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„Like the Eskimos’ reputedly rich vocabulary for snow, the Hebrew 

language has separate words for the first and last rainfall, dew, 

different levels of floods, and half a dozen types of drought. The word 

„water“ itself appears 580 times in the Old Testament. The Hebrew 

patriarchs concerned themselves with digging and protecting wells. 

Water is a prerequisite for a variety of ritual purifications. There is no 

more common metaphor in the religious liturgy.“ 

 

Alon Tal (2002), Pollution in a Promised Land – An Environmental 

History of Israel. 
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Zusammenfassung 

Das Ziel der vorliegenden Arbeit bestand zum einen darin, die Frischwasserresourcen im 

Einzugsgebiet des Oberen Jordan (UJCR = Upper Jordan River Catchment) im Hinblick auf 

ihre Anfälligkeit gegenüber Klimaveränderungen zu bewerten und das Prozessverständnis der 

Abfluss- und Grundwasserneubildung im Einzugsgebiet zu verbessern. Zum anderen galt es, 

die Erkenntnisse aus den durchgeführten Untersuchungen in vorhandene konzeptionelle 

Modelle zur Grundwasserneubildung und Abbflussbildung zu integrieren und diese 

weiterzuentwickeln. 

Trink- bzw. Frischwasser ist von begrenzter Verfügbarkeit in semi-ariden und ariden 

Gebieten, eine Lage, die sich mit den erwarteten Klimaveränderungen noch zu verschärfen 

droht. Das grenzüberschreitende Einzugsgebiet des Oberen Jordan umfasst Gebiete in Israel, 

Libanon und Syrien und liefert etwa 27 % von Israels aktuellem Wasserbedarf.  Das UJRC ist 

Israels nördlichstes Wassereinzugsgebiet und umfasst eine Fläche von circa 1700 km². Die 

Hauptneubildungsgebiete des Grundwassers liegen im Karst des Hermongebirges (2814 m 

NN) und des Antilibanongebirges und in den basaltischen Golanhöhen (1000 m NN). Das 

Einzugsgebiet wird vom Jordanfluss dräniert, der das Hula-Tal durchquert und den See 

Genezareth mit Frischwasser speist. 

Die schwierigen politischen Gegebenheiten im Bereich des UJCR haben zu einem Mangel an 

grenzüberschreitenden Untersuchungen der hydrogeologischen Eigenschaften der Quellen des 

Oberen Jordan geführt. Das Einzugsgebiet ist nur in Teilen untersucht worden und 

veröffentliche Daten sind rar. Für eine nachhaltige Bewirtschaftung der Wasserresourcen im 

Einzugsgebiet werden aber dringend Informationen über die Art und den Anteil von 

Abflusskomponenten, Wasservolumina, mittlere Verweilzeiten, die Ausdehnung der 

unterirdischen Einzugsgebiete und Grundwasserneubildungsraten benötigt. 

Aus diesem Grund wurden in den Jahren 2002 bis 2004 im Rahmen der vorliegenden Arbeit 

Grundwasserneubildungs- und Abflussbildungsprozesse mit Hilfe einer Kombination 

verschiedener Methoden im Einzugsgebiet des Oberen Jordan untersucht. Der räumliche 

Schwerpunkt lag dabei auf den gebirgigen Hermon- und Golangebieten, wo ein wesentlicher 
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Teil der Grundwasserneubildung erfolgt. Die Methodenkombination umfasste Hydrographen-

untersuchungen, Zeitreihenanalysen und die Untersuchungen von Isotopen und 

geochemischen Tracern. Zu den Freilanduntersuchungen gehörte das durchgehende 

Monitoring von fünf Hauptzuflüssen im Einzugsgebiet. Regensammler und 14 Quellen 

wurden regelmäßig beprobt, während die Untersuchung von Schnee, Schneeschmelze und 

Überlandabfluss stichprobenartig erfolgte. Die gewonnenen Proben wurden auf bis zu 14 

Wasserqualitätsparameter hin untersucht. Diese umfassten die Hauptionen, DOC, TSS, 

gelöstes Silikat, Kohlenstoff-14 und Kohlenstoff-13, Tritium und die stabilen Wasserisotope. 

Die Ergebnisse dieser Untersuchungen werden in der vorliegenden Arbeit in drei thematisch 

unterteilten Kapiteln dargestellt und sind untergliedert in (1) die hydrochemische und 

isotopische Charakterisierung des Niederschlags, (2) die hydrochemische und isotopische 

Beschreibung des Grundwassers und (3) die Abflussbildung in den Hauptzuflüssen des 

Oberen Jordan. 

Die Umwandlung von Niederschlag in Grundwasserneubildung und Abfluss wird im 

wesentlichen von der Eingangsgröße – dem Niederschlag – selbst kontrolliert. Im Rahmen 

dieser Studie wurde, das erste Mal für dieses Einzugsgebiet, die isotopische und chemische 

Zusammensetzung des Niederschlages und seine zeitliche und räumliche Variabilität 

umfassend untersucht. Die chemische Zusammensetzung des Niederschlags variierte in 

Abhängigkeit der Herkunft der wetterbestimmenden Luftmassen und in Abhängigkeit von der 

Mineralogie der Gesteine, mit denen diese Luftmassen auf ihrem Weg ins Einzugsgebiet in 

Berührung kamen. Der gesammelte Niederschlag zeigte im allgemeinen eine geringe 

Mineralisierung (∼20µS/cm). 

Auf der Basis der Analyse der stabilen Wasserisotope im Niederschlag wurde für das 

Einzugsgebiet des Oberen Jordan eine Lokale Meteorische Wasserlinie (LMWL) konstruiert 

(δ2H = 7,23 δ18O + 16,21). Der Höheneffekt verursacht im Hermongebiet eine Abreicherung 

von ca. -0,26 ‰ und -1,10 ‰ pro 100 m für δ18O bzw. δ2H und wurde anschließend 

verwendet, um die mittleren Einzugsgebietshöhen für die bedeutendsten Quellen im Hermon 

zu bestimmen. Zusätzlich konnte gezeigt werden, dass die Menge und isotopische 

Zusammensetzung des Niederschlages im wesentlichen von der Jahreszeit und dem 
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vorherrschenden synoptischen System beeinflusst werden. So waren Kaltfronten wie das 

Zyperntief in der Regel mit starken Niederschlägen und leichten Isotopenwerten verbunden, 

während das Rote-Meer-Tief durch geringe Regenmengen und schwere Isotopenwerte 

gekennzeichnet war. Die gefundenen Zusammenhänge zwischen der Zusammensetzung der 

stabilen Wasserisotope und der Temperatur, der Niederschlagsmenge und der Windrichtung 

sind durch die oben beschriebenen Zusammenhänge bedingt. Die isotopische 

Zusammensetzung eines untersuchten Schneeprofils zeigte eine signifikante Anreicherung 

von bis zu 4,3 ‰ für δ18O über die Zeit. 

Das Grundwasser der ergiebigsten Quellen im Hermongebirge und den Golanhöhen, das in 

das Einzugsgebiet des Oberen Jordan abfließt, wurde auf seine Umwelttracersignaturen hin 

untersucht, um detaillierte Informationen über Grundwasserneubildungsgebiete und –raten, 

Wasseraufenthaltszeiten, Wasseralter und Aquiferabmessungen zu erhalten. Ihre 

unterschiedliche chemische und isotopische Zusammensetzung erlaubte die klare Unter-

scheidung von Grundwässern aus dem Golan oder dem Hermon.  

Die untersuchten Golanquellen („Side springs“) waren durch einen Ca-Na-HCO3- oder einen 

Na-Ca-HCO3-Wassertyp gekennzeichnet und besaßen erhöhte Silikatkonzentrationen. Die 

Quellwässer gruppieren sich um eine Mischungsgerade (δ2H = 6,41 δ18O + 10,73), die durch 

eine geringere Steigung als die dargestellte LMWL gekennzeichnet ist, was darauf hinweist, 

dass diese Wässer Evaporation in der ungesättigten Zone unterliegen. Die Golanquellen 

können zum einen vom regionalen Basaltaquifer gespeist sein (mit Wasseraufenthaltszeiten > 

50 Jahre), zum anderen kann ihr Wasser aus einer Mischung aus regionalem Grundwasser 

sowie Wässern aus lokalen gespannten Grundwasserleitern  (mit Wasseraufenthaltszeiten < 

50 Jahre) zusammengesetzt sein. Die Wasseralter wurden mit Hilfe von Tritium und 

radioaktivem Kohlenstoff bestimmt. 

Im allgemeinen scheint die chemische und isotopische Zusammensetzung der Golanquellen 

einen Nord-Süd-Gradienten aufzuweisen und bildet damit die klimatischen und geologischen 

Gegebenheiten in den Golanhöhen ab. Der nördliche Golan ist durch einen vergleichsweise 

mächtigen Grundwasserleiter, eine ausgeprägte ungesättigte Zone und hohe Niederschlags-

mengen gekennzeichnet. Die dort entspringenden Quellen, wie z.B. die Hamroniya-, Gonen- 
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und Notera-Quelle, zeigen einen hohen Anteil an Wasser aus der ungesättigten Zone an, das 

in Grundwasser mit hohen Tritiumwerten, geringen Chlorid- und hohen Silikat-

konzentrationen resultiert. Im Süden, wo Verdunstungseinflüsse zunehmen und 

Neubildungsraten abnehmen, sind die Bet HaMekhes- und Jalabina-Quelle durch geringe 

Tritiumkonzentrationen und hohe Chloridgehalte charakterisiert. Grundwasserneubildungs-

raten für die untersuchten Golanquellen, die aufgrund von Chloridmassenbilanzen ermittelt 

wurden, liegen zwischen 12 und 16 % des Jahresniederschlages; die Größe ihrer 

unterirdischen Einzugsgebiete variiert zwischen 0,6 und 3 km².  

Die untersuchten Quellen im Hermon sind (a) von zwei Einzugsgebieten - die durch die Sion-

Rachaya-Störung getrennt werden – gespeist und stammen (b) aus lokalen oder regionalen 

Grundwassersystemen, wie durch ihre chemische und isotopische Zusammensetzung deutlich 

wurde. Außerdem (c) erhalten sie unterschiedliche Anteile ihres Wassers aus dem Drainage-

raum (Kluft) bzw. dem Speicherraum (Gesteinsmatrix). Alle Quellen sind durch geringe 

Leitfähigkeiten und einen Ca-Mg-HCO3-Wassertyp gekennzeichnet. Allerdings weisen die 

Quellen aus dem östlichen Einzugsgebiet (Banias und Kezinim) gewisse Mengen an gelöstem 

Dolomit, Gips und Anhydrit auf. Diese Lösungsvorgänge konnten für das westliche 

Einzugsgebiet in dem die Dan-, Barid- und Leshem-Quellen liegen, nicht beobachtet werden. 

Die Hermonquellen zeigen eine deutliche saisonale Verteilung der Grundwasserneubildung, 

wobei die höchsten Raten im Frühjahr erreicht werden. Das wurde insbesondere durch 

abgereicherte Werte im δ18O und δ2H, durch die Abnahme der Grundwassertemperatur und 

Verdünnungseffekte in den Ionenkonzentrationen des Quellausflusses durch 

Schneeschmelzwässer deutlich. Die Bedeutung der Schneeschmelze für die 

Grundwasserneubildung in den Hermonquellen wird vor allen Dingen durch den in den 

Quellwässern nachgewiesenen erhöhten Deuteriumexzess im Frühjahr erkennbar. Diese 

Beobachtung war auch die Grundlage für die Bestimmung der mittleren Einzugsgebietshöhen 

der Quellen. Methodisch wurde dafür die mittlere δ18O-Zusammensetzung um ihre 

Anreicherung durch Fraktionierungsprozesse während der Schneeschmelze korrigiert. 

Anschließend konnten mit Hilfe des ermittelten Höheneffekts in der 

Isotopenzusammensetzung des Niederschlages die mittleren Einzugsgebietshöhen für die 
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Banias- und Kezinim-Quelle (∼1260 m NN), für die Dan-, Barid- und Leshem-Quelle 

(∼ 1560 m NN) und für die Sion-Quelle (∼ 1320 m NN) bestimmt werden. 

Die Kezinim-Quelle und der Basisabfluss in der Banias-Quelle verweisen in ihren 

Eigenschaften auf den Einfluss eines thermischen Regimes und die höchste Mineralisierung 

unter den Hermonquellen. Insbesondere zeichnen sie sich durch hohe Konzentrationen an 

Sulfat, Silikat und Chlorid aus. Zusätzlich zeigen diese Quellen angereicherte δ18O und δ2H -

Werte und insbesondere die Kezinim-Quelle unterliegt geringen saisonalen Schwankungen in 

ihrer isotopischen und chemischen Zusammensetzung. Daraus ließ sich schlussfolgern, das 

die Kezinim-Quelle und der Basisabfluss in der Banias-Quelle durch Grundwasser aus einem 

regionalen, diffusiven System gespeist werden, und dass sie außerdem im Kontakt mit der 

triassischen Muheila-Formation stehen. Diese Annahme wurde zudem durch die mittlere 

Aufenthaltszeit (> 1000 Jahre) für die Wässer der Kezinim-Quelle bestätigt, welches auf der 

Grundlage von radioaktivem Kohlenstoff berechnete wurde. Im Unterschied dazu, stammen 

die Grundwasser der Dan-, Barid- und Leshem-Quelle aus einem flachen lokalen System, das 

von aktuellem Wasser dominiert wird und in dem der Wassertransport zu wechselnden 

Anteilen sowohl durch Klüfte als auch durch die Gesteinsmatrix erfolgt. 

Die Bedeutung von schnellen und langsamen Abflusskomponenten für verschiedene 

Grundwässer im Hermongebiet wurde am Beispiel der Banias- und Dan-Quelle im Detail 

untersucht. Die Banias-Quelle reagierte von allen Hermon-Quellen am schnellsten und 

intensivsten auf Niederschläge. Ihr Quellabfluss wird von folgenden drei Komponenten 

kontrolliert: dem Direktabfluss, dem Abfluss aus der ungesättigten Zone (Epikarst) und dem 

Abfluss aus der gesättigten Zone. Die verschiedenen Abflüsse konnten mit Hilfe eines Drei-

Komponenten-Mischungsmodels auf der Basis von δ18O- und Sulfatmessungen quantifiziert 

werden. Danach waren die schnellen und mittelschnellen Abflusskomponenten im Februar 

2003 zu 88 % am Gesamtabfluss beteiligt und im Juni 2003 betrug ihr Anteil immer noch 

70 %. Das ist ein deutlicher Hinweis auf das klimakontrollierte Abflussregime dieser Quelle. 

Im Gegensatz dazu reagierte die Dan-Quelle ausgewogen und nur mit geringen 

Schwankungen der gemessenen physikalischen, chemischen und isotopischen Parameter auf 

Niederschläge. Trotzdem konnte auf Grundlage von Zwei-Komponenten-Massenbilanzen auf 
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der Basis von δ18O, Chlorid oder Sulfat nachgewiesen werden, dass ca. 40 % des 

Gesamtabflusses in der Dan-Quelle aus der aktuellen Grundwasserneubildung stammen, dabei 

sind die höchsten Anteil von Ereigniswasser im Früh- und Spätsommer gemessen worden. 

Zusammenfassend konnte geschlussfolgert werden, dass die Banias-Quelle über einen 

limitierten Speicherraum und einen ausgeprägten Drainageraum verfügt und deshalb 

unmittelbar auf Niederschläge reagiert während die Dan-Quelle ein enormes, gut 

durchmischtes Reservoir umfasst, in dem neuankommendes Wasser stark verdünnt wird. 

Grundwasserneubildungsraten, die  auf der Grundlage von Chloridmassenbilanzen ermittelt 

wurden, liegen zwischen 12 und 20 % des mittleren Jahresniederschlages. Im Vergleich dazu 

wurden Grundwasserneubildungsraten, welche anhand mittlerer Verweilzeiten festzustellen 

waren, mit Werten von 19 bis 30 % des mittleren Jahresniederschlages bestimmt. Auf der 

Grundlage der vorliegenden Ergebnisse konnte erstmalig im Rahmen dieser Arbeit eine 

Abschätzung der unterirdischen Einzugsgebiete für die Danquelle und für die Baniasquelle 

erfolgen. Diese Gebiete überschreiten mit 1.324 km² (Dan) und 523 km² (Banias) bei weitem 

die Abmessungen des Oberflächeneinzugsgebietes und reichen weit über Israels politische 

Grenzen hinaus. Die Qualität dieser Abschätzungen hängt erheblich von der Treffsicherheit 

der Bestimmung der mittleren jährlichen Gebietsniederschlagsmengen im Hermongebirge ab, 

deren weitere Verbesserung Bestandteil zukünftiger Untersuchungen sein sollte. 

In einem dritten Schritt wurden die Abflussbildungsprozesse für die Hauptzuflüsse des 

Oberen Jordan, das heißt für den Hermon-, Senir- und den Dan-Bach untersucht. Methodisch 

erfolgte das zum einem auf der Basis von Hydrographenanalysen an langen Datenreihen und 

zum anderen auf der Tracer-basierten Untersuchung von Abflussereignissen. Zusätzlich zu 

den drei Jordanzuflüssen wurde vergleichsweise ein Bach aus den basaltischen Golanhöhen 

beprobt. Für beide geologischen Gegebenheiten, Karst und Basalt, konnten drei 

Abflusskomponenten identifiziert werden. Während der Dan-Bach ausschließlich durch 

Basisabfluss gespeist wird, machen die Überland- und die Zwischenabflusskomponente 

(ermittelt auf der Grundlage einer 30-jährigen Datenreihe) bis zu 46 % beziehungsweise 58 % 

des Gesamtabflusses im Hermon- und Senir-Bach aus. Im Basalt (Orevim-Bach) trugen die 

schnelle und mittelschnelle Abflusskomponente sogar bis zu 75 % zum Gesamtabfluss bei. 
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Während die Zwischenabflusskomponente im Karstgebiet auf das Schneereservoir des 

Hermongebirges zurückgeführt wird, das mit der Schneeschmelze zum Abflussgeschehen 

beiträgt, ist der Zwischenabfluss im Basaltgebiet eher auf die Struktur des Untergrundes und 

dabei insbesondere auf die Existenz von hydraulischen Grenzflächen zurückzuführen. 

Die große Bedeutung der schnellen Abflusskomponenten konnte durch die Untersuchung von 

Abflussereignissen bestätigten werden. Im Ergebnis dieser Analysen betrug der Anteil von 

Ereigniswasser am Gesamtabfluss zum Zeitpunkt der Abflussspitze für den Hermon-, den 

Senir- und den Orevim-Bach circa 52 %, 69 % beziehungsweise 77 %. Die Beteiligung einer 

flachen unterirdischen Abflusskomponente konnte zudem aufgrund von sogenannten End-

member-Mischungsrechnungen nachgewiesen werden.  

Die mittleren Verweilzeiten des Basisabflusses im Hermon-, Senir- und Dan-Bach rangierten 

zwischen einigen Monaten bis zu 4 Jahren und wurden mit Hilfe von Rückgangsanalysen am 

Hydrographen bestimmt. Das Vorherrschen von jungen Wässern im Einzugsgebiet konnte 

zusätzlich durch Tritiummessungen bestätigt werden, mit denen mittlere Verweilzeiten von 

24 Jahren für den Hermon-, 28 Jahren für den Dan- und 33 Jahren für den Senir-Bach 

bestimmt wurden. Auf Grundlage der berechneten mittleren Verweilzeiten ist die Mächtigkeit 

des aktiven Grundwasserumsatzraumes im Einzugsgebiet des Dan zu zwischen 11 und 103 m 

bestimmt worden, wobei die mittlere Mächtigkeit in etwa 32 m beträgt. Im Einzugsgebiet des 

Hermon-Baches besitzt diese Zone nur eine mittlere Mächtigkeit von ca. 13 m. 

Im Ergebnis der vorgestellten Untersuchungen kann geschlussfolgert werden, dass die für das 

Untersuchungsgebiet zu erwartetenden Klimaänderungen, die durch einen geringereren 

Gesamtniederschlag, eine Temperaturerhöhung und die Häufung extremer Regenereignisses 

gekennzeichnet sein werden, eine große Herausforderung für die Bewirtschaftung der 

Wasserresourcen im Einzugsgebiet des Oberen Jordan bedeuten. 

Insgesamt dominiert junges Wasser die aktuell sichtbaren Fließsysteme im Karst und im 

Basalt. Eine Temperaturerhöhung könnte demnach zu einer Verringerung des Schnee/Regen-

Verhältnisses und einem beschleunigtem Abschmelzen von Schnee führen. Das wird 

einerseits voraussichtlich sogar zu einer erhöhten Grundwasserneubildung im Karst des 

Hermongebirges mit seinen hohen Infiltrationskapazitäten führen. Andererseits wird sich 
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dadurch auch das Risiko des Auftretens von Hochwasserereignissen erhöhen. Wenn in 

Zukunft häufiger extreme Regenereignisse, wie für das Gebiet vorhergesagt, auftreten 

werden, nimmt die Eintrittswahrscheinlichkeit von Hochwasserereignissen aus dem 

Hermongebirge und den Golanhöhen zu. Das wiederum könnte zusätzlich zu einer 

Verschlechterung der Wasserqualität im Oberen Jordan und dem See Genezareth führen, weil 

das Auftreten von Hochwässern mit dem vermehrten Austrag von Nährstoffen und 

suspendierten Stoffen verbunden ist. 

In einem Szenario mit steigenden Temperaturen und geringerem Gesamtniederschlag wird die 

Reduzierung des Schneeniederschlages und damit der Schneeschmelze zu einer signifikanten 

Abnahme des Basisabflusses im Oberen Jordan führen und die Bewirtschaftung des See 

Genezareths nachhaltig beeinflussen. 

 

Vor dem Hintergrund aktueller Klimaprognosen sollten die Ergebnisse dieser Arbeit als ein 

Beitrag zum besseren Verständnis der hydrogeologischen Prozesse im bezeichneten 

Wassereinzugsgebiet des Oberen Jordan verstanden werden und dazu beitragen, dass 

nachfolgende Forschungen bezüglich der betrachteten Wasserresourcen noch zielgerichteter 

auf die Bewältigung von möglichen Konsequenzen der prognostizierten Klimaänderungen 

ausgerichtet werden können. 
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1. Introduction 

Freshwater is a limited resource on Earth. While the Earth’s total water content is about 1.39 

billion cubic kilometer, all freshwater accounts for only 2.5 % of the global water budget. 

Approximately 70 % of freshwater is stored in polar icecaps, glaciers, and permanent snow, 

while only 30 % represents mobile freshwater that is easily accessible for men and 

ecosystems (GLEICK, 1996). 

Freshwater originates through the water cycle and is renewable both in the short and long run. 

Accordingly, mean residence times range from present to millions of years and are unevenly 

distributed along climate zones (horizontally) and within strata of rock and sediments 

(vertically). 

On the global scale, mobile freshwater resources are subject to numerous pressures. 

Worldwide population growth and increasing living standards lead to a growing demand for 

good quality water. Increasing demand for water in combination with insufficient protection 

and management strategies of freshwater resources (accompanied by an often poor 

wastewater management) results in their overexploitation and contamination. Additional 

stress on water resources is expected from the growing threat of men induced climate and 

land use changes (HOUGHTON et al., 2001). While the former processes are certain and 

observed on a global scale, a big uncertainty is how climate will change and what will be the 

influence of global and regional climate changes on water resources. 

It is difficult to assess the meteorological boundary conditions and intrinsic parameters that 

influence short term freshwater recharge and discharge. Thus, flexibility is the best policy for 

water resource management to be able to control floods and droughts, surpluses and shortages 

(BOUWER, 2003). This required flexibility in water management is among others based on a 

thorough knowledge of recharge/discharge mechanisms and dynamics in a respective 

watershed.  

The present study intends to outline mechanisms of discharge, discharge quantities and 

qualities under present boundary and intrinsic conditions in the Upper Jordan River 

Catchment (UJRC, Figure 1) and to develop a conceptual hydrogeologic model for the study 
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area. This will serve as a base for future mathematical models to develop water protection and 

management strategies under future boundary conditions. 

 

 

Figure 1: The Upper Jordan River Catchment (UJRC), Israel (from EXACT, U.S. 
Geological Survey, 1998). 

1.1  BACKGROUND DATA AND TASKS IN THE UPPER JORDAN RIVER CATCHMENT 

Groundwater is formed by the surplus of precipitation over direct runoff and 

evapotranspiration. While for humid climates, about 40 % of the precipitation ends up in 

groundwater; in semi-arid and arid Mediterranean type climates less than 25 % respectively 

5 % contributes to groundwater recharge causing water to be a scarce resource in these 

regions. In fact, the Middle East and North Africa is considered one part of the world where 

water scarcity is severe and precarious (BERKOFF, 1994). Nine out of the 14 countries in this 

area dispose of less than 1000 m³ water per capita and year and thus – based on the 

classification developed by FALKENMARK et al. (1989) – suffer under water stress. Moreover, 

these countries are subject to rapid population growth and increasing urbanization resulting in 

additional pressures on the often already overused water resources.  
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In fact, important water resources of the Middle East region such as the Jordan, Euphrates, 

Tigris and Nile Rivers are shared by two or more countries, in other words belong to 

transboundary basins, thus adding a political dimension to the issue of water management 

(BEAUMONT, 2000; AMERY and WOLF, 2000; MEDZINI and WOLF, 2004). It also emphasizes 

a special need for a detailed understanding of hydrogeological processes in the considered 

watershed as an essential basis for any water resources assessment or political negotiations on 

water. 

Table 1: Annual water resources and water withdrawal in Israel and its neighboring 
countries. Numbers were retrieved from the FAO AQUASTAT database and are 
representative for the period 1998-2002. Quantities of withdrawal and resources in 
the Palestinian Authority area (PA) are cited from BOU-ZEID and EL-FADEL 
(2002) [*] and ALATOUT (2000) [**]. 

Country P TRWR TRWR TW-WD %WD-TRWR 
 mm/year 109 m³/year m³/capita*year m³/capita*year % 

Israel 435 1.7 265 325 123 
Lebanon 661 4.4 1226 384 31 
Syria 252 26.3 1511 1148 76 
Jordan 111 0.9 165 190 115 
Egypt 51 58.3 827 969 117 
PA 350* 0.2* 92* 165** 179 

P = Precipitation, TRWR = Total Renewable Water Resources, TW-WD = Total Water Withdrawal, %WD-TRWR = 
Percent Withdrawal of Total Renewable Water Resources. 

 

Quantitative numbers on water resources in the Eastern Mediterranean are difficult to access. 

Estimated amounts differ according to the source and period of consideration. Statistics on 

water resources and water withdrawal in Israel and its neighboring countries presented in 

Table 1 have thus to be assessed cautiously, especially since they represent a period of time 

coinciding with extreme droughts in the region. According to the numbers published by the 

Food and Agriculture Organization of the United Nations (FAO, 2005) Israel holds about 

265 m³ freshwater per capita and year and uses about 123 % of its renewable water resources; 

agricultural, industrial and domestic usage account for about 62 %, 7 % and 31 % of total 

water withdrawal, respectively (FAO, 2005). 

Among the Eastern Mediterranean countries, the water demand of Israel, Jordan and the 

Palestinian Authority exceeds the renewable water resources by far (< 500 m³/capita/year), 
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hence, these areas were classified as regions under extreme water stress (FALKENMARK et al., 

1989). According to the same classification Egypt faces high water stress (500 –

 1000 m³/capita/year) while Lebanon, and Syria encounter moderate water stress (1000 –

 1700 m³/capita/year). 

 

Israel’s main freshwater reservoirs are 1) Lake Kinneret1, 2) the coastal aquifer and 3) the 

mountain (Yarkon-Taninim) aquifer, providing about 27, 22, and 17 % of the countries water 

demand. The focus of this thesis will be on the quantitative state of the actual water resources 

in the Upper Jordan River Catchment (UJRC) feeding Lake Kinneret.  

 

Lake Kinneret is the lowest freshwater lake of the world, covering a surface area of about 

167 km² and reaching an average depth of about 26 m. The average annual water inflow into 

Lake Kinneret is 800 106m³ (GVIRTZMAN, 2002). The lake provides annually about 

380 106m³ to Israel’s water demand via the National water carrier connecting the UJRC with 

the country’s dry central and southern areas. On average, 280 106m³ of water per year leave 

the lake through evaporation and about 80 106m³ through overflow into the southern Jordan 

River. 

Accordingly, the national awareness for the importance of this reservoir is high; in winter for 

example lake levels are reported on the front page of newspapers. During the period of 

investigation (2002-2004) the lake level rose due to above-average rainfalls from a low of 

214.42 m below sea level by about 4.7 m.  
 

                                                 
1 Also Lake Tiberias, Sea of Galilee, Sea of Gennesareth 
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Figure 2: Mean annual water fluxes into Lake Kinneret and out of the lake. Dashed lines 
indicate inflows, solid black lines losses and numbers represent water volumes in 
million cubic meter (=106m³). Adapted from GVIRTZMAN (2002). 

About 480 106m³ out of 800 106m³ of the inflow into Lake Kinneret originate from the Upper 

Jordan River north of Lake Kinneret (Figure 2). The Upper Jordan River receives its major 

contributions from runoff that is generated in the mountainous Hermon, Antilibanon and 

Golan and the southern Beka’a Valley. Referring to the scheme given in Figure 3, the Upper 

Jordan River is fed by three types of runoff: 

 overland runoff and 

 interflow, both with short mean residence times, and 

 baseflow with medium to high mean residence times. 
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These discharge components are either produced by rain or snowmelt. Any dominance of one 

of the runoff components depends on topographical and geological features of the catchment 

as well as on the type, amount, and distribution of infiltration. 

 

 

Figure 3: Conceptual discharge model of the Upper Jordan River catchment. 

Rain and snow are the dominating types of precipitation in the Upper Jordan River region. 

Dependent on the hydrological properties of the interface atmosphere-litosphere-biosphere, 

precipitation is either intercepted by plants, stored at the land surface as snow or produces 

runoff. Runoff generates overland flow or infiltrates into the unsaturated zone. This 

unsaturated zone has a regulating function on discharge generation: according to local, 

hydrogeological characteristics it generates interflow or baseflow from infiltrating 

precipitation. Given a sufficient replenishment of the unsaturated zone or the existence of 

preferential flow paths, rain is rather rapidly transformed into discharge. In contrast, the snow 

cover residing on Mount Hermon and the southern Lebanon mountains during winter acts as 

an external reservoir and causes significant runoff retardation. Accordingly, snowmelt 
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contributes to the discharge of the Upper Jordan River tributaries until late spring and early 

summer, months after the rainy season ended. 

Beside human impacts, the physico-chemical conditions of through-flow reservoirs in the 

Upper Jordan River Catchment and the specific contribution of each discharge component 

strongly influence the water quality in the Hula Valley and consequently, that of Lake 

Kinneret. For example, runoff of the Jordan River is usually accompanied by high loads of 

nutrients and suspended matter from the surrounding mountains and the Hula wetland, raising 

the potential for eutrophication in Lake Kinneret. Thus, the amount of water flowing into 

Lake Kinneret during a certain period of time and subsequently the water availability for the 

national water carrier depends not only on the precipitation input function but also on the 

recharge and discharge mechanisms in the Upper Jordan River Catchment and the interaction 

of discharge components with the geologic boundary conditions and the land use. 

This actual situation will change with global climate changes. The determination and 

assessment of climate changes is a challenging task and has to be done with caution. The 

output of such studies varies not only according to the methods applied but also according to 

the length of records available for the considered parameters. For Israel, BEN-GAI et al. 

(1999) determined a significant decreasing trend of temperatures during the cold season, and 

an increasing trend during the warm season. They also state that the frequency of occurrence 

of extreme temperature events, with low winter and high summer temperatures, has increased. 

KUTIEL (2000) analyzed the yearly distributions of rains in Israel during the period 1976-

2000 and found that the duration of the winter season shortened over this period, particularly 

in the last decade. An overall trend of decreasing rainfall and increasing frequencies of high-

intensity rains was shown by ALPERT et al. (2002). 

Predictions on future climate changes in Israel are summarized by PE’ER and SAFRIEL (2000). 

Accordingly, possible trends from the beginning of the industrial age until 2100 include: 

 a mean temperature increase of 1.6 to 1.8 °C, 

 a reduction in precipitation by 8 to 4 % and, 

 an increase in evapotranspiration by 10 %. 
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Additionally, rain intensities will increase while the rainy season will shorten and the arrival 

of winter rains will delay. Seasonal temperature variability will increase as well as the 

frequency and severity of extreme climate events. In general, a greater spatial and temporal 

climate uncertainty is expected. 

Considering these predictions and referring to the conceptual discharge model (Figure 3), 

different scenarios should be taken into account to develop appropriate future water 

management strategies for an already water scarce region. An increase in temperature will 

almost certainly lead to a decreasing snow/rain-ratio, an accelerated melting of snow and 

subsequently, an increased potential of floods. This will enhance erosion in fine to medium 

grained sediments; increase the overland runoff/interflow ratio and enhance unproductive 

evaporation losses from artificial reservoirs (SEILER and GAT, 2007).  

On the contrary, in karstic regions with bare rocks and quasi unlimited infiltration capacities a 

reduction of rain may even increase groundwater recharge when antecedent moisture 

conditions and groundwater levels do not allow generating direct runoff (overland plus 

interflow). However, since the general reduction in precipitation is predicted to coincide with 

increasing rain intensities, the reduction of groundwater recharge and an increasing flood 

potential might be a more likely scenario. Nevertheless, the impact of climate change – on 

groundwater resources in particular – is difficult to assess (SEILER and GAT, 2007). 

Known mean residence times in the study area range from months to tens of thousands of 

years. Consequently, especially old, transient groundwater is independent from recent 

recharge or at least delays the response on climate change. Therefore, the age of groundwater 

is important in terms of water management. Only groundwater that is part of the recent 

hydrological cycle can be used for sustainable exploitation, the use of groundwater that is not 

actively recharged leads to groundwater overexploitation; in other words, old groundwater is 

a limited resource. 

Consequently, two tasks derived: Which parameters must be determined to assess the 

sensitivity of the Upper Jordan River catchment against climate change? Which suitable 

watershed management strategies should be developed as a consequence? 
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1.2 SPECIAL RESEARCH GOALS AND APPROACHES 

In 2000, the German Federal Ministry of Education and Research (BMBF) launched the 

GLOWA2 program as an interdisciplinary and integrative research project that aims to 

develop strategies for the sustainable management of water resources on a regional scale. Five 

large cluster projects (Danube, Elbe, IMPETUS, Jordan River, and Volta) have been selected 

to investigate issues like 

 climate and precipitation variability 

 interactions between the hydrological cycle, the biosphere and landuse, 

 water availability and conflicting water utilization. 

The subproject of GLOWA Jordan River is a case study of Eastern Mediterranean 

environments and is directed to evaluate the actual vulnerability of water resources and 

ecosystems in the Jordan River watershed. For these purposes, hydrogeology contributes with 

a combined method approach comprising hydrograph time-series analysis, and isotopic (18O, 
2H, 3H, 14C) and geochemical tracer analysis of discharge. The aim in this study was to 

achieve: 

 the separation of snowmelt runoff, direct runoff and groundwater runoff 

 the estimation of mean residence times of the three discharge components 

 the assessment of water volumes and 

 the determination of groundwater recharge rates. 

These data are considered to define a clear conceptual model on discharge mechanisms, 

forming the base of a mathematical model on future discharge scenarios. 

                                                 
2 Global Changes in the Hydrological Cycle 
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2. Review of existing knowledge, concepts and techniques 

The first part of the review summarizes concepts on groundwater flow systems and presents 

techniques used for the estimation of groundwater quantities and ages (respectively mean 

residence times). The focus is thereby on karst aquifers since this type of flow system 

represents the major freshwater source in the study area. The tools presented include lumped 

parameter models and radioactive isotope dating. 

Subsequently, different techniques to study discharge and recharge mechanism in a mesoscale 

catchment were evaluated and summarized. The review includes a synopsis of the current 

knowledge on runoff generation processes with special emphasis on their occurrence and 

characteristics in semi-arid Mediterranean catchments. Furthermore, tools to study runoff 

generation and to assess the different discharge components are introduced. These tools 

comprise classical hydrograph evaluations such as baseflow and recession analysis as well as 

tracer-based hydrograph separation techniques such as the mass-balance concept and end-

member mixing analysis (EMMA). Additionally, difficulties and uncertainties immanent in 

these approaches are discussed. 

 

2.1 CONCEPTS ON GROUNDWATER FLOW SYSTEMS 

The study area is characterized by two types of groundwater bearing rocks: carbonates and 

basalts. The Hula valley itself which is characterized by unconsolidated sediments was not in 

the scope of this study. The karst and basalt aquifers are fissured consolidated rocks but differ 

significantly from one another considering mineralogy, porosities, hydraulic conductivities 

and groundwater quality. 

 

2.1.1 Karst 

Karst environments are heterogeneous, multiple-porosity systems. Karst develops in fractured 

soluble rocks such as limestone, dolostone and gypsum, which contain a variety of primary 

fractures like bedding planes and master fissures that are permeable to water.  
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Groundwater flow in karst areas is dominated by three types of porosities: intergranular 

matrix porosity, fracture/fissure porosity and conduit porosity (WHITE, 1988). While the 

majority of transport occurs in conduits (if existent), the majority of storage takes place in the 

rock matrix and fissures. The two latter are generally considered a combined diffusive flow 

component. Assuming the existence of an underlying regional groundwater table, the 

exchange of water between the different porosities can be described as follows: During 

normal and low flow conditions water enters the conduits from matrix porosity and narrow 

fractures, while under flood conditions and sufficient hydraulic gradients, water enters from 

conduits to the matrix (MARTIN and SCREATON, 2001). Consequently, diffusive matrix flow 

(QD) controls spring discharge during baseflow conditions, while conduit flow (QC) 

dominates spring discharge after storm events.  

Conduit flow is usually fast and shows large variations in temperature, flow rate and water 

chemistry depending on the frequency, intensity and duration of storm events. The same 

parameter varies little throughout the year in diffusive flow (LEE and KROTHE, 2003). 

 

Soil zone

Epikarst

Unsaturated
zone

Phreatic
zone

sinkhole

conduit / 
drainage

underground stream

fissured-
porous matrix

outlet / spring

QD

QC

QD

P ETQSO

QT

 

Figure 4: Conceptual model of water flow and storage in a karst aquifer. Modified according 
to MALOSZEWSKI et al. (2002), PERRIN et al. (2003) and EINSIEDL (2005). Flow 
is indicated by arrows. QD = diffusive flow, QC = conduit flow, QSO = saturation 
overland flow, QT = total flow, P = precipitation, ET = evapotranspiration. 
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Tracer-based hydrograph separation in karst areas ranges from the application of simple two-

component mixing models separating event (quickflow) from pre-event water (baseflow) 

(SHUSTER and WHITE, 1971; HALLBERG, 1983; DREISS, 1989; LAKEY and KROTHE, 1996; 

MASSEI et al. 2003; PERRIN et al., 2003) to more sophisticated attempts such as the four-

component mixing model of LEE and KROTHE (2001). In this paper, Lee and Krothe separate 

the karst spring hydrograph into rain, soil, epikarstic and phreatic water by analyzing sulfate, 

dissolved inorganic carbon (DIC), δ2H, δ18O and δ13CDIC as tracers. 

NATIV et al. (1999) used stable and radioactive isotopes, CFC’s and He to separate 

groundwater flow components from different recharge altitudes in a karst environment.  

MALOSZEWSKI et al. (2002) determined mean transit times and volumes in both, the matrix 

and the conduit flow system. In order to do so they applied a lumped parameter approach in 

combining δ18O and tritium data in high and low discharges separately. A similar approach 

and artificial tracer tests were used by EINSIEDL (2005) to determine flow velocities, storage 

volumes and mean residence times in a karst aquifer. For detailed information on numerical 

modeling of the natural response of karst aquifers, refer to EISENLOHR et al. (1997a,b), 

SCANLON et al. (2003) and KOVACS et al. (2005) as this is not subject of this study.  

 

2.1.2 Basalt 

Groundwater flow in basalt lava tubes is most likely governed by two types of porosity, the 

rock matrix and fracture porosity. In contrast to karst formations, fractures are of planar-type, 

either with displacement (faults) or without displacement (fissures). In certain rock formations 

fractures may provide the primary pathway for flow and transport but as fractures drain, flow 

and transport through the rock matrix will become dominant (EVANS et al., 2001; OXTOBEE 

and NOVAKOWSKI, 2002). In such volcanic aquifers, basalt flows are often interbedded with 

fossil soils or sediments controlling the vertical flow. These sediment layers are generally 

highly compacted and of low permeability acting as hydraulic barriers to infiltrating waters 

(OKI et al., 1998; DAFNY et al., 2006). Depending on the extension of these soil/sediment 

lenses perched aquifers control the local or regional hydrogeology. 
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DAFNY et al. (2006) used geochemical and isotopic tracer to investigate groundwater flow in 

the basaltic Golan Heights aquifer, Israel, and to differentiate between waters from the 

perched and regional aquifer. Results of their study are further evaluated in chapter 3.5.3. 

 

 

Figure 5: Conceptual model of groundwater flow in a basalt aquifer according to DAFNY et 
al. (2006). The regional, deep aquifer is overlain by several smaller perched 
aquifers in the unsaturated zone. 

2.2 TECHNIQUES FOR RESIDENCE TIME ESTIMATION 

The mean residence time (MRT) of water is the average time that water spends in the 

subsurface system before it reaches the watershed outlet or a designated point on its either 

vertical or horizontal flow path (MALOSZEWSKI and ZUBER, 1982). Knowledge about the 

mean residence time of water allows conclusions on the immediate or delayed system 

response to climate changes or land-use changes. Additionally, the MRT is a valuable 

measure to evaluate the fate of contaminants in the aquifer. Thus, the mean water residence 

time is an important parameter to assess the water quality in a hydrogeological system. 
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2.2.1 Lumped-parameter models and water isotopes 

Generally, estimations of mean residence times are generated by tracer studies and the 

application of lumped parameter models. In such black-box models, spatial variations of 

parameters are not evaluated in detail and the system is described by adjustable (fitted) 

parameters. In other words, MRTs are directly derived from the transfer of the input to the 

output tracer concentrations by a fitting procedure. Accordingly, the detailed transport 

mechanisms within a system are simplified and are represented by the choice of a specific 

system response (transfer) function (SIMIC and DESTOUNI, 1999).  

Commonly, the determination of MRTs is based on the key papers of MALOSZEWSKI and 

ZUBER (1982, 1996) who developed several transfer functions to describe the MRT in a flow 

system. A short summary of other available techniques is given by MCGUIRE et al. (2002) 

including the determination of groundwater mean residence times by sine-wave analysis of 

stable isotope data (MALOSZEWSKI et al., 1983; BURNS and MCDONNELL, 1998; SOULSBY 

et al., 2000), multi-parameter response function models (AMIN and CAMPANA, 1996; 

HAITJEMA, 1995), direct simulation (ETCHEVERRY and PERROCHET, 2000; GOODE, 1996), 

fractal analysis (KIRCHNER et al., 2000, 2001) and stochastic-mechanistic models (SIMIC and 

DESTOUNI, 1999). In the course of this thesis, the response function models as described by 

MALOSZEWSKI and ZUBER (1982, 1996) were applied. 

The fundamental model theory is reviewed in the following paragraphs. 

 

2.2.1.1 Model theory 

For a system with steady flow and an ideal tracer such as δ18O, δ2H or tritium the tracer 

concentration in the output is related to the input concentration by the convolution integral: 

∫
∞−

−−=
0

exp λt')dt'(t')g(t')(tCC(t) in

 

where C(t) is the output, Cin the input signature of the tracer, t’ is the time of entry, t the 

calendar time, (t-t’) the transit time, λ the radioactive decay constant and g(t’) is the system 

response function representing the travel time probability distribution. 
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Theoretical models developed to describe the distribution of MRTs in an aquifer system 

(MALOSZEWSKI and ZUBER, 1996) comprise: 

 the piston-flow model (PFM): where a single mean residence time represents the 

modeled system; hydrodynamic dispersion and molecular diffusion are supposed 

negligible, 

 the exponential model (EM): with the underlying assumption that the exponential 

distribution of residence times corresponds to a probable situation of decreasing 

permeability with the aquifer depth, 

 the combined exponential-piston-flow model (EPM): where the system is 

presumed to constitute of two consecutive systems. One is approximated by the 

piston flow model and the other exhibits an exponential distribution of residence 

times, 

 the linear model (LM): describes an aquifer with linearly increasing thickness and a 

constant hydraulic gradient, a situation rarely met under natural conditions. Also the 

combined linear-piston flow model (LPM) describes conditions hardly met in 

nature, 

 the dispersion model (DM): accounts, at least to a certain extent, for the 

heterogeneity of a system. In the model, the one-dimensional solution to the 

dispersion equation for a semi-infinite medium is used as the response function 

(KREFT and ZUBER, 1978). 

The introduced models on residence time distribution and their transfer functions have been 

formalized in the software package FLOWPC (MALOSZEWSKI and ZUBER, 1996) and are 

thus easily available. 

 

2.2.2 Radiocarbon dating in groundwater 

Carbon-14 (14C) has been widely used to determine groundwater mean residence times in the 

range of 1000 to 25000 years and to draw conclusions on groundwater flow directions and 

fluxes, recharge rates, hydraulic conductivities, and effective porosity (ZHU and MURPHY, 

2000). Reviews on radiocarbon dating and its inherent challenges are given by FONTES and 
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GARNIER (1979), PLUMMER et al. (1991), FONTES (1992), KALIN (1999), GEYH (2000), ZHU 

and MURPHY (2000). 

In nature, 14C is produced in the outer atmosphere by the interaction of nitrogen and cosmic 

radiation. The evolving free 14C nuclides are rapidly oxidized to 14CO2, washed out by 

precipitation and photosynthetically fixed into the biomass; after the decay of biomass it is 

incorporated into the soil carbon pool. Infiltrating water charges with soil CO2, which can 

react with the calcium of the rocks, together contributing to dissolved inorganic carbon (DIC). 

Infiltrating water also charges with dissolved organic carbon (DOC). DIC and DOC contain 
14C and can both be used for groundwater dating. In this study, the focus is on 14C-dating with 

DIC alone. For information on radiocarbon dating of DOC, the reader is referred to AIKEN 

(1985), LEENHEER (1981) and GEYER (1994). 

Radiocarbon dating of groundwater is based on the knowledge of both the 14C half-life time 

(5730 ± 40 years) and the initial 14C activity at the time of infiltration. Assuming the 14C 

activity decreases by radioactive decay alone and no dilution occurs, groundwater mean 

residence time is determined according to the decay equation: 

 

mA
AT

T 021 ln
2ln

=
 

 

where T is the groundwater mean residence time, T1/2 is the half-life time of 14C, A0 is the 

initial 14C activity at the time of groundwater recharge and Am is the measured 14C activity of 

the sample.  

Generally, the 14C activity of subsurface water is reported as percent modern carbon (pmc). 

However, the determination of the initial 14C activity of dissolved inorganic carbon (DIC) is a 

challenging task since it is affected by a variety of geochemical reactions. Among these are: 

 the dissolution of either carbonate minerals in an open or closed subsurface system, 

 or the weathering of silicates, 

 the oxidation of sulfides, followed by carbonate dissolution, 

 the oxidation of “old” organic matter present in the aquifer or  

 the diffusion of 14C into the aquifer matrix , 
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 the influence of volcanic CO2 

all of which lead to an addition of dissolved inorganic 12C diluting the 14C/12C-ratio activity in 

groundwater. Thus, the initial 14C content needs to be corrected for isotope exchange 

processes within the groundwater-soil-rock system. The most common correction models 

applied to account for this dilution are introduced in chapter 6.9. 

 

2.3 CONCEPTS ON RUNOFF GENERATION PROCESSES 

In the scope of global change, both climate and land-use changes can severly influence runoff 

generation. Climate change effects control the input parameter ‘precipitation’. Modifications 

in land-use affect runoff processes by altering storage capacities or saturation states. An 

overview of potential impacts of land-use changes on surface and near-surface hydrological 

processes is given by BRONSTERT et al. (2002). 

The assessment of the vulnerability of particular catchments towards anticipated global 

change effects requires a thorough understanding of runoff generation dynamics. Based on 

multiple catchment studies in primarily northern temperate climates hydrologists so far agree 

that: 

 Catchments store water for considerable times but release it promptly during storm 

events, i.e., pre-event water dominates storm runoff (KIRCHNER, 2003; 

MCDONNELL, 2003).  

 The chemistry of old water is highly variable during runoff (BISHOP et al., 2004). 

 Hydrological processes are highly irregular in space and time (SEIBERT and 

MCDONNELL, 2002; WEILER and MCDONNELL, 2004). UHLENBROOK (2006) states 

that so-called ‘hot spots’ and ‘hot moments’ control stormflow. These terms refer to 

hydrologically very active areas and short periods of time that exhibit 

disproportionately high and intense runoff generation. 

Conceptual models to explain the ‘old water paradigm’ and techniques to investigate runoff 

generation processes on the catchment scale are introduced in the following paragraphs. 
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Particularly, studies investigating runoff generation in Mediterranean semi-arid environments 

were reviewed. 

Simplifying, runoff generation can be described as follows: The part of total precipitation that 

is not lost through e.g. evapotranspiration contributes directly to surface runoff, this is the so-

called effective rainfall. This direct runoff component is further separated into surface 

runoff = overland flow (precipitation flowing on the ground surface) and interflow (= prompt 

subsurface flow). Total discharge measured at a gauge comprises of direct flow and baseflow 

(e.g. groundwater). Conceptual models to explain runoff generation include: 

 

Hortonian overland flow (HORTON, 1933) that occurs when rainfall intensity exceeds the 

infiltration capacity at the interface atmosphere-litosphere. This flow type is considered the 

dominant runoff generation process at the local scale in semi-arid environments where high 

rainfall intensities and sparse vegetation covers prevail (YAIR and LAVEE, 1985; 

PUIGDEFABREGAS et al., 1998; GUENTNER and BRONSTERT, 2004). The occurrence of 

Hortonian overland flow is aditionally promoted by conditions that lead to a reduction of the 

near-surface saturated hydraulic conductivity (BUTTLE, 1998). These conditions can be 

caused by urbanization and the associated sealing of surfaces (ZIEGLER et al., 2004b), by the 

elimination of natural vegetation, which reduces evapotranspiration and lowers the soil’s 

ability to absorb precipitation (HEWLETT, 1982), by the crusting of soil surfaces (PATRICK, 

2002) or by agricultural techniques. 

 

Saturation overland flow is caused by precipitation falling on water saturated areas 

(ESHLEMAN et al., 1993; BUTTLE, 1994) for example near stream channels or in depressions. 

In semi-arid catchments, saturation overland flow is of importance only under specific 

conditions such as during rainy periods in valley bottoms (CEBALLOS and SCHNABEL, 1998) 

or on shallow soils/weathering zones above bedrocks of low hydraulic conductivity 

(PUIGDEFABREGAS et al., 1998) where high infiltration capacity opposes low storage 

capacity.  
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Direct channel precipitation, in the strict sense, is a form of saturation overland flow and is 

the part of runoff that is generated by precipitation which falls directly on to the stream 

channel. Its importance is highest at the beginning of large, intense rainstorms when only a 

limited surface area contributes to river runoff (WILLIAMS et al., 2002). 

 

Pressure wave translatory flow was proposed as part of the variable source area concept, 

independently derived by CAPPUS (1960), HEWLETT and HIBBERT (1961, 1967) and 

TSUKAMOTO (1961). The concept opposes Horton’s theory and implies that subsurface flow 

dominates storm runoff via translatory flow. Precipitation on the upper hillslope displaces the 

existing water at depth and at the base of the hillslope. When the upslope additions of water 

exceed the drainage capacity of the downslope areas water will come to the surface as return 

flow causing areas near the stream to saturate. These areas can vary in size between storms 

and during the course of a single storm (CHORLEY, 1978). They are thus termed ‘variable 

source areas’. Their extent depends on the initial soil moisture content, storage capacity, and 

rainfall duration and intensity (CHORLEY, 1978). 

 

 

Figure 6:  Mechanism of runoff generation (adapted from BEVEN, 1986). 
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The term preferential flow comprises all rapid, nonuniform subsurface flow processes where 

water and solutes move along certain pathways, while bypassing a fraction of the porous 

media (BEVEN and GERMANN, 1982; HENDRICKX and FLURY, 2001). An additional 

characteristic of preferential flow is the non-equilibrium situation with respect to the pressure 

head or the solute concentrations (WANG, 1991). Consequently, preferential flow mechanism 

play a significant role concerning the increase of infiltration and an accompanying reduction 

of overland flow or the rapid transfer of agrochemicals (CHRISTIANSEN et al., 2004) through 

the soil towards groundwater. The modeling of preferential flow in the vadose zone is 

reviewed by SIMUNEK et al. (2003), CHRISTIANSEN et al. (2004) and others.  

Different categories of preferential flow have been distinguished:  

 

Macropore flow (or alternatively pipeflow) refers to the rapid movement of water in a well-

connected pore system that originates e.g. due to the activity of soil fauna and plant roots, the 

existence of cracks and fissures; or natural soil pipes that developed as a result of erosional 

subsurface flow (BEVEN and GERMANN, 1982). The importance of macropore flow in 

hillslope runoff, threshold values and antecedent soil moistures were investigated by PILGRIM 

et al. (1979), MOSLEY (1982), GERMANN (1986), JONES (1987), LUXMORE et al. (1990), 

UCHIDA et al. (1999) among others.  

 

Interflow or funneled flow (KUNG, 1990), first observed by GARDNER (1960), is a form of 

lateral flow that occurs at sloping interfaces between sediments of different permeability 

where, e.g. a fine grained sediment is overlaying a coarse grained. Especially during low flow 

situations, when the matrix potential at the textural interface is so low that it prevents water 

from entering into the coarse, underlying soil a capillary barrier is developing which restricts 

vertical water flux and forces the water to move laterally along the bedding interface 

(WALTER et al., 2000). Water entry values and flow mechanism have been studied by HILLEL 

and GARDNER (1970), SEILER and BAKER (1985), HILLEL and BAKER (1988), KUNG (1993), 

HEILIG et al. (2003) among others. 
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An additional flow mechanism generating rapid subsurface stormflow is that of lateral flow 

along the sediment-bedrock interface. Flow velocities of preferential flow can reach rates 

comparable with and even exceeding that of overland flow (BEFANI, 1966, 1967 in 

SMAKHTIN, 2002; BEVEN and GERMANN, 1982; JONES, 1987; SEILER et al., 2002).  

Preferential flow mechanisms are generally of minor importance in semi-arid environments 

apart from karstic environments. Nevertheless, BERGKAMP et al. (1996) and CALVO-CASES et 

al. (2003) for example report macropore flow in soils on semi-arid limestones slopes.  

 

One concept to explain the dominance of pre-event water during runoff generation is 

groundwater ridging, a process first observed and suggested by RAGAN (1968), GILLHAM 

(1984) and ABDUL and GILLHAM (1989).  

According to this model, the pre-storm groundwater table is overlain by a tension-saturated 

capillary fringe with the extension of the fringe primarily depending on the grain size 

distribution and antecedent moisture of the soil. During storm conditions additional water 

percolates down to this zone, the tension saturation is obliterated and the pressure state of 

water changes from negative to positive consequently inducing an immediate rise in the water 

table and thus increasing the net hydraulic gradient towards the seepage face. Given the thin 

unsaturated zone, the accumulation of fine-grained material and the – compared to upslope 

segments – moist conditions in broad near-stream environments, this is where groundwater 

ridging is most likely to occur. The same mechanism might as well lead to return or saturation 

overland flow where the rising water table coincides with the soil surface (ABDUL and 

GILLHAM, 1989). Indirect evidence of this effect by tracer-hydrograph studies was offered by 

SKLASH and FARVOLDEN (1979), SKLASH et al. (1986), LADOUCHE et al. (2001) and during 

snowmelt events by BUTTLE and SAMI (1992) and BUTTLE (1994). SANDSTROM (1996) 

reports rainfall-dependent importance of groundwater ridging for a semi-arid catchment in 

East Africa. 
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Figure 7: The groundwater ridging mechanism of pre-event water discharge. Hypothetical 
water table profiles (a) prior to the event and (b) at peak runoff (adapted from 
CLOKE et al., 2006). 

2.3.1 Runoff generation in Mediterranean semi-arid environments 

Runoff generation in Mediterranean semi-arid environments differs significantly from that 

under humid conditions insofar as it is nonuniform in space and time (CALVO-CASES et al., 

2003). Additionally, runoff patches in semi-arid climates show poor hydrological connectivity 

(PUIGDEFABREGAS et al., 1998). These peculiarities of runoff generation in Mediterranean 

regions are primarily due to the prevailing climate conditions and secondarily caused by the 

geomorphologic heterogeneity within these catchments. 

Precipitation in the Mediterranean region is restricted to a few months, rain events are 

infrequent and of short duration. Consequently, the rate of evaporation equals or even exceeds 

the rate of precipitation thus leaving only little amounts of water to runoff. On the other hand, 

rain events are often of high intensity resulting in overland flow being the dominant runoff 

process at the local scale (YAIR and LAVEE, 1985).  

Mediterranean slopes have often been described as a mosaic of runoff (source) and runon 

(sink) areas (NICOLAU et al., 1996; PUIGDEFABREGAS and SANCHEZ, 1996; BERGKAMP, 

1998; LAVEE et al., 1998). High spatial variability of lithology, slope morphology, soil 

development as well as past and present land uses cause local differences in infiltration 

capacities and mosaic-like soil moisture distributions (WESTERN et al., 1998a,b).  
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The neighborhood of vegetation patches and bare soil surfaces introduces additional 

heterogeneity. Thus, vegetation patches have been shown to lead to increased infiltration and 

reduced overland flow (BERGKAMP, 1998), a result of plant-modified soil properties such as 

the greater density of macropores (BERGKAMP et al., 1996). Generally, bare soils will tend to 

act as overland runoff sources while vegetation patches will receive the runon for re-

infiltration (BROMLEY et al., 1997). At the hillslope scale, footslope areas or river cone 

deposits in the valley bottoms will usually act as sink areas for runon (CEBALLOS and 

SCHNABEL, 1998) while runoff is generated on upslope segments (PUIGDEFABREGAS et al., 

1998). 

 

2.4 HYDROGRAPH SEPARATION TECHNIQUES 

The transformation of precipitation into discharge involves complex hydrological processes 

(see above). To study complex recharge and discharge processes in a selected catchment, 

scientists refer to abstract input-output model systems where precipitation is the input and 

discharge the output parameter. The transformation process itself is on the one hand 

determined by relatively steady catchment properties such as geology, topography, soil, and 

vegetation cover. On the other hand, the dynamic control on the evolution of discharge is the 

input parameter itself i.e., precipitation falling within a certain catchment and the resulting 

antecedent moisture conditions. 

Different perceptions on recharge and discharge processes and consequently different 

methods to separate discharge components have been developed. Generally, one distinguishes 

between source areas (surface/subsurface water, shallow/deep groundwater) or response times 

of discharge components (fast and slow discharge components). However, the complexity of 

discharge processes is reflected by the lack of unambiguous denomination of discharge 

components, for example terms such as interflow, lateral flow, prompt subsurface flow and 

hypodermic flow are often used interchangeably. 

UHLENBROOK and LEIBUNDGUT (1997) distinguish three different techniques to investigate 

discharge processes: 
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Process-based methods. Of main interest are runoff-generating processes and the associated 

flow paths. Tracerhydrological and hydraulic methods are applied. 

Residence-time-based methods. Discharge components are separated based on tracer-

hydrologically determined residence times within the catchment. 

Dynamic-based methods. Discharge components are separated according to their temporal 

occurrence in the hydrograph which is achieved with a variety of empirical and graphical 

techniques. 

The appropriate method is chosen according to the question at issue. Hydrograph methods 

e.g., separate slow and fast discharge components, tracer methods consider pre-event and 

event components. A comparison of discharge components that have been received by the 

different methods is often limited or dependent on certain boundary conditions. 

 

2.4.1 Baseflow analysis 

Baseflow is the portion of streamflow that is contributed by groundwater and is referred to as 

dry weather flow. To separate baseflow from streamflow and to receive a characteristic 

baseflow hydrograph, several techniques have been developed that are reported by HALL 

(1968), MATTHESS and UBELL (1983), NATHAN and MACMAHON (1990), HOELTING and 

COLDEWEY (2005) and SMAKHTIN (2001a). 

Event-based separation methods such as straight line, slope line and concave separation 

(LINSLEY et al., 1982) are used to calculate the portion of baseflow during a single runoff 

event. Major challenge is thereby to determine the shape of the hydrograph which is done by 

choosing the appropriate peak, beginning point and inflection point of the hydrograph, the 

latter describing the end of the recession limb. 

Continuous separation techniques such as base wave line (NATERMANN, 1951) are applied to 

generate baseflow hydrographs on a long-term basis and to quantify groundwater recharge in 

the observed period. These approaches make often use of some kind of digital filtering 

realized for example in the smoothed minima method (INSTITUTE OF HYDROLOGY, 1980) or 

the recursive digital filtering technique (NATHAN and MACMAHON, 1990). 
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PETTYJOHN and HENNING (1979) developed three algorithms for systematical separation of 

baseflow from the hydrograph, which were later automated by SLOTO and CROUSE (1996) 

within the HYSEP software provided by the USGS (chapter 7.1). 

Another option to gain information about the baseflow portion and thus groundwater recharge 

is the application of modified frequency and duration analysis of low flow discharge; see for 

example WUNDT (1958), KILLE (1970) and DEMUTH (1993). WUNDT (1958) assumed that 

monthly mean low flow (MoMLFW) is exclusively fed by groundwater. Accordingly, mean 

monthly low flow during summer (SuMoMLFW) corresponds to minimum groundwater flow. 

However, especially in catchments affected by delayed discharge such as snowmelt, low 

flows are influenced by interflow and overland flow components. Hence, KILLE (1970) 

developed an algorithm to exclude direct runoff components from monthly mean low flows 

(MoMLFK), which was later automated (and thus objectified) by DEMUTH (1993). Monthly 

low flows of a long-term record are organized in ascending order and graphically displayed. 

The lower 5 % of values are excluded from the analysis due to anthropogenic interference. 

Values between 5 and 50 % correspond approximately to a straight line. Hence, a best fit line 

is constructed and values plotting above are reduced to this line to eliminate the portion of 

direct runoff components. The mean value of the best fit line equals the mean, long-term 

baseflow which – in the German-speaking literature – is equated with the mean, long-term 

groundwater recharge.  

However, no standardization concerning baseflow analysis exists and the prevalent graphical 

approaches have a limited physical basis. Additionally, the location of the spring/gauge 

relative to the local groundwater flow field determines the significance of the calculated 

baseflow values (PFAFF, 1987). In other words, how significant is the contribution of 

groundwater originating in the aquifer below the spring/gauge level? A question that is 

particularly important in semi-arid to arid areas where long dry periods prevail. 

 

2.4.2 Recession analysis 

The recession limb of the hydrograph, which represents the dry weather discharge, depicts the 

storage-discharge relationship of a catchment area. This relationship mainly depends on 
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catchment geology (e.g. transmissivity, storativity of the aquifers) and distance from stream 

channels to basin boundaries (SMAKHTIN, 2001b). 

Recession of the different discharge components varies in its magnitude. The steep part of the 

recession curve represents overland flow, which – after a storm event – ceases quickly within 

hours or days. With ongoing dry weather, the recession curve flattens until it represents 

outflow from groundwater storage that can endure for decades. For the hydrologist it is still 

difficult to interpret recession curves as the recession rates of the different discharge 

components overlap and there is no clear distinction between the single components. 

Assuming the storage-discharge relationship to be linear and underlying the mass balance 

approach, the recession curve is described by an exponential function: 

 
K
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where Q(t) is the discharge at any time t during recession, Q0 the discharge at the beginning 

point of the considered recession curve (often coinciding with the peak) and K is the recession 

constant that gives an indication about the mean residence time in the system.  

Usually more than a single storage influences the depletion of a water source thus often 

composite exponential functions are used to describe the recession behavior. WITTENBERG 

(1990) claims that a non-linear storage algorithm explains baseflow recession in an 

unconfined aquifer physically more accurately. 

Most recession analyses aim to determine a master recession curve and the appending 

recession constant, which then represent the mean recession behavior of the investigated 

water source. Common techniques such as the correlation method (HALL, 1968) or the 

matching strip method (NATHAN and MACMAHON, 1990) are described in MATTHESS and 

UBELL (1983), NATHAN and MACMAHON (1990), HOELTING and COLDEWEY (2005), 

TALLAKSEN (1995) and SMAKHTIN (2001a). 
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2.4.3 Tracer-based hydrograph separation techniques 

2.4.3.1 Hydrograph separation based on the mass balance concept 

The classical hydrograph separation technique is extensively described in KENDALL and 

MCDONNELL (1998) and HOEG et al. (2000). 

Hydrograph separation analyses are based on simple steady state mass balance equations of 

water and tracer fluxes in a catchment. Commonly a two-component mixing model (PINDER 

and JONES, 1969) is used to quantify two different discharge components based on their tracer 

concentrations and discharge volumes.  

Theoretically, this concept allows the determination of n runoff components based on the 

observation of n-1 tracers and solving the following n linear mixing equations (HOEG et al., 

2000): 

 

whereas QT is the total runoff, Q1, Q2, …, Qn are the different runoff components and c1
ti, c2

ti, 

…, cn
ti are the concentrations of one observed tracer ti. Because c1

ti, c2
ti, …, cn

ti represent the 

extreme possible concentrations for cT they are known as end-members (HOOPER et al., 

1990). The application of this separation technique is restricted by several boundary 

conditions (SKLASH and FARVOLDEN, 1979): 
 

 The tracer concentrations of the different runoff components are significantly 

different. 

 Each input tracer concentration is constant in space and time or its variation is 

known. 

 The tracer behaves conservatively. 

 Contributions of an additional component are negligible, or their composition is 

identical to that of another component. 
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Especially the demand for the tracer concentrations being constant in space and time or their 

variations being known is often insufficiently met in reality. In that way, introduced 

uncertainties have to be taken into account and quantified. 

Hydrograph separation based on two-component mixing models was first applied in the 

1970’s and used to determine the proportion of event and pre-event water contributing to 

storm runoff (SKLASH and FARVOLDEN, 1979; RODHE, 1981; OBRADOVIC and SKLASH et 

al., 1986; STICHLER, 1987; WELS et al., 1991a). Thereby event water refers to the water that 

is added to a catchment’s surface as rainfall or snowmelt during a storm event while pre-event 

water was held in the catchment prior to, and has been discharged into the stream channel 

during a storm event (BUTTLE, 1998).  

Pre-event water was found to dominate largely the streamflow generation regardless of 

catchment scale, physical properties and climatic conditions (GENEREUX and HOOPER, 1998; 

MARC et al., 2001). This implies that catchments store water for considerable periods of time 

but then release it promptly during storm events (KIRCHNER, 2003). 

It was soon understood that two components could not satisfactorily account for the variation 

of isotopic and chemical composition in the stream during stormflow. In more sophisticated 

studies three-component models where used to divide pre-event water further into soil water 

and groundwater (HOOPER et al., 1990; MCDONNELL et al., 1991; OGUNKOYA and JENKINS, 

1993; HOEG et al., 2000) addressing rather the geographic than the time source of storm 

runoff components. The concept was further extended by MEROT et al. (1995), LEE and 

KROTHE (2001), UHLENBROOK and HOEG (2003) by refining the division of discharge 

components applying four- and five-component hydrograph separation. 

 

2.4.3.2 End-member mixing analysis (EMMA) 

End-member mixing analysis (EMMA) is an analytical approach developed by 

CHRISTOPHERSEN et al. (1990) and HOOPER et al. (1990) that is closely connected to and 

often combined with the classical hydrograph separation technique. It allows to model stream 

water chemistry as a mixture of representative end-members and to separate the hydrograph 

using multiple tracers simultaneously.  
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CHRISTOPHERSEN et al. (1990) observed that the chemical species in stream water that are 

closely correlated with flow, are the same ones that exhibit marked differences in 

concentrations across soil horizons. They concluded that the extremes among the solutions, 

the so-called end-members, must mix in proportions such that their combined chemistry 

equates the observed stream water chemistry. 

The restrictive assumptions for tracers mentioned before in the scope of hydrograph 

separation (2.4.3.1) are also valid within the framework of end-member mixing analysis. The 

end-member contributions are estimated by solving a constrained, overdetermined set of 

linear equations applying a least-square procedure.  

End-member mixing analysis have been enhanced by introducing multivariate data analysis 

techniques – in particular principal component analysis (PCA) – to indicate the approximate 

rank of the mixture in question and thus to estimate the minimum number of end-members 

needed to describe the observed data (CHRISTOPHERSEN and HOOPER, 1992). The application 

of principal component analysis enables to study the structure of variance within the data and 

results in a more efficient coordinate system describing the observed stream water chemistry. 

The detailed EMMA procedure is outlined by CHRISTOPHERSEN and HOOPER (1992) and 

summarized in BROWN et al. (1999). 

Though the EMMA approach itself has been less applied compared to the vast literature 

covering the use of classical hydrograph separation, clearly its advantages consist in: 

 its compatibility with classical hydrograph separation, 

 the generation of testable hypotheses that focus future field efforts, 

 the identification of geographical source areas, 

 the simultaneous application of multiple tracers and  

 the overdetermination of the algebraic solution 

(CHRISTOPHERSEN et al., 1990; HOOPER et al., 1990; CHRISTOPHERSEN and Hooper, 1992; 

MULHOLLAND, 1993; OGUNKOYA and JENKINS, 1993; BAZEMORE et al., 1994, ELSENBEER 

et al., 1995, BROWN et al., 1999; BURNS et al., 2001). 

Common end-members identified have been soil water, groundwater, organic horizon water, 

hillslope subsurface water, riparian zone water or event (rain) water to name just a few. 
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Temporal variations of end-member chemistry have been taken into account by OGUNKOYA 

and JENKINS (1993) who tested “fixed”, “time-invariant” and “temporally varying” end-

member concentrations. Depending on the size of variation, BURNS et al. (2001) allowed end-

member chemistry to vary over time (large variations) or to be represented by their median 

value (small variations). 

 

2.4.3.3 Uncertainty analysis 

The validity of conclusions drawn from EMMA-based hydrograph separation is largely 

dependent on the conducted uncertainty analysis. 

The success of EMMA-based hydrograph separation and the determination of end-member 

proportions are based on the adequate chemical differentiation of these source waters (JOERIN 

et al., 2002). Given that, at the catchment scale, spatial and temporal variability in end-

member composition is usually unknown or difficult to characterize (HOEG et al., 2000) and 

that the determination of tracer concentrations can be subject to sampling and analytical 

errors, it is evident that the hydrograph separation approach inherits large uncertainties. In 

addition to parametric and natural uncertainties the strong simplistic model hypotheses that 

mixing models refer to (JOERIN et al., 2002) introduce significant uncertainties into the 

obtained results. While the former sources of error can be summarized as statistical 

uncertainty, the latter is referred to as model uncertainty. 

Among other, UHLENBROOK and HOEG (2003) conclude that results of hydrograph 

separations should not be taken as exact numbers and are of mostly qualitative nature unless 

combined with additional field data. The following paragraphs offer a brief introduction to 

uncertainty analysis in conjunction with EMMA-based hydrograph separation.  

Focusing on parametric variability only, early research (RODHE, 1981; NEAL et al., 1990; 

MCDONNELL et al., 1991) addresses uncertainty in terms of sensitivity analysis where tracer 

concentrations change within the range of observed data and requantification of the models 

results in an array of end-member proportions.  HOOPER et al. (1990) introduced first-order 

Taylor series expansion into sensitivity analysis and where thus the first to invoke a 

formalized statistical approach. 
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Concentrating on both, the tracer concentrations used to perform the hydrograph separation 

and the uncertainties in the tracer concentrations itself, GENEREUX (1998) uses Gaussian 

error propagation to determine uncertainties in the computed mixing fractions of two- and 

three-component hydrograph separation. This technique was frequently applied (BROWN et 

al., 1999; HOEG et al., 2000; BURNS et al., 2001), extended to an even higher number of end-

members and refined concerning the addressed uncertainty sources (UHLENBROOK and 

HOEG, 2003).  

