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Summary 

 

During the biogenesis of messenger RNA, RNA polymerase II (RNAP II, Pol II) associates  

with numerous proteins and multiprotein complexes. These factors regulate the correct 

progression of the transcription cycle, which can be divided into three major phases: 

initiation, elongation and termination. This thesis describes the characterization of two 

important factors involved in two different phases of the transcription cycle in a highly 

interdisciplinary approach. Spt6 is an essential, modular protein involved in transcription 

elongation. It was characterized as a histone chaperone that binds to histones and 

assembles nucleosomes onto DNA after the passage of Pol II. In addition, it is linked to 

processes like splicing, mRNA processing and export, and histone modification. This 

functional versatility makes it a central player in the elongation process. The first part of this 

work shows the high resolution structure of the C-terminal SH2 domain of Spt6. The domain 

was shown previously to interact with the C-terminal domain (CTD) of Pol II, phosphorylated 

at Ser2 residues. Thus it links Spt6 functions directly to the transcription machinery. The 

domain has an unconventional binding specifity in contrast to the numerous SH2 domains 

involved in cellular signaling pathways. It binds phosphoserine instead of phosphotyrosine. In 

addition, it is the only SH2 domain encoded in the yeast genome, opposing a multitude of 

these domains in the genomes of higher eukaryotes. The X-ray structure gives insight into 

the peculiarities of this domain, with implications on its substrate specificity and molecular 

evolution. In this light, a model for the interaction with the CTD, as well as a deep analysis of 

the evolutionary relationship to other SH2 domains is presented. Microarray gene expression 

analysis shows the impact of a deletion of the SH2 domain on the transcription of the yeast 

genome. A genome wide localization map of Spt6, obtained by ChIP-on-chip experiments, is 

presented and compared to the localization of Pol II.  

The nuclear exoribonuclease complex Rat1/Rai1 plays a role in transcription termination. 

Two models explain the events at the end of a protein coding gene. The so-called „torpedo 

model“ states that Rat1/Rai1 processively degrades 3’ nascent RNA that is still attached to 

elongating Pol II after the mRNA product is cleaved by cleavage/polyadenylation factors. 

Upon contact with Pol II, Rat1/Rai1 is thought to disrupt the elongation complex and 

terminate transcription. There is however also data supporting the "allosteric model" that 

predicts the recruitment of a termination factor or the dissociation of an anti-termination 

factor. The second part of this thesis describes the establishment of a highly defined 

biochemical assay to test the "torpedo model" in vitro. A protocol for the expression and 

purification of the recombinant and active exonuclease complex and an additional interacting 

protein, Rtt103, was established. In combination with an improved in vitro elongation assay it 

is shown that Rat1 is not the dedicated termination factor that is predicted by the torpedo 

model. 
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1  General introduction 1 

1  General introduction 

1.1 Structure of RNA polymerase II and the elongation complex 

In eukaryotic cells,  the transcription of all protein-coding genes, as well as small nucleolar 

and small nuclear RNA (snoRNA and snRNA, respectively) is carried out by RNA 

polymerase II (Pol II) in the nucleoplasm.  

Polymerase II consists of a 10 subunit core and a peripheral heterodimer of the subunits 

Rpb4 and Rpb7 . The crystal structures of core Pol II revealed, that the two largest subunits, 

Rpb1 and Rpb2, are on opposite sides of a positively charged cleft that bears the active site 

(Cramer et al, 2000). Together with the bridge helix, which spans the cleft, the active site 

lines a pore in the floor of the cleft. The smaller subunits are placed around the “jaw-like” 

structure of Rpb1 and Rpb2. Indeed, these two subunits work like a jaw, as the Rpb1 side of 

the cleft forms a mobile clamp, which was trapped in two different open states in the free 

core structures (Cramer et al, 2001a). In the structure of a core complex that included DNA 

and RNA the clamp was closed (Gnatt et al, 2001; Kettenberger et al, 2004b). This mobile 

clamp is connected to the body of the polymerase by five switch regions that are variable in 

conformation. The Rpb2 side of the cleft consists of the lobe and protrusion domains and 

Rpb2 also forms a protein wall that blocks the end of the cleft. Additional crystal structures at 

a resolution around 4 Å revealed the position of the two missing subunits, Rpb4 and Rpb7, 

which can dissociate from the yeast enzyme (Edwards et al, 1991). The heterodimer binds 

like a wedge between the clamp and the linker of the long C-terminal domain (CTD, see 1.2) 

of Pol II (Armache et al, 2003; Armache et al, 2005b; Bushnell & Kornberg, 2003). In the 

crystal structures of the 12 subunit Pol II, the clamp was always in a closed conformation. A 

complete atomic model of Pol II could be refined, when the crystal structure of free Rpb4/7 

together with an improved resolution of the complete Pol II was available (Armache et al, 

2005b). 

The interactions of Pol II with its substrate was revealed in structural studies of Pol II-nucleic 

acid complexes. The point of DNA entry into the polymerase cleft was shown by EM 

(Poglitsch et al, 1999). The first crystal structure of the core Pol II transcribing a tailed 

template DNA revealed downstream DNA entering the cleft and a 8 to 9 base pair DNA-RNA 

hybrid in the active center (Gnatt et al, 2001). In addition, comparison with the structure of 

the core polymerase (Cramer et al, 2001a) suggested protein surface elements for functional 

roles. With the use of syntethic nucleic acid scaffols containing mismatch transcription 

bubbles, the location of the downstream DNA duplex with RNA annealed to the central 

mismatched bubble region could be detected, as well as a part of the upstream region  

(Fig. 1, Kettenberger et al., 2004b). 
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Figure 1: Structure of complete 12-subunit RNA polymerase II elongation complex (Kettenberger et al, 

2004a). 

Two views of a ribbon model of the protein subunits and nucleic acids, side view (left) and top view (right). The 

polymerase subunits Rpb1–Rpb12 are colored according to the key between the views. Template DNA, 

nontemplate DNA, and product RNA are shown in blue, cyan, and red, respectively. Phosphorous atoms are 

indicated as spheres and extrapolated B-form downstream DNA is colored in light pink. Eight zinc ions and the 

active site magnesium ion are depicted as cyan spheres and a magenta sphere, respectively. Secondary 

structure assignments for pol II are according to (Cramer et al, 2001b) and (Armache et al, 2005a). This figure is 

adapted from Kettenberger et al, (2004a). 

 

The 3’ end of the RNA is centered at the active site of Pol II that contains two magnesium 

ions which are needed for the catalysis of nucleotide incorporation (Steitz, 1998). One metal 

ion is permanently bound inside the Pol II active site (Cramer et al, 2001a), the second metal 

is binding the tri-phosphate moiety of the incoming NTP (Westover et al, 2004). Nucleotide 

insertion involves the trigger loop, a mobile part of the active center (Kettenberger et al, 

2003; Vassylyev et al, 2002), that folds upon binding of the new NTP (Kettenberger et al, 

2003; Vassylyev et al, 2002; Wang et al, 2006). Crystal structures including the NTP 

substrate suggested how Pol II selects the correct NTP for incorporation (Kettenberger et al, 

2004b; Wang et al, 2006; Westover et al, 2004). The NTP was trapped in two slightly 

different but overlapping conformations, termed the insertion site (active) and the preinsertion 

site (inactive). In both states the NTP forms Watson-Crick interactions with a base in the 

DNA template.  

In one model, the NTP to be incorporated first binds to an open active center conformation in 

the preinsertion site, where the two magnesium ions are not close enough for catalysis. 

Folding of the trigger loop then closes the active center, delivers the NTP to the insertion site 
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and enables catalysis (Kettenberger et al, 2004b; Vassylyev et al, 2007b).  An alternative 

model for nucleotide addition involves binding of the NTP to a putative entry site in the pore, 

in which the nucleotide base is oriented away from the DNA template. Rotation of the NTP 

around its bound metal ion brings it into the insertion site (Westover et al, 2004).  

The bridge helix, that spans the cleft of Pol II, is also involved in the nucleotide addition 

cycle. Straight and bent conformations of this highly conserved helix were observed in 

different crystal structures of different polymerases (Cramer et al, 2001a; Vassylyev et al, 

2002; Zhang et al, 1999) and this movement in concert with movement of the trigger loop 

apparently directs nucleotide addition to the growing RNA-chain and translocation of Pol II 

relative to the template RNA (Brueckner & Cramer, 2008; Tuske et al, 2005).  

 

1.2 The C-terminal domain (CTD) of Pol II subunit Rpb1 

 

The CTD is a unique feature of the largest subunit of Pol II, Rpb1. It consists of multiple 

heptapeptide repeats of the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 (Y1-S2-

P3-T4-S5-P6-S7).  The length of the CTD increases with organismic complexity, for example 

26 repeats in yeast and 52 in human cells. Yeast needs at least eight repeats for viability 

(Nonet et al, 1987; West & Corden, 1995). The heptads are not uniformly distributed over the 

length of the CTD, which can be divided into 3 regions: a short N-terminal linker that attaches 

it to the body of the polymerase (Cramer et al, 2001a), a region of continuously repeated 

consensus heptads and a rather diverse part at the C-terminus where the repeats diverge 

from the consensus sequence (Chapman et al, 2008). The CTD serves as a platform for the 

integration of nuclear events by binding proteins that are involved in mRNA biogenesis and 

other transcription-coupled reactions. These interactions are timed and allocated to certain 

phases of the transcription cycle by the dynamic phosphorylation and dephosphorylation of 

the heptapeptide residues (Orphanides & Reinberg, 2002). Potential phosphorylation sites in 

the consensus sequence are Tyr1, Ser2, Thr4, Ser5, Ser7. Phosphorylation of Ser2 and Ser5 

predominates the regulative events that are described so far (Corden et al, 1985; Dahmus, 

1996; Zhang & Corden, 1991). This phosphorylation pattern is established and maintained by 

the concerted action of CTD kinases and phosphatases (Meinhart et al, 2005). Ser5-

phosphorylation occurs proximal to the promoter during initiation and early elongation, which 

is essential for the recruitment of capping enzymes (Cho et al, 1997; Komarnitsky et al, 2000; 

McCracken et al, 1997; Schroeder et al, 2000). Following transcription towards the 3’ end, 

Ser5-phosphorylation decreases, whereas Ser2-phosphorylation increases, with an 

intermittent overlap of both phosphorylations (Ser5-Ser2) (Cho et al, 2001; Schroeder et al, 

2000). This leads to the recruitment of mRNA processing, polyadenylation and termination 

factors (Ahn et al, 2004; McCracken et al, 1997; Proudfoot et al, 2002). Both modifications 

are independently essential for cell viability (West & Corden, 1995). Recently, it was shown 
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that phosphorylation of Ser7 is involved in the expression of snRNA genes (Chapman et al, 

2007; Egloff et al, 2007), which further increases the complexity of CTD-directed regulation. 

A further layer of complexity is introduced by the combination of the specific 

phosphorylations combined with cis-/trans-interconversions of peptide bonds N-terminal of 

prolines in the heptad repeats, which are regulated by peptidyl-prolyl isomerases (Hani et al, 

1999; Lu et al, 1999). Considering only  Ser2 and Ser5 phosphorylation, this gives a total of 

16 different CTD states. This defines the “CTD code” which specifies the position of Pol II 

within the transcription cycle (Buratowski, 2003). 

Due to its flexibility, the CTD cannot be seen in Pol II structures (Armache et al, 2003; 

Cramer et al, 2001a), but it is not entirely unstructured. Studies by NMR and circular 

dichroism showed an overall structural plasticity with residual structure and the propensity to 

form -turns (Meinhart et al, 2005). A leap forward in gaining information about CTD-

structure were crystal-structures of CTD-binding domains in conjunction with synthetic CTD 

peptides. The structure of the WW domain of Pin1, a CTD-specific Peptidylprolyl-cis/trans-

isomerase, binding to a single heptad repeat with phosphate moieties on Ser2 and Ser5 

shows the CTD binding as an extended coil with both phosphoserine-proline peptide bonds 

in the trans configuration (Verdecia et al, 2000). A different conformation was seen in the 

structure of guanylyltransferase Cgt1 with Ser5-phosphorylated repeats. There, an extended 

surface of Cgt1 binds the repeats by anchoring both ends by electrostatic interactions with 

Ser5-P. Additional van der Waals contacts between Cgt1 and CTD residues contribute to the 

binding (Fabrega et al, 2003). The first structure of a protein binding a Ser2-phosphorylated 

CTD-peptide was the CID-domain (CTD-interacting domain) of Pcf11, which is involved in 

pre-mRNA 3'-end processing and transcription termination (Amrani et al, 1997). There, a 

Ser2P-Pro3-Thr4-Ser5 is recognized not directly via the phosphate moiety. The four central 

amino-acids form a -turn, whereas the flanking residues are in a extended conformation. 

The phospho-group points away from the domain-surface but seems to stabilize the -turn by 

a hydrogen-bond (Meinhart & Cramer, 2004). The NMR structure of the histone H3 

methyltransferase Set2 SRI-domain shows a novel CTD-binding fold, a left handed three-

helix bundle. The interaction with two heptapeptide repeats of a Ser2-/Ser5-phosphorylated 

peptide was shown by NMR titration experiments and biacore binding studies, and revealed 

the binding of both tyrosine residues by the SRI-domain (Li et al, 2005; Vojnic et al, 2006). 

Taken together, the interactions of the CTD with the various factors that assemble on it are 

structurally diverse and best characterized by an “induced fit” mechanism.  
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1.3 The mRNA transcription cycle 

Unlike bacterial RNA polymerases, where a single subunit called the -factor is sufficient to 

assist the polymerase to start transcription, the situation in eukaryotic organisms is much 

more complex. Pol II is guided by numerous factors to start transcription at the promoters of 

genes and every subsequent step is highly regulated by a large arsenal of different proteins 

and regulative nucleic acid sequences. This interplay of factors can be described as the 

transcription cycle, which can be divided into the three major stages of initiation, elongation 

and termination. A further subdivision of these stages is shown in Fig. 2.  

 

 

 

 

Figure 2: The mRNA transcription cycle 

Main phases of the transcription cycle are colored orange, important events of regulation are coloured in yellow. 

The circle in the middle depicts the occurrence of the events in relation to the gene. GTFs = general transcription 

factors; ORF = open reading frame. 
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Numerous factors regulate the initiation of gene transcription. The general transcription 

factors (GTFs) guide Pol II to the promoter and open the DNA duplex. The large multi-

subunit complex Mediator is essential for basal and activated transcription and transmits 

signals from regulatory factors to Pol II (Hahn, 2004; Lee & Young, 2000). Factors that 

interact with chromatin (ATP-dependent chromatin remodeling enzymes, histone acetylases, 

histone methylases) have to regulate the structure of chromatin in promoter regions to 

facilitate access of the transcription machinery to DNA to initiate transcription. Likewise the 

CTD seems to play a role in the formation of a stable initiation complex and its transformation 

into a elongation competent form (Lux et al, 2005). During promoter clearance, the pre-

initiation complex is partially disassembled. A subset of GTFs remains at the promoter, 

leaving behind a scaffold-complex (Fig. 2) for the facilitated reinitiation of transcription of the 

same gene (Hahn, 2004). 

Shortly after initiation in the early elongation phase, the elongation complex is not yet stably 

formed and Pol II tends to release RNA, resulting in the appearance of short RNA products 

(abortive initiation). This is accompanied by the tendency of Pol II to slip laterally on the 

template (Pal & Luse, 2002). This tendency diminishes when the RNA is synthesized to a 

length of 8-9 nt and becomes undetectable when the RNA is 23 nt long. This comes 

together with an increased stability of the transcription complex (Kireeva et al, 2000; Pal & 

Luse, 2003). Starting early elongation, the transcription complex enters a checkpoint to 

ensure proper capping of the 5’ end of freshly generated RNA. A major player in this 

checkpoint regulation is the heterodimeric factor Spt4/Spt5 (DSIF in human cells) that binds 

to Pol II shortly after initiation (Wada et al, 1998). Subsequently, this complex recruits the 

negative elongation factor (NELF), that traps the transcription machinery at promoter 

proximal sites (Yamaguchi et al, 1999) (see also section 3.1.2). During this time window,  the 

CTD is phosphorylated  at Ser5-residues and capping enzymes are recruited (Pei & Shuman, 

2002). After capping, the kinase P-TEFb binds to Pol II and phosphorylates Spt5 within a 

region called the CTR (C-terminal region) and the CTD on Ser2-residues (Yamada et al, 

2006). This abolishes the repressive nature of the Pol II-Spt4/5-NELF interaction and 

releases the transcription machinery into the phase of productive transcript elongation.  

 

1.3.1 Transcription elongation 

 

At first sight, the phase of transcript elongation appears to be a straight-forward addition of 

nucleotides to the 3’ end of the RNA-chain. This central enzymatic reaction, catalyzed by Pol 

II, is quite well understood, as outlined in section 1.1. However, also this productive phase is 

highly regulated. This is necessary because Pol II encounters diverse obstacles on its way 

along the gene. One category of these impediments to elongation is coming from the DNA 

template itself, including drug-induced or sequence dependent pause and arrest. DNA 
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lesions can hinder Pol II from proceeding with nucleotide addition. A UV light induced 

thymine-thymine cyclobutane pyrimidine dimer (CPD) or a guanine-guanine intrastrand 

cross-link induced by the anticancer drug cisplatin can form such a block. Recent structural 

studies revealed the molecular basis of how the transcription apparatus copes with these 

situations (Brueckner et al, 2007; Damsma et al, 2007). Pol II stalls at these lesions and the 

components of the transcription coupled repair (TCR) machinery are assembled, the lesion-

containing DNA fragment is removed and the gap in the DNA is repaired. Importantly, the 

detailed mechanism of transcriptional stalling at the two lesions differ.  

Pol II often encounters pause-sites that are template-intrinsic. Those are often A-T rich and 

Pol II moves backwards at these sites, which extrudes the RNA 3’ end through the 

polymerase pore beneath the active site (Cramer et al, 2000; Nudler et al, 1997). Elongation 

factor TFIIS assists Pol II in overcoming such an arrest by cleavage of the extruded RNA 

(Fish & Kane, 2002). TFIIS thereby enhances a weak nuclease activity that is intrinsic to  

Pol II (Izban & Luse, 1992; Reines, 1992; Wang & Hawley, 1993). Cleavage is accomplished 

by insertion of TFIIS into the pore, modifying the Pol II active site, thus triggering nuclease 

activity (Kettenberger et al, 2003). 

In the cell, Pol II is not transcribing naked DNA but a chromatinized template. The basic 

building block of chromatin is a nucleosome, consisting of an octamer of four histone proteins 

wrapped in 147 base pairs of DNA. The histone proteins H2A, H2B, H3 and H4 are each 

composed of a globular domain and an unstructured tail domain (Luger et al, 1997). These 

histone tails can be modified in various ways, including acetylation of lysines, methylation of 

lysines and arginines, phosphorylation of serines and threonines, ubiquitination of lysines, 

sumoylation of lysines, and ADP-ribosylation of glutamic acids. These modifications as a 

whole write down the "histone code" which is defining epigenetic regulation that preserves 

genomic information past the genetic code (Jenuwein & Allis, 2001; Strahl & Allis, 2000). 

Nucleosomes initially pose a block to transcription by Pol II and the chromatin has to be 

"prepared” by specific factors for access of the transcription machinery to do its job. Two 

especially important elongation factors that are maintaining chromatin structure – histone 

chaperones Spt6 and FACT – are described in more detail in section 3.1.2. Numerous other 

factors are involved in this process, regulating modifications like histone-acetylation, histone-

methylation, ATP-dependent chromatin remodeling and histone composition (Hartzog et al, 

2002; Sims et al, 2004). These and other important elongation factors are summarized in 

Table 1. 

When elongating polymerase II reaches the 3’ regions of a gene and transcribes the poly(A) 

site, the transcription cycle enters its final phases: cleavage/polyadenylation and termination. 
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Table 1: Elongation factors of RNA polymerase II  
 

Elongation factor Function  

TFIIF involved in PIC formation, alleviates pausing, stimulates rate of Pol II, modulates TFIIS 

Elongins alleviate pausing, stimulate rate of Pol II 

ELL alleviates pausing, stimulates rate of Pol II 

Spt4/5 (DSIF) stimulates elongation, suppresses early transcript termination, stimulates capping 

NELF Pol II checkpoint control 

CSB 

Stimulates elongation, modulates TFIIS, has a role in rescuing RNAP II at DNA lesions and 

transcription-coupled nucleotide excision repair 

FCP1 Stimulates elongation, recycles RNAP II through dephosphorylation of Ser5 CTD, role in capping 

TFIIS Stimulates RNAP II-mediated cleavage of nascent transcript to alleviate arrest 

Spt6 Stimulates elongation, modulates chromatin structure, histone chaperone activity 

HDAg Stimulates elongation, binds RNAP II, displaces NELF, functionally distinct from TFIIF 

19S Proteosome Recruited by H2B monoubiquitination, involved in H3-K4 methylation 

P-TEFb Relieves NELF-mediated pausing, phosphorylates Ser2 on the CTD and DSIF (Spt5) 

Ssu72 Dephosphorylation of Ser5 CTD, role in 3'-end processing events 

SWI/SNF Remodels chromatin in an ATP-dependent fashion 

Isw1 

Regulates Ser5 and Ser2 phosphorylation, H3-K4 and H3-K36 methylation, and the recruitment of 

3'-end processing factors 

Chd1 Genetically and physically interacts with elongation factors, localized within coding regions 

FACT Facilitates elongation through chromatin, modulates chromatin structure, histone chaperone activity 

Set1 Methylates histone H3-K4, localized to promoter and coding regions 

Set2 Methylates histone H3-K6, localized to coding regions 

Paf 

Modulates H2B monoubiquitination and H3-K4 methylation, recruits Set1 and Set2, involved in 

modulating mRNA maturation 

THO Required for transcription of long transcripts, or those with high GC content 

TREX Links elongation to pre-mRNA splicing and export, surveillance, interaction with Spt6 

Iws1/Spn1 Associates with Spt6, localizes to coding regions 

 
The table is taken and modified from (Sims et al, 2004) 
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1.3.2 Transcription termination 

All the preceding phases of the transcription cycle were regulated by a large number of 

different proteins in a highly cooperative manner. This is also true for the final stages of 

transcription, cleavage/polyadenylation and termination. Transcription termination is an 

important process in gene regulation, allowing elongation complexes (ECs) to dissociate 

from template DNA. Defects in termination lead to interference of non-terminated EC with the 

initiation events of genes downstream on the DNA, leading to major disturbances of proper 

gene expression (Bateman & Paule, 1988; Henderson et al, 1989). 

Termination is best described in prokaryotes. In these organisms, termination sites can be 

basically classified as intrinsic or factor-dependent. Intrinsic termination is dependent on  

DNA sequences consisting of a palindromic region followed by a run of T residues 

(d'Aubenton Carafa et al, 1990). When transcribed, the RNA forms a stable hairpin structure 

followed by a stretch of U-residues. There are basically three regions of protein-nucleic acids 

interactions within the bacterial RNAP: the double-stranded DNA binding site (DBS), the 

RNA/DNA heteroduplex binding site (HBS), and the single-stranded RNA binding site (RBS) 

(Korzheva et al, 1998). The formation of the hairpin leads to a destabilization of these 

interactions. The poly-U-stretch forms an unstable A-U-hybrid and occupies the HBS, while 

the hairpin binds the RBS and displaces the RNA. Partial melting of the hybrid is a 

prerequisite for hairpin formation. Subsequently, these changes in elongation complex 

structure lead to destabilization and thus disintegration (Gusarov & Nudler, 1999; Yarnell & 

Roberts, 1999). RNAP can terminate independently by this mechanism, but in vivo it is 

stimulated by additional factors, such as NusA (Farnham et al, 1982; Schmidt & Chamberlin, 

1987; Ward & Gottesman, 1981).  

Rho-dependent termination depends on the homo-hexameric RNA-translocase Rho 

(Roberts, 1969). Termination is induced by a sequence in the nascent transcript called RUT 

(Rho-utilization site), to which Rho is binding (Ceruzzi et al, 1985). After binding, cycles of 

ATP-hydrolysis induce a conformational change that leads to a 5’ to 3’ directed translocation 

of Rho along the RNA. Upon contact, Rho disintegrates the elongation complex and induces 

termination (Nudler & Gottesman, 2002). Again, the termination efficiency in vivo can be 

stimulated by additional factors, NusG (Nehrke et al, 1993; Sullivan & Gottesman, 1992) and 

NusA (Zheng & Friedman, 1994).  

An additional factor that can terminate prokaryotic RNAP and couple it to the DNA excision 

repair machinery is the ATP-dependent DNA translocase MFD, that interacts with the 

polymerase and upstream DNA. Disruption of the elongation complex is achieved by a 

forward translocation of the polymerase over a DNA lesion (Park et al, 2002; Roberts & Park, 

2004). 
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Eukaryotic cells make use of different mechanisms to terminate the transcription of their 

polymerases. Ribosomal DNA (rDNA), that is transcribed by Pol I, is arrayed in 150 copies 

of the rRNA gene coding for a 35S RNA precursor in S. cerevisiae. For each repeat, 

termination is controlled by two major sites. About 90% of all transcripts are terminated at the 

Reb1-dependent terminator, which is located 93 nucleotides downstream of the rRNA-

coding sequence (Lang & Reeder, 1993; Reeder & Lang, 1997). There, the Reb1-protein 

binds 3’ of a T-rich sequence element that is coding for the 3’-terminal 10-12 nt of the 

transcript. This “roadblock” pauses polymerase. By a mechanism that probably involves 

transcript slippage facilitated by the weak, T-rich hybrid termination occurs (Reeder & Lang, 

1997). In vivo and in vitro data suggests that an additional factor is required for the release 

(Jansa & Grummt, 1999; Tschochner & Milkereit, 1997). Furthermore, the Pol I subunit 

A12.2, which is a homolog of Pol II subunit Rpb9, seems to be involved in termination at this 

site, since a deletion of the gene leads to increased read-through at the Reb1-dependent site 

(Prescott et al, 2004). Recently it was shown, that A12.2 is required for the intrinsic 3’-RNA 

cleavage activity of Pol I (Kuhn et al, 2007). Polymerases that fail to terminate at the Reb1-

dependent site can be stopped at the “fail-safe” terminator that is located 250 nt 

downstream of the rRNA coding sequence (Reeder et al, 1999). 

The least regulated form of termination in eukaryotic transcription is the mechanism that is 

employed by Pol III, as it seems to be largely factor-independent (Geiduschek & Kassavetis, 

2001). Short runs of T-residues seem to be enough to elicit termination, the effciency of 

termination is influenced by flanking sequence and increases with the length of the T-run 

(Cozzarelli et al, 1983). This involves transcriptional pausing at these sites. It was anticipated 

that the intrinsic cleavage activity of Pol III, mediated by the subunit C11, is needed for 

termination (Chedin et al, 1998). However, recent studies show, that rather the subunits C37 

and C53 are involved in the recognition of terminator elements, but the cleavage activity is 

not involved (Landrieux et al, 2006). 

The termination mechanism that is still least understood, is the one used by Pol II. A special 

feature of termination of protein coding genes that are transcribed into mRNA by RNA 

polymerase II (Pol II), is that this enzyme does not stop transcription at a specific position at 

the end of a gene like Pol I and Pol III. Rather, the site for termination seems to be random, 

sometimes up to 1kb downstream of the poly(A) site where the nascent transcript is cleaved 

and uncoupled from the transcription machinery by factors that are recruited to the Ser2-

phosphorylated CTD of polymerase II. However, it is well established that termination is 

dependent on the presence of a functional poly(A)-signal and coupled to RNA-processing 

events (Buratowski, 2005; Proudfoot, 1989). Furthermore, it is clear that Pol II employs 

different mechanisms for termination of mRNA-transcription and the termination at genes 

coding for snRNAs (small nuclear RNAs), snoRNAs (small nucleolar RNAs) and CUTs 

(cryptic unstable transcripts), which are not polyadenylated. Surprisingly, Rat1 and 

polyadenylation factors localize to these genes, but mutations that disrupt poly(A) site 
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cleavage or Rat1 activity do not impair termination, which seems to be mediated by Nrd1, 

Sen1 (a  DNA-RNA-helicase) and Ssu72 (Kim et al, 2006; Lykke-Andersen & Jensen, 2007). 

Two models try to explain termination of Pol II transcribing protein-coding genes, the 

"torpedo-model" and the "allosteric model". Both are introduced in detail in sections 4.1.1 and 

4.1.2.  
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2 Materials and common methods 

2.1 Materials 

2.1.1 Bacterial and yeast strains 

Table 2  E. coli strains 

Strain   Description       Source 

XL-1 Blue  rec1A; endA1; gyrA96; thi-1; hsdR17; supE44;    Stratagene 
  relA1; lac[F’ proAB lacIqZ M15Tn10(Tetr)] 

BL21-CodonPlus  B; F-; ompT; hsdS(rB, mB); dcm+; Tetr; gal (DE3);   Stratagene 
(DE3)RIL  endA; Hte [argU, ileY, leuW, Camr] 

Rosetta B834  E.coli (DE3) hsd metB      Novagen 

E. coli GM2163  F- dam-13::Tn9 (Camr) dcm-6 hsdR2 (rk-mk+) leuB6   Fermentas 
  hisG4 thi-1 araC14 lacY1 galK2 galT22 xylA5 mtl-1 
  rpsL136 (Strr) fhuA31tsx-78 glnV44 mcrA mcrB1 
 
 

 

Table 3: S. cerevisiae strains 

Strain   Description       Source 

S288C MAT ; SUC2; gal2; mal; mel; flo1; flo8-1; hap1; ho; bio1; bio6  Euroscarf 
 
FY119 Spt6 C  MAT ; his4-912; lys2-128; leu2-1; ura3-52; trp1-63   Youdell et al., 
(isogenic to S288C)          (2008) 
 
S288C Spt6-TAP  MAT ; SUC2; gal2; mal; mel; flo1; flo8-1; hap1; ho; bio1;   This study 

bio6; URA3 
 
FY119 Spt6 C TAP MAT ; his4-912; lys2-128; leu2-1; ura3-52; trp1-63   This study 
(isogenic to S288C) 
 

 

 

2.1.2 Plasmids, oligonucleotides and peptides 

Table 4: Plasmids 

Plasmid   Description      Source 

pET21b(+)  T7; T7-Tag, His-Tag 3’ of MCS; lacI; pBR 322 origin;  Novagen 
  f1 origin; bla coding sequence, Apr 

pET24b(+)  T7; T7-Tag; His-Tag 3’ of MCS; lacI; pBR 322 origin;  Novagen 
  f1 origin; Kanr 

pET28b(+)  T7; T7-Tag; His-Tag 5’ and 3’ of MCS; lacI;    Novagen  
  pBR322 origin; f1 origin; Kanr 

pBS1539 K.I. URA3, Ampr, C-terminal, TEV cleavage site  Euroscarf 
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Table 5: Oligonucleotides 

Name  Sequence       Source 

Sc115  GGAGGAGGACATATGAATCATCCTTACTATTTCC   ThermoFisher 

Sc116  GGAGGAGGAGCGGCCGCACCGCTTTTGAATTTTTCAC  ThermoFisher 

Sc117  GGAGGAGGAGCGGCCGCTCACAAGAGCCTTACCTTGTTTTG ThermoFisher 

Sc118  GGAGGAGGACATATGCATCGTGTTATCAATCATC   ThermoFisher 

Sc119  GGAGGAGGAGCGGCCGCGCCTTGGAAGTACAGGTTCTCTTT ThermoFisher 
 TTCACTAGATGTCATTTC 

Sc128  GGAGGAGGAGCGGCCGCTCATTTGAATTTTTCACTAGATG ThermoFisher 

Sc129  GGAGGAGGAGCGGCCGCTCATGTCATTTCATTCAAGAGCC ThermoFisher 

Sc132  GGAGGAGGACATATGGTTATCAATCATCCTTAC   ThermoFisher 

Sc133  GGAGGAGGACATATGCATCCTTACTATTTCCCTTTC  ThermoFisher 

Sc134  GGAGGAGGAGCGGCCGCTCATTCATTCAAGAGCCTTACCTTG ThermoFisher 

Sc135  GTCTTGATTGTCGATTTAGACCAG    ThermoFisher 

Sc136  CTGGTCTAAATCGACAATCAAGAC    ThermoFisher 

Sc137  GTCTTGATTGTCTTAGACCAGATC    ThermoFisher 

Sc138  GATCTGGTCTAAGACAATCAAGAC    ThermoFisher 

Sp118  GGAGGAGGACATATGGCTCGCGTAATTAAGCACCCG  ThermoFisher 

Sp129  GGAGGAGGAGCGGCCGCTCATTCATCTATTTTTTTAGCAATGGC ThermoFisher 

Mm118  GGAGGAGGACATATGAAGCGAGTGATTGCACACCCG  ThermoFisher 

Mm129  GGAGGAGGAGCGGCCGCTCAGTCTCGAGCAAAGGAAGCCATG ThermoFisher 

Hs118  GGAGGAGGACATATGAAGAGAGTGATCGCACACCC  ThermoFisher 

Hs129  GGAGGAGGAGCGGCCGCTCAGTCCCGGGCAAAGGATGC ThermoFisherC 

Cg141  GGATTATATGAGAAGTAAAG     ThermoFisher 

Cg142  CTTTACTTCTCATATAATCC     ThermoFisher 

Cg143  CATTTGGCTATGACTTGG     ThermoFisher 

Cg144  CCAAGTCATAGCCAAATG     ThermoFisher 

Cg145  CAAGAAATGGAAAAGGAAAATCC    ThermoFisher 

Cg146  GGATTTTCCTTTTCCATTTCTTG     ThermoFisher 

Cg147  CTTGCCATGGGTAAAGTCTTGG     ThermoFisher 

Cg148  CCAAGACTTTACCCATGGCAAG     ThermoFisher 

Cg149  GGAGGAGGAGCGGCCGCCTCGTTCAGTAGTCTAATCATGTTTTG ThermoFisher 

CgAfw GGATTATATGAGAAGTAAAG     ThermoFisher 

CgArv CTTTACTTCTCATATAATCC     ThermoFisher 

CgBfw CATTTGGCTATGACTTGG     ThermoFisher 

CgBrv CCAAGTCATAGCCAAATG     ThermoFisher 

CgCfw CAAGAAATGGAAAAGGAAAATCC    ThermoFisher 

CgCrv GGATTTTCCTTTTCCATTTCTTG     ThermoFisher 

CgDfw CTTGCCATGGGTAAAGTCTTGG     ThermoFisher 

CgDrv CCAAGACTTTACCCATGGCAAG     ThermoFisher 

CgErv  GGAGGAGGAGCGGCCGCCTCGTTCAGTAGTCTAATCATGTTTTG ThermoFisher 

SH2RLfw TTCGTGATCCTACAGTCTAGCCG    ThermoFisher 

SH2RLrv CGGCTAGACTGTAGGATCACGAA    ThermoFisher 

SH2RKfw TTCGTGATCAAACAGTCTAGCCG    ThermoFisher 

SH2RKrv CGGCTAGACTGTTTGATCACGAA    ThermoFisher 

SH2kofw AGAGAACAATGACATCTAGTGAAAAATTCA   ThermoFisher 
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Table 5 (continued) 

