
 

 
Dissertation zur Erlangung des Doktorgrades 

der Fakultät für Chemie und Pharmazie 
der Ludwig-Maximilians-Universität München 

 
 
 
 
 
 
 

The roles of integrin α4β1, α4β7 and the small 
GTPase RhoH during hematopoiesis and 

autoimmunity 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Martina Bauer 
 

aus 
 

Eutin 
 
 
 
 

2008 



 

Erklärung 
 
Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der 
Promotionsordnung vom 29. Januar 1998 von Herrn Prof. Dr. Reinhard Fässler 
betreut. 
 
 
 
 
 
 
 
 
 
 
Ehrenwörtliche Versicherung 
 
Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet. 
 
 
München, am 20.02.2008 
 
 
 
 

_________________ 
(Martina Bauer) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dissertation eingereicht am 22.02.2008 

1. Gutachter: Prof. Dr. Reinhard Fässler 
2. Gutachter: Prof. Dr. Markus Sperandio 

Mündliche Prüfung am 24.04.2008 



 Table of Contents 

I 

1 Table of Contents 
1 Table of Contents.................................................................................................... I 
2 List of Publications ................................................................................................ II 
3 Abbreviations ........................................................................................................ III 
4 Summary................................................................................................................IV 
5 Introduction ............................................................................................................ 1 

5.1 The integrin family of adhesion and signal transduction receptors ...................... 1 
5.1.1 Integrins in general .......................................................................................................................................... 1 
5.1.2 The four classes of integrin ligands ................................................................................................................. 1 
5.1.3 Inside-out and outside-in signaling of integrins................................................................................................ 2 
5.1.4 The Rho family of small GTPases ................................................................................................................... 5 
5.1.5 The α4 subfamily of integrin receptors ............................................................................................................ 6 
5.1.6 The role of α4 integrins in embryonic and adult hematopoiesis....................................................................... 8 
5.1.7 The role of α4 integrins in the adult immune system ..................................................................................... 12 
5.2 Multiple sclerosis and experimental autoimmune encephalomyelitis ................. 13 
5.2.1 Multiple sclerosis in general........................................................................................................................... 13 
5.2.2 The etiology of multiple sclerosis ................................................................................................................... 14 
5.2.3 The pathology of multiple sclerosis................................................................................................................ 15 
5.2.4 Treatment and treatment trials of multiple sclerosis ...................................................................................... 20 
5.2.5 Experimental autoimmune encephalomyelitis: an animal model for MS ....................................................... 22 
5.2.6 Limitations of experimental autoimmune encephalomyelitis.......................................................................... 23 
5.3 Leukocyte extravasation in EAE and MS ................................................................ 24 
5.3.1 The extravasation cascade............................................................................................................................ 24 
5.3.2 Extravasation of leukocytes into the CNS...................................................................................................... 25 
5.3.3 The role of selectins during leukocyte extravasation into the CNS................................................................ 27 
5.3.4 The role of β2 integrins for EAE development ............................................................................................... 28 
5.3.5 Blockade of the α4 subunit in EAE and MS................................................................................................... 29 
5.3.6 Blockade of integrin α4β7 by natalizumab ..................................................................................................... 31 
5.4 α4-integrin blockade for the treatment of MS ......................................................... 32 
5.4.1 Clinical trials for Natalizumab......................................................................................................................... 32 
5.4.2 Progressive multifocal leukoencephalopathy................................................................................................. 33 
5.4.3 Effects of natalizumab on the immune system .............................................................................................. 34 
5.4.4 Open questions regarding the natalizumab treatment ................................................................................... 35 

6 Aim of the thesis .................................................................................................. 37 
7 Brief summaries of the publications .................................................................. 38 

7.1 Paper I: β1 integrins: zip codes and signaling relay for blood cells .................... 38 
7.2 Paper II: Adult murine hematopoiesis can proceed without β1 and β7 integrins38 
7.3 Paper III: RhoH is important for positive thymocyte selection and T-cell receptor 

signaling ..................................................................................................................... 39 
7.4 Paper IV: Extravasation of autoreactive T cells into the central nervous system 

is controlled by β1 integrins ..................................................................................... 40 
7.5 Paper V: Analysis of integrin functions in blood.................................................... 41 

8 Acknowledgements ............................................................................................. 42 
9 Curriculum vitae................................................................................................... 43 
10 References............................................................................................................ 44 
11 Supplements......................................................................................................... 56 



 List of Publications 

II 

2 List of Publications 
This thesis is based on the following publications, which are referred to in the text by 
their Roman numerals (I-V): 
 
 
 

I. Sixt, M., Bauer, M., Lämmermann, T., Fässler, R. β1 integrins: zip codes and 
signaling relay for blood cells. Current Opinion in Cell Biology 18, 482-490 
(2006). 

 
II. Bungartz, G., Stiller, S., Bauer, M., Müller, W., Schippers, A., Wagner, N., 

Fässler, R., Brakebusch, C. Adult murine hematopoiesis can proceed without 
β1 and β7 integrins. Blood 108, 1857-1864 (2006). 

 
III. Dorn, T., Kuhn, U., Bungartz, G., Stiller, S., Bauer, M., Ellwart, J., Peters, T., 

Scharffetter-Kochanek, K., Semmrich, M., Laschinger, M., Holzmann, B., 
Klinkert, W.E., Straten, P.T., Kollgaard, T., Sixt, M., Brakebusch, C. RhoH is 
important for positive thymocyte selection and T-cell receptor signaling. Blood 
109, 2346-2355 (2007). 

 
IV. Bauer, M., Sixt, M., Coisne, C., Brakebusch, C., Wekerle, H., Engelhardt, B., 

Fässler, R. Extravasation of autoreactive T cells into the central nervous system 
is controlled by β1 integrins. Manuscript in preparation. 

 
V. Montanez, E., Piwko-Czuchra, A., Bauer, M., Li, S., Yurchenco, P., Fässler, R. 

Analysis of integrin functions in peri-implantation embryos, hematopoietic 
system, and skin. Methods in Enzymology 426, 239-289 (2007). 

 
 
 
Reprints were made with permission from the publishers. 
 



 Abbreviations 

III 

3 Abbreviations 
aa amino acid 
ADP adenosine diphosphate 
AGM aorta-gonad-mesonephros 
AIDS acquired immunodeficiency 

syndrome 
APC antigen-presenting cell 
APL altered peptide ligand 
ATP adenosine triphosphate 
BBB blood brain barrier 
BCR B cell receptor 
BDNF brain derived neurotrophic factor 
CCL CC-chemokine ligand 
CCR CC-chemokine receptor 
CFA complete Freund´s adjuvant 
CLA cutaneous lymphocyte antigen 
CNS central nervous system 
c/pSMAC central/peripheral supra-

molecular activation cluster 
CS-1 connecting segment-1 
DC dendritic cell 
DNA deoxyribonucleic acid 
EAE experimental autoimmune 

encephalomyelitis 
EBV Epstein-Barr virus 
ECM extracellular matrix 
EDSS Expanded Disability Status 

Scale 
ES embryonic stem 
E embryonic day 
FAK focal adhesion kinase 
FDA Food and Drug Adminstration 
FucT fucosyltransferase 
GAP GTPase-activating protein 
GDI guanine nucleotide dissociation 

inhibitor 
GDP guanosine diphosphate 
GEF guanine nucleotide exchange 

factor 
GSK3β glycogen-synthase kinase-3β 
GTP guanosine triphosphate 
GM-CSF granulocyte-macrophage 

colony-stimulating factor 
HEV high endothelial venule 
HIV human immunodeficiency virus 
HLA human leukocyte antigen 
HSC hematopoietic stem cell 
IBD inflammatory bowel disease 
ICAM intercellular adhesion molecule 
IFN interferon 
Ig immunoglobulin 
IL interleukin 
ILK integrin-linked kinase 
IPP ILK-PINCH-parvin 
JCV JC virus 
LAD leukocyte adhesion deficiency 
LAT linker for activation of T cells 
LDV leucine-aspartic acid-valine 

LFA lymphocyte function-associated 
antigen 

LPAM lymphocyte Peyer's patch 
adhesion molecule 

LPS lipopolysaccharide 
mAb monoclonal Ab 
Mac macrophage adhesion molecule 
MAdCAM mucosal addressin cell adhesion 

molecule 
MAPK mitogen-activated protein kinase 
MBP myelin basic protein 
MHC major histocompatibility complex 
MOG myelin oligodendrocyte 

glycoprotein 
MMP matrix metalloproteinase 
MRI magnetic resonance imaging 
MS multiple sclerosis 
NF-κB nuclear factor-κB 
PAS para-aortic splanchnopleura 
PINCH particularly interesting new 

cystidine-histidine-rich protein 
PIP2 phosphatidylinositol (4,5) 

bisphosphate 
PIPKIγ phosphatidylinositol phosphate 

kinase type Iγ 
PKB/AKT protein kinase B 
PKD1 protein kinase D1 
PLP proteolipid protein 
PML progressive multifocal 

leukoencephalopathy 
PNAD peripheral node addressin 
PPMS primary progressive MS 
PSGL P-selectin glycoprotein ligand 
RAPL regulator of cell polarization and 

adhesion enriched in lymphoid 
tissues 

RGD arginine-glycine-aspartic acid 
RIAM Rap1 GTP-interacting adapter 

molecule 
RRMS relapsing-remitting MS 
RTK receptor tyrosine kinase 
SCF stem cell factor 
SPMS secondary progressive MS 
STAT signal transducer and activator 

of transcription 
TCR T cell receptor 
TNBS 2, 4, 6-trinitrobenzene sulfonic 

acid 
TNF tumor necrosis factor 
Treg regulatory T cell 
TH1 cell CD4+ T helper type 1 cell 
TH2 cell CD4+ T helper type 2 cell 
VCAM vascular-cell adhesion molecule 
VLA very late antigen 
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4 Summary 
Members of the integrin family of adhesion molecules are transmembrane 

proteins that provide a link between the cytoskeleton and the extracellular matrix 

(ECM) or neighboring cells. Thereby they control the shape, proliferation and survival 

of cells and modulate various intracellular signaling pathways. They are heterodimers, 

consisting of α and β subunits. Integrins and intracellular effector molecules of integrin 

signaling, such as small Rho GTPases that regulate the actin cytoskeleton, play 

important roles during hematopoiesis and immune responses.  

Firstly, we examined the role of α4 integrins in adult murine hematopoiesis 

(Paper II), since previous experiments investigating the function of the integrin α4 

subunit and its two association partners β1 and β7 provided controversial results for 

hematopoietic development. We analyzed the hematopoietic system of bone marrow 

chimeric mice with an inducible knockout of the β1 subunit and a constitutive deletion 

of the β7 gene. We found only subtle or transient alterations in the number and 

distribution of progenitor cells, while the maintenance and retention of hematopoietic 

stem cells (HSC) was not altered. The development of T and B lymphocytes and their 

adhesion molecule expression profiles were normal. Furthermore, the development of 

myeloid and erythroid cells was unchanged. In summary, both α4β1 and α4β7 integrins 

are dispensable for adult hematopoiesis indicating that previously observed severe 

hematopoietic defects in somatic chimeric α4-/- mice are likely due to the loss of α4 

expression on non-hematopoietic cells. 

Secondly, we analyzed the role of the small GTPase RhoH in the hematopoietic 

system (Paper III). Previous publications implicated RhoH in the development of B cell 

lymphomas, proliferation and survival of HSCs as well as migration and adhesion of 

lymphocytes and HSCs. Since RhoH is expressed only in hematopoietic cells we 

introduced a constitutive RhoH gene disruption in the germline of mice and analyzed 

their hematopoietic development. RhoH-null mice had no remarkable changes in 

myeloid, erythroid or B lymphocyte populations. In contrast T cell development was 

impaired at two distinct steps: (i) during late stages of development of CD4-CD8- 

double negative cells, and (ii) during the transition of double positive CD4+CD8+ T cells 

to CD4+ or CD8+ single positive cells. These defects could be attributed to: (i) defective 

pre-TCR signaling to T cells that generated functional TCR β-chains during β-selection, 

and (ii) compromised positive selection. Both defects resulted from impaired pre-TCR 

and TCR signaling to the scaffold protein linker for activation of T cells (LAT) and its 

associated molecules downstream of the tyrosine kinase ZAP70. In conclusion, RhoH 
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deficient mice have no defect in the maintenance of HSCs, but the differentiation of T 

lymphocytes is severely disturbed due to reduced pre-TCR and TCR signaling. 

Finally, we examined the functions of β1 integrins during the development of 

autoimmunity (Paper IV). Previous investigations pointed to a crucial role of α4 

integrins in the development of multiple sclerosis (MS) in man and experimental 

autoimmune encephalomyelitis (EAE) in rodents. Antibodies that block the α4 subunit 

became an efficient new medication for the treatment of MS and other inflammatory 

diseases, such as inflammatory bowel disease (IBD). Although these antibodies are 

already approved for the treatment of MS, their exact working mechanism, their target 

cells and their precise target integrin (α4β1 and/or α4β7) are not clear.  Mice with 

hematopoietic cells that lack integrin β1 expression provided the opportunity to analyze 

particularly the role of α4β1 during activation, proliferation and extravasation of 

encephalitogenic T cells. Furthermore, we examined whether β1 integrins play a role 

on other immune cells during the pathogenesis of EAE. We found that 

encephalitogenic T cells rely on β1 integrins to accumulate in the CNS, a defect that 

could not be rescued by the presence of α4β7. This implies that α4β1 is the main target 

of anti-inflammatory therapies directed against the α4 integrin subunit.  The antigen-

specific proliferation and cytokine response of β1-/- T cells in vivo was not significantly 

altered. In contrast, the firm adhesion of β1 integrin deficient T lymphoblasts to 

postcapillary venules of the spinal cord white matter was greatly reduced in vivo; 

indicating that the failure of β1-/- T cells to enter the CNS and the main effect of the 

antibody therapy is due to impaired extravasation. Furthermore, we could demonstrate 

that active EAE development is significantly delayed in mice lacking β1 expression 

specifically on T lymphocytes. This result, together with the observation that lack of β1 

expression on granulocytes and macrophages does not alter active EAE development, 

indicates that the main targets of the antibody therapy are the α4β1 integrins on T 

lymphocytes. 
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5 Introduction 
5.1 The integrin family of adhesion and signal transduction 

receptors 
5.1.1 Integrins in general 

Integrins are heterodimeric, type I single-span transmembrane glycoproteins 

consisting of non-covalently associated α and β subunits. The extracellular domain of 

each subunit is large and contains around 1000 amino acids (aa) or 750 aa for α or β 

subunits, respectively, whereas the short intracellular parts consist of only 20 to 50 aa1. 

The genome of mouse and man contains 18 α and 8 β subunits, which form together at 

least 24 heterodimers with different binding and signaling properties (Figure 5.1)2. The 

extracellular domains of integrins bind to a wide variety of extracellular matrix (ECM) 

molecules, soluble proteins or to counter receptors on other cells. The N-termini of α 

subunits are folded into 7-bladed β propellers and the distal ends of the β subunits are 

folded into I/A domains. Together these globular head domains form the ligand-binding 

domain that is separated from the plasma membrane in both subunits by a long stalk1,3. 

Accordingly the ligand binding specificity of a heterodimer is dependent on both 

subunits. The cytoplasmic tails are connected by adaptor proteins to the actin 

cytoskeleton and to various signal transduction pathways. An exception is the β4 

subunit, which has an unusually long 1072 aa cytoplasmic domain, which recruits 

intermediate filaments3. Therefore integrins bridge the gap between the cytoskeleton 

and the ECM or other cell adhesion molecules. Apart from mediating mere adhesion to 

substrates and cells integrins have important functions as signaling molecules and 

thereby regulate processes as diverse as proliferation, cell survival, immune responses 

and cell shape leading to cell polarity and motility4. Although the integrin family is huge 

several studies indicate that they have overlapping as well as specific functions. 

Genetic inactivation of single integrin subunits5-9, for example leads to distinct 

phenotypes (ranging from early and severe peri-implantation lethality in β1 integrin-

deficient mice lacking 12 different integrins (Figure 5.1)10 to subtle effects in other 

knockouts), while compound mutants uncovered novel functions5. 

5.1.2 The four classes of integrin ligands 
Extracellularly most integrins bind to several different ligands and most integrin 

ligands are recognized by several members of the integrin family. Nevertheless the 

different integrins can be grouped into four main classes, based on their ligand-binding 

specificity. 
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Figure 5.1: The family of integrin heterodimers. Shown are all known combinations of 
integrin subunits in mammalian cells. The color code of the connecting lines between the 
subunits indicates the major ligand binding specificity of the respective heterodimer. 
Black: RGD-binding integrins, green: collagen-binding integrins, red: laminin-binding 
integrins, grey: integrins binding the LDV motif and related or structurally similar 
sequences. Note that these are only the main ligands, and that most integrins bind to 
additional molecules2. The subunits that are depicted in orange are expressed 
exclusively on leukocytes. 

The first group (connected by black lines in Figure 5.1) contains all αv integrins, 

the platelet integrin αIIbβ3 and some β1 heterodimers and binds RGD-containing 

ligands. RGD (arginine-glycine-aspartic acid) is a tripeptide binding motif that is present 

in soluble and ECM molecules, for example fibronectin, vitronectin, fibrinogen, 

thrombospondin, osteopontin, and laminins11. The α1, α2, α10 and α11 chains dimerize 

exclusively with the β1 subunit (connected by green lines) and form the collagen-

binding integrins. The heterodimers that are connected by red lines are laminin-binding 

integrins. While the α6 subunit-containing integrins bind only laminin, the α3β1 integrin 

also binds a large number of additional ligands. The fourth subclass of integrin 

receptors include the leukocyte-specific subunits (orange subunits connected by grey 

lines) and recognize the LDV or structurally related motifs. LDV (leucine-aspartic acid-

valine) is an acidic tripeptide that can be found for example, in the alternatively spliced 

connecting segment-1 (CS-1) fragment of fibronectin. Other typical ligands of this 

integrin subfamily including vascular-cell adhesion molecule-1 (VCAM-1), mucosal 

addressin cell adhesion molecule-1 (MAdCAM-1) and intercellular adhesion molecule-1 

(ICAM-1), contain binding motifs that have a different aa sequence but are structurally 

related to the LDV motif2. 

5.1.3 Inside-out and outside-in signaling of integrins 
Binding of integrins to their ligands depends on the composition of the 

heterodimer and on its activation state. A striking example is the platelet integrin αIIbβ3 
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that is amongst other integrins present on all circulating thrombocytes. In its active 

state, αIIbβ3 binds ligands such as fibrinogen, fibrin, von Willebrand factor and 

fibronectin, resulting in platelet adhesion to subendothelial cells, plug formation and 

sealing of injured vessels12. If αIIbβ3 integrins are constitutively active they trigger 

pathologic thrombus formation causing strokes, myocardial infarction and other embolic 

events. Therefore, αIIbβ3 is in a low-affinity state on all circulating platelets but can be 

activated instantly if plug formation is required. Activation of αIIbβ3 is achieved via 

agonists such as thrombin, collagen, adenosine diphosphate (ADP), and adenosine 

triphosphate (ATP) that signal through different types of receptors12. The various signal 

transduction pathways converge as a final step in the activation and recruitment of 

several molecules including kindlins and talins to the cytoplasmic tail of integrin β 

subunits13. Recruitment of kindlin and talin is followed by the separation of the 

membrane-proximal α-helical regions of the two short cytoplasmic tails that are in close 

proximity in the inactive conformation and interact via hydrophobic and electrostatic 

interactions. Tail separation leads to conformational changes characterized by a 

switchblade-like opening of the bended, inactive into an extended, highly active integrin 

(Figure 5.2)4. Thus, the cytoplasmic domains alter the activation state of the 

extracellular domains and consequently, this process was named inside-out signaling. 

Integrins are therefore unique as they act as classical signal transduction receptors 

transferring signals from the extracellular space to the cytoplasm (outside-in signaling) 

and at the same time regulate their activation state by inside-out signaling. Notably, it 

has also been shown that signaling by one integrin heterodimer can alter the activation 

state of other integrins on the same cell. A good example for such an integrin crosstalk 

is the activation of β2 integrins on leukocytes upon engagement of α4β114. It has also 

been shown that the avidity of integrin binding is regulated. Binding of extracellular 

ligands leads to clustering of integrins and to the recruitment of signaling and adapter 

proteins to the intracellular tails resulting in increased binding strength or avidity. These 

integrin clusters are called focal complexes when they are developing, and focal 

adhesions when they have matured to their final size4.  

Since integrins do not have enzymatic activity themselves the focal complex 

proteins are needed to connect them with signal transduction pathways and the actin 

cytoskeleton. Talin for example,  mediates integrin activation by inside-out signaling13 

and participates in integrin clustering and linkage to the actin cytoskeleton. 

Furthermore, talin recruits proteins that are involved in outside-in signaling such as the 

non receptor tyrosine kinase focal adhesion kinase (FAK) and phosphatidylinositol 

phosphate kinase type Iγ (PIPKIγ), which is producing the second messenger 
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phosphatidylinositol (4,5) bisphosphate (PIP2)4. An essential role of talin in outside-in 

signaling was corroborated in talin1-deficient platelets. In platelets, integrin ligand-

binding leads via activation of Src family kinases to cell spreading, a process that is 

completely abolished in platelets lacking talin-1.13  

 
Figure 5.2: Adaptor proteins binding directly and indirectly to the cytoplasmic tail of 
integrin heterodimers and linking them to the actin cytoskeleton and to signal 
transduction processes. Note the two conformations of the heterodimers: the bent, 
inactive form and the extended, active form with separated cytoplasmic tails. The ILK-
PINCH-parvin complex represents a large multiprotein complex at the cytoplasmic tail of 

activated β1 and perhaps β3 integrins that links integrins to the actin cytoskeleton and to 

signal transduction pathways. RTK, receptor tyrosine kinase. The cartoon is taken from 
Grashoff et al.15. 

The proteins binding intracellularly to integrins are organized in several 

multiprotein complexes. One example for such a protein complex is the ILK-PINCH-

parvin (IPP) complex consisting of integrin-linked kinase (ILK) and different isoforms of 

the adaptor proteins particularly interesting new cystidine-histidine-rich protein (PINCH) 

and parvin (Figure 5.2). ILK is binding to the β1 subunit of integrins16, and it has also 

been shown to interact with β3 subunits17 but the recruitment of the IPP complex to 

focal adhesions requires an interaction with other adaptor molecules, including paxillin 

(Figure 5.2)18. The resulting multiprotein complex mediates binding to F-actin, actin 

polymerization and turnover, and modulates signals of a wide variety of signaling 

pathways4,15. Despite of its name there are doubts, whether ILK acts as a kinase in 

vivo. ILK possesses a domain that has a high homology to serine/threonine kinases but 

it lacks several residues thought to be essential for kinase activity18. It has been 

demonstrated that ILK is phosphorylating the protein kinase B (PKB/AKT) and 

glycogen-synthase kinase-3β (GSK3β) in vitro, but in vivo current data support as well 

as object an ILK kinase activity18-20. There is consensus in the community that a major 
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function of ILK in vivo is linking integrins to the actin cytoskeleton and modulating actin 

reorganization4. 

5.1.4 The Rho family of small GTPases 
Rho GTPases represent an important class of signaling machines downstream of 

integrins. The >20 mammalian Rho GTPases are small signaling molecules that exist 

in two conformational states, the active, guanosine triphosphate (GTP) bound state, 

and the inactive guanosine diphosphate (GDP) bound state. The switch between these 

two conformations is carefully regulated positively by guanine nucleotide exchange 

factors (GEFs) and negatively by GTPase-activating proteins (GAPs). The C-terminus 

of most Rho GTPases is prenylated, and can therefore target the proteins to plasma 

membranes. Another level of regulation occurs through guanine nucleotide dissociation 

inhibitors (GDIs) that bind inactive GDP bound GTPases and extract them from the 

plasma membrane (Figure 5.3)21,22. 

 
Figure 5.3: GEFs mediate the exchange from the GDP to the GTP bound state and thus 
activate Rho GTPases. GAPs enhance the hydrolysis of GTP that is catalyzed by the 
GTPases themselves, and thereby inactivate Rho GTPases. GDIs bind inactive Rho 
GTPases and sequester them from the cell membrane and block the nucleotide 
exchange. The cartoon is taken from Etienne-Manneville et al.21. 

The three best studied members of the family of Rho GTPases RhoA, Rac1 and 

Cdc42 exemplify that - despite structural and functional similarities - each GTPase 

performs distinct functions. At the leading edge of cells both Rac1 and Cdc42 promote 

actin polymerization resulting in the formation of lamellipodia and filopodia, 

respectively. At the rear end of a migrating cell RhoA regulates contraction of the cell 

body by inducing the assembly and contraction of actomyosin filaments23. 

Another member of the Rho GTPase family is RhoH, which is expressed 

exclusively in hematopoietic cells including HSCs, differentiated myeloid cells and B 

and T lymphocytes, particularly T cells with a TH1 phenotype24-27. RhoH inhibits 

activation of the mitogen-activated protein kinase (MAPK) p38 and the transcription 

factor nuclear factor-κB (NFκB), which are both activated by GTPases such as RhoA, 

Rac1 and Cdc4224. In HSCs RhoH negatively regulates proliferation and survival25. 

Furthermore, RhoH is an atypical GTPase since it is GTPase deficient and exists only 
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in the active, GTP-bound state24, and is kept in check through interaction with all three 

classical GDIs24. Besides it was proposed that RhoH is regulated on the transcriptional 

level. In T cells it was demonstrated that RhoH transcription is rapidly downregulated 

upon T cell activation24. In B cell lymphomas RhoH is affected by mutations in non-

coding regions of the gene and by chromosomal translocations26,28,29. Both types of 

mutations likely result in deregulated expression of RhoH. Moreover, RhoH was 

implicated in lymphocyte adhesion and migration since downregulation of RhoH 

expression increases integrin αLβ2-mediated adhesion of a Jurkat T cell clone30. 

Finally, overexpression of RhoH leads to defective assembly and polarization of F-actin 

and thereby impairs the migration of HSCs towards a chemokine25. In order to assess 

the function of RhoH in vivo we analyzed the hematopoietic system of RhoH-/- mice 

(Paper III). 

5.1.5 The α4 subfamily of integrin receptors 
The α4 integrins are mainly expressed on cells of the hematopoietic system. The 

α4 integrin subunit can dimerize with two β chains: β1 and β731. In the hematopoietic 

compartment, α4 is expressed by lymphocytes32, HSCs33, monocytes34, eosinophils, 

basophils35 and natural killer cells36. Neutrophils express little or no α435, although the 

expression is upregulated under chronic inflammatory conditions37. Integrin α4 is also 

expressed on HSCs of the adreno-gonad-mesonephros (AGM) region (Figure 5.5), the 

fetal liver and the adult bone marrow38. There is evidence that the α4β1 heterodimer on 

those cells is in a high affinity state triggered by the stem cell factor (SCF) through c-kit 

binding39. 

α4β1 was first described as an activation-dependent receptor on hematopoietic 

cells and is therefore also called very late antigen 4 (VLA-4) whereas α4β7 is also 

called lymphocyte Peyer`s patch adhesion molecule-1 (LPAM-1) due to its ability to 

home lymphocytes to high endothelial venules of Peyer`s patches. Both heterodimers 

belong to the family of LDV motif binding integrins. The main ligand for α4β1 is VCAM-

1 whereas the main ligand for α4β7 is MAdCAM-1. Both receptors bind to the 

alternatively spliced CS-1 fragment of fibronectin (Table 5.1). Interestingly the α4 chain 

has the unique property to exist in two different forms: either as single molecule with a 

molecular weight of 150 kDa or as cleaved molecule consisting of two non covalently 

linked fragments of 70 and 80 kDa40. The cleavage is thought to increase upon T cell 

activation but is neither altering the adhesion to VCAM-1 nor to fibronectin41. In addition 

to the classical ligands VCAM-1 and MAdCAM-1 many other interaction partners for α4 

integrins have been described. 
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Table 5.1: The α4 integrins and some of their described interaction partners. 

integrin ligand properties α4β1 (VLA-4; 
CD49d/CD29) 

α4β7 (LPAM-
1; CD49d/β7 ) 

VCAM-1 Ig superfamily protein expressed on 
vascular endothelial cells of inflamed 
tissues 

main ligand42,43 binding44 

MAdCAM-1 Ig superfamily protein expressed in HEVs 
of gut-associated lymphatic tissues and 
endothelial cells of the lamina propria 

binding2 main ligand42,45 

fibronectin protein of the ECM, isoform containing 
the alternatively spliced CS-1 region 

binding44 binding44 

osteopontin phosphorylated acidic matrix glycoprotein 
that is secreted by osteoblasts, 
monocytes and macrophages; contains 
an RGD-sequence and hence is bound 
by several different integrins 

binding2,46 binding2 

thrombospondin ECM protein secreted by platelets and 
endothelial cells in damaged and 
inflamed tissue 

weak binding; 
α4β1 has to be 
activated44,47 

no interaction2 

HEV, high endothelial venule; Ig, immunoglobulin 
 

The activation state of both α4 heterodimers is tightly regulated and can vary 

considerably. During leukocyte extravasation into inflamed tissues (Chapter 5.3.1) 

leukocyte integrins are activated in milliseconds to ensure their adhesion to the vessel 

wall under high shear. Other processes in the hematopoietic system where integrins 

possess high affinity include antigen recognition by T and B cell receptors.  

The final step of integrin activation is mediated by talin as described in chapter 

5.1.3. Upstream of talin are members of the Rap family of small GTPases like Rap1 

that mediate talin activation in hematopoietic cells upon stimulation by chemokines, 

growth factors or activation of the T cell receptor (Figure 5.4)48. Rap1 enhances the 

adhesion of T cells to fibronectin via α4β1 by activation of β1 integrins. Interestingly, 

Rap1 increases the binding of β2 integrins by increasing their avidity through integrin 

clustering rather than integrin activation49. One important effector molecule of Rap1 

during these processes is regulator of cell polarization and adhesion enriched in 

lymphoid tissues (RAPL). In RAPL-deficient mice the chemokine CCL21 is unable to 

stimulate adhesion of T cells to VCAM-1 via α4β1 and the homing of T and B 

lymphocytes and dendritic cells to their target organs is impaired, indicating that RAPL 

is involved in activation of α4β1 and other integrins50. Protein kinase D1 (PKD1) and 

Rap1 GTP-interacting adapter molecule (RIAM) are other recently identified effector 

proteins of Rap1 that are mediating inside-out activation of β1, β2 and β3 integrins 

through the activation of talin51. Similar mechanisms of integrin activation take place 

after B cell receptor stimulation52. 
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Figure 5.4: The small GTPase Rap and its effector RAPL mediate the rapid activation and 
clustering of integrins. Upon stimulation of e.g. chemokines or engagement of the T cell 
receptor Rap1 is activated by the GEF-mediated GDP/GTP exchange, translocates to the 
cell membrane and binds RAPL. RAPL then mediates integrin activation via talin by an as 
yet unknown mechanism that might involve the serine-threonine kinase Mst153. The 
cartoon is taken from Price and Bos54. 

Apart from the control of affinity and avidity, the expression level of VLA-4 on 

lymphocytes is tightly regulated. Memory T cells that have encountered their specific 

antigen express much more α4β1 and α4β7 than naïve T cells and therefore show also 

enhanced ligand binding55,56. 

5.1.6 The role of α4 integrins in embryonic and adult hematopoiesis 
The two α4 integrins have many important roles during development and in 

physiology. Ablation of the α4 integrin gene leads to two waves of embryonic lethality, 

first around embryonic day (E)10 due to disturbed fusion of the allantois with the 

chorion and then again between E11.5 and E14 due to severe cardiac hemorrhage57. 

These defects are very similar to those found in mice lacking VCAM-1, indicating that 

the observed defects are due to an abrogated interaction between α4 integrins and 

VCAM-158,59.  

Apart from the early developmental defects in mice lacking the α4 subunit other 

studies implicated α4 integrins in the development and homing of hematopoietic cells 

and in inflammation. The interactions between α4β1 and CS-1 of fibronectin or VCAM-

1, and between α5β1 and fibronectin, are important for HSC binding to stroma cells of 

the bone marrow60, and for lymphopoiesis33,61-64. Furthermore, the attachment of HSCs 

to fibronectin via integrins depends on the cytokine regulated activation state of 

integrins65. Binding of α4β7 to MAdCAM-1 is important for lymphocyte homing to 

Peyer`s patches and the lamina propria of the intestine45,66. Finally, the interaction 

between α4β1 and VCAM-1 is important for the homing of leukocytes to the inflamed 

CNS during EAE67. Due to the early embryonic lethality of the α4 knockout mice the 

role of α4 integrins in the hematopoietic system in vivo was subsequently studied in 

somatic α4 chimeras and conditional mutants. Somatic chimeras are generated by 
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injecting gene deficient embryonic stem (ES) cells into wild-type blastocysts. In this 

system cells derived from the injected stem cells as well as from the blastocysts will 

contribute to the development of all tissues of the adult mouse. This often circumvents 

the problem of early embryonic lethality. Moreover, the absence of mutant cells in a 

certain tissue indicates a failure or disadvantage for the mutant cells to contribute to its 

formation. 

 
Figure 5.5: Hematopoiesis during murine embryogenesis. Hematopoietic cells are first 
generated in the extra-embryonic yolk sac (around E7) and the intra-embryonic 
splanchnopleura that first develops into the para-aortic splanchnopleura (PAS) and then 
into the AGM region. HSCs from the AGM region are colonizing the fetal liver and thymus 
and from the fetal liver the HSCs migrate subsequently to the spleen and the bone 
marrow, the place of adult self-renewing HSCs. Around E8 the fetal circulation starts, 
allowing an exchange of cells between the yolk sac and the splanchnopleura/AGM 
region68. 

In order to analyze the role of α4 integrins for hematopoiesis, wild-type 

blastocysts or blastocysts deficient for RAG-1 or RAG-2 (RAG-1 or RAG-2 knockouts 

lack mature lymphocytes) were injected with α4-deficient ES cells. These experiments 

showed that α4 is important for the continuous input of T cell precursors from the bone 

marrow into the thymus after birth, is crucial for the formation of Peyer`s patches and 

for the development of B cells in the bone marrow after birth69. Fetal liver erythropoiesis 

is diminished in the chimeric animals although α4 deficient cells are able to differentiate 

into mature erythrocytes in vitro, indicating that those defects are likely due to the α4 

deficient microenvironment of the fetal liver (see Figure 5.5 for a description of fetal 

hematopoiesis). Similar results were obtained with myeloid and B lymphoid progenitors 

from fetal livers. In vivo the α4 deficient progenitors contribute less to the development 

of mature cells than wild-type progenitors, but in in vitro colony formation assays their 

differentiation potential is not altered, indicating that the reduced differentiation in vivo 
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occurs in a non cell autonomous mode. Post-natally the development of α4 deficient 

erythrocytes, myeloid cells and B lymphocytes in bone marrow and spleen is almost 

completely abolished although α4-/- erythroid burst forming colonies develop. In vitro it 

was shown that erythroid cells and B cells have a diminished ability to interact with 

cultures of bone marrow stromal cells and proliferate less than wild-type cells70. The 

latter result is in accordance with observations that α4 antibodies inhibit the 

development of B cells and erythroid cells on a stroma cell layer in vitro 61,71.  

To distinguish cell autonomous phenotypes from defects caused by an α4 

deficient microenvironment studies were performed with mice in which the α4 gene was 

ablated in a conditional manner. Using the inducible Mx1-Cre system all cells of the 

hematopoietic system lose the α4 gene (Paper V). This circumvents embryonic lethality 

and excludes side-effects of a knockout in non-hematopoietic cells such as bone 

marrow stromal cells, for example. The deletion of α4 on HSCs results in a persisting 

increase of lymphocytes and hematopoietic progenitor cells in peripheral blood and a 

continuously increasing number of progenitor cells in the spleen, but the steady-state 

hematopoiesis and erythropoiesis are still normal. To study the role of α4 integrins 

during erythropoiesis after anemia an acute hemolysis was induced by treating the 

mutant mice with phenylhydrazine. α4 knockout animals show a delayed regeneration 

of erythroid cells. Furthermore, the colony forming units in the bone marrow recover 

with a delay from 5-fluorouracil induced killing of hematopoietic cells. The self-renewal 

of α4 deficient HSCs and their homing to the bone marrow of lethally irradiated 

recipient mice is impaired. Accordingly the number of HSCs in the spleen of such 

animals is slightly higher than in control mice72,73. These results are in accordance with 

experiments showing that the administration of antibodies specific for the α4 chain or 

VCAM-1 reduces the homing of HSCs to the bone marrow of irradiated recipient mice 

and leads to an accumulation of HSCs in the spleen. Administration of these antibodies 

to non-irradiated mice results in an increase of HSC numbers in peripheral blood74. The 

injection of fibronectin fragments also impairs the repopulation of irradiated mice with 

stem cells and in addition causes their mobilization into the blood75. The authors of 

another study proposed that α4 integrins might be of crucial importance during the fetal 

development of HSCs. To test this hypothesis they transplanted control or α4 deficient 

embryonic HSCs isolated from E12.5 AGM regions into irradiated adult wildtype mice. 

