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Zusammenfassung

Gemäß den aktuellen kosmologischen Modellen besteht der Großteil der Masse im Univer-

sum aus dunkler Materie. Aus früheren Studien ist es bekannt, daß Galaxien verschiedener

Typen auf verschiedene Weise verteilt sind. Die räumliche Verteilung von Galaxien folgt

nicht der Verteilung der Masse. Die Relation zwischen der Galaxienverteilung und der

Massenverteilung wird ¸̧ Bias der Galaxienverteilung´´ genannt.

Laut den derzeitigen Modellen für die Bildung von Galaxien entstehen die Galaxien

durch das Abkühlen und die Kondensation des baryonischen Gases innerhalb der Poten-

tialtöpfe von virialisierten Klumpen aus dunkler Materie (dunkle Halos). Obwohl die

hydrodynamischen Prozesse, die an der Entstehung von Galaxien beteiligt sind, noch

wenig verstanden sind, wird angenommen, daß diese Prozesse für die Entstehung einzel-

ner Objekte relevant sind und daß sie möglicherweiser keine bedeutende Rolle bei der

gesamten räumlichen Verteilung der Galaxien spielen. Das bedeutet, daß das Problem

der Verteilung der Galaxien und des sogenannten Bias der Galaxienverteilung gut un-

tersucht werden kann, indem man die Verteilung von dunklen Halos betrachtet. Diese

Annäherung ist sehr praktisch, weil bei der Haloentstehung und der Verteilung die Grav-

itation der einzige beteiligte physikalische Prozeß ist.

In dieser Arbeit beschäftige ich mich mit den Eigenschaften der räumlichen Verteilung

von dunklen Halos auf kosmischen Dichtefeldern. Die Analyse wird in zwei Hauptteilen

durchgeführt. Im ersten Schwerpunkt studiere ich deterministische Bias- Modelle, die

auf einem sphärischen Kollapsmodell, sowie auf einem ellipsoidförmigen Kollapsmodell

beruhen. Im zweiten Teil meiner Arbeit konzentriere ich mich auf die stochastische

Beschaffenheit des Bias der Halo- und Galaxien-Verteilung unter Verwendung der be-

dingten Wahrscheinlichkeitsfunktion.

Ich studiere den deterministischen Bias der Haloverteilung mit Hilfe von verschiedenen

Modellen für die Bias Relation zwischen dunklen Halos und der darunterliegenden Ma-
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ZUSAMMENFASSUNG

terie. Mit der Benutzung von N-Körper Simulationen mit hoher Auflösung prüfe ich einige

theoretische Modelle für die Streuung und für höherwertige Momente der Halo Verteilung

in Modellen mit kalter dunkler Materie (CDM, englisch cold dark matter). Ich habe

herausgefunden, daß die theoretischen Modelle des Bias, die auf einem sphärischen Kol-

lapsmodell beruhen, die simulierten counts-in-cells Momente für Halos mit Massen größer

als M? ziemlich genau beschreiben. M ? wird als die Massenskala, auf der die Fluktuation

des Dichtefeldes ein rms von ungefähr 1 hat, definiert. Eine bedeutende Verbesserung der

theoretischen Beschreibung der simulierten counts-in-cells Momente für unter-M ∗ Halos

wird erzielt, wenn ein ellipsoidförmiges Kollapsmodell anstelle eines sphärischen für die

Definition von dunklen Halos benutzt wird. Beide Versionen der Modelle sind besonders

genau in der Beschreibung der counts-in-cells Momente der Nachkommen von Halos, die

bei hohen Rotverschiebungen ausgewählt worden sind. Deswegen sind diese Bias-Modelle

ziemlich nützlich für die Interpretierung der Momente der Galaxienverteilung.

Als eine Anwendung der Bias-Modelle berechne ich die Voraussage der Modelle für die

höherwertigen Momente der Verteilung der Lyman break Galaxien und deren Nachkom-

men. Es wird angenommen, daß die Lyman break Galaxien im Zentrum der massivsten

Halos bei der Rotverschiebung z ∼ 3 entstehen. Ich habe festgestellt, daß, obwohl der lin-

eare Bias-Parameter b stark von der angenommenen Kosmologie abhängt, die Werte der

höherwertigen Momente praktisch dieselben in beiden ΛCDM und τCDM Modelle sind.

Folglich können die höherwertigen Momente der räumlichen Verteilung dieser Objekte die

kosmologische Parameter nicht eingrenzen.

Außerdem betrachte ich die stochastische Natur der Bias Relation vom Gesichtspunkt

der bedingten Wahrscheinlichkeitsfunktion aus. Die stochastische Natur der Verteilung

von dunklen Halos in einem kosmischen Dichtefeld zeigt sich in der Verteilungsfunk-

tion PV (N |δm), die die Wahrscheinlichkeit angibt, N Halos in einem Volumen V mit

Massendichtekonstrast δm zu finden. Diese bedingte Wahrscheinlichkeitsfunktion spezi-

fiziert vollständig die Bias-Relation in einem statistischen Sinn.

Die Annahme, daß die Population von Galaxien und dunklen Halos durch einen

Poisson-prozeß (d.h. die bedingte Wahrscheinlichkeit Funktion hat die Form einer Pois-

sonverteilung) erzeugt wurde, hat keine physikalische Unterstützung. Deshalb ist es

wichtig zu prüfen, ob andere Verteilungsfunktionen die bedingte Wahrscheinlichkeit besser

beschreiben können. Ich benutze drei Funktionen, zusammen mit der Poissonfunktion,
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ZUSAMMENFASSUNG

um es nachzuprüfen, wie sie die bedingte Wahrscheinlichkeit aus N -Körper Simulationen

hoher Auflösung reproduzieren. Diese drei Funktionen sind die Gauss, die Lognormal

und die Thermodynamische Verteilung. Die Thermodynamische Verteilung wurde in den

achtziger Jahren aus thermodynamischen Argumenten entwickelt.

Ich fand, daß die bedingten Wahrscheinlichkeitsfunktionen für Halo Massen von einer

Gaussfunktion besser beschrieben werden, und daß PV (N |δm) significant nicht-Poisson

ist. Das Verhältnis zwischen der Streuung und dem Erwartungswert geht von ∼ 1 (Pois-

son) bei 1 + δm ¿ 1 bis < 1 (unter-Poisson) bei 1 + δm ∼ 1 bis > 1 (über-Poisson)

für 1 + δm À 1. Es stellte sich heraus, daß der Mittelwert der Biasrelation durch

Halo Bias Modelle, die auf dem Press-Schechter Formalismus beruhen, gut beschrieben

wird. Die unter-Poisson Streuung kann als eine Folge von Halo-Ausschließung begründet

werden, während die über-Poisson Streuung bei hohen δm Werte durch Halo-Bündelung

begründet werden kann. Ein einfaches phänomenologisches Modell für die Streuung der

Bias-Relation, als Funktion von δm, wird vorgeschlagen. Galaxienkataloge, die mit Hilfe

semi-analytischer Modelle aus der N -Körper Simulationen erzeugt worden sind, wurden

benutzt, um das Verhalten des Bias der Galaxienverteilung zu untersuchen. Der Bias der

Galaxienverteilung, die aus semi-analytischen Modellen der Galaxienentstehung abgeleitet

wird, zeigt ein ähnliches stochastisches Verhalten wie der von dunklen Halos. Die bedingte

Wahrscheinlichkeit für Galaxien wird durch eine Gaussfunktion gut beschrieben.

Diese Resultate haben wichtige Implikationen bei den Deutungen der Verteilung von

Galaxien in Bezug auf das zugrundeliegenden Dichtefeld. Um die Eigenschaften der

Massenverteilung im Universum aus statistischen Maßen der Galaxienverteilung abzuleiten,

ist es notwendig, zuerst die stochastische Natur des Bias der Galaxienverteilung zu ver-

stehen.

Die Hauptteile dieser Arbeit befinden sich in den Artikeln Casas-Miranda et al. (2002)

und Casas-Miranda et al. (2002 in Vorbereitung).
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Summary

In the current picture of the universe it is assumed that the mass content in the universe is

dominated by a dark matter component. From earlier studies it is known that galaxies of

different type cluster in different ways, which means that they do not trace the underlying

mass exactly. The relationship between the galaxy and mass distributions is known as

“Galaxy bias”.

In the current framework of galaxy formation it is assumed that galaxies are formed

by the cooling and condensation of the baryonic gas trapped within the potential wells

of virialized dark matter clumps (dark matter haloes). Although the hydrodynamical

processes involved in the formation of galaxies are still poorly understood, it is assumed

that these processes are mainly relevant for the formation of individual objects and that

they do not play a significative role in the overall spatial distribution of galaxies. That

means that the problem of galaxy clustering and galaxy biasing can be fairly approximated

by investigating the clustering of dark matter haloes. This approach is very convenient

because the physics involved in the process of halo formation and clustering are quite

simple: there is only gravity involved.

In this thesis I study the clustering properties of the spatial distribution of dark matter

haloes in cosmic density fields. The analysis is carried out in two main parts. The first

part corresponds to the study of deterministic halo-mass bias models, based on a spherical

collapse model as well as on an ellipsoidal collapse model. The second part corresponds

to the study of the stochasticity in the halo-mass bias relation from the point of view of

the conditional probability.

I study the deterministic halo-mass bias relation using several deterministic models

for the bias relation between dark matter haloes and the underlying mass. Using high-

resolution N-body simulations, I test some theoretical models for the variance and higher-

order moments of the dark halo distribution in Cold Dark Matter universes. I have
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SUMMARY

found that the theoretical biasing models based on the spherical collapse describe quite

accurately the simulated counts-in-cells moments for haloes with masses larger than M ?

(the mass scale on which the fluctuation of the density field has a rms about 1). Significant

improvement can be achieved for sub-M ∗ haloes if an ellipsoidal collapse model is used

instead of the spherical model in defining dark haloes. Both versions of the models (i.e.

based either on spherical collapse or on ellipsoidal collapse) are particularly accurate for

the descendants of haloes selected at high redshift, and so are quite useful in interpreting

the higher-order moments of galaxies. As an application I use the theoretical model to

predict the higher-order moments, at a fixed scale, of the Lyman break galaxies, assumed

to form in the center of the most massive haloes at redshift ∼ 3, observed at z ≈ 3

and their descendants at lower redshifts. I have found that, although the linear bias

parameter b depends strongly on the cosmology adopted, the values of the higher-order

moments are practically the same in both ΛCDM and τCDM dark matter universes and

therefore the higher-order moments from the spatial distribution of these objects cannot

constrain cosmological parameters.

In addition, I investigate the stochastic nature of the halo-bias relation from the point

of view of the conditional probability. The stochasticity in the distribution of dark haloes

in the cosmic density field is reflected in the distribution function PV (N |δm) which gives

the probability of finding N haloes in a volume V with mass density contrast δm. This

conditional probability completely specifies the bias relation in a statistical sense.

It has been widely accepted that the population of galaxies (and dark matter haloes) is

obtained from the underlying mass distribution as a Poisson process (i.e. the conditional

probability has the form of a Poisson distribution). This assumption has no physical

support and, therefore, it is important to test whether other functions can describe better

the conditional probability. I use three distribution functions, along with the Poisson

one, to investigate how they reproduce the conditional probability obtained from high

resolution N -body simulations. These three functions correspond to the Gaussian, the

Lognormal and the Thermodynamic distributions. The last one was developed in the 80’s

based on thermodynamic arguments.

It has been found that the halo-mass conditional probability functions are best de-

scribed by a Gaussian function and that PV (N |δm) is significantly non-Poisson. The ratio

between the variance and the mean goes from ∼ 1 (Poisson) at 1 + δm ¿ 1 to < 1 (sub-
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SUMMARY

Poisson) at 1 + δm ∼ 1 to > 1 (super-Poisson) at 1 + δm À 1. The mean bias relation

has been found to be well described by halo bias models based on the Press-Schechter

formalism. The sub-Poisson variance can be explained as a result of halo-exclusion while

the super-Poisson variance at high δm may be explained as a result of halo clustering. A

simple phenomenological model is proposed to describe the behavior of the variance as

a function of δm. Galaxy catalogues obtained from the simulations using semi-analytical

models of galaxy formation were used to investigate the behavior of the galaxy-mass bias

relation. It has been found that the galaxy distribution in the cosmic density field pre-

dicted by semi-analytic models of galaxy formation shows similar stochastic behavior as

dark matter haloes do. It has been found also that the conditional probability for galaxies

is well described by a Gaussian function.

These results have important implications in the interpretations of galaxy clustering

in terms of the underlying density field, as discussed in chapter 2. Thus, in order to

infer the properties of the mass distribution in the Universe from statistical measures of

the galaxy distribution, it is necessary to understand first the stochastic nature of galaxy

biasing.

The main results of this thesis are under the process of publication in the articles

Casas-Miranda et al. (2002) and Casas-Miranda et al. (2002, in preparation).
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Chapter 1

Introduction

1.1 Motivation

One of the most important questions in modern cosmology is to understand how the

structure, that is the distribution of galaxies, galaxy clusters and of the underlying matter,

in the universe has been formed. In order to address this question it is necessary to

have well defined quantities to describe the structure present in the universe, as well as

self consistent theoretical models of structure formation. Normally theoretical models to

describe large-scale structure in the universe are based on some random or stochastic initial

conditions. Thus, it is required to interpret clustering data, whether from observations or

from numerical simulations, in a statistical way.

The distribution of galaxies is the directly observable part of the structure in the

universe. Thus, observationally, the large scale structure of the universe can be investi-

gated by analyzing the statistics of the distribution of galaxies. In the last years, there

has been an increasing progress in the accuracy and sky coverage of galaxy surveys. As

the quality and quantity of the data increases, it is necessary to improve the theoretical

models of structure formation, as well as the statistics used to quantify the clustering.

There are several statistical measures of galaxies, each of them having a particular utility

depending on the special features of the structure one aims to analyze. Among the most

common quantities used to measure local galaxy clustering we find the N-point correlation

functions as well as the distribution of counts-in-cells and its moments.

1



CHAPTER 1. INTRODUCTION

In order to construct a good theoretical model of structure formation one should

be able to describe all the physical processes involved in the formation and clustering

of galaxies. In addition the model must be able to reproduce the clustering patterns

observed from galaxy catalogues. Here the most challenging problem is to understand

the relationship between the galaxy distribution and the underlying matter distribution

in the universe. From earlier studies it is known that galaxies of different type cluster

in different ways (Dressler 1980), which means that they do not trace the underlying

mass exactly. Moreover, from the emptiness of large voids and the spikiness of the galaxy

distribution with ∼100 h−1 Mpc spacing, specially at high redshifts, it is clear that if

the structure has evolved according to standard gravitational instability theory then the

galaxy distribution must be biased (Dekel & Lahav 1999). In addition, the distribution

of galaxies obtained from semi-analytical models of galaxy formation does not trace the

matter distribution from the corresponding N-body simulations, as is clearly shown in

figure (1.1)

That means that it is mandatory to understand the process of galaxy biasing if one

wants to constrain models of galaxy formation or to constrain the values of cosmological

parameters from the observed distribution of galaxies.

Initially proposed by White & Rees (1978), the current framework of galaxy formation

is divided into two parts: first, the dominant dark matter component in the universe

collapses by gravitational instability into small lumps which then undergo a hierarchical

process of formation of larger structures; second, the gas fraction trapped within the

potential wells of the dark matter lumps cools down and condenses to form galaxies. The

first stage of galaxy formation is driven by gravity alone, and therefore it seems easy to

solve. However, the second stage is not yet well understood and many physical processes

are involved in it. Nevertheless, these processes probably have their main influence on

the individual properties of galaxies, and a negligible influence on the overall clustering

properties.

Since the clustering properties of galaxies are mainly determined by the gravitational

processes involved in the formation and clustering of dark matter haloes (i.e. virialized

dark matter clumps), the clustering properties of the galaxy distribution can be fairly

approached by studying the clustering properties of the dark matter haloes, where the

only physical process involved is gravity.

2



1.1. MOTIVATION

Figure 1.1: Present epoch population of galaxies (colored-circles), obtained from semi-analytical
models of galaxy formation, superimposed to the dark-matter distribution (grey-colored) in the
GIF τCDMN-body simulations. The picture corresponds to a slice of thickness 8 Mpc/h through
the whole simulation box (85 Mpc/h on a side). The colors denote the B-V colors of the galaxies,
ranging from red for ellipticals to blue for irregulars. Clearly, one can see that the distribution
of galaxies does not trace the dark-matter distribution in a simple way. From Kauffmann et al.
(1999)

.
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CHAPTER 1. INTRODUCTION

In this thesis the relationship between the spatial distribution of dark matter haloes

and the underlying dark matter distribution will be investigated. This relationship is

commonly known as the halo-mass bias. In particular, some deterministic biasing models

for the counts-in-cells moments, up to fourth order, of the spatial dark matter halo dis-

tribution, based on the spherical gravitational collapse and its ellipsoidal extension, will

be tested. Moreover, the stochastic nature of the halo-mass bias relation will be analyzed

in detail from the point of view of the conditional probability function, which specifies

completely the bias relation in a statistical sense. In order to do that, a couple of theo-

retical distribution functions will be probed against the conditional probability obtained

from high resolution N-body simulations and a model for the mean and the variance of

the halo-mass bias relation will be probed against simulations. The implications of the

stochasticity in halo-mass bias will be discussed.

The thesis is organized as follows. The remaining part of this chapter will briefly

introduce the current framework of the cosmological model, composed by the definition

of the background universe and the process of structure formation as the gravitational

collapse of initial fluctuations from homogeneity, present in the primeval universe. A

short introduction to some statistical measures of clustering is also given. Chapter 2

presents the test of some deterministic models of halo biasing against numerical N-body

simulations. Chapter 3 presents the investigation of the stochastic nature of the halo-mass

bias relation by searching for a good analytical descriptor for the conditional probability,

among a couple of analytical distributions, and by testing a model for the mean and

variance of the bias relation, based on spherical collapse. Additionally, in that chapter,

the effect of the stochasticity in halo-mass bias is quantified. Finally, the main findings

of this work will be summarized and discussed in chapter 4.

1.2 Cosmological Background

In the standard cosmological model it is assumed that the Cosmological principle, which

states that the mass distribution in the universe is homogeneous and isotropic on large

enough scales, is valid. An homogeneous and isotropic universe is the most simple model

of the universe one can have. The space time of such a universe can be described by

4



1.2. COSMOLOGICAL BACKGROUND

means of the Robertson-Walker metric, which can be expressed as

ds2 = c2 dt2 − a(t)
(

dr2

1− kr + r2dΩ2

)

, (1.1)

where the spatial positions are denoted by the spherical coordinates (r, θ, φ). The squared

solid angle element is dΩ2 = dθ2+sin2 θ dφ2. It should be noticed that, in these universes

the spatial coordinates are comoving with the expansion of the universe, which is described

by the dimensionless expansion parameter a(t).