SH2korv ATGTCATTGTTCTCTTTGCACGGGCTTCT    ThermoFisher 

Ctermkofw  GGTAAGGCTCTTGAATGAATAGATGCGTATGTAGTGTCCATTG ThermoFisher 

Ctermkorv GGACACTACATACGCATCTATTCATTCAAGAGCCTTACCTTG ThermoFisher 

Spt6flTAPfw CTTCTAAAATCTAACAGTAGTAAGAATAGAATGAACAACTACCGT ThermoFisher 
 TCCATGGAAAAGAGAAG 

Spt6flTAPrv TAATAATAAAATTAATAATAACAATGGACACTACATACGCATCTA ThermoFisher 
  TACGACTCACTATAGGG 

Spt6dSH2TAPfw GAGGAGAGGAAATTGATGATGGCAGAAGCCCGTGCAAAGAGA ThermoFisher 
 ACATCCATGGAAAAGAGAAG 

Rat1flfw   GGAGGAGGAGCTAGCATGGGTGTTCCGTCATTTTTCAGATGGC ThermoFisher 

Rat1flrv  GGAGGAGGAGCGGCCGCACGCCTATTTGCTCTTGAATTGTCATA ThermoFisher  
CCG 

Rai1flfw GGAGGAGGACATATGGGTGTTAGTGCAAATTTG   ThermoFisher 

Rai1flrv   GGAGGAGGAGCGGCCGCTTTCAAAGATTTTCTCCAC  ThermoFisher 

Rtt103flfw GGAGGAGGACATATGCCTTTCTCTTCTGAGCAATTC  ThermoFisher 

Rtt103flrv GGAGGAGGAGCGGCCGCATTTGCAAGCTTACTTAACAAG  ThermoFisher 

Rtt103 CIDfw GGAGGAGGACATATGGAGAGCTCACCAGTGGAAGC  ThermoFisher 

torpedoCBNT BGGCTACCGACGCTAGGTCAAGGCAGTACTAGTAATGACCAGG           Biomers  
 CTCAAGTACTTGAGCTTGGAGTCAGTCGACGATGACTGG 

torpedoCBT CCAGTCATCGTCGACTGACTCCAAGCTCAAGTACTTGAGCCTGG           Biomers  
  TCATTACTAGTACTGCCTTGACCTAGCGTCGG 

torpedoRNA PUAAUCCCAUAUAUAUGCAUAAAGACCAGGC             Biomers 

activityRNA  UCCCAUAUAUAUGCAUAAAGACCAGGC              Biomers 

RNaseHDNA1 GCCUGGUCUUUAUGCAUAUAUAUGGGA              Metabion 

RNaseHDNA2 GCCUGGUCUUUAUGCAU               Metabion 

poly(A)1CBNT BCGACGCTAGGTCAAGGCAGTACTAGTAATGACCAGGCTCAACT           Metabion 
   ACTCAATAAACCCTACACTCCACCATGGGTAGAGTG 

poly(A)1CBT CACTCTACCCATGGTGGAGTGTAGGGTTTATTGAGTAGTTGAGC              Metabion  
 CTGGTCATTACTAGTACTGCCTTGACCTAG 

poly(A)cCBNT BCGACGCTAGGTCAAGGCAGTACTAGTAATGACCAGGCTCAACT           Metabion  
 ACTCCTACCACCCTACACTCCACCATGGGTAGAGTG 

poly(A)cCBT CACTCTACCCATGGTGGAGTGTAGGGTGGTAGGAGTAGTTGAGC            Metabion  
 CTGGTCATTACTAGTACTGCCTTGACCTAG 

poly(A)2CBNT BCGACGCTAGGTCAAGGCAGTACTAGTAATGACCAGGCTCAACTA          Metabion  
 CTCAATAAACCCTACACTCCACCATGGGTAGAGTG 

poly(A)2CBT CACTCTACCCATGGTGGAGTGTAGGGTTTATTGAGTAGTTGAGCC           Metabion  
 TGGTCATTACTAGTACTGCCTTGACCTAG 

poly(A)RNA1 PUCCCAUAUAUAUGCAUAAAUCAAUAAA                Biomers 

poly(A)RNA2 PUACAGCGAGUCUAUGAGCAUCAAUAAA               Biomers 

poly(A)xtalNT CAGCTACTTGAGCT                  Biomers 

poly(A)xtalT AGCTCAAGTAGCTGCTTTABrUTGCATT              Metabion 

poly(A)xtalRNA UGCAUUUCGCAAUAAA                  Biomers 

 

All oligonucleotides are shown in the direction 5’ to 3’; B = Biotin; P = Phosphate; BrU = 

Bromo-dU; in magenta: RNA-oligonucleotides; 
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Table 6: Synthetic peptides 

Name   Sequence       Source 

P1 SPSYpSPTS       Anaspec 

P2  YpSPTSPSYpSPTSPS      Coring 

P3  Fluo-(Linker)-SYpSPTSPSYpSPTSPS    Coring 

 

pS = Phosphoserine; Fluo = Fluorescein; (Linker) = -aminocaproic acid 

 

 

2.1.3 Media and supplements 
 

 

Table 7:Growth media 

Media    Description 

LB   1% (w/v) tryptone; 0.5% (w/v) yeast extract; 0.5% (w/v) NaCl (+1.5%(w/v) 
   agar for selective media plates) 

ZY   1% (w/v) tryptone; 0.5% (w/v) yeast extract 

YPD   2% (w/v) peptone; 2% (w/v) glucose; 1.5% (w/v) yeast extract (+1.8% (w/v) 
   agar for selective media plates 

SOB   2% (w/v) tryptone; 0.5% (w/v) yeast extract; 8.55 mM NaCl; 2.5 mM KCl; 
   10 mM MgCl2; 

SOC   see SOB + 20 mM glucose (before use) 

Minimal medium   7.5 mM (NH4)2SO4; 8.5 mM NaCl; 55 mM KH2PO4; 100 mM K2HPO4; 1mM  
   MgSO4; 20 mM glucose, 1 g/l trace elements (Cu2+, Mn2+, Zn2+, Mo4

2-), 
   10 mg/l thiamine; 10 mg/l biotine; 1 mg/l Ca2+; 1 mg/l Fe2+; 100 mg/l amino 
   acids (A, C, D, E, F, G, H, I, K, L, N, P, Q, R, S, T, V, W, Y); 100 mg/l 
   selenomethionine 
 

Table 8: Supplements 

Supplement  Description     Applied concentration 

Ampicillin  Antibiotic     100 g/ml for E.coli culture 

Kanamycin  Antibiotic     30 g/ml for E.coli culture 

Chloramphenicol Antibiotic     50 g/ml for E.coli culture 

IPTG  Isopropyl- -D-thiogalactopyranosid   0.5 mM 
 

 

2.1.4 Buffers and solutions 

Table 9: General buffers, dyes and solutions 

Name    Description     Method 

1x Bradford dye    1:5 dilution of Bradford concentrate (BioRad) Protein concentration 

4x stacking gel buffer   0.5M Tris; 0.4% (w/v) SDS; pH 6.8 at 25°C  SDS-PAGE 

4x separation gel buffer   3 M Tris; 0.4% (w/v) SDS; pH 8.9 at 25°C  SDS-PAGE 

electrophoresis buffer   25 mM Tris; 0.1% (w/v) SDS; 250 mM glycine SDS-PAGE 
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Table 9 (continued) 

5x SDS sample buffer   250 mM Tris/HCl pH 7.0 at 25°C; 50% (v/v)  SDS-PAGE 
   glycerol; 0.5% (w/v) bromophenol blue; 7.5% 
   (w/v) SDS; 12.5% (w/v) -mercaptoethanol 

Gel staining solution   50% (v/v) ethanol; 7% (v/v) acetic acid; 0.125% Coomassie staining 
  (w/v) Coomassie Brilliant Blue R-250   

Gel destaining solution   5% (v/v) ethanol; 7.5% (v/v) acetic acid;   Coomassie staining 

TBE   8.9 mM Tris; 8.9 mM boric acid; 2 mM EDTA Agarose gel 
   (pH 8.0, 25°C)     electrophoresis 

TE   10 mM Tris pH 7.4; 1 mM EDTA   nucleic acids 

10 x TBS   500 mM Tris/HCl pH 7.5; 1.5 M NaCl  ChIP 

1 x PBS   2 mM KH2PO4; 4 mM Na2HPO4; 140 mM NaCl; diverse 
   3 mM KCl, pH 7.4 @ 25°C 

6x Loading dye (Fermentas) 1.5 g/l bromophenol blue; 1.5 g/l xylene cyanol; Agarose gel 
   50% (v/v) glycerol    electrophoresis 

2x Urea loadig dye   20% (v/v) 10x TBE; 8 M urea; 0.03% (w/v)  denaturing RNA- 
   bromophenol blue; 0.03% (w/v) xylene cyanol FF PAGE 

Blotting buffer   10% (v/v) methanol in ddH2O   Edman sequencing 

Swelling buffer   200 mM Tris/HCl pH 8.5 at 25°C; 2% (w/v) SDS Edman sequencing 

TFB-1   30 mM KOAc; 50 mM MnCl2; 100 mM RbCl;  chemically 
   10 mM CaCl2; 15% (v/v) glycerol; pH 5.8 at 25°C competent cells 

TFB-2   10 mM MOPS pH 7.0 at 25°C; 10 mM RbCl;  chemically 
   75 mM CaCl2; 15% (v/v) glycerol   competent cells 

20x NPS   0.5 M (NH4)2SO4; 1 M KH2PO4; 1 M Na2HPO4 autoinducing 
         protein expression 

50x 5052   25% (w/v) glycerol; 140 mM glucose; 300 mM autoinducing 
    -lactose     protein expression 

100x PI   0.028 mg/ml Leupeptin; 0.137 mg/ml Pepstatin A; protease  
0,017 mg/ml PMSF; 0.33 mg/ml benzamidine;  inhibitor mix 
in 100% EtOH p.a. 

beads blocking buffer   50 mM Tris/HCl pH 8.0 at 25°C; 150 mM NaCl; bead assays 
   2 mM EDTA pH8.0; 0.1% (w/v) triton X-100; 
   5% (w/v) glycerol; 0.5% (w/v) BSA; 200 g/ml 
   insulin; 0.1 mg/ml heparin; 0.5 mM DTT 

beads breaking buffer   50 mM Tris/HCl pH 8.0 at 25°C; 150 mM NaCl; bead assays 
   0.1% (w/v) triton X-100; 5% (w/v) glycerol; 
   0.5 mM DTT 

TELit   10 mM Tris/HCl pH 8.0; 1 mM EDTA; 155 mM yeast transformation 
lithium acetate 

LitPEG   40% (w/v) polyethylen glycol 3350 in TELit  yeast transformation 

LitSorb   100 mM D-sorbitol in TELit   yeast transformation 
 

 
 
Table 10: Spt6 SH2 domain purification buffers 

Name    Description 

Spt6 cell resuspension   50 mM Tris/HCl pH 8.0 at 4°C; 1M NaCl; 10 mM Imidazole; 10 mM  
buffer   -mercaptoethanol; 10% (v/v) glycerol 

Spt6 cell lysis buffer   50 mM Tris/HCl pH 8.0 at 4°C; 1M NaCl; 10 mM Imidazole; 10 mM  
   -mercaptoethanol; PI 

Spt6 IMAC elution   50 mM Tris/HCl pH 8.0 at 4°C; 200 mM NaCl; 10 mM Imidazole; 10 mM  
buffer   -mercaptoethanol 

Spt6 anion exchange   50 mM Tris/HCl pH 8.0 at 4°C; 100 mM NaCl; 5 mM DTT 
buffer A 
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Table 10 (continued) 

Spt6 anion exchange   50 mM Tris/HCl pH 8.0 at 4°C; 2 M NaCl; 5 mM DTT 
buffer B 

Spt6 C. glabrata size   50 mM Tris/HCl pH 8.0 at 4°C; 200 mM NaCl; 5 mM DTT 
exclusion buffer 

Spt6 S. cerevisiae/  50 mM Tris/HCl pH 8.0 at 4°C; 100 mM NaCl; 5 mM DTT 
Homo sapiens size 
exclusion buffer 

Spt6 S. pombe size   30 mM bicine pH 9.0 at 4°C; 300 mM NaCl; 5 mM DTT 
exclusion buffer 

SH2 low salt buffer   50 mM Tris pH 8.0 at 20°C, 20 mM NaCl, 5 mM DTT 
 
 

 

Table 11: Rat1, Rai1, Rtt103 purification and reaction buffers 

Name    Description 

Rat1 cell resuspension   50 mM Tris/HCl pH 8.0 at 25°C; 500 mM NaCl; 10 mM imidazole; 10 mM 
buffer   -mercaptoethanol; 5% (v/v) glycerol; 

Rat1 cell lysis buffer   same as Rat1 cell resuspension buffer + PI 

Rat1 IMAC buffer   50 mM Tris/HCl pH 8.0 at 4°C; 100 mM NaCl; 10 mM imidazole;10 mM 
   -mercaptoethanol 

Rat1 heparin buffer A   50 mM Tris/HCl pH 8.0 at 4°C; 100 mM NaCl; 5 mM DTT 

Rat1 heparin buffer B   50 mM Tris/HCl pH 8.0 at 4°C; 2 M NaCl; 5 mM DTT 

2x Rat1 size exclusion   50 mM Tris/HCl pH 8.0 at 4°C; 200 mM NaCl; 2 mM MgCl2; 2 mM DTT 
buffer (RNAse free) 

Rat1 storage buffer   25 mM Tris/HCl pH 8.0 at 4°C; 100 mM NaCl; 1 mM MgCl2, 1 mM DTT; 
(RNAse free)   10% (v/v) glycerol;  

Rat1/Rai1 cell resus-   50 mM Tris/HCl pH 8.0 at 25°C; 150 mM NaCl; 10 mM imidazole; 10 mM 
pension buffer   -mercaptoethanol; 5% (v/v) glycerol 

Rat1/Rai1 cell lysis   same as Rat1/Rai1 cell resuspension buffer + PI 
buffer 

Rat1/Rai1 IMAC   50 mM Tris/HCl pH 8.0 at 25°C; 100 mM NaCl; 10 mM imidazole; 10 mM  
buffer   -mercaptoethanol 

2x Rat1/Rai1 size   same as 2x Rat1 size exclusion buffer 
exclusion buffer 
(RNAse free) 

Rat1/Rai1 storage   same as Rat1 storage buffer 
Buffer (RNAse free) 

Rtt103 cell resus-   same as Rat1 cell resuspension buffer 
pension buffer 

Rtt103 cell lysis   same as Rat1 cell lysis buffer 
buffer 

Rtt103 IMAC    50 mM Tris/HCl pH 8.0 at 4°C; 150 mM NaCl; 10 mM imidazole, 10 mM 
buffer   -mercaptoethanol 

2x Rat1/Rai1/Rtt103   same as 2x Rat1 size exclusion buffer 
size exclusion buffer 

10 xRat1 reaction    200 mM Tris/HCl pH 8.0 at 30°C; 1.5M NaCl; 20 mM MgCl2; 10 mM DTT 
buffer  

Rat 1 wash buffer   20 mM Tris/HCl pH 8.0 at 30°C; 500 mM NaCl; 2 mM MgCl2; 1 mM DTT 
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Table 12: Polymerase II purification buffers 

Name    Description 

TEZ0   10% (v/v) 10x TEZ0; 1 mM DTT; PI 

10x TEZ0   500 mM Tris/HCl pH 7.5 at 20°C; 10 mM EDTA; 100 M ZnCl2 

3x Pol II   150 mM Tris/HCl pH 7.9 at 4°C; 3 mM EDTA; 30 M ZnCl2; 30 % (v/v)  
freezing buffer   glycerol; 3 % (v/v) DMSO; 30 mM DTT, PI 

HSB150    50 mM Tris/HCl pH 7.9 at 4°C; 150 mM KCl; 1 mM EDTA; 10 M ZnCl2; 
   10% (v/v) glycerol; 10 mM DTT, PI 

HSB600   50 mM Tris/HCl pH 7.9 at 4°C; 600 mM KCl; 1 mM EDTA; 10 M ZnCl2; 
   10% (v/v) glycerol; 10 mM DTT, PI 

Pol II buffer   5 mM HEPES pH 7.25 at 20°C; 40 mM (NH4)2SO4; 10 M ZnCl2; 10 mM  
DTT 

TEZ250   10% (v/v) 10x TEZ0, 

TEZ500   10% (v/v) 10x TEZ0; 500 mM (NH4)2SO4; 1 mM DTT; PI 

TEZ500 + glyerol   same as TEZ500 + 50% (v/v) glycerol; PI 
 

 

 

Table 13: Crystallization buffers 

Name    Description 

Spt6 SH2 seeding   50 mM MES pH 6.5 at 20°C; 200-400 mM Mg acetate; 10-20% (w/v)  
buffer    PEG 3350; 5 mM TCEP 

Spt6 SH2-1   100 mM HEPES pH 7.0 at 20°C; 1 M Succinic acid; 1% (w/v) PEG 2000  
   MME; 5 mM TCEP 

Spt6 SH2-2   50 mM bicine pH 8.0 at 20°C; 4.3 M NaCl; 5 mM TCEP 

Spt6 SH2 desalting   30 mM bicine pH 8,0; 300 mM NaCl; 50% (w/v) PEG 2000; 5 mM TCEP 
buffer 

Pol II + poly(A) 50 mM HEPES pH 7,0 at 20°C; 3,5% (w/v) PEG 6000; 200 mM ammonium 
acetate, 5mM TCEP 

 

 

 

Table 14: Chromatin immunoprecipitation buffers 

Name    Description 

FA lysis buffer   50 mM HEPES pH 7.5; 150 mM or 500 mM NaCl; 1 mM EDTA; 1% Triton 
X-100; 0.1% Na-deoxycholate; 0.1% SDS 

 
ChIP wash buffer   10 mM Tris/HCl pH 8.0; 250 mM LiCl; 1 mM EDTA; 0.5% Nonidet P-40;  

0.5% Na-deoxycholate 
 
ChIP elution buffer   50 mM Tris/HCl pH 7.5; 10 mM EDTA; 1% SDS 
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2.2 Common methods 

2.2.1 Molecular cloning 

Polymerase Chain Reaction (PCR) primers were designed by using an overhang of several 

nucleotides (usually 5’-aggaggagg-3’) at the 5’ end, followed by the restriction side and 20 to 

25 nt complementary to the sequence of the gene of interest (2.1.1, Table 5). PCR reactions 

were carried out with Herculase or Herculase II polymerases (both stratagene) in a volume of 

50 l together with the respective buffer, 100 M of dNTP mix, 0,5 M of each primer and 

variable DMSO concentrations, usually  1% (v/v). About 100 ng genomic DNA or cDNA of 

the target organism was usually used as a template. In cases, where the gene of interest 

was allready cloned, the same amount of the specific vector was used. 

For the introduction of point mutations and loop-deletions, the overlap extension method was 

used. Here, two overlapping PCR-products are produced with primers carrying the desired 

mutation. In a second PCR reaction these products were used as a template to produce the 

gene of interest containing the mutation. 

Thermocycling programs were adjusted to the specific needs of the individual reactions in 

terms of annealing temperature and elongation times and usually contained 30 cycles 

(Biometra T3000 Thermocycler). PCR products were visualized by 1% agarose gel 

electrophoresis and staining with ethidiumbromide. Purification of the DNA was carried out 

with the QIAquick gel extraction protocol (Quiagen). 

 

Enzymatic restriction cleavage. DNA was digested using restriction endonucleases (New 

England Biolabs and Fermentas) as recommended by the producer. Cleaved PCR products 

were purified using the QIAquick PCR purification protocol, cleaved plasmids by the 

QIAquick gel extraction protocol (both Quiagen). 

 

Ligation of digested DNA into linearized vectors was carried out for 1 hour at room 

temperature in a volume of 20 l using T4 DNA ligase (Fermentas) and its corresponding 

buffer. Concentrations of DNA components were varied depending on the different reactions. 

Usually a 5- to 10-fold excess of insert, relative to linearized vector was used. 

 

Transformation of E. coli and isolation of plasmid DNA. Chemically competent E. coli XL-

1 blue cells (see 2.1.1, Table 2 and 2.2.2) were transformed with DNA by a heat shock 

protocol.  

3-5 l of the ligation reaction or 1 l of plasmid DNA were added to a 50 l aliquot of 

competent cells and incubated for 5 minutes on ice. Cells were then heated to 42°C for  

30 seconds and put back on ice for 2 minutes. The transformed cells were recovered by 

incubation at 37°C in 700 l LB for one hour. After sedimentation (30 sec, 14000 rpm in a 
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microcentrifuge) the cells were resuspended in 100 l LB medium and plated on LB-Agar 

plates containing the corresponding antibiotic for selection of transformed cells.  

E. coli cells from a 5 ml overnight culture, grown from a single clone were used for the 

preparation of plasmid DNA using the QIAquick Miniprep Kit protocol (Qiagen). Isolated 

plasmids were verified first by restriction analysis, second by DNA sequencing. 

 

2.2.2 Preparation of competent cells 

Chemically competent cells were prepared by inoculation of 200 ml LB with 5 ml of an 

overnight culture of the desired strain. Cells were grown at 37°C to an OD600 of 0.4-0.55 and 

incubated on ice for 10 minutes. All following steps were carried out at 4°C. After 

sedimentation at 1000 g for 10 minutes, the pellet was washed with 50 ml TFB-1 (see 2.1.4, 

Table 9). After a second centrifugation step, the pellet was resuspended in 4 ml of TFB-2 

(see 2.1.4, Table 9), aliquoted and frozen in liquid nitrogen. Competent cells were stored at –

80°C. 

 

Competent yeast cells were prepared by inoculation of YPD medium (see 2.1.3, Table 7) 

with the appropriate strain to an OD600 of 0.2. Cells were grown to OD600 of 0.5-0.7 at 30°C, 

then transferred to Falcon tubes. After sedimentation at 5000 g for 5 min at room 

temperature, cells were washed with 0.5 volumes of sterile water. After a subsequent 

centrifugation step, cells were washed with 0.1 volumes of LitSorb (see 2.1.4, Table 9), then 

resuspended in 360 l of LitSorb per 50 ml of the inital culture. 40 l (per 50 ml culture) of 

pre-heated (10 minutes at 95°C, then put on ice) salmon sperm DNA was added. Aliquots of 

50 l were put on –80°C without freezing in liquid nitrogen. 

 

2.2.3 Protein expression in E. coli and selenomethionine labeling 

Proteins in this work were expressed recombinantly in E. coli BL21-Codon plus (DE3)RIL 

cells (see 2.1.1, Table 2), where not stated otherwise. For that, plasmids containing genes 

for the desired protein variants were used for the transformation of the cells (see 2.2.1). 

Depending on the protein to be expressed, different protocols were used: 

 

For IPTG-induced protein expression, an expression culture of the desired volume 

containing LB-medium (see 2.1.3, Table 7) and the antibiotic corresponding to the resistance 

cassette of the vector was inoculated from an overnight-culture of the transformed cells in a 

1:100 diluton. Cell were grown to an OD600 of 0.6-0.9, then put on ice. Protein expression 

was induced by the addition of 0.5 mM IPTG and was carried out at 18°C overnight. 
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Autoinducing protein expression medium was used, when the protein showed low 

solubility and/or low yield in IPTG-induced protein expression. This was carried out as  

described (Studier, 2005). For that, the desired volume of ZY-medium was supplemented 

with NPS, 5052, 1 mM MgSO4 and the appropriate antibiotic for selection of the plasmid 

(2.1.2, Table 4). The expression culture was inoculated from an overnight culture of the 

transformed cells at a dilution of 1:100. Cells were grown to an OD600 of 0.6, then the 

temperature was shifted to 18°C. Protein expression was carried out overnight. 

 

Cells were harvested by centrifugation at 4400 g (SLC-6000 rotor) for 30 minutes at 4°C, 

resuspended in the corresponding resuspension buffer (see 2.1.4, Tables 10 and 11) and 

frozen in liquid nitrogen. Cell pellets were stored at –80°C. 

 

For selenomethionine incorporation, the desired expression plasmid was transformed into 

the methionine auxotroph E. coli strain B834 (DE3) (see 2.1.1, Table 2). Cells were grown in 

LB-medium (see 2.1.3, Table 7) supplemented with the appropriate antibiotic at 37°C to an 

OD600 of 0.5, centrifuged and resuspended in the same amount of minimal medium (see 

2.1.3, Table 7) supplemented with selenomethionine and antibiotics. Cells were grown at 

37°C until the OD600 increased by 0.2, then cultures were shifted to 18°C and protein 

expression was induced by the addition of 0.5 mM IPTG. Protein was expressed overnight. 

 

2.2.4 Measurement of protein concentration 

Protein concentrations were usually determined by the Bradford protein assay (Bradford, 

1976). The assay was performed according to the instructions of the manufacturer of the Dye 

reagent (Biorad) . A calibration curve was generated for each new batch of dye reagent using 

bovine serum albumin (Fraktion V, Roth). 

2.2.5 Protein purification 

Purification of all different recombinantly expressed protein variants included the same basic 

steps with slight variations, due to the fact that all variants contained a hexahistidine-tag. The 

variations in the different protocols for the specific proteins are described in the respective 

chapters (see 3.2.2 and 4.2.2). Steps that were carried out for all of the purifications the 

same way, were: 

 

Cell lysis. Cell pellets were resuspended in 50 ml of the respective cell lysis buffer (see 

2.1.4, Tables 10 and 11) and sonicated for 20 minutes. The resulting cell extract was cleared 

by centrifugation (2x 20 minutes at 24000 g in a SA-300 rotor). The pellet was resuspended 
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in an equal amount of 6 M urea relative to the cell extract and analyzed by SDS-PAGE (see 

2.2.7) for the content of expressed protein in the insoluble fraction. 

 

Affinity chromatography. Cleared extracts were applied twice to 1-2 ml of Nickel-NTA-

Agarose (Qiagen) in a column. The amount of resin used differed according to the 

expression level of the different protein variants. Nickel-NTA-Agarose was washed with  

10 column volumes of ddH2O and equilibrated with 10 column volumes of the corresponding 

cell lysis buffer (see 2.1.4, Tables 10 and 11) prior to usage. After binding of the protein, the 

resin was washed with 10 column volumes of the corresponding cell lysis buffer. 

 

2.2.6 Limited proteolysis 

To delineate flexible regions in proteins that might interfere with crystallization, protein 

variants were probed with proteolytic enzymes: for trypsin and chymotrypsin treatment of 

purified protein samples, 100 l of a protein solution with the concentration of 1 mg/ml was 

mixed with 1 g of the corresponding protease. The reaction was carried out in the gel 

filtration buffers of the respective proteins (2.1.4, Tables 10 and 11), supplemented with  

1 mM CaCl2. The reaction mixture was incubated at 37°C. Aliquots of 10 l were taken at 

different timepoints (usually after 1, 3, 5, 10, 30 and 60 minutes) and the reaction was 

stopped immediately by the addition of 5 x SDS sample buffer (see 2.1.4, Table 9) and 

incubation at 95°C for 5 minutes. 

For Subtilisin and Proteinase K treatment 1 l of a dilution of the respective protease (1 g, 

100 ng, 10 ng, 1 ng) was added to 50 l of a protein solution with the concentration of  

1 mg/ml. Samples were incubated for 1 hour on ice, then the reactions were stopped as 

described for trypsin and chymotrysin. 

All samples were analyzed by SDS-PAGE (see 2.2.7). Bands of interest were cut out of the 

gel and prepared for edman sequencing (see 2.2.8) 

 

2.2.7 Electrophoresis 

Electrophoretic separation of DNA was carried out in horizontal 1x TBE (2.1.4, Table 9) 

agarose gels containing ethidium bromide (0.7 g/ml). Agarose concentrations varied 

between 1% to 2%, depending on the size of the DNA-molecules to seperate. Separation 

was carried out in PerfectBlue Gelsystem electrophoresis chambers from Peqlab. Samples 

were mixed with 6x loading dye (see 2.1.4, Table 9) and DNA was visualized and 

documented using a ultraviolet transiluminator from INTAS Science Imaging Instruments 

( =366 nm). 
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Electrophoretic separation of RNA was conducted by the use of denaturing 

polyacrylamide gels containing 8% acrylamide, 0.42% bisacrylamide and 6 M urea. TBE was 

used as buffer for the gel, as well as for running buffer. Depending on the need for 

separation, electrophoresis was carried out in 1.0 mm cassettes for the XCELL Shure Lock™ 

gel-system (Invitrogen) for small gels, or Sequigen® GT Sequencing Cell (BioRAD) for large 

gels. Detection of radioactivly labeled RNA molecules was conducted by exposure of the 

gels to mounted storage phosphor screens (GE Healthcare) of the appropriate size. 

Exposure time was usually overnight at 4°C, but could be longer or shorter for individual 

experiments. Read-out of the phosphor screens was done by the use of Typhoon™ or 

Storm™ Scanners (GE Healthcare). Quantitation of signals from radioactive RNAs was 

carried out with the ImageQuant Software (GE Healthcare). 

Electrophoretic separation of protein was conducted by SDS-PAGE with 15%-17% 

acrylamide gels (with acrylamide:bisacrylamide = 37.5:1; (Laemmli, 1970) in BioRad gel 

systems. For buffers see section 2.1.4, Table 9. Gels were stained with Coomassie gel 

staining solution for 20 minutes and destained overnight in gel destaining solution. 

 

2.2.8 Edman sequencing 

Proteins analyzed by SDS-PAGE (2.2.7) and stained with Coomassie staining solution (see 

2.4.1, Table 9) were carefully excised from the gel and dried in a speed vac. The dried gel 

piece was rehydrated in 50 l of swelling buffer (see 2.1.4, Table 9). Afterwards 200 l of 

ddH2O was addet to set up a concentration gradient. For transfer, a small piece of 

polyvinylidene difluoride (PVDF) membrane (Schleicher & Schuell), which was pre-wet in 

methanol, was added to the tube. Once the solution turned blue, 24 l of methanol (final 

concentration of 8-10%) was added as a catalyst. After 1-2 days of incubation at room 

temperature, when the membrane turned blue, it was washed 5 times with 10% methanol. 

After drying, the membrane was used for N-terminal sequencing of the protein in a PROCISE 

491 sequencer (Applied Biosystems). 
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3 Structure and requirement of the Spt6 SH2 domain 

3.1 Introduction 

 

3.1.1 Structure and function of SH2 domains 

 

Separation of function in proteins is often achieved by folding these molecules into separate 

domains. In this way, a single polypeptide chain can be seen as an array of modules that 

assign different functions to the protein. These functions can involve protein-protein 

interactions, DNA/RNA-binding, binding to phospholipids, catalysis of chemical reactions and 

many more.  

Such a modular nature is characteristic for proteins involved in cellular signal transduction 

pathways. In receptor tyrosine kinase (RTK) mediated signaling, ligands bind to their specific 

transmembrane receptors which dimerize upon this interaction. This leads to the activation of 

the cytoplasmic kinase domain which then either phosphorylates specific tyrosine-residues 

within the cytoplasmic part of the receptor (autophosphorylation) or on cytoplasmic proteins. 

This ligand-induced tyrosine-phosphorylation creates high-affinity docking sites for 

cytoplasmic signaling proteins. Upon binding, these proteins can be phosphorylated and 

activated, and transduce the signal to other proteins that are part of their specific signaling 

cascade (Fig. 3 A). The phosphorylated tyrosine residues can be recognized by SH2 

domains or PTB-domains (Blaikie et al, 1994) that are thus transmitting the signal of the 

activated receptor to a cytoplasmic signaling protein, which can contain a variety of other 

domains with different specificities (Fig. 3 A): PH-domains as well as FYVE-domains interact 

mainly with phospho-inositides and can target the protein to the cell membrane. SH3 

domains and WW domains bind proteins with proline-rich target motifs, wheras PDZ-domains 

bind specifically to hydrophobic residues in the C-termini of target molecules (reviewed in 

Schlessinger, 2000). The signaling proteins can be mere adaptors that transmit the signal 

from the activated receptor to the next protein in the signaling cascade (e.g. Grb2, Nck), or 

they can possess intrinsic enzymatic activity to modify downstream targets (e.g. Src, PLC ), 

e.g. by another phosphorylation reaction. 

With the use of this arsenal of domain functions, a cascade of protein interactions can be 

constructed, that transmits the signal from the ligand-receptor interaction into the interior of 

the cell. 
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Figure 3: SH2 domains are adaptors in receptor-tyrosine-kinase pathways that bind to phosphorylated 

tyrosines 

(A) Protein domains that play a role in cellular signaling pathways. Upon specific binding of a ligand a cell surface 

receptor is dimerized and activated. The cytoplasmic kinase domain can then autophosphorylate specific tyrosine 

residues. These phosphates serve as docking sites for cytosolic signaling proteins, that bind via SH2 or PTB 

domains. The Figure is adapted and modified from Schlessinger (2000). 

(B) Structure of the Src SH2 domain in complex with its high affinity target peptide pYEEI (Waksman et al, 1993). 

The phosphotyrosine-binding site is marked green, the pY+3-5 binding-site is marked yellow. The Figure is taken 

and modified from (Kuriyan & Cowburn, 1997) 

(C) Schematic representation of the "two-pronged plug” mode of peptide recognition by SH2 domains (reviewed in 

(Kuriyan & Cowburn, 1997). The SH2 domain is shown in blue, the target peptide in orange. The phosphotyrosine  

residue is binding to a specific pocket on the surface of the SH2 domain. Specificity of binding is accomplished by 

interaction of the domain with peptide residues C-terminal of the phospho-tyrosine. A residue at position +3 to +5 

C-terminally from the phospho-tyrosine, which inserts into a second pocket on the domain surface, is especially 

important for this interaction. 

 

SH2 domains are widely used as adaptors in higher eukaryotes. Human cells contain 120 

different SH2 domains distributed over 110 proteins (Liu et al, 2006) (see also Fig. 11 A). 

These domains were originally described in 1986. Insertion mutants in the transforming 
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protein p130gag–fps of Fujinami sarcoma virus, a cytoplasmic tyrosine-kinase, showed impaired 

kinase activity in vivo. However, when the mutant proteins were expressed in E. coli, they 

showed the same kinase activity as the wild-type. The mutations were located in a highly 

conserved region of the cytoplasmic tyrosine kinases, immediately N-terminal of the kinase 

domain. This region was named „Src-homology 2“ (SH2) after the cytoplasmic kinase Src, 

that contains this conserved region (Sadowski et al, 1986). A few years later it was 

discovered, that SH2 domains bind to phospho-tyrosines on activated receptors, which made 

the SH2 domain the first targeting module in signaling to be described (Anderson et al, 1990; 

Kazlauskas et al, 1990; Moran et al, 1990). But these modules are not only used for 

targeting: the SH2 domain of Src can bind intramolecularly to a phospho-tyrosine in the C-

terminal region of the same protein to inhibit its kinase activity (Roussel et al, 1991). Thus, 

SH2 domains also have a function in the regulation of enzyme activity. In subsequent work it 

was shown, that the flanking regions of the phospho-tyrosine are important for the specificity 

of binding (Escobedo et al, 1991; Fantl et al, 1992; Kazlauskas et al, 1992; Ronnstrand et al, 

1992; Yoakim et al, 1992) and extensive peptide-library screening could assign specific 

sequence motifs as targets to various SH2 domains (Songyang et al, 1993). 

