiner Teil	8
1	Aluminiumclusterverbindungen	8
1.1	Synthese und Charakterisierung von Vorstufen der	
	Aluminiumclusterverbindungen	10
1.1.1	Synthesen und Charakterisierung von R^*AlX_2 , $R^*AlX_2 \bullet D$ (X = Halogen, $R^* = SitBu_2$ Reduktion von $R^*AlX_2 \bullet D$	3)10 11
	Struktur von R*AlBr ₂ (NEtMe ₂)	12
1.1.2	Synthesen und Charakterisierung von R_2^*AIX , (X = Halogen; $R^* = SitBu_3$) Thermolyse und Reduktion von R_2^*AIX	13 14
113	Surface R^*_2 Alt und R^*_2 Alt R^*_2 Surface R^*_2 Alt	14 16
1.1.3	Synthese von Alaniden MAIR*2	17
1.1.5	Synthesen von RAlX ₂ , R ₂ AlX, R ₃ Al (X = Halogen, R = SitBu ₂ Ph) Struktur von $(tBu_2PhSi)_3Al$	18 18
1.2	Tetrasupersilyldialan $R_{2}^{*}Al - AlR_{2}^{*}(R^{*} = SitBu_{3})$	20
1.2.1	Synthese und Charakterisierung von Tetrasupersilyldialan R*2Al–AlR*2	20
1.2.2	Kristallstruktur von R*2Al–AlR*2	21
1.2.3	Reaktivität des Dialans $R_2^AI - AIR_2^*$	23
1.3	Trisupersilyldialanyl R* ₃ Al ₂ • und Tetrasupersilylcyclotrialanyl	24
121	N ⁴ 4A ³ Pildung von Trigungreihuldiglangt D [*] A ¹ [•] und Tatragungreihulgvolotriglangt D [*] A ¹ [•]	24 25
1.3.1	Struktur und ESR-Spektrum von Trisupersilvldialanvl \mathbb{R}^*_{2} Al ₂ •	23 27
1.3.3	Struktur und ESR-Spektrum von Tetrasupersilylcyclotrialanyl $R_{4}^{*}Al_{3}^{*}$	29
2	Galliumclusterverbindungen	36
2.1	Synthese und Charakterisierung von Vorstufen der	
	Galliumclusterverbindungen	39
2.1.1	Synthese von RGaX ₂ , RGaX ₂ •D ($X =$ Halogen; R = SitBu ₃ , SitBu ₂ Ph)	39
2.1.2	Synthese von R_2GaX , $R_2GaX \cdot D$ ($R = SitBu_3$, $SitBu_2Ph$)	40
2.1.3	Synthese und Struktur von R_3Ga ($R = SitBu_2Ph$)	40
2.1.4	Thermolyse und Redoxverhalten von RGaX ₂ , R ₂ GaX, R ₃ Ga ($R = SitBu_3$, SitBu ₂ Ph, X = Cl, Br)	42
2.2	Trisupersilyldigallanyl $R_{3}^{*}Ga_{2}^{\bullet}$ und -gallanid $R_{3}^{*}Ga_{2}^{-}$ sowie	
	Tetrasupersilylcyclotrigallanyl $R_4^{\circ}Ga_3^{\circ}$ und -gallanid $R_4^{\circ}Ga_3^{-}$	42
2.2.1	Synthese von $R^*_3Ga_2^{\bullet}$, $R^*_4Ga_3^{\bullet}$, $R^*_3Ga_2^{-}$ und $R^*_4Ga_3^{-}$	43
2.2.2	Charakterisierung von $R_{3}^{*}Ga_{2}^{\bullet}$, $R_{4}^{*}Ga_{3}^{\bullet}$, $R_{3}^{*}Ga_{2}^{-}$ und $R_{4}^{*}Ga_{3}^{-}$	45
2.2.3	Kristallstrukturen von $R^*_2Ga_2$, $R^*_4Ga_3$, $R^*_2Ga_2$ und $R^*_4Ga_3$	46

2.2.4	Abschließende Bemerkungen	51		
2.3	Tetrasupersilylcyclotetragallandiid $R_4^*Ga_4^{2-}$; auf dem Wege zu einem			
	Disupersilyldigallandiid R* ₂ Ga ₂ ^{2–}	53		
2.3.1	Synthese von $R_4^*Ga_4^{2-}$ in Form von $Na_2Ga_4R_4^*$ 2THF	54		
2.3.2	Kristallstruktur von R* ₄ Ga ₄ Na ₂ •2THF	56		
2.3.3	Reaktivität von $R_4^*Ga_4Na_2^{\bullet}2THF$	58		
2.4	Hexasupersilyldeca und -tridecagallanid R* ₆ Ga ₁₀ ⁻ , R* ₆ Ga ₁₃ ⁻	59		
2.4.1	Synthese und Charakterisierung von $R_{6}^{*}Ga_{10}^{-}$ und $R_{6}^{*}Ga_{13}^{-}$	60		
2.4.2	Kristallstruktur von $[Na(THF)_6]^+[R*_6Ga_{10}]^-$	61		
2.4.3	Kristallstruktur von $[Na(THF)_6]^+[R*_6Ga_{13}]^-$	65		
2.4.4	Vergleich von Clustern des Typs R_6E_{10} mit R_8E_{12} (E = Al, Ga, In) sowie $R_6Ga_{13}^-$	66		
2.5	Octasupersilyloctadeca und -docosagallan $R_8^*Ga_{18}$, $R_8^*Ga_{22}$	68		
2.5.1	Synthese und Charakterisierung von R*8Ga18 und R*8Ga22	68		
2.5.2	Kristallstrukturen von R*8Ga18 und R*8Ga22	69		
2.5.3	Zusammenfassung – Bildung von $R_8^*Ga_{18}$ und $R_8^*Ga_{22}$	73		
3	Indiumclusterverbindungen	76		
3.1	Synthese und Charakterisierung von Vorstufen der			
	Indiumclusterverbindungen	78		
3.1.1	Synthesen von R^*InX_2 und $R^*InX_2 \bullet D$ ($R^* = SitBu_3$)	78		
3.1.2	Synthesen von $R^*_2 In X$ und $R^*_2 In X^\bullet D$ ($R^* = Sit Bu_3$)	78		
3.1.3	Thermolyse und Redoxverhalten von $R*InX_2$ und $R*_2InX$	79		
3.2	Diindane $R_2In-InR_2$ (R = SitBu ₃ , SitBu ₂ Ph)	79		
3.2.1	Synthese und Charakterisierung von Tetrasupersilyldiindan R* ₂ In–InR* ₂ und Tetra-			
	kis(di- <i>tert</i> -butylphenylsilyl)-diindan (<i>t</i> Bu ₂ PhSi) ₂ In–In(SiPh <i>t</i> Bu ₂) ₂	79		
3.2.2	Kristallstruktur von R* ₂ In–InR* ₂	81		
3.2.3	Kristallstruktur von (tBu2PhSi)2In-In(SiPhtBu2)2	82		
3.2.4	Charakterisierung von $R_4^*In_2$ und $(tBu_2PhSi)_4In_2$	84		
3.2.5	Reaktivität der Diindane $R_4^*In_2$ und $(tBu_2PhSi)_4In_2$ sowie Bildung des Heterocubans			
	$R*_4In_4Se_4$	85		
3.2.6	Kristallstruktur von R [*] ₄ In ₄ Se ₄	86		
3.3	Octasupersilyldodecaindan R* ₈ In ₁₂	88		
3.3.1	Synthese und Charakterisierung von R*8In12	88		
3.3.2	Kristallstruktur von R*8In12	89		
3.4	Hexasupersilyloctaindan R* ₆ In ₈	94		
3.4.1	Synthese und Charakterisierung von R* ₆ In ₈	94		
3.4.2	Kristallstruktur von R* ₆ In ₈	95		
3.4.3	Reaktivität von R* ₆ In ₈	. 101		

4	Thalliumclusterverbindungen	103
4.1	Dithallane des Typus $R_2TI-TIR_2$ (R = SitBu ₃ , SitBu ₂ Ph)	104
4.1.1	Synthese und Charakterisierung von Tetrasupersilyldithallan $R_2^TI-TIR_2^v$ und	
	Tetrakis(di- <i>tert</i> -butylphenylsilyl)dithallan (tBu_2PhSi) ₂ Tl–Tl(SiPh tBu_2) ₂	104
4.1.2	Kristallstruktur von $R_2^TI-TIR_2$	106
4.1.5	Kristalistruktur von $(Bu_2PnS1)_2H-H(SPnBu_2)_2$	108 100
4.1.4		109
4.2	Chlortetrasupersilyltrithallan $R_4^*Tl_3Cl$ und	
	Dichlorhexasupersilylhexathallan R* ₆ Tl ₆ Cl ₂	110
4.2.1	Synthesen und Charakterisierung von Chlortetrasupersilyltrithallan R* ₄ Tl ₃ Cl,	
	Dichlorhexasupersilylhexathallan $R_6^*Tl_6Cl_2$ und Chlordisupersilylthallan R_2^*TlCl .	110
4.2.2	Mögliche Bildungswege von $R_4^*Tl_3Cl$ und $R_6^*Tl_6Cl_2$	111
4.2.3	Kristallstruktur von R* ₂ TlCl	113
4.2.4	Kristallstruktur von $R_4^*T_1^3C_1$	114
4.2.5	Kristallstruktur von $R_6^{+}\Pi_6^{-}Cl_2^{-}$	116
С	Experimenteller Teil	118
5	Experimentelle Methodik	118
5.1	Arbeitsmethoden	118
5.2	Meßmethoden	119
5.2.1	NMR-Spektroskopie	119
5.2.2	ESR-Spektroskopie	120
5.2.3	Elementaranalyse	120
5.2.4	Massenspektrometrie	120
5.2.5	Röntgenstrukturanalyse	121
5.2.6	UV-VIS-Spektroskopie	121
5.2.7	Schmelzpunkte	121
6	Ausgangssubstanzen	122
6.1	Handelspräparate	122
6.2	Literaturpräparate	122
7	Beschreibung der Versuche	122
Versuc	th 1: Darstellung von tBusPhSiH aus tBusFSiH und PhLi	122
Versuc	$h 2$: Darstellung von tBu_2 PhSiCl	123
Versuc	th 3: Darstellung von tBu_2 PhSiBr	124
Versuc	h 4: Darstellung von tBu2MesSiH	124
Versuc	ch 5: Umsetzung von <i>t</i> Bu ₂ MesSiH mit Brom	125
Versuc	h 6: Darstellung von <i>t</i> Bu ₃ SiNa	126
Versuc	ch 7: Darstellung von <i>t</i> Bu ₂ PhSiNa	127
Versuc	h 8: Darstellung von (<i>t</i> Bu ₃ Si) ₂ AlF	128

Versuch 9: Darstellung von (<i>t</i> Bu ₃ Si) ₂ AlCl	. 129
Versuch 10: Darstellung von (tBu ₃ Si) ₂ AlBr	. 131
Versuch 11: Darstellung von (tBu ₃ Si)AlBr ₂ (NEtMe ₂)	. 133
Versuch 12: Darstellung von (<i>t</i> Bu ₃ Si)All ₂ (NEtMe ₂)	.134
Versuch 13: Umsetzung von All ₃ mit zwei Äquivalenten <i>t</i> Bu ₃ SiNa in Pentan	. 135
Versuch 14: Darstellung von (<i>t</i> Bu ₃ Si) ₂ AlH	. 135
Versuch 15: Darstellung von (tBu ₃ Si) ₂ AlK und Nachweis mit Ph ₃ CH	. 138
Versuch 16: Darstellung von $(tBu_3Si)_2Al - Al(SitBu_3)_2$. 139
Versuch 17: Umsetzung von $(tBu_3Si)_2AI - AI(SitBu_3)_2$ mit Iod	. 141
Versuch 18: Umsetzung von $(tBu_3Si)_2Al - Al(SitBu_3)_2$ mit H ₂ bei 50°C	
Versuch 19: Bildung von Trisupersilyldialanyl (<i>t</i> Bu ₃ Si) ₂ Al –Al(Si <i>t</i> Bu ₃) [•] durch Thermolyse vor	1
$(tBu_3Si)_2Al-Al(SitBu_3)_2$. 143
Versuch 20: Darstellung von $(tBu_3Si)_4Al_3^{\bullet}$ durch Thermolyse von	
$(tBu_3Si)_2Al - Al(SitBu_3)_2$ in Cyclohexan	. 144
Versuch 21: Umsetzung von $(tBu_3Si)_4Al_3^{\circ}$ mit Wasserstoff in Cyclohexan	. 145
Versuch 22: Darstellung von $(tBu_3Si)_4Al_4$. 146
Versuch 23: Umsetzung von $(tBu_2Si)_2Al - Al(SitBu_2)_2$ mit Selen	. 147
Versuch 24: Reduktion von $(tBu_2Si)AlX_2(NEtMe_2)$ (X = Br. I) bzw. $(tBu_2Si)AlCl_2 \bullet THF$ mit I	_ithi-
um- bzw. Natriumnaphthalenid	. 148
Versuch 25: Reduktion von (<i>t</i> Bu ₂ Si)AlBr ₂ (NEtMe ₂) mit Kalium	. 149
Versuch 26: Thermolyse von $(tBu_2Si)_4Al_4$.150
Versuch 27: Darstellung von (<i>t</i> Bu ₂ PhSi) ₂ Al	. 150
Versuch 28: Umsetzung von AlBr ₂ mit zwei Äquivalenten NaSiPhtBu ₂	.151
Versuch 29: Darstellung von (<i>t</i> Bu ₃ Si)GaCl ₂ •Pyridin	. 151
Versuch 30: Darstellung von (tBu ₂ Si) ₂ Ga—Ga(SitBu ₂)Na(THF) ₂ aus (tBu ₂ Si) ₂ GaCl und Natri	um-
naphthalenid	. 152
Versuch 31: Umsetzung von (tBu ₂ Si) ₂ Ga—Ga(SitBu ₂)Na(THF) ₂ mit Me ₂ SiCl	. 153
Versuch 32: Darstellung von $(tBu_3Si)_4Ga_3^{\bullet}$ aus tBu_3SiBr und $(tBu_3Si)_3Ga_3Na(THF)_3$. 154
Versuch 33: Darstellung von (<i>t</i> Bu ₃ Si) ₄ Ga ₃ Na(18-Krone-6)(THF) ₂ aus (<i>t</i> Bu ₃ Si) ₃ Ga ₂ Na(THF) ₃	und
18-Krone-6	. 155
Versuch 34: Umsetzung von (tBu ₃ Si) ₄ Ga ₃ Na(18-Krone-6)(THF) ₂ mit TCNE	. 156
Versuch 35: Umsetzung von (tBu ₃ Si) ₄ Ga ₃ Na(18-Krone-6)(THF) ₂ mit tBu ₃ SiBr	. 156
Versuch 36: Darstellung von $(tBu_3Si)_4Ga_4Na(THF)_2$. 156
Versuch 37: Umsetzung von tBu ₃ SiNa mit Green'schem GaI	. 158
Versuch 38: Darstellung von $(tBu_3Si)_4Ga_4$ aus $(tBu_3Si)_4Ga_3^{\bullet}$. 159
Versuch 39: Thermolyse von $(tBu_3Si)_4Ga_3^{\bullet}$ in Heptan bei 45°C	. 159
Versuch 40: Thermolyse von $(tBu_3Si)_4Ga_4$. 160
Versuch 41: Darstellung von (tBu ₃ Si) ₆ Ga ₁₃ Na(THF) ₆ und (tBu ₃ Si) ₆ Ga ₁₀ Na(THF) ₆ aus	
tBu ₃ SiNa(THF) ₂ mit Green'schem GaI	. 160
Versuch 42: Darstellung von (tBu ₃ Si) ₈ Ga ₁₈ und (tBu ₃ Si) ₈ Ga ₂₂ aus tBu ₃ SiNa(THF) ₂ mit GaBr	. 162
Versuch 43: Darstellung von (<i>t</i> Bu ₂ PhSi)GaCl ₂ •THF.	. 163
Versuch 44: Darstellung von (tBu ₂ PhSi) ₃ Ga.	164
Versuch 45: Darstellung von tBu2PhSiGaCl2	. 165
Versuch 46: Umsetzung von GaCl ₃ mit zwei Äquivalenten NaSiPhtBu ₂	. 166
Versuch 47: Umsetzung von (<i>t</i> Bu ₂ PhSi) ₃ Ga mit GaCl ₃	. 166
Versuch 48: Umsetzung von (tBu2PhSi)3Ga mit Chlor	. 167
Versuch 49: Umsetzung von (tBu ₂ PhSi) ₃ Ga mit (tBu ₂ PhSi)GaCl ₂	. 167
Versuch 50: Darstellung von (tBu ₃ Si) ₂ In—In(SitBu ₃) ₂ aus InCl ₃ und tBu ₃ SiNa in THF	. 168
Versuch 51: Umsetzung von (tBu ₃ Si) ₂ In— In(SitBu ₃) ₂ mit Selen	. 169
Versuch 52: Umsetzung von (tBu ₃ Si) ₂ In—In(SitBu ₃) ₂ mit	
$(tBu_3Si)_2Al - Al(SitBu_3)_2$.170

Versuch 53:	Darstellung von $(tBu_3Si)_8In_{12}$ durch Thermolyse von $(tBu_3Si)_4In_2$ in Heptan	170
Versuch 54:	Thermolyse von $(tBu_3Si)_4In_2$ und anschließender Umsetzung mit NaSitBu_3(THF) ₂	172
Versuch 55:	Darstellung von (<i>t</i> Bu ₃ Si) ₆ In ₈ durch Umsetzung von Cp*In mit <i>t</i> Bu ₃ SiNa	172
Versuch 56:	Umsetzung von CpIn mit <i>t</i> Bu ₃ SiNa	173
Versuch 57:	Umsetzung von InN(SiMe ₃) ₂ mit NaSitBu ₃	174
Versuch 58:	Thermolyse von $(tBu_3Si)_6In_8$	174
Versuch 59:	Umsetzung von (<i>t</i> Bu ₃ Si) ₆ In ₈ mit NaSi <i>t</i> Bu ₃	175
Versuch 60:	Umsetzung von (<i>t</i> Bu ₃ Si) ₆ In ₈ mit Na	175
Versuch 61:	Darstellung von (<i>t</i> Bu ₂ PhSi) ₂ In—In(SiPh <i>t</i> Bu ₂) ₂ aus InBr und <i>t</i> Bu ₂ PhSiNa	
	in THF/Pentan	176
Versuch 62:	Umsetzung von InCp* mit <i>t</i> Bu ₂ PhSiNa	177
Versuch 63:	Thermolyse von $(tBu_2PhSi)_2In$ —In $(SiPhtBu_2)_2$	177
Versuch 64:	Umsetzung von InCp* mit (tBu ₃ Si) ₂ MeSiNa in Pentan	178
Versuch 65:	Darstellung von $(tBu_3Si)_2Tl$ — $Tl(SitBu_3)_2$	178
Versuch 66:	Umsetzung von TlCp mit einem Äquivalent tBu3SiNa	179
Versuch 67:	Umsetzung von TlCp mit zwei Äquivalenten tBu3SiNa in Gegenwart von Me3SiCl	180
Versuch 68:	Umsetzung von TlN(SiMe ₃) ₂ mit <i>t</i> Bu ₃ SiNa in Pentan	180
Versuch 69:	Umsetzung von (tBu ₃ Si) ₂ Tl—Tl(SitBu ₃) ₂ mit HBr	181
Versuch 70:	Umsetzung von $(tBu_3Si)_2Tl$ — $Tl(SitBu_3)_2$ mit Br_2	181
Versuch 71:	Umsetzung von (tBu ₃ Si) ₂ Tl—Tl(SitBu ₃) ₂ mit Ph ₃ CCl	182
Versuch 72:	Umsetzung von TlCl ₃ mit einem Äquivalent NaSitBu ₃	182
Versuch 73:	Umsetzung von TlCl ₃ mit einem Äquivalent NaSitBu ₃ in Gegenwart von LiPh	182
Versuch 74:	Umsetzung von TlCl ₃ mit zwei Äquivalenten NaSitBu ₃	183
Versuch 75:	Darstellung von $(tBu_3Si)_4Tl_3Cl$ und $(tBu_3Si)_6Tl_6Cl_2$	183
Versuch 76:	Darstellung von (<i>t</i> Bu ₃ Si) ₂ TlCl	185
Versuch 77:	Umsetzung von $(tBu_3Si)_2TlCl mit AlCl_3 in CD_2Cl_2$	187
Versuch 78:	Umsetzung von TlCl ₃ mit drei Aquivalenten <i>t</i> Bu ₃ SiNa	188
Versuch 79:	Umsetzung von $(tBu_3Si)_2Tl$ — $Tl(SitBu_3)_2$ mit Selen	189
Versuch 80:	Darstellung von $(tBu_2PhSi)_2Tl$ — $Tl(SiPhtBu_2)_2$	189
Versuch 81:	Umsetzung von $(tBu_2PhSi)_2Tl$ — $Tl(SiPhtBu_2)_2$ mit Ph ₃ CCl	190
Versuch 82:	Thermolyse von $(tBu_2PhSi)_2Tl$ — $Tl(SiPhtBu_2)_2$	191
Versuch 83:	Umsetzung von TlBr mit $(tBu_3Si)_2MeSiNa$ in THF	191
D Zu	sammenfassung	192
E Rö	ontgenstrukturen	201
F Lit	teraturverzeichnis	209

F	Literaturverzeichnis	

A Einleitung

Geschichtliches. Die Elemente E = B, Al, Ga, In, Tl der Borgruppe (**Triele**) bilden Verbindungen der Zusammensetzung R₃E mit E in der Oxidationsstufe +III, die schwereren Homologen Ga, In und insbesondere Tl zudem solche der Zusammensetzung RE mit E in der Oxidationsstufe +I (R = organischer oder anorganischer Rest; RE- Bindungen in ersterem Falle mehr kovalenter, in letzterem Falle mehr elektrovalenter Natur)^[1]. Darüber hinaus kennt man bereits sehr lange (seit fast 100 Jahren) Verbindungen R_mB_n mit Clustern aus kovalent miteinander verknüpften Boratomen, während entsprechende Verbindungen R_mE_n der Borhomologen, d.h. der schweren Triele E = Al, Ga, In, Tl vergleichsweise spät entdeckt wurden.

Erste Hinweise auf die Existenz von Ditrielan-Einheiten $-\stackrel{l}{E} - \stackrel{l}{E} -$ aus zwei kovalent verknüpften Al-, Ga- oder In-Atomen der Oxidationsstufe +II und der Koordinationszahl 4 ergaben in den 70er und 80er Jahren des vorigen Jahrhunderts Röntgenstrukturanalysen der Chalkogenid-Phasen Al₇Te₁₀ = AlTe•3Al₂Te₃, GaS, GaSe, GaTe, InS, InSe (auch Al₃Te₃I = 2AlTe•AlITe, In₄Se₃, In₄Te₃, In₅S₄, In₆S₇, In₆Se₇) und Halogenid-Phasen MGaCl₃, Ga₂Br₃, Ga₂I₃, In₂Br₃ (auch In₅Br₇) ^{[1],[2],[48],[74],[137]}. Es liegen in ersteren Fällen Netzwerke aus chalkogenverbrückten E₂-Einheiten, in letzteren Fällen Salze [M⁺]₂[Ga₂Cl₆]²⁻ (M⁺ = Me₄N⁺, Ph₃PH⁺) und [E⁺]₂[E₂X₆]²⁻ mit halogenidkoordinierten E₂- Einheiten vor (vgl. nachfolgende Formelbilder; in InTe, TIS, TISe, TITe, Ga₂Cl₃, In₂Cl₃ weisen die Triele die Oxidationsstufen +I und +III auf ^{[1],[2]}). Bereits in den 60er Jahren wurde darüber hinaus die Existenz von *tetrahedro*-Tl₄⁸⁻ mit Tl- Atomen in der Oxidationsstufe +I in der Zintl-Phase Na₂Tl nachgewiesen^[3].

Offensichtlich führt der Ersatz von zwei Halogenid-Anionen in $E_2X_6^{2-}$ durch neutrale Donoren zu einer Stabilisierung der – als solche bisher nicht isolierbaren – Tetrahalogenide E_2X_4 der schweren Triele (vgl. Formelbild), wie die Isolation von Al₂Br₄(Anisol)₂ lehrt (vgl. ^[4] und bzgl. weiterer Beispiele die Tabellen 1, 2, 6 und 8). Auch ließen sich donorhaltige Homologe von E_2X_4 wie Al₄Br₄(NEt₃)₄, Al₄Br₄(PEt₃)₄, Ga₃I₅(PEt₃)₃, Ga₅Cl₇(OEt₂)₅ und Ga₈I₈(PEt₃)₆ synthetisieren (vgl. Tabellen 1 und 2). Dithallane des Typs [Tl₂X₆]²⁻ und Tl₂X₄•2D sind bislang unbekannt. Schließlich konnten zum Ende der 80er Jahre mit Disyl₄E₂ (Disyl = CH(SiMe₃)₂) erstmals Trielverbindungen mit Ditrielan-Einheiten >E–E< aus kovalent verknüpften Al-, Ga-, und In- Atomen der Oxidationsstufe +II und der Koordinationszahl 3 – anstelle von 4 – aufgefunden werden (vgl. Formelbild und ^{[19],[74],[137]} sowie bzgl. weiterer erzeugter Ditrielane R₂E–ER₂ die Tabellen 1, 2, 6 und 8).

Formelschema. Ditrielane mit Trielatomen der Oxidationsstufe +II. Bezüglich der Einzelverbindungen für E = Al vgl. Tab. 1 (Seite 9), für E = Ga vgl. Tab. 2 (Seite 37), für E = In vgl. Tab. 6 (Seite 77) und für E = Tl vgl. Tab. 8 (Seite 103). Die EE- Bindungslängen in R₂E–ER₂ betragen für R = CH(SiMe₃)₂ und E = Al 2.66 Å, E = Ga 2.54 Å, E = In 2.83 Å und E = Tl 2.88 (hier ist R = SitBu₂Ph). Man kennt auch Verbindungen mit >B–B< Gruppen^[1].

Im Jahre 1990 wurde in Zusammenarbeit der Arbeitskreise Schnöckel und Wiberg erstmals eine Verbindung mit mehr als zwei kovalent verknüpften Trielatomen, d.h. von schweren Trielen die ersten **Cluster** im engeren Sinne, synthetisiert^[13]. Nach Zugabe von NaSitBu₃ in Bu₂O zu einer äquimolaren Menge AlCl in Toluol/Et₂O bei -78°C (bereitet gemäß ^[5]) enthält die Lösung violettes ($tBu_3Si_4Al_4$ mit einem Cluster aus vier an den Ecken eines Tetraeders lokalisierten Al- Atomen.

Nach rasanter Entwicklung der hier zur Diskussion stehenden Substanzklasse kennt man heute Verbindungen mit Clustern aus 2-7, 12, 14, 22 und 77 Al- Atomen (vgl. Tab. 1 auf Seite 9), 2-6, 8-10, 12, 13, 18, 19, 22, 26, 84 Ga- Atomen (vgl. Tab. 2 auf Seite 37) 2, 4, 6, 8, 12 In- Atome (vgl. Tab. 6 auf Seite 77) sowie 2, 3, 6 Tl- Atomen (vgl. Tab. 8 auf Seite 103). Als Beispiele der betreffenden Trielclusterverbindungen, von denen eine Reihe von mir gewonnen werden konnten, sind im nachfolgendem Formelschema bisher bekannt gewordener Ala-, Galla-, Inda- und Thalla-tetrahedrane mit Trielatomen der Oxidationsstufe +I und der Koordinationszahl 4 zusammengefaßt (nur für das Tetrahedrangerüst wurden bisher von allen schweren Trielen Verbindungsbeispiele aufgefunden).

Formelschema. Tetrahedrane mit Trielatomen der Oxidationsstufe +I. Den Tetrahedranen liegen Zweielektronendreizentrenbindungen zugrunde (bzgl. der EE- Einfachbindungslängen, 2.66/2.54/2.83/2.88 Å für Al/ Ga/In/Tl, siehe vorausgehendes Formelschema). Für weitere Trielclusterverbindungen mit E = Al vgl. Tab. 1 (Seite 9), mit E = Ga vgl. Tab. 2 (Seite 37), für E = In vgl. Tab. 6 (Seite 77) und für E = Tl vgl. Tab. 8 (Seite 103). Man kennt auch Bortetrahedrane wie B₄Cl₄, B₄(NR₂)₄, B₄tBu₄^[1] sowie das Anion [B₄tBu₄]^{-[8]}.

Aufgabenstellung. Anders als Verbindungen R_3E mit E = Al, Ga, In, Tl in der Oxidationsstufe +III tendieren Verbindungen R_mE_n mit E in Oxidationsstufen <+III zur Disproportionierung in R_3E bzw. R_2 und elementares "hochverclustertes" E auf dem Wege über Verbindungen $R_m E_n$ mit zunehmenden m'/n'- Verhältnis. Sterisch überladene Reste R vermögen den Zerfall auf der Stufe von "teilverclustertem" E zu stoppen. Sie ermöglichen demgemäß durch ihren Einsatz die Erzeugung der erwähnten Triel-Clusterverbindungen.

Einige Beispiele für genützte Gruppen R werden in nachfolgendem Formelschema vorgestellt. Im Arbeitskreis wird hierbei die Tri-*tert*-butylsilyl-Gruppe als Schutzgruppe genutzt. Sie sei nachfolgend als Supersilylgruppe bezeichnet und mit R* abgekürzt.

Supersilyl = $SitBu_3$ = R^*

Die Vorteile dieser Gruppe bestehen u.a. in ihrer beachtlichen Raumerfüllung, ihrem chemisch inerten Verhalten und ihrem elektronenschiebenden Charakter, der zu einer Stabilisierung von Metallatomclusterverbindungen mit Elektronenmangel führen kann.

Formelschema. Sterisch überladene Reste, die in den letzten Jahren vielfach genutzt wurden.

Mir wurde in diesem Zusammenhang die Aufgabe gestellt Clusterverbindungen $R_m E_n$ aus den schweren Trielen E = Al, Ga, In, Tl sowohl mit Supersilylsubstituenten als auch mit weniger sperrigen SitBu₂Ph- und sperrigeren SitBu₂Mes- Substituenten zu synthetisieren, sowie strukturell und chemisch zu charakterisieren. Als Synthesewege sollten gewählt werden:

- Enthalogenierung (Reduktion) von zunächst zu gewinnenden Halogeniden REX₂ bzw. R₂EX mit Alkalimetallen in Ab- oder Anwesenheit von Naphthalin sowie mit Supersilylnatrium NaR*.
- Umsetzungen von EX bzw. Cp*E mit Supersilylnatrium NaR*, NaSitBu₂Ph und NaSitBu₂Mes.
- Umwandlungen erzeugter Triel-Clusterverbindungen in andere Triel-Clusterverbindungen.
- Studien zum Bildungsmechanismus der Triel-Clusterverbindungen.

Nachfolgend werden der Reihe nach die von mir gewonnen Aluminiumclusterverbindungen (Kapitel 1), Galliumclusterverbindungen (Kapitel 2), Indiumclusterverbindungen (Kapitel 3) und Thalliumclusterverbindungen (Kapitel 4) vorgestellt. Ein tabellarischer Überblick der bis heute synthetisierten Clusterverbindungen von Al, Ga, In, Tl sowie die Beschreibung der Synthesen von zum Clusteraufbau verwendeten Vorstufen leitet jedes einzelne Kapitel ein. Die beschriebenen Untersuchungen sind auszugsweise in acht Publikationen niedergelegt^{[41],[42],[103],[104],[105],[127],[128],[167].}

Vorstudien. Die als Vorstufen für den Aufbau von Triel-Clusterverbindungen benötigten Halogenide \mathbf{REX}_2 und $\mathbf{R}_2\mathbf{EX}$ werden mit Vorteil durch Reaktion von Trihalogeniden \mathbf{EX}_3 mit Natriumsilylen NaR (R = SitBu₃, SitBu₂Ph, SitBu₂Mes) synthetisiert. Diese Vorstufen können gemäß folgendem Formelschema monomer, dimer, donorfrei oder donorhaltig vorliegen.

Formelschema. Mögliche Strukturen von REX₂, R_2EX , R_3E (monomer, dimer, donorfrei, donorhaltig; X = Halogen, D = Donor).

Die genutzten Alkalimetallsilyle (verwendet wurden fast ausschließlich Natriumsilyle), die auch für Umsetzungen mit EHal und Cp*E zum Einsatz kommen sollten, lassen sich wie folgt gewinnen: Die Synthese von **NaSitBu₃** (NaR*) aus R*Br und Na in Alkanen, Benzol (Versuch 6) oder THF ist im Arbeitskreis eingehend untersucht worden^[47]. Der Zugang zu **NaSitBu₂Ph** ist gemäß Gleichung (2) in zwei Reaktionsschritten möglich: Umsetzung des Silans tBu_2PhSiH mit elementarem Chlor oder Brom zu tBu_2PhSiX (X = Cl, Br Versuch 2, 3); Reaktion des Silylbromids $tBu_2PhSiBr$ mit Na in donorfreien oder donorhaltigen Lösungsmitteln (Versuch 7). Die genutzten sterisch überladenen Gruppen R führen zu monomeren Halogeniden und im Falle von REX₂ zu Donoraddukten (es konnte aus sterischen Gründen kein R*₃E erzeugt werden; (tBu_2PhSi ₃E ist demgegenüber zugänglich).

Das benötigte Di-*tert*-butylsilan *t*Bu₂PhSiH kann seinerseits durch Reaktion von PhSiCl₃ mit der dreifach äquivalenten Menge LitBu dargestellt werden^[14]. Höhere Ausbeuten ergeben sich jedoch gemäß Gleichung

(1) durch Umsetzung von LiPh mit dem Silylfluorid $tBu_2SiFH^{[15]}$ (Versuch 1), welches aus LitBu und SiHCl₃ mit sich anschließender Fluoridierung gewonnen werden kann.

SiHCl₃
$$\xrightarrow{1) + 2 \text{ LitBu}} t\text{Bu}_2\text{SiFH} \xrightarrow{+ \text{LiPh}} t\text{Bu}_2\text{PhSiH}$$

 $\xrightarrow{- \text{Cl}^-} t\text{Bu}_2\text{SiFH} \xrightarrow{- \text{LiF}} t\text{Bu}_2\text{PhSiH}$ (1)

$$tBu_{2}PhSi - H \xrightarrow{+Br_{2}} tBu_{2}PhSi - Br \xrightarrow{+Na} NaSitBu_{2}Ph + Na + Na + D + NaBr + NaSitBu_{2}Ph + Na + D + NaBr + NaSitBu_{2}Ph + nD$$

$$(2)$$

Die Struktur des donorfreien Silanids NaSi tBu_2 Ph unterscheidet sich deutlich von der Struktur des donorfreien Silanids NaSi tBu_3 . Supersilylalkalimetalle MSi tBu_3 (M = Li, Na) ohne Donor sind dimer aufgebaut und zeigen als zentrales Strukturelement einen näherungsweise planaren viergliedrigen Si – M – Si – M – Ring^[51]. Dabei sind die Siliciumatome mit drei tBu-Resten und zwei M-Atomen verknüpft, so daß sich eine Koordinationszahl von 5 für Si ergibt (siehe Abbildung 1). Im Gegensatz hierzu weist donorfreies NaSi tBu_2 Ph, laut Röntgenstrukturanalyse^[16], eine polymere Kettenstruktur auf. Dabei ist das Natriumatom

Abbildung 1. Strukturen der donorfreien Supersilylalkalimetalle $MSitBu_3$ (M = Li, Na) sowie des donorfreiem Di-*tert*-butyl-phenylsilynatrium NaSitBu₂Ph im Feststoff.

über eine intramolekulare Wechselwirkung mit dem Phenylrest eines weiteren NaSi*t*Bu₂Ph-Moleküls verknüpft (Abbildung 1). Dies erinnert ein wenig an die Struktur von Supersilylkalium KSi*t*Bu₃, bei dem das Kaliumatom von drei Benzolringen koordiniert wird (donorfreies KSi*t*Bu₃ ist in Alkanen vollständig unlöslich und hat wohl polymeren Bau)^[47].

Das Silanid NaSi tBu_2Mes konnte bisher nicht synthetisiert werden. Zwar ist das benötigte Silan $tBu_2MesSiH$ durch Reaktion von tBu_2FSiH mit LiMes noch zugänglich (Versuch 4), bei der anschließenden

Halogenierung spaltet sich jedoch Mesitylbromid ab und es bildet sich nicht das gewünschte $tBu_2MesSiBr$, welches mit Natrium anschließend in NaSi tBu_2Mes übergeführt werden sollte (Versuch 5).

Anstelle von NaSi*t*Bu₂Mes wurde das von Dr. Niedermayer im Arbeitskreis zugänglich gemachte Silanid NaSiMeR*₂, das ebenfalls sterisch überladener als NaR* ist, genutzt^[154].

B Allgemeiner Teil

1 Aluminiumclusterverbindungen

Für den Aufbau von Aluminiumclusterverbindungen bestehen zwei Möglichkeiten: Zum einen geht man von Halogeniden $RAIX_2$ und R_2AIX mit raumerfüllenden anorganischen oder organischen Resten aus, und kommt durch Reduktion zu niedrigwertigen Aluminium-Spezies R_mAI_n (Oxidationsstufe von Al < III). Entscheidend für die durch *n* gegebene Clustergröße ist die Sperrigkeit des verwendeten Substituenten R sowie die Reaktionsführung. Man erhält auf diese Weise meist neutrale halogenfreie Aluminiumclusterverbindungen (siehe Tabelle 1).

Zum anderen geht man von metastabilen Lösungen der Halogenide AlX aus, welche durch gemeinsame Tieftemperatur-Kondensation von AlX (X = Cl, Br, I), dargestellt bei hohen Temperaturen, mit geeigneten donorhaltigen Lösungsmitteln gewonnen werden^[17]. Die thermodynamisch begünstigte Disproportionierung von AlHal in metallisches Aluminium und AlX₃ kann durch die Wahl des Halogenids, des Donors und der Temperatur gesteuert werden, so daß man die in Tabelle 1 aufgeführten halogenhaltigen Aluminiumclusterverbindungen erhält. Die Substitution des Halogenids gegen geeignete sperrige Reste führt zu weiteren. in Tabelle 1 aufgelisteten Verbindungen. Beispielsweise konnte Schnöckel et al. durch Umsetzung einer AlI-Lösung mit LiN(SiMe₃)₂ mit R₂₀Al₇₇²⁻ (R = N(SiMe₃)₂) die bisher größte, röntgenstrukturanalytisch charakterisierte Aluminiumclusterverbindung erzeugen.

Ich schlug zur Darstellung von supersilylierten Aluminiumclusterverbindungen ausschließlich den erstgenannten Weg ein. Als Schutzgruppen dienten die Supersilyl- und die Di-*tert*-butylphenylsilyl-Gruppe. Es konnten die in den folgenden Kapiteln beschriebenen Aluminiumclustererbindungen $R_4^*Al_2$, $R_3^*Al_2^*$, $R_4^*Al_3^*$ und $R_4^*Al_4$ gewonnen werden.

n	R _m Al _n	R/X	Farbe	BL [Å]	τ [°]	Lit
2	R ₄ Al ₂	Tip	gelbgrün	2.647	44.8	[18]
[b]		Dsi	farblos	2.660	8	[19]
		R*	rubinrot	2.751	90	V16
	R ₃ Al	R*	dunkelgrün	2.537 ^[c]	77.3	V19
	R ₄ Al ₂ •-	Tip	schwarzgrün	2.470	1.4	[18]
		Dsi	tiefblau	2.620	0	[20]
	Al ₂ Br ₄ •2D	Anisol	gelb	2.527		[30]
	R ₄ Al ₂ Br ⁻	Dis	hellgelb	2.643		[31]
3	R ₄ Al ₃ •	R*	schwarzgrün	2.738		V20
	R ₃ Al ₃ As ₂	Dsi	gelb	2.83		[21]
4	R_4Al_4	Cp*	gelb	2.769		[9]
		Tsi	orange	2.739		[22]
		R*	violett	2.60		[23]
	Al ₄ X ₄ •4D	Br/NEt ₃	gelb	2.643		[32]
		I/NEt ₃	gelb	2.652		[33]
		I/PEt ₃	gelb	2.597		[34]
5	R ₃ Al ₅ I ₆	Cp*	farblos	2.530		[36]
6	R ₆ Al ₆	<i>t</i> Bu	tiefrot	2.735 ^[c]		[25]
7	R ₆ Al ₇ ⁻	DSA	schwarz	2.635 ^[d]		[26]
12	R ₈ Al ₁₂	DSA	schwarz	2.673 ^[e]		[27]
	$R_{12}Al_{12}^{2}$	<i>i</i> Bu	dunkelrot	2.685 ^[c]		[28]
14	$R_6Al_{14}I_6^{2-}$	DSA	dunkelrot	2.707 ^[f]		[37]
	Al ₁₄ SiR ₆	Cp*	gelb	2.710		[38]
22	Al ₂₂ Br ₂₀ •12D	THF	hellgelb	2.658 ^[g]		[39]
77	$R_{20}Al_{77}^{2}$	DSA	schwarz	2.762 ^[h]		[29]

Tabelle 1. Bisher bekannt gewordene Aluminiumclusterverbindungen (BL = Al-Al-
Bindungslänge, $\tau = R$ -Al-Al-R Diederwinkel).

[a] $\mathbf{Cp}^* = C_5 \mathrm{Me}_5$, $\mathbf{Tip} = 2,4,6-i\mathrm{Pr}_3 \mathrm{C}_6 \mathrm{H}_2$, $\mathbf{Dsi} = \mathrm{CH}(\mathrm{SiMe}_3)_2$, $\mathbf{Tsi} = \mathrm{C}(\mathrm{SiMe}_3)_3$, $\mathbf{DSA} = \mathrm{N}(\mathrm{SiMe}_3)_2$, $\mathbf{R}^* = \mathrm{Si}t\mathrm{Bu}_3$. – [b] Auch $\mathrm{Al}_7 \mathrm{Te}_{10} = \mathrm{AlTe} \cdot \mathrm{3Al}_2 \mathrm{Te}_3$ enthält neben dreiwertigen Al zweiwertiges Al in Form von Al₂- Einheiten (AlAl-Abstand 2.69 Å)^[40]. – [c] Mittels ab-initio Methoden berechnete Al – Al Abstände. – [d] Die Al – Al-Abstände in den beiden (AlR)_3-Ringen betragen 2.540, der Abstand zum zentralen Al beträgt 2.730 Å. – [e] kürzester/längster Al–Al-Abstand 2.542/2.799 Å. – [f] kürzester/längster Al–Al-Abstand 2.570/2.910 Å. – [g] kürzester/längster Al–Al-Abstand 2.526/2.762 Å. – [h] kürzester/längster Al–Al-Abstand 2.564/3.140 Å.

1.1 Synthese und Charakterisierung von Vorstufen der Aluminiumclusterverbindungen

1.1.1 Synthesen und Charakterisierung von R*AlX₂, R*AlX₂•D (X = Halogen, R* = SitBu₃)

Halogenide $R*AlX_2 \cdot D$ entstehen, wie die Gleichungen (4) zeigen durch *direkte Vereinigung* von $R*AlX_2$ mit dem Donor D oder durch *Verdrängung* eines schwächeren Donors D' durch einen stärkeren Donor D (Et₂O < THF < NEtMe₂)^[43].

$$R*AlX_{2} + D \longrightarrow R*AlX_{2} D$$

$$R*AlX_{2} D' + D \longrightarrow R*AlX_{2} D + D'$$
(4)

Da die donorfreien Halogenide $R*AlX_2$ gemäß Gleichung 6 dargestellt werden müssen, empfiehlt es sich die $R*AlX_2$ •D direkt aus NaR* und AlX₃ (Molverhältnis 1:1) in Anwesenheit des gewünschten Donors zu gewinnen (Versuche 11 und 12).

$$AlX_3 + NaR^* \xrightarrow{+D} R^*AlX_2 D$$
 (5)

So setzt sich AlBr₃ zum Beispiel gelöst in NEtMe₂ (liegt als AlBr₃(NEtMe₂) Addukt vor) mit einem Äquivalent NaR*(THF)₂ in Heptan zum *Ethyldimethylamin*-Addukt R*AlBr₂(NEtMe₂) um (Versuch 11).

Donorfreie Halogenide des Typs $R*AlX_2$ sollten gemäß Gleichung (6) durch Reaktion von NaR* mit einem Äquivalent AlX₃ unter Ausschluß eines Donors zugänglich sein.

$$AlX_3 + NaR^* \longrightarrow R^*AlX_2$$
 (6)

Tropft man allerdings eine Lösung von NaR* in Heptan zu einer Lösung von AlBr₃ in Heptan, so stellt man überraschenderweise fest, daß sich R*₂AlBr bildet, wobei sich an diesem Ergebnis selbst dann nichts ändert, falls NaR* im Unterschuß eingesetzt wird (Molverhältnis AlBr₃ : NaR* = 2 : 1). Anschließend wandelt sich gebildetes R*₂AlBr unter Verbrauch des nicht umgesetztem AlBr₃ langsam in donorfreies R*AlBr₂ um (Versuch 10 Anmerkung 2). Analoges gilt für die Umsetzung von NaR* mit AlCl₃, nur dem Unterschied, daß die Reaktion aufgrund der geringen Löslichkeit von AlCl₃ in Alkanen nicht in Heptan durchgeführt werden kann. Im abgeschmolzenen NMR-Rohr bildet sich bei Raumtemperatur aus NaR* und AlCl₃ (Molverhältnis 1 : 1) in C₆D₆ zunächst die disupersilylierte Aluminiumverbindung R*₂AlCl. Die monosupersilylierte Verbindung R*AlCl₂ entsteht hieraus nach einigen Tagen bei 150°C durch Reaktion mit AlCl₃ (Versuch 9 Anmerkung 2).

Diese Befunde lassen sich im Sinne des Reaktionsschemas (7) damit erklären, daß die Substitution von X⁻ gegen R^{*-} in AlX₃ (dimer in C₇H₁₄, C₆D₆) in daraus hervorgehendes R*AlX₂ sehr rasch erfolgt (wohl Gleichgewicht dimer/monomer), während R*₂AlX/AlX₃ nur langsam komproportionieren. Entstehendes NaX kann wohl Addukte mit AlX₃ und R*AlX₂ bilden (\rightarrow NaAlX₄, NaAlX₃R*). Demgemäß isolierten K.W. Klinkhammer et. al. als Folge der Umsetzung LiTsi/AlCl₃ in Toluol LiAlCl₃Tsi (Tsi = C(SiMe₃)₃)^[44].

1.1.1.1 Reduktion von R*AlX₂•D

Niedrigwertige Aluminium-Spezies sollten, durch Reduktion geeigneter Aluminium(III)-Verbindungen zugänglich sein. So gelang es H.W. Roesky et. al. durch Reduktion von TsiAII₂(THF) mit Na/K- Legierung in Toluol bei 115°C das *Tetrahedro-tetraalan* Tsi₄Al₄ zu isolieren (Tsi = $C(SiMe_3)_3)^{[20]}$. Wird jedoch R*AIX₂(THF) (X = Cl, Br) mit Natrium oder Kalium in C₆D₆ reduziert, so erhält man nicht das Tetrahedran R*₄Al₄, sondern ein Gemisch von Verbindungen, die offensichtlich unter THF-Beteiligung gebildet werden. Da auch entsprechende Reduktionen mit Lithium- bzw. Natriumnaphthalenid bei -100°C nicht zur Bildung von isolierbaren Aluminiumclusterverbindungen führten (Versuch 24), wurde R*AlBr₂(NEtMe₂) mit Kalium reduziert (Versuch 25). Die Reaktion ist in C₆D₆ erst nach 38 Stunden bei 100°C vollständig abgelaufen. Wiederum entsteht kein Tetrahedran R*₄Al₄. Statt dessen wird eine Si-Al Bindung gespalten, so daß sich zunächst KR* bildet, welches bei 105°C mit dem Lösungsmittel C₆D₆ zu R*-C₆D₅ abreagiert^[47]. Das als weitere Reaktionskomponente zu erwartende KAlBr₂ ist wohl unter diesen Bedingungen nicht stabil und disproportioniert in metallisches Aluminium und AlBr₃.

$$R^*AlX_2 \bullet D \qquad \xrightarrow{-2X} 0.25 R^*_4Al_4 \qquad (8)$$

1.1.1.2 Struktur von R*AlBr₂(NEtMe₂)

Der röntgenstrukturanalytisch geklärte Bau von R*AlBr₂(NEtMe₂) ist zusammen mit wichtigen Bindungslängen und –winkeln aus Abbildung 2 zu entnehmen. R*AlBr₂(NEtMe₂) kristallisiert in der Raumgruppe Pca21 und hat eine orthorhombische Elementarzelle. Die Verbindung weist eine zentrale Si–Al-Gruppe auf. Das Al-Atom ist mit einer R*- Gruppe, zwei Br-Atomen und dem N-Atom von NEtMe₂ verzerrt tetraedrisch umgeben. Es besitzt demnach eine ähnliche Struktur wie das Halogenid R*BBr₂(Pyridin)^[45]. Das N-Atom von NEtMe₂ weist ideal tetraedrische Konfiguration auf (Al–N–C 109.3°).

Abbildung 2. Struktur der Verbindung R*AlBr₂(NEtMe₂) im Kristall und verwendete Atomnumerierung (SCHAKAL-Plot; Atome mit willkürlichen Radien; die H-Atome wurden zur besseren Übersicht nicht eingezeichnet.) Wichtige Bindungslängen [Å] und -winkel [°] von R*AlBr₂(NEtMe₂) mit Standardabweichungen: Si1–Al1 2.562(3), Al1–Br1 2.327(7), Al1–Br2 2.339(7), Al1–N1 2.043(6), Si1–C1 1.990 (13), Si1–C5 1.939 (13), Si1–C9 1.995 (11); Si1–Al1–Br1 111.8 (3), Si1–Al1–Br2 112.5 (3), Si1–Al1–N1 125.0 (2), Br1–Al1–Br2 106.9 (10), N1–Al1–Br1 100.2 (6), N1–Al1–Br2 98.4 (6), C16–N1–C15 109.3 (7), Al1–N1–C13 109.3 (11), C1–Si1–C5 111.6 (5), C1–Si1–C9 108.3 (5), C5–Si1–C9 112.1 (5), C1–Si1–Al1 111.5 (4), C5–Si1–Al1 109.5 (4), C9–Si1–Al1 103.6 (3); Operator: K. Polborn.

Die besondere Sperrigkeit der Supersilylgruppe zeigt sich in einer verlängerten Si–Al Bindung in R*AlBr₂(NEtMe₂) von 2.562 Å (0.142 Å über der Summe der Kovalenzradien von Si: 1.17 Å und Al: 1.25 Å; Al-Si_{theor.} = 2.42 Å). Vergleichbare Verbindungen mit einer Hypersilylgruppe weisen einen kürzeren Silicium-Aluminium-Abstand auf (in Li(THF)AlCl₃Si(SiMe₃)₃ = 2.45 Å^[46]). Die Al-Br Abstände liegen

mit 2.327 Å bzw. 2.339 Å im erwarteten Bereich (Al-Br_{theor.} = 2.39 Å; Kovalenzradius von Br: 1.14 Å). Die Si–C Abstände und die Si–C–Si Winkel liegen mit durchschnittlich 1.97 Å und 110.7° im Normalbereich (1.94-1.95 Å, 110-112°^[47]), was für eine relativ unpolare Si-Al Bindung spricht.

Die Strukturen von donorfreien Halogeniden $R*AlX_2$ konnten bis jetzt noch nicht mittels Röntgenstrukturanalyse ermittelt werden, jedoch sollten diese Verbindungen analog homologem $R*GaCl_2^{[45]}$ im kristallinen Zustand als Dimere vorliegen.

1.1.2 Synthesen und Charakterisierung von R_2^*AIX , (X = Halogen; $R^* = SitBu_3$)

Die Umsetzung von AlX₃ mit zwei Äquivalenten NaR* bzw. R*AlX₂ mit einem Äquivalent NaR* liefert in Abwesenheit von starken Donoren gemäß Gleichung (9a) und (9b) die Halogenide R*₂AlX (X = Cl, Br; Versuch 9 und 10).

Das bei der erwähnten Umsetzung von AlX₃ gebildete NaX könnte Addukte in der Art AlX₃ + NaX \rightarrow NaAlX₄ bzw. R*AlX₂ + NaX \rightarrow NaAlX₂R* ausbilden. Da man quantitativ R*₂AlX erhält, greift NaX mithin nicht nachweisbar in das Reaktionsgeschehen ein.

Die Umsetzung von AlF₃ mit NaR* läßt sich aufgrund der Unlöslichkeit des in einer verzerrten ReO₃-Raumstruktur vorliegenden Trifluorids in Alkanen nicht bewerkstelligen. Die Umsetzung von AlI₃ mit zwei Äquivalenten NaR* in Pentan bei Raumtemperatur führt sehr rasch zu R*I unter Abscheidung von metallischem Aluminium. Die Reaktion verläuft möglicherweise zunächst zu R*AlI₂, welches unter den gegebenen Bedingungen jedoch nicht nachgewiesen werden konnte. Es ist somit anzunehmen, daß R*AlI₂ in Anwesenheit von NaR* zu R*I und Al zerfällt (Versuch 13).

Der Zugang zu Disupersilylaluminiumiodid gelingt jedoch gemäß Gleichung (10) über die Umsetzung von Tetrasupersilyldialan mit Iod in Alkanen. Dabei wird unter Bruch der Al-Al Bindung die gewünschte Al-I Bindung aufgebaut (siehe Versuch 17 und Kapitel 1.2.3).

$$\begin{array}{cccc} R^* & R^* & & \\ Al & Al & R^* & & \\ R^* & R^* & & \\ \end{array} + I_2 & \xrightarrow{\text{Pentan}} & 2 \ R^*_2 \text{AlI} \end{array}$$
(10)

Eine weitere Synthesemöglichkeit für Verbindungen R^*_2AIX besteht in der nucleophilen Substitution von X^- durch ein anderes Halogenid. So erhält man durch Umsetzung von R^*_2AICI mit CsF in THF gemäß Gleichung (11) R^*_2AIF (Versuch 8). Setzt man hingegen AgF mit R^*_2AICI in THF um, bildet sich unter Spaltung der Al-Si Bindung R*F neben einer Vielzahl weiterer Produkte (Anmerkung zu Versuch 8).

$$R^{*}{}_{2}AlCl \xrightarrow{+CsF} R^{*}{}_{2}AlF$$
(11)

1.1.2.1 Thermolyse und Reduktion von R*2AIX

Die Halogenide R_2^*AIX sind in Lösung relativ thermolysestabil. Die Thermolysestabilität nimmt von R_2^*AIF zum R_2^*AII hin ab. So hat sich R_2^*AICI in C_6D_6 selbst nach 117 Stunden bei 150°C nur zu 23% zersetzt. Nach bisherigen Erkenntnissen, spaltet R_2^*AIX thermisch Supersilylhalogenid R^*X ab, wobei das nach $R_2^*AIX \rightarrow R^*X + R^*AI$ zu erwartende Supersilylalan R^*AI unter den Thermolysebedingungen wohl zu elementarem Aluminium und R^* zerfällt (Versuch 9 und 10 Anmerkung 1).

Die Reduktion von R_2^*AlX kann mit den Alkalimetallen (Na, K) sowie mit Supersilylnatrium NaR* durchgeführt werden. Je nach den gewählten Bedingungen erhält man interessante neue Verbindungen. So führt die Umsetzung von R_2^*AlX (X = Cl, Br) mit einem Äquivalent NaR* in Benzol (X = Cl) bzw. Pentan (X = Br) bei Raumtemperatur zu rotem Dialan $R_2^*Al-AlR_2^*$ (siehe Kapitel 1.2.1).

Wird die Reduktion von R_2^*AlX (X = Cl, Br) mit Kalium in unpolaren Lösungsmitteln wie z.B. Heptan durchgeführt, bildet sich das in Alkanen völlig unlösliche, in polaren Medien äußerst reaktive Alanid KAlR $_2^*$. Die Reduktion mit Natrium erfordert höhere Temperaturen. Als Folge konnte weder das thermolabile Dialan $R_2^*Al-AlR_2^*$ noch das Alanid NaAlR $_2^*$ nachgewiesen werden.

$$R^{*}_{2}AlX \xrightarrow{+ NaR^{*}, Benzol} 0.5 \qquad R^{*}_{R^{*}}Al \xrightarrow{R^{*}} R^{*}$$

$$R^{*}_{2}AlX \xrightarrow{- NaX} 0.5 \qquad R^{*}_{R^{*}}Al \xrightarrow{R^{*}} R^{*}$$

$$R^{*}_{R^{*}}Al \xrightarrow{R^{*}} R^{*}_{R^{*}}$$

1.1.2.2 Struktur von R*2AlCl

Der röntgenstrukturanalytisch geklärte Bau von R*2AlCl ist zusammen mit ausgewählten Bindungsabständen und -winkeln der Abbildung 3 zu entnehmen. R*2AlCl kristallisiert in der Raumgruppe P2/n und hat eine monokline Elementarzelle. Das Zentrum der monomeren Verbindung R*₂AlCl bildet ein Aluminium-Atom, welches von zwei R*- Gruppen und einem Cl- Atom planar umgeben ist (Winkelsumme am Aluminium 359.65°). Als Folge des durch die Supersilylgruppen bewirkten "back strains" und der relativ kleinen Ausdehnung des Chlor-Atoms verglichen mit den voluminösen R*-Gruppen, ist der Si-Al-Si Bindungswinkel stark aufgeweitet (148.30°; Si–Ga–Si im Falle von R*₂GaCl^[45] 152.9°).

Abbildung 3. Struktur der Verbindung R*₂AlCl im Kristall und verwendete Atomnumerierung (SCHAKAL-Plot; Atome mit willkürlichen Radien; die H-Atome wurden zur besseren Übersicht nicht eingezeichnet.) Wichtige Bindungslängen [Å] und -winkel [°] von R*₂AlCl mit Standardab-weichungen Al1–Si1 2.525(11), Al1–Cl1 2.155(3), Si1–Cl 1.948(4), Si1–C5 1.952(4), Si1–C9 1.951(4). – Si1–Al1–Si1A 148.3(8), Si–Al1–Cl1 105.7(7), Cl–Si1–Al1 111.2(12), C9–Si1–Al1 102.7(12), C5–Si1–Al1 108.8(12), C1–Si1–C5, 110.9(2), C1–Si1–C9 111.0(2), C5–Si1–C9 112.0(2); Operator K. Polborn.

Die besondere Sperrigkeit der Supersilylgruppe zeigt sich in einer verlängerten Si–Al Bindung im $R*_2AlCl$ von 2.525 Å (0.105 Å über der Summe der Kovalenzradien von Si: 1.17 Å und Al: 1.25 Å; Al-Si_{theor.} = 2.42 Å). Der Al–Cl Abstand ist mit 2.155 Å kürzer als berechnet (2.24 Å; Kovalenzradius von Cl: 0.99 Å). Die Si–C Abstände und die Si–C–Si Winkel liegen mit durchschnittlich 1.95 Å und 111.3° im Normalbereich(1.94-1.95 Å, 110-112°^[47]).

Die vergleichbaren Bindungslängen und -winkel der gruppenhomologen Verbindungen R_2^*ECl (E = Al, Ga) lassen darauf schließen, daß die sperrigen Supersilylgruppen die Geometrie am Zentralatom wesentlich beeinflussen. Damit erklärt sich auch das annähernd gleiche Volumen der Elementarzellen von R_2^*AlCl und R_2^*GaCl (1490 Å³ bzw. 1447 Å³).

1.1.3 Synthesen von $R\ast_2 AlH$ und $R\ast AlH_2$

Das R*2AlH und R*AlH2 sollten gemäß den folgenden Gleichungen (13a, b, c) zugänglich sein.

 $\langle a \rangle$

$$R^{*}_{2}AIX + H^{-} \xrightarrow{(a)} R^{*}_{2}AIH + X^{-}$$

$$AIHX_{2} + 2 NaR^{*} \xrightarrow{(b)} R^{*}_{2}AIH$$

$$R^{*}AIX_{2} + 2 H^{-} \xrightarrow{(c)} R^{*}AIH_{2} + 2 X^{-}$$
(13)

Bei der Umsetzung von AlHCl₂ mit NaR*(THF)₂ in Ether/THF gemäß Gleichung (13b) entsteht das Addukt R*AlHCl(THF), welches sich bei Raumtemperatur gemäß Gleichung (14) allmählich unter hydrierender Spaltung einer CO-Bindung zu [R*AlCl(OnBu)]₂ umlagert^[45].

Die Umsetzung von R_2^*AlCl mit LiAlH₄ in THF bei -78°C führt gemäß Gleichung (13a) zum gewünschten Produkt R_2^*AlH . Jedoch erweist sich das so entstandene Alan als sehr reaktives Hydrierungsmittel, da auch hier das als Lösungsmittel verwendete Tetrahydrofuran (THF) von R_2^*AlH angegriffen wird, wobei – wohl über den Wege der Gleichung (15) – letztendlich $R_2^*AlOnBu$ entsteht. Aus diesem Grunde sollte das THF möglichst rasch nach erfolgter R_2^*AlH - Bildung entfernt werden (Versuch 14).

(15)

Die Umsetzung von R_2^*AlBr mit NaH bei Raumtemperatur zeigt keinen nennenswerten Umsatz, so daß höhere Reaktionstemperaturen erforderlich sind. Unter diesen Bedingungen thermolysieren die entstandenen Produkte bereits. LiAlH₄ hingegen reagiert schon bei –78°C quantitativ mit R_2^*AlCl zu R_2^*AlH ab.

Da die Hydrierungsmittel LiAlH₄ bzw. NaH in unpolaren Lösungsmittel (wie z.B. Heptan) nicht löslich sind kommen nur Ether (z.B. THF, Et₂O) oder Amine (z.B. NEtMe₂) als Lösungsmittel für die Hydrierung von R*AlX₂ in Frage. Im letzten liegt R*AlX₂•D vor. Das gewünschte R*AlH₂ ließ sich bisher nicht eindeutig nachweisen.

1.1.4 Synthese von Alaniden MAIR*2

Supersilylalanide sind gemäß folgender Gleichung (16) zugänglich:

$$R*_{2}AlX \xrightarrow{+ K} KAlR*_{2} + KX$$

$$X = Cl, Br \qquad (16)$$

Wie zu erwarten spielt die Polarität des verwendeten Lösungsmittels eine große Rolle. So sollten salzartige Verbindungen wie R*₂AlK in polaren Medien stabilisiert werden. Doch konnte die Existenz von NaAlR*₂ als Folge der Umsetzung von R*₂AlCl mit Natrium in Et₂O nicht nachgewiesen – aber auch nicht ausgeschlossen – werden. Wird die Reaktion von R*₂AlX (X = Cl, Br) mit Kalium in Alkanen durchgeführt, so fällt das in diesem unpolaren Solvens unlösliche Alanid KAlR*₂ aus (Versuch 15). Die Reaktion verläuft nach bisherigen Erkenntnissen vermutlich in 2 Stufen ab. Im ersten Schritt überträgt das Alkalimetall ein Elektron auf R*₂AlX, so daß gemäß R*₂AlX + K \rightarrow KX + R*₂Al[•] das Radikal R*₂Al[•] entsteht, welches zum Dialan R*₂Al–AlR*₂ dimerisieren kann. R*₄Al₂ reagiert seinerseits mit einem weiteren Äquivalent Kalium zum Alanid R*₂AlK. Hierfür spricht die Bildung von Dialan R*₂Al–AlR*₂ nach erfolgter Reduktion von R*₂AlCl mit Kalium in C₆D₆, welches kurzfristig im ¹H-NMR nachgewiesen werden kann. Andererseits ist R*₄Al₂ in Pentan bei Raumtemperatur in Anwesenheit von Kalium innerhalb weniger Minuten verschwunden (Versuch 15 Anmerkung 3).

Das Alanid R*₂AlK läßt sich seinerseits mit dem Protonenspender Triphenylmethan Ph₃CH bei Raumtemperatur in C₆D₆ gemäß Gleichung (17) in das Alan R*₂AlH überführen (Versuch 15).

$$R*_{2}AlK \longrightarrow R*_{2}AlH \\ - KCPh_{3}$$
(17)

1.1.5 Synthesen von $RAIX_2$, R_2AIX , R_3AI (X = Halogen, R = SitBu₂Ph)

Die Supersilylgruppe $tBu_3Si = R^*$ ist so raumerfüllend, daß Verbindungen des Typs R^*_3Al nicht mehr existenzfähig sind. Der Durchmesser der Supersilylgruppe beträgt ca. 12 Å (vgl. Kapitel 1.2.2). Hiernach berechnen sich die Si-Al Atomabstände in trigonal planar koordinierten R^*_3Al zu 8.9 Å (Kovalenzradien: Si = 1.17 Å; Al = 1.25 Å; Al-Si_{theor.} = 2.42 Å). Setzt man demgemäß AlX₃ mit drei Äquivalenten Supersilylnatrium NaR* um, so erhält man in unpolaren Medien nicht R^*_3Al , sondern R^*_2Al –Al R^*_2 neben (R^*)₂ (siehe Kapitel 1.2)

Setzt man hingegen das weniger raumerfüllende, donorfreie Di-*tert*-butyl-phenylsilylnatrium NaSitBu₂Ph mit AlX₃ um, so erhält man gemäß Gleichung (18) quantitativ das dreifach silylierte Alan (tBu₂PhSi)₃Al (Versuch 27).

$$AlX_3 + 3 \text{ NaSitBu}_2\text{Ph} \xrightarrow{-3 \text{ NaX}} (t\text{Bu}_2\text{PhSi})_3\text{Al}$$
(18)

Verwendet man noch weniger sperrige Alkalimetallverbindungen MR (R z.B. Ph, Cp, Et, Me), so bilden sich mit AlX₃ sogar Tetraorganylalanate LiAlR₄ (at-Komplexe): $R_3Al + LiR \rightarrow LiAlR_4^{[1]}$.

Die Halogenide $tBu_2PhSiAlX_2$ und $(tBu_2PhSi)_2AlX$ sollten sich wie im Falle der Halogenide R*AlX_2 und R*₂AlX (siehe Kapitel 1.1.1 und 1.1.2) gemäß folgender Gleichungen (19a, b) durch Umsetzung von AlX₃ mit ein bzw. zwei Äquivalenten NaSitBu₂Ph in Abwesenheit starker Donoren gewinnen lassen.

$$AlX_{3} + NaSitBu_{2}Ph \xrightarrow{(a)} tBu_{2}PhSiAlX_{2}$$

$$AlX_{3} + 2 NaSitBu_{2}Ph \xrightarrow{(b)} (tBu_{2}PhSi)_{2}AlX \xrightarrow{(19)}$$

Während sich die monosilylierte Verbindung $tBu_2PhSiAlX_2$ gemäß Gleichung (19a) in Alkanen darstellen läßt, gelingt die direkte Synthese der disilylierten Verbindung (tBu_2PhSi)₂AlX nicht. Setzt man AlBr₃ mit zwei Äquivalenten NaSi tBu_2Ph um, entsteht $tBu_2PhSiAlBr_2$ und (tBu_2PhSi)₃Al (Versuch 28).

1.1.5.1 Struktur von (*t*Bu₂PhSi)₃Al

Der röntgenstrukturanalytisch geklärte Bau von $(tBu_2PhSi)_3Al$ ist zusammen mit ausgewählten Bindungslängen und -winkel der Abbildung 4 zu entnehmen. Tris-(di-*tert*-butyl-phenylsilyl)alan kristallisiert in der Raumgruppe P-3 und hat eine hexagonale Elementarzelle. Das Zentrum der monomeren Verbindung $(tBu_2PhSi)_3Al$ bildet ein Al- Atom, welches von drei tBu_2PhSi -Gruppen planar umgeben ist (Winkelsumme am Aluminium 359.91°). Die drei Phenylgruppen ordnen sich "schaufelradförmig" auf einer Seite der AlSi₃-Ebene an.

Abbildung 4. Struktur der Verbindung $(tBu_2PhSi)_3Al$ im Kristall und verwendete Atomnumerierung (SCHAKAL-Plot; Atome mit willkürlichen Radien; die H-Atome wurden zur besseren Übersicht nicht eingezeichnet). Wichtige Bindungslängen [Å] und -winkel [°] von $(tBu_2PhSi)_3Al$ mit Standardabweichungen: Al1–Si1 2.592(5), Si1–C1 1.934(17), Si1–C5 1.946(18), Si1–C9 1.906(16); – Si1A–Al1–Si1 119.97(1), Si1A–Al1–Si1B 119.97(1), Si1–Al1–Si1B 119.97(1), C9–Si1–C1 111.71(8) [Winkelsumme bei Al1 359.91], C9–Si1–C5 102.75(7), C9–Si1–Al1 98.65(5), C1–Si1–C5 110.94(8), C1–Si1–Al1 104.89(6), C5–Si1–Al1 126.93(6); Operator: T. Habereder.

Die noch vergleichsweise große Raumerfüllung der Di-*tert*-butyl-phenylsilylgruppe zeigt sich außerdem in langen Si–Al Bindungen (2.592 Å; 0.172 Å größer als die Summe der Kovalenzradien Si: 1.17 Å und Al: 1.25 Å; Al-Si_{theor.} = 2.42 Å). In R*₂AlCl beträgt der Si–Al- Abstand 2.225 Å. Die Si-C Abstände und die C-Si-C Winkel entsprechen mit durchschnittlich 1.93 Å und 108° Abständen und Winkeln anderer in dieser Arbeit beschriebenen Verbindungen mit der *t*Bu₂PhSi-Gruppe.

Die beobachteten ähnlichen Bindungslängen und -winkel der gruppenhomologen Verbindungen $(tBu_2PhSi)_3E$ (E = Al, Ga) lassen darauf schließen, daß im wesentlichen die sperrigen Di-*tert*-butyl-phenylsilylgruppen die Geometrie am Zentralatom wesentlich bestimmen. Damit erklärt sich auch das annähernd gleiche Volumen der Elementarzelle von $(tBu_2PhSi)_3Al$ und $(tBu_2PhSi)_3Ga$ (2120.8(2) Å³ bzw. 2159.3(6) Å³).

1.2 Tetrasupersilyldialan $R_2^AI - AIR_2^* (R^* = SitBu_3)$

Aluminiumtriorganyle zeigen in Lösung eine hohe Tendenz zur Assoziation und tendieren, anders als Bor- Gallium-, Indium- und Thalliumtriorganyle zur Dimerisierung über zwei Al–R–Al-Brücken, falls R nicht zu sperrig ist^[1]. Auch zeigt das Aluminium im Gegensatz zum gruppenhomologen Bor eine geringere Clusterbildungstendenz. Die meisten Aluminiumverbindungen leiten sich deshalb vom dreiwertigen Aluminium ab. Wie dann erkannt wurde^{[48], [49]}, läßt sich der Zerfall von niedrigwertigen Aluminiumverbindungen R_mAl_n in R₃Al und Al mit Hilfe sperriger Substituenten hemmen. So konnte mit [(Me₃Si)₂HC]₄Al₂^[19] im Jahre 1988 erstmals ein molekulares Dialan mit zweiwertigem und dreizähligem Aluminium und im Jahre 1991 mit R*₄Al₄^{[23],[47]} und Cp*₄Al₄^[9] Tetrahedrane mit einwertigem und vierzähligem Aluminium isoliert werden. Nachfolgend seien in diesem Zusammenhang Darstellung, Struktur und Reaktionen eines mit Supersilylgruppen substituierten Dialans R*₄Al₂ (R* = Si*t*Bu₃) besprochen. Es unterscheidet sich hinsichtlich seinen Eigenschaften auffällig von bisher strukturell charakterisierten Dialanen R₄Al₂ (R = CH(SiMe₃)₂ = Disyl^[19] und R = 2,4,6-*i*Pr₃C₆H₂ = Tip^[18]).

1.2.1 Synthese und Charakterisierung von Tetrasupersilyldialan R*2Al-AlR*2

Das Gleichungsschema (20) informiert über die Darstellung von R*4Al2:

Setzt man gelbes, in Pentan gelöstes Disupersilylaluminiumchlorid oder -bromid R_2^*AIX (X = Cl, Br), das aus Aluminiumtrihalogeniden AIX₃ und Supersilylnatrium NaR* (Molverhältnis 1 : 2) in Alkanen bei Raumtemperatur gemäß Gleichung (20b) gewonnen werden kann (siehe Kapitel 1.1.2), mit NaR* 2 Tage (Chlorid) oder 1 Tag (Bromid) um, so bildet sich das Tetrasupersilyldialan in praktisch quantitativer Ausbeute. Vermutlich entstehen hierbei zunächst Disupersilylalanyl- und Supersilyl-Radikale, welche sich aus sterischen Gründen nicht zu AlR*₃ (siehe Kapitel 1.1.5), sondern nur zu R*₂Al–AlR*₂ und R*–R* vereinigen können [vgl. Gleichungen (20c) und (20d)]. Natürlich läßt sich R*₄Al₂ im Sinne von Gleichung (20a) auch im "Eintopfverfahren" aus AlX₃ und der dreifach-molaren Menge NaR* in Alkanen bei -40°C (zur Bildung des R*₂AlX) und anschließend bei Raumtemperatur (Reaktion von R*₂AlX mit NaR*) synthetisieren (Versuch 16 und Anmerkungen).

 $R_4^*Al_2$ kristallisiert aus Pentan bei -23°C in rubinroten, hydrolyse- und luftempfindlichen, oberhalb 50°C zersetzlichen Quadern und ist somit wesentlich thermolabiler als das bis ca. 220°C beständige farblose Dialan (Disyl)₄Al₂ und das bis 171°C beständige gelbgrüne Dialan Tip₄Al₂. $R_4^*Al_2$ ist in Alkanen auf Dauer nur bei Ausschluß von Licht unzersetzt löslich (siehe Kapitel 1.2.3) und zerfällt in Benzol bei Raumtemperatur auch unter Lichtausschluß langsam in noch nicht geklärter Weise.

1.2.2 Kristallstruktur von R*2Al–AlR*2

Laut *Röntgenstrukturanalyse* (Abbildung 5) weist $R^*_4Al_2$ ein D_{2d} -konfiguriertes Si₂Al–AlSi₂-Gerüst auf: Die Al-Atome sind jeweils trigonal-planar von zwei Si-Atomen und einem Al-Atom koordiniert, wobei die AlAlSi₂-Ebenen orthogonal zueinander aufgespannt sind (SiAl–AlSi-Torsionswinkel gleich 90°). Dies ist insofern von Interesse, als in Verbindungen R_4Al_2 mit weniger sperrigen Substituenten die Winkel zwischen den AlAlSi₂-Ebenen deutlich kleiner als 90° sind [Disyl₄Al₂: 8° ^[19], Tip₄Al₂: 44.8°C^[18]]. Nach "Molecular Mechanics" -Berechnungen (MM2-Kraftfeld) ergibt sich der SiAl–AlSi-Winkel sogar nur zu 32°. Die hohe Raumerfüllung der Supersilylgruppen führt des weiteren zu einem ungewöhnlich großen Al–Al-Abstand von 2.751(2) Å (siehe Abbildung 5). R*₄Al₂ weist somit die bisher längste Al–Al-Bindung eines Dialans auf [Disyl₄Al₂: 2.660 Å^[19]; Tip₄Al₂: 2.647 Å^[18] für weitere Beispiele siehe Tabelle 1]. Trotzdem lassen sich bei Raumtemperatur ESR-spektroskopisch keine Disupersilyldialanyl-Radikale nachweisen. Somit liegt das Gleichgewicht (20d) unter Normalbedingungen wohl weitestgehend auf der Seite von R*₄Al₂. Offensichtlich wird die sterisch bedingte Schwächung der Al–Al-Bindung im Dialan in gleicher Weise wie die der Si–Si-Bindung im Superdisilan R*–R*^{[50],[51]} durch van-der-Waals Attraktionen der peripheren Methylgruppen teilweise kompensiert.

Abbildung 5. Struktur von $R_4^*Al_2$ im Kristall und verwendete Atomnumerierung (Lokalsymmetrie D_{2d} ; SCHAKAL-Plot; Atome mit willkürlichen Radien; H-Atome übersichtlichkeitshalber unberücksichtigt). Wichtige Bindungslängen [Å] und -winkel [°] von $R_4^*Al_2$: Al1–Al1A 2.751(2), Al1–Si1/Al1–Si1C/Al1A–Si1A/Al1A–Si1B 2.717(1), Si1–C1 1.971(5), Si1–C5 1.962(4), Si1–C9 1.970(3) [Mittelwert der Si–C-Abstände 1.97]; C1–C2 1.530(6), C1–C3 1.534(6), C1–C4 1.555(7); – Si1–Al1–Si1C/Si1A–Al1A–Si1B 128.26(5), Si1–Al1–Al1A/Si1C–Al1–Al1A/Si1A–Al1A–Al1/Si1B–Al1A–Al1 115.87(2) [Winkelsumme an Al1/Al1A 360°]; Al1–Si1–C1 109.3(1), Al1–Si1–C5 111.5(1), Al1–Si1–C9 108.7(1), C1–Si1–C5 110.0(2), C1–Si1–C9 108.6(2), C5–Si1–C9 108.7(2) [Mittelwert der CSiC-Winkel 109.1]; – Si–Al–Al–Si 90.0; Operator: J. Knizek.

Die gegenseitige sterische Behinderung der Supersilylgruppen in der Al–Al-Bindungsregion hat des weiteren einen langen Al–Si Abstand zur Folge. Mit 2.717 Å liegt er deutlich über den theoretisch aus der Summe der Kovalenzradien von Si: 1.17 Å und Al: 1.25 Å berechneter Wert von Al-Si_{theor.} = 2.42 Å. Außerdem ergibt sich aufgrund des enormen Raumanspruchs der Supersilylgruppe ein außergewöhnlich kleiner Si–Al–Si-Winkel von 128.3° (zum Vergleich R*₂AlCl: 148.3° siehe Kapitel 1.1.2.2). Er läßt sich als Kegelwinkel der Supersilylgruppe für einen Silicium-Element-Abstand (hier Si–Al–Abstand) von 2.72 Å interpretieren. Erwartungsgemäß weist R*₄Al₂ darüber hinaus vergleichsweise lange Si–C-Bindungen und kleine C–Si–C-Winkel von durchschnittlich 1.97 Å und 109.1° auf (Normalbereiche: 1.94-1.95Å, 110-112°^[47]).

Da sich die Supersilylgruppen im Dialan R*₄Al₂ näherungsweise wie vier sich berührende Kugeln tetraedrisch um die zentrale Al–Al- Bindung gruppieren, kann der Durchmesser der Supersilylgruppe rechnerisch aus geometrischen Überlegungen ermittelt werden. Da der Si–Al–Si- Winkel, der Si–Al- und der Al–Al-Abstand bekannt sind ergibt sich der Durchmesser der Supersilylgruppe zu etwa 12 Å. Die Dialane $R_4^*Al_2$ zeigen mit wachsendem Diederwinkel zwischen den beiden Si–Al–Si- Ebenen einen bathochromen Effekt (Abbildung 6). So ist das nahezu planare (Disyl)₄Al₂ farblos und zeigt im UV/ VIS-Spektrum eine der Metall-Metall-Bindung zuzuordnende Absorption bei 370 nm, das gelbgrüne Tip₄Al₂ hat bei einem entsprechenden Winkel von 44.8° eine UV/Vis-Absorption bei 420 nm, wohingegen $R_4^*Al_2$ eine rubinrote Verbindung mit einer UV/Vis-Absorption bei 525 nm und einem Diederwinkel von 90°C ist (Abbildung des UV/Vis Spektrums von $R_4^*Al_2$ ist zusammen mit den homologen Tetrasupersilyl-ditrielanen $R_4^*E_2 E = Al$, In, Tl in der "Zusammenfassung" abgebildet).