BAZEMORE et al. (1994) incorporated both the effects of spatial variability of the end-member 

concentrations as well as the laboratory analytical error into uncertainty analysis and were the 

first to apply the, to some extent advanced, Monte Carlo approach. This computer-based 

method simulates probability distributions of possible end-member contributions for each 

collected stream sample, a technique applied and adapted by DURAND and TORRES (1996),  

RICE and HORNBERGER (1998) among others. 

JOERIN et al. (2002) investigated for the first time both the statistical uncertainty of mixing 

models due to chemical variability inside components applying a less restricted Monte Carlo 

method, and the model uncertainty by comparison of alternative hypotheses.  

Recently SOULSBY et al. (2003) used a Bayesian model (BREWER et al., 2002) to estimate 

uncertainty. Therein, end-members are assumed to arise from bivariate normal distributions 

whose mean vectors and co-variance matrices can be estimated. Markov Chain-Monte Carlo 

methods are used to model the average and 95 percentile upper and lower bounds of end-

members during storm events.  This method, its implicit assumptions and shortcomings are 

discussed in detailed by BEVEN (2004) who concludes that subjectivity, for example in the 

choice of model structures or input and boundary condition errors, will remain a significant 

part of uncertainty estimation for the foreseeable future. 

 

2.4.4 Natural tracers 

2.4.4.1 Temperature 

Temperature can certainly not be considered a conservative tracer since the temperature 

observed in a stream is controlled by a variety of factors such as direct solar radiation, stream 
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shape and volume, shading, substrate type and others (JOHNSON, 2004). Nevertheless, stream 

temperature has been used as a tracer to separate stream flow during snowmelt into shallow 

and deep flow (KOBAYASHI, 1985; PANGBURN et al., 1992). This hydrograph separation 

technique is based on the assumption that precipitation or snow shows significantly different 

temperature fingerprints than soil water or groundwater. SHANLEY and PETERS (1988) 

investigated runoff processes in a small, forested catchment availing the temperature contrast 

in rainfall and groundwater. KOBAYASHI et al. (1999) used stream temperature to evaluate 

contributions of shallow and deep flow during rainstorms in summer, compared them to 

results received during snowmelt runoff and succeeded to determine the depth of a major 

subsurface flowpath by additionally investigating soil temperature profiles.  

 

2.4.4.2 Electrical conductivity 

Electrical conductivity (EC), sometimes referred to as specific conductance, is a measure of 

the ability of water to conduct an electrical current and is usually expressed in microsiemes 

per centimeter [μS/cm] at 25°C. The electrical conductivity is strongly correlated to the type 

and concentrations of ions in solution and can thus be used to infer the total dissolved solid 

(TSS) content in natural waters. Although TSS is commonly about 65 % of the electrical 

conductivity, this relationship should be evaluated individually in situ. 

The advantages of using electrical conductivity in mixing and hydrograph separation studies 

consist in its low costs, its easy monitoring and the immediate assessment of the water 

composition (MCNAMARA et al., 1997; LAMBS, 2000). Based on the assumption that 

precipitation which becomes surface runoff is not subject to significant chemical enrichment 

on its way to the stream, NAKAMURA (1971) or KOBAYASHI et al. (1999) used electrical 

conductivities to separate the hydrograph into an overland and a subsurface component. 

PILGRIM et al. (1979), DEBOER and CAMPBELL (1990) as well as LAUDON and SLAYMAKER 

(1997) pointed out the inherent instabilities of this tracer approach. While the former claim 

the change of variations in specific ion concentrations throughout different stages of the 

event, the latter refer to the different dissolution kinetics and different valences of the 

substances included in the electrical conductivity. To account for the variations in the new 
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(surface) water component PILGRIM et al. (1979) developed laboratory relationships between 

soil contact time and specific electric conductivity. For the same purpose, MCNAMARA et al. 

(1997) additionally monitored the specific conductivity in a small hillslope water track during 

the length of the events. They also suggested the combined use with other tracers and apply 

both electrical conductivity and 18O to divide stormflow in an Artic region into an old and 

new water component finding similar water proportions for both tracers. LAMBS (2000) 

successfully used the same tracer combination to discriminate between snowmelt and glacier 

melt in a Himalayan valley and between river water and phreatic water in the Garonne 

catchment (France). 

In a karst spring, DESMARAIS and ROJSTACZER (2002) observed increased values of EC 

during storm events and attributed these to the flushing of pre-storm water. 

 

2.4.4.3 Stable isotopes of water (18O and 2H) 

The stable isotopes 18O and 2H are components of the water molecule and therefore ideal 

tracers for a variety of hydrological questions. The input of water isotopes into the 

hydrological system occurs spatially distributed and in variable concentrations via 

precipitation. This variability in the isotopic composition is caused by isotope fractionation 

during phase transition processes such as evaporation and condensation and by mixing. 

Isotope fractionation is temperature-dependent, thus, isotope effects observed on the 

catchment scale are often closely correlated to temperature. The most important effects are: 
 

 Seasonal effect: In the warm seasons precipitation is isotopically heavier than in the 

cold seasons. 

 Altitude effect: With increasing altitude, precipitation gets isotopically light.  

 Amount effect: The isotopic composition of precipitation varies with its intensity. 

Precipitation becomes isotopically light with increasing rain amounts because of the 

kinetics of isotope fractionation. 

 Continental effect: With increasing distance from the ocean coast, (source of 

evaporation) precipitation becomes isotopically light due to repeated condensation. 
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 Atmospheric moisture effect: With decreasing atmospheric moisture, isotope 

concentrations in the vapor phase become more enriched. 
 

Additionally, high temporal variability was observed between storms and during the course of 

single storms (HEATHCOTE and LLOYD, 1986; NATIV and MAZOR, 1987; RINDSBERGER et 

al., 1990, ADAR et al., 1998; KUBOTA and TSUBOYAMA, 2003; CELLE-JEANTON et al., 2004). 

The main factors determining the extent of this variability are the temperature of 

condensation, the origin of air mass vapor and evaporation and the isotopic exchange between 

the atmospheric moisture and the falling raindrops (DANSGAARD, 1964; GAT and 

DANSGAARD, 1972; EHHALT et al., 1963; STEWART, 1975).  

If the mentioned effects result in a distinctive isotopic signature of precipitation (event water), 

compared to the ground and pre-event water stored in the catchment isotopic hydrograph 

separation can be applied (compare 2.4.3.1). Among the first to use this approach were 

DINCER et al. (1970), MARTINEC et al. (1974), FRITZ et al. (1976), SKLASH and FARVOLDEN 

(1979), RODHE (1981), STICHLER and HERMANN (1982), PEARCE et al. (1986) and others. 

While a vast amount of studies were conducted in a variety of catchments most of the studies 

showed that pre-event water supplies at least 50 % of streamflow at peak discharge. However, 

most investigations were performed in mid- and high-latitude regions and event-based 

hydrograph separations in Mediterranean environments (LOYE-PILOT and JUSSERAND, 1990; 

MARC et al., 2001; TEKELI and SORMANN, 2003) are scarce. 

 

2.4.4.3.1 Rain 

Catchments in humid and semi-arid climate zones receive their major input of water from 

rainfall. The isotopic composition of rain varies spatially and temporally (see 2.4.4.3) which 

has to be considered applying isotope based hydrograph separation. This is especially true for 

mesoscale studies and catchments where convective rainfall events dominate. 

Generally, several bulk rainfall samples are collected for an event, analyzed for isotopes, and 

combined in a weighted mean value that is used for hydrograph separation. MCDONNELL et 

al. (1990) developed two additional weighting techniques, the incremental mean and the 

incremental intensity. The incremental mean allows only for the isotopic content of rain that 
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has fallen until the time of separation. The temporal variability of rain events is taken into 

account by applying the incremental intensity technique, which accounts for rain intensity 

data and is based on sequential rain sampling techniques (KENNEDY et al., 1979; KRUPA, 

2002). Spatial variability is usually taken into account by installing a network of rainfall 

samplers at different altitudes and topographic transects.  

Especially in forested and densely vegetated catchments, rainfall is subject to canopy 

interception, which can lead to a certain amount of re-evaporation and hence isotopic 

enrichment of throughfall (e.g. GAT and TZUR, 1967; DEWALLE and SWISTOCK, 1994; 

BRODERSEN et al., 2000). In Mediterranean environments isotopic enrichment of 0.3-0.5 ‰ 

was observed (PICHON et al., 1996). 

 

2.4.4.3.2 Snow 

Snow can account for a significant amount of precipitation in catchments situated in the 

appropriate climate zones or altitudes. This is also true for several Mediterranean catchments 

that receive recharge from high altitude mountains. The importance of snowmelt in those 

catchments became only recently a focus of research (SMITH et al., 2003). Astonishingly, 

more water is immobilized in the snow cover in the Mediterranean coastal zone than in the 

snow cover on the mountains of continental Europe (AOUAD-RIZK, 2005).  

This has been attributed on the one hand to the long way that clouds travel along the 

Mediterranean during which they collect moisture. Additionally, for Mount Lebanon it was 

observed that snow produced there had twice the water content as the same volume of snow 

falling at the same altitude on the Alps (AOUAD-RIZK et al., 2005). This fact was attributed to 

the steep slopes of the Lebanon Mountains and its vicinity to the coast allowing a very rapid 

cooling of the clouds. 

To quantify the influence of snow on runoff and groundwater recharge via isotopic 

hydrograph separation, it is necessary to determine the actual isotope input from snow cover 

outflows (STICHLER, 1981) which are the amount-weighted isotope input values 

(UNNIKRISHNA et al., 2002). In early studies, depth-integrated snow cores were used to 

describe the event component (RODHE, 1981; BOTTOMLEY et al., 1986; INGRAHAM and 
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TAYLOR, 1989). However, it was shown that large variations of isotopic composition occur 

within individual melt episodes – in particular the enrichment of melt water in heavy stable 

isotopes (STICHLER et al., 1981; UNNIKRISHNA et al., 2002).  

Consequently, snowmelt lysimeters were widely used to account for the temporal variability 

of the isotopic composition during melt periods (HOOPER and SHOEMAKER, 1986; STICHLER 

et al., 1986; MAULÉ and STEIN, 1990; KENDALL et al., 1999; SHANLEY et al., 2002; 

UNNIKRISHNA et al., 2002). Additionally, the latter approach allows accounting for rain 

falling on the snow pack and infiltrating through it (SINGH et al., 1997). 

 

2.4.4.4 Major anions 

Of the major anions, particularly chloride and sulfate have been used in hydrograph 

separation studies. Generally, chloride and (up to a certain extent) sulfate can be regarded as 

natural conservative tracers (RIBOLZI et al., 1993) as they derive mainly from atmospheric 

input and, on the event scale, geogenic contributions are of minor importance.  

During dry periods, evaporation concentrates soil water and groundwater with respect to these 

tracers and thus allows for the separation of pre-event and event water contributing to the 

stormflow hydrograph (OGUNKOYA and JENKINS, 1993; PETERS and RATCLIFFE, 1998).  

RIBOLZI et al. (1996) compared hydrograph deconvolutions applying hydrochemical and 

isotopic tracer and found good correlations between residual alkalinity, chloride and 18O. 

KENDALL et al. (2001) derived higher pre-event portions using chloride and silicate as tracers 

than for isotopic hydrograph separation which was attributed to the fact that event quickflow 

picked up sizeable amounts of chloride and silicate during its rapid, very surficial contact with 

the soil. 

Nitrate has been frequently used as a tracer to study transfer and export mechanisms of 

nutrients (and other agrochemicals) in watersheds (BURT and ARKELL, 1987; DURAND and 

JUAN-TORRES, 1996; CREED and BAND, 1998; HYER et al., 2001; MOLÉNAT et al., 2002, 

JARVIE et al., 2005). Though nitrate is generally considered reactive, it was shown that 

denitrification processes are negligible on the event scale (RIBOLZI et al., 2000). INAMDAR et 

al. (2004) used nitrate and DOC to separate till groundwater and near-surface soil waters 
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during summer storm events in a glaciated forested catchment. RIBOLZI et al. (2000) applied 

chloride and nitrate in a mixing model, and derived three locally distinct storm flow 

components: pre-event water deriving from the depression groundwater, event water and pre-

event water of plateau groundwater. 

 

2.4.4.5 Major cations 

WHITE (1998) states that over the normal range of pH in natural waters, assuming no 

precipitation and dissolution and excluding biotic processes, the principle conservative ions 

are sodium, potassium, calcium, magnesium, chloride, sulfate and nitrate since these ions are 

usually fully dissociated from their conjugated acid and bases. During transport, however, 

cations are subject to a variety of processes such as cation exchange with the clay–humus 

complex, dissolution of calcite and dolomite or precipitation of calcite with CO2 degassing 

(RIBOLZI et al., 2000) constricting their conservative nature. Thus, cations have been rarely 

applied as tracers in hydrograph separation.  

Generally, cation concentrations and stream discharge are negatively correlated in temperate 

latitudes. In these environments, cations derive from weathering of primary minerals and are 

at their highest concentrations during baseflow conditions. The addition of new surface or 

subsurface water with low ionic strengths leads to the dilution of stream cations 

concentrations during high flow conditions (DREVER, 1997; MARKEWITZ et al., 2004).  

Accordingly, MCGLYNN et al. (1999) used calcium as a tracer to distinguish deep riparian 

water in a snowmelt-influenced small headwater catchment while TARDY et al. (2004) 

referred to sodium for the identification of deep groundwater reservoir contributions to the 

hydrograph in a semi-arid catchment on granitic rocks. 

 

2.4.4.6 Dissolved silica 

In natural waters dissolved silica derives primarily from the weathering and subsequent 

dissolution of silicates and aluminosilicates in bedrocks and soils (DREVER, 1997). The 

dominant species of silicon in natural waters is Si(OH)4, above pH 9.8 silicic acid dissociates 

into dihydrogen and trihydrogen silicate ions (H3SiO4
-, H2SiO4

2-). Weathering rates of silicate 
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minerals depend not only on pH but also on temperature (WHITE and BLUM, 1995), lithology 

(MEYBECK, 1987, TAYLOR et al., 1999), vegetation (MOULTON and BERNER, 1998) and 

concentration of metal species (HAINES and LLOYD, 1985) or alkaline and alkaline-earth ions 

(TANAKA et al., 2004) in the waters. 

In tracer-based hydrograph separation, dissolved silica is considered a geogenic tracer, its 

specific concentration in a flow component resulting from the weathering of the rock or the 

soil matrix in its respective area of origin. The use of dissolved silica as a conservative tracer 

in hydrograph separation is based on the finding that the dissolution of silica occurs very 

quickly (KENNEDY, 1971) as well as that dissolved silica reaches an approximately steady-

state concentration within a short period of time and maintains these concentration during the 

event (HENDERSHOT et al., 1992). Considering these properties and assuming the dissolved 

silica content in precipitation to be virtually zero, dissolved silica was used to quantify the fast 

runoff components by means of hydrograph separation (HOOPER and SHOEMAKER, 1986; 

KENNEDY et al., 1986; WELS, 1991; MAULÉ and STEIN, 1990; HINTON et al., 1994; 

UHLENBROOK et al., 2002). The use of dissolved silica as a conservative tracer was doubted 

by BUTTLE and PETERS (1997) who demonstrated, that some dilution occurs even during the 

event. 

Because silicate minerals are subject to enduring, relatively slow weathering reactions make 

dissolved silica concentrations in groundwater are a suitable tool for residence time 

determinations (HAINES and LLOYD, 1985; LINDENLAUB, 1998). The concentration of 

dissolved silica in water is determined by its contact time with the silicate minerals. Thus, if 

the water has a sufficiently high residence time in the reservoir former influences of flow 

pathways are eliminated. 

 

2.4.4.7 DOC 

The carbon fraction of organic matter (TOC – total organic carbon) is subdivided into 

particulate organic carbon (POC), and dissolved organic carbon (DOC) where, by definition, 

dissolved substances are those that pass through a 0.45 μm filter. In natural waters, DOC 

concentrations generally range from < 1 mg/L in precipitation and groundwater (WHITE, 
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1998; BROWN et al., 1999; LADOUCHE et al. 2001; NEAL et al., 2005) up to 20-40 mg/L (and 

more) in the interstitial waters of the upper soil layer (WHITE, 1998; CAREY and QUINTON, 

2005). River waters have intermediate concentrations of about 5-7 mg/L (WHITE, 1998). The 

given values are mean concentrations and can vary on a broad scale.  

SACHSE et al. (2005) presented a short review of factors governing DOC concentration in 

natural waters. Thus, ‘dissolved organic carbon in surface waters is influenced by natural and 

anthropogenic allochthonous sources in the catchment and by autochthonous production and 

degradation processes’. Stream water concentrations of DOC are controlled by the rates of 

DOC production in soils, the rates of its absorption in mineral soils (MCDOWELL and WOOD, 

1984), the flowpath of water (MOORE and JACKSON, 1989) and landscape types within the 

catchment (DILLON and MOLOT, 1997). Seasonal variations of DOC concentrations are 

caused for example by changes in rainfall, biological productivity and microbial activity 

(WHITE, 1998). 

In the scope of hydrograph separation studies DOC concentrations have often been observed 

to increase with rising stream discharge (BROWN et al., 1999; MACLEAN et al., 1999; 

LADOUCHE et al., 2001; SHANLEY et al., 2002). This has been attributed to the rising water 

table during high flow conditions and the subsequent flushing of DOC-enriched in the upper 

soil horizons where DOC accumulates during low flow conditions (HORNBERGER et al., 

1994; BOYER et al., 1997). Especially in snowmelt-influenced or permafrost catchments, 

DOC proved to be a suitable tracer to separate an upper (organic) soil horizon flow 

component - caused by rapid lateral subsurface flow - from the streamflow hydrograph 

(KENDALL et al., 1999; MACLEAN et al., 1999; CAREY and QUINTON, 2005). BISHOP et al. 

(1994) and LISCHEID (2002) evaluated the importance of the riparian zone as control on DOC 

stream chemistry. TARDY et al. (2004) monitored DOC in a semi-arid tropical catchment and 

attributed the DOC response to an organic superficial soil horizon. Though DOC cannot 

generally be considered a conservative tracer (see above), biological activity is usually 

assumed negligible at the event scale. Additionally, the major fraction of DOC is often 

refractory (LADOUCHE et al., 2001). 
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3. Study area 

3.1 LOCATION AND PHYSIOGRAPHY 

The study area is part of the Upper Jordan River Catchment (UJRC), Israel’s northernmost 

watershed (Figure 8). The ≈1700 km² Upper Jordan River orographic catchment, of which 

≈ 900 km² are situated within the State of Israel, comprises the northern Jordan Rift valley, 

which ist the northward extension of the Dead Sea Rift Transform (DSRT). The latter 

evolved, as the African and Arabian tectonic plates started to drift and separate about 30 Ma 

ago. The DSRT, a tectonic graben, runs from the spreading Red Sea through the whole length 

of the State of Israel and continues through Lebanon and Syria, approaching the Taurus zone 

of convergence in Turkey. Its formation is still a matter of dispute, which is further discussed 

in SNEH (1996). Several small faults and left-stepping displacements of the Dead Sea fault are 

additionally shaping the UJRC (Figure 9). 
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Figure 8: The Upper Jordan River Catchment and its location in the State of Israel (EXACT, 
1998). Numbers represent gauging stations of the Hydrological Service of Israel 
(HSI).  
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The Upper Jordan River drains part of the southern Beka’a Valley, the Hermon Mountains, 

the Golan Heights, the eastern Naftali Mountains, and the Hula Valley north of Lake Tiberias. 

It is fed by three main perennial streams, emerging on the southern flanks of the Hermon 

Mountains and by additional small, predominantly intermittent rivulets draining the eastern 

and western plateau and escarpments that enclose the Hula Valley (Figure 8). 

The topography of the study area - with altitudes ranging from about 210 m b.s.l. (Lake 

Kinneret) to 70 m a.s.l. in the Hula Valley to about 1000 m a.s.l. on the Golan plateau and 

more than 2.800 m a.s.l. on top of Mount Hermon - causes high relief energy and a potential 

for fast hillslope runoff processes.  

 

3.2 CLIMATE 

The study area is located in the Eastern Mediterranean, a transition zone between the 

temperate European and the arid Sahara-Arabian climate. The Eastern Mediterranean climate 

is characterized by hot, dry summers, cool, wet winters and short transitional terms that are 

often overlapped by the two prevailing seasons. 

ALPERT et al. (2004) defined the seasons in the Eastern Mediterranean based on synoptic 

systems that dominate the region. According to him: 
 

 Summer lasts from the end of May until the mid of September and is influenced by 

the persistent Persian trough weather condition which is marked by high 

temperatures and high humidity and by north/north-easterly winds. 

 Autumn, which lasts from the mid of September until the beginning of December, is 

dominated by the Red Sea trough associated with south/south-easterly winds, low 

humidity, and medium to high temperatures.  

 Winter, which persists from December until the end of March, is influenced by the 

Cyprus low that brings low temperature, strong winds, and high-intensity 

precipitation. 

 The short, 2-month spring season is dominated by the Sharav low accompanied by 

hot and dusty winds, low humidity and medium to high temperatures. 
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All climate parameters show high spatial variability. Mean annual precipitation ranges from 

more than 1600 mm/year in the upper Mount Hermon range (GILAD and SCHWARTZ, 1978; 

SIMPSON and CARMI, 1983) to 900 mm/year in the upper Golan and to 500 mm/year at the 

southern tip of the UJRC. In a recent study, RIMMER and SALINGAR (2006) applied an 

empirical “precipitation-elevation-seasonal equation” to model a representative annual 

precipitation of the Hermon region of about 958 mm. However, their model is restricted to a 

limited data basis (until now, there are no precipitation gauges in the upper Hermon region) 

and the topographic catchment area of the three major tributaries which is most likely much 

smaller than the actual recharge area of these streams. Additionally, no systematic estimation 

of snow water equivalents on Mount Hermon were conducted so far. 

On the Hermon Massif most of the precipitation is falling as snow, which accumulates from 

December to April but can last until early summer (GILAD and BONNE, 1990). Snow on the 

Golan Heights and Naftali Mountains is rare and usually melts within a day. The wet season 

lasts from October to April but about 90% of the annual total rain falls during November until 

March. Spatial and temporal variability of precipitation is highest during the transitional 

seasons (BEN-GAI, 1998). 

Mean potential evaporation based on long-term (1970-2000) daily measurements of pan 

evaporation in the UJRC is about 1900 mm/year (RIMMER and SALINGAR, 2006); it varies 

with altitude, soil and vegetation covers. Limited data availibility, in particular information on 

sublimation, evaporation from snowmelt, or evapotranspiration and the scarce spatial 

distribution of meteorological stations within the UJRC do not allow for reliable estimations 

of actual evapotranspiration so far. 

Temperatures strongly fluctuate with season and altitudes. KESSLER (1980) reported a 

temperature gradient of about -0.5 to - 0.6 K per 100 m on Mt. Hermon. Mean daily 

temperature in August for an altitude of about 2100 m a.s.l. is 16.9 °C, for an altitude of about 

1130 m a.s.l. (Majdal Shams) 20.7 °C. In January, the mean daily temperature at 2100 m a.s.l. 

is –1.6 °C, at 1130 m a.s.l. 5.1 °C. In the Golan Heights (Qneitra, 900 m a.s.l.) mean daily 

temperature in August is about 23.4 °C and in January, the coldest month, about 6.4 °C (DAN 

and SINGER, 1973). 
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The climate in the research area was shown to depend on several global weather phenomena 

such as the Atlantic Oscillation (AO), the North Atlantic Oscillation (NAO), the 

Mediterranean Oscillation (MO) and the El Niño Southern Oscillation (ENSO). The MO has 

been first described by CONTE et al. (1989) and was later confirmed by KUTIEL et al. (1996) 

and MAHERAS et al. (1999) to be the most important regional circulation-rainfall relationship. 

DUENKELOH and JACOBEIT (2003) state that the MO is not an independent large-scale 

circulation mode, it rather comprises those parts of the AO/NAO that are linked with 

Mediterranean precipitation variability. Generally, it was shown that during a positive NAO, 

conditions are colder and drier than average in the Mediterranean (KRICHAK and ALPERT, 

2005; VISBECK et al., 2001). Both the MO and its connection to the AO/NAO are best 

developed during winter. PRICE et al. (1998) found a significant correlation between El Niño 

events and above average precipitation since the 1970’s. In addition, extreme summer 

temperatures were shown to be linked to the Indian Monsoon (ALPERT et al., 2005).   

 

3.3 SOILS 

Soil formation is controlled by the prevailing climate, bedrock, topography and by men’s 

activities. The Eastern Mediterranean climate with its wet and cool winters and hot and dry 

summers promotes xeric (≈ dry) soil moisture regimes in most of the region. The excess of 

rainfall over evapotranspiration during winter enhances the dissolution of carbonate rocks as 

well as the slow hydrolytic weathering of silicate minerals. A common feature of many 

Mediterranean soils – the reddish color – derives from the release of iron compounds during 

mineral weathering. These compounds, such as iron oxyhydroxides precipitate as ferrihydrites 

and ferridehydrates and recrystallize into hematite when the soil dries. They coat the fine 

(clays) and coarse grained particles and cause the reddish color (YAALON, 1997; SINGER et 

al., 1998).  

An influence of aeolian (Saharan) dust on soil formation within the Eastern Mediterranean 

was recognized by YAALON and GANOR, 1973; MACLEOD, 1980; NIHLEN and OLSSON, 

1995. YAALON (1997) claims that in soils derived from hard limestone up to 50 % of the 

material could be of aeolian origin. GANOR and MAMANE (1982) estimated the annual dust 
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deposition in Israel as 20 to 40 tons km-2. The effects of airborne additions of dust to soils are 

manifold and of varying importance. It may affect horizon differentiation, physical and 

hydraulic properties of soils, or levels of fertility (SIMONSON, 1995).  

Another important factor is the anthropogenic impact. Man has cultivated Mediterranean 

lands for more than 5000 years, thus significantly influencing soil formation processes. 

Deforestation on naturally occurring steep slopes for example, accelerated erosion, which 

exceeded the slow weathering, processes leaving bare mountain slopes and creating local 

valley fills. 

On the calcareous bedrocks of the southern Hermon Mountains, weathering led to the 

formation of soil types such as terra rossa, brown rendzina, and pale rendzina (DAN et al., 

1976, 1983). Carbonates and sulfides are dissolved and leached by infiltrating water while the 

remaining silicates and oxides accumulate and undergo further soil formation processes. 

Which soil type develops, depends on the pedoclimate, biotic activity, organic matter content, 

pH, redox and soil water conditions. The formation of hematite, causing the characteristic 

color of terra rossa soils, is promoted in dry and warm pedoenvironments, for example on the 

upper parts of a toposequence, in sub soils and on hard limestones. Goethite, imparting a 

yellow-brown color onto the typical rendzina soil profile, forms under wet soil conditions on 

gentil slopes, in top soils or on soft limestones with low iron contents (CORNELL and 

SCHWERTMANN, 1996; SINGER et al. 1998). Generally, soil covers on Mount Hermon are thin 

and soil depth decreases with increasing altitudes and slopes. 

The Golan plateau is a syncline covered with Plio-Pleistocene basalts. It decreases gradually 

in altitude from about 1000 m a.s.l. in the north to 300 m a.s.l. on the southern edge. While 

the southern Golan is dominated by late Pliocene cover basalt and a semi-arid climate, the 

northern part is characterized by younger overlying Pleistocene basalts and a humid 

Mediterranean climate. These gradients in geology, topography, and climate caused the 

formation of a variety of soil types on the Golan Heights. Shallow and gravelly basaltic 

Brown Mediterranean soils prevail on the young Pleistocene basalts in the north. These soils 

are slightly acidic, contain a considerable amount of silt, and predominately form kaolinite 

minerals. Smectite brown grumusols, basaltic protogrumusols, or pale rendzinas in contrast 
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cover most basaltic plateaus of the dry, southern Golan (SINGER, 1971). Additionally, they are 

also found in undrained depressions of the northern part (DAN and SINGER, 1973). Soil depths 

range from a few decimeters down to 2 m, with the deep soils found on the lower parts of a 

toposequence or in hydromorphic depressions. 

 

3.4 VEGETATION AND LAND USE 

Mediterranean wood- and shrublands dominate the Golan Heights, the Naftali Mountains and 

the low slopes of Mt. Hermon, while the upper regions (>1300 m) are characterized by an 

oro-Mediterranean montainous vegetation. Plant communities of the Golan Heights include:  
 

 Quercus ithaburensis park forests at altitudes of 0-500 m accompanied by Pistacia 

atlantica, Ziziphus spina-christi and Ziziphus lotus. The open areas in between 

support rich annual herbaceous vegetation dominated by Triticum dicoccoides, 

Hordeum spontaneum and Avena sterilis. 

 Quercus calliprinos woodlands at altitudes above 500 m accompanied by Quercus 

boissieri, Crataegus monogyna, Crataegus aronia, Pistacia palaestina, Prunus 

ursine and a species rich ephemeral vegetation (DANIN and ARBEL, 1998; DANIN, 

2004). 
 

On Mt. Hermon, more than 900 different plant species have been found so far. A multifaceted 

topography and resulting microclimates offer habitats for a variety of species. West facing, 

wind exposed, often desiccated slopes are covered by spiny, rounded, dense and small shrubs 

known as “cushion-plants” including species such as Astragalus cruentiflorus, Onobrychis 

cornuta, Acantholimon libanoticum, Acantholimon echinus and Astragalus echinus. These in 

turn offer environments for geophytes, annuals and other plants with soft stems. Temporally 

wet areas following snowmelt are covered with Romulea nivalis and Ranunculus demissus 

while Polygonum cedrorum grows on the waterlogged soils of dolinas (DANIN, 2004). 

The primary land use on the shallow soils of the Golan Heights is cattle grazing. Livestock is 

kept for dairy and beef farming. The more permeable red soils of the upper northern Golan 

are used for orchards; locally deep soils are utilized for dry farming of small grains. The 



 

- 46 - 

application of chemical fertilizers and pesticides is common in those areas and poses a 

potential risk for water quality in the area. The lower Hermon region is characterized by 

orchards and olive groves managed by the resident Druze population. Both the Hermon and 

the Golan area comprise a number of nature reserves and hiking areas but are also in use for 

military purposes. The Hula Valley is managed primarily with intensive irrigated agriculture, 

the major crops being: corn, wheat, peanuts, and alfalfa. Fish farming is common in the 

northern parts of the valley, near the Jordan River sources. About 8 km² of the valley center 

comprise a new-created lake and are developed as a resting area for migratory birds and in 

parts for eco-tourism.   

 

3.5 GEOLOGY 

The study area (Figure 17, Figure 27) is characterized by four main geological units (Figure 

64 – Appendix), which are subsequently described considering their genesis, tectonics, 

petrography, and the resulting hydrogeological characteristics: 
 

 the Hula Valley (Figure 9, Figure 10), a pull-apart basin evolved during the 

Pliocene-Pleistocene tectonic activity of the Dead Sea Transform; its sedimentary fill 

consists mainly of organic and inorganic lake deposits interbedded with Quaternary 

basalt and interfingering with gravel and sands from river cones that developed from 

the bordering mountains.  

 the Mount Hermon (Figure 9, Figure 11), an isolated, uplifted anticline is 

dominated by Mid-Jurassic Bathonian to Callovian limestones, 

 the Golan Heights (Figure 9, Figure 13), a  syncline, is covered with Plio-

Pleistocene basalts of the Bashan Group and, 

 The Naftali Mountains (= Galilee Mountains) (Figure 9), an anticline, with 

limestones of the Cretaceous Judean Group. 
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3.5.1 Hula Valley 

The central geological feature of the Upper Jordan River Catchment is the rhomb-shaped 

Hula Valley, about 20 km in length and about 6 km wide. The pull-apart basin developed 

between left-stepping segments of the Dead Sea Transform during the Plio-Pleistocene 

(GARFUNKEL et al., 1981).  

The Qiryat Shemona master fault (Figure 9) borders the valley to the west and splits further 

north into the Roum and Yammuneh faults. The eastern Jordan River fault turns northeast at 

Mount Hermon branching into the Rachaya and Serjaya faults (HEIMANN, 1990; GOMEZ et 

al., 2003). While several echelon faults limit the Hula graben towards the south, the northern 

margin comprises a series of gradual step faults (HEIMANN, 1990).  

 

 

Figure 9: Map of the main faults in the northern Jordan Rift Valley (HEIMANN, 1990; 
ZILBERMAN, 2000). 

The basin fill was investigated during several oil, gas, and lignite exploration campaigns 

(KAFRI and LANG, 1979, 1987 among others). It reaches a thickness of more than 4-5 km 

(BEN-GAI, 2002; RYBAKOV et al., 2003). The bedrock of the subsided Hula block was never 
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reached by drillings so far but is assumed to consist of Eocene, Senonian or Cenomanian 

limestones and dolostones. Sedimentation of the valley fill is assumed to have started in 

Middle-Late Miocene leading to the accumulation of predominantly fluvio-lacustrine fresh 

water deposits comprising marls, lacustrine limestones, sands, gravels, and peat. These fluvio-

lacustrine sediments alternate with layers of Early and Late Pleistocene basalt flows and tuffs 

as well as with sediments of river cones originating from the surrounding areas (PICARD, 

1965; HOROWITZ, 1973). The sequence ends with peat in most of the area, only the elevated 

northern part of the valley is extensively covered by travertines (PICARD, 1965; HOROWITZ, 

1973; HEIMANN and SASS, 1989). 

The rivers that discharge from the surroundings into the Hula basin caused the formation of 

debris cones that interfinger with the basin fill and consist of coarse-grained, relatively 

unsorted material. Thus, significant flow paths along the valley edges are generated (KAFRI et 

al., 1979, Figure 10), being a typical characteristic of extremely deep valley fills (SEILER, 

1977). Additionally, gravitational forces produced valley-parallel fissures and fractures with 

high opening widths in the valley bordering rocks, causing high hydraulic conductivities. 

Consequently it is assumed, that 
 

 an essential part of the groundwater recharge entering the Hula valley subsurface 

from the bordering mountains or by river infiltration along the valley borders leaves 

the valley subterraneously along the valley borders, and 

 that only a minor part of groundwater recharge passes the valley center (KAFRI et al., 

1979). 
 

NEUMAN and DASBERG (1977) investigated the shallow groundwater system within the Hula 

Valley and stated the existence of a low hydraulic gradient from north to south and a 

pronounced vertical gradient that is probably caused by upraising groundwater recharged in 

the surrounding mountains. At shallow depths, the bordering faults are considered to act as 

hydraulic barriers but according to the conducted environmental stable isotope investigations, 

this must not be true for the entire length of the faults or at great depths. Since the research of 

NEUMAN and DASBERG (1977) the Hula Valley has undergone significant changes such as 
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ongoing soil erosion and an extension of the canal network as well as the re-flooding of the 

Agmon Lake; all these activities raised the formerly lowered groundwater table. Originally, 

the Hula Valley was drained to rule out malaria diseases. Later it was restored to a certain 

extent because drainage enhanced e.g., the eutrophication of Lake Kinneret and the 

occurrence of peat fires. 

 

 

Figure 10: Schematic block model of the Hula trough, showing the groundwater circulation 
below the Hula plain (adapted from KAFRI and LANG, 1979). (Brick signature = 
carbonates, circles = gravel/sands, waves = clay/silt, black bars = peat, arrows = 
direction of water movement.) 

In a recent work about the shallow groundwater system of the Hula Valley (ESHEL, 2004) two 

horizontal hydrological units have been identified: A shallow part with a maximum depth of 

5 m, characterized by a network of macropores and cracks which serve subsurface water as 

preferential flow conduits and thus resulting in high horizontal hydraulic conductivities 

(≈ 100 m/day). A deep part from the bottom of the cracks down to more than 15 m consists of 

silty sediments with low hydraulic conductivities (≈ 0.1 m/day).  
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3.5.2 Mount Hermon 

The Hermon block, with a maximum length of about 55 km and 35 km in its maximum width, 

comprises an area of about 1.250 km² and includes the eastern part of the Damascus basin in 

Syria. About 750 km² of the area belong to the Jordan River orographic watershed (GILAD 

and BONNE, 1990). The area is hydrologically shared between Israel, Lebanon, and the Syrian 

Arab Republic. The Hermon massif is characterized by steep slopes; its summit reaches an 

altitude of 2,814 m.  

Early work on the Jurassic stratigraphy of Mount Hermon rocks was conducted by FRAAS 

(1877), DIENER (1885), NOETLING (1886), BLANCKENHORN (1912), PICARD and SOYER 

(1927), VAUTRIN (1934), BURDON and SAFADI (1964) and was summarized by DUBERTRET 

(1955) and WOLFART (1966). Recent studies on the geology of Mount Hermon have been 

accomplished by SALZMAN (1968), GOLDBERG (1969), MICHELSON (1975), HOROWITZ 

(1979), HIRSCH (1996), EDGELL (1997), MOUTI (2000) and were in part compiled by GUR et 

al. (2003) (Figure 63). 

Mount Hermon and its northern extension, the Anti-Lebanon Mountains, are both part of the 

Syrian Arc fold system, a semi-continuous belt extending from western Egypt through the 

North Sinai, the Negev Desert and adjacent offshore waters of the SE Mediterranean to Syria 

in the east. The Hermon massif is a NNE-SSW trending anticline that was rapidly uplifted in 

response to Neogene activity along the DST fault system (WILSON et al., 2000). 

The Sion-Rachaya fault (Figure 9), which parallels the axis of the Hermon anticline, divides 

the Hermon Massif into two main blocks: the western Sion shoulder3 and the central and 

eastern Hermon Range, the latter comprising the Sirion and Hermon ridges (Figure 11).  

The eastern block is mainly composed of Mid-Jurassic Bathonian to Callovian limestones 

overlain by Oxfordian marls and shales near the top of the Jurassic section and is known for 

its abundant basaltic rocks, dolomitization, and mineralization (SHIMRON, 1989). None of this 

is found in the Sion (Har Dov) Range whose low western slopes are characterized by 

exposures of Lower Cretaceous and Cenomanian-Turonian carbonates and sandstones. The 

thickness of exposed Jurassic at Mt. Hermon was estimated to be about 2700 m (GOLDBERG 

                                                 
3 Arkub, Har Dov 
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et al., 1981). Further to the west, the Har Dov Range merges with the Hazbani Valley, which 

is characterized by Pliocene basalts, Cenomanian limestone, and dolomites of the Sannine 

formation and Cretaceous sandstone and shales. Marls, as well as Senonian and Eocene 

chalks, are common (GUR et al., 2003). Chronostratigraphies of the Hermon region were 

compiled by WOLFART (1966) and GOLDBERG et al. (1981). 

Table 2: Springs fed (at least in part) by recharge on Mount Hermon and their 
corresponding average annual yields.  

Spring Annual yield Altitude Reference 
 106m³ m a.s.l.  

Tanur (I) 0.6 300 HSI (2002) 
Barid (I) 5.0 243 HSI (2002) 
Sa’ar (I) 5.0 1030 GUR et al. (2003) 
Sion (I) 20 – 25 1000 GUR et al. (2003) 
Kezinim (I) 24 340 GUR et al. (2003) 
El-Hazbani (L) 25 – 30 575 GILAD and SCHWARTZ (1978) 
Wazani (L) 40 – 50 280 GILAD and SCHWARTZ (1978) 
Shreid, Aicha & Cheba’a springs, 
Hazbani Valley (L/S) 

50  GILAD and SCHWARTZ (1978) 

Banias (I) 70 390 HSI (2002) 
Beit Jean & Sabarani (S) 100 1280 GILAD and SCHWARTZ (1978) 
Barada (S) 101 1100 BURDON and SAFADI (1964) 
Figeh (S) 235 860 BURDON and SAFADI (1964) 
Dan (I) 254 180 GUR et al. (2003) 

Israel (I), Lebanon (L), and Syrian Arab Republic (S) 

 

The hydrogeology of this region was first studied by MICHELSON (1975) and 

GILAD and SCHWARTZ (1978). The formation of cracks and fissures led to a deep 

karstification providing high permeability anisotropies. The Arad Group Aquifer is the source 

of a few big and several small springs that drain towards the south and southwest, thus 

forming the source area of the Upper Jordan River. However, considerable yields were also 

monitored for a variety of springs replenishing the Barada and Aawaj rivers towards the east 

and northeast of the Hermon Massif. While the Aawaj River is fed by recharge generated on 

the Mount Hermon ridges, the Barada River receives recharge both from the Anti-Lebanon 

and Hermon mountains (KATTAN, 1997b). In Table 2 the biggest springs of the region and 
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their corresponding yields are summarized. Within this study, the focus is on springs that are 

contributing to the Upper Jordan River tributaries only. 

 

 

Figure 11: The topography of the Mount Hermon region and its hydrological network (GUR 
et al., 2003 adapted from GILAD and SCHWARTZ, 1978). The size of circles is 
proportional to the respective spring discharge (see legend on the bottom right). 

The most yielding spring of the region – the Dan spring – crowns a horst structure at an 

elevation of 180 m a.s.l. that developed along an underground fault line forming a hydraulic 

short cut between Jurassic carbonates and Lower Cretaceous sandstones and marls (Figure 12-

b). This is also were the Leshem side spring emerges. The springs feed the Dan tributary. 

A variety of springs contribute to the Hermon river at the south-eastern foot of the Hermon; 

the biggest of them – Banias – at 390 m a.s.l. It surges along a vertical interface between the 
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carbonates of the Hermon formation and low-permeable quaternary sediments (Figure 12-a). 

An additional water source within this group is the Kezinim spring; whose unique 

characteristics and significant input to the flow of the Hermon stream was only recently 

emphasized (GUR et al., 2003). 

 

 

Figure 12: Geological cross sections of springs emerging on the southern foot slopes of Mount 
Hermon. The flow direction of water is indicated by arrows (GUR et al., 2003 
adapted from GILAD and SCHWARTZ, 1978). 

The Senir stream is fed by two perennial springs both emerging in the Hazbani Valley at the 

southwestern border of the Hermon Massif: Wazani and El-Hazbani (Figure 12-c,d). The 

Wazani spring is situated in Lebanon close to the border with Israel at an elevation of 280 m 

a.s.l. It contacts between overlaying Pliocene basalts and Cenomanian limestone of the 

Sannine formation (EDGELL, 1997). The El-Hazbani spring is located approximately 15 km 

upstream at an elevation of 575 m a.s.l. According to MEINZER (1923), the Banias, Dan, and 

Wazani springs can be classified as first-magnitude springs indicating a large area of supply 

and easy subsurface-groundwater communication.  

Several researchers tried to determine the dominating discharge components in the 

mountainous areas of the Upper Jordan River Catchment. Early work was done by 
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MICHELSON (1975) who – based on hydrograph analyses – already stated the existence of an 

interflow component for the main tributaries emerging from the karstic Hermon region. 

SIMPSON and CARMI (1983) used hydrographical and isotopic methods to characterize 

reservoirs feeding the main tributaries of the Jordan River. They claim the existence of a dual 

reservoir system consisting of a baseflow component with mean residence times of 11-20 

months and an additional interflow component for the Senir and Hermon streams with a mean 

residence time of about 1 month. Their hydrograph analyses were based on mean daily 

discharge values, which do not allow for conclusions concerning a fast discharge component 

such as overland flow. According to their assumptions, baseflow of the three streams is fed by 

the same regional groundwater aquifer. The interflow reservoir is explained to be located in 

the near-surface karst and to be additionally supplied by snowmelt. Isotopic analysis showed 

further on that the springs are dominated by water with short residence times, 90 % being less 

than 3 years old. Deep groundwater residence times based on 14C analysis have been 

investigated by CARMI et al. (1985) who found that the residence time for Hermon and Dan is 

< 20 yr.  

GILAD and BONNE (1990) investigated the contribution of snowmelt to the main sources of 

the Jordan River. According to their analysis, the Mt. Hermon snowmelt represents about 

10 % of the annual yield of the upper Jordan River sources and 30 % of the dry weather 

discharge during late spring and early summer. 

EDGELL (1997) studied the hydrogeology of karst areas in Lebanon and stated for the Wazani 

spring, which partly feeds the Senir stream, a steep decline of discharge from winter (up to 6 

m³/s) to summer (just above 1 m³/s) which indicates an extended subsurface catchment with 

low storage capacities because of significant karstification.  

GUR et al. (2003) applied hydrochemical and isotopic methods to emphasize the importance 

of an additional spring in the Hermon Massif, the Kezinim spring. They also showed that the 

Banias spring is governed by two different discharge components: conduit and diffusive flow. 

They state that these two components are best represented by the Dan and Kezinim spring. 

According to GUR et al. (2003), the Dan spring represents the outlet of a relatively shallow 

and well-washed karstic system being recharged over the flanks of Mt. Hermon, whereas the 
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Kezinim spring water is recharged at the summit of the geological structure and flows through 

deep parts of the anticline structure.  

 

3.5.3 Golan Heights 

The Golan Heights cover an area of 1044 km² within the western part of the Hula Valley. The 

northern limit of the plateau is shaped by Wadi Sa’ar, which separates it from the Hermon 

Mountains. The Golan decreases in altitude gradually from about 1000 m a.s.l. in the north to 

about 300 m a.s.l. in the south where the Yarmuk River divides it from the Gilad Mountains. 

Towards the west, the Golan Heights slope down to the Hula Valley and Lake Kinneret. The 

transition zone is marked by several cliffs reflecting the morphology of the main border and a 

series of step faults of the Jordan Rift. The Syrian Hauran plateau is the eastern continuation 

of the Golan Heights. 

The Golan syncline extends between the Hermon anticline in the north and the Ajlun anticline 

(Jordan) in the south (MICHELSON, 1979). Volcanic activities during the Plio-Pleistocene 

issued in an elevated basaltic cover, which is attributed to the Bashan Group (MOR, 1986). 

The basalt flows reach a thickness of > 600 m in the center of the plateau and overlay 

sedimentary rocks. While volcanic cones characterize the eastern part of the Golan, the 

southern and southwestern parts are carved by deep gorges. These gorges developed during 

the Pleistocene as a concomitant phenomenon to the formation of the Jordan Rift Valley and 

the accompanying lowering of the erosion base. The general discharge direction within theses 

valleys is from east to west with the exception of the Meshushim stream that flows 

southwards. Early studies on the hydrogeology of the Golan Heights have been conducted by 

BURDON (1954) and WOLFART (1966). A variety of studies published in Hebrew such as 

those from MERO and BONNE (1967), KIDRON (1972), MICHELSON (1972, 1996) focused on 

water balances and exploration of water production capacities. Resent research by DAFNY et 

al. (2003) led to the development of a conceptual and numerical hydrogeological model 

describing the groundwater flow field in the Golan basalt aquifer. 
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Figure 13: North-south hydrogeological cross section along the Golan Heights (DAFNY et al., 
2003). Groundwater flows both from east to west into the Kinneret-Hula basin and 
from west to east towards the upper Yarmouk River.  

According to DAFNY et al. (2003), a phreatic basalt aquifer extends over the north and central 

parts of the Golan. An aquiclude complex comprising the low permeable Mount Scopus, 

Avedat Groups, and Fiq Formation forms the base of the basaltic aquifer (Figure 13). Though, 

hydraulic connections have been shown to exist between the Berekhat Ram region and Judea 

Group aquifer (MICHELSON, 1979; GILAD, 1988b), the Tel Warda area and the Bar Kokhba 

Formation aquitard as well as the southern part of the basalt aquifer and the Hordos 

Formation aquitard (MICHELSON, 1979); (Figure 13). 

The basalt aquifer is subdivided into two main basins with the subsurface water divide located 

east of the volcanic cones in the northern Golan. The western basin drains to Lake Kinneret 

and the Hula Valley; it yields about 85 106m³ of freshwater per year. This basin is further 

separated by a pre-basaltic topographic ridge that acts as a hydraulic barrier. The resulting 

subbasins are the source of the northern and central ‘Side springs’ yielding approximately 

50 106m³ annually (Figure 14). Mean annual yields of the major ‘Side springs’ are given in 

Table 3. The basin east of the subsurface water divide extends mainly into Syria and drains 

towards the Yarmouk River. 
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Figure 14: (a) Location map and (b) hydrological background map (DAFNY et al., 2006) 
showing major springs, major streams and rivers, major wells, yearly rain isohyets 
(1961–1990 average), sedimentary outcrops and the computerized model 
boundaries defined by DAFNY et al. (2003). MCM/year equals 106 m³ per year. 

The flow regime of the Golan “Side springs” is controlled by two types of aquifer: a regional 

basalt aquifer and several local perched aquifers that developed on interbedded paleosols. 
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Table 3: Major “Side springs” fed by recharge on the Golan Heights and their 
corresponding average annual yields (MICHELSON, 1996).  

Spring Annual yield Altitude 
 106m³ m a.s.l. 

Dupheila 6.1 300 
Ela 0.5 75 
Shamir & Hamroniya 4.2 200 
HaRofe 0.5 120 
Lehavot 1.6 130 
Gonen 5.8 155 
Divsha 5.7 168 
Notera 10.5 95 
Gilabun 6.0 110 
Elmin Jedida 1.8 170 
Durijat 1.1 110 

 

3.5.4 Naftali Mountains 

The Naftali Mountains border the Upper Jordan River catchment towards the east. The 

densely faulted rock outcrops belong to the Judean Limestone Group and consist mainly of 

limestone, dolostones and some chalks and marls. These rocks overlay the Albian Tzalmon 

Formation and underlie the Senonian Mount Scopus Group. The sequence reaches a thickness 

of about 700 m (GERSON, 1974). 

The hydrogeology of the area was described by GERSON (1974) and GILAD (1988a). The 

limestone aquifer is drained by several springs that emerge along the Rift Valley fault line. 

The major ones are the Enan springs and the Te’o spring which emerge from different 

aquifers. Additional springs in the area have become partly dry due to the drainage of the 

Hula Valley and intensive pumping. Available mean annual yields of springs in the Naftali 

Mountains are given in Table 4. 

As compared to the karst systems of Mount Hermon, the Upper Galilean karst is less evolved, 

which results from rapid saturation of water in the uppermost portion of the karst system, high 

evaporation and tectonic instability in the past leading to the rapid uplifting of rocks and 

insufficient time for karst evolution (GERSON, 1974). Karst depressions have developed 

mostly on fault lines restricted to areas with moderate initial slopes. 
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Table 4:  Springs fed by recharge on the Naftali Mountains and their corresponding average 
annual yields (MICHELSON, 1996). 

Spring Annual yield Altitude 
 106m³ m a.s.l. 

Zahav 4.30 138 
Te’o 4.75 70 
Enan no data no data 

Qadesh no data 440 

 

3.6 HYDROLOGY 

The Upper Jordan River Catchment (UJRC) is part of the Jordan River network, which 

additionally comprises the watersheds of Lake Kinneret, the Yarmouk River, the Zarqua 

River and the Lower Jordan River. Three major tributaries (and a few minor) contribute to the 

Upper Jordan River: the Dan, Hermon and Senir streams (Figure 8, Figure 15).  
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Figure 15: Scheme of the Upper Jordan River and its main tributaries (Dan, Hermon, Senir). 
Additionally given are rivulets and springs investigated within this study. Springs 
that are underlined and given in italic letters were not accessible for sampling. 

The orographic catchment area of the Dan stream is virtually zero since it is mainly fed by 

the Dan spring, which turns into a broad, gushing rivulet in the immediate vicinity of the 

source. This spring has a mean discharge volume of 254 106m³ per year and is one of the 

largest karst springs in the region. One of the smaller springs emerging from the same horst 

structure and contributing to the flow of the Dan stream is the Leshem spring (Figure 15). The 
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hydrographs recorded at the Dan gauging station (HSI 30131) are influenced by upstream 

water withdrawals.  

The Hermon tributary has a surface drainage area of 158 km² at its gauging station. The steep 

gradient that characterizes the Hermon stream, led to the development of deep canyons with a 

number of rapids and waterfalls. The river is fed by its two main springs, Banias and Kezinim 

as well as by its three intermittent tributaries Guvtah, Sa’ar and Sion (Figure 15). 

The Senir stream has a surface drainage area of 563 km², which lays mainly in Lebanon. The 

major gauging station is situated approximately 20 km downstream from the main 

contributing springs and also records minor contributions of the Nuheile surface drainage area 

(7.6 km²) and the outlet of a number of fishponds receiving its water originally from the Dan 

River. The mean discharge volume is 108 106m³ per year. 

Table 5: Hydrological classification numbers of the main Jordan tributaries in the Upper 
Jordan River Catchment. Data provided by the HSI. 

 Dan* Hermon Senir Orevim Dishon Hazor Jordan 

period 1969-
2000 

1969-
2000 

1969-
2000 

1985-
2000 

1984-
2000 

1986-
2000 

1991-
2000 

station no. (HSI) 30131 30128 30122 30155 30165 30170 30175 
AMaF [m³/s] 12.4 38.6 107.0 12.9 9.2 2.6 126.1 
  8/2/1993 2/6/1992 12/2/1994 2/6/1992 2/4/1992 2/8/1995 2/6/1992 

MHF [m³/s] 8.5 5.5 8.0 0.7 0.37 0.10 22.0 
MF [m³/s] 8.0 3.3 3.4 0.2 0.08 0.01 13.6 
MLF [m³/s] 7.7 2.5 2.1 0.1 0.01 0.00 10.3 
AMiF [m³/s] 3.2 0.7 0.5 0.0 0.00 0.00 2.8 
 12/19/1990 9/6/1999 12/13/1999    6/16/1999 

volume [106m³] 254 105 108 6 2.63 0.34 430 
surface drainage 
[km²] 

0 158 563 40 91 32 1380 

yield [L/s km²]  21.1 6.1 4.6 0.92 0.33 9.9 
runoff [mm/d]  1.8 0.5 0.4 0.08 0.03 0.9 

*Discharge values are corrected for amounts pumped upstream of the gauging station (data supplied by Alon Rimmer, 
Kinneret Limnological Laboratory). 
AMaF = Absolute Maximum Flow, MHF = Mean annual High Flow, MF = Mean annual Flow, MLF = Mean annual Low 
Flow, AMiF = Absolute Minimum Flow. 

 

Within the focus of this study is also the Orevim stream that emerges in the basaltic Golan 

Heights and represents the combined discharges of the Yardinon stream and Wadi Orevim 

(Figure 15). While the perennial Yardinon stream is fed by the Dupheila spring, Wadi Orevim 
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is intermittent and responds to strong and intense precipitation. The mean annual yield of the 

Orevim stream is about 6 106m³. Pumping from the Dupheila spring provides water to 

Kibbutz Shamir and upstream of the Orevim stream locates a small reservoir collecting water 

during precipitation events. 

Classification numbers of the upper Jordan River, its major headwaters and two intermittent 

streams emerging in the Naftali Mountains are given in Table 5. Referring only to the known 

surface drainage areas, specific discharges of the subcatchments vary according to their 

respective geological and meteorological conditions. Precipitation amounts are highest over 

the northern part of the UJRC leading to significantly bigger yields for the headwaters Dan, 

Hermon and Senir. While the orographic catchment area of the Dan spring is zero, its actual 

groundwater basin is unknown thus making it difficult to determine its specific yield. 

Estimates of the catchment area of the Dan spring based on hydrographic and tracer 

investigations are given within this thesis (see chapter 6.4.2). Comparing the Hermon and 

Senir streams shows that despite the small catchment area of the Hermon stream, its yield is 

considerably higher than that of the Senir stream. While the Hermon stream drains a 

mountainous catchment area, the Senir stream receives its major contributions from the 

Beka’a Valley. Hence, recharge derived from the melting of the snow cover on Mt. Hermon 

might be the reason for a higher specific yield in the Hermon stream. Furthermore, the 

groundwater basin of the Hermon stream might significantly exceed the surface drainage 

basin in size. 

The annual hydrological regime of the different tributaries varies considerably (Figure 16). 

The streams Dan, Hermon and Senir can be classified as Mediterranean pluvio-nival systems 

that are governed by rain and additionally influenced by snowmelt. Snowmelt recharge that 

continues during spring and early summer leads to an attenuated summer low flow. The 

steadiest hydrological regime has been observed for the Dan stream (spring) where the 

proportion of summer discharge (34 %) equals approximately the proportion of winter 

discharge (33 %). Flow declines below the long-term annual mean only by September. In 

addition, the comparison between the mean monthly discharges (MF) and the mean monthly 
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high discharges (MHF) (Table 5) indicate a balanced system that is ascribed to an extended 

groundwater basin area with favorable storage properties in a karst environment. 
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Figure 16: Hydrological regime and annual distribution of mean monthly flow (open symbols) 
versus mean monthly high flow (filled symbols) of the main waters in the Upper 
Jordan River Catchment. The fluctuation coefficient FC represents the mean 
monthly discharges compared to the long-term annual mean. The latter one is 
corresponding to the zero line (≅ mean). Based on data and periods of time 
summarized in Table 5. 

The hydrological regimes of the Hermon and Senir stream reflect the precipitation patterns in 

the corresponding subbasins. About 56 % of the annual discharge in the Senir stream is 

generated during winter, 22 % during spring and 16 % during summer. In the Hermon stream, 

the seasonal discharge proportions are 49 %, 24 % and 20 %, respectively. The bigger amount 
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of discharge during winter and the higher variations in discharge throughout the years in the 

Senir stream point toward a more rain-fed system while the comparatively bigger proportions 

of spring and summer discharge in the Hermon stream show a bigger influence of snow melt 

contributions. 

The Orevim stream fed by the basaltic aquifer as well as the Dishon and Hatzor streams rising 

in the Naftali Mountains are all characterized by an instantaneously responding pluvial 

system. Discharge culminates in February lagging the precipitation peak by about one month. 

Between March and April, discharge declines below the long-term annual mean. About 76 % 

of the annual discharge in the Orevim stream and 94 and 90 % respectively in the Dishon and 

Hazor stream are released during the 4-month winter period demonstrating the importance of 

direct runoff in these areas. While the Dishon falls dry during summer, the Hazor and Orevim 

recede to rivulets.  

The Jordan River discharges a combination of these different regimes and is as well 

characterized by a Mediterranean pluvio-nival system with an attenuated summer low flow 

and the peak discharge lagging the rainfall maximum by one month. This lag month is most 

likely caused by the replenishing of subsurface reservoirs and by the time needed to reach 

antecedent soil moisture conditions within the catchments that allow for runoff generation. 

 

3.7 HYDROCHEMISTRY 

Several aspects of hydrochemistry were investigated in the Upper Jordan River Catchment. 

Generally, the groundwater of the springs emerging from the Arad Group aquifer – such as 

the Dan, Banias and Kezinim – are fresh waters of the Ca-Mg-HCO3-type with low salinities. 

The NO3 content in these fresh water sources was found to be below 10 mg/L and 

anthropogenic pollution seems to be negligible (KAFRI et al., 2002). Differences in the 

hydrochemistry of these springs are caused by changes in lithology, residence time of water 

and distance from the sea. The Banias spring for example differs significantly from the Dan 

spring in its hydrochemical characteristics which is caused by the different bedrocks of the 

respective intake areas. Thus, Banias water is characterized by higher contents of Cl, Li, Rb, 

Sr and V as well as higher equivalent SO4/Cl and Na/Cl ratios. As mentioned earlier the 
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Banias intake area is known for its abundant basaltic volcanism, dolomitization, and 

mineralization within the aquifer, all of which are absent in the intake area of the Dan spring 

(SHIMRON, 1989, KAFRI et al., 2002). 

GUR et al. (2003) studied the hydrochemistry of the main Jordan River sources with special 

emphasis on the Kezinim spring. Kezinim spring water is typified by higher TDS, SO4, Sr, 

and Mg than Dan and Banias waters. Its hydrochemistry is characterized by dissolution 

proportions of 29 % dolomite, 48 % gypsum, and 23 % calcite based on mixing calculations. 

The Cover Basalt aquifer water sources are also of the bicarbonate type with higher amounts 

of Na than in the carbonate aquifers, derived from the basaltic host rocks. Salinities are low 

while the waters are characterized by high contents of SiO2, Rb and V and a low equivalent 

ratio of rU/rCl (KAFRI et al., 2002). 

Few researchers investigated the stable and radioactive isotope composition of the Upper 

Jordan River tributaries. GAT and DANSGAARD (1972) used the stable isotopes of water to 

develop a flow model for the Upper Jordan system. SIMPSON and CARMI (1983) 

distinguished, based on the evaluation of 18O measurements, different catchments for the main 

Jordan springs and reach the conclusion that interflow occurs in the near-surface part of the 

regional groundwater reservoir. Their tritium analyses suggest that 90 % of the groundwater is 

less than 3 years old. CARMI et al. (1985) investigated also the effect of atmospheric 14C 

variations on the 14C levels in the Jordan River system and determined the initial 14C activity 

of groundwater in this region to be about 44 % of the atmospheric isotopic composition. 

NISSENBAUM (1978) conducted a study on the sulfur isotope distribution in sulfates of surface 

water in the Upper Jordan River Catchment. He concluded that the fresh water emerging 

north of Lake Kinneret represents almost exclusively sulfates derived from recharging 

rainwater. An exception is the Hermon river whose 34S-enriched sulfates, especially in the 

summer, largely appear to originate from marine sulfate. This finding is confirmed by BURG 

et al. (2003), who found even more enriched sulfate in the Kezinim spring.  
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3.8 KNOWLEDGE GAPS AND RESEARCH NEEDS 

Considering the importance of the Upper Jordan River Catchment in terms of water supply for 

the State of Israel, only few hydrogeological studies were conducted to investigate the 

dominating recharge and discharge mechanism and dynamics in this area. RIMMER and 

SALINGAR (2006) recently summarized existing gaps of knowledge concerning the Hermon 

region including: 
 

 the amount of snow and rainfall on Mt. Hermon (due to the lack of meteorological 

stations in the upper part of the mountain) as well as the local rainfall distribution, 

 a complete water balance for the region (due to the lack of data for springs, streams 

and meteorological parameters for Syria and Lebanon), 

 aquifer characteristics such as: the thickness and boundaries of aquifers (i.e., the 

actual subsurface area of the recharge areas), water level fluctuations, hydraulic 

characteristics (i.e., conductivity and porosity), annual recharge as well as the 

location and subsurface recharge area,  

 the quantitative evaluation of the discharge components. 
 

Hence, this study adresses part of the open questions, in particular, I tried to qualitatively and 

quantitatively describe the different components involved in discharge generation in the 

UJRC. Additionally, the estimation of parameters that allow to evaluate the vulnerability of 

the UJRC water resources towards anticipated climate effects was aimed at. In particular, 

recharge rates, mean residence times, recharge areas and reservoir volumes were investigated. 
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4. Sampling network and sampling program 

The sampling network and program was designed to understand the dominating runoff 

generation mechanisms, the contributing groundwater reservoirs, and their temporal and 

spatial variability by combining hydrological, hydrochemical and environmental isotopic 

methods. According to LEIBUNDGUT (1984) the discharge dynamics as well as physical, 

hydrochemical and isotopic properties of a system are determined by its physiographic and 

geologic settings. Thus, any information about the system is enclosed in its discharge and is 

observed at the observation gauge. To decode this information tracerhydrological and 

traditional methods have to be applied. The resulting information will then represent area- and 

time-integrated properties of the particular catchment. 
 

Main objective of this work is to determine the influence of global climate change on water 

resources in the Upper Jordan River catchment. Consequently, the four major sampling 

stations were predefined to be located at the major headwaters of the Jordan River, near 

existing gauges. An additional station was installed at the Sion stream, since this is an 

intermittent rivulet predominantly fed by rain and snowmelt in a karstic catchment located in 

the upper regions of the Israeli Hermon Mountains. Moreover, a gauging station of the HSI at 

this location enabled for recording of a continuous stream hydrograph, a precondition for the 

intended analysis. The sampling network is detailed in Table 6 and shown in Figure 8. Most 

stations were equipped with programmable liquid samplers (ISCO Inc., Lincoln, NE), the 

sampling interval was adjusted according to the discharge behavior. Sampling was intensified 

during rising discharge and peak flow and reduced during recession flow. Additionally, 

electrical conductivity and temperature were monitored continuously in intervals from 1 hour 

to 10 minutes. For storm events, samples were analyzed for a variety of parameters including 
18O, 2H, major anions, major cations, SiO2, DOC and TSS. The monitoring of stable isotopes 

and major anions/cations was pursued also during low flow conditions, however only weekly 

to monthly timesteps were retained. 
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Table 6: Streamflow sampling network in the UJRC and sampling frequency. Coordinates 
are given according to the New Israeli Grid. Station numbers are according to the 
Hydrological Service of Israel (HSI).  

Sub 
catchment 

Easting Northing Station 
(HSI) 

Sampling Period Interval 

 km km     

Dan 260.80 794.55 30131 ISCO sampler, 
EC, T 

11/02-05/04 up to 1 hour 

Hermon 260.25 791.31 30128 ISCO sampler, 
EC, T 

11/02-05/04 up to 1 hour 

Senir 257.70 792.20 30122 ISCO sampler, 
EC, T 

11/02-05/04 up to 1 hour 

Orevim 260.12 783.75 30155 ISCO sampler, 
EC, T 

11/03-04/04 up to 1 hour 

SionE 263.16 795.12 30118 manually 12/02-06/03 up to 1 day 
    ISCO sampler 12/03-04/04 up to 1 hour 
Sa’arE 266.00 793.83 30124 manually 12/02-04/04 weekly 
GuvtahE 264.89 795.00 - manually 11/02-03/04 weekly 
NuheileE 259.50 797.73 - manually 11/02-06/04 weekly 
E = runoff event based 

EC: continuous registration of electrical conductivity, T: continuous registration of temperature. 

 

The necessary hydrometric measurements were provided by the Hydrological Service of 

Israel (HSI) that is operating stage recorders at the major tributaries in the area (see Figure 8). 

 

Rain amounts and rain composition are one of the predefined end-members for the intended 

tracer-based hydrograph separation; they are known to be subject to a high spatial and 

temporal variability in mesoscale (= 10-1 to 10³ km²) catchments. Thus, the rain-sampling 

network required to be designed in a way that a representative input function was received for 

the particular period under consideration. Still the sampling network needed to be a 

compromise between the call for representative sampling (exhaustive) and the call for 

feasibility (point sampling). 

To receive an input function that sufficiently describes spatial heterogeneity of precipitation 

within the UJRC, at least one sampler at a time representative for each of the investigated 

subcatchments was installed. Additional rain samplers were set up along altitude gradients to 

account for isotopic and chemical properties of rains. The precipitation sampling network is 
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detailed in Table 7 and shown in Figure 17. Rain samplers were constructed in a way that 

evaporative effects on rain samples were minimized, yet the intrusion of dust especially into 

the bulk samplers could not be prevented. However, these effects were much smaller for daily 

samples. 

Table 7: Rainfall sampler locations in the UJRC and sampling intervals, (W: weekly, D: 
daily). Coordinates are given according to the New Israeli Grid.  

Location Altitude Easting Northing Sub catchment Sampling Period 
 m a.s.l. km km    

Moshav Shear Yeshuv 100 261.00 793.10 Dan/Hermon W/D 2002-04 
Kibutz Mayan Barukh 200 256.99 793.97 Senir W/D 2002-04 
Tel Dan Nature Reserve 227 260.94 794.57 Dan W/D 2002-04 
Banias Nature Reserve 360 265.09 794.74 Hermon W/D 2002-04 
Nimrod Nature Reserve 700 267.50 796.30 Hermon W/D 2002-04 
Moshav Neve Ativ 1000 270.50 796.50 Hermon W 2002-04 
Kibutz Shamir 200 262.20 786.20 Orevim W 2002-04 
Orevim – tap road 810 264.70 785.00 Orevim W 2003-04 

 

The temporal variability during single rain events plays an important role in tracer-based 

hydrograph separation, especially if stream response is fast. Both, temporal variability during 

single rain events and quick stream response were observed in the considered sub catchments. 

Therefore, it was originally planned to install two additional sequential rain samplers, yet that 

turned out to be logistically impossible during the course of this project.  

The spatial variability of snow’s chemical and isotopic composition was accounted for by 

frequent sampling of fresh fallen snow along several snow transects. Transects were chosen 

such, that altitude gradients in chemical and isotopic composition of snow could be 

determined. For other effects, such as due to the location of sample in drift or non-drift areas 

could not be accounted for. Isotopic homogenization of snow packs and progressive 

enrichment of 18O in snowmelt are known phenomena (STICHLER, 1987, TAYLOR et al., 

2001). To study the former, a snow pit was dug and different snow layers were sampled twice 

during the season 2003/04. The temporal development of snowmelt, especially information 

such as the beginning of snowmelt, snowmelt amounts over time or the isotopic enrichment of 

snowmelt are generally important input functions for the separation of snowmelt from the 
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stream hydrograph. Yet, this exceeded the scope of this project and has to be addressed in 

succeeding projects for example by the installation of snowmelt lysimeters in representative 

areas. 

The design of the groundwater sampling program was based upon earlier works by GILAD 

and BONNE (1990), DAFNY et al. (2003) and GUR et al. (2003) and was intended to shed 

further light on the hydrogeological characteristics of the predominant groundwater source 

areas. Springs were selected according to their discharge behavior, as well as their bulk 

hydro- and physico-chemical characteristics. Thus sampling focused on the major headsprings 

of the Upper Jordan River as well as the ‘Side springs’ emerging in the Golan Heights which 

are also significantly contributing to the Upper Jordan River. While springs were sampled at 

least on a seasonal basis (see Table 8), four of the springs were sampled on a monthly basis. 

During high flow conditions, sampling was intensified to weekly or even daily sampling. Due 

to logistic reasons, sampling was interrupted for three months during summer 2003.  

Table 8: Locations of groundwater sampling and sampling program. Coordinates are given 
according to the New Israeli Grid. N is the number of samples taken. 

Spring Altitude Easting Northing Station Sampling Period n 
 m a.s.l. km km (HSI)    

Hermon springs        

Dan 180 260.95 794.92 - monthly** 10/02-07/04 66 
Leshem 180 261.10 794.90 - monthly** 10/02-07/04 67 
Banias 390 265.20 794.90 30250 monthly** 10/02-08/04 60 
Kezinim (Ain Hilu) 340 264.50 794.70 - monthly** 11/02-07/04 46 
Sion 800 268.00 800.10 - snowmelt 13/03/04 3 
Barid 243 260.95 796.25 30308 seasonal 02/03-07/04 5 

Golan springs        
Hamroniya 210 262.40 787.00 30439 seasonal* 10/02-07/04 17 
Dufeila 300 263.20 784.50 30474 seasonal* 10/02-07/04 18 
Gonen 155 261.02 779.52 30515 seasonal* 10/02-07/04 14 
Divsha 170 260.90 777.32 30535 seasonal* 10/02-07/04 14 
Notera 90 260.60 772.20 30538 seasonal* 10/02-05/04 18 
Jalabina 90 260.50 772.10 30568 seasonal* 10/02-07/04 14 
Bet HaMekhes 110 259.40 768.60 30575 seasonal* 10/02-07/04 14 
Elmin Jedida 170 260.20 766.70 30580 seasonal* 10/02-07/04 14 
*up to monthly 
** up to weekly 
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Since most of the springs are part of nature reserves or protected areas, permission for 

sampling was granted by the Society for the Protection of Nature in Israel (SPNI). Springs 

were monitored in situ for temperature and electrical conductivity; pH and alkalinity were 

determined in the lab on the day of sampling. All samples were analyzed for 18O, 2H, major 

anions and cations. Additional parameters determined were SiO2 and DOC. To receive further 

information about the distribution of mean residence times in the groundwater source areas, 

the majority of springs was sampled on reference dates in autumn 2003 and 2004 for tritium 

analysis. During this season, baseflow dominates the hydrograph. Another reference date 

sampling for 13C- and 14C-analysis was conducted in July 2004. In addition, a selection of 

samples was analyzed for major elements by inductively coupled plasma mass spectrometry 

(ICP-MS).  

All the necessary hydrometric measurements were provided by the Hydrological Service of 

Israel (HSI) which is operating stage recorders at the major tributaries in the area (see Figure 

8) and which is regularly conducting flow measurements at the majority of springs in the 

region.  