In 1992, the first structures of SH2 domains emerged: the crystal structure of the Src-domain 

phosphopeptide complex (Waksman et al, 1992) and the NMR solution structures of the 

uncomplexed SH2 domains of Abl (Overduin et al, 1992) and of phosphatidylinositol-3-OH 

kinase (Booker et al, 1992). The structure of the Src-phosphopeptide complex revealed the 

interaction with the phosphate-group, but not how the domain could identify its specific target 

peptide (reviewed in Waksman & Kuriyan, 2004). Only one year later, the X-ray structure of 

the Src SH2 domain in complex with its high affinity target peptide was published (Waksman 

et al, 1993) revealing the „two-pronged plug“ mode of peptide recognition (Fig. 3 C) . This 

was followed by the elucidation of a large number of SH2 domain structures of numerous 

signaling factors (reviewed in Kurian & Cowburn, 1997). 

The common structure of a SH2 domain contains a central -sheet, consisting of strands B-

C- D (Fig. 3 B). One side of this sheet is flanked by -helix A (N-terminal helix), the other 

side by helix B (C-terminal helix). Often additional short -strands add up to the central 

sheet ( A N-terminal of helix A and G C-terminal of helix B). 

In most of the known SH2 ligand structures, the peptide binds in an extended conformation 

orthogonal to the central -sheet (Fig. 3 B, reviewed in Kurian & Cowburn, 1997; Yaffe, 

2002). The phospho-tyrosine inserts into a pocket with an invariable arginine at its base, that 

makes contact to the phosphate oxygens together with residues that are part of A, B and 

loop BC (the loop between -strands B and C). This pocked is marked green in Fig. 3 B. 

The phenyl-ring of the phospho-tyrosine is stabilized by an amino-aromatic interaction with 

an arginine that is jutting out from helix A into the binding pocket (Arg A2, Fig. 3 B; see 

also Fig. 12 D and E), and in addition by a lysine residue in strand D (Lys D6) (Eck et al, 

1993; Waksman et al, 1992; Waksman et al, 1993; Yaffe, 2002).  
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Specificity of binding is accomplished by residues in the loops EF and BG, which are highly 

variable in SH2 domains. A single mutation in this region can switch the specificity of the Src 

SH2 domain to that of GRB2 (Marengere et al, 1994). These residues usually form a second 

pocket, where a peptide residue that is 3-5 positions C-terminal of the phospho-tyrosine is 

recognized (yellow in Fig. 3 B, reviewed in Kuryan & Cowburn, 1997). 

There are exeptions from this binding mode. In GRB2, the +3 binding site is filled with a 

tryptophane residue that closes the site for interactions with the peptide. In the GRB2-ligand 

structure, the peptide binds in a bent conformation to the domain (Rahuel et al, 1996). 

Binding the phosphate provides about half of the free energy that is needed for the 

interaction (Bradshaw et al, 1999), the remaining energy is provided by the sum of rather 

weak interactions with the residues C-terminal of the pTyr described above (Yaffe, 2002). 

The large contribution of the phosphate to the binding energy provides that the SH2 domain 

can discriminate between the phosphorylated and unphosphorylated state of the target. 

 

3.1.2 Transcription elongation factor Spt6 

 

The gene encoding Spt6 was originally identified in a genetic screen in yeast as a 

suppressor of transposon insertion in the promoter region of a reporter gene (Winston et al, 

1984). It was later described as an essential, nuclear protein (Clark-Adams & Winston, 1987; 

Swanson et al, 1990) that is involved in the elongation phase of transcription, like Spt4 and 

Spt5. Spt4/Spt5 (DSIF in human cells) were identified in the same genetic screen as Spt6. 

The complex interacts physically with Pol II via Spt5 (Hartzog et al, 1998). Spt4 was 

characterized as a positive elongation factor (Rondon et al, 2003) but in conjunction with 

NELF (negative elongation factor), DSIF is responsible for promoter proximal pausing of  

Pol II (Yamaguchi et al, 1999). Spt6 interacts genetically with Spt4 and Spt5. Spt6 and Spt5 

also interact physically, albeit weakly (Swanson & Winston, 1992). Together with Spt5, Spt6 

colocalizes with Pol II on actively transcribed genes in yeast (Krogan et al, 2002), in human 

cells (Endoh et al, 2004) and on Drosophila polytene chromosomes (Andrulis et al, 2000; 

Kaplan et al, 2000). 

Mechanistically, Spt6 was found to be important for the maintenance of chromatin structure. 

It is interacting with histone H3 and has the ability to deposit nucleosomes onto "naked" DNA 

in a supercoiling assay (Bortvin & Winston, 1996). Furthermore, mutations in Spt6 lead to an 

altered chromatin structure in vivo and can supress a null mutation of the Swi/Snf complex 

that remodels nucleosome positions at promoters (Bortvin & Winston, 1996). Consistently, 

recent findings show that the impairment of Spt6-mediated re-assembly of nucleosomes in 

promoter regions leads to transcription initiation without the need for transcriptional activators 

(Adkins & Tyler, 2006).  
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The finding that mutations in Spt6 lead to transcription initiation from cryptic start sites within 

the coding regions of genes led to the suggestion that Spt6 is involved in the maintenance of  

proper chromatin structure during elongation (Kaplan et al, 2003). As a consequence, 

nucleosomes cannot be deposited back onto DNA after the passage of Pol II in a cell where 

Spt6 is not functional, which leads to higher accessibility of the coding regions of genes.  

Another factor that acts together with Spt6 as a histone chaperone is the heterodimeric 

FACT complex (Spt16/Pob3 in yeast). Whereas intact nucleosomes pose a block to 

transcription by Pol II, the polymerase can transcribe nucleosomes deficient in one H2A/H2B 

dimer (Kireeva et al, 2002). Independent studies support the model that FACT removes the 

H2A/H2B dimer from the nucleosome, thus creating a substrate that can be transcribed by 

Pol II (Belotserkovskaya et al, 2003; Orphanides et al, 1999). Additionally, FACT also seems 

to play a role in the maintenance of correct chromatin structure and the suppression of 

cryptic transcription (Mason & Struhl, 2003). Taken together, Spt6 interacts physically with 

Pol II, FACT and Spt5 in vitro and in vivo (Endoh et al, 2004; Krogan et al, 2002; Swanson & 

Winston, 1992). Besides, an interaction of the homologs of Spt6 and FACT in Drosophila 

with the Paf-complex was reported. There, depletion of Paf1 leads to a significantly 

decreased recruitment of Spt6 and FACT to the Hsp70 heat shock gene (Adelman et al, 

2006) (Fig. 4 A) 

Another protein that interacts with Spt6 is Spn1. The essential gene coding for Spn1 was 

identified in a genetic screen as a suppressor of a mutation in the TATA-binding protein 

(TBP) that shows a defect in the activation of transcription after binding to the TATA box 

(Fischbeck et al, 2002). Spn1 was shown to interact directly with Pol II and Spt6 at the 

promotor of the CYC1 gene, which is regulated post-recruitment of Pol II . Spn1 is a negative 

regulator of transcription of CYC1 by inhibiting recruitment of the chromatin remodeling 

complex Swi/Snf. This inhibition is abolished by the interaction of Spn1 with Spt6, which 

appears at the promotor shortly after induction of CYC1 expression (Zhang et al, 2008). 

However, the functions of Spn1 and Spt6 do not seem to be generally linked, since an Spn1 

mutant that fails to be recruited to the promotor of CYC1 due to a failure of the interaction 

with Pol II does at the same time not show cryptic transcription at the FLO8 gene as is seen 

in a Spt6 mutant strain (Kaplan et al, 2003; Zhang et al, 2008). Spn1 is also known as Iws1 

and it was further shown that it interacts with the RNA-export factor REF1/Aly (Yra1 in yeast) 

(Yoh et al, 2007). In yeast, Yra1 interacts with Sub2 and the THO-complex to form the 

TREX-complex to direct export of mRNP-particles to the cytoplasm (Lei et al, 2001; Strasser 

& Hurt, 2001). Depletion of Iws1 consequently showed retention of RNA in the nucleus in 

HeLa cells as well as RNA processing defects. Intriguingly, displacement of the C-terminal 

SH2 domain of Spt6 from its target - the Pol II C-terminal domain (CTD) phosphorylated at 

Ser2 residues - by competitive in vivo overexpression of the domain alone, showed the same 

phenotype. This suggests that this interaction is important for proper processing of RNA, at 

least for the genes tested, probably via the interaction of Spt6 with Iws1 and REF1/Aly (Yra1) 
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(Yoh et al, 2007). Very recent results from the same lab show another interaction of Iws1 

with the HYPB/Setd2 histone methyltransferase, thus directing H3K36 trimethylation (Yoh et 

al, 2008). Setd2 is interacting with the CTD of Pol II, but in contrast to Spt6 it binds the 

doubly phosphorylated form (Ser2-Ser5) (Kizer et al, 2005; Li et al, 2005; Vojnic et al, 2006) 

(Fig. 4 B).  
 

Figure 4: Spt6 is involved in multiple processes during transcription elongation 

(A) Spt6 is involved in the maintenance of chromatin structure. Histone chaperone FACT removes one H2A/H2B 

dimer from the nucleosome octamer, thus creating a substrate that can be transcribed by Pol II. Together with 

Spt6 it re-establishes proper chromatin structure after the passage of Pol II. 

(B) Spt6 is involved in RNA processing and histone modification. Spt6 binds to Ser2-phosphorylated CTD and 

Iws1, which interacts with REF1/Aly and Set2d. REF1/Aly is involved in RNA-export from the nucleus. Set2d is a 

histone-methylase that interacts with Ser2-/Ser5-phosphorylated CTD. Template DNA, non-template DNA and 

RNA are shown in blue, cyan and red, respectively. Factors in this figure are not drawn to scale. See text for 

details. 
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Thus, the interaction between Spt6 and the CTD of Pol II, mediated by a SH2 domain, seems 

to connect important events like RNA processing and histone modification to transcription 

elongation. 

 

3.1.3 The SH2 domain of Spt6 

 

Recruitment of Spt6 to the transcription machinery and its interactions with it are complex 

(see above). Given the importance of Spt6 for transcription elongation as well as for post-

transcriptional processes, structural information is highly anticipated to understand this factor 

on a molecular basis. The C-terminal part of Spt6, that contains an SH2 domain, was shown 

to interact specifically with the CTD of polymerase II that is phosphorylated at Ser2 residues 

(Yoh et al, 2007). This makes this particular SH2 domain highly interesting for two reasons: 

First, the Spt6 SH2 domain shows a binding specificity that is unusal for SH2 domains. It 

binds to a Ser2-phosphorylated target, whereas SH2 domains of signaling factors usually 

bind to phospho-tyrosines (see section 3.1.1). Although other domains with altered specificity 

have been characterized (Muller et al, 1992; Pendergast et al, 1991), to our knowledge there 

is no structural information on such an interaction. 

Second, the Spt6 SH2 domain is the only SH2 domain encoded in the yeast genome 

(Maclennan & Shaw, 1993). Whereas these modules are widely encoded in the genomes of 

higher eukaryotes, the SH2 domain of Spt6 somehow represents the “minimal equipment” of 

a simple eukaryotic cell regarding SH2 domains. This domain seems to be an ancestor of the 

modern SH2 domains, because Spt6 evolved prior to the divergence of the eukaryotic taxa 

(see also Fig. 11 A). The structure of the Spt6 SH2 domain will consequently give an exciting 

insight into the evolution of these important domains. 

 

3.1.4 Aim of this work 

The C-terminal domain of Pol II cannot be observed in Pol II crystal structures, due to its high 

flexibility. As a consequence, high resolution structural information can be obtained only in 

complex with molecules that bind the CTD, as exemplified by the structures of the CTD 

interacting WW-domain (Verdecia et al, 2000), the CID-domain (CTD-interacting domain) of 

Pcf11 and Nrd1 (Meinhart & Cramer, 2004; Vasiljeva et al, 2008) and the Set2 SRI-domain 

(Li et al, 2005; Vojnic et al, 2006). As soon as the interaction of the Spt6 SH2 domain with 

the CTD was published (Yoh et al, 2007), we started to initiate work on the structure solution 

of this domain (described in 3.3.1 – 3.3.4) and the analysis of its interaction with the CTD 

(described in 3.3.7 – 3.3.10). The structure opened way to a deeper analysis of evolutionary 

relationships between SH2 domains, due to its outstanding position in the development of 

these domains (described in 3.3.5 and 3.3.6). We were also interested in the influence of the 
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SH2 domain on overall gene expression in yeast. Since Spt6 is an important regulator of 

transcription elongation, the disturbance of its direct interaction with Pol II should have a 

significant effect. This question was tackled in cooperation with Andreas Mayer (3.3.12). In 

addition, a high resolution occupancy profile of Spt6 on the yeast genome was established in 

a ChIP-on-chip experiment. From the comparison of this data with the occupancy profile of 

Rpb3 (Pol II) (described in 3.3.13), we attempted to look for answers on the recruitment of 

Spt6 to transcribed genes and its overall presence on the genome. 
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3.2 Specific procedures 

3.2.1 Vectors 

The following vectors have been created with the methods described in 2.2.1: 

 
Table 15: Vectors containing Spt6 genes 

Vector       Source Plasmid (see 2.1.2, Table 4) 

Cg118+129      pET28b(+) 
Hs118+129      pET28b(+) 
Sc118+129      pET28b(+) 
Sp118+129      pET28b(+) 
SH2RL      pET28b(+) 
SH2RK      pET28b(+) 
SH2ko      pET28b(+) 
Ctermko      pET28b(+) 
CgSeMetCD      pET28b(+) 
CgSeMetCDE      pET28b(+) 
 

3.2.2 Purification of the Spt6-SH2 domain 

Variants of the Spt6 SH2 domain from the organisms Schizosaccharomyces pombe,  

Candida glabrata and Homo sapiens were purified each from 1 l of IPTG induced expression 

culture (2.2.3). S. cerevisiae variants were purified from 1 l of autoinducing expression 

culture (2.2.3). After binding to Ni-NTA-Agarose (2.2.5), proteins were eluted by a step 

gradient of increasing imidazole concentration. For this, 10 ml of Spt6 IMAC elution buffer 

(see 2.1.4, Table 10) + 20 mM, + 30 mM, + 50 mM, + 100 mM and + 300 mM imidazole were 

applied to the column. The fractions were analyzed for recombinant protein by SDS-PAGE 

(see 2.2.7). 

Fractions that contained the recombinant protein and showed a sufficient purity for the next 

step of the purification were pooled. The protein concentration was determined by the 

Bradford assay (2.2.4) and 1 unit of Thrombin protease (from bovine serum, Sigma) per g of 

protein was added to remove the N-terminal Hexahistidine-tag. The sample was then 

dialyzed against Spt6 IMAC elution buffer (see 2.1.4, Table 10) at 4°C overnight to reduce 

the imidazole concentration. Subsequently, the sample was applied again to the Ni-NTA-

column. The flowthrough, which contained recombinant protein now lacking the His-tag, was 

collected. The flowthrough from the Ni-NTA-column was applied to a MonoQ 10/100 GL 

anion exchange column (GE Healthcare). The column was equilibrated with Spt6 anion 

exchange buffer A (see 2.4.1, Table 10), bound proteins were eluted with a linear gradient of 

20 column volumes from 100 mM to 1 M NaCl. Peak fractions and flowthrough of this 

chromatography step were checked by SDS-PAGE (2.2.7) for the presence of recombinant 

protein. 
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Fractions containing the corresponding Spt6 SH2 variant were pooled and concentrated 

(Amicon Ultra centrifugal filter devices, cutoff 10k, Millipore). Afterwards samples were 

applied to a Superose 12 10/300 GL column (GE Healthcare), pre-equilibrated with the 

respective Spt6 size exclusion buffer (see 2.1.4, Table 10). Peak fractions were pooled and 

concentrated to 10-20 mg/ml for crystallization. 

The purification protocol was similar for C. glabrata Spt6 SH2 variants containing point 

mutations for selenomethionine labeling.  

 

3.2.3 Design of selenomethionine mutants of the Spt6 SH2 domain of  
C. glabrata 

Selection of positions for methionine mutants in the Spt6 SH2 domain was based on two 

criteria. First, the position should contain a conserved hydrophobic amino acid residue, 

preferably a leucine because of its comparable size to a methionine. Second, the probability 

of such a residue to be part of the hydrophobic core of the domain should be high. Taken 

together, these criteria should increase the probability to find sites for mutations, which do 

not disturb the overall structure of the domain and hence its ability to crystallize. A multiple 

sequence alignment of Spt6 SH2 domains from diverse organisms revealed the desired 

conserved residues. These were mapped onto the structure of the SH2 domain of Grb2, 

which was initially used in a structure based alignment with the S. cerevisiae Spt6 SH2 

domain (see Fig. 5) to check the possible position of these residues in the Spt6 SH2 domain 

fold. Figure 5 summarizes the selected mutations. Mutation E could not be mapped onto the 

Grb2 structure because of low sequence conservation in this area of the domain (see Fig. 5 

structure based alignment), but was chosen because of a highly conserved methionine 

residue in the Spt6 molecules of the other organisms. Fig. 5 B shows that mutations A, B and 

D have a high probability to be part of the hydrophobic core, whereas  the probability of 

mutation C is lower. Nevertheless, mutation C was used because of its high conservation. 

 

3.2.4 Crystallization 

Initial screens of crystallization conditions using different protein variants from different 

organisms were set up with a Hydra II crystallization robot (Matrix). 500 nl drops were set up 

in Corning 96 well sitting drop crystallization plates with the robot, additionally adding fresh 

reducing agent (Tris(2-carboxyethyl) phosphine hydrochloride, TCEP) at a concentration of  

5 mM. Commercial screens used for initial setups were: Index, Classic screen, Natrix, 

PEG/Ion (all Hampton), pH-clear, anions suite, cations suite, classic suite (all Qiagen), JB 

Screen Classic HTS I S and JB Screen Classic HTS II S (both Jena Biosciences). Plates 

were incubated at 20°C and checked regularly after several days. 
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Figure 5:  Design of point mutations for seleno-methionine incorporation based on the Grb2-structure 

(A) Multiple sequence alignment (ClustalW) with Spt6 SH2 domains of Candida glabrata (Cg), Saccharomyces 

cerevisiae (Sc), Gibberella zeae (Gz), Neurospora crassa  (Nc), Neosartorya fischeri (Nf); Schizosaccharomyces 

pombe (Sp), Homo sapiens (Hs); conserved hydrophobic residues chosen for mutation are marked orange. 

(B) Structure-based alignment of the yeast Spt6 SH2 domain sequence and the human Grb2 SH2 domain 

sequence. -helices are shown as red boxes, -strands as blue arrows. Predicted secondary structure elements 

of Spt6 are shown as colourless boxes and arrows. 

(C) structure of the Grb2 SH2 domain (PDB accession Nr.: 1JYR). -helices and -strands are coloured as in (B). 

Residues of Grb2, that align to the highly conserved residues identified in (A) are highlighted in orange. 

Promising initial crystals were refined in 24 well hanging drop plates (Easy Xtal Tool, Qiagen) 

by varying the concentrations of constituents of initial conditions. Diffraction quality crystals of 

the wild type (wt) Spt6 SH2 domain of Candida glabrata were grown by mixing  

1 l of purified protein in the respective size exclusion buffer (see 2.1.4, Table 10) with a 

concentration of 15 mg/ml with 1 l of Spt6 SH2 seeding buffer (see 2.1.4, Table 13). Plates 

were incubated for 2 hours at 20°C. To trigger growth of single crystals, streak seeding 

(Bergfors, 2003) was performed. Seeds were produced by crushing initial crystals by dilution 

with 10 l of the respective reservoir solution and pipeting up and down several times. Seeds 

were transferred to the pre-equilibrated drops using a cat whisker. Usually, seeds that were 

taken up were used for seeding sequentially 6 different drops, creating dilutions which 

increased the probability for growth of suitably sized single crystals. Before freezing, crystals 

were transferred to Spt6 SH2 seeding buffer containing additionally 10%-22% (w/v) PEG 400 

or 5%-17% (w/v) glycerol as cryo-protectants for several minutes. Crystals were then flash-

frozen by plunging into liquid nitrogen. This procedure was resulting in diffraction quality 

crystals as summarized in Fig. 7 on page 42. 
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Selenomethionine double mutant CD (see 3.2.4 and 3.3.2) was crystallized using the 

hanging drop method by mixing 1 l of purified protein in the respective size exclusion buffer 

(2.1.4, Table 10) with 1 l of buffer Spt6 SH2-1 or -2 (see 2.1.4, Table 13), resulting in crystal 

form 1 or 2, respectively (see Fig. 7 B). Before freezing, crystals were transferred to buffer 

Spt6 SH2-1 containing 13% (w/v) PEG 400 or 15% (w/v) glycerol as cryo-protectant. In case 

of buffer Spt6 SH2-2, crystals were frozen directly from the drops. 

 

3.2.5 Data collection and structure solution 

Synchrotron radiation data of selenomethionine double mutant CD crystal forms A and B 

were collected at Berliner Elektronen-speicherring - Gesellschaft für Synchrotronstrahlung 

m.b.H. (BESSY) BL 14.1. Multiwavelength anomalous diffraction (MAD) data were collected 

from a selenomethionine-labeled crystal form A to a resolution of 1.9 Å. For a 

selenomethionine-labeled crystal of form B, single wavelength anomalous diffraction (SAD) 

data was collected to a resolution of 2.4 Å. Data were processed with HKL (Otwinowski, 

1996). Selenium sites in crystal form A were located with HKL2MAP (Pape & Schneider, 

2004) and MAD phases  were calculated with SHARP (Terwilliger, 2002). A model of the 

SH2 domain was built with Coot (Emsley & Cowtan, 2004) and refined with CNS (Brunger et 

al, 1998). For crystal form B, phases were calculated by molecular replacement using 

PHASER (McCoy, 2007) with one molecule of the assymetric unit of crystal A as a search 

model. Model building was done as for crystal A, Refmac5 was used for refinement 

(Murshudov et al, 1997). X-ray and refinement statistics are shown in  

Table 16. In case of the desalted crystals used for peptide soaks (3.2.7 and 3.3.9), XDS was 

used for Data processing (Kabsch, 1993). Structure was solved as for crystal form B, but not 

refined to the end (Table 18). 
 

3.2.6 Co-crystallization of the Spt6 SH2 domain with synthetic CTD-
peptides 

The Spt6 SH2 domain from C. glabrata was purified as described in 3.2.2 and dialyzed to a 

lower salt concentration in a buffer with 50 mM Tris/HCl pH 8.0 at 25°C and 20 mM NaCl. 

The sample was concentrated to 10 mg/ml and incubated with 3x the molar amount of 

peptide 1 (P1, see 2.1.2, Table 6) and 2x the molar amount of peptide 2 (P2, see 2.1.2, 

Table 6) at 20°C for 2 hours. After this time, the samples were used to set up commercial 

crystallization screens at the crystallization facility of the Max Planck Institute for 

Biochemistry in Martinsried. The following screens were used: Complex screen I (Qiagen), 

Magic screen I and II, Index screen (Hampton) and PEGs (Qiagen). Crystallization plates 

were incubated at 20°C and documented by an imaging system. 



3 Structure and requirement of the Spt6 SH2 domain 36 

3.2.7 Desalting of Spt6 SH2 domain crystals for peptide soaks 

Different kinds of PEG (1000 – 8000) were used in different concentrations (10%-50% w/v) to 

stabilize the crystal while replacing the salt. In these initial tests, crystals were transferred to 

10 l of buffers containing different amounts of PEG at lower salt concentrations (300 mM 

NaCl) and examined visually by light microscopy. Crystals that were transferred to Spt6 SH2 

desalting buffer (see 2.1.4, Table 13), cracked immediately, but “healed” after 30 seconds 

(see Fig. 14). These crystals were tested for diffraction quality on an X-ray generator 

(RINT2000 Series CE Marking, Horizontal Type Rotor Flex). 

Since these crystals did not diffract anymore, the desalting protocol was changed to a step 

protocol: Buffer Spt6 SH2 B and Spt6 SH2 desalting buffer were mixed in the following ratios: 

0.9/0.1, 0.8/0.2, 0.6/0.4, 0.4/0.6, 0.2/0.8, 0.15/0.85, 0.1/0.9, 0.05/0.95. Crystals were 

successively transferred to 100 l of these solutions and incubated for 1 hour. For each step, 

one crystal was tested for diffraction on the generator. The last step, where crystals still 

diffracted, was used for overnight incubation. Subsequently, crystals were again tested for 

diffraction. In parallel, crystals were transferred imediately into different step conditions 

without incubation in preceding steps and tested for diffraction. 

 

3.2.8 Soaking of Spt6 SH2 crystals with synthetic peptides 

Buffer Spt6 SH2 B and Spt6 SH2 desalting buffer (see 2.1.4, Table 13) were mixed in a ratio 

of 0.15/0.85. Synthetic peptides were added at a concentration of 1,1 mM for P1 and 0.8 mM 

for P2 (see 2.1.4, Table 6). Crystals that were grown in buffer Spt6 SH2 B were transferred 

to 20 l of these solutions and incubated for 1 hour at 20°C. After this, the crystals were 

directly frozen in liquid nitrogen. Datasets were collected at the SLS Villigen and the structure 

was solved as described in 3.2.4. 

 

3.2.9 Fluorescence anisotropy (FA) 

FA measurements were carried out on a FluoroMax-P Spectrofluorimeter (Horiba Jobin 

Yvon). 800 l or 1 ml of Peptide P3 (see 2.1.2, Table 6) in SH2 low salt buffer (2.1.4, Table 

10) were used as a reaction solution. A fluorescence emission spectrum was recorded to 

evaluate the strength of the fluorescence signal. The Spt6 SH2 domain of different 

organisms was titrated to the solution and the change in anisotropy of the fluorescence 

signal was recorded via direct measurement of the polarization of emission light. Binding of 

the S. cerevisiae SH2 domain was measured in SH2 low salt buffer in a titration ranging from 

82 nM to 9 M. The binding of the C. glabrata SH2 domain was tested in SH2 low salt buffer 

and in SH2 low salt buffer +150 mM NaCl in a titration ranging from 250 nM to 6.8 M. The 
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human Spt6 SH2 domain was titrated in a concentration range from 36 nM to 2.6 M in SH2 

low salt buffer.  

 

3.2.10 Surface plasmon resonance (SPR) 

SPR experiments were carried out on a BIAcore X system. The Spt6-domains of   

S. cerevisiae  and  H. sapiens were bound to a Sensor-Chip NTA (GE Healthcare) via the  

N-terminal His-Tag (purification analog to 2.2.5 and 3.2.2, omitting the thrombin-cleavage 

step), using SH2 low salt buffer (2.1.4, Table 10) as running buffer. Binding upon injection of 

the respective domain (60 ng/ l) was monitored by an increase in the resonance signal (RU). 

The change in RU upon the domain binding to the chip was  2000. After washing with 

buffer, petide P1 or P2 (2.1.2, Table 6) were injected at a concentration of 20 M. The 

interaction between the respective domain and peptide was monitored by the change in RU. 

 

3.2.11 TAP-tagging of yeast proteins 

 

A C-terminal TAP-tag was added to S. cerevisiae Spt6 or Spt6 C (deletion of residues 1250-

1451) (Youdell et al, 2008) in yeast strain S288C and the isogenic strain FY119 (see 2.1.1, 

Table 3) as described (Puig et al, 2001). The oligonucleotides „Spt6flTAPfw“, „Spt6flTAPrv“ 

and „Spt6dSH2TAPfw“ (2.1.2, Table 5) were used to amplify the C-terminal TAP-tagging 

cassettes from plasmid pBS1539 (2.1.2, Table 4). The PCR-products were purified from a 

1% agarose gel usind the QIAquick Gel Purification Kit (Qiagen). The strains were 

transformed with the respective purified DNA using Lithium acetate as described (Knop et al, 

1999). Cells that integrated the foreign DNA into their genome by homologous recombination 

were identified on selection plates. Single colonies were cultivated and checked by Western 

blot (Fig. 16). For this, total protein of S. cerevisiae strains (S288C, isogenic to strains used 

in microarray-analysis except for TAP- tags at the C-terminus of the Spt6/Spt6 C protein) 

was resolved by a 8% SDS-PAG and blotted on a PVDF-membrane. The membrane was 

probed with antibodies directed against the TAP-tag (PAP, Sigma) and tubulin (3H3087, 

Santa Cruz Biotechnology) as a loading control. Bound antibodies were detected by 

chemiluminiscence (ECL Plus Western Blotting detection system, GE Healthcare). For 

tubulin, Peroxidase-conjugated AffiniPure Rabbit Anti-Rat IgG (H+L) (Jackson 

ImmunoResearch) was used for detection. 
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3.2.12 Chromatin immunoprecipitation (ChIP) 

 

Chromatin immunoprecipitation experiments were carried out according to an established 

protocol (Aparicio et al, 2005; Jasiak et al, 2008), together with Kristin Leike. 

YPD medium (2.1.3, Table 7) was inoculated to an OD600 of 0.2 from a starter culture of the 

respective strain. The culture was grown at 30°C and 180 rpm until it reached the log-phase 

(OD600 0.7-0.8). Protein cross-linking was achieved by the addition of 37% formaldehyde to 

the culture to a final concentration of 1% and slowly shaking at room temperature for 15 

minutes. Addition of 3M Glycine to a final concentration of 2.5% and incubation for another 

30 minutes stopped the cross-linking reaction. Cells were harvested by centrifugation (4400 

g, 5 min, 4°C) and washed three times with cold 1x TBS (2.1.4, Table 9) and once with FA 

lysis buffer (2.1.4, Table 14) + 2mM PMSF. Cells were frozen in liquid nitrogen and stored at  

-80°C for further use. 

For immunoprecipitation of TAP-tagged proteins, IgG SepharoseTM 6 Fast Flow (GE 

Healthcare) was used (50 l of a 50% slurry per IP reaction). Beads were washed with cold 

1x TBS buffer an FA-lysis buffer before use. Chromatin was sheared using a BioruptorTM 

UCD-200 (Diagenode) (25 x 30 seconds with 30 sec breaks at an output of  

200 W). 20 l of the resulting chromatin solution was kept as the input sample. Precipitation 

was performed for 3 h at room temperature by incubation of the chromatin solution with 50 l 

of the washed beads. After precipitation, beads were washed with FA lysis buffer, FA lysis 

buffer + 500 mM NaCl, ChIP wash buffer (see 2.1.4, Table 14) and TE buffer. Elution of 

precipitated proteins was carried out in ChIP elution buffer (2.1.4, Table 14) at 65°C for 20 

min. Input and IP samples were incubated with Pronase at 42°C for 3h. Reversal of cross-

linking was accomplished by a 9 h incubation at 65°C. The nucleic acids were purified using 

QIAquick PCR Purification Kit (Qiagen) (instead of the standard DNA binding buffer, PB 

buffer from Qiagen (Cat. No. 19066) was used). After purification RNA was removed by 

incubation with RNase A at 37°C for 30 min. DNA was purified once more and the sample 

volume was reduced to the desired concentration using a Speed Vac.  

Amplification and Re-amplification of the immunoprecipitated DNA was carried out with 

GenomePlex® Complete Whole Genome Amplification (WGA) Kit and GenomePlex® WGA 

Reamplification Kit (Sigma). The quality of the resulting samples was checked on a 1% 

Agarose Gel, Ethidium bromide staining and visualization in UV light. A correctly amplified 

sample showed DNA-fragments of various length, with a peak around 300 nt. 

 

3.2.13 ChIP-on-chip 

 

ChIP samples were sent to imaGenes GmbH for labeling, hybridization, array scanning, data 

extraction and a preliminary data analysis using a S. cerevisiae whole genome tiling array 
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(Cat. No. C4214-00-01, http://www.imagenes-bio.de/services/nimblegen/chip). Two 

biologically independent samples of each input and IP DNA were sent. The analysis included 

„dye-swapping“ with the fluorophores Cy3 and Cy5, which improves the signal to noise ratio. 

The bioinformatic analysis of the data was performed by Matthias Siebert and Johannes 

Soeding from the Gene Center Munich, as part of a collaboration.The data quality was high 

and the analysis was carried out as described in Jasiak et al. (2008). Briefly, the logarithm of 

the fluorescence signal of the Chip DNA was divided by the signal from the genomic 

background and this was used in further analysis. A standard background correction was 

performed on all such signals by subtracting their genome-wide average. ChIP-chip 

measurements were repeated with exchanged dyes Cy5 and Cy3 and averaged over 

measurements to subtract out the strong, systematic, dye-related technical noise, which 

effectively eliminates intensity-dependent saturation effects. The experiment was carried out 

as a biologically independent duplicate, resulting in Pearson correlation coefficients of 0.84 

for the Cy5 labeled biological duplicates and 0.82 for the Cy3 labeled biological duplicates.  



3 Structure and requirement of the Spt6 SH2 domain 40 

3.3 Results and discussion 

3.3.1 Delineation of the Spt6 SH2 domain of Saccharomyces cerevisiae 
for crystallization

Information about sequence conservation (Fig. 9 A) as well as the secondary structure 

prediction (see Fig. 5 B) was used to design variants of the S. cerevisiae Spt6 SH2 domain 

that differed in length at their C- and N-termini. 10 of these variants were cloned, expressed 

and purified (chapters 2.2.1, 2.2.3, 2.2.5 and 3.2.2). The relative solubility was estimated by 

comparing the amount of  protein in the extract (soluble fraction) to the amount in the pellet 

(insoluble fraction) after centrifugation of the cell lysate (2.2.5). The results are summarized 

in Fig. 6. 

 

Figure 6: Solubility of S. cerevisiae Spt6 SH2 domain variants 

The structure based alignment of Fig. 5 B for the Spt6 SH2 domain and the lengths of the different protein 

variants that were expressed and purified is shown. The solubility is indicated by colours. Numbers refer to the 

primers (Sc) that were initially used to clone the respective variants (see section 2.1.2, Table 5) 

 

The solubility of the protein variants gives a good estimation about the boundaries of the 

domain. Unsoluble proteins are considered to be defective in folding because important parts 

of the domain-fold are removed. The length of the N-terminus could be shortened up to 

amino acid 1251 (N-terminus Nr. 118), the C-terminus up to amino acid 1351 (C-terminus 

Nr.129). An internal loop-deletion (dashed line in Fig. 6) rendered this variant insoluble. 

Thus, the domain boundaries were defined by the protein variant 118+129. This variant was 

purified to high purity and homogeneity, and was used for extensive screening of 

crystallization conditions (section 3.2.4). However, the Spt6 SH2 domain from S. cerevisiae 

did not form crystals. 
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3.3.2 Crystallization and structure solution of the Spt6 SH2 domain of 
Candida glabrata 

 

The variant Sc118+129 of the SH2 domain showed an optimal behavior in terms of solubility 

and in limited proteolysis experiments (2.2.6, data not shown) but did not form crystals 

(3.3.1). Due to the high conservation of the domain in various species, the domain borders 

that were delineated in S. cerevisiae could be transferred to the proteins of Candida glabrata, 

Schizosaccharomyces pombe and Homo sapiens (Fig. 9 A). In the new variants two 

additional residues were removed from the C-terminus, based on sequence alignment and 

secondary structure prediction. The coding sequences for these domain variants were 

cloned, expressed and purified (chapters 2.2.1, 2.2.3, 2.2.5 and 3.2.2). These variants 

showed a similar behaviour in the purification compared to the S. cerevisiae protein and were 

purified to high homogeneity. The quality of the protein sample is exemplified for the  

C. glabrata variant in Fig 7 A, but similar results were obtained for the domains from the 

other organisms. 