Abbildung 6. Abhängigkeit der UV/VIS Absorption in Dialanen R_4Al_2 vom Winkel zwischen den beiden R-Al-R- Ebenen

1.2.3 Reaktivität des Dialans R*2Al-AlR*2

Das Reaktionsschema (21) veranschaulicht die Reaktivität von $R_4^*Al_2$: Gelindes Erwärmen des Dialans in Alkanen führt möglicherweise zunächst gemäß Gleichung (21e) zu Disupersilylalanyl-Radikalen in sehr kleiner Gleichgewichtskonzentration. Hierfür sprechen Umsetzungen von $R_4^*Al_2$ mit elementarem Iod (Versuch 17) sowie Wasserstoff (Versuch 18), die bei ca. 50°C im Sinne der Gleichungen (21a) und (21b) unter Bildung von Disupersilyliodid R_2^*AlI und Disupersilylhydrid R_2^*AlH ablaufen. Stärkeres Erwärmen von $R_4^*Al_2$ in Alkanen auf ca. 80°C führt des weiteren gemäß Gleichung (21c) unter Eliminierung von Supersilyl-Radikalen, irreversibel zum schwarzgrünen, metastabilen Trisupersilyldialanyl-Radikal $R_3^*Al_2^{\bullet}$ (siehe Kapitel 1.3.1). Die abgespaltenen Supersilylradikale R* dimerisieren unter diesen Bedingeungen zu dem Disilan R^*-R^* . Erwärmen von $R_4^*Al_2$ in Alkanen auf ca. 135°C liefert gemäß (21d) u.a. langsam – auf dem Wege über $R_3^*Al_2^{\bullet}$ – violettes Tetrasupersilyl-*tetrahedro*-tetrahedran $R_4^*Al_4^{[23],[52]}$ und Supersilyl-Radikale, die sich unter diesen verschärften Reaktionsbedingungen u.a. durch H-Aufnahme aus der chemischen Umgebung stabilisieren (Bildung von $R^*H)^{[51]}$ (Versuch 22a). Das Tetrasupersilyldialan läßt sich auch durch Bestrahlen über $R_{3}^{*}Al_{2}^{\bullet}$ in das Tetrasupersilyl*-tetrahedro*-tetrahedran $R_{4}^{*}Al_{4}$ umwandeln (Versuch 22b).

1.3 Trisupersilyldialanyl R*₃Al₂[•] und Tetrasupersilylcyclotrialanyl R*₄Al₃[•]

Im Unterschied zu den Aluminiumtriorganylen R_3Al , die erstmals Mitte des 19. Jahrhunderts synthetisiert wurden^[1], sind niedrigwertige Aluminiumorganyle R_mAl_n mit Aluminium in Oxidationsstufen <III (n/m <3) wegen ihrer ausgeprägten Neigung zur Disproportionierung in R_3Al und Al lange Zeit hindurch unbekannt geblieben. Deshalb führen Enthalogenierungen von Diorganylaluminiumhalogeniden R_2AlX mit Substituenten R, welche eine geringe bis mittlere Raumerfüllung aufweisen wie z.B. CH₂R (R = H, Me, Et, CMe₃, SiMe₃) oder 2,4,6-Me₃C₆H₂, immer zu R_3Al und Al. Diese Ergebnisse sprechen für eine Disproportionierung von Tetraorganyldialanen R_4Al_2 , welche als kurzlebige Zwischenstufen auftreten sollten^[48]. Wie in folgender Gleichung angegeben, könnten die Folgereaktionen über Aluminiumclusterverbindungen R_mAl_n verlaufen, welche ein geringeres m/n- Verhältnis als die eingesetzten Edukte haben.

$$3 R_4 A l_2 \longrightarrow \{R_m A l_n\} \longrightarrow \begin{array}{c} 4 R_3 A l + 2 A l \\ oder \\ 6 R_2 + 6 A l \end{array}$$
(22)
Substituenten mit einer höheren Sperrigkeit, wie z.B. $CH(SiMe_3)_2$ oder 2,4,6-*i*Pr₃C₆H₂ können die Disproportionierung bei der Reduktion von R₂AlX verhindern^[48]. Die Enthalogenierung von R₂AlX führt dann – wie im Falle R*₂AlX (siehe Kapitel 1.2.1) – unter normalen Bedingungen zu Dialanen R₂Al–AlR₂.

Da bei höheren Temperaturen das m/n- Verhältnis weiter sinkt und z.B. Tetrasupersilyldialan (m/n = 2) in das Tetrasupersilyl-*tetrahedro*-tetraalan R*₄Al₄ mit Aluminium in der Oxidationsstufe I (m/n = 1) übergeht (siehe Kapitel 1.2.3), sollten weitere Aluminiumclusterverbindungen als Zwischenstufen bei der Disproportionierung isolierbar sein. In den folgenden Kapiteln soll nun auf zwei näher charakterisierte Zwischenstufen, Trisupersilyldialanyl R*₃Al₂[•] und Tetrasupersilylcyclotrialanyl R*₄Al₃[•] eingegangen werden.

1.3.1 Bildung von Trisupersilyldialanyl R*3Al2 und Tetrasupersilylcyclotrialanyl R*4Al3

Der erst Schritt der Thermolyse von R*2Al-AlR*2 sollte einen homolytischen Bindungsbruch der Si - Al oder der sehr langen Al – Al- Bindung (2.75 Å) zur Folge haben. Gelindes Erwärmen des Dialans in Heptan oder Cyclohexan auf 50°C führt offensichtlich zu einem schnellen und reversiblen Al-Al- Bindungsbruch, so daß Disupersilylalanyl-Radikale R*2Al[•] in geringer Gleichgewichtskonzentrationen entstehen. Dies wird durch die Tatsache unterstützt, daß R*4Al2 bei 50°C in Alkanen, wie in Kapitel 1.2.3 beschrieben, mit Iod oder Wasserstoff zu Disupersilyliodid R*2All bzw. Disupersilylalan R*2AlH reagiert (siehe Reaktionsschema 23). In Abwesenheit von Abfangreagenzien für R*2Al• kann das Dialan R*2Al-AlR*2 in Alkanen wie z.B. Cyclohexan langsam aber irreversibel durch einen homolytischen Bruch der Si-Al- Bindung in das Trisupersilyldialanyl-Radikal R*3Al2 übergehen (Versuch 19). Diese Verbindung bildet unter weiterem Si-Al-Bindungsbruch in einer langsamen und irreversiblen Reaktion das Tetrasupersilyl-cyclotrialanyl-Radikal $R_4^*Al_3^{\bullet}$ und Tetrasupersilyl-*tetrahedro*-tetraalan $R_4^*Al_4$ (siehe Reaktionsschema 23). Die auf diese Weise gebildeten Verbindungen könnten zum einen dadurch entstanden sein, daß sich durch Reaktion von R*3Al2 mit noch in Lösung vorhandenen R*2Al-Radikalen das Cyclotrialanyl R*4Al3 bildet und durch Reaktion von R*3Al2[•] mit sich selbst unter Abspaltung von Supersilylradikalen R* das Tetraalan R*4Al4 entsteht. Die bei dieser Thermolyse freiwerdenden Supersilylradikale können sich zu Superdisilan R*-R* dimerisieren (siehe Reaktionsschema 23).

Nachdem $R_4^*Al_2$ in Heptan oder Cyclohexan 4 Stunden auf 70°C erwärmt wurde, ist das Dialan vollständig zersetzt und die schwarzgrüne Reaktionslösung enthält laut NMR- und ESR- Untersuchungen das Dialanyl $R_3^*Al_2^{\bullet}$, das Cyclotrialanyl $R_4^*Al_3^{\bullet}$, sowie das *Tetrahedro*-Tetraalan $R_4^*Al_4$ neben Superdisilan (R^*)₂ (Versuch 19).

Bei weiterem Erwärmen dieser Lösung oder von $R_4^*Al_2$ in Heptan auf 100°C, bildet sich anschließend das Tetrasupersilylcyclotrialanyl $R_4^*Al_3^{\bullet}$ und das rotviolette Tetrasupersilyl-*tetrahedro*-tetraalan $R_4^*Al_4$

(Versuch 20). Letzteres läßt sich auch auf direktem Wege aus AlI•NEt₃ mit Supersilylnatrium NaR* bei -78°C in Heptan/Toluol darstellen^[23]. Bei diesen Reaktionsbedingungen (100°C) ist das gebildete Superdisilan R*–R* nicht mehr stabil und zerfällt langsam in Supersilylradikale R*[•], welche sich unter H-Abstraktion aus der chemischen Umgebung stabilisieren und Supersilan R*–H bilden (siehe Reaktionsschema 23).

Das Tetrasupersilylcyclotrialanyl $R_4^*Al_3^{\bullet}$ kristallisiert innerhalb von 2 Monaten aus einer Heptanlösung in Form schwarzgrüner, paramagnetischer, hydrolyse- und sauerstoffempfindlicher Quader aus. Das Trisupersilyldialanyl $R_3^*Al_2^{\bullet}$ konnte bisher nicht isoliert werden. Das *tetrahedro*-Tetraalan $R_4^*Al_4$ bildet sich neben der Thermolyse (Versuch 22a) als auch durch Photolyse von $R_4^*Al_2$ (Versuch 22b) bzw. $R_3^*Al_2^{\bullet}$ (Versuch 22c) in Cyclohexan. $R_4^*Al_4$ ist sehr thermostabil und zersetzt sich in Lösung erst ab 140°C (Versuch 26).

1.3.2 Struktur und ESR-Spektrum von Trisupersilyldialanyl R*3Al2

Gemäß den von G Linti durchgeführten ab initio Rechnungen (RI-DFT) sollte die Struktur des Dialanyl-Radikals $R_{3}^{*}Al_{2}^{\bullet}$ mit der Struktur des gruppenhomologen schwarzblauen Radikals $R_{3}^{*}Ga_{2}^{\bullet}$, welches mit Hilfe von röntgenstrukturanaylischen Methoden aufgeklärt werden konnte^[53], vergleichbar sein. Die folgende Abbildung 7 zeigt die Ergebnisse der RI-DFT-Rechnungen. Angeführt sind die entsprechenden Bindungs- längen sowie -winkel von $R_{3}^{*}Al_{2}^{\bullet}$ (ab initio Rechnung) sowie – in eckigen Klammern – von $R_{3}^{*}Ga_{2}^{\bullet}$ (Röntgenstrukturanalyse).

Abbildung 7. Struktur von R*₃Al₂• basierend auf RI-DFT Rechnungen. Ausgewählte berechnete Bindungslängen in [Å] und Winkel in [°] von (in Klammern sind zum Vergleich die entsprechenden Bindungs- längen und -winkel von R*₃Ga₂• angegeben; im letzten Fall sind die Durschnittswerte der beiden unabhängigen Moleküle in der Elementarzelle angeführt): Al1–Al2 2.537 [2.423], Al1–Si1 2.583 [2.513], Al1–Si2 2.571 [2.499], Al2–Si3 2.562 [2.504].–Al2–Al1–Si1 107.87 [109.32], Al2–Al1–Si2 109.58 [109.90], Si1–Al1–Si2 142.21 [140.44], Al1–Al2–Si3 174.90 [170.03].

Beide Radikale zeigen ein fast planares Si₂E–ESi Gerüst (Winkelsumme bei E1 = Al1/Ga1 359.7°/ 359.3°). Das E1–E2–Si Gerüst ist mit einem Bindungswinkel bei E2 = Al2/Ga2 mit 174.9/170.0 nahezu linear, wobei die E1–E2–Si3 Ebene fast orthogonal zu der Si1–E1–Si2 Ebene steht. In beiden Fällen ist der E–E- Abstand vergleichsweise kurz. Dies deutet auf eine E–E- Bindungsordnung größer eins. Die beobachtete Verkürzung der E–E- Bindungslänge in Richtung R*₃Al₂• \rightarrow R*₃Ga₂• (2.537 Å \rightarrow 2.423 Å; Differenz: 0.114 Å) kann zum einen mit einer Verkleinerung des Atomradius oder zum anderen mit einer Ladungsseperation in Richtung Al \rightarrow Ga zusammenhängen. Eine analoge Bindungsverkürzung wird auch bei folgenden Ditrielanen beobachtet: Al₂Disyl₄ \rightarrow Ga₂Disyl₄: 2.660 Å \rightarrow 2.541 Å, Differenz = 0.119 Å (Disyl = CH(SiMe₃)₂). Demzufolge enthält $R_{3}^{*}E_{2}^{\bullet}$ jeweils ein sp²- (E1) und ein sp- hybridisiertes (E2) E-Atom; beide Atome sind über eine zwei-Elektronen σ - und eine Einelektronen π - Bindung verknüpft. Die Konstitution von $R_{3}^{*}Al_{2}^{\bullet}$ läßt sich auch aus dem ESR-Spektrum von Lösungen in Pentan oder Cyclohexan folgern. Gut aufgelöste Spektren von $R_{3}^{*}Al_{2}^{\bullet}$ können jedoch nur aus Lösungen des Dialans $R_{4}^{*}Al_{2}$ in Alkanen gewonnen werden, da diese selbst bei Raumtemperatur bereits Spuren des Dialanyl-Radikals $R_{3}^{*}Al_{2}^{\bullet}$, jedoch nicht Spuren des Cyclotrialanyl-Radikals $R_{4}^{*}Al_{3}^{\bullet}$ enthalten.

Das bei Raumtemperatur aufgenommene ESR-Spektrum von R*2Al-AlR*2- Lösungen zeigt ein einfaches Signal der paramagnetischen Spezies [R*2Al-AlR*][•]. Die Hyperfeinkopplungskonstanten des unge-

Abbildung 8. ESR-Spektrum von $R_{3}^{*}Al_{2}^{\bullet}$ in *n*-Pentan: (**a**) mit starker anisotroper Linienverbreiterung und (**b**) simuliertes ESR-Spektrum mit den Hyperfeinkopplungskonstanten a(Al1) = 2.18 mT und a(Al2) = 1.89 mT.

paarten Elektrons mit den zwei- und drei- koordinierten, chemisch unterschiedlichen Aluminiumatomen (27 Al, Kernspin *I* = 5/2, 100% natürliche Häufigkeit) sind annähernd gleich groß und führen deshalb zu Signalgruppen von einer bis zu sechs ESR-Linien (siehe Abbildung 8a). Die beobachteten Kopplungskonstanten betragen a(Al₁) = 2.18 mT und a(Al₂) = 1.89 mT bei einem isotropischen *g*-Faktor von 2.0011 (Atomnumerierung wie in Abbildung 7; Abbildung 8b zeigt das simulierte ESR-Spektrum).

 $[R*_2AI-AIR*]^*$ zeigt wie ähnlich aufgebaute Radikale $[R*_2Ga-GaR*]^{153]}$ bzw. $[Dsi_2E-EDsi_2]^{-}$ (E = $AI^{[20]}$, $Ga^{[55]}$, $Dsi = CH(SiMe_3)_2$) eine starke anisotrope Linienverbreiterung der äußeren Linien (vgl. auch Abbildung 8a). Der Grund für diesen bekannten Effekt ist die vergleichsweise langsame Rotation der schweren gestreckten Moleküle in der Lösung infolge des großen Trägheitsmoments. Deshalb werden die anisotropen Beiträge des *g*-Faktors und des Hyperfeintensors, welche aus dem π -Charakter des Radikalelektrons hervorgehen, nur ungenügend bei Raumtemperatur ausgemittelt (Zeitskala der ESR-Spektroskopie nur ca. 10^{-6} bis 10^{-8} sec). Der auffallend kleine Unterschied zwischen den beiden ²⁷Al-Kopplungskonstanten verhindert eine eindeutige, klare Zuweisung zu den jeweiligen Aluminiumatomen. Dies spricht für eine annähernd gleiche Aufenthaltswahrscheinlichkeit des Elektrons am Al1 und Al2. Der π -Charakter des ungepaarten Elektrons führt am Ort des zweifach-koordinierten Al-Atoms zu einem vergleichsweisen geringen $a(^{27}Al)$ -Wert, wohingegen am Ort des dreifach-koordinierten nahezu nicht radikalischen Al-Atoms eine etwas höhere Kopplungskonstante resultiert. Das Letztere folgt aus der Spinpolarisation und aus der großen Raumerfüllung der Supersilylgruppen, welche eine höhere Spindichte bewirken. Die stärkere Beteiligung von s-Beiträgen in dem Radikal $[R*_2Al-AlR*]^*$ führt zu einer generell höheren Kopplungskonstante. So ist der $a(^{27}Al)$ -Wert im Radikalanion $[Dsi_2Al-AlDsi_2]^{*-}$ (Dsi = CH(SiMe_3)_2) mit 1.11 mT nur halb so groß.

Da der *g*-Faktor sich nur sehr wenig von dem g(Elektron) = 2.0023 Wert unterscheidet muß das Tetrasupersilyldialanylradikal $[R*_2AI - AIR*]^{\bullet}$ ein π -Radikal sein. Die geringfügige Abweichung zu einem etwas geringerem *g*-Wert stimmt mit dem beobachteten Effekt für das Radikal $[R*_2Ga-GaR*]^{\bullet}$ überein, welches jedoch aufgrund des höheren Spin-Bahn-Kopplungsfaktors einen deutlicheren Effekt zeigt^[53].

1.3.3 Struktur und ESR-Spektrum von Tetrasupersilylcyclotrialanyl R*4Al3

Die durch röntgenstrukturanalylische Methoden aufgeklärte Struktur des Cyclotrialanyl-Radikals $R_4^*Al_3^{\bullet}$ ist in Abbildung 9, zusammen mit ausgewählten Bindungslängen und -winkeln wiedergegeben. $R_4^*Al_3^{\bullet}$ kristallisiert aus Heptanlösungen in Form von schwarzgrünen Kristallen in der Raumgruppe C2/c und hat eine monokline Elementarzelle. Die Positionen der Atome Al1 und Al3 sind gesplittet (Abbildung 9 gibt jeweils nur eine der beiden Splitlagen wieder). Die Methylgruppen der *t*Bu-Gruppen, welche mit Si2 verknüpft sind als auch die Atome Al1 und Al3, wurden in den Splitlagen mit den Besetzungsfaktoren 0.5 verfeinert. Offensichtlich besetzten die drei Aluminiumatome die Ecken eines gleichschenkeligen Dreiecks, wobei die zwei längeren Seiten einen durchschnittlichen Al–Al- Abstand von 2.756 Å und die kürzere Basis einen Al–Al-Abstand von 2.703 Å aufweist. Das Atom Al2, welches sich an der Spitze des Dreiecks befindet, ist mit zwei Supersilylgruppen, die beiden Basis-Aluminiumatome sind mit je einer Supersilylgruppe verknüpft. Im Gegensatz zu der im Kapitel 2.2 näher beschrieben gruppenhomologen Verbindung $R_4^*Ga_3^{\bullet}$ steht die Si2–Al2–Si2A Ebene nicht orthogonal zu der Al_3-Ebene. Zudem weist von den beiden dreifach koordinierten Aluminiumatomen nur Al1 eine planare Geometrie auf. Die mit dem Al3-Atom verbundene Supersilylgruppe ist gegenüber der Al₃-Ebene abgewinkelt (Winkelsumme an Al1 = 359.9° ; Al3 = 328.0°). Diese

Abbildung 9. Struktur des Cyclotrialanyl-Radikals R*₄Al₃• im Kristall. (SCHAKAL-Plot; Atome mit willkürlichen Radien; H-Atome Übersichtlichkeitshalber unberücksichtigt). Wichtige Bindungslängen [Å] und -winkel [°] mit Standardabweichungen (die Positionen von Al1 und Al3 sind zweifach gesplittet; nur eine der jeweiligen Spilttpositionen angegeben; siehe auch Abbildung 10b): Al1-Al2 2.737(2), Al1-Al3 2.703(3), Al2-Al3 2.776(2), Al1-Si1 2.519(1), Al2-Si2 2.556(1), Al3-Si1A 2.586(2); - Al2-Al1-Al3 61.35(6), Al1-Al2-Al3 58.33(8), Al2-Al3-Al1 59.92(7), Si1-Al1-Al2 152.6(1), Si1-Al1-Al3 146.0(1) [Winkelsumme bei Al1 359.9], Si1A-Al3-Al2 44.5(1), Si1A-Al3-Al1 123.6(1) [Winkelsumme bei Al3 328.0], Si2-Al2-Al1 110.48(6), Si2-Al2-Al3 125.47(6), Si2A-Al2-Al1 107.66(6), Si2A-Al2-Al3 90.71(6), Si2-Al2-Si2A 137.28(8); -Si2-Al2-Al1-Al3 119.93, Si1-Al1-Al3-Si1A 45.75. Si2-Al2-Al1-Si1 64.71, Si2-Al2-Al3-Si1A 12.69; Operator E. Baum, G. Linti.

strukturellen Befunde können dadurch interpretiert werden, daß die chemische Wechselwirkung zwischen den beiden R*Al-Gruppen untereinander stärker ist als in Richtung der R*₂Al-Gruppe, so daß sich eine stärkere Al1–Al3 Bindung und zwei schwächere Al1–Al2 bzw. Al2–Al3 Bindungen ergeben (vgl. den Al–Al-Abstand im Dialan R*₄Al₂: 2.751 Å; siehe Kapitel 1.2.2).

Wenn die R_2^*Al -Gruppe ein Elektron und die beiden R^*Al -Gruppen jeweils zwei Elektronen für den Al₃-Cluster zur Verfügung stellen ergeben sich insgesamt 5 Gerüstelektronen. Möglicherweise läßt sich der kürzere Al1–Al3 Abstand dadurch erklären, daß das Radikal-Elektron wie in $R_3^*Al_2^{\bullet}$ als π -Elektron zwischen den beiden R^*Al -Gruppen wirkt.

Der Aufbau des Al₃-Rings in $R_4^*Al_3^{\bullet}$ läßt sich auch durch eine Cyclisation von *catena*- $[R_2^*Al-AlR^*]^{\bullet}$, das als Folgeprodukt der Reaktion $[R_2^*Al-AlR^*]^{\bullet} + R_2^*Al^{\bullet}$ unter Abspaltung eines R*-Radikals zunächst entstehen könnte, beschreiben. Im Zuge der $R_2^*Al-AlR^*$ Verknüpfung würde dann die R*Al-AlR* Bindung schwächer. Aufgrund der Sperrigkeit der Supersilylgruppen scheint diese Cyclisation (siehe Gleichung 24) auf der Hälfte des Reaktionsweges gestoppt zu sein (siehe auch die folgenden ab initio Rechnungen).

Wie aus der Abbildung 10b ersichtlich ist, besetzten die vier Si-Atome der Supersilylgruppen von R*₄Al₃• die Ecken eines verzerrten Tetraeders mit 5 nahezu gleichlangen Kanten (6.321 Å) und einer kürzeren sechsten Kante (4.760 Å), welche aus den beiden mit dem Al2-Atom verknüpften Si-Atomen gebildet wird. Der

Abbildung 10. (a) Kalottenmodell des Cyclotrialanylradikals $R_4^*Al_3^*$. Die Atome Si2 und Si2A mit jeweils zwei *t*Bu₃-Gruppen sind der übersichtshalber weggelassen worden. (b) Darstellung der näheren Umgebung des Al₃-Rings mit den Splitlagen für Al1/Al1A und Al3/Al3A: Tetraedrische Anordnung der vier Si-Atome (alle Si–Si Abstände betragen durchschnittlich 6.32 Å bis auf den kürzeren Si2–Si2A Abstand mit 4.76 Å).

Grund für diese nahezu reguläre tetraedrische Packung der Supersilylgruppen rührt sicherlich von den van der Waals Attrationen der Methylgruppen der Supersilylsubstituenten SitBu₃ (vgl. R*₄Al₂^[51]) her.

Die Aluminiumatome des Al₃-Rings füllen nun die Zwischenräume der R_{4}^{*} -Packung aus, wobei eine Anordnung von zwei planar koordinierten Atomen Al1 und Al3 zusammen mit einem vierfach-koordinierten Al2 offenbar unmöglich ist. Deshalb weist, damit die betreffenden Zwischenräume optimal ausgefüllt werden, das eine der dreifach-koordinierten Al-Atome eine planare das andere jedoch eine pyramidale Umgebung auf. Dies erklärt auch die Tatsache, daß die Si₂Al-Ebene nicht orthogonal zu der Al₃-Ebene steht (siehe Abbildung 9). Darüber hinaus könnten die Splitpositionen der Al1 und Al3 Atome auf eine rasche strukturelle Fluktuation der Konformationen der betreffenden Atome hinweisen.

Die von G. Linti durch ab initio Rechnungen (RI-DFT) bestimmte Struktur des Radikals R*₄Al₃• (siehe Abbildung 11) unterscheidet sich von der experimentell beobachteten Struktur (Abbildung 9) in einigen Punkten. So ist zwar das Al2-Atom laut Kalkulation tetraedrisch, die Al1- und Al3- Atome jedoch beide

Abbildung 11. Struktur von R*₄Al₃[•] basierend auf RI-DFT Rechnung; der Wert über der gestrichelte Linie gibt den Si–Si- Abstand der betreffenden Si-Atome an.

planar koordiniert. Zudem ist die Al1–Al3 Bindungslänge laut Rechnung viel länger als die beiden anderen Al–Al- Bindungen. Im Gegensatz dazu zeigt die gruppenhomologe Verbindung $R_4^*E_3^*$ mit E = Ga die für E = Al rechnerisch vorhergesehene Struktur. Ob die in den vorherigen Abschnitten postulierte offenkettige Struktur ein globales Minimum ist, konnte nicht ermittelt werden, da als Ausgangslage für die RI-DFT-Rechnung die experimentell ermittelte Struktur verwendet wurde.

Die Struktur von $R_4Al_3^{\bullet}$ -Radikalen sollte von der Sperrigkeit der vier Substituenten R abhängen. Deshalb wurden auch Rechnungen mit weniger sperrigen Resten wie $R = SiMe_3$ und SiH₃ durchgeführt (siehe Abbildung 12). Wird der Raumanspruch der Substituenten verringert so wird der Winkel zwischen der Si2–Al2–Si2 Ebene und der Al₃-Ebene immer kleiner, so daß für $R = SiH_3$ eine der mit Al2 verknüpften Silyl-Gruppen als Brücke eine bindende Wechselwirkung mit Al1 oder Al3 aufnimmt.

Abbildung 12. Strukturen von $R_4Al_3^{\bullet}$ basierend auf RI-DFT Rechnungen mit $R = SiH_3$, SiMe₃, R* Ausgewählte berechnete Bindungslängen [Å] und Winkel [°] für die berechneten Fälle $(H_3Si)_4Al_3^{\bullet}/(Me_3Si)_4Al_3^{\bullet}/R^*_4Al_3^{\bullet}$: Al1–Al3 2.532/2.645/2.902, Al1–Al2 2.489/2.463/ 2.625, Al2–Al3 3.065/2.560/2.623, Si1–Al3 2.798/2.908/4.292. – Winkelsumme bei Al1: 356.80/ 349.50/360.00, Winkelsumme bei Al3: 334.43/359.75/360.00.

Das ESR-Spektrum einer sehr verdünnten Lösung von $R_4^*Al_2$ in deuterierten Cyclohexan zeigt bei 80°C ein Signal mit der typischen Hyperfeinstruktur des entstehenden Dialanyl-Radikals $R_3^*Al_2^{\bullet}$ (siehe Abbildung 8a). Beläßt man diese verdünnte Lösung ein paar Minuten bei 80°C verschwindet dieses ESR-Signal. Lösungen welche in C_6D_{12} für längere Zeit bei 80°C thermolysiert wurden weisen ein weniger gut aufgelöstes ESR-Spektrum auf. Das ESR-Signal zeigt eine Reihe von Linien, welche um 1.1 mT voneinander getrennt sind. Offenbar wird das Signal des Cyclotrialanyls $R_4^*Al_3^{\bullet}$ von dem Signal einer zweiten paramagnetischen Spezies überlappt. Beläst man diese Lösung für einige Tage bei Raumtemperatur erscheint allmählich das Signal des Dialanyl-Radikals $R_3^*Al_2^{\bullet}$ im ESR-Spektrum wieder. Reines durch Kristallisation isoliertes Tetrasupersilylcyclotrialanyl zeigt in verdünnten Cyclohexan-Lösungen das in Abbildung 13a wiedergegebene ESR-Signal. Die Tatsache das von dieser Lösung kein NMR-Signal gefunden wurde, steht in Einklag mit dem radikalischen Charakter von $R_4^*Al_3^*$.

Abbildung 13. ESR-Spektrum von $R_4^*Al_3^*$ in Cyclohexan: (a) mit starker anisotroper Linienverbreiterung und (b) simuliertes ESR-Spektrum mit den Hyperfeinkopplungskonstanten a(Al1) = 1.30 mT a(Al3) = 1.21 mT und a(Al2) = 0.30 mT (bei der Simulation wurde eine Linienbreite von 0.15 mT verwendet).

Das ESR-Spektrums von $R_4^*Al_3^*$ ist bei Raumtemperatur weniger gut aufgelöst und zeigt wesentlich mehr Linien als $R_3^*Al_2^*$. Deshalb konnte die Hyperfeinstruktur des Signals, welches bei g = 2.0053 zentriert ist, bis jetzt nicht vollständig analysiert werden. Die ermittelten Kopplungskonstanten ließen sich jedoch bestimmen und haben für ein Al-Atom den kleinen Wert von 0.30 mT und für das zweite und dritte Al-Atom den größeren Wert von 1.30 mT bzw. 1.21 mT. Diese Zuordnung steht im Einklag mit der Gesamtbreite des Spektrums von 15.0 mT. Entsprechend dem *g*-Faktor und der Hyperfeinstruktur ist $R_4^*Al_3^*$ überwiegend ein π -Radikal. Die kleine ²⁷Al-Kopplungskonstante kann dem vierfach koordiniertem Aluminiumatom zugeordnet werden (vgl mit AlR_n-koordinierten organischen π -Radikalen)^{[56],[57]}. Die durchgeführte Simulation des ESR-Spektrums mit den Hyperfeinkopplungskonstanten a(Al1) = 1.30 mT, a(Al3) = 1.21 mT und a(Al2) = 0.30 mT bei einer berücksichtigen Linienbreite von 0.15 mT steht in guter Übereinstimmung mit dem experimentell ermittelten Spektrum.

Die Tatsache, daß die Hyperfeinkopplungskonstanen der restlichen beiden Zentren Al1 und Al3 nicht gleich sind, kann zum einen mit der ermittelten Struktur in Einklag gebracht werden (planar koordiniertes Al1, pyramidal koordiniertes Al3), zum anderen auch dadurch erklärt werden, daß möglicherweise ein Gleichgewicht zwischen *cyclo*-R*₄Al₃• \leftrightarrows *catena*-R*₄Al₃• vorliegt, wobei im festen Zustand die zyklische Struktur und in der Lösung die Kettenstruktur vorliegt.

2 Galliumclusterverbindungen

Der Aufbau von Galliumclusterverbindungen kann wie im Falle des Aufbaus der Aluminiumclusterverbindungen (Kapitel 1) einerseits durch Reduktion von Halogeniden RGaX₂ und R₂GaX mit raumerfüllenden anorganischen oder organischen Resten R, andererseits ausgehend von metastabilen Lösungen der Halogenide GaX, erfolgen. Letztere erhält man durch gemeinsame Tieftemperatur-Kondensation von GaX (X = Cl, Br, I), dargestellt bei höheren Temperaturen, mit geeigneten donorhaltigen Lösungsmitteln. Die thermodynamisch begünstigte Disproportionierung von GaX in metallisches Gallium und GaX₃ kann wiederum durch Wahl des Halogenids, des Donors und die Temperatur so gesteuert werden, daß man die in Tabelle 2 aufgelisteten halogenhaltigen Galliumclusterverbindungen erhält (z.B. Ga₅Cl₇(OEt₂)₅^[65]). Die Substitution des Halogenids durch geeignete sperrige Reste führt zu den weiteren in Tabelle 2 aufgeführten Verbindungen. Beispielsweise konnte Schnöckel et al. durch Umsetzung einer GaBr-Lösung mit LiN(SiMe₃)₂ mit [R₂₀Ga₈₄Br₂]⁶⁻ (R = N(SiMe₃)₂) die bisher größte, röntgenstrukturanalytisch charakterisierte Galliumclusterverbindung erzeugen^[87].

Anders als im Falle von Aluminium liegt niedrigwertiges Gallium (Ga^I, Ga^{II}) auch in einigen metastabilen festen Galliumhalogeniden GaX₂ und Ga₂X₃ vor (vgl. hierzu auch Einleitung)^[62], welche mit geeigneten Lösungsmitteln metastabile Lösungen mit Ga⁺- Kationen und Ga₂X₆²⁻- Anionen^[63] bzw. mit Ga₂X₄•2D-Molekülen^[64] bilden (z.B. wird Greensches "GaI" = [Ga⁺]₂[Ga₂I₆]⁻ durch Ultrabeschallung von Gallium und ca. äquimolaren Mengen Iod in Toluol erzeugt^[69]; es reagiert mit NaR* u.a. zu R*₆Ga₁₀⁻ und R*₆Ga₁₃⁻; siehe Kapitel 2.4). Auch läßt sich Cp*Ga (Cp* = C₅Me₅) als metastabile Gallium(I)- Verbindung verwenden (Erzeugung zum einen aus der Reduktion von Cp*GaI₂ mit K im Ultraschallbad bei 70°C^[67] oder durch Umsatz von Cp*K mit Greenschem "GaI"^[68]).

Ich schlug zur Darstellung von supersilylierter Galliumclusterverbindungen sowohl den Weg der Enthalogenierung von Halogeniden R*GaX₂ und R*₂GaX als auch den der Substitution von X in GaX durch R* ein. Es konnten die in den folgenden Kapiteln besprochenen Galliumclusterverbindungen R*₃Ga₂[•], R*₃Ga₂⁻, R*₄Ga₃[•], R*₄Ga₃⁻, R*₄Ga₄²⁻, R*₆Ga₁₀⁻, R*₆Ga₁₃⁻, R*₈Ga₁₈ und R*₈Ga₂₂ gewonnen werden.

1.50

1.50

1.5

1

1

1.5

bis

1.7

1.5

1.7

2

2

1.5

2

1

1

1.5

1.5

gestaffelt

gestaffelt

gestaffelt

gestaffelt

gestaffelt

gestaffelt

gestaffelt

gestaffelt

90

90

_

15.5

0

180

_

_

_

_

[94]

[96]

[96]

[98]

[98]

[100]

bis

[102]

[53]

V30

[76]

[73]

[75]

[77]

V32

V33

[106]

[78]

Aminyl; X = Halogen; D = Donor). CN = Koordinationszahl (Coordination number, einschließlich Gegenionen); τ = Torsionswinkel R-Ga–Ga-R; BL = Bindungslänge; BO = Ga–Ga empirisch ermittelte Bindungsordnung (Einfachbindung: 2.52 Å, Doppelbindung 2.32 Å)									
n	R _m Ga _n	R/X/D ^[a]	Farbe	CN	BL [Å]	τ [°]	BO	Lit	
2	R ₄ Ga ₂	Dsi	gelb	3	2.54	4.9	1	[74]	
[b]		Pip	hellgelb	3	2.53	31	1	[71]	
		Tip	gelb	3	2.51	43.8	1	[73]	
		Mes _F	?	3	2.48	?	1	[70]	
		3 R*/SiMe ₃	rot	3	?	?	?	V31	
		[c]	farblos	4(?)	?	?	?	[72]	
	$R_2Ga_2X_2$	Mes*/Cl	farblos	3	2.42	0	1.5	[99]	
		R'/Cl	farblos	4	2.50	ekliptisch	1	[97]	
		R'/Br	farblos	4	2.51	ekliptisch	1	[98]	
	$Ga_2X_4D_2$	I/NEt ₃	farblos	4	2.50	gestaffelt	1	[106]	
		I/PEt ₃	farblos	4	2.44	gestaffelt	1.5	[106]	
		Cl/Diox	farblos	4	2.41	gestaffelt	1.5	[94]	

4

4

4

4

4

4

4

4

3+2

3

6

3

3

4

3+4

3

4

4

2.40

2.50

2.48

2.50

2.48

2.43

bis^[d]

2.39

2.42

2.38

2.34

2.34

2.40

2.32

 $2.54^{[f]}$

2.54^[f]

2.46

2.44

Tabelle 2 Galliumverbindungen mit zwei und drei Galliumatomen (R = organyl, Silvl

[a] bis [f]: siehe nächste Seite.

Br/Diox

Cl/Py

Br/Py

R'/Br

R'/I

Cl

Br

Ι

R*

R*

[e]

Tip

Dsi

Dis

R*

R*

PEt₃

Mes*

 $R_2Ga_2X_4^{2-}$

Ga₂X₆²⁻

R₃Ga₂•

 $R_3Ga_2^-$

R₂Ga₂

R₄Ga₂⁻⁻

 $R_2Ga_2^{2-}$

R₄Ga₃

 $R_4Ga_3^-$

Ga₃I₅D₃

 $R_3Ga_3^{2-}$

3

farblos

farblos

farblos

farblos

gelb

farblos

farblos

gelb

schwarzblau

dunkelrot

dunkelrot

schwarz

blau

dunkelrot

schwarzgrün

dunkelblau

gelb

dunkelrot

п	R _m Ga _n	R/X/D ^[a]	Farbe	BL [Å]	Lit	п	R _m Ga _n	R/X/D ^[a]	Farbe	BL [Å]	Lit
4	$R_2Ga_4^{2-}$	Dis	dunkelrot	2.46	[79]	10	R ₆ Ga ₁₀	R'	tiefviolett	2.69 ^[h]	[91]
	R ₄ Ga ₄ I ₃ ⁻	R'	gelb	2.53	[90]		R ₆ Ga ₁₀ -	R*	dunkelrot	2.67 ^[i]	V41
	R ₄ Ga ₄	Tsi	dunkelrot	2.69	[10]	12	R ₁₀ Ga ₁₂ ²⁻	Fl	dunkelrot	2.65	[88]
		C(SiMe ₂ Et) ₃	dunkelrot	2.71	[80]	13	R ₆ Ga ₁₃ ⁻	R*	schwarz	2.54 ^[j]	V41
		R'	violett	2.59	[81]	18	R ₈ Ga ₁₈	R*	schwarz	2.74 ^[k]	V42
		R' _{Ge}	violett	2.59	[82]	19	R ₈ Ga ₁₉ -	Tsi	schwarz	?	[89]
		R*	tiefviolett	2.57	V38	22	R ₈ Ga ₂₂	R'	schwarz	2.94 ^[1]	[92]
	$R_4Ga_4^{2-}$	R*	rot	2.43	V36			R' _{Ge}	schwarz	2.95 ^[1]	[82]
	R ₆ Ga₄Si⁻	3R'/3SiMe ₃	tiefviolett	2.44	[84]			R*	schwarz	2.91 ^[1]	V42
	R ₆ Ga ₄	Tip	hellorange	2.47	[85]	26	R ₈ Ga ₂₆	R'	metallisch	2.82 ^[m]	[93]
	$R_6Ga_4^{2-}$	Tip	dunkelrot	2.39	[85]	84	$R_{20}Ga_{84}Br_2^{6-}$	DSA	metallisch	2.43 ^[m]	[87]
5	Ga ₅ Cl ₇ D ₅	OEt ₂	hellgelb	2.43	[107]						
6	(RGa) ₆	Cp*	farblos	4.12 ^[g]	[86]						
8	$R_6Ga_8^{2-}$	Fl	?	?	[87]						
	Ga ₈ I ₈ •6D	PEt ₃	orange	2.47	[66]						
9	R ₆ Ga9 ⁻	R'	schwarz	2.53	[90]						

Fortsetzung Tabelle 2: Die bisher bekannt gewordenen Galliumclusterverbindungen (R = Organyl, Silyl, Aminyl; X = Halogen; BL = Ga-Ga-Bindungslänge).

[**a**] **DSA** = N(SiMe₃)₂, **Dsi** = CH(SiMe₃)₂, **Tsi** = C(SiMe₃)₃, **R'** = Si(SiMe₃)₃, **R'**_{Ge} = Ge(SiMe₃)₃, **R*** = SirBu₃, **Cp*** = C₅Me₅, **Pip** = 2,2,4,4-NC₅H₆Me₄, **Mes** = 2,4,6-C₆H₂Me₃, **Mes**_F = 2,4,6-C₆H₂(CF₃)₃, **Tip** = 2,4,6-*i*Pr₃C₆H₂, **Mes*** = 2,4,6-C₆H₂rBu₃, **DMP** = 2,6- Mes₂C₆H₃, **Dis** = 2,6-(Trip)₂-C₆H₃, **Fl** = C₁₃H₉ = Fluorenyl, **Diox** = Dioxan, **Py** = Pyridin. – [**b**] Auch GaY enthält Ga₂- Gruppen (zweiwertiges, vierzähliges Ga) mit GaGa- Abständen 2.447 (Y = S), 2.457 Å (Se), 2.437 (Te), vergleichbar mit Ga₂X₆²⁻. – [**c**] R = [-*t*BuN–SiMe(N*t*Bu)–N*t*Bu–SiMe(N*t*Bu)–]. – [**d**] Ga–Ga- Bindungslänge variiert leicht je nach Gegenion. – [**e**] R = 2,4-bis(trimethyl)-2,4-dicarba-*nido*-hexaboryl. – [**f**] Mittelwert der beiden kürzeren Ga–Ga- Bindungen. – [**g**] Van-der-Waals Kontakte zwischen Cp*Ga Ga•••Ga 4.07 – 4.17 Å. – [**h**] kürzester/längster Abstand 2.540/2.983 Å. – [**i**] kürzester/längster Abstand 2.453/2.880 Å. – [**j**] kürzester/längster Abstand 2.400/2.906 Å. – [**k**] kürzester/längster Abstand 2.479/2.944 Å. – [**I**] Angegeben ist der mittlere Ga–Ga- Abstand vom zentralen Galliumatom zu der nächsten Ga₁₃- Sphäre. Die Abstände variieren stark (von 2.9 - 3.1 Å), vgl. hierzu die Tabelle 5. – [**m**] Die Abstände variieren stark. kürzester/längster Abstand in R₈Ga₂₆ 2.609/ 3.152 Å; in R₂₀Ga₈₄Br₂⁶⁻ ist der Ga–Ga- Abstand der zentralen Ga₂- Einheit angegeben.

2.1 Synthese und Charakterisierung von Vorstufen der Galliumclusterverbindungen

2.1.1 Synthese von RGaX₂, RGaX₂•D (X = Halogen; R = SitBu₃, SitBu₂Ph)

Halogenide RGaX₂• D (R = R*, SitBu₂Ph) entstehen, wie die Gleichungen (25) zeigen, durch *direkte Vereinigung* von RGaX₂ mit dem Donor D oder durch *Verdrängung* eines schwächeren Donors D' durch einen stärkeren Donor D (Et₂O < THF < NEtMe₂)^[43].

$$RGaX_{2} + D \longrightarrow RGaX_{2} D R = SitBu_{3}, SitBu_{2}Ph$$

$$RGaX_{2} D' + D \longrightarrow RGaX_{2} D + D'$$
(25)

Allerdings müssen die als Edukte genutzten Verbindungen $RGaX_2$ und $RGaX_2$ •D zunächst dargestellt werden. Einfacher ist es, GaX_3 mit NaR* bzw. mit NaSi*t*Bu₂Ph in der Gegenwart des erwünschten Donors umzusetzten (26) (R*GaCl₂(Pyridin): Versuch 29; *t*Bu₂PhSiGaCl₂(THF) Versuch 43).

$$GaX_{3} + NaR \xrightarrow{+D} RGaX_{2} D$$

$$R = SitBu_{3}, SitBu_{2}Ph$$
(26)

Die Umsetzung von GaX_3 (X = Cl) mit NaR* führt selbst bei einem Supersilylnatrium-Unterschuß zunächst zur zweifach supersilylierten Verbindung R*₂GaX (vgl. Reaktion von AlX₃ mit NaR*, Gleichung (7)). Erst durch Erwärmen bildet sich in einer langsamen Reaktion R*GaX₂.

$$GaX_3 + R^*_2GaX \xrightarrow{(langsam)} 2 R^*GaX_2$$
 (27)

Dieses Reaktionsverhalten konnte im Fall der Umsetzung von NaSitBu₂Ph mit GaCl₃ nicht beobachtet werden. Die Reaktion verläuft in Alkanen bei äquimolarem Verhältnis der Edukte direkt zur monosilylierten Verbindung (tBu₂PhSi)GaCl₂ (Versuch 45).

$$GaCl_3 + NaSitBu_2Ph \longrightarrow tBu_2PhSiGaCl_2$$
 (28)

Eine weitere Möglichkeit zur Darstellung von Verbindungen des Typs $RGaX_2$ besteht in der Umsetzung von $R*_2GaX$ bzw. (tBu_2PhSi)₃Ga mit GaX_3 . In beiden Fällen gelingt die Darstellung quantitativ, wenn in unpolaren Solventien gearbeitet wird (vgl. Gleichungen (27), (29)).

$$(tBu_2PhSi)_3Ga + 2 GaX_3 \longrightarrow 3 tBu_3SiGaX_2$$
(29)

2.1.2 Synthese von R_2GaX , $R_2GaX \cdot D$ ($R = SitBu_3$, $SitBu_2Ph$)

Verbindungen des Typs R₂GaX (R = SitBu₃, SitBu₂Ph) sollten durch Umsetzung von GaX₃ mit NaR* bzw. NaSitBu₂Ph im Molverhältnis 1 : 2 darstellbar sein.

$$GaX_{3} + 2 NaR \xrightarrow{-2 NaX} 2 R_{2}GaX$$
$$R = tBu_{3}Si, tBu_{2}PhSi$$
(30)

Tatsächlich gelingt es auf diesem Wege nur R*₂GaX darzustellen. Da Halogenide R*GaX₂•D in Anwesenheit starker Donoren isolierbar sind verläuft die X⁻- Substitution in R*GaX₂ gegen R*⁻ unter diesen Bedingungen nur sehr langsam^[45]. Im Falle der Reaktion von GaX₃ mit NaSi*t*Bu₂Ph ist die Bildungstendens von (*t*Bu₂PhSi)₃Ga so hoch, daß selbst bei der Umsetzung von GaCl₃ mit zwei Äquivalenten NaSi*t*Bu₂Ph nur die dreifach silylierte Galliumverbindung nachgewiesen werden konnte (Versuch 46).

Verbindungen des Typs $(tBu_2PhSi)_2GaX$ konnten aus $(tBu_2PhSi)_3Ga$ weder durch Komproportionierung mit GaCl₃ (Versuch 47) noch durch Chlorierung mit Cl₂ (Versuch 48) gewonnen werden. Im ersten Falle bildet sich sofort die $tBu_2PhSiGaCl_2$, so daß $(tBu_2PhSi)_3Ga$ in der Reaktionslösung zurückbleibt. Beide Stoffe zeigen selbst bei 100°C in Heptan keine Neigung zur Komproportionierung in $(tBu_2PhSi)_2GaCl$. Im zweiten Fall werden mindestens zwei Si-Ga Bindungen der Verbindung $(tBu_2PhSi)_3Ga$ durch Chlor gespalten, so daß selbst bei Cl₂- Unterschuß nur $tBu_2PhSiCl$ und GaCl₃ entsteht und $(tBu_2PhSi)_3Ga$ verbleibt (Versuch 49).

$$4 (tBu_2PhSi)_3Ga \xrightarrow{+2 GaCl_3} 3 tBu_2PhSiGaCl_2 \xrightarrow{+} 6 (tBu_2PhSi)_2GaCl$$

$$(tBu_2PhSi)_3Ga \xrightarrow{+Cl_2} (tBu_2PhSi)_2GaCl + tBu_2PhSiCl \qquad (31)$$

2.1.3 Synthese und Struktur von R_3Ga ($R = SitBu_2Ph$)

Da die Kovalenzradien von Gallium und Aluminium annähernd gleich sind (vgl. Einleitung) gilt das für R*₃Al gesagte auch für R*₃Ga. Aufgrund der extremen Sperrigkeit der Supersilylgruppe R* ist eine Verbindung des Typs R*₃Ga aus sterischen Gründen nicht existenzfähig. Dies zeigen auch die experimentellen

Ergebnisse. Setzt man GaX₃ mit drei Äquivalenten Supersilylnatrium NaR* um, so erhält man in unpolaren Medien nicht R*₃Ga sondern das Radikal Trisupersilyldigallanyl R*₃Ga₂^{•[53]} und Superdisilan (R*)₂.

Setzt man hingegen das weniger sperrige donorfreie Di-*tert*-butyl-phenylsilylnatrium *t*Bu₂PhSiNa ein, erhält man gemäß Gleichung (32) quantitativ das dreifach silylierte Gallan (*t*Bu₂PhSi)₃Ga (Versuch 44).

$$GaX_3 + 3 NaSitBu_2Ph \longrightarrow (tBu_2PhSi)_3Ga$$
 (32)

Der röntgenstrukturanalytisch geklärte Bau von (*t*Bu₂PhSi)₃Ga gibt Abbildung 14 zusammen mit ausgewählten Bindungslängen- und -winkeln wieder.

Abbildung 14. Struktur der Verbindung $(tBu_2PhSi)_3Ga$ im Kristall und verwendete Atomnumerierung (SCHAKAL-Plot; Atome mit willkürlichen Radien; die H-Atome wurden zur besseren Übersicht nicht eingezeichnet). Wichtige Bindungslängen [Å] und -winkel in [°] von $(tBu_2PhSi)_3Ga$ mit Standardabweichungen: Ga1–Si1 2.584(5), Si1–C1 1.965(17), Si1–C5 1.946(18), Si1–C9 1.915(16), Si1A–Ga1–Si1 119.98(1), Si1A–Ga1–Si1B 119.98(1), Si1–Ga1–Si1B 119.93(2) [Winkelsumme bei Ga1 359.89], C9–Si1–C1 112.24(8), C9–Si1–C5 102.79(7), C9–Si1–Ga1 98.92(5), C1–Si1–C5 110.77(8), C1–Si1–Ga1 104.63(6), C5–Si1–Ga1 126.76(6); Operator: D. Fenske.

Tri-(di-*tert*-butyl-phenylsilyl)-gallan kristallisiert in der Raumgruppe P-3 und hat eine trigonale Elementarzelle. Das Zentrum der monomeren Verbindung (tBu_2PhSi)₃Ga bildet ein Gallium-Atom, welches von drei tBu_2PhSi -Gruppen planar umgeben ist (Winkelsumme am Galliumatom 359.87°; Si-Ga-Si Bindungswinkel ca. 120°C). Die drei Phenylgruppen ordnen sich "schaufelradförmig" auf einer Seite der GaSi₃-Ebene an. Die Sperrigkeit der Di-*tert*-butyl-phenylsilylgruppe zeigt sich außerdem in einer sehr langen Si-Ga Bindung (2.584 Å, 0.154 Å höher als die Summe der Kovalenzradien Si: 1.17 Å und Ga: 1.26 Å; Ga-Si_{theor.} = 2.43 Å). Der Ga–Si- Atomabstand ist in $(tBu_2PhSi)_3Ga$ um 0.099 Å größer als in R*₂GaCl^[45]. Der Al–Si-Abstand in $(tBu_2PhSi)_3Al$ liegt mit 2.592 Å in einem ähnlichen Bereich. Damit erklärt sich auch das annähernd gleiche Volumen der Elementarzelle von R*₃Al und R*₃Ga (2120.8(2) Å³ bzw. 2159.3(6) Å³). Die Si–C Abstände und die C–Si–C Winkel liegen mit durchschnittlich 1.94 Å und 109° im Normalbereich der $tBu_2PhSi-Gruppe$.

2.1.4 Thermolyse und Redoxverhalten von $RGaX_2$, R_2GaX , R_3Ga ($R = SitBu_3$, $SitBu_2Ph$, X = Cl, Br)

Die zur Diskussion stehenden Verbindungen RGaX₂, R₂GaX, R₃Ga sind in Lösung relativ *thermolysestabil*, aber *hydrolyse-* und *oxidationslabil*. Die Thermolysestabilität der Verbindungen wächst in Richtung R*_nGaX_{3-n} > $(tBu_2PhSi)_nGaX_{3-n}$. So ist R*GaCl₂ in Toluol bei Raumtemperatur innerhalb von 12 Stunden bis zu 50% zersetzt, wohingegen R*₂GaCl unter diesen Bedingungen nicht zerfällt^[43]. Auch scheidet sich aus einer benzolischen Lösung von $(tBu_2PhSi)GaCl_2$ nach 2 Tagen bereits elementares Gallium ab. Nach bisherigen Erkenntnissen, erfolgt die Thermolyse von RGaX₂ sowie R₂GaX in Lösung unter Eliminierung von RX. Das Schicksal des hierbei nach R₂GaX \rightarrow RX + RGa ebenfalls zu erwartenden Gallylens RGa ist bisher unbekannt. Das besonders thermolysebeständige $(tBu_2PhSi)_3Ga$ zerfällt selbst bei 100°C langsam (in Tagen) unter Bildung von tBu_2PhSiH und Ga.

Die *Reduktion* (Enthalogenierung) von RGaX₂ und R₂GaX mit Na, K, LiC₁₀H₈, NaC₁₀H₈ und NaR* führt im Falle R = R* zu Clustern R_mGa_n wie z.B. R*₃Ga₂Na(THF)₃, R*₃Ga₂•, R*₄Ga₄, R*₄Ga₄Na₂(THF)₂ (siehe unten). Ein dem Tetrasupersilyldialan gruppenhomologes Tetrasupersilyldigallan R*₂Ga–GaR*₂ konnte bis jetzt nicht nachgewiesen werden. RGaX₂ und R₂GaX mit R = SitBu₂Ph konnten bisher durch Enthalogenierung nicht gezielt in Galliumclusterverbindungen überführt werden.

2.2 Trisupersilyldigallanyl R*₃Ga₂[•] und -gallanid R*₃Ga₂⁻ sowie Tetrasupersilylcyclotrigallanyl R*₄Ga₃[•] und -gallanid R*₄Ga₃⁻

Anders als $R_2^*Al-AlR_2^*$ (Kapitel 1.3) eliminiert Tetrasupersilyldigallan $R_2^*Ga-GaR_2^*$ so leicht ein Supersilyl-Radikal, daß seine Isolierung in Substanz bisher nicht gelungen ist. So führt die Reaktion von GaCl₃ mit drei Äquivalenten Supersilylnatrium NaR* direkt zum Trisupersilyldigallanyl $R_3^*Ga_2^\bullet$. Als Zwischenstufe läßt sich das Disupersilylgalliumchlorid R_2^*GaCl nachweisen, welches mit dem verbleibenden Äquivalent NaR* nicht zu Trisupersilylgallan R_3^*Ga , sondern – analog R_2^*AlCl – wohl auf dem Wege $2 R_2^*GaCl + 2 NaR^* \rightarrow 2 R_2^*Ga^\bullet + 2 NaCl + 2 R^* \rightarrow R_3^*Ga_2^\bullet + 2 NaCl + 1.5 (R^*)_2$ zum blauen Trisupersilyldigallanyl $R_{3}^{*}Ga_{2}^{\bullet}$ weiter reagiert^[53]. Die Thermolyse von $R_{3}^{*}Ga_{2}^{\bullet}$ in Heptan bei 100°C führt unter weiterer Abspaltung von Supersilylradikalen dann ausschließlich zum Tetrasupersilyl-*tetrahedro*-tetragallan $R_{4}^{*}Ga_{4}$. Interessanterweise unterbleibt – anders als im Falle der Thermolyse von $R_{3}^{*}Al_{2}^{\bullet}$ – bei letzterer Thermolyse die Bildung eines cyclischen Radikals des Typs $R_{4}^{*}Ga_{3}^{\bullet}$ ^[54]. Tetrasupersilylcyclotrigallanyl $R_{4}^{*}Ga_{3}^{\bullet}$ sollte aus diesem Grund über einem anderen Reaktionsweg aus $R_{3}^{*}Ga_{2}^{\bullet}$ gewonnen werden.

2.2.1 Synthese von R*3Ga2, R*4Ga3, R*3Ga2 und R*4Ga3

Das durch Reduktion von R_2^*GaCl und NaR* quantitativ gewinnbare Digallanyl $R_3^*Ga_2^{\bullet}$ läßt sich in Pentan, Benzol oder Tetrahydrofuran (THF) mit Na, Supersilylnatrium NaR*•2THF^[45] oder mit Natriumnaphthalenid NaC₁₀H₈ zum Natrium-trisupersilyldigallanid-Tetrahydrofuran (1/3) NaGa₂R*₃•3THF reduzieren (siehe Reaktionsschema 33). Die Synthese erfolgt am besten direkt aus R_2^*GaCl mit Na oder NaC₁₀H₈ in THF (Versuch 30). Gebildetes NaGa₂R*₃•3THF läßt sich in Form von tiefroten Kristallen isolieren. Einer Röntgenstrukturanalyse (siehe unten) sowie die Bildung von hellrotem Trisupersilyl-trimethylsilyl-digallan $R_2^*Ga-GaR^*(SiMe_3)$ (erstes Verbindungsbeispiel eines Tetrasilyldigallans) als Folge der Reaktion des Digallanids mit Me₃SiCl bei tiefen Temperaturen (-78°C) beweisen die Existens von NaGa₂R*₃•3THF (Versuch 31).

Gibt man zu einer tiefroten Lösung von NaGa₂R*₃•3THF in Benzol bei Raumtemperatur 18-Krone-6 so ändert sich die Reaktionslösung sofort zu tiefblau. Aus der Lösung kristallisiert erst nach einigen Tagen Natrium-tetrasupersilyltrigallanid-18-Krone-6-Tetrahydrofuran(1/1/2) [Na(18-Krone-6)(THF)₂]⁺[R*₄Ga₃]⁻ (langsame Reaktion ?) in Form schwarzblauer Kristalle (Versuch 33). Möglicherweise entsteht das Trigallanid durch eine Gallylenübertragung gemäß: $2 R*_3Ga_2^- \rightarrow R*_2Ga^- + R*_4Ga_3^-$, wobei das gebildete Monogallanid seinerseits unter Abspaltung von Supersilylanionen gemäß $R*_2Ga^- \rightarrow R*Ga + R*^-$ weiteres Gallylen bildet, welches sich an $R*_3Ga_2^-$ addieren kann ($R*^-$ ist in Gegenwart von 18-Krone-6 nicht stabil^[52]).

Das Trigallanid $R_4^*Ga_3^-$ kann in Benzol mit Supersilylbromid ($R^*Br + e^- \rightarrow R^* + Br^-$) oder Tetracyanethylen (TCNE + 2 $e^- \rightarrow$ TCNE²⁻) zum Tetrasupersilylcyclotrigallanyl $R_4^*Ga_3^-$ oxidiert werden (siehe Reaktionsschema 33; Versuch 35 bzw. Versuch 34), welches seinerseits mit Natriumnaphthalenid in das Trigallanid $R_4^*Ga_3^-$ zurückgeführt wird. Das Cyclotrigallanyl Radikal $R_4^*Ga_3^-$ kristallisiert in schwarzgrünen Quadern und liefert neben einem linienreichem ESR-Spektrum (siehe unten) eine UV/Vis- Absorption bei λ (Heptan) = 610 nm.

Überraschenderweise kann man das Trigallanyl $R_4^*Ga_3^{\bullet}$ auch durch Reaktion des Digallanids NaGa₂ $R_3^*\bullet$ 3THF mit Supersilylbromid R*Br in Pentan gewinnen (Versuch 32). Da sich das $R_4^*Ga_3^{\bullet}$ aus

 $R_{3}^{*}Ga_{2}^{-}$ und $R_{8}^{*}Br$ schneller bildet als aus $R_{4}^{*}Ga_{3}^{-}$ und $R_{8}^{*}Br$, führt die Bildung des Trigallanyls im ersteren Fall wohl nicht über das Anion $R_{4}^{*}Ga_{3}^{-}$ sondern möglicherweise zunächst zum Radikal $R_{3}^{*}Ga_{2}^{\bullet}$ (vgl. Oxidation von $R_{4}^{*}Ga_{3}^{-}$ mit $R_{8}^{*}Br$ im Reaktionsschema 33), welches mit $R_{3}^{*}Ga_{2}^{-}$ unter Gallylenübertragung $R_{6}^{*}Ga$ weiterreagiert (vgl. die Bildung von $R_{4}^{*}Ga_{3}^{-}$ aus $R_{3}^{*}Ga_{2}^{-}$).

(33)

Tetrasupersilylcyclotrigallanyl R*₄Ga₃• thermolysiert bei 45°C langsam (innerhalb eines Tages) – in Analogie zum R*₄Al₃• – unter Bildung von R*₃Ga₂• neben Tetrasupersilyl-*tetrahedro*-tetragallan R*₄Ga₄ (Reaktionsschema 33, Versuch 39). Das Trisupersilyldigallanyl-Radikal R*₃Ga₂•, welches – wie oben angedeutet – besser aus R*₂GaCl mit NaR* synthetisiert wird^[53], kristallisiert bei -23°C in Form von schwarzblauen Kristallen. R*₄Ga₃• zersetzt sich also möglicherweise unter Abspaltung des Gallylens R*Ga zum Digallanyl R*₃Ga₂•, wobei sich gebildetes R*Ga zum Tetrahedran R*₄Ga₄ tetramerisiert. Bei höheren Temperaturen (100°C) thermolysiert das Digallanyl R*₃Ga₂• seinerseits in Heptan ausschließlich zum Tetrasupersilyl-*tetrahedro*-tetragallan R*₄Ga₄ neben Superdisilan R*₂^[54]. Somit sind die Endprodukte der Thermolyse von Tetrasupersilylcyclotrigallanyl R*₄Ga₃• bei 100°C in Heptan ebenfalls nur R*₂ und R*₄Ga₄, wobei letzteres bei -23°C aus Pentanlösung in Form von schwarzvioletten, sehr thermostabilen Kristallen gewonnen werden kann. Tatsächlich zersetzt sich das Tetrahedran R*₄Ga₄ in Heptan erst bei 140°C innerhalb von einigen Tagen (Versuch 40), wobei sich unter diesen Bedingungen keine größeren Galliumclusterverbindungen R*_mGa_n (*n* > *m* > 4) ausbilden, sondern nur metallisches Gallium und Superdisilan (R*)₂ entstehen (Zersetzungspunkt von festem R*₄Ga₄: 322°C).

2.2.2 Charakterisierung von R*3Ga2, R*4Ga3, R*3Ga2 und R*4Ga3

Die im Reaktionschema 33 beschrieben Galliumclusterverbindungen sind in organischen Medien wie Alkanen, Benzol und Tetrahydrofuran löslich. Eine Ausnahme bildet das in Pentan unlösliche Salz $[Na(18-Krone-6)(THF)_2]^+[R*_4Ga_3]^-$. Alle Verbindungen sind tief gefärbt (Farben siehe Reaktionsschema 33), wobei das im festen Zustand tiefrote NaGa₂R*₃•3THF in Alkanen sowie in Benzol intensiv rote Lösungen in THF- oder in 18-Krone-6- haltigen Benzol tiefblaue Lösungen liefert. Eine mögliche Erklärung für diese Tatsache könnte in der Bildung eines solvensgetrennten Ionenpaars gemäß $[Na(THF)_n]^+[R*_3Ga_2]^-$ liegen, wobei 18-Krone-6 als sehr guter Komplexbildner für Na⁺- Kationen zusätzlich zu einer Umordnung von R*₃Ga₂⁻ in R*₄Ga₃⁻ führt.

Alle oben erwähnten Galliumclusterverbindungen sind äußerst *oxidations*- und *hydrolyseempfindlich* (das primäre Produkt der Oxidation von $R_{3}^{*}Ga_{2}^{-}$ ist wohl das Radikal $R_{3}^{*}Ga_{2}^{\bullet}$). Die Anionen $R_{3}^{*}Ga_{2}^{-}$ und $R_{4}^{*}Ga_{3}^{-}$ sind *thermostabiler* als die Radikale $R_{3}^{*}Ga_{2}^{\bullet}$ (Zerfall ab 80°C in $R_{4}^{*}Ga_{4}$) und $R_{4}^{*}Ga_{3}^{\bullet}$ (Zerfall bei Raumtemperatur in $R_{3}^{*}Ga_{2}^{\bullet}$ und $R_{4}^{*}Ga_{4}$).

Die ²⁹Si-NMR Signale der Anionen [R*₂Ga–GaR*]⁻ (die Ga–Na- Bindung ist in NaGa₂R*₃•3THF zweifelsfrei von elektrovalenter Natur) und [R*₂Ga–GaR*–GaR*]⁻ erscheinen bei tiefen Feld (δ = 37.1/54.3 ppm für 2 R*/1 R* im ersten bzw. bei δ = 42.0/42.3/53.5 ppm für 2 R*/1 R*/1 R* im zweiten Fall). Das Digallan R*₂Ga–GaR*(SiMe₃) zeigt erwartungsgemäß für die Supersilylgruppen vergleichbare Werte (δ = 48.8/44.8 ppm für 2 R*/1 R*). In diesem Zusammenhang sei erwähnt, daß Supersilanide MR* (M = Li, Na, K) und Supersilylhalogenide R*Hal (Hal = F bis I) in der selben Region von δ = 30 - 50 erscheinen^[52].

Andererseits liefern die Radikale R*3Ga2 und R*4Ga3 keine NMR- sondern ESR- Signale. Das Trisupersilyldigallanyl-Radikal R*3Ga2 weist ein linienreiches Signal mit den Hyperfeinkopplungskonstanten $a_1({}^{69}\text{Ga}/{}^{71}\text{Ga}) = 5.0/6.4 \text{ mT}$ und $a_2({}^{69}\text{Ga}/{}^{71}\text{Ga}) = 3.2/4.1 \text{ mT}$ bei einem g-Faktor von 1.9947 auf^[53]. Frische Lösungen von Tetrasupersilyl-cyclotrigallanyl R*4Ga3 in Cyclohexan zeigen ein unaufgelöstes, unsymmetrisches ESR Signal mit einer Gesamtbreite von $H_T = 20$ mT bei einem g- Faktor von 1.998. Die sehr schlechte Auflösung und die aufgefundene Asymmetrie des Signals sind auf eine ungenügende Ausmittlung der anisotropen Beiträge der g und A (Hyperfein-) Tensoren zurückzuführen. Ähnliche, jedoch weniger ausgeprägte Effekte sind bei den paramagnetischen Systemen $R_{3}^{*}Ga_{2}^{\bullet[53]}$ und $R_{4}^{'}Ga_{2}^{\bullet-}$ mit R' = $CH(SiMe_3)_2^{[55]}$ beobachtet worden. Im Vergleich zu dem gruppenhomolgen System $R_4^*Al_3^*$ (siehe Kapitel 1.3.3) mit g = 2.0053 hat das Galliumanaloge einen kleineren g Faktor als g(Elektron) = 2.0023, was in Übereinstimmung mit einem niedrig liegendem unbesetztem Orbital steht^[58]. Andererseits zeigen glasartig gefrorene Lösungen von $R_4^*Ga_3^{\bullet}$ in Cyclohexan bei 110 K ein breites ($H_T = 55 \text{ mT}$), teilweise aufgelöstes ESR-Signal. Dieses ESR- Signal kann aufgrund von überlappenden g Komponenten im X- Band nicht zweifelsfrei analysiert werden, jedoch bestätigt die große Spektrenbreite eine beträchtliche g und A Anisotropie (⁶⁹Ga: I = 3/2, 60.1% natürlich Häufigkeit, isotropische Hyperfeinkonstante $a_0 = 435.68$ mT; ⁷¹Ga: I = 3/2, 39.9%, $a_0 = 1000$ 553.58 mT^[60]). Die Breite des Tieftemperaturspektrums steht in Übereinstimmung mit dem $H_T = 15.0 \text{ mT}$ des Cyclotrialanyl-Radikals $R_4^*Al_3^*$ (²⁷Al: I = 5/2, 100%, a₀ = 139.55 mT^[60]).

Beläßt man eine Lösung von $R_4^*Ga_3^{\bullet}$ bei Raumtemperatur oder erwärmt diese gelinde, verändert sich das ESR-Signal und es erscheint ein neues Signal, welches dem Digallanyl-Radikal $R_3^*Ga_2^{\bullet}$ zweifelsfrei zuge-ordnet werden kann.

2.2.3 Kristallstrukturen von R*3Ga2, R*4Ga3, R*3Ga2 und R*4Ga3

Das von K. Amelunxen im Arbeitskreis erstmals synthetisierte *Trisupersilyldigallanyl* $R_{3}^{*}Ga_{2}^{\bullet}$ kommt die gleiche Struktur wie dem gruppenhomologen Radikal $R_{3}^{*}Al_{2}^{\bullet}$ zu (Kapitel 1.3.2)^[53]: Das zentrale Si₂GaGaSi- Gerüst ist näherungsweise planar, die GaGaSi- Gruppe näherungsweise linear (Winkel Ga–Ga–Si 170.34°). Die Ebenen Si₂Ga und GaGaSi liegen orthogonal zueinander. Die GaGa- Bindung ist mit 2.420 Å vergleichsweise kurz. Dieser Abstand spricht für eine GaGa- Bindungsordnung von 1.5, so daß die beiden Ga- Atome analog den Al- Atomen in $R_{3}^{*}Al_{2}^{\bullet}$ offensichtlich durch eine Zweielektronen σ - Bindung und eine Einelektronen- π - Bindung miteinander verknüpft werden.

Das *Tetrasupersilylcyclotrigallanyl* R*₄Ga₃[•] kristallisiert aus Pentanlösungen bei -23°C monoklin in der Raumgruppe C2/c in Form von schwarzgrünen Quadern. Abbildung 15 gibt den röntgenstrukturanalytisch geklärten Verbindungsaufbau zusammen mit ausgewählten Bindungslängen und -winkeln wieder.

Abbildung 15. Struktur von $R_4^*Ga_3^{\bullet}$ im Kristall und verwendete Atomnumerierung (SCHA-KAL-Plot; Atome mit willkürlichen Radien; die H-Atome wurden zur besseren Übersicht nicht eingezeichnet. Wichtige Bindungslängen [Å] und -winkel [°] von $R_4^*Ga_3^{\bullet}$ mit Standardabweichungen: Ga1-Ga2 2.5267(7), Ga1-Ga1A 2.879(1), Ga1-Si1 2.513(3), Ga2-Si2 2.536(1); Si-C (Mittelwert) 1.98. – Si1-Ga1-Ga2 169.88(4), Si1-Ga1-Ga1A, 134.83(3), Ga2-Ga1-Ga1A 55.27 (2) [Winkelsumme bei Ga1/Ga1A 359.98], Ga1-Ga2-Ga1A 69.47(3), Ga1-Ga2-Si2A 106.77(4), Ga1A-Ga2-Si2A 108.85(3), Ga1-Ga2-Si2 108.85(3), Ga1-Ga2-Si2 106.77(4), Si2A-Ga2-Si2 136.30(7); C–Si–Ga (Mittelwert) 108.62, C–Si–C (Mittelwert) 111.99. – Si2-Ga2-Ga1-Si1 81.97, Si1-Ga1-Ga1A-Si1A 1.67. Operator: T. Habereder.

Die Struktur von $R_4^*Ga_3^{\bullet}$ unterscheidet sich deutlich von der gruppenhomologen Verbindung $R_4^*Al_3^{\bullet}$ (siehe Kapitel 1.3.3). In letzterem Radikal besetzen die drei Al- Atome die Ecken eines Dreiecks mit einer kurzen R^*Al -Al R^* - Basis (2.70 Å) und zwei unterschiedlich längeren R_2^*Al -Al R^* - Seiten (2.74 Å und 2.78 Å), wohingegen in ersterem- Radikal die drei Galliumatome an den Ecken eines Dreiecks mit einer langen R^*Ga -Ga R^* - Basis (2.88 Å) und zwei gleichlangen R_2^*Ga -Ga R^* - Seiten (2.53 Å) lokalisiert sind. Offensichtlich sind die beiden R^*Al -Gruppen schwächer an die R_2^*Al -Gruppe angebunden als untereinander und die beiden R^*Ga -Gruppen fester an die R_2^*Ga -Gruppe als untereinander gebunden sind. Darüber hinaus verläuft die Si-Al-Si- Ebene der R_2^*Al -Gruppe im $R_4^*Al_3^{\bullet}$ im Gegensatz zu der entsprechenden R_2^*Ga -Ebene nicht exakt orthogonal zur E_3^- Ebene beider Radikale. Auch liegt eine der beiden R^*Al -

Gruppen außerhalb die andere innerhalb der Al₃- Ebene, während beide R*Ga- Gruppen in der E₃- Ebene liegen. Die vier Silicium-Atome der Supersilylgruppen bilden in beiden Fällen die Ecken eines verzerrten Tetraeders, innerhalb denen der E₃- Ring zu liegen kommt. Wie im Kapitel 1.3.3 aufgeklärt, kann die Struktur von R*₄E₃• (E = Al, Ga) ausgehend von *catena*- [R*₂E–ER*–ER*]• durch die Annahme gedeutet werden, daß die Verbindungscyclisierung für E = Al auf halben Wege stehen geblieben ist. Offensichtlich wird hierbei die [R*E–ER*]• Bindung schwächer, während sich zugleich die beiden Bindungen R*₂E–ER* und R*E•••ER* verstärken; auch kommen die beiden Supersilylgruppen der R*E- Fragmente mehr und mehr in der Al₃-Ebene zuliegen. Unter Berücksichtigung der Struktur ist die Cyclisierung offensichtlich im Falle von R*₄Ga₃• formal beendet.

Wenn die R*₂E- Gruppen in R*₄E₃• (E = Al, Ga) ein Elektron, die beiden R*E- Gruppen je zwei Elektronen nen liefer, stehen dem E₃- Cluster insgesamt 5 Elektronen zur Verfügung. Das sind 5/3 = 1.67 Elektronen pro E–E- Bindung, wogegen der E₂- Gruppe in R*₃E₂• drei Elektronen zustehen. Folglich sind die durchschnittlichen E–E- Bindungslängen im R*₄E₃• größer (2.74 Å in R*₄Al₃•; 2.65 Å in R*₄Al₃•) als die E–E- Länge in R*₃E₂• (2.53 Å in R*₃Al₂•; 2.42 Å in R*₃Ga₂•). Die im R*₄Ga₃• aufgefundenen GaGa- Abstände deuten darauf, daß die Verknüpfungen von R*₂Ga und R*Ga durch 2 Elektronen, die von R*Ga und R*Ga durch 1 Elektron erfolgt.

Der röntgenstrukturanalytisch geklärte Bau der Anionen $R_{3}^{*}Ga_{2}^{-}$ in NaGa₂ R_{3}^{*} •3THF (dunkelrote Kristalle aus Pentan, triklin, P-1) und $R_{4}^{*}Ga_{3}^{-}$ in [Na(18-Krone-6)(THF)₂]⁺[$R_{4}^{*}Ga_{3}$]⁻ (schwarzblaue Kristalle aus Benzol, monoklin, P2(1)/c) sind bereits von K. Amelunxen im Arbeitskreis beschrieben worden^[45], sollen aber hier der Übersicht halber nochmals kurz erläutert werden. Die betreffenden Gallanide sind zweites und drittes Glied einer homologen Reihe von Anionen: $R_{2}^{*}Ga_{-}^{-}$, $R_{2}^{*}Ga_{-}^{-}GaR^{*-}$, $R_{2}^{*}Ga_$

Der Bau des $R_{3}^{*}Ga_{2}^{-}$ Moleküls von *Natrium-trisupersilyldigallanid-Tetrahydrofuran (1/3)* NaGa₂ R_{3}^{*} •3THF (für Struktur vgl. Abbildung 16) zeigt Ähnlichkeiten und Unterschiede mit den Bau des Radikals $R_{3}^{*}Ga_{2}^{*}$. In beiden Molekülen ist die Si₂–*Ga*–Ga- Gruppierung planar (Winkelsumme am *Ga* im Anion/Radikal 358.4/359.7°). Entsprechendes gilt für die Ga*Ga*NaSi- Gruppierung im Anion (Winkelsumme am *Ga* 360.0°), wobei das Natriumatom seinerseit von drei Sauerstoffatomen (des Tetrahydrofurans) und einem Galliumatom tetraedrisch umgeben wird. Darüber hinaus stehen im Anion wie auch im Radikal die Si–Ga–Si und die Ga–Ga–Si Ebenen zueinander orthogonal. Die Ga–*Ga*–Si Gruppe ist jedoch als Folge des an das *Ga*- Atom koordinierten Natriumatoms stärker gewinkelt als im Radikal (Ga–*Ga*–Si Winkel für das Anion/Radikal 170.0 / 142.4°^[53]). Die Ga–Na Bindung ist zweifelsfrei ionisch (elektrovalent); der Winkel Ga–Ga–Na beträgt 91.4°. Hiernach steht das freie Elektronenpaar des anionischen Ga- Atoms in NaGa₂R*₃•3THF gemäß der Formulierung – [R*₂Ga–Ga:R* \leftrightarrow R*₂Ga=GaR*]⁻ – für eine π – Bindung zur Verfügung, was die vergleichsweisen kurze Ga–Ga Bindung des Anions erklärt (Ga–Ga Abstand im Anion/ Radikal 2.38 / 2.42^[53]; 2- Elektronen im Anion, 1 π - Elektron im Radikal).

Abbildung 16. Struktur von NaGa₂R*₃•3THF im Kristall und verwendete Atomnumerierung (SCHAKAL-Plot; Atome mit willkürlichen Radien; die H-Atome wurden zur besseren Übersicht nicht eingezeichnet. Wichtige Bindungslängen [Å] und -winkel [°] von NaGa₂R*₃•3THF mit Standardabweichungen: Ga1-Ga2 2.3797(6), Ga1-Si1 2.500(1), Ga1-Na1 3.205(2), Ga2-Si2 2.517 (1), Ga2-Si3 2.519(1), Na1-O3 2.316(4), Na1-O1 2.337(5), Na1-O2 2.404(5); Si–C (Mittelwert) 1.96. – Ga2-Ga1-Si1 142.41(4), Ga2-Ga1-Na1 91.40(4), Si1-Ga1-Na1 126.14(5) [Winkelsumme bei Ga1 359.94]; Ga1-Ga2-Si2 112.09(3), Ga1-Ga2-Si3 112.59(3), Si2-Ga2-Si3 133.72(4) [Winkelsumme bei Ga2 358.34]; O3-Na1-O1 91.26(15), O3-Na1-O2 88.1(2), O1-Na1-O2 97.6(2), O3-Na1-Ga1 112.9 (1), O1-Na1-Ga1 108.2 (1), O2-Na1-Ga1 145.7 (1); C–Si–Ga (Mittelwert) 109.77, C–Si–C (Mittelwert) 109.1. – Si1–Ga1–Ga2–Si2/Si3 100.43/-91.99, Na1-Ga1-Ga2-Si2/Si3 82.52/-85.06. Sturkturdaten aus^[45].

Der Bau des R*₄Ga₃⁻⁻ Moleküls von *Natrium-tetrasupersilyltetragallanyl-18-Krone-6-Tetrahydrofuran* (1/1/2) [Na(18-Krone-6(THF)₂]⁺[R*₄Ga₃]⁻ (für Struktur vgl. Abbildung 17) unterscheidet sich insofern deutlich von dem des Digallanids, als in R*₄Ga₃⁻ ein intramolekularer Kontakt zwischen einer peripheren Methylgruppe des R*₂Ga Molekülteils mit einem anionischen Ga Verbrückungsatom in [R*₂Ga–GaR*–*Ga*R*]⁻ vorliegt (vgl. Reaktionsschema (33) und Abbildung 17b). Da der Abstand Ga–C (2.10 Å) nahe bei den Ga–C Einfachbindungsabständen (1.99- 2.02 Å^[59]) liegt, bestehen wohl im Sinne von [C–H•••Ga \leftrightarrow C•••Ga•••H] sowohl Kontakt zum Kohlenstoff und einem Wasserstoff der betreffenden Methylgruppen. Somit darf dieser C•••Ga Kontakt nicht vernachlässigt werden und man letztendlich besser von einer intermolekularen Wasserstoffbrückenbindung der Art C–H–Ga sprechen muß. Eine vergleichbare

Abbildung 17. (a) Struktur von $R_4^*Ga_3^-$ im Kristall aus zwei Perspektiven (a, b), und von $Na(18-K-6)(THF)_2^+$ (c). Verwendete Atomnumerierung (SCHAKAL-Plot; H Atome in **a**, **b** und einige tBu Gruppen in b übersichtshalber weggelassen. Die gestrichelte Linie soll den intramolekulare CH3•••Ga Kontakt verdeutlichen); Wichtige Bindungslängen [Å] und Bindungswinkel [°] mit Standardabweichungen. Anion: Ga1-Ga3 2.494 (1), Ga1-Ga2 2.569 (2), Ga2•••Ga3 2.935 (2), Ga1-Si1 2.485(3), Ga2-Si3 2.513(3), Ga2-Si2 2.520(3), Ga3-Si4 2.486(3), Ga3-••C26 2.10, Si-C (Mittelwert) 1.96; Si1-Ga1-Ga3 137.89(9), Si1-Ga1-Ga2 151.09(8); Ga3-Ga1-Ga2 70.83(5) [Winkelsumme bei Ga1 359.8]; Si3-Ga2-Si2 133.52(11), Si3-Ga2-Ga1 105.83(8), Si2-Ga2-Ga1 118.76(8) [Winkelsumme bei Ga2 358.1]; Si4-Ga3-Ga1 136.28(8), Ga1-Ga3-C26 105.6(3), Si4-Ga3-C26 112.7(3) [Winkelsumme bei Ga3 354.6], Si4-Ga3-Ga2 140.19(8), Ga1-Ga3-Ga2 55.77(4), Ga1-Ga2-Ga3 53.40(4), C-Si-Ga (Mittelwert) 109.39, C-Si-C (Mittelwert) 109.5 -Si2(Si3)-Ga2-Ga1-Si1 67.77/98.65, Si4-Ga3-Ga1-Si1 54.83, C26-Ga3-Ga1-Si1 95.84, Si2(Si3)-Ga2-Ga1-Ga3 117.91/75.67, Si4-Ga3-Ga1-Ga2 129.26, C26-Ga3-Ga1-Ga2 80.77 -Kation: Na-O(THF) (Mittelwert) 2.31, Na-O(18-C-6) Mittelwert: 2.76. - O-Na-O(THF) 179.24, O-Na-O(18-K-6) (Mittelwert) 363.20, Winkelsumme bei O(THF) 359.78, Winkelsumme bei O(18-K-6) 343.40; Der O₆ Ring von 18-K-6 ist leicht gewellt. Sturkturdaten aus ^[45].