This experimental design bypasses fetal development of HSCs and leads to a 

comparable reconstitution of recipient mice with control and α4-/- cells. The α4 deficient 

HSCs contribute stably to hematopoiesis and are able to engraft irradiated recipient 

mice in secondary transplantations. Only in Peyer`s patches and the peritoneal cavity a 

relative reduction of α4 deficient myeloid and lymphoid cells could be observed38. The 
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failure to develop Peyer`s patches is in line with observations made in mice that lack 

the β7 subunit, indicating that Peyer`s patch development is a specific function of the 

α4β7 subunit. Interestingly, lymphocyte development is not disturbed in β7 deficient 

animals, which suggests that mainly α4β1 regulates lymphopoesis76. In Mx1-Cre 

induced conditional knockout mice lacking VCAM-1, the counter receptor for α4β1, the 

retention of B cells in the bone marrow is disturbed while the remaining aspects of 

hematopoiesis are unaffected77. 

Although the β1 subfamily of integrins and their role in the hematopoietic system 

are described in detail in Paper I it is important to mention in this context that β1 

deficient somatic cell chimeric mice lack β1 deficient cells in liver and spleen10. In ES 

cell chimeric β1 deficient mice hematopoietic stem and progenitor cells develop in the 

yolk sac and the PAS. These cells are able to differentiate into erythroid, myeloid and 

lymphoid cells in vitro. However, in vivo the colonization of the fetal liver, thymus and 

spleen by HSCs does not occur in the absence of β1 integrins and HSCs accumulate in 

the fetal circulation78,79. In conditional β1 knockout mice HSCs were isolated from the 

bone marrow and the β1 gene was deleted by retroviral Cre-recombinase expression. 

The β1-deficient HSCs are unable to home to the bone marrow and the spleen of 

irradiated recipient wild-type mice and hence accumulate in their blood79. In summary, 

β1 integrins are crucial for HSC homing, but they are neither required for the retention 

and survival nor for the differentiation of HSCs into the different blood cell lineages. In 

addition, the homing of the different blood cell lineages to spleen, lymph nodes and 

Peyer`s patches is β1 integrin-independent80. Interestingly, mice with a β1 deficient 

hematopoietic system show a unique phenotype in the T cell mediated immune 

response. After immunization with a T cell dependent antigen they secrete highly 

reduced levels of IgM, whereas the IgG production is increased. After immunization 

with a T cell independent antigen both IgM and IgG responses are decreased80. Since 

this effect could not be rescued by β1 expressing T or B lymphocytes it might be 

caused by an impaired function of dendritic cells. Notably, mice lacking VCAM-1, one 

counter receptor of β1 integrins, in the hematopoietic system also show an impaired 

humoral immune response after immunization with a T cell dependent antigen77. 

An apparent explanation for the different results regarding the hematopoietic 

development in α4, β7 and β1 deficient mice would be that α4β1 and α4β7 functions 

compensate each other. Furthermore it is possible that α4 integrins are important for 

HSCs during fetal hematopoiesis which would at least partially explain the differences 

observed between the α4-deficient ES cell chimeras69,70 and α4-deficient bone marrow 

chimeras38,73. To unravel a possible compensation between α4β1 and α4β7 we 
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analyzed hematopoietic development in adult mice lacking the β1 and the β7 subunits 

(Paper II). 

5.1.7 The role of α4 integrins in the adult immune system 
In addition to the important functions in the developing hematopoietic system and 

the homing to mucosal lymphoid organs and the inflamed CNS, many functions have 

been attributed to α4 integrins in the adult immune system. The role of α4β1 in 

leukocyte extravasation is discussed in detail in chapter 5.3. α4 integrins also regulate 

the correct positioning of immune cells in different organs: together with αLβ2, α4β1 is 

important for retaining B cells in the marginal zone of the spleen81, and for the adhesion 

of B cells to follicular dendritic cells in germinal centers, which is critical for the 

maturation of the immune response82,83 and the prevention of B cell apoptosis84. 

It has already been discussed that the activation state of integrins is highly 

regulated, and that T cell integrins are rapidly activated upon chemokine stimulation 

during extravasation. Furthermore the activation state of integrins on T lymphocytes is 

dependent on the activation state of the T cells themselves. Stimulation of the CD3-T 

cell receptor (TCR) complex results in signaling to integrins – probably via the tyrosine 

kinases Lck, Fyn, ZAP-70 and Itk – and subsequently activates β1 integrins85 ensuring 

the interaction of T cells with antigen presenting cells and the extracellular matrix. The 

generation of a stable contact between T lymphocytes and antigen presenting cells is a 

key event during the generation of an adaptive immune response. β2 integrins mediate 

adhesive interactions in the immunological synapse that develops between T and 

antigen presenting cells (Figure 5.6). Recently α4β1 has also been localized to the 

immunological synapse86, which is in line with data showing that α4β1 has a 

costimulatory potential in T lymphocytes. 

 
Figure 5.6: Schematic view of the immunological synapse. (a) Top view of the interaction 
zone. The central supramolecular activation cluster (cSMAC) is surrounded by the ring-
like peripheral supramolecular activation cluster (pSMAC). (b) The cSMAC consists of the 
T cell receptor and associated coreceptors binding to the antigen presented by 
molecules of the major histocompatibility complex (MHC). The cSMAC is surrounded by 
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the pSMAC which consists mainly of adhesion molecules. The integrins in the pSMAC 
are linked by adaptor proteins to F-actin, ensuring proper formation of the pSMAC87. 

The B cell receptor (BCR) on B cells binds soluble antigens and cell-bound 

antigens such as antigens bound by Fc or complement receptors. The recognition of 

membrane antigens is also facilitated by interactions between αLβ2/ICAM-1 and 

α4β1/VCAM-1 that organize into an immunological synapse with the BCR-antigen 

complexes in the cSMAC and the four adhesion molecules in the pSMAC and enhance 

BCR signaling88,89. 

5.2 Multiple sclerosis and experimental autoimmune 
encephalomyelitis 

5.2.1 Multiple sclerosis in general 
MS is an inflammatory autoimmune disease of the central nervous system (CNS) 

that can lead to severe disability. With its early onset during the second and third 

decade of life MS is the most common cause of non-traumatic disability in young 

adults90. In Germany MS has an estimated prevalence of 83 per 100.00091 and 

worldwide approximately 2,5 million people are affected92,93. Based on the different 

disease courses three different forms of MS are distinguished clinically. Around 85% of 

the patients present with relapsing-remitting MS (RRMS) at the beginning. RRMS is 

characterized by attacks of clinical symptoms followed by periods of complete or partial 

improvement. After around 10 years RRMS changes into secondary progressive MS 

(SPMS) in most of the patients93. The repeated inflammatory episodes lead to 

irreversible damage of the CNS and the neurological condition is slowly but 

continuously worsening over the course of many years.  Approximately 15% of the 

patients suffer from primary progressive MS (PPMS) where the clinical course is 

progressive with the onset of disease and no periods of relapses can be observed94. 

Since MS is causing many different symptoms and impairments systems like the 

Expanded Disability Status Scale (EDSS) have been developed to record the disease 

course of patients, provide a basis for prognosis and validate the efficacy of new 

treatments. The EDSS is ranging from 0 to 10 in 0,5 intervals with 0 standing for a 

complete lack of symptoms and 10 being death due to MS95. MS is causing 

characteristic lesions in the patients CNS that can be detected by magnetic resonance 

imaging (MRI). The two most useful types of imaging are normal T2-weighted MRI that 

detects lesions in the white matter and gadolinium-enhanced MRI that detects areas 

with an increased permeability of the blood-brain-barrier in T1-weighted scans. These 

areas of enhancement are often the first detectable change during the development of 

a new lesion93. 
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Up to now, there is no cure for MS, and patients need a lifelong treatment with 

disease damping drugs. Therefore, MS is severely impairing the quality of life of 

affected patients and is also causing high social costs. 

5.2.2 The etiology of multiple sclerosis 
The wide variety of symptoms characteristic for MS such as numbness, 

weakness, paresis, visual problems, severe fatigue and depression and also 

intellectual and cognitive impairments are caused by demyelinating lesions in the 

various myelinated regions of the CNS. This demyelination leads to the loss of saltatory 

conduction and therefore nerve impulses are not transmitted properly anymore. 

Furthermore also the axons themselves can be damaged or lost. It is widely accepted 

that MS lesions are caused by an autoimmune reaction, although the triggers of this 

inflammatory process remain unclear and complex96. Despite the lack of clarity about 

the etiology of MS several factors show a correlation to increased MS susceptibility. 

Genetically there is a clear association with certain human leukocyte antigen 

(HLA) class II region alleles, particularly HLA-DRB1 and HLA-DQB197. Susceptibility as 

well as protective alleles have been identified in both regions. In recently published 

large screens, it could be shown that additional, earlier discovered susceptibility loci for 

MS are explained by linkage disequilibrium with certain HLA class II haplotypes that 

seem to have the only valid association with MS risk98. 

In addition to the genetic factors, environmental factors such as the geographic 

location in which individuals grew up, have been demonstrated to play a role. 

Furthermore, MS is diagnosed more frequently in individuals that grew up in a 

temperate climate than in people originating from tropical or subtropical areas99. This 

might be partially explained by the influence of sunlight and UV light-induced formation 

of vitamin D96. There is a clear inverse correlation between vitamin D levels and the 

risk to develop MS100. 

Furthermore, different infectious agents have been discussed as risk factors for 

MS. Parasitic infections decrease the risk of developing MS and other autoimmune 

diseases, supposedly due to a TH2 deviation of the T helper cell response101. On the 

contrary, strong evidence supports an increased MS risk for individuals with Epstein-

Barr virus (EBV) infection102. The relation between infections and MS can be explained 

by several mechanisms. In a process called molecular mimicry potentially self-reactive 

T cells are activated by foreign antigens that share similarities with self-antigens. 

Epitope spreading is a process where epitopes other than the initial dominant epitope 

are recognized by the immune system. Upon the first inflammatory process the 

ongoing inflammation leads to tissue destruction which in turn releases new epitopes 
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which can be different peptides from the initial protein (intramolecular epitope 

spreading) or dominant epitopes of neighboring proteins (intermolecular epitope 

spreading). Therefore, an inflammatory response to viruses present in the CNS could 

lead to immune reactions against CNS antigens. Moreover, autoreactive T cells can be 

activated by the pro-inflammatory milieu during an ongoing infection, a process called 

bystander activation. 

Another - albeit moderate - environmental risk factor is smoking. There is no 

conclusive explanation for this association, although many hypotheses are discussed. 

Substances like nicotine can increase leakiness of the blood brain barrier (BBB), other 

cigarette smoke components like cyanide are directly toxic for the CNS and smoke 

components might also interfere with antigen-dependent signaling in T lymphocytes103. 

Finally, there is a clear sex discrepancy in MS development: females have a risk 

more than twice as high as males104, an observation that holds also true for other 

autoimmune diseases like rheumatoid arthritis and is ascribed to different hormone 

status and immune responses between men and women105. 

In summary, although many risk factors for MS have been identified the complex 

interplay between them and the exact mechanisms that lead to the development of MS 

are not clear and need to be better understood in order to develop specific treatments 

and perhaps preventive measures for MS. 

5.2.3 The pathology of multiple sclerosis 
Although the disease pathology of MS is better understood than the etiology the 

involved processes are complex as well. An acute MS lesion is a region in the white 

matter of the brain or spinal cord where myelin is focally lost. These lesions contain 

many CD4+ and CD8+ T cells, macrophages, activated microglial cells and some B 

cells and plasma cells, which are the key players of the autoimmune process106,107. 

The presence of T cells that are reactive to self-antigens is a prerequisite for all 

autoimmune diseases and is caused by the escape of some autoreactive T cells from 

negative selection in the thymus108. Self-reactive T cells are present in all individuals 

and are normally kept in check by several additional mechanisms that maintain self-

tolerance109. Firstly, antigens have to be presented by MHC molecules and recognized 

in the context of costimulation to excite T cell activation. Secondly, antigens can be 

separated by their target cells via anatomical barriers such as the BBB in the CNS. In 

the meantime, however, it has been shown that also the CNS undergoes constant 

immunosurveillance110. Finally, the autoreactive T cells present in healthy individuals 

are tightly controlled by regulatory T cells108. This has been impressively demonstrated 

in mice carrying TCR transgenic T cells specific for myelin antigens that escape 
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spontaneous EAE111,112. It is not clear, why these safety mechanisms fail in MS patients 

and autoreactive T cells are induced, persist and proliferate in the CNS. The 

association between MS and certain infectious agents such as EBV suggests that 

molecular mimicry for example, might break the self-tolerance, possibly in the context 

of certain HLA alleles and other predisposing factors. 

Autoreactive CD4+ T cells that enter the CNS mediate the first steps of the 

disease process. It has been shown by gadolinium-enhanced MRI that early MS 

lesions are associated with a breakdown of the BBB that most likely facilitates entry of 

T cells into the CNS. Furthermore the expression of VCAM-1 on endothelial cells is 

upregulated under inflammatory conditions which allows increased binding of activated 

T cells to endothelial cells via integrins113. After firm adhesion and crossing of the 

endothelial cell layer T cells have to penetrate the basement membrane of the BBB 

that is composed of type IV collagen. T cells use the matrix metalloproteinases-2 

(MMP-2) and 9 for penetrating through basement membranes114,115. 

After extravasation T cells are reactivated upon recognizing their antigen on 

perivascular antigen-presenting cells in the CNS. It is well established that the 

extravasation of activated T lymphocytes into the brain and spinal cord occurs 

independent of their antigen-specificity. Nevertheless only T cells that recognize their 

target antigen in the perivascular area can persist and proliferate in the CNS116. In vitro 

studies revealed that astrocytes and microglia are capable of efficiently presenting 

antigen upon stimulation with cytokines like granulocyte-macrophage colony-

stimulating factor (GM-CSF) and interferon-γ (IFN-γ). In vivo microglia cells are 

required as well for the development of EAE117. In addition blood-borne CD11c+ 

dendritic cells (DCs) are required and sufficient to present antigen to invading 

encephalitogenic T lymphocytes107. Furthermore, it has been shown in mouse models 

of MS that epitope spreading takes place in the CNS rather than in the periphery and is 

mediated by local antigen-presenting cells, possibly DCs118. This process most likely 

plays an important role in the chronic progression of MS118,119.  

It is not resolved which antigens are the targets for MS-inducing CD4+ T cells but 

there is evidence that the classic myelin proteins that are also used to elicit EAE in 

model animals such as myelin basic protein (MBP), myelin proteolipid protein and 

myelin oligodendrocyte glycoprotein (MOG), are also targets in human MS. This is 

underscored by the fact, that most of these proteins are restricted by the HLA class II 

molecules associated with MS120.  In addition the small heat-shock protein αB-

crystallin, that is upregulated in MS lesions has been identified as a major target 

antigen in MS121. αB-crystallin has neuroprotective and anti-inflammatory properties, 

which makes its loss especially fatal122. Beside CD4+ T cell mediated damage a 
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humoral immune response by autoantibodies can lead to demyelination in EAE and 

MS. In the murine EAE model the myelin protein MOG is the only known protein that 

elicits a demyelinating autoantibody response. Although it is unlikely that MOG is the 

only protein evoking such responses in humans, it is likely that proteins recognized by 

demyelinating autoantibodies are membrane proteins which expose their epitopes in 

the extracellular space123,124. 

Until recently it has been thought that CD4+ T cells initiating MS have a TH1 

phenotype, characterized by the production of IFN-γ, interleukin-2 (IL-2), tumor 

necrosis factor-α (TNF-α) and lymphotoxin and mediating cellular immunity125. Now 

there is increasing evidence, mainly from the EAE model, but also from studies in MS 

patients that these CD4+ T cells represent a subset distinct from the classical TH1 

biased cells. Instead they are expressing IL-17 which gave this new subset the name 

TH-17. They are dependent on IL-23 for their development120,126 (Figure 5.7). TH17 cells 

migrate easier through a layer of human brain-derived microvascular endothelial cells 

than TH1 cells in vitro, and IL-17 together with IL-22 were shown to contribute to the 

breakdown of the BBB by binding to their respective receptors on brain microvessel 

endothelium in MS lesions and disrupting tight junctions. Furthermore, stimulation with 

IL-17 and IL-22 induces expression of the chemokine CCL2 in endothelial cells, which 

promotes the recruitment of further CD4+ T cells127. 

 
Figure 5.7: Naïve, CD4+ T helper cells can differentiate into three different classes of 
effector T cells that are characterized by the expression of distinct cytokines. TH1 cells 
are induced by the cytokine IL-12 which activates the transcription factors signal 
transducer and activator of transcription 1 (STAT1), STAT4 and T-bet. IL-4 leads to the 
activation of STAT6 and GATA-3 and induces TH2 cells. IL-23 promotes via other 
unknown transcription factors the development of TH17 cells that express high levels of 
IL-17. TH1 and TH2 cells antagonize each other via the expression of IL-4 and IFN-γ, which 
at the same time both inhibit the differentiation of TH17 cells. The cartoon is modified 
from Iwakura and Ishigame126. 
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Antigen-specific stimulation of the infiltrated CD4+ T cells results in the production 

of various pro-inflammatory molecules. They increase the permeability of the BBB, lead 

to upregulation of adhesion molecules on vascular endothelial cells and the recruitment 

of more lymphocytes into the CNS. Pro-inflammatory cytokines that amplify CNS 

inflammation include IFN-γ, TNF-α, TNF-β, lymphotoxin, IL-1α, IL-2, IL-6 and IL-12125. 

Although CD4+ T cells mediate the early events during the establishment of a 

new MS lesion the actual damage to the myelin sheath, oligodendrocytes and axons is 

mediated by multiple mechanisms and cell types. The main target of the autoimmune 

process is the myelin sheath, which can principally be repaired by remyelination. The 

alternating destruction and repair processes lead to the clinical picture of RRMS. 

During long-term disease the myelin sheath is destroyed and in addition, more and 

more axons are damaged. The transection of an axon within a demyelinating lesion 

causes the subsequent loss of the whole distal axon by Wallerian degeneration.  Since 

axonal loss is irreversible this leads to persisting disability and neurological symptoms 

after a threshold of axonal damage is reached128,129. 

It has been demonstrated for MS patients that the mechanisms of tissue destruction 

are very heterogeneous between different patients and that at least four different types 

of MS lesions (called type I to type IV patterns) can be distinguished histologically128. 

The mechanisms of tissue destruction are summarized in Figure 5.8. Tissue 

destruction by activated macrophages is found in type I lesions. The pro-inflammatory 

cytokines released by the infiltrated CD4+ T cells lead to macrophage recruitment and 

activation of macrophages and microglia cells. The activated macrophages and 

microglia produce many factors leading to demyelination and axon damage including 

TNF-α, reactive oxygen species, matrix metalloproteinases and other proteases. 

Another event that leads to both neuron and oligodendrocyte destruction is excessive 

glutamate production by activated lymphocytes and microglia (Figure 5.8). This causes 

excitotoxicity mediated by a massive Ca2+ influx130. Type II lesions also contain T cells 

and macrophages but tissue destruction is mediated by a humoral immune response. 

Myelin-specific antibodies bind to and damage myelin through opsonization and 

complement activation. In most MS patients immunoglobulins can be detected in the 

cerebrospinal fluid. Since there is no concomitant increase of antibody levels in the 

serum they are likely produced in the CNS by plasma cells derived from infiltrating B 

cells131. An observation that underscores the significance of destruction by humoral 

immunity is the fact that patients unresponsive to glucocorticoid treatment during a 

relapse often benefit from plasma exchange and have type II lesions132. 
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Figure 5.8: Mechanisms of myelin and axonal destruction in MS. CD4+ T cells cross the 
blood brain barrier and become reactivated in the perivascular space by cells presenting 
myelin antigens. Activated, IL-17 expressing T cells recruit macrophages (MΦ) from the 
circulation that lead to tissue destruction by the production of proinflammatory factors 
and activation of microglial cells. In some cases B cells cause a humoral immune 
response and deposits of complement and antibodies. Furthermore CD8+ T cells can 
damage oligodendrocytes directly. The cartoon is taken from McFarland and Martin120. 

Lesion patterns III and IV are characterized by apoptotic or non-apoptotic loss of 

oligodendrocytes, respectively. The loss of oligodendrocytes leads to destruction of the 

myelin sheath and secondary axonal loss due to the missing trophic support. Another 

cell type mediating tissue destruction in active MS lesions are CD8+ T cells which 

outnumber CD4+ T cells133. CD8+ T cells induce cell death, aided by the upregulation of 

MHC I molecules on target cells under inflammatory conditions134.  

Up to now, no clear correlation between the different histological and clinical 

manifestations of MS has been shown. Great efforts are made to identify the types of 

tissue destruction in patients since this knowledge has important implications for 

prognosis and therapy128. 

Surprisingly at first glance, immune cells also play a role during neuroprotective 

processes such as remyelination. CD4+ T cells can produce neurotrophins including 

brain derived neurotrophic factor (BDNF) that promote remyelination. Furthermore it 

has been shown in EAE that CD4+CD25+Foxp3+ regulatory T cells (Treg) can inhibit the 

inflammatory processes135. 
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5.2.4 Treatment and treatment trials of multiple sclerosis 
The most frequently prescribed treatments for RRMS are corticosteroids, IFN-β 

and glatiramer acetate. Corticosteroids are administered during an acute attack of MS 

to treat the symptoms like weakness, visual and gait impairments. IFN-β and glatiramer 

acetate are used as long-term disease modifying drugs to prevent relapses. 

Corticosteroids like methylprednisolone act anti-inflammatory and 

immunosuppressive. They act by inhibiting transcription factors including NF-κB and 

AP-1 which mediate the expression of many pro-inflammatory cytokines including IL-1, 

IL-2 and IL-6 and also adhesion molecules such as ICAM-1. Glucocorticoids interfere 

also with T cell proliferation by inhibiting IL-2 synthesis136. 

The type-1 interferons, IFN β1-b (trade name: Betaferon) and IFN β1-a (trade 

name: Avonex, Rebif) used for the treatment of RRMS are cytokines that are normally 

produced by fibroblasts to combat viral infections. Interferons bind to a dimer of 

interferon receptor 1 and interferon receptor 2 which leads to phosphorylation of 

tyrosine kinases including Jak-1. The tyrosine kinases subsequently activate 

transcription factors like STAT, which trigger an anti-inflammatory response by inducing 

expression of the anti-inflammatory TH2 cytokine IL-10 and IL-1 receptor antagonist. 

Furthermore they suppress IL-1β and TNF-α expression and antagonize IFN-γ induced 

MHC II upregulation on antigen presenting cells (APCs). IFN-β reduces T cell 

proliferation and extravasation into the CNS137, increases the amount of soluble 

vascular cell-adhesion molecules138, and reduces the VLA-4 expression on T cells in 

peripheral blood139. Furthermore IFN-β reduces expression of the MMPs 2 and 9, that 

are crucial for disintegrating collagen type IV and increases the expression of MMP 

inhibitors. Unfortunately interferons evoke a variety of adverse side effects such as 

systemic flu-like symptoms with fever, chills and headache that last for 24 hours140 and 

they can be neutralized by antibodies impairing or decreasing efficacy of this 

therapy141. 

Glatiramer acetate (trade name: Copaxone) is a mixture of synthetic random 

copolymers of four basic amino acids (alanine, glutamic acid, lysine and tyrosine) that 

were initially designed to mimic MBP. Glatiramer acetate is thought to antagonize the 

binding of MBP to the TCR and MHC class II antigens and to induce suppressor T 

cells142. A recent study showed that glatiramer acetate is not effective in treating 

PPMS143. Another problem of both glatiramer acetate and IFN-β treatment is that the 

administration route of subcutaneous or intramuscular injection is cumbersome for 

many patients.  
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In patients that fail to respond to IFN-β or glatiramer acetate treatment or that 

suffer from progressive MS, administration of the chemotherapeutic mitoxantrone is a 

novel treatment option. Mitoxantrone was primarily used to treat malignancies, 

especially leukemias. It interferes with deoxyribonucleic acid (DNA) synthesis by 

intercalating into DNA and inhibiting the topoisomerase II136. These unspecific cytotoxic 

effects lead to a general immunosuppression. Furthermore, mitoxantrone induces 

apoptosis in APCs144. Common side effects are myelosuppression and potentially 

severe cardiotoxicity. Therefore, the lifetime cumulative dose for mitoxantrone is 

reached after only two to three years136,145. Currently about 10% of all MS patients are 

treated either with mitoxantrone or with immunosuppressants such as 

cyclophosphamide, azathioprine and methotrexate although all of these drugs show 

considerable toxicity and have a high long-term risk145. Further treatments based on 

immunosuppression include total lymphoid radiation, infusion of intravenous γ-globulins 

and treatment with cytotoxic drugs combined with autologous bone marrow 

transplantation. 

The severe side effects and limited effectiveness of the commonly prescribed 

drugs underscore the need for new treatments of MS. Some of these attempts are 

described below. Alemtuzumab is a humanized monoclonal antibody (mAb) against the 

leukocyte surface molecule CD52. The proposed action is the removal of 

lymphomononuclear cells. It showed considerable success in the treatment of patients 

with progressive MS but in early studies 30% of them developed Grave´s disease, an 

autoimmune disorder of the thyroid gland. Other possible monoclonal antibody 

therapies are rituximab, which is approved for the treatment of non-Hodgkin 

lymphomas. Rituximab is an anti-CD20 mAb that depletes B lymphocytes by binding 

complement and mediating B cell lysis. Another mAb is the anti-CD25 Ab daclizumab 

that has shown promising results in phase II clinical trials146,147, although the 

mechanism of action is unclear. 

A very interesting new substance that is currently tested in phase III clinical trials 

and can be administered orally is FTY720 or fingolimod. Fingolimod is a chemical 

derivative of the fungal product myriocin. It is an agonist of the sphingosine 1-

phosphate receptor on lymphocytes and thymocytes, which is crucial for the egress of 

T and B lymphocytes from secondary lymphoid tissues148. Upon fingolimod binding the 

receptor is internalized trapping lymphocytes in secondary lymphoid organs and 

preventing their migration to peripheral target tissues149.  

Statins were initially developed as drugs that lower serum cholesterol levels136, 

but they also have immunomodulatory effects150. Statins inhibit the proliferation of 

lymphocytes, reduce the expression of adhesion molecules on activated T lymphocytes 
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and shift their cytokine expression profile towards a TH2 phenotype151. They also 

downregulate the expression of MMP-9 and chemokine receptors on T and B 

lymphocytes150. Statins are interesting drugs for MS therapy since they can be taken 

orally, show promising results and are well tolerated152. 

5.2.5 Experimental autoimmune encephalomyelitis: an animal model 
for MS 

EAE is a very well characterized animal model that resembles many aspects of 

MS. The phenomenon of EAE was discovered already in 1933, when it was observed 

that injections of brain tissue emulsions, and even more so mixtures of brain emulsions 

with killed Mycobacterium tuberculosis and paraffin oil induce a paralyzing disease in 

rhesus macaques and rabbits153,154. The mixture of heat-inactivated M. tuberculosis and 

mineral oil was termed complete Freund´s adjuvant (CFA) after its inventor and is used 

until today to induce so-called active EAE155. Subsequently it was found that myelin 

components, especially myelin basic protein were even more potent in inducing EAE, 

and that EAE can be induced in many different species including guinea pigs, rabbits, 

goats, mice, rats, hamsters, dogs, sheep, marmosets, and chickens153. Later it was 

shown, that EAE could not only be induced by immunization with various myelin 

peptides in CFA but also by adoptive transfer of encephalitogenic lymphocytes, a 

strategy that was named passive or adoptive transfer EAE156,157. Initially the induction 

of EAE was more robust and reproducible in guinea pigs and rats compared to mice. 

However it was discovered that EAE induction in mice can be facilitated by the injection 

of pertussis toxin, an effect that is mediated by several mechanisms. Pertussis toxin 

activates APCs158 and steers them to promote a TH1-biased immune response159. It 

also promotes P-selectin upregulation on brain endothelial cells in a toll-like receptor 4 

dependent way and increases thereby T cell recruitment. Interestingly it could also be 

shown that the increased permeability of the BBB that is discussed since a long time as 

an effect of pertussis toxin treatment is a result of the rolling and adhesion of T 

lymphocytes and not vice versa160. 

Since the use of pertussis toxin, mice became an invaluable tool for investigating 

disease mechanisms in EAE, largely due to the many possibilities of genetic 

manipulation and the abundant immunological agents available. The clinical course 

and the susceptibility to EAE vary considerably between different mouse strains and 

the genetic background of the mice also requires the use of different peptides to induce 

the disease. For instance EAE induction in C57BL/6 mice is done with the MOG35-55 

peptide and induces chronic-progressive disease, whereas EAE in SJL mice can best 

be induced by immunizing with a proteolipid protein peptide (PLP139-151) and the 

disease course is relapsing123,161. 
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With the help of EAE models many mechanisms regarding human autoimmune 

disease have been unraveled. The role of T lymphocytes for MS pathology was 

confirmed157, although most mouse EAE models underestimate the role of CD8+ T 

cells, which are more important in MS than in EAE. The importance of a TH1 or TH17-

biased cytokine profile of T lymphocytes and secondary macrophage recruitment for 

the development of autoimmune diseases has been demonstrated in the EAE model as 

well162. The need for a humoral immune response for the development of demyelinating 

lesions in MS patients was also deduced from EAE. Finally, three of the currently 

approved treatments for MS have been developed in the EAE model: glatiramer 

acetate, mitoxantrone and natalizumab67,163,164. 

5.2.6 Limitations of experimental autoimmune encephalomyelitis 
 Although many insights were gained from EAE models, they have limitations. 

Firstly, EAE is not a spontaneous disease but requires induction by adjuvants like heat-

inactivated mycobacteria and pertussis toxin. Secondly, many EAE models exist that 

reflect specific aspects of MS, but no model shows all the hallmarks of human MS. For 

instance, MOG35-55 induced EAE in C57BL/6 mice reflects the T cell mediated 

inflammation and the subsequent recruitment of deleterious macrophages but shows 

no demyelination mediated by a humoral immune response. Furthermore, no EAE 

model with a primary progressive disease course exists123. Thirdly, treatment trials in 

EAE have sometimes a poor predictive value for MS. Although the above mentioned 

therapies were developed in EAE, other EAE-based therapeutic strategies showed 

disappointing results in man. For example, altered peptide ligands (APL) with contact 

residues to the TCR specific for encephalitogenic peptides have been examined in 

human trials165. APLs are thought to interfere with TCR signaling by acting as partial 

agonists or antagonists, to induce anergy or a TH2 shift in T cells and to activate 

regulatory T cells. Indeed, APLs ameliorated MS in some patients, but in other patients 

they led to an exacerbation of MS and evoked allergic-type hypersensitivity reactions. 

Therefore, the trials were abandoned166. Similarly, interference with several cytokines 

worked well in the mouse model but not in humans. The blockade of TNF-α for 

example, ameliorated mouse EAE167,168 but neither mAbs against TNF-α169 nor 

treatment with a recombinant p55 TNF receptor immunoglobulin fusion protein170 

alleviated human MS. Nevertheless, blockade of TNF-α represents an effective 

treatment of other autoimmune diseases such as rheumatoid and psoriatic arthritis and 

Crohn´s disease171. Similar complications halted the treatment trials of IFN-γ for MS 

patients. Recombinant IFN-γ administration led to a significant increase in immune-

mediated disease exacerbations in MS patients172, although increased IFN-γ 
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production is correlated with EAE suppression in mice173. It is still unclear how these 

contrasting results can be explained. 

5.3 Leukocyte extravasation in EAE and MS 
Progress in understanding the paradigm of leukocyte extravasation promoted the 

development of drugs that interfere with integrin function. 

5.3.1 The extravasation cascade 
The general concept of leukocyte extravasation from the circulation into tissues is 

an extensively studied and well described multistep process42 (Figure 5.9). First, the 

cells slow down their movement within the blood stream by short, transient contacts 

between selectins on leukocytes and carbohydrate ligands on the blood vessel 

endothelium. The so-called tethering decreases the speed of leukocyte movement and 

permits selectin-mediated rolling on the vessel wall. Rolling can also be mediated by α4 

integrin binding to VCAM-1 or MadCAM174. The reduced speed of rolling leukocytes 

facilitates the interaction of G-protein coupled chemokine receptors on hematopoietic 

cells with chemokines presented on the luminal surface of endothelial cells. 

Chemokine-triggered signals induce integrin inside-out signaling which leads to the 

activation of leukocyte integrins. This step is mediated by Gαi proteins and hence can 

be inhibited with pertussis toxin. The activated integrins bind counter-receptors on 

endothelial cells resulting in firm adhesion, cell arrest and spreading followed by 

transmigration through the endothelium. 

 
Figure 5.9: Crucial steps during leukocyte extravasation. Leukocytes are captured or 
tethered by transient interactions and start to roll on the endothelium. Integrins become 
activated by chemokine receptor signaling which leads to their firm arrest. Upon 
adhesion strengthening and spreading cells crawl on the vessel wall, supposedly 
seeking an appropriate spot for transmigration. The subsequent transmigration through 
the endothelium and the underlying basement membrane occurs either directly through 
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an endothelial cell in a process called emperipolesis or between two adjacent endothelial 
cells. For each step the main molecular players are shown in the blue boxes. The cartoon 
is taken from Ley et al.175. 

Although this general concept holds true for a wide variety of tissues the three 

receptor events – selectins and carbohydrate ligands, chemokines and chemokine 

receptors and integrins and their counter-receptors – vary in different extravasation 

processes and for different leukocyte subtypes to grant specificity116. The tissue 

specific mechanisms of extravasation have been compared with zip codes allowing the 

highly organized and tightly restricted extravasation of certain cell types into certain 

organs (Paper I)42. Table 5.2 summarizes some typical extravasation processes and 

the involved adhesion molecules and chemokines. Interestingly, the different 

extravasation processes also require different time frames. Whereas the extravasation 

of lymphocytes to peripheral lymphoid tissues via HEVs takes place within minutes the 

extravasation of lymphocytes into the CNS requires hours176. 
Table 5.2: List of adhesion molecules, chemokines and chemokine receptors executing 
extravasation processes. The table is modified from Ransohoff et al. and 
Engelhardt116,177. 

Process Endothelium Tethering/ 
Rolling/ 
Capture 

Activation Adhesion 

recruitment of naïve 
lymphocytes to 
peripheral lymphoid 
tissues178 

HEVs of secondary 
lymphoid organs 

L-selectin – 
PNAD 

CCR7 – 
CCL21 

αLβ2 – 
ICAM-1 (and 
ICAM-2) 

TH1 cell recruitment to 
inflamed skin179,180 

dermal blood vessels CLA and 
PSGL-1 – E- 
and P-
selectin 

CCR4 – 
CCL17 

αLβ2 – 
ICAM-1 

lymphocyte 
recruitment to the 
mesenteric lymph 
nodes and Peyer´s 
patches178 

HEVs of mesenteric 
lymph nodes and 
Peyer´s patches 

α4β7 – 
MAdCAM-1 

CCR7 – 
CCL21 

αLβ2 – 
ICAM-1 

T lymphocyte 
recruitment to the 
CNS176,181 

postcapillary venules 
of the spinal cord 
white matter 

α4β1 - 
VCAM-1 

CCR7 – 
CCL19 and 
CCL21 

α4β1 - 
VCAM-1 

CCL, CC-chemokine ligand; CCR, CC-chemokine receptor; CLA, cutaneous lymphocyte 
antigen; PNAD, peripheral node addressin; PSGL-1, P-selectin glycoprotein ligand 1 

 

5.3.2 Extravasation of leukocytes into the CNS 
Apart from the longer time that lymphocytes require to extravasate into the CNS 

the process is unique in several additional aspects. Firstly, the extravasation of 
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leukocytes into normal, non-inflamed CNS is carefully controlled by the BBB. The 

extravasation of autoreactive T cells into the CNS parenchyma mainly takes place at 

postcapillary venules where the BBB consists of endothelial cells tightly associated with 

each other through tight junctions, and their basement membrane. Secondly, 

transmigrating leukocytes have to penetrate a thin layer of leptomeningeal cells 

originating from invaginations of the arachnoid and the pial membranes. Finally, the 

leukocytes have to overcome the so-called glia limitans that covers the CNS 

vasculature and consists of the endfeet of astrocytes and their basement membrane182. 