Initial screenings for formation of crystals gave positive results only for the C. glabrata 

protein. Refinement of these conditions, including streak seeding, lead to an overall 

improvement of crystals and to a native dataset to 2.8 Å resolution (see 3.2.4 and Fig 7 A). 

However, despite several attempts to solve the structure by molecular replacement with 

different search models (not shown), no solution could be obtained. 

Thus we attempted to get de novo phases from anomalous diffraction of Selenium atoms, by 

the incorporation of seleno-methionine (2.2.3). For this we had to insert several point 

mutations into the sequence of the C. glabrata SH2 domain, since the native protein did not 

contain any methionine residue. 5 point mutations were designed (see 3.2.3 and Fig. 5). Four 

of those could be cloned (mutations A, C,D and E) and the resulting proteins were soluble. 

Mutations C, D and E were chosen for further subcloning, resulting in double mutant CD and 

triple mutant CDE, which again showed high solubility. A repeated screening  for inital 

crystallization conditions with the two mutant proteins revealed two novel crystallization 

conditions for mutant CD (buffers Spt6 SH2-1 and -2, chapter 2.1.4, Table 13). Mutant CDE 

was crystallized in similar conditions as the native protein, but a SAD dataset to 3.1 Å 

resolution did not result in solution of the structure because of a weak anomalous signal 

(data not shown). However, crystals from mutant CD were suitable to solve the structure of 

the SH2 domain in multiple wavelength anomalous diffraction experiment (MAD, 3.2.5 , 

Table 16). Subsequently, also the second crystal form of the CD mutant could be solved by 

molecular replacement, using the structure from crystal form 1 as a search model (Table 16). 

All diffraction quality crystals that were obtained are summarized in Fig. 7 B. 
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Figure 7: Quality of the C. glabrata SH2 domain protein sample and the resulting diffraction quality 

crystals 

(A) Chromatogram of a Superose12 size exclusion chromatography of the C. glabrata Spt6 SH2 domain. 

Absorption units at 280 nm and 260 nm are shown in blue and red, respectively. In addition, an overloaded, 

Coomassie stained SDS-PAGE of the pooled peak fractions is shown, to demonstrate the purity of the protein 

sample. 

(B) In columns, the different crystals of the C. glabrata Spt6 SH2 domain, the respective crystallization buffers 

(see also 2.1.4, Table 13), diffraction images and resolution, experiment and results are shown. 



3 Structure and requirement of the Spt6 SH2 domain 43 

Table 16: X-ray diffraction and refinement statistics for C. glabrata Spt6 selenomethionine double mutant 
CD crystals  

 

3.3.3 Crystallization of SH2 domains from various species 

 

Interestingly, the SH2 domains of S. cerevisiae and C. glabrata only differ in 10 amino acid 

positions, as is shown in the alignment left in Fig. 8. Although most of these positions are 

highly conserved, they make the difference between crystal formation or no crystals. When 

these residues are mapped on the four molecules of the asymmetric unit of the CD mutant 

crystal form 1, all residues except for two (A1291 and V1304) lie on the surface of the 

individual molecules and thus in between the molecules that build up the crystals (Fig. 8, 

right). These „evolutionary point mutations“ render the C. glabrata protein variant suitable for 

crystallization. Thus, making use of naturally occurring variances in proteins by extending 

crystallization trials to different source organisms is an appropriate remedy in the 

crystallization of difficult proteins. 
 

 
 
crystal form 1 
 

  crystal form 2 

Data collection     
Space group P65   P32 
Cell dimensions       
   a, b, c (Å) 54.5, 54.5, 253.4   71.6, 71.6, 87.6 
   , ,   (°) 90, 90, 120   90, 90, 120 
 Peak Remote Inflection  
Wavelength (Å) 0.97973 0.90810 0.97987 0.97971 
Resolution (Å) 20-1.9 20-1.9 20-1.9 20-2.4 
Rsym (%) 5.2 (12.9) 5.3 (22.3) 3.9 (12.6) 6.2 (19.0) 
I /  I 42.9 (7.3) 34.35 (7.5) 31.24 (6.0) 45.14 (7.7) 
Completeness (%) 99.4 (96.6) 99.9 (100) 99.3 (95.7) 99.5 (95.4) 
Redundancy 4.2 (2.8) 7.7 (6.7) 4.1 (2.8) 3.9 (3.7) 
Refinement     

Resolution (Å) 1.9   2.4 
No. reflections 33162   18513 
Rwork / Rfree (%) 19.6 / 24.1   25.27 / 28.50 
No. atoms     
    Protein 3292   3160 
    Ligand/ion 20   - 
    Water 428   76 
B-factors     
    Protein 26.6   29.8 
    Ligand/ions 23.5   - 
    Water 35.4   27.8 
R.m.s deviations     
    Bond lengths (Å) 0.005   0.007 
    Bond angles (°) 1.2   1.4 
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Figure 8: The crystallizable C. glabrata protein variant differs in only 10 amino acid positions from the  

S. cerevisiae protein 

Alignment of the S. cerevisiae and  C.glabrata SH2 domain sequences (left). Invariant residues are coloured in 

green, conserved residues are indicated in orange (high) and yellow (low), unconserved residues in gray. On the 

right, the 4 molecules of the asymmetric unit of crystal „SeMet mutant CD“ is shown. Invariant residues from the 

alignment are shown as a ribbon model (different greens for every molecule in the asymmetric unit). Conserved 

and unconserved residues are shown as stick models with the same colours as in the alignment. 

 

3.3.4 The structure of the Spt6 SH2 domain reveals a typical SH2 fold 
with unique features 

 

The structure derived from "SeMet mutant CD crystal form 1" in a MAD experiment (Fig. 7) 

reveals the classical core fold of SH2 domains (Kuriyan & Cowburn, 1997) with a central 

three-stranded antiparallel -sheet ( B- D) sandwiched between two -helices ( A and B, 

Fig. 9 B). In addition to this core fold, the structure contains an -helix N-terminal of A 

(called L here), a small anti-parallel -sheet inserted between B and D ( E- F ), and an 

extended C-terminal -helix (Fig. 9 B, Fig. 12 D and Table 17). Two surface loops, B- C 

and D- B, adopt alternative conformations in two different crystal packings and are thus 

mobile (Fig. 9 C). Interestingly, the seleomethionine residues in mutant CD were not part of 

the hydophobic core as predicted (3.2.3). They are positioned at the beginning and the end 

of loop DE. However they were ordered and did not disturb the overall structure and were 

thus suited for phasing. 
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3.3.5 The Spt6 SH2 domain structure contains features of both sub-
families of SH2 domains 

 

To understand the unique features of the structure, we reviewed available structures from the 

PDB database (Table 17) for the corresponding characteristics. It is possible to group SH2-

domains into two classes, according to specific features of their primary sequences and their 

3D-structures. One group, the "STAT-type" contains the SH2 domains of STAT transcription 

factors, the second group "Src-type" contains most of the other domains that are part of 

proteins involved in cellular signaling pathways (Gao et al, 2004): First, we looked for the 

SH2 core motif sequence, which has the consensus sequence GXF/YBBR (X for any, B for 

hydrophobic amino acids). This motif resides in the B-strand (Fig 9 A) and contains the 

highly conserved arginine residue that is binding the phosphate. A specific feature of all 

STAT-type domains is a highly conserved phenylalanine immediately following the arginine  

 

 

Figure 9: Structure of the Spt6 SH2 domain 

(A) Domain architecture of Spt6 (Johnson et al, 2008) and alignment of amino acid sequences of the Spt6 SH2 

domains of C. glabrata (C.g.), S. cerevisiae (S.c.), S. pombe (S.p.), M. musculus (M.m.), and H. sapiens (H.s.). 

Secondary structure elements are indicated above the alignment (cylinders for -helices, arrows for -strands).  



3 Structure and requirement of the Spt6 SH2 domain 46 

Figure 9 (continued) 

Invariant and conserved residues are highlighted in green and yellow, respectively. The red box indicates the 

invariant arginine R1281 that binds the phospho group (see also 3.1.1). Stars indicate positions where methionine 

was introduced for seleno-methionine phasing (sections 3.2.3 and 3.3.2). Residues forming the hydophobic core 

are marked with a triangle.  

(B) Two views of a ribbon model of the Spt6 SH2 domain. Secondary structure elements are labeled as in (A).  

(C) Comparison of the C -trace of the SH2 domain structure in two different crystal forms (blue, crystal form 1, 

magenta, crystal form 2 of SeMet mutant CD, see Fig. 7 B). Structures were aligned by DALILite (Labarga et al, 

2007), resulting in a RMSD of 1.2 Å for 91 residues. Unstructured parts in crystal form B are indicated by dots. 

 

 

C-terminally (Gao et al, 2004), whereas in Src-type domains this residue is different (Fig. 10, 

Table 17). Spt6 shows no phenylalanine in this position and thus resembles the Src-type in 

this respect. Interestingly, the consensus sequence of the Spt6 SH2 domain core motif as 

seen in Fig 9 A is GXF/BBR, thus varying in the third position from the consensus of all other 

SH2 domains (with the exception of CHK, see table 17). The landmark feature of Src-type 

domains is the small antiparallel -sheet E- F, that is inserted between strand D and helix 

B (Gao et al, 2004). Residues from this sheet are involved in interactions with residues of 

the target peptide other than the phospho-aminoacid, and thus important for peptide 

specificity as outlined in section 3.1.1 (Kimber et al, 2000; Waksman et al, 1993). STAT-type 

domains lack this structural feature (Fig. 10). Our review in Table 17 confirmed this with the 

exception of the SH2 domains of Cbl and APS, where a E- F sheet could not be detected. 

The Spt6 SH2 domain has a clearly defined E- F sheet and resembles the Src-type in this 

respect.  

The Spt6 domain has an unusually long C-terminal helix B (at least 26 Å long). Only the 

SH2 domain of APS, which is a substrate of the insulin receptor, showed this feature in our 

structure review (Table 17). APS is dimerizing on its substrate and the long C-terminal helix 

is interfering with the canonical peptide binding path (Hu et al, 2003), which is usually in an 

extended conformation, perpendicular to the central -sheet (Kuriyan & Cowburn, 1997). 

STAT transcription factors also self-dimerize upon the phosphorylation of a specific residue 

before they can translocate to the nucleus and induce the transcription of specific genes 

(Becker et al, 1998; Chen et al, 1998; Darnell, 1997). The absence of a E- F sheet is a 

unique feature of the STAT-subfamily of SH2 domains, as is the presence of an extended -

helical structure, termed B’- B (Gao et al, 2004) (Fig. 10). The extended C-terminal -

helices B in Spt6 and APS might resemble a primitive or degenerated fused form of this 

B’- B structural motif. This suggestion is supported by the fact that APS dimerizes on its 

substrate as STAT transcription factors do. For Spt6, no data on multimerization on target 

binding is currently available.  

The structure of the Spt6 SH2 domain contains a short -helix ( L) N-terminally of A (Fig. 9 

B). This helix is not a part of the canonical SH2 fold, but is seen in all STAT transcription 
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factors - where it is part of the STAT linker domain that is preceding the SH2 domain N-

terminally – and in a number of Src-type domains (Table 17 and Fig. 10). The absence of 

such a helix as outlined in Table 17 does not necessarily mean its absence in the protein, it 

may just not be a part of the crystal structure. However, the position of L in the Spt6 

structure is not artificial, as it is similar in both crystal forms (Fig. 9 C). Its interaction with the 

rest of the domain is mediated by Arg1251, which contacts Asp1330 of loop FB. Additionally 

it packs onto a hydrophobic surface made up by residues of the -sheets B and C. The 

helix L adopts the same relative position to the rest of the protein as the C-teriminal helix of 

the STAT linker domain (exemplified by 11 of STATa of Dictyostelium, yellow in Fig. 10). 

Furthermore, secondary structure prediction of Spt6 further C-terminal of the SH2 domain 

reveals a structural signature consisting of 5 -strands. This might resemble the S1-RNA-

binding-domain found in STAT proteins N-terminal of the linker domain (Becker et al, 1998; 

Bycroft et al, 1997; Chen et al, 1998). Taken together, helix L as well as the extended 

helical structure B are likely to be evolutionary related to STAT transcription factors. 
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Table 17: Review of SH2 domain structural elements 

 
Protein, species a, 
(PDB accesion no.) 

core 
motif b 

E F B [Å] c Ld R155e K203e Z-score 
(Dali server) f 

Src-type 
Spt6, Cg, (-) GDFVIRQ + 26.0 + G D - 

Abl1, Mm, (1OPK) GSFLVRE + 14.3 - R R - 
Aps, Rn (1RPY) GLFVIRQ - 29.0 + R R 8.6 
Blk, Mm, (1BLJ) GSFLIRE + 14.8 - R K 8.0 

PTK6/Brk, Hs, (1RJA) GAFLIRV + 16.7 - R L 8.1 
Cbl, Hs, (2CBL) GSYIFRL - 14.2 + Y A 6.5 
Crk, Hs, (1JU5) GVFLVRD + 16.5 - R I 8.4 

CHK, Hs, (1JWO) GLVLVRE + 17.3 - G R 9.8 
Fes/Fps, Hs, (1WQU) GDFLVRE + 17.9 - R I 7.2 

Fyn, Hs, (1G83) GTFLIRE + 17.4 + R K 9.8 
GADS, Mm, (1R1Q) GFFIIRA + 12.9 + R K 9.3 
Grb10, Hs, (1NRV) GLFLLRD + 14.7 - R N - 
Grb14, Hs, (2AUG) GVFLVRD + 14.7 + R N 9.8 
Grb2, Hs, (1GRI) GAFLIRE + 15.2 - R K 8.6 

Grb7, Hs, (1MW4) GLFLVRE + 10.1 - R L 4.5 
Hck, Hs, (3HCK) GSFMIRD + 15.0 - R K 8.5 

Itk/Tsk, Mm, (1LUK) GAFMVRD + 14.7 - R K 7.7 
P56-Lck, Hs, (1BHH) GSFLIRE + 12.2 - R K 9.2 

Nck1, Hs, (2CI9) GDFLIRD + 16.9 - R K 9.6 
Nck2, Hs, (2CIA) GDFLIRD + 16.5 - R K 10.1 

P85-N, Hs, (2IUG) GTFLVRD + 15.8 + R K 9.3 
PLC 1, Bt, (2PLD) GAFLVRK + 14.5 - R R 6.7 
Syp, Mm, (1AYA) GSFLARP + 17.0 - G K 9.0 

SHP-1, Hs, (1X6C) WTFLVRE + 17.0 - G K 8.1 
Sap, Hs, (1D1Z) GSYLLRD + 12.9 - R R 7.7 
Eat2, Mm, (1I3Z) GNFLIRD + 11.1 - K L 9.6 

SH3BP2, Hs, (2CR4) GLYCIRN + 14.8 - S R 6.9 
Shc1, Hs, (1MIL) GDFLVRE + 15.3 - R L - 

Socs3, Mm, (2BBU) GTFLIRD + 15.0 + G R 4.2 
Syk, Hs, (1CSZ) GKFLIRA + 13.6 - R R 8.0 

Vav1, Hs, (2CRH) GTFLVRQ + 14.2 + R K 7.2 
ZAP70-1, Hs, (1M61) GLFLLRQ + 16.4 - R  P/I 10.4 
ZAP70-2, Hs, (1M61) GKFLLRP + 14.4 + R L 10.4 

STAT-type 
STAT1, Hs, (1BF5) GTFLLRF - 5.7 + 8.8 + P/E K 4.2 
STAT3, Hs, (1BG1) GTFLLRF - 10.8 + 9.8 + P/E K 4.1 
STAT5, Mm, (1Y1U) GTFLLRF - 8.7 + 9.9 + K K 5.5 
STAT, Dd, (1UUR) GTFIIRF - 7.3 + 10.5 + R L 5.7 

Structural data was obtained from the Protein Data Bank (PDB) and inspected for the indicated structural 
elements.  
1Cg=Candida glabrata; Hs=Homo sapiens; Mm=Mus musculus; Rn=Rattus norvegicus; Bt=Bos taurus; 
Dd=Dictyostelium discoideum 

2highly conserved SH2 core motif of consensus sequence GXF/YBBR (X for any, B for hydrophobic amino acids) 
containing the arginine residue binding the phosphate (red) 

3length of helix B in Angstroem 
4presence of an  helix resembling the L helix in Spt6 (Fig. 9 B) in position relative to the SH2 fold 
5residue found at the same position as R155 and K203 in the structure of the Src SH2 domain (see also section 
3.1.1) 

6Z-score derived from a DALI-server (Holm & Sander, 1993) search for related protein structures using the Spt6   
 SH2 domain as a query. Higher scores indicate higher similarities (similarities with a Z-score < 2 are insignificant) 
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Figure 10: Unique fold of the Spt6 SH2 domain 

Comparison of the overall structures of the SH2 domains of H. sapiens Src (Waksman et al, 1993), of  

D. discoideum STATa (Soler-Lopez et al, 2004) and of C. glabrata Spt6 (blue). The E F-sheet is coloured in 

green, the Spt6 helix L, as well as STATa linker domain helix 11 are coloured in yellow. The remainder of the 

STAT linker domain is in grey. Below each structure, alignments of the SH2 B core motif of five representative 

sequences are shown (hs = H. sapiens;  dm = D. melanogaster; at = A. thaliana; dd = D. discoideum; nc =  

N. crassa; sc = S. cerevisiae; cg = C. glabrata; sp = S. pombe). The highly conserved arginine residue that binds 

the phospho group is highlighted in red, a conserved phenylalanine residue which is a feature of STAT-type 

domains is highlighted in green. A conserved phenylalanine that is invariant in all SH2 domains except for the 

Spt6 domain is in cyan. 

 

 

3.3.6 The SH2 domain of Spt6 is an ancestor of the mammalian SH2 
domains involved in signal transduction 

 

The preceding analysis of the structure of the Spt6 SH2 domain identified features, that re-

lates it to both structural SH2 domain subfamilies, the Src-type and the STAT-type (Gao et 

al, 2004). Both families occur to different extents in the eukaryotic taxa: Human cells contain 

120 SH2 domains –the large majority of them belonging to the Src-type- distributed over 110 

proteins, that are generally involved in phospho-tyrosine recognition during cell signaling 

events (Liu et al, 2006) (Fig. 3 A). This high abundance of SH2-containing proteins in animal 

cells likely reflects the need for fine-tuned intercellular signaling in these complex organisms. 

Dictyostelium discoideum, an organism that can switch between single-cell and multicellular 

lifestyles, contains 12 different SH2 domain-containing polypeptides, 4 of those as part of 

STAT transcription factors (Eichinger et al, 2005; Williams et al, 2005). Two bioinformatic 

studies have found two SH2 domain sequences in plant genomes, which seem to be related 
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to the STAT-type subfamily (Gao et al, 2004; Williams & Zvelebil, 2004). In contrast to that, 

yeast cells only contain one SH2 domain in the genome: that of Spt6 (Maclennan & Shaw, 

1993).  

Spt6, together with its SH2 domain, is found in all eukaryotic taxa. Thus, the protein existed 

prior to the split of plant and animal lines, as well as the STAT type domains (Fig. 11 A). 

Because the Spt6 structure bears features from both subfamilies it is highly likely that the 

Spt6 SH2 domain is the ancestor of the modern SH2 domains. The hallmark feature of the 

Src-type subfamily – the E F-sheet – clearly was already invented with Spt6 (section 3.3.3, 

Fig. 9 B and Fig. 10), so it is currently the first in SH2 domain development showing this trait. 

The relationship between the Spt6 SH2 domain and members of the Src-type subfamily can 

also be shown by a phylogenetic analysis of their protein sequences (Fig. 11 B). There, Spt6 

clusters together with other domains of the Src-type, whereas STAT proteins form their own 

cluster. 

 

 

 

Figure 11: Evolution of SH2 domains 

(A) Unscaled phylogenetic tree of eukaryotic organisms (Eichinger et al, 2005). For every taxon, a representative 

model organism is indicated together with the number of SH2 domain-containing proteins and STAT proteins. 

Colours of the branches of the tree indicate the distribution of SH2 subfamilies and Spt6 in the different taxa 

(Spt6, blue, STAT-type, magenta, Src-type, orange). The dashed, orange line in the Dictyostelium branch reflects 

the fact that it is unclear for some of the twelve SH2 domains to which subfamily they belong.  

(B) The Spt6 SH2 domain (blue) clusters with Src-type domains in a phylogenetic analysis. The cluster of STAT 

sequences is shown in purple. Organisms are indicated as in Fig. 10. The unrooted phylogenetic tree was 

calculated with Proml (Protein maximum likelihood) and drawn by Drawtree, which represent tools of the PHYLIP 

software package version 3.67 (Felsenstein, 1989), figure was provided by Andreas Mayer). 
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The evolutionary relationship to STAT-proteins is less clear. The L-helix, as well as the 

extended B helix might be a primitive or a degenerated relative of the STAT-linker domain 

and the B’ B-motif, respectively. However, the Spt6 SH2 domain is the „minimal 

equipment“ for a eukaryotic cell in terms of SH2 domains, given that the yeast genome 

encodes only one. This strongly suggests a similar situation in a eukaryotic precursor cell at 

the root of the eukaryotic tree of life. 

Spt6 is not found in prokaryotic cells. However, in pathogenic bacteria, a gene-product was 

identified which is involved in the expression of toxin genes (Fuchs et al, 1996). Primary 

sequence analysis of this protein, named Tex (for toxin expression), identified a similar 

domain architecture for Tex and parts of Spt6 (Ponting, 2002): YqgF, HhH and S1 RNA-

binding domains were identified in both proteins (see also Fig. 9 A). Spt6 contains an 

additional N-terminal nucleosome binding domain (Johnson et al, 2008) as well as the  

C-terminal SH2 domain. Thus, the core structure of Spt6 might have evolved from the Tex 

protein (Johnson et al, 2008) and the additional domains might have evolved as an adaption 

to eukaryotic processes, like interactions with nucleosomes and with the CTD of Pol II.  

 

3.3.7 The conserved phospho-binding pocket can explain the unusual 
phospho-serine specificity 

 

The domain surface of the Spt6 SH2 domain shows a conserved patch that includes a small 

pocket (pocket 1, Fig. 12 A) that contains an invariant arginine residue (R1281). This arginine 

is present in all known SH2 domains and interacts directly with the phosphate group of the 

target phosphopeptide in the SH2 domain-phosphopeptide complex (Waksman et al, 1992)  

(Fig. 12 D). In the "SeMet mutant CD" crystal form 1, R1281 binds a succinate ion that was 

present in the crystallization buffer. R1281 side chains from two neighboring domains in the 

crystal each bind a carboxylate of the succinate ion (Fig. 12 B). This observation is 

consistent with a high affinity of pocket 1 for negatively charged chemical groups, and the 

conserved phospho-binding function of R1281. Indeed, mutation of R1281 decreased the 

interaction of the SH2 domain with the phosphorylated CTD in vitro (Yoh et al, 2007). 

We next modeled the possible CTD interaction with the use of the known Src SH2 domain-

phosphopeptide complex structure (Waksman et al, 1993) (Fig. 12 D). The two structures 

were superimposed with their conserved residues in the central -sheet of the core domain 

fold. The phospho-binding pockets are highly similar in structure. The positions of C -atoms 

of the residues that form pocket 1 are essentially identical (Fig. 12 D). The Spt6 residue 

R1281 perfectly aligns with the phospho-tyrosine binding residue R175 of Src and is thus in a 

position to make contacts with the phosphate by specific hydrogen-bonding interactions 

between the two terminal nitrogens and two phospate-oxygens (Fig. 12 E). Although the 
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position of the residues of the phosphate-binding-loop B- C deviates slightly from those of 

Src (dashed blue line in Fig. 12 D), additional contacts of the phosphate group are likely 

conserved, including hydrogen bonds to a backbone amide (E178 in Src, S1284 in Spt6) and 

to the side-chain hydroxyl group of at least one of two residues (S177 and T179 of Src, 

apparently corresponding to S1283 and S1284, respectively, of Spt6). 

Whereas the contacts to the phosphate group are likely conserved, modelling suggests that 

contacts to an aromatic ring of a phospho-tyrosine side chain are apparently not possible in 

the Spt6 domain, consistent with binding to a phospho-serine peptide. The specific 

recognition of the phospho-tyrosine aromatic ring by Src is achieved by amino-aromatic 

interactions, where the -electrons of the aromatic ring interact with the amino groups of 

residues R155 and K203 in Src (Fig. 12 E). The aromatic ring of the phospho-tyrosine is 

sandwiched between these two residues (Fig. 12 D). Whereas the two residues 

corresponding to Src residues R155 and K203 are conserved in the majority of SH2 

domains, some SH2 domains lack one of them (Table 17). However, the SH2 domains of 

Spt6 and Cbl are the only SH2 domains within our structural comparisons, in which both 

residues are not conserved. Src residues R155 and K203 are replaced by residues G1263 

and D1305 in Spt6. The negatively charged residue D1305 was only observed  in Spt6 and is 

predicted to repel aromatic -electrons, consistent with the selection of serine over tyrosine. 

The alignment also shows that pocket 1 is more shallow in Spt6 than in Src (Fig. 12 F). Thus, 

the Spt6 pocket 1 is suited for phosphate binding and R1281 is better accessible from the 

solvent than in Src, making it possible to interact with a short phosphorylated serine side 

chain, instead of tyrosine. 
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Figure 12: Surface properties of the Spt6 SH2 domain 

(A) Conservation of surface residues. Residues are coloured according to the alignment in Fig. 9 A, with green for 

invariant and orange for conserved residues. The putative peptide-binding pockets 1 and 2 and surface residues 

implicated in peptide binding are indicated.  

(B) 2Fo-Fc electron density map, contoured at 1 , for the arginine residue R1281 of neighboring domains in the 

crystal and a bridging succinate ion.  
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Figure 12 (continued) 

(C) Surface charge distribution of the Spt6 SH2 domain (left) and the Src SH2 domain (Waksman et al, 1993). 

The phosphopeptide bound to the Src domain is shown as a stick model in red, only 4 residues of the original 

structure are shown. The charge distribution is calculated with APBS (Baker et al, 2001). 

(D) Superposition of the Src SH2 domain-phosphopeptide complex structure (Waksman et al, 1993) and the Spt6 

SH2 domain (blue). Structures were aligned using the most conserved residues (G1276-R1281, L1290-K1295, 

Q1302-E1308) of the central -sheet strands. The -sheets aligned very well, resulting in a RMSD of 0.4 Å for 19 

C  atoms. On the right, a close-up view of the phospho-binding site is shown. Src residues that interact with the 

phosphotyrosine are in orange, and corresponding residues in Spt6 are in blue. The dashed blue line indicates 

the position of loop B- C of Spt6. 

(E) Conservation of the phospho-binding pocket. The modeling of (D) was used to delineate the Spt6 residues 

predicted to be involved in phospho-group binding based on the Src SH2 domain-peptide complex structure. 

Interactions of Src residues with the phospho-tyrosine (Waksman et al, 1992) are in orange, and potential 

corresponding interations of the Spt6 residues with the phospho group are in blue. Phospho-mimetic interactions 

of residues with succinate are in green. Stars indicate the residues depicted in (D).  

(F) Different shape of the phospho-binding pocket. The molecular surfaces of the phospho-binding pockets in 

Spt6 and Src are in blue and orange, respectively, and the phospho-tyrosine residue of the peptide bound to Src 

is in red. 

 

 

 

 

3.3.8 A model for CTD binding 

 

We created a model for possible interactions with the CTD (Fig. 13). The model is based on 

the interactions of the human Src-protein with its high affinity target peptide (Waksman et al, 

1993). In this structure, the peptide runs across the binding surface from pocket 1 to pocket 2 

(Fig. 12 C, right), the polaritiy is dictated by the interaction of the phosphotyrosine with 

pocket 1 and an isoleucine C-terminal of the pY with pocket 2. This binding mode is used by 

most SH2 domains (“two-pronged plug“, see Fig. 3 C)  and likely by the SH2 domain of Spt6, 

since a stretch of conserved surface residues extends from pocket 1 to a second pocket 

(pocket 2, Fig. 3 A). 
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Figure 13: Model for binding of the Spt6 SH2 domain to the Pol II CTD 

Suggested path for CTD phosphopeptide binding to the SH2 domain (dashed black line) and implications for 

specific binding to the Ser2-phosphorylated CTD. The Spt6 SH2 domain is shown with its surface charge 

distribution as in Fig. 12 C. 

In Src, mainly pocket 2 is important for substrate specificity (Kimber et al, 2000; Waksman et 

al, 1993) and accommodates the residue three residues C-terminal of the phospho-tyrosine 

(register +3, Fig. 13). Pocket 2 is negatively charged in Spt6, whereas it is slightly positively 

charged in Src (Fig. 12 C) and is hydrophobic or positively charged in most other SH2 

domains. Amongst ten Src-type and four STAT-type SH2 domains that we picked randomly 

(from Table 17), pocket 2 was negatively charged in only two domains and otherwise 

generally hydrophobic or positively charged (Appendix Fig. A2). The unusual negatively 

charged pocket 2 may be important for specific phosphopeptide binding. Assuming that a S2-

phosphorylated CTD peptide runs along the same path as in the Src-peptide complex, the 

CTD residue Ser5 at register +3 from the phosphoserine could bind into pocket 2. However, 

the presence of 2 phospho-aminoacids (S2 and S5) that could potentially bind into pocket 1, 

makes the situation more complex in terms of selectivity of binding. S5 can also bind into 

pocket 1, which would bring Y1 of the CTD heptad repeats into position (register +3) to 

interact with pocket 2. Selectivity could be accomplished, by sterically rejecting the large, 

aromatic side chain of tyrosine from the shallow, negatively charged pocket (in comparison to 

the small, polar side chain of serine in case of S2-phosphorylated CTD). In case of doubly 

phosphorylated CTD at S2 and S5, the S5-phosphate would be in register +3. The negative 

charge of phospho-Ser5 at the selective position would be repelled by the negatively charged 

pocket 2. (Fig. 13) This model can explain why the Spt6 SH2 domain exclusively binds to 

Ser2-phosphorylated CTD and not to CTD phosphorylated at Ser5 (Yoh et al, 2007).  
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3.3.9 CTD peptide soaks using existing Spt6 SH2 crystals 

 

To test our model of Spt6-CTD interactions we attempted to solve the complex structure. An 

efficient method to solve the structure of protein-ligand complexes is to „soak“ a small 

binding molecule into the crystals of the protein. This can be accomplished because of the 

large solvent content of protein crystals and a relatively good accessibility of protein surfaces 

that are not involved in crystal contacts. 

The „SeMet mutant CD crystal form 1“ (Fig. 7 B) was not suited for this task, since succinate 

molecules were occupying the phosphate-binding pocket (pocket 1), bridging between two 

molecules of the SH2 domain by binding to the highly conserved R1281, thus making crystal 

contacts (Fig. 12 B). Indeed, incubation of these crystals with CTD peptides in a control 

experiment led to the solvatation of the crystals. Likewise, soaking trials with native and 

„SeMet mutant CDE“ crystals (Fig. 7 B) were not successful because incubation with the 

peptides at different concentrations for different times, led to a loss of diffraction. The crystals 

of „SeMet mutant CD crystal form 2“ (Fig. 7 B) showed a good behaviour, stable diffraction, 

and their structure was already solved by molecular replacement, which showed that peptide 

binding pocket 1 of 2 molecules in the asymmetric unit of the crystal was pointed towards 

solvent and free to bind the target peptide. Unfortunately, these crystals were grown in high 

ionic strength (4,3 M NaCl, Table 13 and Fig. 7 B). Since the binding of the SH2 domain with 

the CTD-peptides is mainly based on ionic interactions, these conditions were classified as 

not suitable for soaking experiments. Thus, we tried to prepare these crystals for soaking, by 

gradually exchanging the high salt crystallization buffer to a low salt soaking buffer. This 

screening procedure is described in section 3.2.7. A condition was found were crystals 

cracked immediately upon transfer, but healed after short time (Fig. 14). This condition was 

chosen as a starting point for further screening, since the observed healing suggested that 

the crystal lattice could recover in these conditions and seemed to be intact.  

 

Figure 14: Crystal healing after transfer to low salt buffer 

A crystal that was grown in buffer Spt6 SH2-2 (left, see 2.1.4, Table 13) which was transferred directly into Spt6 

SH2 desalting buffer (middle) is shown. The crystal showed large cracks upon transfer, which healed about 30 

seconds afterwards (right).  
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Finally, the crystals could be directly transferred to a buffer containing 900 mM NaCl, 

stabilized by 42.5% PEG 2000 containing phosphorylated CTD peptides for one hour 

without extensively decreasing diffraction quality (3.2.8). Two datasets were obtained with 

this method, one of a crystal soaked with peptide P1 and one soaked with peptide P2 (2.1.2, 

Table 6).  

The structure was solved by molecular replacement as described in 3.2.5 for crystal form 2, 

with the exception that the structure was not refined to the end (see Table 18 for statistics). 

After the first round of refinement, the electron density map was inspected for positive 

difference electron density in the binding-pocket of the SH2 domain, which would indicate 

binding of the soaked peptide. The high Rfree at this point of refinement can be explained by 

the large rearrangements in loop BC and DE (Fig. 9 C). 

Since no density was observed in both datasets that could be assigned to peptide, the 

refinement procedure was cancelled. The failure of the experiment can be explained by the 

still high salt concentration in the soaking condition ( 900 mM) which might disrupt 

phosphate binding. Crystals in conditions of lower ionic strength could not be obtained due to 

a loss of diffraction. Another explanation is that the SH2 domain variant in the crystals as well 

as the synthetic peptides used might  not be sufficient to confer binding. This is adressed in 

section 3.3.10. 

Table 18: : X-ray diffraction and refinement statistics for desalted crystal form B, soaked with synthetic 

peptides P1 and P2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
soak P1 
 

soak P2 

Data collection   
Space group P32 P32 
Cell dimensions     
    a, b, c (Å) 70.4, 70.4, 88.8 70.2, 70.2, 89.1 
   , ,   (°) 90, 90, 120 90, 90, 120 
   
Wavelength (Å) 1.00841 1.00841 
Resolution (Å) 40-2.7 40-3.0 
Rsym (%) 4.4 (94.7) 4.8 (76.9) 
I /  I 35.0 (2.2) 34.5 (2.6) 
Completeness (%) 99.0 (87.1) 99.1 (88.1) 
Redundancy 11.3 (7.2) 11.4 (7.6) 
   

Refinement 
Molecular replacement as described in 
3.2.5 then restrained refinement using 
Refmac5 

Rwork / Rfree (%) 24.8 / 34.9 23.7 / 39.0 



3 Structure and requirement of the Spt6 SH2 domain 58 

3.3.10 The SH2 domain is insufficient for binding short CTD phospho-
peptides 

 

We tested whether the Spt6 SH2 domain binds to short, syntehic CTD peptides that were 

phosphorylated at Ser2 residues. We used the SH2 domains of Spt6 from S. cerevisiae 

(residues 1251-1351) and human (residues 1327-1427), together with two different peptides. 

