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SUMMARY

Profilin is an ubiquitous cytoskeletal protein whose function is fundamental to the

maintenance of normal cellular physiology. Site-directed mutagenesis of profilin II from

Dictyostelium discoideum by PCR resulted in the point mutations W3N and K114E, whereby

the W3N profilin is no longer able to bind to poly-(L)-proline concomitant with a slight

reduction in actin-binding, whereas the K114E profilin shows profound decrease in its ability

to interact with actin but its affinity for poly-(L)-proline remained unaltered. The in vivo

properties of the point-mutated profilins were studied by expressing either W3N or K114E in

the profilin-minus D. discoideum mutants which have defects in the F-actin content,

cytokinesis and development (Haugwitz et al., 1994). Expression resulted in normal cell

physiology, a reduction in the F-actin content, and a complete development. Interestingly,

only cells which overexpressed W3N could restore the aberrant phenotype, while the K114E

profilin with its fully functional poly-(L)-proline binding and its strongly reduced actin-

binding activities rescued the phenotype at low concentrations. Both the wild-type and point-

mutated profilins are enriched in phagocytic cups during uptake of yeast particles. These data

suggest a) that a functional poly-(L)-proline binding activity is more important for

suppression of the mutant phenotype than the G-actin binding activity of profilin, and b) that

the enrichment of profilin in highly active phagocytic cups might be independent of either

poly-(L)-proline or actin-binding activities.

To have a better understanding of the in vivo role of profilin, D. discoideum profilin II has

been tagged at its C-terminus with the green fluorescent protein (GFP) with a 100-aa linker

separating profilin and GFP. This fusion construct was introduced in D. discoideum profilin-

minus cells and expression of the fusion protein could restore the aberrant phenotype

partially. The partial rescue might be due to the uneven expression of the fusion protein

leading to mixed populations even after repeated recloning. The profilin-GFP transformants

showed normal cell morphology, could be cultivated in shaking suspensions, and could

develop fruiting bodies which closely resembled those of the wild-type. In vivo studies

revealed the distribution of the fusion protein in highly active regions of the cells such as

phagocytic cups, macropinocytotic crowns, cell cortex and at the leading edges of locomoting

cells. Thus profilin appears to play a significant role in the regulation of the dynamic actin-

based cellular processes.

A second actin-regulatory protein from D. discoideum namely, severin, a Ca2+-dependent F-

actin fragmenting and capping protein, was also investigated via fusion to GFP at its C-



terminus. Although severin is a very active F-actin fragmenting protein in in vitro assays, the

severin null D. discoideum mutant exhibits normal growth, cell motility, chemotaxis and

development. Examination of the live dynamics of severin-GFP should clarify the in vivo role

of severin and other functionally redundant cytoskeletal proteins. The 70 kDa severin-GFP

fusion protein has been sufficiently expressed and partially purified from the severin null cells

whereby in vitro assays confirmed the ability of this fusion protein to sever F-actin only in the

presence of Ca2+. Data from confocal microscopy showed that the fusion protein was

transiently detected in macropinocytotic crowns, phagocytic cups, membrane ruffles, at the

leading edges of motile cells and cell-cell contacts of aggregating cells in directed motion.

These data suggest an in vivo role for severin in the remodulation of existing F-actin

structures as supported by the in vitro data.

The highly dynamic cytoskeleton also plays a significant part in the defence of the cells

against pathogens. The behaviour of the actin cytoskeleton of cultured mammalian cells in

response to Yersinia enterocolitica infection was examined by confocal microscopy with the

aid of GFP-tagged actin, cofilin and profilin II. The translocated Yersinia outer proteins

(Yops) encoded by a virulence plasmid in the wild-type bacteria have been observed to

disrupt the actin microfilaments, resulting in diffuse actin staining which subsequently

disappeared completely upon prolonged bacterial infection. In addition, F-actin structures

resembling phagocytic cups were found at the sites of bacterial adherence, suggesting the

likelihood of the involvement of the Rho family of small GTPases in the regulation of the

actin cytoskeleton. The secreted Yops appeared to have no major effect on the distribution of

GFP-profilin whereas the staining pattern of GFP-cofilin seemed to be modified by the Yops,

resulting in a decrease in length of the actin-cofilin rods and a diffuse localization of cofilin.

The exact mechanisms of interaction between the Yops and their host targets remain to be

determined. However, a clearer insight into the interaction between pathogens and the host

cytoskeleton will certainly aid in the cellular defence and the prevention of pathogenesis.
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ZUSAMMENFASSUNG

Profilin ist ein ubiquitäres Zytoskelettprotein, dessen Funktion für die Zellphysiologie von

fundamentaler Bedeutung ist. Durch gerichtete Mutagenese von Profilin II aus Dictyostelium

discoideum wurden die Punktmutationen W3N und K114E erzeugt. Das W3N-Profilin

interagiert nicht mehr mit poly-(L)-Prolin und zeigt geringfügig verminderte Aktinbindung.

Dagegen ist die Aktinbindung des K114E-Profilin stark reduziert, während seine Affinität zu

poly-(L)-Prolin unverändert bleibt. Die in vivo Eigenschaften der punktmutierten Profiline

wurden durch Expression von W3N- bzw. K114E-Profilin in D. discoideum Profilin-

Nullmutanten (Haugwitz et al., 1994) untersucht, die Defekte im Aktingehalt, der Cytokinese

und der Entwicklung aufweisen. Die Expression führte zur Wiederherstellung eines normalen

Phänotyps. Interessanterweise ist dafür eine W3N-Profilin-Überexpression erforderlich,

während K114E-Profilin mit seiner stark reduzierten Aktin-, aber voll funktionellen poly-(L)-

Prolin-Bindung den mutanten Phänotyp schon in geringen Mengen aufhebt. Sowohl das

Wildtyp-Profilin als auch die beiden punktmutierten Profiline sind während der Phagozytose

von Hefezellen in „phagocytic cups“ angereichert. Diese Befunde sprechen dafür, dass a) eine

funktionelle poly-(L)-Prolin-Bindungsaktivität für die Suppression des mutanten Phänotyps

wichtiger ist als die G-Aktin-Bindungsaktivität, und b) die Anreicherung von Profilin bei der

Phagozytose weder von seiner poly-(L)-Prolin-Bindung, noch von einer intakten

Aktinbindung abhängt.

Für ein besseres Verständnis der Funktion von Profilin in vivo wurde D. discoideum Profilin

II am C-Terminus über ein 100 Aminosäuren langes Verbindungsstück mit dem grün-

fluoreszierenden Protein (GFP) verknüpft. Die Expression dieses Fusionskonstrukts in der D.

discoideum Profilin-Nullmutante führte zu weitgehender Kompensation des mutanten

Phänotyps. In vivo Untersuchungen zeigten die Lokalisation des Fusionsproteins in

hochaktiven Regionen der Zelle, wie z. B. in Phagozytose Strukturen, dem Zellkortex und

Pseudopodien. Profilin scheint also eine signifikante Rolle bei der Regulation dynamischer,

Aktin-abhängiger, zellulärer Prozesse zu spielen.



Severin, ein weiteres Aktin-regulatorisches Protein aus D. discoideum mit Ca2+-abhängiger

Aktin-Fragmentierungs- und „Capping“-Aktivität, wurde ebenfalls mit Hilfe C-terminaler

Verknüpfung an GFP untersucht. Das 70 kDa große Severin-GFP Fusionsprotein wurde in

den Severin-Nullmutanten ausreichend stark exprimiert und aus diesen Zellen angereichert.

Dabei zeigten in vitro Versuche, dass die Fragmentierung von F-Aktin durch das

Fusionsprotein nur in Gegenwart von Ca2+ erfolgt. Die Ergebnisse der Konfokalmikroskopie

belegten die transiente Lokalisation des Fusionsproteins in aktiven Regionen bei der

Zellbewegung. Diese Befunde deuten auf eine Rolle von Severin beim Umbau bereits

existierender Aktinstrukturen in vivo hin.

Das hochdynamische Zytoskelett spielt auch eine bedeutende Rolle bei der Verteidigung von

Zellen gegen pathogene Organismen. Durch Konfokalmikroskopie an kultivierten

Säugerzellen wurde das Verhalten des Aktin-Zytoskeletts als Antwort auf eine Yersinia

enterocolitica Infektion mit Hilfe von GFP-verknüpftem Aktin, Cofilin und Profilin II

untersucht. Es wurde beobachtet, dass die von einem Virulenzplasmid der Wildtyp-Bakterien

kodierten Yops (Yersinia outer proteins) die Aktin-Mikrofilamente abbauen, was sich

zunächst in einer diffusen Aktinfärbung äußerte. Zusätzlich wurden an den Stellen bakterieller

Anheftung F-Aktin-Strukturen gefunden, die Phagozytose Strukturen ähnlich sahen. Dies

macht eine Beteiligung der Rho-Familie kleiner GTPasen bei der Regulation des Aktin-

Zytoskeletts wahrscheinlich. Die sezernierten Yops hatten keinen deutlichen Effekt auf die

Verteilung von GFP-Profilin, dagegen schien das Färbungsmuster von GFP-Cofilin durch die

Yops modifiziert zu werden, was zu einer Verkürzung der Aktin-Cofilin-Stäbchen und

diffuser Lokalisation von Cofilin führte. Der genaue Mechanismus der Interaktion der Yops

mit den Zieldomänen der Wirtszelle ist noch unbekannt, aber ein genauerer Einblick in die

Interaktionen zwischen pathogenen Organismen und dem Zytoskelett der Wirtszelle kann

sicherlich zum Schutz der Zellen und der Prävention der Pathogenese beitragen.
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1 INTRODUCTION

1.1 The actin cytoskeleton
Cells vary greatly in shapes and sizes, from the almost spherical lymphocyte, to amoeboid

cells such as macrophages, to flattened spindle-shaped fibroblasts or polygonal epithelial

cells, to neuronal cells with complex extensions like the dendrites and the axons. Such cellular

architecture is constructed and maintained by the cytoskeleton, a dynamic network

comprising of three major types of proteinaceous structural elements, namely, the actin

microfilaments (about 6-10 nm in diameter), tubulin microtubules (about 25 nm in diameter)

and intermediate filaments (about 10 nm in diameter). The cytoskeleton is responsible for cell

shape, motility, migration, cytokinesis, cell polarity, intracellular transport, and last but not

least, it is involved in protection of cells against bacterial and viral infections.

In contrast to the well organized and stably structured actin cytoskeleton in a striated muscle

cell, the highly motile cells, such as leukocytes, platelets and other cell types which migrate

on a surface or through tissues, possess a very dynamic cytoskeleton whereby the actin

filaments can quickly undergo polymerization and depolymerization, depending on the

cytoplasmic ionic conditions and regulated by a large number of actin binding proteins

(Stossel et al., 1985; Pollard and Cooper, 1986; Noegel and Luna, 1995; Schleicher et al.,

1995) which are functionally conserved from lower eukaryotes to mammals. These actin

regulatory proteins are able to maintain the steady-state equilibrium between monomeric or

G- and filamentous or F-actin by reversibly controlling the turnover rate of G-actin into

filaments. In addition, they also govern the three-dimensional organization of the

microfilament network. They are in turn regulated by various factors such as Ca2+,

phospholipids, phosphorylation and pH. Depending on their interaction with G- or F-actin,

these actin modulatory proteins can be grouped into five major classes, (a) monomer binding

proteins, (b) F-actin fragmenting and capping proteins, (c) F-actin crosslinking proteins, (d)

membrane anchors and (e) the myosin motor proteins (Fig. 1).

Usually small and ubiquitous, G-actin associating proteins reversibly remove polymerizable

actin from the equilibrium with F-actin, thus reducing the viscosity in the cytoplasm by

lowering the number and lengths of filaments. Representatives of this monomer sequestering

protein family are profilin (Carlsson et al., 1977; Haugwitz et al., 1991; Christensen et al.,

1996; Rothkegel et al., 1996), cofilin (Aizawa et al., 1995, 1997; Theriot, 1997), adenylyl

cyclase-associated protein or CAP (Gottwald et al., 1996), and ß-thymosins (Nachmias,

1993).
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Free barbed ends are a prerequisite for all actin-based motile processes, as they allow for the

regulated assembly and disassembly of actin filaments. Filament number and lengths are

controlled by the group of F-actin fragmenting and capping proteins which acts by either

capping the barbed (+) ends of filaments only, or by severing filaments, which is usually

followed by capping of the newly created (+)-end, thus maintaining short filaments and

lowering cell viscosity. Their activity is regulated by Ca2+, polyphosphoinositides, pH, and

phosphorylation. The best investigated examples of this group are gelsolin (Yin and Stossel,

1979; Witke et al., 1995; Sun et al., 1997), villin (Janmey and Matsudaira, 1988; Finidori et

al., 1992; Pope et al., 1994), protovillin (Hofmann et al., 1993), severin (Eichinger et al.,

1991; Eichinger and Schleicher, 1992), fragmin (Hasegawa et al., 1980; Gettemans et al.,

1992) and the heterodimeric capping protein Cap32/34 (Hartmann et al., 1989; Eddy et al.,

1996).
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The group of F-actin stabilizing proteins consists of generally large, abundant, cytosolic

proteins which can bind along the side of filaments, thereby stabilising actin filaments

themselves, as in the case of tropomyosin (Lehman et al., 1994). In addition, the availability

of at least two F-actin binding sites enables them to crosslink filaments and form bundles as

well as three-dimensional actin networks. The two actin binding sites are either arranged in

tandem on a single polypeptide chain like fimbrin (Matsudaira et al., 1983; Kuebler and

Riezman, 1993; Prassler et al., 1997), or they are found on separate polypeptide chains which

form parallel or antiparallel dimers such as α-actinin (Condeelis and Vahey, 1982;

Fechheimer et al., 1982; Noegel et al., 1987), or gelation factor/ABP120 (Noegel et al., 1989;

Rivero et al., 1996; Fucini et al., 1997) and filamin (Hock and Condeelis, 1987). The majority

of F-actin cross-linking proteins discovered in Dictyostelium, including two recent members,

namely Cortexillin I and II (Faix et al., 1996) and interaptin (Rivero et al., 1998), belongs to

the α-actinin/spectrin superfamily of proteins.

Myosins, characterized by a well conserved motor domain, are responsible for contractility

and transport of cargoes along actin filaments. They are classified as either conventional or

unconventional myosins. Possessing a common structure, the conventional, class II or double-

headed myosins from muscle or non-muscle cells are able to assemble into bipolar filaments

(Manstein, 1993). On the other hand, the unconventional myosins are a very diverse group of

motor proteins, consisting of the generic motor domain adhered to a multitude of structurally

and functionally distinct tail domains (Uyeda and Titus, 1997; Baker and Titus, 1998).

Another important group of proteins helps to maintain the cell integrity and control motile

processes by anchoring actin filaments to membranes. Well-studied membrane anchors of

actin include the pH-regulated hisactophilin I and II (Scheel et al., 1989; Hanakam et al.,

1996; Stoeckelhuber et al., 1996),  the Golgi and vesicle associated comitin (Weiner et al.,

1993; Jung et al., 1996a), the integral plasma membrane protein, ponticulin (Hitt et al., 1994;

Schutt et al., 1995), and talin, a protein involved in linking the actin cytoskeleton to sites of

cell-to-substrate adhesion (DePasquale and Izzard, 1991; Kaufmann et al., 1992; Kreitmeier

et al., 1995; Niewoehner et al., 1997).

1.2 Dictyostelium as model organism
Single cell motility has long since been studied in tissue culture systems or higher eukaryotes.

Isolated more than 60 years ago (Raper, 1935) the highly motile Dictyostelium discoideum

amoeba, whose motility properties parallel those of human leukocytes (Devreotes and

Zigmond, 1988), appears to be an appealing and versatile model system for analysing cell
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movement both at the single cell and multicellular stage by a wide variety of genetic,

biochemical, and cell biological methods. Besides cell motility, a multitude of cellular

processes such as cell differentiation, signal transduction, cytokinesis, chemotaxis and

phagocytosis can be studied with ease.

Residing naturally in the upper soil layer of decaying leaves, these free-living, unicellular

amoebae feed on bacteria. Upon starvation, a developmental cycle is initiated whereby up to

100,000 cells are able to chemotactically aggregate to form a multicellular structure which

undergoes morphogenesis and cell-type differentiation. Development culminates in the

generation of fruiting bodies containing resistant spores which later on give rise to individual

amoebae (Loomis, 1996). The life cycle of Dictyostelium is summarized in Fig. 2.

Several advantages offered by Dictyostelium firmly establish its role as laboratory organism.

Firstly, large amounts of genetically identical cells can be easily cultivated over a period of

three days for biochemical analysis; proteins of interest can be investigated at the unicellular

and multicellular level; a small genome of about 34 Mb of DNA should facilitate the

molecular studies of genes involved in growth and development; development should be
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rapid, synchronous and easy to control and observe; its haploid genome allows isolation and

characterization of mutants with ease. Last but not least, the availability of convenient

transformation protocols (Nellen et al., 1984; Howard et al., 1988) greatly facilitates the

genetic manipulation of this organism. The existence of various selection markers such as

neomycin (Nellen et al., 1984), hygromycin (Egelhoff et al., 1989), 5-fluoroorotic acid

(Kalpaxis et al., 1991), phleomycin (Leiting and Noegel, 1991) and blasticidin (Adachi et al.,

1994) enables isolation of single, double, triple , or even quadruple mutants.

Furthermore, a wide variety of improved genetic approaches are available to generate mutants

for studying the cytoskeleton of Dictyostelium amoebae (Fig. 3). These include targeted gene

disruption and gene replacement by homologous recombination (Manstein et al., 1989),

antisense-mediated gene inactivation (Knecht and Loomis, 1987; Liu et al., 1992), tagging of

disrupted genes with easily detectable antigenic and biochemical markers (Doering et al.,

1991), the transponson tagging like mutagenesis by restriction enzyme-mediated integration

(REMI) of DNA (Kuspa and Loomis, 1992; Karakesisoglou et al., 1999), and the tagging of

cytoskeletal proteins with GFP to allow in vivo monitoring of gene expression in prokaryotic

or eukaryotic cells (Chalfie et al., 1994; Wang and Hazelrigg, 1994; Ludin and Matus, 1998)

which has all but transformed cell biological research in living Dictyostelium.

1.3 GFP as marker of gene expression
The green fluorescent protein (GFP) of 238 amino acid residues from the jellyfish Aequorea

victoria (Prasher et al., 1992; Chalfie et al., 1994) has generated much attention as the tool of

choice in visualizing live molecular events in real time in a large and ever-growing number of

species, including bacteria, amoebae, fungi, plants, insects, nematodes, Drosophila and the

higher mammalian cells (Chalfie et al., 1994). GFP-tagged proteins are ideally suited for

studying cytoskeletal dynamics in vivo, in terms of being able to conveniently visualize their

subcellular distributions and more importantly, to detect transient alterations of cellular

processes during dynamic remodelling of the cytoskeleton. Excitation at 395 nm yields an

emission maximum at 508 nm. GFP mutants harbouring altered excitation and emission

spectra (Heim and Tsien, 1996) greatly broaden the field of applications, whereby an

improved emission of fluorescence (Heim et al., 1995) allows better visualization. In addition,

GFP mutants with varied color properties make it possible to perform double labelling of

subcellular structures to distinguish multiple cellular events simultaneously (Heim et al.,

1994; Rizzuto et al., 1996). Also, the GFP mutants can serve as donors and acceptors for
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fluorescence resonance energy transfer (FRET) to monitor protein-protein interactions in vivo

(Heim and Tsien, 1996).

A main consideration of using GFP has been that the tagging of GFP might alter the function

of the fusion partner. However, this has been resolved by the successful labelling of highly

conserved proteins like tubulin (Neujahr et al., 1998) and actin (Westphal et al., 1997). A

major proportion of GFP tagged proteins has been cytoskeletal proteins. With the aid of GFP-

actin, the microfilament dynamics has been well studied in yeast (Doyle and Botstein, 1996),

Dictyostelium (Westphal et al., 1997) and mammalian cells (Choidas et al., 1998). Some other

examples of the constantly increasing number of GFP-fused cytoskeletal proteins include ß1-

integrin (Smilenov et al., 1999), myosin heavy chain (Moores et al., 1996), coronin (Gerisch

et al., 1995; Maniak et al., 1995; Hacker et al., 1997), cortexillin (Weber et al., 1999), FtsZ

(Ma et al., 1996), α-tubulin (Straight et al., 1997; Neujahr et al., 1998), kinesin (Pierce et al.,

1997), microtubule-associated protein MAP4 (Olson et al., 1995), and Ncd (Endow and

Komma, 1997).

1.4 Profilin
Profilins are abundant, low molecular weight (12-15 kDa), cytoplasmic proteins found in all

eukaryotic cells examined so far. They are able to bind to actin monomers (Carlsson et al.,

1977), poly-(L)-proline stretches (Tanaka and Shibata, 1985), the vasodilator-stimulated

phosphoprotein (VASP) (Reinhard et al., 1995) and polyphosphoinositides (Lassing and

Lindberg, 1985; 1988). Depending on the conditions, profilin can either upregulate or

downregulate the polymerization of actin monomers (Carlsson et al., 1977; Pantaloni and

Carlier, 1993). Besides sequestering G-actin, profilins are capable of enhancing the rate of

ADP/ATP exchange in the actin monomer (Mockrin and Korn, 1980; Nishida, 1985) and thus

promote actin polymerization. If the barbed ends of actin filaments are capped, profilin acts

like a sequestering protein. However, when free barbed ends are available, profilin is able to

assist, in the presence of ß-thymosin, polymerization of actin (Pantaloni and Carlier, 1993;

Theriot and Mitchison, 1993; Carlier and Pantaloni, 1994). Furthermore, binding of profilin to

phospholipids and to target proline-rich proteins suggests a role in signal transduction

pathways to the cytoskeleton (Sohn and Goldschmidt-Clermont, 1994; Sun et al., 1995;

Carlier and Pantaloni, 1997).

Genetic analyses confirmed the importance of profilins as components of the microfilament

system essential for the regulation of normal cellular roles and cell viability (Haarer et al.,

1990, 1993; Cooley et al., 1992; Witke et al., 1993; Balasubramanian et al., 1994; Haugwitz



10

et al., 1994; Rothkegel et al., 1996; Schlueter et al., 1998; Ostrander et al., 1999). In vivo

studies had demonstrated the significance of the specific molecular environment on the actual

role played by profilin. For example, microinjected birch-pollen profilin was characterized in

Tradescantia blossfeldiana cells as a sequestering protein (Staiger et al., 1994), but it was

found to have a stabilizing effect on the F-actin network in BHK cells (Rothkegel et al.,

1996). In addition, various Drosophila profilin mutants had stressed the importance of profilin

in normal cell development (Verheyen and Cooley, 1994).