Bindungssituation wurde von W. Uhl et. al.^[59] im Falle von Li[Ga(CH₂SiMe₃)₄]•1.5 Dioxan aufgefunden, wobei der GaC- Abstand der Ga–CH₃–Li Brücke 2.08 Å beträgt. Die Beteiligung des freien Elektronenpaars am anionischen Ga- Atom an der C–CH₃–Ga- Brücke und nicht an einer π - Bindung dürfte der Grund für die vergleichsweise lange R*Ga–GaR* Brücke (2.57 Å) sein (zum Vergleich: Ga–Ga- Abstand von 2.38 Å in R*₃Ga₂[•]). Die drei Galliumatome in R*₄Ga₃⁻ sind nahezu planar von den Atomen Si, Ga und C koordiniert, wobei die Winkelsumme an den betreffenden Ga- Atomen 358.1° (Si₂GaGa), 359.9° (GaGaSiGa), 354.8° (GaGaSiC) beträgt und die Winkel zwischen den Ebenen 82.89° und 76.20° betragen (siehe Abbildung 17b). Die Galliumatome ihrerseits besetzten in R*₄Ga₃⁻ die Ecken eines Dreiecks mit zwei kürzeren Seiten und eine langen Basis, die jedoch keine chemische Bindung darstellt (siehe auch Reaktionsschema 33). Wie aus Abbildung 17b ersichtlich ist, liegt das Si- Atom am mittleren Ga2- Atom innerhalb, zwei der drei Si- Atome an den endständigen Ga- Atome oberhalb und eines unterhalb der Ga₃- Ebene. Die unterhalb dieser Ga₃- Ebene liegende Supersilylgruppe ist über C26 mit dem anionischen Ga3- Atom verbrückt. Die Siliciumatome der vier Supersilylgruppen besetzen die Ecken eines verzerrten Tetraeders.

Die Einelektronenreduktion des Trigallanyls $R_4^*Ga_3^{\bullet}$ zum Trigallanid $R_4^*Ga_3^{-}$ ist mit einer deutlichen Strukturänderung verbunden ("Decyclisierung"; siehe Reaktionsschema 33), wobei die Ga–Ga Bindungen von $R_2^*Ga_2$ –Ga $1R^*$ / $R_2^*Ga_2$ –Ga $3R^*$ / R^*Ga_1 –Ga $3R^*$ länger/kürzer/kürzer werden. Gleichzeitig nimmt der durchschnittliche Ga–Ga Abstand bei dieser Reduktion ab (für $R_4^*Ga_3^{\bullet}$: (2.53 + 2.53 + 2.88) : 3 = 2.65 Å; für $R_4^*Ga_3^{-}$: (2.49 + 2.57) : 2 = 2.53 Å).

2.2.4 Abschließende Bemerkungen

Die oben beschriebenen Ga₂- und Ga₃- Galliumclusterverbindungen sind weitere Beispiele, bereits bekannt gewordener, in Tabelle 2 aufgeführten Galliumclusterverbindungen mit zwei oder drei Galliumatomen. Angegeben ist jeweils der mittlere Ga–Ga Abstand und die Bindungsordnung (ermittelt aus 2.52 Å für einen Einfachbindungs- und 2.32 Å für einen Doppelbindungs- Abstand^[11]). Gemäß Tabelle 2 liegen die Ga–Ga- Abstände von organyl- und silyl- substituierten, sterisch nicht allzu überladenen Digallanen >Ga–Ga

 >Ga–Ga- Mit einer 2 Elektronen-2-Zentrenbindung (Bindungsordnung 1) in einem Bereich von 2.48-2.54 Å (im Mittel 2.52 Å). Die Ga–Ga- Bindungen der Digallanide $R_3Ga_2^-$, des Digallanyls $R_3Ga_2^{\bullet}$ ($R = R^*$), des Digallandiids $R_2Ga_2^{2-}$ ($R = 2,6, -C_6H_3(Tip)_2$; Tip = 2,4,6- C_6H_2 -*i*Pr₃) oder des Radikalanions $R_4Ga_2^{-\bullet}$ ($R = Tip = 2,4,6- C_6H_2$ -*i*Pr₃, CH(SiMe_3)₂), die aus R_4Ga_2 formal durch Entfernung von einem oder zwei Kationen R^+ bzw. einem Radikal R^{\bullet} oder durch Addition von einem Elektron entstehen, sind kürzer als im Digallan R_4Ga_2 , so daß diesen Verbindungen Bindungsordnungen von 1.5 bis 2 zuzuordnen sind. Substitutionen von Organyl in R_4Ga_2 gegen elektronegativere Gruppen wie z.B. Cl führen zu einer Ga–Ga- Bindungsverkürzung (z.B. (2,4,6- $C_6H_2tBu_3$)₂Ga₂Cl₂ 2.42 Å). Die bis jetzt unbekannten monomeren

Tetrahalogenide Ga₂X₄ sollten deshalb aufgrund dieses *elektronischen Effekts* sehr kurze Ga–Ga- Bindungen aufweisen. Die vergleichsweise lange Ga–Ga- Bindung in R₄Ga₂ mit vier elektronegativen Substituenten R = 2,2,4,4,-NC₅H₆Me₄ ist sicherlich die Folge von *sterischen Effekten*. Andererseits führt die Addition von zwei Donoren im Digallan >Ga–Ga< unter Bildung von tetrakoordinierten Galliumatomen zu längeren Ga–Ga-Bindungen. Aufgrund des Einflusses von derartigen *"Koordinationseffekten"* wird der Ga–Ga- Abstand beim Übergang von R₂Ga₂Hal₂ (R = 2,4,6-C₆H₂tBu₃) zum [R₂Ga₂Hal₄][–] (R = Si(SiMe₃)₃) bzw. von Ga₂Hal₄ (bis jetzt unbekannt) zum [Ga₂Hal₆]^{2–} länger (siehe Tabelle 2).

Die Synthese von Verbindungen mit Gallium in Oxidationsstufen < III konnte erst durch den Einsatz von sperrigen Substituenten wie beispielsweise $CH(SiMe_3)_2$, 2,4,6- C_6H_2 - iPr_3 , Si(SiMe_3)_3 oder R* erreicht werden, da Galliumverbindungen R_mGa_n (m < 3n) sehr leicht zu Triorganylgalliumverbindungen R_3Ga und Gallium disproportionieren. Mit sperrigen Substituenten und geeigneten Reaktionsbedingungen können Zwischenstufen dieser Disproportionierung abgefangen werden.

Mit der äußerst sperrigen Supersilylgruppe R* kann im Gegensatz zu der weniger sperrigen $tBu_2PhSi-Gruppe kein dreifach silyliertes Gallan R_3Ga bzw. vierfach silyliertes Digallan R_4Ga_2 erzeugt werden. Die Umsetzung von drei Äquivalenten NaR* mit GaCl_3 führt demgemäß über isolierbares R*₂GaCl direkt zum Digallanyl R*₃Ga_2[•] (siehe Reaktionsschema 33). Offensichtlich bilden sich aus R*₂GaCl mit NaR* zunächst die Radikale R* und R*₂Ga[•], wobei beide Radikale dimerisieren, letzteres allerdings nur unter Eliminierung des Radikals R*. Erzeugtes R*₃Ga₂[•] geht dann bei höheren Temperaturen unter weiterer Eliminierung des Radikals R* in das$ *tetrahedro*-Tetragallan R*₄Ga₄ über. Weiteres Erwärmen von R*₄Ga₄ führt zu keinem "mächtigeren" Galliumpolyeder. Offensichtlich ist das Ga₄- Tetraeder in R*₄Ga₄ mit vier Supersilylgruppen vollständig bedeckt und ist daher thermolysestabil. In Übereinstimmung mit diesem Befund führt auch die Thermolyse des Trisupersilylcyclotrigallanyls R*₄Ga₃[•] (bereits bei milderen Temperaturen) unter Eliminierung zum Priegen.

Wie in den folgenden Kapiteln beschrieben wird können Verbindungen mit größeren Galliumclustern wie $R_6^*Ga_{10}^-$, $R_6^*Ga_{13}^-$, $R_8^*Ga_{18}$, $R_8^*Ga_{22}$, durch Reaktion von *Galliummonohalogeniden* Supersilylnatrium NaR* erzeugt werden (vgl. Kapitel 2.4 und 2.5). Hiernach gelangt man durch Umsetzung von NaR* mit GaHal₃ zu Produkten R_mGa_n mit einem m : n Verhältnis ≥ 1 ($n_{max} = 4$), durch Umsetzung von NaR* mit GaHal zu Galliumclusterverbindungen mit einem m : n Verhältnis ≤ 1 (n_{max} bisher 84).

Die isolierten primären und sekundären Reaktionsprodukte der Reaktion von NaR* mit GaCl₃ ermöglichen einen Einblick in den *Mechanismus* des Clusteraufbaus. Supersilylnatrium wirkt zunächst substituierend dann dehalogenierend und schließlich reduzierend: GaCl₃ + 2 NaR* \rightarrow R*₂GaCl + 2 NaCl; R*₂GaCl + NaR* \rightarrow R*₂Ga[•] + NaCl + R*; R*₃Ga₂[•] + NaR* \rightarrow NaGa₂R*₃ + R*. Eine Rolle für den Aufbau von Galliumclusterverbindung spielt auch die Eliminierung von Supersilylradikale R*, sowie die Übertragung von Gallylen: 2 R*₃Ga₂[•] \rightarrow R*₄Ga₄ + 2 R*; 2 R*₃Ga₂⁻ \rightarrow R*₂Ga⁻ + R*₄Ga₃⁻. Das Gallylen R*Ga ist wohl wesentlich bei Reaktionen von NaR* mit GaHal mit beteiligt: es vereinigt sich möglicherweise mit noch vorhandenem GaHal zu halogenhaltigen Galliumclusterverbindungen, welche anschließend mit weiterem NaR* enthalogeniert und reduziert werden. Die gebildeten Galliumcluster- Anionen können dann mit GaHal zu größeren neutralen Galliumclusterverbindungen unter Erhöhung der Zahl der "nackten" Galliumatome weiterreagieren.

2.3 Tetrasupersilylcyclotetragallandiid R*₄Ga₄^{2–}; auf dem Wege zu einem Disupersilyldigallandiid R*₂Ga₂^{2–}

Galliumverbindungen lassen sich vielfach unter Verkürzung der GaGa-Bindungen, d.h. unter Aufbau von GaGa- Mehrfachbindungen reduzieren, z.B. $[R_{2}^{*}Ga-GaR^{*}]^{\bullet} + e^{-} \rightarrow [R_{2}^{*}Ga=GaR^{*}]^{-}$ (vgl. Kapitel 2.2) und $[R_2Ga-GaR_2] + e^- \rightarrow [R_2Ga-GaR_2]^{\bullet}$ (R = Tip^[73], Dsi^[75]; vgl. Tabelle 2). Diesen Trend beobachtet man auch bei dem sternförmig aufgebauten Ga(GaTip₂)₃ (planare Ga₄- Einheit), welches nach Reduktion zu [Ga(GaTip₂)₃]²⁻ kürzere Ga–Ga- Bindungen aufweist^[85] (vgl. Tabelle 2). Die beiden Alkalimetalle in dem erhaltenem Salz Na₂[Ga(GaTrip₂)₃] werden von den Arylringen des Tip-Substituenten in der Weise komplexiert, daß die Natriumkationen oberhalb bzw. unterhalb der kürzesten der drei Ga-Ga-Bindungen zu liegen kommen. Diese Art der Komplexierung scheint auch eine wesentliche Rolle bei dem "Gallin" Na₂[Dis₂Ga₂] $(Dis = 2,6-C_6H_3(Tip)_2; vgl. Tabelle 2)$ zu spielen, welches sich nach der Reduktion von DisGaCl₂ mit Natrium bildet^[77]. Allerdings entspricht der GaGa- Abstand mit 2.32 Å (Tabelle 2) nicht einer Dreifach-, sondern einer Doppelbindung. Möglicherweise wird der GaGa- Abstand wesentlich durch Kontakt von Na⁺ mit den Arylgruppen bestimmt^[108]: (elektrostatische Wechselwirkungen der π -Elektronenwolke der Arylsubstituenten mit den über bzw. unter der GaGa- Bindung befindlichen Alkalimetallkationen). Das derartige Wechselwirkungen eine strukturbeeinflussende Wirkung haben zeigen auch DFT-Rechnungen an den Modellverbindungen Na₂[(2,6-C₆H₃Ph)₂Ga)₂] und Na₂[Ph₂Ga₂], wobei die erstere Verbindung, bei der Na⁺-Aryl-Wechselwirkungen möglich sind, eine um ca. 0.12 Å kürzere Ga-Ga-Bindung als letztere aufweist^[109].

Hier stellt sich die Frage, ob der Verbindung $[R*Ga=GaR*]^{2-}$ eine echte Gallium-Gallium-Dreifachbindung zugrunde liegen würde, da die R*- Reste keine Kontakte wie die Arylgruppen ermöglichen. Na₂[R*₂Ga₂] sollte etwa durch Reduktion von R*GaX₂ oder von R*₄Ga₂ mit Na zugänglich sein.

2.3.1 Synthese von R*4Ga4²⁻ in Form von Na2Ga4R*4•2THF

Erwärmt man R*GaCl₂(THF) mit Natrium in Heptan 7 Stunden auf 100°C so nimmt die Reaktionslösung eine tiefrote Farbe an. Nach Abfiltrieren unlöslicher Bestandteile kristallisieren nach Tausch des Lösungsmittels gegen Benzol rote Quader aus, welche nach der Röntgenstrukturanalyse nicht die Zusammensetzung Na₂Ga₂R*₂•*n*THF, sondern überraschenderweise die Zusammensetzung Na₂Ga₄R*₄•2THF aufweisen (siehe Gleichung 35a, Versuch 36). Der in Heptan unlösliche Rückstand enthält als einzige supersilylgruppenhaltige Verbindung das Tetrasupersilyl-*tetrahedro*-tetragallan R*₄Ga₄ (siehe Gleichung 35b).

$$4 \operatorname{R*GaCl}_{2}(\operatorname{THF}) \xrightarrow{+10 \operatorname{Na}(a)} \operatorname{Na}_{2}\operatorname{Ga}_{4}\operatorname{R*}_{4} \cdot 2\operatorname{THF}$$

$$4 \operatorname{R*GaCl}_{2} \xrightarrow{-8 \operatorname{NaCl}} \operatorname{R*}_{4}\operatorname{Ga}_{4} \xrightarrow{-8 \operatorname{NaCl}} \operatorname{R*}_{4}\operatorname{Ga}_{4} \xrightarrow{(35)}$$

Das donorfreie R*GaCl₂ liefert unter analogen Reaktionsbedingungen (Heptan, 7 Stunden 100°C) zunächst auch eine rote Lösung, welche jedoch relativ rasch violett wird. Aus dieser Lösung ließ sich kein donorfreies Na₂Ga₄R*₄, sondern ausschließlich R*₄Ga₄ isolieren (siehe Gleichung 35b, Versuch 36).

Ein weiterer Zugang zum Tetragallandiid $R_4^2Ga_4^{2-}$ besteht in der zweistündigen Reduktion von $R_4^*Ga_4$ mit Na in THF- haltigem C_6D_6 bei 100°C (siehe Gleichung 36).

$$R_4^*Ga_4 + 2 THF \xrightarrow{Na} Na_2Ga_4R_4^* 2THF$$
 (36)

Die Bildung von Na₂Ga₄R*₄ und R*₄Ga₄ könnte in der Weise ablaufen (Reaktionsschema 37), daß R*GaCl₂•THF an der Natriumoberfläche zu R*Ga: reduziert wird, welches sich auf dem Wege über R*Ga÷GaR* zum Tetrahedran R*₄Ga₄ tetramerisiert, das seinerseits zum Dianion R*₄Ga₄²⁻ reduziert werden kann, allerdings nur in Anwesenheit von THF. Zu klären ist, ob sich R*₄Ga₄²⁻ in Anwesenheit von guten Komplexbildnern für Alkalimetalle durch Alkalimetall weiter zu R*₂Ga₂²⁻ reduzieren läßt.

Interessant ist in diesem Zusammenhang die Beobachtung, daß die Reduktion von DisGaCl₂ (Dis = $2,6-C_6H_3(Trip)_2$) mit Lithium zu unbeständigen grünen Lösungen, die Reduktion mit Natrium gemäß Gleichung (38) aber zu Na₂[Dis₂Ga₂] führt, während die Reaktion mit Kalium überraschenderweise gemäß Gleichung (39) eine Galliumclusterverbindung der Zusammensetzung K₂[Dis₂Ga₄] liefert^[79].

Formelschema. Strukturen (schematisch) von Na₂[$R_4^Ga_4$]•2THF und von K₂[Dis₂Ga₄] (Dis = 2,6-C₆H₃(Tip)₂; Tip = 2,4,6-C₆H₂*i*Pr₃).

Letztere Verbindung hat wie Na₂[$R_4^*Ga_4$] als zentrales Strukturelement einen aus vier Galliumatomen bestehenden Ga₄-Ring, welcher jedoch im vorliegenden Fall an Ecken gegenüberliegender Galliumatome substituiert ist. Auch weist die Kaliumverbindung erwartungsgemäß elektrostatische Kontakte zwischen den Substituenten und den Kalium-Kationen auf. K₂[Dis₂Ga₄] unterscheidet sich gemäß dem Formelschema somit deutlich von Na₂[$R_4^*Ga_4$].

$$2 \operatorname{DisGaCl}_2 + 6 \operatorname{Na} \to \operatorname{K}_2[\operatorname{Dis}_2 \operatorname{Ga}_2] + 4 \operatorname{NaCl}$$
(38)

$$4 \operatorname{DisGaCl}_2 + 8 \operatorname{K} \to \operatorname{K}_2[\operatorname{Dis}_2\operatorname{Ga}_4] + 6 \operatorname{KCl} + 2 \operatorname{DisCl}$$
(39)

2.3.2 Kristallstruktur von R*4Ga4Na2•2THF

Der Bau von röntgenstrukturanalytisch geklärtem Na₂Ga₄R*₄•2THF (rote Quader, monoklin, Raumgruppe C2/c) gibt Abbildung 18 zusammen mit ausgewählten Bindungslängen und -winkeln wieder. Zentrales Strukturelement ist ein nicht planarer Ga₄- Ring mit einem Diederwinkel von 122.91°. Die Ga–Ga-Abstände sind mit durchschnittlich 2.430 Å kürzer als die Ga–Ga- Abstände in R*₄Ga₄ (2.57 Å^[54]), jedoch liegen sie in einem mit dem Digallanyl R*₃Ga₂• vergleichbaren Bereich (vgl. 2.43 Å). Erwartungsgemäß zeigt sich die Zweielektronenreduktion von R*₄Ga₄ in einer Ga–Ga- Bindungsverkürzung (um 0.14 Å).

Ober- bzw. unterhalb dieses Ga_4 -Rings befindet sich je ein Natriumatom, welches seinerseits von je einem THF-Molekül koordiniert wird. Die Natriumatome liegen nicht über der Mitte des Ga_4 -Rings, sondern mehr in Richtung einer Ga–Ga- Bindung (vgl. Abbildung 18 und 19). Dementsprechend ist Na vierfach von einem THF- Molekül und drei Ga- Atomen koordiniert, wobei die Abstände Na1–Ga2/Na1A–Ga1A bzw. Na1–Ga2A/Na1A–Ga2 kürzer sind als die Abstände Na1–Ga1/Na1A–Ga1A. Die beiden Natriumatome kontaktieren zusätzlich eine Metylgruppe einer Supersilygruppe (Na1–C11 = 2.99 Å). Die Si–Ga- Abstände betragen wie in R*₄Ga₄ durchschnittlich 2.44 Å, die mittleren Si–C- Abstände 1.96 Å bzw. die C–Si–C-Winkel 110.1°.

Dem Ga₄- Cluster kommen 10 Gerüstelektronen zu, wenn man animmt, daß die 4 R*Ga- Einheiten je zwei Elektronen und die beiden Natriumatome je ein Elektron dem Ga₄- Fragment beisteuern. Der Ga₄-Ring

Formelschema. Zentrales Gerüst von $R_2C_2B_2X_2$ (R/X = Me/tBu, tBu/Me, SiMe₃/tBu) und $R_4^*Ga_4^{2-}$. könnte somit als 2π -Aromat aufgefasst werden (8 Elektronen werden für die vier GaGa- Bindungen benötigt). Vergleichbare Systeme stellen die bekannt gewordenen Derivate des 1,3-Dihydro-1,3-diboret $R_2C_2B_2X_2$ (z.B. R/X = Me/tBu, tBu/Me, SiMe₃/tBu)^[1] dar, welche ebenso wie Na₂Ga₄R₄*₄*2THF ein nicht planares Gerüst mit 2π - Elektronen aufweisen (siehe obiges Formelschema).

Abbildung 18. Struktur der Verbindung Na2Ga4R*4•2THF im Kristall und verwendete Atomnumerierung (SCHAKAL-Plot; Atome mit willkürlichen Radien; die H- Atome wurden zur besseren Übersicht nicht eingezeichnet. Die gestrichelte Linie gibt die CH3•••Na Kontakte wieder. Wichtige Bindungslängen [Å] und -winkel [°] mit Standardabweichungen: Gal-GalA 2.4156(12), Ga1-Ga2, 2.4238(6), Ga1-Si2 2.4488(9), Ga1-Na1 3.4699(14), Ga2-Si1 2.4401(8), Ga2-Ga2A 2.4530(8), Ga2-Na1 2.9342(14), Ga2-Na1A 3.303(2) [Ga-Si Mittelwert: 2.44], Si1-C5 1.951(4), Si1-C9 1.961(3), Si1-C1 1.963(3), Si2-C17 1.954(3), Si2-C13 1.954(3), Si2-C21 1.958(3) [Si-C Mittelwert: 1.96], C11-Na1A 2.988(4), Na1-O1 2.252(3), Na1-C11 A 2.988(4), Na1-Ga2A, 3.303(2); - Ga1A-Ga1-Ga2 82.980(12), Ga1A-Ga1-Si2 132.11(3), Ga2-Ga1-Si2 140.49(2), Ga1A-Ga1-Na1 106.74(3), Ga2-Ga1-Na1 56.41(3), Si2-Ga1-Na1 91.32(3), Ga1-Ga2-Si1 133.30(2), Ga1-Ga2-Ga2A 82.20(2), Si1-Ga2-Ga2A 142.99(2), Ga1-Ga2-Na1 80.11(3), Si1-Ga2-Na1 115.52(4), Ga2A-Ga2-Na1 75.03(4), Ga1-Ga2-Na1A 111.70(3), Si1-Ga2-Na1A 92.33(4), Ga2A-Ga2-Na1A 59.12(4), Na1-Ga2-Na1A 129.14(3), C5-Si1-C9 109.7(2), C5-Si1-C1 110.3(2), C9-Si1-C1 110.57(14), C5-Si1-Ga2 109.52(11), C9-Si1-Ga2 107.67(10), C1-Si1-Ga2 109.08(11), C17-Si2-C13 110.81(14), C17-Si2-C21 109.41(13), C13-Si2-C21 109.73(13), C17-Si2-Ga1 108.09(9), C13-Si2-Ga1 105.41(9), C21-Si2-Ga1 113.34(9) [C-Si-Si Mittelwert 110.1°]; Operator: E. Möllhausen, I. Krossing.

Gemäß den Regeln von Wade und Mingos läßt sich das Gerüst von Na₂Ga₄R*₄•2THF mit seinen 10 Clusterelektronen = 2n - 2 (n = Zahl der Gerüstatome = 6) als zweifach überkappter *closo*- Ga₄- Cluster (zweifach überkapptes Tetraeder) beschreiben wenn man die beiden Natriumatome als Bestandteil des Clustergerüsts ansieht. Na₂Ga₄R*₄ ist mit seinen 10 Clusterelektronen der Verbindung R*₄In₆ vergleichbar, die beim Aufbau des R*₈In₁₂- Clusters denkbare Zwischenverbindung ist. Im Gegensatz dazu ergeben sich für K₂[Dis₂Ga₄] 8 Gerüstelektronen (je 2 Elektronen von R*Ga, je ein Elektron von Ga und K), die gerade für die vier GaGa-Bindungen ausreichen (siehe obiges Formelschema). Tatsächlich bestetigen die gemessenen Ga–Ga- Abstände (2.47 Å) das vorhandensein von vier Einfachbindungen (vgl. Tabelle 2). An den beiden nicht substituierten Galliumatomen befindet sich somit je ein freies Elektronenpaar. K₂[Dis₂Ga₄] ist somit keine nach Wade und Mingos zu beschreibende Elektronenmangel-Clusterverbindung.

Abbildung 19. Sicht auf den nichtplanaren Ga_4 - Ring in Na₂ $Ga_4R^*_4$ •2THF. Die vier Galliumatome bilden mit den zwei Natriumatomen einen zweifach überkappten *closo*-Ga₄-Cluster.

2.3.3 Reaktivität von R*4Ga4Na2•2THF

Na₂Ga₄R*₄•2THF ist gegenüber einer *Oxidation* sehr empfindlich. Geringste Spuren von Luftsauerstoff bewirken eine Farbveränderung der Lösung von rot nach violett. Letztere Lösungen enthalten nach NMR-spektroskopischen Untersuchungen als einzige lösliche supersilylgruppenhaltige Verbindung das *Tetrahedro*-Tetragallan R*₄Ga₄.

Alle Umsetzungen mit dem Ziel, ein solvensgetrenntes Salz des Typs $[NaL_n]_2[R_4Ga_4]$ zu erhalten schlugen bis jetzt fehl. So lassen sich zum einen die beiden Natriumkationen in Na₂Ga₄R₄•2THF nicht durch einen Überschuß eines Donors wie L = THF entfernen. Zum anderen liefern Versuche die Natriumionen mit Hilfe von Kronenethern aus dem Verband zu trennen, braune Lösungen, aus denen keine röntgenstrukturanalytisch geeigneten Kristalle gezüchtet werden konnten.

2.4 Hexasupersilyldeca und -tridecagallanid $R_6^*Ga_{10}^-$, $R_6^*Ga_{13}^-$

Wird elementares Gallium mit einem Äquivalent Iod in Toluol mit Ultraschallwellen bestrahlt, erhält man nach drei Stunden bei Raumtemperatur ein graugrünes in Toluol kaum lösliches Pulver. Dieses bereits von M. L. H. Green^[69] dargestellte "Gal" enthält nach neuesten Raman-Untersuchungen^[110] kein Gallium(I)-iodid, sondern ein Gemisch von Galliumsubhalogeniden, wobei die Hauptkomponente die Zusammensetzung $Ga_2I_3 = Ga_2[Ga_2I_6]$ besitzt^[111] (vgl. Einleitung). Dieses sonochemisch dargestellte "Gal" wurde bereits erfolgreich zur Synthese von Galliumclusterverbindungen eingesetzt. So konnten beispielsweise aus den

Formelschema. Einige durch Reaktion von sonochemisch erzeugten "GaI" mit LiR', LiR', NaR* dargestellten Galliumclusterverbindungen.

Umsetzungen von LiR'•3THF und LiR'_{Ge}•3THF (R' = Si(SiMe₃)₃, R'_{Ge} = Ge(SiMe₃)₃) mit Greenschen "GaI" die [Li(THF)₄]⁺ - Salze [R'₈Ga₂₆]^{-[93]}, [R'₆Ga₉]^{-[90]} und [R'Ga₄I₃]^{-[90]} sowie die Tetrahedrane R₄Ga₄ (R = R', R'_{Ge})^[82] gewonnen werden, wobei die Ausbeuten je nach Reaktionsdurchführung variieren.

2.4.1 Synthese und Charakterisierung von R*₆Ga₁₀⁻ und R*₆Ga₁₃⁻

Setzt man donorhaltiges Supersilylnatrium NaR*•2THF mit "GaI" im Molverhältnis 1 : 1 in Toluol bei -78°C um, so bildet sich kein elementrares Gallium, sondern halogenfreie Galliumclusterverbindungen (siehe Gleichung 41). Aus der Reaktionsmischung läßt sich, nach Entfernen des Lösungsmittels, mit Pentan Tetrasupersilyl-*tetrahedro*-tetragallan R*₄Ga₄ in 31%-iger Ausbeute extrahieren. Wird der verbleibende Rückstand mit einer THF/Toluol- Mischung extrahiert können aus dieser Lösung die als $[Na(THF)_6]^+$ -Salze kristallisierenden neuen anionischen Galliumcluster R*₆Ga₁₀⁻ und R*₆Ga₁₃⁻ in Form von dunkelroten Nadeln bzw. wenigen kleinen schwarzen Würfeln gewonnen werden (siehe Gleichung 41). NMR- spektroskopisch läßt sich die Bildung von Superdisilan R*–R*, als Endprodukt eines Redoxprozesses nachweisen (Versuch 41).

Führt man die Reaktion allerdings unter donorfreien Bedingungen durch, d.h. setzt man donorfreies Supersilylnatrium NaR* mit "Gal" in Pentan bei -78°C um, so entsteht neben R*–R* ein unlöslicher schwarzer Rückstand, der weder durch eine röntgenstrukturanalytische noch durch massenspektroskopische Untersuchungen näher charakterisiert werden konnte. Die Bildung von $R_{6}^{*}Ga_{10}^{-}$ und $R_{6}^{*}Ga_{13}^{-}$ unterbleibt hier also vollständig (Versuch 37).

Wird anstelle von Supersilylnatrium NaR*•2THF Hypersilyllithium LiR'•3THF bei -78°C in Toluol/THF umgesetzt so kann, im Gegensatz zu R*₆Ga₁₀, ein neutraler Galliumclusterverband der Zusammensetzung R'₆Ga₁₀ in Form von schwarzen Prismen auskristallisiert werden (siehe ^[91] und auch Gleichung 42a). Als weitere Galliumclusterverbindungen entstehen das Tetragallahedran R'₄Ga₄ und der anionische Ga₉-Cluster R'₆Ga₉ neben den halogenhaltigen Verbindungen R'GaI₂•LiI(THF)_n (n = 2, 3) sowie R'₂Ga₂I₂•2LiI(THF)₂^[91].

Es sei noch erwähnt, daß bei einer Reaktion von "GaI" mit weniger als einem Äquivalent LiR'•3THF die halogenhaltigen Verbindungen R'GaI₂•LiI(THF)_n (n = 2, 3) sowie die Galliumclusterverbindung R'₂Ga₂I₂•2LiI(THF)₄ isoliert werden konnten (siehe ^[91] und auch Gleichung 42b).
(a)
(a)

$$+ NaR' \bullet_{3}THF R'GaI_{2}\bullet LiI(THF)_{n} + R'_{4}Ga_{4}, [R'_{6}Ga_{9}]^{-} + R'_{6}Ga_{10}$$

("GaI")
(b)
 $+ 0.6 \text{ bis } 0.9 \text{ NaR'} \bullet_{3}THF R' = Si(SiMe_{3})_{3}$
(42)

2.4.2 Kristallstruktur von [Na(THF)₆]⁺[R*₆Ga₁₀]⁻

Das Salz $[Na(THF)_6]^+[R*_6Ga_{10}]^-$ kristallisiert monoklin in der Raumgruppe C2/m. Laut Röntgenstrukturanalyse wird das Natrium-Kation von sechs THF-Molekülen oktaedrisch koordiniert. Die sechs GaR* Fragmente bilden zusammen ein trigonales Antiprisma, welches entlang der C₃-Achse gestreckt ist. Die verbleibenden vier Gallium-Atome sind in Form eines Vierrings angeordnet, welcher zwischen den beiden Ga₃-Ringen eingebettet ist (vgl. Abbildung 20). Als Folge der Vermischung der C₃-symmetrischen Ga₃-Ringe mit dem C₄-symmetrischen viergliedrigen Ga₄-Ring ist letzterer dreifach fehlgeordnet.

Abbildung 20. Struktur (schematisch) von $R_{6}^{*}Ga_{10}^{-}$ und $R_{6}^{'}Ga_{10}^{-}$ ($R^{*} = SitBu_{3}^{-}$, $R' = Si(SiMe_{3})_{3}$).

Gemäß Abbildung 21, die den Bau von $R_{6}^{*}Ga_{10}^{-}$ zusammen mit ausgewählten Bindungslängen und -winkeln wiedergibt, liegen alle Ga–Ga Abstände in einem Bereich zwischen 2.453 und 2.880 Å, einem Bereich welcher auch bei dem $R_{6}^{*}Ga_{10}^{-}$ -Cluster beobachtet wird. Berücksichtigt man auch Ga–Ga- Abstände bis zu einer Länge von 3.25 Å, wird die strukturelle Beziehung zwischen $R_{6}^{*}Ga_{10}^{-}$ und $R_{6}^{*}Ga_{10}^{[91]}$ deutlich. Die zehn Ga- Atome beschreiben die Ecken zweier Oktaeder mit gemeinsamer Kante, welche zugleich den längsten GaGa- Abstand repräsentiert (Ga4-Ga4A in $R_{6}^{*}Ga_{10}^{-}$, Ga5–Ga6 in $R_{6}^{*}Ga_{10}$). Die Kante ist jedoch in der Supersilyl-Verbindung um 10 pm kürzer als in der Hypersilylverbindung (vgl. Abbildung 20). Die beiden Oktaederspitzen sind in $R_{6}^{*}Ga_{10}^{-}$ mit 2.874 Å weiter entfernt als im entsprechenden Hypersilylcluster (2.545 bzw. 2.533 Å), wobei jedoch die Ga–Ga- Abstände im Ga₄-Ring mit Ga3-Ga4A/Ga3A-Ga4A = 2.536 Å und Ga3-Ga4/Ga3A-Ga4A = 2.453 Å kürzer sind ($R_{6}^{*}Ga_{10}^{*}$; 2.712 bis 2.750 Å). Die Ga–Si- Abstände sind im Mittel mit 2.483 Å etwas länger als die entsprechenden Abstände im Hypersilyl-Derivat, jedoch liegen sie in dem typischen Bereich für Supersilyl-Gallium-Verbindungen (vgl. z.B. R*₃Ga₂^{• [53]}).

Abbildung 21. Struktur der Verbindung $R_{6}^{*}Ga_{10}^{-}$ im Kristall und verwendete Atomnumerierung (SCHAKAL-Plot; Atome mit willkürlichen Radien; die CMe₃-Gruppen wurden zur besseren Übersicht nicht eingezeichnet). Wichtige Bindungslängen [Å] von $R_{6}^{*}Ga_{10}^{-}$ mit Standardabweichungen: Ga1–Si1/Ga1AA–Si1AA 2.477(5), Ga1A–Si1A/Ga1A–Si1A 2.494 (6), Ga2–Si2/Ga2A–Si2A 2.477(5), Ga1–Ga1A/Ga1A–Ga1AA 2.697(3), Ga1–Ga2/Ga1AA–Ga2A 2.709(4), Ga1A–Ga2/Ga1A–Ga2A 2.697(3), Ga1–Ga3/Ga1AA–Ga3A 2.606(7), Ga1A–Ga3/Ga1A–Ga3A 2.629(6), Ga1–Ga4A/Ga1AA–Ga4 2.536(9), Ga1A–Ga4/Ga1A–Ga4A 2.503(9), Ga3–Ga4/Ga3A–Ga4A 2.453(14), Ga3–Ga4A/Ga3A–Ga4 2.536(9), Ga2–Ga3A/Ga2A–Ga3 2.874(6), Ga4–Ga4A 2.880(14); Operator G. Linti.

Der auffälligste Unterschied zwischen $R_{6}^{*}Ga_{10}^{-}$ und $R_{6}^{*}Ga_{10}^{-}$ ist –abgesehen von der Ladung – die Anordung der Hypersilyl- bzw. Supersilyl-Gruppen. So trägt in letzter Verbindung ein Oktaeder vier, der andere entsprechend zwei Hypersilylgruppen-Gruppen, wobei die Spitzen des zweifach-substituierten Oktaeders unbesetzt bleiben. Diese Ungleichverteilung macht sich in den Ga–Ga sowie Ga–Si- Abständen bemerkbar, wobei der sterisch überladene R₄Ga₆-Oktaeder längere Abstände als der R₂Ga₆-Oktaeder hat (Ga–Ga- Abstände im R₄Ga₆-Fragment um ca. 4.6 pm länger, als im R₂Ga₆-Fragment^[91]). Das Clusteranion R*₆Ga₁₀⁻ weist im Vergleich zu R'₆Ga₁₀ eine gleichmäßige Substituentenverteilung bei beiden Ga₆- Oktaeder auf (siehe Abbildung 21). Um einen besseren Einblick in den unterschiedlichen Aufbau der beiden Ga_{10} -Cluster $R^*_6Ga_{10}^-$ und R'Ga_{10} gewinnen zu können, wurden am Institut für Anorganische Chemie der Universität Karlsruhe von M. Kehrwald RI-DFT-Rechnungen (BP86 funktionaler SV(P)Basis)^{[112][113][114][115][116]} für s- und a- $Ga_{10}H_6^-$ und - $Ga_{10}H_6^-$ mit symmetrischer und antisymmetrischer H-Atomverteilung durchgeführt (vgl. Abbildung 22).

a- $Ga_{10}H_6/a$ - $Ga_{10}H_6^-$ s- $Ga_{10}H_6/s$ - $Ga_{10}H_6^-$ Abbildung 22. Berechnete Strukturen für s- und a- $Ga_{10}H_6$ bzw. s- und a- $Ga_{10}H_6^-$.

Die berechneten Strukturen a- $Ga_{10}H_6$ und s- $Ga_{10}H_6^-$ stehen in guter Übereinstimmung mit den experimentell aufgefundenen Strukturen für R'₆Ga₁₀ und R*₆Ga₁₀⁻ (siehe Abbildung 20, 21 und 22). Entsprechend diesen Berechnungen benötigt die Isomerisierung von a- zu s- $Ga_{10}H_6$ 45kJ/mol (Tabelle 3). a- $Ga_{10}H_6^-$ ist zwar den Rechnungen zur Folge stabiler als s- $Ga_{10}H_6^-$, der Unterschied beträgt jedoch nur 16 kJ/mol. Das bedeutet, daß man durch Reduktion von s- $Ga_{10}H_6$ mehr Energie gewinnen kann (246 kJ/mol) als durch Reduktion von a- $Ga_{10}H_6$ (216 kJ/mol).

Interessanter ist jedoch die sich vollziehende strukturelle Veränderung bei der Reduktion von a- und s-Ga₁₀H₆ zu a- und s- Ga₁₀H₆⁻. Mit dem Übergang a- Ga₁₀H₆ \rightarrow a- Ga₁₀H₆⁻ verlängern sich lediglich die Bindungen des Ga₆H₂-Fragments, wogegen beim Übergang s- Ga₁₀H₆ \rightarrow s- Ga₁₀H₆⁻ die vormals sehr langen Ga–Ga- Kontakte dramatisch schrumpfen. Die größte Verkleinerung erfährt dabei die zentrale Ga5–Ga6-Bindung mit etwa 30 pm (siehe Abbildung 22a und b und Tabelle 4).

a- Ga ₁₀ H ₆	-19252.68243256 H	$a-Ga_{10}H_6 \rightarrow s-Ga_{10}H_6 45$
a- Ga ₁₀ H ₆ -	-19252.76558645 H	$a - Ga_{10}H_6^- \rightarrow s - Ga_{10}H_6^-$ 16
s- $Ga_{10}H_6$	-19252.66531502 H	s- $Ga_{10}H_6 \rightarrow s$ - $Ga_{10}H_6^-$ 246
s- Ga ₁₀ H ₆ -	-19252.75935213 H	$a-Ga_{10}H_6 \rightarrow a-Ga_{10}H_6^-$ 216

Tabelle 5. Berechnete totale Energien für a- und s- $Ga_{10}H_6/Ga_{10}H_6$ if	in [KJ/mol]	
---	-------------	--

Dieses Verhalten kann durch Betrachtung der Grenzorbitale von a- und s- $Ga_{10}H_6$ erklärt werden. Im Falle der von a- $Ga_{10}H_6$ ist das HOMO hauptsächlich an den Stellen lokalisiert, wo man die einsamen Elektronenpaare der "nackten" Galliumatome erwarten würde. Die Besetzung des LUMOs von a- $Ga_{10}H_6$ mit einem Elektron beeinflußt hauptsächlich die periphären Clusterbindungen der Ga_2H_2 und Ga_4H_4 - Einheiten. Im Gegensatz zum LUMO von a- $Ga_{10}H_6$ schließt das HOMO von s- $Ga_{10}H_6$ den Ga5–Ga6- Kontakt mit ein. Dewegen muß sich bei einer Besetzung des LUMOs von s- $Ga_{10}H_6$ mit einem Elektron die Ga5–Ga6-Bindung verkürzen.

a- Ga ₁₀ H ₆		a- Ga ₁₀ H ₆ ⁻	s- Ga ₁₀ H ₆	s- $Ga_{10}H_6^-$
Gal-Ga2	2.684	2.638	2.879	2.784
Ga1-Ga3	2.673	2.632	2.887	2.783
Ga1-Ga5	2.754	2.743	2.704	2.646
Ga2-Ga3	2.503	2.549	2.546	2.479
Ga2-Ga4	2.685	2.634	3.117	2.840
Ga3-Ga5	2.590	2.546	2.643	2.558
Ga4-Ga5	2.757	2.747	2.944	2.932
Ga4-Ga6	2.754	2.746	3.521	3.032
Ga5-Ga6	3.191	3.169	3.378	3.074
Ga5-Ga8	2.621	2.582	2.456	2.507
Ga5-Ga10	2.866	2.870	3.529	3.022
Ga6-Ga7	2.644	2.585	2.639	2.634
Ga6-Ga10	2.841	2.854	2.951	3.009
Ga7-Ga8	2.539	2.638	2.535	2.471
Ga7-Ga9	2.634	2.593	2.882	2.861
Ga7-Ga10	2.635	2.605	2.505	2.590
Ga8-Ga9	2.648	2.765	2.855	2.624
Ga8-Ga10	2.642	2.788	3.166	3.206

Tabelle 4. Berechnete Ga–Ga- Abstände in [Å] für a- und s- $Ga_{10}H_6/Ga_{10}H_6^-$ (vgl. Abb. 22)

2.4.3 Kristallstruktur von [Na(THF)₆]⁺[R*₆Ga₁₃]⁻

Abbildung 23 gibt den Bau von $[Na(THF)_6]^+[R*_6Ga_{13}]^-$ (orthorhombische Raumgruppe Pmc2₁) zusammen mit ausgewählten Bindungslängen wieder. Alle untersuchten Kristalle streuten den Röntgenstrahl nur sehr schwach, so daß die Röntgenstrukturanalyse nur die Beschreibung des Clusterkerns zuläßt. Die Kohlenstoffatome der Supersilylgruppen wurden bei der Strukturverfeinerung nicht berücksichtigt. Die Elementarzelle beinhaltet zwei unabhängige, auf der kristallographischen Spiegelebene liegende Clustermoleküle. Diese beiden Moleküle unterscheiden sich lediglich in ihrem Grad der Fehlordnung. Im folgenden sei nur der weniger fehlgeordnete Cluster beschrieben.

Abbildung 23. (a) Struktur eines der unabhängigen Clusterionen $[R_6^*Ga_{13}]^-$ im Kristall und verwendete Atomnumerierung (SCHAKAL-Plot; Atome mit willkürlichen Radien; die CMe₃-Gruppen wurden zur besseren Übersicht nicht eingezeichnet; die Positionen Ga6, Si4, Si4A sind zweifach gesplittet, wobei nur eine Splittlage abgebildet ist). – (b) Illustration des *closo*-Ga₉-cluster in $[R_6^*Ga_{13}]^-$ (mit Ga8A überkappter Würfel), wobei vier Flächen dieses Körpers mit GaR*-Einheiten überkappt sind. (cf. also Fig. 3a). – Wichtige Bindungslängen [Å] von $[R_6^*Ga_{13}]^-$: Ga2–Si1 2.405, Ga3–Si3 2.485, Ga4–Si4 2.476, Ga4A–Si4A 2.438, Ga8–Si1 2.439, Ga8A–Si1A 2.439, Ga1–Ga2 2.554, Ga1–Ga9/Ga1–Ga9A 2.826, Ga1–Ga4/Ga1–Ga4A 2.568, Ga1–Ga5 2.906, Ga2–Ga9/Ga2–Ga9A 2.640, Ga2–Ga6 2.430, Ga3–Ga7/Ga3–Ga7A 2.514, Ga3–Ga8/Ga3–Ga8A 2.774, Ga4–Ga5/Ga4A–Ga5 2.627, Ga4–Ga9/Ga4A–Ga9A 2.642, Ga4–Ga7/Ga4A–Ga7A 2.480, Ga5–Ga7/Ga5–Ga7A 2.665, Ga6–Ga8 2.366, Ga6–Ga8A 2.783, Ga6–Ga9 2.323, Ga6–Ga9A 2.941, Ga7–Ga8/Ga7–Ga8A 2.490, Ga7–Ga9/Ga7–Ga9A 2.671, Ga7A–Ga8A 2.490, Ga8–Ga8A 2.776. – Abstand der Splitpositionen Ga6Ga6A 77.3 pm ; Operator: G. Linti.

Im $R_{6}^{*}Ga_{13}^{-}$ bilden die supersilylgruppentragenden 6 Galliumatome ein sehr stark verzerrtes Oktaeder. Die verbleibenden sieben ligandenfreien Galliumatome sind an sieben Ecken eines Würfels lokalisiert. Die freie Würfelecke ist mit einem Ga₃R*₃-Ring besetzt. Drei GaR*- Fragmente befinden sich über den drei Flächen des Ga₇-Körpers. Alle Ga–Ga-Abstände liegen zwischen 2.400 und 2.906 Å, also in einem ähnlichen Bereich wie die Ga–Ga-Abstände im R*₆Ga₁₀⁻. Die Gallium-Silicium-Abstände zeigen mit durchschnittlich 2.456 Å keine Auffälligkeit.

2.4.4 Vergleich von Clustern des Typs R_6E_{10} mit R_8E_{12} (E = Al, Ga, In) sowie $R_6Ga_{13}^{-1}$

Der im Kapitel 3.3 erwähnte $R_8^*In_{12}^-$ Cluster kann, wie auch die analog aufgebaute $[Al_{12}(N(SiMe_3)_2)_6]^-$ Verbindung, dadurch beschrieben werden, daß man einem Cluster des Typs R_6E_{10} , zwei ER- Fragmente hinzufügt. Diese Beschreibung ist in umgekehrter Art und Weise im Reaktionsschema (43b) wiedergegeben.

Topologische Beziehung zwischen
$$R'_6Ga_9^-$$
 und R'_6Ga_{10} (a), sowie
zwischen $R'_6Ga_9^-$ und $R^*_8In_{12}$ mit $R^* = SitBu_3$ und $R' = Si(SiMe_3)_3$ (43)

In dieses Schema fügt sich der in der Arbeitsgruppe G. Linti dargestellte Galliumcluster $R'_6Ga_9^{-[90]}$ in der Weise, daß nach dem formalen Angriff eines Galliumkations und erfolgter geringer Umlagerung, direkt der Cluster R_6E_{10} entsteht. Überraschenderweise ergibt sich für $R = Si(SiMe_3)_3$ die gleiche Verteilung der Sub-

stiuenten, wie sie im R'_6Ga_{10} realisiert ist. Insgesamt besteht, wie im Reaktionsschema (43a) angedeutet ist, auch ein topologischer Zusammenhang zwischen R_8E_{12} und R_6E_{10} und $R_6E_9^-$.

Im Falle der sperrigeren Supersilgruppe ist eine Anordung von vier benachbarten *cis*- ständigen Schutzgrupppen, wie dies in der Verbindung R'₆Ga₁₀ realisiert ist offenbar nicht für ein Ga₁₀- Cluster sondern nur für den In₁₂- Cluster mit größeren In- Atomen möglich (vgl. die Anordung der R*-Gruppen mit den R* Gruppen in R*₆Ga₁₀, in Abbildung 20). Ein Nonagallan R*₆Ga₉⁻ sollte hiernach auch weitaus instabiler als R'₆Ga₉⁻ sein. So konnte bis jetzt kein R*₆Ga₉ aufgefunden werden.

Es stellt sich noch die Frage, nach einer Erklärungsmöglichkeit der Strukturen von $R_{6}^{*}Ga_{10}^{-}$ und $R_{6}^{*}Ga_{10}^{-}$ und $R_{6}^{*}Ga_{10}^{-}$ Entsprechend den Wade-Mingos Regeln^{[117][118]} kann der [((Me₃Si)₃Si)₆Ga₉]⁻-Cluster^[90] als ein pentagonal-bipyramidaler *closo*-Ga₇- Cluster mit vier Hypersilylgruppen und zwei eckenverbrückten (Me₃Si)₃SiGa Liganden angesehen werden. Dies steht im Einklag damit, daß für 16 Gerüstelektronen = 2n - 2 (n = Anzahl der Gerüstatome) ein zweifach überkappter *closo*-Ga₇- Cluster vorausgesagt wird, wenn man davon ausgeht, daß die "nackten" Galliumatome je ein und die R'Ga- Gruppen je zwei Elektronen dem Ga-Gerüst beisteuern. Entsprechend müßte der R'₆Ga₁₀- Cluster mit seinen ebenfalls 16 Gerüstelektronen als ein dreifach-überkappter *closo*-Ga₈- Cluster beschrieben werden. Tatsächlich sind R'₆Ga₁₀ wie also auch $R_{6}^{*}Ga_{10}^{-}$ eher als *conjunkto*-Gallane zu beschreiben. Andereseits erfüllen die beiden Ga₁₀-Cluster die Cotton'sche Definition eines Metallatomclusters^[120]: Die Anordung der Galliumatome in den beiden Ga₁₀-Cluster läßt sich als Ausschnitt aus einer dichtesten Metallatompackung beschreiben.

Das Anion $R_{6}^{*}Ga_{13}^{-}$ hat entspreched den oben erläuterten Abzählregeln 20 Clusterelektronen = 2n -6 Elektronen die zu einem vierfach überkappten *closo*-Ga₉-Cluster führen sollten. Ga1, Ga9, Ga6, Ga9A, Ga5, Ga7, Ga8 und Ga7A bilden einen mit Ga8A überkappten verzerrten Würfel (siehe Abbildung 23b). Diese Ga₉- Clustersubeinheit ist über drei Ga₄-Flächen (Ga1Ga9Ga6Ga9A/Ga1Ga5Ga7Ga9/Ga1Ga5Ga7AGa9A) sowie eine Ga₅- Fläche (Ga5/Ga7/Ga8/Ga8A/Ga7A) jeweils mit einer R*Ga- Gruppe überkappt. (vgl. Abbildung 23a, b).

2.5 Octasupersilyloctadeca und -docosagallan R*8Ga18, R*8Ga22

Die Strukturmöglichkeiten der Anordnung von Ga- Atomen in Clustern R_mGa_n sind besonders groß. Diese Besonderheit des Elements spiegelt sich nicht zuletzt in der Vielfalt der Strukturen von elementarem Gallium wieder: bisher konnten mit α -^[121], β -^[122], γ -^[123], δ -^[124] Gallium und den Hochdruckmodifikationen Ga-(II), Ga-(III)^[125] 6 kristalline Galliummodifikationen nachgewiesen werden, in denen sowohl molekulare Einheiten (z.B. Ga₂- "Hanteln" in α -Gallium) als auch typische Metallstrukturen (z.B. näherungsweise dichteste Ga-Atompackung in der Hochdruckmodifikation Ga-(III) mit einer [4 + 8]-Koordination der einzelnen Ga-Atome) zu finden sind. Ein eindrucksvoller Beleg für die Tendenz von Gallium, auch in molekularen Clustereinheiten metalloide (allgemein: elementoide) Strukturen auszubilden, ist der Cluster [R₁₀Ga₁₂]²⁻ (vgl. Tabelle 2 auf Seite 37 und ^[88]), in welchem die 12 Ga-Atome ähnlich wie in δ -Ga (Ga₁₂-Ikosaeder mit gemeinsamen Ga-Atomen) die Ecken eines Ikosaeders besetzen. Anders als Gallium, das zumindest in den Modifikationen α - bis β - Ga an der Grenze zu den Metallen steht, bilden die Gruppenhomologen Aluminium und Indium, welche echte Metalle darstellen, in den mit [R₁₀Ga₁₂]²⁻ hinsichtlich der Clusteratomzahl vergleichbaren Clustern [R₈Al₁₂]⁻ (R = N(SiMe₃)2^[27]) bzw. R*₈In₁₂ (siehe Kapitel 3.3) eine angenähert dichteste, für Metalle typische Metallatompackung.

Der Ga_n-Clusterkern einer Reihe aufgefundener Gallium-Clusterverbindungen R_mGa_n läßt sich als Ausschnitt aus Galliummodifikationen interpretieren, wobei einige (oder gegebenfalls auch alle) Ga-Atome der Clusteroberfläche mit Resten R abgesättigt sind (siehe unten). Vielfach stößt jedoch die Deutung der Ga_n-Strukturen in R_mGa_n als Untereinheiten von Modifikationen des Galliums auf Schwierigkeiten, und eine Erklärung der Clusterstrukturen erfolgt dann besser mit Hilfe der Wade-Mingos-Regeln^{[117],[118]}, die einen Zusammenhang von Clusterelektronenzahl und Clusterbau herstellen. Die nachfolgend beschriebenen Clusterverbindungen *Octasupersilyloctadecagallan* R*₈Ga₁₈ sowie *Octasupersilydocosagallan* R*₈Ga₂₂ lassen sich hinsichtlich ihrer Clusterstrukturen in einem Falle besser nach der ersten , im anderem Falle besser nach der zweiten Methode beschrieben werden.

2.5.1 Synthese und Charakterisierung von R*8Ga18 und R*8Ga22

Wie berichtet wurde^[126], bilden sich beim Erwärmen metastabiler, auf -78°C gekühlten Lösungen von Gallium(I)-bromid GaBr in THF/Toluol, die durch Abschrecken der Hochtemperaturspezies GaBr in Anwesenheit von THF und Toluol erhalten werden, bereits bei niedrigen Temperaturen (ca. -20°C) letztendlich elementares Gallium Ga und Gallium(III)-bromid GaBr₃ als Disproportionierungsprodukte. Erwärmt man jedoch die betreffende, auf -78°C gekühlte GaBr-Lösung nach Zutropfen einer äquimolaren Menge Supersilylnatrium NaR* in THF auf Raumtemperatur (Versuch 42), können Zwischenstufen auf dem Wege der GaBr-Disproportionierung in Form der Gallium-Clusterverbindungen R*₈Ga₁₈ (siehe Gleichung 44a) und R*₈Ga₂₂ (siehe Gleichung 44b) neben Superdisilan R*–R* erhalten werden. Dies läßt sich durch die Summengleichungen (44a) und (44b) formal zum Ausdruck bringen:

$$18 \text{ GaBr} + 18 \text{ NaR}^* \xrightarrow{-18 \text{ NaBr}} \text{ R}^*{}_8\text{Ga}_{18} + 5 \text{ (R}^*)_2 \quad (a)$$

$$22 \text{ GaBr} + 22 \text{ NaR}^* \xrightarrow{-22 \text{ NaBr}} \text{ R}^*{}_8\text{Ga}_{22} + 7 \text{ (R}^*)_2 \quad (b) \quad (44)$$

Erwärmt man andererseits eine auf -78°C gekühlte Gallium(I)-bromid-Lösung in – weitestgehend von THF befreiten – Toluol nach Zutropfen einer äquimolaren Menge NaR* in Toluol auf Raumtemperatur, so enthält die Reaktionslösung ausschließlich das Octadecagallan neben R*₂, aber kein Docosagallan (Versuch 41, Anmerkung). Auch verwandelt sich niedrigwertiges Galliumiodid in Toluol, das durch Ultraschallbehandlung von Ga und I₂ in Toluol erhalten wird und wohl tatsächlich Ga₂I₃ = $[Ga^+]_2[Ga_2I_6^{2-}]$ darstellt (siehe Kapitel 2.4), nach Zugabe von NaR* in das Decagallanid R*₆Ga₁₀⁻ sowie Tridecagallanid R*₆Ga₁₃⁻, darüber hinaus in das *tetrahedro*-Tetragallan R*₄Ga₄ und Superdisilan R*₂. Kleine Änderungen der Reaktionsbedingungen führen somit zu einem deutlich unterschiedlichen Reaktionsverlauf.

Nach Abkondensieren aller im Hochvakuum flüchtigen Anteile von den gebildeten Reaktionslösungen und Lösen der Rückstände in Pentan, die R*₈Ga₁₈ und R*₈Ga₂₂ bzw. nur R*₈Ga₁₈ enthalten, lassen sich nach Abfiltrieren unlöslicher Anteile die betreffenden Oligogallane aus den Pentanlösungen in Form schwarzer Kristalle erhalten, deren weitere Charakterisierung mit Hilfe der Röntgenstrukturanalyse erfolgte.

2.5.2 Kristallstrukturen von R*8Ga18 und R*8Ga22

Die Abbildungen 24a und 25a veranschaulichen den röntgenstrukturanalytisch geklärten Bau der Gallane $R_8^*Ga_{18}$ (triklin, P-1) und $R_8^*Ga_{22}$ (tetragonal, P4/n) im Kristall zusammen mit ausgewählten Bindungslängen und -winkeln, die Figuren 24c und 25c einen Ausschnitt dieser Strukturen, nämlich ausschließlich die Positionen der Ga- und Si-Atome aller acht R*Ga-Gruppen in beiden Gallanen (diese beiden Abbildungen haben jeweils eine andere Perspektive als 24a, bzw. 25a). Schließlich gibt die Abbildung 24b einen Auschnitt aus der Struktur von β -Gallium und die Abbildung 25b die erste Koordinationssphäre aus 13 Galliumatomen um das zentrale Ga1-Atom wieder. Gemäß den Figuren 24c und 25c bilden die supersilyltragenden acht Galliumatome der zur Diskussion stehenden Oligogallane R*₈Ga₁₈ und R*₈Ga₂₂ eine vergleichbare Sphäre aus, nämlich quadratische Antiprismen (im Falle von R*₈Ga₁₈ stark verzerrt), wobei die (R*Ga)₈-Polyeder 10 bzw. 14 "nackte" Galliumatome enthalten (vgl. Abbildung 24a und 25a).

Abbildung 24. a) Struktur von $R_8^*Ga_{18}$ im Kristall und verwendete Atomnumerierung (SCHA-KAL-Plot; Atome mit willkürlichen Radien; die CMe₃-Gruppen wurden zur besseren Übersicht nicht eingezeichnet). – (b)Ausschnitt aus β - Gallium mit 18 Galliumatomen (im β - Gallium hat jedes Galliumatom eine [2+2+2+2]- Koordination mit Ga–Ga- Abständen [Å]: Ga1-Ga2/Ga2-Ga8/Ga1-Ga13/Ga3-Ga4 2.688, Ga1-Ga3/Ga1-Ga5/Ga2-Ga4/Ga7-Ga9/Ga14-Ga16 2.766, Ga1-Ga7/Ga8-Ga9/Ga2-Ga16/Ga13-Ga14 2.864, Ga1-Ga9/Ga9-Ga10/

Ga2-GA14/Ga13-Ga16 2.919. – (c) Illustration des durch die acht R*Ga Gruppen beschriebenen verzerrten Antiwürfels – Ausgewählte Bindungslängen [Å] von R*₈Ga₁₈: Ga1-Ga2 2.740, Ga1-Ga3 2.680, Ga1-Ga5 2.585, Ga1-Ga7 2.673. Ga1-Ga11 2.785, Ga1-Ga17 2.623, Ga1-Ga13 2.865, Ga2-Ga3 2.964, Ga2-Ga4 2.640, Ga2-Ga6 2.605, Ga2-Ga8 2.668, Ga2-Ga12 2.928, Ga2-Ga14 2.797, Ga2-Ga16 2.693, Ga3-Ga4 2.685, Ga3-Ga7 2.867, Ga3-Ga9 2.511, Ga3-Ga13 3.019, Ga3-Ga15 2.661, Ga4-Ga8 2.815, Ga4-Ga10 2.559, Ga4-Ga16 2.699, Ga5-Ga11 2.678, Ga5-Ga17 2.561, Ga6-Ga12 2.474, Ga6-Ga18 2.515, Ga7-Ga8 2.666, Ga7-Ga9 2.727, Ga7-Ga11 2.563, Ga7-Ga12 2.944, Ga8-Ga9 2.906, Ga8-Ga10 2.498, Ga8-Ga12 2.683, Ga9-Ga10 2.610, Ga11-Ga12 2.776, Ga13-Ga14 2.647, Ga13-Ga15 2.471, Ga13-Ga16 2.804, Ga13-Ga17 2.580, Ga14-Ga16 2.712, Ga14-Ga17 2.724, Ga15-Ga16 2.779; – Ga-Si: Ga9-Si9 2.485, Ga10-Si10 2.499, Ga11-Si11 2.480, Ga12-Si12 2.467, Ga15-Si15 2.449, Ga16-Si16 2.441, Ga17-Si17 2.465, Ga18-Si18 2.467 (Ga–Si- Mittelwert: 2.467); Operator: E. Baum, E. Möllhausen, H. Schnöckel.

Die in Figur 24a gezeigte Struktur des Octadecagallans $R_8^*Ga_{18}$ läßt sich im Sinne des eingangs Besprochenen als Ausschnitt von 18 Galliumatomen aus der β -Galliummodifikation beschreiben. Dies wird aus einen Vergleich der Figuren 24b und 24c deutlich. Eine einsichtige Erklärung dafür, warum 8 Supersilylgrup-

pen gerade den in Figur 24b markierten Ausschnitt von β -Gallium stabilisieren, kann bisher nicht gegeben werden (vgl. hierzu die Zusammenfassung im Kapitel 2.5.3).

Abbildung 25. a) Struktur von R*8Ga22 im Kristall und verwendete Atomnumerierung (SCHA-KAL-Plot; Atome mit willkürlichen Radien; die CMe3-Gruppen wurden zur besseren Übersicht nicht eingezeichnet). - (b) Illustration der aus 13 Galliumatomen bestehenden 1. Koordinationssphäre um das zentrale Ga1- Atom von R*8Ga22. - (c) Illustration des durch die acht R*Ga Gruppen beschriebenen Antiwürfels – Ausgewählte Bindungslängen [Å] von R*₈Ga₂₂ vom zentralen Gal aus: Gal-Ga2 2.908, Gal-Ga3 2.908, Gal-Ga4 2.981, Gal-Ga8 2.872, Gal-Ga12 2.851, Gal-Ga15 3.007, Gal-Gal6 2.993, Gal-Gal7 2.992, Gal-Gal8 2.757, Gal-Gal9 2.981, Gal-Ga20 3.007, Gal-Ga21 3.113, Gal-Ga22 3.116; - im 6-Ring der Ga₁₃- Hülle: Ga4-Ga5 2.489, Ga4-Ga16 3.052, Ga4-Ga18 2.472, Ga4-Ga19 2.629, Ga4-Ga22 2.756, Ga12-Ga8 3.422, Ga12-Ga15 2.301, Ga12-Ga16 2.994, Ga12-Ga20 3.174, Ga16-Ga2 2.925, Ga16-Ga4 3.052, Ga16-Ga12 2.994, Ga16-Ga22 2.660, Ga17-Ga3 2.918, Ga17-Ga19 3.053, Ga17-Ga20 2.436, Ga17-Ga21 2.657, Ga19-Ga4 2.629, Ga19-Ga17 3.053, Ga19-Ga18 2.472, Ga19-Ga21 2.758, Ga20-Ga8 3.618, Ga20-Ga12 3.174, Ga20-Ga15 2.723, Ga20-Ga17 2.436; - im 4- Ring der Ga13- Hülle: Ga2-Ga8 2.666, Ga2-Ga18 3.053, Ga3-Ga8 2.669, Ga18-Ga3 3.054; - im 3- Ring der Ga13- Hülle: Ga15-Ga21 2.829, Ga15-Ga22 2.831, Ga21-Ga22; - von den GaR*- Kappen aus: Ga6-Ga2 2.778, Ga6-Ga3 2.783, Ga6-Ga8 3.017, Ga6-Ga18 2.727, Ga11-Ga2 2.821, Ga11-Ga8 2.436, Ga11-Ga12 2.823, Ga9-Ga2 2.783, Ga9-Ga4 2.492, Ga9-Ga16 2.342, Ga7-Ga3 2.778, Ga7-Ga17 2.343, Ga7-Ga19 2.490, Ga13-Ga3 2.821, Ga13-Ga8 2.908, Ga13-Ga20 2.278, Ga10-Ga17 2.833, Ga10-Ga15 2.278, Ga10-Ga20 2.639, Ga10-Ga21 2.195, Ga14-Ga12 2.608, Ga14-Ga15 2.639, Ga14-Ga16 2.427, Ga14-Ga22 2.482, Ga5-Ga4 2.489, Ga5-Ga19 2.491, Ga5-Ga21 2.526, Ga5-Ga22 2.521; - Ga-Si: Ga10-Si1 2.449, Ga6-Si2 2.436, Ga11-Si3 2.449, Ga7-Si4 2.436, Ga13-Si5 2.449, Ga9-Si6 2.436, Ga14-Si8 2.449, Ga5-Si7 2.436 (Ga-Si-Mittelwert: 2.442); Operator: E. Baum, E. Möllhausen, H. Schnöckel.

Im Docosagallan $R_8^*Ga_{22}$ besetzen 13 "nackte" Galliumatome die Ecken eines Kuboktaeders, in welcher eine Dreiecksfläche durch eine Vierecksfläche ersetzt ist (vgl. Abbildung 25c). Jede Vierecksfläche des Gazentrierten Ga_{13} - Polyeders wird von R^*Ga überkappt. Für $R_8^*Ga_{22}$ wurde die gleiche Struktur ermittelt, wie sie bereits für zwei weitere Verbindungsbeispiele, nämlich $R_8'Ga_{22}$ ($R' = Hypersilyl = Si(SiMe_3)_3$ und $(R'_{Ge})_8Ga_{22}$ ($R'_{Ge} = Ge(SiMe_3)_3$) beschrieben wurden (vgl. Tabelle 2 auf Seite 37). Die topologische Ähnlichkeit im Galliumgerüst dieser drei R_8Ga_{22} - Verbindungen bei unterschiedlichen Substituenten R wird aus dem in Tabelle 5 wiedergegebenen Vergleich der Strukturparameter besonders deutlich und kann als Hinweis darauf gedeutet werden, daß elektronische Gründe (z.B. Valenzelektronenzahl im Clusterkern) für das Auftreten gerade dieser Struktur verantwortlich sein dürften.

Die sehr hohe Bildungstendenz und die Stabilität von R_8Ga_{22} - Spezies kann mit dem *Jellium-Modell* erklärt werden, da ein Ga-Gerüst von 58 Elektronen (14 x 3 + 8 x 2 für Ga_{22}^{8+}) einen stabilen Jelliumzustand entspricht.

Mittlere Abstände [Å] zwischen	[(Me ₃ C) ₃ Si] ₈ Ga ₂₂	[(Me ₃ Si) ₃ Si] ₈ Ga ₂₂	[(Me ₃ C) ₃ Ge] ₈ Ga ₂₂
zentrales Ga zur Ga ₁₃ - Hülle	2.911	2.942	2.951
Ga-Atome innerhalb der Ga ₁₃ - Hülle	2.834	2.867	2.829
Ga ₁₃ - Hülle zu den GaR*- Gruppen	2.617	2.673	2.566
Ga–Si in GaR*- Gruppen	2.44	2.426	2.43

Tabelle 5. Vergleich ausgewählter Abstände in R_8Ga_{22} (R = R*, Si(SiMe_3)_3, Ge(SiMe_3)_3)

Eine alternative Interpretation fußt auf den *Skelettelektronen-Abzählregeln* von Wade und Mingos^{[117],[118]}: Hiernach kann man im vorliegenden Falle annehmen, daß die GaR-Gruppen jeweils zwei Elektronen und die "nackten" Ga-Atome jeweils ein Elektron dem Ga₂₂-Skelett beisteuern, so daß also insgesamt $8\times2 + 14\times1 = 30$, d.h. 2n-14 Skelettektronen zur Verfügung stehen (n = Zahl der Clusteratome). Da nach den betreffenden Regeln 2n+m Clusterelektronen für m = 2 *closo*-Cluster zur Folge haben und für m = 4, 6, 8.... bzw. m = 0, -2, -4 zu *closo*-Clustern führen, denen eine, zwei, drei Ecken fehlen bzw. die einfach, zweifach, dreifach überkappt sind, sollte im Falle von R_8Ga_{22} (m = -14) folglich ein achtfach-überkappter *closo*-Ga₁₄-Cluster vorliegen. Diese Erwartung entspricht den aufgefundenen Strukturen, falls man das galliumzentrierte Ga₁₄-Polyeder als *closo*-Cluster für 14 Elementatome neu einführt. Die hohe Bildungstendenz von Docosagallanen R_8Ga_{22} beruhte dann auf dem glücklichen Umstand, daß der Verbindung ein *closo*-Elementcluster zugrunde liegt, der nicht nur die von GaR-Kappen bevorzugten Ga₄-Vierecksflächen aufweist (auch in $R_8^*Ga_{18}$ überkappen GaR*-Gruppen Vierecksflächen), sondern der exakt jene acht Vierecksflächen besitzt, die für die acht von den Wade-Mingos-Regeln für $R_8^*Ga_{22}$ geforderten Kappen benötigt werden.

Während somit die Topologie der Ga-Atome in R_8Ga_{22} durch die Wade-Mingos-Regeln gut erklärbar ist, gilt entsprechendes nicht mehr für größere Cluster (vgl. Tab. 2) und zum Teil auch nicht mehr für kleinere Cluster (z.B. $Ga_{18}R^*_8$, siehe oben). Was Cluster der Zusammensetzung R_8Ga_{22} betrifft ($R = R^*, R', R'_{Ge}$; vgl. Tab. 5), so befindet sich das Ga_{14} -Polyeder zwar in keiner bisher aufgeklärten Ga-Modifikation, doch ergibt sich aufgrund der Zentrierung mit einem Ga-Atom immerhin eine gewisse Verwandtschaft der Pakkung der Ga-Atome zu der in der Ga-(III)-Modifikation (vgl. Fig. 26c), was eine Betrachtung des Clusters auch als *metalloide Struktur*^[119] erlaubt. In der Tat spiegelt sich in der Element-Topologie der aufgefundenen, als Zwischenstufen auf dem Wege zu den betreffenden Element-Modifikationen zu deutenden (s. oben) Clusterverbindungen das Bauprinzip, d.h. die "Idee" der Modifikation wieder.

Abbildung 26. Ausschnitt aus der Ga-(III)- Hochdruckmodifikation: Das zentrale Galliumatom wird von 6, innerhalb einer Ebene liegenden Ga- Atomen ringförmig sowie oberhalb und unterhalb von je 3 Ga- Atomen koordiniert. Um diesen Ga_{13} -Körper befinden sich in nächster Nähe 10 weitere Galliumatome. Der in Abbildung 25b gezeigte Ga_{14} - Polyeder kann jedoch nicht exakt ausgeschnitten werden.

2.5.3 Zusammenfassung – Bildung von R*8Ga18 und R*8Ga22

Im Zusammenhang mit dem oben Besprochenen stellen sich insbesondere folgende beiden Fragen: Auf welche Weise bilden sich die Ga-Clusterverbindungen? und: Welche Faktoren bestimmen das Clusterwachstum? Der *Mechanismus der Bildung* von Ga-Clusterverbindungen aus Ga(I)-halogeniden GaX und Supersilylnatrium NaR* ist bisher noch nicht in Einzelheiten geklärt. Wie in Kapitel 2.2.4 angedeutet, kommt es offensichtlich zunächst zur Bildung kleinerer Clustereinheiten durch Zusammenlagerung von GaX und daraus durch Supersilanidierung hervorgegangenen Gallylens R*Ga. Diese Einheiten gehen dann nach Reaktion mit NaR* (>Ga–X + NaR* \rightarrow >Ga + NaX + R*[•]; >Ga + NaR* \rightarrow >Ga⁻ + Na⁺ + R*[•]) oder nach Eliminierung von Supersilylradikalen R*[•] in Cluster mit substituentenfreien Ga-Atomen über, die sich ihrerseits unter Addition von GaX und R*Ga zu größeren, in der beschriebenen Weise mit NaR* weiterreagierenden Clustereinheiten umwandeln usf. Entsprechendes gilt naturgemäß für die Bildung von Al-, In-, Tl-Clusterverbindungen aus niedrigwertigen Elementverbindungen und NaR* oder anderen Alkalimetallverbindungen wie NaSi(SiMe₃)₃ oder NaN(SiMe₃)₂ (vgl. Tabelle 2 auf Seite 37ff). In einem Falle wurde mit [Al₁₄I₆{N(SiMe₃)₂}₆]²⁻ sogar eine halogenhaltige Clusterverbindung erhalten^[37].

Für das *Clusterwachstum* spielen die Reaktionsbedingungen wie etwa die Art der eingesetzten niedrigwertigen Element- bzw. Alkalimetallverbindungen sowie die Art und Konzentration des verwendeten Donors eine entscheidende Rolle. Beispielsweise wird aus GaBr und NaR* in weitestgehend THF-freien Lösungen ausschließlich neutrales $R_8^*Ga_{18}$, in THF-haltigen Lösungen zusätzlich neutrales $R_8^*Ga_{22}$ gebildet (siehe oben). Die Einwirkung von NaR* auf "GaI" in THF-haltiger Lösung führt demgegenüber außer zu neutralem $R_4^*Ga_4$ zu anders zusammengesetzten und darüber hinaus negativ geladenen Ga-Clusterverbindungen $R_6^*Ga_{10}^-$ und $R_6^*Ga_{13}^-$ (siehe Kapitel 2.4).

Sicherlich endet das Wachstum eines Clusters, sobald dessen Oberfläche vollständig mit den genutzten Substituenten bedeckt ist, weil dann Anlagerungen weiterer kleinerer Clustereinheiten unmöglich werden. So führt etwa die Thermolyse des Digallanyls $[R*_2Ga-GaR*]^{\bullet}$ wohl unter R*-Eliminierung zu – sich dimerisierendem – Digallandiyl $[R*Ga-GaR*]^{\bullet}$ und kommt auf der Stufe des *tetrahedro*-Tetragallans R*₄Ga₄ zu einem vorläufigen Abschluß. Denn das Tetrahedran ist aufgrund seiner "geschlossenen" Ligandenhülle thermisch sehr stabil (m.p. 322°C/Zers.) und läßt sich nicht ohne weiteres in andere Ga-Clusterverbindungen überführen (tatsächlich läßt sich R*₄Ga₄ nur mit Na in THF bei 100°C in Na₂Ga₂R*₄•2THF umwandeln (siehe Kapitel 2.3). Das Beispiel demonstriert zugleich die Bedeutung derart gebildeter Vorstufen für die Zusammensetzung und Strukturen der letztendlich erhaltenen Clusterverbindungen als R*₄Ga₄. Natürlich besteht kein direkter Zusammenhang zwischen der Größe eines gebildeten Clusters und der Raumerfüllung seiner Substituenten, da die Clusteroberfläche – wie die Beispiele R*₈Ga₁₈, und R*₈Ga₂₂, demonstrieren – neben substituentenhaltigen auch "nackte" Ga-Atome aufweisen kann.

Einen weitereren Aspekt, nähmlich der Metallcharakter, sollte nicht außer acht gelassen werden. Die beiden Cluster R*8Ga18 und R*8Ga22 weisen bei gleicher Zahl und vergleichbarer Entfernung ihrer Supersilylreste (Abstände benachbarten Si-Atome ca. 7.70 Å) Galliumcluster mit unterschiedlicher Zahl und Anordnung der Galliumatome auf. Die Ähnlichkeit der Anordnung der Galliumatome in R*8Ga18 mit den betreffenden Galliumatomen im halbmetallartigen β-Gallium bzw. die partielle Ähnlichkeit der Anordnung der Galliumatome in R*8Ga22 mit den jenigen im metallartigen Gallium-(III) weist auf einen in Richtung $R_8^*Ga_{18} \rightarrow R_8^*Ga_{22}$ wachsenden Metallcharakter hin. Somit stellen beide Gallane Intermediate der Disproportionierung von Ga(I) dar. Beim Docosagallan ist die Konzentration der Galliumatome im "R*8-Kasten" naturgemäß höher als in Octadecagallan, ähnlich wie die Gallium-(III)-Modifikation eine höhere Galliumatomkonzentration aufweist als die β-Galliummodifikation (tatsächlich wird zur Erzeugung von Ga-(III) ein Druck von 3⁹Pa benötigt^[125]). Um diese Interpretation zu stützen, wurden von H. Schnöckel et al. für die Modellverbindungen Ga₁₈H₈ und Ga₂₂H₈ die Molekülvolumina berechnet: $V = 538.2 \text{ Å}^3$ bzw. 633.6 Å³. Hieraus erhält man Atomvolumina von 29.9 Å³ bzw. 28.8 Å³, d. h. das Atomvolumen der Galliumatome wird in Ga₂₂H₈ gegenüber Ga₁₈H₈ um 4,7 % reduziert. Eine ähnliche Volumenkontraktion um 5,1 % benötigt man für den Wechsel von β-Ga (18.55 Å³) zu Ga-(III) (17,6 Å³). $Ga_n(GaR')_8$ -Spezies mit den weniger sperrigen Hypersilylsubstituenten R' = Si(SiMe_3)_3 führen offensichtlich zu einem etwas größeren Ga₈R'₈-Käfig und folglich zu einem im Vergleich zu $R_8^*Ga_{18}$ und $R_8^*Ga_{22}$ gallium-reicheren Clusterpaar $R_8'Ga_{22}$ und $R_8'Ga_{26}^{2-}$. Analog zu den oben diskutierten Molekülvolumina ergibt sich für die Volumina von $Ga_{22}H_8$ und zum $Ga_{26}H_8^{2-}$ eine Kontraktion von 5 %, d. h. nahezu ein gleicher Wert wie für die Volumenverringerung von β-Ga zu Ga-(III) (5,1 %, s. o.). Diese Analogie der Volumenverhältnisse steht im Einklang mit der großen Ähnlichkeit der Ga(III)-Struktur zu derjenigen der [Ga₁₈(GaR')₈]-Spezies^[93].

Parallel mit der Zunahme der Galliumatomzahl im R_8^* -Käfig beim Übergang von R_8^* Ga₁₈ nach R_8^* Ga₂₂ sinkt naturgemäß die mittlere Oxidationsstufe des Galliums (von 0.44 auf 0.38), was wiederum eine Annäherung an den metallischen Zustand andeutet. Provokativ könnte man demgemäß bei den Gallanen von einer Nanostrukturierung der Elementmodifikationen im molekularen Maßstab sprechen.

3 Indiumclusterverbindungen

Für Indium und dem nächst-schwereren Element Thallium machen sich die schlechter abschirmenden 5d bzw. 6d- und 6f- Orbitale bemerkbar, welche bewirken, daß die effektive Kernladung hinsichtlich der s- Elektronen steigt und somit die beiden 5s- bzw. 6s-Elektronen weniger leicht abgegeben werden als die 2s-, 3s- und 4s- Elektronen der "leichteren" Triele Bor, Aluminium und Gallium^[2]. Als Folge hiervon nimmt die Stabilität der einwertigen Stufe "schwerer" Triele zu, so daß für Thallium die Oxidationsstufe +1 bereits am stabilisten ist.

Im Gegensatz zu den metastabilen Aluminium(I)- und Gallium(I)-Verbindungen, welche nur bei tiefen Temperaturen (-78°C) haltbar und zur Stabilisierung in Lösung Donoren wie beispielsweise NEt₃, PEt₃ oder THF benötigen (siehe Kapitel 1 und 2 sowie dort zitierte Literatur) ist demgemäß die einwertige Stufe des gruppennächsten Elements Indium bereits bei Raumtemperatur stabil: Indium(I)-halogenide InX (X = Cl, Br) sind im festen Zustand selbst bei Raumtemperatur stabil. In wässriger Lösung disproportionieren sie aller-dings bei Raumtemperatur in In und In³⁺. Doch können Lösungen von Indium(I)-bromid in THF unterhalb von -30°C aufbewahrt werden.