The first one comprising a single CTD heptad repeat and a single phosporylated Ser2 

(peptide P1) and a tandem repeat with two phosphorylated serines (SPSYpSPTS and 

YpSPTSPSYpSPTSPS, respectively. See 2.1.2, Table 6). For fluorescence anisotropy 

experiments, peptide P2 was modified by a fluorescein molecule attached to the N-terminus 

of the peptide by a -aminocaproic acid linker. An additional serine residue was added to the 

N-terminus in comparison to peptide P2, to assure enough space for the protein-peptide-

interaction (P3, see 2.1.2, Table 6). We assayed binding by fluorescence anisotropy (3.2.9) 

and by surface plasmon resonance (Biacore, see 3.2.10), but could not detect significant 

binding. Since the published Spt6-CTD interaction (Yoh et al, 2007) used a C-terminal 

fragment of murine Spt6 that did not only include the SH2 domain, but also the adjacent C-

terminal region (residues 1295-1496, whereas the SH2 domain spans residues 1327-1427), 

the SH2 domain alone and/or short CTD fragments are apparently insufficient for an 

interaction between Spt6 and Pol II. Since mutation of the invariant arginine residue 

abolished CTD binding, the SH2 domain is involved in the interaction but apparently requires 

its flanking regions and/or multiple phospho-CTD repeats. Very recent results confirm our 

findings. Yoh and colleagues (2008) show, that a C-terminal fragment of Spt6 containing the 

SH2 domain does not bind syntethic Ser2-, and Ser2-Ser5-phosphorylated tandem CTD-

repeats. In addition, they report that Spt6 binds selectively to the N-terminal and not the C-

terminal half of the CTD in vitro, dependent on phosphorylation by P-TEFb. This region of the 

CTD contains 15 consensus tandem repeats of the CTD motif. This data indicates that a 

higher ordered CTD structure is required for binding of Spt6, consistent with the finding that 

the CTD can adopt different conformations induced by its binding partner (Meinhart & 

Cramer, 2004). 

 

3.3.11 Functional architecture of Spt6 

 

The central region of Spt6 shows homology to the bacterial Tex protein, which is involved in 

toxin gene expression (Fuchs et al, 1996; Johnson et al, 2008). The recent X-ray structure of 

Tex revealed the folds and relative position of domains HtH, YqgF, HhH, and S1 in the 

conserved central region (Johnson et al, 2008). Spt6 additionally contains an acidic N-

terminal region, which might interact with nucleosomes, the C-terminal SH2 domain, and 

short regions flanking the SH2 domain. The previously published model of Spt6 (Johnson et 
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al, 2008) can now be extended with our structure of the SH2 domain (Fig. 15). To create an 

updated model, we aligned Spt6 and Tex protein sequences (Appendix Fig. A1) and mapped 

the 13 resulting sequence insertions in Spt6 onto surface regions within the Tex structure 

(Fig. 15), and added the structure of the SH2 domain. The model illustrates the relative sizes 

and locations of the various regions of the modular Spt6 protein, and is consistent with the 

idea that one side of Spt6 is involved in recruiting Spt6 to the transcribing Pol II via 

interactions with the nascent RNA and the phosphorylated CTD, whereas the other side is 

involved in nucleosome reassembly. 

 

 

Figure 15: Updated structural model of Spt6 

(A) Schematic representation of the Tex domain organization. The relative positions of insertions in eukaryotic 

Spt6 with respect to the bacterial Tex protein were identified by aligning the C.glabrata Spt6 and the  

P. aeruginosa Tex sequences (see Appendix Fig. A1) and are indicated with encircled numbers. The number of 

additional amino acid residues in Spt6 is also indicated. Boundaries of the Tex domains are indicated with 

numbers below the schematic representation.  

(B) ribbon representation of the model for Spt6. Insertions in Spt6 are indicated by dashed lines. The relative 

position of the SH2 domain is arbitrary. Arrows point to potential interaction partners of the different domains. 
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3.3.12 The Spt6 SH2 domain has a widespread function in vivo 

  

Results in this section are the work of Andreas Mayer and are presented here for discussion. 

To investigate the importance of the Spt6 SH2 domain in vivo, we carried out Affymetrix gene 

expression profiling (Affymetrix GeneChip Yeast Genome 2.0) with a yeast strain lacking the 

C-terminal region of Spt6 that includes the SH2 domain (Youdell et al, 2008) (strain spt6 C, 

2.1.1, Table 3). Compared to a wild type strain, 790 out of 5665 genes that were present on 

the array showed significantly altered mRNA levels using a fold-change cut-off value of 

greater +2.0 or smaller than -2.0. Thus the Spt6 SH2 domain is necessary for the regulation 

of a subset of genes (14%) in Saccharomyces cerevisiae. The extent of deregulation of gene 

expression is comparable to strains carrying deletions of other Pol II elongation factor genes, 

including genes encoding subunits of the Paf1 complex (13% for paf1 and 15% for ctr9) 

(Penheiter et al, 2005). Of the mRNAs with significantly altered levels, 465 were up-regulated 

and 325 were down-regulated (Fig. 17 A), suggesting a repressive function of the SH2 

domain at a majority of genes. Western blotting revealed that yeast cells adapt to the 

deletion by increasing the Spt6 protein levels (Fig. 16), which could compensate a failure of 

the mutant protein to localize to the transcription machinery. However, this does not restore 

the wild type phenotype in terms of growth, since the mutant strain shows a slow growth 

phenotype. Elevated Spt6 levels in the mutant can also root in a less efficient degradation of 

the TAP-tagged mutant protein. We were not able to resolve this problem because no 

antibody against the yeast Spt6 protein is available. 

 

 

Figure 16: The cellular concentration of Spt6 

increases when  SH2 containing C-terminus is 

deleted 

Western Blot of Spt6 proteins with a C-terminal 

TAP-tag, resolved in a 8% SDS-PAG. The mutant 

variant of Spt6 shows elevated expression levels 

relative to wild-type Spt6 and tubulin. 

 

 

We next analyzed biological processes that were significantly affected by deletion of the SH2 

domain with the Gene Ontology Enrichment Analysis Software Toolkit (GOEAST) and the 

web-based Gene Ontology (GO) tools (Ashburner et al, 2000; Zheng & Wang, 2008). This 

analysis showed that very diverse biological processes were over-represented, including 

genes involved in the response to toxins, in copper ion transport, and in thiamin metabolic 

processes. 
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A deconvolution of gene expression microarray data is generally difficult as it represents the 

result of primary and secondary effects during gene expression. We nevertheless aimed at 

detecing a possible global, chromatin-related function of the SH2 domain in the 

transcriptome data, with use of correlation analysis. We first investigated whether the 

deregulated genes correlate to genes that were previously described to show cryptic 

transcription initiation in a spt6 mutant that carried an internal deletion of amino acids 931-

949 (corresponding to 930-993 in C. glabrata and comprising the HhH-domain marked purple 

in Fig. 15). From the 960 ORFs that showed cryptic transcription (Cheung et al, 2008), only 

147 were included in our spt6 C differential gene expression profile (Appendix Fig. A3). We 

also investigated whether our set of differentially expressed genes shows any correlation 

with gene length or an unusual number of associated nucleosomes (Lee et al, 2007). 

However, we could not find any significant correlations. These results are consistent with the 

view that Spt6 has multiple functions and is not only required for nucleosome assembly but 

also for mRNA splicing and  

export (Yoh et al, 2007), and that it contains different functional surfaces (Fig. 15) that are 

perturbed in the different mutants. 

To address the problem of secondary effects that influence the microarray data, we 

compared the differentially expressed genes in the spt6 C mutant to a list of transcription 

factors (Hu et al, 2007). 33 genes of transcription factors are contained in our list of genes, 

which is more than 4% of all affected genes in the spt6 C mutant (Appendix Fig. A4). This 

suggests that a number of alternatively expressed genes can probably be related to 

secondary effects induced by the Spt6 mutation. With the tools available, it is currently not 

possible to reveal details of this defective regulation networks. 

To analyze whether the expression of similar genes is affected by deletion or mutation of 

different Pol II elongation factor genes, we compared our gene expression data to available 

data for the yeast strains dst1  (DST1 is the gene encoding TFIIS, (Koschubs et al, 2009), 

spt4 , and rtf1 , (Hu et al, 2007). We expected similarity between these data sets since Spt6 

interacts genetically with TFIIS (Hartzog et al, 1998) and with the Rtf1-containing Paf1 

complex (Costa & Arndt, 2000; Mueller & Jaehning, 2002), and since Spt6 binds the Spt4-

Spt5 complex (Krogan et al, 2002). An unsupervised hierarchical cluster analysis showed 

that the differential expression data from the spt4  and rtf1  strains form a distinct cluster 

within a dendrogram, indicating similarity of their gene expression profiles (Fig. 17 B, lanes 2 

and 3, Methods). However, the spt6 C mutant exhibits a very different expression profile 

(Fig. 17 B, lane 1), suggesting that the function of the Spt6 SH2 domain is clearly distinct 

from the functions of Spt4-Spt5 and the Paf1 complex in vivo. This analysis additionally 

revealed that dst1  showed the most distinct expression profile (Fig. 17 B, lane 4), maybe 

because TFIIS is not only required during elongation, but also during initiation (Guglielmi et 

al, 2007; Kim et al, 2007). Additional correlation studies confirmed these results.  
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Figure 17: The Spt6 SH2 domain is required for normal gene expression in vivo 

(A) Differentially expressed genes as detected by microarray analysis of the spt6 C strain. The fraction of up- and 

down-regulated genes is shown in red and green, respectively. In total, 790 genes showed significantly altered 

mRNA levels between Spt6 wild-type and the spt6 C strain. All gene expression analysis was performed with 

biological duplicates.  

(B) Cluster analysis of differential gene expression profiles of different Pol II elongation factor deletion strains. The 

cluster diagram was calculated for 1350  yeast genes of spt6 C, spt4 , rtf1  and dst1  mutant strains, depicted 

in lanes 1, 2, 3, and 4, respectively. Each row corresponds to a particular gene and each column corresponds to a 

particular elongation factor mutant. Changes in mRNA levels compared with the isogenic wild-type strain are 

depicted in red (increase), green (decrease) or black (no change; see intensity bar). Both rows and columns were 

clustered using a hierarchical cluster algorithm (Saeed et al, 2003). The dendrogram for column clustering is 

shown.  

(C) Pearson’s correlation matrix for gene expression profiles of yeast strains spt6 C, spt4 , rtf1  and dst1 . The 

corresponding correlation coefficients are given. 

The figure was kindly provided by Andreas Mayer. 
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A weak correlation was detected between expression profiles of spt4  and rtf1  strains, but 

no significant correlations were seen between the profiles of the remaining mutant strains 

(Fig. 17 C).  Taken together, deletion or mutation of various elongation factor genes results in 

different changes in the transcriptome, despite the observed genetic and physical interations 

between these factors. 

Taken together, this data shows that the deletion of the Spt6 SH2 domain from the genome 

has a dramatic effect on gene expression. It is currently not resolved if this observation is 

mainly due to the absence of the domain and a resulting defect of Spt6 to recognize the Ser2-

phosphorylated CTD of Pol II, or to raised Spt6-levels in the mutant strain. However, this 

data shows the general importance of Spt6 and especially of its SH2 domain for correct 

transcription of the yeast genome. 
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3.3.13 Spt6 co-localizes with Pol II on the yeast genome 

 

The occupancy profile of C-terminally TAP-tagged Spt6 on the yeast genome showed a high 

correlation to the profiles of Pol II subunits Rpb3 (Pearson correlation coefficient 0.86) and 

Rpb7 (Pearson correlation coefficient 0.87) (Jasiak et al, 2008). Thus, the pearson coefficient 

is only slightly lower than the correlation coefficient of Rpb3 and Rpb7 (0.91), which are both 

part of the same multisubunit complex. This means that Spt6 localizes together with Pol II on  

Figure 18: Genome-wide occupancy profiling of transcription elongation factor Spt6 

A representative 230 kilobase pair sample on chromosome one (genomic positions 0-230.000) of the profiles for 

Rpb3 and Spt6 are depicted. Each green dot represents the signal for a single oligonucleotide probe on the tiling 

array, which has one probe every 32 bp. An example for a region in the genome with different Pol II/Spt6 

occupancy is marked red. 

(A) Difference signal between averaged Rpb3 (B) and Spt6 (C) occupancy profiles. 

(B) Average over three biological replicate traces for Rpb3, one of which with interchanged fluorescent dyes 

(Jasiak et al., 2008) 

(C) Average over two biological replicate traces for Spt6, both with interchanged fluorescent dyes 

(D) Genomic features based on the Saccharomyces genome database annotations 

The figure was kindly provided by Matthias Siebert 
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a genome-wide scale. The significance of these profiles is described in Jasiak et al (2008): 

housekeeping genes as well snoRNA genes show a high occupancy, which is expected 

expected, because these genes are highly expressed. tRNA-genes, that are expressed by 

RNA polymerase III show no increased occupancy. Fig. 18 shows a representative 230 

kilobase sample of the profiles for Spt6 and Rpb3. The profiles are virtually similar, but show 

slight differences in some positions (Fig. 18, marked red). 

We asked, if our data shows recruitment of Spt6 relative to Pol II that parallels Ser2-

phosphorylation of the CTD. We would expect to observe an increase of Spt6 occu-pancy 

towards the 3’ end of the transcribed regions, since it was shown that the SH2 domain binds 

exclusively to the CTD when phosphorylated at Ser2 residues (Yoh et al, 2007), which 

predominate only in 3’ regions of a gene (Komarnitsky et al, 2000). We could not observe 

this general behavior of Spt6 in the occupancy profile.  

To further analyze this question, we asked if the effect of an interaction between the CTD 

and the SH2 domain can be seen at genes of similar length, when the ChIP signals of these 

genes are averaged. For this, based on the Rpb3-data, we filtered out genes with an average 

ChIP signal < 0.2 to eliminate genes that are not transcribed. In addition, overlapping genes 

(both on the same strand and on the opposite strand) were eliminated to get clean signals 

from single genes. For the same reason we excluded neighboring genes that were too close 

to assign clean signals because of a "smearing" of ChIP signals in 5’ and 3’ regions. This 

resulted in 638 genes that showed a distribution in length as shown in Fig. 19 A. We used 

those classes for our analysis, that contained a sufficiently high number of genes (green in 

Fig. 19 A).  

The results of our analysis are shown in Fig. 19 B. The averaged Rpb3 ChIP-signal is high 

around the Start-codon (green, dashed line) and has its maximum shortly after that. This 

behavior can be seen in all classes of gene length and can be explained by polymerases 

paused at promoter proximal sites. In contrast to that, the averaged Spt6 signal shows a 

delay in comparison to the Pol II occupancy, with increasing density toward the 3’ end of 

transcribed regions. This effect decreases with increasing gene length. Thus, Spt6 shows an 

occupancy profile that roughly parallels Ser2-phosphorylation of the CTD, but only when the 

signals of many genes of the same length are averaged. Since it is crosslinking efficiency 

that is directly measured in a ChIP-experiment this effect could be explained by a change in 

crosslinking efficiency of Spt6 relative to Rpb3. Since it can only be seen in the averaged 

data, the effect seems to be very subtle and can rather be explained by a rearrangement 

between Spt6 and Rpb3 (or Pol II) than by a recruitment of Spt6 to the transcription 

machinery by Ser2-phosphorylated CTD. 

Unexpectedly, the Spt6 occupancy has a peak around the Stop codon and shows a 

prolonged signal beyond the end of the coding region in comparison to Pol II (Fig. 19 B). To 

test if this is significant or an artifact of our data processing, we averaged the signals of all 

genes, independent of their length, around the Start codon (+/- 500 bp) and the Stop codon  
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Figure 19 (preceding page): Differences in averaged occupancy profiles of Pol II and Spt6 

(A) Distribution of genes into classes of different length after filtering out untranscribed, overlapping and closely 

spaced genes (see text for details). Length classes that were used for further analysis are marked green. 

(B) Plots of the averaged ChIP-on-chip signals of the different length classes from (A). Classes are indicated 

above the plots. Averaged Rpb3- and Spt6-ChIP signals are shown in red and blue, respectively. The absolute 

values of different datasets cannot be related to each other. 

(C) Plots of averaged ChIP-on-chip signals of the Rpb3-, Rpb7- and Spt6-datasets around regions of the Start 

and the Stop codon. The ChIP-on-chip signal is averaged from all genes. Rpb3-, Rpb7- and Spt6-signals are 

shown in red, green and blue, respectively. Rpb3- and Rpb7-ChIP-on-chip data is from Jasiak et al (2008). 

The plots were kindly provided by Matthias Siebert. 

 

 

 (+/- 500 bp). For this we used the Rpb3 and the Spt6 datasets and in addition the data of the 

Rpb7 ChIP-on-chip experiment (Jasiak et al, 2008). The ChIP-data from Rpb7 is 

independent from the Rpb3-data, but both proteins are Pol II subunits. Indeed, Rpb3 and 

Rpb7 show similar profiles proximal to the Start and the Stop codon, whereas Spt6 again 

shows a maximum around the Stop codon and a longer retention in the 3’ regions of the 

genes relative to Pol II, which is strengthening the significance of our data analysis. 

 

3.4 Conclusions and future perspective 

In this work, the structure of the SH2 domain of transcription elongation factor Spt6, including 

a deep analysis of the biological implications of the structure is presented. The results are 

highly informative for different reasons: First, Spt6 is an essential regulator of transcription 

elongation through chromatin and the structure of its SH2 domain is the first structural 

information available for this factor. Second, the Spt6 SH2 domain is the only SH2 domain 

present in the yeast genome, in contrast to the great variety of these modules we have in 

human cells (>100 domains). Thus, the Spt6 domain represents the „minimal equipment“ of a 

lower eukaryotic organism in terms of SH2 domains. By analysis of our structure, we were 

able to put the Spt6 domain in a evolutionary relationship to known structures. This revealed 

that the domain exhibits features of „modern“ SH2 domains that are involved in cell signaling 

pathways. This makes the Spt6 domain an ancestor of this important modules. Thus, our 

data gives an exciting insight into the molecular evolution of SH2 domains.  

Furthermore, the Spt6 SH2 domain is of special interest because it connects Spt6 directly to 

the transcription machinery and thus is of great importance for its function. It shows a 

different specificity in that it binds to Ser2-phosphorylated CTD, wheres all other SH2 

domains on which structural information is available bind to tyrosine-phosphates. 

Unfortunately, we were not able to elucidate functional information of the interaction of the 

SH2 domain and the CTD due to the limitations described. A recent publication showed that 
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the interactions between the Spt6 SH2 domain and the CTD might be more complex 

compared to the interactions of other SH2 domains and their targets, as higher order CTD-

structures seem to be involved (Yoh et al, 2008). Nevertheless, models emerged from our 

analysis that are experimentally testable as soon as we have obtained the right combination 

of SH2 domain variant and CTD-peptide to establish a binding assay. Interestingly, we have 

found a second -motif directly C-terminal to the SH2 domain. Thus we suspect the 

presence of a tandem SH2 domain in the C-terminal region of Spt6. We have already 

initiated work to tackle this question, which led to the crystallization of the whole C. glabrata 

Spt6 C-terminus. Consequently, we will soon learn more about the molecular interactions 

between the transcription machinery and elongation factor Spt6. 

We showed the importance of the Spt6-SH2 domain for the correct transcription of the yeast 

genome. It is at this point still difficult to decide if the differential gene expression we see 

stemms from the absence of the domain or from the resulting change in cellular Spt6 

concentrations, but we initiated work to decipher this problem. Furthermore, a consistent 

interpretation of such results is still difficult as we show by our analysis of the transcription 

factors that are affected in their expression levels in the spt6 C mutant (Appendix Fig. A4). 

This means that a considerable number of the altered expression levels in the dataset are 

likely produced by secondary effects rather than by the mutation itself. In future, 

computational tools are needed, that integrate knowledge about cellular regulation networks 

with the genome-wide expression data to unravel these complex interdependency. It is 

however fascinating to see the dramatic changes in gene expression upon the deletion of a 

100 amino acid module from an elongation factor. This in principle shows the tight and 

minute regulation of transcription at the level of elongation. 

We created a map of Spt6 occupancy on the S. cerevisiae genome and compared it to the 

localization-map of Pol II that was previously published from our lab (Jasiak et al, 2008). The 

result was unexpected, as we saw Spt6 localizing basically to the same positions as Pol II 

throughout the genome. In light of the general importance of Spt6 for various processes like 

chromatin maintenance (Bortvin & Winston, 1996), histone methylation (Yoh et al, 2008) and 

mRNA processing and export (Yoh et al, 2007) it seems reasonable that Pol II keeps 

important factors like Spt6 in close proximity for the efficient transcription of genes. Because 

Pol II- and Spt6-localization was so similar, we could initially not detect recruitment of Spt6 

paralleling the Ser2-phosphorylation of the CTD of Pol II as might be expected from the SH2 

domain - CTD interaction. Only by averaging the signals of many genes a slight effect could 

be detected that seems not to be an artifact of data processing. This effect could be 

explained by a subtle change in the crosslinking behaviour between Pol II and Spt6 due to a 

rearrangement within a higher order structure. However, the analysis of complex genome-

wide data is still developing and our data analysis suggests a way to extract information that 

is hidden in the mere occupancy profiles of proteins. The significance of this procedure still 

has to be evaluated, for example by comparison to the localization profiles of other 
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elongation factors and to gene specific factors. It will be interesting to see, if proteins that 

interact with Ser5-phosphorylated CTD show a similar, but inverted behavior like Spt6 in our 

data. In addition, such data could be useful to define factors that generally localize together 

with Pol II on the genome in a higher ordered structure like a „transcription factory“.  

In summary, a combined, interdisciplinary approach as outlined in this part of the thesis will 

be increasingly powerful to understand proteins and their interactions in a broad context. 

However, the development of more powerful computational methods to analyze the complex 

data derived from genome-wide investigations will be needed to uncover hidden layers of 

information that will add up on the knowledge that will be gained on the interactions of 

cellular components. 
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4 An in vitro system to test the “torpedo model” of 

transcription termination  

4.1 Introduction 

4.1.1 The 5’-3’ exoribonuclease-complex Rat1/Rai and the "torpedo 
model" of transcription termination 

 

The "torpedo model" of transcription termination was first mentioned in 1988 (Connelly & 

Manley, 1988). In their work, Connelly and Manley found that in their transient expression 

assays in human cells, that an intact polyadenylation signal is required for transcription 

termination by Pol II. They proposed a model, where after poly(A)-site-induced cleavage of 

the nascent transcript, downstream RNA is degraded by a 5’-3’ exonuclease which, upon 

reaching the still elongating polymerase gives the signal to terminate. Although they did not 

use the term "torpedo model", it is still used to describe the events that could terminate 

transcription. The concept was further strengthened when it was discovered, that not only the 

poly(A)-signal is mandatory for termination (Connelly & Manley, 1988; Logan et al, 1987), but 

also the factors that accomplish cleavage (or at least some of them) are required for effective 

termination at the CYC1 gene, whereas mutations in polyadenylation-factors did not show 

severe effects (Birse et al, 1998). The "torpedo model" gained strong support, when a 

candidate nuclease was found. Affinity chromatography with Ser2-phosphorylated CTD led to 

the purification of Rtt103. This protein contains a CTD-interaction (CID) domain that is 

related to that of Pcf11 (Meinhart & Cramer, 2004). In addition, the Rat1/Rai1 nuclease 

complex was found to interact with Pol II/Rtt103 (Kim et al, 2004). Rat1/Rai and Rtt103 

crosslink together at the polyadenylation-site and crosslinking of Rtt103 is dependent on 

CTD-phosphorylation by Ctk1. This suggested that these proteins play a role in 3’ end 

processing. 

Rat1 is an essential, nuclear 5’ exoribonuclease of 116 kDa, involved in RNA turnover. It has 

similar enzymatic activity as its cytoplasmic counterpart Xrn1, processively degrading RNA 

from the 5’ end and releasing nucleoside 5’-monophosphates (Stevens & Poole, 1995). Xrn1 

was the first 5’-3’ exoribonuclease characterized in yeast (Larimer et al, 1992; Larimer & 

Stevens, 1990; Stevens, 1980; Stevens & Maupin, 1987). Rat1 is an essential protein, 

whereas cells with a disrupted XRN1 gene are viable (Kenna et al, 1993; Larimer & Stevens, 

1990). Both exonucleases prefer RNAs with a 5’ monophosphate as a substrate, show weak 

activity towards RNA with a 5’-hydroxyl group and single stranded DNA (ssDNA) and no 
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activity for RNAs with a 5’ cap or tri-phosphate (Poole & Stevens, 1995; Stevens & Poole, 

1995). Interestingly, Xrn1 and Rat1 are functionally interchangeable. When the proteins are 

directed to opposite compartments by the deletion or addition of a nuclear localization signal 

(NLS), they can complement defects of their counterpart (Johnson, 1997). In the first 

purifications of endogenous Rat1, an interacting protein of 45 kDa was seen that co-purified 

together with the Rat1-exonuclease activity (Stevens & Poole, 1995). This protein was later 

identified as Rai1 and it was shown that it stabilizes the exonuclease activity of Rat1 (Xue et 

al, 2000). 

Cells with an intact cleavage/polyadenylation machinery, but with a mutated and non-

functional Rat1 (Amberg et al, 1992) or a deletion of its co-factor Rai1, showed dramatic 

termination defects (Kim et al, 2004). In these cells, 3’ transcripts after poly(A)-site directed 

cleavage were greatly stabilized. Similar results were obtained in independent studies on the 

human -globin gene . In this gene, the poly(A)-site is associated with an autocatalytic RNA-

structure that undergoes rapid self-cleavage after being transcribed (CoTC for co-

transcriptional cleavage) (Teixeira et al, 2004). This cleavage was shown to create a free 

RNA 5’ end that is a substrate for Xrn2 (the human homolog of Rat1), and that the 

consequent degradation of the downstream RNA induces termination (Teixeira et al, 2004; 

West et al, 2004). Only recently it was shown, that the Rat1/Rai1 activity is also required for 

efficient termination of Pol I transcription (El Hage et al, 2008). Here, the RNase III-like 

endonuclease Rnt1 cleaves the nascent rRNA-transcript to create an entry site for Rat1 

(Kufel et al, 1999). A knockout of the Rnt1-gene showed an increased read-through at the 

„Reb-dependent“ Pol I terminator (see section 1.3.2), showing that co-transcriptional 

cleavage is important for efficient termination at this site (Prescott et al, 2004; Reeder et al, 

1999)  

These results strongly support the “torpedo model” that is depicted in Fig. 20. This model 

somehow resembles Rho-dependent termination in prokaryotes (Nudler & Gottesman, 2002). 

There, Rho an ATP-hydrolyzing RNA-DNA-helicase follows bacterial RNAP along the RNA 

upon a specific signal (without hydrolyzing the RNA) and terminates transcription upon arrival 

at the elongation complex (see also 1.3.2). 

 

4.1.2 "Torpedo model" vs. "allosteric model" 

The "torpedo model" is not the only explanation of the events at the 3’ end of genes. First the 

data was explained with the "allosteric model". Here, transcription of the poly(A) sequence is 

predicted to trigger a change in the factors that are associated with polymerase II (Logan et 

al, 1987). This could include the binding of a termination factor or the displacement of an 

anti-termination factor or both, for example by the cleavage/polyadenylation factors. In fact, 

there is data that supports this model over the torpedo model. First, poly(A) site-induced 

cleavage of the transcript, which is necessary for the explanation of the "torpedo model", 
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does not seem to be a prerequisite for termination in general: disruption of poly(A) site 

cleavage by mutants of Pcf11 and Ssu72 did not affect termination (Dichtl et al, 2002; He et 

al, 2003; Sadowski et al, 2003). In an EM study of plasmids injected into Xenopus oocytes 

and in a second one on Drosophila chromosomes it was seen that termination occurs before 

cleavage of the transcript, or that it can even happen without prior cleavage (Osheim et al, 

1999; Osheim et al, 2002). Another study presented data using the RNA IP technique, 

showing that Rat1 and Xrn2 are indeed responsible for co-transcriptional degradation of RNA 

3’ of the poly(A) site, but are not the factors that cause termination (Luo et al, 2006). It was 

rather shown that Rat1 is a part of the recruitment cascade of 3’ processing factors and by 

that involved in termination. 

Figure 20: The “torpedo model” of transcription termination 

After transcription of the poly(A) site, the nascent RNA is cleaved by cleavage/polyadenylation factors that are 

assembled on Ser2-phosphorylated CTD. The cleavage creates a new, uncapped RNA 5’ end, which is a 

substrate for the exoribonuclease-complex Rat1/Rai1 that interacts with the Rtt103-Pol II complex and is also 

assembled based on the Ser2-phosphorylated CTD. Rat1/Rai1 is predicted to degrade the downstream RNA 

processively. Upon contact with the elongating polymerase, transcription termination is induced. Template DNA, 

non-template DNA and RNA are shown in blue, cyan and red, respectively. Factors in this figure are not drawn to 

scale. See text for details. 
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Consequently, the cytoplasmic counterpart of Rat1, Xrn1 (see section 4.1.2) can rescue the 

nuclease-activity associated defect of a Rat1 mutation when directed to the nucleus, but 

does not rescue the termination defect (Luo et al, 2006) 

 

4.1.3 Aim of this work 

 

Despite extensive research from different labs, the mechansim of transcription termination of 

protein coding genes is still one of the least understood events during the transcription cycle. 

However, over the years two models were established that try to explain the findings. As 

summarized in sections 4.1.1 and 4.2.2, existing data both support the "torpedo model" and 

the "allosteric model". This suggests that the truth about the events that lead to termination 

lies somewhere in between the two models. To approach this question, it is necessary to 

characterize the factors that are involved in isolation and to gain knowledge about their 

intrinsic properties. The “torpedo model” as such was never tested in a highly pure in vitro 

system, to see if Rat1/Rai1 actually possess the capability to disrupt elongation complexes. It 

is not clear how a nuclease can exert the force on polymerase to disintegrate its interaction 

with DNA and RNA, especially as it was shown that degradation of the RNA alone is not 

sufficient to end elongation (Gu et al, 1996). We were engaging this problem by setting up a 

highly defined in vitro elongation assay (described in 4.3.3). In addition a protocol for the 

production and purification of active, recombinant Rat1 exonuclease complexes was 

established (described in 4.3.1) and their nuclease activity was characterized (described in 

4.3.2). With this in hand we tested transcription termiation as predicted by the the „torpedo 

model“ (described in 4.3.4). The advatage of our assay is, that all the components are easy 

to exchange and to modify, so we were able to test the model using different types of DNA 

and RNA sequences that are involved in the processing of mRNA in 3' regions of genes 

(described in 4.3.5 – 4.3.7). 
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4.2 Specific procedures 

4.2.1 Vectors 

The following vectors have been created with the methods described in 2.2.1: 

 

Table 19: Vectors containing Rat1, Rai1, Rtt103 genes 

Vector       Source Plasmid (see 2.1.2, Table 4) 

Rat1fl      pET21b(+) 
Rai1fl      pET24b(+) 
Rtt103fl      pET21b(+) 
Rtt103 CID      pET21b(+) 

 

4.2.2 Purification of Rat1, Rat1/Rai1 and Rtt103 

Rat1 was purified from a 1 l autoinducing expression culture (see 2.2.3). After binding of 

Rat1, the Nickel-NTA-resin was washed with 20 ml Rat1 IMAC buffer (see 2.1.4, Table 11)  

+ 30 mM imidazole to remove proteins binding unspecifically to the matrix. Elution of Rat1 

was carried out with 30 ml of Rat1 IMAC buffer + 300 mM imidazole. The eluate from the 

Nickel-column was applied to a HiTrap Heparin 5ml column (GE Healthcare), pre-

equilibrated with Rat1 heparin buffer A (see 2.1.4, Table 11). Bound protein was eluted by 

increasing the salt concentration in a linear gradient from 100 mM to 1 M NaCl over 12 

column volumes. Peak fractions from the heparin affinity chromatography were pooled and 

concentrated to 500 l, then applied to a Superose 6 10/300 GL column (GE Healthcare), 

pre-equilibrated with  

2x Rat1 size exclusion buffer (see 2.1.4, Table 11). 2x Rat1 size exlusion buffer was RNAse 

free, whenever the enzyme was used for nuclease assays. 10% (v/v) RNAse-free glycerol 

was added to the sample before freezing in liquid nitrogen and storage at –80°C. 

The Rat1/Rai1 complex was co-expressed in E. coli BL21 (DE3) RIL cells by transforming 

the two plasmids with different antibiotic-resistance cassettes at the same time. In the 

complex, only Rat1 has a C-terminal His6-tag. The complex was purified from a 2 l 

autoinducing medium expression culture (2.2.3). 

After binding of Rat1/Rai1 to the Nickel resin and after washing with 10 column volumes of 

the Rat1/Rai1 cell lysis buffer (see 2.1.4, Table 11), the protein was eluted with 40 ml 

Rat1/Rai1 IMAC buffer (see 2.1.4, Table 11) + 300 mM imidazole. The eluate from the IMAC 

was applied to a HiTrap Heparin column (5 ml, GE Healthcare) pre-equilibrated with 

Rat1/Rai1 IMAC elution buffer (see 2.1.4, Table 11). Bound protein was eluted in a linear 

gradient from 0.1 M to 1 M NaCl, buffered by 50 mM Tris/HCl pH 8.0 (Rat1 heparin buffer A 
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and Rat1 heparin buffer B, see 2.1.4, Table 11) over 12 column volumes. Peak fractions from 

the heparin chromatography were pooled, concentrated to 500 l and applied to a  

Superose 6 10/300 GL column (GE Healthcare), pre-eqilibrated with 2x Rat1/Rai1 size 

exclusion buffer (2.1.4, Table 11). When Rat1/Rai1 was prepared for use in nuclease assays, 

this buffer was made RNAse free. 10% (v/v) RNAse-free glycerol was added to the sample 

before freezing in liquid nitrogen and storage at –80°C. 

Rtt103 was purified from 1 l of auto-inducing medium expression culture (see 2.2.3). After 

binding to the Nickel-resin, recombinant Rtt103 was eluted with 30 ml of Rtt103 IMAC buffer 

(2.1.4, Table 11) + 300 mM imidazole. The purification protocol is summarized in Figure 21. 

 

4.2.3 Assembly of the Rat1/Rai1/Rtt103 trimeric complex 

For the assembly of the trimeric exonuclease complex, the Rat1/Rai1 eluate from the heparin 

column (see 4.2.2) and the Rtt103 eluate from the NiNTA-column (see 4.2.2) were used. 

Protein concentrations of these samples were determined by the Bradford assay (see 2.2.4). 

The molarity of the Rat1/Rai1 sample was calculated (Mw of Rat1/Rai1: 160342). For Rtt103 

the sample-volume that contained twice the molar amount compared to Rat1/Rai1 was 

calculated (Mw of Rtt103: 46459). The calculated volume was multiplied by 3, to compensate 

for the fact that 2/3 of the Rtt103 sample consisted of contaminating proteins (estimated by 

SDS-PAGE, see 2.2.7). The calculated volumes were mixed gently and incubated for 30 

minutes at 20°C. The sample was then concentrated to 500 l and applied to a Superose 6 

10/300 GL column (GE Healthcare) pre-equilibrated with 2x Rat1/Rai1/Rtt103 size exclusion 

buffer (2.1.4, Table 11). The assembly protocol is summarized in Figure 21. 