In general, the expansion parameter is defined to be unity at the present epoch [a(t0) =

1]. The value of the parameter k defines the geometry of the universe under consideration

to be flat (k = 0), open (k < 0) or closed (k > 0).

Having the Robertson-Walker metric and assuming further that the matter and radi-

ation content in the universe can be described as an ideal fluid, Einstein’s field equations

lead to the Friedmann equations

ä

a
= −4πG

3

(

ρ+
3p

c2

)

+
Λc2

3
(1.2)

and
(

ȧ

a

)2

=
8πG

3
ρ− kc2

a2
+

Λc2

3
. (1.3)

Here G is the gravitational constant, ρ is the density of the matter-radiation fluid and p

its pressure. The time derivative of the expansion factor is denoted by ȧ ≡ d
dt
a.

Λ corresponds to the cosmological constant, also known as the energy density of vacuum.

For a complete description of the background universe it is necessary to provide the

equation of state of the cosmic fluid. First of all, the cosmic fluid has three principal

components: baryonic matter, dark matter, and radiation (relativistic massless particles).

In the sense of the equation of state of the cosmic fluid, the history of the universe

is commonly divided into two main epochs. The first epoch corresponds to the early

universe, when radiation and relativistic particles were the dominant component of the

energy density and the equation of state has the form p = 1
3
ρc2. As the universe expanded

and cooled down, the energy density of the radiation decayed faster than the energy

density of the non-relativistic matter. Thus, after a certain point in the history of the

universe the energy density of the non-relativistic matter has started to dominate the

cosmic energy density and so the pressure of the fluid can now be neglected. This epoch

is known as the matter-dominated era.

5



CHAPTER 1. INTRODUCTION

The Friedmann equations together with the equation of state of the ideal cosmic fluid

constitute a system of equations, whose solutions are characterized by some parameters.

In the following I will introduce the definition of the parameters used to describe the

Friedmann universes.

The first quantity to introduce is the Hubble constant, which is defined as the expan-

sion rate of the universe at the present epoch (t0)

H0 =
ȧ

a

∣

∣

∣

∣

t0

. (1.4)

The Hubble constant is usually represented by the dimensionless factor h, defined by the

expression H0 = 100 h km s−1Mpc−1.

Since the special case of a flat universe (k = 0) is obtained for a special value of the

matter density in the universe, it is natural to define a critical density ρc in terms of the

Hubble constant

ρc =
3H2

0

8πG
, (1.5)

which is useful to define other dimensionless parameters, like the matter density parameter

Ω0 =
ρ

ρc
, (1.6)

the vacuum density parameter

ΩΛ =
Λc2

3H2
0

, (1.7)

and the curvature density parameter

ΩR = − kc2

a0H2
0

. (1.8)

All these quantities are defined for their values at the present epoch.

Therefore, a Friedmann universe can be described by the above defined cosmological

parameters (H0,Ω0,ΩΛ,Ωr) and the expansion rate as a function of the expansion factor

is given by

H2(a) = H2
0

[

ΩΛ + Ω0a
−3 + Ωra

−4 − (Ω− 1)a−2
]

. (1.9)

This crucial relation is of great utility because it can be used to obtain the relation between

time and the expansion factor

da

dt
= a H0

[

ΩΛ + Ω0a
−3 + Ωra

−4 − (Ω− 1)a−2
]1/2

. (1.10)
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1.3. DYNAMICS OF STRUCTURE FORMATION

In cosmology it is usual to express the time by means of the cosmological redshift. Due

to the expansion of the universe, the electromagnetic radiation emitted with a wavelength

λem is observed, at a distant place, having a wavelength λobs > λem. In other words, the

electromagnetic signal has been redshifted by z = (λobs − λem)/λem. This redshift is of

particular importance and utility in cosmology because it can be directly measured from

observations of spectra. If one neglects the peculiar motions the source can have, i.e. its

deviations from the Hubble flow, the redshift can be related to the expansion factor by

z + 1 =
1

aem
, (1.11)

where aem is the size of the universe at the emission time.

The exact values of the cosmological parameters are not known yet and their deter-

mination is still one of the major challenges of modern observational cosmology.

One of the simplest cosmological models corresponds to a flat universe with zero

cosmological constant. This model is usually called Einstein-de-Sitter universe (Ω0 =

1, Ωr = ΩΛ = 0) and is a very attractive one from a theoretical point of view, since it

comes out as a natural prediction from simple inflationary models.

The current state of the cosmic puzzle is still controversial. Observational evidence

from the last years seems to be increasingly favoring a low mass universe with Ω0 ∼
0.3. Current observations are showing that maybe we are living in a vacuum dominated

universe (ΩΛ ∼ 0.7), with Ω0 + ΩΛ = 1.

1.3 Dynamics of Structure Formation

It is well known that the universe is populated, at large scales, by a wide range of struc-

tures, from small galaxies, to clusters of galaxies, super clusters and even to larger systems.

Also it is known that there are very big regions of the universe without any galaxy (known

as “voids”). This, altogether, is evidence for a universe far from homogeneity. From deep

galaxy surveys we know too that the universe becomes statistically homogeneous at very

large scales (e.g. at distances larger than 100Mpc/h). That means that, although the uni-

verse is inhomogeneous at small scales, if the cosmic fields are smoothed over large enough

volumes, homogeneity is recovered and it is still possible to describe the global dynamics

of the universe by the above introduced Friedmann models. Within this framework the

structure in the universe is investigated as a deviation from homogeneity.
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The most popular models of structure formation are based on a description of the back-

ground universe, a mechanism for generating small perturbations in the early universe,

and a specification of the nature of the dark matter present in the universe.

The background universe is usually assumed to be a Friedmann model, completely

specified by the value of the Hubble constant and the different components of the energy

density. The existence of small perturbations in the energy density field at early epochs is

explained by most of the models by means of processes which are assumed to have taken

place in the very early universe (e.g. at z ∼ 1018 or earlier). So far, the most successful

models in this regard are inflationary ones.

Let us assume a universe described by a Friedmann universe with small perturbations

in the energy density field, specified by a power spectrum P (k, zin) at very high redshift zin.

Since the perturbations at all relevant scales are small at epochs prior to the epoch when

matter and radiation decoupled (zd = z ≈ 1000), it is possible to predict unambiguously

the power spectrum P (k, zd) at the epoch of decoupling zd using linear perturbation

theory. In general the shape of the linearly evolved power spectrum of fluctuations at

zd depends on the nature of the dark matter present in the universe. In a universe

dominated by “hot dark matter”, i.e. particles which move relativistically when they

decouple, large scales go non-linear first and smaller structures form by fragmentation.

On the other hand, in a universe dominated by “cold dark matter”, i.e. particles which

move non-relativistically when they decouple and are moving very slowly at the present

epoch, small scales go non-linear first and structure forms in a hierarchical way from the

small to the large.

The evolution of the power spectrum after the decoupling epoch (z < zd) is rather

more complicated. In general, as long as the perturbations still small, the amplitude of

the power spectrum evolves while the shape is preserved. For instance, in CDM universes

the amplitude of the power spectrum grows equally for all scales between the epoch of

decoupling and the present, assuming that linear theory is valid on all scales. This linearly

evolved spectrum describes correctly the evolution of inhomogeneities at large scales but

is not longer correct at small scales, due to the inherent non-linear nature of gravity, which

is one of the major difficulties in understanding the physics at these small scales. Another

difficulty is the need to understand the gas dynamics processes occurring at small scales.
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Currently the most widely accepted cosmological models are those dominated by cold

dark matter particles (CDM). Those models are specified by the relative energy density

components. The structure content is determined by the power spectrum of fluctuations

from homogeneity. The initial power spectrum of fluctuations in CDM universes can be

described by (Efstathiou et al. 1992)

P (k) =
Bk

{1 + [ak + (bk)3/2 + (ck)2]ν}2/ν , (1.12)

with

a = 6.4 Γ−1h−1 kpc, b = 3.0 Γ−1h−1 kpc, c = 1.7 Γ−1h−1 kpc and ν = 1.13.

Here Γ is the shape parameter of the power spectrum and its value is chosen to fit the

power spectrum to a wide range of models. For the standard flat cold dark matter universe

(SCDM) Γ = h; In the case of flat universes with a non-zero cosmological constant (ΛCDM

) Γ = Ω0h. For universes which are variants of the CDM model with more large-scale

power due to decaying neutrinos (τCDM ) the shape parameter is well approximated

by Γ ∼= Ω0h[0.861 + 3.8(m τ)2/3]1/2, where m is the neutrino mass (in units of 10 keV)

and τ is its lifetime in years (Efstathiou et al. 1992). Within this framework the CDM

cosmological model is completely specified by the values of the different components of

the energy density and by the amplitude and shape of the power spectrum of fluctuations.

The growth of density fluctuations which are small (|δ| ¿ 1) at a given scale can

be followed by linear perturbation theory. However, as the fluctuations grow, at some

time tnl(λ) the density contrast at a given scale (λ) becomes comparable to unity. After

this time the linear theory fails at this scale and, therefore, it is necessary to study

the gravitational evolution in the non-linear regime. Since the complexity of the non-

linear problem of gravitational collapse does not allow for general analytical solutions

and only a few special cases with analytical solutions exist, like the spherical collapse

model, numerical simulations of the gravitational dynamics of N bodies are necessary to

get insights into the processes occurring within strong non-linear regions.

Analytically, the collapse of a spherical region of uniform density in an otherwise uni-

form background universe corresponds to one of the most simple models for the evolution

of a gravitational perturbation one can have. This model is known as the “spherical col-

lapse model” or as the “spherical top-hat collapse”. It is known that the dynamics of

9
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such a spherical perturbation are exactly the same as the dynamics of a closed universe

with Ω0 > 1. The scale parameter of such universes obeys a cycloid evolution (i.e., the

universe expands until a certain epoch and then recollapses due to its self gravitational

potential.)

The evolution of the perturbation can be described as follows. Initially the perturba-

tion expands along with the background universe. At a certain epoch the perturbation

reaches its maximum radius (Rmax) and its expansion separates out from the expansion

of the background universe. After this epoch the perturbation undergoes a collapsing

process.

If only gravity is acting on the perturbation, the sphere will collapse to a singularity.

However this collapse does not occur in practice, since dissipative processes are usually

present and therefore convert the kinetic energy of collapse into random motions. The

final stage of the process will be thus a system which satisfies the virial theorem. That

is, the internal kinetic energy of the self-gravitating system of masses will be equal to

the half of its gravitational potential energy 2K = −U . Within this framework it is

straightforward to estimate the final size and density of the collapsed object.

Assuming that the total energy of the perturbation at its maximum expansion radius

R = Rmax is in the form of gravitational potential energy, then from energy conservation,

the kinetic energy when the perturbation has collapsed to half its maximum expansion

radius is K = −U/2, which is the condition for equilibrium. At the time the perturbation

has collapsed to half its maximum expansion R = Rmax/2 the perturbation has increased

its density by a factor of 8 while the background density has decreased, and the density

of the perturbation at this time is about 170 times the background density. It is widely

accepted that an object considered as virialized has a density larger than 200 times the

background density.

1.3.1 The Press-Schechter Formalism

In Cold Dark Matter universes, only primordial fluctuations on very small scales survive

after recombination and the nonlinear collapse of structures with sub-galactic size seems

to be the first event to occur after recombination. These small scale-structures then

cluster together in a “hierarchy”, forming successively larger objects.

10
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Press & Schechter (1974) have proposed an analytic formalism for the process of struc-

ture formation once the density perturbations have reached such an amplitude that they

can be considered as having formed bound objects. The principal assumption in the

Press-Schechter formalism is that, even if the field is nonlinear, the amplitude of large-

wavelength modes in the final field will be close to that predicted from linear theory. It is

known that a massive clump will undergo gravitational collapse if its average overdensity

in a volume containing that mass exceeds some threshold of order unity (δc), indepen-

dent of substructure. The properties of these bound structures can be estimated by an

artificial smoothing of the initial density field using a filter function. If the filter function

has some characteristic length Rf , then the typical size of the filtered fluctuations will be

proportional to the characteristic length and, therefore, one can assign to them a mass

M ∼ ρ0R
3
f [ρ0 is the total background density of the model]. The exact form of the filter

function is arbitrary and is generally adopted either as a Gaussian function or as a top-hat

function (i.e. a sphere with uniform weight), due to analytical convenience.

For a Gaussian density field one has that the phases of the waves which make up the

density distribution are random and the distribution of the amplitudes of the perturba-

tions in a given smoothing volume V with characteristic scale R ≡ Rf can be described

by a Gaussian function

p(δ) =
1√

2πσ(R)
exp

(

− δ2

2σ2(R)

)

, (1.14)

where σ(R) is the linear rms in the smoothed version of δ. The probability that a given

point lies in a spherical region of radius R with an overdensity larger than the critical

overdensity for collapse (δ > δc) is

P (δ > δc | R) =
1

2

[

1− erf
(

δc√
2 σ(R)

)]

, (1.15)

Notice that the critical overdensity for collapse δc is given by a gravitational collapse

model. For instance, in the spherical collapse model a density perturbation collapses

when its linear overdensity reaches δc ∼ 1.69.

The Press-Schechter argument states that this probability is proportional to the prob-

ability that a given point has ever been part of a collapsed object with scale larger than

R. That means that the only objects existing at a given epoch are those having only

just reached the δ = δc collapse threshold. For instance, if a point has an overdensity
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larger than the critical overdensity for collapse, for a given scale R, then it will have an

overdensity equal to the critical one (δ = δc) when smoothed at some larger scale and will

be, therefore, counted as an object of the larger scale.

Thus, the fraction of the universe which has condensed into objects with mass > M

can be written in the universal form

F (> M) = 1− erf
(

ν√
2

)

, (1.16)

where ν = δc/σ(M) corresponds to the threshold in units of the rms density fluctu-

ations. There is a factor 2 with respect to equation (1.15) which was introduced by

Press & Schechter (1974) to account for the problem that half of the mass remains unac-

counted for, if using this probability.

One can express this integral probability in terms of the mass function f(m) by

Mf(M)

ρ0
=

∣

∣

∣

∣

dF

dM

∣

∣

∣

∣

, (1.17)

with the mass function defined in such way that f(M)dM is the comoving number density

of objects in the range dM ; ρ0 is the total comoving density.

Thus,

M2 f(M)

ρ0
=

dF

d lnM

=

∣

∣

∣

∣

d lnσ

d lnM

∣

∣

∣

∣

√

2

π
ν exp

(

−ν
2

2

)

. (1.18)

M2f(M)/ρ0 is the multiplicity function, which corresponds to the fraction of the mass

carried by objects in a unit range of lnM .

The Press-Schechter formalism and its extensions (Lacey & Cole 1994) are widely used

to model the formation and evolution of structures in the universe, such as galaxy clusters

and dark matter haloes, as well as to model the bias relation between the distribution of

virialized objects and the underlying mass distribution.
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1.4 Statistical Measures of Clustering

Now let us see how to test theories of structure formation using either observations or

numerical simulations. In the following I shall briefly introduce some of the most widely

used statistical measures of clustering. A detailed description of these statistics can be

found in several excellent textbooks, like Peacock (1999) and Coles & Lucchin (1995).

The statistical measures most frequently used to study the large scale structure of the

universe are: N-body correlation functions, which are defined to describe the clustering

properties of a spatial distribution of objects; the power spectrum, which corresponds

to the Fourier pair of the two-point correlation function; the void probability functions,

which measures the probability of finding no objects in a randomly placed sphere of

a given volume; and topological analysis, among others. Different statistical analysis

measures different aspects of the observed clustering pattern. Statistics like the two-point

correlation function, the cell-count variance and the galaxy power spectrum are directly

related to the power spectrum of the fluctuations and therefore, can be used to constrain

it. Methods like the higher-order correlations and fractal analysis can be used to study

the role of self-similarity in the process of structure formation.

N-point Correlation Functions

One of the statistical quantities most widely used to measure the clustering in the universe

corresponds to the correlation functions, which can be spatial three-dimensional measures

or two-dimensional projections (angular correlation functions). The use of correlation

functions was first suggested by Totsuji & Kihara (1969) and then continued in the 70’s,

mainly by Peebles. The correlation function is defined to describe the clustering properties

of objects in space. These objects can be galaxies, clusters of galaxies or whatever entities,

whose distribution in space is to be investigated.

The simplest correlation function corresponds to the two-point correlation function. It

is widely used either in its spatial three-dimensional version or in its angular version. The

spatial two-point correlation function is defined as the excess probability, in comparison

with a random distribution, to find another object at a distance r12 from a given object,

dP = n2V [1 + ξ(r12)]dV1 dV2, (1.19)
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where dP is the joint probability of finding one object in a small volume dV1 and another

one in the volume dV2, separated by a distance r12. nV is the mean number of objects per

unit volume and the volume elements must be chosen randomly within a representative

volume of the universe. ξ(r12) is called the spatial two-point correlation function. Due to

statistical homogeneity and isotropy, ξ depends only on the modulus r of the separation

vector r12.

The implementation of this definition, i.e. the way ξ(r) can be measured in practice,

requires the calculation of the expected number of pairs in a random distribution, within

the sampling limits. This number is usually estimated creating a random catalog much

larger in number than the sample under analysis. The correlation function is, then,

estimated by counting pairs either within each catalog or between catalogues, giving

several estimators of 1 + ξ as the ratio of different pair counts.

Count-in-Cells Statistics

A simple but very useful way to measure the clustering of objects (galaxies, haloes, clus-

ters, etc.) on large scales corresponds to the distribution of count of objects in cells PV (N),

defined as the probability of finding N objects in a randomly placed cell of volume V .

In practice, rather than estimating the whole count-in-cells distribution (Probability Dis-

tribution Function), the first moments of the distribution function, like the variance, the

skewness and the kurtosis, are estimated. Using only some of the moments of the count

distribution leads to a loss of information in comparison with the use of the full distribu-

tion function. Nevertheless, the gain is a simple relationship between the moments of the

count distribution and the correlation functions, because the cumulants ξ̄Q(r) (or volume

averaged correlation functions) of order Q can be expressed as a function of the central

moments µQ ≡ 〈(∆N/N)Q〉 of the count-in-cells distribution, up to order Q; N is the

mean number of objects in the cell. The cumulants ξ̄Q(r) up to order fourth are written

ξ̄2(r) = µ2 −
1

N
, (1.20)

ξ̄3(r) = µ3 − 3
µ2

N
+

2

N
2 , (1.21)

ξ̄4(r) = µ4 − 6
µ3

N
− 3µ22 + 11

µ2

N
2 −

6

N
3 . (1.22)
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Here the additional terms, proportional to 1
N
, 1

N2 , etc., at the right hand side correspond

to a Poisson shot noise correction, due to discreteness effects. The cumulants are defined

as a function of the correlation function by

ξ̄Q(R) ≡
∫

dr1...drj WR(r1)...WR(rj) ξj(r1, ..., rj) , (1.23)

where WR(r) defines a suitable filter over a volume of size R.