Zudem sind für das Element Indium eine Reihe von "Dihalogeniden" InX₂, "Sesquihalogeniden" In₂X₃ und weitere Halogenide der Zusammensetzung In_nX_m bekannt geworden (vgl. auch Einleitung). InCl₂ hat unter den Chloriden tatsächlich die Zusammensetzung In^I[In^{III}Cl₄], In₂Cl₃ die Zusammensetzung In^I₃[In^{III}Cl₆]^[129] und In₅Cl₉ die Zusammensetzung In^I₃[In^{III}₂Cl₉]^{[130],[131]} und In₇Cl₅ die Zusammensetzung In^I₃[In^{III}₂Cl₉]^{[130],[131]} und In₇Cl₅ die Zusammensetzung In^I₃[In^{III}₂Cl₉]^{[130],[131]} und In₅Cl₉ die Zusammensetzung In^I₃[In^{III}₂Cl₉]^{[130],[131]} und In₅Br₇ als In^I₃[In^{III}₂Br₆]Br^[134] zu formulieren (der Bau von In₄Br₇ ist noch unbekannt^[1]). Die In₂Br₆²⁻-Anionen weisen einem dem Ga₂X₆²⁻ analogen Bau mit einer In–In-Bindung auf. Selbst InCl zeigt bereits eine gewisse Neigung zur Bildung von In – In- Bindungen^[135].

Entsprechend den in den beiden vorangehenden Kapiteln beschriebenen Methoden zum Aufbau von Aluminium- und Galliumclusterverbindungen sollten sich Indiumclusterverbindungen zum einen durch Reduktion geeigneter Indium(III)- halogenide RInX₂ und R₂InX mit sperrigen Substituenten R wie R* oder tBu_2PhSi gewinnen lassen, zum anderen durch Substitution von X in Indium(I)- halogeniden InX und anderen Indium(I)- Verbindungen wie CpIn, Cp*In (Cp = C₅H₅, Cp* = C₅Me₅). Die auf diese Weise dargestellten, nachfolgend beschriebenen Indiumclusterverbindungen $R_4^*In_2$, (*t*Bu₂PhSi)₄In₂, $R_8^*In_{12}$ sowie $R_6^*In_8$ sind zusammen mit anderen bekannt gewordenen Indiumclusterverbindungen in Tabelle 6 wiedergegeben.

n	R _m In _n	R/X/D ^[a]	Farbe	BL [Å]	τ[°]	Lit.
2	R ₄ In ₂	Tip	hellorange	2.775	48	[136]
[b]		Dsi	orangerot	2.828	6.8	[137]
		Mes _F	orange	2.744	86	[138]
		[c]	hellgelb	2.768	0	[139]
		SitBu ₂ Ph	rotviolett	2.938	79.9	V61
		R*	violett	2.929 ^{a)}	90	V50
	In ₂ X ₄ •2D	Br/TMEDA	farblos	2.775		[149]
	In ₂ X ₃ I•2D	Br/TMEDA	gelb	2.710		[148]
	${\rm In_2X_6}^{2-}$	Br	fahlgelb	2.670		[150]
	(RIn) ₂	Cp**	gelb	3.631 ^[d]		[140]
4	R ₄ In ₄	Tsi	schwarzviolett	3.09 ^[e]		[141],[142]
	R ₆ In ₄	Tip	tiefrot	2.696		[136]
	R ₄ In ₄	Tsi	?	?		[145]
6	R ₆ In ₆	Cp*	hellgelb	3.952		[143]
8	R ₄ In ₈	DMP	rot	2.897 ^[f]		[146]
	R ₆ In ₈	R*	dunkelgrün	3.10 ^[g]		V55
12	R ₈ In ₁₂	R*	schwarz	3.05 ^[h]		V53

Tabelle 6.Bisher bekannt gewordene In-Clusterverbindungen (BL = In–In- Bindungslänge,
 $\tau = R$ -In–In-R Diederwinkel).

[a] $\mathbf{Tip} = 2,4,6-i\mathbf{Pr}_3\mathbf{C}_6\mathbf{H}_2$, $\mathbf{Dsi} = \mathbf{CH}(\mathbf{SiMe}_3)_2$, $\mathbf{Mes} = 2,4,6-\mathbf{C}_6\mathbf{H}_2\mathbf{Me}_3$, $\mathbf{Mes}_{\mathbf{F}} = 2,3,6-(\mathbf{CF}_3)_3\mathbf{C}_6\mathbf{H}_2$, $\mathbf{R}^* = \mathbf{Si}t\mathbf{Bu}_3$, $\mathbf{Tsi} = \mathbf{C}(\mathbf{SiMe}_3)_3$, $\mathbf{TMEDA} = \mathbf{Me}_2\mathbf{N}$ - $\mathbf{CH}_2\mathbf{CH}_2$ - \mathbf{NMe}_2 , $\mathbf{Cp}^* = \mathbf{C}_5\mathbf{Me}_5$; $\mathbf{Cp}^{**} = \mathbf{C}_5(\mathbf{CH}_2\mathbf{Ph})_5$; $\mathbf{DMP} = 2,6-(\mathbf{Mes}^*)_2$ - $\mathbf{C}_6\mathbf{H}_3$, $\mathbf{Mes}^* = 2,4,6$ - \mathbf{Mes}_3 - $\mathbf{C}_6\mathbf{H}_2$. - [b] Auch InS, InSe, In₄Se₃, In₄Te₃, In₅S₄, In₆S₇, In₆Se₇ enthalten In₂- Einheiten^{[1],[48],[140]} - [c] R= [-tBuN-SiMe(NtBu)-NtBu-SiMe(NtBu)-]. - [d] Van der Waals Kontakte zwischen RIn•••InR. - [e] kürzester/längster Abstand 2.875/2.933 Å. - [f] Tetrahedrane R₄In₄ sind auch mit R = C(SiMeR¹R²)_3 synthetisiert (R¹/R² = Me/Et, *n*-Bu, *i*-Pr, Ph; Et/Et) und zum Teil röntgenstrukturanalytisch charakterisiert worden. Diese sowie quantenchemische Berechnungen am System R₄In₄ sind in ^[147] beschrieben. - [g] kürzester/längster Abstand 2.814/3.191 Å.

3.1 Synthese und Charakterisierung von Vorstufen der Indiumclusterverbindungen

3.1.1 Synthesen von $R*InX_2$ und $R*InX_2 \bullet D$ ($R* = SitBu_3$)

Die Verbindungen des Typs R*InX₂•D entstehen gemäß der Gleichungen (45) durch *direkte Vereinigung* von R*InX₂ mit dem gewählten Donor D oder durch *Verdrängung* eines schwächeren Donors D' aus R*InX₂•D' durch einen stärkeren Donor D (Et₂O < THF < NEtMe₂)^[43].

$$R*InX_{2} + D \xrightarrow{(a)} R*InX_{2} D$$

$$R*InX_{2} D' + D \xrightarrow{(b)} R*InX_{2} D + D'$$
(45)

Mit Vorteil gewinnt man die Addukte R*InX₂•D gemäß Gleichung (46) direkt aus NaR* und InX₃ (Molverhältnis 1:1) in Anwesenheit des gewünschten Donors.

$$InX_3 + NaR^* \xrightarrow{+D} R^*InX_2 D$$
 (46)

Die Darstellung der donorfreien Verbindung $R*InX_2$ durch Umsetzung von $InCl_3$ mit NaR* führt zunächst zur zweifach supersilylierten Verbindung $R*_2InX$. Erst durch Erwärmen bildet sich in einer langsamen Folgereaktion gemäß Gleichung (47) $R*InX_2$. Es liegt somit ein Reaktionsverhalten, wie es in Gleichung (7) (Kapitel 1.1.1) beschreiben ist vor.

$$InX_{3} + NaR^{*} \xrightarrow{-NaX} R^{*}InX_{2}$$
(langsam)
(47)

3.1.2 Synthesen von R*₂InX und R*₂InX•D (R* = SitBu₃)

Verbindungen des Typs R_2^*InX , erhält man gemäß Gleichung (48) durch Umsetzung von InX_3 mit zwei Äquivalenten NaR* in Ab- oder Anwesenheit von Donoren^[43].

$$InX_3 + 2 NaR^* \xrightarrow{-2 NaX} R^* In-X$$

$$R^* (48)$$

Dabei könnte das bei der Umsetzung von InX_3 mit zwei Äquivalenten NaR* gebildete NaX das Reaktionsgeschehen derart beeinflussen, daß intermediär auftretendes R*InX₂, sowie auch das Edukt InX₃ mit dem schwachen Donor NaX Addukte NaInX₄ bzw. NaInX₃R* bildet. Da die Umsetzung von InCl₃ mit der doppelt stöchiometrischen Menge NaR* quantitativ zu R*₂InCl führt, beeinflußt NaX die Umsetzung offensichtlich nicht.

Das Fluorid R*InF läßt sich durch Umsetzung von Tetrasupersilyldiindan mit AgF_2 in Alkanen gewinnen wie folgt (Gleichung 49)^[43].

$$R_{2}^{*}In-InR_{2}^{*} + AgF_{2} \longrightarrow R_{2}^{*}InF$$
(49)

3.1.3 Thermolyse und Redoxverhalten von R*InX₂ und R*₂InX

Die zur Diskussion stehenden Verbindungen R*InX₂ und R*₂InX sind in Lösung relativ thermolysestabil, aber *hydrolyse* und *oxidationslabil*. Die Thermolysestabilität wächst in Richtung F > Cl > Br und in Richtung R*₂InX > R*InX₂. Nach bisherigen Erkenntnissen spalten R*InX₂ sowie R*₂InX bei thermischer Belastung in Lösung Supersilylhalogenid R*X ab. Das nach R*₂InX \rightarrow R*X + R*In ebenfalls zu erwartende Indylen R*In ist bisher unbekannt. Es zerfällt unter den Thermolysebedingungen nachweisbar in Supersilylradikale R* und elementares Indium. Die *Reduktion* (Enthalogenierung) der Verbindung R*₂InX führt, wie unten beschrieben wird, zum Tetrasupersilyldiindan R*₂In–InR*₂.

3.2 Diindane $R_2In-InR_2$ (R = SitBu₃, SitBu₂Ph)

Donorfreie ungeladene Molekülverbindungen des Typs R_4In_2 mit kovalenten In–In- Bindungen und zweiwertigen sowie dreizähligen In sind innerhalb der letzten 10 Jahre mit unterschiedlich sperrigen Resten $R = CH(SiMe_3)_2$, $C(SiMe_3)_3$, 2,4,6-*i*Pr₃C₆H₂ und 2,4,6-(CF₃)₃C₆H₂ beschrieben worden (vgl. Tabelle 6 auf Seite 77). In den Verbindungen (Cp*In)₆ und (Cp**In)₂ liegen demgegenüber nur schwache In–In-Kontakte vor (Cp* = $C_5Me_5^{[143]}$, Cp** = $C_5(CH_2Ph)_5^{[140]}$). Nachfolgend seien in diesem Zusammenhang Darstellung, Struktur und Reaktionen der Diindane R₄In₂ (R = Si*t*Bu₃, SiPh*t*Bu₂) eingegangen. Sie unterscheiden sich hinsichtlich ihrer Eigenschaften auffällig von bisher strukturell charakterisierten Diindanen.

3.2.1 Synthese und Charakterisierung von Tetrasupersilyldiindan R*₂In–InR*₂ und Tetrakis(di-*tert*-butylphenylsilyl)-diindan (*t*Bu₂PhSi)₂In–In(SiPhtBu₂)₂

Ein möglicher Syntheseweg zur Gewinnung von Digallanen und Diindanen R_4E_2 geht von Halogeniden E_2X_4 •D mit vorhandener Element-Element-Bindung aus. So konnten in der Arbeitsgruppe W. Uhl durch

Reaktion von Ga_2Br_4 •2Dioxan bzw. In_2Br_4 •2TMEDA mit vier Äquivalenten LiDsi (Dsi = CH(SiMe_3)_2) die Digallane und -indane Dsi_4Ga_2 bzw. Dsi_4In_2 gewonnen werden ^[137].

Die In–In-Bindung kann andererseits auch durch Reaktion von MR (R = Organyl- oder Silyl-Rest; M = Li, Na) mit Halogeniden InX aufgebaut werden. So isolierte A. H. Cowley et. al. als Folge der Umsetzung von LiMes_F (Mes_F = 2,4,6-C₆H₂(CF₃)₃) mit InCl das Diindan (Mes_F)₄In₂ neben Indiummetall^[138]. Auch reagiert InBr mit NaR* im Molverhältnis 1:1 unter Abscheidung von elementarem Indium zum Diindan R*₄In₂. Als weiteres Reaktionsprodukt konnte Supersilyldisilan R*–R* nachgewiesen werden^[45]. Setzt man desweiteren InBr bzw. Cp*In (Cp* = C₅Me₅) mit NaSitBu₂Ph in THF/Pentan (InBr; 2 / 1 Anteile, Versuch 61 bzw. Pentan (Cp*In, Versuch 62) bei -78°C um, so wird als einziges lösliches Reaktionsprodukt das Diindan (tBu₂PhSi)₂In–In(SiPht/Bu₂)₂ neben (tBu₂PhSi)₂ und metallischem In nachgewiesen. Die Umsetzung von Cp*In mit NaSitBu₂Ph in Pentan führt also nicht – wie erhofft – zu einem R_mIn_n-Cluster (n > 2) (Versuch 62). Der Grund für diese Annahme war, daß unter identischen Reaktionsbedingungen, wie im Kapitel 3.4 beschrieben, aus Cp*In und NaR* in Pentan bei -78°C das Octaindan R*₆In₈ isoliert werden konnte (vgl. Kapitel 3.4).

Die ebenfalls zum Diindan führenden Reaktionen von CpIn (Versuch 56) oder InN(SiMe₃)₂ (Versuch 57) mit NaR* bzw. NaSi*t*Bu₂Ph sind mit einer Oxidation von ein zu zweiwertigen Indium verbunden. Da NaR* bzw. NaSi*t*Bu₂Ph nicht als Oxidationsmittel wirkt, muß sich gleichzeitig aus der jeweiligen In^I- Verbindung elementares In bilden. In einem ersten Schritt findet im Falle von InBr vermutlich eine Substitution von Br⁻ gegen R = *t*Bu₃Si⁻ bzw. *t*Bu₂PhSi⁻ statt, wobei gebildetes RIn sich aber nicht wie im Falle von TsiIn (Tsi = C(SiMe₃)₃, erzeugt aus InBr und LiTsi, tetramerisiert (Bildung von Tsi₄In₄)^[142]. Es wäre denkbar, daß gelöstes RIn mit einem weiteren Äquivalent NaR zu einem löslichem [Na]⁺[R₂In]⁻ reagiert, welches anschließend auf der Oberfläche von ungelöstem InBr, unter dessen Reduktion zu elementarem Indium, zum Radikal R₂In[•] oxidiert wird (siehe Reaktionsschema 50).

Einen weiteren Syntheseweg von Tetrasupersilyldiindan besteht in der Umsetzung von InCl₃ mit drei Äquivalenten NaR* in THF. Tropft man zu einer auf -78°C gekühlten Suspension von InCl₃ in THF eine Lösung von NaR* in THF, so bildet sich bei -78°C zunächst das zweifach supersilylierte Indium(III)-chlorid R*₂InCl (siehe Kapitel 3.1.2). Im Zuge des langsamen Erwärmens auf Raumtemperatur reagiert das gebildete Disupersilylindiumchlorid mit dem verbleibenden Äquivalent NaR* zu Tetrasupersilyldiindan R*₄In₂ neben Superdisilan R*₂ (Versuch 50).

$$2 \operatorname{InCl}_{3} + 6 \operatorname{NaR}^{*} \xrightarrow{-78^{\circ}\mathrm{C}}_{-6 \operatorname{NaCl}} \xrightarrow{R^{*}}_{R^{*}} \operatorname{In-In}_{R^{*}} + R^{*} - R^{*}$$
(51)

Der Reaktionsablauf entspricht somit dem der Bildung von $R_4^*Al_4$ aus AlX_3 und NaR^* . R_2^*InCl reagiert mit NaR* vermutlich zunächst zu den Radikalen $R_2^*In^{\bullet}$ und R^* , welche sich aus sterischen Gründen, trotz des größeren Radius von Indium (Kovalenzradien für Al(I): 1.25 Å; In(I) 1.44 Å^[1]), nicht zu R_3^*In , sondern nur zu $R_2^*In-InR_2^*$ und R_2^* vereinigen können. Der zweite Syntheseweg $InX_3 + NaR^*$ ist aufgrund der maximal erzielbaren Ausbeuten derjenigen aus InX und NaR* zu bevorzugen.

3.2.2 Kristallstruktur von R*₂In–InR*₂

Die aus benzolischen Lösungen gewonnen Kristalle ermöglichen im Gegensatz zu der in ^[45] beschriebenen aus Pentan isolierten Kristalle (monoklin, C2/c) eine genauere *Röntgenstrukturanalyse*. Diindan R*₄In₂, dessen Bau in Abbildung 27 zusammen mit ausgewählten Bindungslängen und -winkeln wiedergegeben ist weist als zentrales Strukturelement ein Si₂In–InSi₂-Gerüst der angenäherten Symmetrie D_{2d} auf: Die In-Atome sind jeweils trigonal-planar von zwei Si-Atomen und einem In-Atom koordiniert, wobei die InInSi₂-Ebenen zueinander nahezu orthogonal aufgespannt sind (SiIn–InSi-Torsionswinkel gleich 86.98°). Für das gruppenhomologe Dialan ist der Diederwinkel genau 90°C. Dies ist insofern von Interesse, als in Verbindungen R₄In₂ mit weniger sperrigen Substituenten die Winkel zwischen den InInSi₂-Ebenen deutlich kleiner als 90° sind (zum Vergleich: [Dsi₄In₂: 6.7°; Tip₄In₂: 48° mit Dsi = CH(SiMe₃)₂ und Tip = 2,4,6-*i*Pr₃C₆H₂). Die hohe Raumerfüllung der Supersilylgruppen führt des weiteren zu einem ungewöhnlich großen In–In-Abstand von 2.929(2) Å und weist somit nach (*t*Bu₂PhSi)₄In₂ die zweitlängste In–In-Bindung eines Diindans auf (zum Vergleich: [Tip₄In₂: 2.775 Å; Dsi₄In₂: 2.828 Å; (*t*Bu₂PhSi)₄In₂: 2.938 Å).

Trotzdem lassen sich bei Raumtemperatur in R*₄In₂- Lösungen ESR-spektroskopisch keine Disupersilylindanyl-Radikale R*₂In[•] nachweisen. Offensichtlich wird die sterisch bedingte Schwächung der In–In-Bindung im Diindan in gleicher Weise wie die der Si–Si-Bindung im Superdisilan R*–R*^{[50],[51]} durch van-der-Waals- Attraktionen der peripheren Methylgruppen kompensiert. Die gegenseitige sterische Behinderung der Supersilylgruppen in der In–In-Bindungsregion hat des weiteren einen langen In–Si Abstand zur Folge. Mit durchschnittlich 2.786 Å liegt er deutlich über den theoretisch aus der Summe der Kovalenzradien berechneten Wert Si (1.17 Å) und In (1.44 Å) (In-Si_{theor.} = 2.61 Å). Außerdem ergibt sich aufgrund des enormen Raumanspruchs der Supersilylgruppe ein außergewöhnlich großer Si–In–Si-Winkel von 130.13°, der jedoch vom Si–Al–Si- Winkel (128.3°) des Dialans $R*_4Al_2$ noch unterboten wird. Erwartungsgemäß weist $R*_4In_2$ darüber hinaus vergleichsweise lange Si–C-Bindungen und kleine C–Si–C-Winkel von durchschnittlich 1.96 Å und 109.6° auf (Normalbereiche: 1.94-1.95Å, 110-192°^[51]).

Abbildung 27. Struktur von $R_4^*In_2$ im Kristall und verwendete Atomnumerierung (Raumgruppe C 2/c; SCHAKAL-Plot; Atome mit willkürlichen Radien; H-Atome übersichtlichkeitshalber unberücksichtigt). Wichtige Bindungslängen [Å] und -winkel [°]: In1–In1A 2.928(3), In1–Si1/In1A–Si1A 2.7835(6), In1–Si2/In1A–Si2A 2.7886(6), Si1–C1 1.958(2), Si1–C5 1.961(3), Si1–C9 1.960(3) [Mittelwert der Si–C-Abstände 1.96]; C1–C2 1.550(4), C1–C3 1.542(4), C1–C4 1.546(4); – Si1–In1–Si2/Si1A–In1A–Si2A 130.13(2), Si1–In1–In1A / Si1A–In1A–In1 115.41(14), Si2–In1–In1A/Si2A–In1A–In1 114.415(14) [Winkelsumme bei In1/In1A 359.96], C1–Si1–C9 109.82(12), C1–Si1–C5 110.29(12), C1–Si1–In1 105.23(8), C9–Si1–C5 108.79(12), C9–Si1–In1 108.49(8), C5–Si1–In1 114.13(8) [Mittelwert der CSiC- Winkel 109.6°]; – Si–In–In–Si 86.98°; Operator: A. Purath, H. Schnöckel.

3.2.3 Kristallstruktur von (tBu₂PhSi)₂In–In(SiPhtBu₂)₂

Der *röntgenstrukturanalytisch* geklärte Bau von (tBu_2PhSi)₄In₂ (triklin, P-1) ist in Abbildung 28 zusammen mit ausgewählten Bindungslängen und -winkeln wiedergegeben. Die In-Atome des zentralen Si₂In–InSi₂- Gerüsts sind jeweils trigonal-planar von zwei Si-Atomen und einem In-Atom koordiniert (Winkelsumme am In: 359.90°), wobei die InInSi₂-Ebenen zueinander noch weniger orthogonal liegen (SiIn–InSi-Torsionswinkel gleich 79.91°) als im R*₄In₂ (86.98°) mit den raumerfüllenden R*- Gruppen, aber orthogonaler zueinander stehen als im Tip₄In₂ (48°) oder in Dsi₄In₂ (6.7°) mit den weniger sperrigen Gruppen Tip = 2,4,6-*i*Pr₃C₆H₂ und Dsi = CH(SiMe₃)₂. Die *t*Bu₂PhSi-Gruppen führen zu einem größeren In–In-Abstand (2.938(1) Å) als der in R*₄In₂ aufgefundenem (2.928 Å; Abstände im Trip₄In₂: 2.775 Å; Dsi₄In₂: 2.828 Å). Möglicherweise werden die van-der-Waals- Attraktionen der *t*Bu₂PhSi-Gruppen in (*t*Bu₂PhSi)₄In₂ – wegen der geringeren Verdrillung um die In–In- Bindung – nicht im selben Maßstab wirksam, wie dies im Fall der Supersilylgruppen R* in R*₄In₂ möglich ist.

Abbildung 28. Struktur von $(tBu_2PhSi)_4In_2$ im Kristall und verwendete Atomnumerierung (Raumgruppe P-1; SCHAKAL-Plot; Atome mit willkürlichen Radien; H-Atome Übersichtlichkeitshalber unberücksichtigt). Wichtige Bindungslängen [Å] und -winkel [°]: In1–In2 2.938(1), In1–Si1 2.655(2), In1–Si2 2.795(1), In2–Si3 2.826(2), In2–Si4 2.671(1) [Mittelwert der In–Si-Abstände 2.737], Si1–C1 1.923(5), Si1–C5 2.017(5), Si1–C9 1.987(6) [Mittelwert der Si–C-Abstände 1.96], C1–C2 1.550(4), C1–C3 1.542(4), C1–C4 1.546(4); – Si1–In1–Si2 122.74(5), Si1–In1–In2 117.73(4), Si2–In1–In2 119.43(4), Si4–In2–Si3 120.10(5), Si4–In2–In1 113.50(4), Si3–In2–In1 126.39(3) [Winkelsumme bei In1/In2: 359.90/359.99; Mittelwert der Si–In–Si- Winkel 120.1°], C1–Si1–C9 110.3(2), C1–Si1–C5 112.6(2), C1–Si1–In1 106.80(15), C9–Si1–C5 108.2(2), C9–Si1–In1 108.8(2), C5–Si1–In1 110.13(15), [Mittelwert der CSiC- Winkel 110.4°], Si–In–In–Si 79.91°; Operator: D. Fenske.

Trotz der langen In–In- Bindung in $(tBu_2PhSi)_4In_2$ lassen sich bei Raumtemperatur keine $(tBu_2PhSi)_2In^{\bullet}$ -Radikale ESR-spektroskopisch nachweisen. Offensichtlich reichen die van-der-Waals Attraktionen der peripheren Phenyl- und Methylgruppen aus, um die sterisch bedingte Schwächung der In–In-Bindung im betreffenden Diindan in gleicher Weise wie in R*₄In₂ zu kompensieren.

Die gegenseitige sterische Behinderung der tBu_2PhSi -Gruppen in der In– In-Bindungsregion hat des weiteren einen langen In–Si Abstand zur Folge. Mit durchschnittlich 2.737 Å liegt er deutlich über den theoretisch aus der Summe der Kovalenzradien von Si (1.17 Å) und In (1.44 Å) berechneten Wert (In-Si_{theor.} = 2.61 Å); er ist jedoch um etwa 0.05 Å kleiner als im $R_4^*In_2$. Die Si– In–Si-Winkel liegen mit 122.7° und 120.1° nahe bei 120°, was man für eine ideal trigonal planar koordinierte Umgebung am Indiumatom erwarten würde. $R_4^*In_2$ hat einen um 10° größeren Winkel, der durch den größeren Raumanspruch der Supersilylgruppen gegenüber dem der tBu_2 PhSi-Gruppe bewirkt wird. Erwartungsgemäß weist $(tBu_2$ PhSi)₄In₂ darüber hinaus vergleichsweise lange Si–C-Bindungen und kleine C–Si–C-Winkel von durchschnittlich 1.96 Å und 110.4° auf. Der Abstand Si–Ph ist dabei geringfügig länger als der Abstand Si–*t*Bu (Mittelwerte Si–C(Ph): 2.01 Å und Si–C(*t*Bu): 1.96 Å).

3.2.4 Charakterisierung von R*₄In₂ und (*t*Bu₂PhSi)₄In₂

Die bis jetzt bekannt gewordenen Diindane zeigen mit wachsendem Diederwinkel wie die Dialane zwischen den beiden Si–In–Si- Ebenen einen bathochromen Effekt im UV/Vis- Spektrum (vgl Dialane, Kapitel 1.2.2). So ist das von Veith et. al. dargestellte und nahezu planare Diindan R_4In_2 mit R =

Abbildung 29. Abhängigkeit der für die Metall-Metall-Bindung charakteristischen UV/VIS Absorption in den Diindanen R₄In₂ vom Diederwinkel der beiden Si–In–Si- Ebenen

[-tBuN-SiMe(NtBu)-NtBu-SiMe(NtBu)-] farblos (UV/VIS-Daten liegen nicht vor)^[139]. Allerdings weist In hier die Koordinationszahl 4 auf. Das orangerote Dsi₄In₂ (Dsi = CH(SiMe₃)₂) hat eine im UV/VIS-Spektrum der Metall-Metall-Bindung zuordbare Absorption bei 380 nm (Diederwinkel 6.5°). Das Tip₄In₂ (Tip = 2,4,6-*i*PrC₆H₂) mit einem Diederwinkel von 48° ist hellorangefarben (UV/VIS-Daten liegen nicht vor) und das rotviolette (*t*Bu₂PhSi)₄In₂ hat eine Absorption bei 530 nm (Diederwinkel 80°), wohingegen R*₄In₂ eine violette Verbindung mit einer UV/VIS-Absorption bei 560 nm und einem Diederwinkel von 87° ist.

3.2.5 Reaktivität der Diindane R*4In2 und (tBu2PhSi)4In2 sowie Bildung des Heterocubans R*4In4Se4

 $R_{4}^{*}In_{2}$ ist *thermolabiler* als $(tBu_{2}PhSi)_{4}In_{2}$ und zersetzt sich in Heptan bei 100°C nach 18 Stunden vollständig unter Abspaltung von Supersilylradikalen R^{*} in das Dodecaindan $R_{8}^{*}In_{12}$ (Versuch 53). Diese Indiumclusterverbindung $R_{m}In_{n}$ weist ein kleineres *m* zu *n* Verhältnis (2 : 3) als das im betreffenden Diindan (4 : 2) auf. In Donorlösungsmitteln wie z.B. [D8]-THF bleibt die Clusterbildung jedoch aus und es lassen sich nach 20 Stunden bei 100°C nur R*D, R*–R* und metallisches Indium nachweisen.

Vom Diindan $(tBu_2PhSi)_4In_2$ entstehen laut NMR-Spektren von [D12]Cyclohexanlösungen bei 80°C selbst nach 215 Stunden keine Thermolyseprodukte. Erst nach 12 Stunden bei 140°C bildet sich unter Abspaltung von tBu_2PhSi^{\bullet} -Radikalen, welche mit dem Lösungsmittel unter D-Abstraktion zu tBu_2PhSiD abreagieren, an der Glaswand ein Indiumspiegel. Die Bildung von Indiumclusterverbindungen bleibt unter diesen Bedingungen aus (Versuch 63).

Die Diindane $R_{4}^*In_2$ und $(tBu_2PhSi)_4In_2$ sind *photolytisch* merklich stabiler als $R_{4}^*Al_2$ (siehe Kapitel 1.2) bzw. $R_{4}^*Tl_2$ oder $(tBu_2PhSi)_4Tl_2$ (siehe Kapitel 4.1). Während sich Lösungen beider Diindane in Kohlenwasserstoffen gegenüber dem Tageslicht als stabil erweisen, zersetzen sich die gruppenhomologen Verbindungen unter ähnlichen Reaktionsbedingungen zu unterschiedlichen Produkten (siehe Kapitel 1.2.3 und 4.1.4).

Die *Reduktion* des Diindans $R_4^*In_2$ mit Natrium in C_6D_6 bei 40°C führt zu den Produkten R^*D , $R^*-C_6D_5$, R^*-R^* und Supersilylnatrium NaR*, die *Oxidation* der Diindane $R_4^*In_2$ und $(tBu_2PhSi)_4In_2$ mit Luftsauerstoff zu R*OH bzw. $tBu_2PhSiOH$. Produkte $R_2In-Y-InR_2$ (Y = O) letzterer Reaktion, wie sie für die Diindane mit $R = CH(SiMe_3)_2$ und Y = Se, Te gefunden wurden^[151], konnten bis jetzt nicht isoliert werden.

Erwärmt man jedoch $R_{4}^*In_2$ in Gegenwart von elementarem Selen in Heptan 7 Stunden auf 90°C, so erhält man überraschenderweise das Heterocuban $R_{4}^*In_4Se_4$ (Versuch 51). Unter diesen Reaktionsbedingungen wird also die in Abwesenheit von Selen zu dem Dodecaindan $R_8^*In_{12}$ führende Reaktion (siehe Kapitel 3.3) unterbunden. Der Bildungsweg des Heterocubans ist noch unklar. Möglicherweise entsteht aus $R_4^*In_2$ unter Eliminierung von R^* zunächst das Indylen R^*In , daß mit Selen auf dem Wege über R^*InSe und $(R^*InSe)_2$ in $(R^*InSe)_4$ und in Abwesenheit auf dem Wege über $(R^*In)_6$ und $R_4^*In_6$ in $R_8^*In_{12}$ übergeht. Die gebildeten Supersilyl-Radikale R^* dimerisieren sich ihrerseits rasch zu "Superdisilan" R^*-R^* , das bei diesen Reaktionsbedingungen unter H-Aufnahme in "Supersilan" R^*-H übergeht: $R^*-R^* \rightarrow 2 R^*$ (+ 2 H $\rightarrow 2 R^*-H$).

3.2.6 Kristallstruktur von R*₄In₄Se₄

Der Bau des in Form von gelben Würfeln kristallisierende, *röntgenstrukturanalytisch* geklärte Heterocubans ist in Abbildung 30 zusammen mit ausgewählten Bindungslängen und -winkeln wiedergegeben. Zentrales Strukturelement ist ein verzerrter Würfel dessen Ecken alternierend durch Indium und Selen besetzt sind (vgl hierzu Tsi₄In₄Se₄ mit Tsi = C(SiMe₃)₃^[142], R*₄Al₄O₄^[45] und R*₄Ga₄O₄^[54]).

Der Bau von R*₄In₄Se₄ läßt sich auch ausgehend von einem In₄-Tetraeder beschreiben (In–In–In-Winkel zwischen 59.53 und 60.07°; siehe die gestrichelten Linien in Abbildung 30) wobei die Tetraederflächen von je einem Se- Atom überkappt sind. Damit haben die In- Atome verzerrt tetraedrische Koordination von je drei Se- Atomen und einem Si- Atom (Si–In–In-Winkel durchschnittlich 96.5°). Die In–In- Abstände mit durchschnittlich 3.553 Å (kleinster/größter Abstand: 3.532/3.573 Å) liegen jenseits typischer kovalenter In–In- Bindungslängen (vgl. Tabelle 6 auf Seite 77). So hat selbst das Diindan (*t*Bu₂PhSi)₄In₂ mit der bisher längsten In–In- Bindung einen In–In-Abstand von 2.938 Å (siehe Kapitel 3.2.3). Damit unterscheidet sich das R*₄In₄Se₄ deutlich von R*₄Al₄O₄ und R*₄Ga₄O₄, in welchen die E–E- Abstände (2.612/2.719 Å) im Kovalenzbereich liegen (zum Vergleich: R*₄Al₄O₄ / R*₄Ga₄O₄ 2.612 / 2.710 Å; R*₄Al₄ bzw. R*₄Ga₄ bei 2.604 / 2.572 Å). Die In–Se–Abstände (2.682 Å) sind größer als im Tsi₄In₄Se₄ (2.667 Å^[142]) bzw. in gewinkeltem Dsi₂In–Se–InDsi₂ (2.519 Å^[151]). Die In–Se–In-Winkel sind durch die Geometrie des Moleküls fest-gelegt und betragen im Mittel 83.2°.

Die Si–C- Bindungslängen und C–Si–C- Bindungswinkel (1.94 Å; 112.2°) liegen im normalen Bereich (1.93-1.94 Å; 110-112°)^[51].

Abbildung 30. Struktur von R_4^* Se₄In₄ im Kristall und verwendete Atomnumerierung (Raumgruppe Pa-3; SCHAKAL-Plot; Atome mit willkürlichen Radien; H-Atome übersichtlichkeitshalber unberücksichtigt). Die gestrichelten Linien geben das In₄-Gerüst an, wobei der mittlere Wert der In–In- Abstände 3.553 Å beträgt; Wichtige Bindungslängen [Å] und -winkel [°]: In1-Si1 2.5774(17), In1-Se2 2.6806(12), In1-Se1 2.6815(8), In2-Si2 2.565(3), In2-Se1 2.6794(9), Si1-C1 1.940(6), Si1-C5 1.947(6),Si1-C9 1.949(6) [Mittelwert der Si–C-Abstände 1.95], C1-C2 1.543(8), C1-C3 1.537(8), C1-C4 1.540(9); – Si1-In1-Se1 120.78(4), Si1-In1-Se2 121.58(4), Se1-In1-Se2 96.27(2), Si1-In1-Se1 119.39(4), Se1-In1-Se1 97.01(3), Se2-In1-Se1 95.94(2), Si2-In2-Se1 119.905(18), Si2-In2-Se1 120.119(18), Se1-In2 Se1 97.16(2), Si2-In2-Se1 120.130(17), Se1-In2-Se1 97.20(2), Se1-In2-Se1 96.98(2), In1-Se1-In2 82.76(2), In1-Se1-In1 83.57(2), In2-Se1-In1 82.44(2), In1-Se2-In1 83.59(3), In1-Se2-In1 83.63(3), In1-Se2-In1 83.43(3), C1-Si1-C5 112.4(3), C1-Si1-C9 112.5(3), C5-Si1-C9 113.4(3), C1-Si1-In1 106.31(18), C5-Si1-In1 106.39(19), C9-Si1-In1 105.07(19) [Mittelwert der CSiC- Winkel 112.7°]; – In-In-In Mittelwert: 60.1°; Operator: D. Fenske.

3.3 Octasupersilyldodecaindan R*8In12

Wie in den Kapiteln Aluminium- und Galliumclusterverbindungen beschrieben wurde, führt die Thermolyse von $R^*_2AI-AIR^*_2$ bzw. $[R^*_2Ga-GaR^*]^{\bullet}$ in Alkanen bei 100°C (im ersteren Falle auf dem Wege über $R^*_3Al_2^{\bullet}$) zu $R^*_4Al_4$ und $R^*_4Al_3^{\bullet}$ bzw. zu $R^*_4Ga_4$. Ausgelöst werden die im Sinne von 2 $R^*_4Al_2 \rightarrow R^*_4Al_4$ + 4 R* bzw. 2 $R^*_3Ga_2^{\bullet} \rightarrow R^*_4Ga_4 + 2$ R* erfolgenden Elementclustervergrößerungen durch thermische Dissoziationen von Element-Supersilyl-Bindungen, die im Falle des Digallans so leicht erfolgen, daß bisher anstelle von $R^*_4Ga_2$ nur supersilylärmeres $R^*_3Ga_2^{\bullet}$ isoliert werden konnte. Die gebildeten Supersilyl-Radikale $R^{*\bullet}$ dimerisieren sich ihrerseits rasch zu "Superdisilan" R^*-R^* , das bei 100°C in Alkanen langsam unter H-Aufnahme in "Supersilan" R^*-H übergeht: $R^*-R^* \rightarrow 2 R^{*\bullet}$ (+ 2 H $\rightarrow 2 R^*-H$).

Hiernach sollte durch Thermolyse von Tetrasupersilyldiindan $R_2^{*}In-InR_2^{*}$ zum Beispiel das Tetrahedran $R_4^{*}In_4$ als weiteres Indatetrahedran neben zwei bisher bekannt gewordenen Tetraorganyl-*tetrahedro*-Tetraindanen R_4In_4 ($R = C(SiMe_3)_3^{[142]}$ und $C(SiMe_2Et)_3^{[147]}$) als Thermolyseendprodukt zugänglich sein (vgl. Schema 53).

3.3.1 Synthese und Charakterisierung von R*8In12

Tatsächlich thermolysiert R*₄In₂, in siedendem Heptan (ca. 100°C) nach 22 h vollständig zu Supersilan R*–H und einem supersilylgruppen- und indiumhaltigen Produkt. Aus der dunklen Reaktionslösung fallen bei Raumtemperatur nach Ersatz des Heptans durch Benzol im Laufe von Tagen schwarzviolette, wasserund luftempfindliche, thermisch vergleichsweise stabile, in Heptan, Benzol oder Toluol selbst bei 100°C praktisch unlösliche Kristalle aus, die nach röntgenstrukturanalytischen Studien überraschenderweise nicht aus Tetrasupersilyl-*tetrahedro*-tetraindan-Molekülen, sondern aus Octasupersilyldodecaindan-Molekülen R*₈In₁₂ aufgebaut sind (Versuch 53). Somit erfolgt die Thermolyse des Diindans R*₄In₂ bei 100°C unter weitergehenderer Eliminierung von Supersilyl-Radikalen als die des Dialans R*₄Al₂ oder Digallanyls R*₃Ga₂[•], und es kommt demgemäß in ersterem Falle zu einer ausgeprägteren Elementcluster-Vergrößerung als in letzteren Fällen. Die thermische, letztendlich zu Indium führende Zersetzung des Diindans [vgl. Gl. 54a] findet mit anderen Worten bei einer elementreicheren Clusterstufe ihren vorläufigen Abschluß [vgl. Gl. 54b] als die des Dialans oder Digallanyls.

3.3.2 Kristallstruktur von R*8In12

In Abbildung 31 ist der Bau des Moleküls $R_{8}^*In_{12}$ (Lokalsymmetrie S_4) im Kristall wiedergegeben. Hiernach liegt ein geschlossenes Polyedergerüst aus 20 Dreiecksflächen und 12 In-Atomen vor, das allerdings keine Kugelform wie etwa ikosaedrisch gebautes $B_{12}H_{12}^{2-}$ aufweist^[1], sondern einem langgestreckten Ellipsoid gleicht. Je 4 In-Atome an den Ellipsoidenden tragen jeweils eine und 4 In-Atome in der Ellipsoidmitte keine Supersilylgruppe. Die 4 kugelförmigen R*-Reste am Ellipsoidende sind verzerrt-tetraedrisch gepackt.

Abbildung 31. Ansicht der Struktur von $R_{8}^*In_{12}$ im Kristall (SCHAKAL-Plot, Wasserstoffatome übersichtlichkeitshalber nicht gezeichnet). Für ausgewählte Abstände und Winkel siehe Abbildung 32.

Hierin kommt die – auf van-der-Waals-Wechselwirkungen zurückgehende^[51] – Tendenz der Supersilylgruppen zu dichtester Zusammenlagerung zum Ausdruck. Ihr hat sich die Anordnung der In-Atome am In_{12} -Clusterende zu "fügen". Die R*-Reste wirken also hinsichtlich der vorliegenden Gestalt des In_{12} -Clusters, der als Ausschnitt aus elementarem Indium (verzerrt-kubisch-dichteste Atompackung^{[1],[6]}) beschrieben werden kann, in gewissem Sinne strukturbestimmend. Der Längsdurchmesser des In_{12} -Clusters beträgt ca. 750 pm. Somit führt der Clusteraufbau im Zuge der Thermolyse (54b) schon fast in den Bereich der nanostrukturierten Materialien.

Abbildung 32. Ansicht der in zwei R*₄In₆-Oktaedern gegliederten Struktur von R*₈In₁₂ im Kristall und verwendete Atomnumerierung (Lokalsymmetrie S₄; SCHAKAL-Plot; Atome mit willkürlichen Radien; tBu-Gruppen übersichtlichkeitshalber nicht wiedergegeben). Ausgewählte Bindungslängen [Å] und -winkel [°] (wiedergegeben ist jeweils nur ein Abstand und Winkel eines Bindungs- und Winkelsatzes; allerdings gilt die zugrundegelegte S₄-Symmetrie nur angenähert): In1-In2 3.091(2), In1-In3 2.948(1), In1-In4 3.173(2), In1-In5 2.814(2), In3-In5 3.191(1) (die äquivalenten Abstände In4-In6/In7-In10/In9-In12 betragen 3.192(2)/3.267(1)/3.307(2)), In3-In6 3.141(2), In3-In7 3.037(2), In5-In7 3.004(1), In5-In8 3.009(1), In5-In9 3.059(2), In1-Si3 2.668(3), In3-Si1 2.685(3), Si-C (Mittelwert) 1.94. - In5-In1-In3 67.21(3), In5-In1-In2 94.41(3), In3-In1-In4 93.40(5), In3-In1-In2 64.06(3), In5-In1-In4 62.49(3), In2-In1-In4 55.81(3), In1-In3-In7 111.63(4), In1-In3-In6 90.82(4), In7-In3-In5 57.62(3), In7-In3-In2 109.25(4), In5-In3-In2 85.37(4), In7-In3-In6 58.32(3), In1-In3-In5 54.38(3), In6-In3-In5 68.73(4), In1-In3-In2 60.13(4), In1-In5-In7 116.62(4), In7-In5-In8 72.42(4), In7-In5-In9 61.59(3), In1-In5-In4 64.41(3), In1-In5-In8 121.77(4), In1-In5-In9 173.68(4), In8-In5-In9 64.07(3), In7-In5-In4 109.27(4), In8-In5-In4 59.06(4), In1-In5-In3 58.41(3), In8-In5-In3 107.68(4), In4-In5-In3 89.87(4), In9-In5-In4 121.84(4), In7-In5-In3 58.61(4), In9-In5-In3 118.73(4), Si3-In1-In2 135.62(7), Si1-In3-In1 136.22(8), C-Si-C (Mittelwert) 111.3; Operator: W. Ponikwar.

Einen besseren Einblick in die vorliegenden Strukturverhältnisse von $R_8^*In_{12}$ gewährt die in Abbildung 32 – zusammen mit ausgewählten Bindungslängen und -winkeln – wiedergegebene Darstellung des In₁₂-Polyeders, wobei übersichtlichkeitshalber alle *tert*-Butylgruppen weggelassen wurden. Hiernach besteht der In₁₂-Cluster aus zwei verzerrt-oktaedrischen In₆-Baueinheiten.

Die In-In-Abstände erstrecken sich von rund 2.80 bis 3.30 Å. Sie sind im Mittel kürzer als die In–In-Bindungslängen im Indiummetall und länger als jene in anderen untersuchten niedrigwertigen ungeladenen Indiumverbindungen (vgl. Tabelle 6 auf Seite 77). Innerhalb der beiden In₆-Cluster findet man vergleichsweise unterschiedliche In–In-Abstände; demgegenüber betragen die In–In-Abstände zwischen den beiden In₆-Oktaedern übereinstimmend ca. 3.00 Å. Die Si–In-Abstände sind mit rund 2.68 Å etwas kürzer als jene im Diindan R*₄In₂ (rund 2.78 Å; siehe Kapitel 3.2.1), was darauf deutet, daß sich die Supersilylgruppen im Dodecaindan sterisch weniger behindern als im Diindan. In die gleiche Richtung weisen auch die Si–C-Abstände und C–Si–C-Winkel der Supersilylgruppen, die mit durchschnittlich 1.94 Å und 111.3° im Normalbereich von 1.94 - 1.95 Å und 110 - 112° liegen ^[51] (vgl. R*₄In₂: 1.95 Å und 109.7° siehe Kapitel 3.2.2).

Da die R*In-Gruppen je 2 Elektronen, die In-Atome nur je 1 Elektron (inertes s-Elektronenpaar!) dem In₆-Gerüst der beiden Oktaeder von R*₈In₁₂ zur Verfügung stellen, errechnen sich 10 = 2 n - 2 Gerüstelektronen (n = Zahl der Gerüstatome) für je eine der beiden R*₄In₆-Einheiten. Nach den Skelettelektronen-Abzählregeln von Wade und Mingos^[1] ist dann R*₄In₆ als zweifach-überkappte *closo*-In₄-Verbindung (,,hypopräcloso-Verbindung"; zweifach-überkappter In₄-Tetraeder) zu klassifizieren. Das im folgenden Kapitel 3.4.1 beschriebene, in Substanz isolierte und charakterisierte R*₆In₈ ist hinsichtlich seiner Gerüstelektronenzahl (14 Elektronen) ein homologes Indan zu R*₄In₆. Gemäß des röntgenstrukturanalytisch geklärten Baus des dort vorliegenden In₈-Clusters (zweifach-überkapptes In₆-Oktaeder) stellt das Octaindan R*₆In₈ eine hyporpräcloso-Verbindung dar. Insgesamt ist das Dodecaindan R*₈In₁₂ als *conjuncto*-Indan zu beschreiben (vgl. hierzu den Borwasserstoff B₂₀H₁₆^[1]).

Demnach erscheint es denkbar, daß das Dodecaindan $R_{8}^*In_{12}$ aus dem Diindan $R_{4}^*In_{2}$ über ein zwischenzeitlich gebildetes Hexaindan $R_{4}^*In_{6}$ entsteht, wobei sich letzteres zum Dodecaindan dimerisiert. Tatsächlich bildet sich selbst bei 95°C in Heptan, Benzol oder Toluol unlösliches $R_{8}^*In_{12}$ aus zunächst im Reaktionsgemisch nachweisbaren löslichen Vorstufen. NMR-spektroskopische Untersuchungen zeigen, daß sich das Tetrasupersilyldiindan nach 22 Stunden vollständig zersetzt hat. Die im ²⁹Si-NMR gemessenen Signale bei 64.9 und 50.9 ppm weisen auf das Vorhandensein löslicher und demzufolge kleiner Indiumclusterverbindungen hin. Das aus benzolischer Lösung auskristallisierbare Dodecaindan $R_{8}^*In_{12}$ liefert aufgrund seiner Unlöslichkeit keine NMR-Signale. Der *Bildungsmechanismus* von $R_{8}^*In_{12}$ ist noch unklar. Da die entsprechenden Thermolysen von gruppenhomologen Tetrasupersilyldialan und Tetrasupersilyldigallan in donorfreien Lösungsmitteln unter Abspaltung von Supersilylradikalen R^* zu Trisupersilylditrielanyl $R_{3}^*E_{2}^{\bullet}$ bzw. Tetrasupersilylcyclotritrielanyl $R_{4}^*E_{3}^{\bullet}$ erfolgen (E = Al, Ga), wäre es denkbar, daß Tetrasupersilyldiindan im Sinne von Reaktionsschema (55) thermisch vergleichbar zerfällt. Es könnte aber auch der im Reaktionsschema (52) skizzierte Zersetzungsweg eingeschlagen werden.

Die bei 50°C bis 95°C durchgeführten ESR-spektroskopischen Untersuchungen thermolytischer R_4In_2 -Lösungen bestätigen das Auftreten von mindestens 2 radikalischen Spezies, jedoch konnten diesen Signalen keine eindeutigen Verbindungen zugeordnet werden. Die im Reaktionsschema (55) wiedergegebenen radikalischen Spezies könnten somit denkbare Vorstufen der R_8In_{12} - Bildung sein. Die dedektierten ²⁹Si-NMR-Signale wären demzufolge einem Hexaindan R_4In_6 zuzuordnen. Bis jetzt konnte jedoch nur das Oktaindan und nicht die mögliche Vorstufe R_4In_6 in Substanz isoliert werden. Jedoch gelang es eine dem Hexaindan gruppenhomologe Clusterverbindung zu kristallisieren: das im Kapitel 2.3 beschriebene Tetrasu-

persilyl-cyclotetragallandiid-Natrium Na₂Ga₄R*₄•2THF weist eine identische Gerüstelektronenzahl von 10 auf, wenn die beiden mit je einem THF-Molekül koordinierten Na-Atome dem Clustergerüst zugerechnet werden. Das Hexaindan könnte dann gemäß Reaktionsschema (55) zum Dodecaindan R*₈In₁₂ dimerisieren.

Die Oberfläche des zentralen In_{12} -Clusters von $R_8^*In_{12}$ ist – laut Raumerfüllungsmodell – fast vollständig mit 8 Supersilylgruppen überdeckt (siehe Abbildung 33).

Abbildung 33. Kalottenmodell von Octasupersilyldodecaindan R*8In12.

Dieser Sachverhalt dürfte für das Produktergebnis der Thermolyse von $R_4^*In_2$ wesentlich mitverantwortlich sein. Da entsprechende Ga_{12} - und Al_{12} -Polyeder aufgrund ihrer kleineren Oberfläche geringeren Platz für Substituenten bieten, sollten Verbindungen des Typus $R_8^*Ga_{12}$ sowie $R_8^*Al_{12}$ thermolabiler als $R_8^*In_{12}$ sein. Tatsächlich gelang es Schnöckel et. al.^[26] nur mit dem weniger sperrigen $N(SiMe_3)_2$ -Rest ein Aluminium-Polyeder Li $[Al_{12}\{N(SiMe_3)_2\}_6$ zu synthetisieren, der ein Al_{12} -Clustergerüst aufweist, deren zwei oktaedrische Al_6 -Einheiten derart miteinander verbunden sind, daß die 4, die beiden Oktaeder verbindenden "nackten" Al-Atome ein verzertes Tetraeder bilden. Im Gegensatz zum Oktasupersilyldodecaindan trägt der Al_{12} -Cluster eine negative Ladung. Der Al_{12} - Cluster läßt sich wie im Fall des In_{12} - Clusters als Ausschnitt aus der Struktur des elementaren Aluminiums bzw. Indiums beschreiben. Der $[Al_{12}\{N(SiMe_3)_2\}_6]^-$ Cluster, der Abbildung 34, stellt somit eine Zwischenstufe^[26] auf dem Wege zum ebenfalls in der Arbeitsgruppe Schnökkel dargestellten $[Al_{77}{N(SiMe_3)_2}_{20}]^{2-}$ -Cluster^[29] dar. Auch bei den Übergangsmetallen konnte ein Ag_{12}^{8+} -Polyedergerüst isoliert und charakterisiert werden. Allerdings sind hier keine 8 sondern 14 Liganden (R = CF₃CO₂) zur Stabilisierung des Ag_{12} -Clusterkerns der Verbindung [{Ag(NH₂tBu)₂}_4][Ag(NH₂tBu)(N(CHCH₃)tBu)}_2][Ag_{12}(CF_3CO_2)_{14}] nötig^[152].

Abbildung 34. Zentrales Gerüst von $R_{8}^{*}In_{12}$, $[Al_{12}\{N(SiMe_3)_2\}_6]^-$ und $[Ag_{12}(CF_3CO_2)_{14}]^{6-}$ (Der Ag- Cluster trägt 14 CF₃CO₂- Gruppen).

3.4 Hexasupersilyloctaindan R*₆In₈

Wie in den Kapiteln Aluminiumclusterverbindungen und Galliumclusterverbindungen erwähnt, eignen sich Lösungen von Triel(I)- Verbindungen zum Aufbau von Clustern. In diesem Sinne gelang es erstmals aus metastabilem AIX in Toluol/Ether/NEt₃ und NaR* das Tetrahedran R*₄Al₄ zu erzeugen. Je nach den gewählten Reaktionsbedingen (Temperatur, Donorstärke des Lösungsmittels, Raumanspruch der verwendeten Schutzgruppe) erhält man Al- Cluster unterschiedlicher Mächtigkeit. Entsprechende Umsetzungen von GaX in Toluol/Ether und NaR* führen zu den im Kapitel 2.5 beschriebenen neutralen Gallanen R*₈Ga₁₈ sowie R*₈Ga₂₂. Indiumhalogenide InX sind im Gegensatz zu Al(I)- und Ga(I)-halogeniden im festen Zustand bei Raumtemperatur haltbar (vgl. Seite 76) und sollten, nach Substitution des Halogenatoms gegen eine Schutzgruppe, Indiumclusterverbindungen zugänglich machen. Wie W. Uhl et. al. berichten, können durch Umsetzung von LiC(SiMeRR')₃ (R = Me / R' = Et, *n*Bu, *i*Pr, Ph; R = R' = Et)^[147] mit InBr in -40°C gekühlten Toluollösungen Tetrahedrane [(MeRR'Si)C]₄In₄ aufgebaut werden (vgl Tabelle 6). Entsprechend sollte sich durch Reaktion von Supersilylnatrium mit InBr bei tiefen Temperaturen R*₄In₄ erzeugen lassen.

3.4.1 Synthese und Charakterisierung von R*6In8

Die Reaktion von InBr bzw. InN(SiMe₃)₂ mit NaR* oder NaSi*t*Bu₂Ph führten überraschenderweise nicht zu $R_m In_n$ -Clustern mit, sondern unter Bildung von Indiummetall zu den Diindanen R*₄In₂ und (*t*Bu₂PhSi)₄In₂ (siehe Kapitel 3.2).

Demgemäß wurde das in Alkanen besser lösliche Pentamethylcyclopentadienylindium Cp*In mit Supersilylnatrium NaR* in Pentan bei -78°C umgesetzt (Cp* = C_5Me_5). Aus der nach 2 Tagen auf Raumtemperatur erwärmten, nunmehr dunkelgrünen Lösung erhält man – nach Ersatz des Lösungsmittels Pentan durch Benzol – schwarzgrüne Kristalle, die laut Röntgenstrukturanalyse keine Tetrahedran-Moleküle R*₄In₄, sondern *Hexasupersilyl-octaindan*-Moleküle R*₆In₈ enthalten (Versuch 55). Letztere entstehen neben Diindan R*₄In₂, so daß sich ihre Bildung nach Gleichung (56) vollzieht. Erwähnenswert ist, daß Cp*In im Festkörper ein In₆-Oktaeder ausbildet (vgl. Tabelle 6), wobei die Cp*-Gruppen gegenüber den zugehörenden Indiumatomen leicht abgeknickt sind. Da die In–In- Abstände mit durchschnittlich 3.95 Å relativ lang sind, kann nur von einer sehr schwachen Metall-Metall-Wechselwirkung gesprochen werden^[143].

Die Verbindung $R_{6}^{*}In_{8}$ ist vergleichsweise oxidations- und hydrolyseempfindlich. Lösungen von $R_{6}^{*}In_{8}$ sind unter Lichtausschluß bis 100°C thermostabil, neigen aber unter Lichteinfluß bereits bei Raumtemperatur zur Abscheidung von Indiumspiegeln an der Gefäßwand. NMR-Spektren von $R_{6}^{*}In_{8}$ in $C_{6}D_{6}$ weisen auf das Vorhandensein von nur einer Sorte von Supersilylgruppen hin.

3.4.2 Kristallstruktur von R*₆In₈

Abbildung 35 gibt den Bau von $R_{6}^{*}In_{8}$ im Kristall zusammen mit ausgewählten Bindungslängen und -winkeln wieder (monoklin, C2/c). Die durch ausgezogene Linien symbolisierten In–In-Abstände erstrecken sich – wie im Falle des Dodecaindans $R_{8}^{*}In_{12}$ – von 2.77 bis 3.30 Å. Sie sind damit im Mittel kleiner als die In–In-Bindungslängen im Indiummetall (3.25 - 3.38 Å^[1]), ähneln aber denen in anderen strukturell charakterisierten niedrigwertigen ungeladenen Indiumverbindungen mit In₂- sowie In₄-Clustergerüsten (vgl. Tabelle 6 auf Seite 77). Die in Abbildung 35 durch gestrichelte Linien ausgewiesenen In–In-Abstände liegen im Bereich von 3.41 bis 3.56 Å und sind damit zwar schwächere, doch sicher noch zu berücksichtigende bindende In–In- Kontakte. Alle verbleibenden In–In-Abstände sind ≥ 4 Å, was Wechselwirkungen zwischen den betreffenden Atomen ausschließt. Die In–Si-Abstände entsprechen mit rund 2.65 Å jenen in R*₈In₁₂ (im Mittel 2.68 Å; siehe Kapitel 3.3). Sie sind kleiner als jene im Tetrasupersilyldiindan R*₄In₂ (rund 2.78 Å; siehe Kapitel 3.2.2), was für einen deutlich geringere sterische Wechselwirkung zwischen den Supersilyl-gruppen in R*₆In₈ spricht. In die gleiche Richtung weisen die Si–C-Abstände und die C–Si–C-Winkel der

Supersilylgruppen, die mit durchschnittlich 1.948 Å bzw. 111.5° im Normalbereich von 1.94 - 1.95 Å und 110 - 112° liegen^[5] (vgl. R*₄In₂: 1.95 Å und 109.7°^[4]).

Abbildung 35. Ansicht der Molekülstruktur von $R_{6}^{*}In_{8}$ im Kristall (SCHAKAL-Plot, Atome mit willkürlichen Radien, H-Atome übersichtlichkeitshalber nicht gezeichnet) und verwendete Atomnumerierung. Ausgewählte Bindungslängen [Å] und -winkel [°]: In1-In2 3.303(1), In1-In3 3.104(1), In1-In4 3.041(1), In1-In4A 2.957(1), In1-In3A 3.565(1), In1-In1A 4.497(1), In2-In3A 2.770(1), In2-In4 2.835(1), In3-In4 2.910(1), In3-In2A 2.770(1), In3-In4A 3.413(1), In4-In1A 2.957(1), In4-In4A 3.971(1), In1-Si1 2.683(1), In2-Si2 2.615(1), In3-Si3 2.665(2), Si-C (Mittelwert) 1.948. – In4A-In1-In4 82.90(3), In4A-In1-In3 68.50(2), In4-In1-In3 56.52(2), In4A-In1-In2 98.68(2), In4-In1-In2 52.89(1), In3-In1-In2 109.28(2), In3A-In2-In4 75.01(2), In3A-In2-In1 71.27(2), In4-In12-In1 58.82(2), In2A-In3-In4 113.62(2), In2A-In3-In1 105.68(2), In4-In3-In1 60.66(2), In2-In4-In3 130.91(2), In2-In4-In1A 107.97(2), In3-In4-In1A 74.83(2), In2-In4-In1 68.29(2), In3-In4-In1 62.82(1), In1A-In4-In1 97.10(3), Si1-In1-In4 115.15(4), Si1-In1-In4 161.78(3), Si1-In1-In3 130.48(3), Si1-In1-In2 118.11(3), Si2-In2-In3A 153.47(4), Si2-In2-In4 119.35(4), Si2-In2-In1 134.89(4), Si3-In3-In2A 126.55(4), Si3-In3-In4 110.75(3), Si3-In3-In1 121.46(4), C-Si-C (Mittelwert) 111.5°; Operator: A. Purath.

Der Abbildung 35 ist des weiteren zu entnehmen, daß der Verbindung $R_{6}^{*}In_{8}$ ein Cluster aus 8 In-Atomen zugrunde liegt, welche die Ecken eines in Richtung einer Raumdiagonalen gestreckten Würfel besetzen (Lokalsymmetrie des In₈-Clusters: C_i). Die 6 Supersilylgruppen nehmen ihrerseits die Ecken eines verzerrten Oktaeders ein und umgeben den Indiumcluster als breiten Gürtel, wie das Kalottenmodell in Abbildung 36
zum Ausdruck bringt. Die supersilylfreien "nackten" In-Atome sind in den Gürtelöffnungen oben und unten zu finden.

Abbildung 36. Kalottenmodell des Octaindans R*₆In₈.

Die Verbindung R*₆In₈ weist nach R*₈In₁₂ einen weiteren für Bor und seine Homologen singulären Clusterbau auf. Das als *conjuncto*-Indan zu beschreibende Dodecaindan besteht gemäß Formelbild 32 aus zwei R*₄In₆-Clustern mit verzerrten In₆-Oktaedergerüsten. Leider ließ sich der betreffende In₆-Cluster bisher noch nicht in Substanz isolieren. Mit R*₆In₈ konnte aber nunmehr ein mit der Verbindung R*₄In₆ verwandtes Indan erhalten werden. Sofern die 6 R*In-Gruppen in R*₆In₈ je 2 Elektronen und die 2 "nackten" In-Atome je 1 Elektron dem In₈-Gerüst zur Verfügung stellen, errechnen sich 14 = 2 *n* – 2 Gerüstelektronen (*n* = Zahl der Gerüstatome). Nach den Skelettelektronen-Abzählregeln von Wade^[117] und Mingos^[118] ist R*₆In₈ damit als zweifach-überkappte *closo*-In₆-Verbindung (*"hypopräcloso*-Verbindung") zu klassifizieren. Ihr Gerüst wäre also als ein zweifach-überkapptes Oktaeder zu beschreiben. Die experimentell ermittelte Struktur (Abbildung 37) entspricht dieser Beschreibungsweise. R*₆In₈ kann hiernach nicht als um zwei Hydrid-Ionen ärmeres Supersilylderivat des *closo*-Indats In₈H₈²⁻, eines Homologen des isolierbaren *closo*-Borats B₈H₈²⁻, beschrieben werden.

Abbildung 37. Beschreibung des Hexasupersilyloctaindans $R_6^*In_8$ als zweifach überkapptes Oktaeder (das *closo*-Gerüst ist durch "dicke" Bindungen hervorgehoben; die Gruppen In2–Si2 bzw. In2A–Si2A bilden die beiden Kappen).

Vergleicht man den Indiumcluster $R_{6}^*In_8$ mit den in der Arbeitsgruppe P.P Power synthetisierten In_8 -Cluster DMP₄In₈ (DMP = 2,6-(Mes)₂C₆H₃, wobei Mes = 2,4,6-Me₃C₆H₂) fällt zunächst das gemeinsame In₈-Gerüst auf^[146]. Im Gegensatz zu $R_{6}^*In_8$ tragen bei dieser Verbindung nur vier Indiumatome einen Substituenden, wobei die restlichen vier "nackten" Indiumatome tetraedrisch angeordnet sind. Die In–In-Abstände des In₈- Würfels in DMP₄In₈ liegen zwischen 2.876 Å und 2.933 Å und sind damit etwas kürzer als die entsprecheden In–In- Abstände in $R_{6}^*In_8$. DMP₄In₈ kann zwar als vierfach überkapptes Tetraeder angesehen werden^[146], jedoch sind die Abstände der vier "nackten" Indiumatome mit 3.731 – 4.036 so groß, daß wohl keine kovalenten Bindungsbeziehungen vorliegen. Entsprechend den Skelettelektronen-Abzählregeln von Wade^[117] und Mingos^[118] ergeben sich für DMP₄In₈ 2*n* - 4 = 12 Gerüstelektronen und damit wäre dieser Cluster als eine dreifach-überkappte *closo*-In₅-Verbindung zu beschreiben, was mit den experimentellen Befunden nicht übereinstimmt.

Die Interpretation eines $R_4^*In_6^-O$ ktaeders, dessen Elektronenmangel durch eine zweifache Überkappung mit R*In-Resten behoben wird, stützen auch die von G Stößer an der Universität Karlsruhe durchgeführten Dichtefunktional-Rechnungen^[153] (Tabelle 7). Die sehr rechenintensiven Untersuchungen (230 Atome !) konnten weder durch Symmetrie-Restriktionen (z.B. D_{3d}) noch durch Verwendung kleinerer Liganden (Übergang zu In₈H₆) verkürzt werden (im zweiten Fall ergeben sich Strukturen mit H-Brücken). Die in R*₆In₈ überdachten Gruppen R*In2 / R*In2A haben den größten Abstand voneinander (vgl. Tabelle 7) und das verbleibende R*₄In₆-Oktaeder ist ebenfalls gestreckt: R*In1 / In4 / R*In1A / In4A bilden die Ecken der – fast quadratischen – Basis und R*In3 / R*In3A die Spitzen des Oktaeders. Die Gegenüberstellung von berechneten und experimentell ermittelten In–In- Abständen in Tabelle 7 belegt die gute Übereinstimmung trotz der verwendeten Vereinfachung (z.B. ECP-Basissätze).

Tabelle 7.Mit Dichtefunktionalmethoden berechnete In – In- Abstände [Å] in $(H_3Si)_6In_8$ und $R^*_6In_8$ (DFT-Rechnungen) sowie röntgenstrukturanalytisch gefundene In – In-Abstände [Å] für $R^*_6In_8$. Bezüglich der Numerierung der In-Atome vgl. Abbildung 37.

[0]	(H ₃ Si) ₆ In ₈		R* ₆ I	$R_6^*In_8$		R* ₆ In ₈	
[d]	berechnet		berech	berechnet		gefunden	
Ι	In2-In2A	6.59	In2-In2A	7.05	In2-In2A	6.75	
Π	In4-In4A	5.42	In3-In3A	5.04	In3-In3A	4.95	
III	In1-In1A	4.34	In1-In1A	4.52	In1-In1A	4.50	
III	In3-In3A	4.32	In4-In4A	4.10	In4-In4A	3.57	
IV	In1-In3	3.20	In1-In4	3.11	In1-In4	3.04	
IV	In1-In3A	2.92	In1-In4A	3.00	In1-In4A	2.96	

[a] In–In- Abstandsarten: I = zwischen den überdachten Atomen; II = zwischen den an den Oktaederspitzten befindlichen Atomen; III = zwischen sich an der Oktaederbasis gegenüberliegenden Atomen; IV = zwischen Atomen einer Kante der Oktaederbasis.

Für das sterisch weniger überladene Octaindan $(H_3Si)_6In_8$ (H_3Si anstelle R*) errechnet sich eine etwas veränderte Geometrie (siehe Tabelle 7): Die am weitesten voneinander entfernten, also Kappen bildenden Reste sind zwar identisch ($(H_3Si)In2 / (H_3Si)In2A$), und das verbleibende $(H_3Si)_4In_6$ -Oktaeder ist ebenfalls gestreckt, aber diesmal mit den supersilylgruppenfreien Atomen In4 / In4A an den Oktaederspitzen und $(H_3Si)In1 / (H_3Si)In3 / (H_3Si)In1A / (H_3Si)In3A$ an den Ecken der – fast quadratischen – Basis. Ersichtlicherweise nimmt $(H_3Si)_6In_8$ die elektronisch begünstigste, $R^*_6In_8$ die sterisch begünstigste Geometrie an, wobei die in Abbildung 37 sichtbaren silylgruppenfreien In-Atome in letzterem Falle etwas tiefer, in ersterem weniger tief in die erwähnten "Gürtelöffnungen" eintauchen. Nur unter erheblichem Energieaufwand lassen sich – laut ab initio Berechnung – die "nackten" In-Atome im Sinne einer Formulierung $(In^+)_2In_6R_6^{2-}$ (R = SiH₃, R*) aus den Gürtelöffnungen herausziehen $(In_6H_6^{2-}$ wäre ein Homologes Anion zu $B_6H_6^{2-}$).

Die Populationsanalyse ergibt, daß die zwölf Dreizentren-Zweielektronen-Bindungen auf den Dreiecksflächen sowohl in $(H_3Si)_6In_8$ als auch R_6*In_8 ziemlich gleichmäßig zur Stabilisierung der In₈-Cluster beitragen. Die Ladungen der 8 In-Atome sind annähernd neutral.

Über den *Reaktionsmechanismus* der Bildung von R*₆In₈ aus Cp*In und NaR* in Pentan läßt sich bis jetzt noch nichts Endgültiges sagen. Es wird wohl möglicherweise im Sinne des Reaktionsschemas (57) zunächst

der Cp*-Rest durch eine Supersilylgruppe ersetzt, wobei R*In und NaCp* entstehen. Das monomere Supersilyindium könnte dann über $R_2^*In_2$ in das Tetrahedran $R_4^*In_4$ übergehen und dieses unter Eliminierung von Supersilylgruppen zum Octaindan $R_6^*In_8$ dimerisieren. Die eliminierten Supersilylgruppen könnten mit R*In zum Indanyl-Radikal $R_2^*In^*$ abreagieren und dieses das Diindan $R_4^*In_2$ liefern.

Durch Variation des Raumanspruchs der Schutzgruppe sollte sich die Größe des Indiumclusters beeinflussen lassen. Deshalb wurde versucht R–In: mit dem äußerst sperrigen Rest $R = SiMeR*_2^{[154]}$ darzustellen, in der Hoffnung daß sich gemäß Gleichung (58) auf diese Weise kleinere Indiumclusterverbindungen wie das R_4In_4 -Tetraeder oder das R_4In_6 -Oktaeder ausbilden könnten.

Kondensiert man bei -196°C Pentan auf Cp*In und NaSiMeR*₂ und beläßt die Reaktionsmischung für 48 Stunden bei -78°C, so erhält man eine nur bis -40°C haltbare rotbraune Lösung (Versuch 64). Die auf Raumtemperatur erwärmte Lösung enthält dann ausschließlich Zersetzungsprodukte der Schutzgruppe R*₂MeSineben einem schwarzen Niederschlag (In_x, (R*In)_x?).

3.4.3 Reaktivität von R*6In8

 $R_{6}^{*}In_{8}$ sollte wie das Kalottenmodell in Abbildung 36 zeigt, an seinen beiden "nackten" Indiumatomen reaktive Zentren besitzen. So wäre es beispielsweise denkbar, daß sich Donormoleküle wie THF oder NEt₃ an diese freien Stellen koordinieren könnten. Löst man jedoch $R_{6}^{*}In_{8}$ in [D8]THF auf, oder tropft man zu einer benzolischen-Lösung des Oktaindans NEt₃ so kann laut NMR-Spektren kein koordiniertes THF bzw. NEt₃ beobachtet werden. Der Cluster bleibt in beiden Fällen unverändert erhalten, selbst wenn man die Lösungen gelinde auf 50°C erwärmt.

Die *Reduktion* von $R_{6}^{*}In_{8}$ mit Na könnte wie im Falle von $R_{4}^{*}Ga_{4}$ zu einem dianionischen Cluster $R_{6}^{*}In_{8}^{2-}$ führen. Erwärmt man das Oktaindan mit Natrium (Versuch 60) oder NaR* (Versuch 59) in Gegenwart des Donors NEt₃ bzw. THF in C₆D₆ bzw. Heptan auf 90°C, so bildet sich neben einer braunen Lösung ein schwarzer Niederschlag. Nach NMR-spektroskopischen Untersuchungen hat sich dabei $R_{6}^{*}In_{8}$ vollständig umgesetzt, es läßt sich jedoch keine anionische supersilylgruppentragende Indiumverbindung nachweisen. Statt dessen enthält die Lösung Superdisilan $R^{*}-R^{*}$ und das Diindan $R_{4}^{*}In_{2}$.

 $R_{6}^{*}In_{8}$ ist gegenüber *Photolyse* empfindlich. So bildet sich unter dem Einfluß von Tageslicht aus Lösungen des Indiumclusters innerhalb von Tagen ein Indiumspiegel an der Glaswand (Anmerkung zu Versuch 55).

 $R_{6}^{*}In_{8}$ ist in Lösung relativ *thermolysestabil*. Erwärmt man jedoch $R_{6}^{*}In_{8}$ in $C_{6}D_{6}$ für 20 Tage auf 100°C, hat sich laut NMR-Spektren $R_{6}^{*}In_{8}$ vollständig zersetzt. Aus der Lösung die R*D enthält bilden sich nach einigen Tagen Kristalle, welche nach röntgenstrukturanalytischen Studien die Zusammensetzung $R_{8}^{*}In_{12}$ besitzen (Versuch 58). Somit verwandelt sich $R_{6}^{*}In_{8}$ thermisch in $R_{8}^{*}In_{12}$. Möglicherweise eliminiert $R_{6}^{*}In_{8}$ zwei Indylene R*In unter Bildung von sich dimerisierenden $R_{4}^{*}In_{6}$ (letztere Reaktion nach Umlagerung von $R_{4}^{*}In_{6}$). Die abgespaltenen Indylen- Moleküle könnten sich unter weiterer R*- Eliminierung zu $R_{8}^{*}In_{12}$ zusammenlagern (siehe Schema 59).

Abschließend sei noch angemerkt, daß unter den Trielen und Tetrelen zwar tetrasupersilylierte Tetrahedrane $R_4^*E_4$ der Elemente Al und Ga sowie Si und Ge^[155] als stabile Endprodukte zugänglich sind, nicht aber Cluster der Elemente In sowie Sn. In letzterem Falle^[155] entstehen vielmehr größere Cluster, was vielleicht darauf zurückzuführen ist, daß diese E_4 -Tetraeder von vier Supersilylgruppen nicht mehr vollständig bedeckt werden und daher zu größeren Elementclustern bei gleichzeitiger Verringerung der Clusterspannungsenergie abreagieren.

(59)

4 Thalliumclusterverbindungen

Für Thallium, das schwerste Element der 13. Gruppe, ist die Oxidationsstufe +1 in wäßrigen Medien die stabilste, doch trifft dies nicht immer für die bisher wenig untersuchten Organothallium(I)-Verbindungen mit σ- gebundenen Substituenten zu^[156]. Unter den Verbindungen mit einer RTI- Bindungen waren lange Zeit nur solche mit Cyclopentadienyl-Liganden strukturell charakterisiert (z.B. Cp = C₅H₅, Cp* = C₅Me₅, C₅Me₄(SiMe₂Ph), C₅Me₄(SiMe₂CH₂Ph)). Sie bilden polymere Zick-Zack- Ketten oder Ringe aus^[157]. Die aus der Arbeitsgruppe W. Uhl strukturell abgesicherte Verbindung TsiTl (Tsi = C(SiMe₃)₃) ist im Festkörper tetramer. Ist der Organylrest sterisch anspruchsvoll, kann eine Zusammenlagerung von RTl unterbunden werden (z.B. liegt TipTl mit Tip = 2,4,6-*i*Pr₃C₆H₂ in Lösung als auch im Festkörper monomer^[158] vor).

Überraschenderweise konnten lange Zeit keine Dithallane isoliert werden, und erst in jüngerer Zeit (siehe unten) Thalliumverbindungen mit Clustern aus mehr als 2 kovalent miteinander verknüpften Tl- Atomen. In Tabelle 8 werden die bisher bekannten Thalliumclusterverbindungen einschließlich der hier dargestellten Verbindungen $R^*_4Tl_2$, (*t*Bu₂PhSi)₄Tl₂, $R^*_4Tl_3Cl$ sowie $R^*_6Tl_6Cl_2$ zusammengestellt.

n	R _m Tl _n	R ^[a]	Farbe	BL [Å]	τ[°]	Lit.
2	R ₄ Tl ₂	R'	dunkelrot	2.914	78.1	[159]
		tBu ₂ PhSi	dunkelblau	2.881	82.2	V 80
		R*	dunkelgrün	2.966	90	V 65
	$(\mathbf{RTI})_2$	Н	_	3.70 ^[e]		[161]
		$C_5(CH_2Ph)_5$	gelb	3.632		[162]
3	R ₄ Tl ₃ Cl	R*	rot	2.92		V 75
4	R_4Tl_4	Tsi	tiefviolett	3.48 ^[f]		[163]
[b]	$\{R_3Tl_3\}_2$	[c]	rot	3.15 ^[g]		[164]
		[d]	orange	3.65 ^[h]		[165]
	$R_6Tl_6Cl_2$	R*	schwarz	2.93 ^[i]		V 75

Tabelle 8.Bisher bekannt gewordenen Thalliumclusterverbindungen (BL = mittlere Tl–Tl-
Bindungslänge, $\tau = R$ -Tl–Tl-R Diederwinkel).

[**a**] **R'** = Si(SiMe₃)₃; **R*** = Si*t*Bu₃; **Tsi** = C(SiMe₃)₃. – [**b**] In Festkörper-Phasen nachgewiesen^[166]: Tl₄⁸⁻, Tl₅⁷⁻ Tl₆⁸⁻, Tl₉⁹⁻, Tl₁₁⁷⁻. – [**c**] {MeSi[NTl*t*Bu]₃}₂. – [**d**] {MeC[CH₂N(Tl)SiMe₃]₃}₂. – [**e**] Ab-initio Rechnung. – [**f**] Tl₄-Tetraeder: TITI- Abstände in Tl₃- Basis: 3.335 Å; Basis–Spitze: 3.461 Å bis 3.638 Å. – [**g**] Darüber hinaus TITI- Kontakte von 3.461 Å – 3.860 Å; – [**h**] Darüber hinaus TITI Kontakte von 3.6 Å bis 3.7 Å. – [**i**] kürzester/längster Abstand 2.854/ 2.908 Å.

4.1 Dithallane des Typus $R_2TI-TIR_2$ (R = SitBu₃, SitBu₂Ph)

Bisher kennt man nur 3 Dithallane $R_2TI-TIR_2$ mit einer kovalenten TI-TI- Bindung und der Oxidationssufe +II der TI- Atome (vgl. Tabelle 8 und unten). Die schon länger bekannten Thallium(II)- halogenide TIX_2 (X = Cl, Br) sowie Thalliumsesquihalogenide TI_2X_3 enthalten keine Ionen $X_3TI-TIX_3^{2-}$ mit kovalenter TI-TI- Bindung und Thallium in der Oxidationsstufe +II, sondern weisen die Strukturen $TI^I[TI^{III}X_4]$ bzw. $TI^I_3[TI^{III}X_6]$ auf^[1]. In Verbindungen wie (Cp**TI)₂ (Cp** = C₅(CH₂Ph)₅) liegen nur schwache TI•••TI-Kontakte vor.

Nachfolgend seien Darstellung, Struktur und Reaktionen der Dithallane Tl_2R_4 (R = SitBu₃, SiPhtBu₂) besprochen.

4.1.1 Synthese und Charakterisierung von Tetrasupersilyldithallan R*₂Tl–TlR*₂ und Tetrakis(di-*tert*-butylphenylsilyl)dithallan (*t*Bu₂PhSi)₂Tl–Tl(SiPhtBu₂)₂

Dithallane lassen sich wie auch Diindan (Kapitel 3.2.1) durch Einwirkung von MR (R = Organyl- oder Silyl-Rest; M = Li, Na) auf Halogenide TIX erzeugen. So gelang es K. W. Klinkhammer et al. die Synthese von R'₄Tl₂ (R' = Si(SiMe₃)₃) durch Umsetzung von RbR' und TIN(SiMe₃)₂ (weiteres Produkt Thalliumme-tall)^[159]. Analog hierzu reagiert TIBr bzw. TIN(SiMe₃)₂ mit NaR* im Molverhältnis 1:1 unter Abscheidung von elementarem Thallium zu R*₄Tl₂ (weiteres Reaktionsprodukt Supersilyldisilan R*–R*; Versuch 65 bzw. 68). Setzt man schließlich TIBr mit *t*Bu₂PhSiNa in THF bei -78°C um, so kann als einziges lösliches Reaktionsprodukt das (*t*Bu₂PhSi)₂Tl–Tl(SiPh*t*Bu₂)₂ neben Thalliummetall nachgewiesen werden (Versuch 80). Die Umsetzung von TIN(SiMe₃)₂ mit NaSi*t*Bu₂Ph in donorfreien Lösungsmitteln wie beispielsweise Pentan führt dagegen nicht zu diesem Dithallan sondern zu einem schwarzen Niederschlag (*t*Bu₂PhSiTl ?), der nicht näher charakterisiert werden konnte.