Atomic configurations of bovine (Schutt et al., 1993; Cedegren-Zeppezauer et al., 1994),

human (Metzler et al., 1993) or Acanthamoeba profilin (Vinson et al., 1993; Fedorov et al.,

1994) showed that profilins share an analogous three-dimensional fold despite highly

divergent sequences. The key feature of the profilin molecule is an antiparallel ß-pleated sheet

flanked on one side by the amino- and carboxy-terminal α-helices and some smaller α-helices

and ß-strands on the opposite side. Both co-crystallization studies of bovine profilin:ß-actin

complexes (Schutt et al., 1993) and crosslinking experiments (Vandekerckhove et al., 1989)

showed that profilin binds to the subdomains 1 and 3 of G-actin in a 1:1 complex. The

predominant contact areas in profilin are helices 3, 4 and strands 4-6 (Fig. 4). Lysine (Lys)

#125 of bovine profilin forges an intermolecular electrostatic interaction with the glutamic

acid (Glu) residue #364 of actin. This lysine residue is homologous to the highly conserved

Lys #115 of Acanthamoeba profilin which has earlier been chemically crosslinked to Glu

#364 of actin via a zero length crosslinker (Vandekerckhove et al., 1989).
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A hallmark of all eukaryotic profilins is their ability to interact with poly-(L)-proline

sequences, due to highly conserved aromatic residues which create a hydrophobic cleft

between profilin’s amino- and carboxy-terminal helices and the upper face of its antiparallel

ß-sheet (Bjoerkegren et al., 1993; Haarer et al., 1993; Metzler et al., 1993; Schutt et al., 1993;

Archer et al., 1994; Kaiser and Pollard, 1996). Currently, only the profilin-like molecule from

the Vaccinia virus has been known to lose its ability to bind poly-(L)-proline stretches due to

aromatic substitutions (Machesky et al., 1994). So far, two proline-rich biological ligands of

profilin have been well characterized, VASP (Reinhard et al., 1995) and Mena, a relative of

VASP (Gertler et al., 1996). However, the knowledge of the relevance and the physiological

role of profilin’s interaction with poly-(L)-proline is still inadequate.

Dictyostelium possesses two profilin isoforms, profilin I and II, with 55% identity in their

amino acid sequences (Haugwitz et al., 1991). In vitro studies showed that both isoforms bind

G-actin with slightly differing affinities and are able to delay the onset of actin polymerization

by shifting the critical concentration for actin polymerization to a higher level. Cells which

lack only one isoform are indistinguishable from wild-type cells (Haugwitz et al., 1994). Only

the disruption of both genes gave rise to an aberrant phenotype with an increased F-actin

content, abnormal cytokinesis and development. These profilin deficient cells exhibit reduced

motility, are up to ten times larger than wild-type cells, often multinucleate, could grow on

surfaces but not in shaking suspension, and their development is blocked prior to fruiting

body formation (Haugwitz et al., 1994). The increase of F-actin by 60-70% suggests that

Dictyostelium profilin acts in vivo primarily as an actin sequestering protein.

While profilins have been thoroughly studied in vitro, their in vivo roles remain elusive. The

expression of point mutated profilins or GFP-tagged profilins in profilin null cells should help

further in elucidating the in vivo functions of profilin.

1.5 Severin
The dynamic remodelling of actin-based cytoskeletal structures usually requires the

fragmentation of existing filaments and filament bundles. Severin, the major severing protein

from D. discoideum (Brown et al., 1982; Yamamoto et al., 1982), is a 40 kDa protein with

sequence homologies to other members of the group of F-actin fragmenting proteins found in

lower and higher eukaryotes. These include the vertebrate proteins gelsolin (Yin and Stossel,

1979) and villin (Bretscher and Weber, 1979), or fragmin from Physarum polycephalum

(Hasegawa et al., 1980). A characteristic feature of severin-like proteins is the segmental

organization into three (severin, fragmin) or six (gelsolin, villin) homologous domains which
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might have evolved through sequential gene duplications prior to the evolutionary branching

off of Dictyostelium (Janmey and Matsudaira, 1988; Hofmann et al., 1993). The presence of

micromolar Ca2+ allows these proteins to nucleate actin assembly, sever actin filaments, and

cap the fast growing barbed ends of actin filaments (Matsudaira and Janmey, 1988).

Based on sequence homology to human gelsolin, two additional members have been isolated

from Dictyostelium. Protovillin is a villin prototype which caps but does not sever actin

filaments (Hofmann et al., 1993), and the 190 kDa villidin is a multidomain protein

harbouring WD repeats at the N-terminal region, followed by a PST (proline, serine,

threonine) rich stretch and sequence homology to vertebrate villin at the C-terminal domain

(unpublished data).

The Ca2+-activated, PIP2-inhibited actin-binding, severing and capping activities of D.

discoideum severin have been correlated with its highly conserved three-domain structure by

in vitro studies (Eichinger et al., 1991; Eichinger and Schleicher, 1992). It was found that

severin possesses a capping site in domain 1, and two F-actin side-binding regions in domains

2+3. Two distinct Ca2+-binding activities are associated with domains 1 and 2, while two

PIP2-binding sites have been determined separately in domain 1 and domains 2+3. Severin

was also found to be inhibited by other negatively charged phospholipids besides PIP2.

Domain 2 of severin consisting of a Ca2+-dependent actin interacting site, was determined to

have a stable and conserved three-dimensional structure similar to that of profilins and the

segment I of gelsolin (Pollard et al., 1994; Schnuchel et al., 1995).

Recently, a Dictyostelium protein kinase isolated from cytosolic extracts was found to belong

to the family of Ste20p- or p21-activated protein kinase (PAK) (Sells et al., 1997; Tapon and

Hall, 1997). This novel kinase which specifically phosphorylates severin and exhibits highest

homology to human SOK-1 (Ste20/oxidant stress response kinase) has been characterized by

Eichinger et al. (1998).

Although in vitro assays revealed severin as a very active F-actin fragmenting protein, the

severin null Dictyostelium mutant (HG1132) isolated by chemical mutagenesis, exhibits

normal growth rate, cell motility, chemotaxis, and development (André et al., 1989). This

suggests the redundancy of the cytoskeletal network, whereby removal of a single actin-

binding protein could be functionally compensated by others (Witke et al., 1992). There is

increasing evidence that in vivo F-actin severing proteins are involved in signal transduction

(Barkalow and Hartwig, 1995; Kwiatkowski, 1999), hence the tagging of severin with GFP

should aid further in revealing its in vivo role in the transient, dynamic processes of the

cytoskeleton.
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1.6 Pathogens and the actin cytoskeleton

1.6.1 Actin-based motilities of pathogens

Phagocytosis constitutes the first step for the uptake and degradation of particles. This process

occurs in “professional“ phagocytes like macrophages and neutrophils, and also to a lesser

extent, in non-professional phagocytes such as fibroblasts, endothelial and epithelial cells.

Once inside the host cells, intracellular pathogens are able to control the fate of their

membrane-bound compartments, evade host defences and further degradation, and at the same

time, transform their environments to allow survival. Various pathogens have evolved

different mechanisms to replicate successfully within host cells and to spread from cell to cell.

The high plasticity of the actin cytoskeleton enables active exploitation by many pathogens

during entry into cells and in some cases during dissemination of these pathogens in cells and

tissues. Although rearrangements of the cytoskeleton appear to be an essential requirement for

entry of most pathogens, the manipulation of the cytoskeleton at a later intracellular stage of

infection seems to be restricted to several intracellular pathogens, the best studied ones such

as Listeria, Shigella, Rickettsias and Vaccinia.

Studies of the actin-based motility of pathogens have offered insights into events occurring at

the leading edge of motile cells (Machesky, 1997; Welch et al., 1998). Intracellular bacteria

like Listeria monocytogenes (Tilney and Portnoy, 1989; Cossart and Kocks, 1994), Shigella

flexneri (Bernardini et al., 1989; Zeile et al., 1996), spotted fever group Rickettsia (Gouin et

al., 1999) and also the Vaccinia virus (Cudmore et al., 1995; 1996) are able to interact with

the cellular machinery leading to local polymerization of host actin into “comet tail“

structures which propel the pathogens within the cytoplasm. Once the pathogens reach the

plasma membrane, they form long protrusions which are engulfed by neighbouring cells thus

allowing infection to spread from cell to cell. Identification of pathogenic factors responsible

for actin-based motilities led to the ActA protein from L. monocytogenes (Domann et al.,

1992; Kocks et al., 1992; Pistor et al., 1994) and the IcsA protein from S. flexneri (Bernardini

et al., 1989; Goldberg et al., 1993). The genes responsible for the actin polymerization

process in Rickettsia and the Vaccinia virus have yet to be found. Host actin cytoskeletal

proteins implicated in bacterial actin-based motility include the Arp 2/3 (actin-related protein)

complex (Welch et al., 1997) and VASP (Chakraborty et al., 1995) for L. monocytogenes, and

vinculin (Kadurugamuwa et al., 1991; Suzuki et al., 1996; Laine et al., 1997) and N-WASP

(neural Wiskott-Aldrich syndrome protein) for S. flexneri (Suzuki et al., 1998; Egile et al.,

1999). In contrast to Listeria and Shigella, Rickettsia appears to use a different mechanism for
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actin assembly since Rickettsia tails have a distinct structure from that of Listeria and

Shigella. Two host proteins, VASP and alpha-actinin were found to colocalize with actin in

the Rickettsia tails (Gouin et al., 1999). In the case of the Vaccinia virus, a host

phosphotyrosine protein was found to be responsible for actin-based motility (Frischknecht et

al., 1999) of the virus within host cytoplasm.

Actin-based motility of extracellular bacteria is best studied in the enteropathogenic

Escherichia coli (EPEC), a causative agent of infantile diarrhoea. These bacteria adhere to the

surface of host cell and induce localized formation of actin bundles beneath the attachment

sites. The actin filaments become organized into membrane encased protrusions which can

extend up to 6 µm above the cell surface, generating actin pedestals on which the bacteria lie.

These EPEC pedestals can bend and undulate, changing in length while remaining tethered in

place (Sanger et al., 1996), while some adhered EPEC can also move along the cell surface.

Thus actin assembly in the pedestals is essential for the translocation of EPEC on the host cell

surface. All genes required for pedestal formation during EPEC infection are encoded by the

bacterial chromosome, as well as many virulence effectors, including several EPEC-secreted

proteins (Esps), some of which are secreted into the host cell and are important for signal

transduction. A two-protein complex has been identified to be involved in the attachment of

EPEC. A bacterial protein, Tir, is initially inserted in the host’s plasma membrane, which can

in turn act as a receptor for bacterial intimin which mediates adherence of bacteria to the host

cell (see review Goosney et al., 1999).

1.6.2 Rho modification by bacterial toxins

GTP-binding proteins of the Rho family are regulators of the actin cytoskeleton and molecular

switches in various signal transduction pathways. The Rho proteins are often targets for

intracellular bacterial protein toxins which either inactivate GTPases by ADP-ribosylation or

glucosylation, or activate them by deamidation. Rho proteins are essential for host cell

invasion by bacteria. These small GTPases are targets for bacterial ADP-ribosylating toxins

belonging to the C3 exoenzyme family (Aktories et al., 1992), some members including the

Clostridium botulinum C3 ADP-ribosyl-transferase (Aktories et al., 1987; Rubin et al., 1988),

and a transferase produced by Staphylococcus aureus (Sugai et al., 1990). The RhoA GTPase

has been shown to be glucosylated by the toxin B of Clostridium difficile, leading to

disaggregation of actin filaments (Lyerly et al., 1988; Kelly et al., 1994; Just et al., 1995).

All Bordetella species are able to produce heat-labile toxins known as dermonecrotic toxins

(DNTs) (Horiguchi et al., 1995). The Bordetella pertussis toxin interferes with the adenylate
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cyclase system by ADP-ribosylating the alpha subunit of heterotrimeric G proteins (Katada

and Ui, 1982). Cholera toxin and a heat-labile enterotoxin from E. coli, both with structures

resembling that of B. pertussis toxin, also ADP-ribosylate G proteins (Cassel and Selinger,

1977; Sixma et al., 1991). DNT from Bordetella, which shares homologous sequences with

the cytotoxic necrotizing factors (CNFs) of E. coli (Oswald et al., 1994) at the carboxy-

terminal, modifies and activates Rho by deamidation (Horiguchi et al., 1997), leading to actin

filament assembly and formation of focal adhesions. On the other hand, the N-terminal of

CNF shows sequence homology to Pasteurella multocida toxin (PMT) (Oswald et al., 1994).

It has been suggested that activation of Rho mediates PMT-stimulated tyrosine

phosphorylation of focal adhesion kinase as well as formation of stress fibres and focal

contacts in fibroblasts (Lacerda et al., 1996). The E. coli CNF toxins were also reported to

deaminate and activate Rho (Flatau et al., 1997; Schmidt et al., 1997).

Exoenzyme S (ExoS), an exotoxin secreted by the opportunistic pathogen Pseudomonas

aeruginosa (Yahr et al., 1996), belongs to the family of ADP-ribosylating toxins (Kreuger

and Barbieri, 1995). ExoS has been shown in vitro to ADP-ribosylate various proteins, such

as vimentin and members of the Ras family (Coburn et al., 1989a; Coburn and Gill, 1991). In

vivo, ExoS was reported to ADP-ribosylate Ras (McGuffie et al., 1998) and uncouple a Ras-

mediated signal transduction pathway (Ganesan et al., 1998). The amino-terminal half of

ExoS exhibits homology to the secreted YopE (Yersinia outer protein E) cytotoxin of

pathogenic Yersinia species (Forsberg and Wolf-Watz, 1990; Yahr et al., 1995). Similar to

YopE, intracellular targeting of ExoS results in disruption of the actin microfilament system

and resistance to phagocytosis (Rosqvist et al., 1991; Frithz-Lindsten et al., 1997). Recently,

the small GTP-binding proteins have been implicated in actin filament disruption by ExoS

(Pederson et al., 1999).

1.6.3 Yersinia enterocolitica and the actin cytoskeleton

Three species of the gram-negative Yersinia bacteria are human pathogens, namely, Y. pestis,

the causative agent of bubonic plague, while Y. pseudotuberculosis and Y. enterocolitica are

well-known pathogens responsible for food-borne enteric diseases that are usually self-

limiting. These orally transmitted pathogens proliferate mainly in the lymphoid tissue and

their primary site of infection is the lymphoid follicles of the small intestine (Hanski et al.,

1989). The best-studied invasion system is that of Y. pseudotuberculosis and Y. enterocolitica

(Falkow et al., 1992), which possesses a chromosomal gene encoding an outer membrane

protein, invasin, that mediates adherence and entry into non-phagocytic mammalian cells
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(Isberg et al., 1987). Invasin is maximally expressed at 28°C (Isberg et al., 1988), suggesting

its involvement in early infection (Simonet and Falkow, 1992). The cellular receptor for

invasin was identified as a ß1 integrin (Isberg and Leong, 1990), which mediates cell-cell

interactions as well as adhesion to the extracellular matrix. The high affinity interaction

between invasin and ß1 integrins guides extension of the host cell membrane around the

bacterium to form a tight-fitting phagosome which internalizes the bacterium in a “zipper“-

like process (Isberg and Leong, 1990; Swanson and Baer, 1995). Another invasin encoded by

enteropathogenic Yersinia is the YadA protein (Boelin et al., 1982). YadA is a virulence

plasmid-encoded fibrillar adhesin (Kapperud et al., 1987) which is maximally expressed by Y.

pseudotuberculosis and Y. enterocolitica at 37°C (Boelin et al., 1982; Lambert de Rouvroit et

al., 1992), and like invasin, YadA binds to ß1 integrins (Schulze-Koops et al., 1993) and

provides bacterial attachment and entry into eukaryotic cells (Heesemann and Grueter, 1987;

Isberg, 1989; Bliska et al., 1993).

Besides coding for YadA, the 70 kb Yersinia pYV virulence plasmid (Cornelis et al., 1998)

also encodes various secreted Yersinia outer proteins or Yops (Michiels et al., 1990; Straley et

al., 1993; Forsberg et al., 1994) which are optimally synthesized at 37°C (Lambert de

Rouvroit et al., 1992; Straley et al., 1993). At this temperature, bacteria entry into host cells

via invasin and YadA is inhibited by the antiphagocytic activities of several Yops (Lian et al.,

1987; Visser et al., 1995; Ruckdeschel et al., 1996). Thus during active infection, invasin and

YadA probably function mainly as adhesins as the wild-type Yersinia species remain

extracellular but firmly affixed to the host cell surface (Faellman et al., 1995). The Yops are

only expressed upon intimate contact with the eukaryotic target cell, and while the pathogen

remains at the cell surface, the Yop effectors are translocated across the plasma membrane by

a unique polarized transfer mechanism (Forsberg et al., 1994; Rosqvist et al., 1994; Sory and

Cornelis, 1994; Sory et al., 1995). The Yops are secreted without post-translational

processing by a virulence plasmid-encoded secretion system (ysc). This type III secretion

machinery (Michiels et al., 1990; Michiels and Cornelis, 1991; Forsberg et al., 1994; Lee,

1997) constitutes about 22 proteins (Michiels et al., 1991; Allaoui et al., 1995). Similar

machineries have been found in all major gram-negative pathogens, indicating that the type

III secretion pathway is a universal strategy for the pathogenesis of bacterial infections

(Bergman et al., 1994; Russel, 1994; Rosqvist et al., 1995). Yop secretion also requires

cytosolic Syc proteins, which appear to function as chaperones that bind to Yops and maintain

them in a secretion-competent, degradation-resistant state (Wattiau et al., 1996).
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The secreted Yops have been divided into effectors, translocators and regulators according to

their functions (Cornelis and Wolf-Watz, 1997). So far, a set of at least six effector Yops,

namely, YopE, YopH, YopM, YopT, YopO/YpkA and YopP/YopJ and at least four proteins,

YopB, YopD, LcrV and YopK/YopQ (Holmstroem et al., 1995), implicated in the correct

assembly of the translocation apparatus, have been identified. YopN (Forsberg et al., 1991;

Cornelis et al., 1998) and TyeA (Iriarte et al., 1998) have been reported to be involved in the

regulation of Yop secretion. YopB and YopD are involved in translocation of Yops into host

cells (Hakansson et al., 1993; Rosqvist et al., 1994), whereby YopB was reported to be able to

create pores in the eukaryotic cell membrane through which other Yops are translocated

(Hakansson et al., 1996a). LcrV also plays a role in translocation where it can bind to YopB

and YopD and a LcrV deletion mutant is defective in YopB and YopD secretion (Bergman et

al., 1991; Sarker et al., 1998). YopP/YopJ has roles in apoptotic induction (Mills et al., 1997)

and inhibition of cytokine expression (Schesser et al., 1998). YopO/YpkA is a protein kinase

with homology to the eukaryotic serine/threonine protein kinases essential for bacterial

virulence (Galyov et al., 1993) and it has been suggested to be involved in interference with

signal transduction and cytoskeletal reorganization (Hakansson et al., 1996b). YopE and

YopH work in concert to prevent phagocytosis by macrophages (Rosqvist et al., 1988; 1990).

According to Black and Bliska (1997) and Persson et al. (1997), YopH is a protein tyrosine

phosphatase reported to dephosphorylate p130Cas (Sakai et al., 1994; Burnham et al., 1996)

and the focal adhesion kinase or FAK (Richardson and Parsons, 1995). Dephosphorylation of

these focal adhesion proteins by YopH seemed to impair bacterial uptake by host cells. A list

of Yersinia secreted proteins is summarized in Table 1.

So far, YopE and YopT have been identified as actin microfilament disrupting cytotoxins

(Rosqvist et al., 1991; Iriarte and Cornelis, 1998). YopE is a cytotoxin which induces

rounding and detachment of cultured cells from the extracellular matrix (Rosqvist et al.,

1990). It mediates a contact dependent cytotoxicity leading to depolymerization of the actin

microfilament network of the host cell without affecting the microtubule network and the

intermediate filaments (Rosqvist et al., 1991). Either secretion of YopE by wild-type Yersinia

or microinjection of YopE into the host cell resulted in the alteration of the ordered actin

filaments to a disordered granular appearance, whereby prolonged incubation led to

disappearance of the granular pattern suggesting complete disruption of the microfilaments.

However, the molecular target of YopE remains unknown and this actin dissembly effect is

probably secondary since YopE does not affect actin polymerization in vitro (Rosqvist et al.,

1991). Given the homology to exoenzyme S, it is possible that YopE targets small GTP-
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binding proteins as exoenzyme S has been reported to modify these signalling molecules

(Coburn et al., 1989b).

Table 1. Yersinia proteins secreted via the type III secretion pathway

Secreted
protein

Biochemical
activity

Effect on
host cell

Comments References

YopE Cytotoxic,
F-actin
disruption

Translocated Forsberg and
Wolfwatz, 1990;
Rosqvist et al., 1991

YopH PTPase
dephosphorylates
FAK, p130Cas

Inhibition of
phagocytosis

Translocated Michiels and
Cornelis, 1988;
Black and Bliska,
1997; Persson et al.,
1997

YopO/YpkA Protein
serine/threonine
kinase

Translocated Galyov et al., 1993;
Hakansson et al.,
1996b

YopM Binds to thrombin Translocated Boland et al., 1996
YopP/J Apoptotic

induction in
macrophages

Galyov et al., 1994;
Mills et al., 1997;
Schesser et al., 1998

YopB Pore-forming
translocase

Translocation Hakansson et al.,
1993; 1996a

YopD Translocation Hakansson et al.,
1993

YopK/Q Modulation of
translocation
efficiency

Holmstroem et al.,
1995

YopN Putative surface
sensor, regulation of
Yops secretion

Forsberg et al.,
1991; Cornelis et
al., 1998

YopT Cytotoxic,
F-actin
disruption

Translocated Iriarte and Cornelis,
1998

LcrV Suppression
of immune
response

Regulatory function Bergman et al.,
1991; Sarker et al.,
1998

LcrG Regulation of
secretion

Bergman et al.,
1991

LcrQ/YscM
1/YscM2

Involved in feedback
transcriptional
regulation

Michiels et al.,
1991; Rimpilaeinen
et al., 1992; Stainier
et al., 1997
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Recently, a new Y. enterocolitica effector protein, YopT, has been shown to be delivered into

the host cytoplasm and resulted in disruption of the actin filament structure (Iriarte and

Cornelis, 1998) whereby actin appeared as dispersed patches in the cytosol. The need for

YopE and YopT for actin-disrupting activity raises several speculations. The two cytotoxins

could reinforce each other via different signalling pathways involving the small GTP-binding

proteins (Ridley and Hall, 1992; Aktories, 1997). Secondly, YopE and YopT may target

different cell types or these two cytotoxins could act on the same cell types but at different

stages of their development. Recently, specific modification and inactivation of the RhoA

GTPase by YopT was demonstrated (Zumbihl et al., 1999).