Although previous views of leukocytes being unable to enter the CNS have been 

dismissed, the CNS is an immunoprivileged site with a low influx of immune cells110. 

The very low expression of adhesion receptors on brain endothelial cells seems key to 

the low leukocyte influx. 

Already the first transient interactions during the extravasation process seem to 

be different from the classical extravasation cascade. In vivo imaging of the 

microcirculation of the white matter of the cervical spinal cord of healthy SJL/N mice 

revealed that freshly stimulated encephalitogenic T cells did not roll at the capillary 

endothelium but instead were instantly captured 176. The abrupt capture was almost 

abrogated by pretreatment with antibodies either against α4 or VCAM-1 but not with 

pertussis toxin. VCAM-1 is upregulated during EAE on vessels of the CNS white 

matter183, and blockade of VCAM-1 ameliorates the course of EAE184. The results 

suggest that encephalitogenic T cell blasts are captured in the microvasculature of the 

CNS white matter without prior rolling and that the T cell capture is mediated by an 

interaction between α4 integrins and VCAM-1 without the requirement of G-protein 

mediated activation of the integrins. The reduced permanent firm adhesion of T 

lymphocytes to the endothelial vessel wall in pertussis toxin treated mice, however, 

indicates that firm adhesion critically depends on G-protein mediated signaling and 

integrin activation. T lymphoblast recruitment to the uninflamed BBB endothelium 

without prior rolling is probably important during the initiation of the inflammatory 

autoimmune process. During later stages of the disease the recruited leukocytes cause 

a proinflammatory milieu by producing various cytokines. Under these conditions 

lymphocytes roll on the endothelium which is also mediated by α4 integrins174,185. 

Therefore α4 integrins can mediate both the immediate capture without prior rolling and 

capture after rolling during lymphocyte extravasation into the inflamed CNS. 

Although ICAM-1 and ICAM-2 are detectable on uninflamed microvessels of the 

CNS and become further upregulated upon inflammation181,183 there is accumulating 

evidence that the interaction between ICAM-1 and αLβ2 does not contribute to the 

capture and firm adhesion of activated lymphocytes to the inflamed endothelium of the 
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healthy uninflamed spinal cord white matter. In accordance with a role of ICAM-1/αLβ2 

interaction during diapedesis the stable firm adhesion of the T lymphocytes to the 

endothelial cells after two hours and the transendothelial migration of T cells was 

slightly reduced after anti-αL antibody treatment181. 

5.3.3 The role of selectins during leukocyte extravasation into the 
CNS 

Although it has been shown that lymphocytes can be captured by the CNS 

microvasculature without prior rolling176 there is a controversy about the involvement of 

selectins in tethering and rolling of encephalitogenic T cells. The selectin family 

contains three members, of which P- and E-selectin are highly expressed on inflamed 

endothelial cells and L-selectin on circulating leukocytes42.  

In vitro E- and P-selectin expression is upregulated in cultured cortical endothelial 

cells after IL-1β and TNF-α treatment186. In vivo, one study failed to detect E- and P-

selectin in brain vessels of healthy and EAE mice187, whereas others detected them in 

CNS vessels of EAE mice188,189.  

Interestingly, ligands for both selectins were found  on a subset of  

encephalitogenic T cells187. PSGL-1, the main ligand for P-selectin is expressed on 

encephalitogenic T lymphocytes. However, antibodies directed against PSGL-1 do not 

influence the course of passive EAE in SJL mice. Furthermore, active EAE in PSGL-1 

knockout mice is indistinguishable from control mice.190 CLA, another selectin ligand, is 

derived from PSGL-1 by a fucosyltransferase-VII (FucT-VII)-mediated carbohydrate 

modification. Rolling and adhesion of FucT-VII-/- T cells is reduced, indicating that 

under inflammatory conditions CLA is important for both rolling and adhesion of T 

lymphocytes in the CNS grey matter191.  

All these findings, however, are in contrast to intravital microscopy studies that 

analyzed the interaction between encephalitogenic lymphocytes and endothelial cells. 

Superficial cerebral vessels were observed through the intact skull of young mice191. 

Rolling or firm adhesion of activated T cells to the endothelium was only observed in 

recipient mice that were treated either with lipopolysaccharide (LPS) or with TNF-α. 

The rolling interactions were dramatically reduced by preincubation of the T cells with 

antibodies to PSGL-1, P- and E-selectin. Notably, antibodies against α4, integrin αLβ2, 

VCAM-1 or ICAM-1 reduce the rolling only by about 50%. The firm arrest of 

encephalitogenic T cells was blocked almost completely with antibodies to PSGL-1 and 

P-selectin and considerably  reduced by antibodies to αLβ2, ICAM-1 and E-selectin.188 

In another intravital microscopy study, Kerfoot and Kubes imaged rolling of all 

endogenous leukocytes in superficial vessels of the brain during active EAE in 
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C57BL/6 mice. The rolling interactions were reduced with antibodies to α4, and the 

remaining rolling interactions were abrogated by additional administration of antibodies 

to P-selectin.189 Antibodies to P-selectin alone reduce rolling completely160,192.  

Importantly, neither genetic deficiency of P-selectin or PSGL-1 in C57BL/6 mice 

or P-selectin and/or E-selectin antibody treatment of SJL/J mice change the clinical 

course of active EAE187. Furthermore the development of active EAE in both C57BL/6 

and SJL mice that are deficient for E- and P-selectin is indistinguishable from control 

mice193.  

One explanation for these conflicting results might be that the described intravital 

microscopy studies analyzed superficial CNS vessels of the grey matter, where the 

mechanisms of lymphocyte recruitment might differ when compared with those in the 

white matter. Furthermore, Kerfoot and Kubes189,192 did not distinguish between distinct 

cell types in their analyses. Finally, it was shown that the efficacy of antibody blockade 

of α4 and/or P-selectin differs between C57BL/6 and SJL mice and depends also on 

how EAE was induced192. 

Regarding the recruitment of T cell blasts to the CNS the role of L-selectin is 

clear. Activated T cells do not express L-selectin194, and treatment of mice with 

antibodies directed against L-selectin does not influence lymphocyte rolling on CNS 

vessels188 or EAE development194. Notably L-selectin-deficient mice are protected from 

EAE, which is explained by an impaired effector function of macrophages195. 

5.3.4 The role of β2 integrins for EAE development 
In addition to the α4 integrin family and selectins, leukocyte-specific integrins of 

the β2 family of adhesion molecules and their interaction partners have been reported 

to influence the course of EAE and possibly MS.  The β2 integrins consist of four 

different members: αLβ2 or lymphocyte function-associated antigen-1 (LFA-1), αMβ2 or 

macrophage adhesion molecule-1 (Mac-1), αXβ2 and αDβ2. The β2 integrins are 

expressed on a wide variety of hematopoietic cells. LFA-1 is expressed on B cells, 

macrophages and T cells, Mac-1 on macrophages, neutrophils and natural killer cells, 

αXβ2 on dendritic cells, macrophages, monocytes, natural killer cells and activated T 

cells and αDβ2 on macrophages and neutrophils196-198. The β2 integrins play a vital role 

for the recruitment of neutrophils and other leukocytes (for example TH1 cells that home 

to the inflamed dermis) into inflamed tissues and genetic dysfunction of the β2 subunit 

causes leukocyte adhesion deficiency (LAD) characterized by severe, recurrent 

bacterial infections197. As described already above, β2 integrins are important during 

formation of the immunological synapse199,200. 
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Treatment of passive EAE in rats and mice with antibodies against the αL or the 

αM subunit ameliorates disease severity194,201,202. In another independent study, active 

EAE in rats could only be inhibited by treatment with antibodies against both LFA-1 and 

its counterreceptor ICAM-1203. Treatment of murine EAE with antibodies directed 

against LFA-1 produces opposing results ranging from no effect to severe 

exacerbation204,205. Mice lacking the αL gene develop delayed and less severe active 

EAE. This effect is most likely due to the impaired migration of lymphocytes to the 

draining lymph nodes as well as disturbed lymphocyte proliferation206. Blockade of 

ICAM-1, the main counterreceptor of LFA-1, interferes mainly with antigen-induced T 

cell proliferation; antibody blockade of ICAM-1 ameliorates active EAE but fails to 

prevent the passive transfer of EAE with T cells that are already activated203,204,207,208. T 

cells that lack all ICAM-1 isoforms have an impaired antigen-specific proliferation 

capacity and cannot transfer EAE in wild-type recipients209. Interestingly, one group 

found that passive transfer EAE in rats could be delayed profoundly with an anti-ICAM-

1 antibody184. The reason for the contrasting results is not clear. 

Genetic deletion of αM results in delayed and ameliorated active EAE and 

reduces leukocyte infiltration and demyelination of the spinal cord. When wild-type T 

cells are passively transferred into Mac-1-/- mice the onset of EAE is delayed and when 

Mac-1-/- T cells are transferred into wild-type mice, they do not develop signs of EAE. 

Mac-1-/- T cells have no significant reduction of antigen-specific proliferation in vitro but 

draining lymph nodes of Mac-1-/- mice contain fewer blasts, indicating a disturbed 

proliferative response in vivo. Mac-1-/- T cells have a TH2 shifted cytokine response. 

Taken together these results suggest that during EAE αM plays a role on T cells and 

also on other cell types, presumably macrophages210. Mac-1 is the main macrophage 

receptor for the recognition and uptake of myelin, therefore it has been suggested that 

blockade of Mac-1 interferes mainly with macrophage-mediated tissue destruction 

during the effector phase of EAE211,212. 

A genetic deficiency of the αx subunit results in milder active EAE and both the 

passive transfer of αx-deficient T cells into wild-type mice as well as vice versa results 

in an ameliorated disease course indicating a role for αx on both T cells and other 

inflammatory cells213. Genetic deletion of the fourth β2 heterodimer αDβ2 does not 

influence the development of active EAE, leukocyte infiltration of the CNS and the 

cytokine response and proliferation of T cells214. 

5.3.5 Blockade of the α4 subunit in EAE and MS 
Natalizumab (brand name: Tysabri) is a humanized monoclonal IgG4 antibody 

directed against the α4 subunit of the integrin heterodimers α4β1 and α4β7. IgG4 
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antibodies fail to activate complement and have a longer serum half-life than other 

isotypes215. Natalizumab is an effective treatment of MS and significantly reduces the 

number and severity of clinical relapses. Natalizumab was approved by the U.S. Food 

and Drug Administration (FDA) and the European Medicines Agency as a 

monotherapeutic treatment for relapsing MS. 

The development of natalizumab began in 1992 when it was noted, that 

antibodies directed against the α4 integrin subunit prevent leukocyte accumulation in 

the CNS and impair the development of passive EAE in Lewis rats. Since antibodies 

against other β1 or β2 integrin subunits showed little or no influence on lymphocyte and 

monocyte binding to inflamed blood vessels, it was concluded that α4β1 and/or α4β7 

are the key adhesion molecules for leukocyte homing to the inflamed CNS67. This was 

further supported by the observation that the expression level of α4 integrin on T cells 

correlates with their encephalitogenic potential184,216.  

α4β1 and α4β7 can bind VCAM-1 and the CS-1 fragment of fibronectin43,55 (Table 

5.1). Since only antibodies against α4 or β1 that interfere with VCAM-1 adhesion 

blocked the adhesion of T cells to inflamed vessels, VCAM-1 is the most likely counter-

receptor for α4 integrins during leukocyte adhesion67. In line with this finding, VCAM-1 

is upregulated on the endothelium of microvessels in MS lesions113,217 and venules of 

mice suffering from EAE218. Furthermore, α4 integrins and VCAM-1 are important for 

the adhesion but not the diapedesis of encephalitogenic T cells through brain 

endothelial cells218. 

Since then many publications demonstrated a positive effect of anti-α4 antibodies 

in vivo in both active and passive rodent models of EAE. In a murine passive EAE 

model the development of transfer EAE was dependent on the expression of high 

levels of α4 on the encephalitogenic T cells and could be inhibited by an antibody 

versus the α4 integrin subunit184. Although another study could not find this clear 

correlation between α4 expression and encephalitogenicity they also found α4 

expression on all encephalitogenic T cell lines that they tested, and prophylactic 

administration of antibodies to α4 prevented passive EAE elicited by those 

encephalitogenic cells194. In active guinea pig EAE treatment with an anti-α4 antibody 

before the onset of clinical symptoms results in a delayed onset of disease. The delay 

can be maintained as long as blocking antibodies are still present in the circulation. 

Furthermore treatment after development of clinical symptoms ameliorates them 

significantly. Under both treatment regimens the antibody reduces the number of 

infiltrated T lymphocytes and monocytes in the CNS and prevents demyelination219. 

Similar results were obtained by treatment of PLP-induced EAE in CSJLF1 mice with 
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an antisense nucleotide specific for the integrin α4 subunit. Antisense nucleotide 

treatment led to a significant reduction of α4 mRNA and expression in cell lines and 

primary lymphoid cells, alleviated EAE when administered before and reduced the 

severity when given after disease onset. Like with the antibody treatment the antisense 

oligonucleotides reduced the numbers of infiltrated CD4+ T cells and macrophages in 

the CNS220. Treatment with an anti-α4 antibody or  a small molecule antagonist to α4 in 

PLP-induced active relapsing EAE in SJL mice resulted in delay and amelioration of 

the disease. Surprisingly, treatment after onset of clinical symptoms led to increased T 

cell accumulation in the CNS, increased relapse rates, augmented TH1 responses to 

the priming peptide and supported epitope spreading221,222. It is possible that the 

observed exacerbation is specific for this disease model, since it was neither observed 

in other EAE models nor during clinical trials in humans. 

5.3.6 Blockade of integrin α4β7 by natalizumab 
A role for α4 integrins in the recruitment of inflammatory cells has been shown for 

various additional disease models including rheumatoid arthritis, contact 

hypersensitivity, type I diabetes mellitus, nephritis223 and allergic airway responses44,224. 

α4 integrins also play a crucial role for lymphocyte recruitment in the gut associated 

lymphoid tissue. During IBD the recruitment of lymphocytes is mediated by the 

interaction of α4β7 with MAdCAM-1225,226, whose expression is restricted to venules in 

the gut and high endothelial venules of the gut-associated lymphatic tissues (Peyer´s 

patches, mesenteric lymph nodes, and the appendix). Therefore, blockade of integrin 

α4β7 with natalizumab is also effective for the treatment of ulcerative colitis and 

Crohn´s disease227-229. Interestingly, the effect of natalizumab on IBD is not as 

pronounced as the efficacy in MS suggesting that additional adhesion molecules are 

required for the development of IBD. The predominant leukocytes in Crohn´s disease 

are indeed neutrophils, which extravasate mainly with the help of β2 integrins. 

Therefore, it is assumed that natalizumab interferes with the recruitment of T cells in 

IBD like in MS, and indirectly diminishes the secondary recruitment of neutrophils230. 

Although the role of a4β7 in the recruitment of lymphocytes to the gut is well 

established, its role in EAE is controversial. Theoretically natalizumab could block both 

a4β1 and α4β7 and both integrins are expressed on encephalitogenic T cells56. In 

SJL/N mice blockade of α4β7 via antibodies directed to β7 or α4β7 does not influence 

the development of passive EAE56. Furthermore, a small molecule inhibitor that is 

specific for the α4β1 heterodimer is sufficient to inhibit active EAE in Lewis rats which 

suggests that α4β7 plays no important role in this model231. On the contrary, it was 

shown in passive EAE in C57BL/6 mice that the administration of anti-β7 antibodies at 
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the peak of disease caused a partial disease remission and reduced the clinical score. 

β7 gene-deficient T cells are less encephalitogenic when transferred into wild-type 

mice and surprisingly also β7 gene-deficient mice show delayed and reduced clinical 

symptoms upon transfer of wild-type T cells232. Subsequently, the authors showed that 

an anti-MAdCAM-1 antibody prevented the development of MOG35-55-induced EAE in 

C57BL/6 mice or, administered during ongoing chronic disease, supported remission of 

the disease233. It could be that these different findings are due to differences of disease 

models such as relapsing EAE in SJL mice or chronic, non-remitting EAE in C57BL/6 

mice. 

5.4 α4-integrin blockade for the treatment of MS 
5.4.1 Clinical trials for Natalizumab 

After the promising results from the animal studies and several small clinical 

trials234-236 two randomized, double-blind, placebo-controlled, parallel-group, multicenter 

study phase III trials of natalizumab for the treatment for relapsing-remitting MS either 

alone (AFFIRM; Safety and Efficacy of Natalizumab in the Treatment of Multiple 

Sclerosis) or in combination with IFN-β (SENTINEL; Safety and Efficacy of 

Natalizumab in Combination With Avonex in the Treatment of Multiple Sclerosis) were 

initiated237,238. Already the natalizumab monotherapy proved to be extremely effective 

as it reduced the rate of clinical relapses per year by 68% and the accumulation of new 

or enlarging T2-weighted lesions over two years by 83%. The mean number of 

gadolinium-enhancing lesions after both one and two years was reduced by 92%. The 

risk of a sustained progression of disability, which was defined as an increase of the 

EDSS of 1.0 or more that lasted at least for 12 weeks, was decreased by 42%. 

Importantly, no rebound effects were observed after discontinuation of natalizumab 

treatment238. In comparison, the current standard treatment with glatiramer acetate or 

IFN-β is reducing the rate of clinical relapses per year by about 30%239,240. In patients 

that were already treated with IFN β-1a additional therapy with natalizumab decreased 

the risk of a sustained progression of disability by 24% and the annualized rate of 

relapses by 55%. Very similar to the natalizumab monotherapy over two years the 

number of new or enlarging T2-weighted lesions was reduced by 83% and the mean 

number of gadolinium-enhancing lesions by 89%237. 

Three patients participating in natalizumab trials developed progressive multifocal 

leukoencephalopathy (PML). This serious side effect is discussed in detail below. 

Besides PML only a few additional side effects were observed during the clinical trials. 

Neither of the two studies showed a significantly different incidence of opportunistic 

infections between the natalizumab and the control group indicating that natalizumab 
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specifically acts on CNS inflammation and displays no classic immunosuppressive 

action. Apart from that, natalizumab probably does not impair neutrophils, the bodies 

mainstay in the immune response against bacterial and fungal infections42. Neutrophils 

rely under normal conditions or during an acute inflammation mainly on β2 integrins for 

their extravasation37. A persistent presence of antibodies that occurred in 6% of the 

treated patients correlated with a loss of clinical efficacy237,238,241. 

Apart from MS, the efficacy of natalizumab was also shown for Crohn´s disease 

in phase III clinical trials227,228,242. The results of a completed phase II clinical trial of 

natalizumab for rheumatoid arthritis are not available to the public 

(http://clinicaltrials.gov/show/NCT00083759) but it has been shown in murine and rat 

models for arthritis that blockade of α4β1 is beneficial243,244. 

Currently alternative ways of blocking α4 by small molecule inhibitors are 

explored245. Small molecule inhibitors were effective in the treatment of rodent EAE231. 

These small molecule inhibitors offer the advantages that they can be orally 

administered whereas antibodies are always administered intravenously. Furthermore 

small molecule inhibitors are less likely to elicit binding antibodies in the patients that 

render the antibody treatment ineffective230. And their affinity, specificity and 

pharmacokinetics can be optimized easier than those of antibodies. Phase II clinical 

studies with orally available VLA-4 antagonists are currently ongoing 

(http://clinicaltrials.gov/ct2/show/NCT00484536). 

5.4.2 Progressive multifocal leukoencephalopathy 
Based on the positive clinical trials natalizumab was approved by the American 

FDA in November 2004 for treatment of relapsing-remitting MS246. Only three months 

later, in February 2005, natalizumab was voluntarily withdrawn from the market after 

two patients developed PML under combined treatment with IFN β-1a and 

natalizumab247,248. One of those patients died from PML and another patient in the 

clinical trial for Crohn´s disease also developed fatal PML249. Out of approximately 

3000 patients treated on average for 18 month with natalizumab three developed 

PML250. Before the clinical trials with natalizumab, PML was only known to occur in 

immunocompromised patients, for example organ transplant recipients receiving 

immunosuppressants, patients with hematologic cancers or patients suffering from 

acquired immunodeficiency syndrome (AIDS). PML has never been described to be 

connected with MS. PML is caused by an infection with JC virus (JCV), a polyomavirus. 

The primary, asymptomatic infection with JCV is usually acquired during childhood. A 

seroprevalence of 86% was shown in healthy adults 251. If the latent virus is reactivated 

oligodendrocytes are infected leading to viral lysis, which in turn causes an irreversible 
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demyelination of nerve fibers and persisting, severe neurologic deficits. PML has a very 

high mortality rate and there exists no specific treatment252.  

Under normal conditions JCV is kept in check, mainly by CD8+ T cells. Therefore 

it is possible that the prevention of normal lymphocyte trafficking by natalizumab 

causes the reactivation of JCV, especially under conditions with an additional 

immunomodulation by IFN-β or other medications253. It is also possible, that 

natalizumab has a direct effect on the JCV reactivation itself. JCV is known to remain 

latent in the kidney, in lymphoid organs and the bone marrow where JCV is associated 

with B cells252. Therefore, it is possible hat natalizumab might release JCV-infected 

cells from the bone marrow thereby promoting virus replication, distribution to the 

whole body and entry into the CNS254-256. It is also possible that the interplay of both 

mechanisms is aiding the development of PML in the natalizumab-treated patients257. 

After a careful reexamination of all treated cases and a safety analysis250 the 

FDA reapproved natalizumab for the monotherapeutic treatment of relapsing-remitting 

MS in June 2006 under a special distribution program (TOUCH; Tysabri Risk 

Minimization Action Plan). According to current consensus natalizumab is not regarded 

as a first-line treatment but is only considered after treatment with drugs such as 

glatiramer acetate, IFN-β, cyclophosphamide or mitoxantrone is not successful or 

poorly tolerated. Natalizumab is used in patients with relapsing-remitting MS and 

requires intensive monitoring for the occurrence of PML, exclusion of factors that 

interfere with cell-mediated immunity and normal leukocyte counts before natalizumab 

therapy258. 

5.4.3 Effects of natalizumab on the immune system 
In all phase III clinical trials it was noted that natalizumab is increasing the 

number of circulating lymphocytes, monocytes, eosinophils and basophils, and 

sometimes nucleated red cells227,237,238. In addition, natalizumab treatment leads to the 

release and therefore to elevated levels of CD34+ HSCs in the circulation259,260. 

Peripheral blood mononuclear cells from natalizumab-treated patients show a reduced 

migratory potential across a fibronectin layer in Boyden chamber experiments261. T 

lymphocytes have a reduced surface expression of the α4 subunit261,262, and 

leukocytes, particularly CD4+ and CD8+ T cells, CD19+ B cells and CD138+ plasma 

cells in the CSF are dramatically reduced, even 6 months after cessation of 

treatment263. Natalizumab treatment also significantly decreases the ratio of CD4+ to 

CD8+ T cells in the CSF, but only slightly in peripheral blood. It is possible that CD8+ T 

cells are less affected by natalizumab because they express more α4 integrin and are 

thus inhibited less efficiently. Interestingly, the CD4+/CD8+ ratio in the CSF of 
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natalizumab recipients is reduced to the same extent as in HIV-positive patients, which 

have a high risk to develop PML262. 

5.4.4 Open questions regarding the natalizumab treatment 
Although 15 years passed since the first report describing integrin α4-blockade 

for the treatment of MS appeared, several questions remain still unanswered.  

Firstly, it is not clear which cell types are affected by the natalizumab treatment 

and thus mediate the main clinical benefit. Interestingly, it has been shown that B cells 

and monocytes express more α4 than T cells, and CD8+ T cells have a higher α4 

expression than CD4+ T cells261. In contrast, neutrophils express little or no α4β1. 

Nevertheless it has been discussed that neutrophils might also utilize α4 integrins for 

extravasation under chronic inflammatory conditions37. One group demonstrated that 

anti-α4 antibody treated rats suffering from active EAE loose T cell infiltrates whereas 

macrophages were still detected in the CNS, indicating that the macrophages were not 

affected by the antibody treatment264.  

Secondly, it is not clear whether both α4β1 and α4β7 integrins have a function 

during EAE development. Some reports suggest that the β7 subunit has no role for 

EAE development56,231, whereas others identified a beneficial influence of α4β7 

blockade on the EAE course232,233 (Chapter 5.3.6). 

Thirdly, it is not known whether blockade of the α4β1-VCAM-1 interaction disturbs 

several immune functions, such as extravasation and/or T cell priming. Transfer EAE in 

SJL mice is less efficiently ameliorated with antibodies against VCAM-1 than with 

antibodies against α4 suggesting that α4 blockade either inhibits the interaction with a 

second ligand such as CS-1 fibronectin, that the α4 blockade interferes not only with 

lymphocyte adhesion or that anti-VCAM-1 blockade is incomplete. In vivo the anti-α4 

antibody R1.2 in contrast to the PS/2 antibody is a poor inhibitor of lymphocyte homing 

to Peyer´s patches226, but both antibodies have the same clinical potency in 

ameliorating EAE56. This suggests that R1.2 interferes with EAE development by 

mechanisms different from a mere adhesion blockade. This is in line with the fact that 

binding of immobilized CS-1 fibronectin, VCAM-1 or antibodies to α4β1 has a 

costimulatory effect during antigen-dependent activation and proliferation of T 

lymphocytes265-268. Both R1.2 and PS/2 interfere in vitro with antigen-specific 

proliferation of encephalitogenic T cell lines56. Antibodies against α4β1 that bind the 

same epitopes which mediate the binding to fibronectin and VCAM-1 have the highest 

costimulatory potential269. As described above, α4β1 is localized in the pSMAC of the 

immunological synapse between T lymphocytes and antigen presenting cells86. For B 

lymphocytes it has been shown that α4β1/VCAM-1 binding enhances cell-cell 
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adhesion, which in turn increases BCR signaling by indirectly strengthening the 

interaction of the BCR with membrane-associated antigens. The outcome is to facilitate 

the activation of B cells, especially for antigens that have a low affinity to the BCR88. 

In vitro myelin-specific T cells induce the production of proinflammatory cytokines 

such as TNF-α and IL-1β in microglia cells. This effect is contact-dependent and can be 

significantly reduced by treatment with blocking antibodies against integrin α4270. It was 

also shown that the expression of the α4 subunit on an encephalitogenic T cell clone 

induced MMP-2 and thereby facilitated transmigration through the blood brain 

barrier271. Finally, it was reported that α4 is important for the retention of autoreactive T 

cells in the parenchyma of the CNS114. Another interaction that might be inhibited by 

natalizumab is the binding of α4β1 to osteopontin46, an ECM protein that promotes 

proliferation and differentiation of T cells into the TH1 lineage. Osteopontin is 

upregulated in EAE and in CNS lesions of MS patients272, and mice that lack 

osteopontin seem to have a decreased EAE severity272,273.  
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6 Aim of the thesis 
Firstly, we wanted to analyze the role of the two α4 integrins, α4β1 and α4β7, in 

adult murine hematopoiesis (Paper II). Previous studies with somatic α4 chimeras 

suggested an important role for α4 integrins in hematopoiesis, especially during 

retention and maintenance of HSCs in the bone marrow, while deletion of α4 in HSCs 

caused only mild hematopoietic defects and hematopoiesis of β1 deficient bone 

marrow chimeras and β7 knockout mice is normal. The following hypotheses were 

brought forward to explain the conflicting results: (i) α4β1 and α4β7 compensate each 

other, (ii) a lack of α4 expression in non-hematopoietic cells such as bone marrow 

stroma cells causes the severe phenotype in α4-/- somatic chimeric mice, and (iii) fetal 

hematopoiesis depends more on α4 integrins than adult hematopoiesis. In order to test 

these hypotheses we analyzed adult hematopoiesis in mice deficient for the β7 gene 

and lacking the β1 gene in the hematopoietic system in an inducible fashion. 

Secondly, we wanted to assess the role of RhoH, a downstream effector of 

integrin signaling, during hematopoiesis (Paper III). The small Rho GTPase RhoH is 

expressed exclusively in cells of the hematopoietic lineage and it has been implicated 

in several processes including the maintenance of HSCs, leukocyte adhesion and 

migration and the development of B cell lymphomas. In order to assess these roles of 

RhoH in vivo, we generated and analyzed mice that are genetically deficient for RhoH. 

Finally, we examined the function of integrin β1 in the autoimmune disease model 

EAE, which resembles in many aspects MS in man (Paper IV). The monoclonal 

antibody natalizumab directed against the α4 subunit is currently used to treat MS but 

its exact working mechanism is not clear. The main mechanism seems to be 

interference with the interaction of extravasating leukocytes with endothelial cells of the 

blood brain barrier. However, several observations suggest that the antibody is also 

interfering with additional processes such as T cell proliferation, the production of 

inflammatory cytokines by activated microglia cells or other, yet unknown functions of 

the α4 subunit. Furthermore it is unknown, whether the beneficial effects of the 

antibody treatment rely on the inhibition of α4β1 and/or α4β7 and which cell type is 

mainly inhibited. Our main goals were to find out: (i) which events are inhibited by the 

antibody, (ii) which α4 heterodimer is the main target of the antibody, and (iii) which cell 

types are affected by the treatment. Therefore, we examined the development of EAE 

in mice lacking the β1 subunit in the hematopoietic system or specifically in T cells. 

Furthermore, we analyzed the proliferation, cytokine response and adhesion of β1 

deficient T lymphocytes. 
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7 Brief summaries of the publications 
7.1 Paper I: β1 integrins: zip codes and signaling relay for 

blood cells 
The functions of β2 integrins - which are specifically expressed on blood cells – in 

the hematopoietic and immune system have been described in great detail. However, 

many members of the large family of β1 integrins are expressed on blood cells as well, 

and fulfill a variety of important functions. In this review we describe the functions of β1 

integrins on hematopoietic cells during the various steps of an immune response. The 

basis of an adaptive immune response is the antigen-specific activation and 

proliferation of lymphocytes. Upon activation, lymphocytes have to extravasate from 

blood vessels and subsequently migrate through the endothelium, the underlying 

basement membrane and the connective tissue. When they finally reach the site of an 

ongoing inflammation they have to be correctly positioned and retained in the tissue. A 

role of integrins of the β1 family has been shown for all these steps. Therefore β1 

integrins gain more and more importance as targets of anti-inflammatory drugs, which 

is discussed in the last part of the article. 

7.2 Paper II: Adult murine hematopoiesis can proceed without 
β1 and β7 integrins 
We intended to clarify the role of α4 integrins in adult murine hematopoiesis, 

since previous experiments examining the importance of the α4 subunit and its two 

association partners, β1 and β7 for hematopoietic development produced controversial 

results. Therefore, we analyzed the hematopoietic system of bone marrow chimeric 

mice with an inducible knockout of the β1 subunit and a deletion of the β7 gene. 

To compensate each other, both β1 and β7 have to be expressed on the same 

cell type. Therefore, we assessed the expression of the β7 subunit on hematopoietic 

cells and found that β7 is indeed expressed together with β1 on HSCs and on many 

other cells of the lymphoid and myeloid lineage. Analysis of hematopoiesis in bone 

marrow chimeras with β1/β7 double-deficient HSCs showed that the maintenance of 

HSCs was not impaired. Furthermore, neither the development of T nor of B 

lymphocytes was disturbed. To check whether the upregulation of other adhesion 

molecules compensates the loss of β1 and β7 in B and T lymphocytes, we compared 

the expression profiles of control and knockout lymphocyte populations with the help of 

affymetrix microarrays. No compensatory changes in molecules such as other 

integrins, selectins, VCAM-1 and MAdCAM-1 could be detected. Likewise, myeloid and 

erythroid cells developed normally in the double knockouts. Hematopoietic progenitor 
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cells in bone marrow and peripheral blood were slightly and transiently increased. We 

could show that the dramatic increase of those cells in non-bone marrow chimeric α4 

Mx1-Cre mice results most likely from a loss of α4 expression on bone marrow stromal 

cells. After challenge of erythropoiesis by phenylhydrazine induced lysis of 

erythrocytes, the number of erythropoietic progenitor cells in the spleen was 

significantly reduced in β1/β7 double knockouts, suggesting a role for β1 and β7 

integrins during recovery of erythropoietic progenitor cells.  
In summary, we found that there were only subtle or transient alterations in the 

number and distribution of progenitor cells, while the maintenance and retention of 

HSCs was not severely altered in the absence of β1 and β7 integrins. Furthermore 

lymphoid, myeloid and erythroid cell development were normal. These results indicate 

that adult hematopoiesis is indeed independent of α4 integrins, and thus imply that 

there is no need for a compensation between α4β1 and α4β7. This result hence 

indicates that the observed severe defects in the somatic chimeric α4-/- mice are likely 

attributed to a loss of α4 expression on non-hematopoietic cells.  

7.3 Paper III: RhoH is important for positive thymocyte 
selection and T-cell receptor signaling 
The small Rho GTPase RhoH has been implicated in the development of B cell 

lymphomas, for the proliferation and survival of HSCs and for the migration and 

adhesion of lymphocytes and HSCs. In order to elucidate the role of RhoH in vivo we 

analyzed the hematopoietic system of RhoH deficient mice. 

First, we generated mice carrying a disrupted RhoH gene. Animals with a 

homozygous disruption of the RhoH gene were born at Mendelian ratios. Both two and 

six months after birth mutant mice developed no remarkable changes in myeloid, 

erythroid or B lymphocyte populations in peripheral lymphoid organs and the bone 

marrow. In contrast, at both points of time the number of T lymphocytes was 

dramatically decreased in bone marrow, spleen and lymph nodes. Analysis of 

thymocytes in vivo and in vitro revealed that the generation of T lymphocytes was 

severely affected during the development of late CD4-CD8- double negative 

thymocytes. Accordingly during the late stages of double negative thymocyte 

development, apoptosis was increased and proliferation decreased. At this stage T 

cells that generated functional β-chains receive signals from the pre-TCR and continue 

their development (β-selection). In addition the transition of double positive cells into 

single positive cells was impaired in vivo, suggesting that also positive selection of T 

cells that recognize self-MHC molecules was compromised. Therefore we analyzed 

mice carrying an ovalbumin-specific TCR in addition to the RhoH deficiency. In those 
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animals we observed an impaired positive selection of thymocytes from double positive 

into CD4+ single positive cells, a process that requires weak signaling of the TCR. In 

vitro analysis of TCR signaling revealed that signaling downstream of the tyrosine 

kinase ZAP70 to the scaffolding protein LAT and molecules associated with LAT was 

diminished in RhoH deficient thymocytes and splenocytes. Since it was proposed that 

RhoH negatively regulates the adhesive properties of integrin αLβ2 we also tested the 

adhesion of RhoH-/- thymocytes to ICAM-1, VCAM-1 or endothelial cells. The adhesion 

of control and RhoH-null thymocytes was indistinguishable. In line with these findings 

the defective T cell development could not be rescued in RhoH/β2 double knockout 

mice. 

In conclusion, RhoH deficient mice have no defect in the maintenance of HSCs, 

but the differentiation of T lymphocytes is severely disturbed due to reduced pre-TCR 

and TCR signaling. 

7.4 Paper IV: Extravasation of autoreactive T cells into the 
central nervous system is controlled by β1 integrins 
The aim of this work was to elucidate the role of β1 integrins during the 

development of an autoimmune disease. Previous investigations had implicated the α4 

integrins α4β1 and/or α4β7 in the development of the human disease MS and the 

animal model EAE. The blockade of the integrin α4 subunit with antibodies is an 

approved treatment of MS, nevertheless it is not known, which integrin heterodimer and 

which cell types are mainly targeted and what is the main mechanism of action of the 

therapy.  

To elucidate the role of integrin α4β1 during EAE pathogenesis, particularly 

during proliferation and extravasation of encephalitogenic T cells, we analyzed EAE 

development in mice missing β1 expression in all hematopoietic cells or specifically in 

T lymphocytes. We found that the ability of β1 deficient T cells to accumulate in the 

CNS of mice during active EAE is severely impaired. This result supports the current 

opinion that the main α4 integrin implicated in EAE pathogenesis is α4β1 since the 

presence of α4β7 could not rescue the defective T lymphocyte accumulation. To clarify, 

whether the reduced accumulation is due to diminished activation and proliferation 

and/or extravasation of the T cells we first analyzed T cell proliferation. In vivo 

proliferation of β1-/- T cells was not significantly altered; furthermore, β1 deficient T 

lymphoblasts showed a normal cytokine response upon antigen-specific stimulation in 

vivo. Second, we examined the adhesion of T cell blasts to the spinal cord 

microvasculature by means of IVM. We found that the adhesion of β1 integrin deficient 

T lymphoblasts to postcapillary venules was greatly reduced indicating that the failure 
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of β1 knockout T cells to enter the CNS during EAE is mainly caused by their impaired 

extravasation. Furthermore we could demonstrate that active EAE development is 

significantly delayed in mice lacking β1 expression specifically on most T lymphocytes 

whereas the EAE course was not changed in mice with a complete absence of β1 on 

myeloid cells. These results indicate that the main targets of the antibody therapy are 

the T lymphocytes. 