Der Mechanismus der Dithallanbildung aus TIX und NaR* bzw. NaSitBu₂Ph sollte ähnlich der Umsetzung von InX mit NaR* verlaufen. Da NaR* bzw. NaSitBu₂Ph nicht selbst als Oxidationsmittel wirken, muß sich neben Dithallan elementares Thallium als Disproportionierungsprodukt bilden. Entsprechend dem im Falle der Diindanbildung gesagte erfolgt die Dithallanbildung möglicherweise auf dem Weg über RTl, R₂Tl⁻ und R₂Tl[•]. Für das Intermediat R₂Tl⁻spricht z.B., daß sich durch Umsetzung von CpTl mit Cp₂Mg das leicht gewinkelte, mit Stannocen isoelektronische Thallocen-Anion Cp₂Tl^{-[168]} bildet. Auch reagiert CpTl zunächst mit zwei Äquivalenten Supersilylnatrium NaR* dann gemäß der folgenden Gleichung mit Me₃SiCl offensichtlich zu R*₂TlSiMe₃, was NMR- Spektroskopisch nachgewiesen wurde (Versuch 67).

CpTl
$$\xrightarrow{+2 \text{ NaR*}}_{-\text{NaCp}}$$
 $\left[\text{Na}_2\text{TlR*}_2 \right] \xrightarrow{+\text{Me}_3\text{SiCl}}_{-78^\circ\text{C}} \text{R*}_2\text{TlSiMe}_3$ (60)

Die sich anschließende Oxidation des Anions R_2TI^- zum Radikal R_2TI^- könnte auf der Oberfläche von ungelösten TlBr-Kristallen, bei gleichzeitiger Reduktion von TlBr zu elementarem Thallium erfolgen, wobei die gebildeten R_2TI^- Radikale zu R_4Tl_2 dimerisieren (siehe Reaktionschema 61).

Ein weiterer Syntheseweg von $R_4^*Tl_2$ verläuft analog zur Darstellung von $R_4^*Al_2$ und $R_4^*In_2$ aus AlX₃ und InX₃ (X = Cl, Br) und NaR^{*}. Tropft man zu einer auf -78°C gekühlten Suspension von TlCl₃ in THF eine Lösung von NaR^{*} in THF (Versuch 78), so bildet sich im Zuge des langsamen Erwärmens auf Raumtemperatur Tetrasupersilyldithallan neben Superdisilan R^{*}₂ (Gleichung 62).

$$2 \operatorname{TlCl}_{3} + 6 \operatorname{NaR}^{*} \xrightarrow{-78^{\circ}\mathrm{C}}_{-3 \operatorname{NaCl}} \xrightarrow{R^{*}}_{-3 \operatorname{NaCl}} \xrightarrow{R^{*}}_{R^{*}} \xrightarrow{R^{*}}_{R^{*}} \xrightarrow{R^{*}}_{(62)}$$

Der Bildungssmechanismus sollte somit dem der Bildung von $R_4^*Al_2$ bzw. $R_4^*Al_2$ aus AlX₃ bzw. InCl₃ entsprechen. Innerhalb des Zeitfensters der NMR-Spektroskopie ließ sich jedoch bei der Reaktion von TlCl₃ und NaR* kein R_2^*TlCl als Zwischenstufe nachweisen. Selbst die Reaktion von TlCl₃ mit zwei Äquivalenten NaR* führt nicht wie im Fall der Reaktion von AlCl₃, GaCl₃ und InCl₃ mit NaR* zu R_2^*ECl (E hier Tl), sondern zu den Thalliumclusterverbindungen $R_4^*Tl_3Cl$ und $R_6^*Tl_6Cl_2$ (siehe folgendes Kapitel 4.2.1). Dies spricht für einen komplizierteren Reaktionsablauf, wobei möglicherweise Disupersilylthallonium-Kationen $R_2^*Tl^+$ eine Rolle spielen. Tropft man nämlich zu einer Reaktionslösung von TlCl₃ und NaR* im Molverhältnis 1 : 3 Me₃SiCl (Versuch 76) kann überraschenderweise Disupersilylthalliumchlorid isoliert werden (siehe auch Kapitel 4.2.2). Derartige R_2TI^+ – Kationen liegen in den Diorganylthallium(III)-halogeniden z.B. Me₂TICl vor und weisen ein lineares CTIC- Gerüst auf (R_2TI^+ ist isoelektronisch zu R_2Hg und R_2Sn^{2+}). Die zum Dithallan führende Reaktion würde dann gemäß folgender Gleichung 63 verlaufen:

$$R^{*}{}_{2}Tl^{+} + R^{*-} \xrightarrow{-R^{*}} \begin{bmatrix} R^{*} \\ R^{*} \end{bmatrix} \xrightarrow{x 2} R^{*} \\ R^{*} \end{bmatrix} \xrightarrow{R^{*}} R^{*}$$
(63)

NaR* überträgt hiernach ein Elektron auf das Disupersilylthallonium-Kation, so daß sich die Radikale $R_2^*Tl^{\bullet}$ und $R^{*\bullet}$ bilden, welche sich aus sterischen Gründen nicht zu R_3^*Tl vereinigen, sonden nur zu Dithallan $R_4^*Tl_2$ und Disupersilan R_2^* dimerisieren können (siehe auch die Diskussion zum Bildungsmechanismus von $R_4^*Tl_3Cl$ und $R_6^*Tl_6Cl_2$ im Kapitel 4.2.2 auf Seite 111).

Versuche, diese Dimerisierung mit Hilfe der äußerst sperrigen SiMeR*₂- Gruppe als Substituent^[154] zu unterbinden sind bis jetzt nicht erfolgreich gewesen. Die Umsetzung von NaSiMeR*₂ mit TIBr führt bei -78°C zwar zu einer dunkelbraunen Lösung, diese entfärbt sich jedoch bereits ab -50°C unter Abscheidung eines grauen Niederschlags (metallisches Thallium ?). Laut NMR-Spektren enthält die Lösung dann ausschließlich Zersetzungsprodukte der Schutzgruppe R*₂MeSi (Versuch 83). Offensichtlich ist die MSL-Gruppe nicht so chemisch inert wie die Supersilylgruppe.

4.1.2 Kristallstruktur von R*₂TI–TIR*₂

Den röntgenstrukturanalytisch geklärten Bau von $R_4^*Tl_2$ im Kristall (monoklin, C2/c) gibt Abbildung zusammen mit ausgewählten Bindungslängen und -winkeln wieder. Die TI-Atome des zentralen Si₂TI–TISi₂-Gerüsts sind jeweils trigonal-planar von zwei Si-Atomen und einem TI-Atom koordiniert, wobei die TITISi₂-Ebenen zueinander nahezu orthogonal aufgespannt sind (SiTI–TISi-Torsionswinkel gleich 89.57°). Für das gruppenhomologe Dialan ist der Diederwinkel genau 90°C. Dies ist insofern von Interesse, als in den Verbindungen R_4Tl_2 mit weniger sperrigen Substituenten die Winkel zwischen den TITISi₂-Ebenen deutlich kleiner als 90° sind (zum Vergleich: [(Me₃Si)₃Si]₄Tl₂: 78.1°^[159]; (*t*Bu₂PhSi)₄Tl₂: 82.2° (siehe unten)). Die hohe Raumerfüllung der Supersilylgruppen führt des weiteren zu einem ungewöhnlich großen TI–TI-Abstand von 2.961(2) Å (siehe Abbildung 38) und weist somit die längste TI–TI-Bindung eines Dithallans mit kovalenter TI–TI- Bindung auf (zum Vergleich: ((Me₃Si)₃Si)₄Tl₂: 2.914 Å; (*t*Bu₂PhSi)₄Tl₂: 2881 Å).

Abbildung 38. Struktur von $R_4^*Tl_2$ im Kristall und verwendete Atomnumerierung (Raumgruppe C2/c; SCHAKAL-Plot; Atome mit willkürlichen Radien; H-Atome übersichtlichkeitshalber unberücksichtigt). Wichtige Bindungslängen [Å] und -winkel [°]: T11–T12 2.961(1), T11–Si1 2.768(3), T11–Si3 2.779(4), T12–Si2 2.788(3), T12–Si4 2.781(4), Si1–C1 1.97(2), Si1–C5 1.95(2), Si1–C9 1.96(2) [Mittelwert der Si–C-Abstände 1.95]; Si1–T11– Si3 130.4(1), Si4–T12– Si2 130.5(1), Si1–T11–T12 114.7(2), Si3–T11–T12 114.9(2), Si4–T12–T11114.4(1), Si2–T12–T11 115.1(1) [Winkelsumme am T11/T12 360.0], C1–Si1–C9 110.9(7), C1–Si1–C5 111.3(7), C1–Si1–T11 109.0(6), C9–Si1–C5 109.0(7), C9–Si1–T11 109.6(4), C5–Si1–T11 107.0(6), [Mittelwert der CSiC- Winkel 110.1°], Winkel der beiden Si₂T1–Ebenen zueinander 89.57°; Operator: D. Fenske.

Der Grund dafür, daß im ²⁹Si-NMR-Spektrum nur die ¹ J_{Si-TI} - Kopplung sichtbar ist (¹J(²⁹Si, ²⁰⁵TI = 1628 Hz; ¹J(²⁹Si, ²⁰³TI = 1610 Hz) könnte möglicherweise dadurch erklärt werden, daß R*₄Tl₂ in Lösung in kleiner Gleichgewichtskonzentration dissoziiert in R*₂TI[•] vorliegt. Es läßt sich zwar ESR-spektroskopisch eine radikalische Spezies nachweisen, jedoch ist die Zuordnung zu Disupersilylthallanyl-Radikalen R*₂TI[•] nicht eindeutig.

Die gegenseitige sterische Behinderung der Supersilylgruppen in der TI–TI-Bindungsregion hat des weiteren einen langen TI–Si Abstand zur Folge. Mit durchschnittlich 2.779 Å liegt er deutlich über den in der Verbindung ((Me₃Si)₃Si)₄Tl₂ gemessenen Wert von durchschnittlich 2.675 Å. Der Si–TI–Si-Winkel beträgt 130.46°. Erwartungsgemäß weist $R*_4Tl_2$ darüber hinaus vergleichsweise lange Si–C-Bindungen und kleine C–Si–C-Winkel von durchschnittlich 1.95 Å und 110.1° auf (Normalbereiche: 1.94-1.95Å, 110-192°^[51]).

4.1.3 Kristallstruktur von (tBu2PhSi)2Tl-Tl(SiPhtBu2)2

Den röntgenstrukturanalytisch geklärten Bau von $R_4^*Tl_2$ im Kristall (triklin, P-1) gibt Abbildung 39 zusammen mit ausgewählten Bindungslängen und -winkeln wieder.

Abbildung 39. Struktur von $(tBu_2PhSi)_4Tl_2$ im Kristall und verwendete Atomnumerierung (Raumgruppe P-1; SCHAKAL-Plot; Atome mit willkürlichen Radien; H-Atome übersichtlichkeitshalber unberücksichtigt). Wichtige Bindungslängen [Å] und -winkel [°]: T11–T12 2.8812(16), T11–Si1 2.674(2),T11–Si2 2.6847(18),T12–Si3 2.6852(18), T12–Si4 2.6865(18) [Mittelwert der T1–Si-Abstände 2.682], Si1–C1 1.915(6), Si1–C5 1.937(7), Si1–C9 1.938(7) [Mittelwert der Si–C-Abstände 1.93]; Si1–T11–Si2 120.69(6), Si1–T11–T12 123.37(5), Si2–T11–T12 115.93(5), Si3–T12–Si4 124.96(6), Si3–T12–T11 119.20(5), Si4–T12–T11 115.76(5) [Winkelsumme am T11/T12359.99/359.92; Mittelwert der Si–T1–Si- Winkel 122.8°], C1–Si1–C5 110.5(3), C1–Si1–C9 105.8(3), C5–Si1–C9 114.3(3), C1–Si1–T9 106.7(2), C5–Si1–T9 106.5(2), C9–Si1–T11 112.7(2) [Mittelwert der C–Si–C- Winkel 110.5°]; Winkel der beiden Si₂T1- Ebenen zueinander 82.19°; Operator: D. Fenske.

Die Tl-Atome des zentralen Si₂Tl–TlSi₂-Gerüsts sind jeweils trigonal-planar von zwei Si-Atomen und einem Tl-Atom koordiniert (Winkelsumme am Tl: 359.99°), wobei die TlSi₂-Ebenen nicht orthogonal zueinander aufgespannt sind (SiTl–TlSi-Torsionswinkel gleich 82.19°; in R*₄Tl₂ 89.57°, in R'₄Tl₂ 82.2°). Trotz der Raumerfüllung der *t*Bu₂PhSi-Gruppen ist der gemessene Tl–Tl-Abstand mit 2.881 Å (siehe Abb. 39) ungewöhnlich kurz und somit der kürzeste Thallium-Thallium Abstand der bis jetzt in einer Dithallanverbindung gemessen worden ist.

Wie bei der Verbindung $R_4^*Tl_2$ läßt sich auch im Falle von $(tBu_2PhSi)_4Tl_2$ bei Raumtemperatur nur die ${}^{1}J_{Si-TI}$ - Kopplung im ${}^{29}Si$ -NMR beobachten $({}^{1}J({}^{29}Si, {}^{205}Tl = 982 \text{ Hz}; {}^{1}J({}^{29}Si, {}^{203}Tl = 973 \text{ Hz})$. Es findet sich zwar ESR-spektroskopisch eine radikalische Spezies, jedoch ist die Zuordnug zu $(tBu_2PhSi)_2Tl^{\bullet}$ -Radikalen nicht eindeutig. Ein bei -40°C in THF aufgenommenes ${}^{29}Si$ -NMR weist eine Kopplungskonstante ${}^{3}J_{Si-Tl} = 6.5 \text{ Hz}$ auf.

Mit durchschnittlich 2.682 Å ist der Tl–Si- Abstand um etwa 0.10 Å kleiner als in $R_4^*Tl_2$ und mit 120.7° bzw. 124.9° sind die Si–Tl–Si- Winkel um 10° größer als in $R_4^*Tl_2$. Erwartungsgemäß weist (tBu_2PhSi) $_4Tl_2$ vergleichsweise lange Si–C-Bindungen und kleine C–Si–C-Winkel von durchschnittlich 1.93 Å und 110.5° auf. Der Si–Ph- Abstandist dabei geringfügig kürzer als der Si–tBu Abstand (Mittelwerte Si–C(Ph): 1.91 Å und Si–C(tBu): 1.94 Å).

4.1.4 Reaktivität der Dithallane

Die Dithallane $R_2TI-TIR_2$ mit $R = SitBu_3$ und SitBu_Ph verhalten sich, wie die gruppenhomologen Diindane, hinsichtlich ihrer *Thermolyse* unterschiedlich. $R_4^*TI_2$ zersetzt sich bei 40°C innerhalb von Stunden vollständig unter Abspaltung von Supersilylradikalen R^* und einem dunkelbraunen Niederschlag (Tl ?). Die Bildung von Thalliumclusterverbindungen R_mTI_n , konnte nicht nachgewiesen werden (vgl. hierzu die Thermolyse von $R_4^*In_2$ zu $R_8^*In_{12}$). (tBu_2PhSi) $_4TI_2$ bildet erst nach 72 stündigem Erwärmen auf 80°C in [D12]Cyclohexan einen Thalliumspiegel an der Glaswand, und die NMR-spektroskopischen Untersuchungen zeigen, daß sich als lösliche Produkte nur tBu_2PhSiD bzw. (tBu_2PhSi) $_2$ gebildet haben (Versuch 82). Die erhöhte Thermostabilität dürfte auf die kürzere Tl–Tl- Bindung zurückgehen. Die Bildung von Thalliumclusterverbindungen bleibt unter diesen Bedingungen ebenfalls aus.

Die Dithallane $R_4^*Tl_2$ und $(tBu_2PhSi)_4Tl_2$ sind recht *photolabil*. Die Zersetzung erfolgt bereits bei Tageslicht innerhalb von Stunden zu elementarem Thallium und den Disilanen R_2^* bzw. $(tBu_2PhSi)_2$ (Versuch 65 bzw. 80 Anmerkung).

Einwirkung von Natrium in C₆D₆ bei 40°C führt zu den löslichen Produkten R*D, R*-C₆D₅, R*–R* und Supersilylnatrium NaR* neben Thalliummetall^[45]. Als Endprodukte der *Oxidation* beider Dithallane mit Luft erhält man R*OH bzw. *t*Bu₂PhSiOH. Führt man die Oxidation mit Halogenen (z.B. Brom Versuch 70, HBr Versuch 69) oder Radikalfängern (z.B. Ph₃CCl, Versuch 71 und 81) durch, so kommt es nicht nur zu einem Tl–Tl- sondern auch zu einem Tl–Si- Bindungsbruch. Die sich bildenden Produkte sind ausschließlich Supersilylhalogenid R*X und Thallium(I)-halogenid TlX (X = Cl, Br). Verbindungen des Typs R₂TlX lassen sich somit auf diesem Wege nicht darstellen. Die Umsetzung von R*₄Tl₂ mit Selen führt zu einem – nach NMR-Spektren – selenhaltigen Produkt, welches nicht weiter charakterisiert werden konnte (Versuch 79). Möglicherweise handelt es sich um ein Heterocuban (vgl. R*₄In₄Se₄ Kapitel 3.2.6).

4.2 Chlortetra supersilyltrithallan $R_4^TI_3Cl$ und Dichlorhexa supersilylhexa thallan $R_6^TI_6Cl_2$

Während viele Verbindungen der Zusammensetzung TIR₃ und TIR (R = anorganischer, organischer Rest) mit Thallium in den Oxidationsstufen +III und +I existieren^[1], wobei die TI–R- Bindungen in ersteren Verbindungen mehr kovalenter, in letzteren mehr elektovalenter Natur sind, kennt man bisher nur sehr wenige Verbindungen mit kovalenten TI–TI- Bindungen. Ausnahme sind die im Kapitel 4.1 erläuterten Verbindungen des Typs R₂TI–TIR₂ mit Thallium in der Oxidationsstufe +II. Die Stärke der TI–TI- Bindung korreliert mit dem betreffenden Element-Element Abstand, welcher auch im Bezug zur Sperrigkeit der Substituenten steht: R = Si(SiMe₃)₃: TI–TI-Abstand 2.914 Å^[159]; R = R*: TI–TI-Abstand 2.966 Å; R = Si*t*Bu₂Ph: TI–TI-Abstand 2.881 Å (siehe Kapitel 4.1 und Tabelle 8). TI–TI- Bindungen weisen auch einige wenige TI(I)-Verbindungen auf. Diese unterscheiden sich allerdings als schwache Kontakte mit TI•••TI-Abständen > 3.3 Å deutlich von den starken Bindungskontakten in den drei untersuchten Dithallanen mit TI–TI-Abständen < 3.0 Å (z.B. (PhCH₂)₅C₅TI•••TIC₅(CH₂Ph)₅: TI•••TI-Abstand 3.632 Å^[162]; [(Me₃Si)₃CTI]₄: TI•••TI-Abstände 3.322 und 3.627 Å^[163]; {MeSi[N(TI)*t*Bu]₃}₂ weist einen TI•••TI-Abstand im Zwischenbereich (3.146 Å) und zusätzlich mehrere sehr schwache TI•••TI-Kontakte autf^[164]; in {MeC[CH₂N(TI)SiMe₃]₃} treten letztere Kontakte mit TI•••TI-Abständen > 368 Å aut^[165].

Unbekannt waren bisher Verbindungen mit Clustern aus mehr als zwei kovalent verknüpften Thalliumatomen. Verbindungen letzteren Typs erhielt ich mit dem Trithallan $R_4^*Tl_3Cl$ und dem Hexathallan $R_6^*Tl_6Cl_2$ (vgl Formelschema) bei einem Versuch, sterisch überladenes Disupersilylthalliumchlorid R_2^*TlCl analog R_2^*ECl (E = Al, Ga, In; vgl. Kapitel 1, 2, 3) aus Trichlorid ECl₃ (E hier Tl) und der doppeltmolaren Menge Supersilylnatrium NaR* in THF zu synthetisieren.

Formelschema. Strukturen (schematisch) von $R_4^*Tl_3Cl$ und $R_6^*Tl_6Cl_2$.

$\label{eq:2.1} 4.2.1 Synthesen und Charakterisierung von Chlortetrasupersilyltrithallan R*_4Tl_3Cl, Dichlorhexasupersilylhexathallan R*_6Tl_6Cl_2 und Chlordisupersilylthallan R*_2TlCl und Chlordisupersilylthallan R*_2TlC$

Setzt man in der angedeuteten Weise TlCl₃ in THF bei -78°C mit NaR* im Molverhältnis 1 : 2 insgesamt 20 Stunden um, so bildet sich eine rotbraune Reaktionslösung, welche $R_4^*Tl_3Cl$ neben Chlorsupersilylsilan

R*Cl enthält, sowie ein schwarzbrauner Niederschlag, der unter anderem aus $R_{6}^{*}Tl_{6}Cl_{2}$ besteht (geringe Mengen $R_{4}^{*}Tl_{3}Cl$ sind wohl auch in THF gelöst). Aus der auf –25°C erwärmten THF-Lösung bzw. aus einer durch Extrahieren des Niederschlags mit Toluol (-78°C) gewonnenen und ebenfalls auf –25°C erwärmten Toluol-Lösung kristallisieren im Laufe mehrerer Monate die Verbindungen $R_{4}^{*}Tl_{3}Cl$ bzw. $R_{6}^{*}Tl_{6}Cl_{2}$, welche offensichtlich gemäß der Summengleichungen (64a) und (64b) entstanden sind (Versuch 75). Unidentifiziert blieb bisher der nicht mit Toluol extrahierbare Anteil des Niederschlags (oligomeres R*Tl?).

$$3 \operatorname{TlCl}_{3} + 6 \operatorname{NaR}^{*} \xrightarrow{-6 \operatorname{NaCl}} \operatorname{R}^{*}_{4}\operatorname{Tl}_{3}\operatorname{Cl} + 2 \operatorname{R}^{*}\operatorname{Cl}$$

$$(\operatorname{THF}, -78^{\circ}\operatorname{C}, 20 \operatorname{h})$$

$$6 \operatorname{TlCl}_{3} + 11 \operatorname{NaR}^{*} \xrightarrow{(b)} \operatorname{R}^{*}_{6}\operatorname{Tl}_{6}\operatorname{Cl}_{2} + 5 \operatorname{R}^{*}\operatorname{Cl}$$

$$(64)$$

Das in obigen Formelschema schematisch wiedergegebene rote Trithallan $R_4^*Tl_3Cl$ bzw. das schwarze Hexathallan $R_6^*Tl_6Cl_2$ ist luft-, wasser- und lichtempfindlich. Beide Verbindungen thermolysieren in C_6D_6 bei Raumtemperatur langsam bis sehr langsam unter Bildung von R^*Cl (gelöst in C_6D_6) und einem schwarzen Niederschlag (oligomeres R^*Tl ?), der bei 100°C langsam in elementares Thallium und deuteriertes Supersilan R^*D übergeht (zunächst entstehen wohl Supersilylradikale, die rasch sowie reversibel dimerisieren und langsam sowie irreversibel Wasserstoff aus der chemischen Umgebung aufnehmen^[51]).

4.2.2 Mögliche Bildungswege von R*₄Tl₃Cl und R*₆Tl₆Cl₂

Der Mechanismus der zu $R_4^*Tl_3Cl$ und $R_6^*Tl_6Cl_2$ führenden Umsetzung von TlCl₃ und NaR* ist bisher noch nicht vollständig klar. Denkbar wäre, daß durch Supersilanidierung von TlCl₃ zunächst die Verbindungen R*TlCl₂ und R*₂TlCl entstehen, welche im Sinne des Reaktionsschemas (65) unter R*Cl-Eliminierung in TlCl bzw. R*Tl zerfallen, wobei sich direkt oder – nach Supersilanidierung von TlCl – indirekt gebildete R*Tl Moleküle fünf- bzw. zweimal in die TlCl-Bindungen von R*TlCl₂ bzw. R*₂TlCl einschieben.

Studien zur Reaktion von TICl₃ mit unterschiedlichen Mengen NaR* sowie zur Thermolyse hierbei gebildeter Zwischenprodukte, stützen diese Bildungshypothesen von beiden Oligothallanen. So führt die Reaktion von TICl₃ mit der *einfach-molaren* Menge NaR* in THF bei -78°C in der Tat zu einer Lösung von blaßgelbem *Dichlorsupersilylthallan* R*TICl₂. Für die Existenz des Thallans R*TICl₂ bei tiefen Temperaturen $[\delta(^{29}Si, THF, -50°C) = 62.2 \text{ ppm}; d mit ^1J(Si^{203/205}TI) = 513.6/516.7 \text{ Hz}]$ spricht nicht nur dessen Zersetzung in R*Cl und TICl (Versuch 72), sondern zudem seine Reaktion mit LiPh, die – laut NMR-Spektrum – Diphenylsupersilylthallan R*TIPh₂ liefert (Versuch 73).

Demgegenüber ergibt die Umsetzung von TlCl₃ mit der *zweifach-molaren* Menge NaR* in THF bei niedrigen Temperaturen nicht Chlordisupersilylthallan R*₂TlCl, sondern, wie oben erwähnt, das Trithallan und Hexathallan (rasches Erwärmen einer auf -78°C gekühlten Lösung von TlCl₃ mit 2 Äquivalenten NaR* in THF auf Raumtemperatur führt ausschließlich zu R*Cl und schwarzem Niederschlag). Das gelbe, luft-, wasser- und lichtempfindliche *Chlordisupersilylthallan* R*₂TlCl konnte schließlich nach vielen vergeblichen Darstellungsversuchen (z.B. TlCl₃ + 2 NaR* Versuch 74, MgR*₂, ZnR*₂^[16]; R*₄Tl₂ + HCl Ph₃CCl Versuch 71) durch Zugabe von Me₃SiCl zu einer Lösung von TlCl₃ und der *dreifach-molaren* Menge NaR* in THF bei -78°C neben Me₃SiCl-Zugabe, so bildet sich dunkelgrünes *Tetrasupersilyldithallan* R*₄Tl₂, das auch aus TlBr und NaR* zugänglich ist (siehe Kapitel 4.1.1). Möglicherweise bildet sich somit im vorliegenden Falle gemäß Reaktionsschema (65) zunächst eine Verbindung, welche *Disupersilylthallonium-Kationen* R*₂Tl⁺ enthält (Gegenion z.B. R*NaCl⁻ in Form von [R*NaCl₂NaR*]²⁻ ?). Die Kationen könnten mit Cl⁻-Spendern wie etwa Me₃SiCl zu R*₂TlCl abreagieren, während sie in Abwesenheit von Me₃SiCl im Sinne von Schema (65) durch überschüssiges NaR* langsam zu R*₄Tl₂ reduziert würden (überschüssiges NaR* könnte zunächst rasch die Gegenionen [NaR*₂]⁻ R*₂Tl⁺ bilden).

Zugabe einer äquimolaren Menge AlCl₃ zu R_2^*TlCl in CD_2Cl_2 bei Raumtemperatur führt zu *Disupersilylthallonium-tetrachloroaluminat* $[R_2^*Tl]^+[AlCl_4]^-$, das bisher noch nicht in Kristallen erhalten werden konnte, die sich für eine Röntgenstrukturanalyse geeignet hätten. Die ¹H-, ¹³C- NMR-Signale weisen jedoch im Vergleich zu den Signalen von $R_2^*TlCl [\delta({}^{1}H; CD_2Cl_2) = 1.31 \text{ ppm}]$ eine deutliche Hochfeld-Verschiebung auf $[\delta({}^{1}H; CD_2Cl_2): 1.40 \text{ ppm}]$, welche zusammen mit dem im ${}^{27}Al$ - NMR-Spektrum nachgewiesenem $AlCl_4^-$ Anion die Bildung von Disupersilylthallonium-Kationen unterstützen (Versuch 77).

Während die *thermische Zersetzung* des in THF gelösten Monosupersilyldichlorhallans R*TlCl₂ in R*Tl und TlCl gemäß Reaktionsschema (65) bereits bei -50°C erfolgt, zerfällt das Disupersilylchlorhallan R*₂TlCl in C₆D₆-Lösung selbst bei Raumtemperatur noch sehr langsam (innerhalb von Tagen) auf dem Wege über R*₄Tl₃Cl (Versuch 76 Anmerkung) letztendlich in R*Cl und den erwähnten schwarzen Niederschlag (oligomeres R*Tl ?), der bei höheren Temperaturen in Thalliummetall und R*D übergeht. Diese in Lösung ablaufenden Reaktionen erklären möglicherweise auch die extrem breiten NMR-Signale für Chlordisupersilylthallan R*₂TlCl. So können die typischen Kopplungen der ¹H- ¹³C- und ²⁹Si- Kerne mit den Tl²⁰³/Tl²⁰⁵ (beide Isotope haben einen Kernspin von 1/2) aufgrund der Signalbreite nur schlecht bestimmt werden. In den meisten Fällen ergibt sich statt des erwarteten Dubletts nur ein breites Signal.

Somit könnte also gemäß Schema (65) das R_2^* TlCl zum Trithallan R_4^* Tl₃Cl abreagieren, das seinerseits sehr langsam unter Abgabe von – sich oligomerisierenden – Supersilylthallium wieder zerfiele. Da R_2^* TlCl in den bei tiefen Temperaturen zu R_4^* Tl₃Cl und R_6^* Tl₆Cl₂ führenden Lösungen von TlCl₃ mit 2 Äquivalenten NaR* in THF NMR spektroskopisch nicht nachgewiesen werden konnte, müssen andere, noch zu identifizierende Verbindungen (R_2^* Tl₂Cl₂?) als Vorstufen für die Bildung der betreffenden Oligothallane verantwortlich sein.

Eine Lösung von TlCl₃ mit 3 Äquivalenten NaR* in THF bei -78°C verwandelt sich, wie im Kapitel 4.1.1 bereits erwähnt, beim Erwärmen u.a. in das Dithallan R*₄Tl₂ neben Superdisilan R*–R* gemäß folgender denkbaren Reaktion: 2 R*₂Tl⁺ + 2 R*⁻ \rightarrow 2 R*₂Tl[•] + 2 R* \rightarrow R*₄Tl₂ + R*₂. Zumindestens läßt sich im ²⁹Si-NMR kurzfristig ein bei hohem Feld erscheinendes Signal (Multiplett bei δ (²⁹Si; THF; -30°C) = 165 ppm; Disupersilylthallonium-Kation ?) messen, welches jedoch innerhalb von 2 bis 3 Stunden bei Raumtemperatur verschwindet; als einzige thalliumhaltige Verbindung ist letztendlich nur noch das Dithallan vorhanden.

4.2.3 Kristallstruktur von R*2TICI

Der Bau von röntgenstrukturanalytisch geklärtem R*₂TlCl im Kristall (gelbe Platten, monoklin, P2/n) gibt Abbildung 40 zusammen mit ausgewählten Bindungslängen und -winkeln wieder.

Abbildung 40. Struktur der Verbindung R*₂TlCl im Kristall und verwendete Atomnumerierung (SCHAKAL-Plot; Atome mit willkürlichen Radien; die H-Atome wurden zur besseren Übersicht nicht eingezeichnet). Wichtige Bindungslängen [Å] und -winkel [°] von R*₂TlCl mit Standardabweichungen Tl1–Si1/Tl1–Si1A 2.623(4), Tl1–Cl1 2.579(3), Si1–Cl 1.946(5), Si1–C5 1.921(6), Si1–C9 1.937(5); – Si1–Tl1–Si1A 148.3(8), Si–Tl1–Cl1 105.7(7), C1–Si1–Tl1 111.2(12) [Mittelwert Tl–Si: 2.623 Å, Si–C: 1.93 Å]; C9–Si1–Tl1 104.07(17), C5–Si1–Tl1 108.9(2), C1–Si1–C5, 113.6(3), C1–Si1–C9 113.0 (2), C5–Si1–C9 112.7 (2) [Mittelwert C–Si–C: 113.1°]; Operator: M. Warchhold.

Das Zentrum der monomeren Verbindung R_2^* TICl bildet ein Thallium-Atom, welches von zwei R*-Gruppen und einem Chlor-Atom planar umgeben ist (Winkelsumme am Thallium 360.0°). Im Gegensatz zu Diorganylthallium(III)-halogeniden wie etwa Me₂TICl^[1] weist Disupersilylthalliumchlorid R_2^* TICl keine linearen [RTIR]⁺-Kationen auf. Möglicher Grund könnte die unterschiedliche Größe der Ionen R_2^* TI⁺ und Cl⁻ sein, welche keine Ausbildung eines energiearmen Ionenkristalls erlauben.

Als Folge des durch die Supersilylgruppen bewirkten back strains und der relativ zu der R*-Gruppe kleinen Ausdehnung des Cl-Atoms ist der Si–Tl–Si Bindungswinkel (159.94°) stark aufgeweitet [Si–E–Si-Winkel in R*₂AlCl und R*₂GaCl 152.9°; vgl. Kapitel 1, 2). Die Si–Tl Bindung liegt im R*₂TlCl mit 2.623 Å in einem ähnlichen Bereich, welcher für das Dithallan R₄Tl₂ mit R = Si(SiMe₃)₃ gemessen wurde (Tl–Si 2.675 Å), ist jedoch deutlich kürzer als im Dithallan mit R = Si*t*Bu₃ (Tl–Si 2.779 Å). Die Si–C Abstände und die C–Si–C Winkel liegen mit durchschnittlich 1.93 Å und 113.1° den bisherigen Beobachtungen (1.94-1.95 Å, 110-112°^[46]). Der vergleichbare Aufbau von R*₂ECl (E = Al, Ga, Tl) der erklärt auch das annähernd gleiche Volumen der Elementarzelle betreffenden Halogenide R*₂AlCl, R*₂GaCl und R*₂TlCl (1490 Å³, 1447 Å³ bzw. 1474 Å³).

4.2.4 Kristallstruktur von R*4Tl3Cl

Abbildung 41 gibt den Aufbau von R*₄Tl₃Cl im Kristall (monoklin, C2/c) zusammen mit ausgewählten Bindungslängen und -winkeln wieder. Pro R*₄Tl₃Cl Molekül sind jeweils zwei THF-Moleküle im Kristallgitter eingebaut. Zentrales Strukturelement der Verbindung ist ein planarer ist ein Tl_3Cl -Vierring (Winkelsumme 359.91°). Das mittlere Tl-Atom der Tl_3 -Gruppierung ist dabei mit zwei Supersilylgruppen verknüpft, die beiden anderen Tl-Atome tragen jeweils nur eine R*-Gruppe. Die Tl_3 -Einheit erinnert damit an die Al₃und Ga₃- Einheiten in R*₄Al₃° bzw. R*₄Ga₃° (siehe Kapitel 1.3.3 bzw. 2.2.3), in welchen ebenfalls ein Trielatom zwei Supersilylgruppen, die anderen Trielatome jeweils nur eine Supersilylgruppe tragen. Die Ebene, welche durch die Atome Si1, Si2 und Tl1 beschrieben wird, steht mit 89° nahezu senkrecht zu der Tl_3Cl -Ebene.

Abbildung 41. Molekülstruktur von $R_4^*Tl_3Cl$ im Kristall (SCHAKAL-Plot; Atome mit willkürlichen Radien; die Wasserstoffatome sind übersichtlichkeitshalber nicht wiedergegeben). Ausgewählte Bindungslängen [Å] und –winkel [°]: T11-T12 2.9093(7),T11-T13 2.9262(8),T12-C11 2.808(3), T13-Cl1 2.803(3), T11-Si1 2.641(3), T11-Si2 2.645(3), T12-Si3 2.678(3), T13-Si4 2.696(3), Si-C (Mittelwert) 1.944. – Si1-T11-Si2 143.9(1), Si1-T11-T12 105.55(7), Si2-T11-T12 101.04(6), Si1-T11-T13 103.51(9), Si2-T11-T13 102.32(7), T12-T11-T13 85.85(3), Si3-T12-Cl1 101.24(11), Si3-T12-T11 166.70(9), Cl1-T12-T11 92.06(7), Si4-T13-Cl1 101.60(10), Si4-T13-T11 166.58(7), Cl1-T13-T11 91.82(7) T13-Cl1-T12 90.18(9), C5-Si1-C9 111.5(10), C-Si-C (Mittelwert) 110.9, C-Si-T1 (Mittelwert) 107.6, Operator: D. Fenske.

Der planare Tl₃Cl-Vierring weicht etwas von der quadratischen Form ab, da die Thallium-Chlor Bindungen um etwa 0.010 Å kürzer sind als die beiden Thallium-Thallium-Bindungen der Tl₃-Einheit (Winkel TITITI 85.85°, TICITI 90.18°). Mit 2.909 Å und 2.926 Å bewegen sich die Thallium-Thallium Atomabstände im Rahmen von Tl-Tl Einfachbindungen ($R_2^TI-TIR_2^*$: 2.961 Å); sie sind aber deutlich kürzer als im [(Me₃Si)₃C]₄Tl₄ –Tetraeder (3.322 Å bis 3.627 Å^[163]). Die Tl–Si-Abstände betragen durchschnittlich 2.66 Å (R_4^* Tl₂ 2.78 Å; siehe Kapitel 4.1.2), was auf geringere sterische Wechselwirkung zwischen den Supersilylgruppen in $R_4^*Tl_3Cl$ deutet. Die Si–C-Abstände und die C–Si–C- Winkel der Supersilylgruppen liegen durchschnittlich 194 pm bzw. 111.2 ° im Normalbereich von 110-112°^[51].

4.2.5 Kristallstruktur von R*₆Tl₆Cl₂

Der Bau von röntgenstrukturanalytisch geklärtem $R_{6}^{*}Tl_{6}Cl_{2}$ im Kristall (monoklin, P-1) gibt Abbildung 42 zusammen mit ausgewählten Bindungslängen und -winkeln wieder. Zentrales Strukturelement sind zwei Tl₃Cl- Vierringe mit einer R*Tl–TlR*–TlR*- Kette, die über die mittleren Tl- Atome miteinander verknüpft sind. Die beiden Tl₃Cl-Vierringe sind nicht mehr wie in $R_{4}^{*}Tl_{3}Cl$ planar gebaut, sondern nehmen als Folge zusätzlicher Tl–Cl- Bindungen zwischen den Ringen eine Schmetterlingsform an (Winkelsumme für Tl1-Tl4-Cl-Tl5 341.8°; für Tl2-Tl6-Cl2-Tl3 346.8°). Der Diederwinkel im oberen 4-Ring (Tl1-Tl4-Cl-Tl5) beträgt 134.5° im unteren 4-Ring (Tl2-Tl6-Cl2-Tl3) 137.0°.

Mit 2.909 Å bis 2.944 Å liegen die Thallium-Thallium Atomabstände innerhalb der Tl₃Cl-Vierringe im Bereich von Tl–Tl Einfachbindungen (vgl. mit R_2^*Tl –Tl R_2^* : 2.961 Å), sind jedoch ein wenig gegenüber den entsprechenden Thalliumabständen in $R_4^*Tl_3Cl$ aufgeweitet. Dies zeigt sich auch in den entsprechenden Tl–Cl- Abständen, die mit durchschnittlich 2.90 Å um 10 pm gegenüber in $R_4^*Tl_3Cl$ erweitert sind. Der kürzeste Tl–Tl Abstand ist mit 2.85 Å zwischen den beiden Vierringen zu finden (die betreffende Tl1–Tl2- Bindung ist zugleich die kürzeste bisher aufgefundene TlTl- Bindung).

Die Tl–Si-Abstände sind mit durchschnittlich 2.66 Å um etwa 0.011 Å kürzer als im Dithallan $R_4^*Tl_2$, was für eine geringere sterische Wechselwirkung zwischen den Supersilylgruppen in $R_6^*Tl_6Cl_2$ spricht. Die Si–C-Abstände und die C–Si–C- Winkel der Supersilylgruppen liegen mit durchschnittlich 1.94 Å bzw. 111.2 ° im Normalbereich von 1.94-1.95 Å und 110-112°^[51].

Da die Kristalle von $R_6^* Tl_6 Cl_2$ in kleinen extrem dünnen Plättchen anfielen, ist der gewonnene Datensatz stark von Absorptionseffekten beeinflußt. Eine Absorptionskorrektur konnte nicht durchgeführt werden. Es liegen mehrere Restelektronenmaxima vor, die alle an der Peripherie des Moleküls (0.06 - 0.15 Å von den H-Atomen entfernt) liegen. Werden bei der Verfeinerung der Struktur nur Daten bis $2\theta = 44^{\circ}$ berücksichtigt, ändern sich die Strukturparameter nur geringfügig: R1 = 12.8%; Restelektronendichte max. 13.40 Å^{-3[171]}.

Abbildung 42. Molekülstruktur von R*₆Tl₆Cl₂ im Kristall (SCHAKAL-Plot; Atome mit willkürlichen Radien; die Wasserstoffatome sind übersichtlichkeitshalber nicht wiedergegeben). Ausgewählte Bindungslängen [Å] und -winkel [°]: Tl1-Tl2 2.854(2), Tl1-Tl5 2.908(2), Tl1-Tl4 2.944(2), T12-T13 2.934(2), T12-T16 2.901(2), T13-C11 2.901(6), T13-C12 3.007(7), T14-C12 2.918(6), Tl4-Cl1 2.984(7), Tl5-Cl1 2.866(7), Tl6-Cl2 2.862(6), Tl1-Si5 2.630(7), Tl2-Si3 2.640(7), Tl3-Si2 2.714(6), Tl4-Si1 2.715(6), Tl5-Si4 2.680(8), Tl6-Si6 2.674(7), [Si-C (Mittelwert) 195.1]. - Si5-T11-T12 137.1(2), Si5-T11-T15 112.4(2), T12-T11-T15 94.83(5), Si5-T11-T14 113.8(2), T12-T11-T14 100.89(5), T15-T11-T14 84.11(4), Si3-T12-T11 136.7(2), Si3-T12-T16 112.0(2), T11-T12-T16 94.13(5), Si3-T12-T13 115.0(2), T11-T12-T13 100.89(4), T16-T12-T13 84.43(5), Si2-Tl3-Cl1 99.8(2), Si2-Tl3-Tl2 159.2(1), Cl1-Tl3-Tl2 90.0(1), Si2-Tl3-Cl2 105.9(2), Cl1-Tl3-Cl2 81.8(2), Tl2-Tl3-Cl2 85.7(1), Si1-Tl4-Cl2 99.7(2), Si1-Tl4-Tl1 159.6(2), Cl2-Tl4-Tl1 99.1(1), Si1-TI4-Cl1 105.3(2), Cl2-TI4-Cl1 82.0(2), Tl1-TI4-Cl1 85.4(1), Si4-T15-Cl1 99.2(2), Si4-T15-T11 172.5(2), Cl1-T15-T11 88.3(1), Si6-T16-Cl2 100.2(2), Si6-Tl6-Tl2 170.7(2), Cl2-Tl6-Tl2 89.1(1), Tl5-Cl1-Tl3 103.6(2), Tl5-Cl1-Tl4 84.1(2), TI3-CI1-TI4 91.9(2), TI6-CI2-TI4 102.6(2), TI6-CI2-TI3 83.8(2), TI4-CI2-TI3 91.1(2), [C-Si-C (Mittelwert) 111.7, C-Si-Tl (Mittelwert) 107.3]; Operator: D. Fenske, D. Linti.

C Experimenteller Teil

5 Experimentelle Methodik

5.1 Arbeitsmethoden

Die im folgenden aufgeführten Versuche wurden, sofern nicht anders beschrieben, unter strengstem Ausschluß von Wasser und Sauerstoff an einer Hochvakuumapparatur unter Verwendung von Stickstoff als Standardschutzgas durchgeführt. Der käufliche, nachgereinigte Stickstoff (Linde 4.6) wurde zur Entfernung von Restsauerstoff über einen auf 200°C geheizten Kupferkatalysator und anschließend zur Entfernung von Restwasser durch Glasrohre geleitet, die mit Molekularsieb (5Å) und P4O10 gefüllt waren. Wurde mit elementarem Lithium bzw. Lithiumnaphtalenid gearbeitet, so diente durch ein mit P4O10 gefülltes Glasrohr geleitetes Argon (Linde 4.8) als Schutzgas. Zur Evakuierung diente eine Ölpumpe, zur Erzeugung von Hochvakuum eine Quecksilberdiffusionspumpe. Angesetzte NMR-Rohre wurden, falls nicht anders beschrieben, unter Vakuum abgeschmolzen. Umsetzungen mit elementaren Halogenen sowie thalliumhaltigen Verbindungen wurden generell unter Lichtausschluß und zur Verringerung bei Auftreten von HHal gegebenenfalls unter leichtem Vakuum durchgeführt. Bei extrem empfindlichen Substanzen, bzw. kleinsten Mengen, wurde die gesamte Apparatur nach dem Ausheizen unter HV zusätzlich noch mit Me3SiCl zur Eliminierung von Restwasser bzw. zur Siloxierung der Glaswände behandelt. Anschließendes Spülen mit frisch über Na/Benzophenon getrocknetem THF diente zur Austragung von verbliebenen HCl-Spuren. Lösungsmittel bzw. im stehenden ÖV flüchtige Reagenzien wurden, gegebenenfalls über nBuLi frisch getrocknet, direkt einkondensiert. Beim Herauslösen von schwerlöslichen Substanzen aus Salzgemischen wurde das Lösungsmittel mehrmals in der gleichen Apparatur umkondensiert.

Sofern keine explizite Beschreibung der Reaktionstemperatur erfolgt, wurde bei RT gearbeitet.

Die Lösungsmittel Diethylether, THF, TBME, Benzol, Toluol, Heptan und Pentan wurden über Umlaufapparaturen über Natrium / Benzophenon bzw. Natrium-Blei Legierung zur Entfernung von Restwasser und Restsauerstoff unter Rückfluß zum Sieden erhitzt und frisch destilliert entnommen. Andere Lösungsmittel wie z.B. CH_2Cl_2 , $CHCl_3$, CCl_4 , Aceton, wurden über Molekularsieb 4Å, Alkohole über Molekularsieb 3Å aufbewahrt. Deuterierte Solvenzien (C_6D_6 , C_6D_{12} , [D8]-THF]) wurden ebenfalls über Natrium / Benzophenon getrocknet. Wurden Gase stöchiometrisch eingesetzt, so wurden diese vor der Reaktion in einen volumenmäßig geeichten Kolben geleitet, wobei um die Molmenge zu bestimmen der Druck über die allgemeine Gasgleichung berechnet wurde. Natrium und Kalium wurden vor Verwendung von Paraffinöl und von anhaftenden Oxidkrusten befreit.

Alle verwendeten Reagenzien wurden trocken unter Stickstoff bzw. unter Argon, Flüssigkeiten gegebenenfalls auch über Molekularsieb, lichtempfindliche Verbindungen unter Lichtausschluß, wärmeempfindliche bei 4°C im Kühlschrank bzw. bei -25°C im Tiefkühlschrank, gelagert.

5.2 Meßmethoden

5.2.1 NMR-Spektroskopie

Die Kernresonanzspektren wurden an folgenden Geräten aufgenommen:

- Jeol GSX-270 (Meßfrequenzen:¹H: 270.17 MHz, ⁷Li: 105.00 MHz, ¹³C: 67.94 MHz, ²⁹Si: 53.67 MHz, ³¹P: 109.37 MHz, ⁷⁷Se: 51.43 MHz)
- Jeol EX-400 (Meßfrequenzen:¹H: 399.78 MHz, ¹³C: 100.41 MHz, ¹⁹F: 375.97 MHz, ²⁹Si: 79.31 MHz).
- Jeol Eclipse-400 (Meßfrequenzen:¹H: 400.19 MHz, ¹³C: 100.64 MHz, ²⁹Si: 79.505 MHz).

Die Angabe der chemischen Verschiebung erfolgt im sich anschließenden experimentellen Teil bei allen Kernen in ppm und wird durch die dimensionslose Größe δ angegeben, die der Kopplungskonstanten *J* in Hertz. Tieffeldverschiebungen tragen relativ zum Standard TMS ein positives, Hochfeldverschiebungen ein negatives Vorzeichen. Die chemischen Verschiebungen für ¹H- und ¹³C-NMR-Spektren beziehen sich auf die Signale des Lösungsmittels (¹H-NMR: [D₆]Benzol δ = 7.150, [D₈]THF δ = 1.730, [D₁₂]Cyclohexan δ = 1.40; ¹³C-NMR: [D₆]Benzol δ = 128.00, [D₁₂]Cyclohexan δ = 26.40; jeweils bezogen auf TMS δ = 0.000).

Kopplungsmultiplizitäten werden wie folgt angegeben: s = Singulett (im Normalfall nicht angegeben), d = Dublett, t = Triplett, q = Quartett, m = Multiplett, x = Multiplizität (≥ 4), br. = breites Signal.

 $^{x}J(A,B) =$ Kopplungskonstante der koppelnden Kerne (A, B) in Hz, wobei x der Abstand der beiden koppelnden Kerne ist. Kopplungskonstanten $^{3}J(Si,H)$ (~ 5.5 Hz) bzw. Multiplizität der $tBu_{3}Si$ -Gruppen werden nicht gesondert ausgewiesen.

¹H-NMR-spektroskopische Untersuchungen dienten als Standardmethode zur qualitativen und quantitativen Beurteilung von Reaktionsabläufen sowie zur Strukturaufklärung. Bei den in den ¹H-NMR-Spektren aufgeführten Prozentangaben handelt es sich, soweit nicht anders angegeben, um die aus den Integralen berechneten Mol-%, bei den ²⁹Si-Prozentangaben auf die Signalhöhe bezüglich des 100 %-Signals).

¹H-entkoppelte ²⁹Si-NMR-Spektren sowie andere Fremdkern NMR-Spektren waren von großer Wichtigkeit bei der Reaktions- bzw. Strukturaufklärung. In fast allen Fällen wurden die ²⁹Si-NMR-Spektren mit einem INEPT-Pulsprogramm vorgenommen. Mit empirisch optimierten Parametern bzw. bei der neueren Delta Software mit Angabe von Kopplungskonstante und Zahl der koppelnden Wasserstoffe gelingt es auf diese Weise, wasserstoff-, phenyl-, methyl und *tert*-butylsubstituierte ²⁹Si-Kerne im Verhältnis zur normalen ²⁹Si-NMR-Pulsfolge in sehr kurzer Zeit aufzunehmen. Allerdings gehen dadurch z. T. aussagekräftige Informationen über die Intensitäten weitestgehend verloren.

Als Standard für die Messungen dienten:

- 1 H-NMR:i-C₆D₆, i-CDCl₃
- ¹³C-NMR:i-C₆D₆, i-CDCl₃
- ¹⁹F-NMR:ext. CFCl₃ in [D₆]Aceton
- ²⁷Al-NMR:ext. Al(NO₃)₃ in D_2O
- ²⁹Si-NMR:ext. TMS in C_6D_6
- ⁷⁷Se-NMRext. Me₂Se in C_6D_6

5.2.2 ESR-Spektroskopie

Die ESR-Untersuchungen wurden an einem Bruker System ESP 300 vorgenommen.

5.2.3 Elementaranalyse

Die C/H/N-Analysen wurden im mikroanalytischen Labor des Instituts für anorganische Chemie der Ludwig-Maximilians-Universität durch Ermittlung der Verbrennungsprodukte bestimmt. In vielen Fällen wurde aufgrund der extremen Luftempfindlichkeit und der nicht ausreichend vorhandenen Schutzgastechnik bei der Substanzüberführung bzw. der zu geringen Substanzmenge auf eine Elementaranalyse verzichtet.

5.2.4 Massenspektrometrie

Massenspektroskopische Untersuchungen (m/z \leq 1000) wurden am Gerät Atlas CH7 der Fa. Varian und

ein Jeol-MS-700 durchgeführt. Als Probengefäß für den Probeneinlaß diente bei nicht sehr hydrolyseempfindlichen Substanzen ein Aluminiumtiegel, ansonsten ein beheizbares Quarzglasröhrchen, das dicht vor der Ionenquelle plaziert wurde ("Röhrchen-Methode"); befand sich die Probe in Lösung, so wurde mit einer Spritze direkt eingespritzt. In vielen Fällen mußte aufgrund der extremen Luftempfindlichkeit und der nicht vorhandenen Schutzgastechnik bei der Substanzüberführung bzw. aufgrund des zu hohen Molekulargewichts der Verbindungen auf das Massenspektrum verzichtet werden.

Darüberhinaus wurden Messungen an Geräten MAT 95Q bzw. 95XL der Fa. Finnigan bzw. MStation JMS 700 der Fa. Jeol durchgeführt.

5.2.5 Röntgenstrukturanalyse

Um genaue Daten über Bindungswinkel- und -abstände zu erhalten, wurden Kristallstrukturanalysen angefertigt. Zur Verfügung standen folgende Geräte: CAD 4 der Fa. Enraf-Nonius, ein Siemens P4 mit SMART-CCD Flächenzähler sowie ein STOE IPDS-Diffraktometer (Mo_{Kα}-Strahlung: $\lambda = 71.03$ pm, Graphitmonochromator). Das Lösen der Strukturen gelang mit direkten Methoden, die Verfeinerung mit dem Programm SHELXL Lit. (an F²-Werten, alle Daten wurden berücksichtigt), wobei die Funktion $\sum w(|F_0| - |F_c|)^2$ minimalisiert wurde. Alle Schweratome wurden anisotrop verfeinert und die Wasserstoffatome nach dem Reitermodell berücksichtigt. Bei den Verfeinerungen berechnen sich die Gütefaktoren wie folgt:

$$wR2 = \sum [w(F_0^2 - F_c^2)^2]^{\frac{1}{2}} / \sum [w(F_0^2)^2]^{\frac{1}{2}} \text{ mit } w^{-1} = \sigma^2 F_0^2 + (xP)^2 + yP$$

(P ist als $[0.33 \times \text{Maximum von} (F_0^2 + 2F_c^2)]$ definiert; im Falle eines negativen F_0^2 -Wertes wird hier Null eingesetzt, um die Division durch eine sehr kleine oder sogar negative Zahl zu vermeiden).

$$s = \sum \{ [w(F_0^2 - F_c^2)^2] / (N_0 - N_p)^{\frac{1}{2}}$$

N₀ ist die Anzahl der zur Verfeinerung verwendeten Reflexe, N_p die Anzahl der berechneten Parameter.

5.2.6 UV-VIS-Spektroskopie

Die UV-VIS-Spektren wurden an einem 555-UV-VIS-Spektrometer der Fa. Perkin-Elmer durchgeführt. Als Lösungsmittel diente Heptan.

5.2.7 Schmelzpunkte

Schmelzpunkte wurden, gegebenenfalls unter Stickstoff, in zugeschmolzenen Kapillaren mit einem Gerät Melting Point B540 der Fa. Büchi ermittelt.

6 Ausgangssubstanzen

6.1 Handelspräparate

Pentan, Hexan, Isohexan, Heptan, Et₂O, Aceton, CH₂Cl₂, CD₂Cl₂, CHCl₃, CDCl₃, CCl₄, THF, [D₈]THF-, TBME, Toluol, [D₈]Toluol, Benzol, [D₆]Benzol, MeOH, MeOD, [D₄]Methanol, [D₁₂]Cyclohexan, EtOH, 2-Propanol, *t*BuOH, Perfluorpolyetheröl RS 3000 hochviskos, *t*BuLi in Pentan, *n*BuLi in Hexan, MeLi in Diethylether, PhLi in Cyclohexan/Dietylether 7:3, Cp*Na in THF, K, Na, Li, Mg, Na-Pb-Legierung, Cu-Chromit, Me₃SiCl, Et₃SiH, NEt₃, Me₃SiN₃, GaCl₃, GaCl₂, SnCl₂, ZnCl₂, CdI₂, HgCl₂, Cl₂, Br₂, I₂, KOH, NaOH, NaOH (0.1 M in H₂O), KF, KHF₂, NaN₃, LiAlH₄, LiBr, CaCO₃, Na₂CO₃, P₄O₁₀, H₂O, DABCO, COT, TCNE, Mesitylbromid, MeI, Naphtalin, Benzophenon, 18-Krone-6, Stickstoff flüssig, Stickstoff 4.6, Argon 4.8, O₂, Universalindikator, 1,2-Dibromethan, Se_n.

6.2 Literaturpräparate

*t*Bu₂SiHCl^[45], *t*Bu₂SiHF^[45], *t*Bu₃SiH^[45], *t*Bu₃SiBr^[45], *t*Bu₃SiNa•2THF^[45], Li-Naphtalenid in THF^[169], Na-Naphtalenid in THF^[169], MesLi in Et₂O^[154], TlCp*^[170], GaBr-Lösung in THF/Toluol wurde freundlicherweise von AK Prof. Schnöckel, Karlsruhe zur Verfügung gestellt.

7 Beschreibung der Versuche

Versuch 1 Darstellung von tBu₂PhSiH aus tBu₂FSiH und PhLi

Zu einer Lösung von 6.96 g (42.9 mmol) tBu_2FSiH in 20 mL Heptan tropft man bei 0°C langsam 43.9 mmol PhLi gelöst in 18 mL Cyclohexan und 7 mL Diethylether, wobei ein farbloser Niederschlag entsteht. Alle flüchtigen Bestandteile werden im ÖV/HV entfernt. Durch Destillation bei 50°C / 1*10⁻³ mbar wird 7.3 g farbloses tBu_2PhSiH gewonnen (33.1 mmol; 77%).

Charakterisierung:

tBu₂PhSiH

Di-tert-butylphenylsilan	$C_{14}H_{23}SiH(M_r = 220.43)$
	farblose Flüssigkeit
¹ H-NMR (C ₆ D ₆):	$\delta = 1.063$ (s, $t\underline{Bu}_2$ PhSiH); 3.510 (s, $t\underline{Bu}_2$ PhSiH); 7.587 (s, m-Ph); 7.181 (s, o/p 7.845)
²⁹ Si-NMR (C ₆ D ₆):	$\delta = 13.4 \ (t Bu_3 \underline{Si})$
¹³ C-NMR (C ₆ D ₆):	$\delta = 29.2 (Me_3C); 19.1 (Me_3C); 136.1 (i-Ph); 135.5 (o-Ph); 129.3 (p-Ph); 128.0$
	(m-Ph)
MS (EI, 70 eV, $m/z > 50$):	m/z: 220 (19) [M ⁺ -], 163 (81) [M ⁺ -C ₄ H ₉], 135 (96) [M ⁺ -C ₃ H ₇ -C ₃ H ₆], 121
	$(100) [M^{+}-C_{4}H_{9}-C_{3}H_{6}], 105 (36) [M^{+}-C_{3}H_{7}-C_{6}H_{6}], 57 (44) [C_{4}H_{9}]^{+}$

Versuch 2 Darstellung von tBu2PhSiCl

Zu einer Lösung von 76 mg (0.315 mmol) tBu_2PhSiH in 5 mL Pentan wird bei 0°C und lichtgeschützt 0.4 mmol Cl₂ gelöst in CCl₄ getropft. Alle flüchtigen Bestandteile werden im ÖV entfernt und man erhält 9.4 g farbloses $tBu_2PhSiCl$ (0. 29 mmol ; 93%).

Charakterisierung:

tBu2PhSiCl

Di-tert-butyl-phenyl-c	hlorsilan $C_{14}H_{23}SiCl(M_r = 254.88)$
	farblose Flüssigkeit
¹ H-NMR (C ₆ D ₆):	δ = 1.079 (s, t <u>Bu</u> ₂ PhSiCl); 7.780 (m, m-Ph); 7.159 (m, o/p 7.845)
²⁹ Si-NMR (C ₆ D ₆):	$\delta = 27.1 \ (t Bu_3 \underline{Si})$
¹³ C-NMR (C ₆ D ₆):	$\delta = 28.1 (Me_3C); 22.2 (Me_3C); 135.2 (i-Ph); 133.0 (o-Ph); 129.9 (p-Ph); 127.9$
	(m-Ph)

Versuch 3 Darstellung von tBu₂PhSiBr

Zu einer Lösung von 7.3 g (33.1 mmol) tBu_2PhSiH in 10 mL Pentan tropft man bei 0°C und lichtgeschützt 34.0 mmol Br₂. Alle flüchtigen Bestandteile werden im ÖV/HV entfernt und man erhält durch Destillation bei 50°C / 1*10⁻³ mbar 9.4 g farbloses $tBu_2PhSiBr$ (31.4 mmol; 95%).

Charakterisierung:

tBu₂PhSiBr

Di-tert-butyl-phenyl-bron	msilan $C_{14}H_{23}SiBr(M_r = 299.33)$
	farblose Flüssigkeit
¹ H-NMR (C ₆ D ₆):	$\delta = 1.103$ (s, $t\underline{Bu}_2$ PhSiBr); 7.783 (m, m-Ph); 7.156 (m, o/p 7.845)
²⁹ Si-NMR (C ₆ D ₆):	$\delta = 33.7 \ (t Bu_3 \underline{Si})$
¹³ C-NMR (C ₆ D ₆):	$\delta = 28.5 \text{ (Me}_3\text{C}); 22.6 \text{ (Me}_3\text{C}); 135.7 \text{ (i-Ph)}; 135.2 \text{ (o-Ph)}; 127.9 \text{ (p-Ph)}; 127.9 \text{ (m-Ph)}$
MS (EI, 70 eV, $m/z > 50$):	<i>m/z</i> : 300/298 (3/4) [M ⁺ -], 243/241 (24/27) [M ⁺ -C ₄ H ₉], 201/199 (42/39) [M ⁺ -C ₄ H ₉ -C ₃ H ₆], 139/137 (30/30) [M ⁺ -C ₆ H ₆ -2C ₃ H ₆], 105 (20) [C ₆ H ₅ Si] ⁺ , 57 (44) [C ₄ H ₉] ⁺

Versuch 4 Darstellung von tBu2MesSiH

7.95 g (39.9 mmol) MesBr werden bei Raumtemperatur auf eine Suspension von 277 mg (39.9 mmol) Lithium getropft. Nachdem die Reaktionsmischung 72 Stunden bei Raumtemperatur gerührt wurde werden alle im ÖV flüchtigen Bestandteile entfernt und der farblose Rückstand in 40 mL Benzol aufgenommen. Nach der tropfenweisen Zugabe von 6.43 g (39.6 mmol) tBu_2FSiH wird die Reaktionsmischung für 12 Stunden unter Rückfluß erwärmt.

Ein nach Austausch des Lösungsmittels gegen C_6D_6 gemessenes ¹H-NMR-Spektrum zeigt die quantitative Bildung von *t*Bu₂MesSiH.

Charakterisierung:

tBu ₂ MesSiH		
Di-tert-butyl-1,3,5-trime	thylphenyl-	$C_{17}H_{30}Si (M_r = 262.51)$
silan		farblose Flüssigkeit
(Di-tert-butyl-mesityl-sil	an)	
Elementaranalyse:	ber.: C 77.78 gef.: C 77.43	H 11.52 H 11.46
¹ H-NMR (C ₆ D ₆):	δ = 1.124 (s, (t <u>Bu</u> ₂ (1,3,5-Me ₃ -C ₆ H ₂)Si-H, 18H); 2.543, 2.389, 2.113 (s, C ₆ Me ₃ 3H, 3H, 3H); 4.480 (s, Si- <u>H</u> , 1H)	
²⁹ Si-NMR (C ₆ D ₆):	$\delta = 6.1 (t Bu_3 \underline{Si})$	
¹³ C-NMR (C ₆ D ₆):	$\delta = 145.74, 143.$ (<u>Me₃C</u>); 26.64, 2	33, 138.49, 130.45, 129.71, 128.68 (1,3,5-Me ₃ - <u>C₆H₂); 30.51</u> 3.79, 21.10 (1,3,5- <u>Me₃-C₆H₂); 20.64 (Me₃<u>C</u>)</u>
MS (EI, 70 eV, $m/z > 160$)): <i>m/z</i> : 262 (7) [N (100) [M ⁺ -C ₄ H	M^+ -], 205 (28) [M^+ - C_4H_9], 177 (20) [M^+ - C_4H_9 - C_2H_4], 163 H_9 - C_3H_6]

Ergebnis

Setzt man Mesityllithium MesLi mit *t*Bu₂FSiH um bildet sich quantitativ Di-*tert*-butyl-1,3,5-tri-methyl-phenylsilan.

Versuch 5 Umsetzung von *t*Bu₂MesSiH mit Brom

Auf eine auf -5°C gekühlte Lösung von 2.73 g (10.4 mmol) $tBu_2MesSiH$ werden 1.66 g (10.4 mmol) Brom getropft. Bei dem langsamen Erwärmen wird ab 0°C die Reaktionslösung farblos. Laut NMR-Spektren hat sich nicht $tBu_2MesSiHBr$, sondern MesBr sowie tBu_2SiBrH gebildet.

Ergebnis

*t*Bu₂MesSiH läßt sich nicht analog dem *t*Bu₃SiH mit Brom in Alkanen bromieren. Stattdessen erfolgt eine Abspaltung der Mesitylgruppe.

Versuch 6 Darstellung von tBu₃SiNa

15.8 g (56.2 mmol) *t*Bu₃SiBr und ca. 20 g (870 mmol) kleingeschnittenes Natrium werden in 120 mL Heptan für 24 h unter Rückfluß erhitzt. Nachdem das Reaktionsgemisch abgekühlt ist, läßt man den grauen Niederschlag absitzen und erhält eine gelbbraune Lösung.

Die überstehende klare gelbbraune Lösung wird abgefrittet und verworfen, da diese wie ein ¹H-NMR-Spektrum zeigt neben wenig tBu_3SiNa noch etwas tBu_3SiH , tBu_3SiONa , $tBu_3Si-SitBu_3$ enthält. Das in Heptan relativ schlecht lösliche tBu_3SiNa bleibt als gelber kristalliner Rückstand neben überschüssig eingesetztem Na und unlöslichen Reaktionsprodukten im Kolben zurück. Nach Lösen des tBu_3SiNa in 80 mL Benzol, Abtrennen unlöslicher Anteile, Abkondensieren des Lösungsmittels im ÖV verbleiben 8.75 g (39.4 mmol, 70%) gelbes kristallines Supersilylnatrium zurück.

Charakterisierung:

tBu₃SiNa

Tri-tert-butylsilylnatrium	$C_{12}H_{27}NaSi \ (M_r = 222.42)$
(SupersilyInatrium)	gelbe Oktaeder;
	oxidations- und hydrolyseempfindlich;
	pyrophor

¹H-NMR (C₆D₆): $\delta = 1.40$ (s, $t\underline{Bu}_3SiNa$) ²⁹Si-NMR (C₆D₆): $\delta = 49.0$ (tBu_3Si) ¹³C-NMR (C₆D₆): $\delta = 34.25$ (<u>Me_3C</u>); 23.83 (Me_3C)

Ergebnis

 tBu_3SiBr setzt sich mit Natrium im Überschuß in siedendem Heptan zu tBu_3SiNa um. Da tBu_3SiNa Lösungen außerordentlich hohe Empfindlichkeit gegenüber Hydrolyse und Oxidation zeigen, empfiehlt es sich, die Verbindung als Feststoff aufzubewahren. Die Aufarbeitung und Reinigung basiert im wesentlichen auf der besseren Löslichkeit von tBu_3SiNa in Benzol als in Heptan und der Tatsache, daß Benzoladdukte gemäß $tBu_3SiNa(C_6H_6)_n$ relativ leicht den Donor im Vakuum abgeben.

Versuch 7 Darstellung von tBu₂PhSiNa

7.18 g (24.0 mmol) *t*Bu₂PhSiBr und ca. 10 g (435 mmol) Natrium werden in 100 mL Heptan für 24 h unter Rückfluß erhitzt. Nachdem das Reaktionsgemisch abgekühlt ist, läßt man den grauen Niederschlag absitzen und erhält eine gelbbraune Lösung.

Die überstehende klare gelbbraune Lösung wird auf die Hälfte eingeengt, abgefrittet und verworfen, da diese wie ein ¹H-NMR-Spektrum zeigt neben sehr wenig $tBu_2PhSiNa$ noch etwas tBu_2PhSiH enthält. Das in Heptan relativ schlecht lösliche $tBu_2PhSiNa$ bleibt als gelber kristalliner Rückstand neben überschüssig eingesetztem Na und unlöslichen Reaktionsprodukten im Kolben zurück. Nach Lösen des tBu_3SiNa in 80 mL Benzol, Abtrennen unlöslicher Anteile, Abkondensieren des Lösungsmittels im ÖV verbleiben 4.5 g (18.6 mmol, 77%) gelbes kristallines $tBu_2PhSiNa$ zurück.

Charakterisierung:

tBu₂PhSiNa

(Di-tert-butyl-phenyl)silylnatrium

 $C_{14}H_{23}$ NaSi ($M_r = 242.41$) gelber Feststoff; oxidations- und hydrolyseempfindlich; pyrophor

¹H-NMR (C₆D₆): $\delta = 1.243$ (s, $t\underline{Bu}_2$ PhSiNa); 7.772 (m, m-Ph); 7.181 (m, o/p 7.845) ²⁹Si-NMR (C₆D₆): $\delta = 26.8$ ($tBu_3\underline{Si}$) ¹³C-NMR (C₆D₆): $\delta = 32.61$ (<u>Me</u>₃C); 21.9 (Me₃C); 154.5 (i-Ph); 137.7 (o-Ph); 128.1 (p-Ph); 127.8 (m-Ph)

Ergebnis

 $tBu_2PhSiBr$ setzt sich mit Natrium im Überschuß in siedendem Heptan zu $tBu_2PhSiNa$ um. Da $tBu_2PhSiNa$ Lösungen außerordentlich hohe Empfindlichkeit gegenüber Hydrolyse und Oxidation zeigen, empfiehlt es sich, die Verbindung als Feststoff aufzubewahren. Die Aufarbeitung und Reinigung basiert im wesentlichen auf der besseren Löslichkeit von $tBu_2PhSiNa$ in Benzol als in Heptan und der Tatsache, daß Benzoladdukte gemäß $tBu_2PhSiNa(C_6H_6)_n$ relativ leicht den Donor im Vakuum abgeben

Versuch 8 Darstellung von (tBu₃Si)₂AlF

126 mg (0.274 mmol) $(tBu_3Si)_2AlCl$ und 369 mg (2.43 mmol) CsF werden in 20 mL THF gelöst. Anschließend rührt man die Lösung bei Raumtemperatur 24 Stunden, wobei die Farbe der Reaktionslösung von Gelb nach Hellgelb umschlägt und sich ein farbloser Niederschlag (CsCl) bildet. Eine nach Austausch des Lösungsmittels gegen C₆D₆ gemessene Probe zeigt die quantitative Bildung von (*t*Bu₃Si)₂AlF.

Alle flüchtigen Bestandteile werden im ÖV/HV entfernt, der hellgelbe Rückstand wird mit 15 mL Heptan eluiert und anschließend von Unlöslichem abgefrittet sowie das Filtrat auf ein Drittel eingeengt. Nach mehreren Wochen bei -23°C kristallisieren 95 mg (0.214 mmol, 78%) (*t*Bu₃Si)₂AlF als hellgelber Feststoff.

Charakterisierung:

(tBu₃Si)₂AlF

Di(tri-tert-butylsilyl)aluminiumfluorid		$C_{24}H_{54}AlFSi_2 (M_r = 444.84)$	
(Disupersilylaluminiumfluorid)		farbloser Feststoff;	
		oxidations- und hydrolyseempfindlich	
Elementaranalyse:	ber.: C 64.80	H 12.24	
	gef.: C 65.41	H 12.32	
¹ H-NMR (C ₆ D ₆ /[D8]TH	$F:\delta = 1.62 / 1.26$	$(s, (t\underline{Bu}_3Si)_2AlF)$	
²⁷ Al-NMR (C ₆ D ₆);	nicht beobachtba	ır.	
²⁹ Si-NMR (C ₆ D ₆):	nicht beobachtba	ц.	
¹³ C-NMR ($C_6 D_6 / [D8]$ THF): $\delta = 33.52 / 33.60$		60(<u>Me₃C</u>); 25.40 / 25.37 (Me ₃ <u>C</u>)	

MS (EI, 70 eV, m/z > 199): m/z: 444 (3) [M⁺], 387 (37) [M-C₄H₉⁺], 303 (45) [M-C₁₀H₂₁⁺], 261 (39) [M-C₁₃H₂₇⁺], 219 (100) [M-C₁₆H₃₃⁺]

Ergebnis:

 $(tBu_3Si)_2AlCl$ setzt sich in THF bei Raumtemperatur mit CsF zu $(tBu_3Si)_2AlF$ um.

Anmerkung: Umsetzung von (tBu3Si)2AlBr mit AgF

In einem angesetzten NMR-Rohr werden 38 mg (0.075 mmol) (*t*Bu₃Si)₂AlBr und 109 mg (0.859 mmol) AgF mit 0.6 mL THF versetzt. Anschließend schmilzt man das NMR-Rohr ab, beschallt für 5 Minuten im Ultraschallbad und nimmt nach 6 Stunden ein ¹³C-NMR-Spektrum auf, aus dem hervorgeht, daß neben tBu_3SiH und tBu_3SiF noch nicht umgesetztes ($tBu_3Si)_2AlBr$ vorhanden ist. Deshalb wird das Rohr für 8.5 Stunden auf 80°C erwärmt und danach das Lösungsmittel gegen C₆D₆ ausgetauscht. Die gemessenen NMR-Spektren zeigen Bildung von $tBu_3Si-SitBu_3$, tBu_3SiBr , tBu_3SiH , tBu_3SiF (rel. Ausbeute [$tBu_3Si-\%$] = 16%, 27%, 33%, 24%).

Wie die NMR-Spektren zeigen, hat sich bei 80°C (tBu_3Si_2AlBr vollständig umgesetzt. Da die Reaktion nicht wie erwartet zu (tBu_3Si_2AlF verlaufen ist, wurde auf eine Aufarbeitung verzichtet.

Versuch 9 Darstellung von (tBu₃Si)₂AlCl

Eine Lösung von 263 mg (1.97 mmol) AlCl₃ und 883 mg (3.97 mmol) tBu_3SiNa in 50 mL Benzol wird bei Raumtemperatur 24 h gerührt. Dabei ändert sich die Farbe der Reaktionslösung von intensiv gelb nach hellgelb. Ein nach Austausch des Lösungsmittels gegen C₆D₆ gemessenes ¹H-NMR-Spektrum zeigt, daß sich hauptsächlich (tBu_3Si)₂AlCl neben tBu_3SiH und $tBu_3Si-SitBu_3$ (rel. Ausbeute [$tBu_3Si-\%$] = 86%, 12%, 2%) gebildet hat.

Alle flüchtigen Bestandteile werden im ÖV/HV entfernt, der gelbe Rückstand dreimal mit je 20 mL Heptan aufgenommen und von unlöslichen Bestandteilen (NaCl) abfiltriert. Das Filtrat wird auf 10 mL eingeengt. Bei -23°C bilden sich nach 8 Tagen hellgelbe kristalline Nadeln.

Charakterisierung:

(tBu₃Si)₂AlCl

Di(tri-tert-butylsilyl)aluminiumchlorid		$C_{24}H_{54}AlClSi_2 (M_r = 461.30)$	
(Disupersilylaluminiumchlorid)		hellgelbe Nadeln;	
		oxidations- und hydrolyseempfindlich	
Elementaranalyse:	ber.: C 62.49	H 11.80	
	gef.: C 61.98	H 11.13	
¹ H-NMR (C_6D_6):	$\delta = 1.29 (s, (t\underline{Bu})$	₃ Si) ₂ AlCl)	
²⁷ Al-NMR (C ₆ D ₆);	nicht beobachtba	ır.	
²⁹ Si-NMR (C ₆ D ₆):	nicht beobachtba	II.	
¹³ C-NMR (C ₆ D ₆):	$\delta = 32.86 (\underline{\text{Me}_3}\text{C})$	c); 25.08 (Me ₃ <u>C</u>)	

MS (EI, 70 eV,
$$m/z > 199$$
): m/z : 460 (14) [M⁺], 403 (41) [M-C₄H₉⁺], 319 (42) [M-C₁₀H₂₁⁺], 277 (43) [M-C₁₃H₂₇⁺], 235 (100) [M-C₁₆H₃₃⁺]

Röntgenstrukturanalyse:

Siehe Kapitel 1.1.2.2

Ergebnis

AlCl₃ setzt sich bei Raumtemperatur mit zwei Äquivalenten tBu₃SiNa in Benzol zu (tBu₃Si)₂AlCl um.

Anmerkung: Thermolyse von (tBu₃Si)₂AlCl

27 mg (0.06 mmol) $(tBu_3Si)_2AlCl$ in 0.6 mL C₆D₆ werden in einem abgeschmolzenem NMR-Rohr auf 60°C erhitzt und die Reaktion NMR-spektroskopisch verfolgt. Da selbst nach 84 Stunden bei 60°C keine wesentliche Änderung eingetreten ist, wird die Probe erst 66 Stunden bei 100°C und schließlich für 117 Stunden auf 150°C erhitzt. Das ¹H-NMR-Spektrum zeigt dabei, daß noch immer 77% von (*t*Bu₃Si)₂AlCl unzersetzt vorhanden sind und sich *t*Bu₃SiD sowie *t*Bu₃SiCl gebildet haben.

Ergebnis

 $(tBu_3Si)_2AlCl zeigt in benzolischer Lösung eine hohe thermische Stabilität, da selbst nach 117 Stunden bei$ $150 °C immer noch 77% unzersetzt geblieben sind. <math>(tBu_3Si)_2AlCl zersetzt sich unter tBu_3SiCl Abspaltung,$ $wobei das zu erwartende tBu_3SiAl unter diesen Bedingung nicht stabil ist und zu elementaren Aluminium$ $und Supersilylradikalen tBu_3Si[•] zerfällt. Die Supersilylradikale reagieren weiter zu Folgeprodukten wie$ $tBu_3SiH.$

Anmerkung 1: Umsetzung von AlCl₃ mit einem Äquivalent tBu₃SiNa in Benzol

Man erhitzt 66 mg (0.143 mmol) (tBu_3Si_2AlCl und 19 mg (0.134 mmol) 0.6 ml C₆D₆ 9 Tage auf 150°C. Laut NMR-Spektren hat sich dabei $tBu_3SiAlCl_2$ gebildet.

Ergebnis

 $(tBu_3Si)_2AlCl$ setzt sich mit AlCl₃ in C₆D₆ bei 150°C langsam, innerhalb von 9 Tagen zum $tBu_3SiAlCl_2$ um.

Charakterisierung:

<i>t</i> Bu ₃ SiAlCl ₂		
Tri-tert-butylsilyl-aluminiumdichlorid		$C_{12}H_{27}AlCl_2Si(M_r = 297.32)$
(Supersilylaluminiumdichlorid)		hellgelber Feststoff;
		oxidations- und hydrolyseempfindlich
¹ H-NMR (C ₆ D ₆):	$\delta = 1.150 (\text{s}, t \underline{Bu}_3 \text{St})$	AlCl ₂)
²⁷ Al-NMR (C_6D_6);	nicht beobachtbar	
²⁹ Si-NMR (C ₆ D ₆):	nicht beobachtbar	
¹³ C-NMR (C ₆ D ₆):	$\delta = 31.83 (Me_3C); 2$	23.91 (Me ₃ <u>C</u>)

Versuch 10 Darstellung von (tBu₃Si)₂AlBr

Zu einer auf -45°C gekühlten Lösung von 440 mg (1.65 mmol) AlBr₃ in 10 mL Heptan 733 mg tropft man (3.30 mmol) tBu_3SiNa gelöst in 20 mL Heptan, wobei sich die Reaktionslösung trübt. Die Reaktionsmischung wird noch 30 Minuten bei -45°C gerührt und anschließend langsam auf Raumtemperatur erwärmt. Ein nach Austausch des Lösungsmittels gegen C₆D₆ gemessenes ¹H-NMR-Spektrum zeigt die quantitative Bildung von ($tBu_3Si)_2AlBr$.

Alle flüchtigen Bestandteile werden im ÖV/HV entfernt, der gelbe Rückstand dreimal in je 20 mL Heptan aufgenommen und von unlöslichen Anteilen (NaCl) abfiltriert. Das Filtrat wird auf 10 mL eingeengt. Bei -23°C bildet sich nach 10 Tagen ein hellgelber kristalliner Feststoff.