1.7 Goals of project
The two major aims of this thesis are:

firstly, to study the in vivo roles of two selected actin binding proteins from Dictyostelium

discoideum, namely the G-actin sequestering protein profilin and the F-actin fragmenting

protein severin, via fusion of these cytoskeletal proteins to the green fluorescent protein

(GFP). Point mutated profilins allowed the determination of the significance of functional

domains essential for normal cell physiology.

Secondly, the behaviour of the actin cytoskeleton in mammalian cells was investigated with

the aid of actin-GFP and other GFP-fused cytoskeletal proteins, in the course of infection by

the pathogenic bacteria Yersinia enterocolitica.
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2 MATERIALS AND METHODS

2.1 Materials

2.1.1 Enzymes for molecular biology

Calf intestine alkaline phosphatase Boehringer

DNA polymerase I (Klenow fragment) Boehringer

Lysozyme Sigma

Restriction enzymes Amersham, Boehringer, Eurogentec,

Gibco-BRL, New England Biolabs,

Promega

RNase A Sigma

T4 DNA ligase Gibco-BRL, Promega

Taq polymerase Amersham

2.1.2 Antibodies

Anti-Actin (mAb Act1) (Simpson et al., 1984)

Anti-Profilin II (mAb 174-380-3) (Haugwitz et al., 1991)

Anti-Severin (mAb 102-425-1) (André et al., 1988)

Goat anti-mouse IgG antibody, Dianova

coupled with peroxidase

Goat anti-mouse IgG antibody, Dianova

conjugated with Cy3 or FITC

2.1.3 Protease inhibitors

Benzamidine Sigma

PEFA-block Roth

Phenylmethylsulfonylfluoride (PMSF) Serva

Protease inhibitor cocktail (P2714) Sigma
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2.1.4 Antibiotics

Ampicillin Roth

Blasticidin S ICN Biomedicals

Geneticin (G418) ICN Biomedicals

Hygromycin B Calbiochem

Kanamycin Sigma

Nalidixic acid Sigma

Penicillin/Streptomycin Sigma

2.1.5 Chemical reagents

Unless otherwise stated, chemicals were obtained from Fluka, Merck, Pharmacia, Roth, Serva

or Sigma and have the purity grade of “p.a.“.

Agarose (SeaKem ME) FMC Bioproducts

Bacto-agar, -peptone, -tryptone Difco

Chloroform p.a. Riedel de Haen

DE52 (Diethylaminoethyl-Cellulose) Whatman

Hydroxylapatite Bio-Rad

IPTG (Isopropyl-ß-D-thiogalacto- Gerbu

pyranosid)

Oligonucleotides MWG-Biotech

Peptone Oxoid

Phenol Appligene

Phosphocellulose (P11) Whatman

Proteose peptone Oxoid

Triton X-100 Pierce

Yeast extract Oxoid

2.1.6 Media

All media and buffers were made with deionized water and sterilized by autoclaving at 120°C

for 20 min. Antibiotics were added to media when cooled to about 50°C.
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2.1.6.1 Media for D. discoideum culture

AX medium (pH 6.7) SM agar plates (pH 6.5)

(Claviez et al., 1982) 9 g        agar

14.3 g    peptone 10 g      peptone

7.15 g    yeast extract 50 mM glucose

50 mM  glucose 1 g        yeast extract

3.5 mM Na2HPO4 4 mM    MgSO4

3.5 mM KH2PO4 16 mM  KH2PO4

5.7 mM K2HPO4

-Both media were filled up to 1 litre (l) with dH2O.

Soerensen phosphate buffer (pH 6.0) Salt solution

(Malchow et al., 1972) 10 mM  NaCl

14.6 mM KH2PO4 10 mM  KCl

2 mM      Na2HPO4 2.7 mM CaCl2

HL-5 medium Phosphate agar plates (pH 6.0)

10 g         yeast extract 15 g Bacto agar

20 g         proteose peptone -Filled up to 1l with Soerensen buffer.

50 mM    glucose

8.5 mM   KH2PO4

1.25 mM Na2HPO4

-Filled up to 2l with dH2O.

2.1.6.2 Medium for E. coli culture

LB medium (pH 7.4)

(Sambrook et al., 1989)

10 g      bacto-tryptone

5 g        yeast extract

86 mM NaCl

-pH adjusted with NaOH and medium filled up to 1l with dH2O.

For LB-agar plates, 1.5% (w/v) agar was added into the medium and selection was provided

by introducing 50 mg/l ampicillin and/or 25 mg/l kanamycin.
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2.1.7 Buffers and other solutions

Those not shown here will be described in their corresponding sections under Methods.

100 x Denhardt’s reagent TE buffer (pH 8.0)

2% Ficoll 400 10 mM Tris/HCl

2% polyvinylpyrrolidon 1 mM   EDTA

2% bovine serum albumin -autoclave

10 x NCP buffer (pH 8.0) 10 x TBE buffer (pH 8.3)

100 mM Tris/HCl 890 mM Tris

1.5 M     NaCl 890 mM Boric acid

5 ml       Tween 20 20 mM   EDTA

0.02%    NaN3 -autoclave

-Filled up to 1l with dH2O

PBS (pH 7.2) Tris-Phenol (pH 8.0)

70 mM   Na2HPO4 -1 vol. melted phenol was equilibrated

150 mM NaCl with 1 vol. 1 M Tris/HCl, pH 8.0.

30 mM   KH2PO4

2.7 mM  KCl

-autoclave

2.1.8 Bacterial strains

E. coli JM83 (Vieira and Messing, 1982)

E. coli XL1 Blue (Sambrook et al., 1989)

Klebsiella aerogenes (Williams and Newell, 1976)

Yersinia enterocolitica, WA-P (Heesemann, 1987)

(wild-type, serotype O8, human isolate)

Y. enterocolitica, WA-C (Heesemann, 1987)

(virulence plasmid-cured derivative of WA-P)

2.1.9 Dictyostelium discoideum strains

AX2-214 (Raper, 1935)

(can be cultivated under axenic conditions
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or on bacteria lawn; derived from the free-

living soil isolate NC4)

HG1132 (André et al., 1989)

(severin minus mutant obtained by 

chemical mutagenesis)

pI/II-minus (Haugwitz et al., 1994)

(mutant lacking both profilin isoforms)

2.1.10 Mammalian cell line

COS-7 cells (derived from monkey kidney) American Type Culture Collection

2.1.11 Vectors

pDexRH (Faix et al., 1992)

pHyx (Karakesisoglou et al., 1996)

pIMS6 (Simon et al., 1988)

pUC19 (Yanisch-Perron et al., 1985)

T84/bsr (provided by Annette Erdmann)

2.1.12 Equipment

Axiophot microscope Zeiss

CCD camera (C5985-10) Hamamatsu

Conductivity meter (LF 537) WTW

Confocal laser scanning microscope Leica

Diavert inverse microscope Leica

Digital color video CCD camera (TK-C1380) JVC

Dounce homogenizer Braun

Eagle Eye II Stratagene

Electroporation apparatus BioRad

Fluorescence spectrophotometer Sopra

(Aminco Bowman)

FPLC device (BioLogic) BioRad

Nuclepore filter Costar

Parr bomb Parr Instrument Company

PCR thermal cycler Biometra
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pH meter Knick

Protein fraction collector Pharmacia

Rotary shaker GFL

Semi-dry protein transfer Trans-Blot SD BioRad

SMART  system Pharmacia

Spectrophotometer Pharmacia

Speed-Vac concentrator Bachhofer

Stereomicroscope (MZ12) Leica

Ultrafiltration Centricon Amicon

Vortex Bender & Hobein

Water baths GFL

Weighing machines Sartorius

X-ray film developing machine (Curix 60) AGFA

2.1.13 Other materials

2.2 ml sterile tubes for freezing of cells Nunc

3MM filter paper Whatman

4-well borosilicate glass chamber slides Nunc

(for tissue culture and direct fluorescence

 microscopy)

24-well plates Costar

Dialysis membranes Biomol

Eppendorf tubes (0.1 ml, 0.5 ml, 1.5 ml) Eppendorf

Falcon centrifuge tubes (15 ml, 50 ml) Falcon

Nitrocellulose membranes (BA85) Schleicher & Schuell

Petri dishes Greiner

Polaroid film (667) Polaroid

Polyallomer ultracentrifuge tubes 1.5 ml Beckman

Quartz cuvettes Hellma

Sterile filters (0.22 µm, 0.45 µm) Millipore

Tissue culture flasks Nunc

X-ray films (X-omat) Kodak
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2.1.14 Centrifuges and rotors

Centrifuges

J2-21M/E Beckman

J6-HC Beckman

G6-SKR Beckman

Optima LE-80K ultracentrifuge Beckman

Optima TL100 ultracentrifuge Beckman

Table-top centrifuge (5415) Eppendorf

Rotors

JA 14, JA 20, JS-4.2, Ti 45, Ti 70, Beckman

TLA 100.3

2.1.15 Computer programmes

Windows NT

Bilddatenbank system Leica

Sigma Plot 2.01 Jandel Scientific

Winword 7.0 Microsoft

Macintosh

Illustrator 8.0 Adobe

NIH Image 1.60 National Institutes of Health

Photoshop 5.0 Adobe

UNIX

UWGCG package program (University (Devereux et al., 1984)

of Wisconsin Genetics Computer Group)

2.2 Cultivation of Dictyostelium discoideum

2.2.1 Growth in liquid medium (Claviez et al., 1982)

From spores or bacterial lawns on SM-agar plates, the wild-type strain AX2 was inoculated

into AX or HL-5 medium containing the antibiotic streptomycin sulfate (400 µg/ml) in order

to be free of the contaminating K. aerogenes. The generation time at 21°C and 150 rpm is

about 10 hours. For large-scale generation of cells for protein purification, cells cultivated in 4
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x 2.5 l cultures up to a density between 5 x 106 to 1.2 x 107 cells/ml were harvested after

centrifugation giving normally a yield of about 100 g wet weight. As for cell biological

studies, cells were allowed to grow maximally up to a density of 5 x 106 cells/ml to avoid the

stationary phase.

2.2.2 Growth on agar plates

Isolation of transformant clones was carried out on SM agar plates. 100 µl of a suspension of

K. aerogenes in salt solution were placed on each agar plate, spread evenly together with the

Dictyostelium cells, and the plates were kept at 21°C for about 2 days. The doubling time is

around 3-4 h and the Dictyostelium colonies appeared as round clearings on the bacteria lawn.

2.2.3 Preservation of spores

Cells from axenic culture were harvested by centrifugation at 300 g for 10 min, washed once

with cold Soerensen buffer and resuspended at a cell density of 2 x 108 cells/ml. 500 µl of the

cell suspension was spread out onto each phosphate agar plate, and the cells were able to

develop into fruiting bodies within 2-3 days. The spores were then harvested by knocking

onto the lid of the petri dish and taken up in 10 ml of cold Soerensen buffer. 1 ml aliquots

were dispensed into Nunc tubes (2.2 ml), shock-frozen in liquid nitrogen and stored at –70°C.

For inoculation of spores, an aliquot was thawed at room temperature and cultured in AX

medium, whereby after 3 days at 21°C and 150 rpm, a cell density of about 5 x 106 cells/ml

was reached.

2.2.4 Freezing of Dictyostelium cells

For preservation of Dictyostelium cells, axenic cultures were harvested and resuspended at a

cell density of about 5 x 107 cells/ml in ice-cold freezing medium (AX or HL-5 medium + 1%

(v/v) penicillin-streptomycin solution + 5% (v/v) DMSO), and distributed as 1 ml aliquots

into Nunc tubes (2.2 ml) pre-cooled on ice. The aliquots were then placed into the wells of a

pre-cooled (4°C) brass block (10 x 9 x 5 cm) and kept at –70°C for a period of at least 15 h

and subsequently stored at –70°C. To revive the cells, a frozen vial was thawed rapidly under

cold running water, the cells washed once with cold AX medium, and then cultivated in AX

medium in petri dishes or 24-well plates. For the transformant clones, growth medium was

changed after 24 h and replaced with medium containing suitable antibiotics for selection.



28

2.3 Mammalian tissue culture

2.3.1 Cell culture

Adherent COS-7 cells (derived from monkey kidney) were cultivated under aseptic conditions

in tissue culture flasks (Nunc, 200 cm2) in 15 ml of Dulbeccos minimum essential medium

(DMEM; Nunc) supplemented with 10% (v/v) foetal calf serum (heat-inactivated at 56°C for

1 h; Nunc), 2 mM L-glutamine (Nunc), and penicillin-streptomycin solution (100 U/ml

penicillin, 100 µg/ml streptomycin; Nunc). The flasks were then incubated at 37°C in the

presence of 5% CO2 and the growth medium was changed every 2-3 days. The cell-line can

be maintained by repassaging continuously. At 80-90% confluency, the cells were split in a

ratio of 1:10 to 1:15 into new culture flasks in the following manner. Old medium was

removed and the cells were washed once with sterile PBS buffer. 2 ml of trypsin/EDTA

solution (Nunc; 1x, stock solution of 10x diluted in PBS) was introduced and the culture flask

was incubated for 5 min at 37°C or until cells detached from the surface of the flask. 10 ml of

DMEM containing 10% serum was then added to inactivate the activity of trypsin and the

cells were centrifuged at 400 g for 5 min at room temperature, after which the medium was

discarded and the cells resuspended in 10-15 ml of fresh growth medium. 1 ml of cell

suspension per flask was dispensed into new culture flasks already containing fresh medium.

2.3.2 Freezing of cells

Cells were harvested from culture flasks via the action of trypsin as described above. After

centrifugation (400 g, 5 min, RT), the medium was removed and the cells resuspended in ice-

cold freezing medium (DMEM supplemented with 10% (v/v) serum and 10% (v/v) DMSO) at

a concentration of 1 x 107 cells/ml. 1 ml aliquots of cell suspension were dispensed into Nunc

tubes (2.2 ml) and the tubes placed into wells of a brass block (10 x 9 x 5 cm) pre-cooled at

4°C. This was then kept at –70°C for 24 h after which the ampules of cells were transferred to

liquid nitrogen for long-term storage.

For revival of cells, a frozen ampule was thawed rapidly in a 37°C water bath and the contents

emptied into a 50 ml Falcon tube containing 15 ml of medium prewarmed at 37°C. Following

centrifugation (400 g, 5 min, RT), the supernatant was discarded and the cells resuspended in

a suitable volume of growth medium and dispensed into new culture flasks.
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2.4 Molecular biological methods

2.4.1 Preparation of plasmid DNA

2.4.1.1 Isolation of plasmid DNA by the method of Holmes and Quigley (1981)

An inoculum of bacteria was taken from a streak culture and suspended in 200 µl of

STET/lysozyme buffer. Alternatively, 1 ml of bacteria from a fresh overnight shaking culture

was harvested using a table-top centrifuge (5000 rpm, 1 min, RT), the supernatant discarded

and the pellet resuspended in STET buffer. The suspension was boiled in a water bath for 1

min, centrifuged (14,000 rpm, 10 min, RT), and the insoluble cell debris removed using a

sterile toothpick. The nucleic acids in the supernatant were precipitated with 200 µl of

isopropanol for 5 min at RT and sedimented using a table-top centrifuge (14,000 rpm, 30 min,

RT). The DNA pellet was then washed with 70% ethanol, vacuum-dried with a Speed-vac

concentrator, and dissolved in 30 µl of TE buffer.

STET buffer (pH 8.0)

50 mM Tris/HCl

50 mM EDTA

5% Triton-X 100

8% sucrose

1 mg/ml lysozyme (added prior usage)

2.4.1.2 Isolation of plasmid DNA by the method of Qiagen

Large-scale preparation of plasmid DNA from E. coli was carried out with the Midi-kit

purchased from the Qiagen company. Bacteria were cultivated in 150 ml of LB medium

containing 50 µg/ml ampicillin overnight at 37°C with agitation. The cells were harvested by

centrifugation (4,000 g, 5 min, 4°C) and resuspended in 10 ml of buffer P1. For cell lysis, 10

ml of buffer P2 was introduced and the resultant mixture was gently mixed by inverting the

tube several times. After incubation for 5 min at RT, 10 ml of chilled buffer P3 was added, the

suspension mixed gently by inverting tube, and then incubated on ice for 15 min. Following

centrifugation (35,000 g, 30 min, 4°C), the sediment of proteins and cell debris was discarded,

while the supernatant containing the plasmid DNA was centrifuged for a further period of 15

min. The clear supernatant was passed through a Qiagen tip 100 column previously
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equilibrated with 5 ml of buffer QBT. After washing twice with 10 ml each of buffer QC, the

plasmid DNA was eluted with 5 ml of buffer QF, precipitated with 0.7 vol. of isopropanol,

spun down (30,000 g, 30 min, 4°C), and the DNA pellet washed with 70% ice-cold ethanol,

air-dried and dissolved in 200 µl of 0.1x TE buffer.

The DNA concentration was determined using a spectrophotometer whereby an OD260 of 1.0

corresponds to 50 µg of DNA. The ratio of OD260/OD280 should be between 1.8 and 2.0.

P1 buffer P2 buffer P3 buffer

50 mM      Tris/HCl (pH 8.0) 200 mM NaOH 3 M K-acetate (pH 5.5)

10 mM      EDTA 1% SDS

100 µg/ml RNase A

QBT buffer QC buffer QF buffer

750 mM NaCl 1 M  NaCl 1.25 M NaCl

50 mM   MOPS (pH 7.0) 50 mM MOPS (pH 7.0) 50 mM Tris/HCl (pH 8.5)

0.15%    Triton-X 100 15%  ethanol 15%  ethanol

2.4.2 Restriction digest

Digestions of DNA with restriction enzymes were performed according to the manufacturer’s

instructions using recommended buffer systems and at the appropriate reaction temperatures.

Generally, 2-10 U of enzymes were needed per µg DNA. Plasmid DNA was usually digested

for 1-2 h, and chromosomal DNA for 3-12 h. The completion of the reaction could be

monitored by agarose gel electrophoresis.

2.4.3 Agarose gel electrophoresis (Sambrook et al., 1989)

Electrophoretic separation of DNA was carried out using 0.7-1.5% (w/v) agarose gels

prepared in 1x Tris-borate buffer. The gel buffer and running buffer are identical. Gels were

cast in chambers of various sizes (4 x 7 to 20 x 20 cm, Eigenbau), and the DNA to be

separated was mixed with 0.2 vol. of DNA sample buffer and loaded onto the gels. Separation

occurs at 1-5 V/cm. At the end of the run, the gel was stained in a solution of ethidium

bromide (5 µg/ml) for 10-30 min, followed by destaining in water for 30 min. Subsequently

gels could be observed under UV light at 312 nm and photos taken with the Eagle-eye system

(Stratagene, Heidelberg).
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DNA sample buffer

40% sucrose

0.5% SDS

0.25% Bromophenol blue

-Taken up in TE buffer.

DNA molecular weight standards:

Hind III-restricted λDNA (BRL): 23130 bp, 9416 bp, 6557 bp, 4361 bp, 2322 bp, 2027 bp,

564 bp, 125 bp

Hae III-restricted ΦX174-RF DNA (BRL): 1353 bp, 1078 bp, 872 bp, 603 bp, 310 bp,

281/271 bp, 234 bp, 194 bp, 118 bp, 72 bp

2.4.4 Isolation of DNA fragments from agarose gels

Extraction and purification of DNA from agarose gels in Tris-borate buffer were performed

using the QIAquick gel extraction kit (Qiagen) according to the manufacturer’s instructions.

Buffers are provided by the kit and all centrifugation steps were carried out at 14,000 rpm at

RT in a table-top microcentrifuge. The DNA fragment was excised from the agarose gel with

a clean scalpel, the gel slice weighed, and 3 vol. buffer QG were added to 1 vol. gel (100 mg

~ 100 µl). The tube was then incubated in a heating block at 50°C for 10 min or until the gel

slice had entirely dissolved. To increase the yield of DNA fragments (<0.5 kb and >4 kb), 1

gel vol. isopropanol was added to the sample and mixed. The sample was then applied to a

QIAquick spin column (Qiagen) and centrifuged for 1 min in order to bind DNA to the

column. The flow-through was collected in a 2 ml collection tube and discarded. For washing

of DNA, 0.75 ml of buffer PE was added to the column and spun down for 1 min. The flow-

through was removed and the column centrifuged for an additional 1 min to remove

completely residual ethanol. The column was then placed into a clean 1.5 ml tube and the

DNA eluted by the addition of 50 µl of buffer EB (10 mM Tris/HCl, pH 8.5) or dH2O to the

column followed by centrifuging for 1 min. The DNA could be concentrated by precipitating

with 2 vol. ethanol.

2.4.5 Oligonucleotide primers

Oligonucleotide primers for sequencing and polymerase chain reaction (PCR) were

synthesized from MWG-Biotech (Ebersberg) and delivered as lyophilized forms. The

oligonucleotides were each dissolved in 50 µl of sterile dH2O and their concentrations
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determined at an optical density (OD) of 260 nm. An OD260 of 1.0 corresponds to 25 µg of a

chain of oligonucleotides.