 

Meteorological parameters such as radiation, temperature, relative humidity, and precipitation 

were downloaded from the Mop Zafon website (http://www.mop-zafon.org.il/ csv/index.html, 

in Hebrew), an organization which operates a meteorological network in the Upper Galilee 

region for agricultural purposes. Sequential rainfall data were provided by the Crop Ecology 

research group (Moshe Meron, Joseph Tsipris) of the MIGAL Galilee Technology Center, 

Israel, which is also part of the Mop Zafon network. Data on wind speed and direction in 

northern Israel were extracted from the database on air quality of the Israeli ministry of 

environment (see http://avir.sviva.gov.il/DocGenerator.asp, in Hebrew). Weather and snow 

forecasts were retrieved from http://www.israelweather.co.il website (in Hebrew and 

English).  

Unfortunately, there is currently no fully equipped weather station on Mt. Hermon itself, 

leading to uncertainties considering the climatic conditions on high altitudes. 
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5. Hydrochemical and stable isotopic characterization of precipitation 
in the mountainous northern Upper Jordan River Catchment 

A preliminary condition for applying tracer-based hydrograph separation techniques and end-

member mixing analyses to investigate the transformation of precipitation into runoff is the 

comprehensive description of the spatial and temporal variation of the input tracer 

concentration, i.e. the chemical and isotopic composition of precipitation. Hence, from 

October 2002 to September 2004, the isotopic and chemical composition of precipitation and 

its temporal and spatial distributions was investigated for the semi-arid mountainous northern 

Upper Jordan River Catchment (UJRC), Israel.  

The amount of precipitation and its isotopic and chemical composition determined at a certain 

measuring station depends on parameters such as the prevailing synoptic system, topographic 

features, or the altitude. Synoptic patterns in particular determine the stable isotopic signature 

of precipitation samples by isotope fractionation occuring during the evaporation of seawater 

and condensation of water vapor (DANSGAARD, 1964). On a global scale, the stable isotope 

(18O, 2H) composition of precipitation is described by the so-called global meteoric water line 

(GMWL) equation: 

108 182 +⋅= OH δδ  (CRAIG, 1961). 

Local meteoric water lines (LMWL) have to be established to account for regional 

variabilities in precipitation and isotopic fractionation processes during evaporation and 

condensation of air humidity along weather trajectories. Particularly when runoff events are 

investigated, it is necessary to know the short-term temporal heterogeneity of the stable 

isotope composition in rain or snow (see chapter 2.4.4.3). Thus, the objectives of this part of 

the study were to a) characterize the isotopic composition of precipitation by establishing a 

local meteoric water line for the northern UJRC, b) to compare it to other LMWLs found in 

the region, and c) to investigate specific factors determining the spatial and temporal 

variability of precipitation and its isotopic as well as chemical pattern. 
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Figure 17: Precipitation sampling network in the Upper Jordan River catchment. Modified 
from EXACT (1998). 

 

5.1 OROGRAPHIC PRECIPITATION 

Records on the amounts of rain during the study period 2002-2004 were available for 16 

stations in the UJRC provided by the Israeli Meteorological Service and the Mop Zafon 

network (chapter 4). The distribution of sampling stations setup in the scope of this study 

within the UJRC is shown in Figure 17. Additionally, a long-term record of monthly rain data 

was accessible for the station at Kefar Giladi.  Based on this record the 5th-, 25th-, 50th-, 

75th- and 95th-quantiles of the accumulated rain during the period 1969-99 were calculated to 

investigate the distribution of precipitation over time. 

Table 9: Quantiles of accumulated rain amounts at Kefar Giladi for the period 1969-1999. 

quantile [%] 5 25 50 75 95 
rain [mm] 480 619 772 937 1117
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The data summarized in Table 9 suggest that only 5 % of the considered rain years had less 

than 480 mm of accumulated rain. Comparing the rain data of the study period to the quantile 

values shows that the hydrological year 2002/03 was an extreme rain year with an amount of 

1117 mm (Kefar Giladi), which is exceeded in only 5 % of the cases. On the other hand, the 

hydrological year 2003/04 was characterized by rain amounts just below the average. 

Table 10: Location of stations in the UJRC and accumulated quantities of rain measured 
during the period 2002-2004. Correlation of the station-characteristic rain amount 
with data recorded at Kefar Giladi. Coordinates are given in the New Israeli Grid. 

Location Altitude Easting Northing Rain 2002/03 Rain 2003/04 r 
 m a.s.l. km km mm mm  

Kefar Giladi 340 254 794 1117 699  
Mayan Barukh 240 257 794 989 702 0.980** 
Dafna 150 260 793 964 725 0.955** 
Tel Dan 160 260 793 1037 737 0.951** 
Kefar Blum 75 257 786 689 429 0.944** 
Banias 375 265 794 1031 673 0.943** 
El Rom 1046 272 787 1506 932 0.905** 
Merom Golan 940 276 781 1360 no data 0.890** 
Neot Mordekhay 75 255 785 972 579 0.889** 
Ayyelet HaShahar 175 254 769 669 463 0.878** 
Har Kenaan 934 247 764 969 707 0.866** 
Ged Sade 180 253 791 929 640 0.793** 
Bet Seida 180 259 757 636 403 0.790** 
Gadot 100 258 769 575 437 0.773** 
Pichmann 1100 276 792 1333 932 0.746** 
Matityau 700 243 774 1107 676 0.541** 
**result is significant at a level of p < 0.01 (two-sided) 

 

Rain depths of all available stations correlate significantly with rain at Kefar Giladi (Table 

10), though this correlation seems to diminish with increasing distance from this station.  

A clear disadvantage of this study is the lack of continuous rain measurements on Mt. 

Hermon at altitudes higher than 1000 m a.s.l. To overcome this gap of information, rain 

depths are generally estimated by geostatistical methods. However, the lack of area-wide 

topographical data in particular forced a more simple approach. Hence rain depths were 

estimated based on multiple regression analysis, which accounted for the topographic location 

of rain stations. As a result, rain amounts in the UJRC were found to be a function of altitude 
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and latitude. Although latitudes are seldom used to explain the distribution of precipitation, 

latitude dependent variability in precipitation was shown among others by LEGATES and 

WILLMOTT (1990). The State of Israel is characterized by a distinct north-to-south climate 

gradient, hence, it seemed reasonable to introduce latitude into the regression analyses to 

explain the observed variabilities in precipitation. 

Simple regression analysis for the dependent variable rain and the independent variable 

altitude resulted in correlation coefficients of 0.78 and 0.74 for the hydrological years 

2002/03 and 2003/04 respectively. Including latitude (northing) into the regression analysis 

led to an even stronger correlation with r = 0.939 and r = 0.946 correspondingly. Adding 

longitude to the model did not improve the correlation. Thus, the following empirical 

relationships were established: 

Rain (2002/03) [mm] = 0.56 Altitude [m a.s.l.] + 11.3 Latitude [km] - 8109 

Rain (2003/04) [mm] = 0.34 Altitude [m a.s.l.] + 7.6 Latitude [km] - 5447 

According to these equations, the amounts of rain were estimated for three stations on 

Mt. Hermon and are given in Table 11. Recently, a meteorological station collecting data on 

quantities of rain and snow, air temperature, wind direction and speed has been installed at 

Mount Hermon at an altitude of about 2000 m and will provide new insight into the 

distribution of precipitation in the recharge area of the Upper Jordan River. 

Table 11: Rain depths at Mount Hermon during 2002-04. Results were estimated by multiple 
regression analysis. Coordinates are given according to the New Israeli Grid. 
Easting not shown. 

Location Northing Altitude Rain 2002/03 Rain 2003/04 
 km m a.s.l. mm mm 

Majdal Shams 797 1170 1552 1008 
Mizpe Shlagim 803 2224 2210 1412 
Mount Hermon  815 2814 2676 1704 

 

SIMPSON and CARMI (1983) used a linear extrapolation between rainfall depth and altitude to 

estimate precipitation on the summit of Mt. Hermon to exceed rain depths at Majdal Shams 
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by 50 %. Based on multiple regression analyses conducted in this study, precipitation at 

Mount Hermon exceeds rain depths at Majdal Shams even by about 70 %. At watershed scale, 

more complex methods that include data on terrain slope, wind speed or advection models 

were used to predict orographic precipitation. For further information, see DALY et al., 1994; 

MARQUINEZ et al., 2003; SMITH, 2003; SMITH et al., 2003; ALPERT and SHAFIR, 1989a. 

 

5.2 CHEMICAL COMPOSITION OF PRECIPITATION 

The chemical composition of rain water, in particular the concentrations of major anions and 

cations, is an important input variable for the intended mass-balance approaches and mixing 

models. Yet, continuously monitoring of precipitation chemistry was not in the scope of this 

study. In this study, 92 samples were collected and analyzed to describe the mean chemical 

composition of precipitation in the study area. Table 12 provides both, the mean and median 

ion concentrations and electrical conductivities, for two rain stations (Banias, Tel Dan) and 

snow on Mount Hermon. For comparison, the chemical composition of precipitation in the 

Golan region as reported by HERUT et al. (2000) is included. Besides the mean values 

assumed to be normally distributed, median values are also given because they account much 

better for the low number of samples and the asymmetric distribution of ion concentrations. 

Table 12: Median and mean ion concentrations of daily rain samples and snow in the UJRC. 
Sampled rain amounts were too small to analyze for HCO3

-.  

Location  n Na+ K+ Ca2+ Mg2+ SO4
2- Cl- NO3

- HCO3
- EC

    μeq/L μeq/L μeq/L μeq/L μeq/L μeq/L μeq/L μeq/L µS/cm

Banias Median 27 80 6.6 312 38 54 101 19 n.d. n.d.
  Mean  144 16 430 60 70 128 35 n.d. n.d.
Tel Dan Median 23 83 5.1 157 38 48 79 19 n.d. n.d.
  Mean  163 9.0 225 49 62 120 26 n.d. n.d.
Snow (Mt. Hermon) Median 42 30 2.8 33 35 19 37 23 350 15
  Mean  58 4.7 70 58 19 73 21 420 20
Golan  Median 36 56 4.7 42 24 73 68 17 n.g. n.d.
(HERUT et al.,  2000) Mean - 111 6.7 116 50 85 128 30 47 n.d.

n.d.: not determined, n.g.: not given. 

Analyses of snow (and rain) revealed the following ion sequences at the southeastern 

footslopes and on higher altitudes of Mount Hermon: [Ca2+] > [Na+] > [Mg2+] > [K+] and    
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[HCO3
-] > [Cl-] > [SO4

2-] (while HCO3
- was not analyzed in the rain samples). This sequence 

is identical to results obtained by NATIV and MAZOR (1987) for the Maktesh Ramon basin 

(Negev). In snow samples, ion sequences were similar but ion concentrations tend to be much 

lower than those measured at Dan and Banias Nature Reserve. In the Golan Heights, HERUT 

et al. (2000) observed a different pattern with: [Na+] > [Ca2+] > [Mg2+] > [K+] and [Cl-] > 

[SO4
2-] > [HCO3

-]. For precipitation in Israel, two distinct sources for dissolved ions are 

inferred. First, Ca2+ and HCO3
- are attributed to dust derived from chalk and limestones as 

shown by GANOR and MAMANE (1982) and NATIV and MAZOR (1987), second, Na+, Mg2+, 

Cl-, and SO4
2- are assumed to derive from cloud-borne sea spray. Hence, the absence of 

carbonate rock sources in the Golan Height explains its sea-salt dominated rain chemistry. 

Considering the rain sampling technique used, the influence of local over regional dust 

patterns on rain water composition cannot be entirely excluded. 

 

5.3 STABLE ISOTOPE COMPOSITION OF PRECIPITATION 

5.3.1 Mean isotope composition and the local meteoric water line 

Both, the arithmetic and the amount-weighted means of stable isotope composition were 

determined for 268 daily rain samples from five stations and 118 weekly bulk samples from 

eight stations (Figure 17) given in Table 13 and Table 14. The amount-weighted means for 

each of the sampled stations were calculated according to YURTSEVER and GAT (1981) with: 
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The arithmetic mean isotopic composition of δ18O and δ2H in daily rainfall samples was 

determined with -5.71 ‰ and -25.1 ‰, respectively. Values range between -13.02 ‰ and 
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2.31 ‰ for δ18O and -82.6 ‰ and 24.3 ‰ for δ2H. Similar isotopic compositions are found in 

weekly rainfall samples where the mean concentration was -6.33 ‰ and -28.8 ‰ for δ18O and 

δ2H. More depleted concentrations were found for stations at higher altitudes such as Nimrod 

and Neve Ativ (Table 13, Table 14) while extreme enriched values can be attributed to 

evaporative effects. The mean deuterium excess in the northern UJRC rains, i.e. 20.59 ‰  and 

21.86 ‰ for daily and weekly samples respectively, equals the one determined for the eastern 

Mediterranean meteoric waters (d = 22 ‰). 

Table 13: Arithmetic mean (δ) and amount-weighted (δw) mean stable isotope composition of 
daily rainfall in the northern UJRC. Also, the deuterium excess (d) is given each. 
Stations are arranged according to increasing altitudes (see Table 7). Samples were 
taken during 2002-2004. 

Location n δ18O ±σ δ2H ±σ d ±σ δ18Ow ±σw δ2Hw ±σw dw ±σw 
  ‰ ‰ ‰ ‰ ‰ ‰ ‰ ‰ ‰ ‰ ‰ ‰ 
Mayan 
Barukh 43 -4.73 2.56 -19.9 18.3 18.0 6.3 -6.23 0.09 -29.2 0.8 20.7 0.22
Tel Dan 87 -5.76 2.55 -25.7 19.4 20.4 6.6 -6.63 0.06 -32.2 0.5 20.9 0.19
Shear Yeshuv 23 -5.81 2.23 -26.2 18.7 20.3 5.5 -6.57 0.11 -31.0 0.9 21.5 0.22
Banias 78 -5.66 2.69 -24.7 20.2 20.5 6.2 -6.64 0.07 -31.2 0.6 21.9 0.16
Nimrod 37 -6.75 2.57 -29.6 22.1 24.4 5.4 -7.31 0.09 -33.1 0.8 25.4 0.21

 

The amount-weighted stable isotope composition showed generally more depleted values 

(Table 13, Table 14) than the non-weighted indicating the importance and abundance of 

convective rain spells when strong convective motions result in the mixing of surface air with 

air from higher altitudes that is partially depleted in heavy isotopes (RINDSBERGER et al., 

1990). Normally, there should be no differences between the mean values of daily or weekly 

amount-weighted isotope compositions given the same period of observation is covered. 

However, for several reasons full coverage both for daily as well as weekly samples was not 

achieved during this study, hence the differentiation. 

Plotting δ18O and δ2H-values in a respective diagram showed that UJRC values generally 

plotted above the GMWL and the MMWL (Figure 18, Figure 19). The observed high 

deuterium excess of the samples is a common feature of Mediterranean precipitation and is 

attributed to isotopic exchange with the moisture originating from the Mediterranean Sea, 
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which is characterized by lower relative humidity conditions (DINCER and PAYNE, 1971, 

YURTSEVER and GAT, 1981). Generally, deuterium excess is highest at high altitudes and at 

the Golan stations. 

Table 14: Arithmetic mean (δ) and amount-weighted (δw) mean stable isotope composition of 
weekly rainfall and snow in the northern UJRC. Also, the deuterium excess (d) is 
given each. Stations are arranged according to increasing altitudes (see Table 7). 
Samples were taken during 2002-2004. 

Location n δ18O ±σ δ2H ±σ d ±σ δ18Ow ±σw δ2Hw ±σw dw ±σw 
  ‰ ‰ ‰ ‰ ‰ ‰ ‰ ‰ ‰ ‰ ‰ ‰ 

Mayan 
Barukh 8 -6.32 2.36 -31.3 17.8 19.2 3.5 -6.93 0.07 -35.1 0.6 20.3 0.1 
Tel Dan 19 -6.12 2.15 -27.6 18.1 21.3 4.0 -6.43 0.04 -29.1 0.4 22.3 0.1 
Shear Yeshuv 12 -5.62 1.92 -25.5 15.1 19.5 4.2 -6.32 0.05 -30.1 0.4 20.5 0.1 
Banias 19 -5.84 2.65 -26.9 19.8 19.8 5.3 -6.71 0.04 -31.7 0.3 22.0 0.1 
Nimrod 21 -6.63 2.45 -29.9 18.6 23.1 5.4 -7.43 0.04 -34.5 0.3 24.9 0.1 
Neve Ativ 21 -7.37 2.47 -34.9 19.0 24.1 4.7 -8.13 0.04 -39.9 0.3 25.2 0.1 
Shamir 10 -5.78 1.16 -24.1 11.1 22.2 5.3 -6.12 0.05 -27.0 0.5 21.9 0.2 
Orevim 8 -6.24 1.66 -25.5 13.6 24.4 3.7 -6.53 0.06 -27.3 0.5 24.9 0.1 

Snow 50 -7.59 1.63 -34.2 12.3 26.5 3.8       

 

The Local Meteoric Water Line (LMWL) was estimated by determining a least square 

regression line fitting all daily or weekly rain data collected during the study period. 

Accordingly, the LMWL of the northern UJRC is given by: 

δ2H = (7.23 ± 0.14) δ18O + (16.21 ± 0.89) (daily rain) 

δ2H = (7.15 ± 0.17) δ18O + (17.57 ± 1.18) (weekly rain) 

Regression parameters are given with standard errors. The established LMWLs (which are not 

significantly different when comparing the regression parameters by t-tests) are characterized 

by slopes that are slightly lower than the MMWL and with lower intercepts. This is due to 

evaporation of precipitation on its way to the ground. Samples that plot below the GMWL 

have most likely undergone evaporation. 
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Figure 18: Stable isotope composition of precipitation in the northern UJRC. Relationship 
between δ18O and δ2H of daily rainfall in 2002-2004. 
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Figure 19: Stable isotope composition of precipitation in the northern UJRC. Relationship 
between δ18O and δ2H of weekly rainfall and snow in 2002-2004. 
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5.3.2 Seasonal variations 

For the two-year period of observation, the collected isotope data demonstrated a pronounced 

monthly variation. In November, at the beginning of the rainy season when relative humidity 

is low, precipitation tended to be more enriched in heavy stable water isotopes. December rain 

showed the biggest variation considering its stable isotope composition. This variation is 

explained by the different origin of air masses since two types of synoptic systems, the Red 

Sea Trough and the Winter Lows (ALPERT et al., 2004a), dominate during that period (chapter 

3.2.) 
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Figure 20: Monthly means of δ 18O in rainfall in the northern UJRC for the years 2002-2004. 

The observed seasonal effects in the isotopic composition of precipitation varied throughout 

the years. While in 2002/03 the monthly variations were less distinct and ranged about a mean 

value of -6.19 ‰ δ18O, the 2003/04 rain season exhibited a distinct monthly pattern (Figure 

20).  
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Figure 21: Relationship between the arithmetic mean monthly δ18O values of all investigated 
stations and the number of rain days in the adequate month, rain season 2003/04. 
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In 2003/04, the isotopic composition of precipitation showed enriched values during autumn 

followed by gradual depletion later in the rainy season, and enriched again as the rain ceased. 

In fact, the mean monthly δ18O composition significantly correlated with the number of rainy 

days in a month, emphasizing increasing evaporative effects as the number of rain days 

decreased. However, the δ18O values in December clearly deviated from this relationship and 

thus were excluded from the regression (Figure 21).  

 

5.3.3 Temperature and amount effect 

Plotting δ18O values of daily rainfall samples against the daily maximum air temperature 

revealed a positive correlation (Figure 22), in which increasing temperature resulted in high 

stable isotope ratios in rain water. A complete record of maximum and mean daily air 

temperature was only available for the Mop Zafon station at Qiryat Shemona (chapter 4). 

Expectedly, the correlation was most significant for rainfall samples taken at Mayan Barukh 

(r = 0.53) which is in short distance of the Mop Zafon station.  

The effect is well known (DANSGAARD, 1964) and was widely used to trace seasonal 

recharge and to estimate mean residence times (SIEGENTHALER and OESCHGER, 1980; 

MALOSZEWSKI et al., 1983; UHLENBROOK et al., 2002; RODGERS et al., 2005). 
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Figure 22: Relationship between δ18O in rain water and maximum daily air temperature (left) 
and the daily rain depths (right) in the northern UJRC, in the years 2002-2004. 
“**” denotes that results are significant at p<0.01 (two-sided). 
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The amount effect, representing the isotopic enrichment of precipitation with decreasing size 

of rainstorms, was clearly observed for the daily rainfall samples of the northern UJRC 

(Figure 22). The effect is especially observed during light rains or at the beginning of 

rainstorms, when precipitation passes an atmosphere of low relative humidity on its way to 

the ground.  

Although the relationship between increasing rain amount and the depletion in δ18O was 

significant (p < 0.05) for all the stations, it was most pronounced in Mayan Barukh, Tel Dan, 

and Banias, which might be due to number of samples. 

 

5.3.4 Influence of wind direction 

HERUT et al. (2000) investigated the effect of wind direction on the chemical composition of 

rain in Israel. They found that southern winds display higher continental contribution as 

depicted by higher pH and higher concentrations of non-sea-salt derived Ca2+.  This analysis 

was conferred to the isotopic composition of precipitation revealing a relationship between 

the origin and genesis of precipitation and the 18O composition. Generally, northern winds 

were characterized by higher mean rain depths and more depleted δ18O values (Figure 23). 

Highest mean rain depths and most depleted δ18O coincided with north northeasterly and 

northwesterly winds. 
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Figure 23: The distribution of the stable 18O isotope composition of precipitation in relation to 
the prevailing wind direction and mean rain depths in the UJRC determined in 
this thesis. 
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Wind directions generally change according to the prevailing weather system. Thus, a 

subsequent step was to investigate the influence of synoptic systems on the isotopic pattern in 

precipitation provided by Alpert, 2006, personal communication. 

 

5.3.5 The influence of the synoptic system  

Most of the precipitation reaching the Eastern Mediterranean and thus the Upper Jordan River 

catchment during winter is caused by cold fronts and the air masses following these fronts 

(SHARON and KUTIEL, 1986; ALPERT et al., 1990; GOLDREICH and MOZES, 2004; ZIV et al., 

2006). In particular, the passage of extratropical cyclones called Cyprus Lows brings 

significant rain amounts to the region. The rest of the annual rainfall events are associated 

with Red Sea troughs which are generally confined to the transitional seasons (GOLDREICH 

and MOZES, 2004, ZIV et al. 2006). 
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Figure 24: Mean stable isotope composition (δ18O) of rain water (squares) and the relative 
number of days with rain (bars) for each synoptic system class determined for 
daily rain samples taken at Tel Dan during 2002/03 and 2003/04. Descriptions of 
the synoptic system classes are given in Figure 66. 

To investigate the influence of the synoptic systems on the isotopic composition of 

precipitation and rain amounts, daily precipitation samples were assigned to the respective 

synoptic class at that day. Subsequently, mean isotopic compositions and the relative number 
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of days with rain were calculated for each synoptic class and the results are given in Figure 24 

and Table 15. 

Table 15:  Mean stable isotope composition, the relative number of rain days (n) and mean 
rain amounts for each synoptic system determined for daily rain samples taken at 
five stations in the northern UJRC during 2002/03 and 2003/04. Synoptic systems 
are explained in Figure 66. 

Class Synoptic system n Amount δ18O ±σ δ2H ±σ d ±σ 
   mm ‰ ‰ ‰ ‰ ‰ ‰ 

1 RSTE 29 231 -4.95 3.03 -22.14 22.17 17.47 5.43 
3 RSTC 8 17 -1.14 3.47 4.57 16.85 13.72 11.47 
7 HE 6 38 -3.10 2.89 -3.99 21.71 20.82 7.34 
8 HW 16 155 -5.01 2.18 -21.19 15.09 18.86 4.75 
9 HN 5 20 -5.40 1.58 -19.48 9.35 23.70 3.32 
10 HC 5 40 -3.83 1.53 -11.91 11.09 18.74 1.67 
11 LE-D 19 263 -7.03 1.93 -29.60 15.73 26.64 4.65 
12 CLS-D 5 33 -7.61 1.47 -42.36 7.57 18.54 7.24 
13 CLS-S 1 11 -3.68  -14.00  15.44  
14 CLN-D 58 1895 -7.07 2.09 -35.39 18.19 21.21 6.49 
15 CLN-S 26 428 -5.85 2.63 -24.11 21.78 22.71 4.88 
16 LW 33 478 -5.37 2.44 -20.53 20.34 22.41 5.54 
17 LE-S 55 621 -5.65 2.10 -25.90 16.34 19.31 6.11 
18 SLW 1 3 -0.86  1.80  8.68  

 

As expected, the highest abundance of rain days and the biggest amount of precipitation in the 

investigated seasons was monitored for cold fronts (Figure 24, Table 15). Particularly, the 

Cyprus Lows (Deep; class 14) with a northward orientation and Lows (Shallow) to the East 

(class 17) were associated with high amounts of rain and high abundance of rain days (Figure 

24,  Table 15). Especially for the deep Cyprus Lows (class 14), depleted values of δ18O and 

δ2H were monitored. Rain originating from these synoptic patterns forms within cold air 

masses of European origin that enter the Mediterranean region from the northwest. While 

moving over warmer Mediterranean waters, the air masses then gain moisture and become 

conditionally unstable (ZIV et al., 2006). No rain at all was monitored for the Persian trough, 

a barometric trough originating from the Persian Gulf with its trajectory mainly over land 

terrain which is characterized by limited humidity and dominates Israeli weather during 

summer (HASHMONAY et al., 1991; chapter 3.2). 
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Enriched values of δ18O and δ2H but also significant amounts of rain were monitored for Red 

Sea troughs that extend from East Africa through the Red Sea towards the East Mediterranean 

and dominate rainfall during the transitional seasons as well as for the Sharav Low, a spring 

cylcone that moves along the North African coast before turning north near the southeastern 

Mediterranean (ALPERT and ZIV, 1989b). Clearly, origin and trajectory of these synoptic 

patterns are responsible for the observed evaporative effects on their stable isotopic 

composition. 

 

5.3.6 Inter- and intra-storm variability 

Inter- and intra-storm variability of stable isotope composition in precipitation in the northern 

UJRC is high (Figure 25). A common feature already stated by RINDSBERGER et al. (1990) 

was the V-shaped pattern in the temporal evolution of stable isotopes which was also 

observed for several rain events in the UJRC during the study period. At the beginning of a 

rain storm when humidity and rain intensity were comparatively low, enriched values 

dominate while at the peak of the storm rain intensities were high and strong convective 

motions resulted in the mixing of surface air with air from higher altitudes that is partially 

depleted in heavy isotopes (RINDSBERGER et al., 1990; CELLE-JEANTON et al., 2004). 

Looking at major runoff events like those occuring on 20th December 2002, 21st January 2003 

and 24th January 2004 (see 7.3) each time cold fronts, either deep Cyprus Lows to the North, 

Cold Lows to the West, or Lows to the East dominated the weather pattern. 
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Figure 25: Inter- and intra-storm variability of δ18O in daily rainfall samples of the Banias 
Nature Reserve, 2002-2004. The V-shaped pattern in the temporal evolution of 
stable isotopes during the rain events is emphasized by the respective symbol (V). 
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5.3.7 Altitude effect 

With increasing altitude, the stable isotopic composition of precipitation decreases towards 

more depleted values. Thus, the resulting altitude gradient is strongly dependent on the local 

climate which in turn depends on factors such as topography and microclimate, e.g., 

orientation towards the wind (weather side/lee-side) and distance from the coast. The 

establishment of this effect within a specific research area is a useful tool in tracing 

groundwater recharge and potential recharge areas (PAYNE and YURTSEVER, 1974; 

CHRISTODOULOU et al., 1993; LEONTIADIS et al., 1996 among others) or for quantifying 

paleo-elevational changes of mountain belts (POAGE and CHAMBERLAIN, 2001).  

Table 16: Altitude gradients of stable water isotopic composition in the northern UJRC and 
neighboring regions in the Eastern Mediterranean. The global isotopic lapse rate is 
given as a reference. 

Location δ18O gradient δ2H gradient Reference 
 ‰ per 100 m ‰ per 100 m  

northern UJRC -0.26 -1.10 this study (daily rainfall) 
northern UJRC -0.25 -1.42 this study (weekly rainfall) 
southern Mount Hermon -0.30 -2.41 this study (snow) 23.02.2003 
northern Jordan Rift valley -0.13  GAT and DANSGAARD, 1972 
Damascus region -0.19  PRIZGONOV et al., 1988 
western Syria -0.23 -1.65 KATTAN, 1997a 
Jezireh (Syria/Turkey) -0.29 -2.23 KATTAN, 2001 
global (except for extreme latitudes 
and high altitudes) 

-0.28  POAGE and CHAMBERLAIN, 
2001 

 

For the determination of the altitude effect on the stable isotope composition of daily and 

weekly rainfall samples only datasets comprising at least three different elevations with a 

linearity of r ≥ 0.975 (r² ≥ 0.95) were included into the analysis (Table 60). In the northern 

UJRC, the altitude effect of daily rainfall samples was represented by a gradual depletion of 

the stable isotopes of about -0.26 ‰ and -1.10 ‰ per 100 m for δ18O and δ2H, respectively. 

However, altitude effects determined for single events during November 2003 until February 

2004 ranged between -1.06 to 0.26 ‰ per 100 m for δ18O. For the weekly rain samples, the 

progressive reduction of the isotopic concentrations with altitude was slightly lower for δ18O 
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and slightly higher for δ2H (Table 16). Gradients ranged in between -0.35 to -0.17 ‰ per 

100 m for δ18O  (Table 60, Table 61). 

Four snow transects with an altitude range of 1390 to 2060 m a.s.l. were sampled on the 

southern Hermon Mountain during the winters 2002/03 and 2003/04 (Table 53). Only one 

transect showed a significant linear relationship (r = 0.79) between altitude and the stable 

water isotopic composition. According to this single gradient (-0.30 ‰ per 100 m for δ18O), 

the depletion of heavy stable isotopes in precipitation of higher altitudes in the southern 

Mount Hermon is more pronounced compared with those further downslope. The three other 

transects did not show any significant linear relationship between altitude and 18O 

composition which might be due to superimposed snowdrift effects, especially since not all of 

the transects could be sampled on the actual snow day. Often, access to Mt. Hermon was 

restricted on snowy days. MARGARITZ (in SIMPSON and CARMI, 1983) suggested a gradient 

of about -0.6 ‰ per 100 m for δ18O in snow, much higher than the one determined here. 

However, generally, the estimated altitude gradients agree well with those established by 

other researchers for adjacent regions and they are close to the global gradient of -0.28 ‰ per 

100 m for δ18O found by POAGE and CHAMBERLAIN (2001). The observed variability in 

altitude gradients is most likely caused be dominating weather pattern during the rainfall 

event and by drift phenomena in the case of snow. 

 

5.3.8 Snowpack chemistry and stable isotope composition 

A significant fraction of recharge in the UJRC originates from snowmelt on the upper slopes 

of Mount Hermon. GILAD and BONNE (1990) estimated the snowmelt contribution to the 

main Jordan River springs to be about 30 % of dry weather discharge. One objective of this 

study is to verify this assumption by applying chemical and isotope based mass balance 

approaches, which are based on the chemical and isotopic characterization of the pre-event 

(snowmelt) component. 

Samples of fresh fallen snow were taken on four occasions during the study period. Their 

chemical and isotopic composition is presented in Table 12 and Table 54. Snow samples 

exhibited significantly lower ion concentrations and more depleted stable isotope 
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compositions than rain samples from the foot slopes of the Hermon Mountain. Additionally, 

snow samples were characterized by high values of deuterium excess with a mean of 

d = 26.5‰. However, snowpack chemistry and stable isotopic composition was shown to vary 

considerably with the ongoing season and the accompanying melting of the snow cover 

(STICHLER et al., 1981; TAYLOR et al., 2001; UNNIKRISHNA et al., 2002; STOTTLEMYER, 

2001). Hence, snowmelt discharging from the bottom of the snowpack and infiltrating into the 

ground cannot be represented by samples of fresh snow. 

During the study period, access to Mount Hermon was temporarily restricted. Additionally, 

logistic reasons did not allow for the installation of snowmelt lysimeters and the continuous 

monitoring of snowmelt. It is questionable at all, if single snowmelt lysimeters can deliver 

representative values that reflect the variability of snowpack and snowmelt chemistry over an 

area as multifaceted and large as Mount Hermon. Of course, the catchment size might have a 

homogenizing effect on local variations but particularly in areas with pronounced preferential 

flow paths, such as the karstic Hermon region, local variations might in fact affect the 

resulting chemical and isotopic composition of recharged waters. 

Within this study, a snow profile was sampled on two reference dates to monitor the evolution 

of snowpack chemistry and stable isotope chemistry with the ongoing wither season (Figure 

26). Since snowpack sampling could not proceed past February although the snow cover 

prevailed until late spring/early summer on Mount Hermon, it was impossible to account for 

the total seasonal variability of snowpack chemistry within this study. 

The maximum range of the δ18O variation for the January-profile was about 1.8 ‰. Isotopic 

composition was most depleted on top of the profile and increases towards more enriched 

values at a depth of about 80 cm below the snow surface. The isotopic composition of snow at 

the bottom of the profile in turn, showed more depleted δ18O-values again. At the beginning 

of the snow season, this variability in snowpack isotopic composition originated from isotopic 

variability of precipitation that contributed to the different snow layers rather than by isotopic 

fractionation processes accompanying the melting and refreezing of snow. 

In the February-profile, a considerable enrichment of δ18O in the lower snow layers of the 

profile was observed. This supports findings by STICHLER et al. (1981) and TAYLOR et al. 
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(2001). STICHLER et al. (1981) assumed that, due to isotopic fractionation, the light isotopes 

will prevail in the initial runoff followed by a steady increase of heavy isotope contents in the 

course of ablation. The maximum range of the δ18O variation in the February-profile is about 

4.3 ‰, the profile having a depth of about 160 cm. However, snow depths in the study area, 

varied considerably according to altitude, topography, and wind exposure of the sampling 

location. 
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Figure 26: Snowpack chemistry and stable isotopic composition of two snow profiles 
investigated during January and February 2004. 

Electrical conductivity gives information on ion concentrations in the considered solutions. 

Comparing the two profiles investigated in winter 2004 clearly showed that ion 

concentrations decreased with the ongoing winter season indicating the elution of certain ions 

(Figure 26). Focusing on the individual ions revealed that the concentration of ions 

originating from cloud-borne sea spray such as Cl-, SO4
2-, K+, Na+ and Mg2+ (chapter 5.2) 
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decreased towards February while concentrations of dust derived ions such as Ca2+ and HCO3
- 

increased. 

The high ion concentrations of the February snow sample at a depth of about 30 cm below 

snow surface are attributed to the fact that a considerably amount of dust accumulated on this 

layer before snowfall continued. In the field, this layer appeared grayish. Though the 

sampling location was situated apart from the skiing area on Mount Hermon, anthropogenic 

influences caused by military vehicles could not be fully excluded. 
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6. Hydrochemical and stable isotopic characterization of groundwater 
in the mountainous northern Upper Jordan River Catchment 

The chemical and isotopic composition of groundwater is determined by a number of factors 

such as the initial composition of the infiltrating precipitation and aquifer lithology. Host rock 

lithology (through mineral dissolution and water-rock interactions) in particular, controls 

groundwater flowpaths and ages and hence, the resulting groundwater chemistry and isotopic 

composition. Additional controls on groundwater characteristics are anthropogenic activities 

such as the pumping and pollution of groundwater.  

Groundwater that emerges at a spring or well is often a mixture of waters from different 

flowpaths and of different ages. This is particularly true in heterogeneous systems such as 

well-developed karst and fractured rocks. Dependent on the dominance of certain flowpaths 

and groundwater bearing rocks, groundwater chemistry and isotopic composition varies with 

time. Decoding the hydrographic, chemical and isotopic information measured at the 

groundwater outlet, allows to draw conclusions on groundwater sources, evolution and 

mixing. 

Preceding studies on the hydrogeology and hydrochemistry of groundwater in northern Israel 

and in particular, of the main Jordan River sources, were conducted by GAT and DANSGAARD 

(1972), GILAD and SCHWARTZ (1978), GILAD and BONNE (1990), SIMPSON and CARMI 

(1983), KAFRI et al. (2002) and GUR et al. (2003). In more recent publications, RIMMER and 

SALINGAR (2006) describe the karstic nature of the Hermon region by modeling precipitation-

streamflow processes, while DAFNY et al. (2006) identified two types of aquifers (a regional 

one and several smaller perched aquifers) dominating the groundwater flow regime in the 

basaltic Golan Heights aquifer (chapter 3.5). The objectives of this study were to identify and 

characterize water types both in the Hermon karst and Golan basalt aquifer and to infer 

information on the origin and flowpaths of recharge waters. Another goal was to estimate 

mean residence times and water volumes of the assumed reservoirs and to determine mean 

recharge rates with the help of chemical and isotope tracer information. Temporal variations 

in groundwater composition were investigated to characterize the response of the recharge 

systems and to estimate the influence of snowmelt on the Upper Jordan River sources. This 
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information allows to deduce the sensitivity of the UJRC groundwater systems towards 

climate change. One hypothesis is that, if seasonal variations in the springs discharge, 

chemical and isotopic composition are high and spring responses are flashy, groundwater is 

mainly controlled by climate. Consequently, groundwater would be highly vulnerable towards 

anticipated changes in temperature and precipitation pattern. 
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Figure 27: Groundwater sampling network in the Upper Jordan River Catchment. Modified 
from EXACT (1998). 
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6.1 CHEMICAL COMPOSITION OF GROUNDWATER 

6.1.1 General hydrochemical characteristics 

Major physico-chemical bulk parameters and the concentration of DOC and SiO2 of the 

investigated groundwater are given in Table 17. The investigated groundwaters in the study 

area are cold springs. Mean temperatures during the study period ranged from 11.7-19.8 °C in 

the Hermon springs and 18.9-20.4 °C in the Golan springs. With the exception of the Kezinim 

spring, mean temperature was comparatively low in the Hermon springs, which was attributed 

to the fact that a major portion of their waters is recharged at high altitudes, is generated 

during the snowmelt season and travels along preferential, shallow flowpaths such as karstic 

conduits and fissures. The Sion spring for example, that is known to be the outlet of a karstic 

conduit, had a mean temperature of about 11.7 °C. Within this work, there was no opportunity 

to directly monitor snowmelt at the Sion dolina but temperatures in the range of 7-13 °C were 

observed in other intermittent streams of the Hermon area fed by snowmelt. 

Table 17: Physico-chemical characteristics and concentrations of DOC and SiO2 of 
groundwater in the northern UJRC. 

Location n T ± σ pH ± σ EC ± σ DOC* ± σ SiO2
* ± σ 

  °C °C   μS/cm μS/cm mg/L mg/L mg/L mg/L

Hermon springs            
Sion 3 11.7 1.3 8.1 0.1 258 17 1.1 0.3 3.2 1.0 
Leshem 67 15.2 0.3 7.6 0.2 319 17 2.2 3.9 4.3 0.6 
Barid 5 15.6 0.6 7.9 0.1 327 24 0.8 0.5 4.8 - 
Dan 66 15.9 0.3 7.5 0.1 342 16 2.5 6.5 5.3 0.5 
Banias 60 15.2 0.5 7.5 0.1 395 66 1.1 0.6 7.4 2.2 
Kezinim 46 19.8 0.5 7.4 0.1 561 39 1.2 0.5 10.5 1.4 
Golan springs            
Gonen 14 18.9 1.0 8.4 0.2 313 9 1.1 0.2 33.6 2.8 
Divsha 14 19.9 1.0 8.4 0.4 328 10 1.2 0.4 35.4 2.6 
Jalabina 14 19.2 1.9 8.1 0.2 329 9 1.6 1.0 29.8 2.6 
Notera 18 19.2 0.9 8.3 0.2 339 19 1.2 0.5 34.2 2.5 
Hamroniya 17 19.0 0.6 8.1 0.3 343 17 1.0 0.3 37.0 2.0 
Dupheila 14 19.9 1.8 8.1 0.2 352 18 1.1 0.3 32.5 1.8 
Bet HaMekhes 14 19.9 1.1 8.3 0.3 358 7 1.3 2.1 26.7 1.4 
Elmin Jedida 14 20.4 0.3 7.7 0.1 399 8 1.1 0.4 34.9 1.6 

n is the number of samples taken, “*” for DOC and SiO2 less samples than n were available, see chapter 6.  
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Table 18: Mean major ion concentrations of groundwaters emerging in the northern UJRC. For numbers of samples refer to Table 17. TDI is 
total dissolved ions, R.E. is the reaction error based on mean values. 

  Ca2+ ± σ Mg2+ ± σ Na+ ± σ K+ ± σ HCO3
- ± σ SO4

2- ± σ Cl- ± σ NO3
- ± σ TDI ± σ R.E. 

  mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L % 

Hermon springs                    
Sion 50.0 6.8 2.6 0.7 4.1 1.3 0.4 0.2 160 8 4.6 0.6 7.0 2.2 1.6 0.9 207 36 -1.0 
Barid 54.5 9.9 3.0 0.7 3.5 0.4 0.6 0.1 194 17 5.3 0.7 6.0 0.8 3.8 1.0 271 28 6.3 
Leshem 55.3 5.2 3.1 0.9 3.5 0.4 0.6 0.1 209 15 5.5 1.0 5.9 0.6 3.9 1.1 287 17 8.2 
Dan 57.6 5.7 4.2 0.8 4.2 0.4 0.7 0.1 211 17 7.0 1.0 6.6 0.7 4.2 1.4 295 20 6.0 
Banias 61.5 7.8 8.3 3.2 7.9 2.5 1.1 0.4 208 20 32.5 21.5 9.9 2.1 4.6 1.4 334 54 3.7 
Kezinim 84.1 6.2 15.2 2.2 10.0 1.3 1.6 0.3 231 17 101.1 1.0 10.9 18.7 4.4 0.6 457 33 2.8 

Golan springs                    
Gonen 24.0 1.9 12.8 1.0 20.8 1.3 3.8 0.4 169 9 6.0 0.8 14.9 0.9 11.8 2.3 263 11 3.8 
Divsha 26.0 1.7 12.2 4.5 20.6 1.5 3.4 0.3 178 5 7.1 1.4 15.1 1.0 11.1 2.3 275 6 4.4 
Jalabina 17.3 1.7 13.4 1.2 31.0 2.9 3.4 0.4 181 13 4.5 0.8 17.2 0.6 10.0 1.8 278 13 4.3 
Notera 21.2 2.0 14.9 2.1 24.7 1.3 4.7 0.6 177 15 6.0 1.0 17.4 1.3 13.8 2.2 279 16 3.6 
Hamroniya 22.5 1.8 13.7 1.0 24.7 2.5 4.8 0.5 180 13 5.8 0.8 17.1 1.3 15.2 1.2 282 14 4.6 
Dupheila 28.6 4.0 13.8 1.6 22.2 2.8 3.8 0.8 186 20 6.7 1.6 16.1 1.7 13.4 3.1 291 22 3.3 
Bet HaMekhes 16.6 1.0 14.3 1.1 35.0 3.0 4.3 0.4 193 11 3.9 0.9 20.7 0.9 11.2 0.9 301 12 5.2 
Elmin Jedida 27.7 1.8 17.2 1.2 27.2 2.1 3.8 0.3 213 8 5.0 0.6 19.7 0.6 16.1 0.8 330 8 3.9 
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Mean water temperatures measured in springs and wells reflect groundwater temperatures 

attained at depth and hence provide information on the depth of circulation (given that 

groundwater velocities are low). In shallow, fast flowing systems the influence of the mean 

annual temperature at the surface superimposes the conductive geothermal heat flux resulting 

in groundwater temperatures that are close to the mean annual surface temperatures. Based on 

a 10-year temperature record of Majdal Shams (DEGANI and INBAR, 1993), a village located 

at an alitude of 1170 m a.s.l. on Mount Hermon, the mean annual air temperature at this 

altitude was determined to be about 14.7 °C. The Kezinim spring is assumed to be recharged 

at similar or even higher altitudes. Accordingly, the higher mean temperature in the Kezinim 

spring must be caused by contributions of groundwater from deep parts of the anticline 

structure as already proposed by BURG et al. (2003) and as suggested for other thermal, 

sulfate-rich springs emerging from carbonate rocks (WORTHINGTON and FORD, 1995; GUNN 

et al., 2006). 

Mean annual surface temperatures in the Golan Heights ranged in between 15 °C to 17 °C 

(DEGANI and INBAR, 1993), hence, Golan springs as well might receive deep flow 

contributions. Mean groundwater temperatures within the Golan springs differ by about 

1.5 °C, suggesting minor differences in the circulation depths of the contributing 

groundwater. 

The Hermon springs have pH values in the range 7.5-8.1. Within these spring systems, the 

low initial pH of infiltrating groundwater is buffered by the weathering of minerals such as 

calcite, dolomite and gypsum. At the observed pH, the dominating dissolved inorganic carbon 

species is bicarbonate. Average pH values in the Golan springs are in the range 7.7-8.4. pH-

values such as these are common in basalt-sourced groundwaters where water chemistry is 

dominated by minerals such as silicates and aluminosilicates, which tend to raise the pH to 

values of 9-10 or even higher (LANGMUIR, 1997). 

Sampled groundwater in the northern UJRC are fresh and of low salinities. Throughout the 

sampling period mean electrical conductivities were in the range of between 258-561 μS/cm 

and 313-399 μS/cm in the Hermon and Golan springs, respectively. Low salinities in the 

carbonatic groundwater suggest that CO2 dissolution with infiltration is low which is 
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attributed to the thin or absent soil covers on Mount Hermon. Golan soil covers are 

comparatively thick, however, silicate weathering is a slow process once it reached a 

threshold concentration thus limiting the mineralization of the Golan groundwater. Within the 

Hermon springs, highest EC values and highest variation of EC were recorded for the Banias 

and Kezinim spring indicating both abundant mineralizations within the aquifer (SHIMRON, 

1989) and – considering the Banias spring - a highly responsive system. Variation of 

electrical conductivity was comparatively low in the Dan, Leshem and Barid springs 

indicating large intake areas and distinctive mixing processes. Lowest and highly variable 

electrical conductivities were recorded for the Sion spring where short residence times of 

groundwater in the karstic conduits limit the mineralization of water. Tracer tests resulted in 

residence times as short as 17 hours for water entering the Sion dolina and emerging at its 

spring (YOSSI LEVANON, personal communication). 

Within the Golan springs, the variation of EC throughout the sampling period was generally 

low. Differences in solute concentrations for the investigated springs could be explained with 

groundwater residence times where high water ages result in stronger mineralization of 

waters. Additionally, the contribution of shallow groundwater components with low residence 

time in the aquifer will lead to lower values of electrical conductivity. 

Mean concentrations of dissolved silica ranged between 3.4-10.5 mg/L in the Hermon 

springs. The abundance of silicate minerals in the hosting aquifer (SHIMRON, 1989; KAFRI et 

al., 2002) of the Banias and Kezinim spring leads to high SiO2 concentrations in these springs. 

Dissolved silica in the Hermon springs originates as a byproduct of carbonate weathering. 

However, carbonate bedrocks have generally low contents of silicate minerals when 

compared to basaltic bedrocks for example. Hence, in the Golan springs, mean concentrations 

of dissolved silica ranged between 26.7-37.0 mg/L. These comparatively high concentrations 

are caused by silicate mineral weathering processes within the Golan basalt aquifer. 

Mean DOC concentrations in the investigated springs were all about 1 mg/L reflecting the 

natural DOC concentrations commonly found in groundwater (chapter 2.4.4.7). 
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6.1.2 Hydrochemical facies and ionic ratios 

Groundwater in the Hermon springs emerging from the Jurassic Arad Group aquifer was 

characterized by a calcium-magnesium and bicarbonate water type with the following ionic 

sequences:  

[Ca2+] > [Mg2+] > [Na+] > [K+] and 

[HCO3
-] > [SO4

2-] > [Cl-]. 

Calcium and bicarbonate dominate ion concentrations in these springs (Figure 29). Mean 

concentrations ranged between 50-84 mg/L and 160-231 mg/L, respectively (Table 18). Low 

Mg/Ca ratios ranging between 0.09-0.30 emphasize the dominance of calcite over dolomite 

dissolution. The highest Mg/Ca ratios and high levels of SO4 (33 and 101 mg/L, respectively) 

were observed in the Banias and Kezinim spring suggesting the dissolution of dolomite, 

gypsum and anhydrite within these source areas. BURG et al. (2003) investigated the stable 

sulfate isotope composition of groundwater in these springs and found values similar to 

marine sources. Consequently, BURG et al. (2003) concluded that these springs receive 

contributions from groundwater flowing through the upper Triassic Mohila Formation (Figure 

63). Sulfate levels in the other Hermon springs are close to that of natural precipitation 

implying that rain and snow are the only sources of sulfate within these springs. 
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Figure 28: Relationship between concentrations of Na+ and Cl- in the investigated springs (left 
figure). Lines illustrate common ratios of Na+ versus Cl- in the analyzed 
groundwaters. The 1:1 ratio equals the seawater dilution line. Relationship 
between alkali and earth-alkali metals (right figure). Gray circles comprise all 
Golan springs which plot very close to each other. 



 

99 

Mean concentrations of Na and Cl were in the range of 3.5-10.0 mg/L and 5.9-10.9 mg/L, 

respectively. Slightly higher values of Na and Cl in the Banias and Kezinim spring are 

attributed to halite beds known to occur in the evaporite series (BURDON and SAFADI, 1964) 

(chapter 3.5.2.) In the other Hermon springs, no lithological source of chloride is known and 

human activity in the catchment is negligible. Hence, chloride concentrations are solely 

attributed to atmospheric inputs. This is supported by the fact that the Sion, Dan, Barid and 

Leshem spring all plot on the seawater-dilution line (Figure 28), while the Banias and 

Kezinim spring plot above. Hence, chloride concentrations can be used to estimate 

groundwater recharge rates via chemical mass-balance approach. 
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Figure 29: Piper plot of the mean chemical composition of groundwater sampled in the 
northern UJRC during the study period 2002-2004. Open circles represent the 
Hermon springs, open squares the Golan springs. Symbol diameter reflects the 
electrical conductivity of each spring. 

Mean concentrations of potassium were low, in the range of 0.5-1.6 mg/L since there is no 

substantial mineral source of K+ in these aquifers. Nitrate levels were below 5 mg/L in all of 

the Hermon springs emphasizing their good water quality (Table 18). 
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The investigated “Side springs” that emerge from the Golan basalt aquifer are represented by 

a calcium-sodium or sodium-calcium and bicarbonate water type with the following ionic 

sequences: 

[Ca2+] > [Na+] > [Mg2+] > [K+] 

[Na+] > [Ca2+] > [Mg2+] > [K+] 

[HCO3
-] > [Cl-] > [SO4

2-] 

In the Golan springs, bicarbonate is by far the most dominant anion. The mean HCO3
- 

concentrations were in the range of 169-213 mg/L. As rainwater moves through the soil zone, 

it rapidly dissolves CO2 leading to increased carbonate concentrations in the infiltrating water. 

Under pH conditions such as found in the observed groundwaters (pH 7-9), bicarbonate is the 

most abundant carbonate species. Dominant cations of the basaltic groundwaters were Ca2+, 

Na+ and Mg2+, with mean concentration ranges of 16.6-28.6 mg/L, 20.6-35.0 mg/L and 12.2-

17.2 mg/L, respectively. Silicate and alumino-silicate minerals such as Ca-rich plagioclase, 

pyroxene and olivine are the major rock-forming minerals in basalt groundwaters (CRUZ and 

AMARAL, 2004). Accordingly, the prevailing weathering reaction in basalt aquifers is silicate 

hydrolysis. In general, silicate weathering leads to decreasing concentrations of alkali metals, 

alkali-earth metals and silicic acid in the host rocks, which preferably dissolve in groundwater 

(VOIGT, 1990).  

In addition, ion exchange reactions determine groundwater chemistry in the basaltic host 

rocks. These reactions are dependent on the amount of exchangeable ions present in both the 

solid and the liquid phases, on the contact time between water and rock, and on the flow 

velocity of the water through the contact layers. With increasing contact time between water 

and rock, Na+ will be replaced by Ca2+ at the exchange site of the clay mineral leading to 

higher concentrations of sodium in the groundwater. Hence, ion exchange reactions might 

explain the different cation sequences and the high Na:Cl-ratio (Figure 28) in the basaltic 

groundwater. On the other hand, these differences can also be attributed to the different 

evolvement of the rocks (EVANS et al., 2001; CRUZ and AMARAL, 2004) and rock 

composition as suggested by SENDLER (1981) for basaltic groundwater of the central and 

southern Golan.  
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In comparison to the Hermon springs, the Golan springs exhibited significantly higher mean 

concentration of K+ in the range of 3.4-4.8 mg/L, which is reasonable due to the abundance of 

K+-bearing silicate minerals in the aquifer. Mean nitrate concentrations were considerably 

higher than in the Hermon springs ranging between 10.0-16.1 mg/L. This is still by far lower 

than the drinking water standard (50 mg/L, WHO) and might correspond to natural  

concentrations of nitrate caused by biogenic activities in the uppermost soil layers.  
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Figure 30: Relationship between concentrations of SO4
2- and Cl- (left figure). Relationship 

between concentrations of HCO3
- and Cl-+SO4

2- in the investigated groundwater 
(right figure). Lines illustrate common ion ratios in the analyzed springs. Gray 
circles comprise all Golan springs which plot very close to each other. 

In contrast to the ‘Side springs’ emerging in the Golan Heights, Hermon springs exhibit a 

wide range of sulfate concentrations with the highest values in the Kezinim and Banias 

spring. While groundwater of the Dan, Barid, Leshem and Sion spring display a SO4:Cl ratio 

of 1 suggesting that both salts are solely derived from precipitation, these ratios are three to 

seven times higher in the Banias and Kezinim spring indicating an additional geogenic source 

of sulfate (Figure 30). Marine evaporites and gypsum as the sulfate source were proposed by 

BURG et al. (2003). 

 

6.1.3 Equilibrium conditions of groundwater 

The hydrochemical equilibrium conditions of groundwater and mineral phases of the aquifer 

rocks can be evaluated using saturation indices. The saturation index (SImineral) of a certain 

mineral is defined as the (logarithmic) ratio of the ion activity product to the equilibrium 
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constant (log(IAP/K)). When a mineral is in equilibrium with respect to a solution, the SI is 

zero. Undersaturation is indicated by a negative SI and supersaturation by a positive SI. The 

concept is described in detail by DOMENICO and SCHWARTZ (1990), STUMM and MORGAN 

(1996), LANGMUIR (1997) among others. 

Table 19: Mean partial pressure of carbon dioxide and saturation indices of selected 
minerals of groundwaters sampled in the UJRC during the study period 2002-04. 
Saturation indices for magnesite, dolomite, calcite, anhydrite, gypsum, aragonite, 
sepiolite and silica (gel) are SImag, SIdol, SIcal, SIan, SIgyp, SIara, SIsep and SIsil, 
respectively. 

Sample log PCO2 SImag SIdol SIcal SIan SIgyp SIara SIsep SIsil 

Hermon springs          
Sion -2.96 -1.29 -1.00 0.37 -3.19 -2.94 0.22 -4.86 -1.11 
Barid -2.68 -1.25 -0.96 0.34 -3.13 -2.88 0.19 -4.90 -0.99 
Leshem -2.34 -1.52 -1.49 0.07 -3.11 -2.86 -0.08 -6.22 -1.03 
Dan -2.28 -1.43 -1.43 0.04 -3.00 -2.75 -0.11 -5.92 -0.95 
Banias -2.29 -1.18 -1.19 0.03 -2.34 -2.09 -0.12 -4.94 -0.79 
Kezinim -2.05 -0.98 -0.94 0.05 -1.79 -1.55 -0.10 -4.64 -0.69 

Golan springs          
Divsha -3.25 -0.03 0.53 0.57 -3.31 -3.08 0.42 1.20 -0.18 
Gonen -3.19 -0.15 0.26 0.42 -3.42 -3.18 0.27 0.80 -0.19 
Notera -3.06 -0.15 0.13 0.29 -3.47 -3.23 0.14 0.57 -0.18 

Bet HaMekhes -3.06 -0.08 0.19 0.27 -3.77 -3.53 0.12 0.38 -0.30 
Jalabina -2.89 -0.34 -0.28 0.06 -3.67 -3.43 -0.08 -0.33 -0.24 
Hamroniya -2.86 -0.37 -0.24 0.14 -3.46 -3.22 -0.01 -0.15 -0.14 
Dupheila -2.86 -0.31 -0.03 0.28 -3.30 -3.07 0.14 -0.22 -0.21 
Elmin Jedida -2.41 -0.54 -0.59 -0.05 -3.46 -3.22 -0.20 -1.48 -0.18 

 

The dissolution and redistribution of gaseous CO2 with the infiltrating water significantly 

affects the chemical signature of groundwater. Atmospheric inputs into the hydrogeological 

system such as rain or snow generally have a partial CO2 pressure of 10-3.5 atm, within the soil 

zone, due to root and microbial respiration, values can be up to 500 times higher. The 

calculated PCO2 for sampled groundwater can offer insight into the nature of the correspondent 

aquifers. In an open system PCO2 is constant, i.e. there is a constant supply of CO2, while in a 

closed system no CO2 is added, and PCO2 decreases as CO2 is depleted by the dissolution of 

carbonates (DREVER, 1997). 
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The thermodynamic equilibrium condition controlling the groundwater in the investigated 

Hermon and Golan springs given in Table 19 were computed using the PHREEQC software 

(WATEQ database) (PARKHURST and APPELO, 1999). Variations in the saturation state of the 

investigated groundwaters towards certain minerals occur mainly due to the chemical 

composition of infiltrating water (e.g. pH, log PCO2) or due to temperature fluctuations. 

Calculated partial pressures of CO2 (log PCO2) ranged from 10-2.96 up to 10-2.05 atm in the 

investigated Hermon springs, while the sampled Golan springs exhibit PCO2-values of 10-3.25 

to 10-2.41 atm. Hence, in both spring systems partial pressures were close to values of 

atmospheric log PCO2. As mentioned before, soil cover in the Hermon region is scarce or thin, 

hence soil zone generated CO2 is of minor influence in this area. Within the Hermon springs, 

the Sion spring showed a calculated PCO2 value close to that of precipitation which is due to 

its ephemeral nature and the dominance of conduit flow in this spring. The highest partial 

pressure within these springs was calculated for the Kezinim spring supporting the 

assumption that Kezinim spring water is in longer contact time with the rock matrix allowing 

a stronger depletion of CO2 by the dissolution of carbonates than in the other Hermon springs. 

In the Golan springs,  the Elmin Jedida spring water displayed highest partial pressure of CO2 

suggesting it has a comparatively high contact time with the rock matrix. 

All Hermon springs were in saturation (-1.5 < SI < 1) with respect to calcite and dolomite 

(Table 19) indicating predominantly limestone and dolostone source rocks. As expected from 

the literature review, the Banias and Kezinim spring were slightly less undersaturated with 

respect to gypsum than the other Hermon springs suggesting a different intake area and the 

occurrence of these kind of minerals in that intake area. The Sion spring is ephemeral which 

was reflected in its highest undersaturation towards all investigated minerals except for calcite 

and aragonite. Kezinim spring was less undersaturated towards most minerals than all the 

other Hermon springs indicating a longer contact time of infiltrating water with the rock 

matrix and hence longer residence times.  
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6.2 STABLE ISOTOPE COMPOSITION OF GROUNDWATER 

Similar to the hydrochemical signature, the stable isotope composition of the sampled 

groundwater allowed to distinguish between the two groups of groundwaters: 

 groundwater recharged in the Golan basalt aquifer and 

 groundwater emerging from the Arad Group aquifer of Mount Hermon. 

The mean stable isotope composition of the Hermon springs during the sampling period 

ranged from -7.55 to -7.27 ‰ and -39.1 to -36.9 ‰ for δ18O and δ2H, respectively (Table 20). 

The deuterium excess values varied between 20.6 ‰ and 21.7 ‰. Hermon spring 

groundwaters were slightly depleted compared to the isotopic composition of the Golan 

springs suggesting they are recharged at higher altitudes and/or lower temperatures. 

Additionally, springs sampled in the Hermon Mountains plot close to the local and 

Mediterranean MWL (Figure 31a) implying that recharge occurs by rapid infiltration with 

little evaporation prior to recharge as common in karstic regions that promote infiltration 

through sinkholes and conduits. 

The δ18O and δ2H values in the Golan springs ranged between -6.86 to -6.37 ‰ and -32.1 to      

-25.1 ‰, respectively. The deuterium excess values show a comparatively broader range of 

21.6 to 27.4 ‰. The slightly enriched stable isotope composition compared to the Hermon 

springs reflects recharge at low altitudes and/or high temperatures. Differences in the stable 

isotopic composition of groundwater in the Golan and Hermon springs ranged between -1.18 

to -0.41 ‰. Referring to an altitude effect of -0.23 ‰ per 100 m for δ18O in precipitation as 

determined within this study, mean recharge altitudes for the investigated Golan and Hermon 

springs would differ by just 180 to 450 m. Even if the Golan ‘Side springs” are recharged at 

altitudes between 900 to 1000 m as suggested by DAFNY et al. (2006), this difference seems 

low when considering the total height of Mount Hermon (2814 m a.s.l.). 
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Table 20: Mean stable isotope composition of spring waters in the northern UJRC during 
2002-2004. 

Spring δ18O ± σ δ2H ± σ d ± σ 
 ‰ ‰ ‰ ‰ ‰ ‰ 

Hermon springs       
Kezinim -7.27 0.06 -36.9 0.9 21.2 0.9 
Banias -7.49 0.11 -38.3 1.0 21.7 1.0 
Dan -7.41 0.13 -38.4 1.1 20.8 1.0 
Leshem -7.44 0.17 -39.0 1.2 20.6 1.0 
Barid -7.45 0.07 -37.9 2.3 21.7 2.4 
Sion -7.55 0.25 -39.1 0.8 21.3 2.2 

Golan springs       
Dupheila -6.67 0.12 -30.4 1.1 23.4 1.3 
Divsha -6.78 0.08 -32.1 0.4 22.1 0.6 
Bet HaMekhes -6.37 0.06 -28.1 0.8 22.7 0.8 
Elmin Jedida -6.38 0.05 -29.6 0.5 21.6 0.6 
Gonen -6.76 0.08 -31.3 0.8 23.0 1.0 
Hamroniya -6.86 0.09 -31.9 0.9 23.5 0.8 
Jalabina -6.50 0.13 -29.1 0.79 21.6 0.7 
Notera -6.63 0.21 -25.1 1.75 27.4 2.2 

 

Groundwater samples of the Golan “Side springs” plot below the Mediterranean MWL 

indicating that infiltrating water has been subject to evaporation during its passage through 

the unsaturated zone. Golan groundwater plot along an evaporation line with a slope of 6.41. 

The most enriched values were observed for the Bet HaMekhes and Elmin Jedida springs 

(Figure 31), hence evaporative effects on these groundwaters were highest compared to the 

other ‘Side springs’. Reverting to the hydrogeological model introduced by DAFNY et al. 

(2006), springs with the more depleted stable isotopic compositions are fed by old (> 

50 years) groundwater recharging at high altitudes and covering long flow distances. On the 

other hand, more enriched values of δ18O specify springs fed by shallow groundwater or 

receiving contributions from perched aquifers recharged at low altitudes. Thus, the Bet 

HaMekhes and Elmin Jedida springs were assumed to collect more local recharge from 

surroundings of the springs which is subject to evaporation, while the Hamroniya spring 

receives more water from the regional aquifer. 
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Figure 31: Relationship between mean δ18O and δ2H values for springs sampled in the 
northern UJRC. Figure a) distinctive grouping of groundwaters emerging in the 
Hermon Mountains and in the Golan Heights, Figure b) mean stable isotope 
composition of the Golan “Side Springs”, Figure c) seasonal stable isotope 
composition of the Hermon springs.  
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Strikingly, the δ18O and δ2H composition were quite similar for all of the Hermon springs. If 

the mean recharge altitudes of the springs would lay somewhere in between the altitude of the 

springs outlet and the top of Mount Hermon, δ18O gradients between 4 to 6 ‰ could be 

expected based on the estimated δ18O-altitude gradient. Since this is not the case, springs were 

assumed to be recharged at similar altitudes receiving different portions of conduit flow. 

Within the Hermon springs, a characteristic stable isotope pattern was recognizable. The 

Kezinim spring, assumed to be fed mainly by diffusive matrix flow (GUR et al., 2003) and 

shown to be of distinct hydrogeochemical composition (Table 17, Table 18) displays the most 

enriched stable isotope composition with only minor seasonal variations. Slightly more 

depleted in its stable isotope composition are the waters of the Dan and Leshem spring during 

autumn (October/November) and winter (December-March), and the Banias spring water 

during summer (June-September) and autumn representing baseflow conditions in the 

respective springs. Most depleted values of δ18O and δ2H were determined for the Sion 

spring, the Dan and Leshem spring during springtime (April/May) and summer and, the 

Banias spring in winter and spring. This depletion of δ18O and δ2H in the spring waters was 

attributed to significant contributions of freshly infiltrated water, in particular to the 

contribution of melt waters originating on the high slopes of Mount Hermon.  

 

6.3 MIXING OF GROUNDWATER SOURCES IN THE UJRC 

One objective of this study was to define the different end-members contributing to the 

discharge of the Hermon and Golan springs. The determination of end-members is a 

precondition for the intended application of mass-balance approaches and mixing models (see 

chapter 2.4.3.1), techniques that allow to quantify the contribution of single flow components 

to spring discharge. Generally, conservative natural tracers such as chloride, δ2H and δ18O 

that don’t interact with the rock matrix and are assumed to originate exclusively from 

precipitation are combined in mixing models to identify different discharge components. 

However, sometimes one natural tracer alone will fail to recognize all end-members involved 

in discharge generation. Instead, the use of different tracers representative either for 
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anthropogenic pollution or for the contribution of waters from certain lithogenic layers might 

lead to more meaningful results (LEE and KROTHE, 2001; TARDY et al., 2004 among others).  
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Figure 32: Relationship between mean oxygen isotopic composition and mean chloride 
concentration in the sampled Hermon spring waters and in Mt. Hermon snow. For 
the Banias and Kezinim spring, mean seasonal compositions are given. The error 
bars represent 1σ uncertainty. 

6.3.1 Hermon springs 

For the Hermon springs, chloride and sulfate were used as tracer in addition to the stable 

water isotopes (see chapter 6.2). Plotting δ18O versus chloride for the investigated springs 

(Figure 32) revealed a linear relationship suggesting the mixing of two end-members: 1) 

precipitation represented by Hermon snow and 2) diffusive flow characterized by the 

chemical and isotopic composition of Kezinim groundwater (in particular during autumn). 

The Dan, Leshem, Barid, Sion and Banias groundwater fall on a mixing line between both 

components. Seasonal variations are highest for Banias water. During spring, the groundwater 

source tended to the precipitation end-member while it was close to the diffusive flow end-

member during autumn and winter. KAFRI et al. (2002) suggested that the Sion-Rachaya fault 

divides the southern Hermon into an eastern and western recharge area. Hence, the Kezinim 

and Banias springs emerging in the southeastern part of Mt. Hermon receive geogenic 

contributions that cause the observed high chloride concentrations. These geogenic 

contributions are absent in the western recharge area.  
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Since sulfur is known to originate from marine sources within the recharge area of the 

Kezinim and Banias spring, sulfate was plotted versus chloride to further investigate the 

springs hydrogeology. While the Dan, Barid and Leshem spring water corresponded to the 

second end-member of a perfect mixing line between Mt. Hermon snow and these 

groundwater (Figure 33) suggesting no additional source of sulfate, a different pattern is 

observed for the Banias and Kezinim spring. Accordingly, the chemical composition of the 

Kezinim spring during summer and autumn represents the diffusive flow end-member. This 

end-member originates from parts of the aquifer containing evaporites (a possible gypsum 

source). Springs with high sulfate concentrations are frequently found in carbonate aquifers as 

a result of evaporite dissolution (GUNN et al., 2006). Banias spring water plot along a mixing 

line between the diffusive end-member and waters that are - in their chemical composition - 

similar to waters emerging at the Dan or Barid spring. 
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Figure 33: Relationship between mean sulfate and mean chloride composition in the sampled 
Hermon spring waters and Mt. Hermon snow. For the Banias and Kezinim spring, 
mean seasonal compositions are given. Grey frames indicate the suggested end-
members. The error bars represent 1σ uncertainty. 

Groundwater systems can receive local, intermediate and regional recharge depending on 

topography, basin depth and geological heterogeneity in the catchment (TÓTH, 1963). 

Theoretically, the hydrogeologic boundary conditions met in the UJRC (chapter 3.5) promote 

both, local flow and deep circulation of groundwater. Based on the conducted physico-



 

110 

chemical and stable isotope analyses, it is assumed that the Kezinim spring is characterized 

by: 
 

 a thermal regime (spring temperature is more than 5 K higher than the local 

mean annual temperature), 

 highest mineralization within the Hermon springs, 

 in particular, high concentrations of sulfate, chloride and silicate 

 comparatively enriched values of δ18O and δ2H, 

 and low seasonal variations in its isotopic and chemical composition, 

indeed represents a diffusive (matrix flow) component migrating to deep parts of the aquifer 

that are in contact with evaporites beds before rising back to the surface, the flow possibly 

directed by fault zones. The Banias spring also receives contribution of this diffusive flow 

component during baseflow as shown by its high sulfate concentration during autumn and 

summer (Figure 33). In contrast, water of the Dan, Barid, Leshem and Sion spring represent a 

shallow (local) calcium-bicarbonate type of groundwater where transport occurs in changing 

portions through both conduit/fissure and matrix flow. This is supported by the fact that the 

Sion spring, an ephemeral outlet known to be recharged through dolinas and conduits reveals 

similar hydrochemical characteristics as the Dan, Barid and Leshem springs. These 

assumptions were further supported through the conducted estimations of mean water 

residence times (chapter 6.8.1). 

Consequently, three end-members are suggested to contribute to the Banias spring discharge: 

 a direct (local) component with short residence times representing snow and rain 

recharge quickly transferred to the spring via conduits, 

 an indirect (interflow) component with medium residence times representing 

infiltrated snow and rain stored in the epikarst zone and that, after this zone is 

saturated, travels to the spring through conduits and fissures, 

 an indirect component with long residence times representing the diffusive flow 

component from the phreatic aquifer and dominating the Banias spring discharge 

during summer and autumn. 
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While the epikarst component is represented by the chemistry of the Sion spring, Kezinim 

water corresponds to the diffusive flow end-member as shown before. These results agree 

well with a study of GUR et al. (2003) who investigated the different end-members 

contributing to the flow of the Hermon springs.  

 

6.3.2 Golan springs 

DAFNY et al. (2006) developed a conceptual hydrogeological model for the Golan basalt 

aquifer suggesting the contribution of a regional aquifer and local perched aquifers to the 

Golan springs outflow. In the present study the focus was on the Golan “Side springs”. These 

emerge on the western flanks of the plateau and contribute with about 50 106m³ per year 

significantly to the discharge of Upper Jordan River. In addition to tritium, 18O and 

deuterium, dissolved silica (SiO2) was chosen to be a meaningful natural tracer in the 

groundwaters of this basaltic environment. 
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Figure 34: Relationship between mean oxygen isotopic composition and mean SiO2 
concentrations in the investigated Golan “Side springs”. Groundwaters (with the 
exception of the Elmin Jedida spring) plot along a perfect mixing line as indicated 
by the given correlation coefficient. The error bars represent 1σ uncertainty. 

Golan groundwaters plot on a mixing line between two end-members. One end-member is 

characterized by comparatively enriched values of δ18O, as well as generally high chloride 
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concentrations but low concentrations of silica (Figure 34, Figure 35). This end-member 

represents groundwater from the regional aquifer that is recharged in the eastern part of the 

Golan Heights (partly in Syria) traveling east to west trough deep parts of the aquifer. Low 

tritium concentrations of about 0-0.9 TU indicating groundwater mean residence times > 50 

years in these springs support this assumption (Figure 35). Springs with significant 

contributions of this end-member are the Elmin Jedida, Bet HaMekhes and Jalabina spring. 