Charakterisierung:

(tBu₃Si)₂AlBr

Di(tri-*tert*-butylsilyl)aluminiumbromid (Disupersilylaluminiumbromid)

 $C_{24}H_{54}AlBrSi_2$ ($M_r = 505.75$) hellgelber Feststoff; oxidations- und hydrolyseempfindlich

Elementaranalyse:	ber.: C 57.00	H 10.76
	gef.: C 56.82	H 10.29
¹ H-NMR (C_6D_6):	$\delta = 1.29$ (s, (<i>t</i> <u>B</u>)	u ₃ Si) ₂ AlBr)
²⁷ Al-NMR (C ₆ D ₆);	nicht beobachth	bar
²⁹Si-NMR (C₆D₆): $\delta = 25.9$ (breit, $(tBu_3Si)_2AlBr$) ¹³C-NMR (C₆D₆): $\delta = 32.87$ (Me₃C); 25.25 (Me₃C) MS (EI, 70 eV, m/z > 199): m/z: 504 (2) [M⁺], 447 (41) [M-C₄H₉⁺], 425 (1) [M-Br⁺], 319 (2) [M-C₈H₁₇⁺], 226 (100) [M- tBu₃SiBr⁺], 221 (15) [M- tBu₃Si-C₆H₁₂⁺]

Ergebnis

AlBr₃ setzt sich bei -45°C mit zwei Äquivalenten tBu₃SiNa in Heptan zu (tBu₃Si)₂AlBr um.

Anmerkung 1: Thermolyse von (*t*Bu₃Si)₂AlBr in C₆D₆

21 mg (0.04 mmol) (tBu_3Si_2AlBr in 0.6 mL C₆D₆ werden in einem abgeschmolzenem NMR-Rohr auf für 40 Tage auf 60°C erhitzt. Das ¹H-NMR-Spektrum zeigt dabei, daß 63% von (tBu_3Si_2AlBr unzersetzt vorhanden sind und sich tBu_3SiD sowie tBu_3SiBr gebildet haben.

Ergebnis

 $(tBu_3Si)_2AlBr zeigt, im Vergleich zu (tBu_3Si)_2AlCl, in benzolischer Lösung keine so hohe thermische Stabilität. (tBu_3Si)_2AlBr zersetzt sich unter tBu_3SiBr und tBu_3SiH Bildung.$

Anmerkung 2: Umsetzung von AlBr₃ mit einem Äquivalent *t*Bu₃SiNa in Heptan

Beläßt man eine Lösung von 62 mg (0.28 mmol) *t*Bu₃SiNa und 77 mg (0.28 mmol) AlBr₃ in Heptan in 0.6 mL Heptan bildet sich laut ¹H-NMR innerhalb von 5 Tagen quantitativ *t*Bu₃SiAlBr₂. Im Zuge der Reaktion bildet sich ein grauer Niederschlag. Alle flüchtigen Bestandteile werden im ÖV/HV entfernt, der Rückstand 10 mL Heptan aufgenommen und von unlöslichen Anteilen (NaCl) abfiltriert. Abkondensieren des Lösungsmittels liefert 37 mg eines hellgeben Feststoffs (0.096 mmol, 35%).

Charakterisierung:

tBu₃SiAlBr₂

Tri-tert-butylsilyl-aluminiumdibromid $C_{12}H_{27}AlBr_2Si$ ($M_r = 386.22$)(Supersilylaluminiumdibromid)hellgelber Feststoff;
oxidations- und hydrolyseempfindlich

¹**H-NMR** (C₆D₆): $\delta = 1.197$ (s, $t\underline{Bu}_3SiAlBr_2$)

²⁷ Al-NMR (C_6D_6);	nicht beobachtbar
²⁹ Si-NMR (C ₆ D ₆):	nicht beobachtbar
¹³ C-NMR (C ₆ D ₆):	$\delta = 32.20 (Me_3C); 24.90 (Me_3C)$

Versuch 11 Darstellung von (*t*Bu₃Si)AlBr₂(NEtMe₂)

Eine Lösung von 0.720 g (2.70 mmol) AlBr₃ in 10 mL Heptan versetzt man mit 2.0 mL (18.5 mmol) NEtMe₂, worauf farbloses AlBr₃(NEtMe₂) ausfällt. Zu dieser auf -78°C gekühlten Suspension tropft man langsam 0.623 g (2.80 mmol) tBu_3SiNa gelöst in 20 mL Heptan. Man läßt die Reaktionsmischung auf Raumtemperatur kommen, wobei sich die gelbe Suspension entfärbt. Laut ¹H-NMR (C₆D₆) hat sich ausschließlich $tBu_3SiAlBr_2(NEtMe_2)$ (rel. Ausbeute [$tBu_3Si-\%$] = 95%) gebildet.

Nach Abziehen aller flüchtigen Anteile im Ölpumpenvakuum, Aufnahme des Rückstands in 40 mL Pentan, Abfiltrieren unlöslicher Anteile, Einengen auf 10 mL bilden sich bei -23°C innerhalb von einer Woche 1.06 g (2.31 mmol, 85%) farblose quaderförmige Kristalle.

Charakterisierung:

tBu₃SiAlBr₂(NEtMe₂)

Tri- <i>tert</i> -butylsilylalum	iniumdibro-	$C_{16}H_{38}AlBr_2NSi (M_r = 459.36)$
mid-Ethyldimethylamin(1/1)		farblose Quader;
		oxidations- und hydrolyseempfindlich
Elementaranalyse:	ber.: C 41.84	H 8.34
	gef.: C 41.19	H 8.09
¹ H-NMR (C_6D_6):	$\delta = 2.97$ (q; -C <u>H</u> ₂ -N; 2H); 2.04 (s; (<u>H</u> ₃ C) ₂ N-; 6H); 1.38 (s; <u>tBu</u> ₃ Si; 27H); 0.32	
	(t; N-CH ₂ -C <u>H</u> ₃ ;	3H)
²⁷ Al-NMR (C_6D_6);	nicht beobachtba	ır.
²⁹ Si-NMR (C_6D_6):	nicht beobachtbar	
¹³ C-NMR (C ₆ D ₆):	$\delta = 51.79 \ (-\underline{C}H_{2})$	₂ -N); 42.39 ((H ₃ <u>C</u>) ₂ N-); 32.61 (<u>Me₃</u> C); 24.23 (Me ₃ <u>C</u>); 4.98
	$(N-CH_2-\underline{C}H_3)$	

MS (EI, 70 eV, m/z > 199): m/z: 459 (9) [M⁺], 402 (100) [M-C₄H₉⁺], 388 (11) [M-C₅H₁₁⁺], 346 (23) [M-C₈H₁₇⁺], 304 (13) [M-C₁₁H₂₃⁺], 260 (86) [M-tBu₃Si⁺]

Röntgenstrukturanalyse:

Siehe Kapitel 1.1.1.2

Ergebnis

AlBr₃(NEtMe₂) setzt sich bei tiefen Temperaturen (-78°C) mit einem Äquivalent tBu_3SiNa in Heptan quantitativ zu $tBu_3SiAlBr_2(NEtMe_2)$ um.

Versuch 12 Darstellung von (*t*Bu₃Si)All₂(NEtMe₂)

Eine Lösung von 0.825 g (2.02 mmol) AlI₃ in 15 mL Heptan versetzt man mit 2.0 mL (18.5 mmol) NEtMe₂, worauf farbloses AlI₃(NEtMe₂) ausfällt. Zu dieser auf -78°C gekühlten Suspension tropft man langsam 0.450 g (2.02 mmol) tBu_3SiNa gelöst in 20 mL Heptan. Man läßt die Reaktionsmischung auf Raumtemperatur kommen, wobei sich die gelbe Suspension entfärbt. Laut ¹H-NMR (C₆D₆) hat sich ausschließlich $tBu_3SiAlBr_2(NEtMe_2)$ gebildet.

Nach Abziehen aller flüchtigen Anteile im Ölpumpenvakuum, Aufnahme des Rückstands in 40 mL Pentan, Abfiltrieren unlöslicher Anteile, erhält man nach Abkondensieren des Lösungsmittels 901 mg (1.63 mmol, 81%) eines farblosen Feststoffs.

Charakterisierung:

<i>t</i> Bu ₃ SiAll ₂ (NEtMe ₂)
Tri-tert-butylsilylaluminiumdi-
iodid-Ethyldimethylamin(1/1)

farbloser Feststoff	
oxidations- und hydrolyseempfindlich;	
lichtempfindlich	

 $C_{16}H_{38}All_2NSi (M_r = 553.36)$

Elementaranalyse:	ber.: C 34.73	H 6.92
	gef.: C 35.36	Н 7.29
¹ H-NMR (C_6D_6):	$\delta = 2.66 (q; -C)$	<u>H</u> ₂ -N; 2H); 2.18 (s; (<u>H</u> ₃ C) ₂ N-; 6H); 1.40 (s; <i>t</i> <u>Bu</u> ₃ Si; 27H); 0.55
	(t; N-CH ₂ -C <u>H</u> 3	; 3H)

²⁷ Al-NMR (C_6D_6);	nicht beobachtbar
²⁹ Si-NMR (C ₆ D ₆):	nicht beobachtbar
¹³ C-NMR (C ₆ D ₆):	$\delta = 51.63 (-\underline{C}H_2-N); 42.63 ((H_3\underline{C})_2N-); 32.82 (\underline{Me_3C}); 24.55 (Me_3\underline{C}); 5.23$
	$(N-CH_2-\underline{C}H_3)$

Ergebnis

 $All_3(NEtMe_2)$ setzt sich bei tiefen Temperaturen (-78°C) mit einem Äquivalent *t*Bu₃SiNa in Heptan quantitativ zu *t*Bu₃SiAll₂(NEtMe₂) um.

Versuch 13 Umsetzung von All₃ mit zwei Äquivalenten *t*Bu₃SiNa in Pentan

Zu einer Suspension von 20 mg (0.05 mmol) AlI₃ in 3 mL Pentan tropft man bei Raumtemperatur eine Lösung von 21 mg (0.10 mmol) tBu_3SiNa in 4 mL Pentan. Man erhält sofort eine gelbbraune Lösung über grauem metallischem Niederschlag. Die Pentanlösung wird abdekantiert, das Lösungsmittel im ÖV entfernt und der so erhaltene gelbbraune Rückstand in 0.6 mL C₆D₆ aufgenommen. Die anschließend gemessenen NMR-Spektren zeigen die Bildung von tBu_3Si —Si tBu_3 , tBu_3Si I und tBu_3Si H (rel. Ausbeute [tBu_3Si -%] = 56%, 36%, 8%).

Auf eine Aufarbeitung wurde verzichtet, da das gewünschte Produkt (*t*Bu₃Si)₂All nicht in der Reaktionslösung vorlag.

Ergebnis

AlI₃ reagiert mit zwei Aquivalenten tBu_3SiNa bei Raumtemperatur sehr rasch zu tBu_3SiI unter Abscheidung von metallischem Aluminium. Die Reaktion verläuft möglicherweise über tBu_3SiAII_2 oder über das gewünscht Produkt (tBu_3Si)₂AlI. Beide Verbindungen konnten unter den gegebenen Bedingungen nicht nachgewiesen werden. Es ist somit anzunehmen, daß diese Aluminiumverbindungen unter diesen Bedingungen instabil sind und unter Abspaltung von tBu_3SiI in tBu_3Si° und Al übergehen.

Versuch 14 Darstellung von (*t*Bu₃Si)₂AlH

Zu einer auf -78°C gekühlten Lösung von 33 mg (0.869 mmol) LiAlH₄ in 10 mL THF tropft man innerhalb von 30 Minuten 173 mg (0.375 mmol) (tBu_3Si_2AlCl gelöst in 20 mL THF. Anschließend rührt man bei -78°C noch weitere 3 Stunden, läßt die Reaktionsmischung danach langsam auf Raumtemperatur kommen und erhält so eine farblose Lösung über grauem Niederschlag. Ein nach Austausch des Lösungsmittels gegen C_6D_6 gemessenes ¹H-NMR-Spektrum zeigt die Bildung von (*t*Bu₃Si)₂AlH und (*t*Bu₃Si)₂AlOBu im Molverhältnis 4 : 1.

Man frittet sofort (siehe auch untenstehende Anmerkung) von unlöslichen Bestandteilen ab, zieht das Lösungsmittel am ÖV ab und nimmt den farblosen Rückstand in 5 mL Heptan auf. Beim Abkühlen auf -23° C bilden sich nach 2 Monaten kleine farblose Kristalle, welche sich jedoch für eine Röntgenstrukturanalyse als ungeeignet erwiesen. Der in Heptan unlösliche Rückstand zeigt in einem gegen C₆D₆ gemessenen ¹H-NMR-Spektrum keine nennenswerten löslichen Bestandteile.

Charakterisierung:

(tBu₃Si)₂AlH

Di(tri-tert-butylsilyl)alan		$C_{24}H_{54}AlHSi_2 (M_r = 426.85)$
(Disupersilylalan)		farbloser Feststoff;
		oxidations- und hydrolyseempfindlich
Elementaranalyse:	ber.: C 67.53	H 12.99
	gef.: C 68.43	H 13.63
¹ H-NMR (C_6D_6/C_6D_{12}):	$\delta = 1.53/1.25$ (s,	$(t\underline{Bu}_3Si)_2AlH)$
²⁷ Al-NMR (C_6D_6);	nicht beobachtba	r
²⁹ Si-NMR (C ₆ D ₆):	$\delta = 23.91 \ (tBu_3 \underline{Si}$	i)
¹³ C-NMR (C_6D_6/C_6D_{12})	$\delta = 33.30 / 32.79$	(<u>Me₃C</u>); 24.62 / 25.31 (Me ₃ <u>C</u>)
MS (EI, 70 eV, <i>m/z</i>):	<i>m/z</i> : 425 (2) [M	[⁺ -H]

Anmerkung: Darstellung von (tBu₃Si)₂AlOBu

Die Reaktionsmischung sollte baldmöglichst nach dem Auftauen aufgearbeitet werden, da sonst das entstandene (*t*Bu₃Si)₂AlH mit dem Lösungsmittel THF unter Hydridübertragung zu (*t*Bu₃Si)₂AlOBu weiterreagiert. So kann in der zur Reaktionskontrolle entnommenen NMR-Probe, in dem sich noch eine kleine Menge freies THF befindet, beobachtet werden, daß selbst bei Raumtemperatur unter Abnahme des ¹H-NMR-Signals bei 1.525 ppm langsam die des Signals bei 1.393 ppm zunimmt. Die Konzentrationen von "Supersilan" *t*Bu₃SiH und "Disilan" *t*Bu₃Si-Si*t*Bu₃ bleiben dabei konstant. Da (*t*Bu₃Si)₂AlH selbst nach 148 Stunden bei 60°C nicht verschwunden ist, wird das NMR-Rohr für 46 Stunden auf 80°C erwärmt und erneut ein ¹H-NMR-Spektrum aufgenommen

¹H-NMR der Reaktionslösung

δ [ppm] (C ₆ D ₆)	ppm] ₆ D ₆) Zuordnung		rel. Ausbeute [<i>t</i> Bu ₃ Si-%] nach x Tagen bei Raumtemperatur			
		0	4	8	29	
1.525	(t <u>Bu</u> ₃ Si) ₂ AlH	32	30	29	28	0
1.393	(t <u>Bu</u> ₃ Si) ₂ AlOBu	27	39	40	42	60
1.374	t <u>Bu</u> 3Si-SitBu3	20	19	20	20	16
1.117	t <u>Bu</u> 3SiH	1	5	5	5	8

Das nach 46 Stunden bei 80°C gemessene ¹H-NMR zeigt noch ein weiteres Signal bei 1.508 ppm (rel. Ausbeute $[tBu_3Si-\%] = 16\%$) auf, welches keiner bekannten Verbindung zugeordnet werden kann. $(tBu_3Si)_2$ AlH hat unter diesen Bedingungen vollständig mit dem THF abreagiert.

Charakterisierung:

(tBu₃Si)₂AlOBu

Butoxy-di(tri-tert-butylsilyl)alan	$C_{28}H_{63}AlOSi_2 (M_r = 498.96)$
(Butoxy-disupersilylalan)	farbloser Feststoff;
	oxidations- und hydrolyseempfindlich

¹**H-NMR** (C₆D₆): $\delta = 4.07 \text{ (m; -OCH}_2\text{-}; 2\text{H}); 1.79 \text{ (m;, -OCH}_2\text{-}CH}_2\text{-}; 2\text{H}); 1.38 \text{ (s; } t\underline{\text{Bu}}_3\text{Si}; 27\text{H}); 0.94 \text{ (m; -CH}_2\text{-}CH}_3; 2\text{H}); 0.83 \text{ (t; -CH}_3)$

²⁷Al-NMR (C_6D_6); nicht beobachtbar

²⁹Si-NMR (C_6D_6): nicht beobachtbar

¹³C-NMR (C_6D_6): $\delta = 62.81$ (m; -O<u>C</u>H₂-; 2H); 33.29 / 24.62 (s; <u>*t*Bu</u>₃Si; 27H); 23.22 (m; -OCH₂-<u>C</u>H₂-; 2H); 18.16 (m; -<u>C</u>H₂-CH₃; 2H); 14.11 (t; -<u>C</u>H₃) (Die Zuordnung erfolgte mit Hilfe eines DEPT-Pulsprogramms)

Ergebnis

 $(tBu_3Si)_2AlCl$ setzt sich mit LiAlH₄ in THF bei -78°C zu $(tBu_3Si)_2AlH$ um. Das so entstandene Alan ist bei Raumtemperatur stabil, erweist sich jedoch als sehr reaktives Hydrierungsmittel, da selbst bei Raumtemperatur THF angegriffen wird und - wohl über den Weg einer intramolekularen THF-Spaltung und anschließender Insertion des Bruchstücks in die Al-H-Bindung - $(tBu_3Si)_2AlOBu$ entsteht.

Versuch 15 Darstellung von (tBu₃Si)₂AlK und Nachweis mit Ph₃CH

Eine Lösung von 298 mg (0.647 mmol) (*t*Bu₃Si)₂AlCl in 20 ml Heptan wird mit ca. 3 g (77 mmol) Kalium bei Raumtemperatur gerührt. Die Reaktionsmischung verändert dabei die Farbe innerhalb von 2 Tagen von hellgelb nach braun, wobei ein grauer Niederschlag neben gelöstem (*t*Bu₃Si)₂ und *t*Bu₃SiH entsteht. Ferner zeigt das ¹H-NMR-Spektrum im Bereich 1.12 bis 1.36 ppm mehrere kleinere Signale, welche keiner bekannten Verbindung zugeordnet werden können. Die Heptanlösung wird vorsichtig abdekantiert und der zurückbleibende graue Rückstand im HV getrocknet.

46.4 mg dieses grauen Pulvers werden mit 31 mg (0.127 mmol) Triphenylmethan in ein angesetztes NMR-Rohr gegeben und mit 0.7 ml C_6D_6 versetzt. Die NMR-Spektren zeigen die Bildung von $(tBu_3Si)_2AIH$.

Ergebnis:

Die Bildung von $(tBu_3Si)_2AIH$ gibt einen Hinweis auf das Vorhandensein der Verbindung $(tBu_3Si)_2AIK$. Der Protonenspender Triphenylmethan reagiert mit dem Alanid $(tBu_3Si)_2AIK$ zum im Versuch 14 dargestellten Alan $(tBu_3Si)_2AIH$.

Anmerkung 1: Umsetzung von (tBu₃Si)₂AlBr mit Kalium in Heptan

 $(tBu_3Si)_2AlBr$ reagiert bei Raumtemperatur analog wie $(tBu_3Si)_2AlCl$ mit Kalium in Heptan zu einer braunen Reaktionslösung über grauen Niederschlag. Die Reaktion ist jedoch bereits nach 24 Stunden beendet. Aufarbeitung und Nachweis des $(tBu_3Si)_2AlK$ erfolgen wie oben bereits beschrieben.

Anmerkung 2: Umsetzung von (*t*Bu₃Si)₂AlCl mit Natrium in Et₂O

 $60 \text{ mg} (0.130 \text{ mmol}) (tBu_3Si)_2$ AlCl werden mit ca. 3 g (0.13 mmol) Natrium in 20 ml Et₂O 24 Stunden bei Raumtemperatur gerührt und anschließend für zwei Stunden unter Rückfluß erwärmt, wobei sich eine hellgelbe Lösung über grauen Niederschlag bildet. Man entnimmt eine Probe und untersucht nach Austausch des Lösungsmittels gegen C_6D_6 NMR-spektroskopisch. Das ¹H-NMR-Spektrum zeigt neben *t*Bu₃SiH und *t*Bu₃Si-Si*t*Bu₃ noch mehrere Signale im Bereich von 1.4 bis 1.1 ppm, welche keiner bekannten Verbindung zugeordnet werden können. Ferner konnte aus einer anschließend erfolgten Umsetzung der Reaktionslösung mit Me₃SiCl kein eindeutiges Abfangprodukt gewonnen werden, so daß auf eine weitere Aufarbeitung verzichtet wurde.

Anmerkung 3: Umsetzung von (tBu₃Si)₂Al–Al(SitBu₃)₂ mit Kalium in Pentan

42 mg (0.05 mmol) (tBu_3Si)₂Al–Al(Si tBu_3)₂ werden mit ca. 3 g (0.08 mmol) Kalium in 10 ml Pentan bei Raumtemperatur gerührt, wobei sich die Farbe der zunächst roten Lösung innerhalb von 30 Minuten von violett nach grün verändert. Nach 24 Stunden erhält man eine farblose Lösung über grauen Niederschlag. Die Pentanlösung wird abdekantiert und nach Austausch des Lösungsmittels gegen C₆D₆ NMR-spektroskopisch untersucht. Der im Kolben zurückbleibende graue Niederschlag wird ebenfalls in C₆D₆ aufgenommen und NMR-spektroskopisch vermessen. Das ¹H-NMR-Spektrum zeigt, daß in der Pentanlösung im wesentlichen nur tBu_3SiH und $tBu_3Si-SitBu_3$ vorhanden sind. Der in Pentan unlösliche Rückstand besteht möglicherweise aus (^tBu₃Si)₂AlK und mehreren unbekannten Verbindungen, welche jedoch aufgrund der geringen Substanzmenge nicht weiter untersucht werden konnten.

Versuch 16 Darstellung von (tBu₃Si)₂Al –Al(SitBu₃)₂

16a Darstellung aus AlBr₃ und drei Äquivalenten tBu₃SiNa

Auf 537 mg (2.01 mmol) AlBr₃ und 1350 mg (6.07 mmol) NaSitBu₃ werden 60 mL Heptan bei -196°C kondensiert. Nachdem die Reaktionsmischung 4 Stunden bei -78°C sowie nach langsamen Erwärmen auf Raumtemperatur weitere 24 Stunden lichtgeschützt gerührt wurde, erhält man eine tiefrote Lösung über einem rotem Feststoff. Eine nach Austausch des Lösungsmittels gegen C_6D_{12} gemessene Probe zeigt die Bildung von ($tBu_3Si_2Al-Al(SitBu_3)_2$ und $tBu_3Si-SitBu_3$ im Molverhältnis von 1 : 1 (quantitative Bildung von ($tBu_3Si_2Al-Al(SitBu_3)_2$). Die Heptanlösung wird abdekantiert, der rote Rücksrand dreimal mit je 40 mL Pentan aufgenommen und von unlöslichen Bestandteilen (NaBr) abfiltriert. Die rote Lösung wird auf ein Drittel eingeengt. Bei -23°C bilden sich nach 7 Tagen 762 mg (0.896 mmol, 89% bezogen auf eingesetzte Menge AlBr₃) intensiv rote quaderförmige Kristalle. Die schwach rot gefärbte Mutterlauge wird abdekantiert und enthält laut ¹H-NMR-Spektren im wesentlichen nur noch $tBu_3Si-SitBu_3$.

Charakterisierung:	
--------------------	--

(tBu ₃ Si) ₂ Al—Al(SitBu ₂	3) ₂	
Tetrakis(tri-tert-butylsilyl)dialumi-		$C_{48}H_{108}Al_2Si_4 (M_r = 851.69)$
nium (Al-Al)		rote Quader;
(Tetrasupersilyldialan)		oxidations- und hydrolyseempfindlich;
		nur in Alkanen als Lösungsmittel stabil;
		zerfällt in C_6D_6 bei Raumtemperatur inner-
		halb von Stunden in mehrere Verbindungen;
		in Lösung lichtempfindlich;
		Zers. ab 63°C
Elementaranalyse:	ber.: C 67.69	H 12.78
	gef.: C 67.34	Н 12.73
¹ H-NMR (C_6D_6/C_6D_{12}):	$\delta = 1.36 / 1.29$ (s,	$(t\underline{Bu}_3Si)_2Al-Al(SitBu_3)_2)$
²⁷ AI-NMR (C_6D_6);	nicht beobachtbar	
²⁹ Si-NMR (C_6D_6/C_6D_{12})	$\delta = 44.7 / 44.9 (t)$	Bu ₃ <u>Si</u>)
¹³ C-NMR (C_6D_6/C_6D_{12})	$\delta = 35.56 / 34.88$	(<u>Me₃C</u>); 25.64 / 26.08 (Me ₃ <u>C</u>)
UV/Vis (Heptan):	$\lambda = 525 \text{ nm}$	
MS (EI, 70 eV, $m/z > 199$)): <i>m/z</i> : 410 (4) [M	$1/2^{+}$ -Me], (25) 369 [M/2^{+} -C_{4}H_{8}], 226 (100) [<i>t</i> Bu ₃ Si-Al]

Röntgenstrukturanalyse:

siehe Kapitel 1.2.2

Ergebnis

Setzt man AlBr₃ mit drei Äquivalenten tBu_3SiNa bei -78°C bildet sich zunächst (tBu_3Si)₂AlBr (siehe auch Versuch 10). Erwärmt man die Reaktionsmischung langsam auf Raumtemperatur bildet sich aus (tBu_3Si)₂AlBr und dem verbleibenden tBu_3SiNa unter Abspaltung von $tBu_3Si-SitBu_3$ und NaBr innerhalb von 24 Stunden das Kopplungsprodukt (tBu_3Si)₂Al-Al(SitBu_3)₂ (siehe auch Versuch 16c).

16b Darstellung aus (tBu₃Si)₂AlCl und einem Äquivalent tBu₃SiNa

Eine Lösung von 84 mg (0.18 mmol) (tBu_3Si)₂AlCl und 41 mg (0.18 mmol) tBu_3SiNa in 15 mL Pentan wird bei Raumtemperatur 2 Tage lichtgeschützt gerührt. Die Reaktionsmischung verändert dabei die Farbe nach Tiefrot. Eine nach Austausch des Lösungsmittels gegen C₆D₁₂ gemessene Probe zeigt die Bildung von (tBu_3Si)₂Al-Al(Si tBu_3)₂ und tBu_3Si -Si tBu_3 im Molverhältnis von 1 : 1. Man frittet von unlöslichen Bestandteilen (NaCl) ab, entfernt alle flüchtigen Anteile im ÖV/HV und nimmt den roten kristallinen Rückstand in 10 mL Pentan auf. Bei -23°C bilden sich 25 mg (0.029 mmol; 35%) intensiv rote quaderförmige Kristalle.

Ergebnis:

Setzt man $(tBu_3Si)_2AlBr$ mit einem Äquivalent tBu_3SiNa in Pentan bei Raumtemperatur um, bildet sich unter Abspaltung von $tBu_3Si-SitBu_3$ und NaCl innerhalb von 2 Tagen Tetrasupersilyldialan $(tBu_3Si)_4Al_2$.

16c Darstellung aus (tBu₃Si)₂AlBr und einem Äquivalent tBu₃SiNa

Eine Lösung von 343 mg (0.679 mmol) $(tBu_3Si)_2AlBr$ und 151 mg (0.679 mmol) tBu_3SiNa in 40 mL Pentan wird bei Raumtemperatur 24 h lichtgeschützt gerührt. Die Reaktionsmischung verändert dabei die Farbe von Gelb über Orangefarben nach Tiefrot. Eine nach Austausch des Lösungsmittels gegen C₆D₁₂ gemessene Probe zeigt die Bildung von $(tBu_3Si)_2Al-Al(SitBu_3)_2$ und $tBu_3Si-SitBu_3$ im Molverhältnis von 1 : 1. Man frittet von unlöslichen Bestandteilen (NaBr) ab, entfernt alle flüchtigen Anteile im ÖV/HV und nimmt den roten kristallinen Rückstand in 6-8 mL Pentan auf. Bei -23°C bilden sich nach 5 Tagen 180 mg (0.212 mmol; 63% bezogen auf eingesetzte Menge $(tBu_3Si)_2AlBr$) intensiv rote quaderförmige Kristalle. Die schwach rot gefärbte Mutterlauge wird abdekantiert und enthält laut ¹H-NMR-Spektren im wesentlichen nur noch tBu_3SiH und $tBu_3Si-SitBu_3$.

Ergebnis:

Setzt man $(tBu_3Si)_2AlBr$ mit einem Äquivalent tBu_3SiNa in Pentan bei Raumtemperatur um, bildet sich unter Abspaltung von $tBu_3Si-SitBu_3$ und NaBr innerhalb von 24 Stunden Tetrasupersilyldialan.

Versuch 17 Umsetzung von (tBu₃Si)₂Al –Al(SitBu₃)₂ mit Iod

Eine Lösung von 7 mg (0.03 mmol) Iod in 5 mL Pentan wird langsam auf eine auf -78°C gekühlte Lösung von 26 mg (0.03 mmol) (*t*Bu₃Si)₂Al-Al(Si*t*Bu₃)₂ getropft. Die Reaktionsmischung wird langsam auf 40°C

erwärmt und für 3 Stunden bei dieser Temperatur gerührt. Dabei verändert die Reaktionslösung die Farbe nach gelb. Die NMR-Spektren zeigen die quantitative Bildung von (*t*Bu₃Si)₂AlI.

Charakterisierung:

(tBu₃Si)₂AlI

Di(tri-tert-butylsilyl)dial	uminiumiodid	$C_{24}H_{54}AllSi_2 (M_r = 552.75)$
(Disupersilylaluminiumiodid)		gelber Feststoff;
		oxidations- und hydrolyseempfindlich
		Zers. ab 63°C
Elementaranalyse:	ber.: C 52.15	H 9.98
	gef.: C 51.79	H 10.10
¹ H-NMR (C ₆ D ₆):	$\delta = 1.34 \text{ (s, } (t\underline{Bu}_3\text{Si})_2\text{AlI})$	
²⁷ Al-NMR (C_6D_6);	nicht beobachtbar	
²⁹ Si-NMR (C ₆ D ₆):	nicht beobachtbar	
¹³ C-NMR (C_6D_6):	$\delta = 33.23 (Me_3C); 25.92 (Me_3C)$	
MS (EI, 70 eV, <i>m/z</i> > 199): <i>m/z</i> : 552 (3) [N	$[M^+], 495 (42) [M-C_4H_9^+], 425 (2) [M-I^+], 439 (9) [M-C_8H_{17}^+],$
	226 (100) [M-	<i>t</i> Bu ₃ SiI ⁺]

Ergebnis

Setzt man (*t*Bu₃Si)₂Al-Al(Si*t*Bu₃)₂ mit Iod in äquimolaren Verhältnis in Pentan um bildet sich quantitativ (*t*Bu₃Si)₂AlI.

Versuch 18 Umsetzung von (*t*Bu₃Si)₂Al –Al(Si*t*Bu₃)₂ mit H₂ bei 50°C

Ein evakuiertes NMR-Rohr, gefüllt mit einer Lösung von 84 mg (0.10 mmol) (tBu_3Si)₂Al-Al(Si tBu_3)₂ in 0.6 mL [D12]Cyclohexan, wird mit sauerstofffreiem Wasserstoff bei 700 mbar gefüllt und anschließend abgeschmolzen. Die Reaktionsmischung wird für 15 Minuten auf 50°C erwärmt, wobei sich die Lösung entfärbt. Die NMR-Spektren zeigen die quantitative Bildung von (tBu_3Si)₂AlH (siehe auch Versuch 14).

Ergebnis

Setzt man $(tBu_3Si)_2AI-AI(SitBu_3)_2$ mit Wasserstoff in C_6D_{12} um bildet sich quantitativ $(tBu_3Si)_2AIH$.

Versuch 19 Bildung von Trisupersilyldialanyl (*t*Bu₃Si)₂Al –Al(Si*t*Bu₃)[•] durch Thermolyse von (*t*Bu₃Si)₂Al–Al(Si*t*Bu₃)₂

In einem angesetztem NMR-Rohr löst man 138 mg (0.163 mmol) (*t*Bu₃Si)₂Al-Al(Si*t*Bu₃)₂ in 1.5 mL [D12]Cyclohexan, schmilzt das NMR-Rohr ab und erwärmt 4 Stunden auf 70°C. Die Reaktionsmischung verändert dabei die Farbe von rot über violett nach schwarzgrün. Die Reaktion wird NMR- und ESR-spektroskopisch verfolgt.

Nach dieser Prozedur enthält die Reaktionslösung laut NMR-Spektren kein Tetrasupersilyldialan mehr. Die NMR-Spektren zeigen die Bildung von $tBu_3Si-SitBu_3$, $(tBu_3Si)_4Al_4$ und tBu_3SiH (rel. Ausbeute $[tBu_3Si-\%] = 57\%^{*}$, $8\%^{*}$, $10\%^{*}$).

Das ESR-Spektrum weist zusätzlich die Bildung von Trisupersilyldialanyl (tBu_3Si)₂Al-Al(Si tBu_3)[•] sowie als Nebenprodukt das Tetrasupersilylcyclotrialanyl (tBu_3Si)₄Al₃[•] (siehe Versuch 20).

*) $(tBu_3Si)_3Al_2^{\bullet}$ ist als paramagnetische Spezies nicht im NMR zu beobachten. Nimmt man einen quantitativen Umsatz zum $(tBu_3Si)_2Al-Al(SitBu_3)^{\bullet}$ an ergeben sich rechnerisch folgende Ausbeuten: rel. Ausbeute [$tBu_3Si-\%$]: $tBu_3Si-SitBu_3$ (23%), $(tBu_3Si)_3Al_2$ (68%), $(tBu_3Si)_4Al_4$ (3%), tBu_3SiH (6%)

Charakterisierung:

(tBu₃Si)₃Al₂•

```
Tris(tri-tert-butylsilyl)dialanyl
(Trisupersilyldialanyl)
```

 $C_{36}H_{81}Al_2Si_3$ ($M_r = 652.25$) dunkelgrüner Feststoff; sehr oxidations- und hydrolyseempfindlich; lichtempfindlich

¹**H-NMR** (C_6D_{12}): nicht beobachtbar

²⁹Si-NMR (C_6D_{12}): nicht beobachtbar

¹³C-NMR (C_6D_{12}): nicht beobachtbar

ESR-Spektrum (C₆D₁₂): 11 Linienspektrum mit Feinstruktur und stark anisotroper Linienverbreiterung; Al-Kopplungskonstanten: $a(Al_1) = 18.9$ Gauß, $a(Al_2) = 21.8$ Gauß

Anmerkung:

Nimmt man ein ESR-Spektrum von reinem (*t*Bu₃Si)₂Al–Al(Si*t*Bu₃)₂ in [D12]Cyclohexan auf, erhält man ebenso ein 11 Linienspektrum mit Feinstruktur, welches aufgrund der Kopplungskonstanten mit dem von

(*t*Bu₃Si)₂Al–Al(Si*t*Bu₃)[•] identisch ist. Die geringe Intensität des ESR-Signals läßt jedoch darauf schließen, daß das Trisupersilyldialanylradikal nur in Spuren vorhanden ist.

(*t*Bu₃Si)₂Al–Al(Si*t*Bu₃)[•] ist in Lösung gegenüber weiterem Erwärmen nicht thermostabil. Für die in Alkanen entstehenden Folgeprodukte siehe Versuch 20 und Versuch 22.

Ergebnis

Erwärmt man $(tBu_3Si)_2Al-Al(SitBu_3)_2$ bei 70°C in [D12]Cyclohexan für 3 Stunden, entsteht neben $tBu_3Si-SitBu_3$ das schwarzgrüne Aluminium-Radikal $(tBu_3Si)_2Al-Al(SitBu_3)^{\bullet}$. Dieses Radikal bildet sich, wenn auch in Spuren, schon bei Raumtemperatur.

Versuch 20 Darstellung von (*t*Bu₃Si)₄Al₃ · durch Thermolyse von (*t*Bu₃Si)₂Al–Al(Si*t*Bu₃)₂ in Cyclohexan

Eine Lösung von 0.264 g (0.308 mmol) (*t*Bu₃Si)₂Al–Al(Si*t*Bu₃)₂ in 25 mL Heptan wird 10 Stunden auf 100°C unter Rückfluß erwärmt und dann auf Raumtemperatur abgekühlt. Nach dieser Prozedur enthält die nunmehr schwarzgrüne Lösung laut ¹H-NMR kein Tetrasupersilydialan mehr.

Die NMR-Spektren zeigen die Bildung von $tBu_3Si-SitBu_3$, $(tBu_3Si)_4Al_4$ und tBu_3SiH (rel. Ausbeute $[tBu_3Si-\%] = 33\%^{*}, 27\%^{*}, 40\%^{*}$).

*) Das Flächenverhältnis der $tBu_3Si^{-1}H$ -NMR-Signale für tBu_3Si -H, tBu_3Si -Si tBu_3 und $(tBu_3Si)_4Al_4$ beträgt 6:5:4, d.h. pro Molekül Tetrasupersilyltetraalan $(tBu_3Si)_4Al_4$ entstehen 11 Supersilyl-Radikale, die sich unter Bildung von tBu_3Si -H und tBu_3Si -Si tBu_3 stabilisieren. Da mit der Bildung eines Tetrasupersilyltetraalanmoleküls zugleich 4 Radikale tBu_3Si° entstehen, sind 11 - 4 = 7 Radikale tBu_3Si° im Zuge der Bildung von 3.5 Molekülen $(tBu_3Si)_4Al_3^{\circ}$ entstanden. Zur Bildung von 3.5 Molekülen $(tBu_3Si)_4Al_3^{\circ}$ bzw. einem Molekül $(tBu_3Si)_4Al_4$ sind $3/2 \ge 5.25$ bzw. $2 \ge 1 = 2$ Moleküle $(tBu_3Si)_2Al$ -Al $(SitBu_3)_2$ erforderlich, so daß Tetrasupersilylcyclotrialanyl $(tBu_3Si)_4Al_3^{\circ}$ in ca. 70% bzw. Tetrasupersilyltetraalan $(tBu_3Si)_4Al_4$ in ca. 30% Ausbeute entstanden sind.

Nach Abkondensieren aller im Ölpumpenvakuum flüchtigen Anteile (Heptan bzw. Cyclohexan, *t*Bu₃Si-H) und Aufnahme des Rückstands in 10 mL Heptan kristallisieren aus der Lösung im Laufe von 2 Monaten 0.22 g (0.25 mmol, 40%) Tetrasupersilylcyclotrialanyl (*t*Bu₃Si)₄Al₃• in schwarzgrünen Quadern.

Anmerkung:

Tetrasupersilylcyclotrialanyl $(tBu_3Si)_4Al_3^{\circ}$ läßt sich auch durch 15 stündiges Erwärmen von 0.339 g (0.395 mmol) $(tBu_3Si)_2Al-Al(SitBu_3)_2$ in 25 mL Cyclohexan auf 81°C gewinnen.

Charakterisierung:

(tBu₃Si)₄Al₃•

Tetrakis(tri-tert-butylsilyl)cyclotriala-	$C_{48}H_{108}Al_3Si_4 (M_r = 878.67)$
nyl	schwarzgrüne Quader;
(Tetrasupersilylcyclotrialanyl)	oxidations- und hydrolyseempfindlich;
	in Lösung lichtempfindlich

¹**H-NMR** (C_6D_{12}): nicht beobachtbar

²⁹Si-NMR (C_6D_{12}): nicht beobachtbar

¹³C-NMR (C_6D_{12}): nicht beobachtbar

ESR-Spektrum (C_6D_{12}): ESR-Spektrum mit zahlreichen äquidistanten Linien im Abstand von 1.05 mT (g = 2.0015)

Röntgenstrukturanalyse:

siehe Kapitel 1.3.3

Ergebnis

Erwärmt man $(tBu_3Si)_2Al-Al(SitBu_3)_2$ in Heptan 10 Stunden auf 100°C, bilden sich auf dem Wege über das Trisupersilyldialanyl $(tBu_3Si)_2Al-Al(SitBu_3)^{\bullet}$ (siehe Versuch 19) neben Supersilan tBu_3SiH und Superdisilan $tBu_3Si-SitBu_3$ hauptsächlich schwarzgrüne Tetrasupersilylcyclotrialanyl-Radikale $(tBu_3Si)_4Al_3^{\bullet}$ und Tetrasupersilyl-tetrahedro-tetraalan $(tBu_3Si)_4Al_4$.

Versuch 21 Umsetzung von (*t*Bu₃Si)₄Al₃ mit Wasserstoff in Cyclohexan

Eine Lösung von 136 mg (0.308 mmol) ($tBu_3Si_2Al-Al(SitBu_3)_2$ in 10 mL Heptan wird 10 Stunden auf 100 °C unter Rückfluß erwärmt und dann auf Raumtemperatur abgekühlt, so daß laut ¹H-NMR kein Tetrasupersilydialan mehr in der Lösung vorhanden ist und sich laut ESR-Spektrum Tetrasupersilylcyclotrialanyl gebildet hat (vgl. Versuch 20).

Nach Abkondensieren aller im Ölpumpenvakuum flüchtigen Anteile wird der Rückstands in 0.7 mL C_6D_{12} aufgenommen und zusammen mit sauerstofffreiem Wasserstoff (800 mbar) in einem geschlossenem NMR-Rohr auf 65°C erwärmt. Nach 21 Stunden ist laut NMR-Spektren die Bildung von (*t*Bu₃Si)₂Al-H und (*t*Bu₃Si)₄Al₄ zu beobachten.

Ergebnis

Tetrasupersilylcyclotrialanyl $(tBu_3Si)_4Al_3^{\bullet}$ reagiert mit Wasserstoff bei 65°C zu Disupersilylalan und Tetrasupersilyl-tetrahedro-tetraalan $(tBu_3Si)_4Al_4$.

Versuch 22 Darstellung von (tBu₃Si)₄Al₄

22a Darstellung von (*t*Bu₃Si)₄Al₄ durch Thermolyse von (*t*Bu₃Si)₂Al–Al(Si*t*Bu₃)₂

106 mg $(tBu_3Si)_2Al-Al(SitBu_3)_2$ (0.125 mmol) werden in 20 mL Cyclohexan gelöst und unter Rühren auf 24 Stunden 80°C erwärmt. Eine nach Austausch des Lösungsmittels gegen C₆D₁₂ gemessene Probe zeigt die Bildung von $tBu_3Si-SitBu_3$, $(tBu_3Si)_2Al-Al(SitBu_3)_2$ und tBu_3SiH (rel. Ausbeute [$tBu_3Si-\%$] = 57%, 30%, 13%). Alle im ÖV/HV flüchtigen Bestandteile werden entfernt und der braunschwarze Rückstand in 6 mL Heptan aufgenommen.

22b Darstellung von (*t*Bu₃Si)₄Al₄ durch Photolyse von (*t*Bu₃Si)₂Al –Al(Si*t*Bu₃)₂

In einem angesetztem NMR-Rohr werden 14 mg (0.016 mmol) (tBu_3Si)₄Al₂ in 0.6 mL [D12]Cyclohexan gelöst. Anschließend setzt man das abgeschmolzene NMR-Rohr für 2 Wochen dem Tageslicht aus. Die anfänglich rote Lösung wird dabei langsam violett. Nach zwei Wochen enthält die Reaktionslösung tBu_3Si -Si tBu_3 , (tBu_3Si)₂Al-Al(Si tBu_3)₂, (tBu_3Si)₄Al₄ und tBu_3SiH (rel. Ausbeute [tBu_3Si -%] = 9%, 53%, 21%, 17%).

Ergebnis

Unter Lichteinfluß bildet sich bei Raumtemperatur aus $(tBu_3Si)_2Al-Al(SitBu_3)_2$ in [D12]Cyclohexan langsam innerhalb von mehreren Tagen Tetrasupersilyl-*tetrahedro*-tetraalan $(tBu_3Si)_4Al_4$.

22c Darstellung von (*t*Bu₃Si)₄Al₄ durch Photolyse von (*t*Bu₃Si)₂Al –Al(Si*t*Bu₃)[•]

In einem angesetzten NMR-Rohr werden analog zu Versuch 19 aus 75 mg (0.088 mmol) ($tBu_3Si_2Al-Al(SitBu_3)_2$ gelöst in 0.6 mL [D12]Cyclohexan ($tBu_3Si_2Al-Al(SitBu_3)^{\bullet}$ dargestellt. Anschließend setzt man das abgeschmolzene NMR-Rohr für 2 Wochen dem Tageslicht aus. Die anfänglich schwarzgrüne Reaktionslösung wird dabei langsam dunkelbraun. Die NMR-Spektren zeigen die Bildung von ($tBu_3Si_4Al_4$ neben $tBu_3Si-SitBu_3$ und tBu_3SiH , welche durch die Darstellung des ($tBu_3Si_2Al -Al(SitBu_3)^{\bullet}$ entstanden sind und damit mitgeschleppt werden. ($tBu_3Si_2Al -Al(SitBu_3)^{\bullet}$ ist als paramagnetische Spezies nicht NMR aktiv.

Ergebnis:

Unter Einfluß von Tageslicht entsteht aus dem Radikal $(tBu_3Si)_2Al-Al(SitBu_3)^{\bullet}$ langsam Tetrasupersilyl-*tetrahedro*-tetraalan $(tBu_3Si)_4Al_4$.

Charakterisierung:

(tBu₃Si)₄Al₄

Tetrakis(tri-tert-butylsilyl)-tetrahedro-	$C_{48}H_{108}Al_4Si_4$ ($M_r = 905.66$)
tetraalan	violette Würfel;
Tetrasupersilyl-tetrahedro-tetraalan	oxidations- und hydrolyseempfindlich

¹**H-NMR** (C_6D_6/C_6D_{12}): $\delta = 1.36 / 1.29$ (s, ($t\underline{Bu}_3Si_2Al-Al(SitBu_3)_2$)

²⁹Si-NMR (C_6D_6/C_6D_{12}): $\delta = 44.7 / 44.9 (tBu_3Si)$

¹³C-NMR (C_6D_6/C_6D_{12}): $\delta = 35.56 / 34.88 (Me_3C)$; 25.64 / 26.08 (Me_3C)

Versuch 23 Umsetzung von (tBu₃Si)₂Al—Al(SitBu₃)₂ mit Selen

122 mg (0.144 mmol) (tBu_3Si)₂Al-Al(Si tBu_3)₂ werden mit 22 mg (0.273 mmol) Selen in 0.8 mL C₆D₁₂ lichtgeschützt 12 Stunden auf 60°C erwärmt. Laut ¹H-NMR-Spektrum (C₆D₁₂) hat sich dabei alles Dialan umgesetzt und die nunmehr hellrote Lösung enthält dann (tBu_3Si)₄Al₄Se₄ (durch vergleich der NMR-Daten mit der als Heterocuban vorliegenden Verbindung (tBuSi)₄Al₄O₄) neben tBu_3Si -Si tBu_3 und tBu_3SiH . Bei 5°C bilden sich aus dieser Lösung hellrote Kristalle, welche jedoch aufgrund der starken Fehlordnung im Kristallgitter nicht röntgenstrukturanalytisch charakterisiert werden konnten.

Charakterisierung:

(<i>t</i> Bu ₃ Si) ₄ Al ₄ Se ₄		
Tetrakis(tri-tert-butylsilyl)-tetra-		$C_{48}H_{108}Al_4Si_4Se_4$ ($M_r = 1221.49$)
ala-tetrasela-Heterocuba	n	hellrote Würfel;
(Tetrasupersilyl-tetraala-	tetrasela-Hete-	oxidations- und hydrolyseempfindlich
rocuban)		
Elementaranalyse:	ber.: C 29.85	H 5.64
	gef.: C 29.53	H 5.57
¹ H-NMR (C_6D_6):	$\delta = 1.337 \text{ (s, } (t\underline{\text{Bu}}_3\text{Si})_4\text{In}_4\text{Se}_4)$	
²⁹ Si-NMR (C ₆ D ₆):	$\delta =$ nicht beobachtbar	
¹³ C-NMR (C ₆ D ₆):	$\delta = 32.87 (\underline{\text{Me}_3\text{C}}$	C); 25.20 (Me ₃ <u>C</u>)
⁷⁹ Se-NMR (C ₆ D ₆):	$\delta = -178.4$ ((<i>t</i> Bu ₂)	₃ Si) ₄ Al ₄ <u>Se</u> 4)

Ergebnis

Die Thermolyse von Dialan $(tBu_3Si)_2Al-Al(SitBu_3)_2$ in C₆D₆ führt wie die analoge Umsetzung von Selen mit Diindan (siehe Versuch 51) zu einem Heterocuban $(tBu_3Si)_4Al_4Se_4$.

Versuch 24 Reduktion von $(tBu_3Si)AlX_2(NEtMe_2)$ (X = Br, I) bzw. $(tBu_3Si)AlCl_2 \bullet THF$ mit Lithium- bzw. Natriumnaphthalenid

Zu einer auf -100°C gekühlten Lösung von (a) 130 mg (0.351 mmol) (tBu_3Si)AlCl₂(THF) in 10 mL Pentan (b) 133 mg (0.290 mmol) (tBu_3Si)AlBr₂(NEtMe₂) in 10 mL Pentan (c) 171 mg (0.310 mmol) (tBu_3Si)AlBr₂(NEtMe₂) in 10 mL Pentan werden (a) 0.702 mmol (b) 0.580 mmol) (c) 0.620 mmol Lithiumnaphtalenid bzw. Natriumnaphthalenid getropft. In allen Fällen nimmt die Reaktionslösung sofort eine braune Farbe an, welche sich beim langsamen Erwärmen auf Raumtemperatur nicht mehr ändert. Laut ¹H-¹³C- ²⁹Si- Spektren erhält man in allen Fällen ein Gemisch nicht identifizierbarer Produkte aus der sich keine zur Röntgenstrukturanalyse brauchbaren Kristalle züchten lassen.

Ergebnis

Die Reduktion von $tBu_3SiAlCl_2(THF)$ bzw. $tBu_3SiAlX_2(NEtMe_2)$ (X = Br, I) mit Lithium- bzw. Natrium-naphthalenid führt nicht zur Bildung von Tetrasupersilyltetrahedrotetraalan (tBu_3Si)₄Al₄ sondern zu einem Gemisch nicht identifizierbarer Produkte.

Versuch 25 Reduktion von (tBu₃Si)AlBr₂ (NEtMe₂) mit Kalium

In einem NMR-Rohr werden 29 mg (0.063 mmol) $tBu_3SiAlBr_2$ •NEtMe₂ und 50 mg (1.27 mmol) feingeschnittenes Kalium mit 0.7 mL C₆D₆ versetzt. Anschließend wird das NMR-Rohr abgeschmolzen und im Trockenschrank auf 105°C erwärmt. Nach 2.5 h zeigt die Reaktionsmischung laut ¹H-NMR und ¹³C-NMR keine sichtbare Veränderung.

Nach 37.8 h bei 105°C erhält man eine schwarzbraune Lösung über wenig schwarzen Niederschlag. Die gemessenen NMR-Spektren zeigen folgendes Ergebnis:

¹ H-NMR (C_6D_6):	$\delta = 1.481$ (s, n.b., rel. Ausbeute [<i>t</i> Bu ₃ Si-%] = 9%), 1.427 (s, <i>t</i> Bu ₃ SiK, 16%),
	$1.229 (t\underline{Bu}_3Si-C_6D_5, 31\%)), 1.118 (s, t\underline{Bu}_3SiD, 44\%), 2.154 (q, N\underline{Et}Me_2), 2.069$
	(s, NEt <u>Me₂</u>), 0.958 (t, N <u>Et</u> Me ₂)
¹³ C-NMR (C ₆ D ₆):	$\delta = 45.16 \text{ (NEt}\underline{\text{Me}}_2\text{)} 53.72, 13.10 \text{ (N}\underline{\text{Et}}\underline{\text{Me}}_2\text{)}, 31.85, 22.67 \text{ (}t\underline{\text{Bu}}_3\text{Si-C}_6\text{D}_5\text{)}, 30.84,$
	21.01 (<i>t</i> <u>Bu</u> ₃ SiD)

Anmerkung:

Die Reduktion mit Natrium führt unten den obigen Bedingungen zu einem analogen Ergebnis.

Ergebnis

 $tBu_3SiAlBr_2(NEtMe_2)$ setzt sich in C₆D₆ mit Kalium bei 105°C nicht, wie zunächst erwartet, unter KBr Eliminierung zu (tBu_3Si)₄Al₄ um. Statt dessen wird die Si-Al Bindung gespalten, so daß sich zunächst tBu_3SiK bildet, welches bei 105°C mit dem Lösungsmittel C₆D₆ zu $tBu_3Si-C_6D_5$ reagiert^[51]. Entstehendes KAlBr₂ ist unter diesen Bedingungen nicht stabil und disproportioniert offensichtlich in metallisches Aluminium und AlBr₃.

Versuch 26 Thermolyse von (tBu₃Si)₄Al₄

Eine Lösung von 0.09 mmol (tBu_3Si)₄Al₄ in 0.5 mL C₆D₁₂ werden für 7 Tage auf 60°C erwärmt. Laut NMR-Spektren hat sich dabei das Tetrasupersilyltetraalan (tBu_3Si)₄Al₄ nicht zersetzt. Deshalb wird die Lösung auf 100°C erwärmt. Da selbst nach 6 Tagen laut NMR-Spektren keine nennenswerte Reaktion eingetreten ist wird die Reaktionslösung auf 140°C erwärmt. Nach 4 Tagen beginnt sich allmählich metallisches Aluminium an der Glaswand abzuscheiden. Laut NMR-Spektren bildet als einziges lösliches Zerfallsprodukt tBu_3SiD . Aus der Lösung lassen sich keine höheren Polyeder auskristallisieren.

Ergebnis:

Tetrasupersilyltetraalan (tBu_3Si)₄Al₄ ist eine äußerst thermostabile Verbindung, welche sich durch Thermolyse in Kohlenwasserstoffen wie C₆D₁₂ nicht in höhere Polyeder überführen läßt. Es bildet sich unter Abspaltung von tBu_3SiD elementares Aluminium.

Versuch 27 Darstellung von (tBu₂PhSi)₃Al

Zu einer auf -50°C gekühlten Lösung von 144 mg (0.540 mmol) AlBr₃ in 10 mL Heptan tropft man langsam eine Lösung von 393 mg (1.62 mmol) NaSiPh*t*Bu₂ in 20 mL Heptan. Die Lösung wird 6 h bei -50°C gerührt. Nach dem langsamen Erwärmen auf Raumtemperatur erhält man eine gelbe Lösung über farblosem Niederschlag. Eine nach Austausch des Lösungsmittels gegen C_6D_6 gemessene Probe zeigt die quantitative Bildung von (*t*Bu₂PhSi)₃Al. Nach Entfernen aller im ÖV flüchtigen Bestandteile, Aufnahme des gelben Rückstandes in 30 mL Pentan, Abfiltrieren von unlöslichen Bestandteilen (NaBr) erhält man nach einigen Tagen bei -23°C 278 mg (0.405 mmol, 75%) gelbe Kristalle von (*t*Bu₂PhSi)₃Al.

Charakterisierung:

(tBu₂PhSi)₃Al

Tris-(di-*tert*-butylsilyl-phenyl) alumi-
nium $C_{42}H_{69}AlSi_3 (M_r = 685.25)$
gelbe Würfel;
oxidations- und hydrolyseempfindlich;
Zers. ab 179°CElementaranalyse:ber.: C 73.62
gef.: C 72.12H 10.15
H10.03¹H-NMR (C_6D_6): $\delta = 1.167$ (s; ($tBu_2PhSi)_3Al$); 8.148 (m; o-Ph); 7.432 (m; m-Ph); 7.231 (m;
p-Ph)

²⁹Si-NMR (C_6D_6): $\delta = 16.2 (tBu_3Si)$ ¹³C-NMR (C_6D_6): $\delta = 32.25 (Me_3C)$; 23.78 (Me_3C); 137.32 (i-Ph); 136.52 (o-Ph); 128.82 (p-Ph); 126.94 (m-Ph)

Röntgenstrukturanalyse:

siehe Kapitel 1.1.5.1

Ergebnis

Setzt man AlCl₃ mit drei Äquivalenten NaSiPhtBu₂ um, entsteht (tBu₂PhSi)₃Al und nicht das Dialan (tBu₂PhSi)₂Al–Al(SiPhtBu₂)₂.

Versuch 28 Umsetzung von AlBr₃ mit zwei Äquivalenten NaSiPh/Bu₂

Zu einer auf -78°C gekühlten Lösung von 168 mg (0.629 mmol) AlBr₃ in 5 mL Heptan tropft man langsam eine Lösung von 305 mg (1.26 mmol) NaSiPhtBu₂ in 15 mL Heptan. Die Lösung wird 12 h bei -78°C gerührt. Nach dem langsamen Erwärmen auf Raumtemperatur erhält man eine gelbe Lösung über farblosem Niederschlag. Eine nach Austausch des Lösungsmittels gegen C_6D_6 gemessene Probe zeigt die Bildung von (tBu₂PhSi)₃Al und tBu₂PhSiAlBr₂

Ergebnis:

Setzt man AlBr₃ mit zwei Äquivalenten NaSiPhtBu₂ um, entsteht nicht das zweifach silylierte (tBu₂PhSi)₂AlBr sondern (tBu₂PhSi)₃Al und tBu₂PhSiAlBr₂.

Versuch 29 Darstellung von (tBu₃Si)GaCl₂•Pyridin

Eine Lösung von 558 mg (3.17 mmol) GaCl₃ in 20 mL Heptan versetzt man mit 0.3 mL (3.71 mmol) Pyridin, worauf farbloses GaCl₃(Pyridin) ausfällt. Zu dieser auf -78°C gekühlten Suspension tropft man langsam 705 mg (3.17 mmol) *t*Bu₃SiNa gelöst in 15 mL Heptan und 5 mL THF. Man läßt die Reaktionsmischung auf Raumtemperatur kommen, wobei die Reaktionsmischung eine organgene Farbe annimmt. Laut ¹H-NMR (C₆D₆) hat sich ausschließlich *t*Bu₃SiGaCl₂(Pyridin) gebildet. Nach Abziehen aller flüchtigen Anteile im Ölpumpenvakuum, Aufnahme des Rückstands in 40 mL Pentan, Abfiltrieren unlöslicher Anteile, Einengen auf 10 mL kristallisiert bei -23°C innerhalb von einer Woche 1236 mg (2.31 mmol, 93%) (*t*Bu₃Si)GaCl₂(Pyridin) aus.

Charakterisierung:

tBu3SiGaCl2(Pyridin)

Tri- <i>tert</i> -butylsilylgall	liumdichlo-	$C_{17}H_{32}GaCl_2NSi (M_r = 419.17)$
rid-Pyridin(1/1)		orangefarbener Feststoff;
Supersilylgalliumdichle	orid-Pyridin	oxidations- und hydrolyseempfindlich
Elementaranalyse:	ber.: C 48.71	H 7.69
	gef.: C 48.32	Н 7.63
¹ H-NMR (C ₆ D ₆):	$\delta = 8.933$ (m; -0	C <u>H</u> -N; 2H); 7.539(m; -C <u>H</u> ; 3H); 1.374 (s; <i>t</i> <u>Bu</u> ₃ Si; 27H)
²⁹ Si-NMR (C ₆ D ₆):	δ=27.53	
¹³ C-NMR (C_6D_6):	δ = 145.31 (- <u>C</u>	<u>C</u> H-N); 127.76 (m- <u>C</u> H) 133.13 (p-CH); 31.28 (<u>Me₃</u> C); 25.99
	(Me ₃ <u>C</u>)	

Ergebnis

 $GaCl_3(Pyridin)$ setzt sich bei tiefen Temperaturen (-78°C) mit einem Äquivalent *t*Bu₃SiNa in Heptan quantitativ zu *t*Bu₃SiGaCl₂(Pyridin) um.

Versuch 30 Darstellung von (*t*Bu₃Si)₂Ga—Ga(Si*t*Bu₃)Na(THF)₃ aus (*t*Bu₃Si)₂GaCl und Natriumnaphthalenid

Zu einer auf -78°C gekühlten Lösung von 92 mg (0.181 mmol) (tBu_3Si_2GaCl in 10 mL Heptan tropft man 0.272 mmol Natriumnaphthalenid gelöst in 5 mL THF, wobei sich die Reaktionslösung über violett nach rotbraun verfärbt. Die Reaktionsmischung wird 6 h bei -78°C gerührt und anschließend langsam auf Raumtemperatur erwärmt. Ein nach Austausch des Lösungsmittels gegen C₆D₆ gemessenes ¹H-NMR-Spektrum zeigt die Bildung von ($tBu_3Si_2Ga-Ga(SitBu_3)Na(THF)_3$ und $tBu_3Si-SitBu_3$ im Molverhältnis 2 : 1.

Alle flüchtigen Bestandteile werden im ÖV/HV entfernt, der rotbraune Rückstand in 30 mL Heptan aufgenommen und von unlöslichen Anteilen (NaCl) abfiltriert. Nach Einengen auf 5 mL kristallisieren 64 mg (0.066 mmol, 73%) (*t*Bu₃Si)₃Ga₂Na(THF)₃ als tiefroter Feststoff aus.

Charakterisierung:

(tBu ₃ Si) ₂ Ga-Ga(SitBu	3)Na(THF)3	
Tris(tri-tert-butylsilyl)dig	gallanylna-	$C_{48}H_{105}Si_3O_3Ga_2Na$ ($M_r = 977.05$)
trium-Tetrahydrofuran (1	1/3)	tiefroter Feststoff
(Trisupersilyldigallanyln	atrium-Tetrahy-	sehr oxidations- und hydrolyseempfindlich;
drofuran(1/3))		
¹ H-NMR (C_6D_6):	$\delta = 3.42 \text{ (m, -CH_2-C_2)}$	D); 1.47 (s, $t\underline{Bu}_3Si$) ₃ Ga ₂ Na(THF) ₃); 1.34 (m; -C <u>H</u> ₂ -CH ₂ -O)
²⁹ Si-NMR (C ₆ D ₆):	$\delta = 37.1 / 54.3((tBu)$	$_{3}\underline{Si})_{2}$ Ga-Ga($\underline{Si}tBu_{3}$)Na(THF) ₃)
¹³ C-NMR (C ₆ D ₆):	$\delta = 67.92 (-\underline{C}H_2-O_2)$	-); 33.86 (2 <u>Me₃</u> C); 33.18 (1 <u>Me₃</u> C); 25.55 (- <u>C</u> H ₂ -CH ₂ -O);
	25.31 (1 Me ₃ <u>C</u>); 24	.34 (2 Me ₃ <u>C</u>)

Röntgenstrukturanalyse

Siehe Lit.: [45]

Ergebnis

 $(tBu_3Si)_2GaCl$ setzt sich bei -78°C mit Natriumnaphthalenid in Heptan/THF zu $(tBu_3Si)_2Ga-Ga(SitBu_3)Na(THF)_3$ um.

Versuch 31 Umsetzung von (tBu₃Si)₂Ga-Ga(SitBu₃)Na(THF)₃ mit Me₃SiCl

Zu einer auf -78°C gekühlten Lösung von 215 mg (0.220 mmol) (tBu_3Si)₃Ga₂Na(THF)₃ in 10 mL Heptan tropft man 0.220 mmol Me₃SiCl gelöst in 5 mL Heptan, wobei sich die Reaktionslösung hellrot verfärbt. Das Lösungsmittel wird bei -78°C entfernt und der Rückstand anschließend auf Raumtemperatur erwärmt. Die NMR-Spektren zeigen, daß sich (tBu_3Si)₃Ga₂Na(THF)₃ vollständig unter Bildung von (tBu_3Si)₂Ga-Ga(Si tBu_3)(SiMe₃) umgesetzt hat.

¹ H-NMR (C_6D_6):	$\delta = 1.277/1.258$ (s, $(t\underline{Bu}_3Si)_2Ga-Ga(Sit\underline{Bu}_3)(SiMe_3)$; 54H/27H); 0.173 (s;
	Si <u>Me</u> ₃ ; 9H)
²⁹ Si-NMR (C ₆ D ₆):	$\delta = 48.42 / 44.8 ((tBu_3Si)_2Ga-Ga(SitBu_3)(SiMe_3); 19.41 (SiMe_3))$
¹³ C-NMR (C ₆ D ₆):	$\delta = 33.88 (1 \text{ Me}_3 \text{C}); 32.35 (2 \text{ Me}_3 \text{C}); 25.60 (1 \text{ Me}_3 \text{C}); 25.40 (2 \text{ Me}_3 \text{C}); 1.291$
	(Si <u>Me</u> ₃)

Ergebnis

 $(tBu_3Si)_2Ga-Ga(SitBu_3)Na(THF)_3$ setzt sich bei -78°C mit Me_3SiCl in Heptan zu dem hellrotem Digallan $(tBu_3Si)_2Ga-Ga(SitBu_3)(SiMe_3)$ um.

Versuch 32 Darstellung von $(tBu_3Si)_4Ga_3^{\bullet}$ aus tBu_3SiBr und $(tBu_3Si)_3Ga_2Na(THF)_3$

Zu einer auf -100°C gekühlten Lösung von 2353 mg (2.41 mmol) (*t*Bu₃Si)₃Ga₂Na(THF)₃ in 15 mL Pentan tropft (tiefblaue Farbe) man innerhalb von 30 Minuten 672 mg (2.41 mmol) *t*Bu₃SiBr gelöst in 10 mL Pentan, wobei sich die Farbe der Reaktionslösung kaum ändert. Die Reaktionsmischung wird 5 h bei -100°C gerührt und anschließend langsam auf Raumtemperatur erwärmt, wobei die Reaktionslösung dann eine dunkelgrüne Farbe aufweist. Die gemessenen NMR-Spektren zeigen die Bildung von *t*Bu₃Si-Si*t*Bu₃. Das ESR-Spektrum zeigt ein linienreiches Signal.

Nach Entfernen aller im ÖV flüchtigen Bestandteile, Aufnahme des dunkelgrünen Rückstandes in 30 mL Pentan, Abfiltrieren von unlöslichen Bestandteilen erhält man nach 2 Monaten bei -23°C 412 mg (0.41 mmol, 36%) dunkelgrüne Kristalle von ($tBu_3Si_4Ga_3^{\bullet}$.

Charakterisierung:

(tBu₃Si)₄Ga₃•

Tetrakis(tri-tert-butylsilyl)cyclotrigallanyl	$C_{48}H_{108}Ga_3Si_4 (M_r = 1006.92)$
(Tetrasupersilylcyclotrigallanyl)	schwarzgrüne Quader;
	sehr oxidations- und hydrolyseempfindlich;
	in Lösung nur in der Kälte für längere Zeit
	haltbar

¹ H-NMR (C_6D_{12}):	nicht beobachtbar
--	-------------------

²⁹ Si-NMR (C ₆ D ₁₂):	nicht beobachtbar
---	-------------------

¹³ C-NMR (C_6D_{12}):	nicht beobachtbar
--------------------------------------	-------------------

ESR-Spektrum (Cyclohexan, 300 K): ESR-Signal mit sehr starker anisotroper Linienverbreiterung mit $H_T = 20 \text{ mT}$ bei einem g - Faktor von 1.998.

ESR-Spektrum (Cyclohexan, 110 K): ESR-Signal mit starker anisotroper Linienverbreiterung mit $H_T = 55 \text{ mT}$; Ga-Kopplungskonstanten: $a(^{69}\text{Ga}) = 435.68 \text{ mT}$, $a(^{71}\text{Ga}) = 553.58 \text{ mT}$.

UV/Vis (Heptan): 610 nm

Röntgenstrukturanalyse:

siehe Kapitel 2.2.3

Ergebnis

 $(tBu_3Si)_3Ga_2Na(THF)_3$ setzt sich mit tBu_3SiBr in Pentan zum Tetrasupersilylcyclotrigallanyl $(tBu_3Si)_4Ga_3^{\bullet}$ um.

Versuch 33 Darstellung von (*t*Bu₃Si)₄Ga₃Na(18-Krone-6)(THF)₂ aus (*t*Bu₃Si)₃Ga₂Na(THF)₃ und 18-Krone-6

Zu einer Lösung von 147 mg (0.15 mmol) (tBu_3Si)₃Ga₂Na(THF)₃ in 0.6 mL C₆D₆ gibt man bei Raumtemperatur 53 mg (0.2 mmol) 18-Krone-6. Die Reaktionslösung nimmt dabei sofort eine tiefblaue Farbe an. Laut NMR-Spektren hat sich dabei (tBu_3Si)₄Ga₃Na(18-Krone-6)(THF)₂ neben einer weiteren Supersilylverbindung ((tBu_3Si)₂GaH ?: ¹H (C₆D₆). 1.349; ²⁹Si (C₆D₆): 33.74; ¹³C (C₆D₆): 33.51/25.63) gebildet.

Aus dieser Lösung kristallisiert bei 5°C innerhalb von 2 Wochen das Trigallanid (*t*Bu₃Si)₄Ga₃Na(18-Krone-6)(THF)₂ aus.

Charakterisierung:

(tBu₃Si)₄Ga₃Na(18-Krone-6)(THF)₂

Tetrakis(tri-tert-butylsilyl)-trigallanidna-	$C_{68}H_{148}Ga_3NaO_8Si_4$ ($M_r = 1438.45$)
trium-18-Krone-6-Tetrahydrofuran	tiefblaue Würfel;
(1/1/2)	sehr oxidations- und hydrolyseempfindlich

¹ H-NMR (C_6D_6):	1.621 (brei	tes s;	t <u>Bu</u> ₃ Si;	54	H);	1.532	(breites	s;	t <u>Bu</u> ₃ Si;	54	H);	3.545
	(-C <u>H</u> ₂ -CH ₂	-O-);	1.439 (-C	<u>H</u> 2-	CH ₂ -	-O-); 3.	326 (18-1	K-6	5)			

²⁹Si-NMR (C_6D_6): 53.5 (2 tBu_3Si); 42.3 (1 tBu_3Si); 42.0 (1 tBu_3Si)

¹³C-NMR (C_6D_6): 34.98 (2 <u>Me₃</u>C); 32.15 (2 <u>Me₃</u>C); 24.86 (2 Me₃<u>C</u>); 22.69 (2 Me₃<u>C</u>); 70.02 (18-K-6); 67.82 (-<u>C</u>H₂-O-); 25.78 (<u>C</u>H₂-CH₂-O-)

Röntgenstrukturanalyse

Siehe Lit.: [45]

Ergebnis

 $(tBu_3Si)_3Ga_2Na(THF)_3$ setzt sich mit 18-Krone-6 in C_6D_6 bei Raumtemperatur zum Tetrasupersilyl-trigallanid-natrium-18-Krone-6-Tetrahydrofuran (1/1/2) $(tBu_3Si)_4Ga_3Na(18-Krone-6)(THF)_2$ um.

Versuch 34 Umsetzung von (tBu₃Si)₄Ga₃Na(18-Krone-6)(THF)₂ mit TCNE

Zu einer Lösung von 72.0 mg (0.05 mmol) (tBu_3Si)₄Ga₃Na(18-Krone-6)(THF)₂ in 0.8 mL C₆D₆ gibt man bei Raumtemperatur 6.4 mg (0.05 mmol) TCNE. Die Reaktionslösung nimmt dabei sofort eine braungrüne Farbe an. Laut ESR-Untersuchungen hat sich dabei (tBu_3Si)₄Ga₃[•] gebildet.

Ergebnis

 $(tBu_3Si)_4Ga_3Na(18-Krone-6)(THF)_2$ läßt sich mit TCNE in C_6D_6 bei Raumtemperatur zum Tetrasupersilylcyclotrigallanyl oxidieren.

Versuch 35 Umsetzung von $(tBu_3Si)_4Ga_3Na(18$ -Krone-6)(THF)₂ mit tBu_3SiBr

Zu einer Lösung von 86.0 mg (0.06 mmol) (tBu_3Si)₄Ga₃Na(18-Krone-6)(THF)₂ in 0.8 mL C₆D₆ gibt man bei Raumtemperatur 27 mg (0.09 mmol) tBu_3SiBr . Die Reaktionslösung nimmt dabei bei Raumtemperatur langsam über Tage eine grüne Farbe an. Laut ESR-Untersuchungen hat sich dabei (tBu_3Si)₄Ga₃[•] und laut NMR-Spektren (tBu_3Si)₂ gebildet.

Ergebnis

 $(tBu_3Si)_4Ga_3Na(18-Krone-6)(THF)_2$ läßt sich mit tBu_3SiBr in C_6D_6 bei Raumtemperatur langsam zum Tetrasupersilylcyclotrigallanyl $(tBu_3Si)_4Ga_3^{\bullet}$ oxidieren.

Versuch 36 Darstellung von (*t*Bu₃Si)₄Ga₄Na(THF)₂

 $402 \text{ mg} (0.975 \text{ mmol}) t\text{Bu}_3\text{SiGaCl}_2(\text{THF})$ werden mit 1 g (43.5 mmol) Natrium in 20 mL Heptan für 7 Stunden unter Rückfluß auf 100°C erwärmt. Die Reaktionslösung nimmt dabei sofort eine tiefrote Farbe an.

Die NMR-Spektren der Reaktionslösung zeigen nach Austausch des Lösungsmittels gegen C_6D_6 die vollständige Umsetzung $tBu_3SiGaCl_2(THF)$. Als lösliche Komponente läßt sich in den gemessenen NMR-Spektren nur (tBu_3Si)₄Ga₄Na₂(THF)₂ nachweisen. Die unlöslichen Bestandteile werden bei Raumtemperatur abfiltriert, das Lösungsmittel am ÖV entfernt und der Rückstand in 5 mL Benzol aufgenommen. Der in Heptan unlösliche Kolbenrückstand wird mit 10 mL THF eluiert und enthält laut NMR-Spektren (tBu_3Si)₄Ga₄ als lösliche Komponente.

Aus der Benzollösung kristallisieren bei 5°C innerhalb von 8 Wochen 80 mg (0.06 mmol; 26%) rote Quader aus, welche laut Röntgenstrukturanalyse die Zusammensetzung Tetrasupersilyltetragallandiid (*t*Bu₃Si)₄Ga₄Na₂(THF)₂ haben.

Anmerkung 1:

Löst man 15 mg (0.01 mmol) (tBu_3Si)₄Ga₄Na₂(THF)₂ in 0.5 mL THF[D8] auf, läßt sich weder in der Farbe der Lösung, noch in den NMR-Spektren eine Veränderung feststellen. Das Natrium in (tBu_3Si)₄Ga₄Na₂(THF)₂ läßt sich somit nicht durch einen Überschuß des Donors THF entfernen.

Anmerkung 2: Oxidation von (*t*Bu₃Si)₄Ga₄Na₂(THF)₂

Die Verbindung Tetrasupersilyltetragallandiid (tBu_3Si)₄Ga₄Na₂(THF)₂ ist in Lösung wie auch im festen Zustand äußerst oxidations und hydrolyseempfindlich. Die Oxidation einer Lösung von 15 mg (0.01 mmol) (tBu_3Si)₄Ga₄Na₂(THF)₂ in 0.5 mL C₆D₆ mit Luftsauerstoff führt sofort zum NMR-spektroskopisch nachweisbarem Tetrasupersilyl-*tetrahedro*-tetragallan (tBu_3Si)₄Ga₄, welches seinerseits zum Heterocuban (tBu_3Si)₄Ga₄O₄ oxidiert wird.

Anmerkung 3: Darstellung von (tBu₃Si)₄Ga₄Na₂(THF)₂ aus (tBu₃Si)₄Ga₄

Erwärmt man 95 mg (0.088 mmol) (tBu_3Si)₄Ga₄ und 5 mg (0.218 mmol) Natrium in 0.4 mL C₆D₆ und 0.1 mL THF für 2 Stunden auf 100°C hat sich laut ¹H-, ¹³C- und ²⁹Si-NMR- Spektren das Tetragallandiid (tBu_3Si)₄Ga₄Na₂(THF)₂ gebildet.

Charakterisierung:

$(tBu_3Si)_4Ga_4Na_2(THF)_2$

Tetrakis(tri-tert-butylsilyl)-tetragallandi-		$C_{56}H_{124}Ga_4Na_2O_2Si_4$ ($M_r = 1266.84$)
idnatrium-Tetrahydrofuran (1/2)		rote Quader;
		äußerst oxidations- und hydrolyseempfind-
		lich
¹ H-NMR (C ₆ D ₆):	$\delta = 3.40 (m, -CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2$	₂ -O); 1.47 (breites s, $(t\underline{Bu}_3Si)_4Ga_4Na_2(THF)_2$); 1.32 (m;
²⁹ Si-NMR (C ₆ D ₆):	$\delta = 48.58 / 40.69 (t)$	Bu ₃ <u>Si</u>))

¹³C-NMR (C₆D₆): $\delta = 67.89 (-\underline{CH}_2-O-); 34.38 / 30.19 (\underline{Me}_3C); 25.50 (-\underline{CH}_2-CH_2-O); 25.24 / 23.10 (Me_3\underline{C})$

Röntgenstrukturanalyse:

siehe Kapitel 2.3.2

Ergebnis:

Aus (tBu_3Si)SiGaCl₂(THF) läßt sich in einer Reaktion mit Natrium bei 100°C in Heptan das äußerst leicht zu (tBu_3Si)₄Ga₄ oxidierbare Tetrasupersilyltetragallandiid (tBu_3Si)₄Ga₄Na₂(THF)₂ isolieren.

Versuch 37 Umsetzung von tBu₃SiNa mit Green'schem GaI

300 mg (4.30 mmol) Gallium werden mit 956 mg (4.30 mmol) Jod in 20 mL Toluol bei Raumtemperatur im Ultraschallbad behandelt, bis das Gemisch eine hellgrüne Farbe angenommen hat[†]. Nachdem das Lösungsmittel am ÖV entfernt wurde wird zu diesem Rückstand und 1116 mg (5.02 mmol) NaSi*t*Bu₃ 30 mL Pentan bei -196° kondensiert. Die Reaktionsmischung wird auf -78°C aufgetaut und 5 Stunden bei dieser Temperatur gerührt. Man läßt die Lösung langsam auf Raumtemperatur kommen, wobei eine schwarzbraune Lösung über schwarzen Niederschlag entsteht.

^{†.} In Zusammenarbeit mit Dipl. Chem. A. Rodig; Institut für Anorganische Chemie der Universität Karlsruhe

Aus der Lösung konnten bis jetzt keine für eine Röntgenstrukturanalyse geeigneten Kristalle gewonnen werden. Auch ließ sich der schwarze Niederschlag aufgrund seiner schwerlöslichkeit nicht umkristallisieren. Massenspektroskopische Untersuchungen lieferten keine eindeutigen Hinweise auf die Zusammensetzung.

Ergebnis

Green'sches GaI reagiert mit *t*Bu₃SiNa zu einem schwarzen Feststoff, der bis jetzt nicht näher charakterisiert werden konnte.

Versuch 38 Darstellung von (tBu₃Si)₄Ga₄ aus (tBu₃Si)₄Ga₃•

151 mg (0.15 mmol) Tetrasupersilylcyclotrigallanyl (tBu_3Si)₄Ga₃[•] werden in 5 mL Heptan für 3 Stunden unter Rückfluß auf 100°C erwärmt. Laut NMR-Spektren hat sich nach Austausch des Lösungsmittels gegen C_6D_6 neben tBu_3Si -Si tBu_3 , tBu_3SiH das Tetrasupersilyl-*tetrahedro*-tetragallan (tBu_3Si)₄Ga₄ gebildet. Im ESR-Spektrum lassen sich keine radikalischen Spezies mehr nachweisen

Nach Entfernen aller im ÖV flüchtigen Bestandteile, Aufnahme des dunkelvioletten Rückstandes in 3 mL Pentan erhält man nach einigen Tagen bei -23°C 75 mg (0.07 mmol, 44%) violette Kristalle von (*t*Bu₃Si)₄Ga₄.

¹ H-NMR (C_6D_6):	$\delta = 1.36 \text{ (s, } t\underline{\text{Bu}}_3\text{Si})_4\text{Ga}_4\text{)}$
²⁹ Si-NMR (C ₆ D ₆):	$\delta = 30.4 \ (t Bu_3 \underline{Si})$
¹³ C-NMR (C ₆ D ₆):	$\delta = 32.7 (Me_3C); 26.7 (Me_3C)$

Ergebnis

Tetrasupersilylcyclotrigallanyl zerfällt bei 100°C innerhalb von 3 Stunden in Heptan in Tetrasupersilyl-*tetrahedro*-tetragallan (*t*Bu₃Si)₄Ga₄.