Profilin-GFP construct

Oligonucleotide primers for PCR

FPpIIuni 5‘-CGC GCC GCG GAA GCT TGA GCT CAA AAA TGA CTT GGC

AAG CAT ACG TC-3‘

FPpIIrev 5‘-CGC GGA TCC ACA GTT GTT GTC AAT TAA ATA ATC G-3‘

FPgel4uni 5‘-CGC GGA TCC GCT GAT CCA GAG AAA TCA TAC-3‘

FPgel4rev 5‘-CGC GAA TTC GGC TGG TTT AAC GGT AAC AG-3‘

CTRgel4uni 5‘-CGC GCC GCG GAA GCT TGG ATC CAA AAA TGG CTG ATC

CAG AGA AAT C-3‘

FPbgfpuni 5‘-CGC GAA TTC ATG AGT AAA GGA GAA GAA C-3‘

FPbgfprev 5‘-GCG CAA GCT TGC GGC CGC TTA TTT GTA TAG TTC ATC

CAT G-3‘

Oligonucleotide primers for sequencing

BluescriptT3uni 5‘-AAT TAA CCC TCA CTA AAG GG-3‘

BluescriptT7rev 5‘-GTA ATA CGA CTC ACT ATA GGG C-3‘

Severin-GFP construct

Oligonucleotide primers for PCR

NSEV-GFP 5‘-CGC GAA TTC AAA AAT GAT TAA GAA TAG AAA ATT

AG-3‘

C4SEV-GFP 5‘-CGC GAA TTC AGC TTC ACC TGA AGC AGA TAA TAA AGT

TTC AAA TG-3‘

Oligonucleotide primers for sequencing

NSEV-GFP 5‘-CGC GAA TTC AAA AAT GAT TAA GAA TAG AAA ATT

AG-3‘

CDS378rev 5‘-TAA GCA GCA GTG CCA GC-3‘

CDS847rev 5‘-CGC GAA TTC TTA GGC AGT TTC GTG TTT AGC AGC G-3‘

GFP 5rev 5‘-TTG CCC ATT AAC ATC GCC-3‘
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2.4.6 Polymerase chain reaction (PCR)

PCR was employed to amplify and generate suitable restriction sites for the Dictyostelium

profilin II and severin DNA fragments using profilin II cDNA (Haugwitz et al., 1991) and

severin cDNA (André et al., 1988) as PCR templates respectively. With the aid of a thermal

cycler (Biometra UNO) the reaction was performed in 50 µl volume, overlaid with mineral oil

at the surface to avoid evaporation. Based on the number of guanine and pyrimidine

nucleotides, the annealing temperature (Tm) of a particular oligonucleotide primer could be

calculated according to the formula of Suggs et al. (1981): 4(G+C) + 2(A+T) –10 = Tm (°C)

Reaction conditions Reaction components

Denaturation:  94°C, 60 sec 0.5 µg plasmid DNA

Annealing: 55-60°C, 60 sec 20 pmol 5‘-oligonucleotide

Elongation: 72°C, 60 sec 20 pmol 3‘-oligonucleotide

No. of cycles: 25 2 µl dNTP mix (5 mM each)

1 U Taq polymerase (Eurogentec)

5 µl 10 x PCR buffer

-Filled up to 50 µl with dH2O.

First denaturation step: 94°C, 120 sec 10 x PCR buffer

(to allow complete denaturation of the DNA) 100 mM Tris/HCl (pH 8.3)

Last elongation step: 72°C, 120 sec 500 mM KCl

(to ensure complete polymerization of the 15 mM   MgCl2
products) 0.1% (w/v) gelatine

2.4.7 Purification of PCR products

For cloning purposes, the PCR products were purified using the QIAquick PCR purification

kit (Qiagen) following the manufacturer’s protocol. Buffers used were provided by the kit and

all centrifugation steps were done at 14,000 rpm at RT using a table-top microcentrifuge. 5

vol. PB buffer were added to 1 vol. of the PCR reaction and mixed. The sample was applied

to a QIAquick spin column and centrifuged for 1 min to bind DNA to the column while the

flow-through collected in 2 ml collection tube was discarded. DNA was washed with 0.75 ml

of PE buffer by centrifuging for 1 min. Residual ethanol was removed by centrifuging for an

extra 1 min. The spin column was then placed in a clean 1.5 ml eppendorf tube and the DNA

eluted by the addition of 50 µl of dH2O to the column and centrifuging for 1 min. The purified
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DNA was subsequently used for restriction digest for 2-6 h and finally purified from agarose

gel with the aid of the QIAquick gel extraction kit from Qiagen (2.4.4).

2.4.8 Phosphatase treatment (Sambrook et al., 1989)

In order to prevent self-ligation of a linearized vector, the phosphate group at the 5‘ end was

removed using alkaline phosphatase from calf intestine. Dephosphorylation was performed in

a 50 µl reaction volume, whereby 1-5 µg of linearized vector DNA was incubated with 1-2 U

of alkaline phosphatase in 1 x phosphatase buffer at 37°C for 1 h. Reaction was stopped with

5 mM EDTA followed by heat-inactivation of the enzyme at 75°C for 10 min. The DNA was

then extracted twice with equal volume of phenol/chloroform/isoamyl alcohol (25:24:1) and

precipitated with 2 vol. of ethanol.

10 x phosphatase buffer (pH 9.0)

500 mM Tris/HCl

10 mM   MgCl2

1 mM     ZnCl2

10 mM spermidine

2.4.9 DNA ligation

DNA fragments were connected using T4 DNA ligase in a reaction volume of 10 µl. The

concentrations of vector (dephosphorylated) and insert DNA fragment were estimated from an

analytical agarose gel. In general, for successful ligation of small insert fragments (< 1000

bp), a 10-fold excess of insert over vector DNA was necessary, whereas for large fragments,

equal amounts of vector and insert DNA were used for ligation. Cohesive-end ligation was

carried out at RT for 12-16 h.

Reaction components 5 x ligation buffer (pH 7.6)

Linearized vector DNA (200-400 ng) 100 mM    Tris/HCl

Insert DNA fragment 25 mM      MgCl2

2 µl 5 x ligation buffer 25 mM      DTT

1 U T4 DNA ligase 2.5 mM     ATP

-Filled up to 10 µl with dH2O. 250 µg/ml BSA
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2.4.10 Preparation of electroporation competent cells

1l LB medium was inoculated with 10 ml of an overnight culture of the E. coli strain of

choice and cultivated at 37°C with shaking at 220 rpm until an OD600 of 0.6 was reached. All

tubes and solutions subsequently used were sterilized and cooled to 4°C. Good cooling was

essential to obtain competent cells of a good quality. The cells were cooled on ice, harvested

by centrifuging (4,000 g, 15 min, 4°C) and resuspended in 1l dH2O. Following another

centrifugation step, the cells were resuspended in 0.5l dH2O, pelleted again, washed with 20

ml of 10% glycerol and finally resuspended in 2-3 ml of 10% glycerol. 100 µl aliquots were

shock-frozen in liquid nitrogen and stored at –70°C.

2.4.11 Electroporation of E. coli

For transformation, electroporation competent E. coli cells were thawed on ice. 45 µl of cells

were mixed with 1-5 µl of DNA or the ligation mixture resolubilized in dH2O, and placed in a

pre-chilled electroporation cuvette (Eurogentec; 2 mm gap between electrodes). After a pulse

of 2.5 kV, 200 Ω and 25 µF, 1 ml of SOC medium (Sambrook et al., 1989) was added

instantly and the cells regenerated at 37°C for 45 min with agitation. 1, 10 and 100 µl of cells

were plated out on LB agar plates containing 50 µg/ml of ampicillin or 25 µg/ml of

kanamycin and incubated overnight at 37°C.

SOC medium

2% Bacto-tryptone

0.5% yeast extract

10 mM NaCl

2.5 mM KCl

10 mM MgCl2

10 mM MgSO4

20 mM glucose

2.4.12 Screening for positive E. coli transformants

To isolate E. coli colonies carrying the desired DNA fragment, colonies were selected and

mini preparations of plasmid DNA were performed (2.4.1.1) followed by restriction analyses

(2.4.2) to determine the correct orientation of the DNA insert. Finally the authenticity of the

DNA sequence was verified by sequencing (Toplab, Martinsried).
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2.4.13 E. coli permanent cultures

Important transformants were preserved as permanent cultures. An inoculum of bacteria was

resuspended in 1 ml of LB medium containing 7% of DMSO. The cells were shock frozen in

liquid nitrogen and stored at –70°C.

2.4.14 Transformation of D. discoideum

Dictyostelium cells were electro-transformed with profilin- or severin-GFP DNA constructs.

Recombinant gene expression in D. discoideum was regulated by a plasmid harbouring the

Dictyostelium actin 15 promoter (A15P) and actin 8 terminator (A8T) sequences. The

presence of an appropriate antibiotic resistance cassette on the expression plasmid allowed for

selection of transformants with geneticin or blasticidin.

For transformation, Dictyostelium cells cultivated to a density of 2-3 x 106 cells/ml were

harvested by centrifugation (300 g, 5 min, 4°C), washed once with cold Soerensen buffer,

followed by washing twice with ice-cold electroporation buffer and the cells finally

resuspended in chilled electroporation buffer at a density of 1 x 108 cells/ml. 500 µl of the cell

suspension were mixed with 15-30 µg of the desired plasmid DNA in a pre-chilled

electroporation cuvette (4 mm gap between electrodes). After a pulse at 1.0 kV and 3 µF with

the aid of an electroporation device (Gene Pulser, Biorad), the cells were immediately

transferred to a petri dish and incubated at RT for 10 min, after which CaCl2 and MgCl2 were

added to an end concentration of 1 mM each and the cells incubated for an additional 15 min

at RT with gentle agitation. Finally, the cells were diluted with HL-5 medium to a density of 1

x 106 cells/ml and allowed to recover at 21°C for 24 h before selection pressure was added.

Electroporation buffer (pH 6.1)

50 mM sucrose

10 mM KH2PO4

-pH was adjusted with KOH solution, and the buffer sterilized by filtration.

2.4.15 Cloning of transformants

Following 10-15 days of selection, the transformants were washed out from the petri dishes,

diluted, and plated out together with an aliquot of K. aerogenes suspension in salt solution

onto SM agar plates. The transformants were diluted to the extent of about 50-100 cells per

plate for better isolation of single colonies. Within 2-3 days at 21°C, single round clearings

were observed, and the plates were screened directly under low magnification (5 x) at 488 nm
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(FITC filter) using an Axiophot microscope (Zeiss) for clones that exhibited green

fluorescence. These were picked with toothpicks and cultured in 24-well plates in AX or HL-

5 medium containing selection pressure for the transformants and streptomycin sulfate (400

µg/ml) to remove the contaminating bacteria. The axenic cultures were then grown in larger

quantities, harvested and preserved as described (2.2.4) until further analysis.

2.4.16 Generation of severin-GFP Dictyostelium transformants

Using severin cDNA (André et al., 1988) as a template and a pair of oligonucleotide primers

containing the EcoRI restriction site for PCR, the resulting 1.1 kb of severin DNA consisting

of the complete coding region was cloned into the EcoRI site of the expression vector

pDEXRH (Faix et al., 1992), already harbouring a red-shifted S65T GFP inserted in the

HindIII site of the vector. Correct sequence and orientation were confirmed by sequencing.

Severin was thus fused to the N-terminal of the GFP separated by a linker of 10 amino acid

residues, SGEAEFKKLK. Expression of the fusion protein is controlled by the D. discoideum

actin 15 promoter. The recombinant vector was introduced by electroporation into AX2 wild-

type and the HG1132 severin null (André et al., 1989) D. discoideum cells. Transformants

were selected with 10 µg/ml of G418 for 2 weeks. For culture conditions, the D. discoideum

strains AX2, HG1132 and the transformants were cultivated at 21°C axenically in liquid

medium rotary shaken at 150 rpm. For the transformed cells, G418 was added to a final

concentration of 10 µg/ml.

2.4.17 Generation of profilin-GFP Dictyostelium transformants

The profilin II gene from Dictyostelium was fused to the amino-terminal of the W7 blue-

shifted mutant of GFP (Heim and Tsien, 1996) via a linker of 100 amino acid residues derived

from the segment 4 (rod 4) of the six 100-residue repetitive segments of the rod domain of the

gelation factor (ABP-120) from D. discoideum (Fucini et al., 1997) whose 3-D structure was

recently determined by NMR spectroscopy. Essentially the 3 DNA fragments namely, profilin

II, rod 4 and W7 GFP were sequentially cloned into the pBluescript II SK vector (a derivative

of pUC19) with the aid of oligonucleotide primers for generating suitable restriction sites via

PCR. Using a pair of primers FPpIIuni (SacII, HindIII, SacI) and FPpIIrev (BamHI), the

profilin II gene was amplified from a cDNA template (Haugwitz et al., 1991) and cloned into

the SacII and BamHI sites of pBluescript. The rod 4 sequence was amplified from the entire

coding sequence of ABP-120 in the pIMS6 vector (Simon et al., 1988) with the primer pair

FPgel4uni (BamHI) and FPgel4rev (EcoRI) and then cloned into pBluescript via BamHI and
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EcoRI sites. As for the W7 GFP gene, it was cloned via the EcoRI and HindIII sites into

pBluescript using the primers FPbgfpuni (EcoRI) and FPbgfprev (NotI, HindIII) from the W7

GFP-pRSET B recombinant plasmid kindly provided by Roger Tsien. The authenticity of the

profilin-GFP sequence was determined by restriction digests followed by sequencing with the

gene-specific primers and the vector-specific T3uni and T7rev primers. The entire profilin-

GFP construct was then digested with HindIII and cloned into the T84/bsr Dictyostelium

expression vector. After confirmation of the correct insert orientation by restriction analyses,

the fusion construct was used for transformation and subsequent fusion protein expression in

profilin null cells.

As control, only the 100-residue linker was fused to the amino-terminal of GFP. The rod 4

sequence was amplified with a primer pair CTRgel4uni (SacII, HindIII, BamHI) and

FPgel4rev (EcoRI) and cloned via SacII and EcoRI restriction sites into pBluescript. The GFP

was cloned as described above and the rod 4-GFP construct was eventually recloned into the

HindIII site of the T84/bsr Dictyostelium expression vector and transformed into profilin null

cells.

2.4.18 Transfection of mammalian cells

COS-7 cells were transfected with selected EGFP-fused cytoskeletal constructs whereby gene

expression was driven by the human cytomegalovirus (CMV) promoter and SV40 (simian

virus) polyadenylation signals. The enhanced GFP (EGFP) gene has been codon-optimized

for maximal expression and fluorescence intensity in mammalian cells. Using a modified

protocol of Graham and van der Eb (1973), transient transfection was performed via a calcium

phosphate-DNA precipitate adhering to the cell surface thus allowing uptake of plasmid DNA

by the cell monolayer. 18-24 h prior to transfection, an almost confluent cell monolayer was

split 1:15 into 4-well chamber slides or onto coverslips placed in 24-well plates (~2 x 104

cells/well), and allowed to grow overnight in DMEM supplemented with 10% serum in an

incubator at 37°C and 5% CO2. 2-4 h before transfection, old medium was replaced. 500 µl of

2 x HBS solution was placed in a sterile 50 ml Falcon tube. In a tube, 60 µl of 2M CaCl2 were

mixed with ~20 µg of plasmid DNA prepared from the Qiagen Midi-kit (2.4.1.2) and the

volume adjusted to 500 µl with sterile dH2O. While using a sterile plugged pipette to bubble

the 2 x HBS, the DNA/CaCl2 solution was added dropwise to the HBS. After 30 min of

incubation at RT, the precipitate was distributed evenly over the cells in wells (24 µl/well)

and the plates or chamber slides gently agitated to mix precipitate and medium. The cells

were incubated for 12-16 h under standard growth conditions, after which medium was
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removed and the cells washed twice with PBS solution and replaced with fresh growth

medium. The cells were analysed after 48-72 h.

2 x HEPES-buffered saline (HBS) solution (pH 7.05-7.12)

16.4 g NaCl

11.9 g HEPES (N-2-hydroxyethylpiperazine-N‘-2-ethanesulfonic acid)

0.21 g Na2HPO4

-800 ml dH2O was added, pH adjusted to 7.05-7.12 with 5 N NaOH and filled up to 1l with

dH2O. The solution was subsequently sterilized by filtration through a 0.45 µm filter and

stored at –20°C in 10 ml aliquots.

2.5 Biochemical methods

2.5.1 SDS-Polyacrylamide gel electrophoresis (SDS-PAGE)

Protein mixtures were separated by discontinuous SDS-PAGE (Laemmli, 1970). For this

purpose, 12% or 15% resolving gels with 3% stacking gels were used (7.5 x 10 x 0.05 cm).

The stacking gel deposits the polypeptides to the same starting level at the surface of the

resolving gel, and subsequently the SDS-polypeptide complexes are separated in the resolving

gel according to size under uniform voltage and pH. Prior to SDS-PAGE, 1/3 vol. 3 x SDS gel

loading buffer was added to the protein samples to be separated and boiled for 3 min.

Electrophoresis was carried out at a constant voltage of 150 V, after which the gel could be

stained with Coomassie Blue dye and destained for direct observation of the protein bands or

proteins from the gel could be blotted onto nitrocellulose membranes and detected indirectly

via antibodies. As standard, a mixture of proteins of defined molecular masses was

electrophoresed.

Stacking gel Resolving gel

125 mM Tris/glycine (pH 6.8) 380 mM Tris/glycine (pH 8.8)

0.1% SDS 0.1% SDS

3.3% acrylamide:bisacrylamide (30:0.8) 12%/15% acrylamide:bisacrylamide

(30:0.8)
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Per 16 ml: Per 42 ml:

240 µl 20% ammonium persulfate (APS) 480 µl 20% APS

8 µl N,N,N‘,N‘-tetramethylethylenediamine 12 µl TEMED

(TEMED)

10 x SDS-PAGE running buffer (pH 8.3) 3 x SDS gel loading buffer

250 mM Tris 150 mM Tris/HCl (pH 6.8)

1.9 M     glycine 30%       glycerol

1%         SDS 6%         SDS

15%       ß-mercaptoethanol

0.3%      bromophenol blue

Molecular weight standards:

LMW (“low molecular weight“, Biorad)

92.5 kDa, 68 kDa, 45 kDa, 33 kDa, 20 kDa, 14 kDa

“See blue“ (Novex)

250 kDa, 98 kDa, 64 kDa, 50 kDa, 36 kDa, 30 kDa, 16 kDa, 6 kDa, 4 kDa

2.5.2 Coomassie Blue staining of proteins

Following SDS-PAGE, gels were stained in Coomassie Blue solution for at least 30 min with

agitation, after which the unbound dye was removed by shaking in a destaining solution.

Coomassie Blue solution Destaining solution

0.1% Coomassie Brilliant Blue R250 10% ethanol

50%  methanol 7%   glacial acetic acid

12%  glacial acetic acid

-Solution filtered via a Whatman filter

2.5.3 Drying of SDS-PAGE gels

For permanent recording, SDS-polyacrylamide gels after Coomassie Blue staining were

washed in water with agitation with a couple of changes of water to remove the destaining

solution. The gels were then shaken in a drying solution for 20 min, after which each gel was



41

placed between 2 dialysis membranes pre-wetted in the drying solution and then air-dried

overnight.

Drying solution for polyacrylamide gels

24% ethanol

5%   glycerol

2.5.4 Western blotting

Following separation of proteins by SDS-PAGE, the proteins were transferred from gels onto

nitrocellulose membranes (Schleicher & Schuell BA85) according to the modified protocol of

Towbin et al. (1979) with the aid of a protein transfer apparatus (Trans-Blot SD, BioRad). In

this “semi-dry“ method, the gel and its attached nitrocellulose filter were sandwiched between

pieces of Whatman 3MM filter paper which had been soaked in transfer buffer and protein

transfer was carried out at RT at 12 V for 40 min, after which the nitrocellulose filter was

blocked overnight at 4°C in 5% (w/v) milk powder in 1 x NCP buffer. The membrane was

then washed thrice (each 15 min) with NCP buffer (without sodium azide) and incubated with

primary antibody (hybridoma supernatant diluted 1:100-1:1000 in NCP buffer) for 2 h. After

washing several times with NCP buffer, the membrane was incubated with a secondary

antibody (diluted 1:10,000 in NCP buffer) for 1 h. For the experimental purposes, goat anti-

mouse IgG conjugated with peroxidase (Dianova) was used as the secondary antibody. Finally

the membrane was washed a few times with NCP buffer and protein bands were detected via

chemiluminescence by incubating the membrane in enhanced chemiluminescence reagents

(ECL, Amersham) for 1 min and then exposed to X-ray films (X-omat AR5, Kodak).

Transfer buffer 20 x NCP buffer (pH 7.2)

25 mM   Tris/HCl (pH 8.5) 48.4 g Tris

190 mM glycine 348 g  NaCl

20%       methanol 20 ml  Tween 20

0.02%    SDS -Filled up to 2 l with dH2O.

Chemiluminescence reagents (light sensitive)

200 µl Luminol (250 mM in DMSO; Luminol: 3-amino-phthalazinedione)

89 µl p-Coumaric acid (90 mM in DMSO)

2 ml Tris/HCl (1 M, pH 8.5)
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-Filled up to 20 ml with dH2O and prior to use, 6.1 µl H2O2 (30%) was added.

2.5.5 Bradford assay

Protein quantitation was performed according to the method of Bradford (1976). In principle,

the Coomassie brilliant blue G 250 dye interacts primarily with arginine residues of proteins

and causes a shift in the absorbance peak from 465 nm to 595 nm. Bovine serum albumin was

used to make a standard colour response curve from which the concentrations of protein

samples could be determined.

2.5.6 Preparation of actin from rabbit skeletal muscle

Actin was prepared from rabbit skeletal muscle according to the methods described by

Spudich and Watt (1971) as well as by Pardee and Spudich (1982). The back and upper thigh

muscles of a freshly bled rabbit were sliced into pieces and extracted with high-salt extraction

buffer for 10 min with agitation. The mixture was centrifuged (4,000 g, 10 min) and re-

extracted to remove myosin, after which the sediment was resuspended in water and the pH

adjusted to between 8.2 and 8.5 with 1 M Na2CO3 solution. Following centrifugation (4,000

g, 10 min), the supernatant was discarded and the process repeated until swelling of the

sediment was observed. The sediment was then washed with cold acetone, dried overnight,

extracted once with chloroform and dried again. Finally the acetone powder was stored at

-20°C for subsequent actin preparation.

10 g of muscle acetone powder were extracted with 200 ml of G-buffer at 0°C for 30 min,

filtered through a nylon net and re-extracted at 0°C for 10 min. The filtrate was centrifuged

(30,000 g, 30 min, 4°C) and the actin in the supernatant allowed to polymerize for 2 h at 4°C

after addition of KCl (50 mM), MgCl2 (2 mM) and ATP (1 mM). For removal of

tropomyosin, solid KCl was then slowly introduced until a final concentration of 0.8 M was

reached, and the actin filaments were then sedimented by centrifugation (150,000 g, 3 h, 4°C).