The usual formulation for the moments of the count distribution is to define the

quantities SQ ≡ ξ̄Q/ξ̄
Q−1
2 . In the hierarchical model the SQ’s of the mass distribution

should be constant, regardless of the size of the cell (Peebles 1980).

1.5 The Concept of Bias

The matter content in the universe is dominated by a dark component. It is currently

known that the amount of luminous matter, i.e. matter emitting electromagnetic radi-

ation, corresponds only to a small fraction of the total matter in the universe. Since

galaxies are the building blocks of the “luminous” universe, they are the most suitable

objects to be observed and studied to try to understand our universe. Therefore it is nec-

essary first to understand the way galaxies trace the underlying dark matter field. The

relationship between galaxies and the underlying total mass is called galaxy-mass bias.

Thus, in order to be able to use the statistical properties of the observed galaxy distri-

bution to understand better the physical processes of structure formation in the universe

and to make use of galaxy catalogues to constrain the values of cosmological parameters,

it is mandatory to have first a reliable picture of the galaxy-mass bias relation.

Currently, it is widely accepted that the cosmic structure we observe has been formed

as the result of the growing of infinitesimal mass overdensities present in the primeval

universe. Thus, as the universe evolves, these primeval seeds of the cosmic structure have

undergone a growing process driven by gravity.

In 1982 Peebles introduced the term “Cold Dark Matter” to describe a population of

exotic particles, whose existence was postulated in certain theoretical models of particle

physics. The cold dark matter scenario mainly consists in assuming that the matter

content in the universe is dominated by some form of collisionless dark matter.
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White & Rees (1978) made a seminal proposal about the process of galaxy forma-

tion. They suggested that galaxy formation occurs in two different stages. At first they

proposed that the dominant dark matter component of the universe collapses into small

clumps at an early epoch and that these dark clumps continue clustering in a hierarchical

way. This process leads to a self-similar distribution of bound masses, which correspond

to what we usually call dark matter haloes. The second stage in the galaxy formation

process corresponds then to the cooling and condensation of the baryonic mass trapped

within the potential wells of the dark matter clumps.

The hydrodynamical part of the galaxy formation is still rather poorly understood

and some effort has been spent in order to improve our knowledge about the physical

processes involved and the role they play in the whole process of galaxy formation (e.g.

White & Rees 1978; White & Frenk 1991).

Since the processes of formation and clustering of dark matter haloes in a cosmic

density field involves only gravity, it appears that the problem of spatial galaxy clustering

can be well approximated by understanding the spatial clustering of dark matter haloes

and the formation of galaxies in individual dark haloes. In this way the clustering of

dark matter haloes is studied by means of the gravitational theory and the formation of

individual galaxies in a halo is traced using realistic models of galaxy formation in dark

haloes that can now be constructed using semi-analytic models (e.g. Kauffmann et al.

1999; Cole et al. 2000; Somerville & Primack 1999). Indeed, there are quite a few recent

investigations attempting to model galaxy clustering based on the halo scenario (e.g.

Jing et al. 1998; Ma & Fry 2000; Scoccimarro et al. 2001; Peacock & Smith 2000; Seljak

2000; Sheth et al. 2001).

This also means that it is quite useful to approach the problem of galaxy clustering

by studying the spatial clustering of dark matter haloes and assuming, initially, that the

amount of galaxies hosted by a single halo is in general equal or very near to one. Of

course this assumption might not be true, but it is a good initial starting point. In any

case, the results from prior related studies and the results to be presented here show that

this assumption is not far from reality.

Up to this point it is clear that it is worth to investigate the relationship between dark

matter haloes and the mass density field (halo-mass bias). In this thesis, the statistical

properties of the spatial dark halo distribution in cosmic density fields are studied.
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Now let us introduce the concept of halo-mass bias. Let us define ρ and ρ as the

mass density and the mean mass density, smoothed in regions of some given volume V ,

respectively. The mass density contrast (δm) in this volume is then defined as:

δm ≡
ρ

ρ
− 1. (1.24)

In the same way, if Nh and Nh correspond to the number of dark matter haloes and to the

mean number of dark matter haloes in the volume V , respectively, the number density

contrast of dark matter haloes (δh) is given by

δh ≡
Nh

Nh

− 1. (1.25)

The relationship between δh and δm is known as the halo-mass bias. A general way to

represent this bias relation consists in expressing the halo number density contrast as a

function of the mass density contrast

δh(V ) ≡ F (δm(V )). (1.26)

Since the mass and halo number density contrasts are defined in a given volume, the bias

relation defined in equation 1.26 depends only on the masses within V and not on any

mass-concentration outside of V . Therefore it is called “local halo-mass bias”. The exact

form of the function F (δm(V )) is not known a priori. Several arguments and physical

mechanisms for different kinds of biasing schemes have been proposed.

A simple approximation to the origin of biasing was formulated, for the case of galaxy

biasing, by Kaiser (1984) and Bardeen et al. (1986) as a scheme for the biasing of high-

density peaks in a Gaussian random field. In this scheme the two point spatial correlation

functions of the mass (ξm) and of the galaxies (ξg) are related, in the linear regime, by

means of the bias relation

ξg(r) = b2ξm(r), (1.27)

where r is the scale at which the correlation is measured and b is a constant independent

of the scale (i.e. the smoothing volume under consideration). This biasing scheme is

called “linear bias”. A more specific linear biasing scheme is usually adopted, where the

local galaxy and mass density contrasts are related by

δg(x) = b δm(x), (1.28)
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where x is the spatial coordinate. From the definition of the two point correlation function,

it can be shown that equation (1.27) follows from equation (1.28). This deterministic

linear biasing scheme is probably too simplified.

More realistic models of biasing include deterministic models where b is a function

of the scale and other variables. In the case of halo bias, for instance, a non-linear

model of halo biasing has been developed by Mo & White (1996) based on the Press-

Schechter formalism (Press & Schechter 1974) and its extensions (Lacey & Cole 1994).

Their theoretical analysis provides a good approximation to the behavior of the non-linear

halo biasing as a function of scale, time and halo mass. The use of N-body simulations

has shown that the model proposed by Mo & White (1996) is a good approximation.

Nevertheless, since in general the number of haloes (and therefore of galaxies) formed

in a given volume depends not only on the local mass density contrast but also on other

properties of the mass distribution, the relation between the halo-number density field N

and the local mass overdensity field δm is not expected to be deterministic. Thus, the halo-

mass bias relation must be stochastic. In fact, the stochastic nature of the bias relation

is already emphasized in the original paper of MW; in particular, MW pointed out that

halo-exclusion can cause sub-Poisson variance, i.e. it is smaller than the mean. The effect

of stochasticity may be important in the full distribution function of haloes (galaxies)

as well as in the different biasing parameters needed to extract information from galaxy

catalogues. Sheth & Lemson (1999) showed how the effects of stochasticity could be incor-

porated into the analysis of the higher-order moments of the halo distribution. Recently

Somerville et al. (2001) used N -body simulations to study the stochasticity and non-

linearity of the bias relation based on the formalism developed by Dekel & Lahav (1999).

They analyzed the bias relation for haloes with masses larger than 1.0× 1012 h−1 M¯ in

spherical volumes of radius 8h−1Mpc.

In this thesis the halo-mass bias relation will be investigated. In particular the validity

of some deterministic biasing models, based on the spherical gravitational collapse and its

ellipsoidal extension, will be tested against N-body simulations. Moreover, the stochastic

nature of the halo-mass bias relation will be analyzed in detail from the point of view

of the conditional probability function, which specifies completely the bias relation in

a statistical sense. In order to do that, a couple of theoretical distribution functions

will be probed against the conditional probability obtained from high resolution N-body
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simulations and a model for the mean and the variance of the halo-mass bias relation will

be probed against simulations. The implications of the stochasticity in halo-mass bias

will be discussed.
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Chapter 2

Deterministic Bias

2.1 Introduction

In the standard scenario of galaxy formation, it is assumed that galaxies form by the

cooling and condensation of gas within dark matter haloes (e.g. White & Rees 1978;

White & Frenk 1991). Thus, the problem of galaxy clustering in space can be approached

by understanding the spatial distribution of dark matter haloes and galaxy formation in

individual dark haloes. This approach is very useful for the following two reasons: (i)

the formation and clustering properties of dark haloes can be modeled relatively reliably

because of the simple physics involved (gravity only), (ii) realistic models of galaxy for-

mation in dark haloes can now be constructed using either semi-analytic models (e.g.

Kauffmann et al. 1999; Cole et al. 2000; Somerville & Primack 1999) or hydrodynami-

cal simulations (e.g. Benson et al. 2001). Indeed, attempts have been made to use the-

oretical models of halo clustering to understand clustering properties of galaxies (e.g.

Mo et al. 1997; Ma & Fry 2000; Scoccimarro et al. 2001; Peacock & Smith 2000; Seljak

2000; Sheth et al. 2001). Most of these investigations use the theoretical models presented

in Mo & White (1996) and in Mo et al. (1997) (hereafter MJW) to calculate the second-

order and high-order correlations of dark haloes. These models are based on the Press-

Schechter formalism (Press & Schechter 1974) and its extensions (Lacey & Cole 1994).

The model prediction for the second moment, or the two-point correlation function,

has been tested quite extensively by numerical simulations (Mo & White 1996; Mo et al.

1996; Jing 1998; Sheth & Tormen 1999; Governato et al. 1999; Colberg et al. 2000). The
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results show that the model proposed by Mo & White works reasonably well over a large

range of halo masses. However, a significant discrepancy between model and simulation

results was found for low-mass haloes (Jing 1998; Sheth & Tormen 1999). Sheth et al.

(2001) (hereafter SMT) suggested that the discrepancy at the low-mass end may be due

to the fact that the model considered by Mo and White assumes spherical collapse for

the halo formation while the collapse in realistic cosmological density fields may be better

approximated by an ellipsoidal model. Indeed, SMT found that, if the ellipsoidal model

is used, better agreement between the model and simulation results can be achieved in

both the halo mass function and the two-point correlation function for low-mass haloes.

The performance of the MJW model for the high-order moments of the halo distri-

bution has been tested in their original paper using scale-free N-body simulations with

relatively low resolution. Although their results show that the theoretical model matches

the simulation results, the limited dynamical range in the simulations used by them does

not allow one to test the model for a large range of halo masses. Furthermore, although

the MJW model has been extended to include ellipsoidal dynamics (Sheth et al. 2001),

this extension has not yet been tested by simulation results.

In this chapter two sets of high-resolution Cold Dark Matter simulations are used to

test the MW and MJW models and their ellipsoidal collapse extensions. One set has

a very large simulation box (and so low mass resolution), which is used to control the

finite-volume effect usually found in the analysis of high-order moments of the galaxy

distribution (Colombi et al. 1994). The other set has a smaller simulation box but much

higher mass resolution, which allows one to test the model for low-mass haloes.

The chapter is organized as follows: The procedure to obtain the moments of counts-

in-Cells is presented in section (2.2). Section (2.3) introduces the theoretical models for

the moments of halo counts-in-Cells. Analysis of the simulation data and the comparison

of the theory with the simulation results are presented in section (2.4). An application

of the theoretical model to the higher-order moments of Lyman-break galaxies is done in

section (2.5). Finally, section (2.6) summarizes the results.
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2.2 Moments of Counts-in-Cells

One of the most useful statistical quantities to measure clustering corresponds to the two-

point correlation function, also known as the autocorrelation function. Nevertheless, the

two-point correlation function does not contain complete information about the whole

distribution of objects under consideration, and if one wants to look further, then it

is necessary to make use of other statistical quantities, such as the N-point correlation

functions (N=3,4,...).

In practice, however, the computation of the three- or four-point spatial correlation

functions is quite expensive, in terms of the computation time and the computational

resources needed. One way to overcome this problem is to use statistical quantities,

which are easier to obtain and contain similar information as the N-point correlation

functions. These quantities are the moments of the distribution of counts of objects, also

known as the moments of counts-in-cells. They are related to the volume-average of the

corresponding N-point correlation functions.

The distribution of the counts-in-cells is obtained, in practice, by counting the number

of objects found within a randomly placed cell of a given volume and repeating the process

sufficiently many times.

The calculation of the counts-in-cells moments of a discrete distribution of particles

and the relation of such moments to the corresponding moments of the underlying con-

tinuous density field are described in detail in Peebles (1980). The relevant formulae are

summarized in the following.

Let us assume that the cells used for the counts have spherical shape and therefore

their volume is completely determined by their radii (R). The j th central moment of

counts in cells of a point distribution is defined as

mj(R) =
M
∑

i=1

(Ni −N)j, (2.1)

where Ni is the number of particles counted in the ith sphere (cell), N is the mean number

of counts: N(R) = 1
M

∑M
i=1Ni(R), and the summation is over the M sampling spheres.

Notice that N is obtained directly from the counts.
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The connected moments, µi, are defined through the central moments as

µ2 = m2 (2.2)

µ3 = m3 (2.3)

µ4 = m4 − 3m2
2 . (2.4)

These relations are written up to the 4th order because these are the ones relevant for

later discussion. For a point process, the shot noise also contributes to the quantities µj.

These contributions become significant for small radii where the mean count N is small

and should be properly subtracted. If the particle distribution is a Poisson sampling of

the underlying density distribution, we can make the following subtractions to get the

corrected connected moments:

k2 = µ2 −N, (2.5)

k3 = µ3 − 3µ2 + 2N, (2.6)

k4 = µ4 − 6µ3 + 11µ2 − 6N. (2.7)

These quantities are related to the volume-averaged correlation functions by

N
j
ξj = kj , (2.8)

where

ξj = V −jW

∫

dr1...drj W (r1)...W (rj) ξj(r1, ..., rj) , (2.9)

and W (r) is a top-hat spherical window with volume VW .

2.3 Theoretical Models for the Moments of Dark

Matter Halos

This section introduces the models for the moments of the spatial distribution of dark

matter haloes, which are going to be tested against high-resolution numerical simulations.

The models to be tested correspond to the analytic model for the spatial clustering

of dark matter haloes developed by Mo & White (1996) and the analytical model for the

high-order correlations of haloes, both based on the spherical collapse model and the stan-

dard Press-Schechter formalism (Press & Schechter 1974) and its extension (Bond et al.
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1991). These models are referred to as spherical collapse based models. In addition, the

extension of the above mentioned models, based on ellipsoidal collapse model and its cor-

responding Press-Schechter extension, developed by Sheth et al. (2001) are also tested.

These models shall be referred as ellipsoidal collapse based models.

2.3.1 Spherical Collapse Based Models

Two-Point Volume-Averaged Correlation Function

Let us start with the model for the variance of the spatial distribution of dark mat-

ter haloes in cosmic density fields, i.e., the second moment of the halo counts-in-cells.

Mo & White (1996) (hereafter MW) have developed a model for the second-order correla-

tions of dark matter haloes, based on the spherical collapse model and the Press-Schechter

formalism (Press & Schechter 1974) and its extensions (Lacey & Cole 1994). The MW

biasing model is summarized in the following. Without loss of generality, it is assumed

an Einstein-de Sitter universe, i.e., Ω = 1, Λ = 0.

Let us start with the spatial initial overdensity field δ(~x) ≡ [ρ(~x)−ρ]/ρ, defined as the

local deviation of the density field (ρ(~x)) with respect to the mean density of the universe

(ρ). Let us assume that the spatial initial overdensity field δ(~x) is Gaussian and therefore

is described by a power spectrum P (k). The field δ(~x) is smoothed by convolving it with

a spherically symmetric window function W (r;R), with comoving characteristic radius

R. Thus, the smoothed field is

δ(~x;R) =

∫

W (|~x− ~y| ;R) δ(~y) d3y, (2.10)

which is equivalent to

δ(~x;R) =

∫

Ŵ (k;R) δk e
i~k·~x d3k, (2.11)

where δk and Ŵ (k;R) are the Fourier transforms of the spatial overdensity field δ(~x) and

the window function W (r;R), respectively.

For a given window function the smoothed field of a Gaussian field is Gaussian too.

Thus, since it is assumed that the spatial overdensity field δ(~x) is Gaussian, the smoothed

overdensity field δ(~x;R) is also Gaussian and, therefore, has the one point distribution
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function:

p(δ;R)dδ =
1

(2π)1/2
exp

(

− δ2

2∆2(R)

)

dδ

∆(R)
, (2.12)

where ∆2(R) is the rms mass fluctuation in a given window of comoving radius R:

∆2(R) =
〈

[δ(~x;R)]2
〉

=

∫

P (k)Ŵ 2(k;R)d3k. (2.13)

In linear perturbation theory δ and ∆(R) grow in the same manner, therefore, it

is convenient to use their values linearly extrapolated to the present epoch. Keeping

the notation as in MW, hereafter the formulae will be written in terms of extrapolated

quantities, unless otherwise stated. The smoothing radius will not be explicitly written.

Throughout this work a top-hat window (filter) function is adopted, which has the

form

W (r;R) =
3V

4πR3
(for r < R) (2.14)

with Fourier transform

Ŵ (k;R) =
3(sin kR− kR cos kR)

(kR)3
. (2.15)

The average mass contained in a Top-Hat window of radius R is simply

M(R) = (4π/3)ρR3. (2.16)

For a certain power spectrum P (k), a given spherical region (window) can be labeled

equivalently by means of any one of the quantities R, ∆ or M . They are equivalent

variables.

Now, let us continue with the dark matter haloes field and its relation to the initial

overdensity field. It is assumed that dark matter haloes are spherically symmetric, virial-

ized dark matter clumps. From the spherical collapse model [see section 1.3] one has that

a collapsing structure virializes (i.e., reaches its equilibrium state) at half its maximum

radius of expansion, implying a density contrast (δ) at the time of collapse of about 178.

Consider also, that in an Einstein-de Sitter universe a spherical perturbation with linear

overdensity δ collapses at redshift zc = δ/δc, where δc = 1.686.
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The mass M1 of a halo is related to the initial comoving radius of the region from which

it has been formed, by

M1 = (4π/3)ρR3
1. (2.17)

In what follows the properties of dark matter haloes will be labeled by the subscripts

1, 2, . . . , reserving the subscript 0 to label the properties of uncollapsed spherical regions.