Versuch 39 Thermolyse von (*t*Bu₃Si)₄Ga₃ in Heptan bei 45°C

170 mg (0.169 mmol) Tetrasupersilylcyclotrigallanyl (tBu_3Si)₄Ga₃ werden in 2 mL Heptan für 17 Stunden auf 45°C erwärmt, wobei sich die Farbe der Reaktionslösung von dunkelgrün zu blau verändert. Laut NMR-Spektren hat sich dabei neben wenig tBu_3Si -Si tBu_3 Tetrasupersilyl-*tetrahedro*-tetragallan

 $(tBu_3Si)_4Ga_4$ gebildet. Das ESR-Spektrum zeigt ein linienreiches Spektrum von Trisupersilyldigallanyl $(tBu_3Si)_3Ga_2$.

Nach Entfernen aller im ÖV flüchtigen Bestandteile, Aufnahme des dunkelblauen Rückstandes in 1.5 mL Pentan erhält man nach einigen Tagen bei -23°C blaue Kristalle welche nach röntgenstrukturanalytischen Methoden aus dem Radikal (*t*Bu₃Si)₃Ga₂• bestehen.

Anmerkung:

Laut ESR-Spektroskopischen Untersuchungen zersetzt sich das Cyclotrigallanyl (tBu_3Si)₄Ga₃[•] bereits bei Raumtemperatur langsam in Tetrasupersilyldigallanyl (tBu_3Si)₃Ga₂[•].

Ergebnis

Bei der Thermolyse von Tetrasupersilylcyclotrigallanyl entsteht bei 45°C neben dem Tetragallan $(tBu_3Si)_4Ga_4$ das Trisupersilyldigallanyl $(tBu_3Si)_3Ga_2^{\bullet}$.

Versuch 40 Thermolyse von (tBu₃Si)₄Ga₄

130 mg (tBu_3Si)₄Ga₄ (0.121 mmol) werden in 0.6 mL C₆D₁₂ gelöst und für 7 Tage auf 60°C erwärmt. Laut NMR-Spektren hat sich dabei das Tetrasupersilyltetragallan (tBu_3Si)₄Ga₄ nicht zersetzt. Deshalb wird die Lösung auf 100°C erwärmt. Nach 5 Tagen beginnt sich allmählich metallisches Gallium an der Glaswand abzuscheiden. Laut NMR-Spektren bildet als einziges lösliches Zerfallsprodukt tBu_3Si D. Aus der Lösung lassen sich keine höheren Polyeder auskristallisieren.

Ergebnis:

Tetrasupersilyltetragallan (tBu_3Si)₄Ga₄ ist eine relativ thermostabile Verbindung, welche sich durch Thermolyse in Kohlenwasserstoffen wie C₆D₁₂ nicht in höhere Polyeder überführen läßt. Es zersetzt sich unter Abspaltung von tBu_3SiD und elementarem Gallium.

Versuch 41 Darstellung von (*t*Bu₃Si)₆Ga₁₃Na(THF)₆ und (*t*Bu₃Si)₆Ga₁₀Na(THF)₆ aus *t*Bu₃SiNa(THF)₂ mit Green'schem GaI

350 mg (5.02 mmol) Gallium werden mit 637 mg (2.51 mmol) Jod in 20 mL Toluol bei Raumtemperatur im Ultraschallbad behandelt, bis das Gemisch eine hellgrüne Farbe angenommen hat. Anschließend entfernt man das Lösungsmittel am ÖV und nimmt den Rückstand in 25 mL Pentan auf. Zu dieser auf -78°C gekühl-

ten Suspension tropft man langsam eine Lösung von 4.30 mmol $tBu_3SiNa(THF)_2$ in 25 mL Pentan. Nachdem die Reaktionsmischung 5 Stunden bei dieser Temperatur gerührt wurde wird die Reaktionsmischung auf Raumtemperatur erwärmt und 12 Stunden bei dieser Temperatur gerührt, wobei die Lösung eine nahezu schwarze Farbe annimmt. Die Lösung wird vom in Pentan unlöslichen Rückstand abfiltriert. Laut NMR-Spektren enthält diese Lösung $tBu_3Si-SitBu_3$ und Tetrasupersilyl-*tetrahedro*-tetragallan (tBu_3Si)₄Ga₄, welches bei -30°C auskristallisiert (360 mg; 0.334 mmol; 31%).

Der schwarze Rückstand wird mit 50 mL einer Toluol/THF-Mischung (1:1) extrahiert, auf ein Drittel im ÖV eingeengt. Nach einigen Tagen bei -23°C erhält man schwarze Kristalle, welche laut Röntgenstrukturanalyse zum einen aus $(tBu_3Si)_6Ga_{13}Na(THF)_6$ bestehen und zum anderen die Zusammensetzung $(tBu_3Si)_6Ga_{10}(THF)_6$ haben[†].

Charakterisierung:

$[(tBu_3Si)_6Ga_{10}]Na(THF)_6$

Hexakis(tri-*tert*-butylsilyl)decagallanylnatrium-Tetrahydrofuran(1/6) Natrium-hexasupersilyldecagallanid $C_{96}H_{210}O_6Ga_{10}Si_6Na$ ($M_r = 2349.54$) schwarze Quader; sehr oxidations- und hydrolyseempfindlich

¹ H-NMR (C_6D_6):	nicht beobachtbar
²⁹ Si-NMR (C ₆ D ₆):	nicht beobachtbar
¹³ C-NMR (C ₆ D ₆):	nicht beobachtbar

Röntgenstrukturanalyse:

siehe Kapitel 2.4.2

Charakterisierung:

 $[(tBu_3Si)_6Ga_{13}]Na(THF)_6$

Hexakis(tri-*tert*-butylsilyl) tridecagallanylnatrium-Tetrahydrofuran(1/6) Natrium- hexasupersilyltridecagallanid $C_{96}H_{210}O_6Ga_{13}Si_6Na$ ($M_r = 2558.74$) schwarze Quader; sehr oxidations- und hydrolyseempfindlich

¹**H-NMR** (C_6D_6): nicht beobachtbar

^{†.} In Zusammenarbeit mit Dipl. Chem. A. Rodig; Institut für Anorganische Chemie der Universität Karlsruhe

²⁹Si-NMR (C_6D_6): nicht beobachtbar

¹³C-NMR (C_6D_6): nicht beobachtbar

Röntgenstrukturanalyse:

siehe Kapitel 2.4.3

Ergebnis

Green'sches GaI bildet mit $tBu_3SiNa(THF)_2$ in Pentan bei -78°C das *tetrahedro*-tetragallan (tBu_3Si)₄Ga₄ sowie die Gallanide (tBu_3Si)₆Ga₁₃Na(THF)₆ und (tBu_3Si)₆Ga₁₀(THF)₆.

Versuch 42 Darstellung von $(tBu_3Si)_8Ga_{18}$ und $(tBu_3Si)_8Ga_{22}$ aus $tBu_3SiNa(THF)_2$ mit GaBr

Zu einer auf -78°C gekühlten Lösung von 3.0 mmol $tBu_3SiNa(THF)_2$ in 20 mL THF gibt man über eine Stahlkanüle 11.0 mL einer 0.3 molaren Lösung von GaBr[†] in Toluol/THF (3.3 mmol, 1.1 Äquivalente). Nachdem die Reaktionsmischung 6 Stunden bei dieser Temperatur gerührt wurde wird die Reaktionsmischung auf Raumtemperatur erwärmt, wobei die Lösung über dunkelrot eine nahezu schwarze Farbe annimmt.

Nach Entfernen aller im ÖV flüchtigen Bestandteile, Aufnahme des Rückstandes in 30 mL Pentan, Abfiltrieren von unlöslichen Bestandteilen und Einengen auf ein Drittel, erhält man nach einigen Tagen bei -23°C schwarze Kristalle. Laut Röntgenstrukturanalyse handelt es sich dabei zum einen um Kristalle von (*t*Bu₃Si)₈Ga₁₈ und zum anderen um Kristalle von (*t*Bu₃Si)₈Ga₂₂.

Charakterisierung:

$(tBu_3Si)_8Ga_{18}$

Oktakis(tri-*tert*-butylsilyl)octadecagallan Oktasupersilyloctadecagallan $C_{96}H_{216}Ga_{18}Si_8$ ($M_r = 2850.63$) schwarze Würfel; sehr oxidations- und hydrolyseempfindlich

¹**H-NMR** (C_6D_6): nicht beobachtbar

^{†.} In Zusammenarbeit mit Dipl. Chem. A. Donchev; Institut für Anorganische Chemie der Universität Karlsruhe

²⁹ Si-NMR (C ₆ D ₆):	nicht beobachtbar	
¹³ C-NMR (C_6D_6): nicht beobachtbar		
Röntgenstrukturanalyse:		
siehe Kapitel 2.5.2		
Charakterisierung: (tBu ₃ Si) ₈ Ga ₂₂		
Oktakis(tri- <i>tert</i> -butylsilyl)docosagallan Oktasupersilyldocosagallan		$C_{96}H_{216}Ga_{22}Si_8$ ($M_r = 3129.56$) schwarze Würfel; sehr oxidations- und hydrolyseempfindlich
¹ H-NMR (C_6D_6):	nicht beobachtbar	
²⁹ Si-NMR (C ₆ D ₆):	nicht beobachtbar	
¹³ C-NMR (C ₆ D ₆):	nicht beobachtbar	

Röntgenstrukturanalyse:

siehe Kapitel 2.5.2

Ergebnis

Das donorstabilisierte bei -78°C in THF/Toluol haltbare GaBr bildet mit $tBu_3SiNa(THF)_2$ in THF/Toluol-Mischung die neutralen Galliumcluster (tBu_3Si)₈Ga₁₈ und (tBu_3Si)₈Ga₂₂.

Anmerkung:

Eine analoge Umsetzung bei -78°C von 3.0 mmol tBu_3SiNa mit weitestgehend (bei -78°C) von THF befreiten GaBr- Lösung in Toluol führt ausschließlich zum Oktasupersilyloktadecagallan (tBu_3Si)₈Ga₁₈.

Versuch 43 Darstellung von (*t*Bu₂PhSi)GaCl₂•THF

Zu einer auf -78°C gekühlten Lösung von 242 mg (1.38 mmol) GaCl₃ in 10 mL Pentan tropft man langsam 336 mg (1.38 mmol) $tBu_2PhSiNa$ gelöst in 10 mL THF. Man läßt die Reaktionsmischung auf Raumtemperatur kommen. Laut ¹H-NMR (C₆D₆) hat sich ausschließlich $tBu_2PhSiGaCl_2(THF)$ gebildet. Nach Abziehen aller flüchtigen Anteile im Ölpumpenvakuum, Aufnahme des Rückstands in 20 mL Pentan, Abfiltrieren unlöslicher Anteile, Einengen auf 10 mL fällt bei -23°C innerhalb von einer Woche 1236 mg (2.31 mmol, 87%) kristallines (*t*Bu₂PhSi)GaCl₂(THF) aus.

Charakterisierung:

(tBu₂PhSi)GaCl₂(THF)

Di-tert-butylphenylsilyl-galliumdi-		$C_{18}H_{31}GaCl_2OSi (M_r = 432.16)$				
chlorid-THF(1/1)		farbloser Feststoff;				
		oxidations- und hydrolyseempfindlich				
Elementaranalyse:	ber.: C 50.03	Н 7.23				
	gef.: C 49.63	H 7.17				
¹ H-NMR (C_6D_6):	$\delta = 1.252$ (s; (a)	<u>*Bu</u> ₂ PhSi)GaCl ₂ (THF)); 7.987 (m; m-Ph); 7.195 (m; o/p-Ph);				
	3.671 (-O-C <u>H</u> ₂ ;	4H); 1.053 (-O-CH ₂ - <u>C</u> H ₂ ; 4H)				
²⁹ Si-NMR (C_6D_6):	$\delta = 15.92 (t Bu_2)$	Ph <u>Si</u>)				
¹³ C-NMR (C ₆ D ₆):	$\delta = 30.38 \ (\underline{\text{Me}_3})$	C); 22.23 (Me ₃ <u>C</u>); 136.85 (i-Ph); 135.91 (o-Ph); 129.49 (p-Ph);				
	128.05 (m-Ph);	69.95 (-O- <u>C</u> H ₂); 25.15 (-O-CH ₂ - <u>C</u> H ₂)				

Ergebnis

GaCl₃setzt sich bei tiefen Temperaturen (-78°C) mit einem Äquivalent tBu_3SiNa in THF quantitativ zu $tBu_2PhSiGaCl_2(THF)$ um.

Versuch 44 Darstellung von (tBu₂PhSi)₃Ga

Zu einer auf -78°C gekühlten Lösung von 116 mg (0.658 mmol) GaCl₃ in 5 mL THF tropft man langsam eine Lösung von 479 mg (1.98 mmol) NaSiPhtBu₂ in 15 mL Pentan und 3 mL THF. Die Lösung wird 12 h bei -78°C gerührt. Nach dem langsamen Erwärmen auf Raumtemperatur erhält man eine gelbe Lösung über farblosem Niederschlag. Eine nach Austausch des Lösungsmittels gegen C_6D_6 gemessene Probe zeigt die quantitative Bildung von (tBu_2PhSi)₃Ga. Nach Entfernen aller im ÖV flüchtigen Bestandteile, Aufnahme des gelben Rückstandes in 30 mL Pentan, Abfiltrieren von unlöslichen Bestandteilen (NaCl) erhält man nach einigen Tagen bei -23°C 412 mg (0.566 mmol, 86%) gelbe Kristalle von (tBu_2PhSi)₃Ga.

Charakterisierung:		
(tBu ₂ PhSi) ₃ Ga		
Tri (di-tert-butylsilyl-phenyl)gallium		$C_{42}H_{69}GaSi_3 (M_r = 727.99)$
		gelbe Würfel;
		oxidations- und hydrolyseempfindlich
		Zers. ab 167°C
Elementaranalyse:	ber.: C 69.29	H 9.55
	gef.: C 68.36	H 10.33
1 H-NMR (C ₆ D ₆):	$\delta = 1.170$ (s; (t <u>Bu</u> ₂ PhSi) ₃ Ga); 8.018 (m; o-Ph); 7.408 (m; m-Ph); 7.197 (m;
	p-Ph)	
²⁹ Si-NMR (C ₆ D ₆):	$\delta = 25.15 (tBu_2)$	(Ph <u>Si</u>)
¹³ C-NMR (C ₆ D ₆):	$\delta = 32.25 (Me_3)$	C); 23.78 (Me ₃ C); 136.86 (i-Ph); 136.32 (o-Ph); 129.36 (p-Ph);
	126.91 (m-Ph)	

Röntgenstrukturanalyse:

siehe Kapitel 2.1.3

Ergebnis

Setzt man GaCl₃ mit drei Äquivalenten NaSiPh/Bu₂ um, entsteht (tBu_2PhSi)₃Ga und nicht das Digallan (tBu_2PhSi)₂Ga-Ga(SiPh/Bu₂)₂ (vgl. mit Versuch 16: Umsetzung AlCl₃ mit drei Äquivalenten NaSi*t*Bu₃).

Versuch 45 Darstellung von *t*Bu₂PhSiGaCl₂

Zu einer auf -78°C gekühlten Lösung von 132 mg (0.545 mmol) GaCl₃ in 10 mL Heptan tropft man langsam eine Lösung von 96 mg (0.545 mmol) NaSiPhtBu₂ in 10 mL Heptan. Die Lösung wird 12 h bei -78°C gerührt. Nach dem langsamen Erwärmen auf Raumtemperatur erhält man eine farblose Lösung über farblosem Niederschlag. Eine nach Austausch des Lösungsmittels gegen C_6D_6 gemessene Probe zeigt die quantitative Bildung von $tBu_2PhSiGaCl_2$. Nach Entfernen aller im ÖV flüchtigen Bestandteile, Aufnahme des Rückstandes in 20 mL Pentan, Abfiltrieren von unlöslichen Bestandteilen (NaCl) erhält man nach Entfernen des Lösungsmittels 163 mg (0.452 mmol, 83%) farbloses $tBu_2PhSiGaCl_2$.

Charakterisierung:

(tBu ₂ PhSi)GaCl ₂						
(Di-tert-butylsilyl-phenyl)galliumdi-		$C_{14}H_{23}Cl_2GaSi(M_r = 360.06)$				
chlorid		farbloser Feststoff;				
		oxidations- und hydrolyseempfindlich				
¹ H-NMR (C ₆ D ₆):	$\delta = 1.256$ (s; (<i>t</i> <u>Bu</u>	2PhSi)GaCl2); 7.590 (m; m-Ph); 7.184 (m; o/p-Ph)				
²⁹ Si-NMR (C ₆ D ₆):	$\delta = 20.83 (tBu_2Pl$	1 <u>Si</u>)				
¹³ C-NMR (C ₆ D ₆):	$\delta = 30.72 (\underline{\text{Me}}_3\text{C})$); 28.12 (Me ₃ <u>C</u>); 137.41 (i-Ph); 136.07 (o-Ph); 129.20 (p-Ph);				
	127.90 (m-Ph)					

Ergebnis

Setzt man GaCl₃ unter donorfreien Bedingungen mit einem Äquivalent NaSiPh*t*Bu₂ um, entsteht (*t*Bu₂PhSi)GaCl₂.

Versuch 46 Umsetzung von GaCl3 mit zwei Äquivalenten NaSiPh/Bu2

Zu einer auf -78°C gekühlten Lösung von 116 mg (0.658 mmol) GaCl₃ in 5 mL THF tropft man langsam eine Lösung von 320 mg (1.32 mmol) NaSiPhtBu₂ in 15 mL Pentan und 3 mL THF. Die Lösung wird 12 h bei -78°C gerührt. Nach dem langsamen Erwärmen auf Raumtemperatur erhält man eine gelbe Lösung über farblosem Niederschlag. Eine nach Austausch des Lösungsmittels gegen C_6D_6 gemessene Probe zeigt die Bildung von (tBu_2PhSi)₃Ga und $tBu_2PhSiGaCl_2$.

Ergebnis:

Setzt man GaCl₃ mit zwei Äquivalenten NaSiPhtBu₂ um, entsteht nicht das zweifach silylierte (tBu₂PhSi)₂GaCl sondern (tBu₂PhSi)₃Ga und tBu₂PhSiGaCl₂.

Versuch 47 Umsetzung von (tBu₂PhSi)₃Ga mit GaCl₃

Zu einer auf -78°C gekühlten Lösung von 585 mg (0.803 mmol) (*t*Bu₂PhSi)₃Ga in 5 mL THF tropft man langsam eine Lösung von 71 mg (0.402 mmol) GaCl₃ in 5 mL Pentan und 5 mL THF. Die Lösung wird 12 h bei -78°C gerührt. Nach dem langsamen Erwärmen auf Raumtemperatur erhält man eine leicht gelbe Lösung

über farblosem Niederschlag. Eine nach Austausch des Lösungsmittels gegen C_6D_6 gemessene Probe zeigt die Bildung von (tBu_2PhSi)₃Ga und $tBu_2PhSiGaCl_2$ im Molverhältnis 1 : 1.

Anmerkung:

Tropft man eine Lösung von 532 mg (0.730 mmol) (tBu_2PhSi)₃Ga in 5 mL THF zu einer auf -78°C gekühlten Lösung von 129 mg (0.730 mmol) GaCl₃ in 10 mL THF ergibt sich nach dem langsamen Erwärmen auf Raumtemperatur laut ¹H-NMR ein Produktverhältnis von (tBu_2PhSi)₃Ga und $tBu_2PhSiGaCl_2$ im Molverhältnis 1 : 3.

Ergebnis:

Setzt man GaCl₃ mit zwei Äquivalenten (tBu_2PhSi)₃Ga um, entsteht nicht das zweifach silylierte (tBu_2PhSi)₂GaCl sondern (tBu_2PhSi)₃Ga und tBu_2PhSi GaCl₂.

Versuch 48 Umsetzung von (*t*Bu₂PhSi)₃Ga mit Chlor

Zu einer auf -78°C gekühlten Lösung von 385 mg (0.530 mmol) (tBu_2PhSi)₃Ga in 10 mL Heptan tropft man langsam eine Lösung von 0.265 mmol Chlor in 1.7 mL CCl₄. Die Lösung wird 2 h bei -78°C gerührt. Nach dem langsamen Erwärmen auf Raumtemperatur erhält man eine leicht gelbe Lösung. Eine nach Austausch des Lösungsmittels gegen C₆D₆ gemessene Probe zeigt im ¹H-, ¹³C-, ²⁹Si-NMR Spektrum die Bildung von *t*Bu₂PhSiCl neben nicht reagiertem (*t*Bu₂PhSi)₃Ga. Auf eine Aufarbeitung wird deshalb verzichtet.

Ergebnis:

Setzt man $(tBu_2PhSi)_3Ga$ mit elementarem Chlor um, entsteht nicht $(tBu_2PhSi)_2GaCl$ sondern $tBu_2PhSiCl$ und $GaCl_3$.

Versuch 49 Umsetzung von (tBu₂PhSi)₃Ga mit (tBu₂PhSi)GaCl₂

417 mg (0.573 mmol) (tBu_2PhSi)₃Ga wird mit 206 mg (0.537 mmol) (tBu_2PhSi)GaCl₂ in 25 mL Heptan unter Rückfluß erwärmt. Die nach 5 Stunden gemessenen NMR-Spektren zeigen das kein Umsatz erfolgt ist. Nach 48 Stunden bildet sich langsam ein grauer metallischer Niederschlag von elementarem Gallium und eine nach Austausch des Lösungsmittels gegen C₆D₆ gemessene Probe zeigt im ¹H-, ¹³C-, ²⁹Si-NMR Spektrum die Bildung von $tBu_2PhSiCl$ und tBu_2PhSiH . Auf eine Aufarbeitung wird deshalb verzichtet.
(tBu2PhSi)3Ga setzt sich mit (tBu2PhSi)GaCl2 nicht unter Komproportionierung zu (tBu2PhSi)2GaCl um.

Versuch 50 Darstellung von $(\mathit{tBu}_3Si)_2In-In(Si\mathit{tBu}_3)_2$ aus InCl_3 und tBu_3SiNa in THF

Zu einer auf -78°C gekühlten Suspension von 778 mg (3.50 mmol) InCl₃ in 30 mL THF tropft man 10.5 mmol $tBu_3SiNa(THF)_2$ in 10 mL THF. Im Zuge des langsamen Erwärmens auf Raumtemperatur wird die Lösung tiefviolett. Man rührt nunmehr die Reaktionsmischung 5 h bei Raumtemperatur. Laut ¹H-NMR-Spektrum (C₆D₆) enthält die Lösung dann ausschließlich (tBu_3Si)₄In₂ und tBu_3Si -Si tBu_3 im Molverhältnis 1 : 1. Nach Abziehen aller flüchtigen Bestandteile im ÖV, Aufnahme der Produkte in 80mL Toluol, Abfiltrieren unlöslicher Anteile (NaCl) und Einengen des Filtrats auf 20 mL, kristallisieren aus der Lösung bei -23°C 1.12 g (1.09 mmol; 63%) tiefviolettes (tBu_3Si)₄In₂ aus.

Charakterisierung:

(tBu ₃ Si) ₂ In—In(SitBu	3) ₂	
Tetrakis(tri-tert-butylsilyl)diindium		$C_{48}H_{108}In_2Si_4$ ($M_r = 1027.37$)
(In-In)		tiefviolette Quader
(Tetrasupersilyldiindan)		
¹ H-NMR (C ₆ D ₆):	$\delta = 1.35 \text{ (s, } (t\underline{Bu}_3)$	$Si)_2$ In-In $(Sit\underline{Bu}_3)_2$)
²⁹ Si-NMR (C ₆ D ₆):	$\delta = 76.8 (t \mathrm{Bu}_3 \mathrm{\underline{Si}})$	
¹³ C-NMR (C ₆ D ₆):	$\delta = 34.00 (\underline{\text{Me}_3\text{C}})$); 26.82 (Me ₃ <u>C</u>)
UV/Vis (Heptan):	$\lambda = 560 \text{ nm}$	
MS (EI, 70 eV, <i>m</i> / <i>z</i> > 199): m/z: 513 (19) [N	$M^{+}/2$], 457 (3) [M/2-C ₄ H ₈ ⁺], 314 (100) [<i>t</i> Bu ₃ Si-In ⁺]

Röntgenstrukturanalyse:

siehe Kapitel 3.2.2

Ergebnis

InCl₃ reagiert mit 3 Äquivalenten tBu₃SiNa quantitativ zum Diindan (tBu₃Si)₂In–In(SitBu₃)₂.

Anmerkung:

Eine Lösung von 290 mg (0.282 mmol) ($tBu_3Si_2In-In(SitBu_3)_2$ in 0.8 mL C₆D₁₂ zeigt bei 80°C ein schwaches ESR-Signal, welches jedoch nicht eindeutig einer radikalischen Spezies wie ($tBu_3Si_2In^{\bullet}$ zuge-ordnet werden kann.

Versuch 51 Umsetzung von (tBu₃Si)₂In-In(SitBu₃)₂ mit Selen

350 mg (0.341 mmol) (tBu_3Si)₂In-In(Si tBu_3)₂ werden mit 54 mg (0.681 mmol) Selen in 30 mL Heptan 7 Stunden auf 90°C erwärmt. Laut ¹H-NMR-Spektrum (C₆D₆) hat sich dabei alles Diindan umgesetzt und die Lösung enthält dann (tBu_3Si)₄In₂Se₄ neben tBu_3Si -Si tBu_3 und tBu_3SiH . Nach Abziehen aller flüchtigen Bestandteile im ÖV, Aufnahme der Produkte in 30 mL Heptan, Abfiltrieren unlöslicher Anteile und Einengen des Filtrats auf ein Drittel, kristallisiert aus der Lösung bei -23°C 123 mg (0.08 mmol; 46%) gelbes (tBu_3Si)₄In₄Se₄.

Charakterisierung:

Tetrakis(tri- <i>tert</i> -butylsilyl)-tetra- inda-tetrasela-Heterocuban		$C_{48}H_{108}In_4Si_4Se_4$ ($M_r = 1572.85$)	
		gelbe Würfel;	
(Tetrasupersilyl-tetrainda-tetra-		in Lösung oxidations- und hydrolyse-	
sela-Heterocuban)		empfindlich	
Elementaranalyse:	ber.: C 36.66	H 6.92	
	gef.: C 36.32	H 6.87	
¹ H-NMR (C ₆ D ₆):	$\delta = 1.328$ (s, (<i>t</i> <u>B</u>)	\underline{u}_3 Si) ₄ In ₄ Se ₄)	
²⁹ Si-NMR (C ₆ D ₆):	$\delta = 44.58 (t \mathrm{Bu}_3 \underline{S})$	<u>Si</u>)	
¹³ C-NMR (C ₆ D ₆):	$\delta = 32.18 (\underline{\text{Me}}_3 \text{C})$	C); 25.46 (Me ₃ <u>C</u>)	
⁷⁹ Se-NMR (C ₆ D ₆):	$\delta = -322.4$ ((<i>t</i> Bu	$_{3}\text{Si})_{4}\text{In}_{4}\underline{\text{Se}}_{4}$	

Röntgenstrukturanalyse:

siehe Kapitel 3.2.6

Auf dem Weg zur Bildung des Dodecaindans $(tBu_3Si)_8In_{12}$ durch Thermolyse von Diindan $(tBu_3Si)_2In-In(SitBu_3)_2$ in Heptan (siehe Versuch Versuch 53), läßt sich mit Hilfe von Selen ein $(tBu_3Si)_4In_4$ als Heterocuban abfangen.

Versuch 52 Umsetzung von (*t*Bu₃Si)₂In—In(Si*t*Bu₃)₂ mit (*t*Bu₃Si)₂Al—Al(Si*t*Bu₃)₂

196 mg (0.191 mmol) $(t\text{Bu}_3\text{Si})_2\text{In}-\text{In}(\text{Si}t\text{Bu}_3)_2$ werden mit 162 mg (0.191 mmol) $(t\text{Bu}_3\text{Si})_2\text{Al}-\text{Al}(\text{Si}t\text{Bu}_3)_2$ in 20 mL Heptan 5 Stunden auf 90°C erwärmt. Laut ¹H-NMR-Spektrum (C₆D₆) hat sich dabei alles Dialan umgesetzt und die Lösung enthält dann nach NMR- und ESR-Spektren neben nicht umgesetztem Diindan $(t\text{Bu}_3\text{Si})_2\text{In}-\text{In}(\text{Si}t\text{Bu}_3)_2$ noch $(t\text{Bu}_3\text{Si})_4\text{Al}_3^{\bullet}$, $t\text{Bu}_3\text{Si}-\text{Si}t\text{Bu}_3$ und $t\text{Bu}_3\text{SiH}$. Da keine Umsetzung zwischen dem Diindan und dem Dialan eingetreten ist wird auf eine Aufarbeitung verzichtet.

Ergebnis

Durch Thermolyse von Diindan mit Dialan lassen sich keine Al-In Bindungen knüpfen.

Versuch 53 Darstellung von (*t*Bu₃Si)₈In₁₂ durch Thermolyse von (*t*Bu₃Si)₄In₂ in Heptan

Eine Lösung von 370 mg (0.360 mmol) $(tBu_3Si)_4In_2$ in 45 mL Heptan wird 22 h unter Rückfluß erhitzt (ca. 100°C). Laut ¹H-, ¹³C- und ²⁹Si-NMR-Spektren der Reaktionslösung ist nach Ersatz von Heptan durch C₆D₆ hiernach das Diindan vollständig zersetzt, und es bilden sich Supersilan tBu_3SiH sowie ein indiumund supersilylhaltiges Produkt (zwei Sorten unterschiedlicher Si tBu_3 -Gruppen im Verhältnis 1 : 1.

¹ H-NMR (C_6D_6):	$\delta = 1.419$ (s, $t\underline{Bu}_3Si$); 1.271 (s, $t\underline{Bu}_3Si$)
²⁹ Si-NMR (C ₆ D ₆):	$\delta = 64.95 (tBu_3Si); 50.9 (tBu_3Si)$
¹³ C-NMR (C ₆ D ₆):	$\delta = 33.09/25.47$ und 32.60/26.59 (jeweils <u>Me₃C/Me₃C</u>)

Nach Abziehen aller flüchtigen Bestandteile im ÖV, Aufnahme des Rückstands in 40 mL Benzol und Einengen der Lösung auf 10 mL kristallisieren aus der Lösung im Laufe von Tagen bei Raumtemperatur 50 mg (0.02 mmol, ca. 30%) (*t*Bu₃Si)₈In₁₂ aus. Die aus C₆D₆ gewonnen Kristalle lösen sich in Heptan, Benzol oder

Toluol weder bei Raumtemperatur noch bei 95°C, so daß keine NMR-Signale beobachtet werden konnten. Somit enthält die ursprüngliche Thermolyselösung offensichtlich nicht das Dodecaindan, sondern Vorstufen dieses Clusters, aus denen sich dann (*t*Bu₃Si)₈In₁₂ bildet.

Charakterisierung: (tBu₃Si)₈In₁₂

```
Okta(tri-tert-butylsilyl)-dodecaindan
Oktasupersilyldodecaindan
```

 $C_{96}H_{216}In_{12}Si_8$ ($M_r = 2973.30$) schwarze Platten; oxidations- und hydrolyseempfindlich; unlöslich in Benzol, Heptan, Toluol bei Raumtemperatur sowie 95°C

¹ H-NMR (C_6D_6):	nicht beobachtbar [†]
²⁹ Si-NMR (C ₆ D ₆):	nicht beobachtbar †
¹³ C-NMR (C ₆ D ₆):	nicht beobachtbar †

Röntgenstrukturanalyse:

siehe Kapitel 3.3.2

Anmerkung:

Wird eine Lösung von 105 mg (0.102 mmol) (tBu_3Si)₄In₂ in 0.8 mL C₆D₁₂ für 6 h auf 145°C erwärmt so hat sich laut ¹H- und ¹²⁹Si-NMR-Spektren das Diindan vollständig zersetzt, und es haben sich neben Supersilan tBu_3SiH indium- und supersilylhaltige Produkte gebildet:

¹ H-NMR (C_6D_6):	$\delta = 1.258 \text{ (s, } t\underline{Bu}_{3}\text{Si}\text{)}; 1.251 \text{ (s, } t\underline{Bu}_{3}\text{Si}\text{)}; 1.172 \text{ (s, } t\underline{Bu}_{3}\text{Si}\text{)}$
²⁹ Si-NMR (C ₆ D ₆):	$\delta = 86.1 (tBu_3Si); 54.6 (tBu_3Si); 53.8 (tBu_3Si)$

Bei 5°C kristallisiert laut Röntgenstrukturanalyse innerhalb von 14 Tagen aus C_6D_{12} nur das Okta(tri-*tert*-butylsilyl)-dodecaindan aus. Somit lassen sich die in Lösung vorhandenen supersilylgruppenhaltigen Indiumverbindungen nicht zuordnen, welche jedoch sicherlich weitere Vorstufen auf dem Weg zu dem Cluster (*t*Bu₃Si)₈In₁₂ darstellen ((*t*Bu₃Si)₄In₆ ?).

^{†.} Aufgrund der Schwerlöslichkeit des Dodecaindans in organischen Lösungsmitteln, ließen sich selbst bei 95°C keine NMR-Signale beobachten.

(tBu₃Si)₄In₂ zersetzt sich in Heptan bei 100°C über Vorstufen zu (tBu₃Si)₈In₁₂.

Versuch 54 Thermolyse von $(tBu_3Si)_4In_2$ und anschließender Umsetzung mit NaSi $tBu_3(THF)_2$

Eine Lösung von 313 mg (0.305 mmol) (tBu_3Si)₄In₂ in 40 mL Heptan wird 22 h unter Rückfluß erhitzt (ca. 100°C), so daß laut ¹H-, ¹³C- und ²⁹Si-NMR-Spektren das Diindan vollständig zersetzt ist und in der Reaktionslösung neben Supersilan tBu_3SiH nur eine indium- und supersilylhaltige Verbindung vorhanden ist (zwei Sorten unterschiedlicher Si tBu_3 -Gruppen im Verhältnis 1 : 1):

¹H-NMR (C₆D₆): $\delta = 1.419 \text{ (s, } t\underline{Bu}_3Si); 1.271 \text{ (s, } t\underline{Bu}_3Si)$ ²⁹Si-NMR (C₆D₆): $\delta = 64.95 \text{ (}tBu_3\underline{Si}); 50.9 \text{ (}tBu_3\underline{Si})$

Zu dieser Reaktionslösung werden bei -78°C 0.1 mmol NaSi*t*Bu₃(THF)₂ gelöst in 5.0 mL Heptan getropft, wobei sich die Reaktionslösung rotbraun färbt und ein Niederschlag von metallischem Indium entsteht.

Laut ¹H-, ¹³C- und ²⁹Si-NMR-Spektren der auf Raumtemperatur erwärmten Reaktionslösung hat sich nach Ersatz von Heptan durch C_6D_6 die unbekannte indium- und supersilylhaltige Verbindung vollständig umgesetzt und es haben sich neben tBu_3SiH , $tBu_3Si-SitBu_3$ noch $(tBu_3Si)_2In-In(SitBu_3)_2$ und Indium-Metall gebildet.

Ergebnis

Die auf dem Weg zum Okta(tri-*tert*-butylsilyl)-dodecaindan (tBu_3Si)₈In₁₂ entstehenden Vorstufen lassen sich mit NaSi tBu_3 nicht als Natriumsalz abfangen. Es bildet sich stattdessen das Diindan (tBu_3Si)₄In₂ und metallisches Indium.

Versuch 55 Darstellung von $(tBu_3Si)_6In_8$ durch Umsetzung von Cp*In mit tBu_3SiNa

Zu einer auf -120°C gekühlten, hellgelben Suspension von 208 mg (0.832 mmol) Cp*In in 20 mL Pentan wird innerhalb von 3 h eine Lösung von 182 mg (0.818 mmol) *t*Bu₃SiNa in 20 mL Pentan getropft. Die nunmehr dunkelbraune Suspension wurde anschließend 48 h bei -78°C gerührt, wobei sie eine dunkelgrüne Farbe annimmt. Laut NMR enthält die nunmehr auf Raumtemperatur aufgewärmte dunkelgrüne Lösung

nach Austausch des Lösungsmittels Pentan gegen C_6D_6 neben geringen Mengen tBu_3SiH (Hydrolyseprodukt von $tBu_3SiNa^{[51]}$), $(tBu_3Si)_4In_2$ (siehe Versuch 50) und $(tBu_3Si)_6In_8$ im Molverhältnis 1 : 1. Nach Abfiltrieren unlöslicher Produkte (Cp*Na) von der ursprünglichen Pentanlösung, Abkondensieren aller im HV flüchtigen Anteile (tBu_3SiH), Pentan) und Lösen des dunkelgrünen Rückstands in 10 mL Benzol kristallisieren im Laufe von 7 d bei Raumtemperatur 72 mg (0.034 mmol, 32 %) (tBu_3Si)₆In₈ in dunkelgrünen Quadern aus.

Charakterisierung:

(tBu₃Si)₆In₈

Hexa(tri-tert-butylsilyl)-octaindan	$C_{72}H_{162}In_8Si_6 (M_r = 2115.15)$
Hexasupersilyloctaindan	dunkelgrüne Quader;
	oxidations- und hydrolyseempfindlich

¹**H-NMR** (C₆D₆): $\delta = 1.362 (s, (t\underline{Bu}_3Si)_6In_8)^{\dagger}$

²⁹Si-NMR (C₆D₆): $\delta = 80.95 (tBu_3Si)^{\dagger}$

¹³C-NMR (C₆D₆): $\delta = 33.09 (\underline{Me_3C}); 29.29 (Me_3\underline{C})^{\dagger}$

Röntgenstrukturanalyse:

siehe Kapitel 3.4.2

Ergebnis

InCp* reagiert mit tBu₃SiNa in Pentan zu (tBu₃Si)₄In₂ und (tBu₃Si)₆In₈.

Anmerkung:

An die beiden supersilylgruppenfreien Indiumatome lassen sich keine weiteren Donoren wie THF oder NEt₃ koordinieren.

Versuch 56 Umsetzung von CpIn mit tBu₃SiNa

234 mg (3.24 mmol) LiCp werden in 40 mL Diethylether suspendiert und bei Raumtemperatur mit 483 mg (3.24 mmol) InCl gelöst in 30 mL Diethylether versetzt. Nachdem die Reaktionsmischung 20 Stunden

^{†.} Aus der Strukturformel folgen für die in organischen Medien bei Raumtemperatur nur wenig, bei tiefen Temperaturen fast nicht lösliche Verbindung mehrere Sorten von Supersilylgruppen. (*t*Bu₃Si)₆In₈ verhält sich offenbar in Lösung fluktuierend, so daß im zeitlichen Mittel innerhalb des NMR-Zeitfensters nur eine Sorte von Supersilylgruppen beobachtet werden können.

bei Raumtemperatur gerührt wurde wird das Lösungsmittel im ÖV abkondensiert und das entstandene InCp bei 55°C im HV sublimiert. Auf 464 mg (2.50 mmol) InCp und 557 mg (2.50 mmol) NaSi*t*Bu₃ werden sofort (allmähliche Zersetzung des InCp an der Glaswand) 40 mL Pentan bei -196°C kondensiert. Die Reaktionsmischung wird auf -130°C aufgetaut, 10 Stunden bei dieser Temperatur gerührt und danach über 12 Stunden auf Raumtemperatur erwärmt, wobei metallisches Indium ausfällt. Laut NMR enthält die nunmehr auf Raumtemperatur aufgewärmte dunkelbraune Lösung nach Austausch des Lösungsmittels Pentan gegen C_6D_6 (*t*Bu₃Si)₄In₂ (vgl. Versuch 50) und (*t*Bu₃Si)₂.

Ergebnis

InCp reagiert mit tBu₃SiNa in Pentan unter Disproportionierung zu Indiummetall und (tBu₃Si)₄In₂.

Versuch 57 Umsetzung von InN(SiMe₃)₂ mit NaSit/Bu₃

Auf 135 mg (0.49 mmol) InN(SiMe₃)₂ und 112 mg (0.49 mmol) NaSitBu₃ werden 15 mL Pentan bei -196°C kondensiert. Nachdem die Reaktionsmischung 24 Stunden bei -78°C sowie nach langsamen Erwärmen auf Raumtemperatur weitere 24 Stunden gerührt wurde, erhält man eine gelbe Lösung. Eine nach Austausch des Lösungsmittels gegen C_6D_6 gemessene Probe zeigt die Bildung von ($tBu_3Si_2In-In(SitBu_3)_2$ und $tBu_3Si-SitBu_3$ neben noch nicht umgesetzten Edukten. Laut NMR ist die Reaktion nach weiteren 14 Tagen Rühren bei Raumtemperatur beendet, wobei metallisches Indium ausfällt. Auf eine Aufarbeitung wurde verzichtet.

Ergebnis

Setzt man $InN(SiMe_3)_2$ mit einem Äquivalent $NaSitBu_3$ in Pentan um, bildet sich in einer langsamen Reaktion bei Raumtemperatur ($tBu_3Si)_2In-In(SitBu_3)_2$, $tBu_3Si-SitBu_3$ und Indiummetall.

Versuch 58 Thermolyse von (tBu₃Si)₆In₈

65 mg (0.041 mmol) Hexa(tri-*tert*-butylsilyl)-oktaindan (tBu_3Si)₆In₈ werden in 0.5 mL C₆D₆ auf 100°C erwärmt. Nach 4 Tagen beginnt sich langsam metallisches Indium an der Glaswand abzuscheiden. Laut ¹H-, ¹³C- und ²⁹Si-NMR-Spektren der Reaktionslösung ist nach 20 Tagen das Hexa(tri-*tert*-butylsilyl)-oktaindan unter Bildung von tBu_3SiD vollständig zersetzt. Weitere Produkte lassen sich NMR-Spektroskopisch nicht nachweisen. Die Reaktionslösung wird innerhalb von 5 Tagen auf 5°C abgekühlt. Nach einigen Tagen kristallisiert bei dieser Temperatur laut Röntgenstrukturanalyse 27 mg (0.01 mmol; 16%) Okta(tri-*tert*-butylsi-lyl)-dodecaindan (tBu_3Si)₈In₁₂ in Form von schwarzen Platten aus

Hexa(tri-*tert*-butylsilyl)-oktaindan (tBu_3Si)₆In₈ ist in C₆D₆ relativ thermolysestabil. So zersetzt sich der Indiumcluster (tBu_3Si)₆In₈ erst nach 20 Tagen vollständig zu Okta(tri-*tert*-butylsilyl)-dodecaindan (tBu_3Si)₈In₁₂.

Versuch 59 Umsetzung von (*t*Bu₃Si)₆In₈ mit NaSi*t*Bu₃

Zu einer auf -78°C gekühlten Lösung 140 mg (0.089 mmol) Hexa(tri-*tert*-butylsilyl)-oktaindan (*t*Bu₃Si)₆In₈ in 10 mL Heptan werden 0.178 mmol NaSi*t*Bu₃(THF)₂ gelöst in 3 mL THF getropft. Die Reaktionslösung wird 12 Stunden bei dieser Temperatur gerührt. Nach dem langsamen Erwärmen auf Raumtemperatur erhält man eine braune Lösung über schwarzem Niederschlag. Laut ¹H-, ¹³C- und ²⁹Si-NMR-Spektren der Reaktionslösung hat sich das Hexa(tri-*tert*-butylsilyl)-oktaindan vollständig umgesetzt. NMR-spektroskopisch lassen sich *t*Bu₃Si-Si*t*Bu₃ und (*t*Bu₃Si)₂In-In(Si*t*Bu₃)₂ nachweisen. Nach Abfiltrieren unlöslicher Produkte von der ursprünglichen Heptanlösung, Abkondensieren aller im HV flüchtigen Anteile (*t*Bu₃SiH, Heptan) und Lösen des Rückstands in 10 mL Pentan lassen sich im Laufe von Tagen bei -25°C Kristalle züchten, die laut Röntgenstrukturanalyse nur das Diindan (*t*Bu₃Si)₂In-In(Si*t*Bu₃)₂ darstellen.

Ergebnis

Hexa(tri-*tert*-butylsilyl)-oktaindan (tBu_3Si)₆In₈ reagiert mit NaSi tBu_3 (THF)₂ nicht erwartungsgemäß zu einem Dinatrium-hexa(tri-*tert*-butylsilyl)-oktaindadiid (tBu_3Si)₆In₈Na₂(THF)_x, sondern zu Diindan (tBu_3Si)₂In–In(Si tBu_3)₂ und Indiummetall sowie zu weiteren aufgrund der Schwerlöslichkeit nicht weiter charakterisierbare Produkten.

Versuch 60 Umsetzung von (tBu₃Si)₆In₈ mit Na

125 mg (0.079 mmol) Hexa(tri-*tert*-butylsilyl)-oktaindan (tBu_3Si)₆In₈ werden mit 0.1 mL Triethylamin NEt₃ und 25 mg (0.834 mmol) Natrium in 0.5 mL C₆D₆ bei Raumtemperatur für 15 Minuten im Ultraschallbad beschallt. Die Lösung wird, da laut NMR-Spektren keine Umsetzung erkennbar war, für 90 Minuten auf 95°C erwärmt, wobei sich metallisches Indium an der Glaswand abscheidet und die Lösung eine braune Farbe annimmt. Laut ¹H-, ¹³C- und ²⁹Si-NMR-Spektren der Reaktionslösung hat sich das Hexa(tri-*tert*-butylsilyl)-oktaindan vollständig umgesetzt. NMR-spektroskopisch lassen sich *t*Bu₃Si-Si*t*Bu₃ und (*t*Bu₃Si)₂In-In(Si*t*Bu₃)₂ nachweisen.

Hexa(tri-*tert*-butylsilyl)-oktaindan (tBu_3Si)₆In₈ läßt sich mit Natrium in Gegenwart des Donors Trietylamin nicht zu einer anionischen Spezies reduzieren. Stattdessen entsteht metallisches Indium und Diindan (tBu_3Si)₂In₂-In(Si tBu_3)₂.

Versuch 61 Darstellung von $(tBu_2PhSi)_2In$ —In $(SiPhtBu_2)_2$ aus InBr und $tBu_2PhSiNa$ in THF/Pentan

Zu einer auf -78°C gekühlten Lösung von 207 mg (1.06 mmol) InBr in 15 mL THF tropft man 254 mg (1.05 mmol) $tBu_2PhSiNa$ in 10 mL Pentan und 3 mL THF und 12 h bei dieser Temperatur gerührt. Im Zuge des langsamen Erwärmens auf Raumtemperatur wird die Lösung über grünfarben tiefviolett. Laut ¹H-NMR-Spektrum (C₆D₆) enthält die Lösung dann ausschließlich (tBu_2PhSi)₄In₂ und tBu_2PhSi -SiPh tBu_2 im Molverhältnis 1 : 1. Nach Abfiltrieren von unlöslichen Anteilen (NaBr, metallisches In) und Einengen des Filtrats auf 10 mL, kristallisiert aus der Lösung bei -23°C 168 mg (0.152 mmol; 85%) rotviolettes (tBu_3Si)₄In₂ aus.

Charakterisierung:

$(tBu_2PhSi)_2In-In(SiPhtBu_2)_2$

Tetrakis(di-tert-butylsilyl-ph	nenyl)diin- $C_{56}H_{92}In_2Si_4 (M_r = 1107.33)$
dium (In-In)	rotviolette Prismen;
	oxidations- und hydrolyseempfindlich
¹ H-NMR (C ₆ D ₆): δ =	= 1.242 (s, $(t\underline{Bu}_2PhSi)_2In-In(SiPht\underline{Bu}_2)_2$); 7.840 (m; m-Ph); 7.179 (m; o/p-Ph)
²⁹ Si-NMR (C_6D_6): δ :	$= 54.38 (tBu_2Ph\underline{Si})$
¹³ C-NMR (C_6D_6): δ :	= 31.90 (<u>Me₃C</u>); 23.62 (Me ₃ <u>C</u>); 136.86 (i-Ph); 128.29 (o-Ph); 128.13 (p-Ph); $7.81 (m-Ph)$
$\mathbf{UV/Vis} (\text{Hentan}); \qquad \lambda$	$= 530 \mathrm{nm}$

Röntgenstrukturanalyse:

siehe Kapitel 3.2.3

InBr reagiert mit einem Äquivalent $tBu_2PhSiNa$ zum Diindan $(tBu_2PhSi)_2In-In(SiPhtBu_2)_2$ und metallisches Indium.

Versuch 62 Umsetzung von InCp* mit tBu₂PhSiNa

Zu 155 mg (0.620 mmol) InCp* und 151 mg (0.622 mmol) NaSiPh/Bu₂ kondensiert man bei -196°C 20 mL Pentan. Die Reaktionsmischung wird auf -78°C erwärmt und 12 Stunden bei dieser Temperatur gerührt. Im Zuge des langsamen Erwärmens auf Raumtemperatur wird die Lösung rotbraun. Laut ¹H-NMR-Spektrum (C_6D_6) enthält die Lösung dann (tBu_2PhSi)₄In₂ und tBu_2PhSi -SiPh/Bu₂ im Molverhältnis 1 : 1. Nach Abfiltrieren von unlöslichen Anteilen (NaBr, metallisches In) und Einengen des Filtrats auf 3 mL, kristallisieren aus der Lösung bei -23°C 90 mg (0.08 mmol; 75%) rotviolettes (tBu_2PhSi)₄In₂ aus.

Anmerkung: Umsetzung von InCp* mit tBu2PhSiNa bei -120°C

Zu 178 mg (0.712 mmol) InCp* und 173 mg (0.713 mmol) NaSiPhtBu₂ kondensiert man bei -196°C 20 mL Pentan. Die Reaktionsmischung wird auf -120°C erwärmt und 6 Stunden bei dieser Temperatur, sowie 4 Tage bei -95°C gerührt. Laut ¹H-NMR-Spektrum (C₆D₆) enthält die Lösung nach dem Erwärmen auf Raumtemperatur dann ebenfalls nur (tBu₂PhSi)₄In₂ und tBu₂PhSi-SiPhtBu₂.

Ergebnis

InCp* reagiert mit einem Äquivalent $tBu_2PhSiNa$ zum Diindan (tBu_2PhSi)₂In-In(SiPh tBu_2)₂) (vgl. mit der analogen Umsetzung von InCp* mit NaSi tBu_3 Versuch 55).

Versuch 63 Thermolyse von (*t*Bu₂PhSi)₂In—In(SiPh*t*Bu₂)₂

145 mg (0.127 mmol) (tBu_2PhSi)₂In-In(SiPh tBu_2)₂ in 0.6 mL C₆D₁₂ werden 215 h auf 80°C erwärmt. Da laut NMR-Spektren keine Thermolyseprodukte entstanden sind, wird die Probe 12 h auf 140°C erwärmt, wobei sich metallisches Indium an der Glaswand abscheidet. Laut ¹H-NMR-Spektrum (C₆D₆) enthält die Lösung dann neben unzersetztem (tBu_2PhSi)₄In₂ noch tBu_2PhSi D.

Tetrakis(di-*tert*-butylsilyl-phenyl)diindium (In-In) erweist sich als merklich thermolysestabil und bildet unter diesen Bedingungen keinen Polyeder wie Tetrakis(tri-*tert*-butylsilyl)diindium (In-In) (vgl. mit Versuch 53)

Versuch 64 Umsetzung von InCp* mit (tBu₃Si)₂MeSiNa in Pentan

Zu 96 mg (0.384 mmol) InCp* und 182 mg (0.392 mmol) (tBu_3Si)₂MeSiNa werden bei -196°C 20 mL Pentan kondensiert. Nachdem die Reaktionsmischung 5 Stunden bei -120°C und 48 Stunden bei -78°C gerührt wurde erhält man eine rotbraune Lösung die sich ab -40°C unter Abscheidung von metallischem Indium entfärbt. Laut NMR-Spektren (C₆D₆) enthält die Lösung dann ausschließlich Zersetzungsprodukte der Schutzgruppe (tBu_3Si)₂MeSi-.Aus diesem Grund wurde auf eine Aufarbeitung verzichtet.

Ergebnis

InCp* reagiert mit einem Äquivalent (tBu_3Si)₂MeSiNa zu einer nicht näher charakterisierbaren Verbindung, welche sich bereits ab -40°C zersetzt.

Versuch 65 Darstellung von (*t*Bu₃Si)₂Tl—Tl(Si*t*Bu₃)₂

Zu einer auf -78°C gekühlten Suspension von 1150 mg TlBr (4.04 mmol) in 15 mL THF wird 4.07 mmol tBu_3SiNa in 15 mL THF getropft. Die Reaktionsmischung wird 12 h bei -78°C gerührt und anschließend auf Raumtemperatur erwärmt. Dabei verändert sich die Farbe der Lösung über dunkelrot nach dunkelgrün und es hat sich ein schwarzer Niederschlag gebildet (Thalliummetall ?). Eine nach Austausch des Lösungsmittels gegen C₆D₆ gemessene Probe zeigt die Bildung von $tBu_3Si-SitBu_3$ neben einer supersilylhaltigen Thalliumverbindung:

¹H-NMR (C₆D₆):
$$\delta = 1.318 \text{ (d; } J^4(\text{H, Tl}) = 8.37 \text{ Hz; } (t\underline{Bu}_3\text{Si})_2\text{Tl-Tl}(\text{Sit}\underline{Bu}_3)_2)$$

²⁹Si-NMR (C₆D₆: $\delta = 99.50 \text{ (d; } {}^1J({}^{29}\text{Si}, {}^{205}\text{Tl}) = 1628 \text{ Hz}, {}^1J({}^{29}\text{Si}, {}^{203}\text{Tl}) = 1610 \text{ Hz; } t\underline{Bu}_3\underline{Si})^{\dagger}$
¹³C-NMR (C₆D₆): $\delta = 33.12 \text{ (d; } {}^3J(\text{C, Tl}) = 49.9 \text{ Hz; } \underline{Me}_3\text{C}); 28.57 \text{ (d; } {}^2J(\text{C, Tl}) = 155.8 \text{ Hz; } Me_3\underline{C})$

^{†.} Das lediglich nur die ¹J_{Si-TI}-Kopplung sichtbar ist, kann möglicherweise dadurch erklärt werden, daß (tBu₃Si)₄Tl₂ nicht als Dithallan in Lösung vorliegt. Es läßt sich zwar ESR-spektroskopisch eine radikalische Spezies nachweisen, jedoch ist die Zuordnung zu (tBu₃Si)₂TI[•] nicht eindeutig.

Alle flüchtigen Bestandteile werden im ÖV entfernt, der dunkelgrüne Rückstand wird in 40 mL Et₂O aufgenommen und von unlöslichen Bestandteilen abfiltriert. Bei -23°C bilden sich nach 14 Tagen 690 mg (0.572 mmol, 85%) dunkelgrüne quaderförmige Kristalle.

Charakterisierung:

 $(tBu_3Si)_2Tl$ — $Tl(SitBu_3)_2$

```
Tetrakis(tri-tert-butylsilyl)dithalliumC_{48}H_{108}Tl_2Si_4 (M_r = 1206.49)(TI-TI)dunkelgrüne Quader;(Tetrasupersilyldithallan)lichtempfindlich;Zers. ab 56°C
```

UV/Vis (Heptan): $\lambda = 628 \text{ nm}$

Röntgenstrukturanalyse:

siehe Kapitel 4.1.2

Ergebnis

Setzt man TlBr mit tBu_3SiNa bei -78°C in THF um, bildet sich unter Thalliumabscheidung Tetrasupersilyldithallan.

Versuch 66 Umsetzung von TICp mit einem Äquivalent tBu₃SiNa

Auf 481 mg (1.785 mmol) TlCp und 397 mg (1.785 mmol) NaSi*t*Bu₃ werden 40 mL Pentan bei -196°C kondensiert. Die Reaktionsmischung wird 48 Stunden bei -90°C lichtgeschützt gerührt. Die tiefrote Lösung wird bei -80°C auf die Hälfte eingeengt. Bei -80°C bilden sich nach 7 Monaten Kristalle, welche sich jedoch als röntgenamorph erweisen.

Anmerkung:

Läßt man die Lösung auf -50°C erwärmen ändert sich die Farbe der Reaktionslösung unter gleichzeitiger Thalliumabscheidung rasch von dunkelrot zu dunkelgrün und es läßt sich laut NMR-Spektren neben (*t*Bu₃Si)₂ nur noch (*t*Bu₃Si)₂Tl–Tl(Si*t*Bu₃)₂ nachweisen.

Setzt man TICp mit *t*Bu₃SiNa bei -90°C in Pentan um, bildet sich unter Thalliumabscheidung Tetrasupersilyldithallan.

Versuch 67 Umsetzung von TlCp mit zwei Äquivalenten *t*Bu₃SiNa in Gegenwart von Me₃SiCl

Auf 445 mg (1.65 mmol) TlCp und 735 mg (3.30 mmol) NaSi*t*Bu₃ werden 20 mL THF bei -196°C kondensiert. Die Reaktionsmischung wird 24 Stunden bei -78°C lichtgeschützt gerührt. Auf diese Lösung tropft man bei -78°C 0.15 mL Me₃SiCl (1.65 mL) in 5 mL THF. Man läßt die Reaktionsmischung auf Raumtemperatur kommen und rührt für weitere 5 Stunden bei dieser Temperatur. Nach Entfernen aller im ÖV flüchtigen Bestandteile, Aufnahme in 20 mL Pentan und Abfiltrieren aller unlöslichen Bestandteile, erhält man nach Abziehen des Lösungsmittels einen hellgelben Rückstand.

Die gemessenen NMR-Spektren zeigen die Bildung von Disupersilyl-trimetylsilyl-thallan (*t*Bu₃Si)₂Tl(SiMe₃).

¹ H-NMR (C_6D_6):	$\delta = 1.350 \text{ (d; } {}^{4}J(\text{H}, \text{Tl}) = 15.48 \text{ Hz; } \text{Sit}\underline{\text{Bu}}_{\underline{3}}; 54 \text{ H}; 0.266 \text{ (d; } {}^{4}J(\text{H}, \text{Tl}) = 15.95 \text{ (d; } {$
	Hz; Si <u>Me</u> ₃ 9 H)
²⁹ Si-NMR (C ₆ D ₆):	$\delta = 112.9 \text{ (d; } {}^{1}J({}^{29}\text{Si}, {}^{205}\text{Tl}) = 1235 \text{ Hz}, {}^{1}J({}^{29}\text{Si}, {}^{203}\text{Tl}) = 1224 \text{ Hz}; t\text{Bu}_{3}\underline{\text{Si}}); 8.66$
	(d, breit; ${}^{1}J(Si, Tl) = 114 \text{ Hz}; Si\underline{Me_3}$)

Ergebnis

Setzt man TlCp mit zwei Äquivalenten tBu_3SiNa bei -78°C in THF um, läßt sich mit Me_3SiCl entstehendes (tBu_3Si)₂TlNa als (tBu_3Si)₂Tl(SiMe_3) nachweisen.

Versuch 68 Umsetzung von TIN(SiMe₃)₂ mit *t*Bu₃SiNa in Pentan

Auf 272 mg (0.746 mmol) TlN(SiMe₃)₂ und 166 mg (0.746 mmol) NaSitBu₃ werden 30 mL Pentan bei -196°C kondensiert. Die Reaktionsmischung wird 72 Stunden bei -90°C lichtgeschützt gerührt. Nachdem die Reaktionsmischung langsam auf -30°C erwärmt wurde erhält man eine schwarzgrüne Lösung. Die NMR-Spektren zeigen bei dieser Temperatur neben der Bildung von $tBu_3Si-SitBu_3$, Na(SiMe₃)₂ auch eine

thalliumhaltigen Supersilylverbindung. Aufgrund des Aufspaltungsmusters im ²⁹Si-NMR handelt es sich um eine Spezies mit mehr als 2 Thalliumatomen:

²⁹Si-NMR (Pentan; -50°C):δ = 166.2 (m, *t*Bu₃Si)

Nach Entfernen von unlöslichen Bestandteilen, Einengen der Lösung auf ein Drittel, bilden sich bei -23°C nach 14 Tagen 35 mg (0.03 mmol, 24%) schwarzgrüne Kristalle. Laut Röntgenstrukturanalyse handelt es sich bei diesen Kristallen jedoch um (*t*Bu₃Si)₂Tl-Tl(Si*t*Bu₃)₂.

Ergebnis

Setzt man TlN(SiMe₃)₂ mit tBu_3SiNa bei -90°C in Pentan um, bildet sich auf dem Weg über eine mehrere Thalliumatome enthaltene Supersilylverbindung (Tl₆?) unter Thalliumabscheidung Tetrasupersilyldithallan.

Versuch 69 Umsetzung von (tBu₃Si)₂Tl—Tl(SitBu₃)₂ mit HBr

Auf eine Lösung von 100 mg (0.166 mmol) $(tBu_3Si)_2TI$ -TI(Si tBu_3)₂ in 0.6 mL [D8]THF kondensiert man 29 mg (0.358 mmol) HBr. Das abgeschmolzene NMR-Rohr wird lichtgeschützt bei -30°C stehengelassen, wobei sich die Lösung über drei Stunden langsam unter Abscheidung von elementarem Thallium Rot färbt. Laut NMR-Spektren hat sich neben tBu_3SiBr und tBu_3SiH eine supersilylierte Thalliumverbindung gebildet bei der es sich um (tBu_3Si)₄Tl₃Br handeln könnte (vergleiche mit Versuch 75).

¹**H-NMR** ([D8]THF); -30°C): $\delta = 1.322$ (d; J^{4} (H, Tl) = 8.37 Hz; Sit<u>Bu</u>₃)

²⁹Si-NMR ([D8]THF; -30°C): $\delta = 98.9 \text{ (d; } {}^{1}J({}^{29}\text{Si}, {}^{205}\text{Tl}) = 1451 \text{ Hz}, {}^{1}J({}^{29}\text{Si}, {}^{203}\text{Tl}) = 1438 \text{ Hz}; t\text{Bu}_{3}\underline{\text{Si}})$

Eine Aufarbeitung und weitere Charakterisierung war aufgrund der geringen Substanzmenge nicht möglich.

Versuch 70 Umsetzung von (tBu₃Si)₂TI—Tl(SitBu₃)₂ mit Br₂

Auf -78°C Lösung von 120 mg (0.09 mmol) (tBu_3Si_2TI -TI(Si tBu_3)₂ in 15 mL Pentan tropft man bei -78°C eine Lösung von 16 mg (0.100 mmol) Brom in 10 mL Pentan. Die dunkelgrüne Lösung entfärbt sich sofort. Laut NMR-Spektren hat sich ausschließlich tBu_3SiBr und TIBr gebildet.

Ergebnis

Setzt man (tBu₃Si)₄Tl₂ mit Brom um entsteht kein (tBu₃Si)₂TlBr, sondern lediglich tBu₃SiBr und TlBr.

Versuch 71 Umsetzung von (tBu₃Si)₂Tl—Tl(SitBu₃)₂ mit Ph₃CCl

Zu 98 mg (0.082 mmol) $(tBu_3Si)_2TI$ -Tl(Si tBu_3)₂ und 23 mg (0.083 mmol) Ph₃CCl kondensiert man bei -196°C 0.6 mL Pentan. Man erwärmt die Reaktionsmischung langsam auf Raumtemperatur, wobei sich die dunkelgrüne Lösung bei 0°C entfärbt. Laut NMR-Spektren hat sich ausschließlich tBu_3Si -Si tBu_3 und TlCl gebildet.

Ergebnis

Setzt man äquimolare Mengen (tBu_3Si_2TI -Tl(Si $tBu_3)_2$) mit Ph₃CCl um entsteht quantitativ das Disilan tBu_3Si -Si tBu_3 und TlCl.

Versuch 72 Umsetzung von TlCl₃ mit einem Äquivalent NaSit/Bu₃

Zu einer auf -78°C gekühlten Suspension von 238 mg (0.77 mmol) TlCl₃ in 15 mL THF wird 171 mg NaSi tBu_3 (THF)₂ in 5 mL THF getropft. Man erhält eine hellgelbe Lösung. Die bei -50°C gemessen NMR-Spektren zeigen die Bildung einer supersilylhaltigen Thalliumverbindung (tBu_3 SiTlCl₂(THF) ?):

²⁹Si-NMR (THF, -50°C): $\delta = 62.2$ (d; ¹J(²⁹Si, ²⁰⁵Tl) = 516.7 Hz, ¹J(²⁹Si, ²⁰³Tl) = 513.6 Hz; *t*Bu₃Si)

Die hellgelbe Lösung wird im Zuge des Erwärmens auf Raumtemperatur farblos. Es ist keine Thalliumabscheidung zu beobachten. Eine nach Austausch des Lösungsmittels gegen C_6D_6 gemessene Probe zeigt im ¹H, ¹³C, ²⁹Si-NMR Spektrum die Bildung von *t*Bu₃SiCl. Es läßt sich in Lösung keine Supersilylhaltige Thalliumverbindung mehr nachweisen. Auf eine Aufarbeitung wurde verzichtet.

Ergebnis

Setzt man Thallium(III)chlorid mit einem Äquivalent NaSi*t*Bu₃ in THF um, bildet sich über eine thalliumhaltige Supersilylverbindung TlCl und *t*Bu₃SiCl.

Versuch 73 Umsetzung von TlCl₃ mit einem Äquivalent NaSi/Bu₃ in Gegenwart von LiPh

Zu einer auf -78°C gekühlten Suspension von 540 mg (1.75 mmol) TlCl₃ in 20 mL THF wird 389 mg (1.75 mmol) NaSi*t*Bu₃ in 5 mL THF getropft. Man erhält eine hellgelbe Lösung. Zu dieser Lösung tropft man bei -78°C 3.5 mmol PhLi in Cyclohexan/Diethylether (70:30). Es fällt ein schwarzer Niederschlag aus.

Die nach Erwärmen auf Raumtemperatur hellgelbe Lösung enthält nach Austausch des Lösungsmittels gegen C_6D_6 im ¹H, ¹³C, ²⁹Si-NMR Spektrum *t*Bu₃SiCl neben (*t*Bu₃Si)TlPh₂:

¹ H-NMR (C_6D_6):	$\delta = 1.120$ (breit; <u><i>t</i>Bu</u> ₃ Si-Tl; 27 H); 7.45 (m; m-Ph; 4 H); 7.18 (m; o/p-Ph; 6 H)
¹³ C-NMR (C ₆ D ₆):	$\delta = 32.77$ (breit; <u>Me₃C</u>); 28.45 (breit; Me ₃ <u>C</u>); 141.70 (i-Ph); 129.00 (o-Ph);
	127.50 (p-Ph); 127.41 (m-Ph)

²⁹Si-NMR (C_6D_6): nicht beobachtbar

Auf eine Aufarbeitung wurde verzichtet.

Ergebnis

Setzt man Thallium(III)chlorid mit einem Äquivalent NaSi tBu_3 in THF um, läßt sich bei -78°C entstehendes (tBu_3Si)TlCl₂ mit PhLi als Supersilyl-diphenylthallan (tBu_3Si)TlPh₂ abfangen.

Versuch 74 Umsetzung von TICl₃ mit zwei Äquivalenten NaSit/Bu₃

Zu einer auf -78°C gekühlten Suspension von 170 mg (0.545 mmol) TlCl₃ in 10 mL THF wird 243 mg (1.09 mmol) NaSi*t*Bu₃ in 5 mL THF getropft. Man erhält eine gelbe Lösung. Die Lösung wird im Zuge des Erwärmens auf Raumtemperatur farblos. Es ist keine Thalliumabscheidung zu beobachten. Eine nach Austausch des Lösungsmittels gegen C_6D_6 gemessene Probe zeigt im ¹H, ¹³C, ²⁹Si-NMR Spektrum die Bildung von *t*Bu₃SiCl und *t*Bu₃Si–Si*t*Bu₃. Es läßt sich in Lösung keine supersilylhaltige Thalliumverbindung nachweisen. Auf eine Aufarbeitung wurde verzichtet.

Ergebnis

Setzt man Thallium(III)chlorid mit zwei Äquivalenten NaSi tBu_3 in THF bei -78°C um, bildet sich im Zuge des Erwärmens auf Raumtemperatur über eine thalliumhaltige Supersilylverbindung TlCl und tBu_3 SiCl.

Versuch 75 Darstellung von (tBu₃Si)₄Tl₃Cl und (tBu₃Si)₆Tl₆Cl₂

Eine Lösung von 2513 mg (11.3 mmol) NaSi*t*Bu₃ in 25 mL THF wird zu einer auf -78°C gekühlten Lösung von 1743 mg (5.6 mmol) NaSi*t*Bu₃ in 50 mL THF getropft, wobei sich die Reaktionslösung über gelb innerhalb von Stunden eine rotbraune Farbe annimmt. Das Reaktionsgemisch wird 20 Stunden bei -78°C gerührt. Alle unlöslichen Bestandteile (dunkelbraune Farbe) werden dann in der Kälte (-78°C) abfil-

triert. Die erhaltene THF-Lösung wird auf die Hälfte eingeengt. Anschließend wird die THF-Lösung mehrere Monate bei -25°C aufbewahrt. Nach 6 Monaten bilden sich bei -25°C 350 mg (0.24 mmol, 13%) rote Kristalle der Zusammensetzung ($tBu_3Si_4Tl_3Cl$.

Eine nach Austausch des Lösungsmittels gegen C_6D_6 gemessene Probe der roten THF-Lösung zeigt zunächst neben wenig gebildetem $(tBu_3Si)_4Tl_3Cl$ und tBu_3SiCl noch eine unbekannte Verbindung (¹H (C_6D_6) : 1.36 (d; ⁴*J*(H,Tl) = 3.74 Hz; ²⁹Si (C_6D_6) : 97.1 (d; ¹*J* (²⁹Si, ²⁰³Tl) = 1447 Hz, ¹*J* (²⁹Si, ²⁰⁵Tl) = 1441 Hz). Nach einigen Wochen ergeben sich folgende Signale im ¹H-NMR Spektrum:

¹**H-NMR** (C_6D_6): $\delta = 1.120 (tBu_3SiCl)$; 1.395, 1.410 (($tBu_3Si_4Tl_3Cl$) im Verhältnis 10 : 4 : 4.

Charakterisierung:

(tBu₃Si)₄Tl₃Cl

1,2,2,3-Tetrakis(tri-tert-b	utylsi-	$C_{48}H_{108}ClSi_4Tl_3$ ($M_r = 1446.33$)	
lyl)-4-chlora-thaletan		rote Quader;	
Chlortetrasupersilyltritha	llan	sehr oxidations- und hydrolyseempfindlich;	
		lichtempfindlich;	
		temperaturempfindlich; nur unterhalb von	
		-25°C haltbar;	
		zersetzt sich bei Raumtemperatur innerhalb	
		von Stunden unter <i>t</i> Bu ₃ SiCl-Eliminierung.	
¹ H-NMR (C ₆ D ₆):	δ = 1.410, 1.395 (breit; 54 H ($t\underline{Bu}_3Si$) ₂ Tl-, 54 H $t\underline{Bu}_3Si$ -Tl) [†]	
¹³ C-NMR (C ₆ D ₆):	δ = 33.89, 33.70/	23.70, 23.10 $(t\underline{Bu}_3Si)_2Tl$ -, 54 H $t\underline{Bu}_3Si$ -Tl)	
²⁹ Si-NMR (C_6D_6):	$\delta = 100.2$ (d; ¹ J(²)	²⁹ Si, ²⁰⁵ Tl) = 1455 Hz, ¹ $J(^{29}Si, ^{203}Tl) = 1450$	Hz; <i>t</i> Bu <u>3Si</u>);
	99.1 (d; ¹ <i>J</i> (²⁹ Si, ²	05 Tl) = 1436 Hz, $^{1}J(^{29}$ Si, 203 Tl) = 1431 Hz; <i>t</i> Bu	<u>3Si</u>)

Röntgenstrukturanalyse:

siehe Kapitel 4.2.4

Der oben erhaltene, dunkelbraune in THF unlösliche Rückstand wird mit 30 mL auf -78°C gekühltem Toluol extrahiert. Die so erhaltene, schwarzbraune Toluollösung wird bei -25°C aufbewahrt. Aus dieser

^{†.} Die ⁴J (H, Tl) bzw ³J (C, Tl) konnte aufgrund der starken Signalbreite nicht gemessen werden.

Lösung scheiden sich nach 6 Monaten 500 mg Kristalle (0.20 mmol, 21%) der Zusammensetzung (*t*Bu₃Si)₆Tl₆Cl₂ ab.

¹**H-NMR** (Toluol[D8]): $\delta = 1.393$ (breit, $t\underline{Bu}_3Si$), 1.371 (d; ⁴J(H, Tl) = 1.33 Hz; $t\underline{Bu}_3Si$)

¹³C-NMR (Toluol[D8]): nicht beobachtbar

²⁹Si-NMR (Toluol[D8]): nicht beobachtbar

Charakterisierung:

$(tBu_3Si)_6Tl_6Cl_2$	
2,4,5,6,7,8-Hexakis(tri-tert-butylsilyl)-tetra	ı-
cyclo [4.2.0 ^{1,6} .0 ^{3,6} .0 ^{2,7}]-1,3-dichlorathalo-	
can	
Dichlorhexasupersilylhexathallan	

 $C_{72}H_{162}Cl_2Si_6Tl_6$ ($M_r = 2493.80$) schwarze Quader; sehr oxidations- und hydrolyseempfindlich; lichtempfindlich.

Röntgenstrukturanalyse:

siehe Kapitel 4.2.5

Ergebnis

Setzt man TlCl₃ mit zwei Äquivalenten tBu_3SiNa in THF bei -78°C erhält man nicht die zweifach supersilylierte Verbindung (tBu_3Si)₂TlCl sondern das in THF gut lösliche Chlortetrasupersilyltrithallan (tBu_3Si)₄Tl₃Cl neben dem schwer löslichen in Toluol extrahierbarem Dichlorhexasupersilylhexathallan (tBu_3Si)₆Tl₆Cl₂.

Versuch 76 Darstellung von (tBu₃Si)₂TlCl

Zu einer auf -78°C gekühlten Lösung von 520 mg (1.67 mmol) TlCl₃ in 20 mL THF wird 1117 mg (5.02 mmol) NaSitBu₃ in 10 mL THF getropft, wobei die Reaktionslösung eine dunkelgrüne Farbe annimmt. Nachdem die Reaktionsmischung für 4 Stunden bei dieser Temperatur gerührt wurde, tropft man bei -78°C 0.3 mL (3.31 mmol) Me₃SiCl in 5 mL THF. Die Lösung verändert dabei ihre Farbe nicht sichtbar. Im Zuge des Erwärmens auf Raumtemperatur ändert sich jedoch die Farbe über Rot nach Gelb. Eine nach Austausch des Lösungsmittels gegen C₆D₆ gemessene Probe zeigt im ¹H, ¹³C, ²⁹Si-NMR Spektrum die Bildung von (*t*Bu₃Si)₂TlCl neben *t*Bu₃SiCl und *t*Bu₃Si–SiMe₃.

Nach sofortigem Abziehen aller flüchtigen Bestandteile im ÖV, Aufnahme der Produkte in 40mL Pentan, Abfiltrieren unlöslicher Anteile (NaCl) und Einengen des Filtrats auf 15 mL, kristallisiert aus der Lösung bei -23°C 1.12 g (1.09 mmol; 41%) (*t*Bu₃Si)₂TlCl in Form von gelben Platten aus.

Charakterisierung:

(tBu₃Si)₂TlCl

Di(tri-tert-butylsilyl)thalliumchlorid	$C_{24}H_{54}ClSi_2Tl (M_r = 638.70)$	
(Disupersilylthalliumchlorid)	gelbe Platten;	
	oxidations- und hydrolyseempfindlich;	
	lichtempfindlich;	
	zersetzt sich bei Raumtemperatur in Lösung	
	innerhalb von einigen Tagen (siehe Anmer-	
	kung 2)	
¹ H-NMR (C ₆ D ₆): $\delta = 1.319$ (breit, (<i>t</i> <u>H</u>	<u>Bu</u> ₃ Si) ₂ TlCl)	

²⁹Si-NMR (C₆D₆): nicht beobachtbar

¹³C-NMR (C₆D₆): $\delta = 32.75$ (breites d, ; ³*J*(C, Tl) = 55.2 Hz; <u>Me</u>₃C); 28.35 (sehr breites Signal[†]; Me_3C)

MS (EI, 70 eV, m/z > 199): m/z: 603 (67) [M-Cl⁺], 581 (22) [M-C₄H₉⁺], 405 (90) [M-SiC₁₂H₂₇⁺], 205 (100) [Tl⁺]

Röntgenstrukturanalyse:

Siehe Kapitel 4.2.3

Anmerkung 1:

TICl₃ reagiert mit zwei Äquivalenten NaSitBu₃ in THF in Abwesenheit von Me₃SiCl zu Chlortetrasupersilyltrithallan (tBu_3Si)₄Tl₃Cl und Dichlorhexasupersilylhexathallan (tBu_3Si)₆Tl₆Cl₂ (siehe Versuch 75).

Aufgrund des sehr breiten Signals kann keine ²J(C, Tl)- Kopplung angegeben werden. Die breiten Signale sind möglicherweise ein Hinweis auf einen in Lösung herrschenden dynamischen Prozeβ (siehe auch Anmerkung 2)

Anmerkung 2: Thermolyse von (*t*Bu₃Si)₂TlCl

Beläßt man eine Lösung von 45 mg (0.07 mmol) (tBu_3Si_2TICI in 0.5 mL C₆D₆ bei Raumtemperatur lichtgeschützt stehen beobachtet man, daß die zunächst gelbe Lösung innerhalb von 4 Stunden rotbraun wird. Laut den gemessenen ¹H-NMR-Spektren kann die Bildung von tBu_3SiCI und Chlortetrasupersilyltrithallan ($tBu_3Si_4TI_3CI$ als lösliche Bestandteile nachgewiesen werden. Das dabei entstehende Chlortetrasupersilyltrithallan ($tBu_3Si_4TI_3CI$ ist seinerseits bei Raumtemperatur in Lösung instabil und zerfällt unter $tBu_3SiCI-Abspaltung$. Innerhalb von zwei Wochen hat sich bei Raumtemperatur alles (tBu_3Si_2TICI unter Bildung eines schwarzen Niederschlags zersetzt.

Wird die nunmehr farblose Reaktionslösung mit dem Niederschlag auf 100°C erwärmt, kann in den gemessenen NMR-Spektren die Bildung von tBu_3SiD nachgewiesen werden. Dies ist ein Hinweis darauf, daß der beim Zerfall des $(tBu_3Si)_2TICI$ entstehende schwarze Niederschlag noch Supersilylgruppen enthält. Möglicherweise liegt das bei dem Zerfall gebildete Supersilylthallium(I) als unlösliches Hexamer $(tBu_3SiTI)_6$ vor, welches unter thermischer Einwirkung in elementares Thallium und Supersilylradikalen zerfällt.

Anmerkung 3: Umsetzung von (tBu₃Si)₄Tl₂ mit Me₃SiCl

Zu einer auf -78°C gekühlten Lösung von 113 mg (0.093 mmol) (tBu_3Si)₂Tl-Tl(Si tBu_3)₂ in 5 mL THF tropft man 0.05 mL (0.55 mmol) Me₃SiCl. Die Reaktionsmischung wird auf Raumtemperatur erwärmt und weitere 5 Stunden bei dieser Temperatur lichtgeschützt gerührt. Ein nach Austausch des Lösungsmittels gegen C₆D₆ gemessenes ¹H-, ¹³C, ²⁹Si-NMR-Spektrum zeigt, das sich das Tetrasupersilyldithallan (tBu_3Si)₄Tl₂ mit Me₃SiCl nicht zu Disupersilylthalliumchlorid umgesetzt hat.

Ergebnis

Setzt man Thallium(III)chlorid mit drei Äquivalenten NaSi tBu_3 in THF bei -78°C um, bildet sich in Anwesenheit von Me₃SiCl das Disupersilylthalliumchlorid (tBu_3Si_2TlCl neben tBu_3Si -SiMe₃.

Versuch 77 Umsetzung von (tBu₃Si)₂TlCl mit AlCl₃ in CD₂Cl₂

Zu einer auf Lösung von 45 mg (0.07 mmol) (tBu_3Si)₂TlCl in 0.6 mL CD₂Cl₂ gibt man bei Raumtemperatur 9 mg (0.07 mmol) AlCl₃. Die zunächst gelbe Lösung nimmt dabei eine intensiv gelb gefärbt Farbe an. Laut den sofort gemessenen NMR Spektren hat sich dabei Disupersilylthallonium-tetrachloroaluminat gebildet, welches bisher noch nicht in Kristallen erhalten werden konnte, die sich für eine Röntgenstrukturanalyse geeignet hätten.