These springs are geographically the southernmost of the investigated ‘Side springs’. 

Springs that receive different portions of the second end-member are distinguished by more 

depleted δ18O, low concentrations of chloride and high concentrations of silicate (Figure 34, 

Figure 35). Since these characteristics coincide with tritium concentrations close to recent 

atmospheric tritium, it is assumed that the second end-member represents local recharge that 

derives its chemical pattern mainly in the unsaturated zone. Hence, springs that receive 

significant portions of recharge through the unsaturated zone will be characterized by 

depleted δ18O, low chloride and high silicate concentrations such as the Hamroniya, Gonen, 

Notera, Divsha and Dupheila springs. 
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Figure 35: Relationship between tritium and mean dissolved SiO2 concentrations in the 
investigated Golan “Side springs”. Groundwaters (with the exception of the Elmin 
Jedida spring) plot along a mixing line further indicated by the given correlation 
coefficient. The error bars represent 1σ uncertainty. 
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In contrast to dissolved chloride, silicate originates through weathering of the basaltic rocks. 

Generally, the dissolution of silica occurs very quickly (KENNEDY, 1971) and rainwater 

infiltrating into the basaltic rocks of the Golan Heights reached chemical equilibrium within 

one month as shown by SENDLER (1981) in lab experiments. However, ongoing infiltration of 

(in respect to silicate) undersaturated rainwaters into the unsaturated zone of the Golan 

Heights enables for high dissolution rates of silicate and subsequently, higher silicate 

concentrations in the shallow groundwaters compared to groundwater from the regional 

aquifer. The observed silicate concentrations in the “Side springs” correspond well to the 

concentration range (28-36 mg/L) monitored by KAFRI et al. (2002) for basaltic groundwaters 

in northern Israel. 

Generally, the chemical and isotopic composition of the Golan ‘Side springs’ seem to follow 

a north-to-south gradient in that way reproducing the climatic and geological gradient 

observed for the Golan Heights (see chapter 3.2 and 3.5.3). The northern Golan is 

characterized by a comparatively thick aquifer, a thick unsaturated zone and high amounts of 

precipitation and recharge. Here, ‘Side springs’ such as the Hamroniya, Gonen and Notera 

springs display high contributions of unsaturated zone water resulting in tritium-rich 

groundwater with low chloride and high silicate concentration. In the south, where 

evaporative effects increase and comparatively less recharge through the unsaturated zone 

occurs, low-tritium water with high amounts of chloride are found in the Bet HaMekhes and 

Jalabina spring. 

 

6.4 ESTIMATION OF RECHARGE ALTITUDES AND GROUNDWATER RECHARGE RATES 

6.4.1 Recharge altitude 

The established relationship between the stable isotope (δ18O, δ2H) composition of 

precipitation and altitude as given in chapter 5.3.7 allows to identify the mean replenishment 

areas for the investigated springs. For the southern Hermon Mountains, the observed gradient 

is about  -0.26 ‰ per 100 m altitude for δ18O (Figure 37). The major springs in this area all 

emerge at low slopes of the Hermon Mountain at altitudes between 180 m to 390 m. Since 

their mean isotopic composition is very alike ranging between -7.27 ‰ and -7.55 ‰ for δ18O, 
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one would assume that they are recharged at similar altitudes. However, Hermon springs are 

mainly fed by snowmelt recharge. The melting of snow is usually accompanied by 

fractionation processes resulting in the enrichment of infiltrating waters (STICHLER et al., 

1981; UNNIKRISHNA et al., 2002). TAYLOR et al. (2002) showed that the isotopic enrichment 

in a snowpack during a melting event was about 3 to 5 ‰ with high local variations. That 

means infiltrating snowmelt does not possess the isotopic altitude information anymore.  
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Figure 36: Local “Enrichment” Lines (LELs) of the investigated Hermon springs plotted 
against the Local Meteoric Water line (LMWL) based on weekly bulk samples  of 
precipitation. Frames indicate the initial stable isotopic composition (δ18O, δ2H) of 
the recharged groundwaters. 

In this study, the mean isotopic (δ18O) composition of precipitation infiltrating into the 

recharge area of the respective spring was suggested to be retraceable. For each spring, so-

called local enrichment lines (LEL)4 were plotted against the local meteoric water line 

(LMWL) determined for weekly precipitation samples in the northern UJRC. Intersects of 

LELs with the LMWL were assumed to represent the spatially integrated, amount-weighted 

stable isotope composition of precipitation (Figure 36).  

Based on the corrected mean isotopic composition of infiltrating waters mean recharge 

altitudes were estimated (Figure 37). As a result, the mean recharge altitudes of the Banias 

                                                 
4 Generally, local evaporation lines are plotted against the LMWL to define the initial stable isotope 
composition of lake waters or brines before evaporation (GAMMONS et al., 2006). In our case however, the 
deviation of the groundwaters from the meteoric water line can be due to enrichment during snowmelt also. 
Hence, the regression lines are called local enrichment lines comprising both evaporation and snowmelt effects. 
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and Kezinim springs were calculated to be about 1260 m. The Dan, Leshem and Barid are 

replenished from a mean recharge altitude of about 1560 m, while the Sion springs mean 

recharge altitude is at about 1320 m. However, since the extent and location of the springs 

subsurface catchment areas are still unknown it is difficult to verify these estimations. Based 

on an altitude gradient of -0.25 ‰ per 100 m for δ18O in shallow groundwater of the Golan 

Heights, DAFNY et al. (2006) estimated the recharge altitudes for the Golan “Side springs” to 

be about 750-900 m. 
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Figure 37: Altitude versus δ18O in precipitation in the southern Hermon Mountains. The line 
is a best-fit to daily rainfall samples taken during 2002-2004. Isotopic composition 
of the springs was corrected for enrichment effects (see Figure 36). Their main 
recharge elevation is inferred by determining the altitude at which precipitation 
has approximately the same isotopic composition. 

6.4.2 Groundwater recharge rates 

The term groundwater recharge describes the infiltration of water (precipitation) through the 

unsaturated zone and its addition to the aquifer. Given that infiltration is spatially distributed 

over large areas, the term diffusive (direct) recharge is being used. In semi-arid areas, 

(indirect) localized recharge at wadis (dry stream beds), ephemeral streams, lakes or through 

preferential flow in fractured rocks are common phenomena (SCANLON et al., 2006).  

A review on techniques to quantify groundwater recharge in the unsaturated or saturated 

zones by physical, chemical, isotopic or modelling approaches is given by LERNER (1990), 
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HENDRICKX and WALKER (1997), ZHANG (1998), KINZELBACH et al. (2002), SANFORD 

(2002), VRIES and SIMMERS (2002), and SCANLON et al. (2002). However, the method most 

widely used to estimate groundwater recharge rates in unsaturated as well as saturated zones 

is the chloride mass balance (CMB) which is also applied in this study. This technique is 

based on the assumption that chloride behaves conservatively and that Cl- concentrations in 

groundwater solely increase because of evaporation in the upper part of the unsaturated zone 

and remain constant below this depth. Chloride concentrations can be reliably determined for 

atmospheric deposition and groundwaters, thus a mass balance approach allows to quantify 

groundwater recharge locally or on a regional scale. Accordingly,  

GW

PP
R

Cl
Cl×

=  

where R [mm/year] is the annual recharge rate, P [mm/year] the mean annual precipitation, 

ClP [mg/L] the average chloride concentration in precipitation, and ClGW the average chloride 

concentration in groundwater. 

In this study, recharge rates were estimated separately for the Hermon and Golan springs, the 

results are presented inTable 21. Since mean annual chloride concentrations determined in the 

Hermon springs are significantly influenced by fast flow components resulting in the dilution 

of Cl- concentrations, mean chloride concentrations during winter (baseflow conditions) were 

chosen to represent diffusive groundwater flow. 

Based on the mean annual precipitation for the Hermon region determined by RIMMER et al. 

(2006), recharge in the Hermon springs ranged between 12 to13 % P for the Banias and 

Kezinim spring to about 20 % P for the Barid, Leshem and Dan springs. Since the Banias and 

Kezinim spring both receive chloride contributions from the aquifer as shown earlier (chapter 

6.1.2), recharge rates for these springs are underestimated. For the Golan “Side springs”, 

recharge estimates differed between 12 % to 16 % of mean annual precipitation and agreed 

well with the suggested 10 to 30 % of the total precipitation as received by other authors for 

this region (DAFNY et al. 2006; BURDON, 1954; MERO and KAHANOVITZ, 1969; MICHELSON 

and MICHALI, 1971; MICHELSON, 1979). 
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Table 21: Estimated groundwater recharge rates for the investigated springs in the UJRC. 
ClGW represents the mean concentration of chloride during baseflow (winter), P 
the mean annual precipitation for the Hermon region1) and ClP the median 
concentration of chloride in snow (Hermon springs) and rain (Golan springs). R is 
the calculated recharge rate given in mm/year and % of mean annual 
precipitation. 

Spring ClGW P ClP R R  
 mg/L mm/year mg/L mm/year % P  

Hermon springs       
Barid 6.4 958 1) 1.31 196 20  
Leshem 6.3 958 1) 1.31 199 21  
Dan 6.9 958 1) 1.31 182 19  
Banias 10.3 958 1) 1.31 122 13 (+ geogenic chloride) 
Kezinim 11.1 958 1) 1.31 113 12 (+ geogenic chloride) 

Golan springs       
Gonen 14.9 800 2) 2.41 3) 129 16  
Divsha 15.1 800 2) 2.41 3) 128 16  
Jalabina 17.2 800 2) 2.41 3) 112 14  
Notera 17.4 800 2) 2.41 3) 111 14  
Hamroniya 17.1 800 2) 2.41 3) 113 14  
Dupheila 16.1 800 2) 2.41 3) 120 15  
Bet HaMekhes 20.7 800 2) 2.41 3) 93 12  
Elmin Jedida 19.7 800 2) 2.41 3) 98 12  

1) RIMMER et al. (2006) 
2) HARRIS (1978), NAOR and COHEN (2003) 
3) HERUT et al. (2000) 

 

Another hydrogeological problem so far unsolved for the Upper Jordan River Catchment was 

the determination of the subsurface recharge areas (RIMMER et al., 2006). Orographic 

catchment areas as given in Table 5 cannot account for the observed recharge rates. Thus, 

based on the estimated recharge rates (Table 21), subsurface catchment areas were 

approximated by applying: 

R
MFAR =  

where AR [km²] is the recharge area of the respective spring (or stream), MF [L/s] is the mean 

annual discharge measured for the spring (or stream), and R [L/s km-²] is the estimated 

recharge rate as presented in Table 21. Assuming that the Dan and Leshem spring are the 

major contributors to mean annual discharge in the Dan stream, the combined subsurface 

recharge area for these two springs was calculated to be about 1324 km². Hence, recharge to 
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the Dan stream generates from a big part of the Anti-Lebanon/Hermon mountain range 

(actually laying in Lebanon and Syria). The combined subsurface catchment area for the 

Banias and Kezinim spring was estimated to be about ≈ 523 km² based on mean flow of the 

Hermon stream and a recharge rate of 20 % P, thus exceeding the surface catchment area of 

the Hermon stream (105 km²) by far. The same might be true for the Senir stream, however, 

within the scope of this study there were no means to study the hydrochemistry of the 

contributing Wazani and El-Hazbani springs. However, the quality of these estimations is 

limited by uncertainty in the determination of the mean annual precipitation on Mount 

Hermon, a problem to be addressed in future investigations. Subsurface recharge areas for the 

Golan springs ranged between 0.6 to 3 km³ based on the yields given by MICHELSON (1996; 

Table 3). 

 

6.5 TEMPORAL VARIATIONS IN GROUNDWATER CHEMISTRY AND ISOTOPIC CONTENT 

Temporal variations observed or absent at groundwater outlets such as springs and wells 

comprise a variety of information about the nature of the underlying groundwater system. 

Continuous recharge to an aquifer of homogeneous porosity results in uniform discharge 

patterns. In contrast, heterogeneous (seasonal) recharge to a double-porosity system such as 

karst can lead to high variations of discharge and a broad range of tracer concentrations 

monitored at the systems outlet.  

A variety of chemical or isotopic tracer techniques are available to decode the nature of a 

specific aquifer (chapter 2.4.4). The dilution of non-reactive natural tracers indicates the 

addition of new water, i.e. recharge to the hydrogeological system. The stable isotopes of 

water in particular, were shown to be functional tracers to detect the arrival of new (event) 

water such as snowmelt or rain recharge. Snowmelt recharge for instance, is generally 

detected by depleted δ18O or δ2H concentrations in discharge compared to groundwater since 

the rapid melting of snow is characterized by a loss of light isotopes in respect to the 

remaining snow cover (RODHE, 1981; STICHLER et al., 1981; TAYLOR et al., 2001). However, 

although still lighter than groundwater, subsequent meltwaters generally show a progressive 
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enrichment of stable water isotopes (TAYLOR et al., 2002), a fact to be considered when 

applying hydrograph separation techniques. In this study, the main goal was to detect and 

quantify the contribution of different reservoirs to discharge measured at the springs and thus 

to deduce the vulnerability of the groundwater system towards climate change. Although a 

broad range of natural tracers were monitored for the Hermon and Golan springs, the 

understanding of the underlying hydrogeology was based particularly on the selection of  

natural tracers given in Table 22 and Table 23.  

 

6.5.1 Hermon springs 

Temperature and electrical conductivity are both easy-to-monitor tracers. Temperature 

measurements might indicate the arrival of new water when observing cold spring 

temperatures during the recharge season. These originate through the dilution of heat 

originally added by geothermal warming (MANGA and KIRCHNER, 2004).  

Changes in electrical conductivity on the other hand, point to dilution or enrichment of 

baseflow chemistry. Chloride was chosen because at least for the Hermon springs Sion, Dan, 

Barid and Leshem it acts as a conservative tracer as does sulfate. For the Banias and Kezinim 

spring, sulfate represents contributions from the phreatic part of the aquifer (compare chapter 

6.3.1) while chloride, though plotting close to the seawater-dilution-line, does not behave 

conservative due to the occurrence of halite beds in the aquifer feeding these two springs. The 

stable water isotopes, as mentioned above, help to distinguish new (event) water from pre-

event waters while the deuterium excess value reveals information either on the origin of 

recharge-generating precipitation or on fractionation effects during recharge. Two different 

intake areas have been suggested for the Hermon springs (KAFRI et al., 2002). An eastern 

intake area for the Banias and Kezinim spring on the one hand and a western one for the Dan, 

Leshem and Barid spring on the other hand. A hypothesis that is further supported by the 

findings of the conducted temporal analyses in this study. 
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Table 22: Seasonal distribution of mean natural tracer concentrations in the major Hermon 
springs (autumn: October-November, winter: December-March, spring: April-
May, summer: June-September). 

Spring Season T EC Cl- SO4
2- δ18O δ2H d 

  °C µS/cm mg/L mg/L ‰ ‰ ‰ 

Barid autumn 16.0 321 6.0 5.2 -7.42 -39.4 20.0 
 winter 15.7 335 6.4 5.7 -7.42 -36.3 23.0 
 spring - - - - - - - 
 summer 15.0 312 4.8 4.2 -7.54 -39.6 20.7 

Leshem autumn 15.2 320 5.8 6.2 -7.41 -39.0 20.3 
 winter 15.3 328 6.3 5.9 -7.36 -38.4 20.5 
 spring 14.9 303 5.6 4.7 -7.62 -39.5 21.3 
 summer 14.8 302 5.1 4.7 -7.63 -40.9 20.2 

Dan autumn 16.0 349 6.8 7.7 -7.39 -38.2 20.6 
 winter 16.0 345 6.9 7.2 -7.35 -38.0 20.8 
 spring 16.0 336 6.4 6.5 -7.52 -37.8 21.9 
 summer 15.7 328 5.9 6.2 -7.56 -40.0 20.5 

Banias autumn 15.6 462 10.0 56.8 -7.43 -37.9 21.5 
 winter 15.2 387 10.3 28.8 -7.49 -38.3 21.6 
 spring 14.5 331 6.8 14.6 -7.64 -38.0 23.1 
 summer 15.1 385 8.3 30.5 -7.44 -39.1 20.5 

Kezinim autumn 20.4 607 10.7 122.2 -7.25 -36.9 21.1 
 winter 19.6 553 11.1 96.9 -7.27 -36.9 21.3 
 spring 19.8 546 9.6 94.1 -7.29 -36.7 21.9 
 summer 20.6 591 10.4 118.5 -7.25 -37.4 20.5 

 

The Dan spring was - compared to the two other springs of the western intake area - Barid and 

Leshem, the most stable when looking at the temporal development of its water chemistry. All 

three springs exhibited more or less the same seasonal pattern. The highest temperatures, 

electrical conductivities, ion concentrations and most enriched values of δ18O and δ2H were 

observed during autumn and winter indicating baseflow conditions. On the other hand, the 

lowest temperatures, electrical conductivities, ion concentrations and most depleted stable 

water isotopes were monitored during spring and summer demonstrating the influence of 

recent (winter) recharge. The most significant contribution of recharge to these sources 

occured in springtime accompanied by high discharge and strong dilution effects on the 

groundwater chemistry (Table 22, Figure 38).  
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Figure 38: Seasonal development of monthly discharge, temperature, electrical conductivity, 
major ions and stable isotopes (δ18O, δ2H) in the Banias spring during the study 
period 2002-2004. Also shown are the annual accumulated rain amounts measured 
at the Banias Nature Reserve. The parameter that is mentioned first in the legends 
above the graphs refers to the left axis, the second one to the right axis. 
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Figure 39: Seasonal development of monthly discharge, temperature, electrical conductivity, 
major ions and stable isotopes (δ18O, δ2H) in the Dan spring during the study 
period 2002-2004. Also shown are the annual accumulated rain amounts measured 
at the Dan Nature Reserve. The parameter that is mentioned first in the legends 
above the graphs refers to the left axis, the second one to the right axis. 

No direct response to winter precipitation was detected for these springs because of three-

month delay suggesting a vast intake area where incoming water is significantly diluted. 

Another reasonable explanation could be, that the Dan, Leshem and Barid spring are 

recharged at higher altitudes where winter precipitation is stored as snow. Hence, recharge is 
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only activated when rising temperatures in spring cause the snow to melt. Consequently, the 

discharge delay is not caused by the nature of the hydrogeological flow system but by the 

snow cover on Mount Hermon that acts as an external reservoir distributing recharge over 

time. The importance of snowmelt recharge during spring was additionally confirmed by high 

values of deuterium excess monitored during that time (Table 22). At first, this appears 

contradictorily to conclusions drawn before on the enriched stable isotope composition (δ18O, 

δ2H) of snowmelt in comparison to precipitation (fresh fallen snow) (see chapter 6.4.1). 

However, this is not the case. The overall composition of snowmelt that recharges the 

Hermon springs is enriched in comparison to precipition on Mt. Hermon because of 

fractionation processes during the melting of the snowpack. Yet, the initial melting of a 

snowcover is accompanied by the release of melt water with light water isotopes (STICHLER 

et al., 1981; UNNIKRISHNA et al., 2002; HUTH et al., 2004). Since the early melting events are 

also those with the highest release of meltwater into the Hermon aquifer as shown by the Sion 

stream hydrograph (Figure 50), meltwater that quickly reaches the spring will display 

comparatively light stable isotopic composition and high deuterium excess values. 

The same occurrence of elevated deuterium excess values was observed for the springs of the 

eastern intake area, Banias and Kezinim, indicating the importance of snowmelt for these two 

springs as well. However, while the Kezinim spring exhibits a relatively stable groundwater 

chemistry and isotopic composition over time representing its diffusive flow nature, the 

karstic character of the Banias springs is clearly shown by its variable spring chemistry. In 

contrast to the springs of the western intake area, the Banias spring showed an immediate 

response to winter precipitation accompanied by the dilution of geochemical tracers and 

depleted values of stable water isotopes (Table 22, Figure 40). Highest temperatures, 

electrical conductivities, ion concentrations and most enriched values of δ18O and δ2H are 

observed during summer and autumn indicating baseflow conditions. 

The importance of conduit flow to the Banias spring becomes even more evident when 

looking at Banias spring runoff in December 2002 (Figure 40). From December 9th to 12th, 

83.3 mm of accumulated rain were measured at the Banias Nature Reserve resulting in a 

slight but immediate contribution of new water to the springs discharge leading to lower 
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temperatures, electrical conductivities, ion concentrations and slightly more depleted 

concentrations of δ18O and δ2H. Additional 95.2 mm of precipitation from December 17th to 

21st led to increased concentrations of chloride and sulfate and enriched values of the stable 

water isotopes pointing to the activation of more mineralized water. Another rain spell on 

December 24th produced major dilution effects on groundwater chemistry, low water 

temperatures and a peak of light δ18O and δ2H. This type of temporal isotopic and chemical 

signature is explained by an epikarst storage-displacement mechanism. 
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Figure 40: Temporal variations of temperature, electrical conductivity, sulfate, chloride and 
the stable water isotopes during three subsequent rain events in December 2002. 
Also shown are daily rain values and monthly discharges measured at the Banias 
Nature Reserve. The parameter that is mentioned first in the legends above the 
graphs refers to the left axis, the second one to the right axis. 

The first rain event led to the saturation of the epikarst zone which was thus connected to the 

main drainage system via conduit flow and resulted in the arrival of some of the low-

mineralized precipitation waters at the springs outlet. However, part of the water was stored 

within the epikarst and reacted with salts and minerals that were concentrated in the soil and 

epikarst zone by evaporation throughout the preceding dry season. During the second rain 
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event, precipitation from the previous event stored in the epikarst zone was displaced by the 

newly incoming waters and resulted in the observed flushing effects. Since the epikarst zone 

was already saturated during the third event, the additional precipitation led to the immediate 

displacement of now diluted epikarst water via the major drainage network leading to the 

monitored occurrence of depleted stable water isotopes and low-mineralized waters in the 

Banias spring (Figure 40). 

Since the delay of water is only within the range of a few days, the epikarst zone feeding the 

Banias spring is assumed to be a limited reservoir. For subsequent hydrograph separation 

studies it has to be taken into account that water monitored during a high discharge event (n) 

at the spring originates most likely from the previous precipitation event (n-1) as observed for 

other karst systems (AQUILINA et al., 2006). Within the scope of this study however, there 

were no means to continuously monitor discharge at the Banias spring in order to enable for 

event hydrograph separation. 

One of the objectives of this study was to estimate the contribution of snowmelt recharge to 

the sources of the Upper Jordan River. However, event-based analyses of single springs were 

not in the scope of this work. Additionally, discharge data, provided by the Hydrological 

Service of Israel, were only available for some of the springs. For the Kezinim spring for 

example, a measuring weir was installed only after the end of our field investigations. 

Nonetheless, contributions of different reservoirs to spring outflow were roughly estimated 

based on monthly discharge and mean monthly chemical and isotopic data for the Banias and 

Dan spring. 

 

6.5.2 Golan ‘Side springs’ 

Snowmelt is negligible on the Golan Heights and therefore rain is the principal recharge 

input. As described before, two types of aquifers control the discharge behaviour of most of 

the Golan “Side springs”, a deep regional and smaller perched aquifers (DAFNY et al., 2006). 

Since water from the deep aquifer has tritium ages > 50 years, only local recharge from the 

perched aquifers can lead to a seasonal bias in spring chemistry.  
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Table 23: Seasonal distribution of mean tracer concentrations in the Golan “Side springs” 
(autumn: October-November, winter: December-March, spring: April-May, 
summer: June-September). 

Spring Season T EC Cl SO4 δ18O δ2H d 
  °C µS/cm mg/L mg/L ‰ ‰ ‰ 

Gonen autumn 19.4 306 15.7 5.5 -6.78 -31.8 22.4 
 winter 18.0 316 14.8 5.8 -6.81 -32.8 21.6 
 spring 19.1 312 13.9 5.7 -6.72 -33.2 20.6 
 summer 19.9 317 15.0 6.4 -6.70 -32.3 21.3 

Divsha autumn 21.3 315 14.8 7.3 -6.85 -32.8 22.0 
 winter 19.4 325 14.7 6.6 -6.82 -33.1 21.4 
 spring 19.5 336 15.8 7.8 -6.71 -33.1 20.6 
 summer 20.5 336 16.0 6.9 -6.72 -32.5 21.3 

Jalabina autumn 20.3 326 18.0 4.2 -6.54 -31.5 20.8 
 winter 18.2 332 17.1 4.6 -6.47 -30.7 21.1 
 spring 18.4 328 16.5 5.0 -6.44 -30.6 21.0 
 summer 20.3 328 17.4 4.4 -6.53 -31.4 20.8 

Notera autumn 19.7 327 17.4 6.4 -6.70 -31.6 22.0 
 winter 19.4 333 16.7 6.6 -6.71 -30.6 23.1 
 spring 19.3 328 16.3 6.5 -6.50 -32.1 19.9 
 summer 19.7 337 17.8 5.9 -6.62 -31.7 21.2 

Hamroniya autumn 19.4 365 17.9 6.5 -6.80 -32.3 22.1 
 winter 19.2 341 16.9 5.8 -6.87 -33.4 21.5 
 spring 18.6 344 16.3 5.6 -6.90 -33.7 21.5 
 summer 19.0 340 17.7 5.7 -6.86 -33.5 21.3 

Dupheila autumn 19.4 367 17.6 7.6 -6.71 -31.8 21.9 
 winter 19.4 347 16.0 5.1 -6.73 -31.9 21.9 
 spring 19.4 349 15.6 5.5 -6.51 -32.2 19.9 
 summer 19.7 362 15.6 7.3 -6.61 -34.0 18.9 

Bet HaMekhes autumn 20.6 350 21.0 4.1 -6.42 -30.5 20.8 
 winter 19.1 361 21.0 4.3 -6.37 -29.9 21.1 
 spring 20.4 358 19.7 2.6 -6.33 -29.3 21.3 
 summer 21.1 356 20.4 3.8 -6.36 -30.7 20.2 

Elmin Jedida autumn 20.4 392 19.7 5.3 -6.39 -30.5 20.6 
 winter 20.3 398 19.5 5.1 -6.39 -30.2 21.0 
 spring 20.5 404 19.2 5.1 -6.34 -30.0 20.8 
 summer 20.8 403 20.1 4.6 -6.37 -30.4 20.5 

 

However, temporal variations in the investigated Side springs are small with a minor trend 

towards lower temperatures, electrical conductivities and  more depleted δ18O values during 
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winter and spring (Table 23). The thickness of the unsaturated zone and extensive mixing of 

incoming waters with baseflow cause the observed balanced chemical and isotopic 

composition of the groundwater outlets. 

 

6.6 BANIAS SPRING – LONG-TERM HYDROGRAPH SEPARATION 

The Banias spring is a perennial spring that responds quickly to precipitation (see above). 

This responsiveness is accompanied by large variations of the springs chemical and isotopic 

composition indicating the rapid mixing of event with pre-event water. However, during 

baseflow conditions, discharge and the isotopic and chemical composition of the Banias 

spring are constant. It thus seems evident that the diffusive flow system controls the spring 

discharge during baseflow and the conduit flow system dominates the spring after rain or 

snowmelt events, i.e. during recharge conditions (see also 2.1.1). Hence, in a first step, a two-

component mixing model using δ18O as tracers was applied to divide the observed spring 

discharge into an event (conduit flow) and a pre-event (diffusive flow) component.  

 

6.6.1 Two-component mixing model using δ18O as tracer 

The theoretical basis of this kind of analysis was given in chapter 2.4.3. Thus, the two-

component mass balance for pre-event water (diffusive flow) mixing with event water 

(conduit flow) in the Banias spring is given as: 

PEET QQQ +=  

PEPEEETT QQQ δδδ +=  

where QT is the total discharge measured at the Banias spring, QE is the amount of event flow 

(rain or snow that is rapidly transferred through conduits or fissures) and QPE is the amount of 

pre-event flow which is assumed to approximate baseflow. Delta notation represents δ18O for 

total discharge δT, event flow δE, or pre-event flow δPE. Combining the two equations results 

in: 

PEE

PET
TE QQ

δδ
δδ

−
−

=
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Although the available discharge, chemical and isotopic data allowed for a rough estimation 

of discharge components only, a necessary precondition was to define the isotopic 

composition of the event component (δE) as accurately as possible. Given the altitude-

dependent distribution of precipitation and its isotopic composition are known, a spatially 

integrated, amount-weighted value for the stable isotopic composition of the event component 

can be calculated with the help of GIS tools. Here, a different approach was applied. For each 

spring, so-called local enrichment lines (LEL) were plotted against the local meteoric water 

line (LMWL) determined for weekly precipitation samples in the northern UJRC. Intersects 

of LELs with the LMWL were assumed to represent the spatially integrated, amount-

weighted stable isotope composition of precipitation (see chapter 6.4.1, Figure 36). 

Precipitation is believed to have more or less the same chemical and isotopic (δ18O, δ2H) 

composition as the event component. 

The isotopic composition of the pre-event component was determined as the δ18O 

concentration of the month were baseflow conditions prevail which is indicated by the most 

enriched values for δ18O and δ2H. In the investigated case, the stable water isotope 

composition of the Banias spring during November 2002 and December 2003 was chosen to 

represent baseflow conditions. Input data for the conducted two-component hydrograph 

separations are given in Table 25.  

Monthly portions of the two flow components (event, pre-event water) determined for the 

hydrological years 2002/03 and 2003/04 in the Banias spring are given in Table 24.  

Table 24: Monthly portions of event (PE) and pre-event water (PPE) of total discharge at the 
Banias spring as determined by two-component hydrograph separation using 18O 
as a natural tracer.  

  Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

2002/03              
PE %  0 5 16 23 20 n.d n.d 15 n.d n.d n.d 
PPE %  100 95 84 77 80 n.d. n.d 85 n.d n.d n.d 

2003/04              
PE %   0 20 21 42 35 17 6 4 n.d n.d 
PPE %   100 80 80 58 65 83 94 96 n.d n.d 

n.d.: not determined. 
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Spring discharge at the Banias spring and the contribution of the different discharge 

components depend on the prevailing recharge pattern. The hydrological year 2002/03 was in 

terms of precipitation an extraordinary year following an average rain year in 2001/02. In 

2002/03 patches of snow persisted until midsummer on Mt. Hermon enabling ongoing 

recharge to the springs located in the area. The year 2003/04 in turn, was again an average 

precipitation year with the last major rain falling in February. 

Although pre-event water dominated the discharge of the Banias spring throughout the two 

investigated years (Table 24), event water which was assumed to represent the conduit flow 

system could account for up to 42 % of the springs total discharge. Unfortunately, sampling 

did not cover each month, however, for 2003/04 it could be shown, that the highest event 

water contributions occurred in March and April 2004 during the major melting of snow on 

Mt. Hermon. However, it seems unreasonable that the pre-event component represents 

diffusive (phreatic) flow alone since this water was shown to travel to great depths before 

rising to the surface again (chapter 6.3.1). Additionally, the strong dilution of sulfate 

concentrations that are representative for the diffusive (phreatic) flow component (Figure 38) 

suggests that pre-event water does not equal phreatic zone water but comprises an additional 

component. 

Epikarst storage was shown to play an important role in the flow system of the Banias spring 

(chapter 6.5.1) and other karst systems (PERRIN et al., 2003; EINSIEDL, 2005; LEE and 

KROTHE, 2003). The term epikarst generally describes the uppermost portions of the 

limestone where major carbonate dissolution takes place and conduits develop. Conduit 

development decreases with depth as the percolating water becomes less aggressive. Epikarst 

is situated beneath the soil zone, but above the permanently saturated (phreatic) zone. Hence, 

water passing through the epikarst must be understood as vadose (unsaturated) zone water 

although perched water tables might form during recharge events. This vadose zone water has 

a chemical and isotopic composition deriving from both the soil and the epikarst zone. In the 

case of the Banias spring, the Sion spring was chosen to represent the epikarst outlet 

conditions (see Figure 33).  
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6.6.2 Three-component mixing model using δ18O and sulfate as tracers 

The pre-event component was further delineated into a vadose (unsaturated) zone component 

deriving its chemical and isotopic signature from the epikarst and soil zone, and a phreatic 

diffusive flow component using δ18O and sulfate as tracers. This tracer combination was 

proven to display distinctly significant concentrations in all of the three flow components 

(Table 25) and has been used by Lee and Krothe (2001) for another karst terrain. High sulfate 

concentrations in particular, are representative for the diffusive (phreatic) flow component. 

Three-component mass balance equations describing the flow pattern at the Banias karst 

spring are written as follows:  

DFVADRST QQQQ ++=  

DFDFVADVADRSRSTT CQCQCQCQ ++=  

where Q and C represent discharge (in 10³m³) and concentration of dissolved sulfate (in 

mg/L) in rain/snow flow (RS) (= event water), vadose (VAD) and phreatic diffusive flow 

(DF) components, respectively. Eliminating QT from the equations above results in the 

following terms: 

DFVADRS QQQ '''1 ++=  

DFDFVADVADRSRST CQCQCQC ''' ++=  

where Q’RS = QRS/QT, Q’VAD = QVAD/QT and Q’DF = QDF/QT are the proportions of rain/snow 

flow, vadose and diffusive flow contributing to the total discharge at the Banias spring 

respectively. Rearranging these equations leads to the following relationships: 

DFVAD

RSRSTRSDF
VAD CC

CQCQC
Q

−
−+−

=
')1'(

'
 

)''(1' VADRSDF QQQ +−=  

To solve these equations the rain/snow component (event water) is identified by the two-

component mixing model introduced above using δ18O as a natural tracer. Subsequently, the 

portions of vadose and phreatic flow can be calculated. Again, it is a necessary requirement to 

determine the input tracer concentrations for the single discharge components. Direct flow 
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was assumed to be represented by the mean sulfate concentration of 50 snow samples taken 

on Mount Hermon. Mean sulfate concentrations of the ephemeral Sion spring were chosen to 

correspond to vadose flow sulfate signals. Diffusive flow was represented by sulfate 

concentrations measured at the spring during baseflow conditions (Table 25).  

Table 25: Input tracer concentrations of rain/snow (CRS) = event water (CE), vadose (CVAD) 
and diffusive flow (CDF) used in the three-component mixing model for the Banias 
spring. 

Hydr. year δ18O  Sulfate   
 CE CPE CRS CVAD CDF 
 ‰ ‰ mg/L mg/L mg/L 

2002/03 -8.19 -7.35 0.9 4.6 62.2 
2003/04 -8.19 -7.40 0.9 4.6 57.2 

 

Monthly portions of the two assumed discharge components (pre-event, event) determined for 

the hydrological years 2002/03 and 2003/04 in the Dan spring are given in Table 28. 

Table 26: Monthly portions of rain/snow (PRS), vadose (PVAD) and diffusive flow (PDF) of total 
discharge at the Banias spring as determined by three-component hydrograph 
separation using 18O and sulfate as a tracer.  

  Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

2002/03              
PRS %  0 5 16 23 20 n.d. n.d. 15 n.d. n.d. n.d.
PVAD %  0 25 60 65 66 n.d. n.d. 55 n.d. n.d. n.d.
PDF %  100 70 24 12 14 n.d. n.d. 30 n.d. n.d. n.d.

2003/04              
PRS %   0 20 21 42 35 17 6 4 n.d. n.d.
PVAD %   0 42 70 48 47 54 43 32 n.d. n.d.
PDIF %   100 38 10 10 18 29 51 64 n.d. n.d.

n.d.: not determined. 

 

Evidently, the rain/snow and vadose zone component play a significant role in the discharge 

behavior of the Banias spring and almost completely mask baseflow from January to May. In 

2002/03, direct flow (rain/snow) varied between 16 to 20 % during the precipitation rich-

months (January-March). In 2003/04 however, the water level in the epikarst zone was still 
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high and this reservoir quickly saturated resulting in rain/snow contributions of up to 42 %. 

Direct flow ceases in early summer and the importance of snow recharge is clearly seen by 

the magnitude of vadose zone flow during the investigated summer months. In June and July, 

epikarst contributions were between 32 to 54 %. Unfortunately, the data did not allow to 

detect the end of the recharge season. Since the storage capacity of the epikarst zone is 

limited, the importance of the vadose zone consists mainly in the delay of direct flow in that 

way distributing recharge over time. 

Obviously, discharge at the Banias spring is directly connected to current weather patterns. A 

long-residing snow cover on Mount Hermon will continuously supply recharge to the spring 

resulting in balanced flow and slow discharge recessions. On the other hand, average years 

with short precipitation seasons will lead to steep recessions and a quick depletion of the 

epikarst reservoir. Hence, the Banias spring is highly vulnerable towards potential climate 

effects suggested for the region (chapters 1.1, 3.2). 

 

6.7 DAN SPRING - HYDROGRAPH SEPARATION 

6.7.1 Two-component mixing model comparing δ18O, chloride and sulfate as 
natural tracers 

Dan spring waters plot along a perfect two-component mixing line when looking at 

conservative tracers such as δ18O, chloride and sulfate that were shown to have no additional 

source than precipitation in this aquifer (Figure 32, Figure 33). Thus, Dan spring chemistry 

and its isotopic composition represent a mixture of groundwater that is present in the aquifer 

and newly arriving recharge with an isotopic and chemical signal close or equal to that of 

precipitation. The discharge behaviour of the Dan spring is characterized by minor variations 

and a slow response indicating a vast diffusive reservoir and the absence of direct discharge 

(Figure 39). However, the conducted cross-correlation analyses showed that the spring 

responds with a lag of three months to precipitation (Table 41) proposing the existence of a 

fast to medium flow component in addition to baseflow. Also, the minimum rain depth 

needed to increase discharge in the spring is 150 mm (GUR et al., 2003), a rain amount often 

reached by December at the beginning of the rainy season. GILAD and SCHWARTZ (1978) 
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stated that the hydraulic head in the Dan spring groundwater reservoir is much higher than its 

topographic level when compared to the other Hermon springs, an assumption further 

evaluated by RIMMER et al. (2006). Also in the Dan spring, the first increase in discharge is 

accompanied by rising levels of electrical conductivity and chloride indicating the activation 

of older waters. SIMPSON and CARMI (1983) showed the appearance of older “pocket storage” 

water by means of tritium observations in the Dan spring discharge.  

The two-component mass balance for pre-event water (baseflow) mixing with event water 

(precipitation) in the Dan spring corresponds to the one applied for the Banias spring and is 

given as: 

PEET QQQ +=  

PEPEEETT CQCQCQ +=  

where QT is the total discharge measured at the Dan spring, QE is the amount of event flow 

(rain or snow that is rapidly transferred through conduits or fissures) and QPE is the amount of 

pre-event flow which is assumed to approximate baseflow. “C” notation represents δ18O,  

chloride or sulfate concentrations for total discharge CT, event flow CE, or pre-event flow CPE. 

Combining the two equations results in: 

PEE

PET
TE CC

CC
QQ

−
−

=
 

The isotopic composition of the event component (CE) was assumed to equal the one of the 

event component in the Banias spring hydrograph separation. Accordingly, the reconstructed 

spatially integrated, amount-weighted stable isotope composition of precipitation (Figure 36) 

was used for CE. The isotopic composition of the pre-event discharge component was 

determined as the 18O, chloride or sulfate concentration of the month with baseflow 

conditions which is indicated by the most enriched values for δ18O and highest concentrations 

of chloride and sulfate. In the investigated case, the isotopic and chemical composition of the 

Dan spring during October was chosen to represent baseflow in both hydrological years. Input 

data for the conducted two-component hydrograph separations are given in Table 27. 
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Table 27: Input tracer concentrations for δ18O, sulfate and chloride of the event (CE) and 
pre-event (CPE) components used in the two-component mixing models for the Dan 
spring. 

Hydr. Year δ18O  Sulfate  Chloride  
 CE CPE CE CPE CE CPE 
 ‰ ‰ mg/L mg/L mg/L mg/L 

2002/03 -8.19 -7.43 0.9 8.9 1.3 7.6 
2003/04 -8.19 -7.40 0.9 7.6 1.3 6.6 

 

Monthly portions of the two assumed discharge components (pre-event, event) determined for 

the hydrological years 2002/03 and 2003/04 in the Dan spring are given in Table 28.  

Table 28: Monthly portions of event and pre-event water in the Dan spring as determined by 
two-component hydrograph separation using 18O, sulfate and chloride as tracer, 
respectively. 

  Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

2002/03              
PE-δ18O % 0 (-4) (-4) (-9) (-13) (-8) 0 19 24 n.d. n.d. n.d.
PPE-δ18O % 100 (104) (104) (109) (113) (108) 100 81 76 n.d. n.d. n.d.
PE-SO4 % 0 10 12 9 1 (-6) 18 14 28 n.d. 29 n.d.
PPE-SO4 % 100 90 88 91 99 (106) 82 86 72 n.d. 71 n.d.
PE-Cl % 0 8 12 17 21 36 37 25 37 n.d. 43 n.d.
PPE-Cl % 100 92 88 83 79 64 63 75 63 n.d. 57 n.d.

2003/04              
PE-δ18O % 0 (-6) (-29) (-23) (-4) 14 18 9 15 12 n.d. n.d. 
PPE-δ18O % 100 (106) (129) (123) (104) 86 82 91 85 88 n.d. n.d. 
PE-SO4 % 0 7 2 1 16 16 12 18 16 (-7) n.d. n.d. 
PPE-SO4 % 100 93 98 99 84 84 88 82 84 (107) n.d. n.d. 
PE-Cl % 0 1 0 (-3) (-2) 7 8 20 19 (-12) n.d. n.d. 
PPE-Cl % 100 99 100 103 102 93 92 80 81 (112) n.d. n.d. 

n.d.: not determined. 

 

Discharge portions of event and pre-event water determined with the three different tracers 

(δ18O, SO4
2- and Cl-) are only to some extent reproducible. Low overall variation in the 

springs δ18O composition close to the analytical error of ± 0.15 ‰ introduces a high 

uncertainty to the mixing model calculations. This is particularly evident when looking at the 

calculated negative portions of event water (and the subsequently overestimated portions of 
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pre-event water) in the Dan spring during November 2002 to March 2003 as well as from 

November 2003 to February 2004 (Table 28). 

Though variations in chloride and sulfate concentrations in the Dan springs discharge are 

more distinct allowing for a more accurate discrimination of discharge components, also 

components calculated with these tracers are only in part reproducible. Hence, the mixing 

model is interpreted in a qualitative rather than a quantitative way. Generally, addition of new 

water to the Dan system doesn’t show in the springs outlet until March confirming the cross-

correlation results. Portions of new water in early and mid summer can contribute up 40 % as 

shown for the year 2002/03. In the following year, event water accounted for only up to 20 % 

of the streams flow, a result of less precipitation over the recharge area. Although the Dan 

spring is a comparatively well-balanced system mainly due to its vast intake area, the results 

show that event water amounts for a high portion of total discharge in the spring indicating 

the vulnerability of the system towards changes in recharge patterns and amounts. Infiltration 

of water into the karst system is fast and evaporative effects in the unsaturated zone are minor 

as shown by the springs stable isotopic composition, however, water is rapidly transferred 

through the system and the diffusive matrix storage can delay effects of drought only for a 

few years.   

A comprehensive discussion of validity of end-member mixing model based hydrograph 

separations is given in chapter 2.4.3.3. Besides the parametric and natural uncertainties due to 

sampling and analytical errors summarized as statistic uncertainties, the strong simplistic 

model hypotheses that mixing models refer to introduce significant uncertainties into the 

obtained results (JOERIN et al., 2002). So, understanding of the hydrograph separation results 

are rather qualitative in nature and should be combined with additional field data. In this 

study, additional uncertainties originated from the difficulties to adequately chemically and 

isotopically differentiate the source waters. 
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6.8 GROUNDWATER RESIDENCE TIMES 

6.8.1 Tritium content and mean residence time of groundwater 

Tritium (3H) is the short-lived isotope of hydrogen, has a half-life of 12.43 years (IAEA) and 

decays to 3He. Nuclear testing starting in the early 1950’s led to elevated concentrations of 

tritium in the atmosphere and hence, in precipitation. Atmospheric tritium levels culminated 

in 1963 and declined back to natural levels in the early 1990s. Since hydrogen is directly 

incorporated into the water molecule, tritium concentrations can serve as indicators of 

groundwater mean residence time given bomb tritium is still detectable in precipitation. This 

semi-quantitative technique to estimate groundwater mean residence times is based on the 

comparison of groundwater tritium values with historic records of nuclear-testing tritium in 

precipitation. Accordingly, water with tritium levels below detection limit (0.7 TU) has a pre-

1952 age (>50 years), water with tritium is of a post-1952 age (MAZOR, 2004).  

A more sophisticated approach is the use of lumped-parameter (MALOSZEWSKI et al., 2002) 

or numerical models (BORONINA et al., 2005) where – based on the known tritium input in 

precipitation - residence times are estimated by simulating the transport of tritium through an 

aquifer, so that the simulated concentrations match the observed values (see also chapter 

2.2.1). 

 

In the scope of this study precipitation was sampled for tritium analysis along an altitudinal 

gradient on two reference dates in January 2004 (Table 29). The conducted analyses revealed 

that the tritium content of precipitation accumulating in the UJRC has reached natural 

background levels ranging between 2.7 - 3.2 TU. Therefore, tritium concentrations in 

groundwater alone are no longer a reliable tool for estimating groundwater mean residence 

times so that other tracers or more sophisticated models have to be applied.  
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Table 29: Tritium content in precipitation accumulating in the Upper Jordan River 
Catchment. 

Location Altitude Date 3H ± 2σ 
 m a.s.l.  TU TU 

Kibutz Mayan Barukh 205 1/10/2004 3.2 0.4 
Tel Dan Nature Reserve 227 1/10/2004 2.8 0.4 
Banias Nature Reserve 360 1/10/2004 2.8 0.4 
Nimrod Nature Reserve 750 1/10/2004 2.9 0.4 
Moshav Neve Ativ 1000 1/10/2004 2.7 0.4 
Mount Hermon 1403 1/11/2004 2.9 0.4 
Mount Hermon 1500 1/11/2004 2.9 0.4 
Mount Hermon 1629 1/11/2004 3.2 0.4 
Mount Hermon 1725 1/11/2004 2.6 0.4 
Mount Hermon 1830 1/11/2004 2.7 0.4 
Mount Hermon 1927 1/11/2004 2.7 0.4 
Mount Hermon 2027 1/11/2004 3.2 0.4 

 

During this study, 14 springs in the Hermon Mountains and Golan Heights were sampled for 

tritium analysis in order to obtain an estimate of groundwater residence times in these areas. 

Sampling was conducted during October 2003 with the aim to exclude possible interflow 

contributions and to study baseflow conditions. Tritium concentrations in the Hermon springs 

range between 4.1 and 6 TU (Table 30) indicating that these groundwaters are dominated by 

recent recharge or a mixture of pre- and post-nuclear testing waters.  

Table 30: Tritium content in groundwaters emerging in the UJRC.  

Hermon springs 3H ± 2σ Golan springs 3H ± 2σ 
 TU TU  TU TU 

Kezinim 4.1 0.5 Dupheila 2.5 0.4 
Banias 5.0 0.5 Divsha 2.0 0.3 
Dan 5.6 0.5 Bet HaMekhes n.d. n.d 
Leshem 6.0 0.6 Elmin Jedida 0.9 0.3 
Barid 4.9 0.5 Gonen 2.0 0.3 
Sion 4.3 0.4 Hamroniya 3.6 0.4 
   Jalabina 0.4 0.2 
   Notera 2.1 0.3 

n.d.: non-detectable. 
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In the Golan springs, tritium levels are lower than in the Hermon springs and range between 

non-detectable to 3.6 TU. Three springs, that is the Bet HaMekhes, Jalabina and Elmin Jedida 

springs show tritium levels below or close to detection limit thus suggesting that they are 

mainly recharged by water of pre-1952 age. All the other springs seem to be fed by a mixture 

of pre- and post-bomb waters. As mentioned above singular measurements of tritium in 

groundwater allow only for semi-quantitative estimations of groundwater residence times. 

Unfortunately, no long-term records of tritium are available for any of these springs in the 

Upper Jordan River Catchment. SIMPSON and CARMI (1983) conducted during the early 

1980s a continuous monitoring of tritium content in the discharge of the three major 

headwaters of the Upper Jordan River. These data, together with the present analyses allowed 

for lumped parameter modeling of mean residence times in the three major Jordan 

headwaters. 
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Figure 41: Input function of 3H for precipitation over the Upper Jordan River catchment, 
(GNIP, 2005). 

The required tritium input function for the intended lumped parameter modeling of the mean 

residence time was reconstructed based on tritium records of Bet Degan and Har Kenaan, 

which are the closest IAEA network stations in the vicinity of the study area. The available 

data sets for Bet Degan and Har Kenaan covered the periods 1961-2001 and 1961-1991, 

respectively. The annual input function (Figure 41) was reconstructed back to 1953 based on 

the high logarithmic correlation (r = 0.91) between Bet Degan and Ottawa, the latter station 
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representing the longest globally existing tritium record. Data gaps in the Bet Degan record 

were closed by referring to the high logarithmic correlation with Har Kenaan (r = 0.94). In 

1953, mean annual tritium concentrations in precipitation were about 11.7 TU at Bet Degan. 

By 1963, tritium concentrations had increased to about 857 TU. Highest monthly tritium 

concentrations of 1940 and 4230 TU (Har Kenaan) were measured in April and May 1963. 

The tritium data obtained through the monitoring network in the UJRC were used to extend 

the dataset until recent. In terms of mean residence time estimations by lumped parameter 

modeling, karst environments are often considered a double-porosity system (BENISCHKE et 

al., 1988; SEILER et al., 1989; MALOSZEWSKI et al., 2002). While karstic channels are mainly 

supplied from sinkholes and provide fast response to rain events, the fissured-porous aquifer 

contains mobile water in the fissures and quasi-stagnant water in the microporous matrix 

which exchange by slow diffusion processes. Generally, transit times and storage capacities of 

karstic channels are approximately one order of magnitude lower than in the fissured-porous 

aquifer.  
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Figure 42: Calculated 3H output concentrations obtained as best fit of the dispersion model 
(DM) and the exponential model (EM) to the data measured in the Senir (upper 
left), Dan (lower left) and Hermon (lower right) streams during baseflow 
conditions.  The respective parameters are given in Table 31. 
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For estimates of groundwater mean residence time in the fissured-porous aquifers of the Dan, 

Hermon and Senir streams, tritium contents during baseflow conditions were extracted from 

the already available dataset and combined with our own measurements. According to 

MALOSZEWSKI and ZUBER (1982, 1985, 1996), MALOSZEWSKI et al. (1992), MALOSZEWSKI 

et al. (2002) and EINSIEDL (2005), the transit time distribution function of a tracer in a 

fissured-porous aquifer system can be adequately described by the dispersion model (DM) 

where PD is a bulk dispersion parameter and tp is the mean transit time of tracer. Within this 

study, both the exponential model (EM) and the dispersion model have been applied to 

simulate the observed tritium values in streamflow. 

An apparent drawback of the conducted modeling was the lack of tritium data during the 

period 1985-2002 for the investigated streams which somehow lessens the reliability of the 

retrieved mean residence times of groundwater. However, both the dispersion and exponential 

model applied well to the measured data whereas the dispersion model performed slightly 

better (Figure 42) yielding mean transit times of tracer (tp) of about 28, 24 and 33 years for 

the baseflow component of the Dan, Hermon and Senir stream under dry weather conditions. 

The bulk dispersion parameter PD relates to the distribution of travel times within the 

investigated system and usually ranges between values of 0.05 and 0.5. The higher this 

dispersion parameter, the wider the distribution of travel times (ZUBER and MALOSZEWSKI, 

2000). Accordingly, travel times seem to be widely distributed in the groundwater sources 

feeding the Hermon stream, of intermediate distribution in the Senir stream and most 

consistent in the Dan springs (Table 31). Yet, as mentioned above, the non-continuous 

character of the tritium data set for the investigated streams significantly restricts the quality 

of the modeled transit times of the tracer and calculated mean transit times have to be 

assessed cautiously.  

According to MALOSZEWSKI and ZUBER (1992) and EINSIEDL (2005) the mean transit time tp 

can be used to calculate the water volume in the fissured-porous aquifer applying: 

ppp QtV ×=  

where Vp is the water volume at baseflow conditions, tp is the mean transit time of tracer and 

Qp the discharge in the fissured-porous aquifer. Using the transit times determined by 
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applying the dispersion model to the observed tritium contents in groundwater and 

precipitation and referring to the calculated annual minimum flow, water volumes in the 

fissured-porous aquifer were determined (Table 31). Based on these estimates, the fissured-

porous aquifer supplying the Dan stream contains a water volume which is about five times 

higher than that stored in the aquifers contributing to the Hermon and Senir stream. However, 

it is assumed that this is due to the significantly larger intake area of the Dan and Leshem 

springs in comparison to the recharge areas of the sources feeding the Hermon and Senir 

stream (see chapter 6.4.2). 

Table 31: Results of the conducted lumped parameter modeling using tritium contents in 
precipitation and baseflow (representing the outflow of the fissured-porous 
aquifer) of the main Jordan tributaries. DM is the Dispersion model with tp as the 
mean transit time of tracer in the fissured-porous aquifer, while EM is the 
exponential model with t as the mean transit time of tracer.  

 DM   EM    

Stream tp PD σ t σ Vp R 
 year  year year year km³ mm/year 

Dan 28 0.18 1.28 13 1.40 2.83 250 
Hermon 24 0.91 0.91 20 0.93 0.53 291 
Senir 33 0.46 0.69 21 0.69 0.52 181 

 

Another parameter that can be deduced with the help of tritium-based mean transit times is 

the recharge rate of an aquifer given the mean thickness and effective porosity of the system 

are known or can be reasonably estimated. Assuming a mean aquifer thickness of 700 m for 

the Jurassic (J4) Bathonian-Callovian formation (Dan and Hermon stream) and of 600 m for 

the Cretaceous Cenomanian aquifer (Senir stream) (GUR et al., 2003) as well as an effective 

karst porosity of 1 % (DOMENICO and SCHWARTZ, 1990), recharge rates for the Dan, Hermon 

and Senir catchments have been calculated. Recharge rates were estimated according to: 

p

e

t
nHR ×

=  

where tp [year] is the mean transit time of tracer, H [m] is the mean aquifer thickness, ne is the 

effective porosity and R is the recharge rate in mm/year. Estimated recharge rates range 
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between 181 to 291 mm/year and are thus by about 7 to 17 % higher than those determined 

for the springs themselves by chloride mass balances. However, the real extent and thickness 

of the contributing aquifers as well as the effective porosity are not precisely known, hence 

aquifer thicknesses might be overestimated. 
 

6.9 RADIOCARBON DATING 

Groundwater mean residence time dating based on the measurement of 14C in groundwaters is 

a challenging task. As soon as water infiltrates through the unsaturated zone under open 

system conditions, a variety of geochemical processes start to alter its carbon isotope 

composition, interactions that will continue and control carbon isotope geochemistry even 

under closed system conditions in the saturated zone. A variety of correction models have 

been developed to retrace initial 14C activities of infiltrating waters and hence to eliminate 

uncertainties in groundwater mean residence time evaluation that derive from the dilution of 
14C activities in dissolved inorganic carbon (DIC) due to geochemical processes (in particular 

carbonate dissolution) in the aquifer zone.  

Generally, the correction procedure includes two steps: (1) determination of the initial 14C 

activity (A0) in the recharge zone; and (2) adjustment of the initial 14C activity for 

geochemical reactions along the flowpath. The most common correction models applied to 

account for this dilution are:  
 

 the chemical mixing model (TAMERS, 1967, 1975; TAMERS and SCHARPENSEEL, 

1970) that corrects for the dissolution of solid carbonates assumed to occur in the 

recharge zone,  

 the Vogel model (VOGEL, 1967; VOGEL et al., 1970; VOGEL and EHHALT, 1963), 

where the initial 14C content of DIC in a open system is assumed to be 85 % modern,   

  the isotope mixing model (INGERSON and PEARSON, 1964; FONTES and GARNIER, 

1979) that  accounts for the dissolution of carbonates based on 13C data for the 

inorganic carbon system,  
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 the chemical mixing and isotope exchange model (MOOK, 1972, 1976, 1980; 

FONTES and GARNIER, 1979), that corrects for isotope exchange reactions during 

infiltration to the aquifer,  

 and the model according to EICHINGER (1983), an extension of the Pearson model 

additionally accounting for equilibrium isotope exchange for introduction of soil 

CO2 into the water. 
 

For a detailed description of the correction models the reader is refered to the textbook of 

CLARK and FRITZ (1997) or the NETPATH user guide of PLUMMER et al. (1991). While 

these correction models allow for the determination and adjustment of A0 in a single step, 

PLUMMER et al. (1991) developed an advanced, widely used inverse-mass balance model 

(NETPATH) that accounts for the determination of A0 and the correction for reaction effects 

in two distinct steps. Provided that water chemistry has been measured in an “initial” 

upgradient well and a “final” downgradient well, NETPATH first estimates A0 of the “initial 

water” by accounting for reaction effects in the recharge zone or upgradient of the final well. 

Then, in a second step, reaction effects between the upgradient and downgradient well are 

calculated, resulting in the determination of And which represents the 14C activity the final 

water would have in the absence of radioactive decay. Subsequently, the groundwater mean 

residence time of the final water is calculated as (PLUMMER et al., 1991): 
 

m

nd

A
ATT ln

2ln
2/1=

 

where Am is the measured 14C activity in the sample. 

NETPATH considers 9 possible means of defining the initial 14C which include: (1) original 

data, (2) mass balance, (3) Vogel, (4) Tamers, (5) Ingerson and Pearson, (6) Mook, (7) Fontes 

and Garnier, (8) Eichinger, and (9) user-defined. Applying NETPATH and the correction 

models included within, requires a thorough understanding of geochemical processes in the 

study area and comprehensive water chemical investigations. In particular, it is necessary to 

directly determine the δ13C of soil zone CO2, the 14C content of atmospheric CO2 and the 14C 

activity of carbonate rocks in the study area or to rely on reasonable assumptions. While 
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extensive water chemical analyses of spring waters in the Hermon and Golan area were 

conducted within the scope of this study, we did not have the means to investigate all of the 

compartments involved in groundwater radiocarbon evolution. Table 32 therefore provides an 

overview about previously determined 13C contents in the relevant phases.  

Table 32: Literature review on ranges of δ13C contents in CO2, rocks and vegetation. 

Reservoir 13C Lower limit Upper limit Reference 
 ‰V-PDB ‰V-PDB ‰V-PDB  

atmospheric CO2 -7 -8 -6 CERLING et al., 1991 
rain (pH 4 – 6.5) -7   CLARK and FRITZ, 1997 
marine carbonates 0 -3.5 1 HOEFS, 1987 
(limestones)  0 2  
basalt (silicic crust) -6 -6 -5 SVEINBJORNSDOTTIR, 1995 
soil CO2 (C3) -23   CLARK and FRITZ, 1997 
soil CO2 (C4) -9   CLARK and FRITZ, 1997 
C3-vegetation -27 -30 -24 VOGEL, 1993 
C4-vegetation -12.5 -16 -10 VOGEL, 1993 
CAM-plants -15.5 -17 -14 CLARK and FRITZ, 1997 

 

6.9.1 Carbon (13C, 14C) isotopes 

In July 2004, springs emerging on Mount Hermon and feeding the main Upper Jordan 

tributaries as well as the majority of the Golan “Side springs” were sampled for analyses of 
13C content and 14C activity. Since the Wazani and El-Hazbani springs that are feeding the 

Senir stream are located in Lebanon and were not accessible for sampling, water for carbon 

isotope analyses was taken approximately 34 km downstream of the Senir sources. Sampling 

time was assumed to represent baseflow conditions and hence, the admixture of fast flow 

components with an altering effect on the carbon isotope composition of groundwater was 

supposed to be minor. 

Previously conducted tritium analyses revealed that except for the Bet HaMekhes, Elmin 

Jedida, and Jalabina springs, tritium was detectable at a level > 1 TU in all of the investigated 

groundwaters indicating the contribution of young waters to spring discharges (Table 30). For 
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the Hermon springs, lumped parameter modeling resulted in tritium mean residence times of 

24 to 33 years for baseflow in the main Jordan River tributaries.  

The 14C activity of dissolved inorganic carbon (DIC) ranges between 46.6 pmc and 62.0 pmc 

in the Hermon springs (Table 33). Highest 14C activity was detected for the Senir stream 

pointing to the exchange of river water with atmospheric CO2 that leads to elevated 14C levels 

(CARMI et al., 1985). The 13C content of DIC in the Hermon springs varies between -10.6 ‰ 

and -7.2 ‰, while the Senir stream shows the most depleted δ13C value (Table 33). The 

measured 13C contents for the Hermon springs and the Senir stream lay within the range of 

δ13C values determined by CARMI et al. (1985) who found δ13C concentrations of -8.3 ‰ to -

10.3 ‰ V-PDB in the Hermon, Dan and Senir stream while the Jordan River showed δ13C 

values up to -6.0 ‰ V-PDB. 14C activities in 1983 however, were significantly higher 

indicating the importance of recently recharged (post-1950) waters on the sources of the 

Jordan River. In fact, based on their investigations, CARMI et al. (1985) constrained mean 

residence times in the Hermon aquifer to be < 20 years. 

Table 33:  Carbon isotopes (13C, 14C) in sampled Hermon and Golan groundwater. Electrical 
conductivity, pH, log PCO2 and isotopic characterization of DIC. 

Spring 13C Am
14C EC pH log PCO2 

 ‰V-PDB pmc µS/cm   

Hermon springs      
Kezinim -7.2 46.6 607 7.40 -2.07 
Banias -10.6 55.9 427 7.51 -2.26 
Dan -10.0 56.7 337 7.56 -2.29 
Leshem -8.2 60.6 312 7.69 -2.45 
Barid -9.3 62.0 312 7.70 -2.46 
Senir stream -15.4 75.1 382 7.60 -2.34 

Golan springs      
Dupheila -11.5 54.6 364 7.85 -2.61 
Divsha -14.7 64.3 342 8.14 -2.94 
Bet HaMekhes -17.1 73.7 361 8.23 -2.98 
Elmin Jedida -17.0 81.6 408 7.68 -2.38 
Gonen -13.6 67.1 332 8.30 -3.11 
Hamroniya -9.4 67.6 358 7.75 -2.51 
Jalabina -17.7 66.5 332 8.42 -3.20 
Notera -16.8 67.2 331 8.45 -3.25 
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In the Golan springs, 14C activity ranges from 54.6 pmc to 81.6 pmc and δ13C is in the range 

of -17.1 ‰ to -9.4 ‰ V-PDB. Highest 14C activities and most depleted δ13C values have been 

monitored for the Elmin Jedida and Bet HaMekhes springs (Table 33). Generally, carbon 

isotope analyses reveal a trend of decreasing 14C activity with enriched δ13C contents (Figure 

43) suggesting that isotope mass transfer occurs throughout the geochemical and 

hydrogeologic evolution of the groundwater.  
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Figure 43: 14C activity (left chart) and pH (right chart) versus δ13C content in the Hermon 
springs, the Golan springs and the Senir stream. 

This is particularly evident for the Hermon springs, plotting at low activities and enriched 

δ13C values. Here, carbonate reactions take place within the aquifer matrix. The Golan springs 

plot at higher 14C activities and lighter δ13C contents indicating groundwater is recharged 

under shallow, unconfined conditions retaining δ13C values and 14C activities of the soil zone. 
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Figure 44: EC (left chart) and log PCO2 (right chart) versus 14C activity in the Hermon springs 
(H), the Golan springs (G) and the Senir stream. The Dupheila spring belonging to 
the Golan springs is displayed separately. 
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The main reaction affecting the 14C activity in the Hermon springs feeding the Upper Jordan 

River tributaries seems to be the dissolution of carbonates evidenced by the increase of 

electrical conductivity and log PCO2 with decreasing 14C activity as shown in Table 33. 

Additionally, karstic aquifers are generally assumed closed systems since infiltrating water 

quickly reaches the water table. Under closed system conditions CO2 is limited in amount and 

rapidly consumed, leading to PCO2 levels below equilibrium with the atmosphere (Figure 44). 

Based on the high correlation (r = 0.98) between log PCO2 and 14C activity for the Hermon 

springs and assuming that carbonate dissolution is indeed the main reaction that governs 

groundwater radiocarbon, an initial 14C activity of 103 pmc can be calculated for the 

atmospheric CO2 in the Hermon region. For the Golan springs, where 14C contents and stable 

carbon concentrations are controlled by different parameters such a relationship was not 

observed.  

Waters discharging through the Golan springs are assumed to be dominated by silicate 

weathering which fixes soil CO2 but does not yield any additional carbon from a solid phase. 

Hence, PCO2 values will decrease but 14C activities and δ13C values of the resulting 

groundwater will be close to carbon isotopes measured in soil zone CO2. However, 14C 

activities decrease with decreasing partial CO2 pressure suggesting dilution by “dead” carbon. 

 

6.9.2 Initial 14C activity and radiocarbon ages 

Within this work, several approaches to estimate the initial 14C activities of the spring waters 

were applied. Results are given in Table 34, Table 35 and Table 36. CARMI et al. (1985) in 

their study accounted for the exchange of CO2 between river water and the atmosphere and 

concluded that the 14C level in the Mount Hermon aquifer baseflow and the 14C level in the 

atmospheric CO2 is at a constant ratio of approximately 0.44. 

Assuming that carbonate dissolution alone causes the dilution of the initial 14C activity, 

BAJJALI et al. (1994, 1997, 2006) suggested that the dilution factor q can be calculated by: 

atmosphereerecherech CCq 14
arg

14
arg =  
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where 14Crecharge and 14Catmosphere are average values of 14C measured in the recharge area and 

the atmosphere respectively. In this study, the 14C content of atmospheric CO2 is considered 

to be about 103 pmc (see above). Hence, the dilution factor for the Hermon springs is about 

0.56, while for the Golan springs it averages to about 0.68. CLARK and FRITZ (1997) quote 

dilution factors of 0.65-0.75 for karst systems. Within this study, we did not correct for 

geochemical reactions along the flowpath (And), which is left to future studies and more 

extensive investigations of carbon chemistry in the study area. 

An additional precondition for the determination of corrected radiocarbon ages was the 

assignment of δ13C values in soil CO2 as input parameter for some of the correction models. 

Literature values of 13C content in soil CO2 dependent on the type of vegetation are given in 

Table 32. At present, C3-plants dominate vegetation in the Eastern Mediterranean region, 

hence soil CO2 generally ranges between -27 to -24 ‰ V-PDB (CERLING et al., 1991; 

CERLING and QUADE, 1993). Accounting for diffusive fractionation of soil CO2 by microbial 

activity of about 4 ‰ (CERLING et al., 1991), δ13C of soil CO2 in most C3 landscapes is 

generally about -23  ‰ V-PDB (CLARK and Fritz, 1997). This value was thus assigned to soil 

CO2 in the Golan region and for the intake area of the Senir stream.  

In the Hermon region however, soil covers are thin or absent and soil waters in other karst 

regions have been shown to have higher δ13C values of about -14.7 ‰ V-PDB (LEE and 

KROTHE, 2001). BAR-MATTHEWS et al. (1996) investigated carbon isotopes in a close-by 

Mediterranean karst area. Assuming that fast infiltrating seepage waters have dissolved both 

soil CO2 derived from the C3-type vegetation and marine carbonate host rock and given that 

the 12C/13C fractionation between bicarbonate ion and C3-type organic matter is -7.5 ‰ at 

T ≅ 20°C (HENDY, 1971), the isotopic composition of DIC in equilibrium with C3 organic 

matter is around -19.5 to -16.5 ‰ V-PDB (BAR-MATTHEWs et al., 1996). Therefore, a value 

of -19.5 ‰ V-PDB was assumed for soil CO2 in the Hermon area. 

The results of the isotopic and geochemical calculations of the initial activities A0 and the 

corrected water ages according to the different models and assumptions are summarized in 

Table 34, Table 35 and Table 36. Groundwater mean residence times derived from the 

original data, the Mass Balance model, the Vogel model and the dilution factor of CLARK and 
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FRITZ (1997) for karst systems vary widely and are unrealistic. The Mook model did not 

apply to the data. However, there is some consistency for the remaining models (Tamers, 

Ingerson and Pearson, Fontes and Garnier, Eichinger) and assumptions (CARMI et al., 1985; 

BAJJALI et al., 1994, 1997) indicating the dominance of recent water in the Hermon 

springs which agrees with groundwater residence times derived on tritium analyses and 

earlier investigations in the study area (CARMI et al., 1985). However, Kezinim water seems 

to have significantly larger mean residence times than the other spring waters which is 

reasonable considering that this spring is dominated by matrix flow and shows little variations 

in discharge over time (GUR et al., 2003). Starting with the highest groundwater mean 

residence time, Hermon springs can be ranked in the following order: 

Kezinim > Banias > Dan > Leshem > Barid. 

In the Golan area, the situation seems to be more complex. The calculated A0 values and the 

derived groundwater mean residence times vary broadly and a consistency between the 

models such as for the Hermon springs was not observed, except for the Dupheila spring 

which seems to be dominated by recent water. Refering to the Bajjali model most of the 

spring waters seem to have mean residence times below 1000 years. 

A significant drawback of the conducted radiocarbon based age estimations is that in situ 13C 

concentrations of soil CO2 and the initial atmospheric 14C activity could not be determined. 

Parameter uncertainty was shown to lead to age uncertainties of up to several thousand years, 

especially where δ13C values of groundwater are less negative than -12 ‰ (PEARSON, 1992). 

Subsequent studies should thus include the measurement of soil CO2 for carbon isotopes in 

the respective recharge zones. Additionally, the determination of the carbon isotope 

composition at epikarstic outlets in the Hermon area could provide NETPATH input data 

(“initial well”) that allow to account for geochemical reactions along the flow path as well. In 

the Golan area, an extensive network of boreholes exist that should be included in future 

studies. 

Additional uncertainties in mass-balance based radiocarbon dating may derive from: 
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 the overestimation of the 14C-age due to transport delays of 14C without significant 

δ13C changes (MALOSZEWSKI & ZUBER, 1991) 

 the influence of isotope exchange (AESCHBACH-HERTIG, et al., 2002) 

 the diffusive exchange of 14C into the matrix (between aquifer and aquitards) 

resulting in the overestimation of 14C-age (SUDICKY and FRIND, 1981) 

 sulphate reduction (BAJJALI et al., 1997; KATTAN, 2002) 

 the incorporation of geogenic CO2 (BARNES et al., 1978; GASPARINI et al., 1990; 

KATTAN, 2002) or  

 methanogenesis.  

However, the existent data did not support additional modelling. 
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Table 34: Corrected initial 14C activities and subsequently calculated groundwater mean residence times of the sampled Hermon springs. The 
measured in situ activities are given as ‘Original data’. 

 Kezinim  Banias  Dan  Leshem  Barid  Senir  
 A0 Age A0 Age A0 Age A0 Age A0 Age A0 Age 
 pmc year pmc year pmc year pmc year pmc year pmc year 

NETPATH model             
Original Data 46.6 6130 55.9 4675 56.7 4560 60.6 4030 62.0 3835 75.1 2300 
Mass Balance 62.2 2388 60.6 675 63.1 879 62.6 269 63.5 199 57.2 Recent 
Vogel 85.0 4967 85.0 3469 85.0 3348 85.0 2803 85.0 2604 85.0 1025 
Tamers 55.5 1443 55.0 Recent 54.7 Recent 53.9 Recent 53.9 Recent 54.3 Recent 
Ingerson and Pearson 38.1 Recent 56.1 34 53.0 Recent 43.4 Recent 49.2 Recent 69.0 Recent 
Mook           110.2 3174 
Fontes and Garnier 37.5 Recent 57.1 174 52.9 Recent 43.2 Recent 49.1 Recent 78.2 337 
Eichinger 33.3 Recent 52.9 Recent 49.7 Recent 39.9 Recent 45.9 Recent 67.0 Recent 

Other             
Clark and Fritz (1997) 67.0 2994 67.0 1496 67.0 1375 67.0 829 67.0 631 67.0 Recent 
Carmi et al. (1985) 45.3 Recent 45.3 Recent 45.3 Recent 45.3 Recent 45.3 Recent 45.3 Recent 
Bajjali et al. (1997) 57.7 1762 57.7 264 57.7 143 57.7 Recent 57.7 Recent 57.7 Recent 
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Table 35: Corrected initial 14C activities and subsequently calculated groundwater mean residence times of the sampled Golan springs (I). The 
measured in situ activities are given as ‘Original data’. 