In the Press-Schechter formalism the probability that a random mass element is part

of a dark halo of mass exceeding M1 at a given redshift z1 is twice the probability that

a surrounding sphere of mass M1 in the initial conditions has a linearly extrapolated

overdensity greater than δc at that redshift:

F (M1, z1) =

∫ ∞

(1+z1)δc

p(δ;R1)dδ; (2.18)

p(δ;R1) is given by equation (2.12). Another way to write this equation corresponds to

the form:

F (M1, z1) = F (ν1) = erfc

(

ν1√
2

)

, (2.19)

where the critical overdensity for collapse at redshift z1 is defined as δ1 = (1 + z1)δc.

ν1 ≡ δ1/∆1 is the threshold in units of the rms density fluctuation and erfc(x) is the

complementary error function.

This probability is related to the mass distribution function f(M1, z1). The comoving

number density of objects in the mass range dM1 is f(M1, z1)dM1, and

M1f(M1, z1)

ρ
=

∣

∣

∣

∣

∂F

∂M

∣

∣

∣

∣

, (2.20)

where ρ is the current mean density of the universe. Therefore, the comoving number

density of haloes, in current units, as a function of M1 and z1 is:

n(M1, z1)dM1 = −
(

2

π

)1/2
ρ

M1

δ1
∆1

d ln∆1

d lnM1

exp

(

− δ21
2∆2

1

)

dM1

M1

. (2.21)

The relationship between halo abundances and the density field on larger scales has

been modelled by MW as follows: Bond et al. (1991) derived the probability that the

overdensity at a randomly chosen point is δ0 when the initial field is smoothed on scale R0

and does not exceed δ1 for any larger smoothing scale. This is also considered, according
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to the Bond et al. (1991) reinterpretation of the Press-Schechter formalism, to be the

probability that a spherical region of initial radius R0 has linear overdensity δ0 and is not

contained in a collapsed object of mass exceedingM0 at redshift z1 given by δ1 = (1+z1)δc.

This probability is:

q(δ0, δ1;R0) dδ0 =

1

(2π)1/2

[

exp

(

− δ20
2∆2

0

)

− exp

(

−(δ0 − 2δ1)
2

2∆2
0

)]

dδ0
∆0

, (2.22)

for δ0 < δ1 and zero otherwise. Notice that the subscript convention means that δ0 refers

to an uncollapsed region and therefore should be interpreted as the linear overdensity of

that region extrapolated to the present, while δ1, δ2..., etc., refer to collapsed haloes and

thus should be interpreted as δc(1 + zi), with zi = z1, z2, . . . , etc being the redshift at

which each halo is identified.

Bond et al. (1991) also show that the fraction of the mass in a region of initial radius

R0 and linear overdensity δ0, which at redshift z1 is contained in dark haloes of mass M1

(M1 < M0 by definition) is given by

f(∆1, δ1 | ∆0, δ0)
d∆2

1

dM1

dM1 =

1

(2π)1/2
δ1 − δ0

(∆2
1 −∆2

0)
3/2

exp

[

− (δ1 − δ0)2
2(∆2

1 −∆2
0)

]

∆2
1

dM1

dM1. (2.23)

And thus the average number of M1 haloes identified at redshift z1 in a spherical region

with comoving radius R0 and overdensity δ0 is

N (1 | 0) dM1 ≡
M0

M1

f(1 | 0) d∆
2
1

dM1

dM1, (2.24)

where f(1 | 0) ≡ f(∆1, δ1 | ∆0, δ0). Since M1 is identified as a collapsed halo at z1 > 0

whereas M0 is assumed to be uncollapsed at z = 0, we have δ1 > δ0.

From the analysis above it is clear that the number of haloes of mass M1, identified

at redshift z1, which have formed from the matter initially contained within spheres of

radius R0 and linear overdensity δ0 has a significant dependence on δ0.
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It is useful to quantify this dependence by calculating the average over-abundance of

haloes in such spheres relative to the global mean halo abundance. This is:

δLh (1 | 0) =
N (1 | 0)

n(M1, z1)V0
− 1, (2.25)

where V0 = (4π/3)R3
0 is the volume of the spherical region and the super-script L refers

to Lagrangian quantities.

When the mass contained in the larger region is much greater than the mass of the

haloes considered (R0 À R1 ⇔ ∆0 ¿ ∆1 and |δ0| ¿ δ1). Therefore

δLh (1 | 0) = b0δ0 =
ν21 − 1

δ1
δ0, (2.26)

which means that the halo overdensity in these Lagrangian spheres is directly proportional

to the linear mass overdensity. Notice that the constant of proportionality b0 = (ν21 −
1)/δ1 is the same as the one obtained from the “peak-background split” argument by

Efstathiou et al. (1988) and Cole & Kaiser (1989).

The next step is to model the clustering of dark matter haloes at recent epochs.

For that MW have calculated the expected abundance of haloes in spheres that at the

desired redshift z have radius R and (possibly) non-linear overdensity δ. They relate these

quantities to the initial Lagrangian radius R0 and the extrapolated linear overdensity δ0

by means of a spherical collapse model. In this model each spherical shell moves as

a unit and different shells do not cross until very shortly before they collapse through

zero radius. Thus, the mass interior to each shell is constant, giving R3
0 = (1 + δ)R3.

Furthermore, since dark matter haloes are defined in the Press-Schechter formalism as

objects identified at some given redshift, the mean number of haloes given by equation

(2.24) can be taken as referring to haloes of mass M1 identified at redshift z1 within

spheres of radius R(R0, δ0, z1) and overdensity δ(δ0, z1).

From the spherical collapse model one has that, for a spherical perturbation in an

Einstein-de Sitter universe, the Eulerian radius R of a mass shell which had initial La-

grangian radius R0 and mean linear overdensity δ0 is given for δ0 > 0 by (see Peebles

1980, MW)

R(R0, δ0, z)

R0

=
3

10

1− cos θ

|δ0|
and (2.27)
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1

1 + z
=

3× 62/3

20

(θ − sin θ)1/3

|δ0|
. (2.28)

For δ0 < 0 one just has to replace (1 − cos θ) by (cosh θ − 1) in equation (2.27) and

(θ − sin θ) by (sinh θ − θ) in equation (2.28).

Without loss of generality it can be assumed that z = 0 at the time when the cluster-

ing of haloes is examined. Therefore, δ0 depends only on the present mass overdensity

δ ≡ (R0/R)
3 − 1. For |δ| ¿ 1 δ0(δ) can be expanded in power series δ0 =

∑∞
k=0 akδ

k (see

Bernardeau 1992). Furthermore, MW introduced an interpolation formula that approxi-

mates accurately the relation between δ0 and δ:

δ0 = −1.35(1 + δ)−2/3 + 0.78785(1 + δ)−0.58661

−1.12431(1 + δ)−1/2 + 1.686647 (2.29)

Thus, MW have shown that, using the above mentioned assumption, the average

overdensity of dark matter haloes in spheres with current radius R and current mass

overdensity δ can be obtained from equations (2.21) and (2.24). It is

δh(1 | 0) =
N (1 | 0)
n(M1, z1)V

− 1, (2.30)

where V = (4π/3)R3, R0 = R(1+δ)1/3 and δ0 is determined from δ using the interpolation

formula given in equation (2.29). When R0 À R1 and |δ0| ¿ δ1 one has

δh(1 | 0) ≡ b(M1, z1)δ =

(

1 +
ν21 − 1

δ1

)

δ. (2.31)

Notice that the halo overdensity is again directly proportional to the mass overdensity. In

this case the constant of proportionality b(M1, z1), which is commonly known as the linear

bias parameter, is always positive. The first term in the definition of b(M1, z1) comes from

the contraction (or expansion) of the spherical region under analysis and the second term

reflects the bias in the initial density field. MW have also shown that equation (2.31) is

still valid for values of δ much greater than unity.

Section (2.4.2) shows the results of testing the MW model for the variance of haloes

in counts-in-cells against numerical simulations using the relation

σ2h(M1, z1, R) = b2(M1, z1)σ
2
m (2.32)
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Higher-Order Moments of Counts-in-Cells

Mo et al. (1997) (MJW) have developed an analytical model for the hierarchical correla-

tion amplitudes

Sj,h(R) = ξj,h/ξ
j−1

2,h (2.33)

for j = 3, 4, 5 in the quasi-linear regime, where the subscript h stands for quantities of

dark matter haloes. They have used the general formalism developed by Coles (1993) and

Fry & Gaztanaga (1993).

In this model the statistical distribution of dark haloes within the initial density field,

which is assumed to be Gaussian, is determined by an extension of the Press-Schechter

formalism. The modifications of the distribution due to gravitationally induced motions

are treated by means of a spherical collapse model (Mo & White 1996). The main results

from this model, which are relevant for this analysis, are summarized here.

Following the same notation as in the last section, if the smoothed halo overdensity

(δh(~x;R)) is completely determined by the smoothed mass overdensity (δ(~x;R)), then δh

can be written as a function of δ, δg = f(δ), independent of ~x. Assuming f(δ) to be finite

and smooth for δ around 0, the function f can be expanded in a Taylor series

δh = f(δ) =
∞
∑

k=0

bk
k!
δk, (2.34)

where the bk are constants.

Fry & Gaztanaga (1993) have shown that if the j-point-volume-averaged mass corre-

lation functions (ξj(R)) have the hierarchical form

ξj(R) = Sj ξ
j−1

2 (R), (2.35)

then the transformation given by equation (2.34) preserves the hierarchical structure in

the limit ξ2(R)¿ 1. Thus:

ξj,h(R) = Sj,h ξ
j−1

2,h (R). (2.36)

Therefore, for the skewness and kurtosis (j = 3 , 4) one has:

S3,h = b−1(S3 + 3c2), (2.37)

S4,h = b−2(S4 + 12c2S3 + 4c3 + 12c22), (2.38)
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where ck = bk/b, b = b1 and the constants bk are the coefficients in the expansion of the

bias relation given in equation (2.34).

To obtain the coefficients bk one follows the reasoning introduced in the last section,

i.e., the MW model. Starting with the average overdensity of dark matter haloes of mass

M1 identified at redshift z1 within spheres of radius R(R0, δ0, z1) and overdensity δ(δ0, z1),

introduced in section (2.3.1):

δh(1 | 0) =
N (1 | 0)
n(M1, z1)V

− 1, (2.39)

where N (1 | 0) is given by equation (2.24). Assuming that R0 À R1 one can replace

(∆2
1 −∆2

0) by (∆2
1) in the expression for N (1 | 0). Assuming further that δ ¿ 1, δh can

be expanded in a Taylor series

δh =
∞
∑

k=0

ak δ
k, (2.40)

where the first coefficients are:

a0 = 0, a1 = 1, a2 = −
17

21
, a3 =

341

567

MJW obtained the coefficients bk for a halo with mass M1 corresponding to a linear

overdensity δ1, which collapses at redshift z1 = δ1/δc− 1 (with the critical overdensity for

spherical collapse being δc = 1.686),

b1 = 1 +
ν21 − 1

δ1
, (2.42)

b2 = 2(1 + a2)
ν21 − 1

δ1
+

(

ν1
δ1

)2

(ν21 − 3), (2.43)

b3 = 6(a2 + a3)
ν21 − 1

δ1
+ 3(1 + 2a2)

(

ν1
δ1

)2

(ν21 − 3)

+

(

ν1
δ1

)2
ν41 − 6ν21 + 3

δ1
, (2.44)

where ν1 ≡ δ1/σ(M1) [with σ(M1) being the rms of the density fluctuation given by the

density spectrum linearly extrapolated to the present time].

The bias coefficients are given for the present-day descendants (at redshift z0 = 0) of

haloes identified at redshift z1. The formalism can be easily extended to the case where

z1 > z0 > 0. In this case, we replace δ1 by δ1 D(z0)/D(0) (where D(z) is the linear growth

rate evaluated at redshift z) while keeping ν1 unchanged.
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2.3.2 Ellipsoidal Collapse Based Model

The mass function predicted by the Press-Schechter model in its standard form (i.e., as-

suming spherical collapse) is reasonably accurate at the high mass end. Nevertheless, it

has more low mass objects than are found in numerical simulations of hierarchical clus-

tering (Lacey & Cole 1994; Sheth & Tormen 1999).Sheth et al. (2001) (hereafter SMT)

argue that this can be because the spherical collapse approximation to the dynamics

may not be accurate, since Gaussian density fields are inherently triaxial (Bardeen et al.

1986). SMT modified the standard Press-Schechter formalism by incorporating the effects

of non-spherical collapse.

In their model SMT assumed that bound structures form from an ellipsoidal rather

than a spherical collapse. In the spherical collapse the value of the critical overdensity for

collapse δc is independent of the initial size of the region from which the halo is formed and,

thus is also independent of the final mass of the object. The main effect of including the

dynamics of ellipsoidal rather than spherical collapse is to introduce a simple dependence

of the critical overdensity required for collapse on the halo mass (δec = δec(M)). For

the ellipsoidal collapse model it is assumed that the collapse of a region depends on

the surrounding shear field and on its initial overdensity and provide a fitting function

for the relation between the overdensity value required for collapse and the mass of the

final object M . For that they have used the model for the gravitational collapse of

homogeneous ellipsoids described by Bond & Myers (1996), where the evolution of the

density perturbation is assumed to be better described by the initial shear field than by

the initial density field, the Zeldovich approximation in the linear regime is recovered

choosing initial conditions and external tides, and the time of virialization of the object

is defined as the time when the third axis collapses, according to the prescription that

collapse along each axis is frozen once it has shrunk by some critical factor; this freeze-out

radius is chosen so that the density contrast at virialization time is the same as in the

spherical collapse models (i.e., ≈ 178). SMT state that their results are not very sensitive

to the exact value of the freeze-out radius.
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Considering the collapse of ellipsoids from an initially Gaussian fluctuations field SMT

have estimated the relation between δec and the mass of the halo:

δec(∆, z) = δc(z)

(

1 + β

[

∆2(z)

∆2
?(z)

]γ)

, (2.45)

where ∆?(z) ≡ δc(z), β = 0.47 and γ = 0.615. Notice that the power spectrum enters only

in the relation between the mass M and ∆(M), and cosmology enters only in the relation

between the critical overdensity for collapse in the spherical model and the redshift z.

SMT have shown also that equation (2.45) implies that for massive objects (i.e.,

∆/∆? ¿ 1) δec(∆, z) ∼= δc(z) and that δec(∆, z) increases with ∆(M), so it is larger

for less massive objects. Therefore massive objects are well described by the spherical

collapse model, whereas smaller objects are more influenced by external tides and must

have a greater internal density to be able to hold themselves as they collapse.

SMT have used equation (2.45) to include the effects of ellipsoidal collapse into the

(Bond et al. 1991) excursion set model and therefore to obtain an estimate of the mass

function associated with ellipsoidal collapse:

νf(ν) = 2A

(

1 +
1

ν2q

)(

ν2

2π

)2

exp

(

−ν
2

2

)

, (2.46)

where q = 0.3 and A = 0.322. In the case of spherical collapse one has that q = 0 and

A = 1/2.

If the ellipsoidal model is used to define collapsed haloes, the coefficients bk of the bias

relations for the first moments of counts-in-cells take the following form:

b1 = 1 + ε1 + E1, (2.47)

b2 = 2(1 + a2)(ε1 + E1) + ε2 + E2, (2.48)

b3 = 6(a2 + a3) (ε1 + E1) + 3(1 + 2a2) (ε2 + E2) + ε3 + E3, (2.49)

where

ε1 =
αν2 − 1

δ1
, (2.50)

ε2 =
αν2

δ21
(αν2 − 3), (2.51)

ε3 =
αν2

δ31
(α2ν4 − 6αν2 + 3), (2.52)
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E1 =
2p/δ1

1 + (αν2)p
, (2.53)

E2

E1

= (
1 + 2p

δ1
+ 2ε1), (2.54)

E3

E1

=
4(p2 − 1) + 6pαν2

δ21
+ 3ε21, (2.55)

and α = 0.707, p = 0.3. These formulae reduce to the original MJW model for α = 1 and

p = 0.

Using the b = bk′s from the spherical collapse based models [equations (2.42)–(2.44)]

and from the ellipsoidal collapse based model [equations (2.47)–(2.49)] in equations (2.32),

(2.37) and (2.38) and taking S3 and S4 in these equations to be the skewness and kurtosis

of the mass distribution measured directly from the N-Body simulations, we can calculate

the variance, skewness and kurtosis for the distribution of dark haloes as predicted by the

MW and the MJW models and its SMT extension, respectively.

2.4 Test by N-body Simulations

2.4.1 Simulations

In the present analysis we use two sets of cosmological N-body simulations, which have

been obtained as part of the VIRGO (Jenkins et al. 1998) and the GIF (Kauffmann et al.

1999) projects. These two sets of simulations differ in the size of the simulation boxes

and in the mass resolution, with the VIRGO simulations having a larger simulation box

and lower mass resolution than the GIF ones. From the VIRGO simulations we have

analyzed the ΛCDM model in order to test the models in a volume large enough so

that the effects due to the finite sampling volume may be negligible (see below). We

compare the results with those obtained from the GIF simulations to see how comparisons

between models and simulations can be made for simulations with a relatively small

volume. For the GIF simulations, we focus on the τCDM and ΛCDM models. The

parameters characterizing the simulations are summarized in table 1. Further details can

be found in Kauffmann et al. (1999) and Jenkins et al. (1998).

For each simulation there are several output files corresponding to different evolution-

ary times (redshifts) and for each of these output times there is a halo catalog containing

information about haloes identified using the friends-of-friends group-finder algorithm
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Model Ω0 ΩΛ h σ8 Γ Box Size Np mp/M¯h
−1

[Mpc/h]

GIF-τCDM 1.0 0.0 0.5 0.6 0.21 85 2563 1.0× 1010

GIF-ΛCDM 0.3 0.7 0.7 0.9 0.21 141 2563 1.4× 1010

VIRGO-ΛCDM 0.3 0.7 0.7 0.9 0.21 239.5 2563 6.86× 1010

Table 2.1: Parameters characterizing the simulations used in the analysis. Ω0 and ΩΛ are the
density parameters for matter and for the cosmological constant, respectively, h is the Hubble
parameter, σ8 is the rms of the density field fluctuations in spheres of radius 8h−1 Mpc, and Γ
is the shape parameter of the power spectrum. Also given are the size of the simulation box,
the total number of particles and the mass per dark matter particle in a simulation.

with a linking length 0.2 times the mean interparticle separation. Only haloes containing

10 or more particles are included in the halo catalogues. The physical quantities available

from each of these halo catalogues are: the index of the most-bound particle in the halo,

which corresponds to the position of the halo as well as the central ‘galaxy’ within it;

the virial radius (Rvir), defined as the radius (from the central particle) within which the

overdensity of dark matter is 200 times the critical density; the virial mass (Mvir), which

is the mass (or, equivalently, the total number) of dark matter particles within the virial

radius; the circular velocity [Vc = (GMvir/Rvir)
1/2].