Charakterisierung:

$(tBu_3Si)_2Tl^+AlCl_4^-?$			
Di(tri-tert-butylsilyl)thallyl-tetrachlorogallat		$C_{24}H_{54}AlCl_4Si_2Tl (M_r = 772.04)$	
(Disupersilylthallonium-tetrachloroaluminat)		oxidations- und hydrolyseempfindlich;	
		äußerst lichtempfindlich;	
		in Pentan und Toluol nicht beständig	
¹ H-NMR (CD ₂ Cl ₂):	$\delta = 1.40$ (breit, $(t\underline{Bu}_3Si)_2$	Tl ⁺)	
²⁹ Si-NMR (CD ₂ Cl ₂):	nicht beobachtbar		

¹³C-NMR (CD₂Cl₂): $\delta = 33.25; 2735$ (jeweils sehr breit; $6C\underline{Me_3}/6\underline{C}Me_3$)

²⁷Al-NMR (CD₂Cl₂): $\delta = 101.1$ (AlCl₄⁻; Halbwertsbreite 140 Hz)

Ergebnis

Bei der Umsetzung von $(tBu_3Si)_2$ TICl mit einem Äquivalent AlCl₃ in Methylenchlorid entsteht eine intensiv gelb gefärbte Verbindung, welche in unpolaren Lösungsmitteln wie Pentan oder Benzol nicht beständigist. Es könnte sich um ein Addukt $(tBu_3Si)_2$ Tl⁺Al₄⁻ handeln.

Versuch 78 Umsetzung von TICl₃ mit drei Äquivalenten tBu₃SiNa

Zu einer auf -78°C gekühlten Lösung von 584 mg (1.88 mmol) TlCl₃ in 20 mL THF wird 1255 mg (5.64 mmol) NaSitBu₃ in 10 mL THF getropft. Man erhält dabei eine dunkelgrüne Lösung. Die Reaktionsmischung wird 20 Stunden bei -78°C lichtgeschützt gerührt. Nachdem die Reaktionsmischung langsam auf Raumtemperatur erwärmt wurde erhält man eine schwarzgrüne Lösung über schwarzem Niederschlag. Die Lösung enthält laut einem sofort aufgenommenen im ²⁹Si-NMR die gleiche supersilylierte thalliumhaltige Spezies, die sich bei der Umsetzung von TlN(SiMe₃)₂ mit einem Äquivalent tBu₃SiNa (siehe Versuch 68 auf Seite 180) gebildet hat.

²⁹Si-NMR (THF): $\delta = 166.2 \text{ (m, } t\text{Bu}_3\underline{\text{Si}})$

Nach Entfernen von unlöslichen Bestandteilen, Einengen der Lösung auf ein Drittel, bilden sich bei -23°C nach 14 Tagen 35 mg (0.03 mmol, 24%) schwarzgrüne Kristalle. Laut Röntgenstrukturanalyse handelt es sich bei diesen Kristallen jedoch um (tBu_3Si_2TI -TI($SitBu_3)_2$. Die Lösung weist nach Austausch des Lösungsmittels gegen C₆D₆ im ¹H, ¹³C, ²⁹Si-NMR Spektrum zudem die Bildung von tBu_3SiCI auf.

Setzt man Thallium(III)chlorid mit drei Äquivalenten NaSi*t*Bu₃ in THF bei -78°C um, bildet sich im Zuge des Erwärmens auf Raumtemperatur als einzige thalliumhaltige Verbindung das Dithallan (*t*Bu₃Si)₂Tl-Tl(Si*t*Bu₃)₂.

Versuch 79 Umsetzung von (tBu₃Si)₂Tl—Tl(SitBu₃)₂ mit Selen

107 mg (0.090 mmol) $(tBu_3Si)_2TI$ -TI(Si tBu_3)₂ werden mit 14 mg (0.178 mmol) Selen in 5 mL Pentan lichtgeschützt 8 Stunden bei -30°C gerührt. Laut NMR-Spektren (Pentan) hat sich dabei alles Dithallan umgesetzt und die nunmehrt rote Lösung enthält dann neben tBu_3Si -Si tBu_3 und tBu_3SiH noch eine Thalliumverbindung, welche sich jedoch selbst bei -25°C innerhalb von Stunden zersetzt.

²⁹Si-NMR (Pentan): $\delta = 88.56 (tBu_3Si)$ ⁷⁹Se-NMR (Pentan): $\delta = 498.3$

Versuch 80 Darstellung von (tBu₂PhSi)₂TI-TI(SiPhtBu₂)₂

Zu einer auf -110°C gekühlten Suspension von 225 mg TlBr (0.790 mmol) in 10 mL THF wird 192 mg (0.790 mmol) $tBu_2PhSiNa$ gelöst in 10 mL THF getropft. Die Reaktionsmischung wird lichtgeschützt 12 h bei -90°C gerührt und anschließend langsam innerhalb von 12 h auf Raumtemperatur erwärmt, wobei die Reaktionslösung eine schwarzblaue Farbe annimmt. Eine nach Austausch des Lösungsmittels gegen C₆D₆ gemessene Probe zeigt die Bildung von $tBu_2PhSi-SiPhtBu_2$ neben einer silylhaltigen Thalliumverbindung:

¹**H-NMR** (C_6D_6/C_6D_{12}): 1.290 (breit; ($tBu_2PhSi_2Tl-Tl(SiPhtBu_2)_2$); 7.814 (m; m-Ph); 7.528 (m; o/p-Ph)

¹³C-NMR (C₆D₆): $\delta = 32.50$ (breit; <u>Me₃C</u>); 27.00 (breit; Me₃<u>C</u>); 137.65 (i-Ph); 136.99 (o-Ph); 135.90 (p-Ph); 128.62 (m-Ph)

²⁹Si-NMR (C₆D₆/C₆D₁₂):
$$\delta = 103.7 / 102.1$$
 (d; ¹J(²⁹Si, ²⁰⁵Tl) = 982 Hz, ¹J(²⁹Si, ²⁰³Tl) = 973 Hz;
tBu₂PhSi)[†]

^{†.} Das lediglich nur die ${}^{1}J_{\text{Si-TI}}$ -Kopplung sichtbar ist, kann möglicherweise dadurch erklärt werden, daß (tBu_2PhSi)₄Tl₂ nicht als Dithallan in Lösung vorliegt. Es läßt sich zwar ESR-spektroskopisch eine radikalische Spezies nachweisen, jedoch ist die Zuordnung zu (tBu_2PhSi)₂Tl[•] nicht eindeutig. Ein bei -40°C in THF aufgenommenes ${}^{29}Si$ -NMR zeigt ein weiter aufgelöstes Spektrum, wobei die Signale weiter aufspallten, Die so erhaltene Kopplungskonstante beträgt ${}^{3}J_{\text{Si-TI}} = 6.5$ Hz.

Nachdem Abtrennen aller unlöslichen Bestandteile (NaBr) bilden sich bei -23°C nach 7 Tagen 151 mg (0.117 mmol, 94%) dunkelblaue oktaederförmige Kristalle, welche sich nach röntgenstrukturanalytischen Methoden um das Dithallan (*t*Bu₂PhSi)₂Tl–Tl(SiPh*t*Bu₂)₂ handeln.

Charakterisierung:

 $(tBu_2PhSi)_2Tl - Tl(SiPhtBu_2)_2$

Tetrakis(di-*tert*-butylsilyl-phenyl)dithallium (Tl-Tl) $C_{56}H_{92}Si_4Tl_2$ ($M_r = 1286.46$) schwarzblaue Oktaeder lichtempfindlich; Zers. ab 125°C

UV/Vis (Heptan): $\lambda = 591$ nm

Röntgenstrukturanalyse:

siehe Kapitel 4.1.3

Ergebnis

Setz man TlBr mit *t*Bu₂PhSiNa in THF bei -90°C um, bildet sich unter Disproportionierung das Dithallan (*t*Bu₂PhSi)₂Tl–Tl(Si*t*Bu₂Ph) und elementares Thallium.

Versuch 81 Umsetzung von (tBu2PhSi)2TI— Tl(SiPhtBu2)2 mit Ph3CCl

Zu 26 mg (0.020 mmol) (tBu_2PhSi)₂Tl–Tl(SiPh tBu_2)₂ und 10 mg (0.036 mmol) Ph₃CCl kondensiert man bei -196°C 0.6 mL C₆D₁₂. Man erwärmt die Reaktionsmischung langsam auf Raumtemperatur, wobei sich die dunkelblaue Lösung nach 10 min bei Raumtemperatur langsam entfärbt. Laut NMR-Spektren hat sich ausschließlich $tBu_2PhSi-SiPhtBu_2$ und TlCl gebildet.

Ergebnis

Setzt man äquimolare Mengen $(tBu_2PhSi)_2TI-TI(SiPhtBu_2)_2$ mit Ph₃CCl um entsteht quantitativ das Disilan $tBu_2PhSi-SiPhtBu_2$ und TICl.

Versuch 82 Thermolyse von (tBu₂PhSi)₂Tl— Tl(SiPhtBu₂)₂

136 mg (0.113 mmol) (tBu_2PhSi)₂TI-TI(SiPh tBu_2)₂ werden in 0.6 mL C₆D₁₂ 72 h auf 60°C erwärmt. Da laut NMR-Spektren keine Thermolyseprodukte entstanden sind, wird die Probe auf 106°C erwärmt, wobei sich nach 24 Stunden metallisches Thallium an der Glaswand abscheidet. Nach 48 Stunden enthält die Lösung laut ¹H- ¹³C- ²⁹Si- NMR-Spektren (C₆D₁₂) dann neben Spuren von unzersetztem (tBu_2PhSi)₄Tl₂ noch tBu_2PhSi D.

Ergebnis

Tetrakis(di-*tert*-butylsilyl-phenyl)dithallium (TI-TI) erweist sich als merklich thermolysestabil und bildet unter diesen Bedingungen keinen Polyeder wie Tetrakis(tri-*tert*-butylsilyl)diindium (In-In).

Versuch 83 Umsetzung von TIBr mit (tBu₃Si)₂MeSiNa in THF

Zu 409 mg (0.880 mmol) $(tBu_3Si)_2MeSiNa$ und 250 mg (0.879 mmol) $(tBu_3Si)_2MeSiNa$ werden bei -196°C 20 mL THF kondensiert. Nachdem die Reaktionsmischung 4 Stunden bei -120°C und 48 Stunden bei -78°C gerührt wurde erhält man eine dunkelbraune Lösung die sich ab -50°C unter Abscheidung von metallischem Thallium entfärbt. Laut NMR-Spektren (C₆D₆) enthält die Lösung dann ausschließlich Zersetzungsprodukte der Schutzgruppe (*t*Bu_3Si)_2MeSi-. Aus diesem Grund wurde auf eine Aufarbeitung verzichtet.

Ergebnis

TlBr reagiert mit einem Äquivalent (tBu_3Si)₂MeSiNa zu einer nicht näher charakterisierbaren Verbindung, welche sich bereits ab -50°C zersetzt.

D Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit dem Aufbau sowie Abbau von Clusterverbindungen $R_m E_n$, aus Borhomologen E, also von polyedrischen Verbindungen aus den schweren Trielen Aluminium bis Thallium. Sie stellen ausgeprägte Elektronenmangelverbindungen dar.

Triel- Clusterverbindungen sind nach meinen Ergebnissen zum einen durch *Reduktion* (Enthalogenierung) unterschiedlich substituierter Triel(III)-halogenide $R_{3-m}EHal_m$, zum anderen durch *Substitution* von Halogen oder Pentamethylcyclopentadienyl in EX oder Cp*E zugänglich (für E = Al, Ga erhält man EX erst nach Tieftemperaturkokondensation von – bei höheren Temperaturen erzeugten – EX- Molekülen mit geeigneten Donoren). Dabei kann der Clusterbau und die Clustergröße durch die räumliche Ausdehnung der Substituenten, durch Wahl der drei- bzw. einwertigen Trielkomponenten sowie durch die gewählten Reaktionsbedingungen (Temperatur, donorhaltiges oder -freies Reaktionsmedium) gesteuert werden. Andererseits muß die thermodynamisch begünstigte Disproportionierung niedrigwertiger Trielverbindungen R_mE_n in elementares E sowie R_3E bzw. R_2 durch sterisch überladene Substituenten R gehemmt werden. Genutzt wurde von mir hauptsächlich die Tri-*tert*-butylsilyl- (Supersilyl-) Gruppe:

Supersilyl = $SitBu_3$ = R^*

Neben der SitBu₃- Gruppe kamen in einigen Fällen die geringer oder mehr überladene tBu₂PhSi- bzw. (tBu₃Si)₂MesSi- Gruppe zum Einsatz.

REX_2 , R_2EX , R_3E ($R = R^*$, $SitBu_2Ph$; X = Halogen)

Durch Umsetzungen von EX_3 mit NaR (E = Al, Ga, In; R = SitBu₃ und SitBu₂Ph), von R*₂AlCl mit F, von R*₄Al₂ mit I₂ sowie von TlCl₃ mit NaR* (in letzterem Falle Zugabe von Me₃SiCl) konnten folgende Trielhalogenide REX₂ und R₂EX (donorhaltig oder donorfrei) sowie Trielane (*t*Bu₂PhSi)₃E dargestellt werden:

E	R	REX ₂	REX ₂ •D	R ₂ EX	R ₃ E
Al	R*	$R*AlX_2 (X = Cl, Br)$	$R*AlX_2(NEtMe_2) (X = Br, I)$	$R_2^*AlX (X = F, Cl, Br, I)$	_
	SitBu ₂ Ph	(tBu ₂ PhSi)AlCl ₂	_	_	(tBu ₂ PhSi) ₃ Al
Ga	R*	_	R*GaCl ₂ (Pyridin)	_	_
	SitBu ₂ Ph	(tBu ₂ PhSi)GaCl ₂	(<i>t</i> Bu ₂ PhSi)GaCl ₂ (THF)	_	(tBu ₂ PhSi) ₃ Ga
Tl	R*	_	R*TlCl ₂ (THF)	R*2TlCl	

Der Bau folgender Verbindungen wurde röntgenstrukturanalytisch geklärt:

$R_{4}^{*}Al_{2}, R_{3}^{*}E_{2}^{\bullet}, R_{3}^{*}Ga_{2}^{-}, R_{4}^{*}E_{3}^{\bullet}, R_{4}^{*}Ga_{3}^{-}, R_{4}^{*}Ga_{4}^{2-}, R_{4}^{*}E_{2}(E = AI, Ga)$

Die Synthesen von Al- und Ga- Clusterverbindungen gibt Schema 1 wieder. Die Trihalogenide AlX₃ und GaX₃ reagieren mit NaR* in Heptan bei Raumtemperatur auf dem Wege über isolierbare Halogenide R*EX₂ und R*₂EX und nicht isolierbares Alanyl bzw. Gallanyl R*₂E[•] zu den Ditrielanen R*₂E–ER*₂, welche unter Eliminierung von R* bei 80°C (Al) bzw. niedriger Temperatur (Ga) in Dialanyl bzw. Digallanyl R*₃E₂[•] übergehen (R*₄Ga₂ konnte wegen seiner Zersetzlichkeit bisher nicht isoliert werden). Im Zuge seiner Bildung verwandelt sich das Radikal R*₃Al₂[•] unter R*-Abspaltung in Cyclotrialanyl R*₄Al₃[•] und *tetrahedro*-Tetraalan R*₄Al₄, wogegen R*₃Ga₂[•] bei höheren Temperaturen unter Eliminierung von R* ausschließlich in *tetrahedro*-Tetragallan R*₄Ga₄ übergeht. Das Radikal R*₃Ga₂[•] läßt sich durch NaR* zum Digallanid R*₃Ga₂⁻ reduzieren (isoliert als NaGa₂R*₃•3THF; mit Me₃SiCl in R*₃Ga₂(SiMe₃) überführbar und so als erstes Tetrasilyldigallan isolierbar), welches sich seinerseits in Anwesenheit von 18-Krone-6 zum Trigallanid R*₄Ga₃⁻ (isoliert mit Na(18-Krone-6)(THF)₂⁺ als Gegenion) umwandelt. Die Oxidation von R*₄Ga₃⁻ führt zum Cyclotrigallanyl R*₄Ga₃[•] (mit NaC₁₀H₈ zu R*₄Ga₃⁻ reduzierbar). Letzteres Radikal, das sich – wohl auf dem Wege über R*₃Ga₂[•] – auch durch Oxidation von R*₃Ga₂⁻ mit R*Br bildet, sowie das Cyclotrialanyl R*₄Al₃[•] thermolysieren auf dem Wege über R*₃E₂[•] letztendlich zu den Tetrahedranen R*₄E₄. Unter ihnen setzt sich R*₄Ga₄ mit Na bei 100°C in Anwesenheit von THF zum Tetragallandiid R*₄Ga₄⁻² um

(isoliert als $Na_2Ga_4R_4^*$ •2THF), das auch aus R^*GaCl_2 (THF) und Na in Heptan zugänglich und leicht zum Tetrahedran $R_4^*Ga_4$ oxidierbar ist.

Schema 1. Aluminium- und Gallium-Clusterverbindungen durch Reaktion von AlX₃ und GaX₃ (X = Cl, Br, I) mit NaR* (Gleichungen zum Teil nicht vollständig formuliert; R*- Radikale dimerisieren zu (R*)₂ oder reagieren – bei höheren Temperaturen – zu R*H).

Die Strukturen aller erwähnten Al- und Ga-Clusterverbindungen konnten geklärt werden. Sie sind in Schema 2 wiedergegeben. Es seien einige Strukturbesonderheiten der Verbindungen – einschließlich R*₄In₂ und $R_4^*Tl_2$ – wiedergegeben: In den Ditrielanen $R_4^*Al_2$, $R_4^*In_2$ und $R_4^*Tl_2$ stehen die Si₂E- Ebenen orthogonal zueinander (tatsächlich streben Ditrielane R₄E₂ einen planaren Bau an). Die Verbindung R*₄Al₂ weist die längste Al-Al- Bindung bisher untersuchter Dialane auf. Die Ditrielyle R*3Al2 und R*3Ga2 enthalten ein fast planeres Si2EE-Gerüst mit einer nahezu linearen EESi-Gruppe und einem kurzen, für eine EE-Bindung der Ordnung 1.5 sprechenden EE-Abstand: R*2E – ER* (laut ESR besetzt das Radikalelektron ein π -MO). Der Übergang von R*₃Ga₂[•] zum Digallanid R*₃Ga₂⁻ in NaGa₂R*₃•3THF ist mit einer GaGa- Bindungsverkürzung verbunden: [R*2Ga=GaR*]⁻. Die drei Trielatome besetzen in den Cyclotritrielylen R*4Al3 und R*4Ga3 die Ecken eines Dreiecks, wobei die R*E-ER*- Basis im ersteren Falle kürzer, im letzteren Falle länger als die der R*2E-ER*- Seiten ist. Der Sachverhalt kann damit erklärt werden, daß $R_{4}^{*}E_{3}^{\bullet}$ aus acyclischen Vorstufen $[R_{2}^{*}E^{-}R_{2}^{*}E^{\bullet}ER_{3}^{*}]$ hervorgeht, wobei die Cyclisierung teilweise (E = Al) bzw. vollständig (E = Ga) erfolgt. Im Trigallanid $[R*_2E-R*E-ER*]^-$, dem dritten Glied der homologen Reihe $R_{2}^{*}Ga^{-}$, $R_{3}^{*}Ga_{2}^{-}$ (s. oben), $R_{4}^{*}Ga_{3}^{-}$, $R_{4}^{*}Ga_{4}^{2-}$ (s. unten) (neutrale ,,Muttersubstanzen" der Gallanide GaH₃, Ga₂H₄, Ga₃H₅, Ga₄H₆), kontaktiert ein Supersilylrest der R*₂Ga-Gruppe das negativ geladene Ga-Atom und beansprucht dessen freies Elektronenpaar so stark, daß es nicht mehr für eine π - Rückkoordination zur Verfügung steht (das Anion weist nur GaGa-Einfachbindungen auf). Zentrales Strukturelement des sich als 2n-Aromat beschreiben läßt. Betrachtet man Na2Ga4 als Clustereinheit der Verbindung $Na_2Ga_4R_4^*$ •2THF mit insgesamt 10 = 2n - 2 Clusterelektronen (n = Clusteratomanzahl), so wäre der Bau gemäß den Wade-Mingos-Regeln als zweifach mit Na überkapptes Ga₄-Tetraeder zu beschreiben. In den Tetrahedranen R*₄Al₄ und R*₄Ga₄ besetzen die Trielatome die Ecken eines regulären Tetraeders, worin je drei an den Ecken eines gleichseitigen Dreiecks lokalisierte Trielatome durch 2 Elektronen verknüpft werden.

Die beschriebenen Cluster aus Trielatomen weisen kräftige *Farben* auf. Herausgegriffen seien die Ditrielane $R_{4}^{*}E_{2}$, deren Farbe sich mit wachsender Ordnungszahl des Elements E bathochrom vertieft. So weist das rubinrote Tetrasupersilyldialan eine UV/Vis-Absorption bei 525 nm, das violette Diindan $R_{4}^{*}In_{2}$ bzw. Dithallan $R_{4}^{*}Tl_{2}$ solche bei 560 nm bzw. 628 nm auf. Einen ähnlichen Effekt beobachtet man bei den Ditrielanen (*t*Bu₂PhSi)₄In₂ und (*t*Bu₂PhSi)₄Tl₂ (UV/VIS-Absorptionen bei 530 nm bzw. 591 nm). Das bis jetzt nicht isolierte Tetrasupersilyldigallan, sollte demzufolge eine UV/VIS-Absorption von ungefähr 540 nm aufweisen. Zudem zeigen die Ditrielane $R_{4}E_{2}$ für ein bestimmtes Triel E Farbvertiefungen mit wachsendem REER- Diederwinkel, z.B. E = Al: farblos ($R/\tau = CH(SiMe_{3})_{2} / 8^{\circ}$; $\lambda_{max} = 370$ nm), gelbgrün ($R/\tau = 2,4,6$ -*i*Pr₃C₆H₂/44.8°; $\lambda_{max} = 420$ nm), rubinrot ($R/\tau = R^{*}/90^{\circ}$; $\lambda_{max} = 525$ nm).

UV/VIS-Spektren der Tetrasupersilylditrielane $R_4^*E_2$ (E = Al, In, Tl).

R*6Ga10⁻, R*6Ga13⁻, R*8Ga18, R*8Ga22

Die *Synthesen* der Titelclusterverbindungen erfolgen durch Reaktion von NaR* mit GaX anstelle von GaX₃ (AlX liefert mit NaR* nur R*₄Al₄ und keine Al- Clusterverbindungen, die mehr Trielatome als R*-Gruppen enthalten). Und zwar führt die Umsetzung von Greenschem, aus Ga und I₂ zugänglichem "Gal" (wohl im wesentlichen $[Ga^+]_2[I_3Ga-GaI_3]^{2-}$) in Toluol/THF zu R*₆Ga₁₀⁻ und R*₆Ga₁₃⁻ (Gegenionen Na(THF)₆⁺) neben R*₄Ga₄ und (R*)₂, während die Umsetzung von im Arbeitskreis Schnöckel durch Tieftemperaturkondensation aus GaX- Gasphasen zugänglichem GaBr in Toluol/THF zu R*₈Ga₁₈ und R*₈Ga₂₂ führt.

Die *Strukturen* der Ga- Clusterverbindungen werden in Schema 2 wiedergegeben. Sie lassen sich wie folgt beschreiben bzw. erklären: Zentrales Strukturelement des Decagallanids $R_{6}^{*}Ga_{10}^{-}$ sind zwei verzerrte Ga_{6}^{-} Oktaeder (jeweils 3 Ga- Atome ,,nackt") mit gemeinsamer Kante, so daß die Verbindung als *conjuncto*-Oligogallan zu beschreiben ist. Gemäß der Elektronenabzählregeln von Wade und Mingos kommen dem Tridecagallanid $R_{6}^{*}Ga_{13}^{-}$ 20 = 2*n* - 6 Clusterelektronen zu, was in Übereinstimmung mit dem Experiment ein vierfach- überkapptes *closo*-Ga₉-Polyeder zur Folge haben muß. Die Struktur des *Octadecagallans* $R_{8}^{*}Ga_{18}$ läßt sich – wie auch die von $R_{6}^{*}Ga_{10}^{-}$ (s. oben) – zwar nicht durch die Wade-Mingos-Regeln erklären, aber als Ausschnitt aus einer Modifikation elementaren Galliums beschreiben, wobei vorerst unklar bleibt, warum den Ga-Clusterverbindungen der aufgefundene und kein anderer Ausschnitt zugrunde liegt (s. unten). Dem *Docosagallan* $R_{8}^{*}Ga_{22}$ kommen 30 = 2*n* - 14 Clusterelektronen zu, was ein achtfach-überkapptes *closo*-Ga₁₄-Polyeder zur Folge haben muß. Dies steht in Übereinstimmung mit dem Experiment, sofern der vorliegende Cluster aus 14 ,,nackten" Galliumatomen (zentrierter Kuboktaeder, bei dem eine Ga₃- Fläche durch eine Ga₄- Fläche ersetzt ist) als *closo*- Struktur für einen Cluster aus 14 Elementatomen akzeptiert wird.

Schema 2. Bau der erzeugten neutralen, radikalischen und anionischen Supersilyl-Clusterverbindungen (ohne *t*Bu- Gruppen; $R_4^*Al_3^{\bullet}$ weicht etwas von dem abgebildetem $R_4^*Ga_3^{\bullet}$ ab).

Der *Mechanismus* der Bildung von $R_{6}^{*}Ga_{10/13}^{-}$ und $R_{8}^{*}Ga_{18/22}$ (entsprechendes gilt auch für die nachfolgend besprochenen In- Clusterverbindungen) ist noch unklar. Doch bildet sich im Zuge des Zutropfens von NaR* zu Lösungen von "GaI" und GaBr in Toluol/THF möglicherweise zunächst das Gallylen R*Ga, das mit vorhandenem GaX Cluster $R_{x}^{*}Ga_{x+y}X_{y}$ bildet, welche von NaR* unter Erzeugung "nackter" Ga- Atome enthalogeniert werden. In analogen Al- Clusterverbindungen käme es als Folge der höheren Stabilität gegen Enthalogenierung nur zur Substitution von Halogenid gegen Supersilanid. Eine Rolle für den Abbruch der Clusteraufbaureaktionen spielt sicher die letztendlich erreichte vollständige Bedeckung der Clusteroberfläche mit Supersilylgruppen.

R*4In2, (R*4In6), R*6In8, R*8In12

Die *Synthese* des Diindans $R_4^*In_2$ gelingt sowohl durch Reaktion von NaR* mit InX₃ als auch mit InX (vgl. hierzu die Reaktionen von NaR* und GaX₃ sowie GaX, oben). Die Thermolyse von $R_4^*In_2$ liefert bei 100°C in Alkanen – möglicherweise auf dem Wege über $R_4^*In_6$ – das Dodecaindan $R_8^*In_{12}$. Setzt man als Indium(I)-Verbindung Cp*In anstelle von InX mit NaR* um, so bildet sich das Octaindan $R_6^*In_8$, welches sich thermisch bei 100°C langsam in $R_8^*In_{12}$ umwandelt.

Die *Strukturen* der isolierten In-Clusterverbindungen sind in Schema 2 wiedergegeben. Dem *Dodecaindan* $R_{6}^{*}In_{8}$ kommen 14 = 2*n* - 2 Clusterelektronen zu, was nach den Wade-Mingos-Regeln ein zweifach-über-kapptes *closo*-In₆-Polyeder zur Folge haben muß. Laut Schema 2 trifft dieses zu. Verwandt zu $R_{6}^{*}In_{8}$ ist das *Hexaindan* $R_{4}^{*}In_{6}$, welches möglicherweise eine Vorstufe von $R_{8}^{*}In_{12}$ darstellt (10 = 2*n* - 2 Clusterelektronen en entsprechen einem zweifach-überkappten-In₄-Polyeder). Das *Dodecaindan* $R_{8}^{*}In_{12}$ besteht aus zwei verzerrt-oktaedrisch gebauten, über InIn-Bindungen verknüpften $R_{4}^{*}In_{6}$ -Einheiten und ist als *conjuncto*-Oligoindan zu klassifizieren.

$\mathbf{R}_{4}^{*}\mathbf{I}_{2}, (\mathbf{R}_{2}^{*}\mathbf{I}_{2}\mathbf{C}\mathbf{I}_{2}), \mathbf{R}_{4}^{*}\mathbf{I}_{3}\mathbf{C}\mathbf{I}, \mathbf{R}_{6}^{*}\mathbf{I}_{6}\mathbf{C}\mathbf{I}_{2}, (\mathbf{R}_{n}^{*}\mathbf{I}_{n})$

Die *Synthese* von $R_4^*Tl_3Cl$ und $R_6^*Tl_6Cl_2$ gelingt durch längeres Umsetzen von $TlCl_3$ in THF bei -78°C mit zwei Äquivalenten NaR* (Kristalle aus THF und Toluol bei -25°C nach Monaten). Erwärmt man das Reaktionsgemisch rasch von -78°C auf Raumtemperatur, so erhält man nur R*Cl und ein unlösliches, super-silylgruppenhaltiges Produkt, bei dem es sich um oligomeres Thallylen (R*Tl)_n handeln könnte.

Der *Mechanismus* der Bildung der Tl-Clusterverbindungen ist nur unvollständig geklärt. Gemäß Schema 3 bildet sich aus TlCl₃ in THF bei -78°C mit einem Äquivalent NaR* das Halogenid R*TlCl₂, das ab ca. -50°C quantitativ in R*Cl und TlCl zerfällt und mit einem weiteren Äquivalent NaR* unerwarteterweise nicht das Halogenid R*₂TlCl, sondern – über ein noch nicht identifiziertes Produkt (R*ClTl–TlClR* ?) – das erwähnte Tri- und Hexathallan liefert. Mit zwei weiteren Äquivalenten NaR* verwandelt sich R*TICl₂ bei -78°C in THF in eine Verbindung, die offensichtlich Kationen $R_2^*TI^+$ enthält. Letztere reagieren mit Vorhandenem NaR* bei Raumtemperatur gemäß Schema 3 langsam zum Dithallan $R_4^*TI_2$, das auch aus TIBr und NaR* in THF zugänglich ist; auch reagieren die Kationen mit Me₃SiCl als Cl⁻- Spender zum Halogenid R*₂TICl, das nicht direkt aus TICl₃ / 2 NaR* gewinnbar ist. R*₂TICl zerfällt seinerseits gemäß Schema 3 bei Raumtemperatur langsam unter R*Cl- Eliminierung in das Trithallan R*₄TI₃Cl, welches unter weiterer R*Cl Abspaltung in das erwähnte unlösliche Produkt (oligomeres R*TI ?) übergeht.

Schema 3. Reaktion von NaR* und TlCl₃. [a] Unterschiedliche Reaktionen in Abhängigkeit der NaR*- Menge und der Reaktionsstemperatur.

Die *Strukturen* der isolierten Tl-Clusterverbindungen sind im Schema 2 wiedergegeben. Zentrales Element des Trithallans $R_4^*Tl_3Cl$ ist ein planarer Tl_3Cl -Vierring. Im *Hexathallan* $R_6^*Tl_6Cl_2$ sind zwei derartige Tl₃Cl-Vierringe über die mittleren Tl- Ringatome miteinander verknüpft (kürzeste bisher aufgefundene TITl-Bindung). Wegen zusätzlicher Bindungen der Cl- Ringatome mit jeweils einem Tl- Atom des anderen Rings, sind die Tl₃Cl- Ringe nicht mehr planar.

Zum Bau der Triel-Clusterverbindungen

Der Bau der Triel-Clusterverbindungen läßt sich wie angedeutet zum Teil als Ausschnitt aus einer Modifikation des betreffenden Triels, zum anderen aber auch mit Hilfe der Wade-Mingos-Regeln beschreiben, wonach ein Zusammenhang von Clusterelektronenzahl 2n + m (n = Clusteratomanzahl; m = ...-4, -2, 0, +2, +4 ...) besteht. Alle in dieser Arbeit dargestellten Clusterverbindungen sind in folgender Tabelle hinsichtlich n und m eingeordnet (Die Strukturen der in Klammern stehenden Verbindungen lassen sich nicht nach diesen Elektronenabzählregeln beschreiben. Die mit (*) gekennzeichneten Verbindungen sind besser als *conjuncto*-Polyeder zu beschreiben, wobei R*₆Ga₁₀ eigentlich als Anion mit 17 Gerüstelektronen bzw. R*₄E₃⁻ eigentlich als Radikal R*₄E₃[•] mit 7 Gerüstelektronen vorliegt). Am auffälligsten ist, daß alle isolierten Verbindungen auf einer Kurve mit stetig abnehmender Steigung liegen. Wird die Zahl der Gerüstatome immer weiter erhöht, gelangt man entlang dieser Kurve formal zu Strukturen mit unendlich vielen Kappen, repräsentiert durch E_{∞}.

2	closo	1 Kappe	2 Kappen	3 Kappen	4 Kappen	5 Kappen	6 Kappen	7 Kappen	8 Kappen .	•• ••
<i>2n+m</i>	2	0	-2	-4	-6	-8	-10	-12	-14	
3	$R*_4E_3^-$ (E = Al, Ga)				m 4		_			
4		$\begin{array}{c} R*_4E_4\\ (E=Al,Ga) \end{array}$								
6			R* ₄ Ga ₄ Na ₂							
8			$R_{6}^{*}In_{8}$							
10				$(R_{6}^{*}Ga_{10})^{*}$						
12	n				$(R*_8In_{12})^*$					
14					$R_6^*Ga_{13}^-$					
16										
18		Clusterelek	tronenzahl =	2n+m			$(R*_8Ga_{18})$			
20		(n = Cluster) $m = \dots -4, -2$	ratomanzahl; 2. 0. +2. 4)	, ,						
22			-, -, - , ,						R*8Ga22	
∞										E^{∞}

E Röntgenstrukturen

Verbindung	tBu ₃ SiAlBr ₂ •NEtMe ₂	(tBu ₃ Si) ₂ AlCl	(tBu2PhSi)3Al	
Chem. Formel	C ₁₂ H ₂₇ AlBr ₂ Si	C24H54AlClSi2	C42H69AlSi3	
Molgewicht	386.22 461.30		685.25	
Kristallabmessungen	0.33x0.53x0.53 mm	x0.53 mm 0.27x0.33x0.53 mm 0.20x0.20x		
Kristallsystem	orthorhombisch	monoklin	hexagonal	
Raumgruppe	Pca2 ₁	P2/n	P-3	
a [Å]	14.539(4)	12.890(2)	12.3378(6)	
b [Å]	11.653(3)	8.894(1)	12.3378(6)	
c [Å]	13.552(3)	14.293(2)	16.0876	
α [°]	90.00	90.00	90.00	
β [°]	90.00	114.55(2)	90.00	
γ [°]	90.00	90.00	120.00	
Volumen [Å ³]	2296.0(1)	1490.6(2)	2120.8(2)	
Z	4	2	6	
ρ (berechnet) [Mg/m ³]	1.329	1.028	1.073	
Abs. Koeff. [mm-1]	3.618	3.618 0.246		
F(000)	952	512	752	
20- Bereich [°]	2.24-23.97	2.77/23.93		
Index-Bereich	-16≤h≤0;0≤k≤13;	-13≤h≤14; -10≤k≤0;	-16≤h≤16; -9≤k≤9;	
	-15≤l≤15	-16≤ l ≤0	-20≤l≤19	
gemessene Reflexe	3609	2435	11696	
davon unabhängig	3603	2332	2993	
$I > 4\sigma(I_0)$	2259	1659	2125	
Transmission max/min	_	_	0.862/0.769	
$R1 (F > 4\sigma(F))$	0.0628	0.0568	0.0371	
$wR2 (F > 4\sigma(F))$	0.1264	0.1262	0.0899	
$\mathrm{GOOF}(F^2)$	1.094	1.131	1.038	
Wichtungsfaktor w^{-1} x/y	0.0485/8.6352	0.0541/1.00	1/1	
Restel. Dichte [eÅ ⁻³]	0.746	0.333	0.229	
Operator	K. Polborn	K. Polborn	T. Habereder	
Abbildung/Seite	2/12	3/15	4/19	
CCDC-Nr.:	-	_	_	

 $w^{-1} = \sigma^2 F_0^2 + (xP)^2 + yP$ mit $P = (F_0^2 + 2F_c^2)/3$

Verbindung	$(t\mathbf{Bu}_{3}\mathbf{Si})_{4}\mathbf{Al}_{2}$	(tBu ₃ Si) ₄ Al ₃ •	(tBu ₂ PhSi) ₃ Ga
Chem. Formel	$C_{48}H_{108}Al_2Si_4$	$C_{48}H_{108}Al_3Si_4$	C42H69GaSi3
Molgewicht	851.69	878.67	727.99
Kristallabmessungen	0.4x0.4x0.3 mm	0.28x0.20x0.15 mm	0.2x0.3x0.2 mm
Kristallsystem	orthorhombisch	monoklin	trigonal
Raumgruppe	I-4	C2/c	P-3
a [Å]	15.4599(1)	21.344(4)	12.406(2)
b [Å]	15.4599(1)	12.794(3)	12.406(2)
c [Å]	13.204	23.855(5)	16.200(3)
α [°]	90.00	90.00	90.00
β [°]	90.00	90.00	90.00
γ [°]	90.00	90.00	120.00
Volumen [Å ³]	3155.82(3)	6514(2)	2159.3(6)
Z	2	4	2
ρ (berechnet) [Mg/m ³]	0.896	0.940	1.120
Abs. Koeff. [mm-1]	0.147	0.147 0.159	
F(000)	956	2064	788
20- Bereich [°]	3.72-58.14	3.72-58.14	
Index-Bereich	-19≤h≤20; -20≤k≤20;	-26≤h≤26; -15≤k≤15;	-15≤h≤15; -15≤k≤8;
	-16≤l≤16	-29≤l≤29	-19≤l≤19
gemessene Reflexe	9338	22488	9414
davon unabhängig	3403	6135	2754
$I > 4\sigma(I_0)$	3313	4078	2424
Transmission max/min	0.9573/0.9436	_	_
$R1(F>4\sigma(F))$	0.0461	0461 0.0961	
$wR2 (F > 4\sigma(F))$	0.1519	0.1519 0.2460 0	
$\operatorname{GOOF}(F^2)$	1.304	1.002	0.842
Wichtungsfaktor w ⁻¹ x/y	0.1055/0.00	1/1	1/1
Restel. Dichte [eÅ ⁻³]	1.513	0.675	0.720
Operator	J. Knizek	A. Purath, G. Linti	D. Fenske
Abbildung/Seite	5/22	9/30	14/41
CCDC-Nr.:	101401	120209	_

 $w^{-1} = \sigma^2 F_0^2 + (xP)^2 + yP$ mit $P = (F_0^2 + 2F_c^2)/3$

Verbindung	(tBu ₃ Si) ₄ Ga ₃ •	$(tBu_3Si)_4Ga_3$ $(tBu_3Si)_4Ga_4Na_2(THF)_2$	
Chem. Formel	$C_{48}H_{108}Ga_3Si_4$	$\mathrm{C}_{56}\mathrm{H}_{124}\mathrm{Ga}_4\mathrm{Na}_2\mathrm{O}_2\mathrm{Si}_4$	C ₉₆ H ₂₁₀ O ₆ Ga ₁₀ Si ₆ Na
Molgewicht	1006.92	1266.84	234954
Kristallabmessungen	0.20x0.20x0.10 mm	0.1x0.2x0.2 mm	0.7x0.5x0.2 mm
Kristallsystem	monoklin	monoklin	monoklin
Raumgruppe	C2/c	C2/c	C2/m
a [Å]	21.278(2)	24.274(5)	24.727(5)
b [Å]	12.692(1)	12.863(3)	19.934(4)
c [Å]	23.853	24.683(5)	13.587(3)
α [°]	90.00	90.00	90.00
β [°]	90.212(2)	116.62(3)	105.71(3)
γ [°]	90.00	90.00	90.00
Volumen [Å ³]	6441.7	68903(24)	6450
Z	8	4	2
ρ (berechnet) [Mg/m ³]	1.082	1.217	1.293
Abs. Koeff. [mm-1]	1.012	1.664	2.418
F(000)	2280	2696	4864
20- Bereich [°]	3.42-58.42	4.48-52.00	1.94-25.95
Index-Bereich	-27≤h≤27;-15≤k≤15;	-29≤h≤26;0≤K≤15;	
	-24≤l≤30	0≤L≤30	
gemessene Reflexe	18377	15373	20152
davon unabhängig	5554	6453	5098
$I > 4\sigma(I_0)$	3821	4957	-
Transmission max/min	0.956/0.808	0.7902/0.8134	-
$R1 (F > 4\sigma(F))$	0.0532	0.0326	0.1405
$wR2(F>4\sigma(F))$	0.1458	0.0778	0.3822
$\operatorname{GOOF}(F^2)$	1.044	0.917	1.139
Wichtungsfaktor w^{-1} x/y	1/1	0.0494/0.0000	0.1334/147.4439
Restel. Dichte [eÅ ⁻³]	0.710	0.524	0.774
Operator	T. Habereder	I. Krossing	G Linti
Abbildung/Seite	15/47	18/57	21/62
CCDC-Nr.:	152470	_	*)

 $w^{-1} = \sigma^2 F_0^2 + (xP)^2 + yP$ mit $P = (F_0^2 + 2F_c^2)/3$

*) Der Datensatz kann unter http://pubs.acs.org angefordert werden.
Verbindung	$Na[(tBu_3Si)_6Ga_{13}]$	(<i>t</i> Bu ₃ Si) ₈ Ga ₁₈	(tBu ₃ Si) ₈ Ga ₂₂
Chem. Formel	C ₉₆ H ₂₁₀ O ₆ Ga ₁₃ Si ₆ Na	C ₉₆ H ₂₁₆ Ga ₁₈ Si ₈	C ₉₆ H ₂₁₆ Ga ₂₂ Si ₉
Molgewicht	2558.74	2850.63	3129.56
Kristallabmessungen	0.05x0.05x0.05 mm	0.24x0.4x0.50 mm	0.20x0.40x0.60 mm
Kristallsystem	orthorhombisch	triklin	tetragonal
Raumgruppe	Pmc2 ₁	P-1	P4/n
a [Å]	19.902(4)	16.274(3)	23.396(2)
b [Å]	18.392(4)	19.198(3)	23.396(2)
c [Å]	33.068(7)	27.881(5)	15.023(1)
α [°]	90.00	76.54(3)	90.00
β [°]	90.00	85.17(3)	90.00
γ [°]	90.00	68.79(3)	90.00
Volumen [Å ³]	12100.0	7898.2(10)	9328.1(14)
Z	4	2	2
ρ (berechnet) [Mg/m ³]	1.404	1.362	1.252
Abs. Koeff. [mm-1]	2.948	4.520	3.347
F(000)	5238	3860	4356
20- Bereich [°]	1.63-22.37	4-42	44.80
gemessene Reflexe	37986	16797	37953
davon unabhängig	15711	4661	6333
$I > 4\sigma(I_0)$	10449	2160	
$R1 (F > 4\sigma(F))$	0.1382	0.088	0.0716
$wR2 (F > 4\sigma(F))$	0.4030	0.244	0.2371
$\mathrm{GOOF}(F^2)$	1.448		
Wichtungsfaktor $w^{-1} x/y$	0.200/0.00	0.1135/7.5717	
Restel. Dichte [eÅ ⁻³]	2.33	1.23	
Operator	G. Linti	E. Baum	E. Baum
Abbildung/Seite	23/65	24/70	25/71
CCDC-Nr.:	*)	153636	153790

*) Der Datensatz kann unter http://pubs.acs.org angefordert werden.

Verbindung	(tBu ₃ Si) ₄ In ₂	(tBu2PhSi)4In2	(tBu ₃ Si) ₄ In ₄ Se ₄
Chem. Formel	$\mathrm{C}_{48}\mathrm{H}_{108}\mathrm{In}_{2}\mathrm{Si}_{4}$	$\mathrm{C}_{56}\mathrm{H}_{92}\mathrm{In}_{2}\mathrm{Si}_{4}$	$C_{48}H_{108}In_4Si_4Se_4$
Molgewicht	1027.37	1107.33	1572.85
Kristallabmessungen	0.75x0.70x0.40 mm	0.2x0.4x0.3 mm	0.3x0.4x0.5 mm
Kristallsystem	monoklin	triklin	kubisch
Raumgruppe	C2/c	P-1	Pa-3
a [Å]	21.2994(9)	13.108(3)	23.701(4)
b [Å]	14.905(1)	14.394(3)	23.728(8)
c [Å]	21.539(1)	19.708(4)	23.747(6)
α [°]	90.00	83.52(3)	89.94(4)
β [°]	103.189(5)	80.50(3)	89.85(3)
γ [°]	90.00	63.23(3)	89.89(3)
Volumen [Å ³]	6657.6(7)	3271.2(11)	13355(6)
Z	8	1	8
ρ (berechnet) [Mg/m ³]	1.181	1.124	1.565
Abs. Koeff. [mm-1]	0.797	0.807	3.643
F(000) [°]	2536	1164	6272
20- Bereich	5.46-54.04	3.88-51.8	4.86-48.24
Index-Bereich	-27≤h≤26; -18≤k≤19;	-12≤h≤16; -13≤k≤16;	-24≤h≤27; -27≤k≤27;
	-27≤ <u>1</u> ≤27	-24≤1≤24	-27≤l≤19
gemessene Reflexe	6763	13569	41507
davon unabhängig	6763	9606	3531
$I > 4\sigma(I_0)$	5809	8995	-
Transmission max/min	0.8548/0.6605	_	_
$R1 (F > 4\sigma(F))$	0.0264	0.0498	0.0496
$wR2 (F > 4\sigma(F))$	0.0780	0.1463	0.1226
$\operatorname{GOOF}(F^2)$	0.968	1.063	0.916
Wichtungsfaktor w^{-1} x/y	0.0652/0.00	1/1	1/1
Restel. Dichte [eÅ-3]	0.429	0.804	2.146
Operator	E. Baum/A. Purath	D. Fenske	D. Fenske
Abbildung/Seite	27/82	28/83	30/87
CCDC-Nr.:	_	_	_

Verbindung	(<i>t</i> Bu ₃ Si) ₈ In ₁₂	(tBu ₃ Si) ₆ In ₈	$(t\mathbf{Bu}_{3}\mathbf{Si})_{4}\mathbf{Tl}_{2}$
Chem. Formel	C ₉₆ H ₂₁₆ In ₁₂ Si ₈	$\mathrm{C_{72}H_{162}In_8Si_6}$	$C_{48}H_{108}Tl_2Si_4$
Molgewicht	2973.30	2115.15	1206.49
Kristallabmessungen	0.4x0.3x0.02 mm	0.5x0.4x0.2 mm	0.2x0.4x0.2mm
Kristallsystem	monoklin	monoklin	monoklin
Raumgruppe	P2(1)/n	C2/c	C2/c
a [Å]	18.329(7)	24.657(5)	20.396(4)
b [Å]	32.02(2)	16.648(3)	15.437(3)
c [Å]	22.454(8)	27.798(6)	41.621(8)
α [°]	90.00	90.00	90.00
β [°]	97.74(1)	115.50(3)	99.97(3)
γ [°]	90.00	90.00	90.00
Volumen [Å ³]	13059(10)	10299.3(36)	12906(45)
Z	4	4	10
ρ (berechnet) [Mg/m ³]	1.552	1.465	1.242
Abs. Koeff. [mm-1]	2.185	1.863	5.086
F(000) [°]	6136	4616	4912
20-Bereich	2.98-49.42	3.84-51.84	4.70-54.24
Index-Bereich	-21≤h≤19;-37≤k≤37;	-30≤h≤30; -20≤k≤20;	-21≤h≤25; -19≤k≤11;
	-26≤l≤25	-34≤l≤33	-53≤l≤53
gemessene Reflexe	64586	9911	25125
davon unabhängig	18449	9911	12448
$I > 4\sigma(I_0)$	11876	6929	9130
Transmission max/min	1.000/0.684	0.6404/0.8202	_
$R1 (F > 4\sigma(F))$	0.0632	0.0293	0.1044
$wR2 (F > 4\sigma(F))$	0.1017	0.0881	0.2784
$\operatorname{GOOF}(F^2)$	1.076	0.916	0.976
Wichtungsfaktor w^{-1} x/y	0.0279/53.5075	0.0532/0.00	1/1
Restel. Dichte [eÅ ⁻³]	1.098	1.218	4.588
Operator	W. Ponikwar	E. Baum/A. Purath	D. Fenske
Abbildung/Seite	32/90	35/96	38/107
CCDC-Nr.:	112178	114210	_

Verbindung	(tBu ₂ PhSi) ₄ Tl ₂	(tBu ₃ Si) ₄ Tl ₃ Cl	$(tBu_3Si)_6Tl_6Cl_2$
Chem. Formel	$C_{56}H_{92}Si_4Tl_2$	$C_{48}H_{108}ClSi_4Tl_3$	$C_{72}H_{162}Cl_2Si_6Tl_6$
Molgewicht	1286.46	1446.33	2493.80
Kristallgröße [mm]	0.2x0.4x0.1 mm	0.4x0.4x0.3 mm	0.2x0.3x0.2 mm
Kristallsystem	triklin	monoklin	triklin
Raumgruppe	P-1	C2/c	P-1
a [Å]	13.188(4)	25.118(5)	15.489(3)
b [Å]	13.386(5)	13.092(3)	17.387(4)
c [Å]	19.815(6)	42.918(9)	20.974(4)
α [°]	84.31(4)	90.00	78.37(3)
β [°]	80.59(3)	101.37(3)	68.79(3)
γ [°]	63.45	90.00	77.12(3)
Volumen [Å ³]	3085.8(17)	13840	5087.7(18)
Z	2	4	2
ρ (berechnet) [Mg/m ³]	1.394	1.473	1.628
Abs. Koeff. [mm-1]	5.325	7.109	9.621
F(000) [°]	1302	6040	2396
20- Bereich	5.78-55.92	3.86-48.14	4.22-51.84
Index-Bereich	-16≤h≤16;-16≤k≤17;	-18≤h≤28;-13≤k≤13;	-18≤h≤18;-21≤k≤21;
	-26≤1≤26	-49≤1≤49	-25≤1≤25
gemessene Reflexe	18424	24666	55309
davon unabhängig	12799	9010	18432
$R1 (F > 4\sigma(F))$	0.0505	0.0663	0.1313
$wR2(F>4\sigma(F))$	0.1154	0.1794	0.4136
$\operatorname{GOOF}(F^2)$	0.954	1.083	1.851
Wichtungsfaktor $w^{-1} x/y$	1/1	1/1	1/1
Restel. Dichte [eÅ ⁻³]	3.172	2.556	17.506
Operator	D. Fenske	D. Fenske/G. Linti	D. Fenske
Abbildung/Seite	39/108	41/115	42/117
CCDC-Nr.:	—	150538	150539

Verbindung	(tBu ₃ Si) ₂ TlCl
Chem. Formel	C ₂₄ H ₅₄ ClSi ₂ Tl
Molgewicht	638.70
Kristallabmessungen	0.25x0.20x0.04 mm
Kristallsystem	monoklin
Raumgruppe	P2/n
a [Å]	13.0498(7)
b [Å]	8.8821(5)
c [Å]	14.1063(8)
α [°]	90.00
β [°]	115.5920(1)
γ [°]	90.00
Volumen [Å ³]	1474.64
Ζ	2
ρ (berechnet) [Mg/m ³]	1.438
Abs. Koeff. [mm-1]	5.657
F(000)	648
20- Bereich [°]	4.58-58.74
Index-Bereich	-14≤h≤17;-11≤k≤11;
	-18≤1≤15
gemessene Reflexe	8481
davon unabhängig	2444
$I > 4\sigma(I_0)$	2008
Transmission max/min	0.3647/0.6474
$R1 (F > 4\sigma(F))$	0.0411
$wR2 (F > 4\sigma(F))$	0.1071
$\operatorname{GOOF}(F^2)$	1.016
Wichtungsfaktor w^{-1} x/y	1/1
Restel. Dichte [eÅ ⁻³]	0.646
Operator	M. Warchhold
Abbildung/Seite	40/114
CCDC-Nr.:	-

F Literaturverzeichnis

- [1] Hollemann-Wiberg, Lehrbuch der Anorganischen Chemie, 101. Auflage, DeGruyter, Berlin, 1995
- [2] J. Huheey, E. Keiter, R. Keiter, *Anorganische Chemie*", 2. Auflage, De Gruyter, Berlin; New York, 1995
- [3] J.F. Smith, D.A. Hansen, Acta Crystallogr. 1967, 22, 836
- [4] M. Mocker, C. Robol, H. Schnöckel, Angew. Chem. 1999, 100, 946
- [5] M. Tacke, H. Schnöckel, Inorg. Chem. 1989, 28, 2895
- [6] J. Donohue, The Structures of the Elements, Wiley, New York 1974
- [7] T. Mennekes, P. Paetzhold, R. Boese, D. Bläser, Angew. Chem. 1991, 103, 199; Angew. Chem.
 Int. Ed. Engl. 1991, 30, 173
- [8] H. Klusik, A. Berndt, J. Organomet. Chem. 1982, 234, C17
- [9] C. Dohmeier, C. Robl, M. Tacke, H. Schnöckel, Angew. Chem. 1991, 103, 594; Angew. Chem. Int. Ed. Engl. 1991, 30, 564

Q. Yu, A. Purath, A. Donchev, H. Schnöckel, J. Organomet. Chem. 1999, 584, 94

- [10] W. Uhl, W. Hiller, M. Layh, W. Schwarz, Angew. Chem. 1992, 104, 1378; Angew. Chem. Int.
 Ed. Engl. 1992, 31, 1364
- [11] O.T. Beachley, M.R. Churchill, J.C. Fettinger, J.C. Pazik, L. Victoriano, J. Am. Chem. Soc. **1986**, 108, 4666; O.T. Beachley, B. Blom, M.R. Churchill, K. Faegri Jr., J.C. Fettinger, J.C. Pazik, L. Victoriano, Organometallics **1989**, 8, 346
- [12] W. Uhl, S.U. Keimling, K.W. Klinkhammer, W. Schwarz, Angew. Chem. 1997, 109, 64
- [13] N. Wiberg, Vortrag auf dem "IX International Symposium on Organosilicon Chemistry", Edinburgh, Juli 1990, N. Wiberg in *Frontiers of Organosilicon Chemistry* (Hrsg.: A.R. Bassindale, P.P. Gaspar), The Royal Society of Chemistry, Cambrige, 1991, 263, T. Passler, *Dissertation*, München 1993
- [14] H.W. Lerner, Dissertation, München 1993
- [15] M.P Doyle, C.T. West, J. Am. Chem. Soc. 1975, 97, 3777; E.M. Dexheimer, L. Spialter, Tetrahedron Lett. 1975, 1771; M. Weidenbruch, W. Peter, Angew. Chem. 1975, 87, 670
- [16] H.W. Lerner, pers. Mitteilung
- [17] C. Dohmeier, D. Loos, H. Schnöckel, Angew. Chem. 1996, 108, 141

- [18] R. J. Wehmschulte, K. Ruhlandt-Senge, M.: Olmstead, H. Hope, B.E. Sturgeon, P.P. Power, *Inorg. Chem.* 1993, 32, 2983
- [19] W. Uhl, Z. Naturforsch. B 1988, 43, 1113
- [20] a) [R₂Al AlR₂]⁻(KDME₃): W. Uhl, A. Vester, W. Kaim, J. Poppe, *J. Organomet. Chem.*, **1993**, 454, 9 b) [R₂Al AlR₂]⁻(LiTMEDA₃): C. Pluta, K.-R. Pörschke, C. Krüger, K. Hildenbrand, *Angew. Chem* **1993**, 105, 451; *Angew. Chem. Int. Ed. Engl.* **1993**, *32*, 388
- [21] C. K. F. von Hänsch, Ch. Üffing, M. A. Junker, A. Ecker, B. O. Kneisel, H. Schnöckel, Angew. Chem. 1996, 108, 3003
- [22] C. Schnitter, H. W. Roesky, C. Röpken, R. Herbst-Irmer, H.-G. Schmidt, M. Noltemeyer, Angew. Chem. 1998, 110, 2059
- [23] A. Purath, C. Dohmeier, A. Ecker, H. Schnöckel, K. Amelunxen, T. Passler, N. Wiberg, Organometallics 1998, 17, 1894.
- [24] S. Schulz, H.W. Roesky, H. J. Koch, G. M. Sheldrick, D. Stalke, A. Kuhn, Angew. Chem. 1993, 105, 1828
- [25] C. Dohmeier, M. Mocker, H. Schnöckel, A. Lötz, U. Schneider, R. Ahlrichs, *Angew. Chem.* 1993, 105, 1491; *Angew. Chem. Int. Ed. Engl.* 1993, 32, 1428
- [26] A. Purath, R. Köppe, H. Schnöckel, Angew. Chem., 1999, 111, 3114; Angew. Chem. Int. Ed. Engl. 1999, 38, 2926
- [27] A. Purath, R. Köppe, H. Schnöckel, Chem. Commun, 1999, 1933
- [28] W. Hiller, K.-W. Klinkhammer, W. Uhl, J. Wagner, Angew. Chem., 1991, 103, 182; Angew. Chem. Int. Ed. Engl. 1991, 30, 179
- [29] A. Ecker, E. Weckert, H. Schnöckel, Nature, 1997, 379
- [30] M. Mocker, C. Robl, H. Schnöckel, Angew. Chem. 1994, 106, 946
- [31] W. Uhl, U. Schütz, S. Pohl, W. Saak, Z. Naturforsch. 1994, 49b, 637
- [32] M. Mocker, C. Robl, H. Schnöckel, Angew. Chem. 1994, 106, 1860; Angew. Chem. Int. Ed., 1994, 33, 1754
- [33] A. Ecker, H. Schnöckel, Z. Anorg. Allg. Chem. 1996, 622, 149
- [34] A. Ecker, H. Schnöckel, Z. Anorg. Allg. Chem. 1998, 624, 813
- [35] C. Dohmeier, R. Mattes, H. Schnöckel, J. Chem. Soc. Chem. Commun, 1990, 358
- [36] Ch. Üffing, E. Baum, R. Köppe, H. Schnöckel, Angew. Chem. 1998, 2488
- [37] H. Köhnlein, G. Stößer, E. Baum, E. Möllhausen, U. Huniar, H. Schnöckel, Angew. Chem., 2000, 112, 828
- [38] A. Purath, C. Domeier, A. Ecker, R. Köppe, H. Krautscheid, H. Schnöckel, J. Friedrich, P. Jutzi, J. Am. Chem. Soc. 2000, 122, 6955

- [39] C. Klemp, R. Köppe, E. Weckert, H. Schnöckel, Angew. Chem, 1999, 1852
- [40] R. Nesper, J. Curda, Z. Naturforsch. 1987, 42, 557
- [41] N. Wiberg, K. Amelunxen, T. Blank, H. Nöth, J. Knizek, Organometallics 1998, 5431
- [42] N. Wiberg, T. Blank, W. Kaim, B. Schwederski, G. Linti, Eur. J. Inorg. Chem. 2000, 1475
- [43] N. Wiberg, K. Amelunxen, H.-W. Lerner, H. Nöth, J. Knizek, I. Krossing, Z. Naturforsch.B 1998, 53, 333
- [44] K.W. Klinkhammer, J. Weidlein, F. Schaller, W.Schwarz, H.-D. Hausen, Z. anorg. allg. Chem., 623, 1997, 1455
- [45] K. Amelunxen, Dissertation, München 1997
- [46] M.L. Sierra, V.S.J. de Mel, J.P. Oliver, *Organometallics*, 1989, 8, 2312; A. Heine,
 D. Stalke, *Angew. Chem.*, 1993, 105, 90
- [47] a) N.Wiberg in *Frontiers of Organosilicon Chemistry* (Hrsg.: A. R. Bassindale, P.P. Gaspar), The Royal Society of Chemistry, Cambridge, 1991, 263; b) N.Wiberg in *Progress in Organosilicon Chemistriy* (Herg.: B. Marciniec, J.Chojnowski), Gordon and Breach Publishers, Amsterdam, 1995, 19; c) N.Wiberg in *Organosilicon Chemistry II* (Hrsg.: N. Auner, J. Weis), VCH, Weinheim. 1996, 367
- [48] W. Uhl, Angew. Chem. 1993, 105, 1449 und zit. Lit.; Angew. Chem. Int. Ed. Engl. 1993, 32, 1386 and cit. Refs; H. Schnöckel, Angew. Chem. 1996, 108, 141; Angew. Chem. Int. Ed. Engl. 1996, 35, 129.
- [49] N. Wiberg, K. Amelunxen, H. Nöth, M. Schmidt, H. Schwenk Angew. Chem. 1996, 108, 110 und zit. Lit.; Angew. Chem. Int. Ed. Engl. 1996, 35, 65 and cit. Refs.
- [50] N. Wiberg; H. Schuster; A. Simon; A. Peters, Angew. Chem. 1986, 98, 100; Angew. Chem. Int. Ed. Engl. 1986, 25, 79.
- [51] N. Wiberg, Coord. Chem. Rev. 1997, 163, 217.
- [52] N. Wiberg.; K. Amelunxen; H.-W. Lerner; H. Schuster; H. Nöth; I. Krossing, M. Schmidt-Amelunxen; T. Seifert J. Organomet. Chem., 1997, 542, 1.
- [53] N. Wiberg, K. Amelunxen, H. Nöth, H. Schwenk, W. Kaim, A. Klein, T. Scheiring, Angew. Chem. 1997, 109, 1258; Angew. Chem. Int. Ed. Engl. 1997, 36, 1213
- [54] N. Wiberg, K. Amelunxen, H.-W. Lerner, H. Nöth, W. Ponikwar, H. Schwenk, J. Organomet. Chem. 1999, 574, 246
- [55] W. Uhl, U. Schütz, W. Kaim, E. Waldhör, J. Organomet. Chem. 1995, 501, 79
- [56] W. Kaim, Z. Naturforsch. B 1981, 36, 677
- [57] W. Kaim, J. Organomet. Chem. 1981, 215, 325
- [58] W. Kaim, Coord. Chem. Rev. 1987, 76, 187

- [59] W. Uhl, K.W. Klinkhammer, M. Layh, W. Massa, Chem. Ber. 1991, 124, 279
- [60] J.A. Weil, J.A. Bolton, J.E. Wertz, Elektron Paramagnetic Resonance, Wiley, New York, 1994
- [61] W. Uhl, L. Layh, W. Hiller, J. Organomet. Chem. 1989, 368, 139
- [62] a) G. Garton, H. M. Powell, *J. Inorg. Nucl. Chem.* 1957, *4*, 89; W. Höhnle, A. Simon, G. Gerlach, *Z. Naturforsch. B* 1957, *42*, 546; c) H. Schmidbaur, R. Nowak, W. Bublak, P. Burkert, B. Huber, G. Müller, *ibid.* 1987, *42*, 553
- [63] H. Schmidbaur, Angew. Chem. 1985, 97, 893; Angew. Chem. Int. Ed. Engl. 1985, 24, 893
- [64] R. W. H. Small, I. J. Worrall, *Acta Crystallogr. Sect. B* 1982, *38*, 86; b) *ibid.* 1982, *38*, 250; c)
 J.C. Beamish, R. W. H. Small, I. J. Worrall, *Inorg. Chem.* 1979, *18*, 220; d) J. C. Beamish, A. Boardman, R. W. H. Small, I. J. Worrall, *Polyhedron* 1985, *4*, 983
- [65] D. Loos, H. Schnöckel, D. Fenske, Angew. Chem. 1993, 105, 1124; Angew. Chem. Int. Ed. Engl. 1993, 32, 1059
- [66] C. U. Doriat, M. Friesen, E. Baum, A. Ecker, H. Schnöckel, Angew. Chem. 1997, 109, 2057
- [67] P. Jutzi, B. Neumann, G. Reumann, H.-G. Stammler, Organometallics 1998, 17, 1305
- [68] P. Jutzi, unveröffentlichte Ergebnisse
- [69] M. L. H. Green, P.Mountford, G. J. Smount, S. R. Speel, Poyhedron 1990, 9, 2763
- [70] R. D. Schluter, A. H. Cowley, D. A. Atwood, R. A. Jones, M. R. Bond, C. J. Carrano, J. Am. Chem. Soc. 1993, 115, 2070; Ga–Ga Abstand für R₄Ga₂^[76]
- [71] G. Linti, R. Frey, M. Schmidt, Z. Naturforsch., B 1994, 49, 958
- [72] M. Veith, F. Gotting, S. Becker, V. Huch, J. Organomet. Chem. 1991, 406, 105
- [73] X. He, R. A. Barlett, M.M. Olmstead, K. Ruhland-Senge, B.E. Sturegeon, P.P. Power, *Angew. Chem.* 1993, 105, 761; *Angew. Chem. Int. Ed. Engl.* 1993, 32, 717
- [74] W. Uhl, M. Layh, T. Hildenbrand, J. Organomet. Chem. 1989, 364, 289
- [75] W. Uhl, U. Schütz, W. Kaim, E. Waldhör, J. Organonet. Chem. 1995, 501, 79
- [76] A.K. Saxena, H. Zhang, M. Maguire, N.S. Hosmane, A.H. Cowley, *Angew. Chem.* 1995, 107, 378; *Angew. Chem. Int. Ed. Engl.* 1995, 34, 332
- [77] J. Su, X.-W. Li, R. C. Crittendon, G. H. Robinson, J. Am. Chem. Soc. 1997, 119, 5471
- [78] [Ga₃R₃]²⁻Na⁺₂ (R = 2,6-Dimesitylphenyl): X.-W. Li, W. T. Pennington, G. H. Robinson, J. Am. *Chem.Soc.* 1995, 117, 7578; [Ga₃R₃]²⁻K⁺₂ : X.-W. Li, Y. Xie, P. R. Schreiner, K. D.Gripper, R. C. Crittendon, C. F. Campana, H. F. Schaefer, G. H. Robinson, *Organometallics* 1996, 15, 3798
- [79] B. Twamley, P.P. Power, Angew. Chem. 2000, 112, 3643
- [80] W. Uhl, A. Jantschak, J. Organomet. Chem. 1998, 555, 263
- [81] G. Linti, J. Organomet. Chem. 1996, 520, 107

- [82] G. Linti, A. Rodig, Chem. Commun. 2000, 127
- [83] W. Uhl, M. Benter, W. Saak, Z. anorg. allg. Chem. 1998, 624, 1622
- [84] G. Linti, W. Köstler, H. Piotrowski, A. Rodig, Angew. Chem. 1998, 110, 2331
- [85] R. J. Wehmschulte, P.P. Power, Angew. Chem. 1998, 110, 3344; Angew. Chem. Int. Ed. Engl. 1998, 37, 3154
- [86] D. Loos, E. Baum, A. Ecker, H. Schnöckel, A. J. Downs, Angew. Chem. 1997, 109, 894; Angew.
 Chem. Int. Ed. Engl. 1997, 36, 860
- [87] H. Schnöckel, unveröffentlichte Ergebnisse
- [88] A. Schnepf, G. Stößer, R. Köppe H. Schnöckel. Angew. Chem. 2000, 112, 1709; Angew. Chem. Int. Ed. Engl. 2000, 39, 1637
- [89] H. Schnöckel, J. Am. Chem. Soc 2000, im Druck
- [90] W. Köstler, G. Linti, Angew. Chem. 1997, 109, 2758; Angew. Chem. Int. Ed. Engl. 1997, 36, 2644
- [91] M. Kehrwald, W. Köstler, A. Rodig, G. Linti, T. Blank, N. Wiberg, Organometallics 2000, im Druck
- [92] A. Schnepf, E. Weckert, G. Linti, H. Schnöckel, Angew. Chem. 1999, 111, 3578; Angew. Chem.
 Int. Ed. Engl. 1999, 38, 3381
- [93] A. Rodig, G. Linti, Angew. Chem. 2000, 112, 3077
- [94] J. C. Beamish, R. W. H. Small, I. J. Worrall, Inorg. Chem. 1979, 18, 220
- [95] R.W.H. Small, I.J. Worrall, Acta Cryst. B 1982, 38, 250
- [96] J.C. Beamish, R.W.H. Small, I.D. Worrall, *Polyhedron* 1985, 4, 983; R.W.H. Small, I.J. Warrall, *ActaCryst. B* 1982, 38, 86
- [97] G. Linti, W. Köstler, Angew. Chem. 1996, 108, 593; Angew. Chem. Int. Ed. Engl., 1996, 35, 550
- [98] M. Kehrwald, W. Köstler, A. Rodig, G. Linti, T. Blank, N. Wiberg, Organometallics 2001, im Druck
- [99] A.H. Cowley, A. Decken, C.A. Olazabal, J. Organomet. Chem. 1996, 524, 271
- [100] R.L. Brown, D. Hall, J. Chem. Soc., Dalton Trans. 1974, 988; M. Khan, C. Oldham, M.J.
 Taylor, D.G. Tuck, Inorg. Nucl. Chem. Lett. 1980, 16, 469
- [101] H.J. Cunning, D. Hall, C.E. Wright, *Cryst. Struct. Commun.* 1974, *3*, 107; W. Hönle, G. Gerlach, W. Weppner, A. Simon, *J. Solid State Chem.* 1986, *61*, 171; W. Hönle A. Simon, *Z. Naturforsch. B* 1986, *41*, 1391
- [102] G. Gerlach, W. Hönle, A. Simon, Z. Anorg Allg. Chem. 1982, 486, 7
- [103] A. Donchev, A. Schnepf, G. Stößer, E. Baum, H. Schnöckel, T. Blank, N. Wiberg, Eur. J. Inorg. Chem. 2001, im Druck

- [104] N. Wiberg, T. Blank, K. Amelunxen, H. Nöth, J. Knizek, T. Habereder, W. Kaim, M. Wanner, *Eur. J. Inorg. Chem.* 2001, im Druck
- [105] M. Kehrwald, W. Köstler, A. Rodig, G. Linti, T. Blank, N. Wiberg, Organometallics, 2001, im Druck
- [106] A. Schnepf, C. Doriat, E. Möllhausen, H. Schnöckel, Chem. Comm. 1997, 21, 2111
- [107] D. Loos, Dissertation München 1994
- [108] A. J. Downs, Coord. Chem. Rev. 1999, 189, 59
- [109] F. A. Cotton, A. H. Cowley, X. Feng. J. Am. Soc, 1998, 120, 1795
- [110] S. Koban, Diplomarbeit, Universität Karlsruhe 1999
- [111] G. Gerlach, W. Höhnle, A. Simon, Z. anorg. allg. Chem 1982, 86, 7
- [112] O. Treutler, R. Ahlrichs, J. Chem. Phys. 1995, 102, 346
- [113] A. D. Becke, Phys. Rev. A 1995, 38, 3098
- [114] J. P. Perdew, Phys. Rev. B 1996, 33, 8822
- [115] K. Eichkorn, O. Treutler, H. Ohm, M. Häser, R. Ahlrichs, Chem. Phys. Lett. 1995, 242, 652
- [116] K. Eichkorn, F. Weigert, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 119
- [117] K. Wade, Adv. Inorg. Radiochem. 1976, 18, 1; vgl. aucg R. W. Rudolph, Acc. Chem. Res 1976, 9, 446; sowie R. E. Williams, Adv. Inorg. Chem. 1976, 18, 67
- [118] D. M. P. Mingos, *Nature* 1972, 236, 99; D. M. P. Mingos, *Acc. Chem. Res* 1984, 17, 311; siehe auch M. McPrtlin, *Polyhedron* 1984, 3, 1279
- [119] Umfassender gerade f
 ür Metalle wie Gallium, die in mehreren Modifikationen vorkommen wäre die Bezeichnung *elementoid*. Nach dem griechischen Wort ειδος – Idee, Urbild – steckt also in einem elementoiden Cluster die Idee, das Bauprinzip des Elements in einer bestimmten Modifikation.
- [120] F. A. Cotton, Rev. Chem. Soc. 1966, 389
- [121] F. Laves, Naturwiss. 1932, 20, 472
- [122] L. Bosio, A. Derain, Acta Cryst, 1969, B25, 995
- [123] L. Bosio, H. Curien, M. Dupont, A. Rimsky, Acta Cryst. 1972, B28, 1974
- [124] L. Bosio, H. Curien, M. Dupont, A. Rimsky, Acta Cryst. 1973, B29, 367
- [125] L. Bosio, J. Chem. Phys. 1978, 68, 1221
- [126] C. Dohmeier, D. Loos, H. Schnöckel, Angew. Chem. 1996, 108, 141
- [127] N. Wiberg, T. Blank, H. Nöth, W. Ponikwar, Angew. Chem. 1999, 111, 886, Angew. Chem. Int. Ed. Engl. 1999, 38, 839
- [128] N. Wiberg, T. Blank, A. Purath, G. Stößer, H. Schnöckel, Angew. Chem. 1999, 111, 2745,
 Angew. Chem. Int. Ed. Engl. 1999, 38, 2563

- [129] G. Meyer, Z. anorg. allg. Chem. 1981, 478, 39
- [130] G. Meyer, Z. anorg. allg. Chem. 1978, 445, 140
- [131] R. Blachnik, G. Meyer, Z. anorg. allg. Chem. 1983, 503, 126
- [132] R. Faggiani, R.J. Gillespie, J.E. Verkis, J. Chem. Soc,, Chem. Commun. 1986, 517
- [133] G. Meyer, Th. Staffel, Z. anorg, allg. Chem. 1987, 548, 45
- [134] T. Staffel, G. Meyer, Z. anorg. allg. Chem. 1988, 563, 27
- [135] N.N. Greenwood, A. Earnshaw, *Chemie der Elemente*, 1. korrigierter Nachdruck der 1. Auflage 1988, VCH, **1990**
- [136] P.J. Brothers, K. Hübler, B. C. Noll, M. M. Olmstead, P.P. Power, Angew. Chem 1996, 108, 2528; Angew. Chem. Int. Ed. Engl. 1996, 35, 2355
- [137] W. Uhl, M. Layh, W. Hiller J. Organomet. Chem 1989, 368, 139
- [138] R. D. Schluter, A. H. Cowley, D. A. Atwood, R. A. Jones, M. R. Bond, C. J. Carrano, J. Am. Chem. Soc 1993, 115, 2070
- [139] M. Veith, F. Goffing, S. Becker, V. Huch, J. Organomet. Chem. 1991, 406, 105; M. Veith, J.
 Pöhlmann, Z. Naturforsch. B 1988, 43, 505
- [140] Ch. Janiak, R. Hofmann, J. Am. Chem. Soc. 1990, 112, 5924
- [141] R. D. Schluter, A. H. Cowley, D. A. Atwood, R. Jones, J. Coord. Chem. 1993, 25
- [142] W. Uhl, R. Graupner, M. Layh, U. Schütz, J. Organomet. Chem 1995, 493, C1; W. Uhl, A. Janatschak, W. Saak, M. Kaupp, R. Wartchow, Organomettalics 1998, 17, 5009
- [143] O.T. Beachley, M. R. Churchill, J. C. Fettinger, J. C. Pazlik, L. Victoriano, J. Am. Chem. Soc
 1986, 108, 4666; O.T. Beachley, B. Blom, M. R. Churchill, K. Faegri Jr., J. C. Fettinger, J. C. Pazik, L. Victoriano, Organometallics 1989, 8, 346
- [144] H. Schumann, J. Janiak, J. Pickardt, U. Börner, *Angew. Chem.* 1087, 99, 788; *Angew. Chem.Int. Ed. Engl.* 1987, 26, 789; H. Schumann, C. Janiak, F. Görlitz, J. Loebel, A. Dietrich, *J. Organomet. Chem.* 1989, 368, 243
- [145] W. Uhl, unveröffentlichte Ergebnisse
- [146] B. E. Eichler, N. J. Hardmann, P. Power, Angew. Chem. 2000, 112, 391
- [147] W. Uhl, A. Jantschak, W. Saak, M. Kaupp, R. Warchow, J. Organomet. Chem. 1998, 17, 5009
- [148] M. A. Khan, C. Peppe, D. G. Tuck, Can. J. Chem. 1984, 62, 601
- [149] W. Uhl, M. Layh, W. Hiller, J. Organomet. Chem. 1989, 368, 139
- [150] T.Staffel, G. Meyer, Z. Anorg. allg. Chem. 1999, 27
- [151] W. Uhl, R. Graupner, H. Reuter, J. Organomet. Chem. 1996, 523, 227
- [152] P. Reiß, F. Weigend, R. Ahlrichs, D. Fenske, Angew. Chem. 2000, 112, 4085; Angew. Chem.
 Int. Ed. Engl. 2000, 39, 3925

- [153] Turbomole-Programmpaket: E. Eichhorn, O. Treutler, H. Öhm, M. Häser, R. Ahlrichs, *Chem. Phys. Lett.* 1995, 240, 283; SVP-Basissätzte: A. Schäfer, H. Horn, R. Ahlrichs, Z. Phys. Chem, 97, 2751
- [154] W. Niedermayer, Dissertation, München 2000
- [155] N. Wiberg, H.-W. Lerner, H. Nöth, W. Ponikwar, Angew. Chem. 1999, 111, 1176; Angew. Chem. Int. Ed. 1999, 38, 1103
- [156] C. Janiak, Coord. Chem. Rev. 1997, 163, 107
- [157] H. Schumann, H. Kucht, A. Dietrich, L. Esser, Chem. Ber., 1990, 123, 1811
- [158] M. Niemeyer, P. Power, Angew. Chem. 1998, 110, 1291
- [159] S. Henkel, K.W. Klinkhammer, W. Schwarz, Angew. Chem. 1994, 106, 721; Angew. Chem. Int. Ed. 1994, 33, 68
- [160] N. Wiberg, K. Amelunxen, H. Nöth, M. Schmidt, H. Schwenk, *Angew. Chem* 1996, 108, 110;
 Angew. Chem. Int. Ed. 1996, 35, 65
- [161] C. Janiak, R. Hoffmann, J. Am. Chem. Soc. 1990, 112, 5924
- [162] H. Schumann, C. Janiak, J. Pickardt, U. Börner, Angew. Chem. 1987, 99, 788; Angew. Chem. Int. Ed. Engl. 1987, 26, 789; vgl. auch M.A. Paver, C.A. Russell, D.S. Weight in E.W. Abel, F.G.A. Stone, G. Wilkinson (Hrsg.), Comprehensive Organometallic Chemistry II, Pergamon, Oxford 1995, S. 528
- [163] W. Uhl, S.O. Keimling, K.W. Klinkhammer, W. Schwarz, Angew. Chem. 1997, 109, 64;
 Angew. Chem. Int. Ed. 1997, 36, 63
- [164] M. Veith, A. Spaniol, J. Pöhlmann, F. Gross, V. Huch, Chem. Ber. 1993, 126, 2625
- [165] Ch. H. Galka, L.H. Gade, Inorg. Chem. 1999, 38, 1039; zit. Lit.
- [166] J.D. Corbett, Angew. Chem. 2000, 112, 682; zit. Lit.
- [167] N. Wiberg, T. Blank, H.W. Lerner, D. Fenske, G. Linti, Angew. Chem. 2001, im Druck
- [168] D.R. Armstrong, R. Herbst-Irmer, A. Kuhn, D. Moncrieff, M. A. Paver, Ch. A. Russel, D. Stalke, A. Steiner D. S. Wright, *Angew. Chem.* 1993, 105, 1807
- [169] K.H. den Haan, J.L. de Boer, J.H. Teuben, Organometallics, 1986, 5, 1726
- [170] H. Werner, H. Otto, H.J. Kraus, J. Organomet. Chem. 1986, 315, C57
- [171] G. Linti, pers. Mitteilung

Lebenslauf

Name:	Thomas Blank
Geburtsdatum:	04.06.1971
Geburtsort:	München
Wohnort:	Kemptener Straße 11
	81475 München
Eltern:	Joachim Blank, geb. am 01.03.1937
	Brigitte Blank, geb. Borchardt, geb. am 28.09.1941
Schulbildung:	1978 bis 1983 Grundschule Königswieserstraße
	1983 bis 1991 math. nat. Feodor-Lynen Gymnasium, Planegg
Grundwehrdien	st : 1991 bis 1992
Studium:	ab dem WiSe 1992/93 Chemie/Diplom an der LMU München;
	Diplomvorprüfung am 11.05.1995;
	Diplomhauptprüfung am 23.07.1997;
	Diplomarbeit am Institut für Anorganische Chemie der LMU München unter
	Anleitung von Prof. Dr. N. Wiberg: 23.09.1997 bis 23.03.1998;
	Anfertigung der Dissertation am Institut für Anorganische Chemie der LMU
	München unter Anleitung von Prof. Dr. N. Wiberg seit 01.04.1998
Beruf:	Studentische Hilfskraft am Institut für Anorganische Chemie der LMU
	München vom 01.10.1997 bis 31.03.1998
	Wissenschaftlicher Mitarbeiter am Institut für Anorganische Chemie ab dem 01.04.1998