 Dupheila  Divsha  Bet HaMekhes  Elmin Jedida  Gonen  
 A0 Age A0 Age A0 Age A0 Age A0 Age 
 pmc yr pmc yr pmc yr pmc yr pmc yr 

NETPATH model           
Original Data 54.6 4865 64.3 3550 73.7 2445 81.6 1635 67.1 3205 
Mass Balance 61.8 1031 62.4 Recent 71.1 Recent 64.7 Recent 62.7 Recent 
Vogel 85.0 3665 85.0 2310 85.0 1175 85.0 337 85.0 1955 
Tamers 53.1 Recent 52.3 Recent 52.2 Recent 53.7 Recent 52.1 Recent 
Ingerson and Pearson 51.3 Recent 65.9 208 76.7 326 76.2 Recent 60.7 Recent 
Mook 33.9 Recent 101.7 3793 145.9 5643 139.2 4413 80.1 1467 
Fontes and Garnier 51.2 Recent 74.1 1180 91.2 1760 89.6 777 65.9 Recent 
Eichinger 48.6 Recent 63.7 Recent 74.9 125 74.6 Recent 58.4 Recent 

Other           
Bajjali et al. (1997) 70.0 2065 70.0 709 70.0 Recent 70.0 Recent 70.0 354 
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Table 36: Corrected initial 14C activities and subsequently calculated groundwater mean 
residence times of the sampled Golan springs (II). The measured in situ activities 
are given as ‘Original data’. 

 Hamroniya  Jalabina  Notera  
 A0 Age A0 Age A0 Age 
 pmc yr pmc yr pmc yr 

NETPATH model       
Original Data 67.6 3150 66.5 3275 67.2 3190 
Mass Balance 67.0 Recent 71.9 645 66.1 Recent 
Vogel 85.0 1898 85.0 2029 85.0 1938 
Tamers 53.5 Recent 51.9 Recent 51.9 Recent 
Ingerson and Pearson 42.2 Recent 79.4 1460 75.1 914 
Mook   162.3 7378 146.7 6450 
Fontes and Garnier 41.9 Recent 95.9 3025 89.3 2344 
Eichinger 39.1 Recent 77.4 1254 73.0 677 

Other       
Bajjali et al. (1997) 70.0 298 70.0 429 70.0 337 
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7. Runoff generation in the main tributaries of the Upper Jordan River 

One major goal of the work at hand was to identify and quantify the contribution of single 

discharge components to overall and to storm runoff which, as a result, allows for the 

vulnerability assessment of the investigated catchments towards possible climate changes.  

Initially, existent long-term discharge data of the relevant streams were evaluated by well-

known hydrograph separation techniques. These techniques allow to deduce dynamic-based 

discharge components, i.e. those defined by their temporal occurrence on the hydrograph. 

Addionally, tracer-based hydrograph separation techniques allowed to differentiate runoff 

processes and flowpaths.  

Based on the analyses of the geomorphologic, hydrogeological, and pedological conditions in 

the study area, the following hypotheses were proposed for the headwaters of the Upper 

Jordan River: 

In the long-term, overland flow plays a minor role considering runoff generation in the 

Hermon Mountains which is both due to rapid infiltration of precipitation into the porous 

karst aquifers and due to high evapotranspiration rates. In the Golan area however, soil covers 

are thicker and more developed hence, the occurrence of overland flow will mainly depend on 

the saturation status of the soil which in turn depends on the intensity, duration, and temporal 

succession of rain events. Generally, overland flow is a known phenomenon in semi-arid and 

arid regions. However, it is usually restricted to the occurrence of certain topographical 

features such as valley bottoms or to soil processes such as rain-induced soil surface sealing 

(ASSOULINE, 2004).  

Interflow is a significant portion of discharge in both geological settings: basalt and 

karst. In karst, interflow that is fed by rain and snowmelt, is temporarily stored in the vadose 

(epikarst) zone and discharges mainly through conduit flow paths. In basalt, a hydraulic 

interface between bedrock and soil, between bedrock and paleosoils or between soil layers of 

different hydraulic conductivity is likely to cause lateral flow. 

The ratio of long-term, medium-term and quick components and thus the importance of 

baseflow contributions to the stream discharge of interest can be induced by calculating 
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discharge coefficients. The ratio of MLF/MHF as given in chapter 3.6 is a measure of the 

responsiveness of a system. The baseflow component size is dependent on storage properties 

such as porosity, hydraulic conductivity and aquifer thickness as well as on the size of the 

respective catchment area. Assuming that a major part of the Hermon/Anti-Lebanon-

Mountains is actually part of the Upper Jordan River hydrogeological system, baseflow 

contributes significantly to the headwaters discharge. However, compared to humid areas, 

baseflow contributions will be small since baseflow generation is restricted to the 4-month 

rainy season. The existence of an older (ancient) underlying groundwater resource that 

contributes to the baseflow of the Upper Jordan River could be excluded for most of the 

springs indicating that the Jordan Rift might act as a drain towards deeper aquifers (see 

chapter 6.8.1 and 6.9). However, in the Kezinim spring, old groundwater that might be 

upwelling along a fault zone was detectable.  

 

7.1 LONG-TERM STREAMFLOW HYDROGRAPH SEPARATION 

To quantitatively estimate the anticipated discharge components a selection of baseflow 

separation methods was combined. Considering the inherent assumptions and restrictions of 

the techniques introduced before (see 2.4.1), the sliding interval method (SIM) developed by 

PETTYJOHN and HENNING (1979) which corresponds approximately to the base wave line 

method by NATERMANN (1951) was presumed to enable the separation of overland flow 

from the long-term mean discharge (MF). Refering to KILLE (1970) and DEMUTH (1993), the 

monthly mean low flow (MoMLFK) according to KILLE (1970) was assumed to represent 

solely baseflow. Subsequently, the interflow portion is calculated as the difference between 

baseflow determined by the sliding interval method (QB(SIM)) (containing interflow portions) 

(PETTYJOHN and HENNING, 1979) and the MoMLFK method (excluding interflow portions) 

(KILLE, 1970; DEMUTH, 1993). 

In short: 

Overland flow = MF – QB(SIM), 

Interflow = QB(SIM) – MoMLFK, 

Baseflow = MoMLFK. 
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Baseflow estimates derived by the different methods are given in Table 37; the resulting 

portions of the single discharge components for the five investigated streams are presented in 

Table 38.  

Table 37: Mean flow and mean baseflow of the five investigated streams in the UJRC 
determined by different hydrograph separation techniques.  

 Dan Hermon Senir Orevim Jordan 
 1969-1999 1969-1999 1969-2001 1985-2001 1991-2004 
HSI no. 30131 30128 30120 30155 30175 

unit m³/s %MF m³/s %MF m³/s %MF m³/s %MF m³/s %MF
MF 8.0 100 3.3 100 3.4 100 0.18 100 14.2 100

MoMLFW 7.7 95 2.5 76 2.1 63 0.08 43 10.0 71
SuMoMLFW 7.5 93 1.6 47 1.3 38 0.03 19 6.7 47
MoMLFK 7.9 99 1.8 54 1.4 42 0.05 25 8.2 58

LMMP&H 7.9 99 2.9 88 2.7 78 0.12 66 11.2 79
SIMP&H 8.0 99 3.0 90 2.8 83 0.14 75 11.7 83
FIMP&H 8.0 99 3.0 91 2.8 83 0.14 74 11.1 78

W = according to WUNDT (1958) 
K = according to KILLE (1970) 
P&H = according to PETTYJOHN and HENNING (1979) 

MF: mean flow, MoMLF: monthly mean low flow, SuMoMLF: monthly low flow in summer, LMM: local minimum 
method, SIM: sliding interval method, FIM: fixed interval method. 

 

Generally, one can distinguish three different discharge behaviors: (1) The Dan stream is – 

out of a dynamic-based perception - exclusively fed by baseflow (Table 37), (2) for the 

Hermon and Senir streams the ratio of short- and medium-term flow components to baseflow 

is rather balanced (Table 38), while (3) the Orevim stream is dominated by fast flow 

components. The Upper Jordan River receives its major contributions from the Dan stream 

and is subsequently also dominated by baseflow, however, the fast flow components 

contribute to about 40 % of the mean annual discharge. 

The applied techniques delivered baseflow portions of 93 to 99 % of mean discharge (Table 

37) for the Dan stream indicating a highly permeable and well-balanced system. Due to this 

high permeability, it is assumed that an increase in the frequency or intensity of rain events as 

suggested in climate predictions (see chapter 1.1) might even enhance groundwater recharge 

in the Dan catchment, while the absence of rain will lead to a gradually decreasing discharge. 
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The impact of snowmelt recharge on Dan discharge as shown before (see 6.5.1, 6.7.1) 

suggests that an increase of winter temperatures and a shortened residence time of the snow 

cover on Mt. Hermon might considerably decrease total discharge in the Dan stream. 

Both the Hermon and Senir stream receive significant portions of baseflow and discharge 

through interflow (Table 38). Hydrograph separation also allowed to deduce overland flow 

components for both catchments accounting for about 9 and 17 % of the mean annual 

discharge, respectively. For the Hermon catchment, overland and interflow were mainly 

observed as return flow and discharge of contributing ephemeral streams when rain intensity 

was high and rain events occurred with high frequency. The surface catchment area of the 

Senir stream comprises a big, elevated plane with thick soil covers that collects water from a 

wide area. Subsequently, higher portions of surface runoff are generated given that antecedent 

moisture conditions allow for overland flow. 

In terms of water resource management a reduction of rain intensities and frequencies might 

not necessarily cause the decrease of total discharge but favor medium- and long-term 

discharge components. An increase of winter temperatures however, will lead to increased 

overland and interflow since precipitation is discharged directly as rain and not longer stored 

and gradually released with the snow cover on Mount Hermon. 

Table 38: Separated discharge components of the five investigated streams in the UJRC. 

 Dan Hermon Senir Orevim Jordan 
 m³/s m³/s m³/s m³/s m³/s 

overland flow 0.1 0.3 0.6 0.045 2.5 
interflow 0.0 1.2 1.4 0.090 3.5 
baseflow 7.9 1.8 1.4 0.045 8.2 

 

The Orevim stream emerging in the basaltic Golan area is dominated by overland and 

interflow accounting for about 25 and 50 % MF, respectively. This catchment is characterized 

by relatively steep slopes, deep soils and perched aquifers favoring the occurrence of lateral 

flow (interflow) which prevents that a major portion of infiltrating water reaches the 

groundwater reservoir for recharge. The responsive nature of this watershed was already 
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indicated by the MLF/MHF-ratio calculated in chapter 3.6 and is reflected again in its 

baseflow index (Table 39).  

The baseflow index (BFI) represents the ratio of baseflow to streamflow and indicates the 

proportion of discharge that is contributed mainly by groundwater storage. It hence gives a 

measure of catchment geology and geomorphology and is often used in comparative 

catchment analyses (NATHAN and MCMAHON, 1992; LACEY and GRAYSON, 1998; 

SMAKHTIN, 2001a). A low BFI value points to an impermeable, responsive catchment while 

catchments with most of the flow coming from groundwater, being permeable and non-

responsive, show high BF-indices. The established BFI values can be used in future 

investigations of baseflow, e.g. by digital filtering techniques (ECKHARDT, 2005) where these 

estimations are a necessary precondition to separate streamflow components. 

Table 39: Baseflow index (BFI) of the five investigated streams in the UJRC. The BFI value 
equals the monthly mean low flow according to KILLE (MoMLFK) as presented in 
Table 37. 

 Dan Hermon Senir Orevim Jordan 

BFI 0.99 0.54 0.42 0.25 0.58 

 

The conducted separation of discharge components is based on their temporal occurrence on 

the hydrograph. On the one hand, factors such as the temporal distribution of the precipitation 

input cause the different retardation times of single discharge components. For example, as 

long as a snow cover resides in the catchment, it will constantly contribute to discharge via 

snowmelt. On the other hand, topographical features such as the steepness of slopes or the 

widths of valley floors as well as hydrogeological characteristics such as varying vertical and 

horizontal conductivities can accelerate or delay flow. Although there is no statistical 

evidence due to the low number of investigated streams and the lack of parameters describing 

topography or hydraulic conductivities, the established proportions of discharge components 

evidently reflect characteristics of the UJR subcatchments. 

However, how reliable are the obtained proportions of the discharge components?  
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All of the investigated streams are subject to pumping and diverting of water upstream of the 

hydrological gauge introducing instationarity and uncertainties to hydrograph separation 

analyses. The Dan hydrograph in particular was reconstructed by adding averaged amounts of 

withdrawals to the measured hydrograph (data Alon Rimmer, KLL). Moreover, the applied 

techniques allowed for the separation of at most three flow components, however, a smooth 

transition between the different reservoirs is more likely than a sharp distinction. 

Nonetheless, the determined discharge components seem to be of reasonable size since the 

combined portions of the estimated overland and interflow components closely relate to mean 

flow generated during the 4-month winter season. For the Hermon stream, 49 % of the mean 

annual discharge is generated during winter, as a comparison, the combined 

overland/interflow discharge is 47 % MF. Considering the other streams these values are 56 

(58 % MF), 76 (75 % MF) and 51 (42 % MF) for the Senir, Orevim and Jordan River, 

respectively (compare chapter 3.6). 

 

7.2 BASEFLOW RECESSION ANALYSES  

In the previous paragraphs, mean portions of discharge components dominating streamflow in 

the subcatchments of the Upper Jordan River have been described. In terms of water 

management under changing climate conditions it is however important, to gain information 

on residence times and storage sizes of the particular discharge components as well. 

Hydrograph recession analyses allow for the estimation of these parameters by referring to the 

linear-storage concept. The linear-storage concept was first introduced by MAILLET (1905) 

and is based on the assumption that storage relates linearly proportional to outflow, a 

correlation that is described by: 

)()( tQTtV ×=  

with V(t) representing the storage volume at time t, Q(t) is the discharge at time t and T 

represents the mean residence time of water in storage. Including the mass-balance 

(continuity condition): 

dt
tdVtQ )()( −

=
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the equation given above is derived as: 

TteQ
dt
dQTtQ −×=×−= 0)(  

where Q0 equals discharge at t = 0. 

In the literature, the exponential coefficient 1/T is often given as α, the recession constant. In 

semi-arid climates such as prevalent in northern Israel, precipitation is restricted to the 4 

month winter season with the last heavy events occurring in March or early April. Hence, 

during the subsequent dry season streamflow is dominated by baseflow contributions until 

precipitation recommences in November/December. In contrast, in humid regions it is often 

difficult for the hydrologist to derive baseflow characteristics since recession periods are 

frequently masked by successive rain events. 

To determine mean residence times and reservoir sizes of baseflow for the major Jordan River 

tributaries and the Upper Jordan River itself, long-lasting recession segments were extracted 

from the hydrograph and mean residence times of baseflow were estimated by the equations 

given before. Results of the baseflow recession analysis are presented in Table 40. 

Unfortunately, out of the five investigated streams, only four stream hydrographs were 

suitable for the intended recession analysis. During low-flow conditions discharge data 

recorded at the Orevim gauge fluctuated intensely rendering the identification of a definite 

recession curve impossible. Since the water level in the Orevim stream bed during summer 

and autumn is very low already, being solely fed by the contributions of the Dupheila spring, 

the observed fluctuations are readily caused by water withdrawal from the adjacent 

settlements, due to changing evapotranspiration rates as the vegetation cover matures or to 

water loss in sediment and fractures.  

The recession constants, mean residence times, and water volumes presented below are 

representative for the baseflow component in the four investigated streams. However, one has 

to keep in mind that this baseflow component – since it is observed on the hydrograph – 

actively participates in the water cycling of the considered subcatchments but does not 

necessarily represent the oldest contributing groundwater component (compare chapter 6.8.1). 
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Table 40: Characteristics of baseflow recession in the Upper Jordan River Catchment 
including the recession constant α, the mean residence time of baseflow TB,  the 
initial baseflow discharge Q0, the estimated volume of water in the baseflow 
reservoir VB, the recession length ΔtB and the reservoir change VΔtB. Estimations for 
the Dan, Hermon and Senir stream are based on a 32-year record (1969-2000); for 
the Jordan River a 10-year record (1991-2000) was available. The complete dataset 
of the extracted recessions is given in the appendix in Table 76, Table 77, Table 78 
and Table 79. 

 n  α TB Q0 VB ΔtB VΔtB 
   -1/d d m³/s km³ d km³ 

Dan 26 median -0.0018 542 9.19 0.43 214 0.140 
  minimum -0.0007 1527 10.33 1.36 328 0.239 
  maximum -0.0035 284 5.61 0.14 140 0.079 
Hermon 16 median -0.0047 213 3.78 0.07 238 0.047 
  minimum -0.0020 496 5.91 0.13 283 0.083 
  maximum -0.0068 148 1.21 0.04 128 0.012 
Senir 10 median -0.0027 370 1.87 0.06 265 0.031 
  minimum -0.0019 525 11.14 0.13 301 0.114 
  maximum -0.0107 94 1.27 0.03 207 0.020 
Jordan 7 median -0.0135 74 23.97 0.15 74 0.148 
  minimum -0.0065 155 48.13 0.64 329 0.545 
  maximum -0.0171 58 9.29 0.05 242 0.046 

 

Refering to Table 40 above, the median of the recession constant α and the initial baseflow 

discharge Q0 were calculated for the analyzed recession hydrographs describing the most 

frequent recession behavior in the investigated catchments. The median was chosen over the 

mean since recession constants showed to be asymmetrically distributed in the conducted 

analyses. Minimum TB and maximum TB refer to the lowest and highest observed recession 

constants (α) and initial discharges (Q0), respectively.  

Generally, mean baseflow residence times are comparatively short ranging from a few months 

up to about 4 years indicating the fast cycling of actual rechargeable water in these 

catchments and the high vulnerability towards man-induced or climate changes. The Dan 

stream shows the highest baseflow residence times lasting between 9 to 50 months, whereas 

the most frequently observed mean residence time for this stream is about 18 months (Table 

40). Although there is no immediate response towards rain in the Dan stream due to its 

domination by baseflow, cross-correlation analysis of rain and discharge show, that Dan flow 



 

 162

responds with a lag time of about 3 months towards precipitation measured at Kefar Giladi 

(Table 41). 

Table 41: Correlation and cross correlation (CC) of monthly rain depth at Kefar Giladi with 
mean monthly stream discharge in the UJRC.  

 Dan Hermon Senir Orevim Jordan 

rain -0.07 0.52** 0.57** 0.65** 0.62** 
rain (CC) 0.50** 0.75** 0.69** 0.69** 0.75** 
lag [months] 3 2 1 1 1 
n 372 372 372 180 108 

“**” indicate significance at p<0.01. 

 

Baseflow in the Dan stream strongly depends on winter precipitation that precedes the 

observed recession (Figure 45). For example, the highest mean residence time in the Dan 

stream was observed in autumn/summer of 1992. This recession period was headed by an 

extraordinary rainy season when 1402 mm (>95 %-quantile) were measured at Kefar Giladi. 

The shortest mean residence time was measured in 1990 (referring to the 32-year streamflow 

record) which was preceded by two rather unproductive winter seasons (556 mm and 624 mm 

measured in 1988 and 1989 at Kefar Giladi, respectively). 

Mean residence times of baseflow in the Hermon and Senir stream range between 5 to 16 and 

3 to 17 months, respectively. Hence, the minimum recession constants in these streams are 

equivalent to the most frequent observed recession constant in the Dan stream. Additionally, 

the estimated maximum dischargeable baseflow reservoirs in the Hermon and Senir stream 

are by about a factor 10 lower than that of the Dan stream. The shortest mean residence times 

of baseflow in the Hermon and Senir stream were 5 and 3 months, most likely representing 

the transition to mean residence times of interflow. Most frequently observed values of TB 

were 7 and 12 months for the Hermon and Senir stream, respectively. Although both streams 

are significantly correlated to rain measured at Kefar Giladi showing a lag phase of 2 months 

for the Hermon stream and of 1 month for the Senir stream (Table 41), no such significant 

correlation could be determined for mean residence times of baseflow and the accumulated 

rain which might be due to the influence of interflow on baseflow recession. 
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The derived recession characteristics for the Upper Jordan River have to be assessed 

cautiously since they might not satisfactorily reflect baseflow conditions in the Upper Jordan 

River. Discharge of the Upper Jordan River is monitored at the Obstacle Bridge (about 30 km 

upstream of Lake Kinneret) and combines the inflow of its major contributaries as well as 

water withdrawals and additions from the Hula Valley. The staggered arrival of discharge 

from the different contributaries as well as anthropogenic influences such as pumping might 

mask the baseflow characteristics of the Upper Jordan River. 

 

Annual rain depth [mm]

200 400 600 800 1000 1200 1400 1600

M
R

T 
[d

ay
s]

0

200

400

600

800

1000

1200

1400

1600
MRT = 0.90 Rain - 140.91
R² = 0.58

 

Figure 45: Relationship between calculated mean residence times (MRT) of baseflow in the 
Dan stream and annual precipitation prior to the respective recession period. 

The conducted baseflow recession analysis additionally allowed for the estimation of aquifer 

thickness in the study area. Based on: 

p

B
T n

VV =  

where VT [km³] represents the rock volume of the catchment area, VB [km³] is the water 

volume of the baseflow reservoir given in Table 40 and np is the effective porosity (fissures 

and rock matrix) the rock volume of the catchment area was calculated. DOMENICO and 

SCHWARTZ (1990) cite effective porosities of about 0.1 to 5 % for limestone and dolostone, 

here an effective porosity of 1 % was assumed for the estimation of aquifer thickness. For 

calculation of the rock volume, different water volumes of the baseflow reservoir calculated 

from the observed minimum, maximum and median recession constants (Table 40) were used.  
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Table 42: Estimated aquifer thickness for the Dan and Hermon catchments.  

Catchment Recession constant Water volume VB np VT A M 
   km³  km³ km³ m 

Dan  minimum maximum 1.36 0.01 136 1324 103 
 maximum minimum 0.14 0.01 14 1324 11 
 median median 0.43 0.01 43 1324 32 
Hermon minimum maximum 0.13 0.01 13 523 25 
 maximum minimum 0.04 0.01 4 523 8 
 median median 0.07 0.01 7 523 13 

VB: water volume of the baseflow reservoir, VT: rock volume of the catchment area, np: effective porosity, A: 
catchment area and M: aquifer thickness. 

 

Referring to the subsurface catchment sizes determined in chapter 6.4.2, mean aquifer 

thickness (= zone of active groundwater cycling) for the Dan catchment ranges between 11 to 

103 m, while for the Hermon catchment aquifer thickness was calculated to be inbetween 8 to 

25 m. Based on the recession characteristics that prevail the most often in the Dan and 

Hermon catchment, aquifer thicknesses can be assumed to be 32 and 13 m, respectively. 

If the effective porosity was overestimated, mean aquifer thickness will be even lower. If 

catchment areas were overvalued, mean aquifer thickness will be higher The results show that 

aquifer thickness will vary throughout the catchment depending, e.g. on the geomorphology 

of the area. 

 

7.3 TRACER-BASED INVESTIGATION OF RUNOFF GENERATION PROCESSES 

As described in chapter 4, discharge of five streams (Dan, Hermon, Senir, Orevim and Sion) 

was continuously recorded by the Hydrological Service of Israel (Figure 47, Figure 48). Out 

of these five streams, four (Dan, Hermon, Senir, Orevim) were continously monitored for 

electrical conductivity and stream temperature. Except for the Dan stream (that does not show 

direct storm response), all streams were sampled on an event basis during winter 2002/03 and 

winter 2003/04 to trace the dominating runoff. Automatic samplers installed at these stations 

allowed for continuous sampling during flood events. Sampling intervals decreased up to 

30 minutes during peak flow. In addition, three smaller contributing streams (Sa’ar, Guvtah 
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and Nuheile) were sporadically sampled during events to trace contributing catchment areas 

(Figure 46). 

Main objective of this analysis was to determine the portions of pre-event and event water 

contributing to storm runoff generation in the investigated subcatchments. Quantified 

discharge components and the received ratio of pre-event and event water facilitate to assess 

the vulnerability of the Upper Jordan River tributaries towards predicted climate changes such 

as increasing precipitation intensities or a shortening of the wet season. Stable water isotopes 

allow for the determination of temporal hydrograph components (pre-event/ event water) as 

described in chapter 2.4.3 and 2.4.4.3. In addition, geochemical tracers enable for the 

delineation of spatial runoff sources, i.e. by identification of certain contributing areas such as 

hillslopes, soil or riparian zones (see chapter 2.4.4). 
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Figure 46: Investigated stream network in the northern UJRC. Underlined and italic fonts 
denote springs that were not sampled due to their location on the borderline 
between Israel and Syria or Israel and Lebanon. 

Mixing models and hydrograph separations based on isotopic and geochemical tracer 

information were widely applied to separate two, three and even four discharge components 

(OGUNKOYA and JENKINS, 1993; LEE and KROTHE, 2001; UHLENBROOK and HOEG, 2003, 

TARDY et al., 2004). However, these kind of investigations were generally restricted to 

hillslope studies and experimental watersheds (microscale) (BAZEMORE et al., 1994; RICE and 

HORNBERGER, 1998; KENDALL and MCDONNELL, 2001), while hydrograph separation 

analyses in mesoscale large catchments are rare (TARDY et al., 2004) and often accompanied 

by a variety of assumptions when defining end-member concentrations. In addition, the 
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application of mass balances and mixing models requires either time-invariant tracer 

concentrations (SKLASH and FARVOLDEN, 1979) or the characterization of temporally 

variable end-member concentrations (GENEREUX and HOOPER, 1998), a precondition hard to 

meet in mesoscale catchments. Surface catchment areas of the major tributaries of the Upper 

Jordan River range between 40 and 563 km² (excluding the Dan stream whose surface 

catchment area is zero) rendering the acquisition of the temporal and spatial variability of 

potential discharge components almost impossible. In addition, investigating runoff processes 

in semi-arid catchments is of particular challenge since runoff events can be extremely rare. 

 

7.3.1 General pattern of streamflow response 

The study period (November 2002 – May 2004) was characterized by a particularly 

precipitation rich year in 2002/03 followed by a year with average precipitation amounts in 

2003/04. However, the observed climatic pattern represented only part of the natural climate 

conditions in the Mediterranean region since droughts are natural occurring phenomena in the 

Mediterranean and a normal part of climatic variability.  

For the investigated period, discharge in all of the monitored streams mimiced precipitation 

pattern to variable extents. The Dan stream has virtually no surface catchment area, 

accordingly no signals of fast flow components occured on the Dan hydrograph (Figure 47). 

Dan discharge steadily increased in winter 2002/03 and remained at a comparatively high 

level in summer and autum 2003. With the winter season 2003/04, discharge rose again 

reaching peak values by March 2003. Stream temperature varied little over time (15.2 - 

16.1°C). However, increases of discharge at the beginning of the winter seasons were always 

accompanied by slight increases in temperature while during summer and autumn, decreasing 

stream temperatures were registered. A similar pattern is evident for electrical conductivities 

monitored in the Dan stream.  

Generally, a rising Dan hydrograph is accompanied by slightly decreasing EC (down to 

314 µS/cm) indicating the arrival of new water with low solute concentrations. However, 

during the initial rising of the hydrograph at the beginning of the winter seasons, electrical 
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conductivities increased (up to 364 µS/cm) pointing to the activation or displacement of old, 

more mineralized water from the system (Figure 47). 
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Figure 47: Rain (bars) and mean air temperature (dots) at Pichmann farm from November 
2002 to May 2004. Also presented are continuous discharge (black line), electrical 
conductivity (light grey line) and stream temperature (dark grey line) in the Dan, 
Hermon, Senir and Orevim stream for the study period. Data gaps are due to 
technical and logistical problems. 
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Precipitation and subsequently stormflow in the UJRC is restricted to winter (December-

April). Hence, the Hermon, Senir, Orevim and Sion stream were characterized by the rapid 

succession of runoff events during winter and early spring. During summer and autumn the 

hydrographs receded to baseflow conditions (Hermon, Senir, Orevim) or to zero flow (Sion). 

In the Hermon stream, both on the long-run and during short events, increases in discharge 

were accompanied by decreasing electrical conductivities (Figure 47, Figure 56). The ongoing 

dilution effect concerning electrial conductivity during spring and summer was caused by 

snowmelt as shown for the Banias spring (see chapter 6.6.1), the main source of the Hermon 

stream. Snowmelt recharge through karstic flowpaths also explains the drop in stream 

temperatures (down to 8.8 °C) that accompanied the dilution effects. During events, a small 

but steep increase of electrical conductivities indicating flushing effects during initial runoff is 

followed by significant decreases of electrical conductivities coinciding with peak discharges. 

Thus, fast flow components such as overland flow influence Hermon stream discharge.  
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Figure 48: Rain (bars) and mean air temperature (dots) at Pichmann farm from November 
2002 to May 2004. Also presented is the continuous Sion discharge during the 
study period. 

Similar but less distinct patterns in discharge, stream electrical conductivities and 

temperatures were observed for the Senir stream. However, longterm dilution effects were 
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comparatively smaller and less abrupt at the beginning of the rainy season than in the Hermon 

stream (Figure 47). Also the Orevim stream rapidly responded to precipitation and Orevim 

storm runoff events were accompanied by significant dilution effects on stream electrical 

conductivities and low stream temperatures (Figure 47). Due to financial limitations no 

continuous measurements of temperature and electrical conductivities were available for the 

Sion stream.  

 

7.3.2 Hydrometric observations 

Runoff generation events in the investigated streams differed in terms of frequency, size and 

duration (Table 43 and Table 44). During winter, events occurred in rapid succession as 

indicated by the short periods in which discharge returned to baseflow conditions (Tbaseflow), if 

at all. Median return periods in between peak discharges (Tinterval) ranged between 2 to 10 

days. The median response time (Tresponse), i.e. the lag time between the initial rising of 

discharge and the occurrence of peakflow was 42 hours in 2002/03 and 85 hours in 2003/04 

for the Senir stream. In comparison, the Sion stream displayed the lowest median response 

times of 6 to 13 hours, for 2002/03 and 2003/04, respectively. Discharge reaction of the 

Hermon and Orevim stream occurred within 16 to 30 hours. Response times did not relate to 

the calculated antecedent precipitation indices (APIs), however, continuative studies should 

investigate the influence of catchment characteristics such as size, slope, land-use and stream 

length on the temporal and hydrological features of runoff events. Maximum seasonal 

discharges varied significantly in size, ranging from 1.3 m³/s in the Sion stream up to 

135 m³/s (2/21/2003) and 179 m³/s (12/20/2002) in the Hermon and Senir stream, 

respectively.  

Based on the timing, duration and size of the runoff events alone, the Sion and Orevim stream 

were the most responsive towards precipitation. This responsiveness is probably caused by 

comparatively small catchment areas and shorter travel distances of water to the stream 

channels. Catchment size appeared also to be reflected in the duration of the events which was 

shortest for the Orevim and Sion stream and varied most widely for the Senir stream. The 

Sion and Orevim as well as the Senir stream also exhibited high variability in the ratio of 
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peak-to-initial discharge while Hermon stream response seemed rather balanced. This pattern 

is attributed to the fact that the Hermon stream receives higher portions of baseflow than the 

three other streams, a conclusion derived from the conducted baseflow analyses (see chapter 

7.2). The high variability in the duration and size of Senir events was ascribed to the 

respective catchment area. The large catchment area of the Senir stream might cause patchy 

and time-variant responses depending on the spatial and temporal distribution of precipitation 

during the ongoing and preceding event. 
 
 



 

 171

Table 43: Hydrological characteristics of runoff events in 2002/03 and 2003/04 in four streams of the UJRC. All discharges (Q) are reported as 
median values except for the maximum discharge (Qmax). Qinitial, Qfinal and Qpeak  are the discharges at the beginning, and at the end of the 
event, and during peak flow, respectively. N is the number of major events differentiated from the hydrograph. Ns is the number of 
sampled events. Single event characteristics are given in the appendix in Table 80, Table 81, Table 82 and Table 83. 

Stream Hydr. Year n ns Qmax Qinitial ±σ Qfinal ±σ Qpeak ±σ Qpeak/ Qinitial ±σ Qfinal/ Qinitial ±σ 
    m³/s m³/s m³/s m³/s m³/s m³/s m³/s m³/s m³/s m³/s m³/s 

Hermon 2002/03 9 8 135 8.6 5.8 14.0 5.9 41.8 36.1 6.8 3.1 1.3 0.5 
 2003/04 6 5 57 8.5 3.0 10.0 2.5 35.1 13.8 3.0 4.7 1.1 0.5 
Senir 2002/03 12 1 179 9.9 8.8 12.7 8.4 29.7 35.6 5.1 40.3 1.4 0.6 
 2003/04 4 3 85 4.0 3.2 6.6 3.0 30.3 18.6 12.3 6.7 1.6 0.8 
Orevim 2002/03 14 - 18 0.8 0.7 1.1 0.7 5.6 6.2 3.8 20.9 1.3 0.9 
 2003/04 6 4 15 0.9 0.3 1.0 0.2 7.7 5.1 8.9 12.8 1.1 0.4 
Sion 2002/03 13 - 3.4 0.3 0.2 0.3 0.3 0.9 0.9 3.3 573.1 1.3 320.1 
 2003/04 3 3 1.3 0.02 0.01 0.0 0.0 1.2 0.4 41.3 19.7 0.0 0.0 
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Table 44: Temporal features of runoff events in 2002/03 and 2003/04 for four streams of the UJRC and antecedent precipitation indices based on 
records of the meteorological station at Banias Nature Reserve. N is the number of major events differentiated from the hydrograph. 
The antecedent precipitation index (API) is calculated as the 2- or 5-day sum of precipitation preceding the storm event.  

Stream Hydr. Year n Tduration ±σ Tbaseflow ±σ Tinterval ±σ Tresponse ±σ 2-day API ±σ 5-day API ±σ 
   d d d d d d h h mm mm mm mm

Hermon 2002/03 9 4.5 2.0 2.5 13.1 4.1 12.7 24.3 14.9 45 22 61 27 
 2003/04 6 2.7 2.6 0.9 10.2 2.8 7.3 16.9 7.5 45 27 80 37 
Senir 2002/03 12 6.9 7.2 0.0 1.7 2.6 4.0 42.4 64.9 38 26 59 37 
 2003/04 4 15.3 13.9 0.0 0.0 1.9 8.3 84.8 66.2 60 27 66 28 
Orevim 2002/03 14 2.5 1.6 3.4 6.2 5.9 6.5 16.0 20.3 55 36 105 41 
 2003/04 6 4.1 2.7 0.6 3.8 4.4 4.6 29.8 21.0 54 44 87 87 
Sion 2002/03 13 1.3 19.3 3.4 11.5 6.3 12.1 6.0 30.8 69 30 98 28 
 2003/04 3 2.2 22.8 8.0  9.9  12.5 106.8 107 55 131 70 
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7.3.3 Event chronology 

A variety of runoff events were monitored for the investigated streams during the two 

extensive sampling campaigns in winter 2002/03 and winter 2003/04. Though automated 

samplers were installed for high-frequency sampling during runoff events, the successful 

sampling of single runoff events depended on a number of parameters. Since samplers could 

not be started automatically with rising discharge levels or by rain sensors (which were both 

tried), sampling campaigns were initiated according to weather forecasts and anticipated 

precipitation events. The duration and intensity of the precipitation event was not predictable 

either, thus sampling lengths and frequencies were adjusted during the ongoing event 

depending on experience and – luck. Hence, only a small number of the actually occuring 

events (Table 44) were successfully sampled and out of these only a part was suitable for the 

application of mass balances and mixing models. The following problems were encountered: 
 

 Increases in discharge and variations in tracer concentrations were too small to 

conduct meaningful hydrograph separations. 

 When conducting 18O-based two-component hydrograph separations, isotopic 

compositions of the pre-event and event component were too similar, thus violating 

one of the boundary conditions restricting hydrograph separation (see chapter 

2.4.3.1). 

 The rapid succession of events did not allow to reliably determine the composition of 

the pre-event component. 
 

Consequently, one storm runoff event for each of the streams was chosen for the 

quantification of discharge components and indepth analysis of the governing flowpaths and 

runoff generation processes. The comparative evaluation of additional runoff events was 

reserved to future publications and would exceed the scope of this work. 

Fortunately, three of the investigated streams were successfully sampled for one and the same 

runoff event providing the possibility to compare runoff generation mechanisms and 

dynamics for different settings.  
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On January 11, 2003, precipitation amounts of 320 mm and 356 mm had accumulated at the 

meteorological stations of Banias and Pichmann, respectively. Four succeeding rain days 

starting on January 12, 2003 caused first major storm runoffs in all of the investigated streams 

(Figure 47, Figure 48). During this rain period, 66.4 mm and 91.8 mm of precipitation were 

measured at Banias and Pichmann, respectively. Highest overall rain intensities were 

monitored for January 14, 2004 between 8 to 9 a.m. at Pichmann station where hourly 

recordings were conducted. In the Hermon stream, this first major flood was preceded by only 

smaller increases in discharge of up to 6.5 m³/s (mean discharge is 3.3 m³/s). The antecedent 

precipitation 5-day API (defined as the rainfall during the 5 days prior to the storm event) was 

64 mm. At the beginning of the event on January 13, 2004 at 10 p.m. discharge was about 

4.4 m³/s. Peak discharge (47 m³/s) occurred on January 14, 2004 at around 11.30 a.m. with a 

response time of 13 hours after the first initial increase in discharge. Peak discharge lagged 

about 2-3 hours behind highest rain intensity. Discharge receded until January 22, 2004 at 

10.30 a.m. back to a level of 4.7 m³/s. Thus, the whole event lasted for about 8.5 days (Figure 

49). 
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Figure 49: Hourly and accumulated rain at Pichmann farm and discharge, electrical 
conductivity and stream temperature for the Hermon stream (storm runoff event 
1/13/2004-1/22/2004). 
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Sion stream flow (Figure 50) (which contributes to Hermon stream discharge) started to 

increase on January 14, 2002 at around 8 a.m thus immediately responding to highest rain 

intensities. Peak discharge (1.03 m³/s) occurred on the same day at around 10:40 a.m. 

preceding peak discharge in the Hermon stream by about 50 minutes. Storm runoff ended 

when discharge faded to zero on January 15, 2003 at about 7 p.m. In the Sion stream, the 

whole event lasted for 1.5 days suggesting the absence of any medium or long-term flow 

component at this time of the year. Generally, this discharge behaviour was assumed to be 

representative for other contributing rivulets originating on Mount Hermon, such as the 

Guvtah and Hazuri. The Sa’ar stream receiving major recharge by the basaltic Golan Heights 

stopped flowing only in spring 2004 matching the end of the rain and snowmelt season. 
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Figure 50: Hourly and accumulated rain at Pichmann farm. Also given are discharge and 
electrical conductivity for the Sion stream (storm runoff event 1/14/2004-
1/16/2004). 

In the Orevim stream (Golan) (Figure 51), the event lasted 4.7 days and started on January 14, 

2004 at 3 a.m. with an initial discharge of 0.4 m³/s. Peak discharge (12.5 m³/s) was reached on 

the same day at around 9:30 a.m. coinciding with highest rain intensities recorded at 

Pichmann which is located in the basaltic Golan Heights as well. Discharge returned to 

baseflow conditions on January 18, 2004 to a level of about 0.5 m³/s. Duration of the runoff 
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events, that were 4.7 and 8.5 days in the Orevim and Hermon streams respectively, indicates 

the contribution of a medium-term component to storm runoff. 
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Figure 51: Hourly and accumulated rain at Pichmann farm. Also given are discharge, 
electrical conductivity and stream temperature for the Orevim stream (storm 
runoff event 1/13/2004-1/18/2004). 

For the Senir stream (Figure 52), two consecutive storm events (2/13/2003-2/18/2003) were 

analyzed in detail. In contrast to the event investigated for the Hermon, Sion and Orevim 

stream, this storm runoff event occurred in the middle of the rainy season when 530.5 mm had 

accumulated at Mayan Barukh, a meteorogical station about 30 km downstream of the main 

springs feeding the Senir River. Baseflow conditions had controlled streamflow for only a day 

when rain started again on February 13, 2003 lasting for four days altogether. The antecedent 

precipitation 5-day API was 39 mm. In total, 43.4 mm of precipitation accumulated during the 

flood event with the highest amount falling on February 14. Discharge started to increase on 

February 13 at about 7 p.m. from an already high level of 12.9 m³/s (mean discharge is 

3.4 m³/s) to a peak discharge of about 52.5 m³/s on February 14 at about 3 a.m. A second peak 

of 39 m³/s occurred on February 15, 2003 at 11 a.m.; discharge returned to a pre-storm level 

(15.3 m³/s) on February 18, 2003. Runoff conditions lasted for 5.1 days, however, recession 

characteristics were overwritten by a successive rain event. 
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Figure 52: Daily and accumulated rain at Mayan Barukh. Also given are discharge and 
electrical conductivity for the Senir stream (storm runoff event 2/13/2003-
2/18/2003). 

7.3.4 Chemographs 

Up to 15 parameters were monitored during storm runoff events in the four investigated 

streams. Hydrographs, chemographs and temporal variations of δ18O during the course of the 

investigated flood event are given in Figure 53 and  Figure 54 for Hermon stream, in Figure 

55 and Figure 56 for Orevim stream, in Figure 67 and Figure 68 for the Senir stream and in 

Figure 69 and Figure 70 for the Sion stream. 

 

7.3.4.1 Hermon stream 

The chemical and isotopic tracer species monitored in Hermon stream discharge showed a 

broad response pattern during the investigated storm runoff event. The first initial increase in 

discharge was accompanied by a rapid increase in electrical conductivity, which in turn 

reflected the behaviour of Cl-, SO4
2- and to a lesser extent that of HCO3

-, Mg2+ and SiO2 

(Figure 53, Figure 54). This initial increase represented most likely flushing effects within the 

catchment when ions that accumulated during preceding dry periods were washed from the 

upper soil horizons. The rapid increase was immediately followed by declining ion 

concentrations. 
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Figure 53:  Time-series of discharge, electrical conductivity, temperature, δ18O, deuterium 
excess and major anions during 1/13/2004-1/22/2004 in the Hermon stream. 
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Figure 54: Time-series of discharge, electrical conductivity, temperature, major cations, SiO2 
and DOC during 1/13/2004-1/22/2004 in the Hermon stream. 

Peak discharge went along with a strong shift towards more negative (more depleted) δ18O 

values and a significant decrease of ion concentrations in the order: 

[SO4
2-] (0.45) > [Ca2+] (0.54) > [Mg2+] (0.67) > [Cl-] (0.67) > [HCO3

-] (0.69) > [Na+] (0.79), 
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 where numbers in brackets indicate the respective dilution factor. The strongest dilution at 

peak discharge relative to initial concentrations in baseflow was observed for sulfate. 

Increasing concentrations were measured for DOC (by a factor 2.5 at peak discharge), 

K+ (2.1) and SiO2 (1.03).  

During the recession phase, the stable isotope composition (δ18O) and concentrations of Cl-, 

HCO3
-, Ca2+ and Na+ returned to pre-storm conditions representing baseflow. However, K+, 

Mg2+, SO4
2-, DOC and SiO2 had not regained their initial concentration at the end of the 

recession period (Figure 54). This effect was most evident for sulfate and might indicate the 

contribution of an additional water component with residence times bigger than overland 

flow. One possible explanation could be the participation of vadose zone water contributing to 

Banias spring discharge (see chapter 6.6.2). However, none of these tracers are considered 

conservative in the Hermon catchment and chemical processes on the flowpath might alter 

their concentrations. 

 

7.3.4.2 Orevim stream 

Storm runoff in the Orevim stream that emerges in the basaltic Golan Heights showed a 

slightly different pattern of chemical and isotopic tracer response. The initial increase in 

Orevim discharge was accompanied by a distinct increase of SO4
2- concentrations and to a 

lesser extent by an increase of HCO3
-. However, these pattern were not reflected in the 

streams electrical conductivity (Figure 55). Peak discharge went along with a strong shift 

towards more negative (more depleted) δ18O values and a significant decrease of ion 

concentrations in the order: 

[Mg2+] (0.50) > [Na+] (0.54) > [NO3
-] > [Cl-] (0.59) > [HCO3

-] (0.63) > [Ca2+] (0.71). 

In the Orevim stream, the strongest dilution effect was observed for magnesium. Increases in 

concentrations occurred for DOC (by a factor 3.1 at peak discharge), K+ (1.3) and SO4
2-

 (1.1). 

During the recession phase, the stable isotope composition (δ18O) and the concentrations of 

all investigated tracers returned to pre-storm conditions representing baseflow (Figure 55, 

Figure 56). The only exception to this pattern was the DOC concentration that did not regain 
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its initial concentration at the end of the recession period but was slightly higher suggesting 

the ongoing contribution of water from the upper soil zones.  
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Figure 55: Time-series of discharge, electrical conductivity, temperature, δ18O, deuterium 
excess and major anions during 1/13/2004-1/18/2004 in the Orevim stream. 
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Figure 56: Time-series of discharge, electrical conductivity, temperature, major cations, SiO2 
and DOC during 1/13/2004-1/18/2004 in the Orevim stream. 
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7.3.4.3 Sion stream 

As suggested before (see 7.3.3), Sion storm runoff seemed to be fed by overland flow alone 

during the investigated event, an assumption confirmed by the observed tracer responses. 

With the onset of discharge, δ18O concentrations in stream discharge decreased from -8.47 ‰ 

to -11.41 ‰ V-SMOW which could be a result of the amount effect, i.e. precipitation 

becoming isotopically lighter with increasing rain amounts. However, this isotopic signature 

might also reflect the delayed arrival of runoff from high altitudes knowing that with 

increasing altitude precipitation gets isotopically depleted (see chapter 2.4.4.3).  

A steep initial increase followed by an ongoing gradual rise in concentrations was observed 

for Na+ and Cl- to about 5 mg/L and 4.5 mg/L, respectively (Figure 69, Figure 70). A steep 

concentration increase followed by a rather stable behaviour was monitored for SO4
2-, HCO3

- 

and Ca2+ while the reverse effect (initial decline followed by stable concentrations) was 

observed for Mg2+. Nitrate concentrations showed a heterogeneous signature because of its 

dependence on nitrate concentrations in precipitation itself. Additional nitrate sources could 

be excluded for the Sion catchment. DOC, K+ and SiO2 concentrations peaked at the 

beginning of the event and showed decreasing or stable (low) concentrations during recession 

suggesting the initial flushing of upper soil zones within the catchment. 

 

7.3.4.4 Senir stream 

Peak discharge in the Senir stream was accompanied by a strong shift towards negative (more 

depleted) δ18O values from -6.67 ‰ down to -8.10 ‰ V-SMOW and a significant dilution 

effect on most of the ion concentrations (Figure 67, Figure 68). The most distinct dilution at 

peak discharge relative to initial concentrations in baseflow was observed for nitrate. 

Increasing concentrations were measured for DOC (by a factor 1.4 at peak discharge) and 

K+ (2.1).  

During the recession phase, the stable isotope composition (δ18O, δ2H) and the concentrations 

of all investigated tracers returned to pre-storm conditions with the exception of DOC that did 

not regain its initial concentration at the end of the recession period but was slightly lower. 
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Figure 57: Relative natural tracer concentration in the Hermon stream during 1/13/2004-
1/22/2004. 

Generally, an inverse relationship between weathering-related determinants (Ca2+, Mg2+, 

HCO3
- and Na+) and discharge was observed in the Hermon, Orevim and Senir stream 

suggesting the dilution of base-rich, mineralized groundwater with less mineralized inputs 

from overland flow or flow through shallow soil horizons. This did not apply to the Sion 

stream that was solely fed by overland flow at this point of time and whose storm runoff was 

characterized by the chemical signature of precipitation (Na+, Cl-, NO3
-), the activation of 

dust-derived constituents (Ca2+, Mg2+, SiO2) as well as that of biologically cycled materials 

(DOC, K+). 

Determinants associated with the upper soil layer (DOC and K+) were positively related with 

discharge in all of the streams, the extent of this relationship however, was different for each 

of them (Table 45). Also, maximum concentrations of DOC and K+ were always measured 

before the arrival of peak discharge (Figure 57, Figure 59). The investigation of various soil 

and sediment profiles showed that DOC and K+ concentrations increase towards the soil 

surface (BROWN et al., 1999; HANGEN et al., 2001; LADOUCHE et al., 2001; BISHOP et al., 

2004). Thus it is suggested that lateral flow through superficial flowpaths (especially in the 

riparian zone) lead to the observed initial increase of DOC and K+ in stream flow (see also 

2.4.4.7) . With ongoing precipitation additional runoff areas will be connected to the stream 

through rainfall-excess or infiltration-excess overland flow (see 2.3.1) causing the positive 

correlation between discharge and these tracers. 
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Table 45: Relative natural tracer concentrations in the investigated streams at peak 
discharge during the investigated events. 

Tracer Sion Hermon Orevim Senir 

EC 1.83 0.61 0.63 0.71 
T - 0.71 0.70 - 
Cl- 1.87 0.67 0.59 0.79 
SO4

2- 1.91 0.45 1.05 0.90 
HCO3

- 1.76 0.69 0.63 0.76 
NO3

- 0.90 0.73 0.54 0.66 
Na+ 2.11 0.79 0.54 0.87 
K+ 1.08 2.12 1.26 1.44 
Mg2+ 1.21 0.67 0.52 0.74 
Ca2+ 1.73 0.54 0.71 0.99 
SiO2 1.61 1.02 0.62 0.85 
DOC 1.41 2.50 3.12 1.43 
TSS 50 181 22 - 

 

Dissolved silica (SiO2) responded differently in the investigated streams. While in the Sion 

and Hermon stream, SiO2 positively correlated with discharge, its relation with flow was 

negative in the Orevim and Senir stream. It is suggested that in the Hermon catchment, 

(including the Sion), SiO2 accumulates in the upper soil or epikarst layers as a product of 

carbonate weathering thus causing the positive correlation to discharge during storm runoff. 

In the Orevim and Senir catchment on the other hand, SiO2 concentrations are highest in deep 

parts of the unsaturated and in the saturated zone (chapter 6.3.2) causing its dilution through 

water arriving on superficial flowpaths with less SiO2 dissolution taking place. 
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Figure 58: Relative tracer concentration in the Orevim stream during 1/13/2004-1/18/2004. 



 

186 
 

7.3.5 End-member differentiation 

A precondition for the application of mass balances and mixing models to quantitatively 

determine the contribution of different water bodies to streamflow generation is the reliable 

identification of the involved end-member. If runoff generation is explained by two 

components, the relationship between tracer and discharge must be linear (SKLASH and 

FARVOLDEN, 1979). A two-component mixing model will then allow to differentiate pre-

event from event water whereas pre-event water is considered to represent groundwater 

contributions while event water equals to precipitation traveling at the surfaces of the 

catchment. In order to test the two-component hypothesis, correlation matrices using the non-

reactive tracer δ18O and Cl- assumed to identify pre-event and event water contributions as 

well as the reactive tracer Ca2+ and HCO3
- were plotted for the Orevim, Hermon and Senir 

streams (Figure 59, Figure 60).  Based on groundwater and precipitation analyses (see 5.2 and 

6.1), the latter tracer combination was suggested to enable the separation of groundwater 

contributions (high Ca2+ and HCO3
-) from overland flow (low Ca2+ and HCO3

-). Although 

Ca2+ and HCO3
- are reactive tracers, they are often assumed to behave conservative at the 

event scale enabling their application in mass-balances and mixing models (SOULSBY, 1995; 

MCGLYNN et al., 1999; SHANLEY et al., 2002). 

The Sion stream was excluded from this type of analysis since for the respective event it was 

shown to be fed by overland flow alone (see chapter 7.3.4.3 and Table 45).  
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Figure 59: Mixing diagrams of δ18O and Cl- for the investigated events in the Hermon, 
Orevim and Senir stream. R indicates the correlation coefficient. 
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Analysis of the mixing charts for the assumed conservative tracers showed that discharge in 

the Hermon, Orevim and Senir stream can be mainly explained by the mixing of two obvious 

end-members (Figure 59, Figure 60). One end-member is characterized by depleted δ18O and 

low concentrations of Cl-, Ca2+ and HCO3
- and is assumed to represent event water that 

travels on overland flowpaths. The second end-member shows enriched δ18O, and high 

concentrations of  Cl-, Ca2+ and HCO3
- and thus displays the signature of pre-event water that 

is assumed to equal groundwater contributions. However, a somewhat exceptional pattern was 

observed for the Senir stream; when plotting HCO3
- versus Ca2+ values scattered widely and a 

third component with high concentrations of HCO3
- but comparatively low values of Ca2+ 

seemed to be involved in runoff generation. 
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Figure 60: Mixing diagrams of HCO3
- and Ca2+ for the investigated events in the Hermon, 

Orevim and Senir stream. R indicates the correlation coefficient. 

A potential weakness of two-component mixing models is the underlying assumption of no 

contribution of pre-event soil water to stream discharge. However, soil water was frequently 

shown to contribute to storm runoff generation (BAZEMORE et al., 1994). Hence, in a second 

step principal component analysis (PCA) were performed to test for the assumption of two-

component mixing and to identify the most important end-members describing the observed 

variance in stream chemistry for the investigated storm events. The technique of PCA and 

end-member mixing analysis was outlined by CHRISTOPHERSEN and HOOPER (1992) and 

BURNS et al. (2001) and described in detail in chapter 2.4.3.2.  

For the Hermon, Orevim and Senir storm runoff events, a dataset of the concentrations of 

eight natural tracers (δ18O, Cl-, Ca2+, Mg2+, SO4
2-, DOC, K+ and SiO2) was obtained to 
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represent the observed variability in stream tracer response. These data were standardized 

such that constituents with great variation would not exert more influence on the model than 

those with less variation. Standardization was conducted according to: 

s
xxxstd

−
=  

where x is the raw value of a chemical or isotopic parameter in the sample, x  is the mean 

value of the respective parameter for all of the samples, and s is the standard deviation of the 

respective parameter for all of the samples. Subsequently, a PCA was performed on the 

correlation matrix using all eight parameters; the results are given in Table 46. 

Table 46: Results of the conducted principal component analyses for the investigated events 
in the Hermon, Orevim and Senir stream. Principal components (PC) are given 
with their component matrix. Italic letters indicate principal components with 
eigenvalues smaller than 1. Var(PC) indicates the variance explained by the 
respective principal component. 

Event PC δ18O Cl- Ca2+ Mg2+ SO4
2- DOC K+ SiO2 Var(PC)

          % 

Hermon PC 1 0.969 0.968 0.973 0.857 0.810 -0.856 -0.925 -0.417 74.70
 PC 2 0.013 0.036 -0.046 0.452 0.315 0.157 0.178 0.830 87.86
Orevim PC 1 0.976 0.963 0.957 0.950 0.683 -0.772 0.119 0.968 71.39
 PC 2 0.007 0.088 0.036 -0.068 0.619 0.583 0.934 -0.151 91.79
Senir PC 1 0.900 0.949 0.371 0.954 0.908 -0.806 -0.883 0.862 71.91
 PC 2 0.005 -0.049 0.909 -0.115 -0.005 0.343 -0.047 0.061 83.97

 

Generally, an arbitrary number of principal components will describe overall variance in a 

dataset. However, since each derived component n requires n+1 end-members in terms of 

mixing models, the number of components used in further analysis is usually restricted to 

those having an eigenvalue greater than 1 (DOCTOR et al., 2006). In the case of the 

investigated events for the Hermon, Orevim and Senir stream, two components (suggesting 

three end-members) accounted for 87 %, 92 % and 84 % of variance in the datasets, 

respectively. For all of the three streams, the first principal component (PC 1) is characterized 

by high-loadings of groundwater related constituents such as Ca2+, Mg2+, SO4
2-, Cl- and a high 

loading of δ18O confirming the assumption of mixing between two end-members 
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(groundwater/overland flow) as introduced before. However, the contribution of a soil water 

component to storm runoff is suggested by comparatively high values of DOC, K+ and SiO2 

for the Hermon stream (Table 46) and by high values of DOC and K+ for the Orevim stream. 

For the Senir stream event the results are less clear, the third end-member being characterized 

by high loadings of DOC and Ca2+. Since Ca2+ generally increase with increasing soil depth, it 

seems unlikely that the third end-member represents soil water contributions. Further 

investigations have to be conducted to evaluate the origin of this discharge end-member. The 

application of EMMA for quantitative hydrograph separation requires the definition of the 

chemical and isotopic composition of the suggested end-members. Within the scope of this 

study, there were no means to establish representative end-member concentrations for soil 

zone contributions in the Hermon and Orevim catchment. In the Orevim catchment suction 

cups were temporarily installed to collect soil water from depths of 10 to 30 cm. However, the 

installation was followed by a dry period rendering the collection of soil water impossible. 

Thus, the characterization of any such component has to be reserved to future studies. Here, 

two-component mixing models were applied to separate event (overland flow) from pre-event 

water (baseflow). 

 

7.3.6 Two-component hydrograph separation 

The theoretical basis and the underlying assumptions of two-component hydrograph 

separations were described in chapter 2.4.3.1. Hydrograph separations were already applied in 

the context of discriminating Banias and Dan spring discharge components (see chapter 6.6.1 

and 6.7.1). Here, δ18O was used to separate event from pre-event water and Cl- was applied to 

differentiate between overland flow and baseflow in storm runoff of the Hermon, Orevim and 

Senir stream. Hence, the two-component mixing model is given as: 

PEPEEETT CQCQCQ +=  

where QT is the total discharge measured at the respective stream, QE is the amount of event 

flow (overland flow) and QPE is the amount of pre-event flow which is assumed to 

approximate baseflow. “C” notation represents δ18O or chloride concentrations for total 



 

190 
 

discharge CT, event flow CE, or pre-event flow CPE. Thus, the portion of the event component 

is calculated as: 

PEE

PET
TE CC

CCQQ
−
−

=
 

The relative contributions of event and pre-event water were calculated for each streamflow 

sample taken during the investigated storm runoff event. The isotopic and chemical 

composition of stream discharge prior to the event represented the pre-event component and 

baseflow, respectively. 

A major challenge to chemical and isotopic hydrograph separations is the definition of the 

event component, especially in mesoscale catchments where the chemical and isotopic 

signature is known to vary spatially and over time (MCDONNELL et al., 1990; KENDALL and 

MCDONNELL, 1998; WISSMEIER and UHLENBROOK, 2007). Despite the intensive 

precipitation sampling campaign (chapter 5) it rendered impossible to account for the total 

chemical and isotopic variability of the precipitation input during storm runoff, especially 

since there was no possibility to sequentially sample the precipitation input as suggested by 

MCDONNELL et al. (1990), WISSMEIER and UHLENBROOK (2007) and others. Consequently, 

different scenarios for the definition of the event component were applied and compared for 

the investigated events in the Hermon, Orevim and Senir stream, simultaneously providing an 

uncertainty estimation of the conducted two-component hydrograph separation.  

For chloride based hydrograph separations, the median chloride concentration of 50 snow 

samples taken on Mt. Hermon was assumed to represent the event component for the 

investigated Hermon (1/13-1/22/2004) and Senir (2/13-2/18/2003) runoff events. For the 

Orevim stream that emerges in the Golan area, median chloride concentrations of 

precipitation in the Golan determined by Herut et al. (2000) (Table 12) were believed to 

sufficiently characterize the event component during  January 13th to 18th, 2004.  

For stable isotope based (δ18O) hydrograph separation, the event concentrations were defined 

as follows: Daily precipitation sampled at Nimrod station (700 m a.s.l.) was assumed to 

represent the event component for the Hermon event (Scenario A). In a second step, these 

data were corrected for the known isotope-altitude gradient in precipitation (-0.26‰ per 
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100 m; chapter 5.3.7) assuming that major event runoff contributing to the Hermon stream is 

generated at an altitude similar to the mean recharge altitudes of the Banias and Kezinim 

springs (1260 m a.s.l.; chapter see 6.4.1). (Scenario B). The Sion stream collects its discharge 

from the upper slopes of the southeastern Hermon Mountain, contributes to Hermon stream 

discharge and was shown to be fed by overland flow alone during the investigated event 

(1/14-1/16/2004). Hence, in a third step, the measured isotopic composition of Sion discharge 

was assumed to characterize the temporal variation in the precipitation input contributing to 

Hermon storm runoff (Scenario C). 

For the investigated storm runoff event in the Orevim stream, first, the isotopic composition 

of a weekly bulk precipitation sample from the Orevim catchment (station at 810 m a.s.l., see 

Figure 17) for that period was assumed to represent the event component (Scenario D). 

Second, the isotopic signature of the event component was recalculated from the high 

correlation between stream δ18O and stream Cl- during storm runoff as shown in Figure 59. 

Using the median chloride concentration of Golan precipitation (HERUT et al., 2000) as input 

variable to the regression equation, the bulk isotope composition of the precipitation end-

member was reconstructed for the event (Scenario E).  

Definition of the event component for the investigated Senir storm runoff was somewhat 

arbitrary because of the lack of representative precipitation input data. As described earlier 

(see chapter 3.6), the catchment area of the Senir stream lays for the most part in Lebanon. 

Hence, the isotope composition of a weekly bulk sample taken at Neve Ativ (1000 m a.s.l.) 

was expected to represent the event component (Scenario F). Enrichment effects on 

precipitation due to canopy interception was assumed to be negligible in the investigated 

subcatchments due to the sparse vegetation cover.  

Estimated maximum event water contributions to storm runoff ranged from 33 % to 52 %  QT 

for δ18O-based separations in the Hermon stream (Table 47). For the chloride-based 

hydrograph separation, maximum event contribution was 49 % QT of total Hermon stream 

discharge during 1/13-1/22/2004. Maximum event water input generally occurred just after 

peak discharge. Mean event water contributions ranged between 10 % to 20 %  QT for the 

Hermon event depending on the chosen model. Scenario E, where the stable isotopic 
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composition of the Sion discharge was defined to represent the event water input agreed best 

to the chloride-based two-component mixing model. Although sequential sampling of the 

precipitation input was not conducted in the scope of this study, the usage of  continuously 

measured Sion stream δ18O to define the event end-member seemed to be a good substitution. 

Hence, Sion stream δ18O did not only include the temporal variation of δ18O in precipitation 

but also indicated the arrival of water from different recharge altitudes (see chapter 5.3.7) 

Table 47: Results of the conducted two-component hydrograph separations using δ18O and 
Cl- as tracer. Maximum (max) and mean event water contributions are presented 
as well as the event water input at peak discharge (peak). Event water 
contributions are given as percentage of total discharge (% QT). 

  QE –  δ18O QE  – Cl- 
Scenario Event max mean peak max mean peak 

  % QT % QT % QT % QT % QT % QT 

A Hermon  42 12 38 49 20 48 
B  33 10 29 49 20 48 
C  52 16 45 49 20 48 

D Orevim 103 34 67 72 24 47 
E  77 25 50 72 24 47 

F Senir 69 19 33 42 14 24 

 

For the Orevim stream, estimated maximum event water contributions to storm runoff ranged 

from 77 % to 103 % QT for δ18O-based separations (Table 47). The overestimation of the 

event water contribution (> 100 % QT) in scenario D results from the uncertainty of the input 

parameter. However, scenario E was in good agreement with results received for the chloride-

based hydrograph separation which yielded a maximum event water contribution of 72 % QT. 

Mean event water contributions ranged between 24 % to 34 % QT. 

Maximum event water contribution to the Senir stream was 69 % QT for the δ18O-based 

hydrograph separation and 42 % QT for the chloride-based mixing model (Table 47). Mean 

contributions ranged between 14 % QT and 19 % QT. Both in the Orevim and Senir stream, 

maximum event contributions occurred right after peak discharge. 
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Figure 61: Results of the two-component hydrograph separation for the Hermon stream (left) 
and Orevim stream (right) using δ18O and Cl- as tracer. Given are the δ18O 
scenarios each that best reproduced the results of the chloride-based mixing 
model. QT denotes total discharge while QPE refers to pre-event water. 

During the investigated storm events in the Hermon, Orevim and Senir stream, total discharge 

(QT) was dominated by pre-event water (i.e. baseflow) accounting in average for 66 % to 

88 % QT (Table 47). The predominance of pre-event water during storm runoff was already 

shown for a variety of catchment scales and climatic conditions (KENDALL and MCDONNELL, 

1998; MARC et al., 2001) and implies that catchments store water for a considerable amount 

of time but then release it promptly during storm events (KIRCHNER, 2003). Mechanisms 

suggested to explain this phenomena were groundwater ridging (RAGAN, 1968; GILLHAM, 

1984) or pressure wave translatory flow (CAPPUS, 1960; HEWLETT and HIBBERT, 1967; 

TSUKAMOTO, 1961) (see chapter 2.3).  

However, although pre-event water dominates total stream discharge during storm runoff in 

the investigated catchments, event water was shown to account for a significant portion of 

total flow at the time of peak discharge demonstrating the importance of overland or interflow 

pathways. For the Hermon stream, event contribution to peak discharge was 45 % and 

48 % QT for the δ18O- and Cl- -based mixing models (scenario C), respectively (Figure 61). 

Though overland flow as such was seldom monitored in the Hermon catchment, return flow, 

where water rapidly infiltrates into the upper parts of the soil or epikarst and returns to surface 

due to hydraulic interfaces downslope of the infiltration area was frequently observed. Return 

flow represents a type of interflow that is difficult to separate from overland flow or baseflow 
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in terms of δ18O-based two-component mixing models. However, results of the conducted 

EMMA (chapter 7.3.5) already indicated the contribution of a third component. 

In general, infiltration capacities in the Hermon catchment were limited during the storm 

runoff event thus favoring fast flow components. However as described earlier, runoff 

generation in semi-arid Mediterranean catchments exhibits a patchy pattern, depending on 

hillslope structure, bedrocks and vegetation covers (CALVO-CASES et al., 2003; 

PUIDGEFABREGAS et al., 1998; BERGKAMP, 1998) suggesting that infiltration capacities show 

a high spatial heterogeneity in all of the investigated catchments.  

For the Orevim stream, event water contribution to peak discharge was 50 % or 47 % QT for 

δ18O- and Cl--based hydrograph separation, respectively (Figure 61, Table 47). Maximum 

event water contributions even ranged between 72 and 77 % QT indicating that the fast flow 

components (overland and interflow) are even more important in the basaltic setting as was 

already shown by long-term hydrograph separation analyses (chapter 7.1.) Both, overland 

flow mechanism and re-emerging shallow subsurface flow were observed at first hand during 

runoff event sampling in the Orevim catchment. These observations agree with results 

received by the conducted principal component analyses (see chapter 7.3.5) that indicated the 

contribution of an interflow component traveling through the upper soil layers. 

In comparison, calculated event contributions to peak discharge during the investigated storm 

event in the Senir stream were low ranging between 33 and 24 % QT for δ18O and Cl--based 

hydrograph separation, respectively (Table 47, Figure 62). However, also for this stream, the 

contribution of a fast interflow component could not be excluded. The Sion stream 

contributing to Hermon stream discharge, was - as already mentioned – fed by overland flow 

(and potentially by rapid return flow) alone. 
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Figure 62: Results of the two-component hydrograph separation for the Senir stream using 
δ18O and Cl- as tracer. Presented are the δ18O scenarios that best reproduced the 
results of the chloride-based mixing model. 

Hydrograph separation and end-member mixing analyses are subject to numerous 

uncertainties as described in 2.4.3.3. Generally, one distinguishes between statistical 

uncertainties (due to sampling and analytical errors) and model uncertainty (due to the strong 

simplistic model hypotheses that mixing models refer to) (JOERIN et al., 2002). In this study, 

uncertainties were not calculated by any of the introduced techniques (see 2.4.3.3) because of 

insufficient data. However, an indication of uncertainty was derived by comparison of the 

different scenarios (Table 47). The definition and input regionalization of precipitation and 

δ18O is of particular importance in mesoscale catchments and might result in large 

uncertainties (WISSMEIER and UHLENBROOK, 2007). In this study, the choice of the δ18O 

input concentration for the event component resulted in differences of 6 % and 9 % QT for 

mean event contributions in the Hermon and Orevim stream, respectively (Table 47).  

Additional uncertainty for the two-component mixing model derives from the assumption that 

no pre-event soil water contributes to stream discharge during storm runoff. However, both 

end-member mixing analyses (see chapter 7.3.5) and the visual evaluation of the retrieved 

chemographs (Figure 54, Figure 56) suggests the contribution of a fast interflow component 

that travels through the upper layers of the soil or the epikarst. Since it is unlikely that 

precipitation infiltrating to the soil or epikarst reaches the stream channel without altering its 

chemical or isotopic composition (BAZEMORE et al., 1994), the event water component might 

be overestimated in case soil water is mobilized. On the other hand, if event water is a 



 

196 
 

mixture of event and soil water flowing through or directly below the shallow organic soil 

horizon, the event water component might be underestimated. Thus, in future studies, soil and 

return flow should be tried to be sampled at the hillslope scale for spatial and temporal 

charactization of this discharge component. 

Also, mixing models are based on the assumption of wave (or pressure) celerity and water (or 

solute) velocity, a theory that was questioned for large scale catchments in particular 

(WISSMEIER and UHLENBROOK, 2007). Additional uncertainties might thus derive from the 

delay of solutes behind the wave. 

The importance of fast flow components was shown for storm runoff generation in the 

investigated subcatchments of the Upper Jordan River. In terms of the anticipated climate 

change effects such as less overall precipitation, a shortent rainy season accompanied by 

increasing precipitation intensities (see chapter 1.1), the runoff regime in the Upper Jordan 

River catchment will change. First, the overall frequency of runoff events might decrease 

while the occurrence of floods might increase provided that precipitation amounts allow for 

runoff generating moisture conditions. 

Since overland and interflow significantly influence runoff generation in the investigated 

catchments, the occurrence of floods will be accompanied by high loadings of particulate and 

dissolved matter resulting in a deterioration of the quality of surface water that are feeding 

Lake Kinneret. Additionally, if the occurrence of dry intervals between runoff events 

increases or lengthens, the occurrence of first flush effects will be more frequent since soil 

and vegetation particles can accumulate more frequently in the dry river beds. Thereby, the 

term “first flush effect” refers to a hydrological process where different kinds of solutes are 

washed from the catchment into the stream during a runoff event. This process might result in 

a peak in solute concentrations that either precedes the hydrograph peak if flushing is supply-

limited or occurs only after the hydrograph when flushing is transport-limited such as often 

observered for DOC (BURNS, 2005). Although water quality might deteriorate, the amount of 

water reaching Lake Kinneret and thus the short-term availibility of water resources might 

even increase due to the already observed limited infiltration capacities and - with increasing 

peak discharges - the increasing significance of fast flow components. 
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Extended summary 

One objective of this study was to assess the vulnerability of the main water resources in the 

Upper Jordan River Catchment (UJRC), Israel, towards climate change and to increase the 

knowledge about recharge and discharge mechanism and dynamics in this basin. Another 

objective was to refine the existing conceptual models of recharge and runoff generation in 

the UJRC based on the results of the conducted experimental investigations. 

High quality freshwater is a limited resource in semi-arid and arid zones, the anticipated 

effects of global and climate change may even worsen the actual situation. The Upper Jordan 

River catchment, a transboundary basin shared by Israel, Lebanon and Syria, which was 

subject of this study provides about 27 % of the State of Israel’s water demand. The UJRC, 

Israel’s northernmost watershed comprises a surface area of about 1700 km² and receives its 

major recharge from the karstic Hermon/Anti-Lebanon mountains (2814 m a.s.l.) and the 

basaltic Golan Heights (1000 m a.s.l.). The catchment is drained by the Jordan River that 

passes the Hula basin and feeds Lake Kinneret. 

The difficult political circumstances resulted in a general lack of studies concerning the 

hydrogeological features of the main Upper Jordan River sources. Only parts of the basin 

were studied und published data are scarce. For a sustainable management of the basins water 

resources, detailed information regarding the type and portion of discharge components, water 

volumes, mean residence times, the extent of subsurface recharge areas and recharge rates are 

urgently required. 