We have also generated several catalogues of the present-day positions of the central

objects corresponding to the most-bound particles in haloes identified at an earlier epoch.

These catalogues might be interpreted as ‘galaxy catalogues’ if we assume that the posi-

tions of galaxies at the present epoch correspond to those of the central particles within

virialized objects identified at high redshifts. This concept is related to the assumption

in models of galaxy formation that galaxies form by the cooling and condensation of gas

within dark matter haloes (White & Frenk 1991). However, this interpretation does not

take into account subsequent galaxy mergers.

We apply the counts-in-cells analysis described in the last section to the mass distri-

butions and halo catalogues. To do this, we place spheres in a regular mesh of 303 centers

and count the number of objects at each center over a set of concentrical spheres, which

allows us to compute the desired statistical quantities at different radii.
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2.4.2 Testing the models for the variance

The volume-averaged two-point correlation functions have been obtained from the mass

distribution and from the several halo samples in the simulations. For that, the procedure

described in section (2.2) has been followed.

The analysis has been performed for two different cases. In the first, the high-order

moments are calculated at the same time when the dark haloes are identified. In the

second, haloes are identified at some high redshift while the calculations of the high-order

moments are performed for their descendants at a later time. In all cases, the redshift

at which halo identification is made is denoted by z1, while the redshift at which the

high-order moments are calculated is denoted by z0.

Figures (2.1)–(2.3) show the variance from the VIRGO ΛCDM simulation, together

with the predictions from the MW and its ellipsoidal collapse extension. Both the MW

model and the SMT ellipsoidal collapse extension work remarkably good in all cases. In

these two figures the prediction of the MW model with ξ2 given by the perturbation

theory (see Bernardeau 1994) is also plotted. The fact that this prediction also matches

the simulation results suggests that the moments obtained from the VIRGO simulations

are not affected significantly by the finite-volume effect and confirms that the MW model

is a good approximation to the second-order moment of haloes that are not much smaller

than M? [defined by σ(M?) = 1.68]. Similarly, Figures (2.4)–(2.6) show the variance from

the GIF ΛCDM simulation, together with the predictions from the MW and its ellipsoidal

collapse extension.

With their high mass resolutions, GIF simulations allow one to test the theoretical

models for haloes with mass M ¿ M?. Since the GIF simulations have relatively small

simulation boxes, the moments are expected to be affected by the finite-volume effect

(Colombi et al. 1994). Nevertheless the finite-volume effect on the variance is expected to

be negligible. In any case, this effect in each simulation is expected to be similar for both

the mass distribution and the halo distribution. Thus, to test the bias model given in

equation (2.32) by a numerical simulation we should use the value of ξ2 obtained directly

from the simulation, because it is the simulated power spectrum (not the theoretical

spectrum) that is responsible for the clustering in the simulation. Figure (2.7) shows the

results obtained for the GIF simulations for haloes identified and analyzed at the present

epoch. As one can see, there is good agreement between model predictions and simulation
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results. For haloes with masses much smaller than M?, the SMT model gives a better fit

than the MW model.

Figure 2.1: Variance ξ2 of dark haloes with different mass ranges obtained from the counts-
in-cells analysis (symbols), from applying the bias model from MW (solid line) and its SMT
extension (dashed-line). The moments for the mass distribution are shown by dotted lines.
Thin lines correspond to quantities obtained using the variance of the mass given by perturba-
tion theory (Bernardeau 1994), whereas thick lines correspond to quantities obtained using the
variance of the mass directly from the simulations. Results are shown for the VIRGO ΛCDM
simulations. The haloes have been identified and analyzed as indicated in the plot. The value
of M∗ is also written for more information. Each box corresponds to a different range of masses
of haloes. The quantities in parenthesis correspond to the number of haloes in each sample.
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Figure 2.2: Variance ξ2 of haloes in the VIRGO ΛCDM simulations for haloes identified at
z = 1 and analyzed at the present time. The lines and symbols, as well as the notation have the
same meaning as in figure 2.1.
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Figure 2.3: Variance ξ2 of haloes in the VIRGO ΛCDM simulations for haloes identified at
z = 3 and analyzed at the present time. Lines, symbols and notation have the same meaning as
in figure 2.1.
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Figure 2.4: Variance ξ2 of dark haloes with different mass ranges obtained from the counts-in-
cells analysis (symbols) and from applying the bias model from MW (solid line) and its SMT
extension (dashed-line). The variance of the mass obtained directly from the simulations is
shown by the dotted line. Results are shown for the GIF ΛCDM model and for haloes identified
and analyzed at the present time.
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Figure 2.5: Variance ξ2 of dark haloes with different mass ranges obtained from counts-in-
cells analysis (symbols) and from applying the bias model from MW (solid line) and its SMT
extension (dashed-line). The variance of the mass obtained directly from the simulations is
shown by the dotted line. Results are shown for the GIF ΛCDM model and for haloes identified
at z = 1 and analyzed at the present time.
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Figure 2.6: Variance ξ2 of dark haloes with different mass ranges obtained from counts-in-
cells analysis (symbols) and from applying the bias model from MW (solid line) and its SMT
extension (dashed-line). The variance of the mass obtained directly from the simulations is
shown by the dotted line. Results are shown for the ΛCDM model and for haloes identified at
z = 3 and analyzed at the present time.
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Figure 2.7: Variance ξ2 obtained from the counts-in-cells analysis (symbols) and from applying
the bias model from MW (solid line) and its ellipsoidal collapse extension (dashed-line) of haloes
less massive than M∗. Each row in the panel corresponds to a different range of halo masses, as
indicated in the boxes.
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2.4.3 Testing the models for the Higher-Order Moments

Following the procedure given in section 2.2 we have obtained the volume-averaged cor-

relation functions up to the fourth order from the mass distribution and from the various

halo samples. Analyses have been performed for two different cases. In the first, the

high-order moments are calculated at the same time when the dark haloes are identified.

In the second, haloes are identified at some high redshift while the calculations of the

high-order moments are performed for their descendants at a later time. In all cases, the

redshift at which halo identification is made is denoted by z1, while the redshift at which

the high-order moments are calculated is denoted by z0.

Figures (2.8)–(2.11) show the third- and fourth- order moments from the VIRGO

ΛCDM simulation, together with model predictions. Both the MJW model and the SMT

extension work remarkably well, especially in the two epoch case (where z1 > z0). The

difference between the predictions of the MJW model and the SMT extension is not large

for the VIRGO simulation, because VIRGO haloes are quite massive due to the relatively

low mass resolution. In these two figures we also plot the prediction of the MJW model

with S3 and S4 given by the perturbation theory (see Bernardeau 1994). The fact that

this prediction also matches the simulation results suggests that the moments obtained

from the VIRGO simulations are not affected significantly by the finite-volume effect and

that the MJW model is a good approximation to the high-order moments for haloes that

are not much smaller than M? [defined by σ(M?) = 1.68]. Similarly, Figures (2.4)–(2.6)

show the variance from the GIF ΛCDM simulation, together with the predictions from

the MW and its ellipsoidal collapse extension.

As already stated in the last section, the GIF simulations allow one to test the theo-

retical models for haloes with mass M ¿ M?. Since the GIF simulations have relatively

small simulation boxes, the high-order moments are expected to be affected significantly

by the finite-volume effect (Colombi et al. 1994). However, this effect in each simulation

is expected to be similar for both the mass distribution and the halo distribution. Thus,

to test the bias model given in (2.37) and (2.38) by a numerical simulation we should use

the value of S3 and S4 obtained directly from the simulation, because it is the simulated

power spectrum (not the theoretical spectrum) that is responsible for the clustering in

the simulation. Figures (2.16)–(2.17) show the results obtained for the GIF simulations.

As one can see, there is a good agreement between model predictions and simulation
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results. For haloes with masses much smaller than M?, the MJW model underestimates

the skewness and kurtosis, while the SMT extension gives a much better fit (Figures 2.16

and 2.17). Thus, the SMT extension not only improves the models for the mass function

and second-order moment of dark haloes, but also improves the models for the high-order

moments. This gives further support to the notion that the ellipsoidal model is a better

approximation to the formation of dark haloes in the cosmological density field than the

spherical model.

From a comparison between the VIRGO and GIF results, it is evident that both

the skewness and kurtosis are strongly affected by the finite-volume effect. However, if

the loss of clustering power due to the finite volume is taken into account, the model

predictions are in good agreement with the numerical results, suggesting that the bias

relations given by (2.37) and (2.38), with the coefficients given by the extended Press-

Schechter formalism, are good approximations to the skewness and kurtosis of dark haloes

in the quasi-linear regime.

To see more clearly the difference between the MJW model and the SMT extension,

we show in figure 2.18 the amplitudes of the halo skewness and kurtosis at a fixed radius

(R = 10h−1Mpc) as a function of the linear bias parameter b = b1 [see equations (2.42)

and (2.47)]. The curves correspond to the predictions from the models for the present-day

descendants of haloes at three values of z1 (3.0, 1.0 and 0.0). From the figure we see that

in all cases the values of Sj,h are lower than those for the mass unless b is comparable to

or smaller than 1. This result was obtained in MJW based on the spherical model. We

see that this is also true even if the SMT extension is used, although the amplitudes of

Sj,h given by the elliptical model are higher than those given by the spherical model for

a given b. These features in S3,h and S4,h have been used in MJW to constrain the bias

parameter b for galaxies.
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Figure 2.8: Skewness S3 of dark haloes with different mass ranges obtained from counts-in-cells
analysis (symbols), from applying the bias model from MJW (solid line) and its SMT extension
(dashed-line). The moments for the mass distribution are shown by the dotted line and the
moments for the haloes obtained using the moments for the mass from the perturbation theory
are shown as a dot-long dashed line. The thick ticks on the horizontal axis show the scales
where ξ2(R) = 1. Results are shown for the VIRGO ΛCDM simulations. The haloes have been
identified and analyzed at the times written in the upper-left boxes. The value of M∗ is also
included. Each box corresponds to a different range of masses of haloes, as appearing in the
labels. The quantities between parenthesis correspond to the number of haloes in each sample.
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Figure 2.9: Kurtosis S4 of dark haloes with different mass ranges obtained from counts-in-cells
analysis (symbols), from applying the bias model from MJW (solid line) and its SMT extension
(dashed-line). The moments for the mass distribution are shown by the dotted line and the
moments for the haloes obtained using the moments for the mass from the perturbation theory
are shown as a dot-long dashed line. The thick ticks on the horizontal axis show the scales
where ξ2(R) = 1. Results are shown for the VIRGO ΛCDM simulations. The haloes have been
identified and analyzed at the times written in the upper-left boxes. The value of M∗ is also
included. Each box corresponds to a different range of masses of haloes, as appearing in the
labels. The quantities between parenthesis correspond to the number of haloes in each sample.
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Figure 2.10: Skewness S3 for haloes in the VIRGO ΛCDM simulations for haloes identified at
z = 3 and analyzed at the present time. The lines, symbols correspond to the same models and
quantities as in figure 2.8.
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Figure 2.11: Kurtosis S4 for haloes in the VIRGO ΛCDM simulations for haloes identified at
z = 3 and analyzed at the present time. The notation is the same as in figure 2.9.
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Figure 2.12: Skewness S3 of dark haloes with different mass ranges obtained from counts-in-
cells analysis (symbols) and from applying the bias model from MJW (solid line) and its SMT
extension (dashed-line). The thick ticks on the horizontal axis show the scales where ξ2(R) = 1.
Results are shown for the GIF ΛCDM model and for haloes identified at z = 1 and analyzed at
the present time.
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Figure 2.13: Kurtosis S4 of dark haloes with different mass ranges obtained from counts-in-
cells analysis (symbols) and from applying the bias model from MJW (solid line) and its SMT
extension (dashed-line). The thick ticks on the horizontal axis show the scales where ξ2(R) = 1.
Results are shown for the GIF ΛCDM model and for haloes identified at z = 1 and analyzed at
the present time.
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Figure 2.14: Skewness S3 of dark haloes with different mass ranges obtained from counts-in-
cells analysis (symbols) and from applying the bias model from MJW (solid line) and its SMT
extension (dashed-line).The thick ticks on the horizontal axis show the scales where ξ2(R) = 1.
Results are shown for the ΛCDM model and for haloes identified at z = 3 and analyzed at the
present time.
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Figure 2.15: Kurtosis S4 of dark haloes with different mass ranges obtained from counts-in-
cells analysis (symbols) and from applying the bias model from MJW (solid line) and its SMT
extension (dashed-line).The thick ticks on the horizontal axis show the scales where ξ2(R) = 1.
Results are shown for the ΛCDM model and for haloes identified at z = 3 and analyzed at the
present time.
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Figure 2.16: Skewness S3 obtained from counts-in-cells analysis (symbols) and from applying
the bias model from MJW (solid line) and its SMT extension (dashed-line) of haloes less massive
than M∗. Each row in the panel corresponds to a different range of halo masses, as indicated in
the boxes.

55



CHAPTER 2. DETERMINISTIC BIAS

Figure 2.17: Kurtosis S4 obtained from counts-in-cells analysis (symbols) and from applying
the bias model from MJW (solid line) and its SMT extension (dashed-line) of haloes less massive
than M∗. Each row in the panel corresponds to a different range of halo masses, as indicated in
the boxes.
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Figure 2.18: Predictions from the MJW model (solid lines) and its SMT extension (dashed-
line) for the skewness and kurtosis of haloes at a radius R = 10 h−1 Mpc as a function of
the linear bias parameter b. Each pair of curves shows the results for a given δ1, where z1 ≡
(δ1/1.686− 1) = 0., 1.0, 3.0) from bottom to top.

57



CHAPTER 2. DETERMINISTIC BIAS

2.5 Discussion

From the results shown in figure 2.18 we see that for present time descendants of haloes

already formed at a given redshift (z > 0), the values of the skewness and kurtosis depend

only weakly on the object mass if the bias parameter b is larger than or near to one . On

the other hand, in the same range of b it is clear that the high order moments depend on

the identification redshift, which is associated to the redshift of formation of the objects,

with the corresponding values increasing as the formation redshift increases. Therefore

the values of S3 and S4 of old objects, like elliptical galaxies, are expected to be higher

than the corresponding moments of more recently formed objects, such as spiral galaxies.

This feature can be useful in studying different galaxy populations.

We have used the models to analyze the predicted values of the high order moments for

high redshift objects, like the Lyman Break Galaxies (LBG), which are commonly assumed

to form in the center of the most massive haloes at redshift ∼ 3 (Mo & Fukugita 1996;

Adelberger et al. 1998; Jing & Suto 1998; Mo et al. 1999). Under this assumption and,

supposing that only a negligible fraction of those haloes host a secondary observable galaxy

the observed LBGs correspond to the most massive haloes at z ∼ 3. We have estimated

the predicted values for the skewness and kurtosis at a fixed scale R = 10 h−1 Mpc of

the LBGs (z = 3) and their descendants at a given redshift z. We chose this value of R,

because the mass density in the universe is still in the quasi-linear regime and the high

order moments of galaxy distributions are more difficult to measure on much larger scales.

For our estimates we have used the coefficients as given by equations (2.42)-(2.44),

where the Sq (q = 3,4) for the mass distribution are obtained from linear perturbation

theory (Bernardeau 1994). and the weighted average needed to get the effective bk’s is done

by means of the mass function from the Press-Schechter formalism. The main parameter

for the estimation of the bk’s for the LBGs corresponds to the observed abundance of

LBGs, namely the number density given by (Adelberger et al. 1998). This number is

Nlbg ≈ 8× 10−3h3Mpc−3 at z ∼ 3 for an Einstein-de Sitter universe, and is similar to the

present abundance of L∗ galaxies. The corresponding number for the ΛCDM universe is

estimated by multiplying this number by the comoving volume per unit redshift at z ∼ 3

for an Einstein-de Sitter universe divided by the corresponding value for the ΛCDM

universe.

58



2.6. SUMMARY

In figure (2.19) we show the values of the skewness, kurtosis and linear bias at R =

10 h−1 Mpc of the LBGs, as a function of the redshift, in the ΛCDM and τCDM models.

From the curves we see that, although the linear bias parameter is quite different in both

CDM models, the values obtained for the moments are too similar to be used as a tool to

constrain cosmological parameters.

2.6 Summary

The spherical collapse based models for the moments of dark matter halo counts-in-cells

from Mo & White (1996) (variance) and Mo et al. (1997) (higher-order moments), as

well as their ellipsoidal collapse extension by Sheth et al. (2001) have been tested using

two sets of high-resolution N-body simulations with different simulation boxes and mass

resolution. From the set with very large simulation boxes, which allows us to control

the finite volume effect, it has been found that the models work remarkably well for

CDM universes. The good performance of the models when the moments from the mass

distribution are estimated using the linear perturbation theory, shows that the moments

from this set (VIRGO Simulations) are practically unaffected by the finite volume effect.

The other set of simulations, having much higher mass resolution, has been used to test

the models for low-mass haloes, showing that significant improvement can be achieved

for haloes less massive than M ? if the ellipsoidal collapse model is used instead of the

spherical collapse model in defining dark haloes and that for massive haloes both the MW

and MJW models and their ellipsoidal extension work remarkably well.

The theoretical model has been used to predict the high-order moments at a fixed

scale of the Lyman break galaxies observed at z = 3 and their descendants at lower

redshifts. It has been found that, although the linear bias parameter b depends strongly

on the cosmology adopted, the values of the high-order moments are practically the same

in both CDM models, and therefore the high-order moments from the spatial distribution

of these objects cannot be used to constrain cosmological parameters.
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Figure 2.19: Skewness and kurtosis at R = 10h−1 Mpc for the LBGs at z = 3 and their
descendants at later epochs. The curves correspond to the ΛCDM model (dashed lines) and
the τCDM model (solid lines). The left panel shows the predictions from the MJW model and
the right panel shows the predictions from the SMT extension. The horizontal line shows the
corresponding value for S3 or S4 of the mass at z = 0.
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Stochastic Bias

3.1 Introduction

In chapter 2 I have discussed the effect of a deterministic bias for the halo and galaxy

distribution. In this chapter I want to discuss the effect of a stochastic bias relation.