 

4.2.4 RNase and RNase H activity assays 

For RNase assays, a 27 nt RNA („activityRNA“, 2.1.2, Table 5) was labeled at the 3’-end 

using T4 RNA ligase (Fermentas) and [32P]Cp at a concentration of 3 Ci/pmol of RNA in 

ligase buffer provided by the manufacturer. Excess radioactive nucleotides were removed 

with MicroSpin™ G-25 Columns (GE Healthcare) and 3’-end-labeled RNA was used as a 

substrate for 5’-end digestion. 3 pmol of labeled RNA were mixed with an equimolar amount 

of pure Rat1/Rai1 or Rat1/Rai1/Rtt103 in 1x Rat1 reaction buffer (2.1.4, Table 11) in a total 

volume of 30 l, and incubated at 30°C. After 30, 60 and 180 minutes, 9 l of each sample 

were removed and the reaction was stopped by mixing with an equal volume of 2x urea 

loading dye (2.1.4, Table 9) and incubation at 95°C for 5 minutes. The samples were 

analyzed by denaturing PAGE in 8 M urea (2.2.7). Remaining RNA was detected by 

autoradiography and the relative amounts were quantified with ImageQuant software. 

Radioactive gels were exposed to a storage phosphor screen (Molecular Dynamics) for 

several hours and scanning of storage screens was carried out with a STORM 860 imaging 
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system (Molecular Dynamics). All experiments were carried out in triplicates. For RNAseH 

assays, labeled 27 nt RNA was mixed with a four-fold molar excess of fully complementary 

DNA („RNaseHDNA1“, 2.1.2, Table 5) or DNA complementary only to 17 nucleotides in the 

3’ part of the RNA („RNaseHDNA2“, 2.1.2, Table 5) in TE buffer. The nucleic acids were 

annealed by heating to 95°C and slowly cooling to room temperature. The reaction was 

carried out and stopped after one hour as above, and the samples were analyzed as above. 

Control reactions using RNase I (Fermentas) and RnaseH (New England Biolabs) were 

carried out in the buffers provided by the manufacturer. 
 

4.2.5 Purification of RNA polymerase II core enzyme 

RNA Pol II core enzyme from Saccharomyces cerevisiae was purified from the deletion strain 

CB010 Rpb4 essentially as described (Edwards et al, 1991). Cells, frozen in 3x Pol II 

freezing buffer (see 2.1.4, Table 12),  were thawed in a water bath, then kept at 4°C. After 

addition of protease inhibitor mix (2.1.4, Table 9) the suspension was transfered to the metal 

chamber of a BeadBeater containing 200 ml soda lime glass beads (  = 0.5 mm). After 

removal of air bubbles by stirring with a glass rod, the chamber was filled with HSB150 

(2.1.4, Table 12) The BeadBeater was running 60-70 minutes in cycles of 30 seconds 

beating followed by a 90 second pause. The chamber with the suspension was kept cold by 

a salt-ice mix which was regularly renewed. The lysate was filtered through a mesh funnel 

which was then washed with HSB150 (2.1.4, Table 12), not exceeding a total volume of 1000 

ml. The lysate was centrifuged twice for 45 min at 13700 g and 4°C. Afterwards it was 

filtererd through cheesecloth and paperfilter, to remove the lipid phase. 

250 ml Heparin Sepharose 6 FF (GE Healthcare) affinity resin was equilibrated with  

3 column volumes of HSB150. After loading of the lysate, the column was washed with  

3 column volumes of HSB150, bound protein was eluted with 2 column volumes HSB600 

(2.1.4, Table 12). Only milliliters 200 to 400 were used for the subsequent purification steps. 

Proteins in the eluate were precipitated by addition of 291 g/l fine-ground ammonium sulfate 

(  50% saturation) and overnight stirring at 4°C.  The sample was then centrifuged for  

45 minutes at 21860 g and 4°C, the precipitate was dissolved in 40 ml 1x TEZ0 (2.1.4,  

Table 12). Additional buffer was added to set conductivity below the conductivity of TEZ 

containing 400 mM ammonium sulfate (TEZ400). The sample was centrifuged again for  

15 minutes at 34000 g and 4°C, to remove undissolved particles. 

In an immunoaffinity step, Pol II was bound by immobilized antibody 8WG16 (NeoClone, 

Madison, USA) which binds selectively to the unphosphorylated C-terminal domain of Rpb1. 

Two columns with each 5 ml of the respective resin were equilibrated with 3 column volumes 

of TEZ250 (2.1.4, Table 12) lacking DTT and PI, followed by 1 column volume of TEZ250. 

After loading of the sample by gravity flow, the flowthrough of the first column was 

immediately loaded onto the second column. The columns were equilibrated to room-



4 An in vitro system to test the “torpedo model” of transcription termination 77 

temperature for 10 minutes. After washing with 5 column volumes of TEZ500 (2.1.4,  

Table 12), bound proteins were eluted with TEZ500 + glycerol (2.1.4, Table 12). At least 15 

fractions with a volume of 1 ml each were collected and transferred to ice. The protein 

content of these fractions was qualitatively checked by adding 10 l of sample to 200 l  

1x Bradford dye (2.1.4, Table 9). Peak fractions were pooled and 10 mM DTT was added 

before storage overnight at 4°C.  

The pooled sample was diluted to 50 ml with Pol II buffer (see 2.1.4, Table 12) and 

concentrated with an Amicon Ultra-4 Centrifugal Filter Device (100k cutoff, 1300 x g, 4°C). 

After concentrating to 5 ml, 10 ml of Pol II buffer were added and concentrated further. 

More sample was added after this step and this cycle was continued until all of the sample 

was added. By doing this, the buffer of the sample could be exchanged to the Pol II buffer, 

which was checked by measuring the conductivity of the flowthrough and comparing it to the 

conductivity of the Pol II buffer. When this value was constant, the sample was concentrated 

to  2 mg/ml. The sample was divided into aliquots of 50 to 500 g of protein. After adding 

1.13 volumes of saturated ammonium sulfate solution compared to the aliquot volume, 

samples were incubated for 1 hour at 4°C on a rotating wheel and then centrifuged for 30 

minutes at 16000 x g and 4°C to obtain a pellet. Supernatants were partly removed and 

samples were frozen in liquid nitrogen and stored at –80°C 

 

4.2.6 Reconstitution of the 12 subunit RNA polymerase II complex 

The recombinantly expressed and purified Pol II subcomplex Rpb 4/7 was provided by 

Elisabeth Lehmann. It was purified essentially as described (Armache et al, 2005b), and 

added in 5 fold molar excess respective to Pol II core enzyme and incubated for 30 minutes 

at 20°C. In cases where the sample was used for transcription bead assays, excess Rpb 4/7 

was not removed by size exclusion chromatography to prevent unnecessary protein loss. 

Separation of 12 su Pol II from unbound Rpb 4/7 was carried out by binding fully assembled 

elongation complexes to magnetic beads (see 4.2.7).  

 

4.2.7 Assembly of RNA polymerase II-nucleic acid complexes 

Polymerase II was prepared as described in 4.2.4 and 4.2.5. Nucleic acids were synthetic 

and are listed in chapter 2.1.2, Table 5. 

 

Artificial transcription scaffolds for crystallization of elongation complexes contained the 

template strand poly(A)xtalT, the non-template strand poly(A)xtalNT and the poly(A)xtalRNA 

(2.1.2, Table 5). Nucleic acids were annealed by mixing equimolar amounts of synthetic 

template DNA, nontemplate DNA, and RNA in TE buffer (see 2.1.4, Table 9) at a final 
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concentration of 100 M. The mixture was heated to 95°C for 2 min, and cooled down to 

room temperature very slowly. Two molar equivalents of this scaffold and five molar equi-

valents of recombinant Rpb4/7 were incubated with one molar equivalent of Pol II in Pol II 

buffer (2.1.4, Table 12) for 20 minutes at 20°C. Assembled complexes were purified by 

Superose 6 size-exclusion chromatography and concentrated to 3.5 mg/ml. 

 

Fully complementary transcription scaffolds for in vitro bead-based assays were 

assembled as described (Komissarova et al, 2003). For this, equimolar amounts of template 

DNA and RNA were mixed in RNAse-free TE buffer. The oligonucleotides were annealed by 

heating to 95°C for 2 minutes and slowly cooling to room temperature. Pol II (either core or 

12 su Pol II, see 4.2.4 and 4.2.5 respectively)  was incubated with a two-fold molar excess of 

the annealed hybrid for 15 minutes at 20°C while gently shaking. A four-fold molar excess of 

non-template DNA, containing Biotin at the 5’ end, was added and the mixture was incubated 

for 20 minutes at 25°C while shaking. Control-elongation complexes lacking the biotinylated 

non-template strand were assembled identically, omitting the last step 

 

4.2.8 Bead-based termination assays 

 

Magnetic, streptavidin-coated beads (Dynabeads  MyOne  Streptavidin T1, Dynal Biotech, 

distributed by Invitrogen) were prepared by washing twice with beads breaking buffer (2.1.4, 

Table 9) followed by incubation in 500 l of beads blocking buffer (2.1.4, Table 9) overnight 

at 4°C. After washing again twice with breaking buffer, beads were resuspended in the 

original volume of breaking buffer. 1-3 pmol fully assembled elongation complexes (4.2.7) 

were added per reaction (= 10 l blocked and washed beads) followed by an incubation for  

30 minutes at 25°C, gently shaking. Unbound complexes were removed by washing with  

50 l beads breaking buffer, Rat1 wash buffer, and Rat1 reaction buffer (2.1.4, Table 11). 

Beads were resuspended in 19 l Rat1 reaction buffer. RNA in the elongation complex was 

labeled at the 3’ end with the use of Pol II activity, by adding 1 l of [32P]UTP [10 mCi/ml] 

(GE Healthcare), followed by an incubation at 28°C for 20 minutes, slowly shaking. 

Unincorporated nucleotides were washed away by applying twice 30 l of Rat1 reaction 

buffer. Beads were resuspended in Rat1 reaction buffer, and nuclease complexes were 

added at a two-fold molar excess respective to the elongation complex concentration used 

for binding to the beads, followed by incubation for 1 hour at 30°C. As a single strand-specific 

control endonuclease, RNase I (100 units, New England Biolabs, #M0243S) was used. After 

the reaction, nucleases were washed away with Rat1 washing buffer and Rat1 reaction 

buffer. Beads were resuspended in 20 l of Rat1 reaction buffer.  To test the ability of ECs to 

elongate the transcript after nuclease digestion, beads were resuspended in 19 l, and 1 l 

of NTP mix was added at a final concentration of 1 mM and incubated at 28°C for  
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30 minutes. The reactions were stopped by adding 20 l of 2x urea loading dye (2.1.4, Table 

9) and incubating for 5 minutes at 95°C. Samples were analyzed by 6 M urea PAGE and 

radioactively labeled RNA was detected by exposition of the gels to a storage phosphor 

screen (Molecular Dynamics) overnight at 4°C. Scanning of storage screens was carried out 

with a STORM 860 imaging system (Molecular Dynamics). 

4.2.9 Crystallization of 12 subunit Pol II elongation complexes and a 
poly(A) site containing nucleic acid scaffold 

 

Pol II-nucleic acid complexes were purified as described in 4.2.5 and 4.2.6 and assembled 

as described in 4.2.7 An additional amount of the nucleic acid scaffold was added prior to 

crystallization to a final concentration of 2 M. Crystals were grown at 22 °C with the hanging 

drop vapor diffusion method by mixing 2 l of sample solution with 1 l of reservoir solution 

(2.1.4, Table 13). Crystals were harvested after 10-20 days of growth, when they had 

reached their maximum size and were transferred stepwise to mother solution containing 

additionally 0-20 % glycerol over 5 h. After the last step, crystals were slowly cooled to 8°C, 

and flash-frozen by plunging into liquid nitrogen. 

 

4.2.10 Data collection and structure solution 

 

Complete diffraction data to 4.0 Å resolution were collected at the Swiss light source (SLS) 

beamline PX1 (Table 20). The structure was solved by molecular replacement with the model 

of the complete 12-subunit Pol II EC without nucleic acids as a search model (PDB 1Y1W, 

(Kettenberger et al, 2004b). The molecular replacement solution was subjected to rigid body 

refinement with CNS (Brunger et al, 1998). The final structure includes 25 nucleotides of 

DNA and 8 nucleotides of RNA, shows good stereochemistry, and has a free R-factor of 

23.5% (Table 20). The nucleic acids were built into the initial Fo-Fc electron density map 

using the program Coot (Emsley & Cowtan, 2004). A thymine residue in the template strand 

was replaced for 5-bromouracil. Diffraction data were recorded at the wavelength of the 

bromine K absorption edge, and the resulting anomalous difference Fourier maps revealed 

single peaks demarking the positions of the bromine atom. Thus, the register of the nucleic 

acids was unambiguously defined by the identification of the position of bromine in the 

template strand (Fig. 24 E). Atomic positions and B-factors were refined with CNS, the 

progress was monitored with the free R-factor which showed a value of 23.5% at the end of 

refinement. Statisitics for Data-collection and refinement are listed in Table 20 in chapter 

4.3.6. 
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4.3 Results and discussion 

4.3.1 Preparation of recombinant Rat1, Rat1/Rai1 and Rat1/Rai1/Rtt103 

 

To investigate the function of the Rat1 nuclease, we established a protocol to obtain the 

protein in recombinant form after overexpression in E. coli (Fig. 21 A and B, 4.2.2). After 

optimization of the procedure, about 0.5 mg of the 116 kDa, 1006-residue Rat1 could be 

obtained from 1 l of bacterial cell culture. We further established a protocol to obtain a 

stoichiometric pure complex of Rat1 with its cellular partner, Rai1 (Fig. 21 A and B, 4.2.2). 

We co-expressed Rat1 and Rai1 from individual plasmids with different antibiotic resistance 

in E. coli cells with the use of autoinducing medium (Studier, 2005) . Affinity purification of 

Rat1, which carried a C-terminal hexahistidine tag, led to co-purification of Rai1 (Fig. 21 A). 

The Rat1/Rai1 complex was very stable, as it could be purified over several columns. To 

purify a recombinant trimeric Rat1/Rai1/Rtt103 complex, we incubated the pure Rat1/Rai1 

complex with partially purified recombinant full-length Rtt103, and subjected the mixture to 

size exclusion chromatography (4.2.3). We obtained a symmetric peak for the trimeric 

complex at a shorter retention than the peak for the dimeric Rat1/Rai1 complex (Fig. 21 B). 

The identities of the three proteins were confirmed by mass spectrometry (not shown). For 

the first time this work provided Rat1, and the complexes Rat1/Rai1 and Rat1/Rai1/Rtt103 in 

pure, bacterially expressed, recombinant form. The results also confirmed that the protein-

protein interactions that were previously inferred from affinity co-purifications of endogenous 

proteins (Kim et al, 2004; Stevens & Poole, 1995) and co-expression of Rat1 and Rai1 in 

yeast (Johnson, 2001; Xue et al, 2000). In addition, this is the first time a direct interaction 

between Rat1/Rai1 and Rtt103 is seen.  

 

4.3.2 Stable Rat1 activity requires Rai1, but not Rtt103 

 

Nuclease activity of the Rat1 homolog Xrn1 was extensively analyzed (Stevens, 1978; 

Stevens, 1980; Stevens & Maupin, 1987) showing its processive 5’-3’ mode of degradation 

and its preference of RNA with a 5’-monophosphate. The characterization of Rat1 basically 

showed comparable results in this respect (Stevens & Poole, 1995). In early work on Xrn1, 

which has comparable properties to Rat1, it was shown that RNA with a 5’-OH is used at 1/3 

to 1/5 compared to RNA with a 5’ phosphate (Stevens & Maupin, 1987).  

To investigate the ribonucleolytic activity of recombinant Rat1, and the influence of Rai1 and 

Rtt103 on this activity, we labeled the 3’-end of a RNA 27-mer of random sequence 

(„activityRNA“, 2.1.2, Table 5) with radioactive phosphate. Although the preferred substrate 

for Rat1 is RNA with a 5’-monophosphate, we used RNA with a 5’-hydroxyl-group. The rea- 
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Figure 21: Preparation of recombinant Rat1, Rat1/Rai1 and Rat1/Rai1/Rtt103 and ribonucleolytic activity 

(A) Expression and purification scheme for Rat1, Rat1/Rai1 and Rat1/Rai1/Rtt103. At the bottom, Coomassie-

stained SDS-PAGEs show the resulting proteins.  
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Figure 21 (continued) 

(B) Size-exclusion chromatography profiles of the nuclease complexes from (A). A plot of the absorption at 280 

nm against the retention time is shown. Profiles are from 3 separate chromatographies.  

(C) Relative ribonucleolytic activity of Rat1/Rai1 and Rat1/Rai1/Rtt103 using RNA with a 5’-hydoxyl group as a 

template. The intensity of signals corresponding to the 27mer RNA were quantified with the ImageQuant software 

resulting in a mean value from three replicates of each experiment. The intensity of the input RNA was set to 

100%, the decrease due to degradation by Rat1 was calculated relative to that value and plotted against the 

duration of the reaction. 

 

son for this is that T4 RNA ligase used in the labeling reaction (4.2.4) produced multimers of 

the RNA molecules, resulting in a heterogeneous substrate that could not be quantified by 

the method we used. Nevertheless, ribonucleolytic activity – albeit lower than the expected 

activity with the natural substrate – could be detected and put into relation for the different 

complexes (Fig. 21 C). Degradation of the labeled RNA after incubation with enzyme 

preparations for different times was monitored by separation of the RNA products in 

denaturing PAGE and autoradiography (Fig. 21 C, 2.2.7). In these assays, recombinant Rat1 

either showed no activity or weak, badly reproducible activity. In contrast, the recombinant 

Rat1/Rai1 complex showed reproducible and stable nuclease activity. This is consistent with 

the published stabilizing effect of Rai1 on Rat1 activity (Xue et al, 2000), where a dramatic 

loss of Rat1 nuclease activity was observed during the first minutes of incubation at 30°C 

when Rai1 was not present. The complex could be stored at –80°C for several months 

without a significant decrease of its activity. The nuclease activity was due to Rat1 since 

buffer from the last purification step did not contain contaminating nuclease activities (Fig. 21 

C). Thus, recombinant Rat1 shows unstable activity that is stabilized by recombinant Rai1, 

consistent with similar observations for the endogenous proteins (Xue et al, 2000). 

We compared the robust nuclease activity of the Rat1/Rai1 complex to that of the trimeric 

Rat1/Rai1/Rtt103. The dimeric and trimeric complexes showed indistinguishable activities 

(Fig. 21 C). This suggests that Rtt103 is not a regulator of Rat1 nuclease activity, consistent 

with the results that Rtt103 is involved in the recruitment of Rat1/Rai1 to the transcription 

machinery via its CTD-interacting domain (CID) (Kim et al, 2004). 

 

4.3.3 An improved in vitro elongation assay 

 

To establish a defined biochemical system for testing the torpedo model in vitro, we 

assembled elongation complexes containing Pol II, DNA with a fully complementary 

transcription bubble, and RNA as described (Komissarova et al, 2003) (Fig. 22 A, top). 
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Figure 22: The Rat1/Rai1 complex does not terminate RNA polymerase II in vitro 

(A) Schematic representation of the bead-based elongation/RNA degradation assay. On top the nucleic acid 

scaffold that was assembled with Pol II into a bead-coupled elongation complex (EC) and used as a substrate for 

Rat1. Template, non-template and RNA strands are coloured in blue, cyan and red, respectively. Below the diff- 
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Figure 22 (continued) 

erent steps in the protocol (4.2.8). Steps a and b represent the control reaction without added nuclease, a’ and b’ 

represent the reaction containing the nuclease.  

(B) Autoradiograph of RNA from bead-based termination assay. As substrates, core Pol II ECs (left panel) and 12 

subunit Pol II ECs (right panel) were used. Samples that were treated as depicted in (A) were separated by a 6 M 

urea PAGE and exposed for several hours to a storage phosphor screen. The steps represented in (A) are 

indicated above the gel, lane numbers below the gel. See text for details. 

 

The presence of a fully complementary transcription bubble is important for a termination 

assay since transcription termination in prokaryotes requires rewinding of the upstream 

bubble (Park & Roberts, 2006). ECs were bound to streptavidin-coated magnetic beads with 

the use of biotin coupled to the 5’-end of the non-template DNA strand (Fig. 22 A). Since 

incorporation of the non-template strand is the last step in the EC assembly protocol, only 

fully assembled ECs were bound to the beads. The RNA engaged in active ECs was labeled 

at the 3’-end by incubation with [32P]-UTP, which leads to Pol II-catalyzed incorporation of 

radioactive uridine (Fig. 22 A, step a; Fig. 22 B, lane 1). After washing away unincorporated 

[32P]UTP, and addition of all four NTPs (Fig. 22 A, step b), these ECs were able to elongate 

the labeled RNA (Fig. 22 B, lane 2). RNA transcripts of various lengths were observed, up to 

the expected 68 nt run-off product. The occurence of transcripts that are shorter than the run-

off RNA was different depending on the scaffolds we used and can probably be related to 

paused and arrested, or unstable ECs. To prevent unspecific binding of ECs to beads, beads 

were blocked prior to use (4.2.8). ECs that were assembled without the biotin-labeled non-

template DNA strand did not bind to these beads, providing a negative control (Fig. 22 B, 

lanes 3 and 4). Thus, in this elongation assay, only complete, bead-coupled elongation-

competent ECs produced signals for RNA products. Compared to a previously described 

bead-based elongation assay (Komissarova et al, 2003), our assay uses magnetic beads 

instead of agarose beads and a bead-blocking protocol. This results in very clear and defined 

RNA signals. 

 

4.3.4 Functional Rat1 complexes do not terminate Pol II in vitro 

 

The bead-based elongation assay (4.3.3), together with the availablity of pure recombinant 

Rat1 complexes (4.3.1), allowed us to test the "torpedo model" in vitro. When Rat1/Rai1 was 

added to our assay (Fig. 22 A, step a’), the RNA was degraded to a length of approximately 

18 nt as judged from a sequencing gel (Fig. 22 B, lane 5). This shows that Rat1/Rai1 could 

use the pure, bead-coupled ECs as substrates, but also that it was unable to totally degrade 

the RNA. The length of the obtained products is readily explained based on the known EC 

structure (Andrecka et al, 2008; Kettenberger et al, 2004b; Vassylyev et al, 2007a). Around 

15 nucleotides of RNA are protected within the Pol II hybrid-binding site and the RNA exit 
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tunnel, and a few additional nucleotides are probably protected due to the probe radius of 

Rat1. Thus, the obtained results are consistent with the model that Rat1/Rai1 degrades RNA 

from the 5’-end until it reaches the Pol II surface, and that it does not degrade the 3’-region of 

the RNA that is protected by Pol II. To examine whether the ECs remained active after partial 

RNA degradation, Rat1/Rai1 was washed away and NTPs were added (Fig. 22 A, step b’). 

The truncated transcripts were readily elongated, and reached a length of up to 55 nt, 

corresponding to the expected run-off product (Fig. 22 B, lane 6). Since the amount of RNA 

in the Rat1-treated samples was lower (lanes 5 and 6) than in the untreated control sample 

(lanes 1 and 2), we used a control nuclease to determine if this observation is due to partial 

termination. However, the same result was obtained when the experiment was repeated with 

the use of the non-specific endonuclease RNase I instead of Rat1/Rai1 (Fig. 22 B, lanes 7-

8), arguing against partial termination. As it was recently shown that transcribing Pol II 

includes the Rpb4/7 subcomplex in vivo (Jasiak et al, 2008; Verma-Gaur et al, 2008), we 

repeated our assay with the complete, 12-subunit enzyme that comprises Rpb4/7. The same 

results were obtained (Fig. 22 B, lanes 9-14). Thus, Rat1/Rai1 degrades RNA that is 

accessible on the EC surface, but does not dissociate Pol II, and leaves the EC intact and 

transcriptionally competent, such that the RNA 3’-end remains in the active site and can be 

re-extended. Since transcription termination is defined as a discontinuation of the ability to 

extend RNA, these results show that Rat1/Rai1 is insufficient to terminate Pol II in a defined 

in vitro system. 

 

4.3.5 A poly(A) site does not trigger termination 

 

At the end of an open reading frame the transcript is cleaved 10-30 nt downstream of a 

specific nucleotide signal, the poly(A) site. This nucleic acid sequence has the consensus  

5’-AAUAAA-3’ in the transcript (Proudfoot & Brownlee, 1976), which is highly consereved in 

almost all polyadenylated mRNAs in higher eukaryotes (Wickens & Stephenson, 1984). 

Interestingly, the poly(A) site sequence represents sequence-motifs that trigger termination in 

the other eukaryotic polymerases evolutionary related to Pol II. In case of Pol I, a T-rich 

sequence in the template strand is mandatory (Lang et al, 1994; Lang & Reeder, 1993) 

whereas for Pol III a short run of A elicit transcription (Geiduschek & Kassavetis, 2001) 

together with other factors. Even in intrinsic terminators in prokaryotes, a stretch of U-

residues is involved (see also section 1.3.2). All of these sequences are composed of T-A 

and A-U basepairs between template strand and transcript, respectively, and are referred to 

as „weak hybrids“ here. Although it is known that the poly(A) site does not induce termination 

in Pol II transcription complexes, we asked the question if this sequence may trigger re-

arrangements of nucleic acids within the Pol II cleft and active site, thereby triggering a 

"termination competent“ form of polymerase II. This might be a prerequisite for induced 
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termination by Rat1/Rai1. We first asked whether Pol II could terminate in our in vitro system 

if the poly(A) site sequence was transcribed. However, the situation in yeast cells is 

somewhat different, as the consensus AAUAAA is not as highly conserved as in higher 

eukaryotic systems. Only in 50% of all yeast genes this sequence can be found and 

mutations in this sequence do not have a dramatic effect on the 3’ end formation of yeast 

mRNA (Hyman et al, 1991). Yeast poly(A) signals are basically composed of three elements 

that are important for proper cleavage/polyadenylation in yeast, although they are less 

conserved than the mammalian poly(A)-site directing sequence. However, these sequences 

are AT-rich and resemble the "weak hybrid" concept (Graber et al, 1999; Guo & Sherman, 

1996; Osborne & Guarente, 1989; Russo et al, 1993). This, in combination with the fact that 

the process of transcription is conserved, led us to the decision to use the highly conserved 

AAUAAA consensus sequence in our assays rather than the loosely defined yeast site, to 

investigate its influence on the elongation complex. We prepared a nucleic acid scaffold 

containing a poly(A) site 10 nt downstream of the incorporated [32P]UTP (Fig. 23 A, poly(A) 

transcription scaffold 1), assembled an EC, and added ATP, CTP, and UTP, but withheld 

GTP from the reaction mixture. This led to transcription of the poly(A)-site plus 16 additional 

base pairs, and EC stalling at a defined position (CCC in the template strand, Fig. 23 A, 

stalling point). RNAs with a length of 41-46 nt were not observed (Fig. 23 B), which means 

that the poly(A)-sequence was transcribed like a control random sequence in our assay (see 

Fig. 23 A, „poly(A) transcription scaffold 1 control“).  

We next tested the model that passage of a poly(A) site would alter EC stability and render 

Pol II prone to Rat1-induced termination. We assembled ECs containing the poly(A) site 

sequence within the DNA-RNA hybrid at positions  –1 to –6 (Fig. 23 A, poly(A) transcription 

scaffold 2). RNA was labeled by incubation with CTP and [32P]UTP, which led to 

incorporation of three cytosines and a radioactive uridine (Fig. 23 C, lane 1). Incorporation of 

three additional cytosines ensured that the resulting RNA length was as in the other 

experiments (Figs. 22 , 23 B, 23 D), and mimicked partial polymerase passage of the poly(A) 

site sequence. Addition of NTPs produced the run-off RNA of 53 nt (Fig. 23 C, lane 2). As 

before, RNA was trimmed down by Rat1/Rai1 to around 18 nt, and could be re-extended 

after NTP addition (lanes 3 and 4).  

Very similar results were obtained when RNase I was used instead of Rat1/Rai1 (lanes 5 and 

6). RNAs longer than the run-off transcript were also detected, but were excluded from  

Fig. 23 C because they were present in all the samples of the experiment and likely result 

from transcript slippage as a side reaction. Taken together, Rat1/Rai1 and a transcribed 

poly(A)-site sequence alone are insufficient to trigger termination of Pol II in these assays. 
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Figure 23: Neither a poly(A) site nor a pause sequence trigger termination 

(A) Nucleic acid scaffolds that were assembled with Pol II for the indicated experiments. 

(B) Autoradiograph of RNA extension with a bead-coupled EC including poly(A) transcription scaffold 1. The 

region where signals of RNAs would be expected if elongation had stopped at the poly(A) site sequence is 

indicated. 

(C) Autoradiograph of bead-based assay with an EC containing poly(A)-transcription scaffold 2. Steps a, b, a' and 

b' correspond to steps in Fig. 22 B. 

(D) Autoradiograph of bead-based assay with EC containing the pause site transcriptionscaffold. For a detailed 

description of these experiments refer to text. 
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4.3.6 A hybrid with poly(A) site sequence does not change EC structure 

 

The  results described above suggested that an EC that contains the poly(A) site within the 

DNA-RNA hybrid does not differ significantly in structure from an EC that contains a random 

sequence within the hybrid. To examine this, we solved the X-ray structure of S. cerevisiae 

Pol II EC containing a hybrid that harbors the mammalian poly(A)-site sequence in the active 

center cleft of the enzyme (Fig. 24 and Table 20). The structure could be determined at 4.0 Å 

resolution with the use of established protocols (Brueckner & Cramer, 2008). The unbiased 

difference electron density in the hybrid site did not reveal any significant rearrangement of 

the nucleic acids within the Pol II cleft (Fig. 24 B and C). However, we observed that the 

hybrid was backstepped compared to the designed scaffold, and that the adenine at the RNA 

3’-end was not paired with the DNA template at position +1, but rather disordered (Fig. 24 C). 

Such fraying of the 3’-terminal RNA nucleotide is typical for a paused state of the EC 

(Toulokhonov et al, 2007), and has been directly observed in other Pol II structures that we 

will describe elsewhere (Sydow et al., in preparation). Superposition of our structure with the 

previous complete Pol II EC structure showed a similar position and conformation of the 

DNA-RNA hybrid and downstream DNA (Fig. 24 D). These results are consistent with the 

idea that the poly(A) site sequence is prone to pausing, but do not provide evidence for 

models that postulate that the EC adopts an alternative structure upon poly(A) site passage.  
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Figure 24: Canonical binding of a poly(A) site-containing hybrid within the Pol II EC 

(A) The used nucleic acid scaffold is shown. Filled circles indicate nucleic acids that have interpretable electron 

density, empty circles indicate nucleic acids that were not ordered. The 5-Bromouracil is shown in yellow. The 

template strand is shown in blue, the non-template strand in cyan and the RNA in red throughout this figure. 

(B) Overview of the Pol II EC structure containing the poly(A) site sequence. Pol II is shown as a ribbon model in 

grey. Rpb2 residues 1-828 are omitted for clarity. The Pol II bridge helix (residues 811-843 of Rpb1) is shown in 

green. Nucleic acids are shown in a stick representation, coloured as in (A). 

(C) 2Fo-Fc electron density map contoured at 1  for the nucleic acids in the poly(A) site-containing DNA-RNA 

hybrid. 
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Figure 24 (continued) 

(D) Superposition of the poly(A) site nucleic acids (red) and nucleic acids of random sequence (green, PDB 

accession code: 1Y1W, Kettenberger et al, 2004b)). 

(E) 2Fo-Fc electron density at 1  of the upstream nucleic acids from (C). In raspberry an anomalous difference 

Fourier map at 3.5 , showing the position of the bromine atom. The structure is rotated app. 90° clockwise 

respective to (C). 

 

Table 20: X-ray diffraction and refinement statistics  

 

 

Complete Pol II EC 
containing poly(A)site 
sequence 
 

Data collection  
Space group C222(1) 
Cell dimensions    

   a, b, c (Å) 222.5, 391.6, 284.1 

   , ,   (°) 90, 90, 90 
  
Wavelength 0,918905 
Resolution (Å) 50-4.0 
Rsym (%) 10.6 (51.6) 
I / I 9.6 (2.7) 
Completeness (%) 99.9 (100) 
Redundancy 4.3 (4.3) 
  
Refinement  
Resolution (Å) 4.0 
Unique reflections 
(anomalous pairs 
 unmerged) 

202,368 (33,630) 

Rwork / Rfree (%) 20,4 / 23,5 
No. atoms  
    Protein 31102 
    Ions 9 
    Nucleic acids 671 
B-factors  
    Protein 137.1 
    Ions 137.8 
    Nucleic acids 196.8 
R.m.s deviations  
    Bond lengths (Å) 0.008 
    Bond angles (°) 1.5 
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4.3.7 A paused EC is not terminated by Rat1/Rai1 

 

There is evidence that the EC goes through a paused state before termination (Aranda & 

Proudfoot, 1999; Birse et al, 1997; Proudfoot, 1989). This makes sense in light of the 

"torpedo model" as a paused polymerase would create a time window for Rat1/Rai1 to catch 

up. Thus, we also tested whether a paused EC can be terminated in our assay. We 

assembled ECs with a scaffold containing a 3’-uridine in the active site (Fig. 23 A, pause site 

transcription scaffold). Introduction of an additional, radioactively labeled uridine to the RNA 

results in a pause sequence with a UU RNA 3’-end at the Pol II active center (Fig. 23 A). In 

ECs that contain this pause sequence, the RNA 3’-nucleotide adopts a frayed position in the 

pore below the active site (Toulokhonov et al, 2007). We incubated the obtained EC with the 

recombinant Rat1 complexes and checked if they can still elongate the RNA after it had been 

partially degraded (Fig. 23 D). The experiments showed that neither core Pol II (lanes 3 and 

4), nor the complete Pol II (lanes 9 and 10) were terminated. In both cases the incubation 

with RNase I gave similar results (lanes 5, 6, 11 and 12). Thus, a paused EC conformation is 

not sufficient to allow Rat1 to terminate Pol II in our system. 

 

4.3.8 Rat1 contains a putative RNase H-like domain 

 

Rat1 and its cytoplasmatic counterpart Xrn1 contain a eukaryote-specific N-terminal region of 

sequence conservation that was ascribed to the 5PX superfamily of exoribonucleases (Zuo & 

Deutscher, 2001) (Fig. 25 A). This region is required for Xrn1 exonuclease activity, since 

point mutations in D86, E176, E178, D206 and D208 (corresponding to Rat1 residues D102, 

E203, E205, D233, and D235, respectively, Fig. 25 A) and additional residues (dots in  

Fig. 25 A) impair activity (Page et al, 1998; Solinger et al, 1999). Consistently, mutation of 

Rat1 residue D235 abolished exonuclease activity, and resulted in the failure to complement 

the termination defect seen in rat1 mutant cells (Kim et al, 2004). Thus, the N-terminal 

regions of the Xrn1 and Rat1 proteins contain the exonuclease domain. In this region, the 

members of the 5PX superfamiliy were described to show homology in critical catalytic 

residues with several Mg2+-dependent 5’-3’-exonucleases from different organisms, including 

also the phage T4 RNase H (Solinger et al, 1999), a 5’-3’-exonuclease that degrades RNA in 

DNA-RNA hybrids. Thus, we re-examined the Rat1 sequence and found a remote similarity 

of the conserved N-terminal region to the catalytic domain of RNase H enzymes (Fig. 25 B). 