In summary, we could show in this study that encephalitogenic T cells critically 

rely on members of the β1 integrin family during the pathogenesis of the autoimmune 

disease EAE, identifying α4β1 as major target of anti-inflammatory therapies directed 

against the α4 integrin subunit. Furthermore, we could show that the main effect of the 

antibody therapy is the blockade of T cell extravasation, whereas the antigen-

dependent proliferation of T lymphocytes was not impaired. Finally, we demonstrate 

that T lymphocytes are the major target cell hit by the treatments with blocking anti-α4 

antibodies. 

7.5 Paper V: Analysis of integrin functions in blood 
This paper was published as part of a review on the “Analysis of integrin 

functions in peri-implantation embryos, hematopoietic system, and skin”, and focuses 

on methods permitting to analyze the functions of integrins in the hematopoietic and 

the immune system in gene targeted mice. The availability of Cre lines that induce a 

deletion of loxP-site flanked genes facilitates the analysis of integrin functions in 

basically all branches and cell types of the hematopoietic system. In addition, 

hematopoietic system-restricted integrin knockouts can be generated with the help of 

bone marrow chimeric mice. Subsequently flow cytometric methods that are essential 

for the examination of the hematopoietic system are discussed. Another interesting 

feature of hematopoietic cells is the fact that most of them can be readily isolated, 

cultivated and analyzed in detail in vitro. Therefore, we describe the generation of 

dendritic cells and methods to analyze the proliferation of T lymphocytes. In the end, 

we explain the induction of EAE in mice, since this is an elegant system to test the 

properties of integrin deficient hematopoietic cells in an autoimmune disease model. 
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In the following, papers I to V are reprinted. On the enclosed CD the 

supplementary figure for paper II, the supplementary methods and figures for paper III 

and the supplementary movies for paper IV can be found. The supplementary movies 

are provided in QuickTime Movie format. 
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b1 integrins: zip codes and signaling relay for blood cells
Michael Sixt, Martina Bauer, Tim Lämmermann and Reinhard Fässler

At least eight of the twelve known members of the b1 integrin

family are expressed on hematopoietic cells. Among these, the

VCAM-1 receptor a4b1 has received most attention as a main

factor mediating firm adhesion to the endothelium during blood

cell extravasation. Therapeutic trials are ongoing into the use of

antibodies and small molecule inhibitors to target this

interaction and hence obtain anti-inflammatory effects.

However, extravasation is only one possible process that is

mediated by b1 integrins and there is evidence that they also

mediate leukocyte retention and positioning in the tissue,

lymphocyte activation and possibly migration within the

interstitium. Genetic mouse models where integrins are

selectively deleted on blood cells have been used to investigate

these functions and further studies will be invaluable to critically

evaluate therapeutic trials.
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Introduction
To fulfill their surveillance function immune cells con-

tinuously patrol the organism, shuttling back and forth

between the blood stream, the lymphatic fluid, secondary

lymphatic organs and peripheral tissues [1]. This mobile

life style requires flexible switching between passive

transport and various cell-to-cell and cell-to-extracellular

matrix (ECM) interactions to arrest, migrate and become

activated.

The current paradigm of cell locomotion within tissues

and along cell surfaces involves integrin-mediated adhe-

sion to ECM or cellular counter-receptors, which gener-

ates traction forces necessary for translocation of the cell

body [2]. Integrins are perfectly suited to this task since

they link the cytoskeleton with the extracellular environ-

ment. Integrins are heterodimeric cell surface receptors

made up of a and b subunits. The combination of 18

known a and 8 b subunits in mammals can give rise to 24

different receptors [3]. Antibody blocking studies, gene

targeting approaches in mice and investigation of human

diseases have unambiguously revealed that integrins are

essential for intact hematopoietic development, home-

ostasis and inflammation. However, integrin ligand bind-

ing can affect several cellular events in addition to

adhesion and migration, including cell differentiation,

polarization, activation and survival [3]. A drawback of

most studies manipulating integrin functions on blood

cells in vivo is that the cell-biological process affected by

the manipulation is not exactly defined. This is especially

evident when complex inflammatory models (for example

for autoimmune diseases) are studied and clinical symp-

toms or histological parameters are used as readout. A

further critical issue is that within recent years an increas-

ing number of mouse knockout studies have been pub-

lished that address the in vivo function of cytoplasmic

proteins involved in integrin signaling without explicitly

investigating which integrins are affected.

In this review we focus on the largest integrin family

which contains the b1 chain. The blood-cell-specific b2
integrin subfamily has been extensively reviewed by

others [4]. We will try to dissect the different cell-biolo-

gical functions that b1 integrins mediate when leukocytes

emerge from the blood vessels, locate within tissues,

become activated and re-enter the blood circulation.

Extravasation from the blood circulation
One of the best-established concepts in leukocyte biology

is the extravasation paradigm. When hematopoietic cells

leave the blood stream they go through a sequential

adhesion cascade to overcome both the high shear forces

within the blood vessel and the tight seal of the endothe-

lial cells (see Figure 1). Transient selectin–carbohydrate

interactions cause hematopoietic cells to begin to roll

along an activated endothelium. While rolling, the cells

sense chemokines that are immobilized on heparan sul-

fate residues on the luminal side of the endothelial cells.

The ligated chemokine receptors then transmit signals

into the leukocyte that lead to the rapid activation of

integrins (inside-out signaling — see Box 1), which

results in the integrins adhering firmly to their counter

receptors on the endothelial cell. Although adhesion

during extravasation is an essential step during leukocyte

trafficking, it has little in common with cell migration in

the true sense. It is rather a cell adhesion event of the

hematopoietic cell to the two-dimensional surface of the

endothelial lumen.

The crucial b1 integrin family member involved in extra-

vasation is a4b1, which binds to the endothelial Ig
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superfamily cell surface receptor VCAM-1 (vascular cell

adhesion molecule 1). This interaction is conserved in

many different physiological settings where extravasation

occurs. In the steady state, lymphocyte recirculation via

high endothelial venules [5], T cell precursor entry into

the thymus [6] and T cell and stem cell homing into the

bone marrow [7–9] are regulated via this pathway. During

inflammation, lymphocytes and monocytes use a4b1 to

immigrate into the skin, lung, peritoneum and liver

[10,11,12�]. For several cell types it has also been shown

that VCAM-1-a4b1 binding can mediate not only firm

adhesion but also rolling along the endothelium [12�]. In a
somewhat controversial deviation from the paradigm,

there is evidence that extravasation of lymphocytes into

the central nervous system during autoimmune inflam-

mation is possible in the absence of previous rolling

[13,14�]. Here the cells can be rather abruptly captured

by VCAM-1 exposed on the endothelial lumen.

In most cases the function of a4b1 is partially redundant

with that of b2 integrins and a4b7, which bind the

endothelial counter-receptors intercellular adhesion

molecule (ICAM-1) and mucosal addressin cell adhesion

molecule-1 (MAdCAM-1), respectively. An impressive

example of this redundancy is lymphocyte recirculation

into lymph nodes, which is only partially affected by b2
and b7 elimination [5] and unimpaired in the absence of

b1 integrin [15]. Combined blockade, however, results in

almost 100% reduction of lymphocyte recirculation [5].

Many details concerning the overlapping functions of

these integrins remain to be clarified using genetic mod-

els in which the separate families are targeted

simultaneously.

Important exceptions to this redundancy are T cell traf-

ficking into the CNS, which is largely inhibitable by a4b1
blockade [16], stem cell homing into the bone marrow,

which is completely defective in the absence of b1
integrin [7], and the migration of hematopoietic progeni-

tor cells from the fetal blood into the fetal liver during

early development. In early hematopoietic development,

we could show that genetic deletion of the b1 integrin

gene in progenitor cells leads to their accumulation in the

fetal blood and hence the inability to populate hemato-

poietic tissues [7,17]. Although it is likely that a4 is of

major importance in this setting, other a chains may be

involved. A possible candidate is the largely neglected

integrin a9b1, which is highly expressed on granulocytes

and binds to VCAM-1 and the ECM proteins tenascin,

osteopontin and fibronectin. a9b1 has been shown to

mediate transendothelial migration in vitro via interaction
with VCAM-1 [18]. Interestingly, a4 and a9 chain are

closely related and together form a sub-family that binds

to the cytoplasmic adaptor paxillin [19].

Migration through the endothelium
Tight adhesion to the endothelium is followed by a

cascade of migration events that probably successively

trigger each other. First the cells have to pass through the

endothelial monolayer. There is no in vivo evidence that

this process — called ‘diapedesis’ — is directly depen-

dent on b1 integrins. It is rather mediated by cell adhe-

sion molecules of the JAM family, CD99 and PECAM-1

[1]. Nevertheless, ligation of endothelial VCAM-1 via

a4b1 seems to be a prerequisite for diapedesis, as it

triggers a signal within the endothelial cell that is trans-

mitted via the cytoplasmic tail of VCAM [20]. The

endothelial cell then reacts by actively extending protru-

sions to capture and guide the extravasating cell through

intercellular junctions or by transcytosing it directly
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Box 1 Regulation of b1 integrin activation

On circulating leukocytes, integrins are locked in the low-affinity

state. Only upon ‘inside out’ signaling (triggered, for example, by

chemokines, growth factors or T cell receptor activation) integrins

adopt a high-affinity conformation (termed integrin activation)

facilitating ligand binding and subsequent cell adhesion. Ligand

binding in turn induces integrin ‘outside in’ signaling that (among

many other effects) further consolidates cell binding by clustering

the integrins and thereby increasing binding avidity. Cytoplasmic

key players mediating ‘inside-out’ signaling are the small GTPases

of the Rap family and talin.

Rap1: Several recent in vitro studies have proven that Rap1, the

best-characterized member of the five Rap proteins, is essential for

b1 integrin activation on leukocytes. Studies with cell lines revealed

that activated Rap1 increases b1 integrin-mediated adhesion and

migration on VCAM-1 via a4b1 and on fibronectin via a4b1 and

a5b1 [57,58]. The same was shown for primary thymocytes of

transgenic mice expressing the constitutively active Rap1-mutant

Rap1V12 [59], whereas T and B cells derived from Rap1-deficient

mice show impaired adhesion on fibronectin [60]. Rap1 is recruited

to the plasma membrane by PKD1, where it is activated upon

integration into a complex containing the b1 integrin cytoplasmic tail

[61,62]. For Rap1-mediated inside-out signaling, the two Rap1

binding effectors RIAM and RAPL are essential. Accordingly, T cells

and dendritic cells from RAPL-deficient mice show impaired

adhesion to b1 integrin ligands and reduced transmigration through

endothelial monolayers [63]. Overexpression of RIAM enhances

Rap1-mediated T cell adhesion to fibronectin. Through its interac-

tion with profilin and ENA/Vasp proteins, RIAM probably links

Rap1–GTP to the actin cytoskeleton [64].

Talin: Talin is a large rod-like molecule that binds via its globular

head domain to the membrane proximal NPXY motif of b integrins

in a phosphorylation-regulated manner. Talin acts as a physical

link between integrins and the actin cytoskeleton and its binding to

integrin b chains is regarded as the final common step in integrin

activation [65]. Two recent studies assessed the in vivo role of the

b1 integrin NPXY motifs by employing mouse genetic models.

They revealed that the intact conformation of the NPXY motifs are

essential, as substitution of the tyrosines by alanine abolishes b1

integrin function and leads to a b1 integrin-null phenotype [66,67].

Accordingly, chimeric mice with alanine substitutions, similar to a

b1 integrin-null chimera, fail to develop hematopoietic cells,

probably as a result of impaired talin binding [67]. Both studies,

however, challenged the former view that tyrosine phosphorylation

is essential for affinity regulation of b1 integrins, as replacement of

both cytoplasmic tyrosines with phenylalanine did not result in an

obvious phenotype, indicating that tyrosine phosphorylation is

dispensable for the physiological b1 integrin function in vivo.
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Figure 1

Roles of b1 integrins during extravasation, interstitial migration and lymphocyte activation. (a) During selectin-mediated rolling, the extravasating

cell senses chemokines that are immobilized on the surface of the endothelium, leading to the inside-out activation of integrin a4b1. (b) The

a4b1–VCAM-1 interaction mediates firm adhesion and triggers a reverse signal via VCAM-1 that induces the extension of endothelial protrusions,

Current Opinion in Cell Biology 2006, 18:482–490 www.sciencedirect.com



through the endothelial cell body— called emperipolesis

[20,21].

Transmigration through the basement
membrane
All the events following diapedesis are far less character-

ized, which is mainly due to their experimental inacces-

sibility and the lack of established in vitromodels to study

molecular interactions. Directly after passing through the

endothelium, the transmigrating cells face a seemingly

impermeable barrier of ECM: the endothelial basement

membrane (BM). BMs are tightly interconnected and

thin (�50–100 nm) sheets of specialized ECM compo-

nents of the laminin and collagen IV family [22]. It is

possible that b1 integrins play an active role during this

passage and in vitro studies have demonstrated that

leukocytes can actively bind BM components [23]. If

BM transmigration is selectively blocked in vivo one

would expect that extravasating leukocytes become

trapped between the endothelial cell layer and the under-

lying BM. Indeed this phenomenon was observed when

extravasation of granulocytes triggered by interleukin

(IL)-1 was studied in mice in which platelet endothelial

cell adhesion molecule-1 (PECAM-1) was functionally

inactivated by blocking antibodies or genetic deletion

[24]. The homophilic interaction between PECAM-1 on

granulocyte and endothelium induced the up-regulation

of the laminin binding a6b1 integrin on the granulocyte

surface, which in turn was necessary for BM transmigra-

tion [25]. Although this sequence of events was well

demonstrated in this specific experimental setting, it is

not a general phenomenon, as granulocyte extravasation

in response to tumor necrosis factor (TNF)a occurred

independently of PECAM-1 and a6b1 [26]. Another

recently reported example of the possible involvement

of a BM binding integrin during extravasation is the

reduced homing of hematopoietic stem cells into the

bone marrow after antibody blockade of a6b1 [27].

A physiologically distinct situation where leukocytes

cross a BM occurs during the emigration of Langerhans

cells from the epidermis. Their penetration through the

epidermal BM (which is biochemically distinct from

blood vessel BMs [28]) can also be inhibited by antibody

blockade of a6 integrin [29]. Although in this case it

remains to be shown which b chain (b1 or b4) pairs with
a6, laminin is the likely ligand.

Apart from these fragmentary data about molecular

players, the progression of physiological events that leads

to BM transmigration is completely enigmatic.

Proteolytic digestion via proteases, especially by the

matrix metalloproteinase (MMP) family, has been sug-

gested in several ex vivo models [30,31]. In this context it

is interesting that ligation of integrins can lead to the

induction of MMPs on leukocytes [31,32]. It remains to

be shown if integrins merely signal the presence of a BM

to induce proteolytic cascades or other events leading to

the BM’s local disassembly, or if integrin-mediated adhe-

sion is also a physical requirement for the translocation of

the cell body through the BM.

Migration through the interstitium
The diverse extracellular environments that leukocytes

face upon passaging through the BM range from the

loosely packed and fibrillar-collagen-dominated connec-

tive tissue of the mesenchymal interstitium to the

cell-rich environment of secondary lymphatic organs.

At this stage, true directed migration takes over and it

is assumed that leukocytes navigate along gradients of

chemotactic agents towards their destinations. Despite

numerous in vitro studies using artificial settings such as

transwell filters coated with ECM components, it is still

controversial if this directed migration depends on integ-

rins at all in vivo. The most direct experimental evidence

for integrin involvement is provided by a series of intra-

vital microscopy studies revealing that migration of gran-

ulocytes through the mesenteric interstitium can be

partially inhibited by blocking antibodies against the

collagen-binding b1 and a2 integrin chains [33–35].

However, measured reductions in speed of only �30%

raise the question of whether the remaining migratory

activity is mediated by compensating (b2 or av) integrins
or whether it is completely integrin-independent. In vitro
experimental approaches using three-dimensional gels of

the fibrillar collagens I and III, which mimic the inter-

stitial ECM, can be utilized as migration matrices and

studied by video microscopy. Even in this artificial and

very defined setting, the results obtained with integrin-

blocking antibodies are controversial. By combined anti-

body blockade of av, b2 and b1 integrins, it was shown

that random T cell migration in the gel can occur in an

‘ameboid’ fashion in the complete absence of integrin-

mediated binding [36] and proteolytic activity [37]. How-

ever, others demonstrated that in the presence of che-

motactic agents, T cells utilize b1 (a1, a2, a6) integrins
for locomotion within collagen gels [38]. Although the

issue of interstitial migration remains to be clarified using

genetic approaches in combination with intravital micro-

scopy, it is evident that it is essential to define not only the

nature of the ECM ligand but also the spatial configura-

tion of the extracellular environment in order to establish
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(Figure Legend 1 continued) establishing a ‘docking structure’. (c) Diapedesis is mediated via PECAM-1, JAMs, CD99 and b2 integrins

(not shown). Signals from the endothelium induce surface expression of a6b1 and proteases on the transmigrating cell. (d,e) In some cases the

laminin-binding integrin a6b1 and cell surface proteases mediate passage of the basement membrane. (f) a4b1 localizes to synapses between

follicular dendritic cells and B cells and dendritic cells and T cells where it promotes lymphocyte activation. (g) Interstitial migration along

chemotactic gradients is possibly mediated by the collagen-binding a2b1 integrin.
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integrin dependency. In an elegant study, Malawista et al.
[39] showed that in the spatially constrained environment

of a narrow space between two closely adjacent glass

surfaces, granulocytes can switch to biophysical mechan-

isms of translocation (squeezing or ‘chimneying’) that are

independent of integrin binding. By contrast, on two

dimensional surfaces granulocytes are completely depen-

dent on integrins to generate traction forces [39]. These

findings impressively demonstrate the importance of

using 3-dimensional model systems to study interstitial

blood cell migration.

In the light of these diverse and partially controversial

data, it seems possible that within the 3-dimensional

environment of the interstitium the quickly migrating

blood cells employ adhesive mechanisms that are funda-

mentally different from the integrin-dependent migra-

tion strategies used by mesenchymal cells.

Retention and positioning within the tissue
While it still remains to be clarified to what extent

integrins are involved in interstitial leukocyte migration,

there is solid evidence that integrin-mediated binding can

define the position of hematopoietic cells by immobiliz-

ing and retaining them in their niches. Owing to the poor

knowledge about the spatial configuration and molecular

composition of these niches, it is not known if retention

simply reflects integrin-mediated cell binding or if more

complex processes are triggered via integrin signaling that

ultimately lead to retention. Two prominent examples of

integrin-mediated retention are illustrated by studies

involving marginal zone B cells and hematopoietic pro-

genitor cells.

Several studies revealed that different precursors can be

released from the bone marrow by antibody blockade or

genetic inactivation of the a4 integrin [40,41]. Similar

results were obtained with mice lacking the a4b1 ligand

VCAM-1 [42]. It has been proposed that in the bone

marrow the stroma-derived chemokine CXCL12 triggers

a sustained signal that keeps the integrin in the active

state and therefore immobilizes the cells to VCAM-1 and

fibronectin on stroma cells [43].

Marginal zone B cells are part of the first line defense

system against circulating soluble antigens. As such, they

are located in a defined ring area around the white pulp

follicles of the spleen, where they capture blood-borne

antigens. Only upon activation by microbial stimuli or

antigen do they downregulate integrin avidity, detach

from the marginal zone and follow a chemotactic gradient

of the chemokine CXCL13 that guides them into the

follicle, where they produce immunoglobulins. The

retention of marginal zone B cells is redundantly

mediated by a4b1 and aLb2 integrin, and blockade or

genetic ablation of these integrins causes the cells to

dislocate from the marginal zone [44]. In marginal zone

B cells, integrin affinity was shown to be regulated via the

GTPase RhoA and the exchange factor lsc, as in the

absence of lsc these cells are unable to leave their niche

following stimulation owing to an insufficient down-mod-

ulation of integrin avidity [45�].

An interesting series of studies that suggests a role for

integrin-mediated retention during pathological pro-

cesses has been performed by de Fougerolles and

co-workers. Using antibody blockade and genetic inactiva-

tion, they demonstrated that the collagen receptors a1b1
and a2b1 are critically involved in the course of cutaneous

hypersensitivity, experimental arthritis and colitis by

localizing T cells within the interstitium [46–48]. Further-

more, in twomodels of murine virus infection, the number

of virus-specific CD8 memory T cells in the lung of

infected animals could be reduced by anti-a1b1 adminis-

trationwithout affectingT cell recruitment during primary

infection [49,50�]. Therefore it is likely that a1b1
is needed for the long term retention of CD8 memory

T cells in the lung.

Cell–cell interactions and activation of
lymphocytes
The initiating step in all T-cell-dependent immune

responses is the formation of an immunological synapse

— the contact between an antigen-presenting cell (B

cell or dendritic cell) and a T cell. A main functional

constituent of the synapse is a sealing zone (the periph-

eral supramolecular activation cluster or pSMAC), which

is defined and maintained by the interaction of LFA1

on the T cell with ICAM 1 on the antigen presenting

cell.

Although early in vitro studies already suggested that b1
integrins have potent co-stimulatory functions, condi-

tional knockout mice lacking b1 integrins on hemato-

poietic cells showed a relatively weak immunological

phenotype: T-cell-dependent immune responses were

grossly unaffected with the surprising exception that

IgM production was severely decreased [15]. However,

recent data suggest that members of the b1 integrin

family might play a more subtle regulatory role during

immune synapse formation. Mittelbrunn et al. showed
that a4b1, like aLb2, localizes within the pSMAC of

synapses between T cells and dendritic cells/B cells.

Furthermore, they could demonstrate that this interaction

is important for shifting of the T cells towards a Th1-type

cellular immune response [51��]. Another recent study

showed that B cells utilize a4b1 to bind VCAM-1 co-

expressed with antigen on the surface of fibroblasts in
vitro, which might reflect B cell interaction with follicular

dendritic cells in the lymph node [52,53�]. Moreover, it

could be shown that this interaction synergizes with the B

cell receptor signal and triggers B cell activation. It will be

important to test if integrins assist T/B cell receptor

signaling only indirectly, by establishing and maintaining
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the cell–cell contact, or if active cross talk occurs between

the signaling pathways triggered by both receptors.

Members of the b1 integrin subfamily as
anti-inflammatory drug targets
Pharmacological interference with leukocyte extravasa-

tion is an attractive strategy for anti-inflammatory thera-

pies that was sparked off by the discovery of the

extravasation paradigm in the late 1980s. Table 1 lists

some selected diseases where blockade of b1 integrins

showed beneficial effects, together with a proposed

mechanism of action. Although the intended therapeutic

effect ofmost of these therapeutic approaches involves the

inhibition of firm adhesion to the endothelium, it is not

clear whether other processes, for example lymphocyte

activation, could be affected as well. A prominent example

of this uncertainty is autoimmune inflammation of the

central nervous system. It is well established that the

binding of lymphocytes to inflamed brain blood vessels

during experimental autoimmune encephalomyelitis in

rodents is inhibited by antibodies against a4b1 and that

these antibodies prevent the development of the disease

[16]. This therapeutic principle was used in a clinical trial

to treat patients suffering from the equivalent human

disease, multiple sclerosis [54]. Despite very promising

results, approximately one out of thousand patients

acquired a deadly opportunistic viral infection of the

CNS during chronic treatment [55]. These could have

been caused either by impaired trafficking of non-patho-

genic lymphocytes that are essential for normal CNS

immunosurveillance or by a more general immunosup-

pression. Indeed it has been shown in rodent EAE that an

anti-a4 antibody which does not inhibit lymphocyte hom-

ing in vivo still ameliorates EAE [56]. This argues in favor

of an additional role for a4b1 apart from mediating extra-

vasation. In this context the recent data suggesting a role

for a4b1 in T cell activation are of special interest.

Conclusions
Advances in the field of intravital imaging make it now

possible to track the dynamic behavior of cells in most

tissues of living animals. In combination with genetic

models where integrins are specifically deleted on

defined blood cell lineages, this approach will allow the

pinpointing of many of the cell biological roles of b1
integrins on hematopoietic cells. This knowledge will be

decisive to predict side effects when pharmacological

approaches are developed in which integrins are targeted

in a non-cell-type-specific manner. Investigating cyto-

plasmic players involved in the activation of the b1
integrins will further teach us to what extent the signaling

pathways are cell-type- and a-chain-specific and will

eventually reveal new drug targets to inhibit extravasation

in a more cell- and tissue-type-specific manner.
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Table 1

Model system Involved integrin dimer and

mode of inhibition

Effects of integrin inhibition Proposed mode of action References

EAE, multiple sclerosis

(Lewis rat, mouse,

human)

a4b1 Reduced clinical signs of disease,

reduced inflammatory infiltrate

Blockade of firm adhesion to

endothelium and thereby

extravasation

[16,54,56]

Anti-a4 mAb

Morbus Crohn

(human)

a4 integrins Reduced clinical signs and lowered

C-reactive protein levels

Not addressed, probably

extravasation blockade

[68]

Humanized anti-a4 mAb

Arthritis

(mouse)

a4b1 Reduced clinical signs, reduced

inflammatory infiltrate and mediators;

bacterial clearance not affected.

Interference with neutrophil

activation, cellular trafficking

not severely affected

[69]

S18407: synthetic a4b1

inhibitor

Hepatitis

(mouse)

a1b1, a2b1 Reduced clinical signs, reduced

inflammatory infiltrate

Unclear; either migration in

tissue or activation of cells

[46]

Anti-a1/a2 mAb, a1

deficiency

a4b1 Reduced clinical signs of disease Interference with a4b- mediated

rolling, adhesion in sinusoids

[12�]
Anti-a4 mAb, anti-VCAM-1

mAb

Peritonitis (mouse) a4 integrins Defective recruitment of lymphocytes

and monocytes to the peritoneum

Probably extravasation blockade [70]

Y991A mutation in a4,

blocks paxillin binding

Influenza

(mouse)

a1b1 No inhibition of the recruitment to the

lung during primary infection; reduced

number of memory CD8+ T cells in the

tissue and compromised secondary

immunity

Inhibition of long term retention

of CD8 memory T cells in the

lung

[50�]
a1 deficiency; anti-a1 mAb

Colitis

(mouse)

a1b1 Reduced clinical symptoms, reduced i

nflammatory infiltrate, decreased IFN-g

and TNF-a production

Reduced extravasation, migration

or retention of monocytes;

reduced cytokine production

[48]

a1 deficiency; anti-a1 mAb

CNS, central nervous system; EAE, experimental autoimmune encephalomyelitis; TNBS, 2, 4, 6-trinitrobenzene sulfonic acid.
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HEMATOPOIESIS

Adult murine hematopoiesis can proceed without �1 and �7 integrins
Gerd Bungartz, Sebastian Stiller, Martina Bauer, Werner Müller, Angela Schippers, Norbert Wagner,
Reinhard Fässler, and Cord Brakebusch

The function of �4�1 and �4�7 integrins
in hematopoiesis is controversial. While
some experimental evidence suggests a
crucial role for these integrins in reten-
tion and expansion of progenitor cells
and lymphopoiesis, others report a less
important role in hematopoiesis. Using
mice with a deletion of the �1 and the �7
integrin genes restricted to the hemato-
poietic system we show here that �4�1
and �4�7 integrins are not essential for

differentiation of lymphocytes or myelo-
cytes. However, �1�7 mutant mice dis-
played a transient increase of colony-
forming unit (CFU-C) progenitors in the
bone marrow and, after phenylhydrazine-
induced anemia, a decreased number of
splenic erythroid colony-forming units in
culture (CFUe’s). Array gene expression
analysis of CD4�CD8� double-positive
(DP) and CD4�CD8� double-negative (DN)
thymocytes and CD19� and CD4� spleno-

cytes did not provide any evidence for a
compensatory mechanism explaining the
mild phenotype. These data show that
�4�1 and �4�7 are not required for blood
cell differentiation, although in their ab-
sence alterations in numbers and distribu-
tion of progenitor cells were observed.
(Blood. 2006;108:1857-1864)

© 2006 by The American Society of Hematology

Introduction

The development and maintenance of hematopoietic stem cells
(HSCs), which can self-renew and differentiate into all hemato-
poietic blood cell lineages, is thought to depend on their
interactions with the microenvironment. Integrins expressed on
HSCs are capable of mediating several of those interactions as
they can bind extracellular matrix components such as fibronec-
tin and laminin, but also cellular receptors like VCAM-1
expressed on bone marrow (BM) stroma cells. Integrins are a
family of heterodimeric cell-surface receptors consisting of an �
and a � subunit.1 Integrins provide mechanical support by
connecting the extracellular matrix (ECM) with the cytoskel-
eton, but are also capable of transducing chemical signals upon
ligand binding. This signaling results in cytoskeleton reorganiza-
tion and changes in gene expression affecting proliferation,
differentiation, and survival of cells.2 Molecules inside the cell,
on the other hand, can modulate the affinity and avidity of
integrins, called inside-out signaling, which is, for example,
crucial for the extravasation of leukocytes.3

In vitro and in vivo experiments suggests an important role of
�4�1 and �5�1 integrins for the adhesion of HSCs and hematopoi-
etic progenitor cells (HPCs) to fibronectin in the bone marrow
matrix.4,5 Integrin �4�1 was additionally shown to mediate binding
to VCAM-1, which is expressed on BM stroma cells.6 Injection of
fibronectin fragments and blocking antibodies against �4�1 and
VCAM-1 led to a release of HSCs/HPCs into the blood, supporting
the proposed importance of these interactions in vivo.5,7 Condi-
tional deletion of the VCAM-1 gene resulted in an early exit of
B-cell precursors into the blood.8 Finally, it was shown that

�4�1–mediated attachment of HPCs to fibronectin promotes
proliferation and survival,9,10 suggesting a crucial role for self-
renewal and survival of HSCs.

In vivo studies with �1 integrin–deficient somatic chimeric
mice, which are generated by injecting �1-null embryonic stem
(ES) cells into wild-type host blastocysts, demonstrated that �1
integrin is not required for the formation of HSCs, but is essential
for their migration to the fetal liver.11 Additionally, �1 integrin–
deficient HSCs failed to engraft lethally irradiated mice.12 Alto-
gether, these data pointed to a key role of �4�1 integrin in
hematopoiesis. This notion was corroborated by the analysis of
�4-null somatic chimeric mice, which have almost no mature B
cells, T cells, or erythroblasts derived from �4-null ES cells.13,14 In
vitro experiments with cells derived from the �4-null chimeric
mice suggested that both erythroid and B-cell precursors are less
able to transmigrate through the stroma, which may result in
reduced cell proliferation.14 Also, the number of �4-deficient
myeloid cells was reduced compared with control chimera. Since
�7 integrin constitutive null mice displayed normal hematopoi-
esis,15 it was suggested that �4�1 integrin might be the pivotal
integrin during hematopoiesis, as �4 can dimerize only with �1 and
�7 integrins. Therefore, it was unexpected when �1 mutant BM
chimeras showed no defects in blood cell development.16 The
simplest explanation at that time was that �4�1 and �4�7 integrin
might have redundant functions in blood cell development and that
only the absence of both receptors leads to the described hematopoi-
etic defects. However, further experiments showed that inducible
deletion of the �4 integrin gene has only subtle effects on
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hematopoiesis.17 These mutants showed only a partial reduction of
the B220� B-cell and CD4� T-cell populations in BM. Monocytes
(Mac-1�) and erythroblasts (Ter119�) were reported to occur in
normal amounts in the BM. In this study, however, the �4 integrin
gene was not only deleted in hematopoietic cells but also in many
nonhematopoietic cells such as hepatocytes, endothelial cells, and
so on, which could contribute to the phenotype. An alternative
explanation for these contrasting results could be that fetal
hematopoiesis is more dependent on �4 integrin than adult
hematopoiesis.

To better understand the role of �4�1 and �4�7 integrin in adult
hematopoiesis, we generated and analyzed mice with a blood
cell–restricted knockout of �1 and a constitutive knockout of �7
integrin. As a consequence �4�7, �4�1 and also other �1 integrins
expressed on blood cells are lost. In contrast to the �4-null somatic
chimeras13,14 or the �4 conditional knockout mice17 used previ-
ously, we can exclude any effects due to deletion of �4 on
nonhematopoietic cells, which might influence hematopoiesis
through altered production of cytokines and growths factors or
different cell-cell interactions. This model was used to study HSC
maintenance, HPC distribution and differentiation, and the migra-
tion of differentiated cells in the absence of �1 and �7 integrins in
adult mice. We demonstrate now that even in the absence of both
�4�1 and �4�7 integrins, hematopoiesis is normal.

Materials and methods

Generation of mice with a deletion of the �1 and the �7 integrin
genes in the hematopoietic system

Mice carrying a �1 integrin gene flanked by loxP sites (fl/fl)16 were mated
with mice with a neomycin-disrupted �1 integrin gene (�/�),18 mice
lacking a functional �7 integrin gene (�7�/�),13 and with mice carrying the
Mx transgene (�Mx).19 �1�7 mutant BM chimeras were generated by BM
transplantation as described previously.20 Recipient Ly-5.1� mice were
lethally irradiated and received BM cells from Ly-5.2� �1fl/��7�/��Mx or
�1fl/fl�7�/� mice (�7 mutant BM chimeras) or from �1fl/fl�7�/��Mx mice
(�1�7 mutant BM chimeras). Four weeks after the transfer, deletion of the
�1 gene was induced by polyIC injections as described previously.20

Animal treatment

Mice were maintained and bred under pathogen-free conditions. All animal
experiments were approved by the local ethics committee. Blood samples
were obtained from the retro-orbital plexus under anesthesia. Acute
hemolysis was assessed after phenylhydrazine (PHZ; Sigma, Steinheim,
Germany) treatment as described.16

Türk staining

Whole blood of control and �1�7 mutant BM chimeras was isolated,
diluted 1:10 with Türk stain (0.01% gentian violet, 1.0% acetic acid), and
differentially counted for polymorphonuclear and mononuclear cells in a
hemocytometer.

Flow cytometry

Single-cell suspensions were prepared and analyzed as described.16 Erythro-
cytes in blood samples were lysed by incubation in ACK-lysis buffer for 5
minutes at room temperature prior to staining.21

Deletion of the �1 integrin gene on BM stroma cells was assessed by
measuring the activity of the �-galactosidase reporter.16 Five days after a
single injection of 250 �g polyIC, BM cells were plated on tissue-culture
plates as described.22 After 24 hours, nonadherent cells were removed and
adherent cells detached by trypsin/EDTA. Nonhematopoietic BM stroma
cells were characterized as Ly-5.2�Ter119�adherent cells, which consist of

mesenchymal stem cells, fibroblasts, endothelial progenitor cells, and
endothelial cells.23 Hematopoietic cells, on the other hand, were identified
as Ly-5.2� or Ter119� nonadherent cells. Cells were stained for �-galacto-
sidase activity as described,24 with minor changes. Briefly, 4 � 106 cells
were suspended in 20 �L phosphate-buffered saline (PBS) added to 20 �L
of 2 mM fluorescein-di-(beta-D-galactopyranoside) (FDG; Sigma). Cells
were incubated at 37°C for 75 seconds and subsequently 200 �L ice-cold
PBS was added. Cells were incubated for 3 hours on ice and analyzed by
flow cytometry as described.16

For the analysis of platelets, 5 �L antibody solution containing
FITC-conjugated anti–�1 integrin (Ha2/5; 1:10 diluted; BD Pharmingen,
San Diego, CA) and PE-conjugated anti–GPIb-IX (p0p1) (kindly donated
by Dr B. Nieswandt, University of Würzburg, Germany; 1:10 diluted) was
added to 1 �L whole blood. After a 15-minute incubation at room
temperature in the dark, 100 �L PBS was added and samples were analyzed
by fluorescence-activated cell sorting (FACS).

Colony formation assay

Pre-B and CFU-C colony formation assays were performed as described
previously.16 CFUe assays were carried out following the instructions of the
manufacturer (Stem Cell Technologies, Vancouver, BC, Canada).

Separation of splenocytes by MACS

Leukocyte subpopulations were isolated from single-cell suspensions of
splenocytes by positive selection using FITC-conjugated antibodies against
B220 (B cells), CD4 (CD4 T cells), or CD8 (CD8 T cells) and anti-FITC
MACS beads according to the manufacturer’s instructions (Miltenyi
Biotec, Bergisch Gladbach, Germany). The purity of the sort was checked
by FACS analysis.

Southern blot analysis

Southern blot analysis was carried out as described.16 Membranes were
exposed to x-ray films and the resulting bands quantified using
Bio-PROFIL Bio-1D V97.03 software (Vilber Lourmat, Marne-la-
Vallée, France).