Stochasticity may be important in high-order statistics as well as in the full distribution

function of haloes. In fact, the stochastic nature of the bias relation was already empha-

sized in the original paper of MW; in particular, MW pointed out that halo-exclusion can

cause sub-Poisson variance. Sheth & Lemson (1999) showed how the effects of stochas-

ticity could be incorporated, easily and efficiently, into the analysis of the higher order

moments.

Recently Somerville et al. (2001) used N -body simulations to study the stochasticity

and non-linearity of the bias relation based on the formalism developed by Dekel & Lahav

(1999). They analyzed the bias relation for haloes with masses larger than 1.0×1012 h−1 M¯

in spherical volumes of radius 8h−1Mpc. The present work is quite closely related to theirs

but contains several distinct aspects. First of all, this analysis is focused on the distribu-

tion function PV (N |δm), which gives the probability of finding N haloes in a volume V

with mass density contrast δm [δm ≡ ρ
ρ̄
− 1, where ρ is the mass density and ρ̄ is the mean

mass density]. As it will be shown later, this function completely specifies the relation be-

tween the spatial distribution of haloes and that of the mass in a statistical sense. Second,

the present analysis covers a wider range of halo masses and a larger range of volumes

for the counts-in-cells. Finally, an attempt to develop a theoretical model to describe the
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stochasticity of the bias relation is performed. This theoretical model is based on the

mean bias relation given in MW and on the variance model given in Sheth & Lemson

(1999). As it will be seen below, the original Sheth & Lemson model fails in high mass

density regions, where gravitational clustering becomes important.

3.2 The Halo-Mass Bias Relation

3.2.1 The Conditional Probability Function

Dark matter haloes are formed in the cosmological density field due to nonlinear gravi-

tational collapse. In general, the halo density field is expected to be correlated with the

underlying mass density field. Thus, if we denote by δm the matter density fluctuations

field and by N the halo number (where both fields are smoothed in regions of some given

volume), N and δm are related. We refer to this relation as the halo bias relation, because

it describes how the halo distribution is biased with respect to the underlying mass distri-

bution. Since in general the halo number in a volume depends not only on the mean mass

density but also on other properties (such as the clumpiness) of the mass distribution,

the relation between N and δm is not expected to be deterministic. It must be stochastic.

The stochasticity of the bias relation can be described by the conditional distribution

function, PV (N |δm), which gives the probability of finding N haloes in a volume V with

mass density contrast δm. This conditional probability completely specifies the relation

between the mass and halo density fields in a statistical sense. Indeed, once PV (N |δm)
is known, the full count-in-cell function PV (N) for haloes can be obtained from the mass

distribution function PV (δm) through

PV (N) =

∫ ∞

−∞

PV (N | δm)PV (δm) dδm. (3.1)

The form of PV (N |δm) depends on how dark haloes form in the cosmological density

field and is not known a priori. The simplest assumption is that it is Poissonian. This

assumption is in fact used in almost all interpretations of the moments of galaxy counts

in cells (c.f. Peebles 1980), where terms of Poisson shot noise are subtracted to obtain

the correlation strength of the underlying density field. However, this assumption is not

solidly based, and so it is important to examine if other assumptions on the form of
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PV (N |δm) actually work better for dark haloes.

Some Analytical Functions

For the present analysis I have chosen four simple possible analytical forms for the con-

ditional probability. These functions are fitted to the conditional probability measured

from the simulations, in order to investigate which of them describes better the numerical

halo-mass bias relation. The standard functions, chosen for this investigation, correspond

to the Poisson, Gaussian, Lognormal and the Thermodynamic Distribution functions

(Saslaw & Hamilton 1984). The last one is derived from thermodynamic foundations and

has the property that it converges to a Poisson distribution when the bTd parameter is

zero (see equation (3.5)). These functions are expressed in the following way:

• Poisson Distribution

PP (N | δ) =
λN e−λ

N !
. (3.2)

• Normal Distribution

PN(N | δ) =
1√
2π σ

exp

[

−(N − λ)2
2σ2

]

, (3.3)

where σ corresponds to the variance of the distribution.

• Lognormal Distribution

PLN(N | δ) =
1√

2π σ N
exp

[

−(lnN − λ)2
2σ2

]

, (3.4)

where σ corresponds to the variance of the underlying Normal distribution and

N > 0.

• Thermodynamic Distribution

PTd(N | δ) =
λ(1− bTd)

N !
(λ(1− bTd) +NbTd)

N−1 exp [−λ(1− bTd)−NbTd] , (3.5)

where 0 ≤ bTd < 1 is a free parameter. Notice that for bTd = 0 this distribution

corresponds to a Poissonian one.

In principle, the mean of the bias relation is fixed by the fact that the halo distribution

function obtained from the right-hand-side integral in equation (3.1) must reproduce

the actual mean number of haloes in the volume. However, for the fitting process the

parameters of the corresponding distributions are used as purely free fitting parameters.
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3.2.2 A Model for the Halo-Mass Bias Relation

To second order, the probability distribution function PV (N |δm) is described by the mean

bias relation N = N(δm) and the variance σ2 ≡ 〈N2|δm〉.

The Mean Bias Relation

Mo & White (1996) developed a model for the mean bias relation of haloes based on the

spherical collapse model. Their model works well for massive haloes and an extension of it

by Sheth et al. (2001) based on ellipsoidal collapse may work better for low mass haloes.

The model has been already introduced in section (2.3.1). Briefly, the mean of the bias

relation from the MW model is given by

δh(1 | 0) =
(

1 +
ν21 − 1

δ1

)

δ. (3.6)

The Variance of the Bias Relation

Sheth & Lemson (1999) have presented a model for the variance of the bias relation

which accounts for the halo exclusion due to the finite size of haloes (i.e. two different

haloes can not occupy the same volume). They have shown that their model is able to

describe the first and second moments of the halo distribution from scale-free N-body

simulations. Nevertheless the model is expected to fail when the underlying clustering

makes a significant contribution to the variance. As an amendment, an additional term

accounting for the clustering of haloes in high density regions is introduced.

Briefly, in the initial Lagrangian space each halo occupies a volume proportional to its

mass, and haloes can not overlap. This fact implies that the halo distribution is affected

by volume exclusion effects, especially at scales smaller than the typical size of a halo. The

model by Sheth & Lemson (1999) allows one to include explicitly the exclusion effects at

computing the moments of the Lagrangian space halo distribution. They combined their

model with the Mo & White (1996) spherical collapse model to quantify the dynamical

evolution of the mean and variance of the bias relation. In their paper Sheth & Lemson

(1999) presented a detailed treatment of clustering from Poisson and white-noise Gaussian

initial condition, since these cases have exact analytical results and conjectured that these

results can be easily extended to obtain an accurate approximated model for the bias

associated with the clustering from more general Gaussian initial density fields.
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Briefly, the volume exclusion effect in the model is introduced as follows. Let us

suppose that there are n haloes with mass M1 within a spherical region with mass M0.

M

1
M

M

M

M

M

1

1

1

1
M1

0

Figure 3.1: 2–D Scheme of the volume occupancy of n M1 haloes in a spherical region of mass
M0

The average overdensity of the whole volume is

1 + δ0 =
M0

ρV0
(3.7)

and the average overdensity of the remaining volume [shaded area in figure (3.1)] is

1 + δ(n) =
M0 − nM1

ρ(V0 − nV1)
and δ(0) ≡ δ0. (3.8)

From the definition of the mass overdensity δ, one has that the mass contained within

the filter of volume V can be written

M ≡ ρV1(1 + δ). (3.9)

Notice that it is assumed that ∆ ¿ 1. Thus, there is no problem with this definition of

the mass within the filter because ‖δ‖ ¿ 1 almost surely and the possibility that δ < −1
is extremely unlikely.

Since M1 ≡ ρV1(1 + δ1) it can be shown that

δ1 − δ(n) = (δ1 − δ0)
M0

M0 − nM1

, (3.10)

to the lowest order in the δ–terms.
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With this definition one has the expression for the i–th factorial moment

φi(M1, δ1 |M0, δ0) =
i−1
∏

n=0

N (M1, δ1 |M0 − nM1, δ
(n)), (3.11)

for iM1 ≤M0 and zero otherwise.

Sheth & Lemson (1999) define further the i–th factorial moment of the corresponding

halo counts-in-cells distribution (Ξi) by

∫ δ1

−∞

φi(M1, δ1 |M0, δ0) q(δ1, δ0, V0) ≡ [n(M1, δ1)V0]
i [1 + Ξi(M1, δ1, V0)] , (3.12)

where q(δ1, δ0, V0) is the probability that the overdensity is δ0 when smoothed on scale V0

and that it is less dense than δ1 for all V > V0. Notice that the first factorial moment of

the halo distribution (Ξ1) corresponds to the mean bias relation from Mo & White (1996).

Therefore, the mean of the bias relation from the MWmodel and the phenomenological

modification of the Sheth & Lemson (1999) formula for the variance1, are given by

〈N〉 =
∫

dm N (m, δ1 |M, δ0) (3.13)

and

σ2 = 〈N(N − 1)〉+ 〈N〉 − 〈N〉2, (3.14)

where:

〈N(N − 1)〉 =
∫

dm1 dm2 N (m1, δ1 |M, δ0) N (m2, δ1 |M −m1, δ
′)(1 + Aξ̄2), (3.15)

N (m, δ1 | M, δ0) denotes the average number of haloes of mass m identified at a given

epoch z1 [with a critical overdensity for collapse δ1 = δc(1+z1)] in an uncollapsed spherical

region of comoving volume V with mass M and overdensity δ0, and δ
′ is the mass density

contrast of the fraction of the volume not occupied by the m haloes. The additional

term (1 + Aξ̄2) in the expression for the variance accounts for the contribution from

mass clustering and has been constructed as the simplest function of the variance of

the mass distribution with the property of having high values in overdense regions and

of being unity in homogeneous regions. As it will be shown below, a good fit to the

1Only the spherical model is used here because a consistent implementation of the ellipsoidal model

into the phenomenological model for the variance is not straightforward.
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simulation data can be achieved by choosing ξ2 to be the second order moment of the

mass distribution on the scale in consideration. In this case, we can write the term

Aξ2 = Aξm(z1) ≈ AD2(z1)ξm(0), where D(z) is the linear growth factor normalized to

one at z = 0. The constant A is to be calibrated by simulations.

3.3 Test by N-Body Simulations

3.3.1 Numerical Data

For this study the spatial distribution of dark matter particles as well as of dark haloes

from the ΛCDM version of the high resolution GIF N-body simulations have been used

(for details see Kauffmann et al. 1999). These simulations have 2563 particles in a grid

of 5123 cells, with a gravitational softening length of 20h−1kpc. In the ΛCDM case,

the simulation assumes Ω = 0.3, ΩΛ = 0.7 and h = 0.7. The initial power spectrum

has a shape parameter Γ = 0.21 and is normalized so that the rms of the linear mass

density in a sphere of radius 8h−1Mpc is σ8 = 0.9. The simulation box has a side length

L = 141h−1Mpc, and the mass of each particle is Mp = 1.4× 1010 h−1M¯.

The halo catalogues have been created by the GIF project (Kauffmann et al. 1999)

using a friends-of-friends group-finder algorithm to locate virialized clumps of dark matter

particles in the simulations outputs. They used a linking length of 0.2 times the mean

interparticle separation and the minimum allowed mass of a halo is 10 particles. In what

follows, the mass of a halo is represented by the number of particles it contains.

Galaxy catalogues constructed from the same simulations are also used. The cata-

logues are limited to model galaxies with masses greater than ∼ 2 × 1010 h−1M¯. For

further details about these catalogues and the galaxy formation models used in their

construction see Kauffmann et al. (1999).

In order to study the halo-mass bias relation in detail, the conditional probabilities

PV (N | δm) have been estimated for several halo samples. The data used in the anal-

ysis correspond to the dark matter particle positions and the dark matter halo position

catalogues at various redshifts z = 3.5, 3.0, 2.7, 2.1, 1.5, 1.0, 0.5 and 0 as well as the

catalogues of the positions of the present time (z = 0) descendants of haloes already

present in the above mentioned catalogues. Hereafter the redshift of identification of the

haloes shall be denoted as z1 whereas the redshift of analysis (i.e. the epoch at which the
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counts-in-cells analysis is performed) as z0. For example, a case with z0 = 0 and z1 = 3

means that haloes are identified at redshift 3 while the counts-in-cells are estimated for

their central particles at redshift 0. From each of these halo and particles catalogues

several mass ranges of the haloes have been studied. The halo-mass ranges analyzed go

from samples containing all the haloes in the catalog (i.e Mh > 10 particles), to samples

containing only the most massive haloes in the catalog, through a wide variety of subsets

containing either small haloes, very massive haloes or intermediate mass haloes.

The catalogues of the present day descendants of haloes identified at earlier epochs

have been created as follows: at a given redshift z > 0 the central particles of the haloes

present in the corresponding catalog are identified and their positions traced forward to

the present time. In this way, I create a catalog of the present time positions of the central

particles of haloes identified at an earlier epoch, where the properties of the original haloes

are transfered to the particle, in order to use them as sampling parameters.

The algorithm proposed by Szapudi et al. (1999), which allows an accurate determi-

nation of the probability function in a relatively short time, is applied to estimate the

counts-in-cells on a grid of 2563 cells. With this grid one obtains the counts-in-cells dis-

tribution at the scales ` = 1/256, 1/128, · · · , 1/2 times the side length of the simulation

box.

The conditional probability to find N haloes in a cell of volume V given that the

local mean mass overdensity has a value between δm and δm+∆δm is computed from the

counts-in-cells through

PV (N |δm) =
P (N, δm)∆δm
P (δm)∆δm

, (3.16)

where PV (N, δm) is the joint probability for finding N haloes and a mass overdensity

between δm and δm +∆δm in a cell of volume V . PV (δm) is the distribution function for

the underlying mass density field.

3.3.2 The Form of the Conditional Probability

The exact form of the conditional probability function has been investigated for many

redshift pairs (z1, z0) and ranges of the halo masses in the samples, as mentioned above.

Without loss of generality and for convenience, only a few of the analyzed samples will

be shown explicitly here. In addition, due to numerical limitations (e.g. there are too

few haloes at very small scales) the results obtained for very small scales are too noisy to
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be used reliably in this investigation and therefore are not included. Thus, the analysis

will be restricted to the the counts-in-cells performed on volumes of cubical cells with

side lengths 1/32, 1/16, 1/8, and 1/4 times the side length of the simulation box, which

correspond in the GIF ΛCDM simulations to ` = 4.4, 8.8, 17.6 and 35.2h−1Mpc in

comoving units.

Conditional Probability from the Simulations

Figures (3.2)–(3.3) show some contour plots of the conditional probability functions ob-

tained from the simulations. The samples shown correspond to haloes identified and

analyzed at the present epoch as well as to present epoch descendants of haloes identified

at redshift 1. For clarity, only samples of haloes with masses larger than 10 particles are

shown.

From the figures it can be seen that, indeed, there is a scatter in the halo-mass bias

relation and that this scatter does not seem to be proportional to the mean bias relation

at a given mass density contrast (δm).

Mainly due to numerical limitations the conditional probability obtained from the

simulations has some noise. From observing figure (3.2) one can see that the conditional

probability is more noisy in the lowest contours than in the highest. That means that, for

a given interval in the mass density contrast (δm, δm +∆δm), the conditional probability

increases the noise at the extremes, which is a consequence of the fact that the events in

the tails of the distribution are rare and therefore can not be sampled efficiently with the

present numerical limitations. On the other hand, from the same figure it can be noticed

that the conditional probability presents a large amount of noise in regions of high mass

density contrast. Therefore any interpretation of the conditional probability in regions of

very high mass density should be taken carefully.

The noise at the tails of the conditional probability, at a given δm, decreases as the

redshift of identification of the haloes increases. Although the same happens to the noise

at high mass overdensity regions, there is still a large amount of it in these regions.
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Figure 3.2: Contour plot of the conditional probability obtained from the numerical data
(i.e. mass and halo catalogues) at the present epoch. The halo sample contains all the haloes
with masses larger than 10 particles. The sampling volumes correspond to cubical cells of side
` = 4.4, 8.8, 17.6, 35.2 h−1Mpc, from left to right and top to bottom. The contours are plotted
for logarithmic levels of the conditional probability, ranging from 10−6 to 1 times the maximum
value of the probability function.
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Figure 3.3: Contour plots of the conditional probability obtained from the numerical data. The
halo samples contain all the haloes with masses larger than 10 particles. The sampling volumes
correspond to cubical cells of side ` = 4.4, 8.8, 17.6, 35.2 h−1Mpc, from left to right and top to
bottom. The contours are plotted for logarithmic levels of the conditional probability, ranging
from 10−6 to 1 times the maximum value of the probability function. The plots correspond to
haloes identified at redshift z1 = 1 and analyzed at the present epoch z0 = 0.
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The conditional probability functions for the present time descendants of haloes iden-

tified at earlier epochs [figure (3.3)] are, in general, less noisy than in the case of haloes

identified and analyzed at the same epoch. Nevertheless, the regions of high mass over-

density still having a large amount of noise. One particular feature of the conditional

probability of the present day descendants of early times haloes is that its scatter is lower

in comparison with the corresponding quantities for haloes analyzed at the identification

epoch.

Looking for the Best Fitting Function

Now let us investigate the analytical form of the bias relation (conditional probability

function) for several samples of haloes. Once the conditional probabilities for several halo

samples have been estimated from the simulations and knowing some general features of

them, a numerical fit of the analytical distribution functions introduced in section 3.2.1 to

the numerical probability functions has been performed. For that the counts-in-cells of the

corresponding spatial distribution of dark matter particles as well as of the distribution

of dark matter haloes in the corresponding samples have been estimated. From these

counts-in-cells it is easy to get the halo-mass joint probability function and the mass

distribution function, both binned in δm, needed to obtain the conditional probability

function, as given by equation (3.16).

The problem of finding the best fit to the numerical data boils down to the minimiza-

tion of a smooth nonlinear sum of squares

Minimize F (x) ≡ 1

2

m
∑

i=1

[yi − fi(x)]2, (3.17)

where m is the number of data points, x is a vector of the fitting parameters, yi is the

i-th value of the numerical function and fi(x) is the corresponding value of the analytical

function to fit. F (x) is usually known as the χ2 of the fit. The measure of the goodness

of a given fit is thus quantified by means of the corresponding χ2, with lower values of it

meaning a better fit of the function to the data.