For depolymerization, the F-actin pellet was dialyzed against several changes of G-buffer and

further purified using a Sephacryl S300 gel filtration column (2.5 x 45 cm, Pharmacia). From

its optical density at 290 nm, the G-actin concentration could be calculated easily from the

ratio of OD290/0.65, whereby 26,000 is the extinction coefficient value of actin at 290 nm

(Wegner, 1976). The G-actin prepared could be stored at 4°C up to 3 weeks for active

applications.
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Extraction buffer G-buffer (pH 8.0)

0.5 M KCl 2 mM    Tris/HCl

0.1 M K2HPO4 0.2 mM CaCl2

0.2 mM ATP

0.02%   NaN3

0.5 mM DTT

2.5.7 Pyrene-labelling of actin

Actin was labelled with N-(1)pyrenyliodoacetamide (pyrene) following the protocol of

Kouyama and Mihashi (1981). After the ultracentrifugation step in the course of preparation

of actin from acetone powder as described above, 2/3 of the supernatant were carefully

collected and dialyzed thrice against 1l buffer P. Actin polymerization was initiated by the

addition of KCl (150 mM) and MgCl2 (2 mM) and 3-5 fold molar excess of pyrene (in

DMSO) was introduced immediately to the actin while stirring. From this step onwards, all

activities were carried out in the dark, since pyrene is light-sensitive. The solution was then

shaken in a Falcon tube at RT overnight after which the actin filaments were sedimented

(150,000 g, 3 h, 4°C). The F-actin pellet was homogenized in G-buffer and dialyzed three

times against 1l G-buffer to allow depolymerization of actin. After a second centrifugation

step (150,000 g, 3 h, 4°C), the pyrene-labelled G-actin was purified by gel filtration and later

stored at –70°C.

Buffer P (pH 7.6)

1 mM    NaHCO3

0.1 mM CaCl2

0.2 mM ATP

2.5.8 Partial purification of the severin-GFP fusion protein

For purification of the fusion protein from the HG1132 cells transformed with severin-GFP,

cells cultivated under G418 selection in shaking suspension up to a density of 5 x 106 cells/ml

were harvested, and the cell pellet resuspended in a homogenization buffer (30 mM Tris/HCl,

4 mM EGTA, 2 mM EDTA, 2 mM DTT, 30% sucrose, 5 mM benzamidine, 0.2 mM ATP, 1

mM PEFA-block, 0.5 mM PMSF; pH 8.0). Cells were lysed using a Parr bomb at 750 psi

(pounds per square inch) for 30 min at 4°C. After centrifugation at 4°C for 1.5 h at 100,000 g,

the supernatant was adjusted to pH 8.0 and loaded onto a DEAE anion-exchange column
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(DE52, Whatman, Maidstone; 2.5 x 8 cm) equilibrated with TEDABP buffer (10 mM

Tris/HCl, 1 mM EGTA, 1 mM DTT, 0.02% NaN3, 1 mM benzamidine, 0.5 mM PMSF; pH

8.0). Under the conditions used, the fusion protein did not bind to the resin and the flow-

through was adjusted to pH 6.5 with the addition of solid MES (2 [N-morpholino] ethane

sulfonic acid) to a final concentration of 10 mM, after which it was loaded onto a

phosphocellulose column (P11, Whatman; 2.5 x 6 cm) pre-equilibrated with MEDABP buffer

(10 mM MES, 1 mM EGTA, 1 mM DTT, 0.02% NaN3, 1 mM benzamidine, 0.5 mM PMSF;

pH 6.5). The flow-through fraction containing the fusion protein was precipitated with solid

ammonium sulphate and proteins precipitating between 50-80% of saturation were separated

on a Sepharose 6B-CL gel filtration column (Pharmacia; 2.5 x 110 cm) equilibrated in

IEDANBP buffer (10 mM imidazole, 1 mM DTT, 1 mM EGTA, 0.02% NaN3, 0.2 M NaCl, 1

mM benzamidine, 0.5 mM PMSF; pH 7.6). Active fractions were pooled, dialyzed against

MEDABP buffer and chromatographed on a hydroxylapatite column (Biorad; 1.5 x 3 cm,

equilibrated in MEDABP, pH 6.5) using a linear gradient (2 x 125 ml, 0-1 M KCl in the

presence of 10 mM potassium phosphate in column buffer) whereby the fusion protein, as

determined by Western blotting, was eluted between 18-24 mS.

2.5.9 Low shear viscometry

Low shear viscometry was performed after 20 min of incubation at 25 °C in a falling ball

viscometer (MacLean-Fletcher and Pollard, 1980). The reaction mixture (160 µl) contained

usually 0.5 mg/ml rabbit skeletal muscle actin, and polymerization was initiated by the

addition of G-actin to buffered MgCl2 (final concentration: 2 mM MgCl2, 10 mM imidazole,

pH 7.2, 1 mM ATP, 0.2 mM CaCl2, or 1 mM EGTA). The data shown are the average values

of duplicate experiments.

2.5.10 Severing activity of severin-GFP measured by fluorescence spectroscopy

Pyrene-labelled actin (8 µM) was polymerized for 15 min in G-buffer (2 mM Tris/HCl, pH

8.0, 0.2 mM CaCl2, 0.2 mM ATP, 0.01% NaN3, 0.5 mM DTT, 2 mM MgCl2) for use in the

fluorescence measurements carried out with an Aminco Bowman luminescence spectrometer

(Sopra GmbH, Buettelborn, FRG). All measurements were done in a sample volume of 800 µl

at 25 °C with an excitation wavelength of 365 nm and an emission wavelength of 386 nm in

G-buffer with or without 2 mM EGTA and at a final actin concentration of 0.8 µM. The slow

depolymerization of actin filaments is drastically increased if a severing activity raises the

number of pointed ends. Individual experiments were performed in duplicates. Measured
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arbitrary relative fluorescence values were plotted against time and the slopes of these plots

were calculated in the linear range of fluorescence decrease which were subsequently plotted

versus increasing concentrations of the partially purified severin-GFP fusion protein.

2.5.11 Poly-(L)-proline binding assay

Interaction of the recombinant profilins with poly-(L)-proline stretches was investigated by

affinity chromatography using poly-(L)-proline coupled agarose beads. The poly-(L)-proline

residues were covalently conjugated to CNBr-activated agarose beads (BioRad) according to

the manufacturer’s instructions and the coupled beads were resuspended and stored in PBS

(70 mM Na2HPO4, 30 mM KH2PO4, 150 mM NaCl, 0.1% NaN3, pH 7.0). Total protein

extracts from D. discoideum cells were prepared by incubating 2 x 106 cells with 200 µl lysis

buffer (1% NP-40, 2 mM MgCl2, 5 mM EGTA, 150 mM KCl, 2 mM KH2PO4, 10 mM ß-

glycerophosphate, 5 mM ATP and 10 mM Hepes, pH 7.2) for 15 min on ice. Following

centrifugation using a table-top microcentrifuge (14,000 rpm, 15 min, 4°C), 160 µl each of the

supernatants were incubated with 100 µl of poly-(L)-proline/PBS mixture at 4°C for 3 h with

agitation. Subsequently, the samples were sedimented with a table-top microcentrifuge

(14,000 rpm, 15 min, 4°C), and the pellets washed twice with PBS before being resuspended

in 60 µl each of 1 x SDS gel loading buffer. The supernatants and the pellet fractions were

then analyzed by SDS-PAGE (2.5.1).

2.5.12 Inhibition of actin polymerization analyzed by fluorescence spectroscopy

Interactions of the recombinant profilins with either actin or PIP2 (Sigma) were examined

with the aid of pyrene-labelled G-actin (2.5.7) using a luminescence spectrometer (Sopra

GmbH) in a final reaction volume of 800 µl at 25°C. The PIP2 was sonicated in 10 mM

Tris/HCl (pH 7.5) until an optically clear solution was obtained. In the kinetic studies,

polymerization of 3 µM G-actin usually including 10-20% pyrene-actin was initiated by the

addition of 2 mM MgCl2 in the absence or presence of varying concentrations of recombinant

profilins. All measurements were performed at an excitation wavelength of 365 nm and an

emission wavelength of 386 nm, and the arbitrary fluorescence units were subsequently

plotted against time. Data were confirmed with duplicate experiments.

2.5.13 Interaction of profilin-GFP with actin

Due to difficulty in obtaining large amounts of cells for protein purification, the affinity of the

fusion protein for actin could not be pursued by fluorescence spectroscopy. Instead the



46

interaction between profilin-GFP and actin was investigated by molecular sizing via gel

filtration utilizing the intrinsic ability of profilin to form profilactin complex with actin. The

shift in the elution profile of the fusion protein detected by immunoblotting would be an

indication of the presence of interaction between the fusion protein and actin.

300 ml of profilin II-GFP transformed D. discoideum cells, cultivated in HL-5 medium

containing 5 µg/ml blasticidin to a density of 3 x 106 cells/ml at 21°C and 150 rpm, were

harvested by centrifugation (300 g, 5 min, 4°C), washed in cold Soerensen buffer, and the cell

pellet resuspended in 2 vol. homogenization buffer (30 mM Tris/HCl, 4 mM EGTA, 2 mM

EDTA, 2 mM DTT, 5 mM benzamidine, 0.2 mM ATP, 1 mM PEFA-block, 0.5 mM PMSF;

pH 8.0). The cells were then lyzed via several passages through Nuclepore filters (5 µm pore

size), after which the lysate was ultracentrifuged at 100,000 g (Ti70 rotor, 4°C, 1.5 h). After

adjustment to pH 8.0, the supernatant consisting of soluble cytosolic proteins was loaded onto

an anion-exchange monoQ column (0.75 x 5 cm, 1 ml vol., Pharmacia) pre-equilibrated with

TEDABP buffer (10 mM Tris/HCl, 1 mM EGTA, 1 mM DTT, 0.02% NaN3, 1 mM

benzamidine, 0.5 mM PMSF; pH 8.0) and chromatography was performed with the aid of a

FPLC setup (BioLogic, BioRad). Protein was eluted with a linear NaCl gradient (0-400 mM

in TEDABP) and fractions of 0.5 ml were collected throughout the run which were later

analyzed by immunoblotting. Using antibodies specific for the fusion protein [anti-profilin II

(174-336-8), anti-GFP (264-236-2)] and for Dictyostelium actin (Act-1; Simpson et al., 1984),

a fraction with only profilin-GFP and another one containing both the fusion protein and actin

were selected for subsequent gel filtration.

For gel filtration chromatography, the 2 monoQ-eluted fractions were separately loaded onto a

Superose 12 column (1.5 x 30 cm, Pharmacia) equilibrated in IEDANBP buffer (10 mM

imidazole, 1 mM EGTA, 1 mM DTT, 0.02% NaN3, 200 mM NaCl, 1 mM benzamidine, 0.5

mM PMSF, pH 7.6) and 0.5 ml-fractions were eluted using the BioLogic FPLC equipment.

The elution profiles of the 2 monoQ fractions after gel filtration could then be compared via

immunoblotting using an antibody specific for the fusion protein. Alternatively, a more

sensitive micro-separation method by the SMART system (Pharmacia) was used for gel

filtration chromatography. The 2 monoQ fractions, 1 with profilin-GFP only and the second

with both actin and the fusion protein, were separately loaded (50 µl sample vol.) onto a

Superose 6 PC 3.2/30 column (3.2 x 300 mm, 2.4 ml vol., Pharmacia) whose optimal

molecular weight separation ranges from 5000 to 5 x 106 Da. Proteins eluted with IEDANBP

buffer at a flow rate of 40 µl/min were collected in 50 µl-fractions which were subsequently

analyzed via Western blotting and the elution patterns compared. The elutions of marker
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proteins, whose absorptions were confirmed at 280 nm, were performed to make a standard

algorithm curve. Data were analyzed with the SMART Manager software for OS/2

(Pharmacia).

Standards:

Ferritin (450 kDa), Catalase (240 kDa), Aldolase (158 kDa), BSA (68 kDa) and

Chymotrypsinogen (25 kDa)

2.6 Cell biological methods

2.6.1 Indirect immunofluorescence

Studies of subcellular protein localization were performed via indirect immunofluorescence.

For this assay, coverslips to be used were washed with 3.6% HCl followed by dH2O. For the

adherent COS7 cells, these were aseptically cultivated on round coverslips in a 24-well plate

until near confluency before being fixed and subjected to subsequent immuno-detection. As

for Dictyostelium, exponentially growing cells (3 x 106 cells/ml) were harvested, washed

twice with Soerensen buffer, and 1 x 106 cells were allowed to attach to the coverslips for 15

min, after which excess fluid was removed and the coverslips fixed in cold methanol for 10

min at –20°C followed by 30 min of air-drying. Alternatively, cells could be fixed with 3%

paraformaldehyde (in PBS) for 15 min and then permeabilized for 1 min with 0.5% Triton-X

100 (in PBS) at RT and then washed with PBS followed by PBG. For the profilin null cells

(pI/II-minus), they were fixed for 30 min in picric acid/paraformaldehyde solution (2%

paraformaldehyde, 10 mM Pipes, 15% saturated picric acid, pH 6.0), and then washed several

times with PBS-glycine and PBG.

After fixation, cells were incubated with undiluted hybridoma supernatants for at least 2 h

before being washed with PBG, and then subjected to 1 h of incubation in the dark with FITC

or Cy3 conjugated goat anti-mouse IgG secondary antibody (diluted 1:100-1:1000 in PBG).

F-actin was labelled with either FITC-, TRITC-labelled phalloidin (diluted 1:100 in PBG) or a

monoclonal antibody against Dictyostelium actin (Simpson et al., 1984). Improved F-actin

labelling could be achieved by prolonged incubation of cells with phalloidin. Nuclei were

stained with DAPI (4,6-diamidino-2-phenylindole, Sigma) diluted 1:1000 in PBG (0.5 µg/ml

final concentration) for 1 h. After incubation with secondary antibody, cells were washed
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several times with PBG, PBS and briefly with dH2O before being embedded in gelvatol and

kept at 4°C overnight until observation with epifluorescence or confocal laser scanning

microscopy.

10 x PBS (for immunofluorescence, pH 7.4) PBG

1.37 M NaCl 0.5%   BSA

27 mM KCl 0.05% fish gelatine

81 mM Na2HPO4 -in 1 x PBS, sterilized by filtration

15 mM KH2PO4

-in dH2O and autoclave

Gelvatol

20 g gelvatol 20-30 (polyvinylalcohol, MW 10,000) were stirred in 80 ml PBS for 16 h.

40 ml glycerol was then introduced and stirred for further 16 h.

Following centrifugation (12,000 g, 15 min, RT), 25 ng/ml anti-bleaching agent DABCO

(Diazabicyclo (2,2,2) octane) was added to the supernatant. Aliquots were stored at –20°C.

2.6.2 Phagocytosis of yeast

Uptake of yeast particles by D. discoideum was examined via indirect immunofluorescence.

In this assay, 300 µl of cells at a density of 2 x 106 cells/ml were incubated with an equal

amount of Baker’s yeasts (cultivated in 1% sucrose solution at 30°C) on coverslips for about

30 min, after which they were methanol-fixed and subsequently labelled with a monoclonal

antibody specific for profilin II (174-336-8) and processed as described above (2.6.1).

Observations were made with the aid of an Axiophot microscope (Zeiss).

2.6.3 Yersinia infection of COS7 cells

Changes of the actin cytoskeleton were studied via infection of COS7 cells by two strains of

Yersinia enterocolitica, namely WA-P (wild type) and WA-C (virulence plasmid cured strain

as control) with the aid of indirect immunofluorescence and confocal laser scanning

microscopy (CLSM). For the infection studies, overnight cultures of both strains of bacteria,

cultivated with agitation at 27°C in LB medium supplemented with 50 µg/ml Nalidixic acid,

were each diluted 1:10 in fresh LB medium and grown for an additional 2 h at 37°C (the

temperature shift from 27°C to 37°C allowed induction of the secretion of Yersinia outer

proteins or Yops). Bacteria were then diluted to an OD600 value of 0.3 and 15 µl of bacteria
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were introduced to the mammalian cells per coverslip per well. Prior to bacterial infection,

growth media of cells were replaced with DMEM supplemented with 10% fetal calf serum

but without penicillin/streptomycin solution. Following centrifugation (400 g, 5 min, RT) to

synchronize infection, a time course experiment of infection from 0-2 h was carried out at

37°C. Basically 3 approaches were employed here for the infection studies. COS7 cells

cultured on coverslips in a 24-well plate were infected with either WA-P or WA-C and

uninfected cells were used as negative controls. After various time-points of infection, the

cells were washed twice with 1 x PBS and fixed with 3% paraformaldehyde/PBS solution and

processed for immuno-detection as described (2.6.1) with a panel of antibodies against

various cytoskeletal proteins. Alternatively, COS7 cells on coverslips in 4-well plates (Nunc)

were transiently transfected (2.4.18) with EGFP-actin (Choidas et al., 1998), EGFP-cofilin or

EGFP-profilin (kindly provided by Dr. Walter Witke, EMBL, Rome, Italy) and then infected

with either strain of bacteria for various time-points, after which the cells were fixed with 3%

paraformaldehyde, washed and directly embedded for subsequent analyses by microscopy

(the GFP fluorescence was not affected by the fixation).

Real-time observations of infection of EGFP-actin transfected COS7 cells with either WA-P

or WA-C were made with the aid of CLSM in the attempt to examine rapid and transient

modifications of the actin cytoskeleton. For this assay, cells were cultivated and transfected in

4-well Lab-Tek chamber slides (Nunc, cat. no. 136420) with borosilicate glass bottoms (0.13-

0.17 mm thick) highly suited for in situ fluorescence microscopy. Following introduction of

bacteria to the transfected cells, chamber slides were spun down and immediately analyzed.

2.6.4 Confocal laser scanning microscopy (CLSM)

The infected cells expressing different EGFP-cytoskeletal fusion proteins after undergoing

fixation were examined via CLSM. This microscopic technique was also used to study the in

vivo dynamic remodelling of the actin cytoskeleton during infection of EGFP-actin

transfected mammalian cells. For these purposes, a 100x oil immersion objective (PL APO

100x 1.40-0.7) was used for observation of cells under the laser wavelength of 488 nm (FITC)

with the help of an inverted confocal microscope (Leica TCS NT, TCS: True Confocal

Scanner) operated with an argon laser. For double-labelled cells, both types of fluorescence

were measured separately but at the same time, and the signals were layered onto each other

using the programme “Merge“. The crude images obtained were further processed by a Power

Macintosh (8500/180) using the computer programmes NIH Image 1.60 and Adobe

Photoshop 5.0.
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2.6.5 Growth curves of D. discoideum mutants

The growth rates of wild-type (AX2) and various mutant strains of D. discoideum were

studied by cultivation of the strains at 21°C either on SM-K. aerogenes plates (Williams and

Newell, 1976) or axenically in liquid medium (Claviez et al., 1982; Sussman, 1987) shaken at

150 rpm. Colony diameter or cell density was plotted against time with the aid of the

computer programme Sigma Plot 2.01.

2.6.6 Development of D. discoideum mutants

The abilities of wild-type and various mutant strains to generate fruiting bodies were

compared by cultivating the strains on SM-K. aerogenes plates at 21°C for at least 2 days.

Observations were made with a stereomicroscope (Leica) and images captured using the

computer software Bilddatenbank system (Leica) and further processed with the programme

Adobe Photoshop 5.0.
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3 RESULTS

3.1 Analyses of the point-mutated profilins in D. discoideum

3.1.1 The W3N and K114E point-mutated profilins

According to Bjoerkegren et al. (1993), mutation of the well conserved tryptophan at position

three of human profilin to an asparagine (W3N) results in its loss of interaction with poly-(L)-

proline stretches, thus the same amino acid exchange was made on Dictyostelium profilin. To

abrogate the association between profilin and actin, the point mutation K114E was introduced

into profilin II, since the lysine residue K115 of Acanthamoeba is a component of the actin-

binding site of profilin and could be crosslinked to glutamic acid #364 of actin

(Vandekerckhove et al., 1989; Schutt et al., 1993). Site-directed mutageneses of profilin II via

PCR resulting in the substitution of the tryptophan residue #3 by an asparagine (W3N) or of

the lysine residue in position 114 by glutamic acid (K114E) were performed by Iakowos

Karakesisoglou (Lee et al., 2000). The point mutations W3N and K114E altering the poly-

(L)-proline and actin-binding activities of profilin respectively were clearly indicated in Fig. 4

(section 1.4). The authenticity of the profilin mutants has been confirmed by sequencing,

Southern, Northern and Western analyses. Transformants cultivated in HL-5 medium

supplemented with 50-90 µg/ml hygromycin B were designated as DdW3N and DdK114E for

D. discoideum profilin null cells (Haugwitz et al., 1994) which expressed W3N or K114E

respectively.

3.1.2 Poly-(L)-proline binding properties of W3N and K114E

This unique feature was investigated by incubation of equal amounts of Dictyostelium total

cell homogenates with poly-(L)-proline coupled agarose beads. The supernatants and pellets

after centrifugation were analyzed by SDS-PAGE. Wild-type profilins I, II and the K114E

profilin mutant were observed in the pellet fractions, in contrast to the W3N profilin mutant

which was only detected in the supernatant fraction (Fig. 5). In this assay, while the K114E

profilin mutant still retained its ability to associate with poly-(L)-proline, the substitution of

tryptophan to asparagine on W3N profilin strongly reduced its affinity for poly-(L)-proline

stretches.
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3.1.3 Actin and PIP2 binding characteristics of W3N and K114E

The interactions between the point mutated profilins (purified according to Lee et al., 2000)

and rabbit skeletal muscle actin were investigated by fluorescence spectroscopy using pyrene-

labelled G-actin. This approach is highly sensitive and the principle is based on an increase of

up to 20-fold of fluorescence emission of pyrene-actin during the polymerization from G- to

F-actin (Kouyama and Mihashi, 1981). Figure 6 distinctly demonstrates that a 1:1 ratio of

wild-type profilin to rabbit G-actin was required to show the inhibitory effect of profilin on

actin polymerization. A severe reduction in the affinity of the K114E for actin was observed,

since it required a 3-fold excess of this mutated profilin compared to the wild-type profilin to

display the same inhibitory effects. Actin-binding was slightly reduced in the W3N profilin

mutant as a 1.5:1 ratio of W3N to actin was needed to match the inhibition of actin

polymerization of wild-type profilin.