DNA microarray hybridization and analysis

Total RNA was isolated from FACS-sorted populations of thymocytes (DN,
CD4�CD8�; DP, CD4�, CD8�) and splenocytes (CD19� B cells; CD4� T
cells). For biotin-labeled target synthesis reactions were performed using
standard protocols supplied by the manufacturer (Affymetrix, Santa Clara,
CA). Briefly, 5 �g total RNA was converted to double stranded (ds) DNA
using 100 pmol of a T7T23V primer (Eurogentec, Seraing, Belgium)
containing a T7 promotor. The cDNA was then used directly in an in vitro
transcription reaction in the presence of biotinylated nucleotides.

The concentration of biotin-labeled cRNA was determined by UV
absorbance. In all cases, 12.5 �g of each biotinylated cRNA preparation
was fragmented and placed in a hybridization cocktail containing 4
biotinylated hybridization controls (BioB, BioC, BioD, and Cre) as
recommended by the manufacturer. Samples were hybridized to an identical
lot of Affymetrix MOE430A for 16 hours. After hybridization, the
GeneChips were washed, stained with SA-PE, and read using an Affymetrix
GeneChip fluidic station and scanner. Gene expression levels were deter-
mined by means of Affymetrix’s Microarray Suite 5.0 (MAS 5.0).

Results

�1 and �7 integrins are coexpressed in many hematopoietic
cells, including HSCs

In order to replace each other functionally, �4�1 and �4�7 must be
expressed in the same cells. While �1 integrin is expressed on all
hematopoietic cells besides erythrocytes,12,16 the expression of �7
integrin is more restricted (Figure S1, available on the Blood
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website; see the Supplemental Figure link at the top of the online
article). In BM, �7 integrin was found on lin�c-kit�Sca1 high cells
(ie, bona fide stem cells), most mature B cells (B220 high), on
subpopulations of mature and immature granulocytes (Gr-1 high;
Gr-1 medium), and on few erythroid cells (Ter119�) and immature
B cells (B220 low). �7 integrin was furthermore found on subsets
of DN, CD4SP, and CD8SP thymocytes, whereas it was virtually
absent on DP thymocytes. In spleen and lymph nodes, �7 integrin
was present on most B cells (B220�), T cells (CD4�, CD8�), and
granulocytes (Gr-1�). In lymph nodes, about 50% of the erythroid
cells (Ter119�) expressed �7 integrin, whereas only a few percent
of the erythroid cells in the spleen had �7 on their surface.

Normal maintenance of HSCs in the combined absence of �1
and �7 integrins

To directly assess possible redundant functions of �4�1 and �4�7,
mice were generated lacking both receptors in the hematopoietic
system. Mice carrying a conditional knockout for �1 integrin, a
�1-null allele, and a cre recombinase transgene under the control of
the polyIC-inducible Mx-promotor were intercrossed with mice
lacking a functional �7 integrin gene.15 Thus, mice that were
deficient for �7 integrin and carried an inducible �1-null gene
(�1fl/��7�/�Mx-cre� or �1fl/fl�7�/�Mx-cre�) were obtained. Mice
lacking �7, but constitutively expressing �1 (�1fl/��7�/�Mx-cre�

or �1fl/fl�7�/�) were used as controls. To restrict the deletion to the
hematopoietic system, BM from these mice was transplanted into

lethally irradiated recipient mice (Figure 1A). The ablation of the
conditional �1 gene was induced by 3 intraperitoneal injections of
polyIC after reconstitution of the hematopoietic system (4 weeks
after irradiation). Mice were analyzed 2, 6, and 10 to 12 months
after the polyIC treatment.

At all time points analyzed, no expression of �7 integrin was
detectable in any tissue by FACS (data not shown). To analyze the
time course of the �1 integrin gene ablation, we monitored the loss
of �1 integrin expression on short-lived platelets. Two days after
the first polyIC injection, �1-deficient platelets were already
detectable in the blood of �1�7 mutant BM chimeras (Figure 1B).
The relative amount of �1-deficient platelets increased continu-
ously to reach 93% after 14 days and 97% after 21 days and later. In
control BM chimeras, on the other hand, virtually all platelets
expressed �1 integrin at all time points analyzed. These data show
that the deletion of the �1 integrin gene can be induced within a
few days in a �7 mutant background. Furthermore, they confirm
that the development of megakaryocytes and platelets is not
crucially dependent on �1 and �7 integrins. Southern blot analysis
of BM, spleen, and thymus of 2- and 10-month-old �1�7 mutant
and control BM chimeras confirmed the efficient �1 gene deletion
in all these tissues (Figure 1C and data not shown). Since only
HSCs can sustain hematopoiesis for more than 3 months, these data
indicate that �1�7-deficient HSCs are maintained in vivo.

To investigate the development of different hematopoietic
lineages that derive from HSCs, we first checked the cellularity of

Figure 1. Efficient deletion of �1 integrin in the hematopoietic system does not affect cellularity of lymphoid organs. (A) Bone marrow of mice with a conditional
knockout of �1 integrin, an Mx-cre transgene, and a constitutive knockout of �7 integrin (�1fl/��7�/�Mx cre) was transplanted into lethally irradiated wild-type host mice. In bone
marrow chimeras, donor and host cells could be distinguished by expression of Ly-5.1/Ly-5.2 surface marker. After repopulation of the hematopoietic system (4 weeks), polyIC
was injected to induce expression of the cre recombinase in the donor cells and deletion of the �1 integrin gene. (B) Percentages of �1 integrin–negative platelets isolated from
control and �1�7 mutant BM chimeric mice are shown at indicated time points after the first of 3 polyIC injections (day 0). Error bars show the standard deviation (n [control BM
chimera]/[�1�7 mutant BM chimera]: 9/6). (C) DNA was isolated from single-cell suspensions from BM, thymus, and spleen from �1�7 mutant BM chimeras 10 months after
polyIC treatment. Southern blot analysis detecting the conditional and the null allele was performed (a representative result is shown on the right panel). Band intensities were
quantified and visualized in a bar graph. Error bars show the standard deviation. (n [control BM chimera]/[�1�7 mutant BM chimera]: 3/3). (D) Left panel: Single-cell
suspensions were made from BM (2 femurs), thymus, spleen, and lymph nodes (2 inguinal, 2 axial, 1 para-aortic) of control and �1�7 mutant BM chimeric mice 2 months after
the gene deletion. Cells were counted using a hemacytometer. The bar graph shows the absolute cell number in the respective tissues. Error bars show the standard deviation
(n [control BM chimera]/[�1�7 mutant BM chimera]: 4/4). Right panel: Whole blood was collected retro-orbitally from control and �1�7 mutant BM chimeric mice 6 months after
the gene deletion. The blood was diluted 1:10 with Türk stain and differentially counted in a hemacytometer. The bar graph shows the concentration of mononuclear (M) and
polymorphonuclear (PMN) cells in the blood. Error bars show the standard deviation (n [control BM chimera]/[�1�7 mutant BM chimera]: 4/4).
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different lymphoid organs. At 2 months (Figure 1D, left) and 10 to
12 months (data not shown) after induction of the gene deletion
there were no differences observed in the cellularity of BM,
thymus, or spleen of control and �1�7 mutant BM chimeras,
providing no evidence for defective hematopoiesis in the absence
of �1 and �7 integrins. Differential blood counts revealed similar
numbers of mononuclear and polymorphonuclear cells in the
peripheral blood (PB) of control and �1�7 mutant BM chimeras 6
months after polyIC treatment (Figure 1D, right).

Normal B-cell development in the absence of �1
and �7 integrins

Since previous studies suggested that normal B-cell development
was dependent on �4 integrin,13,14,17 but not on �4�116 or �4�715

alone, we investigated whether �1 and �7 integrins have a
redundant function in B-cell development. In pre-B colony assays,
control and �1�7 mutant BM gave rise to colonies that were
derived each from a single pre-B-cell pecursor. FACS analysis of
randomly picked colonies confirmed that 36 of 39 colonies (92.3%)
of �1�7 mutant BM did not express �1 integrins, whereas all tested
colonies derived from control BM expressed �1 integrins. No
host-derived colonies expressing Ly-5.1 were detected. To further
monitor B-cell development, single-cell suspensions from BM,
spleen, and lymph nodes (LNs) were analyzed using B-cell–specific
markers: B220 (pre-proB and later), CD19 (proB and later), IgM
(immature B), and IgD (all mature B). The relative amount of cells
positive for the respective markers was unaltered in �1�7 mutant
BM chimeras compared with control BM chimeras 2 and 12
months after the knockout induction (Table 1 and data not shown).

FACS analysis of immature B cells (B220 medium) proved the
loss of �1 integrin (Figure 2A). Mature B cells (B220 high) express
only low amounts of �1 integrin, which makes it difficult to
distinguish normal from �1-deficient mature B cells by FACS
(Figure 2A). Therefore, the knockout efficiency in B220� B cells
purified from spleen was determined by Southern blot analysis
(Figure 2B). B220� B cells were enriched by MACS beads to a

purity of more than 95% (Figure 2B, left). Southern blot of
genomic DNA isolated from these cells revealed a deletion
efficiency of the �1 integrin gene of 93.5% � 8.3% (n � 5). These
data indicate that in the absence of �1 and �7 integrins, B cells can
fully mature. Furthermore, since spleen, LN, and BM contained
normal numbers of B cells, migration of immature B cells to spleen
and of mature B cells to LN and BM is apparently not impaired by
the combined loss of �1 and �7 integrins.

T-cell development in the absence of �1 and �7 integrins

Since in �4-null somatic chimeric mice �4-null T-cell precursors
were described to be unable to migrate to the thymus for further
differentiation, thymocyte development was analyzed in �1�7
mutant BM chimeric mice using the T-cell markers CD4 and CD8.
No significant difference was found in the population sizes of
CD4�CD8� (DN) thymocytes, which contain the early thymic
immigrants indicating that thymic colonisation was not altered in
�1�7 mutant BM chimeric mice which lack both �4�1 and �4�7
integrins. Furthermore, the relative amounts of CD4�CD8� (DP),
CD4� (CD4SP), and CD8� (CD8SP) cells in the thymus were
normal in �1�7 mutant BM chimeric mice (Figure 3A and Table
2). Staining of thymocytes for �1 integrin and subsequent FACS
analysis proved the absence of �1 integrin from DP T cells (Figure
3B). Normal numbers of CD4 and CD8 T cells in spleen, LN, and
BM of �1�7 mutant BM chimeras 2 and 12 months after induction
of the �1 gene deletion suggested normal migration of these cells to
secondary lymphoid organs and to the BM (data not shown). Since
mature CD4� and CD8� T cells express only low levels of �1
integrin, the deletion efficiency in these populations was tested on
the genomic level. Southern blot from CD4� and CD8� T cells,
enriched from the spleen, revealed that 78.5% � 5% (n � 3) of
CD4� T cells and 83.4% � 10.8% (n � 4) of CD8� T cells lacked
a functional �1 integrin gene (Figure 3C). These data show that �1
and �7 integrins are neither essential for the migration of T-cell
precursors to the thymus nor for T-cell maturation within the thymus.

Figure 2. Normal B-cell population sizes in the absence of �1 and �7 integrins.
(A) Representative histogram overlays show the �1 integrin expression on immature
(B220med) and mature (B220hi) B cells of BM and spleen, respectively, of control
(filled) and �1�7 mutant BM chimeras (line). (B) Single-cell suspensions from spleen
of control and �1�7 mutant BM chimeras 6 months after polyIC treatment were
prepared, stained with B220-FITC antibody, and subsequently sorted using anti-FITC
MACS beads. Left panel: FACS analysis of the B220�-enriched fraction indicated
higher than 95% purity (representative histogram is shown). Right panel: DNA was
prepared from MACS-enriched B220� splenocytes, analyzed by Southern blot, and
densitometrically evaluated. The bar graph shows the relative amount of B220� cells
deficient for a functional �1 integrin gene. Error bar shows the standard deviation (n
[control BM chimera]/[�1�7 mutant BM chimera]: 5/5).

Table 1. B-cell population sizes

Population size

Control �1�7 mutant

BM

B220med 5.2 � 1.6 5.5 � 1.2

B220hi 5.7 � 1.8 4.7 � 1.1

CD19 12.9 � 6.2 10.5 � 2.5

IgM 6.0 � 1.1 5.1 � 1.4

IgD 8.5 � 6.5 4.7 � 1.1

Spleen

B220hi 40.5 � 12.0 37.7 � 12.8

CD19 38.9 � 13.9 36.9 � 10.5

IgM 34.6 � 3.5 32.8 � 9.3

IgD 39.7 � 1.6 45.5 � 15.7

LN

B220hi 19.8 � 4.0 18.3 � 4.5

CD19 17.4 � 4.3 16.1 � 5.5

IgM 8.4 � 3.7 9.0 � 3.5

IgD 15.0 � 1.7 16.7 � 7.0

For all populations, n � 4. Single-cell suspensions from BM, spleen, and LN of
control and �1�7 mutant BM chimeras 2 months after polyIC treatment were
prepared; stained with antibodies against B220, CD19, IgM, IgD (med indicates
medium; hi, high); and �1 integrin and analyzed by FACS. The averages of the
population sizes in the respective tissues are shown with standard deviations.
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Myeloid and erythroid development in the absence of �1
and �7 integrins

To analyze myeloid development, we first studied the capacity of
myeloid progenitors in control and �1�7 mutant BM chimeras
lacking �4�1 and �4�7 integrins to form colonies in vitro
(CFU-C). All CFU-C colonies analyzed from BM (n � 37), spleen
(n � 38), and PB (n � 36) from control mice were positive for �1
integrin. From �1�7 mutant BM chimeras only 2 of 36 colonies
from the BM, 1 of 37 of the spleen, and 3 of 37 colonies derived
from PB were positive for �1 integrin. These results show first, that
in the absence of �1 and �7 integrin granulocyte/monocyte
precursors have the potential to form colonies in vitro and second,
that the efficiency of the �1 integrin gene deletion is very high in
the myeloid lineage. Both control and mutant BM cells also formed
erythroid colonies (CFUe’s) in vitro. Of 42 colonies tested from
mutant BM, none showed a functional �1 integrin gene as tested by
genomic PCR, whereas in 24 of 24 colonies from control BM a
functional �1 gene was detected.

Monitoring the development of monocytes, granulocytes, and
erythroblasts in �1�7 mutant BM chimeric mice 2 and 12 months
after the �1 integrin gene deletion in vivo revealed no significant

differences in the numbers of granulocytes, monocytes, and
erythroblasts, indicating no developmental defects in the absence
of both �4�1 and �4�7 integrins (Table 3 and data not shown). The
�1 gene deletion on these cells was confirmed by staining for �1
integrin and subsequent FACS analysis (Figure 4). These data
strongly suggest that HSCs and HPCs continuously provide myeloid
and erythroid cells in the absence of �4�1 and �4�7 integrins.

Emigration of granulocyte/monocyte progenitors from the BM
to the blood and spleen

Induced deletion of �4 integrin in hematopoietic and many
nonhematopoietic cells resulted in a slow increase of CFU-Cs in
the BM, an overproportional release into the PB, and an accumula-
tion of CFU-Cs in spleen, suggesting a role for �4 in the retention
of progenitor cells in the BM.17 To test this in �1�7 mutant BM
chimeras, we determined the frequency of CFU-C progenitors in
BM, PB, and spleen 2 and 10 months after the �1 integrin gene
deletion (Figure 5A). At 2 months, the number of precursor cells
was significantly elevated in the BM of �1�7 mutant mice as
compared with controls. We also observed an increase of progeni-
tors in PB roughly proportional to the progenitor increase in the
BM, but significantly less than reported for �4 conditional
knockout mice 8 weeks after induced gene deletion, thus not
indicating a severe defect in progenitor retention in the BM.
Furthermore, these alterations were transient, since they were
observed 2 months but not 10 months after knockout induction,
when �1�7 mutant and control mice had similar CFU-Cs, both in
BM and PB (Figure 5A). Unlike the conditional �4 integrin
knockout mice 2 weeks and 6 months after gene deletion,17 �1�7
mutant BM chimeras did not accumulate precursor cells over time
in the spleen, as tested 2 and 10 months after the knockout
induction (Figure 5A). To the contrary, CFU-Cs were significantly
decreased in 10-month-old mutant chimera.

FACS analysis of BM cells of nonchimeric (�1fl/flMx-cre�)
mice 3 days after a single polyIC injection revealed that the �1
integrin gene is not only deleted on most hematopoietic cells

Figure 3. �1 and �7 integrins are not essential for normal T-cell development.
Single-cell suspensions from thymus of control and �1�7 mutant BM chimeras 2
months after polyIC injection were prepared, stained with antibodies against CD4,
CD8, and �1 integrin, and analyzed by FACS. (A) The dot blots show a representative
staining of DN, DP, CD4SP, and CD8SP thymocytes for both control and �1�7 mutant
BM chimeras. (B) A representative histogram displays �1 integrin expression on DP T
cells of control (filled) and �1�7 mutant (line) mice. (C) Single-cell suspensions from
spleen of control and �1�7 mutant BM chimeras 6 months after polyIC treatment
were prepared, stained with CD4-FITC or CD8-FITC antibody, and subsequently
sorted using anti-FITC MACS beads. FACS analysis of the CD4�- or CD8�-enriched
fraction indicated higher than 95% purity (representative histogram is shown). DNA
was prepared from MACS-enriched CD4� or CD8� splenocytes and analyzed by
Southern blot and densitometrically evaluated. The bar graphs show the relative
amount of CD4� or CD8� cells deficient for a functional �1 integrin gene. Error bar
shows the standard deviation (n [control BM chimera]/[�1�7 mutant BM chimera]:
CD4�, 3/3; CD8�, 4/4).

Figure 4. �1 and �7 integrins are not essential for myeloid and erythroid
development. The �1 integrin expression of immature granulocytes (Gr-1med) and
erythroblasts (Ter119�) of control (filled) and �1�7 mutant BM chimeras (line) is
shown in representative histogram overlays.

Table 2. Thymic T-cell population sizes

Thymus subpopulation

Population size

Control �1�7 mutant

DN 3.0 � 1.2 2.0 � 0.4

DP 70.2 � 2.9 76.5 � 4.3

CD4SP 20.0 � 3.4 17.3 � 3.0

CD8SP 6.7 � 1.0 4.2 � 2.0

For both populations, n � 4. The averages and standard deviation of the
population sizes are shown in the table for the respective subpopulations.

Table 3. Myeloid and erythroid cell populations in the BM

BM subpopulation

Population size

Control �1�7 mutant

Gr-1 50.7 � 4.9 63.5 � 11.0

Mac-1 64.4 � 10.6 73.5 � 14.2

Ter119� 19.3 � 3.5 14.1 � 8.6

For both populations, n � 4. Single-cell suspensions from BM of control and
�1�7 mutant BM chimeras 2 months after polyIC treatment were prepared; stained
with antibodies against Gr-1, Mac-1, and Ter119 in combination with antibodies
against �1 integrin; and analyzed in FACS. The table shows the relative size of
granulocyte (Gr-1), granulocyte/monocyte (Mac-1), and erythroblast (Ter119) subpopu-
lations and standard deviation.
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(Figure 5B, Ly-5.2�, Ter119�), but also on many nonhematopoietic
BM stroma cells, defined as (Ly-5.2�, Ter119�) plastic adherent
cells (Figure 5B). To assess whether loss of �1 and �7 integrin on
nonhematopoietic cells might contribute to the progenitor release,
the frequency of progenitor cells was determined in the PB of

nonchimeric �1�7 mutant mice 4 weeks after the knockout
induction. We found that the progenitor content in PB increased
approximately 8-fold in �1�7 mutant mice (data not shown),
comparable to the more than 10-fold increase of the CFU-Cs in �4
conditional knockout mice 4 weeks after gene deletion,17 indicating
that loss of �4 integrin on nonhematopoietic cells might contribute
to the release of CFU-C progenitors from BM to PB.

Expansion of erythrocyte precursors after hemolytic anemia

After phenylhydrazine (PHZ) induced lysis of erythrocytes in vivo,
erythroid precursor cells expand in order to compensate for the loss
of erythrocytes. In addition, hemolytic anemia promotes extramed-
ullary erythropoiesis leading to proliferation of progenitors in the
spleen.25 Since in �4 conditional knockout mice the ability of
erythroblasts to expand in response to a PHZ-induced hemolytic
anemia was reduced,17 we investigated whether combined loss of
�1 and �7 integrins shows a similar effect. For better comparison
with the nonchimeric �4 conditional knockout mice we used
nonchimeric �1�7 mutant mice.

Two days after PHZ treatment the amount of erythrocytes
dropped in both control and �1�7 mutant mice by more than 55%
in BM (n � 3) and was not significantly different between both
groups. Similarly, also the number of erythroblasts in the BM as
assessed by Ter119 staining was reduced after the PHZ treatment
but comparable between �1�7 mutant mice and controls (Figure
6A). Since �4 conditional knockout mice were reported to have
fewer erythroid progenitor cells in the BM after hemolytic stress,
we tested at the same time point (ie, 2 days after PHZ treatment) the
relative amounts of cells of different erythroid developmental
stages by Ter119-CD71 staining and subsequent FACS analysis
separating different maturation stages of BM erythroblasts18 (Fig-
ure 6B). Neither in BM nor in spleen was a significant difference
detected between �1�7 mutant and control mice at any of these
stages, providing no evidence for an impaired recovery from
hemolytic anemia in the absence of �1 and �7 integrin (Figure 6C
and data not shown). Analysis of CFUe’s confirmed a normal
frequency of erythroid progenitors in BM, but surprisingly revealed
a significant reduction of CFUe’s in the spleen of �1�7 mutant
mice compared with controls. Since the spleen is the most
prominent place for hematopoiesis after PHZ treatment these data
support a role for �4�1 and �4�7 integrin in the recovery of the
erythropoietic system after hemolytic anaemia.

Figure 5. No overproportional release of CFU-Cs from the BM into the PB. (A)
Single-cell suspensions were made from BM and spleen, and erythrocyte-depleted
blood cells (PB) from control and �1�7 mutant BM chimeras were prepared at
indicated times after the gene deletion. BM cells (180 000), splenocytes (3 600 000),
and PB (250 �L) were seeded into MethoCult GF M3534 medium and counted 7 days
later. Total numbers of colonies per femur, spleen, and mL PB are shown. Error bars
show the standard deviation, star indicates significant difference (P 	 .05) (n (control
BM chimera)/(�1�7 mutant BM chimera): 2 months 5/5, 10 months 3/3). (B)
Single-cell suspensions from BM of nonchimeric control (�1fl/flMx-cre�) and �1fl/

flMx-cre� mutant mice were plated on tissue-culture plastic dishes. After 24 hours,
nonadherent cells were removed and adherent cells detached. Adherent and
nonadherent cells were then stained for Ly-5.2 and Ter119 and tested for �-galactosi-
dase activity by an FDG assay as described in “Materials and methods.” Since loss of
�1 integrin results in expression of the �-galactosidase reporter,12 high �-galactosi-
dase activity indicates deletion of the �1 gene. Representative histogram overlays
show the �-galactosidase activity on hematopoietic (Ly-5.2� or Ter119�) and
nonhematopoietic (Ly-5.2�, Ter119�) cells of control (filled line) and mutant mice
(line). The marked region on the overlay indicates cells with high �-galactosidase
activity. PolyIC injection induced an efficient deletion of the �1 integrin gene on
hematopoietic cells; about 86% of the (Ly-5.2� or Ter119�) cells of the mutant mice
showed high green fluorescence, compared with only 6% of the corresponding cells
of the control mice. Also, among the nonhematopoietic BM cells (Ly-5.2�, Ter119�)
the percentage of cells with high �-galactosidase activity increased from less than 5%
in control to more than 42% in mutant, clearly indicating the presence of �1
integrin–deficient nonhematopoietic cells in the BM of mutant mice.

Figure 6. Reduced number of splenic CFUe’s after hemolytic stress. (A) Single-cell suspensions from BM of control and �1�7 mutant mice (no BM transplantation)
untreated and treated at day 1 and 2 with PHZ were prepared at day 4, stained with Ter119 antibody, and subsequently analyzed by FACS. The total amount of Ter119�

erythroblasts per femur is shown. Error bars show the standard deviation (n (controls)/(�1�7 mutants): 4/4). (B) BM single-cell suspensions from PHZ treated �1�7 mutant BM
chimeras were prepared, stained with antibodies against �4, �1 integrin, CD71, and Ter119 and subsequently analyzed by FACS. (Ter119-CD71 staining distinguishes 5
different developmental stages.) (C) The amount of erythroid BM cells of PHZ-treated �1�7 mutant mice for each of the 5 developmental stages as distinguished by Ter119 and
CD71 is shown. Error bars show the standard error (n (controls)/(�1�7 mutants): 4/4). (D) Single-cell suspensions from BM of control and �1�7 mutant mice (no BM
transplantation) treated at day 1 and 2 with PHZ were prepared at day 4 and tested for CFUe’s. Total numbers of colonies per femur and spleen are shown. Error bar shows the
standard error (n (controls)/(�1�7 mutants): 3/3).
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No apparent compensatory change in gene expression in the
combined absence of �1 and �7 integrin in different
leukocyte subsets

To investigate whether hematopoietic subpopulations of �1�7
mutant mice show major alterations in gene expression, we tested
mRNA levels of different hematopoietic subsets (DN, DP, B cells,
CD4� T cells) by array analysis. RNA was prepared from DP and
DN cells from the thymus, and CD19� (B cells) and CD4� cells
from the spleen, obtained from 5 pooled mutant and control mice,
respectively, and tested on affymetrix chips. All mutant mice had
an efficient knockout of �1 integrin indicated by a loss of surface
�1 integrin on more than 97% of the platelets.

We then analyzed the data by searching for genes that are up- or
down-regulated in mutant mice in all 4 different populations
investigated, which would suggest a crucial compensatory re-
sponse. However, only 3 genes encoding heat shock proteins (heat
shock protein 1�, heat shock protein 1�, heat shock protein 105)
were found with increased expression in the absence of �1 and �7
integrin. No genes were found with reduced expression in all
subpopulations derived from mutant mice.

We then screened the genes up- or down-regulated in the individual
hematopoietic subpopulations (thymus: DN, DP; spleen: B cells, CD4�

T cells) for integrins (�3-�6, �2-�10, �X, �D, �M, �L, �E),
selectins (P-, L-, E-), CD44, and for the �4�1 and �4�7 integrin
ligands VCAM-1 and MAdCAM-1. All these genes showed normal
expression in �1�7 mutant cells compared with control cells.

Discussion

It has been reported that several classes of integrins play an
important role to attach hematopoietic stem cells and progenitor
cells as well as their differentiated lineages to the extracellular
matrix and to other cells.1 �4 integrins, for example, have been
suggested to be crucial for the retention of hematopoietic stem cells
in the bone marrow, for the homing of lymphocytes to Peyer
patches and for the migration of T cells during inflammation.13,15,26

In addition, development of the hematopoietic system, character-
ized by the formation of the different blood cell lineages and their
distribution within hematopoietic organs, was reported to be �4
integrin–dependent, although the gradual contribution of �4 inte-
grins differed significantly depending on the experimental ap-
proach.7,17 To study the role of �4 integrins in hematopoiesis,
mouse models were applied in which the �4 integrin gene was
deleted on hematopoietic as well as on nonhematopoietic cells.
Loss of the �4 integrins on the latter cell population might affect
hematopoietic development. To overcome this problem and to
assess by an alternative approach the function of �4 integrins in
hematopoiesis, we decided to generate and analyze mice, which
lack �1 and �7 integrins, and hence both �4�1 and �4�7 integrins,
exclusively in the hematopoietic system. Unexpectedly, we could
not find an essential function for �4�1 and �4�7 integrins in blood
cell development or in progenitor retention in the bone marrow.
Detailed analysis of lymphoid and myeloid development by testing
the size of different blood cell subsets in lymphoid organs at
different time points and investigating the formation of pre-B and
CFU-C colonies did not reveal any impairment in the hematopoi-
esis of �1�7 mutant mice.

The only abnormality we observed in untreated mutant BM
chimeras was an increase in the amount of CFU-C precursors in the
bone marrow coupled with a proportional increase in the number of
CFU-C progenitor cells in the peripheral blood. This impairment
indicates a role of �4 integrins in the maintenance of HPCs.
Whether the increase in BM CFU-Cs is due to elevated prolifera-
tion, decreased cell death, or changed migratory behavior of
progenitor cells is currently unclear. The increase, however, was
only transient, since it was detected 2 months after knockout
induction, but not 8 months later, pointing to compensatory
mechanisms that kick off in the �1�7 mutant mice leading to a
reduction of progenitor numbers in BM and PB back to normal
levels. Alternatively, it is possible that transplantation-dependent
effects affect �1�7 mutant and control mice with different efficien-
cies, thus contributing to the reduction of CFU-Cs. While in �4
integrin conditional knockout mice HPCs accumulate in spleen,17

this was not the case in �1�7 mutant BM chimeras. To the contrary,
relative to PB the number of HPCs in spleen was decreased in
young and old �1�7 mutant BM chimeras, which might indicate a
migration defect of �1�7 mutant HPCs to the spleen. Interestingly,
no increased CFU-Cs were observed in �1-null BM chimera.

Induction of hemolytic anemia revealed a reduced number of
splenic CFUe’s in �1�7 BM chimera, indicating a role for �4�1
and �4�7 integrin in erythroid recovery after stress. Also, �4
mutant mice showed an impaired recovery after PHZ-induced
hemolysis, although in that case the frequency of CFUe’s was
reduced in BM and not in spleen.17

Different explanations might be possible to reconcile the
published data with the findings of our investigations. First, in
�4-null somatic chimera �4 integrin is lost already before the
development of hematopoietic stem cells, whereas in our system
�4�1 and �4�7 are lost in adult animals 1 month after bone
marrow transplantation. It is possible, therefore, that the absence of
these integrins during the entire embryogenesis impairs develop-
ment of the hematopoietic system and causes defects that persist to
adulthood, whereas the loss of �4 in adult animals has no severe
consequences for hematopoiesis. However, recent data by Gribi et
al27 showed that transplantation of fetal �4-null hematopoietic stem
cells derived from the aorta-gonad-mesonephros (AGM) region of
�4-deficient embryos into adult microenvironment results in long-
term generation of mature B and T lymphocytes and myeloid cells.
These data indicate that neither fetal nor adult HSCs require �4
integrins for hematopoietic development.

Second, the defects observed in �4 integrin conditional knock-
out mice might be related to the fact that in this model �4�1 and
�4�7 integrin are lost also on nonhematopoietic cells, whereas
deletion of the �1 and �7 integrin in our BM chimeras was
restricted to the hematopoietic system. Interference with the
functions of �4 integrins in nonhematopoietic tissues such as BM
stroma cells or endothelial cells might result in the production of
cytokines, which inhibit lymphopoiesis or favor the mobiliza-
tion of HPCs. We tested this possibility and found that
nonchimeric �1�7 mutant mice, which lack �4�1 and �4�7
integrin with a similar tissue distribution as the �4 conditional
knockout mice, do show an overproportional release of HPCs
into the peripheral blood. Furthermore, we could demonstrate
that induction of Cre in these mice disrupts the �1 integrin gene
in BM stromal cells. Altogether, these data underline the
importance of a strict tissue-restricted gene deletion in order to
avoid unwanted cross-talk between different tissues.

In summary, we demonstrate that �4�1 and �4�7 integrins are
not crucial for the differentiation of lymphoid and myeloid cells in
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adult mice. In fact, even the additional loss of all other �1 integrin
receptors besides �4�1, as occurring in our �1�7 mutant mice, did
not prevent hematopoietic development. �1 and �7 integrins affect
maintenance and distribution of CFU-C progenitors, though differ-
ently than previously suggested for �4 integrins.17 Our results do
not exclude effects of �4�1 and �4�7 integrins on fetal hematopoi-
esis, during immune response or in inflammation.
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RhoH is a small GTPase expressed only
in the hematopoietic system. With the use
of mice with targeted disruption of the
RhoH gene, we demonstrated that RhoH
is crucial for thymocyte maturation dur-
ing DN3 to DN4 transition and during
positive selection. Furthermore, the differ-
entiation and expansion of DN3 and DN4

thymocytes in vitro were severely im-
paired. These defects corresponded to
defective TCR signaling. Although RhoH
is not required for TCR-induced activa-
tion of ZAP70 and ZAP70-mediated activa-
tion of p38, it is crucial for the tyrosine
phosphorylation of LAT, PLC�1, and Vav1
and for the activation of Erk and calcium

influx. These data suggest that RhoH is
important for pre–TCR and TCR signaling
because it allows the efficient interaction
of ZAP70 with the LAT signalosome, thus
regulating thymocyte development.
(Blood. 2007;109:2346-2355)
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Introduction

RhoH is a member of the Rho GTPase family, expressed only in the
hematopoietic system. Rho GTPases are small GTPases that regulate
cytoskeletal organization, proliferation, survival, and cell polarization.1

They are present in an active, GTP-bound form and an inactive,
GDP-bound form. Only in the GTP-bound conformation can they
interact with a wide range of effector molecules, including serine-
threonine kinases, lipid kinases, and cytoskeletal proteins.

RhoH was shown to be expressed in hematopoietic progenitor
cells (HPCs), lymphocytes, and neutrophils.2,3 Because RhoH has
no functional intrinsic GTPase activity, it is thought to be constitu-
tively active and controlled only at the transcriptional level. Indeed,
RhoH expression is regulated in lymphocytes.2 In T cells, activa-
tion of the T-cell receptor reduced the RhoH message within a few
hours, whereas PMA treatment decreased RhoH mRNA levels in
Jurkat cells within 60 minutes.2 In diffuse large B-cell lymphoma,
RhoH is frequently mutated in the noncoding region, which might
affect mRNA stability or translation efficiency.4,5 Functionally,
RhoH was proposed to be a negative regulator of Rho GTPases and
integrins. RhoH inhibits Rac1-mediated activation of p38 MAPK
and NF�B in Jurkat cells but has no effect on JNK or Erk or on the
activation of Rac1 in these cells.2 In hematopoietic stem cell
(HSC)/HPC preparations, RhoH negatively regulates the prolifera-
tion, survival, and migration and reduces the SCF-induced activa-
tion of Rac1.3 Finally, RhoH expression maintains lymphocytes in
a nonadhesive state by decreasing integrin-mediated attachment.6

These observations suggested an important role of RhoH in the
maintenance of HSCs, in leukocyte migration, and possibly in the
development of B-cell lymphoma. To test these hypotheses in vivo, we
generated mice that lacked a functional RhoH gene and analyzed the
development of different hematopoietic lineages. RhoH-null mice did

not develop lymphoma and had no obvious defects in HSC mainte-
nance, but they showed impaired T-cell differentiation attributed to
defective T-cell receptor (TCR) signaling.

Materials and methods

Mice

RhoH-deficient mice were generated using procedures described previ-
ously.7 As a targeting vector, a 6.9-kb EcoRI-EcoRI genomic DNA
fragment was used in which a 0.9-kb HindIII-AatII fragment encoding the
first 42 amino acids of the RhoH protein was replaced by a neomycin
resistance expression cassette. Wild-type and heterozygous knockout mice
were used as controls, with indistinguishable results in all assays. If not
stated otherwise, mice were kept as 129Sv/C57BL6 outbreds. �2-integrin8–
deficient mice and RhoH-null mice were intercrossed to obtain RhoH-�2-
null double-knockouts. RhoH mutant mice backcrossed for 6 generations to
C57BL6 were mated with OT-II transgenic mice9 to obtain RhoH-null/
OT-II mice. All mice were kept in a barrier facility in accordance with the
German policies on animal welfare.

Flow cytometry

Single-cell suspensions were prepared by gentle disaggregation of the
dissected organs through 70-�m cell strainers. Cells were stained with
antibodies (all BD PharMingen [San Diego, CA] unless otherwise speci-
fied) conjugated to FITC, PE, APC, or biotin in 1% bovine serum albumin
(BSA) in phosphate-buffered saline (PBS) and analyzed on a FACSCalibur
with CellQuest software. Biotinylated antibodies were detected by strepta-
vidin-Cy-5 (Jackson ImmunoResearch, West Grove, PA) or streptavidin-Cy-
Chrom. Dead cells were excluded by forward-scatter and side-scatter
profiles and by 1 �g/mL propidium iodide counterstaining. The following
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antibodies were used: anti-B220 (RA3-6B2), anti-IgM (R6-60.2), anti-IgD
(11-26c.2a), anti–Gr-1 (RB6-8C5), anti-Mac1 (M1-70), anti-Ter119, anti–
NK1.1 (PK136), anti-CD4 (H129.19) (GK1.5; eBioscience, San Diego,
CA), anti-CD8 (53-6.7), anti-CD5 (53-7.3), anti-TCR� (H57-597), anti-
CD69 (H1.2F3), anti-V�2 (B20.1), anti-TCR�� (GL3), and anti-CD62L
(MEL-14; eBioscience). For the characterization of double-negative (DN;
Lin� CD4�CD8�) thymocytes, cells were gated for lineage-negative
(Lin�) (B220, CD4, CD8, NK1.1, Mac1, Gr-1, Ter119) cells and analyzed
for the expression of CD25 (7D4) and CD44 (IM7).