For this purpose, characteristics of recharge and discharge in the UJRC with focus on the 

mountainous Hermon and Golan recharge areas were investigated from 2002 to 2004, 

applying a combined-method approach. This approach comprised hydrographic techniques, 

time-series analyses, isotopic and natural geochemical tracers. Field sampling included the 

continuous monitoring of five major streams. Rain collectors and 14 groundwater outlets were 

sampled on a regular basis, while snow, snowmelt and overland flow were tested 

occasionally. Samples were analyzed for up to 14 water quality parameters including major 

ions, DOC, TSS, dissolved silica, 14C and 13C, tritium and the stable isotopes of water. 
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The results of these investigations are presented in three thematically divided chapters within 

this thesis and deal with (1) the hydrochemical and isotopic characterization of precipitation, 

(2) the hydrochemical and isotopic characterization of groundwater and finally with (3) runoff 

generation in the main tributaries of the Upper Jordan River. 

The dynamic control on the transformation process of precipitation into recharge and 

discharge is the input variable itself, i.e. precipitation. Within the scope of this study, the 

isotopic and chemical composition of precipitation and its temporal and spatial distribution 

was – for the first time - extensively investigated for the mountainous northern UJRC. The 

chemical composition of precipitation varied depending on the origin of air-masses and the 

mineralogy of dusts of bedrocks passed on their way. Precipitation showed generally low 

electrical conductivities (20 µS/cm). 

Stable isotope data in precipitation were used to construct a local meteoric water line 

(LMWL) for the UJRC (δ2H = 7.23 δ18O + 16.21). The altitude effect causes a depletion of        

-0.26 ‰ and -1.10 ‰ per 100 m for δ18O and δ2H in the Hermon area, respectively and was 

used to determine mean recharge altitudes for the major Hermon springs. Additionally, 

precipitation amounts and stable isotope patterns were influenced by seasons and the 

prevailing synoptic system, e.g. high amounts of rain and depleted isotope compositions were 

associated with cold fronts such as the Cyprus Low, while low rain amounts and enriched 

δ18O in precipitation were connected to the Red Sea trough. The observed isotopic trends 

subject to temperature, precipitation amount and wind direction were closely connected to 

these phenomena. The isotopic composition of an investigated snowpack showed significant 

enrichment over time (up to 4.3 ‰ for δ18O). 

Groundwaters from the major springs in the Hermon Mountains and Golan Heights 

recharging into the UJRC were investigated for their environmental tracer signatures to derive 

detailed information on recharge areas and rates, mean residence times of the water and 

aquifer dimensions. Based on their distinct chemical and isotopic pattern, Golan and Hermon 

springs were differentiated.  
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Golan “Side springs” were represented by a calcium-sodium or sodium-calcium and 

bicarbonate water type and showed elevated concentrations of silicate compared to the 

Hermon springs. The springs plot along a mixing line (δ2H = 6.41 δ18O + 10.73) with a slope 

lower than the LMWL indicating that infiltrating water has been subject to evaporation in the 

unsaturated zone. Golan “Side springs” are either fed by the regional basalt aquifer (with 

groundwater residence times > 50 years) or by a mixture of regional groundwater with water 

from local perched aquifers (with groundwater residence times < 50 years). Water mean 

residence times were determined with the help of tritium and radiocarbon measurements.  

Generally, the chemical and isotopic composition of the springs seems to follow a north-to-

south gradient in that way reproducing the climatic and geological gradient observed for the 

Golan Heights. The northern Golan is characterized by a comparatively thick aquifer, a thick 

unsaturated zone and high amounts of precipitation and recharge. Here, “Side springs” such 

as the Hamroniya, Gonen and Notera display high contributions of unsaturated zone water 

resulting in tritium-rich groundwater with low chloride and high silicate concentration. In the 

south, where evaporative effects increase and comparatively less recharge through the 

unsaturated zone occurs, low tritium water with high amounts of chloride are found in the Bet 

HaMekhes and Jalabina spring. Recharge rates for the Golan “Side springs” range between 12 

to 16 % of mean annual precipitation based on chloride mass balances. Their subsurface 

recharge areas size between 0.6 to 3 km². 

The investigated Hermon springs are (a) fed by two recharge areas (divided by the Sion-

Rachaya fault) and (b) exhibit patterns of local and regional recharge systems indicated by the 

isotopic and chemical signatures of their groundwater. In addition, (c) they receive different 

contributions of conduit and diffusive matrix flow. All springs are characterized by low 

salinities and a Ca-Mg-HCO3-water type. However, springs of the eastern intake area such as 

the Banias and Kezinim spring show dilution of dolomite, gypsum and anhydrite all of which 

are absent in the western recharge area feeding the Dan, Barid and Leshem spring.  

Generally, Hermon springs exhibit a seasonal recharge bias with most inflow occuring in the 

spring season as indicated by depleted values in δ18O and δ2H, a drop of groundwater 

temperatures and diluted ion concentrations in spring discharge. The dominance of snowmelt 
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recharge in the Hermon springs is particularly indicated by elevated deuterium excess values 

in groundwater during spring. This observation also allowed to retrace the mean recharge 

altitudes of the springs. Mean δ18O composition of groundwater were corrected for 

enrichment due to fractionation processes during snowmelt, combined with the altitude effect 

on precipitation δ18O and resulted in mean recharge elevations of about 1260 m a.s.l. for the 

Banias and Kezinim spring, about 1560 m a.s.l. for the Dan, Barid and Leshem springs and 

about 1320 m a.s.l for the Sion spring. 

The Kezinim spring as well as the baseflow discharge of the Banias spring display a thermal 

regime and highest mineralization within the Hermon springs, in particular, high 

concentrations of sulfate, chloride and silicate were measured. Additionally, these two water 

exhibit comparatively enriched values of δ18O and δ2H and, the Kezinim spring in particular, 

low seasonal variations in its isotopic and chemical composition. Thus, it was concluded that 

the Kezinim spring and Banias baseflow are fed by diffusive matrix flow that originates from 

a regional groundwater system that is in contact with the Triassic Muheila Formation. This 

assumption was additionally supported by the derived comparatively high (> 1000 years) 

radiocarbon residence time for the waters of the Kezinim spring. In contrast, water of the Dan, 

Barid and Leshem springs represent a relatively shallow (local) groundwater flow system 

dominated by young water where transport occurs in changing portions through both 

conduit/fissure and matrix flow. 

The importance of fast and slow flow components for Hermon groundwater was investigated 

in detail for the Banias and Dan spring. The Banias spring showed the most rapid and flashy 

response towards precipitation within the Hermon springs. The springs discharge is controlled 

by direct, vadose zone and phreatic flow that were quantified based on a three-component 

mixing model using δ18O and sulfate as natural tracer. Fast and medium flow components 

accounted for up to 88 % of total discharge in February 2003 and still for up to 70 % in June 

2003, emphasizing the climate-controlled recharge dynamics of this spring. In contrast, Dan 

spring response was well-balanced and minor variations of physical, chemical and isotopic 

parameters were monitored in response to precipitation. However, two-component mass 

balances using δ18O, chloride or sulfate revealed that up to 40 % of the total discharge 
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originated from newly arriving water with the highest contributions in early and mid summer. 

Summarizing, it was concluded that the Banias spring comprises a system with limited 

storage and well developed drainage and responds fast to rain and snowmelt while the Dan 

spring is characterized by a vast, well-mixed reservoir where newly arriving waters are 

subject to strong dilution. 

Recharge rates for the Hermon springs range between 12 to 20 % of mean annual 

precipitation based on chloride mass balances, in comparison to 19 to 30 % based on mean 

residence time estimations. For the first time, estimations of subsurface recharge areas for the 

Dan and Banias spring could be calculated sizing between 1324 km² and 523 km², 

respectively. Hence, the subsurface catchment area of the major springs contributing to the 

Upper Jordan River outnumbers considerably the orographic catchment area and reaches far 

beyond Israel’s political borders. The quality of these estimations is limited by uncertainty in 

the determination of the mean annual precipitation on Mount Hermon, an input parameter of 

the recharge estimations. This problem needs to be adressed in future field investigations.  

In a third step, runoff generation processes based on (a) existing hydrographic long-term 

data and (b) natural tracer-based during storm runoff events were investigated for the major 

tributaries of the Upper Jordan River, i.e. the Hermon, Senir and Dan stream. Additionally, 

the Orevim stream emerging in the basaltic Golan Heights was studied for comparison. Three 

main runoff components were identified for both geological settings: basalt and karst. While 

the Dan stream is solely fed by baseflow of the Dan and Leshem springs; the overland and 

interflow component together amounted – based on a 30-year record - to 46 % and 58 % of 

total stream discharge in the Hermon and Senir stream, respectively. In the basalt area 

(Orevim stream), the fast and medium flow component contributed with about 75 % to total 

discharge. While in the karst area the interflow component is attributed to the snow reservoir 

on Mount Hermon feeding snowmelt to streamflow, in the basalt area the interflow reservoir 

is rather due to the structure of the subsurface system, i.e. the existence of hydraulic 

interfaces. 

The importance of the fast flow components was again emphasized by the conducted storm 

runoff hydrograph separations. During the investigated floods, event water contributed with 
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about 52 %,  69 % and 77 % to peak discharge in the Hermon, Senir and Orevim stream, 

respectively. End-member mixing analyses supported the assumption of shallow subsurface 

flow in both settings. Mean baseflow residence times ranged from a few months to about 4 

years for the Hermon, Senir and Dan stream based on recession analyses. The dominance of 

young waters was additionally supported by 3H-measurements resulting in mean residence 

times of 24, 28 and 33 years for the Hermon, Dan and Senir stream, respectively. Based on 

the retrieved mean residence times, the thickness of the aquifer (i.e. the zone were 

groundwater is actively cycled) was determined to size in between 11 to 103 m in the Dan 

subcatchment, whereas the mean aquifer thickness is about 32 m. In the Hermon catchment 

this zone sizes to about 13 m. 

Based on the conducted investigations it has to be concluded that the anticipated climate 

changes such as less overall precipitation, increasing temperatures and increasing frequency 

of rain extremes will significantly challenge the water resource management in the Upper 

Jordan River Catchment. 

Altogether recent water dominates the flow system of the Hermon karst area as well as that of 

the Golan basalt area. Hence, an increase in temperature will lead to a decreasing snow/rain-

ratio and an accelerated melting of snow. On the one hand, this might even lead to enhanced 

groundwater recharge given the high infiltration capacities in the karstic Mount Hermon, on 

the other hand it will also cause an increased potential of floods. If rain extremes will occur 

more often as suggested for the region, the frequency of extreme flood events both in the 

Hermon area and the Golan Heights will increase. Additionally, this might lead to a 

deterioration of water quality in the Upper Jordan River and Lake Kinneret since floods were 

observed to cause the flushing of nutrients and suspended materials from the different 

catchments.  

Under a predicted scenario of increasing temperatures and less overall precipitation, the 

reduction of snow precipitation and snowmelt will significantly reduce baseflow in the Upper 

Jordan River tributaries thus strongly impacting the water supply management of Lake 

Kinneret. 
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Appendix 

LIST OF COMMON ABBREVATIONS 

a.s.l.  above sea level 

b.s.l.  below sea level 

BFI  baseflow index 

C  tracer concentration 

d  deuterium excess 

DIC  dissolved inorganic carbon 

DOC  dissolved organic carbon 

EC  electrical conductivity 

HSI  Hydrological Service of Israel 

MRT  mean residence time 

n  number of samples 

ne  effective porosity 

P  precipitation 

Q  discharge  

R  recharge rate  

r  correlation coefficient 

T  temperature  

t  time 

TDI  total dissolved ions 

TSS  total suspend solids 

TU  tritium unit 

UJRC  Upper Jordan River catchment 

V  water volume  

V-SMOW Vienna Standard Mean Ocean Water 

V-PDBVienna Pee Dee Belemnite 

 



 

234 
 

STRATIGRAPHY OF MOUNT HERMON AND GEOLOGY OF THE STUDY AREA 

 

 

Figure 63: Stratigraphy and hydrological characteristics of the Hermon area adapted from 
GUR et al. (2003). 
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Figure 64: Geological map of the study area according to SNEH et al., 1998. The legend is 
given in Figure 65. 
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Alluvium (Gravel, sand, clay) Quaternary

Travertine (Gravel, sand, silt) Quaternary

Gadot and Mishamar Ha‘Yarden fms. (Conglom., sandstone, mudsto., chalk + 283m) Pliocene – Pleistocene

Volcanic cone (Basalt, basanite / flows and volcaniclastics) Quaternary

Wa‘ara Basalt (Basalt, basanite / flows and volcaniclastics) Quaternary

Golan Basalt Raqquad Basalt (Basalt, basanite / flows) Quaternary

Yarmouk Basalt Naharayim Basalt (Basalt, basanite / flows) Quaternary

Yarda Basalt (Basalt, basanite / flows) Quaternary

Hasbani Basalt (Basalt, basanite / flows) Quaternary

Conglomerate units, undifferentiated (Basalt, basanite / flows) Neogene – Quaternary

Cover basalt / Dalwe Basalt (Basalt, basanite / flows, intrusions and volcaniclastics) Pliocene – Pleistocene

Hordos Fm. / Umm Sabune Conglom. Kefar Giladi Fm. (sandst., mudst., conglom., limest. 880m) Miocene

Eocene (Chalk, limestone) Oligocene

Bar Kokhba Fm. (Limestone 250m) Middle Eocene

Timrat Fm. Meroz / Yizre‘el fms. (Limestone, chalk, chert 380m) Lower – Middle Eocene

Mount Scopus Group (Chalk, marl 380m) Senonian – Paleocene

Campanian ( Jordan) (Chalk, posporite, chert) Maastrichtian

Cenomanian-Turonian in Lebanon (Limestone, dolostone) Coniacian

Bina Fm. (Limestone, marl, dolostone) Turonian

Sakhnin and Yanuh fms.(Dolostone, limestone, chert 205m) Cenomanian

Deir Hanna Fm. Isfiya Chalk, Beit Oren Limest. (Limest., dolostone, marl, chalk, chert 330m) Cenomanian

Yagur Fm. Kammon Fm. (Dolostone 197m) Albian-Cenomanian

Nabi Said, Ein el Assad, Hidra, Rama / Kefira fms. (Limest., chalk, marl, sandst. 430m) Lower Cretaceous

Kurnub Group (Sandstone 85m) Lower Cretaceous

Intrusions and volcaniclastic rocks (Diabase, microgabro) Mesozoic

Basalt flows (Basalt, basanite) Lower Cretaceous

Upper Jurassic (Limestone 193m) Lower Cretaceous

Be‘er Sheva and Haluza fms. (Limestone, marl 85m) Upper Jurassic

Kidod Fm. (Clay, limestone, dolostone 155m) Upper Jurassic

Hermon Fm. (Limestone, dolostone 623m) Middle Jurassic

 

Figure 65: Legend explaining the geological map of the study area (Figure 64). 
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ANALYTICAL METHODS 

Sample collection 

Surface water and groundwater samples were collected as grab samples in the middle of the 

stream, rivulet, or spring unless otherwise mentioned. Samples were collected in 50 to 

1000 ml high-density polyethylene bottles (Table 48).  

Table 48: Details on pretreatment and storage of the collected water samples. 

Parameter Container Amount Pretreatment Storage Laboratory 
      

18O, 2H HDPE, narrow neck 50 none dark, cool GSF 
3H HDPE, narrow neck 500 none dark, cool GSF 

13C, 14C glass, crimp seal 100 none dark, 4°C Leibniz 
major anions HDPE 20 filtered, 0.45 μm 4°C GSF, 

MIGAL 
major cations HDPE 20 filtered, 0.45 μm 4°C GSF 

SiO2 HDPE 50 filtered, 0.45 μm 4°C MIGAL 
DOC HDPE 20 filtered, 0.45 μm 4°C GSF 

Major elements HDPE 50 filtered, 0.45 μm 4°C GSF 
TSS HDPE up to 1000 none 4°C MIGAL 

 

Before filling, the sample bottles were rinsed three times with the water being collected. 

Bottles were filled to capacity to minimize headspace, capped tightly, and stored in a cooler 

for transport to the laboratory. If possible, samples were analyzed immediately, otherwise 

kept under refrigeration at 4°C until analysis. 

 

Electrical conductivity, temperature and pH 

Electrical conductivity and temperature were measured with a WTW Cond340i handheld 

conductivity meter connected to a WTW Tetracon®325 standard conductivity cell. 

Measurement accuracy is ± 0.5 % for electrical conductivity and ± 0.1 K for temperature. pH 

was measured immediately after sampling in the laboratory using a WTW glass electrode 

SenTix 81. 
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Anions and cations 

Ion concentrations were determined by ion-exchange chromatography at the Institute of 

Groundwater ecology, GSF National Research Center, Germany. Specifications of the 

measurement devices are given in the table below. Samples were provided by a Dionex AS40 

autosampler. 

Table 49: Specifications of the IC-analyzer at the Institute of Groundwater ecology, GSF 

 Anions Cations 

ion chromatograph Dionex DX-100 Dionex DX-100 
pre-column AG4A-SC 4 mm (10-32) CG12A 4x50 mm 
column AS4A-SC 4 mm (10-32) CS12A 4x250 mm 
eluent 3.5 mN Na2CO3 + 1 mN NaHCO3 200 mN H2SO4 
flow rate 1.2 ml/min 1.0 ml/min 
suppressor ASRS-Ultra 4 mm CSRS-Ultra 4 mm 
detection electrical conductivity electrical conductivity 

 

Samples were measured against a base electrical conductivity of 12 μS/cm for anions and 

2 μS/cm for cations. The concentration of the sample was obtained by integration of the 

measured peak area using the multi-point calibration curves established in advance according 

to the expected concentrations. The detection limit with the applied method is about 0.1 mg/L 

for chloride, 0.02 mg/L for nitrite and bromide, 0.2 mg/L for sulfate and 0.01 mg/L for 

phosphate. For cations, the limit of determination is as follows: 0.025 mg/L for lithium, 

0.1 mg/L for ammonium, 0.5 mg/L for potassium, 1 mg/L for sodium and magnesium and 

2.5 mg/L for calcium. The accuracy of measurement is about 5 %.   

 

Dissolved silicic acid (Silica) 

Molybdate-reactive silica concentrations were determined on a Spectronic®20Genesys 

spectrometer according to Standard Methods (American Public Health Association, 1997). 

Analyses were conducted at the MIGAL Galilee Technology Center, Israel. Samples were 

acidified with 1:1 HCl to approximately pH 1.2 at which ammonium molybdate reacts with 

silica to form molybdosilicic acid. Any simultaneously developing molybdophosphoric acid 
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complexes are destroyed by the addition of oxalic acid. The intensity of the resulting yellow 

color is proportional to the concentration of molybdate-reactive silica. A standard calibration 

curve covering the expected range of concentrations was established to determine 

quantitatively sample silica concentrations. During analysis the usage of glassware was 

minimized, samples were read on the spectrometer at 410 nm with a 1 cm plastic cuvette. The 

detection limit is about 1 mg/L SiO2 and the accuracy of measurement is about 5 %.  

 

18O and 2H 

Samples for the analysis of stable water isotopes were collected and stored according to 

standard procedures (MOSER and RAUERT, 1980, CLARK and FRITZ, 1997). The stable 

isotope ratios of 18O and 2H in the water samples were measured at the Institute of 

Groundwater ecology, GSF National Research Center Neuherberg, Germany using isotope 

ratio mass spectrometers (IRMS). 
18O analyses were carried out by equilibrating each sample with CO2 at 18 °C during 4 to 6 

hours and subsequent measurement of CO2 with an MAT GD 150 isotope ratio mass 

spectrometer. 2H analyses were conducted by converting water to hydrogen by passage over 

800 °C hot uranium (BIGELEISEN et al., 1952; FRIEDMAN, 1953; GODFREY, 1962) and 

subsequent mass-spectrometric measurement of hydrogen at a MAT M 86 IRMS. The results 

are expressed as δ values [‰] relative to the Vienna Standard Mean Ocean Water (V-

SMOW): 
 

1000*
tan

tan182

dardS

dardSSample

R
RR

OH
−

=∂∂ K  

 

where R denotes respectively the ratio of the heavy and light isotope (2H/1H and 18O/16O). The 

quantitative determination of the isotope concentrations is obtained by comparative 

measurements against internal laboratory standards, which in turn are calibrated against the 

international standard. Measurement accuracy is ± 0.15 ‰ for δ18O and ± 1.5 ‰ for δ2H. 
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Dissolved organic carbon (DOC) 

Dissolved organic carbon (DOC) concentrations in the water samples were determined based 

on the NPOC-method, which is the determination of non-purgeable organic carbon via 

combustion catalytic oxidation. Analyses were conducted at the Institute of Groundwater 

ecology, GSF National Research Center, Germany. Samples were processed with the help of a 

total organic carbon analyzer coupled to an autosampler. Specification of the measurement 

devices are given in the table below. 

Table 50: Specifications of the TOC/DOC analyzer at the Institute of Groundwater ecology, 
GSF. 

 Technical details 

TOC/DOC analyzer Shimadzu TOC 5000A 
autosampler Shimadzu ASI 5000 
flow rate 150 ml/min 
carrier gas oxygen 4.5 
catalyst platinum 
detection infrared spectrometry 

 

At the beginning of the analyses, samples were automatically acidified with a 2 M HCl 

solution according to their buffer capacity. The non-purgeable organic carbon of the water 

sample was oxidized to CO2 by addition of the carrier gas. The measured concentration of the 

sample was obtained by integration of the measured peak area using the three-point 

calibration curve developed in advance according to the expected concentrations. Each 

sample was measured four times, the measurement with the highest deviation was discarded 

and the remaining values used to calculate the mean concentration. The detection limit is 

about 0.3 mg/L DOC and the accuracy of measurement is about 10 %.  

 

Carbonate alkalinity  

Carbonate alkalinity in water samples was measured by acidimetric titration against a mixed 

indicator; color change at pH 4.3. Analyses were conducted based on the Aquamerck 

Alkalinity Test reagent kit. Analytical precision is ± 0.1 mmol/L. 
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Tritium 

Tritium measurements were conducted by liquid scintillation counting of water after 

electrolytic enrichment of 3H (EICHINGER et al., 1980). The detection limit of this method is 

± 0.7 T.U. 

 

Carbon-13 and carbon-14 

13C/12C and 14C/12C ratios were determined at the Leibniz Laboratory for Radiometric dating 

and Isotope research, Christian-Albrecht-University Kiel, Germany. For the samples taken in 

summer 2003, carbonate was precipitated as SrCO3 in the field by adding SrCl2 to 100 to 

125 liter samples (depending on the bicarbonate content). The necessary alkaline environment 

was generated by the addition of NaOH. In July 2004, additional samples were collected in 

100 ml glass bottles with a rubber stopper/crimp sealing according to standard procedures 

(CLARK and FRITZ, 1997).   

The SrCO3 samples were acidified with 37 % HCl to approximately pH 6, transferred into 

reaction phials and subsequently hydrolyzed to CO2 at 90 °C by addition of 100 % phosphoric 

acid. The 100 ml samples without pretreatment were passed under cover gas through a 0.2 μm 

membrane filter and acidified with 30 % phosphoric acid. Afterwards CO2 was removed by 

addition of nitrogen and cryotechnically absorbed. Sample CO2 was reduced to an iron-

graphite mixture under addition of H2 on a iron catalyst at 600 °C with the mixture then being 

utilized for analysis at the atomic mass spectrometer (AMS).  

 

TSS 

Total suspended solids (TSS) give a measure of the turbidity of the water. TSS measurements 

were conducted at selected samples taken during high flow conditions. Total suspended solids 

were analyzed by filtering an aliquot of sampled water through 0.45 µm preweighed filters. 
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SUPPLEMENTARY DATA 

Supplementary data - Chapter 5 

Table 51: Ion concentrations in daily rain samples at the Banias Nature Reserve. N.d.: not 
determined. 

Date Amount HCO3
- Cl- NO3

- SO4
2- Na+ K+ Mg2+ Ca2+ 

 mm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

12/20/2002 47.0 n.d. 4.4 1.3 2.9 2.4 0.1 0.3 6.5 
12/21/2002 2.0 n.d. 6.6 0.0 1.9 4.0 1.4 1.3 11.0 
12/23/2002 1.4 n.d. 8.8 8.3 7.8 5.0 1.8 2.1 14.7 
12/24/2002 13.3 n.d. 0.8 2.5 2.6 0.5 0.4 0.4 6.1 
12/26/2002 0.8 n.d. 1.8 2.8 4.0 1.1 0.5 1.8 19.6 

12/31/2002 3.0 n.d. 2.2 6.5 6.7 0.9 0.4 1.3 16.4 
01/02/2003 6.8 n.d. 1.3 0.1 1.7 0.7 0.1 0.2 6.3 
01/03/2003 11.0 n.d. 1.3 1.2 1.6 0.6 0.1 0.1 5.3 
01/04/2003 11.8 n.d. 3.8 1.3 2.9 1.7 0.1 0.2 5.7 
02/03/2003 58.9 n.d. 2.7 0.8 2.5 1.6 0.1 0.1 4.7 
02/04/2003 36.6 n.d. 1.6 0.1 0.7 1.0 0.1 0.1 2.9 
02/07/2003 2.7 n.d. n.d. n.d. n.d. 21.1 7.4 2.7 25.2 
02/08/2003 8.3 n.d. n.d. n.d. n.d. 8.7 0.9 1.2 11.1 
02/09/2003 14.8 n.d. 2.7 0.6 1.9 1.5 0.2 0.2 4.7 
02/10/2003 3.2 n.d. 3.4 2.9 2.7 1.8 0.3 0.6 7.7 
02/12/2003 2.6 n.d. 5.8 9.2 10.3 3.4 0.6 1.6 21.1 
02/13/2003 13.9 n.d. 9.6 1.2 3.1 5.8 0.3 1.4 14.9 
02/14/2003 21.3 n.d. 3.4 0.2 1.5 1.8 0.1 0.2 5.4 
02/15/2003 6.7 n.d. 7.1 0.3 3.8 4.1 0.6 0.6 7.3 
02/18/2003 17.5 n.d. 8.3 0.6 2.3 4.7 0.2 0.5 5.8 
02/19/2003 23.2 n.d. 11.8 0.7 2.8 6.3 0.3 0.3 4.5 
02/20/2003 36.1 n.d. 4.2 0.3 1.7 2.5 0.1 0.2 2.4 
02/21/2003 43.7 n.d. 1.4 0.0 1.0 0.7 0.1 0.1 2.1 
02/23/2003 4.1 n.d. 4.4 5.3 8.3 2.5 0.3 1.5 11.1 
02/24/2003 18.2 n.d. 12.1 0.7 3.8 5.1 0.2 0.5 2.4 
02/27/2003 15.6 n.d. 3.6 0.7 1.7 1.8 0.2 0.1 2.2 
03/03/2003 11.1 n.d. 6.5 5.0 5.0 3.3 0.3 1.1 10.7 
03/06/2003 12.3 n.d. 2.1 2.9 2.5 1.2 0.2 0.4 6.3 
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Table 52: Ion concentrations in daily rain samples at the Dan Nature Reserve. N.d.: not 
determined. 

Date Amount HCO3
- Cl- NO3

- SO4
2- Na+ K+ Mg2+ Ca2+ 

 mm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

12/16/2002 0.5 n.d. 4.1 4.6 4.8 2.1 0.6 0.6 4.4 
12/20/2002 45.0 n.d. 3.0 0.7 1.8 1.6 0.1 0.1 1.6 
12/21/2002 17.0 n.d. n.d. n.d. n.d. 17.6 1.1 2.1 2.4 
12/23/2002 1.0 n.d. 3.0 2.0 2.5 n.d. n.d. n.d. n.d. 
12/24/2002 5.0 n.d. 2.6 1.1 2.3 n.d. n.d. n.d. n.d. 
12/25/2002 5.0 n.d. 1.2 2.4 2.4 0.8 0.2 0.1 2.7 

12/31/2002 3.5 n.d. 2.7 6.0 5.8 1.3 0.6 0.6 4.6 
01/16/2003 6.0 n.d. 16.3 1.4 4.8 9.2 0.8 1.2 3.1 
01/28/2003 22.5 n.d. 4.5 2.0 5.1 2.2 1.5 n.d. 8.3 
02/08/2003 8.0 n.d. n.d. n.d. n.d. 9.6 0.6 1.3 9.8 
02/09/2003 13.0 n.d. 2.7 1.0 1.9 1.7 0.2 0.5 13.3 
02/10/2003 7.5 n.d. 1.5 0.8 1.9 1.1 0.1 0.1 4.9 
02/14/2003 21.0 n.d. 2.8 0.7 1.4 1.8 0.1 0.4 6.1 
02/15/2003 23.0 n.d. 3.6 0.4 1.5 2.1 0.1 0.1 1.8 
02/18/2003 20.0 n.d. n.d. n.d. n.d. 2.0 0.1 0.1 0.7 
02/19/2003 24.0 n.d. n.d. n.d. n.d. 1.5 0.1 0.1 0.6 
02/20/2003 35.0 n.d. 3.5 0.5 1.6 1.5 0.1 0.1 0.6 
02/21/2003 50.0 n.d. 2.6 0.3 1.4 6.9 0.2 0.7 3.2 
02/23/2003 4.0 n.d. n.d. n.d. n.d. 6.4 0.2 0.6 1.8 
02/24/2003 23.0 n.d. 9.3 0.5 3.4 7.8 0.5 1.1 3.7 
02/25/2003 30.0 n.d. 7.1 0.5 2.3 4.1 0.2 0.4 0.9 
02/27/2003 17.0 n.d. 2.7 1.2 2.4 1.3 0.2 0.7 4.4 
03/04/2003 10.0 n.d. 8.8 2.9 6.4 4.5 0.4 0.7 8.9 
03/05/2003 1.0 n.d. 9.4 3.2 7.6 6.0 0.8 1.4 17.6 
03/06/2003 10.0 n.d. 2.0 1.6 2.1 1.3 0.1 0.1 3.9 
03/07/2003 15.0 n.d. 1.8 1.7 2.1 1.1 0.1 n.d. 3.0 
03/12/2003 9.0 n.d. 1.4 1.4 1.6 1.1 0.1 n.d. 2.1 
12/18/2003 8.5 n.d. 1.1 0.9 1.5 0.7 0.1 n.d. 2.5 
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Table 53: Natural tracer concentrations from snow samples of different snow courses taken on Mount Hermon (Israel). N.d.: not determined. 

Date Altitude δ18O δ2H d EC pH HCO3
- Cl- NO3

- SO4
2- Na+ K+ Mg2+ Ca2+ DOC 3H ± 2s SiO2 

 m ‰ ‰  µS/cm  mmol/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L TU TU mg/L 

02/23/2003 1389 -8.33 -43.3 23.3 9 7.00 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.68 n.d. n.d. n.d. 
02/23/2003 1567 -7.47 -36.7 23.1 30 7.76 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.92 n.d. n.d. n.d. 
02/23/2003 1700 -8.82 -47.1 23.5 9 6.45 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.89 n.d. n.d. n.d. 
02/23/2003 1804 -9.91 -56.4 22.8 9 6.31 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 1.15 n.d. n.d. n.d. 
02/23/2003 2050 -9.48 -52.3 23.5 5 6.50 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 1.17 n.d. n.d. n.d. 
02/23/2003 2066 -10.16 -58.0 23.2 6 6.71 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.85 n.d. n.d. n.d. 

                   
12/21/2003 1393 -9.67 -47.4 30.0 33 5.76 0.60 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 2.10 n.d. n.d. 0.000 
12/21/2003 1466 -8.96 -41.7 29.9 46 6.63 0.60 9.25 0.75 2.40 5.51 0.27 0.09 0.69 2.35 n.d. n.d. 0.043 
12/21/2003 1597 -8.60 -38.4 30.5 61 7.29 0.60 11.19 0.88 2.77 5.83 0.37 0.02 2.02 2.26 n.d. n.d. 0.043 
12/21/2003 1736 -9.64 -47.3 29.8 40 5.24 0.60 8.70 0.87 2.48 5.22 0.34 0.20 0.30 2.48 n.d. n.d. 0.000 
12/21/2003 1809 -8.65 -38.9 30.3 42 4.89 0.60 8.03 0.74 2.33 4.52 0.40 0.25 0.18 2.64 n.d. n.d. 0.043 
12/21/2003 1868 -9.26 -45.7 28.4 30 5.32 0.60 5.78 0.84 2.11 3.29 0.31 0.36 0.15 3.56 n.d. n.d. 0.043 
12/21/2003 1946 -8.45 -34.9 32.7 64 5.07 0.80 13.91 0.96 3.14 7.89 0.45 0.37 0.06 3.68 n.d. n.d. 0.043 
12/21/2003 2012 -9.36 -44.3 30.5 18 6.98 0.80 3.08 0.73 1.66 2.00 0.11 0.81 0.39 2.28 n.d. n.d. 0.043 

                   
01/10/2004 1403 -8.29 -35.4 31.0 18 n.d. n.d. 2.10 0.88 1.25 1.04 0.16 1.79 0.34 1.53 2.9 0.4 n.d. 
01/10/2004 1500 -7.50 -33.9 26.1 7 n.d. n.d. 0.68 0.87 0.30 0.02 0.07 1.96 0.04 1.15 2.9 0.4 n.d. 
01/10/2004 1629 -8.15 -40.0 25.2 15 n.d. n.d. 0.81 1.35 0.93 0.00 0.09 1.96 0.00 2.51 3.2 0.4 n.d. 
01/10/2004 1725 -8.74 -40.3 29.6 15 n.d. n.d. 1.29 0.77 0.95 0.46 0.16 1.87 0.11 1.34 2.6 0.4 n.d. 
01/10/2004 1830 -8.95 -41.2 30.4 13 n.d. n.d. 1.09 0.73 0.70 0.29 0.11 1.89 0.18 1.76 2.7 0.4 n.d. 
01/10/2004 1927 -8.26 -34.1 31.9 21 n.d. n.d. 1.79 0.67 1.17 0.82 0.10 1.79 0.10 1.24 2.7 0.4 n.d. 
01/10/2004 2027 -8.41 -41.3 25.9 16 n.d. n.d. 1.26 0.92 0.88 0.39 0.10 1.84 0.62 1.30 3.2 0.4 n.d. 
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continuation 

Date Altitude δ18O δ2H d EC pH HCO3
- Cl- NO3

- SO4
2- Na+ K+ Mg2+ Ca2+ DOC 3H ± 2s SiO2 

 m ‰ ‰  µS/cm  mmol/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L TU TU mg/L 

02/03/2004 1467 -6.78 -31.6 22.7 43 n.d. 0.50 0.85 1.84 0.11 0.26 0.07 0.03 8.93 n.d. n.d. n.d. n.d. 
02/03/2004 1737 -5.19 -17.6 24.0 16 n.d. 0.30 2.04 1.66 1.02 1.14 0.70 0.27 1.13 n.d. n.d. n.d. n.d. 
02/03/2004 1819 -3.97 -7.60 24.2 19 n.d. 0.10 2.18 1.85 1.19 1.24 0.64 0.43 0.32 n.d. n.d. n.d. n.d. 
02/03/2004 1923 -4.15 -8.90 24.3 19 n.d. 0.30 2.27 1.84 1.25 1.28 0.68 0.41 0.71 n.d. n.d. n.d. n.d. 
02/03/2004 2000 -5.36 -20.6 22.2 12 n.d. 0.20 1.83 2.16 0.96 1.02 0.13 0.01 0.92 n.d. n.d. n.d. n.d. 

                   
02/18/2004 924 -6.38 -22.2 28.9 11 n.d. 0.30 1.12 1.70 0.02 0.41 0.08 0.09 1.81 n.d. n.d. n.d. n.d. 
02/18/2004 1010 -6.45 -23.7 27.9 4 n.d. 0.40 0.74 1.69 0.07 0.16 0.08 0.16 0.29 n.d. n.d. n.d. n.d. 
02/18/2004 1099 -6.44 -22.9 28.6 5 n.d. 0.30 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 
02/18/2004 1265 -5.14 -9.30 31.8 5 n.d. 0.40 0.84 1.18 0.12 0.22 0.03 0.47 0.92 n.d. n.d. n.d. n.d. 
02/18/2004 1319 -5.20 -13.8 27.8 7 n.d. 0.35 0.99 1.70 0.01 0.30 n.d. 0.14 0.78 n.d. n.d. n.d. n.d. 
02/18/2004 1444 -5.83 -23.4 23.3 6 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 
02/18/2004 1530 -5.96 -23.1 24.6 35 n.d. 0.40 1.15 1.84 0.41 0.47 0.09 0.12 5.59 n.d. n.d. n.d. n.d. 
02/18/2004 1646 n.d. n.d. n.d. n.d. n.d. 0.30 1.14 1.83 0.15 0.72 0.11 0.13 1.77 n.d. n.d. n.d. n.d. 
02/18/2004 1862 -6.18 -22.6 26.8 17 n.d. 0.40 2.24 1.89 0.72 1.41 0.13 0.14 1.42 n.d. n.d. n.d. n.d. 
02/18/2004 1958 -6.95 -40.0 15.7 6 n.d. 0.30 1.18 1.82 0.13 0.53 0.13 0.10 0.41 n.d. n.d. n.d. n.d. 
02/18/2004 2053 -5.09 -24.1 16.6 6 n.d. 0.40 1.01 1.33 0.03 0.33 0.04 0.47 0.85 n.d. n.d. n.d. n.d. 
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Table 54: Natural tracer concentrations from snow samples of different snow profiles taken on Mount Hermon (Israel). N.d.: not determined. 

Date Altitude Height δ18O δ2H d EC pH HCO3
- Cl- NO3

- SO4
2- Na+ K+ Mg2+ Ca2+ DOC 

 m cm ‰ ‰  µS/cm  mmol/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

01/10/2004 2050 0 -8.10 -34.1 30.7 16 n.d. n.d. 2.10 0.61 1.03 1.03 0.24 1.76 0.35 0.87 
01/10/2004 2050 50 -7.42 -27.3 32.1 22 n.d. n.d. 3.01 0.61 1.30 1.69 0.20 1.64 0.05 1.27 
01/10/2004 2050 90 -8.74 -39.5 30.4 19 n.d. n.d. 1.83 0.70 1.21 0.89 0.10 1.79 0.05 1.21 
01/10/2004 2050 130 -9.26 -45.3 28.8 14 n.d. n.d. 1.05 0.48 0.06 0.31 0.19 1.90 0.95 0.89 

                 
02/03/2004 2050 0 -4.54 -12.2 24.2 20 n.d. 0.50 1.66 1.81 0.99 0.94 0.07 0.45 0.59 n.d. 
02/03/2004 2050 20 -7.18 -32.1 25.3 7 n.d. 0.30 0.86 1.71 0.29 0.30 0.07 0.49 1.99 n.d. 
02/03/2004 2050 40 -6.13 -25.6 23.5 13 n.d. 0.25 1.61 1.96 0.97 0.81 0.09 0.39 1.51 n.d. 
02/03/2004 2050 55 -7.55 -33.0 27.4 3 n.d. 0.30 0.59 1.39 0.00 0.09 0.07 0.51 0.62 n.d. 
02/03/2004 2050 70 -7.78 -35.2 27.0 3 n.d. 0.30 0.51 1.40 0.14 0.03 0.04 0.57 0.56 n.d. 
02/03/2004 2050 85 -8.55 -41.1 27.4 9 n.d. 0.30 0.87 1.43 0.05 0.32 0.06 0.43 1.44 n.d. 
02/03/2004 2050 100 -8.87 -43.6 27.4 11 n.d. 0.35 0.64 1.43 0.10 0.16 0.06 0.34 2.22 n.d. 
02/03/2004 2050 115 -8.72 -43.4 26.3 10 n.d. 0.25 1.32 1.76 0.24 0.66 0.10 0.03 1.04 n.d. 
02/03/2004 2050 130 -8.52 -43.8 24.4 119 n.d. 0.90 2.74 1.92 2.22 1.80 0.29 0.61 13.6 n.d. 
02/03/2004 2050 160 -8.33 -46.1 20.6 11 n.d. 0.30 0.65 1.66 0.08 0.10 0.06 0.47 2.97 n.d. 
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Table 55: Stable isotope composition (δ18O, δ2H) and amounts of daily rain in the Banias and 
Dan Nature Reserves.  

Banias Nature Reserve  Dan Nature Reserve 

Date Amount δ18O δ2H d  Date Amount δ18O δ2H d 
 mm ‰ ‰ ‰   mm ‰ ‰ ‰ 

12/20/02 47.0 -6.91 -38.30 16.98  12/16/02 0.5 -1.28 7.90 18.14 
12/21/02 2.0 -12.39 -73.70 25.42  12/20/02 45.0 -6.68 -39.60 13.84 
12/23/02 1.4 -2.80 6.30 28.70  12/21/02 17.0 -9.21 -50.00 23.68 
12/24/02 13.3 -6.52 -23.80 28.36  12/23/02 1.0 -5.59 -17.00 27.72 
12/24/02 13.3 -6.65 -22.30 30.90  12/24/02 5.0 -7.39 -37.90 21.22 
12/26/02 0.8 -4.65 -18.30 18.90  12/25/02 5.0 -6.12 -20.30 28.66 
12/31/02 3.0 -3.81 -17.20 13.28  12/31/02 3.5 -2.66 -9.90 11.38 
01/02/03 6.8 -7.54 -43.70 16.62  01/04/03 13.0 -6.85 -39.30 15.50 
01/03/03 11.0 -7.56 -44.30 16.18  01/16/03 6.0 -3.56 -8.50 19.98 
01/04/03 11.8 -4.36 -19.20 15.68  01/18/03 6.0 -3.88 -11.30 19.74 
02/03/03 58.9 -8.32 -45.70 20.86  01/20/03 12.5 -6.47 -40.20 11.56 
02/04/03 36.6 -9.60 -53.70 23.10  01/21/03 14.0 -9.35 -57.40 17.40 
02/07/03 2.7 -2.68 -4.20 17.24  01/28/03 22.5 -5.88 -29.70 17.34 
02/08/03 8.3 -2.74 0.30 22.22  01/29/03 24.0 -9.38 -54.70 20.34 
02/09/03 14.8 -4.85 -8.50 30.30  02/03/03 67.0 -8.67 -47.80 21.56 
02/10/03 3.2 -5.14 -13.50 27.62  02/04/03 30.0 -9.85 -56.80 22.03 
02/12/03 2.6 -0.86 1.80 8.68  02/08/03 8.0 -2.19 4.30 21.82 
02/13/03 13.9 -8.17 -49.10 16.26  02/09/03 13.0 -4.31 -4.70 29.78 
02/14/03 21.3 -6.76 -32.30 21.78  02/10/03 7.5 -6.57 -22.20 30.36 
02/15/03 6.7 -7.82 -40.70 21.86  02/14/03 21.0 -7.44 -35.20 24.32 
02/18/03 17.5 -4.70 -23.00 14.60  02/15/03 23.0 -6.26 -29.00 21.08 
02/19/03 23.2 -5.23 -20.40 21.44  12/18/03 8.5 -9.55 -57.50 18.90 
02/20/03 36.1 -7.41 -35.60 23.68  02/18/03 20.0 -4.96 -9.20 30.48 
02/21/03 43.7 -7.84 -40.10 22.62  02/19/03 24.0 -7.16 -34.00 23.28 
02/23/03 4.1 -4.93 -15.70 23.74  02/20/03 35.0 -8.33 -44.90 21.74 
02/24/03 18.2 -11.47 -62.20 29.56  02/21/03 50.0 -4.43 -5.80 29.64 
02/27/03 15.6 -8.45 -44.20 23.40  02/23/03 4.0 -6.36 -19.50 31.38 
03/03/03 11.1 -3.68 -14.00 15.44  02/24/03 23.0 -9.58 -46.70 29.94 
03/06/03 12.3 -8.14 -49.10 16.02  02/25/03 30.0 -6.14 -29.40 19.72 
03/11/03 6.6 -5.70 -26.30 19.30  02/27/03 17.0 -8.91 -40.50 30.78 
03/12/03 7.9 -5.42 -18.85 24.47  03/04/03 10.0 -3.00 -8.20 15.80 
03/18/03 30.5 -7.98 -45.45 18.35  03/05/03 1.0 -2.22 -1.00 16.76 
03/19/03 30.0 -5.09 -19.45 21.27  03/06/03 10.0 -7.98 -48.30 15.54 
03/21/03 10.9 -5.81 -24.45 21.99  03/07/03 15.0 -8.81 -52.70 17.78 
03/22/03 6.4 -4.49 -13.60 22.32  03/12/03 9.0 -4.58 -19.60 17.04 
03/24/03 20.5 -5.65 -27.50 17.70  03/19/03 24.0 -7.41 -43.40 15.84 
03/25/03 40.7 -8.12 -40.20 24.76  03/20/03 0.5 -3.58 -7.45 21.15 
11/08/03 12.5 -4.05 -17.10 15.26  03/22/03 6.5 -5.33 -21.85 20.79 
11/09/03 13.6 -4.63 -22.35 14.69  03/23/03 12.5 -5.74 -26.35 19.53 

 



 

248 
 

continuation 

Banias Nature Reserve  Dan Nature Reserve 

Date Amount δ18O δ2H d  Date Amount δ18O δ2H d 
 mm ‰ ‰ ‰   mm ‰ ‰ ‰ 

11/10/03 21.3 -4.84 -13.45 25.27  03/24/03 26.0 -4.23 -13.85 19.99 
11/11/03 2.2 -2.75 0.95 22.91  03/25/03 47.0 -7.26 -34.75 23.29 
11/24/03 0.4 2.18 20.35 2.95  03/26/03 4.5 -7.16 -35.15 22.09 
11/28/03 2.0 1.05 20.50 12.14  11/08/03 18.5 -4.26 -16.25 17.83 
12/04/03 8.4 -8.06 -54.35 10.13  11/09/03 13.0 -4.09 -19.10 13.62 
12/07/03 22.0 -2.45 8.70 28.26  11/10/03 16.0 -4.42 -12.85 22.51 
12/14/03 10.0 0.12 11.00 10.08  11/11/03 3.0 -2.44 1.00 20.48 
12/17/03 23.6 -3.72 1.10 30.82  11/24/03 1.0 2.18 24.25 6.85 
12/18/03 36.5 -8.30 -36.90 29.50  11/28/03 1.5 0.89 12.85 5.77 
12/19/03 6.4 -8.28 -35.20 31.04  12/03/03 4.5 -4.51 -14.85 21.23 
12/27/03 24.5 -11.88 -74.35 20.69  12/04/03 10.0 -8.35 -53.45 13.31 
01/01/04 1.0 -2.66 -10.25 10.99  12/05/03 35.0 -9.27 -50.10 24.02 
01/02/04 3.0 -3.48 -10.95 16.89  12/06/03 2.5 -5.32 -19.75 22.77 
01/05/04 8.1 -3.09 -7.55 17.17  12/08/03 0.5 -8.59 -46.75 21.97 
01/06/04 30.7 -6.27 -29.30 20.82  12/18/03 23.0 -2.89 4.30 27.38 
01/07/04 30.5 -5.95 -17.70 29.90  12/19/03 5.5 -7.13 -25.45 31.59 
01/08/04 7.5 -6.56 -22.95 29.49  12/20/03 0.5 -7.90 -34.10 29.10 
01/12/04 8.0 -7.31 -42.40 16.08  12/26/03 11.6 -10.76 -65.15 20.89 
01/13/04 43.8 -9.73 -63.60 14.24  12/28/03 28.0 -11.07 -68.95 19.61 
01/14/04 12.6 -10.44 -70.45 13.07  01/01/04 4.0 -2.47 -6.50 13.22 
01/15/04 2.0 -4.52 -25.40 10.76  01/05/04 7.5 -6.44 -31.20 20.28 
01/22/04 12.6 -5.40 -28.55 14.61  01/06/04 28.0 -6.08 -26.35 22.29 
01/23/04 67.5 -6.75 -26.40 27.60  01/07/04 28.0 -5.66 -15.65 29.59 
01/24/04 14.5 -6.39 -20.65 30.47  01/08/04 10.0 -5.90 -19.20 27.96 
01/25/04 11.1 -7.40 -38.95 20.25  01/09/04 14.0 -6.06 -19.75 28.73 
01/26/04 28.9 -7.22 -36.05 21.67  01/12/04 5.5 -9.30 -43.35 31.01 
01/27/04 2.0 -5.29 -22.45 19.83  01/13/04 38.0 -7.24 -60.05 -2.13 
01/31/04 14.6 -5.25 -20.20 21.76  01/14/04 10.0 -8.41 -52.50 14.74 
02/01/04 6.2 -7.36 -35.65 23.19  01/15/04 2.5 -4.23 -20.55 13.29 
02/02/04 4.6 -3.44 -7.45 20.03  01/23/04 60.0 -4.24 -21.10 12.78 
02/03/04 4.1 -2.36 2.60 21.48  01/24/04 17.5 -6.09 -21.65 27.07 
02/10/04 3.2 -5.38 -18.10 24.90  01/25/04 12.0 -6.71 -34.95 18.69 
02/11/04 5.8 -3.83 -18.30 12.34  01/26/04 34.0 -7.03 -34.00 22.24 
02/13/04 18.7 -2.21 -4.40 13.28  01/27/04 2.0 -5.27 -26.40 15.76 
02/15/04 10.2 -7.33 -37.05 21.59  01/31/04 13.0 -4.57 -19.90 16.66 
02/16/04 20.0 -4.58 -4.55 32.09  02/01/04 7.0 -6.50 -33.90 18.10 
02/18/04 6.0 -4.97 -19.75 19.97  02/02/04 4.0 -2.88 -5.05 17.99 
02/19/04 8.2 -6.91 -33.40 21.84  02/03/04 5.5 -1.91 14.10 29.38 
02/21/04 10.5 -3.28 -8.65 17.59  02/05/04 2.0 -4.28 -23.60 10.64 

      02/10/04 0.3 -3.97 -19.85 11.91 
      02/11/04 2.5 -1.58 -2.85 9.79 
      02/13/04 15.0 -2.46 -2.90 16.74 
      02/14/04 39.0 -8.53 -38.35 29.85 
      02/15/04 13.0 -4.28 -3.60 30.64 
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continuation 

Banias Nature Reserve  Dan Nature Reserve 

Date Amount δ18O δ2H d  Date Amount δ18O δ2H d 
 mm ‰ ‰ ‰   mm ‰ ‰ ‰ 

      02/16/04 21.0 -5.11 -21.15 19.73 
      02/18/04 7.0 -5.00 -22.15 17.81 
      02/19/04 9.5 -6.06 -28.40 20.08 
      02/21/04 11.0 -2.83 -8.70 13.94 
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Table 56: Stable isotope composition (δ18O, δ2H) and amounts of daily rain in Kibutz Mayan Barukh, the Nimrod Nature Reserve and Moshav 
Shear Yeshuv. N.d.: not determined. 

Kibutz Mayan Barukh  Nimrod Nature Reserve  Moshav Shear Yeshuv 

Date Amount δ18O δ2H d  Date Amount δ18O δ2H d  Date Amount δ18O δ2H d 
 mm ‰ ‰ ‰   mm ‰ ‰ ‰   mm ‰ ‰ ‰ 

10/29/03 2.2 -1.11 0.30 9.14  11/09/03 13.0 -4.89 -24.55 14.57  11/08/03 11.8 -4.27 -23.80 10.32 
11/08/03 15.9 -4.87 -25.35 13.61  11/10/03 29.0 -5.35 -16.85 25.95  12/04/03 9.7 -8.11 -52.55 12.33 
11/09/03 6.5 -4.20 -17.60 15.96  11/11/03 3.0 -3.48 -5.00 22.80  12/05/03 32.0 -9.12 -50.95 21.97 
11/11/03 1.0 -1.60 5.45 18.21  11/24/03 6.0 -3.66 -7.75 21.49  12/06/03 6.7 -4.86 -15.55 23.29 
11/24/03 0.7 0.41 9.05 5.77  12/04/03 12.0 -9.40 -63.95 11.25  12/17/03 16.5 -2.39 4.80 23.88 
12/01/03 0.1 2.31 17.95 -0.53  12/04/03 6.0 -6.30 -27.60 22.76  12/18/03 44.8 -7.14 -31.45 25.63 
12/03/03 2.2 -4.19 -15.75 17.77  12/07/03 4.0 -2.62 6.30 27.22  12/26/03 50.2 -10.59 -64.10 20.58 
12/04/03 9.6 -8.81 -55.75 14.69  12/17/03 25.0 -4.61 -4.70 32.14  01/01/04 3.1 -3.52 -13.30 14.86 
12/05/03 37.7 -5.70 -24.70 20.90  12/18/03 48.0 -8.58 -36.50 32.14  01/05/04 10.0 -2.49 -2.85 17.03 
12/06/03 4.0 -5.36 -19.50 23.34  12/19/03 6.0 -8.82 -38.15 32.37  01/06/04 30.8 -5.76 -25.00 21.04 
12/07/03 0.6 -2.71 1.90 23.58  12/27/03 31.0 -12.87 -81.60 21.36  01/07/04 24.3 -4.95 -12.55 27.05 
12/14/03 0.5 -2.37 -5.10 13.82  12/28/03 n.d. -13.02 -82.55 21.61  01/08/04 7.8 -6.10 -20.90 27.86 
12/17/03 16.2 -2.96 -0.20 23.48  01/01/04 4.0 -4.23 -12.80 21.00  01/09/04 14.0 -6.02 -19.30 28.86 
12/26/03 20.4 -10.09 -59.60 21.12  01/05/04 9.0 -3.82 -9.95 20.57  01/12/04 4.9 -6.38 -38.55 12.45 
12/27/03 29.0 -10.76 -66.40 19.64  01/06/04 33.0 -6.84 -30.60 24.12  01/14/04 17.0 -9.91 -67.65 11.63 
01/05/04 5.8 -3.33 -8.00 18.64  01/07/04 36.0 -6.84 -24.80 29.92  01/22/04 17.2 -4.12 -18.85 14.11 
01/06/04 27.2 -6.20 -26.70 22.86  01/08/04 10.0 -7.62 -27.80 33.12  01/23/04 59.9 -5.81 -23.80 22.68 
01/07/04 33.5 -5.27 -14.15 28.01  01/09/04 15.0 -6.79 -24.95 29.37  01/24/04 14.5 -5.69 -17.05 28.47 
01/09/04 13.1 -6.19 -20.40 29.12  01/12/04 9.0 -8.99 -54.00 17.88  01/25/04 11.8 -6.61 -34.10 18.74 
01/12/04 5.3 -6.10 -33.50 15.30  01/13/04 47.0 -10.62 -67.50 17.46  01/26/04 33.8 -6.93 -32.15 23.29 
01/13/04 48.1 -9.25 -58.40 15.60  01/14/04 19.0 -11.70 -79.30 14.26  01/31/04 15.4 -4.70 -17.40 20.20 
01/14/04 11.8 -6.86 -41.05 13.83  01/22/04 19.0 -7.60 -29.80 30.96  02/01/04 9.3 -6.47 -30.20 21.56 
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continuation 

Kibutz Mayan Barukh  Nimrod Nature Reserve  Moshav Shear Yeshuv 

Date Amount δ18O δ2H d  Date Amount δ18O δ2H d  Date Amount δ18O δ2H d 
 mm ‰ ‰ ‰   mm ‰ ‰ ‰   mm ‰ ‰ ‰ 

01/15/04 1.6 -3.82 -17.50 13.02  01/23/04 82.0 -7.27 -29.60 28.56  02/03/04 5.5 -1.63 5.35 18.39 
01/22/04 18.8 -4.33 -23.10 11.50  01/24/04 23.0 -6.74 -24.45 29.47       
01/23/04 59.7 -6.08 -26.00 22.60  01/26/04 32.0 -7.80 -39.30 23.10       
01/24/04 17.1 -5.72 -16.90 28.82  01/31/04 18.0 -6.86 -30.30 24.60       
01/25/04 10.2 -6.87 -37.10 17.90  02/01/04 9.0 -8.04 -40.60 23.70       
01/25/04 10.2 -5.66 -20.10 25.14  02/02/04 5.0 -3.50 -4.50 23.46       
01/26/04 30.3 -7.14 -33.90 23.20  02/03/04 6.0 -3.22 -0.50 25.22       
01/27/04 1.6 -5.31 -24.80 17.70  02/11/04 15.0 -6.90 -33.35 21.85       
02/01/04 7.4 -6.77 -36.30 17.80  02/13/04 20.0 -4.03 -6.05 26.15       
02/02/04 2.7 -3.10 -6.30 18.60  02/14/04 22.0 -7.15 -25.30 31.86       
02/03/04 3.8 -1.93 7.00 22.40  02/15/04 15.0 -7.10 -25.40 31.40       
02/05/04 0.7 -3.66 -16.70 12.60  02/16/04 26.0 -5.63 -21.15 23.89       
02/10/04 0.2 -3.42 -15.25 12.07  02/18/04 8.0 -5.35 -22.55 20.25       
02/11/04 3.4 -2.23 -9.55 8.29  02/19/04 20.0 -7.45 -36.65 22.95       
02/13/04 15.5 -3.09 -9.50 15.18  02/21/04 15.0 -4.08 -10.30 22.30       
02/14/04 36.7 -7.13 -30.30 26.74             
02/15/04 14.0 -4.21 -5.05 28.63             
02/16/04 18.1 -4.82 -19.30 19.22             
02/18/04 3.2 -4.08 -18.70 13.90             
02/19/04 8.9 -6.00 -28.20 19.76             
02/21/04 15.1 -3.11 -11.30 13.58             
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Table 57: Stable isotope composition (δ18O, δ2H) and amounts of weekly rain in the Banias and Dan Nature Reserves and Kibutz Mayan Barukh.  

Banias Nature Reserve  Dan Nature Reserve  Kibutz Mayan Barukh 

Date Amount δ18O δ2H d  Date Amount δ18O δ2H d  Date Amount δ18O δ2H d 
 mm ‰ ‰ ‰   mm ‰ ‰ ‰   mm ‰ ‰ ‰ 

01/19/03 26 -3.45 -7.30 20.30  01/19/03 22 -2.92 -5.40 17.96  11/12/03 38 -4.45 -16.90 18.70 
01/26/03 23 -8.67 -54.00 15.36  01/26/03 24 -8.01 -48.30 15.78  12/08/03 54 -7.03 -36.45 19.75 
02/16/03 46 -6.87 -34.90 20.02  01/30/03 62 -8.29 -46.10 20.22  12/20/03 83 -6.54 -25.85 26.47 
02/20/03 41 -6.29 -31.90 18.42  02/06/03 90 -8.45 -44.20 23.40  12/29/03 47 -10.69 -63.85 21.63 
02/24/03 92 -7.40 -36.10 23.10  02/12/03 22 -3.37 -2.90 24.06  01/19/04 67 -8.72 -53.85 15.91 
02/28/03 63 -7.25 -28.00 30.00  02/16/03 43 -6.48 -32.90 18.90  01/31/04 51 -5.98 -27.55 20.25 
11/03/03 5 -1.42 -2.50 8.86  02/20/03 41 -4.45 -20.20 15.40  02/08/04 13 -3.04 -9.40 14.88 
11/12/03 53 -4.38 -15.95 19.09  02/24/03 86 -6.87 -31.30 23.66  02/23/04 28 -4.13 -16.80 16.20 
12/01/03 2 1.12 18.80 9.84  02/28/03 49 -7.11 -27.50 29.34       
12/08/03 25 -5.20 -24.15 17.41  12/08/03 50 -2.44 5.65 25.17       
12/20/03 79 -6.46 -23.05 28.59  12/20/03 70 -6.49 -24.75 27.17       
12/29/03 49 -10.96 -66.75 20.89  12/29/03 43 -10.64 -65.25 19.83       
01/11/04 93 -5.72 -20.95 24.81  01/11/04 92 -5.43 -18.85 24.59       
01/19/04 74 -9.31 -60.30 14.18  01/19/04 62 -9.20 -58.75 14.85       
01/25/04 110 -6.40 -27.15 24.01  01/25/04 87 -5.59 -21.30 23.42       
01/31/04 67 -6.44 -31.30 20.18  01/31/04 54 -6.21 -29.00 20.68       
02/08/04 15 -4.19 -13.40 20.08  02/08/04 15 -3.96 -12.05 19.59       
02/18/04 75 -6.86 -32.15 22.73  02/18/04 121 -5.83 -22.35 24.25       
02/23/04 30 -4.91 -20.90 18.34  02/23/04 26 -4.48 -18.65 17.15       
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Table 58: Stable isotope composition (δ18O, δ2H) and amounts of weekly rain in Moshav Neve Ativ, the Nimrod Nature Reserve and Moshav 
Shear Yeshuv. N.d.: not determined. 

Moshav Neve Ativ  Nimrod Nature Reserve  Moshav Shear Yeshuv 

Date Amount δ18O δ2H d  Date Amount δ18O δ2H d  Date Amount δ18O δ2H d 
 mm ‰ ‰ ‰   mm ‰ ‰ ‰   mm ‰ ‰ ‰ 

11/27/02 33 -5.78 -24.10 22.14  01/19/03 38 -4.77 -13.70 24.46  11/27/02 17 -3.52 -11.90 16.26 
12/10/02 51 -8.06 -41.50 22.98  01/26/03 21 -9.43 -59.80 15.64  12/14/02 60 -6.22 -28.20 21.56 
12/14/02 49 -7.42 -31.50 27.86  01/30/03 70 -8.76 -51.40 18.68  01/07/03 46 -5.36 -23.30 19.58 
12/18/02 33 -8.97 -50.30 21.46  02/06/03 126 -9.73 -54.20 23.64  01/19/03 20 -2.57 -4.00 16.56 
01/05/03 84 -6.95 -32.60 23.00  02/12/03 35 -4.93 -10.50 28.90  01/26/03 22 -7.81 -48.00 14.48 
01/19/03 47 -5.14 -15.80 25.32  02/16/03 55 -7.73 -40.70 21.14  01/30/03 54 -7.88 -46.70 16.34 
01/26/03 30 -10.26 -64.00 18.08  02/20/03 46 -5.77 -23.80 22.36  02/06/03 93 -8.50 -45.70 22.30 
01/30/03 91 -9.56 -54.30 22.18  02/24/03 100 -8.25 -40.10 25.90  02/12/03 20 -3.26 -1.30 24.78 
02/05/03 114 -9.96 -55.60 24.08  02/28/03 70 -7.94 -31.80 31.68  02/16/03 40 -4.87 -21.10 17.82 
02/12/03 43 -5.50 -14.90 29.06  11/03/03 6 -1.38 -0.80 10.20  02/20/03 35 -3.90 -17.80 13.36 
02/16/03 86 -8.73 -46.20 23.64  11/12/03 56 -5.01 -18.50 21.54  02/24/03 82 -6.82 -31.50 23.06 
02/20/03 67 -6.35 -27.30 23.50  12/01/03 5 -1.68 2.10 15.50  02/28/03 54 -6.69 -25.90 27.62 
02/24/03 127 -8.48 -41.80 26.04  12/08/03 28 -5.98 -29.55 18.25       
02/28/03 71 -7.32 -27.20 31.32  12/20/03 85 -7.18 -25.80 31.64       
11/03/03 11 -2.75 -8.85 13.11  12/29/03 54 -12.25 -74.90 23.06       
11/12/03 65 -5.44 -20.00 23.52  01/11/04 n.d. -6.60 -24.60 28.16       
12/01/03 7 -2.23 -0.20 17.64  01/25/04 135 -7.26 -28.80 29.24       
12/08/03 39 -6.63 -31.25 21.75  01/31/04 75 -7.25 -35.85 22.11       
12/20/03 105 -8.52 -34.80 33.36  02/08/04 18 -4.96 -14.35 25.29       
12/29/03 60 -13.39 -82.50 24.58  02/18/04 129 -6.24 -23.05 26.87       
01/11/04  -7.32 -27.85 30.67  02/23/04 43 -6.20 -28.25 21.31       



 

254 
 

Table 59: Stable isotope composition (δ18O, δ2H) and amounts of weekly rain in the Orevim 
catchment and Kibutz Shamir. N.d.: not determined. 

Orevim  Kibutz Shamir 

Date Amount δ18O δ2H d  Date Amount δ18O δ2H d 
 mm ‰ ‰ ‰   mm ‰ ‰ ‰ 

11/12/03 56 -5.16 -17.65 23.63  11/12/03 24 -4.12 -12.65 20.27 
12/08/03 51 -5.38 -24.65 18.39  12/08/03 18 -5.11 -24.75 16.09 
12/20/03 70 -6.46 -19.50 32.18  12/20/03 39 -5.44 -16.25 27.27 
01/02/04 67 -10.72 -63.15 22.61  01/11/04 n.d. -5.49 -19.85 24.07 
01/11/04 n.d. -6.11 -22.85 26.03  01/19/04 57 -8.56 -54.45 14.03 
01/25/04 107 -6.33 -24.30 26.34  01/25/04 68 -5.34 -20.10 22.58 
01/31/04 71 n.d. n.d. n.d.  01/31/04 59 -6.35 -30.25 20.55 
02/10/04 21 -5.02 -14.90 25.22  02/10/04 16 -6.46 -19.50 32.18 
02/18/04 76 -5.74 -21.30 24.58  02/18/04 61 -6.27 -22.95 27.21 
02/23/04 19 -5.21 -21.10 20.58  02/23/04 16 -4.70 -19.85 17.71 
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Figure 66: Explanation of the synoptic systems classified for the Eastern Mediterranean 
region. 
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Table 60: Single altitude gradients determined on weekly bulk samples of up to five stations 
based on δ18O. NA = Neve Ativ, NNR = Nimrod Nature Reserve, BNR = Banias 
Nature Reserve, TDNR = Tel Dan Nature Reserve, MSY = Moshav Shear Yeshuv. 
N.d.: not determined. 

Date NA NNR BNR TDNR MSY Slope Intercept r²   
 1000 m 750 m 360 m 227 m 100 m      

11/27/02 -5.78 n.d. n.d. n.d. -3.52 -0.0025 -3.27 1.00   
12/10/02 -8.06 n.d. n.d. n.d. n.d. n.d. n.d. n.d.   
12/14/02 -7.42 n.d. n.d. n.d. -6.22 n.d. n.d. n.d.   
12/18/02 -8.97 n.d. n.d. n.d. n.d. n.d. n.d. n.d.   
01/05/03 -6.95 n.d. n.d. n.d. n.d. n.d. n.d. n.d.   
01/07/03 n.d. n.d. n.d. n.d. -5.36 n.d. n.d. n.d.   
01/19/03 -5.14 -4.77 -3.45 -2.92 -2.57 -0.0030 -2.31 0.98 ** -0.0030 
01/26/03 -10.26 -9.43 -8.67 -8.01 -7.81 -0.0027 -7.53 0.99 ** -0.0027 
01/30/03 -9.56 -8.76 n.d. -8.29 -7.88 -0.0016 -7.77 0.93 *  
02/05/03 -9.96 n.d. n.d. n.d. n.d. n.d. n.d. n.d.   
02/06/03 n.d. -9.73 n.d. -8.45 -8.50 -0.0021 -8.16 0.95  -0.0021 
02/12/03 -5.50 -4.93 n.d. -3.37 -3.26 -0.0026 -2.90 0.99 ** -0.0026 
02/16/03 -8.73 -7.73 -6.87 -6.48 -4.87 -0.0036 -5.16 0.90 *  
02/20/03 -6.35 -5.77 -6.29 -4.45 -3.90 -0.0023 -4.23 0.60   
02/24/03 -8.48 -8.25 -7.40 -6.87 -6.82 -0.0020 -6.58 0.97 ** -0.0020 
02/28/03 -7.32 -7.94 -7.25 -7.11 -6.69 -0.0008 -6.86 0.48   
11/03/03 -2.75 -1.38 -1.42 n.d. n.d. -0.0019 -0.53 0.61   
11/12/03 -5.44 -5.01 -4.38 n.d. n.d. -0.0017 -3.78 1.00 * -0.0017 
12/01/03 -2.23 -1.68 1.12 n.d. n.d. -0.0054 2.87 0.94   
12/08/03 -6.63 -5.98 -5.20 -2.44 n.d. -0.0045 -2.42 0.76   
12/20/03 -8.52 -7.18 -6.46 -6.49 n.d. -0.0026 -5.67 0.88 *  
12/29/03 -13.39 -12.25 -10.96 -10.64 n.d. -0.0035 -9.74 0.99 ** -0.0035 
01/02/04 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.   
01/11/04 -7.32 -6.60 -5.72 -5.43 n.d. -0.0024 -4.86 1.00 ** -0.0024 
01/19/04 n.d. n.d. -9.31 -9.20 n.d. -0.0008 -9.01 1.00   
01/25/04 n.d. -7.26 -6.40 -5.59 n.d. -0.0030 -5.09 0.94   
01/31/04 n.d. -7.25 -6.44 -6.21 n.d. -0.0020 -5.74 1.00 ** -0.0020 
02/08/04 n.d. -4.96 -4.19 -3.96 n.d. -0.0019 -3.51 1.00  -0.0019 
02/10/04 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.   
02/18/04 n.d. -6.24 -6.86 -5.83 n.d. -0.0003 -6.19 0.02   
02/23/04 n.d. -6.20 -4.91 -4.48 n.d. -0.0033 -3.72 1.00 ** -0.0033 
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Table 61: Single altitude gradients determined on weekly bulk samples of up to five stations 
based on δ2H. NA = Neve Ativ, NNR = Nimrod Nature Reserve, BNR = Banias 
Nature Reserve, TDNR = Tel Dan Nature Reserve, MSY = Moshav Shear Yeshuv. 
N.d.: not determined. 

Date NA NNR BNR TDNR MSY Slope Intercept r²   
 1000 m 750 m 360 m 227 m 100 m      

11/27/02 -24.10 n.d. n.d. n.d. -11.90 -0.0136 -10.54 1.000    
12/10/02 -41.50 n.d. n.d. n.d. n.d. n.d. n.d. n.d.   
12/14/02 -31.50 n.d. n.d. n.d. -28.20 n.d. n.d. n.d.   
12/18/02 -50.30 n.d. n.d. n.d. n.d. n.d. n.d. n.d.   
01/05/03 -32.60 n.d. n.d. n.d. n.d. n.d. n.d. n.d.   
01/07/03 n.d. n.d. n.d. n.d. -23.30 n.d. n.d. n.d.   
01/19/03 -15.80 -13.70 -7.30 -5.40 -4.00 -0.0138 -2.51 0.990 ** -0.0138
01/26/03 -64.00 -59.80 -54.00 -48.30 -48.00 -0.0185 -45.81 0.972 ** -0.0185
01/30/03 -54.30 -51.40 n.d. -46.10 -46.70 -0.0090 -44.95 0.962 * -0.0090
02/05/03 -55.60 n.d. n.d. n.d. n.d. n.d. n.d. n.d.   
02/06/03 n.d. -54.20 n.d. -44.20 -45.70 -0.0148 -42.71 0.898   
02/12/03 -14.90 -10.50 n.d. -2.90 -1.30 -0.0150 0.40 0.998 ** -0.0150
02/16/03 -46.20 -40.70 -34.90 -32.90 -21.10 -0.0233 -23.80 0.864 *  
02/20/03 -27.30 -23.80 -31.90 -20.20 -17.80 -0.0071 -20.73 0.227   
02/24/03 -41.80 -40.10 -36.10 -31.30 -31.50 -0.0124 -30.13 0.936 **  
02/28/03 -27.20 -31.80 -28.00 -27.50 -25.90 -0.0027 -26.76 0.210   
11/03/03 -8.85 -0.80 -2.50 n.d. n.d. -0.0087 2.05 0.435   
11/12/03 -20.00 -18.50 -15.95 n.d. n.d. -0.0063 -13.69 0.999 * -0.0063
12/01/03 -0.20 2.10 18.80 n.d. n.d. -0.0308 28.59 0.920   
12/08/03 -31.25 -29.55 -24.15 5.65 n.d. -0.0383 2.56 0.622   
12/20/03 -34.80 -25.80 -23.05 -24.75 n.d. -0.0125 -19.79 0.715 *  
12/29/03 -82.50 -74.90 -66.75 -65.25 n.d. -0.0223 -59.32 0.983 ** -0.0223
01/02/04 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.   
01/11/04 -27.85 -24.60 -20.95 -18.85 n.d. -0.0112 -16.54 0.993 ** -0.0112
01/19/04 n.d. n.d. -60.30 -58.75 n.d. -0.0117 -56.10 1.000   
01/25/04 n.d. -28.80 -27.15 -21.30 n.d. -0.0121 -20.38 0.691   
01/31/04 n.d. -35.85 -31.30 -29.00 n.d. -0.0128 -26.36 0.992 ** -0.0128
02/08/04 n.d. -14.35 -13.40 -12.05 n.d. -0.0040 -11.50 0.865   
02/10/04 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.   
02/18/04 n.d. -23.05 -32.15 -22.35 n.d. 0.0042 -27.74 0.044   
02/23/04 n.d. -28.25 -20.90 -18.65 n.d. -0.0185 -14.37 1.000 ** -0.0185
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Supplementary data – Chapter 6 

Table 62: Physico-chemical parameters and natural tracer concentrations of the Bet HaMekhes spring from 2002 to 2004. N.d.: not determined. 