The influence of amino acid substitutions of profilin on its continued ability to bind

phospholipids was also examined.
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As illustrated in Figure 7A, PIP2 interferred with the actin sequestering activity of wild-type

profilin, indicating the capabilities of the D. discoideum's profilins to interact with PIP2 which

competed with their affinities for G-actin. The inhibitory effect of PIP2 on actin binding was

also verified for the point mutated profilins, W3N and K114E (Fig. 7B), suggesting that the

mutations did not significantly alter their binding to phospholipids.
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3.1.4 Cell morphology, cytokinesis and subcellular distribution of profilins

Cytokinesis, F-actin distribution and localization of profilins were investigated in AX2,

DdW3N and DdK114E cells. Figure 8 showed that the DdW3N and DdK114E cells were

indistinguishable from wild-type. Contrary to profilin deficient cells which are flattened,

multinucleate and up to ten times larger than wild-type (Haugwitz et al., 1994;

Karakesisoglou et al., 1996), DdW3N and DdK114E cells display normal cell morphology

with 1-2 nuclei per cell typical for D. discoideum (Fig. 8A).

The uniform accumulation of F-actin around the edge of the profilin-minus cells forming a

broad rim (Haugwitz et al., 1994; Karakesisoglou et al., 1996) was non-existent in DdW3N

and DdK114E. Like the wild-type, only the leading edges of pseudopods of the mutant strains

were stained with an antibody specific for D. discoideum actin (Simpson et al., 1984). No

obvious difference in F-actin distribution between DdW3N and DdK114E cells was detected.

As for the subcellular distribution of profilin, both DdW3N and DdK114E cells exhibited

uniform cytoplasmic localization of profilin, similar to that of wild-type cells (Fig. 8B).

However, non-homogenous populations of DdW3N and DdK114E cells with different levels

of profilin expression were obtained. This can be observed in numerous other expression

experiments as well. To have comparable cell populations in all studies, the strains were

repeatedly recloned and used only for a limited period.

3.1.5 Development of DdW3N and DdK114E

In contrast to the profilin-minus cells which are unable to form fruiting bodies (Haugwitz et

al., 1994), this developmental defect was restored in DdW3N and DdK114E cells due to the

expressions of W3N and K114E point-mutated profilins respectively. Fig. 9 clearly showed

that DdW3N and DdK114E cells were capable of producing fruiting bodies indistinguishable

from that of wild-type cells.

Significantly, the rescue property of W3N profilin appeared to depend on its cellular

concentration. By reducing hygromycin B concentration from 50 to 5 µg/ml, and finally under

no selection pressure on a Klebsiella lawn, DdW3N clones were isolated which had lost their

abilities to form fruiting bodies and thus assumed the aberrant phenotype of the profilin

deficient cells. While these strains were incapable of generating fruiting bodies and exhibited

diminished growth rates similar to that of the profilin-minus cells, they were still found to

contain W3N profilin though at a reduced concentration similar to that of the K114E profilin

in the DdK114E rescued cells (unpublished observation). Hence it is evident that an

overexpression of W3N profilin is mandatory to restoring the fruiting phenotype of DdW3N.
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3.1.6 Profilin localization at phagocytic cups

Uptake of particles during phagocytosis requires a finely tuned programme of protein

recruitment to phagocytic cups. The question of whether fully functional actin or poly-(L)-

proline binding sites are necessary for the involvement of profilin in phagocytic cup formation

is being addressed here. AX2, DdW3N and DdK114E cells were mixed with equivalent

amounts of yeasts, fixed, and then subjected to conventional immunostaining using an

antibody specific for profilin II. In all three cell types, prominent profilin staining was

observed at the rims of developing phagocytic cups in close proximity to yeast particles (Fig.

10). These data indicate that the point-mutated profilins are recruited as efficiently as the

wild-type profilin in the formation of phagocytic cups, even though actin-binding is strongly

reduced in K114E and poly-(L)-proline binding is essentially absent in W3N.
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3.2 Analyses of profilin in D. discoideum via GFP fusion

3.2.1 Generation of profilin-GFP vector construct and Dictyostelium transformants

In order to have a clearer understanding of its in vivo role, profilin II from Dictyostelium was

fused to the N-terminus of a blue-shifted variant of GFP (excitation maximum at 433 nm and

emission maximum at 475 nm; Heim and Tsien, 1996) separated by a linker sequence of 100

amino acid (aa) residues. Previous experiments (unpublished observations) have determined

the necessity of a long linker sequence between profilin and the N-terminus of GFP for fully

functional activities of the fusion protein as compared to the native profilin, in terms of the

abilities to bind poly-(L)-proline and to rescue the developmental defects of the profilin null

cells (Haugwitz et al., 1994). Past efforts made in the fusion of profilin and GFP via a 10 aa-

(SGSAEFKKLK) and a 14 aa- (VAGSSGSAEFKKLK) linkers have resulted in fusion

proteins which were unable to interact with poly-(L)-proline and transformants have lost their

abilities to develop into fruiting bodies (data not shown).

The segment 4 of the six 100 aa-residue repetitive segments of the rod domain of the 120 kDa

gelation factor (ABP-120) from D. discoideum was used as the linker between profilin and
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GFP. Due to its availability and its recently known 3-D structure (Fucini et al., 1997),

consisting of seven ß-sheets arranged in an immunoglobulin-like (Ig) fold with the N- and C-

terminals at the opposite end of each other, the rod4 was selected as a linker (Fig. 11A). The

profilin II-rod4-GFP was constructed as described in Materials and Methods (section 2.4.17).

As a control, a rod4-GFP construct with only the linker fused to the GFP was made as well.

Both fusion constructs are depicted in a schematic diagram (Fig. 11B). In restriction analyses,

DNA bands of expected sizes for profilin II (~0.4 kb), rod4 (0.3 kb) and GFP (~0.7 kb) were

obtained (Fig. 11C). The two fusion constructs were individually introduced into profilin

deficient D. discoideum cells (2.4.14) and transformants exhibiting green fluorescence were

cloned (2.4.15) and cultivated in HL-5 medium supplemented with 5 µg/ml blasticidin.

3.2.2 Western analysis of the GFP fusion proteins

Immunoblotting performed on total cell homogenates of the Dictyostelium transformants

using monoclonal antibodies specific for either profilin II (174-336-8) or GFP (264-236-2)

confirmed the expected size of the profilin II-rod4-GFP fusion protein of about 55 kDa (~15

kDa for profilin II, ~12 kDa for rod4 linker and 28 kDa for GFP) (Fig. 12A & 12B). As for

the cells transformed with rod4-GFP, a band of the predicted size of about 40 kDa was

obtained with the aid of an antibody specific for GFP (Fig. 12B). The wild-type AX2 and the

profilin null cells (pI/II-minus) were used as positive and negative controls for profilin

expression respectively. Equal amounts of cell homogenates were subjected to SDS-PAGE

(Fig. 12C).
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3.2.3 Development of the profilin-GFP Dictyostelium transformant

Contrary to the profilin null cells which are unable to develop fruiting bodies, this aberrant

phenotype was partially rescued in the profilin-GFP transformed cells due to the expression of

the fusion protein. These transformants were capable of generating fruiting bodies which

almost resembled those of the wild-type cells (Fig. 13). As for the rod4-GFP transformed

cells, they still were not able to rescue the developmental defect of the profilin null cells, and

only “finger“ stage of development was observed (data not shown). Henceforth, only the

Dictyostelium cells transformed with profilin-GFP were further analyzed.

3.2.4 Growth rate of profilin-GFP cells

In contrast to the pI/II-minus cells, profilin null cells transformed with profilin-GFP could be

cultivated in shaking suspensions (Fig. 14).
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As compared to the wild-type AX2 cells, the profilin-GFP transformants grew initially at

almost the same rate during the first 2 days, however, their growth slowed down gradually

until a plateau was reached by the fourth day. Thus these transformants were able to grow like

the wild-type cells only for a short period within the first 2 days, after which their growth

rates approached that of the profilin null cells.

3.2.5 Interaction between poly-(L)-proline and profilin-GFP

The affinity of the profilin-GFP fusion protein for poly-(L)-proline stretches was examined by

sedimentation with poly-(L)-proline coupled agarose beads as described in Materials and

Methods (section 2.5.11). As shown in Figure 15, the profilin-GFP fusion protein has lost its

ability to bind to poly-(L)-proline since immunoblot analysis on total cell homogenates using

a monoclonal antibody specific for profilin II (174-336-8) detected an appropriately sized

band of the fusion protein of about 55 kDa only in the supernatant fraction (Fig. 15A). AX2

was used as a positive control whereby the native profilin was able to bind poly-(L)-proline

beads and a band of about 15 kDa was detected in the pellet fraction as observed in both

immunoblot (Fig. 15A) and SDS-polyacrylamide gel (Fig. 15B).

However, the poly-(L)-proline binding ability of the fusion protein appeared to be restored to

a small extent after passage of the total cellular proteins through an anion-exchange monoQ

column and protein fractions eluted with a linear NaCl gradient. Two eluted fractions

containing the fusion protein, namely fractions #28 and #31, were allowed to incubate with

poly-(L)-proline beads for some hours and then sedimented. Western analyses with the aid of

monoclonal antibodies specific for either profilin II (Fig. 15C) or GFP (Fig. 15D) showed the

presence of minute quantities of the fusion protein in the pellet fractions, though much larger

amounts of profilin-GFP were still found in the supernatants.

3.2.6 Interaction between profilin-GFP and actin

Generally, the interaction between profilin and actin could be studied by a highly sensitive

fluorescence spectroscopic method using pyrene-labelled G-actin (Kouyama and Mihashi,

1981). This approach will require at least a 1:1 ratio of wild-type profilin to actin or about 3

µM of proteins. However, a difficulty to obtain a large amount of the profilin-GFP

transformed cells was encountered as these cells could only grow within a short timespan (see

3.2.4, Fig. 14), thus it has not been possible to obtain sufficient amounts of the fusion protein

for kinetic analyses.
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Profilin has been known to form a tight profilin-actin complex or profilactin in vivo which is

involved in the elongation of actin filaments at the barbed ends only (Tilney et al., 1983;

Pollard and Cooper, 1984; Kaiser et al., 1986). This property of profilin being able to

associate with actin as profilactin complex is the basis on which the interaction between actin

and profilin-GFP was being investigated as described in Materials and Methods (section

2.5.13). Normally, the profilactin complex would be bound by an anion exchange column and

could be eluted with a 0-400 mM linear NaCl gradient between 10-14 mS. From a small

quantity of lysed cells, the total cellular proteins were first semi-purified through an anion-

exchange monoQ column and subsequently, two of the eluted fractions, one containing only

profilin-GFP and the second consisting of both the fusion protein and actin, were separately

fractionated by size via gel filtration chromatography using the FPLC system and a highly

sensitive SMART system. Their elution profiles, detected by Western analysis with an

antibody specific for the fusion protein, were then compared and if the fusion protein is able

to bind to actin, this larger complex will be eluted earlier.

Like the wild-type D. discoideum profilins (Haugwitz et al., 1991), the profilin-GFP fusion

protein was detected in the soluble fraction of total cell homogenate by immunoblot analysis

(Fig. 16A). Following anion exchange chromatography, Western analyses were carried out

with monoclonal antibodies specific for Dictyostelium actin (Simpson et al., 1984), GFP and

profilin II (Fig. 16B). Actin, a 42 kDa protein, was detected mainly in fractions #27 and #28.

With both anti-profilin and anti-GFP antibodies, the 55 kDa profilin-GFP fusion protein was

found in the eluted fractions #27-31. The fractions #28 containing both actin and the fusion

protein (A+FP) and #31 consisting of only the fusion protein (FP) were then separately

subjected to gel filtration chromatography. After FPLC and with the aid of a GFP-specific

antibody, the bulk of the fusion protein was found to be eluted between fractions #26-28 for

both A+FP and FP fractions. However, the fusion protein could already be detected in much

earlier fractions starting from #21 for the A+FP fraction only (Fig. 16C). Similarly, following

gel filtration with the SMART system, immunoblot analyses using an anti-GFP antibody

showed that the fusion protein was eluted mainly between fractions #20-23 for both the A+FP

and FP fractions and a shift to an earlier elution of the fusion protein beginning at fraction #17

was observed for the A+FP fraction only (Fig. 16D). Data from both the FPLC and the

SMART systems consistently showed earlier elutions of the fusion protein when both actin

and the fusion protein were present together, strongly suggesting the affinity of profilin-GFP

for actin thus forming larger complexes which could be eluted earlier by size sieving.
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3.2.7 Cell morphology and subcellular distribution of profilin-GFP

As compared to the profilin null cells, pI/II-minus (Haugwitz et al., 1994), which are

multinucleate, very much bigger than wild-type cells and have accumulations of broad rims of

F-actin around their edges (see Fig. 8A), the profilin deficient cells transformed with the

profilin-GFP construct were observed to resemble the wild-type AX2 cells. After cell fixation

with 3% paraformaldehyde and labelling of the nuclei and F-actin with DAPI and TRITC-

phalloidin respectively, these profilin-GFP transformed cells were embedded directly for

fluorescence microscopy. The transformants showed normal cell morphology with 1-2 nuclei

per cell and the broad accumulations of F-actin were no longer present, instead F-actin

staining was found only at the leading edges of pseudopods of these cells (Fig. 17A). Similar

to the profilin localization in AX2 (see Fig. 8B), fluorescence from the profilin-GFP fusion

protein was observed to be distributed evenly throughout the cytoplasm (Fig. 17A).
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The localization of profilin-GFP during phagocytosis of yeast particles was also analyzed to

determine if the fusion protein behaved similarly as the wild-type profilin. Profilin-GFP

transformed cells were mixed with an equal amount of Baker’s yeasts, methanol-fixed and

then subjected to fluorescence microscopy. As compared to AX2 (see Fig. 10), the profilin-

GFP fusion protein was also observed at the edges of developing phagocytic cups in close

contact with yeast particles (Fig. 17B). This result suggests that the profilin-GFP fusion

protein is recruited as efficiently as the wild-type profilin in phagocytic cups and could thus

be used further in in vivo studies of actin-based cellular processes.

3.2.8 In vivo distribution of the profilin-GFP fusion protein

The confocal microscopy studies of the in vivo dynamics of profilin in D. discoideum cells

transformed with profilin-GFP were performed in collaboration with Timo Zimmermann

(Zoological Institute, LMU, Munich). The specificity of the localization of the fusion protein

has been confirmed by ratio measurements whereby the fluorescent signal of profilin-GFP

was ratioed over an uniformly distributed cytoplasmic marker as described (Yumura and

Fukui, 1998). Profilin was found to be associated with highly active regions of the cells in

actin-based cellular processes. As shown in Fig. 18, the fusion protein was predominantly

localized at the cell cortex (A) and additionally, in the process of macropinocytosis, the fusion

protein was observed to accumulate at the actin-rich macropinocytotic crowns (B).
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In the aggregation stage, the fusion protein was detected transiently at the leading edges of

elongated cells moving in an aggregation stream (Fig. 19A). During pseudopodial extension,

there is a transient distribution of profilin-GFP at the cell front, suggesting that profilin might

be involved in protrusion of pseudopodia (Fig. 19B).
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3.3 Studies of severin in D. discoideum via GFP fusion

3.3.1 Generation of severin-GFP Dictyostelium transformants

Severin, the major Ca2+-dependent F-actin fragmenting and capping protein of D. discoideum,

has been well characterized in vitro (Eichinger et al., 1991; Eichinger and Schleicher, 1992).

A novel approach has been used here to examine its in vivo redistribution and roles by fusion

with a red-shifted GFP mutant and then transforming Dictyostelium cells which were

subsequently analyzed at high spatial and temporal resolutions using confocal microscopy.

Dictyostelium severin was fused via a 10 aa linker to the N-terminal of S65T GFP according

to Materials and Methods (section 2.4.16). The flexible linker sequence consists of mainly

small and basic amino acid residues and the severin-GFP construct is shown in a schematic

diagram (Fig. 20). The severin-GFP recombinant plasmid was then transformed into AX2 and

HG1132 severin null (André et al., 1989) D. discoideum cells as described (section 2.4.14).

The transformants were cloned (section 2.4.15) and could be cultivated in shaking

suspensions in AX medium supplemented with 10 µg/ml geneticin. They were designated as

AX2-T for the severin-GFP transformed wild-type cells, and HG1132-T for the severin null

cells transformed with the fusion construct.
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3.3.2 Immunoblot analysis of the severin-GFP fusion protein

Equal amounts of total cell homogenates were subjected to SDS-PAGE (Fig. 21A) after

which immunoblot analysis was performed with a monoclonal antibody targeted at the N-

terminal of severin (102-425-1). AX2 and the HG1132 severin null cells were used as positive

and negative controls for severin expression respectively. For both the AX2-T and HG1132-T

transformants, a prominent band of the expected size of about 70 kDa for the severin-GFP

fusion protein was observed in each case (Fig. 21B). For AX2-T, an additional band of 40

kDa corresponding to the native severin protein was also detected. In comparison, the native

severin and the severin-GFP fusion proteins appeared to be present in equivalent quantities in

the AX2-T Dictyostelium transformant (Fig. 21B).

3.3.3 Partial purification of the severin-GFP fusion protein

The severin-GFP fusion protein was partially purified from the HG1132-T Dictyostelium

transformant lacking the native severin as described in Materials and Methods (section 2.5.8).

Soluble extract from 10 l of cells was first subjected to an anion-exchange column whereby

the fusion protein, as analyzed by immunoblotting, did not bind to the resin (Fig. 22A). The

flow-through was then passed over a phosphocellulose cation-exchange column and under the
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conditions using MEDABP (pH 6.5) as running buffer (see Materials and Methods, section

2.5.8), the fusion protein was again found in the flow-through (Fig. 22A). To reduce the

sample volume, ammonium sulphate precipitation was carried out on this flow-through and

Western analysis with a severin-specific antibody showed that the fusion protein was

precipitated between 50-80% of saturation (Fig. 22B).
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After dissolution of the pellet in a small volume of column buffer, the green-colored sample

was subjected to gel filtration chromatography and the eluted fractions were subsequently

analyzed by immunoblotting to detect fractions containing the fusion protein (Fig. 22C).

Finally, these active fractions were pooled together and chromatographed on a

hydroxylapatite column whereby the severin-GFP fusion protein was eluted with potassium

phosphate. On the Coomassie gel, other proteins were still present, with a possible band of the

fusion protein detected at about 70 kDa in fractions #67 and #68. With the aid of a severin-

specific antibody, prominent bands of the expected size were observed in fractions #67 and

#68 (Fig. 22D). The partially purified fraction #68 was later used for in vitro activity assays.
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The purification method for the severin-GFP fusion protein appeared to deviate slightly from

that of severin (Yamamoto et al., 1982; Schleicher et al., 1984). Briefly, Dictyostelium

severin can be purified by chromatographing the soluble cell extract firstly on an anion-

exchange column, followed by a cation-exchange column whereby the severin-containing

fractions eluted with a linear salt gradient were finally subjected to hydroxylapatite

chromatography and pure severin could be eluted with a linear KCl gradient (0-400 mM KCl).

In contrast to severin, the severin-GFP fusion protein did not bind to the cation-exchange

resin and thus an extra step to separate the fusion protein by size was performed via gel

filtration before chromatographing on a hydroxylapatite column. Another difference is that

the fusion protein could only be eluted with a phosphate gradient (0-10 mM KH2PO4) in the

presence of KCl since it could not be eluted using a linear KCl gradient.

3.3.4 Severing activity of the severin-GFP fusion protein

Two simple, yet elegant approaches have been used to determine the severing activity of the

partially purified fusion protein. In the low shear falling-ball viscometry assay (section 2.5.9),

severin-GFP was found to sever F-actin or to reduce the viscosity of F-actin gels only in the

presence of Ca2+ (Fig. 23A). It was calculated that 250 ng/ml of the partially purified fusion

protein is fully active. For the fluorescence measurements (section 2.5.10), in the absence of
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Ca2+, the severing activity or rate of decrease of the arbitrary relative fluorescence values was

found to be negligible with increasing concentrations of the fusion protein. On the contrary,

when Ca2+ was present, severin-GFP was shown to exhibit increased F-actin fragmenting

activity with rising concentrations of the fusion protein (Fig. 23B). Thus far, an active

severin-GFP fusion protein has been generated in the severin minus D. discoideum cells and

could be used for the in vivo studies of the dynamics of actin-related processes.

3.3.5 Localization of severin-GFP during macropinocytosis

The HG1132-T Dictyostelium cells were used for the in vivo study of the distribution of the

severin-GFP fusion protein in the course of uptake of liquid by the cells using confocal laser

scanning microscopy (CLSM). This highly resolving microscopy technique is suitable for the

direct visual examination of rapid and transient processes of live cells with the aid of GFP-

fused proteins. CLSM is also useful for analysing fixed cells in immunofluorescence studies

since it can resolve spatially the location of the protein of interest within a cell. Indirect

immunofluorescence analysis of wild-type AX2 cells with a monoclonal antibody specific for

severin showed only overall cytoplasmic staining (André et al., 1989). This disadvantage of

immunofluorescence study could be overcome by the use of the sensitive CLSM.

During macropinocytosis, severin-GFP was located prominently at the macropinocytotic

crown-like structures. In the time sequence shown from 0-75 seconds, rapid redistribution of

the fusion protein was distinctly observed in the macropinocytotic crowns (Fig. 24).
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3.4 Yersinia infection and the actin cytoskeleton

3.4.1 Indirect immunofluorescence analyses of selected cytoskeletal proteins during

        Yersinia enterocolitica infection

The mammalian cell-line, COS7, was used in infection studies with either the Yersinia

enterocolitica wild-type strain (WA-P) or the strain cured of the Yop secretion plasmid (WA-

C) (Heesemann, 1987) in time course experiments whereby infected cells were fixed after

various time points of infection and subjected to conventional immunostaining with

monoclonal antibodies specific for human vinculin (V-9131), talin (T-3287), and also with an

anti-ß-COP monoclonal antibody (E5A3) (Pepperkok et al., 1993; Mohrs et al., 2000).

Uninfected cells labelled with these antibodies were used as negative controls.

Vinculin and talin, found in a wide variety of tissues and cell types, are cytoskeletal proteins

which are able to interact with each other (Gilmore et al., 1992; Lee et al., 1992; Gilmore and

Burridge, 1996), associate with F-actin (Johnson and Craig, 1995; Hemmings et al., 1996)

and are involved in cell-cell and cell-extracellular matrix adherens junctions. They are

important for the assembly of stress fibres and focal adhesions and are part of a large complex

of interacting proteins thought to be involved in anchoring F-actin to the membrane, thus

generating a transmembrane connection between the extracellular matrix and the cytoskeleton

at adhesion plaques or focal contacts (see review by Critchley, 2000).