For proliferation assays, mice were given intraperitoneal injections
of 1 mg BrdU and were killed 2 hours later. BrdU incorporation of
thymocytes was determined using the BrdU Flow kit. AnnexinV staining
was carried out in binding buffer (10 mM Hepes, pH 7.4, 140 mM NaCl,
2.5 mM CaCl2) using Annexin V–Alexa 488 (kindly provided by Dr E.
Pöschl, Erlangen, Germany).

T-cell development in vitro

In vitro T-cell development on OP9-DL1 stromal cells was carried out as
described previously.10 OP9-DL1 cells were maintained in �-MEM me-
dium (Invitrogen, Carlsbad, CA) containing 20% FCS and penicillin/
streptomycin. Control and RhoH�/� DN thymocytes enriched through
MACS (Miltenyi Biotec, Bergisch Gladbach, Germany) were sorted for
DN3 and DN4 populations with FACSAria. DN3 (5 � 104) and DN4
(2.5 � 104) thymocytes were plated onto a subconfluent OP9-DL1 mono-
layer in a 24-well plate and cultured in the presence of 5 ng/mL Flt3 ligand
(Peprotech, Rocky Hill, NU) and 1 ng/mL IL-7 (Peprotech) for 8 days. The
medium with cytokines was replaced after 4 days. Developmental progres-
sion of cultured cells was assessed by flow cytometry after 4 and 8 days.
Cells were harvested by forceful pipetting and filtered through a 70-�M cell
strainer to remove OP9-DL1 cells.

TCR signaling

Freshly isolated thymocytes (0.5 � 107 to 1 � 107) were incubated with 5
�g/mL biotinylated anti-CD3	 (145-2C11) and anti-CD4 or anti-CD3	
alone for 20 minutes on ice and washed. Cross-linking of the bound
antibodies was carried out with the addition of prewarmed streptavidin
(5-10 �g/mL; Sigma, St Louis, MO) and incubation of the samples for 5
minutes at 37°C. After stimulation, 5 � 106 cells were directly fixed in an
equal volume of 4% paraformaldehyde in PBS for 10 minutes at 37°C,
washed with PBS, and permeabilized in ice-cold 90% methanol for 30
minutes on ice. Cells were then washed twice in PBS, incubated with
fluorescence-labeled anti-CD4, anti-CD8, and anti–phospho-ZAP70 (Y319)/
Syk (Y352), anti–phospho-Lck (Y505), anti–phospho-Erk1/2 (T202/
Y204), or anti–phospho-p38 MAPK (T180/Y182) for 1 hour at room
temperature, and analyzed by FACS.

Double-positive (DP) thymocytes (0.5 � 107 to 1 � 107) sorted by
FACSVantage were stimulated as described, washed with cold PBS, and
lysed in 100 �L 50 mM Tris pH 7.4, 100 mM NaCl, 1% Nonidet P-40, 10%
glycerol, 2 mM MgCl2, 1 mM Na3VO4, and 100 mM NaF containing a
protease inhibitor cocktail (Complete Mini, EDTA free; Roche, Basel,
Switzerland) for 20 minutes on ice. Lysates were cleared by centrifugation
at 20 800 g for 15 minutes at 4°C and immunoprecipitated with anti-LAT
(Upstate Biotechnology, Lake Placid, NY) or anti-Vav1 (C-14; Santa Cruz
Biotechnology, Santa Cruz, CA) antibodies bound to protein A agarose
(Sigma-Aldrich, St Louis, MO). Phosphorylation of the immunoprecipi-
tated proteins was detected by Western blotting using anti–phosphotyrosine
PY-7E1 (Zymed, San Francisco, CA) antibody. Total levels of the immuno-
precipitated proteins were determined by reprobing the blots with anti-LAT
(11B.12; Upstate Biotechnology) or anti-Vav1 (D-7; Santa Cruz Biotechnol-
ogy) antibodies. Aliquots (20 �L) of cell lysates were analyzed by Western
blotting using the following antibodies: anti–phospho-ZAP70(T319) (Cell
Signaling, Beverly, MA), anti-ZAP70 (99F2; Cell Signaling), anti–phospho-
Vav2(T172) (Santa Cruz Biotechnology), anti-Vav2 (H-200; Santa Cruz),
anti–phospho-LAT(T191; Cell Signaling), anti-LAT (11B.12; Upstate Bio-
technology), anti–phospho-PLC�1(T783) (Cell Signaling), anti-PLC�1
(Cell Signaling), anti–phospho-p44/p42 MAPK (T202/Y204) (New En-
gland BioLabs, Ipswich, MA), anti–p44/p42 MAPK (New England Bio-

Labs). Pull-downs for active Rac1 and Rac2 were performed as previously
described11 with 0.5 � 107 to 1 � 107 DP sorted thymocytes stimulated as
indicated by cross-linking of biotinylated CD3 and CD4 antibodies with
streptavidin for 30 seconds or 1 minute and 5 minutes at 37°C. Total lysates
and precipitates were analyzed by Western blotting with the use of
antibodies against Rac1 (Transduction Laboratories, Lexington, KY) and
Rac2 (Upstate Biotechnology).

For the detection of phosphorylated Vav2 and active Rac2, DP
thymocytes were sorted by positive selection using anti-CD8-FITC and
MACS anti-FITC microbeads (Miltenyi). The purity of obtained DP
thymocytes was 93% to 97%, as determined by flow cytometry.

For measurement of calcium influx, 2 � 106 thymocytes were loaded
with 2.5 �M Fluo-4 (Molecular Probes, Eugene, OR) for 25 minutes at
37°C and washed twice with RPMI 1640, 25 mM Hepes, without phenol
red (Gibco, Grand Island, NY). Cells were stained on ice with 5 �g/mL
anti–CD8�-APC (53-6.7; eBioscience), anti–CD4-PE-Cy5.5 (RM4-5;
Caltag, Burlingame, CA), and biotinylated anti-CD3	. Cells were warmed
to 37°C and analyzed for 20 seconds to establish baseline calcium levels.
Then CD3	 was cross-linked by the addition of 10 �g/mL streptavidin.
Flow cytometric analysis was performed with FACSCalibur using FlowJo
software (TreeStar, Ashland, OR).

Adhesion assays

Adhesion assays to ICAM-1, VCAM-1, and the endothelioma cell lines
bEnd5 and bEndI1.112 (kindly provided by Dr Britta Engelhardt, University
of Bern, Switzerland) were carried out as described previously12,13; 2 � 104

endothelioma cells were used per well.

Statistical analysis

All mean values are shown with standard deviation. Student t test was
performed to assess the significance of observed differences.

Results

Generation of RhoH-deficient mice

To generate mice with targeted disruption of the RhoH gene, we
replaced the genomic sequence encoding the translation start and
the switch1 region, which is crucial for the interaction with GEFs
or GAPs14 effectors, by a neomycin expression cassette using
homologous recombination (Figure S1A, available on the Blood
website; see the Supplemental Materials link at the top of the online
article). Mutation of the RhoH gene was confirmed by Southern
blot analysis and genomic PCR (Figure S1B-D). Northern blot
analysis indicated the expression of a long transcript in RhoH
mutant mice that contained the sequence of the inverted neomycin
resistance gene, with at least 6 Kozak box ATGs followed by an
in-frame stop codon and the truncated RhoH coding region (Figure
S1E). These open-reading frames should prevent any expression of
a truncated RhoH molecule. RhoH mRNA levels in heterozygous
mutant mice were approximately 50% those of homozygous
wild-type mice.

Because of the lack of functional antibodies, confirmation of
the loss of RhoH on protein level was not possible. Homozygous
mutant mice were born at Mendelian ratio (
/
, 23.2%; 
/�,
50.8%; �/�, 26.0%; n � 214), indicating no embryonic lethal-
ity. RhoH-null mice were fertile and were of normal weight and
life span.

Hematopoiesis

RhoH is expressed in HPCs, lymphoid cells, and myeloid cells.2,3

We analyzed the development of different blood lineages in mutant
and control mice. In 2-month-old mice, BM cellularity was not
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significantly different between RhoH-null and control mice, but
splenocyte counts were lower in RhoH-deficient mice (Figure S2).
Lymph node cellularity varied but tended to be lower in mutant
mice (Figure S2). Population sizes of granulocytes (Mac1
 Gr-1
),
monocytes (Mac1
 Gr-1�), erythroblasts (Ter119
), and different
stages of B cells (proB 
 preB [B220
IgM�], immature
[B220
IgM
], mature [B220
IgM
IgD
]) in BM were similar in
mutant and control mice (Table 1), indicating that RhoH is not
essential for the differentiation of myeloid, erythroid, or B cells.
Splenic granulocyte counts were unperturbed, whereas splenic
monocyte counts were slightly increased in RhoH-deficient mice.
B-cell counts (IgD
) in spleen and lymph nodes were similar in
mutant and control mice (Table 1). In contrast, T-cell counts were
strongly decreased in BM, spleen, and lymph nodes. CD8
 T-cell
counts were reduced by approximately 75%, and CD4
 T-cell

counts were reduced by 50% (Table 1). Heterozygous mice showed
a normal phenotype and were included in the control group. These
data suggest a defect in the production, survival, or migration of T
cells in the absence of RhoH.

NK1.1
 cell counts, including those of NK and NKT cells, were
elevated in BM and spleen (Table 1). Six-month-old mutant mice
still had normal numbers of myeloid, erythroid, and B cells in the
BM, indicating that RhoH is not crucial for the maintenance of
HSCs (Table S1). Splenic granulocyte, monocyte, and B-cell
populations were similar in 6-month-old control and RhoH-
deficient mice, whereas the number of splenic Ter119
 erythro-
blasts was greater in mutant mice. CD4
 and CD8
 T cells were
reduced in BM, spleen, and lymph nodes. In contrast to counts in
2-month-old mutant mice, NK1.1
 cell counts were not signifi-
cantly changed in BM and spleen (Table S1).

Defective T-cell development in vivo

To test whether the production of T cells is impaired in the absence
of RhoH, we analyzed thymocytes of 2-month-old mice. Thymus
cellularity of RhoH-null mice was approximately 60% lower than
in control animals (Figure S2). In mutant mice, the absolute
number of DN (CD4�CD8�) thymocytes was increased more than
twofold, whereas the number of DP (CD4
CD8
) thymocytes was
reduced by 60%, indicating an incomplete developmental block
between the DN and the DP stages (Figure 1A, lower panel).
Absolute amounts of CD4SP and CD8SP thymocytes were reduced
by 80% and 85%, respectively, in RhoH-deficient mice, implying
an additional defect during the development from DP to SP cells,
where positive selection takes place (Figure 1A).

To define the block during DN to DP development in more
detail, the population of DN cells was further divided into DN1
(CD25�CD44
), DN2 (CD25
CD44
), DN3 (CD25
CD44�),
and DN4 (CD25�CD44�) cells. The number of DN1 cells was not
significantly different between control and mutant mice, suggesting
normal migration of T-cell precursors from the BM to the thymus
(Figure 1B). The very small population of DN2 cells was slightly,
but not significantly, increased in the absence of RhoH. The total
number of DN3 cells, however, was elevated nearly 3-fold in the
absence of RhoH. DN4 cell counts were not significantly
different between control and mutant mice, whereas DP cell
counts were reduced in the absence of RhoH. In addition,
6-month-old mutant mice showed a decrease in CD4SP and
CD8SP cells and an increase in DN3 thymocytes (Figure
S3A-B). These differences, however, were less pronounced than

Table 1. Absolute sizes of myeloid, erythroid, and lymphoid
populations in hematopoietic organs

Hematopoietic
organ

Control, � 106

cells
RhoH�/�, � 106

cells

PMean SD Mean SD

Bone marrow

Mac1
 Gr-1
 14.849 2.357 14.889 1.501 —

Mac1
 Gr-1� 1.679 0.594 1.360 0.466 —

Ter119
 7.131 4.622 6.733 4.560 —

NK1.1
 0.151 0.100 0.355 0.092 � .01

CD4
 0.218 0.123 0.101 0.021 � .05

CD8
 0.225 0.159 0.054 0.007 � .05

B220
IgM� 2.377 1.110 2.620 0.745 —

B220
IgM
 1.602 0.645 2.084 0.591 —

B220
IgM
IgD
 0.740 0.183 0.971 0.422 —

Spleen

Mac1
 Gr-1
 10.192 3.666 9.721 4.169 —

Mac1
 Gr-1� 5.879 1.351 8.971 2.366 � .05

Ter119
 24.934 5.423 26.361 8.124 —

NK1.1
 2.791 1.337 7.816 2.617 � .01

CD4
 64.082 7.282 23.741 5.426 � .001

CD8
 27.418 3.342 7.500 0.743 � .001

IgD
 97.934 12.041 89.384 7.611 —

Lymph nodes

CD4
 4.163 3.649 1.855 1.105 —

CD8
 1.603 1.506 0.281 0.226 —

IgM
IgD
 1.077 0.646 0.959 0.434 —

Data shown are the averages (means and SD) of the absolute sizes of the cell
populations carrying indicated surface markers in single-cell suspensions of bone
marrow, spleen, and lymph nodes of 2-month-old control and RhoH-null mice.
n [control]/[RhoH�/�]: 5/5.

— indicates not significant (P  .05).

Figure 1. Impaired thymocyte development in the absence of
RhoH. (A) Thymocytes of 2-month-old mice were analyzed for the
expression of CD4 and CD8 by FACS. Bar graph presents the
absolute cell number of each population. **P � .01; ***:P � .001.
Error bars show the standard deviation (n [control]/[RhoH�/�]:
11/11). (B) Thymocytes of 2-month-old mice were gated for
lineage-negative (B220, CD4, CD8, NK1.1, Mac1, Gr-1, Ter119)
cells and analyzed for the expression of CD25 and CD44. DN1,
CD25�CD44
; DN2, CD25
CD44
; DN3, CD25
CD44�; DN4,
CD25�CD44�. Bar graph presents the absolute cell number of
each population. *P � .05. Error bars show the standard devia-
tion (n [control]/[RhoH�/�]: 4/4).
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in 2-month-old mice. DP cell numbers were only slightly
decreased in mutant mice (Figure 3A-B).

This T-cell phenotype was indistinguishable in 129Sv/C57BL6
outbred and backcrossed C57BL6 mice (data not shown). Total
amounts of thymocytes with TCR�� were normal in the absence of
RhoH (Figure S4A), but the very small population of DN3 cells
expressing TCR�� was increased (Figure S4B). These data indicate
that RhoH is only required for the development of T cells carrying
�� TCR. �� T-cell counts were slightly increased in spleen and
significantly increased in lymph nodes (Figure S4A).

Heterozygous mice showed a normal T-cell phenotype and were
included in the control group. Quantitative RT-PCR revealed that
RhoH is expressed at all stages of thymocyte development, with
relative peaks at the DN3 and DP stages (Figure S5). These data
indicate defects in the DN3 to DN4 transition and in the differentia-
tion of DN4 to DP cells in RhoH-deficient mice.

Aberrant thymocyte proliferation and survival

To characterize whether impaired thymocyte development was
caused by defective proliferation or increased apoptosis, we
assessed cell proliferation by measuring the incorporation of BrdU
and apoptosis by determining the percentage of AnnexinV binding
to thymocyte subpopulations.

The percentage of BrdU-incorporating, proliferating DN1 and
DN2 thymocytes was not significantly different between control
and mutant mice (Figure 2A). However, DN3 and DN4 cells
showed significantly decreased proliferation in the absence of
RhoH (Figure 2A). Proliferation of DP cells was unchanged,
whereas CD4SP and CD8SP cells showed increased proliferation
(Figure 2A).

In DN1, DN2, and DN3 cells, apoptosis was not significantly
different between RhoH-null and control mice (Figure 2B). In
contrast, RhoH-deficient DN4 cells displayed increased apoptosis
(Figure 2B). In addition, DP, CD4SP, and CD8SP thymocytes
showed a higher percentage of AnnexinV
 apoptotic cells, possibly
indicating that fewer cells were positively selected (Figure 2B).

Defective TCR signaling suggested by altered expression of
maturation markers

During thymocyte development, the expression of CD5, TCR�,
and CD69 is tightly regulated by pre–TCR and TCR signaling. At

the DN stage, pre–TCR signaling induces the expression of CD5.15

On DP cells, CD5 expression is maintained because of low-affinity
TCR–major histocompatibility complex interactions. Finally, CD5
is up-regulated during DP to SP transition in response to TCR
signaling by positive- or negative-selecting ligands.

In all thymocyte populations tested (DN, DP, CD4SP, CD8SP,
and �� T cells), the percentage of cells with low CD5 expression
was significantly increased in RhoH-deficient mice (Figures 2C,
S4C). In addition, RhoH-null DP cells expressed significantly
lower levels of CD5 than control cells. In spleen, the percentage of
CD5low T cells was increased in the absence of RhoH (Figure S6A).
Among the CD4
 splenocytes, the amount of CD5low cells
increased from 1.5% to 24.6%, and among CD8
 cells it increased
from 3.7% to 18.5%. These data suggest defects in pre–TCR and
TCR signaling.

The expression of TCR� and CD69 becomes up-regulated
during positive selection in response to TCR signaling.16,17 In
RhoH-null mice, the number of more mature, TCR�high, and
CD69high thymocytes was significantly decreased among DP,
CD4SP, and CD8SP cells, suggesting impaired positive selec-
tion and decreased TCR signaling (Figure 2D-E). No difference
was found in the number of CD69high CD4
 and CD8
 cells in
the spleen (Figure S6B). Interestingly, peripheral RhoH-null T
cells in the spleen and lymph nodes showed a significantly
increased amount of cells with cell surface characteristics of
activated effector (CD62LlowCD44high) T cells, and more CD8


T cells demonstrated the memory (CD62LhighCD44high) pheno-
type (Figure S7A-B).

Defective thymocyte development in vitro

To directly assess the differentiation potential of DN3 and DN4
thymocytes in the absence of RhoH, thymocyte populations were
sorted and differentiated in vitro on OP9-DL1 cells. RhoH-
deficient DN3 cells showed significantly less ability than controls
to differentiate into DN4 and DP cells after 4 days and 8 days in
culture (Figures 3A, S8A). In addition, the total cell number was
severely lower in the absence of RhoH, indicating an impaired
expansion potential (Figures 3A, S8A). In addition, RhoH-null
DN4 cells showed a strongly reduced ability to develop into DP
cells compared with controls and did not expand as well as the
controls (Figures 3B, S8B).

Figure 2. Impaired proliferation and survival and decreased expression of maturation markers in RhoH-null thymocytes. (A-B) Thymocytes of 2-month-old mice were
analyzed for proliferating BrdU-incorporating cells and apoptotic AnnexinV
 cells. Different thymocyte populations were distinguished (see Figure 1A-B). *P � .05; **P � .01;
***P � .001; BrdU, DN1-DN4, n [control]/[RhoH�/�]: 6/10; DP, CD4SP, CD8SP, n [control]/[RhoH�/�]: 8/10;Annexin V, DN1 to DN4, n [control]/[RhoH�/�]: 10/10; DP, CD4SP, CD8SP, n
[control]/[RhoH�/�]: 8/9. (C-E) Thymocytes of 2-month-old mice were analyzed for the expression of CD4, CD8, and CD5 (C; n [control]/[RhoH�/�]: 9/9) or TCR� (D; n
[control]/[RhoH�/�]: 4/4) or CD69 (E; n [control]/[RhoH�/�]: 6/6) by FACS. Percentages of cells marked in histograms are shown in graph. **P � .01; ***P �.001. Error bars show
standard deviation.
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These data demonstrate that in the absence of RhoH, the
differentiation and expansion potential of DN3 and DN4 are
decreased, confirming the in vivo data. Furthermore, they prove
that this is a cell-autonomous defect of RhoH-null thymocytes.

Defect in positive selection

To test the positive selection of thymocytes into the CD4 lineage,
we intercrossed RhoH-deficient mice backcrossed to C57BL6 with
OT-II transgenic mice, which express an ovalbumin-specific TCR
restricted to MHC class I-Ab as present in the RhoH-null mice.
FACS analysis for the transgenic TCR� chain V�2 indicated that
nearly all DP and CD4SP thymocytes expressed the ovalbumin-
specific TCR in control and mutant mice, though within the
RhoH-deficient CD4SP cells a population expressing lower V�2
levels could be detected (Figure 4C). Among the DN cells, which
up-regulate V�2 expression during �-selection, RhoH-null mice
showed a reduced amount of Va2
 cells compared with controls
(Figure 4C).

Expression of ovalbumin TCR in control mice led to a reduced
DP thymocyte count and an increased CD4SP cell count (Figures
1A, 4A). Furthermore, the percentage of DN3 cells was decreased,
and the DN4 population was increased (Figures 1B, 4B). In
contrast, RhoH deficiency severely impaired the generation of
CD4SP cells in mice expressing the ovalbumin TCR (Figures 1A,
4A). No increase in DN4 population was observed (Figures 1B,
4B). In addition, in the presence of the ovalbumin TCR, the
percentage of CD5low cells was higher in RhoH-null mice than in
controls (Figure 4D), and the relative amount of CD69high cells was
lower (Figure 4E).

These data indicate an impaired positive selection of DP cells
into the CD4 lineage in the absence of RhoH and conceivably a
defective �-selection, which controls the DN3 to DN4 transition.

Defect in TCR signaling

In the absence of RhoH, the defects observed in thymocyte development
and positive selection were consistent with impaired TCR signaling. To
test this possibility directly, we analyzed TCR signaling in vitro. We
induced TCR signaling in FACS-enriched preparations of DP cells by
cross-linking biotinylated antibodies against CD3 or CD3 and CD4 with
streptavidin and investigated the activation of different steps of the TCR
signaling cascade. In addition, we measured the phosphorylation of
different signaling molecules by intracellular FACS staining of stimu-
lated thymocyte preparations.

TCR cross-linking triggers the activation of the tyrosine kinases
lck and ZAP70. ZAP70-mediated phosphorylation of the scaffold
protein LAT and associated molecules such as SLP-76 and PLC�1,
which together form the LAT signalosome, is then crucial to initiate
downstream events such as calcium influx or Erk activation.

In the absence of RhoH, TCR-induced autophosphorylation of
ZAP70 in DP cells was not altered (Figures 5A, S9A). Also, in
CD4SP cells, TCR-dependent activation of ZAP70 did not require
RhoH (Figure 6A). Furthermore, the phosphorylation of lck at
Y505 was not altered in the absence of RhoH in DP and CD4SP
cells (Figure 6B). Lck is negatively regulated by the phosphory-
lation of Y505, though this inhibition is overruled by the
activating autophosphorylation of Y394.18 These data indicate
that early events in TCR signaling are not strongly affected by
the loss of RhoH. In CD4
 T cells, ZAP70 activates p38 MAPK
independently of LAT.19 In RhoH-null CD4SP thymocytes, p38
was weakly, but significantly, activated as in controls (Figure
6D), suggesting that this downstream pathway of ZAP70 is
normally intact in the absence of RhoH.

However, ZAP70-mediated total tyrosine phosphorylation of
LAT and tyrosine phosphorylation of LAT at Y195, which is

Figure 3. Impaired differentiation of RhoH-null DN3 and DN4 cells in vitro. (A) Sorted DN3 cells were cultured for 4 days on OP9-DL1 cells in the presence of IL-7 and Flt3
ligand. Differentiation from DN3 to DN4 was tested by FACS analysis of lineage-negative cells for the expression of CD44 and CD25. RhoH-null cells showed a significantly
higher percentage of DN3 and a lower percentage of DN4. FACS staining for CD4 and CD8 revealed significantly increased levels of DN and reduced levels of DP in the
absence of RhoH. Furthermore, cellularity of the RhoH-null cultures was approximately 5-fold decreased, indicating defective expansion in the absence of RhoH. **P � .01;
***P � .001. Error bars show the standard deviation (n [control]/[RhoH�/�]: 2/3). (B) Sorted DN4 cells were cultured for 4 days on OP9-DL1 cells in the presence of IL-7 and Flt3
ligand. FACS staining for CD4 and CD8 revealed significantly increased levels of DN and reduced levels of DP in the absence of RhoH. Furthermore, cellularity of the RhoH-null
cultures was approximately15-fold decreased, indicating defective expansion in the absence of RhoH. **P � .01. Error bars show the standard deviation (n [control]/RhoH�/�]: 3/4.
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important for the interaction of LAT with Gads and SLP-76 and
which indirectly supports the interaction of LAT with PLC�1,20,21

were reduced in RhoH-null DP cells (Figures 5B-C, S9B-C).
Phosphorylation of PLC�1 at Y783, which is important for the
activation of PLC�1,22 was reduced in DP cells of RhoH-null mice
(Figures 5D, S9D). In addition, the TCR-dependent phosphoryla-
tion of Vav1, which is required for the GEF activity of Vav1,23 was
decreased in DP thymocytes in the absence of RhoH (Figures 5E,
S9E). Interestingly, the phosphorylation of Vav2 after TCR ligation
was similar in RhoH-null and control mice (Figures 5F, S9F).

Despite the decreased TCR-induced activation of Vav1, Rac1
and Rac2 activity after TCR activation were normal in RhoH-
deficient DP cells (Figures 5G-H, S9G-H). However, the basal
level of Rac1 activity appeared to be higher in RhoH-null DP cells
than in controls, suggesting compensatory up-regulation of Rac1
activity in the absence of RhoH or inhibition of basal Rac1 activity
by RhoH (Figures 5G, S9G). Basal levels of active Rac2 were not
significantly different between RhoH-null and control mice (Fig-
ures 5H, S9H).

We then tested TCR-dependent activation of Erk and calcium
influx, each of which requires PLC�1 activation. In the absence of
RhoH, TCR-induced Erk phosphorylation was severely reduced in
DP, CD4SP, and CD8SP cells (Figures 5I, 6C, S9I). To assess
TCR-induced calcium influx, thymocytes and splenocytes were

loaded with the calcium-sensitive dye Fluo-4 and were incubated
with biotinylated antibodies against CD3. After the induction of
TCR signaling with streptavidin, the level of intracellular calcium
was determined by FACS. Costaining for CD4 and CD8 allowed us
to distinguish DN, DP, CD4SP, and CD8SP cells. No strong
calcium influx was detected in DN control and mutant cells (Figure
6E). In DP, CD4SP, and CD8SP cells, however, RhoH-deficient
cells exhibited a significantly decreased percentage of cells respond-
ing to stimulation and a decreased mean fluorescence of all cells,
indicating a partially impaired TCR-dependent calcium influx
(Figure 6E). In addition, RhoH-deficient CD4
 and CD8
 spleno-
cytes showed a reduced stimulation of calcium influx after CD3
cross-linking, suggesting that RhoH is also important for TCR
signaling in peripheral T cells (Figure 6F).

These data show that RhoH is required for TCR signaling
downstream of ZAP70 in a cell-autonomous manner in thymocytes
and in mature T cells.

RhoH is not crucial for the regulation of �2 integrin–mediated
adhesion on thymocytes

Previously, it was suggested that RhoH is required to maintain
integrin LFA-1 (�L�2) in a nonadhesive state on lymphocytes.6 To
test whether this function could contribute to the defect observed in

Figure 4. Defective positive selection in the absence of RhoH. (A) Thymocytes of 4- to 7-week-old OT-II mice transgenic for an ovalbumin-specific TCR, either expressing
or not expressing RhoH, were analyzed for the expression of CD4 and CD8 by FACS (upper panel). Quantification of absolute numbers of thymocyte subpopulations (lower
panel). *P � .05; **P � .01; ***P � .001. Error bars indicate the standard deviation (n [control]/RhoH�/�]: 3/4). (B) Thymocytes of 4- to 7-week-old OT-II mice transgenic for an
ovalbumin-specific TCR, either expressing or not expressing RhoH, were gated for lineage-negative (B220, CD4, CD8, NK1.1, Mac1, Gr-1, Ter119) cells and analyzed for the
expression of CD25 and CD44. DN1, CD25�CD44
; DN2, CD25
CD44
; DN3, CD25
CD44�; DN4, CD25�CD44�; upper panel). Quantification of absolute numbers of
thymocyte subpopulations (lower panel; *P � .05. Error bars indicate the standard deviation (n [control]/RhoH�/�]: 3/4). (C) Decreased amount of V�2
 DN thymocytes in 4- to
7-week-old OT-II mice transgenic for an ovalbumin-specific TCR in the absence of RhoH. *P � .05; **P � .01. Error bars indicate the standard deviation (n [control]/RhoH�/�]:
4/4). (D) Increased amount of CD5low thymocytes in 4- to 7-week-old OT-II mice transgenic for an ovalbumin-specific TCR in the absence of RhoH. **P � .01; ***P � .001; Error
bars indicate the standard deviation (n [control]/RhoH�/�]: 4/4). (E) Decreased amount of CD69high thymocytes in 4- to 7-week-old OT-II mice transgenic for an
ovalbumin-specific TCR in the absence of RhoH. *P � .05; **P � .01. Error bars indicate the standard deviation (n [control]/RhoH�/�]: 4/4).
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thymocyte development, we measured the adhesion of RhoH-null
thymocytes to the immobilized LFA-1 ligand ICAM-1. Manganese
(Mn2
; 2 mM) or PMA (100 ng/mL) activated RhoH-null thymo-
cytes bound to ICAM-1 with an efficiency equal to that of control
cells (Figure 7A). At lower concentrations of Mn2
 (1 mM) or
PMA (20 ng/mL), the combination of Mn2
 and PMA or, in the
presence of Mg2
, the binding to ICAM-1 was similar in RhoH-
null and control thymocytes (Figure S10). This demonstrated that
LFA-1–mediated adhesion of thymocytes is normally regulatable
in the absence of RhoH, at least under the conditions tested.
Adhesion to the �4�1 integrin substrate VCAM-1, carried out as an
additional control, was indistinguishable between control and
mutant thymocytes, even when stimulated with Mg2
, Mn2
, or
PMA (Figures 7A, S10).

In a more physiological setting, we investigated the adhesion of
T-cell blasts to the endothelial cell line bEnd5, which up-regulates
the expression of ICAM-1 and VCAM-1 on treatment with TNF.
Both RhoH-null and control T cells showed TNF-stimulated

binding to these endothelial cells, which was partially inhibited by
antibodies against LFA-1 and �4-integrin, respectively (Figure
7B). TNF-induced binding to the ICAM-1–deficient cell line
bEndI1.1 was low for control and RhoH-null T cells and was
completely inhibited by antibodies against �4-integrin but was
insensitive to LFA-1 antibody inhibition (Figure 7B).

To investigate, by an alternative approach, whether RhoH-
dependent modulation of �2-integrin function was involved in the
defective thymocyte development in RhoH-null mice, we crossed
RhoH-deficient mice with mice lacking �2-integrin and analyzed
T-cell development in the absence of both RhoH and �2-integrin. If
loss of RhoH indeed constitutively up-regulated �L�2 activity and
this contributed to the thymocyte phenotype, ablation of the
�2-integrin gene would logically have rescued the defect. How-
ever, we found that population sizes of DN, DP, CD4SP, and
CD8SP thymocytes were identical in RhoH-null and RhoH-�2-
integrin double-knockout mice (Figure 7C). Furthermore, the
increase of CD5low cells in different RhoH-null thymocyte popula-
tions was unaffected by the additional loss of �2-integrin (Figure
7D). These data indicate that the impaired thymocyte development
of the RhoH-null mice is independent of �2-integrin function.

Discussion

Previous work has shown that RhoH is a negative regulator of
Rac1-dependent signaling, HPC proliferation and survival, and
LFA-1–mediated adhesion.2,3,6 We demonstrated that during thymo-
cyte development, RhoH is a positive regulator of thymocyte
differentiation and TCR signaling and that it is crucial for
�-selection and positive selection. Furthermore, we report that
RhoH also contributes to the TCR signaling of mature T cells.

In the absence of RhoH, thymocyte development was partially
blocked at the DN3 to DN4 transition. �-Selection takes place at
this transition, which ensures that only thymocytes that have
generated a functional TCR� chain can differentiate to DP cells. A
second partial block occurred at the transition from DP to CD4SP
and CD8SP cells, where positive selection allows only MHC-
restricted, self-tolerant thymocytes to develop further. In line with
defects in �-selection and positive selection, the proliferation of
RhoH-null DN3 and DN4 cells was decreased, whereas apoptosis
of DN4, DP, CD4SP, and CD8SP cells was significantly increased.
Furthermore, RhoH-null DN3 and DN4 cells showed a clearly
reduced ability to differentiate and expand in vitro. Previously, it
was documented that decreased RhoH expression increased the
proliferation and survival of HPCs.3,24 Our data suggest that RhoH
regulates proliferation and cell survival independently and in a cell
type– and differentiation stage–specific manner.

While �-selection is dependent on pre–TCR signaling, positive
selection is thought to require weak TCR signaling.25 CD5
expression correlates with pre–TCR and TCR signaling strength.15

Reduced expression of CD5 on DP cells and an increased number
of CD5low cells among DN, CD4SP, and CD8SP thymocytes of
RhoH-null mice suggests defective pre–TCR signaling in DN and
impaired TCR signaling in DP, CD4SP, and CD8SP cells. Further-
more, reduced numbers of TCR�high and CD69high cells among DP,
CD4SP, and CD8SP thymocytes indicated defective positive selec-
tion. Analysis of RhoH-null mice expressing an ovalbumin-
specific, MHC class II–restricted TCR confirmed that RhoH is
important for positive selection because no significant increase in
positively selected CD4SP thymocytes was observed, in contrast to
controls. Among DN cells, RhoH-null/OT-II mice did not display

Figure 5. Impaired TCR signaling in RhoH-null DP thymocytes. DP thymocytes of
4- to 8-week-old mutant mice were sorted by FACS or MACS microbeads. TCR
signaling was induced as indicated by cross-linking of biotinylated CD3 and CD4
antibodies with streptavidin for 5 minutes (A-E, I), 30 seconds (G), or indicated times
(F, H) at 37°C. Total lysates were analyzed by Western blot for ZAP70-P319 (A),
LAT-P195 (C), PLC�1-P783 (D), Vav2-P (F), and Erk-P (I). Immunoprecipitations
(IPs) of LAT (B) and Vav1 (E) were blotted with antiphosphotyrosine antibodies and
reprobed with LAT (B) or Vav1 (E). Amounts of active Rac1 and Rac2 were
determined by pull-down assays (G-H). Bar graphs represent quantifications of 5 (A),
3 (B-D,I), 4 (E), 5 (F), 10 (G), or 4 (H) independent experiments. *P � .05; **P � .01.
All values are normalized to equal total amounts of the corresponding protein
determined by Western blot. Representative examples of the Western blots are
shown in Figure S9. Error bars show the standard deviation.
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the obvious reduction of DN3 or the increase of DN4 thymocytes
observed in controls, suggesting impaired �-selection. Interest-
ingly, an increased proportion of peripheral T cells displayed
surface characteristics of activated and memory cells in the absence
of RhoH. We will test in the future whether this activation might be
attributed to an increased amount of autoreactive T cells escaping
negative selection that are activated in the periphery by high
amounts of self-antigen. Such a phenotype has been observed in
mice with a mutation in the ZAP70 gene; these mice also have
partially impaired TCR signaling.26

Our data indicated that RhoH is important for pre–TCR and
TCR signaling by facilitating the phosphorylation of the LAT
signalosome by ZAP70. TCR activation by cross-linking of CD3
leads to activation of the lck tyrosine kinase, which phosphorylates
the CD3 complex. Docking of ZAP70 to the phosphorylated
ITAMs of the TCR and phosphorylation by lck stimulates its
tyrosine kinase activity and results in ZAP70-dependent phosphor-
ylation of the membrane-anchored LAT protein and of LAT-

associated molecules, forming together the “LAT signalosome.”
Normal autophosphorylation of ZAP70 at Y319 in RhoH-null
thymocytes after cross-linking of CD3 suggests that TCR signaling
is not impaired at the level of ZAP70 activation. This notion is
strengthened by the normal TCR-dependent activation of p38 in
CD4SP cells because in T cells this activation is mediated by
ZAP70 independently of LAT.19 However, the phosphorylation of
LAT and the LAT-associated proteins PLC�1 and Vav1 and the
activation of Erk and calcium influx, which are downstream of
PLC�1, were dramatically reduced in RhoH-deficient thymocytes.
RhoH, therefore, seems to specifically interfere with the LAT
branch of ZAP70 signaling. The impaired TCR-dependent calcium
influx in peripheral CD4
 or CD8
 T cells indicates that RhoH is
also important for TCR signaling in mature T cells and that loss of
RhoH is not compensated during development.