As already stated in section 3.2.1, the different parameters, characterizing each of the

analytical functions, are taken as free fitting parameters (i.e. there is not a predefined

relationship between the parameters and the mass overdensity δm nor with the mean of
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the halo distribution function). In the following the results of the fitting process for a

selected set of halo samples will be presented.

The first quantity to be analyzed corresponds to χ2 itself. Figures (3.4) and (3.5)

present χ2 obtained from the fit of each of the four analytical functions under analysis to

the numerical data, as a function of the mass density contrast δm. The samples shown

correspond to present epoch haloes with masses larger than 10 particles and to present

epoch descendants of haloes with masses larger than 10 particles identified at redshift 1.

In the case of present epoch haloes (figure (3.4)), it is evident that the Poisson distribu-

tion (dotted lines) is by far not a good description of the numerical conditional probability

for the sample and sampling scales shown, while the Gaussian distribution appears as a

strong candidate to be the best fitting function. χ2 values from the fitting of the Lognor-

mal and Thermodynamic distributions to the data are less regular than χ2 corresponding

to the Gaussian. Furthermore, only at the smallest scale (upper left plot) the Thermo-

dynamic distribution function fits partially better than the Gaussian. Therefore one can

conclude that the Gaussian distribution function describes well the numerical conditional

probability from the samples shown in figure (3.4), and that the Poisson distribution is

rather a poor descriptor of the same numerical conditional probability.

For samples of haloes at higher redshifts (not shown) it is observed that the behavior

of the χ2 from the fits is more or less the same as the one obtained for present epoch

haloes. The only appreciable difference is that the Poisson distribution fits better to the

numerical distribution as the redshift increases. However, it is still a poorer description

for the numerical conditional probability in comparison to the Gaussian distribution.

Similarly, the results obtained from samples of the present epoch descendants of haloes

already formed at high redshift (figures (3.5) and (3.5)) do not change appreciably with

respect to the corresponding results in the case of haloes identified and analyzed at the

same redshift.

Therefore, from the analysis of the behavior of the χ2 obtained from the fitting of

each of the four analytical functions to the conditional probability obtained from the

simulations, it can be concluded that the Poisson distribution is rather a poor description

for the conditional probability and that the Gaussian distribution is a better descriptor

of the conditional probability. This is true for all the halo samples investigated.
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Figure 3.4: χ2, as a function of the mass density contrast δm, from the fit to the conditional
probability from the simulations of the Poisson (dotted-line), the Thermodynamic (dashed-
line), the Lognormal (dash-dot-line) and the Gaussian (solid-line) distributions. The sample
corresponds to all the present epoch (z1 = z0 = 0) haloes in the catalog (Mh > 10 particles).
The corresponding mass probability functions are also plotted. The panels correspond to the
scales ` = 4.4, 8.8, 17.6 and 35.2 h−1Mpc, from top to bottom and left to right.
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Figure 3.5: χ2, as a function of the mass density contrast δm, from the fit to the conditional
probability obtained from the simulations of the Poisson (dotted-line), the Thermodynamic
(dashed-line), the Lognormal (dash-dot-line) and the Gaussian (solid-line) distributions. The
sample corresponds to all the present epoch (z1 = 1, z0 = 0) haloes in the catalog (Mh > 10
particles). The corresponding mass probability functions are also plotted. The panels correspond
to the scales ` = 4.4, 8.8, 17.6 and 35.2 h−1Mpc, from top to bottom and left to right.
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In addition, figures (3.6)–(3.9) present the conditional probability functions PV (N |δm)
obtained from the simulations at several representative values of the mass density con-

trast δm, along with the corresponding best fits of the Gaussian, Lognormal, Poisson and

Thermodynamic functions. The halo samples shown correspond to present epoch haloes

as well as to present day descendants of haloes identified at redshift 1. For clarity, only

two different halo-mass ranges are shown for each redshift.

From figures (3.6)–(3.7) it can be confirmed that the Poisson model is in general a

poor description of the present time conditional probability measured from the simula-

tions, and that the Gaussian model is overall a good assumption. The Lognormal and

Thermodynamic functions are a sort of intermediate functions, i.e they are not as poor

descriptors for the conditional probability as the Poisson function is, but, on the other

hand, they do not describe the features of the conditional function as good as the Gaus-

sian function does. This result is valid for all the halo mass ranges under analysis and all

the scales tested.

Similarly, from figures (3.8) (3.9) it can be seen, again, that the Poisson distribution

is not a good descriptor for the conditional probability function obtained from the simu-

lations, and that the Gaussian function is the best descriptor, among the four functions

under analysis.

The results already shown, altogether, lead to the conclusion that, the Poisson dis-

tribution function does not describe well the conditional probability function of haloes,

and that the Gaussian distribution is a better descriptor for the numerical function. The

Lognormal and Thermodynamic functions are in between the Poisson and the Gaussian

behavior. This conclusion is true for all the redshifts of identification and analysis inves-

tigated here, as well as for all ranges of the mass of the haloes in the samples and all the

scales covered in this investigation.

3.3.3 The Mean and Variance of Halo-Mass Bias

In the last section it has been shown that the Gaussian distribution is a reasonable fit

to the conditional probability function obtained from the numerical simulations. There-

fore, let us now concentrate on the mean and the variance of the conditional probability

(bias relation), which are the two quantities needed to completely specify a Gaussian

distribution. In order to investigate the deviations of the bias relation from the Poisson
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Figure 3.6: Comparison between the conditional probability measured from the simulations
(squares) for present epoch haloes with masses greater than 10 particles and the corresponding
best fits of the Poisson (dash-dot-dot-dot line), Thermodynamic (dashed line), Lognormal (dash-
dot line) and Gaussian (solid line) distribution functions. The rows correspond, from top to
bottom, to the sampling scales ` = 4.4, 8.8, 17.6, 35.2 Mpc/h, respectively. For each sampling
scale there are four plots corresponding to the local mass overdensity as indicated in the labels.
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Figure 3.7: Comparison between the conditional probability measured from the simulations
(squares) for present epoch haloes with masses greater than 100 particles and the corresponding
best fits of the Poisson (dash-dot-dot-dot line), Thermodynamic (dashed line), Lognormal (dash-
dot line) and Gaussian (solid line) distribution functions. The rows correspond, from top to
bottom, to the sampling scales ` = 4.4, 8.8, 17.6, 35.2 Mpc/h, respectively. For each sampling
scale there are four plots corresponding to the local mass overdensity as indicated in the labels.
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Figure 3.8: Comparison between the conditional probability measured from the simulations
(squares) for present day descendants of haloes at redshift 1 with masses greater than 10 particles
and the corresponding best fits of the Poisson (dash-dot-dot-dot line), Thermodynamic (dashed
line), Lognormal (dash-dot line) and Gaussian (solid line) distribution functions. The rows
correspond, from top to bottom, to the sampling scales 4.4, 8.8, 17.6, 35.2Mpc/h, respectively.
For each sampling scale there are four plots corresponding to the local mass overdensity as
indicated in the labels.
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Figure 3.9: Comparison between the conditional probability measured from the simulations
(squares) for present day descendants of haloes at redshift 1 with masses greater than 50 particles
and the corresponding best fits of the Poisson (dash-dot-dot-dot line), Thermodynamic (dashed
line), Lognormal (dash-dot line) and Gaussian (solid line) distribution functions. The rows
correspond, from top to bottom, to the sampling scales 4.4, 8.8, 17.6, 35.2Mpc/h, respectively.
For each sampling scale there are four plots corresponding to the local mass overdensity as
indicated in the labels.
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distribution the ratio between the variance and the mean shall be used, rather than the

variance itself. Let us consider the mean of the bias relation

1 + δh ≡
〈N |δm〉
nV

(3.18)

and the ratio between the variance and the mean

variance

mean
≡ σ2

〈N |δm〉
, (3.19)

where δh ≡ N
nV
− 1 is the number density contrast of haloes and n is their mean number

density.

In the following the predictions from the theoretical models for the mean (Mo & White

1996) and for the variance (Sheth & Lemson 1999) of the halo-mass bias relation shall

be compared with the corresponding numerical quantities obtained from the simulations.

The theoretical models for the values of these quantities as functions of redshift, mass of

the haloes, local mass density contrast and the particular cosmology, have been introduced

in section 3.2.2.

The halo samples used in this analysis are mainly the same as in the last section.

In order to investigate in detail the behavior of the ratio variance/mean, the results for

halo samples in four representative mass ranges will be shown. They are: a) a sample of

low mass haloes, b) a sample containing both low and high mass haloes, c) a sample of

intermediate mass haloes and d) a sample of high mass haloes. The corresponding halo

masses are shown in table 3.1.

Figures (3.10)–(3.14) show the results obtained from the simulations and from the

model, for haloes at redshift (z1 = z0 = 0, 1, 3) as well as for the present epoch descen-

dants of haloes already identified at these epochs. Observing the symbols in the plots,

which correspond to the quantities obtained from the simulations, it can be noticed that

the ratio of the variance to the mean of the bias relation shows a Poisson-like behavior

(i.e. ∼ 1) for low values of δm. This ratio becomes sub-Poisson (i.e. < 1) at intermediate

values of δm, and super-Poisson (> 1) for high values of δm. The exact change of the

variance/mean ratio with δm depends on halo mass: the sub-Poisson variance extends to

higher values of δm for samples with higher halo masses. The volume-exclusion effect is

reduced for the descendants of haloes identified at an earlier epoch and the variance/mean
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z1 = 0 z1 = 1 z1 = 3

a) Mh = 20–30 part. Mh = 20–30 part. Mh = 20–30 part.

Mh/M? = 0.03–0.04 Mh/M? = 0.62–0.92 Mh/M? = 100–150

b) Mh = 20–2000 part. Mh = 20–2000 part. Mh = 20–600 part.

Mh/M? = 0.03–2.85 Mh/M? = 0.62–61.5 Mh/M? = 100–300

c) Mh = 200–800 part. Mh = 200–800 part. Mh = 50–100 part.

Mh/M? = 0.28–1.14 Mh/M? = 6.15–24.6 Mh/M? = 250–500

d) Mh > 800 part. Mh > 800 part. Mh > 200 part.

Mh/M? > 1.14 Mh/M? > 24.6 Mh/M? > 1000

Table 3.1: Ranges of halo masses corresponding to the samples shown in figures (3.10)–(3.14).
a) sample of low mass haloes, b) sample containing both low and high mass haloes, c) sample
of intermediate mass haloes and d) sample of high mass haloes. M? is defined by σ(M?) = 1.68.

ratio approaches the Poisson value for the descendants of haloes selected at early times

(see figures (3.13)–(3.14)).

The curves in figures (3.10)–(3.14) show the predictions from the models for the mean

and the variance of the bias relation. The mean bias relations given by the simulations

are well described by the model of Mo & White (1996), confirming earlier results.

The value of the constant A in equation (3.14) is calibrated using the mean and

variance of the bias relation for the present epoch haloes in the simulations. The best

approximation found for this constant is A = 0.05 and has been obtained as given by the

fit of the model predicted ratio variance/mean for present-day haloes to the corresponding

quantity from the simulations.

The behavior of the variance/mean ratio is also reasonably well reproduced by the

model. Thus, sub-Poisson variance can be caused by halo exclusion while the super-

Poisson variance at high δm may be explained by the clustering of mass at the time of

halo identification. The model for the variance begins to fail at very high values of δm.

But since cells with such high densities are only a tiny fraction of all cells, this failure

might not be very important.

In the case of samples of present epoch haloes (figure 3.10)), the model for the variance

of the bias relation has been found to work remarkably good. However, as it can be seen

from the figure, the sample containing both small and massive haloes fails slightly at the

smallest scale shown (` = 4.4 h−1Mpc). This feature might be due to a cross-correlation
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Figure 3.10: Theoretical predictions from the MW model for the mean and from the proposed
phenomenological modification of the (Sheth & Lemson 1999) model for the variance of the
bias relation (lines) compared with the corresponding quantities obtained from the GIF ΛCDM
simulations (symbols). The columns correspond, from left to right, to the cell sizes l = 4.4, 8.8
and 17.6Mpc/h. The two upper panels show the mean of the bias relation and the ratio between
the variance and the mean of the bias relation for the ranges of halo masses indicated in the
respective labels. The dashed and solid lines show the theoretical predictions corresponding to
the numerical data represented by the open and filled circles, respectively. The mass probability
function at the respective scales is shown in the lowest panel. The sample corresponds to haloes
identified and analyzed at the present epoch.
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Figure 3.11: Same results as shown in figure (3.10) but for haloes identified and analyzed at
redshift z = 1.
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Figure 3.12: Same results as shown in figure (3.10) but for haloes identified and analyzed at
redshift z = 3.
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Figure 3.13: The same as in figure (3.10) but for the present epoch descendants of haloes
already formed at z = 1.
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Figure 3.14: The same as in figure (3.10) but for the present epoch descendants of haloes
already formed at z = 3.
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term between low mass and high mass haloes. There is also a large disagreement between

the model predictions and the numerical data at high overdensity regions, which is par-

ticularly noticeable at the largest scale shown in the plots (` = 17.6 h−1Mpc). Due to

the large amount of noise in the conditional probability at these high-overdensity regions,

it is not clear whether the model fails or simply the numerical data are no longer useful

in these regions.

From figures (3.11)–(3.12) it can be observed that the model for the variance of the bias

relation for haloes at high redshift (z1 = z0 = 1, and 3) presents an overall performance

which is more or less similar to the one found for present epoch haloes. The main difference

is that, in the case of high-redshift haloes, the model seems to work better at small scales

and that it systematically under-predicts the ratio variance/mean at high-overdensity

regions, specially at large scales.

In the case of the present time descendants of haloes identified at earlier epochs (figures

(3.13)–(3.14)) the model works also remarkably well in all the scales and halo samples. At

very high overdensity regions the model starts to fail, but, as it has been already discussed,

it is not clear yet whether the model, the simulations data, or both are responsible for

this failure. In the particular sample containing present day descendants of very low mass

haloes at redshift 3 (figure (3.14)), the model seems to under-predict the value of the ratio

variance/mean. This might be interpreted as due to an overestimation of the role of the

volume exclusion effect, which is expected to decrease as the redshift of identification of

the parent haloes increases.

Summarizing, it has been found that the model of Mo & White (1996) describes well

the mean of the bias relation obtained from the simulations, which is a confirmation

of earlier results. The proposed extension to the model of Sheth & Lemson (1999) has

been found to describe remarkably well the variance of the bias relation obtained from

numerical simulations.

3.3.4 The Count-in-Cell Function of Dark Haloes

An additional test that can be performed on the model of the halo-mass bias [i.e. a

Gaussian conditional probability function with the mean and variance given by equations

(2)-(4)] consists in reconstructing the counts-in-cells function for haloes using equation

(3.1). In order to reconstruct the counts-in-cells of haloes (halo probability function),
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the probability function of the mass (PV (δm)) obtained from the simulations has been

used together with the conditional probability given by the theoretical model. Although

theoretical models for the mass distribution function exist in the literature [e.g. the model

of Sheth (1998) based on an excursion set approach, and the Lognormal model used in

Coles & Jones (1991)], they are not used here, since the purpose of this analysis is only

to test the model for the halo-mass.

Since the probability functions obtained from the simulations are quite noisy at very

high values of δm and the model predictions in this regime may fail, the computations are

truncated at a preset high value of δm [δmax
m = 10 at the scales l = 4.4 and l = 8.8 h−1 Mpc,

and δmax
m = 3 at l = 17.6 h−1 Mpc], which corresponds to the low-probability tail of the

mass probability function, as can be seen clearly in the lower panel in figure (3.10). For

comparison the halo count-in-cell functions using a Poissonian form for the conditional

function , with the mean given by equation the model of Mo & White (1996) (see equation

(3.13)), is also reconstructed.

Figure (3.15) shows the comparison between the reconstructed halo count-in-cell func-

tions for present-day haloes containing more than 10 particles with the corresponding

functions obtained directly from the simulations. The plots shown correspond to the

scales ` = 4.4, 8.8, and 17.6 h−1Mpc. Since the reconstructed halo counts-in-cells have

been obtained from a mass counts-in-cells truncated at very high values of the mass

density contrast (δm), the halo counts-in-cells from the simulations are also re-estimated

taking into account the mass truncation. From the plots it can be seen that the semi-

analytically reconstructed probability function of the haloes matches remarkably well the

corresponding distribution function obtained from the simulations, after truncation. The

halo count-in-cell functions reconstructed using a Poissonian form for the conditional prob-

ability function depart from the corresponding numerical values in the low-probability,

high density tail.

The halo count-in-cells functions reproduced through this approach might be used to

estimate the high-order moments, such as skewness and kurtosis, of halo distributions.

However, since a truncation in the mass distribution function has to be applied and the

truncation value is introduced rather arbitrarily, this application is not promising before

the model for the bias relation is improved at very high overdensity regions and numerical

simulations with higher resolutions are available to test it.
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Figure 3.15: Halo count-in-cell functions for a sample of present day haloes with masses greater
than 10 particles. The circles correspond to the probability function obtained from the simula-
tions and the lines to the semi-analytically reconstructed count-in-cell function using spherical
collapse approach. The solid and the dashed lines show the reconstructed functions using a
Gaussian and a Poissonian form for the conditional probability function, respectively. The filled
circles correspond to the simulated mass count-in-cell functions obtained from the mass and
conditional probability functions truncated at high values of the mass density contrast. The
boxes correspond, from top to bottom, to the scales l = 4.4, 8.8, 17.6 h−1 Mpc.
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3.3.5 Stochasticity in Galaxy Bias

So far only the relation between the mean and the variance of the halo-mass bias rela-

tion has been investigated. Nevertheless, it is very interesting to study the bias relation

between galaxies and the underlying mass distribution. Thus, in order to investigate the

stochastic nature of the galaxy bias and the possible deviations from Poisson of the vari-

ance of the galaxy-mass bias relation, the conditional probabilities for galaxies have been

estimated using several galaxy catalogues created from the GIF simulations [for details

see Kauffmann et al. (1999)] and the mass distributions from the same simulations. The

catalogues contain model galaxies with masses greater than ∼ 2× 1010h−1M¯.

The process applied to obtain the conditional probability from the numerical data is

the same as in the case of dark matter haloes.

Figures (3.16)–(3.18) show the conditional probabilities from the model galaxy cata-

logues at redshift 0, 1 and 3. It can be seen that the galaxy conditional probability is

very similar to the halo conditional probability.