The active site of RNase H enzymes contains four conserved acidic residues, three 

aspartates and a glutamate separated by short sequence stretches and coordinating two  
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Figure 25: Putative RNase H homology in the Rat1 sequence 

(A) Alignment of the N-terminal region of Rat1 and its homologs Dhp1 (S. pombe), Xrn2 (H. sapiens) and Xrn1  

(S. cerevisiae, cytoplasmic). Invariant and conserved residues are indicated in green and orange, respectively. 

Blue circles indicate positions of point mutations that impair exonuclease-activity in Xrn1 (Page et al, 1998; 

Solinger et al, 1999). Red triangles show Rat1 mutations that impair activity as reported in (Kim et al, 2004) and in 

this work (4.3.9). Stars mark potential RNase H active site residues (see also (B)).  

(B) Alignment of RNase H sequences from E. coli (Ec) and H. sapiens (Hs) with S. cerevisiae Rat1. The 

alignment of Ec and Hs sequences is taken from (Nowotny et al, 2007). Secondary structure elements observed 

in the structures of human RNase H1 Nowotny et al, (2007) and E.coli RNase H (Katayanagi et al, 1990; Yang et 

al, 1990) are indicated as rectangles for -helices and arrows for -strands. Conservation is indicated as in (A).  
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Figure 25 (continued): 

Rat1 secondary structure elements were predicted by PSIPRED (Jones, 1999). Invariant acidic residues that 

constitute the RNase H active site are indicated by stars.  

(C) Autoradiograph of RNA from RNase H assay. The templates used are shown schematically on top. The 

proteins used in the individual reactions are indicated by a (+). See text for details. 

 

catalytic magnesium ions (Katayanagi et al, 1990; Nowotny et al, 2005; Yang et al, 1990). 

We could manually align the sequences of E. coli and human RNase H to the Rat1 N-

terminal region such that the four acidic residues in the RNase H active site correspond to 

conserved Rat1 residues (Fig. 25 B). In these alignments, known and predicted secondary 

structure elements also generally lined up. Consistently, RNase H activity was reported for 

Xrn1 (Stevens & Maupin, 1987). This cytoplasmic counterpart of Rat1 contains the highly 

conserved acidic residues we identified in the Rat1 exonuclease-domain (stars in Fig. 25 A 

and B).  

Since Xrn1 can supply the essential functions of Rat1 when directed to the nucleus by a 

strong localization signal (Johnson, 1997) (although it does not complement a termination 

defect (Luo et al, 2006)), we wondered whether Rat1 complexes also exhibit RNase H 

activity. To test this, we used two different DNA-RNA heteroduplex substrates, a 

radioactively 3’-labeled 27-mer RNA hybridized to a complementary 27-mer DNA strand, or 

the same RNA hybridized to a complementary 17-mer DNA strand, which leaves a 10-

nucleotide 5’-overhang of RNA. The latter substrate resembles the nucleic acids in an EC, 

where Rat1 would degrade single-stranded RNA from the 5’-end and then encounter the 

DNA-RNA hybrid (Fig. 25 C). As a control we used RNase I, which specifically degrades 

single-stranded RNA, and RNase H, which specifically degrades RNA within a DNA-RNA 

hybrid. As expected, RNase I degraded the single-stranded 10 nt overhang (lane 3), and 

RNase H degraded RNA within the hybrid region (lanes 4 and 8). However, neither Rat1, nor 

its complexes Rat1/Rai1 or Rat1/Rai1/Rtt103 led to RNA degradation (lanes 9, 10, 11). It has 

to be considered, that Rat1 shows a low activity concerning single stranded DNA (Stevens & 

Poole, 1995). Since our reaction mixture contains an excess of DNA over RNA molecules, 

the ssDNA can also serve as a substrate and reduce the detectable ribolytic activity. 

However, the 5’-overhang was partially degraded by Rat1/Rai1 and Rat1/Rai1/Rtt103 (lanes 

6 and 7), indicating that the enzyme complexes were active under the assay conditions, and 

providing the positive control. Thus, Rat1 contains a putative RNase H domain in its N-

terminal region, but we did not observe RNase H activity with recombinant Rat1 complexes 

in vitro.  

Nevertheless, the identified RNase H activity of Xrn1, that shows a high sequence 

conservation with Rat1 (Fig. 25 A), together with the similarity of the conserved N-terminal 

region of Rat1 to the catalytic domain of RNase H enzymes we identified (Fig. 25 B) leads us 

to the assumption that Rat1 might exhibit RNase activity in vivo we cannot detect in our 
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highly pure in vitro assay. In such a scenario, Rat1 degrades RNA until it reaches elongating 

Pol II and its associated factors, which may activate a cryptic RNAse H activitiy in Rat1, 

which then may degrade RNA within the DNA-RNA hybrid, destabilizing the EC and leading 

to termination. We refer to this model as the „triggered torpedo model“ since it implies that 

the Rat1 torpedo requires a RNAse H activity that must be activated (triggered). The possible 

RNAse H activity of Rat1 is consistent with a recent study of the role of Rat1 in degrading 

telomeric repeat-containing RNA (Luke et al, 2008) . In this study, overexpression of RNAse 

H rescued telomere elongation defects in cells that lacked functional Rat1. The defects stem 

from an increased concentration of short RNAs that bind to telomeric DNA. These RNAs are 

kept at a low level by functional Rat1. Interestingly, a deletion of Rnase H genes does not 

alter the defective Rat1 phenotype in vivo. The authors suspect the missing activity to be a 

helicase, like the ATP-dependent RNA-helicase Upf1. Another explanation could be that 

Rat1 itself contains RNAse H activity in its functional context in vivo.  

However, to provide evidence for the triggered torpedo model, activation of a possible 

RNAse H activity of Rat1 must be demonstrated. 

 

4.3.9 The Rat1 nuclease active site degrades RNA within the EC 

 

To investigate whether the Rat1 N-terminal region was responsible for the observed RNA 

degradation activity in the context of ECs, we mutated conserved acidic residues and tested 

for RNA degradation. We mutated the highly conserved residue D102, proposed to be part of 

a putative RNase H active site (Fig. 25 A and B). In addition we mutated the conserved 

residue D235 that was shown to be required for nuclease activity in vitro (Kim et al, 2004). 

The Rat1 D102A mutant was slightly impaired in its activity to degrade RNA within the EC 

(Fig. 26, lanes 9, 6, 3).  

 

Figure 26: Effect of Rat1 point mutations on ribonucleolytic activity 

Autoradiograph of RNAs assembled within ECs, that were used as substrates for mutant Rat1 proteins at different 

Mg2+ concentrations. Samples were treated as depicted in Fig. 22 A (steps a’ and b’), separated by 6 M urea 

PAGE and exposed for several hours to a storage phosphor screen.  
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The mutation D235A strongly impaired activity at lower magnesium ion concentrations (Fig. 

26, lanes 8, 5, 2). Higher magnesium ion concentrations could rescue the mutant defect (Fig. 

26, lane 11), apparently by compensating for the decreased magnesium affinity of the active 

site in the mutant. These results are consistent with mutational studies of Xrn1, where 

mutations in corresponding conserved residues also affect exonuclease activity to different 

extents (Page et al, 1998).  

Unexpectedly, degradation of RNA at lower magnesium concentrations sometimes did not 

result in the 18 nt degradation product (Fig 26, lanes 4 and 1). We account this to an overall 

instability of pure elongation complexes at these conditions, that results in degradation of 

RNA that is otherwise protected inside of Pol II. 

 

4.4 Conclusions and future perspective 

 

In this work, the production and purification of the Rat1 exoribonuclease in complex with the 

interacting proteins Rai1 and Rtt103 is shown. The previously reported stabilization of Rat1 

nuclease activity by Rai1 was confirmed and it was shown that Rtt103 is not a regulator of 

Rat1 activity. In addition, the direct interaction of Rat1/Rai1 with the CTD-binding protein 

Rtt103 was shown for the first time. The results from the in vitro termination assay that was 

established in the course of this work show that Rat1/Rai1 is not a dedicated termination 

factor as envisaged by the "torpedo model“. Nevertheless, existing data strongly suggests 

the involvement of Rat1 in the termination process and this work strengthens the concept of 

a "combined allosteric-torpedo model“ that was suggested before (Luo et al, 2006). The 

missing contribution to termination could be a cis-element like a DNA sequence, that could 

change the properties of elongating Pol II. This seems to be reasonable, because the 

concept of a "weak hybrid“ seems to be conserved in the evolution of transcription 

termination mechanisms (see section 1.3.2). In this light, we tested such a „weak hybrid“ that 

occurs in the 3’ regions of protein coding genes, the poly(A) signal. It is known that it does 

not induce termination, but still it might trigger a "termination competent“ form of Pol II that 

could be terminated by Rat1. This was tested in the in vitro assay, but elongation complexes 

remained stable and were not terminated opon Rat1/Rai1 treatment. Also a crystal structure 

of the elongation complex bearing the poly(A) site "weak hybrid“ within its active site showed 

no rearrangements of the nucleic acids within Pol II, which might be expected in a 

"termination competent“ Pol II. Neither did essential pause sites influence the outcome of the 

torpedo reaction. Thus, we conclude that another trans-acting factor might be needed for 

termination. A good candidate for such a factor would be Rtt103. Through binding to the 

Ser2-phosphorylated CTD of Pol II it could transmit a termination signal to the polymerase, 

induced by its interaction with Rat1/Rai1. This could be related to a termination mechanism 

that was reported by Zhang et al (2005). They have shown that the RNA 3'-end processing 
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factor Pcf11 can "dismantle" elongation complexes. They assume that this happens by Pcf11 

forming a bridge between the Pol II CTD and the RNA, that are both bound by this factor. 

This interaction is thought to exert a force onto the elongation complex that disrupts DNA-

RNA hybrid interactions. Unfortunately, we were not able to test this hypothesis in our in vitro 

assay, since we are currently not able to specifically phosphorylate/dephosphorylate 

residues in the CTD of our Pol II preparations. However, since we can produce the highly 

pure and active trimeric complex of Rat1/Rai1/Rtt103, this hypothesis should be tested in the 

future as soon as the experimental limitations have been overcome. Another attractive model 

for Rat1/Rai1-related termination events is what we call the "triggered-torpedo model". We 

found homology of the Rat1 N-terminal region to RNase H domains, but could not see 

RNase H activity (hydrolysis of RNA within DNA-RNA duplexes) in our nuclease preparation 

(see 4.3.8). Basically, an additional factor could modify the activity of Rat1/Rai1 upon 

encountering the elongation complex, "triggering" its inherent RNase H activity. 

Consequently, Rat1 could then attack the RNA within the hybrid of the transcription bubble 

and disrupt elongation compex interactions. As soon as candidate proteins for such a 

"trigger" are defined, this model can be tested by our setup. This immediately shows the 

advantage of our in vitro system: it is easily and quickly adjustable to any desired 

experimental design. First, the coupling of the "substrate“ (elongation complexes) to the 

magnetic beads allows a quick exchange of buffer conditions. Second, the use of sythetic 

oligonucleotides allows the implementation of any nucleic acid sequence that might modulate 

the activity of Pol II and/or Rat1/Rai1. Third, availability of fully recombinant exonuclease 

complexes makes it easy to modify Rat1/Rai1 by point mutations or larger deletions. Fourth, 

an unlimited number of soluble factors can be added to the assay, to establish a minimal 

system for termination of Pol II transcription. A good suggestion for such a future experiment 

would be the addition of the ATP-dependent DNA-RNA-helicase Sen1 when it is available. 

Sen1 is reported to be involved in termination of sn-/snoRNA transcription and also in 

termination at some mRNA-coding genes (Lykke-Andersen & Jensen, 2007; Steinmetz et al, 

2006). Also the addition of nuclear extract, that is fractionated by biochemical methdos, could 

help to identify termination activity in one of the fractions. The assay could then be used to 

monitor this activity and to purify and identify the missing termination factor(s). This 

procedure would be limited by endogenous nucleases that are active in the nuclear extract. 

Those need to be specifically inhibited or removed from the extract in order to carry out such 

an experiment. In addition, the in vitro reaction should be tested with endogenous Rat1/Rai1, 

purified directly from yeast extracts. We cannot exclude that posttranslational modifications, 

that are not present in our preparation, have an influence on the result of the reaction. 

In summary, the in vitro assay described in this work, in combination with the fully 

recombinant and active torpedo-nuclease complexes can be used in future experiments as a 

tool to elucidate the transcription mechanism for protein coding genes. In addition, the assay 

was and will be used further in the research on elongation-related events in vitro. 
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Figure A1: Alignment of Spt6 and Tex protein sequences 

Alignment of the C. glabrata Spt6 (cgSpt6) and P. aeruginosa Tex (paTex) protein sequences by ClustalW. 

Secondary structure elements are indicated in red and green, for -helices and -strands, respectively 

(information about secondary structure comes from the X-ray structure in the case of Tex and from secondary 

structure prediction (PROFsec) in the case of Spt6. Only the residues with an expected average accuracy > 82% 

were highlighted in the alignment). Tex-domains and the Spt6 SH2 domain are colored as in Figs. 9 A and 15. 

Insertions in Spt6 are numbered as in Fig. 15. 
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Figure A2: Surface charge distribution of SH2 domains 

Surface charge was calculated with APBS (Baker et al, 2001) using the same parameters for all the domains. 

Binding pockets are indicated by dashed circles (see also Figs. 3, 12 and 13 ). 
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Figure A3: Venn diagram depicting the overlap of Spt6 C dependent genes with those ORFs showing 

cryptic transcription in the spt6-1004 mutant.  

Of the 960 ORFs known to exhibit cryptic transcription in the Spt6-1004 mutant, the transcript levels of 147 genes 

are significantly altered in the spt6 C mutant. All overlapping genes are listed in the table below. The diagram 

was drawn with the Partek Genomics Suite 6.3 software. The list of the 960 ORFs is from Cheung et al. The 

figure was kindly provided by Andreas Mayer. 
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Figure A4: Venn diagram indicating the overlap of known yeast Pol II transcription factors and spt6 C 

dependent genes.  

33 genes coding for various transcription factors are among the significantly changed genes in the spt6 C 

mutant. The diagram was drawn with the Partek Genomics Suite 6.3 software. The list of the 269 yeast 

transcription factors is taken from Hu et al (2007). The figure was kindly provided by Andreas Mayer. 



6 References 102

6 References 

 

Adelman K, Wei W, Ardehali MB, Werner J, Zhu B, Reinberg D, Lis JT (2006) Drosophila 
Paf1 modulates chromatin structure at actively transcribed genes. Molecular and cellular 
biology 26(1): 250-260 
 
Adkins MW, Tyler JK (2006) Transcriptional activators are dispensable for transcription in the 
absence of Spt6-mediated chromatin reassembly of promoter regions. Molecular cell 21(3): 
405-416 
 
Ahn SH, Kim M, Buratowski S (2004) Phosphorylation of serine 2 within the RNA polymerase 
II C-terminal domain couples transcription and 3' end processing. Molecular cell 13(1): 67-76 
 
Amberg DC, Goldstein AL, Cole CN (1992) Isolation and characterization of RAT1: an 
essential gene of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic 
trafficking of mRNA. Genes & development 6(7): 1173-1189 
 
Amrani N, Minet M, Wyers F, Dufour ME, Aggerbeck LP, Lacroute F (1997) PCF11 encodes 
a third protein component of yeast cleavage and polyadenylation factor I. Molecular and 
cellular biology 17(3): 1102-1109 
 
Anderson D, Koch CA, Grey L, Ellis C, Moran MF, Pawson T (1990) Binding of SH2 domains 
of phospholipase C gamma 1, GAP, and Src to activated growth factor receptors. Science 
(New York, NY 250(4983): 979-982 
 
Andrecka J, Lewis R, Bruckner F, Lehmann E, Cramer P, Michaelis J (2008) Single-molecule 
tracking of mRNA exiting from RNA polymerase II. Proceedings of the National Academy of 
Sciences of the United States of America 105(1): 135-140 
 
Andrulis ED, Guzman E, Doring P, Werner J, Lis JT (2000) High-resolution localization of 
Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing 
and transcription elongation. Genes & development 14(20): 2635-2649 
 
Aparicio O, Geisberg JV, Sekinger E, Yang A, Moqtaderi Z, Struhl K (2005) Chromatin 
immunoprecipitation for determining the association of proteins with specific genomic 
sequences in vivo. Curr Protoc Mol Biol Chapter 21: Unit 21 23 
 
Aranda A, Proudfoot NJ (1999) Definition of transcriptional pause elements in fission yeast. 
Molecular and cellular biology 19(2): 1251-1261 
 
Armache K-J, Mitterweger S, Meinhart A, Cramer P (2005a) Structures of complete RNA 
polymerase II and its subcomplex Rpb4/7. J Biol Chem 280: 7131-7134 
 
Armache KJ, Kettenberger H, Cramer P (2003) Architecture of initiation-competent 12-
subunit RNA polymerase II. Proceedings of the National Academy of Sciences of the United 
States of America 100(12): 6964-6968 
 
Armache KJ, Mitterweger S, Meinhart A, Cramer P (2005b) Structures of complete RNA 
polymerase II and its subcomplex, Rpb4/7. The Journal of biological chemistry 280(8): 7131-
7134 
 
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, 
Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, 
Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the 
unification of biology. The Gene Ontology Consortium. Nature genetics 25(1): 25-29 



6 References 103

 
Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of 
nanosystems: application to microtubules and the ribosome. Proceedings of the National 
Academy of Sciences of the United States of America 98(18): 10037-10041 
 
Bateman E, Paule MR (1988) Promoter occlusion during ribosomal RNA transcription. Cell 
54(7): 985-992 
 
Becker S, Groner B, Muller CW (1998) Three-dimensional structure of the Stat3beta 
homodimer bound to DNA. Nature 394(6689): 145-151 
 
Belotserkovskaya R, Oh S, Bondarenko VA, Orphanides G, Studitsky VM, Reinberg D (2003) 
FACT facilitates transcription-dependent nucleosome alteration. Science (New York, NY 
301(5636): 1090-1093 
 
Bergfors T (2003) Seeds to crystals. Journal of structural biology 142(1): 66-76 
 
Birse CE, Lee BA, Hansen K, Proudfoot NJ (1997) Transcriptional termination signals for 
RNA polymerase II in fission yeast. The EMBO journal 16(12): 3633-3643 
 
Birse CE, Minvielle-Sebastia L, Lee BA, Keller W, Proudfoot NJ (1998) Coupling termination 
of transcription to messenger RNA maturation in yeast. Science (New York, NY 280(5361): 
298-301 
 
Blaikie P, Immanuel D, Wu J, Li N, Yajnik V, Margolis B (1994) A region in Shc distinct from 
the SH2 domain can bind tyrosine-phosphorylated growth factor receptors. The Journal of 
biological chemistry 269(51): 32031-32034 
 
Booker GW, Breeze AL, Downing AK, Panayotou G, Gout I, Waterfield MD, Campbell ID 
(1992) Structure of an SH2 domain of the p85 alpha subunit of phosphatidylinositol-3-OH 
kinase. Nature 358(6388): 684-687 
 
Bortvin A, Winston F (1996) Evidence that Spt6p controls chromatin structure by a direct 
interaction with histones. Science (New York, NY 272(5267): 1473-1476 
 
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram 
quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72: 
248-254 
 
Bradshaw JM, Mitaxov V, Waksman G (1999) Investigation of phosphotyrosine recognition 
by the SH2 domain of the Src kinase. Journal of molecular biology 293(4): 971-985 
 
Brueckner F, Cramer P (2008) Structural basis of transcription inhibition by alpha-amanitin 
and implications for RNA polymerase II translocation. Nature structural & molecular biology 
 
Brueckner F, Hennecke U, Carell T, Cramer P (2007) CPD damage recognition by 
transcribing RNA polymerase II. Science (New York, NY 315(5813): 859-862 
 
Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, 
Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) 
Crystallography & NMR system: A new software suite for macromolecular structure 
determination. Acta crystallographica 54(Pt 5): 905-921 
 
Buratowski S (2003) The CTD code. Nature structural biology 10(9): 679-680 
 
Buratowski S (2005) Connections between mRNA 3' end processing and transcription 
termination. Current opinion in cell biology 17(3): 257-261 
 



6 References 104

Bushnell DA, Kornberg RD (2003) Complete, 12-subunit RNA polymerase II at 4.1-A 
resolution: implications for the initiation of transcription. Proceedings of the National 
Academy of Sciences of the United States of America 100(12): 6969-6973 
 
Bycroft M, Hubbard TJ, Proctor M, Freund SM, Murzin AG (1997) The solution structure of 
the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold. Cell 88(2): 
235-242 
 
Ceruzzi MA, Bektesh SL, Richardson JP (1985) Interaction of rho factor with bacteriophage 
lambda cro gene transcripts. The Journal of biological chemistry 260(16): 9412-9418 
 
Chapman RD, Heidemann M, Albert TK, Mailhammer R, Flatley A, Meisterernst M, Kremmer 
E, Eick D (2007) Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. 
Science (New York, NY 318(5857): 1780-1782 
 
Chapman RD, Heidemann M, Hintermair C, Eick D (2008) Molecular evolution of the RNA 
polymerase II CTD. Trends Genet 24(6): 289-296 
 
Chedin S, Riva M, Schultz P, Sentenac A, Carles C (1998) The RNA cleavage activity of 
RNA polymerase III is mediated by an essential TFIIS-like subunit and is important for 
transcription termination. Genes & development 12(24): 3857-3871 
 
Chen X, Vinkemeier U, Zhao Y, Jeruzalmi D, Darnell JE, Jr., Kuriyan J (1998) Crystal 
structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell 93(5): 827-839 
 
Cheung V, Chua G, Batada NN, Landry CR, Michnick SW, Hughes TR, Winston F (2008) 
Chromatin- and Transcription-Related Factors Repress Transcription from within Coding 
Regions throughout the Saccharomyces cerevisiae Genome. PLoS Biol 6(11): e277 
 
Cho EJ, Kobor MS, Kim M, Greenblatt J, Buratowski S (2001) Opposing effects of Ctk1 
kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes 
& development 15(24): 3319-3329 
 
Cho EJ, Takagi T, Moore CR, Buratowski S (1997) mRNA capping enzyme is recruited to the 
transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. 
Genes & development 11(24): 3319-3326 
 
Clark-Adams CD, Winston F (1987) The SPT6 gene is essential for growth and is required 
for delta-mediated transcription in Saccharomyces cerevisiae. Molecular and cellular biology 
7(2): 679-686 
 
Connelly S, Manley JL (1988) A functional mRNA polyadenylation signal is required for 
transcription termination by RNA polymerase II. Genes & development 2(4): 440-452 
 
Corden JL, Cadena DL, Ahearn JM, Jr., Dahmus ME (1985) A unique structure at the 
carboxyl terminus of the largest subunit of eukaryotic RNA polymerase II. Proceedings of the 
National Academy of Sciences of the United States of America 82(23): 7934-7938 
 
Costa PJ, Arndt KM (2000) Synthetic lethal interactions suggest a role for the 
Saccharomyces cerevisiae Rtf1 protein in transcription elongation. Genetics 156(2): 535-547 
 
Cozzarelli NR, Gerrard SP, Schlissel M, Brown DD, Bogenhagen DF (1983) Purified RNA 
polymerase III accurately and efficiently terminates transcription of 5S RNA genes. Cell 
34(3): 829-835 
 
Cramer P, Bushnell DA, Fu J, Gnatt AL, Maier-Davis B, Thompson NE, Burgess RR, 
Edwards AM, David PR, Kornberg RD (2000) Architecture of RNA polymerase II and 
implications for the transcription mechanism. Science (New York, NY 288(5466): 640-649 
 



6 References 105

Cramer P, Bushnell DA, Kornberg RD (2001a) Structural basis of transcription: RNA 
polymerase II at 2.8 angstrom resolution. Science (New York, NY 292(5523): 1863-1876 
 
Cramer P, Bushnell DA, Kornberg RD (2001b) Structural basis of transcription: RNA 
polymerase II at 2.8 angstrom resolution. Science 292(5523): 1863-1876. 
 
d'Aubenton Carafa Y, Brody E, Thermes C (1990) Prediction of rho-independent Escherichia 
coli transcription terminators. A statistical analysis of their RNA stem-loop structures. Journal 
of molecular biology 216(4): 835-858 
 
Dahmus ME (1996) Reversible phosphorylation of the C-terminal domain of RNA polymerase 
II. The Journal of biological chemistry 271(32): 19009-19012 
 
Damsma GE, Alt A, Brueckner F, Carell T, Cramer P (2007) Mechanism of transcriptional 
stalling at cisplatin-damaged DNA. Nature structural & molecular biology 14(12): 1127-1133 
 
Darnell JE, Jr. (1997) STATs and gene regulation. Science (New York, NY 277(5332): 1630-
1635 
 
Dichtl B, Blank D, Ohnacker M, Friedlein A, Roeder D, Langen H, Keller W (2002) A role for 
SSU72 in balancing RNA polymerase II transcription elongation and termination. Molecular 
cell 10(5): 1139-1150 
 
Eck MJ, Shoelson SE, Harrison SC (1993) Recognition of a high-affinity phosphotyrosyl 
peptide by the Src homology-2 domain of p56lck. Nature 362(6415): 87-91 
 
Edwards AM, Kane CM, Young RA, Kornberg RD (1991) Two dissociable subunits of yeast 
RNA polymerase II stimulate the initiation of transcription at a promoter in vitro. The Journal 
of biological chemistry 266(1): 71-75 
 
Egloff S, O'Reilly D, Chapman RD, Taylor A, Tanzhaus K, Pitts L, Eick D, Murphy S (2007) 
Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression. 
Science (New York, NY 318(5857): 1777-1779 
 
Eichinger L, Pachebat JA, Glockner G, Rajandream MA, Sucgang R, Berriman M, Song J, 
Olsen R, Szafranski K, Xu Q, Tunggal B, Kummerfeld S, Madera M, Konfortov BA, Rivero F, 
Bankier AT, Lehmann R, Hamlin N, Davies R, Gaudet P, Fey P, Pilcher K, Chen G, 
Saunders D, Sodergren E, Davis P, Kerhornou A, Nie X, Hall N, Anjard C, Hemphill L, Bason 
N, Farbrother P, Desany B, Just E, Morio T, Rost R, Churcher C, Cooper J, Haydock S, van 
Driessche N, Cronin A, Goodhead I, Muzny D, Mourier T, Pain A, Lu M, Harper D, Lindsay R, 
Hauser H, James K, Quiles M, Madan Babu M, Saito T, Buchrieser C, Wardroper A, Felder 
M, Thangavelu M, Johnson D, Knights A, Loulseged H, Mungall K, Oliver K, Price C, Quail 
MA, Urushihara H, Hernandez J, Rabbinowitsch E, Steffen D, Sanders M, Ma J, Kohara Y, 
Sharp S, Simmonds M, Spiegler S, Tivey A, Sugano S, White B, Walker D, Woodward J, 
Winckler T, Tanaka Y, Shaulsky G, Schleicher M, Weinstock G, Rosenthal A, Cox EC, 
Chisholm RL, Gibbs R, Loomis WF, Platzer M, Kay RR, Williams J, Dear PH, Noegel AA, 
Barrell B, Kuspa A (2005) The genome of the social amoeba Dictyostelium discoideum. 
Nature 435(7038): 43-57 
 
El Hage A, Koper M, Kufel J, Tollervey D (2008) Efficient termination of transcription by RNA 
polymerase I requires the 5' exonuclease Rat1 in yeast. Genes & development 22(8): 1069-
1081 
 
Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta 
crystallographica 60(Pt 12 Pt 1): 2126-2132 
 
Endoh M, Zhu W, Hasegawa J, Watanabe H, Kim DK, Aida M, Inukai N, Narita T, Yamada T, 
Furuya A, Sato H, Yamaguchi Y, Mandal SS, Reinberg D, Wada T, Handa H (2004) Human 



6 References 106

Spt6 stimulates transcription elongation by RNA polymerase II in vitro. Molecular and cellular 
biology 24(8): 3324-3336 
 
Escobedo JA, Kaplan DR, Kavanaugh WM, Turck CW, Williams LT (1991) A 
phosphatidylinositol-3 kinase binds to platelet-derived growth factor receptors through a 
specific receptor sequence containing phosphotyrosine. Molecular and cellular biology 11(2): 
1125-1132 
 
Fabrega C, Shen V, Shuman S, Lima CD (2003) Structure of an mRNA capping enzyme 
bound to the phosphorylated carboxy-terminal domain of RNA polymerase II. Molecular cell 
11(6): 1549-1561 
 
Fantl WJ, Escobedo JA, Martin GA, Turck CW, del Rosario M, McCormick F, Williams LT 
(1992) Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that 
mediate different signaling pathways. Cell 69(3): 413-423 
 
Farnham PJ, Greenblatt J, Platt T (1982) Effects of NusA protein on transcription termination 
in the tryptophan operon of Escherichia coli. Cell 29(3): 945-951 
 
Felsenstein J (1989) PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5: 
164-166 
 
Fischbeck JA, Kraemer SM, Stargell LA (2002) SPN1, a conserved gene identified by 
suppression of a postrecruitment-defective yeast TATA-binding protein mutant. Genetics 
162(4): 1605-1616 
 
Fish RN, Kane CM (2002) Promoting elongation with transcript cleavage stimulatory factors. 
Biochimica et biophysica acta 1577(2): 287-307 
 
Fuchs TM, Deppisch H, Scarlato V, Gross R (1996) A new gene locus of Bordetella pertussis 
defines a novel family of prokaryotic transcriptional accessory proteins. Journal of 
bacteriology 178(15): 4445-4452 
 
Gao Q, Hua J, Kimura R, Headd JJ, Fu XY, Chin YE (2004) Identification of the linker-SH2 
domain of STAT as the origin of the SH2 domain using two-dimensional structural alignment. 
Mol Cell Proteomics 3(7): 704-714 
 
Geiduschek EP, Kassavetis GA (2001) The RNA polymerase III transcription apparatus. 
Journal of molecular biology 310(1): 1-26 
 
Gnatt AL, Cramer P, Fu J, Bushnell DA, Kornberg RD (2001) Structural basis of transcription: 
an RNA polymerase II elongation complex at 3.3 A resolution. Science (New York, NY 
292(5523): 1876-1882 
 
Graber JH, Cantor CR, Mohr SC, Smith TF (1999) Genomic detection of new yeast pre-
mRNA 3'-end-processing signals. Nucleic Acids Res 27(3): 888-894 
 
Gu W, Wind M, Reines D (1996) Increased accommodation of nascent RNA in a product site 
on RNA polymerase II during arrest. Proceedings of the National Academy of Sciences of the 
United States of America 93(14): 6935-6940 
 
Guglielmi B, Soutourina J, Esnault C, Werner M (2007) TFIIS elongation factor and Mediator 
act in conjunction during transcription initiation in vivo. Proceedings of the National Academy 
of Sciences of the United States of America 104(41): 16062-16067 
 
Guo Z, Sherman F (1996) 3'-end-forming signals of yeast mRNA. Trends in biochemical 
sciences 21(12): 477-481 
 



6 References 107

Gusarov I, Nudler E (1999) The mechanism of intrinsic transcription termination. Molecular 
cell 3(4): 495-504 
 
Hahn S (2004) Structure and mechanism of the RNA polymerase II transcription machinery. 
Nature structural & molecular biology 11(5): 394-403 
 
Hani J, Schelbert B, Bernhardt A, Domdey H, Fischer G, Wiebauer K, Rahfeld JU (1999) 
Mutations in a peptidylprolyl-cis/trans-isomerase gene lead to a defect in 3'-end formation of 
a pre-mRNA in Saccharomyces cerevisiae. The Journal of biological chemistry 274(1): 108-
116 
 
Hartzog GA, Speer JL, Lindstrom DL (2002) Transcript elongation on a nucleoprotein 
template. Biochimica et biophysica acta 1577(2): 276-286 
 
Hartzog GA, Wada T, Handa H, Winston F (1998) Evidence that Spt4, Spt5, and Spt6 control 
transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes & 
development 12(3): 357-369 
 
He X, Khan AU, Cheng H, Pappas DL, Jr., Hampsey M, Moore CL (2003) Functional 
interactions between the transcription and mRNA 3' end processing machineries mediated by 
Ssu72 and Sub1. Genes & development 17(8): 1030-1042 
 
Henderson SL, Ryan K, Sollner-Webb B (1989) The promoter-proximal rDNA terminator 
augments initiation by preventing disruption of the stable transcription complex caused by 
polymerase read-in. Genes & development 3(2): 212-223 
 
Holm L, Sander C (1993) Protein structure comparison by alignment of distance matrices. 
Journal of molecular biology 233(1): 123-138 
 
Hu J, Liu J, Ghirlando R, Saltiel AR, Hubbard SR (2003) Structural basis for recruitment of 
the adaptor protein APS to the activated insulin receptor. Molecular cell 12(6): 1379-1389 
 
Hu Z, Killion PJ, Iyer VR (2007) Genetic reconstruction of a functional transcriptional 
regulatory network. Nature genetics 39(5): 683-687 
 
Hyman LE, Seiler SH, Whoriskey J, Moore CL (1991) Point mutations upstream of the yeast 
ADH2 poly(A) site significantly reduce the efficiency of 3'-end formation. Molecular and 
cellular biology 11(4): 2004-2012 
 
Izban MG, Luse DS (1992) The RNA polymerase II ternary complex cleaves the nascent 
transcript in a 3'----5' direction in the presence of elongation factor SII. Genes & development 
6(7): 1342-1356 
 
Jansa P, Grummt I (1999) Mechanism of transcription termination: PTRF interacts with the 
largest subunit of RNA polymerase I and dissociates paused transcription complexes from 
yeast and mouse. Mol Gen Genet 262(3): 508-514 
 
Jasiak AJ, Hartmann H, Karakasili E, Kalocsay M, Flatley A, Kremmer E, Strasser K, Martin 
DE, Soding J, Cramer P (2008) Genome-associated RNA polymerase II includes the 
dissociable Rpb4/7 subcomplex. The Journal of biological chemistry 283(39): 26423-26427 
 
Jenuwein T, Allis CD (2001) Translating the histone code. Science (New York, NY 
293(5532): 1074-1080 
 
Johnson AW (1997) Rat1p and Xrn1p are functionally interchangeable exoribonucleases that 
are restricted to and required in the nucleus and cytoplasm, respectively. Molecular and 
cellular biology 17(10): 6122-6130 
 
Johnson AW (2001) Rat1p nuclease. Methods Enzymol 342: 260-268 



6 References 108

 
Johnson SJ, Close D, Robinson H, Vallet-Gely I, Dove SL, Hill CP (2008) Crystal Structure 
and RNA Binding of the Tex Protein from Pseudomonas aeruginosa. Journal of molecular 
biology 
 