When comparing the RhoH-null phenotype with other mouse
mutants with defects in thymocyte development, striking similari-
ties with Vav1-deficient mice become obvious27-29 and make it

Figure 6. Defective TCR signaling and calcium influx in
RhoH-null thymocytes. Thymocytes of 2-month-old mice were
stimulated with biotinylated antibodies CD3 (C) or CD3 and CD4
(A-B, D) and streptavidin for 5 minutes at 37°C. Phosphorylation
of ZAP70(Y319)/Syk(Y352) (A), lck(Y505) (B), Erk1/2(T202/
Y204) (C), and p38 MAPK (T180/Y182) (D) was measured by
FACS. Different thymocyte populations were distinguished (filled,
nonstimulated; line, stimulated). Differences between the mean of
stimulated and nonstimulated (specific mean) cells are shown.
*P � .05; **P � .01. n [control]/RhoH�/�]: 5/5 (A-B, D). n [control]/
RhoH�/�]: 4/5 (C). Thymocytes (E) or splenocytes (F) of 2-month-
old mice were loaded with Fluo-4 and stained on ice for CD4,
CD8, and CD3. After warming to 37°C, baseline Fluo-4 fluores-
cence was determined, and TCR signaling was induced by
cross-linking CD3 with streptavidin. Presented is the percentage
of cells above a threshold fluorescence (responding cells; left
panel) and the mean fluorescence of all cells (right). Shown are
representative results of 5 (E) or 2 (F) independent experiments.
Error bars indicate the standard deviation.
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tempting to speculate that RhoH function is closely linked to Vav1.
Given that Vav1 is a GEF binding to Rho GTPases, the simplest
link would be a direct interaction of Vav1 with RhoH. This could
lead to the recruitment of a constitutively active RhoH to the TCR
complex, enabling further protein–protein interactions through
RhoH. As a second possibility, Vav1 might activate RhoH by
catalyzing the exchange of GDP to GTP. This would imply that, in
thymocytes, RhoH activity is regulated by GEFs and GAPs and
that RhoH is not constitutively active, as presently assumed.2 Like
RhoH, the small GTPase Rap1 does not have detectable intrinsic
GTPase activity because of the mutation of a catalytic glutamine.30

However, Rap1 can hydrolyze GTP with the help of Rap1GAP,
which provides a catalytic asparagine.31 It remains to be tested
whether such a GAP exists for RhoH. Interestingly, we did not
observe any defect in hematopoiesis in heterozygous RhoH-mutant
mice, though mRNA levels of RhoH were reduced by half.

Our data indicate that RhoH is upstream of Vav1 because
TCR-dependent activation of Vav1, as determined by tyrosine
phosphorylation, is reduced in RhoH-null mice, whereas total
levels of Vav1 are unchanged. A conceivable scenario might be
that though RhoH is weakly associated in the resting state with
Vav1 or other members of the LAT signalosome, this interaction
becomes strengthened on TCR stimulation, resulting in the
stabilization of the entire LAT signalosome complex. Thus,
RhoH can be involved in a positive feedback loop downstream
of Vav1, which increases the tyrosine phosphorylation of LAT,
PLC�1, and Vav1 itself. However, thus far we have been
unsuccessful in coimmunoprecipitation of recombinant RhoH

with Vav1, ZAP70, or LAT from lysates of resting and stimulated
thymocytes or Jurkat cells transfected with tagged RhoH,
suggesting that such interactions, if existent, are weak or
transient (data not shown).

Several functions have previously been assigned to RhoH. First,
RhoH was described as a negative regulator of p38 MAPK in
Jurkat and 293 cells.2 In thymocytes lacking RhoH, we did not
detect increased activation of p38 MAPK, suggesting a cell
type–specific function of RhoH in this respect.

Second, RhoH was reported to decrease LFA-1–mediated
adhesion in Jurkat cells and human peripheral blood lymphocytes.6

We showed here that LFA-1–mediated adhesion of thymocytes and
T cells to ICAM-1 is not affected by the absence of RhoH. Our
results do not rule out a more subtle role for RhoH in cell adhesion
and cell–cell contact in vivo.

Finally, RhoH inhibited SCF-induced Rac1 activation in HPCs.3

Indeed, basal Rac1 activity was increased in RhoH-null DP
thymocytes, suggesting that RhoH is a negative regulator of Rac1
activity in the resting state. Increased Rac1 activity could be a
compensatory change in response to the loss of RhoH. Other
compensatory changes might not yet have been found, and future
studies will address this search. It is unlikely that the increased
basal activity of Rac1 in RhoH-null DP thymocytes is the reason
for the impaired thymocyte development. Constitutive activation of
Rac1 should rather result in “augmented” TCR signaling because
constitutively active Rac1 can rescue the defective DN3 to DN4
transition in Vav1-null thymocytes and can increase the expression
of TCR�, CD5, and CD69 on DP and CD4SP cells, in contrast to

Figure 7. RhoH does not affect thymocyte development through regulation of �L�2 integrin-mediated adhesion. (A) Relative adhesion of thymocytes to the
immobilized �L�2 ligand ICAM-1 and to the �4�1 ligand VCAM-1. Integrins were activated by treatment with 2 mM Mn2
 or 100 ng/mL PMA as indicated. Adhesion of wild-type
(RhoH 
/
), heterozygous (RhoH
/�), and homozygous RhoH-null thymocytes (RhoH �/�) was indistinguishable at all conditions tested. Error bars show the standard deviation
(n [RhoH
/
]/[RhoH
/�]/[RhoH�/�]: 1/2/3. (B) Relative adhesion of T-cell blasts to the endothelial cell line bEnd5 and the ICAM-1–deficient endothelial cell line bEndI1.1
(ICAM1�/� ). Adhesion was stimulated by treating the endothelial cells with TNF. Antibodies against �4-integrin and LFA-1 were used to determine the specific contribution of
these adhesion receptors to the attachment. An unrelated antibody was added as a control for nonspecific effects. Wild-type (RhoH
/
), heterozygous (RhoH
/�), and
homozygous (RhoH�/� ) RhoH-null T cells showed indistinguishable adhesion at all conditions tested. Error bars show the standard deviation (n [RhoH
/
]/[RhoH
/�]/[RhoH�/�]: 2/2/4.
(C)Thymocytes of 6- to 10-week-old �2-integrin-null, RhoH-null, and �2-integrin-RhoH double-knockout mice were analyzed for the expression of CD4 and CD8 by FACS. Bar
graph presents the absolute cell numbers of each population. Error bars indicate the standard deviation (n [�2�/�]/[RhoH�/�]/[�2�/�RhoH�/�]: 3/3/3. (D) Expression of CD5 and
amount of CD5low thymocytes in 6- to 10-week-old �2-integrin-null, RhoH-null, and �2-integrin-RhoH double-knockout mice. Error bars indicate the standard deviation (n
[�2�/�]/[RhoH�/�]/[�2�/�RhoH�/�]: 3/3/3.
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the phenotype of RhoH-deficient cells.32,33 Conceivably, the differ-
ent phenotypes are explained by the fact that the level of active
Rac1 is lower in RhoH-deficient thymocytes than in thymocytes
overexpressing the constitutively active mutant form (L61Rac1).32,33

In conclusion, our data suggest that RhoH is required for
efficient �-selection and positive selection because it promotes the
ZAP70-dependent phosphorylation of the LAT signalosome during
pre–TCR and TCR signaling.
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Inhibition of the α4 subunit of the integrin heterodimers α4β1 and α4β7 with the 

monoclonal antibody natalizumab is an effective treatment of multiple sclerosis 
(MS)1. Since α4 integrins control multiple functions on almost all hematopoietic 
cells it is not clear where and how the antibody executes its beneficial effect. 
One assumption is that the interaction of α4 integrins on autoreactive T cells 
with VCAM-1 on the activated blood brain barrier endothelium is blocked, 
preventing their extravasation into the central nervous system (CNS). However, 
there are conflicting data regarding which integrin heterodimer is responsible for 
the clinical effect2,3, and whether more fundamental processes such as T cell 
activation and polarization are affected. Finally, it is unknown whether inhibition 
of cell types other than T cells contributes to the beneficial effect of α4 blockade. 
To address these questions, we studied MS-like experimental autoimmune 

encephalomyelitis (EAE) in mice with a β1 integrin gene deletion in either all 

hematopoietic cells or selectively in T cells. We found that β1 integrin-deficient 

autoreactive T cells were unable to firmly adhere to CNS endothelium in vivo 
while priming and expansion of T cells and CNS infiltration of myeloid cells 

remained unaffected. Our data suggest that α4β1 integrin is essential for T cell 

entry into the CNS. 
Multiple sclerosis is considered an autoimmune disease where activated CD4+ T cells 

reactive against myelin components enter the central nervous system, recruit additional 

inflammatory cells like macrophages and cause inflammation, edema and 

demyelination which set the stage for the clinical picture of this chronic disabling 

disease4. Thus, T cell trafficking into the CNS is a major hallmark of the 

immunopathogenesis of MS. Natalizumab (marketed as Tysabri), a humanized 

monoclonal antibody against the α4 integrin subunit has been approved for the 

treatment of relapsing-remitting MS under the assumption that it prevents extravasation 

of activated T cells into the CNS5. However, there is accumulating evidence that α4 

integrins are also involved in immunological processes other than T cell extravasation 

including activation of myeloid cells6, activation of naïve T and B lymphocytes7, 

polarization of effector T cells into the TH1 or TH2 lineage8, retention of memory T cells 

in their niches9 and localization of hematopoietic stem cells10. While these findings 

largely stem from studies in rodents, the very rare but fatal side effects such as the 

development of progressive multifocal leukoencephalopathy (PML) in natalizumab-

treated patients also pointed to the possibility that the antibody has a broader systemic 

immunosuppressive or immunmodulatory effect11,12. 
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To investigate these issues we chose a genetic approach where we selectively deleted 

the gene encoding the β1 integrin subunit, thus restricting our findings to the α4β1 

integrin heterodimer and excluding potential effects of α4β7 blockade. In order to 

directly compare the fate and the functional properties of wild type (wt) and β1 integrin-

deficient T cells within the same animal we established an animal model in which Cre-

mediated deletion of the β1 integrin gene occurred in approximately half of the T cells. 

This was achieved by generating bone marrow (BM) chimeric mice carrying floxed β1 

integrin alleles and an inducible Mx1-Cre transgene13 (β1fl/fl/MxCre+) in the 

hematopoietic compartment. This genetic set-up restricts the ablation of the conditional 

β1 integrin gene exclusively to hematopoietic cells, which occurs in T cells to a rate of 

approximately 60% and in other hematopoietic cells to a rate of 95-98% (Fig. 1a). The 

presence of β1 integrin-positive T cells is thought to be due to absent Mx1-Cre 

transgene expression in thymic and peripheral T cells14. Active immunization of 

β1fl/fl/MxCre+ bone marrow chimeras (called β1-/- BM chimeras) with the myelin 

oligodendrocyte glycoprotein (MOG)-peptide MOG35-55 led to the development of EAE 

with a similar devastating impact on weight and clinical scores as for control 

(β1fl/fl/MxCre-) BM chimeras (Fig. 1b). Moreover, histology of diseased animals 

revealed no qualitative difference in leukocyte infiltration in the CNS (Fig. 1c). These 

findings suggest that (i) loss of β1 integrin expression on the myeloid and B cell lineage 

did not influence the development of the disease, and that (ii) a bisected pool of naïve 

T cells was sufficient to trigger disease induction. 

To assess the contribution of β1 integrin-deficient inflammatory cells within the 

diseased tissue we isolated the infiltrating leukocytes from the CNS of animals at the 

peak of their disease and determined the cellular composition of the infiltrates. In line 

with the severity of the clinical course the total number of isolated leukocytes was 

similar between control and β1-/- BM chimeras (Fig. 2a). Furthermore, the population 

sizes of isolated CD4+ and CD8+ T cells, macrophages and granulocytes were 

comparable in control and β1-/- BM chimeras (Fig. 2b). We next took advantage of our 

internally controlled system and determined the contribution of β1-deficient cells to the 

inflammatory infiltrates. In β1-/- BM chimeric mice CD45.1negGr-1medMac-1+ infiltrating 

macrophages and CD45.1negGr-1highMac-1+ granulocytes were uniformly β1-deficient 

(Fig. 2c) indicating that inflammatory bystander cells are recruited into the CNS in a β1 

integrin-independent manner. In contrary, CD4+ and CD8+ T cells isolated from the 

CNS of β1-/- BM chimeric mice were almost entirely β1 integrin-positive (Fig. 2c). Thus, 

a 60:40 ratio of β1 integrin-negative to β1 integrin-positive peripheral T cells in the 
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peripheral circulation shifted towards an almost pure population of β1-positive cells 

within the inflamed CNS. These data impressively demonstrate that T cells but not 

myeloid cells require β1 integrins to infiltrate the CNS. 

To further corroborate our findings we employed the CD4-Cre transgene15 to 

specifically ablate the β1 integrin gene on T cells. Mice carrying floxed β1 integrin 

alleles and the CD4-Cre transgene (named β1fl/fl/CD4Cre+) displayed a 90% deletion 

efficiency on T lymphocytes (Fig. 3a). Upon active immunization these mice exhibited a 

significant delay in the onset of clinical EAE symptoms (Fig. 3b+c). Interestingly, these 

animals eventually developed clinical symptoms, which were accompanied by an influx 

of β1 integrin expressing T cells into the CNS that escaped CD4-Cre-mediated deletion 

(Supplementary Fig. 1). Taken together, these findings indicate that loss of β1 integrin 

expression on 90% of the peripheral T lymphocyte population delays the development 

of EAE, while the presence of only 10% of β1 integrin expressing T cells is sufficient to 

eventually trigger the disease.  

In order to further clarify this issue, we next investigated whether lack of β1 integrin on 

T cells leads to their insufficient activation, to their impaired extravasation into the CNS, 

or both. To test T cell activation we intercrossed β1fl/fl/MxCre+ mice with transgenic 

animals expressing MHC II-restricted T cell receptors (TCR) specific for the ovalbumin 

(Ova)-peptide Ova323-339 (OT-II.2)16. Two to three months after polyIC injection CD4+ T 

cells were purified and injected intravenously into wild-type recipients. LPS matured 

Ova323-339-loaded bone marrow-derived dendritic cells were intravenously co-injected 

and the proliferative response was tracked by carboxyfluorescein diacetate 

succinimidyl ester (CFSE) dilution. β1 integrin-deficient T cells showed comparable 

proliferation and division indices to control T cells (Fig. 3d+e). This indicates that β1 

integrins were not required to induce T cell priming. Similarly, intracellular flow 

cytometry revealed similar cytokine responses between β1fl/fl/MxCre+ and control cells 

(Supplementary Fig. 2).  Together, these findings indicate that the lack of β1 integrin-

deficient T cells in the EAE lesions is not due to impaired activation.  

To investigate whether β1 integrins are required for T cell infiltration into the CNS we 

employed an in vitro as well as an in vivo approach that allowed assessing the 

interaction of β1 integrin-deficient T cells with inflamed CNS endothelium. We isolated 

T cells from polyIC-induced OT-II.2 transgenic β1fl/fl/MxCre+ BM chimeras and 

triggered their proliferation by co-culturing them with Ova323-339 loaded dendritic cells. 

For further analysis T cell blasts were sorted into β1 integrin-positive and -negative 

populations. Flow cytometry of the surface integrins showed a high expression of the 

α4, β1 and β7 subunit on control cells. On the knockout cells expression of the entire 
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β1 integrin subfamily was lost, while the αLβ2 integrin and the β7 subunit was slightly 

increased (Fig. 4a). First, we tested their static adhesion to the TNF-α stimulated brain 

endothelioma cell line bEnd5 and observed no difference in binding between β1-

positive and -negative T cells at room temperature (Fig. 4 b). Since the adhesion was 

likely due to a predominant interaction between αLβ2 integrin and endothelial ICAM-1 

we also performed adhesion assays on the ICAM-1-/- endothelioma cell line bEndI1.1, 

which significantly impaired adhesion of β1 integrin-deficient T cells (Fig. 4 b). The 

reduced adhesion of β1-/- T cells was even further impaired when the assays were 

performed at 4°C (Supplementary Fig. 3), which diminishes the contribution of αLβ2-

mediated adhesion17. These findings suggest that T cells adhere to activated 

endothelial cells by binding VCAM-1 with α4β1 integrin and ICAM-1 likely with αLβ2 

integrin. To test whether the αLβ2 integrin binding to ICAM-1 plays a compensatory 

role for T cell adhesion to inflamed brain endothelium, we performed intravital 

fluorescence videomicroscopy (IVM) of the spinal cord white matter microvasculature. 

Interestingly, adoptive T cell transfers into diseased wild-type animals revealed that 

adhesion of β1-deficient Ova323-339-specific T cells to the endothelium was significantly 

diminished in comparison to control Ova323-339-specific T cells (Fig. 4c). Since the 

events during initial cell contact (i.e. rolling and immediate capture) are slightly but not 

significantly impaired (Fig. 4d) the dramatic reduction of T cell adhesion is probably due 

to their inability to maintain a firm contact without β1 integrins. Performing the same 

experiment with β1 deficient MOG35-55-specific T cells18 produced similar results 

(Supplementary Fig. 4). Together, these findings impressively demonstrate that the 

interaction of α4β1 integrin with endothelial VCAM-1 is the critical molecular interaction 

for the stable adhesion of activated T cells to the brain vasculature.  

Our results show that the genetic deletion of β1 integrin in the hematopoietic system 

does not impair the potency of antigen presenting cells, granulocytes and 

macrophages to contribute to the development of EAE. Furthermore we show that 

active EAE development is significantly delayed in mice lacking β1 specifically in the 

majority of their T lymphocytes. Taken together, these results suggest that the 

beneficial clinical effects of natalizumab are due to a direct effect on the T cell lineage. 

We further show that adhesion of T cells to inflamed endothelial cells is mediated by β1 

integrins, which suggests that the anti α4 antibody is interfering with α4β1 and not α4β7 

binding. Our data also demonstrate that β1 integrins play an essential role during 

extravasation but not during T cell priming or polarization. Hence it is likely, that the 

profound clinical efficacy of the antibody therapy is due to interference with the α4β1-

integrin mediated extravasation of effector T cells into the CNS. 
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Methods 
Animals. Mice carrying a floxed β1 integrin gene19 (referred to as β1fl/fl) were 

intercrossed with mice carrying a Mx1 promoter-driven Cre recombinase transgene13 

(referred to as MxCre+). To obtain T cell receptor (TCR) transgenic β1-deficient T cells 

β1fl/fl/Mx1Cre+ mice were intercrossed with ovalbumin-specific TCR transgenic mice16 

(referred to as OT-II.2). To obtain mice with a deletion of the β1 integrin subunit 

restricted to the hematopoietic system of β1fl/fl/MxCre+ irradiation bone marrow 

chimeras were made as described20. Mice with a Cre-mediated deletion of the T 

lymphocyte compartment were obtained by crossing β1fl/fl mice with mice carrying a 

CD4 promoter-driven Cre recombinase (referred to as β1fl/fl/CD4Cre+)15. Mice were 

kept on a mixed 129Sv/C57BL/6 genetic background and bred in the animal facilities of 

the Max Planck Institute of Biochemistry. All animal studies were performed with the 

license of the government of Oberbayern. Female C57BL/6 mice (8-10 weeks) for IVM 

were purchased from Harlan (Netherlands). All IVM experiments were performed in 

accordance with the requirements of the local government in Bern, Switzerland 

(permission number 55/04 for EAE experiments and 104/04 for IVM). 

Induction and evaluation of active EAE. Active EAE was induced by subcutaneous 

injection at the tail base of an emulsion of complete Freund´s adjuvant (CFA) and 200 

µg MOG35–55 peptide (Biotrend) in PBS (1:1 volume ratio). CFA was prepared by 

supplementation of incomplete Freund´s adjuvant (Sigma-Aldrich) with 5 mg/ml 

inactivated Mycobacterium tuberculosis (H37Ra; Difco). 400 ng Pertussis toxin (List 

Biological Laboratories) in PBS was injected intraperitoneal on days 0 and 2 after 

immunization. Clinical disease and weight were checked daily and scored as 

described21. Mice scored 1 (limp tail) to 2 (hind leg weakness) were used as recipients 

for IVM experiments. 

Southern Blot analysis. Southern blotting to detect the Cre-mediated knockout 

efficiency was carried out as described14,22. 

Histological analysis. The spinal cord was rapidly dissected and in part frozen unfixed 

in optimal cutting temperature compound. Cryosections of 10 µm thickness were cut 

and used for immunofluorescence staining according to standard protocols. The 

following biotinylated monoclonal antibodies were used: Ly5.1 (A20) and Mac-1 

(M1/70) (both from BD Pharmingen). After blocking unspecific binding with a 

Streptavidin/Biotin blocking kit (Vector Laboratories), Cy3-conjugated Streptavidin was 

used to detect the primary antibodies. A pan-laminin antibody (L9393, Sigma) was 

used to stain blood vessels. Images were taken with a DMIRE2 confocal microscope 

(Leica). 
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Flow cytometry. Mononuclear cells were isolated from the central nervous system 

(CNS) by Percoll density gradient centrifugation23 of the dissected brain and spinal 

cord. Single-cell suspensions from hematopoietic organs and staining for FACS 

analysis were prepared as described23. The following fluorochrome or biotin-labelled 

monoclonal antibodies were used: CD4 fluorescein isothiocyanate (FITC), 

phycoerythrin (PE) and biotin (H129.19), CD8 biotin (53-6.7), Gr-1 PE  (RB6-8C5), 

integrin α4 biotin (9C10), integrin α5 biotin (5H10-27), integrin α6 PE (GoH3), integrin 

αE PE (M290), integrin αV PE (RMV-7), integrin β1 FITC (Ha2/5), integrin β2 biotin 

(C71/16), integrin β7 PE (M293) and Mac-1 biotin (M1/70) (all from BD Pharmingen), 

integrin β1 PE (HMbeta1-1) (BioLegend), integrin αL biotin (M17/4) and Vα 2 TCR 

biotin (B20.1) (both from eBioscience). As controls the following isotype-matched 

antibodys were used: hamster IgM FITC (G235-1),  rat IgG1 (R3-34) and rat IgG2a,κ 

PE (R35-95) (all from BD Pharmingen), hamster IgG PE (HTK888) (BioLegend) and rat 

IgG2a, κ biotin (eBiosciences). All biotinylated antibodies were detected with Cy5-

conjugated streptavidin (Jackson ImmunoResearch). Dead cells were excluded from 

the analysis by staining with propidium-iodide (2.5 µg/ml, Sigma), residual host cells in 

the bone marrow chimeras were excluded by staining with CD45.1 CyChrome. 

Measurements were performed on a FACSCalibur (BD Biosciences) and analyzed 

using the FlowJo software (version 6.1.1, TreeStar).  

Cell culture. Dendritic cells (DC) were generated from murine bone marrow cells as 

described24. Activated T cells for adhesion assays and IVM experiments were 

generated from β1fl/fl/Cre+; OT-II.2 mice. Mice received a single intraperitoneal injection 

of 250 µg polyIC (Amersham Biosciences) in PBS to induce the knockout. Six to eight 

weeks after knockout induction the mice were sacrificed and single cell suspensions of 

splenocytes were obtained. After ACK-lysis of red blood cells according to standard 

protocols22 splenocytes from one mouse were cocultured with 4 x 106 DCs loaded for 2 

hours with 20 µg/ml Ova323-339 peptide (in-house peptide synthesis service). After four 

days of co-culture the cell suspensions were split 1:2 into fresh medium containing 5 

ng/ml IL-2 (R&D Systems). After another two days of co-culture dead cells were 

removed by Nycoprep 1.077 A (Axis-Shield) density gradient centrifugation. For 

depletion of β1 positive T cells the cell suspension was subsequently incubated with a 

biotinylated integrin β1 antibody (Ha2/5) (BD Pharmingen) followed by streptavidin-

microbead separation according to the manufacturers protocol (Miltenyi Biotech). The 

efficiency of sorting was monitored by staining with fluorochrome-labelled CD4 and β1 

antibodies and subsequent FACS analysis. On average 90,4% of the cells were CD4+ 

and 92,2% of the β1-depleted cells were β1 negative. For unspecific stimulation single 
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cell suspensions of splenocytes were stimulated after ACK-lysis for 2 days with 50 

ng/ml Phorbol-12-Myristate-13-Acetate (PMA; Calbiochem) and 500 ng/ml Ionomycin 

(Calbiochem).  

Proliferation assays. Sorting of T cells, in vivo proliferation assays and FACS analysis 

of the proliferated cells were performed as described23. Proliferation parameters were 

analyzed using the proliferation platform of the FlowJo software (version 6.1.1, 

TreeStar). The division index indicates the average number of division that a dividing 

cell underwent, whereas the proliferation index indicates the average number of 

divisions all cells underwent. The percentage of initially present cells which divided is 

shown by the percent of dividing cells. For intracellular cytokine stainings splenocytes 

were stimulated after isolation for 4 hours with 50 ng/ml PMA, 500 ng/ml Ionomycin and 

10 µg/ml Brefeldin A (Sigma). Intracellular cytokine staining was performed according 

to the manufacturers guidelines using the Leucoperm kit (AbD Serotec) and the 

following PE-labelled monoclonal antibodies: IL-2 (JES6-5H4), IL-4 (11B11), IL-17 

(TC11-18H10.1), IFN-γ (XMG1.2) and TNF-α (MP6-XT22) (all from BD Pharmingen). 

As controls the following isotype-matched antibodys were used: rat IgG1 (R3-34) (BD 

Pharmingen) and rat IgG2b (eB149/10H5) (eBioscience). 

Adhesion assays. Adhesion assays to the endothelioma cell lines bEnd5 and 

bEndI1.1 were carried out as described previously25. 2 x 104 endothelioma cells per 

well were plated. 1 x 105 cultured, MACS-sorted OT-II.2 transgenic T cell blasts were 

allowed to adhere per well either at room temperature or at 4 °C. All conditions were 

performed in duplicates. After fixation two pictures were acquired from each well with 

an Axiovert 200M microscope (Zeiss) and the number of adherent T cells was 

quantified using the MetaMorph software (version 6.3r6, Molecular Devices).  

Intravital fluorescence videomicroscopy. Surgical preparation of the spinal cord 

window, intravital microscopy and quantitative analysis of the spinal cord white matter 

microcirculation were performed exactly as described26 using a custom made Mikron 

IVM500 fluorescence microscope connected to a SIT camera (Dage-MTI). Epi-

illumination techniques were used to visualize the spinal cord microvasculature after 

injection of 0.1 ml 1 % TRITC-conjugated dextran (MW = 155,000; Sigma-Aldrich). 

Real time observations were made using x4, x10 and x20 long-distance working 

objectives and microscopic images were recorded using a DSR-11 digital 

videocassette recorder (Sony) for later offline analysis, which was performed exactly as 

described before26,27. β1 integrin-deficient CD4+ T cells and control CD4+ T cells, 

isolated as described above, were fluorescently labelled with 125 nM Calcein-AM 

(Molecular Probes) prior to their infusion via the right carotid artery. For direct 

comparison of the interaction of β1 integrin-deficient and β1 integrin-positive T cells 
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within the same spinal cord white matter vascular bed, the injection of β1 integrin-

deficient CD4+ T cells (4 x 106 cells in 300 µl 0,9 % NaCl injected in aliquots of 100 µl) 

was followed by injection of control T cells (4 x 106 cells in 300 µl 0,9 % NaCl injected 

in aliquots of 100 µl) into the same mouse 1 hour later. This technique might produce 

artefacts due to the extended observation time necessary in this experimental setup. 

Thus, the interaction of β1 integrin-deficient and β1 integrin-positive CD4+ T cells was 

additionally compared in individual mice injected with one T cell population only. The 

same results were obtained using both experimental approaches. 

T cells passing through the spinal cord microvessels (∅ 20-60 µm) and T cells, which 

visibly initiated contact with the spinal cord microvascular endothelium and thus moved 

at a slower velocity than the main blood stream were counted during an observation 

period of 1 minute in frame by frame analysis of the videos using the CapImage 

software (version 8.3, Dr. Zeintl)26. The fraction of T cells initiating contact with the 

vascular wall was calculated for each microvessel as the percentage of interacting T 

cells among the total number of T cells passing through a given post-capillary venule 

during this 1 minute observation window. The rolling fractions and the capture fractions 

were counted accordingly. Permanently adherent T cells were identified as cells stuck 

to the vessel wall without moving or detaching from the endothelium within an 

observation period of ≥ 20 seconds and were counted 10 min, 30 and 60 minutes after 

T cell infusion (4 x 106 cells/mouse).  

Statistical analysis. All statistical analysis was performed using the GraphPad Prism 

software (version 5.00, GraphPad Software). Data are presented as medians with 

interquartile ranges. Mann-Whitney U statistics were used for comparisons between 

different data sets. Asterisks indicate significant differences (*P<0.05, **P<0.01 and 

***P<0.005). For analysis of adherent T cells in the IVM analysis mean values were 

calculated from the values in each animal and the two groups were compared using a 

Mann-Whitney U test. 
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Figure 1: The clinical course of EAE is not altered in β1-/- BM chimeras. (a) 

Knockout efficiency for the indicated total and MACS-sorted cell populations was 

determined by southern blotting. The number of samples for each population is given in 

each bar. Bars represent medians and interquartile ranges. (b) The relative weight 

normalized to day 0 and the clinical disease score of control and β1-/- BM chimeras with 

active EAE are shown. Data points indicate the means of 13 mice from 3 independent 

experiments. Around day 16, mice were sacrificed for histological and flow cytometric 

analysis. (c) Immunostaining of the spinal cord white matter of control and β1-/- BM 

chimeras with ongoing active EAE (clinical score 3). Infiltrating leukocytes were stained 

with Ly5.2, CD4 or Mac-1 antibodies (red), blood vessels with a laminin antibody 

(green) and nuclei with DAPI (blue) (scale bar, 100 µm). 
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Figure 2: T lymphocytes depend on β1 integrins to enter the CNS. (a) Shown is the 

total number of leukocytes and microglia cells isolated by density gradient 

centrifugation from the brain and spinal cord of control and β1-/- BM chimeras with 

ongoing active EAE (average clinical score = 3, n = 5). Shown is the median number of 

isolated cells per CNS of one animal and the interquartile range. (b + c) The isolated 

leukocytes were analyzed by flow cytometry. In (b) the relative numbers of CD4+ T cells 

(CD4+), CD8+ T cells (CD8+), Macrophages (Mac) and Granulocytes (Gr) are shown 

(controls, n = 8, β1-/- n = 9). (c) The β1 expression of the four leukocyte subsets was 

analyzed by flow cytometry. Macrophages and granulocytes were distinguished by their 

different expression levels of Gr-1 and Mac-1. Microglia cells are mainly host cell 

derived and were excluded based on their cell surface expression of CD45.1. Each bar 

represents at least 5 mice. (b + c) Bars in all panels represent medians and 

interquartile ranges. 
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Figure 3: β1 integrin is important for T cell extravasation but not proliferation. (a) 

Splenocytes from control, β1fl/fl/MxCre+ or β1fl/fl/CD4Cre+ mice were stimulated 

unspecifically in vitro. Subsequently, isotype control staining and β1 integrin expression 

of CD4+ T cells were analyzed by FACS. Graphs show the medians and interquartile 

ranges of at least 5 animals per group. (b) The median day of disease onset of control 

and β1fl/fl/CD4Cre+ mice with active EAE is shown. (c) The relative weight normalized 

to day 0 and the clinical disease score of control and β1fl/fl/CD4Cre+ mice with active 

EAE are shown. Data points indicate the means of 7 mice from 3 independent 

experiments. (d) Naïve CFSE-labelled CD4+ OT-II.2 T cells were cotransferred with 

Ova323-339 peptide loaded dendritic cells into wildtype mice. After three days cells were 

isolated from the spleen and analyzed for CFSE-dilution. The division and proliferation 

index and the percentage of dividing cells were calculated from the generation sizes (n 

= 6). (e) CFSE stainings from one representative control and β1-/- sample are shown. 

Light grey shaded histograms represent control animals that received dendritic cells 

without Ova323-339 peptide. 
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Figure 4: In vivo firm adhesion of β1-/- T lymphocytes in the spinal cord 

microvasculature is dramatically reduced. Proliferating CD4+ OT-II.2 transgenic 

control and β1-/- T lymphocytes were analyzed for their adhesive behaviour in vivo and 

in vitro. (a) Integrin expression of proliferating control and β1-/- T lymphocytes was 

analyzed by FACS. Blue and red histograms represent control and β1-/- T cells, 

respectively. Isotype control stainings are shown in shaded grey histograms. 

Histograms are representative of 3 independent experiments. (b) Adhesion of T cell 
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blasts to the endothelioma cell lines bEnd5 (wildtype) and bEndI1.1 (ICAM-1-/-). 

Endothelioma cell lines were stimulated with TNF-α prior to the adhesion assay, which 

was performed at room temperature. Graphs show the medians and interquartile 

ranges (n = 4). (c) Firm adhesion of control and β1-/- T cell blasts to the spinal cord 

microvascular wall was analyzed by IVM of the spinal cord white matter 

microvasculature in wildtype mice with ongoing active EAE. Firm adhesion was 

analyzed 10 minutes, 30 minutes and 1 hour after infusion of T lymphocytes. Bars 

represent the medians and interquartile ranges (n = 6). (d) Initial contact events of T 

cell blasts with endothelial cells were analyzed by IVM. From 6 experiments with 

control and β1-/- T cells, 46 and 30 vessels were analyzed, respectively. Shown is the 

percentage of rolling or captured T cells among the total number of T cells passing 

through a given venule during a 1 minute observation period. Each dot represents one 

vessel, the red line indicates the median. 

 

 
Supplementary Figure 1: CD4+ T lymphocytes isolated from the CNS of 

β1fl/fl/CD4Cre+ mice with active EAE are β1 positive. (a) Leukocytes and microglia 

cells were isolated by density gradient centrifugation from the brain and spinal cord of 

control (n = 2) and β1fl/fl/CD4Cre+ (n = 3) mice with ongoing active EAE. The β1 

expression of CD4+ and CD8+ T cells was analyzed by flow cytometry. Bars represent 

medians and interquartile ranges. (b) Shown are representative histograms of 

unspecifically stimulated splenocytes and T lymphocytes isolated from the CNS of mice 

with active EAE gated for CD4 or CD8 expressing cells. Blue and red histograms 

represent control and β1-/- T cells, respectively. Isotype control stainings are shown in 

shaded grey histograms. 
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Supplementary Figure 2: The cytokine expression profile of β1 deficient T cells is 

not altered. The intracellular cytokine expression of control and β1-/- T lymphocytes 

was analyzed by FACS. Cells were isolated after 3 days of in vivo proliferation and 

additionally incubated for 4 hours with ionomycin, PMA and Brefeldin A. (a) Blue and 

red histograms represent control and β1-/- T cells, respectively. Isotype control stainings 

are shown in shaded grey histograms. Histograms are representative of 4 independent 

experiments. (b) Shown are the percentages of cytokine expressing T cells. Bars 

represent medians and interquartile ranges (n = 4). 

 

 
Supplementary Figure 3: Static adhesion of T cells to endothelioma cell lines is 

mainly integrin αLβ2 dependent. Adhesion of T cell blasts to the endothelioma cell 

lines bEnd5 (wildtype) and bEndI1.1 (ICAM-1-/-) were analyzed. Endothelioma cell lines 

were stimulated with TNF-α prior to the adhesion assay, which was performed at 4°C 

to reduce the contribution of the interaction between LFA-1 and ICAM-1. Graphs show 

the medians and interquartile ranges (n = 4). 
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Supplementary Figure 4: In vivo firm adhesion of β1-/- T lymphocytes to the 

spinal cord microvasculature is dramatically reduced. To obtain T cell blasts 

specific for the MOG35-55 peptide mice with β1-deficient T cells (β1fl/fl/Mx1-Cre) were 

intercrossed with MOG-specific TCR transgenic mice (referred to as 2D2)18. 

Proliferating CD4+ 2D2 transgenic control and β1-/- T lymphocytes were analyzed for 

their adhesive behaviour in vivo. Firm adhesion of control and β1-/- T cell blasts to the 

spinal cord microvascular wall was analyzed by intravital microscopy 10 minutes, 30 

minutes and 1 hour after infusion. Each dot represents the mean of one experiment, 

lines indicate the medians (n = 2). 