The ß-COP protein (Duden et al., 1991), a non-clathrin-coated vesicle-associated coat protein,

is one of seven subunits making up the hetero-oligomeric complex known as coatomer.

Coatomer together with ADP-ribosylation factor or ARF (Serafini et al., 1991) make up the

COP-I membrane coat of transport vesicles of the early secretory pathway. Thus the

mammalian ß-COP is essential for biosynthetic membrane transport from the endoplasmic

reticulum (ER) to the Golgi complex (Pepperkok et al., 1993) which is further supported by

data from the yeast homologs (Duden et al., 1994).

COS7 cells infected with either WA-P or WA-C were fixed after 15 min, 30 min and 1h of

infection and subsequently labelled with anti-human vinculin, -talin and –ß-COP antibodies.

For the anti-vinculin staining, infection with both strains of Yersinia enterocolitica showed

similar vinculin staining at focal adhesions throughout the entire duration of infection like

those of the uninfected cells (Fig. 25A). Labelling with an anti-talin antibody revealed no

discernable differences between the uninfected cells and cells infected with either strain of

bacteria. Similar talin staining of focal contacts was observed up to 1h of infection with either
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WA-P or WA-C as seen in the case for the uninfected cells (Fig. 25B). Immuno-detection

with an anti-ß-COP antibody showed comparable labellings of the ER-Golgi network for both

uninfected and WA-P- or WA-C-infected cells throughout the course of infection (Fig. 25C).
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3.4.2 Studies of selected GFP-fused cytoskeletal proteins during Yersinia infection

Infection studies were also performed on COS7 cells transiently transfected with GFP-actin

(Choidas et al., 1998), GFP-cofilin or GFP-profilin II (both fusion constructs kindly provided

by Dr. Walter Witke, EMBL, Rome, Italy). This approach has two main advantages in that

artefacts generated via indirect immunofluorescence labelling could be circumvented, and

most importantly, GFP-fused cytoskeletal proteins could be directly monitored with the aid of

the highly sensitive CLSM to examine with high resolution any rapid and transient

remodelling of the dynamic cytoskeleton.

Uninfected cells transfected individually with the three different GFP fusion constructs were

used as negative controls. COS7 cells transfected separately with GFP-actin, -cofilin or –

profilin II were infected with either WA-P or WA-C in a time course experiment from 0-2 h.

Infected cells were fixed with paraformaldehyde after 15 min, 30 min, 1 h and 2 h of infection

and directly embedded for confocal microscopy. Alternatively, in situ infection of the

transfected cells was monitored in real time using CLSM as described in Materials and

Methods (sections 2.6.3 & 2.6.4).

The authenticity of the GFP-actin labelling was confirmed by phalloidin staining of F-actin.

For both uninfected and infected cells, actin labelling was observed to be comparable with

either phalloidin (Fig. 26) or GFP-actin (Fig. 27). Infection of GFP-actin transfected cells

with WA-C up to 2 h showed actin staining similar to that of the uninfected cells, whereby

actin was predominantly distributed at the cell cortex (Fig. 27). Cytoplasmic staining

contributed by monomeric actin was also observed.

In contrast, after about 30 min of infection with WA-P, cells began to lose actin staining and

actin patches were observed. The actin cytoskeleton was disrupted and reorganized to allow

rounding up of cells after 2 h of infection with WA-P as compared to infection with WA-C

whereby the cells remained flattened after 2 h (Fig. 27).

Cofilin, a 21 kDa actin-binding protein found in all eukaryotes examined so far, represents the

cofilin family of actin regulating proteins. It is a phosphoinositide-sensitive actin-binding

protein (Yonezawa et al., 1990; Aizawa et al., 1995) which can reversibly regulate actin

polymerization and depolymerization in a pH-dependent manner (Yonezawa et al., 1985;

Hawkins et al., 1993). Cofilin forms intranuclear and/or cytoplasmic actin-cofilin rods in

cultured cells exposed to various extracellular stimuli (Nishida et al., 1987).
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Similar to the uninfected cells, GFP-cofilin labelling of the actin-cofilin rods was observed in

cells infected with WA-C throughout the entire duration of infection (Fig. 28). Infection with

WA-P, on the contrary, showed that after 1 h of infection, there was a decrease in the length

of the actin-cofilin rods (Fig. 28), suggesting the actin disaggregating ability of Yops which

prevents formation of long actin-cofilin rods.

Profilin-GFP transfected cells showed overall cytoplasmic labelling for both uninfected and

WA-C- or WA-P-infected cells over a 2 h-period of infection (Fig. 29). Data imply that the

Yops do not have any major effect on the distribution of the GFP-profilin fusion protein.

Confocal microscopy analyses of GFP-actin transfected cells were performed either via cell

fixation after bacterial infection or during real time infection. Both approaches showed similar

results whereby F-actin structures resembling phagocytic cups were observed at bacterial

attachment sites for cells infected with either WA-P (Fig. 30A) or WA-C (Fig. 30B) after 30

min. The data suggest that the mammalian cells react already upon adhesion of Yersinia

enterocolitica.
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4 DISCUSSION

4.1 The point-mutated profilins, W3N and K114E
The in vivo roles of profilin with regard to its poly-(L)-proline binding and actin-binding

activities were investigated. Point mutations performed on the poly-(L)-proline or actin-

binding sites of profilin II allowed the characterization of the significance of these two

properties of profilin in the maintenance of normal cellular physiology via expression of these

altered profilins in the profilin null D. discoideum cells. Their abilities to rescue the aberrant

phenotype of the profilin null cells were examined. Two highly conserved residues W3 and

K114 of the profilin II isoform of D. discoideum were selected for site-directed mutagenesis

by PCR. The data suggest a) that a functional poly-(L)-proline binding activity is more

important for suppression of the mutant phenotype than the G-actin binding activity of

profilin, and b) that the enrichment of profilin in highly active phagocytic cups might be

independent of either poly-(L)-proline or actin-binding activities.

4.1.1 In vitro analyses of W3N and K114E

The actin, poly-(L)-proline and PIP2 binding characteristics of W3N and K114E were

investigated. A sedimentation assay revealed that the W3N profilin had indeed lost its

capability to bind to a poly-(L)-proline matrix, contrary to the wild-type and K114E profilins.

Although the poly-(L)-proline binding site is structurally distinct from the actin-binding

domain, fluorescence spectroscopy measurements using pyrene-labelled actin monomers

revealed a mild decrease in the affinity of W3N profilin for G-actin. In fact, a 1.5-fold excess

of W3N, in contrast to wild-type profilin, was essential to achieve comparable actin

polymerization kinetics. According to Bjoerkegren et al. (1993) and Haarer et al. (1993),

mutagenized profilins which had lost their affinities to poly-(L)-proline stretches were not

accompanied by any changes in their affinities for actin. This slight negative influence of a

single mutation in the poly-(L)-proline binding site on actin-binding was detected most likely

due to the high sensitivity of the methodology being used here. However,  controversial data

from Bjoerkegren-Sjoegren et al. (1997) showed that their two profilin mutants with reduced

affinities for poly-(L)-proline also exhibited decreased affinities for actin, suggesting that

structural alterations in the poly-(L)-proline binding site of profilin can have an effect on the

distantly located actin-binding region and that the poly-(L)-proline binding activity of profilin

may play an important regulatory role of the actin cytoskeleton.
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The K114E point-mutated profilin differed from W3N in that only its actin-binding activity

was severely affected. The affinity of K114E profilin for G-actin was drastically reduced as

fluorescence spectroscopy measurements revealed that a 3-fold excess of K114E was

obligatory to obtain similar kinetic behaviour as with wild-type profilin. While these data

support the evidence that the conserved lysine #114 is indispensable for strong actin binding,

they also show that this point mutation is insufficient to deplete entirely the affinity of profilin

for actin, providing additional support for the existence of extensive contacts between profilin

and actin (Schutt et al., 1993). To explore further the biochemical properties of the point-

mutated profilins, their abilities to interact with PIP2 were tested. Our data suggested that as

with the wild-type profilin, the binding of W3N and K114E profilins to phospholipids was

unaltered, which agreed with previous data (Haarer et al., 1993; Sohn et al., 1995), indicating

that the amino acid residues W3 and K114 are not essential for phospholipid binding.

4.1.2 Rescue of the profilin null phenotype by W3N and K114E

The aberrant phenotype of the profilin null cells (Haugwitz et al., 1994) was overcome by the

expression of either W3N or K114E. DdW3N and DdK114E transformant cells exhibited

normal cell morphology with the usual number of 1-2 nuclei per cell and the characteristic

broad rim of F-actin accumulation around the edge of the profilin null cells was absent in

these transformants. In addition, DdW3N and DdK114E, unlike the profilin null mutant, were

able to develop into fruiting bodies resembling those of the wild-type cells. However, an

overexpression of W3N profilin seemed essential for the restoration of the fruiting phenotype

of DdW3N. Decrease in the level of expression of W3N to that of K114E resulted in

impairment of the ability of DdW3N to generate fruiting bodies, suggesting the poly-(L)-

proline binding activity of profilin is more significant than its actin-binding activity, since the

K114E profilin which still has an intact poly-(L)-proline binding site is capable of rescuing

the developmental defect of the profilin null cells.

4.1.3 Profilin localization at phagocytic cups

The point-mutated profilins, W3N and K114E, are recruited as efficiently as the wild-type

profilin to the phagocytic cups, although actin-binding is strongly reduced in K114E and

poly-(L)-proline binding is virtually absent in W3N. Phagocytosis in Dictyostelium is

strikingly similar to that in mammalian leukocytes (Howard and Watts, 1994), with the

Dictyostelium cells displaying similar actin-based cytoskeletal reorganization as the

neutrophils. In Dictyostelium, the morphological fine structure of pseudopods developed in
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response to phagocytic signal resembles that of macrophages (Reaven and Axline, 1973;

Hartwig and Shevlin, 1986; Cox et al., 1995), with the materialization of a phagocytic cup at

the site of particle adherence. Various actin associated proteins have been shown to exhibit

distinct localization in the phagocytic cups. According to Maniak et al. (1995), Dictyostelium

coronin is evidently located at the phagocytic cups. With the aid of coronin-GFP, it was

observed that in the established cup, the complete area in contact with the yeast particle is

enriched in the fusion protein. Other proteins known in D. discoideum to colocalize with actin

at phagocytic cups are myosin IB (Fukui et al., 1989), a 30 kDa actin-bundling protein

(Furukawa and Fechheimer, 1994) and the actin-binding protein, ABP-120 (Cox et al., 1996).

In mammalian cells, myosin II (Stendahl et al., 1980; Valerius et al., 1981) and subsequently

myosin I (Allen and Aderem, 1995) have both been shown to assemble with F-actin at

developing phagosomes of macrophages.

Furthermore, Watanabe et al. (1997) found that a protein essential for cytokinesis namely

p140mDia, a mammalian homolog of Drosophila diaphanous (Castrillon and Wasserman,

1994) which belongs to a family of formin-related proteins, exhibited binding to RhoA and

profilin. The family of formin-related proteins possesses repetitive polyproline stretches, and

includes Bni1p of Saccharomyces cerevisiae (Imamura et al., 1997), mouse formin (Woychik

et al., 1990), Drosophila cappuccino (Emmons et al., 1995), fus1p of Schizosaccharomyces

pombe (Petersen et al., 1995) and FigA of Aspergillus nidulans (Marhoul and Adams, 1995).

It was observed that in cultured Swiss 3T3 fibroblasts p140mDia, profilin and RhoA are

recruited in a Rho-dependent manner around phagocytic cups induced by fibronectin-coated

beads, suggesting the evolutionary conserved localization and role of specific actin-binding

proteins in phagocytosis.

In this study, although the W3N and K114E point-mutated profilins, like the wild-type

profilin, are observed at the edge of developing phagocytic cups, it is difficult to determine if

the process of phagocytosis is still fully functional. It could well be that these cells are capable

of forming phagocytic cups around yeast particles but are incapable of membrane fusion and

hence pinching off of phagosomes may be defective, perhaps due to the reduced affinity of

the mutated profilins for actin underlying the phagocytic cups. Thus the use of profilin-GFP

fusion should facilitate our understanding of the complex mechanism of phagocytosis.

4.1.4 Significance of the poly-(L)-proline binding property of profilin

The ability of the W3N profilin to restore the profilin null phenotype is dependent on its

cellular concentration as an overexpression of this point-mutated profilin is essential for its
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rescue capability. In comparison, the K114E profilin with a strongly reduced affinity for actin,

but still harbouring an intact poly-(L)-proline binding activity, was found to be able to

overcome the developmental defect of the profilin null mutant. These data suggest that the

poly-(L)-proline binding activity of profilin is more important than its actin-binding property

in the maintenance of normal cell physiology. Even though an interaction between W3N

profilin and poly-(L)-proline stretches is non-detectable in this study, most likely there exists

a reduced affinity of W3N profilin mutant for its unknown D. discoideum proline-rich

proteins. The presence of excessive amounts of W3N profilin in DdW3N can therefore restore

the interaction between profilin and its targets, thereby allowing the transformed cells to

overcome the profilin null defects. K114E rescues the mutant phenotype at lower

concentrations because it harbours a fully functional poly-(L)-proline binding site.

Data from other studies support this interpretation. According to Ostrander et al. (1999), poly-

(L)-proline binding is an essential function of human profilin in yeast since it was found that

an overexpression of the aberrant human profilin gene is absolutely necessary for normal cell

growth. Other experiments performed on yeast profilin, which had severe loss in its ability to

bind in vitro poly-(L)-proline stretches as a result of a deletion of three amino acids from the

C-terminal end, did not implicate the significance of poly-(L)-proline binding activity of

profilin to the maintenance of normal cellular physiology (Haarer et al., 1993). On closer

examination, it was observed that in sedimentation assays, this truncated yeast profilin still

showed low affinity for the poly-(L)-proline matrix. Furthermore, yeast profilin mutants

lacking six to eight amino acids from the C-terminal are not able to rescue the profilin null

mutant, in spite of the fact that these mutants can still bind actin (Haarer et al., 1993),

suggesting that actin-binding is insufficient for normal profilin function. Data from pollen

profilin mutant with two-fold higher affinity for poly-(L)-proline as compared to the native

pollen profilin also showed the importance of the poly-(L)-proline binding role of profilin

(Gibbon et al., 1998).

As compared to W3N, the affinity of D. discoideum profilin II for actin was much reduced in

K114E, the suppression of the profilin-minus phenotype however, required much more W3N

than K114E suggesting a great importance of the poly-(L)-proline binding activity of

profilins. These findings also shed light onto the experiments done with bovine profilin in

Dictyostelium (Schlueter et al., 1998). Wild-type and a mutated (F59A) profilin from bovine

were able to partially rescue the aberrant phenotype of profilin-minus Dictyostelium mutants.

But taking into consideration that the affinity between F59A profilin and actin was reduced

even by an order of magnitude, one has to assume that the still intact poly-(L)-proline binding
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site of F59A plays a considerable role during suppression of the phenotype. The in vivo

significance of this functional domain is also reflected in the same study in which the distinct

distribution of F59A in fibroblasts clearly suggests a binding of the mutated profilin to targets

other than actin (Schlueter et al., 1998).

4.2 Study of D. discoideum profilin via GFP fusion
The exact roles of profilins and the regulation of their activities in vivo are poorly understood

despite extensive studies (Carlier and Pantaloni, 1997; Schlueter et al., 1997). The profilin

isoform II from D. discoideum was fused to the N-terminal of GFP separated by a 100-aa

linker and the fusion protein subsequently characterized for its suitability for use in in vivo

real-time examination of its involvement in the dynamic actin-related processes.

4.2.1 Partial rescue properties of the profilin-GFP fusion protein

A novel profilin II-GFP fusion protein of about 55 kDa has been generated in the profilin null

D. discoideum mutant and the ability of the fusion protein to rescue the aberrant phenotype of

the profilin null cells was investigated. In contrast to the profilin-minus cells whose capability

to develop fruiting bodies was lost and only “finger“ stage of development was observed, the

profilin-GFP transformants were once again able to develop long stalks with sporangia at their

tips. However, these fruiting bodies have a slightly different appearance as compared to those

of the wild-type. The expression of the profilin-GFP fusion protein also helped to overcome

the cytokinesis defect of the profilin null cells in shaking suspensions. The profilin-minus

cells cannot grow in shaking cultures but are able to grow on surfaces as they accomplish cell

division by traction-mediated cytofission (Zang et al., 1997), a myosin II-independent process

(De Lozanne and Spudich, 1987; Knecht and Loomis, 1987; Pollenz et al., 1992; Neujahr et

al., 1997). Intriguingly, the profilin-GFP transformants were found to exhibit an initial growth

rate similar to that of the wild-type cells in shaking cultures only within the first two days.

Thereafter, these cells appeared to reach a stationary phase and assumed a growth rate of the

profilin null cells. Hence the profilin-GFP transformed cells are able to grow only within a

short period of time even though these cells still harbour the expression vector and the fusion

protein is still expressed.

In addition, normal cell morphology was restored in the profilin-GFP transformants. These

transformants, unlike the profilin null cells which are multinucleate and up to ten times larger

than wild-type cells (Haugwitz et al., 1994), possess the usual number of 1-2 nuclei per cell.

The characteristic broad rim of F-actin accumulation around the edge of the profilin null cells
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was also absent in these profilin-GFP transformants. Instead actin was found to be distributed

at the leading edges of these cells as in the wild-type cells. Furthermore, the profilin-GFP

fusion protein was observed to have an overall cytoplasmic localization similar to that of the

native profilins in the wild-type cells.

4.2.2 In vitro analyses of the profilin-GFP fusion protein

The unique property of profilin’s ability to bind poly-(L)-proline stretches (Bjoerkegren et al.,

1993; Haarer et al., 1993; Metzler et al., 1993; Schutt et al., 1993; Archer et al., 1994; Kaiser

and Pollard, 1996) was also investigated for the profilin-GFP fusion protein. In contrast to the

wild-type profilins which were able to be sedimented with poly-(L)-proline coupled agarose

beads, the profilin-GFP fusion protein has lost its ability to associate with poly-(L)-proline.

However, an initial purification of this fusion protein by anion-exchange chromatography

appeared to restore the ability of profilin-GFP, albeit to a small extent, to bind poly-(L)-

proline coated beads. The possibility of competition binding between native profilins and the

profilin-GFP fusion protein for the poly-(L)-proline sequences could be ruled out since the D.

discoideum mutant lacking both profilin isoforms (Haugwitz et al., 1994) was used for

transformation with the fusion construct. Likely explanations are that the initial purification

step could have removed some of the unknown D. discoideum proline-rich cellular ligands,

thus improving the ability of the fusion protein to interact with poly-(L)-proline coupled

beads. The chromatography step could perhaps also lead to minor structural changes of the

fusion protein via interference with its folding, hence slightly increasing its affinity for poly-

(L)-proline. The loss of the ability of the fusion protein to associate with poly-(L)-proline

could be due to the fact that both the amino- and carboxy-termini of profilin are implicated in

ligand binding and interaction with poly-(L)-proline stretches. Mutations or deletions in these

regions have confirmed their importance for poly-(L)-proline binding (Bjoerkegren et al.,

1993; Metzler et al., 1994; Kaiser and Pollard, 1996), thus the fusion of GFP at the C-terminal

end of profilin might decrease the interaction between the fusion protein and poly-(L)-proline.

The affinity of the fusion protein for actin was also examined. As a result of the much reduced

association between the fusion protein and poly-(L)-proline, it was not possible to

conveniently purify the fusion protein using a one-step poly-(L)-proline affinity

chromatography (Tanaka and Shibata, 1985; Lindberg et al., 1988; Kaiser et al., 1989; Haarer

et al., 1990; Metzler et al., 1993). In addition, due to the ability of the profilin-GFP

transformants to be cultivated only within a limited period of time, it has not been possible to

obtain large quantities of cells for protein purification. So, instead of using fluorescence
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spectroscopy for kinetic measurements of the interaction between the fusion protein and actin

(Kouyama and Mihashi, 1981), which will require at least a 1:1 ratio of wild-type profilin to

actin, implying large amounts of the fusion protein would be necessary, the interaction

between actin and the fusion protein was investigated by exploiting the ability of profilin to

form stable profilin-actin complex or profilactin in vivo (Tilney et al., 1983; Pollard and

Cooper, 1984; Kaiser et al., 1986). Gel chromatography revealed that the profilin-GFP fusion

protein was eluted earlier in the presence of actin, suggesting that indeed there is interaction

between the fusion protein and actin forming a larger complex which could be eluted earlier

as compared to the elution pattern of the fusion protein alone. Of course, one could also argue

that the different elution patterns of the fusion protein in the presence or absence of actin

could be due to varied protein concentrations, whereby larger amounts of protein lead to a

broader elution spectrum. However, preliminary data strongly suggest affinity between actin

and the fusion protein. Further attempts to purify the fusion protein for kinetic studies of its

effect on actin polymerization via the highly sensitive fluorescence spectroscopic method

should help to clarify their interaction with each other. One probable purification method for

the profilin-GFP fusion protein would be the use of a bovine pancreatic DNase I column since

the monomeric actin-binding protein DNase I is able to form a tight 1:1 complex with

monomeric actin (Mannherz et al., 1975; Nefsky and Bretscher, 1989). Hence it would be

possible to isolate monomeric actin-binding proteins which have affinity for the actin-DNase I

complex. This feature has been exploited in the purification of villin on immobilized DNase I

from a cell extract harbouring both actin and villin (Bretscher and Weber, 1980). The use of

actin-DNase I affinity purification of the profilin-GFP fusion protein should also provide hints

on its actin-binding ability.

4.2.3 Profilin-GFP, a functional construct?

Previous experience from our lab has stressed the neccessity of a linker sequence separating

profilin and the N-terminal of GFP in order to have a functional fusion protein with respect to

its ability to bind poly-(L)-proline and whose expression in the profilin null D. discoideum

helped to restore the fruiting phenotype. Fusion proteins containing a linker sequence of either

10-aa or 14-aa between profilin II and the N-terminal end of GFP have been made, but these

were unable to bind poly-(L)-proline and could not restore the aberrant phenotype of the

profilin null cells. Since the GFP is larger than profilin, steric hindrance caused by the GFP

moiety might reduce the affinity of these fusion proteins for poly-(L)-proline stretches. The

fusion of GFP to profilin might also lead to an alteration of its three-dimensional folding
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which could interfere with the accessibility of the poly-(L)-proline binding site for its ligands,

thus decreasing or even abolishing binding to poly-(L)-proline. Moreover, the much reduced

affinity of these fusion proteins for the unknown D. discoideum proline-rich cellular ligands

might also impair the development of fruiting bodies as the use of the W3N point-mutated

profilin, with reduced affinity for poly-(L)-proline, has shown the importance of its poly-(L)-

proline binding activity in the maintenance of normal cellular physiology (Lee et al., 2000).