The fitting process done for the halo conditional probability is performed also on the

galaxy conditional probability with similar results; that is, that the galaxy conditional

probability is better described by a Gaussian function than by a Poissonian one. The

comparison between the numerical conditional probability of model galaxies and the best

fits of the analytical functions, for several representative values of the mass overdensity

δm is shown in figures (3.19)–(3.21)

The mean and variance of the bias relation between model galaxies and the underlying

mass has been estimated for samples of model galaxies at the present epoch as well as at

redshift 1. Figure (3.22) shows the results obtained at the cubical sampling volumes char-

acterized by the scales ` = 4.4, 8.8, and 17.6 h−1Mpc. Interestingly, the variance/mean

ratio in the galaxy-mass bias relation also exhibits significant sub-Poissonian behavior,

implying that the effect of volume exclusion is also important for the spatial distribution

of galaxies. One possible reason for this is that many of the galaxy-sized haloes may host

only one galaxy and the galaxy distribution inherits a considerable fraction of the exclu-

sion effects from the distribution of their host haloes. If this result is also true in the case

of real galaxies, that is that the (real) galaxy-bias relation is not described by a Poisson

distribution, then there are important implications of this fact for the interpretations of

galaxy clustering, as will be discussed at the end of the chapter.
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Figure 3.16: Contour plot of the conditional probability obtained from the numerical data
(i.e. mass and galaxy catalogues) at the present epoch. The sampling volumes correspond to
cubic cells of side ` = 4.4, 8.8, 17.6, 35.2 h−1Mpc, from left to right and top to bottom. The
contours are plotted for logarithmic levels of the conditional probability, ranging from 10−6 to
1 times the maximum value of the probability function.
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Figure 3.17: Contour plot of the conditional probability obtained from the numerical data (i.e.
mass and galaxy catalogues) at redshift 1. The sampling volumes correspond to cubic cells of
side ` = 4.4, 8.8, 17.6, 35.2 h−1Mpc, from left to right and top to bottom. The contours are
plotted for logarithmic levels of the conditional probability, ranging from 10−6 to 1 times the
maximum value of the probability function.
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Figure 3.18: Contour plot of the conditional probability obtained from the numerical data (i.e.
mass and galaxy catalogues) at redshift 3. The sampling volumes correspond to cubic cells of
side ` = 4.4, 8.8, 17.6, 35.2 h−1Mpc, from left to right and top to bottom. The contours are
plotted for logarithmic levels of the conditional probability, ranging from 10−6 to 1 times the
maximum value of the probability function.
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Figure 3.19: Comparison between the conditional probability measured from the numerical
data (squares) for present day model galaxies and the corresponding best fits of the Poisson
(dash-dot-dot-dot line), Thermodynamic (dashed line), Lognormal (dash-dot line) and Gaussian
(solid line) distribution functions. The rows correspond, from top to bottom, to the sampling
scales 4.4, 8.8, 17.6, 35.2 Mpc/h, respectively. For each sampling scale there are four plots
corresponding to the local mass overdensity as indicated in the labels.
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Figure 3.20: Comparison between the conditional probability measured from the numerical
data (squares) for model galaxies at redshift 1 and the corresponding best fits of the Poisson
(dash-dot-dot-dot line), Thermodynamic (dashed line), Lognormal (dash-dot line) and Gaussian
(solid line) distribution functions. The rows correspond, from top to bottom, to the sampling
scales 4.4, 8.8, 17.6, 35.2 Mpc/h, respectively. For each sampling scale there are four plots
corresponding to the local mass overdensity as indicated in the labels.
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Figure 3.21: Comparison between the conditional probability measured from the numerical data
(squares) for model galaxies at redshift 3 and the corresponding best fits of the Poisson (dash-
dot-dot-dot line), Thermodynamic (dashed line), Lognormal (dash-dot line) and Gaussian (solid
line) distribution functions. The rows correspond, from top to bottom, to the sampling scales
8.8, 17.6, 35.2 Mpc/h, respectively. For each sampling scale there are four plots corresponding
to the local mass overdensity as indicated in the labels.
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Figure 3.22: Mean bias relation and ratio between the variance and the mean of the bias relation
of galaxies obtained from the simulations using semi-analytical models of galaxy formation. We
show model galaxies at the present epoch (upper panel) and at redshift 1 (lower panel). The
mean and ratio between the variance and the mean of the bias relation are shown in the top and
bottom rows in each panel, respectively. At each epoch the cubical cells of side length, from left
to right, l = 4.4, 8.8, 17.6 h−1 Mpc are shown.
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3.4 Summary and Discussion

In this chapter the stochastic nature of the halo-mass bias relation has been investigated.

In order to accomplish this purpose the conditional probability function PV (N |δm) of

haloes and mass, obtained from high resolution N-body simulations, has been analyzed

in detail.

It has been found that the halo-mass bias relation from the simulations is well repre-

sented by a Gaussian model, and that a Poissonian model is generally a poor approxima-

tion to the numerical bias relation.

Furthermore, it has been shown that the model of Mo & White (1996) describes well

the mean of the bias relation obtained from the simulations, confirming earlier results.

The proposed extension to the model of Sheth & Lemson (1999) for the variance of the

bias relation has been found to describe remarkably well the variance of the bias relation

obtained from numerical simulations.

It has been shown that a simple phenomenological model for the halo-mass bias rela-

tion PV (N |δm) can be constructed. The phenomenological model consists in describe the

halo-mass bias relation by a Gaussian function with its mean as given by the model

of Mo & White (1996) and the variance as given by the extension to the model of

Sheth & Lemson (1999). This model allows one to construct a theoretical model for

the full count-in-cell function for dark haloes.

In addition, the stochastic nature of the galaxy-mass bias relation has been investi-

gated. It has been found that the galaxy distribution in the cosmic density field predicted

by semi-analytic models of galaxy formation shows similar stochastic behavior to that of

the haloes, implying that the galaxy distribution is not a Poisson sampling of the under-

lying density field. It has been found also that the conditional probability for galaxies is

better described by a Gaussian function.

These results have important implications in the interpretations of galaxy clustering

in terms of the underlying density field. For example, the quantity conventionally used

to characterize the second moment of counts-in-cells is defined (here for dark halo) as

κ2(R) =
〈(N − nV )2〉

(nV )2
− 1

(nV )
, (3.20)

where the second term on the right-hand side is to subtract Poisson shot noise (e.g. Peebles
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1980). With the use of equation (3.1), it is easy to show that

κ2(R) =
1

(nV )2

∫

〈N |δm〉2PV (δm) dδm

+
1

(nV )2

∫

[

σ2 − 〈N |δm〉
]

PV (δm) dδm − 1 . (3.21)

Thus, even if haloes trace mass on average, i.e. 〈N |δm〉 ∝ δm, this quantity is not equal

to the second moment for the mass, because the second term on the right-hand side is

generally non-zero. Thus, in order to infer the properties of the mass distribution in the

Universe from statistical measures of the galaxy distribution, it is necessary to understand

the stochastic nature of galaxy biasing.

Furthermore, the non-Poissonian behavior of the bias relation might imply that the

(Poisson) shot-noise corrections usually applied at estimating higher-order moments of the

galaxy distribution are not completely correct and therefore interpretations of skewness

and kurtosis might change considerably, at least at the scales where shot-noise terms are

not too small. This issue needs to be investigated in more detail. Thus, in order to

infer the properties of the mass distribution in the universe from statistical measures of

the galaxy distribution, it is necessary to understand first the stochastic nature of the

galaxy-mass bias relation.

As discussed in Dekel & Lahav (1999), the stochasticity in galaxy biasing not only

affects the interpretation of the moments of the galaxy distribution, but also affects the

interpretation of other quantities related to statistical measures of galaxy clustering, such

as, redshift distortions, the cosmic virial theorem and the cosmic energy equation.

Redshift Distortions

Comoving volume elements in redshift space are distorted in comparison to the corre-

sponding volume elements in real space and thus, a large-scale isotropic distribution of

galaxies in real space is observed as an anisotropic distribution in redshift space. These

redshift distortions are caused by peculiar velocities along the line of sight. A very

promising way of estimating β ≡ Ω0.6/b is via redshift distortions in a redshift survey

(Dekel & Lahav 1999, and references therein). The relation between peculiar velocities

and the mass density depends on the value of Ω and, therefore, the distortions relative to

the galaxy density depend on Ω and on the galaxy bias relation.
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With their formalism for stochastic biasing, assuming no velocity biasing, and from

the linear theory of gravitational instability Dekel & Lahav (1999) obtain a general local

expression for redshift distortions

σ2g,s = σ2g [1 + 2(f(Ω)µ2)rb−1var + ((f(Ω)µ2)2 b−2var],

where the subscript s denotes quantities measured in redshift space. f(Ω) ∼ Ω0.6 (Peebles

1980), µ2 is a geometrical factor depending on the angle between the peculiar velocity

(v) of the galaxy and its position in space (x). r and bvar are parameters describing the

nonlinearity and stochasticity of the bias relation.

Cosmic Virial Theorem

The cosmic virial theorem can be used to estimate Ω from galaxy surveys (Peebles 1980;

Bartlett & Blanchard 1996) by relating the observed dispersion of galaxy-galaxy peculiar

velocities to a spatial integral over the three point galaxy-galaxy-mass cross correlation

function (ξggm) divided by the galaxy-galaxy correlation function (ξgg). The observable

in this case is the three point galaxy correlation function. Therefore the corresponding

biasing parameter is bCV = 〈δg δgδg〉/〈δg δgδm〉. At zero lag, the expression obtained by

Dekel & Lahav (1999) is

bCV =
〈δ3m b3(δm)〉+ 3σ2m〈δmb(δm)σ2b (δm)〉+ SbSm

〈δ3m b2(δm)〉+ σ2m〈δmσ2b (δm)〉
,

where b(δm) is the mean biasing function, σ2
b (δm) is the biasing scatter function, Sb is the

biasing skewness function and S is the third moment of the mass distribution. Recall that

our model assumes a Gaussian conditional probability function, so Sb ≡ 0.

Cosmic Energy Equation

The cosmic energy equation (Peebles 1980) can be used to determine Ω by relating the

observed dispersion of galaxy peculiar velocities to a spatial integral over the galaxy-mass

cross-correlation function (ξgm(r)). In this case the observable quantity corresponds to the

galaxy-galaxy correlation function (ξgm(r)), therefore, the necessary biasing parameter is

bCE = 〈δg δg〉/〈δg δm〉. At zero lag, this biasing parameter takes the form of bCE = binv =

bvar/r in the formalism of Dekel & Lahav (1999).

With the results found in this investigation, one might be able to model some of these

effects quantitatively.
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Chapter 4

Concluding Remarks

4.1 Results and Conclusions

In this thesis I have studied the bias relation between the spatial distribution of dark

matter haloes and the spatial matter density field. The theoretical background for the

formation of structure in the universe corresponds to the gravitational collapse of initially

Gaussian density fluctuations in cold dark matter universes, which is currently the best

description of the process of structure formation in the universe.

The construction of feasible theoretical models of structure formation requires the

knowledge of all the physical processes involved in the formation and clustering of galax-

ies. In addition the models must reproduce the clustering patterns observed from galaxy

catalogues. The most challenging problem in the construction of these models corresponds

to the understanding of the relationship between the galaxy distribution and the underly-

ing matter distribution in the universe. From earlier studies it is known that, in general,

galaxies do not trace the underlying mass exactly and that if the structure has evolved

according to standard gravitational instability theory then the galaxy distribution must

be biased respect to the total mass distribution. All these facts together mean that it is

mandatory to understand the process of galaxy biasing if one wants to constrain models of

galaxy formation or to constrain the values of cosmological parameters from the observed

distribution of galaxies.

Initially proposed by White & Rees (1978), the current framework of galaxy formation

is divided into two parts: first, the dominant dark matter component in the universe
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collapses by gravitational instability into small lumps which then undergo a hierarchical

process of formation of larger structures; second, the gas fraction trapped within the

potential wells of the dark matter lumps cools down and condenses to form galaxies. While

the first stage of galaxy formation is easy to solve, since it is driven by gravity alone, the

second stage is not yet well understood and many physical processes are involved in it.

Nevertheless, these processes are known to have their main influence on the individual

properties of galaxies but a negligible influence on the overall clustering properties. That

means that the clustering properties of galaxies are mainly determined by the gravitational

processes involved in the formation and clustering of dark matter haloes (i.e. virialized

dark matter clumps) and therefore, the clustering properties of the galaxy distribution

can be fairly approached by studying the clustering properties of the dark matter haloes.

In this thesis I have studied the clustering properties of the spatial distribution of dark

matter haloes in cosmic density fields. The analysis has been divided into two main parts.

The first part corresponds to the study of deterministic halo-mass bias models, based on

the spherical collapse model as well as on the ellipsoidal collapse model. The second part

corresponds to the study of the stochasticity in the halo-mass bias relation.

In Chapter 1 the analysis of the deterministic halo-mass bias has been presented. There

I have tested the spherical collapse models from Mo & White (1996) for the variance and

the model from Mo et al. (1997) for the higher-order moments of the halo counts-in-cells,

two sets of high-resolution N-body simulations with different simulation boxes and mass

resolution. Furthermore, the extensions of these models, based on the ellipsoidal collapse

(Sheth et al. 2001), have also been tested.

From the set with a very large simulation box and low mass resolution (VIRGO Sim-

ulations), which allows one to control the finite volume effect, it has been found that

the biasing models under analysis work remarkably good for massive haloes in cold dark

matter universes. The good performance of the biasing models when the moments from

the mass distribution are estimated using the linear perturbation theory, shows that the

moments from this simulations set are practically unaffected by the finite volume effect.

The other set of simulations (GIF simulations), which has much higher mass resolution

and smaller box-size, has been used to test the biasing models for low-mass haloes, I have

shown that a significant improvement can be achieved for haloes less massive than M ?

if the ellipsoidal collapse model is used instead of the spherical collapse model in defin-
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ing dark haloes. For massive haloes both the Mo & White (1996) and Mo et al. (1997)

biasing models and their ellipsoidal extension (Sheth et al. 2001) work remarkably good.

The theoretical models have been used to predict the high-order moments at a fixed

scale of the Lyman break galaxies observed at z = 3 and their descendants at lower

redshifts, which are commonly assumed to form in the center of the most massive haloes

at redshift ∼ 3 (Mo & Fukugita 1996; Adelberger et al. 1998; Jing & Suto 1998; Mo et al.

1999). Under this assumption and, supposing that only a negligible fraction of those

haloes host a secondary observable galaxy the observed Lyman Break Galaxies at redshift

3 correspond to the most massive haloes at z = 3. It has been found that, although

the linear bias parameter b depends strongly on the cosmology adopted, the values of

the high-order moments are practically the same in both ΛCDM and τCDM dark matter

universes and therefore the high-order moments from the spatial distribution of these

objects cannot constrain cosmological parameters.

In chapter 2 the stochastic nature of the halo-mass bias relation is investigated. In

order to accomplish this purpose the conditional probability functions PV (N |δm) of haloes
and mass, obtained from high resolution N-body simulations, have been analyzed in detail.

It has been found that the halo-mass bias relation from the simulations is well rep-

resented by a Gaussian model, and that the commonly adopted Poissonian model is, in

general, a poor approximation to the numerical halo-bias relation. That means that the

galaxy biasing process, as well as the halo biasing process, is not only determined by the

local value of the mass density field, but also by other local quantities, such as clumpiness,

and by non-local properties, such as large-scale tidal fields.

Furthermore, it has been shown that the model of Mo & White (1996) describes well

the mean of the bias relation obtained from the simulations, confirming earlier results.

The proposed extension to the model of Sheth & Lemson (1999) for the variance of the

bias relation has been found to describe remarkably well the variance of the bias relation

obtained from numerical simulations.

It has been shown, additionally, that a simple phenomenological model for the halo-

mass bias relation PV (N |δm) can be constructed. The phenomenological model consists

in describing the halo-mass bias relation by a Gaussian function with its mean as given

by the model of Mo & White (1996) and the variance as given by the extension to the

model of Sheth & Lemson (1999). This model might allow one to construct a theoretical
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model for the full count-in-cell function for dark haloes.

In addition, the stochastic nature of the galaxy-mass bias relation has been inves-

tigated. It has been found that the galaxy distribution in the cosmic density field pre-

dicted by semi-analytic models of galaxy formation (Kauffmann et al. 1999) shows similar

stochastic behavior to that of the haloes, implying that the galaxy distribution is not a

Poisson sampling of the underlying density field. It has been found also that the condi-

tional probability for galaxies is well described by a Gaussian function.

These results have important implications in the interpretations of galaxy clustering

in terms of the underlying density field. For example, the non-Poissonian behavior of

the bias relation might imply that the (Poisson) shot-noise corrections usually applied at

estimating higher-order moments of the galaxy distribution are not completely correct and

therefore interpretations of skewness and kurtosis might change considerably, at least at

the scales where shot-noise terms are not too small. This issue needs to be investigated in

more detail. Thus, in order to infer the properties of the mass distribution in the Universe

from statistical measures of the galaxy distribution, it is necessary to understand first the

stochastic nature of galaxy biasing.

The stochasticity in galaxy biasing not only affects the interpretation of the moments

of the galaxy distribution, but also affects the interpretation of other quantities related

to statistical measures of galaxy clustering, such as, redshift distortions, the cosmic virial

theorem and the cosmic energy equation. With the results shown in chapter 2 one might

be able to model quantitatively many of these effects.

4.2 Future Prospects

The several physical processes involved in the formation of galaxies are currently poorly

understood. However, our understanding of the universe, and the formation of galaxies

within it, will be substantially improved in the next years thanks to forthcoming new

observational data and the theoretical progress linked to it. Indeed, for some years now

the Hubble Space Telescope has made possible the exploration of the universe at high

redshift. In addition to that, the new huge telescopes like VLT and Keck will give us

an increasingly better picture of the universe at the epochs of the birth of galaxies, and

therefore will help us to improve considerably the framework of galaxy formation. In
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addition, the new Sloan Digital Sky Survey (SDSS) and 2dF huge redshift surveys are

going to produce extended catalogues of very high quality.

On the other hand, precise measurements of the cosmological parameters could be

obtained from the Planck-Surveyor and MAP, if they are successful.

The high-quality observational data represent a theoretical challenge, in the sense that

we will need to improve our models of structure formation and clustering to be consistent

with the observations. We also need to improve numerical simulations, in order to be able

to reproduce the observations from semi-analytical models, as well as to be able to work

out and improve models of galaxy and halo biasing, which is mandatory if one wants to

use galaxy clustering measurements to understand the mass distribution in the universe

and to constrain the values of cosmological parameters. Thus, this represents a huge

opportunity to go forwards in our understanding of the universe.
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Verheiratet mit Astrid Baquero Bernal

Schulausbildung
1978 - 1982 Grundschule in Bogotá, Kolumbien
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