 

Supplementary Movie 1 (on the enclosed CD): In vivo adhesion of control T 
lymphocytes to the spinal cord microvasculature. Proliferating CD4+ OT-II.2 

transgenic control T lymphocytes were analyzed for their adhesive behaviour in vivo. 

The interaction of T cell blasts with endothelial cells was observed by IVM of the spinal 

cord white matter microvasculature in wildtype mice with ongoing active EAE. The 

movie shows first the injection of Calcein-AM labelled lymphocytes into the spinal cord 

white matter microvasculature of anesthetized mice. Afterwards scanning of the 

microvasculature for adherent T cells 10 minutes and 1 hour after infusion is shown. 

 

Supplementary Movie 2 (on the enclosed CD): In vivo adhesion of β1-/- T 

lymphocytes to the spinal cord microvasculature. Proliferating CD4+ OT-II.2 

transgenic β1-/- T lymphocytes were analyzed for their adhesive behaviour in vivo. The 

movie shows first the visualization of the microvasculature by injection of TRITC-

conjugated dextran and then injection of the Calcein-AM labelled lymphocytes. 

Afterwards scanning of the microvasculature for adherent T cells 10 minutes and 1 

hour after infusion is shown. Supplementary movies 1 and 2 show the vascular bed of 

the same mouse into which first β1-/- and then control T cells were injected. 

 



 



Paper V



3. Analysis of Integrin Functions in Blood

The leukocyte-specific b2 and b7 integrins as well as almost all members
of the b1 integrin subfamily play important roles in the hematopoietic system
(Sixt et al., 2006). The integrins are required for the homing of hematopoietic
stem cells to the fetal liver and bone marrow (Hirsch et al., 1996; Potocnik
et al., 2000), hematopoiesis (Bouvard et al., 2001), extravasation of leukocytes
at sites of inflammation (Mizgerd et al., 1997; Yednock et al., 1992), and the
formation of lymphatic organs such as Peyer’s patches, and so on. Conse-
quently, the analysis of integrin function in the hematopoietic system will
undoubtedly contribute to our understanding of how the various blood cells
move from one site to another, how the cells communicate with each other,
and how they exert their functional properties. A serious problem of genetic
studies of blood cells can be early embryonic lethality, or the loss of gene
expression in several non-hematopoietic cell types relevant for blood cells,
such as endothelial cells or stromal cells. This problem can be elegantly
circumvented with conditional and inducible gene deletions. Numerous,
well-characterized Cremouse lines are available that restrict the gene ablation
in a constitutive or temporal manner to specific cell types or compartments
of the hematopoietic system. This rich resource makes genetic studies of
hematopoiesis very attractive and doable (Table 12.2).

The Mx1-Cre mouse strain represents an excellent option to temporally
ablate genes in the hematopoietic system (Kuhn et al., 1995). The Mx1
promoter is activated by interferon-a or -b, whose expression in turn can
readily be induced by the intraperitoneal injection of the synthetic double-
stranded RNA polyinosinic-polycytidylic acid (pI-pC). Since the Mx1 pro-
moter is highly active in hematopoietic stem cells, pI-pC injections lead to a
rapid and efficient deletion of loxP-flanked (also-called floxed) genes in all
hematopoietic cells. Unfortunately, a large number of nonhematopoietic cells,
such as hepatocytes and endothelial cells, among others, also express the
interferon a/b receptors and hence also lose the floxed gene. To restrict the
deletion to the hematopoietic compartment, the loxP/Mx1-Cre system must
be combinedwith the generation of bonemarrow chimeras (Fig. 12.3), which
is a rather easy task. This task is usually done with C57BL/6 mice that express
the Ly-5.2 and B6SJL that express the Ly-5.1 surface antigen on all leukocytes.
The two mouse strains provide an elegant system to generate bone marrow
chimeras between C57BL/6 donors (floxed gene/Mx1-Cre bone marrow)
and lethally irradiated, wild-type B6SJL hosts, thereby providing a marker to
easily exclude remaining cells of the irradiated host from the analysis.

Bone marrow chimeras cannot be generated when a gene mutation leads
to embryonic lethality. In such a case, it may still be possible to isolate and
transfer hematopoietic stem cells from the fetal liver cells or the adreno-
gonadal-mesonephros region into lethally irradiated hosts (Gribi et al., 2006).
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3.1. Generation of bone marrow chimeras

3.1.1. Materials

Borgal: 7.5% antibiotic solution for small animals (commercially available
from Hoechst).

pI-pC: Poly(I)-poly(C) (Amersham Biosciences); the stock solution with
a final concentration of 2 mg/ml is prepared with PBS according to
manufacturer’s instructions and stored at –20�.

Table 12.2 Cre lines for gene deletions in the hematopoietic system

Promoter Expressionpattern Special notes/reference

Lck T cells Onset of deletion during the DN1 stage of

thymocyte development (Lee et al., 2001)

CD4 T cells Onset of deletion during the double positive

stage of thymocyte development (Lee

et al., 2001)

mb1 B cells Onset of deletion in early pro-B cells, low

frequency of deletion in T cells (Hobeika

et al., 2006)

CD19 B cells Onset of deletion during the pre-B cell stage

(Rickert et al., 1997)

CD21 B cells Onset of deletion in mature B cells, high

deletion in the ovary (Kraus et al., 2004)

hCD2 T cells and B cells Onset of deletion before the DN4 stage of

thymocyte development and in early

pro-B cells, mosaic expression in testis

(de Boer et al., 2003)

Vav All cells of

hematopoietic

system

Expression in ovaries and testis (de Boer et al.,

2003), endothelial cells, and testis

(Georgiades et al., 2002)

CD11c Dendritic cells

(DC)

Cre expression is induced by tamoxifen, only

a few CD11cþ DCs are expressing Cre

(Probst et al., 2003)

GATA1 erythroid cells and

mast cells

Onset of deletion at the time of Ter119

expression, deletion also in

megakaryocytes and eosinophils ( Jasinski

et al., 2001)

LysM granulocytes Partial deletion in macrophages and splenic

CD11cþ DCs (Clausen et al., 1999)

CD11b peritoneal

macrophages,

mature

osteoclasts

Partial deletion in macrophages and

granulocytes, deletion in B and T cell

subsets (Ferron and Vacher, 2005)

Pf4 megakaryocytes Complete and specific deletion in the

megakaryocytic lineage (Tiedt et al., 2006)
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3.1.2. Procedure

1. The ideal recipients are 8- to 12-week-old B6SJL mice that are sex-
matched with the donor mice (to prevent an immune response against
donor cells). The recipient mice are g-irradiated at 1000 rad with an
X-ray machine.

2. Single-cell suspensions of bone marrow cells are prepared (see Section
3.2), resuspended in PBS, and adjusted to 5 � 106 cells/ml PBS.

3. The recipient mice are immobilized in custom-made conical metal
chambers (Fig. 12.4) and the tails of the recipient mice are warmed for
30 sec in a 50� water bath (to increase blood flow and vessel size). Around
200 ml of the bone marrow cell suspension (1 � 106 cells/mouse) are
injected with a 30G needle into the lateral tail vein.

4. The first 2 weeks after the transplantation, 1 ml of Borgal solution is
added to 500 ml of drinking water; this will prevent infections in the
irradiated, immunocompromised mice.

5. Four weeks after the bone marrow transplantation, the hematopoietic
system of the recipient mouse is fully reconstituted with donor cells (this
can be easily checked by determining the number of Ly-5.1–positive

Figure 12.3 Generation of bone marrow chimeras using the Mx1-Cre/loxP system.
Bone marrow from a Ly-5.2^positive donor mouse carrying the target gene flanked by
loxP sites, and the Mx1-Cre transgene is transferred into an irradiated, Ly-5.1^positive
wild-type recipient mouse. Four weeks after bone marrow transfer the hematopoietic
system of the recipient mouse is fully reconstituted and the knockout can be induced by
repeated pI-pC injections.
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cells in the peripheral blood using the flow cytometer). To induce the
Mx1-Cre–mediated gene ablation, the pI-pC stock solution is diluted to
0.5 mg/ml with PBS, and 500 ml is then injected intraperitoneally. The
pI-pC injection is repeated 2 and 4 days later.

6. It is necessary towait at least 4weeks before attempting in vivo analysis of the
hematopoietic system to exclude effects caused by the pI-pC–triggered
interferon production.

3.2. Standard flow cytometric analysis of cell
surface receptors

Analysis of the cellular composition of hematopoietic tissues/compartments
is done by determining the expression of cell surface receptors unique for
distinct subsets of blood cells with the fluorescence-activated cell sorter
(FACS).

3.2.1. Materials

Isoflurane: Isoba, a ready-to-use solution is commercially available (Essex
Tierarznei)

Heparin: 20 U/ml heparin (Sigma) in TBS (50 mM Tris, 10 mM NaCl,
pH 7.5).

ACK buffer: Ammonium chloride potassium phosphate buffer: 150 mM
NH4Cl, 1 mM KHCO3, 0.1 mM EDTA, pH 7.3.

FACS-PBS: PBS supplemented with 1% BSA.
70-mm cell strainer: sterile 70-mm nylon cell strainer (BD Falcon).
Propidium-iodide: Propidium-iodide (Sigma) is prepared as a stock solution
of 50 mg/ml in PBS, which can be stored at 4� in the dark.

A B

Figure 12.4 Injection of bone marrow cells into a recipient mouse. (A) The mouse is
immobilized in a conical metal chamber. (B) Bone marrow is injected into the lateral
tail vein of the prewarmed tailwith a 30G needle.
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3.2.2. Isolation of peripheral blood leukocytes
Procedure

1. The mouse is anesthetized by putting it into a beaker that contains a tissue
drenched with 1 to 2 ml of isoflurane.When movements cease, the mouse
should be immediately removed from the beaker. Extended exposure to
isoflurane stops the heart beat and makes blood collection impossible.
Around 50 ml of blood are collected with a heparin-soaked glass capillary
from the retro-orbital venous plexus. The blood is resuspended in 500 ml
PBS and centrifuged for 5 min at 400�g. The supernatant is carefully
removed and discarded.

2. The cell pellet is resuspended in 500-ml ACK buffer, incubated for 5 min at
RT, and centrifuged again. The supernatant, which should appear reddish
due to the lysis of the erythrocytes, should be carefully removed and
discarded. The cell pellet is resuspended in 100 ml of PBS. The amount
of cells should be sufficient for two to three flow cytometry stainings.

3.2.3. Isolation of bone marrow cells
Procedure

1. The femurs of a mouse are carefully dissected and the muscles are removed
by rubbing each femur with a Kleenex tissue. If cells should be sterile (e.g.,
for generation of dendritic cells), the femurs must stay intact during the
removal of the muscle tissue and are incubated after muscle removal for
2 min in 70% ethanol and then rinsed in PBS.

2. Both ends of the femur are abscised with a sharp scalpel and the bone is
subsequently flushed from both ends with 10-ml ice-cold PBS using a
10-ml syringe and a 23G needle. The isolated cell clumps are broken up
into a single cell suspension by vigorous pipetting and then transferred
through a 70-mm cell strainer into a 50-ml tube.

3.2.4. Isolation of cells from lymphatic tissues
Procedure

1. The organs of interests (such as thymus, spleen, lymph nodes, or Peyer’s
patches) are isolated, freed from surrounding connective tissue as much
as possible, rinsed with PBS to remove blood and put into a cell strainer,
which is placed in a Petri dish together with 10 ml of ice-cold PBS. To
keep the cell strainer at 4�, the Petri dish is kept on ice.

2. Each organ is homogenized by gently squeezing it with the piston of a
plastic syringe through the cell strainer. The cell suspension is transferred
from the Petri dish into a 50-ml tube by filtering it again through the cell
strainer. Toobtain all remaining cells floating in the Petri dish, the Petri dish
is rinsed again with 10 ml of ice-cold PBS and the suspension is combined
with the other cells in the 50-ml tube.
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3.2.5. Immunofluorescence staining of suspended
hematopoietic cells

Procedure

1. The cells are pelleted by centrifugation at 300�g, resuspended in an
appropriate volume (2 to 10 ml) of ice-cold PBS, and counted.

2. If a centrifuge capable of centrifuging 96-well plates is available, the
staining is most conveniently performed in 96-well round-bottom plates.
For each staining, 1 � 106 cells or 100 ml of peripheral blood suspension
are pipetted into each well. The plate is centrifuged for 5 min at 300�g.
The supernatant is removed and the pellet resuspended in 50 ml of
FACS-PBS with the first antibody.

3. After a 30-min incubation at 4� in the dark, 200 ml FACS-PBS are added
to each well. Subsequently, the cells are pelleted by centrifugation
(300�g). Upon removal of the supernatant, the cell pellet is resuspended
in 50-ml of FACS-PBS containing the secondary antibody.

4. The cell suspension is incubated for 15 min at 4� in the dark, and then
diluted by adding 200 ml of FACS-PBS and finally centrifuged again at
300�g andRT.The supernatant is removed and the cell pellet resuspended
in 200 ml FACS-PBS. Immediately beforemeasuring, the fluorescent signal
with the flow cytometer 10 ml of propidium-iodide (50 mg/ml) is added to
each sample, which allows identification of dead cells. After brief vortexing,
the fluorescence is measured with a cytometer.

Table 12.3 lists a number of surface markers that are commonly used
singly or in combination to analyze the hematopoietic system. Please note
that many of the markers are also useful for immunostaining of tissue
sections of lymphatic organs, thereby also allowing assessment of the spatial
distribution of blood cell types.

3.3. Flow cytometric lacZ staining of hematopoietic cells

The bacterial lacZ gene is an elegant means to examine the expression of a
gene of interest. If knockout constructs are engineered to replace the dis-
rupted gene with a lacZ gene, Cre-driven excisions can easily be monitored
histochemically. Expression of the lacZ gene results in the production of
b-galactosidase (b-gal), which can be readily detected by a number of
chromogenic or fluorogenic b-gal substrates (Rotman et al., 1963). This
allows visualization of the gene deletion by histochemically staining tissue
sections (see Section 4.4) or whole-mount embryos. Importantly, lacZ-
positive cells can also be detected by flow cytometry. In the protocol
described here, the lacZ measurement can be combined with immuno-
fluorescent staining allowing to precisely determining the identity of the
lacZ-positive cells.
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Table 12.3 Surface antigens supporting analysis of the hematopoietic system

Surfacemarkers Cell type

Spleen

CD4þ T helper cells

CD8þ Cytotoxic T cells

IgDþ B cells

NK1.1þ NK and NKT cells

Ter-119 Erythroblasts

B220þ CD21high

CD23low

Marginal zone B cells

CD23high CD21low Follicular B cells

Bone marrow

B220þ IgM� Pre–pro B cells and later developmental stages

CD19þ Pro B cells and later developmental stages

B220low IgMþ Immature B cells

B220high IgMþ IgDþ All mature B cells

Mac-1þ Gr-1þ Granulocytes

Mac-1þ Gr-1� Monocytes

Ter-119 Erythroblasts

NK1.1þ NK and NKT cells

CD4þ T helper cells

CD8þ Cytotoxic T cells

Lin� c-kitþ Sca-1high Hematopoietic stem cells

Lymph nodes

B220þ CD19þ B cells

CD4þ T helper cells

CD8þ Cytotoxic T cells

Thymus

Lin– B220–, CD4–, CD8–, Mac1–, Gr-1–, Ter119–

Lin– CD25– CD44þ DN1

Lin– CD25þ CD44þ DN2

Lin– CD25þ CD44– DN3

Lin– CD25– CD44– DN4

CD4– CD8– Double-negative T cells

CD4þ CD8þ Double-positive T cells

CD4þ CD4 single-positive T cells

CD8þ CD8 single-positive T cells

Peyer’s patches

CD4þ T-helper cells

CD8þ Cytotoxic T cells
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3.3.1. Materials

FDG: Fluorescein Di-(B-D-galactopyranoside) (Sigma). Dissolve 5 mg of
FDG in a mixture of 304.8 ml of H2O, 38.1 ml of dimethyl sulfoxide
(DMSO) (Sigma), and 38.1 ml of ethanol (8:1:1) to obtain a 20-mM
solution. Add 3429 ml of H2O (10:1) as soon as the FDG is completely
dissolved to obtain a 2-mM working solution. Store aliquots of around
300 ml at –20� in the dark.

Procedure

1. If immunofluorescence staining is combined with lacZ staining, the cells
are stained as described (see Section 3.2.5). Use around 3 � 06 cells per
staining, since the described method can lead to cell mortality and hence
loss of cells. After staining, the cells are pelleted by centrifugation at
300�g at RT and resuspended in 20 ml of FACS-PBS.

2. The cell suspension is admixed with 20 ml FDG to each sample, and
incubated for 75 sec in a 37� water bath to allow FDG uptake. The
uptake is then quickly terminated by the addition of 200 ml of ice-cold
FACS-PBS. Since exceeding the 75-sec incubation time with FDG
significantly increases cell death, avoid handling more than five samples
at the same time.

3. The cell suspensions are incubated for 2 h on ice in the dark and then
measured in the flow cytometer. Excluding dead cells by the addition of
propidium-iodide is recommended (see Section 3.2.5).

Flow cytometry and histology allow determination of the number, size,
distribution, and differentiation of distinct cell populations. Additional
assays further help to pinpoint potential functional defects of blood cell
lineages. Standard procedures include in vitro colony formation assays with
stem/progenitor cells, which permit evaluation of the formation of ery-
throid and myeloid cells; co-culture assays of bone marrow precursors with
stromal cells that permit determination of differentiation and proliferation of
B cells; and bone marrow precursor cell differentiation into dendritic cells,
which permits determination of T-cell proliferation and dendritic cell
analysis in vitro.

3.4. Generation of dendritic cells from bone marrow

Bone marrow–derived dendritic cells represent an elegant tool to study
antigen presentation and T-cell proliferation. Furthermore, dendritic cells
are also used to study cell migration, polarity, phagocytosis, adhesion, and
podosome formation (Calle et al., 2006), among other processes. Our
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protocol for generating dendritic cells is a slightly modified procedure
originally described by Lutz et al. (1999).

3.4.1. Materials

R10 medium: RPMI-1640 (Gibco) supplemented with 100 U/ml of peni-
cillin, 100 mg/ml of streptomycin, 2 mM of L-glutamin (all from PAA),
and 10% heat-inactivated FCS (Gibco).

GM-CSF: rmGM-CSF (Peprotech)—20 ng/ml correspond to 200 U/ml.
Alternatively, cell culture supernatant collected from Ag8653 myeloma
cells transfected with the murine GM-CSF cDNA can be used (Zal et al.,
1994).

Freezing medium: Heat-inactivated FCS is supplemented with 10%
DMSO. Freezing medium is always freshly prepared.

LPS: Lipopolysaccharides from Escherichia coli (Sigma). A stock solution of
1 mg/ml is prepared with PBS.

Procedure

1. At day 0, bone marrow cells are isolated as described in Section 3.2.3,
resuspended in 10 ml of R10 medium, and counted.

2. Around 2.5 � 106 cells in a total volume of 10 ml of R10 medium
containing 20 ng/ml GM-CSF or 10% GM-CSF supernatant are trans-
ferred to a 10-cm Petri dish. Dendritic cells should be cultured in
bacterial-grade Petri dishes, since they strongly adhere to the plastic
surface of cell culture dishes, which prevents their differentiation.

3. Ten milliliters of R10 containing 20 ng/ml GM-CSF or 20% GM-CSF
supernatant are added at day 3 to the bone marrow culture. At day 6,
10 ml of the medium are carefully removed by tilting the plate slightly
and slowly sucking off the medium. Stirring and shaking should be
avoided when taking the plates out of the incubator. The removed
medium is replaced with 10 ml of fresh R10 containing 20 ng/ml of
GM-CSF or 20% GM-CSF supernatant.

4. At day 8, one of the following two possibilities is selected. First, the
immature dendritic cells can be frozen for later usage: The cells from a
10-cm cell culture dish are collected by gentle pipetting, centrifugation
at 300�g, and the cell pellet is resuspended in 1 ml of freezing medium.
The 1-ml suspension is transferred into a freezing tube and quickly
transferred to a –80� freezer. Second, the immature dendritic cells are
brought to maturation: The cells from a 10-cm culture dish are collected
as described above, resuspended in 10 ml of R10 containing 20 ng/ml
GM-CSF or 10% GM-CSF and 200 ng/ml LPS, and cultured overnight
in a 6-cm cell culture dish.
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3.5. In vitro T-cell proliferation assay

Several possibilities are available to trigger and determine T-cell proliferation.
First, T cells can be treated with ionophores and phorbol esters (e.g., iono-
mycin and phorbol-12-myristate-13-acetate [PMA]). Ionomycin increases
the intracellular calcium concentration by facilitating calcium transport
through the plasma membrane. Using this procedure, protein kinase C
(PKC) can be activated in a phospholipase C–independentmanner. Addition-
ally, phorbol esters such as PMA activate PKC by mimicking the action of
diacylglycerol (DAG). Second, T-cell proliferation can also be induced by
cross-linking T-cell receptors (TCR) with antibodies to the CD3 T-cell co-
receptor. This treatment mimics antigen-dependent TCR cross-linking,
and thereby evokes signaling from the TCR. Third, antigen-dependent
T-cell stimulation can be rather easily examined by crossing the integrin
knockouts with a mouse strain expressing a transgenic TCR. A transgenic
MHC class II–restricted TCR is expressed in the OT-II.2 mouse strain,
which generates CD4þ T cells specific for the OVA323–339 peptide from
chicken ovalbumin (Barnden et al., 1998). Upon intercrossing gene-
targeted mice with OT-II.2 transgenic mice, mutant CD4þ T cells can be
stimulated by co-culture with OVA323–339–loaded dendritic cells. A similar
system exists with the OT-I mice for CD8þ T cells (Clarke et al., 2000).

We usually monitor division of the stimulated T cells by determining the
dilution of the carboxy-fluorescein diacetate succinimidyl ester (CFSE).
CFSE diffuses freely into cells where it is converted by esterases into a
membrane-impermeant dye, which becomes covalently bound to cellular
proteins and is then capable to emit a fluorescence signal that can be assessed
with a flow cytometer equipped with 488-nm excitation and emission
filters. The CFSE fluorescence signal is halved during each cell division.

An alternative procedure to monitor cell division is measuring the incor-
poration of H3-thymidine (Krishnamoorthy et al., 2006), which is more
sensitive but does not permit the analysis of the proliferationon a single-cell basis.

3.5.1. Materials

Magnetic sorting of T cells: CD4þ TCell Isolation Kit, LSMACS columns,
and magnetic separation unit (all from Miltenyi).

ACK buffer: 150 mM NH4Cl, 1 mM KHCO3, 0.1 mM EDTA, pH 7.3.
MACS buffer: PBS containing 0.5% bovine serum albumin and 2 mM
EDTA.TheMACS buffer is degassed by applying vacuumor sonification.

anti-CD3e: Purified hamster anti-mouse CD3e monoclonal antibody (BD
Biosciences, clone 145–2C11).

CFSE: Carboxyfluorescein diacetate succinimidyl ester (CFDA, SE) (Mole-
cular Probes). A 6-mM stock solution is prepared in DMSO and stored
at – 20� in the dark.
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OVA323–339 peptide: The sequence of the OVA323–339 peptide is
H-ISQAVH AHAEINEAGR-OH. A stock of 2 mg/ml is prepared in
PBS and 100 ml aliquots are stored at –20�.

Dendritic cells: 1.5 � 106 bone marrow–derived dendritic cells matured
overnight with 200 ng/ml LPS (see Section 3.4) are resuspended in R10
medium to a final concentration of 0.4 � 106/ml.

PMA: Phorbol-12-myristate-13-acetate (Calbiochem). A 1-mg/ml stock is
prepared in DMSO, and 20-ml aliquots are stored at –20�. A 1:300
dilution in R10 medium is the working dilution and is always freshly
prepared.

Ionomycin: Ionomycin calcium salt from Streptomyces conglobatus (Calbio-
chem). A 1-mg/ml stock is prepared in DMSO and 20-ml aliquots are
stored at 4� in the dark. A 1:50 dilution in R10 medium is the working
dilution and is always freshly prepared.

3.5.2. Magnetic sorting of T cells
For high sorting purities, it is critical to cool the cells and solutions on ice.

Procedure

1. The spleen is dissected and a single cell suspension prepared (see Section
3.2.4). The cell suspension is pelleted by centrifugation at 300�g, and
then thoroughly resuspended in 5 ml of ACK buffer and incubated at
RT for 5 min. Afterward, 10 ml of PBS is added to the cell suspension
and centrifuged.

2. After centrifugation, the cell pellet is resuspended in 10 ml of MACS
buffer, counted, and 4 � 107 cells are centrifuged. The cells are labeled
and sorted using the CD4þ T Cell Isolation Kit according to the manu-
facturer’s instructions. With this kit, non-CD4þ T cells are labeled indi-
rectly magnetically with a cocktail of biotin-conjugated antibodies and
magnetic anti-biotin beads, and are subsequently depleted. Therefore, the
isolated CD4þ T cells remain untouched.

3.5.3. CFSE staining of T cells
Procedure

1. The sorted CD4þ T cells are resuspended in PBS in a concentration of 1�
107/ml. TheCFSE stock solution is diluted 1:240with PBS and added 1:50
to the cell suspension to reach a final concentration of 0.5 mM. Themixture
is briefly vortexed to ensure even distribution. The T-cell suspension is
incubated for 10 min at RT in the dark.

2. The reaction is stopped by the addition of 5 ml of ice-cold R10 medium.
The cells are centrifuged at 300�g, and then taken up in R10 medium to
obtain a final concentration of 1 � 106/ml.
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3.5.4. Proliferation assay
Procedure

1. Fifty microliters of 10 mg/ml of anti-CD3e in PBS is added to three of
the positive control wells (Fig. 12.5) of a 96-well, round-bottom plate,
and the plate is then incubated for 1 h at 37�.

2. The dilutions of the OVA peptide are prepared according to Fig. 12.5 in
a 12-well plate. Each dilution step must be thoroughly mixed before
proceeding to the next dilution.

3. One hundredmicroliters of the peptide dilution are added to the respective
wells (Fig. 12.5). The wells in row 5, which lack OVA peptide, serve as
negative controls. Next, 50 ml of dendritic cells (DCs) (0.4 � 106/ml) and
50 ml of CFSE-labeled T cells (1 � 106/ml) are then added to each well.

4. The anti-CD3e–coated wells are washed carefully two times with 200 ml
of PBS. Then 100 ml ofR10medium are supplementedwith 2 ml of PMA
(1:300 dilution) and 100 ml of CFSE-labeled T cells (1 � 106/ml) are
added to each well. This will result in a final PMA concentration of
33 ng/ml. To the remaining ‘‘positive control wells,’’ 100 ml of R10
medium is supplemented with 2 ml of PMA (1:300 dilution) and 2 ml of
ionomycin (1:50) dilution, and 100 ml CFSE-labeled T cells (1� 106/ml)
is added. This will result in a final ionomycin concentration of 200 ng/ml.

5. The plate is incubated for 72 h at 37� in a regular cell-culture incubator.
For each measurement, the cells from three wells are collected and
pooled by thorough pipetting. The CFSE signal is determined in the
fluorescein channel of a flow cytometer. It is often convenient to analyze
additional parameters such as activation markers, for example. In this
case, an immunofluorescence staining of the cells with antibodies against
markers such as CD25, CD44, and CD69 antibodies must be performed
as described in Section 3.2.5 before the flow cytometric analysis.

A

B

1485 m1 R10 + 15 m1 OVA stock
1350 m1 R10

150 m1 R10

150 m1 R10

150 m1 R10
1350 m1 R10
1350 m1 R10
1500 m1 R10

Control T-cells
10 mg/ml OVA peptide
1 mg/ml OVA peptide
0,1 mg/ml OVA peptide

0,01 mg/ml OVA peptide
0 mg/ml OVA peptide

Positive controls

Knockout T-cells

Figure 12.5 Pipetting scheme for peptide dilutions andT-cell proliferation assays.
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3.6. In vivo T-cell proliferation assay

The intravenous injection of T cells together with antigen-loaded dendritic
cells into mice is the most physiological way to examine antigen-dependent
proliferation of TCR transgenic T cells. The two injected cell types will
move to the spleen where they interact in a physiological environment and
trigger T-cell proliferation.

3.6.1. Materials

Magnetic sorting of T cells, ACK buffer, MACS buffer, CFSE, and
OVA323–339 peptide. See Section 3.5.

Dendritic cells: 2.5 � 106 bone marrow–derived dendritic cells/mouse,
matured overnight with 200 ng/ml of LPS. They are prepared as
described in Section 3.4.

3.6.2. Magnetic sorting of T cells
Magnetic sorting of the cells is performed as described in Section 3.5. Around
3� 106 T cells are needed per mouse. Therefore, 5� 107 splenocytes should
be sorted to obtain enough cells for three experiments.

3.6.3. CFSE staining of T cells
Procedure

1. The sorted CD4þ T cells are resuspended in PBS to obtain a concentra-
tion of 2 � 107/ml. The CFSE stock solution is diluted 1:600 with PBS
and added 1:1 to the cell suspension to obtain a final concentration of
5 mM. The mixture is vortexed briefly to ensure even distribution. The
T-cell suspension is incubated for 10 min at 37�.

2. The reaction is stopped by the addition of 10 ml of ice-cold R10
medium. The cells are then centrifuged at 300�g and taken up in PBS
to obtain a final concentration of 15 � 106/ml.

3.6.4. Proliferation assay
Procedure

1. Around 5 to 15 � 106 matured dendritic cells are resuspended in 3 ml of
R10 medium containing 20 ng/ml of GM-CSF or 10% GM-CSF
supernatant and 20 mg/ml of Ova peptide. They are transferred in a
50-ml tube and incubated for 4 h in a cell culture incubator. A control
batch of dendritic cells should be incubated without the peptide. After
the incubation, the dendritic cells are washed twice with 10 ml of PBS,
and are taken up in PBS after a subsequent centrifugation to obtain a
dendritic cell concentration of 12.5 � 106/ml.
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2. About 3 � 106 of CFSE-labeled OT-II T cells resuspended in 200 ml
PBS are injected into the tail vein of a mouse (see Section 3.1). Sex-
matched mice of 6 to 10 weeks of age are used as recipients. Around 4 h
later, 2.5 � 106 of Ova-loaded dendritic cells resuspended in 200 ml of
PBS are injected into the same recipients.

3. Three days later the spleens are dissected and a single cell suspension is
prepared as described in Section 3.2.4. To analyze T-cell proliferation by
flow cytometry, 5� 106 splenocytes are stained with the desired markers
and measured in a flow cytometer. Care should be taken to adjust the
gains and compensations of the cytometer to avoid leakage of the CFSE
signal into other channels. Furthermore, it is important to include a
control with unloaded dendritic cells to determine the fluorescence
intensity of nondividing T cells.

3.7. Induction of experimental autoimmune
encephalomyelitis in C57/BL6 mice

Experimental autoimmune encephalomyelitis (EAE) is a very well-established
animal model representing the human disease multiple sclerosis (MS). Over
the years it has become increasingly clear that integrins play an important role
for the development of both EAE and MS (Yednock et al., 1992). Nonethe-
less, the exact function of integrins during the disease-relevant processes of
T-cell activation and proliferation and extravasation into the brain are still
not clear. Aspects like T-cell adhesion to endothelial cells can be analyzed
in vitro in adhesion assay (Reiss et al., 1998), as well as in vivo by intravital
microscopy (Vajkoczy et al., 2001). But to analyze the overall contribution of
genetically altered hematopoietic cells to the development of EAE, it is
necessary to induce EAE in knockout mice. This has been done in many
mutant mouse strains that are deficient in adhesion molecules with a potential
role in inflammatory conditions (Kanwar et al., 2000; Kerfoot et al., 2006).

3.7.1. Materials

Complete Freund’s Adjuvant (CFA): 50 mg of Mycobacterium tuberculosis
H37 Ra (Difco Laboratories) is first thoroughly ground with 1 ml of
Incomplete Freund’s Adjuvant (Sigma) using mortar and pestle, and then
suspended with an additional 9 ml of Incomplete Freund’s Adjuvant to
obtain a total volume of around 10 ml, and finally stored at 4�. The
suspension must always be homogenized with a syringe prior to usage.

MOG35–55 peptide: The sequence isH-MEVGWYRSPFSRVVHLYRNGK-
OH. A stock of 2 mg/ml is prepared in PBS and 500-ml aliquots are
stored at –20�.

Syringes, adaptor, and needles: 2� 1-ml glass tuberculin syringes with Luer
lock tip and a female Luer lock to female Luer lock syringe adaptor
(Sigma), and disposable 23G and 26G needles.
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Pertussis toxin: Pertussis toxin (List Biological Laboratories). The vial contain-
ing pertussis toxin powder is reconstituted according to the manufacturer’s
instructions to a 100 ng/ml-stock solution and stored at 4�.

3.7.2. Procedure

1. For every mouse, 100 ml MOG in PBS and 100 ml CFA are mixed using
two syringes that are connected with an adaptor. The two solutions are
mixed until a white emulsion forms,which is hard to push fromone syringe
to the other. Themixed emulsion is kept on ice. Themouse is anesthetized
with Isoflurane and 100 ml of the emulsion are injected with a 23G needle
subcutaneously into the tail base as well as the neck of the mouse.

2. To prepare 400 ng of pertussis toxin, add 4 ml of the stock solution to
200 ml PBS. The toxin is injected intraperitoneally using a 26G needle.

3. The mice are assessed daily for clinical EAE symptoms and weight loss.
Clinical scoring should be performed blinded if possible, and according to
the established classification as, for example, described by Krishnamoorthy
et al. (2006).

3.8. Mononuclear cell isolation from the central nervous
system

The first step to analyze the diseased mice is often histological analysis of the
central nervous system (CNS).With H&E and luxol fast blue staining of CNS
sections, infiltration of immune cells and demyelination of nerves can be
assessed (Krishnamoorthy et al., 2006). Additionally, mononuclear cells can
also be isolated from the CNS by a Percoll density-gradient centrifugation,
and subsequently be analyzed by flow cytometry.

3.8.1. Materials

Percoll: Medium for density centrifugation with a density of 1.130 g/ml
(Fluka).

10� PBS: 80 g NaCl, 2 g KCl, 2 g KH2PO4 and 14.4 g Na2HPO4 �
2 H2O are dissolved in 1 liter of distilled water.

Medium: DMEM cell culture medium (Gibco), supplemented with 2%
FCS and 2.5% HEPES (1-M stock solution, pH 7.0).

Procedure

1. For each gradient, 9 ml of Percoll are mixed with 1 ml of 10� PBS to
obtain an isotonic Percoll stock solution (IPSS) with a density of
1.123 g/ml. The IPSS can be stored at 4� for about 2 weeks. For each
gradient, 4 ml of IPSS are mixed with 2.23 ml of PBS to obtain Percoll
with a density of 1.08 g/ml.
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2. All glass- and plasticware should be coated with serum-containing
medium by wetting them once. This prevents cells sticking to surfaces.

3. The brain is carefully dissected out from the skull. The spinal column is
transected in the cervical and lumbar part. The spinal cord is flushed out
with 10 ml of PBS by inserting the end of a truncated 18G needle
connected to a 10-ml syringe into the spinal column and applying gentle
pressure with the syringe. Both the brain and spinal cord are rinsed with
PBS to remove blood and put into a cell strainer, which is placed in a
Petri dish together with 5 ml of ice-cold medium. To maintain the tissue
at 4�, the Petri dish is kept on ice.

4. The brain is homogenized by gently squeezing it with the piston of a
plastic syringe through the cell strainer. The piston should be only
pressed, not ground, since grinding will result in increased mortality of
T lymphocytes. The cell suspension is transferred from the Petri dish into
a 15-ml tube by filtering it again through the cell strainer. To obtain all
remaining cells floating in the Petri dish, the Petri dish is rinsed again
with 5 ml of ice-cold medium, and then the suspension is combined with
the other cells in the 15-ml tube. The volume is adjusted to 12.5 ml with
the medium, and the suspension is mixed with 5.4 ml of IPSS.

5. Five milliliters of Percoll with a density of 1.08 g/ml are carefully under-
layed by putting the tip of a 5-ml plastic pipette filled with 5.5 ml of the
latter to the very bottom of the tube and slowly releasing the liquid. The
last 0.5 ml should not be released from the pipette since this would often
result in disturbance of the layering.

6. The gradient is centrifuged at 1200�g for 30 min at 20�. Afterward, the
myelin debris, which is on top, is sucked away. The mononuclear cells
that accumulated at the interface of the two solutions are sucked away
with a medium-coated Pasteur pipette and transferred into a medium-
coated 50-ml Falcon tube. The recovered suspension is filled up to 50 ml
with medium and centrifuged at 300�g for 10 min at 4�. The pelleted
cells can now be resuspended—for instance in FACS-PBS—and
analyzed by flow cytometry as described in Section 3.2.5.
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