Jones DT (1999) Protein secondary structure prediction based on position-specific scoring 
matrices. Journal of molecular biology 292(2): 195-202 
 
Kabsch W (1993) Automatic processing of rotation diffraction data from crystals of initially 
unknown symmetry and cell constants. J Appl Crystallogr 26: 795-800 
 
Kaplan CD, Laprade L, Winston F (2003) Transcription elongation factors repress 
transcription initiation from cryptic sites. Science (New York, NY 301(5636): 1096-1099 
 
Kaplan CD, Morris JR, Wu C, Winston F (2000) Spt5 and spt6 are associated with active 
transcription and have characteristics of general elongation factors in D. melanogaster. 
Genes & development 14(20): 2623-2634 
 
Katayanagi K, Miyagawa M, Matsushima M, Ishikawa M, Kanaya S, Ikehara M, Matsuzaki T, 
Morikawa K (1990) Three-dimensional structure of ribonuclease H from E. coli. Nature 
347(6290): 306-309 
 
Kazlauskas A, Ellis C, Pawson T, Cooper JA (1990) Binding of GAP to activated PDGF 
receptors. Science (New York, NY 247(4950): 1578-1581 
 
Kazlauskas A, Kashishian A, Cooper JA, Valius M (1992) GTPase-activating protein and 
phosphatidylinositol 3-kinase bind to distinct regions of the platelet-derived growth factor 
receptor beta subunit. Molecular and cellular biology 12(6): 2534-2544 
 
Kenna M, Stevens A, McCammon M, Douglas MG (1993) An essential yeast gene with 
homology to the exonuclease-encoding XRN1/KEM1 gene also encodes a protein with 
exoribonuclease activity. Molecular and cellular biology 13(1): 341-350 
 
Kettenberger H, Armache K-J, Cramer P (2004a) Complete RNA polymerase II elongation 
complex structure and its interactions with NTP and TFIIS. Mol Cell 16: 955-965 
 
Kettenberger H, Armache KJ, Cramer P (2003) Architecture of the RNA polymerase II-TFIIS 
complex and implications for mRNA cleavage. Cell 114(3): 347-357 
 
Kettenberger H, Armache KJ, Cramer P (2004b) Complete RNA polymerase II elongation 
complex structure and its interactions with NTP and TFIIS. Molecular cell 16(6): 955-965 
 
Kim B, Nesvizhskii AI, Rani PG, Hahn S, Aebersold R, Ranish JA (2007) The transcription 
elongation factor TFIIS is a component of RNA polymerase II preinitiation complexes. 
Proceedings of the National Academy of Sciences of the United States of America 104(41): 
16068-16073 
 
Kim M, Krogan NJ, Vasiljeva L, Rando OJ, Nedea E, Greenblatt JF, Buratowski S (2004) The 
yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 
432(7016): 517-522 
 
Kim M, Vasiljeva L, Rando OJ, Zhelkovsky A, Moore C, Buratowski S (2006) Distinct 
pathways for snoRNA and mRNA termination. Molecular cell 24(5): 723-734 
 
Kimber MS, Nachman J, Cunningham AM, Gish GD, Pawson T, Pai EF (2000) Structural 
basis for specificity switching of the Src SH2 domain. Molecular cell 5(6): 1043-1049 
 



6 References 109

Kireeva ML, Komissarova N, Waugh DS, Kashlev M (2000) The 8-nucleotide-long RNA:DNA 
hybrid is a primary stability determinant of the RNA polymerase II elongation complex. The 
Journal of biological chemistry 275(9): 6530-6536 
 
Kireeva ML, Walter W, Tchernajenko V, Bondarenko V, Kashlev M, Studitsky VM (2002) 
Nucleosome remodeling induced by RNA polymerase II: loss of the H2A/H2B dimer during 
transcription. Molecular cell 9(3): 541-552 
 
Kizer KO, Phatnani HP, Shibata Y, Hall H, Greenleaf AL, Strahl BD (2005) A novel domain in 
Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with 
transcript elongation. Molecular and cellular biology 25(8): 3305-3316 
 
Knop M, Siegers K, Pereira G, Zachariae W, Winsor B, Nasmyth K, Schiebel E (1999) 
Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved 
practical routines. Yeast 15(10B): 963-972 
 
Komarnitsky P, Cho EJ, Buratowski S (2000) Different phosphorylated forms of RNA 
polymerase II and associated mRNA processing factors during transcription. Genes & 
development 14(19): 2452-2460 
 
Komissarova N, Kireeva ML, Becker J, Sidorenkov I, Kashlev M (2003) Engineering of 
elongation complexes of bacterial and yeast RNA polymerases. Methods Enzymol 371: 233-
251 
 
Korzheva N, Mustaev A, Nudler E, Nikiforov V, Goldfarb A (1998) Mechanistic model of the 
elongation complex of Escherichia coli RNA polymerase. Cold Spring Harb Symp Quant Biol 
63: 337-345 
 
Koschubs T, Seizl M, Lariviere L, Kurth F, Baumli S, Martin DE, Cramer P (2009) 
Identification, structure, and functional requirement of the Mediator submodule Med7N/31. 
The EMBO journal 28(1): 69-80 
 
Krogan NJ, Kim M, Ahn SH, Zhong G, Kobor MS, Cagney G, Emili A, Shilatifard A, 
Buratowski S, Greenblatt JF (2002) RNA polymerase II elongation factors of Saccharomyces 
cerevisiae: a targeted proteomics approach. Molecular and cellular biology 22(20): 6979-
6992 
 
Kufel J, Dichtl B, Tollervey D (1999) Yeast Rnt1p is required for cleavage of the pre-
ribosomal RNA in the 3' ETS but not the 5' ETS. RNA (New York, NY 5(7): 909-917 
 
Kuhn CD, Geiger SR, Baumli S, Gartmann M, Gerber J, Jennebach S, Mielke T, Tschochner 
H, Beckmann R, Cramer P (2007) Functional architecture of RNA polymerase I. Cell 131(7): 
1260-1272 
 
Kuriyan J, Cowburn D (1997) Modular peptide recognition domains in eukaryotic signaling. 
Annual review of biophysics and biomolecular structure 26: 259-288 
 
Labarga A, Valentin F, Anderson M, Lopez R (2007) Web services at the European 
bioinformatics institute. Nucleic Acids Res 35(Web Server issue): W6-11 
 
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of 
bacteriophage T4. Nature 227(5259): 680-685 
 
Landrieux E, Alic N, Ducrot C, Acker J, Riva M, Carles C (2006) A subcomplex of RNA 
polymerase III subunits involved in transcription termination and reinitiation. The EMBO 
journal 25(1): 118-128 
 
Lang WH, Morrow BE, Ju Q, Warner JR, Reeder RH (1994) A model for transcription 
termination by RNA polymerase I. Cell 79(3): 527-534 



6 References 110

 
Lang WH, Reeder RH (1993) The REB1 site is an essential component of a terminator for 
RNA polymerase I in Saccharomyces cerevisiae. Molecular and cellular biology 13(1): 649-
658 
 
Larimer FW, Hsu CL, Maupin MK, Stevens A (1992) Characterization of the XRN1 gene 
encoding a 5'-->3' exoribonuclease: sequence data and analysis of disparate protein and 
mRNA levels of gene-disrupted yeast cells. Gene 120(1): 51-57 
 
Larimer FW, Stevens A (1990) Disruption of the gene XRN1, coding for a 5'----3' 
exoribonuclease, restricts yeast cell growth. Gene 95(1): 85-90 
 
Lee TI, Young RA (2000) Transcription of eukaryotic protein-coding genes. Annual review of 
genetics 34: 77-137 
 
Lee W, Tillo D, Bray N, Morse RH, Davis RW, Hughes TR, Nislow C (2007) A high-resolution 
atlas of nucleosome occupancy in yeast. Nature genetics 39(10): 1235-1244 
 
Lei EP, Krebber H, Silver PA (2001) Messenger RNAs are recruited for nuclear export during 
transcription. Genes & development 15(14): 1771-1782 
 
Li M, Phatnani HP, Guan Z, Sage H, Greenleaf AL, Zhou P (2005) Solution structure of the 
Set2-Rpb1 interacting domain of human Set2 and its interaction with the 
hyperphosphorylated C-terminal domain of Rpb1. Proceedings of the National Academy of 
Sciences of the United States of America 102(49): 17636-17641 
 
Liu BA, Jablonowski K, Raina M, Arce M, Pawson T, Nash PD (2006) The human and mouse 
complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine 
signaling. Molecular cell 22(6): 851-868 
 
Logan J, Falck-Pedersen E, Darnell JE, Jr., Shenk T (1987) A poly(A) addition site and a 
downstream termination region are required for efficient cessation of transcription by RNA 
polymerase II in the mouse beta maj-globin gene. Proceedings of the National Academy of 
Sciences of the United States of America 84(23): 8306-8310 
 
Lu PJ, Zhou XZ, Shen M, Lu KP (1999) Function of WW domains as phosphoserine- or 
phosphothreonine-binding modules. Science (New York, NY 283(5406): 1325-1328 
 
Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the 
nucleosome core particle at 2.8 A resolution. Nature 389(6648): 251-260 
 
Luke B, Panza A, Redon S, Iglesias N, Li Z, Lingner J (2008) The Rat1p 5' to 3' Exonuclease 
Degrades Telomeric Repeat-Containing RNA and Promotes Telomere Elongation in 
Saccharomyces cerevisiae. Molecular cell 32(4): 465-477 
 
Luo W, Johnson AW, Bentley DL (2006) The role of Rat1 in coupling mRNA 3'-end 
processing to transcription termination: implications for a unified allosteric-torpedo model. 
Genes & development 20(8): 954-965 
 
Lux C, Albiez H, Chapman RD, Heidinger M, Meininghaus M, Brack-Werner R, Lang A, 
Ziegler M, Cremer T, Eick D (2005) Transition from initiation to promoter proximal pausing 
requires the CTD of RNA polymerase II. Nucleic Acids Res 33(16): 5139-5144 
 
Lykke-Andersen S, Jensen TH (2007) Overlapping pathways dictate termination of RNA 
polymerase II transcription. Biochimie 89(10): 1177-1182 
 
Maclennan AJ, Shaw G (1993) A yeast SH2 domain. Trends in biochemical sciences 18(12): 
464-465 
 



6 References 111

Marengere LE, Songyang Z, Gish GD, Schaller MD, Parsons JT, Stern MJ, Cantley LC, 
Pawson T (1994) SH2 domain specificity and activity modified by a single residue. Nature 
369(6480): 502-505 
 
Mason PB, Struhl K (2003) The FACT complex travels with elongating RNA polymerase II 
and is important for the fidelity of transcriptional initiation in vivo. Molecular and cellular 
biology 23(22): 8323-8333 
 
McCoy AJ (2007) Solving structures of protein complexes by molecular replacement with 
Phaser. Acta crystallographica 63(Pt 1): 32-41 
 
McCracken S, Fong N, Yankulov K, Ballantyne S, Pan G, Greenblatt J, Patterson SD, 
Wickens M, Bentley DL (1997) The C-terminal domain of RNA polymerase II couples mRNA 
processing to transcription. Nature 385(6614): 357-361 
 
Meinhart A, Cramer P (2004) Recognition of RNA polymerase II carboxy-terminal domain by 
3'-RNA-processing factors. Nature 430(6996): 223-226 
 
Meinhart A, Kamenski T, Hoeppner S, Baumli S, Cramer P (2005) A structural perspective of 
CTD function. Genes & development 19(12): 1401-1415 
 
Moran MF, Koch CA, Anderson D, Ellis C, England L, Martin GS, Pawson T (1990) Src 
homology region 2 domains direct protein-protein interactions in signal transduction. 
Proceedings of the National Academy of Sciences of the United States of America 87(21): 
8622-8626 
 
Mueller CL, Jaehning JA (2002) Ctr9, Rtf1, and Leo1 are components of the Paf1/RNA 
polymerase II complex. Molecular and cellular biology 22(7): 1971-1980 
 
Muller AJ, Pendergast AM, Havlik MH, Puil L, Pawson T, Witte ON (1992) A limited set of 
SH2 domains binds BCR through a high-affinity phosphotyrosine-independent interaction. 
Molecular and cellular biology 12(11): 5087-5093 
 
Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by 
the maximum-likelihood method. Acta crystallographica 53(Pt 3): 240-255 
 
Nehrke KW, Zalatan F, Platt T (1993) NusG alters rho-dependent termination of transcription 
in vitro independent of kinetic coupling. Gene Expr 3(2): 119-133 
 
Nonet M, Sweetser D, Young RA (1987) Functional redundancy and structural polymorphism 
in the large subunit of RNA polymerase II. Cell 50(6): 909-915 
 
Nowotny M, Gaidamakov SA, Crouch RJ, Yang W (2005) Crystal structures of RNase H 
bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell 
121(7): 1005-1016 
 
Nowotny M, Gaidamakov SA, Ghirlando R, Cerritelli SM, Crouch RJ, Yang W (2007) 
Structure of human RNase H1 complexed with an RNA/DNA hybrid: insight into HIV reverse 
transcription. Molecular cell 28(2): 264-276 
 
Nudler E, Gottesman ME (2002) Transcription termination and anti-termination in E. coli. 
Genes Cells 7(8): 755-768 
 
Nudler E, Mustaev A, Lukhtanov E, Goldfarb A (1997) The RNA-DNA hybrid maintains the 
register of transcription by preventing backtracking of RNA polymerase. Cell 89(1): 33-41 
 
Orphanides G, Reinberg D (2002) A unified theory of gene expression. Cell 108(4): 439-451 



6 References 112

Orphanides G, Wu WH, Lane WS, Hampsey M, Reinberg D (1999) The chromatin-specific 
transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature 
400(6741): 284-288 
 
Osborne BI, Guarente L (1989) Mutational analysis of a yeast transcriptional terminator. 
Proceedings of the National Academy of Sciences of the United States of America 86(11): 
4097-4101 
 
Osheim YN, Proudfoot NJ, Beyer AL (1999) EM visualization of transcription by RNA 
polymerase II: downstream termination requires a poly(A) signal but not transcript cleavage. 
Molecular cell 3(3): 379-387 
 
Osheim YN, Sikes ML, Beyer AL (2002) EM visualization of Pol II genes in Drosophila: most 
genes terminate without prior 3' end cleavage of nascent transcripts. Chromosoma 111(1): 1-
12 
 
Otwinowski Z, Minor W. (1996) Processing of X-ray diffraction data collected in oscillation 
mode. Meth Enzym 276: 307-326 
 
Overduin M, Rios CB, Mayer BJ, Baltimore D, Cowburn D (1992) Three-dimensional solution 
structure of the src homology 2 domain of c-abl. Cell 70(4): 697-704 
 
Page AM, Davis K, Molineux C, Kolodner RD, Johnson AW (1998) Mutational analysis of 
exoribonuclease I from Saccharomyces cerevisiae. Nucleic Acids Res 26(16): 3707-3716 
 
Pal M, Luse DS (2002) Strong natural pausing by RNA polymerase II within 10 bases of 
transcription start may result in repeated slippage and reextension of the nascent RNA. 
Molecular and cellular biology 22(1): 30-40 
 
Pal M, Luse DS (2003) The initiation-elongation transition: lateral mobility of RNA in RNA 
polymerase II complexes is greatly reduced at +8/+9 and absent by +23. Proceedings of the 
National Academy of Sciences of the United States of America 100(10): 5700-5705 
 
Pape T, Schneider TR (2004) HKL2MAP: a graphical user interface for phasing with SHELX 
programs. Acta Crystallogr D Biol Crystallogr 37: 843-844 
 
Park JS, Marr MT, Roberts JW (2002) E. coli Transcription repair coupling factor (Mfd 
protein) rescues arrested complexes by promoting forward translocation. Cell 109(6): 757-
767 
 
Park JS, Roberts JW (2006) Role of DNA bubble rewinding in enzymatic transcription 
termination. Proceedings of the National Academy of Sciences of the United States of 
America 103(13): 4870-4875 
 
Pei Y, Shuman S (2002) Interactions between fission yeast mRNA capping enzymes and 
elongation factor Spt5. The Journal of biological chemistry 277(22): 19639-19648 
 
Pendergast AM, Muller AJ, Havlik MH, Maru Y, Witte ON (1991) BCR sequences essential 
for transformation by the BCR-ABL oncogene bind to the ABL SH2 regulatory domain in a 
non-phosphotyrosine-dependent manner. Cell 66(1): 161-171 
 
Penheiter KL, Washburn TM, Porter SE, Hoffman MG, Jaehning JA (2005) A 
posttranscriptional role for the yeast Paf1-RNA polymerase II complex is revealed by 
identification of primary targets. Molecular cell 20(2): 213-223 
 
Poglitsch CL, Meredith GD, Gnatt AL, Jensen GJ, Chang WH, Fu J, Kornberg RD (1999) 
Electron crystal structure of an RNA polymerase II transcription elongation complex. Cell 
98(6): 791-798 
 



6 References 113

Ponting CP (2002) Novel domains and orthologues of eukaryotic transcription elongation 
factors. Nucleic Acids Res 30(17): 3643-3652 
 
Poole TL, Stevens A (1995) Comparison of features of the RNase activity of 5'-exonuclease-
1 and 5'-exonuclease-2 of Saccharomyces cerevisiae. Nucleic acids symposium series(33): 
79-81 
 
Prescott EM, Osheim YN, Jones HS, Alen CM, Roan JG, Reeder RH, Beyer AL, Proudfoot 
NJ (2004) Transcriptional termination by RNA polymerase I requires the small subunit 
Rpa12p. Proceedings of the National Academy of Sciences of the United States of America 
101(16): 6068-6073 
 
Proudfoot NJ (1989) How RNA polymerase II terminates transcription in higher eukaryotes. 
Trends in biochemical sciences 14(3): 105-110 
 
Proudfoot NJ, Brownlee GG (1976) 3' non-coding region sequences in eukaryotic messenger 
RNA. Nature 263(5574): 211-214 
 
Proudfoot NJ, Furger A, Dye MJ (2002) Integrating mRNA processing with transcription. Cell 
108(4): 501-512 
 
Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, Wilm M, Seraphin B 
(2001) The tandem affinity purification (TAP) method: a general procedure of protein 
complex purification. Methods 24(3): 218-229 
 
Rahuel J, Gay B, Erdmann D, Strauss A, Garcia-Echeverria C, Furet P, Caravatti G, Fretz H, 
Schoepfer J, Grutter MG (1996) Structural basis for specificity of Grb2-SH2 revealed by a 
novel ligand binding mode. Nature structural biology 3(7): 586-589 
 
Reeder RH, Guevara P, Roan JG (1999) Saccharomyces cerevisiae RNA polymerase I 
terminates transcription at the Reb1 terminator in vivo. Molecular and cellular biology 19(11): 
7369-7376 
 
Reeder RH, Lang WH (1997) Terminating transcription in eukaryotes: lessons learned from 
RNA polymerase I. Trends in biochemical sciences 22(12): 473-477 
 
Reines D (1992) Elongation factor-dependent transcript shortening by template-engaged 
RNA polymerase II. The Journal of biological chemistry 267(6): 3795-3800 
 
Roberts J, Park JS (2004) Mfd, the bacterial transcription repair coupling factor: 
translocation, repair and termination. Curr Opin Microbiol 7(2): 120-125 
 
Roberts JW (1969) Termination factor for RNA synthesis. Nature 224(5225): 1168-1174 
 
Rondon AG, Garcia-Rubio M, Gonzalez-Barrera S, Aguilera A (2003) Molecular evidence for 
a positive role of Spt4 in transcription elongation. The EMBO journal 22(3): 612-620 
 
Ronnstrand L, Mori S, Arridsson AK, Eriksson A, Wernstedt C, Hellman U, Claesson-Welsh 
L, Heldin CH (1992) Identification of two C-terminal autophosphorylation sites in the PDGF 
beta-receptor: involvement in the interaction with phospholipase C-gamma. The EMBO 
journal 11(11): 3911-3919 
 
Roussel RR, Brodeur SR, Shalloway D, Laudano AP (1991) Selective binding of activated 
pp60c-src by an immobilized synthetic phosphopeptide modeled on the carboxyl terminus of 
pp60c-src. Proceedings of the National Academy of Sciences of the United States of 
America 88(23): 10696-10700 
 
Russo P, Li WZ, Guo Z, Sherman F (1993) Signals that produce 3' termini in CYC1 mRNA of 
the yeast Saccharomyces cerevisiae. Molecular and cellular biology 13(12): 7836-7849 



6 References 114

 
Sadowski I, Stone JC, Pawson T (1986) A noncatalytic domain conserved among 
cytoplasmic protein-tyrosine kinases modifies the kinase function and transforming activity of 
Fujinami sarcoma virus P130gag-fps. Molecular and cellular biology 6(12): 4396-4408 
 
Sadowski M, Dichtl B, Hubner W, Keller W (2003) Independent functions of yeast Pcf11p in 
pre-mRNA 3' end processing and in transcription termination. The EMBO journal 22(9): 
2167-2177 
 
Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, 
Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, 
Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source 
system for microarray data management and analysis. BioTechniques 34(2): 374-378 
 
Schmidt MC, Chamberlin MJ (1987) nusA protein of Escherichia coli is an efficient 
transcription termination factor for certain terminator sites. Journal of molecular biology 
195(4): 809-818 
 
Schroeder SC, Schwer B, Shuman S, Bentley D (2000) Dynamic association of capping 
enzymes with transcribing RNA polymerase II. Genes & development 14(19): 2435-2440 
 
Sims RJ, 3rd, Belotserkovskaya R, Reinberg D (2004) Elongation by RNA polymerase II: the 
short and long of it. Genes & development 18(20): 2437-2468 
 
Soler-Lopez M, Petosa C, Fukuzawa M, Ravelli R, Williams JG, Muller CW (2004) Structure 
of an activated Dictyostelium STAT in its DNA-unbound form. Molecular cell 13(6): 791-804 
 
Solinger JA, Pascolini D, Heyer WD (1999) Active-site mutations in the Xrn1p 
exoribonuclease of Saccharomyces cerevisiae reveal a specific role in meiosis. Molecular 
and cellular biology 19(9): 5930-5942 
 
Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson T, Haser WG, King F, Roberts T, 
Ratnofsky S, Lechleider RJ, et al. (1993) SH2 domains recognize specific phosphopeptide 
sequences. Cell 72(5): 767-778 
 
Steinmetz EJ, Warren CL, Kuehner JN, Panbehi B, Ansari AZ, Brow DA (2006) Genome-
wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Molecular cell 
24(5): 735-746 
 
Steitz TA (1998) A mechanism for all polymerases. Nature 391(6664): 231-232 
 
Stevens A (1978) An exoribonuclease from Saccharomyces cerevisiae: effect of 
modifications of 5' end groups on the hydrolysis of substrates to 5' mononucleotides. 
Biochemical and biophysical research communications 81(2): 656-661 
 
Stevens A (1980) Purification and characterization of a Saccharomyces cerevisiae 
exoribonuclease which yields 5'-mononucleotides by a 5' leads to 3' mode of hydrolysis. The 
Journal of biological chemistry 255(7): 3080-3085 
 
Stevens A, Maupin MK (1987) A 5'----3' exoribonuclease of Saccharomyces cerevisiae: size 
and novel substrate specificity. Archives of biochemistry and biophysics 252(2): 339-347 
 
Stevens A, Poole TL (1995) 5'-exonuclease-2 of Saccharomyces cerevisiae. Purification and 
features of ribonuclease activity with comparison to 5'-exonuclease-1. The Journal of 
biological chemistry 270(27): 16063-16069 
 
Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 
403(6765): 41-45 
 



6 References 115

Strasser K, Hurt E (2001) Splicing factor Sub2p is required for nuclear mRNA export through 
its interaction with Yra1p. Nature 413(6856): 648-652 
 
Studier FW (2005) Protein production by auto-induction in high density shaking cultures. 
Protein expression and purification 41(1): 207-234 
 
Sullivan SL, Gottesman ME (1992) Requirement for E. coli NusG protein in factor-dependent 
transcription termination. Cell 68(5): 989-994 
 
Swanson MS, Carlson M, Winston F (1990) SPT6, an essential gene that affects 
transcription in Saccharomyces cerevisiae, encodes a nuclear protein with an extremely 
acidic amino terminus. Molecular and cellular biology 10(9): 4935-4941 
 
Swanson MS, Winston F (1992) SPT4, SPT5 and SPT6 interactions: effects on transcription 
and viability in Saccharomyces cerevisiae. Genetics 132(2): 325-336 
 
Teixeira A, Tahiri-Alaoui A, West S, Thomas B, Ramadass A, Martianov I, Dye M, James W, 
Proudfoot NJ, Akoulitchev A (2004) Autocatalytic RNA cleavage in the human beta-globin 
pre-mRNA promotes transcription termination. Nature 432(7016): 526-530 
 
Terwilliger TC (2002) Automated structure solution, density modification and model building. 
Acta crystallographica 58(Pt 11): 1937-1940 
 
Toulokhonov I, Zhang J, Palangat M, Landick R (2007) A central role of the RNA polymerase 
trigger loop in active-site rearrangement during transcriptional pausing. Molecular cell 27(3): 
406-419 
 
Tschochne H, Milkereit P (1997) RNA polymerase I from S. cerevisiae depends on an 
additional factor to release terminated transcripts from the template. FEBS letters 410(2-3): 
461-466 
 
Tuske S, Sarafianos SG, Wang X, Hudson B, Sineva E, Mukhopadhyay J, Birktoft JJ, Leroy 
O, Ismail S, Clark AD, Jr., Dharia C, Napoli A, Laptenko O, Lee J, Borukhov S, Ebright RH, 
Arnold E (2005) Inhibition of bacterial RNA polymerase by streptolydigin: stabilization of a 
straight-bridge-helix active-center conformation. Cell 122(4): 541-552 
 
Vasiljeva L, Kim M, Mutschler H, Buratowski S, Meinhart A (2008) The Nrd1-Nab3-Sen1 
termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal 
domain. Nature structural & molecular biology 15(8): 795-804 
 
Vassylyev DG, Sekine S, Laptenko O, Lee J, Vassylyeva MN, Borukhov S, Yokoyama S 
(2002) Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution. 
Nature 417(6890): 712-719 
 
Vassylyev DG, Vassylyeva MN, Perederina A, Tahirov TH, Artsimovitch I (2007a) Structural 
basis for transcription elongation by bacterial RNA polymerase. Nature 448(7150): 157-162 
 
Vassylyev DG, Vassylyeva MN, Zhang J, Palangat M, Artsimovitch I, Landick R (2007b) 
Structural basis for substrate loading in bacterial RNA polymerase. Nature 448(7150): 163-
168 
 
Verdecia MA, Bowman ME, Lu KP, Hunter T, Noel JP (2000) Structural basis for 
phosphoserine-proline recognition by group IV WW domains. Nature structural biology 7(8): 
639-643 
 
Verma-Gaur J, Rao SN, Taya T, Sadhale P (2008) Genomewide recruitment analysis of 
Rpb4, a subunit of polymerase II in Saccharomyces cerevisiae, reveals its involvement in 
transcription elongation. Eukaryot Cell 7(6): 1009-1018 
 



6 References 116

Vojnic E, Simon B, Strahl BD, Sattler M, Cramer P (2006) Structure and carboxyl-terminal 
domain (CTD) binding of the Set2 SRI domain that couples histone H3 Lys36 methylation to 
transcription. The Journal of biological chemistry 281(1): 13-15 
 
Wada T, Takagi T, Yamaguchi Y, Ferdous A, Imai T, Hirose S, Sugimoto S, Yano K, Hartzog 
GA, Winston F, Buratowski S, Handa H (1998) DSIF, a novel transcription elongation factor 
that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 
homologs. Genes & development 12(3): 343-356 
 
Waksman G, Kominos D, Robertson SC, Pant N, Baltimore D, Birge RB, Cowburn D, 
Hanafusa H, Mayer BJ, Overduin M, et al. (1992) Crystal structure of the phosphotyrosine 
recognition domain SH2 of v-src complexed with tyrosine-phosphorylated peptides. Nature 
358(6388): 646-653 
 
Waksman G, Kuriyan J (2004) Structure and specificity of the SH2 domain. Cell 116(2 
Suppl): S45-48, 43 p following S48 
 
Waksman G, Shoelson SE, Pant N, Cowburn D, Kuriyan J (1993) Binding of a high affinity 
phosphotyrosyl peptide to the Src SH2 domain: crystal structures of the complexed and 
peptide-free forms. Cell 72(5): 779-790 
 
Wang D, Bushnell DA, Westover KD, Kaplan CD, Kornberg RD (2006) Structural basis of 
transcription: role of the trigger loop in substrate specificity and catalysis. Cell 127(5): 941-
954 
 
Wang D, Hawley DK (1993) Identification of a 3'-->5' exonuclease activity associated with 
human RNA polymerase II. Proceedings of the National Academy of Sciences of the United 
States of America 90(3): 843-847 
 
Ward DF, Gottesman ME (1981) The nus mutations affect transcription termination in 
Escherichia coli. Nature 292(5820): 212-215 
 
West ML, Corden JL (1995) Construction and analysis of yeast RNA polymerase II CTD 
deletion and substitution mutations. Genetics 140(4): 1223-1233 
 
West S, Gromak N, Proudfoot NJ (2004) Human 5' --> 3' exonuclease Xrn2 promotes 
transcription termination at co-transcriptional cleavage sites. Nature 432(7016): 522-525 
 
Westover KD, Bushnell DA, Kornberg RD (2004) Structural basis of transcription: nucleotide 
selection by rotation in the RNA polymerase II active center. Cell 119(4): 481-489 
 
Wickens M, Stephenson P (1984) Role of the conserved AAUAAA sequence: four AAUAAA 
point mutants prevent messenger RNA 3' end formation. Science (New York, NY 226(4678): 
1045-1051 
 
Williams JG, Noegel AA, Eichinger L (2005) Manifestations of multicellularity: Dictyostelium 
reports in. Trends Genet 21(7): 392-398 
 
Williams JG, Zvelebil M (2004) SH2 domains in plants imply new signalling scenarios. 
Trends in plant science 9(4): 161-163 
 
Winston F, Chaleff DT, Valent B, Fink GR (1984) Mutations affecting Ty-mediated expression 
of the HIS4 gene of Saccharomyces cerevisiae. Genetics 107(2): 179-197 
 
Xue Y, Bai X, Lee I, Kallstrom G, Ho J, Brown J, Stevens A, Johnson AW (2000) 
Saccharomyces cerevisiae RAI1 (YGL246c) is homologous to human DOM3Z and encodes 
a protein that binds the nuclear exoribonuclease Rat1p. Molecular and cellular biology 
20(11): 4006-4015 
 



6 References 117

Yaffe MB (2002) Phosphotyrosine-binding domains in signal transduction. Nature reviews 
3(3): 177-186 
 
Yamada T, Yamaguchi Y, Inukai N, Okamoto S, Mura T, Handa H (2006) P-TEFb-mediated 
phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation. 
Molecular cell 21(2): 227-237 
 
Yamaguchi Y, Takagi T, Wada T, Yano K, Furuya A, Sugimoto S, Hasegawa J, Handa H 
(1999) NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA 
polymerase II elongation. Cell 97(1): 41-51 
 
Yang W, Hendrickson WA, Crouch RJ, Satow Y (1990) Structure of ribonuclease H phased 
at 2 A resolution by MAD analysis of the selenomethionyl protein. Science (New York, NY 
249(4975): 1398-1405 
 
Yarnell WS, Roberts JW (1999) Mechanism of intrinsic transcription termination and 
antitermination. Science (New York, NY 284(5414): 611-615 
 
Yoakim M, Hou W, Liu Y, Carpenter CL, Kapeller R, Schaffhausen BS (1992) Interactions of 
polyomavirus middle T with the SH2 domains of the pp85 subunit of phosphatidylinositol-3-
kinase. J Virol 66(9): 5485-5491 
 
Yoh SM, Cho H, Pickle L, Evans RM, Jones KA (2007) The Spt6 SH2 domain binds Ser2-P 
RNAPII to direct Iws1-dependent mRNA splicing and export. Genes & development 21(2): 
160-174 
 
Yoh SM, Lucas JS, Jones KA (2008) The Iws1:Spt6:CTD complex controls cotranscriptional 
mRNA biosynthesis and HYPB/Setd2-mediated histone H3K36 methylation. Genes & 
development 22(24): 3422-3434 
 
Youdell ML, Kizer KO, Kisseleva-Romanova E, Fuchs SM, Duro E, Strahl BD, Mellor J 
(2008) Roles for Ctk1 and Spt6 in regulating the different methylation states of Histone H3 
lysine 36. Molecular and cellular biology 
 
Zhang G, Campbell EA, Minakhin L, Richter C, Severinov K, Darst SA (1999) Crystal 
structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution. Cell 98(6): 811-
824 
 
Zhang J, Corden JL (1991) Phosphorylation causes a conformational change in the carboxyl-
terminal domain of the mouse RNA polymerase II largest subunit. The Journal of biological 
chemistry 266(4): 2297-2302 
 
Zhang L, Fletcher AG, Cheung V, Winston F, Stargell LA (2008) Spn1 regulates the 
recruitment of Spt6 and the Swi/Snf complex during transcriptional activation by RNA 
polymerase II. Molecular and cellular biology 28(4): 1393-1403 
 
Zhang Z, Fu J, Gilmour DS (2005) CTD-dependent dismantling of the RNA polymerase II 
elongation complex by the pre-mRNA 3'-end processing factor, Pcf11. Genes & development 
19(13): 1572-1580 
 
Zheng C, Friedman DI (1994) Reduced Rho-dependent transcription termination permits 
NusA-independent growth of Escherichia coli. Proceedings of the National Academy of 
Sciences of the United States of America 91(16): 7543-7547 
 
Zheng Q, Wang XJ (2008) GOEAST: a web-based software toolkit for Gene Ontology 
enrichment analysis. Nucleic Acids Res 36(Web Server issue): W358-363 
 
Zuo Y, Deutscher MP (2001) Exoribonuclease superfamilies: structural analysis and 
phylogenetic distribution. Nucleic Acids Res 29(5): 1017-1026 



Curriculum vitae 118

Curriculum vitae 

Stefan Dengl 

Date of birth: December 10, 1977 

Place of birth: Munich, Germany 

Nationality: German 

Family status: unmarried 
 
 

Education 

1984 - 1988  Grund- und Hauptschule Kirchheim b. München 

1988 - 1997  Franz-Marc-Gymnasium Markt Schwaben 

1997 - 1998  Civilian service at Bezirkskrankenhaus Haar b. München 

1998-2004  Studies in biology at the Ludwig-Maximilians-Universität, München 

2003-2004  Diploma thesis at the Department Biologie I, Bereich Mikrobiologie, 

   group of  Prof. Dr. Volker Müller 

   Title of the thesis: "Biochemische und molekularbiologische Analyse 

   der Hydrogenasen in Acetobacterium woodii". 

June 2004  Diploma degree in biology 

since July 2004 PhD thesis at the Gene Center of the Ludwig-Maximilians-Universität, 

   München in the research group of Prof. Dr. Patrick Cramer 

   Title of the thesis: "Structure and requirement of the Spt6  

   SH2 domain and an in vitro system to test the “torpedo model” of  

   transcription termination" 

 

 