Date δ18O δ2H d T pH EC DOC SiO2 Ca2+ Mg2+ Na+ K+ HCO3
- SO4

2- Cl- NO3
- 

 ‰ ‰  °C  µS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

10/29/02 -6.38 -30.8 20.3 20.7 8.0 338 n.d. n.d. 16.2 13.5 36.6 4.4 200 4.3 21.7 11.8 
12/03/02 -6.38 -30.1 20.9 19.2 n.d. 355 1.1 26.6 16.8 12.9 33.3 4.7 177 4.1 21.0 11.7 
01/10/03 -6.30 -29.7 20.7 18.9 8.2 358 0.9 24.3 16.8 12.7 36.5 4.7 183 4.4 21.6 12.7 
06/19/03 -6.45 -30.4 21.2 21.1 8.5 351 n.d. 26.3 18.1 13.8 39.5 4.8 207 4.5 22.6 12.6 
10/20/03 -6.46 -30.3 21.4 20.4 8.3 362 1.2 27.2 17.6 14.5 37.6 4.6 195 4.0 20.2 10.4 
12/02/03 -6.44 -30.2 21.3 20.1 8.1 361 1.9 27.2 n.d. n.d. n.d. n.d. 171 n.d. n.d. n.d. 
01/04/04 -6.41 -30.5 20.7 17.8 8.4 356 n.d. n.d. 15.5 13.3 31.4 3.9 189 4.3 20.8 10.4 
02/08/04 -6.32 -29.4 21.2 19.8 8.3 367 1.3 n.d. 18.1 15.9 32.0 4.2 201 4.3 20.8 10.8 
03/14/04 -6.39 -29.7 21.4 18.0 9.0 366 1.0 27.0 15.6 15.1 36.5 4.0 207 4.2 20.0 11.3 
03/28/04 -6.34 -28.1 22.7 19.8 8.2 362 1.2 29.0 15.9 15.1 32.7 4.3 192 4.3 20.9 11.7 
05/04/04 -6.32 -30.5 20.0 19.9 8.2 356 1.4 n.d. 16.0 14.5 30.5 4.1 195 1.2 20.0 10.0 
05/31/04 -6.34 -31.6 19.1 20.8 8.2 359 0.9 n.d. 15.7 15.7 38.4 3.6 189 4.0 19.4 10.4 
06/14/04 -6.30 -30.1 20.3 21.0 8.3 355 n.d. 25.5 n.d. n.d. n.d. n.d. n.d. 4.0 19.0 11.1 
07/05/04 -6.38 -30.8 20.3 21.3 8.2 361 1.7 n.d. 17.2 14.7 35.3 4.2 198 2.9 19.7 10.3 
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Table 63: Physico-chemical parameters and natural tracer concentrations of the Divsha spring from 2002 to 2004. N.d.: not determined. 

Date δ18O δ2H d T pH EC DOC SiO2 Ca2+ Mg2+ Na+ K+ HCO3
- SO4

2- Cl- NO3
- 

 ‰ ‰  °C  µS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

10/29/02 -6.85 -32.8 22.0 21.3 8.2 302 n.d. n.d. 27.9 11.7 19.3 3.4 187 8.3 15.0 9.9 
12/03/02 -6.77 -33.1 21.1 20.0  321 0.8 31.6 25.4 11.5 20.1 3.2 183 8.2 14.6 9.7 
01/10/03 -6.77 -32.8 21.4 20.6 8.4 329 n.d. 35.2 27.3 12.5 18.3 3.6 171 8.2 15.8 13.4 
06/19/03 -6.82 -32.9 21.7 21.5 8.7 332 n.d. 34.5 27.9 12.4 21.7 4.3 177 7.3 17.6 14.5 
10/20/03 -6.84 -32.7 22.0 21.2 8.4 327 1.0 36.1 24.1 12.6 20.4 3.1 177 6.3 14.6 10.2 
12/02/03 -6.86 -32.7 22.1 19.9 8.5 325 1.5 33.8 23.3 14.4 17.8 3.1 177 6.6 14.4 10.4 
01/04/04 -6.76 -33.0 21.1 19.0 8.4 318 1.8 n.d. 26.6 14.3 20.4 3.4 177 5.5 14.5 9.9 
02/08/04 -6.91 -33.1 22.1 19.3 8.4 329 1.3 39.3 29.1 14.3 20.1 3.6 183 6.7 14.1 11.3 
03/14/04 -6.82 -33.8 20.7 18.1 9.6 327 0.8 37.2 25.5 13.6 21.5 3.5 177 6.0 14.1 12.4 
03/28/04 -6.77 -33.3 20.9 19.1 8.3 329 1.2 39.9 23.3 14.0 21.3 3.5 183 6.8 15.0 13.4 
05/04/04 -6.65 -32.9 20.3 19.3 8.1 332 0.9 35.2 25.6 14.6 22.6 3.2 177 6.6 15.0 12.3 
05/31/04 -6.69 -32.1 21.4 19.6 8.3 339 n.d. 33.8 26.6 15.1 23.5 3.2 177 6.6 16.5 11.7 
06/14/04 -6.64 -32.5 20.7 19.7 8.3 333 n.d. 32.2 26.3 14.1 20.8 3.3 171 5.4 15.1 10.9 
07/05/04 -6.85 -32.8 22.0 20.3 8.1 342 n.d. n.d. 25.4 13.7 20.7 3.2 177 10.8 15.3 5.0 
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Table 64: Physico-chemical parameters and natural tracer concentrations of the Dupheila spring from 2002 to 2004. N.d.: not determined. 

Date δ18O δ2H d T pH EC DOC SiO2 Ca2+ Mg2+ Na+ K+ HCO3
- SO4

2- Cl- NO3
- 

 ‰ ‰  [°C]  µS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

10/09/02 -6.64 -30.8 22.3 19.7 8.0 394 n.d. n.d. 39.0 15.5 23.3 6.0 207 8.9 20.7 10.6 
10/29/02 -6.73 -32.4 21.4 21.4 7.8 341 n.d. n.d. 31.2 12.6 22.8 4.8 207 7.9 16.6 13.3 
12/03/02 -6.74 -33.2 20.7 20.8 n.d. 354 0.7 30.3 28.7 14.5 22.8 4.1 183 5.7 14.5 10.5 
01/10/03 -6.66 -32.0 21.3 20.6 7.7 347 1.1 33.9 30.4 12.3 20.6 4.7 159 9.7 19.1 19.7 
10/20/03 -6.75 -32.1 21.9 26.0 8.0 366 1.2 32.6 26.8 14.6 24.1 3.4 195 5.9 15.5 12.5 
12/01/03 -6.83 -32.9 21.8 20.0 7.9 359 0.8 32.4 23.7 14.0 25.6 3.9 195 6.2 14.9 13.0 
12/08/03 -6.73 -30.4 23.4 19.8 8.0 364 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 6.7 16.9 13.3 
01/06/04 -6.70 -32.1 21.5 19.8 8.0 357 0.9 30.2 27.5 13.7 22.0 3.0 195 6.6 16.5 14.4 
01/19/04 -6.82 -33.5 21.1 17.3 8.4 319 1.8 30.7 25.8 10.7 18.0 2.9 134 9.3 17.0 20.7 
02/10/04 -6.71 -31.3 22.4 18.5 8.1 318 1.1 n.d. 28.2 12.5 18.1 3.1 165 7.5 14.4 14.6 
03/14/04 -6.68 -31.3 22.2 18.0 8.2 336 1.2 34.3 27.6 11.5 19.4 3.4 177 7.3 14.8 13.7 
03/28/04 -6.67 -31.0 22.4 19.5 8.3 354 1.1 36.3 27.4 13.5 18.3 3.6 195 6.9 15.9 14.1 
05/04/04 -6.62 -32.8 20.1 19.3 8.3 351 1.3 n.d. 29.9 14.4 21.0 3.6 201 6.1 15.4 12.1 
05/31/04 -6.28 -31.4 18.8 19.1 8.1 334 0.8 32.6 20.2 14.3 27.5 3.1 177 3.9 16.4 8.1 
05/31/04 -6.64 -32.3 20.8 19.8 8.4 362 0.7 32.0 30.1 14.5 25.6 3.7 195 5.2 14.8 11.6 
06/15/04 -6.57 -34.0 18.6 19.5 8.3 360 1.2 31.9 30.5 16.8 23.8 3.7 195 6.0 15.5 12.4 
07/07/04 -6.65 -34.0 19.2 19.8 7.9 364 n.d. n.d. 29.9 15.0 22.3 3.9 195 4.9 15.7 12.8 
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Table 65: Physico-chemical parameters and natural tracer concentrations of the Elmin Jedida spring from 2002 to 2004. N.d.: not determined. 

Date δ18O δ2H d T pH EC DOC SiO2 Ca2+ Mg2+ Na+ K+ HCO3
- SO4

2- Cl- NO3
- 

 ‰ ‰  [°C]  µS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

10/29/02 -6.41 -30.0 21.3 20.4 7.5 379 n.d. n.d. 29.5 15.1 26.0 3.9 229 5.4 20.4 17.1 
12/03/02 -6.42 -30.5 20.9 20.2 n.d. 394 0.8 35.4 29.3 18.1 28.6 4.0 207 3.9 19.4 15.6 
01/10/03 -6.39 -29.8 21.3 20.4 7.7 396 n.d. 36.0 28.9 14.8 25.1 4.3 207 5.3 20.2 17.0 
06/19/03 -6.45 -31.1 20.5 21.1 7.8 398 n.d. 35.2 30.7 16.6 32.0 4.4 207 5.5 21.3 17.3 
10/20/03 -6.45 -30.3 21.3 20.3 7.7 404 1.4 35.8 27.2 16.4 26.4 3.3 207 5.0 19.3 16.1 
11/20/03 -6.31 -31.3 19.2 20.4 7.9 394 1.2 33.2 n.d. n.d. n.d. n.d. 220 5.4 19.3 17.6 
01/04/04 -6.41 -30.4 20.9 20.0 7.6 393 2.0 n.d. 26.8 17.9 25.5 3.5 214 5.0 19.5 15.8 
02/08/04 -6.34 -30.1 20.6 20.9 7.7 393 1.2 32.4 27.5 17.3 24.3 3.8 214 5.2 19.6 16.1 
03/14/04 -6.40 -29.6 21.6 20.0 7.8 406 1.1 34.9 24.0 18.5 29.0 3.7 214 5.6 19.0 16.7 
03/28/04 -6.41 -30.7 20.6 20.4 7.9 405 0.7 37.5 25.1 17.1 26.9 3.8 223 5.2 19.5 16.6 
05/04/04 -6.34 -29.7 21.0 20.3 7.6 401 1.3 n.d. 27.6 16.9 27.3 3.7 207 5.1 19.4 15.3 
05/31/04 -6.34 -30.2 20.5 20.6 7.6 407 0.5 n.d. 26.9 18.6 29.2 3.4 201 5.1 19.2 15.5 
06/14/04 -6.34 -29.6 21.1 20.6 7.7 403 n.d. 33.7 28.6 18.2 27.1 3.8 214 4.0 19.7 14.9 
07/05/04 -6.31 -30.6 19.9 20.6 7.7 408 n.d. n.d. 28.3 17.7 26.6 3.7 220 4.3 19.4 14.9 
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Table 66: Physico-chemical parameters and natural tracer concentrations of the Gonen spring from 2002 to 2004. N.d.: not determined. 

Date δ18O δ2H d T pH EC DOC SiO2 Ca2+ Mg2+ Na+ K+ HCO3- SO4
2- Cl- NO3

- 
 ‰ ‰  °C  µS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

10/29/02 -6.79 -31.7 22.6 18.8 8.1 299 n.d. n.d. 20.0 11.9 21.8 4.7 179 4.6 15.8 13.9 
10/29/02 -6.74 -31.6 22.3 19.9 8.2 299 n.d. n.d. 24.5 11.7 22.1 3.7 183 6.9 15.9 11.4 
12/03/02 -7.00 -33.0 23.0 18.1 n.d. 311 1.0 32.2 25.9 11.6 19.6 3.9 159 7.0 15.6 11.1 
01/10/03 -6.72 -32.4 21.4 18.1 8.2 323 1.1 30.7 26.5 12.1 20.3 4.1 165 7.1 16.1 14.2 
06/19/03 -6.78 -32.8 21.5 19.7 8.7 307 n.d. 34.7 26.5 11.9 22.6 4.3 159 6.7 16.0 4.9 
10/20/03 -6.80 -32.1 22.3 19.6 8.4 321 1.4 34.8 25.0 13.3 21.5 3.9 171 5.0 15.4 11.5 
12/02/03 -6.76 -32.4 21.6 19.4 8.5 319 0.8 34.2 25.2 13.6 21.7 3.8 177 6.2 14.8 12.3 
01/04/04 -6.75 -32.2 21.8 17.1 8.4 315 1.4 n.d. 22.5 14.6 20.5 3.5 162 5.8 14.4 10.9 
03/14/04 -6.82 -32.4 22.2 17.0 8.6 315 0.9 36.1 22.9 12.6 21.8 3.7 183 6.4 14.0 13.6 
03/28/04 -6.78 -34.6 19.7 18.3 8.3 312 1.0 37.0 21.9 11.8 19.4 3.7 165 6.0 14.0 13.4 
05/04/04 -6.75 -33.6 20.4 18.8 8.2 309 1.1 n.d. 22.3 12.7 17.8 3.7 159 5.7 13.9 11.8 
05/31/04 -6.68 -32.7 20.7 19.3 8.3 315 1.2 n.d. 23.3 13.6 21.2 3.2 165 5.8 13.9 12.2 
06/14/04 -6.68 -31.3 22.2 19.6 8.3 311 0.9 28.9 23.8 14.3 21.0 3.5 165 5.6 13.7 11.9 
07/05/04 -6.66 -33.0 20.2 20.4 8.3 332 n.d. n.d. 25.1 13.3 19.9 3.4 177 4.7 15.3 11.5 
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Table 67: Physico-chemical parameters and natural tracer concentrations of the Hamroniya spring from 2002 to 2004. N.d.: not determined. 

Date δ18O δ2H d T pH EC DOC SiO2 Ca2+ Mg2+ Na+ K+ HCO3
- SO4

2- Cl- NO3
- 

 ‰ ‰  °C  µS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

10/29/02 -6.79 -32.3 22.0 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 205 n.d. n.d. n.d. 
12/03/02 -6.76 -33.3 20.8 19.7 n.d. 363 0.4 37.4 24.1 13.0 26.8 5.0 189 6.1 18.6 15.0 
01/10/03 -6.82 -32.4 22.2 19.7 7.8 337 n.d. 38.0 21.8 12.4 24.5 5.5 165 6.2 17.2 16.4 
06/19/03 -6.95 -33.8 21.8 18.7 8.9 335 n.d. 35.0 24.3 13.7 28.7 5.1 171 6.6 18.7 17.0 
06/19/03 -6.98 -34.2 21.6 18.9 8.1 331 n.d. 34.1 23.2 12.4 23.0 5.2 166 6.5 17.9 17.2 
10/20/03 -6.80 -32.2 22.2 19.4 7.8 365 n.d. 38.3 23.2 12.4 23.0 5.2 189 6.5 17.9 17.2 
12/01/03 -6.79 -32.3 22.0 19.8 8.0 361 0.8 37.0 22.3 13.2 24.9 5.1 195 5.4 18.1 15.0 
01/06/04 -6.74 -32.7 21.2 19.7 8.0 360 1.0 35.4 25.7 15.7 28.4 5.3 183 4.2 18.7 15.6 
02/10/04 -6.88 -33.2 21.8 19.2 7.9 303 1.2 n.d. 19.6 13.1 22.1 4.5 159 5.9 14.7 14.3 
03/14/04 -7.04 -34.7 21.6 17.8 7.9 325 0.9 38.3 19.3 13.4 23.3 4.0 177 6.6 15.2 13.8 
03/28/04 -6.96 -34.2 21.5 18.2 8.1 333 1.0 41.4 20.3 14.6 21.4 4.6 183 6.4 15.9 14.6 
04/20/04 -6.93 -31.9 23.5 18.4 8.0 341 1.6 35.7 21.7 13.7 23.1 4.0 183 6.0 15.7 14.5 
05/04/04 -6.94 -34.3 21.2 18.5 8.1 331 1.1 n.d. 21.7 14.1 22.7 4.4 171 6.0 16.0 14.7 
05/31/04 -6.77 -33.1 21.1 19.0 8.2 350 n.d. 36.5 23.4 14.7 23.9 4.6 171 4.8 17.1 14.2 
06/15/04 -6.83 -34.9 19.8 19.0 8.2 351 0.8 n.d. 23.5 14.3 29.2 4.8 183 5.0 16.7 14.1 
07/07/04 -6.74 -33.1 20.8 19.3 7.8 358 n.d. n.d. 23.8 14.8 25.1 4.7 195 4.5 17.5 13.9 
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Table 68: Physico-chemical parameters and natural tracer concentrations of the Jalabina spring from 2002 to 2004. N.d.: not determined. 

Date δ18O δ2H d T pH EC DOC SiO2 Ca2+ Mg2+ Na+ K+ HCO3
- SO4

2- Cl- NO3
- 

 ‰ ‰  °C  µS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

10/29/02 -6.56 -31.2 21.3 20.2 7.8 308 n.d. n.d. 16.1 11.1 35.6 3.8 190 4.4 17.6 11.9 
12/03/02 -6.65 -31.6 21.6 20.1 n.d. 324 1.2 30.1 16.9 12.9 33.0 3.7 153 3.1 16.9 10.8 
01/10/03 -6.54 -31.2 21.1 20.4 8.0 326 n.d. 27.0 15.9 11.7 30.7 3.7 165 4.3 17.9 12.5 
06/19/03 -6.74 -32.3 21.6 20.3 8.3 324 n.d. 29.1 16.8 12.3 35.9 3.8 168 4.7 18.4 13.0 
10/20/03 -6.63 -31.9 21.2 20.2 7.9 334 n.d. 31.1 n.d. n.d. n.d. n.d. 183 4.2 19.0 12.7 
11/20/03 -6.46 -32.2 19.5 20.5 7.8 335 1.4 26.5 14.9 13.0 31.6 3.3 189 4.1 17.3 8.2 
01/04/04 -6.48 -30.6 21.2 15.4 8.3 334 4.1 n.d. 19.5 15.1 28.2 3.2 189 5.0 17.6 7.3 
02/08/04 n.d. n.d. n.d. 20.4 8.0 326 1.0 27.3 16.0 14.2 28.6 3.1 180 4.4 17.1 10.8 
03/14/04 -6.48 -30.6 21.2 15.8 8.5 343 1.1 29.7 19.4 14.8 27.7 2.9 189 5.5 16.7 9.5 
03/28/04 -6.48 -30.6 21.2 16.9 8.0 340 1.4 33.9 18.9 14.2 27.4 3.2 201 5.4 16.4 8.7 
05/04/04 -6.48 -30.6 21.2 18.4 8.0 328 1.4 n.d. 17.9 14.0 29.9 2.8 183 4.9 16.5 8.6 
06/14/04 -6.48 -30.6 21.2 20.2 8.1 328 1.3 33.0 19.6 14.2 30.5 3.1 177 5.4 16.9 8.7 
07/05/04 -6.48 -30.6 21.2 20.4 8.4 332 1.6 n.d. 16.1 13.5 32.3 3.6 189 3.1 16.9 10.5 
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Table 69: Physico-chemical parameters and natural tracer concentrations of the Notera spring from 2002 to 2004. N.d.: not determined. 

Date δ18O δ2H d T pH EC DOC SiO2 Ca2+ Mg2+ Na+ K+ HCO3
- SO4

2- Cl- NO3
- 

 ‰ ‰  °C  µS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

10/29/02 -6.68 -31.7 21.7 19.8 8.0 313 n.d. n.d. 22.4 12.8 23.3 5.0 184 6.6 17.8 14.8 
12/03/02 -6.67 -31.4 22.0 19.2 n.d. 332 1.0 31.4 23.3 11.7 24.1 4.9 171 6.5 17.2 14.4 
01/10/03 -7.36 -31.5 27.4 19.5 8.0 339 n.d. 28.4 21.5 12.7 25.1 5.3 165 6.6 17.6 14.5 
06/19/03 -6.68 -31.7 21.7 19.6 8.4 319 n.d. 34.7 24.1 14.9 25.1 4.4 201 4.4 19.9 11.5 
06/19/03 -6.67 -31.4 22.0 19.9 8.6 365 n.d. 33.0 19.7 12.2 23.2 5.8 159 7.7 18.2 17.5 
10/20/03 -6.71 -31.5 22.2 19.5 8.3 340 2.4 34.2 19.6 14.9 22.0 4.5 171 6.2 17.0 14.3 
12/02/03 n.d. n.d. n.d. 20.0 8.5 348 0.8 33.2 23.4 15.2 26.3 5.1 171 6.2 17.4 14.4 
01/04/04 -6.63 -31.7 21.4 18.9 8.3 335 1.9 n.d. 21.1 15.0 24.7 4.5 171 6.1 16.7 13.7 
02/08/04 n.d. n.d. n.d. 19.8 8.3 330 1.1 34.5 19.9 13.8 23.6 4.7 165 6.6 16.5 14.0 
03/14/04 -6.59 -30.9 21.8 18.9 8.6 325 0.7 35.9 19.4 14.6 25.0 4.7 171 7.0 15.9 15.6 
03/28/04 -6.42 -25.1 26.3 19.3 8.1 321 1.0 38.0 17.0 13.6 23.1 5.2 171 7.0 15.8 15.7 
03/28/04 -6.57 -33.0 19.6 16.6 8.1 367 1.4 38.0 21.9 17.9 25.1 4.1 211 4.4 18.5 10.4 
05/04/04 -6.59 -31.9 20.9 19.1 8.1 322 0.7 34.9 19.5 14.8 25.1 4.9 159 6.6 16.2 15.2 
05/04/04 -6.49 -30.9 21.1 17.4 8.1 367 1.6 n.d. 23.7 18.6 25.0 3.4 192 4.2 18.7 9.3 
05/31/04 -6.37 -32.6 18.4 19.4 8.2 333 1.0 33.8 20.5 16.4 25.6 5.0 171 6.3 16.4 14.6 
05/31/04 -6.54 -33.0 19.4 18.5 8.2 378 1.2 34.9 24.3 19.3 27.5 3.6 201 4.5 20.0 9.6 
06/14/04 -6.58 -31.3 21.3 19.7 8.2 332 0.9 n.d. 20.1 14.7 26.0 4.8 165 6.3 16.4 14.7 
07/05/04 -6.53 -32.5 19.7 19.7 8.5 331 n.d. n.d. 20.6 14.5 23.9 5.0 183 5.2 16.7 14.4 
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Table 70: Physico-chemical parameters and natural tracer concentrations of the Sion spring / stream from 2002 to 2004. N.d.: not determined. 

Date δ18O δ2H d T pH EC DOC SiO2 Ca2+ Mg2+ Na+ K+ HCO3
- SO4

2- Cl- NO3
- 

 ‰ ‰  °C  µS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

02/28/03 n.d. n.d. n.d. 10.5 8.1 260 0.9 3.6 n.d. n.d. n.d. n.d. 171 n.d. n.d. n.d. 
03/02/03 n.d. n.d. n.d. 11.8 8.2 229 0.9 3.8 57.6 2.7 5.7 0.6 159 4.9 10.6 0.0 
03/03/03 n.d. n.d. n.d. 10.7 8.1 241 n.d. 0.9 n.d. n.d. n.d. n.d. 159 n.d. n.d. n.d. 
03/10/03 n.d. n.d. n.d. 14.5 8.1 255 n.d. 4.1 47.3 2.7 5.5 0.4 153 5.2 8.9 1.4 
03/10/04 n.d. n.d. n.d. 10.9 8.0 277 0.7 3.3 48.1 2.6 3.5 0.3 176 4.1 5.9 1.8 
03/13/04 n.d. n.d. n.d. 11.5 8.1 282 n.d. n.d. n.d. n.d. n.d. n.d. 153 n.d. n.d. n.d. 
03/14/04 -7.75 -38.2 23.8 12.9 8.1 266 1.6 3.1 59.2 3.8 4.2 0.6 153 5.3 5.4 2.8 
03/16/04 -7.63 -37.4 23.7 12.0 8.0 263 1.2 3.5 45.5 1.5 3.3 0.4 159 4.3 6.1 1.6 
04/05/04 -7.82 -38.9 23.67 10.6 8.0 253 1.2 2.9 42.4 2.2 2.2 0.3 159 3.8 5.1 1.8 

Table 71: Physico-chemical parameters and natural tracer concentrations of the Barid spring from 2002 to 2004. N.d.: not determined. 

Date δ18O δ2H d T pH EC DOC SiO2 Ca2+ Mg2+ Na+ K+ HCO3
- SO4

2- Cl- NO3
- 

 ‰ ‰  °C  µS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

02/02/03 -7.36 -38.7 20.18 16.4 7.8 369 0.7 n.d. 54.8 1.9 3.6 0.6 186 6.0 6.9 5.4 
10/19/03 -7.42 -39.4 19.96 16.0 7.9 321 n.d. 4.8 56.4 3.6 3.7 0.7 201 5.2 6.0 3.2 
12/01/03 n.d. n.d. n.d. 15.3 8.0 323 0.4 4.8 68.8 3.5 3.7 0.7 220 5.5 6.2 3.8 
03/15/04 -7.47 -33.9 25.82 15.5 8.0 312 1.4 n.d. 41.6 2.6 3.8 0.6 174 5.4 6.2 2.7 
07/07/04 -7.54 -39.6 20.72 15.0 7.7 312 n.d. n.d. 50.7 3.3 2.8 0.5 189 4.2 4.8 3.7 
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Table 72: Physico-chemical parameters and natural tracer concentrations of the Leshem spring from 2002 to 2004. N.d.: not determined. 

Date δ18O δ2H d T pH EC DOC SiO2 Ca2+ Mg2+ Na+ K+ HCO3
- SO4

2- Cl- NO3
- 

 ‰ ‰  °C  µS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

10/29/02 -7.47 -38.2 21.6 15.1 7.6 312 n.d. n.d. 56.3 4.6 4.0 0.7 207 7.2 6.6 5.1 
11/20/02 -7.49 -39.0 21.0 15.2 n.d. 325 0.9 n.d. 61.0 4.7 4.0 0.7 207 7.1 6.2 4.9 
12/03/02 -7.46 -39.0 20.7 15.2 n.d. 349 1.5 5.1 59.7 4.5 3.9 0.7 207 7.3 6.4 5.0 
12/09/02 -7.42 -39.0 20.4 15.2 n.d. 342 1.2 n.d. 65.5 5.1 3.7 0.7 201 7.3 6.3 5.1 
12/10/02 -7.45 -39.3 20.3 15.2 n.d. 346 0.7 n.d. 60.9 4.9 4.0 0.7 195 7.4 6.3 5.0 
12/11/02 n.d. n.d. n.d. 15.2 n.d. 349 0.7 n.d. n.d. n.d. n.d. n.d. 201 7.2 6.3 5.0 
12/17/02 -7.56 -38.8 21.7 15.2 n.d. 331 0.9 n.d. 54.0 4.4 3.7 0.7 220 7.2 5.9 4.9 
12/18/02 -7.48 -39.1 20.7 15.1 7.5 323 1.1 n.d. 58.6 4.3 3.5 0.7 195 7.0 5.8 5.1 
12/20/02 -7.43 -39.6 19.8 15.0 n.d. 318 n.d. n.d. n.d. n.d. n.d. n.d. 207 n.d. n.d. n.d. 
12/23/02 -7.48 -39.0 20.8 15.2 7.7 325 n.d. n.d. n.d. n.d. n.d. n.d. 238 n.d. n.d. n.d. 
12/24/02 -7.36 -38.4 20.5 n.d. 7.7 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 220 n.d. n.d. n.d. 
12/26/02 -7.21 -38.0 19.7 15.3 7.6 314 0.9 n.d. 57.9 3.1 3.5 0.6 207 6.0 6.3 4.7 
12/31/02 -7.54 -37.1 23.2 15.3 7.6 328 n.d. n.d. 53.2 2.9 3.7 0.7 195 6.1 6.7 5.8 
01/05/03 -7.28 -38.2 20.0 15.1 7.5 327 1.5 n.d. 44.6 2.9 3.3 0.7 192 6.2 6.5 5.4 
01/13/03 -7.32 -38.3 20.3 15.0 7.6 326 0.9 n.d. 59.3 2.9 3.4 0.8 201 6.1 6.7 5.3 
01/20/03 -7.35 -39.2 19.6 15.0 7.6 321 0.9 4.4 58.0 3.1 3.5 0.8 189 6.0 6.6 5.3 
01/28/03 n.d. n.d. n.d. 15.0 7.5 321 0.7 n.d. 58.9 3.2 3.5 0.6 214 6.0 6.3 5.2 
02/01/03 n.d. n.d. n.d. 15.0 n.d. 320 n.d. n.d. n.d. n.d. n.d. n.d. 183 n.d. n.d. n.d. 
02/02/03 -7.31 -37.9 20.6 15.1 7.5 331 0.9 n.d. 65.6 3.0 4.7 0.7 214 6.0 7.1 5.1 
02/10/03 -7.26 -37.9 20.1 15.5 7.5 357 n.d. 4.4 68.6 3.1 3.6 0.6 207 5.9 7.4 5.3 
02/16/03 -7.32 -38.5 20.1 15.5 7.7 343 n.d. 3.8 n.d. n.d. n.d. n.d. 189 n.d. n.d. n.d. 
02/24/03 -7.43 -39.6 19.9 n.d. 7.5 296 n.d. 3.5 n.d. n.d. n.d. n.d. 223 n.d. n.d. n.d. 
03/02/03 n.d. n.d. n.d. 15.6 7.4 293 n.d. 3.9 n.d. n.d. n.d. n.d. 211 n.d. n.d. n.d. 
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continuation 

Date δ18O δ2H d T pH EC DOC SiO2 Ca2+ Mg2+ Na+ K+ HCO3- SO4
2- Cl- NO3

- 
 ‰ ‰  °C  µS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

03/10/03 -7.35 -38.6 20.2 n.d. n.d. n.d. n.d. n.d. 49.8 1.2 3.7 0.5 207 4.3 7.3 n.d. 
03/17/03 -7.39 -38.4 20.7 n.d. n.d. 333 n.d. n.d. 54.7 1.2 3.7 0.4 226 4.3 6.4 n.d. 
03/24/03 -7.51 -39.9 20.2 n.d. n.d. n.d. n.d. n.d. 46.9 1.1 3.6 0.5 226 4.4 6.2 n.d. 
03/31/03 -7.47 -39.5 20.3 n.d. n.d. n.d. n.d. n.d. 49.8 1.9 3.7 0.5 211 3.8 6.3 n.d. 
04/07/03 -7.41 -37.3 22.0 n.d. 7.3 316 n.d. 4.4 62.3 2.3 3.4 0.4 207 4.6 5.9 0.6 
04/14/03 -7.55 -38.9 21.5 n.d. 7.2 306 n.d. 4.3 52.8 2.0 3.5 0.6 214 4.6 5.7 1.0 
04/21/03 -7.54 -38.5 21.8 n.d. 7.0 322 n.d. 4.2 63.0 2.6 3.9 0.6 201 4.6 6.2 n.d. 
04/28/03 -7.52 -38.3 21.8 n.d. 7.4 308 n.d. 4.4 54.1 2.8 3.4 0.5 204 5.2 5.9 3.4 
05/05/03 -7.69 -41.1 20.4 n.d. 7.6 300 1.1 4.1 55.4 3.1 3.4 0.5 207 4.8 5.6 3.7 
05/12/03 -7.66 -41.0 20.2 n.d. 7.6 299 0.4 3.3 58.4 3.0 3.5 0.5 207 4.9 5.7 3.7 
05/19/03 -7.61 -40.2 20.7 n.d. 7.6 298 0.4 3.2 55.5 3.3 3.2 0.6 217 4.9 5.7 3.8 
05/26/03 -7.67 -40.7 20.7 n.d. 7.6 296 0.5 4.2 57.2 2.8 3.4 0.6 189 5.0 5.7 3.7 
06/02/03 -7.68 -41.6 19.9 n.d. 7.5 298 1.3 3.2 53.2 2.9 3.1 0.5 204 4.8 5.5 3.7 
06/09/03 -7.73 -41.3 20.6 n.d. 7.6 295 0.6 3.2 52.1 3.0 3.5 0.5 195 5.0 5.4 3.7 
06/16/03 -7.64 -40.2 20.9 n.d. 7.5 335 n.d. n.d. n.d. n.d. n.d. n.d. 207 n.d. n.d. n.d. 
06/23/03 n.d. n.d. n.d. n.d. 7.7 293 1.7 4.2 56.5 2.9 3.1 0.5 207 4.9 5.3 3.3 
06/30/03 n.d. n.d. n.d. n.d. 7.7 292 1.3 4.1 50.2 2.7 2.8 0.5 214 4.7 5.0 3.0 
07/07/03 n.d. n.d. n.d. n.d. 7.9 291 14.0 4.1 46.6 2.9 2.9 0.6 189 4.9 5.1 2.3 
08/18/03 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 50.4 3.3 3.0 0.9 226 4.1 5.2 3.6 
10/19/03 -7.45 -38.9 20.7 15.1 7.7 318 1.3 4.9 48.9 3.5 3.0 0.8 220 5.9 5.7 3.5 
10/26/03 -7.42 -39.3 20.0 15.1 7.7 321 0.7 5.1 58.5 3.5 3.2 0.6 195 5.3 5.2 3.0 
11/03/03 -7.32 -40.2 18.3 n.d. 7.7 321 1.0 4.8 48.5 3.8 3.5 0.5 250 5.0 5.5 3.9 
11/09/03 -7.36 -39.5 19.3 15.3 7.9 322 1.0 4.9 51.9 3.8 3.2 0.6 220 6.2 5.6 3.9 
11/30/03 -7.41 -38.1 21.2 n.d. 7.8 319 1.0 4.8 54.8 3.5 3.6 0.7 207 6.3 5.8 3.8 
12/08/03 -7.19 -38.2 19.4 15.7 7.7 318 0.6 n.d. 52.1 4.1 3.7 0.6 244 5.5 6.0 4.1 
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continuation 

Date δ18O δ2H d T pH EC DOC SiO2 Ca2+ Mg2+ Na+ K+ HCO3
- SO4

2- Cl- NO3
- 

 ‰ ‰  °C  µS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

12/14/03 -7.16 -38.3 19.0 16.1 n.d. 325 1.8 4.7 54.3 4.1 3.8 0.8 217 6.4 5.7 3.3 
12/20/03 -7.03 -36.6 19.7 n.d. 7.6 336 6.2 n.d. 58.8 3.6 3.7 0.8 226 6.0 5.6 1.4 
12/29/03 -7.03 -37.9 18.3 15.2 n.d. 341 0.8 5.0 54.1 3.9 3.9 0.8 214 6.5 5.8 4.1 
01/04/04 -7.11 -37.0 19.9 16.3 7.7 352 2.0 n.d. 52.7 4.1 3.9 0.8 244 6.7 6.0 3.8 
01/11/04 -7.13 -37.0 20.1 15.3 7.6 320 1.0 n.d. 58.7 3.9 3.9 0.6 226 6.8 6.1 4.3 
01/19/04 -7.28 -36.7 21.5 15.2 7.6 325 0.5 4.2 59.3 2.9 4.2 0.5 220 6.0 6.6 4.2 
02/01/04 -7.30 -38.8 19.6 15.8 7.5 342 1.1 5.2 62.6 2.5 4.3 0.6 226 5.3 6.1 3.3 
02/08/04 -7.36 -37.8 21.1 16.0 7.5 335 1.0 4.4 61.4 2.2 3.6 0.7 214 5.5 6.0 4.1 
02/17/04 -7.48 -39.4 20.4 n.d. 7.5 321 n.d. n.d. n.d. n.d. n.d. n.d. 195 4.7 6.1 3.9 
02/23/04 -7.55 -38.3 22.1 n.d. 7.5 331 n.d. n.d. 60.1 2.6 3.9 0.6 171 4.3 6.2 4.0 
03/04/04 -7.50 -37.8 22.2 15.6 7.8 324 n.d. 4.4 55.6 2.3 3.9 0.5 201 5.2 5.8 3.1 
03/15/04 -7.58 -38.4 22.3 15.3 8.1 301 0.8 3.9 53.2 2.2 3.2 0.5 201 5.2 5.9 3.4 
03/29/04 -7.55 -40.3 20.1 15.1 7.6 308 0.7 4.8 52.8 2.3 3.0 0.5 201 4.8 5.3 3.3 
04/05/04 -7.62 -38.9 22.1 14.9 7.5 301 0.8 4.8 50.6 2.4 3.0 0.5 214 4.8 5.2 3.4 
04/13/04 -7.66 -39.3 22.0 14.8 7.6 296 0.9 4.6 46.8 2.6 2.7 0.5 183 4.7 5.1 3.2 
04/20/04 -7.72 -39.1 22.7 14.9 7.5 304 1.7 4.8 51.0 2.5 3.1 0.5 220 4.4 4.8 3.1 
05/10/04 -7.73 -41.5 20.3 14.9 7.7 289 1.3 n.d. 53.6 1.7 3.7 0.6 192 3.8 5.2 3.1 
06/01/04 -7.66 -41.3 20.0 14.7 n.d. 301 1.1 4.2 49.0 2.4 2.7 0.6 223 4.8 4.5 2.9 
07/07/04 -7.50 -40.5 19.5 14.9 7.7 312 n.d. n.d. 52.0 3.4 3.1 0.6 207 4.3 5.0 3.9 
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Table 73: Physico-chemical parameters and natural tracer concentrations of the Dan spring from 2002 to 2004. N.d.: not determined. 

Date δ18O δ2H d T pH EC DOC SiO2 Ca2+ Mg2+ Na+ K+ HCO3
- SO4

2- Cl- NO3
- 

 ‰ ‰  °C  µS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

10/29/02 -7.43 -37.6 21.8 15.8 7.4 330 n.d. n.d. 57.2 4.9 4.3 0.8 250 8.9 7.6 n.d. 
11/20/02 -7.40 -37.8 21.4 15.9 n.d. 343 n.d. n.d. 45.7 5.4 3.9 0.7 244 8.3 6.9 4.9 
12/03/02 -7.43 -38.3 21.1 15.8 n.d. 362 1.7 5.7 53.0 5.0 4.0 0.7 244 8.4 7.0 5.0 
12/09/02 -7.47 -38.5 21.3 n.d. n.d. 353 1.0 n.d. 64.2 5.4 4.2 0.8 226 8.4 6.9 4.9 
12/10/02 -7.42 -38.5 20.9 15.9 n.d. 362 1.0 n.d. 60.1 4.9 3.8 0.7 220 n.d. 6.9 5.0 
12/11/02 -7.46 -38.1 21.6 15.9 n.d. 361 0.9 n.d. 64.5 5.0 4.3 0.8 226 8.1 6.8 4.0 
12/17/02 -7.49 -38.2 21.7 15.8 n.d. 350 1.2 n.d. 59.2 4.7 4.2 0.7 214 8.5 6.7 5.1 
12/18/02 -7.40 -38.9 20.3 15.8 7.4 342 1.2 n.d. 67.3 5.0 3.7 0.7 268 8.0 6.4 5.1 
12/20/02 -7.41 -38.3 21.0 15.7 n.d. 337 1.3 n.d. 60.9 4.6 3.9 0.7 171 8.0 6.7 5.3 
12/23/02 -7.38 -38.4 20.6 15.6 7.6 338 n.d. n.d. n.d. n.d. n.d. n.d. 201 n.d. n.d. n.d. 
12/24/02 -7.27 -37.0 21.2 n.d. 7.6 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 201 n.d. n.d. n.d. 
12/26/02 -7.24 -37.3 20.6 15.7 7.7 329 0.9 n.d. 52.9 3.5 4.1 0.6 201 7.0 6.7 4.7 
12/31/02 -7.43 -37.6 21.8 15.8 7.3 342 0.9 n.d. 78.6 3.4 4.7 0.7 214 7.3 7.2 5.8 
01/05/03 n.d. n.d. n.d. 15.7 7.5 344 0.7 n.d. 46.3 3.6 4.1 0.7 207 7.5 7.0 5.3 
01/13/03 -7.35 -37.9 20.9 15.8 7.6 346 1.1 n.d. 61.8 3.5 4.4 0.8 207 7.5 7.0 5.4 
01/20/03 -7.38 -39.1 20.0 15.7 7.5 342 1.0 5.1 64.6 3.9 3.9 0.8 207 7.6 7.2 5.3 
01/28/03 n.d. n.d. n.d. n.d. 7.4 n.d. 1.1 n.d. 62.5 3.9 4.1 0.7 189 7.6 7.0 5.0 
02/01/03 n.d. n.d. n.d. 15.6 n.d. 333 n.d. n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. 
02/02/03 -7.35 -38.6 20.2 15.7 7.5 346 0.7 n.d. 64.1 3.9 4.1 0.8 207 7.2 7.2 5.4 
02/10/03 -7.28 -38.2 20.0 16.0 7.4 370 0.8 n.d. 64.1 3.8 4.4 0.8 238 7.2 7.9 5.3 
02/16/03 -7.30 -38.5 19.9 15.9 7.6 357 0.8 4.4 n.d. n.d. n.d. n.d. 220 n.d. n.d. n.d. 
02/24/03 -7.41 -39.9 19.3 16.9 7.4 328 0.6 4.2 n.d. n.d. n.d. n.d. 207 n.d. n.d. n.d. 
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continuation 

Date δ18O δ2H d T pH EC DOC SiO2 Ca2+ Mg2+ Na+ K+ HCO3
- SO42- Cl- NO3

- 
 ‰ ‰  °C  µS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

03/02/03 -7.26 -39.2 18.9 16.2 7.4 311 0.6 4.7 n.d. n.d. n.d. n.d. 214 n.d. n.d. n.d. 
03/10/03 -7.38 -38.2 20.8 n.d. n.d. 296 n.d. n.d. 51.8 3.1 4.5 0.4 183 5.8 8.3 n.d. 
03/17/03 -7.38 -37.9 21.2 n.d. n.d. 343 n.d. n.d. 50.6 3.8 4.4 0.5 214 6.3 8.0 2.9 
03/24/03 -7.46 -37.8 21.9 n.d. n.d. 356 n.d. n.d. 52.9 3.7 4.4 0.5 207 6.3 7.9 3.9 
03/31/03 -7.39 -37.9 21.2 n.d. n.d. 303 n.d. n.d. 50.0 3.6 4.4 0.5 189 5.9 7.6 n.d. 
04/07/03 -7.42 -37.2 22.2 n.d. 7.4 341 n.d. 5.2 56.9 3.7 4.4 0.6 226 6.2 6.7 1.6 
04/21/03 -7.47 -38.0 21.8 n.d. 7.3 334 n.d. 5.2 59.5 3.3 3.8 0.7 226 5.8 6.4 1.0 
04/28/03 -7.41 -37.7 21.6 n.d. 7.4 338 n.d. 5.2 62.0 3.8 4.6 0.5 211 5.8 6.4 1.0 
05/05/03 -7.54 -39.8 20.5 n.d. 7.5 331 1.1 n.d. 60.7 4.0 4.1 0.6 204 6.8 6.5 4.1 
05/12/03 -7.57 -39.5 21.0 n.d. 7.5 337 0.8 n.d. 60.4 4.0 4.4 0.6 207 7.0 6.9 4.3 
05/19/03 -7.57 -40.4 20.2 n.d. 7.5 334 0.8 n.d. 59.7 4.1 4.3 0.6 207 7.0 6.7 4.2 
05/26/03 -7.62 -40.5 20.5 n.d. 7.5 335 1.2 n.d. 62.0 4.0 4.8 0.6 217 6.9 6.8 4.2 
06/02/03 -7.58 -40.3 20.3 n.d. 7.5 333 1.4 n.d. 57.0 3.9 4.3 0.6 204 7.0 6.6 4.3 
06/09/03 -7.68 -41.2 20.3 n.d. 7.8 294 1.3 n.d. 53.8 3.2 3.4 0.5 195 4.8 5.2 3.5 
06/16/03 -7.58 -40.1 20.6 n.d. 7.5 335 n.d. n.d. 61.8 4.1 4.1 0.6 207 7.2 6.5 4.2 
06/23/03 n.d. n.d. n.d. n.d. 7.7 328 1.1 5.1 57.6 3.8 3.7 0.6 207 5.5 5.6 2.8 
06/30/03 n.d. n.d. n.d. n.d. 7.7 323 1.2 5.1 57.4 4.0 4.1 0.7 214 5.4 5.4 2.8 
08/18/03 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 52.0 4.4 4.0 0.5 195 5.5 5.8 4.0 
10/19/03 -7.42 -38.3 21.1 16.0 7.6 355 1.6 6.1 51.9 5.0 4.8 0.8 220 7.5 6.8 3.5 
10/26/03 -7.38 -38.7 20.3 16.0 7.6 352 0.6 5.7 55.5 4.5 4.2 0.6 207 7.8 6.3 4.1 
11/03/03 n.d. n.d. n.d. n.d. 7.6 353 n.d. 5.6 49.2 4.7 4.3 0.6 217 6.2 6.2 4.1 
11/09/03 -7.35 -38.4 20.5 16.2 7.8 354 0.8 5.7 60.0 4.7 3.9 0.7 226 7.5 6.6 4.1 
11/30/03 -7.35 -38.3 20.5 n.d. 7.7 355 0.8 5.7 55.6 5.1 4.3 0.7 214 7.6 6.8 3.9 
12/08/03 -7.22 -37.8 19.9 16.1 7.7 346 0.8 n.d. 48.2 4.6 4.2 0.6 183 6.2 6.3 3.9 
12/14/03 -7.19 -37.1 20.4 n.d. 7.8 354 n.d. 5.6 55.8 4.8 4.4 0.6 220 8.4 6.8 10.8 



 

272 
 

continuation 

Date δ18O δ2H d T pH EC DOC SiO2 Ca2+ Mg2+ Na+ K+ HCO3
- SO4

2- Cl- NO3
- 

 ‰ ‰  °C  µS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

12/20/03 -7.16 -36.0 21.3 n.d. 7.5 362 0.8 n.d. 54.4 3.9 4.3 0.7 192 7.6 6.7 3.9 
12/29/03 -7.11 -38.3 18.6 16.0 n.d. 363 1.6 5.9 59.0 4.7 n.d. 0.7 223 7.6 6.5 4.1 
01/04/04 -7.16 -37.2 20.1 16.3 7.6 383 1.7 n.d. 64.3 4.2 4.3 0.7 195 7.7 6.7 4.0 
01/11/04 -7.16 -37.3 20.0 16.1 7.5 343 0.7 n.d. 56.3 4.5 4.5 0.6 201 7.6 6.5 4.3 
01/19/04 -7.32 -36.9 21.7 15.9 7.6 345 0.9 4.9 52.8 4.0 4.2 0.6 220 7.2 7.0 5.2 
02/01/04 -7.28 -37.2 21.1 16.3 7.5 357 1.3 5.6 52.4 3.9 4.5 0.6 195 6.6 6.6 4.1 
02/08/04 -7.32 -37.9 20.7 16.4 7.5 353 1.9 5.0 62.1 3.5 4.6 0.7 192 6.6 6.5 4.2 
02/17/04 -7.51 -38.6 21.4 n.d. 7.5 346 n.d. n.d. 55.3 3.1 4.5 0.6 195 n.d. n.d. n.d. 
02/23/04 -7.36 -36.7 22.2 n.d. 7.3 353 n.d. n.d. 64.1 3.7 4.6 0.7  n.d. 5.8 7.0 4.6 
03/04/04 -7.45 -37.7 21.9 16.4 7.6 351 n.d. 5.2 57.7 3.6 3.8 0.6 223 7.0 6.6 2.6 
03/15/04 -7.61 -36.0 24.9 15.9 7.7 325 1.0 4.7 60.5 3.1 4.0 0.6 211 5.0 5.5 2.9 
03/29/04 -7.46 -40.3 19.4 16.0 7.6 339 n.d. 5.7 57.0 4.2 4.5 0.6 207 7.0 6.5 4.3 
04/05/04 -7.53 -38.4 21.8 15.9 7.5 337 n.d. 5.6 53.1 4.1 4.3 0.5 207 7.3 6.5 4.2 
04/13/04 -7.53 -38.7 21.5 16.0 7.4 334 1.0 5.5 54.6 3.7 3.8 0.6 214 6.6 6.4 3.7 
04/20/04 -7.56 -38.7 21.8 15.9 7.4 345 0.7 5.6 52.8 3.2 3.8 0.7 201 6.2 5.6 3.3 
05/10/04 -7.47 -40.3 19.4 16.0 7.6 328 0.7 5.2 56.3 4.2 4.3 0.5 189 6.2 5.5 3.6 
06/01/04 -7.57 -39.6 21.0 15.8 n.d. 341 1.0 5.1 57.9 3.4 3.9 0.6 189 6.4 5.5 3.2 
06/16/04 -7.47 -39.9 19.9 15.8 7.6 336 0.8 n.d. n.d. n.d. n.d. n.d. 226 6.3 5.6 3.5 
07/07/04 -7.49 -39.2 20.8 15.6 7.6 337 n.d. n.d. 56.5 8.6 6.2 1.0 220 8.2 7.2 4.8 
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Table 74: Physico-chemical parameters and natural tracer concentrations of the Banias spring from 2002 to 2004. N.d.: not determined. 

Date δ18O δ2H d T pH EC DOC SiO2 Ca2+ Mg2+ Na+ K+ HCO3
- SO4

2- Cl- NO3
- 

 ‰ ‰  °C  µS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

10/09/02 -7.41 -37.0 22.3 15.5 7.4 431 n.d. n.d. 71.5 10.6 9.2 1.4 232 59.4 10.6 5.2 
11/20/02 -7.35 -37.3 21.6 15.6 n.d. 458 1.5 n.d. 73.6 11.5 9.7 1.7 256 62.2 10.9 5.6 
12/03/02 -7.35 -37.3 21.5 15.7 n.d. 485 0.9 10.1 67.9 11.3 15.1 1.9 244 63.0 11.7 5.8 
12/09/02 -7.39 -37.5 21.6 n.d. n.d. 480 0.9 n.d. 74.2 10.5 11.0 1.7 226 63.7 12.1 5.8 
12/10/02 -7.37 -38.2 20.8 15.6 n.d. 485 0.8 n.d. 74.1 11.5 11.2 1.7 232 62.3 11.7 6.0 
12/11/02 -7.27 -37.0 21.2 15.6 n.d. 480 0.7 n.d. 72.2 11.6 11.7 1.8 232 56.7 12.1 6.8 
12/12/02 -7.34 -34.5 24.2 15.7 n.d. 485 1.0 n.d. n.d. n.d. n.d. n.d. 244 n.d. n.d. n.d. 
12/17/02 -7.41 -37.4 21.9 15.1 n.d. 450 1.1 n.d. 72.7 9.6 10.8 1.6 207 48.6 14.1 6.3 
12/18/02 -7.36 -38.0 20.9 15.1 7.3 457 1.1 n.d. 72.9 9.5 12.1 1.5 214 51.0 16.5 6.3 
12/19/02 -7.38 -38.0 21.0 15.1 7.4 465 0.8 n.d. 69.2 9.2 11.9 1.5 207 53.9 16.3 6.3 
12/20/02 -7.43 -38.6 20.8 15.1 7.4 445 1.0 n.d. 71.8 9.0 11.0 1.5 214 52.7 13.7 5.8 
12/23/02 n.d. n.d. n.d. 14.2 7.7 299 1.8 4.5 52.6 4.4 6.1 0.6 171 13.6 9.0 3.4 
12/26/02 -7.55 -39.0 21.4 14.4 7.6 312 0.7 n.d. n.d. n.d. n.d. n.d. 183 10.5 10.6 10.5 
12/31/02 -7.46 -38.0 21.7 14.8 7.5 328 0.9 n.d. 56.3 5.3 6.2 0.9 183 13.4 9.3 5.0 
01/05/03 -7.42 -38.3 21.1 14.9 7.7 347 0.8 n.d. 60.3 5.9 6.6 0.9 183 18.5 10.0 5.4 
01/13/03 -7.50 -37.9 22.1 14.6 7.4 333 0.8 n.d. 56.4 5.5 5.4 0.8 183 14.3 8.7 4.7 
01/19/03 -7.51 -39.3 20.8 14.7 7.5 353 0.8 6.4 57.5 6.3 5.7 1.0 189 20.4 9.1 5.3 
01/26/03 -7.50 -39.1 20.9 14.8 7.5 347 0.7 n.d. 55.2 6.1 6.0 0.9 177 17.9 9.8 5.3 
02/02/03 -7.57 -38.7 21.8 14.8 7.5 337 0.7 n.d. 58.0 5.4 5.8 0.9 189 12.1 9.8 4.6 
02/10/03 -7.49 -37.4 22.5 15.1 7.5 358 1.0 n.d. 57.8 5.3 6.2 0.8 201 11.2 10.0 5.4 
02/16/03 -7.59 -39.2 21.5 14.8 7.5 335 0.8 4.1 57.2 4.0 6.5 0.7 195 8.7 11.4 3.7 
02/24/03 -7.54 -39.0 21.3 n.d. 7.4 325 0.8 4.5 n.d. n.d. n.d. n.d. 207 n.d. n.d. n.d. 
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continuation 

Date δ18O δ2H d T pH EC DOC SiO2 Ca2+ Mg2+ Na+ K+ HCO3
- SO4

2- Cl- NO3
- 

 ‰ ‰  °C  µS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

03/02/03 n.d. n.d. n.d. 15.5 7.4 326 0.7 5.2 n.d. n.d. n.d. n.d. 220 n.d. n.d. n.d. 
03/10/03 -7.65 -39.4 21.8 15.1 7.9 343 1.3 n.d. 62.7 4.7 5.7 1.4 211 8.3 11.1 3.8 
03/17/03 -7.47 -39.5 20.3 n.d. n.d. n.d. n.d. n.d. 42.1 4.9 5.7 0.7 153 7.0 8.8 3.7 
03/24/03 -7.44 -39.2 20.3 n.d. n.d. n.d. n.d. n.d. 58.6 6.6 6.0 0.9 207 20.5 8.9 3.8 
06/19/03 -7.48 -38.7 21.1 14.8 7.5 335 1.5 n.d. 57.4 7.5 6.1 0.9 195 21.3 8.3 4.5 
08/18/03 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 207 n.d. n.d. n.d. 
10/19/03 -7.49 -38.3 21.6 15.5 7.4 464 1.4 9.6 61.8 11.8 8.6 1.3 214 53.9 9.5 2.7 
10/26/03 -7.51 -38.2 21.9 15.6 7.5 467 0.8 9.7 68.9 11.7 8.6 1.3 226 53.0 9.0 2.7 
10/29/03 -7.36 -38.3 20.6 15.6 7.6 457 3.8 9.4 61.1 12.1 8.9 1.4 226 55.8 9.9 4.5 
11/03/03 -7.35 -38.1 20.7 15.7 7.5 468 0.9 9.3 66.3 11.6 8.8 1.3 232 52.7 9.3 4.3 
11/09/03 -7.46 -38.1 21.6 15.6 7.7 472 1.7 9.7 66.9 12.5 8.4 1.5 232 57.2 10.1 4.6 
11/11/03 n.d. n.d. n.d. 15.7 7.5 472 1.3 10.0 68.8 13.5 9.1 1.4 220 56.3 10.0 5.1 
11/30/03 -7.57 -38.6 21.9 n.d. 7.6 470 1.1 9.7 73.2 12.8 11.3 1.5 220 60.7 10.9 4.6 
12/01/03 -7.35 -38.8 20.0 n.d. 7.8 475 0.7 9.3 69.6 11.9 9.6 1.4 232 57.2 10.0 4.4 
12/08/03 -7.46 -37.8 21.9 15.9 7.6 470 0.7 n.d. 65.1 12.7 9.7 1.5 220 56.3 10.0 4.8 
12/14/03 -7.47 -37.2 22.6 15.8 n.d. 475 1.5 9.1 66.0 13.6 9.6 1.4 223 59.3 9.7 3.9 
12/21/03 -7.30 -36.8 21.6 n.d. 7.4 n.d. 2.2 n.d. 71.3 13.0 12.6 1.8 220 55.9 11.9 6.7 
12/29/03 -7.41 -38.4 20.9 15.9 n.d. 499 0.7 10.0 64.5 12.8 9.1 1.5 232 57.3 10.4 5.1 
01/04/04 -7.49 -38.0 21.9 15.6 7.5 435 0.7 n.d. 60.5 9.6 8.5 1.3 211 43.8 10.4 5.3 
01/11/04 -7.54 -37.3 23.0 15.4 7.4 387 0.9 n.d. 59.7 8.0 8.2 1.0 201 27.7 9.8 5.2 
01/14/04 -7.54 -37.9 22.5 n.d. n.d. n.d. 3.6 7.4 61.5 7.6 7.7 1.8 214 27.8 10.7 2.4 
01/19/04 -7.62 -39.2 21.7 15.2 7.6 335 1.1 5.4 58.3 5.0 7.0 0.8 189 10.9 10.4 4.2 
01/25/04 -7.58 -39.1 21.5 n.d. 7.6 349 0.8 5.2 56.4 4.6 6.3 0.8 201 10.2 9.4 3.8 
02/01/04 -7.52 -38.5 21.6 15.4 7.5 351 0.9 6.5 55.4 4.3 5.9 0.8 207 9.5 7.7 3.7 
02/08/04 -7.49 -38.0 21.9 15.9 7.5 355 1.4 5.6 56.5 6.0 5.7 0.7 195 10.4 9.0 3.8 
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continuation 

Date δ18O δ2H d T pH EC DOC SiO2 Ca2+ Mg2+ Na+ K+ HCO3
- SO4

2- Cl- NO3
- 

 ‰ ‰  °C  µS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

02/17/04 -7.67 -39.5 21.8 n.d. 7.5 337 n.d. n.d. 55.5 5.0 5.8 0.7 201 9.1 8.7 3.5 
02/23/04 -7.58 -38.5 22.1 n.d. 7.4 344 n.d. n.d. 59.3 4.8 5.4 0.7 207 6.6 8.1 3.5 
03/04/04 -7.78 -39.1 23.2 14.9 7.7 303 2.2 4.7 54.1 3.7 5.4 0.4 189 6.6 7.7 2.4 
03/14/04 -7.71 -39.1 22.5 14.5 7.9 317 1.1 5.0 52.9 4.4 4.7 0.6 201 7.1 6.8 2.3 
03/29/04 -7.70 -39.7 22.0 14.7 7.5 325 1.0 6.6 47.7 5.2 4.9 0.6 201 11.2 7.0 3.2 
04/05/04 -7.71 -38.4 23.3 14.2 7.5 311 0.9 6.3 46.2 5.3 4.5 0.6 192 10.5 6.6 3.1 
04/13/04 -7.64 -37.8 23.3 14.4 7.5 328 0.9 6.6 51.9 5.9 5.4 0.9 192 14.4 7.1 3.3 
04/20/04 -7.68 -37.5 23.9 14.6 7.5 343 0.6 6.6 49.5 6.0 5.2 0.8 207 14.0 6.6 3.1 
05/11/04 -7.53 -38.2 22.1 14.9 7.8 342 0.8 11.2 55.7 7.4 6.1 0.7 189 19.5 6.8 3.5 
06/01/04 -7.45 -37.3 22.3 15.0 n.d. 382 0.9 7.3 62.7 8.6 7.4 0.9 201 29.7 8.4 3.8 
06/16/04 -7.44 -39.0 20.5 15.1 7.5 395 0.7 n.d. 59.0 9.7 7.5 0.9 204 32.7 7.8 3.9 
07/12/04 -7.43 -41.6 17.9 15.3 7.4 427 n.d. n.d. 60.9 10.1 7.1 1.1 214 38.2 8.4 4.3 
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Table 75: Physico-chemical parameters and natural tracer concentrations of the Kezinim spring from 2002 to 2004. N.d.: not determined. 

Date δ18O δ2H d T pH EC DOC SiO2 Ca2+ Mg2+ Na+ K+ HCO3
- SO4

2- Cl- NO3
- 

 ‰ ‰  °C  µS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

11/20/02 -7.27 -36.0 22.2 20.0 n.d. 572 1.3 n.d. 96.3 15.9 11.6 1.8 268 118.2 11.5 5.0 
12/03/02 -7.29 -37.4 21.0 n.d. n.d. 588 0.9 n.d. 92.8 16.7 11.5 1.9 238 119.3 12.1 5.1 
12/10/02 -7.25 -36.5 21.5 19.8 n.d. 598 0.7 n.d. 93.0 17.6 11.4 2.0 244 114.8 11.6 4.8 
12/11/02 -7.27 -35.8 22.4 19.8 n.d. 595 0.8 11.7 88.9 17.0 11.1 2.4 238 115.7 11.8 5.1 
12/17/02 -7.33 -35.9 22.7 19.5 n.d. 576 0.9 n.d. 91.2 16.3 11.1 2.1 238 105.7 12.1 5.1 
12/18/02 -7.28 -36.1 22.1 19.6 7.2 578 1.1 11.3 93.5 15.2 11.5 1.9 232 107.1 13.1 5.3 
12/19/02 -7.25 -36.6 21.4 19.4 7.4 580 1.5 n.d. 90.4 15.7 11.1 2.2 238 106.9 13.6 5.5 
12/20/02 -7.31 -37.6 20.9 19.3 7.5 586 1.3 n.d. 73.5 16.2 12.1 1.9 189 112.6 13.1 5.0 
12/23/02 -7.34 -37.7 21.0 19.1 7.5 511 1.7 n.d. 76.0 12.6 9.0 1.7 226 86.3 11.2 4.1 
12/26/02 -7.30 -38.6 19.8 18.8 7.2 501 1.0 n.d. 78.2 12.6 8.3 1.6 214 81.7 10.3 4.0 
12/31/02 -7.26 -37.0 21.1 19.3 7.2 514 1.2 9.5 82.0 13.5 9.8 1.5 232 87.8 10.4 4.6 
01/05/03 -7.26 -36.7 21.4 19.4 7.3 536 1.4 9.6 82.7 13.7 10.0 1.5 226 88.3 10.6 4.7 
01/13/03 -7.27 -38.1 20.1 19.4 7.4 530 1.9 n.d. 76.9 13.2 9.8 1.6 214 87.2 10.4 4.3 
01/19/03 -7.27 -37.9 20.3 19.2 7.4 547 1.8 10.6 81.5 13.6 9.4 1.6 214 93.2 10.4 4.8 
01/26/03 -7.31 -38.6 19.9 19.6 7.3 541 0.8 n.d. 84.3 13.8 8.7 1.4 238 91.9 10.6 4.2 
02/02/03 -7.29 -38.0 20.3 19.6 7.2 532 0.6 n.d. 79.7 13.9 8.7 1.4 226 86.1 10.2 4.2 
02/10/03 -7.21 -36.6 21.0 19.5 7.2 551 0.7 10.1 88.9 13.1 9.0 1.4 232 82.9 11.4 5.0 
02/16/03 -7.32 -36.7 21.9 19.5 7.3 518 0.8 8.4 85.2 13.1 8.9 1.5 232 83.7 11.1 4.5 
02/24/03 -7.12 -37.3 19.7 19.5 7.2 485 0.7 8.0 n.d. n.d. n.d. n.d. 244 n.d. n.d. n.d. 
03/02/03 n.d. n.d. n.d. 19.4 7.3 489 1.6 7.9 n.d. n.d. n.d. n.d. 250 n.d. n.d. n.d. 
03/10/03 -7.22 -36.6 21.1 19.4 7.6 527 1.3 9.9 91.6 11.4 9.8 1.5 250 77.9 12.9 5.0 
06/19/03 -7.23 -36.6 21.2 20.9 7.3 575 n.d. 11.6 89.3 15.4 9.6 1.7 244 118.9 10.9 4.7 
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continuation 

Date δ18O δ2H d T pH EC DOC SiO2 Ca2+ Mg2+ Na+ K+ HCO3
- SO4

2- Cl- NO3
- 

 ‰ ‰  °C  µS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

08/18/03 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 80.5 18.2 10.3 1.7 207 124.4 10.4 4.4 
10/19/03 -7.22 -36.3 21.5 20.5 7.3 622 1.7 12.7 88.2 18.8 10.9 1.6 256 127.3 10.4 3.6 
10/26/03 -7.23 -37.4 20.5 20.4 7.4 617 1.7 12.6 91.6 17.3 10.8 1.8 244 121.5 10.0 2.6 
11/03/03 -7.16 -38.1 19.2 20.5 7.4 617 n.d. n.d. n.d. n.d. n.d. n.d. n.d.  n.d. n.d. n.d. 
11/30/03 -7.36 -36.6 22.3 20.6 7.4 607 0.8 12.6 85.0 18.2 11.6 1.7 244 121.7 11.1 4.6 
12/08/03 -7.29 -36.3 22.0 20.3 7.5 606 0.8 n.d. 84.1 18.3 11.1 1.9 238 121.6 10.7 4.7 
12/14/03 -7.21 -35.5 22.2 20.5 7.6 612 1.0 12.2 83.8 18.1 12.3 1.8 238 129.5 11.1 3.5 
12/21/03 -7.12 -35.1 21.9 n.d. 7.3 n.d. 1.4 n.d. 86.9 17.0 11.1 1.8 238 122.9 10.9 4.8 
12/29/03 -7.23 -37.0 20.8 20.3 n.d. 635 1.0 12.5 91.0 16.7 10.6 1.7 220 122.8 10.7 4.5 
01/04/04 -7.29 -36.4 21.9 20.1 7.4 631 0.8 n.d. 89.3 17.9 12.1 1.9 229 119.9 11.1 4.2 
01/11/04 -7.33 -36.8 21.8 20.2 7.3 563 0.8 n.d. 82.8 16.1 10.9 1.6 226 107.1 10.9 4.7 
01/19/04 -7.38 -37.1 22.0 19.8 7.4 534 0.9 9.6 74.6 13.9 9.3 1.2 229 93.4 10.4 4.2 
01/25/04 -7.40 -37.6 21.7 n.d. 7.4 542 0.8 9.5 72.4 14.6 9.1 1.4 232 90.5 9.9 4.3 
02/01/04 -7.18 -35.8 21.7 19.8 7.3 539 1.1 11.1 82.0 13.7 8.1 1.3 214 84.9 10.2 3.9 
02/17/04 n.d. n.d. n.d. n.d. 7.3 544 n.d. n.d. 72.3 16.0 9.5 1.4 220 94.0 11.2 4.0 
02/23/04 -7.19 -36.1 21.4 n.d. 7.3 547 n.d. n.d. 85.8 13.5 9.3 1.4 n.d.  86.1 11.0 4.2 
03/04/04 -7.33 -35.8 22.8 20.0 7.5 532 1.7 9.9 78.2 10.1 8.0 1.2 253 45.3 9.9 4.1 
03/14/04 -7.30 -37.9 20.5 19.7 7.5 545 0.6 9.8 80.9 13.3 7.9 1.4 244 80.8 9.2 3.0 
03/29/04 -7.30 -37.4 21.0 19.5 7.3 526 3.4 10.5 80.3 12.2 9.3 1.5 244 73.0 9.7 4.4 
04/13/04 -7.30 -36.2 22.2 19.5 7.2 526 0.8 11.1 80.3 14.2 7.7 1.4 235 82.3 9.6 4.0 
04/20/04 -7.30 -36.0 22.5 19.6 7.1 556 0.7 10.6 79.9 13.2 8.3 1.4 195 99.2 9.8 3.6 
05/11/04 -7.28 -37.8 20.4 20.3 7.6 557 2.0 8.9 82.2 15.8 9.8 1.3 201 100.7 9.5 3.7 
06/01/04 -7.16 -36.5 20.8 20.4 n.d. 590 1.7 11.4 80.3 16.7 9.4 1.6 207 108.7 9.7 3.7 
07/12/04 -7.35 -39.2 19.6 20.5 n.d. 607 n.d. n.d. 89.7 18.1 10.4 1.7 n.d.  122.1 10.6 4.7 
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Supplementary data – Chapter 7 

Table 76: Characteristics of baseflow recessions in the Dan stream from 1969 to 2000. X1 and 
X2 both denote the interpolation points of the recession curve, X0 is the time of the 
initial baseflow discharge (reconstructed from the recession curve), Xend is the end 
of the recession. Given are the recession constant α, the respective intercept β, the 
mean residence time of baseflow TB, the initial baseflow discharge Q0, the 
estimated volume of water in the baseflow reservoir VB, the recession length ΔtB 
and the baseflow reservoir change VΔtB. 

Hydr. Year  Date LN(Q) α β TB Q0 VB ΔtB VΔtB 
   m³/s -1/d  d m³/s km³ d km³ 

1970 X0, X1 06/01/70 2.15 -0.0018 45 563 8.59 0.42 238 0.144 
 X2 12/06/70 1.82        
 Xend 01/25/71         

1971 X0, X1 05/28/71 2.19 -0.0014 36 737 8.95 0.57 193 0.131 
 X2, Xend 12/07/71 1.93        

1976 X0, X1 05/18/76 2.27 -0.0015 42 671 9.66 0.56 190 0.138 
 X2, Xend 11/24/76 1.99        

1977 X0, X1 05/31/77 2.27 -0.0011 32 917 9.72 0.77 187 0.142 
 X2, Xend 12/04/77 2.07        

1978 X0, X1 07/05/78 2.30 -0.0017 48 599 9.93 0.51 236 0.167 
 X2 01/06/79 1.98        
 Xend 02/26/79         

1979 X0, X1 05/08/79 1.94 -0.0027 76 372 6.98 0.22 201 0.094 
 X2, Xend 11/25/79 1.40        

1980 X0, X1 08/08/80 2.27 -0.0032 91 317 9.74 0.27 140 0.095 
 X2 11/17/80 1.96        
 Xend 12/26/80         

1981 X0, X1 07/16/81 2.26 -0.0012 35 856 9.54 0.71 168 0.126 
 X2, Xend 12/31/81 2.06        

1982 X0, X1 07/05/82 2.06 -0.0017 51 588 7.82 0.40 172 0.101 
 X2, Xend 12/24/82 1.76        

1983 X0, X1 06/21/83 2.34 -0.0021 64 473 10.33 0.42 217 0.155 
 X2 12/31/83 1.93        
 Xend 01/24/84         

1984 X0, X1 06/30/84 2.21 -0.0013 42 744 9.08 0.58 215 0.146 
 X2 12/13/84 1.98        
 Xend 01/31/85         

1985 X0, X1 04/21/85 2.22 -0.0023 70 441 9.22 0.35 266 0.159 
 X2 12/06/85 1.70        
 Xend 01/12/86         

1986 X0, X1 04/22/86 1.96 -0.0029 89 344 7.08 0.21 200 0.093 
 X2 09/05/86 1.56        
 Xend 11/08/86         
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continuation 

Hydr. Year  Date LN(Q) α β TB Q0 VB ΔtB VΔtB 
   m³/s -1/d  d m³/s km³ d km³ 

1987 X0, X1 06/30/87 2.24 -0.0014 45 722 9.38 0.58 175 0.126 
 X2 12/05/87 2.02        
 Xend 12/22/87         

1988 X0, X1 04/21/88 2.31 -0.0011 36 906 10.06 0.79 328 0.239 
 X2 02/24/89 1.97        
 Xend 03/15/89         

1989 X0, X1 04/15/89 2.04 -0.0035 111 285 7.66 0.19 302 0.123 
 X2 10/12/89 1.40        
 Xend 02/11/90         

1990 X0, X1 05/31/90 1.72 -0.0035 113 284 5.61 0.14 244 0.079 
 X2 09/06/90 1.38        
 Xend 01/30/91         

1991 X0, X1 05/29/91 1.99 -0.0028 92 355 7.34 0.23 190 0.093 
 X2 10/01/91 1.64        
 Xend 12/05/91         

1992 X0, X1 04/18/92 2.33 -0.0007 23 1527 10.32 1.36 250 0.206 
 X2 11/05/92 2.20        
 Xend 12/24/92         

1993 X0, X1 09/05/93 2.18 -0.0023 77 440 8.80 0.33 148 0.096 
 X2 12/30/93 1.91        
 Xend 01/31/94         

1994 X0, X1 06/27/94 2.11 -0.0020 70 488 8.26 0.35 153 0.094 
 X2 11/06/94 1.84        
 Xend 11/27/94         

1995 X0, X1 04/30/95 2.22 -0.0019 66 521 9.19 0.41 249 0.157 
 X2 11/08/95 1.85        
 Xend 01/04/96         

1996 X0, X1 05/27/96 2.23 -0.0019 66 528 9.27 0.42 242 0.155 
 X2 10/08/96 1.97        
 Xend 01/24/97         

1997 X0, X1 05/21/97 2.23 -0.0016 58 609 9.33 0.49 200 0.137 
 X2 11/14/97 1.94        
 Xend 12/07/97         

1998 X0, X1 06/16/98 2.22 -0.0018 64 556 9.20 0.44 217 0.143 
 X2 12/15/98 1.89        
 Xend 01/19/99         

1999 X0, X1 05/27/99 1.97 -0.0033 118 299 7.16 0.19 235 0.101 
 X2 09/07/99 1.63        
 Xend 01/17/00         
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Table 77: Characteristics of baseflow recessions in the Hermon stream from 1969 to 2000. X1 
and X2 both denote the interpolation points of the recession curve, X0 is the time of 
the initial baseflow discharge (reconstructed from the recession curve), Xend is the 
end of the recession. Given are the recession constant α, the respective intercept β, 
the mean residence time of baseflow TB, the initial baseflow discharge Q0, the 
estimated volume of water in the baseflow reservoir VB, the recession length ΔtB 
and the baseflow reservoir change VΔtB. 