According to Geese et al. (2000), their GFP-profilin I constructs with GFP fused at either the

N- or C-terminal end of profilin I did not work and they attributed it to steric interference

caused by the large GFP. However, they found that an active fusion protein was generated

when GFP was fused to the C-terminal end of profilin II via a 20-aa linker (Geese et al.,

2000). Minor structural differences between profilin I and II (Lambrechts et al., 1997) might

clarify the reason for the loss of functional activities of the GFP-profilin I fusion proteins

since the poly-(L)-proline binding site on profilin II assumes an extended structure and thus it

is not so easily masked by the fusion with GFP as compared to the smaller poly-(L)-proline

binding site on profilin I (Nodelman et al., 1999). Hence, a longer linker between profilin and

GFP might improve the ligand binding property of this fusion protein.

In this study, a new profilin-GFP construct has been made in which profilin II was fused to

the N-terminal end of GFP via a 100-aa linker sequence. Due to its known 3-D structure

(Fucini et al., 1997) whereby the N- and C-termini are at the direct opposite end of each other,

this long linker is selected for the fusion of profilin to GFP, so that the larger GFP moiety is

separated far away from the small profilin to avoid steric hindrance. Also, the 3-D folding of

this fusion protein consisting a long linker might likely be in a conformation whereby all  the

functional sites on profilin are still accessible for ligand binding. But this profilin-GFP fusion

protein was found to have a much reduced affinity for poly-(L)-proline. Thus the fusion of

GFP to profilin seemed to interfere with the poly-(L)-proline binding activity of profilin and

this is not surprising as both the N- and C-termini of profilin have been implicated in

interaction with poly-(L)-proline stretches (Bjoerkegren et al., 1993; Metzler et al., 1994;

Kaiser and Pollard, 1996). In particular, the C-terminal end of profilin has been shown to be

quite sensitive to manipulations and the extreme C-terminal end of profilin has been

suggested to be essential for poly-(L)-proline binding (Kaiser and Pollard, 1996). In spite of

this, the human profilin isoform II has recently been successfully fused to the N-terminal of

GFP (Geese et al., 2000) and the fusion protein was still found to possess fully active in vitro

ligand-binding properties and in vivo it has been shown to have an active role in bacterial

motility in Listeria-infected cells.
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The partial restoration of normal cell physiology and the result that the Dictyostelium profilin-

GFP fusion protein is recruited as efficiently as the wild-type profilin in phagocytic cup

formation suggest this fusion protein as a feasible tool for studying profilin dynamics in living

D. discoideum cells.

4.2.4 Dictyostelium profilin is involved in highly dynamic cellular processes

Confocal microscopy data from live D. discoideum cells transformed with profilin II-GFP

showed that profilin is associated with the highly dynamic actin-related cellular processes.

The fusion protein was found to have a predominant distribution at the cell cortex and was

also transiently detected in macropinocytotic crowns, the leading edges of aggregating cells

and the cell fronts during pseudopodial extension. These data were supported by a previous

study of the distribution of fluorescent profilin in live Acanthamoeba cells which were

syringe-loaded with rhodamine-labelled profilin II (Kaiser et al., 1999). In these loaded cells,

profilin is uniformly distributed in the cytoplasm but is excluded from organelles, which

include the nucleus, mitochondria, vacuoles and large vesicles. In addition, the fluorescent

profilin was detected transiently near the plasma membrane at a site of macropinocytosis and

it is also enriched in the lamellapodia of migrating cells (Kaiser et al., 1999). Similar

distribution of fluorescent profilin has been observed in living vertebrate cells (Tarachandani

and Wang, 1996) and plant cells (Vidali and Hepler, 1997). As for fixed cells, anti-profilin

antibodies have been known to label the cytoplasm of amoebas (Tseng et al., 1984), plant

cells (Vidali and Hepler, 1997) and vertebrate cells (Buss et al., 1992; Watanabe et al., 1997).

The D. discoideum profilin II-GFP fusion protein was found to be excluded from nuclei

similar to that observed in Acanthamoeba (Kaiser et al., 1999). However, profilin staining in

nuclei has been previously reported (Mayboroda et al., 1997; Schlueter et al., 1998).

According to Geese et al. (2000), they have created a novel human profilin II-GFP fusion

protein which was found to localize to focal contacts and the front of protruding lamellapodia

in cultured vertebrate cells. Apparently, profilins seem to be involved in the regulation of the

actin cytoskeleton as they have been localized to highly dynamic regions of migrating

amoebas (Kaiser et al., 1999) and spreading cultured cells (Buss et al., 1992; Mayboroda et

al., 1997; Geese et al., 2000). In addition, the distribution of GFP-VASP in spreading

lamellapodia of cultured vertebrate cells (Rottner et al., 1999) might suggest an important role

of the interaction between profilin and its proline-rich VASP ligand in the remodeling of the

dynamic actin network.
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4.3 Study of D. discoideum severin via GFP fusion
Severin, the Ca2+-dependent F-actin fragmenting and capping protein from D. discoideum,

was fused to the N-terminal end of GFP via a 10-aa linker sequence and the resultant fusion

protein was characterized both in vitro and in vivo. The fusion of GFP to severin should allow

direct observation and a better understanding of severin’s involvement in the dynamic actin-

associated cellular events occurring in real-time.

4.3.1 Severin-GFP is a functional fusion construct

Dictyostelium severin has been successfully fused to the N-terminus of a red-shifted variant of

GFP separated by a 10-aa linker of the sequence SGEAEFKKLK which belongs to the

sequence of the vector (Faix et al., 1992). Severin null transformed cells expressing the fusion

protein showed an overall cytoplasmic distribution similar to that obtained by antibody

labelling of native severin in vegetative cells (Brock and Pardee, 1988; André et al., 1989). In

contrast, a nuclear label was also observed in these severin-GFP expressing cells which is

most likely an artefact and could be probably explained by the linker sequence of the fusion

protein whereby part of its sequence KKLK partially resembles the nuclear targeting signal

PKKKRKV of SV40 (Kalderon et al., 1984).

A novel severin-GFP fusion protein of about 70 kDa has been generated in a D. discoideum

mutant strain lacking the native severin protein. In order to determine its activity and

suitability for use in real-time observation of severin dynamics in various cellular processes,

the fusion protein has been purified to a partial extent from the D. discoideum transformants

which lacked native severin, and analyzed in vitro for its severing activity. The purification

procedure of severin-GFP follows that of native severin (Yamamoto et al., 1982; Schleicher et

al., 1984) with slight variations. In contrast to native severin, the fusion protein does not have

affinity for the cation-exchange resin anymore, so an additional step to separate the fusion

protein by size via gel filtration was carried out before performing the hydroxylapatite

chromatography. A second major difference is that the fusion protein could only be eluted

with a phosphate gradient instead of a KCl gradient as in the case for severin.

Both experimental methods, low shear falling-ball viscometry and fluorescence spectroscopy

measurements, showed that the severin-GFP fusion protein was able to fragment F-actin or

reduce the viscosity of F-actin gels only in the presence of micromolar Ca2+. Without Ca2+,

the severing activity of the fusion protein was found to be non-existent similar to that of

native severin, thus distinguishing the viscosity decreasing effect of the fusion protein from

that of the Cap32/34 F-actin capping protein (Hartmann et al., 1989; Eddy et al., 1996) by its
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Ca2+ dependence. For the determination of the F-actin severing activity of the fusion protein

by fluorescence spectroscopy, the actin filaments are usually precapped at their barbed ends

for example with DS151, the capping domain of D. discoideum severin (Eichinger et al.,

1991), to differentiate the F-actin severing activity of the fusion protein from its capping

activity since severin is known to possess both activities which are able to reduce the viscosity

of F-actin gels, whereby severin exerts its capping activity by preventing elongation of actin

filaments at the barbed ends. When the barbed ends of microfilaments are precapped and the

actin concentration is diluted to below its critical concentration at the pointed ends (Wegner

and Isenberg, 1983), the presence of severing activity would raise the number of pointed ends,

leading to a dramatic increase in the rate of actin depolymerization. In this study, the filament-

severing activity of the severin-GFP fusion protein has not been properly measured, however,

whether it caps or severs F-actin, the fusion protein harbours activity only when Ca2+ is

present, indicating that severin-GFP is indeed an active fusion protein and could be used for

further in vivo studies.

4.3.2 In vivo studies of severin dynamics

Despite severin being a highly active protein in vitro, the severin null D. discoideum mutant

does not have any observable phenotypic difference from that of the wild-type cells (André et

al., 1989) suggesting that severin is not essential for growth, cell motility or development.

This is not so surprising, as knock-out mutants for some of the F-actin cross-linking proteins

such as α-actinin, ABP120, Cortexillins I and II have shown only subtle changes for the

single knock-out mutants while the double mutants have severe defects in either cytokinesis

or development (Schleicher et al., 1988; Brink et al., 1990; Witke et al., 1992; Cox et al.,

1995; Faix et al., 1996; Fisher et al., 1997; Rivero et al., 1998), leading to the suggestion of

the redundancy of the cytoskeletal activities whereby the loss of a single actin-binding protein

could probably be functionally compensated by other proteins (Witke et al., 1992). Besides

severin, D. discoideum also harbours other F-actin fragmenting and capping proteins with

viscosity decreasing activities like protovillin (Hofmann et al., 1993), villidin (unpublished

data), the heterodimeric Cap32/34 capping protein (Schleicher et al., 1984; Hartmann et al.,

1989) and probably some other unknown proteins which might have an overlapping role with

severin. Thus the study of severin’s involvement in various actin-related cellular processes via

severin-GFP should improve our understanding of the behaviour of other functionally-related

proteins.
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The in vivo studies were made in collaboration with Timo Zimmermann (Zoological Institute,

LMU, Munich). Confocal microscopy investigations of the severin-GFP fusion protein

revealed transient accumulation of severin in macropinocytotic crowns, phagocytic cups,

membrane ruffles and at the leading edge of motile cells. Severin is also enriched at the cell

fronts of elongated cells moving towards a cyclic AMP (cAMP) source during chemotaxis

and it too is localized at cell-cell contacts of aggregating cells at the cell fronts in the process

of directed motion. Severin appears to be excluded from the process of pseudopodial

extension, but was found to be associated with the forward movement of the cell body into the

newly-formed pseudopod. In higher vertebrate cells, a Xenopus homolog of coronin or

Xcoronin has been isolated and found also to have an overall cytoplasmic distribution with

accumulations at the membrane ruffles. During cell spreading, Xcoronin was observed to be

concentrated at the leading edges of lamellipodia (Mishima and Nishida, 1999). In the process

of macropinocytosis, severin was observed to accumulate around the forming vesicle,

whereby upon vesicle closure, severin became concentrated at the region distal to the vesicle

and the label round the vesicle disappeared entirely within 30-40s during internalization.

Various actin-binding proteins have been known to be involved in macropinocytosis,

including coronin (Maniak et al., 1995; Hacker et al., 1997), myosin IB (Novak et al., 1995;

Jung et al., 1996b), RacF1 GTPase (Rivero et al., 1999) and RasS GTPase (Chubb et al.,

2000). Similar to RacF1 (Rivero et al., 1999), the duration of the severin label around the

vesicle appears to be shorter than that of coronin (Hacker et al., 1997) and actin (Nolta et al.,

1994; Adessi et al., 1995) which could be detected for up to 1 min around the vesicle.

In the course of phagocytosing yeast, a weak label of severin-GFP has been observed around

the forming phagosome, which vanished within 30s after vesicle closure, suggesting an early

involvement of severin in phagosome generation. This is in agreement with data obtained by

antibody staining whereby cells feeding on a bacterial lawn formed phagocytic vesicles

surrounded by a severin-rich cell cortex (Brock and Pardee, 1988). Other cytoskeletal proteins

from Dictyostelium implicated to play a role in phagocytosis include coronin (Maniak et al.,

1995), myosin IB (Fukui et al., 1989), a 30 kDa actin-bundling protein (Furukawa and

Fechheimer, 1994), ABP120 (Cox et al., 1996) and RasS GTPase (Chubb et al., 2000). In

vegetative cells, severin-GFP was observed to have an uniform cytoplasmic distribution as

confirmed by antibody labelling (Brock and Pardee, 1988; André et al., 1989). Antibody

staining for severin in aggregating cells showed also an uniform cytoplasmic labelling (Brock

and Pardee, 1988; André et al., 1989), which is in marked contrast to the in vivo data. The

highly resolving confocal studies revealed that during early aggregation phase, the fusion
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protein was concentrated at the leading edge of these polarized moving cells. Similarly, cells

moving towards a chemotatic source also displayed prominent severin localization at the cell

fronts as observed for the coronin-GFP fusion protein (Gerisch et al., 1995). Together with

the observation that severin is not directly involved in pseudopod extension, but rather in the

movement of the cell body into the newly generated pseudopod, these data suggest that

severin is involved in the establishment of a new cell front. In addition,  cells in aggregation

streams showed concentration of severin at the front of each cell, at the site of its contact with

the preceding cell, similar to that observed with a GFP-actin fusion protein (Westphal et al.,

1997). Myosin I has also been shown to localize to the leading edges of migrating

Dictyostelium amoebae (Fukui et al., 1989) and similar distributions of other myosin I

isozymes are detected in pseudopods of locomoting leukocytes and macrophages (Stendahl et

al., 1980; Valerius et al., 1981).

Thus far, in randomly motile vegetative cells, severin has been observed not to be involved in

the early step of pseudopod extension by a stationary cell body, as opposed to cell motion,

whereby the forward movement of the cell body induces an accumulation of severin at the cell

front. Supported also by antibody studies (Brock and Pardee, 1988), the localization of

severin at the continuously restructuring edges, regions whereby extensive actin cytoskeletal

rearrangement occurs, be it at macropinocytotic crowns, phagocytic cups, membrane ruffles

or leading edges of locomoting cells, indicates an in vivo role for severin in the remodelling of

existing F-actin structures which agrees with its in vitro actin fragmenting activity.

Furthermore, recent data from the study of the small GTPase RacF1, whereby it has been

found to be excluded from pseudopods during protrusion but reconstitutes itself to the cortex

upon ceasure of the pseudopod extension (Rivero et al., 1999), showed similar behaviour to

severin, suggesting redistribution of some cytoskeletal proteins after pseudopod extension.

The parallel expressions of GFP-actin or some other GFP-labelled actin-binding proteins,

such as the F-actin-binding GFP-ABD from the gelation factor ABP120 (Pang et al., 1998),

and severin-GFP together in the same cells should clarify further the interaction between

severin and the actin cytoskeleton simultaneously and provide a better understanding of

severin’s role in the regulation of various actin-based processes.

4.4 Y. enterocolitica infection and the actin cytoskeleton
In the infection studies, the mammalian cells COS7 were infected with either Y. enterocolitica

wild-type strain (WA-P) or a virulence plasmid-cured strain (WA-C) and the behaviour of the

cytoskeleton was monitored by antibody labellings of selected cytoskeletal proteins of the
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infected cells. Additionally, the in vivo dynamics of actin, cofilin and profilin II in infected

cells were examined via fusion of these proteins to GFP with the aid of the highly resolving

confocal laser scanning microscopy (CLSM).

4.4.1 Indirect immunofluorescence study of selected cytoskeletal proteins in Y.

         enterocolitica infected cells

Antibodies specific for human vinculin or talin showed no difference in their labellings in

both the uninfected and the WA-P or WA-C infected mammalian cells, suggesting there is no

alterations for example in the size or distribution of these focal adhesion proteins in the

presence or absence of the Yop effectors. Similarly, an anti-ß-COP antibody revealed in the

WA-P or WA-C infected cells Golgi stainings which resembled those of the uninfected cells,

leading to the suggestion that the Golgi network is not affected by the Yops. So far, a

translocated Yersinia effector, YopH has been known to dephosphorylate the focal adhesion

proteins, p130Cas ( Sakai et al., 1994; Burnham et al., 1996) and FAK (Richardson and

Parsons, 1995), leading to dissembly of focal contacts and impairing bacterial uptake by host

cells. Using the antibody approach in this study did not reveal any disruption of the focal

adhesion proteins, at least not for vinculin and talin. Alternatively, the remodelling of

cytoskeletal proteins could be investigated by their fusions to GFP so that artefacts generated

via immunolabelling could be avoided, and abovemost, GFP-tagged proteins allow direct

observation of their dynamics in living cells which could be easily resolved with confocal

microscopy.

4.4.2 Y. enterocolitica infection disrupts the actin cytoskeleton

The behaviours of GFP-tagged actin, cofilin and profilin II in mammalian cells during Y.

enterocolitica infection were investigated using CLSM. GFP-profilin was observed to have an

uniform cytoplasmic distribution as supported by data obtained with various anti-profilin

antibodies which labelled the cytoplasm of amoebas (Tseng et al., 1984; Kaiser et al., 1999),

plant cells (Vidali and Hepler, 1997) and vertebrate cells (Buss et al., 1992; Watanabe et al.,

1997). In addition, nuclear labels were observed for cells transfected with GFP-profilin. The

significance of GFP-profilin in the nucleus is unclear, however, some profilin antibodies were

found capable of staining the nuclei of fixed cells (Tseng et al., 1984; Mayboroda et al., 1997;

Schlueter et al., 1998). Like the uninfected cells, mammalian cells infected with either a

Yersinia wild-type strain or a Yops secretion minus strain showed similar overall cytoplasmic

localization of GFP-profilin, suggesting that the translocated Yop effectors do not have any
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major effect on the distribution of GFP-profilin and that profilin might not be the host’s target

of Yops.

For the study of actin dynamics during Y. enterocolitica infection, the distribution of GFP-

actin fluorescence of transfected mammalian cells was compared with the F-actin localization

via phalloidin staining. Data showed similar actin labellings with both approaches in the

uninfected cells and also in the WA-P or WA-C infected cells, indicating the authenticity of

the GFP-actin staining. At the sites of bacterial attachment, actin-rich phagocytic cup-like

structures were observed for both WA-P and WA-C infected cells, suggesting that the

mammalian cells respond already upon adhesion of Y. enterocolitica, and that this is a non-

specific reaction of the host cells in response to bacterial infection independent of the Yop

effectors since similar F-actin structures were generated in the presence or absence of secreted

Yops. This remodelling of the actin cytoskeleton could perhaps involve the Rho family of

small GTPases, as Rac and Cdc42 have been shown to be required for phagocytic cup

formation and membrane ruffling in macrophages and leukocytes (Cox et al., 1997;

Dharmawardhane et al., 1999).

In addition, after about 30 min of infection with WA-P, the GFP-actin staining started to

disappear and dispersed actin patches were observed whereby up to 2 h of infection, the actin

cytoskeleton was completely disrupted and reorganized for the rounding up of cells, brought

about by the cytotoxic effect of the Yops. On the contrary, cells infected with a Yop secretion

minus strain exhibited similar actin labelling as the uninfected cells with a cytoplasmic

distribution of actin concentrated at the cortical regions whereby up to 2 h of infection, the

cells still retained their spreading, flattened phenotype. These data showing the actin-

disrupting activity of Yops with the use of GFP-tagged actin are in agreement with that

obtained with phalloidin staining of actin, whereby two particular secreted Yersinia proteins,

YopE (Rosqvist et al., 1991) and YopT (Iriarte and Cornelis, 1998) have been shown to

dissemble actin filaments with YopT being suggested to exert a stronger cytotoxic effect than

YopE (Iriarte and Cornelis, 1998; Zumbihl et al., 1999). The existence of homology between

YopE and exoenzyme S (ExoS), a Pseudomonas ADP-ribosylating exotoxin (Kreuger and

Barbieri, 1995; Yahr et al., 1996) harbouring also actin disrupting activity (Frithz-Lindsten et

al., 1997), suggests the likelihood that YopE targets the small GTPases since ExoS has been

reported to modify these signalling molecules (Coburn et al., 1989b; Pederson et al., 1999). In

fact, YopT of Y. enterocolitica has recently been shown to be the first intracellularly

translocated cytotoxin to act via modification of the small GTP-binding protein RhoA
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(Zumbihl et al., 1999) whereby the use of a YopE mutant still expressing the cytotoxic

activity of YopT led to the disruption of RhoA-mediated actin stress fibres.

As for the small actin-binding protein, cofilin, which formed actin-cofilin rods as observed via

GFP-cofilin fluorescence, it was found to have similar distribution both in the uninfected cells

and cells infected with a Yop secretion minus strain. However, infection of mammalian cells

with the wild-type Y. enterocolitica after 1 h revealed a decrease in the length of the actin-

cofilin rods, leading to several possible proposals. Firstly, the actin dissembling activity of the

translocated Yops might prevent formation of long actin-cofilin rods. Secondly, since cofilin

has been known to reversibly mediate actin polymerization and depolymerization in a pH-

dependent way (Yonezawa et al., 1985; Abe et al., 1989; Hawkins et al., 1993), the Yops

could perhaps regulate cofilin’s ability to disrupt actin filaments via alteration of the host’s

cellular pH, thus forming shorter actin-cofilin rods. Last but not least, it has been suggested

that in higher vertebrates, the subcellular distribution of cofilin as well as its interaction with

actin in vivo is mediated by its phosphorylation and dephosphorylation (Nagaoka et al., 1996;

Obinata et al., 1997). The actin-binding activity of cofilin has been demonstrated to be

negatively regulated by phosphorylation on its Ser 3 residue (Abe et al., 1992; Agnew et al.,

1995; Moriyama et al., 1996; Nagaoka et al., 1996) and that phosphorylated cofilin failed to

interact with actin and showed only diffuse cytoplasmic distribution. Hence the Yops could

possibly lead to modification of cofilin via phosphorylation, whereby this phosphorylated

form of cofilin could no longer associate with actin, leading to its diffuse distribution in the

cytoplasm and the lack of visible long actin-cofilin rods.

Further studies of the influence of Yersinia infection on the actin cytoskeleton could include

the use of selected Yop mutants for correlation of particular Yop effector with its target host’s

cytoskeletal protein. It will also be useful to express simultaneously GFP-fused Yops with

selected cytoskeletal proteins tagged with variants of GFP to allow direct observation of their

interactions with Yops, and to examine the actin dynamics in the Dictyostelium amoeba

system as its actin-based motile processes are similar to that of the leukocytes.
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