Hydr. Year  Date LN(Q) α β TB Q0 VB ΔtB VΔtB 
   m³/s -1/d  d m³/s km³ d km³ 

1970 X0 03/22/70 1.48        
 X1 06/06/70 1.07 -0.0054 132.02 185 4.38 0.07 259 0.053 
 X2 11/04/70 0.25        
 Xend 12/06/70 0.34        

1971 X0 04/17/71 1.69        
 X1 07/07/71 1.16 -0.0065 162.66 153 5.43 0.07 228 0.056 
 X2 10/06/71 0.57        
 Xend 12/01/71 0.42        

1973 X0 07/03/73 0.19        
 X1 08/09/73 0.12 -0.0020 51.39 496 1.21 0.05 128 0.012 
 X2 10/07/73 0.00        
 Xend 11/08/73 -0.03        

1974 X0 04/10/74 1.30        
 X1 07/09/74 0.81 -0.0054 140.52 184 3.66 0.06 241 0.043 
 X2 09/13/74 0.45        
 Xend 12/07/74         

1975 X0 03/27/75 1.43        
 X1 07/22/75 0.69 -0.0063 165.34 159 4.18 0.06 227 0.044 
 X2 09/10/75 0.38        
 Xend 11/09/75         

1976 X0 04/19/76 1.36        
 X1 07/17/76 0.85 -0.0058 153.50 174 3.91 0.06 215 0.042 
 X2 09/22/76 0.46        
 Xend 11/20/76         

1977 X0 04/24/77 1.38        
 X1 08/13/77 0.65 -0.0066 177.74 152 3.99 0.05 222 0.040 
 X2 10/10/77 0.27        
 Xend 12/02/77 0.16        

1979 X0 03/09/79 0.50        
 X1 07/12/79 0.13 -0.0029 80.99 341 1.64 0.05 263 0.026 
 X2 09/08/79 -0.04        
 Xend 11/27/79         
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continuation 

Hydr. Year  Date LN(Q) α β TB Q0 VB ΔtB VΔtB 
   m³/s -1/d  d m³/s km³ d km³ 

1980 X0 04/04/80 1.02        
 X1 08/12/80 0.64 -0.0029 82.69 341 2.78 0.08 248 0.042 
 X2 12/08/80 0.30        
 Xend 12/08/80 0.30        

1981 X0 03/27/81 0.90        
 X1 09/10/81 0.49 -0.0025 70.89 403 2.47 0.09 256 0.040 
 X2 11/01/81 0.36        
 Xend 12/08/81         

1983 X0 03/22/83 1.69        
 X1 07/23/83 0.86 -0.0068 197.52 148 5.41 0.07 234 0.055 
 X2 09/30/83 0.39        
 Xend 11/11/83         

1986 X0 05/12/86 0.37        
 X1 08/18/86 0.08 -0.0030 91.27 331 1.45 0.04 172 0.017 
 X2 10/03/86 -0.06        
 Xend 10/31/86 -0.07        

1987 X0 03/27/87 1.26        
 X1 09/11/87 0.65 -0.0036 111.46 276 3.53 0.08 258 0.051 
 X2 10/21/87 0.51        
 Xend 12/10/87         

1988 X0 03/07/88 1.58        
 X1 07/20/88 0.84 -0.0055 170.69 182 4.85 0.08 283 0.060 
 X2 10/04/88 0.42        
 Xend 12/15/88 0.39        

1992 X0 03/06/92 1.78        
 X1 09/17/92 1.00 -0.0040 129.78 252 5.91 0.13 262 0.083 
 X2 10/26/92 0.85        
 Xend 11/23/92         

1997 X0 04/10/97 0.80        
 X1 08/30/97 0.32 -0.0034 117.82 291 2.23 0.06 204 0.028 
 X2 10/15/97 0.16        
 Xend 10/31/97         
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Table 78: Characteristics of baseflow recessions in the Senir stream from 1969 to 2000. X1 
and X2 both denote the interpolation points of the recession curve, X0 is the time of 
the initial baseflow discharge (reconstructed from the recession curve), Xend is the 
end of the recession. Given are the recession constant α, the respective intercept β, 
the mean residence time of baseflow TB, the initial baseflow discharge Q0, the 
estimated volume of water in the baseflow reservoir VB, the recession length ΔtB 
and the baseflow reservoir change VΔtB. 

Hydr. Year  Date LN(Q) α β TB Q0 VB ΔtB VΔtB 
   m³/s -1/d  d m³/s km³ d km³ 

1971 X0 04/17/71 0.79        
 X1 10/05/71 0.47 -0.0019 48 525 2.21 0.10 233 0.036 
 X2 11/26/71 0.37        
 Xend 12/06/71         

1972 X0 04/11/72 0.66        
 X1 07/10/72 0.45 -0.0023 59 431 1.94 0.07 271 0.034 
 X2 11/24/72 0.14        
 Xend 01/07/73 0.21        

1979 X0 03/09/79 0.27        
 X1 04/25/79 0.16 -0.0023 65 426 1.31 0.05 263 0.022 
 X2 10/23/79 -0.27        
 Xend 11/27/79         

1983 X0 03/22/83 1.38        
 X1 08/14/83 0.54 -0.0058 170 172 3.98 0.06 301 0.049 
 X2 09/30/83 0.26        
 Xend 01/17/84         

1986 X0 02/15/86 0.50        
 X1 05/02/86 0.27 -0.0031 92 328 1.65 0.05 227 0.023 
 X2 09/13/86 -0.14        
 Xend 09/30/86         

1987 X0 03/26/87 1.95        
 X1 05/13/87 1.44 -0.0107 327 94 7.02 0.06 215 0.051 
 X2 08/16/87 0.42        
 Xend 10/27/87         

1992 X0 02/05/92 2.41        
 X1 09/19/92 0.71 -0.0075 244 133 11.14 0.13 290 0.114 
 X2 10/25/92 0.44        
 Xend 11/21/92         

1997 X0 04/10/97 0.45        
 X1 08/31/97 0.13 -0.0022 76 450 1.57 0.06 207 0.022 
 X2 10/29/97 0.00        
 Xend 11/03/97         

1998 X0 03/30/98 0.59        
 X1 07/18/98 0.33 -0.0024 82 425 1.80 0.07 266 0.031 
 X2 11/02/98 0.08        
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 Xend 12/21/98         
1999 X0 04/03/99 0.24        

 X1 05/26/99 0.07 -0.0033 114 307 1.27 0.03 278 0.020 
 X2 09/08/99 -0.27        
 Xend 01/06/00         
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Table 79: Characteristics of baseflow recessions in the Jordan River from 1991 to 2000. X1 
and X2 both denote the interpolation points of the recession curve, X0 is the time of 
the initial baseflow discharge (reconstructed from the recession curve), Xend is the 
end of the recession. Given are the recession constant α, the respective intercept β, 
the mean residence time of baseflow TB, the initial baseflow discharge Q0, the 
estimated volume of water in the baseflow reservoir VB, the recession length ΔtB 
and the baseflow reservoir change VΔtB. 

Hydr. Year  Date LN(Q) α β TB Q0 VB  ΔtB VΔtB 
   m³/s -1/d  d m³/s km³ d km³ 

1992  X0 02/06/92 3.87           
 X1 03/21/92 3.59 -0.0065 212 155 48.13 0.64 289 0.545 
  X2 08/11/92 2.67        
  Xend 11/21/92             

 1993 X0 03/09/93 3.45        
 X1 04/26/93 2.91 -0.0114 374 88 31.65 0.24 296 0.232 
  X2 07/15/93 2.00        
  Xend 12/30/93         

1994  X0 03/14/94 3.18           
 X1 04/01/94 2.91 -0.0151 501 66 23.97 0.14 254 0.134 
  X2 06/21/94 1.68        
  Xend 11/23/94             

1995  X0 02/08/95 3.50           
 X1 03/24/95 3.01 -0.0111 373 90 32.97 0.26 329 0.250 
  X2 06/17/95 2.06        
  Xend 01/03/96             

1997  X0 04/10/97 3.12        
 X1 05/16/97 2.55 -0.0158 542 63 22.55 0.12 242 0.121 
  X2 07/16/97 1.58        
  Xend 12/08/97         

1998  X0 03/31/98 3.11           
 X1 05/09/98 2.58 -0.0135 468 74 22.32 0.14 245 0.138 
  X2 07/14/98 1.69        
  Xend 12/01/98             

1999  X0 04/03/99 2.23           
 X1 05/06/99 1.66 -0.0171 599 58 9.29 0.05 250 0.046 
  X2 06/10/99 1.06        
  Xend 12/09/99 1.51           
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Table 80: Hydrological characteristics of runoff events in the Hermon stream in 2002/03 and 2003/04. Q denotes discharges where Qinitial, Qfinal 
and Qpeak are the discharges at the beginning, and at the end of the event and during peak flow, respectively. Temporal features are 
given as T: times, where Tstart, Tend, Tpeak are the start, end or peak time of the runoff event. Tduration, TBF, Tinterval and Tresponse denote the 
duration of the runoff event, the duration of baseflow preceding the event, the interval between events and the time between the start 
and the peak of the runoff event, respectively. The antecedent precipitation index (API) is calculated as the 2-day or 5-day sum of 
precipitation preceding the storm event. 

Hydr. 
Year I Tstart Qinitial Tend Qfinal Tpeak Qpeak Tduration TBF Tinterval Tresponse Qpeak/Qinitial Qfinal/Qinitial

2-day 
API 

5-day 
API 

   m³/s  m³/s  m³/s d d d h   mm mm 

2002/03 1 12/20/02 00:41 3.2 12/24/02 13:19 4.2 12/20/02 06:03 41.0 4.5   5.4 12.9 1.3 60 82 
      12/21/02 00:54 12.8   0.8      
 2 01/28/03 11:35 3.7 02/03/03 02:52 4.8 01/29/03 18:24 26.0 5.6 34.9 39.7 30.8 7.0 1.3 40 61 
      01/30/03 10:20 13.6   0.7      
 3 02/03/03 14:56 4.8 02/08/03 09:05 6.8 02/04/03 15:13 55.0 4.8 0.5 5.2 24.3 11.5 1.4 96 96 
      02/04/03 22:32 21.6   0.3      
 4 02/13/03 13:08 6.8 02/14/03 08:12 14.0 02/14/03 01:05 37.1 0.8 5.2 9.1 12.0 5.5 2.1 35 41 
 5 02/14/03 08:12 14.0 02/16/03 19:45 12.0 02/15/03 08:51 42.6 2.5 0.0 1.3 24.7 3.0 0.9 28 45 
 6 02/18/03 19:14 8.6 02/20/03 19:44 20.0 02/19/03 12:13 46.7 2.0 4.5 4.1 17.0 5.4 2.3 41 47 
 7 02/20/03 19:44 20.0 02/24/03 06:41 18.8 02/21/03 14:28 135.0 3.5 0.0 2.1 18.7 6.8 0.9 80 121 
 8 03/18/03 12:40 8.9 03/24/03 07:08 15.6 03/19/03 23:03 68.7 5.8 22.2 26.4 34.4 7.7 1.7 61 61 
 9 03/24/03 07:08 15.6 03/31/03 11:40 15.6 03/26/03 15:33 98.0 7.2 0.0 6.7 56.4 6.3 1.0 45 82 

2003/04 1 01/13/04 22:02 4.4 01/22/04 10:22 4.7 01/14/04 11:28 46.7 8.5   13.4 10.6 1.1 56 64 
      01/23/04 21:06 41.0   9.4      
 2 01/23/04 07:17 4.7 01/26/04 01:52 9.6 01/24/04 05:03 57.5 2.8 0.9 0.3 21.8 12.4 2.1 82 95 
      01/24/04 11:47 47.3   0.3      
 3 01/26/04 01:52 9.6 01/31/04 10:57 7.6 01/27/04 10:15 29.3 5.4 0.0 2.9 32.4 3.0 0.8 31 124 
 4 02/16/04 09:20 7.3 02/19/04 02:28 11.3 02/17/04 00:48 21.2 2.7 15.9 20.6 15.5 2.9 1.6 0 42 
 5 02/19/04 02:28 11.3 02/21/04 14:15 10.3 02/19/04 20:42 25.6 2.5 0.0 2.8 18.2 2.3 0.9 41 47 
 6 02/21/04 4:15 10.3 02/23/04 03:02 11.0 02/22/04 01:59 20.8 1.5 21.1 2.2 11.7 2.0 1.1 50 126 
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Table 81: Hydrological characteristics of runoff events in the Senir stream in 2002/03 and 2003/04. Q denotes discharges where Qinitial, Qfinal and 
Qpeak are the discharges at the beginning, and at the end of the event and during peak flow, respectively. Temporal features are given as 
T: times, where Tstart, Tend, Tpeak are the start, end or peak time of the runoff event. Tduration, TBF, Tinterval and Tresponse denote the duration 
of the runoff event, the duration of baseflow preceding the event, the interval between events and the time between the start and the 
peak of the runoff event, respectively. The antecedent precipitation index (API) is calculated as the 2-day or 5-day sum of precipitation 
preceding the storm event. 

Hydr. 
Year I Tstart Qinitial Tend Qfinal Tpeak Qpeak Tduration TBF Tinterval Tresponse Qpeak/Qinitial Qfinal/Qinitial

2-day 
API 

5-day 
API 

   m³/s  m³/s  m³/s d d d h   mm mm 

2002/03 1 12/09/02 23:36 0.8 12/18/02 00:46 1.2 12/11/02 11:35 5.3 8.0   36.0 6.7 1.6 32 68 
      12/12/02 08:12 4.5   0.9 56.6     
 2 12/18/02 00:46 1.2 01/03/03 12:47 2.7 12/18/02 09:56 2.3   6.1 9.2     
      12/20/02 08:13 179.4 16.5 0.0 1.9 55.5 144.0 2.2 65 93 
      12/21/02 02:20 28.0   6.1 73.6     
      12/25/02 04:27 9.2   0.8 171.7     
 3 01/03/03 12:47 2.7 01/15/03 09:27 3.0 01/04/03 22:01 16.4 11.9 0.0 10.7 33.2 6.1 1.1 22 32 
 4 01/20/03 23:27 2.7 01/27/03 00:00 2.7 01/21/03 16:28 4.5 6.0 5.6 16.8 17.0 1.7 1.0 27 33 
 5 01/27/03 00:00 2.7 02/03/03 19:03 7.3 01/28/03 20:56 20.6 7.8 0.0 7.2 44.9 7.7 2.7 41 41 
      01/30/03 01:49 20.2   1.2 73.8     
 6 02/03/03 19:03 7.3 02/08/03 03:11 12.5 02/04/03 09:50 59.4   5.3 201.8     
      02/04/03 16:17 60.1 4.3 0.0 0.3 21.2 8.2 1.7 93 93 
 7 02/08/03 03:11 12.5 02/13/03 19:14 12.9 02/09/03 07:32 17.4   5.3 14.8     
      02/10/03 18:24 18.1 5.7 0.0 1.5 63.2 1.4 1.0 14 26 
 8 02/13/03 19:14 12.9 02/18/03 21:39 15.3 02/14/03 03:26 52.6 5.1 0.0 3.4 8.2 4.1 1.2 35 39 
      02/15/03 11:03 39.0   1.3 39.8     
 9 02/18/03 21:39 15.3 02/24/03 10:49 26.2 02/20/03 04:40 42.0   4.7 31.0     
      02/21/03 18:12 92.5 5.5 0.0 1.6 68.5 6.0 1.7 92 139 
      02/24/03 08:25 25.5   2.6 130.8     
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Hydr. 
Year I Tstart Qinitial Tend Qfinal Tpeak Qpeak Tduration TBF Tinterval Tresponse Qpeak/Qinitial Qfinal/Qinitial

2-day 
API 

5-day 
API 

   m³/s  m³/s  m³/s d d d h   mm mm 

 10 02/24/03 10:49 26.2 03/18/03 20:26 15.7 02/24/03 17:29 38.2 22.4 0.0 0.4 6.7 1.5 0.6 24 117 
      02/25/03 19:27 36.9   1.1 32.6     
      02/27/03 18:10 31.4   1.9 79.4     
      03/04/03 03:41 27.3   4.4 184.9     
      03/07/03 05:52 24.8   3.1 259.0     
 11 03/18/03 20:26 15.7 03/24/03 07:08 23.7 03/19/03 21:47 46.1 5.4 0.0 12.7 25.3 2.9 1.5 50 50 
 12 03/24/03 07:08 23.7 04/18/03 12:48 16.0 03/24/03 22:20 38.6   5.0 15.2     
      03/25/03 17:50 36.9   0.8 34.7     
      03/26/03 13:42 84.8 25.2 0.0 0.8 54.6 3.6 0.7 50 90 

2003/04 1 01/06/04 16:34 1.3 01/13/04 19:31 3.8 01/07/04 15:26 18.8 7.1   22.9 14.2 2.8 61 67 
      01/08/04 09:00 12.9   0.7 40.4     
      01/10/04 06:51 11.0   1.9 86.3     
 2 01/13/04 19:31 3.8 01/22/04 14:09 4.3 01/14/04 10:11 39.0 8.8 0.0 4.1 14.7 10.4 1.1 60 65 
 3 01/22/04 14:09 4.3 02/13/04 10:30 9.0 01/24/04 08:54 84.8 21.8 0.0 9.9 42.8 19.7 2.1 77 96 
      01/26/04 14:19 24.4   2.2 96.2     
      01/27/04 09:40 44.9   0.8 115.5     
      02/01/04 01:27 13.2   4.7 227.3     
 4 02/13/04 10:30 9.0 03/21/04 14:02 9.5 02/14/04 13:54 28.0   31.2 27.4     
      02/15/04 23:52 22.7   1.4 61.4     
      02/16/04 21:43 34.0   0.9 83.2     
      02/17/04 19:53 34.4   0.9 105.4     
      02/19/04 15:48 32.5   1.8 149.3     
      02/22/04 03:12 34.8 37.1 0.0 2.5 208.7 3.9 1.1 15 27 
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Table 82: Hydrological characteristics of runoff events in the Orevim stream in 2002/03 and 2003/04. Q denotes discharges where Qinitial, Qfinal and 
Qpeak are the discharges at the beginning, and at the end of the event and during peak flow, respectively. Temporal features are given as 
T: times, where Tstart, Tend, Tpeak are the start, end or peak time of the runoff event. Tduration, TBF, Tinterval and Tresponse denote the duration 
of the runoff event, the duration of baseflow preceding the event, the interval between events and the time between the start and the 
peak of the runoff event, respectively. The antecedent precipitation index (API) is calculated as the 2-day or 5-day sum of precipitation 
preceding the storm event. 

Hydr. 
Year I Tstart Qinitial Tend Qfinal Tpeak Qpeak Tduration TBF Tinterval Tresponse Qpeak/Qinitial Qfinal/Qinitial

2-day 
API 

5-day 
API 

   m³/s  m³/s  m³/s d d d h   mm mm 

2002/03 1 12/20/02 01:39 0.1 12/22/02 13:00 0.1 12/20/02 04:53 0.3 2.5   3.2 3.0 1.5 102 136 
 2 01/03/03 06:46 0.1 01/05/03 01:21 0.2 01/04/03 14:17 0.2 1.8 11.7 15.4 31.5 1.5 1.2 27 35 
 3 01/27/03 09:29 0.1 01/31/03 11:50 0.5 01/29/03 16:41 8.6 4.1 22.3 25.1 55.2 75.7 4.2 58 95 
 4 02/03/03 21:25 0.4 02/08/03 05:15 0.7 02/04/03 14:02 16.0 4.3 3.4 5.9 16.6 38.3 1.7 117 117 
 5 02/13/03 22:40 0.8 02/15/03 07:22 1.1 02/14/03 04:52 3.4 1.4 5.7 9.6 6.2 4.2 1.4 66 87 
 6 02/15/03 07:22 1.1 02/16/03 14:45 0.9 02/15/03 11:51 6.0 1.3 0.0 1.3 4.5 5.4 0.8 40 100 
 7 02/19/03 10:11 0.8 02/24/03 08:29 1.7 02/21/03 15:08 18.0 4.9 2.8 6.1 53.0 21.6 2.1 110 165 
 8 02/24/03 08:29 1.7 02/27/03 08:26 2.5 02/26/03 08:26 5.8 3.0 0.0 4.7 48.0 3.4 1.5 51 94 
 9 02/27/03 08:26 2.5 02/28/03 17:20 2.3 02/27/03 23:45 5.4 1.4 0.0 1.6 15.3 2.1 0.9 27 111 
 10 03/06/03 14:00 1.1 03/08/03 04:49 1.2 03/06/03 17:27 2.5 1.6 5.9 6.7 3.4 2.3 1.0 31 37 
 11 03/12/03 06:04 0.8 03/15/03 12:11 0.7 03/12/03 11:16 1.6 3.3 4.1 5.7 5.2 2.0 0.9 24 26 
 12 03/19/03 03:08 0.7 03/21/03 16:59 1.3 03/19/03 21:59 15.4 2.6 3.6 7.4 18.8 23.3 1.9 113 113 
 13 03/22/03 13:50 1.5 03/23/03 20:43 1.4 03/22/03 17:10 3.3 1.3 0.9 2.8 3.3 2.2 0.9 22 137 
 14 03/24/03 09:43 1.5 03/30/03 21:03 1.2 03/26/03 07:57 14.3 6.5 0.5 3.6 46.2 9.5 0.8 60 114 
      03/24/03 13:59 6.4   1.9    44 68 
      03/25/03 17:41 9.4   1.2    82 118 
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Hydr. 
Year I Tstart Qinitial Tend Qfinal Tpeak Qpeak Tduration TBF Tinterval Tresponse Qpeak/Qinitial Qfinal/Qinitial

2-day 
API 

5-day 
API 

   m³/s  m³/s  m³/s d d d h   mm mm 

2003/04 1 01/14/04 02:56 0.4 01/18/04 20:17 0.5 01/14/04 09:33 12.5 4.7   6.6 28.4 1.2 68 81 
 2 01/22/04 14:57 0.5 01/26/04 00:52 1.1 01/24/04 05:41 15.4 3.4 3.8 9.8 38.7 30.5 2.1 146 180 
 3 01/26/04 00:52 1.1 01/31/04 10:08 1.1 01/27/04 11:22 8.0 5.4 0.0 3.2 34.5 7.5 1.0 43 207 
      01/26/04 07:52 3.8   2.1    54 234 
 4 02/01/04 01:28 1.1 02/03/04 15:15 1.1 02/02/04 02:31 1.8 2.6 0.6 5.6 25.0 1.7 1.0 19 19 
 5 02/03/04 15:15 1.1 02/05/04 16:48 0.9 02/03/04 21:11 2.5 2.1 0.0 1.8 5.9 2.4 0.9 15 30 
 6 02/14/04 11:05 0.7 02/23/04 20:17 1.0 02/17/04 00:09 7.7 9.4 8.8 13.1 61.1 10.2 1.3 70 87 
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Table 83: Hydrological characteristics of runoff events in the Sion stream in 2002/03 and 2003/04. Q denotes discharges where Qinitial, Qfinal and 
Qpeak are the discharges at the beginning, and at the end of the event and during peak flow, respectively. Temporal features are given as 
T: times, where Tstart, Tend, Tpeak are the start, end or peak time of the runoff event. Tduration, TBF, Tinterval and Tresponse denote the duration 
of the runoff event, the duration of baseflow preceding the event, the interval between events and the time between the start and the 
peak of the runoff event, respectively. The antecedent precipitation index (API) is calculated as the 2-day or 5-day sum of precipitation 
preceding the storm event. 

Hydr. 
Year I Tstart Qinitial Tend Qfinal Tpeak Qpeak Tduration TBF Tinterval Tresponse Qpeak/Qinitial Qfinal/Qinitial

2-day 
API 

5-day 
API 

   m³/s  m³/s  m³/s d d d h   mm mm 

2002/03 1 12/10/02 04:13 0.0 12/10/02 23:15 0.1 12/10/02 08:14 0.2 0.8   4.0 2080.0 1160.0 90 90 
 2 12/19/02 20:04 0.1 12/23/02 23:33 0.0 12/20/02 05:51 3.4 4.1 8.9 9.9 9.8 29.0 0.0 102 136 
 3 01/29/03 16:28 0.0 01/29/03 18:57 0.3 01/29/03 18:57 0.3 0.1 36.7 40.5 2.5 10.0 10.0 58 95 
 4 02/04/03 04:18 0.0 02/13/03 23:04 0.1 02/04/03 19:52 0.2 9.8 5.4 6.0 15.6 160.0 94.0 117 117 
 5 02/13/03 23:04 0.1 02/14/03 17:27 0.4 02/14/03 01:21 1.3 0.8 0.0 9.2 2.3 14.3 4.5 66 87 
 6 02/15/03 07:14 0.5 02/18/03 18:11 0.2 02/15/03 10:36 0.7 3.5 1.3 1.4 3.4 1.6 0.5 40 100 
 7 02/18/03 18:11 0.2 02/19/03 03:38 0.5 02/18/03 22:17 0.7 0.4 0.0 3.5 4.1 3.0 1.9 24 65 
 8 02/19/03 03:38 0.5 02/20/03 12:46 0.6 02/19/03 09:37 1.7 1.4 0.0 0.5 6.0 3.7 1.3 54 70 
 9 02/20/03 12:46 0.6 02/21/03 01:05 0.7 02/20/03 20:56 1.1 0.5 0.0 1.5 8.2 1.9 1.2 73 97 
 10 02/21/03 01:05 0.7 02/22/03 07:19 0.7 02/21/03 11:05 2.1 1.3 0.0 0.6 10.0 2.8 1.0 110 165 
 11 03/18/03 00:00 0.3 03/20/03 11:44 0.3 03/19/03 23:03 1.0 2.5 23.7 26.5 47.1 3.0 0.8 113 113 
 12 03/26/03 08:23 0.3 03/26/03 20:24 0.4 03/26/03 14:22 0.9 0.5 5.9 6.6 6.0 3.3 1.4 60 114 
 13 04/02/03 20:07 0.3 06/13/03 00:00 0.0 04/07/03 12:30 0.8 71.2 7.0 11.9 112.4 2.3 0.0   
                

2003/04 1 01/14/04 08:05 0.0 01/15/04 19:16 0.0 01/14/04 10:39 1.3 1.5   2.6 64.6 0.0 68 81 
 2 01/23/04 19:15 0.0 01/26/04 00:25 0.0 01/24/04 07:46 0.5 2.2 8.0 9.9 12.5 25.5 0.0 146 180 
 3 02/29/04 15:53 0.0 04/11/04 00:00 0.0 03/08/04 16:13 1.2 41.3   192.3 41.3 0.0   
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Figure 67: Time-series of discharge, electrical conductivity, temperature, δ18O, deuterium 
excess and major anions during 2/14/2003-2/18/2003 in the Senir stream.  
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Figure 68: Time-series of discharge, electrical conductivity, temperature, major cations, SiO2 
and DOC during 2/14/2003-2/18/2003 in the Senir stream. 
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Figure 69: Time-series of discharge, electrical conductivity, temperature, δ18O, deuterium 
excess and major anions during 1/14/2004-1/18/2004 in the Sion stream. 
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Figure 70: Time-series of discharge, electrical conductivity, temperature, major cations, SiO2 
and DOC during 1/14/2004-1/18/2004 in the Sion stream. 
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Table 84: Discharge and natural tracer concentrations of the investigated Hermon runoff event (1/13-1/22/2004). N.d.: not determined. 

Date/Time Q δ2H δ18O d Cl- NO3
- SO4

2- HCO3
- Na+ K+ Mg2+ Ca2+ SiO2 DOC TSS EC T 

 m³/s ‰ ‰ ‰ mg/L mg/L mg/L mmol/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L µS/cm °C 

1/12/2004 12:00 4.39 -36.2 -7.1 20.6 12.5 7.6 36.44 3.70 10.48 1.44 11.05 69.2 10.2 1.17 12 440 15.6 
1/12/2004 14:00 4.39 -37.1 -7.14 20.1 12.3 7.3 36.08 3.70 10.38 1.38 10.87 70.4 10.1 1.40 27 439 15.4 
1/12/2004 16:00 4.39 -36.9 -7.09 19.9 12.2 5.7 36.02 3.70 10.41 1.51 10.80 69.0 9.9 1.35 8 437 15.1 
1/13/2004 0:00 4.39 -36.6 -7.13 20.5 12.5 8.2 36.82 3.60 10.61 1.57 11.13 69.1 10.4 1.41 41 435 14.7 
1/13/2004 12:00 4.39 -35.4 -7.18 22.0 12.0 7.3 35.74 3.75 10.17 1.43 10.92 69.2 10.0 n.d. 25 436 15.7 
1/13/2004 16:00 4.39 -35.8 -7.2 21.8 12.0 5.0 35.88 3.90 10.23 1.43 10.08 69.8 9.9 3.73 11 435 15.8 
1/13/2004 18:00 4.39 -36.2 -7.29 22.1 11.2 6.8 33.14 3.80 8.60 1.38 10.46 62.6 10.6 1.10 n.d. 432 15.7 
1/13/2004 19:00 4.39 -36.0 -7.3 22.4 11.1 6.5 33.04 3.70 8.52 1.41 10.74 63.3 10.4 1.49 n.d. 433 15.6 
1/13/2004 20:00 4.39 -36.3 -7.29 22.0 11.1 6.6 33.01 3.70 9.17 1.36 9.84 63.8 10.4 1.35 n.d. 419 15.5 
1/13/2004 21:00 4.39 -35.6 -7.25 22.4 11.0 7.0 32.83 3.60 9.76 1.31 10.03 67.0 10.3 1.55 n.d. 432 15.5 
1/13/2004 22:00 4.39 -36.1 -7.28 22.1 10.8 6.6 32.30 3.50 8.99 1.56 9.66 66.6 10.3 1.66 n.d. 433 15.4 
1/13/2004 23:00 4.65 -36.3 -7.24 21.6 10.7 6.2 32.03 3.55 9.05 1.48 9.54 64.4 10.3 1.35 n.d. 436 15.3 
1/14/2004 0:00 5.25 -35.8 -7.22 21.9 12.1 7.4 38.56 3.70 9.43 1.70 10.09 67.2 10.5 1.43 n.d. 448 15.0 
1/14/2004 1:00 5.25 -35.9 -7.26 22.2 12.3 7.8 37.54 3.60 9.29 1.77 10.55 67.4 10.6 1.83 n.d. 427 14.8 
1/14/2004 2:00 5.70 -36.4 -7.3 22.0 11.0 6.3 32.53 3.40 8.19 1.88 10.07 65.1 11.0 2.09 n.d. 410 14.6 
1/14/2004 3:00 5.70 -37.0 -7.36 21.9 11.4 8.3 28.24 3.40 8.97 2.14 9.11 58.7 10.9 1.90 n.d. 414 14.5 
1/14/2004 4:00 5.55 -44.9 -8.33 21.8 8.8 5.1 20.17 2.90 7.10 2.58 7.36 47.0 10.4 3.30 n.d. 402 14.4 
1/14/2004 5:00 13.20 -46.8 -8.53 21.5 8.5 6.0 18.31 2.70 8.13 2.94 6.83 41.8 10.3 3.65 n.d. 394 14.3 
1/14/2004 6:00 13.20 -47.0 -8.54 21.3 8.1 5.9 17.67 2.60 7.18 2.96 6.63 42.3 10.5 3.53 n.d. 367 13.2 
1/14/2004 7:00 20.40 -50.4 -8.8 20.0 7.3 5.8 14.84 2.40 7.09 3.30 6.48 36.2 10.6 5.14 n.d. 327 12.5 
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Date/Time Q δ2H δ18O d Cl- NO3
- SO4

2- HCO3
- Na+ K+ Mg2+ Ca2+ SiO2 DOC TSS EC T 

 m³/s ‰ ‰ ‰ mg/L mg/L mg/L mmol/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L µS/cm °C 

1/14/2004 8:00 22.80 -46.3 -8.4 20.9 8.5 6.3 19.16 2.60 6.76 2.67 7.24 46.7 10.0 4.07 n.d. 306 12.0 
1/14/2004 10:00 39.84 -48.8 -8.59 19.9 8.0 6.1 17.53 2.45 8.26 3.30 6.63 42.2 10.6 4.34 1681 276 11.2 
1/14/2004 11:00 46.10 -50.1 -8.83 20.6 7.1 5.6 15.18 2.50 7.15 3.31 5.74 37.2 10.4 4.20 2177 267 11.0 
1/14/2004 12:00 33.36 -52.3 -9.03 20.0 7.0 5.0 14.73 2.50 7.09 3.19 5.71 36.6 10.6 3.63 1907 274 11.1 
1/14/2004 13:00 24.00 -50.2 -8.97 21.5 7.5 5.3 15.72 2.45 7.09 2.74 6.02 42.6 10.9 4.05 n.d. 294 11.6 
1/14/2004 14:00 20.00 -48.8 -8.63 20.3 8.1 6.2 16.95 2.70 8.02 2.87 6.72 40.7 11.4 3.84 929 311 12.2 
1/14/2004 15:00 16.40 -46.3 -8.42 21.0 8.6 6.3 17.55 2.50 8.11 2.67 7.89 41.6 11.5 3.88 n.d. 328 12.6 
1/14/2004 16:00 14.80 -44.8 -8.21 20.8 8.9 7.4 18.59 2.90 8.59 2.56 7.32 45.0 11.2 3.17 272 340 13.0 
1/14/2004 17:00 14.80 -43.0 -8.02 21.2 9.3 7.7 19.04 2.95 9.06 2.38 8.32 46.8 11.3 2.67 287 348 13.2 
1/14/2004 18:00 13.20 -42.1 -7.92 21.3 9.5 8.0 19.95 3.10 8.84 2.38 8.33 49.5 11.4 2.73 240 354 13.4 
1/14/2004 19:00 13.20 -41.4 -7.84 21.3 9.7 8.2 20.06 3.10 8.77 2.47 8.63 47.6 11.3 2.81 233 357 13.5 
1/14/2004 20:00 13.20 -41.5 -7.8 20.9 9.8 8.4 20.10 3.00 8.07 2.32 8.04 50.4 11.2 2.61 199 358 13.6 
1/14/2004 21:00 13.20 -40.5 -7.75 21.6 9.7 8.3 19.34 3.10 8.23 2.13 8.01 51.1 11.1 2.17 181 361 13.7 
1/14/2004 22:00 12.40 -40.8 -7.68 20.6 9.8 8.2 19.40 3.20 8.48 1.99 8.16 52.1 10.9 2.53 135 361 13.8 
1/14/2004 23:00 12.00 -40.4 -7.71 21.2 10.2 8.9 20.50 3.20 8.91 1.90 9.73 51.8 10.7 2.28 155 361 13.9 
1/15/2004 0:00 12.00 -40.7 -7.72 21.0 9.6 8.2 19.12 3.15 7.91 2.03 8.03 51.6 10.6 2.11 183 361 13.9 
1/15/2004 1:00 12.00 -40.9 -7.8 21.5 9.6 8.0 18.85 3.15 8.41 2.01 7.77 51.4 10.6 1.82 188 362 14.0 
1/15/2004 2:00 12.00 -41.8 -7.77 20.3 9.5 8.2 18.69 3.10 8.08 1.95 8.08 52.0 10.4 2.06 189 360 14.0 
1/15/2004 3:00 12.00 -41.5 -7.81 21.0 9.4 8.1 18.48 3.10 6.69 1.76 8.37 49.8 10.5 2.25 153 358 14.0 
1/15/2004 4:00 11.66 -42.1 -7.8 20.3 9.4 7.9 18.33 3.10 8.39 1.78 7.59 49.0 10.6 1.64 135 358 14.0 
1/15/2004 5:00 11.66 -40.7 -7.84 22.0 10.2 8.6 19.71 3.12 8.74 1.77 8.77 56.6 10.6 1.52 130 358 14.0 
1/15/2004 6:00 11.66 -41.3 -7.8 21.2 10.0 8.7 19.50 3.20 8.77 1.75 8.85 57.2 10.7 2.05 131 358 14.0 
1/15/2004 7:00 9.62 -41.3 -7.78 21.0 9.2 7.8 18.16 3.10 7.68 1.77 8.22 51.4 10.6 1.74 128 359 14.1 
1/15/2004 8:00 9.62 -41.2 -7.77 20.9 9.4 7.8 18.46 3.25 9.05 1.81 8.55 52.9 10.6 1.72 118 362 14.2 
1/15/2004 9:00 9.62 -40.4 -7.77 21.8 9.4 7.6 18.97 3.30 8.03 1.84 8.67 50.3 10.5 1.46 119 364 14.3 
1/15/2004 11:00 9.62 -38.3 -7.65 23.0 10.2 8.1 19.72 3.10 8.22 1.82 8.66 54.6 10.6 2.51 63 365 14.6 
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Date/Time Q δ2H δ18O d Cl- NO3
- SO4

2- HCO3
- Na+ K+ Mg2+ Ca2+ SiO2 DOC TSS EC T 

 m³/s ‰ ‰ ‰ mg/L mg/L mg/L mmol/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L µS/cm °C 

1/15/2004 14:00 8.60 -38.4 -7.61 22.5 10.0 7.8 20.49 3.10 9.00 1.68 9.12 59.0 10.6 2.27 66 372 14.9 
1/15/2004 17:00 8.94 -38.1 -7.56 22.3 10.2 7.3 20.45 3.20 7.79 1.68 9.08 53.9 10.8 2.01 57 373 15.1 
1/15/2004 20:00 7.82 -37.3 -7.51 22.8 10.4 7.6 20.82 3.25 8.70 1.72 8.97 56.7 10.9 1.24 49 378 14.9 
1/15/2004 23:00 7.82 -37.3 -7.5 22.7 11.2 8.5 20.95 3.30 8.95 1.58 9.10 59.6 11.0 1.55 52 377 14.7 
1/16/2004 2:00 6.78 -36.8 -7.38 22.2 10.5 7.8 18.95 3.30 8.39 1.61 8.73 52.8 11.1 1.34 45 377 14.8 
1/16/2004 5:00 6.78 -36.9 -7.33 21.8 11.1 7.5 19.06 3.20 8.22 1.80 8.94 58.0 11.0 1.75 46 380 14.9 
1/16/2004 8:00 6.78 -36.5 -7.4 22.8 10.6 7.8 18.53 3.35 8.43 1.73 8.71 59.5 10.9 1.74 17 383 15.0 
1/16/2004 11:00 6.26 -36.7 -7.41 22.6 10.5 7.4 18.19 3.40 7.80 1.51 8.34 58.4 10.6 1.26 19 384 15.6 
1/16/2004 14:00 6.26 -36.2 -7.34 22.5 10.6 6.9 18.34 3.40 8.11 1.66 8.52 56.8 10.7 1.40 15 386 16.1 
1/16/2004 17:00 6.26 -36.4 -7.32 22.2 10.6 7.6 18.68 3.40 8.61 1.64 8.28 58.6 11.1 2.07 17 389 16.0 
1/16/2004 20:00 6.26 -36.3 -7.39 22.8 10.7 7.4 18.88 3.45 8.90 1.59 8.46 59.2 11.0 1.50 20 391 15.5 
1/16/2004 23:00 6.26 -36.6 -7.33 22.0 10.7 7.3 19.18 3.50 8.67 1.57 8.94 61.4 10.6 1.69 18 392 15.1 
1/17/2004 2:00 5.55 -36.2 -7.34 22.5 10.6 7.2 19.04 3.50 8.06 1.40 8.34 61.8 10.5 1.74 12 393 14.9 
1/17/2004 5:00 5.55 -37.3 -7.41 22.0 10.6 6.3 19.03 3.50 7.94 1.51 8.31 63.9 10.3 2.31 6 394 14.7 
1/17/2004 8:00 5.55 -36.8 -7.33 21.8 10.8 7.1 19.44 3.60 8.08 1.41 8.32 59.9 10.1 1.27 n.d. 393 14.7 
1/17/2004 14:00 5.55 -36.6 -7.38 22.5 11.1 7.0 20.01 3.50 8.67 1.44 8.36 64.7 10.0 1.34 n.d. 392 15.8 
1/17/2004 20:00 5.10 -35.7 -7.31 22.8 10.7 6.6 19.52 3.40 8.78 1.47 9.25 62.0 9.9 1.66 n.d. 394 15.3 
1/18/2004 2:00 5.10 -35.9 -7.35 23.0 10.4 6.5 19.27 3.40 7.81 1.45 8.05 60.9 9.7 0.95 n.d. 395 14.7 
1/18/2004 8:00 5.10 -35.3 -7.36 23.6 10.6 6.6 19.87 3.50 8.36 1.37 7.85 59.2 9.7 1.44 n.d. 395 14.6 
1/20/2004 0:00 4.95 -38.8 -7.245 19.2 12.0 6.2 21.50 3.55 8.30 1.07 7.71 66.6 9.1 0.68 n.d. 398 n.d. 
1/21/2004 0:00 4.80 -37.8 -7.255 20.2 11.7 5.9 21.49 3.60 8.57 1.66 7.98 64.5 8.4 1.59 n.d. 389 n.d. 
1/22/2004 0:00 4.65 -38.2 -7.275 20.0 11.7 6.0 22.80 3.65 8.77 1.02 7.79 66.2 8.4 0.94 n.d. 400 n.d. 
1/22/2004 12:00 4.80 -36.7 -7.33 21.9 11.2 5.4 22.30 3.70 8.08 1.25 8.12 65.2 8.3 1.17 n.d. 399 n.d. 
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Table 85: Discharge and natural tracer concentrations of the investigated Orevim runoff event (1/13-1/18/2004). N.d.: not determined. 

Date/Time Q δ2H δ18O d Cl- NO3
- SO4

2- HCO3
- Na+ K+ Mg2+ Ca2+ SiO2 DOC TSS EC T 

 m³/s ‰ ‰ ‰ mg/L mg/L mg/L mmol/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L µS/cm °C 

1/12/2004 12:00 0.27 -29.9 -6.42 21.5 19.6 16.7 9.33 2.85 19.29 3.35 15.56 29.8 29.0 2.22 33 370 15.4 
1/12/2004 14:00 0.31 -29.3 -6.39 21.8 19.5 17.7 9.36 2.80 19.58 3.31 17.20 29.8 28.5 2.51 34 362 14.8 
1/12/2004 16:00 0.29 -29.7 -6.43 21.8 19.3 17.1 9.31 2.80 19.61 3.38 13.66 30.0 28.4 2.82 42 361 14.6 
1/13/2004 0:00 0.36 -29.0 -6.41 22.3 18.9 15.2 10.36 2.80 17.08 3.99 13.72 28.3 26.9 3.72 67 341 13.5 

1/13/2004 12:00 0.31 -29.8 -6.41 21.5 20.5 17.2 10.68 2.60 20.25 3.60 13.61 29.9 27.3 3.23 48 348 15.9 
1/13/2004 17:00 0.31 -32.1 -6.56 20.4 19.2 15.9 9.79 2.50 21.46 3.34 13.54 27.7 28.5 2.53 31 350 15.3 
1/13/2004 18:00 0.31 -31.3 -6.56 21.2 19.3 16.1 9.82 2.40 18.78 3.52 13.98 28.2 28.7 2.60 34 350 15.2 
1/13/2004 19:00 0.31 -32.3 -6.5 19.8 19.1 16.0 9.77 2.40 20.53 3.47 13.65 28.2 28.4 2.53 29 350 15.0 
1/13/2004 20:00 0.31 -29.9 -6.56 22.5 19.7 16.4 9.77 2.50 22.16 3.65 13.21 26.6 28.6 2.52 38 350 14.9 
1/13/2004 21:00 0.31 -31.1 -6.59 21.6 19.5 15.9 9.77 2.40 19.31 3.75 12.06 27.5 28.6 2.62 36 346 14.8 
1/13/2004 22:00 0.31 -31.4 -6.58 21.2 19.3 16.5 9.70 2.60 21.26 3.30 12.95 28.4 28.0 2.84 25 346 14.8 
1/13/2004 23:00 0.31 -31.5 -6.61 21.4 19.4 16.6 9.78 2.45 19.46 3.49 13.13 24.3 27.8 2.73 31 346 14.7 
1/14/2004 0:00 0.31 -31.6 -6.62 21.4 19.1 16.3 9.60 2.40 20.43 3.67 13.31 29.1 27.6 2.90 n.d. 345 14.7 
1/14/2004 1:00 0.34 -32.0 -6.6 20.9 18.8 15.8 9.54 2.45 19.59 3.36 14.11 28.1 28.3 3.21 32 344 14.6 
1/14/2004 2:00 0.44 -33.1 -6.6 19.8 18.6 15.3 9.45 2.80 19.49 3.68 12.78 26.0 27.2 3.07 n.d. 340 14.6 
1/14/2004 3:00 0.59 -34.7 -6.69 18.8 18.2 15.1 9.30 2.35 19.95 3.74 13.25 26.1 26.8 3.30 80 337 14.5 
1/14/2004 4:00 0.59 -33.7 -6.74 20.3 18.4 14.5 9.56 2.50 19.36 3.99 12.52 27.1 26.6 3.80 55 338 14.3 
1/14/2004 5:00 0.64 -34.1 -6.72 19.7 18.7 14.7 10.29 2.50 19.34 4.73 13.30 28.1 25.7 4.80 150 336 14.1 
1/14/2004 6:00 1.39 -35.7 -6.87 19.3 18.0 14.8 11.15 2.70 18.14 5.48 13.60 26.7 24.2 5.94 223 336 13.9 
1/14/2004 7:00 3.45 -34.9 -6.92 20.4 18.6 15.4 14.02 2.35 15.81 7.23 11.07 27.5 22.6 8.61 708 296 12.2 
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Date/Time Q δ2H δ18O d Cl- NO3
- SO4

2- HCO3
- Na+ K+ Mg2+ Ca2+ SiO2 DOC TSS EC T 

 m³/s ‰ ‰ ‰ mg/L mg/L mg/L mmol/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L µS/cm °C 

1/14/2004 8:00 5.03 -41.1 -7.63 19.9 13.3 10.8 11.13 1.90 12.25 5.01 9.34 20.5 18.9 6.42 410 247 11.2 
1/14/2004 9:00 12.50 -43.3 -7.86 19.6 11.5 9.0 9.82 1.80 10.44 4.22 8.24 21.3 18.0 6.93 733 234 10.7 

1/14/2004 10:00 12.06 -44.9 -8.08 19.7 9.4 7.8 8.76 1.50 10.11 4.66 7.38 20.2 17.1 7.50 978 204 10.3 
1/14/2004 11:00 12.06 -48.1 -8.43 19.3 7.3 5.9 6.96 1.65 7.89 3.63 5.88 16.5 15.6 6.12 897 177 10.4 
1/14/2004 12:00 7.33 -49.1 -8.62 19.9 7.2 6.0 6.89 1.25 8.48 3.05 4.93 17.3 15.7 5.77 300 185 10.5 
1/14/2004 13:00 4.65 -48.1 -8.47 19.7 8.4 6.4 7.39 1.50 8.36 3.10 7.02 17.7 16.2 5.56 228 191 10.8 
1/14/2004 14:00 4.65 -47.5 -8.36 19.3 9.2 7.1 7.80 1.50 9.38 3.30 7.10 19.0 17.1 6.06 154 203 11.1 
1/14/2004 15:00 3.75 -46.3 -8.18 19.1 8.4 7.0 7.11 1.60 n.d. 3.06 7.88 19.7 18.1 4.99 106 212 11.3 
1/14/2004 16:00 3.55 -45.1 -8.05 19.4 10.7 8.7 8.65 1.50 10.74 2.82 8.66 20.4 18.3 5.28 92 224 11.5 
1/14/2004 17:00 3.65 -43.1 -7.86 19.7 10.4 7.8 8.54 1.90 10.13 2.76 8.29 19.8 19.1 5.51 60 225 11.5 
1/14/2004 18:00 3.35 -43.6 -7.84 19.1 11.0 8.3 8.60 1.60 11.36 3.23 9.36 20.3 18.9 5.50 61 226 11.5 
1/14/2004 19:00 3.35 -43.6 -7.84 19.1 10.6 8.7 8.76 1.85 10.50 3.12 9.41 19.5 19.5 5.22 46 229 11.6 
1/14/2004 20:00 2.43 -43.1 -7.78 19.2 10.8 8.2 8.66 1.55 10.40 3.26 8.77 21.5 19.7 6.18 47 231 11.6 
1/14/2004 21:00 2.43 -42.2 -7.74 19.7 10.9 9.0 8.96 1.90 10.51 2.68 8.85 20.2 19.9 5.12 39 235 11.6 
1/14/2004 22:00 2.43 -41.7 -7.67 19.7 11.8 9.3 9.37 1.70 11.46 3.03 8.93 22.2 20.3 5.20 37 241 11.7 
1/14/2004 23:00 1.65 -40.8 -7.55 19.6 12.3 9.0 9.42 1.90 11.29 2.95 9.24 22.9 20.6 6.13 41 248 11.9 
1/15/2004 0:00 1.65 -40.4 -7.53 19.9 12.4 9.8 9.38 1.85 11.93 3.37 10.37 23.4 21.1 4.64 36 255 12.1 
1/15/2004 1:00 1.65 -39.5 -7.46 20.2 13.0 10.5 9.71 1.95 11.39 3.10 10.06 23.1 21.7 4.81 38 262 12.3 
1/15/2004 2:00 1.17 -38.9 -7.43 20.6 12.9 10.6 9.53 1.95 12.69 2.92 11.31 24.0 22.1 4.55 39 270 12.4 
1/15/2004 3:00 1.17 -39.1 -7.38 19.9 13.2 11.2 9.64 1.95 13.16 3.44 10.30 25.0 22.3 4.65 42 276 12.7 
1/15/2004 4:00 1.17 -38.2 -7.38 20.8 13.6 11.3 9.74 1.95 13.28 3.15 11.39 26.6 22.4 5.06 43 282 12.9 
1/15/2004 5:00 1.17 -38.5 -7.33 20.2 14.1 12.3 10.17 2.05 12.90 3.24 12.59 25.8 22.9 4.73 40 288 13.0 
1/15/2004 6:00 0.89 -37.5 -7.3 20.9 14.3 12.5 9.99 2.20 13.36 3.20 10.75 27.0 23.6 4.94 40 292 13.2 
1/15/2004 7:00 0.89 -36.5 -7.23 21.4 14.6 13.4 10.15 2.10 12.98 3.31 12.31 27.3 23.6 4.64 49 297 13.4 
1/15/2004 8:00 0.89 -36.7 -7.27 21.5 14.5 13.3 10.02 2.30 15.03 3.32 12.28 27.6 24.3 4.32 41 301 13.5 
1/15/2004 9:00 0.89 -36.7 -7.22 21.1 15.2 13.8 10.28 2.30 13.36 3.33 12.37 27.0 24.5 4.37 33 305 13.8 
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Date/Time Q δ2H δ18O d Cl- NO3
- SO4

2- HCO3
- Na+ K+ Mg2+ Ca2+ SiO2 DOC TSS EC T 

 m³/s ‰ ‰ ‰ mg/L mg/L mg/L mmol/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L µS/cm °C 

1/15/2004 10:00 0.78 -36.3 -7.22 21.5 15.6 14.7 10.55 2.20 15.90 3.41 13.18 26.7 25.0 4.30 29 309 14.0 
1/15/2004 11:00 0.78 -36.5 -7.17 20.9 16.1 15.4 10.68 2.20 15.93 3.74 12.73 29.0 25.0 3.69 29 312 14.2 
1/15/2004 12:00 0.78 -35.9 -7.13 21.2 16.0 15.5 10.65 2.70 14.91 3.75 13.26 29.2 25.7 4.08 28 313 14.4 
1/15/2004 13:00 0.78 -35.9 -7.04 20.4 15.2 15.3 10.29 2.30 13.74 3.35 14.21 27.0 26.2 4.56 n.d. 315 14.6 
1/15/2004 16:00 0.75 -35.9 -7.01 20.2 15.6 15.9 10.38 2.30 15.88 3.27 14.37 27.5 26.6 4.15 n.d. 320 15.0 
1/15/2004 19:00 0.75 -35.5 -6.98 20.3 15.6 15.6 10.33 2.50 14.70 3.57 13.66 28.1 27.0 4.10 n.d. 324 14.9 
1/15/2004 22:00 0.72 -35.1 -6.96 20.5 15.6 16.0 10.38 2.40 15.59 3.09 15.75 29.1 27.3 4.35 n.d. 328 14.5 
1/16/2004 1:00 0.66 -33.6 -6.79 20.7 16.1 16.9 10.64 2.50 16.52 3.02 17.46 28.1 27.9 3.62 n.d. 331 14.5 
1/16/2004 4:00 0.66 -29.9 -6.9 21.4 16.7 17.5 10.73 2.55 16.12 3.24 15.13 30.1 28.7 3.94 n.d. 335 14.6 
1/16/2004 7:00 0.62 -32.9 -6.86 21.9 16.8 18.0 10.70 2.60 16.56 3.08 15.20 27.3 29.2 3.37 n.d. 337 14.8 

1/16/2004 10:00 0.62 -32.3 -6.84 22.5 16.9 18.6 10.66 2.50 16.63 3.16 14.72 28.4 29.4 3.56 n.d. 340 15.8 
1/16/2004 16:00 0.62 -31.7 -6.82 22.9 17.2 18.9 10.54 2.50 16.70 3.24 14.24 29.6 30.1 3.66 n.d. 344 17.1 
1/16/2004 22:00 0.57 -32.3 -6.75 21.8 18.8 19.1 11.25 2.60 17.86 4.15 16.33 29.7 30.8 3.43 n.d. 347 15.6 
1/17/2004 4:00 0.57 -31.5 -6.76 22.5 18.0 19.6 10.57 2.55 18.98 3.39 15.41 30.0 31.5 3.54 n.d. 348 14.9 

1/17/2004 10:00 0.57 -31.7 -6.71 22.0 18.0 19.9 10.43 2.50 17.30 3.33 13.80 30.7 31.5 2.97 n.d. 346 15.9 
1/17/2004 16:00 0.57 -31.6 -6.72 22.1 18.1 19.1 10.31 2.35 16.15 3.29 14.23 27.7 30.5 3.69 n.d. 343 16.6 
1/17/2004 22:00 0.53 -31.5 -6.64 21.6 17.9 19.6 10.20 2.60 17.89 3.22 14.74 30.0 31.1 2.69 n.d. 346 15.5 
1/18/2004 4:00 0.53 -31.7 -6.72 22.0 18.0 19.8 10.21 2.55 17.53 3.31 16.04 30.0 31.1 2.91 n.d. 347 15.3 

1/18/2004 10:00 0.53 -31.8 -6.69 21.7 17.7 19.3 10.00 2.60 18.98 3.04 14.05 26.7 31.2 2.90 15 347 15.3 
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Table 86: Discharge and natural tracer concentrations of the investigated Senir runoff event (2/14-2/18/2003). N.d.: not determined. 

Date/Time Q δ2H δ18O d Cl- NO3
- SO4

2- HCO3
- Na+ K+ Mg2+ Ca2+ SiO2 DOC TSS EC T 

 m³/s ‰ ‰ ‰ mg/L mg/L mg/L mmol/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L µS/cm °C 

2/13/2003 12:30 12.50 -33.6 -6.67 19.8 12.1 7.5 11.50 3.70 6.87 1.29 6.09 60.7 8.6 1.95 n.d. 414 n.d. 
2/13/2003 14:30 12.50 -33.6 -6.65 19.6 12.0 7.7 11.30 3.70 6.78 1.32 5.96 52.0 8.6 0.79 n.d. 412 n.d. 
2/13/2003 16:30 12.50 -33.7 -6.7 19.9 12.1 7.1 11.30 3.66 7.26 1.32 5.99 61.3 8.6 0.91 n.d. 411 n.d. 
2/13/2003 18:30 12.85 -34.2 -6.74 19.7 12.0 7.2 11.30 3.74 7.01 1.46 5.94 65.6 8.6 1.03 n.d. 412 n.d. 
2/13/2003 20:30 13.20 -32.9 -6.69 20.6 12.4 7.3 11.50 3.72 6.61 1.35 6.00 63.8 8.4 1.18 n.d. 412 n.d. 
2/13/2003 22:30 16.00 -33.5 -6.67 19.9 12.3 7.7 11.50 3.80 6.83 1.52 6.06 66.8 8.4 1.22 n.d. 409 n.d. 
2/14/2003 0:30 29.13 -34.8 -6.77 19.4 11.6 4.5 10.40 3.28 6.82 1.72 5.47 55.0 6.9 1.47 n.d. 360 n.d. 
2/14/2003 2:30 52.62 -38.4 -7.34 20.3 9.5 4.9 10.30 2.80 5.98 1.85 4.50 59.9 7.3 2.79 n.d. 294 n.d. 
2/14/2003 4:30 38.62 -43.6 -8.01 20.5 9.4 4.9 10.10 2.40 6.68 1.86 4.44 59.5 6.6 2.83 n.d. 258 n.d. 
2/14/2003 6:30 31.75 -44.4 -8.1 20.4 7.6 1.7 7.89 2.50 5.24 1.80 4.08 54.5 6.9 2.31 n.d. 268 n.d. 
2/14/2003 8:30 27.25 -43.7 -8.07 20.9 8.2 4.8 8.47 2.62 5.40 1.89 4.20 54.5 7.3 2.44 n.d. 286 n.d. 

2/14/2003 10:30 24.75 -42.2 -7.79 20.1 8.5 4.8 9.34 2.88 6.05 1.71 4.63 55.7 7.6 2.04 n.d. 311 n.d. 
2/14/2003 12:30 22.30 -39.5 -7.6 21.3 9.4 5.1 10.00 3.08 6.23 1.80 5.22 53.9 7.4 2.11 n.d. 335 n.d. 
2/14/2003 14:30 22.30 -38.6 -7.52 21.6 9.8 1.8 10.30 3.26 6.54 1.70 5.04 58.2 8.0 2.18 n.d. 347 n.d. 
2/14/2003 16:30 21.25 -38.2 -7.24 19.7 10.1 2.5 10.40 3.34 6.17 1.54 5.43 64.2 8.0 2.19 n.d. 361 n.d. 
2/14/2003 18:30 20.90 -37.3 -7.16 20.0 10.5 3.4 10.60 3.50 6.31 1.42 5.61 66.7 8.0 1.36 n.d. 371 n.d. 
2/14/2003 20:30 21.60 -35.8 -7 20.2 10.9 4.4 10.70 3.52 7.22 1.49 5.40 68.4 8.2 1.75 n.d. 374 n.d. 
2/14/2003 22:30 21.25 -35.5 -6.99 20.4 11.0 4.3 10.80 3.58 6.63 1.58 5.25 64.5 8.4 1.35 n.d. 380 n.d. 
2/15/2003 0:30 21.95 -36.0 -6.86 18.9 11.1 4.4 10.80 3.60 6.67 1.55 5.45 69.0 8.4 2.04 n.d. 382 n.d. 
2/15/2003 2:30 21.25 -34.7 -6.87 20.3 10.9 3.7 10.60 3.54 6.96 1.60 5.75 52.5 8.4 1.55 n.d. 377 n.d. 
2/15/2003 4:30 21.60 -34.4 -6.8 20.0 11.0 7.3 11.00 3.52 6.94 1.69 5.68 57.3 8.0 1.52 n.d. 383 n.d. 
2/15/2003 6:30 22.65 -34.1 -6.69 19.4 11.2 6.9 11.10 3.52 7.15 1.52 5.67 62.5 8.0 1.23 n.d. 374 n.d. 
2/15/2003 8:30 33.63 -34.3 -6.74 19.6 10.9 3.0 10.50 3.30 6.79 1.60 5.71 63.6 8.2 2.33 n.d. 350 n.d. 
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Date/Time Q δ2H δ18O d Cl- NO3
- SO4

2- HCO3
- Na+ K+ Mg2+ Ca2+ SiO2 DOC TSS EC T 

 m³/s ‰ ‰ ‰ mg/L mg/L mg/L mmol/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L µS/cm °C 

2/15/2003 10:30 38.20 -35.0 -6.93 20.4 9.5 5.4 9.70 2.86 7.08 1.73 4.82 55.9 7.8 2.07 n.d. 308 n.d. 
2/15/2003 13:37 29.50 -35.0 -7.08 21.6 9.2 1.9 9.15 2.90 6.99 1.70 4.49 61.5 7.8 2.60 n.d. 308 n.d. 
2/15/2003 15:30 25.80 -36.4 -7.15 20.8 9.5 1.6 9.12 3.06 7.13 1.77 5.21 60.1 7.8 1.93 n.d. 320 n.d. 
2/15/2003 17:30 22.30 -36.0 -7.03 20.2 9.9 4.6 9.86 3.32 6.69 1.62 5.17 64.6 8.1 2.52 n.d. 336 n.d. 
2/15/2003 19:30 22.65 -36.1 -6.94 19.4 10.2 2.7 9.97 3.44 7.21 1.70 5.64 64.2 8.1 1.68 n.d. 348 n.d. 
2/15/2003 21:30 21.95 -35.5 -6.96 20.2 10.6 5.2 10.60 3.62 6.99 1.39 5.65 66.8 8.0 1.51 n.d. 360 n.d. 
2/15/2003 23:30 20.90 -36.2 -6.96 19.5 10.8 4.3 10.50 3.68 7.19 1.53 5.29 67.1 8.3 2.17 n.d. 366 n.d. 
2/16/2003 1:30 20.90 -35.8 -6.91 19.5 10.8 4.5 10.50 3.70 6.83 1.34 5.68 72.0 8.1 1.34 n.d. 367 n.d. 
2/16/2003 3:30 20.90 -36.1 -6.87 18.9 11.0 6.1 10.90 3.64 6.42 1.53 5.61 67.3 8.3 1.59 n.d. 364 n.d. 
2/16/2003 5:30 20.90 -36.3 -6.92 19.1 11.0 6.5 10.80 3.74 6.63 1.36 5.78 69.8 8.3 1.71 n.d. 365 n.d. 
2/16/2003 7:30 18.45 -35.2 -6.87 19.8 11.0 6.2 10.90 3.76 6.64 1.47 5.76 69.5 8.2 1.52 n.d. 362 n.d. 
2/16/2003 9:30 18.45 -35.4 -6.91 19.9 11.0 6.9 10.70 3.72 6.58 1.43 5.71 54.7 8.4 1.38 n.d. 354 n.d. 

2/16/2003 11:30 18.45 -35.3 -6.9 19.9 11.0 6.4 10.90 3.72 6.44 1.41 6.19 53.9 8.4 1.18 n.d. 349 n.d. 
2/16/2003 13:30 18.45 -36.1 -6.83 18.5 11.1 5.9 10.90 3.66 6.45 1.36 5.83 53.5 8.3 1.46 n.d. 345 n.d. 
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Table 87: Discharge and natural tracer concentrations of the investigated Sion runoff event (1/14-1/16/2004). (At times, Sion discharge was just a 
trickle and was recorded as “zero” by the gauges of the Hydrological Service.) N.d.: not determined. 

Date/Time Q δ2H δ18O d Cl- NO3
- SO4

2- HCO3
- Na+ K+ Mg2+ Ca2+ SiO2 DOC TSS EC T 

 m³/s ‰ ‰ ‰ mg/L mg/L mg/L mmol/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L µS/cm °C 

1/14/2004 3:00 0.000 -51.6 -8.47 16.1 1.45 1.09 1.20 1.05 1.35 1.06 0.98 16.71 2.42 2.39 94 92 n.d. 
1/14/2004 4:00 0.000 -59.9 -9.55 16.5 1.15 0.85 0.96 1.10 1.23 0.93 1.08 15.16 2.32 1.53 120 85 n.d. 
1/14/2004 5:00 0.000 -63.2 -10.02 16.9 1.15 0.62 0.73 1.00 1.06 0.83 1.06 16.73 2.62 1.99 316 92 n.d. 
1/14/2004 6:00 0.010 -49.8 -8.67 19.6 2.58 1.41 2.84 1.80 2.67 0.67 0.50 22.98 3.51 2.93 1090 142 n.d. 
1/14/2004 7:00 0.000 -63.8 -10.38 19.3 2.02 n.d. 2.42 1.90 3.57 1.70 0.29 30.02 6.87 3.56 24110 179 n.d. 
1/14/2004 8:00 0.020 -59.9 -10.12 21.0 3.13 1.13 2.49 1.90 2.89 0.98 1.02 26.77 4.60 3.36 4545 168 n.d. 
1/14/2004 9:00 0.300 -63.2 -10.44 20.4 3.07 0.74 2.36 1.80 3.23 2.04 0.26 29.32 4.60 3.25 11315 173 n.d. 

1/14/2004 10:00 0.932 -65.4 -10.64 19.7 2.85 0.72 2.37 2.00 3.10 2.70 0.56 31.42 4.50 3.22 12530 185 n.d. 
1/14/2004 11:00 1.032 -67.2 -10.93 20.2 2.71 0.98 2.31 1.85 2.85 1.15 1.18 28.97 3.90 3.39 4650 169 n.d. 
1/14/2004 12:00 0.648 -67.5 -11.02 20.7 2.78 0.68 2.28 1.80 3.13 1.00 0.97 26.74 3.82 3.06 3403 162 n.d. 
1/14/2004 13:00 0.556 -67.9 -10.99 20.0 2.96 0.86 2.28 1.80 3.18 0.97 0.94 27.67 4.45 3.09 2323 160 n.d. 
1/14/2004 14:00 0.384 -68.3 -11.04 20.1 3.18 0.83 2.33 1.70 3.14 1.13 0.91 25.72 4.45 3.15 1486 161 n.d. 
1/14/2004 15:00 0.300 -68.0 -11.00 20.1 3.33 0.89 2.34 1.70 3.58 0.94 0.98 26.86 4.61 2.94 852 161 n.d. 
1/14/2004 16:00 0.300 -68.0 -10.98 19.9 3.50 0.94 2.33 1.75 3.20 1.07 0.99 24.79 4.37 2.85 757 161 n.d. 
1/14/2004 17:00 0.272 -67.6 -10.97 20.2 3.92 0.98 2.45 1.70 3.93 0.97 0.88 27.12 4.37 2.75 630 160 n.d. 
1/14/2004 18:00 0.272 -67.6 -10.99 20.4 4.33 0.82 2.36 1.70 4.02 1.01 0.83 26.41 4.29 3.25 436 160 n.d. 
1/14/2004 19:00 0.138 -67.3 -10.97 20.5 4.79 0.71 2.47 1.70 4.34 1.00 0.82 26.49 4.29 3.21 280 160 n.d. 
1/14/2004 20:00 0.138 -67.5 -11.04 20.8 4.70 0.96 2.45 1.70 4.36 0.93 0.85 27.77 4.29 2.99 263 162 n.d. 
1/14/2004 21:00 0.138 -68.2 -11.10 20.7 4.88 1.08 2.43 1.65 4.48 0.82 0.84 24.66 3.74 2.58 191 163 n.d. 
1/14/2004 22:00 0.138 -69.0 -11.18 20.4 4.98 0.98 2.42 1.80 4.15 0.90 0.74 26.89 3.82 1.79 306 163 n.d. 
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Date/Time Q δ2H δ18O d Cl- NO3
- SO4

2- HCO3
- Na+ K+ Mg2+ Ca2+ SiO2 DOC TSS EC T 

 m³/s ‰ ‰ ‰ mg/L mg/L mg/L mmol/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L µS/cm °C 

1/14/2004 23:00 0.138 -69.6 -11.26 20.5 5.09 0.90 2.40 1.70 4.77 0.91 0.72 24.49 3.66 1.98 180 160 n.d. 
1/15/2004 0:00 0.138 -70.2 -11.36 20.7 5.16 0.90 2.37 1.75 4.93 0.90 0.83 24.82 3.66 1.96 265 160 n.d. 
1/15/2004 1:00 0.000 -70.7 -11.39 20.4 5.01 0.96 2.36 1.70 4.42 0.84 0.79 27.06 3.51 1.94 341 160 n.d. 
1/15/2004 2:00 0.138 -70.3 -11.35 20.5 4.91 0.98 2.34 1.60 4.81 1.03 0.71 25.78 3.98 2.46 113 159 n.d. 
1/15/2004 3:00 0.050 -70.5 -11.39 20.7 4.76 0.88 2.33 1.70 5.09 0.98 0.80 24.87 3.98 2.18 99 160 n.d. 
1/15/2004 4:00 0.050 -70.5 -11.33 20.2 4.69 0.92 2.30 1.70 4.96 0.90 0.88 26.26 3.98 2.32 73 160 n.d. 
1/15/2004 5:00 0.050 -70.4 -11.36 20.5 4.60 0.92 2.26 1.70 4.53 0.96 0.83 24.33 4.22 2.37 62 161 n.d. 
1/15/2004 6:00 0.050 -69.7 -11.35 21.1 4.59 n.d. 2.29 1.70 4.69 0.90 0.74 26.07 4.29 3.02 53 162 n.d. 
1/15/2004 7:00 0.050 -70.2 -11.35 20.6 4.52 0.90 2.27 1.65 4.96 0.98 0.85 26.66 n.d. 2.54 37 160 n.d. 
1/15/2004 8:00 0.050 -70.4 -11.41 20.9 4.87 0.60 2.28 1.60 4.94 1.00 0.85 26.91 3.90 2.64 n.d. 162 n.d. 
1/15/2004 9:00 0.010 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 5.06 1.01 0.88 26.96 4.06 n.d. n.d. 163 n.d. 

1/15/2004 10:00 0.010 -70.1 -11.37 20.8 4.45 0.77 2.26 1.75 4.54 0.95 0.98 27.46 n.d. 2.81 n.d. 168 n.d. 
1/15/2004 12:00 0.000 -70.8 -11.41 20.5 4.49 1.09 2.29 2.00 4.99 1.00 0.98 29.89 3.35 2.53 n.d. 182 n.d. 
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